


Financial Econometrics

Set against a backdrop of rapid expansions of interest in the modelling and analysis of
financial data and the problems to which they are applied, this textbook, now in its second
edition, offers an overview and discussion of the contemporary topics surrounding financial
econometrics, covering all major developments in the area in recent years in an informative
and succinct way.

Extended from the first edition of mainly time series modelling, the new edition also
takes in discrete choice models, estimation of censored and truncated samples, as well as
panel data analysis that has witnessed phenomenal expansion in application in finance and
financial economics since the publication of the first edition of the book. Virtually all major
topics on time series, cross-sectional and panel data analysis have been dealt with. Subjects
covered include:

• unit roots, cointegration and other comovements in time series
• time varying volatility models of the GARCH type and the stochastic volatility

approach
• analysis of shock persistence and impulse responses
• Markov switching
• present value relations and data characteristics
• state space models and the Kalman filter
• frequency domain analysis of time series
• limited dependent variables and discrete choice models
• truncated and censored samples
• panel data analysis

Refreshingly, every chapter has a section of two or more examples and a section of empirical
literature, offering the reader the opportunity to practise right away the kind of research going
on in the area. This approach helps the reader develop interest, confidence and momentum
in learning contemporary econometric topics.

Graduate and advanced undergraduate students requiring a broad knowledge of tech-
niques applied in the finance literature, as well as students of financial economics engaged
in empirical enquiry, should find this textbook to be invaluable.

Peijie Wang is Professor of Finance at IÉSEG School of Management, Catholic University
of Lille. He is author of An Econometric Analysis of the Real Estate Market (Routledge
2001) and The Economics of Foreign Exchange and Global Finance.
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Preface

This book focuses on econometric models widely and frequently used in the
examination of issues in financial economics and financial markets, which are
scattered in the literature yet to be integrated into a single-volume, multi-
theme, and empirical research-oriented text. The book, providing an overview of
contemporary topics related to the modelling and analysis of financial data, is set
against a backdrop of rapid expansions of interest in both the models themselves
and the financial problems to which they are applied. Extended from the first
edition of mainly time series modelling, the new edition also takes in discrete
choice models, estimation of censored and truncated samples, as well as panel
data analysis that has witnessed phenomenal expansion in application in finance
and financial economics since the publication of the first edition of the book.
Virtually all major topics on time series, cross-sectional and panel data analysis
have been dealt with.

We assume that the reader has already had knowledge in econometrics and
finance at the intermediate level. So basic regression analysis and time series
models such as the OLS, maximum likelihood and ARIMA, while being referred
to from time to time in the book, are only briefly reviewed but are not brought up as
a book topic; nor the concept of market efficiency and models for asset pricing. For
the former, there are good books such as Basic Econometrics by Gujarati (2002),
Econometric Analysis by Greene (2008), and Introduction to Econometrics by
Maddala (2001); and for the latter, the reader is recommended to refer to Principles
of Corporate Finance by Brealey, Myers and Allen (2006), Corporate Finance by
Ross, Westerfield and Jaffe (2008), Investments by Sharpe, Alexander and Bailey
(1999), Investments by Bodie, Kane and Marcus, (2008), and Financial Markets
and Corporate Strategy by Grinblatt and Titman (2002).

The book has two unique features – every chapter (except the first three
introductory chapters and the final chapter) has a section of two or more examples
and cases, and a section of empirical literature, offering the reader the opportunity
to practice right away the kind of research in the area. The examples and cases,
either from the literature or of the book itself, are well executed, and the results
are explained in detail in plain language. This would, as we hope, help the reader
gain interest, confidence, and momentum in learning contemporary econometric
topics. At the same time, the reader would find that the way of implementation



Preface xv

and estimation of a model is unavoidably influenced by the view of the researcher
on the issue in a social science subject; nevertheless, for a serious researcher, it
is not easy to make two plus two equal to any desired number she or he wants
to get. The empirical literature reviewed in each chapter is comprehensive and up
to date, exemplifying rich application areas at both macro and micro levels limited
only by the imagination of human beings. The section demonstrates how a model
can and should match practical problems coherently and guide the researcher’s
consideration on the rationale, methodology and factors in the research. Overall,
the book is methods, models, theories, procedures, surveys, thoughts and tools.

To further help the reader carry out an empirical modern financial econometrics
project, the book introduces research tools and sources of information in the
final chapter. These include on-line information on, and the websites for, the
literature on research in financial economics and financial markets; commonly
used econometric software packages for time series, cross-sectional and panel
data analysis; professional associations and learned societies; and international
and national institutions and organisations. A website link is provided whenever
it is possible. The provision is based on our belief that, to perfect an empirical
study, one has to understand the wider background of the business environment,
market operations and institutional roles, and to frequently upgrade and update the
knowledge base which is nowadays largely through internet links.

The book can be used in graduate programmes in financial economics, financial
econometrics, international finance, banking and investment. It can also be used as
doctorate research methodology materials and by individual researchers interested
in econometric modelling, financial studies, or policy evaluation.
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1 Stochastic processes and financial
data generating processes

1.1. Introduction

Statistics is the analysis of events and the association of events, with a probability.
Econometrics pays attention to economic events, the association between these
events, and between these events and human beings’ decision-making – gov-
ernment policy, firms’ financial leverage, individuals’ investment/consumption
choice, and so on. The topics of this book, financial econometrics, focus on
the variables and issues of financial economics, the financial market and the
participants.

The financial world is an uncertain universe where events take place every
day, every hour, and every second. Information arrives randomly and so do the
events. Nonetheless, there are regularities and patterns in the variables to be
identified, effect of a change on the variables to be assessed, and links between the
variables to be established. Financial econometrics attempts to perform the analysis
of these kinds through employing and developing various relevant statistical
procedures.

There are generally three types of economic and financial variables – the rate
variable, the level variable and the ratio variable. The first category measures the
speed at which, for example, wealth is generated, or savings are made, at one point
of time (continuous time) or in a short interval of time (discrete time). The rate of
return on a company’s stock or share is a typical rate variable. The second category
works out the amount of wealth, such as income and assets, being accumulated
over a period (continuous time) or in a few of short time intervals (discrete time).
A firm’s assets and a country’s GDP are typical level variables, though they are
different in a certain sense in that the former is a stock variable and the latter is a
flow variable. The third category consists of two sub-categories, one is the type I
ratio variable or the component ratio variable, and the other is the type II ratio,
the contemporaneous relativity ratio variable. The unemployment rate is rather
a ratio variable, a type I ratio variable, than a rate variable. The exchange rate
is more precisely a typical type II ratio variable instead of a rate variable. This
classification of variables does not necessarily correspond to the classification of
variables into flow variables and stock variables in economics. For example, we
will see in Chapter 8 that both income and value should behave similarly in terms
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of statistical characteristics as non-stationary variables, though the former is a flow
variable and the latter a stock variable, if the fundamental relationship between
them is to hold.

Before we can establish links and chains of influence amongst the variables
in concern, which are in general random or stochastic, we have to assess their
individual characteristics first. That is, with what probability may the variable
take a certain value, or how likely may an event (the variable taking a given
value) occur? Such assessment of the characteristics of individual variables is
made through the analysis of their statistical distributions. Bearing this in mind,
a number of stochastic processes, which are commonly encountered in empirical
research in economics and finance, are presented, compared and summarised in
the next section. The behaviour and valuation of economic and financial variables
are discussed in association with these stochastic processes in Section 1.3, with
further extension and generalisation.

Independent identical distribution (iid) and normality in statistical distributions
are commonly supposed to be met, though from time to time we would modify the
assumptions to fit the real world problem more appropriately. If the rate variables
are, as widely assumed, iid and normally distributed around a constant mean, then
its corresponding level variable would be log normally distributed around a mean
which is increasing exponentially over time, and the level variable in logarithms
is normally distributed around a mean which is increasing linearly over time. This
is the reason why we usually work with the level variables in their logarithms.

Prior to proceeding to the main topics of this book, a few of most commonly
assumed statistical distributions applied in various subjects are reviewed in
Chapter 2, in conjunction with their rationale in statistics and relevance in finance.
The examination of statistical distributions of stochastic variables helps assess
their characteristics and understand their behaviour. Then, primary statistical
estimation methods, covering the ordinary least squares, the maximum likelihood
method and the method of moments and the generalised method of moment, are
briefly reviewed in Chapter 3. The iid and iid under normal distributions are firstly
assumed for the residuals from fitting the model. Then, the iid requirements are
gradually relaxed, leading to general residual distributions typically observed in
time series and cross-section modelling. This also serves the purpose of introducing
elementary time series and cross-section models and specifications, based on which
and from which most models in the following chapters of this book are developed
and evolved.

The classification of financial variables into rate variables and level variables
gives rise to stationarity and non-stationarity in financial time series, though there
might be no clear-cut match of the economic and financial characteristic and the
statistical characteristic in empirical research; whilst the behaviour and properties
of ratio variables may be even more controversial. Related to this issue, Chapter 4
analyses unit roots and presents the procedures for testing for unit roots. Then the
chapter introduces the idea of cointegration where a combination of two or more
non-stationary variables becomes stationary. This is a special type of link amongst
stochastic variables, implying that there exists a so-called long-run relationship.
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The chapter also extends the analysis to cover common trends and common cycles,
the other major types of links amongst stochastic variables in economics and
finance.

One of the violations to the iid assumption is heteroscedasticity, i.e. the variance
is not the same from each of the residuals; and modifications are consequently
required in the estimation procedure. The basics of this issue and the ways to
handle it have been learned from introductory econometrics or statistics or can be
learned in Chapter 3 on overview of estimation methods. What we introduce here
in Chapter 5 is specifically a kind of variance which changes with time, or time-
varying variance. Time-varying variance or time-varying volatility is frequently
found in many financial time series so has to be dealt with seriously. Two types of
time-varying volatility models are discussed, one is GARCH (Generalised Auto
Regressive Conditional Heteroscedasticity) and the other is stochastic volatility.

How persistent is the effect of a shock is important in financial markets. It is not
only related to the response of, say, financial markets to a piece of news, but is also
related to policy changes, of the government or the firm. This issue is addressed
in Chapter 6, which also incorporates impulse response analysis, a related subject
which we reckon should be under the same umbrella. Regime shifts are important
in the economy and financial markets as well, in that regime shifts or breaks in
the economy and market conditions are often observed, but the difficulties are that
regime shifts are not easily captured by conventional regressional analysis and
modelling. Therefore, Markov switching is introduced in Chapter 7 to handle the
issues more effectively. The approach helps improve our understanding about an
economic process and its evolving mechanism constructively.

Some economic and financial variables have built-in fundamental relationships
between them. One of such fundamental relationships is that between income and
value. Economists regard that the value of an asset is derived from its future income
generating power. The higher the income generating power, the more valuable
is the asset. Nevertheless, whether this law governing the relationship between
income and value holds is subject to empirical scrutiny. Chapter 8 addresses this
issue with the help of econometric procedures, which identify and examine the
time series characteristics of the variables involved.

Econometric analysis can be carried out in the conventional time domain as
discussed in the above, and can also be performed through some transformations.
Analysis in the state space is one of such endeavours, presented in Chapter 9. What
the state space does is to model the underlying mechanisms through the changes
and transitions in the state of its unobserved components, and establish the links
between the variables of concern, which are observed, and those unobserved state
variables. It explains the behaviour of externally observed variables by examining
the internal, dynamic and systematic changes and transitions of unobserved state
variables, to reveal the nature and cause of the dynamic movement of the variables
effectively. State space analysis is usually executed with the help of the Kalman
filter, also introduced in the chapter.

State space analysis is nonetheless still in the time domain, though it is not
the conventional time domain analysis. With spectral analysis of time series in
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Chapter 10, estimation is performed in the frequency domain. That is, time domain
variables are transformed into frequency domain variables prior to the analysis, and
the results in the frequency domain may be transformed back to the time domain
when necessary. Such transformations are usually achieved through the Fourier
transform and the inverse Fourier transform and, in practice, through the Fast
Fourier Transform (FFT) and the Inverse Fast Fourier Transform (IFFT). The
frequency domain properties of variables are featured by their spectrum, phase
and coherence, to reflect individual time series’ characteristics and the association
between several time series, in the ways similar to those in the time domain.

Deviating from the preceding chapters of the book, Chapters 11 and 12 study
models with limited dependent variables. The dependent variable in these two
chapters is not observed on the whole range or whole sample, it is discrete,
censored or truncated. Also deviating from the preceding chapters, data sets
analysed in Chapters 11 and 12 are primarily cross-sectional. That is, they are data
for multiple entities, such as individuals, firms, regions or countries, considered
to be observed at a single time point. Issues associated with choice are addressed
in Chapter 11. Firms and individuals encounter choice problems from time to
time. Choice is deeply associated with people’s daily life, firms’ financing and
investment activities, managers’ business dealings and financial market operations.
In financial terms, people make decisions on choice aimed at achieving higher
utility of their work, consumption, savings, investment and their combinations.
Firms make investment, financing and other decisions, supposedly aimed at
maximising shareholder value. A firm may choose to use financial derivatives
to hedge interest rate risk, or choose not to use financial derivatives. A firm may
decide to expand its business into foreign markets, or not to expand into foreign
markets. The above choice problems can be featured by binary choice models
where the number of alternatives or options is two, in a usual frame of ‘to do’ or ‘not
to do’. General discrete choice models emerge when the number of alternatives
or options is extended to be more than two. Since discrete choice models are
non-linear, marginal effects are specifically considered.

In addition to discrete choice models where a dependent variable possesses
discrete values, the values of dependent variables can also be censored or truncated.
Chapter 12 examines issues in estimation of models involving limited dependent
variables with regard to censored and truncated samples. Estimation of truncated
or censored samples with certain conventional regression procedures can cause
bias in parameter estimation. This chapter discusses the causes of the bias and
introduces pertinent procedures to correct the bias arising from truncation and
censoring, as well as the estimation procedures that produce unbiased parameter
estimates. A wider issue of selection bias is specifically addressed.

The use of panel data and application of panel data modelling have increased
drastically in the last five years in finance and related areas. The volume of
studies and papers employing panel data has been multifold, in recognition of the
advantages offered by panel data approaches as well as panel data sets themselves,
and in response to the growing availability of data sets in the form of panel.
Chapter 13 introduces various panel data models and model specifications and
addresses various issues in panel data model estimation. Panel data covered in this
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chapter refer to data sets consisting of cross-sectional observations over time, or
pooled cross-section and time series data. They have two dimensions, one for time
and one for the cross-section entity. Two major features that do not exist with the
one-dimension time series data or the one-dimension cross-sectional data are fixed
effects and random effects, which are analysed, along with the estimation of fixed
effects models, random effects models and random parameter models. Issues of
bias in parameter estimation for dynamic panel data models are then addressed
and a few approaches to estimating dynamic panel models are presented.

Financial econometrics is only made possible by the availability of vast
economic and financial data. Problems and issues in the real world have inspired
the generation of new ideas and stimulated the development of more powerful
procedures. The last chapter of the book, Chapter 14, is written to make such a
real world and working environment immediately accessible by the researcher,
providing information on the sources of literature and data, econometric software
packages and organisations and institutions ranging from learned societies and
regulators to market players.

1.2. Stochastic processes and their properties

The rest of this chapter presents stochastic processes frequently found in the
financial economics literature and relevant to such important studies as market
efficiency and rationality. In addition, a few terms fundamental to modelling
financial time series are introduced. The chapter discusses stochastic processes
in the tradition of mathematical finance, as we feel that there rarely exist links,
at least explicitly, between mathematical finance and financial econometrics, to
demonstrate the rich statistical properties of financial securities and their economic
rationale ultimately underpinning the evolution of the stochastic process. After pro-
viding definitions and brief discussions of elementary stochastic processes in the
next section, we begin with the generalisation of the Wiener process in Section 1.3,
and gradually progress to show that the time path of many financial securities can
be described by the Wiener process and its generalisations which can accommodate
such well known econometric models or issues as ARIMA (Auto Regressive
Integrated Moving Average), GARCH (Generalised Auto Regressive Conditional
Heteroscedasticity), stochastic volatility, stationarity, mean-reversion, error cor-
rection and so on. Throughout the chapter, we do not particularly distinguish
discrete and continuous time series and what matters to the analysis is that the time
interval is small enough. The results are almost identical though this treatment does
provide more intuition to real world problems. There are many stochastic processes
books available, e.g., Ross (1996) and Medhi (1982). For modelling of financial
securities, interested readers can refer to Jarrow and Turnbull (1999).

1.2.1. Martingales

A stochastic process Xn (n = 1,2, . . .), with E
[
Xn

]
< ∞ for all n, is a martingale, if:

E
[
Xn+1 | X1, . . .Xn

]= Xn (1.1)
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Further, if a stochastic process Xn (n = 1,2, . . .), with E
[
Xn

]
< ∞ for all n, is a

submartingale, if:

E
[
Xn+1 | X1, . . .Xn

]≥ Xn (1.2)

and is a supermartingale if:

E
[
Xn+1 | X1, . . .Xn

]≤ Xn (1.3)

1.2.2. Random walks

A random walk is the sum of a sequence of independent and identically distributed
(iid) variables Xi (i = 1,2, . . . ), with E

[
Xi

]
< ∞. Define:

Sn =
n∑

i=1

Xi (1.4)

Sn is referred as a random walk. When Xi takes only two values, +1 and −1, with
P{Xi = 1} = p and P{Xi = −1} = 1 − p, the process is named as the Bernoulli
random walk. If p = 1 − p = 1

2 , the process is called a simple random walk.

1.2.3. Gaussian white noise processes

A Gaussian process, or Gaussian white noise process, or simply white noise
process, Xn, (n = 1,2, . . .) is a sequence of independent random variables, each of
which has a normal distribution:

Xn ∼ N (0,σ 2) (1.5)

with the probability density function being:

fn(x) = 1

σ
√

2π
e−(x2/2σ 2) (1.6)

The sequence of these independent random variables of the Gaussian white
noise has a multivariate normal distribution and the covariance between any two
variables in the sequence, Cov(Xj,Xk ) = 0 for all j �= k .

A Gaussian process is a white noise process because, in the frequency domain, it
has equal magnitude in every frequency, or equal component in every colour. We
know that the light with equal colour components, such as sunlight, is white.
Readers interested in frequency domain analysis can refer to Chapter 10 for
details.

1.2.4. Poisson processes

A Poisson process N (t) (t ≥ 0) is a counting process where N (t) is an integer
representing the number of ‘events’ that have occurred up to time t, and the process
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has independent increments, i.e. the number of events have occurred in interval
(s, t] is independent from the number of events in interval (s + τ , t + τ ].

Poisson processes can be stationary and non-stationary. A stationary Poisson
process has stationary increments, i.e. the probability distribution of the number
of events occurred in any interval of time is only dependent on the length of the
time interval:

P{N (t + τ ) − N (s + τ )} = P{N (t) − N (s)} (1.7)

Then the probability distribution of the number of events in any time length τ is:

P{N (t + τ ) − N (t) = n} = e−lt (lt)n

n! (1.8)

where l is called the arrival rate, or simply the rate of the process. It can be shown
that:

E{N (t)} = lt, Var{N (t)} = lt (1.9)

In the case that a Poisson process is non-stationary, the arrival rate is a function of
time, thereby the process does not have a constant mean and variance.

1.2.5. Markov processes

A sequence Xn (n = 0,1, . . .) is a Markov process if it has the following property:

P
{
Xn+1 =xn+1 |Xn =xn,Xn−1 =xn−1,X1 =x1,X0 =x0

}=P
{
Xn+1 =xn |Xn =xn

}
(1.10)

The Bernoulli random walk and simple random walk are the cases of Markov
processes. It can be shown that the Poisson process is a Markov process as well.

A discrete time Markov process that takes finite or countable number of integer
values xn, is called a Markov chain.

1.2.6. Wiener processes

A Wiener process, also known as Brownian motion, is indeed the very basic
element in stochastic processes:

�z(t) = ε
√

�t, �t → 0
ε ∼ N (0,1)

}
(1.11)

The Wiener process can be derived from the simple random walk, replacing time
sequence by time series when time intervals become smaller and smaller and
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approach zero. If z(t) is a simple random walk such that it moves forward and
backward by �z in time interval �t, then:

E [z(t)] = 0

Var[z(t)] = (�z)2 t

�t
(1.12)

In a sensible and convenient way, let the distance of the small move �z = √
�t.

According to the central limit theorem, z(t) has a normal distribution with mean 0
and variance t, and has independent and stationary increments. These are statistical
properties described by equation (1.11).

1.2.7. Stationarity and ergodicity

These two terms have been frequently come across, relevant and important in
financial and economic time series. Nonetheless, it is helpful here to provide simple
definitions to link and distinguish them, and to clarify each of them. A stochastic
process is said to be covariance stationary if:

(i) E{X (t)} = μ for all t;
(ii) Var{X (t)} < ∞ for all t; and
(iii) Cov{X (t), X (t + j)} = γj for all t and j.

This is sometimes referred to as weekly stationary, or simply stationary. Such
stationary processes have finite mean, variance and covariance that do not depend
on the time t, and the covariance depends only on the interval j.

A strictly stationary process has met the above conditions (i) and (iii), and
been extended to higher moments or orders. It states that the random vectors
{X (t1), X (t2), … X (tn)} and {X (t1 + j), X (t2 + j), … X (tn + j)} have the same joint
distribution. In other words, the joint distribution depends only on the interval j but
not the time t. That is, the joint probability density p{x(t), x(t + τ1), . . .x(t + τn)},
where τi = ti − −ti−1, depends only on the intervals τ1, · · ·τn but not t itself.
A second-order stationary process is not exactly covariance stationary as it is not
required to meet condition (ii). Therefore, a process can be strictly stationary while
being not covariance stationary, and vice versa.

Ergodicity arises from the practical need to obtain ensemble moments’ values
from a single realisation or observation of the stochastic process. A covariance
stationary process is ergodic for the first moment if its temporal average converges,
with probability 1, to the ensemble average. Similarly, a covariance stationary
process is ergodic for the second moment if its temporal covariance converges,
with probability 1, to the ensemble covariance.

1.3. The behaviour of financial variables and beyond

A Wiener process has a mean value of zero and a unity variance. It is also a special
type of random walk. The Wiener process can be generalised to describe a time
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series where the mean value is a constant and can be different from zero, and the
variance is a constant and can be different from unity. Most financial securities’
prices fall in this category when the financial market is efficient in its weak form.
An Ito process further relaxes these conditions so that both the deterministic and
stochastic parts of the generalised Wiener process are state and time dependent.
Important relationships between stochastic variables and, in particular, between a
financial security’s price and the price of its derivative, are established by Ito’s
lemma. Ito’s lemma is central to the valuation and pricing of derivative securities,
though it may shed light on issues beyond the derivative arena.

1.3.1. Generalised Wiener processes

A Wiener process described by equation (1.11) is a special and rather restricted
random walk. It can be generalised so that the variance can differ from 1× t and
there can be a drift. A stochastic process or variable x is a generalised Wiener
process if:

�x = a�t + b�z (1.13)

where a is the drift rate, and b is the variance rate. Many financial time series can
be subscribed to equation (1.13), especially in the context of so-called weak-form
market efficiency, though equation (1.13) is a stronger claim to weak-form market
efficiency than martingales.

1.3.2. Ito processes

If parameters a and b are functions of x and t, then equation (1.13) becomes the
Ito process:

�x = a (x, t)�t + b (x, t)�z (1.14)

Function a (x, t) can introduce the autoregressive component by having lagged �x
in it. Moving average effects can be introduced by b (x, t) when it has non-zero
constant values at times t− i (i = 1,2, . . .). Function b (x, t) can generally introduce
similar effects in the second moment, widely known as ARCH, GARCH, variations
and stochastic volatility. Both a (x, t) and b (x, t) can bring in time varying
coefficients in the first and second moments as well. Therefore, equation (1.14)
can virtually represent all univariate time series found in finance and economics.

1.3.3. Ito’s lemma

Ito’s lemma is one of the most important tools for derivative pricing. It describes
the behaviour of one stochastic variable as a function of another stochastic variable.
The former could be the price of an option or the price of other derivatives, and
the latter could be the price of shares.
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Let us write equation (1.14) in the continuous time:

dx = a(x, t)dt + b(x, t)dz (1.15)

Let y be a function of stochastic process x, Ito’s lemma tells us that y is also an Ito
process:

dy =
(

∂y

∂x
a + ∂y

∂t
+ 1

2

∂2y

∂x2 b2

)
dt + ∂y

∂x
bdz (1.16)

It has a drift rate of:

∂y

∂x
a + ∂y

∂t
+ 1

2

∂2y

∂x2 b2 (1.17)

and a variance rate of:

(
∂y

∂x

)2

b2 (1.18)

Equation (1.16) is derived by using the Taylor series expansion and ignoring higher
orders of 0, details can be found in most mathematics texts at the undergraduate
level.

Ito’s lemma has a number of meaningful applications in finance and economet-
rics. Beyond derivative pricing, it reveals why and how two financial or economic
time series are related to each other. For example, if two non-stationary (precisely,
integrated of order 1) time series share the same stochastic component, the second
term on the right-hand side of equations (1.15) and (1.16), then a linear combination
of them is stationary. This phenomenon is called cointegration in the sense of Engle
and Granger (1987) and Johansen (1988) in the time series econometrics literature.
The interaction and link between them are most featured by the existence of an
error correction mechanism. If two non-stationary time series are both the functions
of an Ito’s process, then they have a common stochastic component but may in
addition have individual stochastic components as well. In this case, the two time
series have a common trend in the sense of Stock and Watson (1988) but they are
not necessarily cointegrated. This analysis can be extended to deal with stationary
cases, e.g. common cycles in Engle and Issler (1995) and Vahid and Engle (1993).

1.3.4. Geometric Wiener processes and financial variable behaviour
in the short-term and long-run

We can subscribe a financial variable, e.g. the share price, to a random walk process
with normal distribution errors:

Pt+1 = Pt + νt, νt ∼ N (0, σ 2
P ) (1.19)
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More generally, the price follows a random walk with a drift:

Pt+1 = Pt +φ + νt, νt ∼ N (0, σ 2
P ) (1.20)

where φ is a constant indicating an increase (and less likely, a decrease) of the
share price in every period. Nevertheless, a constant absolute increase or decrease
in share prices is also not quite reasonable. A realistic representation is that the
relative increase of the price is a constant:

Pt+1 − Pt

Pt

= μ+ ξt, ξt ∼ N (0, σ 2) (1.21)

So:

�Pt = Pt+1 − Pt = μPt + Ptξt = μPt +σPtε

ε ∼ N (0,1)
(1.22)

Notice �t = t + 1 − t = 1 can be omitted in or added to the equations. Let �t be
a small interval of time (e.g. a fraction of 1), then equation (1.22) becomes:

�Pt = μPt�t +σPtε
√

�t (1.23)

= μPt�t +σPt�z

Equation (1.23) is an Ito process in that its drift rate and variance rate are functions
of the variable in concern and time. Applying Ito’s lemma, we obtain the logarithm
of the price as follows:

�pt = pt+1 − pt =
[
μ− σ 2

2

]
�t +�z (1.24)

where pt = ln(Pt) has a drift rate of μ′ = μ − (σ 2/2) and variance rate of σ 2.
Equation (1.24) is just a generalised Wiener process instead of an Ito process in
that its drift rate and variance rate are not the functions of Pt and t. This simplifies
analysis and valuation empirically.

If we set σ = 0, the process is deterministic and solution is:

Pt = P0(1 +μ)t ≈ P0eμt (1.25)

and

pt = p0 + t ln(1 +μ) ≈ p0 +μt (1.26)

The final result in equations (1.25) and (1.26) is obtained when μ is fairly small
and is also the continuous time solution. From above analysis we can conclude
that share prices grow exponentially while log share prices grow linearly.
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When σ �= 0, rates of return and prices deviate from above-derived values.
Assuming there is only one shock (innovation) occurring in the kth period,
ε(k) = σ , then:

Pt = P0(1 +μ)(1 +μ) · · · (1 +μ+σ ) · · · (1 +μ)(1 +μ)(1 +μ) (1.27)

for the price itself, and

pt = p0 + (t − 1) ln(1 +μ) + ln(1 +μ+σ ) ≈ p0 +σ +μ t (1.28)

for the log price. After k , the price level increases by σ permanently (in every
period after k). However, the rate of change or return is μ + σ in the kth period
only; after k , the rate of return changes back to μ immediately after k .

The current rate of return or change does not affect future rates of return or
change, so it is called a short-term variable. This applies to all similar financial
and economic variables in the form of first difference. The current rate of return
has an effect on future prices, either in original forms or logarithms, which are
dubbed as long-run variables. Long-run variables often take their original form or
are in logarithms, both being called variables in levels in econometric analysis. We
have observed from above analysis that adopting variables in logarithms gives rise
to linear relationships which simplify empirical analysis, so many level variables
are usually in their logarithms.

In the above analysis of the share price, we reasonably assume that the change
in the price is stationary and the price itself is integrated of order 1. Whereas
under some other circumstances the financial variables in their level, not in their
difference, may exhibit the property of a stationary process. Prominently, two of
such variables are the interest rate and the unemployment rate. To accommodate
this, a mean-reversion element is introduced in the process. Taking the interest
rate for example, one of the models can have the following specification:

�rt = a (b − rt)�t +σ rt�z, a > 0, b > 0 (1.29)

Equation (1.29) says that the interest rate decreases when its current value is greater
than b and it increases when its current level is below b, where b is the mean value
of the interest rate to which the interest rate reverts. A non-stationary process,
such as that represented by equation (1.23), and a mean-reverse process, such
as equation (1.29), differ in their statistical properties and behaviour. But more
important are the differences in their economic roles and functions.

1.3.5. Valuation of derivative securities

In finance, Ito’s lemma has been most significantly applied to the valuation of
derivative securities, leading to so-called risk-neutral valuation principle. It can
also be linked to various common factor analysis in economics and finance, notably
cointegration, common trends and common cycles.
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Let us write equation (1.23) in the continuous time for the convenience of
mathematical derivative operations:

dPt = μPt dt +σPt dz (1.30)

Let πt be the price of a derivative security written on the share. According to Ito’s
lemma, we have:

dπt =
(

∂πt

∂Pt

μPt +
∂πt

∂t
+ 1

2

∂2πt

∂P2
t

σ 2P2
t

)
dt + ∂πt

∂Pt

σPt dz (1.31)

Now set up a portfolio which eliminates the stochastic term in equations (1.30)
and (1.31):

t = −πt +
∂πt

∂Pt

Pt (1.32)

The change in t :

dt = −dπt +
∂πt

∂Pt

dPt

=
(

−∂πt

∂t
− 1

2

∂2πt

∂P2
t

σ 2P2
t

)
dt

(1.33)

is deterministic involving no uncertainty. Therefore, t must grow at the risk-free
interest rate:

dt = rf t dt (1.34)

where rf is the risk-free interest rate. This shows the principle of risk neutral
valuation of derivative securities. It should be emphasised that risk neutral
valuation does not imply people are risk neutral in pricing derivative securities. In
contrast, the general setting and background are that risk-averse investors make
investment decisions in a risky financial world.

Substituting from equations (1.32) and (1.33), equation (1.34) becomes:

(
∂πt

∂t
+ 1

2

∂2πt

∂P2
t

σ 2P2
t

)
dt = rf

(
πt −

∂πt

∂Pt

Pt

)
dt (1.35)

∂πt

∂t
+ ∂πt

∂Pt

rf Pt +
1

2

∂2πt

∂P2
t

σ 2P2
t = rf πt (1.36)

Equation (1.36) establishes the price of a derivative security as the function of
its underlying security and is a general form for all types of derivative securities.
Combining with relevant conditions, such as the exercise price, time to maturity,
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and the type of the derivative, a specific set of solutions can be obtained. It can be
observed that solutions are much simpler for a forward/futures derivative, or any
derivatives with their prices being a linear function of the underlying securities. It
is because the third term on the left-hand side of equation (1.36) is zero for such
derivatives.

Consider two derivative securities both written on the same underlying security
such as a corporate share. Then, according to Ito’s lemma, the two stochastic
processes for these two derivatives subscribe to a common stochastic process
generated by the process for the share price, and there must be some kind of
fundamental relationship between them. Further, if two stochastic processes or
financial time series are thought to be generated from or partly from a common
source, then the two time series can be considered as being derived from or partly
derived from a common underlying stochastic process, and can be fitted into the
analytical framework of Ito’s lemma as well. Many issues in multivariate time
series analysis demonstrate this feature.
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2 Commonly applied statistical
distributions and their relevance

This chapter reviews a few of statistical distributions most commonly assumed and
applied in various subjects, including finance and financial economics. The first
and foremost is the normal distribution. While introducing the normal distribution,
we present it in an intuitive way, starting with few discrete states of events, through
to more discrete states of events, and finally reaching the probability density
function of normal distributions. The related concept of confidence intervals is
also introduced, in conjunction with one of the financial market risk management
measures, value at risk, so one can taste a flavour in finance and financial
economics from the very beginning. The derivation, relevance and use of the
χ2-distribution, t-distribution and F-distribution are then presented and briefly
discussed in sequence.

2.1. Normal distributions

The normal distribution is the most commonly assumed and applied statistical
distribution. Many random variables representing various events are regarded
normally distributed. Moreover, a few of other distributions are derived as
some kinds of functions of normal distributions. A representation of the normal
distribution, the probability density function of the normal distribution, is as
follows:

f (x) = 1

σ
√

2π
e−(x−μ)2/2σ 2

(2.1)

Usually, X ∼ N (μ,σ 2) is used to stand for a normal distribution with the mean
beingμ and the variance beingσ 2, while N (0, 1) is the standard normal distribution.
Figure 2.1 illustrates normal distributions graphically, with two different variances,
one small and one large.

Let us get some intuition behind the normal distribution. Suppose the economy
is forecast to grow at 2 per cent per annum in the next year with a probability of
0.5, at 4 per cent with a probability of 0.25 and at 0 per cent with a probability of
0.25. The sum of all these probabilities of the states of events turning out to be true
is surely 1, i.e. 0.5 + 0.25 + 0.25 = 1. The top panel of Figure 2.2 illustrates the
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The whole area is one, whether s is large or small.

Small standard deviation, s Large standard deviation, s

Figure 2.1 Normal distributions.
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probable economic growth in the next year. With only three states of events, this is
rather rough and sketchy both mathematically and graphically. So let us increase
the states of events to five, the case illustrated by the middle panel of Figure 2.1.
In that case, the economy is forecast to grow at 2 per cent with a probability of
0.4, at 3.5 per cent and 0.5 per cent with a probability of 0.2, and at 5 per cent and
−1 per cent with a probability of 0.1. Similar to the first case, the sum of all the
probabilities is 0.4 + 0.2 + 0.2 + 0.1 + 0.1 = 1. This is more precise than the first
case. The bottom panel of Figure 2.1 is a case with even more states of events,
15 states of events. The economy is forecast to grow at 2 per cent with a probability
of 0.28, at 2.5 per cent and 1.5 per cent with a probability of 0.2181, at 3 per cent
and 1 per cent with a probability of 0.1030, and so on. It looks quite like the normal
distribution of Figure 2.1. Indeed, it is approaching normal distributions.

With a standard normal distribution, the probability that the random variable x
takes values between a small interval �x = [x,x +�x) is:

f (x) ·�x = 1√
2π

e−x2/2�x (2.2)

This is the shaded area in Figure 2.3.
When �x → 0, the probability is:

f (x)dx = 1√
2π

e−x2/2 dx (2.3)

While the probability density function of the standard normal distribution is defined
as follows:

f (x) = 1√
2π

e−x2/2 (2.4)

Given any probability density function, the relationship between probability
density function f (x) and probability P(x1 ≤ x < x2) is:

P(x1 < x ≤ x2) =
x2∫

x1

f (x)dx (2.5)

Figure 2.3 From discrete probabilities to continuous probability density function.
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(a) Confidence interval

i

95% confidence interval 

90% confidence interval 

x

(b) Intuitive illustration of confidence intervals

Figure 2.4 Illustrations of confidence intervals.

The confidence interval is to measure how sure an event or events would take
place, given a criterion and with a probability. Figure 2.4 illustrates what are
meant by confidence intervals. Part (a) of Figure 2.4 is based on a normal
statistical distribution, with the shaded area being within a given confidence
interval. A confidence interval is usually set to be sufficiently wide under the
circumstances that the probability of the event taking place is large, typically 0.9
or 0.95, corresponding to the 90 per cent confidence interval and the 95 per cent
confidence interval respectively, or even larger. Part (b) of Figure 2.4 is an intuitive
illustration of confidence intervals without assuming any particular statistical
distributions. Suppose it is an experiment to record rates of return on stocks for a
sample of one hundred companies, with x, the vertical axis, being the rate of return
and i, the horizontal axis, being the ith company. The 90 per cent confidence
interval is an interval that about 90 companies’ rates of return are contained by
its two boundaries – above its lower boundary and below its upper boundary. The
95 per cent confidence interval is an interval that about 95 companies’ rates of return
are contained by its two boundaries – above its lower boundary and below its upper
boundary. It is obvious that the 95 per cent confidence interval is wider than the
90 per cent confidence interval. Figure 2.5 portrays typical 90 per cent, 95 per cent
and 98 per cent two-tailed confidence intervals, as well as 95 per cent, 97.5 per cent
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and 99 per cent one-tailed confidence intervals, under normal distributions. These
confidence intervals are also presented and explained numerically. For example,
probability (μ−1.96σ < x < μ+1.96σ ) = 0.95 in part (b) of Figure 2.5 indicates
the meaning of the 95 per cent two-tailed confidence interval and its exact range
under normal distributions. One may recall such frequently encountered numbers
as 1.65, 1.96 and 2.33 in statistics, and inspecting part (d) to part (f) of Figure 2.5
may help one understand the meanings and relevance of statistical criteria here as
well as in the latter part of this chapter.

Confidence intervals have various applications, e.g. they can be applied in
significance tests such as whether two means are equal or from the same sample.

90%

m − 1.65s m + 1.65sm
Probability (m − 1.65s < x <m + 1.65s) = 0.9

Or Probability (x < m − 1.65s) = Probability (x > m + 1.65s) = 0.05

95%

m − 1.96s m + 1.96sm

Probability (m − 1.96s < x <m + 1.96s) = 0.95
Or Probability (x < m − 1.96s) = Probability (x > m + 1.96s) = 0.025

x

x

98%

m − 2.33s m + 2.33sm

Probability (m − 2.33s < x < m + 2.33s) = 0.98
Or Probability (x < m − 2.33s) = Probability (x > m + 2.33s) = 0.01

x

(a) 90% interval 
 two-tailed 

(b) 95% interval 
 two-tailed 

(c) 98% interval
 two-tailed 

Figure 2.5 Two-tailed and one-tailed confidence intervals.
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Figure 2.5 (continued)

Confidence intervals have much relevance in finance too. For example, Value
at Risk (VaR) is an application of confidence intervals in market risk analysis,
monitoring, control and management. VaR is a statistical and/or probability
measure, against which the chance of a worse scenario happening is small (5 or
1 per cent). There is rationale in VaR. Prices soar and plummet, interest rates
escalate and drop, exchange rates rise and fall. All of these take effect on the
value of an asset, or a set of assets, a portfolio. How low the asset or portfolio
value could become, or how much loss could be made, tomorrow, next week,
next month, next year? Knowing the answers is very important to all financial
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institutions and regulators. The following three examples show the application of
VaR in relation to confidence intervals.

Example 2.1

Suppose the rate of return and the standard deviation of the rate of return
on a traded stock are 10 per cent and 20 per cent per annum respectively;
current market value of your investment in the stock is £10,000. What is the
VaR over a one-year horizon, using 5 per cent as the criterion?

It is indeed an application of one-tailed 95 per cent confidence intervals,
where μ = 10 per cent, σ = 20 per cent, per annum. It can be easily worked
out that μ−1.65σ = 0.1−1.65×0.2 =−0.23 =−23 per cent. That is, there
is a 5 per cent chance that the annual rate of return would be −23 per cent or
lower. Therefore there is a 5 per cent chance that the asset value would be
£10,000×(1−23 per cent) = £7,700 or lower in one year. £7,700 is the VaR
over a one-year horizon. The result can be interpreted as follows. There is a
5 per cent chance that the value of your investment in the stock will be equal
to or lower than £7,700 in one year; or there is a 95 per cent chance that that
value will not be lower than £7,700 in one year. Another interpretation is
that there is a 5 per cent chance that you will lose £10,000−£7,700 = £2,300
or more in one year; or there is a 95 per cent chance you will not lose more
than £2,300 in one year.

Example 2.2

Using the same information as in the previous example, what is the VaR
over a one-day horizon with the 5 per cent criterion?

We adopt 250 working days per year, then μ = 0.1/250 = 0.0004,
σ = 0.2/(250)0.5 = 0.012649; μ − 1.65σ = 0.0004 − 1.65 × 0.012649 =
−0.02047 = −2.047 per cent. This result indicates that there is a 5 per cent
chance that the daily rate of return would be −2.047 per cent or lower.
Therefore there is a 5 per cent chance that the asset value would be
£10,000× (1−2.047 per cent) = £9,795.29 or lower in one day. £9,795.29
is the VaR over a one-day horizon. The result can be interpreted as follows.
There is a 5 per cent chance that the value of your investment in the
stock will be equal to or lower than £9,795.29 tomorrow; or there is a
95 per cent chance that that value will not be lower than £9,795.29 tomorrow.
Another interpretation is that there is a 5 per cent chance that you will lose
£10,000−£9,795.29 = £204.71 or more tomorrow; or there is a 95 per cent
chance you will not lose more than £204.71 tomorrow.
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Example 2.3

This example demonstrates that the more volatile the rate of return, the lower
is the VaR. If the standard deviation of the rate of return on the traded stock
is 30 per cent per annum and all other assumptions are unchanged, what is
the VaR over a one-day horizon, using 5 per cent as the criterion?

We still adopt 250 working days per year, then μ = 0.1/250 = 0.0004,
σ = 0.3/(250)0.5 = 0.018974; μ − 1.65σ = 0.0004 − 1.65 × 0.018974 =
−0.03091 = −3.091 per cent. That is, there is a 5 per cent chance that
the daily rate of return would be −3.091 per cent or lower. Therefore
there is a 5 per cent chance that the asset value would be £10,000 ×
(1−3.091 per cent) = £9,690.94 or lower in one day. £9,690.94 is the VaR
over a one-day horizon, which is lower compared with £9,795.29 when the
σ = 20 per cent per annum in the previous case.

Before concluding this section, it is advisable to point out that the distributions
of many economic and financial variables are lognormal instead of normal in their
original forms. So let us present lognormal distributions and the transformation
of variables briefly. The lognormal statistical distribution is described by the
following formula:

f (x,m,s) = 1

x
√

2πs2
e−(ln x−m)2/2s2

x > 0, −∞ < m < ∞, s > 0

(2.6)

This distribution is exhibited in Figure 2.6.
There are several reasons as to why a transformation is required. Firstly, many

economic and financial variables grow exponentially, so their path is non-linear.

Figure 2.6 Lognormal distribution.
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Transforming these variables with a logarithm operation achieves linearity. That is,
the variables after the logarithm transformation grow linearly on a linear path.
Secondly, the transformation through logarithm operations changes the variables
in concern from absolute terms to relative terms, so comparison can be made
cross-sections and over time. For example, the difference between the price in
December and that in November is an absolute increase or change in price in
one month; while the difference in the logarithm of the price in December and
that in November is a relative increase or change in price in one month, i.e.
a percentage increase or change. A monthly increase of £10 in one stock and a
monthly increase of £12 in another stock cannot be directly compared. However,
a 2 per cent monthly increase in one stock and a 1.5 per cent monthly increase
in another clearly show the difference and superiority. Finally, the logarithm
transformation may help achieve stationarity in time series data, though this
statement may be controversial. Probably, one of the most convenient reasons
for many economic and financial variables to follow lognormal distributions is the
non-negative constraint. That is, these variables can only take values that are greater
than or equal to zero. Due partly to this, values closer to zero are compressed and
those far away from zero are stretched out. Lognormal distributions possess these
features.

2.2. χ2-distributions

The χ2-distribution arises from the need in estimation of variance. It is associated
with many test statistics, as they are about the variances under alternative
specifications. It also leads to some other distributions, e.g. those involving both
mean and variance.

The sum of the squares of m independent standard normal random variables
obeys a χ2-distribution with m degrees of freedom. Let Zi (i = 1,2, . . .m) denote
m independent N (0, 1) random variables, then:

V = Z2
1 + Z2

2 +·· ·+ Z2
m ∼ χ2

(m) (2.7)

The above random variable is said to obey a χ2-distribution with m degrees
of freedom. χ2

(m) has a mean of m and a variance of 2m, and is always non-

negative. Figure 2.7 demonstrates several χ2-distributions with different degrees
of freedom. When m, the degree of freedom, becomes very large, the shape of
theχ2-distribution looks rather like a normal distribution.

The following case shows the need of χ2-distributions in estimation of variance.
Consider a sample:

Yi = β + ei, i = 1, . . .T (2.8)

where Yi ∼ N (β,σ 2), ei ∼ N (0,σ 2), and cov(ei,ej) = 0 for j �= i.
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Figure 2.7 χ2-distributions with different degrees of freedom.

An estimator of β is:

b = Y1 + Y2 +·· ·+ YT

T
= 1

T

T∑
i=1

Yi (2.9)

and an estimator of σ 2 is:

σ̃ 2 = e2
1 + e2

2 +·· ·+ e2
T

T
= 1

T

T∑
i=1

e2
i (2.10)

Note that when ei is unknown, an estimator of σ 2 is:

σ̃ 2 = 1

T

T∑
i=1

ê2
i (2.11)

where the estimator of ei is obtained through:

êi = Yi − b (2.12)

So, what kind of statistical distribution does σ̃ 2 obey and what are the properties
of the distribution? The answer is χ2-distributions.

We can transform the errors in equation (2.8), resulting in:

(e1

σ

)2 +
(e2

σ

)2 +·· ·+
(eT

σ

)2 =
T∑

i=1

(ei

σ

)2 ∼ χ2
(T ) (2.13)

and

T∑
i=1

(
êi

σ

)2

= T σ̃ 2

σ 2 ∼ χ2
(T−1) (2.14)
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Due to loss of one degree of freedom in
T∑

i=1
êi = 0, the degrees of freedom of the

χ2-distribution in equation (2.14) become T − 1.
The distribution of σ̃ 2 is worked out as:

σ̃ 2 ∼ σ 2

T
χ2

(T−1) (2.15)

It is biased, since

E
(
σ̃ 2
)= σ 2

T
E
(
χ2

(T−1)

)= (T − 1)

T
σ 2 �= σ 2

Correction is therefore required to obtain an unbiased estimator of σ 2. Notice:

E

(
T

T − 1
σ̃ 2

)
= σ 2

T − 1
E
(
χ2

(T−1)

)= σ 2

an unbiased estimator of σ 2 is:

σ̂ 2 = T

T − 1
σ̃ 2 = 1

T − 1

T∑
i=1

ê2
i ∼ σ 2

T − 1
χ2

(T−1) (2.16)

as we can see that:

E

(
T

T − 1
σ̃ 2

)
= σ 2

T − 1
E
(
χ2

(T−1)

)= σ 2 (2.17)

2.3. t-distributions

The t-distribution arises from the need in estimation of the accuracy of an estimate,
or joint evaluation of the mean and variance of the estimate, or the acceptability
of the estimate, when the variance is unknown. Many individual parameters,
such as sample means and regression coefficients, obey t-distributions. It is a
combination of two previously learned distributions, the normal distribution and
the χ2-distribution.

Let Z obey an N (0, 1) distribution andχ2
T follow aχ2-distribution with T degrees

of freedom, then:

t = Z√
χ2

(T )

/
T

∼ t(T ) (2.18)

The random variable of the above kind is said to obey a t-distribution with
T degrees of freedom. Figure 2.8 shows t-distributions with different degrees
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Figure 2.8 t-distributions with different degrees of freedom.

of freedom.When degrees of freedom become infinite, a t-distribution approaches
a normal distribution.

Now let us consider the need in estimation of the accuracy of an estimate.
Use the previous example of equation (2.8) and recall that an estimator of
the sample mean is equation (2.9). The mean of the estimator represented by
equation (2.9) is:

E (b) = E

(
1

T

T∑
i=1

Yi

)
= β (2.19)

Its variance is:

Var (b) = Var

(
1

T

T∑
i=1

Yi

)
= σ 2

T
(2.20)

Therefore:

b ∼ N

(
β,

σ 2

T

)
(2.21)

The above can be rearranged to:

b −β

σ/
√

T
= Z ∼ N (0,1) (2.22)

Equation (2.22) measures the ‘meaningfulness’ of b, or the closeness of b to β.
When σ 2 is unknown, we have to apply σ̂ 2, then:

b ∼ N

(
β,

σ̂ 2

T

)
(2.23)
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The measure of ‘meaningfulness’ becomes:

b −β

σ̂/
√

T
(2.24)

Unlike the measure in equation (2.22), the above measure in equation (2.24) does
not obey a normal distribution. Let us make some rearrangements:

b −β

σ̂/
√

T
= b −β

σ/
√

T

/
σ̂ /

√
T

σ/
√

T
= b −β

σ/
√

T

/√
σ̂ 2

σ 2 (2.25)

Note in the above, the numerator is N (0, 1), and the denominator is the square root
of χ2

(T−1)/(T − 1), which leads to t-distributions with (T −1) degrees of freedom.
From:

b −β

σ̂/
√

T − 1
= t(T−1) (2.26)

the probability for b to be a reasonable estimator of β is given as:

P
(
−tα/2,(T−1)σ̂ /

√
T − 1 ≤ b −β ≤ tα/2,(T−1)σ̂ /

√
T − 1

)
= 1 −α (2.27)

Equations (2.26) and (2.27) can be used to test the null hypothesis H0: b=β, against
the alternative H1: b �= β. This is called the t-test. Usually t-tests are one-tailed,
with the one-sided test statistic:

P
(
−tα,(T−1)σ̂ /

√
T − 1 ≤ b −β ≤ ∞

)
= 1 −α (2.28)

The reasons for adopting one-tailed t-tests can be made clear from inspecting
Figure 2.9. Part (a) of Figure 2.9 shows a small corner accounting for only 5 per cent
of the whole area; the distance is 1.96 times of the standard deviation to the left of
origin. If we shift the whole distribution to the right by this distance with the mean
being the estimator of β, b, as shown with part (b) of Figure 2.9, then, a t-statistic
of 1.96 means that there is only 5 per cent chance that b ≤ 0; or b is statistically
different from zero at the 5 per cent significance level. The larger the t-statistic,
the higher is the significance level. For example, with a t-statistic of 2.58, the
chance for b ≤ 0 is even smaller, observed in part (c) of the Figure 2.9; and with
a t-statistic of 3.75, the chance for b ≤ 0 is almost negligible, as demonstrated by
part (d) of Figure 2.9.

Alternatively, the variable can be squared:

t2
(T−1) = (b −β)2

σ̂ 2/T
= Z2

χ2
(T−1)

/
(T − 1)

= χ2
(1)

χ2
(T−1)

/
(T − 1)

(2.29)

It is the simplest of F-distributions to be discussed in the next section.
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Figure 2.9 t-tests and the rationale.

2.4. F-distributions

The F-distribution is about the statistical distribution involving more than one
parameter, an extension of the t-distribution. It is widely used in tests on the
validity of one or more imposed restrictions. It is the ratio of two χ2-distributions,
i.e. the variance ratio of two specifications.

Let χ2
T1

follow a χ2-distribution with T1 degrees of freedom and χ2
T2

follow a
χ2-distribution with T2 degrees of freedom, then:

F = χ2
(T1)

/
(T1)

χ2
(T2)

/
(T2)

∼ F(T1,T2) (2.30)

The above random variable is said to follow an F-distribution with degrees of
freedom T1 and T2.

The application and relevance of the F-distribution can be demonstrated with
the following case. Some knowledge in linear regression and estimation methods
such as the ordinary least squares may be required for a better understanding of
this distribution and one may refer to the first section of the next chapter. Consider
an extension of the previous example:

Yi = β1 +β2x2,i +·· ·+βKxK,i + ei, i = 1, . . .T (2.31)

where ei ∼ N (0,σ 2). We know the individual coefficients have a t-distribution:

bj −βj

Vâr(b)
∼ t(T−K), j = 2, . . .K (2.32)
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or:

t2
(T−K) = (bj −βj)

2

Vâr(bj)
= χ2

(1)

χ2
(T−K)

/
(T − K)

= (bj −βj)
[
Vâr(bj)

]−1
(bj −βj) (2.33)

Replacing the above single parameters by vectors and matrices, we have essentially
obtained the joint distribution of the regression coefficients:

(b − β)
′ [

Côv(b)
]−1

(b − β)

K − 1
= χ2

(K−1)

/
(K − 1)

χ2
(T−K)

/
(T − K)

(2.34)

where:

b = [b2 · · · bK

]′
β = [β2 · · · βK

]′

Côv(b) =

⎡
⎢⎢⎣

Vâr(b2) · · · Côv(b1,bK )
· · ·

Côv(bK ,b1) Vâr(bK )

⎤
⎥⎥⎦

The above is an F-distribution with (K −1) and (T −K) degrees of freedom. The
F-statistic is in fact the ratio of the explained variance and unexplained variance.

The t-statistic and the F-statistic are widely used to test restrictions, e.g. one,
several or all regression coefficients are zero. Define SSEU as the unrestricted sum
of squared errors:

SSEU = ê′ê = (y − bx)′ (y − bx) (2.35)

SSER as the restricted sum of squared errors:

SSER = ê∗′ê∗ = (y − b∗x) ′ (y − b∗x) (2.36)

With T observations, K regressors, and J restrictions, the F-test is:

(SSER − SSEU )
/

J

SSEU

/
(T − K)

= F[J , (T−K)] (2.37)

If the restrictions are valid, then SSER will not be much larger than SSEU , and the
F-statistic will be small and insignificant. Otherwise, the F-statistic will be large
and significant.



3 Overview of estimation methods

This chapter briefly reviews primary statistical estimation methods, firstly under
the assumptions that the residuals from fitting the model obey independent identical
distributions (iid) and the distributions may be further assumed to be normal,
and then under more general conditions where iid of residuals is violated. For
progression purposes, we firstly introduce the ordinary least squares method (OLS)
and the maximum likelihood (ML) method under iid. Then, we relax the iid
requirements and extend the OLS and the ML methods with certain modifications.
Further relaxations of residual distribution requirements lead to general residual
distributions typically observed in time series and cross-section modelling, which
are addressed next. Finally, we present the estimation methods based on moment
conditions, including the method of moments (MM) and the generalised method
of moments (GMM), which are claimed to be more efficient, relaxed and easier in
estimation processes and computation, and are getting momentum in applications
in recent years.

3.1. Basic OLS procedures

Given a regression relation such as:

yi = β1 +β2xi + ei, ei ∼ iid(0,σ 2), i = 1, . . .N (3.1)

the idea of the OLS is to minimise the sum of squared errors:

N∑
i=1

e2
i =

N∑
i=1

(yi − b1 − b2xi)
2 (3.2)

The minimisation process is as follows. Taking derivatives of the above summation
with respect to β1 and β2 respectively and setting them to zero:

− 2
N∑

i=1

(yi − b1 − b2xi) = 0

− 2
N∑

i=1

xi (yi − b1 − b2xi) = 0

(3.3)
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Making rearrangements of the above equations leads to:

Nb1 + b2

N∑
i=1

xi =
N∑

i=1

yi

b1

N∑
i=1

xi + b2

N∑
i=1

x2
i =

N∑
i=1

xiyi

(3.4)

Then the OLS estimators of β1 and β2, b1 and b2, are solved as:

b1 =
N

N∑
i=1

xiyi −
N∑

i=1
xi

N∑
i=1

yi

N
N∑

i=1
x2

i −
(

N∑
i=1

xi

)2 (3.5)

b2 =

N∑
i=1

x2
i

N∑
i=1

yi −
N∑

i=1
xi

N∑
i=1

xiyi

N
N∑

i=1
x2

i −
(

N∑
i=1

xi

)2 (3.6)

The above analysis can be extended to multivariate cases, expressed in a compact
form with vectors and matrices:

y = Xβ+ e, e ∼ iid
(
0,σ 2

)
(3.7)

where y is an (N×1) vector containing N observations of the dependent variable, X
is an (N ×K) matrix with K being the number of regressors including the intercept,
i.e. Xi =

[
1 x2,i · · · xk,i

]
, β is a (K×1) vector of coefficients, and e is an (N × 1)

vector of residuals.
The OLS procedure is to minimise:

(y − Xb)′ (y − Xb) (3.8)

The minimisation leads to:

X′ (y − Xb) = 0 (3.9)

Then the estimated coefficients are obtained as:

b = (X′X
)−1

X′y (3.10)

The corresponding covariance matrix of the estimated coefficients is:

Cov(b) = σ̂ 2
(
X′X

)−1
(3.11)
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where:

σ̂ 2 = ê′ê
T − K

(3.12)

and:

ê = y − Xb (3.13)

3.2. Basic ML procedures

As long as a computable probability density function form can be figured out,
the ML method and procedures can usually be applied. Nevertheless, the most
commonly assumed function form is normal distributions or a function form that
can be transformed into normal distributions. Given the same regression relation as
in the previous section, but further assuming the error term is normally distributed,
the model becomes:

yi = β1 +β2xi + εi

εi ∼ N (0,σ 2), Cov
(
εi,εj

)= 0, for j �= i, i = 1, . . . N
(3.14)

The ML method is to maximise the joint probability density function of normal
distributions:

f (ε1, . . . εN ) = 1

σ
√

2π
e
−
[
ε2
1

/
2σ 2

]
· · · 1

σ
√

2π
e
−
[
ε2
N

/
2σ 2

]

= 1

σ
√

2π
e
−
[
(y1−b1−b2x1)2

/
2σ 2

]
· · · 1

σ
√

2π
e
−
[
(yN −b1−b2xN )2

/
2σ 2

] (3.15)

Taking logarithms of the joint probability density function results in:

Ln( f ) = −N · Ln(σ ) − N

2
Ln(2π ) − 1

2σ 2

N∑
i=1

(yi − b1 − b2xi)
2 (3.16)

To maximise the above function is indeed to minimise the third term on the right-
hand side, leading to the same results as in the OLS case. Extending the above
analysis to the multivariate setting:

y = Xβ+ ε

ε ∼ N (0,σ 2)
(3.17)

where all the descriptions, except that normality is imposed on ε, are the same as
before. The joint probability density function is:

f (ε) =
(

1

σ
√

2π

)N

e
−
[
ε′ε
/

2σ 2
]
=
(

1

σ
√

2π

)N

e
−
[
(y−Xb)′(y−Xb)

/
2σ 2

]
(3.18)



Overview of estimation methods 33

The logarithm of the above probability density function is:

Ln( f ) = −N · Ln(σ ) − N

2
Ln(2π ) − (y − Xb)′ (y − Xb)

2σ 2 (3.19)

Similar to the simple ML case represented by equations (3.14) to (3.16), to
maximise the above function is indeed to minimise the third term on the right-
hand side of the above equation, leading to the same results as in the OLS case.
The corresponding covariance matrix of the estimated coefficients is also the same
as in the OLS case. It can be concluded that, under the assumption of normal
distributions of errors, the OLS and the ML yield the same estimation results for
regression parameters.

3.3. Estimation when iid is violated

Violation of iid distributions generally takes place in the forms of heteroscedastic-
ity, cross-correlation and serial correlation or autocorrelation. Heteroscedasticity
means that the variances of errors are not equal between them, as against
homoscedastic, identical distribution. In this section, we just use one simple
example each to illustrate what heteroscedasticity and serial correlation are
respectively and their consequences. We leave more general residual distributions
to be dealt with in the next section of this chapter, where elementary time series and
cross-section modelling will be briefly introduced and discussed, based on which
and from which most models in the following chapters of this book are developed
and evolved. For the simple case of heteroscedasticity, suppose in the following
regression equation the variance is proportional to the size of the regressor:

yi = β1 +β2xi + ei

Var(ei) = σ 2xi, Cov(ei,ej) = 0, for j �= i, i = 1, . . . N
(3.20)

It is assumed, though, Cov(ei, ej) = 0, for j �= i still holds. That is, there is no
cross-correlation if i and j represent different units with data being collected at the
same time or having no time implications; or there is no autocorrelation if i and j
represent different time points. To deal with this heteroscedasticity, the OLS can
be generalised to achieve iid distributions. One way to achieve iid is to divide both
sides of the equation by

√
xi, leading to a new regression relation:

y∗
i = β1x∗

1,i +β2x∗
2,i + e∗

i (3.21)

where y∗
i = yi

/√
xi, x∗

1,i = 1
/√

xi, x∗
2,i = √

xi, and e∗
i = ei

/√
xi.

Heteroscedasticity has been removed after the transformation, proven by the
following:

Var(e∗
i ) = Var(ei)

xi

= σ 2 (3.22)
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We can now apply the OLS to the transformed regression equation. The above
procedure is one type of the generalised least squares (GLS), or the weighted least
squares (WLS). One of the constraints is that the value of the scaling regressor
must be non-negative.

With heteroscedastic error terms and further assuming normality, the corre-
sponding joint probability density function for equation (3.20) is:

f (ε1, . . . εN ) = 1

σ
√

2πx1

e
−
[
ε2
1

/
2x1σ 2

]
· · · 1

σ
√

2πxN

e
−
[
ε2
N

/
2xN σ 2

]

= 1

σ
√

2πx1

e
−
[
(y1−b1−b2x1)2

/
2x1σ 2

]
(3.23)

· · · 1

σ
√

2πxN

e
−
[
(yN −b1−b2xN )2

/
2xN σ 2

]

We can maximise the above joint probability density function without transforma-
tion, though a transformation would correspond to that with the GLS more closely.
Notice the original probability density function is:

f (εi) dεi = 1

σ
√

2πxi

e
−
[
ε2
i

/
2xiσ

2
]
dεi (3.24)

where the variances are heteroscedastic. Let ε∗
i = εi/

√
xi, then dε∗

i = dεi/
√

xi, and
the above function becomes a homoscedastic normal distribution:

f (ε∗
i ) dε∗

i = 1

σ
√

2π
e
−
[
ε∗
i 2
/

2σ 2
]
dε∗

i (3.25)

One of the advantages of the ML method is that one can do estimation without
transformation, as long as the probability density function can be written down
explicitly.

Let us turn to autocorrelation now. If in the following regression:

yt = β1 +β2xt + et, t = 1, . . . T (3.26)

Cov(et ,et−k ) = ρkσ
2 �= 0, with t representing time, then it is said that there

is autocorrelation of order k in the residual. A simple case is the first-order
autocorrelation where Cov(et ,et−1) = ρ1σ

2 �= 0, and Cov(et ,et−k ) = 0 for k ≥ 2:

yt = β1 +β2xt + et

et = ρ1et−1 + νt, Cov(νt,ντ ) = 0 for τ �= t, t = 1, . . . T
(3.27)

The following rearrangements can remove such autocorrelation. Lag equation
(3.27) by one period and then multiply both sides by ρ1:

ρ1yt−1 = ρ1β1 +ρ1β2xt−1 +ρ1et−1 (3.28)



Overview of estimation methods 35

Then, subtracting both sides of equation (3.28) from the corresponding sides of
equation (3.27) leads to:

yt −ρ1yt−1 = β1 −ρ1β1 +β2xt −ρ1β2xt−1 + νt (3.29)

We can perform transformations such as y∗
t = yt −ρ1yt−1 and x∗

t = xt −ρ1xt−1 to
remove autocorrelation.

A simpler practice is to include the lagged variables on the right-hand side so
the residual becomes iid, as shown below:

yt = μ+ρ1yt−1 +α1xt +α2xt−1 + νt (3.30)

Then the OLS or ML can be easily applied to obtain parameter estimates.

3.4. General residual distributions in time series and
cross-section modelling

This section briefly presents elementary time series and cross-section modelling
with two interrelated purposes. One is to introduce more general types of statistical
distributions of residuals commonly found with statistical data sets, most, if not
all of them, are either time series or cross-sectional data or a combination of
time series and cross-sectional data. The other, interrelated with the first and
already mentioned in the first, is to introduce elementary time series and cross-
section modelling, because most models in the following chapters of this book
are developed and evolved based on and from these elementary time series and
cross-section models and specifications.

In short, this section deals with correlation, both in time series and in cross-
sections. Let us address correlation in time series first. A common finding in time
series regression is that the residuals are correlated with their own lagged values.
Since this correlation is sequential in time, it is then called serial correlation.
This serial correlation violates the standard assumption of regression theory that
disturbances are not correlated with other disturbances. There are a number of
problems associated with serial correlation. The OLS is no longer efficient among
linear estimators. Since prior residuals help to predict current residuals, we can
take advantage of this information to form a better prediction of the dependent
variable. Furthermore, standard errors computed using the classic OLS formula
are not correct, and are generally understated. Finally, if there are lagged dependent
variables on the right-hand side, OLS estimators are biased and inconsistent.

Serial correlation takes place for various reasons and can take different forms.
Firstly, effects of shocks do not realise immediately. Technical diffusion as a
process typically possesses this feature. Inefficient financial markets, especially
in the weak form, are linked to serial correlation in statistical terms. Liquidity
constraints imply some corresponding action cannot be taken immediately and the
delay brings about serial correlation. Recent development in bounded rationality
suggests that human beings’ expectations are not always rational; human beings
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do not always behave rationally, not because they do not want to but because
they have limitations. This is also a cause of serial correlation. Secondly, data
collection and processing processes may generate serial correlation. For example,
data collected at different time points at different constituent units may cause
serial correlation. Averaging monthly data to form quarterly data, or in general,
averaging higher frequency data to form lower frequency data introduces serial
correlation. Contrary to intuitive belief, using more data does not automatically
lead to the benefit of information utilisation. In many cases, it is more desirable to
simply sample, say, every first month in a quarter to represent that quarter, than to
use all the months in a quarter for that quarter.

Serial correlation can take the form of autoregression (AR), moving average
(MA) and their combinations. In an AR process, the residual in the current period
is correlated to the residual in the previous periods. For example, the following is
an AR process of order 1, expressed as AR(1):

yt = μ+ et

et = ρ1et−1 + νt, Cov(νt,ντ ) = 0 for τ �= t, t = 1, . . . T
(3.31)

where μ is the mean value of the process, et is a disturbance term, or called
unconditional residual, νt is innovation in the disturbance, also known as the one-
period-ahead forecast error or the prediction error. νt is the difference between
the actual value of the dependent variable and a forecast made on the basis of the
independent variables and the past forecast errors. In general, an AR process of
order p, AR( p), takes the form of:

yt = μ+ et

et = ρ1et−1 +ρ2et−2 +·· ·+ρpet−p + νt

Cov(νt,ντ ) = 0 for τ �= t, t = 1, . . . T

(3.32)

The above equations can be expressed as:

yt = μ
(
1 −ρ1 −ρ2 −·· ·−ρp

)+ρ1yt−1 +ρ2yt−2 +·· ·+ρpyt−p + νt (3.33)

That is, we can express yt as a function of its past values. In general, there can
be exogenous explanatory variables or no exogenous explanatory variable on the
right hand side of the above equations. The above representations are simple but
also typical for the illustration of AR processes, though exogenous explanatory
variables are usually involved when we refer to AR models.

The other commonly used time series model involves MA processes. In an MA
process, the current innovation, or forecast error, as well as its lagged values, enters
the estimation and forecast equation. A simple case of MA processes of order 1,
expressed as MA(1), is:

et = νt + θνt−1

Cov(νt,νt−1) = 0, t = 1, . . . T
(3.34)
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In general, an MA process of order q, MA(q), takes the form of:

et = νt + θ1νt−1 +·· ·θqνt−q

Cov(νt,ντ ) = 0 for τ �= t, t = 1, . . . T
(3.35)

The autoregressive and moving average specifications can be combined to form
an ARMA specification:

yt = μ+ et +ρ1et−1 +·· ·+ρpet−p + νt + θ1νt−1 +·· ·θqνt−q

Cov(νt,ντ ) = 0 for τ �= t, t = 1, . . . T
(3.36)

The above is an ARMA (p,q) process, autoregression of order p and moving
average of order q.

The family of univariate time series models are not complete without a third
element, orders of integration. Recall one of the requirements for regression
analysis is that the data to be analysed must be stationary. A time series may
or may not be stationary. Taking difference operations usually can make a non-
stationary time series become stationary. When a time series requires d times of
differencing to become stationary, it is said to be integrated of order d, designated
I (d). A stationary time series is I (0). A time series involving all the three elements
is called autoregressive integrated moving average (ARIMA) process, consisting
of these three parts. The first part is the AR term. Each AR term corresponds to the
use of a lagged value of the unconditional residual in estimation and forecasting.
The second part is the integration order term. A first-order integrated component
means that the model is designed for the first difference of the original series.
A second-order component corresponds to applying the second difference, and so
on. The third part is the MA term. An MA forecasting model uses lagged values
of the forecast error to improve the current forecast. A first-order moving average
term uses the most recent forecast error, a second-order term uses the forecast error
from the two most recent periods, and so on. An ARIMA(p, d, q) model can be
expressed by the following representation:

�dyt = μ+ et +ρ1et−1 +·· ·+ρpet−p + νt + θ1νt−1 +·· ·θqνt−q

Cov(νt,ντ ) = 0 for τ �= t, t = 1, . . . T
(3.37)

where �d is a difference operator for d times of differencing.
ARIMA models can be estimated by applying the ML method when innovations

or forecast errors are assumed to follow normal distributions and other numerical
methods involving, sometimes, a large number of iterations. It was computer
time-consuming in the past but is no longer a concern nowadays. As stated
earlier, a common finding in time series regressions is that the residuals are
correlated with their own lagged values. This serial correlation violates the
standard assumption of regression theory that disturbances are not correlated with
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other disturbances. Consequently, before one can use an estimated equation for
statistical inference, e.g. hypothesis tests and forecasting, one should generally
examine the residuals for evidence of serial correlation. For first-order serial
correlation, there is the Durbin–Watson (DW) statistic. If there is no serial
correlation, the DW statistic will be around 2. The DW statistic will fall below
2 if there is positive serial correlation (in the worst case, it will be near zero). If
there is negative correlation, the statistic will lie somewhere between 2 and 4.
Since first-order serial correlation is just a special case of serial correlation
and is encompassed by higher order serial correlation, testing for higher-order
serial correlation is more important, general and relevant. As a result, there
are a few test statistics for higher-order serial correlation. Unlike the DW
statistic, most, if not all, test procedures for higher-order serial correlation
provide significance levels of the test statistic, which makes them more rigorous.
Commonly adopted higher-order serial correlation test statistics include the
Breusch–Godfrey Lagrange multiplier (LM) test and the Ljung–Box Q-statistic.
If there is no serial correlation in the residuals, the autocorrelations and partial
autocorrelations at all lags should be nearly zero, and all Q-statistics should be
insignificant with large p-values. A test statistic for nth-order serial correlation
will be labelled as Q(n) and LM(n). They form part of the diagnostic tests for the
chosen specification.

In cross-sectional data, most units are correlated in a number of ways,
which may or may not result in the residuals from fitting a certain model
being correlated. Nevertheless, no correlation is just a special case, so let
us deal with the universal situation of correlation. Unlike time series where
time sequence is relevant and important, correlation in cross-sections does not
possess a time horizon. Such correlation is referred to as cross correlation,
in a similar way in which correlation in time series is referred to as serial
correlation.

