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Preface

Geotechnical failures, specially the catastrophic ones, are an excellent experience
and a source of inspiration to improve our current understanding of phenomena
and our procedures and tools for analysis and prediction.

This unconventional manner to learn Geomechanics is the essence of this
book. In general, Soil Mechanics and Geotechnical text books describe first the
concepts and the theoretical developments and then apply them to interpret or
solve a particular application. This book has a different approach. The case (a
failure) is first described and then an explanation is sought. This approach is
developed through a set of steps which can be summarized as follows.

1. ldentify the nature of the problem
2. Develop a dedicated and specific formulation of the case, based on
established basic concepts. In general, no single existing theory or
procedure is available to solve the case at hand.
3. Provide a solution within an acceptable degree of complexity.
4. Extract the fundamental aspects of the problem and highlight its
relevance.
The cases selected have been grouped into three main topics: Landslides,
Embankments and Dams and Dynamics of Failures. No attempt to provide a
comprehensive account of known catastrophic failures has been done. But the
cases selected (Vaiont, Aznalcdllar, Brattas-St. Moritz) are rather unique and
illustrate a number of relevant and to some extent controversial issues which are
of wide interest.

Finite element methods have not been used. In the landslides analysed (Vaiont
and Brattas-St. Moritz) currently available commercial programs are of limited
utility. In the remaining cases the analysis performed provides a sufficient insight
and interpretation of the field behaviour.

The book teaches how to build the necessary models to understand the
failures. Balance and equilibrium equations are formulated at different scales
which are selected having in mind the abstract representation of the key concepts
of each case. In some of the Chapters calculation tools, included in well known
and widely available programs (Excel, Maple, etc.) have been used. Some details
of the “ad hoc” programs developed have also been included in Appendices to
help the readers to follow the details of the calculation.

Chapters include also a short description of the changes in the original design
and the mitigation measures which could have prevented the failure. Also a
summary section of lessons learned is provided. Finally, selected topics and more
advanced reading are suggested.

Vi



Preface viii

The book is associated with a Master/Doctorate courses being offered at the
Department of Geotechnical Engineering and Geosciences of UPC, Barcelona and
at the Institute of Geotechnical Engineering, ETH Zurich. Potential readers for the
book include graduate students, faculty and professionals in the fields of Civil and
Geotechnical Engineering.

The authors acknowledge with thanks the contribution of some of their
colleagues and fellow researchers to the Chapters of this book. Chapter 1 is based
on the research performed in collaboration with Ivo Sterba (ETH), Andreas
Schmid (ETH), Michael Iten (ETH), Markus Schwager (ETH) and Dr. Sophie
Messerklinger (ETH). Professor Antonio Lloret (UPC) and Dr. Enrique Romero
(UPC) helped in the interpretation and the experimental work reported in Chapter
2. Discussions held with Dr. Gabriel Fernandez (University of Illinois) about the
Vaiont slide were very helpful. He provided also first-hand information on the
slide. Prof. Sebastia Olivella (UPC) contributed to the formulation of the thermo-
hydro-mechanical phenomena invoked to explain the dynamics of the slide motion
(Chapter 5). Jubert Pineda (UPC) performed the laboratory heating tests described
in Chapter 5. Professor Antonio Gens (UPC) participated actively in the analysis
of Aznalcollar dam failure (Chapters 4 and 6). Dr. José Moya (UPC) investigated
the geological aspects of Aznalcéllar and helped with the interpretation of field
observations (Chapter 5). Laboratory tests on the foundation clay of Aznalcdllar
dam were conducted by Professor Antonio Lloret, Dr. Enrique Romero, Dr.
Roberto Rodriguez (University of Girona) and Joan Rius (UPC).

The authors express also their gratitude to Radl Giménez (UPC) and Maria del
Mar Obrador (UPC) for their dedication to the drafting of figures and the
formatting of texts.

E.E. Alonso, N.M. Pinyol, A.M. Puzrin
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Chapter 1

A Constrained Creeping Landslide:

Brattas-St. Moritz Landslide, Switzerland
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Chapter 1
A Constrained Creeping Landslide:

Brattas, St. Moritz Landslide, Switzerland

1.1 Case Description

Landslides are one of the major geotechnical hazards affecting economy and life
in the subjected areas. Though most of the landslides take place in rural aress, they
cause significant damage to the infrastructure such as roads, railways, etc. Of
major concern to the community are, however, the landsdlides active in urban
areas. Among these, the Brattas Landslide of St. Moritz (Fig. 1.1a), with its most
prominent landmark, the Leaning Tower (Fig. 1.1b), is of special interest, because:
- remarkably, the landslide stops in the middle of the town;
- in spite of the landdide, the town has enormous real estate prices,
- thetown had to adopt special construction laws for the affected areas;
- thereisan extensive displacement monitoring program in progress,
- there is an interesting experience related to the behaviour of existing
structures,
- origina engineering solutions have been put forward for the construction
of new structures.
The Institute of Geotechnical Engineering at the ETH Zurich has been actively
involved over the last 30 yearsin al geotechnical aspects of the problem, both in
research and in providing expert service to the community.

1.1.1 Geometry, geology and displacements

The unstable northern slope above the village of St. Moritz (Fig. 1.1a) may be
divided into two zones (Fig. 1.2a, after Miller and Messing, 1992). The upper
zone is the Gianda Laret rockfall, which extends from the detachment zone at an
atitude of 2400 m above sea level down to the local rock outcrop at an altitude of
about 2100 m. The lower zone is the Brattas landslide composed of a thick soil
mass, which is moving downhill but is blocked at its foot by the Via Maistra rock
ridge, after which the movement stops (Fig. 1.2b). It stretches from an altitude of
2100 m down to 1800 m over a horizonta distance of 800 m. The landslide is 600
m wide and is bounded on both sides by parallel shear surfaces. The slope has an
average inclination of 20°. The main sliding surface revealed in one boring reaches
a depth of about 50 m. The diding mass is built of soil layers of great
heterogeneity, both in terms of stratigraphy and material properties.

In the portion where it is approached by the landslide, Via Maistra is getting
narrower by about 0.5 cm per year. Uphill from Via Maistra, the displacement rate
increases (Fig. 1.2b). The movement has only been measured in the developed
areas, which is not sufficient to conclude if there is any interaction between the
Gianda Laret rockfall and the Brattas landslide.
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Figure 1.1 The St. Moritz Landslide: (a) an aerial photo; (b) the Leaning Tower.



Chapter 1 Geomechanics of Failures. Advanced Topics 7

2!
e <
: =
H
a.s.l. %
: g3
2400 — é é
> o =
[~ =
200-] N Z 2
1< = S
<
2000 — >
+ o+ o+ o+ o+ B
} } 1 + t + t +
1800 | } | } | f f f
+ 4+ 4+ o+ 4+ 4+ o+ 4+ 4+ 4+ o+
~] Brook detrital Crystalline units:
=l cone orthogneisses

Rockfall % Water flow

0 250 500 m
s |

— ] Mesozoic sediments: o oq
dolomite, chalk, gypsum 6~ Springs
(a)

0 4

Horizontal displacement
in cm / year
(1988 - 1998)

1
' 0 100 m
=t

® B The Leaning Tower
(b) © Chesa Corviglia
® Hotel Kulm
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1.1.2 The leaning tower of St Moritz

The effects of the landslide are most evident in the behaviour of the oldest
structures. The Leaning Tower of St Moritz Church, which was built in the 12th
century at the foot of the landslide (Fig. 1.3a, Schllichter, 1988), exhibits an
alarming tilt of 5°. The church itself had to be demolished in 1893 because of the
excessive differential settlements. Since 1908, regular tilt and displacement
measurements have been carried out (Fig. 1.3b). Stabilization efforts in 1928 and
1968 were not successful in the long-term, and an alarming reaction of the tower
to the earthquake in Friaul on May 6, 1976 was detected. As a result, it was
decided to undertake an additional stabilization attempt, which was accomplished
in 1983.

<
>
Z
I — <
] =
-] et
- -
7 = T
43
0 5 10m =
| ———
=777 Rock — - = Sliding surface
€Y
22 nd rd
2 Stabilization¢ #3 Stabilization
2.0
st L
,g 1" Stabilization T
£ 18-
~ Earthquake Lifting
=16 July 2005
[
1.4
12— I I I \ \ I
1910 1930 1950 1970 1990 2010

(b)

Figure 1.3 The Leaning Tower: (8) geological profile; (b) inclination in time.
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1.1.3 Chesa Corviglia

Many modern buildings have also experienced the negative effects of the
landslide. Chesa Corviglia is a terrace-type structure (Fig. 1.4a) on the south-
western edge of the Brattas slope (Fig. 1.2b). The origina building concept
included a 20 m high anchored concrete pile wall (Fig. 1.4b) completely and
permanently separated from the structure. Both the piles and the anchors were
supposed to penetrate into the stable rock. Unfortunately, the prognoses
concerning the location of the rock turned out to be false. As aresult, both the wall
and the house are moving downhill at different speeds, causing the gap between
them to close (Fig. 1.4c), and threatening the stability of the house.

Rock initial

progaosis

77
=7
77
— __”_;’ 4—’ﬂ—7 Real rock
=
-7 0 lom
a7 =
‘7
a1
=

(b)

Figure 1.4 Chesa Corviglia: (a) the building; (b) the retaining structure (Gysi, 1999); (c)
the closing gap between the retaining wall and the building.

1.1.4 The problem

The large-scale geologic situation of the area is seen as the primary cause of the
landslide: the Mesozoic sediments of the Bernina nappe were pushed over the
crystalline rock of the Err nappe. (Nappe is a large sheet of rock that has been
moved a considerable distance from its origina position). The hydrological
conditions constitute further causes of instability. Various deep aquifers were
observed in the landslide, which create independent water tables. An increase in
the pore water pressure due to the snow melt causes shear strength degradation,
which leads to the yearly movements, but sometimes also to recurring large-scale
landslide events. According to Schitichter (1988), there is geological evidence of a
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number of these landslide events which have occurred in the last 5000 years —the
last one approximately 700 years ago.

Since the only global stabilization possibility —dewatering of the entire
landslide- is extremely expensive, it may be a better solution just to adjust the
existing and new structures to the yearly displacements, provided they do not
exceed a reasonable level. In this context, it becomes of crucial importance to be
able to assess the long-term stability and displacements of the landslide.

1.1.5 Long-term stability and displacements

The unusual feature of this landslide is that it has “nowhere” to go and its
downhill movement is slowing down in time, which intuitively implies the
landslide stability. However, in spite of this landslide dowing, and in certain
scenarios exactly because of it, the shear strength of the diding surface may
decrease, leading to an increase in compressive stresses at the landslide foot and,
ultimately, to a failure. A simple model of a constrained landslide developed by
Puzrin and Sterba (2006) to provide an assessment for the long-term stability and
displacements of the St. Moritz landslide is briefly described below. It is based on
an inverse analysis, which alows for the safety factor to be determined solely by
curve fitting the observed displacement data. For a safety factor lower than one,
the time of failure can be predicted using additional earth pressure measurements
in the dliding layer.

1.2 The Theory

The material presented in this section has been previously published in Puzrin and
Sterba (2006) and is reproduced here with kind permission of Thomas Telford
Limited.

1.2.1 Model assumptions

The schematic layout of the boundary-value problem of a slowing constrained
landslide is given in Figure 1.5. Equilibrium of the dliding layer relates the shear

stress r(x,t) on the dliding surface to the average effective normal stress in the
layer p’(x,t) and the effective active earth pressure p, acting at the top of the
layer:

p'(xt)H + | t(xt)dx=vH (L—x)sino.+ pH. Ly

X Sy

Here y, isthe total unit weight of soil; « isthe slope inclination; L and H are the
landdide length and thickness, respectively. In (1.1) we use effective earth
pressures assuming that the average pore water pressure is constant along the
slope: u(x,t)=u(t),i.e. thereisaflow parallel to the slope surface.

In order to solve this boundary-value problem, we would supplement
Equation (1.1) with constitutive equations, relating stresses 1 and p' to
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displacements §, strains ¢=05/0x and their rates. Solving this system of
equations, together with the boundary and initial conditions, would alow for
displacements 3(xt), strains &=08/0x, and earth pressuresp’(x,t) to be

caculated in space and time and the landslide behaviour to be predicted. This
conventional approach to the boundary-value problemis called forward analysis.

Figure 1.5 Schematic layout of the constrained landslide model.

Because the processes in a constrained landslide are slower than in the one
which isfree to dlide, we assume that the excess pore water pressure caused by the
shearing has enough time to dissipate. Therefore, the time-dependency of
displacements is solely due to rate effects. These rate effects are known to exhibit
themselves in the secondary compression (see, e.g. Chapter 2 in “Geomechanics
of Failures’ by the same authors), but also, as demonstrated by Skempton (1985),
in the rate dependency of theresidua strength (Fig. 1.6a).

As seen from Equation (1.1) and Figure 1.5, the weight and the active force in
the layer are resisted by the earth pressure in the layer and the shear stress on the
sliding surface. These are schematically represented in Figure 1.6b by the elastic
spring (with elastic modulus E) and the dip element (with the dlip stress 1),
respectively. In order to introduce time-dependency, we include two dashpot
elements: one (with viscosity n,,) to describe rate-dependent processes within the

soil layer, the other (with viscosity m. ), on the diding surface, resulting in the
following congtitutive equations:

p'=Ee+n,(eé)e, t=1,+n0, &=385/0x. (12

(In order to facilitate the future analysis we assume here that ), is not necessarily
aconstant parameter but can be a function of strain and strain rate).
In fact, the residual strength is also a function of displacement, continuously

decreasing as displacement grows. t=rt, +n18—x6. As the landdlide slows
down, the displacements are still growing and both effects contribute to the shear
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strength degradation. In this simplified analysis, however, we consider only rate
effects (i.e., x =0), which is not conservative.

. ERIZE
Tr
WP,
- Np(&,€)
T |
p E
o

@ (b)

Figure 1.6 (a) Viscous nature of residual strength; (b) Schematic layout of the constitutive
model.

1.2.2 Curve fitting of slope displacements

A disadvantage of the forward analysis approach described above is that it does
not take into account the observed slope displacements. Spatial variability of the
soil properties results in high levels of indeterminacy in constitutive models and
their parameters obtained in laboratory tests. This often causes large discrepancies
between the calculated and observed behaviour. In contrast to the forward
approach, the inverse analysis of the problem would allow for the material
properties to be back-calculated directly from the observed displacements. This
would account for the global slope behaviour, as opposed to the behaviour of the
locally extracted soil samples, and would provide a more reliable basis for the
future predictions.

For the St. Moritz landslide, the yearly displacements are plotted in Figure
1.7a againgt the distance from the rock outcrop. A typical development of the
displacements in time is plotted in Figure 1.7b (Lang and Sterba, 2002). The
displacements were monitored between 1979 and 1999 at the point A on the slope
located 15 m east from the Leaning Tower (Fig. 1.2b).

These displacements, as a function of time and space, can be directly used in
the inverse analysis, but this requires a numerical solution of the differential
equations. In an attempt to obtain an analytical solution, Puzrin and Sterba (2006)
proposed  fitting the observed normalized  displacements  data

§(X,t)=38(x/L,t)/L in Figure 1.7 using the following analytical function:
§(X,t) =5, (X) (t)=X(a-bx)(1-exp(-ct+d)), (13)
where

Xx=x/L, 0<b/a<05, c¢>0. (1.4

This function describes displacements that are zero at the landsliide foot and
increase monotonically (when 0<b/a<0.5) along the slope towards its crest

(Fig. 1.8a), while slowing with time and approaching an asymptotic value (Fig.
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1.8b). The function (1.3) is simple and yet provides sufficient flexibility to fit the
observation data both in the space (parameters a and b) and time domains
(parameters c and d). Asseenin Figure 1.7, this function (solid line) for b/a = 0.15
and ¢ = 0.045 provides a reasonably good fit to the observed displacement data of
St. Moritz landslide both in space and time.

33 ol 18 ol

-~ N N (¢}

= R P 5

2 5

5 b/a=0.15 g 7 c=004s

~ — — Q,
)

0-9 T T 0-¢ T T
0 650 1979 1999
x (m) t (years)

@ (b)
Figure 1.7 Displacement data monitored for the St. Moritz landslide: (a) distribution of
average yearly displacements in space in 2006-2008; (b) development in time at the point A
on the slope located 15 m east from the Leaning Tower (Fig. 1.2b).

In fact, as shown by Puzrin and Sterba (2006), this function also has a certain
theoretical background: in represents the closed form solution of the boundary-
value problem (1.1) — (1.2) for aparticular case of n, =0 and n, = const.

b/a=0.5

[ EL b/a=0 2o}

0 1 d d+5
ct

|

@ (b)
Figure 1.8 Normalized functions for curve-fitting of slope displacements: (a) in space; (b)
intime.

1.2.3 The inverse analysis procedure
In the inverse analysis procedure the parameters of the constitutive model (1.2) are
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derived from the observed displacements (1.3). First, we substitute the constitutive
relations (1.2), into the equation of equilibrium (1.1):

L
p’(x,t)+%j$(x,t)dx:(ytsinoc—r,/H)(L—x)+p’a. (L5)

X

Next, by substitution of the observation data expressed via the analytical function
(1.3) into (1.5), differentiation and integration we obtain

(< ! L H E 2
p'(X.t)= pa+ﬁ(ytH sina—t, )(1-X)-

oo B(l— %)l 73)}'

(1.6)

Expressions for the linear strain and its rate are derived from Equation (1.3):

PR SN

¢(X,t)=(a—2bx)cexp(—ct+d), 1.7
which can then be resolved with respect to t and x:

g/c Yza—s—s/c

ct+d)= ,
ep(~ct+d) g+é/c 2b

(1.8)

and substituted into Equation (1.6):

f_ o, L : a-g—¢/c
p = pa+ﬁ(VtH Slnoc—'cr)(l—z—b/J—

19
15 £ |a 1_(a—s—é/cj2 b 1_[a—a—é/cj3 (19
H " e+é/c| 2 2 3 2 '
It can be easily shown (by substitution) that Equation (1.9) becomes identical to
the first congtitutive Equation (1.2), when the following relationship exists

between the parameters of the congtitutive model (Eq. (1.2)) and the coefficients
of the curve fitting Equation (1.3):

’ . 2 ’
E:% 1, =1,H sma—a?pzab%, (1.10)
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) p;
np(:8) = ac—a2bc_

111
L n |a 1 (a-e-ifc 2 b, (a-e-i/c 3 (L11)
He+é/c|2 2b 3 2b '
Unfortunately, the derived expression, via inverse anaysis, for the non-
constant term of the viscosity coefficient (1.11) is rather complex. The good news,
however, is that, unlike the viscosity coefficient ., it does not enter Equation

(2.6) for the earth-pressure evolution, which at the landslide bottom (x = 0) can be
expressed as

2

, [ L a b
0,t)= = e 112
P(0Y) 1-2b/a o ep(-ct+ )[2 3} (1.12)

1.2.4 The safety factor
The safety factor for the slope stability can be defined as the ratio between the soil
resistance (passive earth pressure pj,) and the maximum earth pressure that can

develop at the foot of the landslide in time, calculated from (1.12):

o P _1-2ba

(1.13)

° p(0) PPy

‘ (p’
Figure 1.9 Mohr circle interpretation of active and passive failure in the slope.

Note, that the entire stability analysis can be performed using only the
observed displacement data and the values of the effective active and passive earth
pressures p, and p,, (acting parallel to the slope). These pressures can be found

from trigonometric analysis of Figure 1.9 (Chu, 1991). The stress state on a plane
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paralle to the slope o at the depth z is represented by point A. The failure takes
place when a Mohr circle passing through point A touches the failure envelope
t=0c'tane’, which produces two circles for the passive and active failure,

respectively. Their poles P, and P, are found by drawing a straight line inclined
by angle o through point A up to the intersection with the corresponding circle.

Drawing a straight line inclined by angle 90° —a through pole P up to the
intersection with the corresponding circle produces the state of stress at failure B
at the plane perpendicular to the slope. The normal stresses at B, and B, are the
effective active and passive earth pressures, respectively, acting paralel to the
slope at the depth z. The respective earth pressure coefficients are given by

{EZ} —1+2tan?¢'F 2\/(1+ o o)t gt a) . (114)

The average values of the effective active and passive pressures over the thickness
of the diding layer H are then given by the following formula:

{ Ef‘} = %y'H coso. [1+ 2tan? o' F 2\/(1+ tan? (p’)(tan2 ¢’ —tan? oc)} . (1.15)
p

where ¢’ and y' are the effective angle of interna friction and effective unit
weight of the soil in the sliding layer, respectively.

1.2.5 The long-term displacements

The safety factor defined by Equation (1.13) allows for distinguishing between the
safe and failure scenarios of the landslide evolution. In the safe scenario of
F, > 1, the slope will eventually stop sliding and the final displacement increment

for the point x on the slope are defined by

where 8, (x)=8(xty ) is the displacement of the point x at the time of
measurement ty ; t; isthetime of initial measurements, so that 3(x,t,)=0.

1.2.6 The time to failure

In the failure scenario of Fs< 1, the earth pressure at the bottom of the slide will
eventually reach the passive pressure pj, . The time before the slope failure t; can
be back-calculated from Equation (1.12), but this requires an additional soil
parameter m.. In order to determine m_ though, the existing displacement

observation data is not sufficient and has to be supplemented by some other kind
of measurements. The time changes in the earth pressure p’ at the slope bottom
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(x:O) are of the utmost importance in this analysis. If it were possible to
measure the increase in the earth pressure Ap over aperiod of time At :

Ap=p'(Oty+At)-p'(0,ty), (1.17)

where t, is the time of the initial pressure measurement, substitution of (1.12) into
(1.17) would produce the desired expression for 7, :

ApH exp(cty,—d)

= , 1.18
e L?c(a/2-b/3)(1-exp(-cAt)) (118
so that the time before the slope failure would be given by
A ’ ’
t =t0+3|n P/ Ph (1.19)

(1-exp(—cAt))(VF-1)

1.2.7 Summary

Based on the above derivations, the following procedure can be used for the
stability analysis of a constrained landdide. We assume that the following

displacement monitoring data is available: 3(x;,t;), wherei =1,.,N; j = 1,..,M;

N and M are the number of measurement points in space and time, respectively; xy
is the highest point on the slope measured; and t; is the time of the first (zero)

measurement intime, so that 3(x,t;)=0 foral i=1,...,N.
1. Plot the normdlized observation data y, ; =5(x,t;)/8(xy.t;), for

i=1...,N; j=1...,M versus the normaized coordinate x =X /Xy
(i.e., in space).
2. Determine the coefficient k =b/a by fitting the following function to
this data:
L'—-kx
=x—-—" 1.20
y=X—— (1.20)

where L' = L/xy isthe normalized length of the landslide.
3. Cdculate effective active and passive earth pressures from Equations
(1.15) and their ratio p,/py,

o L+2tan’ (p'—2\/(1+ tan? ¢')(tan? ¢’ ~tan? a
Pa_ .2y
Pp 1+ 2tan? (p'+2\/(1+ tan® (p')(tan2 @' —tan? (X)
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4. Substitute k=Db/a and p;/pj, into (1.13) to calculate the safety factor.
If F,>1,thesopeisstableinthelong-term, if Fg <1, itisnot.

Note that the only parameters required for this stability analysis (in addition to
the observed displacements) are a., L and ¢'. Not even the thickness of the

diding layer H or the unit weight of soil »'is required. Also, it has not yet

been necessary to define the time-related parameters ¢ and d. These will be
defined in the following steps and used to calculate the final Slope
displacements 3, for the safe scenario ( F, >1) or the time to failure t; for

the failure scenario (K <1).

5. Plot the normalized observation data W ; =6(x1-,tj)/8(xi,t,\,,), for
i=1...,N; j=1...,M versus tj (i.e., intime).
6. Determinethe coefficient ¢ by fitting the following function to this data:

e 1-exp(—c(t-t,)) (122)

- 1-ep(—c(ty —t))
7. If F;>1,thefinal displacement incrementsfor each i =1,...,N are:
_ 8(%tw)
1-exp(—c(ty —-t,))
8. If K <1, starting from time to, measure the increase in the earth pressure

Ap over a period of time At. Calculate the time of the future failure
from formula (1.19).

8, (%) (1.23)

1.3 Analysis of the Landslide

The theory presented above provides tools for a simplified inverse stability
analysis of the Brattas, St. Moritz Landslide. In 2005, it was applied by Puzrin and
Sterba (2006) to the monitored displacement data available at that time (in the
lower 200 m of the landdlide). Using the assumption that the two parts of the
landdlide in Figure 1.2a are connected, i.e. the total length of the landdlide is
L =1500 m, the curvefitting of Equation (1.20) produced a ratio b/a=0.39

(Fig. 1.10). The effective angle of internal friction was assumed (after Vermeer,
1997) to be within the range of ¢'=28 —35, so that for the average sope of
o =20"from Equation (1.21) p;/pj,=028-0.15 was obtained and the

corresponding safety factor followed from Equation (1.13): F, = 0.78-1.46.
This preliminary result did not allow for the possibility of the failure scenario
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to be excluded. In order to improve the accuracy of prediction, additional
observation data from the middle and upper parts of the landslide had to be
collected. This could provide more data for the curve-fitting, but even more
importantly, an uncertainty with respect to the interaction between the Gianda
Laret rockfall and the Brattas landslide had to be resolved. This could help to
define more accurately the upper boundary of the Brattas landslide and the static
boundary conditions on it. To collect these and other data, an extensive field
investigation program was carried out in the year 2006.

1
0.8

y 0.6 ¢
041 b/a=0.39

0.2 ¢

0 T T T T

0 02 04 06 08 1
X'
Figure 1.10 Curve fitting of the normalized yearly displacement data in space monitored
for the St. Moritz landslide before 2005.

1.3.1 Geodetic measurements

The main part of the field campaign was geodetic measurements. A grid of
measurement points was established covering the Gianda Laret rockfall and the
Brattas landslide (Fig. 1.11a) with a denser grid at the boundary between them.
The coordinates of the points were measured with a precision of up to 1 cm. The
coordinates were then taken again in 2007 and 2008 with the corresponding yearly
displacements plotted in Figure 1.11b against the distance from the rock outcrop at
ViaMaistra.

The plot in Figure 1.11b exhibits a number of interesting features. First of all,
the yearly displacements 2007-2008 are almost twice larger than the yearly
displacements 2006-2007. This can be explained by significantly larger
precipitation in the 2007—-2008 period and represents a typical fluctuation of the
yearly displacements due to changesin climatic conditions.

Second, in spite of this fluctuation, the shape of the displacement distribution
aong the landslide remains remarkably stable and, when normalized by the
maximum displacement, it produces almost the same curve (Fig. 1.12a), whichiisa
normalized version of the plot in Fig. 1.7a. The yearly displacement is normalized
by 33 cm, the distance — by 650 m.

Finally, and very importantly, it was possible to establish that the movement
rate at the top of the Brattas landslide (600700 m away from Via Maistra)



20 Geomechanics of Failures. Advanced Topics Chapter 1

e new point

¢ old point
Rockfall / Landslide

[ Leaning Tower

9900

@
05
_Q
i \?E 2007-2998
£ 0.4 ’ RN
- g el

E / - \ X\; s °
w AN //
£ 031 ® AN
@
8 &iooe-zow\
& o2
S
>
S 0.1 -
o
>—

0.0 : : : : :

200 400 600 800 1000 1200 1400

Distance to Via Maistra, m
(b)
Figure 1.11 Geodetic measurement: (a) the points; (b) yearly displacements.
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reaches 45 cm/year, while at the bottom part of the Gianda Laret rockfall
(700-800 m away from Via Maistra), only 30 cm/year. It is, therefore, likely that
the rockfall movement is stopped by a rock ridge at an atitude of about 2,100 m
and does not fully transfer earth pressures to the Brattas landslide. The upper
boundary of the Brattas landslide, however, is apparently slowly shifting upwards
with blocks from the rock ridge gradually collapsing into the sliding mass.

1.3.2 Simplified model

Based on the latest observation data, we assume that there is no interaction
between the Gianda Laret rockfall and the Brattas landslide, i.e., the following

landslide parameters can be adopted: L = 700 m and o = 20° . The effective angle
of internal friction is assumed (after Vermeer, 1997) to be within the range of
¢' =28 —35°, sothat from (1.20): p;/ p, =0.28-0.15.

The displacement data in Figure 1.11b is averaged over the two years,

combined with the existing data from the lower 200 m and normalized as
suggested in Section 1.2.7 (Table 1.1).

Table 1.1 Normalized yearly horizontal displacements along the landslide.

X, m X' = x/ 650 5, Cm/year y= 6/33 Yritted
0 0 0 0 0
30 0.046 2 0.061 0.053
122 0.188 6 0.182 0.212
200 0.308 10 0.303 0.342
330 0.508 18 0.545 0.548
450 0.692 25 0.758 0.727
580 0.892 31 0.939 0.908
650 1 33 1 1
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Figure 1.12 Curve fitting of the normalized displacement data monitored for the St. Moritz
landslide: (a) in space; (b) in time.
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1.3.3 The safety factor

The normalized displacement data from Table 1.1 is plotted in Figure 1.12a. The
best fit by the analytica curve (1.20) to this normalized displacement data is
achieved a b/a=0.15 (Fig. 1.12a and Table 1.1). By substituting these

parameters into Equation (1.13), we obtain the range for the safety factor:
F, =2.49-4.63. Asisseen, analysis excludes the possibility of afuture failure. It

has to be mentioned, however, that this conclusion has a preliminary nature,
because the observations over the 2 years are not sufficient for long-term analysis.

1.3.4 The long-term displacements

Since we find ourselves within the safe scenario, we should be able to predict the
long-term displacements of the landdlide. For example, the normalized
displacement data monitored between 1979 and 1999 at point A on the slope
located 15 m east from the Tower (Fig. 1.2b) is plotted in time in Figure 1.12b
(Lang and Sterba, 2002). The best fit to this data is achieved using the analytical
curve (1.22) with ¢=0.045 (Fig. 1.12b). Thetotal downhill displacement of point
A between 1979 and 1999 was 177 mm, therefore in the safe scenario case,
according to formula (1.23), the final displacement of this point will be 298 mm.

1.3.5 Discussion

The above stability analysis is based on fitting the observed displacements using a
simple and yet sufficiently versatile curve fitting function. Inverse analysis of a
visco-elastic visco-plastic model of the landdide allows for both the safe and
failure scenarios of the landslide evolution to be identified and explored within
the same unified framework. Preliminary analysis shows that the Brattas landslide
isstable.

Unfortunately, as mentioned above, the data available for this analysis are not
sufficiently reliable to entirely exclude the possibility of the failure scenario for
the Brattas landslide. The definite time related predictions can be only achieved by
monitoring the long-term displacements along the entire landslide length over a
long period of time and by measuring the earth pressure changes in the area of
high compression at the landdlide bottom, which are planned in the future. Effects
of the climatic changes and groundwater conditions should be also studied and
incorporated in the more detailed analysis.

1.4 Analysis of the Leaning Tower

In addition to the long-term stability and displacement predictions presented
above, we shall attempt to answer another important question: is the tower
inclination indeed due to the landsiide movements or could it be caused by a
leaning instability or a bearing capacity failure? To answer this question, we could
apply the theory from Chapter 3 in “Geomechanics of Failures’ by the same
authors (referred as Chapter 3* below), but this requires parameters of the soil
strength and stiffness in the vicinity of the tower. As a part of the field
investigation program carried out in 2006, the soil strength and stiffness were
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measured directly in the field, using two different types of dilatometer tests.

1.4.1 Dilatometer tests

The field investigation program included installation of an inclinometer and a
piezometer in the vicinity of the Leaning Tower. In the same borehole, two types
of dilatometer tests were performed to determine the soil stiffness at different
depths (Puzrin et al., 2008). The first type of test involved a Cambridge
dilatometer (Fig. 1.13a): a cylindrical probe with an inflatable rubber membrane
inserted into a predrilled borehole. The second type of test involved a Marchetti
dilatometer (Fig. 1.13b): a spade-like probe with a round flat inflatable steel
membrane pushed into soil up to a depth of 1 m from the bottom of the borehole.
In spite of difficult soil conditions (gravelly clays), both tests produced
meaningful results (Fig. 1.14).

@ (b)
Figure 1.13 Dilatometers: () Cambridge in-situ probe; (c) Marchetti probe.

1.4.2 Leaning instability

Before its stabilization, the tower was based on a square foundation (Sterba et al.,
2002) and had the following geometry:

— the height of the centre of gravity: H.~ 13.0m;

— the (half)width of the square foundation: b=30m;

— theaverageradius of the square ring foundation: r =15m.
(see Chapter 3*)

The tower high slenderness ratio of H./r =8.7 requires checking against the
leaning instability. The tower is built on a 15 m thick layer of gravely clay. The
properties of this clay were derived from the dilatometer tests (Fig.1.14):

— the compression index: C.=0.12

— the swelling index: C.=0.02

— thein-situ void ratio: g =0.5.
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Inequality (3*.26) gives the following lower estimate for the critical ratio (note,
that p=0.5, sothat 4p=2.0 and f =1.3 fromthe plotin Fig. 3*.9a):

He _40°+12 23(+ey) 10, (1.24)
r ~ 3f(4p)p C.+Cq

The tower slenderness ratio H./r =8.7 appears to be much smaller than the
critical value. We have established that the excessive inclination of the tower is

not due to the leaning instability. Can it be then a bearing capacity failure?
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Figure 1.14 Compression and swelling indices from dilatometer and oedometer tests.

1.4.3 Bearing capacity

Let us first caculate the bearing capacity of the tower close to the end of its
construction when it was still standing straight. This requires the length of the
equivalent footing, which is calculated using the first Eq. (3*.6) from Chapter 3*:

L=4r=4x15=6.0 m

The width of the equivalent footing isb = 3.0 m, its depth t = 2 m. Substitution of
the above parametersinto the formulas (3*.35) — (3*.37) gives:
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Ng=1472, §,=127, d,=118

N,=1313, s,=080, d,=L100.

A conservative estimate of the depth of the groundwater level is 2 m below the
ground surface, of the angle of interna friction ¢'=28", and of the total unit

weight of soil y =20 kN/m3 . The bearing capacity (3.34) can be calculated as

o; =20x2.0x14.72x1.27x1.18+

1 (1.25)
5730x10x1313x080x1.00=1.04 MPa

The weight of the tower is G = 1264 tons, which results in an average contact
stress of o = 344 kPa. Then the safety factor against the bearing capacity failure
for the not inclined tower was

_%r 1040 _

F =

3.0. 1.26
* & 344 (1.26)

This is sufficient to ensure that the bearing capacity failure was not possible. We
also need to keep in mind that this calculation is extremely conservative.

Before its stabilization, when the tower was inclined, the pressure under one
of the footings was much higher than the average. Calculating from the second
Equation (3*.6): B =3.0 m, from the second Equation (3*.33), we obtain

cL(a)=]"264X9'81(1+13'0tan5° ~606 kPa (1.27)
30x60 (2 30

Assuming that the bearing capacity of this foundation did not change (which is
conservative, because its depth increased due to the settlement), the safety factor is
still significantly larger than unity:

_Or 1040

= =172 (1.28)
c_ 606

S

Thus, the bearing capacity failure can also be excluded as the source of the tower
inclination.

1.4.4 Discussion

We have established that the excessive inclination of the tower is neither due to
the leaning instability nor to the bearing capacity. Furthermore, other structuresin
the landslide area, with much lower height to width ratios and contact pressures,
also appear to be inclined. All this confirms that the most likely reason for the
tower inclination is the landslide displacement.
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1.5 Mitigation Measures

The above analysis shows that, although the landslide will probably not fail
catastrophically, its movements keep damaging the structures. There are two ways
to mitigate this damage: to stabilize the structures locally and let them “swim”
with the landslide, or to stabilize the landslide globally by drainage.

72777392277777

@

(b)
Figure 1.15 The Leaning Tower: (@) new foundations; (b) the jacking-up procedure.

1.5.1 Stabilization of the leaning tower of St. Moritz

This stabilization procedure consisted of placing pre-stressed reinforced concrete
collars in the area at the foot of the tower and sinking two reinforced concrete
barrettes to a depth of 10 m below the origina foundation level (Fig. 1.15a). The
tower was then lifted by hydraulic jack-ups from its original foundation and its
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weight (1,264 tons) was placed on the foundation barrettes via three Teflon
bearing pads (Fig. 1.15b), and its tilt was decreased. The masonry of the tower
was reinforced using vertical interna pre-stressing. Thus, the tower is
“swimming” in the creeping mass, alowing for itstilt being periodically corrected
by lifting and introducing additional plates into the bearing pads (last correction
carried out in 2005).
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Figure 1.16 Chesa Corviglia (after Gysi, 1999): (a) a horizontal cross-section with the
additional piers; (b) avertical cross-section with the additional anchors.
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1.5.2 Stabilization of Chesa Corviglia

Stabilization of Chesa Corviglia required ingenious and expensive geotechnical
measures designed by the Gysi Leoni Mader AG engineering company. The wall
was reinforced by additiona piers (Fig. 1.16a), and additional anchors were placed
above the original ones (Fig. 1.16b). The new anchors do not penetrate below the
dliding surface (which could cause a dangerous increase in the anchor forces in
time due to the landside movements). However, they go sufficiently far away
from the house into the dliding layer in the hope of bringing about identical
displacements of the wall and the house, rather than hindering the creep
movement of the entire landslide, which is probably an impossible task.
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Figure 1.17 Fiberoptics: (a) the location; (b) the cable; (c) the measured strain.

Strain (u€)

<

1.5.3 Special regulations for new construction

As a consequence of the negative experiences with the Chesa Corviglia, the
municipality of St. Moritz had to react. Since the only global stabilization
possibility —dewatering of the entire landslide— was found to be not feasible, new
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permit specifications that regulate construction activities in the Brattas landdlide
were established. In addition to the legal problems (limited property rights,
responsibility and economica considerations, rapid ageing of the construction,
monitoring costs, etc.), these regulations address the planning, construction, and
monitoring of the structures. For example, during the project phase of new
constructions, weight compensation and equilibrium is a priority. The base of the
structure should be made as rigid as possible, and the use of the permanent ground
anchorsis not permitted.

1.5.4 Defining landslide boundaries using fiberoptics

Because of the municipality regulations described above, the new construction
within the landslide area is significantly more complex and expensive than outside
this zone. Unfortunately, the western boundary of the landslide crosses the town
and cannot be clearly identified from the geodetic measurements. This creates a
legal and technical uncertainty when the owners of the boundary properties initiate
anew construction.

To resolve this problem, it was decided to use the Via Tinus road, which
crosses the boundary (Fig. 1.17a) as a gigantic strain gauge, by equipping it with a
90 m long fiberoptics cable, glued within a 7 cm deep trench in the asphalt (Fig.
1.17b). Thiswas anovel application of the fiberoptic strain-monitoring technology
(Iten et al., 2008). By propagating light waves in the cable and using BOTDR
(Brillouin Optical Time-Domain Reflectometry) for the signal processing, it was
possible after one year of landslide movement to detect the relative elongation in
the cable in the 15 m long zone of the shear boundary of the landslide (Fig. 1.17c).

1.5.5 Monitoring of the earth pressure at the landslide bottom

Information about the earth pressure changes in a dliding layer of a creeping
landslide is a crucial component for understanding, analysis, and stabilization of
creeping landdlides. This information is especialy important for constrained
landslides where the pressures in the compression zone could reach the passive
pressure and lead to a catastrophic failure. For a failure scenario, combining the
measured increase in pressure with geodetic measurements alows for back-
caculating parameter 1, from Equation (1.18) and predicting when the

constrained landdide will fail (Eg. (1.19)).

Unfortunately, measuring the earth pressures is one of the most challenging
problems in the geotechnical monitoring. Conventional methods, such as pressure
cells, require additional boreholes and produce unreliable results. In order to
overcome these problems, a novel device — inclinodeformometer (IDM) was
developed at the Institute of Geotechnical Engineering, ETH Zurich, to measure
changes of earth pressure in a dliding layer of a creeping landslide (Schwager et
al., 2010). The device makes use of the existing and widely used technology of the
inclinometer measurements. The change of earth pressures in the diding layer
leads to the changes in the inclinometer pipe shape and dimensions. The IDM
praobe is being lowered down the depth of the pipe on three wheels guided along
the channels of the inclinometer pipe (Fig. 1.18a).
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The upper and lower wheels are rolling in the same channel. These wheels are
fixed to the probe. The middie wheel is connected via a lever with two springs so
that it can be pressed against the opposite channel. A change in the diameter of the
pipe leads to a change of the position of the middle wheel in respect to the probe.
There are three tilt sensors detecting the relative inclination between the probe and
the lever of the middle wheel (Fig. 1.18a). Continuous diameter measurements in
two perpendicular directions can be taken. Diameter changes measured over a
period of time alow for the pressure change to be back-cal culated from a solution
of a boundary value problem with properly described congtitutive behaviours of
the pipes and the surrounding soil.
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Figure 1.18 Inclinodeformometer (IDM): a) device in the pipe; b) the measured diameters
of an inclinometer pipe in the compression zone of the St Moritz landslide.

An advantage of the inclinodeformometer is that it does not require any
additional infrastructure than standard inclinometer pipes, which are being
installed anyway for landslide monitoring. Furthermore, these pipes can be used
for pressure change measurements in the siding layer long after they were sheared
and became unsuitable for inclinometer measurements. Full-scale laboratory tests
performed in a 2 m high calibration chamber demonstrated that the pressure
measurement accuracy can be as high as 5 kPa.

Initial field measurements performed on the St. Moritz landslide confirmed
significant stress anisotropy in the compression zone of this constrained creeping
landslide (Fig. 1.18b). The A-axis in Figure 1.18b coincides with the direction of
the landslide velocity, the B-axis is perpendicular to it. The pipe diameters are
averaged every 3 meters — e.g., within each continuous pipe section between the
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installation joints. The measurements consistently demonstrate an elliptical pipe
shape with a smaller diameter paralel to the landslide velocity. The difference
between the pipe sections is most likely due to the variation in the initia pipe
diameters. The first measurements of the diameter changes in three different
inclinometer pipes were taken in 2009 and the back-calculated yearly earth
pressure changes in the compression zone ranged between 5 and 15 kPa
(Schwager et al., 2010).

1.6 Lessons Learned

1.6.1 Stability of constrained creeping landslides

Creeping landslides, which are constrained by natural or man-made obstacles
(e.g., aretaining wall) have “nowhere” to go and their downhill movements are
slowing in time. This intuitively implies that the landslide stability is not an issue,
which in some cases can be wrong, in particular when residual strength at the slip
surfaces increases with shearing strain rate. In such a case, because the landslide is
slowing, the shear strength on the dsliding surface will decrease, leading to an
increase in compressive stresses at the landdide foot and, possibly, to a
catastrophic failure.

1.6.2 Inverse analysis

Spatial variability of soil properties results in high levels of indeterminacy in
congtitutive models and their parameters obtained in laboratory tests. This causes
large discrepancies between the predicted and observed landdlide behaviour. In
contrast to the forward approach, inverse analysis allows for the materia
properties to be back-calculated directly from the observed displacements. This
accounts for the global slope behaviour and provides a more reliable basis for the
future predictions.

1.6.3 Landslide monitoring

The inverse analysis can produce reliable predictions only if the long-term
displacements are monitored aong the entire landslide length and the earth
pressure changes are measured in the area of high compression at the landdlide
bottom. In addition, fiberoptic strain-monitoring technology can be used to better
define landslide boundaries, in particular, in urban areas. A novel device —
inclinodeformometer (IDM) — can be used to back-calculate changes in earth
pressure in a dliding layer of a creeping landslide.

1.6.4 Stabilization of structures

An attempt should be made to separate a structure from a landdlide, e.g. the
foundation may be allowed to “swim” in the creeping mass with the structure tilt
being periodically corrected. In any case, all parts of the structure should be
ensured to move with the same velocity. The weight of the structure should
compensate for that of the excavated ground. The base of the structure should be
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made asrigid as possible.

1.6.5 Environmental factors and landslide stabilization

Sharp changes in the yearly displacements are normally caused by the changes in
environmental factors, such as precipitations. These can represent a danger to the
short-term stability of the landdlide, even if its long-term stability is ensured. This
long-term stability can, in turn, be negatively affected by global climatic changes.
Stabilization of the landdlide using a drainage system can successfully mitigate
these hazards.
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Chapter 2
Catastrophic Slide: Vaiont Landslide, Italy

2.1 The Landslide

An impressive double curvature arch dam, 276 m high, was built in the years
1957 - 1960 to store the waters of the Vaiont River, located in the Italian Alps,
approximately 80 km north of the city of Venice. The dam was built in a narrow
canyon, cut by the river in massive Jurassic limestone (Fig. 2.1a). The photograph
shows, in the foreground, the limestone abutments of the dam and, in the
background, the steep slope of the left bank of the river, which was actually the
toe of an ancient landslide. The ancient slide became unstable in October 1963,
when the level of the reservoir was close to its maximum, and invaded the
reservoir at great speed. The displaced water generated a gigantic wave, 220 m
high, which flew over the dam (which stood without bursting) and destroyed
severa villages downstream, causing more than 2,000 casualties. The failure sent
seismic waves, recorded in seismographs across Europe.

Figure 2.1 View of Vaiont Dam from downstream: (@) before the catastrophic landslide;
(b) after the slide (Vadés Diaz-Caneja, 1964).

Figure 2.1b is a view of the left bank of the river after the dlide. The dam, in
the lower part of the photograph, was not directly hit by the slide. A small lake
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remains between the dam and the toe of the slide. The bridge topping the dam has
been destroyed. The dide scarp and a newly created lake may be seen in the
background of the photograph. This catastrophe caused a great impact, which was
deeply felt by dam and geotechnical engineers around the world.

A brief account of the events leading to the landslide of the left bank of the
reservoir is given in the following paragraphs.

Dedicated geological surveys of the left margin of the reservoir started in
1958 under the supervision of L. Mller-Salzburg, an expert in rock mechanics. It
was soon realized that a large proportion of the left bank of the reservoir was in
fact a very large prehistoric landdide which, sometime in the past, filled the
Vaiont valley. The valley had been excavated by the river at the end of the last
glacial period (Wirm) (Semenza and Ghirotti, 2000). After this prehistoric
landslide, the river excavated again a deep valley through the slipped mass. The
geological history of the landslide, an aspect which is aways of interest in
stability problems, isreviewed later.

At the end of 1960, once the dam was built and the reservoir partialy
impounded, a long, continuous peripheral crack, 1 m wide and 2.5 km in length,
marked the contour of a huge mass, creeping towards the reservoir in the northern
direction (Fig. 2.2).
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Figure 2.2 Map of the Vaiont sliding area. Note the position (and comparative size!) of the
arch dam on the lower right-hand corner of the figure. (Simplified from Belloni and Stefani
(1987) (© 1987 with permission from Elsevier) with additional information from severa
authors.)

In the following three years, the downward motion of the slide was monitored
by means of surface markers. Some of the data provided by them are also plotted
in Figure 2.2. In addition, water pressures in perforated pipes, located in four
boreholes (location shown in Fig. 2.2), were monitored, starting in July 1961. The
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history of rainfall, reservoir level, rate of surface displacement, and water levelsin
piezometers in the four years preceding the failure is shown in Figure 2.3.
Geophysical campaigns were also performed in December 1959 and 1960. Notice
also, in Figure 2.3, that two slides of limited size took place during the first partial
filling of the reservoir in 1960. Project engineers were by that time convinced that
a large landdlide could partialy fill the reservoir, isolating the dam from the
upstream part of the reservoir, and a by-pass tunnel was built in 1961 as a
precautionary measure.
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Figure 2.3 Relationship between precipitation, reservoir elevation, maximum velocity of
horizontal surface displacements, and water level in piezometers. (After Hendron and
Patton (1985), based on a figure by Muller (1964).)
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However, all the investigation efforts provided limited information on some
key aspects of the landslide such as the position and shape of the sliding surface
and the pore water pressures acting on it. The measured rate of displacements of
surface markers could be roughly correlated with the water level of the reservoir
(Fig. 2.3). After two cycles of reservoir elevation, which partialy filled and
emptied the reservoir in the period 1960-1962, the water level reached a
maximum (absolute) elevation of 710 m, at the end of September 1963. At that
time, the accumulated displacements of surface markers had reached values in
excess of 2.50-3 m (Fig. 2.4). The figure shows a good correlation between the
increase in water level in the reservoir and the acceleration of the landslide.
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Figure 2.4 Accumulated displacements of surface markers (W) in the period 1960-1963
and its correlation with reservoir elevation (LL). Seismic events are marked in the time
scale (reprinted from Nonveiller, 1987, © 1987, with permission form Elsevier).

Surface velocities of 20—-30 cm per day were registered in the days preceding
the final rapid motion that took place in October 9, 1963. An estimated total

volume of rock of 280x10°m’ became unstable, accelerated, and invaded the
reservoir at an estimated speed of 30 m/s (around 110 km/hour).

Figure 2.5 is a photograph of the slide taken in 1979. The landslide has filled
the valley of the Vaiont River, which can be seen in the background. A residual
lake can be seen in the lower |eft part of the image. The upper planar diding plane
(clear colours) is now exposed. The simplified map in Figure 2.5b, taken from
Broaili (1967), shows the position of the dam (not seen in the photograph), which



38 Geomechanics of Failures. Advanced Topics Chapter 2

maintains a small reservoir, the residual lake within the diding area and the
contours of the landslide before and after the failure.
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Figure 2.5 (a) Photo of the slide area, taken in 1979 (courtesy of G. Fernandez); (b) plan
view of the area after the slide (Braili, 1967).
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The Vaiont landslide has attracted world wide attention concerning the causes
and processes involved in the failure. Interest in Vaiont has never decreased
within the technical community despite the 47 years that have elapsed since the
accident. Papers analyzing the failure have been published at a maintained rate in
journals and conferences. The landslide is one of the largest (in terms of volume
of mobilized mass) in history. As stated by Hendron and Patton (1987) “ It is likely
that more information has been published and more analyses have been made of
the Vaiont data than for any other dlide in the world” . This chapter and Chapter 5
are additional contributions to this long list, with the aim of maintaining
simplicity, but at the same time with the hope of capturing some fundamental
aspects of the failure. Vaiont has been analyzed by researchers in rock and soil
mechanics and some specific views of the mechanisms involved in the failure can
sometimes be traced to the background of the people conducting the analysis.

