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Supervisor’s Foreword

The new class of materials coined topological insulators (TIs) has been the subject
of extensive studies over the past 5 years and continues to be one of the most
active research areas of condensed matter physics. The main attraction in studying
these materials, from both fundamental and technological perspectives, has been the
presence of chiral Dirac fermion quasiparticles (DFQs) that define a robust metallic
surface state protected against backscattering by time-reversal symmetry. Strong
spin-orbit interactions lock the Dirac fermion quasiparticles’ (DFQs) spin to the
state wave vector in a mutually perpendicular configuration, giving the Dirac cone a
definite chirality. Consequently, DFQs on the surface cannot backscatter from lattice
vacancies, grain boundaries, phonons, etc. into their time-reversed counterparts.
Technical improvements may minimize defects, but phonons are always present.
Despite these constraints, it was recently found that the DFQs strongly interact with
surface boson excitations, especially phonon and coupled plasmon-spin excitations.
Consequently, DFQ-phonon interaction should be a dominant scattering mechanism
for Dirac fermions on these surfaces at finite temperatures. Hence, the electron–
phonon interaction is of exceptional importance when assessing the feasibility of
promising applications in technologies such as spintronics and quantum computing.

Most of the reported studies adopted a noninteracting, single-particle approach
to the DFQ system. However, recently, there have been several experimental and
theoretical reports on the interaction of the DFQs with surface phonons. Prior to
Dr. Howard’s thesis work, there has been little consensus about the magnitude of this
coupling as evidenced by widely varying values of the electron–phonon coupling
parameter � appearing in the literature.

Dr. Howard’s thesis presents experimental and theoretical results about the
surface dynamics and the surface Dirac fermion (DF) spectral function of strong
topological insulators Bi2Te3, and Bi2Se3, and describes the corresponding tech-
niques used. The experimental results, employing inelastic helium atom-surface
scattering techniques, reveal the presence of a prominent Kohn anomaly in the
measured surface phonon dispersion of a low-lying optical mode and the absence
of surface Rayleigh acoustic phonons. With the aid of fitting the experimental
data to theoretical models employing phonon Matsubara functions, he was able
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viii Supervisor’s Foreword

to extract the matrix elements of the coupling Hamiltonian and to determine the
modifications to the surface phonon propagator encoded in the phonon self-energy.
This, in turn, allowed him to calculate, for the first time, the phonon mode-specific
electron–phonon coupling �.q/ from experimental data and to obtain an average
coupling significantly higher than typical values obtained for metals, underscoring
the strong interaction between optical surface phonons and surface Dirac fermions
in topological insulators. Finally, to connect to experimental � values obtained from
photoemission spectroscopy, he constructed an electronic DFQ Matsubara function
using the determined electron–phonon matrix elements and the optical phonon
dispersion. Dr. Howard was then able to extract the DFQ spectral function and
the density of states for comparison with angle-resolved photoemission (ARPES)
and scanning tunneling spectroscopy results. The ensuing spectral function revealed
several important features. First, the footprints of phonon interactions occur on an
energy scale of the order of 1 meV, which sets a necessary energy resolution of
that magnitude or better to observe these features and extract a reliable value for �.
Second, he found that the electron–phonon coupling parameter extracted from the
spectral function was strongly temperature dependent, which invalidates extraction
methodologies that assume a temperature-independent � and a linear temperature
dependence of the corresponding spectral linewidth.

I hope that the methodology and techniques presented in Dr. Howard’s thesis
could hold promise for determining how EPC, as well as other quasiparticle inter-
actions, modifies the electronic structure in a variety of condensed matter systems.
I also hope that the entire work would be useful for students and researchers.

Boston, MA, USA Michael El-Batanouny
May 2016



Abstract

The following dissertation presents a comprehensive study of the interaction
between Dirac fermion quasiparticles (DFQs) and surface phonons on the surfaces
of the topological insulators Bi2Se3 and Bi2Te3. Inelastic helium atom surface
scattering (HASS) spectroscopy and time of flight (TOF) techniques were used
to measure the surface phonon dispersion of these materials along the two high-
symmetry directions of the surface Brillouin zone (SBZ). Two anomalies common
to both materials are exhibited in the experimental data. First, there is an absence
of Rayleigh acoustic waves on the surface of these materials, pointing to weak
coupling between the surface charge density and the surface acoustic phonon
modes and potential applications for soundproofing technologies. Secondly, both
materials exhibit an out-of-plane polarized optical phonon mode beginning at the
SBZ center and dispersing to lower energy with increasing wave vector along both
high-symmetry directions of the SBZ. This trend terminates in a V-shaped minimum
at a wave vector corresponding to 2kF for each material, after which the dispersion
resumes its upward trend. This phenomenon constitutes a strong Kohn anomaly and
can be attributed to the interaction between the surface phonons and DFQs.

To quantify the coupling between the optical phonons experiencing strong
renormalization and the DFQs at the surface, a phenomenological model was
constructed based within the random phase approximation. Fitting the theoretical
model to the experimental data allowed for the extraction of the matrix elements of
the coupling Hamiltonian and the modifications to the surface phonon propagator
encoded in the phonon self energy. This allowed, for the first time, calculation of
phonon mode-specific quasiparticle-phonon coupling ��.q/ from experimental data.
Additionally, an averaged coupling parameter was determined for both materials
yielding N�Te � 2 and N�Se � 0:7. These values are significantly higher than those of
typical metals, underscoring the strong coupling between optical surface phonons
and DFQs in topological insulators.

In an effort to connect experimental results obtained from phonon and photoe-
mission spectroscopies, a computational process for taking coupling information
from the phonon perspective and translating it to the DFQ perspective was derived.
The procedure involves using information obtained from HASS measurements
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x Abstract

(namely the coupling matrix elements and optical phonon dispersion) as input
to a Matsubara Green function formalism, from which one can obtain the real
and imaginary parts of the DFQ self energy. With these at hand it is possible to
calculate the DFQ spectral function and density of states, allowing for comparison
with photoemission and scanning tunneling spectroscopies. The results set the
necessary energy resolution and extraction methodology for calculating N� from the
DFQ perspective. Additionally, determining N� from the calculated spectral functions
yields results identical to those obtained from HASS, proving the self-consistency
of the approach.
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Chapter 1
Introduction

The study of topological order, particularly in the context of the band theory
of solids, is a blossoming field that has returned to the forefront of condensed
matter physics within the past 10 years. Several fascinating classes of recently
discovered topological materials, including topological insulators (TIs) and topo-
logical crystalline insulators (TCIs), display very rich physics. These materials
are host to topologically protected metallic surface states that are manifest as
chiral Dirac fermion quasiparticles. As such, the surfaces of these crystals have
and continue to be fruitful environments for studying a variety of interesting
phenomena including axion dynamics, proximity induced superconductivity, and
Majorana fermions. In addition to their intellectual appeal, they also hold promise
as candidates for use in fledgling technologies such as spin-electronics (spintronics)
and quantum computing. The protected metallic surface states have many favorable
characteristics including a definite helicity and robustness in the face of non-
magnetic disorder, which could allow industry to overcome existing limitations in
electronic miniaturization resulting from dissipation in electronic transport.

For much of the twentieth century ordered phases of matter were understood
using Landau’s approach [1] in which any particular phase may be characterized
by the symmetry it breaks. For example, crystals break continuous translational
symmetry as well as certain types of rotational symmetry in position space.
Similarly, the field produced by a ferromagnet breaks both rotational symmetry in
spin space and time reversal invariance. However, beginning in the early 1980s with
the discovery of both the integer and fractional quantum Hall effect (QHE) [2, 3],
a new type of order rooted in topology rather than symmetry began to emerge. The
near perfect quantization of the transverse Hall conductivity �xy D ne2=„ (with
n integer) across samples of varying composition heralded the onset of the first
observed topological insulating phase of matter. Two years later Thouless, Kohmoto,
Nightingale, and den Nijs showed [4] that this phase could be characterized by a

© Springer International Publishing Switzerland 2016
C. Howard, Measuring, Interpreting and Translating Electron Quasiparticle - Phonon
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2 1 Introduction

Fig. 1.1 (a) Semi-classical picture of the edge modes in the integer QHE originating from
skipping Landau orbitals at the edge of the material. (b) Depiction of the electronic band structure
in the integer QHE showing the branch formed by the surface modes that occupies the bulk band
gap. The Fermi energy must always cross this branch regardless of its position in the bulk band
gap. Figure from [6]

new invariant integer topological quantum number n dubbed the TKNN invariant or
first Chern number, which, in this case, is the very coefficient appearing in the Hall
conductivity.

The topology of the situation is more apparent when we consider the fact that
n is a bona-fide indicator of the topological class of the insulating band structure;
members of different classes cannot be adiabatically converted into one another
without closing the electronic gap at the interface between the two. In the context of
the QHE we have a material in an insulating phase described by finite n embedded
in vacuum, which can be viewed as a type of non-topological (i.e., n D 0) insulator
with a gap separating particle excitations from the negative energy Dirac sea. Thus,
at the boundary of these two regions the gap must close to usher the change in
n. Indeed, one finds spin-polarized edge modes [5] that occupy the bulk band
gap. Semi-classically, these edge modes can be understood in terms of the circular
electron Landau orbits skipping off the repulsive potential at the edge of the material
(see Fig. 1.1a). However, because of the periodic crystal potential, these edge modes
will disperse with crystal momentum k instead of forming a flat Landau level. The
edge modes form a branch of the electronic dispersion that connects the valence
band maximum to the conduction band minimum and thus crosses the Fermi level
at a single point as shown in Fig. 1.1b. In such a scenario the chemical potential must
always intersect at least one electronic state regardless of doping or gating, giving
the edge of the material a metallic character. The result that unique boundary states
exist at the interface between topologically distinct regions had been noted even
before [7, 8] the discovery of the integer QHE. The phenomenon is so ubiquitous
that it is now known as the bulk-boundary correspondence.

After the discovery of the integer and fractional QHE and the ensuing edge
modes, theorists sought models that would exhibit protected boundary modes
without breaking time reversal symmetry (recall that the quantum Hall physics
requires the presence of a large perpendicular magnetic field). Indeed, as we will
see, topological band theory is one of the few examples in physics where theory has
driven experimentation and not vice versa. These studies resulted in the prediction
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Fig. 1.2 Idealized band
structure of the QSHE.
Unlike the QHE the Fermi
level crosses two electronic
states with opposing group
velocity and spin orientation.
Figure from [6]

E

EF
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of the quantum spin Hall effect (QSHE) [9–13], a phenomenon that can be thought
of as two identical copies of the integer QHE superimposed. In this scenario
the edge modes are not unidirectional; degenerate left-moving and right-moving
modes with opposite spin polarization coexist (see Fig. 1.2), constituting sets of
Kramers pairs. Although there is no net flow of charge, there is a net spin current.
Moreover, since oppositely propagating modes have opposite spins, backscattering
is suppressed in the presence of non-magnetic perturbations, making the edge
states quite robust (the reader may begin to understand why such materials exhibit
favorable characteristics for use in spintronic devices). Although the QSHE state has
a trivial TKNN invariant, it can be characterized by a different topological quantum
number known as the Z2 invariant �. This invariant takes integer values 0 or 1
(mod 2), corresponding to a trivial (no edge states) or topological (possessing edge
states) phase, respectively. Theoretical predictions of the QSHE were eventually
substantiated by measurements performed on 2D HgTe quantum well structures
[14] showing a quantized residual conductance from these edge states when samples
were driven into an insulating regime via a variable gate voltage.

Experimental confirmation of the QSHE ushered theorists in the condensed
matter physics community to generalize these ideas to three-dimensional materials.
In this case the boundary between the sample and continuum is not an edge but
rather a surface. As such, the search began for time reversal invariant Hamiltonians
possessing protected surface states, yielding fruitful results. A full topological
description of this newly predicted phase, proposed by three independent groups
[15–17], necessitated a set of four Z2 invariants denoted (�0; �1,�2,�3), rather than
the single integer quantum number of the QHE and QSHE. It should be noted that
these three-dimensional topological insulators can be divided immediately into two
groups according to the first Z2 invariant. Those with �0 D 0 are known as weak
topological insulators and can be thought of merely as stacked copies of the QSHE.
In this scenario the surface states only appear on certain surfaces of the bulk crystal,
propagate anisotropically, and are subject to localization and hybridization. Those
with �0 D 1 belong to a new class of matter not derivable directly from the QSHE
and are known as strong topological insulators, whose robust surface states appear
on any crystal termination. Much like the QHE and IQHE the surface states are
manifest as linearly dispersing electronic states that span the bulk band gap. In
fact, one can get a rough picture of the surface dispersion by taking the electronic
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Fig. 1.3 Idealized band
structure of a strong 3D
topological insulator (in this
case Bi2Se3) whose Fermi
surface encloses a single
Dirac point. The overlay
demonstrates the orientation
of the surface electronic
structure within the SBZ.
Figure from [6]

structure presented in Fig. 1.2 and revolving it about the vertical axis lying in the
page and passing through k D 0. The resulting conical shapes form what is known
as a Dirac cone with the point where they touch being known as the Dirac point. An
example of the Dirac cone band structure is shown in Fig. 1.3. Generally speaking it
is possible to have multiple Dirac cones in the surface Brillouin zone (SBZ) centered
about any time reversal invariant momenta. However, the Fermi surface of a strong
topological insulator must enclose an odd number of Dirac points and thus cross an
odd number of electronic states along a particular high-symmetry direction. Again,
this makes it impossible to “gap out” such states by tuning the chemical potential,
much like was shown previously for the IQHE and QSHE.

Generally speaking, determining the entire set of Z2 invariants for a particular
material requires careful evaluation of the products of matrix elements of the time
reversal operator evaluated at the time reversal invariant momenta of the bulk
Brillouin zone (BZ). However, Fu and Kane showed [18] that the ordeal could
be simplified considerably for materials possessing inversion symmetry, where the
parity of individual electronic bands is conserved. In particular they proved that
the resulting sign of the product of parities (even corresponding to C1 and odd
corresponding to �1) of all occupied bands was sufficient to determine whether the
material was in a topologically unique phase. Insulators with a positive product of
parities are said to be trivial and equivalent to vacuum while those where the product
is odd are topological. In addition, the insight of Fu and Kane drove the search for
systems exhibiting band inversion between valence and conduction bands of oppo-
site parity. Since an insulator without any band inversion is guaranteed to be trivial,
one can be sure that an inversion between bands of opposite parity will change
the sign of the product of parities and thus drive the material into the topological
phase. Thus began the search for narrow-gap semiconductors exhibiting strong spin-
orbit coupling capable of driving band inversion while simultaneously preserving
time reversal invariance. It was not long before the first three-dimensional TIs were
realized in the prototypical materials Bi1�xSbx, Bi2Se3, Bi2Te3, and Sb2Te3; the
predicted metallic surface states protected by time reversal symmetry (TRS) were
clearly observed in ARPES measurements [19–26].
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With the successful prediction and observation of protected metallic states on
the surfaces of topological insulators, physicists began to wonder if such protected
states could be derived from a crystal symmetry, rather than TRS. Eventually it
was proved [27] that mirror symmetry in the surface plane could provide the
necessary protection and also lead to electronic states occupying the bulk band
gap. These new materials, dubbed topological crystalline insulators, are heavy
IV-VI semiconductors that crystalize into the rocksalt structure, including the
alloys Pb1�xSnxTe and Pb1�xSnxSe. Unlike conventional TIs, TCIs may have a
topologically trivial (even) Z2 while still having protected surface states owing to
the presence of the mirror planes. As such, their interesting properties are encoded
by a different topological quantity, the mirror Chern number. It has recently been
shown [28] that the four Dirac cones within the first SBZ possess pronounced
spin texture owing to spin-orbit coupling, much like nominal TIs. The discovery
of the role discrete symmetries can play in modifying the band structure of these
topological materials is fascinating from a fundamental physics perspective and also
holds promise for emerging technology.

