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Preface  

Geotechnical failures, specially the catastrophic ones, are an excellent experience 
and a source of inspiration to improve our current understanding of phenomena 
and our procedures and tools for analysis and prediction.  
 This unconventional manner to learn Geomechanics is the essence of this 
book. In general, Soil Mechanics and Geotechnical text books describe first the 
concepts and the theoretical developments and then apply them to interpret or 
solve a particular application. This book has a different approach. The case (a 
failure) is first described and then an explanation is sought. This approach is 
developed through a set of steps which can be summarized as follows.   

1. Identify the nature of the problem 
2. Develop a dedicated and specific formulation of the case, based on 

established basic concepts. In general, no single existing theory or 
procedure is available to solve the case at hand.  

3. Provide a solution within an acceptable degree of complexity.  
4. Extract the fundamental aspects of the problem and highlight its 

relevance.  
The cases selected have been grouped into three main topics: Landslides, 
Embankments and Dams and Dynamics of Failures. No attempt to provide a 
comprehensive account of known catastrophic failures has been done. But the 
cases selected (Vaiont, Aznalcóllar, Brattas-St. Moritz) are rather unique and 
illustrate a number of relevant and to some extent controversial issues which are 
of wide interest.  
 Finite element methods have not been used. In the landslides analysed (Vaiont 
and Brattas-St. Moritz) currently available commercial programs are of limited 
utility. In the remaining cases the analysis performed provides a sufficient insight 
and interpretation of the field behaviour.  

The book teaches how to build the necessary models to understand the 
failures. Balance and equilibrium equations are formulated at different scales 
which are selected having in mind the abstract representation of the key concepts 
of each case. In some of the Chapters calculation tools, included in well known 
and widely available programs (Excel, Maple, etc.) have been used. Some details 
of the “ad hoc” programs developed have also been included in Appendices to 
help the readers to follow the details of the calculation.  

Chapters include also a short description of the changes in the original design 
and the mitigation measures which could have prevented the failure. Also a 
summary section of lessons learned is provided. Finally, selected topics and more 
advanced reading are suggested.  
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Chapter 1 

A Constrained Creeping Landslide:  

Brattas, St. Moritz Landslide, Switzerland 

Landslides are one of the major geotechnical hazards affecting economy and life 
in the subjected areas. Though most of the landslides take place in rural areas, they 
cause significant damage to the infrastructure such as roads, railways, etc. Of 
major concern to the community are, however, the landslides active in urban 
areas. Among these, the Brattas Landslide of St. Moritz (Fig. 1.1a), with its most 
prominent landmark, the Leaning Tower (Fig. 1.1b), is of special interest, because: 

- remarkably, the landslide stops in the middle of the town; 
- in spite of the landslide, the town has enormous real estate prices;  
- the town had to adopt special construction laws for the affected areas; 
- there is an extensive displacement monitoring program in progress; 
- there is an interesting experience related to the behaviour of existing 

structures; 
- original engineering solutions have been put forward for the construction 

of new structures. 
The Institute of Geotechnical Engineering at the ETH Zurich has been actively 
involved over the last 30 years in all geotechnical aspects of the problem, both in 
research and in providing expert service to the community. 

The unstable northern slope above the village of St. Moritz (Fig. 1.1a) may be 

zone is the Gianda Laret rockfall, which extends from the detachment zone at an 

about 2100 m. The lower zone is the Brattas landslide composed of a thick soil 
mass, which is moving downhill but is blocked at its foot by the Via Maistra rock 
ridge, after which the movement stops (Fig. 1.2b). It stretches from an altitude of 
2100 m down to 1800 m over a horizontal distance of 800 m. The landslide is 600 
m wide and is bounded on both sides by parallel shear surfaces. The slope has an 
average inclination of 20º. The main sliding surface revealed in one boring reaches 
a depth of about 50 m. The sliding mass is built of soil layers of great 
heterogeneity, both in terms of stratigraphy and material properties.  

In the portion where it is approached by the landslide, Via Maistra is getting 
narrower by about 0.5 cm per year. Uphill from Via Maistra, the displacement rate 
increases (Fig. 1.2b). The movement has only been measured in the developed 
areas, which is not sufficient to conclude if there is any interaction between the 
Gianda Laret rockfall and the Brattas landslide. 

1.1 Case Description 

1.1.1 Geometry, geology and displacements 

altitude of 2400 m above sea level down to the local rock outcrop at an altitude of 

divided into two zones (Fig. 1.2a, after Müller and Messina, 1992). The upper 
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(a) 

 

 
 

(b) 
 

Figure 1.1 The St. Moritz Landslide: (a) an aerial photo; (b) the Leaning Tower. 
 

a)

Inclination 20o

Width 600-900m 

Length 1500m

(b)
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Figure 1.2 The Brattas Landslide: (a) the geology (Müller and Messina, 1992); (b) yearly 
horizontal displacements (after Schlüchter, 1988, with the data from Tschudi and Angst, 
1998).  
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1.1.2 The leaning tower of St Moritz 
The effects of the landslide are most evident in the behaviour of the oldest 
structures. The Leaning Tower of St Moritz Church, which was built in the 12th 
century at the foot of the landslide (Fig. 1.3a, Schlüchter, 1988), exhibits an 
alarming tilt of 5º. The church itself had to be demolished in 1893 because of the 
excessive differential settlements. Since 1908, regular tilt and displacement 
measurements have been carried out (Fig. 1.3b). Stabilization efforts in 1928 and 
1968 were not successful in the long-term, and an alarming reaction of the tower 
to the earthquake in Friaul on May 6, 1976 was detected. As a result, it was 
decided to undertake an additional stabilization attempt, which was accomplished 
in 1983.  
 

 
 

(a) 

 
(b) 

 

Figure 1.3 The Leaning Tower: (a) geological profile; (b) inclination in time.  
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1.1.3 Chesa Corviglia 
Many modern buildings have also experienced the negative effects of the 
landslide. Chesa Corviglia is a terrace-type structure (Fig. 1.4a) on the south-
western edge of the Brattas slope (Fig. 1.2b). The original building concept 
included a 20 m high anchored concrete pile wall (Fig. 1.4b) completely and 
permanently separated from the structure. Both the piles and the anchors were 
supposed to penetrate into the stable rock. Unfortunately, the prognoses 
concerning the location of the rock turned out to be false. As a result, both the wall 
and the house are moving downhill at different speeds, causing the gap between 
them to close (Fig. 1.4c), and threatening the stability of the house.  
 

 
 

(a) 

 
(b) 

 
(c) 

 

Figure 1.4 Chesa Corviglia: (a) the building; (b) the retaining structure (Gysi, 1999); (c) 
the closing gap between the retaining wall and the building. 

The large-scale geologic situation of the area is seen as the primary cause of the 
landslide: the Mesozoic sediments of the Bernina nappe were pushed over the 
crystalline rock of the Err nappe. (Nappe is a large sheet of rock that has been 
moved a considerable distance from its original position). The hydrological 
conditions constitute further causes of instability. Various deep aquifers were 
observed in the landslide, which create independent water tables. An increase in 
the pore water pressure due to the snow melt causes shear strength degradation, 
which leads to the yearly movements, but sometimes also to recurring large-scale 
landslide events. According to Schlüchter (1988), there is geological evidence of a 

1.1.4 The problem 
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number of these landslide events which have occurred in the last 5000 years –the 
last one approximately 700 years ago.  

Since the only global stabilization possibility –dewatering of the entire 
landslide– is extremely expensive, it may be a better solution just to adjust the 
existing and new structures to the yearly displacements, provided they do not 
exceed a reasonable level. In this context, it becomes of crucial importance to be 
able to assess the long-term stability and displacements of the landslide. 

The unusual feature of this landslide is that it has “nowhere” to go and its 
downhill movement is slowing down in time, which intuitively implies the 
landslide stability. However, in spite of this landslide slowing, and in certain 
scenarios exactly because of it, the shear strength of the sliding surface may 
decrease, leading to an increase in compressive stresses at the landslide foot and, 
ultimately, to a failure. A simple model of a constrained landslide developed by 
Puzrin and Sterba (2006) to provide an assessment for the long-term stability and 
displacements of the St. Moritz landslide is briefly described below. It is based on 
an inverse analysis, which allows for the safety factor to be determined solely by 
curve fitting the observed displacement data. For a safety factor lower than one, 
the time of failure can be predicted using additional earth pressure measurements 
in the sliding layer. 

The material presented in this section has been previously published in Puzrin and 
Sterba (2006) and is reproduced here with kind permission of Thomas Telford 
Limited. 

The schematic layout of the boundary-value problem of a slowing constrained 
landslide is given in Figure 1.5.  Equilibrium of the sliding layer relates the shear 
stress ( ),x tτ  on the sliding surface to the average effective normal stress in the 

layer ( ),p x t′  and the effective active earth pressure ap′  acting at the top of the 
layer: 

 ( ) ( ) ( ), , d sin .
L

t a
x

p x t H x t x H L x p H′ ′+ τ = γ − α +∫  (1.1) 

Here tγ  is the total unit weight of soil; α is the slope inclination; L and H are the 
landslide length and thickness, respectively. In (1.1) we use effective earth 
pressures assuming that the average pore water pressure is constant along the 
slope: ( ) ( ),u x t u t= , i.e. there is a flow parallel to the slope surface. 

In order to solve this boundary-value problem, we would supplement 
Equation (1.1) with constitutive equations, relating stresses τ  and p′  to 

1.1.5 Long-term stability and displacements 

1.2 The Theory 

1.2.1 Model assumptions 
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displacements ,δ  strains xε = ∂δ ∂  and their rates. Solving this system of 
equations, together with the boundary and initial conditions, would allow for 
displacements ( ),x tδ , strains xε = ∂δ ∂ , and earth pressures ( ),p x t′  to be 
calculated in space and time and the landslide behaviour to be predicted. This 
conventional approach to the boundary-value problem is called forward analysis.  
 

 
 

Figure 1.5 Schematic layout of the constrained landslide model. 
 

Because the processes in a constrained landslide are slower than in the one 
which is free to slide, we assume that the excess pore water pressure caused by the 
shearing has enough time to dissipate. Therefore, the time-dependency of 
displacements is solely due to rate effects. These rate effects are known to exhibit 
themselves in the secondary compression (see, e.g. Chapter 2 in “Geomechanics 
of Failures” by the same authors), but also, as demonstrated by Skempton (1985), 
in the rate dependency of the residual strength (Fig. 1.6a).  

As seen from Equation (1.1) and Figure 1.5, the weight and the active force in 
the layer are resisted by the earth pressure in the layer and the shear stress on the 
sliding surface. These are schematically represented in Figure 1.6b by the elastic 
spring (with elastic modulus E) and the slip element (with the slip stress τr), 
respectively. In order to introduce time-dependency, we include two dashpot 
elements: one (with viscosity pη ) to describe rate-dependent processes within the 

soil layer, the other (with viscosity τη ), on the sliding surface,  resulting in the 
following constitutive equations: 

 ( ), ,pp E′ = ε + η ε ε ε& &      ,r ττ = τ + η δ&      .xε = ∂δ ∂  (1.2) 

(In order to facilitate the future analysis we assume here that ηp is not necessarily 
a constant parameter but can be a function of strain and strain rate).  

In fact, the residual strength is also a function of displacement, continuously 
decreasing as displacement grows: .r ττ = τ + η δ − χδ&  As the landslide slows 
down, the displacements are still growing and both effects contribute to the shear 

ap′  

p′
z 

x 

0

δ 

Rock 

H 

L 

τ 

Soil 

α 

γt H sinα 
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strength degradation. In this simplified analysis, however, we consider only rate 
effects (i.e., 0χ = ), which is not conservative. 

 

 
(a) (b) 

 

Figure 1.6 (a) Viscous nature of residual strength; (b) Schematic layout of the constitutive 
model.  

A disadvantage of the forward analysis approach described above is that it does 
not take into account the observed slope displacements. Spatial variability of the 
soil properties results in high levels of indeterminacy in constitutive models and 
their parameters obtained in laboratory tests. This often causes large discrepancies 
between the calculated and observed behaviour. In contrast to the forward 
approach, the inverse analysis of the problem would allow for the material 
properties to be back-calculated directly from the observed displacements. This 
would account for the global slope behaviour, as opposed to the behaviour of the 
locally extracted soil samples, and would provide a more reliable basis for the 
future predictions. 

For the St. Moritz landslide, the yearly displacements are plotted in Figure 
1.7a against the distance from the rock outcrop. A typical development of the 
displacements in time is plotted in Figure 1.7b (Lang and Sterba, 2002). The 
displacements were monitored between 1979 and 1999 at the point A on the slope 
located 15 m east from the Leaning Tower (Fig. 1.2b).  

These displacements, as a function of time and space, can be directly used in 
the inverse analysis, but this requires a numerical solution of the differential 
equations. In an attempt to obtain an analytical solution, Puzrin and Sterba (2006) 
proposed fitting the observed normalized displacements data 

( ) ( ), ,x t x L t Lδ = δ  in Figure 1.7 using the following analytical function: 

 ( ) ( ) ( ) ( ) ( )( ), 1 expx tx t x t x a bx ct dδ = δ δ = − − − + , (1.3) 
where  

 x x L= ,     0 0.5b a≤ < ,     0.c >  (1.4) 

This function describes displacements that are zero at the landslide foot and 
increase monotonically (when 0 0.5b a≤ < ) along the slope towards its crest 
(Fig. 1.8a), while slowing with time and approaching an asymptotic value (Fig. 

W+Pa 

E 

ητ 
τr 

ηp(ε,ε& ) 
τr 

δ&  

τ 

1.2.2 Curve fitting of slope displacements 
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1.8b). The function (1.3) is simple and yet provides sufficient flexibility to fit the 
observation data both in the space (parameters a and b) and time domains 
(parameters c and d). As seen in Figure 1.7, this function (solid line) for b/a = 0.15 
and c = 0.045 provides a reasonably good fit to the observed displacement data of 
St. Moritz landslide both in space and time.  

 
 

 
 

(a) (b) 
 

Figure 1.7 Displacement data monitored for the St. Moritz landslide: (a) distribution of 
average yearly displacements in space in 2006-2008; (b) development in time at the point A 
on the slope located 15 m east from the Leaning Tower (Fig. 1.2b). 

 
In fact, as shown by Puzrin and Sterba (2006), this function also has a certain 

theoretical background: in represents the closed form solution of the boundary-
value problem (1.1) − (1.2) for a particular case of 0τη =  and const .pη =  
 

 
 

(a) (b) 
 

Figure 1.8 Normalized functions for curve-fitting of slope displacements: (a) in space; (b) 
in time. 

In the inverse analysis procedure the parameters of the constitutive model (1.2) are 
1.2.3 The inverse analysis procedure 
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derived from the observed displacements (1.3). First, we substitute the constitutive 
relations (1.2), into the equation of equilibrium (1.1):  

 ( ) ( ) ( )( ), , d sin
L

t r a
x

p x t x t x H L x p
H

τη′ ′+ δ = γ α − τ − +∫ & . (1.5) 

Next, by substitution of the observation data expressed via the analytical function 
(1.3) into (1.5), differentiation and integration we obtain 

 
( ) ( )( )

( ) ( )
2

2 3

, sin 1

             1 1 .
2 3

a t r

ct d

Lp x t p H x
H

L a bc e x x
H

− +
τ

′ ′= + γ α − τ − −

⎡ ⎤η − − −⎢ ⎥⎣ ⎦

 (1.6) 

Expressions for the linear strain and its rate are derived from Equation (1.3):  

 ( ) ( ) ( )( ), 2 1 exp ,x t a bx ct d
x

∂δ
ε = = − − − +

∂
 

 ( ) ( ) ( ), 2 exp ,x t a bx c ct dε = − − +&  (1.7) 

which can then be resolved with respect to t and x: 

 ( )exp ,cct d
c

ε
− + =

ε + ε
&

&
    

2
a cx

b
− ε − ε

=
&

 (1.8) 

and substituted into Equation (1.6):  

 

( )

2 32

sin 1
2

1 1 .
2 2 3 2

a t r
L a cp p H
H b

L a a c b a c
H c b bτ

− ε − ε⎛ ⎞′ ′= + γ α − τ − −⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞ε − ε − ε − ε − ε⎛ ⎞ ⎛ ⎞⎢ ⎥η − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ε + ε ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

&

& & &

&

 (1.9) 

It can be easily shown (by substitution) that Equation (1.9) becomes identical to 
the first constitutive Equation (1.2), when the following relationship exists 
between the parameters of the constitutive model (Eq. (1.2)) and the coefficients 
of the curve fitting Equation (1.3): 

 
2

sin ,
2 2
a a

r t
p bp HE H

a b a b L
′ ′

= τ = γ α −
− −

 (1.10) 
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( )
2 32

,
2

            1 1 .
2 2 3 2

a
p

p
ac bc

L a a c b a c
H c b b

τ

′
η ε ε = −

−
⎡ ⎤⎛ ⎞ ⎛ ⎞η − ε − ε − ε − ε⎛ ⎞ ⎛ ⎞⎢ ⎥− − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ε + ε ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

&

& &

&

 (1.11) 

 Unfortunately, the derived expression, via inverse analysis, for the non-
constant term of the viscosity coefficient (1.11) is rather complex. The good news, 
however, is that, unlike the viscosity coefficient τη , it does not enter Equation 
(1.6) for the earth-pressure evolution, which at the landslide bottom (x = 0) can be 
expressed as 

 ( ) ( )
2

0, exp .
1 2 2 3

ap L a bp t c ct d
b a H τ
′ ⎡ ⎤′ = − η − + −⎢ ⎥− ⎣ ⎦

 (1.12) 

The safety factor for the slope stability can be defined as the ratio between the soil 
resistance (passive earth pressure pp′ ) and the maximum earth pressure that can 
develop at the foot of the landslide in time, calculated from (1.12): 

  
( )

1 2 .
0,

p
s

a p

p b aF
p p p

′ −
= =

′ ′ ′∞
 (1.13) 

 
Figure 1.9 Mohr circle interpretation of active and passive failure in the slope.  
 

Note, that the entire stability analysis can be performed using only the 
observed displacement data and the values of the effective active and passive earth 
pressures ap′  and pp′  (acting parallel to the slope). These pressures can be found 
from trigonometric analysis of Figure 1.9 (Chu, 1991). The stress state on a plane 

τ

σ ′

αγ′=τ sinzg

αγ′=σ′ coszz

ϕ′

0 

α

zaK σ′ zpK σ′

ϕ′

Pp 

Pa 

A 

Bp 
Ba 

1.2.4 The safety factor 
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parallel to the slope α  at the depth z is represented by point A. The failure takes 
place when a Mohr circle passing through point A touches the failure envelope 

tan′ ′τ = σ ϕ , which produces two circles for the passive and active failure, 
respectively. Their poles Pp and Pa are found by drawing a straight line inclined 
by angle α  through point A up to the intersection with the corresponding circle. 
Drawing a straight line inclined by angle 90 − αo  through pole P up to the 
intersection with the corresponding circle produces the state of stress at failure B 
at the plane perpendicular to the slope. The normal stresses at Ba and Bp are the 
effective active and passive earth pressures, respectively, acting parallel to the 
slope at the depth z. The respective earth pressure coefficients are given by 

 ( )( )2 2 2 21 2 tan 2 1 tan tan tana

p

K
K

⎧ ⎫⎪ ⎪ ′ ′ ′= + ϕ + ϕ ϕ − α⎨ ⎬
⎪ ⎪⎩ ⎭

m . (1.14) 

The average values of the effective active and passive pressures over the thickness 
of the sliding layer H are then given by the following formula:  

( )( )2 2 2 21 cos 1 2 tan 2 1 tan tan tan
2

a

p

p
H

p
′⎧ ⎫⎪ ⎪ ⎡ ⎤′ ′ ′ ′= γ α + ϕ + ϕ ϕ − α⎨ ⎬ ⎢ ⎥′ ⎣ ⎦⎪ ⎪⎩ ⎭

m . (1.15) 

where ′ϕ  and ′γ  are the effective angle of internal friction and effective unit 
weight of the soil in the sliding layer, respectively. 

The safety factor defined by Equation (1.13) allows for distinguishing between the 
safe and failure scenarios of the landslide evolution. In the safe scenario of 

1sF > , the slope will eventually stop sliding and the final displacement increment 
for the point x on the slope are defined by  

 ( ) ( )
( )( )1

,
1 exp

M

M

x
x

c t t∞
δ

δ =
− − −

 (1.16) 

where ( ) ( ),M Mx x tδ = δ  is the displacement of the point x at the time of 

measurement tM ; t1 is the time of initial measurements, so that ( )1, 0x tδ = . 

In the failure scenario of  FS < 1, the earth pressure at the bottom of the slide will 
eventually reach the passive pressure pp′ . The time before the slope failure tf  can 
be back-calculated from Equation (1.12), but this requires an additional soil 
parameter τη . In order to determine τη  though, the existing displacement 
observation data is not sufficient and has to be supplemented by some other kind 
of measurements. The time changes in the earth pressure p′ at the slope bottom 

1.2.5 The long-term displacements  

1.2.6 The time to failure 
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( )0x =  are of the utmost importance in this analysis. If it were possible to 
measure the increase in the earth pressure pΔ  over a period of time tΔ : 

 ( ) ( )0 00, 0, ,p p t t p t′ ′Δ = + Δ −  (1.17) 

where t0 is the time of the initial pressure measurement, substitution of (1.12) into 
(1.17) would produce the desired expression for τη : 

 
( )

( ) ( )( )
0

2

exp
,

2 3 1 exp
p H ct d

L c a b c tτ
Δ −

η =
− − − Δ

 (1.18) 

so that the time before the slope failure would be given by 

 
( )( )( )0

1 ln .
1 exp 1 1

p
f

s

p p
t t

c c t F

′ ′Δ
= +

− − Δ −
 (1.19) 

1.2.7 Summary 
Based on the above derivations, the following procedure can be used for the 
stability analysis of a constrained landslide. We assume that the following 
displacement monitoring data is available: ( ),i jx tδ , where i = 1,...,N; j = 1,...,M; 
N and M are the number of measurement points in space and time, respectively; xN  
is the highest point on the slope measured; and t1 is the time of the first (zero) 
measurement in time, so that ( )1, 0ix tδ =  for all 1, , .i N= K  

1. Plot the normalized observation data ( ) ( ), , ,i j i j N jy x t x t= δ δ , for 

1, ,i N= K ; 1, ,j M= K  versus the normalized coordinate i i Nx x x′ =  
(i.e., in space). 

2.  Determine the coefficient k b a=  by fitting the following function to 
this data: 

  ,L k xy x
L k
′ ′−′=
′ −

 (1.20) 

  where NL L x′ = is the normalized length of the landslide. 
3. Calculate effective active and passive earth pressures from Equations 

(1.15) and their ratio a pp p′ ′ : 

 
( )( )
( )( )

2 2 2 2

2 2 2 2

1 2 tan 2 1 tan tan tan
.

1 2 tan 2 1 tan tan tan
a

p

p
p

′ ′ ′+ ϕ − + ϕ ϕ − α′
=

′ ′ ′ ′+ ϕ + + ϕ ϕ − α
 (1.21) 



18 Geomechanics of Failures. Advanced Topics Chapter 1 

4. Substitute k b a=  and a pp p′ ′  into (1.13) to calculate the safety factor. 

If 1sF > , the slope is stable in the long-term, if 1sF < , it is not.  
 
Note that the only parameters required for this stability analysis (in addition to 
the observed displacements) are α , L and ′ϕ . Not even the thickness of the 
sliding layer H or the unit weight of soil γ ′ is required. Also, it has not yet 
been necessary to define the time-related parameters c and d. These will be 
defined in the following steps and used to calculate the final slope 
displacements ∞δ  for the safe scenario ( 1sF > ) or the time to failure ft  for 

the failure scenario ( 1sF < ). 
  
5. Plot the normalized observation data ( ) ( ), , ,i j i j i Mw x t x t= δ δ , for 

1, ,i N= K ; 1, ,j M= K  versus jt  (i.e., in time).  
6. Determine the coefficient c  by fitting the following function to this data: 

 
( )( )

( )( )
1

1

1 exp
1 exp M

c t t
w

c t t
− − −

=
− − −

. (1.22) 

7. If 1sF > , the final displacement increments for each 1, ,i N= K  are: 

 ( ) ( )
( )( )1

,
.

1 exp
i M

i
M

x t
x

c t t∞
δ

δ =
− − −

 (1.23) 

8. If 1sF < , starting from time t0, measure the increase in the earth pressure 
pΔ  over a period of time tΔ . Calculate the time of the future failure 

from formula (1.19). 

Analysis of the Landslide  
The theory presented above provides tools for a simplified inverse stability 
analysis of the Brattas, St. Moritz Landslide. In 2005, it was applied by Puzrin and 
Sterba (2006) to the monitored displacement data available at that time (in the 
lower 200 m of the landslide). Using the assumption that the two parts of the 
landslide in Figure 1.2a are connected, i.e. the total length of the landslide is 

1500 mL = , the curve-fitting of Equation (1.20) produced a ratio 0.39b a =  
(Fig. 1.10). The effective angle of internal friction was assumed (after Vermeer, 
1997) to be within the range of 28 35′ϕ = −o o , so that for the average slope of 

20α = o from Equation (1.21) 0.28 0.15a pp p′ ′ = −  was obtained and the 

corresponding safety factor followed from Equation (1.13): 0.78 1.46.sF = −  
 This preliminary result did not allow for the possibility of the failure scenario 

1.3 
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to be excluded. In order to improve the accuracy of prediction, additional 
observation data from the middle and upper parts of the landslide had to be 
collected. This could provide more data for the curve-fitting, but even more 
importantly, an uncertainty with respect to the interaction between the Gianda 
Laret rockfall and the Brattas landslide had to be resolved. This could help to 
define more accurately the upper boundary of the Brattas landslide and the static 
boundary conditions on it. To collect these and other data, an extensive field 
investigation program was carried out in the year 2006. 
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Figure 1.10 Curve fitting of the normalized yearly displacement data in space monitored 
for the St. Moritz landslide before 2005.  

The main part of the field campaign was geodetic measurements. A grid of 
measurement points was established covering the Gianda Laret rockfall and the 
Brattas landslide (Fig. 1.11a) with a denser grid at the boundary between them. 
The coordinates of the points were measured with a precision of up to 1 cm. The 
coordinates were then taken again in 2007 and 2008 with the corresponding yearly 
displacements plotted in Figure 1.11b against the distance from the rock outcrop at 
Via Maistra.  

The plot in Figure 1.11b exhibits a number of interesting features. First of all, 
the yearly displacements 2007−2008 are almost twice larger than the yearly 
displacements 2006−2007. This can be explained by significantly larger 
precipitation in the 2007−2008 period and represents a typical fluctuation of the 
yearly displacements due to changes in climatic conditions. 

Second, in spite of this fluctuation, the shape of the displacement distribution 
along the landslide remains remarkably stable and, when normalized by the 
maximum displacement, it produces almost the same curve (Fig. 1.12a), which is a 
normalized version of the plot in Fig. 1.7a. The yearly displacement is normalized 
by 33 cm, the distance – by 650 m.  

Finally, and very importantly, it was possible to establish that the movement 
rate at the top of the Brattas landslide (600−700 m away from Via Maistra)  

1.3.1 Geodetic measurements  



20 Geomechanics of Failures. Advanced Topics Chapter 1 

 
 

(a) 

2007-2008 

2006-2007 

0.0

0.1

0.2

0.3

0.4

0.5

200 400 600 800 1000 1200 1400
Distanz zur Via Maistra [m]

Ve
rs

ch
ie

bu
ng

 p
ro

 J
ah

r [
m

]

Distance to Via Maistra, m 

 Y
ea

rly
 d

is
pl

ac
em

en
t, 

m
 

 
(b) 

 

Figure 1.11 Geodetic measurement: (a) the points; (b) yearly displacements. 
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reaches 45 cm/year, while at the bottom part of the Gianda Laret rockfall 
(700−800 m away from Via Maistra), only 30 cm/year. It is, therefore, likely that 
the rockfall movement is stopped by a rock ridge at an altitude of about 2,100 m 
and does not fully transfer earth pressures to the Brattas landslide. The upper 
boundary of the Brattas landslide, however, is apparently slowly shifting upwards 
with blocks from the rock ridge gradually collapsing into the sliding mass. 

1.3.2 Simplified model  
Based on the latest observation data, we assume that there is no interaction 
between the Gianda Laret rockfall and the Brattas landslide, i.e., the following 
landslide parameters can be adopted: L = 700 m and 20α = o . The effective angle 
of internal friction is assumed (after Vermeer, 1997) to be within the range of 

28 35 ,′ϕ = −o o  so that from (1.20): 0.28 0.15.a pp p′ ′ = −  
The displacement data in Figure 1.11b is averaged over the two years, 

combined with the existing data from the lower 200 m and normalized as 
suggested in Section 1.2.7 (Table 1.1). 
 

Table 1.1 Normalized yearly horizontal displacements along the landslide. 
 

x , m / 650x x′ =  δ& , cm/year 33δ= &y  fittedy  
0 0 0 0 0 

30 0.046 2 0.061 0.053 
122 0.188 6 0.182 0.212 
200 0.308 10 0.303 0.342 
330 0.508 18 0.545 0.548 
450 0.692 25 0.758 0.727 
580 0.892 31 0.939 0.908 
650 1 33 1 1 

 

 
(a) (b) 

 

Figure 1.12 Curve fitting of the normalized displacement data monitored for the St. Moritz 
landslide: (a) in space; (b) in time.   
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1.3.3 The safety factor 
The normalized displacement data from Table 1.1 is plotted in Figure 1.12a. The 
best fit by the analytical curve (1.20) to this normalized displacement data is 
achieved at 0.15b a =  (Fig. 1.12a and Table 1.1). By substituting these 
parameters into Equation (1.13), we obtain the range for the safety factor: 

2.49 4.63.sF = −  As is seen, analysis excludes the possibility of a future failure. It 
has to be mentioned, however, that this conclusion has a preliminary nature, 
because the observations over the 2 years are not sufficient for long-term analysis. 

Since we find ourselves within the safe scenario, we should be able to predict the 
long-term displacements of the landslide. For example, the normalized 
displacement data monitored between 1979 and 1999 at point A on the slope 
located 15 m east from the Tower (Fig. 1.2b) is plotted in time in Figure 1.12b 
(Lang and Sterba, 2002). The best fit to this data is achieved using the analytical 
curve (1.22) with 0.045c =  (Fig. 1.12b). The total downhill displacement of point 
A between 1979 and 1999 was 177 mm, therefore in the safe scenario case, 
according to formula (1.23), the final displacement of this point will be 298 mm. 

The above stability analysis is based on fitting the observed displacements using a 
simple and yet sufficiently versatile curve fitting function. Inverse analysis of a 
visco-elastic visco-plastic model of the landslide allows for both the safe and 
failure scenarios of the landslide evolution to be identified and explored within 
the same unified framework. Preliminary analysis shows that the Brattas landslide 
is stable. 
 Unfortunately, as mentioned above, the data available for this analysis are not 
sufficiently reliable to entirely exclude the possibility of the failure scenario for 
the Brattas landslide. The definite time related predictions can be only achieved by 
monitoring the long-term displacements along the entire landslide length over a 
long period of time and by measuring the earth pressure changes in the area of 
high compression at the landslide bottom, which are planned in the future. Effects 
of the climatic changes and groundwater conditions should be also studied and 
incorporated in the more detailed analysis.  

Analysis of the Leaning Tower  
In addition to the long-term stability and displacement predictions presented 
above, we shall attempt to answer another important question: is the tower 
inclination indeed due to the landslide movements or could it be caused by a 
leaning instability or a bearing capacity failure? To answer this question, we could 
apply the theory from Chapter 3 in “Geomechanics of Failures” by the same 
authors (referred as Chapter 3* below), but this requires parameters of the soil 
strength and stiffness in the vicinity of the tower. As a part of the field 
investigation program carried out in 2006, the soil strength and stiffness were 

1.3.4 The long-term displacements 

1.3.5 Discussion 

1.4 
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measured directly in the field, using two different types of dilatometer tests.  

The field investigation program included installation of an inclinometer and a 
piezometer in the vicinity of the Leaning Tower. In the same borehole, two types 
of dilatometer tests were performed to determine the soil stiffness at different 
depths (Puzrin et al., 2008). The first type of test involved a Cambridge 
dilatometer (Fig. 1.13a): a cylindrical probe with an inflatable rubber membrane 
inserted into a predrilled borehole. The second type of test involved a Marchetti 
dilatometer (Fig. 1.13b): a spade-like probe with a round flat inflatable steel 
membrane pushed into soil up to a depth of 1 m from the bottom of the borehole. 
In spite of difficult soil conditions (gravelly clays), both tests produced 
meaningful results (Fig. 1.14). 
 

   
 

(a) (b) 
 

Figure 1.13 Dilatometers: (a) Cambridge in-situ probe; (c) Marchetti probe. 

Before its stabilization, the tower was based on a square foundation (Sterba et al., 
2002) and had the following geometry: 

− the height of the centre of gravity: cH ≈  13.0 m; 
− the (half)width of the square foundation: b  = 3.0 m; 
− the average radius of the square ring foundation: r   =  1.5 m. 

(see Chapter 3*) 
The tower high slenderness ratio of 8.7cH r =  requires checking against the 
leaning instability. The tower is built on a 15 m thick layer of gravely clay. The 
properties of this clay were derived from the dilatometer tests (Fig.1.14): 

− the compression index: 0.12;cC =  
− the swelling index: 0.02;eC =  
− the in-situ void ratio: 0 0.5.e =  

1.4.1 Dilatometer tests 

1.4.2 Leaning instability 



24 Geomechanics of Failures. Advanced Topics Chapter 1 

Inequality (3*.26) gives the following lower estimate for the critical ratio (note, 
that 0.5ρ = , so that 4 2.0ρ =  and 1.3f =  from the plot in Fig. 3*.9a): 

 
( )

( ) 0.1913.2
43

214 0
2

=
+

+⋅
⋅

ρρ
+ρ

≤
ec

c
CC

e
fr

H  (1.24) 

The tower slenderness ratio 8.7cH r =  appears to be much smaller than the 
critical value. We have established that the excessive inclination of the tower is 
not due to the leaning instability. Can it be then a bearing capacity failure? 
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Figure 1.14 Compression and swelling indices from dilatometer and oedometer tests. 

Let us first calculate the bearing capacity of the tower close to the end of its 
construction when it was still standing straight. This requires the length of the 
equivalent footing, which is calculated using the first Eq. (3*.6) from Chapter 3*: 

 4 4 1.5 6.0 mL r= = × =  

The width of the equivalent footing is b = 3.0 m, its depth t = 2 m. Substitution of 
the above parameters into the formulas (3*.35) − (3*.37) gives:  

Cs Cc 

1.4.3 Bearing capacity  
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 14.72qN = ,    1.27qs = ,    1.18,qd =  

 13.13Nγ = ,     0.80sγ = ,     1.00.d =γ  

A conservative estimate of the depth of the groundwater level is 2 m below the 
ground surface, of the angle of internal friction 28 ,′ϕ = o  and of the total unit 

weight of soil 320 kN m .γ = The bearing capacity (3.34) can be calculated as 

 
20 2.0 14.72 1.27 1.18

1 3.0 10 13.13 0.80 1.00 1.04 MPa
2

fσ = × × × × +

× × × × × =
 (1.25) 

The weight of the tower is G = 1264 tons, which results in an average contact 
stress of σ = 344 kPa. Then the safety factor against the bearing capacity failure 
for the not inclined tower was 

 1,040 3.0.
344

f
sF

σ
= = =

σ
 (1.26) 

This is sufficient to ensure that the bearing capacity failure was not possible. We 
also need to keep in mind that this calculation is extremely conservative. 
 Before its stabilization, when the tower was inclined, the pressure under one 
of the footings was much higher than the average. Calculating from the second 
Equation (3*.6): 3.0B =  m, from the second Equation (3*.33), we obtain 

 ( ) 1,264 9.81 1 13.0 tan 5 606 kPa.
3.0 6.0 2 3.0L

× ⎛ ⎞σ α = + =⎜ ⎟× ⎝ ⎠
o  (1.27) 

Assuming that the bearing capacity of this foundation did not change (which is 
conservative, because its depth increased due to the settlement), the safety factor is 
still significantly larger than unity: 

 1,040 1.72.
606

f
s

L
F

σ
= = =

σ
 (1.28) 

Thus, the bearing capacity failure can also be excluded as the source of the tower 
inclination. 

1.4.4 Discussion 
We have established that the excessive inclination of the tower is neither due to 
the leaning instability nor to the bearing capacity. Furthermore, other structures in 
the landslide area, with much lower height to width ratios and contact pressures, 
also appear to be inclined. All this confirms that the most likely reason for the 
tower inclination is the landslide displacement.  
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1.5 Mitigation Measures 
The above analysis shows that, although the landslide will probably not fail 
catastrophically, its movements keep damaging the structures. There are two ways 
to mitigate this damage: to stabilize the structures locally and let them “swim” 
with the landslide, or to stabilize the landslide globally by drainage.  
 

 

 
(a) 

 

 
 

(b) 
Figure 1.15 The Leaning Tower: (a) new foundations; (b) the jacking-up procedure. 

This stabilization procedure consisted of placing pre-stressed reinforced concrete 
collars in the area at the foot of the tower and sinking two reinforced concrete 
barrettes to a depth of 10 m below the original foundation level (Fig. 1.15a). The 
tower was then lifted by hydraulic jack-ups from its original foundation and its 

1.5.1 Stabilization of the leaning tower of St. Moritz 
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weight (1,264 tons) was placed on the foundation barrettes via three Teflon 
bearing pads (Fig. 1.15b), and its tilt was decreased. The masonry of the tower 
was reinforced using vertical internal pre-stressing. Thus, the tower is 
“swimming” in the creeping mass, allowing for its tilt being periodically corrected 
by lifting and introducing additional plates into the bearing pads (last correction 
carried out in 2005). 

 

 
 

Figure 1.16 Chesa Corviglia (after Gysi, 1999): (a) a horizontal cross-section with the 
additional piers; (b) a vertical cross-section with the additional anchors.  
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1.5.2 Stabilization of Chesa Corviglia 
Stabilization of Chesa Corviglia required ingenious and expensive geotechnical 
measures designed by the Gysi Leoni Mader AG engineering company. The wall 
was reinforced by additional piers (Fig. 1.16a), and additional anchors were placed 
above the original ones (Fig. 1.16b). The new anchors do not penetrate below the 
sliding surface (which could cause a dangerous increase in the anchor forces in 
time due to the landslide movements). However, they go sufficiently far away 
from the house into the sliding layer in the hope of bringing about identical 
displacements of the wall and the house, rather than hindering the creep 
movement of the entire landslide, which is probably an impossible task. 
 

  
 

(a) (b) 
 

 
(c) 

 

Figure 1.17 Fiberoptics: (a) the location; (b) the cable; (c) the measured strain. 

As a consequence of the negative experiences with the Chesa Corviglia, the 
municipality of St. Moritz had to react. Since the only global stabilization 
possibility −dewatering of the entire landslide– was found to be not feasible, new 

1.5.3 Special regulations for new construction  
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permit specifications that regulate construction activities in the Brattas landslide 
were established. In addition to the legal problems (limited property rights, 
responsibility and economical considerations, rapid ageing of the construction, 
monitoring costs, etc.), these regulations address the planning, construction, and 
monitoring of the structures. For example, during the project phase of new 
constructions, weight compensation and equilibrium is a priority. The base of the 
structure should be made as rigid as possible, and the use of the permanent ground 
anchors is not permitted. 

Because of the municipality regulations described above, the new construction 
within the landslide area is significantly more complex and expensive than outside 
this zone. Unfortunately, the western boundary of the landslide crosses the town 
and cannot be clearly identified from the geodetic measurements. This creates a 
legal and technical uncertainty when the owners of the boundary properties initiate 
a new construction.  

To resolve this problem, it was decided to use the Via Tinus road, which 
crosses the boundary (Fig. 1.17a) as a gigantic strain gauge, by equipping it with a 
90 m long fiberoptics cable, glued within a 7 cm deep trench in the asphalt (Fig. 
1.17b). This was a novel application of the fiberoptic strain-monitoring technology 
(Iten et al., 2008). By propagating light waves in the cable and using BOTDR 
(Brillouin Optical Time-Domain Reflectometry) for the signal processing, it was 
possible after one year of landslide movement to detect the relative elongation in 
the cable in the 15 m long zone of the shear boundary of the landslide (Fig. 1.17c).  

Information about the earth pressure changes in a sliding layer of a creeping 
landslide is a crucial component for understanding, analysis, and stabilization of 
creeping landslides. This information is especially important for constrained 
landslides where the pressures in the compression zone could reach the passive 
pressure and lead to a catastrophic failure. For a failure scenario, combining the 
measured increase in pressure with geodetic measurements allows for back-
calculating parameter τη  from Equation (1.18) and predicting when the 
constrained landslide will fail (Eq. (1.19)). 

Unfortunately, measuring the earth pressures is one of the most challenging 
problems in the geotechnical monitoring. Conventional methods, such as pressure 
cells, require additional boreholes and produce unreliable results. In order to 
overcome these problems, a novel device − inclinodeformometer (IDM) was 
developed at the Institute of Geotechnical Engineering, ETH Zurich, to measure 
changes of earth pressure in a sliding layer of a creeping landslide (Schwager et 
al., 2010). The device makes use of the existing and widely used technology of the 
inclinometer measurements. The change of earth pressures in the sliding layer 
leads to the changes in the inclinometer pipe shape and dimensions. The IDM 
probe is being lowered down the depth of the pipe on three wheels guided along 
the channels of the inclinometer pipe (Fig. 1.18a).  

1.5.4 Defining landslide boundaries using fiberoptics 

1.5.5 Monitoring of the earth pressure at the landslide bottom  



30 Geomechanics of Failures. Advanced Topics Chapter 1 

The upper and lower wheels are rolling in the same channel. These wheels are 
fixed to the probe. The middle wheel is connected via a lever with two springs so 
that it can be pressed against the opposite channel. A change in the diameter of the 
pipe leads to a change of the position of the middle wheel in respect to the probe. 
There are three tilt sensors detecting the relative inclination between the probe and 
the lever of the middle wheel (Fig. 1.18a). Continuous diameter measurements in 
two perpendicular directions can be taken. Diameter changes measured over a 
period of time allow for the pressure change to be back-calculated from a solution 
of a boundary value problem with properly described constitutive behaviours of 
the pipes and the surrounding soil. 

 

 

tilt sensors 

 
(a) (b) 

  

Figure 1.18 Inclinodeformometer (IDM): a) device in the pipe; b) the measured diameters 
of an inclinometer pipe in the compression zone of the St Moritz landslide. 

 
An advantage of the inclinodeformometer is that it does not require any 

additional infrastructure than standard inclinometer pipes, which are being 
installed anyway for landslide monitoring. Furthermore, these pipes can be used 
for pressure change measurements in the sliding layer long after they were sheared 
and became unsuitable for inclinometer measurements. Full-scale laboratory tests 
performed in a 2 m high calibration chamber demonstrated that the pressure 
measurement accuracy can be as high as 5 kPa.  

Initial field measurements performed on the St. Moritz landslide confirmed 
significant stress anisotropy in the compression zone of this constrained creeping 
landslide (Fig. 1.18b). The A-axis in Figure 1.18b coincides with the direction of 
the landslide velocity, the B-axis is perpendicular to it. The pipe diameters are 
averaged every 3 meters – e.g., within each continuous pipe section between the 
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installation joints. The measurements consistently demonstrate an elliptical pipe 
shape with a smaller diameter parallel to the landslide velocity. The difference 
between the pipe sections is most likely due to the variation in the initial pipe 
diameters. The first measurements of the diameter changes in three different 
inclinometer pipes were taken in 2009 and the back-calculated yearly earth 
pressure changes in the compression zone ranged between 5 and 15 kPa 
(Schwager et al., 2010). 

Creeping landslides, which are constrained by natural or man-made obstacles 
(e.g., a retaining wall) have “nowhere” to go and their downhill movements are 
slowing in time. This intuitively implies that the landslide stability is not an issue, 
which in some cases can be wrong, in particular when residual strength at the slip 
surfaces increases with shearing strain rate. In such a case, because the landslide is 
slowing, the shear strength on the sliding surface will decrease, leading to an 
increase in compressive stresses at the landslide foot and, possibly, to a 
catastrophic failure. 

Spatial variability of soil properties results in high levels of indeterminacy in 
constitutive models and their parameters obtained in laboratory tests. This causes 
large discrepancies between the predicted and observed landslide behaviour. In 
contrast to the forward approach, inverse analysis allows for the material 
properties to be back-calculated directly from the observed displacements. This 
accounts for the global slope behaviour and provides a more reliable basis for the 
future predictions.  

The inverse analysis can produce reliable predictions only if the long-term 
displacements are monitored along the entire landslide length and the earth 
pressure changes are measured in the area of high compression at the landslide 
bottom. In addition, fiberoptic strain-monitoring technology can be used to better 
define landslide boundaries, in particular, in urban areas. A novel device − 
inclinodeformometer (IDM) – can be used to back-calculate changes in earth 
pressure in a sliding layer of a creeping landslide. 

An attempt should be made to separate a structure from a landslide, e.g. the 
foundation may be allowed to “swim” in the creeping mass with the structure tilt 
being periodically corrected. In any case, all parts of the structure should be 
ensured to move with the same velocity. The weight of the structure should 
compensate for that of the excavated ground. The base of the structure should be 

1.6 Lessons Learned 

1.6.1 Stability of constrained creeping landslides 

1.6.2 Inverse analysis 

1.6.3 Landslide monitoring 

1.6.4 Stabilization of structures 
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made as rigid as possible. 

Sharp changes in the yearly displacements are normally caused by the changes in 
environmental factors, such as precipitations. These can represent a danger to the 
short-term stability of the landslide, even if its long-term stability is ensured. This 
long-term stability can, in turn, be negatively affected by global climatic changes. 
Stabilization of the landslide using a drainage system can successfully mitigate 
these hazards.  
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Chapter 2 

Catastrophic Slide: Vaiont Landslide, Italy 

2.1 The Landslide  
An impressive double curvature arch dam, 276 m high, was built in the years 
1957 − 1960 to store the waters of the Vaiont River, located in the Italian Alps, 
approximately 80 km north of the city of Venice. The dam was built in a narrow 
canyon, cut by the river in massive Jurassic limestone (Fig. 2.1a). The photograph 
shows, in the foreground, the limestone abutments of the dam and, in the 
background, the steep slope of the left bank of the river, which was actually the 
toe of an ancient landslide. The ancient slide became unstable in October 1963, 
when the level of the reservoir was close to its maximum, and invaded the 
reservoir at great speed. The displaced water generated a gigantic wave, 220 m 
high, which flew over the dam (which stood without bursting) and destroyed 
several villages downstream, causing more than 2,000 casualties. The failure sent 
seismic waves, recorded in seismographs across Europe. 
 

 
 

Figure 2.1 View of Vaiont Dam from downstream: (a) before the catastrophic landslide; 
(b) after the slide (Valdés Díaz-Caneja, 1964). 
 

Figure 2.1b is a view of the left bank of the river after the slide. The dam, in 
the lower part of the photograph, was not directly hit by the slide. A small lake 
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remains between the dam and the toe of the slide. The bridge topping the dam has 
been destroyed. The slide scarp and a newly created lake may be seen in the 
background of the photograph. This catastrophe caused a great impact, which was 
deeply felt by dam and geotechnical engineers around the world.  

A brief account of the events leading to the landslide of the left bank of the 
reservoir is given in the following paragraphs.  

Dedicated geological surveys of the left margin of the reservoir started in 
1958 under the supervision of L. Müller-Salzburg, an expert in rock mechanics. It 
was soon realized that a large proportion of the left bank of the reservoir was in 
fact a very large prehistoric landslide which, sometime in the past, filled the 
Vaiont valley. The valley had been excavated by the river at the end of the last 
glacial period (Würm) (Semenza and Ghirotti, 2000). After this prehistoric 
landslide, the river excavated again a deep valley through the slipped mass. The 
geological history of the landslide, an aspect which is always of interest in 
stability problems, is reviewed later.  

At the end of 1960, once the dam was built and the reservoir partially 
impounded, a long, continuous peripheral crack, 1 m wide and 2.5 km in length, 
marked the contour of a huge mass, creeping towards the reservoir in the northern 
direction (Fig. 2.2). 
 

 
 

Figure 2.2 Map of the Vaiont sliding area. Note the position (and comparative size!) of the 
arch dam on the lower right-hand corner of the figure. (Simplified from Belloni and Stefani 
(1987) (© 1987 with permission from Elsevier) with additional information from several 
authors.) 
 

In the following three years, the downward motion of the slide was monitored 
by means of surface markers. Some of the data provided by them are also plotted 
in Figure 2.2. In addition, water pressures in perforated pipes, located in four 
boreholes (location shown in Fig. 2.2), were monitored, starting in July 1961. The 
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history of rainfall, reservoir level, rate of surface displacement, and water levels in 
piezometers in the four years preceding the failure is shown in Figure 2.3. 
Geophysical campaigns were also performed in December 1959 and 1960. Notice 
also, in Figure 2.3, that two slides of limited size took place during the first partial 
filling of the reservoir in 1960. Project engineers were by that time convinced that 
a large landslide could partially fill the reservoir, isolating the dam from the 
upstream part of the reservoir, and a by-pass tunnel was built in 1961 as a 
precautionary measure. 
 

 
 

Figure 2.3 Relationship between precipitation, reservoir elevation, maximum velocity of 
horizontal surface displacements, and water level in piezometers. (After Hendron and 
Patton (1985), based on a figure by Müller (1964).) 
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However, all the investigation efforts provided limited information on some 
key aspects of the landslide such as the position and shape of the sliding surface 
and the pore water pressures acting on it. The measured rate of displacements of 
surface markers could be roughly correlated with the water level of the reservoir 
(Fig. 2.3). After two cycles of reservoir elevation, which partially filled and 
emptied the reservoir in the period 1960−1962, the water level reached a 
maximum (absolute) elevation of 710 m, at the end of September 1963. At that 
time, the accumulated displacements of surface markers had reached values in 
excess of 2.50−3 m (Fig. 2.4). The figure shows a good correlation between the 
increase in water level in the reservoir and the acceleration of the landslide.  
 

 
 

Figure 2.4 Accumulated displacements of surface markers (W) in the period 1960−1963 
and its correlation with reservoir elevation (LL). Seismic events are marked in the time 
scale (reprinted from Nonveiller, 1987, © 1987, with permission form Elsevier). 
 

Surface velocities of 20−30 cm per day were registered in the days preceding 
the final rapid motion that took place in October 9, 1963. An estimated total 
volume of rock of 6280 10× m3 became unstable, accelerated, and invaded the 
reservoir at an estimated speed of 30 m/s (around 110 km/hour).  

Figure 2.5 is a photograph of the slide taken in 1979. The landslide has filled 
the valley of the Vaiont River, which can be seen in the background. A residual 
lake can be seen in the lower left part of the image. The upper planar sliding plane 
(clear colours) is now exposed. The simplified map in Figure 2.5b, taken from 
Broili (1967), shows the position of the dam (not seen in the photograph), which 
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maintains a small reservoir, the residual lake within the sliding area and the 
contours of the landslide before and after the failure. 

 

 
 

(a) 
 

 
 

(b) 
 

Figure 2.5 (a) Photo of the slide area, taken in 1979 (courtesy of G. Fernández); (b) plan 
view of the area after the slide (Broili, 1967).  
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The Vaiont landslide has attracted world wide attention concerning the causes 
and processes involved in the failure. Interest in Vaiont has never decreased 
within the technical community despite the 47 years that have elapsed since the 
accident. Papers analyzing the failure have been published at a maintained rate in 
journals and conferences. The landslide is one of the largest (in terms of volume 
of mobilized mass) in history. As stated by Hendron and Patton (1987) “It is likely 
that more information has been published and more analyses have been made of 
the Vaiont data than for any other slide in the world”. This chapter and Chapter 5 
are additional contributions to this long list, with the aim of maintaining 
simplicity, but at the same time with the hope of capturing some fundamental 
aspects of the failure. Vaiont has been analyzed by researchers in rock and soil 
mechanics and some specific views of the mechanisms involved in the failure can 
sometimes be traced to the background of the people conducting the analysis. 

One of the main reasons of this interest is the difficulty in explaining the 
extremely high velocity of the moving mass. The implication of this lack of 
understanding is that the risk associated with other landslide occurrences of a 
similar nature (natural slides affected in its toe by increasing water levels, a 
common situation in dam engineering) cannot be properly evaluated.  

The issue of the velocity of the Vaiont landslide will be discussed in Chapter 
5. But before this, the conditions for static equilibrium should be understood. 
Static models, even if they are simple, require an understanding of the main 
geological, geometrical, hydraulic, and geotechnical features of the slide. In the 
case of Vaiont, this information should ideally be extended to the old prehistoric 
landslide, which was reactivated by the reservoir impounding. 