One of the main reasons of this interest is the difficulty in explaining the
extremely high velocity of the moving mass. The implication of this lack of
understanding is that the risk associated with other landslide occurrences of a
similar nature (natural slides affected in its toe by increasing water levels, a
common situation in dam engineering) cannot be properly evaluated.

The issue of the velocity of the Vaiont landdlide will be discussed in Chapter
5. But before this, the conditions for static equilibrium should be understood.
Static models, even if they are ssimple, require an understanding of the main
geological, geometrical, hydraulic, and geotechnical features of the dlide. In the
case of Vaiont, this information should idedlly be extended to the old prehistoric
landslide, which was reactivated by the reservoir impounding.

2.2 Geological Setting

The Vaiont River, which flows from east to west, cuts a large syncline structure
which folds Jurassic and Cretaceous strata (Fig. 2.6). The syncline created the
“open chair” shape of the Jurassic strata of the left margin of the river, which can
also be seen in the figure. The axis of the syncline plunges a few degrees towards
the east (normal to the plane of the figure). The syncline shape eventually defined
the geometry of the failure surface, which is aways important information for
understanding the subsequent behaviour of the slide.

(m) Mt. Salta
2000 —

1500 —
1000 —

500 —

Figure 2.6 North (Monte Toc) to south (Monte Salta) section showing the general layout of
the syncline, theVaiont gorge and the position of the ancient landdide (after Semenza and
Ghirotti, 2000).
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Figure 2.7 Tentative reconstruction of the paleo-slide of Vaiont. 1: Situation before the
first motion (end of last glaciation?); 2: First motion of the slope; 3: Process of progressive
sliding (undulated continuous line) and rotational slides at the toe; 4: Successive erosion
phenomena on the upper parts, 5: Ancient landdide and intense fracturing of strata. The
valey is invaded by the gigantic dide; 6: The slide before November 4, 1960, after
thousands of years of erosion. The river has cut a new, narrow gorge; 7: The profile after a
“small” landslide on November 4, 1960; 8: The final shape of the cross-section after the
slide of October 8, 1963 (present situation). The inset shows an eroded part of the slide
surface by the rapidly moving waters displaced by the dide (simplified and adapted from
Semenza, 2001).
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E. Semenza, an engineering geologist son of the dam designer, made
important geological contributions to understand the geology of the site. In his
book “La storia del Vaiont raccontata del geologo che ha scoperto la frana” (“The
story of Vaiont told by the geologist who discovered the slide”, Semenza, 2001),
he includes a tentative reconstruction of the past history of the dide in a series of
representative cross-sections, which are reproduced in Figure 2.7.
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Figure 2.8 Two representative cross-sections of the landslide: (a) Section 2; (b) Section 5
(see the location in Fig. 2.2). After Hendron and Patton, 1985. The position and length of
piezometers P, and P, are shown on Cross-section 5.

This reconstruction conveys a clear message from a geomechanical point of
view: the failure surface, which was probably initiated several tens of thousands of
years ago, has been subjected to an ever-increasing story of accumulated relative
displacements. The second important point is that the rock mass affected by the
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1963 landslide had suffered a history of cracking and “damage” during recent
geological times. The dliding surface is located in strata of the upper M&@m period
(upper Jurassic). Clays and marls were found in these layers (see the description of
the failure surface below). Above the dliding surface, finely stratified layers of
marl and limestone from the Ma@m period were identified. Below the diding
surface, the Jurassic limestone banks of the Dogger period remained unaffected. In
the upper part, limestone strata from the lower Cretaceous crowned the moving
mass. In general, the folded layers of limestone and marl were strongly fractured
(drilling water was often lost in the exploratory borings performed in 1960).

Two representative cross-sections of the slide, located upstream of the dam’s
position at distances of 400 and 600 m, respectively, are reproduced in Figure 2.8
(Sections 2 and 5; Hendron and Patton, 1985). The two cross-sections will be used
later to analyze the stability conditions of the landdlide.

2.3 The Sliding Surface

In their comprehensive report of 1985, Hendron and Patton (1985) describe the
detailed investigation performed to identify the nature of the dliding surface. The
conclusion is that thin (a few centimetres thick) continuous layers of high
plasticity clay were consistently found in the position of the failure surface. A
photograph of the surface is shown in Figure 2.9.

Figure 2.9 A striated continuous clay layer belonging to the sliding surface (courtesy of G.
Fernandez).

Samples from these clay layers were tested by different laboratories and the
results are described in Hendron and Patton (1985). The clays were found to be
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highly plastic (a plasticity chart is given in Fig. 2.10), a result explained by their
significant Ca-montmorillonite content. Liquid limits well in excess of 50% were
often found. More recently, Tika and Hutchinson (1999) reported the values w, =
50% and Pl = 22%.
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Figure 2.10 Plasticity of clay samples from the Vaiont diding surface (Hendron and
Patton, 1985).

Direct shear tests on remoulded specimens were a so reported by Hendron and
Patton (1985). In some cases, stress reversals were applied in order to find residual
conditions. In fact, the past history of the landdlide indicates that the residual
friction angle was the relevant strength parameter along the failure surface.
Measured average values of residual friction angle ranged between 8 and 10
degrees. These values are consistent with existing correlations between residual
friction angles and clay plasticity (Lupini et al., 1981). Tika and Hutchinson
(1999) used the ring shear apparatus to find the residual strength. This test,
conducted on remoulded specimens, approximates better the large relative shear
displacements experienced in nature by the actua dliding surface. They also
measured a residual friction angle of 10 degrees for a relative shear displacement
in excess of 200 mm (Fig. 2.114a).

Tika and Hutchinson (1999) also examined the effect of the shearing rate.
They found (Fig. 2.11b) a further reduction in residual friction which reached low
values (5°) for shearing rates of 0.1 m/s, avelocity which is still far lower than the
estimated diding velocities of the real failure. However, it is a common
experience that increasing strain rate leads to an increase in the strength of soils.
More data on the effect of the shearing rate on residual strength is probably
needed before reaching definite conclusions on thisissue.



44 Geomechanics of Failures. Advanced Topics Chapter 2

Hendron and Patton (1985) estimate that some factors (areas of the diding
surface without clay, some localized shearing across strata, irregularities in the
geometry of the diding surface) could increase the average residua friction angle
operating in the field and they estimate that ;= 12° is a good approximation for

static conditions.
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Figure 2.11 Ring shear tests on a clay specimen from the vicinity of the Vaiont sliding
surface: (@) static residua friction determined at a shearing rate of 0.0145 mm/min; (b)
effect of shearing rate (Tika and Hutchinson, 1999).

2.4 Monitoring Data before the Slide

Significant monitoring data taken during the three years preceding the failure were
given in Figures 2.3 and 2.4. The main purpose behind the limited instrumentation
available was to relate the level of the reservoir with the measured vertical and
horizontal displacements of a number of topographic marks distributed on the
dlide surface. Data on horizontal displacements, plotted as a function of position
and time in several profiles following the south-north direction in Figure 2.2,
suggest that the slide was essentially moving as arigid body. The direction of the
dlideis also indicated in the figure by several arrows. Some of them (small arrows
along the peripheral crack) indicate that the moving mass was actually detaching
from the stable rock, implying no friction resistance along the eastern and western
boundaries of the slide.

Seismic (volumetric P-wave) velocities were measured in central parts of the
didein December 1959 and again in December 1960. A drop in velocity from v, =
5-6 km/s in 1959 to v, = 2.5-3 km/s was recorded. This information may be
interpreted as an indication of the progressive weakening of the rock mass due to
the distortion induced by the creeping motion of the dide. The velocities initially
recorded at the end of 1959 are very high and they correspond to a rock of good
quality (Barton, 2007). This is perhaps surprising in view of the prehistoric
landslide motions described above. The strong drop in seismic velocity in just one
year, which is a tiny fraction of time within the complex life of the landslide,
seems exaggerated but it is pointing towards significant shear distortions within
the rock mass, motivated by the first impoundment of the reservoir which implied
a raise of the water level of 200 m (see the history of events in Fig. 2.3). The
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associated increase in pore water pressures on the sliding surface is very large and
it is unlikely that past rainfall events could have produced such a strong drop in
effective stress, especially in the lower part of the slide.

It should be emphasized that these P-wave vel ocities are much higher than the
velocities measured in soils, even if they are dense and compact. In other words,
the strength that may be associated with the shearing of the rock mass above the
sliding surface is orders of magnitude larger than the strength available at the clay-
dominated thin layers at the base of the dide, being sheared along sedimentation
planes of very high continuity.

2.5 Water Pressures and Rainfall

The position of piezometers (they were open perforated pipes) was indicated, in
plan view, in Figure 2.2 and in cross-section in Figure 2.8. A perforated pipe only
provides information on the average water pressures crossed by the tube. Note too
that the pipes did not reach the position of the sliding surface. Therefore, they did
not provide direct information on the water pressures actualy existing in the
vicinity of the diding surface, which is fundamenta information to perform a
drained stability analysis of the landslide.
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Figure 2.12 Relationship between water level in the reservoir and sliding velocity (courtesy
of G. Fernandez).

In general, the water levels recorded by the piezometers follow closely the
changing levels of the reservoir (compare Figs. 2.3b and 2.3d). The exception is
Piezometer 2, at least during the initial part of the recording period. The initial
readings in this piezometer indicated water pressures significantly above (90 m of
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water column) the reservoir surface. This information has been interpreted as an
indication of additional factors, other than the level in the reservoir, which may
control the water pressure at the sliding surface. Since the cretaceous limestone
affected by karstic phenomena is a rather pervious mass, rainfall water infiltrating
at high elevations may result in artesian pore pressures against the impervious
Mam formations located at the base of the landslide. Arrows showing the
circulation of water in Figure 2.6 illustrate this possibility. However, no further
and direct evidence of this possibility was recorded. On the other hand, the
simultaneous variation of piezometer and reservoir levels is a good indication of
the high permeability of the rock mass above the diding surface.

When the water level in the reservoir is plotted against the recorded slide
velocity (Fig. 2.12), an interesting result is obtained. An increasing water level
leads to an increase in dliding velocity. The relationship is highly nonlinear and it
tends towards an asymptotic limit, which is an indication of failure. The problem
with Figure 2.12 is that this relationship is not unique, a result which is not
expected if the slide motion is thought to be governed by the effective normal
stresses acting on the dliding surface, which, in turn, are controlled by the
reservoir level. In fact, the second reservoir filling led to a second asymptotic
value for the water level in the reservoir.

This result was probably the main reason behind the decision to increase the
water level for the third time in search of a higher (but safe) level in the reservoir,
which would allow the normal operation of the dam. The idea behind this
decision, apparently put forward by L. MUller, is that the rock reacts in a different
way when it is wetted for the first time, compared with its reaction when it has
previously been wetted. There is no fundamental mechanical basis for this
proposition, however. The fact is that, during the third attempt to raise the water
level, displacement velocities increased continuously and the final attempts to
reduce the velocity of the slide, by lowering the level of the reservoir (Fig. 2.3b),
did not work.

An explanation for the apparent inconsistency of results in Figure 2.12 could
be found if the reservoir water level and rainfall are combined in the spirit that the
prevailing water pressures on the dliding surface, irrespective of their origin,
should control the stability.

Hendron and Patton (1985) found a reasonably good explanation if rainfall,
averaged over the preceding 30 days, and water level are jointly considered to
explain the landslide velocity (Fig. 2.13). The boundary line between “stable” and
“unstable’ situations, plotted in Figure 2.13, could even provide the equivalent
reservoir elevation for a given rainfall intensity.

The actual failure occurred for a 30-day precipitation of 240 mm, when the
reservoir was at an elevation of 700 m. Leonards (1987) analyzed further the
rainfall records and the history of reservoir elevation and could not find a
satisfactory explanation, free of inconsistencies, for the relationship between
velocities of the slide, reservoir elevation, and previous rainfall. The pore pressure
regime prevailing at the sliding surface remains rather uncertain in the Vaiont
landdlide.
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Figure 2.13 Sliding rate related with precipitation (averaged over the preceding 30-day
period) and reservoir elevation (Hendron and Patton, 1985).

2.6 A Simple Stability Model

The two representative cross-sections, 2 and 5 in Figure 2.8, are represented in
Figure 2.14 in a smplified version, which is, however, close to the original
drawings. The two plots highlight that the failure surface could be described by
two planes: a lower horizontal plane daylighting at the river canyon wall and an
inclined planar surface. A rock wedge whose thickness decreases upwards rests on
the inclined plane. The rock mass reaches its maximum thickness, 270 m, in the
central lower part of the slide, above the horizontal sliding plane.

A good proportion of reported stability analyses of Vaiont, especiadly in the
years following the failure, have concentrated on the determination of the friction
angle necessary for stability (Jaeger, 1965; Nonveiller, 1967; Mencl, 1966;
Skempton, 1966; Kenney, 1967). Classic procedures for stability analysis in soil
mechanics using limit equilibrium methods were used. These methods explain the
instability for friction angles in the range 18— 28°. The preceding account of the
relevant information on Vaiont, namely the data presented by Hendron and Patton
(1985) indicates, however, that the friction angle at the failure surface could
hardly be larger than 12 degrees.
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Figure 2.14 Cross-sections 2 and 5 of the Vaiont landslide. Initial geometry.

Two main reasons support this statement: the fact that Vaiont was a case of
landslide reactivation (which implies large previous shearing displacements at the
dliding surface and, hence, a clear situation of residua strength conditions) and
the small residua friction angles (8-10°) measured in the highly plastic clays
(Ca-montmorillonite rich) associated with the dliding surface. Therefore, a
relevant question is: are the representative cross-sections in Figure 2.14 stable,
given the value of the basal friction angle and the estimated conditions of pore
water pressure, when the reservoir reached elevations in the range of 650 to
700 m?

The cross-sections plotted in Figure 2.14 suggest that the slide may be defined
as two interacting wedges. an upper one (Wedge 1) sliding on a plane having adip
of 36-37° and a lower one (Wedge 2) dliding on a horizontal plane. Since a
(common) friction angle of 12 degrees is acting at the basal sliding surfaces, the
upper wedge isintrinsically unstable and will push the lower resisting wedge. The
weights of the two wedges and the distribution of pore water pressures prevailing
on the diding plane will, as a first approximation, dictate the stability conditions.
However, the interaction between the two wedges also plays a relevant role in
explaining the stability, as discussed below.

2.6.1 Kinematics of the slide

It isworth at this point to examine the kinematics of the dide. If the motion starts,
one may imagine the dide as a train diding downwards, an image which is
brought to justify that the absolute velocity in the upper and lower parts of the
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dlide are essentially the same. Surveying data plotted in Figure 2.2 support this
simple hypothesis, which is to be expected in the reactivation of an old landslide.
The difference in velocity (or displacement) when comparing the upper and lower
parts of the dlide obvioudly lies in the direction of these vectors: they will be
paralld to the underlying failure surface. A conflict arises, however, at the kink or
junction between the two diding planes. Within the train analogy, if the wagon
passing over this kink is to maintain contact with the kinked rail, it will be bent
and sheared. It is hard to imagine that voids will develop in the layered sequence
of marl and limestone at 270 m depth. The alternative is the bending and shearing
of dtrata. In fact, a single shearing plane may be invoked to accommodate the
sudden change in the direction of velocity at the kink. This is indicated in Figure
2.15, where dliding velocity vectors v, (in the direction of the upper inclined
surface) and v, (horizontal, parallel to the basal plane) are plotted with a common
origin. This velocity diagram represents the conditions at the kink (point A),
where the rock approaches A with velocity v, and leaves it with velocity v,. Since
the absolute velocity of the two wedges is the same, the relative motion of the two
wedges (vector vy,) is directed in the direction of the bisector of the angle between
the upper and lower dliding surfaces. Therefore, a change in the direction of the
velocities of the two wedges may be accommodated by a relative shear in the
direction of the bisector plane, plotted in Figure 2.14.

=400 m

Figure 2.15 Kinematics of sliding. Section 5.
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The motion of the dlide implies that the (unstable) mass from the upper wedge
becomes the (stable) mass of the lower wedge. In this process, the diding
resistance along the common plane separating the two wedges has to be overcome.
If it is accepted, because of the preceding discussion, that the common plane of
intense shear bounding the two wedges is the bisector plane (Fig. 2.15), the
evolution of the geometry of the sliding mass may be approximated by the
successive cross-sections shown in Figure 2.15 for total dlide displacementss=0
m, s =100 m and s = 400 m. Figure 2.15 is a graphic expression of the condition
of mass conservation during landslide motion. It will be used later to perform a
dynamic analysis of the failure.

7
|

(b)

Figure 2.16 Two-block model of the Vaiont dide: (a) definition of geometry and forces
(initial stage); (b) the slide after a displacement s.

2.6.2 Two-block model

Consider in Figure 2.16, the “unstable” and “stable” blocks mentioned before in a
very simple representation: two solid blocks connected by double hinged bar
normal to the bisector plane. The interaction between the two blocks is simply
given by aforce, F;. Note that this force introduces normal and shear forces on the
common plane between the two blocks. The lower block is partially submerged
and the level of water has a height h,, with respect to the lower horizontal sliding
plane. The upper block is not affected by water.

The sketch in Figure 2.16a provides a definition of forces acting on each
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block. A simple problem is defined as follows: find the angle of basal shearing
resistance for equilibrium. This is an elementary problem in mechanics which is
solved by expressing equilibrium of forces for each block and then forcing a
common value for the interaction between the two blocks. Static equilibrium
expressions (normal and parallel to the direction of dliding) are written as follows,
in terms of effective stresses:

- Upper block 1:

W, cosa + F sin(a/2) = N, (2.18)
W, sina =T, + F, cos(a./ 2), (2.1b)

Tl = Nl tan (PE) ’ (210)

since no water is acting on the upper sliding block, N, = N; .
- Lower block 2:

W, +F sin(a/2) =N, +R,,, (2.28)
F cos(a/2)=T,, (2.2b)
T, =N, tangy, (2.2c)

where tan gy, isthe effective friction coefficient on the sliding planes.

Isolating F; in (2.1) and (2.2), respectively, and making them equal, resultsin
W (sina—cosatang;) (W, —R,,) tang;

sin(a/2)tang) +cos(a/2)  cos(a/ 2) —tang] sin(o./2)

(2.3)

which is a second-order algebraic equation for tan¢,, . The volumes of blocks 1
and 2 are estimated as follows for Section 5: Vi = 112,590 m*/m and V = 93,000
m>/m, where the subscript , indicates initial value (no displacement of the slide).
The indicated volumes correspond to alanddlide “slice”, one meter thick.

The value of P,, may be caculated as P,, = Lyh, if a length for Block 2 is
estimated. The length of the basal horizontal planein Figures 2.14 or 2.15is L,y =
560 m. Finally, a specific weight, v, = 23.5 kN/m® was taken for the rock in order
to compute the weights of the blocks. Accepting these values, the following
friction angles are derived for Cross-section 5 (o0 = 379):

¢y, = 21.1°for h,, = 120 m,

¢p, = 19.4°for h,, =60 m.

The lower horizontal plane in Section 5 is approximately at elevation 590 m
(Fig. 2.13) and the maximum reservoir level attained was 710 m (Fig. 2.3).
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Therefore, the first case defines the maximum water pressure experienced by the
lower block before the failure. Slide displacements (which, in practice, are
interpreted as a condition of strict static equilibrium) were also recorded at lower
water elevations (h, = 60 m, which corresponds to the situation in November
1960, see Fig. 2.3). However, the actual pore water pressure is also controlled by
the rainfall regime, as previously discussed, and uncertainties remain on the actual
value of the operating pore water pressures against the sliding surface.

Degpite its simplicity, the block model provides some hints on the effect of
water level and slide displacement on safety factor. If ¢, = 21.1° is taken as the

real effective friction angle along the failure surface, the safety factor, F, is
defined as

F_ tan(21.1°)
tan((p,mob) ,

where ¢, is the “mobilized” friction angle, i.e. the friction angle that ensures

strict equilibrium for another situation of the slide and, in particular, for changing
water levels in the reservoir. Vaues of ¢;,, were calculated through Equation

(2.3) for different values of h,, and the calculated safety factor is plotted in Figure
2.17a The explanation of thisfigure is straightforward: as water level increases, it
reduces the effective weight of the lower block, (W, — P,), and the friction
required for equilibrium has to increase. Note, however, that the upper block is not
affected by the water level in this simplified model, a situation that may changein
other cases. In Vaiont, as shown later, the maximum reservoir level introduces
pore water pressures in the lower part of the upper wedge. It should be added that
the trend shown in Figure 2.17a (decreasing safety factor as the water level
increases) is not a general result for other slide geometries and stronger changesin
water elevation.

The effect of changing geometry as the dlide is set in motion, may be also
analyzed. Figure 2.16b includes a proposal to transfer mass from the upper block
to the lower one. It is a rough approximation to the more refined model sketched
in Figure 2.15. It simply states that the current weights of the two blocks, for a
slide displacement sis given by

VVl :VV].O - e_l_sYr ’ (243)

W, =W,, +&sy,, (2.4b)

where g, is the thickness of the upper block (Vi = Ligey; for Section 5, Lyo = 700
m and the volume of the upper block is Vi, = 112,590 m*¥/m; therefore, e, = 160.8
m). In addition, the water uplift under block 2 is calculated as P, = (Ly + 9)hy.
Equation (2.3) provides again the value of ¢/, for the current weights, and
therefore safety factors may be found for increasing slide displacements. They are
plotted in Figure 2.17b, for Cross-section 5. The result is to be expected: the
moving slide becomes progressively more stable because the lower stabilizing
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weight increases at the expense of the upper unstable block whose mass is
continuously decreasing.
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Figure 2.17 Two-block model. Effect of (a) water level — for zero displacement — and (b)
slide displacement — for h,, = 120 m — on safety factor. Section 5.
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Unfortunately, the real behaviour of Vaiont was totally different: it
accelerated downwards despite the prediction of the simple two-block model.
Somehow, the resisting forces had to decrease substantially in order to transform a
self-stabilizing mechanism (the two-block model) into an increasingly unstable

mass, able to accelerate.
The two-block model has a further limitation: the effective friction angle for

equilibrium (¢, = 21.1° for h, = 120 m or ¢, = 19.4° for h,, = 60 m, both in
Cross-section 5; the “small” difference is non-relevant here) is far higher than the
residual friction angle, o), = 12° which is the most likely value as justified
above. This is an inconsistent result which indicates that the simple two-block
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model is too crude to represent the actual conditions of the Vaiont side (equally
inconsistent results are obtained for Cross-section 2).

The next step will be to remove some of the limitations of the simple two-
block model in order to approximate more redlisticaly the dliding conditions
summarized in Figure 2.15.

2.6.3 Two interacting wedges

Shearing across the common plane AB between the upper and lower wedges (Fig.
2.15) has a direction approximately perpendicular to the sedimentation planes of
marls and limestones of the M&m period overlying the failure surface. The shear
resistance offered by plane AB is difficult to estimate because of the intricate
geometry involved at severa scales and the limited continuity of joints. Some
researchers in rock mechanics, notably E. Hoek, have made efforts to provide an
answer to this difficult problem from a practical perspective. An account of
Hoek’ s work may be found in the rock mechanics textbook (Hoek, 2007).

Following Hoek, the strength of rock masses may be approximated if some
basic characteristics are determined (rock matrix unconfined strength; degree of
jointing and state of the surfaces, lithology, etc.). As an example, Figure 2.18
shows the strength envelope in a Mohr stress plane for a rock mass that may
approximate the Mam layers above the diding surface of Vaiont. The envelope
was defined using the free access “virtual laboratory” found on the preceding web
page. Details of the defined rock mass are given in the caption of Figure 2.18. It
may correspond to the Vaiont rock mass, which was described as follows by
Miller (1987), after the failure:

“The part of the stratigraphic column exposed in the slide mass consists of
beds of partially crystalline limestones, limestones with hard siliceous inclusions,
marly limestones, and marls. Many beds are strongly folded and show indications
of slope tectonics. Its geological structure and also its geological sequence has
remained essentially unchanged. The entire rock mass remained intact and the
sediment facies is nearly unchanged. Apart from some newly formed faults, the
only other effects of the dide were the opening of existing joints and the
development of new joints, resulting in an overall volume increase of 4 — 6% and
an associated reduction of the mechanical coherence of the rock mass.”

The strength envelope is nonlinear but a Mohr — Coulomb approximation is
also shown in Figure 2.18 for arange of normal stresses centered at o, = 2 MPa,

a stress which may represent average conditions on the bisector plane AB (Fig.
2.15). The Mohr —Coulomb strength parameters (c/ = 0.787 MPa, ¢! = 38.5°)

define the linear Mohr — Coulomb approximation in Figure 2.18.

Therelevant point is that the shear plane AB may offer a substantial resistance
to be sheared and this resistance probably has a significant role in stability.
Shearing across a rock mass is typically associated with the release of energy. In
fact, in the years preceding the failure, when three attempts to fill the reservoir
were made, seismic events were recorded on the dide surface. Their location is
plotted in Figure 2.2. They approximately span, in plan view, the position of the
shear plane AB plotted in Figure 2.15. Nonveiller (1987), quoting a report on



Chapter 2 Geomechanics of Failures. Advanced Topics 55

these shocks mentions that “[...] the shocks generated in the zone of the slide
signify dilation of the material in a zone of sagging of the rock” .

These events had an increasing frequency in periods of dlide acceleration,
when the reservoir level increased. This is shown in Figure 2.4, where seismic
events are plotted as small marks on the time axis (lower part of the figure).

It was also reported that the rock experienced a global degradation, reflected
in a substantial drop of P-wave velocities, as aresult of the slide motion during the
period December 1959-December 1960. All this evidence supports the conclusion
that a rock mass around the position of the ideal shear plane AB was subjected to
intense shearing during the cycles of filling and emptying the reservoir in the
years previous to the failure.

Mohr — Coulomb

| approximation - . 7
i | (G,=2 MPa) Ve
v
4 v f
‘ ; Hoek —Brown
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Figure 2.18 Strength envelope of a rock mass described as: strength of intact material: 50
MPa (limestone-claystone); Hoek Geological Strength Index (GSI = 50) (very blocky,
interlocked, and partialy disturbed, with multifaceted angular blocks formed by four or
more joint sets), Hoek m parameter m = 9 (marls, soft limestones); degradation parameter
D = 0.5 (in ascale 0 to 1) (according to the Hoek — Brown classification of rock masses;
see www.rocscience.com). Also shown is the Mohr — Coulomb approximation for a normal
stress of 2 MPa (c = 0.787 MPa, ¢, = 38.5°) and an arrow showing the degradation of

cohesive intercept at constant ¢, vaue.
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A loss of strength (reduction of mechanical coherence in Mller’ s words) was
certainly a consequence of this straining. Typically, cohesion is first lost but
friction tends to remain without much change. This drop of cohesion as aresult of
straining along plane AB was shown in Figure 2.18. In the model described below,
the apparent cohesion in the shear plane AB will be reduced as the slide moves
forward.

Going back again to Figure 2.15, as dide displacement increases, “new”
planes of rock cross the shearing position AB that remains fixed at the position of
the bisector plane, which is independent of the slide motion. The consequence is
that the shear strength aong this plane will not decrease in a sudden and intense
manner. Certainly, the motion of the side will have some weakening effect, which
is difficult to quantify. Finaly, to complicate matters, progressive failure
mechanisms along AB are to be expected in view of the brittle nature of rock
strength, a phenomenon which will not be considered here but is mentioned
because it will tend to partially destroy the strength available along shear plane
AB.

A model based on the interaction of two wedges will now be developed. The
main assumptions are:

- The upper and lower wedges change their geometry during dliding, as
shown in Figure 2.15. The upper wedge looses mass which is added to the
lower one.

- During the movement, the common plane AB reduces in length. Shearing
across this plane (or, more generally, AB") is described by a Mohr-
Coulomb strength criterion (t=c’ +c'tang, ). In addition, the cohesive

intercept, c/, is made dependent on dlide displacement, s. This is a

simplified procedure to introduce strength degradation of the rock mass
during the slide motion. The friction angle is maintained constant.

- The lower dliding surface is assumed to be in residual conditions with
strength parameters (c’= 0; o] = 129).

- Porewater pressures are given by ahorizontal phrestic level.

- Equilibrium conditions are formulated in dynamic terms. In this way, it
will be possible to analyze the effect of strength degradation of shearing
plane AB”on dlide motion. Static conditions of equilibrium are a particular
case of the dynamic case. Only inertia terms are considered. No viscous
effects are introduced.

The analysis follows the general procedure advanced before when considering
the two hinged blocks but now dynamic equilibrium is fomulated: Newton’s
Second Law will be written for the upper and lower wedge, and a common
interaction force across plane AB will be enforced. Newton's second law for a
solid body motion states that the derivative of the solid momentum (mass times
velocity) is balanced by the sum of forces acting on the body. Note that the mass
of each wedge depends on displacement and therefore the term of time variation
of mass can not be simplified when the time derivative of momentum is
developed.
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Figure 2.19 Geometry and forces on the upper wedge (1).

Upper Wedge (1)
Consider the wedge geometry and external forces in Figure 2.19. Dynamic
equilibrium parallel to the motion (displacement s; velocity v = ds/dt) reads

cos(o/2) = %, (2.5)

int int

W sino—T, - N/, cos(a/2)-Q,, sin(a/2) - PR,

where M, is the mass of Wedge 1, (W; = M;0; g: gravity acceleration). The time
derivative of the right-hand side of Equation (2.5) can be developed as

d(M1V) M ﬂ.ﬁ.%v

Tt tdt dt (26)
Equilibrium in normal direction to the basal sliding plane:
W, coso— N, + N, sin(a./2)-Q,, cos(a/2)— P, + P, sin(e/2)=0 2.7
where the interaction forces Qi and N, are related through
Q. =C/AB+N, tan¢.. (2.8
In addition, the shear resistance on the base of the wedge is given by
T, =N, tang,. (2.9
The motion Equation (2.5), in view of (2.7), (2.8), and (2.9), becomes
Ws - N;,s, +C/AB's,— R,..S, + P, tang, =d(L1V), (2.10)

at
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where § are trigonometric constants, given by

S =Sina—tang, cosa, (2.11a)

s, =tang, sin(a./ 2) —.cos(oc /2)tan g, tan g, + (2.11b)
cos(a/2)+sin(a/ 2) tang;,

s, = tan gy, cos(a/ 2) —sin(a./ 2), (2.11¢)

s, =tan¢, sin(a./ 2) + cos(a / 2). (2.11d)

The effective interaction normal force, at this stage unknown, can be isolated from
Equation (2.10):

M

int

1 . , d(My)
=— V\/1§+crAB‘%—PwimSAJrPMtan(pb—T . (2.12)
S,

When the wedge dlides a distance s along the basal plane, the length of the
shear plane reduces from AB to AB’' (Fig. 2.19). Since triangles AVB and
AV'B’are similar, itiseasy to find

_Ly/cosa-s H,

AB'= , (2.13)
L,/cosa cos(o/2)

where H; is the initial thickness of the lower wedge over the diding plane (Fig.
2.19).

The volume of Wedge 1 can be expressed as a function of the initia
geometric parameters and the displacement s as

E(i—sj A, cosa (214)

V, = —
Wedgel =21 cosa L, cos(o./2)

The mass and weight of the wedge can be now easily calculated by multiplying
the volume of Equation 2.14 by the density (8, ) and unit weight (v, ) of the rock,

respectively.
Time variation of mass can be obtained as follow:

d'\/ll _ dVWedgel =-8 L(J _s i CcCos o E
d " dt "(cosa )L, cos(at/2) dt’

(2.15)

where the time variation of the displacement (%) is equal to the velocity v.

Lower wedge (2)
The wedge geometry and external forces are given in Figure 2.20. The wedge is
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shown displaced forward at distance s.

Figure 2.20 Geometry and forces on the lower wedge (2).

Dynamic equilibrium parallel to the direction of motion at a velocity v = ds/dt
reads

d(M,v)
dat

where M, is the mass of Wedge 2 (W, = M, g; g: gravity acceleration). Note that
the horizontal components of the water pressure forces Py and Py acting on the
slope surface are equal and opposite in sign. The terms on the right-hand side of
the Equation (2.16) can be developed following Equation (2.6) and, since the total
mass of the dlide is constant, the time variation of M, will be equal to the time
variation of M, indicated in Equation (2.6) but with an opposite sign.

The base resistance is given by

T, =Njtang). (2.17)

N/, cos(a/2)-Q,, sin(a/2)-T, =

(2.16)

Taking Equation (2.8) into account, Equation (2.16) becomes

d(M,v
N, cos(a/2) — N, tangy — (¢ AB'+ N, tano; )sin(a/ 2) = (dt2 ) (2.18)
Equilibrium in anormal direction to the horizontal diding plane reads:
W, — N, + N, sin(a/ 2) + (c; AB'+ N/, tan¢; ) cos(a./ 2) + (2.19)

Pun SiN(t/2)+ R, —P,, =0.

Equation (2.19) provides an expression for N, which is introduced in Equation
(2.18). The following expression is then found for the equation of motion in the
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direction of dliding:

d(M
Ni,nt% _Cr, AB'SG - Pwims7 + (sz - owy _sz) tan (P:) = ( dtZV) ) (2-20)
where s are trigonometric constants given by
s, = cos(a/2)—tan gy sin(o,/2) —cos(a/2) tan ¢; tan gy — (2213)
sin(a/2)tang;, '
s; = tan g, cos(a/2)+sin(a/2), (2.21b)
s, =tang, sin(a/2). (2.21c)

The effective interaction force between the two wedges is now found from
Equation (2.20):

d(M
I\Ii'nt = (é][cg ABISG + Pwints7 + (sz - owy _Wz)tan (PL + ( dtZV)J- (222)

A single motion equation may be found now if the expressions of N, from
Equations (2.12) and (2.22) are made equal. Rearranging terms, the following

equation of motion is derived:
Wisis; +(W, — R, + By, )t 0] s, + € AB (S8 ~ 58 )~ Pun (S$ 55, +
d(Myv d(M,v
Pateng, s =s (dt1)+sz (dj)-

In order to simply the notation, Equation (2.23) can be rewritten introducing new
trigonometric coefficients t;:

(2.23)

d(My)  d(M,v)

Wt +(W, =Ry + By, )t +C/AB'G =Rty + Pty = § s (22
where t =ss, (2.259)
t,=tang, s, (2.25b)

L, =85-55%, (2.25¢)

t,=S,5+S,S,, (2.25d)

t,=tangy S, (2.25¢)
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Under strict static equilibrium conditions, (d(M,v)/dt =d(M,v)/dt=0),
Equation (2.24) could provide, for instance, the value of the apparent effective
cohesion along shearing plane AB, in terms of the friction angle on AB, o, ,
wedge weights, pore pressure forces on their boundaries, and geometrical factors:
Wt —(W, R, + Ry, )t + R

int L -P.t
¢ = e (2.26)
AB',

The water pressure forces entering the above equations are easily found as follows

hiv.,
= —wlw 2.27a
"y T 2tand ( )
P.=(L+L,+9h7,, (2.27b)
hiy
P = _wiw 2.27¢
" 2dina ( )
2
M (2.27d)

Pwint = .
2cos(o./ 2)

Initial (s =0) wedge volumes, in view of Figures 2.19 and 2.20, are given by

S (2.289)

" 2cosa’

V _L1+L2+L3H

0= 1
2

(2.28b)

which allows the calculation of wedge weights.

2.6.4 Static equilibrium at failure

Cross-sections 2 and 5 (Fig. 2.14) are characterized by the geometrical parameters
given in Table 2.1. The upper wedges of Sections 2 and 5 have similar volumes.
However, the lower wedge of Section 2 has a significantly lower volume than
Section 5. Therefore, Section 5 is more stable than Section 2, for a common set of
strength parameters. Conditions for static equilibrium of these two sections will be
first examined with the help of the set of relationships derived in the previous
section. Since it has been argued that the residual friction at the basa dliding
surface is a parameter known with sufficient certainty, the condition of stability
may be used only to determine the strength parameters on shear plane AB. In fact,
only combinations of the pair (¢ ; ¢, ) may be found, since only one condition is

available: the condition of static equilibrium at the initiation of failure (Eqg.
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(2.26)).
This is a nonlinear equation relating ¢, and ¢, , which has been plotted in

Figure 2.21 for Sections 2 and 5, assuming ¢;, equal to 12° and a rock specific
weight of 23.5 kN/m°,

Table 2.1 Geometrical parameters of Cross-sections 2 and 5.

Ho Hi Lo Ly L, o ) Vi V,
m | M | M | (m | (M | @ | (m¥m) | (m¥m)
Section 2 580 245 750 190 260 37.7 | 43.3 | 116142 | 68149
Section 5 510 | 260 | 700 | 240 | 320 | 36 39.1 | 112590 | 93000

Forces P, (Eq. (2.27)), which provide the effect of water pressures on both
wedges, should correspond to failure conditions. Since a horizontal water level has
been assumed and the preceding rain was shown to have a non-negligible effect
(see Fig. 2.13), all water pressure influence will be associated with the water level
height above the lower horizontal sliding surface, h,. The plot in Figure 2.13
provides the estimation of the equivalent value of h,, i.e.: the reservoir water
level, in the absence of rain in the preceding 30-day period, which explains the
failure. This height corresponds approximately to the elevation 710 m and,
therefore, in Section 5 (see Figs. 2.8 or 2.14) it implies a value h,, = 120 m. This
reservoir elevation corresponds, in Section 2, to a water height of h,, = 90 m (the
failure surface daylights at a higher elevation at Section 2; see Figs. 2.8 and 2.14).
The (c/;¢,) vaues plotted in Figure 2.21 correspond to these two water
elevations over the lower horizontal dliding plane.

Section 2 is “more demanding” in terms of required rock strength simply
because of the relative weight of upper and lower wedges. This situation is
reflected in the higher strength values required for the equilibrium calculated for
Section 2 (Fig. 2.21). It is interesting to check that the (c/; ¢, ) combinations in

Figure 2.21 are in fairly good agreement with the strength expected in rock
sheared across bedding planes, discussed in 2.6.3. Since the variability of ¢

values is small compared with the expected variation of cohesive intercepts (¢ ), a
band of expected (¢! ; ¢; ) pairs, centered around ¢; = 38°-40° has been plotted in
Figure 2.21 as areasonable estimation of the rock strength along shear plane AB.

If Section 5 is taken as a representative cross-section of the dlide, the
following combinations lead to strict equilibrium of Vaiont dide: (¢, = 762.3
kPa; ¢ =38%; (¢ = 564.0kPa; ¢, = 40°).

It is also interesting to examine the interaction forces between the two blocks
and how they change as a function of the available friction on the basal sliding
plane. Equations (2.12) and (2.22), for zero acceleration, provide this force for the
two wedges. If Section 5 is selected for the analysis, the variation of N. with the

int

base friction angle for two pairs of values (¢ ; ¢, ) is given in Figure 2.22. It was
already stated that equilibrium is achieved if the interaction force N, between

int
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the upper and lower wedges is forced to have a common value. This condition also
implies that the shear force, Q;, and therefore the total interaction force are equal.
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Figure 2.21 Strength parameters across shearing plane AB for equilibrium. Sections 2 and
5. Basal friction: ¢y, = 12°,

Figure 2.22 shows how the stabilizing N, force offered by the lower wedge

int

increases fast as the friction at the diding surface, ¢y, increases. On the other
hand, the unbalanced N.. force required for the equilibrium of the upper wedge

int

decreases as ¢, increases, but at a slower rate. Overall equilibrium is achieved
when both forces are equal. For strength parameters ¢/ = 564.0 kN/m? and o] =
40° equilibrium is achieved for ¢ = 12°, aresult which has aready been found. If
the strength along the shear plane AB is reduced to ¢’ = 0 kN/m? and ¢, = 35°,
¢p, hasto incresse to 14.7°, to reach equilibrium.

So far, equilibrium conditions have been used to find the mobilized strength
parameters at failure. The condition of failure, when it is properly identified,
which means, in particular, that siide geometry and pore water pressure
distribution are known, is a procedure to find strength parameters or, better, a
relationship among the strength parameters involved in the model selected to
perform stability calculations. This procedure, illustrated above, is often described
as a"“back-analysis’ of thefailure.

In addition, one may be interested in knowing the safety factor for conditions
other than failure. For instance, in the case of Vaiont, it makes sense to ask for the
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safety conditions of the slope before dam impoundment or at some particular
elevation of the reservoir surface. These questions are addressed in the next
section.
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Figure 2.22 Effective interaction force, N, between upper and lower wedges. Section 5
of Vaiont slide.

2.6.5 Safety factors

In limit equilibrium methods (the analyses devel oped before belong to this class of
methods) the safety factor is defined as the ratio between the available shear
strength of the soil or rock and the shear stress necessary for strict equilibrium.
Shear strength and shear stress are calculated on the failure surface. The moddl of
two interacting wedges developed in 2.6.3 and 2.6.4 includes two failure surfaces:
the “basal” surface that bounds the landslide and an internal shear surface (AB).
which makes it kinematically possible. The nature of both surfaces is quite
different: the former is located in a high plasticity clay in residual conditions,
whereas the internal shear surface crosses sedimentary planes, distorts a
competent rock and exhibits significant strength. However, it is quite possible that
shear displacements will decrease to some extent the shear strength of this shear
plane. For a particular situation of the slide (for instance, under natural conditions
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before dam construction), the two shearing surfaces will most probably not
mobilize their shear strength in equa proportions. Likewise, if a change in
external conditions takes place (reservoir impoundment, or rainfall), the available
strength will not be mobilized at the same time among the two surfaces because
the shear stiffness of the shearing surfaces and, indeed, of the whole rock mass,
will also play asignificant role.

Since the problem is complicated, let us accept, to initiate the discussion, that
two different safety factors, F, and F,, are appropriate for the two surfaces. Then,
the mobilized strength parameters will be defined as follows:

ten g, = tan e /F, (2.293)
tang!,., =tano, /F,, (2.29b)
Clop =C /F. . (2.29c)

A relevant question is to ask for the safety factor, F,, of the Vaiont dide at the
beginning of impoundment (i.e., h,= 0), in the hypothesis that the mobilized stress
at the basal sliding surface remained at residual conditions, ¢, =120, (i.e., Fp=1).

It is also of interest to know how F, would change, still under F, = 1, if the dlide
moves forward following the mechanism described in Figure 2.15.

Alternatively, one may wish to maintain the classic approach and to find a
unique and global safety factor, F, for the two situations mentioned, (F = F, = F,).
The two possibilities will be examined here.

For Cross-section 5, it was found that the following set of strength
parameters. ¢ = 12° ¢/ =762.2 kPa; ¢; = 38° leads to failure when h,, = 120
m. If these parameters are accepted as true strength parameters, then the
equilibrium equations given in 2.6.3 are aso valid, for conditions other than
failure, if the reduced strength parameters (2.29a,b,c) are used instead of the true
strength values (which are now assumed to be known). In other words,
equilibrium conditions are now satisfied for the mobilized stresses prevailing at
the shear surfaces. In fact, mobilized shear stresses are defined as those which
satisfy equilibrium conditions. Therefore, in view of Equations (2.29), the overall
equilibrium equation can be used to find the safety factor. However, the
equilibrium equation will now be a function of F, and F, and therefore only one
safety factor may be determined — either F if it isaccepted that F = F, = F, , or F,
if Fpis fixed, for instance a F, = 1, or any other aternative. This situation is
similar to the already discussed determination of strength parameters at failure.

If the mobilized strength parameters (Egs. (2.29a,b,c)) are substituted into the
equilibrium Equation (2.26), the following expression is obtained.

Cr’ _ - ltl(Fr ’ Fb)_(vvz - Pw2 + P\ny )tz(Fr ’ Fb)+ I:)w

F AB't,(F,,F)

'

t4(Fr ' Fb) - PWLIS(Fr d Fb)

int

(2.30)



66 Geomechanics of Failures. Advanced Topics Chapter 2

where the dependence of the t; expressions on the safety factors has been explicitly
indicated in the Appendix 2.1. If Equation (2.30) is developed, it turns out to be a
second-order algebraic equation for F, (Eq. (A2.4) in the Appendix 2.1), which
may be solved if F, is assumed to be known. Details of the solution of Equation
(2.30) are relegated to Appendix 2.1.

The safety factor F, of Section 5 of the Vaiont slide was obtained for:

- Water pressure conditions prior to failure. As discussed before, pore water-
pressure effects are integrated into the variable h,, the reservoir level over
the lower horizontal diding plane.

- The changing geometry, as the slide moves forward and the water level
maintains maximum elevation, h,, = 120 m. Thisis a purely static analysis
performed on different geometries of the dide as it moves forward. The
dynamics of the motion will be introduced in the next section and it will be
discussed in more detail in Chapter 5.

- The effect of h, on safety factor F,, when F, = 1, is plotted in Figure 2.23
(dashed line). The calculated value for hy, = 0 (F, = 1.2) is not particularly
high and it indicates that the mobilized strength in the rock mass before any
impounding was quite substantial in order to maintain the slope in
equilibrium.

The analysis of the changing geometry, shown in Figure 2.15, leads to the
safety factor F, plotted in Figure 2.24 (dashed ling). The increase of F,, again for
Fr = 1, becomes more pronounced as dide displacement increases. The high
values calculated for s = 150 m (F, = 5), indicate that the mobilized resistance
across shear plane AB is no longer necessary to maintain equilibrium. In fact,
beyond s = 179 m, the residual friction angle at the main diding surface is able to
maintain the slope in equilibrium without any contribution from the sheared rock
mass across the shear plane AB.

0.95 \ | T | ! T
0 20 40 60 80 100 120 140
Reservoir elevation over horizontal sliding plane, h,, (m)

Figure 2.23 Section 5. Evolution of safety factor, F, (if Fp = 1; see text) and global safety
factor, F, when the water level increasesin the reservair.

Let us now consider the determination of a unique global safety factor F. The
condition F = F, = F, has to be introduced in Equation (2.30). The equilibrium
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Equation (2.30) now becomes a fourth-order polynomia for the unknown F. A
simple numerical procedure to solve the equation is described in Appendix 2.2.

Calculated global safety factors, with the help of Equation (A2.10), were
plotted in Figures 2.23 and 2.24 (continuous line). Computed values of F are now
significantly lower than the previously reported values of F, .

One advantage of global safety factors is that geotechnical engineers have
developed, over the years, a scale of numerical values that helps them to
approximate the risk of failure. F values of 1.5 and above are generally regarded
as indicators of alow risk of failure of slopes. A safety factor of 1.2 is probably
close to the minimum that many would regard as an acceptable situation. Since
different calculation procedures often result in changes in safety factor of + 0.1
for a given slope stability problem, a safety factor of 1.1 conveys a clear message
of risk.

However, one should distinguish between design situations and, on the other
hand, the problem of analyzing an existing slide and its remedial measures. In the
second case, the evidence of field instability, if properly interpreted, provides a
robust reference value (F = 1 for failure conditions) which acts as a validation
benchmark for any method of stability analysis. Then, calculated changes of safety
factor over the reference situation (F = 1) are significantly more reliable than a
pure predicting exercise based, for instance, on strength parameters determined in
the laboratory or on estimated pore water pressures derived from flow
calculations.
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Figure 2.24 Section 5; h,, = 120 m. Evolution of safety factor, F, (if Fp = 1; see text) and
global safety factor, F, with slide displacement.

Vaiont obviously belongs to the second category. Nevertheless, the global
safety factors calculated for changing water levels within a very large range (O to
120 m of water column) (Fig. 2.23) look particularly low (F decreases from F =
1.07 for h,=0mto F = 1 for h,= 120 m). Thisis certainly a consequence of the
very large size of the landdlide but it also points out that the presence of the
reservoir implied a relatively minor change in the safety of the slope, dways
within the perspective of risk associated with the classical definition of a global
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safety factor. Moreover, this result is al'so an indirect indication that in very large
landdlides, feasible remedial measures are expected to lead to relatively low
increments of safety factor.

Figure 2.24 shows that the motion of the dide results in geometries with an
increasing global safety factor. Given the preceding comments, changes are far
from being negligible. In fact, displacements of 40, 100, and 150 m imply F
values of 1.08, 1.22, and 1.36 respectively. (Interestingly, very similar changes
were computed with the much simpler two-block model, Fig. 2.17b.) The
increasing sophistication of the model did not change this basic result.

The relevant question in this case, aready stated when discussing the two
block model results, is to ask for the reasons for the accelerated motion of a
landslide which seemed to move in adirection of increased stability. This aspect is
essentially the subject of Chapter 5 but some additional discussion is offered in the
next section.

2.6.6 Landslide run out

Equilibrium conditions, when inertia terms are included, results in the motion
Equation (2.24). This equation, taking into account Equation (2.6) has the
following form:

dM, _ dM,

dv WL, + (Wz —Ret owy )tz + Cr, AB't; = Rnts + Ryls =S

dt (s+s,)
where time derivatives of M; and M, are known (Eg. (2.15)) and they depend on

displacement and velocity. The weights (W; and W,) and the length AB' aso
depend on the displacement. Therefore, Equation (2.31) can be written as

dv
a= e f(s,v). (2.32)

At any given time of the motion, slide acceleration (a=dv/dt) is a function of

slide displacement, s and velocity, v. Function f aso includes information on
geometry, specific weights, water pressures, and strength parameters. Finding a
close-form solution for v(t) is a hard task but the structure of (2.32) invites to
develop a simple numerical algorithm of integration. If the following discrete
approximation is adopted, the value of the acceleration and the velocity at time (t
+ 1) can be calculated as

dv Vi, —V,
= — | = —L=1f(s,v), 2.33
Aa (dt)i bt (S VI) ( )
Vig =Vi+ f(sv)(6a-t), (2.330)

which are functions of known values evaluated in time t. In this way, an explicit
time integration procedure is developed. Reducing At=t -t leads to
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progressively more accurate results.
Displacements can be estimated from the following expression

ds Siu—Si
v == =2 i 2.34a
' (dt ), t, -t ( )
and therefore:
Sa=3 1V (ti+1 -t ) (2.34b)

In view of the nature of the problem and the simplicity of the underlying
mechanical model, it is probably not justified in this case to look for more
sophisticated integration procedures. The integration agorithm was implemented
in an Excel calculation sheet. Note that masses, weights and the length AB'
should be updated at each time interval since they depend on the displacement.

