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Preface

Linear Algebra deals with the most fundamental ideas of mathematics in an abstract
but easily understood form. The notions and techniques employed in Linear
Algebra are widely spread across various topics and are found in almost every
branch of mathematics, more prominently, in Differential Equations, Functional
Analysis, and Optimization, which have wide applications in science and engi-
neering. The ideas and techniques from Linear Algebra have a ubiquitous presence
in Statistics, Commerce, and Management where problems of solving systems of
linear equations come naturally. Thus, for anyone who carries out a theoretical or
computational investigation of mathematical problems, it is more than a necessity to
equip oneself with the concepts and results in Linear Algebra, and apply them with
confidence.

Overview and Goals

This book provides background materials which encompass the fundamental
notions, techniques, and results in Linear Algebra that form the basis for analysis
and applied mathematics, and thereby its applications in other branches of study. It
gives an introduction to the concepts that scientists and engineers of our day use to
model, to argue about, and to predict the behaviour of systems that come up often
from applications. It also lays the foundation for the language and framework for
modern analysis. The topics chosen here have shown remarkable persistence over
the years and are very much in current use.

The book realizes the following goals:

• To introduce to the students of mathematics, science, and engineering the
elegant and useful abstractions that have been created over the years for solving
problems in the presence of linearity

• To help the students develop the ability to form abstract notions of their own and
to reason about them
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• To strengthen the students’ capability of carrying out formal and rigorous
arguments about vector spaces and maps between them

• To make the essential elements of linear transformations and matrices accessible
to not-so-matured students with a little background in a rigorous way

• To lead the students realize that mathematical rigour in arguing about linear
objects can be very attractive

• To provide proper motivation for enlarging the vocabulary, and slowly take the
students to a deeper study of the notions involved

• To let the students use matrices not as static array of numbers but as dynamic
maps that act on vectors

• To acquaint the students with the language and powers of the operator theoretic
methods used in modern mathematics at present

Organization

Chapter 1 lays the foundation of Linear Algebra by introducing the notions of
vector spaces, subspaces, span, linear independence, basis and dimension, and the
quotient space. It is done at a leisurely pace. Sometimes, the steps have been made
elaborate intentionally so that students would not jump to conclusions and develop
the habit of hand waving. Both finite and infinite dimensional vector spaces are
discussed so that a proper foundation is laid for taking up Functional Analysis as a
natural extension, if the student so desires to pursue in his later years of study.

Chapter 2 introduces linear transformations as structure-preserving maps
between vector spaces. It naturally leads to treating the matrices as linear trans-
formations and linear transformations as matrices. Particular attention is given to
bijective linear transformations and how they act on bases. So, change of bases is
considered by looking at the identity linear transformation. The space of linear
transformations is introduced along with the composition of maps. It raises the issue
of equivalence and similarity of matrices leading to the rank theorem.

Chapter 3 deals with elementary operations in detail. Starting from the com-
putation of rank, elementary operations are used to evaluate determinants, compute
the inverse of a matrix, and solve linear systems. The issue of solvability of linear
systems is treated via linear transformations showing to the students how abstrac-
tion helps.

Chapter 4 brings in the so far neglected notion of direction, or angle between
vectors by introducing inner products. The notion of orthogonality and the neces-
sary elegance and ease it ensues are discussed at length. The geometric notion of an
orthogonal projection is given a lead for solving minimization problems such as the
best approximation of a vector from a subspace and least squares solutions of linear
systems. Constructing a linear functional from the inner product via Fourier
expansion leads to Riesz representation theorem. The existence of the adjoint of a
linear transformation is also shown as an application of Riesz representation.

vi Preface



Chapter 5 asks a question of how and when a linear operator on a vector space
may fix a line while acting on the vectors. This naturally leads to the concepts of
eigenvalues and eigenvectors. The notion of fixing a line is further generalized to
invariant subspaces and generalized eigenvectors. It gives rise to polynomials that
annihilate a linear operator, and the ascent of an eigenvalue of a linear operator.
Various estimates involving the ascent, the geometric, and algebraic multiplicities
of an eigenvalue are derived to present a clear view.

Chapter 6 takes up the issue of representing a linear operator as a matrix by using
the information on its eigenvalues. Starting with diagonalization, it goes for Schur
triangularization, block-diagonalization, and Jordan canonical form characterizing
similarity of matrices.

Chapter 7 tackles the spectral representation of linear operators on inner product
spaces. It proves the spectral theorem for normal operators in a finite-dimensional
setting, and once more, that of self-adjoint operators with somewhat a different
flavour. It also discusses the singular value decomposition and polar decomposition
of matrices that have much significance in application.

Special Features

There are places where the approach has become non-conventional. For example, the
rank theorem is proved even before elementary operations are introduced; the relation
between ascent, geometric multiplicity, and algebraic multiplicity are derived in the
main text, and information on the dimensions of generalized eigenspaces is used to
construct the Jordan form. Instead of proving results on matrices, first a result of the
linear transformation is proved, and then it is interpreted for matrices as a particular
case. Some of the other features are:

• Each definition is preceded by a motivating dialogue and succeeded by one or
more examples

• The treatment is fairly elaborate and lively
• Exercises are collected at the end of the section so that a student is not distracted

from the main topic. The sole aim of these exercises is to reinforce the notions
discussed so far

• Each chapter ends with a section listing problems. Unlike the exercises at the
end of each section, these problems are theoretical, and sometimes unusual and
hard requiring the guidance of a teacher

• It puts emphasis on the underlying geometric idea leading to specific results
noted down as theorems

• It lays stress on using the already discussed material by recalling and referring
back to a similar situation or a known result

• It promotes interactive learning building the confidence of the student
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• It uses operator theoretic method rather than the elementary row operations. The
latter is primarily used as a computational tool reinforcing and realizing the
conceptual understanding

Target Audience

This is a textbook primarily meant for a one- or two-semester course at the junior
level. At IIT Madras, such a course is offered to master’s students, at the fourth year
after their schooling, and some portions of this are also offered to undergraduate
engineering students at their third semester. Naturally, the problems at the end of
each chapter are tried by such master’s students and sometimes by unusually bright
engineering students.

Notes to the Instructor

The book contains a bit more than that can be worked out (not just covered) in a
semester. The primary reason is: these topics form a prerequisite for undertaking
any meaningful research in analysis and applied mathematics. The secondary rea-
son is the variety of syllabi followed at universities across the globe. Thus different
courses on Linear Algebra can be offered by giving stress on suitable topics and
mentioning others. The authors have taught different courses at different levels from
it sticking to the core topics.

The core topics include vector spaces, up to dimension (Sects. 1.1–1.5), linear
transformation, up to change of basis (Sects. 2.1–2.5), a quick review of determi-
nant (Sect. 3.5), linear equations (Sect. 3.6), inner product space, up to orthogonal
and orthonormal bases (Sects. 4.1–4.5), eigenvalues and eigenvectors, up to
eigenspaces (Sects. 5.1–5.3), the characteristic polynomial in Sect. 5.5, and diag-
onalizability in Sect. 6.1. Depending on the stress in certain aspects, some of the
proofs from these core topics can be omitted and other topics can be added.

Chennai, India M. Thamban Nair
March 2018 Arindama Singh
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Chapter 1
Vector Spaces

1.1 Vector Space

A vector in the plane is an object with certain length and certain direction. Con-
ventionally it is represented by an arrow with an initial point and an endpoint; the
endpoint being the arrow head. We work with plane vectors by adding them, sub-
tracting one from the other, and by multiplying them with a number. We see that the
plane vectors have a structure, which is revealed through the two operations, namely
addition and multiplication by a number, also called scalar multiplication. These
operations can be seen in an alternate way by identifying the vectors with points in
the plane. The identification goes as follows.

Since only length and direction matter and not exactly the initial or the endpoints,
we may think of each vector having its initial point at the origin. The endpoint
can then be identified with the vector itself. With O as the origin with Cartesian
coordinates (0, 0) and P as the point with Cartesian coordinates (a, b), the vector−→
OP is identified with the point (a, b) in the plane

R
2 = {(α, β) : α ∈ R, β ∈ R}.

Then the familiar parallelogram law for addition of vectors translates to component-
wise addition. If u, v are vectors with initial point (0, 0) and endpoints (a, b) and
(c, d), respectively, then the vector u + v has initial point (0, 0) and endpoint (a +
c, b + d). Similarly, for a real number α, the vector αu has the initial point (0, 0)
and endpoint (αa, αb).

© Springer Nature Singapore Pte Ltd. 2018
M. T. Nair and A. Singh, Linear Algebra,
https://doi.org/10.1007/978-981-13-0926-7_1
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2 1 Vector Spaces

Thus, (−1) u, which equals (−a,−b), represents the additive inverse −u of the
vector u; the direction of−u is opposite to that of u.Now, the plane is simply viewed
as a set of all plane vectors.

Similarly, in the three-dimensional space, you may identify a vector with a point
by first translating the vector to have its initial point as the origin and its arrow
head as the required point. The sum of two vectors in three dimensions gives rise
to the component-wise sum of two points. A real number α times a vector gives
a vector whose components are multiplied by α. That is, if u = (a1, b1, c1) and
v = (a2, b2, c2), then

u + v = (a1 + a2, b1 + b2, c1 + c2), αu = (αa1, αb1, αc1).

Notice that the zero vector, written as 0, is identified with the point (0, 0, 0), and the
vector −u = (−a1,−b1,−c1) satisfies u + (−u) = 0.

The notion of a vector space is an abstraction of the familiar set of vectors in two
or three dimensions. The idea is to keep the familiar properties of addition of vectors
and multiplication of a vector by a scalar. The set of scalars can be any field. For
obtaining interesting geometrical results, we may have to restrict the field of scalars.
In this book, the field F denotes either the field R of real numbers or the field C of
complex numbers.

Definition 1.1 A vector space overF is a nonempty setV alongwith twooperations,
namely

(a) addition, which associates each pair (x, y) of elements x, y ∈ V with a unique
element in V , denoted by x + y, and

(b) scalar multiplication, which associates each pair (α, x), for α ∈ F and x ∈ V ,
with a unique element in V , denoted by αx ,

satisfying the following conditions:

(1) For all x, y ∈ V, x + y = y + x .
(2) For all x, y, z ∈ V, (x + y) + z = x + (y + z).
(3) There exists an element in V , called a zero vector, denoted by 0, such that for

all x ∈ V, x + 0 = x .
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(4) For each x ∈ V , there exists an element in V , denoted by −x , and called an
additive inverse of x , such that x + (−x) = 0.

(5) For all α ∈ F and for all x, y ∈ V, α(x + y) = αx + αy.
(6) For all α, β ∈ F and for all x ∈ V, (α + β)x = αx + βx .
(7) For all α, β ∈ F and for all x ∈ V, (αβ)x = α(βx).
(8) For all x ∈ V, 1x = x .

Elements of F are called scalars, and elements of a vector space V are called vec-
tors. A vector space V overR is called a real vector space, and a vector space overC

is called a complex vector space. As a convention, we shorten the expression “a vec-
tor space over F” to “a vector space”. We denote vectors by the letters u, v,w, x, y, z
with or without subscripts, and scalars by the letters a, b, c, d, α, β, γ, δ with or
without subscripts.

You have ready-made examples of vector spaces. The plane

R
2 = {(a, b) : a, b ∈ R}

and the familiar three-dimensional space

R
3 = {(a, b, c) : a, b, c ∈ R}

are real vector spaces. Notice that R is a vector space over R, and C is a vector
space over C as well as over R. Before presenting more examples of vector spaces,
we observe some subtleties about the conditions (3) and (4) in Definition1.1. It is
unusual to write a particular symbol such as 0 for all zero vectors. It is also unusual to
write−x for all additive inverses of x . The philosophical hurdle will be over once we
prove that a zero vector is unique and an additive inverse of a vector is also unique.

Theorem 1.2 In any vector space the following statements are true:

(1) There exists exactly one zero vector.
(2) Each vector has exactly one additive inverse.

Proof Let V be a vector space.
(1) Suppose 0 and 0̃ in V are zero vectors. Then for all x ∈ V, x + 0 = x and
x + 0̃ = x . Using the condition (1) in Definition1.1, we have

0̃ = 0̃ + 0 = 0 + 0̃ = 0.

(2) Let x ∈ V . Let x ′ and x̃ be additive inverses of x . Let 0 be the zero vector.
Then x + x ′ = 0 and x + x̃ = 0. Therefore,

x̃ = x̃ + 0 = x̃ + (x + x ′) = (̃x + x) + x ′ = (x + x̃) + x ′ = 0 + x ′ = x ′ + 0 = x ′. �

Theorem1.2 justifies the use of the symbols 0 for the zero vector and −x for the
additive inverse of the vector x . Of course, we could have used any other symbol,



4 1 Vector Spaces

say, θ for the zero vector and x ′ for the additive inverse of x ; but the symbols 0 and
−x follow the custom. Note that −0 = 0. We also write y − x instead of y + (−x)
for all vectors x and y.

Notice the double meanings used in Definition1.1. The addition of scalars as well
as of vectors is denoted by the same symbol +, and the multiplication of scalars
as well as of a vector with a scalar is written by just concatenating the elements.
Similarly, 0 denotes the zero vector as well as the scalar zero. Even the notation for
the additive inverse of vector x is −x ; just the way we write −α for the additive
inverse of a scalar α. You should get acquainted with the double meanings.

It is easy to check that in every vector space V over F,

0 + x = x, x + (y − x) = y for all x, y ∈ V .

Every vector space contains at least one element, the zero vector. On the other
hand, the singleton {0} is a vector space; it is called the zero space or the trivial
vector space. In general, we will be concerned with nonzero vector spaces, which
contain nonzero elements. A nonzero vector space is also called a nontrivial vector
space.

In a vector space, addition of two elements is allowed. This is generalized by
induction to a sum of any finite number of vectors. But an infinite sum of vectors is
altogether a different matter; it requires analytic notions such as convergence.

Example 1.3 In the following, the sets along with the specified addition and scalar
multiplication are vector spaces. (Verify.)
(1) Consider the set F

n of all n-tuples of scalars, that is,

F
n := {(a1, . . . , an) : a1, . . . , an ∈ F}.

We assume that two elements in F
n are equal when their respective components are

equal. For x = (a1, . . . , an), y = (b1, . . . , bn) ∈ F
n , and α ∈ F, define the addition

and scalar multiplication component-wise, that is,

x + y := (a1 + b1, . . . , an + bn), αx := (αa1, . . . , ααn).

Then F
n is a vector space with

0 = (0, . . . , 0) and − (a1, . . . , an) = (−a1, . . . ,−an).

(2) We use the notation F
m×n for the set of all m × n matrices with entries from F.

A matrix A ∈ F
m×n is usually written as

A =
⎡

⎢

⎣

a11 · · · a1n
...

...

am1 · · · amn

⎤

⎥

⎦
,
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or as A = [ai j ] for short, with ai j ∈ F for i = 1, . . . ,m; j = 1, . . . , n. The number
ai j which occurs at the entry in i th row and j th column is referred to as the (i, j)th
entry of the matrix [ai j ]. For A = [ai j ] and B = [bi j ] in F

m×n , and α ∈ F, we define

A + B = [ai j + bi j ] ∈ F
m×n, αA = [αai j ] ∈ F

m×n .

We say that two matrices are equal when their respective entries are equal. That is,
for A = [ai j ] and B = [bi j ], we write A = B if and only if ai j = bi j . With these
operations of addition and scalar multiplication, F

m×n becomes a vector space over
F. The zero vector in F

m×n is the zero matrix, i.e. the matrix with all entries 0, and
the additive inverse of A = [ai j ] ∈ F

m×n is the matrix −A := [−ai j ].
(3) For n ∈ {0, 1, 2, . . .}, let Pn(F) denote the set of all polynomials (in the variable
t) of degree at most n, with coefficients in F. That is, x ∈ Pn(F) if and only if x is
of the form

x = a0 + a1t + · · · + ant
n

for some scalars a0, a1, . . . , an . Here, we assume that a scalar is a polynomial of
degree 0. Further, two polynomials are considered equal when the coefficients of
respective powers of t are equal. That is,

a0 + a1t + · · · + ant
n = b0 + b1t + · · · + bnt

n if and only if ai = bi for i = 0, . . . , n.

Addition and scalar multiplication on Pn(F) are defined as follows. For
x = a0 + a1t + · · · + antn, y = b0 + b1t + · · · + bntn in Pn(F), and α ∈ F,

x + y := (a0 + b0) + (a1 + b1)t + · · · + (an + bn)t
n,

αx := αa0 + αa1t + · · · + αant
n.

The zero vector in Pn(F) is the polynomial with all its coefficients zero, and

−(a0 + a1t + · · · + ant
n) = −a0 − a1t − · · · − ant

n.

Then Pn(F) is a vector space.

(4) Let P(F) = ∪∞
n=0Pn(F), the set of all polynomials with coefficients in F. That

is, x ∈ P(F) if and only if x = a0 + a1t + · · · + antn for some n ∈ {0, 1, 2, . . .} and
for some scalars a0, . . . , an ∈ F.

If x, y ∈ P(F), then x ∈ Pm(F) and y ∈ Pn(F) for some m, n. So, x, y ∈ Pk(F),
with k = max {m, n}. The equality relation, addition, and scalar multiplication are
defined as in (3). Then P(F) is a vector space.

(5) Let V be the set of all sequences of scalars. A sequence whose nth term is an is
written as (an). Two sequences are considered equal if and only if their respective
terms are equal, that is, (an) = (bn) if and only if an = bn for each n ∈ N. For
(an), (bn) ∈ V , and α ∈ F, define
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(an) + (bn) := (an + bn), α(an) := (αan).

That is,

(a1, a2, a3, . . .) + (b1, b2, b3, . . .) = (a1 + b1, a2 + b2, a3 + b3, . . .),

α(a1, a2, a3. . . .) = (αa1, αa2, αa3, . . .).

With this addition and scalar multiplication, V is a vector space, where its zero vector
is the sequence with each term as zero, and −(an) = (−an). This space is called the
sequence space and is denoted by F

∞.

(6) Let S be a nonempty set. Let V be a vector space over F. LetF(S, V ) be the set of
all functions from S into V . As usual, x = y for x, y ∈ F(S, V ) when x(s) = y(s)
for each s ∈ S. For x, y ∈ F(S, V ) and α ∈ F, define x + y and αx point-wise; that
is,

(x + y)(s) := x(s) + y(s), (αx)(s) := αx(s) for s ∈ S.

Let the functions 0 and −x in F(S, V ) be defined by

0(s) = 0, (−x)(s) = −x(s) for s ∈ S.

Then F(S, V ) is a vector space over F with the zero vector as 0 and the additive
inverse of x as −x . We sometimes refer to this space as a function space. �

Comments on Notation: Pn(R) denotes the real vector space of all polynomials of
degree at most n with real coefficients. Pn(C) denotes the complex vector space of
all polynomials of degree at most n with complex coefficients. Similarly,P(R) is the
real vector space of all polynomials with real coefficients, and P(C) is the complex
vector space of all polynomials with complex coefficients. Note thatC is also a vector
space over R. Similarly, Pn(C) and P(C) are vector spaces over R. More generally,
if V is a complex vector space, then it is also a real vector space. If at all we require
to regard any vector space over C also as a vector space over R, we will specifically
mention it.

As particular cases of Example1.3(2), (Read: Example1.3 Part 2) we have the
vector spaces F

m×1, the set of all column vectors of size m, and F
1×n , the set of

all row vectors of size n. To save space, we use the transpose notation in writing
a column vector. That is, a column vector v of size n with its entries a1, . . . , an is
written as

⎡

⎢

⎣

a1
...

an

⎤

⎥

⎦
or as [a1 · · · an]T .

By putting the superscript T over a row vector v we mean that the column vector is
obtained by taking transpose of the row vector v. When the column vectors are writ-
ten by the lower case letters u, v,w, x, y, z with or without subscripts (sometimes
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superscripts), the corresponding row vectors will be written with the transpose nota-
tion, that is, as uT , vT . Further, we will not distinguish between the square brackets
and the parentheses. Usually, we will write a row vector with parentheses. Thus, we
will not distinguish between

[a1 · · · an] and (a1, . . . , an).

Thus we regard F
n same as F

1×n .Wemay recall that by taking transpose of a matrix
in F

m×n , we obtain a matrix in F
n×m . That is, if A = [ai j ] ∈ F

m×n , then

AT := [b ji ] ∈ F
n×m with b ji = ai j for i = 1, . . . ,m; j = 1, . . . , n.

Many vector spaces can be viewed as function spaces. For example, with S = N

and V = F, we obtain the sequence space of Example1.3(5). With S = {1, . . . , n}
and V = F, each function in F(S, F) can be specified by an n-tuple of its function
values. Therefore, the vector space F({1, . . . , n}, F) can be viewed as F

n and also
as F

n×1. Some more examples of function spaces follow.

Example 1.4 (1) Let I be an interval, and let C(I, R) denote the set of all real-valued
continuous functions defined on I . For x, y ∈ C(I, R) and α ∈ R, define x + y and
αx point-wise as in Example1.3(6).

The functions x + y and αx are in C(I, R). Then C(I, R) is a real vector space
with the zero element as the zero function and the additive inverse of x ∈ C(I, R) as
the function −x defined by (−x)(t) = −x(t) for all t ∈ I.

(2) Let R([a, b], R) denote the set of all real-valued Riemann integrable functions
on [a, b]. Define addition and scalar multiplication point-wise, as in Example1.3(6).
From the theory of Riemann integration, it follows that if x, y ∈ R([a, b], R) and
α ∈ R, then x + y, αx ∈ R([a, b], R). It is a real vector space.

(3) For k ∈ N, let Ck([a, b], F) denote the set of all functions x from [a, b] to F such
that the kth derivative x (k) exists and is continuous on [a, b].

Define addition and scalar multiplication point-wise, as in Example1.3(6). Then
Ck([a, b], F) is a vector space. Notice that

Ck([a, b], R) ⊆ C([a, b], R) ⊆ R([a, b], R) ⊆ F([a, b], R). �

Example 1.5 LetV1, . . . , Vn be vector spaces overF.Consider theCartesian product

V = V1 × · · · × Vn = {(x1, . . . , xn) : x1 ∈ V1, . . . , xn ∈ Vn}.

Define addition and scalar multiplication on V by

(x1, . . . , xn) + (y1, . . . , yn) := (x1 + y1, . . . , xn + yn),

α(x1, . . . , xn) := (αx1, . . . , αxn).
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In V , take the zero vector as (0, . . . , 0) and −(x1, . . . , xn) = (−x1, . . . ,−xn).
Here, the addition in the expression xi + yi is the addition operation defined in Vi and
the scalar multiplication in αxi is the scalar multiplication defined in Vi . Similarly,
in (0, . . . , 0), the i th component is the zero vector of Vi and −xi in (−x1, . . . ,−xn)
is the additive inverse of xi in Vi .

With these operations, V is a vector space. We call it the product space of
V1, . . . , Vn . �

To illustrate Example1.5, consider V1 = R and V2 = P1(R). Then V1 × V2 con-
sists of vectors of the form (a, α + βt), and the operations of addition and scalar
multiplication are defined by

(a1, α1 + β1t) + (a2, α2 + β2t) = (a1 + a2, (α1 + α2) + (β1 + β2)t),

c(a, α + βt) = (ca, cα + cβt).

Similarly, the space F
n is a product space with each Vi as F.

Some easy consequences of Definition1.1 are listed in the following theorem.

Theorem 1.6 Let V be a vector space over F. Let x, y, z ∈ V and let α, β ∈ F.

(1) 0x = 0.
(2) α0 = 0.
(3) (−1)x = −x .
(4) −(−x) = x .
(5) If x + z = y + z, then x = y.
(6) If αx = 0, then α = 0 or x = 0.
(7) If α �= β and x �= 0, then αx �= βx .

Proof (1) 0x = (0 + 0)x = 0x + 0x . Adding −0x , we have 0 = 0x .

(2) α0 = α(0 + 0) = α0 + α0. Adding −α0, we obtain 0 = α0.

(3) x + (−1)x = (1 + (−1))x = 0x = 0, by (1). Adding −x we get (−1)x = −x .

(4) From (3), it follows that −(−x) = (−1)(−1)x = x .

(5) Suppose that x + z = y + z. Then (x + z) + (−z) = (y + z) + (−z). But
(x + z) + (−z) = x + (z + (−z)) = x + 0 = x . Similarly, (y + z) + (−z) = y.
Therefore, x = y.

(6) Suppose thatαx = 0. Ifα �= 0, thenα−1 ∈ F.Multiplyingα−1,we haveα−1αx =
α−10. That is, x = 0.

(7) Suppose that α �= β and x �= 0. If αx = βx , then (α − β)x = 0. By (6), x = 0.
It leads to a contradiction. Hence, αx �= βx . �



1.1 Vector Space 9

Theorem1.6 allows us to do algebraic manipulation of vectors like scalars as long
as addition is concerned. Thus we abbreviate x + (−y) to x − y. However, there is
a big difference: vectors cannot be multiplied or raised to powers, in general. Look
at the proof of Theorem1.6(6). We used α−1 instead of x−1.

It follows fromTheorem1.6(7) that everynontrivial vector space contains infinitely
many vectors.

Exercises for Sect. 1.1

In the following a set V , a field F, which is either R or C , and the operations of
addition and scalar multiplication are given. Check whether V is a vector space over
F, with these operations.

1. With addition and scalar multiplication as in R
2,

(a) V = {(a, b) ∈ R
2 : 2a + 3b = 0}, F = R.

(b) V = {(a, b) ∈ R
2 : a + b = 1}, F = R.

(c) V = {(a, b) ∈ R
2 : ab = 0}, F = R.

2. V = R
2, F = R, with addition as in R

2, and scalar multiplication as given by the
following: for (a, b) ∈ V, α ∈ R,

(a) α(a, b) := (a, 0).
(b) α(a, b) := (b, αa).

(c) α(a, b) := (αa,−αb).

(d) α(a, b) :=
{

(0, 0) if α = 0

(αa, b/α) if α �= 0.

3. V = {x ∈ R : x > 0}, F = R, and for x, y ∈ V, α ∈ R, x + y := xy, αx :=
xα. The operations on the left are defined by the known operations on the right.

4. V = {x ∈ R : x ≥ 0}, F = R, and for x, y ∈ V, α ∈ R, x + y := xy, αx :=
|α|x .

5. V = C
2, F = C, and for x = (a, b), y = (c, d), α ∈ C,

x + y := (a + 2c, b + 3d), αx := (αa, αb).

6. V is the set of all polynomials of degree 5 with real coefficients, F = R, and the
operations are the addition and scalar multiplication of polynomials.

7. S is a nonempty set, s ∈ S, V is the set of all functions f : S → Rwith f (s) = 0,
F = R, and the operations are the addition and scalar multiplication of functions.

8. V is the set of all functions f : R → C satisfying f (−t) = f (t), F = R, and the
operations are the addition and scalar multiplication of functions.

9. V = {x}, where x is some symbol, and addition and scalar multiplication are
defined as x + x = x, αx = x for all α ∈ F.
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1.2 Subspaces

A subset of a vector space may or may not be a vector space. It will be interesting
if a subset forms a vector space over the same underlying field and with the same
operations of addition and scalarmultiplication inherited from the given vector space.
IfU is a subset of a vector space V (over the field F), then the operations of addition
and scalar multiplication in U inherited from V are defined as follows:

Let x, y ∈ U, α ∈ F. Consider x, y as elements of V . The vector x + y in V
is the result of the inherited addition of x and y in U. Similarly, the vector αx
in V is the result of the inherited scalar multiplication of α with x in U.

In order that the operations of addition (x, y) 
→ x + y and scalar multiplication
(α, x) 
→ αx are well-defined operations on U , we require the vectors x + y and
αx to lie in U . This condition is described by asserting that U is closed under the
inherited operations.

Definition 1.7 Let V be a vector space over F. A nonempty subsetU of V is called
a subspace of V if U is a vector space over F with respect to the operations of
addition and scalar multiplication inherited from V .

To show that a nonempty subset U of a vector space V is a subspace, one must
first verify that U is closed under the inherited operations. The closure conditions
can be explicitly stated as follows:

For all x, y ∈ U and for each α ∈ F, x + y ∈ U and αx ∈ U.

Here, of course, the operations are the operations in the given vector space V over
F. Surprisingly, these closure conditions are enough for establishing that a subset is
a subspace, as the following theorem shows.

Theorem 1.8 LetU be a nonempty subset of a vector space V . ThenU is a subspace
of V if and only if U is closed under addition and scalar multiplication inherited
from V .

Proof IfU is a subspace of V , then x + y ∈ U and αx ∈ U for all x, y ∈ U and for
all α ∈ F.

Conversely, suppose that x + y ∈ U and αx ∈ U for all x, y ∈ U and for all
α ∈ F. Since U is nonempty, let u ∈ U. By Theorem1.6, 0 = 0 u ∈ U , and for each
x ∈ U, − x = (−1)x ∈ U. SinceU ⊆ V , 0 acts as the zero vector ofU , and−x acts
as the additive inverse of x in U. Therefore, the conditions (3)–(4) in Definition1.1
are satisfied forU . The remaining conditions hold since elements ofU are elements
of V as well. �

Notice that the closure conditions in Theorem1.8 can be replaced by the following
single condition:

For each scalar α ∈ F and for all x, y ∈ U , x + αy ∈ U.
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We may also infer from the proof of Theorem1.8 that

ifU is a subspace of a vector space V , then the zero vector of U is the same as
the zero vector of V , and for each u ∈ U , its additive inverse−u as an element
of U is the same as −u in V .

Therefore, in order that U is a subspace of V , the zero vector of V must be in U.

Example 1.9 (1) Let U = {(a, b) ∈ R
2 : b = 0} ⊆ R

2. That is, U = {(a, 0) : a ∈
R}. Addition and scalar multiplication, which are defined component-wise in R

2,
are also operations on U since for all a, b, c, α ∈ R,

(a, 0) + (b, 0) = (a + b, 0) ∈ U, α(c, 0) = (αc, 0) ∈ U.

By Theorem1.8,U is a subspace of R
2. Notice that the zero vector ofU is the same

(0, 0) and −(a, 0) = (−a, 0) as in R
2.

(2) The set U = {(a, b) ∈ R
2 : 2a + 3b = 0} is a subspace of R

2 (Verify).

(3) Let Q denote the set of all rational numbers. Q is not a subspace of the real vector
space R since 1 ∈ Q but

√
2 · 1 /∈ Q. Similarly, Q

2 is not a subspace of R
2.

(4) Consider C as a complex vector space. Let U = {a + i 0 : a ∈ R}. We see that
1 ∈ U but i · 1 = i /∈ U. Therefore, U is not a subspace of C.

However, if we consider C as real vector space, thenU is a subspace of C. In this
sense, U = R is a subspace of the real vector space C.

(5) Consider the spacesPm(F) andPn(F), wherem ≤ n. Each polynomial of degree
at most m is also a polynomial of degree at most n. Thus, Pm(F) ⊆ Pn(F). Further,
Pm(F) is closed under the operations of addition and scalar multiplication inherited
from Pn(F). So, Pm(F) is a subspace of Pn(F) for any m ≤ n.

Also, for each n ∈ N, Pn(F) is a subspace of P(F).

(6) In Examples1.4(1)–(2), both C([a, b], R) and R([a, b], R) are vector spaces.
Since C([a, b], R) ⊆ R([a, b], R) and the operations of addition and scalar multipli-
cation in C([a, b], R) are inherited fromR([a, b], R), we conclude that C([a, b], R)

is a subspace of R([a, b], R).

(7) Consider Ck([a, b], F) of Example1.4(3). For all α ∈ F, x, y ∈ Ck([a, b], F), we
have x + y ∈ Ck([a, b], F) and αx ∈ Ck([a, b], F). By Theorem1.8, Ck([a, b], F) is
a subspace of C([a, b], F).

(8) Given α1, . . . , αn ∈ F, U = {(b1, . . . , bn) ∈ F
n : α1b1 + · · · + αnbn = 0} is a

subspace of F
n . When (α1, . . . , αn) is a nonzero n-tuple, the subspace U is a hyper-

plane passing through the origin in n dimensions. This terminology is partially bor-
rowed from the case of F = R and n = 3, when the subspace {(b1, b2, b3) ∈ R

3 :
α1b1 + α2b2 + α3b3 = 0, α1, α2, α3 ∈ R} of R

3 is a plane passing through the ori-
gin. However,

W = {(b1, . . . , bn) ∈ F
n : α1b1 + · · · + αnbn = 1, α1, . . . , αn ∈ F}

is not a subspace of F
n , since (0, . . . , 0) /∈ W.
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(9) LetP([a, b], R) be the vector spaceP(R)where each polynomial is considered as
a function from [a, b] toR.Then the spaceP([a, b], R) is a subspace of Ck([a, b], R)

for each k ≥ 1. �

Consider two planes passing through the origin in R
3. Their intersection is a

straight line passing through the origin. In fact, intersection of two subspaces is a
subspace. We prove a more general result.

Theorem 1.10 Let C be any collection of subspaces of a vector space V . Let U be
the intersection of all subspaces in C. Then U is a subspace of V .

Proof Let x, y ∈ U and let α ∈ F. Then x, y ∈ W for each W ∈ C. Since W is a
subspace of V , αx ∈ W and x + y ∈ W for eachW ∈ C. Then αx ∈ U and x + y ∈
U. By Theorem1.8, U is a subspace of V . �

In contrast, union of two subspaces need not be a subspace. For, consider

U := {(a, b) ∈ R
2 : b = a}, V := {(a, b) ∈ R

2 : b = 2a}

as subspaces of R
2. Here, (1, 1), (1, 2) ∈ U ∪ V but (1, 1) + (1, 2) = (2, 3) /∈ U ∪

V . Hence U ∪ V is not a subspace of R
2.

Union of two subspaces can fail to be a subspace since addition of a vector from
one with a vector from the other may not be in the union. What happens to the set of
all vectors of the form x + y, where x is a vector from one subspace and y is from
another subspace? To answer this question, we introduce the notion of a (finite) sum
of subsets of a vector space.

Definition 1.11 Let S1, . . . , Sn be nonempty subsets of a vector space V . Their sum
is defined by

S1 + · · · + Sn := {x1 + · · · + xn ∈ V : xi ∈ Si , i = 1, . . . , n}.

As expected, sum of two subspaces is a subspace. And, the proof can be general-
ized easily to any finite sum of subspaces.

Theorem 1.12 Let V1, . . . , Vn be subspaces of a vector space V .Then V1 + · · · + Vn

is a subspace of V .

Proof Let x, y ∈ V1 + · · · + Vn and let α ∈ F. Then, x = ∑n
i=1 xi and y = ∑n

i=1 yi
for some xi , yi ∈ Vi , i = 1, . . . , n. Since each Vi is a subspace of V , xi + yi ∈ Vi

and αxi ∈ Vi . Then

x + y = ∑n
i=1 xi + ∑n

i=1 yi = ∑n
i=1(xi + yi ) ∈ V1 + · · · + Vn,

αx = α
∑n

i=1 xi = ∑n
i=1(αxi ) ∈ V1 + · · · + Vn .

Therefore, V1 + · · · + Vn is a subspace of V . �
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Example 1.13 Consider the planes:

V1 = {(a, b, c) ∈ R
3 : a + b + c = 0}, V2 = {(a, b, c) ∈ R

3 : a + 2b + 3c = 0}.

Both V1 and V2 are subspaces of R
3. Their intersection is the subspace

V1 ∩ V2 = {(a, b, c) ∈ R
3 : a + b + c = 0 = a + 2b + 3c}.

The condition a + b + c = 0 = a + 2b + 3c is equivalent to b = −2a, c = a.

Hence
V1 ∩ V2 = {(a,−2a, a) : a ∈ R}

which is a straight line through the origin. Both V1 ∩ V2 and V1 + V2 are subspaces
of R

3. In this case, we show that V1 + V2 = R
3. For this, it is enough to show that

R
3 ⊆ V1 + V2. It requires to express any (a, b, c) ∈ R

3 as (a1 + a2, b1 + b2, c1 + c2)
for some (a1, b1, c1) ∈ V1 and (a2, b2, c2) ∈ V2. This demands determining the six
unknowns a1, b1, c1, a2, b2, c2 from the five linear equations

a1 + a2 = a, b1 + b2 = b, c1 + c2 = c, a1 + b1 + c1 = 0, a2 + 2b2 + 3c2 = 0.

It may be verified that with

a1 = −a − 2b − 2c, b1 = a + 2b + c, c1 = c

a2 = 2a + 2b + 2c, b2 = −a − b − c, c2 = 0,

the five equations above are satisfied. Thus, (a1, b1, c1) ∈ V1, (a2, b2, c2) ∈ V2, and
(a, b, c) = (a1 + b1 + c1) + (a2 + b2 + c2) as desired. �

Exercises for Sect. 1.2

1. In the following, check whether the given subset U is a subspace of V . Assume
the usual operations of addition and scalar multiplication along with a suitable
field R or C.

(a) V = R
2, U is any straight line passing through the origin.

(b) V = R
2, U = {(a, b) : b = 2a − 1}.

(c) V = R
3, U = {(a, b, c) : 2a − b − c = 0}.

(d) V = P3(R), U = {a + bt + ct2 + dt3 : c = 0}.
(e) V = P3(C), U = {a + bt + ct2 + dt3 : a = 0}.
(f) V = P3(C), U = {a + bt + ct2 + dt3 : b + c + d = 0}.
(g) V = P3(R), U = {p ∈ V : p(0) = 0}.
(h) V = P3(C), U = {p ∈ V : p(1) = 0}.
(i) V = P3(C), U = {a + bt + ct2 + dt3 : a, b, c, d integers }.
(j) V = C([−1, 1], R), U = { f ∈ V : f is an odd function}.
(k) V = C([0, 1], R), U = { f ∈ V : f (t) ≥ 0 for all t ∈ [0, 1]}.
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(l) V = Ck[a, b], for k ∈ N,U = P[a, b], the set of all polynomials considered
as functions on [a, b].

(m) V = C([0, 1], R), U = { f ∈ V : f is differentiable}.
2. Forα ∈ F, letVα = {(a, b, c) ∈ F

3 : a + b + c = α}.Show thatVα is a subspace
of F

3 if and only if α = 0.
3. Give an example of a nonempty subset of R

2 which is closed under addition
and under additive inverse (i.e. if u is in the subset, then so is −u), but is not a
subspace of R

2.

4. Give an example of a nonempty subset of R
2 which is closed under scalar mul-

tiplication but is not a subspace of R
2.

5. Suppose U is a subspace of V and V is a subspace of W. Show that U is a
subspace of W.

6. Give an example of subspaces of C
3 whose union is not a subspace of C

3.

7. Show by a counter-example that if U + W = U + X for subspaces U,W, X of
V , then W need not be equal to X.

8. Let m ∈ N. Does the set {0} ∪ {x ∈ P(R) : degree of x is equal to m} form a
subspace of P(R)?

9. Prove that the only nontrivial proper subspaces of R
2 are straight lines passing

through the origin.
10. LetU = {(a, b) ∈ R

2 : a = b}. Find a subspace V ofR
2 such thatU + V = R

2

and U ∩ V = {(0, 0)}. Is such a V unique?
11. LetU be the subspace ofP(F) consisting of all polynomials of the format3 + bt7

for a, b ∈ F. Find a subspace V ofP(F) such thatU + V = P(F) andU ∩ V =
{0}.

12. Let U and W be subspaces of a vector space V . Prove the following:

(a) U ∪ W = V if and only if U = V or W = V .

(b) U ∪ W is a subspace of V if and only if U ⊆ W or W ⊆ U.

13. LetU = {A ∈ F
n×n : AT = A} and let W = {A ∈ F

n×n : AT = −A}. Matrices
inU are called symmetric matrices, andmatrices inW are called skew-symmetric
matrices. Show that U and W are subspaces of F

n×n , Fn×n = U + W , and U ∩
W = {0}.

1.3 Linear Span

The sum of vectors x1, . . . , xn can be written as x1 + · · · + xn , due to Property (2)
of vector addition in Definition1.1. We may also multiply the vectors with scalars
and then take their sum. That is, we write the sum

(α1x1) + · · · + (αnxn) as α1x1 + · · · + αnxn, and also as
n

∑

i=1

αi xi .
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If the j th term in α1x1 + · · · + αnxn is absent, that is, if we want to consider
the sum (α1x1 + · · · + αnxn) − α j x j for some j ∈ {1, . . . , n}, then we write it as
∑n

i=1, i �= j αi xi and also as

α1x1 + · · · + α j−1x j−1 + α j+1x j+1 + · · · αnxn,

with the understanding that if j = 1, then the above sum is α2x2 + · · · + αnxn , and
if j = n, then the sum is equal to α1x1 + · · · + αn−1xn−1.

Definition 1.14 Let V be a vector space.

(a) A vector v ∈ V is called a linear combination of vectors u1, . . . , un in V if
v = α1u1 + · · · + αnun for some scalars α1, . . . , αn .

(b) The linear span or the span of any nonempty subset S of V is the set of all
linear combinations of finite number of vectors from S; it is denoted by span(S).

We define span(∅) as {0}.
In view of the above definition, for any nonempty subset S of V , we have

x ∈ span(S) if and only if there exist n ∈ N, vectors u1, . . . , un in S, and scalars
α1, . . . , αn ∈ F such that x = α1u1 + · · · + αnun.

It follows that

span(S) = {α1u1 + · · · + αnun : n ∈ N, α1, . . . , αn ∈ F, u1, . . . , un ∈ S}.

Moreover, for u1, . . . , un in V ,

span({u1, . . . , un}) = {α1u1 + · · · + αnun : α1, . . . , αn ∈ F}.

We also write span({u1, . . . , un}) as span{u1, . . . , un}. Informally, we say that
span(S) is the set of all linear combinations of elements of S, remembering the
special case that span(∅) = 0.

By a linear combination, we always mean a linear combination of a finite number
of vectors. As we know an expression of the form α1v1 + α2v2 + · · · for vectors
v1, v2, . . . and scalars α1, α2, . . . has no meaning in a vector space, unless there is
some additional structure which may allow infinite sums.

In what follows, we will be freely using Kronecker’s delta defined as follows:

δi j =
{

1 if i = j

0 if i �= j
for i, j ∈ N.

Example 1.15 (1) InR
3, consider the set S = {(1, 0, 0), (0, 2, 0), (0, 0, 3), (2, 1, 3)}.

A linear combination of elements of S is a vector in the form

α1(1, 0, 0) + α2(0, 2, 0) + α3(0, 0, 3) + α4(2, 1, 3)
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for some scalars α1, α2, α3, α4. Since span(S) is the set of all linear combinations
of elements of S, it contains all vectors that can be expressed in the above form. For
instance, (1, 2, 3), (4, 2, 9) ∈ span(S) since

(1, 2, 3) = 1(1, 0, 0) + 1(0, 2, 0) + 1(0, 0, 3),

(4, 2, 9) = 4(1, 0, 0) + 1(0, 2, 0) + 3(0, 0, 3).

Also, (4, 2, 9) = 1(0, 0, 3) + 2(2, 1, 3). In fact, span(S) = R
3 since (α, β, γ ) =

α(1, 0, 0) + (β/2)(0, 2, 0) + (γ /3)(0, 0, 3).

(2) InR
3, span{(3, 0, 0)} is the set of all scalar multiples of (3, 0, 0). It is the straight

line L joining the origin and the point (3, 0, 0). Notice that

L = span{(1, 0, 0)} = span{(√2, 0, 0), (π, 0, 0), (3, 0, 0)} = span(L).

It can be seen that span of any two vectors not in a straight line containing the
origin is the plane containing those two vectors and the origin.

(3) For each j ∈ {1, . . . , n}, let e j be the vector inF
n whose j th coordinate is 1 and all

other coordinates are 0, that is, e j = (δ1 j , . . . , δnj ). Then for any (α1, . . . , αn) ∈ F
n ,

we have
(α1, . . . , αn) = α1e1 + · · · + αnen.

Thus, span{e1, . . . , en} = F
n. Also, for any k with 1 ≤ k < n,

span{e1, . . . , ek} = {(α1, . . . , αn) ∈ F
n : α j = 0 for j > k}.

(4) Consider the vector spaces P(F) and Pn(F). Define the polynomials u j := t j−1

for j ∈ N. Then Pn(F) is the span of {u1, . . . , un+1}, and P(F) is the span of
{u1, u2, . . .}.
(5) Let V = F

∞, the set of all sequences with scalar entries. For each n ∈ N, let en
be the sequence whose nth term is 1 and all other terms are 0, that is,

en = (δn1, δn2, . . .).

Then span{e1, e2, . . .} is the space of all scalar sequences having only a finite number
of nonzero terms. This space is usually denoted by c00(N, F), also as c00. Notice that
c00(N, F) �= F

∞. �

Clearly, if S is a nonempty subset of a vector space V , then S ⊆ span(S). For,
if x ∈ S then x = 1 · x ∈ span(S). However, span(S) need not be equal to S. For
instance, S = {(1, 0)} ⊆ R

2 and span(S) = {(α, 0) : α ∈ R} �= S.
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Theorem 1.16 Let S be a subset of a vector space V . Then the following statements
are true:

(1) span(S) is a subspace of V , and it is the smallest subspace containing S.
(2) span(S) is the intersection of all subspaces of V that contain S.

Proof (1) First, we show that span(S) is a subspace of V . If S = ∅, then span(∅) =
{0} is a subspace of V that contains ∅. So, suppose that S �= ∅. Trivially, S ⊆
span(S). To show that span(S) is a subspace of V , let x, y ∈ span(S) and let α ∈ F.

Then
x = a1x1 + · · · + anxn, y = b1y1 + · · · + bm ym

for some vectors x1, . . . , xn , y1, . . . , ym in S and scalars a1, . . . , an, b1, . . . , bm in
F. Then

x + y = a1x1 + · · · + anxn + b1y1 + · · · + bm ym ∈ span(S),

αx = αa1x1 + · · · + αanxn ∈ span(S).

By Theorem1.8, span(S) is a subspace of V .

For the second part of the statement in (1), let U be a subspace of V containing
S. Let v ∈ span(S). There exist vectors v1, . . . , vn ∈ S and scalars α1, . . . , αn such
that v = α1v1 + · · · + αnvn. Since v1, . . . , vn ∈ U and U is a subspace of V , v ∈ U.

Hence, span(S) ⊆ U. That is, span(S) is a subset of every subspace that contains S.

Therefore, span(S) is the smallest subspace of V containing S.

(2) Let W be the intersection of all subspaces of V that contain S. Since span(S) is
a subspace of V , W ⊆ span(S). Also, W is a subspace of V containing S; thus, due
to (1), span(S) ⊆ W. �

Theorem1.16 implies that taking span of a subset amounts to extending the subset
to a subspace in a minimalistic way.

Some useful consequences of the notion of span are contained in the following
theorem.

Theorem 1.17 Let S, S1 and S2 be subsets of a vector space V . Then the following
are true:

(1) S = span(S) if and only if S is a subspace of V .

(2) span(span(S)) = span(S).

(3) If S1 ⊆ S2, then span(S1) ⊆ span(S2).
(4) span(S1) + span(S2) = span(S1 ∪ S2).
(5) If x ∈ S, then span(S) = span{x} + span(S\{x}).
Proof (1) Since span(S) is a subspace of V , the condition S = span(S) implies that
S is a subspace of V . Conversely, if S is a subspace of V , then the minimal subspace
containing S is S. By Theorem1.16, span(S) = S.
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(2) As span(S) is a subspace of V , by (1), span(span(S)) = span(S).

(3) Suppose S1 ⊆ S2. If S1 = ∅, the conclusion is obvious. Suppose S1 �= ∅. Any
linear combination of vectors from S1 is an element of span(S2). Hence span(S1) ⊆
span(S2).

(4) If S1 = ∅ or S2 = ∅, then the statement is true trivially. Assume that S1 �= ∅

and S2 �= ∅. Let x ∈ span(S1) + span(S2). Then x is a linear combination of vectors
from S1 plus a linear combination of vectors from S2.That is, x is a linear combination
of vectors from S1 ∪ S2. Therefore,

span(S1) + span(S2) ⊆ span(S1 ∪ S2).

Conversely, suppose x ∈ span(S1 ∪ S2). Then x is a linear combination of vectors
from S1 ∪ S2. If such a linear combination uses vectors only from S1, then x ∈
span(S1) ⊆ span(S1) + span(S2).Similarly, if such a linear combination uses vectors
from only S2, then x ∈ span(S2) ⊆ span(S1) + span(S2). Otherwise, x is equal to a
linear combinations of vectors from S1 plus a linear combination of vectors from S2.
In that case, x ∈ span(S1) + span(S2). Therefore,

span(S1 ∪ S2) ⊆ span(S1) + span(S2).

(5) This follows from (4) by taking S1 = {x} and S2 = S\{x}. �

As a corollary of Theorem1.17(4), we obtain the following.

Theorem 1.18 If V1 and V2 are subspaces of a vector space V , then V1 + V2 =
span(V1 ∪ V2).

Theorems1.16 and 1.18 show that in extending the union of two subspaces to a
subspace could not have been better; the best way is to take their sum.

Definition 1.19 Let S be a subset of a vector space V . If span(S) = V , then we say
that S spans V , S is a spanning set of V , and also V is spanned by S.

In case, S = {u1, . . . , un} is a finite spanning set of V , we also say that the vectors
u1, . . . , un span V , and that V is spanned by the vectors u1, . . . , un .

Any vector space spans itself. But there can be much smaller subsets that also
span the space as Example1.15 shows. Note that both ∅ and {0} are spanning sets
of the vector space {0}.

If S is a spanning set of V and x ∈ span(S\{x}), then S\{x} is also a spanning
set of V . For, in this case, the vector x is a linear combination of some vectors from
S\{x}, and if any vector in V is a linear combination, where x appears, we can replace
this x by its linear combination to obtain v as a linear combination of vectors where
x does not appear.
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Spanning sets are not unique. Given any spanning set, a new spanning set can
be obtained by incorporating new vectors into it. Further, new spanning sets can be
constructed from old ones by exchanging suitable nonzero vectors. Theorem1.20
below shows that this is possible.

Let S be a spanning set of a nonzero vector space V . Let x ∈ V be a nonzero
vector. Then x = α1x1 + · · · + αnxn for some scalars α1, . . . , αn and for some dis-
tinct nonzero vectors x1, . . . , xn in S. Also, since x �= 0, at least one of α1, . . . , αn

is nonzero. If αi �= 0, then x = αy + z, with α = αi , y = xi and z ∈ span(S\{y}).
Indeed, z = α1x1 + · · · + αi−1xi−1 + αi+1xi+1 + · · · + αnxn.

We use such a writing of a nonzero vector x in the following result.

Theorem 1.20 (Exchange lemma) Let S be a spanning set of a vector space V and
let x ∈ V \S be a nonzero vector. Let x = αy + z for some nonzero y ∈ S, a nonzero
α ∈ F and z ∈ span(S\{y}). Then (S\{y}) ∪ {x} is a spanning set of V .

Proof Let v ∈ V . Since span(S) = V , there exist vectors u ∈ span(S\{y}) and a
scalar β such that v = u + βy. Using y = α−1(x − z) we obtain

v = u + βy = u + βα−1(x − z) = (u − βα−1z) + βα−1x ∈ span
(

(S\{y}) ∪ {x}).

Therefore, span
(

(S\{y}) ∪ {x}) = V . �

Example 1.21 To illustrate the proof of the Exchange lemma, consider the set

S = {(1, 0, 1), (0, 1, 1), (1, 1, 0), (1, 2, 3)}.

It can be seen that S spans R
3. Consider the vector x := (2, 1, 1) /∈ S. Note that

(2, 1, 1) = (1, 0, 1) + (1, 1, 0).

Thus, x = αy + z with α = 1, y = (1, 0, 1) and z = (1, 1, 0). According to the
Exchange lemma, the new set

{(2, 1, 1), (0, 1, 1), (1, 1, 0), (1, 2, 3)}

spans R
3. Taking y = (1, 1, 0) and z = (1, 0, 1) we obtain the spanning set

{(1, 0, 1), (0, 1, 1), (2, 1, 1), (1, 2, 3)}.

We could have started with another linear combination of (2, 1, 1) such as

(2, 1, 1) = −2(0, 1, 1) + 1(1, 1, 0) + 1(1, 2, 3).

Again, by the Exchange lemma, any of the vectors (0, 1, 1), (1, 1, 0), (1, 2, 3) can
be replaced by (2, 1, 1) to obtain the following new spanning sets:
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{(1, 0, 1), (2, 1, 1), (1, 1, 0), (1, 2, 3)},

{(1, 0, 1), (0, 1, 1), (2, 1, 1), (1, 2, 3)},

{(1, 0, 1), (0, 1, 1), (1, 1, 0), (2, 1, 1)}. �

Exercises for Sect. 1.3

1. Show that span{e1 + e2, e2 + e3, e3 + e1} = R
3, where e1 = (1, 0, 0),

e2 = (0, 1, 0), and e3 = (0, 0, 1).
2. What is span{tn : n = 0, 2, 4, 6, . . .}?
3. Do the polynomials t3 − 2t2 + 1, 4t2 − t + 3, and 3t − 2 span P3(C)?
4. Let u1(t) = 1, and for j = 2, 3, . . . , let u j (t) = 1 + t + . . . + t j−1. Show that

span of {u1, . . . , un} is Pn(F), and span of {u1, u2, . . .} is P(F).
5. Is it true that sin t ∈ span{1, t, t2, t3, . . .}?
6. Let x, y, z be nonzero distinct vectors in a vector space V with x + y + z = 0.

Show that span{x, y} = span{x, z} = span{y, z}.
7. Let V be a vector space; U a subspace of V ; x, y ∈ V ; X = span(U ∪ {x});

Y = span(U ∪ {y}); and let y ∈ X\U. Show that x ∈ Y.

8. Let V be a vector space. Let u, v,w1, . . . ,wn be distinct vectors in V ; B =
{u,w1, . . . ,wn}; and let C = {v,w1, . . . ,wn}. Prove that span(B) = span(C) if
and only if u ∈ span(C) if and only if v ∈ span(B).

9. Let A and B be subsets of a vector space V .

(a) Show that span(A ∩ B) ⊆ span(A) ∩ span(B).

(b) Give an example where span(A) ∩ span(B) �⊆ span(A ∩ B).

10. SupposeU and W are subspaces of a vector space V . Show thatU + W = U if
and only if W ⊆ U.

11. Let S be a subset of a vector space V . Let u ∈ V be such that u /∈ span(S). Prove
that for each x ∈ span(S ∪ {u}), there exists a unique pair (α, v) with α ∈ F and
v ∈ span(S) such that x = αu + v.

12. In the following cases, find a finite spanning subset S of U.

(a) U = {(a, b, c) ∈ F
4 : a + b + c = 0}.

(b) U = {(a, b, c, d) ∈ F
4 : 5a + 2b − c = 3a + 2c − d = 0}.

(c) U = {a + bt + ct2 + dt3 : a − 2b + 3c − 4d = 0}.
13. Construct a finite spanning set for F

m×n .

14. Construct a finite spanning set for the subspace {A ∈ R
n×n : AT = A} of R

n×n .

15. Let ei be the sequence of real numbers whose i th term is i and all other terms 0.
What is span{e1, e2, e3, . . .}?
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1.4 Linear Independence

A spanning set may contain redundancies; a vector in it may be in the span of the
rest. In this case, deleting such a vector will result in a smaller spanning set.

Definition 1.22 Let B be a subset of a vector space V .

(a) B is said to be a linearly dependent set if there exists a vector v ∈ B such that
v ∈ span(B\{v}).

(b) B is said to be linearly independent if B is not linearly dependent.

Example 1.23 (1) In R, the set {1, 2} is linearly dependent, since 2 = 2 × 1. Notice
the double meaning here. The 2 on the left is a vector but the 2 on the right is a scalar.
In fact, any set of two vectors in R is linearly dependent.

(2) In R
2, the set {(1, 0), (π, 0)} is linearly dependent, since (π, 0) = π(1, 0). Also,

{(1, 0), (2, 3), (0, 1)} is linearly dependent, since (2, 3) = 2(1, 0) + 3(0, 1).

(3) InR
2, the set {(1, 0), (0, 1)} is linearly independent, since neither (1, 0) is a scalar

multiple of (0, 1), nor (0, 1) is a scalar multiple of (1, 0).

(4) InR
3, the set {(1, 3, 2), (1, 2, 3), (2, 4, 6)} is linearly dependent since (2, 4, 6) =

2(1, 2, 3).
Notice that (1, 3, 2) is not a linear combination of the other two vectors. That

is, a set of vectors to be linearly dependent, it is not necessary that each vector is a
linear combination of the others; it is enough if at least one of the vectors is a linear
combination of the others.

To illustrate this point further, let u be a nonzero vector. Since the zero vector
satisfies 0 = 0 · u, the set {u, 0} is linearly dependent, but u is not scalar multiple of
the zero vector.

(5) In R
3, the set {(1, 0, 0), (1, 1, 0), (1, 1, 1)} is linearly independent. To show this,

we must prove that neither of the vectors is a linear combination of the other two. So,
suppose (1, 0, 0) = α(1, 1, 0) + β(1, 1, 1).Then comparing the components, we see
that 1 = α + β, 0 = α + β, 0 = β. This yields 1 = 0, a contradiction. Similarly,
the other two statements can be shown.

(6) In the complex vector space C, the set {1, i} is linearly dependent as i = i × 1.
The i on the left side is a vector, whereas the i on the right is a scalar.

When C is considered as a real vector space, the set {1, i} is linearly independent,
since neither i is equal to any real number times 1, nor 1 is equal to any real number
times i.

(7) In the vector space P(F), the set {1, 1 + t, 1 + t2} is linearly independent. �

The following statements are immediate consequences of Definition1.22:

1. The empty set ∅ is linearly independent.
2. The set {0} is linearly dependent since span(∅) = {0}.
3. A singleton set {x}, with x �= 0, is linearly independent.
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4. The set {u, v} is linearly dependent if and only if one of u, v is a scalar multiple
of the other.

5. Every proper superset of a spanning set is linearly dependent.
6. Every superset of a linearly dependent set is linearly dependent.
7. Every subset of a linearly independent set is linearly independent.

Since linear dependence involves linear combinations, which are finite sums, the
following result should be easy to understand.

Theorem 1.24 Let B be a subset of a vector space V .

(1) B is linearly dependent if andonly if somefinite subset of B is linearly dependent.
(2) B is linearly independent if and only if each finite subset of B is linearly inde-

pendent.

Proof (1) Let B be a linearly dependent set. Then there exists a vector v ∈ B such
that v ∈ span(B\{v}). If B\{v} = ∅, then v = 0 and hence {v} is linearly depen-
dent. If B\{v} �= ∅, then there exist vectors v1, . . . , vn in B\{v} such that v is a
linear combination of v1, . . . , vn . That is, v ∈ span{v1, . . . , vn}. Then the finite sub-
set {v, v1, . . . , vn} of B is linearly dependent.

Conversely, if a finite subset of B is linearly dependent, then as a superset of a
linearly dependent set, B is linearly dependent.

(2) It follows from (1). �

We will have occasions to determine when vectors in a list are linearly dependent
or independent. For instance, suppose A is a 2 × 2 matrix whose rows are [1 2] and
[1 2]. Obviously, the two rows of A are linearly dependent, in the sense that one is a
linear combination of the other. But the set of the two rows, which is equal to {[1 2]},
is linearly independent. In such a context, Definition1.25 given below will come of
help.

We often abbreviate the phrase “the list of vectors v1, . . . , vn” to the phrase “the
vectors v1, . . . , vn”.

Definition 1.25 Let V be a vector space. The vectors v1, . . . , vn , from V , are said
to be linearly dependent if there exists i ∈ {1, . . . , n} such that vi ∈ span{v j : 1 ≤
j ≤ n, j �= i}.

The vectors v1, . . . , vn are said to be linearly independent if they are not linearly
dependent.

A finite set of vectors can always be seen as a list of vectors, with some ordering
of its elements. As usual, when we write a list of vectors as u, v, . . . , z, we assume
that in the ordering, u is the first vector, v is the second vector, and so on, so that z
is the last vector.

The following result helps in determining linear dependence or independence of
a list of vectors.
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Theorem 1.26 Let v1, . . . , vn be vectors in a vector space V , where n ≥ 2.

(1) The vectors v1, . . . , vn are linearly dependent if and only if there exist scalars
α1, . . . , αn, with at least one of them nonzero, such that

α1v1 + · · · + αnvn = 0.

(2) The vectors v1, . . . , vn are linearly independent if and only if for scalars
α1, . . . , αn,

α1v1 + · · · + αnvn = 0 implies α1 = · · · = αn = 0.

Proof (1) Suppose v1, . . . , vn are linearly dependent. Then there exists j with 1 ≤
j ≤ n, and there exist scalars β1, . . . , β j−1, β j+1, . . . , βn such that

v j = β1v1 + · · · + β j−1v j−1 + β j+1v j+1 + · · · + βnvn .

Thus, β1v1 + · · · + βnvn = 0 with β j = −1.
Conversely, let α1v1 + · · · + αnvn = 0, with at least one of α1, . . . , αn nonzero.

Suppose αk �= 0. Then,

vk = −(αk)
−1(α1v1 + · · · + αk−1vk−1 + αk+1vk+1 + · · · + αnvn).

Hence v1, . . . , vn are linearly dependent.

(2) It follows from (1). �

Theorem1.26 provides the following method:

To show that the vectors v1, . . . vn are linearly independent, we start with a
linear combination of these vectors, equate it to 0, and then deduce that each
coefficient in that linear combination is 0.

Example 1.27 Let us check whether the vectors (1, 0, 0), (1, 1, 0), (1, 1, 1) are lin-
early independent in R

3. For this, we start with a linear combination of these vectors
and equate it to 0. That is, let a, b, c ∈ F be such that

a(1, 0, 0) + b(1, 1, 0) + c(1, 1, 1) = 0.

This equation gives (a + b + c, b + c, c) = (0, 0, 0). From this, we obtain

a + b + c = 0, b + c = 0, c = 0.

It implies that a = b = c = 0. Thus, the vectors are linearly independent. �

If a linearly independent set is extended by adding a vector and the extended set
is found to be linearly dependent, then the new vector must be in the span of the old
set, as the following theorem shows.
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Theorem 1.28 Let S be a linearly independent subset of a vector space V . Let
v ∈ V \S.Then S ∪ {v} is linearly dependent if and only if v ∈ span(S).Equivalently,
S ∪ {v} is linearly independent if and only if v /∈ span(S).

Proof If v ∈ span(S), then clearly, S ∪ {v} is linearly dependent. For the converse,
let S ∪ {v} be linearly dependent. If S = ∅, then S ∪ {v} = {v} is linearly dependent
implies v = 0 ∈ span(S).

So, assume that S �= ∅. Due to Theorem1.26, S ∪ {v} is linearly dependent
implies that there exist v1, . . . , vn ∈ S, and α1, . . . , αn, α ∈ F with at least one of
them nonzero, such that α1v1 + · · · + αnvn + αv = 0. Since S is linearly indepen-
dent, α �= 0. Then v = α−1(α1v1 + · · · + αnvn) ∈ span(S). �

Given a vector occurring in a list, we can speak of vectors preceding it and vectors
succeeding it. This helps in streamlining the notion of linear dependence a bit.

Theorem 1.29 Let v1, . . . , vn be linearly dependent vectors in a vector space V ,
with n ≥ 2. Then either v1 = 0 or there exists k ≥ 2 such that v1, . . . , vk−1 are
linearly independent, and vk ∈ span{v1, . . . , vk−1}.
Proof Suppose v1 �= 0. Then the vector v1 is linearly independent. Let k be the least
index such that v1, . . . , vk are linearly dependent. Then 2 ≤ k ≤ n and v1, . . . , vk−1

are linearly independent. FromTheorem1.28 it follows that vk ∈ span{v1, . . . , vk−1}.
�

A statement similar to Theorem1.29 holds even for countably infinite subsets of
vectors. One may formulate and prove such a statement.

Linear independence is an important notion as to bringing in uniqueness in a linear
combination; see the following theorem.

Theorem 1.30 Let V be a vector space over F. The vectors v1, . . . , vn ∈ V are
linearly independent if and only if for each v ∈ span{v1, . . . , vn}, there exists a unique
n-tuple (α1, . . . , αn) ∈ F

n such that v = α1v1 + · · · + αnvn.

Proof Let the vectors v1, . . . , vn be linearly independent. Let v ∈ span{v1, . . . , vn}.
Then v = α1v1 + · · · + αnvn for some α1, . . . , αn ∈ F. If there exist β1, . . . , βn ∈ F

such that v = β1v1 + · · · + βnvn , then

(α1 − β1)v1 + · · · + (αn − βn)vn = 0.

Since the vectors v1, . . . , vn are linearly independent, α1 = β1, . . . , αn = βn. That
is, the n-tuple (α1, . . . , αn) is unique.

Conversely, assume that corresponding to each v ∈ span{v1, . . . , vn}, we have a
unique n-tuple (α1, . . . , αn) ∈ F

n such that v = α1v1 + · · · + αnvn. To show linear
independence of the vectors v1, . . . , vn , suppose that β1v1 + · · · + βnvn = 0. Now,
the zero vector is also expressed as 0 = 0 · v1 + · · · + 0 · vn. Due to uniqueness of
the n-tuple (β1, . . . , βn), it follows that β1 = · · · = βn = 0. Therefore, the vectors
v1, . . . , vn are linearly independent. �
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Any proper superset of a spanning set is linearly dependent. A stronger statement
holds when a spanning set is finite.

Theorem 1.31 Let S be a finite spanning set of a vector space V . Then any subset
of V having more vectors than those in S is linearly dependent.

Proof If S = ∅ or S = {0}, then V = {0}. In either case, the result is obvious. If
S = {v} for a nonzero vector v ∈ V , then V = {αv : α ∈ F}. If B ⊆ V has more than
one vector, then any two vectors from B are in the form βv and γ v for some scalars
β and γ. In that case, one is a scalar multiple of the other, and hence, B is linearly
dependent. Next, suppose S = {v1, . . . , vn} spans V , where n ≥ 2. Since supersets
of linearly dependent sets are linearly dependent, it is enough to show that any set
having n + 1 elements is linearly dependent.

So, let B = {u1, . . . , un+1} ⊆ V . We show that B is linearly dependent. Now, if
B1 := {u1, . . . , un} is linearly dependent, then so is B. Therefore, assume that B1

is linearly independent. Notice that u1 �= 0, . . . , un �= 0. It may happen that B1 and
S have some vectors in common. Suppose there are m vectors in common, where
m ≥ 0. Without loss of generality, write

S = {u1, . . . , um, vm+1, . . . , vn}, B1 = {u1, . . . , um, um+1, . . . , un}.

Here, if m = 0, then S = {v1, . . . , vn} and B1 = {u1, . . . , un}. Since B1 is linearly
independent, um+1 is not a linear combination of u1, . . . , um .As S spans V , um+1 is a
linear combination of vectors from S. In such a linear combination, all the coefficients
of vm+1, . . . , vn cannot be zero. Without loss of generality, suppose the coefficient
of vm+1 is nonzero. Then by the Exchange lemma, we can replace vm+1 in S by um+1

resulting in a new spanning set

S1 = {u1, . . . , um, um+1, vm+2, . . . , vn}

In the next stage, we look at the vector um+2 and replace one of the vectors
vm+2, . . . , vn in S1 with um+2 to obtain a spanning set S2. Continuing this process
we end up with the spanning set

Sn−m = {u1, . . . , um, um+1, . . . , un}.

Since Sn−m is a spanning set, B is linearly dependent. �

Theorem1.31 becomes very helpful when you choose a spanning set having min-
imum number of elements. For example, {(1, 0, 0), (0, 1, 0), (0, 0, 1)} spans R

3;
therefore, any set of four or more vectors in R

3 is bound to be linearly dependent.
Can a set of two vectors span R

3?
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Exercises for Sect. 1.4

1. In each of the following, a vector space V and S ⊆ V are given. Determine
whether S is linearly dependent, and if it is, express one of the vectors in S as a
linear combination of some or all of the remaining vectors.

(a) V = R
3, S = {(1,−3,−2), (−3, 1, 3), (2, 5, 7)}.

(b) V = R
4, S = {(1, 1, 0, 2), (1, 1, 3, 2), (4, 2, 1, 2)}.

(c) V = C
3, S = {6, 2, 1), (4, 3,−1), (2, 4, 1)}.

(d) V = P3(F), S = {t2 − 3t + 5, t3 + 2t2 − t + 1, t3 + 3t2 − 1}.
(e) V = P3(F), S = {t2 + 3t + 2, t3 − 2t2 + 3t + 1, 2t3 + t2 + 3t − 2}.
(f) V = P3(F), S = {6t3 − 3t2 + t + 2, t3 − t2 + 2t + 3, 2t3 + t2 − 3t + 1}.
(g) V = F(R, R), S = {1 + t + 3t2, 2 + 4t + t2, 2t + 5t2}.
(h) V = F(R, R), S = {2, sin2 t, cos2 t}.
(i) V = F(R, R), S = {1, sin t, sin 2t}.
(j) V = F(R, R), S = {et , tet , t3et }.
(k) V = C([−π, π ], R), S = {sin t, sin 2t, . . . , sin nt} for some n ∈ N.

2. For i, j ∈ {1, 2}, let Ei j be a 2 × 2 matrix whose (i, j)th entry is 1 and all other
entries are 0.

(a) Show that E11, E12, E21, E22 are linearly independent in F
2×2.

(b) Construct four linearly independent matrices in F
2×2 none of which is equal

to any Ei j .

3. Show that the vectors (1, 0, 0), (0, 2, 0), (0, 0, 3), and (1, 2, 3) are linearly
dependent, but any three of them are linearly independent.

4. Give three vectors inR
2 such that none of the three is a scalar multiple of another.

5. Let {u, v, w, x} be linearly independent in a vector space V . Does it imply that
{u + v, v + w, w + x, x + u} is linearly independent in V ?

6. Let U be a subspace of V , and let B ⊆ U. Prove that B is linearly independent
in U if and only if B is linearly independent in V .

7. Show that two vectors (a, b) and (c, d) in R
2 are linearly independent if and

only if ad − bc �= 0.
8. Answer the following questions with justification:

(a) Is union of two linearly dependent sets linearly dependent?
(b) Is union of two linearly independent sets linearly independent?
(c) Is intersection of two linearly dependent sets linearly dependent?
(d) Is intersection of two linearly independent sets linearly independent?

9. In the vector space R
3×3, find six linearly independent vectors.

10. In the real vector space C
2×2, find six linearly independent vectors.

11. Prove Theorem1.31 by using Theorem1.29 instead of Exchange lemma.
12. Prove Theorem1.31 by using induction.
13. Let v1, . . . , vn be linearly independent vectors in a vector space V . Suppose

w ∈ V is such that the vectors w + v1, . . . ,w + vn are linearly dependent. Show
that w ∈ span{v1, . . . , vn}.
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14. Let V be a vector space. Suppose the vectors v1, . . . , vn span V . Show that the
vectors v1, v2 − v1, . . . , vn − v1 also span V . Further, show that if v1, . . . , vn are
linearly independent, then v1, v2 − v1, . . . , vn − v1 are linearly independent.

1.5 Basis and Dimension

For each j ∈ {1, . . . , n}, let e j = (δ1 j , . . . , δnj ), that is, the vector in F
n whose j th

component is 1 and all other components are 0. We see that F
n is spanned by the set

{e1, . . . , en}; that is, any vector v ∈ F
n can be expressed as a linear combination of

e1, . . . , en . In any such linear combination the coefficients of e1, . . . , en are uniquely
determined due to Theorem1.24. In fact, the coefficients give rise to the coordinates
of the vector v. We generalize this notion to any vector space and give a name to
such sets of vectors.

Definition 1.32 Let B be a subset of a vector space V .

(a) B is called a basis of V if B is linearly independent and B spans V .

(b) B is called an ordered basis of V if B is a countable ordered set and B is a
basis of V .

Usually, when we refer a countable set such as {v1, . . . , vn} or {v1, v2, . . .} as an
ordered set, the order will be taken as the elements are written. That is, v1 is taken
as the first element, v2 is the second element, and so on.

For instance, the ordered set {e1, . . . , en} is an ordered basis ofF
n , and the ordered

set {1, t, t2, . . . , tn} is an ordered basis of Pn(F).

Let Ei j ∈ F
m×n have the (i, j)th entry as 1 and all other entries as 0. Then it is

easily verified that {Ei j : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis of F
m×n .

Example 1.33 The ordered bases of the vector spaces in the following cases are
called the standard bases of the respective spaces. The reader may verify that they
are, indeed, ordered bases:

(a) The basis {e1, . . . en} of F
n with j th component of ei as δi j for i, j = 1, . . . , n.

(b) The basis {e1, . . . en} of F
n×1 with kth entry of ei as δik for i, k = 1, . . . , n.

(c) The basis {u1, . . . , un} of Pn−1(F) with u j (t) = t j−1 for j ∈ {1, 2, . . . , n}.
(d) The basis {u1, u2, . . .} of P(F) with u j (t) = t j−1 for j ∈ N.

(e) The basis {E11, . . . , E1n, E21, . . . , E2n, . . . , Em1, . . . , Emn} of F
m×n where Ei j

has the (i, j)th entry as 1 and all other entries as 0. �

An important corollary of Theorem1.30 is the following result.

Theorem 1.34 An ordered subset {u1, . . . , un} of a vector space V is an ordered
basis of V if and only if corresponding to each vector x ∈ V , there exists a unique
ordered n-tuple (α1, . . . , αn) of scalars such that x = α1u1 + · · · + αnun.

Therefore, when a vector space has a finite ordered basis, the basis brings in a
coordinate system in the vector space, mapping each vector to the n-tuple of scalars.
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Theorem 1.35 Let V be a vector space with a finite spanning set.

(1) Each finite spanning set of V contains a basis of V .

(2) Each linearly independent subset of V can be extended to a basis of V .

Proof (1) Let S := {u1, . . . , un} be a spanning set of the vector space V . Without
loss of generality, assume that u1 �= 0. Consider S as an ordered set. If S is linearly
independent, then S is a basis of V . Otherwise, by Theorem1.29, there exists a vector,
say, uk which is in the span of {u1, . . . , uk−1}. We see that V = span(S\{uk}).

Update S to S\{uk}. Continue this process on the new S. The process ends at
constructing a basis for V .

(2) Let S = {v1, . . . , vn} be a spanning set of V .Weknow, by Theorem1.31, that each
linearly independent subset has at most n elements. Let {u1, . . . , um} be a linearly
independent subset of V . Construct the ordered set S1 = {u1, . . . , um, v1, . . . , vn}.
Now, S1 is a spanning set of V . Using the construction in the proof of (1), we obtain
a basis of V containing the vectors u1, . . . , um . �

Notice that in the proof of Theorem1.35(1), one may start from un and end at u1
while throwing away a vector which is a linear combination of the earlier ones. This
process will also end up in a basis.

It now makes sense to talk of a minimal spanning set and a maximal linearly
independent set in the following manner.

Definition 1.36 Let B be a subset of a vector space V .

(a) B is called aminimal spanning set of V if span(B) = V , and no proper subset
of B spans V .

(b) B is called amaximal linearly independent set of V if B is linearly indepen-
dent, and each proper superset of B contained in V is linearly dependent.

As expected, we have the following theorem.

Theorem 1.37 Let B be a subset of a vector space V . Then the following are equiv-
alent:

(1) B is a basis of V .

(2) B is a minimal spanning set of V .

(3) B is a maximal linearly independent set in V .

Proof (1) ⇒ (2): Let B be a basis of V . Let x ∈ B. If B\{x} spans V , then x ∈
span(B\{x}). This contradicts the linear independence of B. Thus, no proper subset
of B can span V . Therefore, B is a minimal spanning set.

(2) ⇒ (3): Let B be aminimal spanning set of V .Due tominimality, whichever x we
choose from B, the set B\{x} will never span V . Hence, B is linearly independent.
Moreover, since B is a spanning set, any proper superset of it is linearly dependent.
Therefore, B is a maximal linearly independent set.

(3) ⇒ (1): Let B be a maximal linearly independent set. If B does not span V , then
we have a vector x ∈ V such that x /∈ span(B). Since B is linearly independent, by
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Theorem1.28, B ∪ {x} is linearly independent. But this is impossible since every
proper superset of B is linearly dependent. Therefore, B spans V . �

Theorem1.31 says that if a vector space has a finite spanning set, then no linearly
independent subset of the space can have more elements than that in the spanning
set. This enables us to compare the number of elements in two bases, provided the
bases are finite sets.

Theorem 1.38 If a vector space has a finite basis, then all bases of it have the same
number of elements.

Proof Let V be a vector space that has a finite basis B with n elements. Let C be
any other basis of V . Since B is a spanning set and C is linearly independent, by
Theorem1.31, C has at most n elements. Suppose C has m elements with m ≤ n.

Since B is linearly independent and C is a spanning set, again by Theorem1.31,
n ≤ m. �

Definition 1.39 Let V be a vector space.

(a) V is called finite dimensional if it has a finite basis.
(b) If a basis of V has n number of elements, then we say that the dimension of V

is equal to n and write it as dim(V ) = n. In this case, we also say that V is an
n-dimensional space.

(c) V is called infinite dimensional if it does not have a finite basis. In this case,
we write dim(V ) = ∞.

In case V is finite dimensional and if dim(V ) is not of any particular interest, we
write dim(V ) < ∞.

As span(∅) = {0} and ∅ is linearly independent, dim({0}) = 0. Also,

dim(Fn) = dim(Fn×1) = dim(Pn−1(F)) = n and dim(P(F)) = ∞.

The real vector spaceC has a basis {1, i}; thus it has dimension 2; while, the complex
vector spaceC has dimension 1. Similarly,Pn(C) regarded as a complex vector space
has dimension n + 1.However, the real vector spacePn(C) has dimension 2(n + 1).

As a corollary of Theorem1.31, we obtain the following.

Theorem 1.40 Let V be a vector space.

(1) V is finite dimensional if and only if V has a finite spanning set.
(2) If dim(V ) = n, then any subset of V having more than n vectors is linearly

dependent.
(3) V is infinite dimensional if and only if V has an infinite linearly independent

subset.

A linearly independent subset of a subspace remains linearly independent in the
parent vector space. Thus, the dimension of a subspace cannot exceed the dimension
of the parent space. Therefore, if a subspace is infinite dimensional, then the parent
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space must also be infinite dimensional. Moreover, dimension helps in proving that
certain linearly independent sets or spanning sets are bases. Recall that |B| denotes
the number of elements of a finite set B.

Theorem 1.41 Let B be a finite subset of a finite dimensional vector space V .

(1) B is a basis of V if and only if B spans V and |B| = dim(V ).

(2) B is a basis of V if and only if B is linearly independent and |B| = dim(V ).

Proof (1) Suppose span(B) = V and |B| = dim(V ). By Theorem1.35, there exists
C ⊆ B such that C is a basis of V . But |C | = dim(V ) = |B|. Hence C = B. There-
fore, B is a basis. The converse is trivial.

(2) Suppose B is linearly independent and |B| = dim(V ).ByTheorem1.35, we have
a basis C of V with C ⊇ B. But |C | = dim(V ) = |B|. Hence C = B. Therefore, B
is a basis. Again, the converse is trivial. �
Example 1.42 (1) For each j ∈ N, define the sequence e j by taking e j (i) = δi j , for
i ∈ N. That is, the j th term of the sequence e j is 1 and every other term of e j is 0.
Recall that c00(N, F) is the vector space of all sequences having only finite number
of nonzero entries. Hence, the set E := {e1, e2, . . .} is a linearly independent subset
of c00(N, F). Therefore, c00(N, F) is infinite dimensional. Each element in c00(N, F)

is a (finite) linear combination of members of E . Thus, E is a basis of c00(N, F).

The vector space c00(N, F) is a subspace of F
∞, the space of all scalar sequences.

Therefore, F
∞ is infinite dimensional.

(2) Let u j (t) = t j−1, j ∈ N and t ∈ [a, b]. Then the vector spaceP([a, b], R)which
is the span of B := {u1, u2, . . .} is a subspace of Ck([a, b], R) for any k ∈ N. Since
B is linearly independent it is a basis of P([a, b], R), and hence Ck([a, b], R) is
infinite dimensional.

(3) Suppose S is a finite set consisting of n elements. Then F(S, F), the space of all
functions from S to F, is of dimension n. To see this, let S = {s1, . . . , sn}. For each
j ∈ {1, . . . , n}, define f j ∈ F(S, F) by

f j (si ) = δi j for i ∈ {1, . . . , n}.

If α1, . . . , αn are scalars such that
∑n

j=1 α j f j = 0, then for each i ∈ {1, . . . , n},
∑n

j=1 α j f j (si ) = 0. But,

n
∑

j=1

α j f j (si ) =
n

∑

j=1

α jδi j = αi .

Thus, αi = 0 for every i ∈ {1, . . . , n}. Therefore, { f1, . . . , fn} is linearly indepen-
dent. Also, for each si ∈ S and for any f ∈ F(S, F),

f (si ) =
n

∑

j=1

f (s j )δi j =
n

∑

j=1

f (s j ) f j (si ).
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That is, f = ∑n
j=1 f (s j ) f j . Thus span{ f1, . . . , fn} = F(S, F). Therefore, the

ordered set { f1, . . . , fn} is an ordered basis of F(S, F). �

Exercises for Sect. 1.5

1. Find bases for the following vector spaces:

(a) {(a, b, c) ∈ R
3 : a + b + c = 0}.

(b) {(a, b, c, d) ∈ R
4 : c = b, d = −a}.

(c) {(a1, . . . , a6) ∈ R
6 : a2 = 2a1, a4 = 4a3, a6 = 6a5}.

(d) span{(1,−1, 0, 2, 1), (2, 1,−2, 0, 0), (0,−3, 2, 4, 2), (3, 3,−4,−2,−1),
(2, 4, 1, 0, 1), (5, 7,−3,−2, 0)}.

2. Are the following bases for P2(F)?

(a) {1 + 2t + t2, 3 + t2, t + t2}.
(b) {1 + 2t + 3t2, 4 − 5t + 6t2, 3t + t2}.
(c) {−1 − t − 2t2, 2 + t − 2t2, 1 − 2t + 4t2}.

3. Find two bases for R
4 whose intersection is {(1, 0, 1, 0), (0, 1, 0, 1)}.

4. Construct a basis for span{1 + t2,−1 + t + t2,−6 + 3t, 1 + t2 + t3, t3}.
5. Extend the set {1 + t2, 1 − t2} to a basis of P3(F).
6. Does there exist a basis for P4(F), where no vector is of degree 3?
7. Under what conditions on α, {(1, α, 0), (α, 0, 1), (1 + α, α, 1)} is a basis of R

3?
8. Is {1 + tn, t + tn, . . . , tn−1 + tn, tn} a basis for Pn(F)?
9. Is span{e1 + e2, e2 + e3, e3 + e1} a proper subspace of R

3? Why?
10. Let {x, y, z} be a basis of a vector space V . Is {x + y, y + z, z + x} also a basis

of V ?
11. Let u, v,w, x, y1, y2, y3, y4, y5 ∈ C

9 satisfy the relations: y1 = u + v + w,
y2 = 2v + w + x, y3 = u + 3w + x, y4 = −u + v + 4x , and y5 = u + 2v +
3w + 4x . Are the vectors y1, . . . , y5 linearly dependent or independent?

12. Prove that the only nonzero proper subspaces of R
3 are the straight lines and the

planes passing through the origin.
13. Give a proof of Theorem1.35(1) by constructing a basis by visiting the vectors

in S in the order un, un−1, . . . , u2, u1.
14. Consider each polynomial in P(R) as a function from the set {0, 1, 2} to R. Is

the set of vectors {t, t2, t3, t4, t5} linearly independent in P(R)?
15. Consider the set S of all vectors in R

4 whose components are either 0 or 1. How
many subsets of S are bases for R

4?
16. Let V be the vector space of all thrice differentiable functions from R to R. Find

a basis and dimension of the following subspaces of V :

(a) {x ∈ V : x ′′ + x = 0}.
(b) {x ∈ V : x ′′ − 4x ′ + 3x = 0}.
(c) {x ∈ V : x ′′′ − 6x ′′ + 11x ′ − 6x = 0}.
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17. Given real numbers a1, . . . , ak , let V be the set of all solutions x ∈ Ck[a, b] of
the differential equation

dkx

dtk
+ a1

dk−1x

dtk−1
+ · · · + akx = 0.

Show that V is a vector space over R. What is dim(V )?
18. Let V be a vector space. Let B := {vi : i ∈ N} ⊆ V be such that for eachm ∈ N,

the vectors v1, . . . , vm are linearly independent. Show that B is linearly inde-
pendent. Conclude that dim(V ) = ∞.

19. Show that dim(F(N, F)) = ∞ and dim(C[0, 1]) = ∞.

20. For j ∈ N, let e j be the sequence whose j th term is 1 and all other terms are 0.
Why is {e1, e2, e3, . . .} not a basis of R

∞?

1.6 Basis of Any Vector Space

What happens if a vector space does not have a finite spanning set? Of course, such
a vector space spans itself; so, it has an infinite spanning set. Does it have a basis
or not, whether finite or infinite? The issue can be settled by using Zorn’s lemma,
which is equivalent to Axiom of Choice. In order to state this, we introduce some
concepts.

A relation on a nonempty set X is a subset of X × X. If R is a relation on X and
if (x, y) ∈ R, then we say that “x is related to y” under R or x Ry. A relation on X
is called a partial order if the following conditions are met:

(a) Every element of X is related to itself.
(b) For any pair of distinct elements x, y from X , if x is related to y and y related

to x , then x = y.
(c) For any triple of elements, say x, y, z from X , not necessarily distinct, if x is

related to y and y related to z, then x is related to z.

For example, the set R := {(x, y) ∈ R
2 : x ≤ y} is a partial order on R. Thus, R,

which we also write as ≤, is a partial order on R. If S is any nonempty set, then the
relation of subset, ⊆, is a partial order on the power set of S. A set X with a partial
order on it is called a partially ordered set.

Suppose a partial order � has been already given on X. A subset Y of X is said
to be a chain in X if

for every pair of elements x, y ∈ Y , at least one of them is related to the other:
x � y or y � x .

Any nonempty subset of R is a chain with the partial order ≤, since any two real
numbers are comparable. However, any subset of the power set of a given nonempty
set S need not be a chain with respect to the subset relation. For example, with
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S = {0, 1}, take Z = {{0}, {1}}, a subset of the power set of S. Neither {0} ⊆ {1},
nor {1} ⊆ {0}.

If a partially ordered set itself is a chain, then we say that the partial order is a
total order on the set.

Given a subset Y of a partially ordered set X with partial order �, an element
x ∈ X is called an upper bound of Y if

every element of Y is related to x , that is, for every y ∈ Y, y � x .

Such an upper bound x may or may not be in Y. For example, the interval (0, 1] has
an upper bound 1; also 10 is an upper bound. The interval [0, 1) has an upper bound
1; also 5 is an upper bound. The collection {{0}, {1}} of subsets of {0, 1, 2} has upper
bounds {0, 1} and {0, 1, 2} in the power set of {0, 1, 2} with the partial order as ⊆ .

In a partially ordered set X with partial order �, an element x ∈ X is called a
maximal element of X if

x is related to none other than itself, that is, for every z ∈ X , if x � z then
x = z.

For example, R contains no maximal element since every real number is related to
some other real number; for instance, if r ∈ R, then r ≤ r + 1. The power set of any
nonempty set S contains a maximal element, the set S itself.

For a general partially ordered set, we have Zorn’s Lemma:

If every chain in a partially ordered set has an upper bound, then the set contains
a maximal element.

We will apply Zorn’s lemma in proving the existence of a basis for any vector
space.

Theorem 1.43 Let E be a linearly independent subset of a vector space V . Then V
has a basis B containing E. In particular, each vector space has a basis.

Proof IfV has a finite spanning set, then byTheorem1.35(2), it has a basis containing
E . So, suppose that V does not have a finite spanning set. Denote byK, the collection
of all linearly independent subsets of V containing E . The relation⊆ is a partial order
on K.

Consider any chain C in K. Let A be the union of all subsets in the chain C. We
see that E ⊆ X ⊆ A for each subset X in the chain C. Hence A is an upper bound
of the chain C.

Thus, every chain in K has an upper bound. By Zorn’s lemma, K contains a
maximal element, say, B. As B ∈ K, it is a linearly independent subset of V . That
is, B is a maximal linearly independent subset of V containing E . Therefore, by
Theorem1.37, B is a basis of V .

In particular, if V = {0}, then ∅ is its basis. Otherwise, let u be a nonzero vector
in V . The set {u} is linearly independent. By what we have just proved, V has a basis
containing u. �
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In what follows, we write |S| for the number of elements, more technically called,
the cardinality of the set S.

We may recall that two sets are of the same cardinality if there is a bijection
between them. If a set S is a finite set with n elements, then we say that the cardinality
of S is n, and if S is in one-to-one correspondence with N, the set of all positive
integers, then we say that the cardinality of S is ℵ0, read as aleph null, or aleph
naught. A set with cardinality ℵ0 is called countably infinite, or denumerable, and an
infinite set which is not in one-to-one correspondencewithN is called an uncountable
set.

It is clear that for any nonempty set S, the function that takes each x ∈ S to the
singleton set {x} is an injective function from S to 2S , the power set of S. However, it
can be shown that there is no surjective function from S to 2S . Thus, cardinality of 2S

can be considered as strictly bigger than that of S. In particular, there are uncountable
sets of different cardinalities.

More generally, if there exists an injective function from a set A to a set B, then
we say that the cardinality of A is less than or equal to the cardinality of B and write
|A| ≤ |B|. If there is an injective function from A to B, but there is no surjective
function from A to B, then we say that the cardinality of A is strictly less than that
of B, or the cardinality of B is strictly greater than that of A, and write |A| < |B|.

If A and B are two disjoint sets, then |A| + |B| is defined as |A ∪ B|. In case,
A and B are not disjoint, we define |A| + |B| as |(A × {0}) ∪ (B × {1})|. Further,
|A| · |B| is taken as |A × B|. Addition and multiplication of cardinalities of infinite
sets are done almost the same way as natural numbers, but with some exceptions. For
infinite sets A and B with |A| ≤ |B|, we have |A| + |B| = |B| and |A| · |B| = |B|.
In particular, ℵ0 · |A| = |N| · |A| = |A| for any infinite set A.

If a vector space has an ordered basis having n elements, then each vector is
associated with an n-tuple of scalars in a unique way. On the other hand, if V is a
vector space having an infinite basis B, then each nonzero vector in V is a unique
linear combination of vectors from B, where all coefficients are nonzero. To see this,
let v ∈ V be a nonzero vector having two distinct linear combinations such as

v = α1u1 + · · · + αmum, v = β1v1 + · · · + βnvn

for vectors ui , v j ∈ B and nonzero scalars α j , β j . Write

B1 = {u1, . . . , um}, B2 = {v1, . . . , vn}, U = span(B1 ∪ B2).

Then B1 ∪ B2 is a basis ofU. The two linear combinations of v are two distinct linear
combinations of the same v that use vectors from the same finite basis B1 ∪ B2. This
contradicts Theorem1.34. Therefore, each nonzero vector v ∈ V is associated with
a unique finite subset F(v) of B such that v is a unique linear combination of vectors
from F(v) with nonzero scalars as coefficients.

We use this observation in proving the following theorem.

Theorem 1.44 Any two bases for the same vector space have equal cardinality.
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Proof If V has a finite basis, then any two bases have the same cardinality due to
Theorem1.38. So, suppose all bases of V are infinite.

Let B and C be infinite bases for V . Each vector in B is nonzero. Since C is a
basis, each vector from B can be expressed as a linear combination of finite number
of vectors from C. Thus, each x ∈ B is associated with a unique finite subset of
C , write it as F(x), such that x is a linear combination of vectors from F(x) with
nonzero coefficients. Write D := ∪{F(x) : x ∈ B}.

For each x, F(x) ⊆ C. So, D ⊆ C. To show that C ⊆ D, let v ∈ C. Since B
spans V and each vector in B is a linear combination of vectors from D, the set D
spans V . In particular, v is a linear combination of some vectors v1, . . . , vn ∈ D. As
D ⊆ C , we see that v is a linear combination of vectors v1, . . . , vn from C. But C
is linearly independent. By Theorem1.30, the vector v is one of v1, . . . , vn . Hence
v ∈ D. Therefore, C ⊆ D. We then conclude that C = D.

Notice that each F(x) is a finite set and B is an infinite set. Hence

|C | = |D| = | ∪ {F(x) : x ∈ B}| ≤ |N| · |B| = |B|.

Reversing the roles of B and C results in |B| ≤ |C |. Therefore, |B| = |C |. �
In general, the dimension of a vector space V , denoted by dim(V ), is the number

of elements, or the cardinality of any basis of V . Due to Theorem1.44, dimension of
an infinite dimensional vector space is well-defined.

Like an upper bound, an element x of a partially ordered set X is called a lower
bound of a subset Y if x � y for every y ∈ Y , and an element x ∈ X is called a
minimal element of X if for every z ∈ X , z � x implies z = x .

Awell-order on a set is a total orderwith the property that each nonempty subset of
the set has a minimal element. A set is calledwell-ordered if there exists a well-order
on it. Like Zorn’s lemma, the following result, called the Well-ordering theorem,
is equivalent to the Axiom of Choice:

Every nonempty set can be well-ordered.

Due to the Well-ordering theorem, the basis B that we obtained in Theorem1.43
can be well-ordered. Thus every vector space has an ordered basis. For instance, if
the basis B of a vector space is a finite set, say with n elements, then we may list
the elements of B as u1, . . . un . Similarly, if B is a countably infinite set, then its
elements can be listed as u1, u2, . . .. However, if a basis has an uncountable number
of vectors in it, then it is not clear how to list the vectors.

It is noteworthy that every infinite dimensional vector space which has a basis is
equivalent to the Axiom of Choice; see [3]. However, our main interest is in vector
spaces that have finite bases. Occasionally we may give examples of vector spaces
with infinite bases.

Exercises for Sect. 1.6

1. In each of the following, show that the subset S = {uk : k ∈ N} of the given
vector space V is linearly independent:
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(a) V = c00(N, R); uk = (1, . . . , 1, 0, 0, . . .), where 1 is repeated k times.
(b) V = R

∞; uk = (1, 1/2k, 1/3k, . . .).
(c) V = C[0, 1]; uk(t) = ekt for 0 ≤ t ≤ 1.
(d) V = C[0, π ]; uk(t) = sin(kt) for 0 ≤ t ≤ 1.

2. In each of the following, show that the vector space V does not have a countable
basis:

(a) V = R
∞, the real vector space of all real sequences.

(b) V = c0(N, R), the real vector space of all real sequences that converge to 0.
(c) V = span{eλt : 0 < λ < 1} ⊆ C[0, 1].
(d) V is the subspace of R

∞ spanned by the set of all sequences (xn), where
each xn ∈ {0, 1}.

(e) V is the subspace of c0(N, R) spanned by the set of all sequences
(

xn/n
)

,
where (xn) is a bounded sequence.

3. In the following, check whether S is a basis for the vector space V :

(a) S = {t k−1 : k ∈ N}; V = P(R).

(b) S = {e1, e2, . . .}, where en = (0, 0, . . . , 1, 0, 0, . . .) is the sequence whose
nth term is 1, and all other terms 0; V = c00(N, R).

(c) S = {e1, e2, . . .}; V = 	1(N, R), the vector space of all sequences (xn) of
real numbers such that

∑∞
n=1 |xn| is convergent.

(d) S = {sin(kt) : k ∈ N}; V = C[0, π ].

1.7 Sums of Subspaces

Theorem1.35 reveals more structure of a vector space. For example in R
3, consider

the set C = {(1, 0, 0), (0, 1, 0)}. We can extend this linearly independent set to a
basis by including another vector v from R

3 which is not in the span of C. For
instance, each of the following is a basis for R

3:

B1 := {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
B2 := {(1, 0, 0), (0, 1, 0), (0, 1, 2)},
B3 := {(1, 0, 0), (0, 1, 0), (1, 2, 3)}.

In all these cases, we see that span(C) ∩ span{v} = {0}. In general, we expect that
if E and F are linearly independent sets in a vector space V such that E ∩ F = ∅

and E ∪ F spans V , then V = span(E) + span(F) and span(E) ∩ span(F) = {0}.
In view of this, we introduce a definition and prove some related results.

Definition 1.45 Let U and W be subspaces of a vector space V . We say that V is a
direct sum of U andW , written as V = U ⊕ W , if V = U + W andU ∩ W = {0}.
In such a case, we say that the U and W are complementary subspaces.
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As an example, we observe that the plane R
2 is a direct sum of the x-axis and the

y-axis. It is also the direct sum of the x-axis and the line {(a, a) : a ∈ R}. Once the
subspace, namely the x-axis, is given we can always find another subspace W of R

2

such that R
2 is the direct sum of x-axis and W. Of course, there are infinitely many

choices forW.Obviously, linear independence has some roles to play with the direct
sum.

Theorem 1.46 Let V be a vector space. LetC and D be disjoint linearly independent
subsets of V such that C ∪ D is also linearly independent. Then

span(C ∪ D) = span(C) ⊕ span(D).

In particular, each subspace of V has a complementary subspace; that is, for every
subspace U of V , there exists a subspace W of V such that V = U ⊕ W.

Proof If one of the setsC and D is empty, then the result holds trivially. Suppose that
C �= ∅ and D �= ∅. Now, span(C ∪ D) = span(C) + span(D). Thus, it is enough
to show that span(C) ∩ span(D) = {0}. Towards this, let x ∈ span(C) ∩ span(D).
Then

x = α1u1 + · · · + αmum = β1v1 + · · · + βnvn

for some u1, . . . , um ∈ C, v1, . . . , vn ∈ D and α1, . . . , αm, β1, . . . , βn ∈ F. Then

α1u1 + · · · + αnun − β1v1 − · · · − βmvm = 0.

Since C ∪ D is linearly independent, α1 = · · · = αn = β1 = · · · = βm = 0. So,
x = 0.

For the last statement, let U be a subspace of V , and let C be a basis of U.

By Theorem1.43, there exists D ⊆ V such that C ∪ D is a basis for V . Then the
subspace W = span(D) is complementary to U. �

We generalize the notion of direct sum to more than two subspaces.

Definition 1.47 Let U1, . . . ,Un be subspaces of a vector space V , where n ≥ 2.
We say that V is a direct sum of U1, . . . ,Un if V = U1 + · · · +Un and for each
i ∈ {1, . . . , n},

Ui ∩ (U1 + · · · +Ui−1 +Ui+1 + · · · +Un) = {0}.

In such a case, we write V = U1 ⊕ · · · ⊕Un.

The direct sum allows writing a sum in a unique way. For example, consider the
subspaces U1 = {(α, 0) : α ∈ R} and U2 = {(α, α) : α ∈ R} of R

2. We see that R
2

is a direct sum of U1 and U2. Now, if (a, b) ∈ R
2, then

(a, b) = (a − b, 0) + (b, b),
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where (a − b, 0) ∈ U1, (b, b) ∈ U2.Moreover, if (a, b) = (β, 0) + (γ, γ ), thennec-
essarily γ = b and β = a − b.

Theorem 1.48 Let U1, . . . ,Un be subspaces of a vector space V . Then, V =
U1 ⊕ · · · ⊕Un if and only if for each vector v ∈ V , there exist unique vectors
u1 ∈ U1, . . . , un ∈ Un such that v = u1 + · · · + un.

Proof For any i ∈ {1, . . . , n}, write Wi = (U1 + · · · +Ui−1 +Ui+1 + · · · +Un).

Assume that V = U1 ⊕ · · · ⊕Un. Then Ui ∩ Wi = {0}. Let v ∈ V . There exist
vectors u1 ∈ U1, . . . , un ∈ Un such that v = u1 + · · · + un.

For uniqueness, suppose that there also exist vectors v1 ∈ U1, . . . , vn ∈ Un such
that v = v1 + · · · + vn. Then, (u1 − v1) + · · · + (un − vn) = 0. That is, for each i ∈
{1, . . . , n},

−(ui − vi ) = (u1 − v1) + · · · + (ui−1 − vi−1) + (ui+1 − vi+1) + · · · + (un − vn).

The vector on the left-hand side is in Ui and the vector on the right-hand side is in
Wi . As Ui ∩ Wi = {0}, it follows that each is equal to 0. In particular, ui = vi .

Conversely, suppose that each vector in v can be written as a sum of vectors
from U1, . . . ,Un in a unique manner. Then V = U1 + · · · +Un. To show the other
condition in the direct sum, let i ∈ {1, . . . , n}. Suppose v ∈ Ui ∩ Wi . Then v ∈ Ui

and for some vectors u j ∈ Uj for j = 1, . . . , i − 1, i + 1, . . . , n,

v = u1 + · · · + ui−1 + ui+1 + · · · + un.

It implies that
u1 + · · · + ui−1 − v + u j+1 + · · · + un = 0.

But the zero vector is also written as 0 = 0 + · · · + 0, where the j th 0 in the sum is
inUj . Due to uniqueness in writing, each of the vectors in the above sum is equal to
0. In particular, v = 0. Therefore, Ui ∩ Wi = {0}. �

The requirement Ui ∩ (U1 + · · · +Ui−1 +Ui+1 + · · · +Un) = {0} for each i is
stronger thanUi ∩Uj = {0} for each pair of indices i, j, i �= j ; even in the presence
of the sum condition V = U1 + · · · +Un. For example, take

U1 = {(a, 0) : a ∈ R}, U2 = {(0, a) : a ∈ R}, U3 = {(a, a) : a ∈ R}.

We see thatU2 +U3 = U1 +U2 +U3 = R
2 andU1 ∩U2 = U2 ∩U3 = U3 ∩U1 =

{0}. But U1 ∩ (U2 +U3) = U1 �= {0}. Note that

(1, 1) = 0(1, 0) + 0(0, 1) + 1(1, 1) = 1(1, 0) + 1(0, 1) + 0(1, 1).

That is, the same vector (1, 1) ∈ R
2 can be written in two different ways as sum of

vectors from U1, U2 and U3.
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In fact, the definition of direct sum of more than two subspaces is motivated by
the uniqueness in writing a vector as a sum of vectors from individual subspaces.
Many authors define the direct sum using the condition proved in Theorem1.48. For
another equivalent condition on the direct sum, see Problem 22.

As it looks, the intersection of two finite dimensional subspaces has possibly
smaller dimension than any of the subspaces involved. Similarly, sum of two sub-
spaces will have possibly larger dimension than any of the two subspaces. An exact
formula can be given relating these dimensions.

Theorem 1.49 Let U and W be subspaces of a vector space V . If U ∩ W = {0},
then

dim(U + W ) = dim(U ) + dim(W ).

Proof If one ofU andW is the zero space, sayU = {0}, then we haveU + W = W
and dim(U ) = 0 so that the result follows.Also, if one of them is infinite dimensional,
say dim(U ) = ∞, then U is a subspace of U + W , and the result follows. Hence,
assume that both U and W are nonzero finite dimensional subspaces. Let B and C
be bases of U and W , respectively. To prove the dimension formula, we show that
B ∪ C is a basis of U + W.

ByTheorem1.17(4), span(B ∪ C) = span(B) + span(C) = U + W.That is, B ∪
C spans U + W.