2.2 Geological Setting 
The Vaiont River, which flows from east to west, cuts a large syncline structure 
which folds Jurassic and Cretaceous strata (Fig. 2.6). The syncline created the 
“open chair” shape of the Jurassic strata of the left margin of the river, which can 
also be seen in the figure. The axis of the syncline plunges a few degrees towards 
the east (normal to the plane of the figure). The syncline shape eventually defined 
the geometry of the failure surface, which is always important information for 
understanding the subsequent behaviour of the slide. 
 

 
 

Figure 2.6 North (Monte Toc) to south (Monte Salta) section showing the general layout of 
the syncline, theVaiont gorge and the position of the ancient landslide (after Semenza and 
Ghirotti, 2000).  
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Figure 2.7 Tentative reconstruction of the paleo-slide of Vaiont. 1: Situation before the 
first motion (end of last glaciation?); 2: First motion of the slope; 3: Process of progressive 
sliding (undulated continuous line) and rotational slides at the toe; 4: Successive erosion 
phenomena on the upper parts; 5: Ancient landslide and intense fracturing of strata. The 
valley is invaded by the gigantic slide; 6: The slide before November 4, 1960, after 
thousands of years of erosion. The river has cut a new, narrow gorge; 7: The profile after a 
“small” landslide on November 4, 1960; 8: The final shape of the cross-section after the 
slide of October 8, 1963 (present situation). The inset shows an eroded part of the slide 
surface by the rapidly moving waters displaced by the slide (simplified and adapted from 
Semenza, 2001). 
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E. Semenza, an engineering geologist son of the dam designer, made 
important geological contributions to understand the geology of the site. In his 
book “La storia del Vaiont raccontata del geologo che ha scoperto la frana” (“The 
story of Vaiont told by the geologist who discovered the slide”, Semenza, 2001), 
he includes a tentative reconstruction of the past history of the slide in a series of 
representative cross-sections, which are reproduced in Figure 2.7.  
 

 
(a) 

 

 
(b) 

 

Figure 2.8 Two representative cross-sections of the landslide: (a) Section 2; (b) Section 5 
(see the location in Fig. 2.2). After Hendron and Patton, 1985. The position and length of 
piezometers P1 and P2 are shown on Cross-section 5. 
 

This reconstruction conveys a clear message from a geomechanical point of 
view: the failure surface, which was probably initiated several tens of thousands of 
years ago, has been subjected to an ever-increasing story of accumulated relative 
displacements. The second important point is that the rock mass affected by the 
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1963 landslide had suffered a history of cracking and “damage” during recent 
geological times. The sliding surface is located in strata of the upper Mälm period 
(upper Jurassic). Clays and marls were found in these layers (see the description of 
the failure surface below). Above the sliding surface, finely stratified layers of 
marl and limestone from the Mälm period were identified. Below the sliding 
surface, the Jurassic limestone banks of the Dogger period remained unaffected. In 
the upper part, limestone strata from the lower Cretaceous crowned the moving 
mass. In general, the folded layers of limestone and marl were strongly fractured 
(drilling water was often lost in the exploratory borings performed in 1960).  

Two representative cross-sections of the slide, located upstream of the dam’s 
position at distances of 400 and 600 m, respectively, are reproduced in Figure 2.8 
(Sections 2 and 5; Hendron and Patton, 1985). The two cross-sections will be used 
later to analyze the stability conditions of the landslide. 
 

2.3 The Sliding Surface 
In their comprehensive report of 1985, Hendron and Patton (1985) describe the 
detailed investigation performed to identify the nature of the sliding surface. The 
conclusion is that thin (a few centimetres thick) continuous layers of high 
plasticity clay were consistently found in the position of the failure surface. A 
photograph of the surface is shown in Figure 2.9.  
 

 
 

Figure 2.9 A striated continuous clay layer belonging to the sliding surface (courtesy of G. 
Fernández). 
 

Samples from these clay layers were tested by different laboratories and the 
results are described in Hendron and Patton (1985). The clays were found to be 
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highly plastic (a plasticity chart is given in Fig. 2.10), a result explained by their 
significant Ca-montmorillonite content. Liquid limits well in excess of 50% were 
often found. More recently, Tika and Hutchinson (1999) reported the values wL = 
50% and PI = 22%. 
 

 
 
Figure 2.10 Plasticity of clay samples from the Vaiont sliding surface (Hendron and 
Patton, 1985).  
 

Direct shear tests on remoulded specimens were also reported by Hendron and 
Patton (1985). In some cases, stress reversals were applied in order to find residual 
conditions. In fact, the past history of the landslide indicates that the residual 
friction angle was the relevant strength parameter along the failure surface. 
Measured average values of residual friction angle ranged between 8 and 10 
degrees. These values are consistent with existing correlations between residual 
friction angles and clay plasticity (Lupini et al., 1981). Tika and Hutchinson 
(1999) used the ring shear apparatus to find the residual strength. This test, 
conducted on remoulded specimens, approximates better the large relative shear 
displacements experienced in nature by the actual sliding surface. They also 
measured a residual friction angle of 10 degrees for a relative shear displacement 
in excess of 200 mm (Fig. 2.11a). 

Tika and Hutchinson (1999) also examined the effect of the shearing rate. 
They found (Fig. 2.11b) a further reduction in residual friction which reached low 
values (5º) for shearing rates of 0.1 m/s, a velocity which is still far lower than the 
estimated sliding velocities of the real failure. However, it is a common 
experience that increasing strain rate leads to an increase in the strength of soils. 
More data on the effect of the shearing rate on residual strength is probably 
needed before reaching definite conclusions on this issue. 
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Hendron and Patton (1985) estimate that some factors (areas of the sliding 
surface without clay, some localized shearing across strata, irregularities in the 
geometry of the sliding surface) could increase the average residual friction angle 
operating in the field and they estimate that res′ϕ = 12º is a good approximation for 
static conditions. 
 

 
 

(a) (b) 
 

Figure 2.11 Ring shear tests on a clay specimen from the vicinity of the Vaiont sliding 
surface: (a) static residual friction determined at a shearing rate of 0.0145 mm/min; (b) 
effect of shearing rate (Tika and Hutchinson, 1999). 

2.4 Monitoring Data before the Slide 
Significant monitoring data taken during the three years preceding the failure were 
given in Figures 2.3 and 2.4. The main purpose behind the limited instrumentation 
available was to relate the level of the reservoir with the measured vertical and 
horizontal displacements of a number of topographic marks distributed on the 
slide surface. Data on horizontal displacements, plotted as a function of position 
and time in several profiles following the south-north direction in Figure 2.2, 
suggest that the slide was essentially moving as a rigid body. The direction of the 
slide is also indicated in the figure by several arrows. Some of them (small arrows 
along the peripheral crack) indicate that the moving mass was actually detaching 
from the stable rock, implying no friction resistance along the eastern and western 
boundaries of the slide. 

Seismic (volumetric P-wave) velocities were measured in central parts of the 
slide in December 1959 and again in December 1960. A drop in velocity from vp = 
5−6 km/s in 1959 to vp = 2.5−3 km/s was recorded. This information may be 
interpreted as an indication of the progressive weakening of the rock mass due to 
the distortion induced by the creeping motion of the slide. The velocities initially 
recorded at the end of 1959 are very high and they correspond to a rock of good 
quality (Barton, 2007). This is perhaps surprising in view of the prehistoric 
landslide motions described above. The strong drop in seismic velocity in just one 
year, which is a tiny fraction of time within the complex life of the landslide, 
seems exaggerated but it is pointing towards significant shear distortions within 
the rock mass, motivated by the first impoundment of the reservoir which implied 
a raise of the water level of 200 m (see the history of events in Fig. 2.3). The 
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associated increase in pore water pressures on the sliding surface is very large and 
it is unlikely that past rainfall events could have produced such a strong drop in 
effective stress, especially in the lower part of the slide.  

It should be emphasized that these P-wave velocities are much higher than the 
velocities measured in soils, even if they are dense and compact. In other words, 
the strength that may be associated with the shearing of the rock mass above the 
sliding surface is orders of magnitude larger than the strength available at the clay-
dominated thin layers at the base of the slide, being sheared along sedimentation 
planes of very high continuity.  

2.5 Water Pressures and Rainfall 
The position of piezometers (they were open perforated pipes) was indicated, in 
plan view, in Figure 2.2 and in cross-section in Figure 2.8. A perforated pipe only 
provides information on the average water pressures crossed by the tube. Note too 
that the pipes did not reach the position of the sliding surface. Therefore, they did 
not provide direct information on the water pressures actually existing in the 
vicinity of the sliding surface, which is fundamental information to perform a 
drained stability analysis of the landslide.  
 

 
 

Figure 2.12 Relationship between water level in the reservoir and sliding velocity (courtesy 
of G. Fernández). 
 

In general, the water levels recorded by the piezometers follow closely the 
changing levels of the reservoir (compare Figs. 2.3b and 2.3d). The exception is 
Piezometer 2, at least during the initial part of the recording period. The initial 
readings in this piezometer indicated water pressures significantly above (90 m of 
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water column) the reservoir surface. This information has been interpreted as an 
indication of additional factors, other than the level in the reservoir, which may 
control the water pressure at the sliding surface. Since the cretaceous limestone 
affected by karstic phenomena is a rather pervious mass, rainfall water infiltrating 
at high elevations may result in artesian pore pressures against the impervious 
Mälm formations located at the base of the landslide. Arrows showing the 
circulation of water in Figure 2.6 illustrate this possibility. However, no further 
and direct evidence of this possibility was recorded. On the other hand, the 
simultaneous variation of piezometer and reservoir levels is a good indication of 
the high permeability of the rock mass above the sliding surface. 

When the water level in the reservoir is plotted against the recorded slide 
velocity (Fig. 2.12), an interesting result is obtained. An increasing water level 
leads to an increase in sliding velocity. The relationship is highly nonlinear and it 
tends towards an asymptotic limit, which is an indication of failure. The problem 
with Figure 2.12 is that this relationship is not unique, a result which is not 
expected if the slide motion is thought to be governed by the effective normal 
stresses acting on the sliding surface, which, in turn, are controlled by the 
reservoir level. In fact, the second reservoir filling led to a second asymptotic 
value for the water level in the reservoir.  

This result was probably the main reason behind the decision to increase the 
water level for the third time in search of a higher (but safe) level in the reservoir, 
which would allow the normal operation of the dam. The idea behind this 
decision, apparently put forward by L. Müller, is that the rock reacts in a different 
way when it is wetted for the first time, compared with its reaction when it has 
previously been wetted. There is no fundamental mechanical basis for this 
proposition, however. The fact is that, during the third attempt to raise the water 
level, displacement velocities increased continuously and the final attempts to 
reduce the velocity of the slide, by lowering the level of the reservoir (Fig. 2.3b), 
did not work. 

An explanation for the apparent inconsistency of results in Figure 2.12 could 
be found if the reservoir water level and rainfall are combined in the spirit that the 
prevailing water pressures on the sliding surface, irrespective of their origin, 
should control the stability.  

Hendron and Patton (1985) found a reasonably good explanation if rainfall, 
averaged over the preceding 30 days, and water level are jointly considered to 
explain the landslide velocity (Fig. 2.13). The boundary line between “stable” and 
“unstable” situations, plotted in Figure 2.13, could even provide the equivalent 
reservoir elevation for a given rainfall intensity.  

The actual failure occurred for a 30-day precipitation of 240 mm, when the 
reservoir was at an elevation of 700 m. Leonards (1987) analyzed further the 
rainfall records and the history of reservoir elevation and could not find a 
satisfactory explanation, free of inconsistencies, for the relationship between 
velocities of the slide, reservoir elevation, and previous rainfall. The pore pressure 
regime prevailing at the sliding surface remains rather uncertain in the Vaiont 
landslide. 
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Figure 2.13 Sliding rate related with precipitation (averaged over the preceding 30-day 
period) and reservoir elevation (Hendron and Patton, 1985). 

2.6 A Simple Stability Model 
The two representative cross-sections, 2 and 5 in Figure 2.8, are represented in 
Figure 2.14 in a simplified version, which is, however, close to the original 
drawings. The two plots highlight that the failure surface could be described by 
two planes: a lower horizontal plane daylighting at the river canyon wall and an 
inclined planar surface. A rock wedge whose thickness decreases upwards rests on 
the inclined plane. The rock mass reaches its maximum thickness, 270 m, in the 
central lower part of the slide, above the horizontal sliding plane. 

A good proportion of reported stability analyses of Vaiont, especially in the 
years following the failure, have concentrated on the determination of the friction 
angle necessary for stability (Jaeger, 1965; Nonveiller, 1967; Mencl, 1966; 
Skempton, 1966; Kenney, 1967). Classic procedures for stability analysis in soil 
mechanics using limit equilibrium methods were used. These methods explain the 
instability for friction angles in the range 18 − 28º. The preceding account of the 
relevant information on Vaiont, namely the data presented by Hendron and Patton 
(1985) indicates, however, that the friction angle at the failure surface could 
hardly be larger than 12 degrees.  
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Figure 2.14 Cross-sections 2 and 5 of the Vaiont landslide. Initial geometry.  
 

Two main reasons support this statement: the fact that Vaiont was a case of 
landslide reactivation (which implies large previous shearing displacements at the 
sliding surface and, hence, a clear situation of residual strength conditions) and  
the small residual friction angles (8−10º) measured in the highly plastic clays  
(Ca-montmorillonite rich) associated with the sliding surface. Therefore, a 
relevant question is: are the representative cross-sections in Figure 2.14 stable, 
given the value of the basal friction angle and the estimated conditions of pore  
water pressure, when the reservoir reached elevations in the range of 650 to  
700 m? 

The cross-sections plotted in Figure 2.14 suggest that the slide may be defined 
as two interacting wedges: an upper one (Wedge 1) sliding on a plane having a dip 
of 36−37º and a lower one (Wedge 2) sliding on a horizontal plane. Since a 
(common) friction angle of 12 degrees is acting at the basal sliding surfaces, the 
upper wedge is intrinsically unstable and will push the lower resisting wedge. The 
weights of the two wedges and the distribution of pore water pressures prevailing 
on the sliding plane will, as a first approximation, dictate the stability conditions. 
However, the interaction between the two wedges also plays a relevant role in 
explaining the stability, as discussed below.  

2.6.1 Kinematics of the slide 
It is worth at this point to examine the kinematics of the slide. If the motion starts, 
one may imagine the slide as a train sliding downwards, an image which is 
brought to justify that the absolute velocity in the upper and lower parts of the 
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slide are essentially the same. Surveying data plotted in Figure 2.2 support this 
simple hypothesis, which is to be expected in the reactivation of an old landslide. 
The difference in velocity (or displacement) when comparing the upper and lower 
parts of the slide obviously lies in the direction of these vectors: they will be 
parallel to the underlying failure surface. A conflict arises, however, at the kink or 
junction between the two sliding planes. Within the train analogy, if the wagon 
passing over this kink is to maintain contact with the kinked rail, it will be bent 
and sheared. It is hard to imagine that voids will develop in the layered sequence 
of marl and limestone at 270 m depth. The alternative is the bending and shearing 
of strata. In fact, a single shearing plane may be invoked to accommodate the 
sudden change in the direction of velocity at the kink. This is indicated in Figure 
2.15, where sliding velocity vectors v1 (in the direction of the upper inclined 
surface) and v2 (horizontal, parallel to the basal plane) are plotted with a common 
origin. This velocity diagram represents the conditions at the kink (point A), 
where the rock approaches A with velocity v1 and leaves it with velocity v2. Since 
the absolute velocity of the two wedges is the same, the relative motion of the two 
wedges (vector v12) is directed in the direction of the bisector of the angle between 
the upper and lower sliding surfaces. Therefore, a change in the direction of the 
velocities of the two wedges may be accommodated by a relative shear in the 
direction of the bisector plane, plotted in Figure 2.14.  
 

 
 

Figure 2.15 Kinematics of sliding. Section 5.  
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The motion of the slide implies that the (unstable) mass from the upper wedge 
becomes the (stable) mass of the lower wedge. In this process, the sliding 
resistance along the common plane separating the two wedges has to be overcome. 
If it is accepted, because of the preceding discussion, that the common plane of 
intense shear bounding the two wedges is the bisector plane (Fig. 2.15), the 
evolution of the geometry of the sliding mass may be approximated by the 
successive cross-sections shown in Figure 2.15 for total slide displacements s = 0 
m, s = 100 m and s = 400 m. Figure 2.15 is a graphic expression of the condition 
of mass conservation during landslide motion. It will be used later to perform a 
dynamic analysis of the failure.  
 

 
 

Figure 2.16 Two-block model of the Vaiont slide: (a) definition of geometry and forces 
(initial stage); (b) the slide after a displacement s. 

2.6.2 Two-block model 
Consider in Figure 2.16, the “unstable” and “stable” blocks mentioned before in a 
very simple representation: two solid blocks connected by double hinged bar 
normal to the bisector plane. The interaction between the two blocks is simply 
given by a force, Fi. Note that this force introduces normal and shear forces on the 
common plane between the two blocks. The lower block is partially submerged 
and the level of water has a height hw with respect to the lower horizontal sliding 
plane. The upper block is not affected by water. 

The sketch in Figure 2.16a provides a definition of forces acting on each 
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block. A simple problem is defined as follows: find the angle of basal shearing 
resistance for equilibrium. This is an elementary problem in mechanics which is 
solved by expressing equilibrium of forces for each block and then forcing a 
common value for the interaction between the two blocks. Static equilibrium 
expressions (normal and parallel to the direction of sliding) are written as follows, 
in terms of effective stresses: 

- Upper block 1: 

 1 1cos sin( / 2) ,iW F Nα + α =  (2.1a) 

 1 1sin cos( / 2),iW T Fα = + α  (2.1b) 

 1 1 tan bT N ′= ϕ , (2.1c) 

since no water is acting on the upper sliding block, 1 1N N ′= . 
- Lower block 2: 

 2 2 2sin( / 2) ,i wW F N P′+ α = +  (2.2a) 

 2cos( / 2) ,iF Tα =  (2.2b) 

 2 2 tan ,bT N ′ ′= ϕ  (2.2c) 

where tan b′ϕ  is the effective friction coefficient on the sliding planes. 
Isolating Fi in (2.1) and (2.2), respectively, and making them equal, results in 

 1 2 2(sin cos tan ) ( ) tan
sin( / 2) tan cos( / 2) cos( / 2) tan sin( / 2)

b w b

b b

W W P′ ′α − α ϕ − ϕ
=

′ ′α ϕ + α α − ϕ α
, (2.3) 

which is a second-order algebraic equation for tan b′ϕ . The volumes of blocks 1 
and 2 are estimated as follows for Section 5: V10 = 112,590 m3/m and V20 = 93,000 
m3/m, where the subscript 0 indicates initial value (no displacement of the slide). 
The indicated volumes correspond to a landslide “slice”, one meter thick.  
The value of Pw2 may be calculated as Pw2 = L20hw if a length for Block 2 is 
estimated. The length of the basal horizontal plane in Figures 2.14 or 2.15 is L20 = 
560 m. Finally, a specific weight, γr = 23.5 kN/m3 was taken for the rock in order 
to compute the weights of the blocks. Accepting these values, the following 
friction angles are derived for Cross-section 5 (α = 37º): 

 b′ϕ = 21.1º for hw = 120 m, 

 b′ϕ = 19.4º for hw = 60 m. 

The lower horizontal plane in Section 5 is approximately at elevation 590 m 
(Fig. 2.13) and the maximum reservoir level attained was 710 m (Fig. 2.3). 
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Therefore, the first case defines the maximum water pressure experienced by the 
lower block before the failure. Slide displacements (which, in practice, are 
interpreted as a condition of strict static equilibrium) were also recorded at lower 
water elevations (hw = 60 m, which corresponds to the situation in November 
1960, see Fig. 2.3). However, the actual pore water pressure is also controlled by 
the rainfall regime, as previously discussed, and uncertainties remain on the actual 
value of the operating pore water pressures against the sliding surface.  

Despite its simplicity, the block model provides some hints on the effect of 
water level and slide displacement on safety factor. If b′ϕ = 21.1º is taken as the 
real effective friction angle along the failure surface, the safety factor, F, is 
defined as 

 
mob

tan(21.1º ) ,
tan( )

F =
′ϕ

 

where mob′ϕ  is the “mobilized” friction angle, i.e. the friction angle that ensures 
strict equilibrium for another situation of the slide and, in particular, for changing 
water levels in the reservoir. Values of mob′ϕ  were calculated through Equation 
(2.3) for different values of hw and the calculated safety factor is plotted in Figure 
2.17a. The explanation of this figure is straightforward: as water level increases, it 
reduces the effective weight of the lower block, (W2 – Pw2), and the friction 
required for equilibrium has to increase. Note, however, that the upper block is not 
affected by the water level in this simplified model, a situation that may change in 
other cases. In Vaiont, as shown later, the maximum reservoir level introduces 
pore water pressures in the lower part of the upper wedge. It should be added that 
the trend shown in Figure 2.17a (decreasing safety factor as the water level 
increases) is not a general result for other slide geometries and stronger changes in 
water elevation.  

The effect of changing geometry as the slide is set in motion, may be also 
analyzed. Figure 2.16b includes a proposal to transfer mass from the upper block 
to the lower one. It is a rough approximation to the more refined model sketched 
in Figure 2.15. It simply states that the current weights of the two blocks, for a 
slide displacement s is given by 

 1 10 1 ,rW W e s= − γ  (2.4a) 

 2 20 1 ,rW W e s= + γ  (2.4b) 

where e1 is the thickness of the upper block (V10 = L10e1; for Section 5, L10 = 700 
m and the volume of the upper block is V10 = 112,590 m3/m; therefore, e1 = 160.8 
m). In addition, the water uplift under block 2 is calculated as Pw2 = (L20 + s)hw. 

Equation (2.3) provides again the value of mob′ϕ  for the current weights, and 
therefore safety factors may be found for increasing slide displacements. They are 
plotted in Figure 2.17b, for Cross-section 5. The result is to be expected: the 
moving slide becomes progressively more stable because the lower stabilizing 
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weight increases at the expense of the upper unstable block whose mass is 
continuously decreasing.  
 

 
 

(a) 
 

 
 

(b) 
 

Figure 2.17 Two-block model. Effect of (a) water level – for zero displacement – and (b) 
slide displacement − for hw = 120 m – on safety factor. Section 5.  

 
Unfortunately, the real behaviour of Vaiont was totally different: it 

accelerated downwards despite the prediction of the simple two-block model. 
Somehow, the resisting forces had to decrease substantially in order to transform a 
self-stabilizing mechanism (the two-block model) into an increasingly unstable 
mass, able to accelerate. 

The two-block model has a further limitation: the effective friction angle for 
equilibrium ( b′ϕ  = 21.1º for hw = 120 m or b′ϕ  = 19.4º for hw = 60 m, both in 
Cross-section 5; the “small” difference is non-relevant here) is far higher than the 
residual friction angle, res′ϕ  = 12º, which is the most likely value as justified 
above. This is an inconsistent result which indicates that the simple two-block 
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model is too crude to represent the actual conditions of the Vaiont slide (equally 
inconsistent results are obtained for Cross-section 2).  

The next step will be to remove some of the limitations of the simple two-
block model in order to approximate more realistically the sliding conditions 
summarized in Figure 2.15. 

2.6.3 Two interacting wedges 
Shearing across the common plane AB between the upper and lower wedges (Fig. 
2.15) has a direction approximately perpendicular to the sedimentation planes of 
marls and limestones of the Mälm period overlying the failure surface. The shear 
resistance offered by plane AB is difficult to estimate because of the intricate 
geometry involved at several scales and the limited continuity of joints. Some 
researchers in rock mechanics, notably E. Hoek, have made efforts to provide an 
answer to this difficult problem from a practical perspective. An account of 
Hoek’s work may be found in the rock mechanics textbook (Hoek, 2007). 

Following Hoek, the strength of rock masses may be approximated if some 
basic characteristics are determined (rock matrix unconfined strength; degree of 
jointing and state of the surfaces, lithology, etc.). As an example, Figure 2.18 
shows the strength envelope in a Mohr stress plane for a rock mass that may 
approximate the Mälm layers above the sliding surface of Vaiont. The envelope 
was defined using the free access “virtual laboratory” found on the preceding web 
page. Details of the defined rock mass are given in the caption of Figure 2.18. It 
may correspond to the Vaiont rock mass, which was described as follows by 
Müller (1987), after the failure: 

“The part of the stratigraphic column exposed in the slide mass consists of 
beds of partially crystalline limestones, limestones with hard siliceous inclusions, 
marly limestones, and marls. Many beds are strongly folded and show indications 
of slope tectonics. Its geological structure and also its geological sequence has 
remained essentially unchanged. The entire rock mass remained intact and the 
sediment facies is nearly unchanged. Apart from some newly formed faults, the 
only other effects of the slide were the opening of existing joints and the 
development of new joints, resulting in an overall volume increase of 4 − 6% and 
an associated reduction of the mechanical coherence of the rock mass.” 

The strength envelope is nonlinear but a Mohr − Coulomb approximation is 
also shown in Figure 2.18 for a range of normal stresses centered at n′σ  = 2 MPa, 
a stress which may represent average conditions on the bisector plane AB (Fig. 
2.15). The Mohr − Coulomb strength parameters ( rc′ = 0.787 MPa; r′ϕ  = 38.5º) 
define the linear Mohr − Coulomb approximation in Figure 2.18.  

The relevant point is that the shear plane AB may offer a substantial resistance 
to be sheared and this resistance probably has a significant role in stability. 
Shearing across a rock mass is typically associated with the release of energy. In 
fact, in the years preceding the failure, when three attempts to fill the reservoir 
were made, seismic events were recorded on the slide surface. Their location is 
plotted in Figure 2.2. They approximately span, in plan view, the position of the 
shear plane AB plotted in Figure 2.15. Nonveiller (1987), quoting a report on 
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these shocks mentions that “[…] the shocks generated in the zone of the slide 
signify dilation of the material in a zone of sagging of the rock”. 

These events had an increasing frequency in periods of slide acceleration, 
when the reservoir level increased. This is shown in Figure 2.4, where seismic 
events are plotted as small marks on the time axis (lower part of the figure).  

It was also reported that the rock experienced a global degradation, reflected 
in a substantial drop of P-wave velocities, as a result of the slide motion during the 
period December 1959−December 1960. All this evidence supports the conclusion 
that a rock mass around the position of the ideal shear plane AB was subjected to 
intense shearing during the cycles of filling and emptying the reservoir in the 
years previous to the failure.  
 

 
 

Figure 2.18 Strength envelope of a rock mass described as: strength of intact material: 50 
MPa (limestone-claystone); Hoek Geological Strength Index (GSI = 50) (very blocky, 
interlocked, and partially disturbed, with multifaceted angular blocks formed by four or 
more joint sets), Hoek mi parameter mi = 9 (marls, soft limestones); degradation parameter 
D = 0.5 (in a scale 0 to 1) (according to the Hoek − Brown classification of rock masses; 
see www.rocscience.com). Also shown is the Mohr − Coulomb approximation for a normal 
stress of 2 MPa ( rc′ = 0.787 MPa, r′ϕ = 38.5º) and an arrow showing the degradation of 
cohesive intercept at constant r′ϕ  value. 
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A loss of strength (reduction of mechanical coherence in Müller’s words) was 
certainly a consequence of this straining. Typically, cohesion is first lost but 
friction tends to remain without much change. This drop of cohesion as a result of 
straining along plane AB was shown in Figure 2.18. In the model described below, 
the apparent cohesion in the shear plane AB will be reduced as the slide moves 
forward.  

Going back again to Figure 2.15, as slide displacement increases, “new” 
planes of rock cross the shearing position AB that remains fixed at the position of 
the bisector plane, which is independent of the slide motion. The consequence is 
that the shear strength along this plane will not decrease in a sudden and intense 
manner. Certainly, the motion of the slide will have some weakening effect, which 
is difficult to quantify. Finally, to complicate matters, progressive failure 
mechanisms along AB are to be expected in view of the brittle nature of rock 
strength, a phenomenon which will not be considered here but is mentioned 
because it will tend to partially destroy the strength available along shear plane 
AB.  

A model based on the interaction of two wedges will now be developed. The 
main assumptions are: 

- The upper and lower wedges change their geometry during sliding, as 
shown in Figure 2.15. The upper wedge looses mass which is added to the 
lower one.  

- During the movement, the common plane AB reduces in length. Shearing 
across this plane (or, more generally, AB′ ) is described by a Mohr-
Coulomb strength criterion ( tanr rc′ ′ ′τ = + σ ϕ ). In addition, the cohesive 
intercept, rc′ , is made dependent on slide displacement, s. This is a 
simplified procedure to introduce strength degradation of the rock mass 
during the slide motion. The friction angle is maintained constant. 

- The lower sliding surface is assumed to be in residual conditions with 
strength parameters (c′ = 0; b′ϕ = 12º). 

- Pore water pressures are given by a horizontal phreatic level.  
- Equilibrium conditions are formulated in dynamic terms. In this way, it 

will be possible to analyze the effect of strength degradation of shearing 
plane AB′ on slide motion. Static conditions of equilibrium are a particular 
case of the dynamic case. Only inertia terms are considered. No viscous 
effects are introduced.  

The analysis follows the general procedure advanced before when considering 
the two hinged blocks but now dynamic equilibrium is fomulated: Newton’s 
Second Law will be written for the upper and lower wedge, and a common 
interaction force across plane AB will be enforced. Newton’s second law for a 
solid body motion states that the derivative of the solid momentum (mass times 
velocity) is balanced by the sum of forces acting on the body. Note that the mass 
of each wedge depends on displacement and therefore the term of time variation 
of mass can not be simplified when the time derivative of momentum is 
developed.  
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Figure 2.19 Geometry and forces on the upper wedge (1).  
 
Upper Wedge (1) 
 

Consider the wedge geometry and external forces in Figure 2.19. Dynamic 
equilibrium parallel to the motion (displacement s; velocity v = ds/dt) reads 

( )1
1 1 int int int

d
sin cos( / 2) sin( / 2) cos( / 2) ,

dw

M v
W T N Q P

t
′α − − α − α − α =  (2.5) 

where M1 is the mass of Wedge 1, (W1 = M1g; g: gravity acceleration). The time 
derivative of the right-hand side of Equation (2.5) can be developed as 

 
( )1 1

1

d dd
d d d
M v MvM v

t t t
= +  (2.6) 

Equilibrium in normal direction to the basal sliding plane: 

 1 1 int int 1 intcos sin( / 2) cos( / 2) sin( / 2) 0w wW N N Q P P′ ′α − + α − α − + α =  (2.7) 

where the interaction forces Qint and intN ′ are related through 

 int int' tan .r rQ c AB N′ ′ ′= + ϕ  (2.8) 

In addition, the shear resistance on the base of the wedge is given by 

 1 1 tan .bT N ′ ′= ϕ  (2.9) 

The motion Equation (2.5), in view of (2.7), (2.8), and (2.9), becomes 

 
( )1

1 1 int 2 3 int 4 1

d
' tan ,

dr w w b

M v
W s N s c AB s P s P

t
′ ′ ′− + − + ϕ =  (2.10) 
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where is are trigonometric constants, given by 

 1 sin tan cos ,bs ′= α − ϕ α  (2.11a) 

 2 tan sin( / 2) cos( / 2) tan tan
cos( / 2) sin( / 2) tan ,
b r b

r

s ′ ′ ′= ϕ α − α ϕ ϕ +
′α + α ϕ

 (2.11b) 

 3 tan cos( / 2) sin( / 2),bs ′= ϕ α − α  (2.11c) 

 4 tan sin( / 2) cos( / 2).bs ′= ϕ α + α  (2.11d) 

The effective interaction normal force, at this stage unknown, can be isolated from 
Equation (2.10): 

 
( )1

int 1 1 3 int 4 1
2

d1 ' tan .
dr w w b

M v
N W s c AB s P s P

s t
⎛ ⎞

′ ′ ′= + − + ϕ −⎜ ⎟
⎝ ⎠

 (2.12) 

 When the wedge slides a distance s along the basal plane, the length of the 
shear plane reduces from AB to BA ′  (Fig. 2.19). Since triangles AVB and 
AV B′ ′ are similar, it is easy to find  

 0 1

0

/ cos
'

/ cos cos( / 2)
L s HAB

L
α −

=
α α

, (2.13) 

where H1 is the initial thickness of the lower wedge over the sliding plane (Fig. 
2.19).  

The volume of Wedge 1 can be expressed as a function of the initial 
geometric parameters and the displacement s as 

  (2.14) 

The mass and weight of the wedge can be now easily calculated by multiplying 
the volume of Equation 2.14 by the density ( rδ ) and unit weight ( rγ ) of the rock, 
respectively. 
Time variation of mass can be obtained as follow: 

  

where the time variation of the displacement ( d
d
s
t

) is equal to the velocity v.  

Lower wedge (2) 
 

The wedge geometry and external forces are given in Figure 2.20. The wedge is 

2
0 1

Wedge 1
0

1 cos
2 cos cos( / 2)

L HV s
L

α⎛ ⎞= −⎜ ⎟α α⎝ ⎠
 

 

Wedge 1 01 1

0

dd cos d ,
d d cos cos( / 2) dr r

V LM H ss
t t L t

α⎛ ⎞= δ = −δ −⎜ ⎟α α⎝ ⎠
  (2.15) 
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shown displaced forward at distance s. 
 

 
 

Figure 2.20 Geometry and forces on the lower wedge (2).  
 
Dynamic equilibrium parallel to the direction of motion at a velocity v = ds/dt 
reads 

 
( )2

int int 2

d
cos( / 2) sin( / 2) ,

d
M v

N Q T
t

′ α − α − =  (2.16) 

where M2 is the mass of Wedge 2 (W2 = M2 g; g: gravity acceleration). Note that 
the horizontal components of the water pressure forces Pwint and Pwf acting on the 
slope surface are equal and opposite in sign. The terms on the right-hand side of 
the Equation (2.16) can be developed following Equation (2.6) and, since the total 
mass of the slide is constant, the time variation of M2 will be equal to the time 
variation of M1 indicated in Equation (2.6) but with an opposite sign.  

The base resistance is given by 

 2 2 tan bT N ′ ′= ϕ . (2.17) 

Taking Equation (2.8) into account, Equation (2.16) becomes 

 
( )2

int 2 int

d
cos( / 2) tan ( ' tan )sin( / 2) .

db r r

M v
N N c AB N

t
′ ′ ′ ′ ′ ′α − ϕ − + ϕ α =  (2.18) 

Equilibrium in a normal direction to the horizontal sliding plane reads: 

 2 2 int int

int 2

sin( / 2) ( ' tan ) cos( / 2)
sin( / 2) 0.

y

r r

w wf w

W N N c AB N
P P P

′ ′ ′ ′ ′− + α + + ϕ α +

α + − =
 (2.19) 

Equation (2.19) provides an expression for 2N ′  which is introduced in Equation 
(2.18). The following expression is then found for the equation of motion in the 
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direction of sliding: 

 
( )2

int 5 6 int 7 2 2

d
' ( ) tan ,

dyr w w wf b

M v
N s c AB s P s P P W

t
′ ′ ′− − + − − ϕ =  (2.20) 

where si are trigonometric constants given by 

 
( ) ( ) ( )

( )
5 cos 2 tan sin 2 cos 2 tan tan

sin 2 tan ,
b r b

r

s ′ ′ ′= α − ϕ α − α ϕ ϕ −

′α ϕ
 (2.21a) 

 ( ) ( )6 tan cos 2 sin 2 ,bs ′= ϕ α + α  (2.21b) 

 ( )7 tan sin 2 .bs ′= ϕ α  (2.21c) 

The effective interaction force between the two wedges is now found from 
Equation (2.20):  

 
( )2

int 6 int 7 2 2
5

d1 ' ( ) tan .
dyr w w wf b

M v
N c AB s P s P P W

s t
⎛ ⎞⎛ ⎞

′ ′ ′= + + − − ϕ +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (2.22) 

A single motion equation may be found now if the expressions of intN ′  from 
Equations (2.12) and (2.22) are made equal. Rearranging terms, the following 
equation of motion is derived: 

( ) ( ) ( )
( ) ( )

1 1 5 2 2 2 3 5 2 6 int 4 5 7 2

1 2
1 5 5 2

tan '

d d
tan .

d d

yw wf b r w

w b

W s s W P P s c AB s s s s P s s s s

M v M v
P s s s

t t

′ ′+ − + ϕ + − − + +

′ϕ = +
 (2.23) 

In order to simply the notation, Equation (2.23) can be rewritten introducing new 
trigonometric coefficients ti: 

( ) ( ) ( )1 2
1 1 2 2 2 3 int 4 1 5 5 2

d d
'

d dyw wf r w w

M v M v
W t W P P t c AB t P t P t s s

t t
′+ − + + − + = + (2.24) 

where  1 1 5 ,t s s=  (2.25a) 

  2 2tan ,bt s′= ϕ  (2.25b) 

  3 3 5 2 6 ,t s s s s= −  (2.25c) 

  4 4 5 7 2 ,t s s s s= +  (2.25d) 

  5 5tan .bt s′= ϕ  (2.25e) 
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Under strict static equilibrium conditions, ( ( ) ( )1 2d d d d 0M v t M v t= = ), 
Equation (2.24) could provide, for instance, the value of the apparent effective 
cohesion along shearing plane AB, in terms of the friction angle on AB, r′ϕ , 
wedge weights, pore pressure forces on their boundaries, and geometrical factors:  

 
( )1 1 2 2 2 int 4 1 5

3

.
'

yw wf w w

r

W t W P P t P t P t
c

AB t

− − − + + −
′ =  (2.26) 

The water pressure forces entering the above equations are easily found as follows 

 
2

,
2 tany

w w
wf

h
P

γ
=

δ
 (2.27a) 

 2 1 2( ) ,w w wP L L s h= + + γ  (2.27b) 

 
2

1 ,
2sin

w w
w

hP γ
=

α
 (2.27c) 

 
2

int .
2cos( / 2)

w w
w

hP γ
=

α
 (2.27d) 

Initial (s = 0) wedge volumes, in view of Figures 2.19 and 2.20, are given by 

 0 1
10 2cos

L H
V =

α
, (2.28a) 

 1 2 3
20 12

L L L
V H

+ +
= , (2.28b) 

which allows the calculation of wedge weights. 

2.6.4 Static equilibrium at failure 
Cross-sections 2 and 5 (Fig. 2.14) are characterized by the geometrical parameters 
given in Table 2.1. The upper wedges of Sections 2 and 5 have similar volumes. 
However, the lower wedge of Section 2 has a significantly lower volume than 
Section 5. Therefore, Section 5 is more stable than Section 2, for a common set of 
strength parameters. Conditions for static equilibrium of these two sections will be 
first examined with the help of the set of relationships derived in the previous 
section. Since it has been argued that the residual friction at the basal sliding 
surface is a parameter known with sufficient certainty, the condition of stability 
may be used only to determine the strength parameters on shear plane AB. In fact, 
only combinations of the pair ( rc′ ; r′ϕ ) may be found, since only one condition is 
available: the condition of static equilibrium at the initiation of failure (Eq. 
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(2.26)). 
This is a nonlinear equation relating rc′  and r′ϕ , which has been plotted in 

Figure 2.21 for Sections 2 and 5, assuming b′ϕ  equal to 12º and a rock specific 
weight of 23.5 kN/m3.  

 
Table 2.1 Geometrical parameters of Cross-sections 2 and 5. 

 

 H0 
(m) 

H1 
(m) 

L0 
(m) 

L1 
(m) 

L2 
(m) 

α 
(º) 

δ 
(º) 

V1 
(m3/m) 

V2 
(m3/m) 

Section 2 580 245 750 190 260 37.7 43.3 116142 68149 
Section 5 510 260 700 240 320 36 39.1 112590 93000 

 
Forces Pw (Eq. (2.27)), which provide the effect of water pressures on both 

wedges, should correspond to failure conditions. Since a horizontal water level has 
been assumed and the preceding rain was shown to have a non-negligible effect 
(see Fig. 2.13), all water pressure influence will be associated with the water level 
height above the lower horizontal sliding surface, hw. The plot in Figure 2.13 
provides the estimation of the equivalent value of hw, i.e.: the reservoir water 
level, in the absence of rain in the preceding 30-day period, which explains the 
failure. This height corresponds approximately to the elevation 710 m and, 
therefore, in Section 5 (see Figs. 2.8 or 2.14) it implies a value hw = 120 m. This 
reservoir elevation corresponds, in Section 2, to a water height of hw = 90 m (the 
failure surface daylights at a higher elevation at Section 2; see Figs. 2.8 and 2.14). 
The ( rc′ ; r′ϕ ) values plotted in Figure 2.21 correspond to these two water 
elevations over the lower horizontal sliding plane. 

Section 2 is “more demanding” in terms of required rock strength simply 
because of the relative weight of upper and lower wedges. This situation is 
reflected in the higher strength values required for the equilibrium calculated for 
Section 2 (Fig. 2.21). It is interesting to check that the ( rc′ ; r′ϕ ) combinations in 
Figure 2.21 are in fairly good agreement with the strength expected in rock 
sheared across bedding planes, discussed in 2.6.3. Since the variability of r′ϕ  
values is small compared with the expected variation of cohesive intercepts ( rc′ ), a 
band of expected ( rc′ ; r′ϕ ) pairs, centered around r′ϕ  = 38º−40º has been plotted in 
Figure 2.21 as a reasonable estimation of the rock strength along shear plane AB. 

If Section 5 is taken as a representative cross-section of the slide, the 
following combinations lead to strict equilibrium of Vaiont slide: ( rc′  = 762.3 
kPa; r′ϕ  = 38º); ( rc′  = 564.0 kPa; r′ϕ  = 40º). 

It is also interesting to examine the interaction forces between the two blocks 
and how they change as a function of the available friction on the basal sliding 
plane. Equations (2.12) and (2.22), for zero acceleration, provide this force for the 
two wedges. If Section 5 is selected for the analysis, the variation of intN ′  with the 
base friction angle for two pairs of values ( rc′ ; r′ϕ ) is given in Figure 2.22. It was 
already stated that equilibrium is achieved if the interaction force intN ′  between 
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the upper and lower wedges is forced to have a common value. This condition also 
implies that the shear force, Qint, and therefore the total interaction force are equal.  

 

 
 

Figure 2.21 Strength parameters across shearing plane AB for equilibrium. Sections 2 and 
5. Basal friction: b′ϕ  = 12º. 
 

Figure 2.22 shows how the stabilizing intN ′  force offered by the lower wedge 
increases fast as the friction at the sliding surface, b′ϕ , increases. On the other 
hand, the unbalanced intN ′  force required for the equilibrium of the upper wedge 
decreases as b′ϕ  increases, but at a slower rate. Overall equilibrium is achieved 
when both forces are equal. For strength parameters rc′  = 564.0 kN/m2 and r′ϕ = 
40º equilibrium is achieved for b′ϕ = 12º, a result which has already been found. If 
the strength along the shear plane AB is reduced to rc′ = 0 kN/m2 and r′ϕ  = 35º, 

b′ϕ  has to increase to 14.7º, to reach equilibrium.  
So far, equilibrium conditions have been used to find the mobilized strength 

parameters at failure. The condition of failure, when it is properly identified, 
which means, in particular, that slide geometry and pore water pressure 
distribution are known, is a procedure to find strength parameters or, better, a 
relationship among the strength parameters involved in the model selected to 
perform stability calculations. This procedure, illustrated above, is often described 
as a “back-analysis” of the failure. 

In addition, one may be interested in knowing the safety factor for conditions 
other than failure. For instance, in the case of Vaiont, it makes sense to ask for the 
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safety conditions of the slope before dam impoundment or at some particular 
elevation of the reservoir surface. These questions are addressed in the next 
section.  
 

 
 

Figure 2.22 Effective interaction force, intN ′  between upper and lower wedges. Section 5 
of Vaiont slide. 

2.6.5 Safety factors 
In limit equilibrium methods (the analyses developed before belong to this class of 
methods) the safety factor is defined as the ratio between the available shear 
strength of the soil or rock and the shear stress necessary for strict equilibrium. 
Shear strength and shear stress are calculated on the failure surface. The model of 
two interacting wedges developed in 2.6.3 and 2.6.4 includes two failure surfaces: 
the “basal” surface that bounds the landslide and an internal shear surface (AB). 
which makes it kinematically possible. The nature of both surfaces is quite 
different: the former is located in a high plasticity clay in residual conditions, 
whereas the internal shear surface crosses sedimentary planes, distorts a 
competent rock and exhibits significant strength. However, it is quite possible that 
shear displacements will decrease to some extent the shear strength of this shear 
plane. For a particular situation of the slide (for instance, under natural conditions 
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before dam construction), the two shearing surfaces will most probably not 
mobilize their shear strength in equal proportions. Likewise, if a change in 
external conditions takes place (reservoir impoundment, or rainfall), the available 
strength will not be mobilized at the same time among the two surfaces because 
the shear stiffness of the shearing surfaces and, indeed, of the whole rock mass, 
will also play a significant role.  

Since the problem is complicated, let us accept, to initiate the discussion, that 
two different safety factors, Fb and Fr, are appropriate for the two surfaces. Then, 
the mobilized strength parameters will be defined as follows: 

 mobtan tan ,b b bF′ ′ϕ = ϕ  (2.29a) 

 mobtan tan ,r r rF′ ′ϕ = ϕ  (2.29b) 

 mob .r r rc c F′ ′=  (2.29c) 

A relevant question is to ask for the safety factor, Fr, of the Vaiont slide at the 
beginning of impoundment (i.e., hw = 0), in the hypothesis that the mobilized stress 
at the basal sliding surface remained at residual conditions, b′ϕ  = 12º, (i.e., Fb = 1). 
It is also of interest to know how Fr would change, still under Fb = 1, if the slide 
moves forward following the mechanism described in Figure 2.15.  

Alternatively, one may wish to maintain the classic approach and to find a 
unique and global safety factor, F, for the two situations mentioned, (F = Fb = Fr). 
The two possibilities will be examined here. 

For Cross-section 5, it was found that the following set of strength 
parameters: b′ϕ  = 12º; rc′  = 762.2 kPa; r′ϕ  = 38º leads to failure when hw = 120 
m. If these parameters are accepted as true strength parameters, then the 
equilibrium equations given in 2.6.3 are also valid, for conditions other than 
failure, if the reduced strength parameters (2.29a,b,c) are used instead of the true 
strength values (which are now assumed to be known). In other words, 
equilibrium conditions are now satisfied for the mobilized stresses prevailing at 
the shear surfaces. In fact, mobilized shear stresses are defined as those which 
satisfy equilibrium conditions. Therefore, in view of Equations (2.29), the overall 
equilibrium equation can be used to find the safety factor. However, the 
equilibrium equation will now be a function of Fb and Fr and therefore only one 
safety factor may be determined − either F if it is accepted that F = Fb = Fr , or Fr 
if Fb is fixed, for instance at Fb = 1, or any other alternative. This situation is 
similar to the already discussed determination of strength parameters at failure. 

If the mobilized strength parameters (Eqs. (2.29a,b,c)) are substituted into the 
equilibrium Equation (2.26), the following expression is obtained. 

( )1 1 2 2 2 int 4 1 5

3

( , ) ( , ) ( , ) ( , )
,

' ( , )
yr b w wf r b w r b w r br

r r b

W t F F W P P t F F P t F F P t F Fc
F AB t F F

− − − + + −′
=  

  (2.30) 
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where the dependence of the ti expressions on the safety factors has been explicitly 
indicated in the Appendix 2.1. If Equation (2.30) is developed, it turns out to be a 
second-order algebraic equation for Fr (Eq. (A2.4) in the Appendix 2.1), which 
may be solved if Fb is assumed to be known. Details of the solution of Equation 
(2.30) are relegated to Appendix 2.1.  
The safety factor Fr of Section 5 of the Vaiont slide was obtained for: 

- Water pressure conditions prior to failure. As discussed before, pore water-
pressure effects are integrated into the variable hw, the reservoir level over 
the lower horizontal sliding plane. 

- The changing geometry, as the slide moves forward and the water level 
maintains maximum elevation, hw = 120 m. This is a purely static analysis 
performed on different geometries of the slide as it moves forward. The 
dynamics of the motion will be introduced in the next section and it will be 
discussed in more detail in Chapter 5. 

- The effect of hw on safety factor Fr, when Fb = 1, is plotted in Figure 2.23 
(dashed line). The calculated value for hw = 0 (Fr = 1.2) is not particularly 
high and it indicates that the mobilized strength in the rock mass before any 
impounding was quite substantial in order to maintain the slope in 
equilibrium.  

The analysis of the changing geometry, shown in Figure 2.15, leads to the 
safety factor Fr plotted in Figure 2.24 (dashed line). The increase of Fr, again for 
Fb = 1, becomes more pronounced as slide displacement increases. The high 
values calculated for s = 150 m (Fr = 5), indicate that the mobilized resistance 
across shear plane AB is no longer necessary to maintain equilibrium. In fact, 
beyond s = 179 m, the residual friction angle at the main sliding surface is able to 
maintain the slope in equilibrium without any contribution from the sheared rock 
mass across the shear plane AB. 

 

 
 

Figure 2.23 Section 5. Evolution of safety factor, Fr (if Fb = 1; see text) and global safety 
factor, F, when the water level increases in the reservoir. 

 
Let us now consider the determination of a unique global safety factor F. The 

condition F = Fb = Fr has to be introduced in Equation (2.30). The equilibrium 
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Equation (2.30) now becomes a fourth-order polynomial for the unknown F. A 
simple numerical procedure to solve the equation is described in Appendix 2.2. 

Calculated global safety factors, with the help of Equation (A2.10), were 
plotted in Figures 2.23 and 2.24 (continuous line). Computed values of F are now 
significantly lower than the previously reported values of rF .  

One advantage of global safety factors is that geotechnical engineers have 
developed, over the years, a scale of numerical values that helps them to 
approximate the risk of failure. F values of 1.5 and above are generally regarded 
as indicators of a low risk of failure of slopes. A safety factor of 1.2 is probably 
close to the minimum that many would regard as an acceptable situation. Since 
different calculation procedures often result in changes in safety factor of ± 0.1 
for a given slope stability problem, a safety factor of 1.1 conveys a clear message 
of risk.  

However, one should distinguish between design situations and, on the other 
hand, the problem of analyzing an existing slide and its remedial measures. In the 
second case, the evidence of field instability, if properly interpreted, provides a 
robust reference value (F = 1 for failure conditions) which acts as a validation 
benchmark for any method of stability analysis. Then, calculated changes of safety 
factor over the reference situation (F = 1) are significantly more reliable than a 
pure predicting exercise based, for instance, on strength parameters determined in 
the laboratory or on estimated pore water pressures derived from flow 
calculations.  

 
 

Figure 2.24 Section 5; hw = 120 m. Evolution of safety factor, Fr (if Fb = 1; see text) and 
global safety factor, F, with slide displacement.  
 

Vaiont obviously belongs to the second category. Nevertheless, the global 
safety factors calculated for changing water levels within a very large range (0 to 
120 m of water column) (Fig. 2.23) look particularly low (F decreases from F = 
1.07 for hw = 0 m to F = 1 for hw = 120 m). This is certainly a consequence of the 
very large size of the landslide but it also points out that the presence of the 
reservoir implied a relatively minor change in the safety of the slope, always 
within the perspective of risk associated with the classical definition of a global 
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safety factor. Moreover, this result is also an indirect indication that in very large 
landslides, feasible remedial measures are expected to lead to relatively low 
increments of safety factor. 

Figure 2.24 shows that the motion of the slide results in geometries with an 
increasing global safety factor. Given the preceding comments, changes are far 
from being negligible. In fact, displacements of 40, 100, and 150 m imply F 
values of 1.08, 1.22, and 1.36 respectively. (Interestingly, very similar changes 
were computed with the much simpler two-block model, Fig. 2.17b.) The 
increasing sophistication of the model did not change this basic result. 

The relevant question in this case, already stated when discussing the two 
block model results, is to ask for the reasons for the accelerated motion of a 
landslide which seemed to move in a direction of increased stability. This aspect is 
essentially the subject of Chapter 5 but some additional discussion is offered in the 
next section. 