Let us relax the assumption in equation (3.7) that the residuals are independent,
so the model becomes:

y = Xβ+ e

E(e) = 0, Cov(e′e) = �
(3.38)

That is, the covariance matrix � is in general not a diagonal matrix I that its off-
diagonal elements are in general non-zero, i.e. Cov(ei,ej) = σij = ρijσ

2 �= 0, for
i �= j. The covariance matrix is illustrated as follows:

� =

⎡
⎢⎢⎢⎢⎣

σ 2 ρ12σ
2 .. ρ1N σ 2

ρ21σ
2 σ 2 .. ρ2N σ 2

.. .. .. ..

ρN1σ
2 ρN2σ

2 .. σ 2

⎤
⎥⎥⎥⎥⎦ (3.39)
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On many occasions, ρij = ρ, for all i �= j, for cross-sectional data, since there is no
time sequence in cross-sections. Then the covariance matrix becomes:

� =

⎡
⎢⎢⎢⎢⎣

σ 2 ρσ 2 .. ρσ 2

ρσ 2 σ 2 .. ρσ 2

.. .. .. ..

ρσ 2 ρσ 2 .. σ 2

⎤
⎥⎥⎥⎥⎦ (3.40)

The GLS procedure is to minimise:

(y − Xb)′ �−1 (y − Xb) (3.41)

The minimisation leads to:

X′�−1 (y − Xb) = 0 (3.42)

Then the estimated coefficients are obtained as:

b = (X′�−1X
)−1

X′�−1y (3.43)

It is noted that the covariance matrix of equation (3.40) is not readily available and
has to be estimated first. The usual practice is to apply the OLS first for the purpose
of calculating the residuals, from which the covariance matrix can be derived. The
estimation of the covariance matrix in the later chapters when the GLS is involved
follows the same procedure.

Further assuming normal distributions for the residuals, equation (3.38) becomes:

y = Xβ+ ε

ε ∼ N (0,�)
(3.44)

Its joint probability density function is:

f (ε) = �−1

(
1√
2π

)N

e
−
[(

ε′�−1
ε
)/

2
]
= �−1

(
1√
2π

)N

e
−
[
(y−Xb)′�−1(y−Xb)

/
2
]

(3.45)

Taking logarithms of the above probability density function leads to:

Ln( f ) = 1

2

[−N × Ln(2π ) + Ln
(∣∣�−1

∣∣)− (y − Xβ)′ �−1 (y − Xβ)
]

(3.46)

The maximisation of the above function is equivalent to minimising equation
(3.41) with the GLS procedure, which produces the same parameter estimates.
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3.5. MM and GMM approaches

The moment based methods are statistical approaches to estimating parameters
that makes use of sample moment conditions. It derives parameter estimates by
equating sample moments to unobserved population moments with the assumed
statistical distribution and then solving these equations. These estimation methods
and, in particular, the GMM, have been proven powerful to apply in practice,
where and when either function forms or residual distributions cannot be explicitly
expressed. The moment conditions are specified by the following model:

E
{
f (w,β0)

}= 0 (3.47)

where w is a vector of observed variables, including the dependent variable,
independent variables and possibly instrument variables, and β0 is a vector of
true parameters. The model is said to be identified when there is a unique solution
to the model with regard to the parameters:

E { f (w, β)} = 0 if and only if β = β0 (3.48)

For example in the following simple regression:

yi = β1 + ei, ei ∼ iid(0,σ 2), i = 1, . . . N (3.49)

the moment condition is:

E { f (w, β)} = E
{
yi −β1

}= 0 (3.50)

The sample’s first moment is:

1

N

N∑
i=1

yi (3.51)

Equating the population moment with the sample moment, b1, the MM estimator
of β1, is derived as:

b1 = 1

N

N∑
i=1

yi (3.52)

The sample’s second moment is:

1

N

N∑
i=1

y2
i (3.53)
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Equating the population moments with the sample moments, σ̂ 2, the MM estimator
of the variance σ 2, is derived as:

σ̂ 2 = E (yi −β1)2 = E (yi)
2 − E2 (β1) = 1

N

⎡
⎣ N∑

i=1

y2
i −
(

N∑
i=1

yi

)2
⎤
⎦ (3.54)

Now consider a one variable regression model:

yi = β1 +β2xi + ei, ei ∼ iid(0,σ 2), i = 1, . . . N (3.55)

The moment conditions are:

E { f (w, β)} = E

{[
1
xi

]
ei

}
= E

{[
1
xi

]
(yi −β1 −β2xi)

}
= 0 (3.56)

where w includes yi and xi. That is, there are two moment conditions: E
{
(yi −β1−

β2xi)
}

= 0 and E
{
xi (yi −β1 −β2xi)

} = 0, and the parameter estimates can be

derived just like the OLS procedure:

b1 =
N

N∑
i=1

xiyi −
N∑

i=1
xi

N∑
i=1

yi

N
N∑

i=1
x2

i −
(

N∑
i=1

xi

)2 (3.57)

b2 =

N∑
i=1

x2
i

N∑
i=1

yi −
N∑

i=1
xi

N∑
i=1

xiyi

N
N∑

i=1
x2

i −
(

N∑
i=1

xi

)2 (3.58)

The above analysis can be extended to multivariate cases, expressed in a compact
form involving vectors and matrices:

y = Xβ+ e (3.59)

where y is an (N×1) vector containing N observations of the dependent variable,
X is an (N × K) matrix with K being the number of regressors including the
intercept, i.e. Xi =

⌊
1 x2,i · · · xk,i

⌋
, β is a (K ×1) vector of coefficients, and e is

an (N × 1) vector of residuals.
The K moment conditions are:

E
{
X′ (y − Xβ)

}= 0 (3.60)
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which is indeed the results from minimising:

E
{

(y − Xβ)′ (y − Xβ)
}

(3.61)

and the estimated parameters are derived just like the OLS procedure:

b = (X′X
)−1

X′y (3.62)

In general, the moment conditions can be written as:

E
{
Z′ (y − Xβ)

}= 0 (3.63)

where Z is a vector of regressors that contains some of X and may contain
instrument variables, and β is a vector of coefficients. When there are J moment
conditions and J is equal to K , the above model is just-identified. If J is greater
than K , the model is over-identified. The model is under-identified if J is smaller
than K . Under-identification happens when one or more variables in vector X are
endogenous and consequently:

E
{
X′

end (y − Xβ)
} �= 0 (3.64)

where Xend is a sub-set of X and are endogenous. Instruments are required when
a sub-set of X are endogenous or correlated with the residual. Over-identification
emerges when one or more instrument variables are employed, so that the number
of moment conditions is greater than the number of variables in X. This gives rise
to the GMM. Let us define:

g (β) = E
{
Z′ (y − Xβ)

}
(3.65)

There are two features of the GMM. Instead of choosing K moment conditions
from the J moment conditions, the GMM uses all J moment conditions; then,
instead of minimising the quadratic form of the moment conditions, the GMM
minimises weighted quadratic moment conditions. The procedure for deriving
GMM estimators are usually as follows. First formulate a quadratic form of the
distance, or the weighted quadratic moment conditions:

q (β) = g′ (β)Wgg (β) (3.66)

Then GMM estimators of β, b, are derived as:

b = arg min
β

q (β) = arg min
β

g′ (β)Wgg (β) (3.67)

where argmin is the global minimisation operation. The choice of weight matrices
is important in implementing the GMM.
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To actually implement the GMM, the two-step efficient GMM and iterated
efficient GMM procedures are usually applied to derive GMM estimators of
parameters. The two-step efficient GMM procedure works as follows. In the
first step, an initial weight matrix that can be any arbitrary positive definite and
symmetric matrix is chosen for the global minimisation operation. This initial
weight matrix is usually an identity matrix. Therefore, the global minimisation
process in the first step is amounted to:

b[1] = arg min
β

q (β) = arg min
β

g′ (β)g (β) (3.68)

The second step is to calculate a new weight matrix, and then derive GMM
estimators using the new weight matrix. The second step weight matrix is estimated
by:

W[2]
g = S−1 (3.69)

where

S = S0 +
l∑

m=1

wm

(
Sm + S′

m

)
(3.70)

with wm being the weight and

Sm
m=j−i

= E
{
gi (θ)g′

j (θ)
}

(3.71)

i and j in the above equation represent different time periods for time series data,
and they represent different units for cross-sectional data. That is, serial correlation
or cross-correlation is taken into account in the weight matrix. The second step
estimators are derived through the following global minimisation:

b[2] = arg min
β

q (β) = arg min
β

g′ (β)W[2]
g g (β)

= arg min
β

g′ (β)S−1g (β)
(3.72)

With the iterated efficient GMM procedure, the above two-step is repeated or
iterated until convergence, i.e. when there is no significant difference in derived
estimators from one iteration to the next.

GMM estimators possess the following asymptotic properties:

√
N (bGMM − β) → N (0,V) (3.73)

The asymptotic covariance matrix in the above distribution is:

V = (�′W�
)−1 (

�′WSW�
)(

�′W�
)−1

(3.74)
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where:

� = E

[
∂g (X,Z,β)

∂β

]
= E

[
Z′X
]

(3.75)

As shown from equation (3.72), efficient GMM estimators are derived from setting
the weight matrix to S−1, then the asymptotic covariance matrix for efficient GMM
estimators are reduced to:

V = (�′S−1�
)−1

(3.76)



4 Unit roots, cointegration and
other comovements in time series

The distinction between long-run and short-term characteristics in time series
has attracted much attention in the last two decades. Long-run characteristics
in economic and financial data are usually associated with non-stationarity in
time series and called trends. Whereas short-term fluctuations are stationary time
series and called cycles. Economic and financial time series can be viewed as
combinations of these components of trends and cycles. Typically, a shock to
a stationary time series would have an effect which would gradually disappear,
leaving no permanent impact on the time series in the distant future. Whereas a
shock to a non-stationary time series would permanently change the path of the
time series; or permanently move the activity to a different level, either higher or
a lower level.

Moreover, the existence of common factors among two or more time series may
have such effect that the combination of these times series demonstrates no features
which individual time series possess. For example, there could be a common trend
shared by two time series. If there is no further trend which exists in only one
time series, then it is said that these two time series are cointegrated. This kind of
common factor analysis can be extended and applied to stationary time series as
well, leading to the idea of common cycles.

This chapter first examines the properties of individual time series with regard to
stationarity and tests for unit roots. Then, cointegration and its testing procedures
are discussed. Finally, common cycles and common trends are analysed to further
scrutinise comovements amongst variables.

4.1. Unit roots and testing for unit roots

Chapter 1 has provided a definition for stationarity. In the terminology of time
series analysis, if a time series is stationary it is said to be integrated of order zero,
or I (0) for short. If a time series needs the difference operation once to achieve
stationarity, it is an I (1) series; and a time series is I (n) if it is to be differenced
for n times to achieve stationarity. An I (0) time series has no roots on or inside
the unit circle but an I (1) or higher-order integrated time series contains roots on
or inside the unit circle. So, examining stationarity is equivalent to testing for the
existence of unit roots in the time series.
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A pure random walk, with or without a drift, is the simplest non-stationary time
series:

yt = μ+ yt−1 + εt, εt ∼ N (0,σ 2
ε ) (4.1)

where μ is a constant or drift, which can be zero, in the random walk. It is non-
stationary as Var(yt) = tσ 2

ε → ∞ as t → ∞. It does not have a definite mean
either. The difference of a pure random walk is the Gaussian white noise, or the
white noise for short:

�yt = μ+ εt, εt ∼ N (0,σ 2
ε ) (4.2)

The variance of �yt is σ 2
ε and the mean is μ.

The presence of a unit root can be illustrated as follows, using a first-order
autoregressive process:

yt = μ+ρyt−1 + εt, εt ∼ N (0,σ 2
ε ) (4.3)

Equation (4.3) can be recursively extended, yielding:

yt = μ+ρyt−1 + εt

= μ+ρμ+ρ2yt−2 +ρεt−1 + εt

. . .

= (1 +ρ +·· ·+ρn−1
)
μ+ρnyt−n + (1 +ρL +·· ·+ρn−1Ln−1

)
εt (4.4)

where L is the lag operator. The variance of yt can be easily worked out:

Var(yt) = 1 −ρn

1 −ρ
σ 2

ε (4.5)

It is clear that there is no finite variance for yt if ρ ≥ 1. The variance is σ 2
ε /(1 −ρ)

when ρ < 1.
Alternatively, equation (4.3) can be expressed as:

yt = μ+ εt

(1 −ρL)
= μ+ εt

ρ ((1/ρ) − L)
(4.6)

which has a root r = 1/ρ.1 Compare equation (4.5) with equation (4.6), we can see
that when yt is non-stationary, it has a root on or inside the unit circle, i.e. r ≥ 1;
while a stationary yt has a root outside the unit circle, i.e. r < 1. It is usually said
that there exists a unit root under the circumstances where r ≥ 1. Therefore, testing
for stationarity is equivalent to examining whether there is a unit root in the time
series. Having gained the above idea, commonly used unit root test procedures are
introduced and discussed in the following.
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4.1.1. Dickey and Fuller

The basic Dickey–Fuller (DF) test (Dickey and Fuller, 1979, 1981) is to examine
whether ρ < 1 in equation (4.3), which can, after subtracting yt−1 from both sides,
be written as:

�yt = μ+ (ρ − 1)yt−1 + εt

= μ+ θyt−1 + εt

(4.7)

The null hypothesis is that there is a unit root in yt , or H0: θ = 0, against the
alternative H1: θ < 0, or there is no unit root in yt . The DF test procedure emerged
since under the null hypothesis the conventional t-distribution does not apply.
So whether θ < 0 or not cannot be confirmed by the conventional t-statistic for
the θ estimate. Indeed, what the Dickey–Fuller procedure gives us is a set of
critical values developed to deal with the non-standard distribution issue, which
are derived through simulation. Then, the interpretation of the test result is no more
than that of a simple conventional regression.

Equations (4.3) and (4.7) are the simplest case where the residual is white noise.
In general, there is serial correlation in the residual and �yt can be represented as
an autoregressive process:

�yt = μ+ θyt−1 +
p∑

i=1

φi�yt−i + εt (4.8)

Corresponding to equation (4.8), Dickey and Fuller’s procedure becomes the
augmented Dickey–Fuller test, or the ADF test for short. We can also include
a deterministic trend in equation (4.8). Altogether there are four test specifications
with regard to the combinations of an intercept and a deterministic trend.

4.1.2. Phillips and Perron

Phillips and Perron’s (1988) approach is one in the frequency domain, termed
as the PP test. It takes the Fourier transform of the time series �yt such as in
equation (4.8), then analyses its component at the zero frequency. The t-statistic
of the PP test is calculated as:

t =
√

r0

h0

tθ − (h0 − r0)

2h0σ
σθ (4.9)

where

h0 = r0 + 2
M∑

τ=1

(
1 − j

T

)
rj

is the spectrum of �yt at the zero frequency,2 rj is the autocorrelation function at
lag j, tθ is the t-statistic of θ , σθ is the standard error of θ , and σ is the standard error
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of the test regression. In fact, h0 is the variance of the M -period differenced series,
yt − yt−M ; while r0 is the variance of the one-period difference, �yt = yt − yt−1.

Although it is not the purpose of the book to describe technical details of testing
procedures, it is helpful to present intuitive ideas behind them. We inspect two
extreme cases, one the time series is a pure white noise and the other a pure random
walk. In the former, rj = 0, j �= 0 and r0 = h0, so t = tθ and the conventional
t-distribution applies. In the latter, h0 = M × r0. If we look at the first term on the
right-hand side of equation (4.9), t is adjusted by a factor of

√
1/M ; and it is further

reduced by value of the second term ≈ σθ/2σ . So, the PP test gradually reduces
the significance of the θ estimate as ρ moves from zero towards unity (or as θ

moves from −1 to 0) to correct for the effect of non-conventional t-distributions,
which becomes increasingly severe as ρ approaches unity.

4.1.3. Kwiatkowski, Phillips, Schmidt and Shin

Recently a procedure proposed by Kwiatkowski, Phillips, Schmidt and Shin
(1992), known as the KPSS test named after these authors, has become a popular
alternative to the ADF test. As the title of their paper, ‘Testing the null hypothesis of
stationarity against the alternative of a unit root’, suggests, the test tends to accept
stationarity, which is the null hypothesis, in a time series. Whereas in the ADF test
the null hypothesis is the existence of a unit root, stationarity is more likely to be
rejected. Many empirical studies have employed the KPSS procedure to confirm
stationarity in such economic and financial time series as the unemployment rate
and the interest rate, which, arguably, must be stationary for economic theories,
policies and practice to make sense. Others, such as tests for purchasing power
parity (PPP), are less restrictive by the theory. Confirmation or rejection of PPP
is both acceptable in empirical research using a particular set of time series data,
though different test results give rise to rather different policy implications. It
is understandable that, relative to the ADF test, the KPSS test is less likely to
reject PPP.

4.1.4. Panel unit root tests

Often in an empirical study, there is more than one time series to be examined.
These time series are the same kind of data, such as the real exchange rate, current
account balance or dividend payout, but they are for a group of economies or
companies. These time series probably have the same length with the same start
date and end date, or can be adapted without losing general properties. Under
such circumstances, a test on pooled cross-section time series data, or panel data,
can be carried out. Panel unit root tests provide an overall aggregate statistic to
examine whether there exists a unit root in the pooled cross-section time series
data and judge the time series property of the data accordingly. This, on the one
hand, can avoid obtaining contradictory results in individual time series to which
no satisfactory explanations can be offered. On the other hand, good asymptotic
properties can be reached with relatively small samples in individual time series,
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which are sometimes too small to be effectively estimated. In the procedure
developed by Levin and Lin (1992, 1993), when the disturbances are i.i.d., the unit
root t-statistic converges to the normal distribution; when fixed effects or serial
correlation is specified for the disturbances, a straightforward transformation of
the t-statistic converges to the normal distribution too. Therefore, their unit root
t-statistic converges to the normal distribution under various assumptions about
disturbances. Due to the presence of a unit root, the convergence is achieved more
quickly as the number of time periods grows than as the number of individuals
grows. It is claimed that the panel framework provides remarkable improvements
in statistical power compared to performing a separate unit root for each individual
time series. Monte Carlo simulations indicate that good results can be achieved
in relatively small samples with 10 individual time series and 25 observations in
each time series. Im et al. (1995) develop a t̄ (t bar) statistic based on the average
of the ADF t-statistics for panel data. It is shown that under certain conditions
the t̄-statistic has a standard normal distribution for a finite number of individual
time series observations, as long as the number of cross-sections is sufficiently
large. Commenting on and summarising Levin and Lin (1992, 1993) and Im et al.
(1995) procedures, Maddala and Wu (1999) argue that the Levin and Lin test is too
restrictive to be of interest in practice. While the test of Im et al. relaxes Levin and
Lin’s assumptions, it presents test results which merely summarise the evidence
from a number of independent tests of the sample hypothesis. They subsequently
suggest the Fisher test as a panel data unit root test and claim that the Fisher test
with bootstrap-based critical values is the preferred choice.

4.2. Cointegration

Cointegration is one of the most important developments in time series econo-
metrics in the last quarter century. A group of non-stationary I (1) time series
is said to have cointegration relationships if a certain linear combination of
these time series is stationary. There are two major approaches to testing for
cointegration, the Engle–Granger two-step method (Engle and Granger, 1987)
and the Johansen procedure (Johansen, 1988, 1991; Johansen and Juselius, 1990).
In addition, procedures for panel cointegration (Kao and Chiang, 1998; Moon and
Phillips, 1999; Pedroni, 1999) have been recently developed, in the same spirit of
panel unit roots and to address similar issues found in unit root tests. Since most
panel cointegration tests employ the same estimation methods of or make minor
adjustments in relation to the asymptotic theory of non-stationary panel data, they
are not to be discussed in this chapter. The Engle–Granger method involves firstly
running regression of one variable on another, and secondly checking whether
the regression residual from the first step is stationary using, say, an ADF test. In
this sense, the Engle–Granger method is largely the unit root test and will not be
deliberated either. This chapter only presents the Johansen procedure which is to
test restrictions imposed by cointegration on a VAR model:

yt = μ+ A1yt−1 +·· ·Apyt−p + εt (4.10)
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where yt is a k-dimension vector of variables which are assumed to be I (1)
series (but can also be I (0)), Ai, i = 1, . . .p is the coefficient matrix, and
εt is a k-dimension vector of residuals. Subtracting yt−1 from both sides of
equation (4.10) yields:

�yt = μ+	yt−1 +
1�yt−1 +·· ·+
p−1�yt−p+1 + εt (4.11)

where:

	 =
p∑

i=1

Ai − I

and:


i = −
p∑

j=i+1

Aj

We can observe from equation (4.11) that only one term in the equation, 	yt−1, is
in levels, cointegration relations depend crucially on the property of matrix 	. It
is clear that 	yt−1 must be either I (0) or zero except that yt is already stationary.
There are three situations:

(a) 	 = αβ′ has a reduced rank 0 < r < k ,
(b) 	 = αβ′ has a rank of zero, and
(c) 	 = αβ′ has a full rank.

Under situation (a), α and β are both k × r matrices and have a rank of r. There
are r cointegration vectors β′yt which are stationary I (0) series. It is equivalent
to having r common trends among yt . The stationarity of β′yt implies a long-
run relationship among yt or a sub-set of yt – the variables in the cointegration
vectors will not depart from each other over time. β′yt are also error correction
terms in that departure of individual variables in the cointegration vectors from
the equilibrium will be subsequently reversed back to the equilibrium – a dynamic
adjustment process called error correction mechanism (ECM). Equation (4.11) is
therefore called VAR with ECM. Under situation (b), there is no cointegration
relation among ytand the variables in levels do not enter equation (4.11) and
equation (4.11) becomes a simple VAR without ECM. The variables in levels are
already stationary under situation (c).

Depending on whether yt and/or cointegration vectors have an intercept
and/or deterministic trend, there are five models in practice: (a) there are no
deterministic trends in yt and no intercepts in cointegration vectors; (b) there
is no deterministic trend in yt but there are intercepts in cointegration vectors;
(c) there are deterministic trends in yt and intercepts in cointegration vectors;
(d) there are deterministic trends in yt and in cointegration vectors; (e) there are
quadratic trends in yt and deterministic trends in cointegration vectors. For details
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of these specifications, see Johansen and Juselius (1990), and for the critical
values of test statistics see Osterwald-Lenum (1992). The Johansen test is a
kind of principal component analysis where eigenvalues of 	 are calculated
through a maximisation procedure. Then, five specifications or hypotheses are
tested using the maximum eigenvalue statistic and the trace statistic which often
convey contradictory messages. To test the hypothesis that there are r cointegration
vectors against the alternative of (r+1) cointegration vectors, there is the following
maximum eigenvalue statistic:

lmax = −T ln(1 − l̂r+1) (4.12)

where l̂r is the eigenvalue corresponding to r cointegration vectors and T is the
number of observations. The trace statistic is calculated as:

ltrace = −T
k∑

i=r+1

ln(1 − l̂i) (4.13)

Indeed, the trace statistic for the existence of r cointegration vectors is the sum of
the maximum eigenvalue statistics for from zero up to r cointegration vectors.

4.3. Common trends and common cycles

It should be noted that cointegration is not exactly the same as common trend
analysis. While cointegration implies common trends it also requires non-existence
of uncommon trends. A group of time series variables can share one or more
common trends but the variables are not cointegrated because, for example, one
of the variables, y2t , also possesses, in addition to the common trends, a trend
which is unique to itself and uncommon to others. Under such circumstances, the
cointegration vector β′yt in equation (4.11) will exclude y2t and it appears that y2t

does not share common trends with other variables in yt . Consider the following
k-variable system:

y1t = a11T1t +·· ·+ a1rTrt + τ1t + c1t + ε1t

y2t = a21T1t +·· ·+ a2rTrt + τ2t + c2t + ε2t

. . .

ykt = ak1T1t +·· ·+ akrTrt + τkt + ckt + εkt

(4.14)

where Tit, i = 1, . . .r is the ith common trend, τjt, j = 1, . . .k is the unique trend
in yjt , and cjt, j = 1, . . .k is the cycle or stationary component in yjt . If there are
no unique trends, i.e. τjt = 0, j = 1, . . .k , then from linear algebra we know that a
certain linear combination of yjt, j = 1, . . .k is zero when r < k . So there are only
cycles or stationary components, cjt, j = 1, . . .k , left in the linear combination of
yjt, j = 1, . . .k , which exhibits no trends. This is exactly the idea of cointegration
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discussed above. When there is unique trend in, for example, y2t (i.e. τ2t �= 0;
τjt = 0, j �= 2), y2t will not be cointegrated with any other variables in the system as
any linear combination involving y2t will be non-stationary, though y2t does share
common trends with the rest of the variables. It is clear that if y2t does join other
variables in β′yt , it must contain no unique trend. For convenience, common trends
are treated as the same as cointegration in this chapter. That is, unique trends are
excluded from analysis.

In the following, we extend cointegration and common trend analysis to the
case of cycles. It is said (Engle and Kozicki, 1993; Vahid and Engle, 1993; Engle
and Issler, 1995) there are common cycles (in the same spirit, uncommon cycles
are excluded from analysis) among yt in equation (4.10) if there exists a vector β̃

such that:

β̃′yt = β̃′εt (4.15)

That is, a combination of the time series in yt exhibits no cyclical movement or
fluctuation. Common trends and common cycles are two major common factors
driving economic and financial variables to move and develop in a related way.3

It is therefore helpful to inspect them together in a unified dynamic system.
According to the Wold representation theorem, time series or a vector of time

series can be expressed as an infinite moving average process:

�yt = C(L)εt, C(L) = I + C1L + C2L2 +·· · (4.16)

C(L) can be decomposed as C(1) + (1 − L)C∗(L), therefore:

�yt = C(1)εt + (1 − L)C∗(L)εt, C∗
i =
∑
j>i

−Cj, C∗
0 = I − C(1)

(4.17)

Taking the summation to get the variables in levels:

yt = C(1)
∞∑
i=0

εt−i + C∗(L)εt (4.18)

Equation (4.18) is the Stock and Watson (1988) multivariate generalisation of the
Beveridge and Nelson (1981) trend-cycle decomposition and is referred to as the
BNSW decomposition. Common trends in the sense of cointegration require:

β′C(1) = 0 (4.19)

and common cycles require:

β̃′C∗(L) = 0 (4.20)

Equation (4.18) can be written as the sum of two components of trends and cycles:

yt = Tt + Ct (4.21)
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When the sum of the rank of β, r, and the rank of β̃, s, is equal to k , the stack of β

and β̃ is a k × k full rank matrix:

B =
[
β β̃

]
(4.22)

and trends and cycles can be exclusively expressed in the common factor coefficient
vectors, β and β̃, and their combinations. According to equations (4.19) and (4.20):

[
β β̃

]′
yt =

[
β′yt

β̃′yt

]
=
⎡
⎣ β′C∗(L)εt

β̃′C(1)
∞∑
i=0

εt−i

⎤
⎦

So:

yt =
[
β′

β̃′

]−1
⎡
⎣ β′C∗(L)εt

β̃′C(1)
∞∑
i=0

εt−i

⎤
⎦ (4.23)

Define B−1 = [β−1 β̃−1
]4

and refer to equation (4.18), we have:

yt = [β−1 β̃−1
]⎡⎣ β′C∗(L)εt

β̃′C(1)
∞∑
i=0

εt−i

⎤
⎦= β−1β′C∗(L)εt + β̃−1β̃′C(1)

∞∑
i=0

εt−i

= β−1β′yt + β̃−1β̃′yt = Ct + Tt (4.24)

Therefore, we get Ct = β−1β′yt , and Tt = β̃−1β̃′yt , exclusively expressed in the
common factor coefficient vectors, β and β̃, and their combinations.

4.4. Examples and cases

It is probably not worthwhile demonstrating any unit root test examples indi-
vidually nowadays since these tests have been made straightforwardly simple.
Nevertheless, unit root tests are still routine procedures prior to cointegration
analysis, i.e. studies of cointegration will almost inevitably involve unit root
tests. Accordingly, one case on cointegration and one case on common cycles
are presented in the following which largely cover the topics of this chapter.

Example 4.1

This is a case on dynamic links and interactions between American
Depository Receipts (ADRs) and their underlying foreign stocks by Kim
et al. (2000). ADRs are certificates issued by a US bank which represent

Continued
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indirect ownership of a certain number of shares in a specific foreign firm.
Shares are held on deposit in the firm’s home bank. ADRs are traded in
US dollars and investors receive dividends in US dollars too. Therefore,
returns on ADRs reflect the domestic returns on the stock as well as the
exchange rate effect. ADRs have become popular in the US due to their
diversification benefits, especially when US investors have little knowledge
in foreign countries’ business and political systems, and risks associated
with investing in foreign securities may be overestimated.

In addition to the factors of underlying foreign stocks and the exchange
rate, the paper has also considered the influence of the US stock market on
ADRs returns. To this end, they use the cointegration approach and other
models to examine the effect on ADR of the three factors. Their results
show that the price of the underlying stock is most important, whereas the
exchange rate and the US market also have an impact on ADR prices. We
only present results related to cointegration analysis of 21 British firms. The
data set used in the paper is daily closing prices from 4 January 1988 to
31 December 1991.

The first thing to do prior to cointegration tests is almost a routine check
on whether there is a unit root in the time series data, as we require I (1)
series to carry out cointegration analysis. The paper adopts the ADF test
to examine the existence of a unit root, with the critical values being taken
from Davidson and Mackinnon (1993), obtained from a much larger set
of simulations than those tabulated by Dickey and Fuller. The lag length
in the ADF test is chosen such that the Q-statistic at 36 lags indicates no
serial correlation in the residuals. The lag length can also be chosen by
using the Akaike information criterion (AIC) or Schwarz criterion (SC), or
more ideally, a combination of the Q-statistic and one of the AIC or SC
which, though, may produce non-conciliatory recommendations. It can be
seen from Table 4.1 that all the series, except series 8 and 19 (interestingly
both ADRs and underlying stocks), have a unit root in levels and no unit root
in the first difference. Although the null hypothesis of a unit root is rejected
for series 8 and 19 in levels, the rejection is at a rather low 10 per cent
significance level. So, all the series are treated as I (0) and cointegration
analysis can be carried out for all of them. In Table 4.2, the exchange rate
and one of the US stock market indices, S&P500, are also confirmed to be
I (1) series, and can be included in cointegration analysis as well.

The results of cointegration analysis between ADRs, corresponding
foreign stocks, the exchange rate and the S&P500 index, are reported in
Table 4.3. The lag length k is chosen by Sims’ likelihood ratio test. Both
trace and eigenvalue test statistics indicate that for all 21 groups, there exists
at least one cointegrating relationship among the variables. Nine groups have
at least two and three groups have at least three cointegrating relationships.
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Table 4.1 Augmented Dickey–Fuller unit root tests – ADRs and underlying
foreign stocks, UK

Firm ADR Underlying

Level First difference Level First difference

1 −2.559 −35.842∗∗∗ −2.461 −22.132∗∗∗
2 −1.245 −13.821∗∗∗ −1.725 −19.753∗∗∗
3 −1.652 −14.873∗∗∗ −1.823 −12.694∗∗∗
4 −2.235 −15.985∗∗∗ −1.927 −13.346∗∗∗
5 −1.985 −26.879∗∗∗ −1.969 −28.566∗∗∗
6 −2.237 −27.522∗∗∗ −1.878 −25.997∗∗∗
7 −2.334 −20.464∗∗∗ −1.200 −23.489∗∗∗
8 −2.652∗ −30.435∗∗∗ −2.800∗ −29.833∗∗∗
9 −1.287 −10.156∗∗∗ −2.382 −14.489∗∗∗

10 −1.823 −26.372∗∗∗ −1.014 −21.788∗∗∗
11 −1.021 −27.825∗∗∗ −1.087 −19.482∗∗∗
12 −1.934 −29.225∗∗∗ −2.425 −27.125∗∗∗
13 −2.324 −13.223∗∗∗ −1.894 −12.854∗∗∗
14 −1.997 −17.325∗∗∗ −1.823 −16.478∗∗∗
15 −1.333 −11.528∗∗∗ −1.458 −37.311∗∗∗
16 −1.223 −10.285∗∗∗ −1.253 −18.244∗∗∗
17 −1.110 −16.742∗∗∗ −2.182 −33.245∗∗∗
18 −1.559 −14.522∗∗∗ −1.285 −17.354∗∗∗
19 −2.678∗ −22.485∗∗∗ −2.677∗ −15.660∗∗∗
20 −1.546 −14.266∗∗∗ −1.024 −14.266∗∗∗
21 −2.364 −22.333∗∗∗ −1.625 −24.757∗∗∗

Asymptotic critical values are from Davidson and Mackinnon (1993). Lag length K is chosen
such that the Q-statistic at 36 lags indicates absence of autocorrelation in the residuals.
Estimation period is 4 January 1988–31 December 1991.∗significant at the 10 per cent level; ∗∗significant at the 5 per cent level; ∗∗∗significant at the
1 per cent level.

Table 4.2 Augmented Dickey–Fuller unit root tests – the exchange rate and the
S&P 500 index

Level First difference

£ vis-à-vis $ −1.625 −19.124∗∗∗
S&P 500 index −2.115 −20.254∗∗∗

Asymptotic critical values are from Davidson and Mackinnon (1993). Lag length K is chosen
such that the Q-statistic at 36 lags indicates absence of autocorrelation in the residuals.
Estimation period is 4 January 1988–31 December 1991.∗significant at the 10 per cent level; ∗∗significant at the 5 per cent level; ∗∗∗significant at the
1 per cent level.

Continued
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Table 4.3 Johansen multivariate cointegration tests – United Kingdom

Firm Trace lmax

r = 0 r ≤ 1 r ≤ 2 r ≤ 3 r = 0 r ≤ 1 r ≤ 2 r ≤ 3

1 91.22∗∗∗ 21.28 2.95 1.04 70.11∗∗∗ 10.09 1.89 1.04
2 52.18∗∗∗ 12.45 6.06 1.25 36.37∗∗∗ 10.65 4.75 1.25
3 68.02∗∗∗ 20.24 5.79 0.50 84.67∗∗∗ 12.34 5.00 0.50
4 105.24∗∗∗ 28.45∗ 7.64 1.25 96.77∗∗∗ 19.65∗ 6.75 1.25
5 45.33∗ 11.02 1.24 0.37 39.32∗∗∗ 9.88 1.05 0.37
6 163.26∗∗∗ 32.84∗∗ 9.75 3.94 141.21∗∗∗ 27.87∗∗∗ 13.25∗∗ 3.94
7 85.24∗∗∗ 19.45 2.25 1.00 66.47∗∗∗ 10.65 1.75 1.00
8 150.33∗∗∗ 30.02∗ 8.24 3.54 120.32∗∗∗ 20.78∗ 6.45 3.54
9 49.23∗∗ 12.02 1.29 0.98 29.32∗∗ 9.78 9.24 0.98

10 50.24∗∗ 13.45 1.54 1.08 46.37∗∗∗ 10.65 3.25 1.08
11 190.33∗∗∗ 38.02∗∗∗ 18.24∗∗∗ 3.99 145.31∗∗∗ 28.88∗∗ 11.48 3.99
12 96.96∗∗∗ 21.84 3.00 1.52 72.50∗∗∗ 12.09 2.69 1.52
13 150.24∗∗∗ 30.00∗ 7.34 3.24 120.22∗∗∗ 20.74∗ 5.45 3.24
14 199.43∗∗∗ 42.02∗∗∗ 19.24∗∗∗ 4.57 150.32∗∗∗ 38.99∗∗∗ 18.45∗∗∗ 4.57
15 153.33∗∗∗ 31.25∗∗ 8.66 3.25 125.43∗∗∗ 21.27∗∗ 5.75 3.25
16 81.43∗∗∗ 21.34 5.24 2.08 52.45∗∗∗ 17.24 3.78 2.08
17 210.24∗∗∗ 68.24∗∗∗ 21.78∗∗∗ 4.02 139.32∗∗∗ 34.28∗∗∗ 16.27∗∗ 4.02
18 62.96∗∗∗ 13.11 1.75 0.99 42.11∗∗∗ 10.09 1.29 0.99
19 49.24∗∗ 9.92 1.24 0.61 27.88∗∗ 8.45 1.05 0.61
20 120.33∗∗∗ 24.91 6.24 2.01 84.56∗∗∗ 15.74 3.45 2.01
21 173.86∗∗∗ 33.24∗∗ 8.03 4.06 121.54∗∗∗ 33.34∗∗∗ 10.49 4.06

The cointegration equation is based on four variables: (1) British ADRs, (2) British underlying
shares, (3) British pound spot exchange rates, and (4) the S&P 500 index cash prices. Estimation
period is 4 January 1988–31 December 1991.∗significant at the 10 per cent level; ∗∗significant at the 5 per cent level; ∗∗∗significant at the
1 per cent level.

Each group’s cointegrating vector is calculated and incorporated in the VAR
to form a VAR–ECM model. Based on the estimated VAR–ECM model, the
paper has further performed variance decomposition and impulse response
analysis which are beyond the reach of this chapter.5 While cointegration
analysis indicate a dynamic adjustment process and long-run equilibrium
relationship among ADRs and the three factors, results from variance
decomposition and impulse responses suggest that the largest effect on
ADRs is due to shocks in their underlying stocks. Nevertheless, the exchange
rate also has a role and that role is growing in recent years. The effect of
the US stock market has been found but the effect is small. More likely, the
last link might be superficial and due to a common factor driving both the
US and foreign markets or the US stock market and the foreign exchange
market.
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Example 4.2

This is an example mainly on common cycles, but also covers common
trends, among annual sectoral per-capita real GNP of the US economy
1947–1989, from a paper entitled ‘Estimating common sectoral cycles’
by Engle and Issler (1995). The sectors examined are agriculture, forestry
and fisheries, mining, manufacturing, construction, wholesale and retail,
transportation and public utilities, finance, insurance and real estate, and
services.

The paper does not check for unit roots itself; instead it cites the results of
Durlauf (1989) that the sectoral GNP data are I (1) processes. The first set of
empirical results is on cointegration or common trends, and the second set
of results is common cycles. Table 4.4 reports the cointegration results which
show that there are two cointegration vectors judged by both the trace and
maximum eigenvalue test statistics, adopting the model with unrestricted
intercept and a linear time trend. The trace statistic also points to a third
coinegration relation at a low significance level. The paper then sets up a
VAR–ECM model of two cointegration vectors to investigate the dynamics
among the sectors.

The common cycle test is based on canonical correlation6 and the results
are reported in Table 4.5. They are interpreted in this way: the number of
common cycle relations is the number of zero canonical correlations. Since
the test statistic (second column) rejects that five canonical correlations are
zero and cannot reject that six or more canonical correlations are zero, the
number of common cycle relations is decided to be six. To find a larger
number of common factor relations must be rather confusing. Adeptly, the
paper suggests that very similar cyclical behaviour for sectors be observed
without going into detail of these common cycle vector coefficients.

Table 4.4 Cointegration results – Johansen’s approach (1988)

No of CI vectors lmax 5% critical value Trace 5% critical value

At most 7 1.9 3.7 1.9 3.7
At most 6 10.5 16.9 12.4 18.2
At most 5 15.5 23.8 27.6 34.5
At most 4 20.3 30.3 47.9 54.6
At most 3 25.3 36.4 73.2 77.7
At most 2 32.9 42.5 106.1∗ 104.9
At most 1 68.4∗∗ 48.4 174.5∗∗ 136.6
At most 0 108.4∗∗ 54.2 282.8∗∗ 170.8

∗significant at the 10 per cent level; ∗∗significant at the 5 per cent level; ∗∗∗significant at the
1 per cent level.

Continued
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Table 4.5 Common cycle results

No of common cycles Squared canonical correlation ρ2
i Pr > F

8 (ρ2
i = 0, i = 1, . . .8) 0.9674 0.0001

7 (ρ2
i = 0, i = 1, . . .7) 0.8949 0.0113

6 (ρ2
i = 0, i = 1, . . .6) 0.7464 0.4198

5 (ρ2
i = 0, i = 1, . . .5) 0.5855 0.7237

4 (ρ2
i = 0, i = 1, . . .4) 0.5130 0.7842

3 (ρ2
i = 0, i = 1, . . .3) 0.4367 0.8088

2 (ρ2
i = 0, i = 1,2) 0.3876 0.7922

1 (ρ2
1 = 0) 0.2775 0.7848

Because the sum of the number of cointegration or common trend relations
and the number of common cycle relations is eight – the number of sectors
or variables in the VAR, trends and cycles can be exclusively expressed
in the common factor coefficient vectors and their combinations. Table 4.5
presents these vectors – six of them are common cycle coefficient vectors
and two of them common trend coefficient vectors.

4.5. Empirical literature

Research on unit roots and tests for stationarity is one of the frontiers in
contemporary time series econometrics. The distinction between stationary and
non-stationary time series data can, explicitly or implicitly, reflect the data’s
economic or financial characteristics and attributes. For example, if a variable’s
current state or value is derived through accumulation of all previous increases
(decreases as negative increases) in its value, then this variable is almost certainly
non-stationary. If a variable is a relative measure, e.g. the growth rate in GDP,
or the rate of return on a stock, which has nothing to do with its history, then
it is more likely to be stationary, though non-stationarity cannot be ruled out
when there is non-trivial change in the rate (acceleration). For some other relative
measures, such as dividend yields (dividend/price), the percentage of public sector
borrowing requirement in GDP (PSBR/GDP), or asset turnover (sales/asset value),
it is an empirical matter whether the time series data are stationary or not. Indeed,
stationarity of this type of relative measures amounts to cointegration, with the
coinegration vector being restricted to [1, −1], between the two variables involved
in the construction of the measure (when logarithm is taken). So, we derive the
concept of cointegration, another frontier in time series econometrics, in a very
natural way, closely related to real world phenomena. Extending this relative
measure to cross-sections, e.g. data of different entities, we have cointegration in
general forms, to examine whether these entities progress in pace or proportionally
in the long-run. As a result, tests for unit roots and cointegration infer the
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attributes of economic and financial variables and their relationships reflected
by the characteristics of time series data. To a lesser significant extent, there is
research in common cycles that two or more variables, which are stationary, move
in a rather similar way in the short-term.

Much research on the subjects focuses on both economic analysis and financial
markets, in a variety of application areas. So let us start with the interest rate
and the exchange rate which are to the common interest of most economic
and financial variables. Examining well known international parity conditions
of Covered Interest Parity (CIP), Uncovered Interest Parity (UIP), the Forward
Rate Hypothesis (FRH), Purchasing Power Parity (PPP), and the International
Fisher Effect (IFE), Turtle and Abeysekera (1996) adopt cointegration procedures
to test the validity of these hypotheses implied by the cointegration relationship
between spot rates, forward rates, interest rates, and inflation rates using monthly
data from January 1975 to August 1990 for Canada, Germany, Japan, and the UK
against the US. They claim that the cointegration test results generally support
the relationships considered. In a more focused study, MacDonald and Nagayasu
(2000) investigate the long-run relationship between real exchange rates and real
interest rate differentials with a panel data set consisting of 14 industrialised
countries, over the recent floating period. Similar to a few of other empirical
studies with panel data, the procedure of panel unit root and cointegration tests
tends to favour stationarity with which the paper finds evidence of statistically
significant long-run relationships between real exchange rates and real interest
rate differentials. Likewise, Wu and Fountas (2000) suggest bilateral real interest
rate convergence between the US and the rest of the G7 countries, and Felmingham
et al. (2000) find interdependence between the Australian short-term real interest
rates and those of the US, Japan, the UK, Canada, Germany, and New Zealand
during 1970 and 1997, after accommodating regime shifts in the time series.
Fountas and Wu (1999) show similar findings of real interest rate convergence
among European monetary mechanism countries for the period of 1979–1993.
Chiang and Kim (2000) present a set of empirical results for Eurocurrency market
rates. They find the domestic short-term interest rate is cointegrated with longer-
term interest rates of a particular country; and the domestic short-term interest rate
is also cointegrated with the comparable foreign short-term interest rate adjusted
for the foreign exchange forward premium/discount. They consequently set up
an error correction model including both cointegration vectors, and claim that
the model has improvements in explaining short-term interest rate movements.
Extending research in foreign exchange rates to a non-standard setting, Siddiki
(2000) examines the determinants of black market exchange rates in India using
annual data from 1955 to 1994 in the framework of unit root and cointegration
analysis. The paper confirms that the import capacity of official foreign exchange
reserves and restrictions on international trade are two important determinants of
black market rates in India, and finds that black market rates are negatively affected
by a low level of official foreign exchange reserves and positively affected by a
high level of trade restrictions, as well as interest rate policies. Of more practical
orientation is a study by Darrat et al. (1998) on the possible link between the
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mortgage loan rate and the deposit rate, and the question of which rate leads the
other. While the deposit-cost mark-up theory suggests that the cost of attracting
funds (deposit rates) determines prices (mortgage loan rates), mortgage loan rates
may induce changes in deposit interest rates in a mechanism of the reverse chain of
events. The authors employ cointegration and Granger causality tests to empirically
examine these alternative hypotheses, using monthly data over the period of 1970
to 1994. The results appear to accommodate both hypotheses, that there exists
a bi-directional causality between mortgage loan rates and deposit interest rates
in an error correction model where the two types of rates exhibit a cointegration
relationship. Many recent studies of the kind can be found, for example, in Toma
(1999), Wright (2000), Cheng (1999), Pesaran et al. (2000), and Koustas and
Serletis (1999).

Research on long-run relationships in stock markets is controversial in that
it constitutes a contest to market efficiency. Adopting a pragmatic stance in
empirical analysis, Harasty and Roulet (2000) employ the Engle–Granger two-
step method for cointegration analysis and error correction modelling of stock
market movements in 17 countries. They present in- and out-of-sample tests of
the model’s ability to forecast future stock market returns, and their results, it
is claimed, indicate that the error correction model does have predictive power
and can thus be a useful tool in the investment decision process. A long-run
cointegration relationship has also been found to exist in Eastern European stock
markets between 1995 and 1997 by Jochum et al. (1999). They report that the
cointegration relationship has disappeared after the 1977 stock market crisis. With
a total sample period of three years and the post-crisis sub-period of only one
year, these results can hardly be of helpful implications, though the problem is
mainly due to the availability of data. Olienyk et al. (1999) attempt to avoid
the problems of non-synchronous trading, fluctuations in foreign exchange rates,
non-liquidity, trading restrictions, and index replication by using World Equity
Benchmark Shares (WEBS) to effectively represent the world’s stock markets.
They observe that long-run relationship exists among the 18 market indices, as
well as between individual closed-end country funds and their own country’s
WEBS. They further find that there exists short-term Granger causality between
these series, implying market inefficiencies and short-term arbitrage opportunities.
In an effort to explain market efficiency in the context of cointegration, Hassapis
et al. (1999) extend the work by Dwyer and Wallace (1992) through investigating
the linkages among international commodity markets in the long-run and the short-
term. Efficiency in these markets requires that the corresponding real exchange
rates be martingales with respect to any information set available in the public
domain. In a VAR consisting only of real exchange rates, it is shown that necessary
and sufficient conditions for joint efficiency of all the markets under consideration
amount to the VAR being of order one (Markovness) and non-cointegrated. On
the contrary, in a VAR extended by other potentially ‘relevant’ variables, such as
the corresponding real interest rates, non-cointegration and Markovness are only
sufficient conditions for the same commodity markets to be characterised as jointly
efficient.
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In labour market studies, the relationships between wage costs and employment
have been subject to extensive scrutiny for many decades. The new techniques of
unit root tests and cointegration offer an additional dimension to the research in
terms of the long-run characteristics of wages and employment and the long-
run relationship between wages and employment. In this framework, Bender
and Theodossiou (1999) investigate the relationship between employment and
real wages for ten countries since 1950. Their results suggest that there is little
evidence of cointegration between real wages and employment and consequently
reject the neoclassical hypothesis of a long-run relationship between these two
important variables. Including more variables in the analysis of the Mexican labour
market, Lopez (1999) finds cointegration relationships between employment
and output, and among nominal wages, minimum wages, the price index, and
labour productivity. The results do not directly contradict those of Bender and
Theodossiou (1999) but they offer explanations to the dynamic adjustment of
employment and wages to a set of macroeconomic variables. Similarly, Carstensen
and Hansen (2000) find two common trends, which push unemployment, in the
West German labour market with a structural VAR incorporating cointegration.

Various other recent application examples cover the examination of the Fisher
effect by Koustas and Serletis (1999) in Belgium, Canada, Denmark, France,
Germany, Greece, Ireland, Japan, the Netherlands, the UK and the US with
results generally rejecting the Fisher hypothesis, and by Malliaropulos (2000)
for the US who supports the hypothesis; interactions between the stock market
and macroeconomic variables by Choi et al. (1999) who suggest that stock
markets help predict industrial production in the US, UK, Japan and Canada out
of G-7, and by Nasseh and Strauss (2000) where not only domestic, but also
international, macroeconomic variables, enter the cointegration vectors to share
long-run relationships with stock prices; long-run relationships between real estate
as represented by REITs, and the bond market and stock market by Glascock et al.
(2000); and joint efficiency of the US stock market and foreign exchange markets
by Rapp et al. (1999). It is indeed a very long list but yet to exhaust all the studies
in these areas.

Notes

1 Readers familiar with difference equations, deterministic and/or stochastic, would
understand this easily. Equation (4.6) also has a pole at p = ∞, which is not as important
in relation to the topic.

2 Precisely, it is the spectrum obtained from letting �yt pass a rectangular window of
size M .

3 Other common factors include regime shifts, see, for example, co-break in Hendry and
Mizon (1998).

4 Notice β−1 is not the inverse matrix of β (such inverse matrix does not exist), it is simply

the first r columns of B−1 =
[
β′
β̃′
]−1

, similarly β̃−1 is the last s columns of B−1.

5 We can introduce briefly the ideas of variance decomposition and impulse response here.
Variance decomposition is to inspect the contributions to one sector’s variance from all
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other sectors, including itself, so the relative importance of these sectors can be evaluated.
Impulse response analysis is to examine the impact of a unit shock in one sector on the
other; similar to variance decomposition, the influence of one sector on the other and
the relative importance of all the sectors to an individual sector can be evaluated. Both
impulse response and variance decomposition, especially the former, are usually carried
out over a long time horizon; and impulse response is normally presented in the form of
visual graphs.

6 A technique similar to, if all appropriate, Johansen’s multivariate cointegration analysis
and is its stationary counterpart. The technique is not widely applied as more than one
common cycle relation, similar to more than one cointegration relation, is difficult to
be conferred a meaningful economic interpretation. If feasible, pair wise analysis will
usually be applied.

Questions and problems

1 Discuss the concept of stationarity and non-stationarity in relation to the char-
acteristics of financial variables, e.g. prices and returns are the accumulation
of income (dividends) over time, so are their statistical properties.

2 Describe a unit root process and show it does not have a constant limited
variance.

3 Discuss the cointegration relationship in econometrics and the comovement
of certain non-stationary financial and economic variables, e.g. dividends and
prices, inflation and nominal interest rates, and industrial production and stock
market returns.

4 What are the features of common cycles in contrast to common trends and
cointegration?

5 Discuss the common cycle relationship in econometrics and the comovement
of certain stationary variables in economics and finance.

6 Discuss in what circumstances cointegration implies market inefficiency and
in what circumstances cointegration means market efficiency.

7 Collect data from Datastream to test for unit roots in the following time series:

(a) GDP of the UK, US, Japan, China, Russia, and Brazil in logarithms,
(b) total return series of IBM, Microsoft, Sage, Motorola, Intel, Vodafone,

and Telefonica in logarithms,
(c) nominal interests in selected countries.

What do you find of their characteristics?
8 Test for unit roots in the above time series in log differences. What do you

find of their characteristics?
9 Collect data from Datastream to test for cointegration between the following

pairs:

(a) the sterling vis-à-vis US$ exchange rates, spot and 30 days forward,
(b) Tesco and Sainsbury’s share prices,
(c) UK underlying RPI and the Bank of England base rate.

Discuss your findings.
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5 Time-varying volatility models
GARCH and stochastic volatility

Time-varying volatility models have been popular since the early 1990s in empiri-
cal research in finance, following an influential paper ‘Generalized Autoregressive
Conditional Heteroskedasticity’ by Bollerslev (1986). Models of this type are
well known as GARCH in the time series econometrics literature. Time-varying
volatility has been observed and documented in as early as 1982 (Engle, 1982)
and was initially concerned with an economic phenomenon – time varying and
autoregressive variance of inflation. Nevertheless, it was data availability and
strong empirical research interest in finance, motivated by exploring any kind of
market inefficiency, that encouraged the application and facilitated the develop-
ment of these models and their variations. For instance, the GARCH in mean
model is related to asset pricing with time-varying risk instead of constant risk in
the traditional models such as the CAPM. An EGARCH (Exponential GARCH)
model addresses asymmetry in volatility patterns which are well observed in
corporate finance and financial markets and can sometimes be attributed to leverage
effects. GARCH with t-distributions reflects fat tails found in many types of
financial time series data where the assumption of conditional normality is violated.
Finally, multivariate GARCH models are helpful tools for investigating volatility
transmissions and patterns between two or more financial markets.

Although GARCH family models have time varying variance, the variance is
not stochastic. Therefore, GARCH is not exactly the ARMA equivalent in the
second moment. Stochastic volatility, as discussed in section 5.3, is not only time-
varying, but also stochastic, and is probably the closest equivalent to an AR or
ARMA process in the second moment.

5.1. ARCH and GARCH and their variations

5.1.1. ARCH and GARCH models

A stochastic process is called ARCH (AutoRegressive Conditional Heteroscedas-
ticity) if its time varying conditional variance is heteroscedastic with auto-
regression:

yt = εt, εt ∼ N (0,σ 2
t ) (5.1a)
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σ 2
t = α0 +α1ε

2
t−1 +·· ·+αqε

2
t−q (5.1b)

Equation (5.1a) is the mean equation where regressors can be generally added on
to the right hand side alongside εt . Equation (5.1b) is the variance equation, which
is an ARCH(q) process where autoregression in its squared residuals has an order
of q, or has q lags.

A stochastic process is called GARCH (Generalised AutoRegressive Condi-
tional Heteroscedasticity) if its time varying conditional variance is heteroscedastic
with both autoregression and moving average:

yt = εt, εt ∼ N (0,σ 2
t ) (5.2a)

σ 2
t = α0 +α1ε

2
t−1 +·· ·+αqε

2
t−q +β1σ

2
t−1 +·· ·+βpσ

2
p

= α0 +
q∑

i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j (5.2b)

Equation (5.2) is a GARCH(p, q) process where autoregression in its squared
residuals has an order of q, and the moving average component has an order of p.

One of the advantages of GARCH over ARCH is parsimonious, i.e. less lags
are required to capture the property of time-varying variance in GARCH. In
empirical applications a GARCH(1, 1) model is widely adopted. While in ARCH,
for example, a lag length of five for daily data may still not be long enough.
We demonstrate this with a GARCH(1, 1) model. Extending the variance process
backwards yields:

σ 2
t = α0 +α1ε

2
t−1 +β1σ

2
t−1

= α0 +α1ε
2
t−1 +β1

(
α0 +α1ε

2
t−2 +β1σ

2
t−2

)
= ·· · · · ·

= α0

1 −β1

+α1

∞∑
n=1

βn−1
1 ε2

t−n

(5.3)

Indeed, only the first few terms would have noteworthy influence since βn
1

n→∞
→ 0.

This shows how a higher-order ARCH specification can be approximated by a
GARCH(1, 1) process.

Similar to ARMA models, there are conditions for stationarity to be met. As
the name of the model suggests, the variances specified above are conditional.
The unconditional variance of GARCH would be of interest to the property of the
model. Applying the expectations operator to both sides of equation (5.2b), we
have:

E(σ 2
t ) = α0 +

q∑
i=1

αiE(ε2
t−1) +

p∑
j=1

βjE(σ 2
t−j)
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Noting E(σ 2
t ) = E(ε2

t−i) = E(σ 2
t−j) is the unconditional variance of the residual,

which is solved as:

σ 2 = E(σ 2
t ) = α0

1 −
q∑

i=1
αi +

p∑
j=1

βj

It is clear that for the process to possess a finite variance, the following condition
must be met:

q∑
i=1

αi +
p∑

j=1

βj < 1 (5.4)

In commonly used GARCH(1, 1) models, the condition is simply α1 +β1 < 1.
Many financial time series have persistent volatility, i.e. the sum of αi and βj

is close to being unity. A unity sum of αi and βj leads to so-called Integrated
GARCH or IGARCH as the process is not covariance stationary. Neverthe-
less, this does not pose as serious a problem as it appears. According to
Nelson (1990), Bougerol and Picard (1992) and Lumsdaine (1991), even if a
GARCH (IGARCH) model is not covariance stationary, it is strictly stationary or
ergodic, and the standard asymptotically based inference procedures are generally
valid. See Chapter 1 of this book for various definitions of stationarity and
ergodicity.

5.1.2. Variations of the ARCH/GARCH model

Variations are necessary to adapt the standard GARCH model to the need arising
from examining the time series properties of specific issues in finance and
economics. Here we present the model relating the return on a security to its time-
varying volatility or risk – ARCH-M, and the models of asymmetry – Exponential
GARCH (EGARCH) and Threshold GARCH (TGARCH).

The ARCH-M model

When the conditional variance enters the mean equation for an ARCH process,
the ARCH-in-Mean or simply the ARCH-M model is derived:

yt = λ1x1 +·· ·λmxm +ϕσ 2
t + εt, εt ∼ N (0,σ 2

t ) (5.5a)

σ 2
t = α0 +α1ε

2
t−1 +·· ·+αqε

2
t−q (5.5b)

where xk , k = 1, . . . m are exogenous variables which could include lagged yt .
In the sense of asset pricing, if yt is the return on an asset of a firm, then xk ,

k = 1, . . . m would generally include the return on the market and possibly other
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explanatory variables such as the price earnings ratio and the size. The parameter
ϕ captures the sensitivity of the return to the time-varying volatility, or in other
words, links the return to a time-varying risk premium. The ARCH-M model is
generalised from the standard ARCH by Engle et al. (1987) and can be further
generalised that the conditional variance is GARCH instead of ARCH, and that
the conditional standard deviation, instead of the conditional variance, enters the
mean equation.

The EGARCH model

The model captures asymmetric responses of the time-varying variance to shocks
and, at the same time, ensures that the variance is always positive. It was developed
by Nelson (1991) with the following specification:

ln(σ 2
t ) = α0 +β ln(σ 2

t−1) +α

{∣∣∣∣ εt−1

σt−1

∣∣∣∣−
√

2

π

}
− γ

εt−1

σt−1

(5.6)

where γ is asymmetric response parameter or leverage parameter. The sign of
γ is expected to be positive in most empirical cases so that a negative shock
increases future volatility or uncertainty while a positive shock eases the effect
on future uncertainty. This is in contrast to the standard GARCH model where
shocks of the same magnitude, positive or negative, have the same effect on future
volatility. In macroeconomic analysis, financial markets and corporate finance,
a negative shock usually implies bad news, leading to a more uncertain future.
Consequently, for example, shareholders would require a higher expected return to
compensate for bearing increased risk in their investment. A statistical asymmetry
is, under various circumstances, also a reflection of the real world asymmetry,
arising from the nature, process or organisation of economic and business activity,
e.g. the change in financial leverage is asymmetric to shocks to the share price of
a firm.

Equation (5.6) is, exactly speaking, an EGARCH(1, 1) model. Higher order
EGARCH models can be specified in a similar way, e.g. EGARCH(p, q) is as
follows:

ln(σ 2
t ) = α0 +

p∑
j=1

βj ln(σ 2
t−j) +

q∑
i=1

{
αi

(∣∣∣∣ εt−i

σt−i

∣∣∣∣−
√

2

π

)
− γi

εt−i

σt−i

}
(5.7)

The threshold GARCH model

It is also known as the GJR model, named after Glosten, Jagannathan and
Runkle (1993). Despite the advantages EGARCH appears to enjoy, the empirical
estimation of the model is technically difficult as it involves highly non-linear
algorithms. In contrast, the GJR model is much simpler than, though not as
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elegant as, EGARCH. A general GJR model is specified as follows:

σ 2
t = α0 +

q∑
i=1

{
αiε

2
t−i + δiε

2
t−i

}+
p∑

j=1

βjσ
2
t−j (5.8)

where δi = 0 if εt−i > 0. So, γi catches asymmetry in the response of volatility
to shocks in a way that imposes a prior belief that for a positive shock and a
negative shock of the same magnitude, future volatility is always higher, or at
least the same, when the sign of the shock is negative. This may make sense under
many circumstances but may not be universally valid. An alternative to the GJR
specification is:

σ 2
t = α0 +

q∑
i=1

{
α+

i ε2
t−i +α−

i ε2
t−i

}+
p∑

j=1

βjσ
2
t−j (5.9)

where α+
i = 0 if εt−i < 0, and α−

i = 0 if εt−i > 0. In such case, whether a positive
shock or a negative shock of the same magnitude has larger effect on volatility
will be subject to empirical examination.

5.2. Multivariate GARCH

We restrict our analysis to bivariate models as a multivariate GARCH with
more than two variables would be extremely difficult to estimate technically and
convey meaningful messages theoretically. A bivariate GARCH model expressed
in matrices takes the form:

yt = εt (5.10a)

εt | �t−1 ∼ N (0,Ht) (5.10b)

where vectors

yt =
[
y1t y2t

]
,εt =

[
ε1t ε2t

]
, and Ht =

[
h11t h12t

h21t h22t

]

is the covariance matrix which can be designed in a number of ways. Commonly
used specifications of the covariance include constant correlation, VECH (full
parameterisation), and BEKK (positive definite parameterisation) named after
Baba, Engle, Kraft and Kroner (1990). We introduce them in turn in the following.

5.2.1. Constant correlation

A constant correlation means that:

h12t√
h11th22t

= ρ
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is constant over time or it is not a function of time. Therefore, h12t is decided as:

h12t = ρ
√

h11th22t (5.11)

An obvious advantage in the constant correlation specification is simplicity.
Nonetheless, it can only establish a link between the two uncertainties, failing to
tell the directions of volatility spillovers between the two sources of uncertainty.

5.2.2. Full parameterisation

The full parameterisation, or VECH, converts the covariance matrix to a vector
of variance and covariance. As σij = σji, the dimension of the vector converted
from an m × m matrix is m(m + 1)/2. Thus, in a bivariate GARCH process, the
dimension of the variance/covariance vector is three. With a trivariate GARCH,
the dimension of the vector is six, i.e. there are six equations to describe the time-
varying variance/covariance. Therefore, it is unlikely to be feasible when more than
two variables are involved in a system. The VECH specification is presented as:

vech(Ht) = vech(A0) +
q∑

i=1

Aivech(εt−i ε
′
t−i) +

p∑
j=1

Bjvech(Ht−j) (5.12)

where Ht, A0, Ai, Bj and εtε
′
t are matrices in their conventional form, and vech(·)

means the procedure of conversion of a matrix into a vector, as described above.
For p = q = 1, equation (5.12) can be written explicitly:

Ht =
⎡
⎣h11,t

h12,t

h22,t

⎤
⎦=

⎡
⎣α11,0

α12,0
α22,0

⎤
⎦+

⎡
⎣α11,1 α12,1 α13,1

α21,1 α22,1 α23,1
α31,1 α32,1 α33,1

⎤
⎦
⎡
⎣ ε2

1,t−1
ε1,t−1 ε2,t−1

ε2
2,t−1

⎤
⎦

+
⎡
⎣β11,1 β12,1 β13,1

β21,1 β22,1 β23,1
β31,1 β32,1 β33,1

⎤
⎦
⎡
⎣h11,t−1

h12,t−1
h22,t−1

⎤
⎦

(5.13)

So, the simplest multivariate model has 21 parameters to estimate.

5.2.3. Positive definite parameterisation

It is also known as BEKK, suggested by Baba, Engle, Kraft and Kroner (1990).
In fact, it is the most natural way to deal with multivariate matrix operations. The
BEKK specification takes the following form:

Ht = A′
0A0 + A′

i εt−iε
′
t−i Ai + B′

j Ht−j Bj (5.14)

where A0 is a symmetric (N ×N ) parameter matrix, and Ai and Bj are unrestricted
(N × N ) parameter matrices. The important feature of this specification is that it
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builds in sufficient generality, allowing the conditional variances and covariances
of the time series to influence each other, and at the same time, does not require
to estimate a large number of parameters. For p = q = 1 in a bivariate GARCH
process, equation (5.14) has only 11 parameters compared with 21 parameters in the
VECH representation. Even more importantly, the BEKK process guarantees that
the covariance matrices are positive definite under very weak conditions; and it can
be shown that under certain non-linear restrictions on Ai and Bj, equation (5.14)
and the VECH representation are equivalent (Engle and Kroner, 1995). In the
bivariate system with p = q = 1, equation (5.14) becomes:[

h11,t h12,t

h21,t h22,t

]
=
[
α11,0 α12,0
α21,0 α22,0

]

+
[
α11,1 α12,1
α21,1 α22,1

]′[
ε2

1,t−1 ε1,t−1ε2,t−1

ε1,t−1ε2,t−1 ε2
2,t−1

][
α11,1 α12,1
α21,1 α22,1

]

+
[
β11,1 β12,1
β21,1 β22,1

]′[
h11,t−1 h12,t−1
h21,t−1 h22,t−1

][
β11,1 β12,1
β21,1 β22,1

]
(5.15)

We can examine the sources of uncertainty and, moreover, assess the effect
of signs of shocks with equation (5.15). Writing the variances and covariance
explicitly:

h11,t = α11,0 + (α2
11,1ε

2
1,t−1 + 2α11,1α21,1ε1,t−1ε2,t−1 +α2

21,1ε
2
2,t−1)

+ (β2
11,1h11,t−1 + 2β11,1β21,1h12,t−1 +β2

21,1h22,t−1) (5.16a)

h12,t = h21,t = α12,0 + [α11,1α12,1ε
2
1,t−1 + (α12,1α21,1 +α11,1α22,1)ε1,t−1ε2,t−1

+α21,1α22,1ε
2
2,t−1]+ [β11,1β21,1h11,t−1 + (β12,1β21,1

+β11,1β22,1)h12,t−1 +β21,1β22,1h22,t−1] (5.16b)

h22,t = α22,0 + (α2
12,1 ε2

1,t−1 + 2α12,1α22,1ε1,t−1ε2,t−1 +α2
22,1ε

2
2,t−1)

+ (β2
12,1h11,t−1 + 2β12,1β22,1h12,t−1 +β2

22,1h22,t−1) (5.16c)

Looking at the diagonal elements in the above matrix, i.e. h11,t and h22,t , we can
assess the impact of the shock in one series on the uncertainty or volatility of
the other, and the impact could be asymmetric or only be one way effective. In
particular, one might also be interested in assessing the effect of the signs of shocks
in the two series. To this end the diagonal elements representing theprevious shocks
can be rearranged as follows:

α2
11,1ε

2
1t−1 + 2α11,1α21,1ε1,t−1ε2,t−1 +α2

21,1ε
2
2t−1 = (α11,1ε1,t−1 +α21,1ε2,t−1)2

(5.17a)

α2
12,1ε

2
1t−1 + 2α12,1α22,1ε1,t−1ε2,t−1 +α2

22,1ε
2
2t−1 = (α12,1ε1,t−1 +α22,1ε2,t−1)2

(5.17b)
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It is clear that α11,1 and α22,1 represent the effect of the shock on the future
uncertainty of the same time series and α21,1 and α12,1 represent the cross effect,
i.e. the effect of the shock of the second series on the future uncertainty of the first
series, and vice versa. The interesting point is that, if α11,1 and α21,1 have different
signs, then the shocks with different signs in the two time series tend to increase the
future uncertainty in the first time series. Similarly, if α12,1 and α22,1 have different
signs, the future uncertainty of the second time series might increase if the two
shocks have different signs. It seems that this model specification is appropriately
fitted to investigate volatility spillovers between two financial markets.

The positive definite specification of the covariance extends the univariate
GARCH model naturally, e.g. a BEKK-GARCH(1, 1) model can reduce to
a GARCH(1, 1) when the dimension of the covariance matrix becomes one.
Therefore, it is of interest to make inquiry into the conditions for covariance
stationarity in the general matrix form. For this purpose, we need to vectorise
the BEKK representation, i.e. to arrange the elements of each of the matrices
into a vector. Due to the special and elegant design of the BEKK covariance,
the vectorisation can be neatly and orderly derived, using one of the properties of
vectorisation, i.e. vech(ABC) =[C ′⊗A]vech(B), where ⊗ is the Kroneker product.
In this case, the innovation matrix;

εt−1ε
′
t−1 =

[
ε2

1,t−1 ε1,t−1ε2,t−1

ε2,t−1ε1,t−1 ε2
2

]

and the covariance matrix:

Ht−1 =
[

h1,t−1 h1/2
1,t−1h1/2

2,t−1

h1/2
2,t−1h1/2

1,t−1 h2,t−1

]

are represented by B; and the fact that the parameter matrices A′ and A and B′ and
B have already been transposed to each other further simplifies the transformation.
For more details on these operations refer to Judge et al. (1988) and Engle and
Kroner (1995). The vectorised Ht is derived as:

vech(Ht) = (A0 ⊗ A0)′ vech(I) + (Ai ⊗ Ai)
′ vech

(
εt−1ε

′
t−1

)
+ (Bj ⊗ Bj

)′
vech(Ht−1)

(5.18)

the unconditional covariance is:

E(Ht) =
[
I − (Ai ⊗ Ai)

′ − (Bj ⊗ Bj

)′]−
vech

(
A′

0 ⊗ A0

)
(5.19)

and the conditions for covariance stationarity is:

mod
[
(Ai ⊗ Ai)

′ + (Bj ⊗ Bj

)′]
< 1 (5.20)

That is, for εt to be covariance stationary, all the eigenvalues of (Ai ⊗ Ai)
′ +(

Bj ⊗ Bj

)′
are required to be less than one in modules. There are altogether four
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eigenvalues for a bivariate GARCH process as the Kroneker product of two (2×2)
matrices produces a (4×4) matrix. These eigenvalues would be complex numbers
in general. When the dimension of the covariance is one, equation (5.20) reduces
to equation (5.4) for the univariate case.1

5.3. Stochastic volatility

ARCH/GARCH processes are not really stochastic, rather they are deterministic
and the conditional variance possesses no unknown innovations at the time.
ARCH and GARCH are not exactly the second moment equivalent to AR and
ARMA processes in the mean. Stochastic volatility, as favoured by Harvey et al.
(1994), Ruiz (1994), Andersen and Lund (1997) and others, is probably the
closest equivalent to an AR or ARMA process in describing the dynamics of
variance/covariance. Let us look at a simple case:

yt = σtεt

εt ∼ N (0,σ 2
ε )

ht = ln σ 2
t ∼ ARMA(q,p)

(5.21)

The logarithm of the variance in a stochastic volatility model, ht = ln σ 2
t , behaves

exactly as a stochastic process in the mean, such as random walks or AR or ARMA
processes. For example, if ht is modelled as an AR(1) process, then:

ht = α +ρht−1 + νt

νt ∼ N (0,σ 2
ν )

(5.22)

Alternatively when ht is modelled as an ARMA(1, 1) process:

ht = α +ρht−1 + νt + θνt−1

νt ∼ N (0,σ 2
ν )

(5.23)

When the stochastic part of volatility, νt , does not exist (i.e.σ 2
ν = 0), equation (5.22)

does not reduce to ARCH(1) but to GARCH(1, 0). So the difference in modelling
variance is substantial between GARCH and stochastic volatility approaches. To
estimate stochastic volatility models, expressing equation (5.21) as:

gt = ht + κt (5.24)

where gt = ln
(
y2

t

)
, and κt = ln

(
ε2

t

)
. We can see that ht becomes part, or a

component, of the (transformed) time series, in contrast to traditional statistical
models where the variance expresses the distribution of variables in a different
way. As the time series now has more than one component, neither is readily
observable, so the components are often referred to as unobserved components.
These components together form the whole system and individually describe the
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state of the system from certain perspectives, so they can be referred to as state
variables as well. Such a specification poses problems as well as advantages:
decomposition into components can be arbitrary and estimation can be complicated
and sometimes difficult; nevertheless, the state variables and their dynamic
evolution and interaction may reveal the fundamental characteristics and dynamics
of the system or the original time series more effectively, or provide more insights
into the working of the system. Models of this type are usually estimated in the
state space, often accompanied by the use of Kalman filters. See Chapter 9 for
details of the state space representation and the Kalman filter.