It was argued in Section (2.6.3), when developing the model of two
interacting wedges, that the effective rock cohesive intercept, ¢, would be

degraded during shear along plane AB. Since relative shear displacements along
AB are controlled by displacement s, a simple degradation model will make c/

dependent on s. For instance,
¢ =¢/,exp(-Ts), (2.35)

where T isaconstant (units: length™) that controls the rate of rock degradation and
C/, istheinitial cohesion intercept (c/, = 768.35 kPafor Cross-section 5, if ¢, =
38°, and accepting that ¢, = 12°). Expression (2.35) was aso included in the
motion equation in order to explore the effect of loss of shear strength on the
dynamics of the motion. It is not reasonable, however, to expect a strong
degradation of cohesion along AB’ and the reason is that the rock mass “crosses”
the plane AB’ during the motion and therefore new — more or less undisturbed —
rock is continuously sheared across AB.

Consider the following scenario: in a situation of strict equilibrium (reservoir
elevation at h,,= 120 m in Cross-section 5) the water level is increased by a small
amount (say h,, = 121 m), and it is maintained as constant thereafter. It is desirable
to find the motion of the dide until a new situation of equilibrium is reached.
Since the slide improves its static stability conditions as s increases — a result from
the previous section — it should be expected that the dide will come to rest after
some displacement.

The solution to this problem (which is the solution of Eq. (2.31) plotted as a
relationship between the run out (s) and the velocity on the moving mass (v)) is
shown in Figure 2.25 for no degradation of the rock strength (I" = 0). The result
shows that the slide stops after a displacement of 0.30 m and reaches a maximum
velocity of 1.7 cn/s. If the water level is increased to h,, = 124 m and to h,, = 130
m, maximum displacements and velocities increase as shown in Figure 2.25, but
the calculated values are far from the actual behaviour of the landdide, which
reached velocities estimated in 30 m/s, more than two orders of magnitude higher
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than the maximum values found in this calcul ation.

Velocity, v (m/s)

0 0.5 1 1.5 2 25 3.0 35
Displacement, s (m)

Figure 2.25 Cross-section 5. Calculated run outs and slide velocities for h,, = 121, 124, and
130 m. No rock strength degradation (I" = 0).
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Figure 2.26 Assumed loss of effective cohesive strength parameter across shearing plane
AB with dlide displacement, for several values of parameter T.

The situation changes if some rock strength degradation is introduced into the

anaysis.
Figure 2.26 is a plot of Equation (2.35) for a few values of the degradation
parameter T'. It will be used as areference for the results of run-out calculations.
Now the scenario is to start the slide motion by increasing the water level (to
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h,,= 121 m) and to accept a certain degradation of the rock during the motion. The
calculated response of the dlide, again in terms of velocity vs. displacement, is
shown in Figures 2.27 and 2.28. A moderate degradation of the effective strength
parameter of the rock (I = 0.01 m™, Fig. 2.27) has a limited effect on the
maximum sliding velocity and on the travelled distance. However, if the
degradation of rock effective cohesion is more rapid (' = 0.1 mtand T = 1 m%;
Fig. 2.28), the dide is able to travel long distances (60-70 m), although the
maximum velocity does not increase beyond 3 m/s (16.2 km/h) even if a very
rapid and complete destruction of the rock effective cohesion isimposed (for I' =
1see Fig. 2.28). Under the more redistic assumption of moderate rock
degradation, I' < 1 m™, the maximum slide velocity is quite small.
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Figure 2.27 Cross-section 5. Calculated run outs and dlide velocities for h,,= 121 m. Effect
of rock strength degradation (I =0 and "' = 0.01 m™).
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Figure 2.28 Cross-section 5. Calculated run outs and slide velocities for h,,= 121 m. Effect
of rock strength degradation (U = 0.1and T = 1 m'Y).
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In all the cases analyzed, the mechanism leading to stopping the landslide
motion is the change in geometry of the slide as it moves downwards.

The dynamic analysis developed here maintains, unanswered, the key
question of the extremely high velocities reached by the dide. However, it
indicates that a loss of internal rock strength, associated with the side motion
itself, is a potential mechanism to accelerate the dlide.

2.7 Discussion

The investigations on the past history of the landslide by Semenza (2001),
synthesized in Figure 2.7, and the work of Hendron and Patton (1987) highlight
two fundamental aspects: Vaiont was a case of a dlide reactivation and the diding
surface was located in fairly continuous layers of high plasticity clay. Taken
together, the implication is that the basal dliding surface could not offer, against a
new reactivation of the dide (essentially induced by an increase in pore water
pressures in the lower massive passive wedge of the dlide), an effective friction
angle larger than, say, 10-12°. A good proportion of published back-analysis of
Vaiont, which use conventional methods of limit equilibrium to find the actua
friction angle prevailing at the diding surface at the time of failure is not
consistent with Vaiont past history. In fact, published back-analyses lead to
friction angles in the range 18- 28° (the simple two-block model of 2.6.2 is an
example in this regard). Vaiont exhibits a safety factor significantly lower than
one if afriction angle of 10— 12° (and zero effective cohesion) is used in any of
the currently available methods of dlices. How to address this inconsistency?

Hendron and Patton (1987) argue that the side friction on the eastern edge of
the dlide provided the necessary resisting force to ensure equilibrium (however,
some limited information on the direction of the displacements on this border,
plotted in Fig. 2.2, tends to indicate that the moving mass was detaching from the
stable rock massif). The aternative explanation developed here is that the
kinematics of the motion, even in a two-dimensional cross-section, requires the
relative shearing between the two large rock wedges defining the slide. Leonards
(1987) aso pointed out that the maotion of the slide required such a rock shearing
between the upper and the lower diding blocks. The estimated shearing strength
parameters across the common shearing plane are in reasonable agreement with
the expected mass strength of cretaceous marls and limestones of Vaiont.

The acceleration of the motion during the catastrophic failure escapes the
capabilities of the models presented here. A loss of strength is expected when rock
masses are sheared, due to its inherent brittleness and the complex development of
strains within the moving mass. “Progressive failure” is the term often used to
describe these phenomena. The end result is a loss of the cohesive components of
strength. Such a loss, when imposed on the strength available on the interacting
shearing plane between the upper and lower wedges, results in an acceleration of
the dlide, which is unable to explain the high velocities reached by the landslide,
even if a rapid and complete loss of rock cohesion is imposed (Section 2.6.6).
Therefore, it becomes important to look for additional explanations for the
apparent loss of strength experienced by the actual dide. If the mechanism of side
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friction proposed by Hendron and Patton (1985) is accepted as additiona resisting
phenomena, the need for a convincing mechanism for strength loss is even more
pronounced. The discussion of this fundamental matter will continue in Chapter 5.

2.8 Lessons Learned

2.8.1 Slide reactivation

Ancient dlides are rightly regarded as trouble-makers when they are affected by
engineering works. Past dliding activity is responsible for the reduction of the
strength available along “ dormant” dliding surfaces to minimum values (“residual”
strengths). In addition, if sliding surfaces are associated with high plasticity clays,
the residual friction angles are particularly low. Typicaly, ancient dides in these
circumstances maintain a low safety factor, which may be rapidly exhausted by
engineering works. Vaiont is a good example.

2.8.2 Submerging the slide toe

Submerging the toe of slopes usually leads to a reduction of stability. The safety
factor decreases as the water level increases. The reduction isfirst pronounced but,
eventually, the negative effect associated with the reduction of effective normal
stresses on the dliding surface is compensated by the beneficial hydrostatic forces
acting against the exposed slope™®.

The safety factor reaches a minimum value for some intermediate water level
and then increases again to reach values close to the initial safety factor of the
“aerated” slope. The precise evolution of the safety factor when the reservoir
water level increases depends also on the particular distribution of pore water
pressures inside the slope, but a fundamental aspect of this problem is the
geometry of both the slope and the sliding surface. Three examples are shown in
Figure 2.29 to illustrate these comments. All of them were solved with a
commercia slope stability program for soil slopes using the Morgenstern— Price
method (Morgenstern and Price, 1965). In al cases the distribution of pore
pressures inside the dlide follows a horizontal water table. The first case (Fig.
2.29a) reproduces the geometry of Vaiont, Section 5. A uniform friction angle,
¢’ = 12° (and zero effective cohesion) is assumed. The safety factor reaches a

minimum for h,/H = 0.5. A similar result is obtained if the lower dliding surfaceis
inclined (Fig. 2.29b; now ¢'= 15°. However, for a conventiona sope (the

upstream slope of an earthdam) and a critica circular failure surface, the

@ An alternative explanation can be given in terms of submerged weights. When a lower
part of the slope is flooded, its effective weight becomes the submerged weight (roughly
equal to one half of the saturated total weight). Therefore, normal effective stresses on the
sliding plane are reduced. But the (effective) weight also reduces. This weight has often a
positive stabilizing effect when it is close to the toe. Therefore, reducing it also decreases
the safety factor. But, as the water level increases, the upper parts of the slope, which
contribute with unstabilizing weight, also reduce its effect and the calculated safety factor
will increase again beyond some critical water level.
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minimum is reached for h,/H = 0.3.
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Figure 2.29 Evolution of safety factor (Morgenstern — Price method) when the water level
in the reservoir increases. h,,: water level above the elevation of the exit point of the sliding
surface. H: maximum value of h,,, when the entire slope is submerged. Case (a) geometry
of Vaiont and (c’= 0; ¢' = 129); Case (b): geometry modified from Case (a) and (c’= 0;
¢' = 15°; Case (c): conventional slope and circular failure surface (c’= 0; ¢’ = 30°).

The geometry of Vaiont is especially sensitive to the submergence of the toe,
because the large toe passive wedge offers an ever decreasing resisting force when
submerged. Thisis further illustrated in Figure 2.30, which shows a calculation of
the global safety factor of Section 5, following the procedure described in 2.6.5.
The height of the dam prevented h,, values higher than 145 m, approximately, in
Section 5. Unfortunately, Vaiont slide never entered in a zone of increasing
stahility.
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In conclusion, flooding slope toes is not good practice but it is an unavoidable
situation in many circumstances, notably in valey slopes affected by dam
reservoirs. If the initial safety factor is low (this was the case of Vaiont) flooding
the toe implies trouble ahead. Note also that it takes a substantial water level
elevation before the trend for lower safety, as the water level increases, is
reversed.
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Figure 2.30 Variation of global safety factor with height of water above the horizontal
basal plane. Two-wedge model. Section 5 of Vaiont.

2.8.3 Interpretation of field data

Interpretation of dliding risk was essentially made on the basis of reservoir
elevation and surface displacements. There was also information on rainfall and
on the levels of four piezometers. The “piezometers’ were in fact open tubes
which did not reach the level of the dliding surface and only provided average
water pressures prevailing aong their length. In addition, no direct information of
the position of the failure surface and, in particular, on the type of material being
sheared was available.

I dentification of alandslide for the purposes of estimating its evolution and of
defining any remedial measure requires information of a few key variables.
Ideally, these key variables should also be used in the formulation of a mechanical
model of the motion. In the case of Vaiont, early knowledge of the following data
concerning the basal failure surface: geometry, pore water pressure, type of
material, and drained strength parameters would have been fundamental to build a
conceptual and mechanical model for the slide. Thisis afirst step in understanding
the problem, not only for Vaiont, but for any landslide. In the case of Vaiont, the
observation that the slide velocity decreased when the reservoir level was reduced,
irrespective of the absolute level of the water, provided a reservoir filling criterion
which, finally led to the failure. In some sense, an “observational method” @ was

@ The observational method, described by Peck (1969), requires the following ingredients:
a) direct observation of a key variable or property describing the essential nature of the
problem; b) a proper conceptual, analytical or computational model able to provide an
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applied: the conceptual model was essentially given by the preceding observation,
illustrated in Figure 2.12. The key variables to be interpreted were the
displacement rates of surface markers and the reservoir level. The action in mind,
in case of excessive displacement rate, was to reduce the water level in the
reservoir. It was accepted, despite this strategy, that a full slide was a likely event
and that the expected height of the generated wave was even estimated by model
studies. However, the conceptual model was not based on any mechanical analysis
of the dlide. In addition, the reservoir level did not necessarily provide the actual
pore pressures on the failure surface and the remedia plans were too simple and
weakly connected with the complex mechanisms taking place within the dlide.

It should be borne in mind that these comments are made more than 50 years
after the first investigations started in Vaiont. Their purpose is to learn from the
case, not to criticize the involved individuals who had to work with the techniques
and rules of practice available at that time.

Even today, managing a very large landdide is a daunting task. We are well
equipped to extract field data (pore water pressures, absolute deformations, “in-
Situ” tests) in the first tens of meters of soil and rock. Going beyond 200 m
requires sophisticated, not easily available, and time-consuming efforts. In
addition, a very large landslide requires a vast site investigation. It is not a matter
of only a few borings. Therefore, the difficulties to handle large landslides
continue to be present and the words of Carlo Semenza, the dam designer, remain
as a vivid testimony of the formidable challenge he was facing: “[...] things are
probably bigger than us and there are no adequate practical measures|[...] After
so many fortunate works and so many structures [..] | am in front of a thing
which due to its dimensions seems to escape from our hands [..]", (in a letter
written in April 1961, quoted by Nonveiller, 1987; the full letter in Itdian was
published in Semenza, 2001).

2.8.4 Computational procedures

Most of the limiting equilibrium procedures commonly available to the
geotechnical profession (methods of dlices) do not include an internal shearing in
the moving mass, which is described by strength parameters other than the
parameters operating on the external bounding failure surface. Moreover, none of
them may handle processes of stress redistribution induced by progressive failure
mechanisms. In addition, they have no capability to approximate the initial stress
state. Continuum models (finite elements) may reproduce better the stress state
derived from a known history of slope development but modelling progressive
failure is still a research subject with very little impact on current practice. It has
to be accepted that, 47 years after the disaster, static methods to estimate the
stability conditions of the Vaiont landslide till suffer from important limitations.
To aggravate things, the dynamic behaviour of the dlide is still being discussed

estimation of the risk, in a general sense, for some threshold values of the key variable(s)
and c) a plan, defined in advance, to act in a specified manner when threshold values are
exceeded.
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and investigated. From a practical point of view, there are no reliable criteria to
estimate the dynamic reaction of an impending landdlide in the case of failure.
More will be said in Chapter 5 on this aspect

One has to accept for the time being, by a simple comparison with Vaiont,
that large landdides exhibiting symptoms of instability, diding on (high
plasticity?) clay levels and subjected to a definite reduction of stability conditions,
may develop unexpected dliding velocities.

2.8.5 Could it have been avoided?

This has been a subject of much debate (see Leonards, 1987). It is probably fair to
say that an improved knowledge of the field situation — based on a more
comprehensive set of sensors, a detailed geology, and the strength properties of
the sliding surface — and even a better conceptual and mechanical model of the
slide would not have provided reliable criteria to stop the motion. Large
engineering works also convey important pressures to be completed as planned. If
this was the case of the Vaiont dam, there was probably not a reasonable
procedure to avoid the slide. In fact, this risk was accepted by the designers, as
mentioned before. There were also (abandoned) attempts to drain the failure
surface by means of a drainage tunnel. Its potential effect remains unclear
especially because the reservoir level marked an unavoidable minimum interstitial
water pressure, which was aready very high. Even if the operating water level of
the reservoir was substantially reduced (more than 100 m), there remains the risk
that an exceptiona rainfall event (see Fig. 2.13) could have brought the water
pressures to critical values. Perhaps a combination of a significant (no less than
100 m) reduction of the maximum reservoir level and an expensive tunnel-based
drainage scheme of the failure surface could have achieved a sufficiently low risk
of failure.

Appendix 2.1 Safety Factor F,. Static Equilibrium

Equation (2.30) provides the condition of equilibrium of the entire slide in terms
of mobilized strength parameters given in Equations (2.29). Coefficients t; in
Equation (2.30) are now written in more detail:

t=s(FR)s(R.F) (A2.13)
t,= tne, s,(F,F), (A2.1b)
t=5(R)s(R.F)-s(R)s(R.F) (A2.1c)

t4:SA(Fb)Ss(Fb’Fr)+s7(Fb)SZ(Fb’Ff)’ (A2.ld)
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= Ll s (R, F). (A2.1¢)
b
where
s (F,)=sina—cosa tarll(pb . (A2.29)
b
s,(F,.F,)=sin(/2) F‘Pb ~ cos{o./ 2) 09 NG,
° P (A2.2b)
cos{0/2) +5in(@12) T =5, (F) + 8, (F)/F,
s,(F,) = cos(a/2) tarF“Pb _sin(a/2), (A2.20)
b
s,(F,) =sin(a/2) F‘P +cos(a/ 2), (A2.2d)
b
s (F,.F.)=cos(e/2) —sin(e/2) 2% |: _ cos(ar/2) 0P ta'l"__'_%_
ano! ’ oo (A2.2¢)
sin(oc/Z)?(pr: . (F.)+5,(F,)/F.
s (F,) =cos(a/2) F(p +sin(a/2), (A2.2f)
b
S;(Fb)=5in(0t/2)tar:—%, (A2.29)
b
where
s, (F,)=sin(a/2) ta’;"’b +cos(a/2), (A2.33)
b
Sz (Fy) =tang; [s n(a/ 2) —cos(a/ 2) tar:pb] (A2.3b)

b
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S5 (F,) = cos(a/2)—sin(a/ 2) tagq’b , (A2.3c)

b

S5 (Fy) = tan o, (—si n(a/ 2) —cos(a/ 2) tar;(p{’ J (A2.3d)

b

If Equations (A2.1) to (A2.3) are substituted into Equation (2.30), the following
algebraic equation for F, is obtained:

aF’+bF, +c=0, (A2.4)

where
a=As,—Cs,, (A2.58)
b=As,+Bs,—Cs,—Ds,,, (A2.5b)
c=Bs,—-Ds,, (A2.5¢c)

and
tan oy
A=WS (F) RS, (F) + Py (A2.63)
b
B=cm's,(F,). (A2.6b)
C= RS (F) + 0o (R, —P,, + W), (A2.60)
b

D=cm's,(F). (A2.6d)

Thevalid root of Equation (A2.4) is

F, = (~b+b" —4ac)/2a (A2.7)

Appendix 2.2 Global Safety Factor F
Equation (A2.7), when F = F, = Fy is, in fact, the static equilibrium eguation.
Therefore, the value of F should satisfy

G(F)=F —(—b+x/b2 —4ac)/2a= 0, (A2.8)

wheretheterms a, b, cin (A2.8) should now be calculated for F.
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Figure A2.1 Numerica determination of global safety factor, F.

Consider in Figure A2.1 the function G(F ). The solution sought is marked

as F*. Consider now two F values (F, and F,) and the corresponding G values
given by (A2.8). The straight line through (F;, G;) and (F», G,) intersects the F
axis at F3, given by

-F — G(FZ)(Fl - Fz)

3= ) (A2.9)
G(F)-G(F,)

which could be generalized, as F; approaches F*

F = Fiil_G(Fi—l)(Fi—Z_Fi—l). (A2.10)
G(F_,)-G(F.)

Equation (A2.10) provides a recurrent expression to find the target F'. The

success of the procedure depends on the shape of function G around F'. The
upwards concave shape illustrated in Figure A2.1 is the actual shape of (A2.8) in
the vicinity of the solution (which, actually, is quite close to the critical value F =
1). For all the global safety factors calculated the two initial values of F; to initiate
the calculation through Equation (A2.10) were F; =1 and F, = 1.01.
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Chapter 3
Collapse of Compacted Soil:

Girona Road Embankments, Spain

3.1 Case Description

The eastern coast of the Iberian Peninsula experiences intense rainfall events
every autumn when the warm and humid Mediterranean air masses are hit by
Northern and Atlantic colder winds. One of these events, which caused extensive
damage to a new road in the province of Girona, NE Spain, is shown in Figure 3.1.
The accumulated rainfall in a 38-day period reached 374 I/m?. The highest
intensities were measured the 10 and 11 October, 1994 (123 and 56 I/m?,

respectively).

120

80

Intensity of rain (mm /day)

40
OJI i .‘ll ‘ - ||I :

1 11 21 1 11 21 31
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Figure 3.1 Rainfall record in autumn, 1994.

The road embankments were heavily eroded and the pavement lost support at
some points in the vicinity of the embankment shoulders. In addition, shallow
trandational slides modified the original geometry. However, the most serious
damage was attributed to the pronounced and systematic volume loss of the
embankments. The most serious situation occurred in the access to bridges,
because transition slabs were damaged. Bridge abutments had the “wing” design
shown in Figures 3.2 and 3.3. In order to smooth the transition from the
deformable embankment to the bridge structure, concrete slabs were placed on top
of the access embankments. The volume loss experienced by the compacted soil
as aresult of heavy rains resulted in generalized settlements that reached 30 cmin
some locations (Figs. 3.2, 3.3 and 3.4). Fortunately, no vehicle accidents were
reported and the road was closed to traffic during the subsequent repair works.
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Figure 3.4 shows the nature of the embankment collapse. The fill in contact
with the bridge abutment not only settled (the origina position of the fill is shown
in the concrete wall) but it also retracted horizontally, leaving awide, empty space
which was later filled with an asphalt mixture (the black band adjacent to the
abutment wall in the photograph).

Figure 3.2 Collapsed fill around a bridge abutment.

Transition  Bridge Transition
beam / slab
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Jle— Lateral ! -
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wing ‘
N JI \‘
“
R s

A-A' CROSS-SECTION

Figure 3.3 Scheme of voids formation under the access slabs to bridge abutments.

3.1.1 Questions asked

After the rains, the Road Administration had two main concerns:
- ldentifying the causes of the damage suffered by the recently built road and
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- determining if future rainfalls of similar or higher intensity would induce
additional damage.
-— |I ~
Posktlon o{ son before
~ heavy falnfalls
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Figure 3.4 Collapse of embankments after rainfall.

3.1.2 Soil properties

Project data, the results of construction control tests, and some additional
laboratory experiments performed on samples recovered on borings perforated
after the rainfall events, allowed identifying the relevant soil properties.
Embankments were built during the summer of 1994 and they were made of
compacted decomposed granite, a sandy clay of low to medium plasticity (% < 74
um = 13-83% (45%); wy: 31-46% (36%); Pl: 7-24% (13%); average value in
parentheses). Granite feldspars and micas, when exposed to atmospheric action,
decompose into clay minerals (mainly kaolin) while quartz grains remain stable.
The end result is a mixture of sand grains and clay minerals.

Compaction specifications were defined on the basis of the Standard Proctor
test. Dry density and water content values determined during embankment
construction are shown in Figure 3.5 in a compaction plane (yq vs. W). The figure
also shows the position of the Proctor Optimum, the average “point” of several (yq,
w) determinations during construction and the contours of equal degree of
saturation for § = 1, 0.8 and 0.6. The plot shows a significant heterogeneity but it
clearly indicates that most of the embankment volume was compacted dry of
optimum. Very often the degree of saturation did not reach the value S = 0.6,
which is alow value, below acceptable specifications for compaction, even if the
dry density matches the established target (in this case, the Standard Proctor
Optimum).

After the heavy rainfals it should be expected that the degree of saturation
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would increase. This was indeed the case, as shown in Figure 3.6. Specimens
recovered from borings showed a systematic increase in S, especialy in the
proximity of embankment shoulders and slopes.
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Figure 3.5 Compaction data.

Some of the recovered specimens were also subjected to a “stress path”
similar to expected conditions “in situ”. A point such as “A” within the
embankments, in central positions (Fig. 3.7) was first compacted to a given dry
density and water content. It was loaded by the overlying layers to a vertical
stress,

Oy =Ynal (31)

Then, infiltration from rain will increase the degree of saturation of Point A. It
would become saturated under extreme conditions.

Oedometer tests were performed in order to reproduce this simple and
approximate stress and wetting path. The result of one of these tests is shown in
Figure 3.8. When the soil was wetted under a vertical total stress of 0.7 MPa, a
compression was observed: the void ratio decreased from 0.65 to 0.59, which
implies a volumetric deformation close to 4%. In fact, this is one of the highest
volumetric compressions measured. In most of the recovered specimens, the
measured “collapse” under the estimated overburden pressure ranged between 0.5
and 2%. The specimen represented in Figure 3.8 was loaded under saturated
conditions and finally unloaded.

These results indicate that some collapse potential was till existing in the
embankment after the heavy rains. Note also that the test in Figure 3.8 does not
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provide the initial collapse behaviour, which will be discussed later on the basis of
the observed total deformation experienced by the embankments since no collapse
testsfor the initial as-compacted conditions were available.
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Figure 3.6 Degree of saturation in embankments after the rains.

Rain

Figure 3.7 Scheme of the embankment.

Water infiltration increases also the natural unit weight of the soil and
therefore the vertical total stress . This effect is not reproduced in the oedometer
test performed (wetting at constant stress) but it will be introduced in the analysis
described later.

The water retention characteristics of the soil were also investigated. The
water retention capacity depends on the type of soil, mineralogy, particle size
distribution, and soil structure (arrangement of particles). The water retention
capacity is expressed by means of a curve which provides the amount of stored
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water in the soil when it is subjected to varying values of suction. Variables such
as the degree of saturation (ratio of the volume of water and volume of voids),
water content (ratio of the weights — or masses — of the water and the solids) or
water ratio (volume of water over volume of solids) are measures of the amount of
stored water.

In order to obtain the water retention curve of the soil theinitial suction of one
of the recovered specimens was measured (a value s = 0.4 MPa was obtained).
Thisinitia suction was reduced in steps until full saturation and changes in water
content were registered. The result, a water retention curve for wetting conditions,
is given in Figure 3.9. This test was performed in an oedometer cell under a
constant net vertical stress of 0.07 MPa. The role of net stress (difference between
total and air pressure in the specimen) in unsaturated soil mechanics will be
discussed below. In many practical application p, = 0 (the reference atmospheric
pressure) and the net stress is identical to the total stress if the soil remains
unsaturated.
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Figure 3.8 Oedometer collapse test. Natural (w,) and final (w;) water contents are
indicated.
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The oedometer response given in Figure 3.8 indicates one fundamental aspect
of partially saturated soil behaviour, namely the possibility of experiencing a
volumetric compression when subjected to wetting under a given stress. This
behaviour is known as “collapse” and it will be further examined in the next
section.

3.2 Collapse in Engineering Practice

3.2.1 Collapse of natural and compacted soils

Natural unsaturated soils of low density are capable of significant collapse when
wetted. In principle, some applied confining stress is required to trigger the
collapse of the soil structure when water is added. The self-weight is often
sufficient to cause collapse. A widespread class of soils known to collapseis loess.
Their open structure derives from its aeolian origin. Loess particles are fine (silt
size) and include quartz and limestone but clay particles are also present. They are
found in arid regions of Europe, Asia, and America.
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Figure 3.9 Water retention curve (under wetting) of a recovered specimen of the
compacted fill.

The photograph in Figure 3.10 shows the granular structure of loess from
northern France (Delage et al., 2005).
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Their low natural saturation provides an explanation for the collapse
mechanism. Consider two spherical particles in contact in Figure 3.11. Water is
held at the particle contacts and, due to capillary effects, it remainsin tension. The
contact menisci introduce a net compression force, F., normal to the tangent plane
between the two spheres at the contact point.

This is a stabilizing force which helps to resist external stress induced forces
(F) which, in general, introduce a given shear at contacts. Water flooding destroys
the stabilizing force F. and leads to a rearrangement of the soil microstructure
which is externally perceived as a volumetric compression.

i
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Figure 3.10 SEM photograph of aloess from northern France (Delage et al., 2005).

Not just loess but also other natural alluvia or residua soils of low density are
known to collapse when wetted under load. Canals in low density alluvial soils or
loess are particularly delicate structures because the presence of water is
guaranteed. Two catastrophic canal failuresin collapsible silts are shown in Figure
3.12. The Figure 3.12a shows a severe canal dislodgement induced by generalized
collapse. The second picture shows alongitudinal crack of one of the side slabs of
the canal, attributed to the collapse settlement of the supporting soil, as illustrated
in the sketch included in the figure.
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Compacted soils may aso
collapse when compacted on the dry
side to relatively low densities. In
fact, virtually any soil may collapse if
its density, applied confining stress,
and initia water content reach an
appropriate range of values. When the
density is low (man-made fills)
collapse upon wetting may lead to
large settlements, absolute and
differential. Damage associated with
collapse phenomena tends to be high
because of the magnitude of the
settlements  often recorded. Case
records and other practical aspects of
collapse in man-made fills and

embankments are reported in Lawton F
et al. (1992) and Skinner et al. Figure3.11Water meniscus at the contact
(1999). between two spherical grains.

~Water
meniscus

N

Collapsed area

@ (b)

Figure 3.12 Two cana failures on collapsible soils: (a) Terreu canal; (b) Algerri-Balaguer
cana. Ebro Valley, Spain.
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3.2.2 Rockfill collapse
Rockfill and coarse granular soils are also known to collapse. In this case, the

capillary explanation given before does not make sense because capillary forces at
contacts result in a very low value of equivalent stress (sum of forces per unit

area).

al

(b)

Figure 3.13 Specimen of hard sandstone crushed gravel tested in a 30 cm oedometer cell:
(a) grain breakage after testing involving loading and wetting; (b) detail of broken particle.
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A fundamental mechanism of rockfill collapse is the breakage of particles
heavily loaded at grain to grain contacts. Particles break because a dormant crack
suddenly propagates and splits the original particle. It has been shown (Atkinson,
1985; Oldecop and Alonso, 2001) that crack propagation velocity depends on the
prevailing relative humidity (RH) in big pores around rock particles. Wetting a
rockfill increases RH and this change induces a higher rate of crack propagation,
which may eventually lead to the breakage of some particles. The subsequent
rearrangement of the structure resultsin a volumetric compression or collapse.

Figure 3.13 is a picture of broken particles of sandstone after loading and
wetting in a 30 cm diameter oedometer cell.

The effects of rockfill collapse have been often observed in rockfill dams.
Reservoir impounding and rainfall result in significant deformations which are of
concern in dam engineering design. The integrity of the upstream impervious face
in some designs (concrete or asphalt face rockfill dams) is of particular concern.
Figure 3.14 shows the good correlation between the rate of settlement and rainfall
intensity for a 40 m high shale embankment on the high-speed railway line
between Madrid and Sevilla.
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Figure 3.14 Rainfall record and surface settlement rate of a 40 m high rockfill embankment
(Soriano and Sanchez, 1999).
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3.3 Description of Collapse and its Modelling

3.3.1 Effective stress

Let us maintain isotropic stress conditions. Under saturated conditions, the effect
of pore-water pressure on the soil mechanical behaviour is included through the
Terzaghi effective stress. There is no need for independent consideration of total
stress and pore water pressure.

The capillary interpretation of the state of water in an unsaturated granular
soil (see Fig. 3.11) explains that the water is under tension (if the air pressure is
taken as the reference zero pressure: in general, the atmospheric pressure). The
absolute value of the negative (capillary) pressure is called “matric” suction. The
term suction is also used in a more genera sense to describe the state of energy of
the water. It has units of stress (energy per unit volume).

Unfortunately, no single expression for a single effective stress has been
found, in the case of unsaturated soils, to be consistent with experimental
observations. Consider, as afirst trial, that Terzaghi’s expression (ci'j =0, — Pu9;

where §;; is the Kronecker delta) remains valid for unsaturated conditions. Then,
the effective stress would be found by adding total stress and suction. Now
consider a collapse phenomenon. Wetting implies a reduction in suction and,
therefore, a reduction in effective stress. One would expect a soil expansion if
effective stress holds. The observed collapse (volumetric compression) in the
above mentioned cases invalidates the proposed definition of effective stress. The
same argument applies if only a fraction of the suction is added to the total stress
to find an effective stress for unsaturated soils. This is the Bishop (1959) proposal.

One dternative is to accept two independent stress states: total stress (for
instance, mean stress, p, under isotropic conditions) and suction s (which is an
isotropic value). In order to be general, air pressure, p,, is introduced as a
reference pressure. In this way, the two “effective” stresses are (o, — p,9; ),

which is also known as “net stress” and s= p, — p,, which is the suction. In an

isotropic case, if air pressure is the reference zero value, the stress plane (p, s) may
conveniently be used to investigate the behaviour of unsaturated states. In the
remainder of the chapter, the air pressure will be taken as constant and equal to the
reference atmospheric value. This is a reasonable assumption in most engineering
applications because of the high gas permeability of unsaturated soils. In this case,
the net stress becomes the total stress and suction is equal, in absolute value, to the
negative pore water pressure.

3.3.2 Isotropic yielding of unsaturated soils

A convenient starting point for understanding collapse is to consider the response
of an unsaturated soil subjected to isotropic loading at different applied suctions (s
=0, s= 5, S= %) (stress paths are given in Fig. 3.154). Take the soil response
under saturated conditions (s = 0) as a reference. The soil behaves elasticaly
before a yielding point Y, is reached (yield stress p, ). The elastic compressibility
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(the slope of the elastic compression line in the plane e-Inp) is defined by «.
Beyond the yield point, the soil will follow a virgin compressibility line with a
stiffness defined by a compressibility coefficient A(0) ( for s=0).

The effect of suction is to allow the soil maintaining higher void ratios than
those corresponding to the saturated virgin compression line. Experiments may be
interpreted in the sense that suction increases the yield stress to values p,, for s =
S, Py for s =s,, etc. Beyond the yield stress, the unsaturated response will be
characterized by a compressibility coefficient A(s) that, in general, will depend on
suction. If points p,, Py, Py, are collected in the (p,s) space (Fig. 3.15¢) ayield
locus will be defined which has been named Loading-Collapse (LC) curve for the
reasons which will be given below. Points on the left of LC will remain in an
dagtic state. In Figure 3.15b, all compression lines for stresses below the yield
points are plotted parallel with a common elastic compression index k. Note that
they start at a different void ratio (e > €, > &) because the application of an
increasing suction (drying) resultsin avolumetric compression (shrinkage).

b)
e
a)
s
S, E
8 Ey
052 -—
P
c
) y
§=00

Figure 3.15 () Stress paths for isotropic loading at constant suction; (b) compression
curves; (c) yielding points and LC yield envel ope.

Wetting the soil from a given state on the yield curve such as Y; (for suction
;) to s = 0 will imply a reduction in volume because the equilibrium state under

stress p,, and zero suction (s = 0) is the state Y, in Figure 3.15b. The change in
void ratio from point Y; to point Y, is acollapse deformation.

Thisideais used again in Figure 3.16. Consider a Point 1 (p;, S ) on the yield
curve LC; and its corresponding state in the e vs. Inp plot. If wetted at constant p =
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ps1, the void ratio will evolve from Point 1 to 3 in Figure 3.16b. Theyield curve LC
will aso be dragged to its new position LC;. The path 1-3 in Figure 3.16 is a
collapse path. The soil will experience the same irreversible compression if it is
loaded at constant suction from Point 1 to 2. It will deform following the
compression line for suction S. In both cases, a hardening process takes place.
These plots indicate that loading and collapse behaviour are intimately related.
This is the reason for the name LC given to the isotropic yield locus on the (p,s)
plane.

a)

In p
Figure 3.16 (@) Loading (1-2) and collapse (1-3) paths; (b) expected soil response.

The sketch in Figure 3.17 shows the two alternative stress suction paths
leading to the same volumetric deformation. The state of the soil at Point 1 is
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represented by an “open” structure. The arrangement of clay aggregates and sand
or silt particles is adapted to large pore sizes. The soil in this stateisin equilibrium
under a confining stress p and a suction s. The existing suction and its associated
set of internal stabilizing forces help to maintain the open structure. If suction is
reduced to zero (lower path in the figure), capillary forces vanish and grains are no
longer in equilibrium under the applied stress. They fall to new, denser positions
and thisisindicated in the assumed evolution of the microstructure. But increasing
the load at a maintained suction (upper path in the figure) essentially induces the
same mechanism of deformation. The suction is maintained but now it is unable to
guarantee the initial soil structure under increasing stress. Therefore, the LC yield
curve represents the limit arrangement of particles and clay aggregates able to stay
in equilibrium under a given combination of p and s. This is the meaning of the
yield curve. Any increase in p, decrease in s, or any combination thereof, implies a
new equilibrium, a more compressed state, and an associated displacement of LC
yield locus towards the right.

Figure 3.17 Sketch showing an interpretation of collapse and loading in unsaturated soils.
(Alonso and Gens (1994) ©1994 Taylor and Francis Group. Used with permission).

3.3.3 Developing a simple model for collapse calculations

In order to proceed, asimple model will be built following a standard procedure:
- Propose a suitable shape for curve LC.
- Propose ahardening rulefor LC
For the sake of simplicity, only plastic loading from states on the yield curve will
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be considered. Therefore, the elastic response will not be discussed.

Experiments indicate that the yield stress does not increase indefinitely with
suction. It seems to reach an asymptotic value. This idea is introduced in the
following equation

Po () = po[ 1+a(1-exp(-as)) ], (3.2)

which provides the preconsolidation or yield stress p, as a function of the

saturated yield stress p, and the suction s. Coefficients a and o are material

parameters: o controls the rate of increase of po with s, and a provides the limiting
value of po(s) for infinite suction,

P () = Py (1+ ). (3.3)

The family of yield curves (3.2) was plotted in Figure 3.18 for a given set of
material parameters starting at a given point under yielding conditions, i.e. on the
LC curve. Additional loading at constant suction (this would represent the
accumulation of layers in an embankment, on top of a reference position) would
displace the LC curves towards the right and they would change in shape, as
shown in the figure.
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Mean net stress, p, (kPa)
Figure 3.18 LCyield curves.

The three initial stress states considered in plotting Figure 3.18 correspond to
acommon suction s = 8 MPa and the estimated mean total stresses at depths of 2,
5and 7 m. For an at-rest earth pressure coefficient Ko = 0.5, and for a natural unit
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weight y.x = 20 kN/m® the mean net stress at a depth of 5 m will be
5x (20 + 2x0.5x 20)/3 =66.6 kPa (Point A). Then, for the following material

constants: a = 20, o = 0.5 MPa™* avalue p,= 3.2 kPais found from Equation

(3.2) for the saturated mean preconsolidation stress. The materia constants
indicated are derived from the analysis of the collapse of the Girona embankments
as shown below.

The yield stress p,(s), given in Equation (3.2), will be assumed to harden

when plastic volumetric strains (&’ ) accumulate. Hardening will be controlled

vol

through p, , which becomes the hardening parameter in (3.2): p, (&2, ).
The following logarithmic expression is proposed for the evolution of p,
with P :

vol *

\lljol = Md_p; (34)

1+e p,

Equation (3.4) smply states a linear logarithmic relationship between the plastic
volumetric deformations and the applied mean stress under saturated conditions.
This is a common behaviour of soils. Equations (3.2) and (3.4) allow calculating
the plastic volumetric strains due to any loading and wetting from a state on a
given yield curve. In fact, recognizing that plastic strains result from changes in
mean stress and suction, one may write
p p
deb, = %dp + %ds, (3.59)
op oS

where, in view of Equation (3.4),

p *
a‘(;vol _ k(O)i% (35b)

o lrep, op’

p *
asvol — }\‘(O)i% (350)

s lvep, 0s

(Stress variables p and po are equivalent since stress points remain on the yield
surface: they describe the mean net stress.)
Isolating p, from Equation (3.2) and taking the derivative of this variable

with respect to p and s, we obtain
M _ Py (3.69)

2/
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opy _ —Pracexp(-as)

= ) .6b
s [1+a(1-exp(-as))] (360
Then
88\’/)ol _ 7\'(0) i
P (e n 573

oeb, -1(0)  aaexp(-as)
s (lt+e) [1+ a(1- exp(—ocs))] ’ (570

which can now be introduced in (3.5a) to find the increment in plastic volumetric
strain for any change in mean stress and suction. Integrating (3.5a8) along a given
stress and suction path will provide the soil deformation. This is shown in the next
section.

3.3.4 Calculating loading and wetting strains
Consider an imposed loading path at constant suction (S) as the path 1-2
indicated in Figure 3.16. Equation (3.2) provides the variation of p, due to the
imposed increment of yield isotropic stress pp (Ap = p, —py) & constant suction:

- Ap

~ 1+a(l-exp(-os))’

APy = Py, — Py, (3.8)

Integrating Equation (3.4), the volumetric plastic strain due to the increment in
mean stress p; — p, becomes

Ag? :wm[p—;}:mm[&j. (3.9)

Y lve (p ) 1+e \p

Similarly, volumetric plastic strains accumulated during a collapse path (wetting
at constant loading, path 1 to 3 in Fig. 3.16) can be calculated. In this case,
Equations (3.5a) and (3.7b) for dp =0 result in

_MOaa__ exp(-os)

Gers = 1+e [1+a(1—exp(—ocs))]

vol

ds, (3.10)

which can now be integrated between two suction values s; — S:
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5 A(O)aa. 7 exp(-as)
P —|deP =— ds=
Agvol i € ol 1+e £ [1+ a(]_— eXp(—(XS)):I S

_ MO 1+a-aexp(-os)
~ 1l+e |l+a-aexp(-as)|

(3.12)

As an example, for a compressibility coefficient for saturated conditions, A(0)=
0.024, a = 20, o. = 0.5 MPa’}, an initia void ratio e, = 0.60, and a change in
suction from s; = 10 MPato s, = 1 MPa, acollapse strain of ¢, =0.013=1.3%is

vol
calculated.
The next necessary step is to link the volumetric behaviour of the soil to the
flow in the embankment.

3.3.5 Flow and collapse modelling

In the previous section, a simple formulation for modelling plastic volumetric
strains, and, in particular, the collapse due to reduction in suction, has been
developed. In this section, the formulation required to calculate the variation of
suction in an unsaturated/saturated porous mediais given.

In an unsaturated deformable porous soil, changes in suction will mainly
depend on

- water flow

- water retention of the soil

- changesin volume of the soil skeleton, water and solid particles.

In order to take into account all these phenomena in the calculation of pore
pressures, mass balance equations of solid particles and water are required.

Solid mass balance

In order to formulate the solid mass balance equation, we consider a representative
volume V (Fig. 3.19) fixed in space (Eulerian description). Sis the surface closing
this volume, n is the unit outward normal to the boundary surfaces, and dS = ndS
isadifferential element of area. The volume contains a porous media whose solid
particles have a density ps and a porosity n. Voids are partialy occupied with
water of density py,.

The total mass of solid particles per unit volume is ps(l— n) . Involume V, the
total mass of solid particles will be

jps (1-n)av. (3.12)
\%

Transfer of solid massin or out of volume V resultsin the following rate of change
of the total solid mass:
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jps(l— n)dV] = j%[ps(l— n)Jav. (3.13)

\%

9
ot

The velocity of solid particles is v. Therefore, the outward solid mass flux
through a differential element of areais p,(1-n)v:n and the total outward solid

mass flux through surface Sis
Ips (1-n)v-nds. (3.14)
S

Conservation of mass requires the rate of mass within the volume to be equal to
the net flux. Therefore

Ig[ps(l_ n)]av =—[ps(1-n)v-nas. (3.15)

The negative sign of the flux term indicates that the increase of mass, as well as
the outward flux, were accepted as positive.

Figure 3.19 Fixed volume of soil, V, bounded by a surface Sin a Cartesian space. A flow
of mass crosses the volume.

In order to convert this integra equation of mass conservation into a
differential equation, the Gauss divergence theorem is applied to the surface
integral:

[pe(2-n)v-nds=[div[p.(1-n)v]av. (3.16)
S \%

When the divergence operator is applied to p(1-n)v theresultis

o(ps(1-nw) 2ps(t-n)vy) o(ps(1-n)v.)
ox oy 0z

div[ps(l— n)v] =
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Equations (3.15) and (3.16) result in

I %[Ps (1-n)Jav +I div[ps(1-n)v]dv =0 (3.173)
J. (%[Ps (1-n) J+div[p(1- n)V]jdV =0. (3.17b)

Since Equation (5.9b) is valid for any representative volume, the expression
under the integral sign must vanish. This condition provides the conservation of
mass expression in local form:

0 ,
a[ps (1- n)] + d|v[ps (1-n) v] =0, (3.183)
where the first term is the time variation of solid mass stored per unit volume and

the second term provides the net flux of solid particles. The preceding equation
can be expanded to give

0 on
(1-n) gts —psE+(1— n)grad(ps)-v - (3.180)

psarad(n)-v+pg(1-n)div(v) =0,

where the vector gradient operator, grad(-), has been introduced. In detail,
Equation (3.18b) is written:

op on Ops Ops Op
1-n)—=—p,—+(1-n)| —=,— = || v, |-
(=) =P )(ax oy azj

V2 (3.180)

VX

ov,

Ps @,@,@ vy +ps(1—n) _8VX +—y+% =0.
ox' oy’ oz ox oy oz

z

The definition of material derivative of a property of amaterial point moving with
velocity v,

D) _06), oot
o=tV grad(e) (3.19)

allows the writing of (3.18b) in a compact form:

Dp Dn .
(1-n) Dts ~PsDp T Ps (1-n)div(v)=0. (3.20)
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The divergence of the solid velocity can be transformed into the volumetric strain
rate asfollows:

div(v)= div(%uj = —%, (3.21)

where compressive volumetric deformation are considered to be positive. This
result is obtained by a simple interchange of time and spatial derivative.

Equation (3.20) provides the rate of change of the porosity (Dn/Dt) as afunction
of the stiffness of the soil skeleton and of the changes in density of solid particles,

Dn (1- n)% Y
E_—ps ot +(1=n)div(v), (3.22)

aresult which will beimmediately used.
In many applications the compressibility of the skeleton is large compared with
the compressihilility of solid particles. Then Equation (3.22) can be reduced to

Dn oe
= = (1—n) 2o 3.23
Dt ( n) ot (323)

Water balance

Water flow velocity (vy,) will be expressed as the sum of two terms: the velocity of
solids (v) already introduced, and the relative velocity of the fluid with respect to
solids (g*). Consider now a cross-section of the porous medium of unit area. Only
aportion of this area (approximately given by porosity multiplied by the degree of
saturation, nS) will be available for fluid flow. Therefore, the flow rate of water
through a cross-section of unit areawill be given by nS (v + g*). The term nSqg*
= g is generaly known as the Darcy flow rate of a fluid filtrating through an
unsaturated porous medium. It is the relative flow rate of the fluid with respect to
the soil skeleton.

The previous derivation of the balance eguation for the solid mass can now be
followed step by step. But it may be directly written from the solid mass
conservation equation by formally replacing (1-n) by nS, psby pyand (1-n)v

by nSv + g. Therefore, from Equation (3.18a) it follows

%(pwnsr)+div[pw(nSrv+q)]:0. (3.24)
The first term in Equation (3.24) is the rate of change of water mass stored in a
unit volume of soil. The second term is the net water mass flow entering or
leaving the unit soil element. It has two components: the flux due to the
displacement of the porous media and the relative flux (q) between the water and
solid particles.

Equation (3.24) can how be expanded as follows:
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nSr +nSrv grad(pW)+pWSr +pWSrv grad(n)+

0 . )
npwa—stunpwv.grad(a)+pwn3dlv(v)+dlv(pwq) :

(3.25)

If the definition of material derivative (Eq. (3.19)) is introduced, the water mass
bal ance equation becomes

bs

ot +pynS.div(v)+div(p,a)=0. (3.26)

Dn
—+Spw— Dt

In most practical situations except for hard soils or soft rocks, the compressibility
of the water can be neglected and equation (3.26) can be simplified to

bs

Dt S,—— Sr +d|v(q) 0, (3.27)

where Equation (3.21) was used.

Integrated mass balance equation. The field differential equation

Solid and water mass balance equations can now be combined substituting the
porosity variation in time given by Equation (3.23) into Equation (3.27):

\DS ¢

=S~ +div(q)=0. (3.28)

ot
If the spatial variation of the degree of saturation is neglected, the balance
equation becomes

oS 08y o
n o S p +div(q)=0. (3.29)
Equation (3.29) identifies the two terms of stored water in an unsaturated soil.
Water can be stored by varying the volume of water in the voids (degree of
saturation) or by deforming the soil skeleton.

In order to proceed, the terms of Equation (3.29) should be related to the
unknown variables: (net) stress and suction.

The retention curve provides the degree of saturation in terms of suction.
Therefore, it is necessary to fit a mathematical expression for the water retention
curve (WRC) obtained in the laboratory. Different expressions can be found in the
literature. A popular one is the expression published by Van Genuchten (1980):

-L

S Srmln ( Y max Sr min) 1+ {st“ ' (330)

0

where A is related to the lope of the WRC in its centra part and Py is related to
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the “air entry value”, i.e. the necessary suction to desaturate an initially saturated
soil. The preceding equation is defined between two saturation limits (a maximum
(Smax), close to one, and a minimum (Sn,), close to zero). Figure 3.20 provides
the shape of water retention curves and shows the effect of varying parameters Py
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Figure 3.20 Van Genuchten retention curves for (a) A = 0.3 and different values of Py and
(b) Po =0.05 MPaand different values of A.

The term &S, /ot in Equation (3.29) can be expressed as the product of
(0S; /os)(os/ot ) where 0S; /ot isobtained by differentiating Equation (3.30):

-A-1

S o o 1M (syr| (s}
E_(Srmax Srmin)Fo(l_}\’) 1+(30] (Foj . (3.31)

Volumetric strains depend on changes in net mean stress and suction. They have
been described in Equations (3.5), (3.6) and (3.7). Because of the simple case
analyzed here, only isotropic changes in stress have been considered. For a general
case, the stress tensor should be introduced since not only isotropic but also
deviatoric stress variation may cause volumetric strain.

The final term in Equation (3.29) refers to the flow through pores due to the
gradient of head (Darcy’s law). A generalized Darcy law for a compressible fluid
describes the relative flow velocity q in terms of gradients of pore-water pressure
and the gradient of elevation asfollows:

q= —L[grad(—s) +7, grad(z) ], (3.32)
Yw
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where y,, is the unit weight of water, z is the vertical coordinate and k is the
hydraulic conductivity (the term permeability will also be used). In an unsaturated
soil, the permeability to water decreases when the degree of saturation decreases
because of the reduction of pore volume filled with water and the difficulty of the
water adhered to particles to displace. A common approach is to express the
unsaturated permeability in terms of the saturated value, ke through a relative
permeability term (k.q) which decreases fast with S according to the following

widely used expression:
k=Kyky =k (S)" (3.33)

The power mtypically takes values in the range 2—4. Figure 3.21 shows the effect
of mon the relative permeability coefficient.

Relative permeability, k.