2.6.6 Landslide run out 
Equilibrium conditions, when inertia terms are included, results in the motion 
Equation (2.24). This equation, taking into account Equation (2.6) has the 
following form: 

( )
( )

1 2
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5 2

d d'd d d ,
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=
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where time derivatives of M1 and M2 are known (Eq. (2.15)) and they depend on 
displacement and velocity. The weights (W1 and W2) and the length 'AB  also 
depend on the displacement. Therefore, Equation (2.31) can be written as 

 d ( , ).
d
va f s v
t

= =  (2.32) 

At any given time of the motion, slide acceleration ( d da v t= ) is a function of 
slide displacement, s and velocity, v. Function f also includes information on 
geometry, specific weights, water pressures, and strength parameters. Finding a 
close-form solution for v(t) is a hard task but the structure of (2.32) invites to 
develop a simple numerical algorithm of integration. If the following discrete 
approximation is adopted, the value of the acceleration and the velocity at time (t 
+ 1) can be calculated as 
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 ( )( )1 1, ,i i i i i iv v f s v t t+ += + −  (2.33b) 

which are functions of known values evaluated in time t. In this way, an explicit 
time integration procedure is developed. Reducing 1i it t t+Δ = −  leads to 
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progressively more accurate results.  
Displacements can be estimated from the following expression 

  (2.34a) 

and therefore: 

 ( )1 1 .i i i i is s v t t+ += + −  (2.34b) 

In view of the nature of the problem and the simplicity of the underlying 
mechanical model, it is probably not justified in this case to look for more 
sophisticated integration procedures. The integration algorithm was implemented 
in an Excel calculation sheet. Note that masses, weights and the length 'AB  
should be updated at each time interval since they depend on the displacement.  

It was argued in Section (2.6.3), when developing the model of two 
interacting wedges, that the effective rock cohesive intercept, rc′ , would be 
degraded during shear along plane AB. Since relative shear displacements along 
AB are controlled by displacement s, a simple degradation model will make rc′  
dependent on s. For instance, 

 0 exp( ),r rc c s′ ′= −Γ  (2.35) 

where Γ is a constant (units: length-1) that controls the rate of rock degradation and 
0rc′  is the initial cohesion intercept ( 0rc′  = 768.35 kPa for Cross-section 5, if r′ϕ  = 

38º, and accepting that b′ϕ = 12º). Expression (2.35) was also included in the 
motion equation in order to explore the effect of loss of shear strength on the 
dynamics of the motion. It is not reasonable, however, to expect a strong 
degradation of cohesion along AB′  and the reason is that the rock mass “crosses” 
the plane AB′  during the motion and therefore new – more or less undisturbed − 
rock is continuously sheared across AB.  

Consider the following scenario: in a situation of strict equilibrium (reservoir 
elevation at hw = 120 m in Cross-section 5) the water level is increased by a small 
amount (say hw = 121 m), and it is maintained as constant thereafter. It is desirable 
to find the motion of the slide until a new situation of equilibrium is reached. 
Since the slide improves its static stability conditions as s increases – a result from 
the previous section − it should be expected that the slide will come to rest after 
some displacement.  

relationship between the run out (s) and the velocity on the moving mass (v)) is 
shown in Figure 2.25 for no degradation of the rock strength (Γ = 0). The result 
shows that the slide stops after a displacement of 0.30 m and reaches a maximum 
velocity of 1.7 cm/s. If the water level is increased to hw = 124 m and to hw = 130 
m, maximum displacements and velocities increase as shown in Figure 2.25, but 
the calculated values are far from the actual behaviour of the landslide, which 
reached velocities estimated in 30 m/s, more than two orders of magnitude higher 
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The solution to this problem (which is the solution of Eq. (2.31) plotted as a 
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than the maximum values found in this calculation. 
 

 
 

Figure 2.25 Cross-section 5. Calculated run outs and slide velocities for hw = 121, 124, and 
130 m. No rock strength degradation (Γ = 0). 
 

 
 

Figure 2.26 Assumed loss of effective cohesive strength parameter across shearing plane 
AB with slide displacement, for several values of parameter Γ. 
 

The situation changes if some rock strength degradation is introduced into the 
analysis. 

Figure 2.26 is a plot of Equation (2.35) for a few values of the degradation 
parameter Γ. It will be used as a reference for the results of run-out calculations. 
 Now the scenario is to start the slide motion by increasing the water level (to 
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hw = 121 m) and to accept a certain degradation of the rock during the motion. The 
calculated response of the slide, again in terms of velocity vs. displacement, is 
shown in Figures 2.27 and 2.28. A moderate degradation of the effective strength 
parameter of the rock (Γ = 0.01 m-1, Fig. 2.27) has a limited effect on the 
maximum sliding velocity and on the travelled distance. However, if the 
degradation of rock effective cohesion is more rapid (Γ = 0.1 m-1 and Γ = 1 m-1; 
Fig. 2.28), the slide is able to travel long distances (60−70 m), although the 
maximum velocity does not increase beyond 3 m/s (16.2 km/h) even if a very 
rapid and complete destruction of the rock effective cohesion is imposed (for Γ = 
1¸see Fig. 2.28). Under the more realistic assumption of moderate rock 
degradation, Γ ≤ 1 m-1, the maximum slide velocity is quite small.  
 

 
 

Figure 2.27 Cross-section 5. Calculated run outs and slide velocities for hw = 121 m. Effect 
of rock strength degradation (Γ  = 0 and Γ = 0.01 m-1). 
 

 
 

Figure 2.28 Cross-section 5. Calculated run outs and slide velocities for hw = 121 m. Effect 
of rock strength degradation (Γ = 0.1 and Γ = 1 m-1). 
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In all the cases analyzed, the mechanism leading to stopping the landslide 
motion is the change in geometry of the slide as it moves downwards.  

The dynamic analysis developed here maintains, unanswered, the key 
question of the extremely high velocities reached by the slide. However, it 
indicates that a loss of internal rock strength, associated with the slide motion 
itself, is a potential mechanism to accelerate the slide. 

2.7 Discussion 
The investigations on the past history of the landslide by Semenza (2001), 
synthesized in Figure 2.7, and the work of Hendron and Patton (1987) highlight 
two fundamental aspects: Vaiont was a case of a slide reactivation and the sliding 
surface was located in fairly continuous layers of high plasticity clay. Taken 
together, the implication is that the basal sliding surface could not offer, against a 
new reactivation of the slide (essentially induced by an increase in pore water 
pressures in the lower massive passive wedge of the slide), an effective friction 
angle larger than, say, 10−12º. A good proportion of published back-analysis of 
Vaiont, which use conventional methods of limit equilibrium to find the actual 
friction angle prevailing at the sliding surface at the time of failure is not 
consistent with Vaiont past history. In fact, published back-analyses lead to 
friction angles in the range 18 − 28º (the simple two-block model of 2.6.2 is an 
example in this regard). Vaiont exhibits a safety factor significantly lower than 
one if a friction angle of 10 − 12º (and zero effective cohesion) is used in any of 
the currently available methods of slices. How to address this inconsistency? 

Hendron and Patton (1987) argue that the side friction on the eastern edge of 
the slide provided the necessary resisting force to ensure equilibrium (however, 
some limited information on the direction of the displacements on this border, 
plotted in Fig. 2.2, tends to indicate that the moving mass was detaching from the 
stable rock massif). The alternative explanation developed here is that the 
kinematics of the motion, even in a two-dimensional cross-section, requires the 
relative shearing between the two large rock wedges defining the slide. Leonards 
(1987) also pointed out that the motion of the slide required such a rock shearing 
between the upper and the lower sliding blocks. The estimated shearing strength 
parameters across the common shearing plane are in reasonable agreement with 
the expected mass strength of cretaceous marls and limestones of Vaiont. 

The acceleration of the motion during the catastrophic failure escapes the 
capabilities of the models presented here. A loss of strength is expected when rock 
masses are sheared, due to its inherent brittleness and the complex development of 
strains within the moving mass. “Progressive failure” is the term often used to 
describe these phenomena. The end result is a loss of the cohesive components of 
strength. Such a loss, when imposed on the strength available on the interacting 
shearing plane between the upper and lower wedges, results in an acceleration of 
the slide, which is unable to explain the high velocities reached by the landslide, 
even if a rapid and complete loss of rock cohesion is imposed (Section 2.6.6). 
Therefore, it becomes important to look for additional explanations for the 
apparent loss of strength experienced by the actual slide. If the mechanism of side 
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friction proposed by Hendron and Patton (1985) is accepted as additional resisting 
phenomena, the need for a convincing mechanism for strength loss is even more 
pronounced. The discussion of this fundamental matter will continue in Chapter 5. 

2.8 Lessons Learned 

2.8.1 Slide reactivation 
Ancient slides are rightly regarded as trouble-makers when they are affected by 
engineering works. Past sliding activity is responsible for the reduction of the 
strength available along “dormant” sliding surfaces to minimum values (“residual” 
strengths). In addition, if sliding surfaces are associated with high plasticity clays, 
the residual friction angles are particularly low. Typically, ancient slides in these 
circumstances maintain a low safety factor, which may be rapidly exhausted by 
engineering works. Vaiont is a good example. 

2.8.2 Submerging the slide toe 
Submerging the toe of slopes usually leads to a reduction of stability. The safety 
factor decreases as the water level increases. The reduction is first pronounced but, 
eventually, the negative effect associated with the reduction of effective normal 
stresses on the sliding surface is compensated by the beneficial hydrostatic forces 
acting against the exposed slope(1).  

The safety factor reaches a minimum value for some intermediate water level 
and then increases again to reach values close to the initial safety factor of the 
“aerated” slope. The precise evolution of the safety factor when the reservoir 
water level increases depends also on the particular distribution of pore water 
pressures inside the slope, but a fundamental aspect of this problem is the 
geometry of both the slope and the sliding surface. Three examples are shown in 
Figure 2.29 to illustrate these comments. All of them were solved with a 
commercial slope stability program for soil slopes using the Morgenstern − Price 
method (Morgenstern and Price, 1965). In all cases the distribution of pore 
pressures inside the slide follows a horizontal water table. The first case (Fig. 
2.29a) reproduces the geometry of Vaiont, Section 5. A uniform friction angle, 

′ϕ = 12º (and zero effective cohesion) is assumed. The safety factor reaches a 
minimum for hw/H = 0.5. A similar result is obtained if the lower sliding surface is 
inclined (Fig. 2.29b; now ′ϕ = 15º). However, for a conventional slope (the 
upstream slope of an earthdam) and a critical circular failure surface, the 

                                                           
(1) An alternative explanation can be given in terms of submerged weights. When a lower 
part of the slope is flooded, its effective weight becomes the submerged weight (roughly 
equal to one half of the saturated total weight). Therefore, normal effective stresses on the 
sliding plane are reduced. But the (effective) weight also reduces. This weight has often a 
positive stabilizing effect when it is close to the toe. Therefore, reducing it also decreases 
the safety factor. But, as the water level increases, the upper parts of the slope, which 
contribute with unstabilizing weight, also reduce its effect and the calculated safety factor 
will increase again beyond some critical water level. 
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minimum is reached for hw/H = 0.3.  
 

 

Figure 2.29 Evolution of safety factor (Morgenstern − Price method) when the water level 
in the reservoir increases. hw: water level above the elevation of the exit point of the sliding 
surface. H: maximum value of hw, when the entire slope is submerged. Case (a) geometry 
of Vaiont and (c′ = 0; ′ϕ = 12º); Case (b): geometry modified from Case (a) and (c′ = 0; 

′ϕ  = 15º); Case (c): conventional slope and circular failure surface (c′ = 0; ′ϕ = 30º). 
 
The geometry of Vaiont is especially sensitive to the submergence of the toe, 

because the large toe passive wedge offers an ever decreasing resisting force when 
submerged. This is further illustrated in Figure 2.30, which shows a calculation of 
the global safety factor of Section 5, following the procedure described in 2.6.5. 
The height of the dam prevented hw values higher than 145 m, approximately, in 
Section 5. Unfortunately, Vaiont slide never entered in a zone of increasing 
stability. 
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In conclusion, flooding slope toes is not good practice but it is an unavoidable 
situation in many circumstances, notably in valley slopes affected by dam 
reservoirs. If the initial safety factor is low (this was the case of Vaiont) flooding 
the toe implies trouble ahead. Note also that it takes a substantial water level 
elevation before the trend for lower safety, as the water level increases, is 
reversed. 
 

 
 

Figure 2.30 Variation of global safety factor with height of water above the horizontal 
basal plane. Two-wedge model. Section 5 of Vaiont. 

2.8.3 Interpretation of field data 
Interpretation of sliding risk was essentially made on the basis of reservoir 
elevation and surface displacements. There was also information on rainfall and 
on the levels of four piezometers. The “piezometers” were in fact open tubes 
which did not reach the level of the sliding surface and only provided average 
water pressures prevailing along their length. In addition, no direct information of 
the position of the failure surface and, in particular, on the type of material being 
sheared was available.  

Identification of a landslide for the purposes of estimating its evolution and of 
defining any remedial measure requires information of a few key variables. 
Ideally, these key variables should also be used in the formulation of a mechanical 
model of the motion. In the case of Vaiont, early knowledge of the following data 
concerning the basal failure surface: geometry, pore water pressure, type of 
material, and drained strength parameters would have been fundamental to build a 
conceptual and mechanical model for the slide. This is a first step in understanding 
the problem, not only for Vaiont, but for any landslide. In the case of Vaiont, the 
observation that the slide velocity decreased when the reservoir level was reduced, 
irrespective of the absolute level of the water, provided a reservoir filling criterion 
which, finally led to the failure. In some sense, an “observational method” (2) was 
                                                           
(2) The observational method, described by Peck (1969), requires the following ingredients: 
a) direct observation of a key variable or property describing the essential nature of the 
problem; b) a proper conceptual, analytical or computational model able to provide an 
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applied: the conceptual model was essentially given by the preceding observation, 
illustrated in Figure 2.12. The key variables to be interpreted were the 
displacement rates of surface markers and the reservoir level. The action in mind, 
in case of excessive displacement rate, was to reduce the water level in the 
reservoir. It was accepted, despite this strategy, that a full slide was a likely event 
and that the expected height of the generated wave was even estimated by model 
studies. However, the conceptual model was not based on any mechanical analysis 
of the slide. In addition, the reservoir level did not necessarily provide the actual 
pore pressures on the failure surface and the remedial plans were too simple and 
weakly connected with the complex mechanisms taking place within the slide. 

It should be borne in mind that these comments are made more than 50 years 
after the first investigations started in Vaiont. Their purpose is to learn from the 
case, not to criticize the involved individuals who had to work with the techniques 
and rules of practice available at that time. 

Even today, managing a very large landslide is a daunting task. We are well 
equipped to extract field data (pore water pressures, absolute deformations, “in-
situ” tests) in the first tens of meters of soil and rock. Going beyond 200 m 
requires sophisticated, not easily available, and time-consuming efforts. In 
addition, a very large landslide requires a vast site investigation. It is not a matter 
of only a few borings. Therefore, the difficulties to handle large landslides 
continue to be present and the words of Carlo Semenza, the dam designer, remain 
as a vivid testimony of the formidable challenge he was facing: “[…] things are 
probably bigger than us and there are no adequate practical measures […] After 
so many fortunate works and so many structures […] I am in front of a thing 
which due to its dimensions seems to escape from our hands […]”, (in a letter 
written in April 1961, quoted by Nonveiller, 1987; the full letter in Italian was 
published in Semenza, 2001). 

2.8.4 Computational procedures 
Most of the limiting equilibrium procedures commonly available to the 
geotechnical profession (methods of slices) do not include an internal shearing in 
the moving mass, which is described by strength parameters other than the 
parameters operating on the external bounding failure surface. Moreover, none of 
them may handle processes of stress redistribution induced by progressive failure 
mechanisms. In addition, they have no capability to approximate the initial stress 
state. Continuum models (finite elements) may reproduce better the stress state 
derived from a known history of slope development but modelling progressive 
failure is still a research subject with very little impact on current practice. It has 
to be accepted that, 47 years after the disaster, static methods to estimate the 
stability conditions of the Vaiont landslide still suffer from important limitations. 
To aggravate things, the dynamic behaviour of the slide is still being discussed 

                                                                                                                                     
estimation of the risk, in a general sense, for some threshold values of the key variable(s) 
and c) a plan, defined in advance, to act in a specified manner when threshold values are 
exceeded. 
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and investigated. From a practical point of view, there are no reliable criteria to 
estimate the dynamic reaction of an impending landslide in the case of failure. 
More will be said in Chapter 5 on this aspect 

One has to accept for the time being, by a simple comparison with Vaiont, 
that large landslides exhibiting symptoms of instability, sliding on (high 
plasticity?) clay levels and subjected to a definite reduction of stability conditions, 
may develop unexpected sliding velocities. 

2.8.5 Could it have been avoided? 
This has been a subject of much debate (see Leonards, 1987). It is probably fair to 
say that an improved knowledge of the field situation – based on a more 
comprehensive set of sensors, a detailed geology, and the strength properties of 
the sliding surface − and even a better conceptual and mechanical model of the 
slide would not have provided reliable criteria to stop the motion. Large 
engineering works also convey important pressures to be completed as planned. If 
this was the case of the Vaiont dam, there was probably not a reasonable 
procedure to avoid the slide. In fact, this risk was accepted by the designers, as 
mentioned before. There were also (abandoned) attempts to drain the failure 
surface by means of a drainage tunnel. Its potential effect remains unclear 
especially because the reservoir level marked an unavoidable minimum interstitial 
water pressure, which was already very high. Even if the operating water level of 
the reservoir was substantially reduced (more than 100 m), there remains the risk 
that an exceptional rainfall event (see Fig. 2.13) could have brought the water 
pressures to critical values. Perhaps a combination of a significant (no less than 
100 m) reduction of the maximum reservoir level and an expensive tunnel-based 
drainage scheme of the failure surface could have achieved a sufficiently low risk 
of failure.  

Appendix 2.1 Safety Factor Fr. Static Equilibrium 
Equation (2.30) provides the condition of equilibrium of the entire slide in terms 
of mobilized strength parameters given in Equations (2.29). Coefficients ti in 
Equation (2.30) are now written in more detail: 
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If Equations (A2.1) to (A2.3) are substituted into Equation (2.30), the following 
algebraic equation for Fr is obtained: 

 2 0,r raF bF c+ + =  (A2.4) 
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The valid root of Equation (A2.4) is 

 ( )2 4 / 2 .rF b b ac a= − + −  (A2.7) 

Appendix 2.2 Global Safety Factor F 
Equation (A2.7), when F = Fr = Fb, is, in fact, the static equilibrium equation. 
Therefore, the value of F should satisfy 

 ( )2( ) 4 / 2 0,G F F b b ac a= − − + − =  (A2.8) 

where the terms a, b, c in (A2.8) should now be calculated for F. 
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Figure A2.1 Numerical determination of global safety factor, F. 
 

Consider in Figure A2.1 the function ( )G F . The solution sought is marked 
as F*. Consider now two F values (F1 and F2) and the corresponding G values 
given by (A2.8). The straight line through (F1, G1) and (F2, G2) intersects the F 
axis at F3, given by 
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1 2
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which could be generalized, as Fi approaches F* 
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Equation (A2.10) provides a recurrent expression to find the target *.F  The 
success of the procedure depends on the shape of function G around *.F  The 
upwards concave shape illustrated in Figure A2.1 is the actual shape of (A2.8) in 
the vicinity of the solution (which, actually, is quite close to the critical value F = 
1). For all the global safety factors calculated the two initial values of Fi to initiate 
the calculation through Equation (A2.10) were F1 = 1 and F2 = 1.01. 
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Chapter 3 

Collapse of Compacted Soil:  

Girona Road Embankments, Spain 

3.1 Case Description 
The eastern coast of the Iberian Peninsula experiences intense rainfall events 
every autumn when the warm and humid Mediterranean air masses are hit by 
Northern and Atlantic colder winds. One of these events, which caused extensive 
damage to a new road in the province of Girona, NE Spain, is shown in Figure 3.1. 
The accumulated rainfall in a 38-day period reached 374 l/m2. The highest 
intensities were measured the 10 and 11 October, 1994 (123 and 56 l/m2, 
respectively). 
 

 
 

Figure 3.1 Rainfall record in autumn, 1994. 
 

The road embankments were heavily eroded and the pavement lost support at 
some points in the vicinity of the embankment shoulders. In addition, shallow 
translational slides modified the original geometry. However, the most serious 
damage was attributed to the pronounced and systematic volume loss of the 
embankments. The most serious situation occurred in the access to bridges, 
because transition slabs were damaged. Bridge abutments had the “wing” design 
shown in Figures 3.2 and 3.3. In order to smooth the transition from the 
deformable embankment to the bridge structure, concrete slabs were placed on top 
of the access embankments. The volume loss experienced by the compacted soil 
as a result of heavy rains resulted in generalized settlements that reached 30 cm in 
some locations (Figs. 3.2, 3.3 and 3.4). Fortunately, no vehicle accidents were 
reported and the road was closed to traffic during the subsequent repair works. 
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Figure 3.4 shows the nature of the embankment collapse. The fill in contact 
with the bridge abutment not only settled (the original position of the fill is shown 
in the concrete wall) but it also retracted horizontally, leaving a wide, empty space 
which was later filled with an asphalt mixture (the black band adjacent to the 
abutment wall in the photograph).  
 

 
 

Figure 3.2 Collapsed fill around a bridge abutment. 
 

 
 

Figure 3.3 Scheme of voids formation under the access slabs to bridge abutments.  

3.1.1 Questions asked 
After the rains, the Road Administration had two main concerns:  

- Identifying the causes of the damage suffered by the recently built road and 
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- determining if future rainfalls of similar or higher intensity would induce 
additional damage. 

 

Position of soil before 
heavy rainfalls

 
 

Figure 3.4 Collapse of embankments after rainfall. 

3.1.2 Soil properties 
Project data, the results of construction control tests, and some additional 
laboratory experiments performed on samples recovered on borings perforated 
after the rainfall events, allowed identifying the relevant soil properties. 
Embankments were built during the summer of 1994 and they were made of 
compacted decomposed granite, a sandy clay of low to medium plasticity (% < 74 
μm = 13−83% (45%); wL: 31−46% (36%); PI: 7−24% (13%); average value in 
parentheses). Granite feldspars and micas, when exposed to atmospheric action, 
decompose into clay minerals (mainly kaolin) while quartz grains remain stable. 
The end result is a mixture of sand grains and clay minerals. 

Compaction specifications were defined on the basis of the Standard Proctor 
test. Dry density and water content values determined during embankment 
construction are shown in Figure 3.5 in a compaction plane (γd vs. w). The figure 
also shows the position of the Proctor Optimum, the average “point” of several (γd, 
w) determinations during construction and the contours of equal degree of 
saturation for Sr  = 1, 0.8 and 0.6. The plot shows a significant heterogeneity but it 
clearly indicates that most of the embankment volume was compacted dry of 
optimum. Very often the degree of saturation did not reach the value Sr = 0.6, 
which is a low value, below acceptable specifications for compaction, even if the 
dry density matches the established target (in this case, the Standard Proctor 
Optimum). 

After the heavy rainfalls it should be expected that the degree of saturation 
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would increase. This was indeed the case, as shown in Figure 3.6. Specimens 
recovered from borings showed a systematic increase in Sr, especially in the 
proximity of embankment shoulders and slopes.  

 

 
 

Figure 3.5 Compaction data. 
 

Some of the recovered specimens were also subjected to a “stress path” 
similar to expected conditions “in situ”. A point such as “A” within the 
embankments, in central positions (Fig. 3.7) was first compacted to a given dry 
density and water content. It was loaded by the overlying layers to a vertical 
stress, 

 nat .v zσ = γ  (3.1) 

Then, infiltration from rain will increase the degree of saturation of Point A. It 
would become saturated under extreme conditions. 

Oedometer tests were performed in order to reproduce this simple and 
approximate stress and wetting path. The result of one of these tests is shown in 
Figure 3.8. When the soil was wetted under a vertical total stress of 0.7 MPa, a 
compression was observed: the void ratio decreased from 0.65 to 0.59, which 
implies a volumetric deformation close to 4%. In fact, this is one of the highest 
volumetric compressions measured. In most of the recovered specimens, the 
measured “collapse” under the estimated overburden pressure ranged between 0.5 
and 2%. The specimen represented in Figure 3.8 was loaded under saturated 
conditions and finally unloaded.  

These results indicate that some collapse potential was still existing in the 
embankment after the heavy rains. Note also that the test in Figure 3.8 does not 
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provide the initial collapse behaviour, which will be discussed later on the basis of 
the observed total deformation experienced by the embankments since no collapse 
tests for the initial as-compacted conditions were available.  
 

 
 

Figure 3.6 Degree of saturation in embankments after the rains. 
 

 
 

Figure 3.7 Scheme of the embankment. 
 

Water infiltration increases also the natural unit weight of the soil and 
therefore the vertical total stress σv. This effect is not reproduced in the oedometer 
test performed (wetting at constant stress) but it will be introduced in the analysis 
described later.  

The water retention characteristics of the soil were also investigated. The 
water retention capacity depends on the type of soil, mineralogy, particle size 
distribution, and soil structure (arrangement of particles). The water retention 
capacity is expressed by means of a curve which provides the amount of stored 
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water in the soil when it is subjected to varying values of suction. Variables such 
as the degree of saturation (ratio of the volume of water and volume of voids), 
water content (ratio of the weights − or masses − of the water and the solids) or 
water ratio (volume of water over volume of solids) are measures of the amount of 
stored water.  

In order to obtain the water retention curve of the soil the initial suction of one 
of the recovered specimens was measured (a value s = 0.4 MPa was obtained). 
This initial suction was reduced in steps until full saturation and changes in water 
content were registered. The result, a water retention curve for wetting conditions, 
is given in Figure 3.9. This test was performed in an oedometer cell under a 
constant net vertical stress of 0.07 MPa. The role of net stress (difference between 
total and air pressure in the specimen) in unsaturated soil mechanics will be 
discussed below. In many practical application pa = 0 (the reference atmospheric 
pressure) and the net stress is identical to the total stress if the soil remains 
unsaturated.  

 

 
 

Figure 3.8 Oedometer collapse test. Natural (wn) and final (wf) water contents are 
indicated. 
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The oedometer response given in Figure 3.8 indicates one fundamental aspect 
of partially saturated soil behaviour, namely the possibility of experiencing a 
volumetric compression when subjected to wetting under a given stress. This 
behaviour is known as “collapse” and it will be further examined in the next 
section.   

3.2 Collapse in Engineering Practice 

3.2.1 Collapse of natural and compacted soils 
Natural unsaturated soils of low density are capable of significant collapse when 
wetted. In principle, some applied confining stress is required to trigger the 
collapse of the soil structure when water is added. The self-weight is often 
sufficient to cause collapse. A widespread class of soils known to collapse is loess. 
Their open structure derives from its aeolian origin. Loess particles are fine (silt 
size) and include quartz and limestone but clay particles are also present. They are 
found in arid regions of Europe, Asia, and America.  
 

 
 

Figure 3.9 Water retention curve (under wetting) of a recovered specimen of the 
compacted fill.  

 
The photograph in Figure 3.10 shows the granular structure of loess from 

northern France (Delage et al., 2005). 
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Their low natural saturation provides an explanation for the collapse 
mechanism. Consider two spherical particles in contact in Figure 3.11. Water is 
held at the particle contacts and, due to capillary effects, it remains in tension. The 
contact menisci introduce a net compression force, Fc, normal to the tangent plane 
between the two spheres at the contact point.  

This is a stabilizing force which helps to resist external stress induced forces 
(F) which, in general, introduce a given shear at contacts. Water flooding destroys 
the stabilizing force Fc and leads to a rearrangement of the soil microstructure 
which is externally perceived as a volumetric compression. 

 

 
 

Figure 3.10 SEM photograph of a loess from northern France (Delage et al., 2005).  
 

Not just loess but also other natural alluvial or residual soils of low density are 
known to collapse when wetted under load. Canals in low density alluvial soils or 
loess are particularly delicate structures because the presence of water is 
guaranteed. Two catastrophic canal failures in collapsible silts are shown in Figure 
3.12. The Figure 3.12a shows a severe canal dislodgement induced by generalized 
collapse. The second picture shows a longitudinal crack of one of the side slabs of 
the canal, attributed to the collapse settlement of the supporting soil, as illustrated 
in the sketch included in the figure. 

 



94 Geomechanics of Failure. Advanced Topics  Chapter 3 

Compacted soils may also 
collapse when compacted on the dry 
side to relatively low densities. In 
fact, virtually any soil may collapse if 
its density, applied confining stress, 
and initial water content reach an 
appropriate range of values. When the 
density is low (man-made fills) 
collapse upon wetting may lead to 
large settlements, absolute and 
differential. Damage associated with 
collapse phenomena tends to be high 
because of the magnitude of the 
settlements often recorded. Case 
records and other practical aspects of 
collapse in man-made fills and 
embankments are reported in Lawton 
et al. (1992) and Skinner et al. 
(1999). 

 
Figure 3.11 Water meniscus at the contact 
between two spherical grains. 

 

 
 

 

Collapsed areaCollapsed area  

(a) (b) 
  

Figure 3.12 Two canal failures on collapsible soils: (a) Terreu canal; (b) Algerri-Balaguer 
canal. Ebro Valley, Spain. 
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3.2.2 Rockfill collapse  
Rockfill and coarse granular soils are also known to collapse. In this case, the 
capillary explanation given before does not make sense because capillary forces at 
contacts result in a very low value of equivalent stress (sum of forces per unit 
area).  
 

 
 

(a) 
 

 
 

(b) 
 

Figure 3.13 Specimen of hard sandstone crushed gravel tested in a 30 cm oedometer cell: 
(a) grain breakage after testing involving loading and wetting; (b) detail of broken particle.  
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A fundamental mechanism of rockfill collapse is the breakage of particles 
heavily loaded at grain to grain contacts. Particles break because a dormant crack 
suddenly propagates and splits the original particle. It has been shown (Atkinson, 
1985; Oldecop and Alonso, 2001) that crack propagation velocity depends on the 
prevailing relative humidity (RH) in big pores around rock particles. Wetting a 
rockfill increases RH and this change induces a higher rate of crack propagation, 
which may eventually lead to the breakage of some particles. The subsequent 
rearrangement of the structure results in a volumetric compression or collapse. 

Figure 3.13 is a picture of broken particles of sandstone after loading and 
wetting in a 30 cm diameter oedometer cell. 

The effects of rockfill collapse have been often observed in rockfill dams. 
Reservoir impounding and rainfall result in significant deformations which are of 
concern in dam engineering design. The integrity of the upstream impervious face 
in some designs (concrete or asphalt face rockfill dams) is of particular concern. 
Figure 3.14 shows the good correlation between the rate of settlement and rainfall 
intensity for a 40 m high shale embankment on the high-speed railway line 
between Madrid and Sevilla.   
 

 
 

Figure 3.14 Rainfall record and surface settlement rate of a 40 m high rockfill embankment 
(Soriano and Sánchez, 1999). 
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3.3  Description of Collapse and its Modelling 

3.3.1 Effective stress 
Let us maintain isotropic stress conditions. Under saturated conditions, the effect 
of pore-water pressure on the soil mechanical behaviour is included through the 
Terzaghi effective stress. There is no need for independent consideration of total 
stress and pore water pressure. 

The capillary interpretation of the state of water in an unsaturated granular 
soil (see Fig. 3.11) explains that the water is under tension (if the air pressure is 
taken as the reference zero pressure: in general, the atmospheric pressure). The 
absolute value of the negative (capillary) pressure is called “matric” suction. The 
term suction is also used in a more general sense to describe the state of energy of 
the water. It has units of stress (energy per unit volume). 

Unfortunately, no single expression for a single effective stress has been 
found, in the case of unsaturated soils, to be consistent with experimental 
observations. Consider, as a first trial, that Terzaghi’s expression ( ij ij w ijp′σ = σ − δ  
where δij is the Kronecker delta) remains valid for unsaturated conditions. Then, 
the effective stress would be found by adding total stress and suction. Now 
consider a collapse phenomenon. Wetting implies a reduction in suction and, 
therefore, a reduction in effective stress. One would expect a soil expansion if 
effective stress holds. The observed collapse (volumetric compression) in the 
above mentioned cases invalidates the proposed definition of effective stress. The 
same argument applies if only a fraction of the suction is added to the total stress 
to find an effective stress for unsaturated soils. This is the Bishop (1959) proposal. 

One alternative is to accept two independent stress states: total stress (for 
instance, mean stress, p, under isotropic conditions) and suction s (which is an 
isotropic value). In order to be general, air pressure, pa, is introduced as a 
reference pressure. In this way, the two “effective” stresses are ( ij a ijpσ − δ ), 
which is also known as “net stress” and a ws p p= −  which is the suction. In an 
isotropic case, if air pressure is the reference zero value, the stress plane (p, s) may 
conveniently be used to investigate the behaviour of unsaturated states. In the 
remainder of the chapter, the air pressure will be taken as constant and equal to the 
reference atmospheric value. This is a reasonable assumption in most engineering 
applications because of the high gas permeability of unsaturated soils. In this case, 
the net stress becomes the total stress and suction is equal, in absolute value, to the 
negative pore water pressure. 

3.3.2 Isotropic yielding of unsaturated soils 
A convenient starting point for understanding collapse is to consider the response 
of an unsaturated soil subjected to isotropic loading at different applied suctions (s 
= 0, s = s1, s = s2) (stress paths are given in Fig. 3.15a). Take the soil response 
under saturated conditions (s = 0) as a reference. The soil behaves elastically 
before a yielding point Y0 is reached (yield stress *

0p ). The elastic compressibility 
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(the slope of the elastic compression line in the plane e−lnp) is defined by κ. 
Beyond the yield point, the soil will follow a virgin compressibility line with a 
stiffness defined by a compressibility coefficient λ(0) ( for s = 0). 

The effect of suction is to allow the soil maintaining higher void ratios than 
those corresponding to the saturated virgin compression line. Experiments may be 
interpreted in the sense that suction increases the yield stress to values 01p for s = 
s1, 02p for s = s2, etc. Beyond the yield stress, the unsaturated response will be 
characterized by a compressibility coefficient λ(s) that, in general, will depend on 
suction. If points *

0p , 01p , 02p  are collected in the (p,s) space (Fig. 3.15c) a yield 
locus will be defined which has been named Loading-Collapse (LC) curve for the 
reasons which will be given below. Points on the left of LC will remain in an 
elastic state. In Figure 3.15b, all compression lines for stresses below the yield 
points are plotted parallel with a common elastic compression index κ. Note that 
they start at a different void ratio (e0 > e1 > e2) because the application of an 
increasing suction (drying) results in a volumetric compression (shrinkage).  

 
 

Figure 3.15 (a) Stress paths for isotropic loading at constant suction; (b) compression 
curves; (c) yielding points and LC yield envelope. 
 

Wetting the soil from a given state on the yield curve such as Y1 (for suction 
s1) to s = 0 will imply a reduction in volume because the equilibrium state under 
stress 01p and zero suction (s = 0) is the state 1

*Y  in Figure 3.15b. The change in 
void ratio from point Y1 to point 1

*Y  is a collapse deformation.  
This idea is used again in Figure 3.16. Consider a Point 1 (p1, s ) on the yield 

curve LC; and its corresponding state in the e vs. lnp plot. If wetted at constant p = 
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p1, the void ratio will evolve from Point 1 to 3 in Figure 3.16b. The yield curve LC 
will also be dragged to its new position LCf. The path 1−3 in Figure 3.16 is a 
collapse path. The soil will experience the same irreversible compression if it is 
loaded at constant suction from Point 1 to 2. It will deform following the 
compression line for suction s . In both cases, a hardening process takes place. 
These plots indicate that loading and collapse behaviour are intimately related. 
This is the reason for the name LC given to the isotropic yield locus on the (p,s) 
plane.  

 

 
 

Figure 3.16  (a) Loading (1−2) and collapse (1−3) paths; (b) expected soil response. 
 

The sketch in Figure 3.17 shows the two alternative stress suction paths 
leading to the same volumetric deformation. The state of the soil at Point 1 is 
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represented by an “open” structure. The arrangement of clay aggregates and sand 
or silt particles is adapted to large pore sizes. The soil in this state is in equilibrium 
under a confining stress p and a suction s. The existing suction and its associated 
set of internal stabilizing forces help to maintain the open structure. If suction is 
reduced to zero (lower path in the figure), capillary forces vanish and grains are no 
longer in equilibrium under the applied stress. They fall to new, denser positions 
and this is indicated in the assumed evolution of the microstructure. But increasing 
the load at a maintained suction (upper path in the figure) essentially induces the 
same mechanism of deformation. The suction is maintained but now it is unable to 
guarantee the initial soil structure under increasing stress. Therefore, the LC yield 
curve represents the limit arrangement of particles and clay aggregates able to stay 
in equilibrium under a given combination of p and s. This is the meaning of the 
yield curve. Any increase in p, decrease in s, or any combination thereof, implies a 
new equilibrium, a more compressed state, and an associated displacement of LC 
yield locus towards the right.  
 

 
 

Figure 3.17  Sketch showing an interpretation of collapse and loading in unsaturated soils. 
(Alonso and Gens (1994) ©1994 Taylor and Francis Group. Used with permission). 

3.3.3 Developing a simple model for collapse calculations 
In order to proceed, a simple model will be built following a standard procedure: 

- Propose a suitable shape for curve LC. 
- Propose a hardening rule for LC 

For the sake of simplicity, only plastic loading from states on the yield curve will 
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be considered. Therefore, the elastic response will not be discussed.  
Experiments indicate that the yield stress does not increase indefinitely with 

suction. It seems to reach an asymptotic value. This idea is introduced in the 
following equation 

 ( ) ( )( )*
0 0 1 1 exp ,p s p a s⎡ ⎤= + − −α⎣ ⎦  (3.2) 

which provides the preconsolidation or yield stress 0p  as a function of the 
saturated yield stress *

0p  and the suction s. Coefficients a and α are material 
parameters: α controls the rate of increase of p0 with s, and a provides the limiting 
value of p0(s) for infinite suction, 

 ( ) ( )*
0 0 1 .p p a∞ = +  (3.3) 

The family of yield curves (3.2) was plotted in Figure 3.18 for a given set of 
material parameters starting at a given point under yielding conditions, i.e. on the 
LC curve. Additional loading at constant suction (this would represent the 
accumulation of layers in an embankment, on top of a reference position) would 
displace the LC curves towards the right and they would change in shape, as 
shown in the figure. 
 

 
 

Figure 3.18 LC yield curves.  
 

The three initial stress states considered in plotting Figure 3.18 correspond to 
a common suction s = 8 MPa and the estimated mean total stresses at depths of  2, 
5 and 7 m. For an at-rest earth pressure coefficient K0 = 0.5, and for a natural unit 
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weight γnat = 20 kN/m3, the mean net stress at a depth of 5 m will be 
5 (20 + 2 0.5 20)/3 = 66.6 × × × kPa (Point A). Then, for the following material 
constants: a = 20, α = 0.5 MPa−1

, a value *
0p = 3.2 kPa is found from Equation 

(3.2) for the saturated mean preconsolidation stress. The material constants 
indicated are derived from the analysis of the collapse of the Girona embankments 
as shown below. 

The yield stress ( )0p s , given in Equation (3.2), will be assumed to harden 

when plastic volumetric strains ( vol
pε ) accumulate. Hardening will be controlled 

through *
0p , which becomes the hardening parameter in (3.2): *

0p ( vol
pε ). 

The following logarithmic expression is proposed for the evolution of *
0p  

with vol
pε : 

 
( ) *

0
vol *

0

0 d
d .

1
p p

e p
λ

ε =
+

 (3.4) 

Equation (3.4) simply states a linear logarithmic relationship between the plastic 
volumetric deformations and the applied mean stress under saturated conditions. 
This is a common behaviour of soils. Equations (3.2) and (3.4) allow calculating 
the plastic volumetric strains due to any loading and wetting from a state on a 
given yield curve. In fact, recognizing that plastic strains result from changes in 
mean stress and suction, one may write 

 vol vol
vold d d ,

p p
p p s

p s
∂ε ∂ε

ε = +
∂ ∂

 (3.5a) 

where, in view of Equation (3.4), 

 
( ) *

vol 0
*
0

0 1 ,
1

p p
p e pp

λ∂ε ∂
=

∂ + ∂
 (3.5b) 

 
( ) *

vol 0
*
0

0 1 .
1

p p
s e sp

λ∂ε ∂
=

∂ + ∂
 (3.5c) 

(Stress variables p and p0 are equivalent since stress points remain on the yield 
surface: they describe the mean net stress.)  

Isolating *
0p  from Equation (3.2) and taking the derivative of this variable 

with respect to p and s, we obtain 

 
* *
0 0

0

,
p p
p p

∂
=

∂
 (3.6a) 
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( )
( )( )

**
00 exp

.
1 1 exp

p a sp
s a s

− α −α∂
=

∂ ⎡ ⎤+ − −α⎣ ⎦
 (3.6b) 

Then 

 
( )

( )
vol

0

0 1 ,
1

p

p e p
λ∂ε

=
∂ +

 (3.7a) 

 
( )

( )
( )
( )( )

vol 0 exp
,

1 1 1 exp

p a s
s e a s

−λ α −α∂ε
=

∂ + ⎡ ⎤+ − −α⎣ ⎦
 (3.7b) 

which can now be introduced in (3.5a) to find the increment in plastic volumetric 
strain for any change in mean stress and suction. Integrating (3.5a) along a given 
stress and suction path will provide the soil deformation. This is shown in the next 
section. 

3.3.4 Calculating loading and wetting strains  
Consider an imposed loading path at constant suction ( s ) as the path 1−2 
indicated in Figure 3.16. Equation (3.2) provides the variation of *

0p  due to the 
imposed increment of yield isotropic stress p0 (Δp = p2 − p1) at constant suction: 

 
( )( )2 1

* * *
0 0 0 .

1 1 exp
pp p p

a s
Δ

Δ = − =
+ − −α

 (3.8) 

Integrating Equation (3.4), the volumetric plastic strain due to the increment in 
mean stress p1 → p2 becomes 

 
( ) ( )2

1

*
0 2

vol *
10

0 0
ln ln .

1 1
p p p

e e pp
⎛ ⎞λ λ ⎛ ⎞

Δε = =⎜ ⎟ ⎜ ⎟⎜ ⎟+ + ⎝ ⎠⎝ ⎠
 (3.9) 

Similarly, volumetric plastic strains accumulated during a collapse path (wetting 
at constant loading, path 1 to 3 in Fig. 3.16) can be calculated. In this case, 
Equations (3.5a) and (3.7b) for dp = 0 result in 

 
( )

( )( )vol

exp(0)d d ,
1 1 1 exp

p sa s
e a s

−αλ α
ε = −

+ ⎡ ⎤+ − −α⎣ ⎦
 (3.10) 

which can now be integrated between two suction values s1 → s2: 
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( )
( )( )

( )
( )

2 2

1 1

vol vol

1

2

exp(0)d d
1 1 1 exp

1 exp(0) ln .
1 1 exp

s s
p p

s s

sa s
e a s

a a s
e a a s

−αλ α
Δε = ε = − =

+ ⎡ ⎤+ − −α⎣ ⎦
⎡ ⎤+ − −αλ

= − ⎢ ⎥
+ + − −α⎢ ⎥⎣ ⎦

∫ ∫
 (3.11) 

As an example, for a compressibility coefficient for saturated conditions, λ(0)= 
0.024, a = 20, α = 0.5 MPa−1, an initial void ratio e0 = 0.60, and a change in 
suction from s1 = 10 MPa to s2 = 1 MPa, a collapse strain of vol

pε = 0.013 = 1.3% is 
calculated. 

The next necessary step is to link the volumetric behaviour of the soil to the 
flow in the embankment. 

3.3.5 Flow and collapse modelling 
In the previous section, a simple formulation for modelling plastic volumetric 
strains, and, in particular, the collapse due to reduction in suction, has been 
developed. In this section, the formulation required to calculate the variation of 
suction in an unsaturated/saturated porous media is given. 

In an unsaturated deformable porous soil, changes in suction will mainly 
depend on 

- water flow  
- water retention of the soil 
- changes in volume of the soil skeleton, water and solid particles. 
In order to take into account all these phenomena in the calculation of pore 

pressures, mass balance equations of solid particles and water are required.  
 
Solid mass balance  
 

In order to formulate the solid mass balance equation, we consider a representative 
volume V (Fig. 3.19) fixed in space (Eulerian description). S is the surface closing 
this volume, n is the unit outward normal to the boundary surfaces, and dS = ndS 
is a differential element of area. The volume contains a porous media whose solid 
particles have a density ρs and a porosity n. Voids are partially occupied with 
water of density ρw. 

The total mass of solid particles per unit volume is ( )1s nρ − . In volume V, the 
total mass of solid particles will be 

 ( )1 d .s
V

n Vρ −∫  (3.12) 

Transfer of solid mass in or out of volume V results in the following rate of change 
of the total solid mass:  
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 ( ) ( )1 d 1 d .s s
V V

n V n V
t t

⎡ ⎤∂ ∂⎢ ⎥ ⎡ ⎤ρ − = ρ −⎣ ⎦∂ ∂⎢ ⎥⎣ ⎦
∫ ∫  (3.13) 

The velocity of solid particles is v. Therefore, the outward solid mass flux 
through a differential element of area is ( )s 1 ·nρ − v n  and the total outward solid 
mass flux through surface S is 

 ( )1 d .s
S

n Sρ − ⋅∫ v n  (3.14) 

Conservation of mass requires the rate of mass within the volume to be equal to 
the net flux. Therefore 

 ( ) ( )1 d 1 d .s s
V S

n V n S
t

∂ ⎡ ⎤ρ − = − ρ − ⋅⎣ ⎦∂∫ ∫ v n  (3.15) 

The negative sign of the flux term indicates that the increase of mass, as well as 
the outward flux, were accepted as positive.  
 

 
 

Figure 3.19 Fixed volume of soil, V, bounded by a surface S in a Cartesian space. A flow 
of mass crosses the volume. 
 

In order to convert this integral equation of mass conservation into a 
differential equation, the Gauss divergence theorem is applied to the surface 
integral: 

 ( ) ( )1 d div 1 d .s s
S V

n S n V⎡ ⎤ρ − ⋅ = ρ −⎣ ⎦∫ ∫v n v  (3.16) 

When the divergence operator is applied to ( )s 1 nρ − v  the result is 

( )
( )( ) ( )( ) ( )( )11 1

div 1 .s ys x s z
s

n vn v n v
n

x y z

∂ ρ −∂ ρ − ∂ ρ −
⎡ ⎤ρ − = + +⎣ ⎦ ∂ ∂ ∂

v  
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Equations (3.15) and (3.16) result in 

 ( ) ( )1 d div 1 d 0s s
V V

n V n V
t

∂ ⎡ ⎤ ⎡ ⎤ρ − + ρ − =⎣ ⎦ ⎣ ⎦∂∫ ∫ v  (3.17a) 

or 

 ( ) ( )1 div 1 d 0.s s
V

n n V
t

∂⎛ ⎞⎡ ⎤ ⎡ ⎤ρ − + ρ − =⎜ ⎟⎣ ⎦ ⎣ ⎦∂⎝ ⎠∫ v  (3.17b) 

Since Equation (5.9b) is valid for any representative volume, the expression 
under the integral sign must vanish. This condition provides the conservation of 
mass expression in local form: 

 ( ) ( )1 div 1 0,s sn n
t

∂ ⎡ ⎤ ⎡ ⎤ρ − + ρ − =⎣ ⎦ ⎣ ⎦∂
v  (3.18a) 

where the first term is the time variation of solid mass stored per unit volume and 
the second term provides the net flux of solid particles. The preceding equation 
can be expanded to give 

 
( ) ( )

( ) ( )

1 1 )

1 div( ) 0,

s
s s

s s

nn n
t t

n n

∂ρ ∂
− − ρ + − ρ ⋅ −

∂ ∂
ρ ⋅ + ρ − =

grad( v

grad v v
 (3.18b) 

where the vector gradient operator, grad(·), has been introduced. In detail, 
Equation (3.18b) is written: 

 

( ) ( )

( )

1 1 , ,

, , 1 0.

x
s s s s

s y

z

x
yx z

s y s

z

v
nn n v

t t x y z
v

v
vv vn n n v n

x y z x y z
v

⎛ ⎞
⎜ ⎟⎛ ⎞∂ρ ∂ρ ∂ρ ∂ρ∂

− − ρ + − −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎜ ⎟
⎝ ⎠

⎛ ⎞
∂⎛ ⎞⎜ ⎟⎛ ⎞ ∂ ∂∂ ∂ ∂

ρ + ρ − + + =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎜ ⎟
⎝ ⎠

 (3.18c) 

The definition of material derivative of a property of a material point moving with 
velocity v, 

 D( ) ( ) ( )
Dt t

• ∂ •
= + ⋅ •

∂
v grad  (3.19) 

allows the writing of (3.18b) in a compact form: 

 ( ) ( ) ( )D D1 1 div 0.
D D

s
s s

nn n
t t

ρ
− − ρ + ρ − =v  (3.20) 
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The divergence of the solid velocity can be transformed into the volumetric strain 
rate as follows: 

 ( ) voldiv div ,
t t

∂ε∂⎛ ⎞= = −⎜ ⎟∂ ∂⎝ ⎠

uv  (3.21) 

where compressive volumetric deformation are considered to be positive. This 
result is obtained by a simple interchange of time and spatial derivative.  

Equation (3.20) provides the rate of change of the porosity (Dn/Dt) as a function 
of the stiffness of the soil skeleton and of the changes in density of solid particles, 

 
( ) ( ) ( )
1 DD 1 div ,

D D
s

s

nn n
t t

− ρ
= + −

ρ
v  (3.22) 

a result which will be immediately used. 
 In many applications the compressibility of the skeleton is large compared with 
the compressibilility of solid particles. Then Equation (3.22) can be reduced to  

 ( ) volD 1 .
D

n n
t t

∂ε
= − −

∂
 (3.23) 

Water balance   
 

Water flow velocity (vw) will be expressed as the sum of two terms: the velocity of 
solids (v) already introduced, and the relative velocity of the fluid with respect to 
solids (q*). Consider now a cross-section of the porous medium of unit area. Only 
a portion of this area (approximately given by porosity multiplied by the degree of 
saturation, nSr) will be available for fluid flow. Therefore, the flow rate of water 
through a cross-section of unit area will be given by nSr (v + q*). The term nSrq* 
= q is generally known as the Darcy flow rate of a fluid filtrating through an 
unsaturated porous medium. It is the relative flow rate of the fluid with respect to 
the soil skeleton. 

The previous derivation of the balance equation for the solid mass can now be 
followed step by step. But it may be directly written from the solid mass 
conservation equation by formally replacing ( )1 n−  by nSr, ρs by ρw and ( )1 n− v  
by nSrv + q. Therefore, from Equation (3.18a) it follows 

 ( ) ( )div 0.w r w rnS nS
t

∂ ⎡ ⎤ρ + ρ + =⎣ ⎦∂
v q  (3.24) 

The first term in Equation (3.24) is the rate of change of water mass stored in a 
unit volume of soil. The second term is the net water mass flow entering or 
leaving the unit soil element. It has two components: the flux due to the 
displacement of the porous media and the relative flux (q) between the water and 
solid particles.  

Equation (3.24) can now be expanded as follows: 
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( ) ( )

( ) ( )div( ) div 0.

w
r r w w r w r

r
w w r w r w

nnS nS S S n
t t
Sn n S nS
t

∂ρ ∂
+ ⋅ ρ + ρ + ρ ⋅ +

∂ ∂
∂

ρ + ρ ⋅ + ρ + ρ =
∂

v grad v grad

v grad v q
 (3.25) 

If the definition of material derivative (Eq. (3.19)) is introduced, the water mass 
balance equation becomes 

 ( ) ( )D D D div div 0.
D D D

w r
r w r w w r w

S nnS n S nS
t t t

ρ
+ ρ + ρ + ρ + ρ =v q  (3.26) 

In most practical situations except for hard soils or soft rocks, the compressibility 
of the water can be neglected and equation (3.26) can be simplified to  

 volD D div( ) 0,
D D t

r
r r

S nn S nS
t t

∂ε
+ − + =

∂
q  (3.27) 

where Equation (3.21) was used. 
 
Integrated mass balance equation. The field differential equation 
 

Solid and water mass balance equations can now be combined substituting the 
porosity variation in time given by Equation (3.23) into Equation (3.27): 

 ( )volD
div 0.

D
r

r
Sn S
t t

∂ε
− + =

∂
q  (3.28) 

If the spatial variation of the degree of saturation is neglected, the balance 
equation becomes 

 ( )vol div 0.r
r

Sn S
t t

∂ε∂
− + =

∂ ∂
q  (3.29) 

Equation (3.29) identifies the two terms of stored water in an unsaturated soil. 
Water can be stored by varying the volume of water in the voids (degree of 
saturation) or by deforming the soil skeleton.  

In order to proceed, the terms of Equation (3.29) should be related to the 
unknown variables: (net) stress and suction.  