As mentioned before, there is speculation that the protected chiral states on
the surfaces of both TIs and TCIs could be used for applications in the fields of
quantum computing and spintronics. However, in order for these electronic states
to be truly useful, one needs to quantify just how “protected” they are. By this
I mean that, although the spin-texture of the Fermi surfaces of these materials
prevents backscattering (and thus localization) from non-magnetic perturbations,
many other scattering pathways still exist whereby the electrons crystal momentum
is not totally reversed but still redirected. Such scattering implies a coupling
between the DFQs and their environment which can lead to the loss of phase
information, which could limit the usefulness of these states, especially for quantum
computing. Phonons, defects, grain boundaries, etc. can all contribute to said
scattering. Whereas the refinement of growth techniques may minimize crystal
imperfections, phonons will always be present at finite temperatures. Therefore, it is
imperative that one understands the electron–phonon interaction in these materials
in order to assess their viability for technological applications. In this dissertation
I will present a comprehensive study of electron–phonon interaction in the strong
3D topological insulators Bi2Se3 and Bi2Te3 using helium atom surface scattering
(HASS) spectroscopy.
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Chapter 2
Properties of Bi2Se3 and Bi2Te3

In this chapter I will present the fundamentals of the studied systems. I will begin
by identifying the crystal structure of each system as well as their point and space
group symmetries. From there I will move on to a review of measurements of
the bulk vibrational structure using Raman, IR, and inelastic neutron scattering
spectroscopies. Additionally, I will present recent ARPES measurements of the
surface electronic structure that clearly indicate the presence of chiral DFQs, whose
interaction with phonons is the main topic of this dissertation.

2.1 Crystal Structure

The strong 3D TIs Bi2Se3 and Bi2Te3 share the same rhombohedral structure,
which is presented in Fig. 2.1. The bulk structure consists of alternating hexagonal
monatomic crystal planes stacking in ABC order. Units of X-Bi-X-Bi-X (X D Se,
Te) form quintuple layers (QLs): bonding between atomic planes within a QL is
covalent whereas bonding between adjacent QLs is predominantly of the van der
Waals type. This weak bonding between QLs allows the crystal to be easily cleaved
along an inter-QL plane, a process which will be further elaborated upon in Chap. 4.
The crystal structure belongs to the space group RN3m, while the point group contains
a binary axis (with twofold rotation symmetry), a bisectrix axis (appearing in the
reflection plane), and a trigonal axis (with threefold rotation symmetry).

It is convenient to work in the hexagonal basis when talking about this structure.
A unit cell in the hexagonal basis contains 3 QLs and thus 15 atoms, whereas the

© Springer International Publishing Switzerland 2016
C. Howard, Measuring, Interpreting and Translating Electron Quasiparticle - Phonon
Interactions on the Surfaces of the Topological Insulators Bismuth Selenide and
Bismuth Telluride, Springer Theses, DOI 10.1007/978-3-319-44723-0_2
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Fig. 2.1 Hexagonal unit cell
of the Bi2Te3 crystal
comprised of three QLs and
belonging to the space group
RN3m. Note that the Te2 layer
within each QL is a center of
inversion symmetry. Figure
from [10]

actual primitive cell in the rhombohedral basis contains five atoms. For now I will
work in the hexagonal basis and write the translation vectors as

t1 D a

�p
3

2
;�1
2
; 0

�
; t2 D a.0; 1; 0/; t3 D c.0; 0; 1/ (2.1)

where a and c are lattice constants of the hexagonal cell. Using X as the subscript
to indicate the material we have, aSe D 4:14Å, cSe D 28:64Å, aTe D 4:38Å, and
cTe D 30:49Å. The corresponding reciprocal lattice vectors are

G1 D 2�

a

�
2p
3
; 0; 0

�
; G2 D 2�

a

�
1p
3
; 1; 0

�
; G3 D 2�

c
.0; 0; 1/ (2.2)

The reciprocal space structure of Bi2X3 is shown in Fig. 2.2. The first bulk BZ is
actually presented for the rhombohedral basis and has an interesting shape with eight
hexagonal faces and six rectangular faces. The surface reciprocal lattice, which is the
primary focus of this dissertation, is a 2D hexagonal lattice obtained by taking the
projection of the bulk BZ along the qz axis as shown in Fig. 2.2. The SBZ contains
three high-symmetry points including N� at the zone center, NM at the center of the
zone edge, and NK at the intersection of two zone edges. It is worth noting that not all
NK points are equivalent because they cannot be connected directly by a reciprocal
lattice vector.
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Fig. 2.2 Bulk and surface reciprocal space structure of Bi2X3. Panel (a) shows the rhombohedral
bulk BZ and high-symmetry points. The SBZ is represented as a projection along qz. The extended
surface reciprocal lattice is shown in (b) depicting high-symmetry points N�; NM, and NK as well as
reciprocal lattice vectors G1 and G2. Figure from [10]

2.2 Bulk Vibrational Structure

At this point I will present measurements of the bulk vibrational spectra of both
Bi2Se3 and Bi2Te3. This data will allow me to fix the values of some of the
empirical parameters entering the pseudocharge phonon model (to be discussed in
Chap. 5) used to identify the character and symmetry of the bulk and surface phonon
dispersions of the crystal. Investigations of the bulk vibrational structure have been
carried out using one of the three methods: Fourier transform infrared (FTIR)
spectroscopy, Raman spectroscopy, and inelastic neutron scattering spectroscopy.
The first two methods listed are light scattering spectroscopies and thus are only
capable of providing information about optical phonon modes at the BZ center
because of the low momentum transfer involved in the scattering process. Neutron
scattering, on the other hand, is capable of providing detailed information of bulk
phonon dispersions off the � point because of neutron’s significant momentum
owing to its finite mass.

The primitive rhombohedral cell of Bi2X3 contains five distinct atoms, each
with three degrees of freedom. Therefore we expect a total of fifteen phonon
modes at any given wave vector, three acoustic and twelve optical. The atomic
displacements for these modes at the � point are displayed in Fig. 2.3. The
modes are labeled according to their symmetry with A modes belonging to a
one-dimensional irreducible representation (irrep) and E modes belonging to a two-
dimensional (doubly degenerate) irrep. The subscripts u and g indicate an even or
odd parity about the central atom in the primitive cell. The former are accessible by
FTIR scattering whereas the latter are only accessible via Raman scattering. Since
the E modes are doubly degenerate the number of unique optical phonon frequencies
is reduced from twelve to eight.
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Fig. 2.3 Diagram depicting
the atomic displacements of
the five atoms in the primitive
cell of Bi2X3 for optical
phonon modes at the bulk BZ
center. The modes are divided
into distinct types:
non-degenerate Au and
doubly degenerate Eu modes
accessible by FTIR scattering
and non-degenerate Ag and
doubly degenerate Eg modes
accessible by Raman
scattering. Image taken from
Ref. [1]
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Table 2.1 Experimental values of the optical phonon frequencies of
Bi2Se3 and Bi2Te3 at � . Data taken from [1]

Bi2Se3 Bi2Te3
Mode Frequency (cm�1) Mode Frequency (cm�1)
A11g 72 A11g 62.5

A21g 174.5 A21g 134

E1g N/A E1g N/A

E2g 131.5 E2g 103

A11u N/A A11u 94

A21u N/A A21u 120

E1u 65 E1u 50

E2u 129 E2u 95

Studies of the bulk vibrational structure of Bi2Se3 are actually relatively few
in number. To the best of my knowledge, no group has ever performed neutron
scattering spectroscopy on these samples. Thus we are limited to results from studies
using FTIR and Raman spectroscopy [1]. In their study, Richter and company were
able to successfully observe only five of the eight unique optical modes at the �
point. Their measured values can be found in Table 2.1.

In the case of the Bi2Te3 all three spectroscopies have been performed by various
groups [1–4]. We thus have more complete description of the bulk vibrational
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Fig. 2.4 Measurements of the bulk phonon dispersion of Bi2Te3. Open circles denote neutron
data, open squares and closed circles correspond to FTIR data, and open triangles signify Raman
data. The solid lines represent calculations based on a shell model for the phonon frequencies.
Results are shown for the three distinct high-symmetry directions (ƒ, �, and †) in the bulk BZ.
Image taken from Ref. [2]

structure of this crystal. The data from FTIR and Raman spectroscopies can be found
in Table 2.1. One will notice that all mode frequencies are smaller than their Bi2Se3
counterparts, consistent with heavier mass of Te when compared to Se. Neutron
scattering data for this crystal is available in Fig. 2.4. Dispersions along three high-
symmetry directions are shown, with two panels for each direction corresponding
to distinct symmetry classes. This data will be fit in Chap. 5 to obtain values for the
bulk force constant parameters appearing in our pseudocharge phonon model.

2.3 Electronic Structure

One of the most interesting aspects of the topological insulators Bi2Se3 and Bi2Te3
is their unique electronic structure. Both materials exhibit semiconducting behavior,
with bulk band gaps of approximately 300 meV in the case of Bi2Se3 and 100–
150 meV for Bi2Te3. Both possess an inverted band structure owing to the presence
of strong spin-orbit coupling resulting from the large Bi mass. This, along with the
inversion symmetry of the bulk crystal, guarantees a non-trivial Z2 as mentioned in
Chap. 1 making both strong 3D topological insulators. The surfaces of the crystal
are thus host to metallic DFQ surface states protected by TRI which serve to close
the bulk band gap and usher in the change in Z2 occurring at the crystal/vacuum
interface.

Because electronic transport experiments have difficulty distinguishing surface
state contributions to the conductivity from imperfections of the bulk crystal
(including Se and Te vacancies), experimental verification of said surface states
has largely been carried out using ARPES. Numerous studies of the surface band
structure have confirmed the existence of a single, linearly dispersive Dirac cone
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Fig. 2.5 ARPES data illustrating the presence of a single, linearly dispersive Dirac cone on the
surface of Bi2Se3 centered at the N� point. The surface states appear as two branches emanating
from the Dirac point at �300meV and continuing upward to the Fermi level. Contributions from
the filled bulk valence band and partially filled bulk conduction appear as bright patches of yellow
over a range of crystal momentum. Image taken from Ref. [5]

centered about the N� point in the SBZ for both materials. Example ARPES data for
Bi2Se3 can be seen in Fig. 2.5. Whereas the Dirac cone is isotropic in Bi2Se3, the
Fermi velocity modulates slightly depending on the crystal momentum direction in
the case of Bi2Te3. This gives rise to a warping effect which gives the Fermi surface
a star-like shape at energies high relative to the Dirac point in contrast to Bi2Se3
where the Fermi surface remains nearly circular for all energies within the bulk
band gap.

In both materials the metallic surface states are also spin-polarized [6, 7], again
owing to the significant spin–orbit interaction. Specifically, the spin of the electronic
state is always locked perpendicular to the crystal momentum and lies in the surface
plane (see Fig. 2.6). Thus, these materials have a definite chirality to their surface
electronic states because of the spin modulation that occurs when traversing the
curve in 2D reciprocal space defined by the Fermi surface. Interestingly enough,
this leads to a non-trivial Berry’s phase [8, 9] of � when an electronic state is
taken about the Fermi surface, which is related to their topological character. This
is quite different from a non-magnetic metal wherein each state at any given crystal
momentum possesses a two-fold spin degeneracy. Hence, in some ways the surface
of a topological insulator can be viewed as half of a non-magnetic metal, with only
a single spin species occurring at a given crystal momentum.
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Fig. 2.6 Schematic diagram
of the idealized Dirac cone
electronic structure present on
the surfaces of Bi2Se3 and
Bi2Te3. The spin texture of
the Fermi surface is shown by
the red arrows. A
hypothetical low-energy
scattering event involving
momentum transfer q
(perhaps from a phonon) is
shown. Inter-band transitions
involving higher energy are
also possible. Figure
from [10]
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The spin-momentum locking in the surface states of topological insulators has
interesting consequences. First and foremost, states on opposite sides of the Fermi
surface which are propagating in opposite directions (owing to the reversed sign of
the group velocity upon the substitution k ! �k) cannot backscatter into each other
in the absence of magnetic perturbations. This is because such a scattering event
would necessarily require flipping the spin. More generally speaking, backscattering
of the electronic states on the surfaces of these materials is suppressed in the
presence of time-reversal invariant perturbations. Without backscattering, the DFQs
on the surface are immune to localization, a trait that has profound implications
for electronic transport and potential device applications. Second, because states
with opposite group velocity have opposite spin but the same charge, one can
theoretically produce a net spin current without a net movement of charge by simply
populating states with opposite crystal momentum simultaneously. This is quite
similar to what happens in the QSHE except that here the transport takes place
in a 2D plane where the Fermi surface contains a continuum of electronic states
rather than a 1D edge where the Fermi surface is simply two points in reciprocal
space. For these reasons, TIs are garnering interest as potential materials to be used
in emerging spintronic technologies. However, to truly be effective, scattering of
DFQs from time reversal invariant perturbations (phonons, crystal vacancies, grain
boundaries, etc.) should also be small. Otherwise, although exact localization may
not occur, the favorable transport characteristics on a macroscopic scale could be
adversely affected. As such, the present study sets out to determine the nature and
degree of DFQ-phonon coupling on the surfaces of TIs using helium atom surface
scattering spectroscopy.
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Chapter 3
Helium Atom-Surface Scattering (HASS)

This chapter will focus on the HASS technique and its advantages over other
surface probes. From there I will move on to describing the manner in which the
atom–surface interaction is modeled. Lastly, I will describe the scattering processes
that can occur and what information they carry about the structure and vibrational
character of the surface.

3.1 The Benefits of HASS

Helium atom-surface scattering is a high-resolution technique capable of providing
valuable information about surface structure and dynamics of metallic and insulat-
ing compounds [1–4]. The technique relies on the production of a monoenergetic
helium beam probe that is scattered from solid surfaces, either elastically or
inelastically. HASS has several advantages over other surface science techniques
such as EELS:

1. The helium atoms employed are at thermal energies, making them non-
destructive.

2. Helium’s closed K shell makes it chemically inert, decreasing the risk of
chemisorption when it interacts with the surface.

3. The scattering of thermal helium atoms actually results from the overlap between
the atomic electron orbitals with the surface electronic charge density. Thus the
classical turning point for the incident thermal beam actually lies 2–3 Å above
the terminal ion layer of the solid [2], implying no penetration of the probe into
the material. Hence HASS is exclusively surface sensitive.

4. The characteristic de Broglie wavelength of thermal helium atoms lies in the
range 0:5 < � < 1:5Å, yielding wave-numbers comparable to typical SBZ
dimensions.

© Springer International Publishing Switzerland 2016
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5. High intensity beams are easily produced with very high energy resolution
(� 1meV).

6. The energy of thermal helium atoms ranges from 10 to 80 meV, well-matched to
the excitation energies of surface phonons. Moreover, because the energies are
low, multi-phonon events are suppressed.

7. Since helium is the smallest atom with a diameter of roughly 0.5 Å, scattering
from a solid usually only involves a single ion core on the surface. This reduces
complications arising from multi-scattering processes.