0 0.25 0.5 075 1
Degree of saturation, S,

Figure 3.21 Relative permeability curve for different values of parameter m (Eg. (3.33)).

For a one-dimensional analysis in the z-direction, grad(e) and div(e) are
reduced to d(e)/0z. Then, the flow velocity q of Equation (3.32) becomes

_ ko o2 ks (3.34)
Yw6z 0z v, 0z

Equation 3.34 is consistent with the common formulation of Darcy’'s law for

saturated soils provided the concept of suction is formally extended to saturated

states as the negative value of the water pressure. Then if hydrostatic conditions

are considered s= —p,, = — v,z and Equation (3.34) would provide a zero flow.
The last term of Equation (3.29) can be developed as follows:
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2
div(q)="0e | L 05 4ok kO (3.35)
oz Yw 0Z 0z v, oz
where X =a—k§§ and 0k/0S; are obtained differentiating Equation (3.33)
0z 0S 0s o0z

and 0S, /os isgiven in Equation (3.31).

Finally, using the previous equations, Equation (3.29) can be rewritten as
follows:

2
[ng_s_ag"o' jﬁ_s _ag"d @+£6_ZS+
0s Js jot op ot vy, o0z

10s ,)oka§0s_
v, 02 )o0S o6s oz

(3.36)

This is a parabolic partia differentiated equation. The terms 0S, /s, 0, /0P
and dg,, /s are given by Equations (3.31), (3.7a), and (3.7b), respectively.

The integration of Equation (3.36) with the appropriate boundary and initial
conditions will provide the suction of any point of the integration domain at any

time. In the next section, this equation will be solved for the case of the collapsed
Girona road embankments.

3.4 Modelling the Collapse of Girona Road Embankments

The geometry is sketched in Figure 3.22. A central column of soil will be analyzed
under one-dimensional oedometric conditions. Several embankments of different
sizes were affected by the rainfall but only one case, an embankment 8 m high,
will be considered here. Only vertical displacements will be calculated. Note,
however, that collapse strains are volumetric and therefore the expected deformed
shape of a collapsed embankment will be given by a decrease in size in dl
directions, as shown in Figure 3.22. This was also the observation in the field (see
the photograph in Fig. 3.4).

Figure 3.22 Sketch of the collapsed embankment. The coupled flow-deformation problem
will be solved in a central column. Also indicated is the expected deformed shape of the
embankment after collapse.
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It will be assumed that the soil within the embankment is normally
consolidated and that the initial stress distribution depends on the weight of the
soil, which, sinceit isin unsaturated condition, can be expressed as follows:

Voa = @=N)Y, + NSy, (3.37)

Under oedometric conditions, horizontal stresses at any point are equal to Kqo,
where Ko is the at-rest earth pressure coefficient. Then the mean stress

(p=(oy +20y)/3) for agiven depth zis equal to

p=[ 30 2K, [y, +nSy,Jods (3:39)

0

Theinitial suction of the embankment can be derived from the water retention
curve (Fig. 3.9) and the data on compaction (Fig. 3.5). It appears that the average
degree of saturation after compaction of embankments was 0.6. The water
retention data were again plotted in Figure 3.23 and the Van Genuchten
expression (3.30) was adapted to the experimental points (Fig. 3.23). The derived
parameter values are Smax = 1, Smin = 0, A =0.09 and Py, = 0.05 MPa. For S = 0.6,
an initial average suction s= 8 MPais obtained.

The virgin compressibility index (a unique value, independent of suction, in
the model developed) is calculated from the oedometer test for saturated
conditions shown in Figure 3.8. The value of C. is calculated as follows:

e-¢g 0.133
C = = = 0.054 3.39
° log(c,/o,) 109(0.8/0.07) (339

and, therefore, A = C//In10 = 0.024.
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Figure 3.23 Water retention curve for calculation compared with experimental data.
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The top of the embankment will be in contact with the atmosphere and it will
be infiltrated by rainfall. At the base, it will be in contact with a saturated natural
soil, having the water table on the surface. Therefore, an upward flow of water
will cross the lower embankment boundary due to suction gradients (s = 8 MPa
inside the embankment and s = 0 MPa at the lower boundary). The rain may be
simulated by imposing a water inflow at the top of the embankment as a boundary
condition. To do that, it is necessary to estimate the fraction of rain that seepsinto
the ground and the fraction that leaves the embankment as a surface flow. In order
to simplify the problem, a boundary condition at the top of the embankment
imposing a suction equal to zero is defined. It implies the presence of a thin film
of liquid water on the embankment surface capable of delivering the necessary
infiltration flow. This condition is also imposed in the bottom of the embankment,

as mentioned before.
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Figure 3.24 Calculated evolution of crest settlement of an 8 m high embankment under a
top and bottom infiltration.

The inward flow of water will induce increments in the degree of saturation
and collapse plastic strains in the embankment. The increment in the degree of
saturation also involves changes in the total mean stress because of the increase of

soil unit weight

% = %Mé(ﬁ 2Ky)[@-n)y, +nSy,] Zdz} =
=

1 z
= §(1+ 2K0)Yw‘([ nE ZdZ

(3.40)
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Note that total stresses change in time due to the modification of soil natural
specific weight as the degree of saturation changes. The porosity and time
variation of the degree of saturation depend on coordinate z. Equation (3.40) is
used in the field Equation (3.36).

The problem of flow in a (deformable and unsaturated) soil can be solved
through the formulation just given. The differential Equation (3.36) has to be
integrated. Since the terms preceding 0s/0t depend on suction, an analytical
solution of this equation cannot be found in general. It will be solved by a finite
difference approximation developed in the Appendix 3.1.

3.5 Results

3.5.1 Collapse settlements

Experimental data on the shape of the LC yield curve (Fig. 3.18) were not
available in this case. There was information on initial soil compaction and some
collapse tests performed on samples recovered after the heavy rains (Fig. 3.8). The
test in Figure 3.8 provided a value for the compression index A(0) = 0.024. The
water retention curve, S(s), was also measured (Figs. 3.9 and 3.23). This
information provided avalue for theinitia soil suction which was s= 10 MPa (for
S = 0.6; see Fig. 3.23). A further hypothesis was that the soil was under normally
consolidated conditions and this information provides a direct relationship
between the field mean confining stresses and the saturated mean stresses (Fig.
3.18), provided parameters a and o of the yield locus LC are known. But the field
observation that the higher embankments (heights of 7-8 m) had settled 30-40 cm
after the heavy rainfall period could be used to derive, by means of a trial and
error procedure, the parameters of the LC Equation (3.2).

Figure 3.24 shows the calculation of the crest settlement of an 8 m high
embankment, following the procedure detailed in the Appendix 3.1. The top and
bottom of the unsaturated soil column were flooded (s = 0) at t = 0. For a
permeability k = 10" m/s, o = 0.5 MPa?, a = 20, and the remaining data as
indicated previously, crest settlements of 30 — 40 cm were calculated for 1.5 — 3
days of continuous wetting. The settlement rate is highest at the start of the
process and decreases continuously. The calculated suction isochrones for the first
day of infiltration are shown in Figure 3.25. The time evolution of suction of two
points located at depths of 2 and 5 m, representatives of the core of the
embankment, are given in Figure 3.26. After one day of wetting, and despite of the
relatively low permeability, the embankment is ailmost fully wetted. Infiltration
(Darcy) flow rates are not only controlled by permeability but also by the suction
gradients which, in our case, are very large. The development of plastic collapse
strains follows the dissipation of suction, as shown in Figure 3.27.
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Figure 3.26 Calculated suction evolution of two points within the embankment at different
depths.
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Figure 3.27 Calculated evolution of collapse strains for two points within the embankment.

Settlement, & (m)

0.030

0.025

e

=]

2

o
\

0.015 —

0.010

0.005 —

| |
4 5
Time, t (days)

Figure 3.28 Calculated evolution of crest settlement of an 8 m high embankment under a

top and bottom infiltration, after an initial stage of wetting lasting three days.

3.5.2 Possibility of additional collapse settlements

The question of the danger of suffering additional damage, should heavy rains
occur again, is answered in Figure 3.28, which shows the calculated crest
settlements for a maintained infiltration after the first three days. Since collapse
strains are irreversible, only suction values smaller than the suction val ues attained
previously are capable of inducing additional collapse strains. In other words,
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subsequent drying and wetting cycles, which do not take the suction of the soil to
alower value than the suction remaining immediately after the initial rains, are not
capable of inducing collapse strains. The simulation performed in Figure 3.28,
starts at t = 3 days after the beginning of the assumed infiltration period and
therefore takes the soil to yet lower suction values, as shown in Figure 3.29. The
calculated collapse settlements are small: a few centimetres after a continuous
wetting lasting for a few more days.

3.5.3 Discussion

The collapse plastic model developed was deliberately simple and formulated
under isotropic stress conditions. Yet, it incorporates fundamentals aspects of
unsaturated soil behaviour. It may be easily generalized by the reader by changing
and improving some of the assumptions made. The embankment analysis was
performed under one-dimensional conditions, but afairly general derivation of the
basic coupled flow-deformation phenomena in unsaturated soils was given. Again,
a more precise analysis would reguire a two-dimensional or a three-dimensional
approach. But the model computations were generally consistent with the
laboratory data available and with field observations. In the second case, the
observed total overal settlement was used, in a back-analysis procedure, to
approximate two model parameters. Those parameters could be obtained by
oedometer tests on the as-compacted samples, although information was not
available. But the overall analysis was able to provide an answer to one of the
pressing questions asked by the Road Administration, namely if there were further
risks of dangerous embankment collapse.
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Figure 3.29 Calculated suction evolution of two points within the embankment after an
initial stage of wetting lasting three days.
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3.6 Mitigation Measures

For a given applied confining stress, collapse decreases when porosity and initial
suction decrease. When compacting wet of optimum the initial suction is close to
zero and wetting has no effect (the soil is almost saturated). In practice wet of
optimum compaction is difficult or not advisable to achieve for a variety of
reasons: trafficability is impaired; dry density decreases when water content is
increased; in dry regions and summer months, water evaporates fast; and water
shortage. Increasing dry density is achieved by increasing the energy of
compaction. For many suitable soils for compaction, the target dry density and
water content should be located in the vicinity of the Norma and Modified
Proctor test optimums. In plastic soils, Modified Proctor energy may lead to soil
expansion when wetted.

Girona embankments collapsed for two main reasons. the initial water content
was very low and, therefore, suctions were high. Thisleads to “open” and unstable
soil microstructures. In addition, the density achieved was heterogeneous and
insufficient, with a significant proportion of specimens having densities lower
than Proctor Optimum (Fig. 3.5). The compaction data on this figure corresponds
to specimens recovered after collapse; initial densities should be lower than the
values plotted.

Concerning the future of the embankments, it was calculated that the
remaining collapse potential may result in some limited deformations only on the
occasion of extreme rainfall events more intense than the rainfalls of October
1994. Such extreme rainfall events have a low probability but, even in this case,
the calculated settlements may cause some pavement cracking but no serious
damage to pavements and bridge structures, as in the first wetting. It was
concluded that this limited damage could be assumed without any further action
after repairs were made to the affected roads. The transition slabs to bridge
abutments were repaired. Cavities below them were filled with lean concrete.
Pavement shoulders were rebuilt and the embankment slopes were taken to its
initial geometry. Fast growing vegetation was installed on slopes to limit erosion
to facilitate evapotranspiration (which helps to maintain high suctions within the
embankment) and to reduce water infiltration.

3.7 Lessons Learned

3.7.1 Compaction on the dry side

Soils compacted dry of optimum may experience significant compressive
volumetric strains when wetted under load. An additional condition required to
experience collapse is to compact the soil to a relatively low density. Collapse
behaviour is easy to identify in practice by means of oedometer tests. They may be
designed to follow the actual stress path experienced in the field. In the case of
embankments, a point within the soil experiences, once compacted, an increase in
confining stress and later, once the embankment is finished, an increase in water
content at essentially constant stress. This simple history of loading and wetting is
easily reproduced in an oedometer test.
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3.7.2 Natural collapsible soils

Collapse behaviour is also common in natural low density clayey and silty soils
that are often weakly cemented. They are found in arid climates (loess) and in
tropical environments (residual soils).

3.7.3 Suction and stress variables

The state of the water in a partialy saturated soil is conveniently characterized by
its suction. Under a capillary interpretation, suction is a positive stress equal, in
absolute value, to the pore water pressure. Wetting leads to a reduction in suction.
Because of the difficulty in finding a single effective stress, unsaturated soil
behaviour is defined in terms of two independent stress variables which combine
total stress and suction. A simple choice was made in the chapter: the two selected
independent stress variables are total stress and suction.

3.7.4 The nature of collapse

Collapse strains are irreversible, i.e., plastic. In the limit, if collapse is induced by
a full wetting, the soil will not experience further collapse deformations if it is
later dried and wetted again. Collapse deformations are essentially volumetric,
conceptualy similar to a temperature induced contraction. A collapsed
embankment not only settles. It reduces isotropically in size and therefore it may
separate from neighbouring structures such as bridge abutments.

3.7.5 Capillary rise

Rainfall or reservoir impounding, in the case of embankment dams, is a common
situation leading to the increase of water content of unsaturated compacted or
natural soils. However, capillary rise from shallow water tables may also lead to
wetting. In periods of heavy rain water tables are likely to rise. This is an
additional reason for the accelerated wetting of embankments because under these
circumstances, they are subjected to surface as well as to base infiltration.

3.7.6 Modelling collapse

A simple elastoplastic isotropic model has been developed to quantify collapse
deformations. It is based on a fundamental experimental observation, namely that
suction increases the apparent preconsolidation stress of soils. The model is built
from a proposed variation for this increase in yielding stresses and from some
assumed compression behaviour of the soil under increasing suction.

3.7.7 Coupled flow-deformation

Collapse deformations require an increase in water content. In a field situation,
water content changes as a result of infiltrating flow, which is, in turn, induced by
changes in boundary conditions. Suction provides the link between flow and
mechanical behaviour because suction gradients control flow and suction changes
control volumetric deformations. This chapter describes a step-by-step procedure
to derive the field equation for the coupled flow and collapse deformations under
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one-dimensional conditions. This case is yet a further example of coupled
problems involving flow and deformation. In addition to the classical
consolidation analysis under saturated conditions, Chapter 5 will also provide a
case of coupled flow, deformation, and heat under one-dimensional conditions, in
the context of rapid landslide analysis. The procedure developed was applied to
reproduce the collapse deformations observed in embankments subjected to
rainfall wetting.

3.7.8 Predicting the future behaviour of embankments

The coupled model developed is useful to investigate the future behaviour of
embankments under weather action. The analysis performed on Girona
embankments suggests that most of the collapse potential of the embankments was
released during the first heavy rains after construction. The analysis shows that
further collapse deformations are possible under extreme rainfall events, but they
are small and unlikely to cause additional damage.

3.8 Advanced Topics

Collapse upon wetting is a distinct and fundamental feature of the mechanical
behaviour of unsaturated soils. It is closely related to the discussion of effective
stress. The notion of collapse strain could not be reconciled with the concept of a
single effective stress and models for unsaturated soil behaviour were eventually
formulated in terms of two independent stress components which combine total
stress, gas pressure and liquid pressure. The model developed here uses a
particular choice (net stress and suction) but other alternatives have aso been used
(Gens, 1995).

The mechanics of unsaturated soils has received increasing attention during
the past two decades. A comprehensive description of the state of knowledge
before 1987 is found in Alonso et al. (1987). The first proposal to model
unsaturated soil behaviour through the concepts of hardening plasticity is also
described in this reference. Constitutive model development has evolved rapidly
since 1990. The isotropic collapse model described in this chapter has some
similarities with the so-called Barcelona Basic Model (BBM) (Alonso et al.,
1990).

Appendix 3.1 Solving the Coupled Flow-Deformation Equation of the
Collapsing Embankment

Changing the notation, Equation (3.36) iswritten here as

2

f§_9@+£6_25+ i§_l hézo, (A31)
ot ot v, 0z Y 0Z 0z

where

f:nﬁ_sr%, gzsr% and hza_kﬁ_
0s 0s op 0S 0s
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Note that y,, is constant and
agvol , a‘Svol , ﬁ and ﬁ
op 0s 0s oS
are known functions given by Equations (3.5), (3.31) and, from Equation (3.33),
ok _
oS
S is calculated with Equation (3.30) and n varies with the volumetric strains
according to the integration of Equation (3.23) asfollows:

mk, (S)™. (A3.2)

° ¢ dn 1-n
deg = |[——— = &,4(t)—g,4(t )=In( j
n{ . Len ()5l 1-n, (A3.3)

n=1-(1-n,) exp(gvol (t) ~ €l (to))'

A forward finite difference procedure will be used to solve the system of
equations. The one-dimensional spatial domain is subdivided into n small
elements of thickness Az. The z coordinate of any point is defined by an index i
such that z = iAz The following indices define singular points. i = 1 corresponds
to z= 0. The far boundary is located at a distance z= L = 8 m (it corresponds to
the depth of the embankment) wherei =n,

Time derivatives of a genera function y at any time t, for z = z can be
approximated by (Forward Euler Method):

oy

oy Yatat Yz
at '

n (A3.4)

K

where the subscript (z, t) indicates that the function y is evaluated in the point z
and timet.

The first and second derivatives with respect to z will be approximated by a
central difference:

%
0z

~ yzi+1't B ykpt

, A3.5
Rae (A359)
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Foria |t ( Az)2

(A3.5b)

The term op/ot given by Equation (3.40) should be also discretized. Because
of the complexity of this equation it will be approximated by a backward scheme;

@ _ p; Gt p; Jt-At

A3.6
ot At ( )
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Since changes in total stress induced by increasing soil saturation are moderate
and occur slowly in time, this approximation is sufficiently accurate.

Once the numerical approximations of derivatives are substituted into the
governing Equation (A3.1), the following discrete equation is obtained:

S, teat =St AS; ALY (A3.7)
where
At k; it S;_l,t - ZSZ‘ ot s;,l,t p; T pq At
AS; At T f_ I 2 +0,, -
z,t ’YW (AZ) At
(A3.8)

2
i hz . (S;ﬂ’[ SZ it J + h; . SZAJ SZ it )
Y Az Az

Equations (A3.7) and (A3.8) allow calculating the suction at any point within the
soil column knowing its value at the previous time in the same point and the
points just above and below. Initial and boundary conditions should be defined in
order to initiate the calculation procedure. According to the previous description,
theinitial condition can be written as

s(z,t,)=8MPa for i=1...,n, (A3.9)

and the boundary conditions for any time as

s(znl,t):s(an,t):OMPa (A3.10)

A Fortran program was developed to solve the numerical procedure described
above for the calculation of the collapse in one dimension and for the boundary
and initial condition described before. The complete code is given below.

IEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEREEEEEREEREEREEREEN

! COLLAPSE CALCULATI ON - PARAMETERS

| hhkkhhkhkhkhhhkhhhhkhhhhkhhhhkhkhhkhkhhkhkhkhhhkhhhkhkhhhkhk ok hkhkhhhkhkhhkhkhkhhhkhkhhkhhhkkhh k& |

I MPLI CI' T NONE

I NTECER :: nz,nt, nw

REAL(8) :: tmax,Dz,Dt,Dtw, znt, ff

REAL(8) :: param(100), suctO

REAL(8) :: ganma_w, ganma_s, Srmax, Srmn

REAL(8) :: kappa, | anbhdaO

REAL(8) :: KO, pO_RC, | anbda_RC, A_krel,b_krel, perm sat
REAL(8) :: al pha, aaa

REAL(8) :: height, nnO, ee0, Q suct BC, Dept h_w

| PARAVETERS:

I Speci fic wei ght
gama_w = 0. 01 I M\ nR
gamma_s = 0.027 W 2

At rest earth pressure coefficient
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KO = 0.5
I'Water retention (van Genuchten)
Srmax = 1
Srmin = 0.
| ambda_RC = 0. 09
pO_RC = 0. 05 I MPa
! Perneability
A Krel = 1.
b_krel = 3.
permsat = 1.e-7*86400 ! mf day
I Conmpressibility
| ambda0 = 0.024
I'LC curve
alpha = 0.5 I MPa- 1
aaa = 20.
| Geonetry
hei ght = 8. I'm
'I'NITI AL CONDI TI ONS
! Suction
suct0 = 8. I MPa
!'Porosity and void ratio
nn0 = 0. 35
ee0 = nn0/(1-nn0)
! BOUNDARY CONDI TI ONS
suctBC = 0.0 I'MPa. Suction will be inposed in z=0 and z=8
! DI SCRETI ZATI ON
nz = 80.
tmax = 6.
Dz = height/nz
Dt = 1.e-6 I days

znt =t max/ Dt
nt =i nt (znt)

I PRI NT RESULTS
Dt w=0. 05
ff=Dtw Dt
Depth_w =5 I'm Depth at which results in tine are printed
nw = int(1.*nz/ height)

I CALCULATI ON, PROCEDURE STARTS

paran(1l) = ganmma_w
param(2) = ganma_s
paranm(3) = KO
param(4) = Srnax
param(5) = Srmin
param(6) = |anmbda_RC
param(7) = p0_RC
paranm(8) = A Krel
param(9) = b_krel
param(10) = perm sat
paran(11l) = kappa
paran(12) = | anmbda0
param(13) = rr
param(14) = beta
param(15) = pc
paran(16) = al pha
paranm(17) = aaa

call Integration (nz, Dz, nt,Dt, nw,

par am suct 0, nn0, ee0, Q suct BC, ff)
end

|k khkkhkhkhkhkhhkhhkhhhkhhkhhkhh ko hkh ok ko hkhhk ok kh ok hkhkkhkhhkhkhkkhhkhkhkhkhkhkhkk kx|
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! | NTEGRATI ON OF ONE- DI MENSI ONAL COLLAPSE

|*******************************************************************|
subroutine Integration (nz,Dz,nt,Dt, nw,

par am suct 0, nnO, ee0, suct BC, ff)

I MPLI CI' T NONE
R IN VARIABLES- - - - - - - - oo e e e - !

I NTEGER, | NTENT(IN) :: nz,nt, Mbdel _coeff, BC, nw

REAL(8), | NTENT(IN) :: Dz, Dt, paran{100), suct 0, nn0, ee0, suct BC, ff
| o e e e i 1
R WORKI NG VARI ABLES- -----------immme oo - - !

INTEGCER :: i,j,kkmmmiwifile

REAL( 8) 1oz, tine, pp

REAL( 8) ::  ganma0, ganma_w, ganmme_s, Sr max, Srmi n, DSr

REAL( 8) il kappa I ambda0

REAL( 8) 11 KO, C_KO, pO_RC, | anbda_RC, C_RC

REAL( 8) :: A krel,b_krel,permsat,d_perm dSr(nz)

REAL( 8) i1 pc,al pha, aaa

REAL( 8) ;1 height

REAL( 8) ::  Dsuct(nz), suct(nz), ganma(nz)

REAL( 8) ;1 pO(nz), pOol d(nz)

REAL( 8) i1 Sr0, Sr(nz), perm(nz)

REAL( 8) rood_ Sr ds(nz) pOast ( nz

REAL( 8) ;1 d_pOast ds(nz) d_pOast _dp(nz),d_p_t(nz)

REAL( 8) ;. epsvol (nz),d epsvol _ds(nz)

REAL( 8) ;1 d_epsvol _dp( nz), | nc_epsvol (nz)

REAL( 8) Dl funct_f(nz),funct_g(nz),funct_h(nz)

REAL( 8) ;1 ee(nz),nn(nz), di spl acenent (nz)

REAL( 8) 11 aux(nz),aux2(nz)

I'FILE TO PRI NT RESULTS

open (unit=12, f||e- AA Suction.dat', status='"unknown')

open (unit=13, file="AA pOast.dat', status='"unknown')

open (unit=14, file= 'AA \ p0.dat', status='"unknown')

open (unit=15, file="AA d|sp|acenent.dat', st at us=' unknown')

open (unit=16, file="AA Sr.dat', status='unknown')

open (unit=17, file=" AA_ eps_vol.dat', stat us=' unknown')
'I'NITIALI ZE

i w=0

do i=1, nz
epsvoIU)
Dsuct (i)

enddo

! PARAMVETERS

gama_w = paran(1)

gama_s = paran(2)
= paran 3)

Srmax = paramn(4)

Srmin = paran(5)

| anbda_RC = par an( 6)

pO0_RC = paran(7)

A _Krel = param8)

b_krel = paran(9)

perm sat = paran(10)

kappa = paran(11)

| anbda0 = paran(12)

rr = paran(13)

beta = paran{14)

pc = paran(15)

al pha = paran(16)

aaa = paran(17)

! Constant coefficients

DSr = Srmax-Srmn

C RC = l anbda_RC/ (1. -1 anbda_RC)

C KO = (1.+2.*K0)/3
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'Initial values
gamma0 = ganma_w* Sr 0* nnO+gamma_s* ( 1- nn0)
do i=1,nz
z = Dz*i
suct (i) = suctO
ee(i) = eeO
nn(i) = nn0
pOol d(i) = ganmma0*C_KO0*z
pO(i) = pOold(i)
if (BC. eg.1l) then

suct (1) = suctBC
suct (nz) = suctBC

endi f
R CALCULATI ON PROCEDURE STARTS----------nc-mmmmonn !
DO k=1, nt Ilteration in time
I'Cal cul ation of variables at each point
do i=1,nz
z = Ez*i

aux(i) (suct (i)/p0_RC) **(1/(1-1anmbda_RC))

Sr(i) = DSr*(l +aux(i))**(-1anbda_RC) +
Srmn

perm(i) = pern]sat* A krel*Sr(i)**b_kre

d_permdsSr (i) b_krel*perm(i)/Sr(i)

aux(i) = (1+aaa*(l exp(-al pha*suct(i))))

aux2(1) = lanbdaO/ (1+ee(i))

pOast (1) = pO(i)/aux(i)
d_epsvol _dp(i) = aux2(i)/p0(i)
d_epsvol _ds(i) = -aux2(i)*aaa*al pha*exp(-
al pha*suct (i))/aux(i)
aux(i) = (suct(i)/p0_RC)**(1/(1- Ianbdal%))
d_Sr_ds(i) = (Dsr/p0_RC)*(-C_RC* (1+aux(|))**( | anbda_RC- 1) *
(suct (i)/p0_RO)**C RC
d_p_t(i) = (pO(i)-pOold(i))/Dt
funct _f(i) = nn(i)*d_Sr_ds(i)-Sr(i)*d_epsvol _ds(i)
funct_g(i) = Sr(i)*d_epsvol _dp(i)
funct_h(i) = d_permdSr(i)*d_Sr_ds(i)
enddo

!Calculation of increment of suction
Dsuct (1) = 0.0
Dsuct(nz) = 0.0

do i=2,nz-1

Dsuct(l) =(Dt/funct _f(
-(perm(i1)/gamma_w) *(s
funct _g(i)*d_p_t(1)-(
((suct (i +1)-suct(i))/
suct (i))/Dz)

L%%(i+1)-2*suct(i)+suct(i-1))/([2*[2)-
1/ gama_w) *funct _h(i)*
Dz) **2+f unct _h(i)*(suct (i +1)-

enddo
I Updat e vari abl es
do i=1,nz

suct (i) =suct (i) +Dsuct (i)
Inc_epsvol (i) = d_epsvol _ds(i)
*Dsuct (i) +d_epsvol _dp(i)*d_p_t(i)

epsvol (i)=epsvol (i) +I nc_epsvol (i)

gama(i) = gamma_wrSr(i)*nn(i)+game_s*(1-nn(i))
80(!)1: 0.

o j=1,i

pO(i) = pO(i)+gamma(j)*C_KO*Dz
nddo

ee(i) -1.+(1. +ee(i))*exp(-Inc_epsvol (1))
nn(i) ee(i)/ (1+ee(i))
pOol d(i) = pO(i)
enddo
I'Cal cul ation of settlenents
do i=1,nz
di spl acenment (i) = 0.
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do j=i,nz
di spl acerment (i) = di splacenent (i) +epsvol (j)*Dz
enddo
enddo
I e T T TR PRI NT RESULTS ---------mmmmmmmii oo - - !
ti me=k* Dt
if ((k.eqg.2).or.(k.eqg.1l).or.(mMmeq.k)) then
mei nt (ff)
myEmT i w
i wei wl
ifile=iw+100
wite (ifile,*) 'Tinme(days) Ltime
do n¥l, nz
z=(m1)*Dz
wite (ifile,'(2(el15.5,1x))"') z, suct(m
enddo
wite (12,'
wite (13,'

(2(el5.5, 1x
wite(l4ﬁ§
(
(

suct (nw)

pOast ( nw)
pO(nw)

di spl acerent (1)
Sr (nw)

epsvol (nw)

wite (15,'
wite (16,"

333333

N0)
2 5,1x))")
3 -5,1x))")
3(el5.5,1x))")
i 3(el15.5,1x)) ")
wite (17,"' (3 5 )))
endi f
ENDDO
cl ose(12)
cl ose(13)
cl ose(14)
cl ose(15)
cl ose(16)
cl ose(17)
return
end
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Chapter 4

Earth Dam Sliding Failure: Aznalcollar Dam, Spain

4.1 The Failure

Mines in the area of Aznalcdllar, a town in the province of Sevilla, southwest
Spain, have exploited from ancient times a number of metallic minerals (zinc,
lead, silver) associated with pyritic formations. The process of mineral extraction
produces large volumes of pyritic tailings which, in the Aznalcéllar mine, were
stored under water in a large pond area. The pond, whose layout is shown in the
air photograph of Figure 4.1, is maintained by a perimeter dyke, which was
conceived as a homogeneous rockfill dam made impervious by an upstream
mantle of clay. The pond evolved in volume during the lifetime of mining
operations in order to accommodate the increasing amounts of waste. The
increasing demand of waste storage capacity was resolved (in the original design)
by increasing the height and size of the dam in the manner schematically indicated
in Figure 4.2.

A small embankment was first built and a small cut-off wall was installed to
avoid leakages through the upper thin aluvium indicated in the cross-section (Fig.
4.2). Then, the dam height was increased in a “forward” or “downstream”
procedure maintaining the position of the upstream face.

The toe of the downstream slope moved forward and the horizontal size of the
dam base increased. In the original design, which dates back to 1977, the
successive downstream slopes were supposed to be paralel to each other and a
constant width of the dam crest was maintained (Fig. 4.2).

The initial pond was built in 1978. Twenty-one years later, the dyke had
reached a height of 28 m. However, the design was somewhat changed, as shown
in Figure 4.10. The implications of the changes introduced will be discussed later.

On April 25, 1998, some time during the night, a breach opened in the long
perimeter dam located in the east side of the tailing’'s pond and a catastrophic
flood of liquefied mine tailings invaded the valleys of nearby rivers (first the
Agrio river and then the Guadiamar river — atributary of the Guadalquivir river).

The acid nature of the tailings and the presence of heavy metals created deep
concern. Dofiana National Park, an emblematic and protected natural environment,
famous for its unique Iberian fauna, was at risk.

Figure 4.3 shows a cross-section of the tailings pond in a west-east direction.
The dyke sits on granular and pervious aluvium (aterrace of the Agrio river), 4-5
meters thick, which overlies a deep stratum of marine over-consolidated clays of
tertiary age. The clay, known locally as Guadalquivir blue marl, dips gently (2 to
4°) towards the SSE.

The lower boundary of the blue clay is located at a depth of 60 m below the
dam foundation. The thick clay deposit sits on a pervious aguifer whose
piezometric level islocated at the surface. Therefore, the clay layer is bounded by
two pervious strata having essentially the same piezometric head. In addition to
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the sub-horizontal sedimentation planes, the over-consolidated blue clays are
dissected by vertical joints having smooth surfaces. Three vertical joint families
were identified, the most prominent one being in the direction NE-SW.

NORTH BASIN
{pyroclasts)

SOUTH BASIN
{pyrites)

: ™ Slided area
‘\Profile 3

Figure 4.1 Aerial view of the pond a few weeks after the failure showing the direction and
dip of stratification planes.

PERVIOUS ALLUVIUM
CLAY
Figure 4.2 Aznalcdllar dam according to original project (1977) (Alonso and Gens, 2006).

&
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Figure 4.3 Breach open in the dam. The foreground shows the valley of the Agrio river,
covered by athick deposit of mine waste (acid liquefied pyrites) (Alonso and Gens, 2006).

Level Level
(m) | W—E Quaternary Terraces Quaternary Terraces (m)
80— (gravel and gand) Tailings Dam (gravel and sand) (Y
0w e ——— — e 40
0=~~~ — — = ~Miocenemarl —— —— T 0
- 40 R RN — 40
Paleozoic slate Miocene sand 0 250m

(b)

Figure 4.4 (@) Plan view of the pond; (b) representative cross-section in a west-east
direction (Alonso and Gens, 2006).
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Figure 4.5 Displacement of the dam, indicated by the plotted segments, which join the
same points of the dam crest before and after failure. The discontinuous line indicates the
contour of the slide (Alonso and Gens, 2006).

A comparison of the topography before and after the failure (Fig. 4.5) was
useful to identify the origin of the failure. It was discovered that a 600 m long
stretch of the southern portion of the dyke facing the Agrio river had displaced
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forward, an average distance of 50 m. The plot in Figure 4.5 shows a series of
segments which connect two equivalent points in the dam crest, before and after
failure. The written number indicates the travelled distance.

For some particular marks, two numbers are indicated (for instance, for mark
H-13, D, = 49.1 m and D, = -1.4 m). The two numbers show the horizontal
distance (Dy,) travelled by the dam and the vertical distance (D,). The negative sign
implies a fall and it indicates that the dam slid forward in a plane dipping gently
towards the east. The calculated dip of the segments (atan(D./Dy)) is close to 2—3°.
This information was interpreted as a strong indication that the failure plane was
actually a sedimentation plane. Downstream, a few electricity towers were also
displaced by the slide. Horizontal and vertical displacements of these towers were
also measured. The positive D, numbers indicate now a ground heave. These
towers were located in the passive, resisting side of the slide.

The cross-section of the southern dyke after the failure, determined by the
information provided by borings and exploration pits, isindicated in Figure 4.6a.

Altitude
a.s.l.
! W-E| NW-SE
60 . ’/
s 1 s gapil
40 : iﬁ B e~ ——cows
] _ A - - = ; = — 7_ _7 . y
20_7_ - 7__ ,- 77_ _, 7_ ,- 77 T __7_ - __. l_ - - 7-__ 7 77_ _77_ 7,
o A
Altitude @
as.l.
) W-E ‘ NW - SE

—_| Blue clay Terrace T3 Terrace TO "] Rockfill dam E Sl?)?t?j:rt:?:i:jk?;y

- " 1 Fill placed L .
<. +| Tailings a[lleff:iclilre = Sliding surface Borings OEESPm

(&)

Figure 4.6 Cross section of Profile 3 (location in Fig. 4.1): () after failure (the position of
the borings drilled is shown); (b) reconstructed position of the initial failure and dliding
planes, at the start of the diding motion (after Moya, 2004).

The section corresponds to the cross-section identified as Profile 3 in Figure
4.1. The figure shows that the dam moved forward, sliding on a sedimentary plane
located approximately at a depth of 14 m below the axis of the dam. The upper
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figure was interpreted by Moya (2004), who was able to plot the original geometry
of the incipient failure and the shape of the diding surface as shown in Figure
4.6b.

The dam motion originated a large upstream void, which was limited by an
essentially vertical plane located in the position of the toe of the upstream dam
slope. This observation implies that the stored tailings were capable of
maintaining a stable vertical “cliff”, a result which has interesting consequences
regarding the motion of the dam, discussed further in Chapter 6. The failure
surface daylights downstream in more than one dliding surface. The motion
created an accumulation of layers that resulted in the elevation of the ground,
immediately downstream of the dam (recorded also by the displacement of the
electric towersin Fig. 4.5). Maximum elevations of 8-10 m were measured. It was
also noticed that the motion of the dam had a dlight rotation towards the south.

The pond (Fig. 4.4) was divided in two parts (or “basins’), separated by a
jetty. The southern one stored fine pyritic tailings. In the northern one, somewhat
coarser pyroclastic granular waste was stored. The upper level of the waste in the
pond was approximately the same in both basins. The direction of the dam
limiting the northern basin is oriented in a direction close to north-south. The dyke
direction in the southern basin changes approximately 20° with respect to the
northern dyke direction and faces an ESE direction.

Interestingly, despite being essentialy identical in terms of geometry and
geotechnical conditions, the northern dyke remained still. As a result, a breach
was opened at the junction between the two dykes. An explanation for this
behaviour will be given later in this chapter.

The vertical jointing of the clay also controlled the geometry of the didein its
upstream end: the vertical limiting surface within the clay in Figure 4.6b is
probably a consequence of the well-developed system of vertical discontinuities.
On the other hand, the orientation of the failure surface crossing the dyke (at the
position of the breach) follows a NE-SW orientation which agreed with the
direction of the dominant family of vertical discontinuities.

4.2 Geotechnical Properties of Tailings and Foundation Clay

The tailings of the southern basin may be described as a non-plastic fine and
uniform silt. The main mineral is pyrite (iron disulphide, S;Fe). Other metallic
minerals and chemical compounds in minor proportions complete the composition
of the tailings. The silt is very homogeneous (coefficient of uniformity = 4.7)
around an average grain diameter of 10 um. Pyrite is heavy (solid unit weight ys =
43 kN/m?) and it leads to a high natural density of tailings (average saturated unit
weight v, = 31 kN/m®) significantly higher than most natural soils.

Triaxial tests on undisturbed specimens resulted in a drained friction angle of
37°. It was also found that these pyritic tailings had a significant cementation (the
unconfined compression strength of saturated specimens ranged between 100 and
200 kPain most of the tests performed). Its permeability islow (10 to 10° cm/s),
avalue consistent with the grain size distribution.

The lower blue clay is a uniform deposit of high plasticity clay (w, = 63-67%;
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IP = 32-35%; clay content = 47-58%) which classifies as CH or MH. The water
content (30—35%) is close to the plastic limit (it indicates high consistency). The
void ratio ranges between 0.8 and 1. Clay minerals (70% of the total) include
calcic smectite (35%), illite, and kaolinite. The remaining non-clay minerals are
calcite and quartz.
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Figure 4.7 Drained direct shear test on the blue clay. Effective normal stress: 400 kPa
(Alonso and Gens, 2006).

This clay exhibits a characteristic brittle behaviour. This is shown in Figure
4.7. Peak strength (tp) is reached for a small relative displacement (d, < 1 mm) in
drained direct shear tests. The loss of strength immediately after peak (Atp) isalso
rapid. The strength continues to drop as relative displacement accumulates. Shear
tests on natural discontinuities and ring shear tests indicated a residua friction of
110, avalue consistent with the mineralogy of the clay.

A synthesis of strength tests is given in Figure 4.8. The plot highlights the
brittle nature of the clay and the rapid loss of strength as the relative displacement
between shear planes, §, increases. The peak envelope is characterized by ¢, = 65

kPaand ¢, = 24.1°. It takes a small relative displacement (6 mm) to eliminate any

apparent drained cohesion and to bring the friction angle down to 18-20°.
Residual conditions require higher relative displacements, in the order of a few
centimeters.

Oedometer tests provided the following range of values for the coefficient of
consolidation (¢, = 0.5 to 1.5x10°cm%s) and permeability (K = 2 to 7x10°°
cm/s), avery low value.
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Figure 4.8 Strength envelopes of Guadalquivir blue clay based on direct shear tests.
Strength is controlled by the relative shear displacement, 5 (after Alonso and Gens, 2006).

4.3 Water Pressures and Stresses in the Foundation

4.3.1 Water pressure measurements

After the failure, borings were performed at different locations to investigate
subsoil conditions. Borings were arranged in “profiles’ in order to provide
representative cross sections of the dam. Two of them (Profiles 1 and 3) are shown
in Figure 4.1. Profile 1 was located in the northern dyke, which remained stable.
Therefore, it provides, as a first approximation, the subsoil conditions existing in
the failed dam before the accident. Vibrating wire piezometers were located in
three borings S1-1, S1-2, S1-3 at two elevations (piezometers P1 and P2 in Fig.
4.9a). Measured pore pressures after stabilization are also shown in Figure 4.9a
Two representations are given: a vertical segment equivalent to the column of
water and a plot in a horizontal scale in order to provide a better picture of pore
water pressure variations with depth. Also indicated in the figure is the hydrostatic
distribution of pressures associated with the upper boundary conditions. The
measured pressures indicate a marked vertical gradient within the upper 20 m of
blue clay. Excess pressures dissipate towards the pervious granular layer
underlying the dam where a phreatic surface is permanently established. However,
upstream of the cut-off wall, which was built at the start of dam construction, the
boundary water pressure is controlled by the level of the reservoir (the tailings
were permanently submerged in the deposit). The estimated profiles of hydrostatic
pressures at the position of the three boreholes represented in Figure 4.9a (S1-1,
S1-2, S1-3) are also given.

It was realized that existing pore pressures at the elevation of the falure
surface were unexpectedly high. This is a very relevant result which provided a



138

Geomechanics of Failures. Advanced Topics

Chapter 4

clue for the instability of the dam. The high existing pore pressures could have
reduced the available strength on potential failure surfaces to low values.
However, Profile 1 is not in the failed zone. The reported pore pressures were
measured a few months after the failure and the modifications of the pond
conditions since the time of the failure had been significant (outflow and
associated erosion of tailings and a reduction of the water level in the pond).
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Figure 4.9 Cross-section at Profile 1 (see position in Fig. 4.4) in the non failed part of the
dam (Gens and Alonso, 2006): (a) Measured pore water pressure; (b) comparison of
calculated and measured pore water pressure.
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But data on Profile 1 are very useful to validate any calculation procedure for
water pressures, a key issue in Aznalcdllar failure. Once validated, the procedure
could be applied to estimate the conditions of the failed dam immediately before
the rupture.

A simple calculation method may be devised by combining some classical
solutions of the theory of elasticity and the one-dimensional solution of the
consolidation problem (Terzaghi, 1943).
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Figure 4.10 (@) Evolution of the dam cross-section; (b) increase in dam height (Gens and
Alonso, 2006).

4.3.2 Evolution of the dam height

The actual evolution of cross section geometry and dam height along the years
is shown in Figure 4.10. The plot (Fig. 4.10a) shows that the original dam cross
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section (Fig. 4.1) was somewhat changed. The dam lost its symmetry and a
downstream steeper slope (39° against 30° in the original design) was introduced.
In addition, the crest width was substantially increased in 1998, 10 years after the
initiation of construction in 1988. The height of the dam increased at an
approximately constant pace (1.5 m/yr) in the period 1978-1990 (Fig. 4.10b). The
rate of increase of dam height slowed thereafter for a few years to increase again
in the two years previous to the rupture.

4.3.3 A simple calculation model and its implications

A simple procedure to calculate stress and pore water pressures in the foundation
soil under the evolving geometry of the dam was developed. Total stress will be
first calculated. Then it will be accepted that the increase in pore pressure induced
by the (sudden) application of a total stress is given by the increment of mean
stress (this is the case in an elastic porous media). Excess pore water pressures
will then be dissipated towards the upper pervious boundary.

a) Calculation of total stresses

Consider the elastic solution for an embankment loading of infinite lateral extent
in one direction (plane strain conditions) shown in Figure 4.11.

b |
| a —
(IR
N | 1 -
R, *Rr
o
______ A
ZR' (XR:ZR)

Figure 4.11 Embankment loading of semi-infinite extent.

The state of stress (c,,04,0yx) a arbitrary Point A (Xg zr) is given by (Poulos
and Davis, 1974)

PN T

T

s, :EK%*BZJH{%)”(iJ'”(%H :E £, (Xq: Z2,b), (4.1b)

a
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o p
=—Ca| ™| = f, (%, 2q,a,b), 4.1
T, no{aj nz(szRa) (4.10)
where
Xm:b_XR’
Z, = Zgs

R= (xm—a)2+z§q,

R]_:\IX; +Z'2n,
B, = aan(x,/ z,),
B, =atan((x,-a)/z,),

a=p,-B,

and p is the maximum stress applied by the embankment.

Consider now, in Figure 4.12, the situation of the first stage of construction of
the Aznalcollar dam. Tailings and rockfill have significantly different total unit
weights (y; and y;). It was mentioned that y, = 31 kN/m®. The rockfill may have a
natural unit weight of the order of v, = 19 kN/m?®.

The load applied by dam and tailings (Fig. 4.12a) may be viewed, with
sufficient accuracy, as indicated in Figure 4.12b. This interpretation facilitates the
justification of the superposition indicated in Figure 4.12: the external load is
obtained by superimposing two semi-infinite embankment loadings, those shown
in Figures 4.12c and 4.12d. The first one (Fig. 4.12c) has a uniform specific
weight of y, and the second one (Fig. 4.12d), located in a different position with
respect to the reference system (xg zr), introduces the excess of stress applied by
the heavy tailings, not accounted for in Figure 4.12c.

Symbolically, it could be written, with reference to Figure 4.12

@ =)= () +(d) (4.2)

Equations (4.1a) to (4.1c) are now applied to the geometry of Figures 4.12c
and 4.12d and the results are added.

Note that the value of p in the first case is p, = y; h and in the second case,
P, = (v, —7, )h. Therefore, the stressin point A will be given by

|:f 1 2R 8, bl ] m[fl(xwzwazvbz)] (4-33)
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Figure 4.12 Superposition of solutions to solve the stress distribution for the dam and

pond.
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At this point, it is convenient and sufficiently accurate to assume that the
“continuous’ evolution of dam geometry was actually made in a number of finite
jumps. This hypothesis facilitates the calculations of pore water pressure
dissipation. The actual sequence of height jumps assumed is also indicated in
Figure 4.10. Jumps are made more frequent when the rate of loading is higher.
Consider now two successive dam geometries (I and I1) in Figure 4.13.

The total stress, when Il is built, will be a function of geometry Il through
Equations (4.3a) to (4.3c). However, the analysis of pore pressures requires the
calculation of the loading increments because each one of them marks the
beginning of a consolidation process and their origin is changing, as shown in
Figure 4.10.
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Figure 4.13 Geometry of two successive positions of the dam.

The jump in stress when geometry | changes (instantaneously) into |1 is given by

Ao, =o' o', (4.49)
Ac, =G} -G, (4.4b)
AT, =T, — Ty, (4.4c)

where stresses are given in Equations (4.3) and (4.1) and the superscripts (1) and
(1) refer to the two geometriesindicated in Figure 4.13.

b) Pore water pressures

It will be assumed that the instantaneous increase in pore water pressure when the
dam “Il" is applied over dam “1” (Fig. 4.13) is given by the increment of mean or
“octaedral” stress:
Ao, +Ac, + Acy

3 (4.5)
Ao, +Ac, +v(Ac, +Ac,) B (1+v)(Ac, +Ac,)

3 3

Auy(x,2) = Ao, =
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where the condition of plane strain (e, = 0) is introduced, assuming elastic
conditions. In fact, if the soil is assumed elastic, shear induced dilatancy is not
present and theinitial pore pressureis given by the increase in mean stress.

Once generated at each of the loading jumps, pore pressures will dissipate in
time. Consider again Point A (xg, Zz) and the problem of finding its pore pressure
at the time of failure, t;, when it has experienced the stress history associated with
embankment and tailing’s pond construction. If the set of time instants at which
loading jumps are applied is ty, ...,ty, the pore pressure at t; will be obtained by
superposition of aset of N consolidation records,

Uelt) = Y Au, (i -t ), 46)

where (t; — t;) is the dissipation time for each of the instantaneous increments of
loading in which the history of dam construction has been divided.

We are interested in changes in shear and effective stressesin the proximity of
the dam; let us say the 20 upper meters of the clay foundation. The lower
boundary of the deep blue clay, being 60 m apart, has no effect on the dissipation
conditions of the upper levels. In addition, horizontal flow is probably of minor
importance, given the high vertical gradients induced by the top pervious
boundary. Therefore, a one-dimensional vertical dissipation of pore pressures will
be assumed. Furthermore, given the thickness of the blue clay layer, the clay
stratum may be considered to be semi-infinite.

The solution of the one-dimensional consolidation problem of a semi-
infinite stratum subjected to a uniform increase in pore water pressure, Uy, is given
by the expression (Scott, 1963),

Z
W(Z,T) = erf (ﬁ) (4.7

where W is a dimensionless pore water pressure (W = u/up), Z is a dimensionless
depth (Z = z/H) and T is the time factor (T = ct/H?); U, is the initial increment of
pore pressure, H is any reference distance, which is interpreted as the thickness of
an upper clay layer, and c, is the consolidation coefficient. The error function is
defined as

erf(x) = %fe‘z dt. (4.8)

The dam and tailings reservoir loading increments induce profiles of initial
pore pressure, which, in general, are not uniform in depth. However, the initial
distribution of excess pore pressures is fairly uniform under the reservoir and part
of the dam. The simple assumption made, however, is that the local evolution of
Excess pore water pressuresis given by

Au(x,z,t)=Au,(X,Z)W(Z,T). (4.9
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These values are then used in Equation (4.6) to find pore pressures due to the
history of loading. This approximation was shown in Gens and Alonso (2006) to
provide very similar results to a finite element two-dimensiona coupled flow-
deformation analysis.

T = 7,300 days
(1998)
— 6,600
. 3,525 — 4,135
2430 N
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0 1,125 \\
(1978) N

0 30m
]

Figure 4.14 Mobilized friction angle on the position of the failure plane in the blue clay
(Gens and Alonso, 2006).

Once pore pressures are calculated, total and effective stress can be found at
any point of the foundation during the entire operation of the dam.

The procedure described above was validated against the recorded pore
pressures in piezometers located in Profile 1 (Fig. 4.9b). Two calculations, for a
horizontal plane joining piezometers P1, are shown in the figure. They correspond
to two values of c,, namely 10 cm?/sand 2.3x10°° cm?/s.

Actual measurements fit well between the two plotted approximations. The
curve for ¢, = 10°cm%s is closer to the measured pore pressures in the
downstream side of the dam, a critical area to interpret stability conditions, as
discussed later. Vertical profiles of calculated pore pressure (the shaded area)
show the response associated with the two ¢, values mentioned. Again a
reasonably good agreement with measurements is found. A value ¢, = 10 cm?/s
was henceforth applied in the calculations.