Next, to show that B ∪ C is linearly independent, let u1, . . . , un ∈ B, v1, . . . , vm ∈
C and let α1, . . . , αn, β1, · · · , βm ∈ F be such that

α1u1 + · · · + αnun + β1v1 + · · · + βmvm = 0.

Then
α1u1 + . . . + αnun = −(β1v1 + · · · + βmvm).

Note that the left-hand side of the above equation is a vector in U while the vector
on the right-hand side belongs to W . Since U ∩ W = {0}, we have

α1u1 + · · · + αnun = 0 = β1v1 + · · · + βmvm .

Now, linearly independence of u1, . . . , un and v1, . . . , vm implies that α1, . . . , αn ,
β1, . . . , βm are all zero. Therefore, B ∪ C is linearly independent. �

The converse of Theorem1.49 is not necessarily true. For example, consider the
subspaces of R

3:

U = {(a, b, 0) : a, b ∈ R}, W = {(a, 0, 0) : a ∈ R}.

Here, dim(R3) = 3, dim(U ) + dim(W ) = 2 + 1 = 3 but U ∩ W = W �= {0}.
However, with U ′ = {(0, a, b) : a, b ∈ R}, we see that U ′ + W = R

3. Conse-
quently, dim(U ′) + dim(W ) = dim(U ′ + W ) and also U ′ ∩ W = {0}.
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In fact, a sum of subspaces is a direct sum if and only if the dimensions add up to
that of the parent vector space; it is proved below.

Theorem 1.50 Let U1, . . . ,Un be subspaces of a finite dimensional vector space V .
Then the following are equivalent:

(1) V = U1 ⊕ · · · ⊕Un.

(2) V = U1 + · · · +Un and dim(V ) = dim(U1) + · · · + dim(Un).

Proof (1) ⇒ (2): It follows from Theorem1.49 by induction on n.

(2) ⇒ (1): Suppose V = U1 + · · · +Un and dim(V ) = dim(U1) + · · · + dim(Un).

For each i ∈ {1, . . . , n}, let Bi be a basis of Ui . Write B := B1 ∪ · · · ∪ Bn. Since
V = U1 + · · · +Un and dim(V ) = dim(U1) + · · · + dim(Un), B spans V . Hence,
by Theorem1.41, B is a basis of V .

For the intersection condition, let v ∈ U1 ∩ (U2 + · · · +Un). Then v ∈ U1 and
there exist vectorsu2 ∈ U2, . . . , un ∈ Un such that v = u2 + · · · + un.Consequently,

−v + v2 + · · · + vn = 0.

Here, the vector v is a linear combination of vectors from B1, and the vector v j is a
linear combination of vectors from Bj for j ≥ 2.As B is a basis of V , the scalars in all
these linear combinations are 0. So, v = 0. Therefore,U1 ∩ (U2 + · · · +Un) = {0}.

Similar proof holds for any index i instead of 1. �

When the subspaces U and W have a nonzero intersection, a dimension formula
analogous to Theorem1.49 holds.

Theorem 1.51 Let U and W be subspaces of a vector space V . Then

dim(U + W ) + dim(U ∩ W ) = dim(U ) + dim(W ).

Proof By Theorem1.49, the dimension formula holds when U ∩ W = {0}. Also
if U ∩ W = U then U + W = W , and if U ∩ W = W , then U + W = U. In these
cases, the formula holds trivially. So, assume thatU ∩ W is a nonzeroproper subspace
of bothU andW . Let B0 be a basis ofU ∩ W . By Theorem1.43, B0 can be extended
to a basis B0 ∪ B1 ofU , and to a basis B0 ∪ B2 ofW . To prove the dimension formula,
we show that B0 ∪ B1 ∪ B2 is a basis of U + W.

Since span(B0 ∪ B1 ∪ B2) = U + W , it is enough to show that B0 ∪ B1 ∪ B2 is
linearly independent. Since U ∩ W is a nonzero proper subspace of both U and W ,
B0 �= ∅, B1 �= ∅, and B2 �= ∅.

So, let u1, . . . , um ∈ B0, v1, . . . , vn ∈ B1, and let w1, . . . ,wk ∈ B2. Let α1, . . . ,

αm , β1, . . . , βn , and γ1, . . . , γk be scalars such that

α1u1 + · · · + αmum + β1v1 + · · · + βnvn + γ1w1 + · · · + γkwk = 0.
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Then

α1u1 + · · · + αmum + β1v1 + · · · + βnvn = −(γ1w1 + · · · + γkwk) ∈ U ∩ W.

Hence, there exist vectors x1, . . . , xr in B0 and scalars δ1, . . . , δr such that

α1u1 + · · · + αmum + β1v1 + · · · + βnvn = −(γ1w1 + · · · + γkwk) = δ1x1 + · · · + δr xr .

But, x1, . . . , xr ,w1, . . . ,wk ∈ B0 ∪ B2 and B0 ∪ B2 is linearly independent. Hence,
the equality

−(γ1w1 + · · · + γkwk) = δ1x1 + · · · + δr xr

implies that γ1 = · · · = γk = δ1 = · · · = δr = 0. Therefore,

α1u1 + · · · + αmum + β1v1 + · · · + βnvn = 0.

Again, since u1, . . . , um, v1, . . . , vn ∈ B0 ∪ B1 and B0 ∪ B1 is linearly independent,
we obtain α1 = · · · αm = β1 = · · · = βn = 0. Therefore, B0 ∪ B1 ∪ B2 is linearly
independent. �

Exercises for Sect. 1.7

1. Let u, v, x, y ∈ R
4. LetU = span{u, v} and let X = span{x, y}. In which of the

following cases U ⊕ X = R
4?

(a) u = (0, 1, 0, 1), v = (0, 0, 1, 1), x = (1, 0, 1, 0), y = (1, 1, 0, 0).
(b) u = (0, 0, 0, 1), v = (1, 0, 0, 0), x = (1, 1, 1, 0), y = (0, 1, 1, 1).
(c) u = (1, 0, 0, 1), v = (0, 1, 1, 0), x = (1, 0, 1, 0), y = (0, 1, 0, 1).
(d) u = (1, 1, 1, 0), v = (1, 1, 0, 1), x = (0, 1, 1, 1), y = (0, 0, 1, 1).

2. Let Pe = {p(t) ∈ P(F) : p(−t) = p(t)}; Po = {p(t) ∈ P : p(−t) = −p(t)}.
Show that both Pe and Po are subspaces of P(F) and that P(F) = Pe ⊕ Po.

3. Consider the subspaces U = {(a1, . . . , a2n) ∈ R
2n : a1 = · · · = an = 0} and

V = {(a1, . . . , a2n) ∈ R
2n : ai = an+i for i = 1, . . . , n} of R

2n. Are U and V
complementary?

4. Construct three subspacesU,W, X of a vector space V so that V = U ⊕ W and
V = U ⊕ X but W �= X.

5. Find a subspace of P(R) complementary to {αt3 + βt7 : α, β ∈ R}.
6. LetU = {(a, b, c, d) ∈ R

4 : b = −a} and letW = {(a, b, c, d) : c = −a}.Find
the dimensions of the subspaces U, W, U + W , and U ∩ W of R

4.

7. Show that if U and W are subspace of R
9 such that dim(U ) = 5 = dim(W ),

then U ∩ W �= {0}.
8. Let U and W be subspaces of a vector space of dimension 2n + 1. Show that if

dim(U ) = dim(W ) ≥ n + 1, then U ∩ W contains a nonzero vector.
9. LetU andW be subspaces of F

7 with dim(U ) = 4 and dim(W ) = 3. Show that
U + W = F

7 if and only if U ∩ W = {0} if and only if F
7 = U ⊕ W.
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10. LetU be a subspace of a vector space V . Show that dim(U ) ≤ dim(V ). Further,
if U is a finite dimensional proper subspace of V , then show that dim(U ) <

dim(V ).

11. In Theorem1.50, prove (1) ⇒ (2) without using induction.

1.8 Quotient Space

One-dimensional subspaces ofR3 are straight lines passing through the origin. On the
other hand, any straight line in R

3 is a translate of such a one-dimensional subspace.
Similarly, any plane in R

3 is a translate of a plane passing through the origin which
is a two-dimensional subspace of R

3. This notion can be generalized to any vector
space.

Definition 1.52 Let U be a subspace of a vector space V . Let v ∈ V . The sum of
the vector v and the subspace U is the set

v +U := {v} +U = {v + x : x ∈ U }.

Any subset of V which is equal to v +U for some vector v ∈ V and some subspace
U of V is called an affine space associated with the subspace U in V . The affine
space v +U is also written as U + v or as Uv.

An affine space in R
3 is either a single point, a straight line, a plane, or R

3 itself.

Example 1.53 A plane U through the origin looks like:

U = {(α1, α2, α3) ∈ R
3 : aα1 + bα2 + cα3 = 0}

for some a, b, c ∈ R. Take v = (β1, β2, β3) ∈ R
3. Then

v +U = {(β1 + α1, β2 + α2, β3 + α3) : aα1 + bα2 + cα3 = 0}
= {(γ1, γ2, γ3) : a(γ1 − β1) + b(γ2 − β2) + c(γ3 − β3) = 0}
= {(γ1, γ2, γ3) : aγ1 + bγ2 + cγ3 = aβ1 + bβ2 + cβ3}.

Thus, the affine space v +U is the plane parallel to U passing through the point v.
Also any plane in R

3 is given by

S = {(γ1, γ2, γ3) ∈ R
3 : aγ1 + bγ2 + cγ3 = d}

for some a, b, c, d ∈ R. Now, S is parallel to the plane

U = {(α1, α2, α3) : aα1 + bα2 + cα3 = 0}
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that passes through the point v = (β1, β2, β3), where aβ1 + bβ2 + cβ3 = d. Hence
S = v +U. �

In R
3, consider S as a straight line or a plane. Take any two points on S. The

line segment joining these two points completely lie on S. The following theorem
generalizes this observation and gives a justification as to why affine spaces are so
named.

Theorem 1.54 Let S be a nonempty subset of a vector space V . The following are
equivalent:

(1) S is an affine space in V .

(2) If x, y ∈ S, then αx + (1 − α)y ∈ S for each scalar α.

(3) For any n ∈ N, if v1, . . . , vn ∈ S and α1, . . . , αn ∈ F with
∑n

j=1 α j = 1, then
∑n

j=1 α j v j ∈ S.

Proof (1) ⇒ (3): Assume that S is an affine space in V . Then S = v +U for some
v ∈ V and for some subspaceU of V . Let v1, . . . , vn ∈ S and let α1, . . . , αn ∈ Fwith
∑n

j=1 α j = 1. Then v1 = v + u1, . . . , vn = v + un for some u1, . . . , un ∈ U.Hence

n
∑

j=1

α j v j =
n

∑

j=1

α j (v + u j ) = v +
n

∑

j=1

α j u j .

As U is a subspace of V , u := ∑n
j=1 α j u j ∈ U. Thus,

∑n
j=1 α j v j = v + u ∈ S.

(3) ⇒ (2): Take n = 2.

(2) ⇒ (1): Let (2) hold. Fix v ∈ S and takeU := {x − v : x ∈ S}. Then S = v +U .
So, it is enough to show that U is a subspace of V .

Let u ∈ U and let α ∈ F. Then u = x − v for some x ∈ S. As x ∈ S and v ∈ S,
αx + (1 − α)v ∈ S. Thus αu = α(x − v) = αx + (1 − α)v − v ∈ U.

Next, let u1, u2 ∈ U. Then u1 = x1 − v and u2 = x2 − v for some x1, x2 ∈ S.

Now,

u1 + u2 = (x1 − v) + (x2 − v) = (x1 + x2) − 2v = 2
[ x1 + x2

2
− v

]

.

As (x1 + x2)/2 ∈ S we have u := (x1 + x2)/2 − v ∈ U , and hence u1 + u2 = 2u ∈
U . Therefore, U is a subspace of V . �

In the above theorem, the fact that (2) ⇒ (3) can also be seen by induction; we
leave it as an exercise.

Given a subspace U of a vector space V and a vector v ∈ V , the pair (v,U )

corresponds to the affine space v +U . Notice that for all u ∈ U, (x + u) +U =
x +U. That is, unless U = {0}, the correspondence (v,U ) 
→ v +U is never one-
to-one.
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Theorem 1.55 Let U be a subspace of a vector space V , and let v1, v2 ∈ V . Then
the following are equivalent:

(1) (v1 +U ) ∩ (v2 +U ) �= ∅.

(2) v1 − v2 ∈ U.

(3) v1 +U = v2 +U.

Further, the family of all affine spaces associated with the subspace U decomposes
the vector space V into disjoint subsets.

Proof (1) ⇒ (2): Suppose (v1 +U ) ∩ (v2 +U ) �= ∅. Then there exist u1, u2 ∈ U
such that v1 + u1 = v2 + u2. Consequently, v1 − v2 = u2 − u1 ∈ U.

(2) ⇒ (3): Suppose v1 − v2 ∈ U. Now, for any u ∈ U , v1 + u = v2 + (v1 − v2) +
u ∈ v2 +U. That is, v1 +U ⊆ v2 +U. Similarly, it follows that v2 +U ⊆ v1 +U.

(3) ⇒ (1): Suppose v1 +U = v2 +U. Then (v1 +U ) ∩ (v2 +U ) = v1 +U =
v2 +U. It implies that v1, v2 ∈ (v1 +U ) ∩ (v2 +U ).

From the equivalence of (1) and (3) it follows that for any v1, v2 ∈ V , either
(v1 +U ) ∩ (v2 +U ) = ∅ or v1 +U = v2 +U. Moreover, for each v ∈ V, v ∈ v +
U. That is, V = ∪v∈V (v +U ). Therefore, the set {v +U : v ∈ V } decomposes V
into disjoint subsets. �

For example, let U be a plane passing through the origin, in R
3. The set of all

planes parallel to U cover the whole of R
3 and no two such planes intersect. That

is, given such a U , the set of all affine spaces v +U decomposes R
3 into disjoint

subsets.
Theorem1.55 implies that for each v ∈ V

v +U = {x ∈ V : x − v ∈ U }.

Since affine spaces associated with a subspace U are disjoint subsets of V and their
union is V , the subspace U defines an equivalence relation on the vector space V .

We call this relation as congruence modulo U. It is described as follows:

For x, y ∈ V, x is congruent to y modulo U , written x ≡ U y, if and only if
x − y ∈ U.

The equivalence classes of the relation ≡U are the affine spaces v +U for v ∈ V .
We may then say that the vector v is a representative of the class v +U. Note that,
any vector in the affine space v +U can be considered as its representative.

We have a natural way of adding any two affine spaces and multiplying an affine
space with a scalar, namely for x, y ∈ V and α ∈ F,

(x +U ) + (y +U ) := (x + y) +U, α(x +U ) := (αx) +U.
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Notice that these definitions of addition and scalar multiplication of affine spaces go
along with our earlier notation for the sum of two sets of vectors. That is,

(x +U ) + (y +U ) = {x + u1 + y + u2 : u1, u2 ∈ U } = (x + y) +U.

α(x +U ) = {α(x + u) : u ∈ U } = {αx + w : w ∈ U } = (αx) +U.

This happens because U is a subspace of V . It shows that addition and scalar multi-
plication (of affine spaces) are well-defined.

To see these more directly, suppose x +U = x ′ +U and y +U = y′ +U. Then
x − x ′ ∈ U and y − y′ ∈ U. So that (x + y) − (x ′ + y′) ∈ U and then x + y +U =
x ′ + y′ +U. Similarly, if x +U = x̂ +U and α ∈ F, then α(x − x̂) ∈ U ; conse-
quently, αx +U = α x̂ +U.

Further, we observe that

(x +U ) +U = (x +U ) + (0 +U ) = (x + 0) +U = x +U,

(x +U ) + ((−x) +U ) = (x − x) +U = U.

That is, the subspace U acts as the zero of the addition of affine spaces associated
withU , and (−x) +U acts as the additive inverse of x +U. The other conditions in
Definition1.1 can easily be verified. Thus, we have proved the following theorem.

Theorem 1.56 Let V be a vector space over F. Let U be a subspace of V . Then the
family of all affine spaces {v +U : v ∈ V } is a vector space over F with respect to
the operations of addition and scalar multiplication defined by

(x +U ) + (y +U ) := (x + y) +U, α(x +U ) := (αx) +U for x, y ∈ V, α ∈ F.

Definition 1.57 The vector space of all affine spaces of a vector space V associated
with a given subspace U with addition and scalar multiplication given by

(x +U ) + (y +U ) := (x + y) +U, α(x +U ) := (αx) +U

is denoted by V/U and is called a quotient space.

In R
2, take a straight line L passing through the origin. Consider all affine spaces

which are translates of another straight lineU passing through the origin. Now, each
such affine space intersects L at exactly one point. In a sense, any such affine space
can thus be identified with that single intersection point. Thus the dimension of the
quotient space R

2/U should match with the dimension of L , which happens to be 1.
Similarly, inR

3, each affine space which is a translate of a planeU passing trough
the origin will intersect a straight line L passing through the origin exactly at one
point. Hence, we expect that the dimension of the quotient space R

3/U is also 1.
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If U is a one-dimensional subspace of R
3, then what would be the dimension of

R
3/U? Observe that, in this case, corresponding to each point on a plane passing

through the origin, there is exactly one element of R
3/U . Hence, in this case, we

expect that dimension of R
3/U to match with the dimension of the plane, i.e. 2.

The above observations on the dimension of the quotient space can be generalized
to yield a dimension formula in a general setting.

Theorem 1.58 Let U be a subspace of a vector space V . Then

dim(V ) = dim(U ) + dim(V/U ).

Proof IfU = V , then V/U = {x +U : x ∈ V } = {U } is the zero space in V/U ; so
that the result holds. Next, we assume that U is a proper subspace of V .

Let B be a basis of U . Extend this to a basis B ∪ C of V . By Theorem1.46,
V = U ⊕ span(C). It is enough to show that dim(V/U ) = |C |.

The function that maps any x ∈ C to f (C) = x +U ∈ V/U is one-to-one. So,
|C | = |{x +U : x ∈ C}|. We prove that {x +U : x ∈ C} is a basis of V/U.

Clearly, span{x +U : x ∈ C} ⊆ V/U.

For the other containment, suppose v +U ∈ V/U for some v ∈ V . Since V =
U ⊕ span(C), there exist vectors u ∈ U ,w1, . . . ,wn ∈ C and scalarsα1, . . . , αn such
that v = u + α1v1 + · · · + αnvn . Then

v +U = u + (α1v1 + · · · + αnvn) +U = α1(v1 +U ) + · · · + αn(vn +U ).

The last vector is in span{x +U : x ∈ C}. So, V/U ⊆ span{x +U : x ∈ C}.
Therefore, V/U = span{x +U : x ∈ C}.
We need to show that {x +U : x ∈ C} is linearly independent. For this, let

v1, . . . , vn ∈ C and let β1, . . . , βn be scalars such that

β1(v1 +U ) + · · · + βn(vn +U ) = U.
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Then

U = β1(v1 +U ) + · · · + βn(vn +U ) = (β1v1 + · · · + βnvn) +U.

It follows that β1v1 + · · · + βnvn ∈ U ∩ span(C) = {0}. As C is linearly indepen-
dent, β1 = · · · = βn = 0. �

For finite dimensional vector spaces we have proved two-dimensional formulas:

dim(U ) + dim(W ) = dim(U + W ) + dim(U ∩ W ),

dim(V ) = dim(U ) + dim(V/U ).

Can you relate them?

Exercises for Sect. 1.8

1. Let U be a subspace of a vector space V . Let u, v, x, y ∈ V . Let α, β ∈ F. Show
that if u ≡U x and v ≡U y, then αu + βv ≡U αx + βy.

2. Describe the following quotient spaces:

(a) R
2/{0}.

(b) R
3/U , where U = {(a, b, c) ∈ R

3 : 2a + b − c = 0}.
(c) F

∞/U , where U = {(0, a2, a3, . . .) : ai ∈ F}.
3. Determine the quotient space P(R)/U in each of the following cases:

(a) U = Pn(R).

(b) U = {p(t) ∈ P(R) : p(−t) = p(t)}.
(c) U = {tn p(t) : p(t) ∈ P(R)} for a fixed n.

4. Consider C
n as a real vector space. It has a subspace U := C × {0}n−1. What is

the dimension of the quotient space C
n/U?

1.9 Problems

1. What is wrong with the following proof of commutativity of addition using other
axioms of a vector space?

x + x + y + y = 2x + 2y = 2(x + y) = x + y + x + y. Cancelling x
from left and y from right, we have x + y = y + x .

2. Prove that a vector space cannot be equal to a finite union of its proper subspaces.
3. Let V := F(N, F), the space of all scalar sequences. Let 	1(N, F) be the set of

all absolutely summable scalar sequences, that is,
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	1(N, F) :=
⎧

⎨

⎩

x ∈ V :
∞

∑

j=1

|x( j)| < ∞
⎫

⎬

⎭

.

Show that 	1(N, F) is a subspace of F(N, F).
4. For a nonempty set S, let 	∞(S, F) be the set of all bounded functions from S

to F, that is,
	∞(S, F) := {

x ∈ F(S, F) : sup
s∈S

|x(s)| < ∞}

.

Thus, x ∈ 	∞(S, F) if and only if there exists Mx > 0 such that |x(s)| ≤ Mx for
all s ∈ S. In particular, 	∞(N, F) is the set of all bounded sequences of scalars.
Show that 	∞(S, F) is a subspace of F(S, F).

5. The set c00(N, F) in Example1.15 is a subspace of 	1(N, F), and the sets

c0(N, F) := {x ∈ F(N, F) : x(n) → 0 as n → ∞},
c(N, F) := {x ∈ F(N, F) : (x(n)) converges }

are subspaces of 	∞(N, F). We observe that

c00(N, F) ⊆ 	1(N, F) ⊆ c0(N, F) ⊆ c(N, F) ⊆ 	∞(N, F).

Are these inclusions proper?
6. If one definesU − W = {u − v : u ∈ U, v ∈ V } for subspacesU, W of a vector

space V , then which of the following would hold and which do not?

U −U = {0}, U − W = U + W, (U − W ) + W = U.

7. Is sumof subspaces (of a given vector space) commutative and associative?What
is the additive identity of the operation of addition of subspaces? What about
additive inverse of a subspace? Does every subspace have an additive inverse?

8. Let S1 = {(a, b) ∈ R
2 : −1 ≤ a, b ≤ 1} and S2 = {(a, b) ∈ R

2 : a2 + b2 ≤ 1}.
What is S1 + S2?

9. Determine conditions on α ∈ C such that in C
2 the vectors (1 − α, 1 + α) and

(1 + α, 1 − α) are linearly independent.
10. Determine conditions on α, β ∈ C such that the vectors (α, 1), (β, 1) in C

2 are
linearly dependent.

11. Determine conditions on α, β, γ ∈ C such that the vectors (1, α, α2), (1, β, β2),
and (1, γ, γ 2) in C

3 are linearly dependent.
12. Determine conditions onα ∈ R such that the vectors (1, α, 0), (0, 1, α), (α, 1, 1)

in R
3 are linearly independent.

13. Show that a subset {u1, . . . , un} of V is linearly independent if and only if the
function (α1, . . . , αn) 
→ α1u1 + · · · + αnun from F

n into V is injective.
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14. Let U be the set of all polynomials p(t) from P(C), where each p(t) is consid-
ered as a function from S := {1, . . . , 2018} to C. Show that U is a subspace of
F(S, C). Determine dim(U ).

15. Let V be an infinite dimensional vector space. Show that there exists a sequence
v1, v2, . . ., of vectors in V such that for each n ∈ N, the vectors v1, . . . , vn are
linearly independent.

16. Given a0, a1, . . . , an ∈ R, let

V = { f ∈ Ck[0, 1] : an f (n)(t) + · · · + a1 f
(1)(t) + a0 f (t) = 0 for t ∈ [0, 1]}.

Show that V is a subspace of Ck[0, 1]. Determine dim(V ).

17. InC[0, 1], consider the function fn forn ∈ N, where the graphof fn in the interval
[

1
n+1 ,

1
n

]

is obtained by joining the point
(

1
n+1 , 0

)

to the point
(

1
2

(

1
n+1 + 1

n

)

, 1
)

and then joining
(

1
2

(

1
n+1 + 1

n

)

, 1
)

to the point
(

1
n , 0

)

by straight line segments,

and fn(x) = 0 for each x /∈ [

1
n+1 ,

1
n

]

.Write fn(x) as a formula with three cases,
and then show that { fn : n ∈ N} is linearly independent.

18. For λ ∈ [a, b], let uλ(t) = exp (λt), t ∈ [a, b]. Show that {uλ : λ ∈ [a, b]} is an
uncountable linearly independent subset of C[a, b].

19. Let p1(t), . . . , pn+1(t) ∈ Pn(C) satisfy p1(1) = · · · = pn+1(1) = 0. Show that
the polynomials p1(t), . . . , pn+1(t) are linearly dependent in Pn(C).

20. Let U,W and X be subspaces of a finite dimensional vector space V . Is it true
that if U ⊕ (W ⊕ X) = V , then (U ⊕ W ) ⊕ X = V ?

21. Let U1, U2 and U3 be subspaces of a vector space V .

(a) Prove that U1 ∩ (U2 + (U1 ∩U3)) = (U1 ∩U2) + (U1 ∩U3).

(b) Give a counter-example for U1 ∩ (U2 +U3) = (U1 ∩U2) + (U1 ∩U3).

(c) Give a counter-example for
dim(U1 +U2 +U3) + dim(U1 ∩U2) + dim(U2 ∩U3) + dim(U3 ∩U1) =
dim(U1) + dim(U2) + dim(U3) + dim(U1 ∩U2 ∩U3).

22. Let V be a vector space. Show that V = U1 ⊕ · · · ⊕Un if and only if V =
U1 + · · · +Un , and for each i ∈ {1, . . . , n − 1},Ui+1 ∩ (U1 + · · · +Ui ) = {0}.

23. Let U1, . . . ,Un be finite dimensional subspaces of a vector space V . Prove that
dim(U1 + · · · +Un) ≤ dim(U1) + · · · + dim(Un).

24. Let U1, . . . ,Un be subspaces of a finite dimensional vector space V . Prove or
disprove: If dim(U1) + · · · + dim(Un) = V , then V = U1 ⊕ · · · ⊕Un.

25. Let V be a vector space. Show that dim(V ) = n ≥ 1 if and only if there exist
one-dimensional subspaces U1, . . . ,Un such that V = U1 ⊕ · · · ⊕Un.

26. Let C
n×n denote the set of all n × n matrices with complex entries. Show the

following:

(a) {B ∈ C
n×n : BT = B} and {B ∈ C

n×n : BT = −B} are subspaces of C
n×n .

(b) {B ∈ C
n×n : BT = B} ⊕ {B ∈ C

n×n : BT = −B} = C
n×n .
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27. Let A ⊆ R be nonempty. Fix a ∈ A. LetU = { f ∈ F(A, R) : f (a) = 0}.Does
there exist a subspace W of F(A, R) such that F(A, R) = U ⊕ W?

28. Let t0, t1, . . . , tn be distinct complex numbers. For i ∈ {0, 1, . . . , n}, define
pi (t) = 
 j �=i (t − t j ). Show that {p0(t), p1(t), . . . , pn(t)} is a basis for Pn(C).

Further, show that a polynomial p(t) ∈ Pn(C) is uniquely determined by the
(n + 1)-tuple (p(t0), . . . , p(tn)).

29. In Theorem1.54, derive (3) from (2) using induction.
30. Let U and W be subspaces of a finite dimensional vector space V . Prove that

any basis of (U + W )/U is in one-to-one correspondence with any basis of
W/(U ∩ W ).



Chapter 2
Linear Transformations

2.1 Linearity

In mathematics one studies structures and the maps between structures. The maps
that preserve structures are of fundamental interest. In real analysis, the interesting
maps are continuous functions; they map closed intervals onto closed intervals. In
group theory, homomorphisms map subgroups onto subgroups. In vector spaces,
similarly, the important maps are those which map subspaces onto subspaces. Since
the vector spaces get their structure from the two operations of addition and scalar
multiplication, the structure preserving maps must preserve these two operations.

Definition 2.1 Let V and W be vector spaces over the same field F.

(a) A function T : V → W is said to be a linear transformation from V to W if
it satisfies the following two conditions:
Additivity: For all x, y ∈ V, T (x + y) = T (x) + T (y).
Homogeneity: For all x ∈ V and for all α ∈ F, T (αx) = αT (x).

(b) A linear transformation from V to F is called a linear functional on V .
(c) A linear transformation from V to itself is called a linear operator on V .

In Definition 2.1, the+ in T (x + y) is the addition operation of V,whereas the+
in T (x) + T (y) is the addition ofW. Similarly, the scalar multiplication in T (αx) is
that of V and that in αT (x) is the scalar multiplication ofW. It can be easily seen that
the two conditions in Definition 2.1 together are equivalent to either of the following
conditions:

T (x + αy) = T (x) + αT (y) for all x, y ∈ V and for each α ∈ F

T (αx + βy) = αT (x) + βT (y) for all x, y ∈ V and for all α, β ∈ F.

Whenwe say that T : V → W is a linear transformation, it is assumed that both V
andW are vector spaces, and that too, over the same field. For a linear transformation
T and a vector x, the value T (x) is also written as T x .
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Linear transformations, in general, are denoted by capital letters such as T, S,

A, B, while linear functionals are denoted by small letters f, g, etc.
Linear transformations are also called as linear maps, linear mappings, linear

operators, and also homomorphisms. A linear operator on a vector space is also
called an endomorphism.

Example 2.2 Let V and W be vector spaces. Define two maps 0 : V → W and
IV : V → V by

0(x) = 0, IV (x) = x for x ∈ V .

Notice that the 0 on the left side is a function and the 0 on the right side is the zero
vector of W. We see that

0(x + y) = 0 = 0(x) + 0(y) 0(αx) = 0 = α 0 = α0(x),

IV (x + y) = x + y = IV (x) + IV (y), IV (αx) = αx = α IV (x).

Hence both 0 and IV are linear transformations; IV is a linear operator on V .

The linear transformation 0 : V → W is called the zeromapor the zero operator.
Sometimes the zero operator is denoted as O instead of 0. The linear transformation
IV : V → V is called the identity map, or the identity operator. If there is no
confusion, IV is abbreviated to I . �

Example 2.3 (1) Let V be a vector space. Let λ be a scalar. Define T : V → V by

T (x) = λx for x ∈ V .

Then T is a linear operator on V, since for every x, y ∈ V and α ∈ F,

T (x + αy) = λ(x + αy) = λx + αλy = T x + αT y.

This operator T is written as T = λI , where I is the identity operator on V , and it
is called a scalar operator.

(2) The map T : P(R) → P(R) defined by

T (p(t)) = tp(t) for p(t) ∈ P(R)

is a linear operator, since for every p(t), q(t) ∈ P(R) and α ∈ F,

T (p(t) + αq(t)) = t (p(t) + αq(t)) = tp(t) + αtq(t) = T (p(t)) + αT (q(t)).

(3)WithF
∞ = F(N, F) as the set of all sequences of scalars, themap T : F

∞ → F
∞

defined by

T (a1, a2, a3, . . .) = (a2, a3, . . .) for (a1, a2, a3, . . .) ∈ F
∞
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is a linear operator, since for all (a1, a2, a3, . . .), (b1, b2, b3, . . .) in F
∞ and α ∈ F,

we see that

T ((a1, a2, a3, . . .) + α(b1, b2, b3, . . .)) = T ((a1 + αb1, a2 + αb2, a3 + αb3, . . .)

= (a2 + αb2, a3 + αb3, . . .)

= (a2, a3, . . .) + α(b2, b3, . . .)

= T (a1, a2, a3, . . .) + αT (b1, b2, b3, . . .).

This operator T is called the left shift operator or the backward shift operator.

(4) Let T : F
∞ → F

∞ be defined by

T (a1, a2, a3, . . .) = (0, a1, a2, . . .) for (a1, a2, a3, . . .) ∈ F
∞.

As in (3), it can be verified that T is a linear operator on F
∞; it is called the right

shift operator or the forward shift operator. �

Example 2.4 (1) Let V be an n-dimensional vector space, and let B = {u1, . . . , un}
be an ordered basis of V . For each x ∈ V, there exist unique scalars α1, . . . , αn ∈ F

such that x = α1u1 + · · · + αnvn. For each j ∈ {1, . . . , n}, define f j : V → F by

f j (x) = α j for x = α1u1 + · · · + αnvn ∈ V .

Then f j is a linear functional. We observe that the linear functionals f1, . . . , fn
satisfy

fi (u j ) = δi j for all i, j ∈ {1, . . . , n}.

These linear functionals are called the coordinate functionals on V with respect to
the basis B.The coordinate functionals depend not only on the basis B but also on the
order in which the basis vectors u1, . . . , un appear in B. The coordinate functionals
on F

n with respect to the standard basis satisfy

fi (α1, . . . , αn) = αi for each i = 1, . . . , n.

(2) For a given t ∈ [a, b], let ft : C([a, b], F) → F be defined by

ft (x) = x(t) for x ∈ C([a, b], F).

Then ft is a linear functional. The functionals ft for t ∈ [a, b], are called evaluation
functionals on C[a, b].
(3) Given t1, . . . , tn ∈ [a, b] and w1, . . .wn ∈ F, define f : C([a, b], F) → F by

f (x) =
n∑

i=1

x(ti )wi for x ∈ C([a, b], F).
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Then f is a linear functional.
This functional is a linear combination of evaluation functionals ft1 , . . . , ftn

defined in (2) above. The functional f is called a quadrature formula.

(4) Let f : C([a, b], F) → F be defined by

f (x) =
∫ b

a
x(t) dt for x ∈ C([a, b], F).

Then f is a linear functional. �

Example 2.5 (1) Define T : C1([a, b], R) → C([a, b], R) by

T x = x ′ for x ∈ C1([a, b], R),

where x ′ denotes the derivative of x . Then T is a linear transformation.

(2) Let α, β ∈ F. Define the function T : C1([a, b], R) → C([a, b], R) by

T x = αx + βx ′, for x ∈ C1([a, b], R)

Then T is a linear transformation.

(3) Let T : C([a, b], R) → C([a, b], R) be defined by

(T x)(s) =
∫ s

a
x(t) dt for x ∈ C([a, b], R), s ∈ [a, b].

Then T is a linear transformation.

(4) Let {u1, . . . , un} be an ordered basis of an n-dimensional vector space V . Let

T x =
n∑

j=1

α j u j for each x = (α1, . . . , αn) ∈ F
n.

Then T : F
n → V is a linear transformation. �

Here are some easy consequences of Definition 2.1.

Theorem 2.6 Let T : V → W be a linear transformation. Then the following are
true.

(1) T (0) = 0.
(2) For each v ∈ V, T (−v) = −T (v).
(3) T (α1v1 + · · · + αnvn) = α1T v1 + · · · + αnT vn for all vectors v1, . . . , vn ∈ V

and all scalars α1, . . . , αn ∈ F.
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Proof (1) T (0) + 0 = T (0) = T (0 + 0) = T (0) + T (0). Thus, T (0) = 0.

(2) Let v ∈ V . Then T (−v) = T ((−1)v) = (−1)T v = −T v.

(3) For n = 2, we have T (α1v1 + α2v2) = T (α1v1) + T (α2v2) = α1T (v1) +
α2T (v2). For any general n, the result follows by induction. �

Example 2.7 (1) The map T : R → R defined by

T (x) = 2x + 3, x ∈ R,

is not a linear transformation, since T (0) = 3.

(2) The maps f, g, h : R → R defined by

f (x) = x3, g(x) = cos x, h(x) = sin x

are not linear transformations since

f (2 × 1) = 8 �= 2 f (1) = 2, g(2π) = 1 �= 2g(π) = −2, h(2π) = 0 �= 2h(π) = 2.

Again, we notice that

f (1 + 1) �= f (1) + f (1), g(π + π) �= g(π) + g(π), h(π) �= h(π) + h(π).

That is, these functions do not satisfy the additivity requirement also.

(3) Let T1, T2 : V → W be linear transformations. Let a and b be scalars. Define
T : V → W by

T (x) = aT1(x) + bT2(x) for x ∈ V .

It is easy to see that T is a linear transformation. �

Theorem2.6(3) has a nice consequence.LetV be afinite dimensional vector space,
B = {v1, . . . , vn} a basis of V, and let v ∈ V . There exist unique scalars α1, . . . , αn

such that v = α1v1 + · · · + αnvn. Then T v = α1T v1 + · · · + αnT vn. That is, T v is
completely determined from T v1, . . . , T vn . Does this hold even if V is not finite
dimensional?

Theorem 2.8 Let V and W be vector spaces over F. Let B be a basis of V , and
let f : B → W be any function. Then there exists a unique linear transformation
T : V → W such that T u = f (u) for each u ∈ B. In fact, for v = α1v1 + · · · + αkvk
with vi ∈ B and αi ∈ F for i = 1, . . . , k, T (v) = α1 f (v1) + · · · + αk f (vk).

Proof Let v ∈ V .Since B is a basis ofV, there exist unique vectors v1 . . . , vk ∈ B and
correspondingly unique scalars α1, . . . , αk such that v = α1v1 + · · · + αkvk . Then
the map T : V → W given by

T v = α1 f (v1) + · · · + αk f (vk) for v = α1v1 + · · · + αkvk
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is well defined. Notice that this definition takes care of the agreement of T with f on
B.That is, Tu = f (u), for each u ∈ B.Weshow that T is a linear transformation. For
this, let x, y ∈ V and letα be a scalar. Then there exist scalarsβ1, . . . , βm, γ1, . . . , γn
and vectors u1, . . . , um, v1, . . . , vn ∈ B such that

x = β1u1 + · · · + βmum, y = γ1v1 + · · · + γnvn.

Then

T (x + αy) = T (β1u1 + · · · + βmum + αγ1v1 + · · · + αγnvn)

= β1 f (u1) + · · · βm f (um) + αγ1 f (v1) + · · · + αγn f (vn)

= T x + αT y.

For uniqueness of such a linear transformation, let S, T : V → W be linear trans-
formations with S(u) = T (u) for each u ∈ B. Let z ∈ V . Since B is a basis of V,

there exist vectors u1, . . . , un ∈ B and scalars α1, . . . , αn such that

z = α1u1 + · · · + αnun.

As both S and T are linear transformations,
S(z) = α1S(u1) + · · · + αn S(un) = α1T (u1) + · · · + αnT (un) = T (z).�

Theorem 2.8 says that a linear transformation is completely determined by its
action on a basis. In view of this, we give a definition.

Definition 2.9 Let V andW be vector spaces. Let B be a basis of V .Let f : B → W
be any function. The unique linear transformation T : V → W defined by

T
(∑n

j=1
α j v j

)
=

∑n

j=1
α j f (v j ) for n ∈ N, α j ∈ F, v j ∈ B

is called the linear extension of f.

The linear extension of a given map from a basis agrees with the map on the basis;
it is defined for other vectors using the linear dependence of the vectors on the basis
vectors.

In particular, suppose B = {v1, . . . , vn} is a basis for a finite dimensional vector
space V . Let w1, . . . ,wn be any vectors in any vector spaceW. If we have a function
f : B → W defined by f (v1) = w1, . . . , f (vn) = wn, then there exists a unique
linear extension of this f to the vector space V .Notice that the vectors w1, . . . ,wn ∈
W need not be linearly independent.

Example 2.10 Let E be the standard basis of R
3, i.e. E = {(1, 0, 0), (0, 1, 0),

(0, 0, 1)}. Let the function f : E → R
3 be given by

f (1, 0, 0) = (0, 1, 1), f (0, 1, 0) = (1, 1, 0), f (0, 0, 1) = (1, 2, 1).
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Since (a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1), by Theorem 2.8, the linear
transformation T : R

3 → R
3 is given by

T (a, b, c) = a(0, 1, 1) + b(1, 1, 0) + c(1, 2, 1) = (b + c, a + b + 2c, a + c).

This is the linear extension of f to R
3. �

In what follows, we will suppress the symbol f for the function that is prescribed
on a basis. We will rather start with the symbol T itself and say that T acts on a basis
in such and such a way; then denote its linear extension also by T .

Example 2.11 (1) Let A = [ai j ] ∈ F
n×n . Let {e1, . . . , en} be the standard basis of

F
n. Suppose T acts on the standard basis in the following way:

T e1 = (a11, . . . , an1), . . . , T en = (a1n, . . . , ann).

Let x = (α1, . . . , αn) ∈ F
n. Then x = α1e1 + · · · + αnen. The linear extension of T

to F
n is the linear transformation T : F

n → F
n satisfying

T x = α1T e1 + · · · + αnT en
= α1(a11, . . . , an1) + · · · + αn(a1n, . . . , ann)

=
( n∑

j=1

a1 jα j , . . . ,

n∑

j=1

anjα j

)
.

(2) Let A = [ai j ] ∈ F
m×n . Let {e1, . . . , en} be the standard basis for F

n×1. Let T act
on the standard basis in the following manner:

T e j = [a1 j · · · amj ]T = j th column of A.

Then its linear extension is the linear transformation T : F
n×1 → F

m×1, where for
x = [α1 · · · αn]T ∈ F

n×1,

T x = α1T e1 + · · · + αnT en.

Note that

T x =
[ n∑

j=1

a1 jα j · · ·
n∑

j=1

amjα j

]T = Ax ∈ F
m×1.

In fact, any matrix A ∈ F
m×n is viewed as a linear transformation this way. You can

also see the obvious relation between this T and the linear transformation in (1). A
more general version of how amatrix gives rise to a linear transformation is described
below.
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(3) Let A = [ai j ] ∈ F
m×n . Let V and W be vector spaces of dimensions n and

m, respectively. Let B = {v1, . . . , vn} be an ordered basis of V , and let C =
{w1, . . . ,wm} be an ordered basis of W. Define T : B → W by

T (v1) = a11w1 + · · · + am1wm =
m∑

i=1

ai1wi

...

T (vn) = a1nw1 + · · · + amnwm =
m∑

i=1

ainwi .

Notice that the coefficients of the basis vectors w1, . . . ,wm in T v j are exactly the
entries in the j th column of thematrix A, occurring in that order. Due to Theorem2.8,
this map has a unique linear extension to the linear transformation T : V → W. To
see how T works on any vector in V, let x ∈ V . We have a unique n-tuple of scalars
(α1, . . . , αn) such that x = α1v1 + · · · + αnvn . Then T x is given by

T x = α1

m∑

i=1

ai1wi + · · · + αn

m∑

i=1

ainwi

=
( n∑

j=1

a1 jα j

)
w1 + · · · +

( n∑

j=1

anjα j

)
wn.

Observe that if V = F
n×1 and W = F

m×1 with standard bases B and C , then T
maps the kth standard basis element in F

n×1 to the kth column of A; then we obtain
the linear transformation in (2) as a particular case.

For any matrix A, the linear transformation T : V → W defined above is called
the linear transformation induced by the matrix A; we write this T as TA. It shows
that if V and W are vector spaces with dimensions n and m, and with ordered bases
as B and C, respectively, then every m × n matrix with entries from F gives rise to
a unique linear transformation from V to W. �

Example 2.12 Let T1 : U → V and T2 : V → W be linear transformations. Let T :
U → W be the composition map T2 ◦ T1. That is,

T (x) = T2(T1(x)) for x ∈ V .

If u, v ∈ U and α ∈ F, then

T (u + v) = T2(T1(u + v)) = T2(T1(u)) + T2(T1(v)) = T (u) + T (v),

T (αu) = T2(T1(αu)) = T2(αT1(u)) = αT2(T1(u)) = αT (u).

Hence T is a linear transformation. �
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Example 2.13 Suppose A = [ai j ] ∈ F
m×n and B = [b jk] ∈ F

r×m . Let U, V,W be
vector spaces of dimensions n,m, r , respectively. Let E1 = {u1, . . . , un}, E2 =
{v1, . . . , vm} and E3 = {w1, . . . ,wr } be ordered bases of U, V,W , respectively. Let
TA : U → V and TB : V → W be the linear transformations induced by A and B,
respectively, corresponding to the given ordered bases. As in Example 2.12, the
composition map TB ◦ TA : U → W is a linear transformation defined by

(TB ◦ TA)(x) = TB(TAx), x ∈ U.

Using the properties of the linear transformations TA and TB described as in
Example 2.11(3), we have

(TB ◦ TA)(u j ) = TB(TAu j ) = TB

( m∑

k=1

akj vk
)

=
m∑

k=1

akj TB(vk)

=
m∑

k=1

akj
[ r∑

i=1

bikwi

]
=

r∑

i=1

[ m∑

k=1

bikak j
]
wi

for each j = 1, . . . , n. Recall that the product BA is the matrix [ci j ] in F
r×n , where

ci j =
m∑

k=1

bikak j .

Thus, TB ◦ TA = TBA, the linear transformation induced by the matrix BA. �

Example 2.12 shows that composition of linear transformations is a linear trans-
formation. Example 2.13 shows that if A and B are matrices with the product BA
well defined, then the induced linear transformation of BA is the composition of the
induced linear transformations TB and TA, taken in that order. Thus the following
definition makes sense.

Definition 2.14 Let T : U → V and S : V → W be linear transformations. The
composition map S ◦ T is also called the product of S and T and is denoted by ST .

It is defined by

ST (x) := (S ◦ T )(x) = S(T (x)) for x ∈ U.

As we have seen, for linear transformations T : U → V and S : V → W, the
product ST is a linear transformation. If U �= W, then the product T S is not well
defined. In case, U = W, both ST and T S are well defined. If it so happens that
ST = T S, we say that the linear operators S and T commute. In general, two linear
operators need not commute; i.e. ST need not be equal to T S.
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Example 2.15 Let V = R
2×1 and S, T : V → V be defined by

Sx =
[
0 1
0 0

] [
a
b

]
:=

[
b
0

]
, for x =

[
a
b

]
∈ V

T x =
[
0 0
1 0

] [
a
b

]
:=

[
0
a

]
, for x =

[
a
b

]
∈ V .

Then S and T are linear operators on V (verify). Now, for each x = [a, b]T ∈ V,

ST x =
[
0 1
0 0

] [
0 0
1 0

] [
a
b

]
=

[
0 1
0 0

] [
0
a

]
=

[
a
0

]

T Sx =
[
0 0
1 0

] [
0 1
0 0

] [
a
b

]
=

[
0 0
1 0

] [
b
0

]
=

[
0
b

]
.

In particular, if x =
[
1
0

]
, then ST x = x but T Sx = 0. That is, ST �= T S. Thus, S

and T do not commute. �
It can be easily seen that a scalar operator on a vector space V commutes with

every linear operator on V , that is, corresponding to a given α ∈ F if T : V → V is
defined by

T x = αx for x ∈ V,

and if S is any linear operator on V , then ST = T S.
Also, if V is a one-dimensional vector space, then any two linear operators on V

commute. This follows from the fact that, if dim(V ) = 1, then every linear operator
on V is a scalar operator; verify it!

It raises the question that given a vector space V, whether scalar operators are the
only linear operators on V that commute with every operator on V ? The answer is
in the affirmative; prove it!

Product of linear operators on a vector space satisfies associativity and distribu-
tivity (over addition) properties: let T1, T2, T3 be linear operators on V . Then we
have

Associativity: T1(T2T3) = (T1T2)T3.
Distributivity: (T1 + T2)T3 = T1T3 + T2T3, T1(T2 + T3) = T1T2 + T1T3.

The above properties are satisfied for linear transformations between different
vector spaces provided the expressions involved are well defined (verify).

Product of linear transformations enables us to define the powers of linear oper-
ators. If T is a linear operator on V, define the powers of T , namely T n for any
n ∈ {0, 1, 2, . . . , } inductively as follows.

T 0 := I and T n := T T n−1 for n > 0.

Here, I is the identity operator on V .
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We observe that, for any nonnegative integers m, n,

TmT n = T nTm = Tm+n.

We can also define polynomials in T as follows. Let p ∈ P(F), say p(t) =
a1 + a1t + · · · + antn. For a linear operator T on V, we define p(T ) : V → V by

p(T ) = a1 I + a1T + · · · + anT
n.

Example 2.16 Consider the differentiation operator on Pn(F) defined by

D(a0 + a1t + a2t
2 + · · · + ant

n) = a1 + 2a2t + · · · + nant
n−1.

The powers of D that is, D, D2, . . . are well defined. We take D0 = I. Then
Dn+1(t k) = 0 for each k ∈ {0, 1, . . . , n}. That is, Dn+1 is the zero operator. This
gives an example where product of (composition of) two nonzero linear operators
can be a zero operator. �

It gives rise to the following notion.

Definition 2.17 A linear operator T on a vector space is called nilpotent if for some
natural number n, T n = 0. The least natural number k such that T k = 0 is called
the index of nilpotency of T .

The differentiation operator in Example 2.16 is nilpotent and its index of nilpo-
tency is n + 1. We will study properties of nilpotent linear operators later.

If T : V → W and S ⊆ W, then T−1(S) = {x ∈ V : T x ∈ S} is the inverse image
of S. The notation T−1(S) neither presupposes that T is invertible nor that T−1 is
a linear operator. In this notation, T−1({0}) is the set of all vectors in V which are
mapped to 0 by T .Also, for a subset G of a vector space V,we write T (G) := {T x :
x ∈ G}.

We see that the structure of a subspace is preserved by a linear transformation.

Theorem 2.18 Let T : V → W be a linear transformation. Then the following are
true.

(1) If V0 is a subspace of V, then T (V0) := {T x : x ∈ V0} is a subspace of W.

(2) If W0 is a subspace of W, then T−1(W0) := {x ∈ V : T x ∈ W0} is a subspace
of V . In particular, T−1({0}) is a subspace of V .

Proof (1) Let V0 be a subspace of V . Let x, y ∈ T (V0); α ∈ F. We then have u, v ∈
V0 such that x = Tu and y = T v. Further, u + αv ∈ V0. Then

x + αy = Tu + αT v = T (αu + v) ∈ T (V0).

Therefore, T (V0) is a subspace of W.
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(2) Let W0 be a subspace of W. Let x, y ∈ T−1(W0) and let α ∈ F. Then T x, T y ∈
W0. It follows that T x + αT y ∈ W0. Since T x + αT y = T (x + αy), x + αy ∈
T−1(W0). Therefore, T−1(W0) is a subspace of V . �

Properties preserved by linear transformations are called linear properties.
Theorem 2.18(1) says that being a subspace is a linear property. The line segment
joining u and v in a vector space V is the set

S := {(1 − λ)u + λv : 0 ≤ λ ≤ 1}.

If T : V → W is a linear transformation, then

T (S) = {(1 − λ)T (u) + λT (v) : 0 ≤ λ ≤ 1}

is a line segment joining T (u) and T (v) in W . We see that being a triangle in the
plane is a linear property.

This means that a triangle remains a triangle under any linear transformation on
R

2. This includes the degenerate cases of a triangle becoming a single point or a line
segment. Notice that a linear transformation may change the shape of a triangle; an
equilateral triangle may not remain equilateral.

→

However, being a circle is not a linear property. To see this, consider the linear
transformation T : R

2 → R
2 defined by T (a, b) = (a, 2b) for a, b ∈ R. Then

T ({(a, b) : a2 + b2 = 1}) = {(a, 2b) : a2 + b2 = 1} = {(a, b) : a2 + b2/4 = 1}.

Thus, a circle may become an ellipse under a linear transformation.

Exercises for Sect.2.1

1. Which of the following functions T : R
2 → R

2 are linear operators?

(a) T (a, b) = (1, b).
(b) T (a, b) = (a, a2).
(c) T (a, b) = (sin a, 0).
(d) T (a, b) = (|a|, b).
(e) T (a, b) = (a + 1, b).
(f) T (a, b) = (2a + b, a + b2).
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2. Consider C as a vector space over R.Which of the following functions f : C →
R are linear functionals?

(a) f (a + ib) = a.

(b) f (a + ib) = b.
(c) f (a + ib) = a2.
(d) f (a + ib) = a − ib.
(e) f (a + ib) = √

a2 + b2.

What happens if you consider C as a vector space over C?
3. Which of the following functions f : C

3 → C are linear functionals?

(a) f (a, b, c) = a + b.
(b) f (a, b, c) = b − c2.
(c) f (a, b, c) = a + 2b − 3c.

4. Which of the following functions f : P(R) → R are linear functionals?

(a) f (p) = ∫ 1
−1 p(t) dt.

(b) f (p) = ∫ 1
0 (p(t))2 dt.

(c) f (p) = ∫ 1
0 p(t2) dt.

(d) f (p) = ∫ 1
−1 t

2 p(t) dt.
(e) f (p) = dp/dt.
(f) f (p) = dp/dt evaluated at t = 0.
(g) f (p) = d2 p/dt2 evaluated at t = 1.

5. Which of the following functions are linear transformations?

(a) T : C1([0, 1], R) → R with T (u) = ∫ 1
0 (u(t))2 dt.

(b) T : C1([0, 1], R) → R
2 with T (u) = (

∫ 1
0 u(t) dt, u′(0)).

(c) T : Pn(R) → R with T (p(x)) = p(α), for a fixed α ∈ R.

(d) T : C → C with T (z) = z.

6. Let T : R
2 → R

2 be a linear transformationwith T (1, 0) = (1, 4) and T (1, 1) =
(2, 5). What is T (2, 3)?

7. In each of the following, determine whether a linear transformation T with the
given conditions exists:

(a) T : R
2 → R

3 with T (1, 1) = (1, 0, 2) and T (2, 3) = (1,−1, 4).
(b) T : R

3 → R
2 with T (1, 0, 3) = (1, 1) and T (−2, 0,−6) = (2, 1).

(c) T : R
3 → R

2 withT (1, 1, 0) = (0, 0), T (0, 1, 1) = (1, 1) andT (1, 0, 1) =
(1, 0).

(d) T : P3(R) → R with T (a + bt2) = 0 for all a, b ∈ R.

(e) T : C
3 → C

3 with T (1, i,−i) = (3i, 2i,−i), T (i, 2i,−i) = (5, i, 1 + i)
and T (−1, 2i − 2, 1 − 2i) = (11i, 4i − 1, 1 − 2i).

8. In the following cases, find ST and T S, and determine whether they are linear
transformations:
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(a) S, T : P(F) → P(F) defined by S(p(t)) = tp(t), T (p(t)) = p′(t).
(b) S, T : Pn(F) → Pn(F) defined by S(p(t)) = tp′(t), T (p(t)) = p′(t).
(c) S : C1([0, 1], R) → C([0, 1], R) and T : C([0, 1], R) → R defined by

S(u) = u′ and T (v) = ∫ 1
0 v(t) dt.

9. Let f : R
2 → R be defined by f (x, y) = (x2 + y2)1/2. Show that f (α(x, y)) =

α f (x, y), but f is not a linear transformation.
10. Determine all linear operators on R

2 which map the line y = x into the line
y = 3x .

11. Let T : V → V be a linear operator, where dim(V ) = 1. Show that there exists
a scalar α such that for each v ∈ V, T (v) = αv.

12. LetU1, . . . ,Un be subspaces of a vector space V such that V = U1 ⊕ · · · ⊕Un.

For each i ∈ {1, . . . , n}, let Ti be a linear operator on Ui and let Si : V → V be
given by

Si (x) = Ti (x) if x ∈ Ui , else Si (x) = 0.

Show that each Si is a linear operator on V, and T = S1 + · · · + Sn.
13. Let B = {v1, . . . , vn} be a basis for a vector space V . For each i ∈ {1, . . . , n},

define the linear functional fi : V → F that satisfies

fi (v j ) = δi j for j = 1, . . . , n.

Show that if f : V → F is any linear functional then there exist unique scalars
α1, . . . , αn ∈ F such that f = ∑n

i=1 αi fi .
14. Does a linear transformation always map a circle onto an ellipse?
15. Let θ ∈ (0, π). Let A, B ∈ R

2×2 be given by

A =
[
cos θ − sin θ

sin θ cos θ

]
, B =

[
cos θ sin θ

sin θ − cos θ

]
.

Explain why A represents rotation and B represents reflection. By using matrix
products, show that

(a) a rotation following a rotation is a rotation,
(b) a rotation following a reflection is a reflection,
(c) a reflection following a rotation is a reflection, and
(d) a reflection following a reflection is a rotation.

2.2 Rank and Nullity

Given a linear transformation T : V → W, Theorem 2.18 asserts that the range of
T is a subspace of W, and the inverse image of 0 is a subspace of V . We single out
these two special subspaces and their dimensions.
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Definition 2.19 Let T : V → W be a linear transformation. Then

(a) R(T ) := T (V ) = {T x : x ∈ V } is called the range space of T .

(b) dim(R(T )) is called the rank of T, and it is denoted by rank (T ).

(c) N (T ) := T−1({0}) = {x ∈ V : T x = 0} is called the null space of T .

(d) dim(N (T )) is called the nullity of T, and it is denoted by null (T ).

Thus rank (T ) is the cardinality of a basis of R(T ). If R(T ) is infinite dimensional,
then it is customary to write rank (T ) = ∞. Curious things can happen for infinite
dimensional spaces.Notice that if R(T ) = W, then rank (T ) = dim(W ). Its converse
is true for finite dimensional spaces since R(T ) is a subspace of W. But for infinite
dimensional spaces, rank (T ) = dim(W ) does not necessarily imply that R(T ) = W.

For example, consider the right shift operator on F
∞, that is, T : F

∞ → F
∞ defined

by
T (a1, a2, . . .) = (0, a1, a2, . . .).

Here, rank (T ) = dim(W ) = ∞, but R(T ) �= W , as (1, 0, 0, . . .) /∈ R(T ).

For all vector spaces, the map T : V → W is surjective when the range of T
coincides with the co-domain W. Similarly, the null space characterizes whether T
is injective or not.

Theorem 2.20 Let T : V → W be a linear transformation. Then the following are
true:

(1) T is surjective if and only if R(T ) = W ; and in that case rank (T ) = dim(W ).

(2) T injective if and only if N (T ) = {0} if and only if null (T ) = 0.
(3) For all v ∈ V and all w ∈ W, T (v) = w if and only if T−1({w}) = v + N (T ).

Proof (1) The first equivalence follows from the definition of surjective maps. Then
rank (T ) = dim(W ) follows from R(T ) = W.

(2) Let T be injective. Then 0 has only one inverse image. Since T (0) = 0, we
conclude that N (T ) = {0}. Conversely, suppose N (T ) = {0}. Let Tu = T v. Then
T (u − v) = 0 implies that u − v = 0. That is, u = v. Therefore, T is injective. The
second equivalence follows since N (T ) is a subspace of V .

(3) Let v ∈ V and let w ∈ W. Suppose T v = w. Then, for any x ∈ V ,

x ∈ T−1(w) if and only if T x = w if and only if T (x − v) = 0
if and only if x − v ∈ N (T ) if and only if x = v + N (T ).

Therefore, T−1({w}) = v + N (T ).

Conversely, let T−1({w}) = v + N (T ). Then v = v + 0 ∈ v + N (T ) =
T−1({w}). Therefore, T (v) = w. �

Example 2.21 Consider the operator T of Example 2.10 on R
3:

T (a, b, c) = (b + c, a + b + 2c, a + c).
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What are the vectors having image as (1, 2, 3)? If (a, b, c) is such a vector, then
T (a, b, c) = (1, 2, 3) leads to the system of linear equations

b + c = 1, a + b + 2c = 2, a + c = 3.

From the first and the third equations we obtain a + b + 2c = 4. It is inconsistent
with the second. Therefore, the vector (1, 2, 3) /∈ R(T ).

Similarly, to find out all vectors whose image under T is (1, 3, 2), we are led to
solving the system

b + c = 1, a + b + 2c = 3, a + c = 2.

This ends up in all vectors of the form (a, a − 1, 2 − a), where a ∈ R, that is,

T (a, a − 1, 2 − a) = (1, 3, 2) for each a ∈ R.

For instance, with a = 0, T (0,−1, 2) = (1, 3, 2). It says that

T−1({(1, 3, 2)}) = {(a, a − 1, 2 − a) : a ∈ R}.

Since only the vectors of the form (a, a,−a) map to (0, 0, 0),

N (T ) = T−1({(0, 0, 0)}) = {(a, a,−a) : a ∈ R}.

We see that

T−1({(1, 3, 2)}) = (0,−1, 2) + {(a, a,−a) : a ∈ R} = (0,−1, 2) + N (T ).

That is, the set of all inverse images of (1, 3, 2) are obtained by taking the sum of a
particular inverse image with all inverse images of the origin. �

Surjective linear transformations preserve the spanning sets, and injective linear
transformations preserve linear independence.Also, linear transformations generated
out of injective maps on a basis are injective, as we see in the following theorem.

Theorem 2.22 Let T : V → W be a linear transformation. Let H ⊆ V . The fol-
lowing are true.

(1) T (span(H)) = span(T (H)). In particular, if span(H) = V then span(T (H)) =
R(T ); in addition, if T is surjective, then span(T (H)) = W.

(2) If T (H) is linearly independent and T is injective on H, then H is linearly
independent. In particular, if v1, . . . , vn ∈ V are such that T v1, . . . , T vn are
linearly independent, then v1, . . . , vn are linearly independent.

(3) Let T be injective. Then, H is linearly independent if and only if T (H) is linearly
independent.
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(4) Let H be a basis of V . Let T be injective on H. Then T is injective if and only
if T (H) is linearly independent.

Proof (1) Let H ⊆ V . Suppose y is any vector in W. Then
y ∈ T (span(H))

if and only if y = T (α1u1 + · · · + αnun) for some αi ∈ F, and some ui ∈ H
if and only if y = α1Tu1 + · · · + αnT un
if and only if y ∈ span(T (H)).

In particular, if span(H) = V then span(T (H)) = span(R(T )) = R(T ). In addi-
tion, if T is surjective, then W = R(T ) = span(T (H)).

(2) Let T be injective on H ; that is, if u, v ∈ H and u �= v, then Tu �= T v. Let T (H)

be linearly independent. Then the vectors Tu1, . . . , Tum are linearly independent
for any distinct vectors u1, . . . , um ∈ H. To prove the linear independence of H, let
v1, . . . , vn ∈ H be distinct vectors, and let α1, . . . , αn be scalars such that

α1v1 + · · · + αnvn = 0.

Then
α1T v1 + · · · + αnT vn = T (α1v1 + · · · + αnvn) = T (0) = 0.

Since the vectors T v1, . . . , T vn are linearly independent, α1 = · · · = αn = 0.There-
fore, H is linearly independent.

(3) Suppose that T is injective and that H is linearly independent. Let v1, . . . , vn ∈ H
be such that

α1T v1 + · · · + αnT vn = 0.

Then T (α1v1 + · · · + αnvn) = 0. Since T is injective, α1v1 + · · · + αnvn = 0. Since
H is linearly independent, α1 = 0, . . . , αn = 0. Therefore T (H) is linearly indepen-
dent. The converse statement follows from (2).

(4) Let H be a basis of V . If T is injective then linear independence of T (H)

follows from (3). Conversely suppose that T is injective on H and that T (H) is
linearly independent. Let v ∈ N (T ).There are scalarsα1, . . . , αn and distinct vectors
v1, . . . , vn ∈ H such that v = α1v1 + · · · + αnvn. Now, T v = 0 implies

α1T (v1) + · · · + αnT (vn) = 0.

Since T is injective on H, there are no repetitions in the list T v1, . . . , T vn.Then linear
independence of T (H) implies that each αi = 0. That is, v = 0. So, N (T ) = {0}.
Therefore, T is injective. �

In Theorem 2.22(3), the linear transformation T is assumed to be injective. This
condition cannot be replaced with the assumption that T is injective on H. For
instance consider the linear transformation T : R

3 → R
2 given by

T (a, b, c) = (a + c, b + c).
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Let H = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. We see that

T (1, 0, 0) = (1, 0), T (0, 1, 0) = (0, 1), T (0, 0, 1) = (1, 1).

Thus T is injective on H , but T (H) = {(1, 0), (0, 1), (1, 1)} is linearly dependent. In
fact, Theorem 2.22(4) now guarantees that T is not an injective linear transformation.
This is verified by noting that

T (0, 0, 0) = (0, 0) = T (1, 1,−1).

As a consequence of Theorem 2.22, we have the following theorem.

Theorem 2.23 Let T : V → W be a linear transformation. Then rank (T ) ≤
dim(V ). Moreover, if T injective then rank (T ) = dim(V ).

Proof Let B be a basis of V . By Theorem 2.22(1), T (B) spans R(T ). Thus T (B)

contains a basis of R(T ). Let C ⊆ T (B) be such a basis of R(T ). Then

rank (T ) = |C | ≤ |T (B)| ≤ |B| = dim(V ).

Suppose T is injective. ByTheorem2.22(3), T (B) is a linearly independent subset
of R(T ). Hence dim(V ) = |B| = |T (B)| ≤ rank (T ). Using the earlier result that
rank (T ) ≤ dim(V ), we conclude that rank (T ) = dim(V ). �

Suppose V is a finite dimensional vector space, say, with a basis {v1, . . . , vn}. If
T : V → W is a linear transformation, then the image of the basis vectors; that is,
T v1, . . . , T vn span the range space of T . In general, these vectors in R(T ) need not
be linearly independent; thus rank (T ) ≤ dim(V ). Exactly how much rank (T ) falls
behind dim(V )?

It follows from Theorem 2.20(3) that the affine space v + N (T ) is mapped to
the single vector T v. This means that the quotient space V/N (T ) is in one-to-one
correspondencewith R(T ). In that case, due to Theorem1.58, dimension of V should
be equal to the sum of dimensions of N (T ) and of R(T ). We give a direct proof of
this fact below. The proof essentially depends on the following result.

Theorem 2.24 Let T : V → W be a linear transformation of finite rank. Suppose
rank (T ) = r. For vectors u1, . . . , ur ∈ V let {Tu1, . . . , Tur } be a basis of R(T ). If
B is a basis of N (T ), then B ∪ {u1, . . . , ur } is a basis of V .

Proof By Theorem 2.22(2), {u1, . . . , ur } is linearly independent. Let x ∈ V , and let
B be a basis of N (T ). Since {Tu1, . . . , Tur } is a basis of R(T ), there exist scalars
α1, . . . , αr such that

T x = α1Tu1 + · · · + αr T ur .

Thus, x − (α1u1 + · · · + αr ur ) ∈ N (T ). Now, if B = ∅, then N (T ) = {0} so that
x = α1u1 + · · · + αr ur , proving that {u1, . . . , ur } spans V . By Theorem 2.22(2),
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{u1, . . . , ur } is a basis of V . So, suppose B �= ∅. Then there exist v1, . . . , vk ∈ B
and β1, . . . , βk ∈ F such that

x − (α1u1 + · · · + αr ur ) = β1v1 + · · · + βkvk .

Thus,
x = (α1u1 + · · · + αr ur ) + (β1v1 + · · · + βkvk).

It shows that B ∪ {u1, . . . , ur } spans V .
For linear independence of B ∪ {u1, . . . , ur }, let v1, . . . , vk ∈ B, α1, . . . , αr ∈ F

and β1, . . . , βk ∈ F satisfy

α1u1 + · · · + αr ur + β1v1 + · · · + βkvk = 0.

Then
α1Tu1 + · · · + αr T ur + β1T v1 + · · · + βkT vk = 0.

The conditions T v1 = · · · = T vk = 0 imply that α1Tu1 + · · · + αr T ur = 0. Linear
independence of Tu1, . . . , Tur implies that

α1 = · · · = αr = 0.

Using this, we find that β1v1 + · · · + βkvk = 0. Since B is linearly independent,

β1 = · · · = βk = 0.

Hence B ∪ {u1, . . . , ur } is linearly independent. �

Theorem 2.25 (Rank-nullity theorem) Let T : V → W be a linear transformation.
Then rank (T ) + null (T ) = dim(V ).

Proof If T is of finite rank, then the proof follows from Theorem 2.24. On the other
hand, if rank (T ) = ∞, then by Theorem 2.23, dim(V ) = ∞. This completes the
proof. �

Some immediate consequences of Theorems 2.20 and 2.25 are listed in the fol-
lowing theorem.

Theorem 2.26 Let T : V → W be a linear transformation, where V is a finite
dimensional vector space and W is any vector space. The following statements are
true:

(1) T is injective if and only if rank (T ) = dim(V ).

(2) T is surjective if and only if rank (T ) = dim(W ).

(3) If dim(V ) = dim(W ), then T is injective if and only if T is surjective.
(4) If dim(V ) > dim(W ), then T is not injective.
(5) If dim(V ) < dim(W ), then T is not surjective.
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Exercises for Sect.2.2

1. Let T be the linear operator on R
4 defined by

T (a, b, c, d) = (a − b, b + c, c − d, b + d).

What is nullity of T ? Is T surjective?
2. Find the rank and nullity of the linear transformation T : C

4 → C
4 given by

T (a, b, c, d) = (a + b − 3c + d, a − b − c − d, 2a + b + 2c + d, a + 3b + 3d).

Give a basis for R(T ); determine dim(R(T ) ∩ span{(1, 1, 2, 2), (2, 0, 0, 5)}).
3. Determine the rank and nullity of the linear operator T on Pn(F) given by

T (p(t)) = p′(t).
4. Let T : F

6 → F
3 be the linear transformation such that

N (T ) = {(a1, . . . , a6) ∈ F
6 : a2 = 2a1, a4 = 4a3, a6 = 6a5}.

Show that T is surjective.
5. There does not exist a linear transformation from F

5 to F
2 whose null space is

equal to {(a1, . . . , a5) ∈ F
5 : a2 = 2a1, a4 = 4a3, a5 = 6a4}. Why?

6. Find a nonzero linear functional f on C
3 with f (1,−1, 1) = f (1, 1,−1) = 0.

7. Let f be a linear functional on an n-dimensional vector space V . What could be
the nullity of f ?

8. Let T : V → W be a linear transformation such that rank (T ) = dim(W ). Does
it follow that T is surjective?

9. Let T be a linear operator on a finite dimensional vector space V . Prove that the
following are equivalent:

(a) For each u ∈ V, if Tu = 0 then u = 0.
(b) For each y ∈ V, there exists a unique vector v ∈ V such that T v = y.

10. Let T be a linear operator on a finite dimensional vector space V . Is it true that
V = R(T ) ⊕ N (T )?

11. Find linear operators S and T on R
3 such that ST = 0 but T S �= 0.

12. If T is a linear operator on a vector space V such that R(T ) = N (T ), then what
can you say about the dimension of V ?

13. Let T : U → V and S : V → W be linear transformations, where U, V,W are
finite dimensional vector spaces. Show the following:

(a) If S and T are injective, then ST is injective.
(b) If ST is injective, then T is injective.
(c) If ST is surjective, then S is surjective.

14. Let U be a subspace of a vector space V . Show that there exists a surjective
linear transformation from V to U.
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15. Let T be the linear operator on C([0, 1], R) given by

(T f )(t) =
∫ 1

0
sin(s + t) f (s)ds for t ∈ [0, 1].

Determine rank (T ).

2.3 Isomorphisms

Recall from set theory that if A, B are nonempty sets then any function f : A → B
is bijective if and only if there exists a function g : B → A such that g ◦ f = IA and
f ◦ g = IB, where IA and IB denote the identity functions on A and B, respectively.
A bijective function is also called invertible, and such a function g is called the
inverse of f. It may be noted that if f : A → B is invertible, then its inverse is
unique. Indeed, if g1 : B → A and g2 : B → A are inverses of f , then we have

g1 = g1 ◦ IB = g1 ◦ ( f ◦ g2) = (g1 ◦ f ) ◦ g2 = IA ◦ g2 = g2.

We prove an analogous result about linear transformations.

Theorem 2.27 Let T : V → W be a linear transformation. Then T is bijective if
and only if there exists a linear transformation S : W → V such that ST = IV and
T S = IW . Further, such a linear transformation S is unique.

Proof Suppose that T : V → W is bijective. For every y ∈ W , there exists a unique
x ∈ V such that T x = y. This correspondence of y to x defines a function S : W →
V with Sy = x .

To show that S is a linear transformation, suppose y1, y2 ∈ W and α ∈ F. There
exist unique vectors x1, x2 ∈ V such that T x1 = y1 and T x2 = y2. Then Sy1 = x1
and Sy2 = x2. Hence

S(y1 + αy2) = S(T x1 + αT x2) = S
(
T (x1 + αx2)

) = x1 + αx2 = S(y1) + αS(y2).

Therefore, S is a linear transformation. Further,

S(T x) = Sy = x = IV (x) and T (Sy) = T x = y = IW (y).

Conversely, suppose there exists a linear transformation S : W → V such that
ST = IV and T S = IW . Now, for any x ∈ V if T x = 0, then S(T x) = 0. As ST =
IV , x = 0. Hence, N (T ) = {0}; consequently, T is one-to-one. Further, for any
y ∈ W, y = IW (y) = T Sy = T (Sy) shows that T is onto. Therefore, T is bijective.

For the uniqueness of S, let S1 : W → V and S2 : W → V be linear transforma-
tions such that S1T = IV = S2T and T S1 = IW = T S2. Then for every y ∈ W , we
have S1y = S1(T S2)y = (S1T )S2y = S2y. Hence, S1 = S2. �
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In view of Theorem 2.27, the following definition makes sense.

Definition 2.28 A linear transformation T : V → W is said to be invertible if it
is bijective. In that case, the unique linear transformation S : W → V satisfying
ST = IV and T S = IW is called the inverse of T ; it is denoted by T−1.

Recall that a matrix A ∈ F
n×n can be considered as a linear operator on F

n×1. We
thus say that a square matrix A ∈ F

n×n is invertible if there exists a matrix B ∈ F
n×n

such that
AB = BA = I.

In this case, the matrix B is called the inverse of A and is denoted by A−1.

Example 2.29 (1) The natural correspondence T : F
1×n → F

n×1 defined by

T
([a1, . . . , an]

) := [a1, . . . , an]T for [a1, . . . , an] ∈ F
1×n

is an invertible linear transformation, and its inverse is S : F
n×1 → F

1×n given by

S
([a1, . . . , an]T

) := [a1, . . . , an] for [a1, . . . , an]T ∈ F
n×1.

(2) The linear transformation T : Pn(F) → F
n+1 defined by

T (a0 + a1t + · · · antn) = (a0, a1, . . . , an) for a0, a1, . . . , an ∈ F

is invertible, and its inverse is the linear transformation S : F
n+1 → Pn(F)

defined by

S(a0, a1, . . . , an) = a0 + a1t + · · · antn for a0, a1, . . . , an ∈ F.

(3) Consider Fn(F) := F({1, . . . , n}, F), the space of all functions from {1, . . . , n}
to F. Define T : Fn(F) → F

n by

T (x) = (
x(1), . . . , x(n)

)
for x ∈ Fn(F).

Then, T is an invertible linear transformation, and its inverse is the linear transfor-
mation S : F

n → Fn(F) given by

S(a1, . . . , an) = x, (a1, . . . , an) ∈ F
n,

where x(k) := ak, for k = 1, . . . , n. This iswhy the i th component of a vector x ∈ F
n

is also written as x(i). �

Definition 2.30 A bijective linear transformation is called an isomorphism. A vec-
tor space V is said to be isomorphic to a vector spaceW, written as V � W , if there
exists an isomorphism from V to W.
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We observe that the linear transformations in Example 2.29 are isomorphisms.
Therefore,

F
1×n � F

n×1, Pn(F) � F
n+1 and Fn(F) � F

n.

Here is another example.

Example 2.31 Let U = {(a, b, c) ∈ R
3 : 3a + 2b + c = 0}. It is a subspace of R

3.

We show that U � R
2. For this, let T : R

2 → U be defined by

T (a, b) = (a, b, − 3a − 2b) for (a, b) ∈ R
2.

It can be easily seen that T is a linear transformation. Note that a, b, c ∈ U implies
c = −3a − 2b so that T is onto. Also, if (a, b) ∈ R

2 such that T (a, b) = (0, 0), then
(a, b,−3a − 2b) = (0, 0, 0). It follows that (a, b) = (0, 0). Thus, T is one-to-one.
Consequently, T is an isomorphism. Of course, T−1 can be defined easily. �

If a linear transformation T : V → W is injective, then restricting the co-domain
space to R(T ), we obtain a bijective linear transformation. That is, the function

T0 : V → R(T ) defined by T0(x) = T (x) for x ∈ V

is a bijection. Thus, Theorem 2.27 can be restated in a more general form as in the
following.

Theorem 2.32 A linear transformation T : V → W is injective if and only if there
exists a unique linear transformation S : R(T ) → V such that ST = IV and T S =
IR(T ).

Notice that the conditions ST = IV and T S = IR(T ) in Theorem 2.32 say that
ST (x) = x for each x ∈ V, and T S(y) = y for each y ∈ R(T ).

Like linear transformations, when we say that T : V → W is an isomorphism,
we implicitly assume that V and W are vector spaces over some (the same) field F;
T is a bijective linear transformation.

Theorem 2.33 Let T : V → W be an isomorphism.

(1) If α �= 0 is a scalar, then αT is an isomorphism and (αT )−1 = (1/α)T−1.

(2) T−1 : W → V is an isomorphism and (T−1)−1 = T .

(3) If S : U → V is also an isomorphism, then T S : U → W is an isomorphism
and (T S)−1 = S−1T−1.

Proof Since both T and T−1 are linear transformations, we have

(1/α)T−1(αT )(v) = (1/α)αT−1T (v) = v for each v ∈ V,

(αT )(1/α)T−1(w) = α(1/α)T T−1(w) = w for each w ∈ W.

That is, (1/α)T−1(αT ) = IV and (αT )(1/α)T−1 = IW . This proves (1). Similarly,
(2) and (3) are proved. �
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Since inverse of an isomorphism is an isomorphism, we use symmetric termi-
nology such as “T is an isomorphism between V and W” and also “V and W are
isomorphic”.

Theorem 2.22 implies the following.

Theorem 2.34 Let T : V → W be a linear transformation, where V and W are
finite dimensional vector spaces.

(1) Let T be an isomorphism and let v1, . . . , vn ∈ V .

(a) If {v1, . . . , vn} is linearly independent in V, then {T v1, . . . , T vn} is linearly
independent in W.

(b) If {v1, . . . , vn} spans V, then {T v1, . . . , T vn} spans W.

(c) If {v1, . . . , vn} is a basis of V, then {T v1, . . . , T vn} is a basis of W.

(2) If {v1, . . . , vn} is a basis of V such that {T v1, . . . , T vn} has n vectors and is a
basis of W, then T is an isomorphism.

Notice that composition of isomorphisms is an isomorphism. Thus ‘is isomorphic
to’ is an equivalence relation on the collection of vector spaces. This relation is
completely characterized by the dimensions of the spaces, in case the spaces are
finite dimensional.

Theorem 2.35 Let V and W be finite dimensional vector spaces over the same field
F. Then V � W if and only if dim(V ) = dim(W ).

Proof If there exists an isomorphism T from V toW, then Theorem 2.34(1c) implies
that dim(V ) = dim(W ).

Conversely, if dim(V ) = dim(W ), then define a bijection f from the basis of V
onto the basis ofW. Due to Theorem 2.8, there exists a unique linear transformation
T from V to W that agrees with f on the basis of V . By Theorem 2.34(2), this T is
an isomorphism. Therefore, V � W. �

Let T : V → W be a linear transformation. If P : X → V and Q : W → Y are
isomorphisms, can we relate the ranges and null spaces of T P and QT with the
range and null space of T ?

In the following theorem we abbreviate “if and only if” to “iff” for improving
legibility.

Theorem 2.36 Let T : V → W be a linear transformation. Let P : X → V and
Q : W → Y be isomorphisms. Then the following are true:

(1) R(T P) = R(T ), N (QT ) = N (T ), R(QT ) � R(T ), N (T P) � N (T ).

(2) T is injective iff T P is injective iff QT is injective.
(3) T is surjective iff T P is surjective iff QT is surjective.

Proof (1) For each v ∈ V, T v = (T P)(P−1v).Thus R(T ) ⊆ R(T P).Also, for each
x ∈ X, T Px ∈ R(T ). Thus R(T P) ⊆ R(T ). That is, R(T P) = R(T ).

For each v ∈ V, T v = 0 if and only if QTv = 0. It shows that N (QT ) = N (T ).
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Next, define the function f : R(T ) → R(QT )by f (u) = Qu foru ∈ R(T ).As f
is a restriction of Q to R(T ) ⊆ W, it is an injective linear transformation. Now, if y ∈
R(QT ), then Q−1(y) ∈ R(T ) and f (Q−1y) = QQ−1y = y. Thus f is surjective.
That is, f is an isomorphism. Therefore, R(QT ) � R(T ).

Similarly, define the function g : N (T ) → N (T P) by g(v) = P−1v for v ∈
N (T ). Again, as a restriction of P−1, g is an injective linear transformation. If x ∈
N (T P), then T Px = 0. That is, Px ∈ N (T ) and g(Px) = P−1Px = x . It shows
that g is surjective. As earlier g is an isomorphism. Consequently, N (T P) � N (T ).

(2) From (1) we have N (QT ) = N (T ) � N (T P). Hence N (T ) = {0} if and only
if N (T P) = {0} if and only if N (QT ) = {0}.
(3) From (1) we have R(QT ) � R(T ) = R(T P). Since both Q and P are surjective,
it follows that R(T ) = W if and only if R(T P) = W if and only if R(QT ) = Y. �

Exercises for Sect.2.3

1. Letm < n. Show that the subspace {(a1, . . . , am, 0, . . . , 0) ∈ F
n : ai ∈ F} of F

n

is isomorphic to F
m .

2. Is T : R
2×2 → R

2×2 given by T (A) =
[
2 3
5 7

]
A − A

[
2 3
5 7

]
an isomorphism?

3. Prove that the set of all double sequences of the form (. . . , a−1, a0, a1, . . .) for
ai ∈ F is a vector space over F, with usual addition and scalar multiplication.
Also prove that this vector space is isomorphic to F

∞.

4. Let {v1, . . . , vn} be an ordered basis of a vector space V . For each v ∈ V we
have a unique n-tuple (a1, . . . , an) ∈ F

n such that v = a1v1 + · · · + anvn.Define
T (v) = (a1, . . . , an) ∈ F

n . Show that the function T : V → F
n defined this way

is an isomorphism.
5. Let T : V → W be a linear transformation. Let {v1, . . . , vn} be a basis of V . If

{T v1, . . . , T vn} is a basis of W, does it follow that T is an isomorphism?
6. Let U and V be subspaces of a finite dimensional vector space W. Prove that

the quotient spaces (U + V )/U and V/(U ∩ V ) are isomorphic. Then deduce
the dimension formula dim(U + V ) = dim(U ) + dim(V ) − dim(U ∩ V ).

7. Let T : V → W be a linear transformation, where V is a finite dimensional
vector space. Prove that the quotient space V/N (T ) is isomorphic to R(T ).

Then deduce the rank-nullity theorem.
8. Let T : V → W be a linear transformation. Prove the following:

(a) Let V be finite dimensional. Then T is surjective if and only if there exists
a linear transformation S : W → V such that T S = IW .

(b) Let W be finite dimensional. Then T is injective if and only if there exists
a linear transformation S : W → V such that ST = IV .

What could go wrong if the spaces are infinite dimensional?
9. Find all 2 × 2 matrices A such that A2 = I. Describe their actions on F

2×1 as
linear transformations. Which ones among them are isomorphisms?

10. Let T : U → V and S : V → W be linear transformations, where U, V,W are
finite dimensional vector spaces. Prove the following:



76 2 Linear Transformations

(a) rank (ST ) ≤ min{rank (S), rank (T )}.
(b) null (ST ) ≤ null (S) + null (T ).

(c) If T is an isomorphism, then rank (ST ) = rank (S).

11. Let T : U → V and S : V → W be an isomorphism, where U, V,W are finite
dimensional vector spaces. Does it follow that rank (ST ) = rank (T )?

12. Let S, T : U → V be linear transformations, where U and V are finite
dimensional vector spaces. Prove that rank (S + T ) ≤ rank (S) + rank (T ).

2.4 Matrix Representation

Theorem 2.35 implies that if V is an n-dimensional vector space over F, then there
exists an isomorphism from V to F

n . The isomorphism that maps the basis vectors
of V to the standard basis vectors of F

n×1 is one such natural isomorphism.

Definition 2.37 Let B = {v1, . . . , vn} be an ordered basis of a vector space V . Let
{e1, . . . , en} be the standard basis of F

n×1. The isomorphism φB : V → F
n×1 satis-

fying

φB(v1) = e1, . . . , φB(vn) = en

is called the canonical basis isomorphism from V to F
n×1.

For a vector x ∈ V, the column vector φB(x) in F
n×1 is also written as [x]B and

is read as the coordinate vector of x with respect to the ordered basis B. That is,
for x = a1v1 + · · · + anvn ∈ V ,

φB(x) = [x]B =
⎡

⎢⎣
a1
...

an

⎤

⎥⎦ = (a1, . . . , an)
T .

Notice that once an ordered basis has been chosen, the canonical basis isomor-
phism is uniquely determined. Under this isomorphism, the image of a vector x ∈ V
is the vector in F

n×1 whose components are the coordinates of x with respect to the
basis B. The coordinate vector of the zero vector is the zero column vector, whatever
be the basis. That is, for x ∈ V, and for any basis B of V,

x = 0 if and only if [x]B = 0 in F
n×1.

Since F
n×1 � F

n, sometimes canonical basis isomorphisms are defined from V to
F
n. We prefer to keep F

n×1; the reason will be clear soon.
Vectors in a vector space of dimension n can be represented by their coordinate

vectors in F
n×1 by fixing an ordered basis. Similarly, a linear transformation from a

finite dimensional space to another can be represented by a matrix by fixing ordered
bases in both the spaces. We deliberate on this issue.
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Let V and W be vector spaces over F, having dimensions n and m, respectively.
Suppose B = {v1, . . . , vn} is an ordered basis for V and C = {w1, . . . ,wm} is an
ordered basis for W. Consider the canonical basis isomorphisms φB : V → F

n×1

and ψC : W → F
m×1. For a matrix A = [ai j ] ∈ F

m×n, the function given by

TA := ψ−1
C AφB

defines a linear transformation from V to W. As in Example 2.11(3), the linear
transformation TA may be given explicitly as follows. For x = ∑n

j=1 α j v j ,

TA(x) =
m∑

i=1

βiwi with βi =
n∑

j=1

ai jα j for each i ∈ {1, . . . ,m}.

In particular, when x = v j , we have α j = 1 and all other αs are 0; it results in
βi = ai j . Thus the action of TA on the basis vectors may be given by

TA(v j ) = a1 jw1 + · · · + amjwm for j = 1, . . . , n.

Conversely, given ordered bases {v1, . . . , vn} for V, {w1, . . . ,wm} for W, and a
linear transformation T : V → W, there exist unique scalars ai j such that the above
equation is satisfied with T in place of TA. Thus a matrix A = [ai j ] in F

m×n can be
constructed so that TA = T . It leads to the following definition.

Definition 2.38 Let B = {v1, . . . , vn} and C = {w1, . . . ,wm} be ordered bases for
vector spaces V and W, respectively. Let T : V → W be a linear transformation.
For 1 ≤ i ≤ m and 1 ≤ j ≤ n, let ai j be scalars such that

T (v1) = a11w1 + · · · + am1wm

...

T (vn) = a1nw1 + · · · + amnwm .

Then, the matrix A ∈ F
m×n given by

A =
⎡

⎢⎣
a11 · · · a1n
...

...

am1 · · · amn

⎤

⎥⎦

is called the matrix representation of the linear transformation T with respect to
the ordered bases B and C; it is denoted by [T ]C,B .

Care is needed while constructing the matrix representation. The coefficients of
w1, . . . ,wm in T v j appear in the j th column and not in the j th row. We must
remember that when dim(V ) = n and dim(W ) = m, that is, when the basis C for
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W has m vectors and the basis B for V has n vectors, the matrix [T ]C,B is in F
m×n .

This is the reason we prefer the notation [T ]C,B over the alternate notations [T ]B,C

and [T ]BC . If the bases B and C for the spaces V and W are fixed in a context, then
we write [T ]C,B as [T ].
Example 2.39 Choose standard bases B = {e1, e2} for R

2 and E = {ẽ1, ẽ2, ẽ3} for
R

3. Consider the linear transformation T : R
2 → R

3 given by

T (a, b) = (2a − b, a + b, b − a).

Then

T (e1) = (2, 1,−1) = 2ẽ1 + 1ẽ2 + (−1)ẽ3
T (e2) = (−1, 1, 1) = (−1)ẽ1 + 1ẽ2 + 1ẽ3.

Therefore

[T ]E,B =
⎡

⎣
2 − 1
1 1

−1 1

⎤

⎦ .

Notice that [T (a, b)]E = [T ]E,B [a b]T = [T ]E,B [(a, b)]B . �

If the ordering of vectors in the basis of the domain space changes, then a
corresponding permutation of columns occurs in the matrix representation of the
linear transformation; if the change is in the ordering of vectors in the basis of the
co-domain space, then the matrix representation will have permutation of rows.

Example 2.40 Consider the polynomials in P3(R) and in P2(R) as functions from
R to R. Then the function T : P3(R) → P2(R) given by

T (p(t)) = dp(t)

dt

is a linear transformation. With the standard bases B = {1, t, t2, t3} and E =
{1, t, t2} for the spaces, we have

T (1) = 0 = (0) 1 + 0 t + 0 t2

T (t) = 1 = (1) 1 + 0 t + 0 t2

T (t2) = 2 t = (0) 1 + 2 t + 0 t2

T (t3) = 3 t2 = (0) 1 + 0 t + 3 t2.

The matrix representation of T with respect to the given ordered bases B and E is

[T ]E,B =
⎡

⎣
0 1 0 0
0 0 2 0
0 0 0 3

⎤

⎦ .
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With the ordered basis C = {t2, t, 1} for P2(R), we have

[T ]C,B =
⎡

⎣
0 0 0 3
0 0 2 0
0 1 0 0

⎤

⎦ .

Notice that [T (a + bt + ct2 + dt3)]C = [T ]C,B[(a + bt + ct2 + dt3)]B . �

Let B = {v1, . . . , vn} and let C = {w1, . . . ,wm} be ordered bases of V and W,

respectively. With the standard bases for F
n×1 and F

m×1, let the canonical basis
isomorphisms be denoted by φB : V → F

n×1 and ψC : W → F
m×1, respectively.

The coordinate vectors of x ∈ V and y ∈ W can then be written as

[x]B = φB(x) and [y]C = ψC(y).

The discussion prior to Definition 2.38 can then be summarized as the commuta-
tive diagram below.

V
T

�φB

W

ψC�

F
n×1

[T ]C,B
F
m×1

This means
[T ]C,B = ψCTφ−1

B and ψCT = [T ]C,BφB .

We prove it formally.

Theorem 2.41 Let B = {v1, . . . , vn} and C = {w1, . . . ,wm} be ordered bases of
vector spaces V and W, respectively. Let T : V → W be a linear transformation.
Then

[T ]C,B = ψCT φ−1
B and [T x]C = [T ]C,B[x]B for each x ∈ V .

Proof Let x ∈ V . Let x = β1v1 + · · · + βnvn for some β1, . . . , βn ∈ F. Suppose
ai j ∈ F are such that

T (v1) = a11w1 + · · · + am1wm

...

T (vn) = a1nw1 + · · · + amnwm .
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Then

T x = β1T (v1) + · · · + βnT (vn)

= β1(a11w1 + · · · + am1wm) + · · · + βn(a1nw1 + · · · + amnwm)

= (β1a11 + · · · + βna1n)w1 + · · · + (β1am1 + · · · + βnamn)wm .

Consequently,

ψC(T x) = [(β1a11 + · · · + βna1n), . . . , (β1am1 + · · · + βnamn)]T .

On the other hand, φB(x) = [β1, . . . , βn]T . And then

[T ]C,B φB(x) =
⎡

⎢⎣
a11 · · · a1n

...

am1 · · · amn

⎤

⎥⎦

⎡

⎢⎣
β1
...

βn

⎤

⎥⎦ = ψC(T x).

This shows that [T ]C,BφB = ψCT, and hence [T ]C,B = ψCTφ−1
B . Since φB(x) =

[x]B and ψC(T x) = [T x]C , we have [T x]C = [T ]C,B[x]B . �

Since the canonical basis isomorphisms and their inverses are isomorphisms, the
following result can be seen as a corollary to Theorem 2.34.

Theorem 2.42 Let V and W be vector spaces of dimensions n and m, with ordered
bases B and C, respectively. Let T : V → W be a linear transformation and let
H ⊆ V .

(1) H is linearly independent in V if and only if
{[x]B : x ∈ H

}
is linearly inde-

pendent in F
n×1.

(2) H spans V if and only if
{[x]B : x ∈ H

}
spans F

n×1.

(3) T is injective if and only if [T ]C,B is injective if and only if the columns of
[T ]C,B are linearly independent.

(4) T is surjective if and only if [T ]C,B is surjective if and only if the columns of
[T ]C,B span F

m×1.

In fact, Theorem 2.41 justifies why the product of a matrix and a column vector
is defined in such a clumsy way. From Definition 2.38, it is clear that

the j th column of the matrix representation of T is the coordinate vector of
the image of the j th basis vector under T, that is,
if B = {v1, . . . , vn} is an ordered basis of V, C is an ordered basis of W, and
T : V → W, then the j th column of [T ]C,B is [T v j ]C .

Thus, for a linear transformation T : F
n×1 → F

m×1, its matrix representation can
easily be computed by putting together the images of the standard basis vectors as
columns. Therefore, T and [T ]C,B coincide when B and C are the standard bases for
the spaces F

n×1 and F
m×1, respectively.
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This gives rise to a geometrical interpretation of a matrix. When B and C are
the standard bases for F

n×1 and F
m×1, respectively, the matrix [T ]C,B is a matrix

representation of the linear transformation T and also it is a linear transformation
from F

n×1 to F
m×1. Thus

[T ]C,B(e j ) = the j th column of the matrix [T ]C,B .

In general, for any matrix A ∈ F
m×n, we have

A(e j ) = Ae j = the j th column of A.

Since the range of a linear transformation is the span of the image of a basis of the
domain space, the range space of a matrix (as a linear transformation) is simply the
span of its columns. So, the rank of a matrix is simply the maximum number of
linearly independent columns in it.

In Example 2.11(3), we had seen how a linear transformation is induced by a
matrix. Definition 2.38 says how a linear transformation is represented by a matrix.
Of course, the keys in passing from one to the other is achieved by fixing two ordered
bases for the spaces involved.

Let B = {v1, . . . , vn} andC = {w1, . . . ,wn}be ordered bases for the vector spaces
V andW, respectively. Let A = [ai j ] ∈ F

m×n . Suppose T : V → W is a linear trans-
formation. If T is induced by A, then as in Example 2.11(3),

T v j = a1 jw1 + · · · + amjwm for j ∈ {1, . . . , n}.

From Definition 2.38, we see that the matrix representation of T is also A. Similarly,
if T has the matrix representation as A, then T is also induced by A.

It thus follows that the matrix representation of the composition of two linear
transformations must be the product of the matrices that represent them. This is the
reason we abbreviate the composition map T ◦ S to T S.

Theorem 2.43 Let U, V , and W be finite dimensional vector spaces having bases
B, C, and D, respectively. Let S : U → V and T : V → W be linear transforma-
tions. Then

[T S]D,B = [T ]D,C [S]C,B .

Proof We already know that T S is a linear transformation. Let z ∈ U . By
Theorem 2.41,

[T S]D,B[z]B = [(T S)(z)]D = [T (Sz)]D = [T ]D,C [Sz]C = [T ]D,C [S]C,B[z]B .

Therefore, [T S]D,B = [T ]D,C [S]C,B . �

Example 2.44 Let the linear transformations S : R
3 → R

2 and T : R
2 → R

2 be
defined by
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S(a1, a2, a3) = (a1 + a2 + 2a3, 2a1 − a2 + a3),

T (b1, b2) = (b1 + b2, b1 − b2).

Then the composition map T S is given by

(T S)(a1, a2, a2) = T (a1 + a2 + 2a3, 2a1 − a2 + a3)

= (3a1 + 3a3, −a1 + 2a2 + a3).

With the standard bases B and E for R
3 and R

2, respectively, we see that

[S]E,B =
[
1 1 2
2 − 1 1

]
, [T ]E,E =

[
1 1
1 − 1

]
, [T S]E,B =

[
3 0 3

−1 2 1

]
.

Notice that [T S]E,B = [T ]E,E [S]E,B . �

If dim(U ) = n with basis B, dim(V ) = m with basis C, and dim(W ) = k with
basis D, then the size of the matrices, and the domain and co-domain spaces of the
associated maps can be summarized as follows:

S : U → V [S]C,B : F
n×1 → F

m×1 [S]C,B ∈ F
m×n

T : V → W [T ]D,C : F
m×1 → F

k×1 [T ]D,C ∈ F
k×m

T S : U → W [T S]D,B = [T ]D,C [S]C,B : F
n×1 → F

k×1 [T S]D,B ∈ F
k×n

You may prove associativity of matrix multiplication by using the composition
maps. Also, think about how to determine a linear transformation if its matrix rep-
resentation with respect to a known basis is given.

Example 2.45 Let e1, e2, e3 be the standard basis vectors in R
3, and let ẽ1, ẽ2 be

the standard basis vectors in R
2. Consider bases B = {e1, e1 + e2, e1 + e2 + e3} and

C = {ẽ1, ẽ1 + ẽ2} for R
3 and R

2, respectively. Let T : R
3 → R

2 be the linear trans-
formation such that its matrix representation with respect to the bases B and C is
given by

[T ]C,B =
[
4 2 1
0 1 3

]
.

How does T act on a typical vector (a, b, c) ∈ R
3? We solve the problem in three

ways, though essentially, they are one and the same.
(1) Denote by D = {e1, e2, e3} and E = {ẽ1, ẽ2} the standard bases for R

3 and R
2,

respectively. The composition maps formula says that

[T ]E,D = [I ]E,C [T ]C,B[I ]B,D.

The matrix [I ]E,C is simply the matrix obtained by expressing vectors in C by those
in E :

ẽ1 = 1.ẽ1 + 0.ẽ2, ẽ1 + ẽ2 = 1.ẽ1 + 1.ẽ2.
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For [I ]B,D, we express the vectors in D in terms of those in B :

e1 = e1, e2 = −e1 + (e1 + e2), e3 = −(e1 + e2) + (e1 + e2 + e3).

Hence

[I ]E,C =
[
1 1
0 1

]
, [I ]B,D =

⎡

⎣
1 −1 0
0 1 −1
0 0 1

⎤

⎦ ,

[T ]E,D =
[
1 1
0 1

] [
4 2 1
0 1 3

] ⎡

⎣
1 −1 0
0 1 −1
0 0 1

⎤

⎦ =
[
4 −1 1
0 1 2

]
.

Therefore, T (a, b, c) = (4a − b + c, b + 2c).

(2) T is given with respect to the bases B and C. Wemust use these bases to obtain
T (a, b, c), which is understood to be expressed in standard bases. We see that

(a, b, c) = (a − b)e1 + (b − c)(e1 + e2) + c(e1 + e2 + e3).

Thus

T (a, b, c) = T
(
(a − b)e1 + (b − c)(e1 + e2) + c(e1 + e2 + e3)

)

= (
4(a − b) + 2(b − c) + 1(c)

)
ẽ1 + (

0(a − b) + 1(b − c) + 3(c)
)
(ẽ1 + ẽ2)

= (
(4a − 2b − c) + (b + 2c)

)
ẽ1 + (b + 2c)ẽ2

= (4a − b + c, b + 2c).

(3) The matrix [T ]C,B, as given, means the following:

T (e1) = 4ẽ1, T (e1 + e2) = 2ẽ1 + (ẽ1 + ẽ2), T (e1 + e2 + e3) = ẽ1 + 3(ẽ1 + ẽ2).

This gives

T (e1) = 4ẽ1
T (e2) = −2ẽ1 + (ẽ1 + ẽ2) = −ẽ1 + ẽ2
T (e3) = −ẽ1 + 2(ẽ1 + ẽ2) = ẽ1 + 2ẽ2

Therefore, T (a, b, c) = aT (e1) + bT (e2) + cT (e3) = (4a − b + c, b + 2c). �

Exercises for Sect.2.4
In the following exercises, a basis means an ordered basis.

1. LetT : R
3 → R

3 bedefinedbyT (a, b, c) = (b + c, c + a, a + b).Find [T ]C,B

in each of the following cases:



84 2 Linear Transformations

(a) B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, C = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}.
(b) B = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}, C = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
(c) B = {(1, 1, 2), (2, 1, 1), (1, 2, 1)}, C = {(2, 1, 1), (1, 2, 1), (1, 1, 2)}.

2. Let T : P3 → P2 be defined by T (a0 + a1t + a2t2 + a3t3) = a1 + 2a2t +
3a3t2. Find [T ]C,B in each of the following cases:

(a) B = {1, t, t2, t3}, C = {1 + t, 1 − t, t2}.
(b) B = {1, 1 + t, 1 + t + t2, t3}, C = {1, 1 + t, 1 + t + t2}.
(c) B = {1, 1 + t, 1 + t + t2, 1 + t + t2 + t3}, C = {t2, t, 1}.

3. Determine the matrix of the linear transformation T : P3 → P4 defined by
T (p(t)) = (2 − t)p(t), with respect to the standard bases of P3 and P4.

4. Let T : P2 → P3 be defined by T (a + bt + ct2) = at + bt2 + ct3. If B = {1 +
t, 1 − t, t2} and C = {1, 1 + t, 1 + t + t2, t3}, then what is [T ]C,B?

5. Let T : P2 → P3 be defined by T (a0 + a1t + a2t2) = a0t + a1
2 t

2 + a2
3 t

3. Find
[T ]C,B in each of the following cases:

(a) B = {t2, t, 1}, C = {1, 1 + t, 1 + t + t2, 1 + t + t2 + t3}.
(b) B = {1 + t, 1 − t, t2}, C = {1, t, t2, t3}.
(c) B = {1, 1 + t, 1 + t + t2}, C = {1, 1 + t, 1 + t + t2, t3}.

6. Define T : P2(R) → R by T ( f ) = f (2). Compute [T ] using the standard bases
of the spaces.

7. Define T : R
2 → R

3 by T (a, b) = (a − b, a, 2b + b). Suppose E is the stan-
dard basis for R

2, B = {(1, 2), (2, 3)}, and C = {(1, 1, 0), (0, 1, 1), (2, 2, 3)}.
Compute [T ]C,E and [T ]C,B .

8. Let T be the linear operator on C
2 defined by T (a, b) = (a, 0). Let E be the

standard basis, and let B = {(1, i), (−i, 2)} be another basis of C
2. Determine

the matrices [T ]E,E , [T ]B,B, [T ]E,B, and [T ]B,E .

9. Let (a, b), (c, d) ∈ R
2 satisfy ac + bd = 0 and a2 + b2 = c2 + d2 = 1. Show

that B = {(a, b), (c, d)} is a basis of R
2. What is [(α, β)]B?

10. Denote by CR the vector space of all complex numbers over the field R. Show
that T z = z is a linear operator on CR . What is [T ]B,B with respect to the basis
B = {1, i}?

11. Let S, T : R
3 → R

3 be given by S(a, b, c) = (a + 2b + c, a − b − c, b + 3c)
and T (a, b, c) = (c, b, a). Consider bases B = {(1, 2, 3), (1, 0, 1), (1, 1, 0)}
and E = {e1, e2, e3} for R

3. Determine the matrices [ST ]E,E , [ST ]E,B,

[T S]B,E , and [T S]B,B .