5.4. Examples and cases

When time comes up to implementing an empirical study, the problem may
never be exactly the same as illustrated in the text. This is hopefully what a
researcher expects to encounter rather than attempting to avoid if s/he imagines
new discoveries in her/his study or would like to differentiate her/his study from
others. This section provides such examples.

Example 5.1

This is an example incorporating macroeconomic variables into the
conditional variance equation for stock returns by Hasan and Francis (1998),
entitled ‘Macroeconomic factors and the asymmetric predictability of con-
ditional variances’. The paper includes the default premium, dividend yield
and the term premium as state variables in the conditional variance equation,
though its main purpose is to investigate the predictability of the volatilities
of large versus small firms. The paper shows that volatility surprises of small
(large) firms are important in predicting the conditional variance of large
(small) firms, and this predictive ability is still present when the equation of
conditional variance includes above mentioned state variables.

The paper uses monthly returns of all NYSE and AMEX common stocks
with year-end market value information available gathered from the Center
for Research in Security Prices (CRSP) monthly master tape from 1926 to
1988. All stocks in the sample are equally divided into twenty size-based
portfolios, S1 (smallest) to S20 (largest), according to the market value of
equity at the end of the prior year. Monthly excess returns on each of the
portfolios are obtained by averaging returns across all stocks included in the
portfolio. Their specification is as follows:

Ri,t = αi,t +βiRi,t−1 +μi,1JANt + γiRj,t−1 + ei,t (5.25a)

hi,t = δi,0 +αie
2
i,t−1 + θihi,t−1 + δi1JANt +ϕje

2
j,t−1 +

∑
ωkZk,t−1

(5.25b)

Continued
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The mean equation follows an AR(1) process. JANt is the dummy which
is equal to one when in January and zero otherwise. Zk,t(k = 1,2,3) are
the state variables of default premium (DEF), dividend yield (DYLD)
and the term premium (TERM) respectively. These state variables are
those used by Fama and French (1989) and Chen (1991). The effect of
return and volatility spillovers across portfolios is through the inclusion of
lagged returns on portfolio j in the mean equation for portfolio i, and the
inclusion of lagged squared errors for portfolio j in the conditional variance
equation of portfolio i. Squared errors for portfolio j are obtained through
estimating a basic GARCH model whose conditional variance is a standard
GARCH(1, 1) plus the January dummy. Therefore, the model is univariate
rather than bivariate in nature.

The paper then estimates the model for two portfolios, the small size stock
portfolio (Table 5.1) and large size stock portfolio (Table 5.2). Volatility
spillovers across these two portfolios are examined. The major findings
are that while return spillovers are from the small stock portfolio to the
large stock portfolio only, volatility spillovers are bi-directional, though the
effect of the small stock portfolio on the large stock portfolio is greater
than that of the other way round. Only the main part of the results is pre-
sented in the following tables. Model (1) does not include the state variables,

Table 5.1 Small stock portfolio

Mean equation

μ0 R1,t−1 JAN R20,t−1

0.0048 0.1896 0.1231 0.0287
(1.705) (4.679) (8.163) (0.475)

Variance equation

Model δ0 e2
1,t−1 h1,t−1 JAN e2

20,t−1 DYLD TERM DEF

(1) −0.0001
(0.998)

0.0284
(2.039)

0.9305
(41.915)

0.0005
(0.464)

0.0022
(2.741)

(2) −0.0001
(0.470)

0.0259
(1.890)

0.9341
(43.648)

0.0008
(0.738)

0.0021
(2.629)

−0.003
(1.167)

(3) −0.0001
(0.228)

0.0254
(1.812)

0.9316
(43.310)

0.0009
(0.789)

0.0023
(2.650)

−0.0001
(2.991)

(4) −0.0001
(0.134)

0.0273
(1.843)

0.9286
(39.142)

0.0008
(0.729)

0.0024
(2.681)

−0.0001
(3.014)

(5) −0.0001
(0.740)

0.0009
(0.092)

0.9694
(82.117)

0.0012
(1.193)

0.0018
(3.556)

−0.0005
(4.160)

−0.0001
(0.693)

−0.0001
(0.751)

Robust t-statistics in parentheses.
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Table 5.2 Large stock portfolio

Mean equation

μ0 R20,t−1 JAN R1,t−1

0.0064 0.0497 −0.0082 0.1013
(3.867) (1.295) (1.413) (6.051)

Variance equation

Model δ0 e2
20,t−1 h20,t−1 JAN e2

1,t−1 DYLD TERM DEF

(1) 0.0002
(2.981)

0.1610
(3.347)

0.6511
(10.148)

−0.0001
(0.194)

0.0237
(2.986)

(2) 0.0003
(2.563)

0.1595
(3.324)

0.6504
(9.926)

−0.0001
(0.226)

0.0239
(3.043)

−0.0001
(0.795)

(3) 0.0001
(1.811)

0.1544
(3.252)

0.6293
(9.986)

−0.0001
(0.205)

0.0282
(3.442)

0.0004
(2.492)

(4) 0.0001
(1.321)

0.1549
(3.214)

0.6460
(9.567)

−0.0003
(0.089)

0.0244
(4.489)

0.0003
(1.989)

(5) 0.0001
(0.820)

0.1502
(3.270)

0.6322
(10.214)

−0.0001
(0.393)

0.2974
(3.733)

0.0002
(0.784)

0.0008
(2.055)

−0.0001
(1.111)

Robust t-statistics in parentheses.

Models (2)–(4) include one of the state variables each, and Model (5)
incorporates all the state variables. As there is not much difference in the
mean equation results, only the results from Model (5) are provided.

Example 5.2

This is an example of the bivariate GARCH model applied to the foreign
exchange market by Wang and Wang (2001). In this study, the daily spot and
forward foreign exchange rates of the British pound, German mark, French
franc and Canadian dollar against the US dollar are used. All of the data sets
start from 02/01/76 and end on 31/12/90; so there are 3,758 observations
in each series. These long period high frequency time series data enable us
to observe a very evident GARCH phenomenon in a bivariate system. The
system of equations for the spot exchange rate, St , and the forward exchange
rate, Ft , is specified as an extended VAR, which incorporates a forward
premium into a simple VAR. In addition, the covariance of the extended
VAR is time-varying which allows for and mimics volatility spillovers

Continued
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or transmission between the spot and forward foreign exchange markets.
The model is given as follows:

�st = c1 + γ1( ft−1 − st−1) +
m∑

i=1

α1i�st−i +
m∑

i=1

β1i�ft−i + ε1t

�ft = c2 + γ2( ft−1 − st−1) +
m∑

i=1

α2i�st−i +
m∑

i=1

β2i�ft−i + ε2t

(5.26)

εt | t−1 ∼ N (0, Ht)

where st = Ln(St), ft = Ln(Ft), �st = st − st−1, �ft = ft − ft−1, and Ht is the
time-varying covariance matrix with the BEKK specification.

The inclusion of the forward premium is not merely for setting up an ECM
model, it keeps information in levels while still meeting the requirements
for stationarity. Although there are arguments about the property of
the forward premium, its inclusion makes the system informationally
and economically complete by reserving information in levels (original
variables) and reflecting expectations in the market.

The bivariate GARCH effects are, in general, strong in both the spot
and forward markets, though there exists a clear asymmetry in the volatility
spillover patterns. That is, there are volatility spillovers from the spot market
to the forward, to a lesser extent, compared with the other way round.
Table 5.3 presents the results based mainly on the second moment.

In addition, the parameter for the forward premium is also reported, as
it would validate the cointegration between the spot and forward exchange
rates and the need to incorporate the forward premium. Consider the British
pound first. a12 and a21 are both significant at 1 per cent level, but the
magnitude of the former is about half the size of the latter, implying that
the effect of the shock in the forward market on the spot market volatility
is bigger than that on the forward market induced by the shock in the spot
market. Turning to the effects of the previous uncertainty, while b21 is
significant, b12 is not significant at all, so the volatility spillovers are one
directional from the forward to the spot. Notice, b22 is also insignificant,
which means there is only ARCH in the forward exchange rate. Further
scrutiny on the signs of a12 and a22 suggests that the future volatility in the
forward market would be higher if the two shocks have different signs. In the
case of the German mark, the asymmetry is more apparent, where a12 is not
significant at all but a21 is significant at 1 per cent level. As such, the shock
in the forward market would affect the future volatility in the spot market,
but the shock in the spot market has no influence on the future volatility
in the forward market. In addition, a11 and a21 have different signs, so the
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Table 5.3 Volatility spillovers between spot and forward FX rates

�st = c1 + γ1( ft−1 − st−1) +
m∑

i=1
α1i�st−i +

m∑
i=1

β1i�ft−i + ε1t

εt
∣∣t−1 ∼ N (0,Ht)

�ft = c2 + γ2( ft−1 − st−1) +
m∑

i=1
α2i�st−i +

m∑
i=1

β2i�ft−i + ε2t

[
h11,t h12,t
h21,t h22,t

]
=
[
c11 c12
c21 c22

]
+
[
a11 a12
a21 a22

]′ [
ε2
1,t−1 ε1,t−1ε2,t−1

ε1,t−1ε2,t−1 ε2
2,t−1

]

[
a11 a12
a21 a22

]
+
[
b11 b12
b21 b22

]′ [h11,t−1 h12,t−1
h12,t−1 h22,t−1

] [
b11 b12
b21 b22

]

BP DM FF CD

c1 0.00025∗∗ −0.00058∗∗∗ 0.00012 0.00013∗∗
(2.3740) (4.3591) (1.2106) (2.2491)

γ1 −0.12034∗∗∗ −0.23731∗∗∗ −0.03214 −0.05255
(3.9301) (5.5473) (1.3884) (1.8081)∗

c2 0.00027∗∗ −0.00057∗∗∗ 0.00014 0.00015∗∗
(2.5077) (4.0781) (1.4735) (2.5582)

γ2 −0.12536∗∗∗ −0.23203∗∗∗ −0.05197∗∗ −0.05436∗
(4.0293) (5.1272) (2.2460) (1.8156)

a11 0.51775∗∗∗ −0.20555∗∗∗ 1.00020∗∗∗ 0.53282∗∗∗
(13.3029) (3.8590) (148.5928) (8.4157)

a12 −0.24576∗∗∗ 0.00539 0.03776∗∗∗ −0.05055
(6.8053) (0.1062) (5.4583) (0.8144)

a21 0.45452∗∗∗ 1.17328∗∗∗ −0.06149∗∗∗ 0.40725∗∗∗
(11.5872) (22.2677) (8.7868) (6.5068)

a22 1.21688∗∗∗ 0.96138∗∗∗ 0.89990∗∗∗ 0.98706∗∗∗
(33.3811) (19.1147) (124.5143) (16.0892)

b11 0.43475∗∗∗ 1.00966∗∗∗ 0.24888∗∗∗ 0.52226∗∗∗
(4.8987) (16.8606) (8.0209) (8.0757)

b12 −0.10742 −0.18033∗∗∗ −0.04565 0.01389
(1.2389) (3.5195) (1.4180) (0.2278)

b21 −0.66683∗∗∗ −1.16582∗∗∗ 0.10881∗∗∗ −0.22376∗∗∗
(7.5985) (19.1740) (3.5734) (3.5935)

b22 −0.13151 −0.05456 0.40644∗∗∗ 0.28611∗∗∗
(1.5358) (1.0563) (12.7895) (4.7730)

t-statistics in parentheses.∗significant at 10 per cent level; ∗∗significant at 5 per cent level; ∗∗∗significant at 1 per cent
level.
Constant terms in the second moment are not reported.

Continued
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shock with opposite signs in these two markets would be inclined to increase
the future volatility in the spot market. As far as the previous variance is
concerned, b12 and b21 are both significant, but the size of the former is
much smaller than that of the latter, so the asymmetry exists in this respect
too. Again, b22 is not significant; the forward rate would only have the
ARCH effect if it were not considered in a bivariate system. The strongest
asymmetry occurs in the exchange rates of the Canadian dollar. The volatility
spillovers are absolutely one directional from the forward rate to the spot
rate. That is: a12 and b12 are not significant at any conventional levels,
whereas a21 and b21 are both significant at 1 per cent level. Similar to
the British pound, in the case of the French franc, the influence of the
previous variance is clearly one directional from the forward to the spot
measured by b12 and b21. Although the GARCH effect is strong in the
forward rate as well as in the spot rate, b22 is close to being twice as big
as b11. Regarding the previous shocks, the influence is also more from
forward to spot; both a12 and a21 are significant but a21 is much bigger
than a12. Therefore, the four currencies have similar asymmetric volatility
spillover patterns. Another interesting point in the franc example is that the
premium is not significant in both the spot and forward equations when the
covariance matrix is assumed as constant. The premium is significant in
the forward equation when estimated in a multivariate GARCH framework.
This suggests that the rejection/acceptance of a cointegration relationship
is, to a certain extent, subject to the assumption on the properties of the
covariance.

In Table 5.4, all four eigenvalues for each currency are reported. Their
positioning on the complex plane is displayed in Figure 5.1. It can been
seen that the biggest of the eigenvalues for each currency is around 0.96
in modules, so the time varying volatility is highly persistent. In the French

Table 5.4 Verifying covariance stationarity: the eigenvalues. Unconditional

covariance: E(σ 2
t ) = [I − (A∗ ⊗ A∗)′ − (B∗ ⊗ B∗)′]−1 vec(C∗′

0 C∗
0 )

(A∗ ⊗A∗)′ +(B∗ ⊗B∗)′ BP DM FF CD

λ1 (real, imaginary)
λ1 (mod)

0.963, 0.000
0.963

0.969, 0.000
0.969

1.003, 0.000
1.003

0.969, 0.000
0.969

λ2 (real, imaginary)
λ2 (mod)

0.852, 0.000
0.852

0.570, 0.000
0.570

0.995,−0.022
0.996

0.699, 0.000
0.699

λ3 (real, imaginary)
λ3 (mod)

0.628, 0.000
0.628

0.022, 0.000
0.022

0.995, 0.022
0.996

0.698, 0.000
0.698

λ4 (real, imaginary)
λ4 (mod)

0.608, 0.000
0.608

0.017, 0.000
0.017

0.988, 0.000
0.988

0.600, 0.000
0.600

In a situation that all eigenvalues are smaller than one in modules, the covariance is confirmed
stationary.
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Eigenvalues of covariance matrices on the complex plane
(the horizontal axis is for the real part, and the vertical axis is for the imaginary
part of the eigenvalue. the reference circle is the unit circle)

Figure 5.1 Eigenvalues on the complex plane.

franc case, the biggest module of eigenvalue is just above unity, suggesting
that the unconditional covariance does not exist. There are two explanations
to provide for this. First, according to Nelson (1990), Bougerol and Picard
(1992) and Lumsdaine (1991), even if a GARCH (IGARCH) model is not
covariance stationary, it is strictly stationary or ergodic, and the standard
asymptotically based inference procedures are generally valid. Second, the
derivation of eigenvalues is based on the assumption that the spot variance
and forward variance are equal in size. Nevertheless, the forward variance
is smaller than the spot variance in the French franc case. Taking this into
account, all of the modules of eigenvalue for the French franc become

Continued
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less than one and the covariance stationary exists. The analysis on the
eigenvalues of the Kroneker product of the covariance matrices reveals that
the time varying volatility is also highly persistent in a bivariate setting for
foreign exchange rate data. In addition, though the BEKK specification has
proved a helpful analytical technique for volatility transmissions, especially
the impact of the signs of the shocks in different markets, in empirical
research, the covariance stationarity is not so easy to satisfy and is not
always guaranteed.

5.5. Empirical literature

While time-varying volatility has found applications in almost all time series
modelling in economics and finance, it attracts most attention in the areas
of financial markets and investment where vast empirical literature has been
generated, which has in turn brought about new forms and variations of this family
of models. Time-varying volatility has become the norm in financial time series
modelling, popularly accepted and applied by academics and professionals alike
since the 1990s. Moreover, analysis of interactions between two or more variables
in the first moment, such as in VAR and ECM, is extended through the use of
time-varying volatility models, to the second moment to examine such important
issues as volatility spillovers or transmissions between different markets.

One of the most extensively researched topics is time-varying volatility
universally found in stock market indices. Although findings vary from one market
to another, a pattern of time-varying volatility, which is also highly persistent, is
common to most of them. Nevertheless, many of studies attempt to exploit new
features and add variations in model specifications to meet the specific need of
empirical investigations. To examine the characteristics of market opening news,
Gallo and Pacini (1998) apply the GARCH model and evaluate the impact of the
news on the estimated coefficients of the model. They find that the differences
between the opening price of one day and the closing price of the day before
have different characteristics and have the effect of modifying the direct impact of
daily innovations on volatility which reduces the estimated overall persistence of
innovations. It is also claimed that the inclusion of this news variable significantly
improves out-of-sample forecasting, compared with the simple GARCH model’s
performance. Brooks et al. (2000) adopt the power ARCH (PARCH) model
proposed by Ding et al. (1993) to stock market returns in ten countries and a world
index. As PARCH removes the restriction implicitly imposed by ARCH/GARCH,
i.e. the power transformation is achieved by taking squaring operations of the
residual or to the power of 2, it can possess richer volatility patters such as
asymmetry and leverage effects. They find that the PARCH model is applicable
to these return indices and that the optimal power transformation is remarkably
similar across countries. Longin (1997) employs the analytical framework of
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Kyle (1985) where there are three types of traders: informed traders, liquidity
traders and market makers. In such a setting, the paper models information as an
asymmetric GARCH process that large shocks are less persistent in volatility than
small shocks. This, it is claimed, allows one to derive implications for trading
volume and market liquidity. The study by Koutmos (1992) is one of the typical
empirical applications of GARCH in finance in early times – risk–return trade-off
in a time-varying volatility context and asymmetry of the conditional variance in
response to innovations. The Exponential GARCH in Mean (EGARCH-M) model
is chosen for above obvious reasons and the findings support the presence of these
well observed phenomena in ten stock market return indices. Newly added to
this literature is evidence from so-called emerging markets and the developing
world. Investigating the behaviour of the Egyptian stock market in the context
of pricing efficiency and the return-volatility relationship, Mecagni and Sourial
(1999) employ a GARCH-M model to estimate four daily indices. Their results
suggest that there is tendency of volatility clustering in returns, and a positive but
asymmetric link between risk and returns which is statistically significant during
market downturns. They claim that the asymmetry in the risk–return relationship is
due to the introduction of circuit breakers. Husain (1998) examines the Ramadhan
effect in the Pakistani stock market using GARCH models. Ramadhan, the season
of the holy month of fasting, is expected to have effects on stock market behaviour
one way or another. The study finds that the market is indeed tranquil as the
conditional variance declines in that month, but the season does not appear to have
impact on mean returns. Applying TGARCH models to two Eastern European
markets, Shields (1997) reports findings contrary to those in the west that there
is no asymmetry in the conditional variance in response to positive and negative
shocks in these Eastern European markets.

International stock market linkages have attracted increasing attention in the
process of so-called globalisation in a time when there are no major wars.
Seeking excess returns through international diversification is one of the strategies
employed by large multinational financial institutions in an ever intensifying
competitive financial environment, while national markets, considered individ-
ually, appear to have been exploited to their full so that any non-trivial profitable
opportunities do not remain in the context of semi-strong market efficiency.
In particular, US investors have gradually given up the stand of regarding
foreign markets as alien lands and changed their risk perspectives – international
diversification benefits are more than off-setting perceived additional risks. In the
meantime, international asset pricing theory has been developed largely with a
stratified approach which regards the international financial market as segmented
as well as linked markets, adding additional dimensions to the original capital asset
pricing model which is, ironically, universal, or in other words, global. Under such
circumstances, it is not strange that applications of multivariate GARCH models
have mushroomed during this period.

Investigating one of the typical features in emerging financial markets, Fong and
Cheng (2000) test the information based hypothesis that the rate of information
absorption in the conditional variance is faster for foreign shares (open to foreigners
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and locals) than for local shares (open to locals only) using bivariate GARCH(1, 1)
model for nine dual listed stocks over the period 1991–1996. Their evidence
indicates that the rate of information absorption is consistent with what proposed
by Longin (1997), that the rate of information absorption varies inversely with
the number of informed traders. They claim that removing foreign ownership
restrictions is likely to improve both market efficiency and liquidity. International
risk transmission or volatility spillovers between two or more financial markets is
by far the most intensively researched area. In this fashion, Kim and Rui (1999)
examine the dynamic relationship among the US, Japan and UK daily stock market
return volatility and trading volume using bivariate GARCH models. They find
extensive and reciprocal volatility spillovers in these markets. The results from
return spillovers, or Granger causality in the mean equations, seem to confirm
all reciprocal relationship but exclude London’s influence on the New York
Stock Exchange. Tay and Zhu (2000) also find such dynamic relationship in
returns and volatilities in Pacific-Rim stock markets. Chou et al. (1999) test
the hypothesis that the short-term volatility and price changes spill over from
developed markets to emerging markets using the US and Taiwan data. They
find substantial volatility spillover effect from the US stock market to the Taiwan
stock market, especially for the model using close-to-open returns. There is also,
it is claimed, evidence supporting the existence of spillovers in price changes.
In contrast to the majority of the findings, Niarchos et al. (1999) show that
there are no spillovers in means and conditional variances between the US
and Greek stock markets and suggest that the U.S. market does not have a
strong influence on the Greek stock market. Many similar studies have emerged
in recent years, for example, Dunne (1999) and Darbar and Deb (1997), to
mention a few.

Inflation uncertainty remains one of the main application areas of GARCH
modelling, following the first paper of this type on the topic by Engle (1982). In a
recent study, Grier and Perry (1998), without much surprise, provide empirical
evidence that inflation raises inflation uncertainty, as measured by the conditional
variance of the inflation rate, for all G7 countries in the period from 1948 to 1993.
Their results on the causal relationship from inflation uncertainty to inflation are
mixed. In three countries, increased inflation uncertainty lowers inflation; while
in two countries increased inflation uncertainty raises inflation. These findings
have been extended to cover the developing world as well. Applying a similar
testing procedure, Nas and Perry (2000) find evidence supporting the claim that
inflation raises inflation uncertainty in Turkey over the full sample period of 1960
to 1998 and in the three sub-samples. They again show mixed results for the
effect of inflation uncertainty on inflation, and claim that this is due to institutional
and political factors in the monetary policy making process in Turkey between
1960 and 1998. Wang et al. (1999) examine the causal relationships between
inflation, inflation uncertainty as measured with the conditional variance of the
aggregate inflation rate, and relative price variability in sectoral price indices.
They find that, although inflation does Granger cause inflation uncertainty, relative
price variability is more a source of inflation uncertainty than the inflation level
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itself. In contrast, Grier and Perry (1996) present different findings in respect
of these relationships and appear to contradict the results of their other studies.
Various studies on the topic include Brunner and Hess (1993), and Loy and
Weaver (1998).

On foreign exchange markets, time-varying volatility models have been widely
adopted to study various issues ranging from time-varying risk premia, volatility
spillovers between the spot and forward exchange market, hedging strategies,
to the effect of monetary policy. Searching for an explanation for the departure
from Uncovered Interest Parity (UIP), Tai (1999) examines the validity of the
risk premium hypothesis using a GARCH-M(1, 1) model. The empirical evidence
supports the notion of time-varying risk premia in explaining the deviations from
UIP. It also supports the idea that the foreign exchange risk is not diversifiable
and hence should be priced in both foreign exchange market and equity market.
Hu’s (1997) approach is to examine the influence of macroeconomic variables
on foreign exchange risk premia. The paper assumes that money and production
follow a joint stochastic process with bivariate GARCH innovations based on
Lucas’s asset pricing model and implies that the risk premium in the foreign
exchange market is due to time-varying volatilities in macroeconomic variables.
Testing the model for three currencies shows that the time-varying risk premium
is able to explain the deviation of the forward foreign exchange rate from the
future spot rate. It is claimed that the model partially supports the efficient
market hypothesis after accounting for time-varying risk premia. Investigating
the effect of central bank intervention, Dominguez (1993) adopts GARCH models
to test whether the conditional variance of exchange rates has been influenced
by the intervention. The results indicate that intervention need not be publicly
known for it to influence the conditional variance of exchange rate changes.
Publicly known Fed intervention generally decreases exchange rate volatility,
while secret intervention operations by both the Fed and the Bundesbank generally
increase the volatility. Kim and Tsurumi (2000), Wang and Wang (1999),
Hassapis (1995), Bollerslev and Melvin (1994), Copeland and Wang (1993),
Mundaca (1991), Bollerslev (1990) and many other studies are also in this
important area.

As mentioned earlier time-varying volatility has become the norm in financial
time series modelling, popularly accepted and applied by academics and pro-
fessionals alike since the 1990s. Therefore it does not appear to be feasible to
exhaust listing the application areas and individual cases. Among other things
not covered by the brief survey in this section, there are applications in option
modelling, dynamic hedging, the term structure, interest rates and interest rate
related financial instruments.

Note

1 Equation (5.14) becomes h11,t = α2
11,0 +

q∑
i=i

α2
11,iε

2
t−i+

p∑
j=1

β2
11, j , so α2

11,0, α2
11,i and

β2
11,j are equivalent to α0, αi and βj in equation (5.4) respectively.
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Questions and problems

1 Describe ARCH and GARCH in comparison with AR and ARMA in the mean
process.

2 Discuss many variations of GARCH and their relevance to financial mod-
elling.

3 What is the stochastic volatility model? Discuss the similarities and differ-
ences between a GARCH type model and a stochastic volatility model.

4 Compare different specifications of multivariate GARCH models and com-
ment on their advantages and disadvantages.

5 Collect data from Datastream to test for GARCH phenomena, using the
following time series:

(a) foreign exchange rates of selected industrialised nations and devel-
oping economies vis-à-vis the US$, taking the log or log difference
transformation if necessary prior to the test,

(b) CPI of the UK, US, Japan, China, Russia, and Brazil, taking any necessary
transformation prior to the test,

(c) total return series of IBM, Microsoft, Sage, Motorola, Intel, Vodafone,
and Telefonica, taking any necessary transformation prior to the test.

What do you find of their characteristics?
6 Collect data from Datastream and apply various multivariate GARCH models

to the following time series:

(a) the spot and forward foreign exchange rates of selected industrialised
nations and developing economies vis-à-vis the US$, taking the log or
log difference transformation if necessary prior to the test,

(b) the stock market return indices of the US (e.g. S&P500) and the UK (e.g.
FTSE100),

(c) the stock market return indices of Japan and Hong Kong.

What do you find of their links in the second moment?
7 Discuss and comment on the new developments in modelling time-varying

volatilities.
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6 Shock persistence and impulse
response analysis

From the study of unit roots in Chapter 4 we have known the distinctive
characteristics of stationary and non-stationary time series. Nevertheless, one of
the main concerns in Chapter 4 was whether a time series has a unit root or
not, but there was no further examination regarding different properties of non-
stationary time series – whether they are a pure random walk or possess serial
correlation. Further, what is the serial correlation structure of a time series if
it is not a pure random walk? There are generally two categories of non-pure
random walk time series. If the time series can be viewed as a combination
of a pure random walk process and a stationary process with serial correlation,
the long-run effect would be smaller than that of a pure random walk, and the
time series contains unit roots due to its non-stationary component. If there is
no stationary component in the time series which is not a pure random walk
either, then the first difference of the time series is a stationary process with serial
correlation, and the long-run effect would be larger that that of a pure random
walk. There would be, to a certain degree, mean-reverting tendency in the former
category due to its stationary component; and there would be compounding effect
in the latter. The interest in this chapter is then centred on the characteristics
and behaviour of time series associated with their correlation structure, and
relative contribution and importance of the two components: the trend which is
a pure random walk, and the cycle (after taking the first difference in the latter
category) which is a stationary process involving serial correlation, in the long-
run. How persistent is a time series depends on the relative contribution of the two
components.

This chapter first discusses measures of persistence in time series in both
univariate and multivariate cases. Then the chapter introduces impulse response
analysis, which, in a similar way but from a different perspective to persistence
analysis, shows graphically the path of response in a time series to a shock to itself
or to another time series. Both orthogonal impulse response analysis and non-
orthogonal cross-effect impulse response analysis are considered, together with
their related and respective variance decomposition.
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6.1. Univariate persistence measures

Economic time series are usually a combination of a non-stationary trend
component and a stationary cycle component, shocks to the two components are
different in that they have remarkably different effects on future trend values.
A shock to a stationary time series is transitory and the effect will disappear
after a sufficient long time. Using a simple first-order autoregressive process for
example:

y1,t = c +ρy1,t−1 + ε1,t (6.1)

where ρ < 1. Suppose there is a shock at time t with its magnitude being s, and
there is no shock afterwards. Then after k periods, the time series evolves to:

y1,t+k = 1 −ρk+1

1 −ρ
c +ρk+1y1,t−1 +ρk s

=
k→∞

c

1 −ρ
(6.2)

i.e. the time series reverts to its mean value and the impact of the shock disappears,
the smaller the value of ρ, the quicker. In contrast, a shock to a trend as expressed
in a pure random walk moves the time series away from its trend path permanently
by an extent which is exactly the size of the shock. For example, if in the following
random walk process:

y2,t = c + y2,t−1 + ε2,t (6.3)

there is a shock at time t with a magnitude of s, and there is no further shock
afterwards. Then after k periods the impact is to shift permanently the level of the
time series by an extent of s:

y2,t+k = (k + 1)c + y2,t−1 + s (6.4)

The impact will not disappear even if k → ∞.
If there is a third time series which is a combination of a stationary time series

of the kind of equation (6.1) and a pure random walk such as equation (6.3), then
the impact of a shock will not disappear, nor the impact would exactly be s. The
permanent impact would usually be a figure smaller than s, depending on the
relative contributions of the trend component and cycle component. Furthermore,
if ρ > 1 in equation (6.1), then the first difference of the time series is stationary
and the impact of a shock will disappear after a sufficient long time, while the
impact of a shock to the time series itself would be greater than that to a pure
random walk. Persistence is therefore introduced as a concept and measure for
long-run or permanent impact of shocks on time series, taking above illustrated
behaviour and patterns, which are beyond the question of testing for unit roots,
into consideration. We first describe persistence with the infinite polynomial of the
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Wold moving average representation of time series, as adopted by Campbell and
Mankiw (1987a,b); and then introduce more effective methods for its estimation
and the ideas behind those methods. Persistence can be illustrated by the infinite
polynomial of the Wold moving average representation of a time series, A(L),
being evaluated at L = 1, i.e.:

�Yt = A(L)εt, εt ∼ (0,σ 2
ε ) (6.5)

where

A(L) = 1 + A1L + A2L2 +·· · (6.6)

is a polynomial in the lag operator L, εt is zero mean and independent (not
necessarily iid) residuals. A(1)(= 1 + A1 + A2 + ·· ·) is A(L) valued at L = 1. The
impact of a shock in period t on the change or first difference of the time series in
period t +k is Ak . The impact of the shock on the level of the time series in period
t + k is therefore 1 + A1 + ·· · + Ak . The accumulated impact of the shock on the
level of the time series is the infinite sum of these moving average coefficients A(1).
The value of A(1) can then be used as a measure of persistence. In a pure random
walk, A(1) = 1; and in any stationary time series, A(1) = 0. For series which are
neither stationary nor a pure random walk, A(1) can take on any value greater than
zero. If 0 < A(1) < 1, the time series would display mean-reversion tendency. If
A(1) > 1, an unanticipated increase would be reinforced by other positive changes
in the future, and the series would continue to diverge from its pre-shock expected
level.

Having introduced the above straightforward representation of persistence, we
discuss a second and non-parametric approach to measuring persistence proposed
by Cochrane (1988), which is the ratio of the k-period variance to the one period
variance, being divided by k +1. The method of the infinite polynomial of the Wold
moving average representation involves estimation of parameters A(L) which is
sensitive to change. The variance ratio method is non-parametric and the estimate
is consequently more stable. The Cochrane (1988) persistence measure is known
as Vk in the following formula:

Vk = 1

k + 1

Var(�kyt)

Var(�yt)
= 1 + 2

σ 2
�yt

k∑
τ

(
1 − τ

k + 1

)
Cov(�yt,�yt−τ )

= 1 + 2

σ 2
�yt

k∑
τ

(
1 − τ

k + 1

)
Rτ = 1 + 2

k∑
τ

(
1 − τ

k + 1

)
ρτ (6.7)

where �k is the k-period difference operator and �kyt = yt − yt−k ; � is the
usual one period difference operator and the subscript 1 is suppressed for
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simplicity, Rτ = Cov(�yt,�yt−τ ) is the τ th autocovariance in �yt , and ρτ =
Cov(�yt,�yt−τ )/σ 2

�yt
is the τ th autocorrelation in �yt . The right-hand side of

equation (6.7) is in fact the spectrum of �yt at the zero frequency, passing through
a k-size window. Interested readers can refer this to Chapter 10 for detail.

In theory, the relationship between Vk and A(1), ignoring any inaccuracies in
estimation, is Vk = A2(1)(σ 2

ε σ 2
�yt

). So let us define persistence consistently as
follows:

P = Vk = A2(1)
σ 2

ε

σ 2
�yt

(6.8)

But, as one cannot effectively estimate A(1), one cannot effectively estimate P
via A(1) either. This is one of the reasons for having a Vk version of persistence.
To empirically obtain the persistence measurement, approaches include ARMA,
non-parametric, and unobserved components methods. The ARMA approach is
to estimate A(1) direct, where parameters are quite sensible to change with regard
to estimation. The non-parametric approach is then widely adopted and has been
written as two RATS procedures by Goerlich (1992).

In the random walk circumstance, the variance of the k-period difference
of a time series is k times the variance of the one period difference of the
time series, then the persistence measure Vk = 1. For any stationary series, the
variance of the k-period difference approaches twice the variance of the one
period difference. In this case, Vk approaches zero when k becomes larger. The
limit of the ratio of the two variances is therefore the measure of persistence.
The choice of k , the number of autocorrelations to be included, is important.
Too few autocorrelations may obscure trend-reversion tendency in higher order
autocorrelations; and too many autocorrelations may exaggerate the trend-
reversion, since as k approaches the sample size T , the estimator approaches
zero. Hence, though larger k might be preferred, k must be small relative to the
sample size.

6.2. Multivariate persistence measures

The persistence measures of Vk and A(1) can be generalised and applied to
multivariate time series. The multivariate Vk and A(1) can then be jointly applied to
a group of variables or sectors, e.g. industrial production, construction and services,
to evaluate the cross-section effects. Again, we first adopt the infinite polynomial
of the Wold moving average representation to demonstrate persistence measures
in a way similar to equation (6.5):

�yt = A(L)εt, εt ∼ (0,�ε) (6.9)

where we use characters in bold for matrices and vectors.

A(L) = A0 + A1L + A2L2 +·· · (6.10)
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is an n × 1 dimension vector of infinite polynomials, �yt is an n × 1 dimension
vector of variables, εt is an n × 1 dimension vector of residuals, and �ε is an
n× n covariance matrix of residuals. Similar to the univariate case and extending
equation (6.7), we have multivariate persistence measure as follows:

P = A(1)�ε�
−1
�yt

A(1)′ (6.11)

which reduces to A2(1)(σ 2
ε /σ 2

�yt
) in a univariate time series.

To obtain multivariate persistence measures, previous studies have attempted
to scale the covariance matrix of residuals in different ways. Pesaran et al.
(1993) use the conditional variance of �yj,t (the jth diagonal element of �ε)
to normalise the jth column of the covariance matrix of residuals. Van de Gucht
et al. (1996) use the unconditional variance of �yj,t (the jth diagonal element
of ��yt

) to scale the jth column of the covariance matrix of residuals, arguing
that it is consistent with the univariate persistence measure proposed by Cochrane
(1988). Both Van de Gucht et al. (1996) and Pesaran et al. (1993) regard the
diagonal elements in the normalised covariance matrix as representing total
persistence in individual sectors, and off-diagonal elements as the cross effect
between two sectors, e.g. an element in the ith row and the jth column is the
effect on the ith sector due to a shock in the jth sector. Both aim to generalise
the persistence measure and have partly achieved this objective. They have
extended the persistence measurement to the multivariate case. However, their
normalisations use a single variance for the normalisation of a column and, whether
conditional or unconditional, ignore the fact that the process is multivariate. In
fact, the normalisation is as simple as in univariate cases. Instead of being scaled
down by the unconditional variance, the covariance matrix of residuals should
be normalised by the unconditional covariance matrix, i.e. the covariance matrix
for �yt . To have an exact expression of multivariate persistence, the normalisation
should be realised with matrix operations; it is not possible to achieve this with
the simple dividing arithmetic.

By considering possible effects from, and links with, other sectors, this
measurement of multivariate persistence for individual sectors is more precise,
compared with its univariate counterpart. With this approach, the effect on sector i
due to shocks in sector j is represented by the (i, j) element in P, i.e. P(i, j), while
P(i, i) measures the sector-specific persistence.

Generalising the non-parametric persistence measure into the multivariate case,
we define Vk as the k-period covariance matrix times the inverse of the one period
covariance matrix, divided by k + 1:

Vk = 1

k + 1
��k yt

�−1
�yt

(6.12)

In a procedure equivalent to equation (6.7), letting �yt pass through a
k-size window in the Fourier transform and evaluating at the zero
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frequency, we have:

Vk =

⎡
⎢⎢⎢⎢⎢⎣

1 + 2
k∑
τ

(
1 − τ

k+1

)
R11,τ . . . . . . 1 + 2

k∑
τ

(
1 − τ

k+1

)
R1n,τ

. . .

1 + 2
k∑
τ

(
1 − τ

k+1

)
Rn1,τ . . . . . . 1 + 2

k∑
τ

(
1 − τ

k+1

)
Rnn,τ

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎣

R11,0 . . . . . . R1n,0

. . .

Rn1,0 Rnn,0

⎤
⎥⎥⎦

−1

(6.13)

where Rij,τ = Cov(�yi,t,�yj,t−τ ) is the covariance between �yi,t and �yj,t at
lag τ , and Rij,0 = Cov(�yi,t,�yj,t) is the contemporaneous covariance. The
elements in the first matrix on the right-hand side are bivariate, but the elements
in Vk are truly multivariate due to the second matrix on the right-hand side. So
this measure of persistence takes account of the influence from all the sources in
the system when considering Vk (i, j) in the appearance of interactions between
the ith and jth time series.

Multivariate persistence analysis is more sensible in that, instead of analysing the
individual variables separately as in univariate cases, it allows shocks to transmit
from one variable to all the others. Therefore, multivariate persistence analysis is
able to examine the sources of shocks and the effects of the shock in one sector on
other sectors. Moreover, it is able to detect the effect of certain kinds of shocks,
e.g. a monetary shock, from that of other shocks, e.g. shocks from the real sectors.
The multivariate measurement of persistence is not built on structural relations.
As such, the inclusion of a specific kind of shock in persistence analysis will not
lead to the violation of constraints, as it may in a system of structural equations. In
addition, the effects of this specific shock can be evaluated in a VAR framework,
which is relatively less complicated. A specific kind of shock can be added to the
model, as in the following:

�yt = s(L)νt + A(L)εt (6.14)

where νt represents specific shocks whose effects are to be analysed, which can
be the demand shock, supply shock or monetary shock, depending on the way it is
extracted from another fitted equation(s); and s(L) is an n×1 dimension vector of
polynomials. By evaluating equation (6.14) with and without νt , one can establish
whether an individual sector is subject to shock νt . Furthermore, in the existence
of the effect of νt , the proportion of the persistence due to νt and that of other
shocks can be identified. In theory, more than one set of specific shocks can be
included; in which case, νt becomes an m dimension vector with m being the
number of sets of shocks, and s(L) is an n × m matrix. However, the estimation
would be empirically unfeasible, since greater inaccuracy would be introduced.
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In addition, this approach would be less appealing if it is to lose its advantages
of no subjective assumptions and restrictions. Nevertheless, if there are only two
types of shocks, e.g. demand versus supply, or monetary versus real, then νt can
only be one of the two types of shocks, otherwise equation (6.14) would be over-
identified.

Persistence can be decomposed into separate components due to the specific
shock and that due to other shocks:

Ps = A(1)s(1)�2
νs(1)′�−1

�yt
A(1)′ (6.15)

Po = A(1)�ε�
−1
�yt

A(1)′ (6.16)

and total persistence is:

PT = Ps + Po (6.17)

If the specific shock is chosen as demand or monetary disturbance, then the
underlying assumption is that the demand or monetary shock may also have a
long-run effect, as the persistence measure is about the effect on the levels of
variables. This assumption can be empirically ruled out or ruled in which, in fact,
becomes a hypothesis. Although Blanchard and Quah (1989) arguably excluded
the demand shock from having a long-run effect, their empirical work suggests
that the effect of a demand shock would decline to vanish in about 25 quarters or
five to six years. In such a long period, the probability of a structural change
or break would be rather high. If a structural change does happen, it would
override any supply shocks and the effects of demand and supply shocks would
be mixed.

6.3. Impulse response analysis and variance decomposition

Impulse response analysis is another way of inspecting and evaluating the
impact of shocks cross-section. While persistence measures focus on the long-
run properties of shocks, impulse response traces the evolutionary path of the
impact over time. Impulse response, together with variance decomposition, forms
innovation accounting for sources of information and information transmission in
a multivariate dynamic system.

Considering the following VAR process:

yt = A0 + A1yt−1 + A2yt−2 +·· ·+ Akyt−k +μt (6.18)

where yt is an n × 1 vector of variables, A0 is an n × 1 vector of intercept,
Aτ (τ = 1, . . .,k) are n×n matrices of coefficients, μt is an n dimension vector of
white noise processes with E(μt) = 0, �μ = E(μtμ

′
t) being non-singular for all t,

and E(μtμ
′
s) for t �= s. Without losing generality, exogenous variables other than



96 Shock persistence and impulse response analysis

lagged yt are omitted for simplicity. A stationary VAR process of equation (6.18)
can be shown to have a moving average (MA) representation of the following:

yt = C +μt +1μt−1 +2μt−2 +·· ·

= C +
∞∑

τ=0

τμt−τ (6.19)

where C = E(yt) = (I − A1 −·· ·− Ak )−1A0, and τ can be computed from Aτ

recursively τ = A1τ−1 + A2τ−2 + ·· · + Akτ−k ,τ = 1, 2, . . ., with 0 = I
and τ = 0 for τ < 0.

The MA coefficients in equation (6.19) can be used to examine the interaction
between variables. For example, aij,k , the ijth element of k , is interpreted as the
reaction, or impulse response, of the ith variable to a shock τ periods ago in the
jth variable, provided that the effect is isolated from the influence of other shocks
in the system. So a seemingly crucial problem in the study of impulse response is
to isolate the effect of a shock on a variable of interest from the influence of all
other shocks, which is achieved mainly through orthogonalisation.

Orthogonalisation per se is straightforward and simple. The covariance matrix
�μ = E(μtμ

′
t), in general, has non-zero off-diagonal elements. Orthogonalisation

is a transformation, which results in a set of new residuals or innovations νt

satisfying E(νtν
′
t) = I. The procedure is to choose any non-singular matrix G

of transformation for νt = G−1μt so that G−1�μG−1 = I. In the process of
transformation or orthogonalisation, τ is replaced by τ G and μt is replaced
by νt = G−1μt , and equation (6.19) becomes:

yt = C +
∞∑

τ=0

τμt−τ = C +
∞∑

τ=0

τGνt−τ , E(νtν
′
t) = I (6.20)

Suppose that there is a unit shock to, for example, the jth variable at time 0 and
there is no further shock afterwards, and there are no shocks to any other variables.
Then after k periods yt will evolve to the level:

yt+k = C +
(

k∑
τ=0

τ G

)
e(j) (6.21)

where e(j) is a selecting vector with its jth element being one and all other
elements being zero. The accumulated impact is the summation of the coefficient
matrices from time 0 to k . This is made possible because the covariance matrix
of the transformed residuals is a unit matrix I with off-diagonal elements being
zero. Impulse response is usually exhibited graphically based on equation (6.21).
A shock to each of the n variables in the system results in n impulse response
functions and graphs, so there are a total of n × n graphs showing these impulse
response functions.
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To achieve orthogonalisation, the Choleski factorisation, which decomposes
the covariance matrix of residuals �μ into GG′ so that G is lower triangular
with positive diagonal elements, is commonly used. However, this approach is not
invariant to the ordering of the variables in the system. In choosing the ordering
of the variables, one may consider their statistical characteristics. By construction
of G, the first variable in the ordering explains all of its one-step forecast variance,
so consign a variable which is least influenced by other variables, such as an
exogenous variable, to the first in the ordering. Then choose the variable with
least influence on other variables as the last variable in the ordering. The other
approach to orthogonalisation is based on the economic attributes of data, such as
the Blanchard and Quah structural decomposition. It is assumed that there are two
types of shocks, the supply shock and the demand shock. While the supply shock
has permanent effect, the demand shock has only temporary or transitory effect.
Restrictions are imposed accordingly to realise orthogonalisation in residuals.

Since the residuals have been orthogonalised, variance decomposition is
straightforward. The k-period ahead forecast errors in equation (6.19) or
(6.20) are:

k−1∑
τ=0

τ Gνt−τ+k−1 (6.22)

The covariance matrix of the k-period ahead forecast errors are:

k−1∑
τ=0

τ GG
′


′
τ =

k−1∑
τ=0

τ�μ
′
τ (6.23)

The right-hand side of equation (6.23) just reminds the reader that the outcome
of variance decomposition will be the same irrespective of G. The choice or
derivation of matrix G only matters when the impulse response function is
concerned to isolate the effect from the influence from other sources.

The variance of forecast errors attributed to a shock to the jth variable can be
picked out by a selecting vector e(j), the idea of variance decomposition, with the
jth element being one and all other elements being zero:

Var(j, k) =
(

k−1∑
τ=0

τ Ge(j)e(j)
′
G

′


′
τ

)
(6.24)

Further, the effect on the ith variable due to a shock to the jth variable, or the
contribution to the ith variable’s forecast error by a shock to the jth variable, can
be picked out by a second selecting vector e(i) with the ith element being one and
all other elements being zero.

Var(ij,k) = e(i)
′
(

k−1∑
τ=0

τ Ge(j)e(j)
′
G

′


′
τ

)
e(i) (6.25)
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In relative terms, the contribution is expressed as a percentage of the total
variance:

Var(ij,k)∑n
j=1 Var(ij,k)

(6.26)

which sums up to 100 per cent.

6.4. Non-orthogonal cross-effect impulse response analysis

There are other ways to evaluate the effect of a shock. One of the main advantages of
applying orthogonalised residuals is that the impact at time k due to a unit shock to
the jth variable at time 0 is simply the summation of matrices τ G, over 0 ≤ τ ≤ k ,
being timed by the selecting vector e(j). That is, there is no need to consider the
effect due to shocks to other than the jth variable because such effect does not
exist. Then it would be a reasonable idea that we do not perform orthogonalisation
but consider the effect arising from the non-orthogonalisation of residuals, or the
cross-effect, in impulse response analysis. With non-orthogonal residuals, when
there is a shock to the jth variable of the size of its standard deviation, there are
shocks to other variables in the meantime through their correlations. Let δj stand
for such shocks:

δj =

⎡
⎢⎢⎢⎣

ρ1j

. . .

1

ρnj

⎤
⎥⎥⎥⎦√σjj =

⎡
⎢⎢⎢⎣

σ1j

. . .

σjj

σnj

⎤
⎥⎥⎥⎦ 1√

σjj

= �μe(j)
1√
σjj

(6.27)

With such a shock to the jth variable at time 0 and suppose there is no further
shock afterwards, yt will evolve to the level after k periods:

yt+k = C +
(

k∑
τ=0

τ

)
e(j)

1√
σjj

(6.28)

So, it appears that orthogonalisation can be avoided. But bearing in mind that, in
non-orthogonal impulse response analysis, we cannot simply give a shock of one
standard deviation to the equation of interest, the jth equation, only; we should, in
the meantime, give a ‘shock’ to each of other equations of the size of the square
root of its covariance with the jth shock. It indeed means that we have to consider
both the direct effect of the jth shock and the indirect effect of the jth shock through
other series in the system. Moreover, the outcome would be in general different to
that from orthogonal impulse response analysis.

Let us work out variance decomposition in a slightly different way. We consider
single elements first. The k-period ahead forecast errors in equation (6.28) are:

k−1∑
τ=0

τ�μe(j)
1√
σjj

(6.29)
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The covariance matrix of the k-period ahead forecast errors contributed to the jth
shock are:

Var(j, k) = 1

σjj

k−1∑
τ=0

τ�μe(j)e(j)
′
�μ

′
τ (6.30)

The total covariance matrix is the summation of equation (6.30) over j:

n∑
j=1

1

σjj

k−1∑
τ=0

τ�μe(j)e(j)
′
�μ

′
τ (6.31)

which is different from equation (6.23). The variance of the ith variable contributed
to the jth shock and the total variance of the ith variable are:

Var(ij,k) = 1

σjj

e(i)
′
(

k−1∑
τ=0

τ�μe(j)e(j)
′
�μ

′
τ

)
e(i) (6.32)

and:

Var(i,k) =
n∑

j=1

1

σjj

e(i)
′
(

k−1∑
τ=0

τ�μe(j)e(j)
′
�μ

′
τ

)
e(i) (6.33)

respectively. The contribution by the jth shock expressed as a percentage of the
total variance is:

Var(ij,k)

Var(j,k)
= Var(ij,k)∑n

j=1 Var(ij,k)
(6.34)

which sums up to 100 per cent.1

6.5. Examples and cases

Example 6.1

This case presents the profile of the UK property market’s responses
to shocks of various sources by Wang (2000). We only use and
discuss the multivariate part of the study. The variables considered
in the study in relation to persistence in the property market are the
Jones Lang Wootten property total return index (JLW) (with necessary
adjustment), the Nationwide Building Society House Price Index (NTW),
the Financial Times Actuary All Share Index (FTA), Construction output
on new work (CO), Total production (PDN), Services (SVC), the

Continued
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Unemployment rate (UER), and Money supply (M0). All the economic data
are of quarterly frequency and from the Office for National Statistics (ONS)
of the UK. They are all seasonally adjusted for consistency, as not all data
are available in the form of non-seasonally adjusted. Table 6.1 presents the
multivariate persistence estimates with the six sectors represented by JLW,
FTAP, NWT, CO, PDN, and SVC. The diagonal elements in the table are
sector-specific persistence measures (the diagonal elements in the P or Vk

matrix). FTA, the stock market index, is most close to a random walk with
its A(1)k being very close to unity. Total production and services do not
have as large persistence measures as property, housing and construction.
No direct comparison with other studies is possible, because there have
been virtually no studies of persistence of shocks in the UK economy and
sectors. Several US studies have reported that the services sector has a large
persistence measure estimate while the production sector has a relatively
low value for persistence measurement. It is also documented that utilities
exhibit considerable persistence while manufacturing has a rather small
value for persistence measurement. In Table 6.1 the production sector’s
V k of 1.3348 would be an aggregate estimate combining a higher value of
persistence for utilities and lower value of persistence for manufacturing.
As the intention of this multivariate persistence analysis is to investigate the
cross-sectional effects between property and the broadly classified sectors,
no further disaggregation is necessary and appropriate here.

The off-diagonal elements in Table 6.1 provide information that is not
found in univariate persistence analysis. It has been revealed that shocks
from the housing market have the largest effect on the persistence in
property, with the cross-sectional effect on JLW from NTW being 2.7542.
It is followed by the services sector which is also quite substantial, the

Table 6.1 Multivariate persistence

Sources of shocks

Effect on JLW FTA NTW CO PDN SVC

JLW 2.6243 0.8744 2.7542 1.0119 1.0782 1.5273
FTA 0.7962 0.8284 1.2710 0.6919 0.1238 1.0530
NTW 3.0412 1.5032 4.4957 1.3024 1.3020 2.3466
CO −0.3611 −0.0746 −0.9907 2.8815 0.7135 0.8976
PDN 0.4385 −0.1939 0.0468 1.5431 1.3348 0.5788
SVC 0.8457 0.6488 0.9700 1.9384 0.7768 1.5798

Note: Same as in the univariate cases, the standard error of these statistics is
4(k + 1)/3NVCk (i, j) (with the Bartlett window), where N is the number of observations.
k is in fact the window size in the frequency domain. With our specification it can be inferred
the window size is about 1/4 of the total observations, so the standard error of these statistics
is acceptable. See Priestley (1996). Detail from the authors upon request.



Shock persistence and impulse response analysis 101

production sector, and construction. Shocks in the stock market have effects
on the persistence in property, but they are the smallest among all selected
variables, with the cross-sectional effect on JLW being 0.8744.

Regarding the effects of the property market on other sectors, again,
the largest impacts seem to be felt in the housing market, with the cross-
sectional effect on NTW from JLW being 3.0412. So the commercial and
non-commercial property markets have very close links in this perspective.
The effects of shocks on the services sector (0.8457) are larger than those
on the production sector (0.4385), as expected. A negative figure for the
effects on construction suggests, in statistical terms, that the one period
covariance and the n (n → ∞) period covariance have different signs. This
is only possible in covariance but not in variance. The empirical meaning of
a negative cross-sectional persistence measure would be: a positive shock
in the property market which also results in an increase in construction (i.e.
a positive one period covariance is assumed) would eventually lead to a
decrease in construction output, or contraction in the construction industry,
in the long-run. This revelation of the interaction between the property
market and the construction sector has profound economic implications.

The reported multivariate persistence measurement estimates are derived
with an unrestricted VAR model of order 2 (the inverse of the matrix
is effectively corresponding to an infinite moving average process). The
restricted model, which drops the regressors whose t-statistic of coefficient
is less than one, is also tested. The two sets of results are similar, so the
unrestricted model is adopted for reasons that it is easy to implement in the
future and in slightly different situations.2 This is consistent with Cochrane’s
(1988) recommendation of including all autocorrelation terms even if they
are insignificant. Both models are estimated with SUR (Seemingly Unrelated
Regression), though there are no efficiency gains from using an OLS
procedure to applying SUR in the unrestricted model.

The paper further decomposes shocks into monetary and non-monetary
components. The above tests have analysed the ‘sources’ of shocks, and the
sources are sectors. In the following, the sources are divided into monetary
and non-monetary ones. The reasons for adopting this line of research are as
follows. Traditionally, the effect of a monetary shock is viewed as only being
temporary or transitory, while a real shock has both permanent and transitory
effects. In the long-run, the effect of the monetary shock disappears and the
only effect left is due to the real shock. Similarly, a demand shock is viewed
as temporary and a supply shock as permanent. In separating or decomposing
a monetary shock from non-monetary shocks, one is able to evaluate the
long-run and short-term effects more effectively. However, the traditional
view, which suggests that the monetary shock is not held responsible for

Continued
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any permanent or long-run effects, may be over-assertive and should be
empirically tested. In this study, if the effect of the monetary shock is not
long lasting, then the monetary shock would have no contribution to the
persistence measure. Obviously, different test results would have different
implications for policy-making and practice, especially with regard to a
long-run perspective.

Monetary shocks can be derived from estimating a money supply growth
model and obtaining its residuals. The money supply growth model is
specified as follows:

�Mt = α +β�Mt−1 + γ�SVCt−1 + δUERt−1 + νt (6.35)

where Mt is money supply, SVCt is services output and UERt is the
unemployment rate. M0, the narrowly defined money, is chosen as the
money supply variable in this model. The reasons for using M0 instead
of M4, the broad money supply, are empirical. There is a big break in
the M4 series in the fourth quarter of 1981 caused by the switch between
the old banking sector and the new monetary sector. In July 1989, Abbey
National’s conversion to a public limited company caused minor breaks to
the M0 series and major breaks in the M4 series. Although the first breaks
in the fourth quarter of 1981 were removed from the changes in M4, the
removal of the breaks in the changes in M4 resulted in as much distortion as
the retaining of the breaks in M4 levels. Besides these breaks, the M0 and
M4 series had a similar pattern. Beyond the concern in breaks, M0 is more
liquid and more public sensitive in representing demand factors, separated
from supply factors or real factors. Table 6.2 reports the summary statistics
for the money growth model.

The multivariate shock persistence model has been re-estimated with
monetary shocks, the residuals from the money supply growth model, being
included. All the estimates are reported in Table 6.3, and a summary with
sector-specific estimates and the percentage of monetary and non-monetary
effects is provided in Table 6.4. The first line for each variable in Table 6.3

Table 6.2 Summary statistics for the money growth model

α β γ δ Q

M0 0.0155∗∗∗ 0.4551∗∗∗ 0.3616∗∗∗ −0.0011∗∗ 19.9744
(3.2723) (4.1013) (2.6350) (2.4180) (0.2753)

Q-Ljung–Box statistic for serial correlation, the order is selected as 1/4 of the observations
used.
p-Value in parentheses.∗∗significant at 5 per cent level; ∗∗∗significant at 1 per cent level.



Shock persistence and impulse response analysis 103

Table 6.3 Multivariate persistence: monetary shocks decomposed

Sources of shocks

Effect on JLW FTA NTW CO PDN SVC

JLW 2.2304 0.4559 2.0688 0.6253 0.6802 0.8212
2.0389 0.3347 1.5680 0.7949 0.7011 0.7515
0.1915 0.1212 0.5008 −0.1695 −0.0208 0.0697

FTA 0.3265 0.5301 0.5480 0.4431 −0.1140 0.6191
0.3253 0.4216 0.3856 0.4922 −0.0267 0.5090
0.0012 0.1084 0.1624 −0.0492 −0.0874 0.1101

NTW 2.2713 0.7616 3.3395 0.5288 0.7238 1.1391
1.9208 0.5440 2.4043 0.8496 0.7536 1.0188
0.3505 0.2176 0.9352 −0.3209 −0.0298 0.1204

CO −0.4758 −0.0522 −1.2515 3.0167 0.7594 0.9497
−0.3522 −0.0362 −1.0157 2.9111 0.7699 0.9403
−0.1236 −0.0160 0.0849 0.1057 −0.0105 0.0094

PDN 0.1860 −0.2489 −0.2548 1.4501 1.2941 0.4737
0.1776 −0.2774 −0.3397 1.4776 1.2826 0.4481
0.0083 0.0285 0.0849 −0.0275 0.0115 0.0256

SVC 0.1568 0.3699 −0.0256 1.6847 0.4481 1.2115
0.2742 0.2303 −0.0559 1.7202 0.6274 1.0124

−0.1174 0.1396 0.0303 −0.0354 −0.1794 0.1991

Table 6.4 Multivariate persistence: summary of monetary and non-monetary
shocks

Monetary shocks Non-monetary shocks

VK % VK % Total

JLW 0.1915 8.59 2.0389 91.41 2.2304
FTA 0.1084 20.45 0.4216 79.55 0.5301
NTW 0.9352 28.00 2.4043 72.00 3.3395
CO 0.1057 3.50 2.9111 96.50 3.0167
PDN 0.0115 0.89 1.2826 99.11 1.2941
SVC 0.1991 16.43 1.0124 83.57 1.2115

is the total persistence, the second line the effects of non-monetary shocks,
as represented by the second term on the right-hand side of equation (6.17),
and the third line the effects of monetary shocks represented by the first term
on the right-hand side of equation (6.17). As above, the diagonal elements
are sector-specific persistence measurement, and off-diagonal elements
the cross persistence measurement. Overall, the persistence estimates are
smaller than those in Table 6.1, except for the construction sector. This is

Continued
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because of the inclusion of the monetary shocks, which are expected to have
smaller effects in the long run, in the model. In previous estimation without
an explicit monetary shock variable (or a monetary variable), the persistence
effects due to monetary shocks are mixed with other shocks. Further scrutiny
has found that the decrease in the persistence measure happens in those
sectors which are subject to monetary shocks to a substantial degree, e.g.
housing, where monetary shocks account for 28 per cent in total persistence,
services 16 per cent, and stock market 20 per cent. Monetary shocks only
account for 4 per cent of total persistence in construction, and an even
smaller figure of less than 1 per cent in the production sector, so their
total persistence estimates are largely unaffected. In summary, a broadly
defined production sector, including construction, or the real economy, or
the supply side of economy, is not subject to monetary shocks in the long-
run; whereas the services sector, broadly defined to include housing and
the stock market, or the demand side of economy, or the consumption, is
very much influenced by monetary shocks. Commercial property, due to
its fundamental links to the real economy and financial markets, reasonably
stands in between, with the effects of monetary shocks being responsible for
9 per cent of total persistence measurement, and a large part of persistence
is from non-monetary shocks caused in the real sector of the economy.

Example 6.2

In a recent paper, Dekker et al. (2001) apply both orthogonal and non-
orthogonal cross-effect, or generalised, impulse response analysis to stock
market linkages in Asia-Pacific. They use daily closing data of returns for
a rather short period from the 1st January 1987 to the 29th May 1998, on
ten market indices in the region, namely, Australia’s SE All Ordinary, Hong
Kong Hang Seng, Japan’s Nikkei 225 Average, Malaysia’s Kuala Lumpur
Composite, New Zealand SE Capital 40, the Philippines SE Composite,
Singapore Strait Times Industrial, Taiwan SE Weighted, Thailand’s
Bangkok Book Club, and the US Standard & Poor 500 Composite. Their
models were tested using the indices as expressed in the US dollar as well as
in local currencies. It is claimed that both data sets produce consistent results
so only the results from using local currencies are reported in the paper.
Amongst the ten economies, Malaysia, the Philippines, Taiwan and Thailand
are classified as emerging markets and the rest as developed markets.

The models and the treatment of variables are exactly those in Pesaran and
Shin (1998). Consequently, variance decomposition with the generalised
impulse response procedure inevitably runs into the problem that the
total variance does not sum to 100 per cent. The paper deals with the
problem by standardising the total variance, or scaling the total variance
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to 100 per cent. Although cointegration relationships are found in the data,
the authors choose to apply an unrestricted VAR in the first difference
without incorporating the error correction term, having reviewed the relevant
literature in which an unrestricted VAR is preferred to a vector error
correction model (VECM) in short horizons. The paper performs impulse
response analysis over 15 days and presents 5-, 10- and 15-day ahead forecast
variance decomposition. In orthogonal response analysis, the variables are
ordered according to the closing time, with the most exogenous market,
which in this case is the US, being the first. Table 6.5 presents the results
from orthogonal variance decomposition, while Table 6.6 is for those from
generalised variance decomposition. As there is no substantial variation,
only the results for day 15 are provided.

The paper makes common sense comparison between the orthogonal
and the generalised variance decomposition results. For example, with
closing time ordering in orthogonal variance decomposition, New Zealand
is ordered before Australia. The ordering appears to have a distorting effect
on the variance decomposition results: shocks in the New Zealand market
explain a much larger proportion of variance of 10.70 per cent in the
Australian market, compared with a rather small figure of 1.99 per cent
contributed by the Australian market to the New Zealand market, on day 15.
This seems to be difficult to justify, considering the relative size of the
two markets. In contrast, generalised variance decomposition provides
apparently reasonable results that the contribution of the New Zealand
market to the Australian market is 8.31 per cent, while shocks in the
Australian market account for a large amount of 11.43 per cent of the total
variance in the New Zealand market, on day 15. Following this common
sense discussion, the paper employs Table 6.6 for further analysis. There
are three main conclusions. First, the US market is the most influential
in Asia-Pacific. No other markets contribute more than 2 per cent of the
US total forecast variance, while the contribution of the US market to other
markets is significant with many of them being over 10 per cent. Second, the
level of exogeneity of a market is proportional to the amount of the forecast
variance explained by the market itself. The US, with over 90 per cent
total forecast variance being accounted for by itself, is the most exogenous.
While Singapore is the most endogenous because over 50 per cent total
forecast variance is attributed to shocks in the other markets. Third, markets
with strong economic ties and close geographic links, such as the pairs of
Australia and New Zealand and Malaysia and Singapore, have significant
interaction with each other. Impulse response graphs conform the above
results. Impulse analysis also indicates that the impact of shocks disappears
quickly, usually in no more than one day.

Continued
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6.6. Empirical literature

Persistence and impulse response are much an empirical matter. Persistence looks
into the long-run behaviour of time series in response to shocks and reflects
the relative contribution and importance of the trend and the cycle. Inspecting
the persistence profile of a time series, the effect of shocks in the long-run can
be evaluated, which is of help to both macro economic policy formation and
micro investment decision making. The other aspects in the study of the effect of
shocks are the response profile over the whole time horizon of interest, including
the magnitudes of the response, termed as impulse response analysis, and the
examination of the sources of the disturbance, termed as variance decomposition.
Many multivariate models, such as the VAR, are complemented with impulse
response analysis and variance decomposition, after the model has been set up and
tested. All of these reflect the importance of this chapter in empirical studies.

Following the initiatives of Campbell and Mankiw (1987a, b) and Cochrane
(1988), whose concerns are the behaviour of US aggregate GNP/GDP data,
persistence in macroeconomic time series have been further investigated in the
sectors, in other economies and in other economic and financial variables. Pesaran
et al. (1993) extend measures of persistence into multivariate cases and examine the
persistence profile in ten US GNP sectors, though they do not consider the cross-
effect of persistence between sectors. Most of the sectors are found to be very
persistent in response to shocks, with the persistence measure being greater than
one, suggesting there is compounding effect. In comparison, utilities exhibit largest
compounding persistence followed by services, while persistence in manufacturing
is relatively lower. Mayadunne et al. (1995) have carried out similar research using
the Australian data and made comparison with the US results. Concerned with the
random walk hypothesis in foreign exchange rates, Van de Gucht et al. (1996)
examine persistence in seven daily foreign spot exchange rates of the Canadian
dollar, the French franc, the Swiss franc, the German mark, the Italian lire, the
Japanese yen and the British pound vis-à-vis the US dollar over the period of
3 September 1974 to 27 May 1992. They find departure from the random walk
benchmark but the departure is not substantial when the standard errors in the
persistence measure are taken into consideration. Moreover, there is increasing
mean-reverting component in more recent periods. The cross-effect of shocks is
also checked and that between European currencies is found to be similar; further,
the cross-effect between European currencies is larger than that between European
currencies and that of the Japanese yen and the Canadian dollar. Cashin et al. (2000)
study the persistence of shocks to world commodity prices, using monthly IMF
data on primary commodities between 1957 and 1998. They find that shocks to
commodity prices typically have significantly persistent effect and the persistence
profile varies, based on which the effect of national and international schemes of
earnings stabilisation may be formed and evaluated. Their analysis is not in favour
of a stabilisation scheme, as they argue that the cost of the stabilisation scheme will
likely exceed any associated smoothing benefits. Other studies in the area include
Greasley and Oxley (1997), Linden (1995), and Demery and Duck (1992).
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Impulse response and variance decomposition have been widely employed to
observe cross-effects of shocks, evaluated on the basis of a pre-specified and
tested multivariate model. In the last decade, one of the extensively studied areas
is capital market links and interactions, owing to an increasingly integrating global
financial market offering opportunities that never existed before or exhausted in
the domestic market. Investigating capital market integration in the Pacific basin in
the context of impulse response, Phylaktis (1999) studies specifically the speed of
adjustment of real interest rates to long-run equilibrium following a shock in each
of these markets. It is found that countries in the region are closely linked with
world financial markets. Moreover, the association of these markets with Japan is
stronger than that with the US. Tse et al. (1996) examine information transmission
in three Eurodollar futures markets of Imm, Simex and Liffe. Employing impulse
response analysis and variance decomposition which explores further the common
factor in the cointegration system, it is found that the common factor is driven
by the last trading market in the 24-hour trading sequence. Each of the markets
impounds all the information and rides on the common stochastic trend during
trading hours, and the three markets can be considered one continuously trading
market. In a study of equity market linkages in ASEAN countries, Roca et al.
(1998) use impulse response analysis and variance decomposition based on a
VAR with error correction to investigate the extent and structure of price linkages
among these markets. They find evidence of short-term linkages among all but the
Indonesian market. But in the long-run, the linkages, if any, are weak. Specifically,
the Malaysian market is the most influential, i.e. its shocks considerably contribute
to the forecast variance in other markets; while the Singapore and Thailand markets
have most strong interaction with other markets, i.e. shocks in the Singapore and
Thailand markets account for a large proportion of forecast variance in other
markets and, in the meantime, shocks in other markets attribute to a large amount of
forecast variance in Singapore and Thailand markets. Finally, their results indicate
that the Indonesian market is isolated and not linked with any other ASEAN
market.

Impulse response has been widely applied to regional studies and real estate
where the response to shocks from various sources is one of the major concerns.
Baffoe-Bonnie (1998) analyses the effect of key macroeconomic variables on
house prices and the stock of houses sold in the framework of VAR and impulse
response analysis. The results suggest that macroeconomic variables produce
cycles in housing prices and houses sold. Considerable amount of the forecast
variance in the housing market can be attributed to shocks in the employment
growth and mortgage rate at both national and regional levels. The study also
reveals that the dynamic behaviour of housing prices and the number of houses
sold vary substantially among different regions and at different time periods. Hort
(2000) employs impulse response analysis based on the estimation of a VAR
model of the after-tax mortgage rate, house prices and sales, to examine prices
and turnover in the owner-occupied housing market. The empirical results in the
paper support that the adjustment of house price expectations following a shock
to demand is slow due to informational imperfections in the housing market.
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There also exist asymmetries in buyers and sellers’ responses such that sales are
expected to respond prior to prices where buyers are assumed to respond prior to
sellers. Tse and Webb (1999), concerned with the effectiveness of land tax and
capital gain tax in curbing hoarding of land and speculation, evaluate the effects of
property tax on housing in Hong Kong. Using an impulse response function, they
demonstrate that the transaction tax has a dynamic negative impact on housing
returns, as the imposition of capital gain tax impairs the liquidity of property
transaction, lowers the rate of return on property investment, and reduces revenue
from land sales. They also show that the capital gain tax is capitalised into housing
prices.

Various other studies can be found in the areas of business cycles and monetary
policy evaluation, real and nominal exchange rate behaviour and linkages, PPP,
debt markets, employment, regions and sectors, in virtually any dynamic models
involving the analysis of effect and cross-effect of shocks.

Notes

1 Pesaran and Shin (1998) and Microfit use the total variance of the orthogonal case in the
denominator, so the components do not sum up to 100 per cent.

2 The restricted model involves deletion of the lagged variables, with the t-statistic of
their coefficients being less than one, and re-estimation. Therefore, the implementation
of the model is complicated and the model differs in every case, whereas the unrestricted
model decides the lag length, then includes all lagged variables. So, the implementation
and estimation are ‘standard’.

Questions and problems

1 What is meant by persistence? How is persistence measured?
2 Compare persistence analysis and the test for unit roots.
3 Discuss the advantages of the procedure in this chapter to standardise the

multivariate persistence measure and its rationale.
4 Describe impulse response analysis and its application in evaluating the impact

of shocks and policy changes.
5 Why is orthogonalisation required in impulse response analysis?
6 What is meant by generalised impulse response analysis? Can generalised

impulse response analysis avoid all the complications in orthogonalisation
while achieving the same goal?

7 The contribution by the shock in each of the sources, expressed as a percent-
age of the total variance, sums to 100 per cent in this chapter. Discuss its
rationale.