¢) Mobilized shear stressesin dam foundation

Consider now in Figure 4.14 the forward construction of the dam in the failed
area. Attention is paid to the shear stress (t =, ) development at the position of

the failure plane (it was simplified as a horizontal plane, 14m below foundation
level). Rather than directly plotting z, it is more meaningful to plot the stress ratio
(t/o] ) where o}, isthe effective normal stress on the plane, or, aternatively, the
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mobilized friction angle defined as ¢/, = atan(t/c}, ).

This mobilized friction angle, ¢, , in Figure 4.14, may be directly compared
with the strength envelopes of the blue clay given in Figure 4.8. Each one of the
curves plotted corresponds to the indicated time (in days) after the beginning of
dam construction. The figure also shows the geometry of the dam for some
particular times. Thevauesof t and o, = o, were calculated through Equations

4.3c and 4.3a The pore pressure at each time instant was approximated as
described in the previous section.

The mobilized friction angle advances with the dam, moving forward. The
curves exhibit a significant maximum, which is located on the vertical of the
downstream toe of the dam. Once a maximum is reached at a particular location,
the forward motion of the dam implies areduction in shear stress and therefore the
mobilized friction is reduced. A maximum angle close to 40° is calculated 10.3 yrs
after the beginning of construction (at around 1988). Later, the reduced rate of
dam heightening beyond 1990 resulted in a sustained value of the mobilized
friction on the potential failure plane at approximately ¢,.,, = 35-37°.

The calculated maximum values of ¢/ . are high values that are not resisted

mob
by the blue clay except if some effective cohesion is operating. As soon as some
minor relative displacements (of tectonic origin, for instance) eliminates the
apparent effective cohesion, the clay will not be able to resist the mobilized
friction angle applied by the dam.

Therefore, in order to maintain equilibrium, some shear stress, which cannot
be resisted by the blue clay under the toe of the downstream slope, will be
transferred to points nearby, increasing in turn the mobilized friction under the
entire dam foundation. This process is known as progressive failure. In view of
Figure 4.14, this phenomenon could have started for a dam height of 18 m, at
around 1986.

Thevalue of ¢,  was calculated for the cross-sectional area of the foundation

mob

and plots of interpolated contours of ¢,,,, were drawn for several geometries of the

advancing dam.
The results are given in Figure 4.15. The figure shows that the maximum
value of (t/c] ) is reached at a certain depth under the downstream toe of the

dam. This depth changes slowly as the size of the dam increases. This critical
depth is controlled not only by the dam cross-section but aso by the rate of
dissipation of excess pore pressures. It is expected that the progressive falure
mechanism would develop around the maximum values of (t/c}, ) in a process of

shedding shear stress towards the surrounding foundation soil. Therefore, the
curve joining the position of maxima (shown in Fig. 4.15c) is a reasonable
position of the dliding surface and indicates aso the length of a*damaged” band.
The position of this line is quite close to the actual elevation of the failure surface
identified in the field.
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Figure 4.15 Mobilized friction angle in the foundation for three positions of the dam (Gens
and Alonso, 2006).

This simple analysis, which makes use of the classical theories of elasticity
and one-dimensional consolidation, is capable of providing an interesting insight
into the nature of the shearing mechanism acting on the foundation during the
forward construction of the dam.

4.4 Limit Equilibrium Analysis

Failure conditions in global terms can be investigated by means of a limit
equilibrium analysis. The objective is now to find, by means of a back analysis of
the failure, the average friction angle prevailing on the dliding surface. It will be
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assumed that effective cohesion was no longer available after the progressive
failure mechanism mentioned above.
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Figure 4.16 Model for the limit equilibrium analysis of the main wedge of Aznalcdllar
slide.

Consider in Figure 4.16 a representative cross-section of the failed dam. The
figure reproduces the reconstructed shape of the failure as revealed by fied
observations (Fig. 4.6b). It incorporates the following observations and
interpretation of field data:

- Thedideislimited inits upstream part by an essentialy vertical wall at the
position of the upstream toe of the dam. This vertical plane reflects the
structure of the clay, described by a few families of vertical discontinuities
and the sub-horizontal sedimentation planes. The cementation of tailings
aso explains that they were able to maintain a stable vertical cliff after the
dide.

- The diding surface follows a stratification plane. The inclination of the
basal dliding plane is somewhat lower than the dip of the strata (estimated
in the range 2-4° in field surveys). This geometry implies that the depth of
the failure surface increases in the direction of motion.

- The failure mechanism ends, in the downstream direction, in a passive
wedge (Fig. 4.17). This wedge does not start directly below the dam toe but
at a distance of 55 m, following the interpretation of the initial shape of the
failure surface in Figure 4.6a. The passive wedge is a simplified
interpretation of the folded strata discovered by trenches performed after
failure.

- Therefore, the mechanism is assumed to be described by a large wedge,
which includes the dam, a mass of tailings overlying the upstream dam
slope, and an exit passive wedge that offers a reaction against diding. A
vertical surface is assumed to be the interface between the two wedges

4.4.1 Backanalysis of failure

The upstream vertical surface receives the thrust exerted by the tailings in the
upper part, by an intermediate granular layer 4 m thick, and by the lower clay. If a
fissure was open in the clay, previous to sliding, as a conseguence of the tailings
thrust against the dam and the presence of vertical discontinuities, it would have
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been probably filled with saturated tailings. Then, under the hypothesis of active
conditions, the following total horizontal force is calculated against the sliding

body:

, 1, 1
Fy = Fui +Uy, =5Ka Y (H +)° +EYW(H +e)?, (4.10)

where K, =(1-SINyings )/ (1+ SN iings ) i the active Rankine coefficient for
the tailings, vy, is the effective unit weight of tailings, vy is the unit weight of

water, H is the dam height and e, the thickness of the slab of moving soil directly
under the toe of the upstream dam slope.
The weight of the main sliding wedge is made of three components:

2
- tailings w = 1rHT (4.11)
2tana,
where a; isthe slope angle of the upstream slope of the dam;
2 2
- dam: w, =+ YfH +Crest Hy +12H° (4.12)
2tan 2 tana.,

where o, is the slope angle of the downstream face of the dam, Crest isthe width
of dam crest and y; isthe specific weight of the dam rockfill;

- soil slabx WSZ%ysoil(el+Q’>)(Lbdarn+55)' (4-13)

where v4 is the average effective unit weight of the foundation soil, Lygam the
length of the base of the dam and e; and e; are conveniently defined in terms of
the thickness of soil slab under the center of the dam base, e, as follows (Fig.
4.16):

e_L=eR+Lb‘?amtanab, (4.14)
& = eRJ{ b;am+55jtanocb (4.15)

where Lpgan IS the length of the base of the dam and «, is the slope of the dliding
plane. Lengths are expressed in meters.

Consider now the passive wedge resisting the slide in Figure 4.17. The water
pressure forces against the wedge are assumed to be given by a hydrostatic
condition associated with awater level at the surface. They are given by,

1
u hp = E’Yweo? ) (4.16)
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2
U, =218 (4.17)
2sino,

where o is the exit inclination of the lower dliding surface of the passive wedge.
Field observations indicated that o is close to 20°.

€3 Fh

1 Uy,

Figure 4.17 Passive wedge.
The weight of the wedge is given by

W :lysoile‘-f

. 4.18
P 2tana, (4.18)

The system of forcesin Figure 4.17 must be in equilibrium. Shear Sforces are
related to effective N’ forces through the Coulomb failure criterion. Since the
effect of the upper granular layer is very small, the effective friction parameter is
taken to be equal to the drained clay friction, ¢y, . Imposing the balance of forces

in vertical and horizonta direction,

N, cosa, +U  cosa,-W, -§, -S sina, =0, (4.19)

Fp *Up, —S, cosa, — N sina, -U sina, =0, (4.20)

where S, = N tan¢, and §, = F tand; .

These two equations will enter the equilibrium of the main wedge.

Pore pressures on the sliding plane have aready been determined by the
simplified procedure described above (see Fig. 4.9). They are plotted in Figure
4.18 in amore simple way in order to facilitate the calculations. They correspond
to the date of the failure and are expressed in terms of water heads (in meters).

The integration of these pore pressures along the base dliding surface provides
the water pressure force, U (in KN/m if lengths are in meters).

_680+520 H 1 +520Crest
2 tano, cosa, cos o,

520+260 H 1 N 260+172 55 1
2 tano, coso, 2 cosa,

u

+
(4.21)
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The balance of vertical and horizontal forces of the main wedge leads to the
following expressions

W +W, +W, - §, -U cosa, — N'cosa,, — N'tand;, sina, =0, (4.22)

Fi +U, —F, -U,, —N'tan¢; cosa, +U sina, + N'sina, =0, (4.23)

which can be expressed in terms of quantities previously defined.

Pore water pressure on sliding plane
)

52 ¢ 52

|
L | “.._ Passive

20 | TO, wedge

Sliding surface ~

Figure 4.18 Pore pressures against the dliding surface.

Equations (4.22) and (4.23) were solved for the effective friction angle
necessary to obtain strict equilibrium, ¢y, . The system of Equations (4.19), (4.20),
(4.22), and (4.23) is nonlinear in ¢, but it can be easily solved in an Excel sheet
with the help of the command “solver”.

The following parameters define the geometry of dam actually built and the
failure surface as well as additional material parameters:

op=2° o = 20° oy = 29° o, =3P
Yoot = 19.5kN/mM®  y,, = 10 kKN/m® v = 19 kKN/m® v = 31 kKN/m?
$'tailings = 37° Crest=26m H=27m er=134m

When these values are introduced in the above equations, the solution is ¢y =
18.09°.

This value of the effective friction angle ¢y, is intermediate between the peak
and residua friction angles. It is the average value between the two. However, one
should imagine that, immediately before failure, some parts of the failure surface
(namely those directly affected by the forward construction of the dam) would be
close to residual conditions. Others would maintain strength properties closer to
peak values: those parts not strained by the dam construction. The fact that the
calculated friction for equilibrium is intermediate between peak and residual
friction supports the mechanism of progressive falure. It aso indicates that
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immediately after the initiation of the failure, there is a danger of progressive
decay of friction towards the residua value (11°). The implications of this
potential for further reduction of available strength at the diding surface will be
addressed in Chapter 6.

4.4.2 Undrained analysis

The main hypothesis so far is that the failure was a drained process. However, the
low clay permeability also suggests that undrained conditions would also be a
possibility. If the soil fails in an undrained manner, pore pressures are generated
during the shearing process. The undrained strength, ¢, not only reflects the
drained strength parameters but also the dilatancy conditions of the soil. The
undrained analysis of the real geometry of the failure surface may be easily
performed with the help of the set of preceding equations. Friction ¢, is reduced

to 0° and the shear forces at the diding plane or at interfaces are simply the
product of ¢, by theinvolved length. The preceding set of Equations (4.19), (4.20),
(4.22) and (4.23) was solved for ¢, and strict equilibrium is found for ¢, = 70 kPa.
This value should be compared with the unconfined compression strength
measured in specimens recovered in borings. Their g, valuesincrease slightly with
depth. Average values at the elevation of the failure plane determined on
recovered specimens fall in the range 250 to 300 kPa. Therefore, the safety factor
against undrained failure is about 1.8-2.0 (undrained strength is half the value of
the unconfined compression strength).

Undrained conditions in this overconsolidated foundation clay do not explain
the failure. Thisis usually the case in overconsolidated clays, specially the plastic
materials, which may exhibit arelatively high undrained strength (due to dilatancy
and the associated increase in effective stress during undrained loading) and, at the
same time, a reduced drained friction angle, prone to decrease towards residual
conditions as shear straining accumul ates.

Before discussing the lessons offered by this case, we will examine the failure
from a different perspective, namely the three-dimensional nature of the problem.

4.4.3 Three-dimensional effects. The role of bedding planes

It was previously noted that the retaining dyke for the northern basin remained
intact after the diding failure of the southern dyke. However, the geotechnical
conditions and dam geometry were essentialy the same in both basins. A
satisfactory explanations may be found if the three-dimensional nature of the
sliding motion is analysed.

The situation isillustrated in Figure 4.1, which shows the direction and dip of
sedimentation planes and its relationship with the expected direction of tailings
thrust against the dykes. In the northern dyke, the thrust is sub-parallel to the
direction of sedimentation planes.

However, in the southern dyke, the tailing's thrust is closer to the dip
direction. It may be expected that this situation, other conditions being equal, will
favour a dide of the southern dam. The problem is exceedingly difficult if
considered in its entire complexity.
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Figure 4.19 (a) Slice of the potentia slide sitting on the diding surface; (b) forces
projected on the sliding plane; (c) vector composition of forces (Gens and Alonso, 2006).

Considerer, however, the simplified approach illustrated in Figure 4.19a. A
slice of unit thickness of the actua slide, which includes the entire dam and a
“dlab” of foundation soils of approximately 14 m in thickness, is sitting on the
dliding plane, which is actually a sedimentation plane. These planes are oriented in
adirection N60°E and its true (maximum) dip is close to 3°.

The dlice is now viewed as a rigid block, diding on its base. This block
receives the following external forces: its own weight, W, and the thrust imposed
by the tailings.

It will assumed that the latter is represented by a force vector F acting
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normal to the direction of the dam and paralld to the dliding plane (Fig. 4.19c).
Now, the conditions of the northern and southern basins only differ in the
direction of the force vector F . In the northern basin, F is closer to the direction
of the sedimentation planes and therefore the tailings thrust “sees’ the dliding
plane with an apparent direction close to 0°. By contrast, the change in direction of
the southern dyke, implies that the motion of the slide is closer to the dip direction
of sedimentation planes. The tailing thrust in the southern dyke “ sees’ an apparent
inclination of the dliding plane closeto 2°.

The problem now is to find the necessary forces, F, to make the dam

unstable, having in mind that vector F has different directions in northern and
southern basins.

Figure 4.19a shows the force vectors acting on the unit slice. The weight, W,
will be divided into the normal component, W, , and the shear component W, in
the direction of the dip of the sedimentation planes. Also indicated are the thrust
forces, Enortn and Esouen, Of the two dyke sectors (northern and southern).

In Figure 4.19b, force vectors are represented in the plane of the clay strata.
The two axes plotted coincide with the strata direction (horizontal axis) and the
dip direction (vertical axis). For a purely frictional motion, the condition of force
equilibrium reads

R =|F +W,| =W, tang, (4.24)

where R is the resultant of frictional forces in the direction of dliding,
W =W, -U, W, =Wcosa, and W, =Wsina,, U is the force resultant of pore

pressure acting against the dliding surface and a, is the dip angle. R has two
components in the axis of Figure 4.19h:

R=(Fcosa,Fsina+Wsina,), (4.25)

where o defines the direction of the force F with respect to the direction of
sedimentation planes. Taking (4.25) into account, the equilibrium Equation (4.24)
becomes,

W cosa, tandy, )* =
2 ( % ) (4.268)
=F?(cosa) +F?*(sina)” +2FWsina, sina.+W?(sina,)

or,
F2+2FWsina, sina +W?(sina,)* ~(Wcosa, ~U )’ (tang, )’ =0.  (4.26h)

This equation provides the necessary force, F, to initiate the dliding motion as a
function of the direction o.. The remaining forces in Equation (4.26b) are known.
It has been estimated that W = 100,428 kN/m and U = 70,682 kN/m for a dlice
one meter thick. Previous analysisindicate that ¢; = 18.09°.
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Equations (4.26) were represented in a polar diagram (Fig. 4.20) showing
values of F for varying o angles. The direction of the tailing's thrust for the
northern and southern basins is indicated in the plot (o = 13° o = 32°). The
corresponding forces to initiate dliding are 5.27 MN/m (northern basin) and 4.11
MN/m (southern basin).

It thus appears that the force needed to make unstable the dyke in the southern
basin is substantialy lower than the force necessary to initiate the dlide in the
northern dike. If the calculated force for the southern basin makes it unstable, the
safety factor of the northern dyke against sliding would be 1.28 (= 5.27/4.11). This
result explains that a failure of the northern dyke was unlikely. Note that thisis an
approximate calculation since there are other aspects not included (the resistance
of the exit passive wedge in particular). They primarily serve to compare the effect
of the dyke direction on stability conditions.

Equation (4.26b) is actually the equation of acircle. If plotted in the Cartesian
axis (x=Fcosa,y=Fsna), which represents the two components of the

tailings thrust on the reference axis given by the horizontal direction of the
sedimentation plane (x axis) and its dip direction (y axis), the equation recovers
the more familiar form:

X’ +(y-b)? =R, (4.27)
where theradius Ris given by
R=(Wcosa, —U )tand;, (4.28)
and the position of the center along they axis,
b=Wsina,. (4.29)

The circle is shown in Figure 4.20. Its radius defines the available (effective)
friction force offered by the dide weight. At the start of the motion, this force is
exhausted by the combination of tailing's thrust and the slide weight component in
the direction of the dip of the strata. Therefore, motions against the dip direction
(for a =—90°) require the largest applied thrust. Motions in the direction of the dip
(o0 = 90°) are the easiest. This is shown by the intensity of the thrust necessary to
start the motion in each case. The “displacement” of the circle center (Eq. (4.29))
is, in fact, the weight component W in the direction of the dip of the
sedimentation planes.

Also represented in Figure 4.19 are the directions of the displacement vectors
for the two thrust forces represented. These vectors follow the direction of the
resultant R in Figure 4.19c. It can be easily shown that they follow the direction
of the radii of a circle (Eq. (4.26)). In other words, they are normal to the circle
tangent.
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Figure 4.20 Polar diagram showing forces that induce dam dliding as a function of the
direction of the thrust (oo = 13° northern dyke; oo = 32°: southern dyke). Also indicated is
the direction of the motion (arrows normal to the force function) (Gens and Alonso, 2006).

In plasticity theory, thisis a condition for an “associated” plastic deformation.
In fact, the dliding motion is entirely plastic in the sense that it does not have any
elastic or reversible component. The circle drawn in Figure 4.20 is ayield locus
for the thrust capable of setting the dlide in motion. And the condition of
associativity allows determining the direction of motion. Pure friction is therefore
an “associated plastic mechanism”, even if it isinterpreted in an inclined plane. In
plasticity theory, a displacement of the yield locus in the stress plane is described
as a “kinematic hardening”. In our paralel two-dimensiona friction force plane,
we interpret that the friction yield locus for a horizontal sedimentation plane (a
circle centred at the origin of the force vectors) is displaced when the strata are
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inclined. The inclination of the strata results in a kinematic hardening in the
direction opposing the maximum slope (dip direction). Note, finaly, that the
displacement vectors in Figure 4.20, if compared with the tailing’s thrust vectors,
are rotated towards the southern direction. This was afield observation which now
receives an explanation.

4.5 Discussion

In the original design (Fig. 4.1) safety against dam sliding was checked by means
of the Morgenstern— Price method of dlices (Morgenstern and Price, 1965). The
set of hypotheses made were particularly severe: Tailings were assumed to be
liquefied and an earthquake of magnitude MSK = 7 was applied by means of
pseudostatic accelerations a, = 0.776g (horizontal) and a, = 0.048g (vertical).
Figure 4.21 shows the water level considered in calculations. It was assumed to
reproduce steady state conditions of flow through the dam. Calculations were
made under drained conditions and a zero effective cohesion and adrained friction
angle of 25° were taken for the clay foundation. Tailings were characterized by a
natural unit weight of 29.5 kN/m? (and zero strength).

Under this set of conditions, the critical failure slip shown in Figure 4.21
provided a safety factor of 1.3, which was considered satisfactory.

Water level
//""' considered

Critical
_~failure
" surface

Figure 4.21 Stability calculations at the design stage.

Actual conditions at the time of failure are indicated in Figure 4.22. The
downstream slope was increased from 30° to almost 39°. This change, athough it
did not have any significant effect on the stability of the rockfill slope itself,
contributed to overstress and damage the clay foundation. Figures 4.14 and 4.15
show that the maximum stress ratio in the foundation soil occurs below the foot of
the slope at a given depth. The intensity of this stress ratio increases with the
embankment slope angle and, therefore, the change in downstream slope led to a
more critical situation, if compared with the original design. The distribution of
stress ratios on the foundation also depends on other aspects: the consolidation
conditions and the evolution of dam geometry.

A major departure between assumed design hypotheses and field situation
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concerns the distribution of pore pressures in the foundation. Regarding the failure
plane, Figure 4.22 shows the difference. No excess pore pressures due to tailings
(three times heavier than water!) and the dam itself were considered. The design
was based on some interpretation of steady-state flow conditions, from the
perspective of a pure seepage through the dam.

The third significant departure refers to the clay strength. The assumed
drained friction (25°) was very close to the average drained peak friction angle
(24.1° see Fig. 4.8) determined in direct shear tests. Assuming zero cohesion was
also awise design decision. However, no consideration was given to the reduction
of friction on the potentia failure plane, because of the brittle nature of the clay
and the possible development of progressive failure mechanisms. The low residual
friction angle (11°) explains that the drop in friction could be very substantial. On
the other hand, the forward construction method selected for the dam favours
conditions of progressive failure, as discussed before. These considerations were
not present at the design stage.

Most probable pore water pressure
80— f at the time of failure

'High' level in design

= calculations
2 60
= Dam designed in 1978 -, _ Dam actually
g N / built (Profile 3}
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Figure 4.22 Dam actually built and the most probable water pressures acting on the failure
plane. Also shown is the original design and the water saturation line assumed in stability
calculations (Gens and Alonso, 2006).

These differences between assumed and field conditions were enough to
offset the safety margin introduced in the design by some of the assumptions made
and in particular, the occurrence of an earthquake of medium intensity and the
liquefaction of tailings.

4.6 Mitigation Measures

The opening of the breach between the northern and southern dykes of the
tailing’s pond triggered a mud and water flood whose total volume was estimated
in 55 Mm®. In a flow gage station located in the Guadiamar river, 7 km
downstream from the location of the failure, a maximum increase of water level of
3.6 m was measured 30 minutes after the beginning of the flood. This increase in
level reduced to 20 cm, 12 hours | ater.
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The mine company was able to seal the dam breach in 36 hours. The mud
deposited on both margins of the rivers Agrio and Guadiamar (Fig. 4.23) occupied
an estimated surface of 2,600 Ha. The thickness of the deposited layer ranged
between 4 m and a few millimetres, 60 km away from the breach. The pyritic mud
was thereafter exposed to the atmosphere in a very large area. Dofiana National
Park was protected by a wall rapidly built after the failure in the vicinity of
Entremuros village (Fig. 4.23).
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m Towns
[ | Affected area by Tailings

~—  Rivers

|:] Dofiana Park

® Failed dam

0 Skm
=t

Figure 4.23 Map of affected area with reference points and rivers (Eriksson and Adamexk,
2000).

When pyrite (FeS;) is exposed to oxygen in the presence of water, an
oxidation reaction begins. The oxidation reaction is represented as follows:

FeS,+3.50,+H,0 — Fe** +2S0% +2H".

The resulting iron and the sulphates can dissolve in water. The free hydrogen
creates a very acid environment. Sulphates are identified as white crusts which
developed on the exposed surfaces of tailings. Within the pond, once the water
was drained out, the eroded mud was covered by whitish sulphate crusts a few
weeks after the failure.
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The released water was extremely acid and it was responsible for the death of
animal life in the Guadiamar river (37 tons of fish, crabs and shellfish were
recovered). In addition, the mud had varying concentrations of many minerals:
zinc, lead, arsenic copper, antimony, cobalt, thallium, bismuth, cadmium, and
mercury, some of them highly toxic. The pyritic mud cover was therefore a major
threat to the environment.

The decision to remove al the mud was immediately taken and an estimated
weight of 10 million tons of mud and soil were removed from the river banks.
This material was deposited in an existing open mine. This cleaning operation was
essentialy finished by December 1, 1998, seven months after the failure. A
second cleaning operation was launched somewhat later, this time guided by the
control of limiting concentrations of metallic minerals. An additional mass of one
million tons of contaminated soil was removed and deposited in the open pit mine.
A number of water wellsin the area were also cleaned and controlled. Most of the
vegetation on the riverbanks was totally removed.

The pond was also decommissioned (Eriksson and Adamek, 2000). It was
first drained and a number of protective actions were taken: the entire pond area
was covered by a protective sequence of layers (a geotextile in contact with the
tailings, 0.5 m of waste rock, 0.1 m of binding layer, 0.5 m of compacted clay, and
0.5 m of a soil layer for the growth of vegetation); an impermeable cut-off wall
was built on the northern and eastern sides of the pond; the slopes of the dam were
reduced to 3:1 and its topography was modified to facilitate run-off and drainage.

In addition, a monitoring program was set out including inclinometers,
piezometers, surface markers, and control wells. The recovery of the ecosystem
was also closely followed by the authorities. Periodic controls included soil and
water monitoring (from the surface and form irrigation wells). Health controls
were also carried out on the human population and on the fauna. It has been
reported that the recovery of the aguatic fauna was quite rapid.

The mining company resumed operations on June 1999. However, production
was stopped on February 2001 and in September 2001, the mine was definitely
closed. No indications of penal responsibility in the dam failure were declared by
the judge in charge of the case and later by the regional Court of Andalusia.

4.7 Lessons Learned

4.7.1 Soft clay rocks, hard clay soils

These materials share properties of soils and rocks and present a challenge to
geotechnical engineering because of a number of features, difficult to handle in
practice: the presence of discontinuities, often at different scales, their brittleness,
especially marked in the case of plastic clays, their very low permeability, which
implies extremely long pore pressure dissipation times and their expansive nature,
especially when montmorillonite is one of the clay minerals present.

4.7.2 Embankment loading
Embankments induce significant shear loading on the foundation soil. The
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attained stress ratio (ratio between the shear stress and the effective normal stress
on any given plane and point) is a convenient parameter to investigate the safety
conditions of a potential failure surface because it may be directly compared with
the available strength. Maximum stress ratios are found directly below the toe of
the embankment slope. The intensity of the stress ratio increases with the slope
angle of the embankment. Drainage conditions of the foundation soil may lead to
the occurrence of stress ratio maxima at some particular depth. This was the case
of the foundation conditions of the Aznalcdllar dam.

4.7.3 Brittleness and progressive failure

Brittle materials are prone to progressive failure. This process results in a
progressive reduction of available strength along a potential failure surface.
Brittleness of clay soil increases with plasticity simply because the residual
friction of clays decreases with plasticity. Clays containing significant proportions
of montmorillonite may exhibit residual friction angles in the vicinity of 10° a
value significantly lower than the peak friction angle in most cases. Progressive
failure mechanisms and, indeed, any shearing process, reduce fast the effective
cohesion which may be measured in tests under peak conditions.

4.7.4 Bedding planes, discontinuities and tectonics

Sedimentation planes are particularly worrying because of their high lateral extent
and the possibility of exhibiting a reduced strength if compared with the “bulk” or
“matrix” clay strength. This strength reduction may be a consequence of tectonic
motions but other mechanisms may also lead to strength degradation (unloading
due to valley excavation, past diding, soil expansion). Such mechanisms explain
the presence of other systems of discontinuities, which may aso show shear
strengths significantly lower than bulk values. When a kinematically admissible
failure mechanism integrates bedding planes and discontinuities, special attention
should be paid to the actual strength conditions of the involved surfaces. In the
case of Aznalcdllar, field evidence indicated the presence of striations and pre-
shearing in some sedimentation planes. This implies a reduction of the available
shear strength. In fact, under peak strength conditions (¢’ = 64 kPa, ¢' = 24.19),

no point in the foundation ever reaches plastic conditions and the process of
progressive failure could not have started.

4.7.5 Operating strength

The problem of selecting an appropriate set of (drained) strength parameters in the
presence of brittleness and progressive failure is not yet solved in practical terms.
The case of Aznalcdllar suggests that the operative average effective friction at the
initiation of failure (18°) was intermediate between the peak friction angle (24°)
and the residua friction angle (11°). A few cases mentioned before suggest a
similar result but it should be stressed that there is no fundamental reason behind
such asimplerule.
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4.7.6 Construction procedure

The forward construction procedure followed in Aznalcollar favoured the
development of progressive failure. It probably led to the formation of a damaged,
low resistance clay surface under the dam which eventually propagated fast,
upstream and downstream, at the time of failure. This event marked the initiation
of the dide.

4.7.7 Pore pressures

Steady-state flow conditions are by no means the worst situation of the dam, when
pore pressures are calculated. This comment refers, of course, to the joint
consideration of the dam and its foundation. In general, when a drained safety
analysis is performed, the prediction of pore pressures requires attention to the
pore pressure generation due to dam construction and its subsequent dissipation
through a consolidation process. In Aznalcdllar, the average degree of dissipation
of pore pressures in the foundation was no more than 20% of the generated pore
pressures. This is a result of the low clay permeability. The system of joints and
bedding planes did not seem to have any effect on the field permeability in this
case. Steady-state flow conditions were entirely irrelevant to explain the failure of
the Aznalcdllar dam.

4.7.8 Undrained vs drained analysis

In hard clays, usually overconsolidated, the undrained strength determined in
typical laboratory tests (triaxial, unconfined compression) often leads to an
overestimation of safety against dliding. This is due to the dilatant nature of the
clay mass. In general, the analysis should be made drained, providing special
attention to discontinuities and to any evidence of previous shearing on them. The
determination of the pore pressures therefore becomes a crucia aspect of the
safety analysis. Aznalcollar is a good examplein this regard.

4.8 Advanced Topics

The reduction of available strength along the dliding plane due to progressive
failure is a main reason for the catastrophic failure of Aznalcdllar. Progressive
failure was identified as a mechanism leading to instability of overconsolidated
clays (Skempton, 1964; Terzaghi and Peck, 1967; Bjerrum, 1967; Bishop, 1967,
1971). A review of the subject has been presented by Jardine et al. (2004). The
propagation of rupture surfaces in idealized geometries is described in the work of
Pamer and Rice (1973), Rice (1973), Chowdhury (1978) and Puzrin and
Germanovich (2005). Early attempts to include progressive failure in limit
equilibrium analysis are presented by Pariseau (1972), Gates (1973) and Lo and
Lee (1973). Additiona contributions using the finite element method are
described in Yoshida et al. (1990), Potts et al. (1990), Dounias et al. (1996), and
Potts et al. (1997). Stark and Eid (1994) reviewed a number of case histories
involving first-time dlides in stiff fissured clays, reported the value of the
mobilized strength at failure, and compared it with two strength values: the “fully
softened” and the residual value. In most instances, the mobilized strength at
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failures lies about midway between the two values. This was aso the case of
Aznacollar. The “fully softened strength” is defined as the peak drained strength
of the reconstituted, normally consolidated material. It may easily be found in the
laboratory by remoulding the intact material.

However, one should be cautious when trying to select an operationa strength
of hard clays because it is a function of the rate of degradation of post-peak
strength and also on the strain mobilization along the dliding surface.

Well-documented case histories associated with progressive failure have been
described by Cooper (1996), regarding the Selborne slope failure experiment and
by Skempton (1985) and by Potts et al. (1990) regarding the Carsington dam
failure.
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Chapter 5
Thermo-Hydro-Mechanics of a Rapid Slide:
Vaiont Landslide, Italy

5.1 Introduction

On October 9, 1963, a huge mass of rock, on the left bank of Vaiont reservoir,
broke loose, accelerated and invaded the bottom of the valley at high speed. In
seconds, the reservoir water was projected against the slopes of the opposite
margin of the valley, where it reached a height of 250 m over the original level of
the reservoir. Then the reservoir water turned downstream, over the crest of
Vaiont arch dam, without breaking it, and flew along the river valley. The flood
destroyed the village of Longarone and caused an estimated death toll of more
than 2,000 lives.

The small village of Caso, located on the right margin of the Vaiont valley,
260 m above the reservoir level, barely escaped destruction. A Caso villager
provided avivid account of the failure:

“Rain fell heavily. At 22.15 hours a strong noise, as of rolling rocks, awoke
me up. At 22.40 hours an extremely strong wind shook the house and broke
the windows; suddenly the house roof was lifted and water and rocks
invaded the house. The noise was frightful. In a few seconds the wind
stopped and the valley remained calm” (Valdés Diaz-Canegja, 1964).

This landdlide, one of the largest known in historic times, has attracted
continuous attention of geotechnical engineers, mainly because of the unexpected
high velocity reached by the moving mass. In fact, the tragic consegquences of the
faillure are directly attributed to this velocity. The main question is. why did
Vaiont slide reached an estimated velocity of 30 m/s? Such a velocity can only be
explained if atotal loss of strength occurs at the dliding surface.

Unstable slopes around reservoirs are a common occurrence. They raise
concern to dam designers and public authorities because of the risk associated
with a rapid slide motion, just as in Vaiont. One is led to think that unless the
dynamics of Vaiont motion are understood with some degree of confidence,
limited progress will be achieved in predicting the risk of similar potentialy
dangerous situations.

In Chapter 2, an attempt was made to determine the run-out of the Vaiont
landdlide taking, as a reference model, the two-wedge representation of Cross-
section 5 (Fig. 2.15). Starting at a condition of near equilibrium at t = 0, it was
assumed that the strength of the plane separating the two wedges could degrade as
shearing displacements devel oped along this plane during the motion. It was found
that even in the extreme case of afast and complete loss of cohesion acting on this
plane (an unlikely event), the dide maximum velocity did not exceed 4.5 m/s. In
order to explain the estimated high velocities of the dide (30 m/s), a consistent
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mechanism or physical process, leading to a total loss of basal shear strength has
to be found.

The favourite explanation in a number of published contributions on the
subject is associated with the development of frictional heat at the sliding surface.
In some papers (Uriel and Molina, 1977; Nonveiller, 1987), the frictional heat is
assumed to take pore water to the equilibrium state between liquid and vapour
phases. In Uriel and Malina (1977), the phase diagram of water provides a
criterion to find the water/vapour pressure. Nonveiller (1987) assumes a linear
decrease of rock strength with temperature in the shear zone. In other approaches
(Hendron and Patton, 1985; Voigt and Faust, 1982; Vardoulakis, 2002), the
increase in pore pressure is related to the dilation of pore water as temperature
increases and to temperature-induced plastic collapse of the shearing band (in the
case of Vardoulakis).

In all cases, the fluid pressure developed at the dliding surface reduces the
effective normal stress and, hence, the available strength. Before proceeding
further, consider the results of two experiments: a simple one, which could be
performed in any laboratory, and acomplex “in situ” test.

5.1.1 A simple laboratory heating experiment

The idea is simply to heat a piece of saturated clayey rock in a microwave oven
(Fig. 5.1). In the experiment performed, a thermocouple temperature sensor was
inserted into a specimen of Opalinus clay, which had been maintained in a humid
chamber to ensure saturation. Opalinus clay is alow permeability soft clayey rock
of marine origin. Clay minerals (illite, illite-smectite mixed layers, chlorite and
kaolinite) dominate its mineralogical composition (40 to 80%). Quartz, calcite,
siderite, pyrite, feldspar, and organic carbon are also present. Natural porosity
varies between 4 and 12% (Bossart et al., 2002). Pore water has a concentration of
20 g/l of sodium chloride.

Permeability coefficients (Darcy) varying between 0.8x10°m/s and

7.3x10® m/s, Young's modulus ranging between 1,000 and 7,000 MPa and
uniaxial compressive strength varying between 9 and 18 MPa have been reported
for this clay shale by several authors (Thury and Bossart, 1999; Bock, 2001;
Mufioz, 2007) on the basis of “in situ” and laboratory tests.

Figure 5.1a shows the piece of rock before heating. A thermal pulse having a
nominal power of 1,400 watts was applied during 40 s. The recorded temperature
is shown in Figure 5.2. The specimen broke, accompanied by a clearly audible
cracking noise, shortly before the end of the application of the heating pulse. At
that time, the temperature reached values in excess of 170°C (Fig. 5.2). The shale
specimen cracked in an explosive manner and was reduced to small fragments.

The following explanation can be given for this phenomenon. When the
temperature of a saturated porous material increases, the solid matter, as well as
the water in pores, dilates. Probably, local equilibrium of temperature is achieved
soon and therefore the temperatures of water and solid skeleton will be essentially

equal.
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Figure 5.1 Heating experiment: (a) saturated fragment of Opalinus clay before heating; (b)
the fragment, highly fissured and partialy broken after heating in a microwave (cables
indicate the position of the inserted thermocouple); (c) saturated porous stone before
heating; (d) porous stone after heating.

The volume of pore water and solid skeleton will increase in direct proportion
to their thermal dilation coefficients, B, and Bs, respectively. The associated
volumetric strains, for acommon change in temperature, do, can be written

de,, = _ Ny _ —B,,d0, (5.1a)
VW
de,, =— O\')’S = —B.do, (5.1b)

S

where V,, and V, are the volumes occupied by water and solid particles,
respectively. B, is substantially higher than s. Typical values for B, and Bs are
3.4x10*(°C)™* and 3.0x10°(°C)™’. Volumetric strains calculated through

Equations (5.1a,b) for the range of temperatures 0—100°C were plotted in Figure
5.3, assuming a reference situation (zero strain) for 6 = 4°C. Water dilates almost
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one order of magnitude more than solid particles. The thermal dilation of water
and solid will result in an internal volumetric expansion. The soil expansion is
explained by a decrease in effective stress. Therefore, in a saturated porous
medium, if the total stress does not change, pore water pressure has to increase in
order to reduce the effective stress. The increase in pore pressure will be
proportional to the soil or rock stiffness. In the absence of external stresses, tensile
effective stresses will develop. They may be able to overcome the tensile strength
of the soil/rock and lead to a failure in tension, as observed in the photograph in
Figure 5.1b.
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Figure 5.2 Recorded temperature during the two experiments performed in the microwave
oven. A thermal pulse with anominal intensity of 1,400 watts was applied during 40 s.

The volumetric strains plotted in Figure 5.3 are far from being negligible. For
instance, for an increase of temperature from 4 to 50°C, a water volumetric strain
of 1.5% is derived from Figure 5.3. It is concluded that the heat-induced expansive
strain may cause a substantial increase in water pressure in an impervious stiff
rock.

A simple explanation® for this increase in pore pressure can be given with the
help of Figure 5.4, which shows a saturated pore. The rock or soil skeleton around
the pore is represented by athick spherical elastic shell. Holes in radial directions
connect the inner pore water with neighbouring pores. In this representation, the
skeleton stiffness is controlled by the thickness and the modulus of the shell
material. The number and diameter of radia holes define the materia’s
permeability. As a result of heating, pore water pressure will increase. In parallel

L A precise formulation of the effects of thermal dilation on the volumetric deformation
and, eventually, on the development of pore water pressures in a saturated soil will be given
later.
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with the development of water pressure, a dissipation process will start as water
begins to flow through radial holes. Therefore, for a given rate of increase of
temperature, the attained pore water pressure will be the result of two competing
mechanisms: the rate of increase of water volume, directly related to the rate of
increase of temperature and the rate of dissipation governed by the permeability of
the porous material (and also by the rock stiffness, in a process similar to the more
familiar consolidation phenomenon).
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Figure 5.3 Volumetric strains of water and solid particles induced by temperature changes.
Bw = 3.4x107* (°C) L, Bs = 3.0x107° (°C) . Expansion is considered positive in plotting
this graph.

For a given rate of temperature increase, the lower the soil or rock
permeability and the stiffer the soil or rock, the higher the pore water pressure
developed. Stiff clays and, particularly, clayey rocks are therefore prone to
develop significant temperature-induced pore water pressures.

Note that the simple model of
Figure 5.4 predicts that the pore
pressure induced by the application
of an external load decreases as soil
or rock skeleton stiffness increases.
In classical one-dimensiona soil
consolidation theory, the implicit
assumption is that the soil skeleton
has very low stiffness compared
with the stiffness of water, and this
implies that the external load is
fully resisted by pore water: the L
skeleton spheres in Figure 54 are  Figure5.4 A saturated pore develops a
made of avery soft material. positive pressure when temperature increases.
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The pore water pressure was not measured in the simple experiment described
but, interestingly, a small amount of liquid water — presumably escaped from the
specimen — was also observed on the floor of the oven after the broken rock
fragments were removed.

A second experiment, with a totally different material, a discarded highly
pervious porous stone (Fig. 5.1c), was also run. The measured temperature is
shown in Figure 5.2. No cracking noise was heard during heating and the
specimen remained intact. Some water was also seen to escape from the stone.
Unlike the previous experiment, the temperature record in this case showed an
interesting behaviour: when the temperature measured by the thermocouple sensor
reached 100°C, it remained constant at this temperature during the application of
the power pulse. The water behaved asis to be expected in a free volume of water
at atmospheric pressure: when the vapourization (boiling) temperature is reached,
water evapourates in the pores and the boiling temperature remains constant, at
100°C, because the heat input is “spent” in vapourizing the remaining liquid water.
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Figure 5.5 Phase diagram of water. Roman numerals indicate different types of ice. M, E
and V stand for the average atmospheric conditions at the surface of Mars, Earth, and
Venus, respectively (from London Southbank University website).

Another interesting information of these experiments is that the pore water in
the shale specimen increased its temperature well beyond 100°C (it reached a peak
value of 171°C (!) with no symptoms of decreasing during the power input phase).
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Pore water in the claystone is adsorbed in a significant proportion by clay minerals
and this prevents its vapourization.

The phase diagram of water provides additional information on the conditions
leading to the vapourization of water (Fig. 5.5). At increasing pressure, the
temperature for vapourization also increases. For instance, at a pressure of 120 m
of water (1.2 MPa), which is the pore pressure likely to be acting at the lower
horizontal sliding surface of Section 5 of Vaiont at the beginning of the failure
(see Chapter 4) the boiling water temperature raises to 200 °C approximately
(remember that °K = °C + 2739. The combination of the two effects, water
adsorption by the clay minerals of the rock and the initial prevailing pore water
pressure, implies that the dliding surface may reach fairly large temperatures
before water is able to vapourize.

Pore pressures were not measured in the simple experiments reported and the
explanation advanced for the failure of the clay shale may not be accepted by the
reader. Consider, however, the following large-scale experiment.

5.1.2 An expensive field experiment

Deep geological disposal is an option favoured by several countries to store high
level nuclear waste. A typical design is to locate the heat-emitting nuclear
canisters in excavated galleries of massive and impervious rock, such as Opalinus
clay, a clay shale common in northwest Switzerland. A ring of impervious
bentonite is placed around the canister to improve isolation. One of the issues in
this design is to investigate the long-term performance of natural rock, exposed to
an increase in temperature as a result of the heat generated by the nuclear waste.
The large-scale Heating Experiment (HE), performed in the Monterri underground
research laboratory (Switzerland), addresses this aspect of nuclear waste disposal
research. The experiment is described in detail in EUR (2006) and in Mufioz
(2007).

The scheme given in Figure 5.6a summarizes the concept of the experiment.
A cylindrical heater — which simulates the waste — is located in a centred position
in a vertical borehole (30 cm of diameter) excavated in Opalinus clay from the
floor of a tunnel. A ring of compacted bentonite blocks was placed around the
heater. Piezometers and temperature sensors were located at different radial
distances and depths below the floor of the niche where the experiment was
located (z = 0). The temperature response of sensors located at increasing radial
distances is shown in Figure 5.6b. Maximum temperature at the bentonite-
borehole wall contact (r = 0.05m) was limited to 100°C.

Pore pressure sensors were installed at points A; and A, (Fig. 5.6a), located at
a radial distance of 0.65 m from the axis of the borehole, at two different
elevations (z = -5 m and z = -6.5 m). As temperature increased (at a rate of
0.25°C/day) until it reached avalue of 40°C in sensor A, pore water pressures also
increased at measured rates of 0.012 MPa/day and 0.007 MPa/day in the two
sensors, until they reached maximum values of 1.1 and 0.65 MPa respectively.
Note that a substantial pressure peak developed before pore pressure began to
decrease, when the rate of temperature increase slowed down. The low
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permeability of Opalinus clay explains the continuous accumulation of pore
pressure due to the relatively slow rate of increase of temperature. When the
(permeability controlled) dissipation rate of excess water pressure dominated the
process, the pore water pressure began to drop, a an essentialy constant
temperature.
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Figure 5.6 Field heating experiment of Opalinus clay: (a) schematic representation of the
borehole, heater and instrumented points; (b) recorded temperature; (c) pore water
pressures at Point A; and A,. Heating HE Experiment, Monterri, Switzerland (Mufioz,
2007).

The maximum excess water pressure recorded in this experiment (0.9 MPa) is
relatively large in absolute terms. Such water pressure is equivalent to the weight
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per unit area of a column of rock with a height of 40 m (if the rock had a bulk
specific weight of 22.5 kN/m?). The base of such a column of Opalinus clay, if
heated in the location of Piezometer QB19/3 in Figure 5.6¢, will reach a zero
vertical effective stress and, therefore, it will not be able to develop any frictional
shear strength.

This chapter discusses the conditions leading to this situation in the case of
Vaiont and their consequences in practice.

5.1.3 Summary of main points

a) When temperature increases in a relatively impervious and saturated
porous material, pore water pressures will develop. They will reduce the
prevailing effective stress. Negative effective stresses may develop if the
porous rock exhibits a tensile strength and, eventually, a fragile splitting
type of failure may occur in unloaded specimens.

b) In saturated pervious granular materials liquid pore water under
atmospheric pressure will not reach, if heated, temperatures in excess of
100°C (because of local equilibrium, this temperature will also be the
temperature of the entire rock, provided that some free water remains in the
specimen). Under similar conditions, the pore water of a low porosity
clayey rock may reach significantly higher temperatures, with no clear
evidence of liquid-vapour phase transition of the pore water.

¢) The temperature for the liquid-vapour change of phase increases for free
water as water pressure increases. For a water pressure of 1.2 MPa (a
column of 120 m of water), water boils at approximately 200°C.

d) Points b) and c) suggest that the shear surface of Vaiont, located in clayey
materials of high plasticity, may undergo relatively high temperatures, in
excess of 200 °C, without reaching a vapourization state.

5.2 The Problem

A common observation in tranglational and rotational dlides is that deformations
are confined to dliding surfaces of negligible thickness. Direct observations of
dliding surfaces in clayey materias indicate that their thickness is very small,
typicaly in the range of a few millimetres. One example is given in Figure 5.7,
which shows a portion of the dliding surface of Cortes landslide (Alonso et al.,
1992). The dliding surface was easily identified when it was exposed after alarge
excavation, because of its greenish-gray colour in contrast with the brown
tonalities of the marl layer, 2 m thick, where it was embedded. Massive limestone
strata, which essentially dlid as arigid body, covered the marl layer. The thickness
of the striated layer ranged between 3 and 5 mm.

The thickness of shear bands has been reported by several authors
(Morgenstern and Tchalenko, 1967; Roscoe, 1970; Vardoulakis, 1980; Scarpelli
and Wood, 1982; Desrues, 1984). An important conclusion of the basic research is
that shear band thickness is related to a characteristic grain size. For instance,
Vardoulakis (2002) proposes a value e ~ 200dso, for clays. The grain size analysis
of specimens recovered from the Vaiont diding surface (Hendron and Patton,
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1985; Tika and Hutchinson, 1999) indicates that dsg, ~ 0.01 mm. The reported
direct observation at the Cortes slide is not far from the thickness suggested by the
preceding relationship.

Figure 5.7 (&) Sliding surface of Cortes landslide showing motion grooves; (b) view of the
sliding surface in cross-section. The upper layer of gray clay, overlying the brownish lower
marl, was identified as the sliding surface.
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Vaiont landdlide was significantly bigger than the Cortes dide, but they had
some similarities. In both cases, rigid and massive limestone and marl banks dlid
on a fairly continuous layer of clay. It is expected, however, that the sliding
surface itself had a reduced thickness, probably afew millimetres, asin Cortes.

Consider now in Figure 5.8a, a representative cross-section of Vaiont. The
clay stratum at the base of the dlide was reported (Hendron and Patton, 1985) to
have a thickness in the order of 1 m (Fig. 5.8b). The shear band proper will be
located within the clay layer (Fig. 5.8¢). Itsthickness is many orders of magnitude
smaller than the horizontal and vertical dimensions of the dlide. If the dide moves
as arigid body with avelocity Vs, shear straining, which will be concentrated on
the shear band, will induce an average shearing strain rate of

y Vmax

1= (5.2)
where 2e is the thickness of the shear band. Therefore, during the sliding motion,
al the straining work will be concentrated inside the band. The volumetric
deformation of the clay material, which constitutes the band, will be very small
compared with the extremely large shear deformations induced by sliding on a
thin clay band. Thus, the rate of work input per unit volume of band material will
be essentially given by

W=r y=—m 5.3
i

where 1; is the shear strength offered by the shear band. This work input will be
transformed entirely into heat. Therefore, the band will increase its temperature
and, in view of the tests previously discussed, a pore water pressure in excess of
that initially existing will develop.

It has been argued before that excess pore pressure is essentially caused by the
thermal dilation of the water. Therefore, despite its potential large effect in
modifying effective stresses, the absolute amount of increment of water volume in
the band will be very small. Its dissipation will take place in the immediate
vicinity of the band. In other words, the band and its “ zone of influence” will have
asmall thickness (Fig. 5.8d) similar to the thickness of the band itself.

It then becomes reasonable to assume that, for the purposes of investigating
the behaviour of pore pressures in the band and its vicinity, the band is essentially
aplanar feature located within an infinite domain. The lateral extent of thisband is
very large compared with its thickness and, in addition, points within the band are
similar to each other. Water and energy transfer out of the band will take place in
the direction normal to the band. The problem of the interaction of the band and its
surroundings becomes a one-dimensional problem in which the spatial coordinate
(2) isdirected normal to the band plane (Fig. 5.8d).

The equation of the slide motion is given in Chapter 2 for the two-wedge
model (Eqg. (2.23)). The slide velocity depends on the water pressures existing on
the diding surface (terms P,;, Pw, and P, in Egs. (2.27)). But now pore water
pressures will not depend only on the hydrostatic water conditions assumed in
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Chapter 2 but also on the additional pore pressures developed in the band as a
result of its heating. These pore pressures depend on the work input into the shear
band and therefore on the slide velocity (Eg. (5.3)) which is the unknown variable
of the problem.
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Figure 5.8 The diding surface: (a) “in situ” conditions; (b) representative element of the
dliding surface; (c) shear band; (d) local axisin the shear band.

A procedure to find excess pore pressures from a given heat (or strain work)
input hasfirst to be found. Then the calculated pore pressures will be used to solve
the equation of the slide motion.

In classical consolidation theory, pore pressures induced by applied stresses
are the solution of a partial differential equation which expresses the condition of
mass balance of water flowing in adeformable soil. In our heat-driving process we
will need an additional balance (or conservation) equation, namely the condition
of energy conservation.