12. Given bases B = {1 + t, 1 − t, t2} and C = {1, 1 + t, 1 + t + t2, t3} for
P2(R) and P3(R), respectively, and the linear transformation S : P2(R) →
P3(R) with S(p(t)) = t p(t), find the matrix [ S ]C,B .

13. Let T : R
3 → R

3 be given by T (a, b, c) = (a + b, 2a − b − c, a + b + c).
Consider B = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} and C = {(1, 2, 1), (2, 1, 0),
(3, 2, 1)} as bases for R

3. Determine the matrices [T ]B,B, [T ]B,C , [T ]C,B, and
[T ]C,C . Also, find the rank(s) of all these matrices.
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14. Let T : Pn(F) → Pn(F) be given by T (p(t)) = p(t + 1) for p(t) ∈ Pn(F).

Determine [T ]E,E with respect to the standard basis E of Pn(F).

15. LetV be the vector space of all functions fromR toCover the fieldC.Let f1(t) =
1, f2(t) = eit , f3(t) = e−i t , g1(t) = 1, g2(t) = cos t, and g3(t) = sin t. Find
A = [ai j ] ∈ C

3×3 such that g j (t) = ∑3
i=1 ai j fi for each j ∈ {1, 2, 3}.

16. Define T : P2(R) → R
2×2 by T ( f (t)) =

[
f ′(0) 2 f (1)
0 f ′(3)

]
. Compute [T ]E,B,

where B and E are standard bases for P2(R) and R
2×2, respectively.

17. Let π be a permutation, i.e. π : {1, . . . , n} → {1, . . . , n} is a bijection. Define
a function Tπ : F

n → F
n by Tπ (α1, . . . , αn) = (απ(1), . . . , απ(n)). Show that Tπ

is a linear transformation. Describe the matrix representation of Tπ with respect
to the standard basis of F

n.

18. Let B =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
and let E = {1}.

(a) Compute [T ]B,B, where T : R
2×2 → R

2×2 is given by T (A) = AT .

(b) Compute [T ]E,B, where T : R
2×2 → R is given by T (A) = tr(A).

19. Let B = {u1, . . . , un} be an ordered basis of a vector space V . Let f be a linear
functional on V . Prove that there exists a unique (β1, . . . , βn) ∈ F

n such that
f (α1u1 + · · · + αnun) = α1β1 + · · · + αnβn. Conclude that the matrix repre-
sentation [ f ]{1},B is the row vector [β1 · · · βn].

20. Let B = {v1, . . . , vn} be an ordered basis for a vector space V . Let T be a linear
operator onV .Show that T is an isomorphism if and only if [T ]B,B is an invertible
matrix.

21. Let A, B ∈ F
n×n . Does it follow that if AB = 0, then BA = 0?

2.5 Change of Basis

If the bases in the spaces change, the matrix representation of a linear transformation
changes. It is a boon because by choosing suitable bases for the spaces, a nice form
for the matrix representation can be obtained. We will discuss this issue later. It is
also a curse, since even sparse matrices can loose sparseness.

Example 2.46 Consider the identity map I : R
3 → R

3, i.e. I (x) = x . Take the
ordered basis for the domain space as B = {(1, 1, 1), (1, 0, 1), (1, 1, 0)} and for the
co-domain space as the standard basis E . In order to get the matrix representation of
I, we express the basis vectors in B in terms of those in E . It leads to

[I ]E,B =
⎡

⎣
1 1 1
1 0 1
1 1 0

⎤

⎦ .

Notice that [I ]E,B is not the identity matrix. �
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It raises the questions as to how does a matrix representation of a linear transfor-
mation change and how do the coordinate vectors change when bases are changed.
We consider the second question first. Let V be a vector space of dimension n. Let
B = {u1, . . . , un} and C = {v1, . . . , vn} be ordered bases of V . Let x ∈ V . Suppose

x = α1u1 + · · · + αnun and x = β1v1 + · · · + βnvn.

Then what is the connection between the scalars αi ’s and the β j ’s? Here, the same
vector x has two different representations in terms of the bases B andC. So the linear
transformation which takes x to itself, the identity linear transformation, corresponds
to the linear transformation which takes [α1, . . . , αn]T to [β1, . . . , βn]T from F

n×1

to itself. Let us write VB for the vector space V where we consider the basis B;
similarly VC . Then the commutative diagram considered after Example 2.40 looks
as follows:

VB
I

�φB

VC

ψC�

F
n×1

[I ]C,B
F
n×1

This means that ψC(x) = [I ]C,BφB I−1(x) = [I ]C,BφB(x). Since the canonical
basis isomorphisms give simply the coordinate vectors, we have:

[x]C = [I (x)]C = [I ]C,B[x]B . (2.1)

We thus call the matrix [I ]C,B as the change of basis matrix. This is the same
matrix that you get by expressing the basis vectors in B as linear combination of
basis vectors in C due to Definition 2.38.

However, if bases are the same in both the domain space and the co-domain space,
then the matrix representation of the identity transformation remains as the identity
matrix. That is, for each basis B, [I ]B,B = I.

Example 2.47 We continue Example 2.46, where

B = {(1, 1, 1), (1, 0, 1), (1, 1, 0)} and E = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
Let x = (3, 2, 2) ∈ R

3. We see that

(3, 2, 2) = 3 (1, 0, 0) + 2 (0, 1, 0) + 2 (0, 0, 1) = 1 (1, 1, 1) + 1 (1, 0, 1) + 1 (1, 1, 0).

Therefore

[x]E =
⎡

⎣
3
2
2

⎤

⎦ =
⎡

⎣
1 1 1
1 0 1
1 1 0

⎤

⎦

⎡

⎣
1
1
1

⎤

⎦ = [I ]E,B[x]B . �
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In Example 2.47, the change of basis matrix [I ]E,B has the columns as the basis
vectors in B. In general, let E = {e1, . . . , en} be the standard basis of F

n×1 and let
B = {v1, . . . , vn} be an ordered basis ofFn×1.Let i ∈ {1, . . . , n}.Then the coordinate
vector of vi with respect to B is the i th standard basis vector, i.e. [vi ]B = ei . Also,
[vi ]E = vi . Thus, [I ]E,B(ei ) = [I ]E,B [vi ]B = [I (vi )]E = [vi ]E = vi . Therefore, the
i th column of [I ]E,B is equal to vi . We summarize:

If B = {v1, . . . , vn} is any basis for F
n×1 and E is the standard basis of F

n×1,

then [I ]E,B = [v1 · · · vn], i.e. the i th column of [I ]E,B is the i th basis vector
in B.

In fact, if P is any invertible n × n matrix, then its columns form a basis of F
n×1.

Then such a matrix P is simply the change of basis matrix [I ]E,B, where B is the
basis consisting of the columns of P and E is the standard basis of F

n×1. We obtain
the following result.

Theorem 2.48 Change of basis matrices are precisely the invertible matrices.

The inverses of change of basismatrices are also change of basismatrices. Further,
[I ]E,B[I ]B,E = [I ]E,E is the identity matrix. Therefore, the change of basis matrices
[I ]E,B and [I ]B,E are inverses of each other.

Thus, in addition, if C = {u1, . . . , un} is another ordered basis for F
n×1, then

[I ]C,B = [I ]C,E [I ]E,B = [I ]−1
E,C [I ]E,B . (2.2)

Similarly, [I ]B,C = [I ]−1
E,B[I ]E,C . We then obtain

[I ]C,B = [I ]−1
B,C . (2.3)

Example 2.49 Consider the ordered bases B =
{[

1
1

]
,

[
1

−1

]}
and C =

{[
1
0

]
,

[
1
1

]}
of F

2×1. Let E be the standard basis of F
2×1. The change of basis matrices are

as follows.

[I ]E,B =
[
1 1
1 −1

]
, [I ]B,E = [I ]−1

E,B = 1
2

[
1 1
1 −1

]
.

[I ]E,C =
[
1 1
0 1

]
, [I ]C,E = [I ]−1

E,C =
[
1 −1
0 1

]
.

[I ]B,C = [I ]B,E [I ]E,C = 1
2

[
1 1
1 −1

] [
1 1
0 1

]
= 1

2

[
1 2
1 0

]
.

[I ]C,B = [I ]C,E [I ]E,B =
[
1 −1
0 1

] [
1 1
1 −1

]
=

[
0 2
1 −1

]
= [I ]−1

C,B .
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Equation 2.1 says that [x]C = [I ]C,B[x]B and [x]B = [I ]B,C [x]C .

In order to verify this, let x =
[
a
b

]
. Suppose [x]B =

[
α

β

]
and [x]C =

[
γ

δ

]
. Then

[
a
b

]
= α

[
1
1

]
+ β

[
1

−1

]
,

[
a
b

]
= γ

[
1
0

]
+ δ

[
1
1

]
.

The first equation gives a = α + β, b = α − β; that is, α = a+b
2 and β = a−b

2 . The
second equation leads to γ = a − b and δ = b. Therefore,

[x]B =
[
α

β

]
= 1

2

[
a + b
a − b

]
, [x]C =

[
a − b
b

]
.

We then find that

[I ]C,B[x]B =
[
0 2
1 −1

]
1
2

[
a + b
a − b

]
= 1

2

[
2(a − b)

2b

]
= [x]C .

[I ]B,C [x]C = 1

2

[
1 2
1 0

] [
a − b
b

]
= 1

2

[
a + b
a − b

]
= [x]B .

�
We now consider the first question as to how does a change of bases affects the

matrix representation of a linear transformation.

Theorem 2.50 Let V and W be finite dimensional vector spaces, and let T : V →
W be a linear transformation. Let B, B ′ be ordered bases for V, and let C, C ′
be ordered bases for W. Write P := [IV ]B,B ′ and Q := [IW ]C,C ′ . Then [T ]C ′,B ′ =
Q−1[T ]C,B P.

Proof Let T : V → W be a linear transformation. Then T = IV T IW . By Theo-
rem 2.43 and (2.3), we obtain

[T ]C ′,B ′ = [IW T IV ]C ′,B ′, = [IW T ]C ′,B[IV ]B,B ′ = [IW ]C ′,C [T ]C,B[IV ]B,B ′

= [IW ]−1
C,C ′ [T ]C,B[IV ]B,B ′ = Q−1[T ]C,B P. �

To understand Theorem 2.50, a diagram may be helpful. We write the linear
transformation and its matrix representation on different sides of the arrow.

VB
T

[T ]C,B

[I ]B′,BIV

WC

IW[I ]C ′,C

VB ′
[T ]C ′,B′

T
WC ′
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It shows that [T ]C ′,B ′ = [I ]C ′,C [T ]C,B [I ]−1
B ′,B = [I ]−1

C,C ′ [T ]C,B [I ]B,B ′ .

In Theorem 2.50, take C = B and C ′ = B ′ = E to obtain the following result.

Theorem 2.51 Let T be a linear operator on a finite dimensional vector space V .Let
B and E be ordered bases of V . Write P := [IV ]B,E . Then [T ]E,E = P−1[T ]B,B P.

To interpret Theorem 2.50 for matrices, let V = F
n×1 and W = F

m×1 have their
standard bases, say, B and C, respectively. Look at a given matrix A ∈ F

m×n as a
linear transformation from F

n×1 to F
m×1. The columns of A are the images of the

standard basis vectors Ae j ∈ F
n×1. Suppose we change the bases of both the spaces,

say, B ′ = {v1, . . . , vn} for F
n×1 and C ′ = {u1, . . . , um} for F

m×1 are the new bases.
Since B and C are the standard bases, we have

[I ]B,B ′ = [v1 · · · vn], [I ]C,C ′ = [w1 · · · wm].

The effect of change of bases is as follows:

[A]C ′,B ′ = [I ]C ′,C [A]C,B ([I ]B ′,B)−1 = [w1 · · · wm]−1A [v1 · · · vn].

Observe that this result is simply a matrix interpretation of Theorem 2.50. We
note down this result for future use. In the following statement, we write the new
bases for F

n×1 and F
m×1 as B and C. The standard bases are used by default when

a matrix is viewed as a linear transformation.

Theorem 2.52 Let A ∈ F
m×n . Let B = {v1, . . . , vn} and C = {w1, . . . ,wm} be

ordered bases for F
n×1 and F

m×1, respectively. Write P := [v1 · · · vn] and Q :=
[w1 · · · wm]. Then [A]C,B = Q−1A P.

Notice that if T = I with m = n, then [I ]C,B = Q−1P as obtained earlier.
Converse of Theorem 2.52 also holds. That is, for a given matrix A ∈ F

m×n, and
given invertible matrices P ∈ F

n×n and Q ∈ F
m×m there exist bases B for F

n×1 and
C for F

m×1 such that [A]C,B = Q−1AP. To prove this, take B as the ordered set of
columns of P and C as the ordered set of columns of Q.

We interpret Theorem 2.51 for square matrices by taking B as the standard basis
for F

n×1 and E as another basis C. It yields the following result.

Theorem 2.53 Let A ∈ F
n×n . Let C = {v1, . . . , vn} be an ordered basis for F

n×1.

Construct the matrix P := [v1 · · · vn]. Then [A]C,C = P−1A P.

In view of Theorems 2.52 and 2.53, we give the following definition.

Definition 2.54 Let A and M be matrices in F
m×n .

(a) A and M are called equivalent if there exist invertible matrices P ∈ F
n×n and

Q ∈ F
m×m such that M = Q−1AP.

(b) For m = n, the matrices A and M are called similar if there exists an
invertible matrix P ∈ F

n×n such that M = P−1AP.
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The symmetric terminology in the definition is justified sincewhenM = Q−1AP,

we see that A = QMP−1; if M = P−1AP then A = PMP−1. Theorems 2.52 and
2.53 say that change of bases in the domain and co-domain spaces gives rise to
equivalent matrices. Thus equivalent matrices represent the same linear transforma-
tion with respect to different pairs of ordered bases; similar matrices represent the
same linear operator on a vector space with respect to different ordered bases.

Notice that both the relations of equivalence on F
m×n and similarity of matrices

on F
n×n are equivalence relations (reflexive, symmetric, and transitive).

It is obvious that if two square matrices are similar, then they are equivalent.
However, two equivalent square matrices need not be similar. For, the identity matrix
is equivalent to any invertible matrix whereas it is similar to only itself; see the
following example.

Example 2.55 Consider the 2 × 2 matrices

A =
[
1 0
0 1

]
= I, B =

[
1 1
0 1

]
, Q =

[
1 −1
0 1

]
, and P =

[
1 0
0 1

]
= I.

Since BQ = QB = I, B = Q−1 = Q−1AP. That is B is equivalent to A.

If B is similar to A, then there exists a 2 × 2 invertible matrix R such that B =
R−1AR = R−1R = I. But B �= I. Hence B is not similar to A. �

Since two equivalent matrices represent the same linear transformation, they must
have the same rank. Does the rank criterion alone suffice for equivalence?

Theorem 2.56 (Rank theorem) Let V and W be finite dimensional vector spaces,
and let S, T : V → W be linear transformations. Then rank (S) = rank (T ) if
and only if there exist isomorphisms P : V → V and Q : W → W such that
T = Q−1SP.

Proof Let T = Q−1SP, where Q : V → V and P : W → W are isomorphisms.
Then QT = SP. Due to Theorem 2.36(1)

rank (T ) = rank (QT ) = rank (SP) = rank (S).

Conversely, let rank (T ) = rank (S) = r. Suppose dim(V ) = n and dim(W ) =
m. Necessarily, n ≥ r and m ≥ r. Let {u1, . . . ur } and {v1, . . . , vr } be bases of R(T )

and R(S), respectively. Let xi , yi ∈ V be such that T xi = ui and Syi = vi for i =
1, . . . , r .

Notice that null (T ) = null (S) = n − r. So, let {xr+1, . . . , xn} and {yr+1, . . . , yn}
be bases of N (T ) and N (S), respectively. ByTheorem2.24, {x1, . . . xr , xr+1, . . . , xn}
and {y1, . . . , yr , yr+1, . . . , yn} are bases of V . Since R(T ) is a subspace of W, there
exist vectors ur+1, . . . um, vr+1, . . . , vm ∈ W such that {u1, . . . , ur , ur+1, . . . um}
and {v1, . . . , vr , vr+1, . . . , vm} are bases of W.
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Using Theorem 2.8, define linear transformations P : V → V and Q : W → W
by

Pxi = yi and Q(u j ) = v j

for i = 1, . . . , n and j = 1, . . . ,m. Both P and Q map bases onto bases; thus they
are isomorphisms. We look at the actions of Q−1SP and T on the basis vectors xi .

If i ∈ {1, . . . , r}, then Q−1SPxi = Q−1Syi = Q−1vi = ui = T xi .
If i ∈ {r + 1, . . . , n}, then Q−1SPxi = Q−1Syi = Q−1(0) = 0 = T xi .

Since {x1, . . . , xn} is a basis of V , due to Theorem 2.8, Q−1SP = T . �
We interpret the rank theorem for matrices. Suppose A, M ∈ F

m×n . Then both
are linear transformations from F

n×1 to F
m×1. If they are equivalent, then their ranks

are equal. Conversely, if their ranks are equal, then there exist invertible matrices
P ∈ F

n×n and Q ∈ F
m×m such that M = Q−1AP. That is, they are equivalent. The

rank theorem for matrices is stated as follows:

Two matrices of the same size are equivalent if and only if they have the same
rank.

It characterizes the equivalence of two matrices. Thus, any two invertible matrices
of the same order are equivalent; they are equivalent to the identity matrix. However,
two invertible matrices of the same order need not be similar; see Example 2.55.

It is relatively easy to construct an m × n matrix of rank r, since r ≤ min{m, n}.
We take the first r columns of the matrix as e1, . . . , er , the first r standard basis
vectors of F

m×1. And then take the other n − r columns as zero vectors in F
m×1.

That is, define the matrix Er = [ei j ] ∈ F
m×n with

e11 = · · · = err = 1, and ei j = 0, otherwise.

We will call such a matrix Er as the rank echelon matrix of size m × n and rank
r. If the size m × n of Er is not obvious from the context, we write it as Em,n

r . For
example, the rank echelon matrix E2 of size 3 × 4 and its transpose (E2)

T of size
4 × 3 look like

E3,4
2 =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 0 0

⎤

⎦ ,
(
E3,4
2

)T =

⎡

⎢⎢⎣

1 0 0
0 1 0
0 0 0
0 0 0

⎤

⎥⎥⎦ .

We observe that rank (ET
r ) = rank (Er ) = r.

By the rank theorem, every matrix of rank r is equivalent to the rank echelon
matrix Er of the same size. We will use rank echelon matrices for proving that the
row rank of a matrix, that is, the dimension of the vector space spanned by the rows
of the matrix, is same as its (column) rank.

Theorem 2.57 The row rank of each matrix is equal to its rank. Further, a square
matrix and its transpose are equivalent.
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Proof Let A ∈ F
m×n have rank r. By the rank theorem, A is equivalent to Er . That

is, there exist invertible matrices P ∈ F
n×n and Q ∈ F

m×m such that A = Q−1Er P.

Then AT = PT ET
r (QT )−1. Again, by the rank theorem,

row-rank of A = rank (AT ) = rank (ET
r ) = rank (Er ) = rank (A).

When m = n, the rank theorem implies that AT and A are equivalent. �

In fact, the transpose of a square matrix is similar to the matrix; but its proof uses
a characterization of similarity, which is a difficult task worthy of being postponed
for a while.

Exercises for Sect.2.5
In the following exercises, consider any given basis as an ordered basis.

1. Let T be a linear operator on R
2 such that all entries of [T ] with respect to the

basis {(1, 0), (0, 1)} are 1. What is [T ]B,B, where B = {(1,−1), (1, 1)}?
2. Let T be a linear operator onR

3 such that T e1 = (0, 1,−1), T (e2) = (1, 0,−1)
and T (e3) = (−1,−1, 0). Let B = {(0, 1,−1), (1, 0,−1), (−1,−1, 0)}. What
is [T ]B,B?

3. Show that B = {(1, 0, i), (1 + i, 1,−1)} and C = {(1, 1, 0), (1, i, 1 + i)} are
bases for span(B) as a subspace of C

3. What are the coordinate vectors
[(1, 0, i)]C and [(1, i, 1 + i)]B?

4. Determine the change of basis matrix in each of the following cases, considering
the vector space as R

n:

(a) Old basis is {e1, . . . , en} and new basis is {en, . . . , e1}.
(b) Old basis is {e1, . . . , en} and new basis is {e1 + e2, . . . , en−1 + en}.
(c) Old basis is {e1 − e2, . . . , en−1 − en} and new basis is {e1, . . . , en}.
(d) For n = 2, old basis is {e1, v2}, where v2 is a unit vector making an angle

of 2π/3 with e1, and new basis is {e2, e1}.
5. Consider the standard basis E, and the basis B = {(1, 2, 3), (3, 2, 1), (0, 0, 1)}

for R
3.

(a) Compute the change of basis matrices [I ]B,E and [I ]E,B .

(b) Determine the matrices [T ]B,B, [T ]B,E , [T ]E,B, and [T ]E,E for the linear
operator T on R

3 given by T (a, b, c) = (6a + b, a − b − c, 2a − b + 3c).

6. Let B := {u1, . . . , un} andC := {v1, . . . , vn} be ordered bases for a vector space
V . Let T be a linear operator on V defined by Tu1 = v1, . . . , Tun = vn. Show
that [T ]B,B = [I ]C,B .

7. Given any invertible matrix A ∈ F
n×n, show that ordered bases B and C can be

chosen for F
n×1 such that A = [I ]C,B .

8. Give infinitely many matrices A ∈ F
n×n where A is similar to only A.

9. Prove that the matrices

[
a 0
0 d

]
and

[
a b
0 d

]
are similar if and only if a �= d.
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10. Let θ ∈ R. Show that the matrices

[
cos θ − sin θ

sin θ cos θ

]
and

[
eiθ 0
0 e−iθ

]
are similar

in C
2×2.

11. Let θ ∈ R. Let A =
[
cos θ − sin θ

sin θ cos θ

]
and B =

[
cos θ sin θ

sin θ − cos θ

]
.

(a) Are A and B similar in R
2×2?

(b) Are A and B similar in C
2×2?

2.6 Space of Linear Transformations

Let V and W be vector spaces over F, having dimensions n and m, respectively.
Each linear transformation T : V → W has a matrix representation. Conversely
each matrix in F

m×n induces a linear transformation from V to W, provided we
fix ordered bases for V and W a priori. It suggests that the matrix representation
itself is some sort of isomorphism. To explore it further we need to see the set of all
linear transformations as a vector space.

In general, if V andW are vector spaces over the same field F, the set of all linear
transformations from V to W, denoted by L(V,W ), is a vector space over F. See
Example 2.7(3). We shall denote L(V, V ) by L(V ).

In fact, L(V ) has more structure than a vector space, since a multiplication is
well defined here. The multiplication of two maps inL(V ) is their composition. This
multiplication (composition of maps here) is associative, distributive over addition,
and satisfies

α(ST ) = (αS)T = S(αT ) for each α ∈ F.

Moreover, the identity map I serves as the multiplicative identity in L(V ), since
T I = I T = T . Such a structure is called an algebra.

We show that if V and W are vector spaces of dimensions n and m, respectively,
then L(V,W ) and F

m×n are isomorphic.

Theorem 2.58 Let V and W be finite dimensional vector spaces. Let B and C be
bases for V and W, respectively. Then the map χ : L(V,W ) → F

m×n defined by
χ(T ) = [T ]C,B is an isomorphism; consequently, L(V,W ) � F

m×n .

Proof Let B = {v1, . . . , vn} and C = {w1, . . . ,wm} be ordered bases for the vector
spaces V and W , respectively. To keep notation simple, write [T ] in place of [T ]C,B

and [x] instead of [x]B for any x ∈ V .Weverify thatχ : L(V,W ) → F
m×n definedby

χ(T ) = [T ] is a bijective linear transformation. For this, let α ∈ F, S, T ∈ L(V,W )

and let x ∈ V . Now,

[S + T ][x] = [(S + T )(x)] = [Sx + T x] = [Sx] + [T x]
= [S][x] + [T ][x] = ([S] + [T ])[x],

[αS][x] = [αSx] = α[Sx] = α[S][x].
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Hence, we have [S + T ] = [S] + [T ] and [αS] = α[S]. That is,
χ(S + T ) = χ(S) + χ(T ), χ(αS) = αχ(S).

Therefore, χ is a linear transformation.
Let T ∈ L(V,W ) be such that χ(T ) = 0, the zero matrix in F

m×n . Then T =
ψ−1

C 0φB = 0, the zero operator, where φB and ψC are the canonical basis isomor-
phisms. Thus, N (χ) = {0}. This shows that χ is injective.

Now, to show that χ is surjective, let A ∈ F
m×n . Consider the linear operator TA

induced by the matrix A as defined in Example 2.11(3). Then we see that χ(TA) = A.
Hence, χ is onto.

Therefore, χ is an isomorphism; consequently, L(V,W ) � F
m×n. �

Given ordered bases {v1, . . . , vn} for V and {w1, . . . ,wm} forW, the isomorphism
χ can also be used to construct a basis for L(V,W ). Since isomorphisms map bases
onto bases, χ−1 of the standard basis of F

m×n does the job. This gives rise to the basis

{Ti j : i = 1, . . . ,m, j = 1, . . . , n},

of L(V,W ), where Ti j is the unique linear transformation from V to W defined by

Ti j (v j ) = wi , and Ti j (vk) = 0 for k �= j.

This basis is called the standard basis of L(V,W ) with respect to the ordered
bases {v1, . . . , vn} for V, and {w1, . . . ,wm} for W. Since L(V,W ) � F

m×n, we see
that dim(L(V,W )) = dim(Fm×n) = mn.You can also prove this fact independently
by showing that the set of linear maps {Ti j : 1 ≤ i ≤ m, 1 ≤ j ≤ m} is a basis of
L(V,W ). This will be an alternative proof of L(V,W ) � F

m×n .

The particular case of W = F leads to the space of linear functionals on V .

Definition 2.59 The space L(V, F) of all linear functionals on V is called the dual
space of V ; this space is denoted by V ′.

Due to Theorem 2.58, if dim(V ) = n, then the dual space V ′ of V is isomorphic
to F

n. But V itself is isomorphic to F
n. In this case, V ′ � V . By taking help from

the coordinate functionals (see Example 2.4), we can have alternate ways of proving
the results about L(V,W ). Recall that, given an ordered basis {v1, . . . , vn} of V ,
the corresponding coordinate functionals fi ∈ V ′ are defined by fi (v j ) = δi j for
i, j = 1 . . . , n.

Theorem 2.60 Let B = {v1, . . . , vn} be an ordered basis of a vector space V . Let
f1, . . . , fn be the coordinate functionals on V with respect to B. Then the following
are true:

(1) Every vector x ∈ V can be written as x = ∑n
j=1 f j (x)v j .

(2) Let v ∈ V be such that f (v) = 0 for each f ∈ V ′. Then v = 0.
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(3) The set { f1, . . . , fn} is a basis of V ′.

Proof (1) Let x ∈ V . Since B is a basis of V , there exist unique scalars α1, . . . αn

such that x = ∑n
j=1 α j v j . Due to the relation fi (v j ) = δi j ,

fi (x) = ∑n
j=1 α j fi (v j ) = αi , i = 1, . . . , n.

Therefore, x = ∑n
j=1 f j (x)v j .

(2) It follows from (1).

(3) Let f ∈ V ′. For each x ∈ V, using (1), we have

f (x) = ∑n
j=1 f j (x) f (v j ) = ( ∑n

j=1 f (v j ) f j
)
(x).

That is, f = ∑n
j=1 f (v j ) f j . Thus, f ∈ span{ f1, . . . , fn}.

Next, suppose that
∑n

i=1 αi fi = 0. Then

0 = ∑n
i=1 αi fi (v j ) = ∑n

i=1 αiδi j = α j for j = 1, . . . , n.

Hence, { f1, . . . , fn} is linearly independent in V ′.
Therefore, { f1, . . . , fn} is a basis of V ′. �

In view of Theorem 2.60, we have the following definition.

Definition 2.61 Let B = {v1, . . . , vn} be an ordered basis of the vector space V . Let
f1, . . . , fn ∈ V ′ be such that fi (v j ) = δi j for i, j ∈ {1, . . . , n}. The ordered basis
B ′ := { f1, . . . , fn} of V ′ is called the dual basis of V ′, corresponding to the basis
B of V .

Theorem 2.60 implies that dim(V ′) = n = dim(V ). By Theorem 2.35, V ′ � V .

Example 2.62 Consider the standard basis {e1, . . . , en} for the vector space F
n×1.

The i th dual basis vector in the dual of F
n×1 is that fi which maps ei to 1 and every

other e j to 0. Following the convention that fi (e j ) is just the product of fi and e j ,
we write f j as the row vector, in which the j th component alone is 1 and all others
are 0. That is, f j = eTj . So that

f j (ei ) = eTj ei = δ j i .

It shows that the dual space of F
n×1 is isomorphic to F

1×n . Notice that the coor-
dinate vector of f j in this dual basis is again e j . Further, the dual space of the dual
space of F

n×1 can be identified with F
n×1 and the dual basis of this space is again

the standard basis of F
n×1. Also, the coordinate vector of each e j in the dual basis is

e j itself. �

Remember that the dual basis is constructed from the coordinate functionals.
Therefore, the dual basis can be used to construct a basis for L(V,W ).
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Theorem 2.63 Let B = {v1, . . . , vn} and C = {w1, . . . ,wm} be ordered bases of the
vector spaces V and W, respectively. Let B ′ = { f1, . . . , fn} and C ′ = {g1, . . . , gm}
be the dual bases of V ′ and W ′ corresponding to B and C. For i ∈ {1, . . . ,m} and
j ∈ {1, . . . , n}, define linear transformations Ti j : V → W by

Ti j (x) := f j (x)wi , for x ∈ V .

Then the following are true:

(1) Every T ∈ L(V,W ) can be written as T = ∑m
i=1

∑n
j=1 gi (T v j )Ti j .

(2) The set {Ti j : i = 1, . . . ,m, j = 1, . . . , n} is a basis of L(V,W ).

Proof (1)Let T ∈ L(V,W ). Let x ∈ V .ByTheorem2.60, x = ∑n
j=1 f j (x)v j .Then

T (x) =
n∑

j=1

f j (x)T (v j ) =
n∑

j=1

f j (x)
( m∑

i=1

gi (T v j )wi

)

=
m∑

i=1

n∑

j=1

gi (T v j ) f j (x)wi =
m∑

i=1

n∑

j=1

gi (T v j )Ti j (x).

(2) Let
∑m

i=1

∑n
j=1 αi j Ti j = 0 for scalars αi j . Then, for each x ∈ V,

m∑

i=1

n∑

j=1

αi j Ti j (x) =
m∑

i=1

n∑

j=1

αi j f j (x)wi = 0.

In particular, for each k ∈ {1, . . . , n},
m∑

i=1

n∑

j=1

αi j f j (vk)wi =
m∑

i=1

αikwi = 0.

as f j (vk) = δ jk . Since w1, . . . ,wm are linearly independent, we obtain αik = 0 for
i = 1, . . . ,m.This is true for each k ∈ {1, . . . , n}. Thus Ti j s are linearly independent.
Due to (1), they form a basis for L(V,W ). �

Once again, Theorem 2.63 implies that if dim(V ) = n and dim(W ) = m, then
dim(L(V,W )) = mn, and that L(V,W ) � F

m×n .

Suppose V is an n-dimensional vector space. Then its dual V ′ has dimension n.

Also, the dual of V ′ has the same dimension n. That is,

V � V ′ � V ′′.

Example 2.62 shows that the isomorphism between V and V ′′ is more natural
than that of V and V ′ in the particular case of V = F

n×1. To see it for any finite
dimensional vector space V, suppose v ∈ V and f ∈ V ′. Then f (v) is a scalar. If
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φ ∈ V ′′, then φ( f ) is also a scalar. The natural isomorphism between V and V ′′
comes from equating these two scalars. That is, define χ : V → V ′′ by

χ(v)( f ) = f (v) for f ∈ V ′, v ∈ V .

We must show that χ is an isomorphism. Towards this, let v1, v2 ∈ V and α ∈ F.
Then, for every f ∈ V ′,

χ(v1 + αv2)( f ) = f (v1 + αv2) = f (v1) + α f (v2)

= χ(v1)( f ) + αχ(v2)( f ) = (
χ(v1) + αχ(v2)

)
( f )

Thus, χ is a linear transformation.
Let v ∈ N (χ). That is, v ∈ V with χ(v) = 0. Then, for every f ∈ V ′, we have

f (v) = χ(v)( f ) = 0.

That is, f (v) = 0 for all f ∈ V ′. By Theorem 2.60(2), we conclude that v = 0.
Therefore, N (χ) = {0} so that χ is injective. Since the dimensions of V and V ′′ are
finite and equal, the injective linear map χ is an isomorphism.

We remark that the problem of identifying V and V ′′ for an infinite dimensional
space is not easy, and it is known that the map χ : V → V ′′ need not be onto. Dis-
cussion on such issues is beyond the scope of this book.

Exercises for Sect.2.6

1. Let T ∈ L(Fn×1, F
m×1). Show that there exists a matrix A ∈ F

m×n such that for
each x ∈ F

n×1, T (x) = Ax .
2. Consider the basis {(−1,−1, 1), (−1, 1, 1), (1, 1, 1)} of C

3. Let { f1, f2, f3} be
the corresponding dual basis. Compute fi (0, 1, 0) for i = 1, 2, 3.

3. Let f : C
3 → F be defined by f (a, b, c) = a + b + c.Show that f ∈ (C3)′.Find

a basis for N ( f ).
4. Let f be a nonzero functional on a vector space V . Let α ∈ F. Does there exist a

vector v ∈ V such that f (v) = α?
5. Establish a one-to-one correspondence between the set of all invertible n × n

matrices and the set of all ordered bases for F
n.

6. Let V be a vector space with 1 < dim(V ) < ∞. Prove that neither the set of all
invertible linear operators nor the set of all noninvertible linear operators on V is
a subspace of L(V, V ). What happens if dim(V ) = 1?

7. For p(t) = ∑n
j=0 α j t j ∈ Pn(F), and any (n + 1)-tuples of scalars

(β0, β1, . . . , βn) define f (p) = ∑n
j=0 α jβ j . Prove that f is a linear functional

on Pn(F). Conversely, show that each linear functional on P(F) can be obtained
this way by a suitable choice of an (n + 1)-tuple of scalars.

8. Let B = {v1, . . . , vn} andC = {w1, . . . ,wm} be ordered bases of the vector spaces
V and W, respectively. Let B ′ = { f1, . . . , fn} and C ′ = {g1, . . . , gm} be the cor-
responding dual bases for V ′ and W ′. Show the following:
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(a) IfT ∈ L(V,W ), then [T ]C,B = [(gi (T v j )] for i = 1, . . . ,m, j = 1, . . . , n.

(b) Let {Ai j : i = 1 . . . ,m; j = 1, . . . , n} be any basis of F
m×n . If Ti j ∈

L(V,W ) is such that [Ti j ]C,B = Ai j , then {Ti j : i = 1 . . . ,m, j = 1, . . . , n}
is a basis of L(V,W ).

9. Let V be a finite dimensional vector space. Prove the following:

(a) For each nonzero v ∈ V, there exists f ∈ V ′ such that f (v) �= 0.
(b) For every pair of distinct vectors u, v ∈ V, there exists f ∈ V ′ such that

f (u) �= f (v).

2.7 Problems

1. Let S, T : C[a, b] → C[a, b] be defined by

[S(x)](t) =
∫ t

a
x(s)ds, [(T (x)](t) = t x(t) for x ∈ C[a, b], t ∈ [a, b].

Show that the map x �→ S(x) ◦ T (x) is not a linear transformation.
2. Let T be a linear operator on a vector space V . If T 2 = 0, what can you say

about R(T ) and N (T )?
3. Let S and T be linear operators on a finite dimensional vector space. Prove that

rank (ST ) = rank (T ) − dim(N (S) ∩ R(T )).

4. Let T be a nilpotent operator on a finite dimensional vector space V . Let m ∈ N

and v ∈ V be such that Tm−1v �= 0 but Tmv = 0. Show that {v, T v, . . . , Tm−1v}
is linearly independent.

5. LetU be a subspace of a finite dimensional vector space V over F. LetW be any
vector space over F. Let T : U → W be a linear transformation. Show that there
exists a linear transformation S : V → W such that Tu = Su for each u ∈ U.

Does the conclusion hold when dim(V ) = ∞?
6. Do there exist square matrices A and B such that A is equivalent to B but A2 is

not equivalent to B2?
7. Let T be a linear operator on a vector space V of dimension n ≥ 2. Suppose

T S = ST for each linear operator S on V . Prove the following:

(a) Let v be anonzerovector inV .Then there exists a scalarα such thatT v = αv.
(Hint: If not, then extend {v, T v} to a basis of V . Show that the map S :
V → V defined by S(α1v + α2T v + y) = α2v is a linear operator satisfying
ST (v) = v but T S(v) = 0.)

(b) Let v and w be nonzero vectors in V such that T v = αv and Tw = βw for
some scalars α and β. Then α = β. (Hint: Consider (i) {v,w} is linearly
independent; (ii) {v,w} is linearly dependent.)
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8. Let T be a linear operator on a finite dimensional vector space V . Prove that if
T S = ST for each linear operator S on V, then there exists a unique scalar α

such that T = α I. (Hint: Use the results of Exercise 7.)
9. Prove that if B ∈ F

m×m is such that AB = BA for each invertible A ∈ F
m×m,

then B is a scalar matrix.
10. Let T be a linear operator on a vector space V . Prove that N (T ) ∩ R(T ) = {0}

if and only if T 2v = 0 implies that T v = 0 for each v ∈ V .

11. Let T be a linear operator on a vector space V .Prove that if rank (T 2) = rank (T )

then N (T ) ∩ R(T ) = {0}. Does the converse hold?
12. C is a vector space over C, as usual. Denote by CR the vector space C over the

fieldR.Give an example of a linear operator onCR which is not a linear operator
on C.

13. Let CR be the vector space of all complex numbers over the field R. Define

T : CR → R
2×2 by T (a + ib) =

[
a + 7b 5b
−10b a − 7b

]
. Answer the following:

(a) Is T injective?
(b) Is it true that T (xy) = T (x)T (y) for all x, y ∈ CR?
(c) How do you describe R(T )?

14. Let A and B be nonzero matrices in R
n×n . For x = (x1, . . . , xn)T and y =

(y1, . . . , yn)T in R
n×1, define xy = (x1y1, . . . , xn yn)T . Prove that there exists

z ∈ R
n×1 such that (BA)(x) �= (Bx)(Ax).

15. Let R
∞ be the vector space of all sequences of real numbers. Let S� and Sr be

the left shift and right shift linear operators on R
∞, i.e.

S�(a1, a2, . . .) = (a2, a3, . . .), Sr (a1, a2, . . .) = (0, a1, a2, . . .).

Prove that null (S�) > 0, R(S�) = R
∞, null (Sr ) = 0 and R(Sr ) �= R

∞.

16. Let At =
[
sin 2π t sin(π t/6)
cos 2π t cos(π t/6)

]
for 0 ≤ t ≤ 12.Determine rank (At ) for each

t. Determine the values of t for which rank (At ) = 1.
17. Show that if M = AB − i B A, then M3 + M2 + M = 0, where

A =

⎡

⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤

⎥⎥⎦ and B =

⎡

⎢⎢⎣

i 0 0 0
0 −1 0 0
0 0 −i 0
0 0 0 1

⎤

⎥⎥⎦ .

18. Let Ei j denote the matrix in F
n×n whose (i, j)th entry is 1 and all other entries

are 0. Show that Ei j Ek� = 0 if j �= k, and Ei j E j� = Ei�.

19. Let A, E ∈ F
m×m, B, F ∈ F

m×n, C,G ∈ F
n×m , and D, H ∈ F

n×n . Show that

[
A B
C D

] [
E F
G H

]
=

[
AE + BG AF + BH
CE + DG CF + DH

]
.

Describe how this formula can be used to multiply two matrices in F
r×r .
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20. Let V and W be finite dimensional vector spaces. Prove the following:

(a) There exists an injective linear transformation from V to W if and only if
dim(V ) ≤ dim(W ).

(b) There exists a surjective linear transformation from V to W if and only if
dim(V ) ≥ dim(W ).

21. Let A ∈ F
m×n, where m < n. Show that there exist nonzero scalars α1, . . . , αn

such that A[α1, . . . , αn]T = 0.
22. Using Exercise 21, give an alternate proof for Theorem 1.38.
23. Let T be a linear operator on a finite dimensional vector space. Suppose for an

m ∈ N, R(Tm−1) = R(Tm). Show that R(Tm−1) = R(T k) for each k ≥ m.

24. Let S : U → V and T : V → W be linear transformations such that T S is an
isomorphism. Prove that T is injective and S is surjective.

25. Let T be a linear operator on a vector space V . Prove that if there exists a unique
linear operator S on V such that ST = I, then T is an isomorphism.

26. Let T be a linear operator on a finite dimensional vector space V . Show that if
there exist distinct linear operators S1, S2 on V such that S1T = I = S2T, then
T need not be an isomorphism.

27. Let U be a subspace of an infinite dimensional vector space V . Show that even
if dim(U ) = dim(V ), U and V may not be isomorphic.

28. Let V be a vector space of dimension n. Let S and T be linear operators on V .

Prove that there exist bases B and C for V such that [S]B = [T ]C if and only if
there exists an isomorphism P on V such that T = PSP−1.

29. Let S and T be linear operators on a finite dimensional vector space V . Prove
the following:

(a) ST is an isomorphism if and only if both S and T are isomorphisms.
(b) ST = I if and only if T S = I.

30. Let A, B ∈ F
n×n . Prove that if AB = I, then BA = I.

31. Let S and T be linear operators on a vector space V . Is it true that both S and T
are invertible if and only if both ST and T S are invertible?

32. Let S and T be isomorphisms between finite dimensional vector spaces U and
V . Is S + T an isomorphism?

33. Let S and T be linear transformations from a finite dimensional vector space U
to a finite dimensional vector space V . If S and T are not isomorphisms, is it
possible that S + T is an isomorphism?

34. Let T : V → W be a linear transformationwhere dim(V ) < ∞. Show that there
exists a subspace U of V such that R(T ) = T (U ) and U ∩ N (T ) = {0}.

35. Let V be a finite dimensional vector space, U be a subspace of V, and let T be
a linear operator on V . Prove that dim(T (U )) ≥ dim(U ) − null (T ).

36. Let V and W be finite dimensional vector spaces. Let U be a subspace of V .

Show that dim(U ) + dim(W ) ≥ dim(V ) if and only if there exists a linear trans-
formation T : V → W such that U = N (T ).
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37. Let T : V → W be a linear transformation, where both rank (T ) and null (T )

are finite. Show that V is finite dimensional. (Note: Since dim(V ) < ∞ is not
assumed, you cannot use the formula dim(V ) = rank (T ) + null (T ).)

38. Prove Theorem 2.42.
39. Let T be a linear operator on a finite dimensional vector space V . Prove that

there exists an n ∈ N such that N (T n) ∩ R(T n) = {0}.
40. Let V be a vector space of dimension n. Prove or give counter-examples:

(a) If S and T are linear operators on V with ST = 0, then rank (S) +
rank (T ) ≤ n.

(b) For each linear operator T on V, there exists a linear operator S on V such
that ST = 0 and rank (S) + rank (T ) = n.

41. Let S and T be linear operators on P, where S is invertible. Show that for any
polynomial p(t) ∈ P, S−1 p(T )S = p(S−1T S).

42. Let {u1, . . . , um} and {v1, . . . , vm} be linearly independent sets of vectors in an
n-dimensional vector space V . Does there exist an invertible operator on V with
Au j = v j for each j ∈ {1, . . . ,m}?

43. Let T be a linear operator on a vector space. Show that if T 2 − T + I = 0, then
T is invertible.

44. Let {u1, . . . , un} be a basis for a vector space U. Let v1, . . . , vn be distinct
vectors in any vector space V . We know that there exists a linear transformation
T : U → V with T (ui ) = vi for i = 1, 2, . . . , n. Prove or disprove:

(a) T is one-to-one if and only if {v1, . . . , vn} is linearly independent.
(b) T is onto if and only if span{v1, . . . , vn} = V .

(c) T is unique if and only if {v1, . . . , vn} is a basis of V .

45. If a linear operator T on a finite dimensional vector space V is invertible, then
show that T−1 = p(T ) for some polynomial p(t).

46. Let V = U1 ⊕ · · · ⊕Uk . For each i ∈ {1, . . . , k}, let Bi be a basis for Ui , and
let Ti be a linear operator on Ui . Define the direct sum of the maps Ti by T :
V → V, where T (u1 + · · · + uk) = T1(u1) + · · · Tk(uk). Write Ai = [Ti ]Bi ,Bi

and B = B1 ∪ · · · ∪ Bk . Show that [T ]B,B = diag(A1, . . . , Ak).

47. Let A, B ∈ F
n×n satisfy A + B = 2BT and 3A + 2B = I. Determine A and B.

48. Let P be a linear operator on a finite dimensional vector space V such that
P2 = P. Prove that tr(P) = rank (P).

49. A linear operator T is called idempotent when T 2 = T .

(a) Give an example to show that T 2(T − I ) = 0 but T is not idempotent.
(b) Give an example to show that (T − I )T 2 = 0 but T is not idempotent.
(c) Prove that T 2(T − I ) = 0 = (T − I )T 2 implies that T is idempotent.

50. Show that if A, B ∈ C
m×m with at least one of them invertible, then AB and BA

are similar matrices. Is the result still valid when neither A nor B is invertible?
51. Let A ∈ R

n×n . Prove that rank (A) ≤ 1 if and only if there exist vectors x, y ∈
R

n×1 such that A = xyT .
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52. Let A, B ∈ R
n×n . Suppose that there exists an invertible matrix P ∈ C

n×n such
that P−1AP = B. Does there exist an invertible matrix Q ∈ R

n×n such that
Q−1AQ = B? In other words, is it true that if two real matrices are similar over
C, then they are similar over R?

53. Prove or disprove: If T is a linear operator of rank 1 then there exists a unique
scalar β such that A2 = βA.

54. Let S and T be linear operators on a finite dimensional vector space V . Prove or
disprove:

(a) Suppose S2 = S and T 2 = T . Then S and T are similar if and only if
rank (S) = rank (T ).

(b) Suppose S �= 0, T �= 0 and S2 = T 2 = 0. Then S and T are similar if and
only if rank (S) = rank (T ).

55. Let B = {v1, . . . , vn} be a basis for a vector space V . Let T be a linear operator
on V satisfying T (v1) = v2, . . . , T (vn−1) = vn and T (vn) = 0.

(a) What is [T ]B?
(b) Prove that T is nilpotent with its index of nilpotency n.

(c) Prove that if S is a nilpotent operator on V with index of nilpotency as n,

then there exists a basis C for V such that [S]C = [T ]B .

(d) Deduce that if A, B ∈ F
n×n are nilpotent matrices with index of nilpotency

as n, then A and B are similar matrices.

56. Let S and T be linear operators on a finite dimensional vector space. Show that
if S(ST − T S) = (ST − T S)S, then SkT − T Sk = kSk−1(ST − T S) for each
k ∈ N.

57. Let U be a subspace of a vector space V . Define the map P : V → V/U by
P(v) = v +U for v ∈ V . Prove the following:

(a) The map P is a surjective linear transformation.
(b) Let W be a vector space and let T : V → W be a linear transformation

such that N (T ) = U. Then there exists a unique linear transformation S :
V/U → W such that T = S ◦ P.

58. Let D be the differentiation operator onPn. Let T be a linear operator onPn sat-
isfying T (p(t)) = p(t + 1). Then show that T = I + D + D2

2! + · · · + Dn−1

(n−1)! .
59. Let V be a finite dimensional vector space. Fix a vector u ∈ V and a linear func-

tional f on V . Define the operator T on V by T x = f (x)u. Find a polynomial
p(t) such that p(T ) = 0.

60. Let {v1, . . . , vn} be a basis for a vector space V .Letα1, . . . , αn be distinct scalars.
Let A be a linear operator on V with Av j = α j v j for j ∈ {1, . . . , n}. Suppose B
is a linear operator on V such that AB = BA. Does it guarantee the existence
of scalars β j such that Bv j = β j v j for j ∈ {1, . . . , n}?
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61. Let k,m, n ∈ N. Let A ∈ F
k×m . Define T : F

m×n → F
k×n by T (X) = AX.

Show the following:

(a) If m < n, then T can be surjective but not injective.
(b) If m > n, then T can be injective but not surjective.
(c) T is invertible if and only if k = m and A is invertible.

62. Let A, B,C, D be linear operators on a finite dimensional vector space V . Prove
or disprove: If both A + B and A − B are invertible, then there exist linear
operators S and T on V such that AS + BT = C and BS + AT = D.

63. Let A be a linear operator on a finite dimensional vector space V . Define a map
φ : L(V, V ) → L(V, V ) by φ(X) = AX.

(a) Prove that φ is a linear operator on L(V, V ).

(b) Under what conditions on A, is φ invertible?
(c) Can each operator on L(V, V ) be obtained this way by fixing A?

64. Let f and g be linear functionals on a vector space V such that f (v) = 0 if and
only if g(v) = 0 for every v ∈ V . Prove that g = α f for some scalar α.

65. Let f : V → F be a linear functional and let v ∈ V \ N ( f ). Show that V =
N ( f ) ⊕ {αv : α ∈ F}.

66. Let V be a vector space of dimension n and let f1, . . . , fm ∈ V ′, where m < n.

Determine the conditions on the scalars α1, . . . , αn to guarantee the existence of
a vector x ∈ V such that f j (x) = α j for j ∈ {1, . . . ,m}. Interpret the result for
linear systems.

67. Let V be a vector space of dimension n. Call an (n − 1)-dimensional subspace
of V a hyperspace. Prove that if U is a k-dimensional subspace of V, then U is
the intersection of n − k hyperspaces.

68. In general, a hyperspace in a vector space v is a maximal proper subspace of V .

Prove the following:

(a) If f is a nonzero linear functional on V, then N ( f ) is a hyperspace in V .

(b) Each hyperspace in V is the null space of some linear functional on V .

(c) Such a linear functional in (b) need not be unique.

69. Let t1, . . . , tn ∈ R be distinct. For any p(t) ∈ Pn−1(R), let Li (p) = p(ti ) for
each i ∈ {1, . . . , n}. Let

p j (t) := (t − t1) · · · (t − t j−1)(t − t j+1) · · · (t − tn)

(t j − t1) · · · (t j − t j−1)(t j − t j+1) · · · (t j − tn)
for j ∈ {1, . . . , n},

Prove the following:

(a) {p1, . . . , pn} is a basis of Pn−1(R).

(b) {L1, . . . , Ln} is a basis of the dual space of Pn−1(R).

(c) Given a1, . . . , an ∈ R, there exists a unique polynomial p(t) ∈ Pn−1(R)

such that p(t1) = a1, . . . , p(tn) = an.
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The polynomials p j (t) are called the Lagrange polynomials. By doing this exer-
cise you have solved the interpolation problem which asks for constructing a
polynomial that takes prescribed values at prescribed points.

70. LetU be a subspace of a vector spaceV with dim(U ) = m ≤ n = dim(V ).Show
that W := {A ∈ L(V, V ) : Ax = 0 for all x ∈ U } is a subspace of L(V, V ).

What is dim(W )?
71. Let V be a vector space. Let f1, . . . , fn and g be linear functionals on V . Then

g ∈ span{ f1, . . . , fn} if and only if N ( f1) ∩ · · · ∩ N ( fn) ⊆ N (g).
72. Let V be a vector space of dimension 2. Let A, B, T ∈ L(V, V ). Show that

(AB − BA)2T = T (AB − BA)2. Does it happen if dim(V ) > 2?
73. Let T ∈ L(C2, C

2) be given by T (a, b) = (a + b, b). Show that if
S ∈ L(C2, C

2) commutes with T, then S = p(T ) for some polynomial p(t).
74. Let T : U → V be an isomorphism. Define φ : L(U,U ) → L(V, V ) by

φ(S) = T−1ST . Prove that φ is an isomorphism.
75. Suppose A ∈ C

n×n has all diagonal entries 0. Do there exist matrices M,

P ∈ C
n×n such that A = MP − PM?

76. Let T : V → W be a linear transformation. Show that rank (T ) is finite if and
only if there exist n ∈ N, {v1, . . . , vn} ⊆ V and { f1, . . . , fn} ⊆ V ′ such that
T x = ∑n

j=1 f j (x)v j for each x ∈ V . Such a linear transformation is said to be
of finite rank.

77. Let f and g be linear functionals on a vector space V . If h is a linear functional
on V with h(v) = f (v)g(v) for each v ∈ V, then prove that either f = 0 or
g = 0.

78. Let S be a subset of a vector space V . The annihilator S0 of S is defined by
S0 := { f ∈ V ′ : f (v) = 0 for each v ∈ S}. Thus {0}0 = V ′ and V 0 = {0} ⊆ V ′.

(a) Prove that S0 is a subspace of V ′.
(b) Let U be a subspace of a finite dimensional vector space V . Prove that

dim(V ) = dim(U ) + dim(U 0).

(c) If dim(V ) < ∞, then prove that span(S) = S00. (The identification uses the
natural isomorphism between V and V ′′.)

(d) Let A, B be subsets of a finite dimensional vector space V . Prove that if
A ⊆ B, then B0 ⊆ A0.

(e) Let U and W be subspaces of a finite dimensional vector space V . Prove
that (U ∩ W )0 = U 0 + W 0 and (U + W )0 = U 0 ∩ W 0.

(f) Let U and W be subspaces of a finite dimensional vector space V . Prove
that if V = U ⊕ W, then U ′ � W 0, W ′ � U 0, and V ′ = U 0 ⊕ W 0.

(g) The restriction of the isomorphism T : V → V ′′ to U, which is defined by
(T v)(g) = g(v), is an isomorphism from U to U 00.

(h) If U and W are subspaces of a finite dimensional vector space V, then
U = W if and only if U 0 = W 0.
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79. Let U1, . . . ,Uk be subspaces of a vector space V . Write

Vi := U1 ⊕ · · · ⊕Ui−1 ⊕Ui+1 · · · ⊕Uk .

Suppose that V = U1 ⊕ · · · ⊕Uk . Prove that V ′ = V 0
1 ⊕ · · · ⊕ V 0

k .

80. LetU be a subspace of a vector space V .Corresponding to each linear functional
F on V/U, define a linear functional f on V by f (x) = F(x +U ) for each
x ∈ V . Prove that the correspondence F �→ f is an isomorphism from (V/U )′
to U 0.



Chapter 3
Elementary Operations

3.1 Elementary Row Operations

In Sect. 2.5, we have seen how the rank of a matrix determines its equivalence
class. If two m × n matrices have the same rank, then they represent the same linear
transformation from F

n×1 to F
m×1,with respect to (possibly) different pairs of bases.

The question is, how do we determine the rank of a matrix?
A rank echelon matrix Er has from top left the first r diagonal entries as 1 and all

other entries as 0. That is, Er of order n looks like

Er =
[
Ir 0
0 0

]
,

where Ir is the identity matrix of order r and the 0s are the matrices of suitable size
with all entries as 0. Clearly, Er is of rank r. Thus to compute the rank of a matrix, a
rank preserving reduction to a rank echelon matrix will do the job. We will see that
such a reduction requires operating with both rows and columns of a given matrix,
in general. The column operations are nothing but row operations on the transpose
of a matrix. Therefore, we will consider the row operations in detail.

Consider the 3 × 4 matrix

A =
⎡
⎣1 1 2 3
1 2 3 4
1 4 5 6

⎤
⎦ .

Its rows are u1 = (1, 1, 2, 3), u2 = (1, 2, 3, 4), and u3 = (1, 4, 5, 6). To determine
the row rank of A, that is, the dimension of the space spanned by the rows of A,

(which is also equal to the maximum number of linearly independent vectors out of
u1, u2, u3), we must find out whether any one of them is a linear combination of the
others. If that happens, then surely that vector can safely be omitted for computing
the row rank. Here, we see that
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u3 = 3u2 − 2u1.

Also, u1 and u2 are linearly independent. Hence, the row rank of A is 2.
To implement the changes in the entries of the matrix A we replace the third row

by this rowminus thrice the second row plus twice the first row. Then the newmatrix
will have the third row as a zero row. Now, going a bit further on the same line of
computation, we replace the second row of the new matrix, which is u2 by u2 − u1.
This results in the new second row as (0, 1, 1, 1). The main goal here is to bring in
as many zero entries as possible by using linear combinations so that we progress
towards a rank echelon matrix. See the following computation.

⎡
⎣1 1 2 3
1 2 3 4
1 4 5 6

⎤
⎦ R1−→

⎡
⎣1 1 2 3
0 1 1 1
0 0 0 0

⎤
⎦ R2−→

⎡
⎣1 0 1 2
0 1 1 1
0 0 0 0

⎤
⎦ .

Here, the row operation R1 replaces row(2) by row(2) − row(1), and row(3) by
row(3) − 3row(2) + 2row(1) simultaneously. Similarly, R2 stands for replacing
row(1) with row(1) − row(2).

Such row operations are combinations of the three kinds of operations on the rows
of a matrix. We define these operations.

Definition 3.1 The following are called elementary row operations applied on a
matrix:

(a) Type 1: Exchanging two rows;
(b) Type 2: Multiplying a row by a nonzero scalar;
(c) Type 3: Adding to a row a nonzero scalar multiple of another row.

The elementary row operations can be seen as matrix products. For this purpose,
we introduce the so-called elementary matrices, which are obtained by performing
analogous elementary row operations on the identity matrix.

Definition 3.2 Let I be the identity matrix of order m. Let i, j ∈ {1, . . . ,m} be the
row indices and let α be a nonzero scalar. The matrices obtained as in the following
are called the elementary matrices of order m:

(a) E[i, j]: by exchanging the i th and the j th rows in I (Type 1);
(b) Eα[i]: by multiplying α with the i th row in I (Type 2);
(c) Eα[i, j]: by adding to the i th row α times the j th row, in I (Type 3).

To avoid heavy overload on symbolism, our notation for elementary matrices do
not reflect their orders. The orders or sizes of the matrices will either be specified
separately or will be clear from the context.



3.1 Elementary Row Operations 109

Example 3.3 Some of the elementary matrices of order 4 are as follows:

E[2, 4] =

⎡
⎢⎢⎣
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦ , E6[3] =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 6 0
0 0 0 1

⎤
⎥⎥⎦ , E3[2, 3] =

⎡
⎢⎢⎣
1 0 0 0
0 1 3 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

Of course, there are other elementary matrices of order 4 such as E[1, 2], E[1, 3],
E[1, 4], E[2, 3], E[3, 4]; Eα[1], Eα[2], Eα[3], Eα[4]; Eα[1, 2], Eα[1, 3],
Eα[1, 4]; and Eα[2, 3], Eα[2, 4], Eα[3, 4] for any nonzero α ∈ F. �

As it turns out, the products E[i, j]A, Eα[i]A and Eα[i, j]A are the matrices
obtained by performing the corresponding elementary row operations of Types 1, 2, 3
on A. They are as follows. (See Exercises 4–6.)

1. E[i, j]A is obtained from A by exchanging the i th and the j th rows in A.

2. Eα[i]A is obtained from A by replacing the i th row of A by α times the i th row
of A.

3. Eα[i, j]A is obtained from A by replacing the i th row by i th row plus α times
the j th row of A.

We specify an elementary row operation by its corresponding elementary matrix.
In showing the elementary row operations in numerical examples, we will write

A
E−→ B,

where B = E A has been obtained from A by using the elementary row operation
corresponding to the elementary matrix E . See the following example.

Example 3.4 Using our notation for elementary row operations, the sequence of
elementary row operations

replace row(2) with row(2) − row(1);
replace row(3) with row(3) − 3row(2);
replace row(3) with row(3) − row(1)

applied on the matrix

⎡
⎣1 1 2 3
1 2 3 4
1 4 5 6

⎤
⎦ can now be written as follows:

[
1 1 2 3
1 2 3 4
1 4 5 6

]
E−1[2,1]−→

[
1 1 2 3
0 1 1 1
1 4 5 6

]
E−3[3,2]−→

[
1 1 2 3
0 1 1 1
1 1 2 3

]
E−1[3,1]−→

[
1 1 2 3
0 1 1 1
0 0 0 0

]
.

The operations above say that we first apply E−1[2, 1]. Then on the resulting matrix
we apply E−3[3, 2]. Again, on the resulting matrix, E−1[3, 1] is applied. The com-
putation can be written more compactly as
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E−1[3, 1] E−3[3, 2] E−1[2, 1]
⎡
⎣1 1 2 3
1 2 3 4
1 4 5 6

⎤
⎦ =

⎡
⎣1 1 2 3
0 1 1 1
0 0 0 0

⎤
⎦ .

Notice the reverse order in multiplying the elementary matrices. �

Exercises for Sect. 3.1

1. Compute E−1/5[2, 3] E[1, 3] E1/2[2]A, where A =
⎡
⎣0 1 1 1
0 2 3 1
1 0 2 −3

⎤
⎦ .

2. Determine the elementary row operations and the corresponding elementary
matrices in the following reduction:

[
5 4 1 0
6 5 0 1

]
−→

[
5 4 1 0
1 1 −1 1

]
−→

[
1 0 5 −4
1 1 −1 1

]
−→

[
1 0 5 −4
0 1 −6 5

]
.

Further, verify that the product of those elementary matrices is

[
5 −4

−6 5

]
.

3. Let A ∈ F
3×3. Determine three matrices B,C, D ∈ F

3×3 such that

(a) BA is obtained from A by adding the third row to the first row in A.

(b) CA is obtained from A by adding the third row to the second row in A, and
simultaneously by adding the second row to the first row in A.

(c) DA is obtained from A by adding the third row to the second row in A, and
then by adding the second row to the first row in A.

4. Let e1, . . . , em be the standard basis vectors of F
m×1. For i, j ∈ {1, . . . ,m}, let

Ei j := ei eTj and let I be the identity matrix of orderm. Show that the three kinds
of elementary matrices E[i, j], Eα[i], Eα[i, j] of order m can be given as in
the following:

(a) E[i, j] := I − Eii − E j j + Ei j + E ji for i �= j.
(b) Eα[i] := I − Eii + αEii for a nonzero scalar α.

(c) Eα[i, j] := I + αEi j for a nonzero scalar α and i �= j.

5. Let A ∈ F
m×n and let Ei j := ei eTj be as given in Exercise 4. Show that the i th

row of Ei j A is the j th row of A; all other rows of Ei j A are zero rows.
6. Let A ∈ F

m×n . Let E[i, j], Eα[i] and Eα[i, j] be the matrices as given in Exer-
cise 4. Show that the matrices E[i, j]A, Eα[i]A, and Eα[i, j]A are equal to
those obtained by applying the corresponding the elementary row operations
on A.

7. Show that the elementary matrices are invertible and their inverses are given by
(E[i, j])−1 = E[ j, i], (Eα[i])−1 = E1/α[i], and (Eα[i, j])−1 = E−α[i, j].
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8. Show that if amatrix B is obtained from anothermatrix A by applying a sequence
of elementary row operations, then A can also be obtained from B by applying
a sequence of elementary row operations.

9. Take a 3 × 3 matrix A and explore what happens to the rows or columns
of A in the products AE[i, j], AEα[i], AEα[i, j], AE[i, j]T , AEα[i]T , and
AEα[i, j]T .

10. Is it true that the transpose of an elementary matrix is also an elementary matrix?

3.2 Row Echelon Form

Row operations can be used to obtain a matrix with fewer nonzero entries. Given
a matrix, our goal is to obtain a matrix from the given one, all of whose nonzero
rows are linearly independent. Moreover, the linear independence should be visible
without any further computation. Towards this, we give the following definition.

Definition 3.5 A row operation is a finite sequence of elementary row operations.
If a matrix B is obtained from a matrix A by applying a row operation, we say that
B is row equivalent to A.

In Example 3.4,

⎡
⎣1 1 2 3
0 1 1 1
0 0 0 0

⎤
⎦ is row equivalent to

⎡
⎣1 1 2 3
1 2 3 4
1 4 5 6

⎤
⎦ .

The elementary matrices are invertible, and their inverses are given by

(E[i, j])−1 = E[ j, i], (Eα[i])−1 = E1/α[i], (Eα[i, j])−1 = E−α[i, j],

which are also elementary matrices. Using this it is easily seen that row equivalence
is an equivalence relation on F

m×n . We are in search of a canonical representative
which would somehow show us the linearly independent rows as in the first matrix
above.

Towards this, we first define such a form. Recall that the (i, j)th entry of a matrix
has row index i and column index j. We also say that the row index of the i th row is
i, and the column index of the j th column is j.

Definition 3.6 In a nonzero row of a matrix, the first nonzero entry from the left is
called a pivot.
A matrix is said to be in row echelon form if the following are satisfied:

(1) The row index of each nonzero row is smaller than the row index of each zero
row.

(2) Among any two pivots, the pivot with larger row index also has larger column
index.

We mark a pivot in a row by putting a box around it. All entries to the left of a
pivot in that row are zero.
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For example, the following matrices are in row echelon form:

⎡
⎢⎣

1 2 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎦ ,

⎡
⎢⎢⎣
0 2 3 0

0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
0 1 3 1

0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎢⎣
0 1 0 0

0 0 1 0
0 0 0 0

0 0 0 1

⎤
⎥⎥⎥⎦ .

And, the following matrices are not in row echelon form:

⎡
⎢⎣
0 0 1 2

0 1 1 0

0 0 0 1

⎤
⎥⎦ ,

⎡
⎢⎢⎣

0 2 3 0

1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎢⎣
0 1 3 1

0 0 0 1
0 0 0 0

0 1 0 0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣
0 1 3 0

0 0 0 1

0 0 0 1
0 0 0 0

⎤
⎥⎥⎥⎦ .

The first condition in Definition 3.6 says that all zero rows are at the bottom. The
second condition is sometimes stated informally as

The pivot in the (i + 1)th row is to the right of the pivot in the i th row.

This condition implies the following:

In a pivotal column of a matrix in row echelon form, all entries below the pivot
are zero.

We will see that satisfying such a goal systematically will result in converting a
matrix to a row echelon form.

Theorem 3.7 (Row echelon form) Each matrix is row equivalent to one in row
echelon form.

Proof Let A ∈ F
m×n . We use induction on n, the number of columns in A. For

n = 1, A is a column vector. If all entries in this single column are 0, then this itself
is the row echelon form. Otherwise, let j be the minimum index out of 1, . . . ,m such
that a j1 �= 0. Exchange row(1) and row( j). Now, the first row of this new column
vector has the first entry as a j1 �= 0. Write α = a j1. Replace each other row, row(i)
by row(i) − ai1

α
row(1). This brings the column vector to row echelon form. The

result is the column vector

E− am1
α

[m, 1] · · · E− a21
α

[2, 1] E[ j, 1] A,

which is equal to αe1.
Assume that all matrices with n − 1 columns can be brought to row echelon form

by pre-multiplying it with elementary matrices. Let A have n columns. Look at the
first column col(1) of A. Use the same elementary matrices for reducing col(1) to
row reduced form as in the basis case. These elementary row operations are applied
on A and not only on col(1). That is, there are elementary matrices E ′

1, . . . , E
′
m such

that

E ′
m · · · E ′

1A =
[
α ∗
0 B

]
.
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The entries in the first row marked ∗ are some numbers, and the matrix
B ∈ F

(m−1)×(n−1). By induction hypothesis, there exist elementary matrices E1, . . . ,

Er such that Er · · · E1B is in row echelon form. Then

[
1 0
0 Er

]
· · ·

[
1 0
0 E1

]
E ′
m · · · E ′

1A

is the required row echelon form of the matrix A. Notice that any matrix

[
1 0
0 Ek

]

used in the above product is also an elementarymatrix, whenever Ek is an elementary
matrix. �

The proof of Theorem 3.7 gives the following algorithm for reducing a matrix to
row echelon form. We use a pivot in a row to zero-out the entries below the pivot
systematically. Initially, we work with the whole matrix, and subsequently, with its
submatrices. In the following algorithm we write such submatrices as R, and call
them as search regions.

Reduction to Row Echelon Form

1. Set the search region R to the whole matrix A.

2. If all entries in R are 0, then stop.
3. Else, find the leftmost nonzero column in R. Mark this column in A as a pivotal

column.
4. Find the topmost nonzero entry in the pivotal column that occurs in R; box it; it

is a pivot.
5. If the top row of R does not contain the pivot, then exchange the row of A that

contains the top row of R with the row that contains the pivot.
6. Mark the row in A, which is the top row of R, as the pivotal row.
7. Zero-out all entries below the pivot, in the pivotal column, by replacing each row

below the pivotal row using the third type of elementary row operations with
that row and the pivotal row.

8. Find the submatrix of R to the right and below the current pivot. If no such
submatrix exists, then stop. Else, reset the search region R to this submatrix, and
go to 2.

Clearly, the output of the algorithm on an inputmatrix A is amatrix in row echelon
form. We refer to the resulting matrix as the row echelon form of A.

Example 3.8 Check how A is converted to B, which is in row echelon form:
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A =

⎡
⎢⎢⎣

1 1 2 0
3 5 5 1
1 5 4 5
2 8 7 9

⎤
⎥⎥⎦ R1−→

⎡
⎢⎢⎣

1 1 2 0
0 2 −1 1
0 4 2 5
0 6 3 9

⎤
⎥⎥⎦ R2−→

⎡
⎢⎢⎣

1 1 2 0
0 2 −1 1
0 0 4 3
0 0 6 6

⎤
⎥⎥⎦

R3−→

⎡
⎢⎢⎢⎣

1 1 2 0
0 2 1 1
0 0 4 3
0 0 0 3/2

⎤
⎥⎥⎥⎦ = B.

Here, the row operations are

R1 = E−3[2, 1], E−1[3, 1], E−2[4, 1]; R2 = E−2[3, 2], E−3[4, 2]; R3 = E−3/2[4, 3].

The matrix B can be written as a product of elementary matrices with A:

B = E−3/2[4, 3] E−3[4, 2] E−2[3, 2] E−2[4, 1] E−1[3, 1] E−3[2, 1] A. �

In the row echelon form, the nonzero rows are linearly independent. Thus, the
dimension of the space spanned by all the rows is the number of nonzero rows in
the row echelon form. That is, the row rank of a matrix in row echelon form is the
number of pivots. Moreover, the row rank is equal to the rank of a matrix. Therefore,
rank (A) is the number of pivots in the row echelon form of A.

Example 3.9 To compute the rank of the matrix A =

⎡
⎢⎢⎣
0 2 0 1
1 2 2 1
2 2 4 1
1 −2 2 −1

⎤
⎥⎥⎦ , we reduce it

to its row echelon form as follows:

⎡
⎢⎢⎣
0 2 0 1
1 2 2 1
2 2 4 1
1 −2 2 −1

⎤
⎥⎥⎦ E[1,2]−→

⎡
⎢⎢⎣

1 2 2 1
0 2 0 1
2 2 4 1
1 −2 2 −1

⎤
⎥⎥⎦ R−→

⎡
⎢⎢⎣

1 2 2 1
0 2 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

Here, R is the row operation E−2[3, 1], E−1[4, 1]; E1[3, 2], E2[4, 2]. The number
of pivots shows that rank (A) = 2. �

Looking at the reduction to row echelon form, we end up at a useful matrix
factorization. For convenience, we will use the following terminology.

Definition 3.10 A permutation matrix of order m is a matrix obtained by permut-
ing the rows of the identity matrix of order m.

Observe that a permutation matrix is a product of elementary matrices of Type 1.
Moreover each permutation matrix is invertible.
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Theorem 3.11 (LU-factorization) Let A ∈ F
m×n . Then there exist a permutation

matrix P of order m, a lower triangular matrix L of order m with all its diagonal
entries as 1, and a matrix U ∈ F

m×n in row echelon form such that P A = LU.

Proof Let rank (A) = r. If r = 0, then A = 0, and we take P = L = I andU = A.

So, let r ≥ 1. LetU be the row echelon form of A. InU, there are exactly r number
of pivots. If no row exchanges have been used for reducing A to its row echelon
form U, then we take P = I. Otherwise, suppose the row exchanges applied in the
reduction process are E[i1, j1], . . . , E[i�, j�], in that order. These row exchanges
have been carried out in the reduction process so that starting from the first row of
A to the last, exactly r number of linearly independent rows come up as the first r
rows in U. If we apply the same row exchanges on A in the beginning, then exactly
the same r linearly independent rows of A will come up as the first r rows in PA,

where
P := E[i�, j�] · · · E[i1, j1].

Notice that P is a permutation matrix; it is invertible. Thus rank (PA) = r. In PA,

the first r rows are linearly independent. While reducing PA to its row echelon form,
no row exchanges are required. Moreover, the pivots in this reduction process are the
same entries as inU. ThusU is also the row echelon form of the matrix PA.Observe
that the elementary row operations of Type 3 used in the reduction of PA to U are
the same as in the reduction of A toU.However, the row indices i and j in each such
Eα[i, j] may change due to initial row exchanges carried out in pre-multiplying A
with P.

We look at how the reduction process works on PA = [bi j ] to reach at U. Ini-
tially, the (1, 1)th entry b11 of PA is a pivot. Any other entry b j1 for j > 1, in the
first column is zeroed-out by using the elementary row operation E−b j1/b11 [ j, 1]. In
general, while operating with the kth pivot, we see that all entries in the first k − 1
columns below the diagonal are already 0. Next, if the kth column is

[c1, . . . , ck−1, ck, ck+1, . . . , cn]T ,

then to zero-out the j th entry in this column, for j > k, we use the elementary row
operation E−c j /ck [ j, k]. This process stops when k becomes equal to r. And, in that
case, we reach at the matrix U. Taking the product of all these elementary matrices
as L0, we obtain

U = L0 P A,

where L0 is the product of elementary matrices of each of the form Eα[ j, k] with
j > k. Notice that each such matrix Eα[ j, k] is a lower triangular matrix with all
diagonal entries as 1. Therefore, L0 is invertible, and L−1

0 is also a lower triangular
matrix with all its diagonal entries as 1. With L = L−1

0 , we have PA = LU. �

Notice that if A is a square matrix, then its row echelon formU is upper triangular.
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Example 3.12 To illustrate the proof of LU-factorization, consider the matrix A and
its reduction to row echelon form as given below:

A =

⎡
⎢⎢⎢⎢⎣

1 2 1 2 1
2 4 2 5 2
3 7 4 6 4
1 4 5 4 5
2 6 4 6 4

⎤
⎥⎥⎥⎥⎦

R1−→

⎡
⎢⎢⎢⎢⎣

1 2 1 2 1
0 0 0 1 0
0 1 1 0 1
0 2 4 2 4
0 2 2 2 2

⎤
⎥⎥⎥⎥⎦

E[2,3]−→

⎡
⎢⎢⎢⎢⎣

1 2 1 2 1
0 1 1 0 1
0 0 0 1 0
0 2 4 2 4
0 2 2 2 2

⎤
⎥⎥⎥⎥⎦

R2−→

⎡
⎢⎢⎢⎢⎣

1 2 1 2 1
0 1 1 0 1
0 0 0 1 0
0 0 2 2 2
0 0 0 2 0

⎤
⎥⎥⎥⎥⎦

E[3,4]−→

⎡
⎢⎢⎢⎢⎣

1 2 1 2 1
0 1 1 0 1
0 0 2 2 2
0 0 0 1 0
0 0 0 2 0

⎤
⎥⎥⎥⎥⎦

E−2[5,4]−→

⎡
⎢⎢⎢⎢⎢⎣

1 2 1 2 1
0 1 1 0 1
0 0 2 2 2
0 0 0 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

= U.

Here, R1 = E−2[2, 1], E−3[3, 1], E−1[4, 1], E−2[5, 1], and R2 = E−2[4, 2],
E−2[5, 2].

We look at the row exchanges. They are E[2, 3] and E[3, 4] in that order. That
is, first E[2, 3] and then E[3, 4] have been multiplied with A from the left. Thus

P = E[3, 4] E[2, 3] =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ , PA =

⎡
⎢⎢⎢⎢⎣

1 2 1 2 1
3 7 4 6 4
1 4 5 4 5
2 4 2 5 2
2 6 4 6 4

⎤
⎥⎥⎥⎥⎦ .

Next, PA is reduced to its row echelon form as follows:

⎡
⎢⎢⎢⎢⎣

1 2 1 2 1
3 7 4 6 4
1 4 5 4 5
2 4 2 5 2
2 6 4 6 4

⎤
⎥⎥⎥⎥⎦

R3−→

⎡
⎢⎢⎢⎢⎣

1 2 1 2 1
0 1 1 0 1
0 2 4 2 4
0 0 0 1 0
0 2 2 2 2

⎤
⎥⎥⎥⎥⎦

R4−→

⎡
⎢⎢⎢⎢⎢⎣

1 2 1 2 1
0 1 1 0 1
0 0 2 2 2
0 0 0 1 0
0 0 0 2 0

⎤
⎥⎥⎥⎥⎥⎦

E−2[5,4]−→ U.

Here, R3 = E−3[2, 1], E−1[3, 1], E−2[4, 1], E−2[5, 1], and R4 = E−2[3, 2],
E−2[5, 2]. Then
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L = (
E−2[5, 4] E−2[5, 2] E−2[3, 2] E−2[5, 1] E−2[4, 1] E−1[3, 1] E−3[2, 1]

)−1

= E3[2, 1] E1[3, 1] E2[4, 1] E2[5, 1] E2[3, 2] E2[5, 2] E2[5, 4]

=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
3 1 0 0 0
1 2 1 0 0
2 0 0 1 0
2 2 0 2 1

⎤
⎥⎥⎥⎥⎦ .

It is easy to verify that PA = LU. �

Though the factorization is called LU-factorization, it is not possible to express
every square matrix as a product of a lower triangular matrix with nonzero diagonal
entries, and an upper triangular matrix; see Exercise 5.

Exercises for Sect.3.2

1. List out all 3 × 4matrices in row echelon form bywriting � for any nonzero entry,
and 0 for a zero entry.

2. Reduce the following matrices to row echelon form:

(a)

⎡
⎣1 1 1
1 1 0
0 0 1

⎤
⎦ (b)

⎡
⎣0 0 4 0
2 2 −2 5
5 5 −5 5

⎤
⎦ (c)

⎡
⎢⎢⎣
0 2 3 7
1 1 1 1
1 3 4 8
0 0 0 1

⎤
⎥⎥⎦ .

3. Prove that row equivalence is an equivalence relation on F
m×n .

4. Give examples of two unequal m × n matrices in row echelon form, which are
row equivalent.

5. Show that there do not exist a lower triangular matrix L ∈ F
2×2 with nonzero

diagonal entries, and an upper triangular matrix U ∈ F
2×2 such that

LU =
[
0 1
1 0

]
.

6. In each of the following cases, determine a lower triangular matrix L and an upper
triangular matrixU so that the given matrix equals LU. If not possible, determine
also a permutation matrix P so that the given matrix equals PLU.

(a)

⎡
⎣0 −6 4
2 1 2
1 4 1

⎤
⎦ (b)

⎡
⎣1 1 1
1 1 3
2 5 8

⎤
⎦ (c)

⎡
⎣ 1 2 4

−1 −3 3
4 9 14

⎤
⎦ .

7. Let A ∈ F
m×n .Suppose P ∈ F

m×m andQ ∈ F
n×n are permutationmatrices. Show

that PA permutes the rows of A and AQ permutes the columns of A.

8. Prove that a permutation matrix is invertible without using elementary matrices.
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3.3 Row Reduced Echelon Form

Elementary operations can be used to reduce a matrix to a still simpler form, where
all pivots are 1 and all nonpivotal entries in a pivotal column are 0. This will also
answer our question regarding a canonical representative for the equivalence relation
of row equivalence. Such a form is defined below.

Definition 3.13 A matrix A ∈ F
m×n is said to be in row reduced echelon form if

the following conditions are satisfied:

(1) Each pivot is equal to 1.
(2) In a pivotal column, all entries other than the pivot are zero.
(3) The row index of each nonzero row is smaller than the row index of each zero

row.
(4) Among any two pivots, the pivot with larger row index also has larger column

index.

For example, the matrix

⎡
⎣ 1 2 0 0

0 0 1 0
0 0 0 0

⎤
⎦ is in row reduced echelon form whereas

the following matrices are not in row reduced echelon form:

⎡
⎢⎢⎣
0 2 3 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
0 1 3 1
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
0 1 3 0
0 0 0 1
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ .

Clearly, amatrixwhich is in row reduced echelon form is also in row echelon form.
There are row echelon matrices which are not in row reduced echelon form. Amatrix
in row echelon form with r number of pivots is also in row reduced echelon form
if and only if the pivotal columns are the first r standard basis vectors e1, . . . , er ,
appearing in that order from left to right. Therefore, a column vector (an m × 1
matrix) is in row reduced echelon form if and only if it is either a zero vector or e1.

Theorem 3.14 (Row reduced echelon form) Each matrix is row equivalent to one
in row reduced echelon form.

Proof Let A ∈ F
m×n . By Theorem 3.7, there exists a row echelon matrix B which

is row equivalent to A. If a pivot in the i th row is α, then Eα[i] B brings that pivot
to 1. Thus B is reduced to a row equivalent matrix C where all pivots are 1.

Next, we look at any nonpivotal entry in a pivotal column. If it is the (i, j)th entry
and it is α �= 0, and the pivot is the (k, j)th entry, then we compute E−α[i, k]C.

In this new matrix, the (i, j)th entry has been reduced to 0. We continue doing this
looking at all such nonpivotal nonzero entries. Finally, the obtained matrix is in row
reduced echelon form. �
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The proof of Theorem 3.14 says that the algorithm for reducing a matrix to its
row echelon form can be modified for reducing it to a row reduced echelon form.
The modifications are in Step 7 for Reduction to Row Echelon Form.

Reduction to Row Reduced Echelon Form

All steps except Step 7 are as in Reduction to Row Echelon Form.

7A. Divide each entry in the pivotal row by the pivot, using the second type of
elementary row operation.

7B. Zero-out all entries below and above the pivot, in the pivotal column, by replac-
ing each nonpivotal row using the third type of elementary row operations with
that row and the pivotal row.

As earlier, we will refer to the output of the above reduction algorithm as the row
reduced echelon form of a given matrix.

Example 3.15 In the following the matrix A is brought to its row reduced echelon
form B.

A =

⎡
⎢⎢⎣

1 1 2 0
3 5 7 1
1 5 4 5
2 8 7 9

⎤
⎥⎥⎦ R1−→

⎡
⎢⎢⎣

1 1 2 0
0 2 1 1
0 4 2 5
0 6 3 9

⎤
⎥⎥⎦ E1/2[2]−→

⎡
⎢⎢⎣

1 1 2 0
0 1 1/2 1/2

0 4 2 5
0 6 3 9

⎤
⎥⎥⎦

R2−→

⎡
⎢⎢⎣

1 0 3/2 −1/2

0 1 1/2 1/2

0 0 0 3
0 0 0 6

⎤
⎥⎥⎦ E1/3[3]−→

⎡
⎢⎢⎣

1 0 3/2 −1/2

0 1 1/2 1/2

0 0 0 1
0 0 0 6

⎤
⎥⎥⎦ R3−→

⎡
⎢⎢⎣

1 0 3/2 0
0 1 1/2 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ = B

with R1 = E−3[2, 1], E−1[3, 1], E−2[4, 1]; R2 = E−1[1, 2], E−4[3, 2], E−6[4, 2];
and R3 = E1/2[1, 3], E−1/2[2, 3], E−6[4, 3]. Notice that

B = E−2[4, 1] E−1[3, 1] E−3[2, 1] E1/2[2] E−6[4, 2] E−4[3, 2] E−1[1, 2]
E1/3[3] E−6[4, 3] E−1/2[2, 3] E1/2[1, 3] A. �

Weobserve that in the row reduced echelon formof A ∈ F
m×n, r := rank (A) is the

number of pivots. The r pivotal rows are the nonzero rows; them − r nonpivotal rows
are the zero rows, which occur at the bottom. The r pivotal columns are e1, . . . , er ,
the first r standard basis vectors of F

m×1; the n − r nonpivotal columns are linear
combinations of these pivotal columns.

Theorem 3.16 A squarematrix is invertible if and only if it is a product of elementary
matrices.
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Proof Each elementary matrix is invertible. Therefore, a product of elementary
matrices is invertible. Conversely, let A ∈ F

n×n be an invertible matrix. Let E be
a product of elementary matrices such that E A is in row reduced echelon form. As
rank (A) = n, the matrix E A has exactly n pivots. The entries in each pivotal column
above and below the pivot are 0. The pivots are each equal to 1. Therefore, E A = I .
Consequently, A = E−1, a product of elementary matrices. �

Notice that row equivalence of matrices can now be stated in an easier way. If A
and B are m × n matrices, then A is row equivalent to B if and only if there exists
an invertible matrix P such that B = PA.

When a sequence of elementary row operations reduce an invertible matrix A to
I, the product of the corresponding elementary matrices is equal to A−1. In order to
use this in computation, the following writing aid will be helpful.

Definition 3.17 Let A be an m × n matrix and let B be an m × k matrix. The m ×
(n + k) matrix obtained by writing first all the columns of A and then the columns
of B, in that order, is called the augmented matrix corresponding to the matrices
A and B, and it is denoted by [A|B].

Given a matrix A ∈ F
n×n, we start with the augmented matrix [A|I ]; then apply

elementary row operations for reducing A to its row reduced echelon form, while
simultaneously applying the operations on the entries of I. This will reduce the
augmented matrix [A|I ] to [B|C].

If B = I , then C = A−1. If A is not invertible, then B will have zero row(s) at the
bottom. As rank ([A|I ]) = n, this will result in at least one pivot in C. Therefore, in
the reduction process if a pivot appears in C, we may stop and report that A is not
invertible.

Example 3.18 Consider the following square matrices:

A =

⎡
⎢⎢⎣

1 −1 2 0
−1 0 0 2
2 1 −1 −2
1 −2 4 2

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

1 −1 2 0
−1 0 0 2
2 1 −1 −2
0 −2 0 2

⎤
⎥⎥⎦ .

We want to find the inverses of the matrices, if at all they are invertible.
Augment A with an identity matrix to get

⎡
⎢⎢⎣

1 −1 2 0 1 0 0 0
−1 0 0 2 0 1 0 0
2 1 −1 −2 0 0 1 0
1 −2 4 2 0 0 0 1

⎤
⎥⎥⎦ .

Use elementary row operations towards reducing A to its row reduced echelon form.
Since a11 = 1, we leave row(1) untouched. To zero-out the other entries in the
first column, use the sequence of elementary row operations E1[2, 1]; E−2[3, 1];
E−1[4, 1] to obtain
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⎡
⎢⎢⎣

1 −1 2 0 1 0 0 0
0 −1 2 2 1 1 0 0
0 3 −5 −2 −2 0 1 0
0 −1 2 2 −1 0 0 1

⎤
⎥⎥⎦ .

The pivot is −1 in (2, 2) position. Use E−1[2] to make the pivot 1.

⎡
⎢⎢⎣
1 −1 2 0 1 0 0 0
0 1 −2 −2 −1 −1 0 0
0 3 −5 −2 −2 0 1 0
0 −1 2 2 −1 0 0 1

⎤
⎥⎥⎦ .

Use E1[1, 2], E−3[3, 2], E1[4, 2] to zero-out all nonpivot entries in the pivotal col-
umn to 0: ⎡

⎢⎢⎢⎣
1 0 0 −2 0 −1 0 0
0 1 −2 −2 −1 −1 0 0
0 0 1 4 1 3 1 0
0 0 0 0 −2 −1 0 1

⎤
⎥⎥⎥⎦ .

Since a zero row has appeared, we find that A is not invertible. Also, observe that
a pivot has appeared in the I portion of the augmented matrix. Though the reduced
matrix is not in row reduced form, it can be brought to this form with further row
operations. And rank (A) = 3; A is not invertible.

The second portion of the augmented matrix has no meaning now. However,
it records the elementary row operations which were carried out in the reduction
process. Verify that this matrix is equal to

E1[4, 2] E−3[3, 2] E1[1, 2] E−1[2] E−1[4, 1] E−2[3, 1] E1[2, 1]

and that the A portion is equal to this matrix times A.

For B, we proceed similarly. The augmented matrix [B|I ] with the first pivot
looks like: ⎡

⎢⎢⎣
1 −1 2 0 1 0 0 0

−1 0 0 2 0 1 0 0
2 1 −1 −2 0 0 1 0
0 −2 0 2 0 0 0 1

⎤
⎥⎥⎦ .

The sequence of elementary row operations E1[2, 1], E−2[3, 1] yields
⎡
⎢⎢⎣

1 −1 2 0 1 0 0 0
0 −1 2 2 1 1 0 0
0 3 −5 −2 −2 0 1 0
0 −2 0 2 0 0 0 1

⎤
⎥⎥⎦ .
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Next, the pivot is −1 in (2, 2) position. Use E−1[2] to get the pivot as 1.
⎡
⎢⎢⎣

1 −1 2 0 1 0 0 0
0 1 −2 −2 −1 −1 0 0
0 3 −5 −2 −2 0 1 0
0 −2 0 2 0 0 0 1

⎤
⎥⎥⎦ .

And then E1[1, 2], E−3[3, 2], E2[4, 2] gives
⎡
⎢⎢⎣

1 0 0 −2 0 −1 0 0
0 1 −2 −2 −1 −1 0 0
0 0 1 4 1 3 1 0
0 0 −4 −2 −2 −2 0 1

⎤
⎥⎥⎦ .

Next pivot is 1 in (3, 3) position. Now, E2[2, 3], E4[4, 3] produces
⎡
⎢⎢⎣

1 0 0 −2 0 −1 0 0
0 1 0 6 1 5 2 0
0 0 1 4 1 3 1 0
0 0 0 14 2 10 4 1

⎤
⎥⎥⎦ .

Next pivot is 14 in (4, 4) position. Use E1/14[4] to get the pivot as 1:
⎡
⎢⎢⎢⎣

1 0 0 −2 0 −1 0 0
0 1 0 6 1 5 2 0
0 0 1 4 1 3 1 0
0 0 0 1 1/7 5/7 2/7 1/14

⎤
⎥⎥⎥⎦ .

Use E2[1, 4], E−6[2, 4], E−4[3, 4] to zero-out the entries in the pivotal column:

⎡
⎢⎢⎢⎣

1 0 0 0 2/7 3/7 4/7 1/7

0 1 0 0 1/7 5/7 2/7 −3/7

0 0 1 0 3/7 1/7 −1/7 −2/7

0 0 0 1 1/7 5/7 2/7 1/14

⎤
⎥⎥⎥⎦ .

Thus B−1 = 1

7

⎡
⎢⎢⎣
2 3 4 1
1 5 2 −3
3 1 −1 −2
1 5 2 1/2

⎤
⎥⎥⎦ . Verify that B−1B = BB−1 = I. �

Another alternative for computing the inverse of a matrix is to employ the method
of bookkeeping by augmenting a symbolic vector. If we start with the augmented
matrix [A|y] for an invertible matrix A, then its row reduction will be the augmented
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matrix [I |A−1y]. From the expression for the vector A−1y, the expression for A−1

can be recovered with its columns as A−1e j for j = 1, . . . , n. This procedure can
also be used to solve the equation

Ax = y.

Of course, when A is not invertible, a zero row will appear at the bottom of the first
part of the augmented matrix.

Example 3.19 For computing the inverse of A =
⎡
⎣1 0 − 2
2 2 0
2 0 − 3

⎤
⎦ , we start with the

augmentedmatrix [A|y] and reduce A to its row reduced echelon formwhile applying
the same operation for y.

⎡
⎣ 1 0 − 2 y1
2 2 0 y2
2 0 − 3 y3

⎤
⎦ −→

⎡
⎢⎣

1 0 0 − 3y1 + 2y3
0 1 0 3y1 + 1

2 y2 − 2y3
0 0 1 −2y1 + y3

⎤
⎥⎦

Looking at the y-entries, which is equal to A−1(y1, y2, y3)T , we find that

A−1 =
⎡
⎣−3 0 2

3 1/2 −2
−2 0 1

⎤
⎦ .

You can decide for yourself which of the two methods such as augmenting I or
working with a symbolic vector is easier to work with. �

A matrix in row reduced echelon form is special. Let A ∈ F
m×n have rank r.

Suppose the columns of A are u1, . . . , un, from F
m×1. That is,

A = [u1 u2 · · · un].

Let B be the row reduced echelon form of A obtained by applying a sequence of
elementary row operations. Let E be the m × m invertible matrix (which is the
product of the corresponding elementary matrices) so that

E A = E[u1 u2 · · · un] = B.

The number of pivots in B is r. Then the standard basis vectors e1, . . . , er of F
m×1

occur as the pivotal columns in B in the same order form left to right. Any two
consecutive pivotal columns are of the form e j and e j+1; but they need not be two
consecutive columns. Suppose the n − r nonpivotal columns in B are v1, . . . , vn−r ,

occurring in that order from left to right. In general, if vi is a nonzero nonpivotal
column, then there exists amaximum j such that e1, . . . , e j are all the pivotal columns
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that occur to the left of vi . In this case, we say that e j is the rightmost pivotal column
to the left of vi . Notice that a nonpivotal column that occurs to the right of some
pivotal columns can also be a zero column.

Observation 3.1 In B, if e j is the rightmost pivotal column to the left of a nonpiv-
otal column vi , then vi = [a1 a2 · · · a j 0 0 · · · 0]T = a1e1 + · · · + a j e j for some
a1, . . . , a j ∈ F.

In B, if e1 occurs as k1th column, e2 occurs as k2th column, and so on, then
vi = a1Euk1 + · · · + a j Euk j . That is,

E−1vi = a1uk1 + · · · + a juk j .

However, E−1vi is the i th column of A. Thus we observe the following.

Observation 3.2 In B, if e j is the rightmost pivotal column to the left of a nonpivotal
column vi = [a1 a2 · · · a j 0 0 · · · 0]T , and if e1, . . . , e j , vi occur in the columns
k1, . . . , k j , k respectively, then uk = a1uk1 + · · · + a juk j .

It thus follows that each column of A can be written as a linear combination of
uk1 , . . . , ukr , where k1, . . . , kr are all the column indices of pivotal columns in B.

Notice that the range space of A is the span of all its columns, and uk1 , . . . , ukr are
linearly independent. Thus we have the following.

Observation 3.3 If k1, . . . , kr are all the column indices of pivotal columns in B,

then {uk1, . . . , ukr } is a basis of R(A).

If v ∈ R(A), then v = β1uk1 + · · · + βr ukr = β1E−1e1 + · · · + βr E−1er for
some scalars β1, . . . , βr . Since er+1 /∈ span{e1, . . . , er }, we see that E−1er+1 is not
expressible in the form α1E−1e1 + · · · + αr E−1er . We conclude the following.

Observation 3.4 If r = rank (A) < m, then E−1er+k /∈ R(A) for 1 ≤ k ≤ m − r.

In B, the m − r bottom rows are zero rows. They have been obtained from the
pivotal rows by elementary row operations. Monitoring the row exchanges that have
been applied on A to reach B, we see that the zero rows correspond to some m − r
rows of A. Therefore, we find the following.

Observation 3.5 Let wk1 , . . . ,wkr be the rows of A which have become the pivotal
rows in B. Then {wk1 , . . . ,wkr } is a basis for the span of all rows of A.

The subspace spanned by all the rows of a matrix A ∈ F
m×n is called the row

space of A. Since the rows of A are the columns of AT , we see that the row space
of A is the same as the subspace {vT : v ∈ R(AT )} of F

1×n . The dimension of the
row space of A is called the row rank of A. From Observation 3.5 it follows that the
number of pivots in the row reduced echelon form of A is same as the row rank of
A. That is,
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The rank of A is equal to the row rank of A, which is also equal to the number
of pivots in the row reduced form of A.

If B and C are two matrices in row reduced echelon form and they have been
obtained from another matrix A ∈ F

m×n by elementary row operations, then B =
E1A and C = E2A for some invertible matrices E1 and E2 in F

m×m . We see that
B = E1(E2)

−1C. Therefore, B and C are row equivalent. To show that the row
reduced echelon form of a matrix is unique, we prove the following theorem.

Theorem 3.20 Two matrices in row reduced echelon form are row equivalent if and
only if they are equal.

Proof Any matrix is row equivalent to itself. We thus prove only the “only if" part
in the theorem. Let B,C be in row reduced echelon form with B = EC for some
invertible matrix E . We prove that B = C by induction on the number of columns
in B and C. In the basis step, suppose both B and C are column vectors. Since both
B and C are in row reduced echelon form, either B = 0 or B = e1; similarly, C = 0
or C = e1. Notice that B = EC and C = E−1B. Thus B = 0 if and only if C = 0.
This implies that B = C = 0 or B = C = e1. In either case, B = C.

Lay out the induction hypothesis that the statement of the theorem holds true for
all matrices with k ≥ 1 number of columns. Let B and C be matrices having k + 1
columns. Write B = [B ′ | u], C = [C ′ | v] in augmented form, where u and v are
the last columns of B and C , respectively. Clearly, B ′ and C ′ are in row reduced
echelon form, B ′ = EC ′, and u = Ev.

By the induction hypothesis, B ′ = C ′. Suppose that e1, . . . , e j are all the pivotal
columns inC ′.Then e1, . . . , e j are also all the pivotal columns in B ′.Now, B ′ = EC ′
implies that

e1 = Ee1, . . . , Ee j = e j , e1 = E−1e1, . . . , e j = E−1e j .

In B, we see that either u = e j+1 or u = α1e1 + · · · + α j e j for some scalars
α1, . . . , α j . The latter case includes the possibility that u = 0. (If none of the first
k columns in B is a pivotal column, we have u = 0.) Similarly, v = e j+1 or v =
β1e1 + · · · + β j e j for some scalarsβ1, . . . , β j .Weconsider the following exhaustive
cases.

If u = ek+1 and v = ek+1, then u = v.
If u = α1e1 + · · · + α j e j , then u = α1E−1e1 + · · · + α j E−1e j = E−1u = v.
If v = β1e1 + · · · + β j e j , then u = Ev = β1Ee1 + · · · + β j Ee j = v.

In all cases, u = v. Since B ′ = C ′, we conclude that B = C. �

Theorem 3.20 justifies our use of the term the row reduced echelon form of a
matrix. Given a matrix, it does not matter whether you compute its row reduced
echelon form by following our algorithm or any other algorithm; the end result is the
same matrix in row reduced echelon form.
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Given u1, . . . , um ∈ F
1×n, a basis for U = span{u1, . . . , un} can be constructed

by using elementary operations. We construct a matrix A with its rows as the given
vectors:

A =
⎡
⎣u1

...

um

⎤
⎦ .

We then convert A to its row echelon form or row reduced echelon form. The pivotal
rows form a basis for U ; the zero rows (nonpivotal rows) are linear combinations
of the pivoted ones. Notice that the rows of A that correspond to the pivotal rows
(monitoring row exchanges) also form a basis for U.

On the other hand, if v1, . . . , vm ∈ F
n×1 are column vectors, then we form the

matrix A by taking these as columns. That is,

A = [
v1 · · · vm

]
.

Then, we bring A to its row reduced echelon form, say, B. The columns in A corre-
sponding to the pivotal columns in B form a basis forV = span{v1, . . . , vm} = R(A).

The other columns of A are linear combinations of the basis vectors. The coefficients
of such a linear combination is given by the entries in the corresponding nonpivotal
column in B.

In fact, we can use any of the above methods by taking the transpose of the given
vectors as required. This is illustrated in the following example.

Example 3.21 The problem is to determine a basis for the subspace U of R
4

spanned by the vectors u1 = (0, 2, 0, 1), u2 = (1, 2, 2, 1), u3 = (2, 2, 4, 1) and
u4 = (1,−2, 2,−1).

By taking the vectors as rows of a matrix A, and then bringing it to row echelon
form, we obtain

A =

⎡
⎢⎢⎣
0 2 0 1
1 2 2 1
2 2 4 1
1 −2 2 −1

⎤
⎥⎥⎦ E[1,2]−→

⎡
⎢⎢⎣

1 2 2 1
0 2 0 1
2 2 4 1
1 −2 2 −1

⎤
⎥⎥⎦ R−→

⎡
⎢⎢⎣

1 2 2 1
0 2 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

Here, R is the row operation E−2[3, 1], E−1[4, 1]; E1[3, 2], E2[4, 2]. The row ech-
elon form shows that the third row and the fourth row in the row echelon form are
linear combinations of the first and the second. In the row operation, the first and
the second rows were exchanged. Taking the corresponding rows in A, we conclude
that u3 and u4 are linear combinations of the pivotal rows u2 and u1; a basis forU is
{u2, u1}. Same conclusion is drawn by bringing A to its row reduced echelon form.

Alternatively, we take the transposes of the given row vectors and solve the prob-
lem in R

4×1; that is, let v1 = uT
1 , v2 = uT

2 , v3 = uT
3 and v4 = uT

4 . Our aim is to
extract a basis for V = {uT : u ∈ U }.We then form the 4 × 4matrix Awith columns
as these transposed vectors:
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A = [
v1 v2 v3 v4

] =

⎡
⎢⎢⎣
1 0 2 1
2 2 2 −2
2 0 4 2
1 1 1 −1

⎤
⎥⎥⎦ .

Next, we bring A to its row reduced echelon form as follows:

⎡
⎢⎢⎣

1 0 2 1
2 2 2 −2
2 0 4 2
1 1 1 −1

⎤
⎥⎥⎦ R1−→

⎡
⎢⎢⎣

1 0 2 1
0 2 −2 −4
0 0 0 0
0 1 −1 −2

⎤
⎥⎥⎦ R2−→

⎡
⎢⎢⎣

1 0 2 1
0 1 −1 −2
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

Here, R1 = E−2[2, 1], E−2[3, 1], E−1[4, 1], and R2 = E1/2[2], E−1[4, 2]. The
pivotal columns are col(1) and col(2). Thus v1, v2 is a basis of V . The entries in
col(3) and col(4) say that v3 = 2v1 − v2 and v4 = v1 − 2v2. Therefore,

u3 = 2u1 − u2, u4 = u1 − 2u2.

And {u1, u2} is a basis for U. �

Let A ∈ F
m×n . Suppose E is an invertible matrix such that E A is in row reduced

echelon form. If A has only k < n number of pivotal columns, then the pivotal
columns in E A are e1, . . . , ek .Thenonpivotal columns in E A are linear combinations
of these pivotal columns. So, R(E A) = span{e1, . . . , ek}. Thus, ek+1 /∈ R(E A). It
follows that E−1ek+1 /∈ R(A). Therefore, if a vector in F

n×1 exists outside the span
of the given vectors v1, . . . , vm ∈ F

n×1, then elementary row operations can be used
to construct such a vector.

Exercises for Sect.3.3

1. Reduce the following matrices to row reduced echelon form:

(a)

⎡
⎢⎢⎣
0 2 3 7
1 1 1 1
1 3 4 8
0 0 0 1

⎤
⎥⎥⎦ (b)

⎡
⎣0 0 4 0
2 2 −2 5
5 5 −5 5

⎤
⎦ (c)

⎡
⎣1 1 1
1 1 0
0 0 1

⎤
⎦ .