3.2 The Surface Interaction Potential

Applying neutral particle probes to study surface structure and dynamics requires
the knowledge of the particle–surface interaction on the microscopic scale. I begin
by considering a solid with semi-infinite slab geometry occupying the region z < 0.
The helium–surface interaction potential consists of two parts, one attractive and
one repulsive, originating from distinct physical phenomena.

Far from the surface, van der Waals forces dominate causing helium atoms to
experience a mild attractive potential [5] proportional to r�6. Using cylindrical
coordinates and integrating this interaction potential over the entire crystal slab for
a helium atom at a height z above the crystal surface we find

Vatt.r/ D �
Z 1

z
dz0

Z 1

0

d�
Z 2�

0

d	
C

.�2 C z02/3
� �C

z3
(3.1)

where the constant C depends on the surface in question. Thus, far from the surface
the helium atoms experience a cubic attractive potential.

However, close to the surface, overlap between the atomic electron orbitals and
those of the surface charge density create an abrupt repulsive potential. The wave
functions of the incoming helium atom’s electrons tend to orthogonalize with those
of the surface electron charge density �.r/. This creates an increase in kinetic energy
of the combined system that leads to a repulsive potential. A previous study [6]
showed that, to good approximation, this repulsive potential is linear in the surface
charge density

Vrep.r/ D ˛�.r/ (3.2)

Here ˛ is a constant typically on the order of 102 eVa30 where a0 is the Bohr radius.
The attractive and repulsive components of the atom–surface interaction combine

to yield a curve with a minimum in the region z D 5 � 10Å depending on the
exact chemical nature of the surface in question, as can be seen in Fig. 3.1. Strictly
speaking, incident helium atoms can become trapped in the bound states formed by
this potential well. This can happen by one of two ways. First, the periodicity of
the crystal parallel to the surface can reorient the helium momentum such that it is
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Fig. 3.1 Schematic of the helium–surface interaction potential experienced by the incident helium
beam. The blue curve qualitatively traces out the true interaction potential. The red curve is an
approximation known as the hard corrugated wall model, which is valid when the incident helium
energy is much larger than the well depth D

directed parallel, rather than perpendicular, to the surface. This can create a scenario
in which an elastically scattered helium atom propagates along the periodic potential
of the surface, much like an evanescent wave. Second, an incident helium atom
may lose some energy upon interacting with the surface (for example, by creating a
phonon), and become trapped by the attractive potential.

The trapping probability described in both of these scenarios is reduced greatly
if the helium beam employed has sufficiently high initial kinetic energy and
sufficiently low incident angle (as measured from the surface normal). In fact, if
the energy is high relative to the well depth D, one can ignore the attractive part
of the potential entirely and instead work within the hard corrugated wall model.
In this approximation, the interaction potential has the form

V.z/ D
(
0 ; z > 
.R/

1 ; z � 
.R/
(3.3)

Here, 
.R/ is known as the corrugation function. One can think of it as an
effective surface height experienced by the helium atom at the position R D .x; y/.
In this approximation then, incident helium atoms travel as free particles until
they reach z D 
.R/ at which point they scatter, either elastically or inelastically.
Recalling our assumption that the repulsive potential is linear in the surface charge
density, one can see that 
.R/ is equivalent to a constant surface charge density
contour as depicted in Fig. 3.2. The larger the component of helium momentum
normal to the sample surface, the deeper the atom will into these contours, thus
sampling a more corrugated surface. Since this corrugation reflects the arrangement
of the underlying ion cores, HASS can directly probe the atomic arrangement and
topology of the sample surface.
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ki kf

Equicharge contours

Surface atoms

Fig. 3.2 Cross section of a 3D crystal lattice. Depicted is a process in which a helium atom
with incident wave vector ki scatters from a constant charge density contour into a state of wave
vector kF

Fig. 3.3 Diagram of the in-plane scattering geometry. Note that �i need not necessarily equal �f

for either elastic or inelastic scattering processes described in the text

3.3 The Kinematics of HASS

3.3.1 Elastic Scattering

To begin discussing the helium scattering process quantitatively I consider the in-
plane scattering geometry shown in Fig. 3.3. In the hard corrugated wall model both
the incident and scattered helium beams may be treated as free particles, allowing
one to write
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Ei D „k2i
2m

Ef D „k2f
2m

(3.4)

In the case of elastic scattering the initial and final energies are the same or,
equivalently, the incident and scattered wavevectors have the same magnitude.
However, due to the periodic invariance parallel to the surface, the component of
the scattered wavevector parallel to the surface need only be conserved up to a
reciprocal lattice vector of the surface lattice. This allows us to write

kf sin �f D ki sin �f D ki sin �i ˙ nG0 (3.5)

where I used the fact that kf D ki. G0 is a primitive reciprocal lattice vector along a
high-symmetry direction in the SBZ, and n can take on any integer value. Solving
Eq. (3.5) for �f we find

sin �f D sin �i ˙ n
G0

ki
(3.6)

which defines the locations of the elastic diffraction peaks.
In practice, elastic diffraction studies performed using HASS can serve different

purposes. The most basic use is that of a diagnostic tool for surface orientation; peak
locations in a diffraction pattern can be used as input to Eq. (3.6), which is then
solved for the reciprocal lattice vector. Knowledge of G0 determines the relative
orientation of the sample surface and scattering plane, which is essential when
measuring phonons along particular high-symmetry directions as described below.
Additionally, although it is not the main topic of this dissertation, thorough analysis
of the diffraction peak intensities along a particular high-symmetry direction can
allow one to reconstruct the surface corrugation 
.R/ using Fourier analysis. This
allows one to perform detailed measurements of real space surface topography.

3.3.2 Inelastic Scattering and Time-of-Flight Technique

In the case of inelastic scattering the energies of the incident and scattered helium
beams will differ. This cannot occur in the case of a rigid surface corrugation.
However, if one admits the possibility of a deformable 
.R; t/ the incident helium
beam can transfer some of its energy into vibrational energy associated with
the deformation of the surface charge density contours. If this charge density
deformation couples to the motion of the underlying ions, the ionic positions can be
disturbed from equilibrium and a phonon is created. The inverse of this process can
also occur wherein energy from the oscillating surface charge density is transmitted
to the incident helium beam, which then leaves with a larger kinetic energy upon
scattering from the surface.
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Again assuming that both the incident and scattered helium beams behave as free
particles, the change in energy of the beam is

�E D „2
2m
.k2f � k2i / D Ei

�
k2f
k2i

� 1
�

(3.7)

The wavevector of the scattered helium will have a different magnitude than that of
the incident beam. However, we can write without ambiguity that the change in the
component of the wavevector parallel to the surface plane �K is

�K D kf sin �f � ki sin �i (3.8)

Rearranging for kf we find

kf D �K C ki sin �i

sin �f
(3.9)

We can plug Eq. (3.9) into Eq. (3.7) and rearrange to find

�E D Ei

�
sin2 �i

sin2 �f

�
�K

ki sin �i
C 1

�2
� 1

�
(3.10)

Thus we find that the change in beam energy is parabolic in the change in the
parallel component of the momentum. This change in beam energy may be positive
or negative, corresponding to the annihilation or creation of a surface phonon, as
described at the opening of this subsection. The same conservation rule for �K that
we found for the case of elastic scattering still holds except we must now account
for the momentum of the phonon. Thus we have

�K D q ˙ nG0 (3.11)

where q is the phonon wavevector. Lastly, conservation of energy clearly
implies that

�E D ˙„!.q/ (3.12)

which merely says that the positive or negative changes in beam energy (correspond-
ing to phonon annihilation and creation, respectively) must come in increments of
the phonon energy.

Equation (3.10) gives us the so-called scan curves. They represent the kinemati-
cally allowed changes in beam energy when momentum conservation is accounted
for. One will notice that, for fixed Ei and �i, the scan curves form a family of
parabolas, each with a distinct value of �f . We can imagine superimposing these
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Fig. 3.4 Overlay of a family of scan curves (dashed lines) for fixed Ei and �i atop an example
dispersion relation (solid curves). Notice that the dispersion must also be reflected about the �K
axis to account for phonon creation events (i.e., �E < 0)

parabolas over the phonon dispersion relation of a crystal along a particular high-
symmetry direction in the SBZ. An example of this is provided in Fig. 3.4 where the
sample dispersion is that of a 1D monoatomic chain of ions. The intersections of
the dispersion curves (which are the desired unknown in the experiment) and scan
curves correspond to measurable scattering events.

Determining the surface phonon dispersion requires the knowledge of a set of
points of the form .q; „!.q//. However, one should notice that it is sufficient to
measure�E of the helium beam alone. This information, in conjunction with �i, �f ,
Ei, and G0 (obtained from preliminary elastic diffraction measurements) is sufficient
to determine q and „!.q/ using Eqs. (3.10)–(3.12). In practice, measurement of the
change in beam energy is accomplished by time-of-flight techniques whereby the
scattered helium beam is allowed to travel over a fixed distance l and the arrival
time at the detector is measured using a timing mechanism. Treating the helium
atoms as classical particles one can write

�E D m

2

��
l

tf

�2
�

�
l

t0

�2�
D m

2

�
l

t0

�2��
t0
tf

�2
� 1

�
D Ei

��
t0
tf

�2
� 1

�

(3.13)

where m is the mass of the helium atom, t0 is the arrival time of the elastically
scattered helium, and tf is the arrival time of the inelastically scattered helium.
Therefore, by measuring tf for a particular inelastic scattering event, one obtains
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a single point .q; „!.q// in the surface phonon dispersion. In practice, a typical
HASS experiment involves fixing Ei and �i and taking time-of-flight data at varying
�f by moving the detector around the sample until a sufficient density of points
is accrued to infer the actual dispersion curves of surface phonons along a high-
symmetry direction of the SBZ.
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Chapter 4
Experimental Apparatus and Technique

4.1 Surface Laboratory Facilities

The main experimental apparatus of the Laboratory for Surface Physics and Electron
Spectroscopies at Boston University consists of a series of HV and UHV chambers
equipped with HASS capabilities and diagnostic tools including a LEED unit. An
aerial schematic of the entire setup can be seen in Fig. 4.1. In the proceeding sections
I will detail the different parts of the apparatus and their function. From there, I will
present the sample preparation methodology and measurement techniques for both
inelastic and elastic scattering.

4.2 Source Chamber

Successful implementation of the HASS technique requires the generation of a
monoenergetic helium beam via a continuum jet expansion monochromator visible
on the left-hand side of Fig. 4.1. The source chamber is maintained at a background
pressure Pb via a 12,500 L/s diffusion pump backed by a roots pump, which is
in turn backed by a mechanical pump. An external tank supplies high pressure
(P0 � 500 psi), high purity (99.999 %) helium to the monochromator assembly
within the source chamber. The monochromator itself consists of a temperature
controlled helium reservoir with a nozzle on one end that has a small orifice of
diameter d D 20�m. The helium supplied to the reservoir by the external tank
thermalizes with the reservoir walls at temperature T0 and then undergoes adiabatic
expansion as it escapes into the source chamber through the orifice. A depiction of
this process can be seen in Fig. 4.2.

The adiabatic expansion causes rapid cooling of the helium gas, typically on the
order of 109 K/s leading to a new beam temperature T . This cooling leads to a drastic
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Fig. 4.1 Aerial view of the HASS facility at Boston University

Zone of SilenceP0, T0

Background Pressure Pb

Mach Disk

Jet Boundary

Shock Barrel

Beam Centerline

Nozzle Opening, diameter d

Fig. 4.2 Schematic illustrating the adiabatic expansion process of the monochromator. Helium
within the zone of silence has a very narrow speed (and hence energy) distribution and is extracted
for experimental use by a skimmer assembly (not shown)
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collapse in the variance of the Maxwell speed distribution of the gas atoms, creating
the monoenergetic beam desired for the experiment. The terminal velocity of the
beam after leaving the nozzle is

v D
r
5kBT0

m
(4.1)

One should notice that the numerical coefficient differs from simple equipartition
arguments due to the fact that the helium is undergoing a dynamic process and is not
in equilibrium. The expansion reorients the random thermal velocities of the helium
within the reservoir into a direction perpendicular to plane of the nozzle orifice. One
can further characterize the beam by examining the variance of the component of
the velocity parallel to the beam direction, given by Martini [1]

ıv D 2

r
.2 ln 2/kBT

m
(4.2)

Finally, the speed ratio[2] may be defined as

S D
s

mv2

2kBT
D

r
5T0
2T

(4.3)

The speed ratio can be used to easily quantify the resolution of the outgoing beam
via

ıv

v
D 2

p
ln 2

S
D 1:67

S
(4.4)

Thus a high resolution beam is created by operating at the largest S possible[2],
which is in turn controlled by the product P0d. Theoretical predictions of the speed
ratio from both classical and quantum mechanical models are shown in Fig. 4.3.
Although the classical model predicts a linear dependence of the speed ratio on the
product P0d one can see that the quantum mechanical model exhibits a significant
deviation from linearity. This deviation is the result of a phenomena known as zero
energy resonance resulting from the fact that the He dimer has a very low (10�7 eV)
bound state energy. This low energy bound state increases the scattering cross
section of the beam appreciably and enhances the speed ratio, helping improve the
velocity resolution of the beam even further. In practice the speed ratio (and hence
velocity resolution) is limited by the nozzle diameter d and P0, which cannot be
made arbitrarily high without exceeding the pumping capacity of the diffusion pump
and roots pumps attached to the source chamber. Typical values are ıv=v � 1%.

The rapid cooling of the helium gas has other interesting hydrodynamic implica-
tions. Indeed, the sound velocity of the helium gas plume emitted from the nozzle,
being proportional to

p
T , is also drastically reduced by the expansion process.

The resulting scenario is then a plume of helium gas whose constituent atoms are
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Fig. 4.3 Dependence of the speed ratio on P0d for liquid nitrogen and room temperatures.
Classical and quantum models are given by the dashed and solid lines, respectively. Figure from [2]

supersonic, traveling faster than the sound velocity of the medium itself. As such,
a shock barrel or sound barrier forms towards the edges of the plume as depicted
in Fig. 4.2. Helium atoms that reach the shock barrel will experience a temperature
increase and return to a diffusive flow regime rather than the hydrodynamic flow
characterizing the zone of silence, making them unsuitable for the experiment.
However, the supersonic helium in the zone of silence maintains its monoenergetic
character and is allowed to flow throw a skimmer assembly before reaching the
shock barrel. From here it passes into a buffer HV chamber where the flow
transforms from hydrodynamic to molecular.

4.3 Target Chamber

After passing through the skimmer assembly the helium beam enters the target
chamber of the apparatus. This is where the sample under study is housed and the
actual scattering of the incident helium beam takes place. Due to novel detection
techniques to be described later, this chamber also houses the detector.
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4.3.1 Production and Monitoring of UHV

It has been well established[3] that HASS measurements are extremely sensitive
to contamination of the sample surface by adsorbed residual gases in the UHV
environment. For this reason it is imperative to keep the sample surface as free of
adsorbates as possible, which is accomplished by reducing the pressure in the target
chamber by a variety of pumping mechanisms. The target chamber is maintained at
a base pressure of approximately 10�8 Torr via a turbomolecular pump backed by a
mechanical pump.

Once this combination reaches its minimum attainable pressure a cryo-pumping
routine begins. Liquid nitrogen is pumped into a hollow baffle occupying the inner
wall of the pumping stage chamber depicted in Fig. 4.1. The walls of the baffle
thermalize with the liquid nitrogen and start to act as a cold surface onto which
residual gases adsorb, thus removing them from the UHV environment. This is
particularly effective at reducing the partial pressure of water, one of the main
contaminants in the chamber, into the 10�11 Torr range.