When consolidation theory is derived in most soil mechanics textbooks, only
the balance equation of water is used as a starting point despite the fact that solid
matter (soil particles) also moves. The approximation is perfectly justified in most
applications but in our case, for the reasons explained later, it will be convenient
to also add the mass balance of solids to the remaining conservation laws.

Therefore, the problem of finding pore water pressures in the band when it is
sheared by means of the application of a boundary velocity will be approached by
formulating the three conservation equations just mentioned (solid, water, and
energy). They will be written for a general (three-dimensional) case but the
solution will be found for the one-dimensional case previously described. The
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solution of this problem will aso enable the calculation of temperatures in the
shear band. The final step will be the solution of the equation of the slide motion.
Summarizing the main assumptions, deformation and heat generation will
take place within the shear band. The band material is a saturated porous
deformable material and the remaining sliding masses will move asrigid bodies.

5.3 Balance Equations in the Shear Band

5.3.1 Solid and water

Consider a shear band of indefinite length (L) and thickness (2€) (Fig. 5.9). Since
L >> e, the excess pore pressure, u,(zt), temperature, 6(zt), and velocity, v(zt) are
assumed to be exclusively a function of the position normal to the band direction
(2) and time (t). A common temperature is considered for solid particles and pore
fluid. Thisis aresult of the assumption of local thermal equilibrium between both
species (solid and water).

—/2 Shear band

Figure 5.9 Geometry of the planar shear band.

Solid mass balance was already derived in Chapter 3 for general three-
dimensional conditions (Eq. 3.22). The water mass balance was found (Eq. 3.25)
for a partially saturated soil. Here pores will be assumed to be full of water.
Therefore, Equation (3.25) becomes

Dpy

n_
Dt

; pw% + pndiv(v) + div(p,gq) = 0. (5.4)
The rate of change in porosity, Dn/Dt, can be expressed in terms of changes in
solid density and in terms of the skeleton deformation through the mass balance of

solids (Eg. (3.22)). Substitution of Dn/Dt from Equation (3.22) into the water mass
balance Equation (5.4) leadsto
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n Dpy, +p (1) Dps +(1-n)div(v) |+

w

Dt ps Dt (5.5)
pundiv(v)+div(p,q) =0
and, finaly, to

n Dpw+(l_ n) Dpy
py Dt ps Dt

+div(v)+idiv(pwq) =0, (5.6)
p

w

which provides the mass conservation condition for water and solid.

Constitutive equations

In order to proceed, constitutive egquations should now be considered. Let us start
with the (material) rate of change of solid and water densities. Solid grains will be
assumed to be incompressible against stress changes but not against temperature
(6) changes. Therma dilation implies the increase of volume, Vs, of a given
constant mass. Therefore, the change in density, ps, associated with a change in
volume iswritten as

av,

dp. =—p.—= =—p B.dO, 5.
Ps =P, PsBs (5.7)

S

where the linear dilation volumetric strain laws given in Equation (5.1) have been
used. Bs is the thermal expansion coefficient for solid particles, which will be
accepted as a material parameter independent of temperature. The negative sign
indicates that temperature increments induce a reduction in density.

Equation (5.7) provides, by simple integration, the following state equation
for the solid:

ps =—p2exp B (0-0) ], (5.8)
where pg isthe density of solid particles at reference temperature, 6.
Differentiating of Equation (5.8) leadsto

Dp, D6

= B —. 5.9
Dt BsPs Dt (5.9)

Water density depends on its current pressure, p,, and temperature, 6. None of
these effects are usually found in common geotechnical applications. However, in
our particular problem, pressures and temperatures may reach unexpectedly high
values. Already discussed, by means of introductory tests, is the fundamental
effect of temperature to control pore water pressure of impervious porous
materials.

The following state equation is assumed for water:
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pW=p\?\,eXp|:(XW<pW— p\(I)\I)_BW(eW_eO):|' (5.10)

This expression is formally equivalent to the state equation of solid (Eq. (5.8)).
pe\, is the reference water density at the reference temperature (6, ) and reference

liquid pressure (p%). o, and B, are the coefficients of compressibility and

thermal expansion, respectively. These coefficients have been accepted to be
constant. Differentiating of Equation (5.10) leads to

Dp,, Dp, Do

Dt = OlyPy Dt Bwpw Dt .
If Equations (5.9) and (5.11) are substituted in Equation (5.6), the following
expression is obtained for the mass conservation of solid and water:

DO Dp, . 1 B
~[mB,, + (- n)[3s]Ft +nay, o +div(v) + p—dlv(pwq) =0 (5.12)

(5.11)

w

The first term is a“source” term due to the thermal expansion of liquid and solid;
the second term describes the volume change of water associated with change in
water pressure; the third term represents the volume change of the skeleton; and
the fourth term provides the volume change associated with the flow of water.

The hydrostatic component of pore pressure, which depends on the position of
the water table, will not change within the short interval of the dide and therefore
the time derivative of p,, will depend only on the excess pore pressure u,,

Bpy _ DUy (5.13)
Dt Dt

The mass balance equations derived above will be applied to the shear band
where “oedometric” conditions can be assumed, as explained before. Therefore,
under elastic conditions, the volumetric strain can be estimated from the one-
dimensional compressibility coefficient, m,, and the increment of (normal to the
band) effective stress,

. Oe do, Op oo, Ou
d =_2vo _ | 22w n__wy 5.14
v(v) ot m{ ot ot J m’{ ot ot ] (14

where Equation (3.21) was used. In Equation (5.14), o, isthe total stress acting in
a direction normal to the shear band. This stress will change somewhat during
motion due to changes in dlide geometry (see Fig. 2.15 in Chapter 2). Time
variation of hydrostatic pressure can be neglected with respect to changes of
excess pore pressures. Therefore, p,, can be replaced by u,, in Equation (5.14).

The final term in Equation (5.12) refers to flow through pores due to the head
gradient (Darcy’s law). A generalized Darcy law for compressible fluid describes
the relative flow velocity g in terms of gradients of pore water pressure and the
gradient of elevation asfollows:
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k k ou
q=-——|grad(p,)+p,9grad(z,) [ ————=, (5.15)
pwg[ v )] pwg 0z

where k is the hydraulic conductivity (the term permesbility will also be used),
which will be assumed to be constant, and z is the vertical coordinate.

Since the analysis is one-dimensional in a direction normal to the shear band
(z-direction), the gradient is simply the derivative with respect to z. The flow due
to gradients of hydrostatic pressure and gradients of level (z; term) can be
neglected with respect to changes of pore water pressure. In addition, the spatial
variation of hydrostatic pore water pressure can be neglected during the dide and
pw can be replaced by u,,. Therefore, Darcy’s flux depends only on the excess pore
pressure (Uy,).

Introducing Equations (5.13), (5.14) and (5.15) into Equation (5.12), the water
and solid mass balance equation resultsin

Du,, ou, Oc
—|n 1-n n —W_ )
[MBy +( )Bs:| +aw D ( at) -
1o k), 510
pw 2\ ™ oug 2 )

At this point, a further simplification will be introduced. Since the expected
velocity of solids, v, will be small compared with the (Eulerian) rates of change of
the variables of the problem (0, u,) total and partial derivatives are equivalent and
Equation (5.16) becomes

00 ou
_|:an + (1_ n)Bs]E"' (m/ + naw)a_:\l_ (5 17)
oo, k o%u, 0 '
ot vy oz° ,

valid for the shear band, ze [—e,€]. In Equation (5.17), the water specific weight vy,
= pyg isintroduced.

Equation (5.17) synthesizes the mass balance equations of solid (grains) and
water. It is a parabolic second-order differential equation with two unknowns: the
temperature and the excess pore water pressure. The contribution of the solid mass
balance eguation was to provide an expression for the change in porosity when the
soil is heated and loaded under one-dimensional conditions. This result was then
used in the water mass balance eguation, which led to Equation (5.6). This
equation will allow the calculation of excess pore water pressures.

Equation (5.17) also provides an explanation to the phenomenon of pore water
pressure development during heating, a topic discussed in Section 5.1.1 with the
help of Figure 5.4. If no change in total external stress occurs (dc/ot = 0) and the
soil is very impervious (k — 0), the rate of increase of pore water pressure due to
changes in temperature will be given by
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au_w — nBW + (1_ n)BS @ (518)

ot no,+m, ot
This expression provides the theoretical background for the qualitative discussion
on heat-induced development of pore water pressure in Section 5.1.1. In view of
(5.18), stiff soils or rocks (low values of m,) will develop high pore water
pressures upon heating. Also, since the dilation coefficient of water is one order of
magnitude higher than the dilation coefficient of solids (Fig. 5.3), the higher the
porosity, the stronger the development of heat-induced water pressures. Note that
Equation (5.18) is a direct consequence of the principle of effective stress, which
was introduced in Equation (5.14) to describe the volumetric deformation of the
soil. In other words, temperature changes lead to volumetric deformations of the
soil skeleton. These deformations are explained by a change in effective stress. If
the total stress does not change, the pore water pressure will increase to reduce
effective stress, which will lead to soil expansion: the imposed thermal
deformation. In the limit, if the soil skeletonisrigid (m, — 0) (the spherical shells
in Figure 5.4 are made of steel), the pore water pressure developed when heating
will be controlled by water compressibility (o).

A fina remark at this point concerns the use of material derivatives. The
reader may wonder why they were used at all if, at the end, the smplified mass
balance Equation (5.17) will be used in calculations. One reason for doing it was
to provide a general balance expression (5.6) which may be useful in other
applications. The use of total derivatives in this case simplifies the notation. The
joint consideration of the solid and water mass balances are also properly handled
in terms of material derivatives. Note also that the solid mass balance provided a
general expression, Equation (3.22) in Chapter 3, for the change in porosity, which
included the effect of solid density changes. Other processes leading to porosity
changes may be found in nature (solid mass dissolution or precipitation, for
instance), which may be relevant in geotechnical engineering. In al these cases
the formal derivation of the solid mass balance relationship is a first step towards
finding the field equations of the problem.

5.3.2 Energy

The rate of work input into the shear band (Eg. (5.2)) dissipates as heat (H) and
results in a temperature increase (0) of the material in the band. The rate of work
is homogeneous in the band because a uniform distribution of shear strain across
the band was assumed. The shear strength in Equation (5.3) is given by
Coulomb’ sfrictional law:

T; =0p tan((p'):(cn— pw)tan(p', (5.19)

where o, is the effective stress acting in a direction normal to the shear band, p,

is the total pore water pressure (hydrostatic plus excess pore pressure) and ¢’ is
the effective frictional angle of the material in the shear band, which in our case
corresponds to residual conditions.
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The shear strength t¢ can be calculated if normal stresses on the band are
known. Norma stresses will be derived from the conditions of mechanical
equilibrium of the slide described later. But first the temperature rise in the shear
band will be investigated. To do so the energy balance equation in the band has to
be derived. The procedure is already known because it follows precisely the same
steps already given in Chapter 3 to derive balance equations for solid and water
mass. Mass is now substituted by heat. In fact, heat is proportional to mass and
temperature. The proportionality constant is the “specific heat” (c) which
characterizes different species (in our case, solid mass (c) and water (c,)).
Therefore, the products p,c.0 or pcH identify the heat stored in a unit volume of
water and solid (grains) respectively. Constants “c” have the units of Joule/(kg-°C)
= Newton-m/(kg-°C).

The heat stored in a unit volume of saturated soil, having a porosity n, is the
sum of two terms

PCy = (1_ n)pscs +NPyCys (520)

where ¢, is the specific heat of the mixture (the saturated soil) and p is the
saturated soil density.

Heat will flow whenever mass flows. This type of heat transfer is the
advective component. However, heat is also transferred across bodies fixed in
space. This common experience is a “conductive” phenomenon described by
means of Fourier law

. =-Tgrad(6), (5.21)

which states that the flow rate of heat follows the gradient of temperature. I is the
conductivity constant.

The balance of heat can now be directly written if one of the preceding
balance equations (for instance, Eq. (5.6) for water balance) is taken asa“model”:

H :@eriv[—rgrad(e)}r

t (5.22)

div(p cwe(q+na—u)+(1— N)psC Ga—u)
w at svs at

Unlike the balance equations for solid and water, there is now a source term, the
heat input into the band (H), which should be included into the total balance.
Conduction and advective terms can now be identified in Equation (5.22).

In a general situation, heat will flow through the band boundaries. However,
the failure of Vaiont was very fast (a few seconds) and conductive, as well as
advective heat transfer will not be relevant. In fact, only the fast generation of heat
in the band will essentialy control the development of excess pore water
pressures. Indeed, the error introduced by this simplification was investigated and
a comparison between the results obtained with the full formulation (Eg. (5.22))
and the simplified one (5.23) was performed. Minimum discrepancies could be
found. Therefore, the problem of finding the temperature increase in the band is
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greatly simplified if the heat balance Equation (5.22) reducesto

00
H =pen (5.23)

where the source term H(t) is, for the time being, an unknown function of time.
Before examining the stability conditions of the dide, let us consider briefly
the balance conditions outside the shear band.

5.4 Balance Equations Outside the Shear Band

The soil in contact with the shear band will be affected by pore pressures and
temperature developed in the shear band. In general, shear band boundaries are
permeable to fluid and heat flow. Excess pore pressure induced by frictional
heating in the shear band will tend to dissipate in a process essentially controlled
by the permeability and compressibility of the band and surrounding material.

The assumption made before is that heat flow out of the band is negligible
during fast diding. Therefore, it is not necessary to perform atemperature analysis
outside the band. The temperature outside the shear band will remain constant and
equal toitsinitia value.

Water flow outside the band will be governed by an equation similar to
Equation (5.17), which was derived for general one-dimensional conditions. The
situation is now simplified because no temperature gradients exist and the mass
conservation equation becomes

ou oo, k o%
(m) + nraw)—atw -m _y_r_az2w =0, (5.24)
w

valid outside the shear band, z € (—,—€] U [e,00). Index r indicates that a different
material (“rock”) is now considered, although clay material will typically exist on
both sides of the band.

5.5 Dynamics of an Infinite Planar Slide

5.5.1 Introduction

The development of pore pressures in the dliding surface is the fundamental
information required to perform the dynamic analysis of the dlide. Therefore,
Equation (5.17) has to be solved. However, the “therma” term in this equation

depends (Eq. (5.23)) on the work input H =W which is proportional to the
sliding velocity and shear strength (Eg. (5.3)), which, in turn, depend on pore
pressures developed in the sliding surface. This is a fully coupled problem that
requires the simultaneous solution of the balance equations just developed for the
dliding band and the diding mass and the equilibrium equations of the whole
slope.

Before tackling Vaiont, a simpler case will be analyzed: the behaviour of an
infinite planar slide. The geometry of this case is defined by a constant base
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inclination of angle f and a constant thickness D (Fig. 5.10). The x-axisis parallel
to the slope surface and indicates the motion direction, while z-axis is the normal
direction. The origin of axisislocated in the mid plane of the shear band.

The broken linein Figure 5.10 indicates water level (height h,, over the dliding
surface) which, for simplicity, was accepted paralel to the surface of diding. In
this way the problem becomes one-dimensional. The sliding mass is assumed rigid
and deformation islocalized in the shear band. If the slide is unstable, it will reach
an increasing velocity. The diding mass trandates as a rigid solid. Its velocity is
the maximum velocity acting on one boundary of the shear band (Ve in Fig. 5.9).

Figure 5.10 Geometry of the infinite planar slide.

At any time, the motion of the unstable mass is accelerated by the action of
gravity and is resisted by the shear strength acting on the diding surface. Shear
strength is proportional to the effective normal stress and therefore it depends on
the weight component normal to the motion direction and on the pore water
pressure on the dliding surface. Note that the pore water pressure that acts in the
sliding surface and controls the landslide motion is the maximum pore pressure
that develops in the shear band. Since the excess pore water pressure generated in
the shear band can dissipate through the boundaries, the maximum excess of pore

pressure (U™ ) will be developed in the central plane of the shear band.

Dynamic equilibrium equations are written, in z- and x-directions, for a slice
of unit width of moving dlide:

N'=W, - B,;, —UT™ (5.25)
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and

AV,
dt -

Note that the Newton's Second Law applied in Equation (5.26), which states
that the resultant forces will be equal to the time variation of momentum, has been
simplified since the involved massis constant.

In view of Figure 5.10, W, =W sinf§ and W, =W cosp} are the x-component
and z-component of the total weight of the sliding mass, respectively; Py, is the
force due to hydrostatic pressure on the failure surfaces; U™ is the force due to
the excess of water pressure evaluated at z=0; N’ isthe normal effective resultant
force developed in the dliding surface; Ty is the frictional shear force that acts on
the base of the dlide and is calculated by means of Coulomb’s frictional law
(T; =N'tang’); vinax is the slide velocity evaluated at z = e; and M is the total
mass of the slide.

Since the analysis is made per unit of length of moving slide, forces Ty, U™

W, -T, =M

X

(5.26)

and P, can be replaced by frictional shear stress, 1y, excess water pressure, ug° ,

and the hydrostatic pore water pressure pyy respectively.
Therefore, the rigid-body motion is described by Newton’s Second Law,
dv

dn;ax = I:sliding - Frsisting! (5.27)

M

Fressing = T1 *1= | W €0S(B) ~ Py -1-Up™ -1 tanp". (5.28)

The total slice weight is W =y, D cos(B) and itsmass M =p D cosp, where

Y+ = p«g is the unit weight of the diding material and p, is the bulk density
(pr=(1-1, )ps+n,p,,). It has been assumed that D ~ D + e,

5.5.2 Formulation

Summarizing previous results, the set of equations governing the motion of an
infinite planar dlide are;
a) Equilibrium conditions and the M ohr-Coulomb strength law

7 (t)= [W cos(B) - Pup — U (t)}tan(p'; (5.29a)

b) First Law of Thermodynamics (shear band)

Ht) =1, (t)vmazx—e(t) for ze[-ee]; (5.290)
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¢) Mass balance (water and solid) and heat balance in the shear band

H (t au,, (z,t
—[(1—n)[3S +|3Wn] ( )+(mv +naw)M:
PCrm ot
2u, (2.0 (5.29¢)
=LW—2 forze [-ee];
Yw 0z
d) Mass balance (water and solid) in the sliding mass outside of the shear
band
ou,(zt) k o°u,(zt)
r w _ W _ _ .
[m, +nraw} xS o for ze (—oo,—€Ju[@x);  (5.290)

€) Dynamic equilibrium

AV (t 1 .
%():ﬁ[w%(s)-n (1] (5.29)

Notice that in Equations (5.29c,d) the term of time variation of external stress
has not been included. In the case of an infinite planar slide there are no changes
in total stress during sliding because of the simple geometry.

This system of eguations can be immediately reduced to three equations if the
strength (t¢) and heat rate (H) expressions are replaced in Equations (5.29c,d,e). A
single equation for the dependent variable u,, could eventualy be found, but the
hope of solving it in closed form is remote.

To solve these equations it is also necessary to define the appropriate initial
and boundary conditions. A natura initial condition for the dynamic problemis a
situation in which static equilibrium has been dightly exceeded. It would imply
the initiation of motion. In such a situation, the initial excess pore pressure and
slide velocity would be zero and no heat would be generated. Therefore,

Uy (zt)=0, (5.30q)
v(zty)=0, (5.30b)
0(to ) = 0o, (5.30¢)

where 0, isthe referenceinitial temperature at the beginning of the slide motion.

It was mentioned before that frictional heat is generated at a constant rate
within the shear band, between z = —e and z=e. No heat is generated, at any time,
outside of the shear band. Therefore, the heat generated excess pore pressure is
constant in the shear band and zero in the remaining of the domain. However, the
unbalance of water pressures between points inside and outside of the shear band
induces its dissipation. It will be also accepted that the soil outside the two
boundaries of the shear band is described by a common set of material properties.
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Since the gradient of hydrostatic pressure may be neglected in the band, given its
small thickness, it follows that the axis z= 0 (Fig. 5.8d) is a symmetry axis.

Therefore, the solution of the problem will be sought for z> 0 and symmetry
conditions will be forced at z = 0. This condition implies a zero flow through
z=0:

=0. (5.31)

At the other boundary, z = e, continuity of excess pore pressure and flow rate has
to be satisfied on both sides of the shear band-rock interface:

Ugl, o = Unl, g (5.32a)
ou ou
q|Z:€ = q|ZZeJr = ka—zw =K a—;v (532b)
7= z=e"

Changes in water pressure outside the band will extend to relatively small
distances because the volume of water expelled by the band is very small. Small
changes in porosity within a limited distance outside the band will be able to
absorb the transient flow of water. Therefore, no effect on the calculated pore
pressures outside the band will be noticed if a zero excess pore water pressure is
specified at an infinite distance:

=0. (5.33)

Uy
Wiz=00

The problem, summarized in Equations (5.29) to (5.33), was solved by means of a
finite difference approximation developed in Appendix 5.1.

5.5.3 Results and discussion

The accelerated motion of a deep planar slide (D = 240 m; see Fig. 5.10) will be
investigated. The depth of the sliding surface is taken from the average thickness
of the lower wedge of Vaiont (Section 2). For a residual friction angle of 12° the
infinite slope becomes strictly unstable for an inclination f = 9.5° and a height of
the water table over the diding surface of h,, = 119.1 m.

The thermal and compressibility parameters for water and the solid mineral
congtituent of the shear band were taken from Olivella et al. (1996). They are
givenin Table 5.1.

A relevant parameter of the analysis is the thickness of the shear band. It will
be assumed that the band is embedded in a much thicker clay layer. As a
reference, in the case of Vaiont, Hendron and Patton (1985, page 20) mention that
the clay layer at the base of the sliding mass had a thickness varying between 1
and 3 m. In the Cortes landslide (Alonso et al., 1992), the shear band was located
within a 2 m thick marl layer. Most probably, the clay material in the immediate
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vicinity of the band will have essentially the same properties as the band itself. It
is also expected (and the computations reported below demonstrate it) that the
transient changes in water pressure around the shear band will affect a thickness of
the encasing material, which will be of the same order of magnitude as the
thickness of the band. Given the expected dimensions of the band (a few
millimeters), its effect will only extend a small distance at both sides of the band
and, for the purposes of the pore pressure analysis reported here, the entire domain
of the material outside the band will be a clay material having the properties of the
band.

Table 5.1 Material properties.

Parameter | Symbol | Value | Unit
Water
Density Pw 1,000 kg/m®
Coefficient of compressibility Ol 5x107° 1/Pa
Thermal expansion coefficient Bu 3.42x10™* 1/°C
3
Specific heat o | MBI Cj}‘ggofc
Solid particles
Density De 2,700 kg/m®
Thermal expansion coefficient Bs 3x10° 1/°C
- .372x1072 Jkg-°C
Specific heat Cs 8 3322010 call Eg-OC
Shear band material
Porosity n 0.2 -
Permeability k 10" m's
Compressibility coefficient m, 1.5%x10°° 1/Pa
Friction angle (residual) Q' 12 0
Sliding mass material
Density | p | 2350 | kg’

However, shear band and dliding mass have to be differentiated in the
formulation of the problem simply because heat is generated in the shear band and
not outside. A shear band thickness of 5 mm was selected to perform the dynamic
analysis of an infinite slide reported here.

The remaining material properties of the shear band (and the clay material on
both sides) are given in Table 5.1. Porosity and residual friction angle approximate
the actual values of the Vaiont dliding clay surface and were taken from Hendron
and Patton (1985). An average rock density p, = 2,350 kg/m® was assumed to
calculate the weight of the sliding mass. The initial temperature for the analysisis
10°C.

No precise laboratory information on the permeability of the clay diding
surface seems to be available. Hendron and Patton (1985) use the value k =
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1.6x10™" m/sin their analysis. Vardoulakis (2002) uses k = 1.1x10™ m/s. The
high plasticity values consistently measured (see Chapter 2) and the presence of
montmorillonite probably favours low clay permeability. A value k = 1.0x10™
m/s was selected here as a base case. Shear band permeability is one of the key
parameters of the model and it is subjected to high uncertainty. A sensitivity
analysis, discussed later, was performed to analyze the effect of changing clay
permeability.

Similar difficulties were found to select avalue for the clay stiffness. Hendron
and Patton (1985) report an elastic modulus of 1,000 MPa, which is equivalent to

an edometric deformability coefficient m, = 5x107° Pa® (for v = 0.3).

Vardoulakis (2002) selects a much softer value, m, = 1.5x108Pa®, which is
perhaps a high compressibility for the geologically old and indurated Jurassic clay

levels at the base of the landslide. An intermediate number, m, = 1.5x10~° Pa*,
was selected here for the base case.

The geometry and material properties described above, lead to an infinite slide
in strict equilibrium. To activate the slide, the water level was increased by a small
amount: 10 cm. The calculated response of the dlide is shown in Figures 5.11 to
5.14.

- 0010 : : : :
0 1 2 3 4 5
Excess pore water pressure (MPa)

Figure 5.11 Excess of water pressure isochrones in a section hormal to the slide direction.
Infinite slide (z= 0 isin the center of the shear band).
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Figure 5.12 Dynamic analysis of infinite slide. Base case (shear band permeability, k =
10 m/s). Time evolution of slide velocity: (a) heat generation considered; (b) no heat
generation considered.
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Figure 5.13 Dynamic analysis of infinite slide. Base case (shear band permeability, k =
10" m/s). Evolution in time of (&) excess pore water pressure in the middle of the band:; (b)
temperature; (c) shear strength of shear band; (d) slide displacement.
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Isochrones of excess pore pressures in the shear band and adjacent clay
material are plotted in Figure 5.11. Asfrictional heat accumulates during the slide
displacement, pore pressure increases. The dissipation towards the boundaries of
the band is slow due to the low permeability of the clay material. Note that
changes in pore pressure only extend to a reduced thickness outside the band.
Maximum pore pressures are aways calculated at the center of the band (z = 0).
This is the point where effective normal stresses are calculated when establishing
the dynamic equilibrium of the slope.
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Figure 5.14 Dynamic analysis of infinite slide. Shear band permeability, k = 107 my/s.
Evolution in time of () velocity; (b) excess pore water pressure in the middle of the band;
(c) temperature; (d) shear strength of shear band; () heat generated in the band; (f) slide
displacement.
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The fundamental effect of heat-induced pore water pressure generation is
shown in Figure 5.12 where the development of slide velocity with or without heat
generation is compared. An unstable infinite slope will eventually reach an infinite
velocity, irrespective of the heat generation at the shearing band. However, adding
the heat effect results in a much faster acceleration. In fact, after acommon sliding
time of 30 s, the “standard” slope, which was made (slightly) unstable, reached a
velocity of 2 mm/s. If the heat phenomenon is considered, the calculated velocity
is30 m/sfort=27s.

Results for the base case (k = 10! m/s) are summarized in Figure 5.13. The
following variables have been plotted along time: maximum excess pore pressure
and temperature generated in the band, shear strength, and slide displacement.

During the first 10 s, the generated heat does not have any relevant effect. The
excess of pore pressure remains negligible because the frictional work generated is
very small and the heat released is not enough to sufficiently increase the pore
pressure. Eventually, as time increases, pore pressure build-up is capable of
reducing the resisting shear strength. Then the driving force increases, the dide
accelerates, the work input and the temperature in the shear band increase, and
additional pore pressures are generated. The shear strength reduces to avery small
value at t = 16 s. However, the increasing velocity till provides a heat input into
the shear band and the temperature continues to rise. The pore pressure generation
is now almost compensated with flow-induced dissipation. The calculation was
stopped when total displacement was 400 m.

The effect of changing the permeability of the shear band (and surrounding
clay) is presented in Figures 5.14 (k = 10 m/s) and 5.15 (k = 10" m/s). When
the band is more impervious, the results are essentially the same as in the base
case. Now the shear strength becomes essentially zero beyond t = 10 s and the
band temperature remains constant at T = 85°C. The work input into the band
reaches a maximum and then decreases to a small value, which is enough to
compensate for the slow pore pressure dissipation. As a result, the excess pore
pressure remains constant and reaches a value close to 4.3 MPa.

When the band is more pervious (k = 10° mV/s), Figure 5.15b, the pore
pressure does not increase as fast as in the previous two cases, because dissipation
is enhanced. Therefore, the shear strength does not fall so fast. The combined
effect of increasing diding velocity and non-negligible residual strength in the
band leads to an increase of the work input (Fig. 5.15€) and to a significant
elevation of temperature in the band (Fig. 5.15c). The calculated temperatures far
in excess of 1,000°C implies that some of the assumptions made in the derivation
of the governing equations for the mass and heat balance of the band may not be
satisfied. In particular, if water vapourizes, pore water pressure may be different
from the vaue associated solely with water dilation and (liquid) flow. The
behaviour of the solid phase will aso be affected by high temperatures. The
problem now will require modification of the formulation, which is not attempted
here.

The effect of band permeability on dide velocity and pore pressure
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generation, during the interval necessary for the slide to reach a displacement of
400 m is illustrated in Figure 5.16. Increasing the permeability leads to a slower
response of the pore pressure build-up and a delayed acceleration of the slide. The
results seem, at afirst sight, to be consistent with the physics of the problem, but
the high temperatures developed in the band for permeabilities in excess of

10°° m/s force to be cautious in the high permesability range.
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Figure 5.15 Dynamic analysis of infinite slide. Shear band permeability, k = 10° mys.
Evolution in time of (&) velocity; (b) excess pore water pressure in the middle of the band;
(c) temperature; (d) shear strength of shear band; €) heat generated in the band; (f) slide
displacement.
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The infinite dide is a crude approximation of reality. The cross-section of
Vaiont can be approximated by two interacting wedges, the lower one resting on
an essentialy horizontal diding surface. The sliding mechanism in this case is
substantially different because, in the absence of phenomena leading to strength
reduction, the motion of an initialy stable geometric configuration tends to
decelerate, as discussed in Chapter 2. The following section explores the dynamics

of Vaiont.
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Figure 5.16 Dynamic analysis of infinite slide. Effect of shear band permeability (k) on the
development of (a) velocity and (b) excess pore water pressure in the middle of the band

during the interval necessary to reach a displacement of 400 m.
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5.6 Two Interacting Wedges

5.6.1 Geometry

The analysis of the infinite dide presented above is useful in understanding the
thermo-hydraulic process that takes place in a shear band and its effect on the
overall slide motion. However, the geometry of the slide introduces significant
changes, which will be presented here. The slide is now divided into two wedges
(1 and 2), following the discussion presented in Chapter 2. Section 5 of Vaiont is
schematized in Figure 5.17.

The analysis follows the cal culation procedure developed for the infinite slide:
mass and energy balance have to be written for the shear bands limiting the two
wedges and the overall dynamic equilibrium of the two wedges hasto be satisfied.

Figure 5.17 Cross-section 5 of Vaiont: (a) initidl geometry; (b) geometry after a
displacement s.

The lower wedge (Wedge 2), resting on a horizontal plane, supports
(passively) the unstable upper wedge (Wedge 1), which slides on a sloping plane.
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This geometry was used in Chapter 2 for the analysis of static and dynamic
equilibrium of the slope without considering the effect of water dilation due to the
heat generated on the basal shear band.

Changesin geometry have to be considered in adynamic analysis. Figure 5.17
indicates the evolving geometry of the slide when a displacement s is considered.

Theinitial basal length of Wedge 1 (L?) is reduced to

L=L-s (5.34)
Displacement increases the initial basal length of Wedge 2 ( Lg) to

L,=L%+s (5.35)

Length h (see Fig. 5.17b) can be obtained, for a given displacement s, knowing
that
0
n = h— (5.36)
L 3
because triangles AVB and A'VB’ are similar.
Now, the volume of Wedge 1 for a given displacement can be obtained as

1 o
V, ==Lhcos| — |. 5.37
Lunee() o

Volume reduction of Wedge 1 contributes towards increasing the volume of
Wedge 2 by the same amount and therefore its current volume becomes

Vv, =V +(vl° -V ) (5.38)

Wedge weights (W, and W,) and masses (M; = Wy/g and M, = W,/g; where g is
the gravity acceleration) can be computed from these volumes. A specific weight
of the rock (y, = 23.5 kN/m®) was used in calculations.

5.6.2 Balance equations
Mass and energy balance (of the lower shear band) and equilibrium conditions (for
the entire moving mass) will be written separately for each wedge. By forcing the
dlide to move as a single unit, the governing equations of the movement of the
landslide will be obtained.

The effective interaction forces across the common plane (VB'; see Fig. 5.17
and 5.18) between the two wedges have two components, N, and Qi, normal

and tangential to the plane. Forces due to pore water pressures P, , Pyine and Pys

will be considered as constant during the landslide.
Since the shear resistant forces of each wedge (T, and T,) are different
(although a unique frictional angle is considered, normal effective resultant forces
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on the basal planes, N; and N, are not equal), the work input into the bounding

shear bands of the two wedges will be different. Therefore, two different values
for the shear band temperature (6, and 6,) and for the excess pore water pressures
(Uyz and U,y,) will be developed in the two wedges. Specific balance equations
should be written for each one of the two wedges. To avoid confusions, each part
of the shear band will be denoted by shear band 1 or 2 according to the wedge
involved. Equal thickness and material properties will be assumed in the two
bands (they are taken from Table 5.1).

int
Q:? Pyt
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2

@) (b)
Figure 5.18 Geometry and forces on wedges: (a) Wedge 1; (b) Wedge 2.

Consider first the one-dimensional balance equations already developed for
the infinite dide in Section 5.5. They will now be directly applied to Wedge 1.
The z-direction corresponds to the normal direction of Shear Band 1. From the
First Law of Thermodynamics, the generated heat (H;) in the Shear Band 1 is
expressed as

Hl(t):rfl(t)vma;—e(t) for 7 <[-ed]. (5.39)

The frictional strength (tr;) can be derived from equilibrium conditions, as done
previously for the infinite slide.

Neglecting conduction and diffusion of heat, heat balance in the Shear Band 1
reads

H, (t) = pCy, ae;t(t) for z e[-ee]. (5.40)

Mass balance of water and solid inside and outside of Shear Band 1 resultsin
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—[(1-n)Bs+Bun] e()+[rm +na JM

(5.419)
t |t
m, Gom (1) _ k qu(zzl ) for z e[-e€],
ot Yw 0z
2
[m; . nro'w:| Ouy (z,t) m 9oy (t) _k @ uM(zzl,t)
ot ot Yw  0F (5.41b)
for z € (—»,~€]Ue,»)
Regarding Wedge 2, the generated heat can be expressed as

t

Hy(t)=14,(t) Vmazxe( ) for z, e[-ee], (5.42)

valid in the normal direction (z,) to Shear Band 2. The heat balance will be given
by

Hy(t)= pcmaeiT(t) for z, e[-e€]. (5.43)

Likewise, mass balance of water and solid inside and outside of the Shear Band 2
iswritten as

(1 mp e pum) 2 s 4, el Z2)

m, 6(5,(;2( ) =L8 Uy (Zzz,t)
t Yw 0z,

(5.443)

for ze[-e €],

Uy, (2,1) m o (1) :k_razuwz(zz,t)
at ot Yw 0z (5.44b)
for z, (-, e]U[-€ ).

[ +n]

These expressions compl ete the balance equations for the two shear bands.

5.6.3 Dynamic equilibrium of the two wedges

At this point the reader may wish to read first Chapter 2, where a detailed
presentation of the equilibrium equations of the two wedges is made. Reference is
made here to Figure 5.18. Regarding the previous analysis for the infinite
landslide, the main difference now is that masses and weights depend on the
displacement and then they are not constant in time.

For Wedge 1, the dynamic equilibrium equations for directions paralel and
normal to the basal diding plane are:
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W, (t)sin(@)-T; (t)- Niy (t)cos(%j—

(5.4539)
Q (t)sin(gj_ P COS(K] = d(Ml (1) Ve (t))
int 2 wint 2 - dt ’
W (t)cos(er) = Ny (t)+ Niy (t)gn(ﬁj_qm (t)cos(gj+

2 2

(5.45h)
Point sin[%j— P — U (t)Ly (t) = 0.

The right-hand term of Equation (5.45a) can be developed as:

d{ M (1) Vi (T AV (T dM, (t
( 1(; 0)_ (1)) dt( ) v (1) Ollt() (5.46)

and the time variation of mass of the wedge can be expressed as a function of the
time variation of the displacement (ds/dt ), which is equal to the velocity (v):

dv, 0
dMl _ Sr Wedge 1 :_8,— (I—lo —S)h—COS g % (547)
dt dt L, 2 Jdt

The shear resistance force on the base of Wedge 1 (T,) is expressed, following the
Mohr — Coulomb strength criterion, as

T (t)= N;(t)tan(op), (5.48)

where ¢y, isthe effective residua friction angle of the sliding surface.
The mobilized shear force on the common plane between wedgesis given by

Qe (t)=crh(t)+ Ny (t)tan(g; ), (5.49)

where ¢ isthe effective cohesion of therock, and ¢, , the effective friction angle

of the rock. The values of these strength parameters are indicated in Table 5.2.
These values are accepted and justified in Chapter 2.

Table 5.2 Strength parameters of the sliding rock mass.

Sliding mass material
Cohesion o 762.2 MPa

Friction angle o 38°

The water pressure force due to the presence of a water table of height h,, acting
against Wedge 1 is
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v

= . 5.50
2sina ( )

Pu

The water pressure force acting against the right boundary of Wedge 1 (Fig. 5.18)
iscalculated as

v

2coso

(5.51)

Paint =

Dynamic equilibrium expressions for Wedge 2 (parallel and normal to the dlide
direction, respectively) are

N (t)cos(%j—Q,m (t)sin(%j—T2 (t)= d(M2 (tgtvr"@‘ (t)) i (5.52q)
W (£) = Nj (£) + Ni (t)sin( )+ Quy (t) cos( 2 ) + 50
Ruint SIN( %)+ Rug 00(B) — Pz (1) ~ Uil () Ly (1) =0.
The shear resistance on the base of Wedge 2 (T,) is given by
T, (t)= Ny (t)tan(pp) (5.53)
and thevalue of R, isgiven by
Puz (t) = Lz () hyvy- (5.54)

Note that these equations a so depend on displacement, s, travelled by the wedges.
If Equations (5.45) to (5.54) are properly combined, a single motion equation
for the total sliding massis obtained as follows:

tV\llV\é- (t) + t\NZWZ (t) + thint

te Puz () +t, Unt ()L (t)+1,, Uas (1) Lo (t)+

dMm dMm
tcr G h(t) + thldt Tlvmax (t) + thzdt Tzvmax (t) =
Ve (1)

dt

where t coefficients depend on the section geometry and on the cohesive and
frictional parameters of the materialsinvolved, asindicated in Appendix 5.3.

The strength acting on the basal sliding surface of the two wedges is found as
the ratio of total resistance forces T, or T, and current base lengths L, or L,. T; and
T, aregiven by

Puint +1p, Par +1p, Fug +

(5.55)

:(tMlMl(t)+tM2M2(t))
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T2 (1) = T W () + g Wa () + T, i + T, Rt + T P +

e Rua (1) +1,, Un (D)L (t)+1, s (1)L (t)+re ch(t)+ (5.56)
am

am
Famt fvmax (t)+ Fam, ot Tzvmax (t)}/[erMl(tﬁ v, M> (t)] ,

T (1) = | Sy (t) + S Wa (1) + S, Puine + S5, Por + 5, Paa +
Sp, Paz (1) + 5, U () Ly (1) + 5, ™ () Ly (1) + 5, G h(t) + (5.57)

1

SdMldt d(,;: max() SdMZdt M Vmax(t):l/[SMlMl(t)"'SMZMZ(t)]’

where coefficients r and s are function of geometry and of wedge masses. They
are collected in Appendix 5.3. These expressions alow the calculation of heat
generation through Equations (5.39) and (5.42).

Summarizing the preceding results, the system of equations to be solved
includes the balance equations for the two shear bands (2+2 equations) and the
equation for the dynamic equilibrium of the entire landslide (one equation):

—[(1— n)Bs +Byn ] H +[m,+nocw]au‘”l—zlt)
(pc), (5.589)
0oy (t) _ ko uM(zl,t)
a oy o

for z e[-ee],

U (zt) . dom(t) 7&82um(zl,t)
ot a oy, oF (5.58D0)

for z e (—oo,—e] U[e,oo),

[mr, +nrocWJ

1 ”)BS+BW“] Y fm, e W]wz_zz*)_
(5.580)
t
0oy (t ):Lﬁ uW2(322, ) for 2, E[—e,e],
at Tw 522
/ Oz (22,1 r 00y (1 k, aZUW Z,,t
["L+n,aWJ 2(2 )—rm 2():_ 2(22 )
! aw % (5.58d)

for z, (—oo,—e] u[e,oo),
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t\,\,l\l\ll(t)HWZWZ (t)+tpwim Ruint +tp, Pur +tp, Pua +

tp Pu (t) thumuvr‘v’lax (t)Ly(t) +,, s ()L (t)+
dM,

am
tc, G h(t)+th1dt Tlvmax (t)+th2dt Tvmax (t) =

Ve (1)
P

where heat generation rates H; and H, are given by Equations (5.39) and (5.42).

(5.58¢)

- (tMlMl(t)+tM2M2(t)

5.6.4 Results and discussion

The system of Equations (5.58) was solved by finite differences following the
same calculation procedure explained in Appendix 5.1 for an infinite slope. Note
that for the case of two interactive wedges, the geometry of each wedge, their
weights and masses, the total normal stress under each wedge and the hydrostatic
pore water pressure under Wedge 2 depend on the displacement and should be
updated at each time interval of the calculation. Initial and boundary conditions
for each one of the shear bands are identical to the conditions described for the
infinite slope. The computer program developed is included in Appendix 5.2 to
facilitate calculations for other cases not covered here and to show al the details
of the calculation procedure.

Results for the base case (k = 10 m/s) are given in Figures 5.19 and 5.20. A
shear band thickness 2e = 5 mm was assumed. Calculation ended when the dlide
reached a displacement of 400 m. The physical explanation of phenomena taking
place in the shear band and the response of the slide were already given when
discussing the results for the infinite slope. Isochrones of excess pore water
pressure in the shear band below Wedge 1 are given in Figure 5.19a for the first
12 s of motion, when the dlide velocity was 10 m/s. The excess pore water
pressure reached a maximum vaue of 1.7 MPa for t = 10 s. At this time the
available shear strength at the center of the shear band was already very small and
the heat generated (and the associated pore pressure build-up) decreased sharply.

As aresult, pore pressure dissipation under Wedge 1 towards the surrounding
soil dominated the following time steps (t > 10 s). Note aso in Figure 5.19a that
excess pore pressures become negative outside the shear band. This is a
consequence of the unloading associated with the loss of weight of Wedge 1 asthe
slide moves forward. This effect is of minor importance within the shear band
itself where the excess pore pressure is dominated by heating effects. In Wedge 2
(Fig. 5.19b), excess pore pressures reach higher values due to the higher weight of
the wedge. The average normal total stress on the horizontal dliding surface under
Wedge 2 decreases a so during the slide displacement and a decrease in pore water
pressure outside the band is also calculated (Fig. 5.19b).
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Figure 5.19 Dynamic analysis of Section 5 of Vaiont. Base case (shear band permeability,
k = 10 m/s). Excess pore water pressure isochrones in the shear band of (a) Wedge 1 and
(b) Wedge 2 and adjacent soil. Shear band extends from z= 0.0025 m to z=-0.0025 m.

Figure 5.20 provides additional details. Global performance variables for
Wedge 1 have been plotted against time. The slide reaches a displacement of 400
m, 30 s after the initiation of the motion. At this time the velocity is 27 m/s (close
to 100 km/h). These are values consistent with field observations (see Chapter 2).

The development of excess pore pressure at the center of the shear band is
shown in Figure 5.20b and has already been explained. Further insight is provided
by the evolution of temperature, the drop in strength and the work (or heat) input
into the shear band. The maximum temperature calculated in this case is
somewhat higher than 100°C. The drop of shear strength is rapid fromt = 8 to 10
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s. The work performed increases fast during this period due to the rapid increase
in velocity, but it later decays because of the very low value of shear strength. The
entire behaviour of the band and, hence, of the landslide, depends in a fully
coupled manner on the mass and heat transfer phenomena in the thin shear band
and itsimmediate vicinity.
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Figure 5.20 Dynamic analysis of Section 5 of Vaiont. Base case (shear band permeability,
k = 10 m/s). Wedge 1. Evolution in time of: (a) velocity; (b) excess pore water pressure
in the middle of the band; (c) temperature; (d) shear strength of shear band; (€) heat
generated in the band; (f) slide displacement.
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Figure 5.21 Dynamic analysis of Section 5 of Vaiont. Shear band permeability k = 107
and 10™? m/s (remaining properties as in Base Case). Wedge 1. Evolution in time of: (a)
velocity; (b) excess pore water pressure in the middle of the band; (c) temperature; (d) shear
strength of shear band; (€) heat generated in the band; (f) slide displacement.

Changing the permeability of the shear band leads to significant changes in
behaviour. A more impervious band leads to minor changes, when compared with
the base case. When it is made more pervious, pore water pressure dissipation
becomes more significant and the effective normal stress (and shear strength)
maintains higher values. The dlide also accel erates fast and high velocities coupled
with relatively higher shear strengths lead to larger heat inputs into the band and to
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higher temperatures. These effects can be followed in Figure 5.21, where the cases
for k = 10 and k = 10™° m/s, which are also accepted values for the clay band
material of Vaiont, have been represented. The three calculated cases lead to the
same basic result: a fast accelerated motion is predicted and the final velocities
(for s=400 m) aresimilar in all of the three cases.

Vaiont was an extreme case. Landdlides are commonly of a much lower
volume. Therefore is it interesting to explore the effect of reducing the size of the
dlide. In other words, to raise the question of scale effects on the dynamic
behaviour of dides. This practical issue will be examined in the next section.

It was also interesting to perform a more complete sensitivity analysis than
just varying the band permeability. In this way, a relevant practical issue, namely
establishing a general criteria for landslide acceleration, could be analyzed. Shear
band permeability is only one of the parameters controlling the development of
pore pressures. Relevant parameters are also band thickness and stiffness. To
some extent permeability and band thickness provide the same information: both
are related to grain size distribution. Narrow or, alternatively, thick shear bands
are expected in impervious or pervious materials, respectively. Stiffness is a
different type of property and rock-like or soil-like materials may be found for the
same mineralogy and grain size distribution. An analysis of the combined effect of
permeability, band thickness and stiffness will be presented.

5.7 Scale Effects

Vaiont was a very large landslide (a mobilized volume close to 260 million m?
was estimated). A slide 100 times smaller is till a very large landdlide. For
instance, the 5 million m® Cortes landslide, described in Alonso et al. (1992),
posed a significant threat to the 100 m high Cortes concrete arch dam. Its overall
dimensions (length, height) were roughly 1/10 of Vaiont dimensions. Moreover,
many dangerous rock and soil slides described in the literature are one order of
magnitude smaller than Cortes dlide. Vaiont was an extreme case, of very rare
occurrence, on a world basis. Therefore, a relevant question remains: is the
velocity reached by Vaont also a common occurrence or, at least, a red
possibility in smaller and much more frequent landslides?

A comprehensive answer to this question would require a lengthy analysis of
the dynamic behaviour of different types of landslides. But a simple answer can be
given if the main characteristics of Vaiont (a displacement type of motion
involving a mass of rigid rock, sliding on a clay layer) are maintained and the
geometrical dimensions are reduced without any further change in material
properties or geometrical arrangement. In fact, if al the dimensions of Vaiont are
reduced by afactor of 10, alanddide very similar to the Cortes dide is obtained. If
this slide becomes (dligthtly) unstable, how would it evolve if heat-induced water
pressure develops at the dliding surface?

The program included in Appendix 5.2 is of direct application in this case. A
new case has been run, modifying the scale of the Vaiont landslide. The new
geometry is defined by reducing the dimensions (lengths and heights) of Wedges 1
and 2 (Fig. 5.17a) by a factor of 10. The water level was located at a position



Chapter 5 Geomechanics of Failures. Advanced Topics 211

which brought the slope to a state of strict equilibrium. The remaining properties
(including the shear band thickness) have not been modified and they are given in
Table 5.1. The motion was triggered by a dlight increase (10 cm) of the water
level.
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Figure 5.22 Reduced Vaiont landdlide (dimensionsx (1/10); volumesx (1/100)). Slide
response for a base case (shear band permeability, k = 10°** m/s). Wedge 1. Evolution in
time of: (a) velocity; (b) excess pore water pressure in the middle of the band; (c)
temperature; (d) shear strength of shear band; (€) heat generated in the band; (f) slide
displacement.
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The calculated response of this slide is shown in Figure 5.22 for a base case (k
= 10" m/s). Calculations were run in time until the slide reached a displacement
of 50 m. The calculated heat input into the shear band and the maximum excess
pore pressures are now one order of magnitude smaller than in the previous case.
As a result, the temperature increase of the band is very moderate (3.5 °C). The
shear strength, however, is lost after a few seconds and the slide is able to reach a
significant velocity. A maximum value around 9 m/s is obtained at the end of the
calculation period. The implication is that this reduced dide may be also
dangerousif the circumstances of the analysis are fulfilled in practice.
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Figure 5.23 Reduced Vaiont landslide (dimensionsx (1/10); volumesx (1/100)). Wedge 1.
(a) Effect of the permeability on the landslide velocity; (b) detail for high band
permeability.
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Band permeability is a key parameter to control the response of the dide. This
is shown in detail in Figures 5.23-5.26 which show the calculated velocity, excess
pore pressure, temperature and displacement for varying band permeability
(Wedge 1 in all cases). Band permeabilities of 10 m/s and larger do not trigger
any heat-induced effect. This threshold is obviously associated with the band
thickness used in calculations (5 mm), but a more consistent analysis is given
below. Since the two-wedge mechanism anayzed has a self-equilibrating
response, the small initia triggering effect (increasing water pressure in the shear
band by 10 cm) is, in those cases, “absorbed” by the changing geometry and the
slide comes to rest after a small increase in velocity (Fig. 5.23b). If permeability
decreases below this threshold, the coupled thermo-hydro-mechanical processes
taking place in the band result in a progressive accumulation of pore pressures
(Fig. 5.24) and in an accelerated slide motion. The temperature increase in the
band, when the slide accelerates (k < 107 my/s) is now quite moderate in most
cases. However, for the reasons already explained, there are some specific k
values (around k = 10°° m/s) which result in a strong dissipation of energy at the
band and, accordingly, in a significant temperature increase (30 °C are obtained —
Fig. 5.25d — at the end of the calculation interval). The attained displacements for
agiven time (Fig. 5.26) reflect also the preceding comments.
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Figure 5.24 Reduced Vaiont landslide (dimensionsx (1/10); volumesx (1/100)). Wedge 1.
Effect of shear band permesbility on the excess pore water pressure in the middle of the
band.