8 Collect data from various sources and test for persistence in the following
time series:

(a) the spot foreign exchange rates of selected industrialised nations and
developing economies vis-à-vis the US$, testing one individual time
series each time,
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(b) GDP of selected countries, testing one individual time series each
time,

(c) nominal interests in selected countries, testing one individual time series
each time.

What do you find of their characteristics?
9 Collect data from various sources and test for multivariate persistence in the

following groups of time series:

(a) the spot foreign exchange rates of selected industrialised nations vis-à-vis
the US$,

(b) the spot foreign exchange rates of selected developing economies
vis-à-vis the US$,

(c) GDP of selected countries,
(d) nominal interests in selected countries.

What do you find of their characteristics?
10 Collect data from various sources and carry out (orthogonal) impulse response

analysis in the following groups of time series:

(a) sectoral output indices in the UK,
(b) GDP of the UK, the US and Japan
(c) stock market return indices of the UK, the US and Japan.

What do you find of their characteristics?
11 Collect data from various sources and carry out generalised impulse response

analysis in the following groups of time series:

(a) sectoral output indices in the UK,
(b) GDPs of the UK, the US and Japan
(c) stock market return indices of the UK, the US and Japan.

What do you find of their characteristics? Analyse the differences in your
findings from (9) and (10).
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7 Modelling regime shifts
Markov switching models

Recent renewed interests in Markov chain processes and Markov switching models
are largely fascinated by Hamilton (1989, 1994). While the major contributors
with economic significance to the popularity of this family of models are the
intensified studies in business cycles in the last two decades in the frontier of
macro and monetary economics, and the proliferating use of mathematical tools in
the exploitation of excess returns in a seemingly efficient while volatile financial
market. The regime shift or state transition features of Markov switching, when
applied properly, are able to illustrate and explain economic fluctuations around
boom–recession or more complicated multi-phase cycles. In financial studies, the
state transition process can be coupled with bull–bear market alternations, where
regimes are less clearly defined but appear to have more practical relevance.
However, estimation of Markov switching models may be technically difficult and
the results achieved may be sensitive to the settings of the procedure. Probably,
rather than producing a set of figures of immediate use, the approach helps
improve our understanding about an economic process and its evolving mechanism
constructively, as with many other economic and financial models.

7.1. Markov chains

A Markov chain is defined as a stochastic process
{
St, t = 0,1, . . .

}
that takes finite

or countable number of integer values denoted by i, j, and that the probability of
any future value of St+1 equals j, i.e., the conditional distribution of any future state
St+1, given the past state S0,S1, . . .,St−1 and the present state St , is only dependent
on the present state and independent of the past states. That is:

P
{
St+1 = j |St = it,St−1 = it−1,S1 = i1,S0 = i0

}= P
{
St+1 = j |St = it

}= pij

(7.1)

pij is the probability that the state will next be j when the immediate preceding
state is i, and can be called the transition probability from i into j. Suppose there
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are N states, then all the transitions can be expressed in a transition matrix:

P =

⎡
⎢⎢⎢⎢⎣

p11 p12 . . p1N

p21 p22 . . p2N

. . . . .

. . . . .

pN1 pN2 . . pNN

⎤
⎥⎥⎥⎥⎦ (7.2)

The probability is non-negative and the process must transit into some state,
including the current state itself, so that:

N∑
j=1

pij = 1, i = 1,2, . . .,N (7.3)

Above are one-step transition probabilities. It is natural for us to extend the one-
step case and consider n-step transitions that are clearly functions and results of
several one-step transitions. For example, a two-step transition P

{
St+2 = j |St = i

}
probability is the summation of the probabilities of transitions from state i into all
the states, then from all the states into state j:

N∑
k=1

P
{
St+2 = j |St+1 = k

}
P
{
St+1 = k |St = i

}

More generally, define the n-step transition probability as:

P
{
St+n = j |St = i

}= pn
ij (7.4)

A formula called the Chapman–Kolmogorov equation holds for calculating multi-
step transition probabilities:

pm+n
ij =

N∑
k=1

pn
ik pm

kj, i, j = 1,2, . . .N (7.5)

7.2. Estimation

The estimation of a Markov chain process or Markov switching model is achieved,
naturally, by considering the joint conditional probability of each of future states, as
a function of the joint conditional probabilities of current states and the transition
probabilities. This procedure is called filtering: the conditional probabilities of
current states are input, passing through or being filtered by the system of dynamic
transformation that is the transition probability matrix, to produce the conditional
probabilities of future states as output. The conditional likelihood function can be
obtained in the meantime, and the parameter can be estimated accordingly.
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Suppose there is a simply two-state Markov chain process:

yt = μ1S1 +μ2S2 + εt (7.6)

where S1 = 1 when in state 1 and 0 otherwise, S2 = 1 when in state 2 and 0
otherwise, and εt is a white noise residual. We are interested to know how the joint
probability of yt and St transits over time. This can be achieved in two major steps.
The first is to have an estimate of the conditional probability P(St = st |yt−1), i.e.,
the probability of being in state st , based on information available at time t − 1.
According to the transition probability and property, that is straightforward. The
second is to consider the joint probability density distribution of yt and St , so
the probability of being in state st is updated to P(St = st |yt), using information
available at time t. The procedure is as follows:

(i) estimating the probability of being in state st , conditional on information
at t − 1:

P(St = st |yt−1) = P(St = st |St−1 = st−1) × P(St−1 = st−1 |yt−1)

(ii) (a) calculating the joint density distribution of yt and St :

f (yt,St = st |yt−1)

= f (yt |St = st,yt−1) × P(St = st |yt−1)

= f (yt |St = st,yt−1) × P(St = st |St−1 = st−1) × P(St−1 = st−1 |yt−1)
(7.7)

(b) calculating the density distribution of yt :

f (yt |yt−1) =
2∑

st=1

f (yt,St = st |yt−1) (7.8)

(c) calculating the following:

P(St = st |yt) = f (yt,St = st |yt−1)

f (yt |yt−1)
(7.9)

that is the updated joint probability of yt and St .

Consider now a general N -state Markov chain process yt that has autoregression
of order r in its residual εt and is also the function of the exogenous variable
xt and its lags. This is the typical dynamic process of autoregression, frequently
encountered in contemporary empirical economics and finance, if there is only one
state. When variable yt in a Markov chain process has autoregression of order r,
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the joint conditional probability of the current state and r previous states, based
on information set including all its lags up to r periods before period 0, i.e.:

P(St = st,St−1 = st−1,. . .St−1 = st−r |t−1) (7.10)

should be considered, where t−1 = (yt−1,yt−2, . . .y−r,xt−1,xt−2, . . .x−r) is the
information set available at time t − 1. The filtering procedure, which is to
update the joint conditional probability of equation (7.6) from the previous joint
conditional probability, is as follows:

(1) calculating the joint density distribution of yt and St :

f (yt,St = st,St−1 = st−1,. . .St−r−1 = st−r−1 |t−1)

= f (yt |St = st,St−1 = st−1,. . .St−r−1 = st−r−1,t−1)

× P(St = st,St−1 = st−1,. . .St−r−1 = st−r−1 |t−1)

= f (yt |St = st,St−1 = st−1,. . .St−r−1 = st−r−1,t−1)

× P(St = st |St−1 = st−1) × P(St−1 = st−1,. . .St−r−1 = st−r−1 |t−1)
(7.11)

(2) calculating the density distribution of yt :

f (yt |t−1)

=
N∑

st=1

N∑
st−1=1

· · ·
N∑

st−r=1

f (yt,St = st,St−1 = st−1,. . .St−r−1 = st−r−1 |t−1)

(7.12)

(3) calculating the following that, unlike the non-serial correlation residual case,
is not yet the output of the filter:

P(St = st,St−1 = st−1, . . .St−r−1 = st−r−1 |t)

= f (yt,St = st,St−1 = st−1,. . .St−r−1 = st−r−1 |t−1)

f (yt |t−1)

(7.13)

(4) the output of the filter is then the summation over the states at lag r:

P(St = st,St−1 = st−1,. . .St−r = st−r |t)

=
N∑

st−r−1=1

P(St = st,St−1 = st−1,. . .St−r−1 = st−r−1 |t)
(7.14)
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During the above course the probability of the states at time t, based on currently
available information, is obtained:

P(St = st |t) =
N∑

st=1

N∑
st−1=1

· · ·
N∑

st−r=1

P(St = st,St−1 = st−1,. . .St−r = st−r |t)

(7.15)

The log likelihood function is also derived:

L(θ ) =
T∑

t=1

f (yt |t−1;θ ) (7.16)

where θ represents the vector of parameters. There are few techniques that are
singled out for estimating the log likelihood function, such as the Gibbs sampling
and the EM algorithm, but maximum likelihood remains a useful, convenient
and largely appropriate method in practice. Maximising equation (7.16) leads to
derivation of the estimates with regard to parameters and states.

Using the simple instance of the two-state Markov chain process of equa-
tion (7.6) and assuming a normally distributed residual, we write down its
maximum likelihood function explicitly, that can be routinely extended to more
complicated cases, as follows:

L(θ ) =
T∑

t=1

f (yt |yt−1;θ )

=
T∑

t=1

2∑
st=1

f (yt |St = st,yt−1;θ ) × P(St = st |yt−1)

=
T∑

t=1

2∑
st=1

2∑
st−1=1

{
f (yt |St = st,yt−1;θ ) × P(St = st |St−1 = st−1)

×P(St−1 = st−1 |yt−1)
}

=
T∑

t=1

{
1√

2πσε

exp

(−(yt −μ1)2

2σ 2
ε

)
× [p11 × PtL(1) + p21 × PtL(2)

]

+ 1√
2πσε

exp

(−(yt −μ2)2

2σ 2
ε

)
× [p21 × PtL(1) + p22 × PtL(2)

]}

(7.17)

where PtL(1) = P(St−1 = 1 |yt−1) and PtL(2) = P(St−1 = 2 |yt−1) for simplicity.

7.3. Smoothing

Similar to the case of the Kalman filter to be introduced in Chapter 9, the
states at time t have been estimated based on the information set at t in the
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above procedure. It may be of interest to review the states at a later time when
more information is available, or infer the states using the whole information set
up to the last observation at time T . An inference made about the present states
using future information is called smoothing, with the inference made with the
whole information set being full smoothing, or simply smoothing. Smoothing
may be of no use to problems such as real time control in cybernetics, but it
provides more desirable results when an insightful understanding of the process is
the major concern; for example, in the economic science for revealing the working
mechanism of dynamic economic systems and shaping future policies.

Smoothing is to revise P(St = st |t), the probability of the states at time t based
on currently available information, to P(St = st |T ), the probability of the states
at time t based on the whole information set. Put simply, it replaces t by T in
the probability. Smoothing involves two steps when there is no lag in yt , and three
steps and one approximation when there are lags in yt .

(1) Calculating (to save space, St = st has been simplified as St):

P(St−r, . . .St,St+1 |T )

= P(St−r+1, . . .St,St+1 |T ) × P(St−r |St−r+1, . . .St,St+1,T )

= P(St−r+1, . . .St,St+1 |T ) × P(St−r |St−r+1, . . .St,St+1,t)

= P(St−r+1, . . .St+1 |T ) × P(St−r, . . .St+1,t)

P(St−r+1, . . .St,St+1 |t)

= P(St−r+1, . . .St+1 |T ) × P(St−r, . . .St,t) × P(St+1 |St)

P(St−r+1, . . .St,St+1 |t)
(7.18)

The second equality involving P(St−r |St−r+1, . . .St,St+1,T ) = P(St−r |
St−r+1, . . .St,St+1,t) is exact only if:

f (yt+1,Tt |St−r,St−r+1. . .St,St+1,t)

= f (yt+1,Tt |St−r+1, . . .St,St+1,t) (7.19)

holds. It is because, define Tt = T −t , it follows:

P(St−r |St−r+1. . .St,St+1,T ) = P(St−r |St−r+1, . . .St,St+1,t,Tt)

= f (yt+1,St−r,Tt |St−r+1. . .St,St+1,t)

f (yt+1,Tt |St−r+1. . .St,St+1,t)

= f (yt+1,Tt |St−r . . .St,St+1,t) × P(St−r |St−r+1. . .St,St+1,t)

f (yt+1,Tt |St−r+1. . .St,St+1,t)
(7.20)



Modelling regime shifts 119

(2) Summing up over St+1 = 1,2, . . .N :

P(St−r, . . .St |T ) =
N∑

st+1=1

P(St−r, . . .St,St+1 |T ) (7.21)

Equation (7.21) is already the smoothed states when there is no serial corre-
lation in the residual or there is no lagged yt involved. When there are lags,
smoothing is similar to equation (7.15), finally achieved through the following
summation:

P(St |T ) =
N∑

st=1

N∑
st−1=1

· · ·
N∑

st−r=1

P(St,St−1, . . .St−r |T ) (7.22)

7.4. Time-varying transition probabilities

It is natural to extend the above analysis to allow the Markov chain model additional
flexibility, by introducing time-varying transition probabilities. Let us define the
time-varying transition probability as follows:

P
{
St+1 = j |St = it, |t+1

}= pij(t + 1) (7.1′)

Then the transition probability matrix is:

P(t) =

⎡
⎢⎢⎢⎢⎣

p11(t) p12(t) . . . p1N (t)
p21(t) p22(t) . . . p2N (t)

. . . . . .

. . . . . .

. . . . . .

pN1(t) pN2(t) . . . pNN (t)

⎤
⎥⎥⎥⎥⎦ (7.2′)

The choice of types of time-varying transition probabilities is an empirical issue,
though those used in binary choice models in the form of probit and logit are
logically adopted, with the similar rationale argued for the probit and logit model.
In addition, there is the exponential function and the cumulative normal distribution
function. The exponential function and the cumulative normal distribution function
are symmetric, with the mirror image on the vertical axis, so any departure from the
mean value will increase the probability. While a logic function is asymmetric with
a positive departure and a negative departure from the mean value having opposite
effects. These time-varying functions are also similar to what are widely used
in smoothing transition models. The use of time-varying transition probabilities
has an additional advantage, that is, such specifications limit the value of the
probability in the range of [0, 1] at the same time, or indeed, in any desirable
ranges. This prevents unreasonable outcome from occurring in the execution of
a programme. Even if the transition probability is not time-varying, using some
functional forms to set the range of the probability is always helpful.
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The logit function of transition probabilities is:

pij(t) = 1

1 + exp
{−tβ

′
ij

} (7.23)

whereβ′
ij is a vector of coefficients on the set of dependent and exogenous variables.

exp
{−tβ

′
ij

}
can change from 0 to ∞, containing the probability in the range of

[0, 1]. In a simple example, when −tβ
′
ij =ωij0 −γijyt−1, equation (7.23) becomes:

pij(t) = 1

1 + exp
{
ωij0 − γijyt−1

}
It has a mean value of 0.5 when yt = ωij/γij and will increase when yt > ωij/γij

with pij(t)
yt−1→∞

→ 0 decrease when yt < ωij/γij with pij(t)
yt−1→−∞

→ 1, provided γij is

positive. A cumulative normal distribution has the similar pattern.
An exponential type transition probability is specified as follows:

pij(t) = 1 − exp{−(tβ
′
ij)

2} (7.24)

exp{−(tβ
′
ij)

2} can change from 1 to 0, limiting the probability in the range of
[0, 1]. Using the same example of −tβ

′
ij =ωij0 −γijyt−1, equation (7.24) becomes:

pij(t) = 1 − exp{−(ωij0 − γijyt−1)2}

It has the maximum value of unity when yt = ωij/γij , and will decrease when yt

departs from ωij/γij , no matter whether yt − (ωij/γij) is positive or negative.
The above two specifications have direct economic meanings and implications,

e.g., symmetric responses related only to the distance of departure from a central
point or the equilibrium, no matter what is the direction or the sign of departure;
and asymmetric effects where both the distance and the sign are relevant. If the
purpose is to restrict the value of the probability only, then many simpler and more
straightforward specifications, such as the one used in Example 7.1 in section 7.5,
can perform satisfactorily.

7.5. Examples and cases

Example 7.1

We use the Markov chain model to illustrate regime shifts in business cycle
conditions in UK GDP data at the factor price running from the first quarter
of 1964 to the fourth quarter of 1999.
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Table 7.1 Estimation of UK GDP with a two-regime Markov switching model:
64Q1–99Q4

μ1 0.7491e−2∗∗∗
(0.1281e−2)

μ2 −0.1517e−1∗∗∗
(0.5446e−2)

σ1 0.8591e−4∗∗∗
(0.7592e−5)

σ2 0.6626e−4 (0.4354e−4)
ω11

a 3.2153∗∗∗ (1.1569)
ω22

b 0.7245 (1.0248)

∗∗∗significant at the 1 per cent level. Standard errors in parentheses.
aThe parameter from using a simple function, p = eω

/(1 + eω), to impose restrictions on the
range of the probability. p11, the transition probability of staying in normal periods, is 0.9613,
according to the function.
bEquivalent to a p22, the transition probability of remaining in a recession, of 0.6736.

The model has two means for recessions and normal times respectively.
The residual follows an autoregressive process of order 1 and has different
volatility or variance in the two regimes. Let yt be the logarithm of GDP, S1
be state for normal times, and S2 be state for recessions:

�yt = μ+μ2S2 +ρ�yt−1 +ωt

ωt ∼ (0,S1σ
2
1 + S2σ

2
2 )

(7.25)

With this specification, the growth rate is μ in normal times, and μ+μ2 in
recessions. While the variance is σ 2

1 in normal periods and σ 2
2 in recessions.

We adopt equation (7.23) to restrict the transition probability in the range
of [0, 1], though the transition probability is not time-varying. The results
from estimating the model are reported in Table 7.1.

It has been found that UK GDP growth is about 0.7 per cent per
quarter (μ1), translating into an annual growth rate of 3 per cent, during
normal times in the estimation period. In recessions, the growth rate is
a negative 0.7 per cent (μ1 + μ2), or a negative 3 per cent per annum.
The transition probability of staying in normal periods, or from normal to
normal is 0.9613, being calculated from ω11,0 and using a simple function,
p = eω/(1 + eω), to impose restrictions on the range of the probability. With
similar transformation, the transition probability of remaining in a recession
is 0.6736. This transition probability is, however, statistically insignificant
and therefore unreliable. One of the reasons is that the duration of recessions
is relatively short, so the probability of staying in the recession varies,
especially when the economyis nearing the end of a recession. The duration

Continued
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of being in normal times is:

1

1 − p11

= 1

1 − 0.9613
≈ 26 quarters or 6.5 years

The duration of an average recession is:

1

1 − p22

= 1

1 − 0.6736
≈ 3 quarters

Growth in GDP
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Figure 7.1 Growth in UK GDP.
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As observed before, the errors associated with p22 are large so the duration
of recessions could well deviate from three quarters by a large margin. The
two regimes also have different volatility. In normal times, the standard
deviation of the residual is 0.8591e−4 (σ1), or about 0.009 per cent per
quarter, being statistically significant at the 1 per cent level. While the
standard deviation seems smaller in recessions with σ2 being 0.6626e−4, it
does not suggest lower volatility as the statistic is statistically insignificant.
Since recession periods are relatively short with much fewer observations
being available, this statistic is unreliable. We can see from Table 7.1 that
the standard error of it is 0.4354e−4. So the standard deviation of the residual
can be very large as well as very small. This does cast more uncertainty in
recessions.

The business cycle regime characteristics of UK GDP are exhibited in
Figure 7.1. Notice the probability of being in one of the states is time-varying,
regardless whether the transition probabilities are constant or not. Panel (a) in
Figure 7.1 is the growth rate of UK GDP between the first quarter in 1964
and the fourth quarter in 1999. Panel (b) shows the probability of being in
the state of recession without smoothing, and Panel (c) is the full sample
smoothed probability for the same state. As in most empirical studies, there
is only very small difference between the two representations of probability.

Example 7.2

Oil price volatility has long been considered a factor influencing the state
of business cycles and, in particular, plunging the economy into recessions
when there is a sharp increase in the oil price, or an oil price crisis. Therefore,
the oil price is frequently used as a variable of impact in time-varying
transition probabilities. One of the examples is a study by Raymond and
Rich (1997) entitled ‘Oil and the macroeconomy: a Markov state-switching
approach’. Their modelling of time-varying transition probabilities follows
Filardo (1994); and the treatment of the oil price series follows Hamilton
(1996), having considered the asymmetric effects of oil price changes on
business cycles. The net oil price increase variable proposed by Hamilton
(1996) is equal to the percentage change in the current real oil price above
the maximum of the previous four quarters if positive and zero otherwise.
Bearing this characteristic in mind, their mean equation is:

�yt = α0 +α1St +
n∑

i=1

βio
+
t−i + εt, α1 < 0

εt ∼ N (0,σ 2
ε )

(7.26)

Continued
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where St = 0 is the state for the normal period or with higher growth
rate, St = 1 the state for recessions, and o+

t is the net oil price increase
variable explained in the above. There is no lagged real GDP growth entering
the mean equation. The specification does not distinguish the volatility or
variance of the residual between the higher growth period and recession.
The time-varying transition probabilities are designed as follows:

P{St = 0 |St−1 = 0,o+
t−1,o+

t−2, . . .} = qt = �

(
δ0 +

d∑
i=1

δio
+
t−i

)

P{St = 1 |St−1 = 1,o+
t−1,o+

t−2, . . .} = pt = �

(
γ0 +

d∑
i=1

γio
+
t−i

) (7.27)

where �(·) is the cumulative normal distribution function with the same
purpose as in Example 1 to limit the range of the transition probability
between 0 and 1.

The data sample period in the study is from the first quarter of 1951 to
the third quarter in 1995 for both US real GDP and the real price of oil. The
empirical results are summarised in Table 7.2, where the quarterly growth
rate has been multiplied by 100.

The unrestricted model, where the net oil price increase variable entering
both the mean equation for real GDP growth and the transition probability,
has achieved the highest log likelihood function value. Comparing the two
restricted versions with the general model of no restriction by the statistic
of the likelihood ratio test, however, it is found that the time-varying
transition probability model is of no difference from a constant transition
probability model. That is the validity of the restriction cannot be rejected
at any conventional statistical significance levels, with a log likelihood
ratio being LR = 0.894. Nevertheless, the oil variable plays a role in the
mean equation and the restriction is rejected by a log likelihood ratio test
statistic of 12.142. The above analysis suggests that the net oil price increase
variable has a negative impact on the growth of real GDP but provides little
valid information about future switches between the two regimes and their
timing. Indeed, none of the coefficients for lagged net oil price increases are
statistically significant in the transition probabilities with the general model;
and only the coefficient for the net oil price increase variable at lag 4 in the
transition probability of remaining in the normal time (δ4) is significant at
the 5 per cent level with the model where restrictions are imposed on the
mean equation. But, as indicated earlier, that restrictions on the coefficients
in the mean equation are rejected, so estimates obtained with that model are
questionable. Besides, none of the parameters in the transition probability
of remaining in recession, either the constant or the coefficients for lagged
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Table 7.2 Estimation of US real GDP with a time-varying transition probability
Markov switching model: 51Q1–95Q3

Restricted: oil has no
effect on transition
probabilities

Restricted: oil has no
effect in the mean
equation

No restrictions:
the general model

α0 1.066∗∗∗
(0.097)

0.929∗∗∗
(0.076)

1.018∗∗∗
(0.081)

α0 +α1 −0.068
(0.310)

−0.593∗∗
(0.294)

−0.081
(0.341)

β1 −0.031∗∗∗
(0.012)

– −0.026∗∗
(0.012)

β2 −0.013
(0.012)

– −0.008
(0.013)

β3 −0.027∗∗
(0.012)

– −0.032∗∗∗
(0.013)

β4 −0.046∗∗∗
(0.011)

– −0.021
(0.014)

δ0 1.484∗∗∗
(0.375)

1.866∗∗∗
(0.322)

1.750∗∗∗
(0.361)

δ3 – −0.053
(0.069)

−0.044
(0.051)

δ4 – −0.154∗∗
(0.073)

−0.139
(0.090)

γ0 0.334
(0.387)

1.012
(1.008)

0.779
(0.704)

γ3 – 0.918
(0.846)

0.948
(1.043)

γ4 – −0.485
(0.344)

−0.502
(0.410)

σε 0.714∗∗∗
(0.050)

0.753∗∗∗
(0.047)

0.732∗∗∗
(0.048)

Log
likelihood

−209.320 −214.944 −208.873

∗∗significant at the 5 per cent level; ∗∗∗significant at the 1 per cent level. Standard errors in
parentheses.

oil price increases, are statistically significant. This is consistent with the
findings in Example 7.1.

From applying equation (7.27) and the estimates in Table 7.2, q, the
average transition probability of remaining in the normal period, is 0.931;
and p, the average transition probability of remaining in recession, is
0.631. The average duration of being in normal times is 1/(1 − q) =
1/(1 − 0.931) ≈ 14.5 quarters or slightly more than 3.5 years. The duration

Continued
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of an average recession is 1/(1 − p) = 1/(1 − 0.631) ≈ 2.7 quarters.
These durations, especially the duration of normal periods, are relatively
shorter than those in Example 7.1 with the UK case. The difference may
suggest that the UK economy has a longer duration of normal periods but
suffers more severely in recessions, or arise from the sensitivity of the
parameters to estimation procedures and data sets.

7.6. Empirical literature

Markov switching approaches have attracted much attention in financial and
economic modelling in recent years, due to business cycle characteristics high-
lighted in macroeconomics and monetary economics, and a changing business
and investment environment featured by bull–bear market alternations in financial
studies. Collectively, these cyclical movements can be termed as regime shifts,
common to most modern market economies. As the Markov switching model
clearly defines two or more states or regimes, it can reveal the dynamic process of
the variables of concern vividly and provide the researcher and policy maker with
a clue of how these variables have evolved in the past and how they may change in
the future. Nevertheless, the implementation and execution of a Markov switching
model, though not complicated, may be technically difficult as it is rather sensitive
to the choice of initial values, other settings such as the lag length, and even the
data sample.

Stock market behaviour is one of the areas to which Markov switching has been
widely applied. In a paper entitled ‘Identifying bull and bear markets in stock
returns’, Maheu and McCurdy (2000) use a Markov switching model to classify
returns into a high-return stable state and a low-return volatile state. They call
the two states bull and bear markets respectively. Using 160 years’ US monthly
data, they find that bull markets have a declining hazard function although the
best market gains come at the start of a bull market. Volatility increases with
duration in bear markets. Driffill and Sola (1998) investigate whether there is
an intrinsic bubble in stock prices so that stock prices deviate from the values
predicted by the present value model or deviate from the fundamental relationship
between income and value. They claim that a Markov switching model is a more
appropriate representation of dividends. Allowing for dividends to switch between
regimes they show that stock prices can be better explained than by the bubble
hypothesis. When both the bubble and the regime switching in the dividend
process are considered, the incremental explanatory contribution of the bubble
is low. Assoe (1998) examines regime switching in nine emerging stock market
returns. The author claims that changes in government policies and capital market
reforms may lead to changes in return generating processes of capital markets.
The results show strong evidence of regime switching behaviour in emerging
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stock market returns with regard to volatility which foreign investors concern
most. Other research includes Dewachter and Veestraeten (1998) on jumps in
asset prices which are modelled as a Markov switching process in the tradition
of event studies; Scheicher’s (1999) investigation into the stock index of the
Vienna Stock Exchange with daily data from 1986 to 1992, adopting Markov
switching and GARCH alternatives; and So et al. (1998) who examine the S&P500
weekly return data with the Markov switching approach to modelling stochastic
volatility, and identified high, medium, and low volatility states associated with the
return data.

The business and investment environment can be reasonably characterised by
switching between different regimes as well. In this regard, Asea and Blomberg
(1998) investigate the lending behaviour of banks over lending cycles, using the
Markov switching model with a panel data set consisting of approximately two
million commercial and industrial loans granted by 580 banks between 1977 and
1993. They demonstrate that banks change their lending standards from tightness
to laxity systematically over the cycle. Town (1992), based on the well observed
phenomenon that mergers take place in waves, fits the merger data into a Markov
switching model with shifts between two states of high and low levels of activity
and claims improvements over ARIMA models.

The changing pattern of interest rates is indicative of business cycle conditions
and could be subject to regime shifts itself. To investigate how real interest rates
shift, Bekdache (1999) adopts a time varying parameter model with Markov
switching conditional heteroscedasticity to capture two sources of shifts in real
interest rates: shifts in the coefficients and shifts in the variance. The former relates
the ex ante real rate to the nominal rate, the inflation rate and a supply shock
variable, and the latter is unconditional shifts in the variance of the stochastic
process. The results prefer a time varying parameter model to Markov switching
with limited states. Dewachter (1996) studies interest rate volatility by examining
both regime shifts in the variance and links between volatility and levels of the
interest rate. While regime shifts are found in the variance, the contribution of
volatility-level links cannot be ignored. The above findings suggest that univariate
or single element regime shifts in interest rate modelling fail to fully characterise
interest rate dynamics.

Probably the majority of applied research is in the area of business cycles where
recent studies are still burgeoning. In addition to classifying the economy into
two states of booms and recessions, Kim and Nelson (1999) further investigate
whether there has been a structural break in post-war US real GDP growth
towards stabilisation. They employ a Bayesian approach to identifying a structural
break at an unknown change-point in a Markov-switching model. Their empirical
results suggest a break in GDP growth toward stabilisation at the first quarter
of 1984, and a narrowing gap between growth rates during recessions and
booms. Filardo and Gordon (1998) specify a time varying transition probability
model where the information contained in leading indicator is used to forecast
transition probabilities and, in turn, to calculate expected business cycle durations.
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Both studies employ Gibbs sampling techniques. Other research in the category
covers Diebold et al. (1993), Filardo (1994), Ghysels (1994), Luginbuhl and
de Vos (1999), Kim and Yoo (1996), and Raymond and Rich (1997) as illustrated
in Example 7.2.

It should be noted that the empirical application of Markov switching models
is not always superior to an alternative or simple model, and is not without
deficiencies. Aware of these problems, Boldin (1996) explores the robustness of
Hamilton’s (1989) two-regime Markov switching model framework. Applying
Hamilton’s exact specification to a revised version of real GNP, the author
finds that parameter estimates are similar to those reported by Hamilton only
when the author uses the same sample period (1952–1984) and a particular
set of initial values for the maximum likelihood procedure. Two other local
maximums exist that have higher likelihood values, and neither correspond to
the conventional recession–expansion dichotomy. When the sample period is
extended, there is no longer a local maximum near the parameter set reported
by Hamilton. Exploring the model and data further, the author rejects cross-
regime restrictions of Hamilton specification, but also finds that relaxing these
restrictions increases the number of local maximums. In a study on the prediction
of US business cycle regimes, Birchenhall et al. (1999) compare the use of
logistic classification methods and Markov switching specifications for the
identification and prediction of post-war US business cycle regimes as defined
by the NBER reference turning point dates. They examine the performance
of logistic procedures in reproducing the NBER regime classifications and in
predicting one and three months ahead growth rates using leading indicator
variables. They show that the logistic classification model provides substantially
more accurate business cycle regime predictions than the Markov switching
model. Nevertheless, as said at the beginning of this chapter, one of the major
contributions the Markov switching approach made is probably to help improve
our understanding about an economic process. This may partly explain its
contemporary popularity. In addition to above discussed empirical literature, a
variety of applications can be further found in foreign exchange rates, bond yields,
inflation, and so on.

Questions and problems

1 Describe the state and the state transition probability in a Markov chain.
2 What is the Chapman–Kolmogorov equation for calculating multi-step

transition probabilities?
3 Cite examples of economic and financial variables which can be shown as a

Markov process.
4 What is smoothing is the estimation of a Markov process? Why is smoothing

required?
5 Discuss the advantages of adopting time-varying transition probabilities in

the Markov process.
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6 Collect data from various sources, and estimate a two-state constant transition
probability model in the following time series (using RATS, GAUSS or other
packages):

(a) industrial production of selected countries,
(b) CPI of the G7,
(c) GDP of the US, Argentina, France, Algeria, and India.

7 Estimate a two-state time-varying transition probability model in the above
time series.
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8 Present value models and tests for
rationality and market efficiency

The present value model states that the present value of an asset is derived from
its earning power, or the ability to generate future income. This crucially depends
on the expectations about future income and the discount rate at which people or
investors would sacrifice a portion of their current income for future consumption,
after adjusting for uncertainty or risk involved in the process. Although the present
value of an asset, or economic value, as against accounting value, is the best to
reflect its true value, it involves expectations on future income, the discount rate
and rationality of people. Therefore the present value model is difficult to apply
properly in practice. To link the present value of an asset to its future income in the
framework of cointegration analysis, as proposed by Campbell and Shiller (1987),
has provided a useful tool for testing expectations and rationality in financial
markets.

8.1. The basic present value model and its time series
characteristics

The present value of an asset is its all future income discounted:

Vt =
∞∑

τ=1

1

(1 + rt) · · · (1 + rt+τ )
EtIt+τ (8.1)

where Vt is the present value of the asset, It+1 is income derived from possessing
this asset in period (t, t+1], Et is expectations operator, and rt is the discount rate
in period (t, t+1].

When the discount rate is constant, i.e., rt = r, equation (8.1) becomes:

Vt =
∞∑

τ=1

1

(1 + r)τ
EtIt+τ (8.1′)

Subtracting Vt/(1 + r) from both sides leads to:

Vt −
Vt

1 + r
=

∞∑
τ=1

1

(1 + r)τ
EtIt+τ −

∞∑
τ=1

1

(1 + r)τ
EtIt+τ−1+

It

1 + r
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Re-arrangement of the above yields:

Vt −
It

r
= 1 + r

r

∞∑
τ=1

1

(1 + r)τ
Et�It+τ (8.2)

Equation (8.2) states that if Vt and It+1 are I (1) series, then a linear combination
of them is stationary too and the two series are cointegrated. Campbell and
Shiller (1987) define (Vt − It)/r as spread, St . Obviously, the spread links a stock
variable, Vt , to a flow variable, It . It is not strange that a flow variable divided by
the rate of flow (in this case r) is a stock variable; or a stock variable times the
rate of flow is a flow variable. If income is constant over time, then total wealth
or value of an asset is simply the current income flow divided by the rate at which
income is generated, i.e., the spread is equal to zero. Otherwise, the spread is a
function of the expected changes in future incomes discounted. A positive spread
reflects an overall growth in future incomes, and a negative spread is associated
with income declines.

Nevertheless, the seemingly stationarity of the right-hand side in equation (8.2)
is problematic, or at least unrealistic. The growth or change in income as expressed
in equation (8.2) is in an absolute term, It − It−1, instead of a relative term,
(It − It−1)/It−1. Let us adopt a version of the Gordon dividend growth model:

Vt =
∞∑

τ=1

EtIt+τ

(1 + r)τ
=

∞∑
τ=1

(1 + g)τ It(1 + Etut+τ )

(1 + r)τ
(8.3)

subtracting (1 + g)Vt/(1 + r) from both sides, we have:

Vt −
(1 + g)Vt

1 + r
=

∞∑
τ=1

(1 + g)τ It(1 + Etut+τ )

(1 + r)τ
−

∞∑
τ=1

(1 + g)τ It(1 + Etut+τ−1)

(1 + r)τ

+ (1 + g)It

1 + r

and re-arrangement yields:

Vt −
(1 + g)It

r − g
= 1 + r

r − g

∞∑
τ=1

(1 + g)τ Et�ut+τ

(1 + r)τ
(8.4)

where �ut+τ = � ln It+τ − g. Equation (8.4) reduces to the Campbell and Shiller
(1987) formulation when g = 0. �It is in general non-stationary.

Define Vt −[(1 + g)It/(r − g)] as the full spread, Sf t . Equation (8.4) says total
wealth or value of an asset is simply the current income flow (notice It+1 = (1+g)It

is the income in the current period) divided by, instead of the discount rate, the
difference between the discount rate and the growth rate. Equation (8.4) is, in
fact, the Gordon valuation model for constant growing perpetuities. The important
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message here is that there exists a cointegration or long-run relationship between
the value and the income, as revealed by equations (8.2) and (8.4). Moreover, if
income obeys a constant growth process, the spread in the sense of Campbell and
Shiller (1987) is not stationary, but the full spread as defined above is stationary.
Therefore, caution has to be taken in explaining and interpreting the cointegration
vector. If (1+g)/(r−g) is mistaken as 1/r, then (r−g)/(1+g) might be mistaken
as the discount rate r and the practice would under estimate the true discount rate
if there is growth in income.1 Later in this chapter, we will see how to impose
restrictions and carry out empirical tests.

Equation (8.2) can also be written as:

St = Vt −
1

r
It = 1 + r

r
Et�Vt+1 (8.5)

If there is a rational bubble bt , satisfying:

bt = 1

1 + r
Etbt+1

i.e.:

bt+1 = (1 + r)bt + ζt+1, ζt ∼ iid(0,σ 2
ζ ) (8.6)

in equation (8.1′), it will appear on the right-hand side of equation (8.2), but will
not appear on the right-hand side of equation (8.5). bt has a root outside the unit
circle and is explosive or non-stationary. Consequently, even if �It is stationary,
the spread is non-stationary if there is a rational bubble in equation (8.1′), inducing
non-stationarity in �Vt through equation (8.5). Therefore, testing for rationality is
equivalent to testing for cointegration between the present value variable, Vt , and
the income variable, It .

8.2. The VAR representation

Equations (8.2) and (8.5) also suggest a way to compute the variables in a
VAR (I assume I had introduced such terminologies in earlier chapters). Let
zt = [St . . . St−p+1 �It . . . �It−p+1

]′
, the VAR can be written in the companion

form:[
St

�It

]
=
[
a11(L) a12(L)
a21(L) a22(L)

][
St−1
�It−1

]
+
[
μ1t

μ2t

]
(8.7)

where

St = [St . . . St−p+1

]′
, �It = [�It . . . �It−p+1

]′
μ1t = [ν1t 0 . . .

]′
, μ2t = [ν2t 0 . . .

]′
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a11(L) =

⎡
⎢⎢⎣

a11,1 . . . . . . a11,p

1 . . .

. . .

1

⎤
⎥⎥⎦ , a12(L) =

⎡
⎢⎢⎣

a12,1 . . . . . . a12,p

0 . . .

. . .

0

⎤
⎥⎥⎦

a21(L) =

⎡
⎢⎢⎣

a21,1 . . . . . . a21,p

0 . . .

. . .

0

⎤
⎥⎥⎦ , a22(L) =

⎡
⎢⎢⎣

a22,1 . . . . . . a22,p

1 . . .

. . .

1

⎤
⎥⎥⎦

Or, in a compact form:

zt = Azt−1 +μt (8.8)

The implication of this representation is that the spread, St , must linearly Granger
cause �It , unless St is itself an exact linear combination of current and lagged �It .
Therefore, St would have incremental predicting power for �It . Further, let e1′ and
e2′ be (1 × 2p) row vectors with zero in all cells except unity in the first element
for the former and in the (p + 1) element for the latter, respectively, i.e.:

St = e1′zt (8.9)

�It = e2′zt (8.10)

Notice:

E
{
zt+k |Ht

}= Akzt (8.11)

where Ht is the information set with all available information about St and �It at
time t. Applying equations (8.9), (8.10) and (8.11) to (8.2) yields:

e1′zt = 1

r

∞∑
i=1

1

(1 + r)i e2′Aizt = e2′ 1

r(1 + r)
A

[
I − 1

1 + r
A

]−1

zt (8.12)

Equation (8.12) imposes restrictions on the VAR parameters if rationality is to
hold, i.e.:

e1′
[
I − 1

1 + r
A

]
= e2′ 1

r(1 + r)
A (8.13)

Accordingly, the ‘theoretical’ spread can be introduced as:

S∗
t = e2′ 1

r(1 + r)
A

[
I − 1

1 + r
A

]−1

zt (8.14)
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It can be seen that the difference between the actual and ‘theoretical’ spreads is:

St − S∗
t =

∞∑
i=1

1

(1 + r)i E(ξt+i |Ht) (8.15)

where ξt = Vt −
[
(1 + r)Vt−1 − It

]= Vt − Et−1Vt is the innovation in forecasting
Vt . Testing the restrictions in equation (8.13) is equivalent to testing that the right-
hand side of equation (8.15) is just white noise with a mean of zero. Also, using
volatility test, the variance ratio var(St)/var(S∗

t ) should not be significantly larger
than unity if the present value model is to hold. In addition, volatility test can be
carried out with the innovation ξt and the innovation in the expected present value:

ξ ∗
t ≡ 1

r

∞∑
i=0

1

(1 + r)i

[
E(�It+i |Ht) − E(�It+i |Ht−1)

]

= S∗
t − (1 + r)S∗

t−1 + 1

r
�It

(8.16)

The variance ratio var(ξt )/var(ξ ∗
t ) can be viewed as the ‘innovation variance ratio’,

and var(St)/var(S∗
t ) as the ‘level variance ratio’. Notice ξt can also be written in

the similar expression of equation (8.16):

ξt ≡ Vt −
[
(1 + r)Vt−1 − It

]
= Vt −

1

r
It+1 + 1

r
It+1 − (1 + r)Vt−1 + (1 + r)It −

1

r
It

= St − (1 + r)St−1 + 1

r
�It+1 (8.17)

The implications of the above equations can be summarised in the following.
If the market is rational for an asset, then its value/price and income variables
should be cointegrated and its spread should be stationary. Without a cointegration
relation between the price and income, the spread is non-stationary and a ‘rational
bubble’, which by definition is explosive, would exist in the market. If the market
is efficient and the present value model holds, then the ‘theoretical’ spread should
not systematically differ from the actual spread, and both variance ratios should
not be significantly larger then unity. The prediction power of the spread for �It is
conditional on agents’ information set. If agents do not have information useful for
predicting �It beyond the history of �It , then St is a linear combination of current
and lagged �It without prediction ability. Prediction may or may not be improved
simply because the price and income variables are cointegrated. Therefore, in
this chapter, we use cointegration between the price and income as a criterion
for rationality against the existence of bubble in the market. In addition, we use
the VAR representation and the variance ratios derived from the VAR system to
examine whether the present value model holds and how far the market is from
efficient.
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8.3. The present value model in logarithms with time-varying
discount rates

The previous section has shown that a ratio relationship between the value and
income variables is more appropriate than a ‘spread’ relationship between the
two variables, in the context of a constant discount rate and growth in income. As
most economic and financial variables grow exponentially, linear relationships are
only appropriate for variables in their logarithm, not for variables in their original
form. This is equivalent to say that variables in their original form have ratio
relationships, instead of linear relationships. In a sense, a right modelling strategy
reflects impeccably both the economic and financial characteristics and the data
generating process and makes these two considerations fit into each other. In this
section, we further generalise the present value model along this line and allow
for a time-varying rate of return or discount rate in the model.

In this section, we deliberate value, income and their relationship in a context
of stock market investment explicitly, i.e., value and income variables are
characterised by observable share prices and dividends. Let us express the rate
of total return in the logarithm form:

rt = ln

(
Pt+1 + Dt+1

Pt

)
(8.18)

Notice rt is an approximation of the exact rate of total return. However, this
expression is in common with general practice and leads, conventionally, to the
linear relationship among all variables involved.

As already known, total return can be split into price appreciation and the
dividend yield. The idea is also valid in the log-linear form. To see this, expanding
equation (8.18) as:

rt = ln

(
Pt+1 +Dt+1

Pt

)
= ln

[
Pt+1

Pt

(
1+ Dt+1

Pt+1

)]
= ln

(
Pt+1

Pt

)
+ln

(
1+ Dt+1

Pt+1

)

≈(lnPt+1 −lnPt

)+ Dt+1

Pt+1

=(pt+1 −pt

)+e(dt+1−pt+1) (8.19)

where, pt = lnPt , and dt = lnDt . The first term on the right-hand side is price
appreciation, and the last term on the right-hand side reflects the dividend yield
(notice the exact dividend yield is Dt+1/Pt). As the last term on the right-hand side
is not linear, further transformation and approximation are required. Finally, after
a series of development, the rate of total return can be expressed as:

rt ≈ κ + (1 − l)pt+1 − pt + ldt+1 (8.20)

where l = e(d−p)′ = (D/P)′ is a constant between the minimum and maximum
dividend yields, and κ = (d − p)′ e(d−p)′ = ln (D/P)′ × (D/P)′ is also a constant.
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With the rate of total return, price and dividend being linked in a log-linear
relationship as in equation (8.20), it is now possible to express the present value
model in a log-linear form too. Furthermore, no restriction on the rate of return rt

to be constant is required to derive the log-linear form present value model. Thus,
the model could accommodate the time-varying rate of return or discount rate and
is more general and closer to reality.

Solving equation (8.20) forward, we obtain:

pt = κ

l
+

T∑
τ=0

{
(1 − l)τ

(
ldt+1+τ − rt+τ

)}+ (1 − l)T pT+1 (8.21)

when T → ∞, the last term on the right-hand side → 0, and equation (8.21)

pt = κ

l
+

∞∑
τ=0

(1 − l)τ
(
ldt+1+τ − rt+τ

)
(8.22)

Equation (8.22) is the log-linear counterpart of equation (8.1), and is not
advantageous compared with the latter. Both are able to deal with the time-
varying discount rate, but equation (8.1) is exact whereas equation (8.22) is
an approximation. However, the benefit would be seen when the value–income
or price–dividend relationship is examined. Extracting dt from both sides of
equation (8.22) and re-arrangement yield:

pt − dt = − (dt − pt) = κ

l
+

∞∑
τ=0

(1 − l)τ
(
�dt+1+τ − rt+τ

)
(8.23)

It can be observed that if dt is I (1) and rt is I (0), the left-hand side of equation (8.23)
is also I (0), or stationary. That is, the price and dividend in their logarithm are
cointegrated. Notice no conditions are placed on rt to derive the cointegration
relationship, in contrast with equation (8.2). This is obviously advantageous,
compared with the ‘spread’ form specification.

Equations (8.22) and (8.23) are derived as ex post, but they also hold ex ante.
Taking expectations operations on both sides of equations (8.22) and (8.23), we
have:

pt = κ

l
+ Et

{ ∞∑
τ=0

(1 − l)τ
(
ldt+1+τ − rt+τ

)}
(8.22′)

and:

pt − dt = − (dt − pt) = κ

l
+ Et

{ ∞∑
τ=0

(1 − l)τ
(
�dt+1+τ − rt+τ

)}
(8.23′)

Previously in section 8.1, we have shown that value (price) and income (dividend)
would be cointegrated with a cointegration vector [1, −1/r], if the absolute changes
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in income are stationary or constant. If the income stream has a constant growth
rate, instead of constant absolute increase, then they would be cointegrated with
a cointegration vector [1, −1/(r − g)]. Recall the derivation of a cointegration
relationship is dependent on rt ≡ r, so the cointegration relationship is rather
restrictive. With the log-linear form present value model, the cointegration vector
is always [1, −1]. The proportional relation for the price and dividend is reflected
by the constant and variables on the right-hand side of equation (8.23) or
equation (8.23′), which are time-varying in general. The cointegration between
price and dividend is not affected by whether the discount rate is assumed to be
constant or not as in section 8.1. As we know prices, dividends and most financial
variables grow exponentially, there should be a log-linear relationship among them.
Consequently, models in the log-linear form are generally sound, financially and
statistically.

8.4. The VAR representation for the present value model in
the log-linear form

The VAR representation of the log-linear form is similar to that of the original
form. Let zt = [st . . . st−p+1 rt −�dt+1 . . . rt−p −�dt−p+1

]′
, where st = dt −pt .

st is, roughly, the log dividend yield (the exact log divided yield is dt+1 − pt).
Compared with section 8.2, the spread St is replaced by the log-dividend yield,
and the absolute changes in dividends are replaced by the difference between the
percentage changes in dividends and the discount rate (Recall, in sections 8.1
and 8.2, rt is restricted to a constant and did not appear in the zt vector). With the
same A matrix as in section 8.2, the compact form is:

zt = Azt−1 +μt (8.8′)

The selecting vector e1 picks up st from zt and the following holds, conditional
on Ht , the information in the VAR:

st = e1′zt =
∞∑

τ=0

(1 − l)τ e2′Aτ+1zt = e2′A
[
I − (1 − l)A

]−1
zt (8.24)

Therefore:

e1′ = e2′A
[
I − (1 − l)A

]−1
(8.25)

or:

e1′ [I − (1 − l)A
]− e2′A = 0 (8.26)

The log dividend yield satisfying the conditions in equation (8.25) or equa-
tion (8.26) is the theoretical log dividend yield, written as s∗

t . Notice again there
are no restrictions imposed on rt , so tests on the validity of the present value model
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in the log-linear form are not subject to the assumption about the discount rate.
That is, the present value model can be accepted or rejected no matter the discount
rate is treated as time-varying or not. The variance ratio test on s∗

t and st can be
carried out to examine whether the present value model holds.

Furthermore, dividend volatility and return volatility can also be tested,
respectively. If the discount rate is constant over time, it could be excluded from the
zt vector, and the theoretical log dividend yield with a constant discount rate, s∗

d,t , is
obtained. The hypothesis for a constant discount rate is Hr0: s∗

d,t = s∗
t . In a separate

study, Campbell and Shiller (1989) reject constant discount rate in the US stock
market, employing the Cowles/S&P data set (1871–1986) and the NYSE data set
(1926–1986). In a similar way, if �dt = g, i.e., the dividend growth is constant,
then �dt can be excluded from the zt vector too, and the theoretical log dividend
yield with the constant dividend growth, s∗

r,t , emerges. The hypothesis for dividend
growth to be constant is Hd0: s∗

r,t = s∗
t , though it has little financial meaning. The

variance ratio test can also be employed to test these two hypotheses.

8.5. Variance decomposition

As returns may be volatile, we are interested in the sources of volatility.
Substituting equation (8.22′) into equation (8.20) yields an expression for
innovation in the total rate of return:

rt − Et

{
rt

}= Et+1

{ ∞∑
τ=0

(1 − l)τ �dt+1+τ

}
− Et

{ ∞∑
τ=0

(1 − l)τ �dt+1+τ

}

−
[

Et+1

{ ∞∑
τ=1

(1 − l)τ rt+τ

}
− Et

{ ∞∑
τ=1

(1 − l)τ rt+τ

}]
(8.27)

Equation (8.27) can be written in compact notations, with the left-hand side term
being νt , the first term on the right-hand side ηd,t , and the second term on the
right-hand side ηr,t :

νt = ηd,t −ηr,t (8.28)

where νt is the innovation or shock in total returns, ηd,t represents the innovation
due to changes in expectations about future income or dividends, andηr,t represents
the innovation due to changes in expectations about future discount rates or returns.

Again, we use VAR to express the above innovations. Vector zt contains, first
of all, the rate of total return or discount rate. Other variables included are relevant
to forecast the rate of total return:

zt = Azt−1 + εt (8.29)

with the selecting vector e1 which picks out rt from zt , we obtain:

νt = rt − Et

{
rt

}= e1′εt (8.30)
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Bring equations (8.29) and (8.30) into the second term on the right-hand side of
equation (8.27) yields:

ηr,t = Et+1

{ ∞∑
τ=1

(1 − l)τ rt+τ

}
− Et

{ ∞∑
τ=1

(1 − l)τ rt+τ

}

= e1′
∞∑

τ=1

(1 − l)τ Aτ εt = e1′ (1 − l)A
[
I − (1 − l)A

]−1
εt (8.31)

While ηd,t can be easily derived according to the relationship in equation (8.28)
as follows:

ηd,t = νt +ηr,t = e1′
{
I + (1 − l)A

[
I − (1 − l)A

]−1
}
εt (8.32)

The variance of innovation in the rate of total return is the sum of the variance
of ηr,t , innovation due to changes in expectations about future discount rates or
returns, ηd,t , innovation due to changes in expectations about future income or
dividends, and their covariance, i.e.:

σ 2
ν = σ 2

η,d +σ 2
η,r − 2cov(ηd,t,ηr,t) (8.33)

8.6. Examples and cases

The present value model discussed in this chapter has provided a powerful approach
to modelling value–income or price–dividend relationships via exploiting their
time series characteristics, namely, cointegration and restrictions on the VAR.
In this section, several examples in financial markets and international eco-
nomics and finance are presented to illustrate how the research is empirically
carried out.

Example 8.1

This is a case in US stock market behaviour in Campbell and Shiller (1987).
The price and dividend data were of annual frequency from 1971 to 1986
in a broad stock index mainly represented by Standard and Poor’s with
adjustments. The model used was in the original form, i.e., without logarithm
operations. The main results are summarised in Tables 8.1 and 8.2.

The unit root test, which uses one of the Perron–Phillips test statistics,
confirms that the stock price and dividend are I (1) variables. The spread is
stationary, when it is calculated with a discount rate of 3.2 per cent estimated
with cointegration, but the spread is non-stationary when a discount rate
of 8.2 per cent from the sample mean is applied. Based on these results,
Campbell and Shiller suggest that a ‘rational bubble’ is not present but the
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Table 8.1 Tests of stationarity, cointegration and rationality

With trends Without trends

It −2.88 −1.28
Vt −2.19 −1.53
�It −8.40∗∗∗ −8.44∗∗∗
�Vt −9.91∗∗∗ −9.96∗∗∗
St = (Vt − 1/0.032It) −4.35∗∗∗ −4.31∗∗∗
r = 3.2%
St(= Vt − 1/0.082It) −2.68 −2.15
r = 8.2%

∗∗∗reject the null of a unit root at the 1 per cent level.
Vt represents the stock price variable and It represents the dividend variable.

Table 8.2 Tests of the present value model

VAR restrictions var(St )/var(S∗
t ) var(ξt )/var(ξ∗

t )

r = 3.2% 5.75 (0.218) 4.786 (5.380) 1.414 (0.441)
r = 8.2% 15.72 (0.0047) 67.22 (86.04) 11.27 (4.49)

p-value in parentheses for testing VAR restrictions which obeys the χ
2 distribution. Standard

errors in parentheses for variance ratio tests.

evidence for cointegration between the stock price and dividend is weak
as the stationarity of the spread is rejected if a ‘more reasonable’ discount
rate is used. However, as has been pointed in section 8.1, the stock price
and dividend, if cointegrated, will not always be cointegrated at [1, −1/r].
With growth in dividends, they are more likely to be cointegrated at
[1, −1/(r − g)], and an estimate of 3.2 per cent for (r − g) may not be too
low. Therefore, the estimate should be interpreted as (r − g) instead of r.

Although the US stock market is not subject to a ‘rational bubble’ and
the stock market behaviour is rational, the present value model may not
hold. This is examined by testing variance ratios of the unrestricted and
theoretical specifications, and imposing restrictions on the VAR and testing
for their validity. Selected testing statistics in Table 8.2 suggest the present
value model is rejected for the US stock market. The variance ratio test
statistics are greater than unity, though only the innovation variance ratio is
statistically significant. Tests for VAR restrictions in equation (8.13) accepts
the model with the 3.2 per cent discount rate and rejects it with the 8.2 per cent
discount rate. As mentioned in the above, the US stock price and dividend
during this period are more likely to be cointegrated at [1, −1/(r − g)],

Continued
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so when the discount rate from the sample mean is applied, the right-hand
side of equation (8.2) may not be stationary, or in fact, it is the right-hand
side of equation (8.3). So, the mixed results tilt to imply the validity of the
VAR model. As expected, with the 8.2 per cent discount rate, the variance
ratios are much greater than unity, but with very large standard errors.

Example 8.2

This is an example of the present value model’s applications in the real
estate market. The data used are capital value and rental indices from Jones
Lang Wootten (JLW). The JLW index is one of the major UK real estate
indices. The data sets are of quarterly frequency from the second quarter
in 1977 to the first quarter in 1997, at the aggregate level as well as the
disaggregate level for office, industrial and retail sectors. After confirming
both capital value and rent variables are I (1) series, cointegration between
the capital value and the rent, or stationarity of the spread, is examined. The
study uses the Johansen procedure for testing the cointegration relationship.
Although there are only two variables, it is beneficial to use the Johansen
procedure in a dynamic setting. The cointegration test is carried out with
the variables in their original form and in logarithm, the latter is able to deal
with a time-varying rate of return or discount rate. However, the two sets
of results in Tables 8.3 and 8.4 are virtually the same, implying the model
in the original form is acceptable in this case. The results suggest that there
are no bubbles in the office, retail and aggregate property markets; but the
existence of bubbles in the industrial property market cannot be ruled out.
The industrial property is probably the most illiquid and indivisible among
all types of property, and as a consequence, its price/capital value fails

Table 8.3 Check for stationarity of St-cointegration of Vt and It

lmax ltrace

Office 25.66∗∗∗ 28.63∗∗∗
Industrial 12.29 18.54
Retail 16.83 25.20∗
All 34.15∗∗∗ 38.23∗∗∗

Model with unrestricted constant and restricted trend. Lag lengths are selected with a
compromise of the Akaike, Schwarz and Hannan-Quinn criteria.∗reject zero cointegration vector (accept one cointegration vector) at the 10 per cent level;∗∗∗reject zero cointegration vector (accept one cointegration vector) at the 1 per cent level.
Critical values from Osterwald-Lenum (1992). Critical values for one cointegration vector are:
for lmax: 16.85 (90 per cent), 28.96 (95 per cent) and 23.65 (99 per cent); for ltrace: 22.76
(90 per cent), 25.32 (95 per cent) and 30.45 (99 per cent); Vt represents capital value and It
represents rent.
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Table 8.4 Check for stationarity of st-cointegration between the logarithm of Vt
(vt) and the logarithm of It (it)

lmax ltrace

Office 24.16∗∗∗ 26.98∗∗
Industrial 14.67 17.66
Retail 14.81 23.88∗
All 28.67∗∗∗ 33.11∗∗∗

See notes in Table 8.3.∗reject zero cointegration vector (accept one cointegration vector) at the 10 per cent level;∗∗reject zero cointegration vector (accept one cointegration vector) at the 5 per cent level;∗∗∗reject zero cointegration vector (accept one cointegration vector) at the 1 per cent level.

to reflect its future income in transactions. Though this phenomenon is
generally ruled as the existence of bubbles, it should not simply be made
equal to speculation. A ‘thin’ market for industrial property transactions
may reasonably explain a large part of this particular statistical result for the
industrial property.

The validity of the present value model is examined and the testing
statistics are reported in Tables 8.5 and 8.6. The validity of the VAR model
is rejected in all types of properties except the office property. In general, the
spread causes the change in the rent, implying that the spread can help predict
future rent; but changes in rent do not cause the spread in the aggregate
and industrial properties, and they cause the spread in the office and retail
properties at a lower significant level. The rejection of the VAR model is
also reflected in Table 8.6 for variance ratio tests. The ratio of the variance
of the spread to that of the ‘theoretical’ spread, i.e., the ‘levels variance

Table 8.5 Tests with the VAR model

St causes �It �It causes St Restrictions on VAR Q(18)

�It St

Office 17.6613∗∗∗ 3.3616∗∗ 1.1121 15.2080 14.2482
Industrial 9.4856∗∗∗ 1.5721 2.5610∗∗∗ 17.9259 17.7638
Retail 11.3278∗∗∗ 3.2626∗∗ 3.5616∗∗∗ 13.8085 10.6911
All 23.3608∗∗∗ 2.0033 1.9635∗∗ 16.3478 11.8133

∗∗significant at the 5 per cent level; ∗∗∗significant at the 1 per cent level.
Test statistics are F-test for causality test and restrictions on the VAR model, with respective
degrees of freedom.
Q(18) is the Ljung–Box statistic for serial correlation up to 18 lags, in the rent equation (�It )
and the spread equation (St ) respectively.

Continued
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Table 8.6 Variance ratios

var(St )/var(S∗
t ) var(ξt )/var(ξ∗

t )

Office 144.82/66.29 = 2.1846∗∗∗ 73.96/39.95 = 1.8513∗∗∗
Industrial 273.90/24.64 = 11.1161∗∗∗ 59.36/27.74 = 2.1399∗∗∗
Retail 512.83/113.00 = 4.538∗∗∗ 207.76/53.07 = 3.9148∗∗∗
All 184.15/85.19 = 2.1616∗∗∗ 67.34/33.23 = 2.0265∗∗∗

∗significantly different at the 10 per cent level; ∗∗∗significantly different at the 1 per cent level.

ratio’, is statistically significant in all types of properties. The ‘innovation
variance ratio’ is also significant in all the cases, but the value is usually
smaller. Observing these statistical numbers in detail, it is found that the
office property is the least inefficient with the smallest ‘innovation variance
ratio’; and the industrial and retail properties are the most inefficient. This
phenomenon is also reflected in the cointegration test, where capital value
and rent are not cointegrated for the industrial property, and capital value
and rent are cointegrated at a less significant level of 10 per cent for the
retail property judged by the value of ltrace.

Example 8.3

The present value model with cointegration can also be applied to
international economics and finance. An example is in MacDonald and
Taylor (1993) on the monetary model for exchange rate determination. We
need some transformation before getting the present value representation
for the monetary model. The flexible price monetary model is based on the
following three equations:

m′
t − p′

t = γ y′
t − li′t (8.34)

st = p′
t (8.35)

i′t = Et

(
�st+1

)= Et

(
st+1

)− st (8.36)

where m′
t is money supply, p′

t is price level, y′
t is income, i′t is interest rate,

st is the exchange rate, γ is the income elasticity, and l is the interest rate
(semi) elasticity. All variables are in the logarithm; and except the exchange
rate, all variables are the difference between the domestic variable and the
foreign variable, e.g., p′

t = pt − p∗
t . Equation (8.34) states a relative money

market equilibrium requirement, equation (8.35) is the PPP (Purchasing
Power Parity) condition, and equation (8.36) is the UIP (Uncovered
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Interest rate Parity). Let xt = m′
t − γ y′

t , then the exchange rate can be
expressed as:

st = p′
t = xt + li′t = xt + l

(
Et(st+1) − st

)
(8.37)

or:

st = xt

1 + l
+ l

1 + l
Et(st+1) (8.38)

Equation (8.38) can be solved forward and lead to:

st =
∞∑

τ=0

lτ

(1 + l)τ+1 Et(xt+τ+1) (8.39)

as: (
l

1 + l

)T

Et(st+1) → 0 when T → ∞

Equation has the same structure as the present value model, and it is easy to
work out the following ‘spread’:

st − xt =
∞∑

τ=0

lτ

(1 + l)τ
Et(�xt+τ+1) (8.40)

Applying the same logic in section 8.1, the implication of equation (8.40) is
that the exchange rate and xt should be cointegrated and the ‘spread’ should
be stationary, if the monetary model is to hold and a rational bubble does
not exist in the foreign exchange market.

MacDonald and Taylor use the Johansen procedure (Johansen 1988 and
Johansen and Juselius 1990) for the cointegration test, as st −xt involve five
variables. Using the exchange rate data for the deutsche mark vis-à-vis the
US dollar, they rule out rational bubbles in mark–dollar exchange market.
However, with four estimates of l, they firmly reject the VAR model with
the imposed restrictions. These are summarised in Table 8.7.

Table 8.7 Tests of the VAR restrictions in the monetary model

VAR restrictions var(St )/var(S∗
t )

l = 0.050 0.29 e + 07 (0.000) 0.11 e + 03 (0.000)
l = 0.030 0.81 e + 07 (0.000) 0.30 e + 03 (0.000)
l = 0.015 0.33 e + 08 (0.000) 0.12 e + 04 (0.000)
l = 0.001 0.73 e + 10 (0.000) 0.29 e + 06 (0.000)

p-value in parentheses. Testing statistic for the VAR restrictions obeys χ
2 distribution. The

variance ratio test employs the F-statistic.
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Example 8.4

Previous cases have paid attention to the rationality in the market and the
validity of the VAR representation of the present value model. The following
example uses the present value model in the logarithm form to decompose
variance or risk in returns. Liu and Mei (1994) apply the approach to the US
equity Real Estate Investment Trusts (REITs) data. The data set is monthly
and runs from January 1971 to December 1989. In addition to REITs,
they included returns on value-weighted stock portfolio and on small stock
portfolio in the VAR as other forecasting variables. The main results are
summarised in Table 8.8.

The general message is that the variance of shocks in returns can be
decomposed via the present value model in logarithm and the relative
impacts of shocks or news in income (cash-flow risk as they called) and
shocks or news in discount rates (discount-rate risk) can be assessed.
Specifically, this study suggests that cash-flow risk accounts for a much
larger proportion (79.8 per cent) in the total risk, compared with value-
weighted stocks (38.1 per cent) and small stocks (29.7 per cent). As the
correlation of the cash-flow shock and the discount-rate shock is positive,
the total variance tends to decline when the two shocks are of the opposite
signs (since the contribution of the covariance is −2cov(ηd,t,ηr,t). This is
again different from value weighted stock portfolio which has a negative
correlation between the two shocks, but is similar to small stocks. This
study follows the paper ‘A variance decomposition for stock returns’ by
Campbell (1991) which proposes and applies the approach to the US stock
market.

Table 8.8 Variance decomposition for returns in REITs

Proportion of

σ 2
ε σ 2

η,d σ 2
η,r −2cov(ηd,t ,ηr,t) corr(ηd,t ,ηr,t)

REITs 22.66 0.798
(0.40)

0.467
(0.40)

−0.265
(0.66)

0.217
(0.41)

VWStk 21.97 0.381
(0.21)

0.333
(0.20)

0.386
(0.19)

−0.401
(0.38)

SmStk 41.41 0.297
(0.13)

0.947
(0.52)

−0.244
(0.61)

0.230
(0.47)

VWStk stands for return on value-weighted stock portfolio; SmStk stands for return on small
stock portfolio. Standard errors in brackets. The VAR model was estimated with two lags and
three lags respectively, only the former is reported here.
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8.7. Empirical literature

The present value model links the (present) value of an asset to the future
income or cash flows generated from possessing that asset in a fundamental way.
Study of the validity of the present value model with cointegration analysis is a
powerful method in empirical finance research. The analysis can be extended to
investigate issues in bond markets, foreign exchange markets and other securities
markets as well, where the relationships between the variables do not appear to be
straightforward.

One of the important financial variables is the interest rate, which is central
to the valuation of many other financial securities. As such, the term structure
of interest rates, i.e., the relationships between long term and short term interest
rates, or generally speaking, between interest rates of various maturities, have
been a focus of study in a volatile financial investment environment. Applying
the present value model, Veenstra (1999) investigates the relationship between
spot and period freight rates for the ocean dry bulk shipping market, where the
period rate is formulated as expectations of future spot rates. Formal tests on
the VAR model reject the restriction imposed by the present value model. But
the author argues that there is considerable evidence that the present value model
is valid in ocean dry bulk shipping market after having considered alternative
and informal test results. Nautz and Wolters (1999) test the expectations theory
of the term structure, focusing on the question of how monetary policy actions
indicated by changes in the very short rate affect long term interest rates. They
claim that the expectations hypothesis implies that very long rates should only
react to unanticipated changes of the very short rate, which only requires rational
expectations but not stationary risk premia. That is, they challenge that there should
be a cointegration relationship between very short rates and very long rates, and
provide their explanation for the determinants of the term structure of interest
rates.

There are a number of studies on foreign exchange rate determination similar
to Example 8.3 in Section 8.6. Smith (1995) applies the present value model to
formulate nominal exchange rates as discounted expected future fundamentals. The
author rejects the validity of the present value relationship based on the findings that
the discount rate obtained is statistically significantly negative. Nagayasu (1998)
analyses Japanese long-run exchange rates using several exchange rate models,
including the present value model. The author finds that the long run specification
is sensitive to the specification of the model. A relevant area of study is how
the current account is determined and influenced by the forcing variables. In this
regard, Otto (1992) examines the post war data for the US and Canada, applying
the present value relationship based upon the permanent income hypothesis of
private consumption behaviour under rational expectations. The study strongly
rejects the stringent restrictions imposed on the present value model with the US
and Canadian data.

Research on the stock market remains one of the most active areas in which the
present value model is empirically investigated, as the relationships between the
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price and dividends are explicitly defined and stock market investment accounts
for the largest amount of all types of investment in the world. Investigating stock
prices on the Shanghai Stock Exchange, Chow et al. (1999) adopt the log-linear
version of the present value model. Surprisingly, they find the model explains well
the prices of 47 traded stocks as observed at the beginning of 1996, 1997 and 1998.
There is some doubt cast on the use of such a data sample. Chow and Liu (1999)
claim that stock prices can move in more volatile fashion than could be warranted
by future dividend movements, when there is memory in the duration of dividend
swings, if a constant discount rate is used in the present value model. The memory
in the duration of a dividend swing will generate a spurious bias in the stock price
and induce excess volatility in the stock price as if rational bubbles exist. More
studies can be found in the papers by, for example, Crowder and Wohar (1998)
and Lee (1995).

Due to the unique characteristics of low liquidity and high transaction costs, the
behaviour of farmland and housing prices has been subject to extensive studies
with regard to rationality and the existence of bubbles in the market. Bearing
this in mind, Lence and Miller (1999) investigate whether the farmland ‘constant-
discount-rate present-value-model (CDR-PVM) puzzle’ is due to transaction costs.
They first discuss the theoretical implications of transaction costs for the CDR-
PVM of farmland, then test the model with Iowa farmland prices and rents. Their
empirical results regarding the validity of the CDR-PVM in the presence of typical
transaction costs are not conclusive. Meese and Wallace (1994) examine the
efficiency of residential housing markets by inspecting price, rent, and cost of
capital indices generated from a transactions level data base for Alameda and San
Francisco Counties in Northern California. They reject both constant and non-
constant discount rate versions of the price present value model in the short term.
Nevertheless, long-run results are consistent with the present value relation when
they adjust the discount factor for changes in both tax rates and borrowing costs.
Their explanation for the short term rejection and long run consistency is the high
transaction costs in the housing market. Clayton (1996), Lloyd (1994) and Pindyck
(1993) are also in this category of empirical research.

Note

1 Estimated with the cointegration regression, Campbell and Shiller (1987) reported a
3.2 per cent discount rate for the US broad stock market index from 1871 to 1986, which
was substantially lower than the estimated mean rate of return of 8.2 per cent during
this period. The difference in the two estimates, in fact, implies a 4.8 per cent growth in
dividends.

Questions and problems

1 Why and how could the underlying economic processes and characteristics
be better represented and reflected in an appropriate modelling strategy and
framework? How could the consideration on statistics and the consideration
on economics and finance be fitted into each other?
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2 What are the advantages of linking value and income with the present value
model in the original form? What are the shortcomings associated with this
kind of modelling?

3 What are the advantages of linking value and income with the present value
model in the logarithm form? Is modelling with the logarithm form an overall
improvement over that with the original form, and why? Is it perfect?

4 It is often claimed that cointegration of two or more financial time series means
market inefficiency. But in this chapter, cointegration between the price and
dividend is a prerequisite for market efficiency, though it does not guarantee
market efficiency. Explain.

5 Collect data from Datastream to test for cointegration between the price and
dividend, using UK market indices:

(a) with the original data,
(b) data in logarithm.

6 Collect two companies’ data from Datastream to test for cointegration between
the price and dividend. One of the companies is a fast growing firm, and the
other is rather stable. Again data are in the following forms:

(a) the original data,
(b) data in logarithm.

Discuss the two sets of results you have obtained. Do they differ? Explain.
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9 State space models and the
Kalman filter

A dynamic system can be described by changes in the state of its components. The
variables of concern, which are observable, are represented as dynamic functions
of these components, which are unobservable. The unobserved components, also
called state variables, transit from one state to another or evolve according to
certain rules which are not easy or straightforward to be applied to the observed
variables themselves. This kind of dynamic modelling of systems is called the
state space method. It explains the behaviour of externally observed variables
by examining the internal, dynamic and systematic properties of the unobserved
components. Therefore, this modelling strategy, if applied properly, may reveal
the nature and cause of dynamic movement of variables in an effective and
fundamental way.