Finally, a titanium pump is used as a final measure to reduce the chamber
pressure. A titanium filament, also located in the pumping stage chamber, is supplied
with a strong AC current causing an increase in temperature that causes some of the
filament to vaporize. Titanium settles on the cold nitrogen baffle surface and acts
as a getter, increasing the probability that gases incident on the baffle walls will
stick. The combination of these different pumping stages effectively reduces the
partial pressures of the main contaminants in the chamber (H2, H2O, O2, CO2),
as recorded on the attached Stanford Research Systems Residual Gas Analyzer, to
5 � 10�11 Torr. This allows one to maintain an initially clean sample surface for
roughly 8–12 h during which HASS measurements can be performed.

4.3.2 Sample Manipulator

After entering the target chamber the first thing the helium beam encounters is the
sample surface. Samples prepared by external collaborators1 are cut into wafers and
mounted on an OFHC copper post via UHV compatible conductive epoxy. A small
aluminum cleaving pin is then attached to the sample surface with the same epoxy.
This sample-post assembly is then fed into the target chamber via a retractable
transfer arm located in the transfer chamber shown in Fig. 4.1. The sample-post
assembly locks into the sample manipulator atop the sample stage via support fins,
whereupon the transfer arm is removed.

The sample manipulator allows full control of the sample orientation via five
separate degrees of freedom. There are three linear controls allowing for x,y,z
motion of the sample, which are useful for the cleaving process and beam approach.

1Samples were prepared by Dr. F.C. Chou and Dr. R. Sankar of the Center of Condensed Matter
Sciences at the National Taiwan University.



28 4 Experimental Apparatus and Technique

Thermocouple

Ceramic heater

Copper braid

OFHC copper post

UHV compatible epoxy

Sample wafer

Cleaving pin

Transfer arm grooves

Sample stage

Support fins

Polar control axis

Azimuthal control axis

Fig. 4.4 Diagram of the sample-post assembly sitting atop the sample stage after being loaded
into the target chamber via the transfer arm

Polar angle control allows one to adjust the angle �i depicted in Fig. 3.3 between
the sample surface normal and the incident helium beam. Finally, azimuthal control
allows the sample surface to rotate in a plane perpendicular to the surface normal,
and assists in aligning the incident beam along a surface high-symmetry direction
of the crystal.

The manipulator is also equipped with temperature control. On one side of the
sample stage is a copper braid that is connected to an APD closed cycle helium
refrigerator, which provides cooling capabilities. Additionally, the rear of the sample
stage has a ceramic heater attached. Finally, a thermocouple attached to the side
of the stage opposite to the copper braid allows for measurements of the sample
temperature and acts as a feedback sensor for the external temperature controller
unit. A detailed schematic of the sample-post assembly can be found in Fig. 4.4

4.3.3 Sample Cleaver

In order to ensure an initially clean sample surface for conducting the HASS
measurements the samples must be cleaved in-situ. This is accomplished by a
retractable cleaver, also pictured in Fig. 4.1. Once the sample has been secured to
the sample manipulator, the cleaving arm can be moved toward the sample surface.
When the cleaver is in close proximity to the cleaving pin, an abrupt strike with the
spring-loaded blade knocks the cleaving pin off the sample surface, peeling away a
piece of the sample and exposing a fresh surface. Due to the QL structure of Bi2Te3
and Bi2Se3 (see Fig. 2.1), the peeling process occurs quite naturally along the weak
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inter-QL bonds, ensuring that Te/Se is the terminal surface layer. For harder ionic
crystals the cleaving pin methodology is often unsatisfactory because the crystals
do not respond well to the combination of tensile and sheer stress in the peeling
process. Instead, the crystal wafer itself must be hit with the cleaving blade along a
particular crystal plane, causing it to crack and expose a fresh surface.

4.3.4 Helium Detector

4.3.4.1 Continuous (Elastic) Detection

Once the helium beam is scattered from the surface of the sample it must be
recorded. This is accomplished via a two-stage process involving an electron beam
and a multi-channel plate electron multiplier (MCPEM). First, the scattered helium
beam passes through an angle-resolving orifice in an electron gun mounted to the
detector carriage. This gun produces a collimated beam of monoenergetic electrons
via thermionic emission from a low work function matrix cathode that travel
perpendicular to the direction of motion of the scattered helium. The cathode voltage
and electron optics within the gun are tuned to give the electrons just the right
energy to excite a helium atom into the metastable 3S1 excited state upon collision.
The excited helium atoms exit the electron gun and collide with the MCPEM. An
electron from the plate fills the vacant 1S energy level of the metastable helium atom
imparting its excess energy to the 2S shell electron which is ejected it in a manner
similar to Auger emission. This released electron propagates and multiplies through
the channel plate resulting in an amplified pulse signal, which is ultimately read by
the electronics of the detector. A schematic of the entire process can be found in
Fig. 4.5.

4.3.4.2 Time-of-Flight (Inelastic) Detection

The detection scheme for the inelastic helium scattering is somewhat different than
that of the elastic scattering. In this case the flight time of a given helium atom,
from its excitation in the electron gun to its collision with the MCPEM, must be
recorded in order to calculate its change in kinetic energy as described in Sect. 3.3.2.
In practice this is done by creating a gate function in time in the electron gun
that produces packets of scattered excited helium atoms, which are then allowed to
traverse the fixed distance between the gun and MCPEM. A beam packet contains
many atoms having different velocities corresponding to inelastic as well as elastic
scattering events at the sample surface. The atoms disperse as they travel toward
the MCPEM. Atoms reaching the detector early have gained energy due to phonon
annihilation events at the sample surface, whereas the slow ones were involved in
phonon creation events. In order to resolve the differences in helium atom arrival
times, the opening time of the gate function should be roughly 1 % of the total time it
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Fig. 4.5 Diagram of the detection scheme. The scattered helium beam is subjected to a perpen-
dicular electron beam which excites it into a metastable state, allowing it to be detected by the
multi-channel plate. Figure from [5]

takes the packet to arrive at the MCPEM. For a traditional mechanical beam chopper
consisting of a notched, rotating wheel, minimum opening times are on the order or
1ms, ultimately constrained by the rotation speed which cannot exceed structural
limitations of the material. At thermal helium velocities on the order of 103 m/s, a
path length of 2–10 m is therefore needed to resolve arrival times. However, at the
Boston University Laboratory for Surface Physics and Electron Spectroscopies, the
gating is performed with the electron gun itself, which can be pulsed on much finer
time scales than any mechanical chopper. The gate function opening time is reduced
to the order of 1�s, reducing the required flight path to roughly 7 cm.

The process outlined above is complicated by two factors. First, one may object
that the collision of the helium beam with the electron beam will alter its momentum
and thus affect the timing measurement. However, the orientation of the electron
beam guarantees that only the component of the helium’s momentum perpendicular
to its original line of motion is affected. The original component of the helium
momentum is preserved and thus the timing measurement is unaffected. Second,
and perhaps more serious, is the fact that consecutive packets can have spatial (and
hence temporal) overlap upon arriving at the MCPEM if the gate openings are close
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together in time. The easiest remedy would be to space out the gate opening times
so that, at thermal velocities, there is no risk of overlap for the given flight path.
However, this is not possible because the data collection times necessary to acquire
a detectable number of inelastic events at any given �f would become prohibitively
long, running into the limitations imposed by adsorbate exposure times described
earlier. The ingenious solution is actually to use a pseudo-random gate function
[4]. This allows one to deconvolute the overlapping packets and thus retain a high
fidelity timing measurement. This pseudo-random gate function is comprised of a
set of pulses whose total integrated opening time is roughly 10–50 % of the helium
arrival time.
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Chapter 5
Pseudocharge Phonon Model

In order to identify the character and symmetry of the measured phonon events to
be presented later, I employ empirical lattice dynamics calculations, based on the
pseudocharge model (PCM) [1–3]. This model includes direct ion–ion interactions
as well as indirect adiabatic coupling through the mediating electrons. Historically
this model has been successful in reproducing surface phonon dispersion and HASS
scattering amplitudes, derived from calculated surface charge deformations. Here I
review some of the model’s basic characteristics and tabulate the parameters used in
our realization of the model.

5.1 Fundamentals of the Model

At the heart of the PCM is the expansion of the electron density nl within each
primitive cell l in terms of symmetry-adapted multipole components around selected
Wyckoff symmetry points Rlj.

nl.r/ D
X
j�k

c�k.lj/Y�k.r � Rlj/ (5.1)

where � denotes an irreducible representation (irrep) of the Wyckoff symmetry
point-group and k indexes its rows; Y�k is a symmetry-adapted harmonic basis
function for the irrep � . The expansion coefficients c�k are separated into static
and dynamic components, the latter being treated as bona-fide time-dependent
dynamical variables,

c�k.ljI t/ D c.0/�k .lj/C�c�k.ljI t/ (5.2)
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34 5 Pseudocharge Phonon Model

Note that the static components c.0/�k .lj/ at equivalent positions j will be identical,
however their dynamical counterparts �c�k.ljI t/ will vary with both l and j.

Taylor expanding the potential energy to second order both in ionic displace-
ments and pseudocharge (PC) deformations allows the Lagrangian of the combined
pseudocharge-ion system to be written as

L D 1

2

� X
l˛

M Pu2˛.l/C
X
�k
lj

m��Pc2�k.lj/�
h
u�ˆ �uC.u�T��cCh:c:/C�c�H��c

i�

(5.3)
where u˛.l/ is the displacement in the ˛ direction of the ion at site  in unit cell
l; M is the ionic mass, and m� is an effective PC mass that will be set to zero upon
invoking the adiabatic approximation. ˆ, T, and H are empirical force-constant
matrices representing ion–ion, ion–PC, and PC–PC interactions, respectively. The
kinetic terms contain contributions from both the ions and pseudocharge (PC).

The Euler–Lagrange equations of motion for the ions and PCs can be obtained in
the standard way, yielding

M Ru˛.l/ D �
X
l00ˇ

ˆ˛ˇ

�
l l0
 0

�
uˇ.l

00/ �
X

l0j
�k

T ˛
�k

�
l l0
 j

�
�c�k.l

0j/ (5.4)

m��Rc�k.lj/ D �
X
l00˛

T�k
˛

�
l l0
j 0

�
u˛.l

00/ �
X
l0j0

H�k

�
l l0
j j0

�
�c�k.l

0j0/ (5.5)

noting that only PCs belonging to the same irrep and same row can couple.

5.2 Adiatbatic Approximation, Ionic Self-Terms, and PC
Self-Terms

First, I invoke the adiabatic approximation in which I set m� D 0. This is equivalent
to saying that the electronic response to lattice deformations is instantaneous, an
approximation warranted by the factor of at least 103 in the ratio of the ionic and
electron masses. Equation (5.5) then becomes

�c D �H�1TTu (5.6)

The entries of the matrices ˆ and H are expressed in terms of empirical parameters.
However, the diagonal, self-term, elements that determine how the displacement of
a particular ion affects its own motion must be treated carefully.

Next, the crystal must remain invariant under an arbitrary rigid displacement of
all ions and PC by u0. In this case no ion experiences any acceleration and the left-
hand side of (5.4) will be a null matrix of length 3N where N is the number of ions
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in the crystal. Combining this observation with Eq. (5.6) yields

0 D �ˆu0 C TH�1TTu0 (5.7)

Rearranging and separating the self-term from the rest of the sum gives

ˆ
�

l l


�
D �

0X
l00

ˆ
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0

�
C

X
l0jj0
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T�k
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l l0
j

�
H�1
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�
l l0
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�
TT
�k

�
l l0
j

�
(5.8)

where the prime on the first sum indicates that the self-term is excluded. Equa-
tion (5.8) uniquely defines the ionic self terms to be consistent with translational
invariance.

I proceed in a similar manner to calculate the diagonal elements of the matrix
H. Again, I exploit translational invariance but this time explicitly choose the rigid
displacement to be in the z-direction for clarity. Equation (5.5) can be written as

0 D �
X
l00

T�k
z

�
l l0
j 0

�
uz.l

00/ �
X
l0j0

H�k

�
l l0
j j0

�
�c�k.l

0j0/ (5.9)

Separating the PC self-term from the rest of the sum and rearranging yields

H�k

�
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j j

�
D �1
�c�k.l; j/

� X
l00

Tz

�
l l0
j 0

�
uz.l

0; 0/C
0X

l0j0

H
�

l l0
j j0

�
�c�k.l

0; j0/
�

(5.10)

For a rigid displacement of the entire crystal in the z-direction we have �c�k = uz =
u0 for all l; ; j. The PC self-term then takes the form

H�k

�
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j j

�
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X
l00
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(5.11)

With the ionic and PC self-terms fixed I am now in a position to calculate the
phonon frequencies. First, I make the simplifying substitutions

Qu.l/ D
p

Mu.l/

Q̂ �
l l0
0

�
D 1p

MM0


ˆ
�

l l0
0

�

QT
�

l l0
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M

T
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j
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Then, Fourier transforming Eq. (5.4) and employing Eq. (5.6) yields

!2.q/ Qu.q/ D D.q/ Qu.q/
D.q/ D Q̂ .q/ � QT.q/H�1.q/ QT�.q/ (5.12)

Thus, to determine the phonon frequencies at a particular wave-vector one needs
only construct the dynamical matrix D.q/ and find its eigenvalues.

5.3 Bulk Parameters

The first step in any realization of the PCM is to populate the ionic positions. As
for the PC, one is free to choose a high-symmetry point about which to expand the
electron density. For this particular calculation, the “c” Wyckoff positions of the
RN3m space group, with C3v point-group symmetry, were the most appropriate to
use as centers of PC symmetry-adapted multipole expansion. They are identified
as having coordinates .0; 0;˙z/ that define the vertical axes of the tetrahedral
pyramids shown in Fig. 5.2. The pyramid centers were chosen as PC expansion
points. A comprehensive table of the Wyckoff positions for the RN3m space group can
be found in Fig. 5.1. C3v has irreps A1 (with dipolar symmetry-adapted harmonic z)
and E (with dipolar symmetry-adapted harmonics x, y). In order to minimize the
number of empirical constants employed in the bulk calculations, I opted to include
only the A1 symmetry-adapted fluctuations as depicted in Fig. 5.2, which shows the
ion and PC locations in the PCM.

In the insulating bulk we do not include interactions between PCs, rendering H
diagonal and constrained by Eq. (5.11). As for T, we introduce two force-constant
parameters T1z and T2z to account for the ion-PC coupling in pyramids involving X1-
Bi and X2-Bi, respectively. Finally, we use central ion–ion interaction potentials
v.r/ with force-constant matrix elements of the form

ˆ˛ˇ D A
x˛xˇ

r20
� B

�
x˛xˇ

r30
� 1

r0
ı˛ˇ

�
(5.13)

The parameters A and B are related to the ion potential via

A D @2v

@r2

ˇ̌
ˇ
rDr0

B D @v

@r

ˇ̌
ˇ
rDr0

(5.14)

where r0 is the equilibrium bond length.
As was mentioned earlier, the lack of available neutron scattering data for Bi2Se3

means the degree of agreement between experimental data and our calculation
is determined only by the frequencies at the � point of the bulk BZ. I found it
sufficient to include only nearest neighbor ion–ion interactions, except when it came
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Fig. 5.1 Wyckoff positions of the RN3m space group

Table 5.1 Bulk parameters for the Bi2Se3 lattice dynamical calcula-
tions based on the PCM

Ion–ion interaction Ion-PC interaction

Bond A (N/m) B (N) Position Value (N/m)

Se1–Se1 0.1 0.01 T1z (Se1–Bi) 0.807

Se1–Bi 1.35 0.135 T2z (Se2–Bi) 0.746

Se2–Bi 0.3 0.03

Bi–Bi 0.2 0.02

to the larger Bi atoms, where I admitted coupling to the other Bi atoms within
the same layer, which are actually second nearest neighbors. The best fit to the
experimental data is shown in Fig. 5.3. Dispersions are presented along three high-
symmetry directions ƒ (�-Z), � (�-X), and † (�-Y). Raman and IR data from
[6] are presented as red and blue circles, respectively. The experimental parameters
used in the calculation for Bi2Se3 are presented in Table 5.1.