2. Construct three different matrices in F
4×3, each of which is of rank

(a) 0 (b) 1 (c) 2 (d) 3.
3. Determine whether the given pair of matrices are row equivalent.

(a)

[
1 2
4 8

]
,

[
0 1
1 2

]
(b)

⎡
⎣1 0 2
0 2 10
2 0 4

⎤
⎦ ,

⎡
⎣1 0 2
3 −1 1
5 −1 5

⎤
⎦ .

4. Are the matrices

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ and

⎡
⎣1 0 1
0 1 0
0 0 1

⎤
⎦ row equivalent? What are their row

reduced echelon forms?
5. Let A ∈ F

6×7 be in row reduced echelon form.
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(a) If the fourth column of A is the second (from left) pivotal column, then how
does this column look like?

(b) Delete the fifth column of A. Is the resulting matrix in F
6×6 in row reduced

echelon form?

6. Determine the inverse of the matrix

⎡
⎣1 1 1
1 2 3
1 4 9

⎤
⎦ .

7. In each of the following subspaces U and W of a vector space V, determine the
bases and dimensions of U,W,U ∩ W and of U + W.

(a) V = R
3, U = span{(1, 2, 3), (2, 1, 1)}, W = span{(1, 0, 1), (3, 0,−1)}.

(b) V = R
4, U = span{(1, 0, 2, 0), (1, 0, 3, 0)},

W = span{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 1)}.
(c) V = C

4, U = span{(1, 0, 3, 2), (10, 4, 14, 8), (1, 1,−1,−1)},
W = span{(1, 0, 0, 2), (3, 1, 0, 2), (7, 0, 5, 2)}.

8. Let A ∈ F
m×n . Show the following:

(a) If m > n, then there exists an invertible matrix E ∈ F
m×m such that the last

row of E A is a zero row. Conclude that there exists no matrix B ∈ F
n×m

such that AB = Im .

(b) If m < n, then there exists an invertible matrix D ∈ F
n×n such that the

last column of AD is a zero column. Conclude that there exists no matrix
C ∈ F

n×m such that CA = In.

3.4 Reduction to Rank Echelon Form

We remarked earlier that reducing a matrix to its rank echelon form requires column
operations. The column operations work with columns instead of rows. Once again,
we break down column operations to simpler ones.

Definition 3.22 The following three kinds of operations on a matrix are called ele-
mentary column operations:

(a) Exchanging two columns;
(b) Multiplying a nonzero scalar to one of the columns;
(c) Adding to a column a nonzero scalar multiple of another column.

A column operation is a finite sequence of elementary column operations. We say
that a matrix B is column equivalent to a matrix A if B has been obtained from A
by using column operations.

Elementary matrices can be used for expressing elementary column operations as
matrix products. In this regard we observe the following:
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Exchanging i th and j th columns of I results in E[i, j].
Multiplying α with the i th column of I results in Eα[i].
Adding to the i th column α times the j th column results in Eα[ j, i].

Notice that (E[i, j])T = E[i, j], (Eα[i])T = Eα[i], and (Eα[i, j])T = Eα[ j, i].
Therefore, applying an elementary column operation on a matrix A is equivalent
to the following:

Apply the corresponding row operation on AT .
And then, take the transpose of the result.

We summarize the discussion in the following observation.

Observation 3.6 Let A ∈ F
m×n . For i, j ∈ {1, . . . , n}, i �= j, and scalar α �= 0, the

following matrices are the results of applying the corresponding elementary column
operations:

(1) A E[i, j]: exchanging the i th and the j th columns in A;
(2) A Eα[i]: multiplying α with the i th column in A;
(3) A Eα[i, j]: Adding to the j th column α times the i th column, in A.

We will use the following notation to specify an elementary column operation in
a computation:

A
E ′−→ B,

where B = A E and E is an elementary matrix. We also refer to the corresponding
elementary column operation as E . We remember to use the “prime” with E to say
that it is a column operation; thus E is to be post-multiplied.

Example 3.23 We continue with the matrix obtained in Example 3.4 for illustrating
elementary column operations.

⎡
⎣1 1 2 3
0 1 1 1
0 0 0 0

⎤
⎦ C1′−→

⎡
⎣1 0 0 0
0 1 1 1
0 0 0 0

⎤
⎦ C2′−→

⎡
⎣1 0 0 0
0 1 0 0
0 0 0 0

⎤
⎦ ,

where C1 = E−1[1, 2], E−2[1, 3], E−3[1, 4], and C2 = E−1[2, 3], E−1[2, 4] are
the column operations. As a matrix product the computation can be written as

⎡
⎣1 1 2 3
0 1 1 1
0 0 0 0

⎤
⎦ E−1[1, 2] E−2[1, 3] E−3[1, 4]E−1[2, 3] E−1[2, 4] =

⎡
⎣1 0 0 0
0 1 0 0
0 0 0 0

⎤
⎦ .

Notice that the order of (the transposes of) the elementary matrices in the product
appear as they are, whereas in elementary row operations, they appeared in reverse
order. �
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Therefore, a matrix B is column equivalent to a matrix A if and only if B = AE,

where E is a finite product of elementary matrices if and only if there exists an
invertible matrix E such that B = AE .

From Theorem 2.36, it follows that if A ∈ F
m×n, and B,C are invertible matrices

of size m × m and n × n, respectively, then

rank (BA) = rank (A) = rank (AC).

That is,multiplying amatrixwith an invertiblematrix preserves the rank. This implies
that both row operations and column operations preserve (column) rank of a matrix.
Since the row rank of A is same as the rank of AT , it also follows that both row and
column operations preserve the row rank. It provides another proof of Theorem 2.57.

In fact, starting from the row reduced echelon form of a given matrix, we may
use column operations to zero-out the nonpivotal columns. Then the result is the
rank echelon matrix Er of rank r. It gives an algorithm for constructing the required
matrices P and Q in the following theorem.

Theorem 3.24 (Rank factorization) Let A ∈ F
m×n . Then rank (A) = r if and only if

there exist invertiblematrices P ∈ F
m×m and Q ∈ F

n×n such that A = P

[
Ir 0
0 0

]
Q.

The row and column operations provide a proof of rank factorization without
depending on the rank theorem. Further, the rank theorem can be proved using rank
factorization.

Notice that the matrix Er can be written as the following matrix product:

Er =
[
Ir 0
0 0

]
=

[
Ir
0

] [
Ir 0

]
.

Then, in the rank factorization of A, write

C = P

[
Ir
0

]
, F = [

Ir 0
]
.

Since both P and Q are invertible, we see that rank (C) = r = rank (F). We thus
obtain the following result.

Theorem 3.25 (Rank decomposition) Let A ∈ F
m×n be of rank r. Then there exist

matrices C ∈ F
m×r and F ∈ F

r×n each of rank r, such that A = CF.

Rank decomposition is also referred to as the full rank factorization, since both
the matrices C and F have maximum possible ranks.

Elementary column operations can also be used for computing the inverse. We
can start with an augmented matrix A by writing I below it and apply elementary
column operations. Once the part that contains A is reduced to I, the other block
which originally contained I must give A−1.
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In yet another variation, augment A with I on the right and also I below A. Then
perform row and column operations on the augmented matrix. The I portion on the
right will record the row operations, whereas the I portion below A will record the
column operations. Finally, when A is reduced to I, if the I portion on the right is
the matrix P and the I portion below is the matrix Q, then A−1 = PQ.

Exercises for Sect.3.4

1. Prove that a matrix

[
a b
c d

]
can be reduced to

[
0 α

1 β

]
for some α, β by row and

column operations unless b = 0 = c and a = d. Explain the cases b = 0 and
c = 0.

2. Compute the rank echelon form of

⎡
⎣1 2 1 1
3 0 0 4
1 4 2 2

⎤
⎦ in two different ways:

(a) by using elementary row and column operations in any order you like;
(b) by reducing first to its row reduced echelon form, and then converting the

row reduced echelon matrix to its column reduced echelon form.

3. Let A =

⎡
⎢⎢⎣
11 21 31 41
12 22 32 42
13 23 33 43
14 24 34 44

⎤
⎥⎥⎦ .

Compute the rank factorization and a rank decomposition of A.

4. Let A = [ai j ] and B = [bi j ] be n × n matrices with aii = i, bi(n−i) = 1 and all
other entries in both of them are 0. Using elementary row operations, determine
whether A and B are equivalent.

5. Let A ∈ F
m×n . Show the following:

(a) If A has a zero row, then there does not exist a matrix B ∈ F
n×m such that

AB = Im .

(b) If A has a zero column, then there does not exist a matrix C ∈ F
n×m such

that CA = In.

6. Compute the inverse of the matrix

⎡
⎣1 1 1
2 1 1
1 2 1

⎤
⎦ using row operations, column

operations, and also both row and column operations.
7. Use the rank theorem to prove the rank factorization theorem. Also, derive the

rank theorem from rank factorization.
8. Using the rank theorem, prove that the row rank of a matrix is equal to its columns

rank.
9. Using rank factorization show that rank (AB) ≤ min{rank (A), rank (B)} for

matrices A ∈ F
m×n and B ∈ F

n×k . Construct an example where equality is
achieved.
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3.5 Determinant

There are two important quantities associated with a square matrix. One is the trace
and the other is the determinant.

Definition 3.26 The trace of a square matrix is the sum of its diagonal entries. We
write the trace of a matrix A by tr(A).

Thus, if A = [ai j ] ∈ F
n×n, then tr(A) = a11 + · · · + ann = ∑n

k=1 akk . Clearly,
tr(In) = n and tr(0) = 0. In addition, the trace satisfies the following properties:

Let A, B ∈ F
n×n .

1. tr(αA) = αtr(A) for each α ∈ F.

2. tr(AT ) = tr(A) and tr(A∗) = tr(A).

3. tr(A + B) = tr(A) + tr(B).

4. tr(AB) = tr(BA).

5. tr(A∗A) = 0 if and only if tr(AA∗) = 0 if and only if A = 0.

The determinant of a square matrix is a bit involved.

Definition 3.27 The determinant of a square matrix A = [ai j ] ∈ F
n×n, written as

det(A), is defined inductively as follows:
If n = 1, then det(A) = a11.
If n > 1, then det(A) = ∑n

j=1(−1)1+ j a1 j det(A1 j )

where the matrix A1 j ∈ F
(n−1)×(n−1) is obtained from A by deleting the first row and

the j th column of A.

When A = [ai j ] iswritten showing all its entries,we alsowrite det(A)by replacing
the two big closing brackets [ and ] by two vertical bars | and |. Thus, for a 2 × 2
matrix [ai j ], its determinant is seen as follows:

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = (−1)1+1a11 det[a22] + (−1)1+2a12 det[a21] = a11a22 − a12a21.

Similarly, for a 3 × 3 matrix, we need to compute three 2 × 2 determinants. For
example,

∣∣∣∣∣∣
1 2 3
2 3 1
3 1 2

∣∣∣∣∣∣
= (−1)1+1 × 1 ×

∣∣∣∣3 1
1 2

∣∣∣∣ + (−1)1+2 × 2 ×
∣∣∣∣2 1
3 2

∣∣∣∣ + (−1)1+3 × 3 ×
∣∣∣∣2 3
3 1

∣∣∣∣
= 1 ×

∣∣∣∣3 1
1 2

∣∣∣∣ − 2 ×
∣∣∣∣2 1
3 2

∣∣∣∣ + 3 ×
∣∣∣∣2 3
3 1

∣∣∣∣
= (3 × 2 − 1 × 1) − 2 × (2 × 2 − 1 × 3) + 3 × (2 × 1 − 3 × 3)

= 5 − 2 × 1 + 3 × (−7) = −18.
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To see the determinant geometrically, consider a 2 × 2 matrix A = [ai j ] with
real entries. Let u be the vector with initial point at (0, 0) and end point at (a11, a12).
Similarly, let v be the vector starting from the origin and ending at the point (a21, a22).
Their sum u + v is the vector whose initial point is the origin and end point is
(a11 + a21, a21 + a22). Denote by �, the area of the parallelogram with one vertex
at the origin, and other vertices at the end points of vectors u, v, and u + v. Writing
the acute angle between the vectors u and v as θ, we have

�2 = |u|2|v|2 sin2 θ = |u|2|v|2(1 − cos2 θ)

= |u|2|v|2
(
1 − (u · v)2

|u|2|v|2
)

= |u|2|v|2 − (u · v)2

= (a211 + a212)(a
2
21 + a222) − (a11a21 + a12a22)

2

= (a11a22 − a12a21)
2 = (det(A))2.

That is, the absolute value of det(A) is the area of the parallelogram whose sides are
represented by the row vectors of A. InR

3, similarly, it can be shown that the absolute
value of det(A) is the volume of the parallelepiped whose sides are represented by
the row vectors of A.

It is easy to see that if a matrix is either lower triangular, or upper triangular, or
diagonal, then its determinant is the product of its diagonal entries. In particular,
det(In) = 1 and det(−In) = (−1)n.

Notation: Let A ∈ F
n×n, v ∈ F

n×1, i, j ∈ {1. . . . , n}.
1. We write the j th column of A as ã j . Thus, ã j ∈ F

n×1 and A = [ã1 · · · ãn].
2. Ai j denotes the (n − 1) × (n − 1)matrix obtained from A by deleting the i th row

and the j th column of A.

3. A j (v) denotes the matrix obtained from A by replacing the j th column of A with
v, and keeping all other columns unchanged.

4. We write v =
[
v1
v′
1

]
, where v1 is the first component of v and v′

1 is the vector in

F
(n−1)×1 obtained from v by deleting its first component.

We consider the determinant as a function from F
n×n to F, and list its character-

izing properties in the following theorem.

Theorem 3.28 Let f be a function from F
n×n to F and let A ∈ F

n×n . Then f (A) =
det(A) if and only if f satisfies the following properties:

(1) For any A ∈ F
n×n, x, y ∈ F

n×1, and j ∈ {1, . . . , n},

f
(
A j (x + y)

) = f
(
A j (x)

) + f
(
A j (y)

)
.

(2) For any A ∈ F
n×n, x ∈ F

n×1, α ∈ F, and j ∈ {1, . . . , n},

f
(
A j (αx)

) = α f
(
A j (x)

)
.
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(3) For A ∈ F
n×n, if B ∈ F

n×n is the matrix obtained from A by exchanging two
columns, then f (B) = − f (A).

(4) f (I ) = 1.

Proof First, we show that the function the function f (A) := det(A), A ∈ F
n×n , sat-

isfies all the four properties. For n = 1, the results in (1)–(3) are obvious. Lay out the
induction hypothesis that for n = m − 1, the determinant function satisfies Proper-
ties (1)–(3). We use this to show that all of (1)–(3) hold for n = m. Let x, y ∈ F

n×1.

(1) �1 := det[ã1, . . . , ãk−1, x + y, ãk+1, . . . , ãm]
= a11β1 − a12β2 + · · · + (−1)k(x1 + y1)βk + · · · + (−1)1+mammβm,

where for j �= k, β j is the determinant of the matrix obtained from A1 j by replacing
the kth column with x ′

1 + y′
1 and βk = det(A1k). By the induction hypothesis,

β j = γ j + δ j for j �= k

where γ j is the determinant of the matrix obtained from A1 j by replacing the kth col-
umn with x ′

1, and δ j is the determinant of the matrix obtained from A1 j by replacing
the kth column with y′

1. Since βk = det(A1k), we have

�1 = (a11γ1 − a12γ2 + · · · + (−1)k x1 det(A1k) + · · · + (−1)1+ma1mγm)

+(a11δ1 − a12δ2 + · · · + (−1)k y1 det(A1k) + · · · + (−1)1+ma1mδm)

= det[ã1, . . . , ãk−1, x, ãk+1, . . . , ãm] + det[ã1, . . . , ãk−1, y, ãk+1, . . . , ãm].

(2) For j �= k, let λ j be the determinant of the matrix obtained from A1 j by replacing
the kth column with αu1. Write λk := det(A1k). Then

�2 := det[ã1, . . . , ãk−1, αx, ãk+1, . . . , ãn]
= a11λ1 − a12λ2 + · · · + (−1)k(αx1)αk + · · · + (−1)1+mammλm .

By the induction hypothesis,

λ j = αμ j for j �= k

where μ j is the determinant of the matrix obtained from A1 j by replacing the kth
column with u. Since λk = det(A1k), we have

�2 = (a11αμ1 − a12αμ2 + · · · + (−1)k x1 det(A1k) + · · · + (−1)1+ma1mαμm)

= α det[ã1, . . . , ãk−1, x, ãk+1, . . . , ãm].
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(3) �3 := det[ã1, . . . , ã j , . . . , ãi , . . . , ãm]
= a11τ1 + · · · + a1(i−1)τi−1 + a1 jτ j + · · · a1iτi + · · · a1mτm,

where τk is the determinant of the matrix obtained from A1k by interchanging the i th
and j th columns. Then by the induction hypothesis,

τk = − det(Aik) for k �= i and k �= j.

For k = i,we see that τi = − det(A1 j ) and for k = j, τ j = − det(A1i ); again by the
induction hypothesis. Hence,

�3 = −(
a11 det(A11) + · · · + (−1)1+na1m det(A1m)

) = − det(A).

(4) Since determinant of a diagonal matrix is the product of its diagonal entries,
det(I ) = 1.

Next, we show that det(·) is the only such function satisfying the four properties.
For this, let f : F

n×n → F be any function that satisfies Properties (1)–(3). We will
come back to Property (4) in due course.We use, withoutmention, the already proved
fact that det(·) satisfies all the four properties.

First, let B be a matrix whose columns are from the standard basis {e1, . . . , en}
of F

n×1. If two columns of B are identical, then by interchanging them we see that
f (B) = − f (B), due to Property (3). Hence, f (B) = 0. In this case, due to the same
reason, det(B) = 0. If no two columns in B are identical, then each basis vector ek
appears in B exactly once. Now, find, where is e1 occurring. If it is the i th column,
then exchange the first column and the i th column to bring e1 to the first column.
Then look for e2. Continuing this way, we have a certain fixed number of exchanges
after which B becomes I. Suppose the number of such exchange of columns is r.
Then f (B) = (−1)r f (I ). Again, due to the same reason, det(B) = (−1)r det(I ) =
(−1)r . Thus, for this particular type of matrices B, if f satisfies Properties(1)–(3),
then f (B) = det(B) f (I ).

We now consider the general case. Let A = [ai j ] ∈ F
n×n . Then the j th column

of A is given by
ã j = a1 j e1 + · · · + anj en.

Writing each column of A in this manner and using Properties (1)–(2) for f (·) and
det(·), we see that

f (A) =
m∑

k=1

αk f (Bk), det(A) =
m∑

k=1

αk det(Bk), (3.1)

where m = nn, each constant αk is a scalar, and Bk is a matrix whose columns are
chosen from the standard basis vectors e1, . . . , en . Notice that the same αk appears
as coefficient of f (Bk) and det(Bk) in the sums for f (·) and det(A), since both are
obtained using Properties (1)–(2).
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For instance, if B1 is the matrix with each column as e1, then α1 = a11a12 · · · a1n .
Now, if a column is repeated in any Bk, then f (Bk) = 0 = det(Bk). In particular,

f (Bk) = det(Bk) f (I ). If no column is repeated in Bk, then each vector e1, . . . , en
occurs exactly once as a column in Bk . That is, Bk is a matrix obtained by permuting
the columns of I. In this case, Bk can be obtained from I by some number of column
exchanges, as we have shown earlier. Suppose the number of exchanges is s. By
Property (3), f (Bk) = (−1)s f (I ), and det(Bk) = (−1)s det(I ) = (−1)s . Thus,

f (Bk) = det(Bk) f (I ) for k = 1, . . . ,m.

Using (3.1), we conclude that f (A) = det(A) f (I ). Now, Property (4) implies that
f (A) = det(A). �

Properties (1) and (2) say that the determinant is a multi-linear map, in the sense
that it is linear in each column. Property (3) is the alternating property of the deter-
minant. Property (4) is the normalizing property. The proof of Theorem 3.28 reveals
the following fact.

Observation 3.7 If a function f : F
n×n → F satisfies Properties (1)–(3) in Theo-

rem 3.28, then for each A ∈ F
n×n, f (A) = det(A) f (I )

Our definition of determinant expands the determinant in the first row. In fact, the
same result may be obtained by expanding it in any other row, or even, in any column.
Along with this, some more properties of the determinant are listed in Theorem 3.30
below. We first give a definition and then prove those properties.

Definition 3.29 Let A = [ai j ] ∈ F
n×n .

(a) The quantity det(Ai j ) is called the (i, j)th minor of A; it is denoted by Mi j (A).

(b) The signed minor (−1)i+ j det(Ai j ) is called the (i, j)th co-factor of A; it is
denoted by Ci j (A).

(c) The matrix in F
n×n whose (i, j)th entry is the ( j, i)th co-factor C ji (A) is called

the adjugate of A.

Following the notation in Definition 3.29, we obtain

det(A) =
n∑
j=1

a1 j (−1)1+ j det(A1 j ) =
n∑
j=1

a1 j (−1)1+ j M1 j (A) =
n∑
j=1

a1 j C1 j (A).

The adjugate, adj(A), is the transpose of the matrix whose (i, j)th entry is Ci j (A).

Theorem 3.30 Let A ∈ F
n×n .Let i, j, k ∈ {1, . . . , n}.Then the following statements

are true.

(1) det(A) = ∑
j ai j (−1)i+ j det(Ai j ) = ∑

j ai jCi j (A) for any fixed i.
(2) If some column of A is the zero vector, then det(A) = 0.
(3) If a column of A is a scalar multiple of another column, then det(A) = 0.
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(4) If a column of A is replaced by that column plus a scalar multiple of another
column, then determinant does not change.

(5) If A is a triangular matrix, then det(A) is equal to the product of the diagonal
entries of A.

(6) det(AB) = det(A) det(B) for any matrix B ∈ F
n×n .

(7) If A is invertible, then det(A) �= 0 and det(A−1) = (det(A))−1.

(8) Columns of A are linearly dependent if and only if det(A) = 0.
(9) If A and B are similar matrices, then det(A) = det(B).

(10) det(A) = ∑
i ai j (−1)i+ j det(Ai j ) for any fixed j.

(11) rank (A) = n if and only if det(A) �= 0.
(12) All of (2), (3), (4) and (8) are true for rows instead of columns.
(13) det(AT ) = det(A).

(14) A adj(A) = adj(A)A = det(A) I.

Proof (1) Construct a matrix C ∈ F
(n+1)×(n+1) by taking its first row as e1 ∈ F

n+1,

its first column as eT1 , and filling up the rest with the entries of A. In block form, it
looks like:

C =
[
1 0
0 A

]
.

Then det(C) = det(A). Now, exchange the first row and the (i + 1)th rows in C.

Call the matrix so obtained as D. Then

det(C) = − det(D) = −
∑
j

ai j (−1)i+1+ j det(Di j ).

The i th row of Di j is ei ∈ F
1×n . To compute det(Di j ), exchange the first and the i th

rows in Di j . Then det(Di j ) = − det(Ai j ). Therefore,

det(A) = det(C) = −
∑
j

ai j (−1)i+1+ j det(Di j ) =
∑
j

ai j (−1)i+ j det(Ai j ).

(2)–(4) These properties follow from Properties (1)–(3) in Theorem 3.28.
(5) If A is lower triangular, then expand along the first row. Similarly, if A is upper
triangular expand it along the first column.
(6) Let A ∈ F

n×n . Consider the function g : F
n×n → F defined by

g(B) = det(AB).

It is routine to verify that g satisfies Properties (1)–(3) of Theorem 3.28, where we
take g(·) instead of det(·). By Observation 3.7,

det(AB) = g(B) = det(B) g(I ) = det(A) det(B).
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(7) Let A be invertible. Due to (6), det(A) det(A−1) = det(AA−1) = det(I ) = 1.
It shows that det(A) �= 0 and det(A−1) = (det(A))−1.

(8) If the columns of A are linearly independent, then A is invertible. Due to (7),
det(A) �= 0.So, suppose the columns of A are linearly dependent. Say, the kth column
of A is a linear combination of the columns 1 through k − 1. Then by the linearity
of det(·) in each of the columns, and by (3) above, det(A) = 0.
(9) Matrices A and B are similar if and only if there exists an invertible matrix P
such that B = P−1AP. Then, due to (6) and (7), we have

det(B) = det(P−1) det(A) det(P) = det(A).

(10) This property asserts that a determinant can be expanded in any column. Due
to (1), we show that expansion of a determinant can be done in its first column. For a
matrix of size 1 × 1 or 2 × 2, the result is obvious. Suppose that determinants of all
matrices of order less than or equal to n − 1 can be expanded in their first column.
Let A ∈ F

n×n . As per our definition of the determinant, expanding in the first row,

det(A) =
∑
j

a1 j (−1)1+ j det(A1 j ).

The minors det(Ai j ) can be expanded in their first column, due to the induction
assumption. That is,

det(A1 j ) =
m∑
i=2

(−1)i−1+1ai1Bi j ,

where Bi j denotes the determinant of the (n − 2) × (n − 2) matrix obtained from
A by deleting the first and the i th rows, and deleting the first and the j th columns.
Thus the only term in det(A) involving a1 j ai1 is (−1)i+ j+1a1 j ai1Bi j .

Also, examining the expression

∑
i

ai1(−1)i+1 det(Ai1),

we see that the only term involving a1 j ai1 is (−1)i+ j+1a1 j ai1Bi j .
Therefore, det(A) = ∑

i ai1(−1)i+1 det(Ai1).

Alternatively, one can verify all the four properties in Theorem 3.28 for the func-
tion f (A) = ∑

j ai j (−1)i+ j det(Ai j ).

(11) It follows from (8), since rank (A) = n if and only if columns of A are linearly
independent.
(12) It follows from (10).
(13) Use induction and (10).
(14) The adjugate adj(A) of A is the matrix whose (i, j)th entry isC ji (A). Consider
A adj(A). Due to (1), the j th diagonal entry in this product is
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n∑
i=1

ai jCi j (A) = det(A).

For the nondiagonal entries, let i �= j. Construct a matrix B which is identical to A
except at the j th row. The j th row of B is the same as the i th row of A. Now, look at
the co-factors Ckj (B). Such a co-factor is obtained by deleting the kth row and the
j th column of B and then taking the determinant of the resulting (n − 1) × (n − 1)
matrix. This is same as Ckj (A). Since the i th and the kth rows are equal in B, the
(i, k)th entry in A adj(A) is

n∑
k=1

aikCik(A) =
n∑

k=1

aikCik(B) = det(B) = 0,

Therefore, A adj(A) = det(A) I.
The product formula adj(A)A = det(A) I is proved similarly. �

In Theorem 3.30, Statement (2) follows from (3); it is an important particular
case to be mentioned. Using (1)–(5) and (10)–(11), the computational complexity for
evaluating a determinant can be reduced drastically. The trick is to bring amatrix to its
row echelon form by using elementary row operations. While using row exchanges
we must take care of the change of sign of the determinant. Similarly, we must
account for α if we use an elementary row operation of the type Eα[i].
Example 3.31

∣∣∣∣∣∣∣∣

1 0 0 1
−1 1 0 1
−1 −1 1 1
−1 −1 −1 1

∣∣∣∣∣∣∣∣
R1=

∣∣∣∣∣∣∣∣

1 0 0 1
0 1 0 2
0 −1 1 2
0 −1 −1 2

∣∣∣∣∣∣∣∣
R2=

∣∣∣∣∣∣∣∣

1 0 0 1
0 1 0 2
0 0 1 4
0 0 −1 4

∣∣∣∣∣∣∣∣
R3=

∣∣∣∣∣∣∣∣

1 0 0 1
0 1 0 2
0 0 1 4
0 0 0 8

∣∣∣∣∣∣∣∣
.

Here, R1 = E1[2, 1], E1[3, 1], E1[4, 1]; R2 = E1[3, 2], E1[4, 2]; and R3 =
E1[4, 3].

Notice that the last determinant is easily computed, and its value is 8. �

In Theorem 3.30, Statement (12) implies that a square matrix is invertible if and
only if its determinant is nonzero. Further, (14) gives a method of computing the
inverse of a matrix if it exists, though it is less efficient than using elementary row
operations.

From Theorem 3.11(9), we obtain the following theorem.

Theorem 3.32 Let T be a linear operator on a finite dimensional vector space V ,
and let B and C be ordered bases of V . Then det([T ]B,B) = det([T ]C,C).

In view of Theorem 3.32, we introduce the following definition.
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Definition 3.33 Let T be a linear operator on a finite dimensional vector space V .

Let [T ] be a matrix representation of T with respect to an ordered basis of V . The
determinant of T is defined as det(T ) := det([T ]).

Note that, by Theorem 3.32, det(T ) is well defined; it is independent of the basis
used.

For linear operators T and S on a finite dimensional vector space, Theo-
rem 3.30(6)–(8) entail the following.

Theorem 3.34 Let T be a linear operator on a finite dimensional vector space V .

(1) det(T ) = 0 if and only if rank (T ) < dim(V ).

(2) det(T ) �= 0 if and only if T is invertible.
(3) For each linear operator S on V, det(ST ) = det(S) det(T ).

For a square matrix A, the matrix whose entries are the complex conjugates of
the respective entries of A, is denoted by A. Then the adjoint, of A, denoted by A∗,
is the transpose of A. A hermitian matrix is one for which its adjoint is the same
as itself; a unitary matrix is one for which its adjoint coincides with its inverse. An
orthogonal matrix is a real unitary matrix.

The determinant of a hermitian matrix is a real number, since A = A∗ implies

det(A) = det(A∗) = det(A) = det(A).

For a unitary matrix A,

| det(A)|2 = det(A) det(A) = det(A) det(A) = det(A∗A) = det(I ) = 1.

That is, the determinant of a unitary matrix is of absolute value 1. It follows that the
determinant of an orthogonal matrix is ±1.

Execises for Sect.3.5

1. Compute the determinant of

⎡
⎢⎢⎣

3 1 1 2
1 2 0 1
1 1 2 − 1

−1 1 − 1 3

⎤
⎥⎥⎦ .

2. Compute the inverse of the following matrices in two ways: by using elementary
row (or column) operations, and by using the determinant-adjugate formula.

(a)

⎡
⎢⎢⎣

4 −2 −2 0
−2 1 −1 1
0 1 1 −1

−2 1 1 1

⎤
⎥⎥⎦ (b)

⎡
⎣ 4 −7 −5

−2 4 3
3 −5 −4

⎤
⎦ (c)

⎡
⎢⎢⎣

1 0 2 −2
2 1 1 −1
1 0 0 2

−1 1 1 −1

⎤
⎥⎥⎦ .

3. For which values of α ∈ C the matrix

⎡
⎢⎢⎣
1 α 0 0
α 1 0 0
0 α 1 0
0 0 α 1

⎤
⎥⎥⎦ is invertible?
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Find the inverse in all such cases.
4. Compute det[en en−1 · · · e2 e1].
5. Show that rank (A) = max{k : there exists a nonzero k × k minor of A} for any

matrix A ∈ F
n×n . How do you generalize this for an m × n matrix?

6. Let T : V → V be a linear transformation, where dim(V ) < ∞. Then T is
invertible if and only if for every basis E of V, det( [T ]E,E ) �= 0.

7. Let u, v,w ∈ R
3. Show that u · (v × w) = determinant of the matrix [u v w].

8. Let A, B ∈ F
n×n . Is it true that det(A + B) = det(A) + det(B)?

9. Let v1, . . . , vn ∈ F
n. Let A be the matrix whose rows are v1 through vn and let

B be the matrix whose columns are vT1 through vTn . Show that {v1, . . . , vn} is a
basis for F

n if and only if det(A) �= 0 if and only if det(B) �= 0.
10. Let A ∈ F

n×n . Show that if A �= I and A2 = A, then det(A) = 0.
11. Let A ∈ F

n×n . Show that if Ak = 0 for some k ∈ N, then det(A) = 0.

3.6 Linear Equations

Consider a linear system with m equations in n unknowns:

a11x1 + a12x2 + · · · a1nxn = b1
a21x1 + a22x2 + · · · a2nxn = b2

...

am1x1 + am2x2 + · · · amnxn = bm

Using the abbreviation x = (x1, . . . , xn)T , b = (b1, . . . , bm)T and A = [ai j ], the
system can be written in a compact form as

Ax = b.

Of course, we can now look at the matrix A ∈ F
m×n as a linear transformation from

F
n×1 to F

m×1, where m is the number of equations and n is the number of unknowns
in the system.

Notice that for linear systems, we deviate from our symbolism and write b as a
column vector, and xi for unknown scalars.

Definition 3.35 Let A ∈ F
m×n and let b ∈ F

m×1.

(a) The solution set of the linear system Ax = b is given by

Sol(A, b) := {x ∈ F
n×1 : Ax = b}.

(b) The system Ax = b is said to be solvable, if and only if Sol(A, b) �= ∅.

(c) Each vector in Sol(A, b) is called a solution of Ax = b.
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Also, we say that a system is consistent or has a solution when it is solvable. It
follows that the system Ax = b is solvable if and only if b ∈ R(A). Further, Ax = b
has a unique solution if and only if b ∈ R(A) and A is injective. These issues are
better tackled with the help of the corresponding homogeneous system Ax = 0.

Notice that N (A) = Sol(A, 0) is the solution set of the homogeneous system. The
homogeneous system always has a solution since 0 ∈ N (A). It has infinitely many
solutions when N (A) contains a nonzero vector.

To study the nonhomogeneous system, we use the augmented matrix [A|b] ∈
F
m×(n+1) which has its first n columns as those of A in the same order, and its

(n + 1)th column is b.
As earlier, we write A j (b) to denote the matrix obtained from A by replacing its

j th column with the column vector b.
The following theorem lists some important facts about solutions of a system of

linear equations.

Theorem 3.36 Let A ∈ F
m×n and b ∈ F

m×1. Then the following statements are true.

(1) Ax = b is solvable if and only if rank ([A|b]) = rank (A).

(2) If u is a solution of Ax = b, then Sol(A, b) = u + N (A).

(3) Ax = b has a unique solution if and only if rank ([A|b]) = rank (A) = n.

(4) If u is a solution of Ax = b and rank (A) < n, then

Sol(A, b) = {u + α1v1 + · · · αkvk : α1, . . . , αk ∈ F},

where k = n − rank (A) > 0 and {v1, . . . , vk} is a basis for N (A).

(5) If [A′|b′] is obtained from [A|b] by a finite sequence of elementary row opera-
tions, then Sol(A′, b′) = Sol(A, b).

(6) If m = n, then Ax = b has a unique solution if and only if det(A) �= 0.
(7) (Cramer’s Rule) If m = n, det(A) �= 0 and x = (x1, . . . , xn)T is the solution of

Ax = b, then x j = det( A j (b) )/ det(A) for each j ∈ {1, . . . , n}.
Proof (1) The system Ax = b is solvable if and only if b ∈ R(A) if and only if
rank ([A|b]) = rank (A).

(2) Let u be a solution of Ax = b. Then Au = b. Now, y ∈ Sol(A, b) if and only if
Ay = b if and only if Ay = Au if and only if A(y − u) = 0 if and only if y − u ∈
N (A) if and only if y ∈ u + N (A).

(3) Due to (1)–(2), and the rank-nullity theorem,
Ax = b has a unique solution
if and only if rank ([A|b]) = rank (A) and N (A) = {0}
if and only if rank ([A|b]) = rank (A) and rank (A) = n.

(4) Recall that, by the rank-nullity theorem, dim(N (A)) = k = n − rank (A) > 0.
Hence, the result follows from (2).
(5) If [A′|b′] has been obtained from [A|b] by a finite sequence of elementary row
operations, then A′ = E A and b′ = Eb, where E is the product of corresponding
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elementary matrices. Since each elementary matrix is invertible, so is E . Therefore,
for a vector u, we have Au = b if and only if E Au = Eb, that is, A′u = b′.
(6) Suppose m = n. Then A is a linear operator on F

n×1. Due to (3), Ax = b has a
unique solution if and only if rank ([A|b]) = rank (A) = n if and only if rank (A) = n
if and only if det(A) �= 0 by Theorem 3.30(12).
(7) Since det(A) �= 0, by (6), Ax = b has a unique solution, say y ∈ F

n×1. Write
the identity Ay = b in the form:

y1

⎡
⎣a11

...

an1

⎤
⎦ + · · · + y j

⎡
⎣a1 j

...

anj

⎤
⎦ + · · · + yn

⎡
⎣a1n

...

ann

⎤
⎦ =

⎡
⎣b1

...

bn

⎤
⎦ .

This gives

y1

⎡
⎣a11

...

an1

⎤
⎦ + · · · +

⎡
⎣y ja1 j − b1

...

y janj − bn

⎤
⎦ + · · · + yn

⎡
⎣a1n

· · ·
ann

⎤
⎦ = 0.

So, the column vectors in this sum are linearly dependent with their coefficients
as y1, . . . , 1, . . . , yn . Due to Theorem 3.30(8),

∣∣∣∣∣∣
a11 · · · (y ja1 j − b1) · · · a1n

...

an1 · · · (y janj − bn) · · · ann

∣∣∣∣∣∣ = 0.

From Theorem 3.28 it now follows that

y j

∣∣∣∣∣∣
a11 · · · a1 j · · · a1n

...

an1 · · · anj · · · ann

∣∣∣∣∣∣ −
∣∣∣∣∣∣
a11 · · · b1 · · · a1n

...

an1 · · · bn · · · ann

∣∣∣∣∣∣ = 0.

Therefore, y j = det( A j (b) )/ det(A). �

Theorem 3.36(2) asserts that all solutions of the nonhomogeneous system can be
obtained by adding a particular solution to a solution of the corresponding homoge-
neous system.

Example 3.37 (1) The system of linear equations

x1 + x2 = 3

x1 − x2 = 1

is rewritten as Ax = b, where
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A =
[
1 1
1 −1

]
, b =

[
3
1

]
.

Here, A ∈ F
2×2 is a square matrix, and

rank ([A|b]) = rank

[
1 1 3
1 − 1 1

]
= 2, rank (A) = rank

[
1 1
1 −1

]
= 2.

Thus the linear system has a unique solution. It is given by x1 = 2, x2 = 1, or

x =
[
2
1

]
.

(2) The linear system

x1 + x2 = 3

x1 − x2 = 1

2x1 − x2 = 3

is rewritten as Ax = b, where

A =
⎡
⎣1 1
1 −1
2 −1

⎤
⎦ , b =

⎡
⎣3
1
3

⎤
⎦ .

Here, A ∈ F
3×2. We find that

rank ([A|b]) = rank

⎡
⎣ 1 1 3
1 −1 1
2 −1 3

⎤
⎦ = 2, rank (A) = rank

⎡
⎣1 1
1 −1
2 −1

⎤
⎦ = 2.

Thus the linear systemhas a unique solution. The vector x = [2, 1]T is the solution of
this system as in (1). The extra equation does not put any constraint on the solution(s)
that we obtained earlier.
(3) Consider the system

x1 + x2 = 3

x1 − x2 = 1

2x1 + x2 = 3

In matrix form, the system looks like Ax = b, where
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A =
⎡
⎣1 1
1 −1
2 1

⎤
⎦ , b =

⎡
⎣3
1
3

⎤
⎦ .

Here, A ∈ F
3×2. We find that

rank ([A|b]) = rank

⎡
⎣ 1 1 3
1 −1 1
2 −1 3

⎤
⎦ = 3, rank (A) = rank

⎡
⎣1 1
1 −1
2 −1

⎤
⎦ = 2.

The system has no solution. We see that the first two equations again have the same
solution x1 = 2, x2 = 1. But this time, the third is not satisfied by these values of the
unknowns.
(4) Finally, we consider the linear equation

x1 + x2 = 3.

Here, the system is Ax = b, where

A = [
1 1

]
, b = [

3
]
.

The matrix A has size 1 × 2. We see that

rank ([A|b]) = rank
[
1 1 3

] = 1, rank (A) = rank
[
1 1

] = 1.

Thus the system has a solution. The old solution x = [2, 1]T is still a solution of
this system. As k = n − rank (A) = 2 − 1 = 1, the solution set is given by

Sol(A, b) = {x + v : v ∈ N (A)}.

The null space of A is obtained by solving the homogeneous system

x1 + x2 = 0.

Choosing x1 = 1, x2 = −1, we have v = [1, − 1]T , and

N (A) = span
{[1, 1]T } = {[α, − α]T : α ∈ F

}
.

Therefore, the solution set is

Sol(A, b) =
{[

2 + α

1 − α

]
: α ∈ F

}
=

{[
β

3 − β

]
: β ∈ F

}
.

This describes the “infinitely many solutions” as expected. �
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Exercises for Sect.3.6

1. Let A ∈ R
n×n . Give brief explanations for the following:

(a) Sol(A, 0) is a subspace of R
n×1.

(b) A homogeneous system is always consistent.
(c) For no k ∈ N, Ax = b has exactly k number of solutions.

2. For which triple (a, b, c) the following system has a solution?

(a) 3x1 − x2 + 2x3 = a, 2x1 + x2 + x3 = b, x1 − 3x2 = c.
(b) 3x1 − 6x2 + 2x3 − x4 = a, − 2x1 + 4x2 + x3 − 3x4 = b, x3 + x4 = c,

x1 − 2x2 + x3 = 0.

3. Determinewhether the following system is solvable. In that case, find the solution
set.

x1 + 2x2 + 3x3 = 1, 4x1 + 5x2 + 6x3 = 2,

7x1 + 8x2 + 9x3 = 3, 5x1 + 7x2 + 9x3 = 4.

4. Express the solution set of the following system by keeping the unknown x3
arbitrary: 2x1 + 2x2 − x3 + 3x4 = 2, 2x1 + 3x2 + 4x3 = −2, x2 − 6x3 = 6.

5. Determine the value of k for which the following linear system hasmore than one
solution: 6x1 + x2 + kx3 = 11, 2x1 + x2 + x3 = 3, 3x1 − x2 − x3 = 7. Then
find the solution set of the system.

6. Can a system of two linear equations in three unknowns be inconsistent?
7. Suppose a system of two linear equations in three unknowns is consistent. How

many solutions the system has?

8. Does there exist a matrix B such that B

⎡
⎣1 −1
2 2
1 0

⎤
⎦ =

[
3 1

−4 4

]
?

9. Let A be a 4 × 6 matrix. Show that the space of solutions of the linear system
Ax = 0 has dimension at least 2.

10. Suppose that A ∈ R
m×n and y ∈ R

m×1. Show that if the linear system Ax = y
has a complex solution, then it has a real solution.

11. Let A ∈ F
m×n, and let b ∈ F

m×1. Show the following:

(a) The linear system Ax = 0 has a nonzero solution x ∈ F
n×1 if and only if

the n columns of A are linearly dependent.
(b) The linear system Ax = b has at most one solution x ∈ F

n×1 if and only if
the n columns of A are linearly independent.

12. Prove that two m × n matrices A and B are row equivalent if and only if
Sol(A, 0) = Sol(B, 0).

13. Let A, B ∈ F
2×3 be in row reduced echelon form. Show that if Sol(A, 0) =

Sol(B, 0), then A = B. What happens if A, B ∈ F
m×n?
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14. Let u1, . . . , um be linearly independent vectors in a vector space V . Let A =
[ai j ] ∈ F

m×n . For j ∈ {1, . . . , n}, define

v j := a1 j u1 + a2 j u2 + · · · + amjum .

Show that v1, . . . , vn are linearly independent if and only if the columns of A
are linearly independent in F

m×1.

3.7 Gaussian and Gauss–Jordan Elimination

Cramer’s rule in Theorem 3.36(7) gives an explicit formula for determining the
unique solution of a linear system, whenever it exists. Though a theoretical tool,
it is not very useful for computation, as it involves determinants. A more efficient
method is the Gaussian elimination, known to us from our school days. This, and its
refinement called Gauss–Jordan Elimination use the elementary row operations.

The idea is simple. Suppose that A is an m × n matrix and b is a column vector
of size m. Then for every invertible m × m matrix E,

Ax = b if and only if E Ax = Eb.

We choose E in such a way that the matrix E A is simpler so that the linear system
E Ax = Eb may be solved easily. Since E is a product of elementary matrices, we
may use elementary row operations on the system matrix A and the right-hand side
vector b simultaneously to reach a solution.

The method of Gaussian elimination employs such a scheme. It starts with reduc-
ing the systemmatrix A to its row echelon form. To use LU-factorization, the system
Ax = b is transformed to PAx = Pb; then to

LUx = Pb,

where L is a lower triangular matrix with each diagonal entry as 1, U is matrix in
row echelon form, and P is a permutation matrix.

WritingUx = y,we first solve the system Ly = Pb for y. In the second stage, we
solve the system Ux = y. Notice that it is easier to solve the systems Ly = Pb and
Ux = y; the first, by forward substitution, and the second, by backward substitution.
Example 3.38 Consider the following system of linear equations:

x1 +x2 −4x3 = 1
2x1 −x2 −x4 = 2

x2 +4x3 −x4 = −4
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The system matrix A = [ai j ] is

A =
⎡
⎣ 1 1 − 4 0
2 − 1 0 − 1
0 1 4 − 1

⎤
⎦ .

As we have stated above, the first step in Gaussian elimination is to transform the
system Ax = b to a system LUx = Pb. For this, we first zero-out the entry a21 by
replacing row(2) with row(2) − 2 · row(1). The corresponding elementary matrix
to be pre-multiplied with A is

E−2[2, 1] =
⎡
⎣ 1 0 0

−2 1 0
0 0 1

⎤
⎦ .

This matrix is obtained from the 3 × 3 identity matrix by replacing its second row
e2 = [0 1 0] by e2 − 2e1 = [−2 1 0]. Then

E−2[2, 1] A =
⎡
⎣ 1 1 − 4 0
0 − 3 8 − 1
0 1 4 − 1

⎤
⎦ .

Next, the entry a32 in E−2[2, 1] A is zeroed-out by replacing row(3) with row(3) +
1/3 · row(2). The corresponding elementary matrix is

E1/3[3, 2] =
⎡
⎣ 1 0 0
0 1 0
0 1/3 1

⎤
⎦ .

And then

E1/3[3, 2] E−2[2, 1] A = U =
⎡
⎣ 1 1 − 4 0
0 − 3 8 − 1
0 0 20/3 − 4/3

⎤
⎦ .

Thus the system Ax = b has now been brought to the form

E1/3[3, 2] E−2[2, 1] Ax = E1/3[3, 2] E−2[2, 1] b,

whereU = E1/3[3, 2] E−2[2, 1] A is in row echelon form; the lower triangularmatrix
L is given by

L = (E1/3[3, 2] E−2[2, 1])−1 = E2[2, 1] E−1/3[3, 2] =
⎡
⎣ 1 0 0
2 1 0
0 −1/3 1

⎤
⎦ .
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We verify that

A =
⎡
⎣ 1 1 − 4 0
2 − 1 0 − 1
0 1 4 − 1

⎤
⎦ = LU =

⎡
⎣ 1 0 0
2 1 0
0 −1/3 1

⎤
⎦

⎡
⎣ 1 1 − 4 0
0 − 3 8 − 1
0 0 20/3 − 4/3

⎤
⎦ .

Notice that no permutation of the rows of A has been used. That is, the permutation
matrix P is equal to I. For solving the system Ax = b with b = [1 2 − 4]T , we first
solve Ly = Pb, i.e., Ly = b, by forward substitution. The system is

y1 = 1, 2y1 + y2 = 2, − 1
3 y2 + y3 = −4.

Its solution is y = [1 0 − 4]T . Next, we solve Ux = y by using back substitution.
The system Ux = y is

x1 + x2 − 4x3 = 1
−3x2 + 8x3 − x4 = 0

+ 20
3 x3 − 4

3 x4 = −4

The last equation gives x3 = − 3
5 + 1

5 x4. Substituting on the second equation, we
have x2 = − 8

5 + 1
5 x4. Substituting both of these on the first equation, we obtain

x1 = 1
5 + 3

5 x4. Here, x4 can take any arbitrary value. �

Since for obtaining the LU-factorization of A,we use elementary row operations,
a direct algorithm using the conversion to echelon form can be developed. In this
method, we reduce the augmented matrix [A|b] to its row echelon form and compute
the solution set directly. This is usually referred to as Gaussian elimination. Before
giving the algorithm, let us see how the idea works.

Example 3.39 Consider the following system of linear equations:

x1 + x2 + 2x3 + x5 = 1
3x1 + 5x2 + 5x3 + x4 + x5 = 2
4x1 + 6x2 + 7x3 + x4 + 2x5 = 3
x1 + 5x2 + 5x4 + x5 = 2
2x1 + 8x2 + x3 + 6x4 + 0x5 = 2

We reduce the augmented matrix to its row echelon form as in the following:

⎡
⎢⎢⎢⎢⎣

1 1 2 0 1 1
3 5 5 1 1 2
4 6 7 1 2 3
1 5 0 5 1 2
2 8 1 6 0 2

⎤
⎥⎥⎥⎥⎦

R1−→

⎡
⎢⎢⎢⎢⎣

1 1 2 0 1 1
0 2 −1 1 −2 −1
0 2 −1 1 −2 −1
0 4 −2 5 0 1
0 6 −3 6 −2 0

⎤
⎥⎥⎥⎥⎦

R2−→

⎡
⎢⎢⎢⎢⎣

1 1 2 0 1 1
0 2 −1 1 −2 −1
0 0 0 0 0 0
0 0 0 3 4 3
0 0 0 3 4 3

⎤
⎥⎥⎥⎥⎦
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R3−→

⎡
⎢⎢⎢⎢⎣

1 1 2 0 1 1
0 2 −1 1 −2 −1
0 0 0 3 4 3
0 0 0 0 0 0
0 0 0 3 4 3

⎤
⎥⎥⎥⎥⎦

R4−→

⎡
⎢⎢⎢⎢⎣

1 1 2 0 1 1
0 2 −1 1 −2 −1
0 0 0 3 4 3
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

Here, the row operations are given by
R1 = E−3[2, 1], E−4[3, 1], E−1[4, 1], E−2[5, 1]; R2 = E−1[3, 2], E−2[4, 2],

E−3[5, 2]; R3 = E[3, 4]; and R4 = E−1[5, 3].
The equations now look like

x1 +x2 +2x3 +x5 = 1
2x2 −x3 +x4 −2x5 = −1

3x4 +4x5 = 3

The variables corresponding to the pivots are x1, x2, x4; the other variables are x3
and x5. In back substitution, we express the variables corresponding to the pivots in
terms of the others. It leads to

x4 = 1 − 4
3 x5

x2 = 1
2 [−1 + x3 − x4 + 2x5] = 1

2 [−1 + x3 − (1 − 4
3 x5) + 2x5] = −1 + 1

2 x3 + 5
3 x5

x1 = 1 − x2 − 2x3 − x5 = 1 − [−1 + 1
2 x3 + 5

3 x5] − 2x3 − x5 = 2 − 5
2 x3 − 8

3 x5.

The variables other than those corresponding to pivots, that is, x3 and x5 can take any
arbitrary values. Writing x3 = −α and x5 = −β for any α, β ∈ F, the solution set is
given by

Sol(A, b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

2
−1
0
1
0

⎤
⎥⎥⎥⎥⎦ + α

⎡
⎢⎢⎢⎢⎣

5/2

−1/2

−1
0
0

⎤
⎥⎥⎥⎥⎦ + β

⎡
⎢⎢⎢⎢⎣

8/3

−5/3

0
4/3

−1

⎤
⎥⎥⎥⎥⎦ : α, β ∈ F

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Instead of taking x3 and x5 as α and β, we take −α and −β for convenience
in writing an algorithm for the general case. Look at the algorithm of Gaussian
Elimination below. �

The unknowns in the system corresponding to the pivots are marked as basic
variables, and others are marked as free variables. In Example 3.39, the basic
variables are x1, x2, x4, and the free variables are x3, x5.Using the row echelon form
the basic variables are expressed in terms of the free variables to get a solution.

We present Gaussian elimination as an algorithm. It starts from a linear system
Ax = b and ends at producing the solution set Sol(A, b).



3.7 Gaussian and Gauss–Jordan Elimination 151

Gaussian Elimination

1. Construct the augmented matrix [A|b].
2. Use the algorithm Reduction to Row Echelon Form to compute the row echelon

form of [A|b]. Call the result as [A′|b′].
3. If a pivot occurs in b′, then the system does not have a solution. Stop.
4. Else, delete zero rows at the bottom of [A′|b′].
5. Use the second type of elementary row operations to bring all pivots to 1.
6. Zero-out all nonpivotal entries in each pivotal column by using elementary row

operations, starting from the rightmost pivotal columnback to the leftmost pivotal
column.

7. If in the current augmented matrix [B|c], every column of B is a pivotal column,
then Sol(A, b) = {c}. Stop.

8. Else, insert required number of zero rows to [B|c] so that in the resulting matrix
[B ′|c′], each pivot is a diagonal entry.

9. Adjoin a required number of zero rows at the bottom of [B ′|c′] to make the B ′
portion a square matrix.

10. Change all nonpivotal diagonal entries to −1 to obtain [B̃|c̃].
11. Suppose the nonpivotal columns in [B̃|c̃] are v1, . . . , vk . Then

Sol(A, b) = {c̃ + α1v1 + · · · + αkvk : α1, . . . , αk ∈ F}.

Example 3.40 We continue Example 3.39, starting from the row echelon form of
the augmented matrix, as follows.

⎡
⎢⎢⎢⎢⎣

1 1 2 0 1 1
0 2 −1 1 −2 −1
0 0 0 3 4 3
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

del−0−→
⎡
⎢⎣

1 1 2 0 1 1
0 2 −1 1 −2 −1
0 0 0 3 4 3

⎤
⎥⎦

R5−→
⎡
⎢⎣

1 1 2 0 1 1
0 1 −1/2 1/2 −1 −1/2

0 0 0 1 4/3 1

⎤
⎥⎦ E−1/2[2,3]−→

⎡
⎢⎣

1 1 2 0 1 1
0 1 −1/2 0 −5/3 −1
0 0 0 1 4/3 1

⎤
⎥⎦

E−1[1,2]−→
⎡
⎢⎣

1 0 5/2 0 8/3 2
0 1 −1/2 0 −5/3 −1
0 0 0 1 4/3 1

⎤
⎥⎦ .

Here, del − 0 means deletion of all zero rows at the bottom, and R5 is E1/2[2],
E1/3[3], which brings all pivots to 1.

This completes Step 5. Now, there are two nonpivotal columns; so we insert a
zero rows between the second and the third to bring pivots to the diagonal. Next, we
adjoin a zero row at the bottom to make the resulting B ′ portion in [B ′|c′] a square
matrix. Then we continue changing the nonpivotal entries on the diagonal to −1 as
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follows.

ins−0−→

⎡
⎢⎢⎢⎢⎣

1 0 5/2 0 8/3 2
0 1 −1/2 0 −5/3 −1
0 0 0 0 0 0
0 0 0 1 4/3 1
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

ch(−1)−→

⎡
⎢⎢⎢⎢⎣

1 0 5/2 0 8/3 2
0 1 −1/2 0 −5/3 −1
0 0 −1 0 0 0
0 0 0 1 4/3 1
0 0 0 0 −1 0

⎤
⎥⎥⎥⎥⎦ = [B̃|c̃].

The nonpivotal columns in B̃ are the third and the fifth, say, v3 and v5.The solution
set is given by Sol(A, b) = {c̃ + α1v1 + α2v5 : α1, α2 ∈ F}. That is,

Sol(A, b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

2
−1
0
1
0

⎤
⎥⎥⎥⎥⎦ + α1

⎡
⎢⎢⎢⎢⎣

5/2

−1/2

−1
0
0

⎤
⎥⎥⎥⎥⎦ + α2

⎡
⎢⎢⎢⎢⎣

8/3

−5/3

0
4/3

−1

⎤
⎥⎥⎥⎥⎦ : α1, α2 ∈ F

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. �

Example 3.41 Consider the system of linear equations:

x1 + x2 − 4x3 = 1, 2x1 − x2 − x4 = 2, x2 + 4x3 − x4 = −4.

Using Gaussian elimination on the augmented matrix, we obtain

⎡
⎣ 1 1 −4 0 1

2 −1 0 −1 2
0 1 4 −1 −4

⎤
⎦ E−2[2,1]−→

⎡
⎣ 1 1 −4 0 1

0 −3 8 −1 0
0 1 4 −1 −4

⎤
⎦

E1/3[3,2]−→
⎡
⎢⎣

1 1 −4 0 1
0 −3 8 −1 0

0 0 20/3 −4/3 −4

⎤
⎥⎦ R1−→

⎡
⎢⎣

1 1 −4 0 1
0 1 −8/3 1/3 0
0 0 1 −1/5 −3/5

⎤
⎥⎦

R2−→
⎡
⎢⎣

1 1 0 −4/5 −7/5

0 1 0 −1/5 −8/5

0 0 1 −1/5 −3/5

⎤
⎥⎦ E−1[1,2]−→

⎡
⎢⎣

1 0 0 −3/5 1/5

0 1 0 −1/5 −8/5

0 0 1 −1/5 −3/5

⎤
⎥⎦

ins−0−→

⎡
⎢⎢⎣

1 0 0 −3/5 1/5

0 1 0 −1/5 −8/5

0 0 1 −1/5 −3/5

0 0 0 0 0

⎤
⎥⎥⎦ ch(−1)−→

⎡
⎢⎢⎣

1 0 0 −3/5 1/5

0 1 0 −1/5 −8/5

0 0 1 −1/5 −3/5

0 0 0 −1 0

⎤
⎥⎥⎦ .
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Here, R1 is E−1/3[2], E3/20[3]; R2 is E8/3[2, 3], E4[1, 3]. The solution set is
given by

Sol(A, b) =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1/5

−8/5

−3/5

0

⎤
⎥⎥⎦ + α1

⎡
⎢⎢⎣

−3/5

−1/5

−1/5

−1

⎤
⎥⎥⎦ : α1 ∈ F

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

1
5

⎡
⎢⎢⎣

1
−8
−3
0

⎤
⎥⎥⎦ + α

⎡
⎢⎢⎣
3
1
1
5

⎤
⎥⎥⎦ : α ∈ F

⎫⎪⎪⎬
⎪⎪⎭

.

That is,
x1 = 1

5 + 3α, x2 = − 8
5 + α, x3 = − 3

5 + α, x4 = 5α,

where α is any number in F. Verify that it is a solution. The null space of the system
matrix has the basis {(3, 1, 1, 5)T }. �

In Steps (5)–(6) of the Gaussian elimination, we make the pivots as 1 and then
zero-out the nonpivotal entries above the pivot in all pivotal columns. This signals
at using the row reduced echelon form instead of using the row echelon form. The
result is the Gauss–Jordan elimination method.

In this method, we convert the augmented matrix [A|b] to its row reduced echelon
form, using elementary row operations. Thus back substitution of Gaussian elimina-
tion is done within the pivoting steps. All other steps taken in Gaussian elimination
are followed as they are.

We describe Gauss–Jordan method as an algorithm with input Ax = b and output
Sol(A, b), where A ∈ F

m×n .

Gauss–Jordan Elimination

1. Construct the augmented matrix [A|b].
2. Use the algorithm Reduction to Row Reduced Echelon Form on [A|b]; call the

row reduced echelon form as [A′|b′].
3. If a pivot occurs in b′, then the system does not have a solution. Stop.
4. Else, delete the zero rows in [A′|b′], all of which occur at the bottom.
5. If every column of A′ is a pivotal column, then Sol(A, b) = {b′}. Stop.
6. Else, insert required number of zero rows to [A′|b′] so that in the resulting matrix

[B|c], each pivot is a diagonal entry.
7. Adjoin required number of zero rows at the bottom of [B|c] to make the B portion

a square matrix.
8. Change all nonpivotal diagonal entries to −1 to obtain [B̃|c̃].
9. Suppose the nonpivotal columns in [B̃|c̃] are v1, . . . , vk . Then

Sol(A, b) = {c̃ + α1v1 + · · · + αkvk : α1, . . . , αk ∈ F}.
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Example 3.42 Consider the system of linear equations in Example3.39:

x1 + x2 + 2x3 + x5 = 1
3x1 + 5x2 + 5x3 + x4 + x5 = 2
4x1 + 6x2 + 7x3 + x4 + 2x5 = 3
x1 + 5x2 + 5x4 + x5 = 2
2x1 + 8x2 + x3 + 6x4 + 0x5 = 2

The row echelon form of the corresponding augmented matrix is computed as
follows:

⎡
⎢⎢⎢⎢⎣

1 1 2 0 1 1
3 5 5 1 1 2
4 6 7 1 2 3
1 5 0 5 1 2
2 8 1 6 0 2

⎤
⎥⎥⎥⎥⎦

R1−→

⎡
⎢⎢⎢⎢⎣

1 1 2 0 1 1
0 2 −1 1 −2 −1
0 2 −1 1 −2 −1
0 4 −2 5 0 1
0 6 −3 6 −2 0

⎤
⎥⎥⎥⎥⎦

R2−→

⎡
⎢⎢⎢⎢⎣

1 0 5/2 −1/2 2 3/2

0 1 −1/2 1/2 −1 −1/2

0 0 0 0 0 0
0 0 0 3 4 3
0 0 0 3 4 3

⎤
⎥⎥⎥⎥⎦

R3−→

⎡
⎢⎢⎢⎢⎣

1 0 5/2 −1/2 2 3/2

0 1 −1/2 1/2 −1 −1/2

0 0 0 1 4/3 1
0 0 0 0 0 0
0 0 0 3 4 3

⎤
⎥⎥⎥⎥⎦

R4−→

⎡
⎢⎢⎢⎢⎣

1 0 5/2 0 8/3 2
0 1 −1/2 0 −5/3 −1
0 0 0 1 4/3 1
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

Here,
R1 = E−3[2, 1], E−4[3, 1], E−1[4, 1], E−2[5, 1];
R2 = E1/2[2], E−1[1, 2], E−2[3, 2], E−4[4, 2], E−6[5, 2];
R3 = E[3, 4], E1/3[3]; and
R4 = E1/2[1, 3], E−1/2[2, 3], E−3[5, 3].

The basic variables are x1, x2 and x4; the free variables are x3 and x5. The rewritten
form of the equations are

x1 = 2 − 5
2 x3 − 8

3 x5
x2 = −1 + 1

2 x3 + 5
3 x5

x4 = 1 − 4
3 x5

These equations provide the set of all solutions as the free variables x4 and x5 can
take any arbitrary values. Notice that rank (A) = 3 which is equal to the number of
basic variables, and the number of linearly independent solutions is the null (A) = 2,
the number of free variables.
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Following Gauss-Jordan method, we delete the last two zero rows, and insert
zero rows so that pivots appear on the diagonal. Next, we adjoin suitable zero rows
to make the portion before “|” a square matrix. And then, we change the diagonal
entries on the added zero rows to −1 to obtain the following:

del−0; ins−0−→

⎡
⎢⎢⎢⎢⎣

1 0 5/2 0 8/3 2
0 1 −1/2 0 −5/3 −1
0 0 0 0 0 0
0 0 0 1 4/3 1
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

ch(−1)−→

⎡
⎢⎢⎢⎢⎣

1 0 5/2 0 8/3 2
0 1 −1/2 0 −5/3 −1
0 0 −1 0 0 0
0 0 0 1 4/3 1
0 0 0 0 −1 0

⎤
⎥⎥⎥⎥⎦ .

Then the nonpivotal columns in the A portion form a basis for N (A), and the solution
set is given by

Sol(A, b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

2
−1
0
1
0

⎤
⎥⎥⎥⎥⎦ + α

⎡
⎢⎢⎢⎢⎣

5/2

−1/2

−1
0
0

⎤
⎥⎥⎥⎥⎦ + β

⎡
⎢⎢⎢⎢⎣

8/3

−5/3

0
4/3

−1

⎤
⎥⎥⎥⎥⎦ : α, β ∈ F

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. �

Exercises for Sect.3.7

1. Apply Gaussian elimination to the following linear systems. Decide whether each
is solvable; in that case, determine the solution set.

(a) x1 + 2x2 − x3 = 2, 2x1 − x2 − 2x3 = 4, x1 + 12x2 − x3 = 2.
(b) x1 + x2 + x3 = 1, x1 − x2 + 2x3 = 1, 2x1 + 3x3 = 2, 2x1 + 6x2 = 2.
(c) x1 − x2 + 2x3 − 3x4 = 7, 4x1 + 3x3 + x4 = 9, 2x1 − 5x2 + x3 = −2,

3x1 − x2 − x3 + 2x4 = −2.
(d) x1 − x2 − x3 = 1, 2x1 − x2 + 2x3 = 7, x1 + x + 2 + x + 3 = 5,

x1 − 2x2 − x3 = 0.
(e) 4x1 + 3x3 + x4 = 9, x1 − x2 + 2x3 − 3x4 = 7, 2x1 − 5x2 + x3 = −2,

3x1 − x2 − x3 + 2x4 = −2.

Also solve all those which are solvable by Gauss–Jordan elimination.

2. Let A =

⎡
⎢⎢⎢⎢⎣

1 2 0 3 0
1 2 −1 −1 0
0 0 1 4 0
2 4 1 10 1
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

(a) Find an invertible matrix P such that PA is in row reduced echelon form.
(b) Find a basis B for the space U spanned by the rows of A.

(c) Describe any typical vector inU.Determinewhether (−5,−10, 1,−11, 20)
and (1, 2, 3, 4, 5) are linear combinations of rows of A or not.

(d) Find [v]B for any v ∈ U.
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(e) Describe the solution space W of Ax = 0.
(f) Find a basis for W.

(g) For which y ∈ R
5×1, Ax = y has a solution?

3. Solve the system

⎡
⎣3 −2 −2
0 6 −3
0 0 1

⎤
⎦

⎡
⎣ 1 0 0

4 1 0
−1 6 2

⎤
⎦

⎡
⎣x1
x2
x3

⎤
⎦ =

⎡
⎣2
0
2

⎤
⎦ .

Notice that it is in the form ULx = b.
4. Using Gaussian elimination, determine the values of k for which the system

x1 + x2 + kx3 = 1, x1 − x2 − x3 = 2, 2x1 + x2 − 2x3 = 3.

has (a) no solution, (b) at least one solution, or (c) a unique solution.
5. Using Gaussian elimination, find all possible values of k ∈ R such that the fol-

lowing system of linear equations has more than one solution:

x + y + 2z − 5w = 3, 2x + 5y − z − 9w = −3,

x − 2y + 6z − 7w = 7, 2x + 2y + 2z + kw = −4.

6. Find α, β, γ so that 2 sin α − cosβ + 3 tan γ = 0, 4 sin α + 2 cosβ − 2 tan γ =
0, and 6 sin α − 3 cosβ + tan γ = 9.

7. Find the coefficients a, b, c, d ∈ R so that the graph of y = a + bx + cx2 + dx3

passes through the points (−1, 6), (0, 1), (1, 2), and (2, 3).
[Hint: Set up a system of linear equations in a, b, c, and d.]

8. A function f : S → S is said to have a fixed point s ∈ S if and only if f (s) = s.
Find a polynomial p(t) ∈ P3(R) having fixed points as 1, 2, and 3.

9. Let u = (−1, 0, 1, 2), v = (3, 4,−2, 5), and w = (1, 4, 0, 9). Construct a linear
system whose solution space is span{u, v,w}.

3.8 Problems

1. Let B and D be two bases for a subspace of F
1×n . Prove that D can be obtained

from B by a finite sequence of elementary row operations on the vectors of B.

2. Let A be a square matrix. Prove that elementary matrices E1, . . . , Ek exist such
that E1 · · · Ek A is either I or has the last row a zero row.

3. Show that if A ∈ F
2×2 is invertible, then A can be written as a product of at most

four elementary matrices.



3.8 Problems 157

4. Let i, j, r, s ∈ {1, . . . ,m} satisfy r < s and r < i < j. Let α ∈ F, α �= 0. Prove
the following:

(a) If s �= i and s �= j, then E[i, j] Eα[s, r ] = Eα[s, r ] E[i, j].
(b) If s = i, then E[i, j] Eα[s, r ] = Eα[ j, r ] E[i, j].
(c) If s = j, then E[i, j] Eα[s, r ] = Eα[i, r ] E[i, j].

5. Use Problem 4 to prove (formally) that for any m × n matrix A, there exists a
permutation matrix P such that in reducing PA to row echelon form, no row
exchanges are required.

6. Let U be subspace of F
n of dimension m ≤ n. Prove that there exists a unique

row reduced echelon matrix A ∈ F
m×n whose rows span U.

7. Let A, B ∈ F
m×n . Prove that the following are equivalent:

(a) B can be obtained from A by a sequence of elementary row operations.
(b) The space spanned by the rows of A is the same as that spanned by the rows

of B.

(c) B = QA for some invertible matrix Q ∈ F
m×m .

8. Let P ∈ F
n×n . Show that P is a permutation matrix if and only if each row of

P contains exactly one nonzero entry, and it is equal to 1.
9. Give a proof of Theorem 3.14 analogous to that of Theorem 3.7.
10. If A ∈ F

m×n is reduced to its echelon form B ∈ F
m×n, then show that

B = Lk Pk Lk−1 Pk−1 · · · L1 P1 A = Lk (Pk Lk−1P
−1
k ) (Pk Pk−1Lk−1P

−1
k−1P

−1
k )

· · · (Pk · · · P2L1P−1
2 · · · P−1

k )(Pk · · · P1) A

for some lower triangular matrices Lr and some permutation matrices Ps . Use
this to derive the LU-factorization of A.

11. Prove that an elementary matrix of Type 1 can be expressed as a (finite) product
of elementary matrices of other two types.

12. Show that column equivalence is an equivalence relation on the set of matrices
of the same size.

13. Let A, B ∈ F
m×n be in row reduced echelon form. Show that if A and B are row

equivalent, then A = B.

14. Show that each matrix is row equivalent to a unique matrix in row reduced
echelon form.

15. Let A ∈ F
m×n be of rank r. Let {u1, . . . , ur } be a basis for R(A). Then the

columnsof A are linear combinations ofu1, . . . , ur .Use this to give an alternative
proof of the rank decomposition theorem.

16. Let A ∈ F
m×n . Let B be its row reduced echelon matrix. Mark the pivotal

columns. Construct C ∈ F
m×r by removing all nonpivotal columns from A.

Also, construct F by removing all zero rows from B. Prove that A = CF is a
rank decomposition of A.

17. Deduce rank (AT ) = rank (A) from the rank decomposition of A.

18. Let A ∈ F
m×n . Prove that rank (A∗) = rank (A) = rank (AT ).
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19. Let A, B ∈ F
m×n . Show that rank (A + B) ≤ rank (A) + rank (B).Construct an

example where equality is achieved.
20. Construct three pairs of row equivalent matrices. Also, construct three pairs of

matrices which are not row equivalent.
21. If a matrix A is equivalent to a matrix B, is it necessary that either A is row

equivalent to B or A is column equivalent to B?
22. Prove that a square matrix A is not invertible if and only if there exists a nonzero

square matrix B such that AB = 0.
23. Let A, B ∈ F

n×n . Show that AB is invertible if and only if both A and B are
invertible.

24. Let A, B ∈ R
n×n . Suppose that there exists an invertible matrix P ∈ C

n×n such
that PA = BP. Show that there exists an invertible matrix Q ∈ R

n×n such that
QA = BQ.

25. Let A ∈ F
n×n . Prove that the following are equivalent:

(a) There exists B ∈ F
n×n such that AB = I.

(b) A is row equivalent to I.
(c) A is a product of elementary matrices.
(d) A is invertible.
(e) AT is invertible.
(f) There exists B ∈ F

n×n such that BA = I.
(g) Ax = 0 has no nontrivial solution.
(h) Ax = b has a unique solution for some b ∈ F

n×1.

(i) Ax = b is consistent for each b ∈ F
n×1.

(j) Ax = ei has a unique solution for each standard basis vector ei of F
n×1.

(k) rank (A) = n.

(l) The row reduced echelon form of A is I.
(m) Ax = b has a unique solution for each b ∈ F

n×1.

26. Let A, B,C, and D be n × n matrices, where D is invertible and CD = DC.

Show that det

([
A B
C D

] )
= det(AD − BC). What happens if CD �= DC?

What happens if D is not invertible?

27. Suppose X =
[
A B
C D

]
,where A ∈ F

m×m, B ∈ F
m×n,C ∈ F

n×m, and D ∈ F
n×n .

Show the following:

(a) If B = 0 or C = 0, then det(X) = det(A) det(D).

(b) If A is invertible, then det(X) = det(A) det(D − CA−1B).

(c) X−1 =
[

(A − BD−1C)−1 A−1B(CA−1B − D)−1

(CA−1B − D)−1CA−1 (D − CA−1B)−1

]
provided that

all the inverses exist.

28. Prove that if A is an n × k matrix and B is a k × n matrix, where k < n, then
AB is not invertible.

29. Let A ∈ F
m×n and B ∈ F

n×m . Prove that Im − AB is invertible if and only if
In − BA is invertible.
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30. Suppose that A ∈ F
m×n and y ∈ F

m×1. Assume that there exists a matrix
B such that BA = I. Now, Ax = y ⇒ BAx = By ⇒ I x = By ⇒ x = By.
When verifying our solution, we see that x = By ⇒ Ax = ABy ⇒ x = y.
But the last ⇒ is questionable since we have no information whether AB = I.
Explain the situation.

31. Let A ∈ F
n×n . If tr(AB) = 0 for each B ∈ F

n×n, then prove that A = 0.
32. Since traces of similarmatrices coincide, trace iswell defined for a linear operator

on any finite dimensional vector space. Let P ∈ F
2×2. Define a linear operator

T on F
2×2 by T (X) = PX. Show that tr(T ) = 2 tr(P).

33. Let f be a linear functional on F
n×n that satisfies f (AB) = f (BA) for all

A, B ∈ F
n×n and f (I ) = n. Prove that f (X) = tr(X) for all X ∈ F

n×n .

34. Let W be the subspace of F
n×n which is spanned by matrices of the form AB −

BA. Prove that W is the subspace of matrices with trace 0.
35. Let A ∈ F

n×n have more than n2 − n number of entries as 0. Does it follow that
det(A) = 0?

36. Does the set of all n × n matrices with complex entries whose determinant is 0
form a vector space with the usual operations of addition and scalar multiplica-
tion?

37. Determine Sol(A, 0), where A ∈ F
n×n has all diagonal entries as 1 − n and all

other entries as 1.
38. Let A be an n × n matrix with integer entries. Show that det(A) = ±1 if and

only if A is invertible and all entries of A−1 are integers.
39. Let A = [ai j ] ∈ R

n×n, where ai j = 1 for j = n + 1 − i, and ai j = 0 otherwise.
Compute det(A).

40. Compute det(A) and det(B), where

A =

⎡
⎢⎢⎢⎢⎣

1
1

. .
.

1
1

⎤
⎥⎥⎥⎥⎦ and B =

⎡
⎣1 2 · · · n

...

1 2 · · · n

⎤
⎦ .

41. Let A ∈ C
n×n be of rank r.A k × k submatrix of A is obtained from A by deleting

some m − k rows and n − k columns. Prove that some r × r submatrix of A is
invertible and that no (r + 1) × (r + 1) submatrix of A is invertible.

42. Define a box in R
n determined by the vectors v1, . . . , vn as the set

{α1v1 + · · · + αnvn : αi ∈ R and 0 ≤ αi ≤ 1 for each i}.

The volume of such a box is defined as | det([v1 · · · vn])|. Let A ∈ R
n×n and let

B be a box in R
n. Let A(B) be the image of the box B under the map A. Show

that A(B) is a box and that the volume of the box A(B) is equal to | det(A)| times
the volume of the box B. Deduce that an orthogonal matrix preserves volumes
of boxes.
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43. If ω is a primitive cube root of unity, then show that

∣∣∣∣∣∣
a b c
c a b
b c a

∣∣∣∣∣∣ = (a + b + c)(a + bω + cω2)(a + bω2 + cω).

44. Obtain a result for

∣∣∣∣∣∣∣∣

a b c d
d a b c
c d a b
b c d a

∣∣∣∣∣∣∣∣
similar to the matrix in Exercise 43 using prim-

itive fourth roots of unity. Such matrices are called circulant matrices. Can you
generalize the result for an n × n circulant matrix?

45. The classical Vandermonde matrix with distinct numbers x1, . . . , xn−1 is the
n × n matrix A = [ai j ], where ai j = x j−1

i . Show the following:

(a) det(A) = 1≤i< j≤n(xi − x j ).

(b) Let A−1 = [bi j ]. Let p j (t) be a polynomial of degree n − 1 such that
p j (xi ) = δi j for 1 ≤ i ≤ n, with δi j as Kronecker’s delta. Then

p j (t) =
n∑

k=1

bkj t
k−1 = 1≤k≤n,k �= j

t − xk
x j − xk

.

Can you give an exact expression for bi j? And what is the sum
∑

i

∑
j bi j?

46. The Vandermonde matrix with given numbers x1, . . . , xn is the n × n matrix
A = [ai j ] where ai j = xij . Write pi (t) = 1≤k≤n,k �=i (t − xk), a polynomial of
degree n − 1. Show the following:

(a) det(A) is the product 1≤ j≤n1≤i, j≤n(x j − xi ).
(b) If det(A) �= 0, then A−1 = [bi j ] where

bi j = (−1) j+1 Coefficient of t
i−1 in pi (t)

xi pi (xk)
.

(c) If A is invertible, then what is the sum of all n2 entries in A−1?

47. (Hilbert matrix) Let A = [ai j ] ∈ R
n×n with ai j = 1/(i + j − 1). Show:

(a) A is invertible and the inverse of A has only integer entries.
(b) The sum of all n2 entries of A−1 is n2. (See [4].)

48. The combinatorial matrix with given numbers x and y is the n × n matrix A =
[ai j ], where ai j = y + δi j x . Show the following:

(a) det(A) = xn−1(x + ny).

(b) If det(A) �= 0, then A−1 = [bi j ], where bi j = −y + δi j (x + ny)

x(x + ny)
.

What is the sum of all n2 entries in A−1?
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49. TheCauchymatrixwith given numbers x1, . . . , xn, y1, . . . , yn with xi + y j �= 0
for any i, j, is the n × n matrix A = [ai j ], where ai j = (xi + y j )−1. Show the
following:

(a) det(A) = 1≤i< j≤n(x j − xi )(y j − yi )

1≤i, j≤n(xi + y j )
.

(b) A−1 = [bi j ], where

bi j = 1≤k≤n(x j + yk)(xk + yi )

(x j + yi )
(
1≤k≤n,k �= j (x j − xk)

)(
1≤k≤n,k �=i (yi − yk)

) .

(c) What is the sum of all n2 entries of A−1?

50. (Hadamard Matrix) A Hadamard matrix of order n is a matrix H ∈ R
n×n with

each entry as ±1 that satisfies HHT = nI. Show the following:

(a) If the entries of A = [ai j ] ∈ F
n×n satisfy |ai j | ≤ 1, then | det(A)| ≤ nn/2.

Further, equality holds when A is a Hadamard matrix.
(b) If a Hadamard matrix of order n exists, then either n = 1 or n = 2, or n is

a multiple of 4.

(c) If B is a Hadamard matrix of order n, then

[
B B
B −B

]
is a Hadamard matrix

of order 2n. (This way Sylvester shows how to construct Hadamardmatrices
of order 2n.)

It is not yet known how to construct Hadamard matrices of arbitrary order.



Chapter 4
Inner Product Spaces

4.1 Inner Products

In Chap.1 we defined a vector space as an abstraction of the familiar Euclidean
space. In doing so, we took into account only two aspects of the set of vectors in a
plane, namely the vector addition and scalar multiplication. Now, we consider the
third aspect, namely the angle between vectors.

Recall that if �x and �y are two nonzero vectors in the plane R
2, then the angle

θ(�x, �y) between �x and �y is given by

cos θ(�x, �y) = �x · �y
|�x | |�y| ,

where for a vector �u = (a, b) ∈ R
2, |�u| denotes the absolute value of the vector �u,

that is,
|�u| =

√
a2 + b2 = √�u · �u.

This is the distance of the point (a, b) ∈ R
2 from the origin.

Observe that the angle between two vectors is completely determined by the dot
product. The dot product satisfies the following properties for all �x, �y, �u ∈ R

2 and
for all α ∈ R:

(�x + �y) · �u = �x · �u + �y · �u,

(α�x) · �y = α(�x · �y),
�x · �y = �y · �x,
�x · �x ≥ 0,

�x · �x = 0 if and only if �x = �0.
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When a vector has complex coordinates, some of the above propertiesmay require
modifications. Since dot product must give rise to the absolute value of a vector by
taking |�x |2 = �x · �x , the modified definition must keep the property

�x · �x ≥ 0

intact. Taking into account the above requirements, we generalize the notion of a dot
product to any vector space V with the notation 〈u, v〉 for u, v ∈ V , in place of the
dot product in R

2.

Definition 4.1 Let V be a vector space over F. An inner product on V is a function
from V × V to F, denoted by 〈·, ·〉, that is (x, y) �→ 〈x, y〉, satisfying the following
properties for all x, y, z ∈ V and for all α ∈ F:

(1) 〈x, x〉 ≥ 0.
(2) 〈x, x〉 = 0 if and only if x = 0.
(3) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉.
(4) 〈αx, y〉 = α〈x, y〉.
(5) 〈x, y〉 = 〈y, x〉.
A vector space together with an inner product is called an inner product space.
If F = R, the inner product space V is called a real inner product space, and if
F = C, then V is called a complex inner product space.

A real inner product space is also called a Euclidean space, and a complex inner
product space is also called a unitary space.

A simple example of an inner product is the dot product in R
2. In the following

examples, it can be easily verified that the map 〈·, ·〉 is indeed an inner product.

Example 4.2 (1) For x = (α1, . . . , αn) and y = (β1, . . . , βn) in F
n , define

〈x, y〉 :=
n∑

j=1

α jβ j = yxT .

Then 〈·, ·〉 is an inner product on F
n , called the standard inner product on F

n .

(2) For x = (α1, . . . , αn)
T and y = (β1, . . . , βn)

T in F
n×1, define

〈x, y〉 :=
n∑

j=1

α jβ j = y∗x .

Recall that y∗ is the conjugate transpose of y. Then 〈·, ·〉 is an inner product on F
n×1.

It is called the standard inner product on F
n×1.

(3) Recall that a matrix A ∈ F
n×n is called hermitian, when A∗ = A. A hermitian

matrix is called positive definite if for each nonzero x ∈ F
n×1, x∗Ax > 0.
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Let A be a positive definite matrix. Then

〈x, y〉 = y∗Ax

defines an inner product on F
n×1.

(4) For p(t) = a0 + a1t + · · · + antn and q(t) = b0 + b1t + · · · + bntn in Pn(F),
define

〈p, q〉 = a0b0 + a1b1 + · · · + anbn.

Then 〈·, ·〉 is an inner product on Pn(F).

(5) Let V be a finite dimensional vector space. Let E = {v1, . . . , vn} be an ordered
basis of V . For x = ∑n

i=1 αi vi and y = ∑n
i=1 βi vi in V , define

〈x, y〉E =
n∑

i=1

αiβ i .

Then 〈·, ·〉E is an inner product on V .

(6) For f, g ∈ C([a, b], R), the vector space of all continuous real-valued functions
with domain as the interval [a, b], define

〈 f, g〉 =
∫ b

a
f (t) g(t) dt.

Clearly,

〈 f, f 〉 =
∫ b

a
| f (t)|2 dt ≥ 0 for all f ∈ C([a, b], R).

By the continuity of the function f ,

〈 f, f 〉 =
∫ b

a
| f (t)|2 dt = 0 if and only if f (t) = 0 for all t ∈ [a, b].

Other conditions can be verified to show that 〈·, ·〉 is an inner product.
Similarly, on C([a, b], C), the vector space of all continuous complex-valued

functions with domain as the interval [a, b],

〈 f, g〉 =
∫ b

a
f (t)g(t) dt for f, g ∈ C([a, b], C)

defines an inner product.

(7) For polynomials p, q ∈ P(R), define

〈p, q〉 =
∫ 1

0
p(t) q(t) dt.
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It can be verified that it is an inner product on P(R).
Similarly, on P(C),

〈p, q〉 =
∫ 1

0
p(t)q(t) dt for p, q ∈ P(C)

defines an inner product. It may be checked that this inner product restricted toPn(F)

is different from the one discussed in (4) above. �

The inner product in Example4.2(5) is related to the standard Inner product on
F
n by the canonical isomorphism, which gives the coordinate vectors. That is,

〈u, v〉 = 〈[u]E , [v]E 〉.

In fact, any finite dimensional vector space can be made into an inner product space
by fixing an ordered basis.

If V is a vector space over F, W is an inner product space over F with an inner
product 〈·, ·〉W , and T : V → W is an injective linear transformation, then the map
〈·, ·〉V : V × V → F defined by

〈x, y〉V = 〈T x, T y〉W for x, y ∈ V

is an inner product on V .
It is easy to verify that the restriction of an inner product on a vector space to a

subspace is an inner product on the subspace.

Theorem 4.3 Let V be an inner product space. Then, for all x, y, u, v ∈ V and
α ∈ F,

〈x, u + v〉 = 〈x, u〉 + 〈x, v〉 and 〈x, αy〉 = α〈x, y〉.

Proof Let x, y, u, v in V and α ∈ F. Due to Properties (3)–(5) in Definition4.1,

〈x, u + v〉 = 〈u + v, x〉 = 〈u, x〉 + 〈v, x〉 = 〈u, x〉 + 〈v, x〉 = 〈x, u〉 + 〈x, v〉,

〈x, αy〉 = 〈αy, x〉 = α〈y, x〉 = α〈x, y〉. �

Property (2) of the inner product provides a standard technique in showing unique-
ness results in inner product spaces.

Theorem 4.4 Let V be an inner product space and let x, y ∈ V . If 〈x, u〉 = 〈y, u〉
for all u ∈ V , then x = y.

Proof Suppose 〈x, u〉 = 〈y, u〉 for all u ∈ V . Then 〈x − y, u〉 = 0 for all u ∈ V . In
particular, with u = x − y, we have 〈x − y, x − y〉 = 0. This implies, by Property
(2) of the inner product, that x − y = 0. �
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Exercises for Sect.4.1

1. In each of the following check whether 〈·, ·〉 is an inner product on the given
vector space.

(a) 〈x, y〉 = ac for x = (a, b), y = (c, d) in R
2.

(b) 〈x, y〉 = ac − bd for x = (a, b), y = (c, d) in R
2.

(c) 〈x, y〉 = yT Ax for x, y ∈ R
2×1, where A is a given 2 × 2 real symmetric

matrix.
(d) 〈 f, g〉 = ∫ 1

0 f ′(t)g(t) dt on P(R).

(e) 〈 f, g〉 = ∫ 1/2

0 f (t)g(t) on C[0, 1].
(f) 〈x, y〉 = ∫ 1

0 x(t)y(t) dt for x, y inR([0, 1], R).

(g) 〈x, y〉 = ∫ 1
0 x ′(t)y′(t) dt for x, y in C1([0, 1], R).

(h) 〈x, y〉 = x(0)y(0) + ∫ 1
0 x ′(t)y′(t) dt for x, y in C1([0, 1], R).

(i) 〈x, y〉 = ∫ 1
0 x(t)y(t) dt + ∫ 1

0 x ′(t)y′(t) dt for x, y in C1([0, 1], R).
(j) 〈A, B〉 = tr(A + B) for A, B in R

2×2.
(k) 〈A, B〉 = tr(AT B) for A, B in R

3×3.

2. Let t1, . . . , tn+1 be distinct real numbers. Let 〈p, q〉 := ∑n+1
i=1 p(ti )q(ti ) for

p, q ∈ Pn(C). Show that 〈·, ·〉 is an inner product on Pn(C).
3. Let γ1, . . . , γn > 0. Let 〈(a1, . . . , an), (b1, . . . , bn)〉 = γ1a1b1 + · · · + γnanbn .

Show that 〈·, ·〉 is an inner product on R
n .

4. Let A = [ai j ] ∈ R
2×2. For x, y ∈ R

2×1, let f A(x, y) = yT Ax . Show that f A
is an inner product on R

2×1 if and only if a12 = a21, a11 > 0, a22 > 0 and
det(A) > 0.

5. For x = (α1, α2, α3) and y = (β1, β2, β3) inR
3, define 〈x, y〉 = ∑3

i, j=1 ai jαiβ j ,

where A = [ai j ] is given by A =
⎡

⎣
2 1 0
1 2 0
0 1 4

⎤

⎦. Show that this defines an inner

product onR
3. Compute cosines of the angles between the standard basis vectors

of R
3 using this inner product.

6. Let 〈·, ·〉 be the standard inner product on F
n , as defined in Example4.2(1). Let

T : V → F
n be an isomorphism. Define 〈x, y〉T := 〈T x, T y〉 for all x, y ∈ V .

Show that 〈·, ·〉T is also an inner product on F
n .

7. Suppose V is a vector space over F, W is an inner product space over F with
an inner product 〈·, ·〉W , and T : V → W is an injective linear transformation.
Define 〈x, y〉V = 〈T x, T y〉W for all x, y ∈ V . Show that 〈·, ·〉 is an inner product
on V .

8. Let V1 and V2 be inner product spaces with inner products 〈·, ·〉1 and 〈·, ·〉2,
respectively. Show that 〈·, ·〉 as given below is an inner product on V = V1 × V2:

〈(x1, x2), (y1, y2)〉 := 〈x1, y1〉1 + 〈x2, y2〉2 for all (x1, x2), (y1, y2) ∈ V .



168 4 Inner Product Spaces

9. Let a, b, c, d ∈ C. For u = (α, β) and v = (γ, δ) in C
2, define

〈u, v〉 = aαγ + bβγ + cαδ + dβδ.

Under what conditions on a, b, c, d, 〈·, ·〉 is an inner product?
10. Let E be a basis for a finite dimensional inner product space V . Let x, y ∈ V .

Prove that if 〈x, u〉 = 〈y, u〉 for all u ∈ E , then x = y.
11. Suppose V is a complex inner product space. Prove that Re〈i x, y〉 = −Im〈x, y〉

for all x, y ∈ V .
12. Let u ∈ R

2. For any α ∈ R, let Vα = {x ∈ R
2 : 〈x, u〉 = α}. Show that Vα is a

subspace of R
2 if and only if α = 0.

4.2 Norm and Angle

Recall that the length or absolute value of a vector �x = (a, b) in R
2 is given by

|�x | =
√
a2 + b2 = √�x · �x = √〈�x, �x〉,

where 〈�x, �x〉 is the Euclidean inner product of �x with itself. For defining the notion
of length of a vector in a general inner product space, now called the norm of the
vector, we use the analogous definition.

Definition 4.5 Let V be an inner product space. Let x ∈ V .

(a) The norm of x , denoted by ‖x‖, is the nonnegative square root of 〈x, x〉. That
is, ‖x‖ := √〈x, x〉.

(b) The map x �→ ‖x‖, also denoted by ‖ · ‖, is called a norm on V .
(c) A unit vector in V is any vector whose norm is 1.

It is easy to see that if x is any nonzero vector, then u := x/‖x‖ is a unit vector;
we say that this u is a unit vector in the direction of x .

An inequality involving both inner product and the norm is given in the following
theorem.

Theorem 4.6 (Cauchy–Schwarz inequality) Let V be an inner product space and
let x, y ∈ V . Then

(1) |〈x, y〉| ≤ ‖x‖ ‖y‖, and
(2) |〈x, y〉| = ‖x‖ ‖y‖ if and only if x and y are linearly dependent.

Proof If y = 0, then both (1) and (2) are obvious.
Assume that y �= 0. For any α ∈ F,

〈x − αy, x − αy〉 = 〈x, x〉 − 〈x, αy〉 − 〈αy, x〉 + 〈αy, αy〉
= ‖x‖2 − α〈x, y〉 − α〈y, x〉 + |α|2 ‖y‖2.
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In particular, taking α = 〈x, y〉
‖y‖2 , we obtain α = 〈y, x〉

‖y‖2 and

α〈x, y〉 = α〈y, x〉 = |α|2‖y‖2 = |〈x, y〉|2
‖y‖2 .

Consequently,

〈x − αy, x − αy〉 = ‖x‖2 − |〈x, y〉|2
‖y‖2 .

(1) Since 0 ≤ 〈x − αy, x − αy〉, we have |〈x, y〉| ≤ ‖x‖ ‖y‖.
(2) If x = αy for some α ∈ F, then |〈x, y〉| = |〈αy, y〉| = |α| ‖y‖2 = ‖x‖ ‖y‖.

Conversely, assume that x, y ∈ V are such that |〈x, y〉| = ‖x‖ ‖y‖. With y �= 0

and α = 〈x, y〉
‖y‖2 , we see that

〈x − αy, x − αy〉 = ‖x‖2 − |〈x, y〉|2
‖y‖2 = ‖x‖2 − ‖x‖2 = 0.

Therefore, x = αy. �

Some useful properties of the norm are listed in the following theorem.

Theorem 4.7 Let V be an inner product space and let x, y ∈ V . Then the following
are true:

(1) ‖x‖ ≥ 0.
(2) ‖x‖ = 0 if and only if x = 0.
(3) ‖αx‖ = |α| ‖x‖ for all α ∈ F.
(4) (Triangle inequality) ‖x + y‖ ≤ ‖x‖ + ‖y‖.
(5) (Parallelogram law) ‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2).
Proof The statements in (1)–(3) and (5) follow directly from the properties of the
inner product. For (4), observe that

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2Re〈x, y〉.

(‖x‖ + ‖y‖)2 = ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖.

Due to Cauchy–Schwarz inequality,

Re 〈x, y〉 ≤ |〈x, y〉| ≤ ‖x‖ ‖y‖.

Therefore, ‖x + y‖2 ≤ (‖x‖ + ‖y‖)2. �

Similar to Cauchy–Schwarz inequality, the triangle inequality becomes an equal-
ity when one vector is a nonnegative multiple of the other; prove it!
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The triangle inequality is so named because if the two sides of a triangle in the
plane are vectors x and y, then the third side is x + y, and the inequality says that the
sum of the lengths of any two sides of a triangle is at least that of the third. Similarly,
the parallelogram law in the plane says that the sum of the areas of the squares on
the sides of a parallelogram is equal to the sum of the areas of the squares on its
diagonals.

We define the distance between vectors u and v in an inner product space as

d(x, y) := ‖u − v‖.

Using Theorem4.7(1)–(4), the following may be easily seen:

1. For all x, y ∈ V, d(x, y) ≥ 0.
2. For each x ∈ V, d(x, x) = 0 if and only if x = 0.
3. For all x, y, z ∈ V, d(x, z) ≤ d(x, y) + d(y, z).

Since ‖x‖ is the distance of x from the origin, it is the length of x , as it is supposed
to be.

In fact, a norm can be defined on a vector space without recourse to an inner
product. In that case, a norm is taken as any function from V to R mapping x to
‖x‖ satisfying the properties listed in Theorem4.7(1)–(4). The parallelogram law
is satisfied by only those norms which come from inner products. For example, on
R

2, ‖(a, b)‖ = |a| + |b| defines a norm but this norm does not come from an inner
product; show it!

In an inner product space, if a norm comes from an inner product there should
be a way of computing the inner product from the norm. In this regard, we have the
following theorem; its proof is left as an exercise.

Theorem 4.8 (Polarization identities) Let V be an inner product space over F. Let
x, y ∈ V .

(1) If F = R, then 4〈x, y〉 = ‖x + y‖2 − ‖x − y‖2.
(2) If F = C, then 4〈x, y〉 = ‖x + y‖2 − ‖x − y‖2 + i‖x + iy‖2 − i‖x − iy‖2.

Recall that the acute (nonobtuse) angle θ(�x, �y) between two vectors �x, �y ∈ R
2 is

given by

cos θ(�x, �y) = |�x · �y|
|�x | |�y| .

Replacing the dot product by the inner product yields a definition of angle between
two vectors in an inner product space. Observe that due to Cauchy–Schwarz inequal-
ity,

0 ≤ |〈x, y〉|
‖x‖ ‖y‖ ≤ 1 for x �= 0, y �= 0.

Definition 4.9 Let x and y be nonzero vectors in an inner product space V . The
angle θ(x, y) between x and y is defined by
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cos θ(x, y) = |〈x, y〉|
‖x‖ ‖y‖ .

Let x and y be nonzero vectors. If one of them is a scalar multiple of the other, say,
x = αy for some nonzero scalar α, then cos θ(x, y) = 1; consequently, θ(x, y) = 0.
Conversely, if θ(x, y) = 0, then cos θ(x, y) = 1; and then |〈x, y〉| = ‖x‖ ‖y‖. Due
to Theorem4.6(2), one of x, y is a scalar multiple of the other. In the other extreme,
if 〈x, y〉 = 0, then θ(x, y) = π/2. Moreover, 〈x, y〉 can be 0 when x = 0 or y = 0.
We single out this important case.

Definition 4.10 Let x and y be vectors in an inner product space V . We say that x
is orthogonal to y, written as x ⊥ y, if 〈x, y〉 = 0.

Thus, the zero vector is orthogonal to every vector. For a nontrivial example,
consider {e1, . . . , en}, the standard basis ofF

n . Suppose i, j ∈ {1, . . . , n}with i �= j .
Then ei ⊥ e j . Moreover, ei + e j ⊥ ei − e j since

〈ei + e j , ei − e j 〉 = 〈ei , ei 〉 − 〈ei , e j 〉 + 〈e j , ei 〉 − 〈e j , e j 〉 = 0.

We also read x ⊥ y as “x is perpendicular to y” or “x perp y” for short. Notice that
if x ⊥ y, then y ⊥ x . Once orthogonality is present, many geometrical facts can be
proved effortlessly.

Theorem 4.11 (Pythagoras theorem) Let V be an inner product space over F and
let x, y ∈ V .

(1) If x ⊥ y, then ‖x + y‖2 = ‖x‖2 + ‖y‖2.
(2) If F = R, then ‖x + y‖2 = ‖x‖2 + ‖y‖2 implies that x ⊥ y.

Proof Since ‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2Re〈x, y〉, we see that

‖x + y‖2 = ‖x‖2 + ‖y‖2 if and only if Re〈x, y〉 = 0.

(1) If x ⊥ y, then 〈x, y〉 = 0. Thus Re〈x, y〉 = 0.
(2) If F = R, then 〈x, y〉 = Re〈x, y〉. Thus Re〈x, y〉 = 0 implies that x ⊥ y. �

If the underlying field is C, then a statement similar to Theorem4.11(2) need not
hold. For example, take V = C with the standard inner product 〈x, y〉 = x y. With
x = 1 and y = i , we see that

‖x + y‖2 = ‖1 + i‖2 = 2, ‖x‖2 + ‖y‖2 = |1|2 + |i |2 = 2.

Thus ‖x + y‖2 = ‖x‖2 + ‖y‖2; but 〈x, y〉 = 〈1, i〉 = i = −i �= 0.
Observe that for any x, y ∈ V with y �= 0 and α = 〈x,y〉

‖y‖2 , we have x − αy ⊥ αy.
Now, writing x = (x − αy) + αy, you can use Pythagoras theorem for an alternative
proof of Cauchy–Schwarz inequality. See Exercise 9 below.
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Exercises for Sect.4.2

1. Let u and v be vectors in an inner product space V . If ‖u‖ = 1, ‖v‖ = 2 and
‖u − v‖ = 3, then what is ‖u + v‖?

2. With the inner product 〈p, q〉 = ∫ 1
0 p(t)q(t)dt on Pn+1(C), find a polynomial

of degree n orthogonal to all of 1, t, t2, . . . , tn−1.
3. Let V be an inner product space of dimension 2. Let x ∈ V be a nonzero vector.

Find a nonzero vector orthogonal to x .
4. For vectors x, y ∈ V , a real inner product space, prove that x + y ⊥ x − y if

and only if ‖x‖ = ‖y‖. What happens in a complex inner product space?
5. Show that

( ∑n
k=1 akbk

)2 ≤ ( ∑n
k=1 ka

2
k

)(∑n
k=1(bk/k)

2
)
for ak, bk ∈ R.

6. Show that 〈·, ·〉 : R
3 × R

3 → R defined by 〈x, y〉 = y

⎡

⎣
2 1 0
1 2 1
0 1 4

⎤

⎦ xT is an inner

product on R
3. Using this inner product, compute the cosines of angles between

the standard vectors of R
3.

7. Show that 〈A, B〉 = tr(BT A) defines an inner product on R
3×3. In this inner

product space, determine which of the following matrices are orthogonal to
which one. Also find the norm of the matrices.

⎡

⎣
1 1 0

−1 1 1
0 1 0

⎤

⎦ ,

⎡

⎣
0 1 0
1 −1 0
0 0 1

⎤

⎦ ,

⎡

⎣
2 −1 0

−1 0 1
0 1 0

⎤

⎦ .

8. (Appolonius Identity): Let V be an inner product space. Let x, y, z ∈ V . Show
that

‖z − x‖2 + ‖z − y‖2 = 1
2‖x − y‖2 + 2‖z − 1

2 (x + y)‖2.

9. Derive Cauchy–Schwarz inequality from Pythagoras theorem. (Hint: Write u =
y/‖y‖. Next, for any vector x ∈ V , write x = v + w with v = 〈x, u〉u and w =
x − 〈x, u〉u. Observe that v ⊥ w.)

10. Define ‖ · ‖ : C[a, b] → R by ‖ f ‖ = max{ f (t) : a ≤ t ≤ b}. Show that ‖ · ‖
is a norm on C[a, b] but it does not satisfy the parallelogram law.

4.3 Orthogonal and Orthonormal Sets

Subsets in which each vector is orthogonal to the other can be interesting. For exam-
ple, the vectors in the standard basis for F

n are orthogonal to each other. Moreover,
each standard basis vector is a unit vector.

Definition 4.12 Let S be a nonempty subset of an inner product space V . We say
that

(a) S is an orthogonal set in V if each vector in S is orthogonal to every other vector
in S.
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(b) S is a proper orthogonal set in V if S is an orthogonal set in V and 0 /∈ S.
(c) S is an orthonormal set in V if S is a proper orthogonal set in V and each

vector in S is a unit vector.

Example 4.13 (1) The standard basis E = {e1, . . . , en} is an orthonormal set in F
n

since 〈ei , e j 〉 = e∗
j ei = δi j for any i, j ∈ {1, . . . , n}.

(2) Consider Pn(R) as an inner product space with the inner product as given in
Example4.2(4). {u1, . . . , un+1}withu j (t) := t j−1, j = 1, . . . , n + 1, is anorthonor-
mal subset of Pn(R).

Next, consider Pn(R) as an inner product space with the inner product

〈p, q〉 =
∫ 1

0
p(t)q(t) dt.

We find that the set {u1, . . . , un+1} is not an orthogonal set. For example,

〈u1, u2〉 =
∫ 1

0
t dt = 1

2
�= 0.

(3) Consider the vector space C([0, 2π ], C) with the inner product defined by

〈 f, g〉 :=
∫ 2π

0
f (t)g(t) dt for f, g ∈ C([0, 2π ], C).

For n ∈ N, let un, vn ∈ C([0, 2π ], C) be given by

un(t) := sin(nt), vn(t) := cos(nt), 0 ≤ t ≤ 2π.

For each k ∈ N,
∫ 2π
0 cos(kt) dt = 0 = ∫ 2π

0 sin(kt) dt . Thus, for n �= m, (work it out)

〈un, um〉 = 〈vn, vm〉 = 〈un, vn〉 = 〈un, vm〉 = 0, 〈un, un〉 = 〈vn, vn〉 = π.