State space models can be estimated using the Kalman filter, named after Kalman
(1960, 1963), which was originally for and is still widely used in automatic control
and communications. Initial application results are in Kalman and Bucy (1961) and
subsequent developments are summarised by Kalman (1978). Clark (1987) was
among the first to apply the state space model, using the Kalman filter, to economic
analysis. Harvey (1989) and Hamilton (1994) contain a substantial element of this
modelling method.

9.1. State space expression

The state space representation of a dynamic system can be formulated as:

yt = Hξt + Axt +μt (9.1)

ξt+1 = Fξt + Bxt+1 + νt+1 (9.2)

where yt is an n × 1 vector of observed variables, ξt is a r × 1 vector of state
variables, xt is a k ×1 vector of exogenous variables, and H , A and F are coefficient
matrices of dimension n× r, n× k and r × r respectively. μt and νt are vectors of
residuals of dimension n × 1 and r × 1, with the following covariance matrices:

Cov(μtμt) = R, Cov(νtνt) = Q, Cov(μtνt) = 0 (9.3)
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Equation (9.1) is the observation equation or measurement equation; and
equation (9.2) is the state equation or transition equation. They can be estimated
by the Kalman filter algorithm to be illustrated in the next section.

9.2. Kalman filter algorithms

The Kalman filter can be better demonstrated in three steps, though at least the
first two steps can be easily combined. The three steps are prediction, updating,
and smoothing.

9.2.1. Predicting

This step is to predict, based on information available at t − 1, the state vector
ξt|t−1, its covariance matrix Pt|t−1 and derive an estimate of yt accordingly:

ξt,t−1 = Fξt−1|t−1 (9.4)

Pt,t−1 = FPt−1|t−1F
′ + Q (9.5)

yt|t−1 = Hξt|t−1 + Axt|t−1 (9.6)

9.2.2. Updating

At this stage, the inference about ξt is updated using the observed value of yt :

ψt = HPt|t−1H
′ + R (9.7)

Kt = Pt|t−1H
′
(ψt)

−1 (9.8)

εt = yt − yt|t−1 (9.9)

ξt,t = ξt|t−1 + Ktεt (9.10)

Pt,t = (I − KtH )Pt|t−1 (9.11)

where Kt is the Kalman filter gain, ψt can be regarded as the system wide
variance/covariance matrix, and εt the system wide vector of residuals. Then
estimation of the Kalman filter is straightforward. The conditional density
function is:

f (yt |It−1) = (2π )n/2
∣∣ψt

∣∣1/2
exp

(
−ε

′
tψtεt

2

)
(9.12)

where It−1 is the information set at time t − 1. The Kalman filter can be
estimated by maximising the log likelihood of the density function
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(ignoring the constant part):

Max :
T∑

t=1

log f (yt |It−1)=−nT

2
log(2π )+Max :−1

2

T∑
t=1

{
log(ψt)+

(
ε

′
tψtεt

)}
(9.13)

Estimated parameters and state variables can be obtained accordingly.
At the prediction stage, inference is made based on the information contained in

state variables only. This inference, however, has to be revised, based on the
realisation of, and interaction with, observable variables. This is done at the
updating stage. State variables evolve in their own way and the filter is like a
black box at the prediction stage. But the purposes of introducing state variables
are estimation, presentation, and revelation of the governing stochastic process of
yt in an alternative, if not a better way. These can only be achieved by comparing
the actual value of yt and that predicted by state variables. Corresponding error
correction is made to update state variables so they closely track the dynamic
system. The linkage between state variables and observed variables is maintained
this way.

9.2.3. Smoothing

The state variables estimated during the above two stages use all past information
and the current realisation of yt , not the whole sample information which includes
future information that has not arrived at the time. For real time control and
similar applications, these are all required and can be expected. For some other
applications, however, it may be of interest to know the estimate of a state variable
at any given time t, based on the whole information set up to the last observation
at time T . This procedure is smoothing which updates state variables backwards
instead of forwards from T − 1:

ξt,T = ξt|t + Vt

(
ξt+1|T − ξt+1|t

)
(9.14)

Pt,T = Pt|t + Vt

(
Pt+1|T − Pt+1|t

)
V

′
t (9.15)

where

Vt = Pt|t F
′
P−1

t+1|t (9.16)

ξt|T is a inference of ξt based on the whole sample and Pt|T is its covariance matrix.
As the inference of the state variable vector and its covariance matrix at T, ξT |T
and PT |T , is known from equations (9.10) and (9.11), all of ξt|T and Pt|T can be
recursively obtained through equations (9.14)–(9.16).

9.3. Time-varying coefficient models

Previously, we use state variables as unobserved components of yt , the observable
economic or financial variables, in the analysis of dynamic systems. We can also
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use state variables for other purposes to better describe a system or relax some
untested restrictions in the formulation of the system. One of the most common
restrictions is that coefficients of a model are constant. State space models can
easily set up a dynamic model that let the coefficients time-vary. If we modify
equations (9.1) and (9.2) as follows:

yt = H (zt)ξt + Azt +μt (9.17)

ξt+1 = F(zt)ξt + νt+1 (9.18)

That is, the matrices H and F , which are constant in equations (9.1) and (9.2),
become functions of zt , which includes lagged yt and exogenous variables xt .
This treatment allows state variables ξt to be time-varying coefficients. Equation
(9.17) is a usual regressional model except that its coefficients are time-varying.
Equation (9.18) is the unobserved process governing the evolution of the
coefficients.

A simplest time-varying coefficient model is to let ξt follow a random walk:

ξt+1 = ξt + νt+1 (9.19)

Other specifications include autoregressive processes so that the coefficients are
mean-reverting. In all these case, F(zt) is just a constant.

9.4. State space models of commonly used time
series processes

9.4.1. AR(p) process

yt = c +υt

υt = ρ1υt−1 +·· ·+ρpυt−p + εt

εt ∼ N (0,σ 2
ε )

(9.20)

There are a few expressions, one of them is as follows. The observation
equation is:

yt = c + [1 0 . . . 0
]
⎡
⎢⎢⎢⎣

υt

υt−1
...

υt−p

⎤
⎥⎥⎥⎦ (9.21)
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The state equation is:

⎡
⎢⎢⎢⎣

υt+1
υt
...

υt−p+1

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

ρ1 ρ2 · · ρp

1 0 · · 0
0 1 0 · 0
· ·
0 · · 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

υt

υt−1
...

υt−p

⎤
⎥⎥⎥⎦ (9.22)

Therefore, the construction elements of the model are:

yt = yt, ξ
′
t = [υt υt−1 . . . υt−p

]
, xt = c

H = [1 0 . . . 0
]
, F =

⎡
⎢⎢⎢⎢⎣

ρ1 ρ2 · · ρp

1 0 · · 0
0 1 0 · 0
· ·
0 · · 1 0

⎤
⎥⎥⎥⎥⎦ , A = 1, B = 0

μt = 0, ν
′
t = [εt 0 . . . 0

]

Q =

⎡
⎢⎢⎢⎢⎣

σ 2
ε 0 · · 0
0 0 · · 0
· · · · ·

0 · · · 0

⎤
⎥⎥⎥⎥⎦ , R = 0

9.4.2. ARMA(p, q) process

yt = c +ρ1yt−1 +·· ·+ρp yt−p + εt + θ1εt−1 +·· ·+ θt−qεt−q

εt ∼ N (0,σ 2
ε )

(9.23)

The observation equation is:

yt = [1 θ1 · · · θq

]
⎡
⎢⎢⎢⎣

εt

εt−1
...

εt−q

⎤
⎥⎥⎥⎦+ [1 ρ1 · · · ρp

]
⎡
⎢⎢⎢⎣

c
yt−1

...

yt−p

⎤
⎥⎥⎥⎦ (9.24)

The state equation is:

⎡
⎢⎢⎢⎣

εt+1
εt
...

εt−q+1

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

0 0 · · 0
1 0 · · 0
0 1 0 · 0
· ·
0 · · 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

εt

εt−1
...

εt−q

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

εt+1
0
...

0

⎤
⎥⎥⎥⎦ (9.25)



156 State space models and the Kalman filter

The construction elements of the model are:

yt = yt, ξ
′
t = [εt εt−1 . . . εt−q

]
, x

′
t = [c yt−1 . . . yt−p

]

H = [1 θ1 . . . θq

]
, F =

⎡
⎢⎢⎢⎢⎣

0 0 · · 0
1 0 · · 0
0 1 0 · 0
· ·
0 · · 1 0

⎤
⎥⎥⎥⎥⎦ ,

A = [1 ρ1 . . . ρp

]
, B = 0

μt = 0, ν
′
t = [εt 0 . . . 0

]

Q =

⎡
⎢⎢⎢⎢⎣

σ 2
ε 0 · · · 0
0 0 · · · 0
· · · · · ·

0 · · · · 0

⎤
⎥⎥⎥⎥⎦ , R = 0

9.4.3. Stochastic volatility

The closest equivalent to an AR or ARMA process in the second moment is
probably the stochastic volatility family of models, not ARCH or GARCH.
Stochastic volatility can be appropriately represented by the unobserved state
variable. Unlike the previous two cases that can be and are usually estimated
using traditional time series methods, such as that of the Box-Jenkins, stochastic
volatility models are tested in the state space with the Kalman filter as a superior
and feasible way of execution.

Define a simple time-vary variance process as:

yt = ωt

ωt = σtεt

εt ∼ N (0,σ 2
ε )

(9.26)

In a stochastic volatility model, ht = logσ 2
t , the logarithm of the variance, behaves

exactly as a stochastic process in the mean, such as random walks or autoregression.

ht = c + lht−1 + ζt

ζt ∼ N (0,σ 2
ζ )

(9.27)

Equation (9.26) can be expressed as:

gt = ht + κt (9.28)

where gt = ln(y2
t ), and κt = ln(ε2

t ).
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The observation equation is:

gt = [1 0
][ ht

ht−1

]
+ κt (9.29)

The state equation is:[
ht+1
ht

]
=
[
l 0
1 0

][
ht

ht−1

]
+
[
1
0

]
c +
[
ζt+1
0

]
(9.30)

The construction elements are:

yt = gt, ξ
′
t = [ht ht−1

]
, xt = c

H = [1 0
]
, F =

[
l 0
1 0

]
, A = 0, B =

[
1
0

]

μt = κt, ν
′
t = [ζt 0

]
Q =

[
σ 2

ζ 0
0 0

]
, R = σ 2

κ

As the model is not log normal (i.e., y2
t is not log normal or Ln(y2

t ) is not normal),
it cannot be estimated by the usual maximum likelihood method. Nevertheless,
when the random variables in concern are orthogonal, maximising the likelihood
function will yield exactly the same estimates of the parameters, except for
the standard errors of the parameters, which can be calculated by a different
formula. This procedure is referred to as the Quasi Maximum Likelihood (QML)
method, suggested by White (1982). Specifically, the QML estimation of stochastic
volatility models is discussed in Harvey et al. (1994) and Ruiz (1994). Other
estimation procedures include the Monte Carlo Maximum Likelihood suggested
by Sandmann and Koopman (1998), where the basic stochastic volatility model is
expressed as a linear state space model with log χ2 disturbances. The likelihood
function is approximated by decomposing it into a Gaussian part, estimated by the
Kalman filter, and the rest is evaluated by simulation.

9.4.4. Time-varying coefficients

Specify a simple market model modified by using time-varying coefficients:

Rt = αt +βtRmt + εt

αt = αt−1 + ν1t

βt = βt−1 + ν2t

(9.31)

where Rt return on an individual security, Rmt is return on the market, and the
coefficients follow a random walk.
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The observation equation is:

Rt = [1 Rmt

][αt

βt

]
+ εt (9.32)

The state equation is:[
αt

βt

]
=
[
αt−1
βt−1

][
ν1t

ν2t

]
(9.33)

Therefore, the construction elements of the model are:

yt = Rt, ξ
′
t = [αt βt

]
,

H (zt) = [1 Rmt

]
, F(zt) = [1 1

]
, A = 0

μt = εt, ν
′
t = [ν1t ν2t

]
Q =

[
σ 2

ν1t
0

0 σ 2
ν2t

]
, R = σ 2

εt

9.5. Examples and cases

Example 9.1

This is an example of decomposing the GDP series into trend and cycle
components. The data used are US GDP from the first quarter of 1950 to
the fourth quarter of 1999. Unlike Clark (1987), where the growth rate is
a pure random walk, the model in this example has a stochastic growth
rate that can be stationary or non-stationary depending on the value of l
in equation (9.36). Specifically, if l is smaller than but close to one, the
growth rate is persistent in its behaviour. The model is as follows:

Yt = Tt + Ct (9.34)

Tt = Tt−1 + gt−1 + ut (9.35)

gt = gc + lgt−1 + wt (9.36)

Ct = ϕ1Ct−1 +ϕ2Ct−2 + vt (9.37)

where Yt is log GDP; Tt is its trend component follows a random walk with
a stochastic drift or growth rate which is an autoregressive process; Ct is the
cycle component. Equation (9.36) collapses to the Clarke growth equation
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when restrictions gc = 0 and l = 1 are imposed. There are other reasonable
assumptions. If l is set to be zero, then the growth rate is a stationary
stochastic series around a constant mean value. The growth rate is constant
over time when wt is zero as well. So, in the empirical inquiries, there are
three sets of restrictions imposed against the general form of equation (9.36).

Write equations (9.34)–(9.37) in the state space form, the observation
equation is:

Yt = [1 1 0 0
]
⎡
⎢⎢⎣

Tt

Ct

Ct−1
gt

⎤
⎥⎥⎦ (9.38)

The state equation is:

⎡
⎢⎢⎣

Tt+1
Ct+1
Ct

gt+1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

1 0 0 1
0 ϕ1 ϕ2 0
0 1 0 0
0 0 0 l

⎤
⎥⎥⎦
⎡
⎢⎢⎣

Tt

Ct

Ct−1
gt

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
0
0
gc

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

vt+1
ut+1

0
wt+1

⎤
⎥⎥⎦ (9.39)

The construction elements of the model are:

yt = Yt, ξ
′
t = [Tt Ct Ct−1 gt

]
, x

′
t = [0 0 0 gc

]

H = [1 1 0 0
]
, F =

⎡
⎢⎢⎣

1 0 0 1
0 ϕ1 ϕ2 0
0 1 0 0
0 0 0 l

⎤
⎥⎥⎦ , A = 0, B = 1

μt = 0, ν
′
t = [ut vt 0 wt

]

Q =

⎡
⎢⎢⎣

σ 2
u 0 0 0
0 σ 2

v 0 0
0 0 0 0
0 0 0 σ 2

w

⎤
⎥⎥⎦ , R = 0

The estimation results are reported in Table 9.1. Graphs of the trend, cycle,
and growth rate are plotted in Figure 9.1. Inspecting the three standard
deviations can give us some ideas about the behaviour of the GDP series.
σ v, the standard deviation of the cycle component, measures the contribution
of cycles. There are no cyclical fluctuations when σv is zero (ϕ1 +ϕ2 must
be zero at the same time for the cycles to be stochastic). If σw, the standard
deviation of the growth rate, and l are zero, the time series collapses to a

Continued
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Table 9.1 Decomposition of US GDP into trend and cycle with a stochastic growth
rate using the Kalman filter

ϕ1 1.4978∗∗∗ (0.3203e−1)
ϕ2 −0.5698∗∗∗ (0.3356e−1)
gc 0.2255e−2∗∗∗ (0.1178e−4)
l 0.7362∗∗∗ (0.1892e−1)
σu 0.4125e−2∗∗∗ (0.8007e−3)
σv 0.7789e−2∗∗∗ (0.4679e−3)
σw 0.1175e−2∗∗ (0.5716e−3)
Likelihood 822.3353
LR: gc = 0, l = 1 4.4006
LR: l = 0 0.6158
LR: σw = 0 4.1664

∗∗significant at the 5 per cent level; ∗∗∗significant at the 1 per cent level. Standard errors in
parentheses.
LR is the likelihood ratio statistic, the critical values at the 10 per cent level are 2.7055 for
df 1, 4.6052 for df 2 and 6.2514 for df 3.

constant growth rate case. When l < 1 the time series is I (1) and when
l = 1, i.e., a random walk growth rate is assumed, the time series is I (2).
The time series is a pure random walk if σw and σv are both zero while σu, the
standard deviation of the trend, is not. Therefore, the relative importance and
size of σu, σv, and σw, together with ϕ1 and ϕ2, demonstrate the behaviour
of the GDP series.

It can be seen in Table 9.1 that ϕ1 + ϕ2 = 0.9280, showing a stationary
cycle. The average quarterly growth rate over the period is gc/(1 − l) =
0.85 per cent, or 3.5 per cent annually. The standard deviation of the cycle,
σv, is nearly twice of that in the trend, σu; nevertheless, σw also contributes
to the total volatility of the trend. All the estimates are significant at the
1 per cent level except for σw, which is also much smaller than the other
two standard deviations, suggesting a stable growth rate in GDP, possibly
approximated by a constant. The three figures depict the components of
GDP. Figure 9.1 shows that the growth rate can swing as much as 0.2 per cent
in a quarter or 0.8 per cent in one year. The growth was declining since
the 1950s until the early 1980s, similar to what Clark (1987) suggested. It
is most evident from the middle of the 1960s, when the US was in deep
domestic crises, coupled with and highlighted by the Vietnam War. Policy
changes in 1981 stimulated the economy but the prosper was proved not
long lasting, due to lack of capital investment and capital formation induced
by the new policy, which contributed to the Republicans’ loss in a seemingly
secured presidential election in 1992. The US economy has achieved
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in most of the 1990s with consistently increasing and stable growth in GDP,
started from the Gulf war period and the collapse of the Soviet Union.

The likelihood ratio test does not reject any restrictions, though the
random walk growth hypothesis is very close to being marginally rejected.
Ranking in accordance with the likelihood function value, growth is best
described as a mean-reverting stochastic process, followed by a constant
plus white noise growth rate, a constant growth rate, and a random walk
growth rate is the least favourable. The results show that different views on,
and explanations to, some economic behaviour can be largely right at the
same time.

Example 9.2

This is an example from Foresi et al. (1997) on interest rate models that are
crucial to bond pricing. Only those parts relevant to the state space model
are extracted here. The bond price is usually modelled as a function of the
short-term interest rate in the bond pricing literature; and the short-term
interest rate, usually called the short rate, follows some kind of generalised
Wiener processes. The idea of the paper is simply that the nominal bond price
is determined by the riskless real short-term interest rate and the expected
instantaneous inflation rate. As the two variables are unobservable, a state
space specification is proved helpful.

Basically, the paper specifies two unobserved state variables, the riskless
real short-term interest rate, rt , and the expected instantaneous inflation
rate, πt , as a vector of bivariate generalised Wiener processes (t subscript
suppressed):

dr = (a1 + b11r + b12π ) +σrdzr

dπ = (a2 + b21r + b22π ) +σπdzπ

(9.40)

Then the continuously-compounded nominal yield on zero-coupon bonds, at
time t and having τ periods to maturity, yn,t,τ , and inflation forecast at time t
for t + τ , yi,t,τ , are treated as functions of above state variables (t subscript
suppressed):

yn,τ = jn,τ +αn,τ,11r +αn,τ,12π + εn

yi,τ = ji,τ +αi,τ,21r +αi,τ,22π + εi

(9.41)

where jn,τ and ji,τ are functions of τ and independent of the state variables,
which are therefore not analysed here.
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The model was estimated with the steady state instantaneous real interest
rate being set to 2 per cent and 2.5 per cent respectively. The paper only
reports the estimates of the state equations’ results as these estimates reveal
the dynamics of real interest rate and inflation processes. It illustrates
the observation equations’ results by plotting the term structure for both
nominal bonds and indexed bonds. The relevant results are provided in the
Table 9.2.

With the restricted model, b11 is positive but b12 is negative and the
absolute value of b12 is larger, so mean reversion in the interest rate appears to
be caused by the effect of the expected instantaneous inflation rate. Similarly,
in the inflation equation, the parameter for the interest rate b21 is positive,
the parameter for the inflation variable b22 is negative, and the absolute
value of b22 is larger. These results suggest that the riskless real short-term
interest rate is likely to push itself and the expected instantaneous inflation
rate away from their steady state levels, and the expected instantaneous
inflation rates tend to pull both variables back to their respective steady
state levels. Notice that the interest rate has a longer half-life of 6.5 years, to

Table 9.2 US real interest rate and expected inflation processes

Unrestricted Restricted b11 = b21 = 0

rss = 2.0% rss = 2.5% rss = 2.0% rss = 2.5%

B11 0.2938∗∗∗ 0.2881∗∗∗ −0.0344∗∗∗ −0.0344∗∗∗
(0.0820) (0.0822) (0.0015) (0.0015)

B12 −0.4193∗∗∗ −0.4273∗∗∗ 0 0
(0.0971) (0.1000)

B21 0.8240∗∗∗ 0.8080∗∗∗ 0 0
(0.1106) (0.1099)

B22 −1.0930∗∗∗ −1.0875∗∗∗ −0.7732∗∗∗ −0.7733∗∗∗
(0.0828) (0.0831) (0.0083) (0.0083)

σr 0.0100∗∗∗ 0.0102∗∗∗ 0.0151∗∗∗ 0.0151∗∗∗
(0.0006) (0.0006) (0.0005) (0.0005)

σπ 0.0169∗∗∗ 0.0168∗∗∗ 0.0229∗∗∗ 0.0229∗∗∗
(0.0007) (0.0007) (0.0008) (0.0008)

ρrπ 0.8235∗∗∗ 0.8213∗∗∗ −0.1260∗∗∗ −0.1263∗∗∗
(0.2414) (0.2439) (0.0464) (0.0464)

Half-life r 6.54 years 6.50 years 20.17 years 20.17 years
Half-life π 1.07 years 1.06 years 0.90 years 0.90 years
Log likelihood 44.5038 44.4865 44.1516 44.1505

∗∗significant at the 5 per cent level; ∗∗∗significant at the 1 per cent level. Standard errors in
parentheses.

Continued
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compare with a half-life of 1.1 years for expected inflation. This reinforces
the claim that there is stronger mean-reverting tendency in expected inflation
than in the interest rate. When b12 and b21 are set to zero as in the restricted
model, any mean reversion in a variable must come from itself. That is,
b11 and b22 must be negative. The estimates in the table are negative as
expected; and the size of b22 is much larger, reflecting that there is far
stronger mean-reverting tendency in expected inflation. Any joint movement
in the two variables is now through the correlation between dzπ and dzr ,
as the inter-temporal links have been cut off. In the restricted model, the
instantaneous correlation between the interest rate variable and the expected
inflation variable is around −0.13, a number appears to be more reasonable
than its counterpart in the unrestricted model, which is 0.82.

The authors claim that the Kalman filter method enables them to identify
the separate influences of real rates of return and inflation expectations.
Based on the Kalman filter parameter estimates, they could achieve
improvements in construct yield curves and calculating investors’ required
premia for risk from changes in real interest rates and inflation. There
is one point subject to further scrutiny: the paper says that the restricted
model, where b12 and b21 are set to 0, or the interest rate process and
the inflation process have no inter-temporal causal relationship and any
link between them is their instantaneous correlation, performs better and
the yield curves constructed from the restricted model appear to be more
realistic. Then the query is: can this be justified by the economics of interest
rate-inflation dynamics or is this an estimation problem technically? The
half-life of 20 years for the interest rate in the restricted model also seems to
be rather long. The reason could be simple: changes in the real interest rate
are responses to changes in the economic environment, realised, anticipated
and/or unanticipated. Without other economic variables playing a role, the
evolution path of the interest rate is unlikely to change or to be altered,
resulting in a longer half-life.

9.6. Empirical literature

There are growing applications of the Kalman filter in state space models, but
the number is small relative to other popular models such as cointegration and
GARCH. One of the reasons is that state space models are not easy to implement.
On the one hand, most econometric software packages either do not have Kalman
filter procedures or have the procedures which are too basic to be of practical use.
On the other hand, estimates of parameters are rather sensitive to the choice of
initial values and other settings of the filter.

Recent use of the Kalman filter can be found in financial markets and the
economy, at micro and macro levels. In bond pricing and interest rate models,
Babbs and Nowman (1998) estimate a two-factor term structure model which
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allows for measurement errors by using the Kalman filter. Duan and Simonato
(1999) and the above example by Foresi et al. (1997) are similar cases. All these
studies claim that the state space model provides good fit to the yield curves of
concern. Jegadeesh and Pennacchi (1996) model the target level of the interest
rate, to which the short-term interest is to revert, in the state space, in a two-factor
equilibrium model of the term structure. They compare the term structure of spot
LIBOR and Eurodollar futures volatility to that predicted by their two-factor model
and find significant improvements over the one-factor model that does not include
the target level of the interest rate.

On stock market behaviour, Gallagher et al. (1997) decompose the stock
indices of 16 countries into transitory (cycles), permanent (trends) and seasonal
components. They find evidence of mean-reversion in stock prices and conclude
that stock prices are not pure random walks, though the transitory component is
small and does not explain more than 5 per cent of stock price variations for 12 of
the 16 countries. Jochum (1999) hypothesises that the risk premium on the Swiss
stock market consists of two components: the amount of volatility and the unit price
of risk. The unit price of risk is time-varying and estimated by the Kalman filter,
so investors’ behaviour can be examined in different phases of market movement.
McKenzie et al. (2000) estimate a time-varying beta model for the Australian
market using the Kalman filter. The study is one of typical examples of time-
varying coefficient models. Using the cumulative sum of squares (CUSUMSQ)
test, they find beta parameter instability for all 24 industries inspected when the
world market index is the relevant benchmark of the model, as the recursively
estimated residuals exceeded the 5 per cent critical boundary. They find beta
instability for 20 out of the 24 industry betas when the domestic market index
serves as the benchmark. They conclude that time-varying betas estimated relative
to the domestic index, though not universally superior, are preferred in certain
circumstances. Whether the slightly inferior performance of the world index model
is caused by more instability in betas has yet to be examined, though the graphs
in the paper appear to suggest so.

The dividend payment pattern is one of the areas where state space models are of
empirical relevance. The information content of dividends is debatably important
in practice and in research, whereas it can only be inferred. In a traditional way of
interpreting dividends as a long-run performance signal arising from information
asymmetry, Daniels et al. (1997) investigate whether and how dividends are related
to earnings by decomposing earnings into permanent and transitory components
using the Kalman filter. They examine 30 firms’ dividends and earnings and claim
that there is a more robust relationship between dividends and permanent earnings,
compared with that between dividends and current earnings. Marseguerra (1997)
models insider information regarding the firm as an unobserved state variable that
can be inferred through dividends and earnings announcements, and finds that
information contained in dividend announcements varies and is a supplement to
the information set already available to the market.

Other various applications include Moosa (1999) that extracts the cyclical
components of unemployment and output; Serletis and King (1997) on trends
and convergence of EU stock markets using a time-varying parameter model; and
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Daniels and Tirtiroglu (1998) on decomposition of total factor productivity of US
commercial banking into stochastic trend and cycle components.

Broadly speaking, decompose trend and cycle in economic time series, e.g.,
GDP, industrial production, the unemployment rate, stock prices and stock indices;
unobserved variables, e.g., expectations, real interest rates, real costs; permanent
and transitory components; time-vary parameters, e.g., time-varying betas.

Questions and problems

1 What is the state variable and what is an unobserved component in a state
space model?

2 Discuss the advantages of the state space model and the difficulties in the
empirical implementation of the model.

3 Describe the three steps of the Kalman filter algorithm in estimating a state
space model.

4 Collect data from various sources, and estimate the following time series using
the conventional ARIMA and in the state space using the Kalman filter (using
RATS, GAUSS or other packages):

(a) GDP of selected countries,
(b) total return series of Tesco, Sainsbury’s and ICI.

Compare your results from the two approaches.
5 The implementation of the Kalman filter is always complicated and the results

may be sensitive to even slightly different settings. To practice, collect data
from various sources and repeat the same procedure of Example 1 for GDP
of a few selected countries.
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10 Frequency domain analysis of
time series

Spectral analysis, or studies in the frequency domain, is one of the unconventional
subjects in time series econometrics. The frequency domain method has existed for
a long time and has been extensively used in electronic engineering such as signal
processing, communications, and automatic control. Although the application of
the frequency domain method in econometrics may have as long a history as that
in engineering, it has been sporadic and regarded unorthodox and often plays a
supplementary role.

Analysis in the frequency domain does not bring in new or additional
information, it is simply an alternative method with which information is
observed, abstracted and processed. This is sometimes helpful. Depending on
the characteristics of the issues, analysis in one domain may be more powerful
than in the other. For example, cycles are better and more explicitly observed
and represented in the frequency domain; while correlations in the time domain
and cross spectra in the frequency domain deal with the relationship between
two time series from different perspectives and, in the meantime, have defined
links.

This chapter first introduces the Fourier transform, which is one of the most
commonly used transformations of time series and the spectrum, the frequency
domain expression of time series. In the similar spirit of covariance analysis,
cross spectra, coherence and phases in multivariate time series are discussed next.
In the following two sections of the chapter, frequency domain representations
of commonly used time series processes are presented and frequency domain
persistence measures are developed.

10.1. The Fourier transform and spectra

A continuous non-periodic time series has a continuous Fourier spectrum. For
a periodic time series, its Fourier transform is discrete Fourier series. We only
introduce the Fourier transform for non-periodic time series, as periodicity is rare
in economic and financial time series. We do so to avoid confusion also. Then
we quickly proceed to the discrete Fourier transform, which is most common in
finance and economics. Let f (t) (−∞ < t < ∞) be a continuous non-periodic time
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series, then its Fourier transform (FT) is defined as:

F(ω) =
∞∫

t=−∞
f (t) e−jωtdt (10.1)

F(ω) is also called the spectral density function of f (t). There exists an inverse
Fourier transform (IFT), which is continuous, so that:

f (t) = 1

2π

π∫
−π

F(ω) e jωtdω (10.2)

One of the most important and relevant properties of the Fourier transform
is time delay or lags. Let F(ω) be the Fourier transform of f (t), then the
Fourier transform of f (t − t0) is e−jωt0 F(ω). This can be proved briefly as
follows:

∞∫
t=−∞

f (t − t0) e−jωtdt =
∞∫

t=−∞
f (t) e−jω(t+t0)dt

= e−jωt0

∞∫
t=−∞

f (t) e−jωtdt = e−jωt0F(ω)

In practice, for a discrete time series with N observations, such as in
economics and finance, the Fourier transform would usually be the discrete
Fourier transform (DFT). The pair of DFT and inverse discrete Fourier transform
(IDFT) is:

F(k) =
N−1∑

n=−(N−1)

f (n) e−jn(2πk/N ) (10.1)

and

f (n) = 1

N

N−1∑
k=−(N−1)

F(k) e jk(2πn/N ) (10.2)

with �ω = 2π/N ,F(k) = F(k�ω) = F(2πk/N ). That is, time domain series can
be expressed with different frequency components. Equation (10.1) or (10.1) is
the energy spectrum. In the case of stochastic processes, the Fourier transform
is concerned with the power spectrum or the power spectral density function
(which can be simply called spectral density function when there is no confusion).1
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The spectral density function of a discrete random process �1Xt = Xt − Xt−1
(t = 1, . . . N ) is:

h(k) =
N−1∑

τ=−(N−1)

R(τ ) e−jτ (2πk/N ) (10.3)

where R(τ ) is the autocovariance function of �1Xt , i.e. R(τ ) = E{(�1Xt −
μ)(�1Xt−τ − μ)} and μ = E{�1Xt}. The inverse Fourier transform of equation
(10.3) is:

R(τ ) = 1

N

N−1∑
k=−(N−1)

h(k) e jk(2πτ/N ) (10.4)

Setting τ = 0 in equation (10.4), we have:

R(0) = E{(�1Xt)
2} = 1

N

N−1∑
k=−(N−1)

h(k) e jk(2πτ/N ) (10.5)

It is the mean squared value of the process and has the meaning of power of
the process, so equation (10.3) is called the power spectrum. Equation (10.1) or
(10.1), in contrast, is the energy spectrum as it has the features of electrical current
or voltage.

R(τ ) usually takes real values and is an even function, i.e. R(−τ ) = R(τ ).
Accordingly, the spectral density function can be written as:

h(k) = σ 2
X + 2

N−1∑
τ=1

R(τ )cos

(
2πτk

N

)
(10.6)

Empirically, h(k) has to be truncated and estimated. The simplest way of
truncation is to let R(τ ) pass through a rectangular window or ‘truncated
periodogram’ window, i.e.:

ĥ(k) =
M∑

τ=−M

R(τ )cos

(
2πτk

N

)
(10.7)

So:

E
{
ĥ(k)

}
=

M∑
τ=−M

(
1 − |τ |

N

)
R(τ ) cos

(
2πτk

N

)
→ h(k), as M → ∞

(10.8)
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In general, the truncated spectral density function takes the form:

ĥ(k) =
M∑

τ=−M

l(τ )R(τ ) cos

(
2πτk

N

)
(10.9)

where l(τ ) is the window function. The variance of ĥ(k) is:

Var
[
ĥ(k)

]
∼ (1 + δk,0)h2(k)

1

N

⎧⎨
⎩

N−1∑
τ=−(N−1)

l2N (τ )

⎫⎬
⎭

= (1 + δk,0)h2(k)
1

N

N−1∑
θ=(N−1)

W 2
N (θ )

(10.10)

where

WN (θ ) =
N−1∑

θ=−(N−1)

l2N (τ ) e−jθ (2πk/N ) (10.11)

is the spectral expression of the window, and δk,0 is impulse function taking value
of unity at k = 0.

A rectangular window, though simple, does not perform well due to its
sudden change at the cut-off points which may produce some peculiar frequency
components. The Bartlett window is usually used. It is defined as:

l(τ ) =
⎧⎨
⎩1 − |τ |

M
, |τ | ≤ M

0 |τ | > M
(10.12)

With Bartlett’s window, the variance of ĥ(k) is:

Var
[
ĥ(k)

]
∼ 2M

3N
h2(k), for k �= 0 (10.13)

and

Var
[
ĥ(k)

]
∼ 4M

3N
h2(k), for k = 0 (10.14)

If k takes value of zero in equation (10.8) it becomes:

E
{
ĥ(0)

}
=

M∑
τ=−M

(
1 − |τ |

N

)
R(τ )

= R(0) + 2
M∑

τ=1

(
1 − |τ |

N

)
R(τ )

(10.15)
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Equation (10.15) is, in fact, the M period variance of �M Xt = Xt − Xt−M .
Dividing equation (10.15) by the variance of �1Xt , σ

2
�1X , yields Cochrane’s (1988)

version of persistence. Therefore, the Cochrane measure is a specific case of
equation (10.8), and assesses the long-run behaviour of time series at the zero
frequency only. It appears that such measures, as represented by Campbell and
Mankiw (1987a, b), Cochrane (1988) and Pesaran et al. (1993) are the necessary
condition(s) for a random walk, not sufficient conditions, as other points on the
spectrum are not evaluated against the random walk hypothesis and it is possible
that they deviate from unity jointly significantly. There are no significance test
statistics associated with them either, though Var

[
ĥ(0)

]
is available to provide

a guideline for the accuracy of the measures, which is decided by the ratio of
the window size to the number of observations, M/N , only. In other words, the
window size should be small relative to the number of observations to achieve
reliability in the measure. To investigate persistence and associated time series
properties properly, the whole spectrum of the time series should be examined,
instead of at the zero frequency point. These will be proposed and conducted in
the following section.

10.2. Multivariate spectra, phases and coherence

If we replace R(τ ), the autocovariance function of �1Xt , by the covariance between
two time series, i.e. CovX ,Y (τ ) = E{(�1Xt −μX )(�1Yt−τ −μY )}, μX = E{�1Xt}
and μY = E{�1Yt}, then we get the cross spectrum of the two time series in the
form of:

hX ,Y (k) =
N−1∑

τ=−(N−1)

CovX ,Y (τ ) e−jτ (2πk/N ) (10.16)

Cov(τ ) is in general not an even function, so equation (10.16) cannot take the form
of equation (10.6), and hX ,Y (k) is in general a complex number:

hX ,Y (k) = c(k) cos

(
2πk

N
τ

)
+ jq(k) sin

(
2πk

N
τ

)
(10.17)

Unlike the univariate Fourier transform where the imaginary part is zero, the cross
spectrum has both magnitude and phase as follows:

m(k) =
√

c2(k) + q2(k) (10.18)

and:

p(k) = tan−1 q(k)

c(k)
(10.19)

Equations (10.18) and (10.19) are called magnitude spectrum and phase spectrum,
respectively. It can be seen, from the above analysis, that if CovX ,Y (τ ) is an even
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function, then the phase spectrum is zero, i.e. there is no overall lead of series
Xt over series Yt , and vice versa. With equations (10.18) and (10.19), the cross
spectrum can also be expressed as:

hX ,Y (k) = m(k) e jp(k) (10.20)

so that both magnitude and phase are shown explicitly.
Another measure of the closeness of two time series is coherence, defined, in a

very similar way to the correlation coefficient, as:

CohX ,Y (k) = hX ,Y (k)

h1/2
X ,X (k)h1/2

Y ,Y (k)
(10.21)

If we make comparison of the measures in the frequency domain with those in
the time domain, then the cross spectrum of equation (10.17) is corresponding
to covariance in the time domain, which is not standardised; the coherence as
with equation (10.21) is corresponding to correlation in the time domain, which
are standardised by the square roots of the two time series’ spectra and the
two time series’ standard deviations respectively; and the phase of equation
(10.19) addresses leads and lags. As with the non-standardised cross spectrum,
the closeness of two time series is not straightforwardly observed, the measure of
coherence, together with the phase measure, is widely adopted in economic and
financial research.

To generalise the above bi-variate analysis to the multivariate case, let:

� =

⎡
⎢⎢⎣

Cov11(τ ) · · · Cov1m(τ )

· · ·
Covm1(τ ) · · · Covmm(τ )

⎤
⎥⎥⎦ (10.22)

be the covariance matrix of an m-variable system of time series. Then the cross
spectra of the time series can also be expressed in a matrix:

H =

⎡
⎢⎢⎣

h11(k) . . . h1m(k)

. . .

hm1(k) . . . hmm(k)

⎤
⎥⎥⎦ (10.23)

where hil(k) (i, l = 1, . . . m) takes the form of equation (10.16).

10.3. Frequency domain representations of commonly used
time series processes

10.3.1. AR(p) process

Yt = ρ1Yt−1 +·· ·+ρpYt−p + εt, εt ∼ N (0,σ 2
ε ) (10.24)
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Re-arranging equation (10.24) as:

Yt −ρ1Yt−1 −·· ·−ρpYt−p = εt (10.24′)

Taking the Fourier transform and applying the property of time delaying yield:

FY (k)
[
1 −ρ1 e−j(2πk/N ) −·· ·−ρp e−jp(2π/N )

]
= Fε(k) (10.25)

So that the power spectrum or simply the spectrum of an AR process is:

hY (k)

= σ 2
ε[

1−ρ1 e−j(2πk/N ) −···−ρp e−jp(2πk/N )
][

1−ρ1 e j(2πk/N ) −···−ρp e jp(2πk/N )
]

(10.26)

10.3.2. MA(q) process

Yt = εt + θ1εt−1 +·· ·+ θqεt−q, εt ∼ N (0,σ 2
ε ) (10.27)

The Fourier transform of this process is:

FY (k) = Fε(k)
[
1 + θ1 e−j(2πk/N ) +·· ·+ θq e−jq(2πk/N )

]
(10.28)

So the spectrum is:

hY (k) = σ 2
ε

[
1 + θ1 e−j(2πk/N ) +·· ·+ θq e−jq(2πk/N )

]
× [1 + θ1 e j(2πk/N ) +·· ·+ θq e jq(2πk/N )

] (10.29)

10.3.3. VAR (p) process

Yt = A1Yt−1 +·· ·+ ApYt−p + εt, εt ∼ N (0,�) (10.30)

where Yt is an m × 1 vector of variables, and Ai, i = 1, . . . p are m × m matrices
of coefficients. Taking the Fourier transform yields:

FY (k)
[
1 − A1 e−j(2πk/N ) −·· ·− Ap e−jp(2πk/N )

]= F�(k) (10.31)

Therefore, the spectra of the VAR process is:

hY (k) = [1 − A1 e−j(2πk/N ) −·· ·− Ap e−jp(2πk/N )
]−1

×�
[
1 − A1 e j(2πk/N ) −·· ·− Ap e jp(2πk/N )

]−1
(10.32)
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10.4. Frequency domain analysis of the patterns of violation
of white noise conditions

10.4.1. Statistical distributions in the frequency domain of near white
noise processes

Assuming a time series X (t) possesses the usual properties that it is stationary,
is continuous in mean square, and has higher moments up to the fourth moment,
then the spectrum of the process, or the spectral distribution function, exists with
the following relationships:

f (ω) = 1

2πN

N∑
τ=−N

R(τ ) e−iτω = 1

2πN

N∑
τ=−N

R (τ )cos(τω)

= σ 2
X

2π
+ 1

π

N∑
τ=1

R(τ )cos(τω) = C0

2πN
+ 1

πN

N−1∑
τ=1

Cτ cos(τω)

(10.33)

R(τ ) = σ 2
x

π∫
−π

eiτωdF(ω) (10.34)

where:

Cτ =
N−τ∑
t=1

XtXt+τ , C0 =
N∑

t=1

XtXt = Nσ 2
X , and F(ω) =

ω∫
0

f (ω)dω

is the integral spectrum of the process.
For a pure white noise process, C0 obeys a χ2-distribution with E{C0} = N ,

Var{C0} = 2N ; and Cτ obey normal distributions with E{Cτ } = 0, Var{Cτ } = N ,
for τ = 1, . . . N − 1. In the following, we show how a white noise process is
distributed in the frequency domain, and the conditions on which a particular
process can be accepted as a white noise process. We call such a process near
white noise processes in contrast to a pure theoretical white noise. It can be
shown that:

Lim
N→∞P

{
max

0≤ω≤π
N 1/2

∣∣∣F(ω) − ω

2π

∣∣∣≤ α

}
= P

{
max

0≤ω≤π
|ξ (ω)| ≤ α

}
(10.35)

where ξ (ω) is a Gaussian process with:

P {ξ (0) = 0} = 1 (10.36a)

P {ξ (π ) = 0} = 1 (10.36b)

E {ξ (ω)} = 0, 0 ≤ ω ≤ π (10.36c)
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E {ξ (ν)ξ (ω)} = 3ν(π −ω)

4π2 , 0 ≤ ν < ω ≤ π (10.36d)

E
{
[ξ (ω)]2}= 3ω(π −ω)

4π2 , 0 ≤ ω ≤ π (10.36e)

Equation (10.35) can be verified as follows. The integral spectrum of the time
series process, or the integral of the spectrum of equation (10.33), is:

F(ω) =
ω∫

0

f (ω)dω = v∗
n(ω)

2πN
+

N−1∑
τ=1

Cτ

πN

sin τω

τ
(10.37)

where v∗
n(ω) =

π∫
0

C0(ω)dω. Then:

N 1/2
[
Fp(ω) − ω

2π

]
= N 1/2

2π

[
v∗

n(ω)

N
−ω

]
+

N−1∑
τ=1

Cτ

πN 1/2

sin τω

τ
(10.38)

Previous studies2 treat C0 as a stochastic variable in the time domain, but a
constant in the frequency domain irrespective of the value of ω. There is a problem
mainly concerning the boundary condition: C0 can be greater or smaller than N
at point ω = π , which does not guarantee F(π ) = 1

2 [F(π ) is half of the total
power], the requirement that the power of the standardised time series is unity (the
second term on the right-hand side of equation (10.38) is zero at point ω = π ).
We resort to the Kolmogorov-Smirnov theorem for a realistic representation of
the distribution of C0.

The distribution of the first term on the right-hand side can be obtained by
applying the Kolmogorov-Smirnov theorem. Define:

zn(t) = N
1/2

[
vn(t)

N
− t

]
, 0 ≤ t ≤ 1 (10.39)

where vn(t) − vn(s) is the number of successes in N independent trials, with
probability t − s of successes in each trial; P

{
vn(0) = 0

}= 1, P
{
vn(1) = N

}= 1;

E
{
vn(t) − vn(s)

}= N (t −s), E
{[

vn(t) − vn(s)
]2}= 2N (t −s) [1 − (t − s)], 0 ≤ s <

t ≤ 1; E
{[

vn(t1) − vn(s1)
][

vn(t2) − vn(s2)
]}= 0, 0 ≤ s1 < t1 ≤ s2 < t2 ≤ 1. Then,

the m-variable distribution of the random variables zn(t1), . . . ,zn(tm), 0 ≤ t1 · · ·
< tm ≤ 1 is Gaussian, and:

P
{
zn(0) = 0

}= 1, P
{
zn(1) = 0

}= 1 (10.40a)

E
{
zn(t)

}= 0, 0 ≤ t ≤ 1 (10.40b)

E
{[

zn(t) − zn(s)
]2}= (t − s) [1 − (t − s)] , 0 ≤ s < t ≤ 1 (10.40c)
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Now, let ω = π t and define:

z∗
n(ω) = N 1/2

2π

[
v∗

n(ω)

N
−ω

]
(10.41)

we have:

P
{
v∗

n(0) = 0
}= 1, P

{
v∗

n(π ) = N
}= 1 (10.42a)

E
{
v∗

n(ω) − v∗
n(ν)
}= N (ω − ν), 0 ≤ ν < ω ≤ π (10.42b)

E
{[

v∗
n(ω) − v∗

n(ν)
]2}= N (ω − ν) [π − (ω − ν)] , 0 ≤ ν < ω ≤ π (10.42c)

and, the m-variable distribution of the random variables z∗
n(ω1), . . . ,z∗

n(ωm), 0 ≤
ω1 < · · · < ωm ≤ π is Gaussian, with:

P
{
z∗
n(0) = 0

}= 1, P
{
z∗
n(π ) = 0

}= 1 (10.43a)

E
{
z∗
n(ω)

}= 0, 0 ≤ ω ≤ π (10.43b)

E
{[

z∗
n(ω) − z∗

n(ν)
]2}= (ω − ν) [π − (ω − ν)]

4π2 , 0 ≤ ν < ω ≤ π (10.43c)

Equations (10.43a)–(10.43c) imply:

E
{[

z∗
n(ω)

]2}= ω(π −ω)

4π2 (10.44a)

E
{
z∗
n(ν)z∗

n(ω)
}= ν(π −ω)

4π2 , 0 ≤ ν < ω ≤ π (10.44b)

Equation (10.44) indicates that the first term on the right-hand side of equation
(10.38) is in fact z∗

n(ω).
Let us now consider the distribution of the second term on the right-hand side.

It can be observed, when N approaches infinite, that:

E {s(ω)s(ν)} = Lim
N→∞E

{(
N−1∑
τ=1

Cτ

πN 1/2

sin τω

τ

)(
N−1∑
τ=1

Cτ

πN 1/2

sin τν

τ

)}

= Lim
N→∞

1

π2

N−1∑
τ=1

sin τω

τ

sin τν

τ
= ν(π −ω)

2π2 , 0 ≤ ν < ω ≤ π

(10.45)

E
{
[s(ω)]2}= Lim

N→∞E

⎧⎨
⎩
(

N−1∑
τ=1

Cτ

πN
1/2

sin τω

τ

)2
⎫⎬
⎭ Lim

N→∞
1

π2

N−1∑
τ=1

(
sin τω

τ

)2

= ω(π −ω)

2π2 (10.46)
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Therefore:

s (ω) = Lim
N→∞

N−1∑
τ=1

Cτ

πN ½

sin τω

τ
= 2z∗

n(ω) (10.47)

Finally, bringing the results into equation (10.38) yields:

ξ (ω) = 3z∗
n(ω) (10.48)

The above has verified equation (10.35).

10.4.2. Patterns of violation of white noise conditions

This section discusses and abstracts typical patterns in time series where white
noise conditions are violated. Behaviour of a particular process will be examined,
in accordance with its frequency domain characteristics, which is of more empirical
relevance. From Equations (10.35) and (10.36), three patterns can be characterised
with regard to their violation of white noise conditions, setting against the
benchmark of a pure white noise process.

Pattern 1

Lower frequency components stochastically dominate higher frequency compo-
nents in the frequency range (�1, �2) if ξ (ω) > 0, � 1 <ω <�2. Lower frequency
components stochastically consistently dominate higher frequency components if
ξ (ω) > 0, 0 < ω < π , and the time series is said to possess the features of the
compounding effect.

By definition and according to theorem 1, ξ (ω) is the difference between the
integral of the process under examination and the integral of a pure white noise
process, being scaled by N , when N → ∞, i.e.:

ξ (ω) = Lim
N→∞N 1/2

ω∫
0

(
Ip(ω) − 1

2π

)
dω

Figure 10.1 shows the features of such stochastic processes. The top panel of
the figure is the time domain response to a unit size shock of a time series with
compounding features, against a random walk response. The dashed line indicates
the evolution path of the time series if no shocks have ever occurred. The middle
panel is a typical spectrum for such time series, and the bottom panel is the ξ (ω)
statistic for such time series. The spectrum in Figure 10.1 is a monotonous decrease
function of ω, with ξ (ω) > 0, 0 < ω < π , and ξ ′′

ω(ω) < 0, 0 < ω < π , where
ξ ′′
ω(ω) is the second-order derivative of ξ (ω) with respect to ω.3 Stochastically
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Compounding

Random  walk

f(ω)

π

1
2
— π

x(w) > 0

x(w)

Figure 10.1 Lower frequencies dominate (compounding effect).

consistent dominance has a looser requirement than a spectrum of monotonous
function.

Pattern 2

Higher frequency components stochastically dominate lower frequency compo-
nents in the frequency range (�1, �2) if ξ (ω) < 0, � 1 < ω < �2. Higher
frequency components stochastically consistently dominate lower frequency
components if ξ (ω) < 0, 0 < ω < π , and the time series is said to possess mean-
reverting tendencies.

Figure 10.2 shows the features of such stochastic processes. The top panel of the
figure is the time domain response to a unit size shock of a time series with mean-
reverting tendencies, against a random walk response. The dashed line indicates
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f(ω)

x(w) < 0

x(w)

Stationary

Random walk

Mean-reverting

Random  walk

π

1
2
— π

Figure 10.2 Higher frequencies dominate (mean-reverting tendency).

the evolution path when there are no shocks to the time series. The middle panel is
a typical spectrum for such time series, and the bottom panel is the ξ (ω) statistic for
such time series. The spectrum in Figure 10.2 is a monotonous increase function
of ω, with ξ (ω) < 0, 0 < ω < π , and ξ ′′

ω(ω) > 0, 0 < ω < π . Stochastically
consistent dominance has a looser requirement than a spectrum of monotonous
function. Relevant discussions for pattern 1 apply here.

Pattern 3

Higher (lower) frequency components do not stochastically consistently dominate
lower (higher) frequency components if there exist sub-sets of frequencies ω+, ω−
and ω0 that ξ (ω) > 0, ω ∈ ω+, ξ (ω) < 0, ω ∈ ω− and ξ (ω) = 0,ω ∈ ω0; and the
time series is said to possess the features of mixed complexity.
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Figure 10.3 Two cases of mixed complicity.

Figure 10.3 demonstrates the features of such stochastic processes. Relevant
discussions for pattern 1 apply here. Figure 10.3(a) shows a case where there are
more powers in the medium range frequencies, while Figure 10.3(b) shows a case
where there are more powers in the low and high frequencies. The top panel of
the figures is the time domain response to a unit size shock of a time series with
the features of mixed complexity, against a random walk response. The dashed
line indicates the evolution path when there are no shocks to the time series. The
middle panel is typical spectra for such time series, and the bottom panel is the
ξ (ω) statistics for such time series.
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10.5. Examples and cases

Example 10.1

To demonstrate the frequency domain analysis of the patterns of violation
of white noise conditions developed in this chapter, we scrutinise business
cycle patterns in UK sectoral output empirically. The data sets used in
this study are UK aggregate GDP and output in seven main GDP sectors,
starting in the first quarter, 1955, ending in the first quarter, 2002, and they
are seasonally adjusted at the 1995 constant price. The data sets for the
two sub-sectors within the Services sector start from the first quarter in
1983. The seven main sectors used in the study are: Agriculture, Forestry
and Fishing (A&B); Manufacturing (D); Electricity, Gas and Water Supply
(E); Construction (F); Distribution, Hotels, Catering and Repairs (G&H);
Transport, Storage and Communication (I); and Services (J–Q, including
business services and finance, and government and other services). The
Mining and Quarrying sector (C) is excluded, as its weight in UK GDP
is minimal and has been declining over decades; and more importantly,
its change has been mainly influenced by unconventional economic forces
and other factors. The Services sector is examined in two parts of Business
Services and Finance (J&K) and Government and Other Services (L–Q),
since the attributes and features of these two types of services are rather
different and, consequently, may possess different response patterns in
business cycle fluctuations. However, the two disaggregate services series
only came into existence in the first quarter of 1983, instead of the first
quarter of 1955 for the seven main sectors.

The time domain summary statistics of these sectors’ output and GDP
are provided in Table 10.1. Sector J&K, Business Services and Finance,
sector I, Transport, Storage and Communication, and sector E, Electricity,
Gas and Water Supply, enjoy a greater than average growth rate, though
the Business Services and Finance sector has experienced a decrease in its
growth rate. The lowest growing sectors are A&B, Agriculture, Forestry
and Fishing, and D, Manufacturing. The Manufacturing sector has also
gone through a decline in its growth during this period, along with sector F,
Construction. As being analysed above, sector L–Q, Government and Other
Services, has the most smoothed growth, with its standard deviation in
growth being the smallest and much smaller than that for all the other sectors.

Table 10.1 Time domain summary statistics of sectoral output and GDP

A&B D E F G&H I J&K L–Q J–Q GDP

Mean 0.3810 0.3298 0.7864 0.4682 0.5732 0.7903 0.8945 0.4673 0.6188 0.6001
Std 2.3046 1.7676 4.2544 2.7480 1.4162 1.5019 0.9018 0.3678 0.7042 1.0121
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Figure 10.4 Business cycle patterns: sector A&B.

The most volatile sector is E, Electricity, Gas and Water Supply, followed
by F, Construction, and A&B, Agriculture, Forestry and Fishing.

The estimated statistics for sectoral output sectors and GDP are plotted
in the middle panel of Figures 10.4 – 10.12. We use confidence intervals to
examine and assess the features of the process, which is easily perceptible.

Continued
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Figure 10.5 Business cycle patterns: sector D.

In addition, output series themselves are exhibited in the top panel and
spectra are presented in the bottom panel of these figures. We examine
the ξ (ω) statistic and inspect the associated patterns for GDP sectors in
relation to their institutional features. Four sectors show the features of
compounding effects to varied degrees. They are sector A&B, Agriculture,
Forestry and Fishing; sector D, Manufacturing; sector I, Transport, Storage
and Communication; and sector J&K, Business Services and Finance.
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Figure 10.6 Business cycle patterns: sector E.

This conforms to their institutional characteristics and the ways in which
they are subject to the influence of a range of factors in relation to
business cycle patterns. However, an empirical examination of these
sectors’ output data further renders us specific insights into the sectors.
Among the four sectors, compounding effects in response to shocks are
confirmed overwhelmingly in sector A&B and sector J&K in that the near

Continued
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Figure 10.7 Business cycle patterns: sector F.

white noise conditions are significantly violated – as shown in Figure 10.4
and Figure 10.10, ξ (ω) statistics are positive in the whole frequency range
and the majority of ξ (ω) are substantially above the upper band of the
95 per cent confidence interval. In the case of sector D, ξ (ω) statistics
are positive in the whole frequency range but only a small part of ξ (ω)
are beyond the upper band of the 95 per cent confidence interval, revealed by
Figure 10.5. For sector I, it is observed in Figure 10.9 that most of ξ (ω)
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Figure 10.8 Business cycle patterns: sector G&H.

are positive and only a small part of ξ (ω) are beyond the upper band of
the 95 per cent confidence interval. So, compounding effects are not as
strong in sector D and sector I as in sector A&B and sector J&K. Since
these sectors possess the features of compounding effects in their response

Continued
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Figure 10.9 Business cycle patterns: sector I.

to shocks in business cycles, the consequence of good as well as bad events
or incidents, policy related or technology based, would accumulate in the
course to affect the performance of these sectors, with the Agriculture,
Forestry and Fishing sector and the Business Services and Finance sector
being hit the most.

Sector E, Electricity, Gas and Water Supply, and sector F, Construction,
demonstrate random walk-like behaviour – it is observed in Figure 10.6 and
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Figure 10.10 Business cycle patterns: sector J&K.

Figure 10.7, respectively, that all the values of the ξ (ω) statistic are confined
to the 95 per cent confidence interval and the near white noise conditions
are not violated. Between the two, the Construction sector exhibits a weak
mean-reverting tendency, while the Electricity, Gas and Water Supply
sector displays some weak features of mixed complexity, to a statistically

Continued
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Figure 10.11 Business cycle patterns: sector L–Q.

insignificant degree. These findings also conform to the two sectors’
institutional features and indicate that, between the two sectors, the
Construction sector would display relatively less persistent response patterns
in business cycles due to its lower regulatory requirements. Sector
G&H, Distribution, Hotels, Catering and Repairs, is associated with a
mixed complicity response pattern in business cycles and exhibits some
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Figure 10.12 Business cycle patterns: GDP.

compounding effect to a certain extent also, as being demonstrated by
Figure 10.8. Almost half of ξ (ω) statistics are positive and half of ξ (ω)
statistics are negative, though only the positive part of ξ (ω) violates the
near white noise to conditions and are beyond the upper band of the

Continued
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95 per cent confidence interval. Some of the negative ξ (ω) statistics are close
to, but yet to reach, the lower band of the 95 per cent confidence interval.
These findings fit into the institutional characteristics of the Distribution,
Hotels, Catering and Repairs sector fairly appropriately.

Sector L–Q, Government and Other Services, as expected, exhibits a
business cycle pattern rather different from that in all other sectors, revealed
by Figure 10.11. It possesses mean-reverting tendencies to such an extent
that is almost for a stationary time series. All the values of the ξ (ω) statistic
are negative, most of them having violated the near white noise conditions
and being below the lower band of the 95 per cent confidence interval.
It can be observed in Table 10.1 that the sector has the most smoothed
growth, with its standard deviation in growth being much smaller than that
for all all the other sectors, mainly arising from the sector’s characteristics
of experiencing infrequent shocks in business cycles. Smoothed growth,
or a small standard deviation in growth, does not necessarily mean a lower
persistence or close to being stationary. It is infrequent shocks that, to a
large extent, contribute to the features demonstrated by the Government
and Other Services sector.

The behaviour of the aggregate GDP must reflect the business cycle
features demonstrated by GDP sectors that are dominated by persistent,
sizeable compounding effects in their response to shocks in business cycles.
It is observed in Figure 10.12 that the majority of ξ (ω) statistics are positive,
with a few of them being beyond the upper band of the 95 per cent
confidence interval or having violated the near white noise conditions.
Although the result from the analysis of the aggregate GDP makes known
its business cycle response patterns and features, which match the outcome
and conclusion of sectoral analysis, it is sectoral analysis, in reference to the
institutional background and characteristics of the sectors, that reveals how
different sectors behave differently in business cycles and exhibit a specific
and different business cycle pattern, and lays theoretical cornerstones for
GDP’s overall business cycle features.

Example 10.2

This is a case studying comovements among financial markets by means
of cross spectra and phases in the frequency domain, in a paper entitled
‘Pre- and post-1987 crash frequency domain analysis among Pacific rim
equity markets’ by Smith (2001). The paper examines five stock markets
of Australia, Hong Kong, Japan, the US, and Canada pair-wise, using the
individual stock market index data of Morgan Stanley International Capital
Perspectives, measured in local currencies. The period surrounding the
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crash, i.e. May 1987 through March 1988, is excluded from the sample
and the author claims that this is due to the volatility during this period.
Therefore, the pre-crash sample is from 18 August 1980 to 29 May 1987,
and the post-crash period from 8 March 1988 to 16 December 1994.

Since the Fourier transform requires that the time series are stationary,
routine unit root tests are carried out applying the KPSS procedure.
The purpose is to confirm that (the logarithms of) the indices in levels are
non-stationary while their first differences are stationary, which has been
duly achieved.

Table 10.2 reports the frequency domain statistics of coherence for
the pre- and post-crash periods and the Wilcoxon Z statistic for testing the
hypothesis that the pre- and post-crash coherences are drawn from the same
population. It also provides the time domain statistics of correlation for
comparison. The correlations for pair-wise markets in any period are rather
low, so these markets would be judged against having substantial links
among them. However, the frequency domain peak coherences are much
higher, ranging from 0.2415 between Japan and Hong Kong to 0.5818
between Canada and Australia in the pre-crash period. Nevertheless, the
mean coherences are modest, suggesting that comovements are quite
different at different frequencies – they are more coherent at some
frequencies and less coherent at some other frequencies. It has been shown

Table 10.2 Correlation and coherence

USHK USAU CAJA CAHK CAAU JAHK JAAU AUHK

Pre
correlation

0.0689 0.0661 0.0417 0.0813 0.1177 0.1394 0.1350 0.1807

Post
correlation

0.0873 0.0183 0.1715 0.1072 0.0846 0.2053 0.1676 0.1680

Pre peak
coherence

0.4010 0.5093 0.3461 0.3141 0.5818 0.2415 0.3338 0.3665

Post peak
coherence

0.4114 0.5215 0.3349 0.4313 0.4968 0.3553 0.3085 0.3511

Pre mean
coherence

0.1860 0.2482 0.1714 0.1771 0.2747 0.1502 0.1667 0.1877

Post mean
coherence

0.2250 0.2659 0.2259 0.2044 0.2371 0.2108 0.1913 0.1981

Wilcoxon
Za

−8.16∗∗∗ −4.25∗∗∗ −14.8∗∗∗ −4.83∗∗∗ 4.40∗∗∗ −17.2∗∗∗ −6.94∗∗∗ −1.10

a The Wilcoxon Z statistic tests the null that the coherences for the two periods are drawn from
the same population.∗significant at the 10 per cent level; ∗∗significant at the 5 per cent level; ∗∗∗significant at the
1 per cent level.

Continued
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that coherences are low at high frequencies. In all the cases, except the
pairs of the US and Hong Kong, Canada and Hong Kong and Japan and
Hong Kong, the coherence falls while the frequency increases. For the
pairs of the US and Hong Kong, Canada and Hong Kong and Japan and
Hong Kong, the peak occurs at the frequency between 0.1 and 0.2 (5–10
days). The paper also presents phase diagrams for the pairs of the markets.
Without a consistent pattern, the phase diagrams are mainly of practical
interest.

The Wilcoxon Z statistic suggests that, in every case except the pair of
Australia and Hong Kong, the pre- and post-crash coherences are statistically
different, or the coherences for the two periods are drawn from different
populations. Moreover, both peak and mean coherences have increased in
the post-crash period as against the pre-crash period in all the cases except the
pair of Canada and Australia, implying increased post-crash comovements
among these markets.

10.6. Empirical literature

Frequency domain analysis is most popular in business cycle research because
the research object and the method match precisely. Garcia-Ferrer and Queralt’s
(1998) study is typical in the frequency domain–decomposing business cycles into
long, medium and short term cycles following Schumpeter’s work. They claim
that the frequency domain properties of the time series can be exploited to forecast
business cycle turning points for countries exhibiting business cycle asymmetries.
Cubadda (1999) examines common features in the frequency domain and the
time domain. Understandably, the author has concluded that the serial correlation
common feature is not informative for the degree and the lead–lag structure of
their comovements at business cycle frequencies. Since the lead–lag relationship
in the frequency domain is not an exact mapping of the serial correlation common
feature in the time domain, the former (latter) does not contain all the information
possessed by the latter (former), but does contain additional information not
possessed by the latter (former). As being pointed out earlier, transformation does
not generate extra new information, it simply provides another way of viewing and
processing information, which may be more effective in certain aspects. Bjornland
(2000) is, technically, on business cycle phases. The author finds that consumption
and investment are consistently pro-cyclical with GDP in the time domain and the
frequency domain. However, the business cycle properties of real wage and prices
are not so clear-cut, depending on the de-trending methods used. Although the
number is considerably less than that in the traditional time domain, there are
still a few empirical studies in the area from time to time, for example, Entorf
(1993) on constructing leading indicators from non-balanced sectoral business
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survey data, Englund et al. (1992) on Swedish business cycles, Canova (1994) on
business cycle turning points, and King and Rebelo (1993) on the Hodrick–Prescott
filter.

As analysis in the frequency domain offers a different way of examining time
series properties and patterns, it is naturally applied to issues such as unit roots,
VAR and cointegrated variables. Choi and Phillips (1993) develop frequency
domain tests for unit roots. Their simulation results indicate that the frequency
domain tests have stable size and good power in finite samples for a variety of
error-generating mechanisms. The authors conclude that the frequency domain
tests have some good performance characteristics in relation to time domain
procedures, although they are also susceptible to size distortion when there is
negative serial correlation in the errors. Olekalns (1994) also considers frequency
domain analysis as an alternative to the Dickey–Fuller test. With regard to dynamic
models, error correction in continuous time is considered by Phillips (1991) in the
frequency domain. Stiassny (1996) proposes a frequency domain decomposition
technique for structural VAR models and argues, with an example, the benefit of
adopting this technique in providing another dimension of the relationships among
variables. Examining univariate impulse responses in the frequency domain,
Wright (1999) estimates univariate impulse response coefficients by smoothing the
periodogram and then calculating the corresponding impulse response coefficients
and forms the confidence intervals of the coefficients through a frequency domain
bootstrap procedure.

Other empirical studies on varied topics can be found in Cohen (1999) on
analysis of government spending, Wolters (1995) on the term structure of interest
rates in Germany, Koren and Stiassny (1995) on the causal relation between tax
and spending in Austria, Copeland and Wang (1993) on combined use of time
domain and frequency domain analyses, and Bizer and Durlauf (1990) on the
positive theory of government finance, to list a few.

Notes

1 This can also be the product of the Fourier transform and its conjugate.
2 For example Bartlett (1950), Grenander and Rosenblatt (1953, 1957), and Priestley

(1996).

3 ξ ′
ω(ω) = N1/2

[
Ip(ω) − 1

2π
]
, ξ ′′

ω(ω) = N1/2I ′
p(ω).

Questions and problems

1 What is spectral analysis of time series? Does spectral analysis render new or
more information?

2 Discuss the advantages and disadvantages of the analysis in the frequency
domain.

3 Describe the Fourier transform and the inverse Fourier transform.
4 What are phases and coherence in spectral analysis? Contrast them with

leads/lags and correlation in the time domain.
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5 Collect data from various sources and perform the Fourier transform for the
following time series (using RATS, GAUSS or other packages):

(a) GDP of selected countries,
(b) total return series of selected companies,
(c) foreign exchange rates of selected countries vis-à-vis the US$.

6 Collect data from DataStream and estimate phases and coherence for the
following pairs of time series:

(a) the spot and forward foreign exchange rates of the UK£ vis-à-vis the US$,
(b) the spot foreign exchange rates of the UK£ and Japanese yen vis-à-vis

the US$.

7 Collect data from various sources and estimate phases and coherence for the
following pairs of time series:

(a) GDP of the US and the Canada,
(b) GDP and retail sales of the UK.

8 Collect data from DataStream and estimate phases and coherence for the
following pairs of time series:

(a) total returns of Tesco and Sainsbury’s,
(b) total returns of Intel and Motorola.
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11 Limited dependent variables and
discrete choice models

Firms and individuals encounter choice problems from time to time. An investment
decision is indeed to make a choice; so is a savings decision – whether to save
and how much to save. One particular kind of choice is binary choice. For
example, a firm may choose to use financial derivatives to hedge interest rate
risk, or choose not to use financial derivatives. A firm may decide to expand its
business into foreign markets, or not to expand into foreign markets. Further,
if the firm decides to expand its business overseas, it may acquire an existing
firm in the foreign country as part of its strategic plan, or establish a new
plant in the foreign country. In pension provisions, if employees are entitled
to choose between a defined benefit plan and a defined contribution plan, they
have to make a decision of binary choice. On the other hand, employers may
decide to close the defined benefit plan to new members or continue to offer
the defined benefit plan to new members. There are numerous such examples of
binary choice in people’s daily life, firms’ financing and investment activities,
managers’ business dealings, and financial market operations. Binary choice
can be extended to discrete choice in general, i.e. there are more than two
alternatives to choose from but the values of the variable are still discrete, such
as 0, 1, 2, or 1, 2, 3, 4. A simple example can be firms’ choice of overseas stock
exchanges for dual listings, e.g. they may choose one of New York, Tokyo, or
London. Binary or discrete choice models can be generalised to refer to any
cases where the dependent variable is discrete, such as discrete responses and
categories.

In addition to discrete choice models where a dependent variable possesses
discrete values, the values of dependent variables can also be censored or truncated.
That is, the variable is not observed over its whole range. A dependent variable
that is discrete, truncated or censored is a limited dependent variable. This chapter
addresses discrete choice models while the next chapter deals with truncation and
censoring. The chapter first presents the commonly used formulations of probit
and logit for binary choice models. General discrete choice models are introduced
next in the multinomial logit framework, followed by ordered probit and ordered
logit. Since discrete choice models are non-linear, marginal effects are considered
specifically in one section. Deviating from the preceding chapters of the book, data
sets analysed in this chapter and the next are primarily cross-sectional. That is,
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they are data for multiple entities, such as individuals, firms, regions or countries,
observed at a single time point.

11.1. Probit and logit formulations

In a binary choice model, the dependent variable takes the value of either 1 or 0,
with a probability that is a function of one or more independent variables. A binary
variable is sometimes said to obey a binomial distribution; while a discrete variable
taking more than two discrete values is said to possess a multinomial distribution,
a topic to be studied in the next section. When the dependent variable is binary
or discrete, some assumptions on linear regression estimation procedures, such
as the OLS where the dependent variable is continuous, do not hold. Alternative
methods have to be employed for the formulation and estimation of binary and
discrete choice modelling appropriately. Probit and logit models are two commonly
used models to formulate binary choice, response or categorisation. The probit
model derives its name from the probit function, so does the logit model from the
logistic function. Regression for estimating the probit model is referred to probit
regression, and regression for estimating the logit model is commonly known as
logistic regression.

The underlying process of the observed binary variable is supposed to be an
unobserved latent variable. Their relationship and presentation are:

Y ∗ = Xβ+ ε (11.1a)

Y =
{

1, if Y ∗ ≥ 0
0, if Y ∗ < 0

(11.1b)

The unobserved variable is a continuous function of a linear combination of a set
of explanatory variables, which measures the utility of an activity. If the function
value or utility is high enough, the activity will be undertaken and 1 is chosen.
Otherwise, if the function value or utility is not high enough, the activity will not
be undertaken and 0 is chosen.