In the case of Bi2Te3 the existence of available neutron scattering data allows one
to perform a more rigorous fit, especially off the � point. In addition to the nominal
intralayer Bi–Bi coupling employed in the case of Bi2Se3, I found it necessary to
introduce an extra parameter coupling any given Bi atom to the other Bi layer within
a single QL (interlayer). The force-constant and PC parameters were determined by
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Fig. 5.2 Diagram of the ion and PC locations in the PCM. Although shown here for Bi2Te3,
the structure is unchanged for the case of Bi2Se3. The figures to the right show the dipolar PC
deformation associated with lattice distortions along the z direction. The larger purple lobes at the
surface indicate the increased malleability of the surface PC, reflecting the presence of the metallic
surface states. Figure from [8]

Table 5.2 Bulk parameters for the Bi2Te3 lattice dynamical calculations
based on the PCM

Ion–ion interaction Ion–PC interaction

Bond A (N/m) B (N) Position Value (N/m)

Te1–Te1 0.187 0.0187 T1z (Te1–Bi) 0.35

Te1–Bi 0.99 0.099 T2z (Te2–Bi) 0.4

Te2–Bi 0.2 0.02

Bi–Bi (intra) 0.2 0.02

Bi–Bi (inter) 0.2 0.02

fitting the bulk phonon calculation to available Raman, IR, and inelastic neutron
spectroscopy data [4–7]. A summary of the parameters used and their values are
given in Table 5.2.

The best fit to the available bulk data is shown in Fig. 5.4a–d. Dispersions are
presented along three high-symmetry directions ƒ (�-Z), � (�-X), and † (�-Y).
Raman, IR, and neutron data are depicted as red triangles, green squares, and blue
circles, respectively. The calculations agree well with all data types at the � point.
However, there are some discrepancies between the calculations and the neutron
data for some optical branches. First, there is disagreement in the dispersion of
the low-energy Eu and Eg optical modes along the ƒ-direction. Introduction of
E PC deformations would not remedy this, since they involve interactions in the
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Fig. 5.3 Calculated bulk dispersion curves of Bi2Se3 along the high-symmetry directionsƒ (a–b),
� (c), and† (d). The C3v symmetry of theƒ-direction allows one to project out purely longitudinal
A modes and doubly degenerate, transverse E modes. Modes along the � and † directions have
mixed polarization. The calculated dispersions fit the available Raman and IR data quite well.
Figure from [9]

x=y plane and will not introduce the necessary phases along the ƒ (z)-direction. I
believe that the remedy for this discrepancy would be the introduction of long-range
Coulomb interactions, as suggested by a previous study [5] of bulk Bi2Te3. However,
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squares), and inelastic neutron scattering (blue circles) data. Figure from [8]

since I am primarily concerned with the surface, where Coulomb interactions are
effectively screened by DFQs, I opted not to include such interactions. Second,
there are some disagreements and ambiguities between the calculations and neutron
data for the dispersions of high-energy optical modes along the †-direction. In this
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case the inclusion of E PC deformations might improve the fitting. Yet, I opted to
omit these deformations since, as the reader will find in Chap. 6, I am primarily
interested in the low-energy sector where a Kohn anomaly appears and there is
already reasonable agreement.

5.4 Surface Parameters

Calculation of the surface phonon dispersions requires an adjustment to the nominal
bulk geometry employed in our computational model. Instead of performing
calculations for an infinitely periodic crystal in three dimensions I employ what
is known as the slab geometry. The unit cell in this geometry becomes a finite
alternating diatomic chain in the z direction created by stacking 30 QLs. Retention of
periodicity in the x=y plane allows one to Fourier transform the equations of motion
much like the case of Eq. (5.12). However, in this case calculations are performed
along high-symmetry directions of the SBZ (Fig. 2.2) where the wave vectors are
constrained to the x=y surface plane.

The surface of the material presents a unique environment for the constituent
atoms and thus warrants an adjustment to the nominal bulk parameters described in
Tables 5.1 and 5.2. This is especially true in the case of TIs where the surfaces
also host metallic DFQ states. I again treat the surface parameters as empirical
and adjust them to attain the best fit to the experimental HASS data presented
in Chap. 6. Beyond the data, the following adjustments are also substantiated by
physical reasoning:

1. The surface X1-Bi force-constant parameter was reduced to roughly 42 % of its
bulk value to account for the reduced bonding and the emergence of metallic
electrons.

2. A new planar (next-nearest neighbor) force-constant parameter involving
intralayer surface X1–X1 bonds was introduced because of the reduced number
of nearest neighbors when compared to their bulk counterparts. Furthermore,
the metallic bonding occurring in the surface layer has a longer range than the
insulating bulk.

3. Symmetry-adapted x=y deformations of the PC in the surface and subsurface
pyramids, which form a basis of the doubly degenerate irrep E, were introduced
to account for the delocalized nature of the DFQs. These are effected via new
parameters TS

xy and QTS
xy, respectively. In addition, TS

z was reduced from its bulk
value to account for the extra screening provided by the DFQ surface states.

4. A momentum dependent coupling Hq between dipolar z deformations of neigh-
boring surface PC was introduced to account for interactions among the DFQs.

The surface parameters for Bi2Te3 are summarized in Table 5.3, with similar
adjustments being made for Bi2Se3. The calculated dispersions for the slab geome-
try, along with accompanying HASS data, are presented in Chap. 6.
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Table 5.3 Modified surface parameters for Bi2Te3

Surface ion–ion interaction Surface ion–PC interaction

Bond A (N/m) B (N) Position Value (N/m)

Te1–Bi 0.42 0.042 TS
z (Te1–Bi) 0.24

Te1–Te1 (intra) 0.25 0.025 TS
xy (Te1–Bi) 0.15

QTS
xy (Te2–Bi) 0.4

Surface PC–PC interaction

Hq D H0.1C q2

a e�q2=b/, H0 D �0:0782, a D 0:0034, b D 0:0075

References

1. G. Benedek, M. Bernasconi, V. Chis, E. Chulkov, P.M. Echenique, B. Hellsing, J.P. Toennies,
Theory of surface phonons at metal surfaces: recent advances. J. Phys. Condens. Matter 22(8),
084020 (2010)

2. C.S. Jayanthi, H. Bilz, W. Kress, G. Benedek, Nature of surface-phonon anomalies in noble
metals. Phys. Rev. Lett. 59(7), 795–798 (1987)

3. C. Kaden, P. Ruggerone, J.P. Toennies, G. Zhang, G. Benedek, Electronic pseudocharge model
for the Cu(111) longitudinal-surface-phonon anomaly observed by helium-atom scattering.
Phys. Rev. B 46(20), 13509–13525 (1992)

4. W. Kullmann, J. Geurts, W. Richter, N. Lehner, H. Rauh, U. Steigenberger, G. Eichhorn,
R. Geick, Effect of hydrostatic and uniaxial pressure on structural properties and Raman active
lattice vibrations in Bi2Te3. Phys. Status Solidi (B) 125(1), 131–138 (1984)

5. W. Kullmann, G. Eichhorn, H. Rauh, R. Geick, G. Eckold, U. Steigenberger, Lattice dynamics
and phonon dispersion in the narrow gap semiconductor Bi2Te3 with sandwich structure. Phys.
Status Solidi (B) 162(1), 125–140 (1990)

6. W. Richter, C.R. Becker, A raman and far-infrared investigation of phonons in the rhombohedral
V2 � VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2.Te1�xSex/3 (0 < x < 1), .Bi1�ySby/2Te3
(0 < y < 1). Phys. Status Solidi (B) 84(2), 619–628 (1977)

7. V. Wagner, G. Dolling, B.M. Powell, G. Landweher, Lattice vibrations of Bi2Te3. Phys. Status
Solidi (B) 85(1), 311–317 (1978)

8. C. Howard, M. El-Batanouny, R. Sankar, F.C. Chou, Anomalous behavior in the phonon
dispersion of the (001) surface of Bi2Te3 determined from helium atom-surface scattering
measurements. Phys. Rev. B 88, 035402 (2013)

9. X. Zhu, L. Santos, R. Sankar, S. Chikara, C. Howard, F.C. Chou, C. Chamon, M. El-Batanouny,
Interaction of phonons and Dirac fermions on the surface of Bi2Se3: a strong Kohn anomaly.
Phys. Rev. Lett. 107, 186102 (2011)



Chapter 6
HASS Results from the Surface of Bi2Se3

and Bi2Te3

This chapter contains the main experimental data presented in this thesis. I begin by
presenting the elastic diffraction results that I used to determine the crystallographic
orientation of the surface. From there, I move on to the measured inelastic data along
with calculated surface phonon dispersion curves. Finally, I end this chapter with a
calculation of the mode-specific electron–phonon coupling parameter ��.q/ based
upon the experimental results.

6.1 Elastic and Inelastic Scattering Results

Typical diffraction patterns for both the N� NM and N� NK NM directions of Bi2Te3 are
shown in Fig. 6.1. The raw measurements are collected as number of detector counts
at different values of �f . In these plots �f has first been converted to �K using
Eq. (3.8), which is then normalized by the magnitudes of the primitive reciprocal
lattice vectors along the N� NM and N� NK NM directions, respectively. The results show
well-defined elastic scattering peaks at integer values of the abscissa, indicating
a clean, well-ordered surface in good agreement with the nominal lattice vectors.
Similar results were obtained for Bi2Se3.

After each of these scans was taken, the azimuthal and polar controls of the
manipulator were fixed and inelastic data was acquired by moving the detector
around the sample and employing the TOF techniques described earlier. Typical
TOF scans collected along different high-symmetry directions, after converting the
abscissa from time to energy, are shown in Fig. 6.2. These scans constitute the raw
data from which I calculated the surface phonon dispersion. Each scan was fit with
the minimum number of Gaussian peaks necessary to fit the data. In practice the
signal consisted of both elastic and inelastic peaks. The centers of the inelastic peaks
define the energy transfer of the beam, and therefore the phonon energy. Employing
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Fig. 6.1 Diffraction patterns indicating the two high-symmetry directions N� NM and N� NK NM on the
surface of Bi2Te3. The horizontal axis depicts momentum transfer normalized to the pertinent
primitive lattice vector. Figure from [13]
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Fig. 6.2 Time of flights scans for the inelastic HASS measurements. The abscissa has been
converted to energy difference for clarity. Phonon creation and annihilation events are manifest
as blue inelastic peaks. Figure from [13]
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Fig. 6.3 Phonon dispersion along high-symmetry directions N� NK NM and N� NM for Bi2Te3. Green
and blue dots indicate surface modes polarized perpendicular and parallel to the surface plane,
respectively. The TOF measurements are depicted as orange dots with error bars. Figure from [13]

Eq. (3.10) allows one to determine the beam momentum transfer, and hence the
phonon momentum q. Thus, each inelastic peak represents a single data point in the
dispersion curves that follow.

The measured and computed dispersion curves for Bi2Te3 and Bi2Se3 are
presented in Figs. 6.3 and 6.4, respectively. The gray areas are sets of projections of
many distinct bulk phonon modes that form energy bands in the SBZ. The surface
phonon modes were defined as those with at least 30 % of the oscillator strength
(determined by the square of the mode eigenvector) concentrated within the first
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Fig. 6.4 Phonon dispersion for Bi2Se3 along the same high-symmetry directions as in Fig. 6.3.
The dotted lines indicate surface phonon modes. The TOF measurements are depicted as orange
dots with error bars. Figure from [12]

three atomic layers of the slab surface regions. There are two key features visible in
both dispersions worth noting from the onset. First, there exists an optical surface
phonon branch originating at approximately 1.4 THz for Bi2Te3 and 1.8 THz in the
case of Bi2Se3 at the N� point that disperses to lower energy with increasing wave-
vector in both the N� NM and N� NK directions. Calculations within the PCM confirm
that these branches have vertical shear polarization with atomic displacements
perpendicular to the surface layer. This trend terminates in V-shaped minima at
q � 0:08Å�1 in Bi2Te3 and q � 0:2Å�1 in Bi2Se3, values that correspond to
2kF for each crystal and thus signify the presence of Kohn anomalies [9].

In both cases, the isotropy of the optical phonon branch and its apparent
termination at 2kF can be explained by a scenario involving the DFQ surface states,
in particular, their isotropic Fermi surface. In this scenario, the V-shaped feature
marks the boundary between an operative DFQ screening for q < 2kF and its
suppression above this value, which is a typical signature of a Kohn anomaly. Lattice
dynamics calculations reveal some bulk penetration of vertical shear modes for
q > 2kF reflecting a diminished role of DFQ screening and more compatibility with
the insulating bulk. Indeed, scattering events with a momentum transfer greater than
the diameter of the Fermi surface require energy, and are therefore suppressed. This
is manifest as the recovery of the optical phonon branch dispersion after q D 2kF.
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Fig. 6.5 Diagram showing the dispersion of the surface DFQs. The spin chirality of the Fermi
surface is depicted by the red arrows. The screening effects of the DFQs can be understood
in terms of the scattering of electrons in the Dirac cone with the momentum transfer supplied
by a phonon. There are two distinct types of transitions: intra-band and inter-band, although the
latter are suppressed by energetic considerations. Note that low-energy intra-band transitions are
confined to a circle of diameter 2kF . Figure from [13]

The effective screening provided by scattering of the DFQs at the Fermi surface is
depicted schematically in Fig. 6.5.

One should also note the absence of surface acoustic phonon modes in both
the measured and computed dispersions of each material. Acoustic phonon modes
with q < 2kF are absent from the dispersion whereas those with q > 2kF

emerge in the form of a z-polarized Rayleigh mode beyond 2kF for both materials.
Three theoretical studies [6, 10, 11] considered the interaction of DFQs with long-
wavelength surface acoustic modes. In all three the strength of the EPC was found
to be quite small, which is actually consistent with my results. As a matter of
fact, they justify the absence of acoustic Rayleigh phonons in HASS data: As
was mentioned in Chap. 3, it is well established [2, 5] that the thermal energy
helium atoms employed in HASS are scattered by the surface electron density about
2–3 Å above the terminal layer of atomic nuclei. Thus, detection of surface phonons
by HASS involves scattering from the phonon-induced surface electron density
oscillations. The results of the three theoretical studies confirm that surface acoustic
phonons are weakly coupled to the surface metallic charge-density (DFQs) so that
the induced density oscillations are effectively suppressed. I also point out that a
recent study using density functional theory [8] has also demonstrated the absence
of long wavelength Rayleigh modes in the phonon dispersion. However, one should
note that the authors’ results are for Bi2Te3 thin films (2–3 QLs) so the connection to
the current slab geometry may be tenuous. Indeed, the study also yields a value for
the average EPC constant that is significantly smaller than the result to be presented
later.
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One may question why there are several measured low-energy events that do not
overlap with any computed surface phonon modes, especially in the case of Bi2Te3.
Upon closer inspection, these events occur mainly near the SBZ boundaries where
there is a large phonon density of states associated with a high concentration of
flat, narrow projected bulk bands. It may be possible that these data points originate
from inelastic events caused by exciting bulk phonon modes via surface resonances.
Alternatively, it is possible that there exist surface phonon modes in those locations
of the SBZ with an oscillator strength below the threshold used in the calculations.