So,
{ un√

π
: n ∈ N

}
∪

{ vn√
π

: n ∈ N

}
is an orthonormal set in C([0, 2π ], C). �

Vacuously, a singleton set is an orthogonal set, and a singleton having a nonzero
vector is a proper orthogonal set. If v �= 0, then {v/‖v‖} is an orthonormal set. More-
over, if S is a proper orthogonal set, then for each x ∈ S, 〈x, x〉 > 0.

Theorem 4.14 Each proper orthogonal set in an inner product space is linearly
independent.

Proof Let S be a proper orthogonal set in an inner product space V . For u1, . . . , un ∈
S andα1, . . . , αn ∈ F, supposeα1u1 + · · · + αnun = 0. Then, for each j ∈ {1, . . . , n},

0 =
〈 n∑

i=1

αi ui , u j

〉
=

n∑

i=1

〈αi ui , u j 〉 =
n∑

i=1

αi 〈ui , u j 〉 = α j 〈u j , u j 〉.
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Since u j �= 0, α j = 0. Therefore, S is linearly independent. �

As a corollary to Theorem4.14, we obtain the following result.

Theorem 4.15 Let V be an inner product space of dimension n. Any orthonormal
set in V having n vectors is a basis of V .

Theorem 4.16 Let S = {u1, . . . , un} be an orthonormal set in an inner product
space V . Then the following are true:

(1) (Fourier expansion) For each x ∈ span(S), x =
n∑

j=1

〈x, u j 〉u j .

(2) (Parseval identity) For each x ∈ span(S), ‖x‖2 =
n∑

j=1

|〈x, u j 〉|2.

(3) (Bessel inequality) For each y ∈ V,

n∑

j=1

|〈y, u j 〉|2 ≤ ‖y‖2.

In particular, if dim(V ) = n, then (1) and (2) hold for every x ∈ V .

Proof (1) Since {u1, . . . , un} is an orthonormal set, 〈ui , u j 〉 = δi j for any i, j ∈
{1, . . . , n}. As x ∈ span(S), x = α1u1 + · · · + αnun for some scalars α1, α2, . . . , αn .
Then, for each i ∈ {1, . . . , n},

〈x, ui 〉 = α1〈u1, ui 〉 + · · · + αn〈un, ui 〉 = αi

Therefore, x = ∑n
j=1〈x, u j 〉u j .

(2) Using (1), we obtain

‖x‖2 = 〈x, x〉 =
〈 n∑

i=1

〈x, ui 〉ui ,
n∑

j=1

〈x, u j 〉u j

〉
=

n∑

i=1

n∑

j=1

〈x, ui 〉〈x, u j 〉〈ui , u j 〉

=
n∑

i=1

n∑

j=1

|〈x, ui 〉|2δi j =
n∑

i=1

|〈x, ui 〉|2.

(3) Write z := ∑n
i=1〈y, ui 〉ui . We observe that, for each j ∈ {1, . . . , n},

〈z, u j 〉 =
n∑

i=1

〈y, ui 〉〈ui , u j 〉 = 〈y, u j 〉

so that 〈y − z, u j 〉 = 0. Therefore, 〈y − z, z〉 = 0. By Pythagoras theorem and (2),
it follows that

‖y‖2 = ‖z‖2 + ‖y − z‖2 ≥ ‖z‖2 =
n∑

i=1

|〈z, ui 〉|2 =
n∑

i=1

|〈y, ui 〉|2.
�



4.3 Orthogonal and Orthonormal Sets 175

In the Fourier expansion of a vector x ∈ span{u1, . . . , un}, the scalars 〈x, u j 〉 are
called the Fourier coefficients of x .

Example 4.17 Consider C([0, 2π ], C) with the inner product

〈x, y〉 :=
∫ 2π

0
x(t)y(t)dt for x, y ∈ C([0, 2π ], C).

For n ∈ Z, define un by

un(t) = ei nt√
2π

for t ∈ [0, 2π ].

We see that

〈un, um〉 = 1

2π

∫ 2π

0
ei (n−m)t dt =

{
1 if n = m,

0 if n �= m.

Hence, {un : n ∈ Z} is an orthonormal set in C([0, 2π ], C). Letm ∈ N. By Theorem
4.16, if x ∈ span{u j : j = −m, . . . ,−1, 0, 1, . . . ,m}, then

x =
m∑

k=−m

ak e
i kt with ak = 1

2π

∫ 2π

0
x(t)e−i kt dt.

�

Notice that if {u1, . . . , un} is an orthogonal set and α1, . . . , αn are scalars, then a
slightly generalized form of Pythagoras theorem would look like:

‖α1u1 + · · · + αnun‖2 = |α1|2‖u1‖2 + · · · + |αn|2‖un‖2.

And if {u1, . . . , un} is an orthonormal set, then

‖α1u1 + · · · + αnun‖2 = |α1|2 + · · · + |αn|2.

The last equality is Parseval identity in disguise. These equalities provide alterna-
tive proofs of the facts that proper orthogonal sets and orthonormal sets are linearly
independent.

To see what is going on in the proof of Bessel inequality, consider the standard
basis vectors e1 and e2, and the vector (1, 2, 3) in R

3. Projections of (1, 2, 3) on the
x-axis and y-axis are, respectively, e1 and 2e2. Thus the vector e1 + 2e2 = (1, 2, 0)
is the projection of (1, 2, 3) on the xy-plane. Moreover, the vector (1, 2, 3) −
(1, 2, 0) = (0, 0, 3) is orthogonal to the xy-plane, and ‖(1, 2, 0)‖ ≤ ‖(1, 2, 3)‖.
Definition 4.18 Let S = {u1, . . . , un} be an orthonormal set in an inner product
space V , and let U = span(S). For each x ∈ V , the vector

projU (x) :=
n∑

i=1

〈x, ui 〉u j

is called the projection of x on the subspace U .
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The proof of Bessel inequality yields the following result.

Theorem 4.19 Let V be a finite dimensional inner product space, S = {u1, . . . , un}
beanorthonormal set in V and letU = span(S). Then for each x ∈ V ,projU (x) ∈ U,
and x − projU (x) is orthogonal to every vector in U.

Intuitively, x − projU (x) minimizes the length ‖x − y‖ where y varies over U .
We will prove this fact in Sect. 4.7.

Notice that the Fourier expansion of a vector u ∈ U := span{u1, . . . , un} for the
orthonormal set {u1, . . . , un} shows that the projU (u) = u, as expected.

In fact, if we define a function P : V → V by P(x) = projU (x) for each x ∈ V ,
then P is a linear operator with R(P) = U and P2 = P . We will discuss projection
operators later.

Exercises for Sect.4.3

1. In an inner product space, what is the distance between two orthogonal unit
vectors?

2. Let 〈·, ·〉 be an inner product on R
n×1. Let A ∈ R

n×n . Let b ∈ R
n×1 be a nonzero

vector. If each column of A is orthogonal to b, then show that the system Ax = b
has no solution.

3. Let n ∈ N. Show that
{

1√
π
, sin t√

π
, . . . , sin nt√

π
, cos t√

π
, . . . , cos nt√

π

}
is an orthonormal set

in C[−π, π ] where 〈 f, g〉 = ∫ π

−π
f (t)g(t)dt .

4. Show thatU = {x ∈ R
4 : x ⊥ (1, 0,−1, 1), x ⊥ (2, 3,−1, 2)} is a subspace of

R
4, where R

4 has the standard inner product. Find a basis for U .
5. Consider P4(R) as an inner product space with 〈p, q〉 = ∫ 1

−1 p(t)q(t) dt . Let
U = span{1, t, t2 − 1

3 }. Determine projU (t3).

4.4 Gram–Schmidt Orthogonalization

Consider two nonzero linearly independent vectors u, v in R
2 or R

3. Can we choose
a vector w ∈ R

3 such that w ⊥ u and span{u,w} = span{u, v}?
Let û denote the unit vector in the direction of u. The vector (v · û)û is the

projection of v on the subspace span({u}). Then the vector

w = v − (v · û)û

does the job. This method can be generalized to any finite number of linearly inde-
pendent vectors, in any inner product space.

Let u1, u2, u3 be linearly independent vectors in an inner product space V . Sup-
pose that we have already obtained nonzero vectors v1, v2 orthogonal to each other so
that span{u1, u2} = span{v1, v2}. Let v̂1 and v̂2 be the unit vectors in the directions of
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v1 and v2, respectively; that is, v̂1 := v1/‖v1‖ and v̂2 := v2/‖v2‖.We consider the pro-
jection of u3 onto the subspace spanned by v̂1 and v̂2, namely 〈u3, v̂1〉v̂1 + 〈u3, v̂2〉v̂2,
and define the required vector as

v3 := u3 − (〈u3, v̂1〉v̂1 + 〈u3, v̂2〉v̂2).

Notice that v3 is orthogonal to both v1 and v2; and span{u1, u2, u3} = span{v1, v2, v3}.
This process can be continued if more than three vectors are initially given.

We consolidate this procedure in the following theorem.

Theorem 4.20 (Gram–Schmidt orthogonalization) Let {u1, . . . , un} be a linearly
independent ordered subset of an inner product space V . Define v1, . . . , vn induc-
tively by

v1 := u1

vk+1 := uk+1 −
k∑

j=1

〈uk+1, v j 〉
〈v j , v j 〉 v j , k = 1, . . . , n − 1.

Then {v1, . . . , vn} is a proper orthogonal ordered set in V satisfying

span{u1, . . . , uk} = span{v1, . . . , vk} for each k ∈ {1, . . . , n}.

Proof Since u1 = v1, the case n = 1 is obvious. So, let 1 ≤ m < n. For the induction
step, assume that {v1, . . . , vm} is an orthogonal set of nonzero vectors with

span{u1, . . . , um} = span{v1, . . . , vm}.

Now,

vm+1 := um+1 −
m∑

j=1

〈uk+1, v j 〉
〈v j , v j 〉 v j .

Notice that um+1 ∈ span{v1, . . . , vm, vm+1} and vm+1 ∈ span{u1, . . . , um, um+1}.
Thus

span{u1, . . . , um, um+1} = span{v1, . . . , vm, vm+1}.
Since {u1, . . . , um, um+1} is linearly independent, from the above equality, it also
follows that vm+1 �= 0. For the orthogonality of {v1, . . . , vm+1}, let i ∈ {1, . . . ,m}.
Since {v1, . . . , vm} is an orthogonal set, 〈v j , vi 〉 = 0 for j �= i . Hence

〈vm+1, vi 〉 = 〈um+1, vi 〉 −
m∑

j=1

〈um+1, v j 〉
〈v j , v j 〉 〈v j , vi 〉 = 〈um+1, vi 〉 − 〈um+1, vi 〉

〈vi , vi 〉 〈vi , vi 〉 = 0.

Thus vm+1 ⊥ vi for each i ∈ {1, . . . ,m}. Therefore, {v1, . . . , vm+1} is an orthogonal
set of nonzero vectors. �
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Observe that the span condition in Theorem4.20 asserts that the set {v1, . . . , vk}
is an orthogonal basis for span{u1, . . . , uk}. The proof of Gram–Schmidt orthog-
onalization process reveals that if u1, . . . , uk are linearly independent vectors and
uk+1 ∈ span{u1, . . . , uk}, then vk+1 becomes 0. Conversely, if vk+1 becomes 0, then
uk+1 ∈ span{u1, . . . , uk}. Therefore, Gram–Schmidt orthogonalization can also be
used to determine whether a given list of vectors is linearly independent or not.

By ignoring all those v j s which become 0 in the process, we arrive at a basis
for the span of u1, . . . , un . Therefore, Gram–Schmidt procedure is our second
tool to extract a basis from a given list of vectors keeping the span unchanged.
Recall that the first tool of elementary operations was discussed in Sect. 3.7.

Example 4.21 Consider F
3 with its standard inner product. Take the vectors u1 =

(1, 0, 0), u2 = (1, 1, 0) and u3 = (1, 1, 1). Clearly, u1, u2, u3 are linearly indepen-
dent in F

3. Gram–Schmidt orthogonalization yields the following:

v1 = u1, v2 = u2 − 〈u2, v1〉
〈v1, v1〉 v1.

Notice that 〈v1, v1〉 = 1 and 〈u2, v1〉 = 1. Hence, v2 = u2 − v1 = (0, 1, 0). Next,

v3 = u3 − 〈u3, v1〉
〈v1, v1〉 v1 − 〈u3, v2〉

〈v2, v2〉 v2.

Since 〈v2, v2〉 = 1, 〈u3, v1〉 = 1, 〈u3, v2〉 = 1, we have v3 = u3 − v1 − v2 =
(0, 0, 1). Thus,Gram–Schmidt orthogonalizationof {u1, u2, u3} results in the ordered
set {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. �

Example 4.22 Consider the vectors u1 = (1, 1, 0), u2 = (0, 1, 1) and u3 = (1, 0, 1)
in F

3 with the standard inner product. Clearly, u1, u2, u3 are linearly independent in
F
3. Gram–Schmidt orthogonalizaion gives:

v1 = u1, v2 = u2 − 〈u2, v1〉
〈v1, v1〉 v1.

Notice that 〈v1, v1〉 = 2 and 〈u2, v1〉 = 1. So, v2 = (0, 1, 1) − 1
2 (1, 1, 0) =

(− 1
2 ,

1
2 , 1). Next,

v3 = u3 − 〈u3, v1〉
〈v1, v1〉 v1 − 〈u3, v2〉

〈v2, v2〉 v2.

We find that 〈v2, v2〉 = 3
2 , 〈u3, v1〉 = 1 and 〈u3, v2〉 = 1

2 . Hence,

v3 = (1, 0, 1) − 1
2 (1, 1, 0) − 1

3 (− 1
2 ,

1
2 , 1) = ( 23 ,− 2

3 ,
2
3 ).

Therefore,
{
(1, 1, 0), (− 1

2 ,
1
2 , 1), ( 23 ,− 2

3 ,
2
3 )

}
is the Gram–Schmidt orthogonaliza-

tion of {u1, u2, u3}. �
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Example 4.23 Consider the inner product space P(R), where the inner product is
given by

〈p, q〉 =
∫ 1

−1
p(t) q(t) dt for p, q ∈ P(R).

Let u j (t) = t j−1 for j = 1, 2, 3. Consider the linearly independent set {u1, u2, u3}.
Then v1(t) = u1(t) = 1 for all t ∈ [−1, 1]; and

v2 = u2 − 〈u2, v1〉
〈v1, v1〉 v1.

We see that

〈v1, v1〉 =
∫ 1

−1
v1(t) v1(t) dt =

∫ 1

−1
dt = 2,

〈u2, v1〉 =
∫ 1

−1
u2(t) v1(t) dt =

∫ 1

−1
t dt = 0.

Hence, v2(t) = u2(t) = t for all t ∈ [−1, 1]. Next,

v3 = u3 − 〈u3, v1〉
〈v1, v1〉 v1 − 〈u3, v2〉

〈v2, v2〉 v2.

Here,

〈u3, v1〉 =
∫ 1

−1
u3(t) v1(t) dt =

∫ 1

−1
t2 dt = 2

3
,

〈u3, v2〉 =
∫ 1

−1
u3(t) v2(t) dt =

∫ 1

−1
t3 dt = 0.

Hence, v3(t) = t2 − 1
3 for all t ∈ [−1, 1]. Thus, Gram–Schmidt orthogonalization

yields
{
1, t, t2 − 1

3

}
as the orthogonal set of polynomials whose span equals

span{1, t, t2}. �

The polynomials p0(t), p1(t), p2(t), . . . obtained by orthogonalizing the poly-
nomials 1, t, t2, . . . using the inner product

〈p, q〉 =
∫ 1

−1
p(t) q(t) dt for p, q ∈ P(R),

as in Example4.23 are called Legendre polynomials.
Gram–Schmidt orthogonalization can easily be adopted for orthonormalization.

For this, we normalize the newly obtained vectors at each step. Thus, instead of
v1 := u1, we would take v1 := u1/‖u1‖.
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Next, we take w2 := u2 − 〈u2, v1〉v1 and v2 := w2/‖w2‖. In general, with
Uk = span{v1, . . . , vk}, we construct

wk+1 = uk+1 − projUk
(uk+1) and vk+1 := wk+1/‖wk+1‖ for k > 1.

This procedure of constructing an orthonormal set {v1, . . . , vn} from a linearly inde-
pendent set {u1, . . . , un} such that

span{v1, . . . , vk} = span{u1, . . . , uk} for k = 1, . . . , n,

is called Gram–Schmidt orthonormalization. As an application of orthonormal-
ization, we obtain the following result.

Theorem 4.24 (QR-factorization) If the columns of a matrix A ∈ F
m×n are linearly

independent, then there exist a matrix Q ∈ F
m×n with orthonormal columns and an

invertible upper triangular matrix R ∈ F
n×n such that A = QR.

Proof Let u1, . . . , un ∈ F
m×1 be the columns of A ∈ F

m×n . Assume that u1, . . . , un
are linearly independent. Then m ≥ n. It is understood that the inner product
in F

m×1 is the standard inner product 〈x, y〉 = y∗x . Applying Gram–Schmidt
orthonormalization on the ordered set {u1, . . . , un} we obtain an orthonormal
ordered set, say, {v1, . . . , vn} so that

span{u1, . . . , uk} = span{v1, . . . , vk} for k ∈ {1, . . . , n}.

Thus, there exist scalars ri j such that

u1 = r11v1
u2 = r12v1 + r22v2

...

un = r1nv1 + r2nv2 + · · · + rnnvn.

For i, j = 1, . . . , n and i > j , take ri j = 0; and construct the matrices R = [ri j ] ∈
F
n×n and Q = [v1, · · · , vn] ∈ F

m×n . The above equalities show that

A = [u1, · · · , un] = QR.

Here, the columns of Q are orthonormal and R is upper triangular. Moreover, the
scalars rii that appear on the diagonal of R are nonzero. Thus, R is invertible. �

Notice that since the columns of Q are orthonormal, Q∗Q = I . Then A = QR
implies that R = Q∗A. Further, Q need not be an orthogonal matrix since Q∗Q = I
does not imply that QQ∗ = I unless m = n.
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Example 4.25 Let A =
⎡

⎣
1 1
0 1
1 1

⎤

⎦. Its columns u1 :=
⎡

⎣
1
0
1

⎤

⎦ and u2 :=
⎡

⎣
1
1
1

⎤

⎦ are

linearly independent. Using Gram–Schmidt orthogonalization on the ordered set
{u1, u2} we obtain the vectors

v1 =
⎡

⎣
1/

√
2

0
1/

√
2

⎤

⎦ and v2 =
⎡

⎣
0
1
0

⎤

⎦ .

Thus

Q =
⎡

⎣
1/

√
2 0

0 1
1/

√
2 0

⎤

⎦ , R = Q∗A = QT A =
[√

2
√
2

0 1

]
.

We see that A = QR.

Notice that Q∗Q = QT Q = I but QQ∗ = QQT =
⎡

⎣
1 0 1
0 1 0
1 0 1

⎤

⎦ �= I. �

In the context of Theorem4.24, it is assumed that the inner product is the standard
inner product in F

m×1. If you choose a different inner product, say, 〈·, ·〉, then you
will end up with A = QR, where Q has orthonormal columns with respect to 〈·, ·〉.
In this case, v∗

i v j need not be equal to δi j ; consequently, Q∗Q need not be equal
to I . However, R is still invertible. If m = n, then Q is invertible. In this case, the
formula R = Q−1A holds but R = Q∗A need not hold. In fact, the (i, j)th entry in
R is equal to 〈vi , u j 〉, where vi is the i th column of Q and u j is the j th column of A.

Exercises for Sect.4.4

1. Suppose that the vectors v1, . . . , vn have been obtained by Gram–Schmidt
orthogonalization of the vectors u1, . . . , un . Show that u1, . . . , un are linearly
dependent if and only if vn = 0.

2. Consider R
3 with the standard inner product. In each of the following, find

orthogonal vectors obtained from the given vectors usingGram–Schmidt orthog-
onalization:
(a) (1, 2, 0), (2, 1, 0), (1, 1, 1) (b) (1, 1, 1), (1,−1, 1), (1, 1,−1)
(c) (1, 0, 1), (0, 1, 1), (1, 1, 0) (d) (0, 1, 1), (0, 1,−1), (−1, 1,−1).

3. Consider R
3 with the standard inner product. In each of the following, find a

unit vector orthogonal to the given two vectors:
(a) (2, 1, 0), (1, 2, 1) (b) (1, 2, 3), (2, 1,−2)
(c) (1, 0, 1), (1, 0,−1) (d) (0, 2,−1), (−1, 2,−1).

4. Using Gram–Schmidt orthogonalization find an orthogonal basis for the sub-
space span{(4,−2, 0, 6), (3, 3,−3,−3), (5, 5,−7,−7)} of R

4.
5. InR

3, define the inner product by 〈(a, b, c), (α, β, γ )〉 = aα + 2bβ + 3cγ . Use
Gram–Schmidt procedure on the list of vectors (1, 1, 1), (1, 0, 1), (0, 1, 2).
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6. Consider the polynomialsu1(t) = 1, u2(t) = t, u3(t) = t2 in the vector space of
all polynomials with real coefficients. Find orthogonal polynomials by Gram–
Schmidt orthogonalization of {u1, u2, u3} with respect to the following inner
products:
(a) 〈p, q〉 = ∫ 1

0 p(t)q(t) dt (b) 〈p, q〉 = ∫ 1
−1 p(t)q(t) dt .

7. Consider C
3 with the standard inner product. Find an orthonormal basis for the

subspace spanned by the vectors (1, 0, i) and (2, 1, 1 + i).
8. Consider R

3×3 with the inner product 〈A, B〉 = tr(BT A). Using Gram–Schmidt
orthogonalization procedure, find a nonzero matrix which is orthogonal to both

the matrices

⎡

⎣
1 1 1
1 −1 1
1 1 −1

⎤

⎦ and

⎡

⎣
1 0 1
1 1 0
0 1 1

⎤

⎦.

9. Find a QR-factorization of each of the following matrices:

(a)

⎡

⎣
0 1
1 1
0 1

⎤

⎦ (b)

⎡

⎣
1 0 2
0 1 1
1 2 0

⎤

⎦ (c)

⎡

⎢⎢
⎣

1 1 2
0 1 −1
1 1 0
0 0 1

⎤

⎥⎥
⎦.

10. Let Q ∈ F
m×n , where m > n. Show that QQ∗ �= I .

11. Let Q ∈ F
m×n , where m > n and Q∗Q = I . What is rank (QQ∗)?

4.5 Orthogonal and Orthonormal Bases

Recall that a linearly independent set which cannot be further extended to a bigger
linearly independent set is a basis. Since an orthogonal set is linearly independent,
we look for extending it to a larger orthogonal set.

Definition 4.26 Let V be an inner product space. Let S be a proper orthogonal set
in V .

(a) The set S is called an orthogonal basis of V if no proper superset of S is a
proper orthogonal set in V .

(b) The set S is called an orthonormal basis of V if S is an orthonormal set and
no proper superset of S is an orthonormal set in V .

Informally, an orthogonal basis is a maximal orthogonal set and an orthonormal
basis is a maximal orthonormal set. For example, the standard basis of F

n is an
orthogonal basis; it is also an orthonormal basis. An immediate consequence of the
definition is the following.

Theorem 4.27 A proper orthogonal (orthonormal) set S in an inner product space
V is an orthogonal (orthonormal) basis for V if and only if 0 is the only vector
orthogonal to all vectors in S.

Proof Let S be an orthogonal basis. Clearly, S is a proper orthogonal set and 0 is
orthogonal to all vectors in S. If x is a nonzero vector orthogonal to all vectors
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in S, then x /∈ S. Then, S ∪ {x} would be a proper orthogonal set in V , which is not
possible. Therefore, 0 is the only vector orthogonal to all vectors in S.

Conversely, suppose that S is a proper orthogonal set and 0 is the only vector
orthogonal to all vectors in S. Then the only orthogonal proper superset of S is
S ∪ {0}. But this is not a proper orthogonal set in V . So, no proper superset of S is a
proper orthogonal set in V .

The case of orthonormal basis is proved similarly. �

By Theorem4.27, it is easy to see that if an orthogonal set S in an inner product
space V is a basis of V , then S is an orthogonal basis. However, an orthogonal basis
of an inner product space need not be a (Hamel) basis. The same comments apply to
orthonormal sets. Here is an example to this effect.

Example 4.28 Let �2(N, R) be the set of square-summable real sequences, that is,

�2(N, R) := {
(a1, a2, . . .) : ak ∈ R,

∑

k

a2k converges
}
.

Define both addition and scalar multiplication on V component-wise. It can be ver-
ified easily that V is a real vector space. Further, �2(N, R) is an inner product space
with the inner product given by

〈(a1, a2, . . .), (b1, b2, . . .)〉 =
∑

k∈N
akbk .

Let B := {e1, e2, . . .}, where ek is the sequence whose kth term is 1 and all other
terms are 0. Clearly, B is an orthonormal set. Let v = (b1, b2, . . .) ∈ �2(N, R). Since
〈v, ek〉 = bk , if v ⊥ ek for each k ∈ N, then each term bk of v becomes 0; that is, the
zero vector is the only vector that is orthogonal to B. Therefore, by Theorem 4.27,
B is an orthonormal basis of �2(N, R).

Notice that span(B) = c00(R), which is a proper subspace of �2(N, R). Thus, B
is not a basis of �2(N, R). �

The situation is different if the inner product space has a countable basis.

Theorem 4.29 For an inner product space V having a countable basis, the following
are true:

(1) V has an orthogonal (orthonormal) basis.
(2) Each proper orthogonal (orthonormal) set in V can be extended to an orthogonal

(orthonormal) basis of V .
(3) Each orthogonal (orthonormal) basis of V is a basis of V .

Proof (1) Suppose {u1, u2, . . .} is a basis of V . Then using Gram–Schmidt orthog-
onalization we obtain a countable orthogonal set S = {v1, v2, . . . , } such that

span{u1, . . . , uk} = span{v1, . . . , vk} for k ≥ 1.
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It follows that S is a spanning set so that it is a basis of V ; hence it is an orthogonal
basis of V .
(2) Due to Theorem4.14, the given orthogonal set is linearly independent. We first
extend it to a basis of V and then orthogonalize it to obtain the required orthogonal
basis.
(3) Let B be an orthogonal basis of V . Then B is linearly independent. Since V has
a countable basis, B is a countable set. If B is not a (Hamel) basis of V , then there
exists u ∈ V such that u /∈ span(B). Since B is orthogonal, Gram–Schmidt orthog-
onalization on B ∪ {u} yields an orthogonal set B ∪ {v}. But this is an orthogonal
proper superset of B. It contradicts the assumption that B is a maximal orthogonal
set.

UsingGram–Schmidt orthonormalization, instead of orthogonalization,weobtain
(1)–(3) for orthonormal sets in place of orthogonal sets. �

Theorem4.29 implies that in a finite dimensional inner product space, a proper
orthogonal set is an orthogonal basis if and only if it spans the given space.

Further, {e1, e2, . . .} is an orthonormal basis as well as a basis of c00(F). The
Legendre polynomials form an orthogonal basis and also a basis for the infinite
dimensional inner product space P(F). Similar statements hold for orthonormal
bases also. Theorem4.29 and Example4.28 show that �2(N, R) does not have a
countable basis.

Example 4.30 Continuing with the orthogonalization process in Example4.23, we
end up with the nth Legendre polynomial pn(t), which is of degree n for each n ∈ N.
The set

S = {pn(t) : pn is the Legendre polynomial of degree n for n ≥ 0}

is a proper orthogonal set in P(R). The set S is also a proper orthogonal set in the
inner product space C([−1, 1], R), where the inner product is

〈 f, g〉 =
∫ 1

−1
f (t)g(t) dt.

Further, there is no proper superset of S, which is a proper orthogonal set in
C([−1, 1], R). The proof of this fact relies on a result in Analysis, namely theWeier-
strass approximation theorem, which states that every function in C([−1, 1], R) is a
uniform limit of a sequence of polynomials.

Thus, S is an orthogonal basis of C([−1, 1], R). But the function f defined by
f (t) = sin t for t ∈ [−1, 1] is inC([−1, 1], R) and f /∈ P(R) = span(S). Therefore,
S is not a basis of C([−1, 1], R). �

We tolerate the linguistic anomaly that an orthogonal (orthonormal) basis may
fail to be a basis. To pre-empt such a situation, sometimes a basis is called a Hamel
basis.
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In an inner product space with a countable basis, this linguistic anomaly does
not exist due to Theorem4.29. When the set {u1, . . . , un} is an orthonormal basis of
V , the Fourier coefficients 〈x, u j 〉 comprise the coordinate vector of x with respect
to this basis, and Bessel inequality becomes an equality, which is nothing but the
Parseval identity.

Using an orthonormal basis in a finite dimensional inner product space amounts to
working in F

n×1. An orthonormal basis converts the inner product to the dot product.
For, suppose that B = {v1, . . . , vn} is an orthonormal basis for V . Let u, v ∈ V . Then
u = ∑n

i=1〈u, vi 〉vi and v = ∑n
j=1〈v, v j 〉v j . We find that

〈u, v〉 =
n∑

i=1

n∑

j=1

〈u, vi 〉〈v, v j 〉〈vi , v j 〉 =
n∑

i=1

〈u, vi 〉〈v, vi 〉 = [u]B · [v]B .

Moreover, orthonormal bases allow writing the entries of the matrix representation
of a linear transformation by using the inner products; see the following theorem.

Theorem 4.31 Let B = {u1, . . . , un} and E = {v1, . . . , vm} be ordered bases of
inner product spaces U and V , respectively. Let T : U → V be a linear trans-
formation. If E is an orthonormal basis of V , then the (i j)th entry of [T ]E,B is
equal to 〈Tu j , vi 〉.
Proof Let i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. Let ai j denote the (i j)th entry in the
matrix [T ]E,B . Then Tu j = a1 j v1 + · · · + ai j vi + · · · + amjvm . Therefore,

〈Tu j , vi 〉 = 〈a1 j v1 + · · · + ai j vi + · · · + amjvm, vi 〉 = ai j 〈vi , vi 〉 = ai j ,

due to the orthonormality of E . �

If B = {u1, . . . , un} and E = {v1, . . . , vm} are bases but not orthonormal bases
for the inner product spaces U and V , respectively, then the matrix [〈Tu j , vi 〉] need
not be equal to [T ]E,B . However, the matrix [〈Tu j , vi 〉] shares a nice property with
[T ]E,B; see the following theorem.

Theorem 4.32 Let {u1, . . . , un} and {v1, . . . , vm} be bases for the inner product
spaces U and V , respectively. Let S, T : U → V be linear transformations. Then

S = T if and only if 〈Su j , vi 〉 = 〈Tu j , vi 〉 for all i = 1, . . . ,m, j = 1, . . . , n.

Proof If S = T , then clearly, 〈Su j , vi 〉 = 〈Tu j , vi 〉 for all i = 1, . . . ,m,
j = 1, . . . , n. Conversely, suppose that this condition holds. Suppose u ∈ U and
v ∈ V . Then we have scalars α j and βi such that

u = α1u1 + · · · + αnun and v = β1v1 + · · · + βmvm .
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Due to the linearity of the map T the condition 〈Su j , vi 〉 = 〈Tu j , vi 〉 for all i, j
implies that 〈Su, v〉 = 〈Tu, v〉 for all u ∈ U and all v ∈ V . Hence, by Theorem4.4,
Su = Tu for all u ∈ U so that S = T . �

Exercises for Sect.4.5

1. Let {u1, u2, u3} be an orthonormal basis of R
3. Let x = 3u1 + 4u2. Let y ∈ R

3

satisfy 〈y, u3〉 = 0 and ‖y‖ = 5. What is the cosine of the angle between x + y
and x − y? What can go wrong if 〈y, u3〉 �= 0?

2. Let u = (
1/

√
3, 1/

√
3, 1/

√
3
)T

and v = (
1/

√
2, 0, −1/

√
2
)T
. Find w ∈ R

3×1 so that
the matrix A = [u v w] is orthogonal, that is, A∗A = I . Verify that the rows of A
are orthonormal.

3. With the notation in Example4.28, show that �2(N, R) is an inner product space.
Further, show that (1/2, 1/4, . . .) /∈ span{u1, u2, . . .}, where uk is the sequence
whose kth term is 1 and all other terms 0.

4. Let E = {u1, . . . , un} be an orthonormal set in an inner product space V . Prove
that the following statements are equivalent:

(a) span(E) = V .
(b) E is an orthonormal basis of V .
(c) For any v ∈ V , if 〈v, u j 〉 = 0 for each j , then v = 0.
(d) If v ∈ V , then v = ∑n

i=1〈v, ui 〉ui .
(e) If x, y ∈ V , then 〈x, y〉 = ∑n

i=1〈x, ui 〉〈ui , y〉.
(f) If v ∈ V , then ‖v‖2 = ∑n

i=1 |〈v, ui 〉|2.

4.6 Orthogonal Complement

We generalize the notion of orthogonality a bit.

Definition 4.33 Let S be a nonempty subset of an inner product space V .

(a) A vector x ∈ V is said to be orthogonal to S if 〈x, y〉 = 0 for all y ∈ S; and in
that case, we write x ⊥ S.

(b) The set of all vectors in V that are orthogonal to S is called the orthogonal
complement of S; it is written as S⊥. That is,

S⊥ := {x ∈ V : 〈x, y〉 = 0 for all y ∈ S}.

Also, ∅⊥ = V . And, (S⊥)⊥ is written as S⊥⊥.

Example 4.34 Let V = R
2 and let S = {(1, 2)}. Then

S⊥ = {(a, b) ∈ R
2 : a + 2b = 0} = {(2α,−α) : α ∈ R}.

S⊥⊥ = {(c, d) ∈ R
2 : 2αc − αd = 0, for all α ∈ R} = {(β, 2β) : β ∈ R}. �
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Notice that in Example4.34, S⊥ and S⊥⊥ are subspaces of V , and S is a proper
subset of S⊥⊥.

You should be able to read the symbolism correctly. For example, the statement

If x is a vector such that 〈x, y〉 = 0 for each y ∈ V , then x = 0.

is now written as V⊥ ⊆ {0}. Similarly, S⊥ = {0} asserts that (See Theorem4.27)

the only vector orthogonal to all the vectors in S is the zero vector.

We now list some useful properties of orthogonal complements.

Theorem 4.35 Let V be an inner product space. Let S, S1 and S2 be nonempty
subsets of V .

(1) V⊥ = {0} and {0}⊥ = V = ∅
⊥.

(2) S⊥ is a subspace of V .
(3) If S1 ⊆ S2, then S⊥

2 is a subspace of S⊥
1 .

(4) (span(S))⊥ = S⊥.
(5) If S is a basis of V , then S⊥ = {0}.
(6) S ⊆ S⊥⊥.
(7) (S1 ∪ S2)⊥ = (span(S1) + span(S2))⊥ = S⊥

1 ∩ S⊥
2 .

(8) S⊥
1 + S⊥

2 is a subspace of (S1 ∩ S2)⊥.

Proof (1) If x ∈ V⊥, then 〈x, y〉 = 0 for each y ∈ V . By Theorem4.4, x = 0. Con-
versely, 〈0, y〉 = 0 for each y ∈ V . Thus V⊥ = {0}. Again, since 〈0, v〉 = 0 for each
v ∈ V, {0}⊥ = V . Also, by definition, ∅

⊥ = V .
(2) Let x, y ∈ S⊥ and let α ∈ F. Then 〈x, u〉 = 0 = 〈y, u〉 for each u ∈ S. Hence
〈x + αy, u〉 = 〈x, u〉 + α〈y, u〉 = 0. That is, x + αy ∈ S⊥.
(3) Suppose S1 ⊆ S2. Let x ∈ S⊥

2 . Then 〈x, y〉 = 0 for each y ∈ S2. In particular,
〈x, y〉 = 0 for each y ∈ S1. That is, x ∈ S⊥

1 . So, S
⊥
2 ⊆ S⊥

1 . By (2), S⊥
1 and S⊥

2 are
subspaces. Hence, S⊥

2 is a subspace of S⊥
1 .

(4) Since S ⊆ span(S), by (3), (span(S))⊥ ⊆ S⊥. Conversely, let x ∈ S⊥. Suppose
y ∈ span(S). Then y = α1u1 + · · · + αnun for some scalars α1, . . . , αn and vectors
u1, . . . , un ∈ S. Since 〈x, ui 〉 = 0 for each i ∈ {1, . . . , n}, we have

〈x, y〉 = α1〈x, u1〉 + · · · + αn〈x, un〉 = 0.

Therefore, x ∈ (span(S))⊥.
(5) If S is a basis of V , then V = span(S). The result follows from (4) and (1).
(6) Let x ∈ S. Then 〈x, y〉 = 0 for each y ∈ S⊥. That is, x ∈ S⊥⊥.
(7) From (4), we have (S1 ∪ S2)⊥ = (span(S1 ∪ S2))⊥ = (span(S1) + span(S2))⊥.
For the second equality, observe that both span(S1) and span(S2) are subsets of
span(S1) + span(S2). Using (3) twice, we get

(span(S1) + span(S2))
⊥ ⊆ (span(S1))

⊥ ∩ (span(S2))
⊥.

Conversely, let x ∈ (span(S1))⊥ ∩ (span(S2))⊥. Then
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〈x, y〉 = 0 for each y ∈ span(S1) and 〈x, y〉 = 0 for each y ∈ span(S2).

Each vector in span(S1) + span(S2) can be written as sum of a vector form span(S1)
and avector formspan(S2). Therefore, for each y ∈ span(S1) + span(S2), 〈x, y〉 = 0.
That is, x ∈ (span(S1) + span(S2))⊥.
(8) Since S1 ∩ S2 is a subset of both S1 and S2, by (3), S⊥

1 ⊆ (S1 ∩ S2)⊥ and also
S⊥
2 ⊆ (S1 ∩ S2)⊥. Hence S⊥

1 + S⊥
2 ⊆ (S1 ∩ S2)⊥. By (2), S⊥

1 + S⊥
2 is a subspace of

(S1 ∩ S2)⊥. �

To see that (S1 ∩ S2)⊥ ⊆ S⊥
1 + S⊥

2 is not true in general, take S1 = {(1, 0)} and
S2 = {(2, 0)}, then (S1 ∩ S2)⊥ = ∅

⊥ = R
2 whereas S⊥

1 + S⊥
2 = {(0, a) : a ∈ R}.

The equality is achieved for finite dimensional subspaces S1 and S2, as Theorem4.37
below shows.

Theorem4.35(4) says that in an inner product space V , if a vector v is orthogonal
to a subset S, then v must be orthogonal to U := span(S). Can we construct such a
vector which is orthogonal toU? Yes, provided {u1, . . . , un} is an orthonormal basis
of U (see Theorem4.19).

The following theorem uses this fact to give an orthogonal decomposition of V .
It justifies why orthogonal complements are so named.

Theorem 4.36 (Projection theorem) Let U be a finite dimensional subspace of an
inner product space V . Then

V = U ⊕U⊥ and U⊥⊥ = U.

In fact, for each v ∈ V , the unique vectors u ∈ U and w ∈ U⊥ that satisfy v = u + w
are given by u = projU (v) and w = v − u.

Proof Since U,U⊥ ⊆ V, U +U⊥ ⊆ V . For the other inclusion V ⊆ U +U⊥, let
B = {u1, . . . , un} be an orthonormal basis of U . Let v ∈ V . Write

u := projU (v) =
n∑

i=1

〈v, ui 〉ui , w := v − u.

Now, for any j ∈ {1, . . . , n},

〈w, u j 〉 = 〈v, u j 〉 − 〈u, u j 〉 = 〈v, u j 〉 −
n∑

i=1

〈v, ui 〉〈ui , u j 〉 = 〈v, u j 〉 − 〈v, u j 〉 = 0.

Hence, w ∈ U⊥. Then v = u + w shows that V ⊆ U +U⊥. Hence V = U +U⊥.
Further, U ∩U⊥ = {0}. Therefore, V = U ⊕U⊥.

Next, due to Theorem4.35(6), U ⊆ U⊥⊥. For the other inclusion, let x ∈ U⊥⊥.
Since V = U +U⊥, there exists u ∈ U and y ∈ U⊥ such that x = u + y. Then

0 = 〈x, y〉 = 〈u + y, y〉 = 〈u, y〉 + 〈y, y〉 = 〈y, y〉.
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That is, y = 0. So, x = u ∈ U . We conclude that U⊥⊥ = U . �

When V is finite dimensional, an alternative proof can be given for the projection
theorem using basis extension. It is as follows:

If U = {0}, then U⊥ = V and U⊥⊥ = U ; all the requirements are satisfied.
Otherwise, let E = {u1, . . . , uk} be an orthonormal basis of U . Extend E to an
orthonormal basis E ∪ {v1, . . . , vm} of V . ThenU⊥ = span{v1, . . . , vm}; V = U ⊕
U⊥ and U⊥⊥ = U .

In general, if S is a subset of V , neither S⊥⊥ = S nor V = S + S⊥ need hold;
see Example4.34. To see why finite dimension of the subspaceU is important in the
projection theorem, consider V = �2(N, R) andU = c00(R). We see thatU⊥ = {0}
so that U⊥⊥ = V �= U and V �= U +U⊥. However, if U is a complete subspace of
V , then both U⊥⊥ = U and V = U +U⊥ hold; see for example, [15]. Further, the
projection theorem implies that the orthogonal complement of eachfinite dimensional
proper subspace of an inner product space is a nontrivial subspace.

As a corollary to the projection theorem, we see that equality in Theorem4.35(8)
can be achieved for finite dimensional subspaces.

Theorem 4.37 Let U and W be finite dimensional subspaces of an inner product
space V . Then U⊥ + W⊥ = (U ∩ W )⊥.

Proof By Theorem4.35(8), U⊥ + W⊥ ⊆ (U ∩ W )⊥. To prove the other inclusion
(U ∩ W )⊥ ⊆ U⊥ + W⊥, we consider the orthogonal complements and show that
(U⊥ + W⊥)⊥ ⊆ U ∩ W .

Towards this, let x ∈ (U⊥ + W⊥)⊥. Then 〈x, y〉 = 0 for each y ∈ U⊥ + W⊥. As
U⊥ ⊆ U⊥ + W⊥, we see that 〈x, y〉 = 0 for each y ∈ U⊥. So, x ∈ U⊥⊥ = U , by the
projection theorem. Similarly, it follows that x ∈ W . Hence x ∈ U ∩ W . Therefore,
(U⊥ + W⊥)⊥ ⊆ U ∩ W .

Then, by Theorem4.35(3) and the projection theorem, we conclude that

(U ∩ W )⊥ ⊆ (U⊥ + W⊥)⊥⊥ = U⊥ + W⊥. �

Exercises for Sect.4.6

1. In R
4, find U⊥ where U = span{u1, u2}:

(a) u1 = (1, 0, 1, 0), u2 = (0, 1, 0, 1).
(b) u1 = (1, 2, 0, 1), u2 = (2, 1, 0,−1).
(c) u1 = (1, 1, 1, 0), u2 = (1,−1, 1, 1).
(d) u1 = (0, 1, 1,−1), u2 = (0, 1,−1, 1).

2. Using the inner product 〈p, q〉 = ∫ 1
0 p(t)q(t)dt on P3(R), find the orthogonal

complement of the subspace of constant polynomials.
3. Let V be the the set of all bounded sequences x := (xn) of real numbers.

(a) Show that V is an inner product space with the inner product 〈x, y〉 =∑∞
n=1 xn yn/n

2.
(b) Find a proper subspace U of V such that U⊥ = {0}.
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(c) Show that the inner product in (a) is induced by an appropriate injective
linear transformation from V into �2(N, R).

4. Let V = C
n×n with the inner product 〈A, B〉 = tr(A∗B). Find the orthogonal

complement of the subspace of diagonal matrices.
5. Let S be a nonempty subset of an inner product space V . Prove or disprove:

(a) S⊥⊥⊥ = S⊥ (b) S⊥⊥⊥⊥ = S⊥⊥.

4.7 Best Approximation and Least Squares

Orthogonality can be used to answer a geometrical problem: supposeU is a subspace
of an inner product space V . Given a vector v ∈ V , how to determine a vector from
u that is closest to v? Since it is closest to v, it may be considered as the best possible
approximation of v fromU . Since ‖x − y‖ is the distance between the vectors x and
y, such a vector u would minimize ‖v − w‖ as w varies over U .

Definition 4.38 Let U be a subspace of an inner product space V . Let v ∈ V . A
vector u ∈ U is called a best approximation of v from U if

‖v − u‖ ≤ ‖v − x‖ for all x ∈ U.

Example 4.39 ConsiderR2 as an inner product spacewith the standard inner product.
Let v := (1, 0) ∈ R

2. Let U = {(x, x) : x ∈ R}. To find the best approximation of v
from U , we seek a real number b such that

‖(1, 0) − (b, b)‖ ≤ ‖(1, 0) − (x, x)‖ for all x ∈ R.

That is, we require an x ∈ R that minimizes ‖(1, 0) − (x, x)‖. Equivalently, we
minimize the function f : R → R, where

f (x) = ‖(1, 0) − (x, x)‖2 = (1 − x)2 + x2 for x ∈ R.

Using the methods of calculus, it may be seen that f attains its minimum at x = 1
2 .

Then the best approximation of (1, 0) from U is (1/2, 1/2). �

Theorem 4.40 Let V be an inner product space. Let v ∈ V and let U be a subspace
of V .

(1) A vector u ∈ U is a best approximation of v from U if and only if v − u ⊥ U.
(2) If a best approximation of v from U exists, then it is unique.
(3) If dim(U ) < ∞, then projU (v) is the best approximation of v from U.

Proof (1) Let u ∈ U satisfy v − u ⊥ U . Let x ∈ U . Then v − u ⊥ u − x . By
Pythagoras theorem,
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‖v − x‖2 = ‖(v − u) + (u − x)‖2 = ‖v − u‖2 + ‖u − x‖2 ≥ ‖v − u‖2.

Therefore, u is a best approximation of v from U .
Conversely, suppose that u ∈ U is a best approximation of v. Let x ∈ U . If x = 0,

then v − u ⊥ x . Assume that x �= 0. For any scalar α, we have

‖v − u‖2 ≤ ‖v − u − αx‖2 = 〈v − u − αx, v − u − αx〉
= ‖v − u‖2 − 〈v − u, αx〉 − 〈αx, v − u〉 + |α|2‖x‖2 (4.1)

In particular, for α = 〈v − u, x〉
〈x, x〉 , we obtain

〈v − u, αx〉 = α〈v − u, x〉 = αα〈x, x〉 = |α|2‖x‖2 ;
〈αx, v − u〉 = 〈v − u, αx〉 = |α|2‖x‖2.

From (4.1) it follows that

‖v − u‖2 ≤ ‖v − u‖2 − |α|2‖x‖2 ≤ ‖v − u‖2.

It implies that |α|2‖x‖2 = 0. As x �= 0, α = 0. That is, 〈v − u, x〉 = 0. Therefore,
v − u ⊥ U .
(2) Suppose u,w ∈ U are best approximations of v from U . Then

‖v − u‖2 ≤ ‖v − w‖2 and ‖v − w‖2 ≤ ‖v − u‖2.
So, ‖v − w‖2 = ‖v − u‖2. Due to (1), v − u ⊥ U . But u − w ∈ U . By Pythagoras
theorem, we have

‖v − w‖2 = ‖v − u + u − w‖2 = ‖v − u‖2 + ‖u − w‖2 = ‖v − w‖2 + ‖u − w‖2.

Thus ‖u − w‖2 = 0. That is, u = w.
(3) Let U be a finite dimensional subspace of V . Then u = projU (v) ∈ U . Due
to the projection theorem, v − u ⊥ U . By (1)-(2), u is the best approximation
of v from U . �

Example 4.41 (1) Consider Example4.39 once more, in the light of Theorem4.40.
Suppose u = (α, α) is the best approximation of v = (1, 0) ∈ R

2 from {(x, x) : x ∈
R}. Then

(1, 0) − (α, α) ⊥ (β, β) for all β ∈ R.

In particular, (1, 0) − (α, α) ⊥ (1, 1). It leads to α = 1
2 . Therefore the best approx-

imation of (1, 0) from {(x, x) : x ∈ R} is (1/2, 1/2).

(2) Consider V = C([0, 1], R) as a real inner product space, with the inner product
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〈 f, g〉 =
∫ 1

0
f (t)g(t) dt for f, g ∈ V .

Tofind the best approximation of u(t) := t2 fromU = P1(R)wedetermineα, β ∈ R

so that v(t) := α + βt satisfies u − v ⊥ u1 and u − v ⊥ u2, where u1(t) = 1 and
u2(t) = t . That is,

∫ 1

0
(t2 − α − βt) dt = 0 =

∫ 1

0
(t3 − αt − βt2) dt.

This gives
1

3
− α − β

2
= 0 = 1

4
− α

2
− β

3
.

Therefore, the best approximation of u(t) := t2 from P1(R) is v(t) = − 1
6 + t .

(3) Let V = �2(N, R) as in Example4.28 and let U = span{e2n : n ∈ N}. Let v =
(α1, α2, α3, . . .) ∈ V . Consider u = (0, α2, 0, α4, 0, . . .) ∈ U .

If x = (0, β2, 0, β4, . . .) is any vector in U , then we find that

〈v − u, x〉 = 〈
(α1, 0, α3, 0, α4, . . .), (0, β2, 0, β4, . . .)

〉 = 0.

That is, v − u ⊥ U . Therefore, u is the best approximation of v from U . �

Observe that Theorem4.40 guarantees the existence of the best approximation of
a vector in V from the subspace U when U is finite dimensional. If U is infinite
dimensional, then a best approximation to any given vector in V from U may not
exist. See the following example.

Example 4.42 Let V = �2(N, R) as in Example4.28, U = c00(R), and let v :=(
1, 1/2, 1/3, . . .

)
. Clearly v ∈ V \U . Suppose u ∈ U is the best approximation of v.

With vn = (
1, 1/2, . . . , 1/n, 0, 0 . . .

) ∈ U , we have

‖v − u‖2 ≤ ‖v − vn‖2 = 1

(n + 1)2
+ 1

(n + 2)2
+ . . . .

This is true for all n ∈ N. As n → ∞, we obtain ‖v − u‖ = 0. So that v = u, which
is not possible. Therefore, v does not have a best approximation from U .

In fact, this happens for any v ∈ V \U . To see this, let v = (
α1, α2, . . . ,

) ∈
V \U . Let e j ∈ U be the sequence whose j th term is 1, and all other terms equal to
0. The set {e j : j ∈ N} is an orthonormal basis of V . Thus for any u ∈ U ,

〈v − u,w〉 = 0 for all w ∈ U iff 〈v − u, e j 〉 = 0 for all j ∈ N iff v − u = 0.
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This is impossible since u ∈ U but v ∈ V \U . Hence, by Theorem4.40, u cannot
be a best approximation of v from U . Therefore, vectors in V \U do not have best
approximations from U . �

If the subspace U of V has an orthonormal basis {u1, . . . , un}, then by
Theorem4.40, the best approximation u ∈ U of v is given by

u = projU (v) =
k∑

j=1

〈v, u j 〉u j .

It is not necessary to start with an orthonormal basis of U for computing u. If we
have a basis of U , then the orthogonality condition given in Theorem4.40(1) can be
used to determine u. We have followed this method in Example4.41. Let us review
the general situation.

Let v ∈ V . Let {u1, . . . , un} be any basis of U , which is a subspace of V . Let u
be the best approximation of v from U . Suppose

u = α1u1 + · · · + αnun

for some scalars α1, . . . , αn . Using the orthogonality condition that v − u ⊥ u j for
each j ∈ {1, . . . , n}, we obtain the system of linear equations

α1〈u1, u j 〉 + · · · + αn〈un, u j 〉 = 〈v, u j 〉 for j = 1, . . . , n.

We may write this linear system as Ax = y, where

A = [〈ui , u j 〉], x = [α1 · · · αn]T , y = [〈v, u1〉 · · · 〈v, un〉]T .

This matrix A is called the Gram matrix of the basis {u1, . . . , un}. The Gram
matrix is invertible since there exists a unique best approximation. (This fact can
also be established using the linear independence of {u1, . . . , un}.) Then the solution
of this linear system gives the coefficients α1, . . . , αn; and consequently, the best
approximation u is determined.

Best approximation can be used for computing approximate solutions of linear
systems. If u is a solution of the linear system Ax = b, then the residual ‖Au − b‖
must be zero. Thus, if Ax = b does not have a solution, then an approximate solution
is obtained by choosing a vector u so that the residual ‖Au − b‖ is minimized.
Equivalently, we seek a minimizer of ‖Ax − b‖2. Such a minimizer is named as a
least squares solution of the linear system. More generally, we have the following
definition.

Definition 4.43 Let T : U → V be a linear transformation, where U is a vector
space and V is an inner product space. Let y ∈ V . A vector u ∈ U is called a least
squares solution of the equation T x = y if ‖Tu − y‖ ≤ ‖T z − y‖ for all z ∈ U .
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Observe that if v is a solution of T x = y, then ‖T v − y‖ = 0. Thus v minimizes
the norm ‖T x − y‖. That is, each solution of T x = y is a least squares solution. But,
a least squares solution need not be a solution; see the following example.

Example 4.44 Let A =
[
1 1
0 0

]
and b =

[
0
1

]
. If u =

[
α

β

]
∈ R

2×1, then

‖Au − b‖2 = (α + β)2 + 1 ≥ 1.

Hence, minimum value of ‖Au − b‖2 is attained for all α, β ∈ Rwith (α + β)2 = 0.
Therefore, u = (α,−α)T is a least squares solution for any α ∈ R.

However, the linear system Ax = b does not have a solution.
It also shows that a least squares solution is not necessarily unique. �

It follows from Definition4.43 that

u is a least squares solution of T x = y if and only if v = Tu is a best approx-
imation of y from R(T ), the range space of T .

Thus a least squares solution is also called a best approximate solution. Notice that
a least squares solution of Ax = y is in the domain space of T whereas the best
approximation of y is in the range space of T . Therefore, uniqueness of a least
squares solution will depend upon the injectivity of T . Theorem4.40 entails the
following.

Theorem 4.45 Let T : U → V be a linear transformation, where U is a vector
space and V is an inner product space.

(1) A vector u ∈ U is a least squares solution of T x = y if and only if T u − y is
orthogonal to R(T ).

(2) A least squares solution of T x = y is unique if and only if T is injective.
(3) If R(T ) is finite dimensional, then T x = y has a least squares solution.
(4) Let T be injective. Let u1, . . . , uk be distinct vectors in U. If {Tu1, . . . , Tuk} is

an orthonormal basis of R(T ), then u := ∑n
i=1〈y, Tui 〉ui is the least squares

solution of T x = y.

Least squares solutions of linear systems can be computed in a simpler way by
using the standard inner product onF

m×1. Further, QR-factorization can be employed
for this purpose.

Theorem 4.46 Let A ∈ F
m×n and let b ∈ F

m×1. Then the following are true:

(1) A vector u ∈ F
n×1 is a least squares solution of Ax = b if and only if A∗Au =

A∗b.
(2) If the columns of A are linearly independent, then u = R−1Q∗b is the least

squares solution of Ax = b, where A = QR is the QR-factorization of A.
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Proof (1) The columns v1, . . . , vn of A span R(A). Thus
u is a least squares solution of Ax = b
if and only if 〈Au − b, vi 〉 = 0, for each i ∈ {1, . . . , n}
if and only if v∗

i (Au − b) = 0 for each i ∈ {1, . . . , n}
if and only if A∗(Au − b) = 0
if and only if A∗Au = A∗b.

(2) Suppose the columns of A are linearly independent. Let A = QR be the QR-
factorization of A. Write u := R−1Q∗b. Since Q∗Q = I ,

A∗Au = R∗Q∗QRR−1Q∗b = R∗Q∗b = A∗b.

Due to (1), u is a least squares solution of Ax = b.
Since the columns of A ∈ F

m×n are linearly independent, rank (A) = n, which
equals the dimension of the domain space F

n×1 of the linear transformation A. Due
to Theorem 2.26(1), A is injective. By Theorem4.45(2), u = R−1Q∗b is the (only)
least squares solution of Ax = b. �

In Example4.44, A =
[
1 1
0 0

]
and b =

[
0
1

]
. Thus u =

[
α

β

]
is a least squares

solution of Ax = b if and only if A∗Au = A∗b, or,
[
1 1
1 1

] [
α

β

]
=

[
0
0

]
.

Clearly, its solution set is {(α,−α)T : α ∈ R} as found earlier.
For the linear system Ax = b with columns of A being linearly independent, we

have a formula u = R−1Q∗b for the least squares solution. In actual computation
we rather solve the associated linear system Ru = Q∗b. It is easier to do so since R
is upper triangular.
Exercises for Sect.4.7

1. Find the best approximation of v ∈ V from U , where

(a) V = R
2, v = (1, 0), U = {(a, a) : a ∈ R}.

(b) V = R
3, v = (1, 2, 1), U = span{(3, 1, 2), (1, 0, 1)}.

(c) V = R
3, v = (1, 2, 1), U = {(a, b, c) ∈ R

3 : a + b + c = 0}.
(d) V = R

4, v = (1, 0,−1, 1), U = span{(1, 0,−1, 1), (0, 0, 1, 1)}.
(e) V = R

4, v = (1, 2, 3, 4), U = span{(1, 1, 0, 0), (0, 0, 1, 2)}.
2. In the real inner product space C([0, 1], R), with 〈 f, g〉 = ∫ 1

0 f (t)g(t) dt , find
the best approximation of
(a) u(t) := t2 from P1(R) (b) u(t) := exp(t) from P4(R).

3. Determine a polynomial p(t) of degree at most 3 such that p(0) = 0 = p′(0) and∫ 1
0 |p(t) − 2 − 3t |2dt is as small as possible.

4. Determine the polynomial p(t) ∈ P5(R) minimizing
∫ π

−π
| sin t − p(t)|2dt .
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5. Find the least squares solution for the system Ax = b, where

(a) A =
⎡

⎣
3 1
1 2
2 − 1

⎤

⎦ , b =
⎡

⎣
1
0

−2

⎤

⎦ (b) A =

⎡

⎢⎢
⎣

1 1 1
−1 0 1
1 −1 0
0 1 −1

⎤

⎥⎥
⎦ , b =

⎡

⎢⎢
⎣

0
1

−1
−2

⎤

⎥⎥
⎦.

6. Let A ∈ R
m×n and b ∈ R

m . If columns of A are linearly independent, then show
that there exists a unique x ∈ R

n such that AT Ax = AT b.

4.8 Riesz Representation and Adjoint

Let V be an inner product space and let y ∈ V . The inner product defines a function
f : V → F, given by

f (x) = 〈x, y〉 for x ∈ V .

For all u, v ∈ V and each α ∈ F, we see that

f (u + v) = 〈u + v, y〉 = 〈u, y〉 + 〈v, y〉 = f (u) + f (v),

f (αu) = 〈αu, y〉 = α〈u, y〉 = α f (u).

That is, the map x �→ 〈x, y〉 is a linear functional on V .
Similarly, if we define a function g : V → F by fixing the first vector, that is,

by taking g(y) = 〈x, y〉, then g(u + v) = g(u) + g(v) but g(αy) = αg(y). Such a
function is called a conjugate linear functional on V . In a real inner product space,
a conjugate linear functional is also a linear functional.

We show that every linear functional can be written via the inner product if the
inner product space is finite dimensional. It yields a representation of functionals by
vectors. Again, orthonormal bases come in handy.

Theorem 4.47 (Riesz representation) Let V be a finite dimensional inner product
space. For each linear functional f : V → F, there exists a unique y ∈ V such that

f (x) = 〈x, y〉 for all x ∈ V,

which is given by y = ∑n
j=1 f (u j ) u j for any orthonormal basis {u1, . . . , un} of V .

Proof Let f : V → F be a linear functional. Let {u1, . . . , un} be an orthonormal
basis of V and let x ∈ V . By Fourier expansion, x = ∑n

j=1〈x, u j 〉u j . Consequently,

f (x) =
n∑

j=1

〈x, u j 〉 f (u j ) =
n∑

j=1

〈x, f (u j ) u j 〉 =
〈
x,

n∑

j=1

f (u j ) u j

〉
.

Thus, f (x) = 〈x, y〉 for all x ∈ V , where y = ∑n
j=1 f (u j ) u j .
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For uniqueness of such a vector y, let y1, y2 ∈ V be such that

f (x) = 〈x, y1〉, f (x) = 〈x, y2〉 for all x ∈ V .

Then 〈x, y1 − y2〉 = 0 for all x ∈ V . Therefore, y1 = y2. �
The vector y in the equation f (x) = 〈x, y〉 is called the Riesz representer of the

functional f , and we denote it by v f . That is, if {u1, . . . , un} is an orthonormal basis
of V , then

v f =
n∑

j=1

f (u j ) u j .

The map f �→ v f is a function from V ′ to V . Write this map as χ. That is, let

χ( f ) = v f for f ∈ V ′.

Suppose that f, g ∈ V ′ and α ∈ F. Then χ( f ), χ(g), χ( f + g) and χ(α f ) are
vectors in V that satisfy

〈x, χ( f + g)〉 = ( f + g)(x) = f (x) + g(x) = 〈x, χ( f )〉 + 〈x, χ(g)〉 = 〈x, χ( f ) + χ(g)〉,

〈x, χ(α f )〉 = (α f )(x) = α f (x) = α〈x, χ( f )〉 = 〈x, α χ( f )〉,

for every x ∈ V . Thus,

χ( f + g) = χ( f ) + χ(g) and χ(α f ) = α χ( f ),

for every f, g ∈ V ′ and α ∈ F. That is, the map f �→ v f is conjugate linear. Also,
this map is injective.

Now, going a bit further to the dual of the space V ′, we see that each functional
φ ∈ V ′′ has a Riesz representer fφ in V ′. Again, the map φ �→ fφ is conjugate linear.
Then the composition map

φ �→ fφ �→ χ( fφ) = v fφ

from V ′′ to V is a linear transformation. Since both φ �→ fφ and χ are injective
and conjugate linear, the composition map is injective and linear, and with the finite
dimensionality of V , this map becomes an isomorphism. This is the natural isomor-
phism between V and V ′′ that we mentioned in Sect. 2.6.

Here is an important application of Riesz representation theorem. To keep the
notation simple, we use the same notation 〈·, ·〉 for inner products on both the inner
product spaces involved.

Theorem 4.48 Let T : V → W be a linear transformation, where V and W are
finite dimensional inner product spaces. Then there exists a unique linear transfor-
mation S : W → V such that 〈T x, y〉 = 〈x, Sy〉 for all x ∈ V, y ∈ W.
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Proof Let w ∈ W . Consider the map g : V → F defined by

g(x) = 〈T x,w〉 for each x ∈ V .

Since T : V → W is a linear transformation, g is a linear functional on V . Let v be
the Riesz representer of the functional g. Then

g(x) = 〈x, v〉 for each x ∈ V .

That is, for each w ∈ W , we have a corresponding vector v ∈ V such that

〈T x,w〉 = 〈x, v〉 for each x ∈ V .

Due to the uniqueness of the Riesz representer, the correspondence w �→ v defines
a function from W to V . Call this function as S. That is,

S : W → V with S(w) = v.

To see that S is a linear transformation, let x ∈ V, y, z ∈ W , and let α ∈ F. Then

〈x, S(y + z)〉 = 〈T x, y + z〉 = 〈T x, y〉 + 〈T x, z〉 = 〈x, Sy〉 + 〈x, Sz〉 = 〈x, Sy + Sz〉,
〈x, S(αy)〉 = 〈T x, αy〉 = α〈T x, y〉 = α〈x, Sy〉 = 〈x, αSy〉.

Hence for all x ∈ V , S(y + z) = Sy + Sz and S(αy) = αSy. That is, S is a linear
transformation.

In fact, S(w) is the Riesz representer of the linear functional x �→ 〈T x,w〉. Thus
S : W → V is a linear transformation satisfying the property that

〈T x,w〉 = 〈x, Sw〉 for each x ∈ V .

For the uniqueness, suppose S1, S2 : W → V are linear transformations satisfying

〈T x, y〉 = 〈x, S1y〉 = 〈x, S2y〉 for all x ∈ V, y ∈ W.

Then for all x ∈ V, y ∈ W, 〈x, (S1 − S2)y〉 = 0. In particular, for x = (S1 − S2)y,
we have

〈(S1 − S2)y, (S1 − S2)y〉 = 0 for all y ∈ W.

It implies that S1 − S2 is the zero linear transformation. �

The above proof shows that if {v1, . . . , vn} is an orthonormal basis of V , and
y ∈ W , then S(y) is the Riesz representor of the functional f (·) := 〈T (·), y〉. That
is,
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S(y) =
n∑

j=1

f (v j ) v j =
n∑

j=1

〈T v j , y〉 v j =
n∑

j=1

〈y, T v j , y〉 v j for y ∈ W.

In fact, this gives rise to the following direct proof of Theorem4.48 without using
the Riesz representer, where finite dimensionality of W is not required.

A direct proof of Theorem 4.48:

Let {v1, . . . , vn} be an orthonormal basis of V . Let x ∈ V . Due to Theorem4.16,
x = ∑n

j=1〈x, v j 〉 v j . For any y ∈ W , we have

〈T x, y〉 =
〈 n∑

j=1

〈x, v j 〉 T v j , y
〉
=

n∑

j=1

〈x, v j 〉 〈T v j , y〉

=
n∑

j=1

〈
x, 〈T v j , y〉 v j

〉 =
〈
x,

n∑

j=1

〈y, T v j 〉 v j
〉
.

The assignment y �→ ∑n
j=1 〈y, T v j 〉 v j is uniquely determined from the orthonormal

basis, the given linear transformation T , and the inner product. Therefore, S : W →
V defined by

S(y) =
n∑

j=1

〈y, T v j 〉 v j for y ∈ W (4.2)

is awell-defined function. Clearly, S is a linear transformation fromW to V satisfying

〈T x, y〉 = 〈x, Sy〉 for x ∈ V, y ∈ W.

The uniqueness of such an S follows as in the first proof given above. �

Example 4.49 Let A := [ai j ] ∈ F
m×n . Then A can be thought of as a linear trans-

formation from F
n to F

m , defined by

A(α1, . . . , αn) = (β1, . . . , βm), βi =
n∑

j=1

ai jα j .

With the standard inner products on F
n and F

m , we have

〈A(α1, . . . , αn), (γ1, . . . , γm)〉 =
m∑

i=1

( n∑

j=1

ai jα j

)
γ i =

n∑

j=1

α j

( m∑

i=1

ai jγ i

)

=
n∑

j=1

α j

( m∑

i=1

ai jγi
)

=
n∑

i=1

αi

( m∑

j=1

a jiγ j

)
.
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Thus, 〈A(α1, . . . , αn), (γ1, . . . , γm)〉 = 〈(α1, . . . , αn), B(γ1, . . . , γm)〉, where

B(γ1, . . . , γm) =
m∑

j=1

a jiγ j .

Notice that the matrix B := [a ji ] ∈ F
m×n is the conjugate transpose, that is, the

adjoint of the matrix A. �

In view of Theorem4.48 and Example4.49, we give a notation and a name to
the linear transformation S : W → V corresponding to the linear transformation
T : V → W , in Theorem4.48.

Definition 4.50 Let V and W be finite dimensional inner product spaces. Let T :
V → W be a linear transformation. The unique linear transformation T ∗ : W → V
that satisfies

〈T x, y〉 = 〈x, T ∗y〉 for all x ∈ V, y ∈ W

is called the adjoint of T .

Due to Theorem4.48, each linear transformation from a finite dimensional inner
product space to another has a unique adjoint.

We have seen in Example4.49 that the adjoint of a matrix in F
m×n is its conju-

gate transpose, and we know that a matrix is the matrix representation of a linear
transformation with respect tot the standard bases. In general, if orthonormal bases
are chosen for the spaces, then the matrix representation of T ∗ happens to be the
conjugate transpose (adjoint) of the matrix representation of T . We prove this fact
in the following theorem.

Theorem 4.51 Let B = {v1, . . . , vn} and E = {w1, . . . ,wm} be orthonormal bases
for the inner product spaces V and W, respectively. Let T : V → W be a linear
transformation. Then [T ∗]B,E = ([T ]E,B)∗.

Proof Let i ∈ {1, . . . ,m} and let j ∈ {1, . . . , n}. Denote the (i, j)th entry of [T ]E,B

by ai j and that of [T ∗]B,E by bi j . By Theorem4.31,

bi j = 〈T ∗wj , vi 〉 = 〈vi , T ∗wj 〉 = 〈T vi ,wj 〉 = a ji .

Therefore, [T ∗]B,E = ([T ]E,B)∗. �

A commutative diagram may be helpful. Let T : V → W be a linear transforma-
tion, where dim(V ) = n and dim(W ) = m. Suppose [T ]E,B is the matrix represen-
tation of T with respect to the orthonormal bases B for V and E for W . Let φB be
the canonical basis isomorphism from V to F

n×1 and let ψE be the canonical basis
isomorphism from W to F

m×1. Then the map T ∗ is that linear transformation from
W to V such that the following happens for the commutative diagrams:
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VB
T

�If φB

WE

ψE then�

F
n×1

[T ]E,B
F
m×1

VB

�φB

WE
T ∗

ψE .�

F
n×1

F
m×1

[T ]∗E,B

In fact, the adjoint of a linear transformation can be defined alternatively through
the above property of the commutative diagrams.

We notice that if the bases are not orthonormal, then the conjugate transpose may
not represent the adjoint; see the following example.

Example 4.52 Consider E = {u1, u2, u3} as a basis for R
3, where u1 = (1, 1, 0),

u2 = (1, 0, 1) and u3 = (0, 1, 1); and B = {e1, e2, e3, e4} as the standard basis for
R

4. Use the standard inner products (the dot products) on these spaces. Consider the
linear transformation T : R

4 → R
3 given by

T (a, b, c, d) = (a + c, b − 2c + d, a − b + c − d).

For obtaining T ∗ : R
3 → R

4, let y = (α, β, γ ) ∈ R
3.We compute the inner prod-

uct 〈T x, y〉 for any x = (a, b, c, d) ∈ R
4 as in the following:

〈T (a, b, c, d), (α, β, γ )〉 = 〈(a + c, b − 2c + d, a − b + c − d), (α, β, γ )〉
= (a + c)α + (b − 2c + d)β + (a − b + c − d)γ

= a(α + γ ) + b(β − γ ) + c(α − 2β + γ ) + d(β − γ )

= 〈(a, b, c, d), (α + γ, β − γ, α − 2β + γ, β − γ )〉
= 〈(a, b, c, d), T ∗(α, β, γ )〉.

Therefore, T ∗ : R
3 → R

4 is given by

T ∗(α, β, γ ) = (α + γ, β − γ, α − 2β + γ, β − γ ).

To determine the matrix representations of T and T ∗, we proceed as follows:

T e1 = T (1, 0, 0, 0) = (1, 0, 1) = 0 u1 + 1 u2 + 0 u3
T e2 = T (0, 1, 0, 0) = (0, 1,−1) = 1 u1 − 1 u2 + 0 u3
T e3 = T (0, 0, 1, 0) = (1,−2, 1) = −1 u1 + 2 u2 − 1 u3
T e4 = T (0, 0, 0, 1) = (0, 1,−1) = 1 u1 − 1 u2 + 0 u3

T ∗u1 = T ∗(1, 1, 0) = (1, 1,−1, 1) = 1 e1 + 1 e2 − 1 e3 + 1 e4
T ∗u2 = T ∗(1, 0, 1) = (2,−1, 2,−1) = 2 e1 − 1 e2 + 2 e3 − 1 e4
T ∗u3 = T ∗(0, 1, 1) = (1, 0,−1, 0) = 1 e1 + 0 e2 − 1 e3 + 0 e4
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Therefore, the matrices are

[T ]E,B =
⎡

⎣
0 1 − 1 1
1 − 1 2 − 1
0 0 − 1 0

⎤

⎦ , [T ∗]B,E =

⎡

⎢⎢
⎣

1 2 1
1 − 1 0

−1 2 − 1
1 − 1 0

⎤

⎥⎥
⎦ .

Notice that [T ∗]B,E �= ([T ]E,B)∗. �

The following theorems state some facts about the map that associates a linear
transformation to its adjoint.We alsomention some useful facts concerning the range
spaces, the null spaces, and their orthogonal complements, of a linear transformation
and its adjoint.

Theorem 4.53 Let U, V and W be finite dimensional inner product spaces. Let
S : U → V and T, T1, T2 : V → W be linear transformations. Let I : V → V be
the identity operator and let α ∈ F. Then

(T1 + T2)
∗ = T ∗

1 + T ∗
2 , (αT )∗ = α T ∗, (T ∗)∗ = T, I ∗ = I, (T S)∗ = S∗T ∗.

Proof 〈x, (αT )∗y〉 = 〈αT x, y〉 = α〈T x, y〉 = α〈x, T ∗y〉 = 〈x, α T ∗y〉. Therefore,
(αT )∗ = α T ∗. Other equalities are proved similarly. �

Theorem 4.54 Let T : V → W be a linear transformation, where V and W are
finite dimensional inner product spaces. Then

(1) N (T ∗) = R(T )⊥, R(T ∗)⊥ = N (T ),
(2) R(T ∗) = N (T )⊥, N (T ∗)⊥ = R(T ),
(3) N (T ∗T ) = N (T ), N (T T ∗) = N (T ∗),
(4) R(T ∗T ) = R(T ∗), R(T T ∗) = R(T ), and
(5) rank (T ∗) = rank (T ), null (T ∗) = null (T ) + dim(W ) − dim(V ).

Proof (1) w ∈ N (T ∗)

if and only if T ∗w = 0

if and only if 〈v, T ∗w〉 = 0 for all v ∈ V

if and only if 〈T v,w〉 = 0 for all v ∈ V

if and only if w ∈ R(T )⊥.

Therefore, N (T ∗) = R(T )⊥. Replacing T by T ∗ in this equality, and using the fact
that (T ∗)∗ = T , we obtain N (T ) = R(T ∗)⊥.
(2) By (1), N (T ∗) = R(T )⊥ and R(T ∗)⊥ = N (T ). Taking orthogonal complements
and using the projection theorem, we get R(T ∗) = N (T )⊥ and N (T ∗)⊥ = R(T ).
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(3) If x ∈ N (T ), then T x = 0. Then T ∗T x = 0, which implies that x ∈ N (T ∗T ).
Conversely, let y ∈ N (T ∗T ). Then 〈T y, T y〉 = 〈y, T ∗T y〉 = 0.HenceT y = 0.That
is, y ∈ N (T ). Therefore, N (T ∗T ) = N (T ). The other equality is proved similarly.
(4) Using (1)–(3), and (T ∗T )∗ = T ∗T ∗∗ = T ∗T , we obtain:

R(T ∗T ) = N ((T ∗T )∗)⊥ = N (T ∗T )⊥ = N (T )⊥ = R(T ∗).

The other equality is proved similarly.
(5) Using (4) and the rank-nullity theorem, we obtain

rank (T ∗) = rank (T ∗T ) = dim(V ) − null (T ∗T ) = dim(V ) − null (T ) = rank (T ).

Then

null (T ∗) = dim(W ) − rank (T ∗) = dim(W ) − rank (T )

= dim(W ) − (dim(V ) − null (T )) = null (T ) + dim(W ) − dim(V ). �

Notice that rank (T ∗) = rank (T ) provides another proof that the row rank and
the column rank of a matrix are equal! It also follows that T ∗ is invertible if and only
if T is invertible. In this case, (T ∗)−1 = (T−1)∗. Similarly, rank (T ∗T ) = rank (T )

implies that T is invertible iff T ∗T is invertible.
Inverse of a canonical basis isomorphism coincides with its adjoint as the follow-

ing theorem shows.

Theorem 4.55 Let {v1, . . . , vn} be an orthonormal basis of an inner product space
V . Let φ be the canonical basis isomorphism from V onto F

n×1. Then φ−1 = φ∗.

Proof Let j ∈ {1, . . . , n}. We have φ(v j ) = e j . Let v ∈ V . There exist scalars
α1, . . . , αn such that v = ∑n

i=1 αi vi ; so that φ(v) = ∑n
i=1 αi ei . Moreover, 〈ei , e j 〉 =

δi j = 〈vi , v j 〉 for each i ∈ {1, . . . , n}. Now,

〈v, φ∗(e j )〉 = 〈φ(v), e j 〉 =
n∑

i=1

αi 〈ei , e j 〉 =
n∑

i=1

αi 〈vi , v j 〉 =
〈 n∑

i=1

αi vi , v j
〉
= 〈v, φ−1e j 〉.

Hence φ∗e j = φ−1e j for each j . Therefore, φ∗ = φ−1. �

In general, if a square matrix A ∈ F
n×n maps an orthonormal basis of F

n×1 to
another orthonormal basis, then it is necessarily unitary, that is, A−1 = A∗. Along
with this, the following theorem generalizes the result to any m × n matrix.

Theorem 4.56 Let {u1, . . . , un} and {v1, . . . , vm} be orthonormal bases for F
n×1

and F
m×1, respectively. Let A ∈ F

m×n satisfy Aui = vi for 1 ≤ i ≤ min{m, n}.
(1) If n ≤ m, then A has orthonormal columns; thus, A∗A = I .
(2) If m ≤ n, then A has orthonormal rows; thus, AA∗ = I .
(3) If m = n, then A is unitary.
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Proof (1) Assume that n ≤ m. That is, the number of columns in A is less than
or equal to the number of rows in A. The standard basis vectors of F

n×1 can be
expressed as linear combinations of u j s. That is, for any i, j ∈ {1, . . . , n}, there
exist scalars α1, . . . , αn, β1, . . . , βn such that ei = ∑n

k=1 αkuk and e j = ∑n
r=1 βr ur .

Due to orthonormality of ui s and of v j s, we have

〈Aei , Ae j 〉 =
n∑

k=1

n∑

r=1

αkβr 〈Auk, Aur 〉 =
n∑

k=1

n∑

r=1

αkβr 〈vr , vk〉

=
n∑

k=1

n∑

r=1

αkβr 〈ur , uk〉 = 〈ei , e j 〉 = δi j .

Therefore, the columns of A are orthonormal. If bi j is the (i, j)th entry in A∗A,
then it is equal to the dot product of the i th row of A∗ with the j th column of A. That
is, bi j = (Aei )∗(Ae j ) = 〈Ae j , Aei 〉 = δ j i . Therefore, A∗A = I .
(2) Suppose that m ≤ n. Then the number of columns in A∗ is less than or equal
to the number of rows in A∗. Using (1) for A∗ in place of A, we conclude that the
columns of A∗ are orthonormal. Therefore, the rows of A are orthonormal. Also, (1)
implies that (A∗)∗A∗ = I . That is, AA∗ = I .
(3) It follows from (1) and (2). �

For instance, takem = 3 and n = 2. Consider the standard basis vectors u1 = e1,
u2 = e2 for F

2×1 and v1 = e′
1, v2 = e′

2, v3 = e′
3 for F

3×1. Then the condition Aui =
vi for 1 ≤ i ≤ min{m, n} says that the columns of A are e′

1 and e
′
2, which are clearly

orthonormal.

Exercises for Sect.4.8

1. On C
3, consider the linear functional f defined by f (a, b, c) = (a + b + c)/3.

Find a vector y ∈ C
3 such that f (x) = 〈x, y〉 for each x ∈ C

3.
2. Let T be a linear operator on a complex inner product space V . Let v ∈ V . Define

the linear functional f on V by f (x) = 〈v, T x〉 for x ∈ V . Determine a vector
y ∈ V such that f (x) = 〈x, y〉 for each x ∈ V .

3. Determine a polynomial q(t) ∈ P2(R) so that for every p(t) ∈ P2(R),
(a)

∫ 1
0 p(t)q(t)dt = p(1/2) (b)

∫ 1
0 cos(π t)p(t)dt = ∫ 1

0 q(t)p(t)dt .
4. Fix a vector u in an inner product space. Define a linear functional T on V by

T v = 〈v, u〉. What is T ∗(α) for a scalar α?
5. Define a linear operator T on F

n by T (a1, . . . , an) = (0, a1, . . . , an−1). What is
T ∗(a1, . . . , an)?

6. Let U be a subspace of a finite dimensional inner product space V . Let v ∈ V .
Show the following:

(a) The function f : U → F given by f (x) = 〈x, v〉 for x ∈ U , is a linear func-
tional on U .

(b) The Riesz representor of f in (a) is given by projU (v).
(c) If u ∈ U is the Riesz representor of v, then v − u ∈ U⊥.
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7. Let T be a linear operator on a finite dimensional inner product space. Prove that
T ∗ is invertible if and only if T is invertible. In that case, show that (T ∗)−1 =
(T−1)∗.

4.9 Problems

1. Let V be an inner product space, and let x, y ∈ V . Show the following:

(a) If Re〈x, y〉 = ‖x‖ ‖y‖, then Re〈x, y〉 = |〈x, y〉|.
(b) For each α ∈ F, ‖x + αy‖ = ‖x − αy‖ if and only if x ⊥ y.
(c) For each α ∈ F, ‖x‖ ≤ ‖x + αy‖ if and only if x ⊥ y.

2. Is it true that two vectors u and v in a complex inner product space are orthogonal
if and only if for all scalars α, β, ‖αu + βv‖2 = ‖αu‖2 + ‖βv‖2?

3. Show that there does not exist an inner product onF
2 such that the corresponding

norm is ‖(a, b)‖ = |a| + |b|.
4. For x = (α1, . . . , αn) ∈ R

n , define ‖x‖ = maxi |αi |. Show that there exists no
inner product on R

n such that 〈x, x〉 = ‖x‖2 for all x ∈ R
n .

5. Recall that any function ‖ · ‖ from an inner product space to R satisfying the
properties proved in Theorem4.7, except the parallelogram law, is called a norm.
A norm need not come from an inner product. Using this generalized sense of a
norm, answer the following:

(a) On R
2, define ‖(a, b)‖ = (|a|α + |b|α)1/α for α > 0. For which α, this

defines a norm?
(b) Let ‖ · ‖ be a norm onR

2. Is it true that ‖x‖2 = 〈x, x〉 for some inner product
〈·, ·〉 on R

2 if and only if {x ∈ R
2 : ‖x‖ = 1} is an ellipse or a circle?

6. Let ‖ · ‖ be a norm on a vector space V . Prove that there exists an inner product
〈·, ·〉 on V with 〈u, u〉 = ‖u‖2 for all u ∈ V if and only if ‖ · ‖ satisfies the
parallelogram law. (Hint: Use polarization identities).

7. Let V be an inner product space. Let x, y ∈ V . Prove that ‖x + y‖ = ‖x‖ + ‖y‖
if and only if one of x, y is a nonnegative multiple of the other.

8. Construct an orthonormal basis for P2(R) in which the matrix of the differenti-
ation operator is upper triangular.

9. Let T be linear operator on an inner product space V . Prove that 〈T x, T y〉 =
〈x, y〉 for all x, y ∈ V if and only if ‖T x‖ = ‖x‖ for all x ∈ V .

10. Derive Cauchy–Schwarz inequality from Bessel’s inequality.
11. (Minimum property of Fourier coefficients) Let {u1, . . . , un} be an orthonormal

set in an inner product space V . Let y = α1u1 + · · · + αnun for some scalars
α1, . . . , αn . Let x ∈ V . Then ‖x − y‖ depends on the scalars α1, . . . , αn . Show
that ‖x − y‖ is minimum if and only if αi = 〈x, ui 〉 for i ∈ {1, . . . , n}.

12. Let (v1, . . . , vn) be an n-tuple of linearly independent vectors in a real inner prod-
uct space V . Let Vm = span{v1, . . . , vm} for 1 ≤ m ≤ n. Howmany orthonormal
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n-tuples of vectors (u1, . . . , un) exist so that span{u1, . . . , um} = Vm for each
m?

13. Let V be a real inner product space of dimension 2. Let T : V → V be a linear
transformation satisfying 〈T x, T y〉 = 〈x, y〉 for all x, y ∈ V . Show that with
respect to any orthonormal basis of V , the matrix of T is in the form

[
cos θ sin θ

sin θ − cos θ

]
.

14. Recall that A ∈ R
n×n is called an orthogonal matrix if it respects the inner prod-

uct on R
n , i.e. when 〈Ax, Ay〉 = 〈x, y〉 holds for all x, y ∈ R

n . Prove that the
following are equivalent:

(a) A is orthogonal.
(b) A preserves length, i.e. ‖Ax‖ = ‖x‖ for each x ∈ R

n .
(c) A is invertible and A−1 = AT .
(d) The rows of A form an orthonormal basis for R

n .
(e) The columns of A form an orthonormal basis for R

n×1.

15. Show that orthogonal matrices preserve angles. That is, if A is an orthogonal
matrix, then the angle between Ax and Ay is same as that between x and y.

16. Let A ∈ C
n×n . Show that the following are equivalent:

(a) A is unitary, i.e. A∗A = AA∗ = I .
(b) ‖Av‖ = ‖v‖ for each v ∈ R

n×1.
(c) The rows of A form an orthonormal basis for C

n .
(d) The columns of A form an orthonormal basis for C

n×1.

17. Let {u1, . . . , un} and {v1, . . . , vn} be orthonormal bases of an inner product space
V . Let T be a linear operator on V . Prove that

∑n
j=1 ‖Tu j‖2 = ∑n

j=1 ‖T v j‖2.
Can you identify this quantity?

18. Let u, v be vectors in an inner product space V . Define the linear operator T on
V by T x = 〈x, u〉v. Compute the trace of T . [Note: tr(T ) = tr([T ]), where [T ]
is a matrix representation of T with respect to any ordered basis.]

19. Construct an example to show that a linear system Ax = b has a unique least
squares solution, which is not a solution. Explain the situation in terms of the
QR-factorization of A observing that QQ∗ �= I .

20. Let V be an inner product space with an ordered basis B = {u1, . . . , un}. Show
the following:

(a) The Gram matrix [ai j ] of B, where ai j = 〈ui , u j 〉, is invertible.
(b) If α1, . . . αn ∈ F, then there is exactly one vector x ∈ V such that 〈x, u j 〉 =

α j , for j = 1, 2, . . . , n.

21. Let T be a linear operator of rank r on a finite dimensional vector space V . Prove
that T = T1 + · · · + Tr , where each of T1, . . . , Tr is a linear operator of rank 1,
on V .
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22. Let V be a finite dimensional real inner product space. A function h : R → V

is said to be differentiable at a ∈ R if the limit lim
t→a

h(t) − h(a)

t − a
exists. In that

case, we write the value of this limit as (Dh)(a).

(a) Let f, g : R → V be differentiable at a ∈ R. Show that the real-valued func-
tion t �→ 〈 f (t), g(t)〉 is also differentiable at a.

(b) Show that ( d
dt 〈 f (t), g(t)〉)(a) = 〈(Df )(a), g(a)〉 + 〈 f (a), (Dg)(a)〉.

(c) If f : R → V is differentiable at all t ∈ R and ‖ f (t)‖ is constant for all
t ∈ R, then show that f (t) ⊥ (Df )(t) for all t ∈ R.

23. Let 〈·, ·〉 be any inner product on F
n×1. Show that there exists a hermitian matrix

A such that 〈x, y〉 = x∗Ay.
24. Let T : V → W be a linear transformation, where V and W are finite dimen-

sional inner product spaces. Prove the following:

(a) T ∗ is injective if and only if T is surjective.
(b) T ∗ is surjective if and only if T is injective.

25. (FredholmAlternative)Given A ∈ F
n×n andb ∈ F

n×1, prove that either the linear
system Ax = b has a solution or the system A∗x = 0 has a solution x with
x∗b �= 0.

26. Let f : R
n×1 → R

n×1 be a function. Prove that the following are equivalent:

(a) For all x, y ∈ R
n×1, ‖ f (x) − f (y)‖ = ‖x − y‖; and f (0) = 0.

(b) For all x, y ∈ R
n×1, 〈 f (x), f (y)〉 = 〈x, y〉.

(c) There exists an orthogonal matrix A ∈ R
n×n such that f (x) = Ax .

It says that a distance preserving map that fixes the origin is precisely one that
preserves the dot product; also, such maps can be described as orthogonal matri-
ces.

27. Rigid motions are distance preserving maps. Prove that every rigid motion is the
composition of an orthogonal operator and a translation. That is, if f : R

n×1 →
R

n×1 satisfies ‖ f (x) − f (y)‖ = ‖x − y‖ for all x, y ∈ R
n×1, then prove that

there exists an orthogonal matrix A and a vector b ∈ R
n×1 such that f (x) =

Ax + b for all x ∈ R
n×1. (See Problem26.)

28. Let T be a linear operator on a finite dimensional inner product space V . Prove
the following:

(a) There exists k ∈ R such that ‖T v‖/‖v‖ ≤ k for every nonzero v ∈ V .
(b) Define ‖T ‖ = sup{‖T v‖/‖v‖ : v �= 0, v ∈ V }. Then ‖ · ‖ : L(V, V ) → R

is a norm on L(V, V ).
(c) ‖T ‖ = sup{‖T v‖ : v ∈ V, ‖v‖ = 1}.
(d) ‖I‖ = 1.
(e) Let v ∈ V , and let T ∈ L(V, V ). Then ‖T v‖ ≤ ‖T ‖ ‖v‖.
(f) Let S, T ∈ L(V, V ). Then ‖ST ‖ ≤ ‖S‖ ‖T ‖.

29. Let T be a linear operator on a finite dimensional inner product space V . Let
{αn} be sequence of scalars. We say that the power series

∑∞
n=0 αnT n converges
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if and only if the power series of scalars
∑∞

n=0 αn‖T n‖ converges. Show that∑∞
n=0(1/n!)T n converges. Note: using this, we define the exponential of T by

exp(T ) = ∑∞
n=0(1/n!)T n .

30. Let V be a finite dimensional inner product space. Let V ′ be the dual of V .
For any f ∈ V ′, let v f ∈ V be its Riesz representer. Show that the function
〈 , 〉 : V ′ × V ′ → F by 〈 f, g〉 = 〈vg, v f 〉 defines an inner product on V ′.



Chapter 5
Eigenvalues and Eigenvectors

5.1 Existence of Eigenvalues

Consider the linear operator T on R
3 defined by

T (a, b, c) = (a + b, b + c, c + a) for (a, b, c) ∈ R
3.

We notice that T (α, α, α) = 2(α, α, α). Therefore, T maps any point on the line
containing the points (0, 0, 0) and (1, 1, 1) to another point on the same line. That is,
the line L := {(α, α, α) : α ∈ R} remains invariant (fixed) under this linear operator
T . Given any linear operator on a vector space, which lines remain invariant?

Definition 5.1 Let T be a linear operator on a vector space V over F. For a scalar
λ ∈ F and a nonzero vector v ∈ V, the pair (λ, v) is called an eigenpair of T if the
equation T v = λv is satisfied.

In such a case, λ is called an eigenvalue of T and v is called an eigenvector of
T corresponding to the eigenvalue λ.

To break them apart, λ ∈ F is an eigenvalue of T if and only if there exists a
nonzero vector v ∈ V such that T v = λv. Similarly, v ∈ V is an eigenvector of T if
and only if v �= 0, and there exists a scalar λ ∈ F such that T v = λv.

Example 5.2 Consider the linear operator T : C
3 → C

3 defined by

T (a, b, c) = (a + b, b + c, c + a).

Since T (1, 1, 1) = (1 + 1, 1 + 1, 1 + 1) = 2(1, 1, 1), the scalar 2 is an eigenvalue
of T with a corresponding eigenvector (1, 1, 1). We also see that

T (−2, 1 − i
√
3, 1 + i

√
3 ) = (−1 − i

√
3, 2, −1 + i

√
3 )

= 1+i
√
3

2 (−2, 1 − i
√
3, 1 + i

√
3 ).
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Hence, (−2, 1 − i
√
3, 1 + i

√
3 ) is an eigenvector corresponding to the eigenvalue

(1 + i
√
3)/2. Is (1 − i

√
3)/2 also an eigenvalue of T ? �

If λ is an eigenvalue of T, then (T − λI )v = 0 for a nonzero vector (an eigen-
vector) v. That is, the linear operator T − λI is not injective. Conversely, if T − λI
is not injective, then there exists a nonzero vector v such that (T − λI )v = 0. That
is, T v = λv. Therefore, we have the following characterization of an eigenvalue:

A scalar λ is an eigenvalue of T if and only if T − λI is not injective.

Moreover, if the vector space is finite dimensional, then T − λI is not injective if and
only if it is not surjective, due to Theorem 2.26. Hence we also obtain the following:

If T is a linear operator on a finite dimensional vector space over F, then a
scalar λ ∈ F is an eigenvalue of T if and only if T − λI is not invertible.

Wewill often use this condition for eigenvalues since it gives away for ascertaining
a scalar to be an eigenvalue without recourse to an eigenvector. This characteriza-
tion immediately connects eigenvalues of a linear operator with those of its adjoint,
whenever the vector space is an inner product space. Observe that T − λI is not
invertible if and only if (T − λI )∗ is not invertible due to Theorem 4.54. Further,
Theorem 4.53 implies that (T − λI )∗ = T ∗ − λI. Therefore,

if T is a linear operator on a finite dimensional inner product space, then a
scalar λ is an eigenvalue of T if and only if λ is an eigenvalue of T ∗.

Given a linear operator T if there exists a scalar that is an eigenvalue of T, then we
say that T has an eigenvalue. In that case, we also say that the eigenvalue problem
for T, that is, T v = λv, is solvable. If T has an eigenvalue with a corresponding
eigenvector v, then the line {αv : α ∈ F} is invariant under T . In general, a linear
operator T need not have an eigenvalue; then no line is invariant under such a linear
operator T .

Example 5.3 Let T : R
2 → R

2 be defined by T (a, b) = (−b, a). If λ is an eigen-
value of T with corresponding eigenvector (α, β), then

T (α, β) = (−β, α) = λ(α, β).

This implies that−β = λα andα = λβ.That is, (λ2 + 1)β = 0.As (α, β) = (λβ, β)

is required to be nonzero, β �= 0. Then we must have λ2 + 1 = 0. There exists no
λ ∈ R with λ2 + 1 = 0. Therefore, T does not have an eigenvalue.

However, for the same map (a, b) �→ (−b, a) with C
2 in place of R

2, λ = i and
λ = −i satisfy the equation λ2 + 1 = 0. It can be verified that (1,−i) and (1, i) are
eigenvectors corresponding to the eigenvalues i and −i , respectively. �

Example 5.3 shows that we may need to solve for zeros of certain polynomials
for obtaining eigenvalues of a linear operator. To investigate the issue of existence
of eigenvalues, we will use the following fact, called the Fundamental Theorem of
Algebra:
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Any nonconstant polynomial of degree n with complex coefficients has exactly
n number of complex zeros, counting multiplicities.

If α is a zero of a polynomial p(t) then p(t) = (t − α)mq(t), for some m ∈ N, and
some polynomial q(t). In addition, if α is not a zero of q(t), then we say that α as
a zero of p(t) has multiplicity m. In such a case, we also say that α is a root of
multiplicity m, of the equation p(t) = 0.

The proof of the fundamental theorem of algebramay be found in any text on com-
plex analysis. The fundamental theorem is used to factor polynomials with complex
coefficients in a natural way. A polynomial with real coefficients may have complex
zeros. In that case, the complex zeros occur in conjugate pairs. That is, if α + iβ
is a zero of a polynomial with real coefficients, then α − iβ is also a zero of the
same polynomial. Hence, whenever t − (α + iβ) is a factor of such a polynomial,
t − (α − iβ) is also a factor. Then their product (t − α)2 + β2 is a factor of such a
polynomial for real numbers α and β. These facts are summarized in the following
statement.

Proposition 5.1 Let p(t) = a0 + a1t + · · · + aktk be a nonconstant polynomial
with a0, . . . , ak ∈ C, and ak �= 0. Then the following are true:

(1) There exist λ1, . . . , λk ∈ C such that p(t) = ak(t − λ1) · · · (t − λk).

(2) If a0, . . . , ak ∈ R, then there exist λ1, . . . , λ j ∈ R and nonzero α1, . . . , αm,

β1, . . . , βm ∈ R with k = j + 2m, j ≥ 0, m ≥ 0 such that

p(t) = ak(t − λ1) · · · (t − λ j )
(
(t − α1)

2 + β2
1

) · · · ((t − αm)2 + β2
m

)
.

(3) The factorizations in (1)–(2) are unique up to ordering of the factors in the
product. Further, in (2), if k is odd, then j ≥ 1; that is, p(t) has a real zero.

In Proposition 5.1(2), if p(t) has no real zeros, then the linear terms are absent;
and if all zeros of p(t) are real, then the quadratic terms are absent in the product.

Theorem 5.4 Every linear operator on a finite dimensional complex vector space
has an eigenvalue.

Proof Let V be a vector space of dimension n over C. Let T : V → V be a linear
operator. Let x be a nonzero vector in V . The list x, T x, T 2x, . . . , T nx has n + 1
vectors, and hence, it is linearly dependent. So, there exist a0, a1 . . . , an ∈ C, not all
zero, such that

a0x + a1T x + · · · + anT
nx = 0.

Let k be the maximum index such that ak �= 0. That is, if a j �= 0, then j ≤ k. Write
p(t) = a0 + a1t + · · · + aktk . Then

p(T ) = a0 I + a1T + · · · + akT
k, ak �= 0 and p(T )(x) = 0.

By Proposition 5.1, there exist complex numbers λ1, . . . , λk such that
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p(t) = ak(t − λ1)(t − λ2) . . . (t − λk).

Then
ak(T − λ1 I )(T − λ2 I ) . . . (T − λk I )(x) = p(T )(x) = 0.

Since x �= 0, p(T ) is not injective. Hence, at least one of T − λ1 I, . . . , T − λk I is
not injective. Therefore, at least one of λ1, . . . , λk is an eigenvalue of A. �

Linear operators on infinite dimensional spaces need not have eigenvalues even
if the underlying field is C; see the following example.

Example 5.5 (1) Consider the vector space P(C). Define T : P(C) → P(C) by

T p(t) = tp(t), for p ∈ P(C).

As tp(t) = λp(t) is impossible for any scalar λ and a nonzero polynomial p(t), T
has no eigenvalue.

(2) Let V := c00(N, C), the space of all complex sequences having only a finite
number of nonzero entries. Let T be the right shift linear operator on V , that is,

T (α1, α2, . . .) = (0, α1, α2, . . .).

If λ ∈ C and v := (α1, α2, . . .) ∈ V are such that T v = λv, then (0, α1, α2, . . .) =
λ(α1, α2, . . .). It implies λα1 = 0 and λαn+1 = αn for each n ∈ N. This is possible
only for the zero vector v. Therefore, T does not have an eigenvalue. �

Exercises for Sect.5.1

1. Find eigenvalues and eigenvectors of the following linear operators:

(a) T : F
2 → F

2 defined by T (a, b) = (b, a).

(b) T : F
3 → F

3 defined by T (a, b, c) = (0, 5a, 2c).
(c) T : R

4 → R
4 defined by T (a, b, c, d) = (b,−a, d,−c).

(d) T : F
n → F

n defined by T (a1, . . . , an) = (
∑n

i=1 ai , . . . ,
∑n

i=1 ai ).
(e) T : F

∞ → F
∞ defined by T (a1, a2, . . .) = (a2, a3, . . .).

(f) T : F
∞ → F

∞ defined by T (a1, a2, . . .) = (0, a1, a2, . . .).

2. Let T be a linear operator on a finite dimensional complex vector space V . Show
that each nonzero v ∈ V is an eigenvector of T if and only if T = α I for some
α ∈ C.

3. Suppose S and T are linear operators on V , λ is an eigenvalue of S, and μ is an
eigenvalue of T . Is it necessary that μλ is an eigenvalue of ST ?

4. Let A be an n × n matrix and α be a scalar such that each row (or each column)
sums to α. Show that α is an eigenvalue of A.

5. Give an example of a linear operator T on a real inner product space, where
(T − α I )2 + β2 I is not invertible for some real numbers α and β.
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6. If (1, 2)T and (2, 1)T are eigenvectors corresponding to eigenvalues 1 and 2 of
a 2 × 2 matrix A, then what is A?

7. Let B = {v1, . . . , vn} be a basis of a vector space V . Let T be a linear operator
on V . Let A = [T ]B,B . Prove that v j is an eigenvector of T with eigenvalue λ if
and only if the j th column of A has the form λv j .

8. If a square matrix is of rank 1, then show that its trace is one of its eigenvalues.
What are its other eigenvalues?

9. Let T be a linear operator on a real vector space. Suppose T 2 + αT + β = 0 for
some α, β ∈ R. Prove that T has an eigenvalue if and only if α2 ≥ 4β.

10. If x and y are eigenvectors corresponding to distinct eigenvalues of a real sym-
metric matrix of order 3, then show that the cross product of x and y is a third
eigenvector linearly independent with x and y.

5.2 Characteristic Polynomial

By eigenvalues and eigenvectors of a matrix A ∈ C
n×n, we mean eigenvalues and

eigenvectors of the linear operator A : C
n×1 → C

n×1. It means that λ ∈ C is an
eigenvalue of A ∈ C

n×n with a corresponding eigenvector v ∈ C
n×1 if and only if

v �= 0 and Av = λv.
Let A ∈ R

n×n .As a linear operator onR
n×1, it may ormay not have an eigenvalue.

Non-existence of an eigenvalue for A ∈ R
n×n means that there does not exist a real

number λ such that Av = λv for some nonzero vector v ∈ R
n×1. On the other hand,

A is also in C
n×n . If we consider it as a linear operator on C

n×1, then Theorem 5.4
guarantees that it has at least one eigenvalue λ ∈ Cwith a corresponding eigenvector
v ∈ C

n×1, v �= 0. In case λ ∈ R,write v = x + iy with x, y ∈ R
n×1. Then Ax = λx

and Ay = λy. As v �= 0, at least one of x or y is nonzero. Therefore, λ is also an
eigenvalue of the linear operator A : R

n×1 → R
n×1. Therefore,

we view a matrix A ∈ R
n×n as a linear operator on C

n×1 so that it has an
eigenvalue λ ∈ C with a corresponding eigenvector v ∈ C

n×1.

In fact, a real vector space can be embedded in a complex vector space; then a linear
operator is identified with its incarnation on the complex vector space. Consequently,
the eigenvalues of the old linear operator are precisely the real eigenvalues of the
new one. Further, the new linear operator may have more nonreal eigenvalues. For
details on this technique, called complexification, see Problem 50.

Observe that similar matrices have the same eigenvalues. Indeed, if B = P−1AP
for some invertible matrix P ∈ F

n×n , then for λ ∈ F and v ∈ F
n×n ,

Av = λv iff APP−1v = λPP−1v iff (P−1AP)P−1v = λP−1v.

Since similarmatrices represent the same linear transformation, we askwhether there
is a connection between the eigenvalues of a linear operator and those of its matrix
representation.
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Theorem 5.6 Let T be a linear operator on a finite dimensional vector space V over
F. Let B be an ordered basis of V . Let λ ∈ F be a scalar and let v ∈ V be a nonzero
vector. Then (λ, v) is an eigenpair of T if and only if (λ, [v]B) is an eigenpair of
[T ]B,B .