The retention curve provides the degree of saturation in terms of suction. 
Therefore, it is necessary to fit a mathematical expression for the water retention 
curve (WRC) obtained in the laboratory. Different expressions can be found in the 
literature. A popular one is the expression published by Van Genuchten (1980): 

 ( )
1

1

min max min
0

1 ,r r r r
sS S S S
P

−λ

−λ
⎡ ⎤

⎛ ⎞⎢ ⎥= + − + ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

 (3.30) 

where λ is related to the slope of the WRC in its central part and P0 is related to 
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the “air entry value”, i.e. the necessary suction to desaturate an initially saturated 
soil. The preceding equation is defined between two saturation limits (a maximum 
(Srmax), close to one, and a minimum (Srmin), close to zero). Figure 3.20 provides 
the shape of water retention curves and shows the effect of varying parameters P0 
and λ. 
 

 
 

(a) (b) 
 

Figure 3.20 Van Genuchten retention curves for (a) λ = 0.3 and different values of P0 and 
(b) P0 = 0.05 MPa and different values of λ. 

 
The term tSr ∂∂  in Equation (3.29) can be expressed as the product of 

( sSr ∂∂ )( ts ∂∂ ) where tS r ∂∂  is obtained by differentiating Equation (3.30): 

 ( ) ( )
( )

11
1 1

max min
0 0 0

1 1 .
1

r
r r

S s sS S
s P P P

−λ− λ
−λ −λ

⎡ ⎤−λ ⎛ ⎞ ⎛ ⎞∂ ⎢ ⎥= − + ⎜ ⎟ ⎜ ⎟⎢ ⎥∂ − λ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (3.31) 

Volumetric strains depend on changes in net mean stress and suction. They have 
been described in Equations (3.5), (3.6) and (3.7). Because of the simple case 
analyzed here, only isotropic changes in stress have been considered. For a general 
case, the stress tensor should be introduced since not only isotropic but also 
deviatoric stress variation may cause volumetric strain. 

The final term in Equation (3.29) refers to the flow through pores due to the 
gradient of head (Darcy’s law). A generalized Darcy law for a compressible fluid 
describes the relative flow velocity q in terms of gradients of pore-water pressure 
and the gradient of elevation as follows: 

 ( ) ( ) ,w
w

k s z= − − + γ⎡ ⎤⎣ ⎦γ
q grad grad  (3.32) 
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where γw is the unit weight of water, z is the vertical coordinate and k is the 
hydraulic conductivity (the term permeability will also be used). In an unsaturated 
soil, the permeability to water decreases when the degree of saturation decreases 
because of the reduction of pore volume filled with water and the difficulty of the 
water adhered to particles to displace. A common approach is to express the 
unsaturated permeability in terms of the saturated value, ksat through a relative 
permeability term (krel) which decreases fast with Sr according to the following 
widely used expression: 

 ( )sat rel sat .m
rk k k k S= =  (3.33) 

The power m typically takes values in the range 2−4. Figure 3.21 shows the effect 
of m on the relative permeability coefficient. 
 

 
 

Figure 3.21 Relative permeability curve for different values of parameter m (Eq. (3.33)). 
 

For a one-dimensional analysis in the z-direction, grad(•) and div(•) are 
reduced to ∂(•)/∂z. Then, the flow velocity q of Equation (3.32) becomes 

 .
w w

k s z k sk k
z z z
∂ ∂ ∂

= − = −
γ ∂ ∂ γ ∂

q  (3.34) 

Equation 3.34 is consistent with the common formulation of Darcy’s law for 
saturated soils provided the concept of suction is formally extended to saturated 
states as the negative value of the water pressure. Then if hydrostatic conditions 
are considered s = − pw = − γwz and Equation (3.34) would provide a zero flow. 

The last term of Equation (3.29) can be developed as follows: 
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 ( )
2

2
1div 1 ,z

w w

q s k k s
z z z z

⎛ ⎞∂ ∂ ∂ ∂
= = − +⎜ ⎟

∂ γ ∂ ∂ γ ∂⎝ ⎠
q  (3.35) 

where r

r

Sk k s
z S s z

∂∂ ∂ ∂
=

∂ ∂ ∂ ∂
 and rk S∂ ∂ are obtained differentiating Equation (3.33) 

and rS s∂ ∂  is given in Equation (3.31). 
Finally, using the previous equations, Equation (3.29) can be rewritten as 

follows: 

 

2

2

1 1 0.

vol volr
r r

w

r

w r

S s p k sn S S
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Ss k s
z S s z

∂ε ∂ε∂ ∂ ∂ ∂⎛ ⎞− − + +⎜ ⎟∂ ∂ ∂ ∂ ∂ γ ∂⎝ ⎠

⎛ ⎞ ∂∂ ∂ ∂
− =⎜ ⎟γ ∂ ∂ ∂ ∂⎝ ⎠

 (3.36) 

This is a parabolic partial differentiated equation. The terms rS s∂ ∂ , vol p∂ε ∂  
and vol s∂ε ∂  are given by Equations (3.31), (3.7a), and (3.7b), respectively.  

The integration of Equation (3.36) with the appropriate boundary and initial 
conditions will provide the suction of any point of the integration domain at any 
time. In the next section, this equation will be solved for the case of the collapsed 
Girona road embankments.  

3.4 Modelling the Collapse of Girona Road Embankments 
The geometry is sketched in Figure 3.22. A central column of soil will be analyzed 
under one-dimensional oedometric conditions. Several embankments of different 
sizes were affected by the rainfall but only one case, an embankment 8 m high, 
will be considered here. Only vertical displacements will be calculated. Note, 
however, that collapse strains are volumetric and therefore the expected deformed 
shape of a collapsed embankment will be given by a decrease in size in all 
directions, as shown in Figure 3.22. This was also the observation in the field (see 
the photograph in Fig. 3.4).  
 
 

 
 

Figure 3.22 Sketch of the collapsed embankment. The coupled flow-deformation problem 
will be solved in a central column. Also indicated is the expected deformed shape of the 
embankment after collapse. 
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It will be assumed that the soil within the embankment is normally 
consolidated and that the initial stress distribution depends on the weight of the 
soil, which, since it is in unsaturated condition, can be expressed as follows: 

 nat (1 ) .s r wn nSγ = − γ + γ  (3.37) 

Under oedometric conditions, horizontal stresses at any point are equal to K0σv 
where K0 is the at-rest earth pressure coefficient. Then the mean stress 
( ( ) 32 hvp σ+σ= ) for a given depth z is equal to 

 ( )[ ]0
0

1 1 2 (1 ) d
3

z

s r wp K n nS z z= + − γ + γ∫  (3.38) 

The initial suction of the embankment can be derived from the water retention 
curve (Fig. 3.9) and the data on compaction (Fig. 3.5). It appears that the average 
degree of saturation after compaction of embankments was 0.6. The water 
retention data were again plotted in Figure 3.23 and the Van Genuchten 
expression (3.30) was adapted to the experimental points (Fig. 3.23). The derived 
parameter values are Srmax = 1, Srmin = 0, λ = 0.09 and P0 = 0.05 MPa. For Sr = 0.6, 
an initial average suction s = 8 MPa is obtained. 

The virgin compressibility index (a unique value, independent of suction, in 
the model developed) is calculated from the oedometer test for saturated 
conditions shown in Figure 3.8. The value of Cc is calculated as follows: 

 
( ) ( )

0

0

0.133 0.054
log log 0.8 0.07c

v v

e eC −
= = =

σ σ
 (3.39) 

and, therefore, λ = Cc/ln10 = 0.024. 
 

 
 

Figure 3.23 Water retention curve for calculation compared with experimental data. 
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The top of the embankment will be in contact with the atmosphere and it will 

be infiltrated by rainfall. At the base, it will be in contact with a saturated natural 
soil, having the water table on the surface. Therefore, an upward flow of water 
will cross the lower embankment boundary due to suction gradients (s = 8 MPa 
inside the embankment and s = 0 MPa at the lower boundary). The rain may be 
simulated by imposing a water inflow at the top of the embankment as a boundary 
condition. To do that, it is necessary to estimate the fraction of rain that seeps into 
the ground and the fraction that leaves the embankment as a surface flow. In order 
to simplify the problem, a boundary condition at the top of the embankment 
imposing a suction equal to zero is defined. It implies the presence of a thin film 
of liquid water on the embankment surface capable of delivering the necessary 
infiltration flow. This condition is also imposed in the bottom of the embankment, 
as mentioned before. 

 

 
 

Figure 3.24 Calculated evolution of crest settlement of an 8 m high embankment under a 
top and bottom infiltration.  
 

The inward flow of water will induce increments in the degree of saturation 
and collapse plastic strains in the embankment. The increment in the degree of 
saturation also involves changes in the total mean stress because of the increase of 
soil unit weight 
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Note that total stresses change in time due to the modification of soil natural 
specific weight as the degree of saturation changes. The porosity and time 
variation of the degree of saturation depend on coordinate z. Equation (3.40) is 
used in the field Equation (3.36). 

The problem of flow in a (deformable and unsaturated) soil can be solved 
through the formulation just given. The differential Equation (3.36) has to be 
integrated. Since the terms preceding ∂s/∂t depend on suction, an analytical 
solution of this equation cannot be found in general. It will be solved by a finite 
difference approximation developed in the Appendix 3.1. 

3.5 Results 

3.5.1 Collapse settlements 
Experimental data on the shape of the LC yield curve (Fig. 3.18) were not 
available in this case. There was information on initial soil compaction and some 
collapse tests performed on samples recovered after the heavy rains (Fig. 3.8). The 
test in Figure 3.8 provided a value for the compression index λ(0) = 0.024. The 
water retention curve, Sr(s), was also measured (Figs. 3.9 and 3.23). This 
information provided a value for the initial soil suction which was s = 10 MPa (for 
Sr = 0.6; see Fig. 3.23). A further hypothesis was that the soil was under normally 
consolidated conditions and this information provides a direct relationship 
between the field mean confining stresses and the saturated mean stresses (Fig. 
3.18), provided parameters a and α of the yield locus LC are known. But the field 
observation that the higher embankments (heights of 7−8 m) had settled 30−40 cm 
after the heavy rainfall period could be used to derive, by means of a trial and 
error procedure, the parameters of the LC Equation (3.2).  
Figure 3.24 shows the calculation of the crest settlement of an 8 m high 
embankment, following the procedure detailed in the Appendix 3.1. The top and 
bottom of the unsaturated soil column were flooded (s = 0) at t = 0. For a 
permeability k = 10−7 m/s, α = 0.5 MPa−1, a = 20, and the remaining data as 
indicated previously, crest settlements of 30 – 40 cm were calculated for 1.5 – 3 
days of continuous wetting. The settlement rate is highest at the start of the 
process and decreases continuously. The calculated suction isochrones for the first 
day of infiltration are shown in Figure 3.25. The time evolution of suction of two 
points located at depths of 2 and 5 m, representatives of the core of the 
embankment, are given in Figure 3.26. After one day of wetting, and despite of the 
relatively low permeability, the embankment is almost fully wetted. Infiltration 
(Darcy) flow rates are not only controlled by permeability but also by the suction 
gradients which, in our case, are very large. The development of plastic collapse 
strains follows the dissipation of suction, as shown in Figure 3.27. 
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Figure 3.25 Calculated suction isochrones. 
 

 
 

Figure 3.26 Calculated suction evolution of two points within the embankment at different 
depths. 
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Figure 3.27 Calculated evolution of collapse strains for two points within the embankment. 
 

 
 

Figure 3.28 Calculated evolution of crest settlement of an 8 m high embankment under a 
top and bottom infiltration, after an initial stage of wetting lasting three days.  

3.5.2 Possibility of additional collapse settlements 
The question of the danger of suffering additional damage, should heavy rains 
occur again, is answered in Figure 3.28, which shows the calculated crest 
settlements for a maintained infiltration after the first three days. Since collapse 
strains are irreversible, only suction values smaller than the suction values attained 
previously are capable of inducing additional collapse strains. In other words, 
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subsequent drying and wetting cycles, which do not take the suction of the soil to 
a lower value than the suction remaining immediately after the initial rains, are not 
capable of inducing collapse strains. The simulation performed in Figure 3.28, 
starts at t = 3 days after the beginning of the assumed infiltration period and 
therefore takes the soil to yet lower suction values, as shown in Figure 3.29. The 
calculated collapse settlements are small: a few centimetres after a continuous 
wetting lasting for a few more days.  

3.5.3 Discussion 
The collapse plastic model developed was deliberately simple and formulated 
under isotropic stress conditions. Yet, it incorporates fundamentals aspects of 
unsaturated soil behaviour. It may be easily generalized by the reader by changing 
and improving some of the assumptions made. The embankment analysis was 
performed under one-dimensional conditions, but a fairly general derivation of the 
basic coupled flow-deformation phenomena in unsaturated soils was given. Again, 
a more precise analysis would require a two-dimensional or a three-dimensional 
approach. But the model computations were generally consistent with the 
laboratory data available and with field observations. In the second case, the 
observed total overall settlement was used, in a back-analysis procedure, to 
approximate two model parameters. Those parameters could be obtained by 
oedometer tests on the as-compacted samples, although information was not 
available. But the overall analysis was able to provide an answer to one of the 
pressing questions asked by the Road Administration, namely if there were further 
risks of dangerous embankment collapse. 
 

 
 

Figure 3.29 Calculated suction evolution of two points within the embankment after an 
initial stage of wetting lasting three days. 
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3.6 Mitigation Measures 
For a given applied confining stress, collapse decreases when porosity and initial 
suction decrease. When compacting wet of optimum the initial suction is close to 
zero and wetting has no effect (the soil is almost saturated). In practice wet of 
optimum compaction is difficult or not advisable to achieve for a variety of 
reasons: trafficability is impaired; dry density decreases when water content is 
increased; in dry regions and summer months, water evaporates fast; and water 
shortage. Increasing dry density is achieved by increasing the energy of 
compaction. For many suitable soils for compaction, the target dry density and 
water content should be located in the vicinity of the Normal and Modified 
Proctor test optimums. In plastic soils, Modified Proctor energy may lead to soil 
expansion when wetted.  

Girona embankments collapsed for two main reasons: the initial water content 
was very low and, therefore, suctions were high. This leads to “open” and unstable 
soil microstructures. In addition, the density achieved was heterogeneous and 
insufficient, with a significant proportion of specimens having densities lower 
than Proctor Optimum (Fig. 3.5). The compaction data on this figure corresponds 
to specimens recovered after collapse; initial densities should be lower than the 
values plotted. 

Concerning the future of the embankments, it was calculated that the 
remaining collapse potential may result in some limited deformations only on the 
occasion of extreme rainfall events more intense than the rainfalls of October 
1994. Such extreme rainfall events have a low probability but, even in this case, 
the calculated settlements may cause some pavement cracking but no serious 
damage to pavements and bridge structures, as in the first wetting. It was 
concluded that this limited damage could be assumed without any further action 
after repairs were made to the affected roads. The transition slabs to bridge 
abutments were repaired. Cavities below them were filled with lean concrete. 
Pavement shoulders were rebuilt and the embankment slopes were taken to its 
initial geometry. Fast growing vegetation was installed on slopes to limit erosion 
to facilitate evapotranspiration (which helps to maintain high suctions within the 
embankment) and to reduce water infiltration. 

3.7 Lessons Learned 

3.7.1 Compaction on the dry side 
Soils compacted dry of optimum may experience significant compressive 
volumetric strains when wetted under load. An additional condition required to 
experience collapse is to compact the soil to a relatively low density. Collapse 
behaviour is easy to identify in practice by means of oedometer tests. They may be 
designed to follow the actual stress path experienced in the field. In the case of 
embankments, a point within the soil experiences, once compacted, an increase in 
confining stress and later, once the embankment is finished, an increase in water 
content at essentially constant stress. This simple history of loading and wetting is 
easily reproduced in an oedometer test. 
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3.7.2 Natural collapsible soils 
Collapse behaviour is also common in natural low density clayey and silty soils 
that are often weakly cemented. They are found in arid climates (loess) and in 
tropical environments (residual soils). 

3.7.3 Suction and stress variables 
The state of the water in a partially saturated soil is conveniently characterized by 
its suction. Under a capillary interpretation, suction is a positive stress equal, in 
absolute value, to the pore water pressure. Wetting leads to a reduction in suction. 
Because of the difficulty in finding a single effective stress, unsaturated soil 
behaviour is defined in terms of two independent stress variables which combine 
total stress and suction. A simple choice was made in the chapter: the two selected 
independent stress variables are total stress and suction. 

3.7.4 The nature of collapse 
Collapse strains are irreversible, i.e., plastic. In the limit, if collapse is induced by 
a full wetting, the soil will not experience further collapse deformations if it is 
later dried and wetted again. Collapse deformations are essentially volumetric, 
conceptually similar to a temperature induced contraction. A collapsed 
embankment not only settles. It reduces isotropically in size and therefore it may 
separate from neighbouring structures such as bridge abutments. 

3.7.5 Capillary rise 
Rainfall or reservoir impounding, in the case of embankment dams, is a common 
situation leading to the increase of water content of unsaturated compacted or 
natural soils. However, capillary rise from shallow water tables may also lead to 
wetting. In periods of heavy rain water tables are likely to rise. This is an 
additional reason for the accelerated wetting of embankments because under these 
circumstances, they are subjected to surface as well as to base infiltration. 

3.7.6 Modelling collapse 
A simple elastoplastic isotropic model has been developed to quantify collapse 
deformations. It is based on a fundamental experimental observation, namely that 
suction increases the apparent preconsolidation  stress of soils. The model is built 
from a proposed variation for this increase in yielding stresses and from some 
assumed compression behaviour of the soil under increasing suction. 

3.7.7  Coupled flow-deformation 
Collapse deformations require an increase in water content. In a field situation, 
water content changes as a result of infiltrating flow, which is, in turn, induced by 
changes in boundary conditions. Suction provides the link between flow and 
mechanical behaviour because suction gradients control flow and suction changes 
control volumetric deformations. This chapter describes a step-by-step procedure 
to derive the field equation for the coupled flow and collapse deformations under 
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one-dimensional conditions. This case is yet a further example of coupled 
problems involving flow and deformation. In addition to the classical 
consolidation analysis under saturated conditions, Chapter 5 will also provide a 
case of coupled flow, deformation, and heat under one-dimensional conditions, in 
the context of rapid landslide analysis. The procedure developed was applied to 
reproduce the collapse deformations observed in embankments subjected to 
rainfall wetting. 

3.7.8 Predicting the future behaviour of embankments 
The coupled model developed is useful to investigate the future behaviour of 
embankments under weather action. The analysis performed on Girona 
embankments suggests that most of the collapse potential of the embankments was 
released during the first heavy rains after construction. The analysis shows that 
further collapse deformations are possible under extreme rainfall events, but they 
are small and unlikely to cause additional damage. 

3.8 Advanced Topics 
Collapse upon wetting is a distinct and fundamental feature of the mechanical 
behaviour of unsaturated soils. It is closely related to the discussion of effective 
stress. The notion of collapse strain could not be reconciled with the concept of a 
single effective stress and models for unsaturated soil behaviour were eventually 
formulated in terms of two independent stress components which combine total 
stress, gas pressure and liquid pressure. The model developed here uses a 
particular choice (net stress and suction) but other alternatives have also been used 
(Gens, 1995). 

The mechanics of unsaturated soils has received increasing attention during 
the past two decades. A comprehensive description of the state of knowledge 
before 1987 is found in Alonso et al. (1987). The first proposal to model 
unsaturated soil behaviour through the concepts of hardening plasticity is also 
described in this reference. Constitutive model development has evolved rapidly 
since 1990. The isotropic collapse model described in this chapter has some 
similarities with the so-called Barcelona Basic Model (BBM) (Alonso et al., 
1990).  

Appendix 3.1 Solving the Coupled Flow-Deformation Equation of the 
Collapsing Embankment 
Changing the notation, Equation (3.36) is written here as 
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Note that γw is constant and  
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are known functions given by Equations (3.5), (3.31) and, from Equation (3.33), 
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Sr is calculated with Equation (3.30) and n varies with the volumetric strains 
according to the integration of Equation (3.23) as follows: 
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∫ ∫  (A3.3) 

A forward finite difference procedure will be used to solve the system of 
equations. The one-dimensional spatial domain is subdivided into n small 
elements of thickness Δz. The zi coordinate of any point is defined by an index i 
such that zi = iΔz. The following indices define singular points: i = 1 corresponds 
to z = 0. The far boundary is located at a distance z = L = 8 m (it corresponds to 
the depth of the embankment) where i = nz.  

Time derivatives of a general function y at any time t, for z = zi can be 
approximated by (Forward Euler Method): 
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where the subscript (zi, t) indicates that the function y is evaluated in the point zi 
and time t. 

The first and second derivatives with respect to z will be approximated by a 
central difference: 
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The term ∂p/∂t given by Equation (3.40) should be also discretized. Because 
of the complexity of this equation it will be approximated by a backward scheme: 
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Since changes in total stress induced by increasing soil saturation are moderate 
and occur slowly in time, this approximation is sufficiently accurate. 

Once the numerical approximations of derivatives are substituted into the 
governing Equation (A3.1), the following discrete equation is obtained: 
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Equations (A3.7) and (A3.8) allow calculating the suction at any point within the 
soil column knowing its value at the previous time in the same point and the 
points just above and below. Initial and boundary conditions should be defined in 
order to initiate the calculation procedure. According to the previous description, 
the initial condition can be written as 

 ( )0, 8 MPa=is z t  for 1,..., Li n=  (A3.9) 

and the boundary conditions for any time as 
 

 ( ) ( )1
, , 0 MPa.

Ln ns z t s z t= =  (A3.10) 

A Fortran program was developed to solve the numerical procedure described 
above for the calculation of the collapse in one dimension and for the boundary 
and initial condition described before. The complete code is given below.  
  
!******************************************************************! 
!               COLLAPSE CALCULATION - PARAMETERS 
!******************************************************************! 
 
      IMPLICIT NONE 
!---------------------------WORKING VARIABLES----------------------!  
      INTEGER :: nz,nt,nw 
      REAL(8) :: tmax,Dz,Dt,Dtw,znt,ff 
      REAL(8) :: param(100),suct0 
      REAL(8) :: gamma_w,gamma_s,Srmax,Srmin  
      REAL(8) :: kappa,lambda0 
      REAL(8) :: K0,p0_RC,lambda_RC,A_krel,b_krel,perm_sat  
      REAL(8) :: alpha,aaa 
      REAL(8) :: height,nn0,ee0,Q,suctBC,Depth_w 
!------------------------------------------------------------------! 
 
!PARAMETERS: 
!Specific weight 
      gamma_w = 0.01   !MN/m2 
      gamma_s = 0.027  !MN/m2 
!At rest earth pressure coefficient 
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      K0 = 0.5 
!Water retention (van Genuchten) 
      Srmax = 1. 
      Srmin = 0. 
      lambda_RC = 0.09 
      p0_RC = 0.05    !MPa 
!Permeability       
      A_Krel = 1. 
      b_krel = 3. 
      perm_sat = 1.e-7*86400   !m/day 
!Compressibility 
      lambda0 = 0.024     
!LC curve 
      alpha = 0.5    !MPa-1 
      aaa = 20. 
!Geometry 
      height = 8.     !m 
       
!INITIAL CONDITIONS 
      !Suction 
      suct0 = 8.      !MPa 
      !Porosity and void ratio 
      nn0 = 0.35 
      ee0 = nn0/(1-nn0) 
       
!BOUNDARY CONDITIONS 
      suctBC = 0.0     !MPa. Suction will be imposed in z=0 and z=8 
 
!DISCRETIZATION 
      nz = 80. 
      tmax = 6.  
      Dz = height/nz  
      Dt = 1.e-6      !days 
     znt=tmax/Dt 
     nt=int(znt) 
 
!PRINT RESULTS 
      Dtw=0.05 
      ff=Dtw/Dt 
      Depth_w = 5   !m Depth at which results in time are printed 
     nw = int(1.*nz/height) 
 
!CALCULATION, PROCEDURE STARTS 
      param(1) = gamma_w 
      param(2) = gamma_s 
      param(3) = K0 
      param(4) = Srmax 
      param(5) = Srmin 
      param(6) = lambda_RC 
      param(7) = p0_RC  
      param(8) = A_Krel 
      param(9) = b_krel 
      param(10) =  perm_sat 
      param(11) = kappa 
      param(12) = lambda0 
      param(13) = rr 
      param(14) = beta 
      param(15) = pc 
      param(16) = alpha 
      param(17) = aaa 
        
       call Integration (nz,Dz,nt,Dt,nw, 
     .                   param,suct0,nn0,ee0,Q,suctBC,ff) 
       end 
 
!*******************************************************************! 
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!       INTEGRATION OF ONE-DIMENSIONAL COLLAPSE  
!*******************************************************************! 
      subroutine  Integration (nz,Dz,nt,Dt,nw, 
     .                         param,suct0,nn0,ee0,suctBC,ff) 
      IMPLICIT NONE 
!-------------------------IN VARIABLES------------------------------! 
      INTEGER,INTENT(IN) :: nz,nt,Model_coeff,BC,nw 
      REAL(8),INTENT(IN) :: Dz,Dt,param(100),suct0,nn0,ee0,suctBC,ff 
!-------------------------------------------------------------------! 
!----------------------WORKING VARIABLES----------------------------! 
      INTEGER   ::  i,j,k,m,mm,iw,ifile 
      REAL(8)   ::  z,time,pp 
      REAL(8)   ::  gamma0,gamma_w,gamma_s,Srmax,Srmin,DSr 
      REAL(8)   ::  kappa,lambda0 
      REAL(8)   ::  K0,C_K0,p0_RC,lambda_RC,C_RC 
      REAL(8)   ::  A_krel,b_krel,perm_sat,d_perm_dSr(nz) 
      REAL(8)   ::  pc,alpha,aaa 
      REAL(8)   ::  height 
      REAL(8)   ::  Dsuct(nz),suct(nz),gamma(nz) 
      REAL(8)   ::  p0(nz),p0old(nz) 
      REAL(8)   ::  Sr0,Sr(nz),perm(nz) 
      REAL(8)   ::  d_Sr_ds(nz),p0ast(nz) 
      REAL(8)   ::  d_p0ast_ds(nz),d_p0ast_dp(nz),d_p_t(nz) 
      REAL(8)   ::  epsvol(nz),d_epsvol_ds(nz) 
      REAL(8)   ::  d_epsvol_dp(nz),Inc_epsvol(nz) 
      REAL(8)   ::  funct_f(nz),funct_g(nz),funct_h(nz) 
      REAL(8)   ::  ee(nz),nn(nz),displacement(nz) 
      REAL(8)   ::  aux(nz),aux2(nz) 
!-------------------------------------------------------------------! 
      !FILE TO PRINT RESULTS 
      open (unit=12, file='AA_Suction.dat', status='unknown') 
      open (unit=13, file='AA_p0ast.dat', status='unknown') 
      open (unit=14, file='AA_p0.dat', status='unknown') 
      open (unit=15, file='AA_displacement.dat', status='unknown') 
      open (unit=16, file='AA_Sr.dat', status='unknown') 
      open (unit=17, file='AA_eps_vol.dat', status='unknown') 
 
      !INITIALIZE 
      iw=0 
      do i=1, nz 
       epsvol(i)=0.0 
       Dsuct(i) = 0.0 
      enddo 
       

!PARAMETERS 
      gamma_w = param(1) 
      gamma_s = param(2) 
      K0 = param(3) 
      Srmax = param(4) 
      Srmin = param(5) 
      lambda_RC = param(6) 
      p0_RC = param(7)   
      A_Krel = param(8) 
      b_krel = param(9) 
      perm_sat = param(10) 
      kappa = param(11) 
      lambda0 = param(12) 
      rr = param(13) 
      beta = param(14) 
      pc = param(15) 
      alpha = param(16) 
      aaa = param(17) 
      !Constant coefficients 
      DSr = Srmax-Srmin 
      C_RC = lambda_RC/(1.-lambda_RC) 
      C_K0 = (1.+2.*K0)/3 
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      !Initial values 
      gamma0 = gamma_w*Sr0*nn0+gamma_s*(1-nn0) 
      do i=1,nz 
        z = Dz*i 
        suct(i) = suct0 
        ee(i) = ee0 
        nn(i) = nn0 
        p0old(i) = gamma0*C_K0*z  
        p0(i) = p0old(i) 
      enddo 
      if (BC.eq.1) then 
       suct(1) = suctBC 
       suct(nz)= suctBC 
      endif 
!--------------------CALCULATION PROCEDURE STARTS-------------------! 
      DO k=1,nt   !Iteration in time  
     !Calculation of variables at each point      
      do i=1,nz 
        z = Dz*i 
        aux(i) = (suct(i)/p0_RC)**(1/(1-lambda_RC)) 
        Sr(i) = DSr*(1.+aux(i))**(-lambda_RC)+ 
     .          Srmin 
        perm(i) = perm_sat* A_krel*Sr(i)**b_krel 
        d_perm_dSr(i) = b_krel*perm(i)/Sr(i) 
        aux(i) = (1+aaa*(1-exp(-alpha*suct(i)))) 
        aux2(i) = lambda0/(1+ee(i)) 
        p0ast(i) = p0(i)/aux(i) 
        d_epsvol_dp(i) = aux2(i)/p0(i) 
        d_epsvol_ds(i) = -aux2(i)*aaa*alpha*exp(-   
     .           alpha*suct(i))/aux(i) 
        aux(i) = (suct(i)/p0_RC)**(1/(1-lambda_RC)) 
        d_Sr_ds(i) = (DSr/p0_RC)*(-C_RC)*(1+aux(i))**(-lambda_RC-1)* 
     .               (suct(i)/p0_RC)**C_RC 
        d_p_t(i) = (p0(i)-p0old(i))/Dt 
        funct_f(i) = nn(i)*d_Sr_ds(i)-Sr(i)*d_epsvol_ds(i) 
        funct_g(i) = Sr(i)*d_epsvol_dp(i) 
        funct_h(i) = d_perm_dSr(i)*d_Sr_ds(i) 
      enddo 
      !Calculation of increment of suction 
       Dsuct(1) = 0.0 
       Dsuct(nz) = 0.0 
      do i=2,nz-1 
         Dsuct(i)=(Dt/funct_f(i))*( 
     .   -(perm(i)/gamma_w)*(suct(i+1)-2*suct(i)+suct(i-1))/(Dz*Dz)- 
     .   funct_g(i)*d_p_t(i)-(1/gamma_w)*funct_h(i)* 
     .   ((suct(i+1)-suct(i))/Dz)**2+funct_h(i)*(suct(i+1)- 
     .   suct(i))/Dz) 
      enddo 
      !Update variables 
      do i=1,nz 
         suct(i)=suct(i)+Dsuct(i)  
         Inc_epsvol(i) = d_epsvol_ds(i) 
    .                   *Dsuct(i)+d_epsvol_dp(i)*d_p_t(i) 
         epsvol(i)=epsvol(i)+Inc_epsvol(i) 
         gamma(i) = gamma_w*Sr(i)*nn(i)+gamma_s*(1-nn(i)) 
         p0(i) = 0. 
         do j=1,i 
           p0(i) = p0(i)+gamma(j)*C_K0*Dz 
         enddo 
         ee(i) = -1.+(1.+ee(i))*exp(-Inc_epsvol(1)) 
         nn(i) = ee(i)/(1+ee(i)) 
         p0old(i) = p0(i) 
      enddo 
     !Calculation of settlements 
      do i=1,nz     
       displacement(i) = 0. 
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       do j=i,nz 
        displacement(i) = displacement(i)+epsvol(j)*Dz 
       enddo 
      enddo 
!-------------------------- PRINT RESULTS -------------------------! 
      time=k*Dt 
      if ((k.eq.2).or.(k.eq.1).or.(mm.eq.k)) then 
        mm=int(ff) 
        mm=mm*iw 
        iw=iw+1 
        ifile=iw+100 
        write (ifile,*) 'Time(days)     ',time 
        do m=1,nz 
         z=(m-1)*Dz 
         write (ifile,'(2(e15.5,1x))') z, suct(m) 
        enddo 
        write (12,'(2(e15.5,1x))') time, suct(nw) 
        write (13,'(2(e15.5,1x))') time, p0ast(nw) 
        write (14,'(3(e15.5,1x))') time, p0(nw) 
        write (15,'(3(e15.5,1x))') time, displacement(1) 
        write (16,'(3(e15.5,1x))') time, Sr(nw) 
        write (17,'(3(e15.5,1x))') time, epsvol(nw) 
       endif 
       ENDDO 
      close(12) 
      close(13) 
      close(14) 
      close(15)  
      close(16) 
      close(17) 
    return 
   end 
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Chapter 4 

Earth Dam Sliding Failure: Aznalcóllar Dam, Spain 

4.1  The Failure 
Mines in the area of Aznalcóllar, a town in the province of Sevilla, southwest 
Spain, have exploited from ancient times a number of metallic minerals (zinc, 
lead, silver) associated with pyritic formations. The process of mineral extraction 
produces large volumes of pyritic tailings which, in the Aznalcóllar mine, were 
stored under water in a large pond area. The pond, whose layout is shown in the 
air photograph of Figure 4.1, is maintained by a perimeter dyke, which was 
conceived as a homogeneous rockfill dam made impervious by an upstream 
mantle of clay. The pond evolved in volume during the lifetime of mining 
operations in order to accommodate the increasing amounts of waste. The 
increasing demand of waste storage capacity was resolved (in the original design) 
by increasing the height and size of the dam in the manner schematically indicated 
in Figure 4.2. 

A small embankment was first built and a small cut-off wall was installed to 
avoid leakages through the upper thin alluvium indicated in the cross-section (Fig. 
4.2). Then, the dam height was increased in a “forward” or “downstream” 
procedure maintaining the position of the upstream face. 

The toe of the downstream slope moved forward and the horizontal size of the 
dam base increased. In the original design, which dates back to 1977, the 
successive downstream slopes were supposed to be parallel to each other and a 
constant width of the dam crest was maintained (Fig. 4.2). 

The initial pond was built in 1978. Twenty-one years later, the dyke had 
reached a height of 28 m. However, the design was somewhat changed, as shown 
in Figure 4.10. The implications of the changes introduced will be discussed later. 

On April 25, 1998, some time during the night, a breach opened in the long 
perimeter dam located in the east side of the tailing’s pond and a catastrophic 
flood of liquefied mine tailings invaded the valleys of nearby rivers (first the 
Agrio river and then the Guadiamar river – a tributary of the Guadalquivir river).  

The acid nature of the tailings and the presence of heavy metals created deep 
concern. Doñana National Park, an emblematic and protected natural environment, 
famous for its unique Iberian fauna, was at risk. 

Figure 4.3 shows a cross-section of the tailings pond in a west-east direction. 
The dyke sits on granular and pervious alluvium (a terrace of the Agrio river), 4−5 
meters thick, which overlies a deep stratum of marine over-consolidated clays of 
tertiary age. The clay, known locally as Guadalquivir blue marl, dips gently (2 to 
4º) towards the SSE.  

The lower boundary of the blue clay is located at a depth of 60 m below the 
dam foundation. The thick clay deposit sits on a pervious aquifer whose 
piezometric level is located at the surface. Therefore, the clay layer is bounded by 
two pervious strata having essentially the same piezometric head. In addition to 
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the sub-horizontal sedimentation planes, the over-consolidated blue clays are 
dissected by vertical joints having smooth surfaces. Three vertical joint families 
were identified, the most prominent one being in the direction NE−SW. 
 

 
 

Figure 4.1 Aerial view of the pond a few weeks after the failure showing the direction and 
dip of stratification planes. 
 

 
Figure 4.2 Aznalcóllar dam according to original project (1977) (Alonso and Gens, 2006). 

Dip: 2º - 4º 
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Figure 4.3 Breach open in the dam. The foreground shows the valley of the Agrio river, 
covered by a thick deposit of mine waste (acid liquefied pyrites) (Alonso and Gens, 2006).  
 
 

 
 

(a) 

 
(b) 

 

Figure 4.4 (a) Plan view of the pond; (b) representative cross-section in a west-east 
direction (Alonso and Gens, 2006). 
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Figure 4.5 Displacement of the dam, indicated by the plotted segments, which join the 
same points of the dam crest before and after failure. The discontinuous line indicates the 
contour of the slide (Alonso and Gens, 2006).  

 
A comparison of the topography before and after the failure (Fig. 4.5) was 

useful to identify the origin of the failure. It was discovered that a 600 m long 
stretch of the southern portion of the dyke facing the Agrio river had displaced 
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forward, an average distance of 50 m. The plot in Figure 4.5 shows a series of 
segments which connect two equivalent points in the dam crest, before and after 
failure. The written number indicates the travelled distance.  

For some particular marks, two numbers are indicated (for instance, for mark 
H-13, Dh = 49.1 m and Dv = -1.4 m). The two numbers show the horizontal 
distance (Dh) travelled by the dam and the vertical distance (Dv). The negative sign 
implies a fall and it indicates that the dam slid forward in a plane dipping gently 
towards the east. The calculated dip of the segments (atan(Dv/Dh)) is close to 2−3º. 
This information was interpreted as a strong indication that the failure plane was 
actually a sedimentation plane. Downstream, a few electricity towers were also 
displaced by the slide. Horizontal and vertical displacements of these towers were 
also measured. The positive Dv numbers indicate now a ground heave. These 
towers were located in the passive, resisting side of the slide.  

The cross-section of the southern dyke after the failure, determined by the 
information provided by borings and exploration pits, is indicated in Figure 4.6a. 

 

 
 

Figure 4.6 Cross section of Profile 3 (location in Fig. 4.1): (a) after failure (the position of 
the borings drilled is shown); (b) reconstructed position of the initial failure and sliding 
planes, at the start of the sliding motion (after Moya, 2004). 
 

The section corresponds to the cross-section identified as Profile 3 in Figure 
4.1. The figure shows that the dam moved forward, sliding on a sedimentary plane 
located approximately at a depth of 14 m below the axis of the dam. The upper 
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figure was interpreted by Moya (2004), who was able to plot the original geometry 
of the incipient failure and the shape of the sliding surface as shown in Figure 
4.6b.  

The dam motion originated a large upstream void, which was limited by an 
essentially vertical plane located in the position of the toe of the upstream dam 
slope. This observation implies that the stored tailings were capable of 
maintaining a stable vertical “cliff”, a result which has interesting consequences 
regarding the motion of the dam, discussed further in Chapter 6. The failure 
surface daylights downstream in more than one sliding surface. The motion 
created an accumulation of layers that resulted in the elevation of the ground, 
immediately downstream of the dam (recorded also by the displacement of the 
electric towers in Fig. 4.5). Maximum elevations of 8−10 m were measured. It was 
also noticed that the motion of the dam had a slight rotation towards the south. 

The pond (Fig. 4.4) was divided in two parts (or “basins”), separated by a 
jetty. The southern one stored fine pyritic tailings. In the northern one, somewhat 
coarser pyroclastic granular waste was stored. The upper level of the waste in the 
pond was approximately the same in both basins. The direction of the dam 
limiting the northern basin is oriented in a direction close to north-south. The dyke 
direction in the southern basin changes approximately 20º with respect to the 
northern dyke direction and faces an ESE direction. 

Interestingly, despite being essentially identical in terms of geometry and 
geotechnical conditions, the northern dyke remained still. As a result, a breach 
was opened at the junction between the two dykes. An explanation for this 
behaviour will be given later in this chapter. 

The vertical jointing of the clay also controlled the geometry of the slide in its 
upstream end: the vertical limiting surface within the clay in Figure 4.6b is 
probably a consequence of the well-developed system of vertical discontinuities. 
On the other hand, the orientation of the failure surface crossing the dyke (at the 
position of the breach) follows a NE−SW orientation which agreed with the 
direction of the dominant family of vertical discontinuities. 

4.2  Geotechnical Properties of Tailings and Foundation Clay 
The tailings of the southern basin may be described as a non-plastic fine and 
uniform silt. The main mineral is pyrite (iron disulphide, S2Fe). Other metallic 
minerals and chemical compounds in minor proportions complete the composition 
of the tailings. The silt is very homogeneous (coefficient of uniformity = 4.7) 
around an average grain diameter of 10 µm. Pyrite is heavy (solid unit weight γs = 
43 kN/m3) and it leads to a high natural density of tailings (average saturated unit 
weight γt = 31 kN/m3) significantly higher than most natural soils. 

Triaxial tests on undisturbed specimens resulted in a drained friction angle of 
37º. It was also found that these pyritic tailings had a significant cementation (the 
unconfined compression strength of saturated specimens ranged between 100 and 
200 kPa in most of the tests performed). Its permeability is low (10-7 to 10-6 cm/s), 
a value consistent with the grain size distribution. 

The lower blue clay is a uniform deposit of high plasticity clay (wL= 63−67%; 
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IP = 32−35%; clay content = 47−58%) which classifies as CH or MH. The water 
content (30−35%) is close to the plastic limit (it indicates high consistency). The 
void ratio ranges between 0.8 and 1. Clay minerals (70% of the total) include 
calcic smectite (35%), illite, and kaolinite. The remaining non-clay minerals are 
calcite and quartz. 

 

 
 

Figure 4.7 Drained direct shear test on the blue clay. Effective normal stress: 400 kPa 
(Alonso and Gens, 2006).  

 
This clay exhibits a characteristic brittle behaviour. This is shown in Figure 

4.7. Peak strength (τp) is reached for a small relative displacement (dp < 1 mm) in 
drained direct shear tests. The loss of strength immediately after peak (Δτb) is also 
rapid. The strength continues to drop as relative displacement accumulates. Shear 
tests on natural discontinuities and ring shear tests indicated a residual friction of 
11º, a value consistent with the mineralogy of the clay. 

A synthesis of strength tests is given in Figure 4.8. The plot highlights the 
brittle nature of the clay and the rapid loss of strength as the relative displacement 
between shear planes, δ, increases. The peak envelope is characterized by pc′  = 65 
kPa and p′φ = 24.1º. It takes a small relative displacement (6 mm) to eliminate any 
apparent drained cohesion and to bring the friction angle down to 18−20º. 
Residual conditions require higher relative displacements, in the order of a few 
centimeters.  

Oedometer tests provided the following range of values for the coefficient of 
consolidation (cv = 0.5 to 31.5 10−× cm2/s) and permeability (K = 2 to 97 10−×  
cm/s), a very low value. 
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Figure 4.8  Strength envelopes of Guadalquivir blue clay based on direct shear tests. 
Strength is controlled by the relative shear displacement, δ (after Alonso and Gens, 2006).  

4.3  Water Pressures and Stresses in the Foundation 

4.3.1 Water pressure measurements 
After the failure, borings were performed at different locations to investigate 
subsoil conditions. Borings were arranged in “profiles” in order to provide 
representative cross sections of the dam. Two of them (Profiles 1 and 3) are shown 
in Figure 4.1. Profile 1 was located in the northern dyke, which remained stable. 
Therefore, it provides, as a first approximation, the subsoil conditions existing in 
the failed dam before the accident. Vibrating wire piezometers were located in 
three borings S1−1, S1−2, S1−3 at two elevations (piezometers P1 and P2 in Fig. 
4.9a). Measured pore pressures after stabilization are also shown in Figure 4.9a. 
Two representations are given: a vertical segment equivalent to the column of 
water and a plot in a horizontal scale in order to provide a better picture of pore 
water pressure variations with depth. Also indicated in the figure is the hydrostatic 
distribution of pressures associated with the upper boundary conditions. The 
measured pressures indicate a marked vertical gradient within the upper 20 m of 
blue clay. Excess pressures dissipate towards the pervious granular layer 
underlying the dam where a phreatic surface is permanently established. However, 
upstream of the cut-off wall, which was built at the start of dam construction, the 
boundary water pressure is controlled by the level of the reservoir (the tailings 
were permanently submerged in the deposit). The estimated profiles of hydrostatic 
pressures at the position of the three boreholes represented in Figure 4.9a (S1−1, 
S1−2, S1−3) are also given. 

It was realized that existing pore pressures at the elevation of the failure 
surface were unexpectedly high. This is a very relevant result which provided a 
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clue for the instability of the dam. The high existing pore pressures could have 
reduced the available strength on potential failure surfaces to low values. 
However, Profile 1 is not in the failed zone. The reported pore pressures were 
measured a few months after the failure and the modifications of the pond 
conditions since the time of the failure had been significant (outflow and 
associated erosion of tailings and a reduction of the water level in the pond).  

 

 
 

Figure 4.9 Cross-section at Profile 1 (see position in Fig. 4.4) in the non failed part of the 
dam (Gens and Alonso, 2006): (a) Measured pore water pressure; (b) comparison of 
calculated and measured pore water pressure.  
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But data on Profile 1 are very useful to validate any calculation procedure for 
water pressures, a key issue in Aznalcóllar failure. Once validated, the procedure 
could be applied to estimate the conditions of the failed dam immediately before 
the rupture. 

A simple calculation method may be devised by combining some classical 
solutions of the theory of elasticity and the one-dimensional solution of the 
consolidation problem (Terzaghi, 1943).  

 

 
 

(a) 
 

 
 

(b) 
 

Figure 4.10  (a) Evolution of the dam cross-section; (b) increase in dam height (Gens and 
Alonso, 2006).  

4.3.2 Evolution of the dam height 
The actual evolution of cross section geometry and dam height along the years 

is shown in Figure 4.10. The plot (Fig. 4.10a) shows that the original dam cross 
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section (Fig. 4.1) was somewhat changed. The dam lost its symmetry and a 
downstream steeper slope (39º against 30º in the original design) was introduced. 
In addition, the crest width was substantially increased in 1998, 10 years after the 
initiation of construction in 1988. The height of the dam increased at an 
approximately constant pace (1.5 m/yr) in the period 1978−1990 (Fig. 4.10b). The 
rate of increase of dam height slowed thereafter for a few years to increase again 
in the two years previous to the rupture.  

4.3.3 A simple calculation model and its implications 
A simple procedure to calculate stress and pore water pressures in the foundation 
soil under the evolving geometry of the dam was developed. Total stress will be 
first calculated. Then it will be accepted that the increase in pore pressure induced 
by the (sudden) application of a total stress is given by the increment of mean 
stress (this is the case in an elastic porous media). Excess pore water pressures 
will then be dissipated towards the upper pervious boundary.  
 
a) Calculation of total stresses 
 

Consider the elastic solution for an embankment loading of infinite lateral extent 
in one direction (plane strain conditions) shown in Figure 4.11. 
 

 
 

Figure 4.11 Embankment loading of semi-infinite extent. 
 

The state of stress (σz,σx,σxz) at arbitrary Point A (xR, zR) is given by (Poulos 
and Davis, 1974) 
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 ( )3 , , , ,m
xz R R

zp p f x z a b
a

− ⎛ ⎞τ = α =⎜ ⎟π π⎝ ⎠
 (4.1c) 

where 

 ,m Rx b x= −  

 ,m Rz z=  

 R2= ( )2 2 ,m mx a z− +  

 R1= 2 2 ,m mx z+  

 1 atan( / ),m mx zβ =  

 ( )( )2 atan / ,m mx a zβ = −  

 1 2α = β −β  

and p is the maximum stress applied by the embankment.  
Consider now, in Figure 4.12, the situation of the first stage of construction of 

the Aznalcóllar dam. Tailings and rockfill have significantly different total unit 
weights (γt and γr). It was mentioned that γt = 31 kN/m3. The rockfill may have a 
natural unit weight of the order of γr = 19 kN/m3.  

The load applied by dam and tailings (Fig. 4.12a) may be viewed, with 
sufficient accuracy, as indicated in Figure 4.12b. This interpretation facilitates the 
justification of the superposition indicated in Figure 4.12: the external load is 
obtained by superimposing two semi-infinite embankment loadings, those shown 
in Figures 4.12c and 4.12d. The first one (Fig. 4.12c) has a uniform specific 
weight of γr and the second one (Fig. 4.12d), located in a different position with 
respect to the reference system (xR, zR), introduces the excess of stress applied by 
the heavy tailings, not accounted for in Figure 4.12c. 

Symbolically, it could be written, with reference to Figure 4.12  

 (a) = (b) = (c) + (d).  (4.2) 

Equations (4.1a) to (4.1c) are now applied to the geometry of Figures 4.12c 
and 4.12d and the results are added. 

Note that the value of p in the first case is p1 = γr h and in the second case, 
( )2 t rp h= γ − γ . Therefore, the stress in point A will be given by 

 ( ) ( ) ( )1 1 1 1 2 2, , , , , , ,t rr
z R R R R

hh f x z a b f x z a b
γ − γγ

σ = +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦π π
 (4.3a) 
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 ( ) ( ) ( )2 1 1 2 2 2, , , , , , ,t rr
x R R R R

hh f x z a b f x z a b
γ − γγ

σ = +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦π π
 (4.3b) 

 ( ) ( ) ( )3 1 1 3 2 2, , , , , , .t rr
x z R R R R

hh f x z a b f x z a b
γ − γγ

τ = +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦π π
 (4.3c) 

 

 
 

Figure 4.12 Superposition of solutions to solve the stress distribution for the dam and 
pond.  
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At this point, it is convenient and sufficiently accurate to assume that the 
“continuous” evolution of dam geometry was actually made in a number of finite 
jumps. This hypothesis facilitates the calculations of pore water pressure 
dissipation. The actual sequence of height jumps assumed is also indicated in 
Figure 4.10. Jumps are made more frequent when the rate of loading is higher. 
Consider now two successive dam geometries (I and II) in Figure 4.13. 

The total stress, when II is built, will be a function of geometry II through 
Equations (4.3a) to (4.3c). However, the analysis of pore pressures requires the 
calculation of the loading increments because each one of them marks the 
beginning of a consolidation process and their origin is changing, as shown in 
Figure 4.10. 

 
 

Figure 4.13 Geometry of two successive positions of the dam. 
 

The jump in stress when geometry I changes (instantaneously) into II is given by 

 ,z z z
ΙΙ ΙΔσ = σ −σ  (4.4a) 

 ,x x x
ΙΙ ΙΔσ = σ −σ  (4.4b) 

 ,xz xz xz
ΙΙ ΙΔτ = τ − τ  (4.4c) 

where stresses are given in Equations (4.3) and (4.1) and the superscripts (II) and 
(I) refer to the two geometries indicated in Figure 4.13. 
 
b) Pore water pressures 
 

It will be assumed that the instantaneous increase in pore water pressure when the 
dam “II” is applied over dam “I” (Fig. 4.13) is given by the increment of mean or 
“octaedral” stress: 

 
( ) ( )( )

0 ( , )
3

1
,

3 3

x z y
oct

x z x z x z

u x z
Δσ + Δσ + Δσ

Δ = Δσ =

Δσ + Δσ + ν Δσ + Δσ + ν Δσ + Δσ
= =

 (4.5) 
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where the condition of plane strain (εy = 0) is introduced, assuming elastic 
conditions. In fact, if the soil is assumed elastic, shear induced dilatancy is not 
present and the initial pore pressure is given by the increase in mean stress.  

Once generated at each of the loading jumps, pore pressures will dissipate in 
time. Consider again Point A (xR, zR) and the problem of finding its pore pressure 
at the time of failure, tf, when it has experienced the stress history associated with 
embankment and tailing’s pond construction. If the set of time instants at which 
loading jumps are applied is t1, …,tN, the pore pressure at tf will be obtained by 
superposition of a set of N consolidation records, 

 ( )
1

( ) ,
N

A f A f i
i

u t u t t
=

= Δ −∑  (4.6) 

where (tf − ti) is the dissipation time for each of the instantaneous increments of 
loading in which the history of dam construction has been divided. 

We are interested in changes in shear and effective stresses in the proximity of 
the dam; let us say the 20 upper meters of the clay foundation. The lower 
boundary of the deep blue clay, being 60 m apart, has no effect on the dissipation 
conditions of the upper levels. In addition, horizontal flow is probably of minor 
importance, given the high vertical gradients induced by the top pervious 
boundary. Therefore, a one-dimensional vertical dissipation of pore pressures will 
be assumed. Furthermore, given the thickness of the blue clay layer, the clay 
stratum may be considered to be semi-infinite. 

The solution of the one-dimensional consolidation problem of a semi-
infinite stratum subjected to a uniform increase in pore water pressure, u0, is given 
by the expression (Scott, 1963), 

 ( , ) erf ,
2

ZW Z T
T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (4.7) 

where W is a dimensionless pore water pressure (W = u/u0), Z is a dimensionless 
depth (Z = z/H) and T is the time factor (T = cvt/H2); u0 is the initial increment of 
pore pressure, H is any reference distance, which is interpreted as the thickness of 
an upper clay layer, and vc  is the consolidation coefficient. The error function is 
defined as 

 
2

0

2erf( ) d .
x

tx e t−= ∫π
 (4.8) 

The dam and tailings reservoir loading increments induce profiles of initial 
pore pressure, which, in general, are not uniform in depth. However, the initial 
distribution of excess pore pressures is fairly uniform under the reservoir and part 
of the dam. The simple assumption made, however, is that the local evolution of 
excess pore water pressures is given by  

 ( ) ( )0, , ( , ) , .u x z t u X Z W Z TΔ = Δ  (4.9) 
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These values are then used in Equation (4.6) to find pore pressures due to the 
history of loading. This approximation was shown in Gens and Alonso (2006) to 
provide very similar results to a finite element two-dimensional coupled flow-
deformation analysis. 
 