6.2 Calculation of EPC Parameter in the Random Phase
Approximation

In this section I establish the intimate link between the dispersive character of
optical phonon branches exhibiting Kohn anomalies and the surface DFQ state
response to ionic displacements. I then describe the phenomenological model-fitting
approach applied to the experimentally measured dispersion of these optical phonon
branches, and the procedure followed to extract the corresponding EPC function
�n.q/. The construction of the model is carried out with the aid of the Random
Phase Approximation (RPA).1

I start by defining the noninteracting, or free, surface phonons Hamiltonian in
second-quantized form

Hph D
X
q;�

„!.0/q;�

�
b�q;� bq;� C 1

2

�
(6.1)

where b�q;� is the creation operator of a phonon of bare frequency !.0/q;� and branch
index �. The free phonon Matsubara Green’s function of the .q; �/ mode is
defined as

D.0/
� .q; i!n/ D

2
�
„!.0/q;�

�

.i!n/2 �
�
„!.0/q;�

�2 (6.2)

where i!n is the Matsubara “frequency,” which actually has dimensions of energy.
The electronic surface states of Bi2Te3 form a two-dimensional Dirac metal,

whose low-energy physics is well described by the Hamiltonian

Hel D
X

k

 
�

k Œ„ vF Oz � .k � � / � ��  k (6.3)

1The RPA theoretical analysis, including derivation of the Dyson equation and Matsubara phonon
Green function, was developed by Luiz Santos as part of a collaboration with the Chamon group
at Boston University.
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where  k �
�

ck "
c k #

�
is the two-component electron spinor operator at wave-vector

k, vF is the Fermi velocity, � is the Fermi energy (which lies above the Dirac point),
and � D .�1; �2/ is the vector containing the first two Pauli matrices. The Dirac

Hamiltonian (6.3) is diagonal in the helicity basis ‰k D
�
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k

�
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yielding

Hel D
X

k

X
˛D˙

�˛k .�
˛
k /
� �˛k ; �˛k D ˛ „vF jkj � � (6.5)

I consider an interaction between the electron density and the displacement uj

of the jth ion about its in-plane equilibrium position R.0/
j . The displacement uj has

both in-plane and out-of-plane components. The e–p interaction can be generically
written as

Hel-ph D
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X

j

�
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j

�
� uj (6.6)

where �el.r/ D P
�D";# c�� .r/c� .r/ is the electron surface density operator and

�. r�R.0/
j / is a position dependent vector function (with units of energy per length)

characterizing the EPC. The quantities �el, �, and uj are then expanded in reciprocal-
space as
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where N is the number of surface primitive cells, A is the surface area, and Oe�.q/ is
the polarization vector. Substitution in (6.6) leads to the e–p interaction Hamiltonian

Hel-ph D 1pA
X
�D";#

X
k

X
q;�

gq;� c�kCq;� ck;�
�
bq;� C b��q;�

�
(6.7)
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with the e–p coupling

gq;� D
s

N„
2MA!.0/q;�

�q � Oe�.q/ �
s

N„
2MA!.0/q;�

�q;� (6.8)

The dressed Matsubara phonon Green function D� is obtained from the following
diagrammatic equation

 =  + RPA 

D� D D.0/
� C D.0/

�

jg� j2
"

…D� (6.9)

where jg� j2=" represents the vertex interactions with " the dielectric function, and
the RPA bubble is the electron polarization function defined as
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where A is the surface area, and Tr acts on the spin degrees of freedom �; � 0 D"
;#. G.0/ is the noninteracting electronic Matsubara Green’s function with fermionic
Matsubara frequencies �m
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where ˇ � 1=kB T and T� is the imaginary time-ordering operator. Performing the
Matsubara sums in Eq. (6.10) yields
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where �C and �� were defined in Eq. (6.5), nF is the Fermi function, and � is the
angle between wave vectors k and k C q. The factor .1 C cos �/ accounts for the
effect of DFQ chirality introduced by strong spin–orbit coupling. As such, I note
here that the contribution of the spin-orbit interaction to EPC is manifest explicitly
in the polarization, or response, function as well as implicitly in the strong vertex
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interactions. In contrast, a recent study [4] of the EPC in ultrathin Bi films using
density functional perturbation theory reports that the spin-orbit coupling mainly
operates through the vertex terms rather than through the response function. The
difference perhaps arises from the fact that, in TIs like Bi2Te3, the very existence of
DFQs and their chirality is a direct manifestation of spin-orbit coupling, which is
clearly reflected in the response function.

The RPA dielectric function is given by

".q; i!n/ D 1 � vc.q /….q; i!n/ (6.13)

where vc.q / D e2

2"0jqj is the two-dimensional Fourier transform of the electron–
electron Coulomb interaction potential. Solving the diagrammatic equation (6.9)
yields

D�.q; i!n/ D D.0/
� .q; i!n/

1 � D.0/
� .q; i!n/ jgq;� j2 ….q;i!n/
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D 2.„!.0/q;�/

.i!n/2 � .„!.0/q;�/2 � 2.„!.0/q;�/ Q…
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with Q… D jgq;� j2 ….q;i!n/

".q;i!n/
being the phonon self-energy.

After performing the analytic continuation i!n ! ! C i0C, I obtain the
renormalized frequencies as the real part of the poles of D�.q; !/

.„!q;�/
2 D .„!.0/q;�/

2 C 2.„!.0/q;�/ Re
� Q….q; !q;�/

	
(6.15)

Re
� Q….q; !q;�/

	
is then adjusted to reproduce the measured phonon dispersion. It

depends on the two parameters �k and �? that appear in the coupling function �q;� ,
which lie in the sagittal-plane with directions parallel and normal to the wave-vector
q, respectively. In view of the near constancy of the ionic screened potential V.q/
for q � 2kF, and the fact that the electron–phonon coupling involves the gradient of
a screened potential, I write

�q;� D �? C q

2kF
�k (6.16)

A more detailed definition of these couplings can be found elsewhere [12]. The
values of the bare phonon frequency !.0/ and kF are extracted from experimental
results. The former is identified as the experimental value of !.q D 0/, where the
DFQ response vanishes, while 2kF was set as the wave-vector where the V-shaped
Kohn anomaly occurs. A summary of these parameters for both Bi2Te3 and Bi2Se3
can be found in Table 6.1.
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Table 6.1 Parameters used
in the RPA calculation

Bi2Te3 Bi2Se3
�k (eV Å) 108 65

�? (eV Å) 71 50

!.0/ (THz) 1.4 1.8

kF (Å�1) 0.04 0.1
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Fig. 6.6 Panel (a) depicts the experimental data along both high-symmetry directions in the SBZ
collapsed to a single axis along with the RPA calculation of the dressed phonon frequencies. The
EPC function is depicted in panel (b). Note the increase in coupling with increasing wave vector
and sudden termination at 2kF where the DFQ response vanishes. Figure from [13]

After fitting Re
� Q….q; !q;�/

	
to the experimental dispersion curve, the corre-

sponding Im
� Q….q; !q;�/

	
is obtained by a Kramers–Kronig transformation
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Finally, the EPC function is obtained from the relation [1, 3, 7]

��.q/ D � ImŒ Q….q; !q;�/�

�N .EF/.„!q;�/2
(6.18)

where N .EF/ is the density of electronic states at the Fermi surface. The mode-
specific EPC function for Bi2Te3 is shown in Fig. 6.6, with similar results holding
for Bi2Se3. One can average over the wave vector and branch index dependence of
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the EPC function to obtain

N� D
X
�

1

�.2kF/2

Z 2kF

0

Z 2�

0

��.q/ qdq d	 D
X
�

1

2k2F

Z 2kF

0

��.q/ qdq (6.19)

which is useful when comparing to values in the literature determined from electron
spectroscopy measurements, where the information regarding � and q is lost. In the
present case the data depicts only one phonon branch experiencing renormalization,
so the sum contains a single term. Performing this integral for each material I find
N�Te � 2 and N�Se � 0:7.

References

1. P.B. Allen, Neutron spectroscopy of superconductors. Phys. Rev. B 6, 2577–2579 (1972)
2. G. Benedek, M. Bernasconi, K.P. Bohnen, D. Campi, E. Chulkov, P.M. Echenique, R. Heid,

I.Y. Sklyadneva, J.P. Toennies, Unveiling mode-selected electron–phonon interactions in metal
films by helium atom scattering. Phys. Chem. Chem. Phys. 16, 7159–7172 (2014)

3. W.H. Butler, F.J. Pinski, P.B. Allen, Phonon linewidths and electron–phonon interaction in Nb.
Phys. Rev. B 19, 3708–3721 (1979)

4. V. Chis, G. Benedek, P.M. Echenique, E.V. Chulkov, Phonons in ultrathin Bi(1 1 1) films: role
of spin-orbit coupling in electron–phonon interaction. Phys. Rev. B 87, 075412 (2013)

5. D. Farias, K.-H. Rieder, Atomic beam diffraction from solid surfaces. Rep. Prog. Phys. 61(12),
1575 (1998)

6. S. Giraud, R. Egger, Electron–phonon scattering in topological insulators. Phys. Rev. B 83,
245322 (2011)

7. G. Grimvall, The Electron–Phonon Interaction in Metals (North-Holland, Amsterdam, 1981)
8. G.Q. Huang, Surface lattice vibration and electron–phonon interaction in topological insulator

Bi2Te3 (111) films from first principles. Europhys. Lett. 100(1), 17001 (2012)
9. W. Kohn, Image of the fermi surface in the vibration spectrum of a metal. Phys. Rev. Lett. 2,

393–394 (1959)
10. S.D. Sarma, Q. Li, Many-body effects and possible superconductivity in the two-dimensional

metallic surface states of three-dimensional topological insulators. Phys. Rev. B 88, 081404
(2013)

11. P. Thalmeier, Surface phonon propagation in topological insulators. Phys. Rev. B 83(12),
125314 (2011)

12. X. Zhu, L. Santos, R. Sankar, S. Chikara, C. Howard, F.C. Chou, C. Chamon, M. El-Batanouny,
Interaction of phonons and dirac fermions on the surface of Bi2Se3: a strong Kohn anomaly.
Phys. Rev. Lett. 107, 186102 (2011)

13. C. Howard, M. El-Batanouny, R. Sankar, F.C. Chou, Anomalous behavior in the phonon
dispersion of the (001) surface of Bi2Te3 determined from helium atom-surface scattering
measurements. Phys. Rev. B 88, 035402 (2013)



Chapter 7
Translating Between Electron and Phonon
Perspectives

Having analyzed and quantified the DFQ–phonon interaction from the phonon
perspective, I will now turn to the electron perspective. In this chapter I will
show that the interaction Hamiltonian in Eq. (6.7) modifies the DFQ energies and
lifetimes much like we have already seen in the case of the surface phonons. The
matrix elements gq;� of the interaction Hamiltonian along with the dressed phonon
propagator, both of which have already been determined from the phonon data,
can be used as input to a Matsubara Green function formalism to calculate the
modifications to the electron dispersion. I will present calculations of the DFQ
spectral function for Bi2Te3, confirm the self-consistency of the approach, and
discuss implications of the translation process.

7.1 Motivation

In studying DFQ-phonon coupling on the surfaces of topological insulators one can
choose to probe either the electronic or vibrational (phonon) states and look for
signatures of said coupling in the obtained spectra. Whereas the phonon spectra are
usually probed using HASS or EELS, electronic eigenstates are traditionally probed
via ARPES. Recent ARPES experiments have yielded widely varying estimates of
the electron–phonon coupling parameter N� on the surfaces of topological insulators
[1–4]. Without a way to connect the results originating from different spectro-
scopies, it is difficult to come to a consensus on the correct value. In the following
sections I show that it is possible to connect the results of these experiments by
determining the DFQ spectral function using information from measured phonon
spectra. Signatures of the coupling present in the surface phonon dispersion curves
can then be directly traced to modifications to the DFQ spectral function close to
the Fermi energy. Determining N� from the calculated electron spectral function

© Springer International Publishing Switzerland 2016
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Interactions on the Surfaces of the Topological Insulators Bismuth Selenide and
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yields values consistent with the phonon spectroscopy results presented in Chap. 6
as well as recent high resolution ARPES data [4]. This novel methodology allows
for effective translation between existing experimental methods and should usher in
a consensus about the magnitude of the EPC on surfaces of topological insulators.
Moreover, the formalism is not exclusive to phonons and can be used to examine
other bosonic couplings in a variety of condensed matter systems.

7.2 DFQ Self-Energy Formalism

The DFQ–phonon interaction described in Eq. (6.7) modifies the DFQ propagator.
It can be determined by evaluating the following expression

G.k; �;T/ D � 1
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�

k.0/
iE

(7.1)

where A is the surface area, gq is the electron–phonon matrix element of the optical
phonon branch identified in Chap. 6, ˇ � 1=kBT , D.q; �1 � �2/ is the phonon
propagator, c�k; ck are the electron creation and annihilation operators, respectively,
and T� is the imaginary time-ordering operator. In the following analysis I neglect
the weak direct Coulomb interactions in the DFQ system on the TI surface. This
is warranted by the fact that TIs possess large dielectric constants ( > 50)
and Fermi velocities � 105 m/s that yield a small effective fine-structure constant
˛ D e2=.„vF/ � 0:05 [5, 6]. Moreover, from a Fermi liquid perspective, the
quasiparticle nature of the DFQs close to the Fermi energy (EF) is well defined
because of their substantially long lifetimes. Since the analysis will focus on a region
˙7meV about EF, the direct electron–electron interactions need not be considered.

Fourier transforming the Matsubara function gives the DFQ self-energy
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i!n � "kCq C !q
C nB.!q/C 1 � nF."kCq/

i!n � "kCq � !q

�
(7.2)

where !n is the Matsubara “frequency,” !q is the optical phonon energy at
wavevector q, "k is the bare DFQ energy at wave vector k, nB is the Bose–Einstein
distribution, and nF is the Fermi–Dirac distribution. Full details of the derivation of
Eq. (7.2) can be found in Appendix A. To get a qualitative sense of what this function
embodies it is worth briefly examining each of the terms, which can be interpreted in
terms of virtual and real phonon emission processes. Examining the first term, then



7.2 DFQ Self-Energy Formalism 57

at zero temperature the numerator is only finite if jk C qj < kF, so the intermediate
state is a hole. The pole in the first term occurs at "kCq �!q, corresponding to a state
of one hole less one phonon. Thus, one may interpret this term as the energy shift
that results from the adsorption of virtual phonons by holes. Moving to the second
term, one sees that the numerator is only finite if the intermediate electron state is
empty, i.e. jkCqj > kF. Furthermore, the poles of the second expression are located
at energies "kCq+!q, which is the energy of an electron of momentum k C q and
an emitted phonon of momentum q, so the second process corresponds to phonon
emission by an electron.