The probit function is the inverse cumulative distribution function of the normal
distribution. The probit model employs an inverse probit function, so it is a kind of
the cumulative standard normal distribution. Let Y be a binary variable that takes
the value of either 1 or 0. The probit model is defined as:

P (Y = 1 |Xβ) = � (Xβ) (11.2)

where X is a vector of explanatory variables, β is a vector of the corresponding
coefficients, and � (z) is the cumulative normal distribution. The probit model
states that the probability of Y taking the value of 1 follows the cumulative
standard normal distribution of a linear function of the given set of explanatory
variables X.
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The logit model is based on the odds of an event taking place. The logit of a
number P between 0 and 1 is defined as:

Logit (P) = Ln

(
P

1 − P

)
(11.3)

If P = P (Y = 1 |Xβ) is the probability of an event taking place, then P/(1 − P)
is the corresponding odds and Ln [P/(1 − P)] is the corresponding log odds. The
logit model states that the log odds of an event taking place are a linear function
of a given set of explanatory variables, i.e.:

Ln

(
P

1 − P

)
= Xβ (11.4)

The probability P = P (Y = 1 |Xβ) can be solved as:

P (Y = 1 |Xβ) = exp(Xβ)

1 + exp(Xβ)
(11.5)

Figure 11.1 demonstrates the probabilities predicted by the probit model and the
logit model. It can be observed that the two curves are similar except that the curve
for the probit model is sharper. The probability of the probit model increases to a
greater extent at point Xβ = 0, with the slope being 0.3989. While the probability
of the logit model increases to a smaller extent at point Xβ = 0, with the slope
being 0.25. This is also shown in Figure 11.2 by their probability densities. The
probability density of the probit model is more condensed than that of the logit
model. The logit model has one particular advantage and makes more sense – it

0
0 1−1 2−2 3−3 4−4 5−5

0.25

0.5

0.75

1

Probit Logit

P (Y=1|Xb)
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Figure 11.1 Predicted probability by probit and logit.
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Probability density
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Figure 11.2 Probability density of probit and logit.

specifies that the odds are exponential and the log odds are linear functions of
explanatory variables, making it easy to interpret. On the other hand, the probit
model implies that the increase in the probability of the event taking place follows
a standard normal distribution, in line with the assumptions on many probabilistic
events.

Estimation of the probit model and the logit model is usually through maximising
their likelihood function. Recall that the likelihood of a sample of N independent
observations with probabilities P1,P2, . . .,PN , L, is:

L = P1P2 · · ·PN =
N∏

i=1

Pi (11.6)

With the probit model, the probability of Y being 1 is P (Y = 1 |Xβ) = � (Xβ) and
the probability of Y being 0 is P (Y = 0 |Xβ) = 1 − P (Y = 1 |Xβ) = 1 − � (Xβ).
Therefore, the likelihood function of the probit model, L (β), is:

L (β) =
N∏

i=1

[
� (Xiβ)

]Yi
[
1 −� (Xiβ)

](1−Yi) (11.7)

and the log likelihood function of the probit model, LL (β), is:

LL (β) =
N∑

i=1

YiLn
[
� (Xiβ)

]+ (1 − Yi)Ln
[
1 −� (Xiβ)

]
(11.8)
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Similarly, for the logit model, the probability of Y being 1 is:

P (Y = 1 |Xβ) = exp(Xβ)

1 + exp(Xβ)

and the probability of Y being 0 is:

P (Y = 0 |Xβ) = 1 − P (Y = 1 |Xβ) = 1 − exp(Xβ)

1 + exp(Xβ)

Therefore, the likelihood function of the logit model, L (β), is:

L (β) =
N∏

i=1

[
exp(Xiβ)

1 + exp(Xiβ)

]Yi
[
1 − exp(Xiβ)

1 + exp(Xiβ)

](1−Yi)

(11.9)

and the log likelihood function of the logit model, LL (β), is:

LL (β) =
N∑

i=1

YiLn

[
exp(Xiβ)

1 + exp(Xiβ)

]
+ (1 − Yi)Ln

[
1 − exp(Xiβ)

1 + exp(Xiβ)

]
(11.10)

Coefficient estimates can be derived, adopting procedures that maximise the above
log likelihood functions.

11.2. Multinomial logit models and multinomial logistic
regression

The multinomial distribution is an extension of the binomial distribution when and
where there are more than two discrete outcomes – choices, responses or categories.
Estimation of multinomial logit models is usually dealt with by multinomial
logistic regression. A simplest multinomial logit model is one where the dependent
variable can have three discrete values of 0, 1 and 2. Let P1 denote P (Y = 1 |Xβα)
and P2 denote P (Y = 2 |Xγα). Let P0 = P (Y = 0 |Xα) be the base category or
reference category. Let β = βα −α and γ = γα −α. In a similar but not an exactly
comparable way in which odds are applied in the previous section, we construct
two binomial logit models with reference to the base category of P0:

Ln

(
P1

P0

)
= Xβ (11.11a)

Ln

(
P2

P0

)
= Xγ (11.11b)
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Note P0 = 1 − P1 − P2, so:

Ln

(
P1

P0

)
= Ln

(
P1

1 − P1 − P2

)
= Xβ (11.12a)

Ln

(
P2

P0

)
= Ln

(
P2

1 − P1 − P2

)
= Xγ (11.12b)

The probability P (Y = 1 |Xβ) can therefore be solved as:

P (Y = 1 |Xβ) = exp(Xβ)

1 + exp(Xβ) + exp(Xγ)
(11.13a)

the probability P (Y = 2 |Xγ) is:

P (Y = 2 |Xγ) = exp(Xγ)

1 + exp(Xβ) + exp(Xγ)
(11.13b)

and the probability P (Y = 0 |Xα) is:

P (Y = 0) = 1

1 + exp(Xβ) + exp(Xγ)
(11.13c)

The pair-wise likelihood functions of the above multinomial logit model against
the reference category are:

L (β) =
N∏

i=1

[
exp(Xiβ)

1 + exp(Xiβ)

]Yi
[
1 − exp(Xiβ)

1 + exp(Xiβ)

](1−Yi)

, Yi = 0,1

(11.14a)

L (β) =
N∏

i=1

[
exp(Xiγ)

1 + exp(Xiγ)

]Yi/2[
1 − exp(Xiγ)

1 + exp(Xiγ)

][1−(Yi/2)]

, Yi = 0,2

(11.14b)

and the log likelihood functions of the above multinomial logit model are:

LL(β)=
N∑

i=1

YiLn

[
exp(Xiβ)

1+exp(Xiβ)

]
+(1−Yi)Ln

[
1− exp(Xiβ)

1+exp(Xiβ)

]
Yi =0,1

(11.15a)

LL(β)=
N∑

i=1

Yi

2
Ln

[
exp(Xiγ)

1+exp(Xiγ)

]
+
(
1− Yi

2

)
Ln

[
1− exp(Xiγ)

1+exp(Xiγ)

]
Yi =0,2

(11.15b)

In general, a multinomial model with m + 1 discrete outcomes has m pairs of
log ‘odds’ against the reference category. Let P0 = P (Y = 0 |Xβ0) be the base



204 Limited dependent variables and discrete choice models

category or reference category, Pj = P
(
Y = j |Xβ0

j

)
(j = 1, . . .m) and βj = β0

j −β0
( j = 1, . . .m). Then these m pairs of log odds are:

Ln

(
P1

P0

)
= Xβ1 (11.16a)

Ln

(
P2

P0

)
= Xβ2 (11.16b)

. . .

Ln

(
Pm

P0

)
= Xβm (11.16c)

The probability P (Y = 1 |Xβ1), P (Y = 2 |Xβ2), . . . P (Y = m |Xβm) can be jointly
solved as:

P (Y = 1 |Xβ1) = exp(Xβ1)

1 +∑m
j=1 exp

(
Xβj

) (11.17a)

P (Y = 2 |Xβ2) = exp(Xβ2)

1 +∑m
j=1 exp

(
Xβj

) (11.17b)

. . .

P (Y = m |Xβm) = exp(Xβm)

1 +∑m
j=1 exp

(
Xβj

) (11.17c)

P (Y = 0) = 1

1 +∑m
j=1 exp

(
Xβj

) (11.17d)

The pair-wise likelihood functions of the above general multinomial logit model
against the reference category are:

L (β) =
N∏

i=1

[
exp(Xiβ1)

1 + exp(Xiβ1)

]Yi
[
1 − exp(Xiβ1)

1 + exp(Xiβ1)

](1−Yi)

, Yi = 0,1

(11.18a)

L (β) =
N∏

i=1

[
exp(Xiβ2)

1 + exp(Xiβ2)

]Yi/2[
1 − exp(Xiβ2)

1 + exp(Xiβ2)

][1−(Yi/2)]

, Yi = 0,2

(11.18b)

. . .

L (β) =
N∏

i=1

[
exp(Xiβm)

1 + exp(Xiβm)

]Yi/m[
1 − exp(Xiβm)

1 + exp(Xiβm)

][1−(Yi/m)]

, Yi = 0,m

(11.18c)
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and the log likelihood functions of the above general multinomial logit model are:

LL (β) =
N∑

i=1

YiLn

[
exp(Xiβ1)

1 + exp(Xiβ1)

]
+ (1 − Yi)Ln

[
1 − exp(Xiβ1)

1 + exp(Xiβ1)

]

Yi = 0,1 (11.19a)

LL (β) =
N∑

i=1

Yi

2
Ln

[
exp(Xiβ2)

1 + exp(Xiβ2)

]
+
(

1 − Yi

2

)
Ln

[
1 − exp(Xiβ2)

1 + exp(Xiβ2)

]

Yi = 0,2 (11.19b)

. . .

LL (β) =
N∑

i=1

Yi

m
Ln

[
exp(Xiβm)

1 + exp(Xiβm)

]
+
(

1 − Yi

m

)
Ln

[
1 − exp(Xiβm)

1 + exp(Xiβm)

]

Yi = 0,m (11.19c)

11.3. Ordered probit and logit

Discrete variables that can be ordered are ordinal variables. Ordered probit
and ordered logit are two models used to analyse ordinal dependent variables.
Typical ordinal cases are formatted responses to questionnaire surveys, such as
the following:

Strongly
Disagree

Disagree Neither agree
nor disagree

Agree Strongly
agree

1 2 3 4 5

The scaling need not be 1 to 5 and the increment need not be one. It can be, for
example, −2, −1, 0, 1, 2; or 0, 5, 10.

Let Y ∗ be an unobserved latent variable that underlies the observed ordinal
variable Y in the following way:

Y ∗ = Xβ+ ε (11.20a)

Y = i, if ωi−1 ≤ Y ∗ < ωi, i = 1, . . .k (11.20b)

where ωi is the cut-point. With an ordered probit, the probability of the ith choice
or category is chosen is:

P (Y = i |Xβ) = P (Xβ+ ε < ωi) − P
(
Xβ+ ε < ωi−1

)
= P (ε < −Xβ+ωi) − P

(
ε < −Xβ+ωi−1

)
= � (−Xβ+ωi) −�

(−Xβ+ωi−1

)
(11.21)
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where � (z) denotes the cumulative normal distribution. The cumulative probabil-
ity for Y ≤ i, conditional on Xβ, is:

P (Y ≤ i |Xβ) =
i∑

j=1

P (Y = j |Xβ)

= � (−Xβ+ω1) +� (−Xβ+ω2) −� (−Xβ+ω1)

+·· ·+� (−Xβ+ωi) −�
(−Xβ+ωi−1

)= � (−Xβ+ωi) (11.22)

While the cumulative probability for Y > i, conditional on Xβ, is:

P (Y > i |Xβ) = 1 − P (Y ≤ i |Xβ) =
k∑

j=i+1

P (Y = j |Xβ) = � (Xβ−ωi)

(11.23)

Using ordered logit for odinal variables, we refer to odds as expected. The odds
are the logit of the cumulative probability for Y ≤ i or the ratio of the cumulative
probability for Y ≤ i to the cumulative probability for the rest:

Logit [P (Y ≤ i |Xβ)] = P (Y ≤ i |Xβ)

P (Y > i |Xβ)
=
∑i

j=1 P (Y = j |Xβ)∑k
j=i+1 P (Y = j |Xβ)

(11.24)

and the log odds are:

Ln {Logit [P (Y ≤ i |Xβ)]} = Ln

[
P (Y ≤ i |Xβ)

P (Y > i |Xβ)

]

= Ln

⎡
⎣ i∑

j=1

P (Y = j |Xβ)

⎤
⎦− Ln

⎡
⎣ k∑

j=i+1

P (Y = j |Xβ)

⎤
⎦= ωi − Xβ

(11.25)

We also write the odds and log odds in the following way for the purpose to contrast
the multinomial logit model and ordered logit model:

Ln {Logit [P (Y > i |Xβ)]} = Ln

[
P (Y > i |Xβ)

P (Y ≤ i |Xβ)

]

= Ln

⎡
⎣ k∑

j=i+1

P (Y = j |Xβ)

⎤
⎦− Ln

⎡
⎣ i∑

j=1

P (Y = j |Xβ)

⎤
⎦= Xβ−ωi

(11.26)

Note that the allocation of 0,1,2, . . . is arbitrary in multinomial logit models, i.e.
we can code 0 for red, 1 for blue, and 2 for yellow; but we can also code 0 for
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blue, 1 for yellow, and 2 for red. However, we cannot alter 0,1,2, . . . arbitrarily.
e.g. for four colours of sky blue, light blue, blue and dark blue, we may code them
this way: 0 for sky blue, 1 for light blue, 2 for blue and 3 for dark blue. We may
also code them that way: 0 for dark blue, 1 for blue, 2 for light blue and 3 for sky
blue. But we cannot code them like this: 0 for blue, 1 for sky blue, 2 for light blue
and 3 dark blue. Another example of contrast is coffee, tea and chocolate on the
one hand, and a short latte, a tall latte and a grande latte on the other hand. For the
former it can be a case of a multinomial logit model and, for the latter, a case of
an ordered logit model.

11.4. Marginal effects

There is no need to examine marginal effects for linear probability models that we
have experienced, such as linear regression. This is because the marginal effect
in such models is constant. The marginal effect measures the effect of a one unit
change in one of the explanatory variables on the dependent variable, holding all
other explanatory variables constant. In linear probability models such as linear
regression, this is simply the coefficient of the explanatory variable. For binary
choice models, the probability of the dependent variable being one is a non-linear
function of its explanatory variables, though the underlying process of the observed
binary variable, supposed to be an unobserved latent variable, is a linear function of
explanatory variables. This applies to discrete choice models in general, including
multinomial and ordered choice models. Consequently, the marginal effect in these
models is non-constant. The marginal effect changes and is specific to the given
value of the explanatory variable.

Recalling the probit model of equation (11.2), the marginal effect of the probit
model can be derived as follows:

∂P (Y = 1 |Xβ)

∂X
= ∂ [� (Xβ)]

∂X
= φ (Xβ)β′ (11.27)

For example, if X = [X1 X2

]
is a 1 × 2 row vector of explanatory variables,

β =
[
β1
β2

]
is a 2 × 1 column vector of coefficients, then:

∂P (Y = 1 |Xβ)

∂X

=
[
∂P (Y = 1 |β1X1 +β2X2)

∂X1

∂P (Y = 1 |β1X1 +β2X2)

∂X2

]

=
[
∂
[
� (β1X1 +β2X2)

]
∂X1

∂
[
� (β1X1 +β2X2)

]
∂X2

]

= φ (β1X1 +β2X2)
[
β1 β2

]
(11.28)

It is the derivative of the probability of Y = 1, conditioning on the explanatory
variables, with respect to each of the explanatory variables. Since φ (Xβ) generally
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changes when the explanatory variables change, marginal effects or marginal effect
coefficients, measured by φ (Xβ) × β, are generally non-constant. Since φ (Xβ) is
usually smaller than one, marginal effects or marginal effect coefficients are usually
smaller that the estimated coefficients of β. Therefore, the effect of the explanatory
variable on the dependent variable would be overvalued without the adjustment
for marginal effects.

Referring to equation (11.5), the marginal effect of the logit model is derived as:

∂P (Y = 1 |Xβ)

∂X
=

∂

[
exp(Xβ)

1 + exp(Xβ)

]
∂X

= exp(Xβ) [1 + exp(Xβ)]β′ − exp(Xβ)exp(Xβ)β′

[1 + exp(Xβ)]2

= exp(Xβ)

[1 + exp(Xβ)]2 β′ (11.29)

Similar to the probit case, marginal effects or marginal effect coefficients are
smaller than the estimated coefficients of β due to the fact that exp(Xβ)/
[1 + exp(Xβ)]2 is smaller than one, and the effect of the explanatory variable on
the dependent variable would be overvalued without the adjustment for marginal
effects.

From the above analysis, it is straightforward to derive marginal effects or
marginal effect coefficients for the multinomial logit model:

∂P (Y = 1 |Xβ1)

∂X
=

∂

[
exp(Xβ1)

1 +∑m
j=1 exp

(
Xβj

)
]

∂X

=
exp(Xβ1)

[
1 +∑m

j=1 exp
(
Xβj

)]
β′

1 − exp(Xβ1)
[∑m

j=1 exp
(
Xβj

)
β′

j

]
[
1 +∑m

j=1 exp
(
Xβj

)]2

=
exp(Xβ1) β′

1 + exp(Xβ1)
[∑m

j=1 exp
(
Xβj

) (
β′

1 − β′
j

)]
[
1 +∑m

j=1 exp
(
Xβj

)]2 (11.30a)

∂P (Y = 2 |Xβ2)

∂X
=

exp(Xβ2)β′
2 + exp(Xβ2)

[∑m
j=1 exp

(
Xβj

) (
β′

2 − β′
j

)]
[
1 +∑m

j=1 exp
(
Xβj

)]2

(11.30b)

. . .
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∂P (Y = m |Xβm)

∂X
=

exp(Xβ2)β′
m + exp(Xβm)

[∑m
j=1 exp

(
Xβj

) (
β′

m − β′
j

)]
[
1 +∑m

j=1 exp
(
Xβj

)]2

(11.30c)

∂P (Y = 0)

∂X
= −∑m

j=1 exp
(
Xβj

)
β′

j[
1 +∑m

j=1 exp
(
Xβj

)]2 (11.30d)

These marginal effects or marginal effect coefficients for the multinomial logit
model can also be expressed in a slightly different way as follows:

∂P (Y = 1 |Xβ1)

∂X
=

exp(Xβ1)β′
1 + exp(Xβ1)

[∑m
j=1 exp

(
Xβj

)(
β′

1 − β′
j

)]
[
1 +∑m

j=1 exp
(
Xβj

)]2

= P(Y = 1 |Xβ1)β′
1 − P(Y = 1 |Xβ1)

m∑
j=1

P
(
Y = j |Xβj

)
β′

j

= P(Y = 1 |Xβ1)
(
β′

1 − β′
j

)
(11.31a)

∂P (Y = 2 |Xβ2)

∂X
= P(Y = 2 |Xβ2)

(
β′

2 − β′
j

)
(11.31b)

. . .

∂P (Y = 2 |Xβm)

∂X
= P(Y = 2 |Xβm)

(
β′

m − β′
j

)
(11.31c)

The marginal effects of the ordered probit can be derived as follows:

∂ [P (Y ≤ i |Xβ)]

∂X
= ∂

[
� (−Xβ+ωi)

]
∂X

= φ (−Xβ+ωi)β
′ (11.32a)

∂ [P (Y > i |Xβ)]

∂X
= ∂

[
� (Xβ−ωi)

]
∂X

= φ (Xβ−ωi) β′ (11.32b)

While the marginal effects of the ordered logit are:

∂ [P (Y ≤ i |Xβ)]

∂X
=

∂

[
exp(ωi − Xβ)

1 + exp(ωi − Xβ)

]
∂X

= exp(ωi − Xβ)[
1 + exp(ωi − Xβ)

]2 β′

(11.33a)

∂ [P (Y > i |Xβ)]

∂X
=

∂

[
exp(Xβ−ωi)

1 + exp(Xβ−ωi)

]
∂X

= exp(Xβ−ωi)[
1 + exp(Xβ−ωi)

]2 β′

(11.33b)
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11.5. Examples and cases

Example 11.1

The growing use of the Internet for trading and other commercial purposes,
within a fairly short spell of the existence of the Internet, is phenomenal.
What prompts customers to buy on-line has become a relevant as well as
an interesting topic of research on e-commerce recently, though people
had rarely taken this on-line shopping issue seriously, if on-line shopping
had been considered an issue at all a few years earlier. In a study by
Koyuncu and Bhattacharya (2004), the effects of selected factors on on-line
shopping behaviour have been examined, using binomial and multinomial
logistic models. There are a number of risks and benefits associated with
e-commerce, on the demand side as well as on the supply side. Quickness
of transactions and low prices are identified as benefits, and payment risk
and delivery issues are identified as risk factors in the paper. The authors
hypothesise that quickness of transactions and lower prices contribute to an
individual’s decision to purchase on the Internet positively while payment
risk and delivery issues contribute to an individual’s decision to purchase
on the Internet negatively. Their results from estimating both binomial and
multinomial logistic models indicate that the hypothesis can be accepted.
Further, they use the multinomial logistic model to estimate the frequency of
on-line shopping by individuals, and claim to have found that the frequency
of on-line shopping increases with the benefits of e-commerce and decreases
with its risks, a seemingly obvious result.

A survey data set collected by Georgia Institute of Technology in April
1998 is used in the study. The final sample consists of 1842 individual
Internet users in the US after eliminating observations with missing data.
The data set contains information on each individual’s demographic and
economic characteristics as well as the individual’s degrees of agreement
on particular on-line issues of price, quickness, payment risk, and delivery.
The demographic and economic characteristics used in the study include age,
education, gender, income and experience with the Internet. Among these
1842 Internet users, 1504 are on-line buyers and 338 are non-buyers. Male
on-line shoppers account for 54 per cent for the whole sample, 58 per cent
for the buyer group, and 39 per cent for the non-buyer group respectively.
The coding for the survey questions is as follows. Age is in 11 bands ranging
from 1 for under 21 to 11 for over 65; Income is also in 11 bands, from 1 for
under $10,000 to 11 for over $100,000 annual household income; Education
is in eight bands; With regard to gender, 1 is for male and 0 for female and all
other responses; Internet experience is in nine bands, 1 for under 6 months
and 9 for over 7 years; The four questions regarding on-line shopping issues
of price, quickness, payment risk, and delivery are on a 1–5 scale, with
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1 being strongly disagree, 2 being disagree, 3 being neither disagree no
agree, 4 being agree and 5 being strongly agree.

First, they use a binomial logistic model to evaluate the impact of
an individual’s reaction to price, quickness, payment risk, and delivery
issues on that individual’s on-line shopping decision. Table 11.1 reports
the results from estimating the binomial model. The second and third
columns are for their benchmark model, which includes only the variables
representing demographic and economic factors and on-line shopping
experience. The last two columns are for their full model, further including
individuals’ degrees of agreement on the four survey questions regarding
price, quickness, payment risk, and delivery. Both the coefficients and
marginal effects coefficients are reported. All the coefficients, except that for
the age variable, are statistically significant at the 10 per cent level or higher
for both models. Nevertheless, the level of significance of the coefficients
for the demographic and economic character variables falls when the on-
line shopping character variables are included. According to these results,

Table 11.1 Binomial logistic estimation of on-line shopping

Coefficient Marginal effect Coefficient Marginal effect

Constant −1.233∗∗∗
(0.268)

−0.161∗∗∗
(0.035)

0.110
(0.577)

0.011
(0.058)

Age 0.042
(0.026)

0.005
(0.003)

0.024
(0.028)

0.002
(0.003)

Income 0.075∗∗∗
(0.023)

0.097∗∗∗
(0.003)

0.052∗∗
(0.025)

0.005∗∗
(0.002)

Education 0.140∗∗∗
(0.050)

0.018∗∗∗
(0.007)

0.114∗∗
(0.054)

0.012∗∗
(0.006)

Gender 0.527∗∗∗
(0.129)

0.069∗∗∗
(0.017)

0.423∗∗∗
(0.144)

0.043∗∗∗
(0.015)

Experience 0.266∗∗∗
(0.033)

0.035∗∗∗
(0.004)

0.204∗∗∗
(0.035)

0.021∗∗∗
(0.003)

Quickness 0.394∗∗∗
(0.069)

0.040∗∗∗
(0.007)

Price 0.297∗∗∗
(0.076)

0.030∗∗∗
(0.008)

Risk −0.687∗∗∗
(0.074)

−0.069∗∗∗
(0.007)

Delivery −0.186∗∗
(0.087)

−0.019∗∗
(0.009)

Standard errors in parentheses.∗significant at the 10 per cent level; ∗∗significant at the 5 per cent level; ∗∗∗significant at the
1 per cent level.
Marginal effects evaluated at the sample means.

Continued
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income, education and internet experience all have a positive effect on the
on-line shopping decision. That is, the higher the household income, the
more likely the individual would shop on-line; the higher the individual’s
education, the more likely that individual would shop on-line; the more
internet experience the individual has, the more likely that individual would
shop on-line. However, it is unclear why being a male is more likely to
shop on-line. The effect of the four on-line shopping issues is as expected.
The advantages of better prices and time-saving offered by on-line shopping
induce individuals to buy on-line, with the two coefficients for the variables
representing these two aspects of on-line shopping being positive and highly
significant at the 1 per cent level. The risk of making on-line payment is
confirmed a concern for not using the Internet for shopping, with a highly
significant negative coefficient for the variable. To a lesser extent, a long
period for delivering the item purchased via the Internet has a negative effect
on the on-line shopping decision, with the coefficient for the variable being
negatively significant at the 5 per cent level.

They then examine the effect of the four on-line issues on individuals’
on-line purchasing frequencies. They set five different categories according
to the frequency with which on-line shopping takes place. 0 denotes the
category for individuals who do not make on-line shopping at all; 1 denotes
the category for individuals who do on-line shopping less than once each
month; 2 denotes the category for individuals who do on-line shopping
about once each month; 3 denotes the category for individuals who do
on-line shopping several times each month; and 4 denotes the category
for individuals who do on-line shopping about once per week or more
frequently. In their multinomial logistic analysis, the base category is those
individuals who do not shop on-line at all. Table 11.2 reports the results
from estimating the multinomial model.

Unlike binomial models where the sign of the marginal effects coefficient
is always the same as that of the coefficient, the sign of the marginal effects
coefficient can be different from that of its corresponding coefficient. There
are several examples in Table 11.2. Equations (11.30) and (11.31) reveal
the fact and reason why the sign of the marginal effects coefficient may
be different from that of the coefficient for multinomial models. Let us
pay attention to panel B, the results of the full model. The marginal effects
coefficient has changed the sign vis-à-vis its corresponding coefficient for all
the four on-line shopping variables, as well as income, education and gender,
for Prob(y = 1), the category for individuals who do on-line shopping
less than once each month. The sign of the marginal effects coefficient
is not desirable, while the sign of the coefficient is as expected, for all
the four on-line shopping variables of price, quickness, payment risk and
delivery for this category. In their study, the advantages of better prices
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and quickness offered by on-line shopping still attract the individuals in
this category to shop on-line as suggested by the positive coefficients for
these two variables, significant at the 1 per cent level. But these advantages
attract individuals to shop on-line more frequently, resulting in negative
marginal effects of these two variables. This is in relation to the more
frequent on-line buyers in categories 2, 3 and 4, not in relation to the non-
buyers in the base category 0, and should not be misinterpreted. Koyuncu and
Bhattacharya (2004), by basing their explanations on the marginal effects
coefficients exclusively, have encountered apparent trouble. They state with
puzzlement: ‘Unexpectedly, we found that the quickness and price variables
make negative while the risk variable makes positive and statistically
significant contributions to the probability of purchasing from the Internet
for those individuals who do on-line shopping less than once each month’,
which has misinterpreted their own empirical results. For the remaining
three categories, the sign of the marginal effects coefficient of all the four
variables of price, quickness, payment risk and delivery is as expected. An
ordered logit would be more appropriate to model this on-line shopping
case where the dependent variable is the frequency with which individuals
shop on-line. If they had chosen an ordered logit model, the marginal
effects coefficients for the price and quickness variables for category 1
would have been positive. There would have been no misinterpretation and
confusion then.

Example 11.2

Mergers and acquisitions (M&As), or corporate takeovers, are among
the most important investment decisions made by acquiring firms and,
consequently, have attracted immense attention from academia and
professionals alike. Over years, many studies have been carried out to
examine the motivations for M&As and the factors that have an influence
on a takeover decision made by acquiring firms. In an empirical study to
predict which firms become takeover targets, Espahbodi and Espahbodi
(2003) employ four models of binary choice of logit, probit, discriminant,
and recursive partitioning to examine a dataset gathered from Mergers and
Acquisitions, a bi-monthly periodical. This section focuses on their logit and
probit results while briefly remarking on recursive partitioning. They have
examined the November–December, September–October, and July–August
issues in 1997 only, claiming that it is to minimise the time series distortion

Continued
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in their models. Regardless, there are a few approaches available to deal
with the effect on model estimation of the changing economic environment
and the resulting operating characteristics of firms; or indeed, the issues
associated with these changes should be addressed not avoided. Utilities and
financial institutions are dropped from the study. The final sample consists of
133 target firms, deemed by them to be large enough for analysis, probably
large enough for statistical considerations.

After lengthy discussions of 18 financial variables and additionally several
non-financial variables that may identify a takeover target firm, Espahbodi
and Espahbodi (2003) adopt four of them, namely, free cash flow over total
assets, existence of golden parachutes, the State of Delaware incorporation
dummy variable and market value of equity over total firm value, in their
logit and probit analysis. The State of Delaware incorporation dummy
variable is included since Delaware has tougher takeover laws than other
states. As a result, firms incorporated in Delaware may be subject to lower
probabilities of a hostile takeover. Whereas, friendly takeovers may increase
as such firms can use the anti-takeover laws as a leverage to extract a
higher price for their firms. The dummy takes a value of 1 if a firm is
incorporated in Delaware and 0 otherwise. The sign of the coefficient
for the dummy and its significance are thus uncertain, claimed by the
authors.

The results from estimating the logit model and probit model are presented
in Table 11.3. Columns 2 and 3 are for the logit model and columns 4 and 5
for the probit model results. Free cash flow over total assets is found to be
positively related to the likelihood of a takeover of the firm significantly
by both models, which is consistent with the hypotheses with regard to

Table 11.3 Estimation of takeovers by the logit and probit models

Logit Probit

Coefficient t-stat Coefficient t-stat

Free cash flow over total assets 1.428∗∗∗ 2.76 0.813∗∗∗ 2.86
Existence of golden parachutes 0.612∗ 1.95 0.366∗ 1.91
State of Delaware incorporation

dummy variable
0.340 1.61 0.204∗ 1.65

Market value of equity over total
firm value

−0.606 −1.36 −0.353 −1.33

Constant −0.811 0.508
Likelihood ratio −285.4 −285.2
R2 19.39 19.49

∗significant at the 10 per cent level; ∗∗∗significant at the 1 per cent level.
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Table 11.4 Classifications of target and non-target firms

Logit Probit

Classified as Classified as

Target Non-
target

Total Target Non-
target

Total

A
ct

ua
l A

ctual

Target 83 50 133 82 51 133 Target
Non-target 153 232 385 147 238 385 Non-target
Total 236 282 518 229 289 518 Total

Correct
classification

62.4% 60.3% 61.7% 61.8% Correct
classification

investment opportunities and agency costs. Existence of golden parachutes
is also expected to increase the likelihood of takeover under both the
incentive alignment and management entrenchment hypotheses, which is
confirmed by the results of both models. A higher ratio of market value
of equity over total firm value tends to reduce the likelihood of a takeover
of the firm, with a negative but insignificant coefficient in both models,
albeit consistent with the growth option hypothesis. The Delaware dummy
variable has a positive coefficient that is marginally significant. The result
indicates that the target firms are using the tough anti-takeover laws in
Delaware to negotiate a higher price for stockholders, claimed by the
authors.

The classification of target and non-target firms, or prediction of
takeovers, is presented in Table 11.4, with the left panel by the logit model
and the right panel by the probit model. The correct classification rate is
62.4 per cent for target firms and 60.3 per cent for non-target firms by
the logit model. That is, only 62.4 per cent of the firms predicted by the
model to be a takeover target were actually a target; and only 60.3 per cent
of the firms predicted by the model to be non-targets were actually non-
targets. The probit model produces similar disappointing results. The correct
classification rate is 61.7 per cent for target firms and 61.8 per cent for non-
target firms. The authors also use a recursive partitioning model to predict
takeover targets, which looks like a decision trees model without feedback
mechanism. It is alleged that the accuracy of the classification or prediction
is increased to 89.5 per cent for target firms and 88.1 per cent for non-target
firms. However, it is unclear how the recursive partitioning model results are
compared with the logit and probit results, since they employ considerably
different variables in the modelling. Nonetheless, it is not the interest of this
section to discuss this method at length.
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Example 11.3

One of the most serious debated issues in many countries in the world is an
aging population. The implications of aging populations are serious, creating
a need to study other related important issues, notably, the retirement system.
The choice and provision of retirement systems have attracted the interest
of numerous parties, including governments, the general public, employees,
employers and academics. In this area of research, Kim and DeVaney
(2005) investigate whether older workers choose partial or full retirement,
or continue to work full-time. They employ multinomial logistic regression
to examine data from the first and fifth waves of the Health and Retirement
Study (HRS) collected in 1992 and 2000, an ongoing longitudinal dataset
that focuses on the retirement and demographic characteristics of older
Americans in the 1990s. The dependent variable of the model is retirement
status measured by self-reported retirement or working status and change in
the number of hours worked during the 8-year period between Wave 1
and Wave 5. The dependent variable takes the value of 0 for full-time
work, 1 for partial retirement and 2 for full retirement, with full-time work
being the reference category. The independent variables are divided into five
sets of household assets and income, pension and health insurance factors,
health status, occupational characteristics, and demographic characteristics.
The values and coding of the independent variables in Table 11.5 are
described as follows. Variables under household assets and income are
continuous and measured in US dollars. Variables under pension and
health insurance are discrete with 1 for a ‘yes’ answer and 0 for ‘no’.
The first two variables under health status are discrete, taking the value
of 1 for a ‘yes’ answer and 0 for ‘no’; it is obviously the number
of occurrences for the next two variables. Variables under occupational
characteristics and demographic characteristics are all discrete, being 1 for
a ‘yes’ answer and 0 for ‘no’, with the exception of age that is measured in
years.

Table 11.5 reports the results of multinomial logistic regression analysis.
Let us look at the results for full retirement first. Household investment assets
contribute to a decision to take full retirement positively, while older workers
with more household debt are more likely to work full-time instead of taking
full retirement. Older workers with a defined benefit plan or both defined
benefit and defined contribution plans are more likely to retire fully. Health
status is found to be negatively related to full retirement – older workers with
excellent or very good health are more likely to continue full-time work.
Self-employment is negatively related to the likelihood of full retirement
versus full-time work, i.e. self-employed workers are more likely to continue
work at old ages. The meaning of work is also a contributing factor to
the retirement decision. Older workers who consider the meaning of work
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Table 11.5 Results of multinomial logistic regression analysis of retirement status

Retirement status

Partial retirement
(N = 461)

Full retirement
(N = 990)

Coefficient Std error Coefficient Std error

Household assets and income
Ln (Labor income) −0.0444 0.0283 −0.0021 0.0200
Ln (Unearned income) 0.0112 0.0184 0.0049 0.0026
Ln (Liquid assets) 0.0005 0.0202 0.0013 0.0165
Ln (Investment assets) 0.0174 0.0220 0.0519∗∗∗ 0.0182
Ln (Real assets) 0.0380 0.0238 0.0140 0.0120
Ln (Debt) 0.0128 0.0142 −0.0230∗∗∗ 0.0092
Pension and health insurance

DB plan only 0.0224 0.1564 0.7971∗∗∗ 0.1289
DC plan only −0.2464 0.1682 0.2547 0.2402
Both DB and DC plans −0.3584 0.4222 0.5964∗∗ 0.3016
IRA and Keogh plans −0.0333 0.2155 −0.0740 0.1759
Employee health insurance 0.1741 0.1258 0.2021∗ 0.1033
Health status

Excellent/very good health 0.4276 0.2332 −0.4021∗∗∗ 0.1615
Good health 0.4735 0.3233 −0.2362 0.1613
Number of serious conditions −0.1534 0.1656 −0.1336 0.1216
Number of chronic conditions 0.1220∗∗∗ 0.0434 0.0421 0.0358
Occupational characteristics

Self-employment 0.3453∗∗ 0.1726 −0.3468∗∗ 0.1658
Physically demanding work 0.1299 0.1654 0.0692 0.1509
Mentally challenging work 0.1579 0.1590 0.1540 0.1435
Perceived age discrimination 0.1026 0.1678 0.2000 0.1300
Meaning of work is more

important
−0.0635 0.1838 −0.3260∗∗∗ 0.0983

Demographic characteristics

Age 0.2361∗∗∗ 0.0187 0.3088∗∗∗ 0.0162
Male 0.5659∗∗∗ 0.1125 0.4910∗∗∗ 0.1030
Married with working spouse −0.1870 0.1720 −0.1970 0.1505
Married with non-working

spouse
−0.0934 0.1419 −0.1947 0.1479

African American 0.2744 0.2691 0.1375 0.1878
Hispanic 0.0180 0.2343 0.1073 0.1989
Other −0.4852 0.4618 −0.0793 0.3488
High school 0.21981 0.1984 0.0138 0.1336
College degree 0.4091∗∗ 0.1830 −0.1013 0.1513
More than college 0.1198 0.2329 −0.4729∗∗∗ 0.1282
Constant −9.7652∗∗∗ 2.1180 −7.9884∗∗∗ 1.8460
Log-likelihood 4780.76

∗significant at the 10 per cent level; ∗∗significant at the 5 per cent level; ∗∗∗significant at
1 per cent level.

Continued
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is more important than money are more likely to continue full-time work
vis-à-vis full retirement. Obviously, age is confirmed to be positively related
to the likelihood of full retirement. According to their results, older male
workers are more likely to take full retirement than their female counterparts.
Kim and DeVaney (2005) argue that the finding probably reflects the fact
that women experience more career interruption for family matters and, as
a result, they tend to remain in their full-time jobs. Education is found to be
related to retirement decisions. Older workers with more education than a
college degree are more likely to choose to continue full-time work.

The boundary between partial retirement and full-time work is apparently
less clear-cut than that between full retirement and full-time work.
Consequently, fewer coefficients in the partial retirement case are
statistically significant. Household assets and income do not contribute to
partial retirement decisions at all. The number of chronic health conditions
is found to be positively related to partial retirement, suggesting that older
workers with chronic conditions have difficulties to work full-time but they
are willing to work part-time, or more likely to choose partial retirement. In
contrast to a decision to choose between full-time work and full retirement,
self-employment is found to be positively related to the likelihood of partial
retirement versus full-time work. Kim and DeVaney (2005) claim that,
because the self-employed have the flexibility to establish their hours, the
choice of partial retirement versus full-time work is rational. The results
for age and gender are the same as in the case of full retirement versus full
retirement. Older workers with a college degree are found to be more likely
to partially retire, which is also in contrast to the case of full retirement
versus full-time work to a certain extent.

11.6. Empirical literature

Choice is deeply associated with everyday life, be it social or personal, collective
or individual. In financial terms, people make choice aimed at achieving higher
utility of their work, consumption, savings, investment, and their combinations.
Corporations make choices supposedly aimed at maximising shareholder values.
Binary choice and discrete choice models such as probit, binomial and multinomial
logistic regression have been traditionally applied to social science research,
employment studies and the labour market, health services and insurance.
Recently, however, there has been growing interest in corporate decision making
involving choice explicitly, as well as in financial market investment choice at the
micro level and monetary policy at the macro level.

Examining the factors that have an effect on bank switching in small firms
in the UK Howorth et al. (2003) employ binomial and multinomial logistic
regression to identify the characteristics that discriminate between three groups
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of small firms. The three groups of firms are classified as a group of firms
considering switching banks, a group of firms that had switched banks in the
previous three years and a group of firms that had not switched banks and were
not considering doing so. They test the hypothesis that some small firms may be
‘informationally captured’ in that they are tied into their current bank relationship
due to difficulties in conveying accurate information about their performance.
Their empirical results are not conclusive with regard to this hypothesis. There is
some evidence in support of the hypothesis where rapidly changing information
and particularly changing technology are characteristics associated with firms
that were considering switching but had not switched. However, there is no
significant evidence to indicate that superior performing firms are more likely
to be ‘informationally captured’, as growth and perceived business success are
both the factors that influence firms to switched banks. Other factors considered to
be relevant to bank-switching decisions in the paper include difficulties obtaining
finance, dissatisfaction with the service provided, and the use of alternative sources
of finance. Reiljan (2002) studies the determinants of foreign direct investment
(FDI) inEstonia. The author firstly adopts principal component analysis to establish
five major components of determinants of foreign direct investment, and then runs
multinomial logistic regression to investigate the impact of these determinants
on different groups of foreign investors. The impact of financial information and
voluntary disclosures on contributions to not-for-profit organisations is scrutinised
by Parsons (2007). Her study consists of two experiments, with one experiment
being a survey with potential donors and the other laboratory based experiment.
Potential donors were sent, via a direct mail campaign, fund-raising appeals
containing varying amounts of financial and non-financial information in order
to determine whether individual donors are more likely to contribute when
accounting information or voluntary disclosures are provided. Participants in a
laboratory experiment were asked to assess the usefulness of the different versions
of the fund-raising appeals. It is claimed that the results of logistic regression
provides evidence that some donors who have previously donated use financial
accounting information when making a donation decision. The results suggest
that non-financial service efforts and voluntary accomplishments disclosures are
not clear-cut factors for determining whether and how much to give by donors,
though these non-financial factors are considered to be useful by participants in
the laboratory experiment for making donation decisions. Factors that restrict
the use of credit cards in the Gulf Cooperation Council (GCC) countries are
examined by Metwally and Prasad (2004). They adopt the logit model and the
probit model to analyse the factors considered to determine the probability of using
credit cards more frequently in domestic transactions. The study has supposedly
covered the GCC countries of Bahrain, Kuwait, Oman, Qatar, Saudi Arabia and
the United Arab Emirates, but it appears to be conducted in Qatar only, where
a sample of 385 consumers was surveyed. Respondents who hold credit cards
were asked to indicate their degree of agreement on 23 statements relating to
their reluctance to use credit cards frequently in domestic transactions on a five-
point scale. They use principal component analysis to reduce the 23 explanatory
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variables as represented by the 23 statements to five factors, and then use the factor
scores of the five extracted factors as explanatory variables in logit and probit
regression. Their logit and probit regression results suggest that the probability
of using credit cards more frequently in domestic transactions in Qatar would
be higher, the closer the credit-card price to cash price and the smaller the debt-
service ratio. They also examine the effect of demographic variables on the use of
credit cards. Their results indicate that there is a high degree of similarity between
Qatar and developed countries regarding the effect of these variables on the use
of credit cards.

The world has been in an accelerating process of globalisation over the last
three decades. Under such an economic environment, companies’ overseas market
listings have become a rather familiar phenomenon. This provides companies
with more opportunities in terms of choice, but creates a new decision-making
area for companies to tackle seriously as well. In a paper entitled ‘The choice of
trading venue and relative price impact of institutional trading: ADRs versus the
underlying securities in their local markets’, Chakravarty et al. (2004) address
two issues of the choice of trading venues and the comparison of trading costs
across the venues. They identify institutional trading in the US in non-US stocks,
i.e. ADRs, from 35 foreign countries and in their respective home markets, using
proprietary institutional trading data. Then they use multinomial logistic regression
to examine the factors that influence institutions’ decisions to trade a cross-listed
stock solely in the ADR market versus solely on its home exchange. They allege
that stocks with tentatively higher local volume, with non-overlapping trading
hours, and with smaller market capitalisation are more likely to be traded on
their home exchanges only while less complex decisions are more likely to be
executed as ADRs only, relative to stocks that are traded by institutions in both
venues. They also claim that the trading cost of ADRs is often higher than that
of the equivalent security at home in terms of overall trading costs. Further,
their multivariate analysis on institutional trading costs indicates that the cost
difference between trading in the security’s home country and its respective ADR
is smaller for stocks associated with less complex trades, relatively lower local
trading volume and overlapping trading hours, and for stocks originating from the
emerging markets.

In a traditional corporate finance area of dividend policy, Li et al. (2006) examine
five determinants of dividend policy in Taiwanese companies. Their study employs
a multinomial logistic model and divides the sample companies into two groups of
high-tech and non-high-tech companies. They claim that the stability of dividends,
debt ratio as well as profitability, are significant determinants of dividend policy
regardless of high-tech and non-high-tech companies, and the size of the firm and
its future growth opportunity have significant effects on dividend policy in non-
high-tech companies but insignificant effects on high-tech companies. Readers
with experience in financial analysis may recall the use of Z-scores in predicting
bankruptcy by Altman (1968). Based on the analysis in this chapter, the probit
model or the logit model should be superior in performing such a prediction. These
non-linear models are attempted by Ginoglou et al. (2002) to predict corporate
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failure of problematic firms in Greece, using a data set of 40 industrial firms,
with 20 of them being healthy and 20 of them problematic, for the purpose of
achieving improved prediction of corporate failure. However, the use of probit or
logit models are not popular for classification issues involving accounting ratios,
bankruptcy prediction in particular. Barniv and McDonald (1999) review several
categorisation techniques and compare the performance of logit or probit with
alternative procedures. The alternative techniques are applied to two research
questions of bankruptcy prediction and auditors’ consistency in judgements. Four
empirical criteria provide some evidence that the exponential generalised beta of
the second kind (EGB2), lomit, and burrit improve the log likelihood functions
and the explanatory power, compared with logit and other models. EGB2, lomit
and burrit also provide significantly better classifications and predictions than
logit and other techniques.

With aging becoming an increasingly important issue and current pension
plans appear to be in crisis in many countries, research on pension or retirement
plans is gaining momentum. In addition to Example 11.3 in the previous section,
Cahill et al. (2005) have raised a question ‘Are traditional retirements a thing of
the past?’ and attempted the question with new evidence on retirement patterns
and bridge jobs. They investigate whether permanent, one-time retirements are
coming to an end just as the trend towards earlier retirements did nearly 20 years
ago. In particular, their study explores how common bridge jobs are among
today’s retirees, and how uncommon traditional retirements have become. The
determinants of bridge jobs are examined with a multinomial logistic regression
model, using data from the Health and Retirement Study for the work histories and
retirement patterns of a cohort of retirees aged 51 to 61 in 1992 over a ten-year time
period in both a cross-sectional and longitudinal context. They find that one-half to
two-thirds of the respondents with full-time career jobs take on bridge jobs before
exiting the labour force completely. Moreover, their study has documented that
bridge job behaviour is most common among younger respondents, respondents
without defined-benefit pension plans, and respondents at the lower- and upper-
end of the wage distribution. They allege that traditional retirements will be the
exception rather than the rule, based on the implications of their findings suggesting
that changes in the retirement income landscape since the 1980s appear to be
taking root.

There have been many other applications of binary and discrete choice models
in virtually every area of social sciences broadly defined. For example, Skaburskis
(1999) adopts a multinomial logistic model and a naïve nested logistic model to
study the choice of tenure and building type. These models are estimated to relate
differences in household size, age, income and housing prices to differences in the
choice of tenure and building type. The estimated models show that the demand for
lower-density options decreases with a decrease in household size and an increase
in age and real income. Higher rents tend to induce the demand for owner-occupied
single-family detached houses. Higher price levels for the ownership option shift
demand towards all of the higher-density options, particularly towards high-rise
rental apartments. The effects of public premiums on children’s health insurance
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coverage are investigated by Kenney et al. (2006). They employ multinomial
logistic models, focusing on premium costs and controlling for other factors. The
study uses 2000 to 2004 Current Population Survey data to examine the effects of
public premiums on the insurance coverage of children whose family income is
between 100 per cent and 300 per cent of the federal poverty level. The magnitude
of the estimated effects varies across the models. Nevertheless, it is claimed that
the results consistently indicate that raising public premiums reduces enrolment
in public programmes, with some children who forgo public coverage having
private coverage instead and others being uninsured. The results further indicate
that public premiums have larger effects when applied to lower-income families.

Questions and problems

1 Describe binary choice and, in general, discrete choice, with a few examples
in daily life, corporate and individual.

2 What is defined as a limited dependent variable? What are features of limited
dependent variables?

3 Describe and discuss the probit model with regard to its functional form.
4 Describe and discuss the logit model with regard to its functional form and in

relation to logistic regression.
5 Contrast the probit model with the logit model, paying attention to their

probability density functions.
6 Present and describe the multinomial logit model and multinomial logistic

regression, and further discuss their role in modelling discrete choice.
7 What are defined as ordered probit and ordered logit? What differentiates an

ordered logit model from a multinomial logit model?
8 What are marginal effects in discrete choice models? Why are the issues of

marginal effects raised and addressed specifically for discrete choice models
but not mentioned for linear regression and other linear models?

9 Collect data from various sources, e.g. Acquisition Monthly, Thomson ONE
Banker and company annual reports, and then estimate a probit model and
a logistic regression model for the choice of payment methods in mergers
and acquisitions (using LIMDEP, GAUSS, RATS or other packages). The
dependent variable is choice of payment methods, with choice of cash as 0
and choice of share exchange as 1. The independent variables may include
the relative size of the bidder to the target, a measure of free cash flow of the
bidder, a measure of the performance of the bidder and that of the target.

10 Collect data on dual listings from various sources, e.g. Thomson ONE
Banker, the websites of relevant stock exchanges and companies, and then
run multinomial logistic regression for the choice of foreign stock exchanges
for dual listings (using LIMDEP, GAUSS, RATS or other packages). The
dependent variable is choice of foreign stock exchanges for dual listings, with
choice of New York being 0, London being 1 and Tokyo being 2 (or the
reader’s own choice of foreign stock exchanges). The independent variables
may include firm size, a measure of performance, financial leverage, an
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industry dummy, and a region dummy, or any variables that the reader reckons
reasonable.
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12 Limited dependent variables and
truncated and censored samples

In addition to discrete choice models where a dependent variable possesses discrete
values, the values of dependent variables can also be censored or truncated. That
is, the variable is not observed over its whole range. For example, in a survey of
MBA graduates two years after their graduation, relevant information is collected,
including their salaries. If one is interested in what determines the salary level, a
model may be set up accordingly where salary is the dependent variable. The survey
sets a lower limit and an upper limit for the salary range in case the respondents
are not willing to reveal the exact salary beyond a certain range. Therefore, the
value of the salary variable takes the figure given in the response when it falls in
the given range, but is censored at both the lower and upper end. If a graduate does
not respond, the observation corresponding to him is excluded or truncated from
the sample, and neither the dependent variable nor the independent variables are
available.

A dependent variable that is truncated or censored is a limited dependent
variable, as is a dependent variable that is discrete discussed in the previous chapter.
This chapter pays attention to issues in estimation of models involving limited
dependent variables with regard to censored and truncated samples. Estimation
of truncated or censored samples with conventional regression procedures such
as the OLS can cause bias in parameter estimates. To correct for the bias, special
techniques and treatments pertinent to truncated and censored data have to be
applied. However, the problem can be largely solved by using the maximum
likelihood estimation procedure. So, we present the likelihood and log likelihood
functions for truncated and censored data samples first while demonstrating their
distributions. Then we proceed to discuss the issue of bias in parameter estimation
produced by the OLS procedure of the Tobit model, only for the purpose to
introduce a wider issue of selection bias. Selection bias is addressed by referring
to the work of Heckman (1976, 1979) and Cragg (1971).

12.1. Truncated and censored data analysis

We have learned limited dependent variables whose values are limited to discrete
values in the previous chapter. There are other types of limited dependent variables
that we introduce and study in this chapter. From time to time, samples can
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be limited due to the values of the dependent variable. When this happens, the
dependent variable is referred to as limited dependent variables. The two frequently
experienced situations where samples are limited by limited dependent variables
are truncated and censored samples. With a truncated sample, an observation is
excluded from the sample if the value of the dependent variable does not meet
certain criteria. In a censored sample, the dependent variable is not observed over
its entire range for some of the observations.

A sample can be left truncated, right truncated, or truncated at both ends. In a
left truncated sample, being truncated at TRa, any observations are excluded from
the sample if the dependent variable is smaller than or equal to TRa:

Yi = Xiβ+ εi, εi ∼ N
(
0,σ 2

)
, Yi > TRa, i = 1, . . . ,N (12.1)

The probability of Yi > TRa is the probability of εi > TRa −Xiβ, the cause of errors
contributing to the bias, which should be subtracted from the likelihood function.
Therefore, the likelihood function is adjusted and becomes:
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where φ (ε) is the density function of normal distributions and � (ε) is the
cumulative normal distribution, with ε ∼ N

(
0,σ 2

)
. Note φ (ε/σ ) = σφ (ε),

� (ε/σ )=� (ε) and� (−ε)= 1−� (ε). The corresponding log likelihood function
following the adjustment is:
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For a right truncated sample, being truncated at TRb, any observations are excluded
from the sample if the dependent variable is greater than or equal to TRb:

Yi = Xiβ+ εi, εi ∼ N
(
0,σ 2

)
, Yi < TRb, i = 1, . . . ,N (12.4)
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Following similar considerations as for the left truncated sample, the log likelihood
function of a right truncated sample is:
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and the log likelihood function of a sample that is truncated at both ends is:
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The presentation of the likelihood function for censored data is similar. Consider
a sample that is left censored at ca:

Yi =
⎧⎨
⎩

Y ∗
i = Xiβ+ εi, εi ∼ N

(
0,σ 2

)
, ifYi > ca

ca, ifYi ≤ ca

i = 1, . . . ,N (12.7)

For non-censored observations, their likelihood function is:

Li = φ (Yi − Xiβ) = 1
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)
(12.8)
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and their log likelihood function is the standard log likelihood in conventional
regression:

LLi = Ln
[
φ (Yi − Xiβ)

]= −1

2
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2σ 2 (12.9)

For censored observations, their likelihood function is:
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and their log likelihood function becomes:
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So, the likelihood function of the sample is:
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where δi = 1 if the observations are censored and δi = 0 if the observations are not
censored. The log likelihood function of the sample, therefore, is:
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For a sample that is right censored at cb:
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the log likelihood function of non-censored observations is the standard log
likelihood in conventional regression as presented in equation (12.9). The log
likelihood function of censored observations is:

LLi = Ln
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So, the log likelihood function of the sample is:
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where ϑi = 1 if the observations are censored and ϑi = 0 if the observations are
not censored.

In general, a sample that is left censored at ca and right censored at cb has the
following log likelihood function:
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where δi = 1 if the observations are left censored and δi = 0 if the observations
are not left censored, ϑi = 1 if the observations are right censored and ϑi = 0 if
the observations are not right censored. Note any one observation cannot be left
censored and right censored at the same time, i.e., Yi ≤ ca and Yi ≥ cb cannot
hold together. So the circumstance of δi = 1 and ϑi = 1 will not occur for any
observation.

12.2. The Tobit model

The Tobit model is a kind of the modelling method for censored data samples,
named after Tobin (1958). To simplify the matter, which is also fairly real
practically, the model is usually left censored at 0, taking the form:
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)
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(12.18)

Now consider a probit type model for the full sample, including both censored and
non-censored data:

Y ∗
i = Xiβ+ εi, εi ∼ N
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0,σ 2

)
(12.19a)
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(12.19b)
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We have learned from the previous chapter that the likelihood function of the
above probit model, L (β), is:

L (β) =
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i=1
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The first moment or the expected value of Y ∗
i conditional on Y ∗

i > 0 is:
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where li is called the inverse Mill’s ratio. Since this would be the estimates by the
OLS including non-censored observations only, and is not equal to Xiβ, the OLS
is inconsistent and produces biased results. Note that the exclusion of the censored
observations in the analysis amounts to estimation of a truncated example. That is,
we run the OLS regression of the dependent variable on the explanatory variables
with non-censored observations, the estimates are biased due to the restriction
imposed on the sample or the exclusion of the censored observations. However,
this bias may be corrected, since the bias arises from the given positive correlation
between εi and Xiβ; it is linked to the inverse Mill’s ratio and, as a result, may
be corrected. This analysis of bias suggests a two-step or two-stage procedure. In
the first stage, a probit type model is estimated for the full sample, including both
censored and non-censored data. The values of the dependent variable are made
discrete; the values of the dependent variable for uncensored observations are set
to 1 and the values of the dependent variable for censored observations are set to
0. The inverse Mill’s ratio can be obtained accordingly. In the second stage of the
estimation procedure, only non-censored data, or the truncated sample, are applied
to the regression. The dependent variable is regressed on the explanatory variables
and the inverse Mill’s ratio obtained in the first stage estimation. This corrects
the bias caused by the restriction imposed on sample selection or the exclusion
of censored observations. This is the idea of the Heckman (1979) model, which
generalises the Tobit model.

Let us review what is defined as the inverse Mill’s ratio prior to proceeding to
more general selection models in the next section, where this ratio is frequently
used. Consider the probability density function of a standard normal distribution:

φ (z) = 1√
2π

e−z2
(12.22)
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Its first moment conditional on z > c:
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is known as the inverse Mill’s ratio:

l (c) = φ (c)

1 −� (c)
= φ (−c)

� (−c)
(12.24)

In general, the inverse Mill’s ratio for a normal distribution with a mean of μ and
a standard deviation of σ , N
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When c = 0, the above inverse Mill’s ratio becomes:

l (c) = φ
(
μ
/
σ
)

� (μ/σ )
(12.26)

It is simply the ratio of the value of the probability density function to the value
of the cumulative normal distribution at point μ.

The Tobit model is widely used for its simplicity, straightforwardness and
relevance, despite the criticisms. More advanced models have been developed and
extended, ranging from estimation procedures, such as the maximum likelihood,
to model specifications, such as the Cragg (1971) model and the Heckman (1979)
model to be introduced in the next section. Although the maximum likelihood
procedure can produce consistent unbiased coefficient estimates, the two-stage
OLS procedure is still used for the following reasons. Firstly, the bias can be easily
corrected. The execution of OLS procedures is much simpler than the maximisation
of the log likelihood function. The latter involves non-linear iterations, which
is sensitive to the choice of initial values of the parameters and may fail to
converge sometimes, despite that computing time and speed are no longer a concern
nowadays. Secondly, we would like to know the different effects of the dependent
variable on parameter estimates by using the truncated sample and the ‘full’ sample
that does not exist, or the extent to which the estimated parameter is biased. Some
inference for the ‘full’ sample’s characteristics may result from such analysis.
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12.3. Generalisation of the Tobit model: Heckman and Cragg

This section generalises the Tobit model. The basic Tobit model introduced in the
previous section, which can be called the Tobit type I model, assumes that the
two processes underlying the continuous choice and discrete choice are the same.
The two processes have the same independent variables to explain the probability
of the discrete dependent variable being observed, as well as the magnitude of
the continuous dependent variable. However, the two processes may be different
involving different independent variables. For example, the decision to participate
in an investment activity may not totally be based on factors that determine the level
or extent of involvement in that activity by those who have participated in. The
Heckman model, which is also referred to as the Tobit type II model, generalises the
Tobit type I model by modelling the decision process and the level of involvement
with two different processes. That is, the set of the variables that influence the
decision to participate may be different from, albeit could be identical to, the set of
variables that determine the level or extent of participation. This decision process
‘selects’ observations to be observed in the truncated data sample that consists
of non-censored data only. When the set of variables for the decision equation is
the same as that for the level or extent equation, the model reduces to the basic
Tobit model, or the Tobit type I model, where observed observations are non-
censored and the rest are censored in a censored data sample, and the selection
process truncates the sample by selecting non-censored data in the regression.
There would be selection bias in the process, which should be detected if exists,
and be corrected accordingly, usually by the means of applying the inverse Mill’s
ratio.

A typical Heckman’s model has the following representation:

Y ∗
i = Xiβ+μi

Z∗
i = Wiγ + νi

}
(12.27a)
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(12.27b)

The purpose is to estimate the Y ∗
i equation, but certain observations of Y ∗

i are
not available. The inclusion of Y ∗

i in the sub-sample of available observations is
determined by a selection rule, a process described by the Z∗

i equation. Since the
dataset is incomplete, or only the data in a selected sub-sample are observed, the
OLS regression for the sub-sample may differ from the OLS regression for
the whole sample in the Y ∗

i equation. The difference between the two sets of
parameter estimates based on the sub-sample and the whole sample arises from
the selection rule or selection process and, is therefore referred to as selection bias.
The selection bias can be illustrated as follows when estimation of the conditional
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mean of Y ∗
i , the mean of Y ∗

i conditional on Z∗
i > 0, is attempted:
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where li is the inverse Mill’s ratio. In recognition of this selection bias, Heckman
proposes a two-stage procedure to obtain consistent parameter estimates. In the first
step, the parameters of the probability of Z∗

i > 0 are estimated using a probit model
for the whole sample. The inverse Mill’s ratio is estimated during the course. All
these parameter estimates are consistent. In the second step, the following equation
is estimated by the OLS:

Y ∗
i = Xiβ+ ξli + εi (12.29)

for the sub-sample selected by Z∗
i > 0. The resulting parameter estimates

are consistent. If ξ is significantly different from zero, i.e., if the hypothesis
ξ = 0 is rejected, then there exists selection bias. Otherwise, there is no
selection bias, or the Z∗

i equation is irrelevant and can be dropped out from the
analysis.

12.4. Examples and cases

Example 12.1

In a study of bank expansions in California, Ruffer and Holcomb Jr (2001)
use a typical two stage estimation procedure, examining the expansion
decision by banks first, and then the level of expansions or the expansion
activity rate next. A probit model is employed for the first stage analysis
of expansion decisions, which also produces the inverse Mill’s ratio for
the second stage analysis to correct selection biases in the examination of
expansion activity rates in a Heckman type regression. The authors choose
the same variables for both the decision model and the level model except
the inclusion of a new market dummy in the second stage analysis, and
justify their stance by stating that they feel there are no theoretical reasons
to exclude any of the variables in either stage of the estimation. The variables
that are considered to be relevant to expansion decisions and activity levels
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have been chosen as future population growth, market deposit, bank deposit,
market share, the Herfindahl Hirschman index as a measure for market
concentration, and bank specialisation. The new market dummy variable is
excluded from the probit model because, by definition, a bank that expands
in a new market is engaged in an expansion.

There are two types of expansions in this study: expansion by acquiring
a bank branch (to buy) and expansion by building a new branch (to build).
The authors examine these two types of expansions separately in the second
stage analysis, though the two types of expansions are aggregated in the
probit model for expansion decisions. The data set used in this study
consists of 70,246 observations. There are 65,763 observations where the
bank is not present in a particular market, so an expansion decision is to
expand into a new market for these observations. In most cases reflecting
these observations, banks choose not to expand. Only 71 out of the 65,763
observations correspond to an expansion where the bank does not exist
at the beginning of the period. In their probit model, the bank makes the
expansion decision for each market and time period. Since there are 31
relevant geographic markets in the data set, each bank in existence in a
given year has 31 observations, one for each market. There are 517 different
banks and 5,450 different branches covered by the study. The number of
branches per bank ranges from a minimum of one to a maximum of 1,007.
Over the five year period covered by the data set, 590 branches are built,
629 branches are acquired, and 38 banks are involved in an acquisition. Of
the 590 branches that are built, 69 cases are expansions into a new market;
and of the 629 acquisitions, only two of them expand into a new market.
Since some banks have acquired more than one bank branch in one year,
the number of acquisitions is not the same as the number of banks involved
in acquisitions.

The results from estimating the decision model and the level model
are reported in Table 12.1. Four year dummies are incorporated to catch
the difference in expansion activities taking place in different years, as the
data are not arranged as a panel data set, which is to be introduced in the
next chapter. The results indicate that market deposits, bank deposits, and
market share have a positive effect on bank expansion decisions, while
market concentration, measured by the Herfindahl Hirschman index, is
negatively associated with bank expansion decisions. That is, when a market
becomes larger in terms of total market deposits in that market, probability
of expanding in that market by a bank becomes higher. Larger banks, with
larger bank deposits, are more likely to engage in expansion activities. As
a bank’s market share becomes greater, the bank is more likely to expand.
The authors claim that market concentration is a barrier to entry, based on

Continued
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Table 12.1 Decision model of expansion and level models of modes of expansion

Probit Acquision
activity rate

Building
activity rate

Constant −2.1769 −46.4050 −37.1714
(.1135) (30.9878) (24.8817)

Future population growth −2.01132 −0.3659 −.2453
(.006829) (.4574) (0.3897)

Market deposit .8781e−8∗∗∗ 0.1315e−6 0.2176e−6∗∗
(.9056e−9) (0.1068e−6) (.8695e−7)

Herfindahl Hirschman index −2.2904∗∗∗ −75.0874∗∗ 19.7346
(0.3882) (34.0893) (28.2156)

Bank deposit .2516e−7∗∗∗ 0.7744e−6∗∗∗ .1110e−6
(.4044e−8) (0.2768e−6) (.2211e−6)

Market share 3.7910∗∗∗ 63.2080 18.4181
(.6109) (46.9135) (37.9271)

Bank specialisation .9925∗∗∗ 17.4543 7.3618
(.05279) (9.3844) (7.4099)

Year 1 (1985 dummy) −.04203 −9.0733∗∗ 4.6661
(.05816) (3.5729) (3.0358)

Year 2 (1986 dummy) −.02342 1.0285 −.5466
(0.05725) (3.4595) (2.9419)

Year 3 (1987 dummy) 0.06288 −.5245 −1.1592
(.05313) (3.314) (2.8162)

Year 4 (1988 dummy) −.03432 −7.0231∗∗ .8277
(0.05466) (3.3087) (2.8083)

New market 17.2656∗∗∗ 58.1125∗∗∗
(3.00027) (2.6511)

Lambda 25.1645∗∗ 16.9925
(12.1623) (9.7621)

R2 0.1208 0.5834

Standard errors in parentheses.
∗significant at the 10 per cent level; ∗∗significant at the 5 per cent level; ∗∗∗significant at the
1 per cent level.

the negative and statistically significant coefficient for the Herfindahl
Hirschman index. In addition, they allege that the role of bank specialisation
is as conjectured: a positive and statistically significant coefficient implies
that a bank is more likely to expand in a market in which it has a larger
percentage of its current total deposits invested. Nevertheless, while the
coefficient is able to indicate expansion, it seems to be unable to identify
the market in which a bank is to expand. Population growth is found to have
no effect on expansion decisions, and there are no year to year variations as
indicated by the insignificant year dummies.
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Although the authors point out that they use the same variables for both
the decision model and the level model, the ‘same’ variables in their models
are in fact not the same. For example, the bank deposit data of the banks that
choose to expand in the decision model cover the data for both modes of
expansion by acquiring an existing bank branch and building a new branch;
whereas the level model deals with the expansion activities separately for
each of the two modes of expansion. Yet, the inverse Mill’s ratio from
running the probit model is valid theoretically and helpful to the second stage
OLS estimation of the two level models. The level model results appear to
be reasonable that the market wide measure of market deposits contribute
positively to building activity rates while the bank specific measure of
bank deposits contribute positively to acquisition activity rates. When a
market becomes larger, fewer bank branches are for sale in that market,
and the feasible way of expansion seems to be building new branches;
whereas larger banks are more inclined to engage in acquisition activities
positively. Obviously, the Herfindahl Hirschman index plays a different role
in the two modes of expansion. The coefficient for the index is negatively
significant in the level model for acquisition activity rates, and it is positive
but insignificant in the level model for building activity rates. When a market
is more concentrated, fewer acquisitions take place, resulting in a negatively
significant coefficient. Expansions in a more concentrated market tend to be
building new branches, albeit this mode of expansion is also unlikely to be
attempted when market concentration goes up, suggested by the fact that the
coefficient, though positive, is insignificant. The authors concede that some
of the variables that play an important role in the probit model do not have
significant effect on the level of expansion activities, which may question
the selection of variables, especially for the second stage regression. For
instance, the coefficient for the market share variable and that for the bank
specialisation variable are insignificant in both cases of acquisition activity
rates and building activity rates. Future population growth has no effect on
the level of expansion as well as the decision to expand, i.e., the variable
plays no role at all in this study. Acquisition activities are significantly lower
in 1985 and 1988 than in the benchmark year of 1989, though the background
to the drop in acquisition activities is not explicated. The study also divides
the sample into two sub-samples according to bank size, and repeats the
above estimation procedure for small banks and large banks respectively. It
is reported that the results for small banks are similar to those for the whole
sample. For large banks, only market deposits and bank deposits have a
positive effect on the decision to expand as expected. None of the variables
have any effect on the level of expansion activities, except the new market
dummy that is positive and significant, indicating that expansions into new
markets by large banks are primarily through the building of new branches
in the case of this study.
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Example 12.2

This study by Przeworski and Vreeland (2000) examines the effect of IMF
programmes on participating countries’ economic growth, which adopts
Heckman’s procedure to correct the selection bias in their estimation of
economic growth. The first stage analysis involves probit decision models
for entering an IMF programme and remaining under an IMF programme.
Participation in an IMF programme is a joint decision by the government
and the IMF. Therefore, for a country to enter and to remain under
IMF agreements, both the government and the IMF must want to do so
for varied reasons. The authors have identified seven variables for the
decision model for entering and remaining under the IMF programme by
governments. They are reserves, deficit, debt service, investment, years
under, number under, and lagged election. The reserve variable is the average
annual foreign reserves in terms of monthly imports. Deficit, measured
as budget surplus following the World Bank convention, is the annual
government budget surplus as a proportion of GDP. Debt service is the
annual debt service as a proportion of GDP. Investment is real gross domestic
investment as a proportion of GDP. Years under, the number of years a
country has spent under IMF agreements, is considered to be relevant to
governments’ IMF participation decisions. Number under, the number of
other countries around the world currently participating in IMF programmes,
is also deemed to have an influence on a government’s IMF participation
decisions. Lagged election is a dummy variable taking the value of 1 if
there was a legislative election in the previous year and 0 otherwise. The
final data set used in this study covers 1,024 annual observations of 79
countries for the period between 1970 and 1990, after removing observations
and countries with incomplete information from their basic data set that
includes 4,126 annual observations of 135 countries for the period between
1951 and 1990.

The results from estimating the decision model by governments are
reported in the upper panel of Table 12.2. All of the seven variables have a
statistically significant effect on a government’s decision to enter into an IMF
programme; whereas only one of the variables, the number of other countries
around the world currently participating in IMF programmes, influences a
government’s decision to remain under IMF agreements significantly at
the 5 per cent level. The coefficient for the reserves variable is negative,
being significant at the 5 per cent level. This is reasonable that governments
are more likely to enter into IMF programmes when their countries’ foreign
reserves are low. Similar is the role of the deficit variable measured in budget
surplus and of the investment variable. The coefficient for both variables is
significantly negative at the 1 per cent level. That is, governments with high
deficit or lower budget surplus are more likely to seek entry into IMF
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Table 12.2 Decision models to enter into and remain under IMF programmes

Decision model for entering Decision model for remaining

Government

Constant −2.27∗∗∗ (0.611) −0.01 (0.592)
Reserves −0.83∗ (0.424) −0.26 (0.475)
Deficit −0.95∗∗∗ (0.277) −0.29 (0.329)
Debt service 1.38∗∗∗ (0.516) 0.65 (0.678)
Investment −6.06∗∗∗ (1.789) −0.17 (1.922)
Years under 0.36∗ (0.212) −0.36 (0.266)
Number under 0.44∗∗∗ (0.178) 0.38 (0.190)
Lagged election 0.87∗∗∗ (0.288) −0.01 (0.352)

IMF

Constant 2.14∗ (1.241) 2.84 (2.016)
BOP −0.91∗∗∗ (0.370) −0.41∗ (0.230)
Number under −0.73∗∗∗ (0.268) −0.39 (0.429)
Regime 0.43∗ (0.260) 0.33 (0.273)

Standard errors in parentheses.∗significant at the 10 per cent level; ∗∗significant at the 5 per cent level; ∗∗∗significant at the
1 per cent level.

programmes; and countries with lower real gross domestic investment
are more inclined to enter as well. As expected, governments are more
likely to enter into IFM agreements when debt service is higher, indicated
by a positive coefficient that is significant at the 1 per cent level. The
coefficient for the variable years under, the number of previous years a
country has spent under IMF agreements, is positive but significant at a
modest 10 per cent level. This indicates that a government is more inclined
to enter into a new IMF agreement if the country has spent a longer
period under IMF programmes in the past, though not resolutely. It appears
that there is a peer effect on a government’s decision to enter into IMF
agreements, suggested by a positive coefficient, highly significant at the
1 per cent level, for the variable standing for the number of other countries
around the world currently participating in IMF programmes. The lagged
election dummy is also significant at the 1 per cent level, indicating that a
government is more likely to sign an IMF agreement at a time when the
next election is distant. Only one out of the seven variables, the number of
other countries around the world currently participating in IMF programmes,
has a positive peer effect on a government’s decision to remain under
IMF agreements. The coefficient for the variable is positive and significant

Continued
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at the 5 per cent level, suggesting that a government is more likely to
continue its IMF participation when more countries choose to involve IMF
engagements.