 
 

Figure 4.14 Mobilized friction angle on the position of the failure plane in the blue clay 
(Gens and Alonso, 2006).  
 

Once pore pressures are calculated, total and effective stress can be found at 
any point of the foundation during the entire operation of the dam. 

The procedure described above was validated against the recorded pore 
pressures in piezometers located in Profile 1 (Fig. 4.9b). Two calculations, for a 
horizontal plane joining piezometers P1, are shown in the figure. They correspond 
to two values of cv, namely 310− cm2/s and 32.3 10−× cm2/s.  

Actual measurements fit well between the two plotted approximations. The 
curve for cv = 310− cm2/s is closer to the measured pore pressures in the 
downstream side of the dam, a critical area to interpret stability conditions, as 
discussed later. Vertical profiles of calculated pore pressure (the shaded area) 
show the response associated with the two cv values mentioned. Again a 
reasonably good agreement with measurements is found. A value cv = 310− cm2/s 
was henceforth applied in the calculations. 
 
c) Mobilized shear stresses in dam foundation 
 

Consider now in Figure 4.14 the forward construction of the dam in the failed 
area. Attention is paid to the shear stress ( xyτ≡τ ) development at the position of 
the failure plane (it was simplified as a horizontal plane, 14m below foundation 
level). Rather than directly plotting τ, it is more meaningful to plot the stress ratio 
( n′τ σ ) where n′σ  is the effective normal stress on the plane, or, alternatively, the 
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mobilized friction angle defined as mob′φ = atan( n′τ σ ).  
This mobilized friction angle, mob′φ , in Figure 4.14, may be directly compared 

with the strength envelopes of the blue clay given in Figure 4.8. Each one of the 
curves plotted corresponds to the indicated time (in days) after the beginning of 
dam construction. The figure also shows the geometry of the dam for some 
particular times. The values of τ  and zn σ≡σ  were calculated through Equations 
4.3c and 4.3a. The pore pressure at each time instant was approximated as 
described in the previous section.  

The mobilized friction angle advances with the dam, moving forward. The 
curves exhibit a significant maximum, which is located on the vertical of the 
downstream toe of the dam. Once a maximum is reached at a particular location, 
the forward motion of the dam implies a reduction in shear stress and therefore the 
mobilized friction is reduced. A maximum angle close to 40º is calculated 10.3 yrs 
after the beginning of construction (at around 1988). Later, the reduced rate of 
dam heightening beyond 1990 resulted in a sustained value of the mobilized 
friction on the potential failure plane at approximately mob′φ = 35−37º. 

The calculated maximum values of mob′φ are high values that are not resisted 
by the blue clay except if some effective cohesion is operating. As soon as some 
minor relative displacements (of tectonic origin, for instance) eliminates the 
apparent effective cohesion, the clay will not be able to resist the mobilized 
friction angle applied by the dam. 

Therefore, in order to maintain equilibrium, some shear stress, which cannot 
be resisted by the blue clay under the toe of the downstream slope, will be 
transferred to points nearby, increasing in turn the mobilized friction under the 
entire dam foundation. This process is known as progressive failure. In view of 
Figure 4.14, this phenomenon could have started for a dam height of 18 m, at 
around 1986. 

The value of mob′φ was calculated for the cross-sectional area of the foundation 
and plots of interpolated contours of mob′φ were drawn for several geometries of the 
advancing dam.  

The results are given in Figure 4.15. The figure shows that the maximum 
value of ( n′τ σ ) is reached at a certain depth under the downstream toe of the 
dam. This depth changes slowly as the size of the dam increases. This critical 
depth is controlled not only by the dam cross-section but also by the rate of 
dissipation of excess pore pressures. It is expected that the progressive failure 
mechanism would develop around the maximum values of ( n′τ σ ) in a process of 
shedding shear stress towards the surrounding foundation soil. Therefore, the 
curve joining the position of maxima (shown in Fig. 4.15c) is a reasonable 
position of the sliding surface and indicates also the length of a “damaged” band. 
The position of this line is quite close to the actual elevation of the failure surface 
identified in the field. 
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Figure 4.15 Mobilized friction angle in the foundation for three positions of the dam (Gens 
and Alonso, 2006). 
 

This simple analysis, which makes use of the classical theories of elasticity 
and one-dimensional consolidation, is capable of providing an interesting insight 
into the nature of the shearing mechanism acting on the foundation during the 
forward construction of the dam. 

4.4  Limit Equilibrium Analysis 
Failure conditions in global terms can be investigated by means of a limit 
equilibrium analysis. The objective is now to find, by means of a back analysis of 
the failure, the average friction angle prevailing on the sliding surface. It will be 
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assumed that effective cohesion was no longer available after the progressive 
failure mechanism mentioned above. 
 

 
 

Figure 4.16 Model for the limit equilibrium analysis of the main wedge of Aznalcóllar 
slide. 
 

Consider in Figure 4.16 a representative cross-section of the failed dam. The 
figure reproduces the reconstructed shape of the failure as revealed by field 
observations (Fig. 4.6b). It incorporates the following observations and 
interpretation of field data: 

- The slide is limited in its upstream part by an essentially vertical wall at the 
position of the upstream toe of the dam. This vertical plane reflects the 
structure of the clay, described by a few families of vertical discontinuities 
and the sub-horizontal sedimentation planes. The cementation of tailings 
also explains that they were able to maintain a stable vertical cliff after the 
slide. 

- The sliding surface follows a stratification plane. The inclination of the 
basal sliding plane is somewhat lower than the dip of the strata (estimated 
in the range 2−4º in field surveys). This geometry implies that the depth of 
the failure surface increases in the direction of motion. 

- The failure mechanism ends, in the downstream direction, in a passive 
wedge (Fig. 4.17). This wedge does not start directly below the dam toe but 
at a distance of 55 m, following the interpretation of the initial shape of the 
failure surface in Figure 4.6a. The passive wedge is a simplified 
interpretation of the folded strata discovered by trenches performed after 
failure. 

- Therefore, the mechanism is assumed to be described by a large wedge, 
which includes the dam, a mass of tailings overlying the upstream dam 
slope, and an exit passive wedge that offers a reaction against sliding. A 
vertical surface is assumed to be the interface between the two wedges 

4.4.1 Backanalysis of failure 
The upstream vertical surface receives the thrust exerted by the tailings in the 
upper part, by an intermediate granular layer 4 m thick, and by the lower clay. If a 
fissure was open in the clay, previous to sliding, as a consequence of the tailings 
thrust against the dam and the presence of vertical discontinuities, it would have 
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been probably filled with saturated tailings. Then, under the hypothesis of active 
conditions, the following total horizontal force is calculated against the sliding 
body: 

 2 2
1 1

1 1( ) ( ) ,
2 2hi hi hi a t wF F U K H e H e′ ′= + = γ + + γ +  (4.10) 

where ( ) ( )tailings tailings1 sin ' / 1 sin 'aK = − φ + φ is the active Rankine coefficient for 

the tailings, t′γ  is the effective unit weight of tailings, γw is the unit weight of 
water, H is the dam height and e1 the thickness of the slab of moving soil directly 
under the toe of the upstream dam slope.  

The weight of the main sliding wedge is made of three components: 

- tailings:  
2

1

1 ,
2 tan

t
t

H
W

γ
=

α
 (4.11) 

where α1 is the slope angle of the upstream slope of the dam; 

- dam:  
2 2

1 2

1 1 ,
2 tan 2 tan

r r
d r

H HW Crest Hγ γ
= + γ +

α α
 (4.12) 

where α2 is the slope angle of the downstream face of the dam,  Crest  is the width 
of dam crest and γr  is the specific weight of the dam rockfill; 

- soil slab:  ( )( )soil 1 3 dam
1 55 ,
2ss bW e e L= γ + +  (4.13) 

where γsoil is the average effective unit weight of the foundation soil, Lbdam the 
length of the base of the dam and e1 and e3 are conveniently defined in terms of 
the thickness of soil slab under the center of the dam base, eR, as follows (Fig. 
4.16): 

 dam
1 tan ,

2
b

R b
L

e e= + α  (4.14) 

 dam
3 55 tan

2
b

R b
L

e e ⎛ ⎞= + + α⎜ ⎟
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 (4.15) 

where Lbdam is the length of the base of the dam and αb is the slope of the sliding 
plane. Lengths are expressed in meters. 

Consider now the passive wedge resisting the slide in Figure 4.17. The water 
pressure forces against the wedge are assumed to be given by a hydrostatic 
condition associated with a water level at the surface. They are given by, 

 2
3

1 ,
2hp wU e= γ  (4.16) 
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2
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 (4.17) 

where αe is the exit inclination of the lower sliding surface of the passive wedge. 
Field observations indicated that αe is close to 20º. 
 

 
 

Figure 4.17 Passive wedge. 
 

The weight of the wedge is given by 

 soil

2
31 .

2 tanp
e

e
W

γ
=

α
 (4.18) 

The system of forces in Figure 4.17 must be in equilibrium. Shear S forces are 
related to effective N ′ forces through the Coulomb failure criterion. Since the 
effect of the upper granular layer is very small, the effective friction parameter is 
taken to be equal to the drained clay friction, b′φ . Imposing the balance of forces 
in vertical and horizontal direction,  

 cos cos sin 0,p e p e p vp p eN U W S S′ α + α − − − α =  (4.19) 

 cos sin sin 0,hp hp p e p e p eF U S N U′ ′+ − α − α − α =  (4.20) 

where tanp p bS N ′ ′= φ  and tanvp hp bS F ′ ′= φ . 
These two equations will enter the equilibrium of the main wedge.  
Pore pressures on the sliding plane have already been determined by the 

simplified procedure described above (see Fig. 4.9). They are plotted in Figure 
4.18 in a more simple way in order to facilitate the calculations. They correspond 
to the date of the failure and are expressed in terms of water heads (in meters). 

The integration of these pore pressures along the base sliding surface provides 
the water pressure force, U (in kN/m if lengths are in meters). 

  (4.21) 1
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The balance of vertical and horizontal forces of the main wedge leads to the 
following expressions 

 cos 'cos ' tan sin 0,t d ss vp b b b bW W W S U N N ′+ + − − α − α − φ α =  (4.22) 

 ' tan cos sin 'sin 0,hi hi hp hp b b b bF U F U N U N′ ′ ′+ − − − φ α + α + α =  (4.23) 

which can be expressed in terms of quantities previously defined.  
 

 
 

Figure 4.18 Pore pressures against the sliding surface. 
 

Equations (4.22) and (4.23) were solved for the effective friction angle 
necessary to obtain strict equilibrium, b′φ . The system of Equations (4.19), (4.20), 
(4.22), and (4.23) is nonlinear in b′φ  but it can be easily solved in an Excel sheet 
with the help of the command “solver”.  

The following parameters define the geometry of dam actually built and the 
failure surface as well as additional material parameters: 

 
αb = 2º αe = 20º  α1 = 29º α2 = 39º 
γsoil = 19.5 kN/m3 γw = 10 kN/m3 γr = 19 kN/m3 γt = 31 kN/m3 

tailings' 37ºφ =  Crest = 26 m H = 27 m eR = 13.4 m 
 
When these values are introduced in the above equations, the solution is b′φ = 
18.09º. 

This value of the effective friction angle bφ′  is intermediate between the peak 
and residual friction angles. It is the average value between the two. However, one 
should imagine that, immediately before failure, some parts of the failure surface 
(namely those directly affected by the forward construction of the dam) would be 
close to residual conditions. Others would maintain strength properties closer to 
peak values: those parts not strained by the dam construction. The fact that the 
calculated friction for equilibrium is intermediate between peak and residual 
friction supports the mechanism of progressive failure. It also indicates that 
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immediately after the initiation of the failure, there is a danger of progressive 
decay of friction towards the residual value (11º). The implications of this 
potential for further reduction of available strength at the sliding surface will be 
addressed in Chapter 6. 

4.4.2 Undrained analysis 
The main hypothesis so far is that the failure was a drained process. However, the 
low clay permeability also suggests that undrained conditions would also be a 
possibility. If the soil fails in an undrained manner, pore pressures are generated 
during the shearing process. The undrained strength, cu, not only reflects the 
drained strength parameters but also the dilatancy conditions of the soil. The 
undrained analysis of the real geometry of the failure surface may be easily 
performed with the help of the set of preceding equations. Friction b′φ  is reduced 
to 0º and the shear forces at the sliding plane or at interfaces are simply the 
product of cu by the involved length. The preceding set of Equations (4.19), (4.20), 
(4.22) and (4.23) was solved for cu and strict equilibrium is found for cu = 70 kPa. 
This value should be compared with the unconfined compression strength 
measured in specimens recovered in borings. Their qu values increase slightly with 
depth. Average values at the elevation of the failure plane determined on 
recovered specimens fall in the range 250 to 300 kPa. Therefore, the safety factor 
against undrained failure is about 1.8−2.0 (undrained strength is half the value of 
the unconfined compression strength).  

Undrained conditions in this overconsolidated foundation clay do not explain 
the failure. This is usually the case in overconsolidated clays, specially the plastic 
materials, which may exhibit a relatively high undrained strength (due to dilatancy 
and the associated increase in effective stress during undrained loading) and, at the 
same time, a reduced drained friction angle, prone to decrease towards residual 
conditions as shear straining accumulates. 

Before discussing the lessons offered by this case, we will examine the failure 
from a different perspective, namely the three-dimensional nature of the problem. 

4.4.3 Three-dimensional effects. The role of bedding planes 
It was previously noted that the retaining dyke for the northern basin remained 
intact after the sliding failure of the southern dyke. However, the geotechnical 
conditions and dam geometry were essentially the same in both basins. A 
satisfactory explanations may be found if the three-dimensional nature of the 
sliding motion is analysed.  

The situation is illustrated in Figure 4.1, which shows the direction and dip of 
sedimentation planes and its relationship with the expected direction of tailings 
thrust against the dykes. In the northern dyke, the thrust is sub-parallel to the 
direction of sedimentation planes. 

However, in the southern dyke, the tailing’s thrust is closer to the dip 
direction. It may be expected that this situation, other conditions being equal, will 
favour a slide of the southern dam. The problem is exceedingly difficult if 
considered in its entire complexity. 
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Figure 4.19  (a) Slice of the potential slide sitting on the sliding surface; (b) forces 
projected on the sliding plane; (c) vector composition of forces (Gens and Alonso, 2006).  

 
Considerer, however, the simplified approach illustrated in Figure 4.19a. A 

slice of unit thickness of the actual slide, which includes the entire dam and a 
“slab” of foundation soils of approximately 14 m in thickness, is sitting on the 
sliding plane, which is actually a sedimentation plane. These planes are oriented in 
a direction N60ºE and its true (maximum) dip is close to 3º. 

The slice is now viewed as a rigid block, sliding on its base. This block 
receives the following external forces: its own weight, ,W and the thrust imposed 
by the tailings.  

It will assumed that the latter is represented by a force vector F  acting 
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normal to the direction of the dam and parallel to the sliding plane (Fig. 4.19c). 
Now, the conditions of the northern and southern basins only differ in the 
direction of the force vector F . In the northern basin, F  is closer to the direction 
of the sedimentation planes and therefore the tailings thrust “sees” the sliding 
plane with an apparent direction close to 0º. By contrast, the change in direction of 
the southern dyke, implies that the motion of the slide is closer to the dip direction 
of sedimentation planes. The tailing thrust in the southern dyke “sees” an apparent 
inclination of the sliding plane close to 2º. 

The problem now is to find the necessary forces, ,F  to make the dam 
unstable, having in mind that vector F  has different directions in northern and 
southern basins. 

Figure 4.19a shows the force vectors acting on the unit slice. The weight, ,W  
will be divided into the normal component, nW , and the shear component sW  in 
the direction of the dip of the sedimentation planes. Also indicated are the thrust 
forces, ENorth and ESouth, of the two dyke sectors (northern and southern). 

In Figure 4.19b, force vectors are represented in the plane of the clay strata. 
The two axes plotted coincide with the strata direction (horizontal axis) and the 
dip direction (vertical axis). For a purely frictional motion, the condition of force 
equilibrium reads 

 ' tan ,s n bR F W W ′= + = φ  (4.24) 

where R  is the resultant of frictional forces in the direction of sliding, 
,n nW W U′ = −  cosn bW W= α  and sin ,s bW W= α  U is the force resultant of pore 

pressure acting against the sliding surface and αb is the dip angle. R  has two 
components in the axis of Figure 4.19b: 

 ( )cos , sin sin ,bR F F W≡ α α + α  (4.25) 

where α defines the direction of the force F  with respect to the direction of 
sedimentation planes. Taking (4.25) into account, the equilibrium Equation (4.24) 
becomes, 
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 (4.26a) 

or, 

( ) ( ) ( )2 2 22 22 sin sin sin cos tan 0.b b b bF F W W W U ′+ α α + α − α − φ =  (4.26b) 

This equation provides the necessary force, F, to initiate the sliding motion as a 
function of the direction α. The remaining forces in Equation (4.26b) are known. 
It has been estimated that W = 100,428 kN/m and U = 70,682 kN/m for a slice 
one meter thick. Previous analysis indicate that b′φ = 18.09º.  
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Equations (4.26) were represented in a polar diagram (Fig. 4.20) showing 
values of F for varying α angles. The direction of the tailing’s thrust for the 
northern and southern basins is indicated in the plot (α = 13º, α = 32º). The 
corresponding forces to initiate sliding are 5.27 MN/m (northern basin) and 4.11 
MN/m (southern basin).  

It thus appears that the force needed to make unstable the dyke in the southern 
basin is substantially lower than the force necessary to initiate the slide in the 
northern dike. If the calculated force for the southern basin makes it unstable, the 
safety factor of the northern dyke against sliding would be 1.28 (= 5.27/4.11). This 
result explains that a failure of the northern dyke was unlikely. Note that this is an 
approximate calculation since there are other aspects not included (the resistance 
of the exit passive wedge in particular). They primarily serve to compare the effect 
of the dyke direction on stability conditions. 

Equation (4.26b) is actually the equation of a circle. If plotted in the Cartesian 
axis ( cosx F α= , siny F α= ), which represents the two components of the 
tailings thrust on the reference axis given by the horizontal direction of the 
sedimentation plane (x axis) and its dip direction (y axis), the equation recovers 
the more familiar form:  

 2 2 2( ) ,x y b R+ − =  (4.27) 

where the radius R is given by 

 ( )cos tanb bR W U ′= α − φ  (4.28) 

and the position of the center along the y axis, 

 sin .bb W= α  (4.29) 

The circle is shown in Figure 4.20. Its radius defines the available (effective) 
friction force offered by the slide weight. At the start of the motion, this force is 
exhausted by the combination of tailing’s thrust and the slide weight component in 
the direction of the dip of the strata. Therefore, motions against the dip direction 
(for α = −90º) require the largest applied thrust. Motions in the direction of the dip 
(α = 90º) are the easiest. This is shown by the intensity of the thrust necessary to 
start the motion in each case. The “displacement” of the circle center (Eq. (4.29)) 
is, in fact, the weight component Ws in the direction of the dip of the 
sedimentation planes.  

Also represented in Figure 4.19 are the directions of the displacement vectors 
for the two thrust forces represented. These vectors follow the direction of the 
resultant R  in Figure 4.19c. It can be easily shown that they follow the direction 
of the radii of a circle (Eq. (4.26)). In other words, they are normal to the circle 
tangent. 
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Figure 4.20  Polar diagram showing forces that induce dam sliding as a function of the 
direction of the thrust (α = 13º: northern dyke; α = 32º: southern dyke). Also indicated is 
the direction of the motion (arrows normal to the force function) (Gens and Alonso, 2006). 
 

In plasticity theory, this is a condition for an “associated” plastic deformation. 
In fact, the sliding motion is entirely plastic in the sense that it does not have any 
elastic or reversible component. The circle drawn in Figure 4.20 is a yield locus 
for the thrust capable of setting the slide in motion. And the condition of 
associativity allows determining the direction of motion. Pure friction is therefore 
an “associated plastic mechanism”, even if it is interpreted in an inclined plane. In 
plasticity theory, a displacement of the yield locus in the stress plane is described 
as a “kinematic hardening”. In our parallel two-dimensional friction force plane, 
we interpret that the friction yield locus for a horizontal sedimentation plane (a 
circle centred at the origin of the force vectors) is displaced when the strata are 
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inclined. The inclination of the strata results in a kinematic hardening in the 
direction opposing the maximum slope (dip direction). Note, finally, that the 
displacement vectors in Figure 4.20, if compared with the tailing’s thrust vectors, 
are rotated towards the southern direction. This was a field observation which now 
receives an explanation. 

4.5  Discussion 
In the original design (Fig. 4.1) safety against dam sliding was checked by means 
of the Morgenstern − Price method of slices (Morgenstern and Price, 1965). The 
set of hypotheses made were particularly severe: Tailings were assumed to be 
liquefied and an earthquake of magnitude MSK = 7 was applied by means of 
pseudostatic accelerations ah = 0.776g (horizontal) and av = 0.048g (vertical). 
Figure 4.21 shows the water level considered in calculations. It was assumed to 
reproduce steady state conditions of flow through the dam. Calculations were 
made under drained conditions and a zero effective cohesion and a drained friction 
angle of 25º were taken for the clay foundation. Tailings were characterized by a 
natural unit weight of 29.5 kN/m3 (and zero strength). 

Under this set of conditions, the critical failure slip shown in Figure 4.21 
provided a safety factor of 1.3, which was considered satisfactory. 
 

 
 

Figure 4.21 Stability calculations at the design stage.  
 

Actual conditions at the time of failure are indicated in Figure 4.22. The 
downstream slope was increased from 30º to almost 39º. This change, although it 
did not have any significant effect on the stability of the rockfill slope itself, 
contributed to overstress and damage the clay foundation. Figures 4.14 and 4.15 
show that the maximum stress ratio in the foundation soil occurs below the foot of 
the slope at a given depth. The intensity of this stress ratio increases with the 
embankment slope angle and, therefore, the change in downstream slope led to a 
more critical situation, if compared with the original design. The distribution of 
stress ratios on the foundation also depends on other aspects: the consolidation 
conditions and the evolution of dam geometry. 

A major departure between assumed design hypotheses and field situation 
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concerns the distribution of pore pressures in the foundation. Regarding the failure 
plane, Figure 4.22 shows the difference. No excess pore pressures due to tailings 
(three times heavier than water!) and the dam itself were considered. The design 
was based on some interpretation of steady-state flow conditions, from the 
perspective of a pure seepage through the dam. 

The third significant departure refers to the clay strength. The assumed 
drained friction (25º) was very close to the average drained peak friction angle 
(24.1º; see Fig. 4.8) determined in direct shear tests. Assuming zero cohesion was 
also a wise design decision. However, no consideration was given to the reduction 
of friction on the potential failure plane, because of the brittle nature of the clay 
and the possible development of progressive failure mechanisms. The low residual 
friction angle (11º) explains that the drop in friction could be very substantial. On 
the other hand, the forward construction method selected for the dam favours 
conditions of progressive failure, as discussed before. These considerations were 
not present at the design stage. 
 

 
 

Figure 4.22 Dam actually built and the most probable water pressures acting on the failure 
plane. Also shown is the original design and the water saturation line assumed in stability 
calculations (Gens and Alonso, 2006).  
 

These differences between assumed and field conditions were enough to 
offset the safety margin introduced in the design by some of the assumptions made 
and in particular, the occurrence of an earthquake of medium intensity and the 
liquefaction of tailings.  

4.6  Mitigation Measures  
The opening of the breach between the northern and southern dykes of the 
tailing’s pond triggered a mud and water flood whose total volume was estimated 
in 5.5 Mm3. In a flow gage station located in the Guadiamar river, 7 km 
downstream from the location of the failure, a maximum increase of water level of 
3.6 m was measured 30 minutes after the beginning of the flood. This increase in 
level reduced to 20 cm, 12 hours later.  
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The mine company was able to seal the dam breach in 36 hours. The mud 
deposited on both margins of the rivers Agrio and Guadiamar (Fig. 4.23) occupied 
an estimated surface of 2,600 Ha. The thickness of the deposited layer ranged 
between 4 m and a few millimetres, 60 km away from the breach. The pyritic mud 
was thereafter exposed to the atmosphere in a very large area. Doñana National 
Park was protected by a wall rapidly built after the failure in the vicinity of 
Entremuros village (Fig. 4.23).  
 

 
 

Figure 4.23  Map of affected area with reference points and rivers (Eriksson and Adamek, 
2000). 
 

When pyrite (FeS2) is exposed to oxygen in the presence of water, an 
oxidation reaction begins. The oxidation reaction is represented as follows: 

The resulting iron and the sulphates can dissolve in water. The free hydrogen 
creates a very acid environment. Sulphates are identified as white crusts which 
developed on the exposed surfaces of tailings. Within the pond, once the water 
was drained out, the eroded mud was covered by whitish sulphate crusts a few 
weeks after the failure.  

2+ 2- +
2 2 2 4FeS +3.5O +H O Fe +2SO +2H .→
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The released water was extremely acid and it was responsible for the death of 
animal life in the Guadiamar river (37 tons of fish, crabs and shellfish were 
recovered). In addition, the mud had varying concentrations of many minerals: 
zinc, lead, arsenic copper, antimony, cobalt, thallium, bismuth, cadmium, and 
mercury, some of them highly toxic. The pyritic mud cover was therefore a major 
threat to the environment. 

The decision to remove all the mud was immediately taken and an estimated 
weight of 10 million tons of mud and soil were removed from the river banks. 
This material was deposited in an existing open mine. This cleaning operation was 
essentially finished by December 1, 1998, seven months after the failure. A 
second cleaning operation was launched somewhat later, this time guided by the 
control of limiting concentrations of metallic minerals. An additional mass of one 
million tons of contaminated soil was removed and deposited in the open pit mine. 
A number of water wells in the area were also cleaned and controlled. Most of the 
vegetation on the riverbanks was totally removed.  

The pond was also decommissioned (Eriksson and Adamek, 2000). It was 
first drained and a number of protective actions were taken: the entire pond area 
was covered by a protective sequence of layers (a geotextile in contact with the 
tailings, 0.5 m of waste rock, 0.1 m of binding layer, 0.5 m of compacted clay, and 
0.5 m of a soil layer for the growth of vegetation); an impermeable cut-off wall 
was built on the northern and eastern sides of the pond; the slopes of the dam were 
reduced to 3:1 and its topography was modified to facilitate run-off and drainage.  

In addition, a monitoring program was set out including inclinometers, 
piezometers, surface markers, and control wells. The recovery of the ecosystem 
was also closely followed by the authorities. Periodic controls included soil and 
water monitoring (from the surface and form irrigation wells). Health controls 
were also carried out on the human population and on the fauna. It has been 
reported that the recovery of the aquatic fauna was quite rapid. 

The mining company resumed operations on June 1999. However, production 
was stopped on February 2001 and in September 2001, the mine was definitely 
closed. No indications of penal responsibility in the dam failure were declared by 
the judge in charge of the case and later by the regional Court of Andalusia.  

4.7  Lessons Learned 

4.7.1  Soft clay rocks, hard clay soils 
These materials share properties of soils and rocks and present a challenge to 
geotechnical engineering because of a number of features, difficult to handle in 
practice: the presence of discontinuities, often at different scales, their brittleness, 
especially marked in the case of plastic clays, their very low permeability, which 
implies extremely long pore pressure dissipation times and their expansive nature, 
especially when montmorillonite is one of the clay minerals present.  

4.7.2 Embankment loading 
Embankments induce significant shear loading on the foundation soil. The 



Chapter 4 Geomechanics of Failures. Advanced Topics 161 

attained stress ratio (ratio between the shear stress and the effective normal stress 
on any given plane and point) is a convenient parameter to investigate the safety 
conditions of a potential failure surface because it may be directly compared with 
the available strength. Maximum stress ratios are found directly below the toe of 
the embankment slope. The intensity of the stress ratio increases with the slope 
angle of the embankment. Drainage conditions of the foundation soil may lead to 
the occurrence of stress ratio maxima at some particular depth. This was the case 
of the foundation conditions of the Aznalcóllar dam. 

4.7.3 Brittleness and progressive failure 
Brittle materials are prone to progressive failure. This process results in a 
progressive reduction of available strength along a potential failure surface. 
Brittleness of clay soil increases with plasticity simply because the residual 
friction of clays decreases with plasticity. Clays containing significant proportions 
of montmorillonite may exhibit residual friction angles in the vicinity of 10º, a 
value significantly lower than the peak friction angle in most cases. Progressive 
failure mechanisms and, indeed, any shearing process, reduce fast the effective 
cohesion which may be measured in tests under peak conditions. 

4.7.4 Bedding planes, discontinuities and tectonics 
Sedimentation planes are particularly worrying because of their high lateral extent 
and the possibility of exhibiting a reduced strength if compared with the “bulk” or 
“matrix” clay strength. This strength reduction may be a consequence of tectonic 
motions but other mechanisms may also lead to strength degradation (unloading 
due to valley excavation, past sliding, soil expansion). Such mechanisms explain 
the presence of other systems of discontinuities, which may also show shear 
strengths significantly lower than bulk values. When a kinematically admissible 
failure mechanism integrates bedding planes and discontinuities, special attention 
should be paid to the actual strength conditions of the involved surfaces. In the 
case of Aznalcóllar, field evidence indicated the presence of striations and pre-
shearing in some sedimentation planes. This implies a reduction of the available 
shear strength. In fact, under peak strength conditions ( c′ = 64 kPa, φ′  = 24.1º), 
no point in the foundation ever reaches plastic conditions and the process of 
progressive failure could not have started.  

4.7.5 Operating strength 
The problem of selecting an appropriate set of (drained) strength parameters in the 
presence of brittleness and progressive failure is not yet solved in practical terms. 
The case of Aznalcóllar suggests that the operative average effective friction at the 
initiation of failure (18º) was intermediate between the peak friction angle (24º) 
and the residual friction angle (11º). A few cases mentioned before suggest a 
similar result but it should be stressed that there is no fundamental reason behind 
such a simple rule. 
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4.7.6 Construction procedure 
The forward construction procedure followed in Aznalcóllar favoured the 
development of progressive failure. It probably led to the formation of a damaged, 
low resistance clay surface under the dam which eventually propagated fast, 
upstream and downstream, at the time of failure. This event marked the initiation 
of the slide. 

4.7.7 Pore pressures 
Steady-state flow conditions are by no means the worst situation of the dam, when 
pore pressures are calculated. This comment refers, of course, to the joint 
consideration of the dam and its foundation. In general, when a drained safety 
analysis is performed, the prediction of pore pressures requires attention to the 
pore pressure generation due to dam construction and its subsequent dissipation 
through a consolidation process. In Aznalcóllar, the average degree of dissipation 
of pore pressures in the foundation was no more than 20% of the generated pore 
pressures. This is a result of the low clay permeability. The system of joints and 
bedding planes did not seem to have any effect on the field permeability in this 
case. Steady-state flow conditions were entirely irrelevant to explain the failure of  
the Aznalcóllar dam. 

4.7.8 Undrained vs drained analysis 
In hard clays, usually overconsolidated, the undrained strength determined in 
typical laboratory tests (triaxial, unconfined compression) often leads to an 
overestimation of safety against sliding. This is due to the dilatant nature of the 
clay mass. In general, the analysis should be made drained, providing special 
attention to discontinuities and to any evidence of previous shearing on them. The 
determination of the pore pressures therefore becomes a crucial aspect of the 
safety analysis. Aznalcóllar is a good example in this regard. 

4.8  Advanced Topics 
The reduction of available strength along the sliding plane due to progressive 
failure is a main reason for the catastrophic failure of Aznalcóllar. Progressive 
failure was identified as a mechanism leading to instability of overconsolidated 
clays (Skempton, 1964; Terzaghi and Peck, 1967; Bjerrum, 1967; Bishop, 1967, 
1971). A review of the subject has been presented by Jardine et al. (2004). The 
propagation of rupture surfaces in idealized geometries is described in the work of 
Palmer and Rice (1973), Rice (1973), Chowdhury (1978) and Puzrin and 
Germanovich (2005). Early attempts to include progressive failure in limit 
equilibrium analysis are presented by Pariseau (1972), Gates (1973) and Lo and 
Lee (1973). Additional contributions using the finite element method are 
described in Yoshida et al. (1990), Potts et al. (1990), Dounias et al. (1996), and 
Potts et al. (1997). Stark and Eid (1994) reviewed a number of case histories 
involving first-time slides in stiff fissured clays, reported the value of the 
mobilized strength at failure, and compared it with two strength values: the “fully 
softened” and the residual value. In most instances, the mobilized strength at 
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failures lies about midway between the two values. This was also the case of 
Aznalcóllar. The “fully softened strength” is defined as the peak drained strength 
of the reconstituted, normally consolidated material. It may easily be found in the 
laboratory by remoulding the intact material.  

However, one should be cautious when trying to select an operational strength 
of hard clays because it is a function of the rate of degradation of post-peak 
strength and also on the strain mobilization along the sliding surface.  

Well-documented case histories associated with progressive failure have been 
described by Cooper (1996), regarding the Selborne slope failure experiment and 
by Skempton (1985) and by Potts et al. (1990) regarding the Carsington dam 
failure. 
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Chapter 5  

Thermo-Hydro-Mechanics of a Rapid Slide:  

Vaiont Landslide, Italy 

5.1 Introduction 
On October 9, 1963, a huge mass of rock, on the left bank of Vaiont reservoir, 
broke loose, accelerated and invaded the bottom of the valley at high speed. In 
seconds, the reservoir water was projected against the slopes of the opposite 
margin of the valley, where it reached a height of 250 m over the original level of 
the reservoir. Then the reservoir water turned downstream, over the crest of 
Vaiont arch dam, without breaking it, and flew along the river valley. The flood 
destroyed the village of Longarone and caused an estimated death toll of more 
than 2,000 lives.  

The small village of Caso, located on the right margin of the Vaiont valley, 
260 m above the reservoir level, barely escaped destruction. A Caso villager 
provided a vivid account of the failure: 

“Rain fell heavily. At 22.15 hours a strong noise, as of rolling rocks, awoke 
me up. At 22.40 hours an extremely strong wind shook the house and broke 
the windows; suddenly the house roof was lifted and water and rocks 
invaded the house. The noise was frightful. In a few seconds the wind 
stopped and the valley remained calm” (Valdés Díaz-Caneja, 1964). 

This landslide, one of the largest known in historic times, has attracted 
continuous attention of geotechnical engineers, mainly because of the unexpected 
high velocity reached by the moving mass. In fact, the tragic consequences of the 
failure are directly attributed to this velocity. The main question is: why did 
Vaiont slide reached an estimated velocity of 30 m/s? Such a velocity can only be 
explained if a total loss of strength occurs at the sliding surface.  

Unstable slopes around reservoirs are a common occurrence. They raise 
concern to dam designers and public authorities because of the risk associated 
with a rapid slide motion, just as in Vaiont. One is led to think that unless the 
dynamics of Vaiont motion are understood with some degree of confidence, 
limited progress will be achieved in predicting the risk of similar potentially 
dangerous situations.  

In Chapter 2, an attempt was made to determine the run-out of the Vaiont 
landslide taking, as a reference model, the two-wedge representation of Cross-
section 5 (Fig. 2.15). Starting at a condition of near equilibrium at t = 0, it was 
assumed that the strength of the plane separating the two wedges could degrade as 
shearing displacements developed along this plane during the motion. It was found 
that even in the extreme case of a fast and complete loss of cohesion acting on this 
plane (an unlikely event), the slide maximum velocity did not exceed 4.5 m/s. In 
order to explain the estimated high velocities of the slide (30 m/s), a consistent 
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mechanism or physical process, leading to a total loss of basal shear strength has 
to be found. 

The favourite explanation in a number of published contributions on the 
subject is associated with the development of frictional heat at the sliding surface. 
In some papers (Uriel and Molina, 1977; Nonveiller, 1987), the frictional heat is 
assumed to take pore water to the equilibrium state between liquid and vapour 
phases. In Uriel and Molina (1977), the phase diagram of water provides a 
criterion to find the water/vapour pressure. Nonveiller (1987) assumes a linear 
decrease of rock strength with temperature in the shear zone. In other approaches 
(Hendron and Patton, 1985; Voigt and Faust, 1982; Vardoulakis, 2002), the 
increase in pore pressure is related to the dilation of pore water as temperature 
increases and to temperature-induced plastic collapse of the shearing band (in the 
case of Vardoulakis).  

In all cases, the fluid pressure developed at the sliding surface reduces the 
effective normal stress and, hence, the available strength. Before proceeding 
further, consider the results of two experiments: a simple one, which could be 
performed in any laboratory, and a complex “in situ” test.  

5.1.1 A simple laboratory heating experiment 
The idea is simply to heat a piece of saturated clayey rock in a microwave oven 
(Fig. 5.1). In the experiment performed, a thermocouple temperature sensor was 
inserted into a specimen of Opalinus clay, which had been maintained in a humid 
chamber to ensure saturation. Opalinus clay is a low permeability soft clayey rock 
of marine origin. Clay minerals (illite, illite-smectite mixed layers, chlorite and 
kaolinite) dominate its mineralogical composition (40 to 80%). Quartz, calcite, 
siderite, pyrite, feldspar, and organic carbon are also present. Natural porosity 
varies between 4 and 12% (Bossart et al., 2002). Pore water has a concentration of 
20 g/l of sodium chloride. 

Permeability coefficients (Darcy) varying between 130.8 10−× m/s and 
137.3 10−× m/s, Young’s modulus ranging between 1,000 and 7,000 MPa and 

uniaxial compressive strength varying between 9 and 18 MPa have been reported 
for this clay shale by several authors (Thury and Bossart, 1999; Bock, 2001; 
Muñoz, 2007) on the basis of “in situ” and laboratory tests. 

Figure 5.1a shows the piece of rock before heating. A thermal pulse having a 
nominal power of 1,400 watts was applied during 40 s. The recorded temperature 
is shown in Figure 5.2. The specimen broke, accompanied by a clearly audible 
cracking noise, shortly before the end of the application of the heating pulse. At 
that time, the temperature reached values in excess of 170ºC (Fig. 5.2). The shale 
specimen cracked in an explosive manner and was reduced to small fragments.  

The following explanation can be given for this phenomenon. When the 
temperature of a saturated porous material increases, the solid matter, as well as 
the water in pores, dilates. Probably, local equilibrium of temperature is achieved 
soon and therefore the temperatures of water and solid skeleton will be essentially 
equal. 
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(a) (b) 

 
(c) (d) 

 

Figure 5.1 Heating experiment: (a) saturated fragment of Opalinus clay before heating; (b) 
the fragment, highly fissured and partially broken after heating in a microwave (cables 
indicate the position of the inserted thermocouple); (c) saturated porous stone before 
heating; (d) porous stone after heating.  
 

The volume of pore water and solid skeleton will increase in direct proportion 
to their thermal dilation coefficients, βw and βs, respectively. The associated 
volumetric strains, for a common change in temperature, dθ, can be written 

 
d

d d ,w
vw w

w

V
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ε = − = −β θ  (5.1a) 

 
d

d d ,s
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V
V

ε = − = −β θ  (5.1b) 

where wV  and sV  are the volumes occupied by water and solid particles, 
respectively. βw is substantially higher than βs. Typical values for βw and βs are 

43.4 10−× (ºC)−1 and 53.0 10−× (ºC)−1. Volumetric strains calculated through 
Equations (5.1a,b) for the range of temperatures 0−100ºC were plotted in Figure 
5.3, assuming a reference situation (zero strain) for θ = 4ºC. Water dilates almost 
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one order of magnitude more than solid particles. The thermal dilation of water 
and solid will result in an internal volumetric expansion. The soil expansion is 
explained by a decrease in effective stress. Therefore, in a saturated porous 
medium, if the total stress does not change, pore water pressure has to increase in 
order to reduce the effective stress. The increase in pore pressure will be 
proportional to the soil or rock stiffness. In the absence of external stresses, tensile 
effective stresses will develop. They may be able to overcome the tensile strength 
of the soil/rock and lead to a failure in tension, as observed in the photograph in 
Figure 5.1b.  
 

 
 

Figure 5.2 Recorded temperature during the two experiments performed in the microwave 
oven. A thermal pulse with a nominal intensity of 1,400 watts was applied during 40 s.  
 

The volumetric strains plotted in Figure 5.3 are far from being negligible. For 
instance, for an increase of temperature from 4 to 50ºC, a water volumetric strain 
of 1.5% is derived from Figure 5.3. It is concluded that the heat-induced expansive 
strain may cause a substantial increase in water pressure in an impervious stiff 
rock.  

A simple explanation1 for this increase in pore pressure can be given with the 
help of Figure 5.4, which shows a saturated pore. The rock or soil skeleton around 
the pore is represented by a thick spherical elastic shell. Holes in radial directions 
connect the inner pore water with neighbouring pores. In this representation, the 
skeleton stiffness is controlled by the thickness and the modulus of the shell 
material. The number and diameter of radial holes define the material’s 
permeability. As a result of heating, pore water pressure will increase. In parallel 
                                                           
1 A precise formulation of the effects of thermal dilation on the volumetric deformation 
and, eventually, on the development of pore water pressures in a saturated soil will be given 
later. 
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with the development of water pressure, a dissipation process will start as water 
begins to flow through radial holes. Therefore, for a given rate of increase of 
temperature, the attained pore water pressure will be the result of two competing 
mechanisms: the rate of increase of water volume, directly related to the rate of 
increase of temperature and the rate of dissipation governed by the permeability of 
the porous material (and also by the rock stiffness, in a process similar to the more 
familiar consolidation phenomenon).  

 

 
 

Figure 5.3 Volumetric strains of water and solid particles induced by temperature changes. 
βw = 43.4 10−× (ºC)−1; βs = 53.0 10−× (ºC)−1. Expansion is considered positive in plotting 
this graph.  
 

For a given rate of temperature increase, the lower the soil or rock 
permeability and the stiffer the soil or rock, the higher the pore water pressure 
developed. Stiff clays and, particularly, clayey rocks are therefore prone to 
develop significant temperature-induced pore water pressures.  

Note that the simple model of 
Figure 5.4 predicts that the pore 
pressure induced by the application 
of an external load decreases as soil 
or rock skeleton stiffness increases. 
In classical one-dimensional soil 
consolidation theory, the implicit 
assumption is that the soil skeleton 
has very low stiffness compared 
with the stiffness of water, and this 
implies that the external load is 
fully resisted by pore water: the 
skeleton spheres in Figure 5.4 are 
made of a very soft material. 

 
Figure 5.4  A saturated pore develops a 
positive pressure when temperature increases. 
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The pore water pressure was not measured in the simple experiment described 
but, interestingly, a small amount of liquid water – presumably escaped from the 
specimen – was also observed on the floor of the oven after the broken rock 
fragments were removed. 

A second experiment, with a totally different material, a discarded highly 
pervious porous stone (Fig. 5.1c), was also run. The measured temperature is 
shown in Figure 5.2. No cracking noise was heard during heating and the 
specimen remained intact. Some water was also seen to escape from the stone. 
Unlike the previous experiment, the temperature record in this case showed an 
interesting behaviour: when the temperature measured by the thermocouple sensor 
reached 100ºC, it remained constant at this temperature during the application of 
the power pulse. The water behaved as is to be expected in a free volume of water 
at atmospheric pressure: when the vapourization (boiling) temperature is reached, 
water evapourates in the pores and the boiling temperature remains constant, at 
100ºC, because the heat input is “spent” in vapourizing the remaining liquid water.  

 
 

Figure 5.5 Phase diagram of water. Roman numerals indicate different types of ice. M, E 
and V stand for the average atmospheric conditions at the surface of Mars, Earth, and 
Venus, respectively (from London Southbank University website).   

 
Another interesting information of these experiments is that the pore water in 

the shale specimen increased its temperature well beyond 100ºC (it reached a peak 
value of 171ºC (!) with no symptoms of decreasing during the power input phase). 
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Pore water in the claystone is adsorbed in a significant proportion by clay minerals 
and this prevents its vapourization. 

The phase diagram of water provides additional information on the conditions 
leading to the vapourization of water (Fig. 5.5). At increasing pressure, the 
temperature for vapourization also increases. For instance, at a pressure of 120 m 
of water (1.2 MPa), which is the pore pressure likely to be acting at the lower 
horizontal sliding surface of Section 5 of Vaiont at the beginning of the failure 
(see Chapter 4) the boiling water temperature raises to 200 ºC approximately 
(remember that ºK = ºC + 273º). The combination of the two effects, water 
adsorption by the clay minerals of the rock and the initial prevailing pore water 
pressure, implies that the sliding surface may reach fairly large temperatures 
before water is able to vapourize. 

Pore pressures were not measured in the simple experiments reported and the 
explanation advanced for the failure of the clay shale may not be accepted by the 
reader. Consider, however, the following large-scale experiment. 

5.1.2 An expensive field experiment 
Deep geological disposal is an option favoured by several countries to store high 
level nuclear waste. A typical design is to locate the heat-emitting nuclear 
canisters in excavated galleries of massive and impervious rock, such as Opalinus 
clay, a clay shale common in northwest Switzerland. A ring of impervious 
bentonite is placed around the canister to improve isolation. One of the issues in 
this design is to investigate the long-term performance of natural rock, exposed to 
an increase in temperature as a result of the heat generated by the nuclear waste. 
The large-scale Heating Experiment (HE), performed in the Monterri underground 
research laboratory (Switzerland), addresses this aspect of nuclear waste disposal 
research. The experiment is described in detail in EUR (2006) and in Muñoz 
(2007). 

The scheme given in Figure 5.6a summarizes the concept of the experiment. 
A cylindrical heater − which simulates the waste − is located in a centred position 
in a vertical borehole (30 cm of diameter) excavated in Opalinus clay from the 
floor of a tunnel. A ring of compacted bentonite blocks was placed around the 
heater. Piezometers and temperature sensors were located at different radial 
distances and depths below the floor of the niche where the experiment was 
located (z = 0). The temperature response of sensors located at increasing radial 
distances is shown in Figure 5.6b. Maximum temperature at the bentonite-
borehole wall contact (r = 0.05m) was limited to 100ºC.  

Pore pressure sensors were installed at points A1 and A2 (Fig. 5.6a), located at 
a radial distance of 0.65 m from the axis of the borehole, at two different 
elevations (z = −5 m and z = −6.5 m). As temperature increased (at a rate of 
0.25ºC/day) until it reached a value of 40ºC in sensor A1, pore water pressures also 
increased at measured rates of 0.012 MPa/day and 0.007 MPa/day in the two 
sensors, until they reached maximum values of 1.1 and 0.65 MPa respectively. 
Note that a substantial pressure peak developed before pore pressure began to 
decrease, when the rate of temperature increase slowed down. The low 
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permeability of Opalinus clay explains the continuous accumulation of pore 
pressure due to the relatively slow rate of increase of temperature. When the 
(permeability controlled) dissipation rate of excess water pressure dominated the 
process, the pore water pressure began to drop, at an essentially constant 
temperature.  
 

 
  

(a) (b) 

 
 

(c) 
 

Figure 5.6  Field heating experiment of Opalinus clay: (a) schematic representation of the 
borehole, heater and instrumented points; (b) recorded temperature; (c) pore water 
pressures at Point A1 and A2. Heating HE Experiment, Monterri, Switzerland (Muñoz, 
2007). 
 

The maximum excess water pressure recorded in this experiment (0.9 MPa) is 
relatively large in absolute terms. Such water pressure is equivalent to the weight 
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per unit area of a column of rock with a height of 40 m (if the rock had a bulk 
specific weight of 22.5 kN/m3). The base of such a column of Opalinus clay, if 
heated in the location of Piezometer QB19/3 in Figure 5.6c, will reach a zero 
vertical effective stress and, therefore, it will not be able to develop any frictional 
shear strength.  

This chapter discusses the conditions leading to this situation in the case of 
Vaiont and their consequences in practice.  

5.1.3 Summary of main points 
a) When temperature increases in a relatively impervious and saturated 

porous material, pore water pressures will develop. They will reduce the 
prevailing effective stress. Negative effective stresses may develop if the 
porous rock exhibits a tensile strength and, eventually, a fragile splitting 
type of failure may occur in unloaded specimens. 

b) In saturated pervious granular materials liquid pore water under 
atmospheric pressure will not reach, if heated, temperatures in excess of 
100ºC (because of local equilibrium, this temperature will also be the 
temperature of the entire rock, provided that some free water remains in the 
specimen). Under similar conditions, the pore water of a low porosity 
clayey rock may reach significantly higher temperatures, with no clear 
evidence of liquid-vapour phase transition of the pore water. 

c) The temperature for the liquid-vapour change of phase increases for free 
water as water pressure increases. For a water pressure of 1.2 MPa (a 
column of 120 m of water), water boils at approximately 200ºC. 

d) Points b) and c) suggest that the shear surface of Vaiont, located in clayey 
materials of high plasticity, may undergo relatively high temperatures, in 
excess of 200 ºC, without reaching a vapourization state.  

5.2 The Problem 
A common observation in translational and rotational slides is that deformations 
are confined to sliding surfaces of negligible thickness. Direct observations of 
sliding surfaces in clayey materials indicate that their thickness is very small, 
typically in the range of a few millimetres. One example is given in Figure 5.7, 
which shows a portion of the sliding surface of Cortes landslide (Alonso et al., 
1992). The sliding surface was easily identified when it was exposed after a large 
excavation, because of its greenish-gray colour in contrast with the brown 
tonalities of the marl layer, 2 m thick, where it was embedded. Massive limestone 
strata, which essentially slid as a rigid body, covered the marl layer. The thickness 
of the striated layer ranged between 3 and 5 mm.  

The thickness of shear bands has been reported by several authors 
(Morgenstern and Tchalenko, 1967; Roscoe, 1970; Vardoulakis, 1980; Scarpelli 
and Wood, 1982; Desrues, 1984). An important conclusion of the basic research is 
that shear band thickness is related to a characteristic grain size. For instance, 
Vardoulakis (2002) proposes a value e ≈ 200d50% for clays. The grain size analysis 
of specimens recovered from the Vaiont sliding surface (Hendron and Patton, 
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1985; Tika and Hutchinson, 1999) indicates that d50% ≈ 0.01 mm. The reported 
direct observation at the Cortes slide is not far from the thickness suggested by the 
preceding relationship.  

 

  
 

(a) 
 

  
 

(b) 
 

Figure 5.7  (a) Sliding surface of Cortes landslide showing motion grooves; (b) view of the 
sliding surface in cross-section. The upper layer of gray clay, overlying the brownish lower 
marl, was identified as the sliding surface.  
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Vaiont landslide was significantly bigger than the Cortes slide, but they had 
some similarities. In both cases, rigid and massive limestone and marl banks slid 
on a fairly continuous layer of clay. It is expected, however, that the sliding 
surface itself had a reduced thickness, probably a few millimetres, as in Cortes. 

Consider now in Figure 5.8a, a representative cross-section of Vaiont. The 
clay stratum at the base of the slide was reported (Hendron and Patton, 1985) to 
have a thickness in the order of 1 m (Fig. 5.8b). The shear band proper will be 
located within the clay layer (Fig. 5.8c). Its thickness is many orders of magnitude 
smaller than the horizontal and vertical dimensions of the slide. If the slide moves 
as a rigid body with a velocity vmax, shear straining, which will be concentrated on 
the shear band, will induce an average shearing strain rate of 

 max ,
2

v
e

γ =&  (5.2) 

where 2e is the thickness of the shear band. Therefore, during the sliding motion, 
all the straining work will be concentrated inside the band. The volumetric 
deformation of the clay material, which constitutes the band, will be very small 
compared with the extremely large shear deformations induced by sliding on a 
thin clay band. Thus, the rate of work input per unit volume of band material will 
be essentially given by 
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where τf is the shear strength offered by the shear band. This work input will be 
transformed entirely into heat. Therefore, the band will increase its temperature 
and, in view of the tests previously discussed, a pore water pressure in excess of 
that initially existing will develop.  

It has been argued before that excess pore pressure is essentially caused by the 
thermal dilation of the water. Therefore, despite its potential large effect in 
modifying effective stresses, the absolute amount of increment of water volume in 
the band will be very small. Its dissipation will take place in the immediate 
vicinity of the band. In other words, the band and its “zone of influence” will have 
a small thickness (Fig. 5.8d) similar to the thickness of the band itself.  

It then becomes reasonable to assume that, for the purposes of investigating 
the behaviour of pore pressures in the band and its vicinity, the band is essentially 
a planar feature located within an infinite domain. The lateral extent of this band is 
very large compared with its thickness and, in addition, points within the band are 
similar to each other. Water and energy transfer out of the band will take place in 
the direction normal to the band. The problem of the interaction of the band and its 
surroundings becomes a one-dimensional problem in which the spatial coordinate 
(z) is directed normal to the band plane (Fig. 5.8d). 