Moving forward, I shall use the dispersion curve and phonon matrix elements

!q D B � C

�
q

kF

�2

ˇ̌
gq

ˇ̌2 D D

�
1C F

q

kF

�
(7.3)

where kF D 0:04Å�1 is the Fermi wavevector, B D 6:01meV, C D 0:55meV,
D D 8:08 � 105 meV2Å2, and F D 1:52. These values were obtained by fitting
the HASS data of the renormalized optical phonon branch in Bi2Te3. Analytically
continuing and replacing the sum by an integral, one obtains
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with the imaginary part given by
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I first determine Im Œ†.k; !;T/� numerically (see Appendix B) and then obtain
Re Œ†.k; !;T/� via the Kramers–Kronig relations. Finally, I obtain the DFQ spectral
function as

A.k; !;T/ D 1

�

jIm Œ†.k; !;T/�j
.! � „ v0.jkj � kF/ � Re Œ†.k; !;T/�/2 C Im Œ†.k; !;T/�2

(7.6)

where ! is measured from EF D „v0kF and I have used "k D „ v0.jkj � kF/ for the
nominal dispersion of the DFQs above the Dirac point. Here, v0 D 4 � 105 m/s is
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the Fermi velocity in the absence of interactions. The determination of A.k; !;T/
allows direct comparison of the quasiparticle energy dispersion and state broadening
with experimental results obtained by ARPES measurements. The Lorentzian nature
of the spectral function underscores the notion that Im Œ†.k; !;T/� modifies the
lifetime of the quasiparticle states (as evidenced by the finite line width) while
Re Œ†.k; !;T/� shifts the dispersion by modifying the poles of the expression.
Moreover, the density of DFQ states per unit area

N .!;T/ D 1

.2�/2

Z
dk A.k; !;T/ (7.7)

allows for comparison with experimental results of ARPES energy distribution
curves (EDCs) and scanning tunneling spectroscopy (STS).

7.3 Computational Results

For a fixed temperature,†.k; !;T/ is a function of energy and wave vector. Thus, in
order to evaluate this function I set up a fine computational grid in this 2D space and
calculated Im Œ†.k; !;T/� at every point on the grid, resulting in a smooth surface.
I then performed a Kramers Kronig transformation at every value of energy and
wave vector to calculate the surface corresponding to Re Œ†.k; !;T/�. The results
for T D 0:01EF � T1 are shown in Fig. 7.1. This procedure was repeated for several
different temperatures. Results at all temperatures indicate that both components of
the DFQ self-energy depend only mildly on wave vector, with the most interesting
texture occurring along the energy axis. For this reason, I have taken line cuts at
a specific wave vector values to talk quantitatively about the function’s structure.
Those for T1 and T D 0:04EF � T2 are shown in the left and right halves of
Fig. 7.2, respectively. Noting that the interacting optical phonon band extends from

Fig. 7.1 Imaginary (left) and real (right) components of the DFQ self-energy for T D 0:01EF .
The wave vector and energy axes have been scaled by kF and EF , respectively
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Fig. 7.2 Imaginary and real parts of the DFQ self-energy for Bi2Te3 at T D 0:01EF (a, b) and
T D 0:04EF (c, d). The dashed red lines indicate a linear fit about ! D 0meV, whose slope is
used to determine � via Eq. (7.8). Figure from [11]

3–6.01 meV, the imaginary part experiences a dip in magnitude about EF reflecting
the enhanced lifetime and hence diminished line width of electronic states with j!j
less than the lower band edge. Note that increasing temperature softens this dip by
increasing the population of electrons and holes above and below EF, respectively.
The real part displays the characteristic asymmetric variation across the Fermi level
that effectively shifts the dispersion via Eq. (7.6). One will notice that the variation
in the shift is attenuated at increased temperature as evidenced by the softer peaks
in the real part.

Since reported high-resolution ARPES results were performed at temperatures in
the range T � 7–20K, I shall focus my analysis at the relatively low temperature T1.
With the real and imaginary parts of the self-energy at hand, I present the calculated
spectral function for T1 in Fig. 7.3a where the DFQ band dispersion appears as
the bright yellow curve. The EPC footprint is readily apparent as deviation from
the linear dispersive behavior within ˙7meV of EF, where two kinks appear, one
slightly above and the other below EF, pointing to large velocity renormalization.
Note that the structural details of the kinks are discernible on an energy scale
< 1meV. This energy scale is an order of magnitude smaller than the ARPES
resolutions used in two studies [1, 2], which could account for the fact that no such
deviation in the dispersion was observed in those experiments. The application of
higher resolution in more recent experiments [3, 4] brought some of these features
to light.

Figure 7.3b shows �k.!/, the full-width-half-maximum (FWHM) of the
momentum distribution curves (MDCs), as the white region. Note that �k.!/
increases from 0:2kF at ! D �30meV to 0:28kF at ! D �7meV, where the
lower kink occurs, indicating a gradual increase in the strength of the EPC. The
important observation is that �k.!/ abruptly shrinks, reaching negligible values
above ! D �2meV, and resumes a linear dispersion but with a slower velocity.
In Fig. 7.3a/b this is manifest as dotted features that are the result of infinitesimal,
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Fig. 7.3 Calculated spectral function and momentum distribution curve FWHM�k.!/ for Bi2Te3
at T1 (a, b) and T2 (c, d). The white space in panels (b, d) is used to indicate �k.!/. Figure
from [11]

or delta-function-like, line widths that follow the discrete computational grid. The
collapse in the peak width signals the absence of DFQ coupling to phonons. This
termination of the coupling is consistent with the observation that the DFQs interact
strongly with low-lying optical phonon modes, whose lower band-edge occurs at 3
meV, as reported in HASS data. Unlike acoustic phonons, the interaction does not
extend to infinitesimal energies close to EF, which is why �k.!/ is suppressed in
the region � ˙2meV.

I am now in position to determine N� from the electron perspective in two distinct,
albeit equivalent ways. In the first method, I apply the definition [7, 8]

N� D �@Re Œ†�

@!

ˇ̌̌
!DEF

(7.8)

that has traditionally been used for metallic surfaces. The dashed red lines in Fig. 7.2
show a linear fit to ReŒ†� at EF, allowing us to determine N� from the slope. The
alternative approach utilizes the relation
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N� D v0

vF
� 1 (7.9)

where vF is the EPC renormalized Fermi velocity obtained from the slope of our
dispersion curves at EF and v0 is the un-renormalized value. Both definitions yield
N� D 2, which is consistent with results from phonon spectroscopy. As a matter of
fact the two definitions can be connected as follows: The dispersion curve is defined
as the maximum in A.k; !/ at fixed !. Equation (7.6) indicates that this maximum
occurs when

! � ".k/ � Re Œ†� D 0 (7.10)

Here, we made use of the fact that Im Œ†� has a very weak dependence on k, as it
always does. Now, we write

@!

@k

ˇ̌̌
!DEF

D vF

D
�
@"

@k
C @Re Œ†�

@!

@!

@k

�ˇ̌
ˇ
!DEF

D v0 � N�vF (7.11)

which produces Eq. (7.9).
This expression evokes an analogy between the relativistic DFQs propagating on

a TI surface and light traveling in a dielectric medium, which helps illuminate the
physical meaning of N�. First, we note that the nominal linear dispersion of the DFQs
reflects their massless character, invalidating the application of the conventional idea
of mass enhancement as defined by m�=m D 1CN� to TIs. Instead, it is appropriate to
interpret N� as a velocity renormalization factor via v0=vF D 1C N�. We note that this
is totally consistent with, and actually more fundamental than the previous relation,
to which it simplifies when applied to parabolic energy bands. Thus, N� provides a
measure of the renormalization of the group velocity of the DFQs near the Fermi
energy, much like the index of refraction does for light in a dielectric medium. Just
as light slows down when propagating through matter, the DFQs near the Fermi
energy are slowed by their interactions with the phonon gas.

At this point it is appropriate to present the effects of increased temperature on
the spectral function at T2. The results are plotted in Fig. 7.3c/d. One can discern
dramatic differences between the spectral functions at the two temperatures. First,
the T2 spectral function displays enhanced line broadening as compared with the
T1 spectral function. More importantly, it also exhibits a much smaller deviation
from the nominal linear dispersion compared to its T1 counterpart, emphasizing
the fact that high resolution and cryogenic temperatures are required for adequate
observation of the EPC manifest features in ARPES measurements. Indeed, I find a
significantly higher vF at T2, yielding a markedly lower value of N� when applying
Eq. (7.9). In Fig. 7.4 I present the calculated values of N� at several temperatures,
including T1 and T2. Note that the strong variation of N� with temperature casts
doubt on the applicability of a linear interpolation of the temperature dependence
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Fig. 7.4 The temperature dependence of the electron phonon parameter. After initially increasing
in the region 0 � T

EF
� 0:01, the value of N� begins to fall with temperature. Figure from [11]

of ImŒ†.! D EF;T/� to extract an estimate of N� via the relation ImŒ†.! D
EF;T/� D � N�kBT [7]. This method assumes N� is constant over the temperature
range of interest, which Fig. 7.4 shows is clearly not the case.

Another noteworthy feature in my results is the DFQ density of states and
its derivative, which I present for T1 in Fig. 7.5. Manifestations of the electron–
phonon interactions are clearly seen when comparing the density of states in the
absence of interactions, depicted by the dashed red line, with that in the presence
of interactions, shown as a blue curve, in Fig. 7.5a. Moreover, when the density of
states is multiplied by the Fermi function a peak-dip-hump structure appears below
EF, in agreement with recent EDC spectra [4]. Additionally, a dip-peak-dip-peak
in dN=d! appear at �8meV, �2meV, 0 meV, and C3meV, respectively, which
are consistent with d2I=dV2 STS measurements by Madhavan’s group (Private
communication). The readily apparent texture in the density of states calculation
suggests that STS is a valuable tool for observing signatures of EPC on the surfaces
of TIs.

7.4 Additional Supporting Results

In the previous section I provided a detailed mathematical framework allowing me
to translate between phonon and DFQ spectra for the particular case of Bi2Te3.
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Fig. 7.5 (a) The density of states per unit area N .!/ obtained from the calculated spectral
function at T1. The dashed red line depicts the non-interacting density of states. (b) N .!/
multiplied by the Fermi function for comparison with EDCs measured by ARPES. (c) dN=d!
for comparison with d2I/dV2 STS spectra. Figure from [11]

Calculating N� from the DFQ perspective via Eqs. (7.8) and (7.9) yielded results con-
sistent with the calculation from the phonon perspective presented in Chap. 6, and
hence demonstrated the self-consistency of the approach. Indeed, this is guaranteed
by the fact that we used the same phonon dispersion !q and matrix elements gq;�
extracted from the surface phonon measurements. It is crucial to compare my results
with those obtained experimentally to see if there is actually agreement between my
calculations and experimental evidence from the DFQ perspective. I have already
mentioned two experiments performed on Bi2Te3, one using ARPES [4] and another
using STS (Private communication), that show agreement with our calculations of
the spectral function, energy distribution curves, N�, and density of states curves.

However it is worth noting that there are two additional experiments performed
on Bi2Se3 that also agree with my experimental evidence from Chap. 6. The first
came from an experiment [9] that showed a thermally activated coupling in transport
measurements performed on the Bi2Se3 surface. The authors demonstrate that their
results indicate a coupling to a single optical phonon of frequency � 1:90THz.
Additionally, an even more recent experiment [10] employing time-resolved ARPES
has provided evidence of coupling to a surface optical phonon of with frequency
� 2:05THz. Both of these values agree with my measurement of 1:80THz for the
optical phonon frequency of Bi2Se3 at the N� point in the SBZ when experimental
uncertainty is taken into account. Thus, over the past 2 years there have emerged
several high-resolution experiments probing the surfaces of these TIs from the
electron perspective and yielding results consistent with my HASS measurements.
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Chapter 8
Conclusion and Future Directions

Having presented the totality of my research and findings, I will use this chapter
to conclude my dissertation. First, I will present a brief summary of my work and
discuss its implications. Then I will move on to discuss the future research direction
for the Boston University Surface Laboratory.

8.1 Summary

The main experimental achievement of my research was measuring the surface
phonon dispersion of both Bi2Se3 and Bi2Te3 using HASS. In order to deter-
mine the symmetry and polarization of the measured data, I used the PCM to
fit the experimental data. This procedure yielded a comprehensive exposition of
the surface phonon dispersion along the high-symmetry directions in the SBZ.
Two fascinating anomalies, common to both materials, were discovered in the
surface phonon dispersion. First, the ubiquitous Rayleigh surface acoustic wave
is absent in the experimental data and PCM calculations of the surface phonon
dispersions for both Bi2Se3 and Bi2Te3. This experimental observation points to
a potentially attractive device application for topological insulators. Specifically,
this property in topological insulators appears to inhibit interfacial sound wave
transmission, they could potentially be used in devices designed for soundproofing.
Moreover, the surface phonon dispersions of both Bi2Se3 and Bi2Te3 exhibit a
z-polarized optical mode centered at the N� point that disperses to lower energy with
increasing wave vector along both high-symmetry directions of the SBZ. This mode
softening terminates in a V-shaped minimum at a wave vector corresponding to 2kF,
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constituting a Kohn anomaly, which I have attributed to the interaction between
the surface phonons and DFQs. This evidence is crucial for understanding the
coupling between the vibrational and electronic degrees of freedom at the surfaces
of topological insulators and assessing their viability for applications in spintronics
and quantum computing.

In addition to my experimental work I was able to quantify the aforementioned
coupling by calculating the mode-specific DFQ-phonon coupling parameter �.q/
using a phenomenological model based within the random phase approximation.
This constitutes the first time that such detailed information has been extracted from
phonon dispersion measurements. I also successfully translated the signatures of
EPC present in my measured phonon spectra for Bi2Te3 (namely, the prominent low-
lying optical modes and the associated Kohn anomaly) to the electron perspective
using a Matsubara Green function framework. In doing so, I showed how anomalies
in the surface phonon dispersion originating from EPC can be translated into
modifications of the DFQ dispersion about the Fermi level. My results indicate that
the signatures of the EPC occur on an energy scale of about 1 meV and are strongly
temperature dependent. These findings set the necessary experimental resolutions
and appropriate methods for quantifying the EPC from the electron perspective.
Calculations of the averaged EPC parameter N� from both the phonon and electron
perspectives consistently yield the same results, underscoring the reliability of
my approach. Perhaps most importantly, the translation process demonstrated in
this dissertation provides a method for connecting the results of phonon and
photoemission spectroscopy experiments, which should help usher a consensus on
the true value of N�. Finally, the Matsubara formalism used in the translation process
is quite general and be extended to other bosonic couplings besides phonons.

8.2 Future Work

The metallic surface states of TIs are guaranteed to exist provided TRS is unbroken
and, as I have shown in this dissertation, are involved in a plethora of interesting
physics. However, TIs are not the only materials that exhibit symmetry-protected
Dirac-like states at their surfaces. As was mentioned in the introduction, initial
theoretical predictions and subsequent experimental verification have shown that
there exists a different class of topologically non-trivial insulators whose metallic
surface states are protected by mirror symmetry rather than TRS. These materials
have been coined topological crystalline insulators or TCIs. One set of potentially
interesting candidates are the alloys Pb1�xSnxX (XDSe,Te), whose transition from
the trivial to topological regime can be driven by both temperature and Sn
concentration. A schematic of the band inversion is shown in Fig. 8.1, which depicts
the evolution of the bulk bandgap with varying Sn concentration.