The authors include three variables in the decision models for the IMF.
They are BOP, the balance of payments; number under, the number of
other countries around the world currently participating in IMF programmes,
as a proxy for the IMF budget; and regime, a dummy variable taking the
value of 1 for dictatorship governments and 0 for democracies. The results
from estimating the decision model by the IMF are reported in the lower
panel of Table 12.2. According to these results, the IMF is less likely
to provide a country with a programme arrangement if the country has a
larger balance of payments surplus, and vice versa, shown by a significantly
negative coefficient for the variable at the 1 per cent level. The variable
standing for the number of other countries around the world currently
participating in IMF programmes is a proxy for the IMF budget here.
A highly significantly negative coefficient for the variable indicates that
the IMF acts under budget constraints – the IMF signs less countries when
more countries are already under IMF programmes. The regime dummy is
positive but only modestly significant at the 10 per cent level, suggesting the
IMF is more likely to sign with dictatorship governments than democratic
governments. The authors explain that this may be because dictatorship
governments are easier to negotiate with; while in democracies oppositions
may have more power to scrutinise the agreement with the IMF, so the
initiated agreements may not be signed in the end. Regarding the decision
of the IMF to retain countries under its programmes, only the balance of
payments has a significant effect with the coefficient for the variable being
negative and significant at the 10 per cent level. The authors allege that once
negotiations have been concluded, the IMF’s costs of negotiation have been
met, and all that matters is whether balance of payments deficit continues to
be large.

It is found that IMF programme participation lowers growth rates
for as long as countries remain under a programme (Table 12.3). Once
participating countries leave the programme, they grow faster than if they
had remained under the programme, but not faster than they would have
grown without IMF participation.

The second stage analysis of the study applies Heckman’s selection bias
correction procedure to the growth model, including the inverse Mill’s ratios
derived from the decision model as additional independent variables in
the regression. The purpose is to evaluate the effect of IMF participation
on growth. There were 465 observations for countries participating in
IMF programmes; the observed average growth rate for these countries was
2.04 per cent per annum. There were 559 observations for countries not
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Table 12.3 IMF programme participation and growth

Under Not under

Estimated
coefficient

Observed
mean

Estimated
coefficient

Observed
mean

Constant −1.73∗∗∗ 1.00 −0.13 1.00
(0.44) (0.38)

K̇/K 0.47∗∗∗ 2.01 0.44∗∗∗ 7.15
(0.01) (0.02)

L̇/L 0.53∗∗∗ 2.80 0.56∗∗∗ 2.69
(0.01) (0.02)

lG 4.31∗∗∗ 0.14 0.07 −0.73
(1.48) (0.23)

lI 6.17∗∗∗ 0.12 0.09 −0.82
(2.23) (0.29)

E
(
Ẏ /Y

)
2.00 2.04 3.53 4.39

(5.93) 6.68 (5.50) 7.15
Observations 465 559
Durbin–Watson 1.75 1.89
Adjusted R2 0.71 0.59
F-test 0.00, p = 0.99 1.68, p = 0.19

k̇/k, growth in capital; L̇/L, growth in labour; E(Ẏ /Y ), expected growth in output; lG ,
coefficient of the inverse Mill’s ratio for government; lI , coefficient of the inverse Mill’s ratio
for IFM.
Standard errors in parentheses.∗significant at the 10 per cent level; ∗∗significant at the 5 per cent level; ∗∗∗significant at the
1 per cent level.

under IMF programmes; the observed average growth rate for these
countries was 4.39 per cent per annum. The weighted average growth rate for
participating and non-participating countries combined was 3.32 per cent per
annum. The authors raise the question of whether this difference is due to the
conditions the countries faced or due to IMF programme participation. They
classify these conditions by the size of the domestic deficit and of foreign
reserves. Scrutiny reveals that those countries under good conditions but not
under IMF programmes were 1.02 per cent faster in growth than countries
which experienced the same conditions while under IMF programmes;
Those countries under bad conditions and under IMF programmes could
have been 1.79 per cent faster in growth if they had not participated in IFM
programmes. Accordingly they conclude that, while countries facing bad
conditions grew slower, participation in IMF programmes lowered growth
under all conditions.
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12.5. Empirical literature

As has been introduced at the beginning of this chapter from time to time we
encounter samples where data are truncated or censored. While we may not be able
to get hold of a sample free of truncation or censoring under certain circumstances,
correction for the bias introduced by truncation and censoring is a way to obtain
correct parameter estimates. We will learn in the following that many studies
adopt the strategy of bias correction modelling in empirical investigations into
various issues in finance, economics and related areas. The techniques and special
treatments pertinent to truncated and censored data discussed earlier in this chapter
have been widely applied. In particular, the Heckman procedure is followed to
highlight selection bias; whilst the maximum likelihood method is available that
does not produce bias in estimation.

Diversification is at the centre of finance. While diversification in financial
market investment is almost universally advocated, whether firms should diversify
in their business lines has been subjected to intense debate. One of the most
cited reasons is that, since shareholders can achieve diversification through their
investment on the stock market, there is no need for the firm to do the job for
them. Moreover, some have argued that, instead of generating any benefit from
such firm-level diversification, the strategy actually destroys firm value. In a
recent study, Villalonga (2004) re-examines the issue and raises the question
‘does diversification cause the “diversification discount” ’? The sample used in
the study is gathered from Compustat and consists of 60,930 firm-years during
1978–1997, of which 20,173 firms-years are diversified or multi-segment and
40,757 are single-segment. The results from the preliminary analysis of cross-
section discounts and longitudinal discounts indicate that diversification destroys
value, in line with the results in the two studies the author refers to. Then, the
study embarks on a two-stage estimation procedure. It uses a probit model to
predict the propensity to diversify by firms. The independent variables employed
at this stage include total assets, profitability, investment, percentage of ordinary
shares owned by institutions, percentage of ordinary shares owned by insiders,
R&D expenditure and firm age for firm characteristics; previous year’s industry
Q, fraction of firms in the industry that are diversified, and fraction of industry
sales accounted for by diversified firms for industry characteristics; and a few
variables for macroeconomic characteristics. In addition, dummies are used for
membership of S&P, major exchange listings, foreign incorporation and dividend
payouts, where the dummy takes the value of 1 if a firm belongs to S&P, listed
on NYSE, AMEX or NASDAQ, is incorporated abroad, and paid dividends. The
second stage analysis is to evaluate the effect of diversification on firm value
through estimating ‘the average treatment effect on the treated’ for diversifying
firms. The ‘cause’ is the treatment and the ‘effect’ is the change in excess value
from year t−1 to year t+1. The treatment variable or indicator takes the value of 1
for firm-years in which the number of segments increases from one to two or more
through either acquisitions or internal growth, and 0 for single-segment years.
Three measures of excess value are adopted in the second stage analysis; they are
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asset multiplier, sales multiplier and industry-adjusted Q. The change in excess
value is the dependent variable in the value equation or second stage regression.
The treatment indicator or variable is the principal independent variable in the
second stage regression, into which the inverse Mill’s ratio estimated from the
first stage probit model enters as an additional variable in the Heckman model.
Total assets, profitability, investment, previous year’s industry Q and S&P dummy
are included as control variables. If diversification destroys value, the coefficient
of the treatment variable should be significantly negative for diversification to
contribute to excess value negatively significantly. The author employs other
models in addition to the Heckman’s, and the results indicate the coefficients
of the treatment variable are insignificant for all three measures of excess value
estimated by all these models, though their signs are negative. Based on these
results, the author claims that, on average, diversification does not destroy value.

One of the major phenomena in globalisation is increased activities in foreign
direct investment (FDI) across borders, in addition to proliferating global portfolio
investment. Firms from developed economies invest directly between them, in the
developing world, and vice versa. In this area, the spillover effect from FDI has
been scrutinised by Chuang and Lin (1999), Sinani and Meyer (2004) and Kneller
and Pisu (2007). Sinani and Meyer (2004) conduct an empirical study to estimate
the impact of technology transfer from FDI on the growth of sales of domestic
firms in Estonia during the period from 1994 to 1999. The sample used in the
study contains yearly information on Estonian firms from 1994 to 1999, obtained
from the Estonian Statistical Agency. It consists of 2,250 observations, of which
there are 405 firms in 1994, 434 in 1995, 420 in 1996, 377 in 1997, 320 in 1998 and
294 firms in 1999. After the first differencing operation being applied to sales and
input variables, 1,339 observations remain for domestic firms and 359 for foreign
firms. The authors adopt the Heckman two-stage procedure to control for sample
self selection bias. Firstly, they estimate the probability that a firm is included in the
sample based on the firm’s profit, its labour productivity and its industry affiliation.
Then, the resulting inverse Mill’s ratio is included as an additional independent
variable in the regression for spillovers effect to correct for selection bias or
exclusions. The dependent variable is firm-level growth of sales for domestic
firms. The principal independent variable is a measure of spillovers in the previous
year. In the study, the share of foreign firms in industry employment, that in sales
and that in equity are used as the measures of spillovers. Several control variables
enter the regression as well, including intangible assets, investment in the previous
year, human capital, the products of a previous year’s measure of spillovers and
intangible assets, investment in the previous year and human capital, export, the
foreign Herfindahl Hirschman index, the domestic Herfindahl Hirschman index,
industry dummies and time dummies. It is found that the magnitude of the spillover
effect depends on the characteristics of incoming FDI and of the recipient local
firm. More specifically, spillovers vary with the measure of foreign presence used
and are influenced by the recipient firm’s size, its ownership structure and its
trade orientation. Chuang and Lin (1999) investigate the effect of FDI and R&D
on productivity. Their data set includes 13,300 Taiwanese manufacturing firms
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randomly sampled from, and accounted for about 9 per cent of all registered firms
in the region, drawn from a report on 1991 industrial and commercial consensus.
The final sample consists of 8,846 firms after removing firms with incomplete
data on certain variables. Part of their paper is on the relationship between FDI
and R&D. They claim that firms may self-select into R&D or non-R&D groups, and
apply Heckman’s two-stage procedure, which confirm the existence of selection
bias with a significant inverse Mill’s ratio in the second stage regression. In the
first stage probit analysis, the firm’s tendency or likelihood of engaging in R&D
activities is modelled in such a way that it may be influenced by the following
variables: FDI in terms of the share of foreign assets at the industry level, a dummy
variable representing foreign ownership of the firm, a dummy variable representing
technology purchase, outward foreign investment, the capital-labour ratio, and the
age of the firm since its establishment. All these independent variables are found
to have a positive effect on firms’ likelihood of engaging in R&D activities at
the 5 per cent significance level statistically. In the second stage regression, the
authors employ the same variables to estimate their effect on R&D expenditure,
measured by the ratio of the firm’s R&D expenditure to its total sales. When the
inverse Mill’s ratio is not included in the regression, the FDI variable is found
to have a positive effect on R&D expenditure. However, the inverse Mill’s ratio,
when included in the regression, is significant at the 5 per cent level, indicating
that firms self-select into the R&D group. With the inverse Mill’s ratio being
included, the coefficient of the FDI variable becomes insignificant with a negative
sign, which implies that there is no clear relationship between FDI and R&D
activities. The authors interpret their results by referring to the cited studies in their
paper that local firms need to enhance their technical capacity via their own R&D
first, in order to absorb and digest new technology from abroad. So, FDI and
R&D tend to be complementary. The rest of the variables that have an effect on
R&D expenditure are foreign ownership, technology purchase, age and outward
foreign investment. In contrast to the probit results, the effect on the level of R&D
activity of these variables is all negative, to which the authors have offered some
explanations. In a recent paper, Kneller and Pisu (2007) study export spillovers
from FDI. In particular, their empirical study is centred on two equations of export
decision and export share regression, where the independent variables entering
both equations are the same. The coefficient of the inverse Mill’s ratio is reported
in the paper to indicate the existence of selection bias. The authors obtain their
data from OneSource: UK Companies Volume 1, October 2000; and the number
of observations included in the study are 19,066 in the time period of 1992–
1999. The effect of foreign presence is estimated, using the complied horizontal
measurement, the backward measurement and the forward measurement indices
as independent variables. According to and interpreting the results, the decision of
domestic firms on export engagement does not seem to be influenced by contacts
with multinational corporations. However, foreign presence in the same upstream
and downstream industries is found to have an effect on the amount of export by
firms. Significantly negative forward export spillovers and significantly positive
backward spillovers are found to exist. Export-oriented multinationals produce
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positive horizontal export spillovers statistically significantly; whereas the same
effect is also found from domestic market-oriented multinationals, albeit to a less
extent.

Testing Gibrat’s law for small, young and innovating firms, Calvo (2006)
investigates whether small, young and innovating firms have experienced a greater
employment growth than other Spanish firms over the period 1990–2000. The
sample used in the study consists of 1,272 manufacturing firms, 967 of them
survived for the entire ten year period, which results in selection bias. Therefore,
Heckman’s two-stage procedure is adopted to correct the selection bias, where the
inverse Mill’s ratio obtained from the first stage probit model is incorporated in the
second stage regression. In addition, the maximum likelihood method is employed.
The author alleges that all his results reject Gibrat’s law and support the proposition
of the paper that small firms have grown larger; moreover, old firms grow less
than young ones. Innovation in process and product is found to have a significant
positive effect on the firm’s survival and its employment growth. Power and
Reid (2005) examine the relationship between flexibility, firm-specific turbulence
and the performance of long-lived small firms. Their study is fieldwork based
and uses information gathered directly from small firm entrepreneurs. Measures
of flexibility and firm-specific turbulence with 28 distinct attributes are used in
the study. Then the effect of flexibility and firm-specific turbulence on long-
run performance is estimated, using GLS and Heckman’s selectivity correction
procedure. It is claimed that firm-specific turbulence has a negative effect on
performance, while greater flexibility of the small firm improves performance.

A great portion of studies that involve the problem of selectivity are in the areas
of labour economics and human resource management, as they are where the
issue originates. This section only selects two of them to illustrate the application,
focusing on the financial aspect of the study. Gender and ethnic wage structures
and wage differentials in Israel are examined by Neuman and Oaxaca (2005).
They decompose the difference in wages into endowments, discrimination and
selectivity components. Selection and wage equations are estimated for each of
the demographic groups of Eastern women, Western women, Eastern men and
Western men respectively. Heckman’s two-stage procedure is used in the wage
equations to correct selection bias. Then wage differentials are decomposed into
that of endowments, discrimination and selectivity. Gender wage differentials are
claimed to be significantly larger than ethnic differentials. Their four alternative
decompositions yield different results. Information on the relative shares of
the endowments, discrimination and selectivity components leads to a more
effective way to close wage gaps. McCausland et al. (2005) investigate whether
significant differences exist in job satisfaction (JS) between individuals receiving
performance-related pay (PRP) and those on alternative compensation plans. The
study uses data from four waves of the British Household Panel Survey (BHPS)
1998–2001, a nationally representative survey that interviews a random sample of
around 10,000 individuals in approximately 5,500 households in Britain each year.
It contains information on employees’ personal and employment characteristics.
Respondents in employment are asked about their satisfaction in seven aspects
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of their jobs, i.e., promotion prospects, total pay, relations with supervisors, job
security, ability to work on own initiative, the actual work itself and hours of
work. They are also asked to rate their overall JS. The final sample used in the
study consists of 26,585 observations on 9,831 individuals, 16.26 per cent of them
are with PRP schemes. This sample is split into PRP and non-PRP sub-samples in
empirical analysis. Heckman’s two-stage procedure is then applied to correct for
both self-selection of individuals into their preferred compensation scheme and the
endogeneity of wages in a JS framework. A probit model is estimated in the first
stage analysis. The resulting inverse Mill’s ratios are then included in the second
stage regression equations, one for the PRP group and the other for the non-PRP
group. It is found that, on average, the predicted JS of workers with PRP schemes
is lower than that of those on other pay schemes. However, for high-paid workers,
PRP has a positive effect on JS. Interpreting the results, the authors argue that PRP
is perceived to be controlling for lower-paid employees, but viewed as supportive
rewards by higher-paid workers who derive utility benefit from PRP schemes. The
findings suggest that PRP is not universally applicable. While PRP schemes may
work effectively for high-paid professions in generating incentives, they can be
counterproductive for low-paid occupations.

Questions and Problems

1 What is featured by a censored sample? What is featured by a truncated
sample?

2 Why and how do censoring and truncation arise? At what points do censoring
and truncation usually come across?

3 Contrast censoring with truncation, and then contrast limited dependent
variables associated with censoring and truncation with limited dependent
variables associated with discrete choice.

4 Describe and discuss the Tobit model with reference to its implementation
and estimation, and the issues in its estimation.

5 What is selection bias? How does selection bias arise? By what means can
selection bias be detected and how can selection bias be corrected?

6 What is defined as an inverse Mill’s ratio? What is its links to the issues of
bias in estimation of censored and truncated samples?

7 Present the Heckman model and illustrate the two-stage estimation procedure,
paying attention to the decision process and the level of involvement process.

8 Compare and contrast the Tobit model with the Heckman model with regard
to their assumptions and estimation.

9 Collect data on corporate use of derivatives in risk management from various
sources, e.g., Thomson ONE Banker and company annual reports. Implement
a Tobit model by firstly estimating a probit model for the whole sample for
corporate decisions as whether to use derivatives in risk management; and
then secondly, if a decision is made for using derivatives, the amount of
derivatives used in risk management by the sub-sample of derivatives user
firms (using LIMDEP, GAUSS, RATS or other packages). The dependent



Limited dependent variables and truncated and censored samples 247

variable is corporate use of derivatives. The independent variables may include
firm size, financial leverage, the market-to-book ratio, interest coverage ratio,
quick ratio, foreign exposure, and an industry dummy.

10 Repeat the above case using Heckman’s two-stage procedure. Specifically
elaborate on the decision process and the level of involvement process by
choosing and justifying the set of independent variables for the two processes
respectively.

11 Collect data on outward FDI at the firm level from various sources, e.g.,
company annual reports and relevant websites and databases. Implement a
Tobit model by firstly estimating a probit model for corporate decisions to
engage in outward FDI for the whole sample; and then secondly if a decision
is made for engaging in FDI overseas, the value of FDI by individual firms
in the sub-sample of FDI firms (using LIMDEP, GAUSS, RATS or other
packages). The dependent variable is FDI of firms. The independent variables
may include firm size, the market-to-book ratio, financial leverage, and an
industry dummy.

12 Repeat the above case using Heckman’s two-stage procedure. Specifically,
elaborate on the process in which a firm decides whether to engage in outward
FDI or not and the process for the level of involvement of the firm, by
choosing and justifying the set of independent variables for the two processes
respectively.
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13 Panel data analysis

Panel data covered in this chapter refer to data sets consisting of cross-sectional
observations over time, or pooled cross section and time series data. They have two
dimensions, one for time and one for the cross-section entity. We have been familiar
with the time dimension already, using a subscript t to the variable to stand for the
time dimension, with t = 1,2, . . . T for T observations at the T time points. For
the cross-sectional data, the entity can be individuals, firms, regions or countries,
as introduced in the two preceding chapters. The subscript n to the variable is
usually adopted to represent the cross-section dimension, with n = 1,2, . . . N for
N observations for N different entities, e.g., N firms. There can be other forms of
panels, as long as there are two dimensions for the observations; but only panel
data with a time dimension and a cross-section dimension are covered in this
chapter.

Because two dimensions of data are involved, representation and estimation
of panel data are different from what we have learned for one-dimension data
sets, time series or cross-sectional. Both variations amongst entities and patterns
in time are to be examined, which enriches the study. Effects with reference to
entity, or time, or both, emerge and have to be dealt with, leading to models with
fixed effects, random effects, random coefficients or random parameters, and so
on. More information is available in terms of volume, and richer information is
available that blends. Statistically, a panel data set can provide more observations
to enjoy the large sample status, so the central limit theorem may apply where
its respective single dimensional time series or cross-sectional data set fails,
making estimation and inference more efficient. The problems associated with
the analysis of non-stationary data in time series may be eased from the cross-
sectional dimension when the number of independent cross-sectional entities is
sufficiently large.

Panel data have been traditionally used in social-economic research. For
example, the British Household Panel Survey (BHPS) started its first interviews
of households in 1991, with follow-up interviews of these original households
being carried out annually. Two of the widely used US panel data sets are Panel
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Study of Income Dynamics (PSID) and The National Longitudinal Surveys of
Labor Market Experience (NLS). Both were established in the 1960s. There are
many other panels, such as The European Community Household Panel (ECHP),
The Survey of Income and Program Participation (SIPP) of the US, and The
German Socio-Economic Panel (SOEP). Nevertheless, panel data have long been
used in financial studies as well as economic research, with panel-like data
sets being created intentionally or unintentionally. Regression of one of the
firm performance measures, such as market return, on several financial ratios
over time constitutes a kind of panel data analysis. A panel data approach to
examining purchasing power parity (PPP) has been attempted time and again.
One of the British and Irish financial databases, Financial Analysis Made Easy
(FAME), contains information on 3.4 million companies in the UK and Ireland,
2.4 million of which are in a detailed format. For the top 2.4 million companies
the reports typically include 29 profit and loss account and 63 balance sheet
items, cash flow and ratios, credit score and rating, etc. Similar company
accounts and financial ratio data are covered by DIANE for France, DAFNE
for Germany and Austria, and REACH for the Netherlands, to mention a few;
while AMADEUS provides pan-European financial information in the above
domains. Thomson ONE Banker extends the coverage of such information to
almost all countries in the world. In a sense, the use of panel data in finance
and financial economics predated that in social-economic research, and is very
extensive too.

This chapter first presents the structure and organisation of panel data sets. Two
major features that do not exist with the one dimension time series data or the
one dimension cross-sectional data are fixed effects and random effects. So, fixed
effects models and random effects models and their estimation are discussed next,
followed by random parameter models and their estimation. Then the chapter
proceeds to present dynamic panel data models, addresses the issue of bias in
parameter estimation and discusses a few approaches to estimating dynamic panel
models.

13.1. Structure and organisation of panel data sets

Panel data sets in this chapter are pooled time series and cross-sectional data.
We may organise data by stacking individual entities’ time series to form a
panel with the following structure for an N entity T period and K independent
variable panel. In the illustration below, each cross-sectional block is simply a
conventional time series arrangement for one entity, with a dependent variable yt

and K independent variables xkt, k = 1, . . . K; t = 1, . . . T . When pooling the time
series of the cross-sectional entities together, a panel is formed that requires an
additional subscript i to indicate and distinguish the entity. So, for the second
entity, for example, the dependent variable is designated y2t and K independent
variables are xk2t, k = 1, . . . K; t = 1, . . . T . The above panel is balanced, where
all entities possess an observation at all time points. When some entities do not
possess an observation at certain time points while some other entities do, the panel
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is said to be unbalanced. We focus our study on balanced panel data in this
chapter.

i t y x1 … xK

1 1 y11 x111 … xK11
1 … … … … …
1 T y1T x11T … xK1T

2 1 y21 x121 … xK21
2 … … … … …
2 T y2T x12T … xK2T

… … … … … …
… … … … … …
N 1 yN1 x1N1 … xKN1
N … … … … …
N T yNT x1NT … xKNT

A balanced panel data set can be in the form of unstacked data. Although
the structure of stacked data by cross-section is straightforward and easy to
follow, the structure of unstacked data is usually what we get when downloading
data. Therefore, learning the structure of unstacked data is helpful for the
transformation and organisation of panel data sets used in empirical estimation and
analysis.

t y1 x11 … xK1 … yN x1N … xKN

1 y11 x111 … xK11 … yN1 x1N1 … xKN1
… … … … … … … … … …
T y1T x11T … xK1T … yNT x1NT … xKNT

The basic regression equation for panel data is yit = Xitβ + ωit, i = 1, . . . N ;
t = 1, . . . T . One of the benefits for using panel data is that analysis of panel
data can reveal individual variation that is unobservable in time series, and reveal
time variation that is unobservable in cross-sections. This implies that the error
term ωit may be systematically higher or lower for some individual entities than
for other individual entities, or that the error term ωit may be systematically
higher or lower for some time periods than for other time periods. The former
is accounted for by individual effects and the latter by time effects. Depending on
the assumptions followed, the variation in time and cross-sections can be captured
by a constant or a random variable, giving rise to fixed effects models and random
effects models. Moreover, the coefficient may be different for each individual
entity, which corresponds to a random coefficients or random parameters model;
and in that case, β also has a subscript i to become βi. These models and their
estimation will be studied in Sections 13.2 and 13.3.
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13.2. Fixed effects vs. random effects models

We use the following three equations for the presentation and analysis of panel
data models in this section. Dimensions of the matrix or vector are put in the right
bottom corner of the matrix or vector, to avoid the usual confusion in presenting
panel data. The first is a pooled time series and cross-sections with both the time
dimension and the cross-section dimension being explicitly expressed:

yit = Xitβ+ωit, i = 1, . . . N ; t = 1, . . . T (13.1)

where:

Xit = [x1it · · · xKit

]
(K×1)

and β =
⎡
⎣β1

. . .

βk

⎤
⎦

(1×K)

Second, a compact matrix representation for individual entities is as follows:

yi = Xiβ+ωi, i = 1, . . . N (13.2)

where:

yi =
⎡
⎣yi1

. . .

yiT

⎤
⎦

(T×1)

, Xi =
⎡
⎣Xi1

. . .

XiT

⎤
⎦=

⎡
⎣x1i1 . . . xKi1

. . . . . . . . .

x1iT xKiT

⎤
⎦

(T×K)

and ωi =
⎡
⎣ωi1

. . .

ωiT

⎤
⎦

(T×1)

For any individual entity, yi is a (T×1) vector for T observations of the dependent
variable, Xi is a (T ×K) matrix of independent variables or regressors with K being
the number of independent variables, and β is a (K×1) vector of coefficients.

Finally, a compact matrix representation for the panel is:

y = Xβ+ω (13.3)

where:

y =
⎡
⎣y1

. . .

yN

⎤
⎦

[(T×N )×1]
, X =

⎡
⎣X1

. . .

XN

⎤
⎦

[(T×N )×K]
and ω =

⎡
⎣ω1

. . .

ωN

⎤
⎦

[(T×N )×1]

Various effects associated with the intercept can be formulated by decomposing
ωit in different ways. Let us concentrate on individual effects for now. The fixed
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effects model assumes that:

ωit = ci + εit (13.4)

where ci is individual-specific and time-invariant unobserved heterogeneity and
is a constant for entity i, Cov(ci,Xit) �= 0, Cov(εit,Xit) = 0, Var(εit) = σ 2

ε ; and εit

is pure residuals uncorrelated with each other and uncorrelated with independent
variables. A compact matrix representation for the panel data model with fixed
effects is:

y = c + Xβ+ ε (13.5)

where:

c =
⎡
⎣c1

. . .

cN

⎤
⎦

[(T×N )×1]
, ε =

⎡
⎣ε1

. . .

εN

⎤
⎦

[(T×N )×1]
, ci =

⎡
⎣ ci

. . .

ci

⎤
⎦

(T×1)

and εi =
⎡
⎣εi1

. . .

εiT

⎤
⎦

(T×1)

Fixed effects models cannot be readily estimated by the OLS. There are few
approaches that augment the OLS, such as resorting to dummies, applying first
differencing over time, and performing the within transformation.

To show how the dummy variable approach, the dummy variable least squares
(DVLS), works, let Ii be a (T×1) vector of 1’s, I be a [(T × N ) × N ] matrix of Ii

and 0, and δ be a (N×1) vector of dummy coefficients, i.e.:

Ii =
⎡
⎣ 1

. . .

1

⎤
⎦

(T×1)

, I =
⎡
⎣ I1 0 . . . 0

. . . . . . . . . . . .

0 . . . 0 IN

⎤
⎦

[(T×N )×N ]
, δ =

⎡
⎣δ1

. . .

δN

⎤
⎦

(N×1)

Then a rearranged representation of equation (13.5) can be estimated by the OLS,
which produces unbiased fixed effects estimators:

y = [X,I]
[
β

δ

]
+ ε (13.6)

It follows that, b and d, the DVLS estimators of β and δ, are:[
b
d

]
= ([X,I]′[X,I])−1[X,I]′y + ([X,I]′[X,I])−1[X,I]′ ε

=
[
β

δ

]
+ ([X,I]′[X,I])−1[X,I]′ ε (13.7)

The fixed effects in a panel data model can be either significant or insignificant. If
δ1 = δ2 = ·· · δN = δ, then δ is simply a common intercept for all the entities within
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the panel or for the whole panel. So, restrictions can be imposed on the estimated
dummy coefficients. If the restrictions of δ1 = δ2 = ·· · δN = δ are rejected, the
panel data model is regarded to possess the features of fixed effects and there
are fixed effects variations across entities. Otherwise, if the restrictions of δ1 =
δ2 = ·· · δN = δ are rejected, then there are no fixed effects variations in intercepts
and the whole panel has just one common intercept.

When the residual, εit , is distributed normally, the maximum likelihood
procedure can be applied to obtain fixed effects estimators of parameters. The
likelihood function and the log likelihood function are as follows:

L =
N∏

i=1

φ (yi − Xiβ− Iiδ) =
N∏

i=1

1

σε

φ

(
yi − Xiβ− Iiδ

σε

)

=
N∏

i=1

(
2πσ 2

ε

)−T/2
exp

(
−
[

(yi − Xiβ− Iiδ)′(yi − Xiβ− Iiδ)

2σ 2
ε

])
(13.8)

LL =
N∑

i=1

Ln

{
1

σε

φ

(
yi − Xiβ− Iiδ

σε

)}

=
N∑

i=1

Ln

{(
2πσ 2

ε

)−(N×T )/2
exp

(
−
[

(yi − Xiβ− Iiδ)′(yi − Xiβ− Iiδ)

2σ 2
ε

])}

= −N × T

2
Ln
(
2πσ 2

ε

)− 1

2σ 2
ε

N∑
i=1

(
yi − Xiβ− Iiδ

)′(
yi − Xiβ− Iiδ

)
(13.9)

where φ(z) is the density function of normal distributions.
Further, let us consider both individual effects and time effects in the fixed

effects panel data model presented as follows:

y = c + h + Xβ+ ε (13.10)

where:

h =
⎡
⎣hJ

. . .

hT

⎤
⎦

[(T×N )×1]
and hT =

⎡
⎣h1

. . .

hT

⎤
⎦

(T×1)

and the rest is the same as in equation (13.5).
The dummy variable approach, the DVLS, can be applied to estimate both

individual effects and time effects in the panel data model. However, if we use
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one dummy for one entity for all N entities and one dummy for one time period
for all T periods, then both individual dummies and time dummies sum to one.
So we have to remove one dummy, either time dummy or individual dummy,
from estimation. Let us remove one time dummy for the first period, so the first
period is set to be the base period. A time dummy coefficient, say h3 for the third
period, indicates that the value of the dependent variable is greater by the extent
of h3 relative to the base period, other things being equal. This dummy variable
representation of the panel data model, incorporating both individual effects and
time effects, can be expressed by the following equation:

y = [X,J]
⎡
⎣β

δ

ζ

⎤
⎦+ ε (13.11)

where:

J =
⎡
⎢⎣

I1 0 . . . 0 J1

. . . . . . . . . . . . . . .

0 . . . 0 IN JT

⎤
⎥⎦

[(T×N )×(N×T )]

, Ii =
⎡
⎣ 1

. . .

1

⎤
⎦

(T×1)

,

Jt =

⎡
⎢⎢⎣

0 . . . 0
1 . . . 0
. . . . . . . . .

0 . . . 1

⎤
⎥⎥⎦

[T×(T−1)]

,

δ =
⎡
⎣δ1

. . .

δN

⎤
⎦

(N×1)

and ζ =
⎡
⎣ζ2

. . .

ζT

⎤
⎦

[(T−1)×1]

Then, b, d and z, the DVLS estimators of β, δ and ζ, can be derived from the
following operations:

⎡
⎣b

d
z

⎤
⎦= ([X,J]′[X,J])−1[X,J]′y + ([X,J]′[X,J])−1[X,J]′ε

=
⎡
⎣β

δ

ζ

⎤
⎦+ ([X,J]′[X,J])−1[X,J]′ε (13.12)

When the residual, εit , is assumed to be normally distributed, the maximum
likelihood procedure can be applied to obtain fixed effects parameter estimators.
The likelihood function and the log likelihood function are described by the
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following two representations respectively:

L=φ

(
y−Xβ−J

(
δ

ζ

))
= 1

σε

φ

⎛
⎜⎜⎝

y−Xβ−J

(
δ

ζ

)
σε

⎞
⎟⎟⎠

= (2πσ 2
ε )−(N×T )/2exp

(
−
{[

y−Xβ−J

(
δ

ζ

)]′[
y−Xβ−J

(
δ

ζ

)]/
2σ 2

ε

})
(13.13)

LL=Ln

⎧⎪⎪⎨
⎪⎪⎩

1

σε

φ

⎛
⎜⎜⎝

y−Xβ−J

(
δ

ζ

)
σε

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭

=Ln

{
(2πσ 2

ε )−(N×T )/2exp

(
−
{[

y−Xβ−J

(
δ

ζ

)]′

×
[
y−Xβ−J

(
δ

ζ

)]/
2σ 2

ε

})}

=−N ×T

2
Ln(2πσ 2

ε )− 1

2σ 2
ε

[
y−Xβ−J

(
δ

ζ

)]′[
y−Xβ−J

(
δ

ζ

)]
(13.14)

The within transformation approach can also produce unbiased OLS estimators.
Let us consider a fixed effects model with individual effects only:

yit = Xitβ+ ci + εit, i = 1, . . . N ; t = 1, . . . T (13.15)

The within transformation is to average the variables over time for each entity, and
then subtract the entity average from their counterparts in the original equation at
all time points, which leads to the cancelling out of the individual effects:

yit − yi = (Xit −�Xi)β+ εit − εi, i = 1, . . . N ; t = 1, . . . T (13.16)

The individual effects can also be removed by applying first differences over time
in equation (13.15):

�yit = �Xitβ+�εit, i = 1, . . . N ; t = 1, . . . T (13.17)

Since the individual effects have been removed, there is no concern on the
correlation between the individual effects and the independent variables which
causes bias in estimation. The OLS estimator is unbiased, consistent but inefficient
since the off- diagonal elements of the covariance matrix are no longer zero, which
is not taken into account by the OLS. Remedies and improvement measures can
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be too complicated to attempt. Therefore, applications of other readily available
procedures are advised.

The random effects model with individual effects assumes that:

ωit = μi + εit (13.18)

where μi is a random variable, E(μi) = 0, Var(μi) = σ 2
μ, Cov(μi,Xit) = 0,

Cov(μi,εit) = 0, E(εit) = 0, Var(εit) = σ 2
ε ; and εit is pure residuals uncorrelated

with each other and uncorrelated with independent variables. A compact matrix
representation for the panel data model with random individual effects is:

y = Xβ+μ+ ε (13.19)

where:

μ =
⎡
⎣μ1

. . .

μN

⎤
⎦

[(T×N )×1]
, μi =

⎡
⎣μ1

. . .

μN

⎤
⎦

(T×1)

, ε =
⎡
⎣ε1

. . .

εN

⎤
⎦

[(T×N )×1]

and εi =
⎡
⎣εi1

. . .

εiT

⎤
⎦

(T×1)

Taking into consideration the non-zero within entity covariance or non-zero off-
diagonal elements of the entity covariance matrix, and the heteroskadasticity
arising from the heterogeneity of effects, its random effects estimators can be
derived by the GLS as follows:

b = (X′�−1X
)−1

X′�−1y + (X′�−1X
)−1

X′�−1 (μ+ ε)

= β+ (X′�−1X
)−1

X′�−1 (μ+ ε) (13.20)

with the covariance matrix for the panel being:

� =

⎡
⎢⎢⎢⎣

�1
�2

. . .

�N

⎤
⎥⎥⎥⎦

[(T×N )×(T×N )]

(13.21)

and the within entity covariance matrix being:

�i =

⎡
⎢⎢⎣

σ 2
μ +σ 2

ε σ 2
μ . . . σ 2

μ

σ 2
μ σ 2

μ +σ 2
ε . . . σ 2

μ

. . . . . . . . . . . .

σ 2
μ σ 2

μ . . . σ 2
μ +σ 2

ε

⎤
⎥⎥⎦

(T×T )

(13.22)

As having been pointed out in Chapter 3 that the above covariance matrices are
not readily available and have to be estimated first. The customary means is
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to apply the OLS first for the purpose of calculating the residuals, from which
the covariance matrix can be derived. It is a rather tedious, though not difficult,
procedure. Therefore, other methods, such as the maximum likelihood procedure,
are usually employed in practice.

When normal distributions are assumed for the residual εit , the maximum
likelihood procedure can be applied to obtain random effects estimators of
parameters. The corresponding likelihood function and the log likelihood function
are presented as follows:

L = (2π )−(N×T )/2 (∣∣�−1
∣∣)1/2

exp
(

− [(y − Xβ) ′�−1 (y − Xβ)
/

2
])

=
N∏

i=1

(2π )−T/2 (∣∣�−1
i

∣∣)1/2
exp
(

− [(yi − Xiβ) ′�−1
i (yi − Xiβ)

/
2
])

(13.23)

LL = Ln
{
(2π )(N×T )/2 (∣∣�−1

∣∣)1/2
exp
(

− [(y − Xβ) ′�−1 (y − Xβ)
/

2
])}

= 1

2

[
− N × T × Ln(2π ) + Ln

(∣∣�−1
∣∣)− (y − Xβ) ′�−1 (y − Xβ)

]

= 1

2

N∑
i=1

[
− T × Ln(2π ) + Ln

(∣∣�−1
i

∣∣)− (yi − Xiβ) ′�−1
i (yi − Xiβ)

]
(13.24)

The random effects model with both individual effects and time effects
assumes that:

ωit = μi + τt + εit (13.25)

where μi is a random variable with E(μi) = 0, Var(μi) = σ 2
μ, Cov(μi,Xit) = 0,

Cov(μi,εit) = 0; τt is a random variable with E(τt) = 0, Var(τt) = σ 2
μ,

Cov(τt,Xit) = 0, Cov(τt,εit) = 0, E(εit) = 0, Var(εit) = σ 2
ε ; and εit is pure residuals

uncorrelated with each other and uncorrelated with independent variables. A com-
pact matrix representation for the panel data model with both random individual
effects and random time effects is:

y = Xβ+μ+τ + ε (13.26)

where:

τ =
⎡
⎣τ t

. . .

τ t

⎤
⎦

[(T×N )×1]
and τ t =

⎡
⎣τ1

. . .

τT

⎤
⎦

(T×1)

and the rest is the same as in equation (13.19).
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Taking into consideration the non-zero within entity covariance or non-zero
off-diagonal elements of the entity covariance matrix, and the heteroskadasticity
arising from the heterogeneity of effects, its random effects estimators of β, b, can
be derived by the GLS as follows:

b = (X′�−1X
)−1

X′�−1y + (X′�−1X
)−1

X′�−1 (μ+τ + ε)

= β+ (X′�−1X
)−1

X′�−1 (μ+τ + ε) (13.27)

with the covariance matrix for the panel being:

� =

⎡
⎢⎢⎢⎣

�1 �12 . . . �1N

�21 �2

. . .
. . .

�N1 �N

⎤
⎥⎥⎥⎦

[(T×N )×(T×N )]

(13.28)

where the within entity covariance matrix is:

�i =

⎡
⎢⎢⎣

σ 2
μ +σ 2

ε σ 2
μ . . . σ 2

μ

σ 2
μ σ 2

μ +σ 2
ε . . . σ 2

μ

. . . . . . . . . . . .

σ 2
μ σ 2

μ . . . σ 2
μ +σ 2

ε

⎤
⎥⎥⎦

(T×T )

(13.29)

and the between entities covariance matrix is:

�ij =

⎡
⎢⎢⎣

σ 2
τ 0 . . . 0
0 σ 2

τ . . . 0
. . . . . . . . . . . .

0 . . . σ 2
τ

⎤
⎥⎥⎦

(T×T )

(13.30)

With normally distributed residuals εit , the maximum likelihood procedure can be
applied. The corresponding likelihood function and the log likelihood function are
as follows:

L = (2π )−(N×T )/2 (∣∣�−1
∣∣)1/2

exp
(

− [(y − Xβ) ′�−1 (y − Xβ)
/

2
])

(13.31)

LL = Ln

{
(2π )(N×T )/2

(∣∣�−1
∣∣)1/2

exp
(

− [(y − Xβ) ′�−1 (y − Xβ)
/

2
])}

= −1

2

[
− N × T × Ln(2π ) + Ln

(∣∣�−1
∣∣)− (y − Xβ)′ �−1 (y − Xβ)

]
(13.32)

Both fixed effects and random effects models can be estimated by the maximum
likelihood method. When residuals obey normal distributions, the maximum
likelihood method produces the same estimated parameters as the OLS.
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13.3. Random parameter models

The random parameter or random coefficient model with individual heterogeneity
assumes:

βi = β+μi (13.33)

in the panel equation of:

yit = Xit (β+μi) + εit = Xitβ+ Xitμi + εit, i = 1, . . . N ; t = 1, . . . T
(13.34)

where:

μi =
⎡
⎣μi1

. . .

μiK

⎤
⎦

(K×1)

So, a compact matrix representation of the random parameter model for
individual entities takes the following form:

yi = Xi (β+μi) + εi = Xiβ+ Xiμi + εi, i = 1, . . . N (13.35)

Let us construct a new matrix of independent variables Z that stack in such a
fashion:

Z =
⎡
⎣X1 0 . . . 0

. . . . . . . . . . . .

0 . . . 0 XN

⎤
⎦

[(T×N )×(K×N )]

(13.36)

Then, a compact matrix representation for the panel data model with individual
heterogeneity in random parameters can be expressed as:

y = Xβ+ Zμ+ ε (13.37)

where:

μ =
⎡
⎣μ1

. . .

μN

⎤
⎦

[(K×N )×1]

with E(μi) = 0, Var(μi) = σ 2
μ, Cov(μi,Xit) = 0, Cov(μi,εit) = 0, E(εit) = 0,

Var(εit) = σ 2
ε ; and εit is pure residuals uncorrelated with each other and

uncorrelated with independent variables.
Taking into consideration the non-zero within entity covariance or non-zero

off-diagonal elements of the entity covariance matrix, and the heteroskadasticity
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arising from the heterogeneity of random parameters, the random parameter
estimators of β, b, can be derived by the GLS as follows:

b=(X′�−1X
)−1

X′�−1y+(X′�−1X
)−1

X′�−1 (Zμ)+(X′�−1X
)−1

X′�−1ε

=β+(X′�−1X
)−1

X′�−1 (Zμ)+(X′�−1X
)−1

X′�−1ε (13.38)

with the covariance matrix for the panel being:

� =

⎡
⎢⎢⎢⎣

�1
�2

. . .

�N

⎤
⎥⎥⎥⎦

[(T×N )×(T×N )]

(13.39)

and the within entity covariance matrix being:

�i = σ 2
ε I + Xi�μX′

i (13.40)

where:

�μ =

⎡
⎢⎢⎢⎣

σ 2
μ σ 2

μ . . . σ 2
μ

σ 2
μ σ 2

μ . . . σ 2
μ

. . . . . . . . . . . .

σ 2
μ σ 2

μ . . . σ 2
μ

⎤
⎥⎥⎥⎦

(T×T )

(13.41)

The unconditional likelihood function and log likelihood function of this model,
assuming normal distributions for the residual, are:

L = (2π )−(N×T )/2 (∣∣�−1
∣∣)1/2

exp
(

− [(y − Xβ) ′�−1 (y − Xβ)
/

2
])

=
N∏

i=1

(2π )−T/2 (∣∣�−1
i

∣∣)1/2
exp
(

− [(yi − Xiβ)′�−1
i (yi − Xiβ)

/
2
])

(13.42)

LL = Ln
{
(2π )−(N×T )/2 (∣∣�−1

∣∣)1/2
exp
(

− [(y − Xβ) ′�−1 (y − Xβ)
/

2
])}

= 1

2

[
− N × T × Ln(2π ) + Ln

(∣∣�−1
∣∣)− (y − Xβ) ′�−1 (y − Xβ)

]

= 1

2

N∑
i=1

[
− T × Ln(2π ) + Ln

(∣∣�−1
i

∣∣)− (yi − Xiβ) ′�−1
i (yi − Xiβ)

]
(13.43)
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respectively. Its conditional likelihood function and log likelihood function are:

L =
N∏

i=1

φ (yi − Xiβ) =
N∏

i=1

1

σε

φ

(
yi − Xiβ

σε

)

=
N∏

i=1

(
2πσ 2

ε

)−T/2
exp

(
−
[

(yi − Xiβ) ′ (yi − Xiβ)

2σ 2
ε

])
(13.44)

LL =
N∑

i=1

Ln

{
1

σε

φ

(
yi − Xiβ

σε

)}

=
N∑

i=1

Ln

{(
2πσ 2

ε

)−T/2
exp

(
−
[

(yi − Xiβ) ′ (yi − Xiβ)

2σ 2
ε

])}

= −N × T

2
Ln
(
2πσ 2

ε

)− 1

2σ 2
ε

N∑
i=1

(yi − Xiβ) ′ (yi − Xiβ) (13.45)

respectively.
Random parameter models with regard to both individual and time entities take

the following form:

yit = Xitβ+ Xitμi + Xitτ t + εit, i = 1, . . . N ; t = 1, . . . T (13.46)

where:

τ t =
⎡
⎣τt1

. . .

τtK

⎤
⎦

(K×1)

We may construct a new matrix of independent variables Wi for entity i and a new
matrix of independent variables for the panel as follows:

Wi =
⎡
⎣Xi1 0 . . . 0

. . . . . . . . . . . .

0 . . . 0 XiT

⎤
⎦

[T×(T×K)]

(13.47)

W =
⎡
⎣W1

. . .

WN

⎤
⎦

[(T×N )×(T×K)]

(13.48)

A compact matrix representation for the panel data model with both individual
and time heterogeneity in random parameters becomes:

y = Xβ+ Zμ+ Wτ + ε (13.49)
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where:

τ =
⎡
⎣τ1

. . .

τT

⎤
⎦

[(K×T )×1]

The GLS estimators of β, b, can be obtained as follows:

b = (X′�−1X
)−1

X′�−1y + (X′�−1X
)−1

X′�−1 (Zμ)

+ (X′�−1X
)−1

X′�−1 (Wτ) + (X′�−1X
)−1

X′�−1ε

= β+ (X′�−1X
)−1

X′�−1 (Zμ) + (X′�−1X
)−1

X′�−1 (Wτ)

+ (X′�−1X
)−1

X′�−1ε

(13.50)

with the covariance matrix for the panel being:

� =

⎡
⎢⎢⎢⎣

�1 �12 . . . �1N

�21 �2

. . .
. . .

�N1 �N

⎤
⎥⎥⎥⎦

[(T×N )×(T×N )]

(13.51)

where the within entity covariance matrix is:

�i = σ 2
ε I + Xi�μX′

i (13.52)

with:

�μ =

⎡
⎢⎢⎣

σ 2
μ σ 2

μ . . . σ 2
μ

σ 2
μ σ 2

μ . . . σ 2
μ

. . . . . . . . . . . .

σ 2
μ σ 2

μ . . . σ 2
μ

⎤
⎥⎥⎦

(T×T )

(13.53)

and the between entities covariance matrix is:

�ij =

⎡
⎢⎢⎣

σ 2
τ 0 . . . 0
0 σ 2

τ . . . 0
. . . . . . . . . . . .

0 . . . σ 2
τ

⎤
⎥⎥⎦

(N×N )

(13.54)
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Further assuming normal distributions for the residual, the unconditional likelihood
function and log likelihood function of this model are obtained as follows:

L = (2π )(N×T )/2 (∣∣�−1
∣∣)1/2

exp
(

− [(y − Xβ) ′�−1 (y − Xβ)
/

2
])

(13.55)

LL = Ln

{
(2π )−(N×T )/2 (∣∣�−1

∣∣)1/2
exp
(

−
[
(y − Xβ) ′�−1 (y − Xβ)

/
2
])}

= 1

2

[
− N × T × Ln(2π ) + Ln

(∣∣�−1
∣∣)− (y − Xβ) ′�−1 (y − Xβ)

]
(13.56)

respectively. Its conditional likelihood function and log likelihood function are:

L =
N∏

i=1

T∏
t=1

φ (yit − Xitβit) =
N∏

i=1

T∏
t=1

1

σε

φ

(
yit − Xitβit

σε

)

=
N∏

i=1

T∏
t=1

(
2πσ 2

ε

)−1/2
exp

(
−
[

(yit − Xitβit)
′ (yit − Xitβit)

2σ 2
ε

])
(13.57)

LL = −1

2

N∑
i=1

T∑
t=1

[
Ln
(
2πσ 2

ε

)+ (yit − Xitβit)
′ (yit − Xitβit)

σ 2
ε

]
(13.58)

respectively.

13.4. Dynamic panel data analysis

Virtually all time series can be extended to cross-sections and all cross-section
data can be pooled over time to form a panel. Therefore, those features in time
series and models for time series analysis, such as autoregressive processes, unit
roots and cointegration, would appear in panels and panel data analysis. Similarly,
those features in cross-sectional data and their modelling, such as binary choice
and discrete choice models and analysis of truncated and censored data, would also
appear in panels and panel data analysis. While the use of panel data enjoys certain
advantages over the use of a time series or a cross-sectional data set on the one hand,
it may complicate the modelling and analysis on the other hand. For example, when
the dependent variable follows a simple AR(1) process, the simplest of dynamic
models, the standard within transformation estimator with fixed individual effects
is biased and, consequently, alternative estimation procedures need to be developed
and applied under pertinent circumstances and with appropriate assumptions. This
section hence briefly introduces several generally used procedures for dynamic
panel data, focusing on the specific issues in estimation with regard to biasedness
and efficiency, and the measures to deal with these issues.
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A dynamic panel data model is a model in which the lagged dependent variable
appears on the right-hand side of the equation. Nickell (1981) has addressed the
issue of biases in dynamic panel models. Arellano and Bond (1991), Arellano
and Bover (1995), and Blundell and Bond (1998) put forward several GMM
procedures, which have promoted the application of dynamic panel data models
in empirical research in recent years. The simplest dynamic panel model is where
the dependent variable follows an AR(1) process. The following presentation
augments equation (13.1) by including the lagged dependent variable, yi,t−1, along
with Xit , as a regressor:

yit = ρyi,t−1 + Xitβ+ωit i = 1, . . . N ; t = 1, . . . T (13.59)

where |ρ| < 1 to ensure stationarity.
For simplicity and without affecting the outcome, we do not include exogenous

independent variables Xit for the moment and only consider individual effects in
the discussion. Hence equation (3.59) becomes:

yit = ρyi,t−1 +μi + εit, i = 1, . . . N ; t = 1, . . . T (13.60)

We do not specify whether μi is fixed effects or random effects; but we will see
that it is irrelevant and the effects can always be regarded as fixed. Nickell (1981)
shows that the LSDV estimator of equation (13.60) is biased. It is because the
correlation between the lagged dependent variable and the transformed residual
does not disappear. After the within transformation, equation (13.60) becomes:

yit − yi = ρ
(
yi,t−1 − yi,−1

)+ εit − εi, i = 1, . . . N ; t = 1, . . . T (13.61)

It is clear that ε̄i is correlated with yi,t−1, so ρ̂, the LSDV estimator of ρ, is biased,
since:

ρ =
∑T

t=1

∑N
i=1 (yit −yi)

(
yi,t−1 −yi,−1

)
∑T

t=1

∑N
i=1

(
yi,t−1 −yi,−1

)2 +
∑T

t=1

∑N
i=1 (εit −εi)

(
yi,t−1 −yi,−1

)
∑T

t=1

∑N
i=1

(
yi,t−1 −yi,−1

)2
(13.62)

The last term does not converge to zero when N → ∞ but T is not large. Nickell
(1981) demonstrates that:

p lim
N→∞

(ρ̂ −ρ) =
⎧⎨
⎩ 2ρ

1 −ρ2 −
[

1 +ρ

T − 1

(
1 − 1

T

(
1 −ρT

)
(1 −ρ)

)]−1
⎫⎬
⎭

−1

(13.63)

For a reasonably large T , the above is approximately:

p lim
N→∞

(ρ̂ −ρ) ≈ 1 +ρ

1 − T
(13.64)
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which means the estimator is almost unbiased. However, for small T the bias can
be serious. For example:

p lim
N→∞

(ρ̂ −ρ) = −1 +ρ

2
, T = 2 (13.65)

To solve this problem, a number of GMM procedures have been proposed, amongst
which are the first differenced GMM developed and discussed in Arellano and
Bond (1991), Areliano and Bover (1995) and Blundell and Bond (1998), and the
system GMM proposed by Blundell and Bond (1998). Let us consider the first
differenced GMM first. Taking the difference operation once on all the variables
in equation (13.60) yields:

�yit = ρ�yi,t−1 +�εit, i = 1, . . . N ; t = 2, . . . T (13.66)

where �yit = yit − yi,t−1 and �εit = εit − εi,t−1.

The idea of the first differenced GMM is as follows. Although �εit is correlated
with �yi,t−1, it is not correlated with yi,t−2 or the dependent variable at any more
lags, i.e., yi,t−j for j ≥ 2. That is:

E
(
�εityi,t−j

)= 0, j = 2, . . . t − 1, t = 3, . . . T (13.67)

Therefore, yi,t−j for j ≥ 2 and any of the linear combinations can serve as
instruments in GMM procedures. Let us define the following matrices and vectors:

Zi =

⎡
⎢⎢⎢⎣

yi,1
yi,1 yi,2

. . .

yi,1 yi,2 ... yi,T−2

⎤
⎥⎥⎥⎦[

(T−2)× (T−2)(T−1)
2

]
(13.68)

εi =
⎡
⎣εi,3

...

εi,T

⎤
⎦

[(T−2)×1]

, yi =
⎡
⎣yi,3

...

yi,T

⎤
⎦

[(T−2)×1]

, and yi,−1 =
⎡
⎣ yi,2

...

yi,T−1

⎤
⎦

[(T−2)×1]

Then equation (13.67) can be represented by the following moment conditions:

E
(
Z′

i�εi

)= 0 (13.69)

The GMM estimator of the model is derived from minimising the following:

(
N∑

i=1

Z′
i�εi

)′
WN

(
N∑

i=1

Z′
i�εi

)
=
(

N∑
i=1

�ε′
iZi

)
WN

(
N∑

i=1

Z′
i�εi

)
(13.70)

where WN is a weight matrix.
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Blundell and Bond (1998) point out that alternative choices for the weight WN

give rise to a set of GMM estimators, all of which are consistent for large N and
finite T , but which differ in their asymptotic efficiency. One of the optimal weight
matrices is:

WN =
(

1

N

N∑
i=1

Z′
i�ε̂iZ

′
i�ε̂i

)−1

(13.71)

where �ε̂i is the residual obtained from an initial consistent estimator. Using the
weight matrix WN of equation (13.71), the first differenced GMM estimator is
derived as:

ρ̂diff =
[(

N∑
i=1

�y′
i,−1Zi

)
WN

(
N∑

i=1

Z′
i�yi,−1

)]−1

×
[(

N∑
i=1

�y′
i,−1Zi

)
WN

(
N∑

i=1

Z′
i�yi

)]
(13.72)

When exogenous independent variables are involved as in the model represented
by equation (13.61), the first differenced GMM estimator vector can be easily
derived, analogue to equation (13.69). Let us define:

βe =

⎡
⎢⎢⎣

ρ

β1
...

βk

⎤
⎥⎥⎦

[1×(K+1)]

, xe
i,−1 =

⎡
⎢⎢⎣

yi,2 x1,i,1 ... xk,i,1

...

yi,T−1 x1,i,T−2 xk,i,T−2

⎤
⎥⎥⎦

[(T−2)×(K+1)]

(13.73)

The first differenced GMM estimator vector is then derived as:

β̂
e

diff =
[(

N∑
i=1

(
�xe

i,−1

)′
Zi

)
WN

(
N∑

i=1

Z′
i�xe

i,−1

)]−1

×
[(

N∑
i=1

(
�xe

i,−1

)′
Zi

)
WN

(
N∑

i=1

Z′
i�yi

)] (13.74)

To test for the validity of the procedure, the Sargan test for over-identifying has
been developed as follows:

S = N

(
1

N

N∑
i=1

Z′
i�εi

)′
WN

(
1

N

N∑
i=1

Z′
i�εi

)
(13.75)

The null hypothesis for this test is that the instruments are not correlated with the
errors in the first-differenced equation. The test statistic obeys a χ2-distribution
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with m degrees of freedom under the null, where m is equal to the number of
instruments subtracting the number of parameters in the model.

In addition to lagged levels of the dependent variable as instruments for
equations in first differences, Blundell and Bond (1998) propose the use of lagged
first differences of the dependent variable as instruments for equations in levels.
This is referred to as the system GMM. Imposed are the following additional
moment restrictions:

E
(
ωit�yi,t−1

)= 0, t = 4, . . . T (13.76)

E
(
ωi3�yi,2

)= 0 (13.77)

where ωit = μi + εit . Accordingly, the instrument matrix using the conditions
expressed in equation (13.76) and equation (13.77) is as follows:

Z+
i =

⎡
⎢⎢⎢⎢⎣

Zi 0 0 . . . 0
0 �yi2 . . .

. . . �yi3
. . . . . . 0

0 0 0 . . . �yi,T−1

⎤
⎥⎥⎥⎥⎦{

[2(T−2)]×
[

(T−2)(T+1)
2

]}
(13.78)

with Zi being defined by equation (13.67). Analogue to the first differenced GMM
procedure, the system GMM estimator is derived from minimising the following
function:(

N∑
i=1

(
Z+

i

)′
�εi

)′
WN

(
N∑

i=1

(
Z+

i

)′
�εi

)
=
(
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i=1

�ε′
iZ

+
i

)
WN

(
N∑

i=1

(
Z+

i

)′
�εi

)

(13.79)

The system GMM estimator is then given by:

ρ̂sys =
[(

N∑
i=1

y′
i,−1Z+

i

)
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(
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×
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i

)
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(
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i

)′
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)]
(13.80)

Similar to the first differenced GMM case, when exogenous independent variables
are involved, the system GMM estimator vector can be derived as follows:

β̂
e

sys =
[(

N∑
i=1

(
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)′
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)
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(
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)′
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)]
(13.81)
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13.5. Examples and cases

Example 13.1

Investment is one of the most important corporate activities taken by
firms and pursued by CEOs on behalf of the firms and shareholders.
Personal characteristics of CEOs may therefore influence corporate
investment behaviour. Malmendier and Tate (2005) argue that managerial
overconfidence can account for corporate investment distortions and
hypothesise that overconfident managers overestimate the returns to their
investment projects and view external funds as unduly costly. Using panel
data on personal portfolio and corporate investment decisions of Forbes
500 CEOs, they test the overconfidence hypothesis. The two well-publicised
traditional explanations for investment distortions are the misalignment of
managerial and shareholders interests and asymmetric information between
corporate insiders and the capital market. Both cause investment to be
sensitive to the level of cash flows in the firm. The alternative explanation
proposed by Malmendier and Tate (2005) in this study relates corporate
investment decisions to personal characteristics of the CEO of the firm.
They argue that overconfident CEOs systematically overestimate the return
to their investment projects. Consequently, they overinvest if they have
sufficient internal funds for investment and are not disciplined by the capital
market or corporate governance mechanisms. They curb their investment if
they do not have sufficient internal funds, since they are reluctant to issue
new equity which undervalues the stock of their company by the market and
new investors.

Measures of CEO overconfidence in this study are constructed based
on the overexposure of CEOs to the idiosyncratic risk of their firms. The
first two measures, Holder 67 and Longholder, are linked to the timing of
options’ exercises. Risk-averse CEOs should exercise their options early
given a sufficiently high stock price. A CEO is regarded overconfident if
he persistently exercises options later than suggested by the benchmark; he
is overconfident in his ability to keep the company’s stock price rising and
that he wants to profit from expected price increases by holding the options.
In this regard, Holder 67 adopts 67% in-the-money during the fifth year as
the threshold. If an option is more than 67% in-the-money at some point in
year 5, the CEO should have exercised at least some portion of the package
during or before the fifth year. This threshold corresponds to a risk-aversion
measure of three in a constant relative risk-aversion utility specification. The
first instance, if any, is then identified, at which the CEO failed to exercise
such an option during or before the fifth year. From this point in time onward,
the CEO is classified as overconfident if he subsequently exhibits the same

Continued
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behaviour at least one more time during his tenure as CEO. To the extreme,
if a CEO is optimistic enough about his firm’s future performance that he
holds options all the way to expiration, he is regarded overconfident as
Longholder. The last measure, Net Buyer, classifies CEOs who habitually
increase their holdings of their company’s stock as overconfident. More
precisely, a CEO is identified as overconfident if he was net buyer of his
company’s stock during his first five years in the sample.

The data sample used in this empirical study consists of 477 large publicly
traded US firms from 1980 to 1994. The included firm must appear at least
four times on one of the lists of the largest US companies compiled by the
Forbes magazine in the period from 1984 to 1994. The data set provides
detailed information on the stock ownership and set of option packages for
the CEO of each company, year by year. The data set is supplemented by
Compustat and other databases for related information on company and
CEO profiles. This is a straightforward panel of time series and cross-
sectional data set. Due to some restrictions and deletions with reasons given
in the paper, the number of observations is 1058 for Holder 67, 3742 for
Longholder and 842 for Net Buyer.

The empirical part of the study runs regression of investment on cash flow,
market value of assets over book value of assets, a measure of overconfidence
and a set of controlling variables. These controlling variables include
corporate governance, stock ownership, and vested options. Cash flow is
earnings before extraordinary items plus depreciation and is normalised by
capital at the beginning of the year. The market value of assets over the book
value of assets at the beginning of the year is represented by Q. Holder 67,
Longholder and Net Buyer are dummies, taking the value of one if the CEO
is classified as being overconfident and zero otherwise by the respective
measure. Stock ownership is the fraction of company stock owned by the
CEO and his immediate family at the beginning of the year. Vested options
are the CEO’s holdings of options that are exercisable within 6 months of
the beginning of the year, as a fraction of common shares outstanding.
Vested options are multiplied by 10 so that the mean is comparable to
stock ownership. Size is the natural logarithm of assets at the beginning
of the year. Corporate governance is the number of outside directors who
currently serve as CEOs of other companies. Industries are defined as the 12
Fama-French industry groups. The dependent variable in the regression is
Investment, defined as firm capital expenditures and normalised by capital at
the beginning of the year. The study adopts the panel data model with fixed
effects in its empirical analysis, with fixed time effects, fixed firm effects
and fixed industry effects. The main results with regard to the effect of CEO
overconfidence on investment that are related to panel data analysis are
summarised and reported in Table 13.1. The coefficients of the interaction
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Table 13.1 Regression of investment on cash flow and overconfidence

Holder 67 Longholder Net buyer

Cash-flow 1.7044 0.656 1.555
(10.20)∗∗∗ (7.50)∗∗∗ (6.99)∗∗∗

Q −0.0088 0.0851 0.0770
(0.44) (7.89)∗∗∗ (3.57)∗∗∗

Stock-ownership (%) −0.1834 0.196 −0.0964
(0.33) (2.41)∗∗ (0.24)

Vested-options 0.1398 0.003 0.0639
(1.17) (0.03) (0.42)

Size 0.0543 −0.0494 −0.0790
(2.88)∗∗∗ (5.12)∗∗∗ (3.12)∗∗∗

Corporate-governance −0.0071 0.0023 0.0071
(0.92) (0.59) (0.74)

(Q)× (Cash-flow) 0.0648 −0.0099 −0.0721
(3.28)∗∗∗ (1.02) (3.17)∗∗∗

(Stock-ownership) × (Cash-flow) −0.6897 0.002 0.3991
(1.67)∗ (0.01) (0.56)

(Vested-options) × (Cash-flow) −0.2981 0.2847 −0.0012
(2.62)∗∗∗ (3.97)∗∗∗ (0.01)

(Size) × (Cash-flow) −0.1754 −0.053 −0.1653
(8.77)∗∗∗ (5.04)∗∗∗ (6.02)∗∗∗

(Corporate-governance) × (Cash-flow) 0.0441 −0.0096 0.0006
(2.65)∗∗∗ (1.07) (0.03)

Holder 67 −0.0495
(1.96)∗

(Holder 67) × (Cash-flow) 0.2339
(4.70)∗∗∗

Longholder −0.0504
(2.65)∗∗∗

(Longholder) × (Cash-flow) 0.1778
(5.51)∗∗∗

Net-buyer 1.0615
(2.83)∗∗∗

(Net-buyer) × (Cash-flow) 0.4226
(4.33)∗∗∗

Year-fixed-effects Yes Yes Yes
Firm-fixed-effects Yes Yes Yes
(Year-fixed-effects) × (Cash-flow) Yes Yes Yes
(Industry-fixed-effects) × (Cash-flow) No No No
(Firm-fixed-effects) × (Cash-flow) No No No
Observations 1058 3742 842
Adjusted R2 0.62 0.54 0.54

Constant included.
t-statistic in parentheses.∗significant at the 10 per cent level; ∗∗significant at the 5 per cent level; ∗∗∗significant at the
1 per cent level.

Continued
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of all the overconfidence measures with cash flow are significantly positive.
The authors therefore conclude that overconfident CEOs have higher
sensitivity to investment to cash flow than their peers. In addition, there
are variations among firms and over time, as well as the interaction of fixed
time effects and cash flow.

Example 13.2

Dividend policy is one of the areas in corporate finance that attracts heated
debate. Using a panel of 330 large listed firms in the UK sampled in the
period of 1985–1997, Khan (2006) investigates the effect of the ownership
structure of firms on their dividend policies. The relationship between
dividend payouts and ownership structure can be explained by agency
theory that dividend payouts help mitigate the conflict of interest between
a firm’s management and its shareholders. Dividend provides indirect
control benefits in the absence of active monitoring of firms’ management
by its shareholders. Dividend payouts tend to be higher if ownership is
dispersed.

To empirically investigate the relationship between dividend payouts and
ownership structure as suggested by the pertinent theories, a dynamic panel
data model is applied in this study where the dependent variables included
in the model consist of sales, net profits, financial leverage, ownership
measured as at the end of the previous financial year, and dividends in
the previous financial year. Ownership is represented by these variables:
TOP5, the proportion of equity held by the largest five shareholders; INS,
the proportion of equity owned by insurance companies; IND, the proportion
of equity owned by individuals; INS5+%, the sum of equity in blocks larger
than 5 per cent owned by insurance companies; and IND5+%, the sum of
equity in blocks larger than 5 per cent owned by individuals. The dependent
variable is dividends. All the variables are scaled by sales. This is a dynamic
panel data model, since the lagged dependent variable is included as one of
the regressors. The system GMM is used in its econometric analysis, because
OLS estimators are biased for such dynamic panel models.

Selected estimation results are presented in Table 13.2. The OLS results
are reported for the purposes of comparison with GMM estimators and
revelation of the bias. The main results of the study are provided by GMM 1
and GMM 2 in the table. From GMM 1, the coefficient of TOP5 is positive
and statistically significant at the 10 per cent level, and the coefficient of the
square of this measure, Sq-TOP5, is negative and statistically significant at
the 1 per cent level. The author therefore claims that these results indicate that
the relationship between dividends and ownership concentration is concave.
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However, the author further argues that the point where the relationship
between dividends and ownership concentration turns negative occurs when
total shareholding by the largest five shareholders rises above 9.6 per cent,
and this point lies outside the range of the variable for the overwhelming
majority of firms in the sample. The author then alleges that there is
a negative but non-linear relationship between dividends and ownership
concentration. Moreover, the results show that the fraction of equity owned
by insurance companies, INS, has a positive effect on dividend payouts.
However, this effect is almost negativated by that of its lagged variable, the
fraction of equity owned by insurance companies in the previous year. If,
and more or less it is the case, the fraction of equity owned by insurance
companies does not change much year on year, then the results can be
spurious arising from multi co-linearity between these variables. GMM 2
specification considers the effect of large block holdings by insurance
companies and individual investors on dividend payouts. INS5+% and
IND5+%, the sum of block shareholdings greater than 5 per cent that
belong to insurance companies and individuals respectively, claims the
author, are found in separate regression analyses to be statistically significant
with positive and negative coefficients respectively. However, the reported
GMM 2 results where INS5+% and IND5+% are considered together
in the same regression, along with controls for ownership concentration,
exhibit that only INS5+% remains statistically significant. Based on
these results and examination, the author argues that the results indicate
a negative relationship between dividends and ownership concentration
overall. Though, similar to the results on INS and lagged INS with the
GMM 1 specification, the effect of INS5+% on dividend payouts is almost
negativated by that of its lag. So the results can be spurious caused by
the same problem of multi co-linearity. Further, the study has found a
positive effect on dividend payouts of insurance company share ownership
and a negative effect on dividend payouts of individual share ownership.
While both insurance company and individual share ownership appear to
contain independent information, the most informative measure seems to be
shareholding by insurance companies.

Example 13.3

CEO compensation has cast much and many controversies in the news as
well as in scholarly work. The issue has attracted immense attention since
it is directly associated with agent-principal theory to mitigate the conflict
between, and harmonise the interest of, CEOs and shareholders. Moreover,
the interest of other stakeholders, employees and customers, is also affected
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by the compensation CEOs receive. In a recent attempt to establish a link
between CEO compensation and firm performance, Lilling (2006) employs
the GMM to examine a panel data set of North American companies. The
data are drawn from over 24,000 public companies in various industries from
1993 to 2005. For usual reasons of mission data and/or unavailability of data,
the final sample consists of only 1,378 firms with 6,755 total observations.

The study puts forward four hypotheses, and then empirically tests
these hypotheses using the dynamic panel model. These hypotheses are:
(1) there is a positive link between firm performance represented by market
value of the firm and CEO compensation; (2) as the size of a firm grows in
terms of sales, CEO compensation increases; (3) as a CEO has an additional
year of experience, his compensation increases; and (4) a CEO hired
externally will be compensated more than a CEO who is hired internally.
Subsequently, in empirical dynamic panel data regression, the logarithm of
market value of the firm for firm performance, the logarithm of sales for
firm size, CEO tenure in years and a dummy for internally hired CEOs are
included as independent variables in the model. Besides, ROA is adopted as
an additional measure for firm performance, as well as a gender dummy. The
dependent variable is the logarithm of total CEO compensation, including
salary, bonus, restricted stock grant value, stock options, and other benefits.
The dependent variable at lag one is taken in as one of the regressors, so the
modelling is a typical dynamic panel data approach.