The equation of the slide motion is given in Chapter 2 for the two-wedge 
model (Eq. (2.23)). The slide velocity depends on the water pressures existing on 
the sliding surface (terms Pw1, Pw2 and Pwf in Eqs. (2.27)). But now pore water 
pressures will not depend only on the hydrostatic water conditions assumed in 



180 

Chapter 2 but also on the additional pore pressures developed in the band as a 
result of its heating. These pore pressures depend on the work input into the shear 
band and therefore on the slide velocity (Eq. (5.3)) which is the unknown variable 
of the problem. 
 

 
 

Figure 5.8 The sliding surface: (a) “in situ” conditions; (b) representative element of the 
sliding surface; (c) shear band; (d) local axis in the shear band. 

 
A procedure to find excess pore pressures from a given heat (or strain work) 

input has first to be found. Then the calculated pore pressures will be used to solve 
the equation of the slide motion.  

In classical consolidation theory, pore pressures induced by applied stresses 
are the solution of a partial differential equation which expresses the condition of 
mass balance of water flowing in a deformable soil. In our heat-driving process we 
will need an additional balance (or conservation) equation, namely the condition 
of energy conservation.  

When consolidation theory is derived in most soil mechanics textbooks, only 
the balance equation of water is used as a starting point despite the fact that solid 
matter (soil particles) also moves. The approximation is perfectly justified in most 
applications but in our case, for the reasons explained later, it will be convenient 
to also add the mass balance of solids to the remaining conservation laws. 

Therefore, the problem of finding pore water pressures in the band when it is 
sheared by means of the application of a boundary velocity will be approached by 
formulating the three conservation equations just mentioned (solid, water, and 
energy). They will be written for a general (three-dimensional) case but the 
solution will be found for the one-dimensional case previously described. The 
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solution of this problem will also enable the calculation of temperatures in the 
shear band. The final step will be the solution of the equation of the slide motion. 

Summarizing the main assumptions, deformation and heat generation will 
take place within the shear band. The band material is a saturated porous 
deformable material and the remaining sliding masses will move as rigid bodies.  

5.3 Balance Equations in the Shear Band 

5.3.1 Solid and water 
Consider a shear band of indefinite length (L) and thickness (2e) (Fig. 5.9). Since 
L >> e, the excess pore pressure, uw(z,t), temperature, θ(z,t), and velocity, v(z,t) are 
assumed to be exclusively a function of the position normal to the band direction 
(z) and time (t). A common temperature is considered for solid particles and pore 
fluid. This is a result of the assumption of local thermal equilibrium between both 
species (solid and water).  
 

 
 

Figure 5.9 Geometry of the planar shear band. 
 

Solid mass balance was already derived in Chapter 3 for general three-
dimensional conditions (Eq. 3.22). The water mass balance was found (Eq. 3.25) 
for a partially saturated soil. Here pores will be assumed to be full of water. 
Therefore, Equation (3.25) becomes 
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The rate of change in porosity, Dn/Dt, can be expressed in terms of changes in 
solid density and in terms of the skeleton deformation through the mass balance of 
solids (Eq. (3.22)). Substitution of Dn/Dt from Equation (3.22) into the water mass 
balance Equation (5.4) leads to 
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and, finally, to 
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which provides the mass conservation condition for water and solid. 
 
Constitutive equations 

 

In order to proceed, constitutive equations should now be considered. Let us start 
with the (material) rate of change of solid and water densities. Solid grains will be 
assumed to be incompressible against stress changes but not against temperature 
(θ) changes. Thermal dilation implies the increase of volume, Vs, of a given 
constant mass. Therefore, the change in density, ρs, associated with a change in 
volume is written as 
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V
V

ρ = −ρ = −ρ β θ  (5.7) 

where the linear dilation volumetric strain laws given in Equation (5.1) have been 
used. βs is the thermal expansion coefficient for solid particles, which will be 
accepted as a material parameter independent of temperature. The negative sign 
indicates that temperature increments induce a reduction in density. 

Equation (5.7) provides, by simple integration, the following state equation 
for the solid:  

 ( )0
0exp ,s s s⎡ ⎤ρ = −ρ β θ−θ⎣ ⎦   (5.8) 

where 0
sρ  is the density of solid particles at reference temperature, θ0. 

Differentiating of Equation (5.8) leads to 
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ρ θ
= −β ρ  (5.9) 

Water density depends on its current pressure, pw, and temperature, θ. None of 
these effects are usually found in common geotechnical applications. However, in 
our particular problem, pressures and temperatures may reach unexpectedly high 
values. Already discussed, by means of introductory tests, is the fundamental 
effect of temperature to control pore water pressure of impervious porous 
materials. 

The following state equation is assumed for water: 
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 ( ) ( )0 0
0exp .w w w w w w wp p⎡ ⎤ρ = ρ α − −β θ − θ⎣ ⎦  (5.10) 

This expression is formally equivalent to the state equation of solid (Eq. (5.8)). 
0
wρ  is the reference water density at the reference temperature ( 0θ ) and reference 

liquid pressure ( 0
wp ). αw and βw are the coefficients of compressibility and 

thermal expansion, respectively. These coefficients have been accepted to be 
constant. Differentiating of Equation (5.10) leads to 
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If Equations (5.9) and (5.11) are substituted in Equation (5.6), the following 
expression is obtained for the mass conservation of solid and water: 
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The first term is a “source” term due to the thermal expansion of liquid and solid; 
the second term describes the volume change of water associated with change in 
water pressure; the third term represents the volume change of the skeleton; and 
the fourth term provides the volume change associated with the flow of water.  

The hydrostatic component of pore pressure, which depends on the position of 
the water table, will not change within the short interval of the slide and therefore 
the time derivative of pw will depend only on the excess pore pressure uw 
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The mass balance equations derived above will be applied to the shear band 
where “oedometric” conditions can be assumed, as explained before. Therefore, 
under elastic conditions, the volumetric strain can be estimated from the one-
dimensional compressibility coefficient, mv, and the increment of (normal to the 
band) effective stress,  
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where Equation (3.21) was used. In Equation (5.14), σv is the total stress acting in 
a direction normal to the shear band. This stress will change somewhat during 
motion due to changes in slide geometry (see Fig. 2.15 in Chapter 2). Time 
variation of hydrostatic pressure can be neglected with respect to changes of 
excess pore pressures. Therefore, pw can be replaced by uw in Equation (5.14). 

The final term in Equation (5.12) refers to flow through pores due to the head 
gradient (Darcy’s law). A generalized Darcy law for compressible fluid describes 
the relative flow velocity q in terms of gradients of pore water pressure and the 
gradient of elevation as follows: 
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where k is the hydraulic conductivity (the term permeability will also be used), 
which will be assumed to be constant, and zg is the vertical coordinate.  

Since the analysis is one-dimensional in a direction normal to the shear band 
(z-direction), the gradient is simply the derivative with respect to z. The flow due 
to gradients of hydrostatic pressure and gradients of level (zg term) can be 
neglected with respect to changes of pore water pressure. In addition, the spatial 
variation of hydrostatic pore water pressure can be neglected during the slide and 
pw can be replaced by uw. Therefore, Darcy’s flux depends only on the excess pore 
pressure (uw). 

Introducing Equations (5.13), (5.14) and (5.15) into Equation (5.12), the water 
and solid mass balance equation results in 
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At this point, a further simplification will be introduced. Since the expected 
velocity of solids, v, will be small compared with the (Eulerian) rates of change of 
the variables of the problem (θ, uw) total and partial derivatives are equivalent and 
Equation (5.16) becomes 
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valid for the shear band, z∈ [−e,e]. In Equation (5.17), the water specific weight γw 
= ρwg is introduced. 

Equation (5.17) synthesizes the mass balance equations of solid (grains) and 
water. It is a parabolic second-order differential equation with two unknowns: the 
temperature and the excess pore water pressure. The contribution of the solid mass 
balance equation was to provide an expression for the change in porosity when the 
soil is heated and loaded under one-dimensional conditions. This result was then 
used in the water mass balance equation, which led to Equation (5.6). This 
equation will allow the calculation of excess pore water pressures.  

Equation (5.17) also provides an explanation to the phenomenon of pore water 
pressure development during heating, a topic discussed in Section 5.1.1 with the 
help of Figure 5.4. If no change in total external stress occurs (∂σn/∂t = 0) and the 
soil is very impervious (k → 0), the rate of increase of pore water pressure due to 
changes in temperature will be given by 
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This expression provides the theoretical background for the qualitative discussion 
on heat-induced development of pore water pressure in Section 5.1.1. In view of 
(5.18), stiff soils or rocks (low values of mv) will develop high pore water 
pressures upon heating. Also, since the dilation coefficient of water is one order of 
magnitude higher than the dilation coefficient of solids (Fig. 5.3), the higher the 
porosity, the stronger the development of heat-induced water pressures. Note that 
Equation (5.18) is a direct consequence of the principle of effective stress, which 
was introduced in Equation (5.14) to describe the volumetric deformation of the 
soil. In other words, temperature changes lead to volumetric deformations of the 
soil skeleton. These deformations are explained by a change in effective stress. If 
the total stress does not change, the pore water pressure will increase to reduce 
effective stress, which will lead to soil expansion: the imposed thermal 
deformation. In the limit, if the soil skeleton is rigid (mv → 0) (the spherical shells 
in Figure 5.4 are made of steel), the pore water pressure developed when heating 
will be controlled by water compressibility (αw). 

A final remark at this point concerns the use of material derivatives. The 
reader may wonder why they were used at all if, at the end, the simplified mass 
balance Equation (5.17) will be used in calculations. One reason for doing it was 
to provide a general balance expression (5.6) which may be useful in other 
applications. The use of total derivatives in this case simplifies the notation. The 
joint consideration of the solid and water mass balances are also properly handled 
in terms of material derivatives. Note also that the solid mass balance provided a 
general expression, Equation (3.22) in Chapter 3, for the change in porosity, which 
included the effect of solid density changes. Other processes leading to porosity 
changes may be found in nature (solid mass dissolution or precipitation, for 
instance), which may be relevant in geotechnical engineering. In all these cases 
the formal derivation of the solid mass balance relationship is a first step towards 
finding the field equations of the problem.  

5.3.2 Energy  
The rate of work input into the shear band (Eq. (5.2)) dissipates as heat (H) and 
results in a temperature increase (θ) of the material in the band. The rate of work 
is homogeneous in the band because a uniform distribution of shear strain across 
the band was assumed. The shear strength in Equation (5.3) is given by 
Coulomb’s frictional law:  

 ( ) ( )tan ' tan ',f n n wp′τ = σ ϕ = σ − ϕ  (5.19) 

where n′σ  is the effective stress acting in a direction normal to the shear band, pw 
is the total pore water pressure (hydrostatic plus excess pore pressure) and ϕ′ is 
the effective frictional angle of the material in the shear band, which in our case 
corresponds to residual conditions. 
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The shear strength τf can be calculated if normal stresses on the band are 
known. Normal stresses will be derived from the conditions of mechanical 
equilibrium of the slide described later. But first the temperature rise in the shear 
band will be investigated. To do so the energy balance equation in the band has to 
be derived. The procedure is already known because it follows precisely the same 
steps already given in Chapter 3 to derive balance equations for solid and water 
mass. Mass is now substituted by heat. In fact, heat is proportional to mass and 
temperature. The proportionality constant is the “specific heat” (c) which 
characterizes different species (in our case, solid mass (cs) and water (cw)). 
Therefore, the products ρwcwθ or ρscsθ identify the heat stored in a unit volume of 
water and solid (grains) respectively. Constants “c” have the units of Joule/(kg·ºC) 
= Newton·m/(kg·ºC).  

The heat stored in a unit volume of saturated soil, having a porosity n, is the 
sum of two terms 

 (1 ) ,m s s w wc n c n cρ = − ρ + ρ  (5.20) 

where cm is the specific heat of the mixture (the saturated soil) and ρ is the 
saturated soil density. 

Heat will flow whenever mass flows. This type of heat transfer is the 
advective component. However, heat is also transferred across bodies fixed in 
space. This common experience is a “conductive” phenomenon described by 
means of Fourier law 

 ( ) ,c = −Γ θq grad  (5.21) 

which states that the flow rate of heat follows the gradient of temperature. Γ is the 
conductivity constant.  

The balance of heat can now be directly written if one of the preceding 
balance equations (for instance, Eq. (5.6) for water balance) is taken as a “model”: 

 
( )

( )

D( )
div

D

div ( ) 1 .

m

w w s s

c
H

t

c n n c
t t

ρ θ
⎡ ⎤= + −Γ θ +⎣ ⎦

∂ ∂⎛ ⎞ρ θ + + − ρ θ⎜ ⎟∂ ∂⎝ ⎠

grad

u uq
 (5.22)  

Unlike the balance equations for solid and water, there is now a source term, the 
heat input into the band (H), which should be included into the total balance. 
Conduction and advective terms can now be identified in Equation (5.22).  

In a general situation, heat will flow through the band boundaries. However, 
the failure of Vaiont was very fast (a few seconds) and conductive, as well as 
advective heat transfer will not be relevant. In fact, only the fast generation of heat 
in the band will essentially control the development of excess pore water 
pressures. Indeed, the error introduced by this simplification was investigated and 
a comparison between the results obtained with the full formulation (Eq. (5.22)) 
and the simplified one (5.23) was performed. Minimum discrepancies could be 
found. Therefore, the problem of finding the temperature increase in the band is 
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greatly simplified if the heat balance Equation (5.22) reduces to 

 ,mH c
t

∂θ
= ρ

∂
 (5.23) 

where the source term H(t) is, for the time being, an unknown function of time.  
Before examining the stability conditions of the slide, let us consider briefly 

the balance conditions outside the shear band. 

5.4 Balance Equations Outside the Shear Band 
The soil in contact with the shear band will be affected by pore pressures and 
temperature developed in the shear band. In general, shear band boundaries are 
permeable to fluid and heat flow. Excess pore pressure induced by frictional 
heating in the shear band will tend to dissipate in a process essentially controlled 
by the permeability and compressibility of the band and surrounding material.  

The assumption made before is that heat flow out of the band is negligible 
during fast sliding. Therefore, it is not necessary to perform a temperature analysis 
outside the band. The temperature outside the shear band will remain constant and 
equal to its initial value. 

Water flow outside the band will be governed by an equation similar to 
Equation (5.17), which was derived for general one-dimensional conditions. The 
situation is now simplified because no temperature gradients exist and the mass 
conservation equation becomes 

 ( )
2

2 0,r rw n wr
v r w v

w

u ukm n m
t t z

∂ ∂σ ∂
+ α − − =

∂ ∂ γ ∂
 (5.24) 

valid outside the shear band, z ∈ (−∞,−e] ∪ [e,∞). Index r indicates that a different 
material (“rock”) is now considered, although clay material will typically exist on 
both sides of the band.  

5.5 Dynamics of an Infinite Planar Slide 

5.5.1 Introduction 
The development of pore pressures in the sliding surface is the fundamental 
information required to perform the dynamic analysis of the slide. Therefore, 
Equation (5.17) has to be solved. However, the “thermal” term in this equation 
depends (Eq. (5.23)) on the work input WH &=  which is proportional to the 
sliding velocity and shear strength (Eq. (5.3)), which, in turn, depend on pore 
pressures developed in the sliding surface. This is a fully coupled problem that 
requires the simultaneous solution of the balance equations just developed for the 
sliding band and the sliding mass and the equilibrium equations of the whole 
slope. 

Before tackling Vaiont, a simpler case will be analyzed: the behaviour of an 
infinite planar slide. The geometry of this case is defined by a constant base 
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inclination of angle β and a constant thickness D (Fig. 5.10). The x-axis is parallel 
to the slope surface and indicates the motion direction, while z-axis is the normal 
direction. The origin of axis is located in the mid plane of the shear band.  

The broken line in Figure 5.10 indicates water level (height hw over the sliding 
surface) which, for simplicity, was accepted parallel to the surface of sliding. In 
this way the problem becomes one-dimensional. The sliding mass is assumed rigid 
and deformation is localized in the shear band. If the slide is unstable, it will reach 
an increasing velocity. The sliding mass translates as a rigid solid. Its velocity is 
the maximum velocity acting on one boundary of the shear band (vmax in Fig. 5.9). 
 

 
 

Figure 5.10 Geometry of the infinite planar slide.  
 

At any time, the motion of the unstable mass is accelerated by the action of 
gravity and is resisted by the shear strength acting on the sliding surface. Shear 
strength is proportional to the effective normal stress and therefore it depends on 
the weight component normal to the motion direction and on the pore water 
pressure on the sliding surface. Note that the pore water pressure that acts in the 
sliding surface and controls the landslide motion is the maximum pore pressure 
that develops in the shear band. Since the excess pore water pressure generated in 
the shear band can dissipate through the boundaries, the maximum excess of pore 
pressure ( max

wu ) will be developed in the central plane of the shear band.  
Dynamic equilibrium equations are written, in z- and x-directions, for a slice 

of unit width of moving slide:  

 max' = − −z wh wN W P U  (5.25) 
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and 

 maxd
.

dx f
v

W T M
t

− =  (5.26) 

Note that the Newton’s Second Law applied in Equation (5.26), which states 
that the resultant forces will be equal to the time variation of momentum, has been 
simplified since the involved mass is constant.  

In view of Figure 5.10, sinxW W= β  and coszW W= β  are the x-component 
and z-component of the total weight of the sliding mass, respectively; Pwh is the 
force due to hydrostatic pressure on the failure surfaces; max

wU  is the force due to 
the excess of water pressure evaluated at z = 0; N ′ is the normal effective resultant 
force developed in the sliding surface; Tf  is the frictional shear force that acts on 
the base of the slide and is calculated by means of Coulomb’s frictional law 
( tanfT N ′ ′= ϕ ); νmax is the slide velocity evaluated at z = e; and M is the total 
mass of the slide. 

Since the analysis is made per unit of length of moving slide, forces Tf, max
wU  

and  Pwh can be replaced by frictional shear stress, τf, excess water pressure, max
wu , 

and the hydrostatic pore water pressure pwh,  respectively.  
Therefore, the rigid-body motion is described by Newton’s Second Law, 

 max
sliding resisting

d
,

d
v

M F F
t

= −  (5.27) 

where ( )sliding sinF W= β  and 

 ( ) max
resisting 1 cos 1 1 tan '.f wh wF W p u⎡ ⎤= τ ⋅ = β − ⋅ − ⋅ ϕ⎣ ⎦  (5.28) 

The total slice weight is ( )cosrW D= γ β  and its mass cosrM D= ρ β , where 
γr = ρrg is the unit weight of the sliding material and ρr is the bulk density 
( ( ) s= 1r r r wn nρ − ρ + ρ ). It has been assumed that D ≈ D + e. 

5.5.2 Formulation 
Summarizing previous results, the set of equations governing the motion of an 
infinite planar slide are: 

a) Equilibrium conditions and the Mohr˗Coulomb strength law  

 ( ) ( ) ( )maxcos tan ';f wh wt W p u t⎡ ⎤τ = β − − ϕ⎣ ⎦   (5.29a) 

b) First Law of Thermodynamics (shear band) 

 ( ) ( ) ( )max

2f
v t

H t t
e

= τ    for [ ], ;z e e∈ −  (5.29b) 
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c) Mass balance (water and solid) and heat balance in the shear band 

  (5.29c) 

d) Mass balance (water and solid) in the sliding mass outside of the shear 
band 

 
( ) ( ) ]( )

2

2

, ,
for , , ;w wr r

v r w
w

u z t u z tkm n z e e
t z

∂ ∂⎡ ⎤ ⎡+ = ∈ −∞ − ∪ ∞⎣⎣ ⎦ ∂ ∂
α

γ
 (5.29d) 

e) Dynamic equilibrium 

 
( ) ( ) ( )maxd 1 sin .

d f
v t

W t
t M

⎡ ⎤= β − τ⎣ ⎦  (5.29e) 

Notice that in Equations (5.29c,d) the term of time variation of external stress 
has not been included. In the case of an infinite planar slide there are no changes 
in total stress during sliding because of the simple geometry.  

This system of equations can be immediately reduced to three equations if the 
strength (τf) and heat rate (H) expressions are replaced in Equations (5.29c,d,e). A 
single equation for the dependent variable uw could eventually be found, but the 
hope of solving it in closed form is remote.  

To solve these equations it is also necessary to define the appropriate initial 
and boundary conditions. A natural initial condition for the dynamic problem is a 
situation in which static equilibrium has been slightly exceeded. It would imply 
the initiation of motion. In such a situation, the initial excess pore pressure and 
slide velocity would be zero and no heat would be generated. Therefore, 

 ( )0, 0,wu z t =  (5.30a) 

 ( )0, 0,v z t =  (5.30b) 

 ( )0 0 ,tθ = θ  (5.30c) 

where θ0 is the reference initial temperature at the beginning of the slide motion. 
It was mentioned before that frictional heat is generated at a constant rate 

within the shear band, between z = −e and z = e. No heat is generated, at any time, 
outside of the shear band. Therefore, the heat generated excess pore pressure is 
constant in the shear band and zero in the remaining of the domain. However, the 
unbalance of water pressures between points inside and outside of the shear band 
induces its dissipation. It will be also accepted that the soil outside the two 
boundaries of the shear band is described by a common set of material properties. 

( ) ( ) ( ) ( )

( ) [ ]
2

2

,
1

,
 for , ;

w
s w v w

m

w

w

H t u z t
n n m n

c t

u z tk z e e
z

∂
⎡ ⎤− − β + β + + α =⎣ ⎦ ρ ∂

∂
= ∈ −

γ ∂
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Since the gradient of hydrostatic pressure may be neglected in the band, given its 
small thickness, it follows that the axis z = 0 (Fig. 5.8d) is a symmetry axis.  

Therefore, the solution of the problem will be sought for z ≥ 0 and symmetry 
conditions will be forced at z = 0. This condition implies a zero flow through 

0 :z =  

 0
0

0 0.w w
z

w z

u uk
z z=

=

∂ ∂
= − = ⇒ =

γ ∂ ∂
q  (5.31) 

At the other boundary, z = e, continuity of excess pore pressure and flow rate has 
to be satisfied on both sides of the shear band-rock interface: 

 ,w wz e z eu u− += =
=  (5.32a) 

 w w
rz e z e

z e z e

u u
k k

z z− +
− +

= =
= =

∂ ∂
= ⇒ =

∂ ∂
q q  (5.32b) 

Changes in water pressure outside the band will extend to relatively small 
distances because the volume of water expelled by the band is very small. Small 
changes in porosity within a limited distance outside the band will be able to 
absorb the transient flow of water. Therefore, no effect on the calculated pore 
pressures outside the band will be noticed if a zero excess pore water pressure is 
specified at an infinite distance: 

 0.w zu
=∞

=  (5.33) 

The problem, summarized in Equations (5.29) to (5.33), was solved by means of a 
finite difference approximation developed in Appendix 5.1. 

5.5.3 Results and discussion 
The accelerated motion of a deep planar slide (D = 240 m; see Fig. 5.10) will be 
investigated. The depth of the sliding surface is taken from the average thickness 
of the lower wedge of Vaiont (Section 2). For a residual friction angle of 12º the 
infinite slope becomes strictly unstable for an inclination β = 9.5º and a height of 
the water table over the sliding surface of hw = 119.1 m. 

The thermal and compressibility parameters for water and the solid mineral 
constituent of the shear band were taken from Olivella et al. (1996). They are 
given in Table 5.1.  

A relevant parameter of the analysis is the thickness of the shear band. It will 
be assumed that the band is embedded in a much thicker clay layer. As a 
reference, in the case of Vaiont, Hendron and Patton (1985, page 20) mention that 
the clay layer at the base of the sliding mass had a thickness varying between 1 
and 3 m. In the Cortes landslide (Alonso et al., 1992), the shear band was located 
within a 2 m thick marl layer. Most probably, the clay material in the immediate 
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vicinity of the band will have essentially the same properties as the band itself. It 
is also expected (and the computations reported below demonstrate it) that the 
transient changes in water pressure around the shear band will affect a thickness of 
the encasing material, which will be of the same order of magnitude as the 
thickness of the band. Given the expected dimensions of the band (a few 
millimeters), its effect will only extend a small distance at both sides of the band 
and, for the purposes of the pore pressure analysis reported here, the entire domain 
of the material outside the band will be a clay material having the properties of the 
band.  
 

Table 5.1 Material properties. 
 

Parameter Symbol Value Unit 
Water 

Density ρw 1,000 kg/m3 

Coefficient of compressibility αw 105 10−×  1/Pa 
Thermal expansion coefficient βw 

43.42 10−×  1/ºC 

Specific heat cw 
34.186 10×

1.0 
J/kg·ºC 

cal/ kg·ºC 
Solid particles 

Density ρs 2,700 kg/m3 

Thermal expansion coefficient βs 53 10−×  1/ºC 

Specific heat cs 
28.372 10−×

0.20 
J/kg·ºC 

cal/ kg·ºC 
Shear band material 

Porosity n 0.2 − 
Permeability k 1110−  m/s 

Compressibility coefficient mv 
91.5 10−×  1/Pa 

Friction angle (residual) ϕ′ 12 º 
Sliding mass material 

Density ρr 2,350 kg/m3 

 
However, shear band and sliding mass have to be differentiated in the 

formulation of the problem simply because heat is generated in the shear band and 
not outside. A shear band thickness of 5 mm was selected to perform the dynamic 
analysis of an infinite slide reported here. 

The remaining material properties of the shear band (and the clay material on 
both sides) are given in Table 5.1. Porosity and residual friction angle approximate 
the actual values of the Vaiont sliding clay surface and were taken from Hendron 
and Patton (1985). An average rock density ρr = 2,350 kg/m3 was assumed to 
calculate the weight of the sliding mass. The initial temperature for the analysis is 
10ºC. 

No precise laboratory information on the permeability of the clay sliding 
surface seems to be available. Hendron and Patton (1985) use the value k = 
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101.6 10−×  m/s in their analysis. Vardoulakis (2002) uses k = 111.1 10−×  m/s. The 
high plasticity values consistently measured (see Chapter 2) and the presence of 
montmorillonite probably favours low clay permeability. A value k = 111.0 10−×  
m/s was selected here as a base case. Shear band permeability is one of the key 
parameters of the model and it is subjected to high uncertainty. A sensitivity 
analysis, discussed later, was performed to analyze the effect of changing clay 
permeability.  

Similar difficulties were found to select a value for the clay stiffness. Hendron 
and Patton (1985) report an elastic modulus of 1,000 MPa, which is equivalent to 
an edometric deformability coefficient mv = 10105 −×  Pa−1 (for ν = 0.3). 
Vardoulakis (2002) selects a much softer value, mv = 8105.1 −× Pa−1, which is 
perhaps a high compressibility for the geologically old and indurated Jurassic clay 
levels at the base of the landslide. An intermediate number, mv = 9105.1 −×  Pa−1, 
was selected here for the base case. 

The geometry and material properties described above, lead to an infinite slide 
in strict equilibrium. To activate the slide, the water level was increased by a small 
amount: 10 cm. The calculated response of the slide is shown in Figures 5.11 to 
5.14. 

 

 
 

Figure 5.11 Excess of water pressure isochrones in a section normal to the slide direction. 
Infinite slide (z = 0 is in the center of the shear band). 
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(a) (b)
 

Figure 5.12 Dynamic analysis of infinite slide. Base case (shear band permeability, k = 
10−11 m/s). Time evolution of slide velocity: (a) heat generation considered; (b) no heat 
generation considered. 
 

  
 

(a) (b) 
  

 
 

(c) (d) 
 

Figure 5.13 Dynamic analysis of infinite slide. Base case (shear band permeability, k = 
10−11 m/s). Evolution in time of (a) excess pore water pressure in the middle of the band; (b) 
temperature; (c) shear strength of shear band; (d) slide displacement. 
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Isochrones of excess pore pressures in the shear band and adjacent clay 
material are plotted in Figure 5.11. As frictional heat accumulates during the slide 
displacement, pore pressure increases. The dissipation towards the boundaries of 
the band is slow due to the low permeability of the clay material. Note that 
changes in pore pressure only extend to a reduced thickness outside the band. 
Maximum pore pressures are always calculated at the center of the band (z = 0). 
This is the point where effective normal stresses are calculated when establishing 
the dynamic equilibrium of the slope. 

 

  

Figure 5.14 Dynamic analysis of infinite slide. Shear band permeability, k = 10−13 m/s. 
Evolution in time of (a) velocity; (b) excess pore water pressure in the middle of the band; 
(c) temperature; (d) shear strength of shear band; (e) heat generated in the band; (f) slide 
displacement. 
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The fundamental effect of heat-induced pore water pressure generation is 
shown in Figure 5.12 where the development of slide velocity with or without heat 
generation is compared. An unstable infinite slope will eventually reach an infinite 
velocity, irrespective of the heat generation at the shearing band. However, adding 
the heat effect results in a much faster acceleration. In fact, after a common sliding 
time of 30 s, the “standard” slope, which was made (slightly) unstable, reached a 
velocity of 2 mm/s. If the heat phenomenon is considered, the calculated velocity 
is 30 m/s for t = 27 s. 

Results for the base case (k = 10−11 m/s) are summarized in Figure 5.13. The 
following variables have been plotted along time: maximum excess pore pressure 
and temperature generated in the band, shear strength, and slide displacement.  

During the first 10 s, the generated heat does not have any relevant effect. The 
excess of pore pressure remains negligible because the frictional work generated is 
very small and the heat released is not enough to sufficiently increase the pore 
pressure. Eventually, as time increases, pore pressure build-up is capable of 
reducing the resisting shear strength. Then the driving force increases, the slide 
accelerates, the work input and the temperature in the shear band increase, and 
additional pore pressures are generated. The shear strength reduces to a very small 
value at t = 16 s. However, the increasing velocity still provides a heat input into 
the shear band and the temperature continues to rise. The pore pressure generation 
is now almost compensated with flow-induced dissipation. The calculation was 
stopped when total displacement was 400 m. 

The effect of changing the permeability of the shear band (and surrounding 
clay) is presented in Figures 5.14 (k = 10−13 m/s) and 5.15 (k = 10−9 m/s). When 
the band is more impervious, the results are essentially the same as in the base 
case. Now the shear strength becomes essentially zero beyond t = 10 s and the 
band temperature remains constant at T = 85ºC. The work input into the band 
reaches a maximum and then decreases to a small value, which is enough to 
compensate for the slow pore pressure dissipation. As a result, the excess pore 
pressure remains constant and reaches a value close to 4.3 MPa. 

When the band is more pervious (k = 10−9 m/s), Figure 5.15b, the pore 
pressure does not increase as fast as in the previous two cases, because dissipation 
is enhanced. Therefore, the shear strength does not fall so fast. The combined 
effect of increasing sliding velocity and non-negligible residual strength in the 
band leads to an increase of the work input (Fig. 5.15e) and to a significant 
elevation of temperature in the band (Fig. 5.15c). The calculated temperatures far 
in excess of 1,000ºC implies that some of the assumptions made in the derivation 
of the governing equations for the mass and heat balance of the band may not be 
satisfied. In particular, if water vapourizes, pore water pressure may be different 
from the value associated solely with water dilation and (liquid) flow. The 
behaviour of the solid phase will also be affected by high temperatures. The 
problem now will require modification of the formulation, which is not attempted 
here. 

The effect of band permeability on slide velocity and pore pressure 
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generation, during the interval necessary for the slide to reach a displacement of 
400 m is illustrated in Figure 5.16. Increasing the permeability leads to a slower 
response of the pore pressure build-up and a delayed acceleration of the slide. The 
results seem, at a first sight, to be consistent with the physics of the problem, but 
the high temperatures developed in the band for permeabilities in excess of 

910− m/s force to be cautious in the high permeability range.  
 

 
 

Figure 5.15 Dynamic analysis of infinite slide. Shear band permeability, k = 10−9 m/s. 
Evolution in time of (a) velocity; (b) excess pore water pressure in the middle of the band; 
(c) temperature; (d) shear strength of shear band; e) heat generated in the band; (f) slide 
displacement.  
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The infinite slide is a crude approximation of reality. The cross-section of 
Vaiont can be approximated by two interacting wedges, the lower one resting on 
an essentially horizontal sliding surface. The sliding mechanism in this case is 
substantially different because, in the absence of phenomena leading to strength 
reduction, the motion of an initially stable geometric configuration tends to 
decelerate, as discussed in Chapter 2. The following section explores the dynamics 
of Vaiont.  
 

 
 

Figure 5.16 Dynamic analysis of infinite slide. Effect of shear band permeability (k) on the 
development of (a) velocity and (b) excess pore water pressure in the middle of the band 
during the interval necessary to reach a displacement of 400 m. 
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5.6 Two Interacting Wedges 

5.6.1 Geometry 
The analysis of the infinite slide presented above is useful in understanding the 
thermo-hydraulic process that takes place in a shear band and its effect on the 
overall slide motion. However, the geometry of the slide introduces significant 
changes, which will be presented here. The slide is now divided into two wedges 
(1 and 2), following the discussion presented in Chapter 2. Section 5 of Vaiont is 
schematized in Figure 5.17. 

The analysis follows the calculation procedure developed for the infinite slide: 
mass and energy balance have to be written for the shear bands limiting the two 
wedges and the overall dynamic equilibrium of the two wedges has to be satisfied. 
 

 

 

 

Figure 5.17 Cross-section 5 of Vaiont: (a) initial geometry; (b) geometry after a 
displacement s.  
 

The lower wedge (Wedge 2), resting on a horizontal plane, supports 
(passively) the unstable upper wedge (Wedge 1), which slides on a sloping plane. 
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This geometry was used in Chapter 2 for the analysis of static and dynamic 
equilibrium of the slope without considering the effect of water dilation due to the 
heat generated on the basal shear band.  

Changes in geometry have to be considered in a dynamic analysis. Figure 5.17 
indicates the evolving geometry of the slide when a displacement s is considered. 
The initial basal length of Wedge 1 ( 0

1L ) is reduced to 

 0
1 1 .L L s= −  (5.34) 

Displacement increases the initial basal length of Wedge 2 ( 0
2L ) to 

 0
2 2 .L L s= +  (5.35) 

Length h (see Fig. 5.17b) can be obtained, for a given displacement s, knowing 
that 

 
0

0
1 1

,
hh

L L
=  (5.36) 

because triangles AVB and A′VB′ are similar.  
Now, the volume of Wedge 1 for a given displacement can be obtained as 

 1 1
1 cos .
2 2

V L h α⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (5.37) 

Volume reduction of Wedge 1 contributes towards increasing the volume of 
Wedge 2 by the same amount and therefore its current volume becomes 

 ( )0 0
2 2 1 1 .V V V V= + −  (5.38) 

Wedge weights (W1 and W2) and masses (M1 = W1/g and M2 = W2/g; where g is 
the gravity acceleration) can be computed from these volumes. A specific weight 
of the rock (γr = 23.5 kN/m3) was used in calculations.  

5.6.2 Balance equations 
Mass and energy balance (of the lower shear band) and equilibrium conditions (for 
the entire moving mass) will be written separately for each wedge. By forcing the 
slide to move as a single unit, the governing equations of the movement of the 
landslide will be obtained. 

The effective interaction forces across the common plane (VB′; see Fig. 5.17 
and 5.18) between the two wedges have two components, intN ′  and Qint, normal 
and tangential to the plane. Forces due to pore water pressures 

1
,wP  Pwint and Pwf  

will be considered as constant during the landslide. 
Since the shear resistant forces of each wedge (T1 and T2) are different 

(although a unique frictional angle is considered, normal effective resultant forces 
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on the basal planes, 1N ′  and 2N ′ , are not equal), the work input into the bounding 
shear bands of the two wedges will be different. Therefore, two different values 
for the shear band temperature (θ1 and θ2) and for the excess pore water pressures 
(Uw1 and Uw2) will be developed in the two wedges. Specific balance equations 
should be written for each one of the two wedges. To avoid confusions, each part 
of the shear band will be denoted by shear band 1 or 2 according to the wedge 
involved. Equal thickness and material properties will be assumed in the two 
bands (they are taken from Table 5.1).  
 

 
 

(a) (b) 
 

Figure 5.18 Geometry and forces on wedges: (a) Wedge 1; (b) Wedge 2. 
 

Consider first the one-dimensional balance equations already developed for 
the infinite slide in Section 5.5. They will now be directly applied to Wedge 1. 
The z1-direction corresponds to the normal direction of Shear Band 1. From the 
First Law of Thermodynamics, the generated heat (H1) in the Shear Band 1 is 
expressed as 

 ( ) ( ) ( )max
1 1 2f

v t
H t t

e
= τ  for [ ]1 , .z e e∈ −   (5.39) 

The frictional strength (τf1) can be derived from equilibrium conditions, as done 
previously for the infinite slide.  

Neglecting conduction and diffusion of heat, heat balance in the Shear Band 1 
reads 

 ( ) ( )1
1 m

t
H t c

t
∂θ

= ρ
∂

 for [ ]1 , .z e e∈ −   (5.40) 

Mass balance of water and solid inside and outside of Shear Band 1 results in 
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 (5.41a) 
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 (5.41b) 

Regarding Wedge 2, the generated heat can be expressed as 

 ( ) ( ) ( )max
2 2 2f

v t
H t t

e
= τ  for [ ]2 , ,z e e∈ −  (5.42) 

valid in the normal direction (z2) to Shear Band 2. The heat balance will be given 
by 

 ( ) ( )2
2 m

t
H t c

t
∂θ

= ρ
∂

 for [ ]2 , .z e e∈ −   (5.43) 

Likewise, mass balance of water and solid inside and outside of the Shear Band 2 
is written as 
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 (5.44a) 

 
( ) ( ) ( )

( ] [ )

2
2 2 2 2 2

2
2

2

, ,

for , , .

w n wr r
v r w v

w

u z t t u z tkm n m
t t z
z e e

∂ ∂σ ∂⎡ ⎤+ α − =⎣ ⎦ ∂ ∂ γ ∂
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 (5.44b) 

These expressions complete the balance equations for the two shear bands. 

5.6.3 Dynamic equilibrium of the two wedges 
At this point the reader may wish to read first Chapter 2, where a detailed 
presentation of the equilibrium equations of the two wedges is made. Reference is 
made here to Figure 5.18. Regarding the previous analysis for the infinite 
landslide, the main difference now is that masses and weights depend on the 
displacement and then they are not constant in time.  

For Wedge 1, the dynamic equilibrium equations for directions parallel and 
normal to the basal sliding plane are: 
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( ) ( ) ( ) ( )

( )
( ) ( )( )

1 1 int

1 max
int int

sin cos
2

d
sin cos ,

2 2 dw

W t T t N t

M t v t
Q t P

t

⎛ ⎞′− − −⎜ ⎟
⎝ ⎠
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( ) ( )

1 1 int int
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cos sin cos
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α
 (5.45b) 

The right-hand term of Equation (5.45a) can be developed as: 

 
( ) ( )( )

( ) ( ) ( ) ( )1 max max 1
1 max

d d d
d d d

M t v t v t M t
M t v t

t t t
= +  (5.46) 

and the time variation of mass of the wedge can be expressed as a function of the 
time variation of the displacement ( ts dd ), which is equal to the velocity (v): 

  (5.47) 

The shear resistance force on the base of Wedge 1 (T1) is expressed, following the 
Mohr −Coulomb strength criterion, as 

 ( ) ( ) ( )1 1 tan ,bT t N t′ ′= ϕ  (5.48) 

where b′ϕ  is the effective residual friction angle of the sliding surface. 
The mobilized shear force on the common plane between wedges is given by 

 ( ) ( ) ( ) ( )int int tan ,r rQ t c h t N t′ ′ ′= + ϕ  (5.49) 

where rc′  is the effective cohesion of the rock, and r′ϕ , the effective friction angle 
of the rock. The values of these strength parameters are indicated in Table 5.2. 
These values are accepted and justified in Chapter 2.  
 

Table 5.2 Strength parameters of the sliding rock mass. 
 

Sliding mass material 
Cohesion rc′  762.2 MPa 

Friction angle '
rϕ  38º 

 
The water pressure force due to the presence of a water table of height hw acting 
against Wedge 1 is 

( )
0

Wedge 11
10

10

d dcos .
d d 2 dr r

dVM h sL s
t t L t

α⎛ ⎞= δ = −δ − ⎜ ⎟⎝ ⎠
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2

1 .
2sin

w w
w

h
P

γ
=

α
  (5.50) 

The water pressure force acting against the right boundary of Wedge 1 (Fig. 5.18) 
is calculated as 

 
2

int 2cos
w w

w
h

P
γ

=
α

 (5.51) 

Dynamic equilibrium expressions for Wedge 2 (parallel and normal to the slide 
direction, respectively) are 

 ( ) ( ) ( )
( ) ( )( )2 max

int int 2
d

cos sin ,
2 2 d

M t v t
N t Q t T t

t
⎛ ⎞ ⎛ ⎞′ − − =⎜ ⎟ ⎜ ⎟
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α α  (5.52a) 
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 (5.52b) 

The shear resistance on the base of Wedge 2 (T2) is given by 

 ( ) ( ) ( )2 2 tan bT t N t′ ′= ϕ  (5.53) 

and the value of 2wP  is given by 

 ( ) ( )2 2 .w w wP t L t h= γ  (5.54) 

Note that these equations also depend on displacement, s, travelled by the wedges. 
If Equations (5.45) to (5.54) are properly combined, a single motion equation 

for the total sliding mass is obtained as follows: 
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v t
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t

+ + + + +

+ + +

+ + =

= +

 (5.55) 

where t coefficients depend on the section geometry and on the cohesive and 
frictional parameters of the materials involved, as indicated in Appendix 5.3. 

The strength acting on the basal sliding surface of the two wedges is found as 
the ratio of total resistance forces T1 or T2 and current base lengths L1 or L2. T1 and 
T2 are given by 
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( ) ( ) ( )
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 (5.57) 

where coefficients r and s are function of geometry and of wedge masses. They 
are collected in Appendix 5.3. These expressions allow the calculation of heat 
generation through Equations (5.39) and (5.42). 

Summarizing the preceding results, the system of equations to be solved 
includes the balance equations for the two shear bands (2+2 equations) and the 
equation for the dynamic equilibrium of the entire landslide (one equation):  
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 (5.58e) 

where heat generation rates H1 and H2 are given by Equations (5.39) and (5.42). 

5.6.4 Results and discussion 
The system of Equations (5.58) was solved by finite differences following the 
same calculation procedure explained in Appendix 5.1 for an infinite slope. Note 
that for the case of two interactive wedges, the geometry of each wedge, their 
weights and masses, the total normal stress under each wedge and the hydrostatic 
pore water pressure under Wedge 2 depend on the displacement and should be 
updated at each time interval of the calculation. Initial and boundary conditions 
for each one of the shear bands are identical to the conditions described for the 
infinite slope. The computer program developed is included in Appendix 5.2 to 
facilitate calculations for other cases not covered here and to show all the details 
of the calculation procedure. 

Results for the base case (k = 10−11 m/s) are given in Figures 5.19 and 5.20. A 
shear band thickness 2e = 5 mm was assumed. Calculation ended when the slide 
reached a displacement of 400 m. The physical explanation of phenomena taking 
place in the shear band and the response of the slide were already given when 
discussing the results for the infinite slope. Isochrones of excess pore water 
pressure in the shear band below Wedge 1 are given in Figure 5.19a for the first 
12 s of motion, when the slide velocity was 10 m/s. The excess pore water 
pressure reached a maximum value of 1.7 MPa for t = 10 s. At this time the 
available shear strength at the center of the shear band was already very small and 
the heat generated (and the associated pore pressure build-up) decreased sharply. 

As a result, pore pressure dissipation under Wedge 1 towards the surrounding 
soil dominated the following time steps (t > 10 s). Note also in Figure 5.19a that 
excess pore pressures become negative outside the shear band. This is a 
consequence of the unloading associated with the loss of weight of Wedge 1 as the 
slide moves forward. This effect is of minor importance within the shear band 
itself where the excess pore pressure is dominated by heating effects. In Wedge 2 
(Fig. 5.19b), excess pore pressures reach higher values due to the higher weight of 
the wedge. The average normal total stress on the horizontal sliding surface under 
Wedge 2 decreases also during the slide displacement and a decrease in pore water 
pressure outside the band is also calculated (Fig. 5.19b).  
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Figure 5.19 Dynamic analysis of Section 5 of Vaiont. Base case (shear band permeability, 
k = 10−11 m/s). Excess pore water pressure isochrones in the shear band of (a) Wedge 1 and 
(b) Wedge 2 and adjacent soil. Shear band extends from z = 0.0025 m to z = −0.0025 m.  
 

Figure 5.20 provides additional details. Global performance variables for 
Wedge 1 have been plotted against time. The slide reaches a displacement of 400 
m, 30 s after the initiation of the motion. At this time the velocity is 27 m/s (close 
to 100 km/h). These are values consistent with field observations (see Chapter 2).  

The development of excess pore pressure at the center of the shear band is 
shown in Figure 5.20b and has already been explained. Further insight is provided 
by the evolution of temperature, the drop in strength and the work (or heat) input 
into the shear band. The maximum temperature calculated in this case is 
somewhat higher than 100ºC. The drop of shear strength is rapid from t = 8 to 10 
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s. The work performed increases fast during this period due to the rapid increase 
in velocity, but it later decays because of the very low value of shear strength. The 
entire behaviour of the band and, hence, of the landslide, depends in a fully 
coupled manner on the mass and heat transfer phenomena in the thin shear band 
and its immediate vicinity.  
 

 
 

Figure 5.20 Dynamic analysis of Section 5 of Vaiont. Base case (shear band permeability, 
k = 10−11 m/s). Wedge 1. Evolution in time of: (a) velocity; (b) excess pore water pressure 
in the middle of the band; (c) temperature; (d) shear strength of shear band; (e) heat 
generated in the band; (f) slide displacement.  
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Figure 5.21 Dynamic analysis of Section 5 of Vaiont. Shear band permeability k = 10−10 
and 10-12 m/s (remaining properties as in Base Case). Wedge 1. Evolution in time of: (a) 
velocity; (b) excess pore water pressure in the middle of the band; (c) temperature; (d) shear 
strength of shear band; (e) heat generated in the band; (f) slide displacement.  

 
Changing the permeability of the shear band leads to significant changes in 

behaviour. A more impervious band leads to minor changes, when compared with 
the base case. When it is made more pervious, pore water pressure dissipation 
becomes more significant and the effective normal stress (and shear strength) 
maintains higher values. The slide also accelerates fast and high velocities coupled 
with relatively higher shear strengths lead to larger heat inputs into the band and to 
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higher temperatures. These effects can be followed in Figure 5.21, where the cases 
for k = 10−12 and k = 10−10 m/s, which are also accepted values for the clay band 
material of Vaiont, have been represented. The three calculated cases lead to the 
same basic result: a fast accelerated motion is predicted and the final velocities 
(for s = 400 m) are similar in all of the three cases.  

Vaiont was an extreme case. Landslides are commonly of a much lower 
volume. Therefore is it interesting to explore the effect of reducing the size of the 
slide. In other words, to raise the question of scale effects on the dynamic 
behaviour of slides. This practical issue will be examined in the next section.  

It was also interesting to perform a more complete sensitivity analysis than 
just varying the band permeability. In this way, a relevant practical issue, namely 
establishing a general criteria for landslide acceleration, could be analyzed. Shear 
band permeability is only one of the parameters controlling the development of 
pore pressures. Relevant parameters are also band thickness and stiffness. To 
some extent permeability and band thickness provide the same information: both 
are related to grain size distribution. Narrow or, alternatively, thick shear bands 
are expected in impervious or pervious materials, respectively. Stiffness is a 
different type of property and rock-like or soil-like materials may be found for the 
same mineralogy and grain size distribution. An analysis of the combined effect of 
permeability, band thickness and stiffness will be presented.  

5.7 Scale Effects 
Vaiont was a very large landslide (a mobilized volume close to 260 million m3 
was estimated). A slide 100 times smaller is still a very large landslide. For 
instance, the 5 million m3 Cortes landslide, described in Alonso et al. (1992), 
posed a significant threat to the 100 m high Cortes concrete arch dam. Its overall 
dimensions (length, height) were roughly 1/10 of Vaiont dimensions. Moreover, 
many dangerous rock and soil slides described in the literature are one order of 
magnitude smaller than Cortes slide. Vaiont was an extreme case, of very rare 
occurrence, on a world basis. Therefore, a relevant question remains: is the 
velocity reached by Vaiont also a common occurrence or, at least, a real 
possibility in smaller and much more frequent landslides? 

A comprehensive answer to this question would require a lengthy analysis of 
the dynamic behaviour of different types of landslides. But a simple answer can be 
given if the main characteristics of Vaiont (a displacement type of motion 
involving a mass of rigid rock, sliding on a clay layer) are maintained and the 
geometrical dimensions are reduced without any further change in material 
properties or geometrical arrangement. In fact, if all the dimensions of Vaiont are 
reduced by a factor of 10, a landslide very similar to the Cortes slide is obtained. If 
this slide becomes (sligthtly) unstable, how would it evolve if heat-induced water 
pressure develops at the sliding surface? 

The program included in Appendix 5.2 is of direct application in this case. A 
new case has been run, modifying the scale of the Vaiont landslide. The new 
geometry is defined by reducing the dimensions (lengths and heights) of Wedges 1 
and 2 (Fig. 5.17a) by a factor of 10. The water level was located at a position 
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which brought the slope to a state of strict equilibrium. The remaining properties 
(including the shear band thickness) have not been modified and they are given in 
Table 5.1. The motion was triggered by a slight increase (10 cm) of the water 
level.  

 

 
Figure 5.22 Reduced Vaiont landslide (dimensions× (1/10); volumes× (1/100)). Slide 
response for a base case (shear band permeability, k = 10−11 m/s). Wedge 1. Evolution in 
time of: (a) velocity; (b) excess pore water pressure in the middle of the band; (c) 
temperature; (d) shear strength of shear band; (e) heat generated in the band; (f) slide 
displacement. 
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The calculated response of this slide is shown in Figure 5.22 for a base case (k 
= 10−11 m/s). Calculations were run in time until the slide reached a displacement 
of 50 m. The calculated heat input into the shear band and the maximum excess 
pore pressures are now one order of magnitude smaller than in the previous case. 
As a result, the temperature increase of the band is very moderate (3.5 ºC). The 
shear strength, however, is lost after a few seconds and the slide is able to reach a 
significant velocity. A maximum value around 9 m/s is obtained at the end of the 
calculation period. The implication is that this reduced slide may be also 
dangerous if the circumstances of the analysis are fulfilled in practice. 

 

 
 

(a) 
 

 
 

(b) 
 

Figure 5.23 Reduced Vaiont landslide (dimensions× (1/10); volumes× (1/100)). Wedge 1. 
(a) Effect of the permeability on the landslide velocity; (b) detail for high band 
permeability. 
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Band permeability is a key parameter to control the response of the slide. This 
is shown in detail in Figures 5.23-5.26 which show the calculated velocity, excess 
pore pressure, temperature and displacement for varying band permeability 
(Wedge 1 in all cases). Band permeabilities of 10−8 m/s and larger do not trigger 
any heat-induced effect. This threshold is obviously associated with the band 
thickness used in calculations (5 mm), but a more consistent analysis is given 
below. Since the two-wedge mechanism analyzed has a self-equilibrating 
response, the small initial triggering effect (increasing water pressure in the shear 
band by 10 cm) is, in those cases, “absorbed” by the changing geometry and the 
slide comes to rest after a small increase in velocity (Fig. 5.23b). If permeability 
decreases below this threshold, the coupled thermo-hydro-mechanical processes 
taking place in the band result in a progressive accumulation of pore pressures 
(Fig. 5.24) and in an accelerated slide motion. The temperature increase in the 
band, when the slide accelerates (k  < 10−9 m/s) is now quite moderate in most 
cases. However, for the reasons already explained, there are some specific k 
values (around k = 10−9 m/s) which result in a strong dissipation of energy at the 
band and, accordingly, in a significant temperature increase (30 ºC are obtained − 
Fig. 5.25d − at the end of the calculation interval). The attained displacements for 
a given time (Fig. 5.26) reflect also the preceding comments.  
 

 
 

Figure 5.24 Reduced Vaiont landslide (dimensions× (1/10); volumes× (1/100)). Wedge 1. 
Effect of shear band permeability on the excess pore water pressure in the middle of the 
band. 
 

Summarizing, smaller slides, similar in shape to the Vaiont case, may also 
reach significant velocities. It appears that band permeability is a key parameter 
controlling slide acceleration. Below a certain threshold value (around k = 10−8 
m/s for the geometry and parameters selected for the case analyzed), the slide may 
reach a high velocity. However, when the size of the slide decreases, the generated 
band excess pore pressures and temperatures reduce. In fact, it appears that for 
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slides having the size of a “reduced Vaiont” by a factor of 10 in the scale of 
dimensions, maximum temperature increments in the shear band will be no more 
than a few degrees. In most cases, it turns out that the generated temperature 
depends also strongly on the thickness of the shear band. Before general 
conclusions are reached in this regard, it is convenient to perform a sensitivity 
analysis of the calculated solution when the thickness, permeability and stiffness 
of the band are varied between acceptable limits. 
 