Proof Since [T v]B = [T ]B,B[v]B and [λv]B = λ[v]B , we have T v = λv if and only
if [T ]B,B[v]B = λ[v]B . �

We emphasize that in Theorem 5.6, if F = R, then the eigenvalues of T are
precisely the real eigenvalues of [T ]B,B .

Supposeλ is an eigenvalue of an n × nmatrix A.Then A − λI, as a linear operator
on C

n×1, is not injective. Then, it is not surjective; consequently, det(A − λI ) = 0.
Expansion of this determinant shows that it is a polynomial in λ and it has degree
n, where the coefficient of λn in this polynomial is (−1)n. By multiplying such a
polynomial with (−1)n, it can be made to be a monic polynomial. Recall that the
coefficient of the highest degree term in a monic polynomial is 1; the degree of the
zero polynomial is zero. Thus we give the following definition.

Definition 5.7 Let T be a linear operator on a finite dimensional vector space.

(a) The monic polynomial χT (t) := (−1)n det(T − t I ) is called the characteristic
polynomial of T .

(b) The equation χ
T (t) = 0 is called the characteristic equation of T .

(c) Any complex number which is a root of the characteristic equation of T is called
a characteristic value of T .

The definition makes sense since the determinant of a linear operator is the same
as the determinant of any matrix representation of the linear operator. Further, the
characteristic equation of T may also be given by det(T − t I ) = 0. Notice that the
characteristic polynomial of T can also be written as det(t I − T ). It plays the role
of the polynomial of degree k that we had met in the proof of Theorem 5.4.

A proof of the fact that similar matrices have the same eigenvalues can be given
using the characteristic polynomial as well; it is as follows:

det(P−1AP − t I ) = det(P−1(A − t I )P)

= det(P−1) det(A − t I ) det(P) = det(A − t I ).

Two matrices of the same size can have same eigenvalues but different characteristic
polynomials. For instance, take A = diag(1, 1, 2), the diagonal matrix of order 3
with the diagonal entries as 1, 1, and 2, and take B = diag(1, 2, 2). Then χ

A(t) =
(t − 1)2(t − 2) and χ

B(t) = (t − 1)(t − 2)2. Both have the same eigenvalues 1 and
2. But the number of times they are the zeros of the respective characteristic poly-
nomials are different.
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Definition 5.8 Let T be a linear operator on a finite dimensional vector space.

(a) For an eigenvalue λ of T, the largest positive integerm such that (t − λ)m divides
the characteristic polynomial of T is called the algebraic multiplicity of the
eigenvalue λ; it is denoted by μ

T (λ), or as μ(λ).

(b) If λ1, . . . , λk are the distinct eigenvalues of T with algebraic multiplicities
m1, . . . ,mk, respectively, then we say that T hasm := m1 + · · · + mk number
of eigenvalues counting multiplicities.

If the characteristic polynomial of T can be written as (t − λ)mq(t), where t −
λ does not divide q(t), then μ(λ) = m, and vice versa. For example, the matrix
diag(Im, 2In) has eigenvalues 1 and 2 with μ(1) = m and μ(2) = n.

Existence of an eigenvalue depends on the linear operator and also the underlying
field. Unless the field is C, it cannot be guaranteed that the characteristic polynomial
is a product of linear factors using only numbers from the field; see Proposition 5.1.
We wish to isolate this convenient case from others.

Definition 5.9 A polynomial p(t) = a0 + a1t + · · · + aktk of degree k with coef-
ficients from F is said to split over F if there exist scalars λ1, . . . , λk ∈ F such
that

p(t) = ak(t − λ1) · · · (t − λk).

By Proposition 5.1, each polynomial with complex coefficients splits over C. If
a polynomial with real coefficients has only real zeros, then it splits over R. There
can exist polynomials with real coefficients which do not split over R; for example,
p(t) = 1 + t2.

The characteristic polynomial χ
T (t) of T is a polynomial of degree n. When it

splits over F, all its zeros are in F. In such a case, if χ
T (t) = (t − λ1) · · · (t − λn),

then λ1, . . . , λn are the n eigenvalues of T, counting multiplicities. Notice that the
multiplicity of such an eigenvalue λ as a root of the characteristic equation is same
as its algebraic multiplicity. We thus obtain the following result.

Theorem 5.10 Let T be a linear operator on a vector space V of dimension n over
F. If the characteristic polynomial of T splits over F, then each characteristic value
of T is an eigenvalue of T . In this case, T has exactly n eigenvalues, counting
multiplicities.

Observe that if F = C, then the characteristic polynomial of T splits; then by
Theorem 5.10, each characteristic value of T is an eigenvalue of T . If F = R and
λ ∈ R is a characteristic value of T, then by Theorem 3.34(2), det(T − λI ) = 0
implies that T − λI is not injective. Thus, λ is an eigenvalue of T . Therefore, every
characteristic value of T that is in F, is an eigenvalue of T . In particular, we obtain
the following result.

Theorem 5.11 Let T be a linear operator on a finite dimensional vector space V .

Then, each real characteristic value of T is an eigenvalue of T .
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As we see, splitting of the characteristic polynomial is equivalent to each of the
following statements:

1. All characteristic values of T are eigenvalues of T .

2. Either F = C or, F = R and T has only real characteristic values.

Moreover, Theorem 5.10 suggests the following method for computing the eigen-
values and eigenvectors of a linear operator T on a vector space V of dimension n:

1. Choose any basis B of V ;
2. Determine the matrix representation [T ]B,B of T with respect to B;
3. Compute the characteristic polynomial χT (t) := (−1)n det([T ]B,B − t I );
4. Find the roots of the characteristic equation det([T ]B,B − t I ) = 0;
5. Keep only those roots which are in the underlying field of V . These are the

eigenvalues of T along with their multiplicities.

For computing eigenvalues of a matrix A ∈ F
n×n, we take B as the standard basis

of F
n×1 so that [A]B,B = A. Be aware that this procedure becomes unmanageable

when n = dim(V ) > 4. We rework Example 5.2.

Example 5.12 Let T : C
3 → C

3 be defined by T (a, b, c) = (a + b, b + c, c + a).

Choosing B as the standard basis for C
3, we have

[T ]B,B =
⎡

⎣
1 1 0
0 1 1
1 0 1

⎤

⎦ .

The characteristic polynomial of T is

χ
T (t) = (−1)3 det(T − t I ) = −

∣∣∣
∣∣∣

1 − t 1 0
0 1 − t 1
1 0 1 − t

∣∣∣
∣∣∣
= −[(1 − t)3 − 1(−1)].

The roots of the characteristic equation

(t − 1)3 − 1 = (t − 2)(t2 − t + 1) = 0

are 2 and (1 ± i
√
3)/2. These are the characteristic values and eigenvalues of T and

of [T ]B,B . If T were a linear operator on R
3, its only eigenvalue would be 2. �

Each matrix in F
n×n has a characteristic polynomial, which is a monic polyno-

mial. Conversely each monic polynomial is the characteristic polynomial of some
matrix. To see this, let p(t) be a monic polynomial with coefficients from F. By
Proposition 5.1, p(t) can be written as

p(t) = (t − λ1) · · · (t − λ j )
(
(t − α1)

2 + β2
1

) · · · ((t − αm)2 + β2
m

)
,
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where λ1, . . . , λ j , α1, . . . , αm, β1, . . . , βm ∈ F. We then take

M = diag
(
λ1, . . . , λk,

[
α1 β1

−β1 α1

]
, . . . ,

[
αm βm

−βm αm

] )
.

It is easy to verify that p(t) = χM(t).
However, a simpler matrix using the coefficients in p(t) can be constructed so

that p(t) is the characteristic polynomial of the matrix. It is as follows.
If the monic polynomial is p(t) = a0 + t, then we take Cp = [−a0].
If p(t) = a0 + a1t + · · · + an−1tn−1 + tn for n ≥ 2, then we take Cp ∈ F

n×n as

Cp :=

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

0 − a0
1 0 − a1

1
... −a2
... ...

0 − an−2

1 − an−1

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

.

It may be verified that det(Cp − t I ) = (−1)n(a0 + a1t + · · · + an−1tn−1 + tn).
That is, the characteristic polynomial of Cp is p(t). Accordingly, the matrix
Cp is called the companion matrix of the polynomial p(t) = a0 + a1t + · · · +
an−1tn−1 + tn.

Exercises for Sect.5.2

1. Determine the eigenvalues and corresponding eigenvectors for the following
matrices:

(a)

[
3 2

−1 0

]
(b)

[−2 −1
5 2

]
(c)

[
1 1
i i

]
(d)

⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦

(e)

⎡

⎣
2 6 −1
0 1 3
0 3 1

⎤

⎦ (f)

⎡

⎣
1 1 0
i i 0
0 0 1 + i

⎤

⎦ (g)

⎡

⎢⎢
⎣

1 0 1 0
0 0 1 1
1 0 1 0
0 0 1 1

⎤

⎥⎥
⎦ .

2. Let A = [ai j ] ∈ F
2×2. Show the following:

(a) If λ is an eigenvalue of A, then (a12, λ − a11)T is a corresponding eigen-
vector.

(b) A has a real eigenvalue if and only if (a11 − a22)2 + 4a12a21 ≥ 0.

3. Give a linear operator whose characteristic polynomial is (t − 5)2(t − 6)2.
4. Let T : R

2 → R
2 be defined by T (a, b) = (0, b). Show that t2 − 2t is not the

characteristic polynomial of T, and T 2 − 2T is not invertible.
5. Let T : R

2 → R
2 be the linear operator given by T (a, b) = (−b, a). Let B be

any basis for R
2. If [T ]B,B = [ai j ], then show that a12a21 �= 0.
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6. Find the eigenvalues and corresponding eigenvectors of the differentiation oper-
ator d/dt : P3(R) → P3(R).

7. Let V be the space of all twice differentiable functions from R to R. Determine
all eigenvalues of the second derivative d2/dt2 : V → V .

8. Let T be a linear operator on a vector space of dimension n. Let λ1, . . . , λn be all
characteristic roots of T . Prove that det(T ) = �n

i=1λi and tr(T ) = ∑n
i=1 λi .

5.3 Eigenspace

If λ1 and λ2 are distinct eigenvalues of a linear operator T : V → V, then their
corresponding eigenvectors must be distinct. For, if a vector v is an eigenvector
corresponding to both the eigenvalues λ1 and λ2, then λ1v = T v = λ2v implies that
(λ1 − λ2)v = 0. As v �= 0, λ1 = λ2. A stronger conclusion holds.

Theorem 5.13 Eigenvectors corresponding to distinct eigenvalues of any linear
operator are linearly independent.

Proof Suppose, on the contrary, that there exists a linear operator T on a vector space
V, with distinct eigenvalues λ1, . . . , λk, k ≥ 2, (among others) and corresponding
eigenvectors v1, . . . , vk, which are linearly dependent. For each i ∈ {1, . . . , k}, vi �=
0 andT vi = λi vi .ByTheorem1.29, there exists j ∈ {2, . . . , k} such that v1, . . . , v j−1

are linearly independent and

v j = α1v1 + · · · + α j−1v j−1

for some scalars α1, . . . , α j−1. Then

λ j v j = α1λ j v1 + · · · + α j−1λ j v j−1

T v j = α1T v1 + · · · + α j−1T v j−1 = α1λ1v1 + · · · + α j−1λ j−1v j−1.

Now, λ j v j − T v j = 0 implies

α1(λ j − λ1)v1 + · · · + α j−1(λ j − λ j−1)v j−1 = 0.

Since v1, . . . , v j−1 are linear independent,

α1(λ j − λ1) = · · · = α j−1(λ j − λ j−1) = 0.

As the eigenvalues λi are distinct, α1 = · · · = α j−1 = 0. But then v j = 0. This is
impossible since v j is an eigenvector. �

More than one linearly independent eigenvector may exist corresponding to the
same eigenvalue. For example, the identity operator I : R

3 → R
3 has eigenvectors

e1, e2, e3 corresponding to the same eigenvalue 1.
Recall that if λ is an eigenvalue of a linear operator T, then the set of all eigenvec-

tors corresponding to the eigenvalue λ along with the zero vector is N (T − λI ), the
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null space of T − λI. The number of linearly independent eigenvectors correspond-
ing to the eigenvalue λ of T is the nullity of the linear operator T − λI. Moreover,
Theorem 5.13 implies that if λ1 and λ2 are distinct eigenvalues of a linear operator,
then N (T − λ1 I ) ∩ N (T − λ2 I ) = {0}.
Definition 5.14 Let T be a linear operator on a vector space V .

(a) The set of all eigenvalues of T is called the eigenspectrum of T and is denoted
by eig(T ).

(b) The subspace N (T − λ I ) of V is called the eigenspace of T with respect to
the eigenvalue λ and is denoted by E(λ).

(c) For λ ∈ eig(T ), γ (λ) := dim(E(λ)) is called the geometric multiplicity of the
eigenvalue λ.

We read λ ∈ eig(T ) as “λ is an eigenvalue of T ”. If more than one linear operator
are involved in a certain context, we may denote E(λ) and γ (λ) as ET (λ) and γT (λ),

respectively.

Example 5.15 The conclusions drawn in each of the following cases may be easily
verified:

(1) Let T : F
2 → F

2 be defined by T (a, b) = (a + b, b). Then λ = 1 is the only
eigenvalue; so, eig(T ) = {1}. E(1) = N (T − I ) = span{(1, 0)}, and γ (1), the geo-
metric multiplicity of the eigenvalue 1, is 1.

(2) Define T : R
2 → R

2 by T (a, b) = (b,−a). Then eig(A) = ∅.

(3) Let T : C
2 → C

2 be defined by T (a, b) = (b,−a). Then eig(T ) = {i,−i}.
E(i) = N (T − i I ) = span{(1, i)}, E(−i) = N (T + i I ) = span{(1,−i)}, andγ (i)
= γ (−i) = 1.

(4) Define T : F
3 → F

3 by T (a, b, c) = (a, a + b, a + b + c). Then eig(T ) = {1},
E(1) = N (T − I ) = span{(0, 0, 1)}, and γ (1) = 1.

(5) Let T : P(F) → P(F) be defined by (T p)(t) = tp(t) for p ∈ P(F). Then
eig(T ) = ∅.

(6) Let T : P([a, b], R) → P([a, b], R),where (T p)(t) = d
dt p(t) for p ∈ P([a, b],

R). Then eig(T ) = {0} and E(0) = N (T ) = span{p0}, where p0(t) = 1 for all t ∈
[a, b]. Consequently, γ (0) = 1. �

The following theorem generalizes Theorem 5.13.

Theorem 5.16 Letλ1, . . . , λk, for k ≥ 2,be distinct eigenvalues of a linear operator
T on a vector space V . Then the following are true:

(1) E(λ j ) ∩ ∑k
i=1
i �= j

E(λi ) = {0} for each j ∈ {1, . . . , k}.
(2) For each i ∈ {1, . . . , k}, let Bi be a linearly independent subset of E(λi ). Then

∪k
i=1Bi is linearly independent. Further, if i, j ∈ {1, . . . , k} and i �= j, then

Bi ∩ Bj = ∅.
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Proof (1) Suppose E(λ j ) ∩ ∑k
i=1
i �= j

E(λi ) �= {0} for some j ∈ {1, . . . , k}. Let v j be a
nonzero vector in E(λ j ) ∩ ∑k

i=1
i �= j

E(λi ). Then

v j = v1 + · · · + v j−1 + v j+1 + · · · + vk

for some vectors v1 ∈ E(λ1), . . . , v j−1 ∈ E(λ j−1), v j+1 ∈ E(λ j+1), . . . , vk ∈
E(λk). Since v j �= 0, at least one of the vectors on the right hand side is nonzero.
Thus

v j = vm1 + · · · + vmn

for nonzero vectors vm1 , . . . , vmn with m1, . . . ,mn ∈ {1, . . . , k} \ { j}. This contra-
dicts Theorem 5.13, since v j , vm1 , . . . , vmn are eigenvectors corresponding to the
eigenvalues λ j , λm1 , . . . , λmn , respectively.

(2) To show that ∪k
i=1Bi is linearly independent, we take any linear combination of

vectors from ∪k
i=1Bi and equate it to 0. Such an equation can be written in the form

k∑

i=1

(αi1vi1 + · · · + αimi vimi ) = 0,

where vi1, . . . , vimi ∈ Bi and αi1, . . . , αimi ∈ F for i ∈ {1, . . . , k}.
Since αi1vi1 + · · · + αimi vimi ∈ E(λi ), due to (1), we conclude that

αi1vi1 + · · · + αimi vimi = 0 for each i ∈ {1, . . . , k}.

Now that Bi is linearly independent, it follows that αi1 = · · · = αimi = 0 for each
i ∈ {1, . . . , k}. Hence ∪k

i=1Bi is linearly independent.
For the second part of the conclusion, suppose that Bi ∩ Bj �= ∅ for some i �= j .

Let v ∈ Bi ∩ Bj . Then v �= 0 and λi v = T v = λ j v. Hence, (λi − λ j )v = 0. This is
not possible since λi �= λ j . �

If λ is an eigenvalue of T with corresponding eigenvector v, then T 2v = λT v =
λ2v.That is, λ2 is an eigenvalue of T 2.Will all eigenvalues of T 2 come only this way?
In general, if p(t) is any polynomial, then is there any relation between eigenvalues
of T and those of p(T )?

Theorem 5.17 (Spectral mapping theorem) Let T be a linear operator on a vector
space V overF. Let p(t) be a polynomial with coefficients fromF. Then the following
are true:

(1) {p(λ) : λ ∈ eig(T )} ⊆ eig(p(T )).

(2) If F = C, then eig(p(T )) = {p(λ) : λ ∈ eig(T )}.
(3) Let δ ∈ F. If T − δ I is invertible then δ /∈ eig(T ) and

eig
(
(T − δ I )−1

) = {(λ − δ)−1 : λ ∈ eig(T )}.
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(4) If T is invertible, then 0 /∈ eig(T ) and eig(T−1) = {λ−1 : λ ∈ eig(T )}.
Proof (1) Let λ ∈ F. Then p(t) − p(λ) is a polynomial which vanishes at t = λ.

Thus p(t) − p(λ) = (t − λ)q(t) = q(t)(t − λ) for some polynomial q(t). Hence

p(T ) − p(λ)I = (T − λ I )q(T ) = q(T )(T − λ I ).

If (T − λ I )v = 0 for some v �= 0, then (p(T ) − p(λ))v = q(T )(T − λ I )v = 0.
That is, if λ is an eigenvalue of T, then p(λ) is an eigenvalue of p(T ).

(2) Suppose F = C. Let β ∈ C be an eigenvalue of p(T ). Then p(T ) − β I is not
injective. If p(t) is a polynomial of degree n, then so is p(t) − β. Let a be the
coefficient of tn in p(t). Due to Proposition 5.1,

p(t) − β = a(t − λ1) · · · (t − λn) for some λ1, . . . , λn ∈ C. (5.1)

Therefore,
p(T ) − β I = a(T − λ1 I ) · · · (T − λn I ).

Since p(T ) − β I is not injective, T − λ j I is not injective for some j ∈ {1, . . . , n}.
That is, λ j is an eigenvalue of T . Substituting t = λ j in (5.1), we have β = p(λ j ).

That is, each eigenvalue of p(T ) is equal to p(λ) for some eigenvalue λ of T .

Conversely, due to (1), if λ is an eigenvalue of T, then p(λ) is an eigenvalue of p(T ).

This completes the proof.

(3) Let λ ∈ F, λ �= δ. Suppose that T − δ I is invertible. Then T − δ I is injective;
hence δ is not an eigenvalue of T . Now,

(λ − δ)(T − δ I )
(
(T − δ I )−1 − (λ − δ)−1 I

) = −(T − λI ).

That is,

(T − δ I )−1 − (λ − δ)−1 I = −(λ − δ)−1(T − δ I )−1(T − λI ).

Therefore, T − λI is not injective if and only if (T − δ I )−1 − (λ − δ)−1 I is not
injective. That is, λ ∈ eig(T ) if and only if (λ − δ)−1 ∈ eig

(
(T − δ I )−1

)
. It com-

pletes the proof.

(4) It is a particular case of (3). �

IfF = R, then all eigenvalues of p(T )may not be in the form p(λ) for eigenvalues
λ of T . See the following example.

Example 5.18 (1) Let T : R
2 → R

2 be given by T (a, b) = (−b, a). We have seen
in Example 5.3 that T has no eigenvalue. That is, eig(T ) = ∅. But T 2(a, b) =
T (−b, a) = −(a, b) for each (a, b) ∈ R

2. Hence eig(T 2) = {−1}. Here, eig(T 2) �

{λ2 : λ ∈ eig(T )}.
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(2) Let T : R
3 → R

3 be given by T (a, b, c) = (−b, a, 0). Then eig(T ) = {0} but
eig(T 2) = {−1, 0}. That is, eig(T 2) � {λ2 : λ ∈ eig(T )}. �

Theorem5.17(4) can be seenmore directly. Suppose T is invertible. If 0 ∈ eig(T ),

then for a nonzero vector v, we have T v = 0. Then T would not be injective. Thus
0 /∈ eig(T ). Now, (λ, v) is an eigenpair of T if and only if v �= 0 and T v = λv if and
only if v �= 0 and T−1v = λ−1v if and only if (λ−1, v) is an eigenpair of T−1.

Moreover, if V is finite dimensional, then 0 /∈ eig(T ) implies that T is invertible
due to Theorem 2.26(4). Therefore, for linear operators T on finite dimensional
vector spaces, λ /∈ eig(T ) is equivalent to T − λI is invertible.

Recall that if v is an eigenvector of a linear operator T, then the line {αv : α ∈ F}
is fixed by T . In other words, the image of every vector in the span{v} is inside
span{v}. We generalize this notion a bit to include arbitrary subspaces in our ambit,
which will help us in understanding the eigenspaces.

Definition 5.19 Let T be a linear operator on a vector space V . A subspaceU of V
is said to be T -invariant (or, invariant under T ) if T (U ) ⊆ U.

For instance, if T is a linear operator on a vector space V, then its range space
and null space are T -invariant. For, if y ∈ R(T ), then T y ∈ R(T ); and if x ∈ N (T ),

then T x = 0 ∈ N (T ).

Observe that when a subspaceU is T -invariant, for each x ∈ U,we have T x ∈ U.

Therefore, T |U , the restriction of T to the subspace U is well-defined as a linear
operator on U.

Invariant subspaces are related to the factorization of the characteristic polynomial
of a linear operator.

Theorem 5.20 Let T be a linear operator on a finite dimensional vector space V .

(1) If U is a nontrivial T -invariant subspace of V, then the characteristic polyno-
mial of T |U divides the characteristic polynomial of T .

(2) If U and W are nontrivial proper T -invariant subspaces of V such that
V = U ⊕ W, then the characteristic polynomial of T is the product of the
characteristic polynomials of T |U and that of T |W .

Proof (1) If U = V, then there is nothing to prove. Assume that U is a proper
subspace of V . Let E0 := {u1, . . . , uk} be a basis for U. Extend E0 to a basis E :=
E0 ∪ {v1, . . . , vm} for V . Notice that m ≥ 1. Let v ∈ V . Since U is T -invariant,
Tu j ∈ U for each j ∈ {1, . . . , k}. So, there exist scalars ai j , bi j and ci j such that

Tu1 = a11u1 + · · · + ak1uk
...

Tuk = a1ku1 + · · · + akkuk
T v1 = b11u1 + · · · + bk1uk + c11v1 + · · · + cm1vm

...

T vm = b1mu1 + · · · + bkmuk + c1mv1 + · · · + cmmvm
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We see that the matrix [T ]E,E has the block form:

[T ]E,E =
[
A B
0 C

]

where A = [T |U ]E0,E0 ∈ F
k×k, B ∈ F

k×m, 0 ∈ F
m×k and C ∈ F

m×m . Therefore,
det([T ]E,E − t I ) = det([T |U ]E0,E0 − t Ik) det(C − t Im).

(2) Let V = U ⊕ W, where both U and W are T -invariant nontrivial proper sub-
spaces of V . In the proof of (1), take the same E0 as a basis for U and choose
E1 = {v1, . . . , vm} as a basis for W. Then E = E0 ∪ E1 is a basis for V . Now, the
T -invariance of W implies that the scalars bi j in the proof of (1) are all 0. Thus the
matrix [T ]E,E has the block form:

[T ]E,E =
[
A 0
0 C

]
,

where A = [T |U ]E0,E0 ∈ F
k×k, C = [T |W ]E1,E1 ∈ F

m×m, and the zero matrices are
of suitable size. Then

det([T ]E,E − t I ) = det([T |U ]E0,E0 − t Ik) det([T |W ]E1,E1 − t Im).

This completes the proof. �

Exercises for Sect.5.3

1. Determine the eigenvalues and the associated eigenspaces for the following
matrices, considering first, F = C, and then F = R.

(a)

[
0 0
0 0

]
(b)

[
0 0
1 0

]
(c)

[
0 1
0 0

]
(d)

[
0 1
1 0

]
(e)

[
0 −1
1 0

]
.

2. Suppose A is a block upper triangular matrix with the blocks on the diagonal as
the square matrices A1, . . . , Am . Show that eig(A) = ∪m

i=1eig(Ai ).

3. Let V := 	1(N, C), the vector space of all absolutely summable complex
sequences. Let SL be the left shift operator and let SR be the right shift operator
on V . That is,
SL(α1, α2, α3, . . .) = (α2, α3, α4, . . .), SR(α1, α2, α3, . . .) = (0, α1, α2, . . .).

Determine the eigenvalues and eigenspaces of SL and SR .

4. Let T be a linear operator on a vector space V of dimension 2. If T has only one
eigenvalue λ, then show that Av − λv ∈ E(λ) for all v ∈ V .

5. Let A, B, P ∈ R
n×n be such that P is invertible and B = P−1AP. Show that

a vector v ∈ R
n×1 is an eigenvector of B corresponding to the eigenvalue λ if

and only if Pv is an eigenvector of A corresponding to the same eigenvalue λ.

Show also that the geometric multiplicity of the eigenvalue λ of A is same as the
geometric multiplicity of the eigenvalue λ of B.

6. Show that eig(AT ) = eig(A) for each n × n matrix A. What about eig(A∗) and
eig(A)?
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7. Let A ∈ F
5×5 satisfy A3 = A. How many distinct eigenvalues can A have?

8. Determine all T -invariant subspaces when the linear operator T is given by
T (a, b) = (a − b, 2a + 2b) for
(a) (a, b) ∈ R

2 (b) (a, b) ∈ C
2.

9. Let T be the linear operator given by T (a, b, c) = (a + b, 2b, 3c) for (a, b, c) ∈
R

3. Determine all T -invariant subspaces of R
3.

10. Let T : V → V be a linear operator. Let n ∈ N. Show that the following are
T -invariant:
(a) N (T n) (b) R(T n) (c) Any eigenspace of T n.

11. Give an example of a linear operator T on a finite dimensional vector space V
so that the T -invariant subspaces are {0} and V, and nothing else.

12. Prove that the only subspaces invariant under every linear operator on a finite
dimensional vector space V are {0} or V .

13. Let T be a linear operator on a vector space V . Prove that if U1, . . . ,Un are
T -invariant subspaces of V, then U1 + · · · +Un is also T -invariant.

5.4 Generalized Eigenvectors

Let T be a linear operator on a vector space V . Observe that R(T ) and N (T ) are
T -invariant subspaces of V . Something more can be told along this line.

Theorem 5.21 Let T be a linear operator on a vector space V . Then for every α ∈ F

and j ∈ N,

(1) R(T − α I ) j ⊇ R(T − α I ) j+1, and R(T − α I ) j is T -invariant
(2) N (T − α I ) j ⊆ N (T − α I ) j+1, and N (T − α I ) j is T -invariant. In particular,

for an eigenvalue λ of T, the eigenspace E(λ) is T -invariant.

Proof (1) If y ∈ R(T − α I ) j+1, then there exists a vector x ∈ V such that

y = (T − α I ) j+1x = (T − α I ) j ((T − α I )x).

This shows that R(T − α I ) j ⊇ R(T − α I ) j+1.

For T -invariance of R(T − α I ) j , let z ∈ R(T − α I ) j . Then there exists w ∈ V
such that z = (T − α I ) jw. Now,

T z = T (T − α I ) jw = (T − α I ) j Tw ∈ R(T − α I ) j .

Therefore, R(T − α I )i is T -invariant.

(2) Let x ∈ N (T − α I ) j . Then (T − α I ) j x = 0. So, (T − α I ) j+1x = 0. That is,
N (T − α I ) j ⊆ N (T − α I ) j+1. Further, (T − α I ) j T x = T (T − α I ) j x = 0. That
is, T x ∈ N (T − α I ) j . Therefore, N (T − α I ) j is T -invariant.

In particular, E(λ) = N (T − λI ) is T -invariant for an eigenvalue λ of T . �
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Example 5.22 Let T : R
3 → R

3 be the linear operator defined by T (a, b, c) = (a +
b, b + c, 2c). With respect to the standard basis, its matrix representation is

[T ] =
⎡

⎣
1 1 0
0 1 1
0 0 2

⎤

⎦

Here, [T ] is a real matrix. Its characteristic equation is (t − 1)2(t − 2) = 0. To get
the eigenvectors corresponding to the eigenvalue 1, we solve the linear system

(T − I )(a, b, c) = (b, c, c) = 0.

This yields b = 0 = c, whereas a is arbitrary. Thus γ (1) = 1 and the eigenspace is
E(1) = span{(1, 0, 0)}, which is T -invariant. The basis {(1, 0, 0)} of the eigenspace
can be extended to a basis of R

3, the domain space of T . One way is to extend it by
using the basis vectors of N (T − I )2, if possible. In this case,

(T − I )2(a, b, c) = (c, c, c).

Then (T − I )2(a, b, c) = 0 implies that c = 0, whereas a and b can be any real
numbers. That is, N (T − I )2 = span{(1, 0, 0), (0, 1, 0)}. This basis of N (T − I )2

is an extension of the basis of N (T − I ). We see that N (T − I )2 �= R
3.

We try extending it to a basis for R
3 by choosing a vector from N (T − I )3. Now,

(T − I )3(a, b, c) = (c, c, c) = (T − I )2(a, b, c).

We get no more vector from N (T − I )3 for extending the earlier basis. We see
that N (T − I ) � N (T − I )2 = N (T − I )3 � R

3.

So, we try a basis of the eigenspace E(2). For this, we solve the linear system

(T − 2I )(a, b, c) = (b − a, c − b, 0) = 0.

It gives a = b, b = c and c is arbitrary. For example, (1, 1, 1) is such a vector.
It results in the basis {(1, 0, 0), (0, 1, 0), (1, 1, 1)} of R

3, which come from the
bases of the T -invariant subspaces N (T − I )2 and N (T − 2I ). �

We look at the T -invariant subspaces N (T − λ I ) j more closely.

Theorem 5.23 Let T be a linear operator on a vector space V and let λ be an
eigenvalue of T .

(1) If there exists k ∈ N such that N (T − λI )k = N (T − λI )k+1, then

N (T − λI )k = N (T − λI )k+ j for all j ∈ N.
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(2) If dim(V ) = n, then there exists k ∈ {1, . . . , n} such that

0 � N (T − λI ) � · · · � N (T − λI )k = N (T − λI )k+1 ⊆ V .

Proof (1) Suppose there exists k ∈ N such that N (T − λI )k = N (T − λI )k+1. By
Theorem 5.21, we know that N (T − λI )k+1 ⊆ N (T − λI )k+2. To show the other
way inclusion, let x ∈ N (T − λI )k+2. Then,

(T − λI )x ∈ N (T − λI )k+1 = N (T − λI )k .

Thus, (T − λI )k+1x = N (T − λI )k(T − λI )x = 0 so that x ∈ N (T − λI )k+1.
Hence N (T − λI )k+2 ⊆ N (T − λI )k+1.

Therefore, N (T − λI )k+2 = N (T − λI )k+1 = N (T − λI )k .By induction, it fol-
lows that N (T − λI )k+ j = N (T − λI )k for all j ∈ N.

(2) Let V be of dimension n. On the contrary, assume that for each j ∈ {1, . . . , n},
N (T − λ I ) j � N (T − λ I ) j+1 ⊆ V . Due to Theorem 5.21, we obtain

{0} � N (T − λ I ) � · · · � N (T − λ I )n � N (T − λ I )n+1
� · · · ⊆ V .

Then, writing d j = dim(N (T − λI ) j ), we see that d j+1 ≥ d j + 1; consequently,
n = dim(V ) ≥ dn+1 ≥ n + 1. This is impossible. �

In view of Theorem 5.23, we introduce the following terminology.

Definition 5.24 Let V be a vector space of dimension n. Let T be a linear operator
on V and let λ be an eigenvalue of T .

(a) The least k ∈ {1, . . . , n} such that N (T − λ I )k = N (T − λ I )k+1 is called the
ascent of λ; and it is denoted by 	(λ).

(b) The subspace N (T − λI )	(λ) of V is called the generalized eigenspace of T
corresponding to the eigenvalue λ and is denoted by G(λ).

(c) Any nonzero vector in G(λ) is called a generalized eigenvector of T corre-
sponding to the eigenvalue λ.

Our notation does not show the operator T explicitly. If need arises, we may write
	(λ) as 	T (λ), and G(λ) as GT (λ). To emphasize, if 	 := 	(λ) is the ascent of the
eigenvalue λ of a linear operator T on a vector space V of dimension n, then

{0} � N (T − λ I ) � · · · � N (T − λ I )	 = G(λ) = N (T − λ I )	+1 = · · · ⊆ V .

Further, by Theorem 5.21, G(λ) is T -invariant.

Example 5.25 Revisit Examples 5.15 and 5.18.
(1) For the linear operator T : F

2 → F
2 defined by T (a, b) = (a + b, b) we have

(T − I )(a, b) = (b, 0), (T − I )2(a, b) = (0, 0), N (T − I )2 = R
2 = N (T − I )3.
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The characteristic polynomial of T is (−1)2 det(T − t I ) = (t − 1)2. Then

eig(T ) = {1}, γ (1) = 1, μ(1) = 2, 	(1) = 2, G(1) = R
2.

(2) Let T : C
2 → C

2 be defined by T (a, b) = (b,−a). The characteristic poly-
nomial of T is (−1)2 det(T − t I ) = (t − i)(t + i). Then eig(T ) = {i,−i}, and
γ (i) = γ (−i) = 1. Now,

(T − i I )2(a, b) = −2i(−ia + b,−a − ib) = −2i(T − i I )(a, b).

So, N (T − i I )2 = N (T − i I ). Then

G(i) = E(i) = span{(1, i)}, 	(i) = 1 = μ(i).

It may be verified that G(−i) = E(−i) = span{(1,−i)}, and 	(−i) = 1 = μ(−i).

(3) For T : F
3 → F

3 defined by T (a, b, c) = (a, a + b, a + b + c), the character-
istic polynomial is (t − 1)3. So, eig(T ) = {1}. Now,

(T − I )(a, b, c) = (0, a, a + b), (T − I )2(a, b, c)

= (0, 0, a), (T − I )3(a, b, c) = (0, 0, 0).

Therefore, N (T − I ) � N (T − I )2 � N (T − I )3 = R
3. We see that

γ (1) = 1, μ(1) = 3, 	(1) = 3, G(1) = R
3.

(4) For the linear operator T : R
3 → R

3 defined by T (a, b, c) = (a + b, b, c), the
characteristic polynomial is (t − 1)3. Thus μ(1) = 3. Here,

(T − I )(a, b, c) = (b, 0, 0), (T − I )2(a, b, c) = (0, 0, 0).

Consequently, E(1) = N (T − I ) = span{(1, 0, 0)} and γ (1) = 1. Hence

N (T − I ) � N (T − I )2 = R
3, 	(1) = 2, G(1) = R

3. �

If V is any vector space, T is a linear operator on V, and λ is an eigenvalue of T ,
then the ascent 	(λ) of λ and the generalized eigenspace G(λ) of T corresponding
to the eigenvalue λ are defined as follows:

	(λ) := inf{k ∈ N : N (T − λ I )k = N (T − λ I )k+1}; G(λ) :=
⋃

j∈N
N (T − λI ) j .
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Notice that ifV is finite dimensional, then 	(λ) andG(λ) as defined above coincide
with the those in Definition 5.24. If V is infinite dimensional, then it can happen that
	(λ) = ∞ as the following example shows.

Example 5.26 Let T be the left shift operator on the vector space 	1(N, F) of all
absolutely summable sequences of scalars, that is,

T (α1, α2, . . .) = (α2, α3, . . .), (α1, α2, . . .) ∈ 	1(N, F).

For n ∈ N, let en = (δ1n, δ2n, . . .), the sequence with its nth entry 1 and all other
entries 0. Then we see that T nen = 0 and T nen+1 = en for all n ∈ N. Thus, λ = 0 is
an eigenvalue of T and

{0} � N (T − λ I ) � · · · � N (T − λ I )n � N (T − λ I )n+1
� · · · ⊆ 	1(N, F).

Therefore, 	(λ) = ∞. �

In Example 5.25, we observe that the algebraic multiplicity of an eigenvalue is
equal to the dimension of the generalized eigenspace. We would like to confirm that
it is indeed the case for any linear operator on a finite dimensional vector space. It
shows that the generalized eigenspace is not an artificial construction.

Theorem 5.27 Let λ be an eigenvalue of a linear operator T on a vector space
V of dimension n. Let γ, μ and 	 be the geometric multiplicity of λ, the algebraic
multiplicity of λ,and theascent of λ, respectively. Let TG := T |G(λ) be the restriction
of T to the generalized eigenspace G(λ) := N (T − λI )	. Then the following are
true:

(1) V = G(λ) ⊕ R(T − λ I )	.
(2) The characteristic polynomial of T is the product of the characteristic polyno-

mials of T |G(λ) and of T |R(T−λI )	 .

(3) eig(TG) = {λ}, and λ /∈ eig(T |
R
(
T−λ I )	

)
.

(4) dim(G(λ)) = μ = null (T − λI )n.
(5) If α ∈ F and α �= λ, then for each j ∈ N, N (T − α I ) j ∩ G(λ) = {0}.
(6) Suppose 	 ≥ 2, j ∈ {1, . . . , 	 − 1}, and {v1, . . . , vr } is a linearly independent

subset of N (T − λI ) j+1 such that span{v1, . . . , vr } ∩ N (T − λI ) j = {0}. Then
{(T − λI )v1, . . . , (T − λI )vr } is a linearly independent subset of N (T − λI ) j

and span{(T − λI )v1, . . . , (T − λI )vr } ∩ N (T − λI ) j−1 = {0}.
(7) Let 	 ≥ 2. Then for each j ∈ {1, . . . , 	 − 1},

(a) null (T − λ I ) j + 1 ≤ null (T − λ I ) j+1 ≤ null (T − λ I ) j + γ.

(b) null (T − λ I ) j+1 − null (T − λ I ) j ≤ null (T − λ I ) j − null (T − λ I ) j−1.

(8) 	 + γ − 1 ≤ μ ≤ 	 γ.
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Proof (1) Due to Theorem 2.25, dim(N (T − λ I )	) + dim(R(T − λ I )	) =
dim(V ).Toshow N (T − λ I )	 ∩ R(T − λ I )	 = {0}, let x ∈ N (T − λ I )	 ∩ R(T −
λ I )	. Then, (T − λ I )	x = 0 and there exists u ∈ V such that x = (T − λ I )	u.

Now, (T − λ I )2	u = (T − λ I )	x = 0; so that u ∈ N (T − λ I )2	 = N (T − λ I )	,
since 	 is the ascent of λ. Then x = (T − λ I )	u = 0.

(2) This follows from Theorem 5.20 and (1).

(3) If v is an eigenvector of T corresponding to λ, then v ∈ E(λ) ⊆ G(λ). For such
a vector v, TG(v) = T v = λv. Therefore, λ ∈ eig(TG).

Conversely, suppose that the scalar α ∈ eig(TG). Let v ∈ G, v �= 0 be an eigen-
vector corresponding to α. Then TG(v) = αv. Also, TG(v) = T v = λv. This implies
(α − λ)v = 0 for nonzero v. Therefore, λ = α.

For the second statement, if λ ∈ eig(T |R(T−λ I )	 ), then there exists a nonzero v ∈
R(T − λ I )	 such that T |R(T−λ I )	 (v) = T v = λv. Then v ∈ N (T − λ I ) ⊆ G(λ).

That is, v ∈ N (T − λ I )	 ∩ R(T − λ I )	. By (1), v = 0, a contradiction.
(4) Let p(t), q(t) and r(t) be the characteristic polynomials of the linear operators
T, T |G(λ) and of T |R(T−λI )	 , respectively. By (2), p(t) = q(t)r(t). Since λ is the
only eigenvalue of T |G(λ) and λ is not an eigenvalue of T |R(T−λI )	 , (t − λ) is a fac-
tor of q(t) and (t − λ) is not a factor of r(t). Moreover (t − λ)μ divides p(t), and
(t − λ)μ+1 is not a factor of p(t). As q(t) is a monic polynomial, q(t) = (t − λ)μ.

That is, the characteristic polynomial of T |G is (t − λ)μ. It shows that μ =
dim(G(λ)).

Since G(λ) = N (T − λI )	 = N (T − λI )n, it follows that μ = null (T − λI )n.
(5) Let α ∈ F and α �= λ. Let v ∈ N (T − α I ) j ∩ G(λ). We prove by induction on
j that v = 0 for each j ∈ N.

For j = 1, let v ∈ N (T − α I ) ∩ G(λ). That is, T v = αv where v ∈ G(λ). If
v �= 0, then α is an eigenvalue of TG with eigenvector v. This contradicts (4) since
α �= λ.

Assume that N (T − α I )k ∩ G(λ) = {0} for some k ∈ N. We need to show that
N (T − α I )k+1 ∩ G(λ) = {0}. For this, let v ∈ N (T − α I )k+1 ∩ G(λ). Then

0 = (T − α I )k+1v = (T − α I )k(T − α I )v.

That is u := (T − α I )v ∈ N (T − α I )k . Moreover, v ∈ G(λ) = N (T − λ I )	

implies (T − λ I )	v = 0. Then

(T − λ I )	(T − λ I )v = (T − λ I )(T − λ I )	v = 0.

So, u = (T − λ I )v ∈ G(λ). Thus, u = (T − λ I )v ∈ N (T − α I )k ∩ G(λ) = {0}.
Hence, (T − α I )v = u = 0. Then v ∈ N (T − λI ) ∩ G(λ) ⊆ N (T − λI )k ∩
G(λ) = {0}; and v = 0.
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(6) Clearly, (T − λI )v1, . . . , (T − λI )vr are in N (T − λI ) j . Suppose that for some
scalars α1, . . . , αr ,

∑r
i=1 αi (T − λI )vi = 0. Then

r∑

i=1

αi vi ∈ N (T − λI ) ⊆ N (T − λI ) j .

As span{v1, . . . , vr } ∩ N (T − λI ) j = {0},we have∑r
i=1 αi vi = 0. Since v1, . . . , vr

are linearly independent, αi = 0 for each i. Thus (T − λI )v1, . . . , (T − λI )vr are
linearly independent vectors in N (T − λI ) j .

Next, let x ∈ span{(T − λI )v1, . . . , (T − λI )vr } ∩ N (T − λI ) j−1. Then there
exist scalars β1, . . . , βr such that

x =
r∑

i=1

βi (T − λI )vi , (T − λI ) j−1x = 0.

It follows that

(T − λI ) j
( r∑

i=1

βi vi
)

=
r∑

i=1

βi (T − λI ) j vi = (T − λI ) j−1x = 0.

That is,
∑r

i=1 βi vi ∈ span{v1, . . . , vr } ∩ N (T − λI ) j . Consequently,
∑r

i=1 βi vi =
0. Due to linear independence of v1, . . . , vr , each βi is zero. It then follows that
x = 0. Therefore, span{(T − λI )v1, . . . , (T − λI )vr } ∩ N (T − λI ) j−1 = {0}.
(7) Let j ∈ {1, . . . , 	 − 1} for 	 ≥ 2. Then dim(N (T − λI ) j ) < dim(N (T −
λI ) j+1. This proves the first inequality.

For the second inequality, let E be a basis of N (T − λ I ) j . Extend this to a
basis E ∪ {u1, . . . , uk} for N (T − λ I ) j+1.Then {u1, . . . , uk} ∩ N (T − λI ) j = {0}.
Therefore, by (6) above, (T − λI ) j u1, . . . , (T − λI ) j uk are linearly independent in
N (T − λI ). Consequently, k ≤ dim(E(λ)) = γ and

dim(N (T − λ I ) j+1) = dim(N (T − λ I ) j + k ≤ dim(N (T − λ I ) j + γ.

This proves (a). For (b), notice that |E | = null N (T − λI ) j and

k = null N (T − λI ) j+1 − null N (T − λI ) j .

By (6), span{(T − λI )u1, . . . , (T − λI )uk} ∩ N (T − λI ) j−1 = {0}. Hence if B is
any basis of N (T − λI ) j−1, then the basis extension theorem implies that there exists
a basis for N (T − λI ) j that contains B ∪ {(T − λI )u1, . . . , (T − λI )uk}. It follows
that |B| + k ≤ null (T − λI ) j . Therefore,

null (T − λI ) j−1 + (null (T − λI ) j+1 − null (T − λI ) j ) ≤ null (T − λI ) j .
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(8) If 	 = 1, then G(λ) = E(λ). By (4), μ = γ. Therefore, 	 + γ − 1 ≤ μ ≤ 	 γ.

So, assume that 	 ≥ 2. Look at the dimensions of the subspaces in

E(λ) = N (T − λ I ) � N (T − λ I )2 � · · · � N (T − λ I )	 = G(λ).

For each i, dim
(
N (T − λ I )i+1

) ≥ dim
(
N (T − λ I )i

) + 1; there are 	 − 1 such
containments. Hence γ + 	 − 1 ≤ μ. Due to (6),

μ = dim(G(λ)) = dim(N (T − λ I )	) ≤ dim(N (T − λ I )	−1 + γ

≤ dim(N (T − λ I )	−2 + 2γ ≤ · · · ≤ dim(N (T − λ I ) + (	 − 1)γ ≤ 	 γ.�

Notice that the ascent of an eigenvalue λ is not known beforehand. Applying The-
orem 5.27(6) one constructs bases for N (T − λI ), N (T − λI )2, . . . , in succession,
where a basis for N (T − λI )i is extended to a basis for N (T − λI )i+1. By Theo-
rems 5.23(1) and 5.27(4), if null (T − λI )i < μ, then we have null (T − λI )i <

null (T − λI )i+1. The process of extending a basis for N (T − λI )i to that of
N (T − λI )i+1 stops when for some j ≤ μ, the basis for N (T − λI ) j contains μ

number of vectors. In that case, j is the ascent of λ. We interpret this fact for n × n
matrices.

Theorem 5.28 Let A ∈ C
n×n . Let λ be an eigenvalue of A of algebraic multiplicity

μ. Let j, k ∈ {1, . . . , μ − 1}. If the linear system (A − λI ) j x = 0 has k linearly
independent solutions, then the linear system (A − λI ) j+1x = 0 has at least k + 1
linearly independent solutions. Further, the linear system (A − λI )μx = 0 has μ

linearly independent solutions.

Theorem 5.28 helps in constructing the exponential of a matrix, which is used in
solving a system of linear ordinary differential equations; see Problem 29.

Due to Theorem 5.27, the restricted linear operator T |G(λ) maps G(λ) into G(λ).

This has bearing on thematrix representation of T |G(λ). In any chosen basis of T |G(λ),

the matrix representation [T |G(λ)] of T |G(λ) is an μ × μ matrix.
On the other hand, T |G(λ) is also a map from G(λ) to V . If dim(V ) = n and

dim(G(λ)) = μ, then in any chosen bases for the spaces, the matrix representation
of T |G(λ) is an n × μ matrix. Also, R(T |G(λ)) ⊆ G(λ) says that we may as well
start with a basis of G(λ) and extend it to a basis of V ; in these bases, the n × μ

matrix will have zero entries on (μ + 1)th row onwards. In fact, in this view, the
linear transformation T |G(λ) : G(λ) → V is nothing but the linear transformation
T : G(λ) → V .

Thus, we stick to the former view of T |G(λ) as a linear operator on G(λ) and put
forth the following convention.

Convention 5.1 Let λ be an eigenvalue of a linear operator T on a finite dimensional
vector space V . The restriction map T |G(λ) is regarded as a linear operator on G(λ).

Consequently, if λ has algebraic multiplicity μ, then with respect to any basis of
G(λ), [T |G(λ)] ∈ F

μ×μ.



232 5 Eigenvalues and Eigenvectors

Splitting of the characteristic polynomial of a linear operator allows writing
the vector space as a direct sum of the generalized eigenspaces; see the following
theorem.

Theorem 5.29 Let λ1, . . . , λk be the distinct eigenvalues of a linear operator T on
a vector space V of dimension n over F. If the characteristic polynomial of T splits
over F, then

V = G(λ1) ⊕ · · · ⊕ G(λk) and μ(λ1) + · · · + μ(λk) = n.

Proof Assume that the characteristic polynomial of T splits over F. We prove
the theorem by induction on k, the number of distinct eigenvalues of T . For
k = 1, λ1 is the only eigenvalue of T .Sinceχ

T (t) splits,μ(λ1) = n.ButG(λ1) ⊆ V,

dim(G(λ1)) = μ(λ1), and dim(V ) = n. Therefore, G(λ1) = V .

Assume the induction hypothesis that for k = m, the theorem is true. Let T be
a linear operator on a vector space V of dimension n having distinct eigenvalues
λ1, . . . , λm, λ, with algebraic multiplicities μ1, . . . , μm, μ, respectively. Let 	 be
the ascent of λ. By Theorem 5.27, V = G(λ) ⊕ H(λ),where H(λ) = R(T − λI )	;
and both G(λ) and H(λ) are T -invariant subspaces of V . Consider the restriction
linear operators TG := T |G(λ) and TH := T |H(λ). Again, by Theorem 5.27, the char-
acteristic polynomial of T is the product of those of TG and TH ; λ is not an eigenvalue
of TH , and no λ j is an eigenvalue of TG .Hence TG has single eigenvalue λwith alge-
braic multiplicity μ, and TH has m distinct eigenvalues λ1, . . . , λm with algebraic
multiplicities μ1, . . . , μm, respectively. By the induction hypothesis,

H(λ) = GTH (λ1) ⊕ · · · ⊕ GTH (λm),

where GTH (λ j ) is the generalized eigenspace of TH corresponding to the eigenvalue
λ j . Since TH is a restriction of T, for each j ∈ {1, . . . ,m}, we have

GTH (λ j ) = N (TH − λ j I )
μ j ⊆ N (T − λ j I )

μ j = GT (λ j ) = G(λ j ).

Further, dim(GTH (λ j )) = μ j = dim(G(λ j )). Hence GTH (λ j ) = G(λ j ). Consequently,
H(λ) = G(λ1) ⊕ · · · ⊕ G(λm). Therefore,

V = G(λ) ⊕ H(λ) = G(λ1) ⊕ · · · ⊕ G(λm) ⊕ G(λ).

This completes the induction proof of V = G(λ1) ⊕ · · · ⊕ G(λk). Their dimensions
yield μ(λ1) + · · · + μ(λk) = n. �

Some of the important equalities and inequalities concerning various parameters
can be summarized as follows. Let T : V → V be a linear operator, where dim(V ) =
n. If χ

T (t) = (t − λ1)
m1 · · · (t − λk)

mk , then for i ∈ {1, . . . , k}, we have
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m1 + · · · + mk = n,

γ (λi ) = null (T − λi I ),

1 ≤ 	 (λi ), γ (λi ) ≤ μ(λi ) = mi ≤ n,

	(λi ) + γ (λi ) − 1 ≤ mi ≤ 	(λi )γ (λi ),

null (T − λi I ) j+1 − null (T − λi I ) j ≤ null (T − λi I ) j − null (T − λi I ) j−1,

μ(λi ) = dim
(
N (T − λi I )	(λi )

) = dim
(
N (T − λi I )mi

) = dim
(
N (T − λi I )n

)
.

Since the finite dimensional vector space V is a direct sum of the generalized
eigenspaces and the generalized eigenspaces are T -invariant subspaces, we see that
the linear operator T can bewritten as a direct sumof its restrictions to the generalized
eigenspaces. We write it as

T = T |G(λ1) ⊕ · · · ⊕ T |G(λk ),

where λ1, . . . , λk are the distinct eigenvalues of T . It says that any vector v ∈ V and
its image under T can be written uniquely as

v = v1 + · · · + vk, T v = T |G(λ1)(v1) + · · · + T |G(λk )(vk),

where vi ∈ G(λi ) and T |G(λi )(vi ) ∈ G(λi ).This gives rise to the block-diagonal form
of the matrix representation of T, which we will discuss later so that more structure
maybe given to the blocks.Note that this direct sumdecomposition of T is guaranteed
when the characteristic polynomial of T splits; it may break down when T is a linear
operator on a real vector space having a nonreal characteristic value.

Exercises for Sect.5.4

1. Determine the generalized eigenvectors of the linear operator T on C
2, where

(a) T (α, β) = (β, 0) (b) T (α, β) = (−β, α).

2. Let T be a linear operator on a 2-dimensional vector space V . Suppose that the

matrix of T with respect to some basis is equal to

[
0 0
0 1

]
.What are the T -invariant

subspaces of V ?
3. Let D be the differentiation operator on Pn(R). Let m ≤ n. Is Pm(R) invariant

under D? Is D invertible on Pm(R)?
4. Let U and W be T -invariant subspaces of a vector space V for a linear operator

T on V . Is U + W invariant under T ?
5. Let V be a finite dimensional vector space. Let S, T : V → V be linear operators

such that ST = T S. Show that for every α ∈ F, N (T − α I ) is S-invariant.
6. Let T be a linear operator on a vector space V of dimension n. Show that V =

R(T 0) ⊇ R(T 1) ⊇ R(T 2) ⊇ · · · ⊇ R(T n) = R(T n+i ) for each i ∈ N.
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5.5 Two Annihilating Polynomials

Let T be a linear operator on a finite dimensional vector space V . In the proof of
Theorem 5.4, we have shown that corresponding to a nonzero vector v, a polynomial
p(t) exists such that p(T )v = 0. This technique can be extended to show that there
exists a polynomial p(t) such that p(T ) = 0, the zero operator. To see this, let T be
a nonzero linear operator on a vector space V of dimension n. Since L(V, V ) is of
dimension m = n2, the linear operators I, T, . . . , Tm are linearly dependent. Then
we have scalars α0, α1, . . . , αm , not all zero, such that

α0 I + α1T + · · · + αmT
m = 0.

With p(t) = α0 + α1t + · · · + αmtm, we see that p(T ) = 0. Informally, we say that
the polynomial p(t) annihilates the linear operator T . Notice that starting with a
nonzero vector v, when we obtain p(t)v = 0, the degree of such a polynomial p(t)
does not exceed n. Whereas the polynomial p(t) that annihilates T can be of degree
anywhere between 1 to n2. Can we get a polynomial of degree at most n that anni-
hilates T ?

Theorem 5.30 (Cayley–Hamilton) If T is a linear operator on a finite dimensional
vector space, then χ

T (T ) = 0.

Proof Let V be a vector space of dimension n. Fix a basis E for V . Let A = [T ]E,E .

Write the characteristic polynomial χT (t) as p(t). Then

p(t) = (−1)n det(A − t I ) and [p(T )]E,E = p(A).

We show that p(A) = 0, the zero matrix.
Theorem 3.30(14) with the matrix (A − t I ), in place of A there, asserts that

p(t) I = (−1)n det(A − t I ) I = (−1)n(A − t I ) adj (A − t I ).

The entries in adj (A − t I ) are polynomials in t of degree at most n − 1. Therefore,
adj (A − t I ) can be written as

adj (A − t I ) := B0 + t B1 + · · · + tn−1Bn−1,

where B0, . . . , Bn−1 ∈ F
n×n . Then

p(t)I = (−1)n(A − t I )(B0 + t B1 + · · · + tn−1Bn−1).

This is an identity in polynomials, where the coefficients of t j are matrices. Sub-
stituting t by any matrix of the same order will satisfy the equation. In particular,
substitute A for t to obtain p(A) = 0. It then follows that p(T ) = 0. �
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Using Cayley–Hamilton theorem, inverse of a linear operator T on a vector space
of dimension n can be expressed as a polynomial in T of degree n − 1. Note that
the characteristic polynomial of T , which has degree n, annihilates T . It is quite
possible that there exists an annihilating polynomial of yet smaller degree. While
searching for such annihilating polynomials we may restrict our attention to monic
polynomials.

Definition 5.31 Let T be a linear operator on a finite dimensional vector space. A
monic polynomial q(t) with coefficients from F is called aminimal polynomial of
T if q(T ) = 0, and whenever p(t) is any polynomial with p(T ) = 0, the degree of
q(t) is less than or equal to the degree of p(t).

A minimal polynomial is a monic polynomial of least degree that annihilates T .

Here is a basic result on minimal polynomials.

Theorem 5.32 Let T be a linear operator on a finite dimensional vector space. Let
q(t) be a minimal polynomial of T . If p(t) is any polynomial with p(T ) = 0, then
q(t) divides p(t). Further, a minimal polynomial of T is unique.

Proof Let p(t) be a polynomial with p(T ) = 0. Since q(t) is a minimal polynomial
of T, degree of q(t) is less than or equal to degree of p(t). Assume the contrary that
q(t) does not divide p(t). We can write p(t) in the following form:

p(t) = d(t)q(t) + αr(t),

for some monic polynomials d(t), r(t), and a nonzero scalar α. Also, the degree
of r(t) is less than the degree of q(t). Notice that since p(T ) = q(T ) = 0, the
polynomial r(t) is not a constant polynomial and r(T ) = 0. This contradicts the fact
that q(t) is the minimal polynomial of T .

Further, if q(t) and s(t) are two minimal polynomials, then both of them have
the same degree, each divides the other, and each is a monic polynomial. Therefore,
s(t) = q(t). �

It now follows fromTheorem5.30 that theminimal polynomial divides the charac-
teristic polynomial. Sometimes, this is referred to as the Cayley–Hamilton theorem.
There are linear operators for which the minimal polynomial coincides with the char-
acteristic polynomial. For instance, the companion matrix of any polynomial p(t)
has both the characteristic polynomial and the minimal polynomial as p(t); prove
it!

Theminimal polynomial is a theoretical tool since eigenvalues of a linear operator
are also the zeros of the minimal polynomial; see the following theorem.

Theorem 5.33 Let q(t) be the minimal polynomial of a linear operator T on a finite
dimensional vector space. A scalar λ is an eigenvalue of T if and only if q(λ) = 0.

Proof Let λ be an eigenvalue of T . By Theorem 5.17(1), q(λ) is an eigenvalue of
q(T ). Since q(T ) = 0, q(λ) = 0.
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Conversely, supposeα is a scalar such thatq(α) = 0.Thenq(t) = (t − α)r(t), for
some polynomial r(t). If r(T ) = 0, then q(t)must divide r(t).But this is impossible
since degree of r(t) is less than that of q(t).Thus, r(T ) is not the zero linear operator.
Therefore, there exists a vector v ∈ V such that r(T )v �= 0. Since q(T ) = 0, we
have q(T )v = 0. That is, (T − α I )r(T )v = 0. So, α is an eigenvalue of T with a
corresponding eigenvector r(T )v. �

Theorem 5.33 does not say that each zero of the minimal polynomial is an eigen-
value. If the characteristic polynomial splits, then each zero of the minimal poly-
nomial is an eigenvalue. In the interesting case of the splitting of the characteristic
polynomial of T, the minimal polynomial can be written down explicitly.

Theorem 5.34 Let T be a linear operator on a finite dimensional vector space V
over F. Let λ1, . . . , λk be the distinct eigenvalues of T with ascents 	1, . . . , 	k,

respectively. If the characteristic polynomial of T splits over F, then the minimal
polynomial of T is (t − λ1)

	1 · · · (t − λk)
	k .

Proof Let i ∈ {1, . . . , k}. Write h(t) = (t − λ1)
	1 · · · (t − λk)

	k . For each general-
ized eigenvector x ∈ G(λi ), (T − λi I )	i (x) = 0. Since for each j ∈ {1, . . . , k},

(T − λi I )
	i (T − λ j I )

	 j = (T − λ j I )
	 j (T − λi I )

	i ,

we see that h(T )x = 0. Since the characteristic polynomial of T splits over F, by
Theorem 5.29, V = G(λi ) ⊕ · · · ⊕ G(λk). Therefore, h(T )v = 0 for each v ∈ V .

That is, h(T ) = 0. Theorem 5.33 implies that the minimal polynomial q(t) of T is
in the form

q(t) = (t − λ1)
n1 · · · (t − λk)

nk , where 1 ≤ n1 ≤ 	1, . . . , 1 ≤ nk ≤ 	k .

We need to show that n1 = 	1, . . . , nk = 	k . On the contrary, suppose that for some
i, 1 ≤ ni < 	i . Then

N (T − λi I )
ni ⊆ N (T − λi I )

	i−1
� N (T − λi I )

	i = G(λi ).

Consider a vector u ∈ G(λi ) \ N (T − λi I )ni . Then v := (T − λi I )ni u �= 0. Notice
that v ∈ G(λi ). Theorem 5.29 implies that for any j �= i,

G(λi ) ∩ N (T − λ j I )
n j ⊆ G(λi ) ∩ G(λ j ) = {0}.

Thus, if x ∈ G(λi ), then (T − λ j I )n j x = 0 implies x = 0. That is, the map (T −
λ j I )n j is injective on G(λi ). Then the composition map

S := (T − λ1 I )
n1 · · · (T − λi−1 I )

ni−1(T − λi+1 I )
ni+1 · · · (T − λk I )

nk

is injective onG(λi ). So, v �= 0 implies Sv �= 0.But Sv = S(T − λi I )ni u = q(T )u.

Thus, q(T )u �= 0. This contradicts the fact that q(T ) = 0. �
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The minimal polynomial can be constructed by determining the least k such that
the ordered set of linear operators {I, T, T 2, . . . , T k} is linearly dependent. In that
case, we have the scalars αi such that

T k + αk−1T
k−1 + · · · + α1T + α0 I = 0.

Then the polynomial t k + αk−1t k−1 + · · · + α1t + α0 is the minimal polynomial.
Due to Cayley–Hamilton Theorem, this k cannot exceed n, the dimension of the
domain space V . Computation may become easier if we use a matrix representation
[T ] of T instead.

Also, due to Cayley–Hamilton Theorem, the minimal polynomial can be deter-
mined bywriting down all the factors of the characteristic polynomial systematically.
For example, if the characteristic polynomial of T is t2(t − 1)3, then the minimal
polynomial can be one of

t (t − 1), t2(t − 1), t (t − 1)2, t2(t − 1)2.

Then, one checks starting from degree one polynomials from among these, which
one annihilates the linear operator.

Another alternative is to compute the ascents of each eigenvalue of the matrix
[T ] and then form the minimal polynomial using the expression in Theorem 5.34.
Unfortunately, no bettermethod for determining theminimal polynomial is available.

Exercises for Sect.5.5

1. Verify Cayley–Hamilton theorem for the matrix

[
7 −1
2 4

]
.

2. Let A be a 2 × 2 matrix with A2 = I but A �= ±I. Show that tr(A) = 0 and
det(A) = −1.

3. Show that if a matrix is invertible, then its inverse can be expressed as a poly-
nomial in the matrix.

4. Compute A30, where A =
[
2 1
1 2

]
.

5. Let T be a linear operator on a vector space of dimension n. Suppose that 1 and
2 are the only eigenvalues of T . Show that (T − I )n−1(T − 2I )n−1 = 0.

6. What are the minimal polynomials of the zero operator and the identity operator
on an n-dimensional vector space?

7. Show that t (t + 2)(t − 2) is the minimal polynomial of

⎡

⎢⎢
⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤

⎥⎥
⎦ .

8. Find the minimal polynomials of the following matrices:

(a)

⎡

⎣
0 0 3
0 0 0
0 0 4

⎤

⎦ (b)

⎡

⎢⎢
⎣

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎤

⎥⎥
⎦ (c)

⎡

⎢⎢
⎣

0 0 0 0
1 1 1 1
1 1 1 1
1 1 1 1

⎤

⎥⎥
⎦ (d)

⎡

⎢⎢
⎣

0 2 0 0
0 0 2 0
0 0 0 5
2 1 0 0

⎤

⎥⎥
⎦ .
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9. Find the minimal polynomial of the matrix

⎡

⎣
0 0 c
1 0 b
0 1 a

⎤

⎦ , where a, b, c ∈ R.

10. Give a linear operator on R
3 whose minimal polynomial is t2.

11. Give a linear operator on C
4 whose minimal polynomial is t (t − 1)2.

12. Give a linear operator on R
4 whose characteristic polynomial and the minimal

polynomial are equal to t (t − 1)2(t − 2).
13. Construct a matrix in C

4×4 whose minimal polynomial is t3.
14. Give a linear operator on R

4 whose minimal polynomial is t (t − 1)(t − 2) and
characteristic polynomial is t (t − 1)2(t − 2).

15. What could be the minimal polynomial of a diagonal matrix?
16. Let a1, . . . , an ∈ F. Determine the characteristic and minimal polynomials of

the linear operator T : F
n → F

n given by

T (b1, . . . , bn) = (−a1bn, b1 − a2bn, b2 − a3bn, . . . , bn−1 − anbn).

17. What is the minimal polynomial of the differentiation operator on Pn(R)?
18. Find the minimal polynomial of the operataor T : Pn(R) → Pn(R) given by

T p(t) = p(t + 1).
19. Is it true that a linear operator is invertible if and only if the constant term in its

minimal polynomial is nonzero?
20. Let A, B ∈ C

n×n be two similar matrices. Show that their characteristic polyno-
mials coincide, and that their minimal polynomials coincide.

5.6 Problems

1. Given the scalars a0, a1, . . . , an−1, let

C =

⎡

⎢⎢⎢⎢⎢
⎣

−an−1 −an−2 · · · −a1 −a0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...

0 0 · · · 1 0

⎤

⎥⎥⎥⎥⎥
⎦

.

Show that det(C − t I ) = p(t) := (−1)n(a0 + a1t + · · · + an−1tn−1 + tn).This
matrix C is yet another form of the companion matrix of p(t).

2. For a matrix A ∈ C
n×n, are the following statements true?

(a) If A is hermitian, then det(A) ∈ R. (b) If A is unitary, then | det(A)| = 1.
3. Without using the characteristic polynomial, prove that every linear operator on

a vector space of dimension n can have at most n distinct eigenvalues. Deduce
that every polynomial of degree n with complex coefficients can have at most n
complex zeros.
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4. Show that all zeros of the polynomial p(t) = a0 + a1t + · · · + antn, where
a0, . . . , an are complex numbers, lie in a disc (in the complex plane) with centre
0 and radius max{|a0|, 1 + |a1|, . . . , 1 + |an|}.

5. Let t3 − αt2 + βt − γ = 0 be the characteristic equation of a 3 × 3matrix [ai j ].
Show that

β =
∣∣
∣∣
a11 a12
a21 a22

∣∣
∣∣ +

∣∣
∣∣
a11 a13
a31 a33

∣∣
∣∣ +

∣∣
∣∣
a22 a23
a32 a33

∣∣
∣∣ .

Generalize the result to n × n matrices.
6. Let T : V → V be a linear operator. Prove the following without using the

spectral mapping theorem:

(a) If λ is an eigenvalue of T then λk is an eigenvalue of T k .
(b) If λ is an eigenvalue of T and α ∈ F, then λ + α is an eigenvalue of T + α I .
(c) If p(t) = a0 + a1t + · · · + aktk for some a0, a1, . . . , ak in F, and if λ is an

eigenvalue of T then p(λ) is an eigenvalue of p(T ).

7. An idempotent matrix is a square matrix whose square is itself. Show that an
eigenvalue of an idempotent matrix can be 0 or 1, nothing else.

8. A linear operator T is nilpotent if and only if T k = 0 for some k ∈ N. Show that
0 is the only eigenvalue of a nilpotent linear operator whereas a noninvertible
linear operator has 0 as an eigenvalue. Construct noninvertible linear operators
which are not nilpotent.

9. Let A ∈ F
n×n satisfy An = I. Prove that the eigenvalues of A are the nth roots

of unity.
10. Let A ∈ F

n×n be such that Ak = I for some k ∈ N. Prove that if A has only one
eigenvalue λ, then A = λI.

11. Let A be an orthogonal 3 × 3 matrix with det(A) = −1. Show that −1 is an
eigenvalue of A.

12. Find the eigenvalues of the n × n permutation matrixwhose i th column is eπ(i),

where π : {1, . . . , n} → {1, . . . , n} is a bijection.
13. Let A ∈ R

n×n satisfy AT = A2. What are possible eigenvalues of A?
14. Let T : V → V be a linear operator of rank r. Show the following:

(a) If T has k number of distinct nonzero eigenvalues, then k ≤ r.
(b) If dim(V ) = n < ∞ and T hasm number of distinct eigenvalues, thenm ≤

min{r + 1, n}.
15. Let T be a linear operator on a finite dimensional vector space V . Show that for

any polynomial p(t) ∈ P(F), N (p(T )) is a T -invariant subspace of V .

16. Let W be a nontrivial proper subspace of a finite dimensional complex vector
space V . Show that there exists a nonzero linear operator T on V such thatW is
T -invariant. Is such a T unique?

17. Prove that each linear operator on a real finite dimensional nonzero vector space
has an invariant subspace of dimension at most 2.

18. Prove that the linear operator T on C(R, R) given by (T f )(t) = ∫ t
0 f (s)ds does

not have an eigenvalue.
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19. Let U be a finite dimensional subspace of an inner product space V . Let T be a
linear operator on V .Prove thatU is T -invariant if and only ifU⊥ is T ∗-invariant.

20. Let T be a linear operator on a vector space V of dimension n. Prove that
V = R(T n) ⊕ N (T n).

21. Let T be a linear operator on a finite dimensional vector space. Prove that there
exists an n ∈ N such that N (T n) ∩ R(T n) = {0}.

22. Let T be a linear operator on a complex vector space V of dimension n. Prove
that if N (T n−1) �= N (T n−2), then T has at most two distinct eigenvalues.

23. Let T be a linear operator on a finite dimensional real vector space V . If T 2 = I,
then show that V = {v ∈ V : T v = v} ⊕ {v ∈ V : T v = −v}.

24. Let S and T be linear operators on a finite dimensional vector space. Prove that
ST and T S have the same eigenvalues.

25. Let A, B ∈ F
n×n be such that I − AB is invertible. Prove that I − BA is also

invertible. Then show that AB and BA have the same eigenvalues.
26. Let A, B ∈ F

n×n . Show that the characteristic polynomial of AB is same as that
of BA.

27. Let S and T be linear operators on a vector space V of dimension n. Suppose S
has n distinct eigenvalues and each eigenvector of S is also an eigenvector of T .

Show that ST = T S.

28. Let A ∈ R
n×n have all entries positive. Prove that A has an eigenvector all of

whose entries are positive.
29. Let A be a 2 × 2 matrix with positive entries. Prove that A has two distinct

real eigenvalues; and that the larger eigenvalue has an eigenvector in the first
quadrant and the smaller eigenvalue has an eigenvector in the second quadrant.

30. Let A be a 2 × 2 matrix with positive entries. Let u and v be the first and second
columns of A, respectively. Let S denote the first quadrant in the plane R

2.

(a) Show that if v ∈ S, then Av lies in the sector between the lines span{u} and
span{v}.

(b) Show that S ⊇ A(S) ⊇ A2(S) ⊇ · · · .

(c) Let U = ∩ j A j (S). Show that A(U ) = U.

(d) Draw a diagram showing above facts by taking a particular matrix A. See
that U is a half-line.

(e) Conclude that any nonzero vector in U is an eigenvector of A.

31. Let λ be an eigenvalue of a linear operator T on a vector space V . For k ∈ N,

Prove that N ((T − λI )k) and R((T − λI )k) are T -invariant subspaces of V .

32. Let C be a collection of T -invariant subspaces of a vector space V, where T ∈
L(V, V ). Show that ∩X∈CX is T -invariant.

33. Let λ be an eigenvalue of a matrix A ∈ F
n×n . Show that any column of adj(A −

λI ) is an eigenvector of A corresponding to λ.

34. Let T be a linear operator on a finite dimensional vector space. Prove that either
there exists a linear operator S on V such that ST = I or there exists a linear
operator S on V such that ST = 0.
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35. Let T be a linear operator on a real vector space of dimension 2. Let p(t) be
a polynomial of degree 2. Prove that if T does not have an eigenvalue and if
p(t) �= αχ

T (t) for any scalar α, then p(T ) is invertible.
36. Let T be a linear operator on a vector space V . Prove that if each nonzero vector

in V is an eigenvector of T, then T = α I for some α ∈ F.

37. Let T be a linear operator on a finite dimensional vector space V . Show that if
T has the same matrix with respect to every basis of V, then T = α I for some
scalar α.

38. Let T be a linear operator on a real vector space V of dimension 1 or 2. Let
α, β ∈ R. Show that N ((T − α I )2 + β2) is either {0} or V .

39. Show that the minimal polynomial of A :=

⎡

⎢⎢
⎣

1 1 0 0
−1 −1 0 0
−2 −2 2 1
1 1 − 1 0

⎤

⎥⎥
⎦ is χ

A(t).

40. Let T be a linear operator on a finite dimensional vector space. Let v be a nonzero
vector and let p(t) be a nonzero polynomial of least degree such that p(T )v = 0.
Show that p(t) divides the minimal polynomial of T .

41. Show that the minimal polynomial of the companion matrix Cp of a monic
polynomial p(t) is p(t) itself.

42. Let λ be an eigenvalue of a linear operator T on a finite dimensional vector space
V . What is the linear operator T |E(λ)?

43. Let T be a linear operator on a finite dimensional vector space V . Let U be a
T -invariant subspace of V . Prove that the minimal polynomial of T |U divides
the minimal polynomial of T .

44. Let λ1, . . . , λk be the distinct eigenvalues of a diagonal matrix D ∈ C
n×n . Let

V be the subspace of C
n×n consisting of all matrices X such that DX = XD.

Prove that dim(V ) = (μ(λ1))
2 + · · · + (μ(λk))

2.

45. Let T be a linear operator on a finite dimensional complex vector space V . Prove
that for each k ∈ {1, . . . , dim(V )}, there exists a T -invariant subspace of V with
dimension k.

46. Let A ∈ C
n×n . A left eigenvalue of A is a complex number λ for which there

exists a nonzero vector u ∈ C
1×n such that uA = λu. Such a row vector u is

called a left eigenvector of A. Show that if x is a left eigenvector of A, then x∗
is an eigenvector of A∗. Show also that the set of left eigenvalues is same as the
eigenspectrum of A.

47. Let A ∈ C
m×m and let B ∈ C

n×n.Define a linear operator T onC
m×n by T (X) =

AXB.

(a) Let x and y be eigenvectors of A and BT , respectively. Showhow to construct
an eigenvector of T .

(b) Show how to determine eigenvalues of T from those of A and B.

48. Let A ∈ C
n×n .Define a linear operator T onC

n×n by T (X) = AX − X A. Prove
that rank (T ) ≤ n2 − n. Also, determine the eigenvalues of T in terms of the
eigenvalues of A.
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49. Let A ∈ C
n×n . Prove that there exists a matrix B ∈ C

n×n such that B has distinct
eigenvalues and that A is arbitrarily close to B; that is, |ai j − bi j | can be made
as small as possible for all i, j.

50. (Complexification) Let T be a linear operator on a finite dimensional real vector
space V . Define

Ṽ := {u + iv : u, v ∈ V }.

Here, i is the imaginary square root of −1, and the sum u + iv is a formal sum.
In Ṽ , define addition and scalar multiplication by

(u + iv) + (x + iy) = (u + x) + i(v + y) for u, v, x, y ∈ V ;
α(u + iv) = (αu) + i(αv) for α ∈ C.

Further, define T̃ : Ṽ → Ṽ by T̃ (u + iv) = T (u) + iT (v) for u, v ∈ V . Prove
the following:

(a) Ṽ is a complex vector space.
(b) Any basis of V is also a basis of Ṽ . Thus, dim(Ṽ ) = dim(V ).

(c) T̃ is a linear operator on Ṽ .

(d) If B is a basis of V, then [T̃ ]B,B = [T ]B,B .

(e) χ
T̃
(t) = χ

T (t).

(f) The real eigenvalues of T̃ are precisely the eigenvalues of T .



Chapter 6
Block-Diagonal Representation

6.1 Diagonalizability

In this chapter, we are concerned with special types of matrix representations of
linear operators on finite dimensional spaces. The simplest matrix representation of
a linear operator that one would like to have is a diagonal matrix. In such a case, the
eigenvalues can be read off the diagonal.

Definition 6.1 A linear operator T on a finite dimensional vector space V is called
diagonalizable if and only if there exists a basis B for V such that [T ]B,B is a
diagonal matrix.

It may be seen that a matrix in F
n×n is diagonalizable if and only if it is similar to

a diagonal matrix.
Eigenvectors come of help in characterizing diagonalizability.

Theorem 6.2 A linear operator T on a finite dimensional vector space V is diago-
nalizable if and only if there exists a basis of V consisting of eigenvectors of T .

Proof Let B = {v1, . . . , vn} be a basis of V with [T ]B,B = diag(λ1, . . . , λn). By the
definition of matrix representation, T v1 = λ1v1, . . . , T vn = λnvn. That is, each λi

is an eigenvalue of T with corresponding eigenvector vi .
Conversely, let B = {v1, . . . , vn} be a basis of V, where vi is an eigenvector of T

corresponding to the eigenvalue λi for i ∈ {1, . . . , n}. Then

T v1 = λ1v1, · · · , T vn = λnvn.

Consequently, [T ]B,B = diag(λ1, . . . , λn). �

Since eigenvectors corresponding to distinct eigenvalues are linearly independent,
we obtain the following useful corollary to Theorem 6.2.
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Theorem 6.3 If a linear operator on an n-dimensional vector space has n distinct
eigenvalues, then it is diagonalizable.

Proof of Theorem 6.2 says that if the ordered set B = {v1, . . . , vn} is a basis for V,

and v1, . . . , vn are eigenvectors corresponding to the distinct eigenvalues λ1, . . . , λn

of T : V → V, then [T ]B,B is the diagonal matrix diag(λ1, . . . , λn).

Example 6.4 Consider T : R
3 → R

3 defined by T (a, b, c) = (a + b + c, 2b +
c, 3c). We see that

T (1, 0, 0) = 1 (1, 0, 0), T (1, 1, 0) = 2 (1, 1, 0), T (1, 1, 1) = 3 (1, 1, 1).

Hence T has three distinct eigenvalues 1, 2, and 3. A basis consisting of eigen-
vectors corresponding to these eigenvalues is B = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}. For
[T ]B,B, we express images of the basis vectors in the same basis:

T (1, 0, 0) = 1 (1, 0, 0) + 0 (1, 1, 0) + 0 (1, 1, 1)

T (1, 1, 0) = 0 (1, 0, 0) + 2 (1, 1, 0) + 0 (1, 1, 1)

T (1, 1, 1) = 0 (1, 0, 0) + 0 (1, 1, 0) + 3 (1, 1, 1)

Therefore, [T ]B,B = diag(1, 2, 3). �

Generalized eigenvectors help in characterizing diagonalizability. In addition to
Theorems 6.2 and 6.3, we have the following characterization result.

Theorem 6.5 (Diagonalizabilty) Let T be a linear operator on a vector space V
of dimension n over F. Let λ1, . . . , λk be the distinct eigenvalues of T . Then the
following are equivalent:

(1) T is diagonalizable.
(2) V = E(λ1) ⊕ · · · ⊕ E(λk).

(3) γ (λ1) + · · · + γ (λk) = n.

(4) V = U1 ⊕ · · · ⊕Un,where dim(Uj ) = 1 and T (Uj ) = Uj for each j ∈ {1, . . . , n}.
(5) The minimal polynomial of T is (t − λ1) · · · (t − λk).

(6) The characteristic polynomial of T splits over F, and for each eigenvalue λ of
T, μ(λ) = γ (λ).

(7) The characteristic polynomial of T splits over F, and each generalized eigen-
vector of T is an eigenvector of T .

Proof Let λ1, . . . , λk be the distinct eigenvalues of T with geometric multiplicities
γ1, . . . , γk, and algebraic multiplicities μ1, . . . , μk and ascents �1, . . . , �k, respec-
tively. Let i ∈ {1, . . . , k}.
(1) ⇒ (2) : Due to Theorem 6.2, let B be a basis of eigenvectors of T for V . Each
eigenvector is in ∪i E(λi ). Thus B ⊆ ∪i E(λi ). Consequently,

V = span(B) ⊆ span
( ∪i E(λi )

) = E(λ1) + · · · + E(λk) ⊆ V .
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Due to Theorem 5.16, this sum is a direct sum.

(2) ⇒ (3) : Suppose that V = E(λ1) ⊕ · · · ⊕ E(λk). Dimensions of the subspaces
E(λ j ) add up, yielding (3).

(3) ⇒ (4) : Suppose γ (λ1) + · · · + γ (λk) = n. Let Bj := {u j1, . . . u jγ j } be a basis
of E(λ j ) for j ∈ {1, . . . , k}. Due to Theorem 5.16, B := B1 ∪ · · · ∪ Bk is linearly
independent. Thus |B| = γ (λ1) + · · · + γ (λk) = n = dim(V ). Write

V11 := span(u11), . . . , V1γ1 := span(u1γ1),
...

Vk1 := span(uk1), . . . , Vkγk := span(ukγk ).

Then, relabelling the subspaces V11, . . . , Vkγk as U1, . . . ,Un, respectively, all the
requirements in (4) are fulfilled.

(4) ⇒ (5) : Assume (4). Let j ∈ {1, . . . , n}. Since dim(Uj ) = 1, Uj = span{v j }
for some nonzero vector v j ∈ Uj . Since T v j ∈ Uj = span{v j }, there exists a scalar
α j such that T v j = α j v j . Thus the eigenvalues are these α j s. That is, in the list
α1, . . . , αn, each eigenvalue λi occurs some ni times so that n1 + · · · + nk = n.
Without loss of generality, suppose that the first n1 scalars α1, . . . , αn1 are all equal
to λ1, next n2 scalars αn1+1, . . . , αn1+n2 are all λ2, and etc. Then

(T − λ1 I )v1 = · · · = (T − λ1 I )vn1 = 0, . . . , (T − λk I )vn−nk+1 = · · · = (T − λk I )vn = 0.

Since the factors in the product (T − λ1 I ) · · · (T − λk I ) commute, we have

(T − λ1 I ) · · · (T − λk I )v j = 0 for each j ∈ {1, . . . , n}.

Now, each v ∈ V can be written as v = β1v1 + · · · + βnvn for scalars β j . Hence

(T − λ1 I ) · · · (T − λk I )v = 0 for each v ∈ V .

That is, (T − λ1 I ) · · · (T − λk I ) = 0. Hence the minimal polynomial of T divides
(t − λ1) · · · (t − λk). However, each eigenvalue of T is a zero of the minimal
polynomial of T . Since λ1, . . . , λk are all the eigenvalues of T, it follows that
(t − λ1) · · · (t − λk) is the minimal polynomial.

(5) ⇒ (6) : Suppose the minimal polynomial of T is (t − λ1) · · · (t − λk). Since the
minimal polynomial divides the characteristic polynomial, the characteristic poly-
nomial is (t − λ1)

μi · · · (t − λk)
μk ; obviously it splits. Also, �i = 1 for each i. Con-

sequently, γi = μi for each i.

(6) ⇒ (7) : Suppose that the characteristic polynomial of T splits and for each
eigenvalue λ of T, μ(λ) = γ (λ). By Theorem 5.27(4), μ(λ) = dim(N (T − λI )n).
Therefore, dim(N (T − λI )n) = dim(N (T − λI )). But N (T − λI ) is a subspace of
N (T − λI )n. Hence N (T − λI )n = N (T − λI ). That is, each generalized eigen-
vector is an eigenvector.
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(7) ⇒ (1) : Suppose that the characteristic polynomial of T splits and each
generalized eigenvector of T is an eigenvector of T . However, V always has a basis
consisting of generalized eigenvectors of T . In this case, the same basis consists of
eigenvectors of T . Therefore, T is diagonalizable. �

Example 6.6 (1) (Rotation) Let θ ∈ R. Define the linear operator Tθ : R
2 → R

2 by

Tθ (a, b) = (a cos θ − b sin θ, a sin θ + b cos θ).

It describes rotation about the origin at an angle θ. With respect to the standard
basis E on both the copies of R

2, Tθ has the matrix representation

[Tθ ]E,E =
[
cos θ − sin θ

sin θ cos θ

]
.

The characteristic values of Tθ are cos θ ± i sin θ. Hence Tθ has no eigenvalues
if sin θ �= 0. Therefore, rotation is not diagonalizable when θ is a not an integer
multiple of π .

(2) (Reflection) Let θ ∈ R. Define the linear operator Rθ : R
2 → R

2 by

Rθ (a, b) = (a cos θ + b sin θ, a sin θ − b cos θ).

It describes reflection in the straight line (axis of reflection) that makes an angle
θ/2 with the x-axis. With respect to the standard basis E on both the copies of R

2,

Rθ has the matrix representation

[Rθ ]E,E =
[
cos θ sin θ

sin θ − cos θ

]
.

The characteristic values are ±1. Rθ has two distinct eigenvalues and
dim(R2) = 2. Thus it is diagonalizable. Indeed, the matrix [Rθ ]E,E is similar to
the diagonal matrix diag(1,−1). The basis of eigenvectors is

{(
cos θ

2 , sin
θ
2

)
,

( − sin θ
2 , cos

θ
2

)}
.

(3) (Shear) Let the linear operator S : R
2 → R

2 be defined by

S(a, b) = (a + b, b).

With respect to the standard basis E on R
2, it has the matrix representation

[S]E,E =
[
1 1
0 1

]
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The characteristic values of S are 1, 1. These are the eigenvalues of S. To find the
eigenvectors, we set S(a, b) = 1 (a, b). Solving this, we see that all eigenvectors are
in the form (a,−a) for a ∈ R \ {0}. Hence Shear has eigenvalue 1 occurring twice,
but it has only one linearly independent eigenvector; γ (1) = 1. The eigenvectors do
not form a basis for R

2; thus Shear is not diagonalizable. �

If [T ]E,E = diag(d1, . . . , dn)with respect to some basis E , then the characteristic
polynomial of T is equal to (t − d1) · · · (t − dn). The characteristic polynomial of
a diagonalizable operator splits. However, splitting of the characteristic polynomial
does not imply diagonalizability. For instance, the characteristic polynomial of the
Shear in Example 6.6 splits but the Shear is not diagonalizable.

Exercises for Sect.6.1

1. Diagonalize the following matrices, if possible:

(a)

[
2 3
6 −1

]
(b)

⎡

⎣
1 −10 0

−1 3 1
−1 0 4

⎤

⎦ (c)

⎡

⎣
2 −1 0

−1 2 0
2 2 3

⎤

⎦

(d)

⎡

⎣
7 −2 0

−2 6 −2
0 −2 5

⎤

⎦ (e)

⎡

⎣
7 −5 15
6 −4 15
0 0 1

⎤

⎦ (f)

⎡

⎢⎢
⎣

2 1 0 0
0 2 0 0
0 0 2 0
0 0 0 5

⎤

⎥⎥
⎦ .

2. Show that the matrix

⎡

⎢⎢
⎣

3 2 1 0
0 1 3 0
0 0 2 1
0 0 1 2

⎤

⎥⎥
⎦ is not diagonalizable.

3. Diagonalize the rotation matrix

[
cos θ − sin θ

sin θ cos θ

]
.

4. Let A =
⎡

⎣
6 −3 −2
4 −1 −2
10 −5 −3

⎤

⎦ . Does there exist a matrix P ∈ R
3×3 such that P−1AP

is diagonal? What about P ∈ C
3×3?

5. Let λ and μ be distinct eigenvalues of a 2 × 2 matrix A = [ai j ]. Determine a
matrix P such that P−1AP is diagonal. (Hint: See Exercise 2 of Sect. 5.2.)

6. In the following, a linear operator T on R
3 is specified. Determine whether T is

diagonalizable. If it is so, then find a basis B of R
3 so that [T ]B,B is a diagonal

matrix.

(a) T e1 = 0, T e2 = e1, T e3 = e2.
(b) T e1 = e2, T e2 = e3, T e3 = 0.
(c) T e1 = e3, T e2 = e2, T e3 = e1.
(d) T (a, b, c) = (a + b + c, a + b − c, a − b + c).
(e) T (a, b, c) = (−9a + 4b + 4c,−8a + 3b + 4c,−16a + 8b + 7c).

7. Let T : P3(C) → P3(C) be given by T (a0 + a1t + a2t2 + a3t3) = a1 + 2a2t +
3a3t2. Is the linear operator T diagonalizable?
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8. Which of the following matrices are diagonalizable over C and which are
diagonalizable over R?
⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦ ,

⎡

⎣
0 0 1
0 0 0
0 0 0

⎤

⎦ ,

⎡

⎣
0 0 −1
0 0 0
1 0 0

⎤

⎦ ,

⎡

⎢⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤

⎥⎥
⎦ .

9. Show that the linear operator T : R
3×1 → R

3×1 corresponding to each of the
following matrices is diagonalizable. Determine a basis of eigenvectors of T for
R

3×1 which diagonalizes the given matrix.
⎡

⎣
1 1 1
1 −1 1
1 1 −1

⎤

⎦ ,

⎡

⎣
1 1 1
0 1 1
0 0 1

⎤

⎦ ,

⎡

⎣
1 0 1
1 1 0
0 1 1

⎤

⎦ ,

⎡

⎣
3/2 −1/2 0

−1/2 3/2 0
1/2 −1/2 1

⎤

⎦ .

10. Let T : R
4 → R

4 be given by T (a, b, c, d) = (0, αb, βc, γ d).Under what con-
ditions on α, β, γ ∈ R, T is diagonalizable?

11. Let π be a permutation on {1, . . . , n}, that is a bijection on this set. Let a linear
operator T on C

n be given by T (a1, . . . , an) = (aπ(1), . . . , aπ(n)). Find a basis
B of C

n so that the matrix [T ]B,B is a diagonal matrix.
12. Prove or disprove: If an upper triangular matrix is similar to a diagonal matrix,

then it is necessarily diagonal.
13. Prove or disprove: If A ∈ C

n×n satisfies A2 = A, then A is diagonalizable.
14. Let A ∈ F

n×n . Show that if An = I for some n ∈ N, then A is diagonalizable.
15. Let A be a real symmetric matrix with A3 = 0. Show that A = 0.

6.2 Triangularizability and Block-Diagonalization

Analogous to the case of a diagonal matrix, eigenvalues of a triangular matrix can
be read off its diagonal. Due to the constraints on diagonalizability, our next interest
is in representing a linear operator by a triangular matrix.

Definition 6.7 Let T be a linear operator on a finite dimensional vector space V .

(a) T is said to be triangularizable if there exists a basis B for V such that [T ]B,B

is an upper triangular matrix.
(b) When V is an inner product space, T is said to be unitarily triangularizable if

there exists an orthonormal basis B for V such that [T ]B,B is an upper triangular
matrix.

Observe that we have used upper triangular matrices in the definition of triangu-
larizability. Alternatively, one may define triangularizability using lower triangular
matrices. To derive one form from the other, one has to reorder the basis vectors from
last to first. We continue with the upper triangular form.

Interpreting the definitions for matrices, it turns out that a square matrix is called
triangularizable if and only if it is similar to an upper triangular matrix. Similarly,
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a square matrix A is called unitarily triangularizable if and only if there exists a
unitary matrix P such that P−1AP is upper triangular.

The following theorem connects the notions of invariant subspaces and triangu-
larizability.

Theorem 6.8 Let B = {v1, . . . , vn} be a basis for a vector space V . Let T be a linear
operator on V . Then the following statements are equivalent:

(1) [T ]B,B is upper triangular.
(2) T vk ∈ span{v1, . . . , vk} for each k ∈ {1, . . . , n}.
(3) span{v1, . . . , vk} is T -invariant for each k ∈ {1, . . . , n}.
Proof (1) ⇒ (2) : Let [T ]B,B be upper triangular. There are scalars ai j such that

[T ]B,B =

⎡

⎢⎢
⎣

a11 a12 · · · a1n
0 a22 · · · a2n

...

0 0 · · · ann

⎤

⎥⎥
⎦

As B = {v1, . . . , vn}, we have T vk = a1kv1 + a2kv2 + · · · + akkvk . Therefore, for
each k ∈ {1, . . . , n}, T vk ∈ span{v1, . . . , vk}
(2) ⇒ (3) : Assume that T vk ∈ span{v1, . . . , vk} for each k ∈ {1, . . . , n}. Let v ∈
span{v1, . . . , vk}. Then T v ∈ span{T v1, . . . , T vk}. Since

T v1 ∈ span{v1}, . . . , T vk ∈ span{v1, . . . , vk},

we see that T v ∈ span{v1, . . . , vk}. Therefore, span{v1, . . . , vk} is T -invariant.
(3) ⇒ (1) : Suppose span{v1, . . . , vk} is T -invariant for each k ∈ {1, . . . , n}.Notice
that {v1, . . . , vk} is a basis for span{v1, . . . , vk}.The invariance condition implies that
there are scalars bi j such that

T v1 = b11v1
T v2 = b12v1 + b22v2

...

T vn = b1nv1 + b2nv2 + · · · + bnnvn

Therefore, [T ]B,B is upper triangular. �

Recall that if the characteristic polynomial of T splits, then T can be written
as a direct sum of its restrictions to the generalized eigenspaces of its distinct
eigenvalues. Also, the generalized eigenspaces are T -invariant subspaces of V ; see
Theorem 5.21(4). This means that if we take a basis which is a union of the bases
of the generalized eigenspaces (keeping those basis vectors together in the union),
then with respect to this basis, the matrix of T will be a block-diagonal matrix. Then
we need to check whether each such block can be triangularized. Let us look at the
ensuing particular case first.
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Lemma 6.9 Let T be a linear operator on a vector space V of dimension n over F.

Suppose that T has a single eigenvalue λ with algebraic multiplicity n. Then there
exists a basis B for V such that [T ]B,B ∈ F

n×n is an upper triangular matrix with
each diagonal entry as λ.

Proof We wish to construct a basis B for V so that [T ]B,B is upper triangular. For
this, let � be the ascent of the eigenvalue λ. Consider the sequence

N (T − λI ) � · · · � N (T − λI ) j � N (T − λI ) j+1
� · · · � N (T − λI )� = G(λ).

Since λ is the only eigenvalue of T , by Theorem 5.29, G(λ) = V . We wish to extend
a basis of N (T − λI ) to a basis for N (T − λI )� in a specific manner.

For this, start with a basis B1 for N (T − λI ). Suppose B1, . . . , Bj have already
been constructed so that B1 ∪ · · · ∪ Bj is a basis for N (T − λI ) j , then select a set
Bj+1 of vectors from N (T − λI ) j+1 \ N (T − λI ) j so that B1 ∪ · · · ∪ Bj+1 is a basis
for N (T − λI ) j+1. The construction results in a basis B := B1 ∪ · · · ∪ B� for the
generalized eigenspace G(λ). In the ordered set B, the vectors from Bj+1 succeed
the vectors from Bj .

Now, if u ∈ B1 ⊆ N (T − λI ), then Tu = λu.And, if v ∈ B j+1 ⊆ N (T − λI ) j+1,

then (T − λI )v ∈ N (T − λI ) j = span(B1 ∪ · · · ∪ Bj ).Thus, T v = λv + w,where
w ∈ span(B1 ∪ · · · ∪ Bj ).

Therefore, the T -image of the first vector in the ordered basis B is λ times that
vector, and each other vector in B is equal to λ times that vector plus one from
the span of the previous vectors appearing in B. By Theorem 6.8, [T ]B,B is upper
triangular with each diagonal entry equal to λ. �

Theorem 6.10 (Block-diagonalization) Let T be a linear operator on a finite dimen-
sional vector space V over F. Suppose that the characteristic polynomial of T splits
over F. Then there exist a basis B for V and distinct scalars λ1, . . . , λk such that
[T ]B,B is a block-diagonal matrix of the form [T ]B,B = diag(A1, . . . , Ak), where
each block Ai is an upper triangular matrix with diagonal entries as λi .

Proof Let λ1, . . . , λk be the distinct eigenvalues of T . By Theorems 5.27 and 5.29,
V = G(λ1) ⊕ · · · ⊕ G(λk), and G(λ1), . . . ,G(λk) are T -invariant subspaces of V .

Then for each i ∈ {1, . . . , k}, the restriction operator Ti := T |G(λi ) maps G(λi ) to
G(λi ).

The operator Ti has the single eigenvalue λi with its algebraic multiplicity as
μi := dim(G(λi )). By Lemma 6.9, there exists an ordered basis Bi for G(λi ) such
that [Ti ]Bi ,Bi is an upper triangular matrix of size μi × μi with each diagonal entry
as λi . We denote [Ti ]Bi ,Bi as Ai .

Next, we construct the ordered set B = B1 ∪ · · · ∪ Bk,where we keep the vectors
of B1 with their own ordering, then the vectors of B2 with their own ordering, and
so on. Now, the matrix [T ]B,B is a block-diagonal matrix with the diagonal blocks
as A1, . . . , Ak . �
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Example 6.11 Let T : R
3 → R

3 be given by T (a, b, c) = (6a + 3b, 2a + b,−a +
b + 7c). The matrix of T with respect to the standard basis is

[T ] =
⎡

⎣
6 3 0
2 1 0

−1 1 7

⎤

⎦ .

The characteristic polynomial of A is p(t) = t (t − 7)2. The eigenvalues are 7 and
0, with respective multiplicities as 2 and 1. For the eigenvalue 7,

(T − 7I )(a, b, c) = (−a + 3b, 2a − 6b,−a + b).

Now, (T − 7I )(a, b, c) = (0, 0, 0) if and only if a = b = 0. So, N (T − 7I ) =
{(0, 0, c) : c ∈ R}. A basis for N (T − 7I ) is {(0, 0, 1)}. Further,

(T − 7I )2(a, b, c) = (7a − 21b,−14a + 42b, 3a − 9b) = (a − 3b)(7,−14, 3).

Here, (T − 7I )2(a, b, c) = 0 if and only if a = 3b. That is, N (T − 7I )2 = G(7) =
{(3b, b, c) : b, c ∈ R}.Abasis forG(7) is {(0, 0, 1), (3, 1, 0)},which is an extension
of {(0, 0, 1)}.

For the eigenvalue 0, (T − 0I )(a, b, c) = 0 gives 7c = 3a, b = −2a. A basis
for N (T − 0I ) is {(7,−14, 3)}. Notice that since the eigenvalue 0 has algebraic
multiplicity 1, G(0) = N (T − 0I ).

Putting the bases together we obtain the following basis B for R
3:

B = {(0, 0, 1), (3, 1, 0), (7,−14, 3)}.

Computing the T -images of the basis vectors, we find that

T (0, 0, 1) = (0, 0, 7) = 7(0, 0, 1)

T (3, 1, 0) = (21, 7,−2) = −2(0, 0, 1) + 7(3, 1, 0)

T (7,−14, 3) = (0, 0, 0) = 0(7,−14, 3).

Hence the block upper triangular matrix representation of T is given by

[T ]B,B =
⎡

⎣
7 −2

7
0

⎤

⎦ .

Notice that the resulting block-diagonal matrix each of whose blocks is upper
triangular is itself upper triangular. �
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Exercises for Sect.6.2

1. If (1, 2)T and (2, 1)T are eigenvectors corresponding to eigenvalues 1 and 2 of a
2 × 2 matrix A, then what is A?

2. Is the matrix

⎡

⎣
0 1 0
2 −2 2
2 −3 2

⎤

⎦ similar to a triangular matrix with real entries?

3. Let T be a linear operator on a finite dimensional vector space. Prove that there
exists a nonnegative integer k such that N (T k) ∩ R(T k) = {0}.

4. Let A be a block-diagonal matrix with two blocks. Show that A is diagonalizable
if and only if the two blocks are diagonalizable.

6.3 Schur Triangularization

We may interpret Theorem 6.10 for matrices. It says that each square matrix of
complex numbers is similar to a block-diagonal matrix with upper triangular blocks.
The change of basis involved in this similarity transformation is an isomorphism. In
fact, we can choose a unitary similarity transformation. The trick is to orthonormalize
the basis obtained for block-diagonalization.

Theorem 6.12 (Schur triangularization)Let T be a linear operator onafinite dimen-
sional inner product space V over F. If the characteristic polynomial of T splits
over F, then T is unitarily triangularizable.

Proof Due to Theorem 6.10, we have a basis B with respect to which [T ]B,B is
block-diagonal, each block corresponds to a particular eigenvalue of T ; and each
block is upper triangular. Hence [T ]B,B is upper triangular. By Theorem 6.8, if
B = {u1, . . . , un}, then for each j ∈ {1, . . . , n},

Tu j ∈ span{u1, . . . , u j }.

Now, apply Gram–Schmidt procedure to orthonormalize B. If the resulting basis is
E = {v1, . . . , vn}, then for each j ∈ {1, . . . , n},

span{v1, . . . , v j } = span{u1, . . . , u j }.

Then v j ∈ span{u1, . . . , u j } implies that

T v j ∈ span{Tu1, . . . , Tu j } ⊆ span{u1, . . . , u j } = span{v1, . . . , v j }.

Therefore, [T ]E,E is upper triangular with respect to the orthonormal basis E . That
is, T is unitarily triangularizable. �
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Recall that two square matrices A and B are called unitarily similar if there
exists a unitary matrix U such that B = U−1AU = U ∗AU. Theorem 6.12 says the
following:

Each square matrix is unitarily similar to an upper triangular matrix.

The proof of Theorem 6.12 does not say that each block in the block-diagonal
form is triangularized. In fact, orthonormalization of the basis vectors may destroy
the block-diagonal form.

Example 6.13 Consider the matrix of Example 6.11 for triangularization:

A =
⎡

⎣
6 3 0
2 1 0

−1 1 7

⎤

⎦ .

It has eigenvalues 0 and 7. The eigenvalue 7 has algebraic multiplicity 2. In that
example, we had already obtained a basis with respect to which the linear map has
the block-diagonal form. Since the space here is R

3×1, we use the transpose instead
of adjoint. Our computation in Example 6.11 shows that [A]B,B is block-diagonal,
where

B = {(0, 0, 1)T , (3, 1, 0)T , (7,−14, 3)T }.

Using Gram–Schmidt process on B, we obtain the orthonormal basis

E =
{
(0, 0, 1)T ,

(
3√
10

, 1√
10

, 0
)T

,
(

1√
10

,− 3√
10

, 0
)T}

.

Expressing A with respect to this basis we get the Schur triangular form:

[A]E,E =
⎡

⎣
7 −2/

√
10 −4/

√
10

0 7 −1
0 0 0

⎤

⎦ .

Notice that the block-diagonal form is destroyed in triangularization. �
We give another proof of Theorem 6.12 without using block-diagonalization.

An Alternative Proof of Theorem 6.12:

Let T : V → V, where V is a finite dimensional inner product space. We use
strong induction on dim(V ). If dim(V ) = 1, then [T ]B,B is of order one, which is
upper triangular, whichever basis B we choose. Lay out the induction hypothesis
that the result is true for all inner product spaces of dimension less than n. Let
dim(V ) = n. Since the characteristic polynomial of T splits, let λ be an eigenvalue
of T .