Summarizing, smaller slides, similar in shape to the Vaiont case, may aso
reach significant velocities. It appears that band permeability is a key parameter
controlling slide acceleration. Below a certain threshold value (around k = 107
m/s for the geometry and parameters selected for the case analyzed), the slide may
reach a high velocity. However, when the size of the slide decreases, the generated
band excess pore pressures and temperatures reduce. In fact, it appears that for
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slides having the size of a “reduced Vaiont” by a factor of 10 in the scale of
dimensions, maximum temperature increments in the shear band will be no more
than a few degrees. In most cases, it turns out that the generated temperature
depends aso strongly on the thickness of the shear band. Before general
conclusions are reached in this regard, it is convenient to perform a sensitivity
analysis of the calculated solution when the thickness, permeability and stiffness
of the band are varied between acceptable limits.
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Figure 5.25 Reduced Vaiont landslide (dimensionsx (1/10); volumesx (1/100)). Wedge 1.
Effect of shear band permeability on the temperature in the band.
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Figure 5.26 Reduced Vaiont landslide (dimensionsx (1/10); volumesx (1/100)). Wedge 1.
Effect of shear band permeability on the slide displacement.

5.8 Discussion

A better insight into the physics of the problem is gained if a sensitivity analysis
of the main controlling factors is performed. In view of previous results,



Chapter 5 Geomechanics of Failures. Advanced Topics 215

permeability values in the range 10 to 10~ m/s and band thickness varying
between 0.5 and 10 mm were chosen. Two moduli of confined stiffness were
selected, having in mind that in most cases the shearing surfaces in landdlides are
located in soft clayey rocks: m, = 10° Pa* (a relatively stiff clay rock) and m, =
10 Pa® (arelatively soft clayey rock). Then, for each combination (k, 2e, m,), the
program given in Appendix 5.2 was run for the geometry of the scaled Vaiont
geometry and maximum velocities for a runout of 50 m and temperatures in the
shear band were calculated.

Consider first the case of a stiff shearing band (m, = 10° Pa) in Figure 5.27.
The calculated velocities for varying band thickness remain in a narrow band.
Velocities reach high values (8 — 9 m/s) when the permeability is low (10 to
107 my/s). For relatively large permeabilities (higher than 107 m/s) the velocity of
the dlide drops to zero. In these cases the initially unstable situation is soon
counter-acted by the self-stabilizing mechanism of the slide (weight transfer from
the upper to the lower wedge).

The transition from the “rapid regime” to the “slow” or self-stabilizing
situation occurs for permeabilitiesin the range 10 to 10 m/s.

Calculated temperatures for varying band permeability and band thickness are
represented in Figures 5.27b,c for Wedge 1 and in Figures 5.27d,e for Wedge 2.
The normal effective stress in Wedge 1 against the dliding plane is significantly
smaller than the value calculated for Wedge 2. Resisting shear stresses react in the
same manner and the work input for Wedge 1 is smaller if compared with Wedge
2. The consequence is that temperatures in Wedge 1 remain at moderate values in
the “fast” and “slow” ranges of permeabilities. Temperature increases in the
intermediate “regime”’ because the combination of non-negligible shear strength
and a substantial diding velocity leads to a significant mechanical work input into
the band.

Band thickness controls the temperature development. A  maximum
temperature of 259 °C for Wedge 1 is calculated for k = 10° m/s and 2e = 0.5 mm.
Temperatures are higher in Wedge 2 for the reason given and they reach a peak
value close to 800 °C for k = 10 m/s and 2e = 0.5 mm. These high temperatures
would require a more precise formulation of the constitutive model of the band
material and, possibly, the presence of additional physical phenomena (water
vapourization) which are outside the limits of this chapter. But in most cases in
practice the maximum temperature calculated is moderate and the analysis
developed should represent reasonably well the relevant physical phenomena.

Similar qualitative results were obtained for the softer band material (m, =

1078 Pa?) (Fig. 5.28). In order to explain the results, consider the balance equation

for solid and water mass (Eq. (5.414)), written now in the following form:

au, kK, m oo, [(-n)BetBun] Vi
ot yu[m+na,] oz [m +nay,| ot [m, +no, ]  2epc,

The rate of pore pressure change has been isolated. Use has been made also of
Equations (5.39) and (5.40) which provide the relationship between temperature

(5.59)
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and rate of work input into the band. Three phenomena contribute to change pore
water pressures in the band: the dissipation due to flow of water (first term), the
variation of total normal external stress (second term), and the generation of pore
pressures due to water and solid dilation, controlled by heat (or rate of work input)
(third term). The three terms are affected by the compressibility coefficient of the
band material, m, (in the denominator).

The term m, + na., becomes:

10°+0.2x 0.476x 10° Pal= 1.095x 10° Pa? for the stiffer band
10%+0.2x 0.476x 10° Pal= 10.095x 10° Pa* for the softer band

Therefore, the rate of heat-induced generation of pore pressures is reduced ten
times when the compressibility of the material increases ten times. The sketch in
Figure 5.4 also explains qualitatively the effect of rock skeleton stiffness on pore
pressure generation when temperature increases: a softer rock pore accommodates
better an increase in water dilation, and leads to alower pore pressure.
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Figure 5.27 Reduced Vaiont landslide. Stiff shearing band, m,= 10° Pa. Effect of shear
band permeability and thickness on (a) landslide velocity; (b) temperature for Wedge 1; (c)
temperature for Wedge 1, detail; (d) temperature for Wedge 2; (€) temperature for Wedge
2, detail.

The remaining terms in Equation (5.59) are also controlled by m, (an increase
in m, also results in a decrease in the dissipation rate of pressures) and it is
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difficult to predict the final result in a particular case without actually performing
the calculations. If the heat-associated term dominates, excess pore pressures,
other conditions maintained, will decrease when m, increases — softer material —
and the normal effective force on the dliding surface will increase. Thisimplies, in
general terms, a higher resistance to siding and a reduced velocity.

The plot in Figure 5.28a shows the fina velocities when the dide has
displaced 50 m. It indicates that the increase in m, leads to a systematic reduction
in calculated velocities for any value of permeability. A consequence of this
reduction is that the transition permeability between the fast and slow regimes
now ranges between 107° and 10°° m/s. Another obvious consequence is that the
time to reach a given displacement should increase when m, increases.

Consider finaly the effect of m, in the development of temperatures in the
shear band (compare plots in Figs. 5.27b,c,d, and Figs. 5.28b,c,d). The plotted
temperatures correspond to the end of the calculation period, when the dlide in all
cases has reached a displacement of 50 m. Therefore, the plot provides an
accumulated quantity which is proportional (in the absence of any dissipation by
conduction and advection, given the fast phenomena analyzed) to the total work
input during the diding time.
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Figure 5.28 Reduced Vaiont landslide. m, = 10® Pa™. Effect of shear band permeability
and thickness on (@) landdlide velocity; (b) temperature for Wedge 1; (c) temperature for
Wedge 1, detail; (d) temperature for Wedge 2; (€) temperature for Wedge 2, detail.
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In the “fast” regime (low permeability) the pore pressure generation term for a
softer soil (third term in Eq. (5.59)) is smaler than the same term for a rigid
material. Therefore, in order to accelerate (pore pressures should increase until
effective stresses reduce to vey low values), heat has to accumulate during a
longer time for a softer material. The direct consequence is that the time to get the
accelerated motion of the dlide should increase for a softer material, a result
aready advanced. It turns out that the accumulated heat for the softer material (the
integrated value of the dide velocity times the available shear strength) is higher
than the calculated value for the stiffer material. As aresult, temperatures increase
in the case of softer materials. This is shown in the plots for the low range of
permeabilities. When the permeability increases and enters into the “slow" regime,
the comparison of the temperature results for the two m, values cannot be
discussed in the preceding terms because the slide stops soon after the initial
instability because of the fast dissipation of excess pore pressures.

The preceding set of comments illustrates the intricate coupling among the
different phenomena and the difficulty to make predictions on the basis of a
simple reasoning.

This is a case in which predictions, even if they are qualitative, require the
help of a computational tool.

5.9 Mitigation Measures

In 1960, engineersin charge of the dam were aready aware of the fact that the left
margin of the Vaiont River was a very large ancient side whose mobilized

volume was roughly estimated as 260x10° m®. Previously, in March 1959, a big

landslide, whose volume was estimated in 3x10° m® dlid rapidly into the
Pontesei reservoir, built on the Piave river, North of Longarone. It created a huge
wave, 25 m high, which flew over the dam, although no damage was reported.
Also, in 1960, a relatively large dlide, close to 10° m® fell into the Vaiont
reservoir and created a2 m high wave.

These two events prompted the performance of a hydraulic impact test at the
University of Padova. Reduced scale tests were performed. The landslide volume
was simulated by means of gravel that fell into the reservoir water. They reported
that a maximum wave height of 26 m could develop in Vaiont, in the case of full
landslide. It was estimated that the consequences of this maximum wave could be
managed in an acceptable way.

Predicting the wave generation induced by a moving mass entering a body of
water requires information on the shape and velocity of the mass, as well as the
bathymetry of the lake invaded.

In the case of Vaiont, the possibility of a major dide into the reservoir was
well accepted. It was feared that the slide could effectively close the valley. In
fact, a diversion tunnel was built on the right margin to allow the connection
between the two resulting isolated volumes of the reservoir.

However, the landslide speed could not be predicted or even imagined by
engineers. The hydraulic tests performed in Padova were inaccurate and this was
attributed to the use of gravel to simulate the dlide. In tests performed in 1974,
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when a similar risk was investigated for the reservoir of Libby dam, it was found
that the height of the wave generated in the lake was very much dependent on the
details of the shape of the material used to simulate the slide (Leonards, 1987). If a
solid vertical wall is used instead of a mass of gravel, the wave height increases
substantially. The fact is that the predicted wave was 26 m against the actual wave
heights over the Vaiont dam (150 and 250 m on the left and right abutments,
respectively).

Summarizing what has been discussed here and in Chapter 2, the critical path
to adopt (or not) remedial measures was:

a) to decide how theinitiation of the slide could be controlled. Straight use of
static models does not offer much confidence and the observational method
adopted seems a conceptually correct decision. But the observational
approach also requires a model to interpret field measurements. A model
was implicitly adopted and it is essentially derived from the plot in Figure
2.12. Observations were interpreted in the sense that a reduction in
reservoir level results in an immediate reduction of diding velocity.
Unfortunately, this conclusion is not based on a precise mechanica
analysis of the phenomenon, especially in the presence of progressive
failure, not to mention the thermo-hydro-mechanical interactions developed
in this chapter. The necessary knowledge and calculation tools were not
available in 1960 and, even if some progress was made in the following
decades, the fundamental aspects remain obscure.

b) by accepting the failure as a probable event, the next step is to ascertain its
consequences. The main concern was the possibility of water spilling over
the dam (and possibly the damage of the dam itself if it becomes directly
hit by the slide). The efforts made (reduced-scale hydraulic tests) suffered
two limitations: the lack of any basis to decide the dliding velocity, a
subject currently under research, and the effect of some testing details (the
actual representation of the sliding mass) on the results.

In neither of these two aspects there was reliable information at the time of
failure. Forty-five years afterwards, many theoretical and practical aspects remain
insufficiently known: the limitations to build reliable slope stability models, which
include time effects and phenomena such as progressive failure when brittle
materials are involved; the difficulty to know the state of stressing and available
strength in ancient landsliding areas, the difficulties to perform accurate
geotechnical investigations at great depths in a rugged terrain, and the lack of
established and verified criteria to decide when an impending slide may accelerate
and reach vey high velocities. This chapter provides some answers to the last
question.

5.10 Lessons Learned

5.10.1 Heating a saturated soil or rock

Heating leads to a pore water pressure rise in saturated soils and rocks. It has been
shown that this phenomenon is a consequence of the thermal dilation of water and
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solid skeleton and of the principle of effective stress. Excess pore pressures
dissipate in a consolidation type of process. Therefore, the pore pressure reached
at a particular time depends on the thermal dilation coefficients, as well as on the
consolidation parameters, namely permeability and stiffness.

5.10.2 Consequences of strain localization and the First Law of
Thermodynamics

Field observations indicate that translational and rotational slides move largely as
solid bodies diding on thin bands where shear strains are highly localized.
Therefore, as the slide displaces, strain work is concentrated in a small volume.
On the other hand, the First Law of Thermodynamics states that the change in
internal energy of a closed thermodynamic system (in our case, the narrow dliding
band) is equal to the amount of heat energy supplied and the mechanical work
done on the system. In our case, there are no direct sources of heat supplied to the
band and, therefore, the increase in internal energy of the diding band is equal to
the plastic straining work associated with dliding. The increase in internal energy
manifests as an increase in temperature and, in view of the previous point, excess
pore water pressures will be induced in the diding band. The immediate
consequence is a reduction of effective stresses and of the associated shear
strength. This mechanism leads, under appropriate circumstances, to a complete
loss of resisting strength available at the sliding surface. Then, the unbalanced
driving forces lead to an accelerated slide mation.

5.10.3 Formulating coupled thermo-hydro-mechanical (THM) phenomena
in the shear band

This chapter provides a step-by-step procedure to formulate THM problems of
fairly general nature in a saturated porous material. The particular geometry of the
shear band (narrow thickness and very large lateral extension) makes the problem
one-dimensional in practice and facilitates its solution. Another implication is that
the THM problem associated with the shear band may be formulated
independently from the geometry of the dide and its specific kinematic
mechanism. The solution given for the THM band problem may be applied to
other dlide configurations not covered in the chapter, whenever the effect of heat-
induced pore pressure development is sought.

5.10.4 Dynamics of Vaiont

A seemingly convincing explanation for the accel erated motion of Vaiont relies on
the development of excess pore pressures generated by the temperature increase of
the dliding surface. This is a consequence of the slide motion itself. A key
condition to explain the phenomenon is the existence of a basa diding plane
located in alayer of low permesbility high plasticity clay. Under these conditions,
the self-feeding mechanism of pore pressure generation in the sliding surface may
eventually lead to very high diding velocities (> 25 m/s), which are reached in a
few seconds (~30 s) even if proper account is given to the self-stabilizing evolving
geometry of the dlide and even if progressive failure mechanisms potentially
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acting on internal shearing surfaces are not considered.

Although the two-wedge analysis described here provides a reasonable
explanation for the final catastrophic motion of the slide, the previous history of
landslide creep-like displacements (Figs. 2.3. 2.4 and 2.12) cannot possibly be
reproduced with the model described in this chapter. Other phenomena such as
viscous-strength components at the failure surface or the strength degradation of
the rock mass could be invoked to approximate the measured velocities prior to
failure. However, additional limitations can be identified both in the model and in
the available information: the geometry was kept two-dimensional and as simple
as possible; pore water pressures prevailing at the failure surface were never
measured; the effect of previous rainfall regime is essentially unknown beyond the
condensed information offered by Figure 2.13; the actual conditions (in particular,
the continuity of the high plasticity clay layer) and a significant proportion of the
sliding surface remain buried by the slide and are essentially unknown. Therefore,
complexities and uncertainties around Vaiont are far from being solved. However,
it remains as a fascinating case and a permanent source of inspiration in the field
of landslide analysis.

5.10.5 Relevant parameters to understand the dynamics of the motion

Slide geometry and strength properties of the dliding surface(s) are not enough to
understand the dynamics of Vaiont. Three parameters have been found important
to explain the motion: the thickness of the dliding band, its permeability, and its
(confined) stiffness. Permeability is the major player. The sensitivity analysis
performed for a slide of medium-high dimensions (one tenth of Vaiont) has shown
that, below a certain permeability threshold (established around 10 to 10° m/s
for a“stiff” band (m, = 10° Pa?) and 10° to 10 *° m/s for a“soft” band (m, = 10°®
Pal)), the maximum pore pressure development in the shear-band, which is the
value controlling the shear strength, is not much affected by the band thickness,
within a reasonable range of values. Above this threshold permeability value, pore
pressure dissipation is enough to de-activate the process of pore pressure build-up
and, therefore, the dlide does not accelerate. In other words, the threshold
permeability identified marks the transition from a potentially risky slide to a safe
one. Of course, this conclusion is valid for the slide geometry analyzed (a scaled
Cross-section 5 of Vaiont) and it should not be extended to other diding
configurations without further analysis.

5.10.6 Extreme phenomena

In very large landslides (Vaiont case), when conditions for accelerated motion
exist, there are critical combinations of band permeability and band thickness that
result in a substantial and rapid increase in shear band temperature. This is a
natural outcome of the formulation and it is a consequence of the availability of
small — but not negligible — shear strength in the shear band and an increasing
shear dtrain rate as diding velocity increases. The permeability of the band in
these cases is low enough to maintain a significant pore pressure in the band but
high enough to maintain a non-negligible effective normal stress. The calculated
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temperatures (hundreds or even thousands of °C) are enough to induce water
vapourization and rock melting. These phenomena are not covered by the
formulation developed, which only explains water pressure increase as a result of
thermal dilation effects. For this reason, no reliable conclusions should be derived
from the high temperatures calculated for some critical values of the band
permeability. However, the estimated sliding-band parameters, in the case of
Vaiont, lead to a moderate increase in temperature (< 100°C), which is not able to
vapourize the interstitial pore water of the clayey band.

When the size of the slide decreases, the temperature generated in the band
also decreases because the work input into the band decreases. A reduction of
Vaiont dimensions by a factor of 1/10 till leads to a very large dide (a few
million cubic metres), which has been analyzed. Sliding band temperatures, in this
case, are substantially lower. For an impervious band (k < 10™° m/s) or for a
pervious band (k > 107 m/s), maximum temperature increments are moderate (a
few degrees). In extreme cases, for critical k values of the dliding band, it is
unlikely for temperature to raise more than a few hundreds of °C. Rock melting is
excluded in these cases and water vapourization, in clay rich naterials, in
uncertain. Since most dides do not reach, in practice, such a volume (a few
million cubic meters), it appears that water vapourization and rock melting are
extreme phenomenathat rarely occur in practice.

The fact that temperature increases will likely remain moderate or low in most
dlides does not prevent, however, the development of significant velocities. The
reason is that the reduced increase in pore water pressure in those cases is aso
matched by areduced normal effective stress on the diding surface. Therefore, the
condition of zero effective stress may also be reached during motion. However,
the smaller the dlide is, the shorter the diding path necessary to substantially
change its geometry, to evolve to another type of motion, or to be affected by
another geometrical restriction to its motion. These considerations added to the
reduced momentum of the dide tend to limit the danger associated with smaller
slides.

5.11 Advanced Topics

Analytical and numerical procedures are available to investigate the run-out
distances and velocities reached by landdlides. In recent studies (Hungr, 1995;
McDougall and Hungr, 2004; Quecedo et al., 2004), the dlide is idedlised as a
fluidized mass of soil and the Navier—Stokes equations are integrated in depth,
adapted to the curved geometry of the surface, and solved for some rheological
models adopted for the moving mass. In other approaches conceived for
rockslides, discrete element approaches and hybrid continuum-discontinuum
models have been developed (Eberhardt et al., 2004).

However, Vaiont is a different case. Changes in the slide geometry during
dliding did not imply a change in the fundamental sliding mechanism, which may
be approximated by one or severa rigid bodies bounded by “thin surfaces’
subjected to intense shearing. This was the implicit approach of al the
contributions mentioned in the chapter. Of particular relevance is the anaysis
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presented by Vardoulakis (2002). He approximated the dliding surface by means
of acircle. To ensure initial equilibrium conditions the basal friction angle in this
case has to increase to 20°. Vardoulakis (2002) also introduced heat dissipation
away from the dliding band and the volumetric contraction (*collapse” was the
term used) of the clay on the band due to the increase in temperature. A closed-
form solution for planar slides was given by Pinyol and Alonso (2009).

Appendix 5.1. Finite difference approximation of the system of
Equations (5.29) to (5.33)
A forward finite difference procedure was developed to solve the system of
Equations (5.29) together with the initial and boundary conditions given in
Equations (5.30) — (5.33). Consider in Figure A5.1 the domain of integration. The
one-dimensional spatial domain is subdivided into n small elements of thickness
Az The z coordinate of any point is defined by an index i such that z = iAz The
following indices define singular points: i = ng correspondsto z=0; i = n.toz=
e. The far boundary is located at a distance z = L, where i = n.. The horizontal
axis in Figure A5.1 corresponds to time. The system of equations will be solved
for each time interval At.

Time derivatives at any time t, for z = z can be approximated by (Forward
Euler Method):

of
at

N f(z,t+At)-f(z,1)

n , (A5.1)

K

where f (zt) isageneral function of position (2) and time (t).

The first and second derivative with respect to z will be approximated by a
central difference

ol . f(ZHl,t)_f(Zi—l’t), (A5.29)
azt AZ

2 A — : i

2| _ F(zat)-2f(z.0)+f(z41) (A5.2b)

o | (a2

Once the numerical approximations of the derivatives (Egs. (A5.1) and (A5.2)) are
substituted into the system of Equations (5.29¢,d,e), the following discrete set of
equations is obtained:

Uy (Z,t+At) =uy(z,t)+
Cvitz[uw(mllt)—Zuw(a,t)+uw(4_1,t)]+ (A5.33)

Az
+CyAtH (t) fori=ny,n,
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U, (z,t+At)=
At ) (A5.3b)
Uy (7 ,t)+c{,E[u\,\,(zi+l,t)—2u\,v(zi ,t)+uw(zi_l,t)J fori=n,n,

At .
Vinax (t+AL) = Vo (t)+V[Wsm([3)—1:f (t)] (A5.3c)
In these equations,
k
Q= (A5.4)
(m, +nay, ) vw
is the consolidation coefficient of the shear band material;
q}ﬁ_ﬁ__ (A55)
() + oty ) v,

is the consolidation coefficient of the material outside the shear band; and

c, :(1_n)B—5+6Wn (A5.6)

(m, +naw, ) pep,

is a parameter that integrates the dilation coefficients of water and solid, the
compressibility of soil skeleton and water and the mean specific heat of the soil.

Equations (A5.3a,b) are explicit mathematical expressions for the excess of
pore pressure in a point z, at a given time (t + At), if the old values (at the
previous time, t) in three points: point z and the points just above and below (z_;
and z.,), are known. This calculating procedure is graphicaly illustrated in Figure
A5.1. Equation (A5.3) provides the new value of the maximum velocity as a
function of the old values (previous step) of maximum velocity and excess of pore
pressure a z = 0. Heat (H) and effective frictional strengh (tr) are given by
Equations (5.29a,b) at the previous time t. It appears, therefore, that a forward
marching procedure has been devised to calculate the independent variables
(excess pore water pressure and velocity). The procedure requires that initial and
boundary values are defined.

Initial and boundary conditions must also be expressed in a humerical way.
The symmetry condition at z = 0 (Eq. (5.31)), valid a any time, can be
approximated by extending the domain with an additional interval fromz=0to z
=z, = —Az Then, if the excess pore pressureat z= z 4, u,, ( z_l,t) isforced to be

Uy (Zg,t) = Uy (27,t) (A5.7)

at any time, the condition
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Mal _0inz=0
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is automatically satisfied in view of Equation (A5.7).
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Figure A5.1 Dynamics of a planar infinite slope. Domain of integration.
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The genera expression (A5.3a) for z= 0 can now be written
At
Uy (Zp,t+At) = uw(zo,t)+q,E[Zuw(zl,t)—2uw(zo,t)]+AtcH H(t). (A5.8)
The numerical expression of the boundary condition at the edge of the shear

band (z = €) (Eg. (5.32)), is obtained by means of a forward finite difference as
follows:

kuw(zne,t)—uw(an,t) » Uy (2, 1) =t Zo, 1)
Az o Az '

(A5.9)

This equality allows the calculation of excess pore water inz= e at any time as a
function of the values of excess pore water in the points just above and below (at
the sametime):

Uy (2,t) = kruw(z'“l’lt(?ikkuw(z'“’t). (A5.10)

The numerical expression of boundary condition at the upper limit of the
discretization (Eq. (5.33)), where the excess of pore pressure must be zero, is
simply

Uy (2, ,t) =0. (A5.11)

Regarding the initial conditions (Egs. (5.30)), the numerical equivalents are
given by

Uy(Z.t)=0 forie[Ln ], (A5.12)
v(z,t)=0 forie[Ln], (A5.13)
0(ty) =6, forie[Ln,]. (A5.14)

At theinitial time (to), al values are known. The excess pore water pressure in
the next time increment can be calculated by means of Equations (A5.3ab) in
[Mo.ne) and (ng,n. ], respectively. Note that n is not included in those intervals.
However, the continuity condition, expressed in Equation (A5.10), provides the
new value of excesspore pressureat z= e.

The value of the maximum velocity at the first time step is obtained by means
of Equation (A5.3c) (with V. (ty)=0). Once velocity and excess of pore

pressure are known at the new time step, the new value of heat and effective
frictional strength can be calculated through Equations (A5.3ab). Also, the
temperature in the shear band can be obtained, at each time step, by means of
Equation (5.23), writing it in anumerical form as follows:
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6(t+At):6(t)+At%t). (A5.15)
PCm

Summarizing, the numerical solution of the problem starts at the boundaries
where the values of the variables are known at any time. The set of discretized
equations provides, step by step, all the unknowns at any time and position of the
domain of integration. Sinceinitial conditions of excess pore pressure at any point,
as well as the initial temperature are zero, the value of pore water pressure at the
first time step (t = At) will be zero.

These approximations lead to a Forward Euler Method of integration which
may be numerically unstable if At is larger than the stability limit, which is a
function of material parameters and Az If the solution becomes unstable, the
calculated values of the unknown function display an oscillatory behaviour in time
that prevents convergence. Convergence of explicit integration schemes of
standard parabolic equations (such as the consolidation equation) is achieved if the
time and spatial increments satisfy the condition:

SAL_os. (A5.16)
Az
This condition applies to the homogeneous part of the parabolic equation
(Nakamura, 1991) and it may be thought that our field Equation (5.29c) leads to a
similar relationship. Unfortunately, the “independent” term (proportional to heat
input H (t)) in Equation (5.29¢) is a function of pore pressure, through Equations

(5.293,b,e). Nevertheless, the preceding condition has been accepted as areference
in the calculations presented below. In general, care has been taken to check that
the calculated pore pressures did not change for time steps below a certain value
used in calculations.

The calculated velocity will increase as long as the sliding mass is unbalanced
(driving forces exceed resisting ones). This is the case, even if the excess pore
pressure at initial time is zero, because a positive increment of velocity will be
calculated. Then, the positive value of generated heat, due to the velocity reached
at the first time step, will result in an increment of temperature and excess pore
pressure in the shear band. At the following time step, this positive excess pore
pressure will reduce the effective frictiona strength and will accelerate the dide
mass. The dide will start to move in an accel erated motion.

The numerical procedure described above has been programmed in Fortran
90. The program is included in Appendix 5.2 to show all the details of the
computational procedure and to alow the reader to perform its own calculations.

Appendix 5.2 Flowchart and Computer Program for the Dynamic
Analysis of the Infinite Planar and Two-Wedge Slides

The numerical procedures described above for the dynamic analysis of the infinite
dide and the two interacting wedges was programmed in Fortran 90. The
complete codeisincluded at the end of this appendix.
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The program is subdivided in two main branches (Fig. A5.2) attending to the
type of dide by means of two subroutines: Infinite planar_slide and

Two_interacting_wedges.
START

v

Type of slide

Infinite Planar slide Two interacting wedges

Figure A5.2 Flowchart of the main program.

The main program is structured in three parts. Firgt, all the input parameters
that can be modified by the user are defined: material parameters, reference
temperature, type of the slide and its geometry, parameters for the discretization
by finite differences, and control parameters. Regarding the discretization
parameters, the user has to define the number of spatial stepsin the shear band and
in the diding mass. As the thickness of the shear band is previously defined, the
length of spatial increment (Az) and the position of the coordinate of the upper
boundary (L) is determined by default. The time interval (At) is defined, by

default, by limiting the value of the stability coefficient (cht/Azz) to 0.3 in

order to guarantee the stability.

Second, auxiliary parameters and constants are calculated by the program. In
general, this part should not be modified by the user. Finally, in the third part of
the main program, a subroutine is called depending on the type of dide.

The numerical procedure starts in the subroutines. Results are calculated and
stored in external files, within the same subroutines. At intervals defined by the
time frequency (Dtw_time), which is specified by the user in the main program,
the values of velocity, excess pore pressure in the middle of the shear band, heat,
displacement, shear strength, and temperature are written in data files. Excess pore
pressure profiles for z= 0to z =L are also stored in externa files following the
time frequency (Dtw_profile) specified. The numerical procedure goes on until the
maximum displacement (displ_max) is reached or until the slide velocity becomes
zero (the landdlide stops) for the case of two interacting wedges.

The implementation of the numerical procedures in the subroutines follows
the flow chart diagramsincluded in Figures A5.3 and A5.4.
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Figure A5.3 Flow chart diagram of subroutine Planar_dlide.
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Two interactive wedges
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Figure A5.4 Flow chart diagram of subroutine Two_interacting_wedges.
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PROGRAM

VAIONT LANDSLIDE: DYNAMIC ANALYSIS

implicit real*8 (a-h,o0-2)

I PARAMETERS TO BE DEFINED BY THE USER

pi =3.141592654

I MATERIAL PARAMETERS
IWater parameters

delta_w = 1.e3 Tkg/m3; density
gamma_w = 9800.0 IN/m3; specific weight
alpha_w = 5.e-10 11/Pa; compressibility coefficient
beta_w = 3.4e-4 11/°C; thermal dilation coefficient
c_w =4186.0 13/(kg-°C); specific heat

1Solid parameters
delta_s = 2.7e3 Tkg/m3; density
beta_s = 3.0e-5 11/°C; thermal dilation coefficient
c_s = 837.2 13/(kg-©C); specific heat

IShear band parameters
zn_band = 0.2 Iporosity
zk_band = 1.e-11 Im/s; permeability
zmv_band =1._5e-9 11/Pa;1D compressibility coefficient
Ffib=12.0*pi/180. Trad; effective frictional angle in the band

I1Sliding mass parameters
zn_rock = 0.2 !porosity
delta_rock = 2350. Tkg/m3; density

gamma_rock =23500. IN/m3: specific weight

zk_rock = 1l.e-11 Im/s; permeability

zmv_rock = 1.5e-9 11/Pa; 1D compressibility coefficient

fir = 38.*pi/180. Irad; effective frictional angle rock-rock
coher =762.247e3 1Pa; cohesion rock-rock

cc = 0.d0 11/m; rock cohesioén degradation rate with

the displacement (if it is equal to zero, there is no degradation

I INITIAL CONDITIONS
TInitial excess pore pressure, velocity and displacement have been
Timposed equal to zero by default

theta_ref =10.0 1°C; reference temperature

I TYPE OF SLIDE
ntype_failure = 2 I1:infinite planar slide
12:two interacting wedges

! GEOMETRIC PARAMETERS AND HYDROSTATIC FORCES

e = 2.5e-3 Im; 2e = thickness of shear band
ifT (ntype_failure.eq.1l) then

zHeight =240. Im; thickness of planar landslide
zHeight_w =120. Im; height of phreatic level

beta_slope = 9.490*pi/180. !rad; slope angle
else if (ntype_failure.eq.2) then
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zH_wedgel = 510.0 Im; height of upper triangular Wedge 1

zH1_wedge2 = 260.0 Im; left height of lower Wedge 2
zH2_wedge2 = 260.0 Im; right height of lower Wedge 2
Base_wedgel = 700.0 Im; horizontal length of Wedge 1
zL2_0_pl = 240. Im; partial base length (1) of Wedge 2
zL2_0_p2 = 320. Im; partial base length (2) of Wedge 2
alpha = 36.07*pi/180. Trad; angle Wedge 1

beta = atan(zH2_wedge2/zL2_0_p2) !rad; angle Wedge 2
zHeight_ w = 120.1 Im; water level
endif

I CONTROL VARIABLES

displ_max = 400.0 'm; maximum displacement allowed in calculation

DISCRETIZATION (FINITE DIFFERENCE)

nze = 500 Inum. of spatial intervals between z=0 and z=e

zL = 0.02 Im; coordinate of upper boundary

sfb = 0.3 Istability factor of the band for difference
Tapproximation

CONTROL PARAMETERS OF OUTPUT DATA

Dtw_profile=2. Iseconds; Time between successive writings
1of pore pressure profiles
Dtw_time=1. Iseconds; Time between successive writings

Tof problem variables varying in time

AUXILIAR PARAMETERS COMPUTED BY THE PROGRAM

TAuxiliary material parameter

gamma_s = 9.8*delta_s IN/m3; specific weight

c_delta_band = (1.-zn_band)*delta_s*c_s+zn_band*c_w*delta_w
1Pa/°C;specif heat*density

cv_band = zk_band/(gamma_w*(zn_band*alpha_w + zmv_band))
11/s; consolidation coef. of the band

c_delta_rock = (1.-zn_rock)*delta_s*c_s+zn_rock*c_w*delta_w
1Pa/°C;specific heat*density

cv_rock = zk_rock/(gamma_w*(zmv_rock+zn_rock*alpha_w))
11/s; consolidation coef. of the
Isliding mass

TAuxiliary geometric parameters and hydrostatic forces

ifT (ntype_failure.eq.1l) then

Pw = zHeight_w*gamma_w IN; hydrostatic force on the base
zmass=zHeight*delta_rock*cos(beta_slope) 'kg/m; mass per unit of
Ilength

weight = zHeight*gamma_rock*cos(beta_slope) IN/m;total weight
Iof the sliding mass per unit of length
else if (ntype_failure.eq.2) then
zL1 0 = sqrt(zH_wedgel*zH_wedgel+Base_wedgel*Base_wedgel)
Im; base of wedge 1

zL2 0 = zL2 0 _pl+zL2 0 _p2 Im; total base length of wedge 2
delta = 0.5*(pi-alpha)

shi = 0.5*alpha

Pwint = 0.5*zHeight_w*zHeight_w*gamma_w/sin(delta)

IN; hydrostatic force on common shearing
Iplane between wedges
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Pwf = 0.5*zHeight_w*zHeight_w*gamma_w/sin(beta)
IN; hydrostatic force on the right edge of
Tlower wedge 2
zl_shplO = zH1_wedge2/cos(shi)
Im; length of common shearing plane between
Twedges
Areal_0 = 0.5*zL1_0*zl_shplO*cos(shi)
Im2; initial area of wedge 1
ddd = zH1_wedge2/tan(delta)
Area2_0 =0.5*zH1_wedge2*ddd+
. 0.5*(zH1_wedge2+zH2_wedge2)*(zL2_0_pl-ddd)+
. 0.5*zH2_wedge2*zL2_0_p2 !m2: initial area edge 2
Pwl 0 = 0.5*zHeight_w*zHeight_w*gamma_w/sin(alpha)
IN; hydrostatic force on base of wedge 1
Pw2_0 = zHeight_w*zL2_0O*gamma_w
IN; hydrostatic force on base of wedge 2
endif

IConstants in the balance equations for mass and heat
cv_band = zk_band/(gamma_w*(zn_band*alpha_w + zmv_band))
c_heat = -((zn_band*beta_w+(1-zn_band)*beta_s))/
(c_delta_band*(zn_band*alpha_w + zmv_band))
c_sigma_vertical = zmv_band/(zn_band*alpha_w + zmv_band)
cv_rock = zk_rock/(gamma_w*(zn_rock*alpha_w + zmv_rock))

TAuxiliary parameter for the discretization by finite difference

Dz = e/(nze-1) Tlength of spatial intervals
nz = int(zL/Dz) Inum. of spatial intervals
Dt = sfb*Dz*Dz/cv_band Iseconds; time intervals

IVerification stability factor in sliding mass (rock)
sfr = cv_rock*Dt/(Dz*Dz)
write (6,*) "Stability factor rock=",sfr !0Qutput data on screen
write (6,*) "Dz=", Dz," Dt=",Dt 'Output data on screen

TAuxiliary parameters of output data
int_write_profile=Dtw_profile/Dt INumber of time intervals
Thetween successive writings of pore pressure profiles
int_write_time=Dtw_time/Dt INumber of time intervals between
Isuccessive writings of problem variables varying in time

! CALCULATION STARTS

iT (ntype_failure.eq.1l) then

call Infinite_planar_slide (Dz,Dt,nz,nze,e,
theta_ref,
cv_band,c_heat,cv_rock,
zHeight,Pw,zmass,weight,
stb,sfr,zk_rock,zk_band,
c_delta_band,c_delta_rock,
fib,beta_slope,displ_max,
int_write_profile,int_write_time)

else if (ntype_failure.eq.2) then

call Two_interacting_wedges (Dz,Dt,nz,nze,e,
nt,tmax,
v0,UbtO0, teta_ref,
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. zL1 0,zL2_0,zh_chaO,

. Areal 0O,Area2_ o0,

. zHeight,Em1,Em2,Pwl_O,Pw2_0O,

- gamma_roca,delta_roca,

- alpha,beta,shi, fir,

- coherO,cc,

- cv_band,c_heat,c_sigma_vertical,cv_rock,
. sfb,sfr,zk_rock,zk_band,

. c_delta_band,gamma_w,

. fib_max,fib_min,v_max_fib,a_const,
displ_max)

DYNAMIC ANALYSIS OF INFINITE SLIDE

subroutine Infinite_planar_slide (Dz,Dt,nz,nze,e,
. theta_ref,
- cv_band,c_heat,cv_rock,
- zHeight,Pw,zmass,weight,
. stb,sfr,zk_rock,zk_band,
. c_delta_band,c_delta_rock,
- Fib,beta_slope,displ_max,
. int_write_profile,int_write_time)

implicit real*8 (a-h,0-z)
dimension Utold(nz),Utnew(nz)

! OPEN FILES TO WRITE RESULTS
open (unit=2, file="Velocity.dat", status="unknown®")
open (unit=3,
Tile="Excess_pore_pressure_z0.dat",status="unknown®)
open (unit=4, file="Temperature.dat”, status="unknown®)
open (unit=7, file="Strength.dat", status="unknown®")
open (unit=8, file="Heat.dat", status="unknown®)
open (unit=9, file="Displacement.dat”, status="unknown®")

I WRITING TITLES IN RESULT’S FILES
write (2,*) " Time(s) ", "Velocity (W/s) *
write (3,*) " Time(s) ", "Excess pressure (MPa) *
write (4,*) " Time(s) ", "Temperature (°C) *
write (7,*) " Time(s) ", "Shear strength (MPa) *
write (8,*) " Time(s) ", "Heat (MJ/s-m3) *
write (9,*) " Time(s) °, "Displacement (m) *

zero = 1l.e-10

I INITIATE COUNTERS
iw_profile = 0!Counter for writing pore pressure profiles
iw_time = 0 ICounter for writing problem variables varying

in
Itime

T INITIALIZE PROBLEM VARIABLES
TExcess pore pressure
do i=1,nz
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Utold(i) = 0.0

enddo
1vVelocity

vtold = 0.0
I'Temperature

theta_told = theta_ref
IDisplacement

displ_told = 0.0
IShear strength

tau_failure = (weight*cos(beta_slope)-Pw)*tan(fib)
THeat

Heat=0.0

I CALCULATION PROCEDURE STARTS
DO WHILE (displ_tnew.lt_displ_max)
k=k+1
t=k*Dt

TExcess pore pressure
Utnew(1) = Utold(1)+sftb*(2.*Utold(2)-2.*Utold(1))-
Dt*c_heat*Heat

do i=2,nze-1

Utnew(i) = Utold(i)+sfb*(Utold(i+1)-2.*Utold(i)+Utold(i-1))-
Dt*c_heat*Heat

enddo

do j=nze+l,nz-1
Utnew(() = Utold()+sfr*(Utold(J+1)-2.*Utold(j)+Utold(-1))
enddo

Utnew(nz) = 0.0

Utnew(nze) = (zk_rock*Utnew(nze+1)+zk_band*Utnew(nze-1))/
(zk_rock+zk_band)

1Velocity
Vtnew = vtold+Dt*(weight*sin(beta_slope)-
. tau_failure)/zmass

ITemperature
theta_tnew = theta_told+Dt* Heat/c_delta_band

IDisplacement
displ_tnew = displ_told+Dt*vtold

IShear strength
tau_failure = (weight*cos(beta_slope)
. —-Pw-Utnew(1))*tan(Ffib)

if (tau_failure.lt_zero)then

write (6,*) "tau_failure is negative-
tau_failure = 0.0

endif

THeat
Htnew = tau_failure*vtnew/(2.*e)
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I UPDATE VARIABLES
IExcess pore pressure
do m=1,nz
Utold(m) = Utnew(m)
enddo
1Velocity
vtold=vtnew
ITemperature
theta_told
IDisplacement
displ_told = displ_tnew

theta_tnew

I WRITING RESULTS AT SELECTED TIMES
if ((k.eg.-1).or.(mm.eq-k)) then
iw_profile = iw_profile+l
mm = int(int_write_profile)*iw_profile
t = k*Dt
write (6,*) k," Excess pore pressure profile has been written”
ifile = iw_profile+l10
write (ifile,*) "Time(s) -,t
dom = 1,nze
z = (m-1)*Dz
write (ifile,"(2(el5.5,1x))") z, Utnew(m)
nmax = m
enddo
do n=1,nz-nze
m = nmax+n
z = e+n*Dz
write (ifile,"(2(el5.5,1x))") z, Utnew(m)
enddo
endif

if ((k.eq.l).or.(nn.eq.k)) then

iw_time = iw_time+l

nn = int(int_write_time)*iw_time

t = k*Dt

write (2,7(2(el5.5,1x))")

write (3,"(2(el5.5,1x))")

write (4,7(2(el5.5,1x))")

write (7,°(2(el5.5,1x))")
)
)

t, vtnew

t, Utnew(l)*1l.e-6

t, theta_tnew

t, tau_failure*l.e-6
t, Heat/1l.e6

Tt

write (8,"(2(el5.5,1x))*"
" , displ_tnew

write (9,"(2(el5.5,1x))
endif

ENDDO

! CLOSE FILES OF RESULTS
close (2)
close (3)
close (4)
close (7)
close (8)
close (9)

RETURN
END
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DYNAMIC ANALYSIS OF TWO INTERACTING WEDGES

subroutine Two_interacting_wedges (Dz,Dt,nz,nze,e,
- nt,tmax,
. v0,Ubt0, teta_ref,
- zL1_0,zL2_0,zh_chaO,
. Areal_0,Area2_0,
. zHeight,Em1,Em2,Pwl_0O,Pw2_ 0O,
- gamma_roca,delta_roca,
- alpha,beta,shi,fir,
- coherO,cc,
. cv_band,c_heat,c_sigma_vertical,cv_rock,
. sftb,sfr,zk_rock,zk _band,
- c_delta_band,gamma_w,
. Fib_max,Fib_min,v_max_fib,a_const,
. displ_max)

implicit real*8 (a-h,o0-z)
dimension Ultold(nz),Ultnew(nz),U2told(nz),U2tnew(nz)

! OPEN FILES TO WRITE RESULTS
open (unit=2, file="Velocity.dat", status="unknown®")
open (unit=3,
file="Excess_pore_pressure_z0.dat",status="unknown®)
open (unit=4, file="Heat.dat", status="unknown®)
open (unit=7, file="Displacement.dat”, status="unknown®)
open (unit=8, file="Strength.dat", status="unknown®)
open (unit=9, file="Temperature.dat®, status="unknown®")

I WRITING TITLES IN RESULTS FILES
write (2,*) * Time(s) *, "Velicity(nw/s) *
write (3,*) " Time(s) *, U1 (MPa) *,"U2 (MPa)*
write (4,*) " Time(s) ", "Heat Wedgel (MJ/s-m3) *°,
. "Heat_Wedge2 (MJ/s-m3) *
write (7,*) " Time(s) °, "Displacement (m) *
write (8,*) " Time(s) ", "Shear_strength_Wedgel (MPa) * ,
. "Shear_strength_Wedge2 (MPa)*
write (9,*%) " Time(s) ", "Temperature Wedgel(®) " ,
. "Temperature Wedge2(°)*

zero=1l.e-10

I INITIALITE COUNTERS
iw_profile=0 !Counter for writing pore pressure profiles
iw_time=0 ICounter for writing problem variables varying in
Itime

I INITIALIZE VALUES PARAMETERS THAT CHANGE WITH THE DISPLACEMENT
!