 
Figure 5.25 Reduced Vaiont landslide (dimensions× (1/10); volumes× (1/100)). Wedge 1. 
Effect of shear band permeability on the temperature in the band. 
 

 
 

Figure 5.26 Reduced Vaiont landslide (dimensions× (1/10); volumes×  (1/100)). Wedge 1. 
Effect of shear band permeability on the slide displacement.  

5.8 Discussion 
A better insight into the physics of the problem is gained if a sensitivity analysis 
of the main controlling factors is performed. In view of previous results, 
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permeability values in the range 10−12 to 10−7 m/s and band thickness varying 
between 0.5 and 10 mm were chosen. Two moduli of confined stiffness were 
selected, having in mind that in most cases the shearing surfaces in landslides are 
located in soft clayey rocks: mv = 10-9 Pa-1 (a relatively stiff clay rock) and mv = 
10-8 Pa-1 (a relatively soft clayey rock). Then, for each combination (k, 2e, mv), the 
program given in Appendix 5.2 was run for the geometry of the scaled Vaiont 
geometry and maximum velocities for a runout of 50 m and temperatures in the 
shear band were calculated.  
 Consider first the case of a stiff shearing band (mv = 10-9 Pa-1) in Figure 5.27. 
The calculated velocities for varying band thickness remain in a narrow band. 
Velocities reach high values (8 – 9 m/s) when the permeability is low (10−12 to 
10−10 m/s). For relatively large permeabilities (higher than 10−8 m/s) the velocity of 
the slide drops to zero. In these cases the initially unstable situation is soon 
counter-acted by the self-stabilizing mechanism of the slide (weight transfer from 
the upper to the lower wedge). 
 The transition from the “rapid regime” to the “slow” or self-stabilizing 
situation occurs for permeabilities in the range 10−9 to 10−8 m/s. 
 Calculated temperatures for varying band permeability and band thickness are 
represented in Figures 5.27b,c for Wedge 1 and in Figures 5.27d,e for Wedge 2. 
The normal effective stress in Wedge 1 against the sliding plane is significantly 
smaller than the value calculated for Wedge 2. Resisting shear stresses react in the 
same manner and the work input for Wedge 1 is smaller if compared with Wedge 
2. The consequence is that temperatures in Wedge 1 remain at moderate values in 
the “fast” and “slow” ranges of permeabilities. Temperature increases in the 
intermediate “regime” because the combination of non-negligible shear strength 
and a substantial sliding velocity leads to a significant mechanical work input into 
the band.  

Band thickness controls the temperature development. A maximum 
temperature of 259 ºC for Wedge 1 is calculated for k = 10−9 m/s and 2e = 0.5 mm. 
Temperatures are higher in Wedge 2 for the reason given and they reach a peak 
value close to 800 ºC for k = 10−9 m/s and 2e = 0.5 mm. These high temperatures 
would require a more precise formulation of the constitutive model of the band 
material and, possibly, the presence of additional physical phenomena (water 
vapourization) which are outside the limits of this chapter. But in most cases in 
practice the maximum temperature calculated is moderate and the analysis 
developed should represent reasonably well the relevant physical phenomena. 

Similar qualitative results were obtained for the softer band material (mv = 
810− Pa-1) (Fig. 5.28). In order to explain the results, consider the balance equation 

for solid and water mass (Eq. (5.41a)), written now in the following form: 

( )2
max

2

1

2
s w fw w v n

w v w v w v w m

n n vu u mk
t m n m n t m n e cz

⎡ ⎤− β +β τ∂ ∂ ∂σ ⎣ ⎦= + +
∂ γ + α + α ∂ + α ρ⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (5.59) 

The rate of pore pressure change has been isolated. Use has been made also of 
Equations (5.39) and (5.40) which provide the relationship between temperature 
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and rate of work input into the band. Three phenomena contribute to change pore 
water pressures in the band: the dissipation due to flow of water (first term), the 
variation of total normal external stress (second term), and the generation of pore 
pressures due to water and solid dilation, controlled by heat (or rate of work input) 
(third term). The three terms are affected by the compressibility coefficient of the 
band material, mv (in the denominator).  

The term mv + nαw becomes:  
 

10-9+0.2×0.476×10-9 Pa-1 = 1.095×10-9 Pa-1 for the stiffer band 
 

10-8+0.2×0.476×10-9 Pa-1 = 10.095×10-9 Pa-1 for the softer band 
 

Therefore, the rate of heat-induced generation of pore pressures is reduced ten 
times when the compressibility of the material increases ten times. The sketch in 
Figure 5.4 also explains qualitatively the effect of rock skeleton stiffness on pore 
pressure generation when temperature increases: a softer rock pore accommodates 
better an increase in water dilation, and leads to a lower pore pressure. 
 

 
 

Figure 5.27  Reduced Vaiont landslide. Stiff shearing band, mv =  10-9 Pa-1. Effect of shear 
band permeability and thickness on (a) landslide velocity; (b) temperature for Wedge 1; (c) 
temperature for Wedge 1, detail; (d) temperature for Wedge 2; (e) temperature for Wedge 
2, detail.  
 

The remaining terms in Equation (5.59) are also controlled by mv (an increase 
in mv also results in a decrease in the dissipation rate of pressures) and it is 
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difficult to predict the final result in a particular case without actually performing 
the calculations. If the heat-associated term dominates, excess pore pressures, 
other conditions maintained, will decrease when mv increases – softer material –  
and the normal effective force on the sliding surface will increase. This implies, in 
general terms, a higher resistance to sliding and a reduced velocity.  

The plot in Figure 5.28a shows the final velocities when the slide has 
displaced 50 m. It indicates that the increase in mv leads to a systematic reduction 
in calculated velocities for any value of permeability. A consequence of this 
reduction is that the transition permeability between the fast and slow regimes 
now ranges between 10−10 and 10−9 m/s. Another obvious consequence is that the 
time to reach a given displacement should increase when mv increases. 

Consider finally the effect of mv in the development of temperatures in the 
shear band (compare plots in Figs. 5.27b,c,d, and Figs. 5.28b,c,d). The plotted 
temperatures correspond to the end of the calculation period, when the slide in all 
cases has reached a displacement of 50 m. Therefore, the plot provides an 
accumulated quantity which is proportional (in the absence of any dissipation by 
conduction and advection, given the fast phenomena analyzed) to the total work 
input during the sliding time. 

 

 
 

Figure 5.28  Reduced Vaiont landslide. mv =  10-8 Pa-1. Effect of shear band permeability 
and thickness on (a) landslide velocity; (b) temperature for Wedge 1; (c) temperature for 
Wedge 1, detail; (d) temperature for Wedge 2; (e) temperature for Wedge 2, detail.  
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In the “fast” regime (low permeability) the pore pressure generation term for a 
softer soil (third term in Eq. (5.59)) is smaller than the same term for a rigid 
material. Therefore, in order to accelerate (pore pressures should increase until 
effective stresses reduce to vey low values), heat has to accumulate during a 
longer time for a softer material. The direct consequence is that the time to get the 
accelerated motion of the slide should increase for a softer material, a result 
already advanced. It turns out that the accumulated heat for the softer material (the 
integrated value of the slide velocity times the available shear strength) is higher 
than the calculated value for the stiffer material. As a result, temperatures increase 
in the case of softer materials. This is shown in the plots for the low range of 
permeabilities. When the permeability increases and enters into the “slow" regime, 
the comparison of the temperature results for the two mv values cannot be 
discussed in the preceding terms because the slide stops soon after the initial 
instability because of the fast dissipation of excess pore pressures. 

The preceding set of comments illustrates the intricate coupling among the 
different phenomena and the difficulty to make predictions on the basis of a 
simple reasoning.  

This is a case in which predictions, even if they are qualitative, require the 
help of a computational tool. 

5.9 Mitigation Measures  
In 1960, engineers in charge of the dam were already aware of the fact that the left 
margin of the Vaiont River was a very large ancient slide whose mobilized 
volume was roughly estimated as 6260 10×  m3. Previously, in March 1959, a big 
landslide, whose volume was estimated in 63 10×  m3, slid rapidly into the 
Pontesei reservoir, built on the Piave river, North of Longarone. It created a huge 
wave, 25 m high, which flew over the dam, although no damage was reported. 
Also, in 1960, a relatively large slide, close to 106 m3, fell into the Vaiont 
reservoir and created a 2 m high wave.  

These two events prompted the performance of a hydraulic impact test at the 
University of Padova. Reduced scale tests were performed. The landslide volume 
was simulated by means of gravel that fell into the reservoir water. They reported 
that a maximum wave height of 26 m could develop in Vaiont, in the case of full 
landslide. It was estimated that the consequences of this maximum wave could be 
managed in an acceptable way.  

Predicting the wave generation induced by a moving mass entering a body of 
water requires information on the shape and velocity of the mass, as well as the 
bathymetry of the lake invaded.  

In the case of Vaiont, the possibility of a major slide into the reservoir was 
well accepted. It was feared that the slide could effectively close the valley. In 
fact, a diversion tunnel was built on the right margin to allow the connection 
between the two resulting isolated volumes of the reservoir.  

However, the landslide speed could not be predicted or even imagined by 
engineers. The hydraulic tests performed in Padova were inaccurate and this was 
attributed to the use of gravel to simulate the slide. In tests performed in 1974, 
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when a similar risk was investigated for the reservoir of Libby dam, it was found 
that the height of the wave generated in the lake was very much dependent on the 
details of the shape of the material used to simulate the slide (Leonards, 1987). If a 
solid vertical wall is used instead of a mass of gravel, the wave height increases 
substantially. The fact is that the predicted wave was 26 m against the actual wave 
heights over the Vaiont dam (150 and 250 m on the left and right abutments, 
respectively).  

Summarizing what has been discussed here and in Chapter 2, the critical path 
to adopt (or not) remedial measures was: 

a) to decide how the initiation of the slide could be controlled. Straight use of 
static models does not offer much confidence and the observational method 
adopted seems a conceptually correct decision. But the observational 
approach also requires a model to interpret field measurements. A model 
was implicitly adopted and it is essentially derived from the plot in Figure 
2.12. Observations were interpreted in the sense that a reduction in 
reservoir level results in an immediate reduction of sliding velocity. 
Unfortunately, this conclusion is not based on a precise mechanical 
analysis of the phenomenon, especially in the presence of progressive 
failure, not to mention the thermo-hydro-mechanical interactions developed 
in this chapter. The necessary knowledge and calculation tools were not 
available in 1960 and, even if some progress was made in the following 
decades, the fundamental aspects remain obscure.  

b) by accepting the failure as a probable event, the next step is to ascertain its 
consequences. The main concern was the possibility of water spilling over 
the dam (and possibly the damage of the dam itself if it becomes directly 
hit by the slide). The efforts made (reduced-scale hydraulic tests) suffered 
two limitations: the lack of any basis to decide the sliding velocity, a 
subject currently under research, and the effect of some testing details (the 
actual representation of the sliding mass) on the results. 

In neither of these two aspects there was reliable information at the time of 
failure. Forty-five years afterwards, many theoretical and practical aspects remain 
insufficiently known: the limitations to build reliable slope stability models, which 
include time effects and phenomena such as progressive failure when brittle 
materials are involved; the difficulty to know the state of stressing and available 
strength in ancient landsliding areas; the difficulties to perform accurate  
geotechnical investigations at great depths in a rugged terrain, and the lack of 
established and verified criteria to decide when an impending slide may accelerate 
and reach vey high velocities. This chapter provides some answers to the last 
question.  

5.10 Lessons Learned 

5.10.1 Heating a saturated soil or rock 
Heating leads to a pore water pressure rise in saturated soils and rocks. It has been 
shown that this phenomenon is a consequence of the thermal dilation of water and 
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solid skeleton and of the principle of effective stress. Excess pore pressures 
dissipate in a consolidation type of process. Therefore, the pore pressure reached 
at a particular time depends on the thermal dilation coefficients, as well as on the 
consolidation parameters, namely permeability and stiffness. 

5.10.2 Consequences of strain localization and the First Law of 
Thermodynamics 

Field observations indicate that translational and rotational slides move largely as 
solid bodies sliding on thin bands where shear strains are highly localized. 
Therefore, as the slide displaces, strain work is concentrated in a small volume. 
On the other hand, the First Law of Thermodynamics states that the change in 
internal energy of a closed thermodynamic system (in our case, the narrow sliding 
band) is equal to the amount of heat energy supplied and the mechanical work 
done on the system. In our case, there are no direct sources of heat supplied to the 
band and, therefore, the increase in internal energy of the sliding band is equal to 
the plastic straining work associated with sliding. The increase in internal energy 
manifests as an increase in temperature and, in view of the previous point, excess 
pore water pressures will be induced in the sliding band. The immediate 
consequence is a reduction of effective stresses and of the associated shear 
strength. This mechanism leads, under appropriate circumstances, to a complete 
loss of resisting strength available at the sliding surface. Then, the unbalanced 
driving forces lead to an accelerated slide motion. 

5.10.3 Formulating coupled thermo-hydro-mechanical (THM) phenomena 
in the shear band 

This chapter provides a step-by-step procedure to formulate THM problems of 
fairly general nature in a saturated porous material. The particular geometry of the 
shear band (narrow thickness and very large lateral extension) makes the problem 
one-dimensional in practice and facilitates its solution. Another implication is that 
the THM problem associated with the shear band may be formulated 
independently from the geometry of the slide and its specific kinematic 
mechanism. The solution given for the THM band problem may be applied to 
other slide configurations not covered in the chapter, whenever the effect of heat-
induced pore pressure development is sought. 

5.10.4 Dynamics of Vaiont 
A seemingly convincing explanation for the accelerated motion of Vaiont relies on 
the development of excess pore pressures generated by the temperature increase of 
the sliding surface. This is a consequence of the slide motion itself. A key 
condition to explain the phenomenon is the existence of a basal sliding plane 
located in a layer of low permeability high plasticity clay. Under these conditions, 
the self-feeding mechanism of pore pressure generation in the sliding surface may 
eventually lead to very high sliding velocities (> 25 m/s), which are reached in a 
few seconds (∼30 s) even if proper account is given to the self-stabilizing evolving 
geometry of the slide and even if progressive failure mechanisms potentially 
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acting on internal shearing surfaces are not considered. 
Although the two-wedge analysis described here provides a reasonable 

explanation for the final catastrophic motion of the slide, the previous history of 
landslide creep-like displacements (Figs. 2.3. 2.4 and 2.12) cannot possibly be 
reproduced with the model described in this chapter. Other phenomena such as 
viscous-strength components at the failure surface or the strength degradation of 
the rock mass could be invoked to approximate the measured velocities prior to 
failure. However, additional limitations can be identified both in the model and in 
the available information: the geometry was kept two-dimensional and as simple 
as possible; pore water pressures prevailing at the failure surface were never 
measured; the effect of previous rainfall regime is essentially unknown beyond the 
condensed information offered by Figure 2.13; the actual conditions (in particular, 
the continuity of the high plasticity clay layer) and a significant proportion of the 
sliding surface remain buried by the slide and are essentially unknown. Therefore, 
complexities and uncertainties around Vaiont are far from being solved. However, 
it remains as a fascinating case and a permanent source of inspiration in the field 
of landslide analysis. 

5.10.5 Relevant parameters to understand the dynamics of the motion 
Slide geometry and strength properties of the sliding surface(s) are not enough to 
understand the dynamics of Vaiont. Three parameters have been found important 
to explain the motion: the thickness of the sliding band, its permeability, and its 
(confined) stiffness. Permeability is the major player. The sensitivity analysis 
performed for a slide of medium-high dimensions (one tenth of Vaiont) has shown 
that, below a certain permeability threshold (established around 10−8 to 10−9 m/s 
for a “stiff” band (mv = 10−9 Pa-1) and 10−9 to 10−10 m/s for a “soft” band (mv = 10−8 
Pa-1)), the maximum pore pressure development in the shear-band, which is the 
value controlling the shear strength, is not much affected by the band thickness, 
within a reasonable range of values. Above this threshold permeability value, pore 
pressure dissipation is enough to de-activate the process of pore pressure build-up 
and, therefore, the slide does not accelerate. In other words, the threshold 
permeability identified marks the transition from a potentially risky slide to a safe 
one. Of course, this conclusion is valid for the slide geometry analyzed (a scaled 
Cross-section 5 of Vaiont) and it should not be extended to other sliding 
configurations without further analysis.  

5.10.6 Extreme phenomena 
In very large landslides (Vaiont case), when conditions for accelerated motion 
exist, there are critical combinations of band permeability and band thickness that 
result in a substantial and rapid increase in shear band temperature. This is a 
natural outcome of the formulation and it is a consequence of the availability of 
small – but not negligible – shear strength in the shear band and an increasing 
shear strain rate as sliding velocity increases. The permeability of the band in 
these cases is low enough to maintain a significant pore pressure in the band but 
high enough to maintain a non-negligible effective normal stress. The calculated 
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temperatures (hundreds or even thousands of ºC) are enough to induce water 
vapourization and rock melting. These phenomena are not covered by the 
formulation developed, which only explains water pressure increase as a result of 
thermal dilation effects. For this reason, no reliable conclusions should be derived 
from the high temperatures calculated for some critical values of the band 
permeability. However, the estimated sliding-band parameters, in the case of 
Vaiont, lead to a moderate increase in temperature (< 100ºC), which is not able to 
vapourize the interstitial pore water of the clayey band. 

When the size of the slide decreases, the temperature generated in the band 
also decreases because the work input into the band decreases. A reduction of 
Vaiont dimensions by a factor of 1/10 still leads to a very large slide (a few 
million cubic metres), which has been analyzed. Sliding band temperatures, in this 
case, are substantially lower. For an impervious band (k < 10−10 m/s) or for a 
pervious band (k > 10−8 m/s), maximum temperature increments are moderate (a 
few degrees). In extreme cases, for critical k values of the sliding band, it is 
unlikely for temperature to raise more than a few hundreds of ºC. Rock melting is 
excluded in these cases and water vapourization, in clay rich naterials, in 
uncertain. Since most slides do not reach, in practice, such a volume (a few 
million cubic meters), it appears that water vapourization and rock melting are 
extreme phenomena that rarely occur in practice.  

The fact that temperature increases will likely remain moderate or low in most 
slides does not prevent, however, the development of significant velocities. The 
reason is that the reduced increase in pore water pressure in those cases is also 
matched by a reduced normal effective stress on the sliding surface. Therefore, the 
condition of zero effective stress may also be reached during motion. However, 
the smaller the slide is, the shorter the sliding path necessary to substantially 
change its geometry, to evolve to another type of motion, or to be affected by 
another geometrical restriction to its motion. These considerations added to the 
reduced momentum of the slide tend to limit the danger associated with smaller 
slides. 

5.11 Advanced Topics 
Analytical and numerical procedures are available to investigate the run-out 
distances and velocities reached by landslides. In recent studies (Hungr, 1995; 
McDougall and Hungr, 2004; Quecedo et al., 2004), the slide is idealised as a 
fluidized mass of soil and the Navier–Stokes equations are integrated in depth, 
adapted to the curved geometry of the surface, and solved for some rheological 
models adopted for the moving mass. In other approaches conceived for 
rockslides, discrete element approaches and hybrid continuum-discontinuum 
models have been developed (Eberhardt et al., 2004).  

However, Vaiont is a different case. Changes in the slide geometry during 
sliding did not imply a change in the fundamental sliding mechanism, which may 
be approximated by one or several rigid bodies bounded by “thin surfaces” 
subjected to intense shearing. This was the implicit approach of all the 
contributions mentioned in the chapter. Of particular relevance is the analysis 
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presented by Vardoulakis (2002). He approximated the sliding surface by means 
of a circle. To ensure initial equilibrium conditions the basal friction angle in this 
case has to increase to 20º. Vardoulakis (2002) also introduced heat dissipation 
away from the sliding band and the volumetric contraction (“collapse” was the 
term used) of the clay on the band due to the increase in temperature.  A closed-
form solution for planar slides was given by Pinyol and Alonso (2009).  

Appendix 5.1. Finite difference approximation of the system of 
Equations (5.29) to (5.33)  
A forward finite difference procedure was developed to solve the system of 
Equations (5.29) together with the initial and boundary conditions given in  
Equations (5.30) − (5.33). Consider in Figure A5.1 the domain of integration. The 
one-dimensional spatial domain is subdivided into n small elements of thickness 
Δz. The zi coordinate of any point is defined by an index i such that zi = iΔz. The 
following indices define singular points: i = n0 corresponds to z = 0; i = ne to z = 
e. The far boundary is located at a distance z = L, where i = nL. The horizontal 
axis in Figure A5.1 corresponds to time. The system of equations will be solved 
for each time interval Δt. 

Time derivatives at any time t, for z = zi can be approximated by (Forward 
Euler Method): 
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where ( ),f z t  is a general function of position (z) and time (t). 
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Once the numerical approximations of the derivatives (Eqs. (A5.1) and (A5.2)) are 
substituted into the system of Equations (5.29c,d,e), the following discrete set of 
equations is obtained: 
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In these equations, 

 
( )v

v w w

kc
m n

=
+ α γ

 (A5.4) 

is the consolidation coefficient of the shear band material;  
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is the consolidation coefficient of the material outside the shear band; and 
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is a parameter that integrates the dilation coefficients of water and solid, the 
compressibility of soil skeleton and water and the mean specific heat of the soil.  

Equations (A5.3a,b) are explicit mathematical expressions for the excess of 
pore pressure in a point zi, at a given time (t + Δt), if the old values (at the 
previous time, t) in three points: point zi and the points just above and below (zi−1 
and zi+1), are known. This calculating procedure is graphically illustrated in Figure 
A5.1. Equation (A5.3) provides the new value of the maximum velocity as a 
function of the old values (previous step) of maximum velocity and excess of pore 
pressure at z = 0. Heat (H) and effective frictional strengh (τf) are given by 
Equations (5.29a,b) at the previous time t. It appears, therefore, that a forward 
marching procedure has been devised to calculate the independent variables 
(excess pore water pressure and velocity). The procedure requires that initial and 
boundary values are defined. 

Initial and boundary conditions must also be expressed in a numerical way. 
The symmetry condition at z = 0 (Eq. (5.31)), valid at any time, can be 
approximated by extending the domain with an additional interval from z = 0 to z 
= z−1 = −Δz. Then, if the excess pore pressure at z = z−1, ( )1,wu z t−  is forced to be 

 ( ) ( )1 1, ,w wu z t u z t− =  (A5.7) 

at any time, the condition 
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is automatically satisfied in view of Equation (A5.7).  
 

 
 

Figure A5.1 Dynamics of a planar infinite slope. Domain of integration. 
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The general expression (A5.3a) for z = 0 can now be written 
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z
Δ ⎡ ⎤+ Δ = + − + Δ⎣ ⎦Δ

 (A5.8) 

The numerical expression of the boundary condition at the edge of the shear 
band (z = e) (Eq. (5.32)), is obtained by means of a forward finite difference as 
follows: 
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This equality allows the calculation of excess pore water in z = e at any time as a 
function of the values of excess pore water in the points just above and below (at 
the same time): 
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The numerical expression of boundary condition at the upper limit of the 
discretization (Eq. (5.33)), where the excess of pore pressure must be zero, is 
simply 

 ( ), 0.
Lw nu z t =  (A5.11) 

Regarding the initial conditions (Eqs. (5.30)), the numerical equivalents are 
given by 

 ( )0, 0w iu z t =  for [ ]1, ,Li n∈  (A5.12) 

 ( )0, 0iv z t =  for [ ]1, ,Li n∈  (A5.13) 

 ( )0 reftθ = θ  for [ ]1, .Li n∈  (A5.14) 

At the initial time (t0), all values are known. The excess pore water pressure in 
the next time increment can be calculated by means of Equations (A5.3a,b) in 
[ )0 , en n  and ( ],e Ln n , respectively. Note that ne is not included in those intervals. 
However, the continuity condition, expressed in Equation (A5.10), provides the 
new value of excess pore pressure at z = e.  

The value of the maximum velocity at the first time step is obtained by means 
of Equation (A5.3c) (with ( )max 0 0v t = ). Once velocity and excess of pore 
pressure are known at the new time step, the new value of heat and effective 
frictional strength can be calculated through Equations (A5.3a,b). Also, the 
temperature in the shear band can be obtained, at each time step, by means of 
Equation (5.23), writing it in a numerical form as follows: 
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 ( ) ( ) ( )
.

m

H t
t t t t

c
θ + Δ = θ + Δ

ρ
 (A5.15) 

Summarizing, the numerical solution of the problem starts at the boundaries 
where the values of the variables are known at any time. The set of discretized 
equations provides, step by step, all the unknowns at any time and position of the 
domain of integration. Since initial conditions of excess pore pressure at any point, 
as well as the initial temperature are zero, the value of pore water pressure at the 
first time step (t = Δt) will be zero.  

These approximations lead to a Forward Euler Method of integration which 
may be numerically unstable if Δt is larger than the stability limit, which is a 
function of material parameters and Δz. If the solution becomes unstable, the 
calculated values of the unknown function display an oscillatory behaviour in time 
that prevents convergence. Convergence of explicit integration schemes of 
standard parabolic equations (such as the consolidation equation) is achieved if the 
time and spatial increments satisfy the condition:  

 2 0.5.vc t
z
Δ

≤
Δ

 (A5.16) 

This condition applies to the homogeneous part of the parabolic equation 
(Nakamura, 1991) and it may be thought that our field Equation (5.29c) leads to a 
similar relationship. Unfortunately, the “independent” term (proportional to heat 
input ( )H t ) in Equation (5.29c) is a function of pore pressure, through Equations 
(5.29a,b,e). Nevertheless, the preceding condition has been accepted as a reference 
in the calculations presented below. In general, care has been taken to check that 
the calculated pore pressures did not change for time steps below a certain value 
used in calculations.  

The calculated velocity will increase as long as the sliding mass is unbalanced 
(driving forces exceed resisting ones). This is the case, even if the excess pore 
pressure at initial time is zero, because a positive increment of velocity will be 
calculated. Then, the positive value of generated heat, due to the velocity reached 
at the first time step, will result in an increment of temperature and excess pore 
pressure in the shear band. At the following time step, this positive excess pore 
pressure will reduce the effective frictional strength and will accelerate the slide 
mass. The slide will start to move in an accelerated motion. 

The numerical procedure described above has been programmed in Fortran 
90. The program is included in Appendix 5.2 to show all the details of the 
computational procedure and to allow the reader to perform its own calculations.  

Appendix 5.2 Flowchart and Computer Program for the Dynamic 
Analysis of the Infinite Planar and Two-Wedge Slides  
The numerical procedures described above for the dynamic analysis of the infinite 
slide and the two interacting wedges was programmed in Fortran 90. The 
complete code is included at the end of this appendix.  



228 

The program is subdivided in two main branches (Fig. A5.2) attending to the 
type of slide by means of two subroutines: Infinite_planar_slide and 
Two_interacting_wedges.  
 

Infinite Planar slide 

START

Input data 

Type of slide 

Two interacting wedges 
 

Figure A5.2 Flowchart of the main program. 
 

The main program is structured in three parts. First, all the input parameters 
that can be modified by the user are defined: material parameters, reference 
temperature, type of the slide and its geometry, parameters for the discretization 
by finite differences, and control parameters. Regarding the discretization 
parameters, the user has to define the number of spatial steps in the shear band and 
in the sliding mass. As the thickness of the shear band is previously defined, the 
length of spatial increment (Δz) and the position of the coordinate of the upper 
boundary (L) is determined by default. The time interval (Δt) is defined, by 
default, by limiting the value of the stability coefficient ( 2

vc t zΔ Δ ) to 0.3 in 
order to guarantee the stability. 

Second, auxiliary parameters and constants are calculated by the program. In 
general, this part should not be modified by the user. Finally, in the third part of 
the main program, a subroutine is called depending on the type of slide.  

The numerical procedure starts in the subroutines. Results are calculated and 
stored in external files, within the same subroutines. At intervals defined by the 
time frequency (Dtw_time), which is specified by the user in the main program, 
the values of velocity, excess pore pressure in the middle of the shear band, heat, 
displacement, shear strength, and temperature are written in data files. Excess pore 
pressure profiles for z = 0 to z = L are also stored in external files following the 
time frequency (Dtw_profile) specified. The numerical procedure goes on until the 
maximum displacement (displ_max) is reached or until the slide velocity becomes 
zero (the landslide stops) for the case of two interacting wedges.  

The implementation of the numerical procedures in the subroutines follows 
the flow chart diagrams included in Figures A5.3 and A5.4.  
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Figure A5.3 Flow chart diagram of subroutine Planar_slide. 
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Figure A5.4 Flow chart diagram of subroutine Two_interacting_wedges. 
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Figure A5.4 (continued) Flow chart diagram of subroutine 
Two_interacting_wedges. 
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!***********************************************************! 
!                 ! 
!                     PROGRAM        ! 
!                 ! 
!          VAIONT LANDSLIDE: DYNAMIC ANALYSIS    ! 
!                 ! 
!***********************************************************! 
 
 implicit real*8 (a-h,o-z)  
 
!***********************************************************! 
! PARAMETERS TO BE DEFINED BY THE USER 
!***********************************************************! 
 pi =3.141592654 
 
! MATERIAL PARAMETERS 
!Water parameters 
 delta_w = 1.e3   !kg/m3; density 
 gamma_w = 9800.0  !N/m3; specific weight 
 alpha_w = 5.e-10  !1/Pa; compressibility coefficient 
 beta_w = 3.4e-4  !1/ºC; thermal dilation coefficient 
 c_w =4186.0   !J/(kg·ºC); specific heat 
!Solid parameters 
 delta_s = 2.7e3  !kg/m3; density 
 beta_s = 3.0e-5  !1/ºC; thermal dilation coefficient 
 c_s = 837.2   !J/(kg·ºC); specific heat 
!Shear band parameters 
 zn_band = 0.2   !porosity 
 zk_band = 1.e-11  !m/s; permeability 
 zmv_band =1.5e-9  !1/Pa;1D compressibility coefficient 
 fib=12.0*pi/180.  !rad; effective frictional angle in the band 
!Sliding mass parameters 
 zn_rock = 0.2  !porosity 
 delta_rock = 2350. !kg/m3; density 
 gamma_rock =23500. !N/m3: specific weight  
 zk_rock = 1.e-11  !m/s; permeability 
 zmv_rock = 1.5e-9  !1/Pa; 1D compressibility coefficient 
 fir = 38.*pi/180.  !rad; effective frictional angle rock-rock 
 coher =762.247e3  !Pa; cohesion rock-rock 
 cc = 0.d0    !1/m; rock cohesión degradation rate with 

the displacement (if it is equal to zero, there is no degradation 
 
! INITIAL CONDITIONS 
!Initial excess pore pressure, velocity and displacement have been 
!imposed equal to zero by default 
 theta_ref =10.0  !ºC; reference temperature 
  
! TYPE OF SLIDE 
 ntype_failure = 2  !1:infinite planar slide  
       !2:two interacting wedges 
 
! GEOMETRIC PARAMETERS AND HYDROSTATIC FORCES 
 e = 2.5e-3    !m; 2e = thickness of shear band 
 if (ntype_failure.eq.1) then 
  zHeight =240.   !m; thickness of planar landslide 
  zHeight_w =120.  !m; height of phreatic level 
  beta_slope = 9.490*pi/180. !rad; slope angle 
 else if (ntype_failure.eq.2) then 
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  zH_wedge1 = 510.0 !m; height of upper triangular Wedge 1 
  zH1_wedge2 = 260.0 !m; left height of lower Wedge 2 
  zH2_wedge2 = 260.0  !m; right height of lower Wedge 2  
  Base_wedge1 = 700.0  !m; horizontal length of Wedge 1 
  zL2_0_p1 = 240.   !m; partial base length (1) of Wedge 2 
  zL2_0_p2 = 320.   !m; partial base length (2) of Wedge 2 
  alpha = 36.07*pi/180.  !rad; angle Wedge 1 
  beta = atan(zH2_wedge2/zL2_0_p2) !rad; angle Wedge 2 
  zHeight_w = 120.1  !m; water level 
 endif 
 
! CONTROL VARIABLES 
 displ_max = 400.0 !m; maximum displacement allowed in calculation 
  
! DISCRETIZATION (FINITE DIFFERENCE)  

nze = 500   !num. of spatial intervals between z=0 and z=e 
zL = 0.02   !m; coordinate of upper boundary 

 sfb = 0.3   !stability factor of the band for difference  
!approximation 

 
! CONTROL PARAMETERS OF OUTPUT DATA 

Dtw_profile=2.   !seconds; Time between successive writings 
!of pore pressure profiles 

 Dtw_time=1.   !seconds; Time between successive writings  
       !of problem variables varying in time 
   
!*******************************************************************! 
!            AUXILIAR PARAMETERS COMPUTED BY THE PROGRAM 
!*******************************************************************! 
 
!Auxiliary material parameter  
 gamma_s = 9.8*delta_s   !N/m3; specific weight 
 c_delta_band = (1.-zn_band)*delta_s*c_s+zn_band*c_w*delta_w   

!Pa/ºC;specif heat*density  
 cv_band = zk_band/(gamma_w*(zn_band*alpha_w + zmv_band))  

!1/s; consolidation coef. of the band 
 c_delta_rock = (1.-zn_rock)*delta_s*c_s+zn_rock*c_w*delta_w 
         !Pa/ºC;specific heat*density  
 cv_rock = zk_rock/(gamma_w*(zmv_rock+zn_rock*alpha_w))  

!1/s; consolidation coef. of the  
!sliding mass 

 
!Auxiliary geometric parameters and hydrostatic forces 
 if (ntype_failure.eq.1) then 
  Pw = zHeight_w*gamma_w  !N; hydrostatic force on the base 
  zmass=zHeight*delta_rock*cos(beta_slope) !kg/m; mass per unit of  

!length  
  weight = zHeight*gamma_rock*cos(beta_slope) !N/m;total weight  
        !of the sliding mass per unit of length 
 else if (ntype_failure.eq.2) then 
  zL1_0 = sqrt(zH_wedge1*zH_wedge1+Base_wedge1*Base_wedge1)  

!m; base of wedge 1 
  zL2_0 =  zL2_0_p1+zL2_0_p2 !m; total base length of wedge 2 
  delta = 0.5*(pi-alpha) 
  shi = 0.5*alpha 
  Pwint = 0.5*zHeight_w*zHeight_w*gamma_w/sin(delta)  

!N; hydrostatic force on common shearing  
!plane between wedges 
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  Pwf = 0.5*zHeight_w*zHeight_w*gamma_w/sin(beta)  
!N; hydrostatic force on the right edge of 
!lower wedge 2 

  zl_shpl0 = zH1_wedge2/cos(shi)  
!m; length of common shearing plane between  
!wedges  

  Area1_0 = 0.5*zL1_0*zl_shpl0*cos(shi)  
!m2; initial area of wedge 1 

  ddd = zH1_wedge2/tan(delta) 
  Area2_0 =0.5*zH1_wedge2*ddd+ 
 . 0.5*(zH1_wedge2+zH2_wedge2)*(zL2_0_p1-ddd)+ 
 . 0.5*zH2_wedge2*zL2_0_p2 !m2: initial area edge 2 
  Pw1_0 = 0.5*zHeight_w*zHeight_w*gamma_w/sin(alpha)  

!N; hydrostatic force on base of wedge 1 
  Pw2_0 = zHeight_w*zL2_0*gamma_w  

!N; hydrostatic force on base of wedge 2 
 endif 
  
!Constants in the balance equations for mass and heat 
 cv_band = zk_band/(gamma_w*(zn_band*alpha_w + zmv_band)) 
 c_heat = -((zn_band*beta_w+(1-zn_band)*beta_s))/ 
 . (c_delta_band*(zn_band*alpha_w + zmv_band)) 
 c_sigma_vertical = zmv_band/(zn_band*alpha_w + zmv_band) 
 cv_rock = zk_rock/(gamma_w*(zn_rock*alpha_w + zmv_rock)) 
 
!Auxiliary parameter for the discretization by finite difference 
 Dz = e/(nze-1)    !length of spatial intervals 

nz = int(zL/Dz)   !num. of spatial intervals  
 Dt = sfb*Dz*Dz/cv_band !seconds; time intervals 
 
!Verification stability factor in sliding mass (rock) 
 sfr = cv_rock*Dt/(Dz*Dz) 
 write (6,*) 'Stability factor rock=',sfr !Output data on screen 
 write (6,*) 'Dz=', Dz,' Dt=',Dt !Output data on screen 
 
!Auxiliary parameters of output data 

int_write_profile=Dtw_profile/Dt !Number of time intervals  
  !between successive writings of pore pressure profiles 

 int_write_time=Dtw_time/Dt !Number of time intervals between  
   !successive writings of problem variables varying in time 
 
!*******************************************************************! 
!        CALCULATION STARTS 
!*******************************************************************! 
 
 if (ntype_failure.eq.1) then 
  call Infinite_planar_slide (Dz,Dt,nz,nze,e, 
 .     theta_ref, 
 .     cv_band,c_heat,cv_rock, 
 .     zHeight,Pw,zmass,weight, 
 .     sfb,sfr,zk_rock,zk_band, 
 .     c_delta_band,c_delta_rock, 
 .     fib,beta_slope,displ_max, 
 .     int_write_profile,int_write_time) 
 else if (ntype_failure.eq.2) then 
  call Two_interacting_wedges (Dz,Dt,nz,nze,e, 
     .    nt,tmax, 
     .    v0,Ubt0,teta_ref, 
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     .    zL1_0,zL2_0,zh_cha0, 
     .    Area1_0,Area2_0, 
     .    zHeight,Em1,Em2,Pw1_0,Pw2_0, 
     .    gamma_roca,delta_roca, 
     .    alpha,beta,shi,fir, 
     .    coher0,cc, 
     .    cv_band,c_heat,c_sigma_vertical,cv_rock, 
     .    sfb,sfr,zk_rock,zk_band, 
     .    c_delta_band,gamma_w, 
     .    fib_max,fib_min,v_max_fib,a_const, 
     .    displ_max) 

endif 
 
 end 
  
!*******************************************************************! 
!              DYNAMIC ANALYSIS OF INFINITE SLIDE     ! 
!*******************************************************************! 
 
 subroutine Infinite_planar_slide (Dz,Dt,nz,nze,e, 
 .      theta_ref, 
 .      cv_band,c_heat,cv_rock, 
 .      zHeight,Pw,zmass,weight, 
 .      sfb,sfr,zk_rock,zk_band, 
 .      c_delta_band,c_delta_rock, 
 .      fib,beta_slope,displ_max, 
 .      int_write_profile,int_write_time) 
 
 implicit real*8 (a-h,o-z)  
 dimension Utold(nz),Utnew(nz) 
 
! OPEN FILES TO WRITE RESULTS 
  open (unit=2, file='Velocity.dat', status='unknown') 
  open (unit=3, 
file='Excess_pore_pressure_z0.dat',status='unknown') 
 open (unit=4, file='Temperature.dat', status='unknown') 
 open (unit=7, file='Strength.dat', status='unknown') 
 open (unit=8, file='Heat.dat', status='unknown') 
 open (unit=9, file='Displacement.dat', status='unknown') 
 
! WRITING TITLES IN RESULT’S FILES 
 write (2,*) ' Time(s) ', 'Velocity (m/s) ' 
 write (3,*) ' Time(s) ', 'Excess pressure (MPa) ' 
 write (4,*) ' Time(s) ', 'Temperature (ºC) ' 
 write (7,*) ' Time(s) ', 'Shear strength (MPa) '  
 write (8,*) ' Time(s) ', 'Heat (MJ/s·m3) '  
 write (9,*) ' Time(s) ', 'Displacement (m) '  
 
 zero = 1.e-10 
 
! INITIATE COUNTERS 
 iw_profile = 0 !Counter for writing pore pressure profiles  
 iw_time = 0  !Counter for writing problem variables varying 
in  

!time 
   
! INITIALIZE PROBLEM VARIABLES 
!Excess pore pressure 
 do i=1,nz 
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  Utold(i) = 0.0 
 enddo 
!Velocity 
 vtold = 0.0 
!Temperature 
 theta_told = theta_ref 
!Displacement 
 displ_told = 0.0 
!Shear strength 
  tau_failure = (weight*cos(beta_slope)-Pw)*tan(fib) 
!Heat 
 Heat=0.0 
 
! CALCULATION PROCEDURE STARTS 
 DO WHILE (displ_tnew.lt.displ_max) 
 k=k+1 
 t=k*Dt 
 
!Excess pore pressure 
 Utnew(1) = Utold(1)+sfb*(2.*Utold(2)-2.*Utold(1))- 
 .  Dt*c_heat*Heat 
  
 do i=2,nze-1 
  Utnew(i) = Utold(i)+sfb*(Utold(i+1)-2.*Utold(i)+Utold(i-1))- 
 . Dt*c_heat*Heat 
 enddo 
  
 do j=nze+1,nz-1 
  Utnew(j) = Utold(j)+sfr*(Utold(j+1)-2.*Utold(j)+Utold(j-1)) 
 enddo 
 
 Utnew(nz) = 0.0 
 
 Utnew(nze) = (zk_rock*Utnew(nze+1)+zk_band*Utnew(nze-1))/ 
 . (zk_rock+zk_band) 
 
!Velocity 
 Vtnew = vtold+Dt*(weight*sin(beta_slope)- 
 . tau_failure)/zmass 
  
!Temperature 
 theta_tnew = theta_told+Dt* Heat/c_delta_band 
 
!Displacement 
 displ_tnew = displ_told+Dt*vtold 
 
!Shear strength 
  tau_failure = (weight*cos(beta_slope) 
 . -Pw-Utnew(1))*tan(fib) 
 
 if (tau_failure.lt.zero)then 
  write (6,*) 'tau_failure is negative' 
  tau_failure = 0.0 
 endif 
 
!Heat 
 Htnew = tau_failure*vtnew/(2.*e)  
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! UPDATE VARIABLES 
!Excess pore pressure 
  do m=1,nz 
  Utold(m) = Utnew(m) 
  enddo 
!Velocity 
  vtold=vtnew 
!Temperature 
  theta_told = theta_tnew 
!Displacement 
  displ_told = displ_tnew 
 
! WRITING RESULTS AT SELECTED TIMES 
  if ((k.eq.1).or.(mm.eq.k)) then  
   iw_profile = iw_profile+1 
   mm = int(int_write_profile)*iw_profile 
   t = k*Dt 
   write (6,*) k,' Excess pore pressure profile has been written' 
   ifile = iw_profile+10 
   write (ifile,*) 'Time(s) ',t 
   do m = 1,nze 
    z = (m-1)*Dz 
    write (ifile,'(2(e15.5,1x))') z, Utnew(m) 
    nmax = m 
   enddo 
   do n=1,nz-nze 
    m = nmax+n 
    z = e+n*Dz 
    write (ifile,'(2(e15.5,1x))') z, Utnew(m) 
   enddo 
  endif 
 
  if ((k.eq.1).or.(nn.eq.k)) then  
   iw_time = iw_time+1 
   nn = int(int_write_time)*iw_time 
   t = k*Dt 
   write (2,'(2(e15.5,1x))') t, vtnew 
   write (3,'(2(e15.5,1x))') t, Utnew(1)*1.e-6 
   write (4,'(2(e15.5,1x))') t, theta_tnew 
   write (7,'(2(e15.5,1x))') t, tau_failure*1.e-6 
   write (8,'(2(e15.5,1x))') t, Heat/1.e6 
   write (9,'(2(e15.5,1x))') t, displ_tnew 
  endif 
 
 ENDDO 
 
! CLOSE FILES OF RESULTS 
 close (2) 
 close (3) 
 close (4) 
 close (7) 
 close (8) 
 close (9) 
 
 RETURN 
 END 
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!*******************************************************************! 
!       DYNAMIC ANALYSIS OF TWO INTERACTING WEDGES     ! 
!*******************************************************************! 
 subroutine Two_interacting_wedges (Dz,Dt,nz,nze,e, 
     .    nt,tmax, 
     .    v0,Ubt0,teta_ref, 
     .    zL1_0,zL2_0,zh_cha0, 
     .    Area1_0,Area2_0, 
     .    zHeight,Em1,Em2,Pw1_0,Pw2_0, 
     .    gamma_roca,delta_roca, 
     .    alpha,beta,shi,fir, 
     .    coher0,cc, 
     .    cv_band,c_heat,c_sigma_vertical,cv_rock, 
     .    sfb,sfr,zk_rock,zk_band, 
     .    c_delta_band,gamma_w, 
     .    fib_max,fib_min,v_max_fib,a_const, 
     .    displ_max) 
 
 implicit real*8 (a-h,o-z) 
 dimension U1told(nz),U1tnew(nz),U2told(nz),U2tnew(nz) 
 
! OPEN FILES TO WRITE RESULTS 

open (unit=2, file='Velocity.dat', status='unknown') 
  open (unit=3, 
file='Excess_pore_pressure_z0.dat',status='unknown') 

open (unit=4, file='Heat.dat', status='unknown') 
 open (unit=7, file='Displacement.dat', status='unknown') 
 open (unit=8, file='Strength.dat', status='unknown') 
 open (unit=9, file='Temperature.dat', status='unknown') 
 
! WRITING TITLES IN RESULTS FILES 
 write (2,*) ' Time(s) ', 'Velicity(m/s) ' 
 write (3,*) ' Time(s) ', 'U1 (MPa) ','U2 (MPa)' 
 write (4,*) ' Time(s) ', 'Heat_Wedge1 (MJ/s·m3) ', 
 . 'Heat_Wedge2 (MJ/s·m3) ' 
 write (7,*) ' Time(s) ', 'Displacement (m) '  
 write (8,*) ' Time(s) ', 'Shear_strength_Wedge1 (MPa) ' , 
 . 'Shear_strength_Wedge2 (MPa)'  
 write (9,*) ' Time(s) ', 'Temperature Wedge1(º) ' , 
 . 'Temperature Wedge2(º)'  
   
 zero=1.e-10 
 
! INITIALITE COUNTERS   
 iw_profile=0 !Counter for writing pore pressure profiles  
 iw_time=0  !Counter for writing problem variables varying in  
     !time 
 
! INITIALIZE VALUES PARAMETERS THAT CHANGE WITH THE DISPLACEMENT 
!Weights 
 W1 = Area1_0*gamma_rock 
 W2 = Area2_0*gamma_rock 
!Mass 
 zM1 = Area1_0*delta_rock 
 zM2 = Area2_0*delta_rock 
!Lengths 
 zL1 = zL1_0 
 zL2 = zL2_0 
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 zl_shpl = zl_shpl0 
!Hydrostatic forces 
 Pw1 = Pw1_0 
 Pw2 = Pw2_0  
 
! INITIALIZE PROBLEM VARIABLES 
!Excess pore pressure 
 do i=1,nz 
  U1told(i) = 0.0 
  U2told(i) = 0.0 
 enddo 
!Changes of notation 
 U1 = U1told(1) 
 U2 = U2told(1) 
!Velocity 
 vtold = 0.0 
!Temperatures 
 theta1_old = theta_ref 
 theta2_old = theta_ref 
!Displacements 
 stold = 0.0 
!Total vertical stress increments 
 dSn1 = 0.0 
 dSn2 = 0.0 
!Mass increments 
 dM1dt = 0.0 
 dM2dt = 0.0 
!Heat  
 H1 = 0.0 
 H2 = 0.0 
 
! CALCULATION PROCEDURE STARTS  
 DO WHILE (stnew.lt.displ_max) 
 k=k+1 
 
!Excess pore pressures  
  U1tnew(1) = U1told(1)+sfb*2.*(U1told(2)-U1told(1))- 
 .  c_heat*Dt*H1 + c_sigma_vertical*dSn1 
  U2tnew(1) = U2told(1)+sfb*(2.*U2told(2)-2.*U2told(1))- 
 .  c_heat*Dt*H2 + c_sigma_vertical*dSn2 
 
 do i=2,nze-1 
  U1tnew(i) = U1told(i)+ 
 .  sfb*(U1told(i+1)-2.*U1told(i)+U1told(i-1))- 
 .  c_heat*Dt*H1 + c_sigma_vertical*dSn1 
  U2tnew(i) = U2told(i)+ 
 .  sfb*(U2told(i+1)-2.*U2told(i)+U2told(i-1))- 
 .  c_heat*Dt*H2 + c_sigma_vertical*dSn2 
 enddo 
 
 do j=nze+1,nz-1 
  U1tnew(j) = U1told(j)+ 
 .  sfr*(U1told(j+1)-2.*U1told(j)+U1told(j-1)) + 
 .  c_sigma_vertical*dSn1 
  U2tnew(j) = U2told(j)+ 
 .  sfr*(U2told(j+1)-2.*U2told(j)+U2told(j-1)) + 
 . c_sigma_vertical*dSn2 
  enddo 
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 U1tnew(nz) = U1told(nz)+c_sigma_vertical*dSn1 
 U2tnew(nz) = U2told(nz)+c_sigma_vertical*dSn2 
 
 U1tnew(nze) = (zk_rock*U1tnew(nze+1)+zk_band*U1tnew(nze-1))/ 
 . (zk_rock+zk_band) 
 U2tnew(nze) = (zk_rock*U2tnew(nze+1)+zk_band*U2tnew(nze-1))/ 
 .      (zk_rock+zk_band) 
 
!Changes of notation 
 U1 = U1tnew(1) 
 U2 = U2tnew(1) 
 cg = zh_cha 
 
!Velocity 
  vtnew = vtold + Dt *  
 .((W2 *tan(fib)** 2 * sin(shi) - 0.2D1 * cos(shi) *tan(fir)*  
 #tan(fib)** 2 * Em1 *sin(shi) + cos(shi) *tan(fir)*tan(fib)** 2 * U 
 #1 * zL1 + Pw2 *tan(fib)** 2 * cos(shi) *tan(fir)- W2 *tan(fib)** 2 
 # * cos(shi) *tan(fir)+ U2 * zL2 *tan(fib)** 2 * cos(shi)*tan(fir)  
 #+ cos(shi) ** 2 * Em1 -tan(fib)* cos(shi) ** 2 *tan(fir)* Em1 + 0. 
 #2D1 * sin(shi) * cos(shi) * coher * cg + cos(shi) *tan(fib)* Em1 * 
 # sin(shi) - cos(shi) *tan(fir)* Em1 * sin(shi) -tan(fib)* cos(shi) 
 # *tan(fir)* dM1dt * vtold - dM2dt * vtold *tan(fib)* cos(shi) * ta 
 #n(fir)+ 0.2D1* sin(shi) *tan(fib)** 2 * cos(shi) * coher * cg - Pw 
 #2 *tan(fib)** 2 * sin(shi) - Em2 * cos(beta) *tan(fib)** 2 * cos(s 
 #hi) *tan(fir)+ Em2 * cos(beta) *tan(fib)** 2 * sin(shi) +tan(fib)* 
 # cos(shi) *tan(fir)* W1 * sin(alpha) + sin(shi) *tan(fir)*tan(fib) 
 #* Pw1 - sin(shi) *tan(fir)* dM1dt * vtold + sin(shi) *tan(fir)* W1 
 # * sin(alpha) +tan(fib)* sin(shi) * W1 * sin(alpha) + sin(shi) * t 
 #an(fir)*tan(fib)*U1 * zL1 + sin(shi) *tan(fib)** 2 * U1 * zL1 - U2 
 # * zL2 *tan(fib)** 2 * sin(shi) -tan(fib)* sin(shi) * dM1dt * vtol 
 #d -tan(fib)* Pw2 * sin(shi) *tan(fir)+tan(fib)* W2 * sin(shi) * ta 
 #n(fir)+dM2dt * vtold *tan(fib)* sin(shi) + dM2dt * vtold * sin(shi 
 #) *tan(fir)+ dM2dt * vtold * cos(shi) + W2 *tan(fib)* cos(shi) - P 
 #w2 *tan(fib)* cos(shi) + cos(shi) * dM1dt * vtold - cos(shi) * tan 
 #(fib)*Pw1 -tan(fib)* U2 * zL2 * sin(shi) *tan(fir)+ sin(shi) * tan 
 #(fib)** 2* Pw1 +tan(fib)* Em2 * cos(beta) * sin(shi) *tan(fir)+ Em 
 #2 * cos(beta) *tan(fib)* cos(shi) - cos(shi) *tan(fib)* U1 * zL1 - 
 # U2 * zL2 *tan(fib)* cos(shi) + cos(shi) *tan(fir)*tan(fib)** 2 *  
 #Pw1 - cos(shi) * W1 * sin(alpha) - sin(shi) *tan(fib)** 2 * W1 * c 
 #os(alpha) + cos(shi) *tan(fib)* W1 * cos(alpha) - cos(shi) *tan(fi 
 #r)*tan(fib)** 2 * W1 * cos(alpha) - sin(shi) *tan(fir)*tan(fib)* W 
 #1 * cos(alpha)) / (-zM1 * cos(shi) - zM2 * cos(shi) + zM1*tan(fib) 
 # * sin(shi) + zM2 *tan(fib)* cos(shi) *tan(fir)+ zM1 * sin(shi) *  
 #tan(fir)+zM1 *tan(fib)* cos(shi) *tan(fir)- zM2 *tan(fib)* sin(shi 
 #) - zM2 * sin(shi) * tan(fir))) 
  
 if (vtnew.lt.-zero) then 
  write (6,*) 'The slide stops' 
  stop 
 endif 
 
!Temperature 
 theta1_tnew = theta1_old+Dt*H1/c_delta_band 
 theta2_tnew = theta2_old+Dt*H2/c_delta_band 
 