We choose an invariant subspace of smaller dimension and use the induction
hypothesis. For this purpose, consider the subspace U := R(T − λI ) of V . Since
T − λI is not one-to-one,
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k := dim(U ) = dim(R(T − λI )) < dim(V ) = n.

If u ∈ U, then there exists v ∈ V such that u = (T − λI )v. Now,

Tu = T (T − λI )v = (T − λI )(T v) ∈ U.

That is, U is T -invariant.
By Theorem 5.20, the characteristic polynomial of T |U splits. By the induction

hypothesis and Theorem 6.8, there exists a basis B := {u1, . . . , uk} of U such that
[T |U ]B,B is upper triangular. Extend this basis to a basis E := B ∪ {v1, . . . , vm} for
V . Notice that k + m = n.

Since [T |U ]B,B is upper triangular,

Tui = (T |U )ui ∈ span{u1, . . . , ui } for each i ∈ {1, . . . , k}.

Next, for any j ∈ {1, . . . ,m},

T v j = (T − λI )v j + λv j .

Since (T − λI )v j ∈ U and λv j ∈ span{v j }, we see that

T v j ∈ span{u1, . . . , uk, v j } ⊆ span{u1, . . . , uk, v1, . . . , v j }.
Therefore, by Theorem 6.8, [T ]E,E is upper triangular.

To see that T is unitarily triangularizable, use Gram–Schmidt orthonormalization
on the basis E to obtain an orthonormal basis F := {w1, . . . , wk, x1, . . . , xm}. Now,
for any i ∈ {1, . . . , k} and for any j ∈ {1, . . . ,m},

span{w1, . . . , wi } = span{u1, . . . , ui },
span{x1, . . . , x j } = span{u1, . . . , uk, v1, . . . , v j }.

wi ∈ span{w1, . . . , wi , }, x j ∈ span{w1, . . . , wk, x1, . . . , x j }.

Therefore, [T ]F,F is also upper triangular. �
Thematrix form of Schur Triangularization can be proved without using the range

space of T − λI explicitly. Let v1 be an eigenvector corresponding to an eigenvalue
λ of T . Now,

T v1 = λv1.

Construct an orthonormal basis {v1, . . . , vn} for V by extending {v1} and then using
Gram–Schmidt orthonormalization. In this basis, the matrix of T looks like:

[
λ x
0 C

]

where x ∈ F
1×(n−1) and C ∈ F

(n−1)×(n−1). Use the induction hypothesis that C can
be triangularized. Then join the pieces together.
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The inductive proof reveals that in the resulting upper triangular matrix represen-
tation, we may have the eigenvalues in any preferred order on the diagonal.

Example 6.14 We illustrate the inductive proof given for Schur triangularization for
the matrix of Example 6.13:

A =
⎡

⎣
6 3 0
2 1 0

−1 1 7

⎤

⎦ .

This matrix has eigenvalues 0 and 7. For the eigenvalue 0,

R(A − 0I ) = R(A) = span
{
(6, 2,−1)T , (3, 1, 1)T , (0, 0, 7)T

}
.

Abasis for R(A − 0 I ) is B1 := {(0, 0, 1)T , (3, 1, 0)T } since (3, 1, 0)T is not a scalar
multiple of (0, 0, 1)T . And,

(6, 2,−1)T = −1(0, 0, 1)T + 2(3, 1, 0)T

(3, 1, 1)T = (1, 0, 0)T + (3, 1, 0)T

(0, 0, 7)T = 7(0, 0, 1)T .

A basis for R
3 containing B1 is {(0, 0, 1)T , (3, 1, 0)T , (1,−3, 0)T }. Orthonormal-

izing this basis yields the following orthonormal basis for R
3×1:

{
(0, 0, 1)T ,

(
3√
10

, 1√
10

, 0
)T

,
(

1√
10

,− 3√
10

, 0
)T}

.

Incidentally, this basis is same as E that we constructed earlier. Next, we take the
matrix Q1 formed by the basis vectors:

Q1 =
⎡

⎣
0 3/

√
10 1/

√
10

0 1/
√
10 −3/

√
10

1 0 0

⎤

⎦ .

Then we form the product

QT
1 AQ1 =

⎡

⎣
7 −2/

√
10 −4/

√
10

0 7 −1
0 0 0

⎤

⎦ = U.

Since it is already upper triangular, there is no need to execute the inductive step.
We have obtained the orthogonal matrix P = Q1 and the upper triangular matrix
U = PT AP.

In the following, we illustrate the alternate method of taking an eigenvalue and
starting the inductive construction with a single eigenvector, as discussed earlier.
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For variety, let us consider this time the eigenvalue 7 of A. we see that (0, 0, 1)T

is a corresponding eigenvector. Choosing additional vectors arbitrarily to form an
orthonormal basis and assembling them into a matrix, we obtain

Q1 =
⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦ .

We form the product

QT
1 AQ1 =

⎡

⎣
−1 1 7
2 1 0
6 3 0

⎤

⎦ Q1 =
⎡

⎣
7 1 −1
0 1 2
0 3 6

⎤

⎦ .

Notice that the entries in the first column of QT
1 AQ1 below the diagonal are all 0.

Next, we take the 2 × 2 submatrix

A2 =
[
1 2
3 6

]
.

The eigenvalues of A2 are 7 and 0 as expected. An eigenvector corresponding to the
eigenvalue 7 is (1, 3)T . A matrix with columns consisting of vectors of an orthonor-
mal basis for R

2×1 obtained from extending this vector is:

Q2 =
[
1/

√
10 −3/

√
10

3/
√
10 1/

√
10

]
.

Next, we form the product

QT
2 A2Q2 = QT

2

[
7/

√
10 −1/

√
10

21/
√
10 −3/

√
10

]
=

[
7 0
0 0

]
.

Then we assemble Q1 and Q2 to obtain the orthogonal matrix P as follows:

P = Q1

[
1 0
0 Q2

]
= Q1

⎡

⎣
1 0 0
0 1/

√
10 −3/

√
10

0 3/
√
10 1/

√
10

⎤

⎦ =
⎡

⎣
0 3/

√
10 1/

√
10

0 1/
√
10 −3/

√
10

1 0 0

⎤

⎦ .

As earlier, we see that PT AP is the upper triangular matrix U. �

In general, Schur triangularization neither yields a unique P nor a unique U.

Nonuniqueness stems fromchoosing anorthonormal basis and the order of the vectors
in such a basis. However, the set of entries on the diagonal of U is the same since
the diagonal elements are precisely the eigenvalues of A.
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Exercises for Sect.6.3

1. Let A =
[

1 2
−1 −2

]
, B =

[−1 0
0 0

]
and letC =

[
0 −2
0 −1

]
.Find orthogonalmatri-

ces P and Q such that PT AP = B and QT AQ = C. This shows the nonunique-
ness in Schur triangularization.

2. Show that Schur triangularization of

[
1 2
3 6

]
yields

[
0 1
0 7

]
but not

[
0 2
0 7

]
.

3. Are

[
1 1
0 1

]
and

[
0 0
1 0

]
unitarily similar?

4. Determine Schur triangularization of the matrix

⎡

⎣
2 3 3
1 3 3

−1 −2 −3

⎤

⎦ .

5. Let A ∈ R
3×3 be such that for every invertible P ∈ R

3×3, P−1AP fails to be
upper triangular. Prove that there exists an invertible matrix Q ∈ C

3×3 such that
Q−1AQ is a diagonal matrix.

6. Let λ1, . . . , λn be eigenvalues of a linear operator T on a complex inner product
space of dimension n. Let A = [ai j ] be the matrix of T with respect to some
orthonormal basis. Show that

∑n
i=1 |λi |2 ≤ tr(T ∗T ) = ∑n

i=1

∑n
j=1 |ai j |2.

7. Prove that any square matrix with complex entries is unitarily similar to a lower
triangular matrix. Deduce that any square matrix with real entries having all its
eigenvalues real is orthogonally similar to a lower triangular matrix.

6.4 Jordan Block

The triangular blocks in a block-diagonal form can still be simplified by choosing
a basis for the generalized eigenspaces in a specified way. First we consider the
particular case of an operator having a single eigenvalue. We will show that such
operators can be represented by block-diagonal matrices consisting of the so-called
Jordan blocks.

Definition 6.15 A Jordan block of order m, denoted by J (λ,m), is an m × m
matrix that satisfies the following:

(1) Each diagonal entry is equal to λ.
(2) Each entry on the super-diagonal is equal to 1.
(3) All other entries are equal to 0.

By not showing the zero entries a typical Jordan block is written as

J (λ,m) =

⎡

⎢⎢
⎢⎢
⎣

λ 1
λ 1

. . .
. . .

1
λ

⎤

⎥⎥
⎥⎥
⎦

.
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The Jordan block J (λ, 1) is the 1 × 1 matrix [λ]. Notice that J (λ,m) − λI =
J (0,m). When the order m of the Jordan block J (λ,m) is not of particular interest,
we write the Jordan block as J (λ).

Example 6.16 Consider the matrix J = diag(J (0, 6), J (0, 5), J (0, 2)). What is
rank (J 4)?

We see that

J (0, 6) =

⎡

⎢⎢
⎢
⎢⎢
⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤

⎥⎥
⎥
⎥⎥
⎦

, (J (0, 6))2 =

⎡

⎢⎢
⎢
⎢⎢
⎣

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥
⎥
⎥⎥
⎦

, (J (0, 6))4 =

⎡

⎢⎢
⎢
⎢⎢
⎣

0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥
⎥
⎥⎥
⎦

.

Thus, rank (J (0, 6))4 = 2. Similarly, rank (J (0, 5))4 = 1 and rank (J (0, 2))4 = 0.
Then

J 4 = diag((J (0, 6))4, (J (0, 5))4, (J (0, 2))4); and rank (J 4) = 2 + 1 + 0 = 3.�

The pattern in the powers of J (0,m) is easy to see. In J (0,m), the number of 1s
on the super-diagonal shows that it has rank m − 1. In (J (0,m))2, the number of 1s
on the second-super-diagonal shows that it has rank m − 2 and so on. In general,

rank (J (0,m))i =
{
m − i for 1 ≤ i ≤ m

0 for i > m.

Example 6.17 Consider the matrix

A = diag(J (2, 3), J (2, 2)) =

⎡

⎢
⎢⎢⎢
⎣

2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 2 1
0 0 0 0 2

⎤

⎥
⎥⎥⎥
⎦

.

The only eigenvalue of A is 2; it has algebraic multiplicity 5. We have

A − 2I =

⎡

⎢⎢⎢
⎢
⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

⎤

⎥⎥⎥
⎥
⎦

, (A − 2I )2 =

⎡

⎢⎢⎢
⎢
⎣

0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥⎥⎥
⎥
⎦

, (A − 2I )3 = 0.
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We find that

N (A − 2I ) = {(a, 0, 0, d, 0)T : a, d ∈ R}; null (A − 2I ) = 2.

N (A − 2I )2 = {(a, b, 0, d, e)T : a, b, d, e ∈ R}; null (A − 2I )2 = 4.

N (A − 2I )3 = R
3×1; null (A − 2I )3 = 5.

There is 5 − 4 = 1 linearly independent vector in N (A − 2I )3 \ N (A − 2I )2. Sim-
ilarly, there are 2 linearly independent vectors in N (A − 2I )2 \ N (A − 2I ), and 2
linearly independent vectors in N (A − 2I ). These vectors together form a basis for
R

5×1. Let us choose these vectors.
Now, e3 ∈ N (A − 2I )3 \ N (A − 2I )2. (A − 2I )e3 = e2 ∈ N (A − 2I )2 \

N (A − 2I ). We choose one more vector as e5 ∈ N (A − 2I )2 \ N (A − 2I ). Next,
we obtain (A − 2I )e2 = e1 and (A − 2I )e5 = e4 as the vectors in N (A − 2I ). The
basis vectors e1, e2, e3, e4, e5 of R

5×1 have been obtained the following way (read
from top to bottom, and right to left):

N (A − 2I ) N (A − 2I )2 \ N (A − 2I ) N (A − 2I )3 \ N (A − 2I )2

e1 = (A − 2I )e2 e2 = (A − 2I )e3 e3
e4 = (A − 2I )e5 e5

Starting from e3 ∈ N (A − 2I )3 \ N (A − 2I )2, we generate (A − 2I )e3,
(A − 2I )2e3, and so on. In the first line, it stops at e1, which is equal to (A − 2I )2e3
since (A − 2I )3e3 = 0. In the last line, startingwith e5 ∈ N (A − 2I )2 \ N (A − 2I ),
which is linearly independent with the earlier obtained vector e2 ∈ N (A − 2I )2 \
N (A − 2I ), we generate (A − 2I )e5, (A − 2I )2e5, and so on. Again, it stops at
(A − 2I )e5, since (A − 2I )2e5 = 0. The process stops once sufficient linearly inde-
pendent vectors from N (A − 2I ) have been generated. This way, we obtain an
ordered basis for R

5×1, which happens to be the standard basis {e1, e2, e3, e4, e5}.
Notice the ordering of the basis vectors that has been compiled from the above

construction. We put together the vectors in first row from left to right; next the
vectors from the second row, left to right, and so on. Clearly, in this basis the matrix
of A is A itself.

To check how our choices of vectors affect later computation, suppose we choose
e2 + e5 as the vector in N (A − 2I )2 \ N (A − 2I ), instead of e5. We already had
obtained the vectors e3 and e2.The chosen vector e2 + e5 is linearly independent with
e2. Taking their (A − 2I )-images we get the vectors e1 and e1 + e4 in N (A − 2I ).
Then we have the basis vectors as

N (A − 2I ) N (A− 2I )2 \ N (A − 2I ) N (A− 2I )3\N (A− 2I )2

e1 = (A − 2I )e2 e2 = (A − 2I )e3 e3
e1 + e4 = (A − 2I )(e2 + e5) e2 + e5

Putting together the basis vectors row-wise from left to right, we obtain the ordered
basis E = {e1, e2, e3, e1 + e4, e2 + e5}. We then see that
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Ae1 = 2 e1
Ae2 = 1 e1 + 2 e2
Ae3 = 1 e2 + 2 e3

A(e1 + e4) = 2(e1 + e4)

A(e2 + e5) = 1 (e1 + e4) + 2 (e2 + e5).

Therefore, [A]E,E = A. Observe that our choice does not produce any change in the
final matrix representation. �

In what follows, we use the convention that for any B ∈ C
n×n, B0 = In.

Theorem 6.18 (Jordan block representation) Let T be a linear operator on a vector
space V of dimension n. Let λ be the only eigenvalue of T with μ(λ) = n. Then
there exists a basis B of V such that the following are true:

(1) [T ]B,B = diag(J (λ,m1), . . . , J (λ,mk)),

where k = γ (λ), �(λ) = m1 ≥ · · · ≥ mk ≥ 1 and m1 + · · · + mk = μ(λ) = n.

(2) For i ∈ {1, . . . , �(λ)}, if ni denotes the number of Jordan blocks J (λ, i) of order
i that appear in [T ]B,B, then

ni = 2 null (T − λI )i − null (T − λI )i−1 − null (T − λI )i+1.

Further, such a representation of T as a block-diagonal matrix with Jordan blocks
is unique up to a permutation of the blocks.

Proof Let � be the ascent of the eigenvalue λ. If � = 1, then μ(λ) = γ (λ); thus T
is diagonalizable. The diagonal matrix that represents T is equal to diag(λ, . . . , λ).

It is a block-diagonal matrix with each block as J (λ, 1).
Next, assume that � ≥ 2. Write G j := N (T − λI ) j . Then

G0 := {0} � E(λ) = G1 � · · · � G j � · · · � G� = G(λ) = V .

Here, G(λ) = V since λ is the only eigenvalue of T . For 1 ≤ j ≤ �, write

γ j := dim(G j ); k j := γ j − γ j−1.

As γ0 = null (T − λI )0 = null (I ) = 0, we have k1 = γ1. For j ≥ 2,
Theorem 5.27(7) implies that

k1 ≥ · · · ≥ k j ≥ · · · ≥ k� ≥ 1.

For j = �, we see that there exists a linearly independent subset

B� := {u�
k1, . . . , u

�
k�
}

of G� such that G� = span(B�) ⊕ G�−1. Define vectors
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u�−1
i := (T − λI )u�

i for i ∈ {1, . . . , k�}.

WriteC�−1 := {u�−1
i : 1 ≤ i ≤ k�}.ByTheorem 5.27(6), u�−1

1 , . . . , u�−1
k�

are linearly
independent vectors in G�−1 and span(C�−1) ∩ G�−2 = {0}. Then there exists a sub-
space U�−1 of G�−1 such that G�−1 = G�−2 ⊕U�−1 and C�−1 ⊆ U�−1. Notice that
dim(U�−1) = γ�−1 − γ�−2 = k�−1. We extend the linearly independent set C�−1 to a
basis

B�−1 := u�−1
1 , . . . , u�−1

k�
, u�−1

k�+1, . . . , u�−1
k�−1

.

forU�−1.We obtainG�−1 = G�−2 ⊕ span(B�−1)withC�−1 ⊆ B�−1.Next, we define

u�−2
i := (T − λI )u�−1

i for i ∈ {1, . . . , k�−1}.

Write C�−1 as the set of these u
�−2
i , and extend it to a basis B�−2 for a subspaceU�−2

so that G�−2 = G�−3 ⊕ span(B�−2). We continue this process to construct the bases
B�, B�−1, . . . , B2, B1. The set B := B1 ∪ · · · ∪ B� is a basis for V . Next, we order
the vectors in B by first taking the first elements of B1, . . . , B�, in that order; next,
taking the second elements of each, and so on. It is

B = {u11, u21, . . . , u�
1; u12, u

2
2, . . . , u

�
2; . . . , u1k1}.

The ordering may be given schematically as follows. We write the elements in
B1, . . . , B� vertically as listed below and then visit them horizontally in the two-
dimensional array:

B1 B2 · · · B�−1 B�

u11 u21 · · · u�−1
1 u�

1
...

... · · · ...
...

u1k�
u2k�

· · · u�−1
k�

u�
k�

u1k�+1 u2k�+1 · · · u�−1
k�+1

· · · ... · · · ...

u1k�−1
u2k�−1

· · · u�−1
k�−1

...
...

u1k2−1 u
2
k2−1

u1k2 u2k2

u1k2+1
...

u1k1

This is the required basis for V .
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(1) To determine the matrix representation of T with respect to this basis B, we
compute the T -images of the basis vectors as in the following:

T (u11) = λu11 since u11 ∈ N (T − λI ).
T (u21) = (T − λI )u21 + λu21 = u11 + λu21

...

T (u�
1) = (T − λI )u�

1 + λu�
1 = u�−1

1 + λu�
1 First line in B

T (u12) = λu12 since u12 ∈ N (T − λI ).
T (u22) = (T − λI )u22 + λu22 = u12 + λu22

...

T (u�
2) = (T − λI )u�

2 + λu�
2 = u�−1

2 + λu�
2 Second line in B

...

T (u1k1) = λu1k1 Last line in B

Observe that the matrix [T ]B,B is block-diagonal with the diagonal blocks as
Jordan blocks. Further, it is clear from the construction that the blocks satisfy the
required properties.

(2) To compute the formula for ni , look at the way we wrote the basis B as a two-
dimensional array. Each Jordan block in [T ]B,B corresponds to a row of vectors in
that array. For example, the first row corresponds to the first Jordan block of order k�.

The number of vectors in B�,which are linearly independent vectors fromG� \ G�−1,
is the number of Jordan blocks of order k�. Thus,

nk�
= k� = γ� − γ�−1 = 2γ� − γ�−1 − γ�+1.

The last equality follows since γ� = γ�+1.

In general, scanning the columns in that array from right to left, we see that the
number of rows containing exactly i number of vectors is the number ni of Jordan
blocks in [T ]B,B . However, the number of such rows is the number of vectors which
we had chosen in extending the vectors in Bi+1 to those in Bi . Such vectors are the
vectors in Bi which are not in the form (T − λI )v for vectors v in Bi+1. That is, the
number of such vectors is |Bi | − |Bi+1|. Therefore,

ni = ki − ki+1 = (γi − γi−1) − (γi+1 − γi ) = 2γi − γi−1 − γi+1.

This proves (2).
Notice that the numbers ni do not depend on the particular basis B. The formula

in (2) shows that ni s are uniquely determined by the dimensions of the generalized
eigenspaces of T . Therefore, the Jordan block representation of T is unique up to a
permutation of the blocks. �

Wewill call the matrix [T ]B,B in Theorem 6.18 as the Jordan block representation
of the linear operator T . The theorem is stated informally as follows:
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If T is a linear operator on a complex vector space of dimension n with a single
eigenvalue λ, then there exists an n × n block-diagonal matrix representation
of T with Jordan blocks on the diagonal, in which the maximum block size is
the ascent of λ, the total number of blocks is the geometric multiplicity of λ;
and this representation is unique up to a permutation of the blocks.

Since λ is the only eigenvalue of T , by Theorem 5.29, G(λ) = V and hence the
linear operator T in Theorem 6.18 satisfies the equation (T − λI )n = 0. Recall that
a linear operator S on V with Sk = 0 for some k ∈ N, is a nilpotent operator. If S
is a nilpotent operator on V and dim(V ) = n, then necessarily Sn = 0 since every
vector in V is a generalized eigenvector of S. The index of nilpotency of a nilpotent
operator S is a natural number m ≤ n such that Sm = 0 but Sm−1 �= 0. Since 0 is the
only eigenvalue of a nilpotent operator, Theorem 6.18 speaks of a canonical form of
a nilpotent operator, which may be stated as follows:

If S is a nilpotent operator on an n-dimensional vector space V, with index
of nilpotency m, then a basis B for V can be chosen in such a way that
[S]B,B = diag

(
J (0,m1), . . . , J (0,mk)

)
, where m1 ≥ · · · ≥ mk ≥ 1, k is the

geometric multiplicity and m1 is the ascent of the eigenvalue 0 of S.

Any row of the two-dimensional array of the basis elements in B is a set of
vectors generated by the rightmost vector v in that row by taking successive images
of v under (T − λI ). The set of all vectors in any such row is called a Jordan chain.
The subspace spanned by a Jordan chain is T -invariant. The matrix of the restriction
of T to this invariant subspace is the corresponding Jordan Block.

Exercises for Sect.6.4

1. Let A ∈ C
2×2 with A �= 0 but A2 = 0. Show that A is similar to

[
0 1
0 0

]
.

2. Prove that any A ∈ C
2×2 is similar to a matrix in the form

[
a 0
0 b

]
or

[
a 1
0 a

]
.

3. Show that thematrix

⎡

⎣
0 a b
0 0 c
0 0 0

⎤

⎦ is nilpotent of index 3 for any nonzero numbers

a, b, c.
4. Describe the actions of all 2 × 2 matrices A on R

2 if A2 = I.
5. Show that A = [ai j ] ∈ R

3×3 with ai j = (−1)i+1 is nilpotent, and determine its
Jordan block representation.

6. Show that the Jordan block J (λ,m) has the only eigenvalue λ and the associated
eigenspace E(λ) has dimension 1. Also, show that (J (λ,m) − λI )m = 0 and
(J (λ,m) − λI )k �= 0 for k < m.

7. Show that rank (J (λ, k))i is k if λ �= 0, and it is max{0, k − i} if λ = 0.
8. Show that if a linear operator T on a finite dimensional vector space has a single

eigenvalue λ, then the number of 1s in the super-diagonal of its Jordan block
representation is equal to μ(λ) − γ (λ).

9. Show that the differentiation operator on Pn(C) is nilpotent. What is its index
of nilpotency? What is its Jordan block representation?
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10. If an n × n matrix A has trace 0 and rank 1, then show that A is nilpotent.
11. Show that each nilpotentn × nmatrix is similar to amatrixwith possibly nonzero

entries only on the super-diagonal.
12. Let A be an n × n matrix with nonzero super-diagonal entries, all other entries

being 0. Show that A is nilpotent of index n.

13. Let T be a nilpotent operator on a vector space of dimension n. Show that T n = 0
and that 0 is the only eigenvalue of T .

14. Let T be a linear operator on an n-dimensional vector space V . Prove that T is
nilpotent if and only if the characteristic polynomial of T is tn.

15. Show that if a matrix B ∈ C
m×m commutes with a Jordan block J (0,m), then

there exists p(t) ∈ Pm(C) such that B = p(J (0,m)).

6.5 Jordan Normal Form

The general case of a linear operator having many eigenvalues is addressed in the
following theorem.

Theorem 6.19 (Jordan normal form) Let T be a linear operator on a vector space
V of dimension n over F. Suppose the characteristic polynomial of T splits over F.

Then there exists a basis B for V such that the following are true:

(1) [T ]B,B is a block-diagonal matrix having Jordan blocks on its diagonal.
(2) Let λ be an eigenvalue of T with ascent �(λ) and let γi = null (T − λI )i . If ni

is the number of Jordan blocks J (λ, i) that appear in [T ]B,B, then

ni = 2γi − γi−1 − γi+1 for i ∈ {1, . . . , �(λ)}.
Further, such a representation of T as a block-diagonal matrix with Jordan blocks
is unique up to a permutation of the Jordan blocks.

Proof Suppose λ1, . . . , λr are the distinct eigenvalues of T . By Theorems 5.27
and 5.29, V = G(λ1) ⊕ · · ·G(λr ) where each generalized eigenspace G(λi ) is a
T -invariant subspace.

Consider the restriction linear operators Ti := T |G(λi ). For each i ∈ {1, . . . , r},
Ti is a linear operator on G(λi ), and it has only one eigenvalue λi with algebraic
multiplicity μ(λi ) = dim(G(λi )). Due to Theorem 6.18, there exists a basis Bi such
that [Ti ]Bi ,Bi is a block-diagonal matrix Ji whose blocks are the Jordan blocks of the
form J (λi ). Take the basis B = B1 ∪ · · · ∪ Br for V .

(1) Clearly, [T ]B,B is the required block-diagonal matrix.

(2) Let λ = λ j be an eigenvalue for some j ∈ {1, . . . , r}. We compute ni and γi
for this eigenvalue. The number ni is the number of Jordan blocks J (λ j , i) that
appear in [T ]B,B .Notice that ni is equal to the number of Jordan blocks J (λ j , i) that
appear on the Jordan block representation of [Tj ]Bj ,Bj . As γi = null (T − λ j I )i =
null (Tj − λ j I )i , by Theorem 6.18, it follows that ni = 2γi − γi−1 − γi+1.
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The uniqueness of the block-diagonal matrix up to a permutation of the Jordan
blocks follows from the formula for ni . �

If T is a linear operator on a finite dimensional vector space V, then any basis
B for V, with respect to which [T ]B,B is in Jordan normal form, is called a Jordan
basis.

Due to Theorem 6.18, our proof says that [T ]B,B = diag(J1, . . . , Jr ), where Ji
is a block-diagonal matrix having blocks as Jordan blocks of the form J (λi ) for
i ∈ {1, . . . , r}. In addition, the following are true:

1. The distinct numbers on the diagonal of [T ]B,B are λ1, . . . , λr , where each λi

occurs μ(λi ) times.
2. The number of Jordan blocks whose diagonal entries are λi is γ (λi ).

3. The largest Jordan block whose diagonal entries are λi has order �(λi ).

4. The characteristic polynomial of T is 	r
i=1(t − λi )

μ(λi ).

5. The minimal polynomial of T is 	r
i=1(t − λi )

�(λi ); see Theorem 5.34.
6. The number of 1s in the super-diagonal of the Jordan normal form is equal to∑r

i=1(μ(λi ) − γ (λi )).

As our construction shows, the Jordan blocks in each Ji read from left top to
right bottom are nonincreasing in order. We can, of course, choose any ordering of
these Ji s. That is, a Jordan normal form is unique provided we fix some ordering of
the eigenvalues λ1, . . . , λr . In this sense, Jordan normal form is canonical; we thus
speak of the Jordan normal form of a linear operator.

Example 6.20 Let T : R
6 → R

6 be defined by T (a1, a2, a3, a4, a5, a6) = (b1, b2,
b3, b4, b5, b6), where

b1 = 2a1, b2 = a1 + 2a2, b3 = −a1 + 2a3,

b4 = a2 + 2a4, b5 = a1 + a2 + a3 + a4 + 2a5, b6 = a5 − a6.

The matrix of T in the standard basis is lower triangular; its diagonal entries are the
eigenvalues. The characteristic polynomial of T is (t − 2)5(t + 1).

For the eigenvalue −1, we see that
(T + I )(a1, a2, a3, a4, a5, a6) = (3a1, a1 + 3a2, − a1 + 3a3, a2 + 3a4,

a1 + a2 + a3 + a4 + 3a5, a5).
Then (T + I )(a1, a2, a3, a4, a5, a6) = 0 when a1 = a2 = a3 = a4 = a5 = 0 and a6
arbitrary. A corresponding eigenvector is clearly e6. Since N (T + I )2 = N (T + I ),
G(−1) = N (T + I ) = span{e6}.Also, γ (−1) = μ(−1) = �(−1) = 1. The restric-
tion operator T |G(−1) is given by

T |G(−1)(0, 0, 0, 0, 0, a6) = (0, 0, 0, 0, 0,−a6).

Notice that dim(G(−1)) = 1. Thus the matrix of T |G(−1) in the basis {e6} is a 1 × 1
matrix having the single entry as −1. It is the Jordan block J (−1, 1).
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We see that the algebraicmultiplicity of the eigenvalue 2 isμ(2) = 5.Wecompute
its geometric multiplicity and ascent as in the following.
(T − 2I )(a1, a2, a3, a4, a5, a6)
= (0, a1, − a1, a2, a1 + a2 + a3 + a4, a5 − 3a6)
T (T − 2I )2(a1, a2, a3, a4, a5, a6)
= (T − 2I )(0, a1,−a1, a2, a1 + a2 + a3 + a4, a5 − 3a6)
= (0, 0, 0, a1, a2, a1 + a2 + a3 + a4 − 3a5 + 9a6)
T (T − 2I )3(a1, a2, a3, a4, a5, a6)
= (0, 0, 0, 0, a1,−3a1 − 2a2 − 3a3 − 3a4 + 9a5 − 27a6)
T (T − 2I )4(a1, a2, a3, a4, a5, a6)
= (0, 0, 0, 0, 0,−3(10a1 + 6a2 + 9a3 + 9a4 − 27a5 + 81a6))
(T − 2I )5(a1, a2, a3, a4, a5, a6)
= (0, 0, 0, 0, 0,−3(10a1 + 6a2 + 9a3 + 9a4 − 27a5 + 81a6)).

G1 = N (T − 2I ) = {(0, 0, a3, a4, a5, a6) : a3 + a4 = a5 − 3a6 = 0},
G2 = N (T − 2I )2 = {(0, 0, a3, a4, a5, a6) : a3 + a4 − 3a5 + 9a6 = 0},
G3 = N (T − 2I )3

= {(0, a2, a3, a4, a5, a6) : 2a2 + 3a3 + 3a4 − 9a5 + 27a6 = 0},
G4 =N (T − 2I )4

={(a1, a2, a3, a4, a5, a6) : 10a1 + 6a2 + 9a3 + 9a4 − 27a5 + 81a6 = 0}
G5 = N (T − 2I )5 = N (T − 2I )4 = G4.

Hence �(2) = 4 and G(2) = G4 = N (T − 2I )4. Write γi for γi (2). Thus, we
obtain

γ0 = N (T − 2I )0 = N (I ) = 0, γ1 = γ = dim(G1) = 2, γ2 = dim(G2) = 3,

γ3 = dim(G3) = 4, γ4 = dim(G4) = 5, γ4+ j = 5 for j ≥ 1.

The number of Jordan blocks J (2, i) appearing in the Jordan form is given by ni =
2γi − γi−1 − γi+1. It gives

n1 = 1, n2 = 0, n3 = 0, n4 = 1, n4+ j = 0 for j ≥ 1.

Therefore, there are two Jordan blocks for the eigenvalue 2, namely J (2, 4) and
J (2, 1). Along with the one for λ = −1, the Jordan normal form of T is the block-
diagonal matrix diag( J (2, 4), J (2, 1), J (−1, 1) ).

To illustrate the construction in the proof of Theorem 6.18, we consider the restric-
tion operator T |G(2), which is same as T with domain and co-domain as G(2). Thus,
for ease in notation, we continue using T instead of T |G(2).Recall that ki = γi − γi−1

implies that k1 = 2, k2 = 1, k3 = 1 and k4 = 1. The next step in the construc-
tion is to start with k4 = 1 linearly independent vectors from G4\G3. Such a vector
u41 = (a1, a2, a3, a4, a5, a6) satisfies

10a1 + 6a2 + 9a3 + 9a4 − 27a5 + 81a6 = 0
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but does not satisfy

a1 = 0 and 2a2 + 3a3 + 3a4 − 9a5 + 27a6 = 0.

We choose one by taking a1 nonzero and satisfying the first equation in the simplest
manner, say, by choosing a2 nonzero and all others zero:

u41 = (3, − 5, 0, 0, 0, 0).

Since k4 = 1, there is no need to extend {u41} to a basis for U4 in order that G4 =
G3 ⊕U4 happens. We see that such a U4 is given by span{u41}.

Next, we take

u31 := (T − 2I )u41 = (T − 2I )(3, − 5, 0, 0, 0, 0) = (0, 3,−3,−5,−2, 0).

Since all vectors in G2 have second component equal to 0, u31 /∈ G2 as stated in The-
orem 6.18. Further, u31 ∈ G3; its first component is 0 and the rest of the components
satisfy:

2a2 + 3a3 + 3a4 − 9a5 + 27a6 = 0.

Thus u31 ∈ G3. Since k3 = 1, we take U3 = span{u31} and we have G3 = G2 ⊕U3.

In the next step, we take

u21 = (T − 2I )u31 = (T − 2I )(0, 3,−3,−5,−2, 0) = (0, 0, 0, 3,−5,−2).

Check that u21 ∈ G2 \ G1. as k2 = 1, G2 = G1 ⊕U2, where U2 = span{u21}.
Finally, we take

u11 = (T − 2I )u21 = (T − 2I )(0, 0, 0, 3,−5,−2) = (0, 0, 0, 0, 3, 1).

It is easy to check that u11 ∈ G1 \ G0, recalling thatG0 = {0}. Since k1 = 2,we need
to extend {u11} to a linearly independent set by adding one more vector from G1. In
u11,we have the fourth component 0, so we choose a vector with its fourth component
nonzero for keeping linear independence. Our choice is

u12 = (0, 0,−1, 1, 0, 0).

Now, wemust order the basis vectors u11, u
1
2, u

2
1, u

3
1, u

4
1. For this purpose, wewrite

them vertically for the respective spaces

G1 U2 U3 U4

u11 u21 u31 u41
u12
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We visit them horizontally to get the basis for G(2) as

B1 = {u11, u21, u31, u41, u12}.

As discussed earlier,G(−1) has the basis {e6}. SinceR
6 = G(2) ⊕ G(−1),we have

the basis for R
6 as

B = {u11, u21, u31, u41, u12, e6}.

This is the Jordan basis in which [T ]B,B should be in the Jordan normal form. We
verify it as follows:

Tu11 = T (0, 0, 0, 0, 3, 1) = (0, 0, 0, 0, 6, 2) = 2u11
Tu21 = T (0, 0, 0, 3,−5,−2) = (0, 0, 0, 6,−7,−3) = u11 + 2u21
Tu31 = T (0, 3,−3,−5,−2, 0)= (0, 6,−6,−7,−9,−2)= u21 + 2u31
Tu41 = T (3,−5, 0, 0, 0, 0) = (6,−7,−3,−5,−2, 0)= u31 + 2u41
Tu12 = T (0, 0,−1, 1, 0, 0) = (0, 0,−2, 2, 0, 0) = 2u12
T e6 = T (0, 0, 0, 0, 0, 1) = (0, 0, 0, 0, 0,−1) = −e6

Then [T ]E,E = J as given below. Further, construct the matrix P by taking the
transposes of the basis vectors as its columns, and take [T ] as the matrix of T
with respect to the standard basis of R

6. Then the following verification shows that
P−1[T ]P = J.

T =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

2 0 0 0 0 0
1 2 0 0 0 0

−1 0 2 0 0 0
0 1 0 2 0 0
1 1 1 1 2 0
0 0 0 0 1 −1

⎤

⎥⎥⎥
⎥⎥⎥
⎦

, P =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

0 0 0 6 0 0
0 0 3 −5 0 0
0 0 −3 0 −1 0
0 3 −5 0 1 0
3 −5 −2 0 0 0
1 −2 0 0 0 1

⎤

⎥⎥⎥
⎥⎥⎥
⎦

,

J =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

2 1
2 1

2 1
2

2
− 1

⎤

⎥⎥⎥⎥
⎥⎥
⎦

, T P = P J =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

0 0 0 6 0 0
0 0 6 −7 0 0
0 0 −6 −3 −2 0
0 6 −7 −5 2 0
6 −7 −9 −2 0 0
2 −3 −2 0 0 −1

⎤

⎥⎥⎥⎥
⎥⎥
⎦

.

Notice that the columns of thematrix P are the transposes of the vectors of the Jordan
basis.

In general, if T is a givenmatrix of order n, then it is considered as a linear operator
on F

n×1. In that case, vectors in the Jordan basis are from F
n×1; consequently, they

become the columns of P instead of their transposes. �

From the uniqueness of Jordan normal form, it follows that two n × n matrices
are similar if and only if they have the same Jordan normal form, up to permutations
of Jordan blocks. Moreover, the Jordan normal form of a linear operator T on a
finite dimensional complex vector space is determined by the dimensions of the
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generalized eigenspaces, equivalently, from the ranks of the operators (T − λI ) j for
j = 0, 1, 2, . . . , for eigenvalues λ of T, due to the rank-nullity theorem.

For any matrix A ∈ C
n×n, equality of the row rank with the rank implies that

rank (AT − λI ) j = rank (A − λI ) j for j = 0, 1, 2, . . .. Therefore, AT is similar
to A.

To see how AT is similar to A explicitly, go back to the basis B as written down
in the proof of Theorem 6.18. Instead of reading the two-dimensional list from left
to right, read them from right to left, row after row from top to bottom. For example,
the first two rows in the new ordering would now look like:

u�
1 . . . , u21, u11;

u�
2 . . . , u22, u12;

We call this new ordering of B as the reverse order basis. In the reverse order basis,
each Jordan block will be a lower triangular matrix. Consequently, the Jordan matrix
in Theorem 6.19will be a lower triangular matrix with Jordan blocks having 1s on the
subdiagonal instead of the super-diagonal. Notice that in the reverse order basis, the
Jordanmatrix is exactly J T ,where J is the Jordanmatrix ofTheorem6.19.Therefore,
A is similar to J as well as to J T . However, if A has the Jordan representation
A = P−1 J P, then AT = PT J T (PT )−1. That is, AT is similar to J T . Consequently,
A is similar to AT .

Exercises for Sect.6.5

1. Determine a Jordan basis and a Jordan normal form of each of the following
matrices:

(a)

⎡

⎢⎢
⎢⎢
⎣

0 1 1 0 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥⎥
⎥⎥
⎦

(b)

⎡

⎣
1 −1 0

−1 4 −1
−4 13 −3

⎤

⎦ (c)

⎡

⎢
⎢
⎣

1 0 3 0
1 3 0 3
0 0 1 0
0 0 3 1

⎤

⎥
⎥
⎦

(d)

⎡

⎢⎢
⎣

1 −1 −2 3
0 0 −2 3
0 1 1 −1
0 0 −1 2

⎤

⎥⎥
⎦ (e)

⎡

⎢⎢
⎣

1 0 0 0
0 0 1 0
0 0 0 1
1 6 −1 −4

⎤

⎥⎥
⎦ (f)

⎡

⎢⎢
⎣

5 −1 0 0
9 −1 0 0
0 0 7 −2
0 0 12 −3

⎤

⎥⎥
⎦ .

2. Show that the following matrices have the same characteristic polynomial, the
same minimal polynomial, but they have different Jordan normal forms:

(a)

⎡

⎢⎢
⎣

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥
⎦ (b)

⎡

⎢⎢
⎣

0 1 0 1
0 0 0 0
0 0 0 1
0 0 0 0

⎤

⎥⎥
⎦ .

3. Show that

⎡

⎣
1 1 1

−1 −1 −1
1 1 0

⎤

⎦ and

⎡

⎣
1 1 1

−1 −1 −1
1 0 0

⎤

⎦ are not similar.
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4. In each of the following cases, determine if the two matrices similar.

(a)

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ and

⎡

⎣
3 0 0
0 0 0
0 0 0

⎤

⎦ .

(b)

⎡

⎣
0 1 α

0 0 1
0 0 0

⎤

⎦ and

⎡

⎣
1 1 0
0 0 1
0 0 0

⎤

⎦ , where α is any scalar.

(c)

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦ and

⎡

⎣
1 0 0
0 ω 0
0 0 ω2

⎤

⎦ , where ω3 = 1 and ω �= 1.

5. Let A = [ai j ], B = [bi j ] ∈ C
n×n with ai j = 1 for all i, j; b11 = n, and bi j = 0

for all other i, j. Show that A and B are similar.
6. Let J ∈ C

n×n be a block-diagonal matrix with blocks as Jordan blocks. Suppose
that the distinct diagonal entries in J are λ1, . . . , λk, where λi appearsmi times.
Also, suppose that the largest Jordan block whose diagonal entries are λi is of
order �i , and that the number of Jordan blocks whose diagonal entries are λi is
γi . Then show the following:

(a) The characteristic polynomial of J is (t − λ1)
m1 · · · (t − λk)

mk .

(b) The minimal polynomial of J is (t − λ1)
�1 · · · (t − λk)

�k .

(c) null (J − λi I ) = γi .

7. How many nonsimilar 3 × 3 matrices with real entries having characteristic
polynomial (t − 1)3 exist?

8. Let T be a linear operator on a complex vector space of dimension 5. Suppose
χ
T (t) = (t − 2)2(t − 3)3, null (T − 2I ) = 1, and null (T − 3I ) = 2. What is

the Jordan normal form of T ?
9. Let T be a linear operator on a complex vector space of dimension 5. Suppose

χ
T (t) = (t − λ)5 and rank (T − λI ) = 2. What are the possible Jordan normal

forms of T ?
10. Let A ∈ C

6×6. Suppose we are given the characteristic polynomial, the minimal
polynomial, and also the geometric multiplicities of each eigenvalue of A. Show
that the Jordan normal form of A is uniquely determined.

11. Let A ∈ R
7×7 have the characteristic polynomial (t − 2)4(t − 3)3 and minimal

polynomial (t − 2)2(t − 3)2. Show that A is similar to one of two matrices in
Jordan normal form depending on γ (2).

12. Give two matrices in C
7×7 having the same characteristic polynomial, the same

minimal polynomial, and the same geometric multiplicity of each eigenvalue,
but which have distinct Jordan normal forms.

13. Find all possible Jordan normal forms of an 8 × 8 matrix whose characteristic
polynomial is (t − 6)4(t − 7)4, minimal polynomial is (t − 6)2(t − 7)2, and
γ (6) = 3.

14. Determine all possible Jordan normal forms of an 8 × 8 complex matrix with
minimal polynomial t2(t − 1)3.
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15. Find all possible Jordan normal forms for 10 × 10 complex matrices having
minimal polynomial as t2(t − 1)2(t + 1)3.

16. What are the invariant subspaces of a linear operator whose Jordan normal form
consists of a single Jordan block?

17. Show that (J (0,m))m = 0. Show also that p(J (λ,m)) = 0, where p(t) is the
characteristic polynomial of the Jordan block J (λ,m). Use this result to give
another proof of Cayley–Hamilton theorem.

18. Let Jm be a Jordan block of order m. Let P be an m × m matrix whose anti-
diagonal entries are all 1 and all other entries are 0. The anti-diagonal entries are
the entries in the positions (1,m), (2,m − 1), . . . , (m, 1). Show that P−1 = P
and that P−1 Jm P = J T

m . Use this to prove that any square matrix is similar to
its transpose.

19. Let A ∈ C
n×n have only real eigenvalues. Show that there exists an invertible

matrix P ∈ R
n×n such that P−1AP ∈ R

n×n .

6.6 Problems

1. How many orthogonal matrices P exist such that P−1

[
0 1
1 0

]
P is diagonal?

2. Find a matrix P such that PT

[
1 5
5 26

]
P = I and PT

[
1 8
8 56

]
is diagonal.

3. Determine a matrix P such that PT

[−2 1
1 −1

]
P and PT

[
5 2
2 −2

]
are diagonal

4. Under what conditions on the complex numbers α1, . . . , αn the n × n matrix⎡

⎢
⎢
⎣

α1

α2

. .
.

αn

⎤

⎥
⎥
⎦ is diagonalizable?

5. Are the following statements true? Give reasons.

(a) Any 2 × 2 matrix with a negative determinant is diagonalizable.
(b) If T is a linear operator on C

n with T k = 0 for some k > 0, then T is
diagonalizable.

(c) If the minimal polynomial of a linear operator T on C
n has degree n, then

T is diagonalizable.

6. Let T be a linear operator on a finite dimensional complex vector space V . Prove
that T is diagonalizable if and only if T is annihilated by a polynomial having
no multiple zeros.

7. Let T be an invertible linear operator on a finite dimensional complex vector
space. If Tm is diagonalizable for some m ∈ N, then prove that T is diagonaliz-
able.
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8. Let T be a diagonalizable operator on a finite dimensional vector space V . Prove
that if U is a T -invariant subspace of V, then T |U is also diagonalizable.

9. Let T be a linear operator on a real vector space V . Prove that if V has a basis
of eigenvectors of T, then tr(T 2) ≥ 0.

10. Let S and T be linear operators on a finite dimensional vector space V . If ST =
T S, prove that there exists a basis of V with respect to which both [S] and [T ]
are upper triangular.

11. Let T be a linear operator on a vector space. Prove that if for each nonzero vector
v, there exists a scalar λ such that T v = λv, then T is a scalar operator.

12. Show that any matrix of trace zero is similar to a matrix with each diagonal entry
zero.

13. Let T be a linear operator on a vector space V of dimension n. If tr(T ) = nλ,

prove that there exists a basis of V with respect to which all diagonal entries of
the matrix [T ] are λ.

14. Let T be a linear operator on a finite dimensional inner product space. Prove that
T is nilpotent if and only if [T ]B,B is upper triangular with all diagonal entries
0 with respect to some basis B of V .

15. Let T be a linear operator on a finite dimensional vector space V over F. Let U
be a T -invariant proper subspace of V . Prove that T is triangularizable if and
only if the minimal polynomial of T splits over F.

16. Let T be a linear operator on a finite dimensional complex vector space. Prove
that if 0 is the only eigenvalue of T, then T is nilpotent. This is not necessarily
true for a real vector space.

17. Prove that if the minimal polynomial of a matrix A ∈ C
3×3 having a single

eigenvalue λ is known, then the Jordan block representation of A is uniquely
determined. Also show that this is no longer true if A ∈ C

4×4.

18. Let T be a nilpotent operator on a finite dimensional vector space. Suppose that
in the Jordan block representation of T, the longest string of consecutive 1s on
the super-diagonal has lengthm. Show that theminimal polynomial of T is tm+1.

19. What is the minimal polynomial of the zero (square) matrix?
20. Show that the minimal polynomial of a nonzero square matrix is a nonzero

polynomial.
21. Show that the relation “unitarily similar” is an equivalence relation.
22. Are A∗A and AA∗ unitarily similar?
23. Are A∗ and A unitarily similar?
24. Let A ∈ C

n×n be such that tr(Ak) = 0 for each k ∈ N. Prove that A is nilpotent.
25. Let S and T be nilpotent linear operators on a finite dimensional vector space

V . Prove that if ST is nilpotent, then so is T S.

26. Let A ∈ F
n×n be a nilpotent matrix of index n. Determine a matrix B such that

B2 = I + A.

27. Let T be a linear operator on a finite dimensional vector space. Prove that there
are subspacesU and W of V such that V = U ⊕ W, T |U is nilpotent, and T |W
is invertible.

28. Let T be a nilpotent operator on a vector space of dimension n. Prove that
det(I + T ) = 1.
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29. Let T be a nilpotent operator on a vector space of dimension n. Suppose
null (T n−1) �= null (T n). Prove that for each j ∈ {0, 1, . . . , n}, null (T j ) = j.

30. Let T be a nilpotent operator on a finite dimensional vector space V .Letm be the
index of nilpotency of T . Prove that for each k ∈ {1, . . . ,m − 1}, null (T k+1) +
null (T k−1) ≤ 2 null (T k).

31. Theorem6.18 can also be proved by induction on n = dim(V ).Towards this end,
assume thatT is a nilpotent linear operator on avector spaceV offinite dimension
whose characteristic polynomial splits. First, show that if dim(V ) = 1, then
there exists a basis B = {v} of V such that [T ]B,B = [λ].Next, assume that each
nilpotent linear operator on any vector space of dimension at most n − 1, has a
basis in which the matrix of the linear operator is a block-diagonal matrix with
Jordan blocks on its diagonal. Let dim(V ) = n. Prove the following:

(a) Let U := R(T ) and let S = T |U . Then U is an S-invariant subspace of V,

and S(u) = T (u) for each u ∈ U. Further, there exists a basis B for U with
B = B1 ∪ · · · ∪ Bk, where

Bi = {ui1, . . . , uini } with S(ui1) = 0, T (uij ) = uij−1 for 2 ≤ j ≤ ni .

(b) Write N (T ) = (R(T ) ∩U ) ⊕ W, ni = |Bi |, r := n1 + · · · + nk, and s :=
dim(R(T ) ∩U ). The last vector uini in each Bi is in N (T ). Write uini+1 :=
Tuini . Construct Ei = Bi ∪ {uini+1}.

(c) Choose a basis {z1, . . . , zn−r−s} for W. Then the set E := E1 ∪ · · · ∪ Ek ∪
{z1, . . . , zn−r−s} is linearly independent.

(d) E is a basis for V and [T ]E,E is a block-diagonal matrix with Jordan blocks
on its diagonal.

32. Let a square matrix A have the Jordan normal form J so that there exists an
invertible matrix P where AP = P J. Show that the columns of P are either
eigenvectors of A or solutions x of the linear equation of the form Ax = u + λx
for a known vector u and an eigenvalue λ of A.

33. Assume that the matrix A has the Jordan normal form J, where

A =
⎡

⎣
−2 −1 −3
4 3 3

−2 1 −1

⎤

⎦ , J = P−1AP =
⎡

⎣
−4 0 0
0 2 1
0 0 2

⎤

⎦ .

Use the ideas in Problem 32 to determine the matrix P.

34. Let J be a Jordan block representation of a linear operator T on an n-dimensional
complex vector space V having a single eigenvalue λ. Show that the uniqueness
of Jordan block representation in Theorem 6.18 follows from each one of the
following.

(a) null (J − λI )i − null (J − λI )i−1 = the number of Jordan blocks of order
at least i.
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(b) dim(N (A − λI ) ∩ R(A − λI ) j−1) = the number of Jordan blocks of order
at least j.

(c) rank (J − λI )k = ∑s
i=1(mi − k), if J = diag(J (λ,m1), . . . , J (λ,mr ))

withm1 ≥ · · · ≥ mr and s is the largest index in {1, . . . , r} such thatms > k.

35. Another way to show uniqueness of a Jordan normal form is given below;
prove it.
Let T be a linear operator on a vector space of dimension n over F. Suppose
that the characteristic polynomial of T splits over F. For an eigenvalue λ of T,

let k = �(λ); and m = μ(λ). For j ∈ N, write r j = rank (T − λI ) j , and let n j

denote the number of Jordan blocks of the form J (λ, i) that appear in the Jordan
normal form of T . Then

(a) n1 + 2n2 + 3n3 + · · · + knk = m.

(b) r j = n − m for j ≥ k, and r j > n − m for 1 ≤ j < k.
(c) rk−1 = nk + n − m, rk−2 = 2nk + nk−1 + n − m,

rk−3 = 3nk + 2nk−1 + nk−2 + n − m, . . .

r1 = (k − 1)nk + (k − 2)nk−1 + · · · + 2n3 + n2 + n − m.
(d) n j = r j+1 − 2r j + r j−1 = 2γ j − γ j−1 − γ j+1.

36. Prove or disprove: Let A, B ∈ F
n×n . If the matrices

[
A 0
0 A

]
and

[
B 0
0 B

]
are

similar, then A and B are similar.
37. Let A, B ∈ C

n×n . Prove that if AB − BA commutes with A, then AB − BA is
nilpotent.

38. Let A ∈ F
n×n . Define T : F

n×n → F
n×n by T (X) = AX − X A. Prove that if A

is a nilpotent matrix, then T is a nilpotent operator.
39. Let T be a linear operator on a complex vector space V of dimension n. Prove

that V cannot be written as U ⊕ W for T -invariant proper subspaces U,W if
and only if the minimal polynomial of T is of the form (t − λ)n.

40. Let T be a linear operator on a finite dimensional vector space V over F. Let U
be a T -invariant proper subspace of V . Suppose that the minimal polynomial of
T splits over F. Prove that there exists a vector x ∈ V \U and there exists an
eigenvalue λ of T such that (T − λI )v ∈ U.

41. Prove Cayley–Hamilton theorem and the spectral mapping theorem using Schur
triangularization.

42. (Real Shur Form) Let A be an n × n matrix with real entries. Prove that there
exists an orthogonal matrix P such that PT AP is real block upper triangular;
i.e., it is in the form ⎡

⎢⎢
⎣

D1 � �

0 D2 �
. . .

0 0 Dr

⎤

⎥⎥
⎦ ,
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where each block Dj on the diagonal is either a 1 × 1 blockwith a real eigenvalue
of A or a 2 × 2 block whose eigenvalues consist of a pair of complex conjugate
characteristic roots of A.

43. (Real Jordan Form) Let T be a linear operator on a real vector space V of
dimension n, with characteristic polynomial

χ
T (t) = (t − λ1)

i1 · · · (t − λk)
ik ((t − α1)

2 + β1)
j1 · · · ((t − αm)2 + βm) jm ,

where λs, αs, and βs are real numbers. Let U1, . . . ,Uk be the generalized
eigenspaces corresponding to the distinct eigenvalues λ1, . . . , λk , respectively.
Let V1 = N (((t − α1)

2 + β1)
n), . . . , Vm = N (((t − αm)2 + βm)n). Prove the

following:

(a) V = U1 ⊕ · · · ⊕Uk ⊕ V1 ⊕ · · · ⊕ Vm .

(b) Each of U1, . . . ,Uk, V1, . . . , Vm is a T -invariant subspace of V .

(c) Each (T − λ j I )|Uj and each ((T − α j )
2 + β j ))|Vj is nilpotent.

44. Let S and T be linear operators on C
n. Let p(t) be a polynomial such that

p(ST ) = 0. Then prove that T Sp(T S) = 0. What can you conclude about the
minimal polynomials of ST and of T S?

45. Let S and T be linear operators on a finite dimensional inner product space V .

Prove that there exists an orthonormal basis for V with respect to which both S
and T have diagonal matrix representations if and only if ST = T S. Interpret
the result for matrices.

46. Let S and T be linear operators on a finite dimensional vector space V . Show
that I − ST + T S is not nilpotent.

47. An operator T is called unipotent if T − I is nilpotent. Determine the charac-
teristic polynomial of a unipotent operator. What are the possible eigenvalues of
a unipotent operator?

48. (Jordan Decomposition) Prove that each complex n × n matrix is similar to a
matrix D + N , where D is diagonal, N is nilpotent, DN = ND, each of D and
N can be expressed as polynomials in A; and that such D and N are unique.

49. Prove that each complex n × n invertible matrix is similar to a matrix DN ,

where D is diagonal, N is unipotent (i.e. N − I is nilpotent), DN = ND, each
of D and N can be expressed as polynomials in A; and that such D and N are
unique.

50. Let p(t) be the characteristic polynomial of an n × n matrix A. Let Cp be the
companion matrix of the polynomial p(t). Prove that A is similar to Cp if and
only if p(t) is the minimal polynomial of A.



Chapter 7
Spectral Representation

7.1 Playing with the Adjoint

Recall that if T is a linear operator on a finite dimensional inner product space V ,
then there exists a unique linear operator T ∗ : V → V , called the adjoint of T , which
satisfies

〈T x, y〉 = 〈x, T ∗y〉 for all vectors x, y ∈ V .

In applications we come across many types of linear operators which satisfy some
properties involving the adjoint. Some of them are listed in the following definition.

Definition 7.1 A linear operator T on a finite dimensional inner product space V
over F is called

(a) unitary if T ∗T = T T ∗ = I ;
(b) orthogonal if F = R and T is unitary;
(c) isometric if ‖T x‖ = ‖x‖ for each x ∈ V ;
(d) normal if T ∗T = T T ∗;
(e) self-adjoint if T ∗ = T ;
(f) positive semi-definite if T is self-adjoint and 〈T x, x〉 ≥ 0 for all x ∈ V ;
(g) positive definite if T is self-adjoint and 〈T x, x〉 > 0 for all nonzero x ∈ V .

An isometric operator is also called an isometry, and a positive semi-definite
operator is also called a positive operator. A self-adjoint operator T : V → V is
called negative definite if 〈T x, x〉 < 0 for each nonzero x ∈ V .

For any linear operator T on a finite dimensional complex inner product space,

T = T1 + iT2 with T1 := 1

2
(T + T ∗), T2 = 1

2i
(T − T ∗).

Here, both T1 and T2 are self-adjoint. The linear operator T1 is called the real part,
and the linear operator T2 is called the imaginary part of the linear operator T .
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As matrices in F
n×n are linear operators on F

n×1, the same terminology applies
to matrices also. Further, when F = R, the adjoint of a matrix in F

n×n coincides
with its transpose. In addition to the above, the following types of matrices come up
frequently in applications:

A matrix A ∈ F
n×n is called

hermitian if A∗ = A;
real symmetric if F = R and AT = A;
skew-hermitian if A∗ = −A;
real skew-symmetric if F = R and AT = −A.

For any square matrix A, the matrix (A + A∗)/2 is hermitian, and the matrix
(A − A∗)/2 is skew-hermitian. Thus any matrix can be written as the sum of a
hermitian matrix and a skew-hermitian matrix. Similarly, a real square matrix can be
written as the sum of a real symmetric matrix and a real skew-symmetric matrix by
using transpose instead of the adjoint.

Example 7.2 LetV be an inner product space, and let {u1, . . . , un} be an orthonormal
subset of V . Corresponding to scalars λ1, . . . , λn in F, define T : V → V by

T x =
n∑

j=1

λ j 〈x, u j 〉u j , x ∈ V .

Then for every x, y ∈ V , we have

〈T x, y〉 =
n∑

j=1

λ j 〈x, u j 〉〈u j , y〉 =
n∑

j=1

〈
x, λ j 〈y, u j 〉u j

〉 =
〈
x,

n∑

j=1

λ j 〈y, u j 〉u j

〉
.

Thus,

T ∗y =
n∑

j=1

λ j 〈y, u j 〉u j , y ∈ V .

Therefore, T is self-adjoint if and only if λ j ∈ R for each j ∈ {1, . . . , n}.
Observe that Tui = λi ui and T ∗ui = λi ui for i ∈ {1, . . . , n}. Hence, for every

x, y ∈ V , we have

T ∗T x =
n∑

j=1

λ j 〈T x, u j 〉T ∗u j =
n∑

j=1

|λ j |2〈x, u j 〉u j ,

T T ∗y =
n∑

j=1

λ j 〈T ∗y, u j 〉Tu j =
n∑

j=1

|λ j |2〈y, u j 〉u j .

Therefore, T is a normal operator. We will see that every normal operator on a finite
dimensional inner product space is of the above form.
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If {u1, . . . , un} is an orthonormal basis of V , then by Fourier expansion, we have
x = ∑n

j=1〈x, u j 〉u j . In this case, the above equalities imply that T is unitary if and
only if |λ j | = 1 for each j ∈ {1, . . . , n}. �

The following result characterizes unitary operators.

Theorem 7.3 Let T be a linear operator on a finite dimensional inner product space
V . Then the following are equivalent:

(1) T is unitary.
(2) T ∗T = I.
(3) 〈T x, T y〉 = 〈x, y〉 for all x, y ∈ V .

(4) T is an isometry.
(5) If a list of vectors v1, . . . , vn is orthonormal in V, then the list T v1, . . . , T vn is

also orthonormal in V .

(6) If {v1, . . . , vn} is an orthonormal basis of V, then {T v1, . . . , T vn} is also an
orthonormal basis of V .

Proof (1) ⇒ (2) : Trivial.

(2) ⇒ (3) : T ∗T = I implies that 〈T x, T y〉 = 〈x, T ∗T y〉 = 〈x, y〉 for all x, y ∈ V .

(3) ⇒ (4) : By (3), ‖T x‖2 = 〈T x, T x〉 = 〈x, x〉 = ‖x‖2 for all x ∈ V .

(4) ⇒ (5) : Suppose that ‖T x‖ = ‖x‖ for each x ∈ V . Let B := {v1, . . . , vn} be
an orthonormal list of vectors in V . Let i, j ∈ {1, . . . , n}. Due to Theorem 4.8, we
see that 〈T vi , T v j 〉 = 〈vi , v j 〉. Hence E := {T v1, . . . , T vn} is an orthonormal set.
Now, for any x ∈ V, if T x = 0, then ‖x‖ = ‖T x‖ = 0 implies that T is injective.
In particular, vi 
= v j implies that T vi 
= T v j . That is, E is an orthonormal list.

(5) ⇒ (6) : Assume (5). If {v1, . . . , vn} is an orthonormal basis of V, then the
orthonormal set {T v1, . . . , T vn} with n distinct vectors is also an orthonormal basis
of V .

(6) ⇒ (1) : Let E := {v1, . . . , vn} be an orthonormal basis of V . By (6), the
set {T v1, . . . , T vn} is an orthonormal basis for V . Let v j ∈ E . Then for each
i ∈ {1, . . . , n},

〈vi , T ∗T v j 〉 = 〈T vi , T v j 〉 = δi j = 〈vi , v j 〉.

That is, 〈vi , (T ∗T − I )v j 〉 = 0 for each basis vector vi . So, (T ∗T − I )v j = 0. Since
this holds for each basis vector v j , we conclude that T ∗T = I.

As T maps a basis of V onto a basis of V, it is invertible. Therefore, T ∗ = T−1;
and T T ∗ = I. �

The following implications for the statements in Theorem 7.3 can be verified
independently:

(2) ⇒ (1), (3) ⇒ (2), (4) ⇒ (3), (3) ⇔ (5), (3) ⇔ (6).

Further, it is easy to see that T is unitary if and only if T ∗ is unitary. The equiva-
lent statements using T ∗ instead of T in Theorem 7.3 may then be formulated and
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proved. Since orthogonal operators are unitary operators with added constraint that
the underlying field is R, all the statements in Theorem 7.3(2)–(6) with suitable
changes are equivalent to the statement that T is orthogonal. In particular, the sixth
statement there says that all orthogonal and unitary operators are isomorphisms. The
fifth statement asserts that

the matrix representation of an orthogonal (unitary) operator with respect to
an orthonormal basis is an orthogonal (unitary) matrix.

The matrix version of Theorem 7.3 thus looks as follows.

Theorem 7.4 For a matrix A ∈ F
n×n the following statements are equivalent:

(1) A is unitary.
(2) A∗A = I .
(3) AA∗ = I .
(4) (Ay)∗Ax = y∗x for all x, y ∈ F

n×1.
(5) (Ax)∗Ax = x∗x for each x ∈ F

n×1.
(6) The columns of A form an orthonormal basis for Fn×1.
(7) The rows of A form an orthonormal basis for F1×n .

For any matrix A ∈ R
n×n, the above theorem gives equivalent statements for the

orthogonality of A; we just replace the adjoint by transpose.
In proving that two operators act the same way on each vector, a condition on the

inner products of the form 〈T v, v〉 is helpful.
Theorem 7.5 Let T be a linear operator on a finite dimensional inner product space
V over F. Let 〈T v, v〉 = 0 for all v ∈ V . If F = C or T is self-adjoint, then T = 0.

Proof We consider two cases.
(1) Suppose F = C. Let u,w ∈ V . A straightforward calculation shows that

4〈Tu,w〉 = 〈T (u + w), u + w〉 − 〈T (u − w), u − w〉
+ i 〈T (u + iw), u + iw〉 − i 〈T (u − iw), u − iw〉 = 0.

In particular, with w = Tu, we have 〈Tu, Tu〉 = 0 for each u ∈ V . Hence T = 0.

(2) Suppose T is self-adjoint and F = R. Then 〈Tu,w〉 = 〈u, T ∗w〉 = 〈u, Tw〉 =
〈Tw, u〉 for all u,w ∈ V . Thus

4〈Tu,w〉 = 〈T (u + w), u + w〉 − 〈T (u − w), u − w〉 = 0.

Once again, taking w = Tu, we have Tu = 0 for all u ∈ V . �

There are non-self-adjoint operators on real inner product spaces such that
〈T v, v〉 = 0 for all v ∈ V . For instance, the linear operator T : R2 → R

2 defined
by T (a, b) = (−b, a) satisfies
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〈T (a, b), (a, b)〉 = 〈(−b, a), (a, b)〉 = 0 for all (a, b) ∈ R
2

but T 
= 0. Here, of course, T ∗ = −T .

Theorem 7.6 Let T be a linear operator on a finite dimensional real inner product
space V . If T ∗ = −T, then 〈T x, x〉 = 0 for all x ∈ V . In particular, if A ∈ R

n×n is
real skew-symmetric, then xT Ax = 0 for each x ∈ R

n.

Proof Suppose T ∗ = −T . Then for each x ∈ V , we have

〈T x, x〉 = 〈x, T ∗x〉 = −〈x, T x〉 = −〈T x, x〉

so that 〈T x, x〉 = 0. The particular case is obvious. �

A useful characterization of self-adjoint operators on complex inner product
spaces is as follows.

Theorem 7.7 Let T be a linear operator on a finite dimensional complex inner
product space V . Then T is self-adjoint if and only if 〈T v, v〉 ∈ R for each v ∈ V .

Proof If T is self-adjoint, then for each v ∈ V,

〈T v, v〉 = 〈T ∗v, v〉 = 〈v, T v〉 = 〈T v, v〉.

Therefore, 〈T v, v〉 ∈ R for each v ∈ V .

Conversely, suppose that 〈T v, v〉 ∈ R for each v ∈ V . Then

〈T v, v〉 = 〈T v, v〉 = 〈v, T v〉 = 〈T ∗v, v〉.

That is, 〈(T − T ∗)v, v〉 = 0 for all v ∈ V . By Theorem 7.5, T − T ∗ = 0. Therefore,
T is self-adjoint. �

Certain properties of eigenvalues follow from the nature of the linear operator.

Theorem 7.8 Let λ be an eigenvalue of a linear operator T on a finite dimensional
inner product space V .

(1) If T is self-adjoint, then λ ∈ R.

(2) If T is positive semi-definite, then λ ≥ 0.
(3) If T is positive definite, then λ > 0.
(4) If T is unitary, then |λ| = 1.

Proof Let v be an eigenvector of T corresponding to the eigenvalue λ.

(1) Suppose T is self-adjoint. Then

λ〈v, v〉 = 〈λv, v〉 = 〈T v, v〉 = 〈v, T v〉 = 〈v, λv〉 = λ〈v, v〉.

As v 
= 0, λ = λ. that is, λ ∈ R.
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(2) Let T be positive semi-definite. As v 
= 0, 0 ≤ 〈T v, v〉
‖v‖2 = 〈λv, v〉

‖v‖2 = λ.

(3) Similar to (2).

(4) For unitary T, T v = λv implies ‖v‖ = ‖T v‖ = |λ| ‖v‖. As v 
= 0, |λ| = 1. �

Theorem 7.9 Let T be a self-adjoint operator on a finite dimensional inner product
space V . Then each characteristic value of T is real, and it is an eigenvalue of T .

Proof Letλ be a characteristic value of T . In general,λ ∈ C.Let B be an orthonormal
basis of V , and let A := [T ]B,B . Then A is hermitian, and λ is a characteristic value
of A. Since A is a linear operator on C

n×1, the scalar λ is an eigenvalue of A.

Theorem 7.8(1) implies that λ ∈ R. Then λ is a real characteristic value of T . Due
to Theorem 5.11, λ is an eigenvalue of T . �

Then the following existence result is immediate.

Theorem 7.10 Each self-adjoint operator on a finite dimensional inner product
space has an eigenvalue.

Theorem 7.10 can be proved without using matrices. For this purpose, we use the
following result.

Lemma 7.11 Let T be a linear operator on a finite dimensional inner product space
V . Then for each nonzero real number β, the operator T ∗T + β2 I is injective.

Proof Let u ∈ V . Then

〈(T ∗T + β2 I )u, u〉 = 〈T ∗Tu, u〉 + 〈β2u, u〉 = 〈Tu, Tu〉 + β2〈u, u〉.

Now, if (T ∗T + β2)u = 0 then u = 0. Therefore, T ∗T + β2 I is injective. �

An alternative proof of Theorem 7.10: Let T be a self-adjoint operator on an inner
product space V over F. If F = C, then Theorem 5.4 implies that T has an eigen-
value. If T = 0, then 0 is an eigenvalue of T . So, suppose that F = R, T 
= 0, and
dim(V ) = n ≥ 1. Then there exists a vector v ∈ V such that v 
= 0 and T v 
= 0. The
list v, T v, . . . , T nv, having n + 1 vectors, is linearly dependent. Then there exist
scalars a0, . . . , an not all zero such that

a0v + a1T v + · · · anT nv = 0.

Let k be the maximum index such that ak 
= 0. We obtain a polynomial p(t) =
a0 + a1t + · · · + aktk with a0, . . . , ak ∈ R, such that

p(T ) = a0 I + a1T + · · · + akT
k, ak 
= 0, p(T )(v) = 0

for a nonzero vector v. Thus p(T ) is not injective.
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By Proposition 5.1,

p(t) = ak(t − λ1) · · · (t − λ j )((t − α1)
2 + β2

1 ) · · · ((t − αm)2 + β2
m),

where λs, αs, and βs are real numbers. Then

p(T ) = ak(T − λ1 I ) · · · (T − λ j I )((T − α1 I )
2 + β2

1 I ) · · · ((T − αm I )
2 + β2

m I ).

If no quadratic factor is present in this product, then we have at least one linear
factor. Since p(T ) is not injective, one such linear factor is not injective.

Otherwise, there is at least one quadratic factor present in the product, so that the
corresponding β is nonzero. Since T is self-adjoint, so is T − α I for any α ∈ R.Due
to Lemma7.11, each operator of the form (T − α I )2 + β2 I in the above composition
is injective. But p(T ) is not injective. Hence in the above product, there exists a linear
factor which is not injective.

In any case, at least one of the maps of the form T − λ j I is not injective. Then
λ j is an eigenvalue of T . �

In contrast, an isometry on a real inner product space need not have an eigenvalue.
For example, the linear operator T : R2 → R

2 given by T (a, b) = (b,−a) is an
isometry, since

‖T (a, b)‖ = ‖(b,−a)‖ = (b2 + a2)1/2 = ‖(a, b)‖.

But T does not have an eigenvalue.

Exercises for Sect.7.1

1. For which complex numbers α the following matrices are unitary?

(a)

[
α 1/2

−1/2 α

]
(b)

[
α 0
1 1

]
.

2. Find a 3 × 3 unitary matrix, where all entries on its first row are equal.
3. Let A ∈ R

n×n . Show that if A is skew-symmetric, then 〈Ax, x〉 = 0 for each
x ∈ R

n×1. Is the converse true?
4. Let A ∈ R

n×n . Are the following statements true?

(a) If A is symmetric or skew-symmetric, then for each x ∈ R
n×1, A2x = 0

implies Ax = 0.
(b) If A is skew-symmetric and n is odd, then det(A) = 0.
(c) If A is skew-symmetric, then rank (A) is even.

5. Let the linear operator T : R3 → R
3 be given by

T (a, b, c) = (b + c, − a + 2b + c, a − 3b − 2c) for a, b, c,∈ R.
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Check whether T : R3 → R
3 is self-adjoint if the inner product is given by

(a) 〈(a, b, c), (α, β, γ )〉 = aα + bβ + cγ.

(b) 〈(a, b, c), (α, β, γ )〉 = 2aα + 3bβ + 2cγ + aγ + cα + 2bγ + 2cβ.

6. Consider the inner product spaceP(C)with 〈p, q〉 = ∫ 1
0 p(t)q(t)dt.Define the

linear operator T on P(C) by (T p)(t) = p(−t). Is T an isometry?
7. Show that each self-adjoint operator is normal, and also that each unitary operator

is normal.
8. Give an example of a normal operator which is neither unitary nor self-adjoint.

9. Show that for each α ∈ R, the 2 × 2 matrix

[
α −α

α α

]
is normal.

10. Let A ∈ C
n×n . Write H = (A + A∗)/2 and K = (A − A∗)/2. Show that A is

normal if and only if HK = K H.

11. Consider P2(R) as an inner product space with 〈 f, g〉 = ∫ 1
0 f (t)g(t)dt. Let the

linear operator T on P2(R) be defined by T (a0 + a1t + a2t2) = a1t. Prove that
T is not self-adjoint but [T ]B,B is real symmetric, where B = {1, t, t2}.

12. Let T be a linear operator on a real inner product space V of dimension n. Show
that T is self-adjoint if and only if [T ]B,B is real symmetric for any orthonormal
basis B of V .

13. Let T be a linear operator on a finite dimensional inner product space V . Prove
that det(T ∗) = det(T ).

14. Show that if A is a hermitian matrix, then det(A) ∈ R.

15. Let T, D : Pn(F) → Pn(F) be given by (T p)(t) = tp(t) and Dp = dp/dt.
Check whether T and D are self-adjoint if the inner product is given by
(a) 〈p, q〉 = ∫ 1

0 p(t)q(t)dt. (b) 〈p, q〉 = ∑n
j=0 p( j/n)q( j/n) .

16. Consider the inner product spaceP(C)with 〈p, q〉 = ∫ 1
0 p(t)q(t)dt. Is the linear

operator T on P(C) given by (T p)(t) = p(−t) self-adjoint?
17. Which of the following matrices are positive semi-definite?

(a)

[
1 1
1 0

]
(b)

[
0 1

−1 0

]
(c)

[
0 i

−i 0

]
(d)

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦

(e)

⎡

⎣
0 0 1
0 1 1
1 1 1

⎤

⎦ (f)

⎡

⎣
1 2 0
2 6 1
0 1 2

⎤

⎦ (g)

⎡

⎢⎢⎣

1 i 0 i
−i 1 2 0
0 2 1 0
1 0 0 1

⎤

⎥⎥⎦ .

18. For which value(s) of α is the matrix

⎡

⎣
1 α 1
0 1 0
0 1 0

⎤

⎦ positive semi-definite?

19. Show that if T is a hermitian operator on a complex inner product space of finite
dimension, then I + iT is invertible.

20. Show that if S is positive semi-definite and T is hermitian, then S + iT is invert-
ible.

21. Let A and B be positive definite matrices. Which among A2, A−1, AB, and
A + B are hermitian; and which are positive definite?
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22. Give an example of a linear operator which is not positive definite, but all its
eigenvalues are positive.

7.2 Projections

The word projection is used for projection of vectors on a subspace as in the notation
projU (y), and also it is used for operators as in the following definition.

Definition 7.12 A linear operator P on a vector space V is called a projection
operator or a projection on V if

Px = x for each x ∈ R(P).

If P is a projection on V with U = R(P) and W = N (P), then we say that P is a
projection onto U along W , and we denote it by PU,W .

Example 7.13 Let P : R2 → R
2 be given by

P(a, b) = (a, a) for (a, b) ∈ R
2.

It is easy to see that P is a linear operator on R2 and R(P) = {(a, a) : a ∈ R}. Note
that P(u) = u for each u ∈ R(P) so that P is a projection. �

Here is a characterization of projection operators.

Theorem 7.14 Let P be a linear operator on a vector space V . Then, P is a pro-
jection if and only if P2 = P; in that case,

V = R(P) ⊕ N (P), R(P) = N (I − P), and N (P) = R(I − P).

Proof Suppose P is a projection, that is, Px = x for every x ∈ R(P). Then for every
x ∈ V , we have P(I − P)x = Px − P(Px) = Px − Px = 0 so that P2 = P .
Conversely, suppose P2 = P . Let x ∈ R(P). Then x = Pu for some u ∈ V . Hence,
Px = P2u = Pu = x . Thus, Px = x for every x ∈ R(P) so that P is a projection.

Next assume that P2 = P . We show the three equalities.
For every x ∈ V , we have x = Px + (I − P)x . Here, Px ∈ R(P) and

P(I − P)x = Px − P2x = 0.

Hence, V = R(P) + N (P). Moreover, if x ∈ R(P) ∩ N (P), then x = Px = 0.
That is, R(P) ∩ N (P) = {0}. Hence V = R(P) ⊕ N (P).

Since P2 = P , we have (I − P)P = 0 and P(I − P) = 0. Hence, R(P) ⊆
N (I − P) and R(I − P) ⊆ N (P). Further, x ∈ N (I − P) implies x = Px ∈ R(P),

and x ∈ N (P) implies x = x − Px ∈ R(I − P). Thus, N (I − P) ⊆ R(P) and
N (P) ⊆ R(I − P). �
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We observe that if T : V → V is a linear operator such that V = R(T ) ⊕ N (T ),
then it is not necessary that T is a projection. For example, consider the linear operator
T : R3 → R

3 defined by

T (a, b, c) = (a, 2b, 0) for (a, b) ∈ R
2.

We have R(T ) = {(a, b, 0) : a, b ∈ R} and N (T ) = {(0, 0, c) : c ∈ R} so that V =
R(T ) ⊕ N (T ). But T is not a projection.

However, we have the following result.

Theorem 7.15 Let U and W be subspaces of a vector space V such that V =
U ⊕ W. Then there exists a unique projection P : V → V such that R(P) = U and
N (P) = W.

Proof Let v ∈ V . Then there are unique vectors u ∈ U and w ∈ W such that v =
u + w. Define the map P : V → V by

Pv = u for v ∈ V .

To see that P is a linear operator, let x, y ∈ V and α ∈ F. Then there exist unique
vectors x1, y1 ∈ U and x2, y2 ∈ W such that x = x1 + x2 and y = y1 + y2. Then

x + αy = (x1 + αy1) + (x2 + αy2)

with x1 + αy1 ∈ U and x2 + αy2 ∈ W . Since V = U ⊕ W, the vectors (x1 + αy1) ∈
U and (x2 + αy2) ∈ W are uniquely determined. Therefore,

P(x + αy) = x1 + αy1 = Px + αPy.

This shows that P is a linear operator on V . Further, for every x ∈ R(P) = U , since
x = x + 0, we have Px = x so that P is a projection.

Next, we show that R(P) = U and N (P) = W. By the definition of P , we
have R(P) ⊆ U . Also, for u ∈ U , Pu = P(u + 0) = u so that U ⊆ R(P). Thus,
R(P) = U . For the other equality, let x ∈ N (P). If x = u + w for u ∈ U andw ∈ W,

then 0 = Px = u. Thus, x = w ∈ W. Therefore, N (P) ⊆ W. On the other hand,
if w ∈ W, then w = 0 + w, where 0 ∈ U and w ∈ w. We have Pw = 0. Thus,
W ⊆ N (P).

For uniqueness, suppose that P and Q are projections with the said properties.
Let x ∈ V . Now, there exist unique u ∈ U and w ∈ W such that x = u + w. Since
R(P) = U = R(Q) and N (P) = W = N (Q), and since P and Q are projections,
we have Pu = u = Qu and Pw = 0 = Qw. Hence, Px = Pu + Pw = u = Qu +
Qw = Qx . Therefore, P = Q. �

As a corollary to Theorem 7.15, we have the following result.

Theorem 7.16 For any subspace U of a vector space V , there exists a projection P
on V such that R(P) = U.
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Proof LetU be a subspace of a vector space V . IfU = V , then the identity operator
on V is the projection onto U , and if U = {0}, then the zero operator P = 0 is the
projection ontoU . Next, suppose thatU 
= V andU 
= {0}. By Theorem 1.46, there
exists a subspace W of V such that V = U ⊕ W . Due to Theorem 7.15, there exists
a unique projection P : V → V with R(P) = U and N (P) = W. �

Example 7.17 Consider the subspaces U = {(a, b, a + b) : a, b ∈ R} and W =
{(c, c, c) : c ∈ R} of R3. First we write any vector in R

3 as a sum of a vector from
U and one from W . Towards this, we write

(a, b, c) = (α, β, α + β) + (γ, γ, γ ).

This leads to the linear system of equations

α + γ = a, β + γ = b, α + β + γ = c.

The linear system has a unique solution

α = c − b, β = c − a, γ = a + b − c.

Hence each vector in R
3 can be written uniquely as a sum of a vector from U and

one from W as follows:

(a, b, c) = (c − b, c − a, 2c − a − b) + (a + b − c, a + b − c, a + b − c).

In fact, if (a, b, c) ∈ U ∩ W , then there exist α, β, γ such that

(a, b, c) = (α, β, α + β) = (γ, γ, γ ),

so that γ = α = β = α + β; consequently, (a, b, c) = (0, 0, 0). Thus, the projection
PU,W : R3 → R

3 is given by

PU,W (a, b, c) = (c − b, c − a, 2c − a − b) for (a, b, c) ∈ R
3.

Observe that

PU,W (a, b, a + b) = (a + b − b, a + b − a, 2a + 2b − a − b) = (a, b, a + b).

That is, PU,W (u) = u for u ∈ U. Similarly, it may be verified that P2
U,W (a, b, c) =

PU,W (a, b, c) for any (a, b, c) ∈ R
3. �

A subspace U of a vector space V can have many complementary subspaces,
and hence, by Theorem 7.15, there can be more than one projections whose ranges
coincide with U . The following example illustrates this.
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Example 7.18 Let V = R
2 and letU = {(a, b) ∈ R

2 : b = 0}. Then we see that the
subspaces W1 = {(a, b) ∈ R

2 : a = 0} and W2 = {(a, b) ∈ R
2 : a = b} satisfy

V = U ⊕ W1, V = U ⊕ W2.

Indeed, for any (a, b) ∈ R
2, we have

(a, b) = (a, 0) + (0, b), (a, b) = (a − b, 0) + (b, b).

So, V = U + W1 and V = U + W2. Clearly, U ∩ W1 = {0} = U + W2. Corre-
sponding to the subspaces W1 and W2, we have the projections P1 and P2
defined by

P1(a, b) = (a, 0), P2(a, b) = (a − b, 0)

onto U along W1 and W2, respectively. Clearly, P1 
= P2.
In fact, there are infinitely many projections onto U . To see this, for each α ∈ R,

consider the subspace
Wα = {(a, b) ∈ R

2 : a = αb}.

Then we see that U ∩ Wα = {0} for every α ∈ R. Further, for any (a, b) ∈ R
2,

(a, b) = (a − αb, 0) + (αb, b)

with (a − αb, 0) ∈ U and (αb, b) ∈ Wα. The linear operator Pα : V → V
defined by

Pα(a, b) = (a − αb, 0) (a, b) ∈ V,

is a projection onto U along Wα . �

For a nonzero vector v and a projection P, we have (I − P)Pv = P(I − P)v =
0. This means that the eigenvalues of a projection can be 0 or 1. For example, the
zero map has the only eigenvalue 0; the identity map has the only eigenvalue 1; and
the map P on R

2 with P(a, b) = (a, 0) has both 0 and 1 as eigenvalues.
In fact, a projection cannot have any eigenvalue other than 0 or 1, as the following

theorem shows.

Theorem 7.19 Suppose P : V → V is a projection operator such that P 
= 0 and
P 
= I. Then the eigenspectrum of P is {0, 1}.
Proof Since P 
= 0, there exists x 
= 0 such that Px 
= 0. Since P(Px) = Px , 1 is
an eigenvalue of P with corresponding eigenvector Px . Next, since P 
= I , there
exists v 
= 0 such that (I − P)v 
= 0. Since P(I − P)v = 0, 0 is an eigenvalue of P
with corresponding eigenvector (I − P)v.
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On the other hand, suppose λ is an eigenvalue of P with a corresponding eigen-
vector u. Since Pu = λu, we have P2u = λPu so that

λu = Pu = P2u = λPu = λ2u.

Thus, (1 − λ)λu = 0. Since u 
= 0, it follows that λ ∈ {0, 1}. �

Projections become more useful when the subspaces in the decomposition are
orthogonal to each other.

Definition 7.20 Let V be an inner product space. A projection P on V is called
an orthogonal projection if R(P) ⊥ N (P). With U := R(P), such an orthogonal
projection is denoted by PU .

Example 7.21 Consider the subspace U = {(a, b, a + b) : a, b ∈ R} of R3 as in
Example 7.17. A basis for U is given by {(1, 0, 1), (0, 1, 1)}. If (α, β, γ ) ∈ U⊥,

then
〈(α, β, γ ), (1, 0, 1)〉 = 0, 〈(α, β, γ ), (0, 1, 1)〉 = 0.

These equations lead to γ = −α and β = α. Thus

U⊥ = {(α, α,−α) : α ∈ R}.

To write any vector in R
3 as a sum of a vector from U and one from U⊥, let

(a, b, c) = (α, β, α + β) + (γ, γ,−γ ).

The ensuing linear system has the unique solution

α = 1

3

(
2a − b + c

)
, β = 1

3

(
2b − a + c

)
, γ = 1

3

(
a + b − c

)
.

Then R
3 = U ⊕U⊥ and for every (a, b, c) ∈ R

3,

(a, b, c) = 1

3

(
2a − b + c, 2b − a + c, a + b + 2c

)

+ 1

3

(
a + b − c, a + b − c, −a − b + c

)
.

Therefore, the orthogonal projection PU : R3 → R
3 is given by

PU (a, b, c) = 1

3

(
2a − b + c, 2b − a + c, a + b + 2c

)
.

Clearly, PU (a, b, c) ∈ U. Conversely, to see that any vector (a, b, a + b) ∈ U is
equal to PU (α, β, γ ) for some (α, β, γ ) ∈ R3, we set up the linear equations
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(a, b, a + b) = 1

3
(2α − β + γ, 2β − α + γ, α + β + 2γ ).

Solving the linear system for α, β, γ, we obtain

α = 2a + b − c, β = a + 2b − c, γ = c,

where c is arbitrary. We may fix c to some real number for a particular solution. For
instance, take c = 0 to obtain

α = 2a + b, β = a + 2b, γ = 0.

It may be verified that PU (α, β, γ ) = (a, b, a + b). This proves that R(PU ) = U.

To determine N (PU ), we set up

PU (a, b, c) = 1

3
(2a − b + c, 2b − a + c, a + b + 2c) = (0, 0, 0).

Solving the linear equations, we obtain a = b = −c. That is,

N (PU ) = {(c, c,−c) : c ∈ R} = U⊥. �

Our terminology says that an orthogonal projection PU is the projection onto U
along U⊥, where U = R(P) and U⊥ = N (P). That is,

PU = PR(P) = PU,U⊥ = PR(P),R(P)⊥ .

An orthogonal projection PU satisfies the following properties:

1. P2
U = PU .

2. R(PU ) = U, N (PU ) = U⊥, U ⊕U⊥ = V .

3. For each v ∈ V, v = PU (v) + (
v − PU (v)

)
, PU (v) ∈ U, PU (v) ⊥ (

v − PU (v)
)
.

4. For each v ∈ V, ‖PU (v)‖ ≤ ‖v‖.
Since PU (v) ⊥ v − PU (v), the last property is obtained by applying Pythagoras the-
orem on the equality v = PU (v) + (

v − PU (v)
)
.

The projection theorem implies that if U is a finite dimensional subspace of an
inner product space, then the orthogonal projection PU exists. Moreover, an explicit
formula for PU can be given in terms of an orthonormal basis of U.

Theorem 7.22 Let U be a finite dimensional subspace of an inner product space V .

If {u1, . . . , uk} is an orthonormal basis of U, then PU is given by

PU (v) = projU (v) =
k∑

j=1

〈v, u j 〉u j for each v ∈ V .
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Proof Let {u1, . . . , uk} be an orthonormal basis of U. Define P : V → V by

P(v) = projU (v) =
k∑

j=1

〈v, u j 〉u j for v ∈ V .

As we have already verified, P is a linear operator. Also, Pui = ui for each i ∈
{1, . . . , k}. Hence P2 = P and R(P) = U. That is, P is a projection onto U. It
remains to show that R(P) ⊥ N (P). For this, let x ∈ R(P) and y ∈ N (P). Then

x = Px =
k∑

j=1

〈x, u j 〉u j and Py =
k∑

j=1

〈y, u j 〉u j = 0.

Being orthonormal, {u1, . . . , uk} is linearly independent. Hence, 〈y, u j 〉 = 0
for all j ∈ {1, . . . , k}. Then 〈x, y〉 = ∑k

j=1〈x, u j 〉〈u j , y〉 = 0. Therefore, R(P) ⊥
N (P). �

However, if U is an infinite dimensional subspace of an inner product space V ,
then there need not exist an orthogonal projection P on V such that R(P) = U . Look
at the following example.

Example 7.23 LetV = �2, the inner product spaceof all square-summable sequences
of scalars. Recall that for x = (α1, α2, . . .) and y = (β1, β2, . . .) in �2, the inner prod-
uct 〈x, y〉 is given by

〈x, y〉 =
∞∑

n=1

αiβ i .

LetU = c00, the subspace of �2 of all square-summable sequences of scalars having
only a finite number of nonzero entries. We observe that if x ∈ �2 satisfies 〈x, u〉 = 0
for all u ∈ U , then x = 0. Indeed, if x = (α1, α2, . . .) and 〈x, u〉 = 0 for all u ∈ U ,
then αk = 〈x, ek〉 = 0 for all k ∈ N so that x = 0. Hence, U⊥ is the zero subspace,
and hence V 
= U ⊕U⊥. �

The following results show some connection between projections and self-adjoint
operators, in the case of finite dimensional inner product spaces.

Theorem 7.24 Let P be a projection on a finite dimensional inner product space
V . Then the following are equivalent:

(1) P is an orthogonal projection.
(2) P is self-adjoint.
(3) P is positive semi-definite.
(4) For each x ∈ V, ‖Px‖ ≤ ‖x‖.
Moreover, if x ∈ R(P) then 〈Px, x〉 = ‖x‖2.
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Proof (1) ⇒ (2) Let P be an orthogonal projection. If v ∈ V, then it can be written
uniquely as

v = Pv + (v − Pv) where Pv ⊥ v − Pv.

Then
〈Pv, v〉 = 〈Pv, Pv〉 + 〈Pv, v − Pv〉 = 〈Pv, Pv〉 ∈ R.

By Theorem 7.7, P is self-adjoint.

(2) ⇒ (3) Let the projection P be self-adjoint. Then, for each x ∈ V,

〈Px, x〉 = 〈P2x, x〉 = 〈Px, P∗x〉 = 〈Px, Px〉 ≥ 0. (7.1)

That is, P is positive semi-definite.

(3) ⇒ (4) Suppose that the projection P is positive semi-definite. Then it is self-
adjoint. Let x ∈ V . As in (7.1), 〈Px, x − Px〉 = 0. By Pythagoras theorem,

‖x‖2 = ‖Px + x − Px‖2 = ‖Px‖2 + ‖x − Px‖2 ≥ ‖Px‖2.

(4) ⇒ (1) Suppose that for each x ∈ V, ‖Px‖ ≤ ‖x‖. We show that R(P) =
N (P)⊥. For this purpose, let v ∈ N (P)⊥. Write w := Pv − v. Then

Pw = P(Pv − v) = P2v − Pv = Pv − Pv = 0.

That is, w ∈ N (P). So, 〈v,w〉 = 0 and Pv = v + w. Using Pythagoras theorem, we
obtain

‖v‖2 ≤ ‖v‖2 + ‖w‖2 = ‖v + w‖2 = ‖Pv‖2 ≤ ‖v‖2.

Therefore, ‖w‖2 = 0, which implies that w = 0. Consequently v = Pv. That is,
v ∈ R(P). This shows that N (P)⊥ ⊆ R(P).

For the other containment, let v ∈ R(P). Then Pv = v. Since V = R(P) +
N (P)⊥,wewrite v = u + w for some u ∈ N (P) andw ∈ N (P)⊥.We already know
that N (P)⊥ ⊆ R(P). So, w ∈ R(P); which implies that Pw = w. Then

v = Pv = Pu + Pw = Pw = w ∈ N (P)⊥.

Therefore, R(P) ⊆ N (P)⊥.

Moreover, if x ∈ R(P), then Px = x . Hence 〈Px, x〉 = 〈x, x〉 = ‖x‖2. �

The following theorem lists some relations between two orthogonal projections.

Theorem 7.25 Let U and W be subspaces of a finite dimensional inner product
space V . Let PU and PW be the respective orthogonal projections. Then the following
are equivalent:

(1) PW − PU is positive semi-definite.
(2) ‖PU (x)‖ ≤ ‖PW (x)‖ for each x ∈ V .
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(3) U is a subspace of W.

(4) PW PU = PU .

(5) PU PW = PU .

Proof (1) ⇒ (2) : Let x ∈ V .Since PU is an orthogonal projection, it is self-adjoint.
As in (7.1), we have 〈PU x, x〉 = ‖PU x‖2. Similarly, 〈PW x, x〉 = ‖PW x‖2. Assume
that PW − PU is positive semi-definite. Then

0 ≤ 〈(PW − PU )(x), x〉 = 〈PW x, x〉 − 〈PU x, x〉 = ‖PW x‖2 − ‖PU x‖2.

(2) ⇒ (3) : Assume that ‖PU x‖ ≤ ‖PW x‖ for each x ∈ V . Let y ∈ U. Then

〈y, y〉 = ‖y‖2 = ‖PU y‖2 ≤ ‖PW y‖2 = 〈PW y, y〉 ≤ ‖y‖2.

Hence 〈y, y〉 − 〈PW y, y〉 = 0. Or that 〈(I − PW )y, y〉 = 0.
Notice that R(I − PW ) = N (PW ) and N (I − PW ) = R(PW ). Thus I − PW is

also an orthogonal projection.As in (7.1),we have 〈(I − PW )y, y〉 = ‖(I − PW )y‖2.
We thus conclude that (I − PW )y = 0. That is, PW y = y. Therefore, y ∈ W.

(3) ⇒ (4) : Let x ∈ V . Then PU x ∈ U. If U ⊆ W, then PU x ∈ W. It follows that
PW (PU x) = PU x .

(4) ⇒ (5) : If PW PU = PU , then P∗
U P∗

W = P∗
U . As all orthogonal projections are

self-adjoint, we have PU PW = PU .

(5) ⇒ (1) : Suppose PU PW = PU . Then P∗
W P∗

U = P∗
U implies that PW PU = PU .

Write Q := PW − PU . Then

Q2 = P2
W + P2

U − PW PU − PU PW = PW + PU − PU − PU = Q.

So, Q is a projection. Since PW and Pu are self-adjoint, so is Q. Further, 〈Qx, x〉 =
‖Qx‖2 ≥ 0 for each x ∈ V . Therefore, Q = PW − PU is positive semi-definite. �

We will again use these facts in proving that sum of two orthogonal projections
is an orthogonal projection provided their compositions are identically zero.

Theorem 7.26 Let P and Q be two orthogonal projections on a finite dimensional
inner product space V . Then P + Q is an orthogonal projection on V if and only if
PQ = QP = 0 if and only if R(P) ⊥ R(Q).

Proof Let P, Q, and P + Q be orthogonal projections on V . Let v ∈ V . Write
x := Pv. Then

‖x‖2 = ‖Px‖2 ≤ ‖Px‖2 + ‖Qx‖2 = 〈Px, x〉 + 〈Qx, x〉
= 〈(P + Q)x, x〉 ≤ ‖(P + Q)x‖2 = ‖x‖2.

Hence, ‖Px‖2 = ‖Px‖2 + ‖Qx‖2; which implies that Qx = 0. So, QPv = 0 for
all v ∈ V . That is, QP = 0. Interchanging P and Q, we also have PQ = 0.
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Conversely, suppose P and Q are orthogonal projections. If PQ = QP = 0,
then (P + Q)2 = P2 + Q2 = P + Q shows that P + Q is a projection. Moreover,
(P + Q)∗ = P∗ + Q∗ = P + Q. Using Theorem 7.24, we conclude that P + Q is
an orthogonal projection.

For the second equivalence, assume that PQ = QP = 0. Let x ∈ R(P) and let
y ∈ R(Q). Then

〈x, y〉 = 〈Px, Qy〉 = 〈x, P∗Qy〉 = 〈x, PQy〉 = 〈x, 0〉 = 0.

That is, R(P) ⊥ R(Q).

Conversely, suppose R(P) ⊥ R(Q). Let v ∈ V . Then

Qv ∈ R(Q) ⊆ R(P)⊥ = N (P).

That is, PQv = 0. Therefore, PQ = 0; QP = Q∗P∗ = (PQ)∗ = 0. �

Theorem 7.26 can be generalized to more than two orthogonal projections in an
obvious way; see Exercises 13–14.

Exercises for Sect.7.2

1. Let U := span(1,−1, 1). Find a vector u ∈ U so that (1, 1, 1) − u ⊥ U.

2. Give an example of a projection that is not an orthogonal projection.
3. Construct two projections P and Q such that PQ = 0 but QP 
= 0.
4. Determine the matrices that represent all orthogonal projections on C

3×1.

5. Let P be an orthogonal projection on an inner product space V , and let x ∈ V .

Prove the following:

(a) sup{‖Py‖ : ‖y‖ = 1, y ∈ V } = 1.
(b) If u ∈ R(P), then ‖x − Px‖ ≤ ‖x − u‖.
(c) ‖x − Px‖ = inf{‖x − u‖ : u ∈ R(P)}.

6. LetU and W be subspaces of a finite dimensional inner product space V . Let P
be a projection onto U along W. Prove the following:

(a) I − P is a projection onto W along U.

(b) U = {x ∈ V : Px = x} and W = {x ∈ V : Px = 0}.
7. Let P : R3×1 → R

2×1 be a projection, where P(e1) = αe1 for some α ∈ R, and
P(e1), P(e2), P(e3) form an equilateral triangle. Determine [P].

8. Let P be a projection on an inner product space V . Prove that there exists a
basis B of V such that [P]B,B has diagonal entries as 0 or 1, and all off-diagonal
entries 0.

9. Suppose that T is a diagonalizable operator having eigenvalues in {0, 1}. Does
it mean that T is a projection?

10. Let P and Q be projections on an inner product space V such that P + Q = I.
Prove that PQ = 0.
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11. LetU1,U2,W1,W2 be subspaces of a finite dimensional inner product space V .

Suppose that P1 is a projection on U1 along W1 and P2 is a projection on U2

along W2. Prove the following:

(a) P1 + P2 is a projection if and only if P1P2 = P2P1. In such a case, P1 + P2
is a projection on U1 +U2 along W1 ∩ W2; and U1 ∩U2 = {0}.

(b) P1 − P2 is a projection if and only if P1P2 = P2P1 = P2. In such a case,
P1 − P2 is a projection on U1 ∩ W2 along U2 + W1, and U2 ∩ W1 = {0}.

(c) If P1P2 = P2P1 = P, then P is a projection on U1 ∩U2 along W1 + W2.

12. Prove that if P is a projection, then I + P is invertible. Find (I + P)−1.

13. Let T1, . . . , Tk be projections on an inner product space V . Prove that if
T1 + · · · + Tk = I, then TiTj = 0 for all i 
= j.

14. Let T1, . . . , Tk be linear operators on an inner product space V . Suppose that
TiTj = 0 for all i 
= j, and that T1 + · · · + Tk = I. Prove that each Ti is a pro-
jection.

7.3 Normal Operators

Recall that a linear operator T on a finite dimensional inner product space is normal if
and only if T ∗T = T T ∗.Though self-adjoint operators are normal, a normal operator
need not be self-adjoint. A look-alike result is as follows.

Theorem 7.27 Let V be a finite dimensional inner product space. A linear operator
T on V is normal if and only if for each v ∈ V, ‖T v‖ = ‖T ∗v‖.
Proof T is a normal operator

if and only if T ∗T − T T ∗ = 0

if and only if for each v ∈ V, 〈(T ∗T − T T ∗)v, v〉 = 0

if and only if for each v ∈ V, 〈T ∗T v, v〉 = 〈T T ∗v, v〉
if and only if for each v ∈ V, 〈T v, T v〉 = 〈T ∗v, T ∗v〉
if and only if for each v ∈ V, ‖T v‖ = ‖T ∗v‖. �

If T is a linear operator on a finite dimensional inner product space, then λ is an
eigenvalue of T if and only if λ is an eigenvalue of T ∗. However, the corresponding
eigenvectors need not be equal. That is, if T v = λv, then T ∗v = λv need not hold.
For example, let T : R2 → R

2 be defined by

T (a, b) = (a + b, b), (a, b) ∈ R
2.

We see that T (1, 0) = 1 (1, 0). That is, 1 is an eigenvalue of T with a corresponding
eigenvector (1, 0). Now, T ∗ : R2 → R

2 is given by

T ∗(a, b) = (a, a + b), (a, b) ∈ R
2.
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And, T ∗(0, 1) = 1 (0, 1). That is, 1 = 1 is an eigenvalue of T ∗ with a corresponding
eigenvector (0, 1). But (1, 0), which was found to be an eigenvector of T is not an
eigenvector T ∗ as T ∗(1, 0) = (1, 1), which cannot be a scalar multiple of (1, 0).
However, for normal operators, the following stronger result holds.

Theorem 7.28 Let T be a normal operator on an inner product space V .

(1) For any λ ∈ F and any v ∈ V, T v = λv if and only if T ∗v = λv.
(2) Eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof (1) Let λ ∈ F and let v ∈ V . Since T ∗T = T T ∗,

(T − λI )∗(T − λI ) = T ∗T − (λ + λ)I + |λ|2 I = (T − λI )(T − λI )∗.

That is, the linear operator T − λI is normal. By Theorem 7.27,

‖(T ∗ − λI )v‖ = ‖(T − λI )∗v‖ = ‖(T − λI )v‖.

It then follows that T v = λv if and only if T ∗v = λv.

(2) Let λ and μ be distinct eigenvalues of T with corresponding eigenvectors u and
v, respectively. Then Tu = λu and T v = μv. From (1), we obtain T ∗v = μ v. Now,

〈Tu, v〉 = 〈λu, v〉 = λ〈u, v〉, 〈u, T ∗v〉 = 〈u, μ v〉 = μ〈u, v〉.

Since 〈Tu, v〉 = 〈u, T ∗v〉, we obtain (λ − μ)〈u, v〉 = 0. But λ 
= μ. Therefore,
u ⊥ v. �

We shall make use of the following general results in due course.

Theorem 7.29 Let T be a linear operator on a finite dimensional inner product
space V and U be a subspace of V . Then, U is T -invariant if and only if U⊥ is
T ∗-invariant. Further, if U is invariant under T and T ∗, then the operators TU :=
T

∣∣
U : U → U and (T ∗)U := T ∗∣∣

U : U → U satisfy (TU )∗ = (T ∗)U .

Proof By the definition of adjoint, we have

〈Tu, v〉 = 〈u, T ∗v〉 for all u, v ∈ V .