The empirical results are reported in Table 13.3 and Table 13.4, with the
former using lagged firm performance and the latter using contemporary
firm performance in estimation. The first differenced GMM and the system
GMM have produced similar results while fixed effects estimators are rather
different. Analysis and discussion are based on GMM results, since fixed
effects may cause bias in parameter estimates. The coefficients of lagged
CEO compensation are positive and highly significant at the 1 per cent
level, indicating the series of CEO compensation are fairly persistent. This
implies that the lagged level variables provide weak instruments for the
differences in the first differenced GMM model; hence the author alleges
the system GMM approach is more suitable than the first differenced GMM
in this case. According to the estimated coefficients, CEO compensation is
strongly linked to the market value of the firm, and it is more responsive
to the market value of the firm in the current year than that in the
previous year. The coefficient estimated by the system GMM is 0.358
in Table 13.3 and greater at 0.405 in Table 13.4; and the coefficient
estimated by the first differenced GMM is 0.214 in Table 13.3 and greater
at 0.444 in Table 13.4, all of them significant at the 1 per cent level. These
results support the statement of the first hypothesis in the paper that there

Continued
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is a positive link between firm performance represented by the market
value of the firm and CEO compensation. The association between
CEO compensation and the other firm performance measure, ROA, is
controversial. The coefficient is negative and highly significant at the
1 per cent level by the author’s preferred model of the system GMM in
Table 13.4, where contemporary ROA is used, while it is significantly
positive at the 1 per cent level by the first differenced GMM in Table 13.3,
where lagged ROA is used. No explanations are provided and these results
on ROA seem to be ignored. Tables 13.3 and 13.4 also report a strong
link between CEO compensation and sales, a proxy for firm size. The
coefficient is all significantly positive at the 1 per cent level in both tables,
indicating the validity of the statement of the second hypothesis that CEO
compensation increases with growth in sales. The third hypothesis, CEO
compensation increases with CEO tenure, is modestly supported by the
results. The coefficient is positive and significant at the 10 per cent level by
the system GMM and at the 5 per cent level by the first differenced GMM
in Table 13.3 and negative and insignificant in Table 13.4. Moreover, none
of squared CEO tenure is significant in both tables. The internally promoted
CEOs are less compensated than externally recruited CEOs, evidenced by
a negative coefficient for the internal CEO dummy that is significant at
the 1 per cent level in both tables and by both models. This supports the
statement of the fourth hypothesis in the study that an externally hired CEO
will be compensated more than a CEO who is hired internally.

13.6. Empirical literature

The use of panel data and application of panel data modelling have increased
significantly since the first edition of this book. This is particularly evident in
finance and related areas. The volume of studies and papers employing panel
data has been multifold, in recognition of the advantages offered by panel data
approaches as well as panel data sets themselves, and in response to the growing
availability of data sets in the form of panel. Prior to the 1990s, panel data
were traditionally and predominantly used in social-economic research and social
science research, despite various cases in economics and finance such as studies
on PPP, estimation of stocks’ betas and inquiries into firm performance. Although
the use of panel data in finance and financial economics may have predated
that in social-economic research, it is the recent five years that have witnessed
proliferating applications of panel data sets and panel data approaches in these
areas.

Firm performance and firm value are of importance to shareholders, as well
as all other stakeholders, including employees, bondholders, customers and the
management team. Employing a panel data set consisting of 12,508 firms over
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a nine-year period from 1993 to 2001, Goddard et al. (2005) examine the
determinants of profitability of firms in the manufacturing and services sector
in four European countries of Belgium, France, Italy and the UK. They find
evidence of a negative effect of size on profitability and a positive effect of market
share on profitability, and the effect is greater in manufacturing than in services.
The relationship between a firm’s financial leverage and its profitability is found
to be negative, with liquidity contributing to firms’ profitability. In addition to
Example 13.3 on CEO compensation and firm performance, there are a few similar
studies in recent years, such as Kato and Kubo (2006) and Kato et al. (2007), among
others. Kato and Kubo (2006) pointedly spell out that prior studies on Japanese
executive compensation have been constrained by the lack of longitudinal data
on individual CEO pay. Using a panel data set on individual CEOs’ salary and
bonus of Japanese firms spanning 10 years from 1986 to 1995, they study the pay-
performance relationship for Japanese CEO compensation. It is documented that
Japanese CEO cash compensation is sensitive to firm performance, especially firm
performance in terms of accounting measures, and the findings are claimed to be
consistent. This implies that, to a certain extent, stock market performance tends
to play a less important role in the determination of Japanese CEO compensation.
They also find that the bonus system makes CEO compensation more responsive
to firm performance in Japan, in contrast to the argument in the literature on
compensation that bonuses are disguised wages/salaries. Using a panel data set
with 246 publicly traded firms in Korea from 1998 to 2001, Kato et al. (2007)
investigate the link between executive compensation and firm performance in
Korea. They find that cash compensation of Korean executives is significantly
related to stock market performance. This is in contrast to the findings on Japanese
CEO compensation in Kato and Kubo (2006), where CEO compensation is linked
to accounting measures of firm performance consistently but it is linked to stock
market performance to a lesser extent. The findings in these two studies suggest that
there is a difference between Japan and Korea in CEO compensation. Nevertheless,
Kato et al. (2007) find that the magnitude of the pay-performance sensitivity in
Korea is comparable to that of the US and Japan. Further analysis is claimed to
reveal that such significant executive pay-performance link is embedded with non-
Chaebol firms and no such link exists for Chaebol firms. The authors therefore
argue for corporate governance reforms in Korea, aiming primarily at Chaebol
firms. Bhabra (2007) investigates the relationship between insider stock ownership
and firm value, using a panel of 54 publicly traded firms in New Zealand for the
period 1994–1998. In order to limit the effect of outliers, firms with a Tobin’s Q
greater than 4.00 are excluded.

Also excluded are firms with insider ownership being lower than 0.1 per cent.
It is alleged that insider ownership and firm value are positively related for
ownership levels below 14 per cent and above 40 per cent and inversely related
at intermediate levels of ownership. These results are fairly robust to different
measures of firm performance, including Tobin’s Q, market to book ratio and
ROE and to several different estimation techniques. Employing a panel of
non-financial companies that trade on the Spanish Continuous Market for the
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period 1998–2000, Minguez-Vera et al. (2007) evaluate the effect of ownership
structure on firm value. It is claimed to have found a positive effect of the
ownership by major shareholders on firm value and a positive effect of the degree
of control on Tobin’s Q. However, relationship between the ownership of large
block shareholders and firm value is insignificant; a positive effect is identified
when the major shareholders are individuals.

Foreign direct investment (FDI) has been an intensive activity over the last three
decades, with significant effects on firms at the micro level as well as on the national
economy at the macro level, in an accelerating process of globalisation and amongst
national economies and ever-interwoven multi-national companies. Cross-country
cases themselves constitute cross-sectional data sets that conveniently become
panel data over time, which provides rich sources for empirical studies as well
as develops motivations for model enhancement. Employing a panel data set for
22 countries over the period 1984–2000, Asiedu (2006) examines the impact of
natural resources, market size, government policies, political instability and the
quality of the host country’s institutions on FDI. It is found that natural resources
and large markets promote FDI, along with lower inflation, good infrastructure,
an educated population, openness to FDI, less corruption, political stability and a
reliable legal system. The author alleges that a decline in corruption from the level
of Nigeria to that of South Africa has the same positive effect on FDI as increasing
the share of fuels and minerals in total exports by about 35 per cent, suggesting that
countries that are small or lack natural resources can also attract FDI by improving
their institutions. Naude and Krugell (2007) use a panel of 43 African countries
for the period 1970–1990 in an empirical study. They identify government
consumption, inflation, investment, political stability, accountability, regulatory
burden and rule of law, and initial literacy as the determinants of FDI in Africa. It
is claimed that geography does not seem to have a direct influence on FDI flows to
Africa. Hansen and Rand (2006) use a panel data set for 31 developing countries
over 31 years to conduct Granger causality tests for FDI and growth relationships.
They find that FDI has a lasting impact on GDP, while GDP has no long-run
impact on the FDI-to-GDP ratio. Based on this finding, they conclude that FDI
causes growth. Similarly, Eller et al. (2006) examine the impact of financial sector
FDI on economic growth via the efficiency channel, employing a panel data set for
11 Central and Eastern European countries for the period 1996–2003. They claim
to have found a hump-shaped impact of financial sector FDI on economic growth.
Using a panel data set for eight Asian countries and regions of China, Korea,
Taiwan, Hong Kong, Singapore, Malaysia, Philippines and Thailand for the period
1986–2004, Hsiao and Hsiao (2006) test Granger causalities between GDP, exports
and FDI. The Granger causality test results indicate that FDI has unidirectional
effects on GDP directly and also indirectly through exports. In addition, there exist
bidirectional causalities between exports and GDP. Investigating whether FDI is
a channel of technology transfer and knowledge spillovers, Bwalya (2006) uses
firm-level data from Zambia to analyse the nature and significance of productivity
externalities of FDI to local firms. The data set used in the study includes 125 firms
in sectors of food, textile, wood and metal and is obtained from the World Bank
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through the Regional Program on Enterprise Development survey conducted in
1993, 1994 and 1995. A firm is classified as ‘foreign’ if it has at least 5 per cent
foreign shareholding in it. It is claimed that significant inter-industry knowledge
spillovers have been found through linkages, whereas there is little evidence in
support of intra-industry productivity spillovers from FDI. The net impact of FDI
depends on the interaction between intra-industry and inter-industry productivity
effects. Kostevc et al. (2007) pay attention to the relationship between FDI and
the quality of the institutional environment in transition economies. Using a panel
data set of 24 transition economies for the period 1995–2002, they assert that there
is significant impact of various institutional characteristics on the inflow of foreign
capital. It is found that the quality of the institutional environment has significantly
influenced the level of FDI in transition economies in the observed period.

The study by Kimino et al. (2007) is different in that it examines FDI flows
into Japan, in contrast to most studies in the area where developing countries are
on the receiving side of FDI. The data used in the study consist of a panel of
17 source countries for the period 1989–2002. Six hypotheses have been tested:
(1) there is a positive relationship between the market size of source countries
and FDI inflows to Japan; (2) there is a negative relationship between source
country exports and FDI inflows to Japan; (3) there is a positive relationship
between appreciation of the source country currency and FDI inflows to Japan;
(4) there is a negative relationship between the cost of borrowing differentials
and FDI inflows to Japan; (5) there is a positive relationship between labour cost
differentials and FDI inflows to Japan; and (6) there is a positive relationship
between the investment climate of source countries and FDI inflows to Japan.
Accepting the null of the second hypothesis, their results suggest that FDI into
Japan is inversely related to trade flows, such that trade and FDI are substitutes.
It is found that FDI increases with home country political and economic stability,
confirming the statement of the sixth hypothesis. The authors argue that results
regarding exchange rates, relative borrowing costs and labour costs in explaining
FDI flows are sensitive to econometric specifications and estimation approaches,
based on the testing results on the third, fourth and fifth hypotheses. The paper plays
down the barriers to inward investment penetration in Japan and the negative effect
of cultural and geographic distance. Meanwhile, it emphasises that the attitude to
risk in the source country is a major factor strongly related to the size of FDI flows
to Japan.

Branstetter (2006) scrutinises whether FDI is an important channel for the
mediation of knowledge spillovers by analysing international knowledge spillovers
originated from Japan’s FDI in the US at the firm level. The study uses patent
citation data to infer knowledge spillovers and empirical analysis is based on a
panel data set for 189 Japanese firms for the years 1980–1997. Data on FDI are
compiled from Firms Overseas Investment 1997 and 1999 editions, while patent
data are obtained from the US Patent and Trademark Office and the NBER Patent
Citation database. Testing the hypothesis that FDI is a channel of knowledge
spillovers for Japanese multinationals undertaking direct investments in the US,
the paper has found evidence that FDI increases the flow of knowledge spillovers
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both from and to the investing Japanese firms. Using longitudinal panel data on
Japanese firms for the years 1994–2000, Kimura and Kiyota (2006) examine the
relationship between exports, FDI and firm productivity. The longitudinal panel
data set is compiled through making use of the micro database of the Results of
the Basic Survey of Japanese Business Structure and Activities by Research and
Statistics Department, Ministry of Economy, Trade and Industry. The number
of firms included amounts to over 22,000 each year. The main findings are
straightforward: the most productive firms engage in exports and FDI, medium
productive firms engage in either exports or FDI, and the least productive firms
focus only on the domestic market. It has been found that exports and FDI appear
to improve firm productivity once the productivity convergence effect is controlled
for. Firms that retain a presence in foreign markets either by exports orFDI show the
highest productivity growth. This overall contributes to improvements in national
productivity. In an attempt to contribute to the debate as to whether outward FDI
complements or substitutes for a home country’s exports, Seo and Suh (2006)
investigate the experience of Korean outward FDI in the four ASEAN countries of
Indonesia, Malaysia, the Philippines, and Thailand during the 1987–2002 period.
It is found that contemporaneous FDI flows marginally contribute to Korea’s
exports to the four ASEAN countries, but FDI stocks in these countries do not
have discernible trade substituting effects on either exports or imports by Korea.
Todo (2006) investigates knowledge spillovers from FDI in R&D, using firm-level
panel data from the Japanese manufacturing industries for the period 1995–2002.
Data are collected from Basic Survey of Enterprise Activities by Ministry of
Economy, Trade and Industry that covers all Japanese firms in manufacturing
industries that employ 50 employees or more. To distinguish between spillovers
from production and R&D activities of foreign firms, the empirical study estimates
the effect of each of physical capital and R&D stocks of foreign firms in the industry
on the total factor productivity (TFP) level of domestic firms in the same industry.
The analysis has found positive effects of R&D stocks of foreign firms on the
productivity of domestic firms when the effects of capital stocks of foreign firms
are absent. The author therefore alleges that knowledge of foreign firms spills over
through their R&D channels, not through their production activities. Moreover,
the extent of spillovers from R&D stocks of foreign firms is substantially greater
than that of spillovers from R&D stocks of domestic firms. Barrios et al. (2005)
examine the impact of FDI on the development of local firms by focusing on
two likely effects of FDI: a competition effect which deters entry of domestic
firms and positive market externalities which foster the development of the
local industry. They argue that the competition effect first dominates but it is
gradually outweighed by positive externalities. Their plant level data span the
period 1972–2000 and are from the source of the annual Employment Survey
collected by Forfás, the policy and advisory board for industrial development
in Ireland. Since the response rate to this survey is estimated by Forfás to be
generally well over 99 per cent, they claim that their data set can be seen as
including virtually the whole population of manufacturing firms in Ireland. It is
claimed that evidence for Ireland tends to support this result. For the manufacturing
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sector, it is found that the competition effect may have deterred local firms’ entry
initially. However, this initial effect of competition is later outweighed by the
effect of positive externalities. Overall the impact of FDI is largely positive for
the domestic industry.

PPP has been one of the ever-lasting topics subjected to intensive scrutiny in
the history of economic thought. There is a slight difference in the construction
between the panel of PPP and, say, the panel for firm performance and its
determinants. Here we usually have the time series of individual pairs of countries
and the exchange rates between their currencies first; then we pool them across
sections; and the estimation power may be enhanced not only for taking in more
information and observations but also for taking into account potential cross-
section relations and interactions. Whereas, for the study of firm performance,
cross-sections come first; and then the estimation is enhanced by pooling them
over time, with time patterns being identified in the meantime. PPP is important as
a theory in economics; it is as well relevant to corporate decisions and strategies of
international dimensions where a sound assessment of the economic environment
in which the firm is to operate is crucial to success. Tests for PPP empirically
amount to testing cointegration between the price levels in a pair of countries
and the exchange rate between their currencies; or testing stationarity of the real
exchange rate that is the nominal exchange rate adjusted by two countries’ price
levels. Using an annual sample of 21 OECD country CPI-based real exchange rates
from 1973 to 1998, and controlling for multiple sources of bias, Choi et al. (2006)
estimate the half-life to be 3 years with a 95 per cent confidence interval ranging
from 2.3 to 4.2 years. That is, it takes three years for a deviation from PPP to fall
to its half size. The shorter the half-life, the speedier is the convergence to PPP
following some divergence. A sample with 26 annual observations certainly falls
short of the basic requirements for statistical estimation. Increasing the number
of data points by combining the cross-section with the time series should give
more precise estimates, as the authors pointedly stress in the paper, which yields
over 500 observations for their empirical study. Murray and Papell (2005) test
for PPP with a panel of 20 countries’ quarterly real exchange rates vis-à-vis the
US dollar, from the first quarter in 1973 to the second quarter in 1998, when the
nominal exchange rates between the countries in the euro zone became irreversibly
fixed. The 20 countries included in the study are: Australia, Austria, Belgium,
Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Japan, the
Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland and
the UK. They assert that half-life remains 3–5 years for the post-1973 period
following the float of exchange rates. That a flexible exchange rate regime does
not expedite PPP convergence seems puzzling, mystifying the PPP puzzle that
has already existed so long. Harris et al. (2005) investigate PPP for a group of
17 countries using a panel based test of stationarity that allows for arbitrary cross-
sectional dependence. They use monthly data of real exchange rates of 17 countries
of Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Italy,
Japan, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the
UK, vis-à-vis the US dollar between 1973: 01 and 1998: 12. They treat the short-run
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time series dynamics non-parametrically to avoid the need to fit separate, and
potentially mis-specified, models for the individual series. It is documented that
significant evidence is found against the PPP null hypothesis even when allowance
is made for structural breaks. Testing for unit roots in real exchange rates of
84 countries against the US dollar, presumably for varied periods, Alba and Papell
(2007) examine long-run PPP. They claim to have found stronger evidence of PPP
in countries more open to trade, closer to the US, with lower inflation and moderate
nominal exchange rate volatility, and with similar economic growth rates as the
US. It is also observed that PPP holds for panels of European and Latin American
countries, but not for African and Asian countries. Based on the above results, the
authors conclude that their findings demonstrate that country characteristics can
help explain both adherence to and deviations from long-run PPP. Questioning the
unit root test results of PPP in previous studies adopting panel methods, Banerjee
et al. (2005) offer the reasons why PPP usually holds when tested for in panel
data but usually does not hold in univariate analysis. They challenge the usual
explanation for this mismatch that panel tests for unit roots are more powerful
than their univariate counterparts. They demonstrate that the assumption of non-
presence of cross-section cointegration relationships in existing panel methods is
dubious. Cross-section cointegration relationships would tie the units of the panel
together, which tends to make the test results appear stationary. Using simulations,
they show that if this important underlying assumption of panel unit root tests is
violated, the empirical size of the tests is substantially higher than the nominal
level, and the null hypothesis of a unit root is rejected too often even when it is
true. Subsequently, they warn against the ‘automatic’ use of panel methods for
testing for unit roots in macroeconomic time series, in addition to testing for PPP.

There appear to be numerous subjects and abundant studies and papers where
panel data and panel data methods are employed in recent three–five years. Nier
and Baumann (2006) study the factors that influence banks to limit their risk of
default. They have constructed and used a panel data set consisting of observations
on 729 individual banks from 32 different countries over the period 1993–2000
in their empirical estimation. Their results suggest that government safety nets
result in lower capital buffers and that stronger market discipline stemming from
uninsured liabilities and disclosure results in larger capital buffers, holding other
factors constant. It is found that the effect of disclosure and uninsured funding
is reduced when banks enjoy a high degree of government support. Following
certain deliberation, they claim that, while competition leads to greater risk taking
incentives, market discipline is more effective in curbing these incentives in
countries where competition among banks is strong. On firms’ risk management
practice, Fehle and Tsyplakov (2005) propose an infinite-horizon, continuous-
time model of a firm that can dynamically adjust the use of risk management
instruments. The model aims at reducing uncertainties in product prices and
thereby mitigating financial distress losses and reducing taxes. In the model,
the firm can adjust its use, the hedge ratio and maturity of risk management
instruments over time, and transaction costs are associated with initiation and
adjustment of risk management contracts. They claim that the model produces a
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number of new time-series and cross-sectional implications on how firms use
short-term instruments to hedge long-term cash flow uncertainties. They then
use quarterly panel data on gold mining firms between 1993 and 1999 to fit the
proposed model. A non-monotonic relation between measures of financial distress
and risk management activity is found with the panel data set, claimed to be
consistent with the model. The importance of R&D in business has been gradually
acknowledged over time. To answer what drives business R&D, Falk (2006) uses
a panel of OECD countries for the period 1975–2002 with data measured as
five-year averages. Korea, Mexico, Czech Republic and Hungary are excluded
since they joined OECD fairly recently. It is found that tax incentives for R&D
have a significantly positive impact on business R&D expenditure, regardless of
the specification and estimation techniques. R&D expenditure by universities is
found to be significantly positively related to business sector R&D expenditure,
and the author claims that this result indicates that public sector R&D and private
R&D are complementary to each other. It is also found that direct R&D subsidies
and high-tech export shares are significantly positively related to business-sector
R&D intensity to a certain extent. Venture capital (VC) has attracted much media
attention and attention of academics recently. Schertler (2007) investigate whether
countries with high knowledge capital show higher volumes of VC investments
than countries with low knowledge capital. To this end, a panel data set of
15 European countries over the years 1991–2001 is used. Included variables in this
panel data set enable the model to test the impact of previous years’ knowledge
capital on the volume of today’s VC investments. There is evidence that the
measure of total knowledge capital, which is the sum of government-financed
and business-financed knowledge capital, has strong explanatory power for VC
investments. The result is robust with regard to various measures of knowledge
capital, such as the number of patent applications, the number of R&D researchers
or gross expenditures on R&D. In addition, weak evidence is found that the measure
of government-financed knowledge capital has a positive effect on VC investments
with a delay of several years.

Questions and problems

1 What is defined as panel data? How do cross-sectional data and longitudinal
data/time series data form a panel data set?

2 Present and describe several commonly used panel data resulting from surveys
in social-economic research, such as The National Longitudinal Surveys of
Labor Market Experience of the US.

3 How do data samples used for testing PPP constitute panel data? What are the
advantages of adopting panel data approaches to examining PPP?

4 Why is it claimed that the use of panel data in finance and financial economics
predated that in social-economic research, and the use is very extensive too?
Provide a few of examples.

5 Describe and contrast stacked and unstacked panel data structures in the
organisation and presentation of panel data.
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6 What are fixed effects in panel data modelling? What are random effects
in panel data modelling? Contrast them with each other with respect to the
assumptions on the residual’s correlation structure.

7 What are featured by random parameter or random coefficient models in
panel data modelling? Contrast random parameter models with random effects
models.

8 What is meant by dynamic panel data analysis? What kinds of issues may
arise in performing dynamic panel data analysis?

9 Describe and discuss commonly applied approaches to estimating dynamic
panel data models.

10 Collect data on variables related to the determination of corporate capital
structure from FAME or Thomson ONE Banker and company annual reports.
Construct a panel data set for N firms over a T year period with K independent
variables. Build a panel data model where the dependent variable is the
debt-to-equity ratio or financial leverage (using EViews, LIMDEP, RATS
or other packages). Firm size, profitability, profit variability, business risk,
growth opportunities, non-debt tax shields, cash holdings, dividend payouts,
collateral assets, asset tangibility, uniqueness, shareholder structure and
concentration, and an industry dummy may be considered for independent
variables.

11 Repeat the above with the lagged debt-to-equity ratio or financial leverage
being included as an additional regressor. The model becomes dynamic so
pertinent approaches and procedures should be followed.

12 Collect data on inward FDI at the country level for N host countries over
a T year period and with K independent variables. Build and then estimate a
panel data model (using EViews, LIMDEP, RATS or other packages). The
dependent variable is inward FDI flows to the host country (with necessary
transformation/scaling). The independent variables may include host country
infrastructure, relative labour costs, changes in, and stability of, exchange
rates, political stability and legal systems

13 Repeat the above with the lagged inward FDI flows being included as an
additional regressor. Apply pertinent approaches and procedures to estimate
this dynamic panel data model.

14 Collect foreign exchange spot rates and the corresponding forward rates for
several currencies vis-à-vis the euro over a certain period. Build a panel data
model to test the hypothesis that the forward premium is an unbiased predictor
of future spot rate changes.
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14 Research tools and sources
of information

This chapter is intended to help the reader carry out an empirical modern
financial economics or econometrics project. The chapter recommends relevant
on-line information and literature on research in financial markets and financial
economics. Some commonly used econometrics software packages for time series
analysis, as well as cross-sectional and panel data analysis, are introduced. We
feel that perfection of an empirical study can only be achieved against a wider
background of the business environment, market operations and institutional roles,
and by frequently upgrading the knowledge base. To this end, the coverage of
this chapter is extended to include major monetary and financial institutions,
international organisations, stock exchanges and option and futures exchanges,
and professional associations and learned societies. Most materials are in the
form of websites, which can be accessed almost instantly from anywhere in
the world. In doing so, this chapter does not only endow the reader with
various tools and information for empirical research, but also prompts and/or
reminds the researcher of the factors and players to be considered in the
research.

14.1. Financial economics and econometrics literature
on the Internet

Mostly and increasingly, finance journals are covered by lists of economics journals
on the web. The following two sites are comprehensive and frequently used by
academia and professionals alike:

http://www.oswego.edu/∼economic/journals.htm

at the State University of New York (SUNY), Oswego; and

http://www.helsinki.fi/WebEc

at University of Helsinki, Finland. These sites provide editorial information, tables
of contents and abstracts for most of the listed journals. To make access to full
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papers, one has to contact the publisher. More and more, there are Internet journal
archive service agencies, one of the most influential is:

http://www.jstor.org

For major finance journals, it is worthwhile visiting:

http://www.cob.ohio-state.edu/fin/journal/jofsites.htm#otjnl

at the Ohio State University. Indeed, the Ohio State University maintains wide-
ranging financial sites:

http://www.cob.ohio-state.edu/fin/journal/jofsites.htm

including Finance Journals, Institutional Working Paper Sites, Personal Working
Paper Sites, The Finance Profession, Research Centers, Link Collections, Asset
Pricing and Investments, Derivatives, Corporate Finance and Governance, Finan-
cial Institutions, Research Software and Data, Educational Resources, Of Interest
to Students, and Miscellanies.

Not only economics journals, but also finance journals, classify paper topics
by the JEL (Journal of Economic Literature) Classification System. The JEL
classification numbers are now also available on the web:

http://www.aeaweb.org/journal/elclasjn.html

Social Science Research Network (SSRN) is very active in disseminating
research output. Its website is:

http://www.ssrn.com

SSRN consists of five sub-networks: Accounting Research Network (ARN),
Economics Research Network (ERN), Latin American Network (LAN), Financial
Economics Network (FEN), and Legal Scholarship Network (LSN). The most
relevant networks for the topics in this book are FEN and ERN. SSRN publishes
working papers and abstracts of journal papers, downloadable free of charge. It
encourages scholars to electronically submit their working papers and the abstracts
and rank the papers by download, so it constitutes an efficient channel for gathering
information on the most recent developments in the areas.

Other useful sites include:

Resources for Economists on the Internet

http://www.rfe.org

This site is sponsored by the American Economic Association and maintained
by the Economics Department at the State University of New York, Oswego.
It lists more than 2,000 resources in 97 areas available on the Internet, with
reasonable descriptions. Covered are organisations and associations, data and
software, mailing lists and forums, meetings, conferences and announcements,
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and more. Its Economics Search Engine is helpful for economists to search
the Internet for economic information. There is even an area for blogs and
commentaries.

CRSP

http://www.crsp.com

CRSP stands for Center for Research in Securities Prices that was founded in 1960.
It is a research centre of Chicago Graduate School of Business. CRSP files cover
common stocks listed on the NYSE, AMEX and NASDAQ stock markets, US
Government Treasury issues, and US mutual funds. CRSP has a wide variety of
financial and economic indices (market, total return, cap-based and custom) and
other statistics used to gauge the performance of the broader market and economy in
general. CRSP also provides proxy graphs for 10K SEC filing, monthly cap-based
reports and custom data sets and extractions.

Mimas

http://www.mimas.ac.uk

Mimas is a JISC and ESRC-supported national data centre run by Manchester
Computing, at the University of Manchester. It provides the UK higher education,
further education and research community with networked access to key data
and information resources – socio-economic, spatial and scientific data, and
bibliographic – to support teaching, learning and research across a wide range
of disciplines. Mimas services are available free of charge to users at eligible
institutions.

Econometric Links

http://econometriclinks.com

Maintained by The Econometrics Journal, the site covers software, codes, data and
other sections and the links are wide-ranged. For example, it links to numerous
codes for a variety of software packages, including RATS, GAUSS, Matlab,
Mathematica, SHAZAM, Fortran and C++. The site also brings together various
data sources such as Bureau of Economic Analysis data, Morgan Stanley Capital
International, Datasets from the National Bureau of Economic Research, and
Dow Jones indexes. A rich list of journals in statistics and econometrics and
their web links are provided, as is information on econometrics conferences
and workshops.

14.2. Econometric software packages for financial and
economic data analysis

None of modern financial econometrics projects can be executed without making
use of an econometrics package. Following is a list of popular contemporary
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packages being widely, but not exclusively, used by financial economists and
econometricians.

EViews

http://www.eviews.com

EViews, or Econometric Views, is a menu-driven and user-friendly package. The
most recent version is EViews 6. It can easily handle most modern econometric
models such as binary dependent variable models, univariate GARCH, cross
section and panel data, and so on. Its help system in the electronic form is
excellent, e.g., the Estimation Methods part provides detailed information on model
specification and estimation, as well as the background and origin of the model.
However, the menu-driven feature also means that the package is not flexible to
adapt to the need of specific requirements. Although there are many variations
of GARCH available, they are all univariate. The state space model and the
Kalman filter can only do basic things, which are far from enough to cope with the
requirement encountered in modern empirical studies featured by sophisticated
model specifications and extensions. For more detail and purchase information
visit the website given.

RATS

http://www.estima.com

RATS, Regressional Analysis of Time Series, is one of the most authoritative
packages in the area. With RATS version 7 there are many new features and
improvements over the previous versions, such as more instrument variable/GMM
support, and improved graphics. Like EViews, RATS also has User’s Guide and
Reference Manual in the electronic form, though it is an industry norm now. One
of the advantages for using RATS is that, while a specialist package for time series
analysis equipped with many readily executable procedures, the user can write or
easily adapt a procedure for her/his own specific needs, or s/he can even write a
procedure from scratch. Therefore, even if GARCH procedures were not provided,
the user can write one with, e.g., RATS functions and the maximum likelihood
procedure. As such, virtually all kinds of contemporary time series models can be
estimated with RATS, though sometimes it involves great complexity and requires
much experience and skill. Mainly a time series package, one can also programme
models of cross section and panel data with RATS. In addition to conventional
analysis in the time domain, RATS can estimate time series in the frequency
domain, also knownas spectral analysis of time series. Spectral analysiswithRATS
includes the Fourier transform, spectra and cross spectra, and coherence and phase.
All of these are at the application level capable of handling empirical issues in busi-
ness cycles and other problems involving cyclical movements and phase leads. The
reader is recommended to visit Estima’s website where informative newsletters
are published and useful procedures are logged and updated at some frequencies.
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LIMDEP

http://www.limdep.com

LIMDEP, according to its name, was initially specialised in estimation of
models involving limited dependent variables, models introduced in Chapter 11,
Chapter 12 and to some extent, Chapter 13 of this book. However, having been
developed and evolved over years, it is now a complete econometrics package,
as claimed by its developer and provider, Econometric Software, Inc. As such,
LIMDEP Version 9.0 is an integrated programme for estimation and analysis of
linear and nonlinear models, with cross section, time series and panel data. Since
LIMDEP has long been a leader in the fields of discrete choice, censoring and
truncation, panel data analysis, frontier and efficiency estimation, its collection
of procedures for analysing these models is very comprehensive compared with
other packages. The main feature of the package is a suite of more than 100
built-in estimators for all forms of the linear regression model, and stochastic
frontier, discrete choice and limited dependent variable models, including models
for binary, censored, truncated, survival, count, discrete and continuous variables
and a variety of sample selection models. LIMDEP is widely used for teaching
and research by higher education institutions, government departments and
agencies, research establishments, business communities and industries around the
world.

TSP

http://www.tspintl.com

To some extent, TSP, or Time Series Processor, is similar to RATS. So we do not
introduce it in detail and the reader can refer to the website of TSP International
for detail.

GAUSS

http://www.aptech.com

GAUSS is powerful in matrix operations. The GAUSS Mathematical and
Statistical System is a fast matrix programming language, one of the most
popular software packages for economists and econometricians as well as for
scientists, engineers, statisticians, biometricians, and financial analysts. Designed
for computationally intensive tasks, the GAUSS system is ideally suited for
the researcher who does not have the time required to develop programs in
C or FORTRAN but finds that most statistical or mathematical ‘packages’
are not flexible or powerful enough to perform complicated analysis or to
work on large problems. Compared with RATS, GAUSS is more power-
ful and efficient but requires higher levels of programming knowledge and
skills.
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Microfit

http://www.econ.cam.ac.uk/microfit

Microfit is a menu-driven easy to use econometric package written especially for
microcomputers, and is specifically designed for the econometric modelling of
time series data. The strength of the package lies in the fact that it can be used at
different levels of technical sophistication. For experienced users of econometric
programmes it offers a variety of univariate and multivariate estimation methods
and provides a large number of diagnostic and non-nested tests not readily available
in other packages. As a result, Microfit is one of the most frequently used
econometric packages by economists and applied econometricians.

SAS

http://www.sas.com

SAS is a large multi-purpose statistical package. It can process almost all model
estimation problems in this book. But as it is large it is not usually available on PCs.
It also requires more knowledge in software.

Matlab

http://www.mathworks.com

Matlab was initially developed for solving engineering problems. Now there are
more and more economists and econometricians using this package. It is widely
used for optimisation, control system design, signal and image processing and
communications. Of the most relevance to this book are statistics and data analysis,
and financial modelling and analysis.

Mathematica

http://www.wolfram.com/products/mathematica

Economists and econometricians increasingly use this package as well. Its
mathematics and algorithms cover matrices, algebra, optimisation, statistics,
calculus, discrete mathematics and number theory. With regard to statistics
and data analysis, Mathematica provides integrated support both for classical
statistics and for modern large-scale data analysis. Its symbolic character allows
broader coverage, with symbolic manipulation of statistical distributions, symbolic
specification of functions and models, and general symbolic representations of
large-scale data properties. Incorporating the latest numerics and computational
geometry algorithms, Mathematica provides high-accuracy and high-reliability
statistical results for datasets of almost unlimited size.

14.3. Learned societies and professional associations

This section lists major learned societies and professional associations in the fields
of finance, economics, econometrics as well as real estate and accounting.
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American Finance Association (AFA)

http://www.afajof.org

The American Finance Association is the premier academic organisation devoted
to the study and promotion of knowledge about financial economics. The AFA was
planned at a meeting in December 1939 in Philadelphia. The Journal of Finance
was first published in August 1946. Association membership has grown steadily
over time and the AFA currently has over 8,000 members. The AFA sponsors an
annual meeting in each January, usually at the same city and during the same days
as the American Economic Association.

American Economic Association (AEA)

http://www.vanderbilt.edu/AEA

The American Economic Association was organised in 1885 at Saratoga,
New York. Approximately 22,000 economists are members and there are 5,500
institution subscribers. Over 50 per cent of the membership is associated
with academic institutions around the world, 35 per cent with business and
industry and the remainder largely with US federal, state, and local govern-
ment agencies. The Mission Statement of the AEA is: the encouragement of
economic research, especially the historical and statistical study of the actual
conditions of industrial life; the issue of publications on economic subjects; and
the encouragement of perfect freedom of economic discussion, including an
Annual Meeting (in each January). The Association as such will take no
partisan attitude, nor will it commit its members to any position on practical
economic questions. The three traditional publications by the AEA are amongst
the most influential, with American Economic Review being one of the old-
est, starting in 1911, Journal of Economic Literature being renowned for its
classification system, and Journal of Economic Perspectives being unique in
attempting to fill the gap between the general interest press and most other
academic economics journals. The AEA has scheduled to launch four new
journals in 2009: Applied Economics, Economic Policy, Macroeconomics and
Microeconomics in an age of journal proliferation. The impact has yet to be
appreciated.

American Accounting Association (AAA)

http://aaahq.org

TheAmericanAccounting Association promotes worldwide excellence in account-
ing education, research and practice. Founded in 1916 as the American Association
of University Instructors in Accounting, its present name was adopted in 1936.
The Association is a voluntary organisation of persons interested in accounting
education and research. The mission of the AAA is to foster worldwide excellence
in the creation, dissemination and application of accounting knowledge and skills.
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The AAA publishes The Accounting Review, Accounting Horizons and Issues in
Accounting Education.

Econometric Society

http://www.econometricsociety.org

The Econometric Society is an international society for the advancement of
economic theory in its relation to statistics and mathematics. The Econometric
Society was founded in 1930, at the initiative of the Yale economist Irving Fisher
(the Society’s first president) and the Norwegian economist Ragnar Frisch, who
some forty years later was the first economist (together with Jan Tinbergen) to
be awarded the Nobel Prize. The first organisational meeting of the Society was
held in Cleveland, Ohio, on 29 December 1930. The first scientific meetings of the
Society were held in September 1931, at the University of Lausanne, Switzerland,
and in December 1931, in Washington D.C.

The journal Econometrica published its first issue in 1933, with Frisch as editor-
in-chief, and with a budget that was initially subsidised by the financier Alfred
Cowles. Frisch had coined the word ‘econometrics’ only a few years earlier
in 1926. The journal started out publishing four issues of 112 pages per year
and did not grow beyond 500 pages per year until the 1950s. Since the 1970s
Econometrica has published six issues per year containing roughly 1,600 annual
pages.

Financial Management Association International (FMA)

http://www.fma.org

Established in 1970, the Financial Management Association International is
a global leader in developing and disseminating knowledge about financial
decision making. The mission of the FMA is to broaden the common interests
between academicians and practitioners, provide opportunities for professional
interaction between and among academicians, practitioners and students, promote
the development and understanding of basic and applied research and of sound
financial practices, and to enhance the quality of education in finance. FMA’s
members include finance practitioners and academicians and students who are
interested in the techniques and advances which define the field of finance. Over
5,000 academicians and practitioners throughout the world are members of the
FMA. The FMA publishes Financial Management, Journal of Applied Finance
and FMA Survey and Synthesis Series.

European Economic Association (EEA)

http://www.eeassoc.org

The European Economic Association, launched in 1984, is an international
scientific body, with membership open to all persons involved or interested in
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economics. The aims of the EEA are: to contribute to the development and
application of economics as a science in Europe; to improve communication and
exchange between teachers, researchers and students in economics in the different
European countries; and to develop and sponsor co-operation between teaching
institutions of university level and research institutions in Europe. In pursuing
these aims, the EEA is particularly eager to foster closer links between theory-
oriented and policy-oriented economists, as well as between students and more
senior economists, from all parts of Europe. The EEA holds annual congresses,
usually in August, and summer schools. The primary publication of the EEA is The
Journal of the European Economic Association, known as European Economic
Review prior to 2003. It is, though, a little eerie with such a title change, at
a time when the attachment of the readership and authorship of a journal to
its sponsoring association becomes decreasingly relevant. Other major scholarly
associations have just gone through a changeover process in harmony with the
trend. For example, we will see in the following that European Finance Review,
of the European Finance Association, was renamed Review of Finance in 2004,
and The American Real Estate and Urban Economics Association Journal was
renamed as Real Estate Economics in 1995. The EEA also publishes Economic
Policy.

European Finance Association (EFA)

http://www.efa-online.org

The European Finance Association was established in 1974 and is the oldest finance
association in Europe. European Finance Review, renamed Review of Finance in
2004, is the association’s main publication and is regarded as one of leading finance
journals in the world. The association holds annual meetings all over Europe,
usually in August. Participation of the annual meeting is not confined to Europe
and geography does not play a role in any major aspects of the annual meeting,
including topics and organisation.

European Financial Management Association (EFMA)

http://www.efmaefm.org

The European Financial Management Association was founded in 1994 to
encourage research and disseminate knowledge about financial decision making
in all areas of finance as it relates to European corporations, financial insti-
tutions and capital markets. 20 years after the establishment of the EFA, the
launch of the EFMA has intensified finance research activity in Europe to a
great extent through introducing competition. The Association’s membership
consists of academics, practitioners and students from Europe and the rest of
the world who are interested in the practice of sound financial management
techniques and are dedicated in understanding and solving financial problems.
The EFMA holds annual meetings in each June and publishes European Financial
Management.
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Royal Economic Society (RES)

http://www.res.org.uk

Established in the nineteenth century, the Royal Economic Society is one of the
oldest economic associations in the world. Currently it has over 3,000 individual
members, of whom 60 per cent live outside the United Kingdom. It is a professional
association which promotes the encouragement of the study of economic science
in academic life, government service, banking, industry and public affairs. The
Economic Journal, first published the 1990s, is one of the oldest in the world. The
RES launched a new journal The Econometrics Journal in 1998.

American Real Estate and Urban Economics Association (AREUEA)

http://www.areuea.org

The American Real Estate and Urban Economics Association was originated at the
1964 meeting of the Allied Social Science Association in Chicago. The AREUEA
grew from discussions of individuals that recognised a need for more information
and analysis in the fields of real estate development, planning and economics.
The continuing efforts of this non-profit association has advanced the scope of
knowledge in these disciplines and has facilitated the exchange of information
and opinions among academic, professional and governmental people who are
concerned with urban economics and real estate issues. The AREUEA’s journal,
Real Estate Economics (formerly The American Real Estate and Urban Economics
Association Journal prior to 1995) is published quarterly and is distributed on
a calendar year subscription basis. The journal contains research and scholarly
studies of current and emerging real estate issues.

American Real Estate Society (ARES)

http://www.aresnet.org

American Real Estate Society was founded in 1985 to serve the educational,
informational, and research needs of thought leaders in the real estate industry and
real estate professors at colleges and universities. The REAS has several affiliated
societies, with the largest, The International Real Estate Society (IRES), being
founded in 1993. The REAS publishes Journal of Real Estate Research, Journal
of Real Estate Literature, and Journal of Real Estate Portfolio Management.

International Institute of Forecasters (IIF)

http://www.forecasters.org

The International Institute of Forecasters’ objectives are to stimulate the gener-
ation, distribution, and use of knowledge on forecasting. The IIF was founded
in 1981 as a non-profit organisation. The IIF sponsors an annual International
Symposium of Forecasting in each June and publishes International Journal of
Forecasting.
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14.4. Organisations and institutions

14.4.1. International financial institutions and other organisations

International Monetary Fund (IMF)

http://www.imf.org

The IMF is an international organisation of 185 member countries, established
to promote international monetary co-operation, exchange stability, and orderly
exchange arrangements; to foster economic growth and high levels of employment;
and to provide temporary financial assistance to countries to help ease balance
of payments adjustment. Since the IMF was established in 1946, its purposes
have remained unchanged but its operations, which involve surveillance, financial
assistance, and technical assistance, have developed to meet the changing needs
of its member countries in an evolving world economy.

World Bank

http://www.worldbank.org

The World Bank is the world’s largest financial source of development assistance.
It consists of two development institutions owned by 185 member countries,
the International Bank for Reconstruction and Development (IBRD) and the
International Development Association (IDA). Since its inception in 1944, the
Bank uses its financial resources, highly trained staff, and extensive knowledge
base to help each developing country onto a path of stable, sustainable, and
equitable growth in the fight against poverty.

Organisation for Economic Co-operation and Development (OECD)

http://www.oecd.org

The Organisation for Economic Co-operation and Development has been called a
think tank, and monitoring agency. Evolved from the Organisation for European
Economic Co-operation (OEEC), the OECD was formed in 1961. The OECD
groups 30 member countries in an organisation that, most importantly, provides
governments a setting in which to discuss, develop and perfect economic and
social policy. It is rich, in that OECD countries produce two thirds of the world’s
goods and services, but it is not an exclusive club. Essentially, membership is
limited only by a country’s commitment to a market economy and a pluralistic
democracy. The core of original members has expanded from Europe and North
America to include Japan, Australia, New Zealand, Finland, Mexico, the Czech
Republic, Hungary, Poland and Korea. There are many more contacts with the rest
of the world through programmes with countries in the former Soviet bloc, Asia,
and Latin America, which, in some cases, may lead to membership.

Exchanges between OECD governments are facilitated by information and
analysis provided by a Secretariat in Paris. Parts of the OECD Secretariat collect
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data, monitor trends, analyse and forecast economic developments, while others
research social changes or evolving patterns in trade, environment, agriculture,
technology, taxation and more. This work, in areas that mirror the policy-making
structures in ministries of governments, is done in close consultation with policy-
makers who will use the analysis, and it underpins discussion by member countries
when they meet in specialised committees of the OECD. Much of the research and
analysis is published.

European Bank for Reconstruction and Development (EBRD)

http://www.ebrd.org

The European Bank for Reconstruction and Development was established in 1991.
It exists to foster the transition towards open market-oriented economies and to
promote private and entrepreneurial initiative in the countries of central and eastern
Europe and the Commonwealth of Independent States (CIS) committed to and
applying the principles of multiparty democracy, pluralism and market economics.

Asian Development Bank (ADB)

http://www.adb.org

The ADB is a multilateral development finance institution dedicated to reducing
poverty in Asia and the Pacific. Established in 1966, the ADB is now owned and
financed by 67 member countries, of which 48 countries are from the region and
the rest from the other parts of the world. The ADB helps improve the quality
of people’s lives by providing loans and technical assistance for a broad range of
development activities.

Bank for International Settlements (BIS)

http://www.bis.org

This website has links to all central banks websites. The BIS is an international
organisation which fosters co-operation among central banks and other agencies
in pursuit of monetary and financial stability. The BIS functions as: a forum
for international monetary and financial co-operation where central bankers and
others meet and where facilities are provided to support various committees,
both standing and ad hoc; a bank for central banks, providing a broad range
of financial services; a centre for monetary and economic research, contributing
to a better understanding of international financial markets and the interaction
of national monetary and financial policies; an agent or trustee, facilitating the
implementation of various international financial agreements. The BIS operates
the Financial Stability Institute (FSI) jointly with the Basel Committee on
Banking Supervision. The BIS also hosts the secretariats of the Financial
Stability Forum (FSF) and the International Association of Insurance Supervisors
(IAIS).
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14.4.2. Major stock exchanges, option and futures exchanges, and
regulators

New York Stock Exchange (NYSE)

http://www.nyse.com

The New York Stock Exchange traces its origins to a founding agreement, the
Buttonwood Agreement by 24 New York City stockbrokers and merchants, in
1792. The NYSE registered as a national securities exchange with the US Securities
and Exchange Commission on 1 October 1934. The Governing Committee was
the primary governing body until 1938, at which time the Exchange hired its
first paid president and created a thirty-three member Board of Governors. The
Board included Exchange members, non-member partners from both New York
and out-of-town firms, as well as public representatives.

In 1971 the Exchange was incorporated as a not-for-profit corporation. In 1972
the members voted to replace the Board of Governors with a twenty-five member
Board of Directors, comprised of a Chairman and CEO, twelve representatives
of the public, and twelve representatives from the securities industry. Subject to
the approval of the Board, the Chairman may appoint a President, who would
serve as a director. Additionally, at the Board’s discretion, they may elect an
Executive Vice Chairman, who would also serve as a director. On 4 April 2007,
NYSE Euronext was created by the combination of NYSE Group and Euronext
(to be introduced later), which brings together six cash equities exchanges in
five countries of the US, France, the Netherlands, Belgium and Portugal, and
six derivatives exchanges in these five countries plus the UK, where London
International Financial Futures and Options Exchange operates, which became
part of Euronext in 2002. Prior to the merger with Euronext, the NYSE merged
with the Archipelago Exchange (ArcaEx) in 2006 and the latter acquired the Pacific
Exchange a year earlier.

London Stock Exchange (LSE)

http://www.londonstockexchange.com

The London Stock Exchange was formed in 1760 by 150 brokers as a club for share
trading. It changed to the current name in 1773. Since 1986, trading has moved from
being conducted face-to-face on a market floor to being performed via computer
and telephone from separate dealing rooms. This is due to the introduction of SEAQ
and SEAQ International, two computer systems displaying share price information
in brokers’ offices around the UK. The LSE became a private limited company
under the Companies Act 1985. In 1991 the Exchange replaced the governing
Council of the Exchange with a Board of directors drawn from the Exchange’s
executive, customer and user base. In recent years there have been major changes in
the Exchange: the role of the Exchange as UK listing authority with the Treasury
was transferred to the Financial Services Authority in 2000; and the Exchange
became a Plc and has been listed since July 2001.
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Tokyo Stock Exchange (TSE)

http://www.tse.or.jp

In the 1870s, a securities system was introduced in Japan and public bond
negotiation began. This resulted in the request for a public trading institution
and the ‘Stock Exchange Ordinance’ was enacted in May 1878. Based on this
ordinance, the ‘Tokyo Stock Exchange Co. Ltd.’ was established on 15 May 1878
and trading began on 1 June. The TSE functions as a self-regulated, non-profit
association. Established under a provision of the Securities and Exchange Law,
the TSE is managed and maintained by its members.

National Association of Securities Dealers Automated Quotations (NASDAQ)

http://www.nasdaq.com

The National Association of Securities Dealers Automated Quotations is the first
and the largest electronic screen based stock trading market. The NASDAQ was
established on 8 February 1971. With approximately 3,200 companies, it lists
more companies and, on average, trades more shares per day than any other
market. As a response to changes in technology and a challenge to the traditional
trading system, the NASDAQ was referred to as an over-the-counter trading
arrangement as late as in 1987. However, its growth and development seem
unstoppable in an era of global technology advances. In November 2007, the
NASDAQ acquired the Philadelphia Stock Exchange, the oldest stock exchange
in the US.

Chicago Mercantile Exchange (CME)

http://www.cme.com

The Chicago Mercantile Exchange was established in 1919, evolved from the
Chicago Butter and Egg Board founded in 1898. Initially, its members traded
futures contracts on agricultural commodities via open outcry. This system of
trading, which is still in use today, essentially involves hundreds of auctions going
on at the same time. Open outcry is an efficient means of ‘price discovery’, a
term widely referred to one of the roles played by futures markets. Its speed and
efficiency have been further enhanced by the introduction of a variety of trading
floor technologies. Nowadays, the CME open outcry platform and trading floor
systems are linked to the CME® Globex® electronic trading platform, which allows
market participants to buy and sell the products almost wherever and whenever, at
trading booths on its Chicago trading floors, at offices or homes, during and after
regular trading hours.

In 2007, the new CME group was formed by the CME’s merger with the Chicago
Board of Trade (to be introduced next), the latter being the oldest derivatives
exchange in the world. Nevertheless, the two derivatives exchanges had traded
each other’s products long before the merger. The CME group is the largest and
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most diverse derivatives exchange in the world. The combined volume of trades
in 2006 exceeded 2.2 billion contracts, worth more than $1,000 trillion. Three
quarters of its trades are executed electronically.

Chicago Board of Trade (CBOT)

http://www.cbot.com

The Chicago Board of Trade was established in 1848 and is the world’s oldest
derivatives exchange. More than 3,600 CBOT members trade 48 different futures
and options products at the CBOT, resulting in 2000 annual trading volume
of more than 233 million contracts. Early in its history the CBOT listed for
trading only agricultural instruments, such as wheat, corn and oats. In 1975,
the CBOT expanded its offering to include financial contracts, initially, the US
Treasury Bond futures contract which is now one of the world’s most actively
traded.

The CBOT presently is a self-governing, self-regulated not-for-profit, non-
stock corporation that serves individuals and member firms. The governing body
of the exchange consists of a Board of Directors that includes a Chairman,
First Vice Chairman, Second Vice Chairman, 18 member directors, five public
directors, and the President. The Exchange is administered by an executive staff
headed by the President and Chief Executive Officer. In 2007, the CBOT and
the CME have merged to form the new CME group, reclaiming the CBOT’s
position as one of the leading and dominant derivatives exchanges in the
world.

Chicago Board Options Exchange (CBOE)

http://www.cboe.com

The Chicago Board Options Exchange was founded in 1973. Prior to that time,
options were traded on an unregulated basis and did not have to adhere to the
principle of ‘fair and orderly markets’. At the opening on 26 April 1973, the CBOE
traded call options on 16 underlying stocks. Put options were introduced in 1977.
By 1975, options had become so popular that other securities exchanges began
entering the business. The quick acceptance of listed options propelled CBOE
to become the second largest securities exchange in the country and the world’s
largest options exchange. In 1983, options on stock indices were introduced by
the CBOE. Today, the CBOE accounts for more than 51 per cent of all US options
trading and 91 per cent of all index options trading. The CBOE now lists options
on over 1,200 widely traded stocks.

The CBOE was originally created by the CBOT but has always been managed
and regulated as an independent entity. Due to increased volume in the early
1980s, the CBOE outgrew its trading facilities at the CBOT and moved into its
own building in 1984.
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Euronext

http://www.euronext.com

Euronext is a pan-European financial market, consisting of the Amsterdam
Exchange, the Brussels Exchange, the Lisbon Exchange, the London International
Financial Futures and Options Exchange (to be introduced next), and the Paris
Bourse. It was formed in 2000 through a merger between the Paris, Amsterdam
and Brussels exchanges and was listed on 6 June the next year. In 2002, the Lisbon
Exchange and the London’s derivatives exchange become part of Euronext. On 4
April 2007, NYSE Euronext was created by the merger between the NYSE Group
and Euronext.

The history of Euronext can be traced back to 1602 when the Amsterdam Stock
Exchange started to take shape. At the time, the Dutch East India Company, the
world’s first company to issue shares of stock on a large scale, was established,
fostering the Amsterdam Stock Exchange. The Paris Bourse was created in 1724,
several decades ahead of the establishment of the NYSE and the LSE. The Lisbon
Exchange, then known as the Business Man’s Assembly, was established in 1769;
and the Brussels Stock Exchange was created in 1801.

London International Financial Futures and Options Exchange (LIFFE)

http://www.liffe.com

Unlike the case of the CBOT and CBOE where the latter was created by the former
and they are now separated exchanges, the LIFFE was created when the original
LIFFE, the London International Financial Futures Exchange, merged with the
London options exchange. Notice that the acronym does not include the first letter
of Options though Options is with the full name. In February 1999, the LIFFE’s
shareholders voted unanimously for a corporate restructuring which progressed the
LIFFE further towards becoming a profit-oriented commercial organisation. With
effect from April 1999, the restructuring split the right to trade and membership
from shareholding, simplified a complex share structure and enabled non-members
to purchase shares in LIFFE (Holdings) plc. In 2002, the LIFFE was acquired by
Euronext and the latter merged with the NYSE in 2007. So, the LIFFE is now part
of the NYSE Euronext group.

Philadelphia Stock Exchange (PHLX)

http://www.phlx.com

The Philadelphia Stock Exchange was founded in 1790 as the first organised stock
exchange in the United States. The PHLX trades more than 2,200 stocks, 922
equity options, 10 index options, and 100 currency pairs.

The PHLX is reputed for its invention of exchange traded currency options in
1982. By 1988, currency options were trading in volumes as high as $4 billion per
day in underlying value. Currency options put the Exchange on international maps,
bringing trading interest from Europe, Pacific Rim and the Far East, and leading the
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Exchange to be the first securities exchange to open international offices in money
centres overseas. Currency options made the PHLX an around-the-clock operation.
In September 1987, Philadelphia was the first securities exchange in the United
States to introduce an evening trading session, chiefly to accommodate increasing
demand for currency options in the Far East, and the exchange responded to
growing European demand by adding an early morning session in January 1989.
In September 1990, The PHLX became the first exchange in the world to offer
around-the-clock trading by bridging the gap between the night session and the
early morning hours. Although the exchange subsequently scaled back its trading
hours, its current currency option trading hours from 2:30 a.m. to 2:30 p.m. (the
Philadelphia time) are longer than any other open outcry auction marketplace. The
PHLX was acquired by the NASDAQ in November 2007.

Shanghai Stock Exchange (SSE)

http://www.sse.com.cn

The Shanghai Stock Exchange was founded on 26 November 1990 and started
trading on 19 December the same year. It is a non-profit-making membership
institution regulated by the China Securities Regulatory Commission. Located
in Shanghai, the SEE has enjoyed its geographical advantages, not only because
of Shanghai’s status as the financial centre of the PRC, but also because of its
neighbouring provinces’ technology and manufacturing muscles. There were over
37.87 million investors and 837 listed companies by the end of December 2004.
The total market capitalisation of SSE listed companies reached RMB 2.6 trillion
and capital raised from the SSE exceeded RMB 45.7 billion in 2004.

Shenzhen Stock Exchange (SZSE)

http://www.szse.cn

The Shenzhen Stock Exchange was established on 1 December 1990. Like the SSE,
the SZSE is regulated by the China Securities Regulatory Commission. Shenzhen
is located in southern Guangdong province, opposite Hong Kong. Chosen to be
one of the special economic zones, the city of Shenzhen has developed rapidly in
the last three decades and it appeared logical for the city of Shenzhen, along with
Shanghai, to house one of the two stock exchanges. There were 579 companies
listed on the SZSE, the total market capitalisation of these companies amounted to
RMB 1.8 trillion and RMB 62.1 billion of funds was raised on the SZSE in 2006.

Securities and Exchange Commission (SEC)

http://www.sec.gov

The SEC’s foundation was laid in an era that was ripe for reform. Before the
Great Crash of 1929, there was little support for federal regulation of the securities
markets. This was particularly true during the post-World War I surge of securities
activity. Proposals that the federal government require financial disclosure and
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prevent the fraudulent sale of stock were never seriously pursued. Tempted by
promises of ‘rags to riches’ transformations and easy credit, most investors gave
little thought to the dangers inherent in uncontrolled market operation. During the
1920s, approximately 20 million large and small shareholders took advantage of
post-war prosperity and set out to make their fortunes in the stock market. It is
estimated that of the $50 billion in new securities offered during this period, half
became worthless.

The primary mission of the US Securities and Exchange Commission (SEC) is
to protect investors and maintain the integrity of the securities markets. As more
and more first-time investors turn to the markets to help secure their futures, pay
for homes, and send children to college, these goals are more compelling than ever.

The laws and rules that govern the securities industry in the United States
derive from a simple and straightforward concept: all investors, whether large
institutions or private individuals, should have access to certain basic facts
about an investment prior to buying it. To achieve this, the SEC requires public
companies to disclose meaningful financial and other information to the public,
which provides a common pool of knowledge for all investors to use to judge
for themselves if a company’s securities are a good investment. Only through
the steady flow of timely, comprehensive and accurate information can people
make sound investment decisions. The SEC also oversees other key participants
in the securities world, including stock exchanges, broker-dealers, investment
advisors, mutual funds, and public utility holding companies. Here again, the
SEC is concerned primarily with promoting disclosure of important information,
enforcing the securities laws, and protecting investors who interact with these
various organisations and individuals.

Crucial to the SEC’s effectiveness is its enforcement authority. Each year
the SEC brings between 400–500 civil enforcement actions against individuals
and companies that break the securities laws. Typical infractions include insider
trading, accounting fraud, and providing false or misleading information about
securities and the companies that issue them. Fighting securities fraud, however,
requires teamwork. At the heart of effective investor protection is an educated and
careful investor. The SEC offers the public a wealth of educational information
on its Internet website at www.sec.gov. The website also includes the EDGAR
database of disclosure documents that public companies are required to file with
the Commission.

Though it is the primary overseer and regulator of the US securities markets, the
SEC works closely with many other institutions, including Congress, other federal
departments and agencies, the self-regulatory organisations, e.g. stock exchanges,
state securities regulators, and various private sector organisations.

China Securities Regulatory Commission (CSRC)

http://www.csrc.gov.cn

The China Securities Regulatory Commission is a ministry level agency of the State
Council (central administration) of the PRC, established in 1992. It is modelled
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after the US SEC and functions similarly to that of the SEC. Its basic functions
are: to establish a centralised supervisory system for securities and futures markets
and to assume direct leadership over securities and futures market supervisory
bodies; to strengthen the supervision over securities and futures and related
business, including stock and futures exchange markets, the listed companies,
and companies engaged in securities trading, investment and consultancy, and
raise the standard of information disclosure; to increase the abilities to prevent and
handle financial crisis; to organise the drafting of laws and regulations for securities
markets, study and formulate the principles, policies and rules related to securities
markets, formulate development plans and annual plans for securities markets, and
direct, co-ordinate, supervise and examine matters related to securities in various
regions and relevant departments.

Financial Services Authority (FSA)

www.fsa.gov.uk

The FSA is a relatively new organisation, which was founded in 1997 when the
UK government announced its decision to merge the supervision of banking and
investment under one regulatory organisation. This created a tripartite regulatory
system and arrangements involving the Treasury, the Bank of England and the FSA.
The FSA’s predecessor was known as the Securities and Investments Board (SIB),
created in May 1997 and changed to its current name in October 1997. The
FSA is an independent, non-governmental body. The FSA board is appointed by
an executive chairman, with three managing directors and eleven non-executive
directors.

The first stage of the recent reform of UK financial services regulation
was completed in June 1998, when responsibility for banking supervision was
transferred to the FSA from the Bank of England. The Financial Services and
Markets Act of the UK, which received Royal Assent in June 2000 and was
implemented on 1 December 2001, transferred to the FSA the responsibilities
of several other organisations: Building Societies Commission, Friendly Soci-
eties Commission, Investment Management Regulatory Organisation, Personal
Investment Authority, Register of Friendly Societies, and Securities and Futures
Authority.

The FSA regulates the financial services industry and has four objectives under
the Financial Services and Markets Act 2000: maintaining market confidence;
promoting public understanding of the financial system; the protection of con-
sumers; and fighting financial crime. The FSA is the UK’s financial watchdog,
keeping an eye on the goings-on in the City. It regulates and oversees the financial
system, and plays an important part in ensuring that training within the banking
industry is up to scratch. Find out more about the FSA’s important role in this
briefing. All companies in the financial services market, from banks to pension
companies, must be FSA accredited. After accreditation, these companies are
supervised and inspected on a regular basis. The FSA imposes levies on accredited
companies.
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Following the Northern Rock fiasco, the FSA has experienced some shake-ups
in its supervision arrangements and functions, one of which is to increase resources
for its overall banking sector capability. This has enhanced the FSA’s power in
the UK’s tripartite regulatory system and rationalised the coordination between
the three parties to a certain extent.

China Banking Regulatory Commission (CBRC)

http://www.cbrc.gov.cn

The China Banking Regulatory Commission and the China Insurance Regulatory
Commission (to be introduced next) are ministry level agencies of the State Council
of the PRC, with the former focusing on the supervision of banking institutions and
the latter on the supervision of insurance companies. The CBRC was established
in 2003, with its functions being partly transferred from the People’s Bank of
China, the central bank, and partly newly created due to the change and expansion
in the banking sector. The CBRC, together with the China Insurance Regulatory
Commission, is modelled after the FSA of the UK to a certain extent, the wisdom of
which has yet to be tested. The main functions of the CBRC include: to formulate
supervisory rules and regulations governing banking institutions; to authorise the
establishment, changes, termination and business scope of banking institutions;
to conduct on-site examination and off-site surveillance of banking institutions,
and take enforcement actions against rule-breaking behaviour; and to conduct
fit-and-proper tests on the senior managerial personnel of banking institutions;
to compile and publish statistics and reports of the overall banking industry in
accordance with relevant regulations.

China Insurance Regulatory Commission (CIRC)

http://www.circ.gov.cn

The China Insurance Regulatory Commission is a ministry level agency of the
State Council of the PRC, a sister agency of the CBRC. Established in 1998 as a
sub-ministry level agency, the CIRC was upgraded to the ministry level in 2003.
Its main functions cover: To formulate guidelines and policies for developing
insurance business, draw up development strategies and plans for the insurance
industry; to formulate laws, rules and regulations for insurance supervision, and
rules and regulations for the industry; to approve the establishment of insurance
companies in various forms; to approve the categories of insurance schemes related
to public interests, impose insurance articles and rates of premium for compulsory
insurance schemes and newly developed life insurance schemes, and accept filing
for the record of articles and premium rates of other insurance schemes; to
supervise the payment ability and market conduct of insurance companies; to
supervise policy-oriented insurance and compulsory insurance operations; and
to investigate and mete out punishment against unfair competition and illegal
conduct of insurance institutions and individuals as well as the operations of
non-insurance institutions and disguised insurance operations.
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14.4.3. Central banks

Board of Governors of the Federal Reserve System

http://www.federalreserve.gov

The Federal Reserve, the central bank of the United States, was founded by
Congress in 1913 to provide the nation with a safer, more flexible, and more
stable monetary and financial system. Today the Federal Reserve’s duties fall
into four general areas: conducting the nation’s monetary policy; supervising
and regulating banking institutions and protecting the credit rights of consumers;
maintaining the stability of the financial system; and providing certain financial
services to the US government, the public, financial institutions, and foreign official
institutions.

The Federal Reserve System was designed to ensure its political independence
and its sensitivity to divergent economic concerns. The chairman and the six
other members of the Board of Governors who oversee the Federal Reserve
are nominated by the President of the United States and confirmed by the
Senate. The President is directed by law to select governors who provide ‘a fair
representation of the financial, agricultural, industrial and geographical divisions
of the country’.

Each Reserve Bank is headed by a president appointed by the Bank’s nine-
member board of directors. Three of the directors represent the commercial banks
in the Bank’s region that are members of the Federal Reserve System. The other
directors are selected to represent the public with due consideration to the interest
of agriculture, commerce, industry, services, labor and consumers. Three of these
six directors are elected by member banks and the other three are chosen by the
Board of Governors.

The 12 Reserve Banks supervise and regulate bank holding companies as well
as state chartered banks in their District that are members of the Federal Reserve
System. Each Reserve Bank provides services to depository institutions in its
respective District and functions as a fiscal agent of the US government.

Federal Reserve Bank of New York

http://www.ny.frb.org

The Federal Reserve Bank of New York is one of 12 regional Reserve Banks
which, together with the Board of Governors in Washington, D.C., comprise the
Federal Reserve System. Stored inside the vaults of the New York Fed building is
hundreds of billions of dollars of gold and securities. But what is unique and most
significant about the Bank is its broad policy responsibilities and the effects of its
operations on the US economy.

The New York Fed has supervisory jurisdiction over the Second Federal
Reserve District, which encompasses New York State, the 12 northern counties of
New Jersey, Fairfield County in Connecticut, Puerto Rico and the Virgin Islands.
Though it serves a geographically small area compared with those of other Federal
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Reserve Banks, the New York Fed is the largest Reserve Bank in terms of assets
and volume of activity.

European Central Bank (ECB)

http://www.ecb.int

The European System of Central Banks (ESCB) is composed of the European
Central Bank (ECB) and the national central banks (NCBs) of all 15 EU Member
States. The ‘Eurosystem’ is the term used to refer to the ECB and the NCBs
of the Member States which have adopted the euro. The NCBs of the Member
States which do not participate in the euro area, however, are members of the
ESCB with a special status – while they are allowed to conduct their respective
national monetary policies, they do not take part in the decision-making with
regard to the single monetary policy for the euro area and the implementation of
such decisions.

In accordance with the Treaty establishing the European Community (the
‘Treaty’) and the Statute of the European System of Central Banks and of the
European Central Bank (the ‘Statute’), the primary objective of the Eurosystem
is to maintain price stability. Without prejudice to this objective, it shall support
the general economic policies in the Community and act in accordance with the
principles of an open market economy.

The basic tasks to be carried out by the Eurosystem are: to define and implement
the monetary policy of the euro area; to conduct foreign exchange operations; to
hold and manage the official foreign reserves of the Member States; and to promote
the smooth operation of payment systems.

People’s Bank of China

http://www.pbc.gov.cn

The central bank of the People’s Republic of China is the People’s Bank
of China. In the early times of the People’s Republic, the Bank, though a
ministerial department of the State Council, was co-ordinated by the Ministry
of Finance. It was largely a commercial bank with high street branches all
over the country. During the 1980s, its commercial and corporate banking
functions were reorganised and grouped into a new and separate bank, the
Industrial and Commercial Bank of China, probably the largest bank in the world.
Since then the People’s Bank plays solely the role of a central bank and is
completely independent of the Ministry of Finance but is not separated from the
Administration. The People’s Bank used to have branches at the province’s level
for regional monetary policy matters or the monitoring of monetary policy of
the Headquarters, which have now been reorganised to form regional branches
(each covering several provinces/municipal cities), a structure similar to that
of the US Federal Reserve System. Following the establishment of the China
Banking Regulatory Commission in 2003, the role and responsibilities for banking



Research tools and sources of information 311

supervision of the People’s Bank have been transferred to the newly founded
commission. The People’s Bank now plays an important role solely in the areas
of monetary policy.

Bank of Japan

http://www.boj.or.jp

The role of the Bank of Japan is similar to that of the pre-1997 Bank of England
in that the Treasury or the Ministry of Finance makes important decisions and
monetary policy and the Bank implements monetary policy.

The Bank of Japan’s missions are to maintain price stability and to ensure
the stability of the financial system, thereby laying the foundations for sound
economic development. To fulfil these two missions, the Bank conducts the
following activities: issuance and management of banknotes; implementation
of monetary policy; providing settlement services and ensuring the stability
of the financial system; treasury and government securities-related operations;
international activities; and compilation of data, economic analyses and research
activities.

Bank of Russia

http://www.cbr.ru

The Central Bank of the Russian Federation (Bank of Russia) was founded on
13 July 1990, on the basis of the Russian Republic Bank of the State Bank of
the USSR. Accountable to the Supreme Soviet of the RSFSR, it was originally
called the State Bank of the RSFSR. In November 1991 when the Commonwealth
of Independent States was founded and Union structures dissolved, the Supreme
Soviet of the RSFSR declared the Central Bank of the RSFSR to be the only body
of state monetary and foreign exchange regulation in the RSFSR. The functions of
the State Bank of the USSR in issuing money and setting the rouble exchange rate
were transferred to it. The Central Bank of the RSFSR was instructed to assume,
before 1 January 1992, full control of the assets, technical facilities and other
resources of the State Bank of the USSR and all its institutions, enterprises and
organisations.

The Bank of Russia carries out its functions, which were established by the
Constitution of the Russian Federation (Article 75) and the Law on the Central
Bank of the Russian Federation (Bank of Russia) (Article 22), independently
from the federal, regional and local government structures. In 1992–1995, to
maintain the stability of the banking system, the Bank of Russia set up a system of
supervision and inspection of commercial banks and a system of foreign exchange
regulation and foreign exchange control. As an agent of the Ministry of Finance, it
organised a government securities market, known as the GKO market, and began
to participate in its operations.
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Schweizerische Nationalbank

http://www.snb.ch

Schweizerische Nationalbank, or the Swiss National Bank in English, is the central
bank of Switzerland and, as such, conducts the country’s monetary policy. It is
obliged by the Constitution and by statute to act in accordance with the interests
of the country as a whole. Its primary goal is to ensure price stability, while taking
due account of economic developments, creating and promoting an appropriate
environment for economic growth.

The Swiss National Bank has two head offices, one in Berne and one in Zurich,
with a branch with cash distribution services in Geneva and five representative
offices in major Swiss cities. Furthermore, it has 16 agencies operated by cantonal
banks that help secure the supply of money to the country. The Bank Council
oversees and controls the conduct of business by the Swiss National Bank while
the Governing Board runs the bank.

Bank of Canada

http://www.bankofcanada.ca

The Bank of Canada is the central bank of the country. It has responsibilities for
Canada’s monetary policy, bank notes, financial system and funds management.
Its principal role, as defined in the Bank of Canada Act, is to promote the economic
and financial welfare of Canada. The Bank of Canada was founded in 1934 as a
privately owned corporation. In 1938, it became a Crown corporation belonging to
the federal government. Since that time, the Minister of Finance has held the entire
share capital issued by the Bank. Ultimately, the Bank is owned by the people of
Canada.

As the central bank, the Bank of Canada’s four main areas of responsibility
are as follows: to conduct monetary policy, with the goal being to contribute
to solid economic performance and rising living standards for Canadians by
keeping inflation low, stable, and predictable; to issue Canada’s bank notes and
be responsible for their design and security, distribution, and replacement; to
actively promote safe, sound and efficient financial systems, both within Canada
and internationally; and to provide high quality, effective, and efficient funds-
management services for the Canadian federal government, the Bank of Canada,
and other clients.
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