!Displacement 
 stnew = stold+vtold*Dt 
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!Parameters that change with the displacement 
 zL1 = zL1_0 - stnew 
 zL2 = zL2_0 + stnew  
 zl_shpl = zL1*zl_shpl0/zL1_0 
 Area1= 0.5*zL1*zl_shpl*cos(shi) 
 zInc_Area = Area1_0 - Area1 
 Area2 = Area2_0 + zInc_Area 
 W1 = Area1*gamma_rock 
 W2 = Area2*gamma_rock 
 zM1 = Area1*delta_rock 
 zM2 = Area2*delta_rock 
 Pw2 = Pw2_0 + z_Height_w*stnew*gamma_w 
 coher = coher0*exp(cc*stnew) 
 dM1dt = -delta_roca*zL1*zl_shpl*cos(shi)*vtnew/zL1 
 dM2dt = -dM1dt 
 
!Effective normal force on base of Wedge 1 
  zN1 = -(Pw1*zM1* tan(fib) * cos(shi) * tan(fir)+ U1*zL1*zM1*  
 #tan(fib) * cos(shi) * tan(fir)- 0.2D1*cos(shi)*tan(fir)*zM1 * tan 
 #(fib)*Em1 * sin(shi) + 0.2D1 *sin(shi) *zM1 *tan(fib) * cos(shi)  
 #* coher * cg + U1 * zL1 * zM1 * sin(shi) *tan(fir)+ Em1 * sin(shi) 
 # * zM1 * cos(shi) - cos(shi) *tan(fir)* zM1 *tan(fib)* W2 + cos(sh 
 #i) *tan(fir)* zM1 *tan(fib)* Pw2 - U1 * zL1 * zM1 * cos(shi) - zM2 
 # * coher * cg + zM1 * coher * cg - W1 * cos(alpha)*zM1 *tan(fib)  
 #* cos(shi) *tan(fir)+ sin(shi) * zM1 * dM2dt * vtold - sin(shi) *  
 #zM2 * dM1dt * vtold + sin(shi) * zM1 * tan(fib)*W2 - sin(shi) * zM 
 #1 * tan(fib) * Pw2 + Pw1 * zM1 *tan(fib)* sin(shi) + Pw1 * zM1*sin 
 #(shi) *tan(fir)- Pw1 * zM2 * sin(shi) *tan(fir)+ sin(shi) * zM2 *  
 #W1 * sin(alpha) - sin(shi) * zM1 *tan(fib)*U2 * zL2 + U1 * zL1 *  
 #zM1 * tan(fib)*sin(shi) - U1 * zL1 * zM2 * sin(shi) *tan(fir)- Pw1 
 # * zM1 * cos(shi) - Pw1 * zM2 * cos(shi) - W1 * cos(alpha) * zM1 * 
 #tan(fib) * sin(shi) - cos(shi) *tan(fir)* zM2 * W1 *sin(alpha)+ s 
 #in(shi) * zM1 *tan(fib)* Em2 * cos(beta) + cos(shi) *tan(fir)* zM2 
 # * dM1dt * vtold - 0.2D1 * cos(shi) ** 2 * coher * cg * zM1 - cos( 
 #shi) *tan(fir)* zM1 * dM2dt * vtold - W1 * cos(alpha) * zM1 * sin( 
 #shi) *tan(fir)+ Em1 * zM2 *tan(fir)- cos(shi) *tan(fir)* zM1 * tan 
 #(fib)*Em2 * cos(beta) + W1 * cos(alpha) * zM2 * sin(shi) *tan(fir) 
 #- Em1 * zM1 *tan(fir)+ cos(shi) *tan(fir)* zM1 *tan(fib)* U2 * zL2 
 # - U1 * zL1 * zM2 * cos(shi) + cos(shi) ** 2 * Em1 * zM1*tan(fir)  
 #+ W1 * cos(alpha) * zM1 * cos(shi) + W1 * cos(alpha) * zM2 * cos(s 
 #hi)) / (-zM1 * cos(shi) - zM2 * cos(shi) + zM1 *tan(fib)*sin(shi) 
 # + zM2 *tan(fib) *cos(shi) *tan(fir)+ zM1 *sin(shi)*tan(fir)+ zM 
 #1 *tan(fib) * cos(shi) *tan(fir)- zM2 *tan(fib) *sin(shi)-zM2 * s 
 #in(shi) *tan(fir)) 
 
!Effective normal force on base of wedge 2 
  zN2 =-(-Em2 *cos(beta) *zM2 *tan(fib)* cos(shi)*tan(fir)- Em2  
 #* cos(beta) * zM1 * sin(shi) *tan(fir)+ Em2 * cos(beta) * zM1 * co 
 #s(shi) - W2 * zM2 *tan(fib)* cos(shi) *tan(fir)+ U2 * zL2 * zM2 *  
 #tan(fib)*cos(shi)*tan(fir)+ Em1 * sin(shi) * zM1 * cos(shi) - 0.2 
 #D1 * cos(shi) *tan(fir)* zM2 *tan(fib)* Em1 * sin(shi) + 0.2D1 * s 
 #in(shi) * zM2 *tan(fib)* cos(shi) * coher * cg - zM2 * coher * cg  
 #+ zM1 * coher * cg + cos(shi) *tan(fir)* zM2 *tan(fib)* Pw1 - sin( 
 #shi) * zM2 *tan(fib)* W1 * cos(alpha) + sin(shi) * zM2 *tan(fib)*  
 #Pw1 + sin(shi) * zM1 * dM2dt * vtold - sin(shi) * zM2 * dM1dt * vt 
 #old + Pw2 * zM1 * sin(shi) *tan(fir)- Pw2 * zM2 *tan(fib)* sin(shi 
 #) - Pw2 * zM2 * sin(shi) *tan(fir)- W2 * zM1 * sin(shi) *tan(fir)+ 
 # W2 * zM2 *tan(fib)* sin(shi) + W2 * zM2 * sin(shi) *tan(fir)+ sin 
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 #(shi) * zM2 * W1 * sin(alpha) + sin(shi) * zM2 *tan(fib)* U1 * zL1 
 # + U2 * zL2 * zM1 * sin(shi) *tan(fir)- U2 * zL2 * zM2 *tan(fib)*  
 #sin(shi) - U2 * zL2 * zM2 * sin(shi) *tan(fir)- Pw2 * zM1 * cos(sh 
 #i) + W2 * zM1 * cos(shi) - Pw2 * zM2 * cos(shi) + W2 * zM2 * cos(s 
 #hi) + cos(shi) *tan(fir)* zM2 * W1 * sin(alpha) + Em2 * cos(beta)  
 #* zM2 *tan(fib)* sin(shi) + Em2 * cos(beta) * zM2 * sin(shi) * tan 
 #(fir)+ Em2* cos(beta) * zM2 * cos(shi) - cos(shi) *tan(fir)*zM2 * 
 # dM1dt * vtold + cos(shi) *tan(fir)* zM2 *tan(fib)* U1 * zL1 + cos 
 #(shi) *tan(fir)* zM1 * dM2dt * vtold - 0.2D1 * cos(shi) ** 2 * tan 
 #(fir) * zM2 * Em1 + Em1 * zM2 *tan(fir)-cos(shi)*tan(fir)* zM2 * t 
 #an(fib)*W1* cos(alpha) - Em1 * zM1 *tan(fir)+ 0.2D1 * cos(shi) ** 
 # 2 * coher * cg * zM2 - U2 * zL2 * zM1 * cos(shi) - U2 * zL2 * zM2 
 # * cos(shi) + Pw2 * zM2 *tan(fib)* cos(shi) *tan(fir)+ cos(shi) ** 
 # 2 * Em1 * zM1 *tan(fir))/ (-zM1 * cos(shi) - zM2 * cos(shi) + zM1 
 # *tan(fib)* sin(shi) + zM2 *tan(fib)* cos(shi) *tan(fir)+ zM1 * si 
 #n(shi) *tan(fir)+ zM1 *tan(fib)* cos(shi) *tan(fir)- zM2 *tan(fib) 
 #* sin(shi) - zM2 * sin(shi) *tan(fir)) 
 
 if (zN1_tnew.lt.zero) then 
  zN1_tnew = 0.0 
 endif 
 if (zN2_tnew.lt.zero) then 
  zN2_tnew = 0.0 
 endif 
 
!Total normal forces 
 zN1tot = zN1+Pw1+U1*zL1 
 zN2tot = zN2+Pw2+U2*zL2 
 
!Total vertical stresses 
 Sn1_tnew = -zN1tot/zL1 
 Sn2_tnew = -zN2tot/zL2  
 
!Total vertical stress increments 
 if (k.eq.1) then 
  dSn1_tnew = 0.0 
  dSn2_tnew = 0.0 
 else 
 dSn1 = Sn1_tnew-Sn1_told 
 dSn2 = Sn2_tnew-Sn2_told 
 endif 
 
!Shear strength 
 Tau1 = (zN1/zL1) * tan(fib) 
 Tau2 = (zN2/zL2) * tan(fib) 
 
!Heat  
  H1 = Tau1*vtnew/(2.*e) 
  H2 = Tau2*vtnew/(2.*e) 
 
! UPDATE PROBLEM VARIABLES 
!Excess pore pressure 
 do i=1,nze 
  U1told(i) = U1tnew(i) 
  U2told(i) = U2tnew(i) 
 enddo 
!Velocity  
 vtold = vtnew 
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!Temperatures 
 theta1_old = theta1_tnew 
 theta2_old = theta2_new 
!Displacement  
 stold = stnew 
!Total vertical stresses 
 Sn1_told = Sn1_tnew 
 Sn2_told = Sn2_tnew 
 
! WRITING RESULTS AT SELECTED TIMES 
  if ((k.eq.2).or.(mm.eq.k)) then 
   write (6,*) k,' Profile results have been written' 
   iw_profile = iw_profile+1 
   mm=int(int_write_profile)*iw_profile 
   t=k*Dt 
   iarchivo=iw_profile+100 
   write (iarchivo,*) 'Time(s) ',t 
   do m=1,nze+10 
    z=(m-1)*Dz 
    write (iarchivo,'(2(e15.5,1x))') z, U1tnew(m) 
   enddo 
   do m =  nze+11,nz,10 
    z = m*Dz 
    write (iarchivo,'(2(e15.5,1x))') z, U1tnew(m) 
   enddo 
  endif 
  if ((k.eq.1).or.(nn.eq.k)) then  
   iw_time = iw_time+1 
   nn = int(int_write_time)*iw_time 
   t=k*Dt 
   write (2,'(2(e15.5,1x))') t, vtnew 
   write (3,'(3(e15.5,1x))') t, U1tnew(1)*1.e-6,U2tnew(1)*1.e-6 
   write (4,'(3(e15.5,1x))') t, H1/1.e6,H2/1.e6 
   write (7,'(2(e15.5,1x))') t, stold 
   write (8,'(3(e15.5,1x))') t, Tau1 *1.e-6,Tau2*1.e-6 
   write (9,'(3(e15.5,1x))') t, theta1_tnew,theta2_tnew 
  endif  
 
 ENDDO 
 
 close (2) 
 close (3) 
 close (4) 
 close (7) 
 close (8) 
 close (9) 
  
 return 
 end 

Appendix 5.3 Parameters of the Balance Equations for the Dynamic 
Analysis of Two Interacting Wedges 
The parameters that complete the dynamic equilibrium equation of the two 
wedges (Eq. (5.55)) are: 
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Chapter 6 

Dynamics of Dam Sliding: Aznalcóllar Dam, Spain 

6.1 Introduction 
Aznalcóllar dam, a 28 m high rockfill dyke, failed catastrophically on April 25, 
1998 and triggered an uncontrolled flow of acid pyritic tailings whose volume was 
estimated in 5.5 Mm3. Chapter 4 describes the failure, the geotechnical properties 
of stored tailings and foundation soils and the stability analysis performed to 
explain the reasons for the failure. The failure was described as a translational 
slide which carried with it the dyke itself. The central section of Aznalcóllar slide 
travelled forward 50 m until it came to rest (Figs. 4.5 and 4.6). The travelled 
distance decreased towards the North for a reason which will be explained later. 
The displacement at the breach zone was close to 20 m, always in the direction 
SSE (approximately perpendicular to the southern dyke direction). Figure 6.1 is a 
sketch of the relative motion between the northern and southern dykes at the initial 
breach section. The figure shows the measured displacement of the southern dyke 
at this point and the orientation of the opening, pointing towards the northeast 
direction. This geometry results in an estimation of the initial width of the breach 
close to 14 m. The two lips of the breach separated and, therefore, no shear 
resistance was involved in this motion. 

The dam was literally torn apart by the relative motion between the immobile 
northern dyke and the southern slide. The 14 m wide initial breach allowed the 
immediate pouring of tailings and it increased in size as erosion proceeded. The 
intensity and destruction power of the ensuing flood is related to this width, 
which, to a large extent, controls the outgoing flow rate. Should the slide 
displacement have been longer, the width of the breach would have increased as 
well as the flood rate and its effect. Doñana National Park, located downstream, 
was barely hit by the actual flood. But a larger one would have certainly created a 
major catastrophe.  

From our geotechnical perspective, the right question to be asked is: does a 
procedure exist to predict the slide runout? This question has no simple answer. 
Runout distances depend on the type of slide, the evolution of the slide material 
and the downstream topography. Aznalcóllar was simple in this regard: the dam 
and the upper sliding soil slab displaced as a rigid body with minor changes in 
geometry. This observation offers the possibility of performing a straightforward 
dynamic exercise directly based on Newton’s second law. 

In order to do so, however, acting and resisting forces on the slide should be 
established with some certainty. The critical point here is probably not to describe 
precisely all the details of the motion but to pinpoint the key aspects explaining 
the motion, even if they are described in an approximate manner. The static 
analysis described in Chapter 4 offers a good opportunity to isolate the main 
features of the moving slide. 

The information now available is the travelled distance and attention is 
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focused on the central section of the slide. Slide displacements in the central 
stretch, 300 m long, are rather constant and close to 50 m. Therefore, a two-
dimensional analysis could be performed with limited error and the restraining 
effects of the slide borders will be disregarded.  

The travelled distance is the fundamental information to validate the model. 
The problem may be formulated in these terms: if a (dynamic) model is built in 
such a way that the input data (soil strength parameters and pore water pressures 
in particular) is consistent with the data explaining the initiation of failure, an 
additional validation of the main hypothesis introduced could be achieved. In 
addition, a dynamic analysis also offers the possibility of investigating some 
unanswered questions about the motion: its acceleration, velocity, and time 
duration could be estimated. 
 

 
 

Figure 6.1 Geometry of the rupture breach (Alonso and Gens, 2006). 

6.2 Conceptual Model 
A few fundamental field observations, discussed in Chapter 4, are crucial to 
develop a conceptual model for the slide. They are: 

a) position and geometry of the upstream limit of the slide, which is described 
as a vertical wall or “cliff” located at the toe of the upstream dam slope; 

b) symptoms of  liquefaction of tailings ; 
c) reconstruction of the incipient failure mechanism based on the description 

of the geometry of the failed mass (Fig. 4.6). 
This information has been integrated in Figure 6.2, which shows a free body 
diagram of the slide at a certain time t during the motion. The features of the 
model and its rationale are further explained by referring to Figure 6.2. 
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 The geometry of the motion is conceived as a large rectangular wedge that 
transports the dam and a distal passive wedge that opposes the motion. This 
passive wedge increased in weight during the displacement in a process of 
accumulation of highly folded strata as the displacement took place.  
 

 
(a) 

 
(b) 

 

Figure 6.2 (a) Geometry of the slide in motion (Alonso and Gens, 2006); (b) Detail of the 
upper part. 
 

The upstream sub-vertical limit plane remained stable at all times. The 
approximately basal failure surface follows a sedimentation plane that has a low 
dip angle (2º).Therefore, the depth of the failure plane increases in the direction of 
motion. The passive wedge brings the failure plane to the ground surface. 
According to the slide reconstruction in Figure 4.6, the passive wedge starts at a 
distance of roughly 55 m from the downstream toe of the dam.  

As the slide moves forward, a large opening appears upstream since the 
vertical limiting wall has remained stable. The assumption made is that this 
opening of increasing size was filled by liquefied tailings initially located over the 
upstream slope. Evidence of tailing liquefaction was obtained immediately after 
the failure. Figure 6.3 shows the small volcanoes scattered in the exposed surface 
of the tailings immediately upstream of the dam. The picture was taken from the 
crest of the dam looking downwards into the pond a few hours after the failure. 
This observation suggests that, as the slide accelerated forward (because of the 
rapid loss of available strength on the sliding surface), the tailings wedge sitting 
over the upstream slope of the dam slid in the upstream direction and filled the 
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opening gap. This process led to the tailings liquefaction at an early time. Beyond 
this time, the tailings occupying the opening gap upstream remained liquefied.  

This scenario has two implications: one is that the acting forces against the 
slide are simply calculated as a hydrostatic pressure against the exposed surfaces 
“submerged” by the liquefied tailings and the second one is that the level of 
liquefied tailings should decrease because of the increasing size of the gap opened 
upstream. 

Pore pressures on the sliding surface are initially known (see Chapter 4). 
However, when the slide displaces forward, an undrained loading (in the direction 
of motion, downstream of the dam) and a parallel unloading (in the upstream 
position of the dam) takes place. Pore pressures instantaneously generated will be 
assumed to be given by the increment of mean stress in points of the failure plane. 
This hypothesis has proven to be sufficiently accurate to reproduce actual 
observations in piezometers and has been described in Chapter 4. However, the 
calculation procedure will be simplified here if compared with the model 
developed in Chapter 4. 

 

 
 

Figure 6.3 Mud volcanoes observed a few hours after the failure on the surface of the 
depressed basin, upstream of the slid dam (Courtesy of J. M. Rodriguez Ortiz). 
 
 The chosen variable selected to control the slide geometry is the horizontal 
displacement s(t). The objective of the model developed is to calculate the slide 
displacement, velocity and acceleration. To do so, dynamic equilibrium equations 
will be written for the two wedges which define the motion following the 
conceptual model sketched in Figure 6.2a. Note that the mass of the two wedges 
changes during the motion (the main wedge loses the mass gained by the passive 
wedge). Before writing down the equations of motion let us discuss two important 
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aspects which control the external forces on the slide: the tailings thrust and the 
pore pressure acting on the sliding surfaces.  

6.3 Tailings Thrust against the Sliding Mass  
Consider first the liquefaction of tailings. The volume of liquefied tailings should 
occupy the volume left upstream by the moving dam and accompanying 
foundation slab. The initial volume, at zero displacement, is limited by the 
upstream slope of the dam and the subvertical limiting wall of the slide (defined 
by an angle βst in Fig. 6.2). Its volume will be given by 

 ( ) 0
0 0 0

1

0.5 tan 90 ,
tanst

h
V h h

⎛ ⎞
= − β +⎜ ⎟α⎝ ⎠

 (6.1) 

where h0 is the initial depth of tailings (27 m) and α1 is the upstream dam slope 
(29º). The dam displacement results in an increasingly larger volume ready to be 
occupied by the liquefied tailings. This volume is defined by the three partial 
volumes (Va, Vb and Vc) in Figure 6.2b. These volumes can easily be expressed in 
terms of h, the current height of tailings, the thickness, e1, of the sliding 
foundation soil at the upstream limit of the slide (approximately 11.5 m following 
field observations; see also Fig. 4.16) and the dip angle of the sliding plane, αb: 
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 tan .bn s= α  (6.4d) 

The condition of constant volume of liquefied tailings  

 0 = + +a b cV V V V  (6.5) 

allows, in view of Equations (6.2) to (6.4), the calculation of the height of tailings, 
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h, as a function of the horizontal component (s) of the slide displacement. It will 
be also convenient to introduce the displacement sb along the basal sliding surface 
because it offers some algebraic advantages to formulate the dynamic equation of 
motion. In addition, the relative displacement of the moving body and the blue 
clay underneath controls directly the development of residual conditions. The 
displacements s and sb are related through 

 cos .b bs s= α  (6.6) 

Since αb is a very small angle (2º), s and sb are almost identical but the distinction 
will be formally maintained in the remaining equations. The use of s and sb is a 
simple a matter of algebraic convenience.  

The condition of constant volume of liquefied tailings is not fulfilled in the 
sections close to the breach of the dam because the tailings that poured out of the 
pond contributed to reducing the height of the liquefied tailings acting against the 
moving slide. In fact, this situation may explain the smaller travelled distance in 
the sections close to the outlet (20 m), if compared with slide displacements of 50 
m at some distance from the breach section. This distance probably marks the 
effect of the flow rate of tailings lost through the breach on the displacement 
reached by the slide. 

The thrust of liquefied tailings against the upstream border of the slide is 
simple to calculate because pressures became hydrostatic. The horizontal 
component of the acting forces against the slide is 

 2
10.5 ( ) ,h tF h e= γ +  (6.7) 

where γt is the specific weight of the liquefied tailings, which will be close to 31 
kN/m3 (see Chapter 4). 

Let us now consider the initial force that induced the onset of instability. It 
was argued in Chapter 4 that this force could be approximated by an active 
Rankine state associated with a total height of (h+e1). Then, Equation (4.10) could 
be taken as a first approximation for the initial value of the driving force. 
Sometime after the initiation of the motion, when the unstable wedge of tailings 
transforms into a liquefied mass, this initial force would increase substantially 
towards the value given in Equation (6.7) The displacement necessary to reach 
liquefaction is not known and it will be introduced as a parameter of the problem, 
ε. In this way, the evolution of the upstream horizontal force against the slide, Fh, 
is plotted in Figure 6.4. 

The plot is defined by the initial force (Fhi) and peak (liquefaction conditions) 
force, by the displacement (ε) (a linear variation is assumed from sb = 0 to sb = 
ε), and by the  force decay beyond the peak liquefaction force for increasing s 
values. The latter is given by Equation (6.7) in terms of h. Equation (6.5) provides 
a relationship between h and s. 
 The next step before formulating motion equations will be to calculate the 
pore water pressures acting against the sliding surface. 
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Figure 6.4 Evolution of tailings thrust against the moving dam and accompanying 
foundation soil, as the displacement sb increases. 

6.4 Pore Pressures during Motion 
The distribution of pressures immediately before failure was calculated in Chapter 
4. Figure 4.18 shows the estimated variation along the failure plane.  
 This variation was approximated by means of linear segments, as shown in 
Figure 6.5, for the initial position of the slide (s = 0). Water heights (in m) have 
their origin on the sliding surface. When the slide moves forward, instantaneous 
changes in pore pressure will be induced on the failure surface. They will be 
essentially given by the change in mean stress, which is, in turn, is given by the 
weight of the dam ﴾upstream, however, the weight of tailings, decreasing with 
displacement, will define the new excess pore pressures). Since the sliding surface 
will be, soon after the initiation of the motion, under residual conditions no 
dilatancy effects are expected on the pore water pressure generation. 
 It will be assumed that the pore pressure at the position of the upstream toe of 
the slope, in excess of the hydrostatic value provided by the original phreatic level 
(located at the surface of the soil), will be proportional to the height of liquefied 
tailings. This pressure height will change from an initial value of e1 when the 
height h(s) of tailings evolves from h = 27 m to h = 0. Therefore, in connection 
with Figure 6.6 

 1
1 1

68
( )

27
−

= +
eu e h s  (m of water head). (6.8) 

 Under the dam crest (pressure u2), the excess pore pressure will be essentially 
constant and equal to the initial value (~52 m of water column). It may be also 
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expressed as the sum of two contributions: the hydrostatic component associated 
with the depth under the phreatic level at the center of the dam base (eR) and the 
excess pore pressure 

 2 3 38.6Ru u e= = + (m of water head). (6.9) 

At the position of the downstream toe of the dam the excess pore water pressure 
will also be maintained essentially equal to the original level during the motion 
and therefore  

 4 2 10.5u e= + (m of water head). (6.10) 

where e2 is the depth of the failure surface under the downstream toe of the dam. 

 

 
 

Figure 6.5 Assumed distribution of pore water pressure heads (in m) under the dam during 
sliding (based on Alonso and Gens, 2006). 
 

 
 

Figure 6.6 Distribution of pore water pressures on the sliding plane for a dam 
displacement, s (pressure heads in m) (based on Alonso and Gens, 2006). 
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 A final control point to define the pore pressure variation is the position of the 
exit ramp of the passive wedge. This position, which is located 55 m downstream 
of the dam toe, “sees” the dam approaching. When the slide came to rest, the dam 
toe was on top of the origin of the exit ramp. In this position, the pore pressure at 
this point of the failure surface should be equal to the calculated pore pressure 
under the dam toe for s = 0. Again, for a linear relationship between the excess 
pore pressures and the displacement, s, one may calculate 

 3
5 3 3

(26 )
0.16

55
eu e s e s−

= + ≈ +  (m of water head). (6.11) 

Note that e3 changes with displacement from its initial value (
03e  = 17.21 m in 

Fig. 4.16) to a final value (15.29 m) when the dam displaces 55 m. See also next 
paragraph on the geometry of the motion and Figure 6.7. The current value of e3 is 
given by  

 ( ) 0

0

3 2
3 3 55

e e
e s e s

−
= −  (in m) (6.12) 

 The implicit assumption in the preceding proposal is that there was very 
limited dissipation of excess pore pressures at the position of the failure plane. 
This was indeed the case because of the very low clay permeability. Therefore, the 
existing distribution of pore pressures on the failure plane was taken as a “model” 
for the induced pore pressures during the rapid undrained loading associated with 
the slide motion. 

The control points for the determination of water pressure provide an 
approximate distribution of pore pressures under the slide, at the position of the 
sliding plane, if a linear variation of pore pressures among them is assumed. Then, 
Figure 6.6 provides the instantaneous pore pressures for a displacement s.  

A more sophisticated procedure to calculate the pore pressures under the 
moving dam could be devised. It was shown in Chapter 4 that the application of 
elasticity solutions was quite accurate. But in the context of the dynamic analysis 
developed here, this approach would lead to a cumbersome calculation procedure 
that is probably not warranted. It will be shown later that the solution is quite 
robust and not very sensitive to limited variations of the main parameters defining 
the problem. 

The water pressure forces acting on the lower failure plane will now be 
computed by dividing the variation of pore pressure into four regions (U1, U2, U3, 
and U4) as illustrated in Figure 6.6. Water pressure forces are now simply 
calculated in terms of the “height” of the corresponding trapeziums: 

 1
1 1

(68 )1 38.6 48.7,
2 27 R w

e hU e e−⎡ ⎤= + + + γ⎢ ⎥⎣ ⎦
 (6.13a) 

 2 (38.6 ) 26,R wU e= + γ  (6.13b) 
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 [ ]3 2
1 38.6 10.5 33.3,
2 R wU e e= + + + γ  (6.13c) 

 [ ]4 2 3
1 10.5 0.16 (55 ),
2 wU e e s s= γ + + + −  (6.13d) 

where e2, eR and e3 are shown in Figure 6.6. The distances (in m) 48.7, 26, 33.3 
and 55 define the length of pore pressure trapezoids along the sliding plane. If γw 
is given in kN/m3, Equations 6.13 provide forces Ui in kN/m (e values in m).  

6.5 The Motion Equation  

6.5.1 Geometry of the motion 
Figure 4.16 provides the initial state of the slide. The dam and a slab of soil 
underneath displace towards the passive wedge which slides on a plane inclined 
αe. The kinematics of the motion have been simplified as shown in Figure 6.7. It 
will be assumed that the passive wedge (B) increases in size during the motion, 
i.e. it gains the mass “lost” by the main slide (A). The mass transfer takes place on 
the vertical plane which limits upstream the passive wedge.  
 Of course, other geometrical configurations are possible and they may lead to 
some differences in the calculations. However, it will be shown below that the 
entire formulations is quite insensitive to specific details. The idea here is to 
provide an acceptable mechanism, essentially consistent with field observations 
and analyze its implications. 
 

 
 

Figure 6.7 Kinematics of Aznalcóllar slide: (a) the diagram shows the position of the main 
soil slab (A) under the dam (not shown) and the passive wedge (B) at the initial time, t = 0, 
and at a later time t; (b) compatibility of displacements at Point P. 
 
 Consider the initial volume of Wedge A in Figure 6.7: 
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 1 1
0 1

tan tan
2 2

b b
A

e e L LV L L e+ + α α⎛ ⎞= = +⎜ ⎟
⎝ ⎠

 (6.14) 

where L is the total horizontal length of the main slide (L = 108 + 55 = 163 m in 
Fig. 4.16). 
 In Figure 6.7 the displacement of the slide is characterized by the variable s 
(in the x-direction) or alternatively by sb. Both are related through Equation 6.6.  
 Once the Wedge A has displaced sb, its volume is given by 

 ( )1 1
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cos tan .
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b b
A b b b

L sV L s e − α⎛ ⎞= − α + α⎜ ⎟
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 (6.15) 

Therefore the variation of the volume of the wedge can be expressed as a function 
of the displacement by: 
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which will be lost by the main wedge and added to the passive wedge. 

6.5.2 Dynamic equilibrium of the passive wedge 
Consider in Figure 6.8 the passive wedge at time t. The resultant of water 
pressures on the wedge were given in Equations (4.15) and (4.16) for the initial 
conditions. It will be assumed that the initial values will be maintained and 
therefore, with reference now to Figure 6.8, 
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The current volume of the passive wedge at time t will be given by adding the 
volume gained by the wedge (Eq. (6.16)) to the initial volume. Therefore, the 
current weight of the passive wedge at time t, for a slide displacement sb, will be 
given by 
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e s
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where the first term provides the initial weight (Eq. (4.18)). 
 Since the mass of the passive wedge (Mp) is changing in time, the equation of 
dynamic equilibrium will have the general form: 
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where s is the generic direction of displacement and s∑ F  the resultant forces in the 
direction s.  
 Equation (6.20) will be now applied in the direction of the motion of the 
wedge (displacement sp, see Fig. 6.8) and in the normal direction to sp (no 
displacements in this direction). 
 

 
 

Figure 6.8 Geometry and forces acting on the passive wedge.  
 

Equilibrium in direction parallel to sp  
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Equilibrium in direction normal to sp  

 sin cos tan sin cos 0hp e e b hp e p e p pF U W U N′ ′ ′α + α ϕ + α + α − − =  (6.22) 

where shear forces have already been written in terms of effective normal forces 
according to the Mohr Coulomb’s Law under residual conditions (cohesion equal 
to zero). 
 The relationship between the main slide displacement sb and the wedge 
displacement sp is derived by forcing the kinematic compatibility of the motion at 
Point P. In view of Figure 6.7b: 
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6.5.3 Dynamic equilibrium of the main wedge and dam 
Reference is now made to Figure 6.9 which shows the forces on the main slide at a 
given time during the motion. The force Fh has already been discussed and it is 
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given in Figure 6.4 and in Equations (4.10) and (6.7). Once the tailings are 
liquefied the vertical force Fv is controlled by the variable heights of tailings h 
(Fig. 6.2b). It is given by 
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.
2 tan

t
v

hF γ
=

α
 (6.24) 

At the start of the motion Hh ≈ and the tailings are not liquefied yet but Fv will 
be controlled by the saturated weight of tailings and Equation (6.24) would be 
essentially valid also.  
 Dynamic equilibrium follows also Equation (6.20) which will be written in 
the direction of the motion (sb) and in the normal to sb.  
 

 
 

Figure 6.9 Geometry and forces acting on the main sliding wedge. 
 
Equilibrium in direction parallel to  sb  
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where the total mass M now includes the mass of the dam (Md) and the variable 
mass of the soil slab (Mss): 

 1d ss d sM M M M V= + = + ρ  (6.26) 

where ( )1 bV s  is given in Equation (6.15) and the weight of the dam (Wd  = g Md) 
was given in Equation (4.12).  
 

Equilibrium in direction normal to sb  
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where 1 2 3 4U U U U U= + + +  (given in Eq. (6.13)). 

6.5.4 Solution 
The system of four Equations (6.21), (6.22), (6.25) and (6.27) must now be solved. 
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This is a system of nonlinear total differential equations and a numerical solution 
is unavoidable.  
 The strategy followed here to solve them is to write them in the form 

 ( ) ( )( )d ,
d b
va f s t v t
t

= =  (6.28) 

where 
d
d

bsv
t

=  is the velocity of the main displacement in the direction of the 

sliding plane.  
 Equation (6.28) is simply discretized in a forward marching scheme in time 
as: 

 ( )old old,new old bv v t f s v= + Δ  (6.29) 

which allows calculating the velocity of the slide if the acceleration is known at 
the beginning of the motion (t = 0). In fact, Equation (6.28) for t =0, sb = 0 and v = 
0 provides the initial acceleration (ai) essentially as a ratio between resultant 
forces and masses involved (see however the discussion below).  
 The system of Equations (6.21), (6.22), (6.25) and (6.27) was transformed 
after some elaboration into 
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The dependence of some variables on displacements, either sb or sp, has been 
indicated. The coefficients mi are functions of geometry and friction angles as 
follows: 
 

1 4cos sin ;b bm t= α + α  2 4sin cos ;b bm t= α − α  3 1 2 4 ;m m m t= +  

4 3 1 ;m m t=  5 4 3 1 ;m t m t=  6 3 3 1 ;m t m t=  7 2 3 1 .m t m t=  
 

and 
 

( )1 cos sin tan tan cos tan sin ;e e b b e b et ′ ′ ′= α − α ϕ − ϕ α ϕ + α  

2 cos sin tan ;e e bt ′= α − α ϕ  

3 sin cos tan ;e e bt ′= α + α ϕ  

4 tan .bt ′= ϕ  
 

The term F* in Equation 6.30 represents the unbalanced forces. Recalling 
Equation (6.23), Equation (6.30a) can be re-written as 
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Figure 6.10 Reduction of average friction angle on basal plane as a function of sliding 
distance sb. 
 
 Equation (6.31) has the form of Equation (6.28). It is interesting to analyze its 
structure. It simply tells that the acceleration of the main slide is the ratio of a 
generalized force and a generalized mass. Both include terms belonging to the 
main slide and the passive wedge. The mass in the denominator, in particular, is a 
weighted sum of the masses of the two wedges. The changing mass of both 
wedges introduces a term in the numerator which modifies the unbalanced forces 
F*. The modification is proportional to the product of velocity and rate of mass 
changes. This term is a rate of change of momentum which only enters the second 
law of Newton when moving bodies change their mass. It was checked that in our 
case this term was quite small compared with the intensity of unbalanced forces  
 A final important point concerns the mobilized effective friction angle of the 
failure surface b′ϕ . The boundary friction on the passive wedge was also defined 
by b′ϕ . It was found in Chapter 4 that the average equilibrium value at the onset of 
the slide was close to 18º (and a zero effective cohesion). This friction value is 
intermediate between the peak friction angle of the blue clay (24.1º) and the 
residual angle (11º). The initiation of the motion implies further reductions in b′ϕ . 
The rate of drop of b′ϕ  towards the residual value is unknown, but experimental 
evidence suggests that all that is required to reach residual conditions are a few 
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centimetres, perhaps decimetres, of relative displacement. This uncertainty, 
however, is resolved by means of a displacement parameter, δ, defined in Figure 
6.10. Parameter b′ϕ  is therefore defined in terms of the displacement sb. From sb = 
0 to sb = δ, the friction, b′ϕ , decays linearly from the initial to the residual value. 
For sb ≥ δ, b′ϕ  = res′ϕ . δ is considered also as a model parameter.  

6.6  Results 
The motion Equation (6.28) was solved in an explicit manner (Eq. (6.29) and 
subsequent discussion). Starting at the equilibrium conditions given in Chapter 4, 
the slide was made unstable by increasing slightly the driving force Fhi (by 
reducing in 0.1º the friction angle of tailings). 
 An Excel sheet was written to perform the calculations. The accuracy of 
calculations was controlled by time increment Δt. Negligible errors were found for 
Δt ≤ 0.1 s. 

6.6.1 Set of model parameters  
Model parameters were grouped into three groups: geometry, tailings, and blue 
clay, as follows: 
 
Geometry: 
βst: Dip of the head scar of the slide within the tailings’ deposit. Field 

observations indicate that it may vary between 70º and 90º. 
eR: Depth of the failure surface under the base of the dam at the centre of 

the dam base. It is close to 13.40 m. 
αb: Apparent dip of the failure surface. Based on field observations, it is 

estimated as αb = 2º. 
αe: Slope of the sliding plane under the passive wedge. Visual observations 

in trenches excavated at the foot of the slide indicate that αe = 20º. 
 
Tailings 
γt: Natural specific weight of liquefied tailings. In the southern pyrite 

lagoon the saturated unit weight of the deposited tailings is around 31 
kN/m3. This is the value adopted in calculations. 

Fhi(*): Initial horizontal thrust against the dam and the accompanying slice of 
moving soil. It was estimated as 11.3 MN/m for active conditions.  

ε(*): Necessary forward displacement of the dam to generate liquefaction 
conditions in the tailings’ wedge. A value ε = 1 m was selected for the 
calculations reported below. 

 
Blue clay 

initial′ϕ (*): Average initial friction angle which ensures strict equilibrium before 
the failure. It was derived by limit equilibrium analysis ( initial′ϕ  = 
18.09º). 
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res′ϕ :  Residual friction angle. It was derived from ring shear tests on 
remoulded blue clay and by direct shear tests on natural slickensided 
discontinuities.  A value resϕ′ = 11º was adopted. 

δ(*):  Relative displacement along the failure plane needed to mobilize the 
residual friction angle. It is probably necessary to accumulate a few 
decimetres to achieve residual conditions. A value δ = 20 cm was 
selected for calculations. 

Parameters with an asterisk (*) were found to have a very limited influence on the 
computed results. This was an interesting finding because there was some 
uncertainty about the correct value for the specific parameter involved. This is, in 
particular, the case of the two displacement parameters included in the model: δ 
and ε. 

6.6.2 Motion of the dam 
A representative “base case” was solved with a set of parameters, which are 

believed to represent the actual sliding conditions ( initial′ϕ = 18.09º; res′ϕ = 11º; δ = 
20 cm; γt = 31 kN/m3; Fhi = 11.3 MN/m; ε = 1 m; βst = 70º; eR = 13.40 m; αb = 2º; 
αe = 20º).  
 

 
 

Figure 6.11 Computed evolution of dam displacement. 
 

The distance travelled by the dam as a function of time is shown in Figure 
6.11. According to the model, the slide stops 15 s after the initiation of the failure, 
when the dam has travelled 51.5 m. This latter figure is very similar to actual 
observations. The evolution of speed is shown in Figure 6.12. The dam reaches a 
maximum velocity of 6.2 m/s (22.3 km/h), 10 s after the start of the motion. The 
calculated acceleration is shown in Figure 6.13. The dam experiences a rapid 
acceleration during the first few seconds after the start. The evolution of forces, 
plotted in Figure 6.14, explains the acceleration. During the first instants of the 
motion, the liquefaction of tailings increases the driving force, which reaches 
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values substantially higher than the total resistance offered by the base and the 
passive wedge (the evolution of both forces is also shown in the figure). The 
driving forces include also the component of slide weight in the direction of the 
motion, sb. The positive net resultant force (driving minus resistant forces) 
accelerates the slide. The fall of the level of tailings at the upstream part of the 
slide (plotted in Fig. 6.15) progressively reduces the pushing force as well as the 
acceleration. Total resistance to sliding increases slightly with time. The main 
reason for the deceleration of the slide is therefore the continuous decrease in the 
driving force associated with the fall of the level of liquefied tailings and in a 
more limited manner by the restraint offered by the passive wedge. 
 

 
 

Figure 6.12 Computed slide velocity. 
 

 
 

Figure 6.13 Computed slide acceleration. 
 

The relevance of the stability of the tailings cliff left by the forward motion of 
the dam becomes now more apparent. A large volume of liquefied tailings would 
have implied a longer period of acceleration and higher velocities and dam 
displacements. Under these circumstances, the size of the breach opened in the 
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dam would have increased dramatically, leading to a more violent flood. 
 

 
 

Figure 6.14 Computed variation of forces against the moving mass. 
 

 
 

Figure 6.15 Evolution of height of liquefied tailings, acting against the upstream end of the 
slide.  
 

The short-term stability of a quasi-vertical slope in the mass of tailings is 
explained by the cementation exhibited by them and its relatively low 
permeability. The rapid unloading caused by the forward slide displacement 
probably led to negative pore water pressures in the vicinity of the exposed cliff. 
In the medium and long term, tailings were able to maintain the initial subvertical 
slope although the strong erosion and, in some cases, local failures led to the 
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partial collapse of the original slope. However, the volume added by these 
processes did not affect the motion of the slide, which was very rapid. In fact, at 
the end of the motion, see Figure 6.14, the available resistance was much higher 
than the driving force. Additional sources of eroded or destabilized tailings only 
marginally add to the force exerted against the upstream slide face.  

The dam breach also involved the pouring of a massive flow of tailings mud 
outside the dam, thus effectively controlling the level of the tailings in the large, 
open basin upstream of the slipped dam. 

This outpouring probably affected the motion of the slide in the vicinity of the 
breach. In fact, the rate of reduction of the height of liquefied tailings, a key aspect 
of the model developed, is controlled by the condition of volume conservation 
expressed in Equation (6.5). However, the flow of tailings out of the pond may be 
viewed as an additional “sink term” in this equation and, therefore, it contributes 
to reducing faster the level of liquefied pushing tailings. This, in turn, implies a 
smaller distance travelled by the slide. This fact may explain the progressive 
reduction of the dam displacement as the breach position is approached (Fig. 4.5). 

The acceleration of the dam in the early stages helps to explain the fall of the 
wedge of tailings sitting on the mantle of red clay placed against the upstream 
rockfill slope. The presence of this clay, placed on top of a slope of 29º, facilitated 
the instability of the wedge of tailings. The calculated maximum acceleration 
(0.175 g) is similar to the acceleration induced by an earthquake of intensity 7–8 
(MKS).  

The calculated height of tailings in the upstream basin, when the slide 
stopped, is 4 m over the initial level of the foot of the upstream slope. The 
measured central profile of the slide, a few months after the failure, shows that the 
level of the tailings upstream of the failed dam was 7 m above the level of the foot 
of the dam. The difference, which is not considered to be very significant, is 
attributed to the accumulation of eroded tailings in the days following the rupture. 

6.7 Sensitivity Analysis  
It was mentioned that the results of the analysis were not particularly affected by 
some of the model parameters. A relatively large uncertainty could “a priori” be 
associated with a few of them (δ, ε). However, most of the model parameters were 
known with some confidence. It is therefore advisable to examine the sensitivity 
of the results presented. In the sensitivity analysis, which is summarized in Table 
6.1, each one of the listed parameters was changed in turn, while keeping the other 
properties involved fixed to those values used in the base case. 

The variable selected for comparison is the total distance travelled by the dam. 
This distance is a natural choice because it can be compared with the measured 
value in the field. An examination of Table 6.1 reveals that the analysis is robust 
in the sense that none of the parameters changed seems to have a decisive 
influence on the distance travelled by the dam. The values listed in Table 6.1 do 
not differ much from the actual travelled distance. This result adds confidence to 
the interpretation given for the observed displacement of the dam and the 
associated physical phenomena. 
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Table 6.1 Results of the sensitivity analysis in terms of the length travelled by the dam.  
 

Parameter/Property Value Travelled distance (m) 

Slope of sedimentation planes, αb (º) 
2  51.5 (Base case) 
1 53.3 

Dip of upstream scar, βst (º) 
80 48.7 
90 46.0 

Residual friction angle of clay, 
resϕ′ (º) 

10 54.9 
12 48.2 

Exit angle of passive wedge, αe (º) 
21 50.5 
26 46.6 

Depth of sliding surface under the 
base center of dam, eR (m) 

11 57.5 
12 54.8 
13 52.40 

Specific weight of tailings, γt (kN/m3) 29 48.78 
30 50.15 

Initial horizontal thrust of tailings, Fhi 
(MN/m) 

16.9 51.8 
22.6 52.0 

Necessary forward displacement of the 
dam to generate liquefaction 

conditions, ε (m) 

0.1 52.0 

0.4 51.0 

Initial friction angle, initialϕ′  (º) 17 52 
15 52 

Relative displacement needed to 
mobilize the residual friction angle, δ 

(m) 

0.1 52 

0.5 51.9 

6.8 Lessons Learned 

6.8.1 Factors contributing to the acceleration of the slide 
Two phenomena contributed to the acceleration of the slide: the brittleness of the 
clay formation whose strength dropped to residual values during the first stages of 
the motion and the liquefaction of tailings, which significantly increased the thrust 
against the incipient slide. 

6.8.2 Liquefaction of tailings 
The static liquefaction of tailings could not be reproduced in undrained laboratory 
triaxial tests. However, the tailings slide on the upstream side of the dam was able 
to liquefy in a massive way a large volume of tailings, even if they exhibited some 
significant cementation. 

6.8.3 Further validation of strength and water pressures 
The motion of the slide and not only the strict condition of instability, may prove 
useful to establish material parameters, prevailing pore pressures and, in general, 
to better define the conditions before failure. In the case of Aznalcóllar, the back 
analysis of the motion provides an additional validation of clay strength and pore 
pressure conditions. 
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6.8.4 The risk of dam displacement 
Landslide risk is often related to the motion after instability. In the case of Vaiont, 
the attained velocity was the key aspect. In the case of Aznalcóllar the risk was 
also associated with the displacement. The slide displacement was enough to open 
a breach in the rockfill dam and to trigger the flood. The flow rate pouring out of 
the pond was controlled by the breach width, which was directly related to the 
slide displacement. Longer running distances (a consequence, for instance, of the 
weaker nature of tailings, which could imply a higher volume of liquefied tailings 
acting against the upstream boundary of the slide) would have resulted in a wider 
breach and in a more catastrophic flood.  

6.8.5 Unknown aspects of failures 
The dynamic analysis provided answers to some unsolved questions (the slide, 
being at night, was not observed) such as its velocity, duration and acceleration. 

6.9 Advanced Topics 
The analysis of landslide motion after failure is seldom performed in engineering 
practice, although analytical and numerical procedures are available to investigate 
the runout distances and velocities reached by landslides. In some studies (Hungr, 
1995; McDougall and Hungr, 2004; Quecedo et al., 2004) the slide is idealized as 
a fluidized mass of soil and the Navier-Stokes equations are integrated in depth, 
adapted to the curved geometry of the surface, and solved for some rheological 
models adopted for the moving mass. In other approaches, conceived for 
rockslides, discrete element approaches and hybrid continuum-discontinuum 
models have been developed (Eberhardt et al., 2004). 

References 
Alonso, E.E. and Gens, A. (2006) Aznalcóllar dam failure. Part 3: Dynamics of 

the motion. Géotechnique 56 (3), 203–210. 
Eberhardt, E., Stead, D. and Coggan, J.S. (2004) Numerical analysis of initiation 

and progressive failure in natural rock slopes –the 1991 Randa rockslide. 
International Journal of Rock Mechanics and Mining Sciences 41 (1), 69–87.  

Hungr, O. (1995) A model for the runout analysis of rapid flow slides, debris 
flows and avalanches.  Canadian Geotechnical Journal 32, 610–623. 

McDougall, S. and Hungr, O. (2004) A model for the analysis of rapid landslide 
runout motion across three-dimensional terrain. Canadian Geotechnical 
Journal 41, 1084–1097. 

Quecedo, M, Pastor, M., Herreros, M.I. and Fernández Merodo, J.A. (2004) 
Numerical modelling of the propagation of fast landslides using the finite 
element method. International Journal of Numerical Methods in Engineering 
59, 755–794. 



 

Epilogue  

Geotechnical designs should comply with two fundamental requirements: 
- The solution has to be stable with an appropriate safety margin. 
- Deformations and displacements should remain within acceptable limits.  

The first requirement leads in a natural way to the determination of soil strength. 
The second is associated with soil stiffness. In both cases equilibrium conditions 
and strain compatibility should be satisfied. This is the classical approach, one that 
has evolved into an extremely rich set of available solutions and analysis 
procedures. Critical state theory (Schofield and Wroth, 1967) integrated strength 
and stiffness into a unified and powerful framework which resulted in a more 
advanced understanding of soil mechanics and eventually led to modern 
elastoplastic computation tools.  

However, the backbone of Geotechnical Engineering does not concern the 
development of more or less sophisticated tools and theories. It remains in a 
previous step. When facing a real problem it is necessary to isolate its fundamental 
aspects and to achieve a correct conceptual representation of its nature. This phase 
requires abstract thinking, which is certainly assisted by a proper understanding of 
paradigms and theories of Soil and Rock Mechanics. The process of abstract 
thinking with the aim of identifying the key issues usually renounces to 
complexity and secondary details. To be successful, concepts should be simple 
and rooted on well established mechanical and physical knowledge. Only when 
the relevant mechanisms or phenomena which define the problem are well 
understood, additional sophistication may be added for a more accurate analysis or 
interpretation. This book remains in this first “simple” stage.  

The correct identification of the essential traits of a geotechnical situation 
relies heavily also on accumulated experience and on educated intuition. But, how 
to educate intuition and how to transfer practical experience?  

Failures have always been regarded with extraordinary attention by engineers. 
They have a powerful human and emotional side because of their implications but 
also because they are often associated with mistakes, errors and lack of 
understanding. These aspects are very close to human nature as well to the 
practice of engineering. Failures convey a clear message: they point towards the 
limitation of our knowledge and practices. In a sense, they are telling us the truth. 
Unlike theories and current methodologies they remain valid in time. In fact, they 
are permanent benchmarks which can be revisited to check our conceptual 
representations and models. They provide a permanent incentive to direct research 
and technological developments. In addition, they may become an effective 
educational tool. They serve to identify errors, if properly interpreted they provide 
strong clues of the fundamental nature of problems and they constitute a good 
validation check for theories and models.  

These considerations were present when this book was conceived. Major 
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failures have attracted continuous and sustained efforts to explain their 
fundamental aspects through current theories. They all serve the purpose of 
developing new concepts. Some of them have been regarded as critical events for 
the development of new disciplines (Rock Mechanic received a definitive impulse 
from failures such as Vaiont slide and Malpasset dam). But any failure, not 
necessarily a spectacular one, has also a great potential to become a permanent 
source of knowledge.  

Geotechnical engineers often face the need to find acceptable and reliable 
solutions in a limited amount of time. Text book solutions or even more advanced 
theoretical or empirical solutions are often not available for specific cases. The 
solution has to be built form basic considerations and fundamental principles. 
Almost all the cases presented in this book share this characteristic.  

The use of comprehensive finite element and finite difference programs for 
Geotechnical analysis is well established in current practice. Numerical methods 
provide comprehensive tools but they are not valid in all cases. The dynamic 
analysis of Vaiont can not be possibly approached by any commercially available 
finite element code for geotechnical analysis. The constrained displacement of St. 
Moritz landslide is difficult to model properly by finite element procedures. 
Progressive failure, a phenomenon which partially explains the failure of 
Aznalcóllar dam is currently a research topic.  

It may be also argued that numerical analysis still requires a significant 
amount of time, often inacceptable in practice. It is expected and desirable that 
numerical methods would progressively become easier to use and faster. But the 
intention of this book is far from promoting a dispute between “simple” solutions 
and numerical methods. However: 

- A thorough understanding of fundamental mechanics is essential to 
interpret results of complex numerical calculations 

- A simple check through approximate methods helps to grasp the nature of 
the problem and provides confidence to numerical results 

- In many occasions the precision offered by analytical and empirical 
methods is adequate. The real uncertainty does not remain on the 
calculation procedure but on material properties, their spatial variability 
and the unknown boundary and initial conditions 

 
These are the general lessons which should be extracted from this book. It is 

felt also that there is still room in Geomechanics for simple and accurate 
theoretical analysis. Closed form solutions or those which require easily available 
computer tools (Excel, Maple) maintain their elegance and interest in practice. 
They are also good benchmark cases to validate numerical tools.  
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However, it is the learning experience provided by the process of analyzing a 
failure through relatively simple procedures the main objective of the book. The 
lessons learned in each of the cases discussed are useful irrespective of the method 
of analysis.  

A final objective of the book has been to provide an enjoyable reading and a 
rewarding experience to the readers. Writing the book was also a first class and 
pleasant learning experience for the authors.  
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