Suppose T (U ) ⊆ U. Then for all v ∈ U⊥,

〈u, T ∗v〉 = 〈Tu, v〉 = 0 for all u ∈ U.

Consequently, T ∗v ∈ U⊥. Conversely, let T ∗(U⊥) ⊆ U⊥. Then for all u ∈ U,

〈Tu, v〉 = 〈u, T ∗v〉 = 0 for all v ∈ U⊥.

Hence Tu ∈ U⊥⊥ = U.
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Next assume that U is invariant under T and T ∗. Then, for all u, v ∈ U ,

〈u, (TU )∗v〉 = 〈TU u, v〉 = 〈Tu, v〉 = 〈u, T ∗v〉 = 〈u, (T ∗)U v〉.

Therefore, (TU )∗ = (T ∗)U . �

Theorem 7.30 Let T be a normal operator on a finite dimensional inner product
space V .

(1) If p(t) is a polynomial, then p(T ) is normal.
(2) N (T ∗) = N (T ) and R(T ∗) = R(T ).

(3) For all x, y ∈ V, 〈T x, T y〉 = 〈T ∗x, T ∗y〉.
(4) For each k ∈ N, N (T k) = N (T ) and R(T k) = R(T ).

Proof (1) For any two operators T and S on V if T S = ST , then

T 2S2 = T (T S)S = T (ST )S = (T S)(T S) = (ST )(ST ) = S(T S)T = S(ST )T = S2T 2.

In particular, taking S = T ∗, we obtain (T ∗)2T 2 = T 2(T ∗)2. It follows by induction
that (p(T ))∗ p(T ) = p(T )(p(T ))∗.
(2) By Theorem 4.54 (2)–(3), we obtain N (T ∗) = N (T T ∗) = N (T ∗T ) = N (T ) and
R(T ∗) = N (T )⊥ = N (T ∗)⊥ = R(T ).

(3) Let x, y ∈ V . Then 〈T x, T y〉 = 〈x, T ∗T y〉 = 〈x, T T ∗y〉 = 〈T ∗x, T ∗y〉.
(4) We know that N (T ) ⊆ N (T k) for all k ∈ N. Now, let i ≥ 1 and let v ∈ V . By
Theorem 7.27,

‖T i+1v‖ = ‖T (T iv)‖ = ‖T ∗(T iv)‖ = ‖(T ∗T )(T i−1v)‖.

If v ∈ N (T i+1), then T i−1v ∈ N (T ∗T ) = N (T ); consequently, v ∈ N (T i ).

(Here, we use the convention that T 0 = I.) That is, N (T i+1) ⊆ N (T i ). Hence,
N (T k) ⊆ N (T k−1) ⊆ · · · ⊆ N (T ). It then follows that N (T k) = N (T ).

Next, R(T k) = N (T k)⊥ = N (T )⊥ = R(T ∗) = R(T ). �

Theorem 7.31 Let T be a normal operator on a finite dimensional inner product
space V . Then the following are true:

(1) The ascent of every eigenvalue of T is 1. In particular, the algebraic multiplicity
and geometric multiplicity of each eigenvalue are equal.

(2) For each λ ∈ F, N (T − λI ) and N (T − λI )⊥ are both T -invariant and T ∗-
invariant.

Proof (1) Let λ ∈ F be an eigenvalue of T . Since T − λI is also a normal operator,
by Theorem 7.30 (4), N (T − λI ) = N (T − λI )2. Hence, the ascent of λ is 1. Con-
sequently, the algebraic multiplicity and geometric multiplicity of each eigenvalue
are equal.
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(2) Let λ ∈ F. Clearly, N (T − λI ) is T -invariant, and N (T ∗ − λI ) is T ∗-invariant.
By Theorem 7.29, N (T − λI )⊥ is T ∗-invariant, and N (T ∗ − λI )⊥ is T -invariant.
(T ∗∗ = T .) Since T − λI is a normal operator, by Theorem 7.28 (1), we have
N (T ∗ − λI ) = N (T − λI ). We conclude that N (T − λI ) and N (T − λI )⊥ are
invariant under both T and T ∗. �

If T is not a normal operator, then N (T − λI ) can fail to be T ∗-invariant and
N (T − λI )⊥ can fail to be T -invariant.

Example 7.32 Consider T : R2 → R
2 given by T (a, b) = (a + b, b) for all

a, b ∈ R. The matrix of T with respect to the standard basis of R2 is [T ] =
[
1 1
0 1

]
.

Thus T ∗ is given by T ∗(a, b) = (a, a + b). Now, 1 is an eigenvalue of T since
T (1, 0) = 1 (1, 0). Then

N (T − I ) = {(a, 0) : a ∈ R}, N (T − I )⊥ = {(0, b) : b ∈ R}.

Since T (a, 0) = (a, 0) ∈ N (T − I ) and T ∗(0, b) = (0, b), we conclude that
N (T − I ) is T -invariant and N (T − I )⊥ is T ∗-invariant, verifying Theorem 5.21
(2)–(3). But

T ∗(1, 0) = (1, 1) /∈ N (T − I ), T (0, 1) = (1, 1) /∈ N (T − I )⊥.

Therefore, neither N (T − I ) is T ∗-invariant nor N (T − I )⊥ is T -invariant. Note
that T is not a normal operator. �

As a consequence of Theorem 7.31, we obtain the spectral theorem for normal
operators on a finite dimensional vector space. Recall that when λ is an eigenvalue
of T, we denote the eigenspace N (T − λI ) by E(λ).

Theorem 7.33 (Spectral theorem for normal operators) Let T be a normal operator
on a finite dimensional inner product space V . Suppose the characteristic polynomial
of T splits over F. Let λ1, . . . , λk be the distinct eigenvalues of T . Then the following
are true:

(1) V = E(λ1) ⊕ · · · ⊕ E(λk), and there exists an orthonormal basis B for V such
that [T ]B,B is a diagonal matrix.

(2) Let P1, . . . , Pk be the orthogonal projections onto E(λ1), . . . , E(λk), respec-
tively. Then Pi Pj = 0 for all i, j ∈ {1, . . . , k}, i 
= j, and

T = λ1P1 + · · · + λk Pk, P1 + · · · + Pk = I.

(3) If {ui j : j = 1, . . . , ni } is an orthonormal basis for E(λi ) for i = 1, . . . , k, then

T x =
k∑

i=1

λi

( ni∑

j=1

〈x, ui j 〉 ui j
)

for each x ∈ V .
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Proof (1) By Theorems 7.31 and 5.29, we have V = E(λ1) ⊕ · · · ⊕ E(λk). Let
B1, . . . , Bk beorthonormal bases of E(λ1), . . . , E(λk), respectively.Then their union
B := ⋃k

i=1 Bi is an orthonormal basis of V and [T ]B,B is a diagonal matrix.

(2) Let x ∈ V . Since V = E(λ1) ⊕ · · · ⊕ E(λk), the vector x can be written as

x = x1 + · · · + xk,

where each xi ∈ E(λi ) is uniquely determined. Since

Pi (x) = xi and T xi = λi xi for i ∈ {1, . . . , k},

we obtain

x = P1x + · · · + Pkx = (P1 + · · · Pk)x;
T x = T x1 + · · · + T xk = λ1x1 + · · · + λk xk

= λ1P1x + · · · + λk Pkx = (λ1P1 + · · · + λk Pk)x .

Thus, T = λ1P1 + · · · + λk Pk and P1 + · · · + Pk = I . Also, since Eλi ⊥ Eλ j for
i 
= j , it follows that Pi Pj = 0 for all i, j ∈ {1, . . . , k}, i 
= j.

(3) For i ∈ {1, . . . , k}, let Bi := {ui j : j = 1, . . . , ni } be an orthonormal basis of
E(λi ). Then Pi is given by

Pi x =
∑

j=1

〈x, ui j 〉 ui j for each x ∈ V .

Hence, from (2) we have

T x = λ1P1x + · · · + λk Pkx =
k∑

i=1

λi

( ni∑

j=1

〈x, ui j 〉 ui j 〉
)

for each x ∈ V . �

The proof of Theorem 7.33 uses the decomposition V = E(λ1) ⊕ · · · ⊕ E(λk) of
the space V, which again uses Theorem 5.29. In fact, the decomposition of V can
be proved without relying on Theorem 5.29.

Lemma 7.34 Let T be a normal operator on a finite dimensional inner product
space V . Let U be invariant under T and T ∗. Then U⊥ is invariant under T , and the
restriction operators T

∣∣
U : U → U and T |U⊥ : U⊥ → U⊥ are normal operators.

Proof Since U is invariant under T ∗, by Theorem 7.29, U⊥ is invariant under
T ∗∗ = T and (TU )∗ = T ∗

U
, where TU := T

∣∣
U : U → U and T ∗

U
:= T ∗∣∣

U : U → U .
Next, using the fact that T is a normal operator, for every u, v ∈ U , we have
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〈T ∗
U
TU u, v〉 = 〈TU u, TU v〉 = 〈Tu, T v〉 = 〈T ∗Tu, v〉 = 〈T T ∗u, v〉 = 〈TU T

∗
U
u, v〉.

Hence, T ∗
U
TU = TU T

∗
U
. Thus, T

∣∣
U

: U → U is a normal operator on U . Similarly, it
can be shown that T |U⊥ : U⊥ → U⊥ is a normal operator on U⊥. �

Proof of Theorem 7.33 without using Theorem 5.29:
Let U := E(λ1) ⊕ · · · ⊕ E(λk). We prove U⊥ = {0} so that by projection theorem,
V = U . ByTheorem7.31 (1) E(λi ) := N (T − λi I ) is invariant under bothT andT ∗.
Hence,U is also invariant under T and T ∗. Therefore, byLemma7.34,U⊥ is invariant
under T , and both T

∣∣
U : U → U and T |U⊥ : U⊥ → U⊥ are normal operators. Now,

if U⊥ 
= {0}, then T
∣∣
U⊥ has an eigenvalue, say λ with a corresponding eigenvector

x ∈ U⊥. Since λ is also an eigenvalue of T , x ∈ E(λi ) ⊆ W for some i ∈ {1, . . . , k}.
This is not possible. Therefore,U⊥ = {0}, and hence V = E(λ1) ⊕ · · · ⊕ E(λk). �

The following theorem is an obvious matrix interpretation of Theorem 7.33 by
constructing the unitary matrix P whose columns are the basis vectors from B.

Theorem 7.35 If A ∈ C
n×n is a normal matrix, then there exists a unitary matrix

P ∈ C
n×n such that P−1AP is a diagonal matrix.

Proof of the spectral theorem provides a way to diagonalize a normal matrix
A. Assume further that, if F = R, then the characteristic polynomial of A splits.
First, get the distinct eigenvalues λ1, . . . , λk of A. Corresponding to each eigenvalue
λi of multiplicity mi , determine mi orthonormal eigenvectors. Existence of such
eigenvectors is guaranteed by the theorem. Then put the eigenvectors together as
columns keeping the eigenvectors together corresponding to same eigenvalue. Call
the new matrix as P. Then P−1 = P∗, that is, P is a unitary matrix, and P−1AP is
the diagonal matrix whose diagonal entries are the eigenvalues λ1, . . . , λk repeated
m1, . . . ,mk time, respectively.

Moreover, if all eigenvalues of A are real, then we can choose real eigenvectors
corresponding to them. The construction shows that the unitary matrix U can be
chosen as a real orthogonal matrix. Therefore, if a normal matrix is similar to a real
matrix over C, then it is also similar to the same real matrix over R. Self-adjoint
matrices fall under this category.

The representation
T = λ1P1 + · · · + λk Pk

of a normal operator with orthogonal projections P1, . . . , Pk onto the eigenspaces
E(λ1), . . . , E(λk), respectively, is called the spectral form of T . Notice that the
projections Pi in the spectral form of T behave as identity on the eigenspaces and
take the value zero elsewhere.

If T is a linear operator on a real inner product space, and the characteristic
polynomial χT (t) of T does not split over R, then it is of the form

χ
T (t) = (t − λ1) · · · (t − λ j )((t − α1)

2 + β2
1 ) · · · ((t − αm)2 + β2

m),
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where at least one quadratic factor is present. We guess that there exists an orthonor-
mal basis for the real inner product space with respect to which the normal operator
has a matrix representation as a block-diagonal matrix in the form

diag
(
λ1, · · · , λ j ,

[
α1 −β1

β1 α1

]
, · · · ,

[
αm −βm

βm αm

] )
.

This result is true; and it can be proved by using Lemma 7.34 or using complexifi-
cation of the vector space.

Exercises for Sect.7.3

1. For each (normal) matrix A as given below, find a unitarymatrix P so that P∗AP
is diagonal:

(a)

[
1 i
−i 1

]
(b)

[
1 2
2 1

]
(c)

⎡

⎣
1 0 1
0 1 0
1 0 0

⎤

⎦ .

2. Are the following statements true for a linear operator T on a finite dimensional
complex inner product space V ?

(a) Let α, β ∈ C. Then αT + βT ∗ is normal.
(b) T is normal if and only if T (U ) ⊆ U implies that T (U⊥) ⊆ U⊥ for all

subspaces U of V .

(c) If T is normal and idempotent (T 2 = T ), then T is self-adjoint.
(d) If T is normal and nilpotent (for some n ∈ N, T n = 0), then T = 0.
(e) If T is normal and T 3 = T 2, then T is idempotent.
(f) If T is self-adjoint and T n = I for some n ≥ 1 then T 2 = I.

3. Is it true that the sum of two normal operators on a complex inner product space
is also a normal operator?

4. Show that every real skew-symmetric matrix is normal.
5. Let T be a normal operator on a finite dimensional inner product space. Prove

the following:

(a) T is self-adjoint if and only if each eigenvalue of T is real.
(b) T is positive semi-definite if and only if each eigenvalue of T is nonnegative.
(c) T is positive definite if and only if each eigenvalue of T is positive.
(d) T is unitary if and only if each eigenvalue of T is of absolute value one.
(e) T is invertible if and only if each eigenvalue of T is nonzero.
(f) T is idempotent if and only if each eigenvalue of T is zero or one.

6. Let T be a normal operator on a finite dimensional inner product space. Let λ

be an eigenvalue of T . Prove that both E(λ) and E(λ)⊥ are T -invariant.
7. Show that the matrix A = [ai j ] ∈ C

n×n is normal if and only if
∑n

i, j=1 a
2
i j =∑n

i=1 |λi |2, where λ1, . . . , λn are the eigenvalues of A repeated according to
their algebraic multiplicities.

8. Let A = B−1B∗ for some invertible B ∈ C
n×n . Show that A is unitary if and

only if B is normal.
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9. Let A ∈ C
n×n be invertible. Suppose that A can be written as A = HNH,where

H is hermitian and N is normal. Show that B := A−1A∗ is similar to a unitary
matrix.

10. Prove that the cyclic shift operator T on Cn×1 defined by

T e1 = en, T e2 = e1, T e3 = e2, . . . , T en = en−1

is a normal operator. Diagonalize it.
11. A circulant matrix is a matrix in the following form:

⎡

⎢⎢⎢⎣

c0 c1 c2 · · · cn
cn c0 c1 · · · cn−1
...

...

c1 c2 c3 · · · c0

⎤

⎥⎥⎥⎦ .

Show that every circulant matrix is a normal matrix.
12. Let T be a linear operator on a finite dimensional complex inner product space.

Prove that T can be written as T = TR + iTI , where T ∗
R = TR and T ∗

I = TI .

Then show that T is normal if and only if TRTI = TI TR .

13. Let T be a linear operator on a finite dimensional complex inner product space
V . Prove that S is an isometry if and only if there exists an orthonormal basis
for V consisting of eigenvectors of T with corresponding eigenvalues having
absolute value 1.

7.4 Self-adjoint Operators

Most properties of a self-adjoint operator follow from the fact that it is a normal
operator. However, self-adjoint operators enjoy some nice properties that are not
shared by a general normal operator.

For a self-adjoint operator on a finite dimensional inner product space, the spectral
mapping theorem (Theorem 5.17) can be strengthened as follows.

Theorem 7.36 (Spectral mapping theorem) Let V be a finite dimensional inner
product space overF. Let T be a self-adjoint operator on V . Let p(t) be a polynomial
with coefficients from F. Then

eig(p(T )) = {p(λ) : λ ∈ eig(T )}.

Proof IfF = C, the statement follows fromTheorem5.17(2). So, letF = R.ByThe-
orem 5.17(1), {p(λ) : λ ∈ eig(T )} ⊆ eig(p(T )). We need to show that eig(p(T )) ⊆
{p(λ) : λ ∈ eig(T )}. Notice that since T is self-adjoint, so is p(T ), and it has an
eigenvalue.
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Let a real number γ ∈ eig(p(T )). By Proposition 5.1, the polynomial p(t) − γ

can be written as

p(t) − γ = ak(t − λ1) · · · (t − λ j )((t − α1)
2 + β2

1 ) · · · ((t − αm)2 + β2
m),

where λs, αs, and βs are real numbers. Moreover, if any quadratic factor is present
in this product, then the corresponding βs are nonzero. Consequently,

p(T ) − γ I = ak(T − λ1 I ) · · · (T − λ j I )((T − α1 I )
2 + β2

1 I ) · · · ((T − αm I )2 + β2
m I ).

Since p(T ) − γ I is not injective, at least one of the factors on the right hand side
is not injective. However, each map of the form (T − α I )2 + β2 I is injective due
to Lemma 7.11. Hence T − λ I is not injective for some λ ∈ {λ1, . . . , λ j }. Such a λ

is in eig(T ). Therefore, p(λ) − γ = 0. That is, γ ∈ {p(λ) : λ ∈ eig(T )}. Therefore,
eig(p(T )) ⊆ {p(λ) : λ ∈ eig(T )}. �

Self-adjoint operators are normal operators, and also they have eigenvalues. Thus,
the assumption that “the characteristic polynomial splits” holds true for a self-adjoint
operator. We thus obtain the following result.

Theorem 7.37 (Spectral theorem for self-adjoint operators) Let T be a self-adjoint
operator onafinite dimensional inner product space V .Then there exists anorthonor-
mal basis B for V such that [T ]B,B is a diagonal matrix with real entries. Further,
the conclusions in (1)–(3) of Theorem 7.33 hold.

The spectral theorem is also called as theDiagonalization Theorem due to obvious
reasons. The matrix interpretation of the spectral theorem for self-adjoint operators
takes the following form:

Theorem 7.38 Every hermitian matrix is unitarily similar to a real diagonal matrix.
Every real symmetric matrix is orthogonally similar to a real diagonal matrix.

Proof Any hermitian matrix A ∈ C
n×n is a self-adjoint operator on C

n×1. Thus we
have an orthonormal basis B for Cn×1 such that [A]B,B = D is a diagonal matrix.
Construct the matrix U ∈ C

n×n by taking its columns as the vectors from B in the
sameorder. ThenU is unitary andU ∗AU = U−1AU = D.Since the diagonal entries
are the eigenvalues of the hermitian matrix A, they are real, so D ∈ R

n×n .

For the second statement, notice that a real symmetric matrix in R
n×n is a self-

adjoint operator on R
n×1 and a unitary matrix with real entries is an orthogonal

matrix. �

Alternatively, the spectral theorem for self-adjoint operators can be deduced from
Schur’s theorem. It is as follows: if A is a hermitian matrix, i.e. if A∗ = A, then by
Theorem 6.12, there exists a unitary matrix Q such that Q∗AQ is upper triangular.
Thus, Q∗A∗Q = (Q∗AQ)∗ is lower triangular.On the other hand, Q∗A∗Q = Q∗AQ
is upper triangular. Therefore, Q∗AQ is diagonal.
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Example 7.39 Consider the real symmetric matrix

A =

⎡

⎢⎢⎣

2 −1 0 0
−1 2 0 0
0 0 2 −1
0 0 −1 2

⎤

⎥⎥⎦ .

This is the representation of the linear operator T : R4 → R
4 defined by

T (a, b, c, d) = (
2a − b, −a + 2b, 2c − d, −c + 2d

)

with respect to the standard basis. Its characteristic equation is

det(A − t I ) = (t − 1)2(t − 3)2 = 0.

We determine the eigenvectors corresponding to eigenvalues 1 and 3. For the eigen-
value 1, let (a, b, c, d) ∈ R

4 satisfy T (a, b, c, d) = (a, b, c, d). Then we have

2a − b = a, −a + 2b = b, 2c − d = 2c, −c + 2d = 2d.

From these equations we obtain a = b and c = d. Thus, (1, 1, 0, 0) and (0, 0, 1, 1)
are eigenvectors of T corresponding to the eigenvalue 1.

For the eigenvalue 3, we have T (a, b, c, d) = 3(a, b, c, d), i.e. the equations

2a − b = 3a, −a + 2b = 3b, 2c − d = 3c, −c + 2d = 3d.

It leads to a = b and c = d so that (1,−1, 0, 0) and (0, 0,−1, 1) are eigenvectors
of T corresponding to the eigenvalue 3. Notice that the eigenvectors

(1, 1, 0, 0), (0, 0, 1, 1), (1,−1, 0, 0), (0, 0, 1,−1)

are orthogonal. The normalized forms of these eigenvectors are

( 1√
2
,

1√
2
, 0, 0

)
,

(
0, 0,

1√
2
,

1√
2

)
,

( 1√
2
,− 1√

2
, 0, 0

)
,

(
0, 0,

1√
2
,− 1√

2

)
.

The matrix of these eigenvectors in that order is:

Q :=

⎡

⎢⎢⎣

1/
√
2 0 1/

√
2 0

1/
√
2 0 −1/

√
2 0

0 1/
√
2 0 1/

√
2

0 1/
√
2 0 −1/

√
2

⎤

⎥⎥⎦ .
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It can be verified that Q−1 = QT and

Q−1 A Q =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 3 0
0 0 0 3

⎤

⎥⎥⎦ .

The eigenvalues of T are on the diagonal of Q−1 A Q as they should. �

As in the case of normal operators, the representation of a self-adjoint operator T
as

T = λ1P1 + · · · + λk Pk

through the orthogonal projections P1, . . . , Pk onto the eigenspaces
E(λ1), . . . , E(λk), respectively, is also called the spectral form of T .

We show here a connection between self-adjoint operators and positive definite
operators.

Theorem 7.40 (Sylvester inertia) Let T be a self-adjoint operator on a finite dimen-
sional inner product space V . Then there exist T -invariant subspaces V+, V0 and V−
of V of unique dimensions such that V = V+ ⊕ V0 ⊕ V−.Moreover, T |V+ is positive
definite, T |V0 is the zero operator, T |V− is negative definite, and T can be written as
T = T |V+ ⊕ T |V0 ⊕ T |V− , in the sense that for every x ∈ V , if x = u + v + w with
u ∈ V+, v ∈ V0, w ∈ V−, then

T x = T |V+u + T |V0v + T |V−w.

Proof Since T is self-adjoint, all its eigenvalues are real numbers. Write the distinct
eigenvalues of T as in the following:

λ1, . . . , λk > 0, λk+1 = 0, λk+2, . . . , λk+1+r < 0,

where k is the number of distinct positive eigenvalues and r is the number of distinct
negative eigenvalues. (If 0 is not an eigenvalue of T , then ignore λk+1; similarly, any
other group is ignored if the case so demands.) Construct the subspaces V+, V0 and
V− as follows:

V+ := E(λ1) ⊕ · · · ⊕ E(λk), V0 := E(λk+1), V− := E(λk+2) ⊕ · · · ⊕ E(λk+1+r ).

Since V = E(λ1) ⊕ · · · ⊕ E(λk+1+r ), it follows that V = V+ ⊕ V0 ⊕ V−, and the
dimensions of V+, V0 and V− are, respectively, the number of positive, zero, and
negative eigenvalues of T, counting multiplicities, which are uniquely determined
from T .

Due to Theorems 7.33–7.37, the corresponding restriction maps are given by

TV+ := P1 + · · · + Pk, TV0 := Pk+1, TV− := Pk+2 + · · · + Pk+1+r .



306 7 Spectral Representation

so that T = T |V+ + T |V0 + T |V− in the sense spelled out in the theorem. Notice that
the only eigenvalue of T0 is 0, all eigenvalues of T |V+ are λ1, . . . , λk > 0, and those
of TV− are λk+2, . . . , λk+1+r < 0. Due to Theorem 7.24, each orthogonal projection
is self-adjoint. Hence all of T+, T0, T− are self-adjoint.

By Theorem 7.37, TV+ is diagonalizable. So, let {v1, . . . , vm} be an orthonormal
basis of V+ with TV+vi = αi vi for i = 1, . . . ,m.Here, each αi is in {λ1, . . . , λk} and,
hence, positive. Let x ∈ V+. By the Fourier expansion, and by Theorem 7.33(3), we
have

x =
m∑

i=1

〈x, vi 〉vi , TV+x =
m∑

i=1

αi 〈x, vi 〉vi .

Now, if x 
= 0, then for at least one i ∈ {1, . . . ,m}, 〈x, vi 〉 
= 0. Then

〈TV+x, x〉 =
〈 m∑

i=1

αi 〈x, vi 〉vi ,
m∑

i=1

〈x, vi 〉vi
〉
=

m∑

i=1

αi |〈x, vi 〉|2 > 0.

Hence, TV+ is positive definite. Similarly, it follows that T |V0 is the zero operator,
and T |V− is negative definite. �

Let A ∈ C
m×m be a hermitian matrix. Its diagonalization yields an invertible

matrix Q such that Q∗AQ = diag(λ1, . . . , λp, 0, . . . , 0,−λp+k+1, . . . ,−λp+k+n),

where m = p + k + n, Q−1 = Q∗, and each λ j is positive. Also,

Q = [w1 · · · wm]

is the matrix formed by taking the orthonormal eigenvectors wj corresponding to the
eigenvalues. Define a diagonal matrix D ∈ R

m×m as follows:

D = diag
( 1√

λ1
, . . . ,

1√
λp

, 1, . . . , 1,− 1√
λp+k+1

, . . . ,− 1√
λp+k+n

)
.

We see that

DQ∗AQD = D diag(λ1, . . . , λp, 0, . . . , 0,−λn+k+1, . . . ,−λn+k+p) D = diag(Ip, 0,−In).

Since D is a real diagonal matrix, with P = QD, we have

P∗AP = diag(Ip, 0,−In).

Thus the matrix version of Theorem 7.40 may be stated as follows.

Theorem 7.41 (Sylvester form) Let A be a hermitian matrix. Then there exists an
invertible matrix P such that P∗AP = diag(Ip, 0,−In), where p is the number of
positive eigenvalues, and n is the number of negative eigenvalues of A, counting
multiplicities.



7.4 Self-adjoint Operators 307

Observe that the P∗AP is not a similarity transform, in general, since P∗ need not
be equal to P−1.However, each invertiblematrix is a product of elementarymatrices;
therefore, it says that the diagonal matrix in the Sylvester form may be obtained
by a sequence of symmetric elementary operations. That is, whenever we apply
an elementary row operation, it must be immediately followed by a corresponding
column operation so that the sequence of operations becomes symmetric. If in the
sequence of operations, we use E[i, j], and then following it, we must immediately
apply E ′[i, j]; if we use Eα[i], then soon after we must use E ′

α[i]; and if we use
the row operation Eα[i, j], the next column operation must be E ′

α[i, j]. The goal of
applying such elementary operations is to reduce the off-diagonal entries in A to 0.
The symmetric operations would imply that once a row operation reduces an entry
ai j to 0, the succeeding column operation would reduce a ji to 0.

Example 7.42 Let A =
⎡

⎣
3 −2 −2i

−2 2 2i
2i −2i −2

⎤

⎦ . We use symmetric elementary opera-

tions to reduce it to its Sylvester form as follows:

⎡

⎣
3 −2 −2i

−2 2 2i
2i −2i −2

⎤

⎦ E1[1,2]−→
⎡

⎣
1 0 0

−2 2 2i
2i −2i −2

⎤

⎦ E ′
1[1,2]−→

⎡

⎣
1 0 0
0 2 2i
0 −2i −2

⎤

⎦

Ei [3,2]−→
⎡

⎣
1 0 0
0 2 2i
0 0 −2

⎤

⎦ E ′−i [3,2]−→
⎡

⎣
1 0 0
0 2 0
0 0 −2

⎤

⎦ E1/
√
2[2]−→

⎡

⎣
1 0 0
0

√
2 0

0 0 −2

⎤

⎦

E ′
1/

√
2
[2]

−→
⎡

⎣
1 0 0
0 1 0
0 0 −2

⎤

⎦ E1/
√
2[3]−→

⎡

⎣
1 0 0
0 1 0
0 0 −√

2

⎤

⎦
E ′
1/

√
2
[3]

−→
⎡

⎣
1 0 0
0 1 0
0 0 −1

⎤

⎦ .

�

In viewof Theorems 7.40 and 7.41, let p be the number of positive eigenvalues and
n be the number of negative eigenvalues, counting multiplicities, of the self-adjoint
operator T . Then the number n + p is the rank of T . The number p − n, which is
the difference between the number of positive and negative eigenvalues, counting
multiplicities, is called the signature of T . The diagonal matrix diag(Ip, 0,−In) in
Theorem 7.41 is called the Sylvester matrix. The Sylvester matrix is completely
determined from the rank and the signature of a linear operator.

We say that two matrices A, B ∈ C
m×m are congruent if there exists an invertible

matrix P such that B = P∗AP.Notice that under a congruence transform, eigenval-
ues of a matrix may change unless the matrix P is unitary. Sylvester’s Law of Inertia
states that under a congruence transform, the signs of eigenvalues of a hermitian
matrix do not change.
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Exercises for Sect.7.4

1. Diagonalize the matrices A =
[
4 1
1 4

]
and B =

[−2 6
6 −3

]
. Use the results to

diagonalize the 4 × 4 matrix C =
[
A 0
0 B

]
.

2. Find the diagonal matrix similar to the 6 × 6 matrix with all entries as 1.
3. Find an orthogonal matrix P so that PT AP is diagonal, where

(a) A =
⎡

⎣
2 1 1
1 2 −1
1 −1 2

⎤

⎦ (b) A =
[
cos θ sin θ

sin θ − cos θ

]

4. Let v be an eigenvector of a self-adjoint operator T on an inner product space V .

Show that v⊥ is invariant under T .

5. Show that there does not exist a self-adjoint operator T on R
3 with T (1, 2, 3)

= (1, 2, 3) and T (4, 5, 6) = (0, 0, 0).
6. Prove that the zero operator is the only nilpotent self-adjoint operator on a finite

dimensional inner product space.
7. Let T be a linear operator on an inner product space V overF.Prove the following:

(a) T = 0 if and only if 〈T x, y〉 = 0 for all x, y ∈ V .

(b) If T is self-adjoint, then T = 0 if and only if 〈T x, x〉 = 0 for each x ∈ V .

(c) If F = C, then T = 0 if and only if 〈T x, x〉 = 0 for each x ∈ V .

(d) If F = C, then T self-adjoint if and only if 〈T x, x〉 ∈ R for each x ∈ V .

(e) In case F = R, neither (c) nor (d) is true, in general.

8. Find an invertible matrix P such that PT AP is in Sylvester form, and then deter-
mine the rank and signature of A, where

A =
⎡

⎣
−1 −1 −1
−1 1 0
−1 0 1

⎤

⎦ .

7.5 Singular Value Decomposition

We had seen many factorizations of matrices, such as the QR factorization, the LU
decomposition, the rank factorization, Schur triangularization, Jordan normal form,
anddiagonalization,whenever possible.Weadd to our cart another such factorization,
often used in many applications of matrices and linear transformations.

Recall that if T : U → V is a linear transformation on a finite dimensional inner
product spaceU , then its adjoint T ∗ is a map from V toU. Therefore, we cannot talk
about eigenvalues, eigenvectors, etc., of T when U and V are different. However,
the composition operator T ∗T is an operator onU , so that we can make use of those
concepts for the operator T ∗T and make some inferences on T .

Notice that T ∗T is a self-adjoint operator on U . It is positive semi-definite, since
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〈T ∗T x, x〉 = 〈T x, T x〉 = ‖T x‖2 ≥ 0

for all x ∈ U . Hence all its eigenvalues are real and nonnegative, and their algebraic
and geometric multiplicities are the same. Thus the following definitionmakes sense.

Definition 7.43 Let U and V be inner product spaces of dimensions n and m,

respectively. Let T : U → V be a linear transformation. The nonnegative square
root of any eigenvalue of the linear operator T ∗T : U → U is called a singular
value of T .

Since T ∗T : U → U is self-adjoint, it is diagonalizable. Hence, there exists an
orthonormal basis B = {u1, . . . , un} of eigenvectors of T ∗T,where each basis vector
corresponds to a nonnegative eigenvalue. Let λ1, . . . , λn be the nonnegative eigen-
values corresponding to the eigenvectors u1, . . . , un , respectively, that is,

T ∗Tui = λi ui for i = 1, . . . , n.

Assume that T 
= 0. Then at least one λi is nonzero. Let si be the nonnegative
square root of λi for i = 1, . . . , n. Then s1, . . . , sn are the singular values of T .

Without loss of generality, we assume that

s1 ≥ s2 ≥ · · · ≥ sr > sr+1 = · · · = sn = 0.

Here, s1, . . . , sr , with possible repetitions, are the positive singular values of T . In
case, T = 0, each λi is equal to 0, so that all singular values are also equal to 0. We
include this case in the above arrangement by allowing r to take the value 0. In this
notation,

T ∗Tui = s2i ui for i = 1, . . . , n.

Theorem 7.44 (Singular value representation) Let U and V be inner product
spaces of dimensions n and m, respectively. Let T : U → V be a nonzero lin-
ear transformation. Let B be an orthonormal basis of U consisting of eigen-
vectors u1, . . . , un of T ∗T with corresponding eigenvalues s21 , . . . , s

2
n such that

s21 ≥ · · · ≥ s2r > s2r+1 = · · · = s2n = 0. For i = 1, . . . , r, let vi := 1
si
T ui . Then the

following are true:

(1) T x = ∑r
i=1 si 〈x, ui 〉vi for each x ∈ U.

(2) T ∗y = ∑r
j=1 s j 〈y, v j 〉u j for each y ∈ V .

(3) {u1, . . . , ur } is an orthonormal basis of N (T )⊥.

(4) {v1, . . . , vr } is an orthonormal basis of R(T ).
(5) {ur+1, . . . , un} is an orthonormal basis of N (T ).
(6) r = rank (T ) ≤ min{m, n}.
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Proof (1) Let x ∈ U . Since x = ∑n
i=1〈x, ui 〉ui , and si = 0 for i > r , we have

T x =
n∑

i=1

〈x, ui 〉Tui =
n∑

i=1

〈x, ui 〉si vi =
r∑

i=1

〈x, ui 〉si vi .

(2) Let y ∈ V and let x ∈ U . Then using (1), we have

〈x, T ∗y〉 = 〈T x, y〉 =
〈 r∑

i=1

si 〈x, ui 〉vi , y
〉
=

r∑

i=1

si 〈x, ui 〉〈vi , y〉 =
〈
x,

r∑

i=1

si 〈y, vi 〉ui
〉
.

Hence, T ∗y = ∑r
i=1 si 〈y, vi 〉ui for each y ∈ V .

(3)–(4) By (1) and (2), and using the facts that Tui = si vi , T ∗vi = siui and si 
= 0
for i = 1, . . . , r , we have

R(T ) = span({v1, . . . , vr }) and R(T ∗) = span({u1, . . . , ur }).

Since {u1, . . . , ur } is an orthonormal set and R(T ∗) = N (T )⊥, {u1, . . . , ur } is an
orthonormal basis of N (T )⊥. Notice that for i, j = 1, . . . , r ,

〈vi , v j 〉 = 1

si s j
〈Tui , Tu j 〉 = 1

si s j
〈ui , T ∗Tu j 〉 = s2j

si s j
〈ui , u j 〉 = s j

si
〈ui , u j 〉.

Since {u1, . . . , un} is an orthonormal set, so is {v1, . . . , vr }. It follows that {v1, . . . , vn}
is an orthonormal basis of R(T ).

(5) Since T ∗Tui = s2i ui = 0 for i > r , we have ui ∈ N (T ∗T ) = N (T ) for i > r .
Since U = N (T )⊥ + N (T ) and {u1, . . . , ur } is an orthonormal basis of N (T )⊥, it
follows that {ur+1, . . . , un} is an orthonormal basis of N (T ).

(6) It follows from (3). �
In Schur triangularization, we had a linear operator and we chose a basis for the

space in which the matrix is upper triangular. If we are free to choose different bases
for the domain space and the co-domain space, then we would end up in a still nicer
form of the matrix. The following theorem does exactly that.

Theorem 7.45 (Singular value decomposition)LetU and V be inner product spaces
of dimensions n and m, respectively. Let T : U → V be a linear transformation. Let
s1, . . . , sn be the singular values of T, where s1 ≥ · · · ≥ sr > sr+1 = · · · = sn = 0.
Then there exist orthonormal bases B for U and E for V so that the following
statements hold:

(1) [T ]E,B =
[
S 0
0 0

]
∈ R

m×n and [T ∗]B,E =
[
S 0
0 0

]
∈ R

n×m, where

S = diag(s1, . . . , sr ) and r ≤ min{m, n}.
(2) [T ∗T ]B,B = diag(s21 , . . . , s

2
r , 0, . . . , 0) ∈ R

n×n .

(3) [T T ∗]E,E = diag(s21 , . . . , s
2
r , 0, . . . , 0) ∈ R

m×m .
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Proof Let u1, . . . , un and v1, . . . , vr be as in Theorem 7.44. Let B = {u1, . . . , un}
and let E = {v1, . . . , vm} be an orthonormal basis of V obtained by extending the
orthonormal set {v1, . . . , vr }.
(1) We know that Tu j = s j v j for j ∈ {1, . . . , r} and Tu j = 0, for j > r . Hence
[T ]E,B is in the required form. Also, we have T ∗v j = s ju j for j ∈ {1, . . . , r}. By
Theorem 7.44(2), T ∗v j = 0 for j > r . Hence, we obtain the representation for T ∗.

(2) [T ∗T ]B,B = [T ∗]B,E [T ]E,B =
[
S 0
0 0

] [
S 0
0 0

]
= diag(s21 , . . . , s

2
r , 0, . . . , 0).

(3) Similar to (2). �

Notice that T T ∗ and T ∗T have the same nonzero eigenvalues (Theorem 7.45 (2))
and they are all real numbers. Depending on the dimensions of the spaces U and V,

there are more or less zero eigenvalues of T T ∗ compared with those of T ∗T .

The matrix interpretation of Theorem 7.45 is as follows. We use the phrase a
full orthonormal set of eigenvectors of a linear operator T : U → U to mean the
following:

If an eigenvalue λ of T has algebraic multiplicity μ, then the orthonormal set
contains exactly μ number of eigenvectors corresponding to λ.

Theorem 7.46 (Singular value decomposition of matrices) Let A ∈ F
m×n . Let the

positive singular values of A be s1 ≥ · · · ≥ sr > 0. Then there exist unitary matrices
P ∈ F

n×n, Q ∈ F
m×m such that A can be written as A = Q 
 P∗, where


 =
[
S 0
0 0

]
∈ R

m×n, S = diag(s1, . . . , sr ), r ≤ min{m, n}.

Moreover, the columns of P form a full orthonormal set of eigenvectors of A∗A, and
the columns of Q form a full orthonormal set of eigenvectors of AA∗.

Proof The matrix A is a linear transformation from F
n×1 to F

m×1. Due to Theo-
rem 7.45, we have orthonormal bases B = {u1, . . . , un} for Fn×1 and E = {v1, . . . ,
vm} for Fm×1 such that

[A]E,B =
[
S 0
0 0

]
.

Construct the matrices P := [
u1 · · · un

]
and Q := [

v1 · · · vm
]
. Since B and E are

orthonormal bases, Q−1 = Q∗ and P−1 = P∗. Theorem 2.52 implies that


 := [A]E,B = Q−1AP = Q∗AP =
[
S 0
0 0

]
.

Here, S = diag(s1, . . . , sr ) is an r × r matrix, and r = rank (A) ≤ min{m, n}.Notice
that 
∗ = 
. Further, A∗A has positive eigenvalues s21 , . . . , s

2
r (with possible repe-

titions) and the eigenvalue 0 has multiplicity n − r. Next, Q∗AP = 
 implies that
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A = Q
P∗. Set si = 0 for i ∈ {r + 1, . . . , n}. Now,

A∗AP = P
Q∗Q
P∗P = P
2 In = P diag(s21 , . . . , s
2
r , s

2
r+1, . . . , s

2
n ).

That is, for each i ∈ {1, . . . , n}, A∗Aui = s2i ui . Since B is an orthonormal basis of
F
n×1, it follows that the columns of P form a full orthonormal set of eigenvectors

of A∗A.

For the eigenvectors of AA∗, notice that the nonzero eigenvalues of AA∗ are
s21 , . . . , s

2
r (with possible repetitions), and the eigenvalue 0 has multiplicity m − r.

Set s j = 0 for j ∈ {r + 1, . . . ,m}. Then

AA∗Q = Q
P∗P
Q∗Q = Q
2 Im = Q diag(s21 , . . . , s
2
r , s

2
r+1, . . . , s

2
m).

That is, for each j ∈ {1, . . . ,m}, AA∗v j = s2j v j . Since E is an orthonormal basis of
F
m×1, it follows that the columns of Q form a full orthonormal set of eigenvectors

of AA∗. �

Example 7.47 Let A =
[

2 −2 4
−1 1 −2

]
. Then A∗A =

⎡

⎣
5 − 5 10

−5 5 −10
10 −10 20

⎤

⎦ , AA∗ =
[

24 −12
−12 6

]
.

The eigenvalues of A∗A are 30, 0, 0 and of AA∗ are 30, 0. Thus the matrix S
in Theorem 7.46 is S = diag(

√
30, 0) and 
 ∈ F

2×3 with first 2 × 2 block as S and
other entries being 0.

The vector u1 = (1/
√
6, −1/

√
6, 2/

√
6)T is an eigenvector of norm 1 correspond-

ing to the eigenvalue 30 of A∗A. Eigenvectors of A∗A corresponding to 0 sat-
isfy x1 − x2 + 2x3 = 0. Thus we choose two linearly independent eigenvectors as
u2 = (1/

√
2, 1/

√
2, 0)T and u3 = (1/

√
3, −1/

√
3, −1/

√
3)T so that B = {u1, u2, u3} is

an orthonormal set. Then P = [
u1 u2 u3

]
.

Similarly, the vector v1 = (2/
√
5, −1/

√
5)T is an eigenvector of AA∗ corresponding

to the eigenvalue 30. For the eigenvalue 0, we then take the eigenvector as v2 =
(1/

√
5, 2/

√
5)T so that E = {v1, v2} is an orthonormal set. Then Q = [

v1 v2
]
. We see

that

Q
P∗ =
[

2/
√
5 1/

√
5

−1/
√
5 2/

√
5

] [√
30 0 0
0 0 0

] ⎡

⎣
1/

√
6 −1/

√
6 2/

√
6

1/
√
2 1/

√
2 0

1/
√
3 −1/

√
3 −1/

√
3

⎤

⎦ =
[

2 −2 4
−1 1 −2

]
= A.

R(A) = span{(2,−1)T , (−2, 1)T , (4,−2)T } = span{(2,−1)T } = span{v1}.

Au2 =
[

2 −2 4
−1 1 −2

] ⎡

⎣
1/

√
2

1/
√
2

0

⎤

⎦ =
[
0
0

]
.
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Au3 =
[

2 −2 4
−1 1 −2

] ⎡

⎣
1/

√
3

−1/
√
3

−1/
√
3

⎤

⎦ =
[
0
0

]
.

Since dim(N (A)) = 3 − dim(R(A) = 2, {u2, u3} is a basis for N (A).

Let x = (a, b, c)T ∈ R
3×1. Then 〈x, u1〉 = uT

1 x = 1√
6
(a − b + 2c). We have

Ax =
[
2a − 2b + 4c
−a + b − 2c

]
= √

30
1√
6
(a − b + 2c)

[
2/

√
5

−1/
√
5

]
= 〈x, u1〉v1 =

r∑

i=1

si 〈x, ui 〉vi .

Let y = (a, b)T ∈ R
2×1. Then 〈y, v1〉 = vT1 y = 1√

5
(2a − b). We have

A∗y =
⎡

⎣
2a − b

−2a + b
4a − 2b

⎤

⎦ = √
30

1√
5
(2a − b)

⎡

⎣
1/

√
6

−1/
√
6

2/
√
6

⎤

⎦ = 〈y, v1〉u1 =
r∑

i=1

si 〈y, vi 〉ui .

With this, we have verified all the statements in Theorems 7.44–7.46. �

For amatrix A ∈ F
m×n of rank r, let S = diag(s1, . . . , sr ).Then the singular value

decomposition of A is A = Q 
 P∗, where 
 ∈ R
m×n has one of the following

forms:

If r < min(m, n), then 
 =
[
S 0
0 0

]
.

If r = m < n, then 
 = [
S 0

]
.

If r = n < m, then 
 =
[
S
0

]
.

If r = m = n, then 
 = S.

Moreover, if A ∈ R
m×n, then the matrices P and Q can be chosen as real orthogonal

matrices.
A linear operator maps subspaces to subspaces. In R

2, we see that a circle may
become an ellipse under a linear operator since scaling and rotation can happen to
the axes. Singular value decomposition shows that this is true in higher dimensions.
We use the notation of Theorem 7.45 implicitly.

An n-dimensional unit sphere is defined as the set of all unit vectors in R
n×1.

Let x be a point on the n-dimensional unit sphere, i.e. x ∈ R
n×1 and ‖x‖ = 1. Since

{u1, . . . , un} is an orthonormal basis forRn×1, x = ∑n
i=1〈x, ui 〉ui .Theorem 7.44 (3)

implies that Ax = ∑r
i=1 si 〈x, ui 〉vi . Since vi s form an orthonormal set, Parseval’s

identity gives

‖Ax‖2 =
r∑

i=1

s2i |〈x, ui 〉|2 and
n∑

i=1

|〈x, ui 〉|2 = ‖x‖2 = 1.
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Thus, writing yi = si |〈x, ui 〉|, we see that

y21
s21

+ · · · + y2r
s2r

≤ 1.

That is, the image of x lies in the interior of the hyper-ellipsoid with semi-axes as
si vi . Notice that when r = n, the image is the surface of the hyper-ellipsoid.

Singular value decomposition can be used to solve least squares problem arising
out of linear systems. In the least squares problem for a linear system

Ax = b,

we try to determine an x that minimizes the square of the residual: ‖b − Ax‖2.Recall
that such a minimizer x is a least squares solution of the linear system Ax = b. In
the following, we use the Euclidean norm of a vector, i.e.

‖(a1, . . . , ak)T ‖2 = |a1|2 + · · · |ak |2.

Suppose A = Q 
 P∗ is the singular value decomposition of A ∈ F
m×n . Then

‖b − Ax‖2 = ‖b − Q 
 P∗x‖2 = ‖Q(Q∗b − 
 P∗x)‖2 = ‖Q∗b − 
 P∗x‖2.

The last equality follows since for any u ∈ F
n×1,

‖Qu‖2 = 〈Qu, Qu〉 = 〈u, Q∗Qu〉 = 〈u, u〉 = ‖u‖2.

With S as the nonzero block of order r in 
, write

y = P∗x =
[
y1
y2

]
, b̂ = Q∗b =

[
b1
b2

]
, 
 =

[
S 0
0 0

]
,

where S = diag(s1, . . . , sr ) ∈ R
r×r , y1, b1 ∈ F

r×1, y2 ∈ F
(n−r)×1 and b2 ∈

F
(m−r)×1. Then

‖b − Ax‖2 = ‖Q∗b − 
P∗x‖2 = ‖b̂ − 
y‖2 =
∥∥∥∥

[
b1 − Sy1

b2

] ∥∥∥∥
2

= ‖b1 − Sy1‖2 + ‖b2‖2.

So, ‖b − Ax‖2 is minimized for b1 = Sy1, i.e. when

x = Py = P

[
y1
y2

]
= P

[
S−1b1
y2

]
for arbitrary y2.



7.5 Singular Value Decomposition 315

Again, since P∗P = I,

‖x‖2 =
(
P

[
S−1b1
y2

])∗ (
P

[
S−1b1
y2

])
= ‖S−1b1‖2 + ‖y2‖2.

Therefore, a least squares solution of Ax = b which also has minimum norm is
x = Py with y2 = 0. Explicitly, such an x is given by

x = P

[
S−1b1
0

]
= P

[
S−1 0
0 0

] [
b1
b2

]
= P

[
S−1 0
0 0

]
Q∗b.

Definition 7.48 Let A ∈ F
m×n and let A = Q

[
S 0
0 0

]
P∗ be the singular value

decomposition of A. Then the matrix

A† := P

[
S−1 0
0 0

]
Q∗

in Fm×n is called the generalized inverse or the Moore–Penrose inverse of A.

The discussion preceding the above definition shows that a minimum norm least
squares solution of the system Ax = b is given by x = A†b. Of course, when A is
invertible, A† coincides with A−1.

Example 7.49 Consider the matrix A =
[

2 −2 4
−1 1 −2

]
of Example 7.47. Its singu-

lar value decomposition was computed as A = Q 
 P∗, where

Q =
[

2/
√
5 1/

√
5

−1/
√
5 2/

√
5

]
, 
 =

[√
30 0 0
0 0 0

]
, P =

⎡

⎣
1/

√
6 1/

√
2 1/

√
3

−1/
√
6 1/

√
2 −1/

√
3

2/
√
6 0 −1/

√
3

⎤

⎦ .

Then

A† =
⎡

⎣
1/

√
6 1/

√
2 1/

√
3

−1/
√
6 1/

√
2 −1/

√
3

2/
√
6 0 −1/

√
3

⎤

⎦

⎡

⎣
1/

√
30 0
0 0
0 0

⎤

⎦
[
2/

√
5 −1/

√
5

1/
√
5 2/

√
5

]
= 1

30

⎡

⎣
2 −1

−2 1
4 −2

⎤

⎦ .

We find that (AA†)∗ = AA†, (A†A)∗ = A†A, AA†A = A and A†AA† = A†. �

Theorem 7.50 Let A ∈ F
m×n. Then A† is the unique matrix in Fn×m that satisfies

(AA†)∗ = AA†, (A†A)∗ = A†A, AA†A = A, and A†AA† = A†.
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Proof Let A = Q 
 P∗ be the singular value decomposition of A, where the

n × n matrix P and the m × m matrix Q are unitary, and 
 =
[
S 0
0 0

]
∈ F

m×n .

Here, S = diag(s1, . . . , sr ), with s1 ≥ · · · ≥ sr > 0 and r = rank (A). Construct

̂ ∈ F

n×m as follows:


̂ =
[
S−1 0
0 0

]
.

Observe that


̂∗ 
∗ = 
 
̂, 
∗ 
̂∗ = 
̂ 
, 
̂ 
 
̂ = 
̂, 
 
̂ 
 = 
, A† = P 
̂ Q∗.

We verify the four required identities as follows:

(AA†)∗ = (Q 
 P∗ P 
̂ Q∗)∗ = Q 
̂∗ 
∗ Q∗ = Q 
 
̂ Q∗ = Q 
 P∗ P 
̂ Q∗ = AA†.

(A†A)∗ = (P 
̂ Q∗Q 
 P∗)∗ = P 
∗ 
̂∗ P∗ = P 
̂ 
 P∗ = P 
̂ Q∗ Q 
 P∗ = A†A.

AA†A = Q 
 P∗ P 
̂ Q∗ Q 
 P∗ = Q 
 
̂ 
 P∗ = Q 
 P∗ = A.

A†AA† = P 
̂ Q∗ Q 
 P∗ P 
̂ Q∗ = P 
̂ 
 
̂ Q∗ = P 
̂ Q∗ = A†.

For uniqueness, suppose B,C ∈ F
m×n such that

(AB)∗ = AB, (BA)∗ = BA, ABA = A, BAB = B,

(AC)∗ = AC, (CA)∗ = CA, ACA = A, CAC = C.

Then

B = BAB = B(AB)∗ = BB∗A∗ = BB∗(ACA)∗ = BB∗A∗C∗A∗ = BB∗A∗(AC)∗

= BB∗A∗AC = B(AB)∗AC = BABAC = B(ABA)C = BAC = B(ACA)C

= BACAC = BA(CA)C = BA(CA)∗C = BAA∗C∗C = (BA)∗A∗C∗C
= A∗B∗A∗C∗C = (ABA)∗C∗C = A∗C∗C = (CA)∗C = CAC = C. �

There are other types of generalized inverses for rectangularmatrices. For amatrix
A ∈ F

m×n, any matrix X ∈ F
n×m that satisfies X A = In is called a left inverse of A;

similarly, any matrix Y ∈ F
n×m that satisfies AY = Im, is called a right inverse of

A. In general, left and right inverses of a matrix are not unique.
If A has m linearly independent columns, then A∗A is invertible, and then B =

(A∗A)−1A∗ is a left inverse of A. Similarly, if A has m linearly independent rows,
then AA∗ is invertible, and C = A∗(AA∗)−1 is a right inverse of A.

Exercises for Sect. 7.5

1. Let A be a square matrix. Prove or disprove:

(a) If A is self-adjoint, then tr(A) is real.
(b) If A is positive semi-definite, then tr(A) ≥ 0.
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2. Let A ∈ C
m×n . Show that A∗A and AA∗ have the same nonzero eigenvalues,

counting multiplicities.
3. Determine the singular value decomposition of the matrices

(a)

⎡

⎣
2 −2
1 1
2 2

⎤

⎦ (b)

[
2 −1 1

−2 1 −1

]
(c)

⎡

⎣
2 0 −1 0
1 2 2 3
2 −5 4 0

⎤

⎦ .

4. Let T be a self-adjoint operator on a finite dimensional inner product space. Show
that the singular values of T are precisely the absolute values of the eigenvalues
of T .

5. Show that the singular values of T 2 need not be the squares of the singular values
of T .

6. Show that the matrices

[
2 −1
1 0

]
and

[
1 1
0 1

]
are similar to each other, but they

do not have the same singular values.
7. Let T be a linear operator on a finite dimensional inner product space. Show that

T is an isometry if and only if all singular values of T are 1.
8. Let A ∈ R

m×n be amatrix of rank r.Show that there exist real orthogonalmatrices
P ∈ R

n×n and Q ∈ R
m×m such that A can be written as Q 
 PT , where the first

r diagonal entries of 
 are positive real numbers s1 ≥ · · · ≥ sr and all other
entries of 
 are 0.

9. Determine the generalized inverse of the matrices in Exercise 3.
10. Let the columns of A ∈ F

m×n be linearly independent. Show the following:

(a) A∗A is invertible. (b) A† = (A∗A)−1A∗.

11. Let the rows of A ∈ F
m×n be linearly independent. Show the following:

(a) AA∗ is invertible. (b) A† = A∗(AA∗)−1.

12. Let A ∈ C
m×n have n linearly independent columns. Is it true that AT A is invert-

ible?
13. Construct a matrix having at least two left inverses.
14. Construct a matrix which admits of at least two right inverses.

7.6 Polar Decomposition

Recall that a complexnumber z canbewritten as z = |z|eiθ ,where |z| is a nonnegative
real number and the absolute value of eiθ is 1. It presupposes that each nonnegative
real number has a nonnegative square root. Similar representations are possible for
linear transformations as well. Of course, we should have the notion of a square root
of a positive semi-definite operator.
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Definition 7.51 Let T be a linear operator on a finite dimensional inner product
space V . We say that a linear operator S : V → V is a square root of T if S2 = T .

Example 7.52 (1) Define linear operators S, T : F2 → F
2 by

S(a, b) = (a + b, 2a + b), T (a, b) = (3a + 2b, 4a + 3b) for (a, b) ∈ F
2.

Then S2(a, b)=S(a + b, 2a + b)=(a + b + 2a + b, 2(a + b) + 2a + b)=T (a, b).
Hence S is a square root of T . Also, the linear operator −S is a square root of T .

(2) The linear operator T : F2 → F
2 defined by

T (a, b) = (b, 0), for (a, b) ∈ F
2

does not have a square root. On the contrary, if S : R2 → R
2 is a square root of T,

then S2 = T . Notice that T 2 = 0. Therefore, S4 = 0. Now, S is a nilpotent operator
on a 2-dimensional vector space; hence S2 = 0. (See Exercise 13 of Sect. 6.4.) This
is a contradiction, since T 
= 0. �

Notice that if T ∗ = T and 〈T v, v〉 ≥ 0 for each basis vector v in some (any) basis
of V, then T is positive semi-definite. We show that each positive semi-definite
operator has a square root.

Theorem 7.53 Let T be a positive semi-definite linear operator on an inner product
space V of dimension n. Then T has a unique positive semi-definite square root S.

Further, T and S have the following representations:

T x =
n∑

i=1

λi 〈x, ui 〉ui , Sx =
n∑

i=1

√
λi 〈x, ui 〉ui , for x ∈ V,

where {u1, . . . , un} is an orthonormal basis of V, and ui is an eigenvector corre-
sponding to the eigenvalue λi ≥ 0 of T for i = 1, . . . , n.

Proof Since T is self-adjoint, spectral theorem implies that

T x =
n∑

i=1

λi 〈x, ui 〉ui for x ∈ V,

where {u1, . . . , un} is an orthonormal basis of V and Tui = λi ui for i = 1, . . . , n.

Since T is positive semi-definite each λi ≥ 0. Define S : V → V by

Sx =
n∑

i=1

√
λi 〈x, ui 〉ui for x ∈ V .
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It is easily verified that S is a positive semi-definite linear operator and that
Sui = √

λi ui for i = 1, . . . , n. Now, for any x ∈ X ,

S2x = S(Sx) =
n∑

i=1

√
λi 〈x, ui 〉Sui =

n∑

i=1

λi 〈x, ui 〉ui = T x .

Thus, S is a positive semi-definite square root of T .

For uniqueness of S, suppose Q is also a positive semi-definite square root of T .

We claim that

(λ, v) is an eigenpair of T if and only if (
√

λ, v) is an eigenpair of Q.

To prove the claim, assume that T v = λv and v 
= 0. As T is self-adjoint, λ ≥ 0. We
consider the case λ = 0 and λ > 0 separately.

If λ = 0, then Q2v = T v = 0. Consequently, 〈Qv, Qv〉 = 〈v, Q2v〉 = 〈v, 0〉 =
0. That is, Qv = 0 = √

λ v.
Otherwise, let λ > 0.Now, Q2v = λv implies that (Q + √

λI )(Q − √
λI )v = 0.

As Q is positive semi-definite, −√
λ is not an eigenvalue of Q. Thus Q + √

λI is
invertible. Then (Q − √

λI )v = 0. That is, Qv = √
λ v.

Conversely, if Qv = √
λ v then T v = Q2v = Q

(√
λ v

) = √
λ Qv = λv. This

proves our claim.
Notice that our claim is also true for S in place of Q. Now, since λ1, . . . , λn are

the eigenvalues of T with corresponding eigenvectors u1, . . . , un, our claim for Q
and S imply that for each j ∈ {1, . . . , n},

Qu j = √
λ j u j if and only if Tu j = λ j v j if and only if Su j = √

λ j u j .

That is, Qu j = Su j for each j ∈ {1, . . . , n}. As {u1, . . . , un} is a basis of V, we
conclude that Q = S. �

Notation: The positive semi-definite square root of a positive semi-definite operator
T is written as

√
T .

In the general case, let T : U → V be a linear transformation, where U and V
are inner product spaces of dimensions n and m, respectively. The linear operators
T ∗T : U → U and T T ∗ : V → V are positive semi-definite. We see that for each
u ∈ U ,

〈Tu, Tu〉 = 〈u, T ∗Tu〉 = 〈
u,

√
T ∗T

√
T ∗Tu

〉 = 〈√
T ∗T u,

√
T ∗T u

〉
.

That is, ‖Tu‖ = ‖√T ∗T u‖ for each u ∈ U . It says that the linear operators T and√
T ∗T have the same effect on the length of a vector. Now, Tu = 0 if and only if√
T ∗T u = 0. Using the rank-nullity theorem, we have

rank (
√
T ∗T ) = rank (T ).
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Further, by Theorem 7.53, T ∗T and
√
T ∗T have the representations

T ∗T (x) =
n∑

j=1

λ j 〈x, u j 〉u j ,
√
T ∗T

(
x
) =

n∑

j=1

s j 〈x, u j 〉u j for x ∈ U,

where λ1, . . . , λn are the eigenvalues of T ∗T and s1, . . . , sn are their nonnegative
square roots. Similar results hold true for the linear operator

√
T T ∗. However, due

to singular value decomposition,
√
T T ∗ has the representation

√
T T ∗(y) =

m∑

i=1

si 〈y, vi 〉v j , for y ∈ U,

where vi = (1/
√

λi )Tui for i = 1, . . . , r with r := rank (T ), and {v1, . . . , vm} is an
orthonormal basis of V obtained by extending the orthonormal set {v1, . . . , vr }.

In the following theorem, we use the linear operators
√
T ∗T and

√
T T ∗ for

representing T and T ∗.

Theorem 7.54 (Polar decomposition) Let U and V be inner product spaces of
dimensions n and m, respectively. Let T : U → V be a linear transformation. Then
there exists a linear transformation P : U → V with ‖Pu‖ ≤ ‖u‖ for each u ∈ U
such that

T = P
√
T ∗T = √

T T ∗ P and T ∗ = √
T ∗T P∗ = P∗√T T ∗.

Further, if m = n, then such a linear operator P can be chosen as an isometry.

Proof Let rank (T ) = r. The singular value representation of T is given by

T x =
r∑

i=1

si 〈x, ui 〉vi for x ∈ U

with suitable orthonormal bases {u1, . . . , un} for U and {v1, . . . , vn} for V, and
positive singular values s1 ≥ · · · ≥ sr of T . Then (See (4.2) in Sect. 4.8.)

T ∗y =
r∑

i=1

si 〈y, vi 〉ui for y ∈ V .

Consequently,

T ∗T x =
r∑

i=1

s2i 〈x, ui 〉ui ,
√
T ∗T

(
x
) =

r∑

i=1

si 〈x, ui 〉ui for x ∈ U ;
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T T ∗y =
r∑

i=1

s2i 〈y, vi 〉ui ,
√
T T ∗(y

) =
r∑

i=1

si 〈y, vi 〉vi for y ∈ V .

Define the linear operator P : U → V by

Px :=
r∑

i=1

〈x, ui 〉vi for x ∈ U. (7.2)

Then Pu j = v j and 〈Px, v j 〉 = 〈x, u j 〉 for j = 1, . . . , r and x ∈ U . Hence, for every
x ∈ U ,

P
√
T ∗T x =

r∑

i=1

si 〈x, ui 〉Pui =
r∑

i=1

si 〈x, ui 〉vi = T x;

√
T T ∗Px =

r∑

i=1

si 〈Px, vi 〉vi =
r∑

i=1

si 〈x, ui 〉vi = T x .

Therefore, T = P
√
T ∗T = √

T T ∗P and T ∗ = √
T ∗T P∗ = P∗√T T ∗.

Using (7.2), we see that for each x ∈ U,

‖Px‖2 =
r∑

i=1

|〈x, ui 〉|2 ≤ ‖x‖2.

If k = m = n, then ‖Px‖ = ‖x‖ for all x ∈ U . That is, P is an isometry. �

According to the position of the square root operators, the polar decompositions
are called left or right. That is, T = P

√
T ∗T is called a right polar decomposition,

and T = √
T T ∗ P is called a left polar decomposition of T .

The positive semi-definite operator
√
T ∗T is usually denoted by |T |. When U =

V and k = n, then the unitary matrix P is written as U , and then we have polar
decomposition as

T = U |T |.

This sloppy notation is used for the obvious reason of writing a complex number z
as eiθ |z| and also as |z| eiθ .

We interpret Theorem 7.54 for matrices. Suppose a matrix A ∈ F
m×n has rank

r ≤ min{m, n}. Let {u1, . . . , un} be an orthonormal basis of Fn×1 of eigenvectors of
A∗A corresponding to the eigenvalues s21 , . . . , s

2
n , and let {v1, . . . , vm} be an orthonor-

mal basis of eigenvectors of AA∗ corresponding to the eigenvalues s21 , . . . , s2m . Then
the operator P in Theorem 7.54 can be represented as
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Px =
r∑

i=1

(u∗
i x)vi =

r∑

i=1

(viu
∗
i )x, x ∈ F

n .

Recall that for a column vector u, u∗ denotes the conjugate transpose of u. Thus,
viu∗

i is a matrix of rank 1, and hence P ∈ F
m×n is the matrix

P =
r∑

i=1

(viu
∗
i ) = [v1 · · · vr ]

⎡

⎢⎣
u∗
1
...

u∗
r

⎤

⎥⎦ .

If m = n, then P is a unitary matrix. It results in the following theorem.

Theorem 7.55 (Polar decomposition of matrices) Let A ∈ F
m×n. There exists P ∈

F
m×n such that A = P

√
A∗A = √

AA∗ P, where

(1) if m < n, then P has orthonormal rows;
(2) if m > n, then P has orthonormal columns; and
(3) if m = n, then P is unitary.

Example 7.56 Consider the matrix A =
[

2 −2 4
−1 1 −2

]
of Example 7.47. We have

seen that

A∗A =
⎡

⎣
5 −5 10

−5 5 −10
10 −10 20

⎤

⎦ , AA∗ =
[

24 −12
−12 6

]
.

For A∗A, the eigenvectors were denoted by u1, u2, u3 corresponding to the eigen-
value 30, 0, 0; for AA∗, the orthonormal eigenvectors were v1, v2 corresponding
to the eigenvalues 30, 0. These vectors were found to be

u1 = 1√
6

⎡

⎣
1

−1
2

⎤

⎦ , u2 = 1√
2

⎡

⎣
1
1
0

⎤

⎦ , u3 = 1√
3

⎡

⎣
1

−1
−1

⎤

⎦ ; v1 = 1√
5

[
2

−1

]
, v2 = 1√

5

[
1
2

]
.

Observe that A∗A = P1
P∗
1 , where P1 = [

u1 u2 u3
]
and 
 = diag(30, 0, 0).

Hence
√
A∗A = P1 diag(

√
30, 0 , 0) P∗

1 . Similarly,
√
AA∗ = Q1 diag(

√
30, 0) Q∗

1,
where Q1 = [

v1 v2
]
. Thus, we obtain

√
A∗A =

⎡

⎣
1/

√
6 1/

√
2 1/

√
3

−1/
√
6 1/

√
2 −1/

√
3

2/
√
6 0 −1/

√
3

⎤

⎦

⎡

⎣

√
30 0 0
0 0 0
0 0 0

⎤

⎦

⎡

⎣
1/

√
6 −1/

√
6 2/

√
6

1/
√
2 1/

√
2 0

1/
√
3 −1/

√
3 −1/

√
3

⎤

⎦

=
√
5√
6

⎡

⎣
1 −1 2

−1 1 −2
2 −2 4

⎤

⎦ .
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√
AA∗ =

[
2/

√
5 1/

√
5

−1/
√
5 2/

√
5

] [√
30 0
0 0

] [
2/

√
5 −1/

√
5

1/
√
5 2/

√
5

]
=

√
6√
5

[
4 −2

−2 1

]
.

Since A ∈ F
2×3, by Theorem 7.55 (1), the matrix P has orthonormal rows, and it is

given by (See the discussion previous to that theorem.)

P = [
v1 v2

] [
u∗
1

u∗
2

]
=

[
2/

√
5 1/

√
5

−1/
√
5 2/

√
5

] [
1/

√
6 −1/

√
6 2/

√
6

1/
√
2 1/

√
2 0

]

= 1√
30

[
2 + √

3 −2 + √
3 4

−1 + 2
√
3 1 + 2

√
3 −2

]
.

Then, we see that
√
AA∗ P = A = P

√
A∗A as required. �

Exercises for Sect.7.6

1. Construct a positive semi-definite matrix with some negative entries.
2. Give an example of a matrix with all positive entries, which is not positive

semi-definite.
3. Prove or disprove: If a 2 × 2 matrix A = [ai j ] is positive semi-definite, then

a11 ≥ 0, a22 ≥ 0 and a11a22 − a12a21 ≥ 0. Is the converse true?
4. How many square roots the identity operator can have?
5. Let T : C3 → C

3 be defined by T (a, b, c) = (b, c, 0). Show that T does not
have a square root.

6. Let A, B ∈ C
n×n be hermitian matrices. Show that if A is positive definite, then

all zeros of the polynomial det(B − t A) are real.

7. Determine the polar decompositions of the matrix

[
1 −1
1 1

]
.

8. Taking cue from the computations in Example 7.56, determine the polar decom-

positions of the matrix

⎡

⎣
2 −1

−2 1
4 −2

⎤

⎦ .

9. Let T : F3 → F
3 be defined by T (a, b, c) = (c, 2a, 3b).Determine an isometry

S on F
3 such that T = S

√
T ∗T .

10. Let T be a linear operator on a finite dimensional inner product space. Prove the
following:

(a) If T is a normal operator and T = U |T | is a left polar decomposition of T,

then |T | commutes with every such U.

(b) If T = U |T | is a left polar decomposition of T and |T | commutes with one
such U, then T is a normal operator.

11. LetT : V → V be a linear operator,whereV is a finite dimensional inner product
space. Suppose T can be written as T = PU, where P is positive semi-definite
and U is unitary. Prove that in the decomposition T = PU, the positive semi-
definite operator P and the unitary operator U are unique if and only if T is
invertible.
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12. Do the statements in Exercise 10(a)–(b) hold for a right polar decomposition?
13. Let A ∈ F

m×n . Derive the singular value decomposition of A from the polar
decomposition of A.

7.7 Problems

1. LetU be a two-dimensional subspace ofR3×1.Let P be the orthogonal projection
of R3×1 onto U. Let {v1, v2, v3} be an orthonormal basis of R3×1. Let P(vi ) =
(ai , bi ) for i = 1, 2, 3. Prove that {(a1, a2, a3), (b1, b2, b3)} is an orthonormal
set.

2. Let n ∈ N and let α = e2π i/n . Let B = [b jk] ∈ C
n×n, where b jk = α jk/

√
n.

Prove that B is a unitary matrix.
3. Let A be a real orthogonal matrix. Let x ∈ C

n×1 be an eigenvector of A corre-
sponding to an eigenvalue λ. Then

xT AT x = (Ax)T x = λxT x; xT AT x = xT (A−1x) = λ−1xT x .

Therefore, λ = ±1. But the reflection operator on the plane has eigenvalues as
e±iθ . Is there anything wrong with the above argument?

4. Prove that if columns of a square matrix are orthogonal to each other, then the
rows of the matrix are also orthogonal to each other.

5. Is the composition of two self-adjoint operators on a finite dimensional inner
product space self-adjoint?

6. Let T be a linear operator on a finite dimensional vector space V . Prove that T
is diagonalizable if and only if there exists an inner product on V such that T is
a self-adjoint operator on the inner product space V .

7. Let U and V be inner product spaces of dimensions n and m, with orthonormal
ordered bases B and E, respectively. Let T : U → V be a linear transformation.
Write A = [T ]E,B . Show that

〈T x, y〉 = 〈A[x]B, [y]E 〉 for all (x, y) ∈ U × V .

Deduce that 〈T x, y〉 = 〈x, T y〉 for all (x, y) ∈ U × V if and only [T ]E,B is
hermitian.

8. Prove that the linear factors of the minimal polynomial of a hermitian matrix are
all distinct. Does the converse hold?

9. Let S and T be two normal operators on a finite dimensional inner product space.
If ST = 0, does it follow that T S = 0?

10. Let A, B ∈ F
n×n . Prove that if both A, B are hermitian, or if both are skew-

hermitian, then AB + BA is hermitian and AB − BA is skew-hermitian. What
happens if one of A, B is hermitian and the other is skew-hermitian?



7.7 Problems 325

11. Let T be a linear operator on a finite dimensional inner product space V over F.

Prove the following versions of the spectral theorem:

(a) Let F = C. Then, V has an orthonormal basis consisting of eigenvectors of
T if and only if T is normal.

(b) Let F = R. Then, V has an orthonormal basis consisting of eigenvectors of
T if and only if T is self-adjoint.

12. Let V be an inner product space of dimension n ≥ 2. Show that the set of all
normal operators on V does not form a subspace of L(V, V ).

13. Let S be the set of all self-adjoint operators on a finite dimensional nontrivial
vector space V . Show the following:

(a) If F = R, then S is a subspace of L(V, V ).

(b) If F = C, then S is not a subspace of L(V, V ).

14. Let A be a hermitian matrix. Prove that the following are equivalent:

(a) A is positive definite.
(b) Each principal minor of A is positive.
(c) A = PP∗ for some invertible matrix P.

(d) Each eigenvalue of A is positive.

15. If A = [ai j ] is a positive definite matrix, then show that aii > 0 for each i and
that aiia j j > |aii |2 for all i 
= j.

16. Let A, B,C be linear operators on an inner product space, where B − A and C
are positive semi-definite. Prove that if C commutes with both A and B, then
BC − AC is positive semi-definite.

17. If T is a positive definite operator on a finite dimensional inner product space
and B is a linear operator such that B − A is positive semi-definite, then prove
that A−1 − B−1 is positive semi-definite. (Hint: Try A = I first.)

18. Let A and B be linear operators on a finite dimensional inner product space. If
A and B − A are positive semi-definite, then show that det(A) ≤ det(B). (Hint:
if det(B) 
= 0, then

√
B is invertible.)

19. Does every invertible linear operator on a finite dimensional vector space have
a square root?

20. Let A be a real symmetric positive definite matrix. Show that there exist a
positive definite matrix B and an orthogonal matrix Q such that A = BQ.

21. Let A ∈ R
n×n be positive definite. Let b ∈ R

n. Prove that Sol(A, b) is the set
of values of x in Rn that minimizes the functional x �→ xT Ax − 2xT b.

22. Let P be a projection. Let f (t) be a polynomial. Suppose f (P) = aI + bP for
some scalars a and b. Can you express a and b in terms of the coefficients of
f (t)?

23. Let T be a linear operator on a finite dimensional inner product space V . LetU
be a subspace of V . Prove the following:

(a) If U is T -invariant, then PT P = T P for each projection P on U.

(b) If PT P = T P for some projection P on U, then U is T -invariant.
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24. Let T be a linear operator on a finite dimensional vector space V . Prove that
there exist invertible operators P and Q on V such that both PT and T Q are
projections.

25. LetU be afinite dimensional subspace of an inner product spaceV .Show that the
orthogonal projection PU : V → V is self-adjoint. Determine the eigenvalues
and the eigenspaces of PU .

26. Prove that the only real square matrix which is symmetric, orthogonal, and
positive definite is the identity matrix.

27. Prove that if a real square matrix A is unitarily similar to a real square matrix
B, then A is orthogonally similar to B.

28. Let A ∈ R
2×2. Prove that A has characteristic polynomial (t − α)2 + β2 for

nonzero real numbers α and β if and only if there exists an orthogonal matrix

P ∈ R
2×2 such that PT AP =

[
α −β

β α

]
.

29. Let x, y ∈ C
n×1; x 
= 0. Prove that there exists a matrix A ∈ C

n×n such that
AT = A and Ax = y.

30. Let A ∈ C
n×n be symmetric and invertible. Prove that there exists a matrix P

such that A = PT P.

31. Let A ∈ C
n×n . Prove that I + A∗A and

[
I A∗

−A I

]
are invertible.

32. Prove or disprove the following:

(a) A ∈ C
n×n is skew-symmetric if and only if xT Ax = 0 for all x ∈ C

n×1.

(b) A skew-symmetric n × n matrix is not invertible if and only if n is odd.
(c) The eigenvalues of a skew-symmetric matrix are purely imaginary.

33. Let A be a real skew-symmetric matrix. Prove the following:

(a) I + A is invertible.
(b) (I − A)(I + A)−1 is an orthogonal matrix.
(c) det(A) ≥ 0.
(d) If all entries of A are integers, then det(A) is the square of an integer.

34. Let A, B ∈ R
n×n . Determine which of the following cases ensure that at least

one of AB + BA or AB − BA is symmetric:

(a) A and B are symmetric.
(b) A and B are skew-symmetric.
(c) One of A, B is symmetric, and the other is skew-symmetric.

35. Let x and y be vectors in a finite dimensional inner product space. Is it true that
there exists a positive semi-definite operator T on V with T x = y if and only
if 〈x, y〉 > 0?

36. Let T be a linear operator on a finite dimensional inner product space V . Prove
that the following are equivalent:

(a) T is positive semi-definite.
(b) T is self-adjoint, and all eigenvalues of T are nonnegative.
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(c) T has a positive semi-definite square root.
(d) T has a self-adjoint square root.
(e) T = S∗S for some operator S on V .

37. Let T be a positive semi-definite operator on a finite dimensional inner product
space. Prove that if tr(T ) = 0, then T = 0.

38. Let A and B be hermitian matrices such that AB = BA. Prove that there exists
a matrix P such that both P∗AP and P∗BP are diagonal.

39. Let S and T be positive semi-definite operators on a finite dimensional inner
product space. Prove that ST is positive semi-definite if and only if ST = T S.

40. Let V be a vector space. For v1, . . . , vm ∈ V, define G := G(v1, . . . , vm) as the
m × m matrix [gi j ],where gi j = 〈vi , v j 〉. Prove thatG is positive semi-definite.
Such a matrix is called a Gramian.

41. Let u := (x1, . . . , xn) and v := (y1, . . . , yn) be n-tuples of vectors from a finite
dimensional inner product space V . Prove or disprove: there exists an isometry
T on V such that T xi = yi for each i ∈ {1, . . . , n} if and only if u and v have
the same Gramian.

42. InProblem41, if x1, . . . , xn are linearly independent, then show that theGramian
is nonsingular.

43. Prove that every positive semi-definite matrix is a Gramian.
44. Let S and T be linear operators on a finite dimensional inner product space V .

Suppose that S and ST are self-adjoint and N (S) ⊆ N (T ). Does it follow that
there exists a self-adjoint operator A on V with AS = T ?

45. Let V be a finite dimensional complex vector space. Prove the following:

(a) If T ∈ L(V, V ), then T = 0 if and only if tr(T ∗T ) = 0.
(b) If T1, . . . , Tm ∈ L(V, V ) satisfy

∑m
i=1 T

∗
i Ti = 0, then T1 = · · · = Tm = 0.

(c) IfT ∈ L(V, V ) satisfyT ∗T = S∗S − SS∗ for an S ∈ L(V, V ), thenT = 0.
(d) If S, T ∈ L(V, V ) satisfy S∗S = SS∗ and ST = T S, then S∗T = T S∗.

46. Let V be a finite dimensional inner product space. Define ‖T ‖ = √
tr(T ∗T ) for

T ∈ L(V, V ). Show that this defines a norm on L(V, V ). Does this norm come
from an inner product on L(V, V )?

47. Prove that each Jordan block J (λ,m) with λ 
= 0 has a square root. Then show
that each invertible matrix has a square root.

48. Let T be a nilpotent operator on a finite dimensional vector space. Prove that
there exist scalars a1, . . . , ak−1 such that (I + a1T + · · · ak−1T k−1)2 = I + T .

49. Using Problem 48, prove that every invertible operator on a finite dimensional
complex vector space has a square root.

50. Determine the square root of the linear operator T on R
5 given by

T (a, b, c, d, e) = (a + 2b, b + 3c, c − d, d + 4e, e).

51. Let PU be an orthogonal projection on a subspace U of a finite dimensional
inner product space V . Let T : V → V be a linear operator. Prove:

(a) U is T -invariant if and only if PUT PU = T PU .
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(b) Both U and U⊥ are T -invariant if and only if PUT = T PU .

52. Let T be a linear operator on a two-dimensional real inner product space V .

Prove that the following are equivalent:

(a) T is normal but not self-adjoint.

(b) [T ]B,B has the form

[
a −b
b a

]
, b > 0 for an orthonormal basis B of V .

(c) [T ]E,E has the form

[
a −b
b a

]
, b 
= 0 for all orthonormal bases E of V .

53. Let T be a linear operator on a finite dimensional real inner product space V .

Prove that T is normal if and only if there exists an orthonormal basis B of V
such that [T ]B,B is a block-diagonal matrix where each block is either a 1 × 1

matrix or a 2 × 2 matrix of the form

[
a −b
b a

]
with b > 0.

54. Is it true that a triangular normal matrix is necessarily diagonal?
55. Let T be a linear operator on a finite dimensional inner product space. Prove

that det(
√
T ∗T ) = |det(T )|.

56. Prove that the following are equivalent:

(a) T is an isometry.
(b) 〈Tu, T v〉 = 〈u, v〉 for all u, v ∈ V .

(c) T ∗T = I.
(d) If u1, . . . , um are orthonormal, then so are Tu1, . . . , Tum .

(e) There exists an orthonormal basis {v1, . . . , vn} of V such that the vectors
T v1, . . . , T vn are orthonormal.

(f) T ∗ is an isometry.
(g) 〈T ∗u, T ∗v〉 = 〈u, v〉 for all u, v ∈ V .

(h) T T ∗ = I.
(i) If u1, . . . , um are orthonormal, then so are T ∗u1, . . . , T ∗um .

(j) There exists an orthonormal basis {v1, . . . , vn} of V such that the vectors
T ∗v1, . . . , T ∗vn are orthonormal.

57. Let V be a finite dimensional inner product space. An involution is a linear
operator T on V such that T 2 = I. Show that S = 2T − I gives a bijection
between the set of all projections and the set of all involutions.

58. How does a matrix of an involution look like with respect to a suitable basis?
59. Let P1, P2, and P3 be projections on some subspaces of a finite dimensional

inner product space. Show that if P1 + P2 + P3 = I, then Pi Pj = 0 for all
i, j ∈ {1, 2, 3}, i 
= j. Does it work for four instead of three projections?

60. It is claimed that if a linear operator satisfies two of the following, then it satisfies
the third. Is it correct?
(a) T is self-adjoint. (b) T is an isometry. (c) T is an involution.

61. Let V be an n-dimensional inner product space over F. Consider the inner
product space F

n with the standard inner product. Prove that there exists an
isometry from V onto F

n. [Both the norms are denoted by ‖ · ‖.]
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62. Let {u1, . . . , un} be an orthonormal basis of an inner product space V . Show that
for any x, y ∈ V, 〈x, y〉 = ∑n

k=1〈x, uk〉〈uk, y〉. Then deduce that there exists
an isometry from V to Fn .

63. Let T be a linear operator on a finite dimensional real vector space V . Prove that
T is an isometry if and only if there exists an orthonormal basis B of V such that
[T ]B,B is a block-diagonal matrix where each block is a 1 × 1matrix containing

±1 or a 2 × 2 matrix of the form

[
cos θ − sin θ

sin θ cos θ

]
for some θ ∈ (0, π).

64. Let T be an isometry on a finite dimensional inner product space. Prove that
|det(T )| = 1.

65. Let T be a linear operator on a vector space V of dimension n. Prove that if
each subspace of dimension n − 1 is T -invariant, then T = α I for some α ∈ F.

66. Let T be a linear operator on a vector space V . Prove that if P2 = P, then
V = R(P) ⊕ N (P).

67. Suppose V = U ⊕ W, where U and W are nontrivial subspaces of a vector
space V . Then each v ∈ V is uniquely written as v = u + w, where u ∈ U and
w ∈ W. Define the linear operator P on V by P(v) = u. This is a projection
operator whose null space is W. Find all eigenvalues and eigenvectors of P.

68. Prove that every normal operator on a finite dimensional complex inner product
space has a square root.

69. Give an example of a linear operator on a finite dimensional complex inner
product space which has no square root.

70. Prove that every positive semi-definite operator on a finite dimensional inner
product space has the same rank as that of its square root.

71. Prove that each self-adjoint operator on a finite dimensional inner product space
has a unique cube root. Find the cube root of the 3 × 3 matrix diag(1,−1, 8).

72. Let T be a normal operator on a finite dimensional complex inner product space.
Prove that if T k+1 = T k for some k ∈ N, then T is an orthogonal projection.

73. Let T be a self-adjoint operator on a finite dimensional inner product space V .

Let δ ∈ F and let ε > 0. Suppose that there exists a unit vector v ∈ V such that
‖T v − δv‖ < ε. Prove that there exists an eigenvalue λ of T with |δ − λ| < ε.

74. Let T be a linear operator on a finite dimensional real vector space V . Prove
that there exists a basis B for V consisting of eigenvectors of T if and only if
there exists an inner product on V so that T is self-adjoint.

75. Give an example to show that orthogonal complement of a T -invariant subspace
need not be T -invariant.

76. Prove that the sum of two positive semi-definite operators on an inner product
space is positive semi-definite.

77. Prove that positive powers of positive semi-definite operators are positive semi-
definite.

78. Prove that a positive semi-definite operator on a finite dimensional inner product
space is positive definite if and only if it is invertible.

79. Let {v1, . . . , vn} be an orthonormal basis of an inner product space V . Let T
be a linear operator on V with ‖T v j‖ = 1 for each j ∈ {1, . . . , n}. Show by an
example that T need not be an isometry.
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80. Let T : R3 → R
3 be an isometry. Prove that there exists a nonzero vector v ∈ R

3

such that T 2v = v.
81. Let R, S, and T be linear operators on a finite dimensional inner product space.

Suppose S is an isometry, R is positive semi-definite, and T = SR. Prove that
R = √

T ∗T .

82. Let T be a linear operator on a finite dimensional inner product space V .Define
f : V × V → F by f (x, y) = 〈T x, y〉. Under what conditions on T, the func-
tion f is an inner product?

83. Let T b a linear operator on a finite dimensional inner product space V . Prove
that the following are equivalent:

(a) T is invertible.
(b) All singular values of T are nonzero.
(c) There exists a unique isometry S on V such that T = S

√
T ∗T .

84. Prove that two linear operators S and T on a finite dimensional inner product
space V have the same singular values (with respectively equal multiplicities)
if and only if there exist isometries P and Q on V such that T = PSQ.

85. Let T be a linear operator on an inner product space V of dimension n. Let s1
be the smallest singular value of T , and let sn be the largest singular value of
T . Prove that for each v ∈ V, ‖s1v‖ ≤ ‖T v‖ ≤ sn‖v‖.

86. Let T be an invertible linear operator on a finite dimensional inner prod-
uct space V . Suppose {u1, . . . , un} and {v1, . . . , vn} are orthonormal bases
for V and s1, . . . , sn , all positive, are the singular values of T so that T v =∑n

j=1 s j 〈v, u j 〉v j for each v ∈ V . Then prove that T−1v = ∑n
j=1

〈v,v j 〉
s j

u j .

87. Let T be a linear operator on a finite dimensional real vector space V . Prove
that if T has no eigenvalues, then every T -invariant subspace of V is of even
dimension.

88. Let T be a linear operator on a finite dimensional real vector space V of dimen-
sion n. Suppose that with respect to some basis of V, the matrix of T is of the

form

⎡

⎢⎣
A1 

. . .

0 Ak

⎤

⎥⎦ , where the blocks A1, . . . , Ak on the diagonal are either

1 × 1 matrices or 2 × 2 matrices with no eigenvalues. Prove the following:

(a) The 1 × 1 matrices among A1, . . . , Ak are the eigenvalues of T . Moreover,
the number of times such an eigenvalue λ ∈ R occurs among A1, . . . , Ak

is equal to the algebraic multiplicity of λ.

(b) The characteristic polynomial of any 2 × 2 matrix among A1, . . . , Ak

is of the form (t − α)2 + β2 for real α, β and nonzero β. Moreover
for any such given α, β, twice the number of 2 × 2 matrices among
A1, . . . , Ak having characteristic polynomial (t − α)2 + β2 is given by
null ((T − α I )2 + β2 I ).
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89. Let T be a linear operator on a finite dimensional real vector space. Let α and
β be nonzero real numbers. Prove that null ((T − α I )2 + β2 I )k is even for any
k ∈ N.

90. Let S and T be linear operators on a finite dimensional inner product space.
If σ, τ are the largest singular values of S, T, respectively, then show that the
largest singular value of S + T is at most σ + τ.

91. Give a linear operator T on C5 such that T 2 + T + I is nilpotent.
92. Prove that if T is a linear operator on R5, then T 2 + T + I is never nilpotent.
93. Let T be a linear operator on a finite dimensional inner product space V . Prove

that if ‖T ∗v‖ ≤ ‖T v‖ for each v ∈ V, then T is a normal operator.
94. Let T be a surjective linear operator on an inner product space satisfying

〈T x, T y〉 = 〈x, y〉 for all vectors x and y. Prove the following:

(a) T is an isomorphism.
(b) 〈T−1x, T−1y〉 = 〈x, y〉 and 〈T x, y〉 = 〈x, T−1y〉 for all x, y.
(c) For any fixed y, the map f defined by f (x) = 〈x, T−1y〉 is linear in x .

95. Let V be a finite dimensional inner product space. Show that 〈S, T 〉 = tr(ST ∗)
defines an inner product on L(V, V ). In case V = F

n×1, see that this inner
product on F

n×n is simply the dot product of two vectors in Fn2 .

96. Let A ∈ C
n×n with I + A invertible. The Cayley transform K : Cn×n → C

n×n

is defined by K (A) = (I + A)−1(I − A). Show the following:

(a) If A is skew-hermitian, then K (A) is unitary.
(b) If A is unitary, then K (A) is skew-hermitian.

What would happen for A ∈ R
n×n?

Note: A and K (A) are called Cayley transforms of each other. This has its origin in
the map that takes z to (z + 1)/(z − 1) in the complex plane, which transforms the
imaginary axis once around the unit circle leaving 1.

97. Let A ∈ F
n×n have trace 0. Prove that there exists an isometry T on Fn×1 such

that [T ]−1A[T ] has all diagonal entries 0. (See Problem 12 of Chap. 6.)
98. Let T be a linear operator on an inner product space of dimension n with (not

necessarily distinct) eigenvalues λ1, . . . , λn. Prove that
∑n

i=1 |λi |2 ≤ tr(T ∗T ).

Prove also that equality holds if and only if T is normal.
99. Let T be a linear operator on a finite dimensional inner product space V over

C. The numerical range of T is defined to be the set NR(T ) := {〈T x, x〉 ∈ C :
x ∈ V, ‖x‖ = 1}. Prove the following:
(a) If T is normal, then NR(T ) is convex. That is, if x, y ∈ NR(T ) and 0 ≤

α ≤ 1, then αx + (1 − α)y ∈ NR(T ).

(b) If T is normal, then each extreme point of NR(T ) is an eigenvalue of T .

(An extreme point of NR(T ) is a point which is not equal to αx + (1 − α)y
for x, y ∈ NR(T ) and for 0 < α < 1.) This conclusion can be false when
T is not normal.
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100. Let S and T be self-adjoint operators on a finite dimensional inner product
space V . Show that the set of points of the form (〈Sx, x〉, 〈T x, x〉) ∈ R

2 with
‖x‖ = 1 is convex. (A subset U of V is called convex if for all x, y ∈ U, and
for all α with 0 ≤ α ≤ 1, αx + (1 − α)y ∈ U.)

101. Let T be an orthogonal operator on a finite dimensional inner product space
V . Prove that there exists a basis B of V such that [T ]B,B is a block-diagonal
matrix in which each block is either a single entry 1, or a single entry −1, or a
2 × 2 matrix of the following form, where θ ∈ R. (Different 2 × 2 blocks may
have different θ.) [

cos θ − sin θ

sin θ cos θ

]
.

102. Let T be a positive semi-definite operator. Are the following true?

(a) If 〈Ax, x〉 = 0 for some vector x, then Ax = 0.
(b) |〈Ax, y〉|2 ≤ 〈Ax, y〉〈Ay, y〉 for all vectors x and y.

103. Show that if the linear operators S and T − S are positive semi-definite, then√
T − √

S is positive semi-definite.
104. Let A and B be positive semi-definite matrices with complex entries. Show that

if A2 and B2 are unitarily similar, then so are A and B.

105. Let A ∈ C
n×n be a positive definite matrix. Show the following:

(a) det(A) ≤ (
tr(A)/n

)n
.

(b) det(A) ≤ a11 × · · · × ann .
106. The Rayleigh quotient of a hermitian (real symmetric) matrix A at any nonzero

vector v is defined as ρ(v) = (v∗Av)/(v∗v).

(a) Show that if v is an eigenvector of A, then ρ(v) is its corresponding eigen-
value.

(b) Show that ρ(v) lies between theminimum and themaximumof eigenvalues
of A for each nonzero v.

(c) Taking v = (1, t, 1)T for some t ∈ R, estimate the largest and the smallest

eigenvalues of the matrix A =
⎡

⎣
5 4 −4
4 5 4

−4 4 5

⎤

⎦ .

107. Householder’s reflections: Let w ∈ R
n×1 with ‖w‖ = 1. Let P = I − 2wwT .

(a) Prove that P is an orthogonal matrix.
(b) Prove that P is a reflection through w⊥; that is, if we write any v ∈ R

n×1

as v = αw + w′, where w′ ∈ w⊥, then Pv = −αw + w′.
(c) Notice that in (a)–(b), the matrix P depends on the given vector w. Let

x, y ∈ R
n×1 such that ‖x‖ = ‖y‖.Determine a vectorw such that Px = y.

108. Use Householder’s reflections to prove that every real orthogonal n × n matrix
is a product of at most n reflections.
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109. RayleighPrinciple: Let A ∈ C
n×n be hermitian. Letλ1 ≤ · · · ≤ λn be the eigen-

values of A with corresponding eigenvectors v1, . . . , vn. Prove the following:

(a) For k > 1, λk = min{ρ(v) : v 
= 0 and v∗vi = 0 for i = 1, . . . , k − 1}.
(b) For k < n, λk = max{ρ(v) : v 
= 0 and v∗v j = 0 for j = k + 1, . . . , n}.

110. Let A =
⎡

⎣
1 i i

−i 2 −1
−i −1 2

⎤

⎦ .Given that λ3 = 3 is the smallest eigenvalue of Awith

corresponding eigenvector v3 = (0, 1,−1)T , useRayleigh principle to estimate
the next largest eigenvalue λ2.

111. Courant–Fisher Theorem: Let A ∈ C
n×n be hermitian. Let λ1 ≤ · · · ≤ λn be

its eigenvalues. Prove that for each k ∈ {1, . . . , n}, λk = minmax ρ(v), where
the maximum and the minimum are taken as follows: Choose any set S =
{u1, . . . , un−k} of vectors in F

n, take the maximum of ρ(v) over S⊥, and then
take the minimum as u1, . . . , un−k vary over Fn.

112. Let A and B be n × n hermitian matrices. Let λk(C) be the kth smallest
eigenvalue of the hermitian matrix C, where C is either A, B, or A + B, and
k ∈ {1, . . . , n}. Prove the following for each such k:

(a) λ1(A) + λk(B) ≤ λk(A + B) ≤ λn(A) + λk(B).

(b) If v∗Av ≤ v∗Bv for all v ∈ C
n, then λk(A) ≤ λk(B).

113. Hardamard Inequality: Prove that if A = [ai j ] ∈ F
n×n, then

det(A) ≤ �n
i=1

( n∑

j=1

|ai j |2
)
.

114. Matrix exponential: Let A ∈ C
n×n . Its exponential is defined by

exp(A) = I + A + 1

2! A
2 + 1

3! A
3 + · · · .

Suppose this infinite sum is meaningful. Show that if D = diag(d1, . . . , dn),
then exp(D) = diag(ed1 , . . . , edn ).

115. Let A ∈ R
2×2 have two distinct eigenvalues λ and μ. Show that

exp(A) = λeμ − μeλ

λ − μ
I + eλ − eμ

λ − μ
A.

Obtain a correct formula when A has only one eigenvalue repeated twice.
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116. Let J (λ,m) be a Jordan block of order m. Show that

exp(J (λ,m)) = eλ

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1/2! 1/3! · · · 1/(m − 2)! 1/(m − 1)!
0 1 1 1/2! · · · 1/(m − 3)! 1/(m − 2)!
0 0 1 1 · · · 1/(m − 4)! 1/(m − 3)!

· · ·

0 0 0 0 · · · 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

117. Using the previous problem show how to compute exp(A) for A ∈ C
n×n .

118. Prove that if A is a skew-symmetric matrix, then exp(A) is unitary.
119. Prove that corresponding to each unitary matrix U, there exists a hermitian

matrix H such that U = exp(i H).

120. An n × n matrix is called a stochastic matrix if all its entries are nonnegative
and sum of entries in each column is 1. Show that if λ is an eigenvalue of a
stochastic matrix, then |λ| ≤ 1.
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B
Basic variables, 150
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dual, 95
orthogonal, 182
orthonormal, 182

Bessel inequality, 174
Best approximate solution, 194
Best approximation, 190
Box in R
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C
Canonical basis isomorphism, 76
Cauchy–Schwarz inequality, 168
Cayley transform, 331
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equation, 214
polynomial, 214
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Complementary subspace, 36
Complexification, 213
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Congruence modulo, 44
Convergence, 208
Coordinate

functionals, 53
vector, 76

D
Determinant, 132, 140
Diagonalizable, 243
Diagonalization

of self-adjoint operators, 303
Dimension, 29
Direct sum
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of subspaces, 36, 37

Distance, 170

E
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Eigenvector, 209
Elementary

© Springer Nature Singapore Pte Ltd. 2018
M. T. Nair and A. Singh, Linear Algebra,
https://doi.org/10.1007/978-981-13-0926-7

337



338 Index

column operation, 128
operation, symmetric, 307
row operation, 108

Endomorphism, 52
Euclidean space, 164
Evaluation functional, 53
Exchange lemma, 19

F
Finite dimensional space, 29
Finite rank, 104
Fixed point, 156
Fourier

coefficient, 175
expansion, 174
minimum property, 205

Fredholm alternative, 207
Free variables, 150
Full orthonormal set of eigenvectors, 311
Full rank factorization, 130
Functional

conjugate linear, 196
linear, 51

Function space, 6
Fundamental theorem

of algebra, 210

G
Gaussian elimination, 151
Gauss–Jordan elimination, 153
Generalized eigenspace, 226
Generalized eigenvector, 226
Gramian, 327
Gram–Schmidt

orthogonalization, 177
othonormalization, 180

H
Hardamard inequality, 333
Homogeneous system, 142
Homomorphism, 52
Householder’s reflection, 332
Hyperspace, 103

I
Identity map, 52
Index of nilpotency, 61, 263
Infinite dimensional space, 29
Inner product, 164

standard, 164

Inner product space, 164
complex, 164
real, 164

Invariant
subspace, 222

Isometry, 277
Isomorphic, 72
Isomorphism, 72

J
Jordan

basis, 265
block, 257
block representation, 262
chain, 263
decomposition, 275

K
Kronecker’s delta, 15

L
Lagrange polynomials, 104
Least squares solution, 193, 314
Legendre polynomials, 179
Linear

combination, 15
dependence, 21, 22
extension, 56
independence, 21, 22
maps, 52
span, 15

Linear system, 141
consistent, 142
has a solution, 142
solution set, 141
solvable, 141

Linear transformation, 51
adjoint, 200
induced by a matrix, 58
inverse, 72
invertible, 72
product of, 59

M
Matrix

adjoint, 140
adjugate, 136
augmented, 120
Cauchy, 161
change of basis, 86
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classical Vandermonde, 160
co-factor of, 136
column equivalence, 128
combinatorial, 160
companion, 217
elementary, 108
equivalent, 89
exponential, 333
generalized inverse, 315
Gram, 193
Hadamard, 161
hermitian, 140, 164, 278
Hilbert, 160
idempotent, 239
inverse of, 72
invertible, 72
left eigenvalue, 241
left eigenvector, 241
left inverse, 316
minor of, 136
Moore–Penrose inverse, 315
orthogonal, 140
permutation, 114, 239
positive definite, 164
rank echelon, 91
real symmetric, 278
representation, 77
right inverse, 316
row equivalence, 111
similar, 89
skew hermitian, 278
skew-symmetric, 14, 278
stochastic, 334
Sylvester, 307
symmetric, 14
trace, 132
transpose of, 7
triangularizable, 248
unitarily similar, 253
unitarily triangularizable, 249
unitary, 140
Vandermonde, 160

Maximal linearly independent set, 28
Minimal polynomial, 235
Minimal spanning set, 28
Monic polynomial, 214
Multi-linear map, 136
Multiplicity

algebraic, 215
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geometric, 219
of a zero, 211

N
Norm of a vector, 168
Nullity, 65
Null space, 65

O
Operation
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row, 111

Operator
backward shift, 53
commute, 59
differentiation, 61
exponential, 208
forward shift, 53
has an eigenvalue, 210
idempotent, 101
identity, 52
imaginary part, 277
involution, 328
isometric, 277
left shift, 53, 99
linear, 51
negative definite, 277
nilpotent, 61, 263
normal, 277
numerical range, 331
orthogonal, 277
positive definite, 277
positive semi-definite, 277
real part, 277
right shift, 53, 99
scalar, 52
self-adjoint, 277
square root of, 318
triangularizable, 248
unipotent, 275
unitarily triangularizable, 248
unitary, 277
zero, 52

Ordered basis, 27
Orthogonal

complement, 186
projection, 289
set, 172
to a set, 186
vectors, 171

Orthonormal set, 173

P
Parallelogram law, 169
Parseval identity, 174
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Polar decomposition, 320
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of matrices, 322
right, 321

Polynomial in T , 61
Positive, 277
Powers of T , 60
Product space, 8
Projection, 285

vector, 175
ProjU (y), 175
Proper orthogonal set, 173

Q
Quadrature formula, 54
Quotient space, 45

R
Range space, 65
Rank, 65
Rank theorem, 90
Rayleigh principle, 333
Rayleigh quotient, 332
Real Jordan Form, 275
Real Schur form, 274
Reduction

row echelon form, 113
row reduced echelon form, 119

Reflection, 246
Residual, 193
Reverse order basis, 269
Riesz representer, 197
Rigid motion, 207
Rotation, 246
Row echelon form, 111
Row rank, 91, 107, 124
Row reduced echelon form, 118
Row space, 124

S
Same cardinality, 34
Scalars, 3
Sequence space, 6
Shear, 246
Signature, 307
Singular value, 309

decomposition, 310
decomposition of matrices, 311
representation, 309

Space

dual, 94
L(V,W ), 93

Span, 15
Spanned by, 18
Spanning set, 18
Spans, 18
Spectral form, 305
Spectral theorem

for normal operators, 298
Splits, polynomial, 215
Standard basis, 27, 94
Sum of subsets, 12
Sylvester form, 306
Sylvester law of inertia, 307

T
Theorem

Block-diagonalization, 250
Cayley–Hamilton, 234
Courant–Fisher, 333
Cramer’s rule, 142
Diagonalizability, 244
Jordan block representation, 260
Jordan normal form, 264
LU-factorization, 115
Projection theorem, 188
Pythagoras, 171
QR-factorization, 180
Rank decomposition, 130
Rank factorization, 130
Rank-nullity, 69
Riesz representation, 196
Row echelon form, 112
Row reduced echelon form, 118
Schur triangularization, 252
Spectral mapping, 220, 302
Sylvester inertia, 305
well-ordering, 35

Triangle inequality, 169

U
Unitary space, 164
Unit vector, 168

V
Vectors, 3

column, 6
row, 6

Vector space, 2
complex, 3
nonzero, 4



Index 341

real, 3
subspace of, 10
trivial, 4
zero, 4
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Z

Zero map, 52

Zero vector, 2, 3
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