Weights

W1l = Areal_O*gamma_rock

W2 = Area2_O*gamma_rock
IMass

zM1 = Areal_O*delta_rock

zM2 = Area2_O*delta_rock
ILengths

zL1 = zL1. 0O

zL2 = z1L2_ 0
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zl_shpl = zIl_shplO
THydrostatic forces

Pwl = Pwl_O

Pw2 = Pw2_0

I INITIALIZE PROBLEM VARIABLES
IExcess pore pressure
do i=1,nz
Ultold(i)
U2told(i)
enddo
IChanges of notation
Ul = Ultold(1)
U2 = U2told(1)
1velocity
vtold = 0.0
ITemperatures
thetal old
theta2_old
IDisplacements
stold = 0.0
ITotal vertical stress increments
dsnl = 0.0
dsn2 = 0.0
IMass increments
dMidt = 0.0
dM2dt = 0.0
THeat
H1
H2

0.0
0.0

theta_ref
theta_ref

0.0

0.0

I CALCULATION PROCEDURE STARTS
DO WHILE (stnew.lt.displ_max)
k=k+1

TEXcess pore pressures

Ultnew(1l) = Ultold(1)+sfb*2.*(Ultold(2)-Ultold(1))-
c_heat*Dt*H1 + c_sigma_vertical*dSnl

U2tnew(1) = U2told(1)+sfb*(2.*U2told(2)-2.*U2told(1))-
c_heat*Dt*H2 + c_sigma_vertical*dSn2

do i=2,nze-1
Ultnew(i) = Ultold(i)+

stb*(Ultold(i+1)-2.*Ultold(i)+Ultold(i-1))-
c_heat*Dt*H1 + c_sigma_vertical*dSnl

U2tnew(i) = U2told(i)+

stb*(U2told(i+1)-2.*U2told(i)+U2told(i-1))-
c_heat*Dt*H2 + c_sigma_vertical*dSn2

enddo

do j=nze+l,nz-1
Ultnew(j) = Ultold(g)+

sfre(Ultold(j+1)-2.*Ultold(j)+Ultold(j-1)) +

c_sigma_vertical*dSnl
U2tnew(j) = U2told(g)+

sfr=(U2told(j+1)-2.*U2told(§)+U2told(j-1)) +

. c_sigma_vertical*dSn2
enddo
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Ultnew(nz)
U2tnew(nz)

Ultold(nz)+c_sigma_vertical*dSnl
U2told(nz)+c_sigma_vertical*dSn2

Ultnew(nze) = (zk_rock*Ultnew(nze+1)+zk_ band*Ultnew(nze-1))/

(zk_rock+zk_band)

U2tnew(nze) = (zk_rock*U2tnew(nze+1)+zk_band*U2tnew(nze-1))/
(zk_rock+zk_band)

IChanges of notation

Ul = Ultnew(l)

U2 = U2tnew(1)

cg = zh_cha
1vVelocity

vtnew = vtold + Dt *

(W2 *tan(Fib)** 2 * sin(shi) - 0.2D1 * cos(shi) *tan(fir)*
#tan(fib)** 2 * Eml *sin(shi) + cos(shi) *tan(fir)*tan(fib)** 2 * U
#1 * zL1 + Pw2 *tan(Fib)** 2 * cos(shi) *tan(fir)- W2 *tan(Ffib)** 2
# * cos(shi) *tan(fir)+ U2 * zL2 *tan(fib)** 2 * cos(shi)*tan(fir)
#+ cos(shi) ** 2 * Eml -tan(fib)* cos(shi) ** 2 *tan(fir)* Eml + O.
#2D1 * sin(shi) * cos(shi) * coher * cg + cos(shi) *tan(fib)* Eml1 *
# sin(shi) - cos(shi) *tan(fir)* Eml * sin(shi) -tan(fib)* cos(shi)
# *tan(fir)* dvidt * vtold - dM2dt * vtold *tan(fib)* cos(shi) * ta
#n(fir)+ 0.2D1* sin(shi) *tan(fib)** 2 * cos(shi) * coher * cg - Pw
#2 *tan(fib)** 2 * sin(shi) - Em2 * cos(beta) *tan(fib)** 2 * cos(s
#hi) *tan(fir)+ Em2 * cos(beta) *tan(fib)** 2 * sin(shi) +tan(fib)*
# cos(shi) *tan(fir)* W1 * sin(alpha) + sin(shi) *tan(fir)*tan(fib)
#* Pwl - sin(shi) *tan(fir)* dMidt * vtold + sin(shi) *tan(fir)* Wl
# * sin(alpha) +tan(fib)* sin(shi) * W1 * sin(alpha) + sin(shi) * t
#an(Fir)*tan(fib)*Ul * zL1 + sin(shi) *tan(fib)** 2 * Ul * zL1 - U2
# * zL2 *tan(Fib)** 2 * sin(shi) -tan(fib)* sin(shi) * dMidt * vtol
#d -tan(Fib)* Pw2 * sin(shi) *tan(fir)+tan(fib)* W2 * sin(shi) * ta
#n(fir)+dv2dt * vtold *tan(fib)* sin(shi) + dM2dt * vtold * sin(shi
#) *tan(fir)+ dvM2dt * vtold * cos(shi) + W2 *tan(fib)* cos(shi) - P
#w2 *tan(fib)* cos(shi) + cos(shi) * dMldt * vtold - cos(shi) * tan
#(Fib)*Pwl -tan(fib)* U2 * zL2 * sin(shi) *tan(fir)+ sin(shi) * tan
#(Fib)** 2* Pwl +tan(fib)* Em2 * cos(beta) * sin(shi) *tan(fir)+ Em
#2 * cos(beta) *tan(fib)* cos(shi) - cos(shi) *tan(fib)* Ul * zL1 -
# U2 * zL2 *tan(fib)* cos(shi) + cos(shi) *tan(fir)*tan(fib)** 2 *
#Pwl - cos(shi) * W1 * sin(alpha) - sin(shi) *tan(fib)** 2 * W1 * c
#os(alpha) + cos(shi) *tan(fib)* W1 * cos(alpha) - cos(shi) *tan(fi
#r)*tan(fib)** 2 * W1 * cos(alpha) - sin(shi) *tan(fir)*tan(fib)* W
#1 * cos(alpha)) / (-zM1 * cos(shi) - zM2 * cos(shi) + zM1*tan(fib)
# * sin(shi) + zM2 *tan(fib)* cos(shi) *tan(fir)+ zM1 * sin(shi) *
#tan(fir)+zM1 *tan(fib)* cos(shi) *tan(fir)- zM2 *tan(fib)* sin(shi
#) - zM2 * sin(shi) * tan(fir)))

if (vtnew.lt_.-zero) then
write (6,*) "The slide stops”
stop

endif

I'Temperature
thetal_tnew
theta2_tnew

thetal old+Dt*H1/c_delta_band
theta2_old+Dt*H2/c_delta_band

IDisplacement
stnew = stold+vtold*Dt
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IParameters that change with the displacement

zL1 = zL1_0 - stnew

zL2 = zL2_0 + stnew

zl_shpl = zL1*z1_shpl0/zL1_0O

Areal= 0.5*zL1*zl_shpl*cos(shi)

zInc_Area = Areal_O - Areal

Area2 = Area2_0 + zInc_Area

W1l = Areal*gamma_rock

W2 = Area2*gamma_rock

zM1 = Areal*delta_rock

zM2 = Area2*delta_rock

Pw2 = Pw2_0 + z_Height_w*stnew*gamma_w

coher = coherO*exp(cc*stnew)
-delta_roca*zL1*zl_shpl*cos(shi)*vtnew/zL1
-dMidt

Q
=
fury
Q
~+
In

1Effective normal force on base of Wedge 1

zN1 = -(Pwl*zM1* tan(fib) * cos(shi) * tan(fir)+ Ul*zL1*zM1*
#tan(fib) * cos(shi) * tan(fir)- 0.2D1*cos(shi)*tan(fir)*zM1 * tan
#(Fib)*Eml * sin(shi) + 0.2D1 *sin(shi) *zM1 *tan(fib) * cos(shi)
#* coher * cg + Ul * zL1 * zM1 * sin(shi) *tan(fir)+ Eml * sin(shi)
# * zM1 * cos(shi) - cos(shi) *tan(fir)* zM1 *tan(fib)* W2 + cos(sh
#1) *tan(fir)* zM1 *tan(fib)* Pw2 - Ul * zL1 * zM1 * cos(shi) - zM2
# * coher * cg + zM1 * coher * cg - W1 * cos(alpha)*zM1 *tan(fib)
#* cos(shi) *tan(fir)+ sin(shi) * zM1 * dM2dt * vtold - sin(shi) *
#zM2 * dMldt * vtold + sin(shi) * zM1 * tan(fib)*W2 - sin(shi) * zM
#1 * tan(fib) * Pw2 + Pwl * zM1 *tan(fib)* sin(shi) + Pwl * zM1*sin
#(shi) *tan(fir)- Pwl * zM2 * sin(shi) *tan(fir)+ sin(shi) * zM2 *
#W1 * sin(alpha) - sin(shi) * zM1 *tan(fib)*U2 * zL2 + U1 * zL1 *
#zM1 * tan(Fib)*sin(shi) - Ul * zL1 * zM2 * sin(shi) *tan(fir)- Pwl
# * zM1 * cos(shi) - Pwl * zM2 * cos(shi) - W1 * cos(alpha) * zM1 *
#tan(fib) * sin(shi) - cos(shi) *tan(fir)* zM2 * W1 *sin(alpha)+ s
#in(shi) * zM1 *tan(fib)* Em2 * cos(beta) + cos(shi) *tan(fir)* zM2
# * dMldt * vtold - 0.2D1 * cos(shi) ** 2 * coher * cg * zM1 - cos(
#shi) *tan(fir)* zM1 * dM2dt * vtold - W1 * cos(alpha) * zM1 * sin(
#shi) *tan(fir)+ Eml * zM2 *tan(fir)- cos(shi) *tan(fir)* zM1 * tan
#(Fib)*Em2 * cos(beta) + W1 * cos(alpha) * zM2 * sin(shi) *tan(fir)
#- Eml * zM1 *tan(Fir)+ cos(shi) *tan(fir)* zM1 *tan(Ffib)* U2 * zL2
# - Ul * zL1 * zM2 * cos(shi) + cos(shi) ** 2 * Em1 * zM1*tan(fir)
#+ W1 * cos(alpha) * zM1 * cos(shi) + W1 * cos(alpha) * zM2 * cos(s
#hi)) / (-zM1 * cos(shi) - zM2 * cos(shi) + zM1 *tan(Ffib)*sin(shi)
# + zM2 *tan(Ffib) *cos(shi) *tan(fir)+ zM1 *sin(shi)*tan(fir)+ zM
#1 *tan(fib) * cos(shi) *tan(fir)- zM2 *tan(fib) *sin(shi)-zM2 * s
#in(shi) *tan(fir))

1Effective normal force on base of wedge 2
zN2 =-(-Em2 *cos(beta) *zM2 *tan(fib)* cos(shi)*tan(fir)- Em2

#* cos(beta) * zM1 * sin(shi) *tan(fir)+ Em2 * cos(beta) * zM1 * co
#s(shi) - W2 * zM2 *tan(fib)* cos(shi) *tan(fir)+ U2 * zL2 * zM2 *

#tan(fib)*cos(shi)*tan(fir)+ Eml * sin(shi) * zM1 * cos(shi) - 0.2

#D1 * cos(shi) *tan(fir)* zM2 *tan(fib)* Eml * sin(shi) + 0.2D1 * s
#in(shi) * zM2 *tan(fib)* cos(shi) * coher * cg - zM2 * coher * cg

#+ zM1 * coher * cg + cos(shi) *tan(fir)* zM2 *tan(fib)* Pwl - sin(
#shi) * zM2 *tan(fib)* W1 * cos(alpha) + sin(shi) * zM2 *tan(fib)*

#Pwl + sin(shi) * zM1 * dM2dt * vtold - sin(shi) * zM2 * dMldt * vt
#old + Pw2 * zM1 * sin(shi) *tan(fir)- Pw2 * zM2 *tan(fib)* sin(shi
#) - Pw2 * zM2 * sin(shi) *tan(fir)- W2 * zM1 * sin(shi) *tan(fir)+
# W2 * zM2 *tan(Fib)* sin(shi) + W2 * zM2 * sin(shi) *tan(fir)+ sin
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#(shi) * zM2 * W1 * sin(alpha) + sin(shi) * zM2 *tan(fib)* Ul * zL1
# + U2 * zL2 * zM1 * sin(shi) *tan(fir)- U2 * zL2 * zM2 *tan(fib)*
#sin(shi) - U2 * zL2 * zM2 * sin(shi) *tan(fir)- Pw2 * zM1 * cos(sh
#1) + W2 * zM1 * cos(shi) - Pw2 * zM2 * cos(shi) + W2 * zM2 * cos(s
#hi) + cos(shi) *tan(fir)* zM2 * W1 * sin(alpha) + Em2 * cos(beta)
#* zM2 *tan(Fib)* sin(shi) + Em2 * cos(beta) * zM2 * sin(shi) * tan
#(Fir)+ Em2* cos(beta) * zM2 * cos(shi) - cos(shi) *tan(fir)*zM2 *
# dvidt * vtold + cos(shi) *tan(fir)* zM2 *tan(fib)* Ul * zL1 + cos
#(shi) *tan(fir)* zM1 * dM2dt * vtold - 0.2D1 * cos(shi) ** 2 * tan
#(Fir) * zM2 * Eml + Eml * zM2 *tan(fir)-cos(shi)*tan(fir)* zM2 * t
#an(fib)*W1* cos(alpha) - Eml * zM1 *tan(fir)+ 0.2D1 * cos(shi) **
# 2 * coher * cg * zM2 - U2 * zL2 * zM1 * cos(shi) - U2 * zL2 * zM2
# * cos(shi) + Pw2 * zM2 *tan(fib)* cos(shi) *tan(fir)+ cos(shi) **
# 2 * Eml * zM1 *tan(Ffir))/ (-zM1 * cos(shi) - zM2 * cos(shi) + zM1
# *tan(fib)* sin(shi) + zM2 *tan(fib)* cos(shi) *tan(fir)+ zM1 * si
#n(shi) *tan(fir)+ zM1 *tan(fib)* cos(shi) *tan(fir)- zM2 *tan(fib)
#* sin(shi) - zM2 * sin(shi) *tan(fir))

if (zZN1_tnew.lt.zero) then
zN1 _tnew = 0.0

endif

iT (zZN2_tnew.lt.zero) then
zN2_tnew = 0.0

endif

1Total normal forces
zNltot = zN1+Pwl+Ul*zL1
zZN2tot = zN2+Pw2+U2*zL2

ITotal vertical stresses
Snl_tnew = -zNltot/zL1
Sn2_tnew = -zN2tot/zL2

ITotal vertical stress increments
if (k.eq.1) the
0.0

dsSnl_tnew = O.
dsSn2_tnew = 0.0

else

dSnl = Snl_tnew-Snl_told
dSn2 = Sn2_tnew-Sn2_told
endif

IShear strength

Taul = (zN1/zL1) * tan(Ffib)
Tau2 = (zN2/zL2) * tan(fib)
THeat
H1 = Taul*vtnew/(2.*e)
H2 = Tau2*vtnew/(2.*e)

! UPDATE PROBLEM VARIABLES
TEXcess pore pressure
do i=1,nze

Ultold(i) = Ultnew(i)
U2told(i) = U2tnew(i)
enddo

1vVelocity

vtold = vtnew
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ITemperatures

thetal old = thetal_tnew

theta2_old = theta2_new
IDisplacement

stold = stnew
1Total vertical stresses
Snl_told = Snl_tnew

Sn2_told

= Sn2_tnew

I WRITING RESULTS AT SELECTED TIMES
if ((k.eq.2).or.(mm.eq.k)) then

write (6,*) k," Profile results have been written*
iw_profile = iw_profile+l
mm=int(int_write_profile)*iw_profile

t=k*Dt

iarchivo=iw_profile+100
write (iarchivo,*) "Time(s) °,t
do m=1,nze+10
z=(m-1)*Dz
write (iarchivo, "(2(el5.5,1x))") z, Ultnew(m)

enddo
do m

nze+11,nz,10

z = m*Dz
write (iarchivo,"(2(el5.5,1x))") z, Ultnew(m)

enddo
endif

if ((k.eq.1).or.(nn.eq.k)) then
iw_time = iw_time+l

nn =

write
write
write
write
write
write
endif

ENDDO

(2,7(2(e15.5,1x))™)
(3,7(3(e15.5,1x))™)
(4,7(3(e15.5,1x))")
(7,7(2(e15.5,1x))")
(8,7(3(e15.5,1x))™)
(9.7(3(e15.5,1x))7)

close (2)
close (3)
close (4)
close (7)
close (8)
close (9)

return
end

int(int_write_time)*iw_time
t=k*Dt

vtnew
Ultnew(1)*1.e-6,U2tnew(1l)*1.e-6
H1/1.e6,H2/1.e6

stold

Taul *1.e-6,Tau2*1.e-6
thetal_tnew,theta2_tnew

Appendix 5.3 Parameters of the Balance Equations for the Dynamic
Analysis of Two Interacting Wedges

The parameters that complete the dynamic equilibrium equation of the two
wedges (Eq. (5.55)) are:
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Chapter 6

Dynamics of Dam Sliding: Aznalcollar Dam, Spain

6.1 Introduction

Aznalcéllar dam, a 28 m high rockfill dyke, failed catastrophically on April 25,
1998 and triggered an uncontrolled flow of acid pyritic tailings whose volume was
estimated in 5.5 Mm?®, Chapter 4 describes the failure, the geotechnical properties
of stored tailings and foundation soils and the stability analysis performed to
explain the reasons for the failure. The failure was described as a trandlational
slide which carried with it the dyke itself. The central section of Aznalcdllar slide
travelled forward 50 m until it came to rest (Figs. 4.5 and 4.6). The travelled
distance decreased towards the North for a reason which will be explained later.
The displacement at the breach zone was close to 20 m, always in the direction
SSE (approximately perpendicular to the southern dyke direction). Figure 6.1 isa
sketch of the relative motion between the northern and southern dykes at the initial
breach section. The figure shows the measured displacement of the southern dyke
at this point and the orientation of the opening, pointing towards the northeast
direction. This geometry results in an estimation of the initial width of the breach
close to 14 m. The two lips of the breach separated and, therefore, no shear
resistance was involved in this motion.

The dam was literally torn apart by the relative motion between the immobile
northern dyke and the southern dide. The 14 m wide initial breach alowed the
immediate pouring of tailings and it increased in size as erosion proceeded. The
intensity and destruction power of the ensuing flood is related to this width,
which, to a large extent, controls the outgoing flow rate. Should the dlide
displacement have been longer, the width of the breach would have increased as
well as the flood rate and its effect. Dofiana National Park, located downstream,
was barely hit by the actual flood. But a larger one would have certainly created a
major catastrophe.

From our geotechnical perspective, the right question to be asked is: does a
procedure exist to predict the slide runout? This question has no simple answer.
Runout distances depend on the type of dide, the evolution of the slide material
and the downstream topography. Aznalcdllar was simple in this regard: the dam
and the upper dliding soil slab displaced as a rigid body with minor changes in
geometry. This observation offers the possibility of performing a straightforward
dynamic exercise directly based on Newton’s second law.

In order to do so, however, acting and resisting forces on the slide should be
established with some certainty. The critical point here is probably not to describe
precisely all the details of the motion but to pinpoint the key aspects explaining
the motion, even if they are described in an approximate manner. The static
analysis described in Chapter 4 offers a good opportunity to isolate the main
features of the moving slide.

The information now available is the travelled distance and attention is
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focused on the central section of the dide. Slide displacements in the central
stretch, 300 m long, are rather constant and close to 50 m. Therefore, a two-
dimensional analysis could be performed with limited error and the restraining
effects of the dlide borders will be disregarded.

The travelled distance is the fundamental information to validate the model.
The problem may be formulated in these terms: if a (dynamic) model is built in
such a way that the input data (soil strength parameters and pore water pressures
in particular) is consistent with the data explaining the initiation of failure, an
additional validation of the main hypothesis introduced could be achieved. In
addition, a dynamic analysis also offers the possibility of investigating some
unanswered questions about the motion: its acceleration, velocity, and time
duration could be estimated.

Tailings |-

-

- -
/4\/ . N '
¥ > Strike

" of joints
Figure 6.1 Geometry of the rupture breach (Alonso and Gens, 2006).

6.2 Conceptual Model

A few fundamenta field observations, discussed in Chapter 4, are crucia to
develop a conceptual model for the dlide. They are:
a) position and geometry of the upstream limit of the slide, which is described
asavertica wall or “cliff” located at the toe of the upstream dam slope;
b) symptoms of liquefaction of tailings;
¢) reconstruction of the incipient failure mechanism based on the description
of the geometry of the failed mass (Fig. 4.6).
This information has been integrated in Figure 6.2, which shows a free body
diagram of the dlide at a certain time t during the motion. The features of the
model and its rationale are further explained by referring to Figure 6.2.
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The geometry of the motion is conceived as a large rectangular wedge that
transports the dam and a distal passive wedge that opposes the motion. This
passive wedge increased in weight during the displacement in a process of
accumulation of highly folded strata as the displacement took place.
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Figure 6.2 (a) Geometry of the slide in motion (Alonso and Gens, 2006); (b) Detail of the
upper part.

The upstream sub-vertical limit plane remained stable at all times. The
approximately basal failure surface follows a sedimentation plane that has a low
dip angle (2°).Therefore, the depth of the failure plane increases in the direction of
motion. The passive wedge brings the failure plane to the ground surface.
According to the dide reconstruction in Figure 4.6, the passive wedge starts at a
distance of roughly 55 m from the downstream toe of the dam.

As the dlide moves forward, a large opening appears upstream since the
vertical limiting wall has remained stable. The assumption made is that this
opening of increasing size was filled by liquefied tailings initially located over the
upstream slope. Evidence of tailing liquefaction was obtained immediately after
the failure. Figure 6.3 shows the small volcanoes scattered in the exposed surface
of the tailings immediately upstream of the dam. The picture was taken from the
crest of the dam looking downwards into the pond a few hours after the failure.
This observation suggests that, as the dide accelerated forward (because of the
rapid loss of available strength on the diding surface), the tailings wedge sitting
over the upstream dlope of the dam dlid in the upstream direction and filled the
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opening gap. This process led to the tailings liquefaction at an early time. Beyond
thistime, the tailings occupying the opening gap upstream remained liquefied.

This scenario has two implications: one is that the acting forces against the
slide are simply calculated as a hydrostatic pressure against the exposed surfaces
“submerged” by the liquefied tailings and the second one is that the level of
liquefied tailings should decrease because of the increasing size of the gap opened
upstream.

Pore pressures on the dliding surface are initially known (see Chapter 4).
However, when the slide displaces forward, an undrained loading (in the direction
of motion, downstream of the dam) and a parallel unloading (in the upstream
position of the dam) takes place. Pore pressures instantaneously generated will be
assumed to be given by the increment of mean stress in points of the failure plane.
This hypothesis has proven to be sufficiently accurate to reproduce actual
observations in piezometers and has been described in Chapter 4. However, the
calculation procedure will be simplified here if compared with the model
developed in Chapter 4.

. iy A INTOREE

Figure 6.3 Mud volcanoes observed a few hours after the failure on the surface of the
depressed basin, upstream of the slid dam (Courtesy of J. M. Rodriguez Ortiz).

The chosen variable selected to control the slide geometry is the horizontal
displacement s(t). The objective of the model developed is to calculate the dide
displacement, velocity and acceleration. To do so, dynamic equilibrium equations
will be written for the two wedges which define the motion following the
conceptual model sketched in Figure 6.2a. Note that the mass of the two wedges
changes during the motion (the main wedge loses the mass gained by the passive
wedge). Before writing down the equations of motion let us discuss two important
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aspects which control the external forces on the slide: the tailings thrust and the
pore pressure acting on the sliding surfaces.

6.3 Tailings Thrust against the Sliding Mass

Consider first the liquefaction of tailings. The volume of liquefied tailings should
occupy the volume left upstream by the moving dam and accompanying
foundation slab. The initial volume, at zero displacement, is limited by the
upstream slope of the dam and the subvertical limiting wall of the slide (defined
by an angle B4 in Fig. 6.2). Its volume will be given by

V0:0.5ho[hotan(90—ﬁst)+ il j (6.1)

tana,

where hy is the initial depth of tailings (27 m) and «; is the upstream dam slope
(29°). The dam displacement results in an increasingly larger volume ready to be
occupied by the liquefied tailings. This volume is defined by the three partia
volumes (V,, Vp and V) in Figure 6.2b. These volumes can easily be expressed in
terms of h, the current height of tailings, the thickness, e, of the dliding
foundation soil at the upstream limit of the slide (approximately 11.5 m following
field observations; see also Fig. 4.16) and the dip angle of the sliding plane, o,

V, = [el _stna, js, (6.2)
2
tana
V, = s’ tanay | 1+ b1, 6.3
b ab( 2tana1] (6.3)
V. =(hm+ f)(h-n), (6.4a)
where
1 1 P14
m=— +tan| —— , 6.4b
Z[tanal (2 BSD ( )
S tano T
f=2|2+ b _tana, tan| =— , 6.4cC
2( e % [2 Bj} (6.40)
n=stana,. (6.4d)

The condition of constant volume of liquefied tailings
V, =V, +V, +V, (6.5)

allows, in view of Equations (6.2) to (6.4), the calculation of the height of tailings,
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h, as a function of the horizontal component (s) of the dlide displacement. It will
be also convenient to introduce the displacement s, along the basal sliding surface
because it offers some algebraic advantages to formulate the dynamic equation of
motion. In addition, the relative displacement of the moving body and the blue
clay underneath controls directly the development of residual conditions. The
displacements sand s, are related through

S= 1§, COSQL,,. (6.6)

Since ay, isavery small angle (2°), sand s, are amost identical but the distinction
will be formally maintained in the remaining equations. The use of sand 5 is a
simple a matter of algebraic convenience.

The condition of constant volume of liquefied tailings is not fulfilled in the
sections close to the breach of the dam because the tailings that poured out of the
pond contributed to reducing the height of the liquefied tailings acting against the
moving slide. In fact, this situation may explain the smaller travelled distance in
the sections close to the outlet (20 m), if compared with dlide displacements of 50
m at some distance from the breach section. This distance probably marks the
effect of the flow rate of tailings lost through the breach on the displacement
reached by the dlide.

The thrust of liquefied tailings against the upstream border of the dide is
simple to caculate because pressures became hydrostatic. The horizontal
component of the acting forces against the dlideis

F, =05y, (h+e)?, (6.7)

where vy, is the specific weight of the liquefied tailings, which will be close to 31
kN/m?® (see Chapter 4).

Let us now consider the initial force that induced the onset of instability. It
was argued in Chapter 4 that this force could be approximated by an active
Rankine state associated with atotal height of (h+e;). Then, Equation (4.10) could
be taken as a first approximation for the initial value of the driving force.
Sometime after the initiation of the motion, when the unstable wedge of tailings
transforms into a liquefied mass, this initial force would increase substantialy
towards the value given in Equation (6.7) The displacement necessary to reach
liquefaction is not known and it will be introduced as a parameter of the problem,
¢. In this way, the evolution of the upstream horizontal force against the dide, Fy,
isplotted in Figure 6.4.

The plot is defined by the initial force (Fy;) and peak (liquefaction conditions)
force, by the displacement (¢) (a linear variation is assumed froms, = 0to s =
g), and by the force decay beyond the peak liquefaction force for increasing s
values. The latter is given by Equation (6.7) in terms of h. Equation (6.5) provides
arelationship between hand s.

The next step before formulating motion equations will be to calculate the
pore water pressures acting against the sliding surface.
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Figure 6.4 Evolution of tailings thrust against the moving dam and accompanying
foundation sail, as the displacement s, increases.

6.4 Pore Pressures during Motion

The distribution of pressures immediately before failure was calculated in Chapter
4. Figure 4.18 shows the estimated variation along the failure plane.

This variation was approximated by means of linear segments, as shown in
Figure 6.5, for the initial position of the dide (s = 0). Water heights (in m) have
their origin on the dliding surface. When the slide moves forward, instantaneous
changes in pore pressure will be induced on the failure surface. They will be
essentially given by the change in mean stress, which is, in turn, is given by the
weight of the dam (upstream, however, the weight of tailings, decreasing with
displacement, will define the new excess pore pressures). Since the dliding surface
will be, soon after the initiation of the motion, under residual conditions no
dilatancy effects are expected on the pore water pressure generation.

It will be assumed that the pore pressure at the position of the upstream toe of
the slope, in excess of the hydrostatic value provided by the original phreatic level
(located at the surface of the soil), will be proportional to the height of liquefied
tailings. This pressure height will change from an initial value of e when the
height h(s) of tailings evolves from h = 27 m to h = 0. Therefore, in connection
with Figure 6.6

68—
27

U =6 + o2 h(s) (m of water head). (6.8)

Under the dam crest (pressure u,), the excess pore pressure will be essentialy
constant and equa to the initial value (~52 m of water column). It may be also
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expressed as the sum of two contributions: the hydrostatic component associated
with the depth under the phreatic level at the center of the dam base (eg) and the
EXCESS pore pressure

U, = U, = &, +38.6 (m of water head). (6.9

At the position of the downstream toe of the dam the excess pore water pressure
will aso be maintained essentialy equal to the origina level during the motion
and therefore

u, =&, +10.5 (m of water head). (6.10)

where & isthe depth of the failure surface under the downstream toe of the dam.

\ Pore water pressure on sliding plane
52y 52 52\ 52

Initial position - Displaced position

~ Passive
wedge

Sliding surface

Figure 6.5 Assumed distribution of pore water pressure heads (in m) under the dam during
sliding (based on Alonso and Gens, 2006).
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Figure 6.6 Distribution of pore water pressures on the diding plane for a dam
displacement, s (pressure heads in m) (based on Alonso and Gens, 2006).
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A fina control point to define the pore pressure variation is the position of the
exit ramp of the passive wedge. This position, which is located 55 m downstream
of the dam toe, “sees’ the dam approaching. When the slide came to rest, the dam
toe was on top of the origin of the exit ramp. In this position, the pore pressure at
this point of the failure surface should be equa to the calculated pore pressure
under the dam toe for s = 0. Again, for a linear relationship between the excess
pore pressures and the displacement, s, one may calculate

(26-¢))
55

U, =e+ s~ e, +0.16s (m of water head). (6.11)

Note that e; changes with displacement from its initial value (e; = 17.21 min
Fig. 4.16) to afina value (15.29 m) when the dam displaces 55 m. See also next
paragraph on the geometry of the motion and Figure 6.7. The current value of e; is
given by

e(s)=e, _6305_592 s (inm) (6.12)

The implicit assumption in the preceding proposal is that there was very
limited dissipation of excess pore pressures at the position of the failure plane.
This was indeed the case because of the very low clay permeability. Therefore, the
existing distribution of pore pressures on the failure plane was taken as a “mode!”
for the induced pore pressures during the rapid undrained loading associated with
the slide motion.

The control points for the determination of water pressure provide an
approximate distribution of pore pressures under the dlide, at the position of the
dliding plane, if alinear variation of pore pressures among them is assumed. Then,
Figure 6.6 provides the instantaneous pore pressures for a displacement s.

A more sophisticated procedure to calculate the pore pressures under the
moving dam could be devised. It was shown in Chapter 4 that the application of
elagticity solutions was quite accurate. But in the context of the dynamic analysis
developed here, this approach would lead to a cumbersome calculation procedure
that is probably not warranted. It will be shown later that the solution is quite
robust and not very sensitive to limited variations of the main parameters defining
the problem.

The water pressure forces acting on the lower failure plane will now be
computed by dividing the variation of pore pressure into four regions (U;, Uy, Us,
and U,) as illustrated in Figure 6.6. Water pressure forces are now simply
calculated in terms of the “height” of the corresponding trapeziums:

1

U, = 2[q+@+3&6+ eR}yW48.7, (6.133)

U, = (38.6+6,)y,26, (6.13b)
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U, :%[38.6+eR +10.5+¢,]7,333 (6.13c)

u, =%yw[10.5+92 +e,+0.168](55-9), (6.13d)

where e, ez and e; are shown in Figure 6.6. The distances (in m) 48.7, 26, 33.3
and 55 define the length of pore pressure trapezoids along the diding plane. If vy,
isgiven in kN/m?, Equations 6.13 provide forces U; in kN/m (e valuesin m).

6.5 The Motion Equation

6.5.1 Geometry of the motion

Figure 4.16 provides the initial state of the slide. The dam and a dab of soil
underneath displace towards the passive wedge which dides on a plane inclined
oe. The kinematics of the motion have been simplified as shown in Figure 6.7. It
will be assumed that the passive wedge (B) increases in size during the motion,
i.e. it gainsthe mass “lost” by the main dlide (A). The mass transfer takes place on
the vertical plane which limits upstream the passive wedge.

Of course, other geometrical configurations are possible and they may lead to
some differences in the calculations. However, it will be shown below that the
entire formulations is quite insensitive to specific details. The idea here is to
provide an acceptable mechanism, essentially consistent with field observations
and analyze its implications.

(b)

Figure 6.7 Kinematics of Aznalcdllar slide: (a) the diagram shows the position of the main
soil dlab (A) under the dam (not shown) and the passive wedge (B) at the initial time, t =0,
and at alater timet; (b) compatibility of displacements at Point P.

Consider theinitia volume of Wedge A in Figure 6.7:



262 Geomechanics of Failures. Advanced Topics Chapter 6

VAozwL:L(qﬁ‘Lta;ab] (614)

where L is the total horizontal length of the main dide (L = 108 + 55 = 163 m in
Fig. 4.16).
In Figure 6.7 the displacement of the dide is characterized by the variable s
(in the x-direction) or aternatively by s,. Both are related through Equation 6.6.
Once the Wedge A has displaced s,, its volume is given by

VM:(L—chos%)(eﬁL_S”—zcosabtanabj. (6.15)

Therefore the variation of the volume of the wedge can be expressed as a function
of the displacement by:

s, Cosa,

AV, =5 coso, (el +L- tan abj (6.16)

which will be lost by the main wedge and added to the passive wedge.

6.5.2 Dynamic equilibrium of the passive wedge

Consider in Figure 6.8 the passive wedge at time t. The resultant of water
pressures on the wedge were given in Equations (4.15) and (4.16) for the initia
conditions. It will be assumed that the initiad values will be maintained and
therefore, with reference now to Figure 6.8,

1
Uhp = E’YW%D i (617)
g
- TEne) (6.18)

The current volume of the passive wedge at time t will be given by adding the
volume gained by the wedge (Eqg. (6.16)) to the initial volume. Therefore, the
current weight of the passive wedge at time t, for a dlide displacement s,, will be
given by

2

e

+socos%{el+tanocb(L— S‘JCZS% H (6.19)

where the first term provides the initial weight (Eq. (4.18)).
Since the mass of the passive wedge (Mp) is changing in time, the equation of
dynamic equilibrium will have the general form:
dM 2
Al &) Mty o
dt dt dt dt dt

SF, (6.20)
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where sis the generic direction of displacement and 2 F, the resultant forcesin the

direction s.

Equation (6.20) will be now applied in the direction of the motion of the
wedge (displacement s,, see Fig. 6.8) and in the normal direction to s, (no
displacementsin this direction).

[
€5 (s) 3
Figure 6.8 Geometry and forces acting on the passive wedge.
Equilibriumin direction parallel to s,
For (coso, —sina, tane; ) +U, coso, —
) , . d ds, (6.21)
Np tan(Pb —Wpsm(xe :E[M pEj
Equilibriumin direction normal to s,
FpSina, +cosa, tane, +U, sina, +W, cosa,, U —N; =0 (6.22)

where shear forces have already been written in terms of effective normal forces
according to the Mohr Coulomb’s Law under residual conditions (cohesion equal
to zero).

The relationship between the main slide displacement s, and the wedge
displacement s; is derived by forcing the kinematic compatibility of the motion at
Point P. In view of Figure 6.7b:

_ cosay,

S,
P cosa,

(6.23)

6.5.3 Dynamic equilibrium of the main wedge and dam

Reference is now made to Figure 6.9 which shows the forces on the main dide at a
given time during the motion. The force Fy, has already been discussed and it is
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given in Figure 6.4 and in Equations (4.10) and (6.7). Once the talings are
liquefied the vertical force F, is controlled by the variable heights of tailings h
(Fig. 6.2b). Itisgiven by
2
o (6.24)
2tano,

At the start of the motion h ~ H and the tailings are not liquefied yet but F, will
be controlled by the saturated weight of tailings and Equation (6.24) would be
essentially valid aso.

Dynamic equilibrium follows also Equation (6.20) which will be written in
the direction of the motion (s,) and in the normal to .

s T
= |F, de
o |

. e T

— hp ———
-~
R
N' U

Figure 6.9 Geometry and forces acting on the main sliding wedge.

Equilibriumin direction parallel to s,

F, cosa, + F,sina, +W, sina, +W_ sina, —N'tan¢, —

6.25
F, cosa, —U, cosa, — F tang; sina, = %(M %—?) (629

where the total mass M now includes the mass of the dam (My) and the variable
mass of the soil slab (Mg):

M=M,+M =M, +pV, (6.26)
where Vl(sD) is given in Equation (6.15) and the weight of the dam (Wy = g My)
was given in Equation (4.12).

Equilibriumin direction normal to s,
—F,sina, +F, cosa,, +W, cosa,, +W, cosa, + F sina, +

_ . , ) (6.27)
U, sina, —F tang, cosa, —N'-U =0

where U =U, +U, +U, +U, (givenin Eq. (6.13)).

6.5.4 Solution
The system of four Equations (6.21), (6.22), (6.25) and (6.27) must now be solved.
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This is a system of nonlinear total differential equations and a numerical solution
is unavoidable.
The strategy followed here to solve them is to write them in the form

a=%= (s, (1).v(t) (6.28)

where V=Z—i" is the velocity of the main displacement in the direction of the
dliding plane.

Equation (6.28) is simply discretized in a forward marching scheme in time
as.
Veew = Voig T+ At f (Socld’vold) (6-29)

n

which allows calculating the velocity of the slide if the acceleration is known at
the beginning of the motion (t = 0). In fact, Equation (6.28) fort =0, 5,=0and v =
0 provides the initial acceleration (a) essentialy as a ratio between resultant
forces and masses involved (see however the discussion below).

The system of Equations (6.21), (6.22), (6.25) and (6.27) was transformed
after some elaboration into

%{M (so)?j—s;“}+m4%{Mp(Sp)%}= F (6.:309)
where
Fr=Fu(s)mo+[F(8) W, + W (s,) Jm, +
Uy, (M, —m)+U,m —W, (s, )m,+U (s, ) tang;.

The dependence of some variables on displacements, either s, or s, has been
indicated. The coefficients m are functions of geometry and friction angles as
follows:

(6.30b)

m = Cosa,, +Sinayt,; m, =sina, —Cosayt,; m, =m +myt,;
m, = m,/t; m, = t,m,/t; my = tmy/t; m =t,m/t,.
and

t, = cosa, —sino, tan g, —tan g, (cosa, tang; +sina, );
t, = coso, —sina, tan gy ;
g ’.
t; =sina, +cosa, tan@,;
t, =tang,.

The term F~ in Equation 6.30 represents the unbalanced forces. Recalling
Equation (6.23), Equation (6.30a) can be re-written as
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dm | cosa, am,

d F*_V{ at ™ Ccosa. dt
v, o,
av, _ . (6.31)
dt M 4 m, cosay, |, p
cosa.
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Figure 6.10 Reduction of average friction angle on basa plane as a function of dliding
distance s,.

Equation (6.31) has the form of Equation (6.28). It is interesting to analyze its
structure. It simply tells that the acceleration of the main dide is the ratio of a
generalized force and a generalized mass. Both include terms belonging to the
main slide and the passive wedge. The mass in the denominator, in particular, isa
weighted sum of the masses of the two wedges. The changing mass of both
wedges introduces a term in the numerator which modifies the unbalanced forces
F". The modification is proportional to the product of velocity and rate of mass
changes. Thisterm is arate of change of momentum which only enters the second
law of Newton when moving bodies change their mass. It was checked that in our
case this term was quite small compared with the intensity of unbalanced forces

A final important point concerns the mobilized effective friction angle of the
failure surface ¢y, . The boundary friction on the passive wedge was also defined

by ¢y, . It was found in Chapter 4 that the average equilibrium value at the onset of
the slide was close to 18° (and a zero effective cohesion). This friction value is
intermediate between the peak friction angle of the blue clay (24.1°) and the
residua angle (11°). The initiation of the motion implies further reductions ingy, .
The rate of drop of ¢, towards the residual value is unknown, but experimental
evidence suggests that all that is required to reach residual conditions are a few
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centimetres, perhaps decimetres, of relative displacement. This uncertainty,
however, is resolved by means of a displacement parameter, 5, defined in Figure
6.10. Parameter oy, istherefore defined in terms of the displacement s,. From s, =

0to s, = 6, the friction, ¢y,, decays linearly from the initial to the residual value.
For s,> 6, o = ¢, - 0 iSconsidered also as amodel parameter.

6.6 Results

The motion Equation (6.28) was solved in an explicit manner (Eq. (6.29) and
subsequent discussion). Starting at the equilibrium conditions given in Chapter 4,
the slide was made unstable by increasing dlightly the driving force Fy (by
reducing in 0.1° the friction angle of tailings).

An Excel sheet was written to perform the calculations. The accuracy of
calculations was controlled by time increment At. Negligible errors were found for
At<0.1s

6.6.1 Set of model parameters

Model parameters were grouped into three groups: geometry, tailings, and blue
clay, asfollows:

Geometry:

Bt Dip of the head scar of the dide within the tailings' deposit. Field
observations indicate that it may vary between 70° and 90°.

er! Depth of the failure surface under the base of the dam at the centre of
the dam base. It is close to 13.40 m.

Ol Apparent dip of the failure surface. Based on field observations, it is
estimated as o, = 2°.

Qe Slope of the diding plane under the passive wedge. Visual observations

in trenches excavated at the foot of the slide indicate that o, = 20°.

Tailings

Yo Natural specific weight of liquefied tailings. In the southern pyrite
lagoon the saturated unit weight of the deposited tailings is around 31
kN/m?. Thisis the value adopted in calculations.

Fhni(*):  Initiad horizonta thrust against the dam and the accompanying slice of
moving soil. It was estimated as 11.3 MN/m for active conditions.

g(*): Necessary forward displacement of the dam to generate liquefaction
conditions in the tailings wedge. A value ¢ = 1 m was selected for the
calculations reported below.

Blue clay

Qinitia (*): Average initia friction angle which ensures strict equilibrium before
the failure. It was derived by limit equilibrium analysis (@i =
18.099).
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Pres: Residual friction angle. It was derived from ring shear tests on

remoulded blue clay and by direct shear tests on natural slickensided
discontinuities. A value @} = 11° was adopted.

(*): Relative displacement along the failure plane needed to mobilize the
residual friction angle. It is probably necessary to accumulate a few
decimetres to achieve residual conditions. A value 6 = 20 cm was
selected for calculations.

Parameters with an asterisk (*) were found to have a very limited influence on the

computed results. This was an interesting finding because there was some

uncertainty about the correct value for the specific parameter involved. Thisis, in

particular, the case of the two displacement parameters included in the model: 6

and .

6.6.2 Motion of the dam

A representative “base case” was solved with a set of parameters, which are
believed to represent the actual sliding conditions ( @iy = 18.09% @re= 11 8 =
20 cm; 1, = 31 kN/m?; Fry = 1L.3MN/m; e = 1 m; By = 70°% ex = 13.40 m; oy, = 2°;
oe = 20°).
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Figure 6.11 Computed evolution of dam displacement.

The distance travelled by the dam as a function of time is shown in Figure
6.11. According to the model, the dide stops 15 s after the initiation of the failure,
when the dam has travelled 51.5 m. This latter figure is very similar to actua
observations. The evolution of speed is shown in Figure 6.12. The dam reaches a
maximum velocity of 6.2 m/s (22.3 km/h), 10 s after the start of the motion. The
calculated acceleration is shown in Figure 6.13. The dam experiences a rapid
acceleration during the first few seconds after the start. The evolution of forces,
plotted in Figure 6.14, explains the acceleration. During the first instants of the
motion, the liquefaction of tailings increases the driving force, which reaches
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values substantially higher than the total resistance offered by the base and the
passive wedge (the evolution of both forces is also shown in the figure). The
driving forces include also the component of slide weight in the direction of the
motion, s,. The positive net resultant force (driving minus resistant forces)
accelerates the dide. The fall of the level of tailings at the upstream part of the
slide (plotted in Fig. 6.15) progressively reduces the pushing force as well as the
acceleration. Total resistance to dliding increases dightly with time. The main
reason for the deceleration of the dlide is therefore the continuous decrease in the
driving force associated with the fall of the level of liquefied tailings and in a
more limited manner by the restraint offered by the passive wedge.
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Figure 6.12 Computed slide velocity.
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Figure 6.13 Computed slide acceleration.

The relevance of the stability of the tailings cliff left by the forward motion of
the dam becomes now more apparent. A large volume of liquefied tailings would
have implied a longer period of acceleration and higher velocities and dam
displacements. Under these circumstances, the size of the breach opened in the
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dam would have increased dramatically, leading to a more violent flood.
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Figure 6.14 Computed variation of forces against the moving mass.
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Figure 6.15 Evolution of height of liquefied tailings, acting against the upstream end of the
slide.

The short-term stability of a quasi-vertica slope in the mass of tailings is
explained by the cementation exhibited by them and its relatively low
permeability. The rapid unloading caused by the forward slide displacement
probably led to negative pore water pressures in the vicinity of the exposed cliff.
In the medium and long term, tailings were able to maintain the initial subvertical
slope although the strong erosion and, in some cases, local failures led to the
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partial collapse of the original slope. However, the volume added by these
processes did not affect the motion of the slide, which was very rapid. In fact, at
the end of the motion, see Figure 6.14, the available resistance was much higher
than the driving force. Additional sources of eroded or destabilized tailings only
marginally add to the force exerted against the upstream dlide face.

The dam breach also involved the pouring of a massive flow of tailings mud
outside the dam, thus effectively controlling the level of the tailings in the large,
open basin upstream of the slipped dam.

This outpouring probably affected the motion of the slide in the vicinity of the
breach. In fact, the rate of reduction of the height of liquefied tailings, a key aspect
of the model developed, is controlled by the condition of volume conservation
expressed in Equation (6.5). However, the flow of tailings out of the pond may be
viewed as an additional “sink term” in this equation and, therefore, it contributes
to reducing faster the level of liquefied pushing tailings. This, in turn, implies a
smaller distance travelled by the dide. This fact may explain the progressive
reduction of the dam displacement as the breach position is approached (Fig. 4.5).

The acceleration of the dam in the early stages helps to explain the fall of the
wedge of tailings sitting on the mantle of red clay placed against the upstream
rockfill slope. The presence of this clay, placed on top of a slope of 29°, facilitated
the instability of the wedge of tailings. The calculated maximum acceleration
(0.175 g) is similar to the acceleration induced by an earthquake of intensity 7-8
(MKS).

The calculated height of tailings in the upstream basin, when the dlide
stopped, is 4 m over the initial level of the foot of the upstream sope. The
measured central profile of the slide, afew months after the failure, shows that the
level of the tailings upstream of the failed dam was 7 m above the level of the foot
of the dam. The difference, which is not considered to be very significant, is
attributed to the accumulation of eroded tailings in the days following the rupture.

6.7 Sensitivity Analysis

It was mentioned that the results of the analysis were not particularly affected by
some of the model parameters. A relatively large uncertainty could “a priori” be
associated with afew of them (3, €). However, most of the model parameters were
known with some confidence. It is therefore advisable to examine the sensitivity
of the results presented. In the sensitivity analysis, which is summarized in Table
6.1, each one of the listed parameters was changed in turn, while keeping the other
properties involved fixed to those values used in the base case.

The variable selected for comparison isthe total distance travelled by the dam.
This distance is a natural choice because it can be compared with the measured
value in the field. An examination of Table 6.1 reveals that the analysis is robust
in the sense that none of the parameters changed seems to have a decisive
influence on the distance travelled by the dam. The values listed in Table 6.1 do
not differ much from the actual travelled distance. This result adds confidence to
the interpretation given for the observed displacement of the dam and the
associated physical phenomena.
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Table 6.1 Results of the sensitivity analysisin terms of the length travelled by the dam.

Parameter/Property Value Travelled distance (m)
Slope of sedimentation planes, o, (°) i 515 (Egsg? case)
. 80 48.7
Dip of upstream scar, By (%) 90 46.0
Residual friction angle of clay, 10 54.9
Pres ) 12 48.2
. . 21 50.5
Exit angle of passive wedge, o, (°) 26 166
Depth of dliding surface under the E ;712
base center of dam, ex (M) 13 52 40
- . - 3 29 48.78
Specific weight of tailings, y; (KN/m?) 30 50.15
Initial horizontal thrust of tailings, Fy,; 16.9 51.8
(MN/m) 22.6 52.0
Necessary forward displacement of the 01 52.0
dam to generate liquefaction
conditions, ¢ (m) 04 1.0
e , 17 52
Initial friction angle, @iniia (©) 15 52
Relative displacement needed to 0.1 52
mobilize theresidual friction angle, &
(m) 0.5 51.9

6.8 Lessons Learned

6.8.1 Factors contributing to the acceleration of the slide

Two phenomena contributed to the acceleration of the dlide: the brittleness of the
clay formation whose strength dropped to residual values during the first stages of
the motion and the liquefaction of tailings, which significantly increased the thrust
against the incipient dlide.

6.8.2 Liquefaction of tailings

The static liquefaction of tailings could not be reproduced in undrained laboratory
triaxial tests. However, the tailings slide on the upstream side of the dam was able
to liquefy in amassive way alarge volume of tailings, even if they exhibited some
significant cementation.

6.8.3 Further validation of strength and water pressures

The motion of the slide and not only the strict condition of instability, may prove
useful to establish material parameters, prevailing pore pressures and, in general,
to better define the conditions before failure. In the case of Aznalcdllar, the back
analysis of the motion provides an additional validation of clay strength and pore
pressure conditions.
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6.8.4 The risk of dam displacement

Landdlide risk is often related to the motion after instability. In the case of Vaiont,
the attained velocity was the key aspect. In the case of Aznalcdllar the risk was
also associated with the displacement. The dide displacement was enough to open
a breach in the rockfill dam and to trigger the flood. The flow rate pouring out of
the pond was controlled by the breach width, which was directly related to the
slide displacement. Longer running distances (a consequence, for instance, of the
weaker nature of tailings, which could imply a higher volume of liquefied tailings
acting against the upstream boundary of the slide) would have resulted in a wider
breach and in a more catastrophic flood.

6.8.5 Unknown aspects of failures

The dynamic analysis provided answers to some unsolved questions (the slide,
being at night, was not observed) such asits velocity, duration and acceleration.

6.9 Advanced Topics

The analysis of landslide motion after failure is seldom performed in engineering
practice, although analytical and numerical procedures are available to investigate
the runout distances and velocities reached by landslides. In some studies (Hungr,
1995; McDougall and Hungr, 2004; Quecedo et al., 2004) the slide is idealized as
a fluidized mass of soil and the Navier-Stokes equations are integrated in depth,
adapted to the curved geometry of the surface, and solved for some rheological
models adopted for the moving mass. In other approaches, concelved for
rockslides, discrete element approaches and hybrid continuum-discontinuum
models have been developed (Eberhardt et al., 2004).
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Epilogue

Geotechnical designs should comply with two fundamental requirements:

- The solution has to be stable with an appropriate safety margin.

- Deformations and displacements should remain within acceptable limits.
The first requirement leads in a natural way to the determination of soil strength.
The second is associated with soil stiffness. In both cases equilibrium conditions
and strain compatibility should be satisfied. This is the classical approach, one that
has evolved into an extremely rich set of available solutions and analysis
procedures. Critical state theory (Schofield and Wroth, 1967) integrated strength
and stiffness into a unified and powerful framework which resulted in a more
advanced understanding of soil mechanics and eventually led to modern
elastoplastic computation tools.

However, the backbone of Geotechnical Engineering does not concern the
development of more or less sophisticated tools and theories. It remains in a
previous step. When facing a real problem it is necessary to isolate its fundamental
aspects and to achieve a correct conceptual representation of its nature. This phase
requires abstract thinking, which is certainly assisted by a proper understanding of
paradigms and theories of Soil and Rock Mechanics. The process of abstract
thinking with the aim of identifying the key issues usually renounces to
complexity and secondary details. To be successful, concepts should be simple
and rooted on well established mechanical and physical knowledge. Only when
the relevant mechanisms or phenomena which define the problem are well
understood, additional sophistication may be added for a more accurate analysis or
interpretation. This book remains in this first “simple” stage.

The correct identification of the essential traits of a geotechnical situation
relies heavily also on accumulated experience and on educated intuition. But, how
to educate intuition and how to transfer practical experience?

Failures have always been regarded with extraordinary attention by engineers.
They have a powerful human and emotional side because of their implications but
also because they are often associated with mistakes, errors and lack of
understanding. These aspects are very close to human nature as well to the
practice of engineering. Failures convey a clear message: they point towards the
limitation of our knowledge and practices. In a sense, they are telling us the truth.
Unlike theories and current methodologies they remain valid in time. In fact, they
are permanent benchmarks which can be revisited to check our conceptual
representations and models. They provide a permanent incentive to direct research
and technological developments. In addition, they may become an effective
educational tool. They serve to identify errors, if properly interpreted they provide
strong clues of the fundamental nature of problems and they constitute a good
validation check for theories and models.

These considerations were present when this book was conceived. Major
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failures have attracted continuous and sustained efforts to explain their
fundamental aspects through current theories. They all serve the purpose of
developing new concepts. Some of them have been regarded as critical events for
the development of new disciplines (Rock Mechanic received a definitive impulse
from failures such as Vaiont slide and Malpasset dam). But any failure, not
necessarily a spectacular one, has also a great potential to become a permanent
source of knowledge.

Geotechnical engineers often face the need to find acceptable and reliable
solutions in a limited amount of time. Text book solutions or even more advanced
theoretical or empirical solutions are often not available for specific cases. The
solution has to be built form basic considerations and fundamental principles.
Almost all the cases presented in this book share this characteristic.

The use of comprehensive finite element and finite difference programs for
Geotechnical analysis is well established in current practice. Numerical methods
provide comprehensive tools but they are not valid in all cases. The dynamic
analysis of Vaiont can not be possibly approached by any commercially available
finite element code for geotechnical analysis. The constrained displacement of St.
Moritz landslide is difficult to model properly by finite element procedures.
Progressive failure, a phenomenon which partially explains the failure of
Aznalcdllar dam is currently a research topic.

It may be also argued that numerical analysis still requires a significant
amount of time, often inacceptable in practice. It is expected and desirable that
numerical methods would progressively become easier to use and faster. But the
intention of this book is far from promoting a dispute between “simple” solutions
and numerical methods. However:

- A thorough understanding of fundamental mechanics is essential to
interpret results of complex numerical calculations

- Asimple check through approximate methods helps to grasp the nature of
the problem and provides confidence to numerical results

- In many occasions the precision offered by analytical and empirical
methods is adequate. The real uncertainty does not remain on the
calculation procedure but on material properties, their spatial variability
and the unknown boundary and initial conditions

These are the general lessons which should be extracted from this book. It is
felt also that there is still room in Geomechanics for simple and accurate
theoretical analysis. Closed form solutions or those which require easily available
computer tools (Excel, Maple) maintain their elegance and interest in practice.
They are also good benchmark cases to validate numerical tools.
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However, it is the learning experience provided by the process of analyzing a
failure through relatively simple procedures the main objective of the book. The
lessons learned in each of the cases discussed are useful irrespective of the method
of analysis.

A final objective of the book has been to provide an enjoyable reading and a
rewarding experience to the readers. Writing the book was also a first class and
pleasant learning experience for the authors.
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