The ability to control the presence of the DFQs on the surface via a crystal growth
technique is quite attractive. For one, it is far simpler than breaking TRS in the case
of TIs and allows one to study the physics when DFQs are both present and absent
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Fig. 8.1 Diagram showing that the appearance of Dirac surface states in Pb1�xSnxX can be
controlled by varying the Sn concentration. Image from [1]

from the surface. Additionally, although the mechanism is still not understood,
temperature appears to play an important role in driving the band inversion in
Pb1�xSnxSe and therefore can also be used to control the appearance of the surface
states. Figure 8.2 shows the interplay between temperature and Sn concentration in
controlling the band inversion.

Crystalline Pb1�xSnxSe adopts the rocksalt structure and therefore possesses a
square SBZ. Unlike the case of TIs, the TCI Pb1�xSnxSe possesses an even number
(four) of Dirac cones in the SBZ. Each cone is offset slightly from the X point and
therefore the surface electronic structure is comprised of many double Dirac cones.
As in the case of TIs, these Dirac cones also possess spin texture.

Above and below the Dirac point the double Dirac cones hybridize to create a
more complicated structure. This includes the presence of a saddle point, which
leads to a dramatic change in the Fermi surface. To illustrate this, Fig. 8.3 shows the
evolution of the Fermi surface as the chemical potential is tuned upward relative to
the Dirac point.

One can see that for energies close to the Dirac point, the two cones are
independent and the Fermi surface consists of two distinct circles. However, upon
crossing the saddle point, the Fermi surface transforms into an ovular shape with a
hole pocket inside. This abrupt change in the Fermi surface topology is known as a
Lifshitz transition and could lead to interesting physics on these surfaces. Lastly,
there is recent evidence [3] that a spontaneous lattice distortion on the surface
breaks reduces the mirror symmetry and gaps out one of the Dirac cone pairs while
preserving the other.

I have already shown that the Dirac surface states in the TIs Bi2Se3 and Bi2Te3
couple strongly to the surface phonons and lead to anomalies in their dispersion. In
TCIs there is an even richer electronic structure with multiple double Dirac cones, a
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Fig. 8.2 Plot showing how the band inversion in Pb1�xSnxSe is affected by temperature and Sn
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indicate the topological phase. Image from [2]

Lifshitz transition, and a surface lattice distortion. An interesting and worthwhile
endeavor for the Boston University Surface Laboratory would be to perform
measurements of the surface phonon dispersion of Pb1�xSnxSe looking for unique
signatures of EPC and how they change when modifying the surface electronic
environment. In particular one could control the presence of the DFQs with
temperature or Sn concentration and examine how the surface phonon dispersion
changes as a result. Additionally the Lifshitz transition creates the possibility of
changing scattering pathways by manipulating the required momentum transfer of
the phonon as depicted in Fig. 8.4. Perhaps it is possible to map anomalies in the
phonon dispersion at a particular wave vector q to particular electronic transitions
and seeing how those anomalies change when varying the chemical potential.

At this point it should be obvious that both TIs and TCIs are host to fascinating
metallic surface states whose presence is dictated by topology rather than order. This
fact makes them particularly robust in the face of certain perturbations and therefore
makes them attractive for device applications. However a thorough understanding
of these Dirac states and their interaction with the ion dynamics is necessary
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Fig. 8.4 Diagram depicting how the change in Fermi surface topology depicted in Fig. 8.3 can
affect the phonon scattering processes

before they can be made technologically useful. This will require a combination of
theoretical modeling, computation, and experimental evidence provided from both
the phonon and electron perspectives. Only then can we hope to move topological
materials from the laboratory to the marketplace.
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Appendix A
Supplemental Material for Electron
Self-Energy Analysis

A.1 Electron Green’s Function

The process of going from Eqs. (7.1)–(7.2) is not obvious and requires a thorough
explanation which I present here. Beginning with the expression for the dressed
electron propagator

G.k; �;T/ D � 1
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(A.1)

one can apply Wick’s theorem and the canonical commutation relations for the elec-
tron creation and annihilation operators to reorder them in the vacuum expectation
value at the expense of additional terms. This yields
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Now one can express the vacuum expectation value as a sum of products of non-
interacting electron Greens functions.
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At this point one can perform a Fourier transform in imaginary time to yield
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Each term in the integral will be analyzed separately. Starting from the beginning
and omitting both the sum and area prefactor for clarity I have
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At this point the propagators remaining inside the integral are expressed using their
Matsubara frequency Fourier transforms. Notice also that momentum conservation
requires k2 D k1 C q
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The oscillating phase in the integral collapses the sum so that only the term with
!l D �� C !m survives. I also use the identities
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The second term in the integral has the form
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Proceeding in the same manner as before yields
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Moving on to the third term I have
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Continuing for the fourth I have
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Evaluating the fifth yields
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And finally for the sixth I have
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Plugging all these results back into the expression for the dressed electron
propagator leaves one with
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To simplify this expression I first perform the sums over the bosonic frequencies
(that is the sums over �) as described in (A.2). Doing so yields
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At this point I could continue to evaluate the remaining fermionic sum over
m. However, for my purpose here it is unnecessary. Note that the diagram for the
DFQ self energy, much like the phonon self-energy, requires two external fermion
lines with momentum k and energy ! (or rather i!n since I have not yet performed
analytic continuation). The only term in (A.15) that satisfies this requirement and
accounts for the creation and annihilation of phonons is the final sum. Taking into
account the fact that the external fermion lines are not included in the expression for
the self-energy †.k; i!n;T/ it can be immediately identified as
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where the factors 1
2

�
1 C Ok � 1k ˙ q

�
have been added by hand to account for the

spin chirality of the DFQs at the Fermi surface. This expression can be simplified
by realizing that, because the sum is over all q, the k C q and k � q terms contribute
equally. This leaves
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which reproduces Eq. (7.2).

A.2 Bosonic Sums

The Bosonic sums of the previous section have the form

X
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(A.18)

To evaluate them I replace the sum by a contour integration circling the imaginary
axis using the g function with poles of residue 1 at the bosonic frequencies.

g.z/ D ˇ
1

eˇz � 1 (A.19)
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Fig. A.1 The analytic
continuation procedure in the
complex z-plane where the
Matsubara function defined
for z D !n goes to the
retarded or advanced Green’s
functions defined
infinitesimally close to real
axis
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I then express the h function in the following manner
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This function has three poles, two at z D ˙!q and one at z D ˙."kCq � i!n/

(Fig. A.1).
Deforming the contour to infinity while avoiding the crossing of these singulari-

ties leads one to the conclusion that the Matsubara summation is equal to �1 times
the sum of the residues of the product gh at these three poles. The minus sign comes
from the fact that the contour now circulates clockwise around the three poles. The
residues are
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Since expŒ˙iˇ!n� D �1 for fermionic frequencies !n
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However, noting that

nB.�x/ D �1 � nB.x/; and nF.�x/ D 1 � nF.x/ (A.24)

I obtain the same results for either form of the sum, namely
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Appendix B
Numerical Evaluation of the DFQ Self-Energy

The analysis of the DFQ self-energy in Appendix A yields the complex function
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(B.1)

where k is the DFQ wave vector, q is the phonon wavevector, gq is the electron-
phonon matrix element, !q is the phonon energy, i!n is the Matsubara frequency of
the DFQs, "k is the nominal dispersion of the DFQ states, and nB and nF are the Bose
and Fermi distributions, respectively. Knowledge of both the real and imaginary
parts of †.k; i!n;T/ is necessary to calculate the DFQ spectral function. This
appendix details the manner in which the real and imaginary parts were evaluated
computationally.

Performing analytic continuation (i!n ! ! C i�) allows one to write
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At this point I convert the sum to an integral by using the transformation

X
q
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dq (B.3)
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and employ the principal value theorem
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to arrive at the imaginary part of the expression
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B.1 Hole Term

B.1.1 Above Dirac Point

I will begin by concentrating on the first term in the expression above. From this
point on I will make the small but important substitution ! ! „! and !q ! „!q.
Thus ! and !q now have the conventional unit of frequency. Also, recall that above
the Dirac point one can write the DFQ dispersion as "kCq D „v0.jk C qj � kF/.
Note that the delta function requires its argument to be zero in order to yield finite
results. Thus I am interested in the case

f .cos'0/ D „! � „v0
p

k2 C q2 C 2kq cos '0 C „v0kF C „!q D 0 (B.6)

Defining z � cos', � � !=v0, and �q � !q=v0 I can express this condition as

z0 D .�C�q C kF/
2 � k2 � q2

2kq
(B.7)

where the subscript on z indicates that it is the value that satisfies the delta function.
Since z is bounded by -1 and 1, I am led to the restrictions

.k � q/2 � .�C�q C kF/
2 .�C�q C kF/

2 � .k C q/2 (B.8)

Taking the square roots and being careful with the signs yields four possibilities for
each inequality

.k � q/ � .�C�q C kF/ .�C�q C kF/ � .k C q/

.k � q/ 
 �.�C�q C kF/ .�C�q C kF/ 
 �.k C q/
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�.k � q/ � .�C�q C kF/ �.�C�q C kF/ � .k C q/

�.k � q/ 
 �.�C�q C kF/ �.�C�q C kF/ 
 �.k C q/ (B.9)

In each column there are four inequalities but only two are unique. Between the two
columns, then, I arrive at a total of four inequalities that I present below in terms of
Heaviside-Theta functions.
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If these four conditions are not met, then the delta function is not satisfied, so I write
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Now I evaluate the derivative f 0.z/
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and find

f 0.z0/ D � „v0kq

�C�q C kF
(B.13)

I can now rewrite the delta function in the more convenient variable z as
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Having simplified the delta function, I now turn to evaluating the chirality factor.
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Its value at z0 can be found by performing the necessary algebra.
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Now I can deal with the Jacobian of the transformation of variables ' ! z

dz D � sin'd'
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keeping in mind that
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At this point I am in a position to rewrite the integral for the first term in Eq. (B.5)
in the variable z. Specifically, I have
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with h.z/ defined as
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The delta function collapses the integral, leaving

� 1

2�

Z
dq q jgqj2 h.z0/q

1 � z20

(B.21)
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Plugging everything in I arrive at
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�
�

1

eˇ„v0�q � 1
C 1

eˇ„v0.�C�q/ C 1

�

�‚.�C�q C kF � k C q/‚.k � q C�C�q C kF/

�‚.k C q ����q � kF/‚.�C�q C kF C k C q/ (B.24)

which simplifies to

� 1

2�„v0k
Z 2kF

0

dq q jgqj2
s
.k C�C�q C kF C q/.k C�C�q C kF � q/

.q � k C�C�q C kF/.k C q �� ��q � kF/

�
�

1

eˇ„v0�q � 1 C 1

eˇ„v0.�C�q/ C 1

�

�‚.�C�q C kF � k C q/‚.k � q C�C�q C kF/

�‚.k C q �� ��q � kF/‚.�C�q C kF C k C q/ (B.25)
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One will notice that the theta functions require each term in parentheses inside the
radical to be positive, guaranteeing a real value for the integral. The fourth theta
function is somewhat superfluous since, in this regime, � > �kF and all the other
terms are positive quantities.

B.1.2 Below Dirac Point

In the previous analysis I used the dispersion "kCq D „v0.jk C qj � kF/. However,
this is only strictly correct for states above the Dirac point. For DFQ states below
the Dirac point one needs to use a different expression. This subtlety comes from
the fact that jk C qj, being the magnitude of a vector, is inherently positive. Thus,
for states below the Dirac point I instead use "kCq D „v0.�jk C qj � kF/.
One should also notice that in this regime � � �kF. Taking this into account
requires nothing more than carefully repeating the previously outlined steps with
the modified dispersion and keeping track of minus signs. The end result is that the
integral expression in Eq. (B.25) need only be modified by changing the sign on �,
�q, and kF for all instances inside the radical and theta functions (not in the Bose
and Fermi factors). The result is

� 1

2�„v0k
Z 2kF

0

dq q jgqj2
s
.k �� ��q � kF C q/.k �� ��q � kF � q/

.q � k �� ��q � kF/.k C q C�C�q C kF/

�
�

1

eˇ„v0�q � 1 C 1

eˇ„v0.�C�q/ C 1

�

�‚.�� ��q � kF � k C q/‚.k � q �� ��q � kF/

�‚.k C q C�C�q C kF/‚.�� ��q � kF C k C q/ (B.26)

B.2 Particle Term

B.2.1 Above Dirac Point

Recall that the integrals in Eqs. (B.25) and (B.26) only take care of the first term
in Eq. (B.5). I still need to evaluate the second. The two major differences are the
change nF."kCq/ ! 1�nF."kCq/ and the change of sign on !q in the delta function.
I’ll start by analyzing the modification to Fermi occupation term. First, I write

1 � nF."kCq/ D nF.�"kCq/ D 1

e„v0.kF�
p

k2Cq2C2kqz/ C 1
(B.27)
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Now notice that the value of z that satisfies the delta function changes slightly
because of the change in sign of �q. Specifically,

z0
0 D .� ��q C kF/

2 � k2 � q2

2kq
(B.28)

Thus, after the z-integration one can express the Fermi factor as

1

e„v0.kF�p
k2Cq2C2kqz0

0/ C 1
D 1

e��C�q C 1
(B.29)

The rest of the analysis proceeds exactly as before, with only a change of sign
in �q. The final integral expression is

� 1

2�„v0k
Z 2kF

0

dq q jgqj2
s
.k C� ��q C kF C q/.k C� ��q C kF � q/

.q � k C� ��q C kF/.k C q ��C�q � kF/

�
�

1

eˇ„v0�q � 1 C 1

eˇ„v0.��C�q/ C 1

�

�‚.� ��q C kF � k C q/‚.k � q C� ��q C kF/

�‚.k C q ��C�q � kF/‚.� ��q C kF C k C q/ (B.30)

B.2.2 Below Dirac Point

The particle contribution from below the Dirac point can be obtained by making the
exact same transformation to Eq. (B.30) that was made for the holes. For the sake of
brevity I just state the result below.

� 1

2�„v0k
Z 2kF

0

dq q jgqj2
s
.k ��C�q � kF C q/.k ��C�q � kF � q/

.q � k ��C�q � kF/.k C q C� ��q C kF/

�
�

1

eˇ„v0�q � 1 C 1

eˇ„v0.��C�q/ C 1

�

�‚.��C�q � kF � k C q/‚.k � q ��C�q � kF/

�‚.k C q C� ��q C kF/‚.��C�q � kF C k C q/ (B.31)
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B.3 Interband Transitions

At this point I need to address one final subtlety that I have ignored until now.
In all of the analyses presented so far I have assumed that the initial and excited
electronic states were either both above the Dirac point or both below the Dirac
point. However, there does exist the possibility of interband transitions wherein the
initial state lies below the Dirac point and the excited state above, and vice versa.
The only complication I must take care of is the fact that the chirality factor changes
to .1 � Ok � 1k C q/. This reflects the fact that the spin chirality of the Dirac cone
changes when passing through the Dirac point.

It turns out that this introduces two new, albeit very similar contributions to
the integral. The first is an integral expression identical to Eq. (B.30) except with
the upper and lower limits exchanged. Obviously for any given point in the space
spanned by k and � only one of the two integrals will contribute since the other
will have a lower limit whose value is higher than the upper limit, leading to a non-
sensical integration. The second integral is an expression identical to (B.26) with
the upper and lower limits exchanged. The same idea applies here as well.

Thus, with Eqs. (B.25), (B.26), (B.30), and (B.31) along with the matrix elements
in Eq. (6.8), one can evaluate ImŒ†.k; !;T/� numerically on the computer. With the
imaginary part at hand a simple Kramers–Kronig transformation, also implemented
numerically, will yield ReŒ†.k; !;T/�. This is sufficient to then compute the DFQ
spectral function.
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