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Foreword to the Second Edition

With this book we provide graduate students with the mathematical techniques
necessary to solve some basic problems related to the deformation of the Earth by a
variety of geophysical and geological processes involving the rheological behavior
of the mantle. We deal with global processes involving the deformation of the Earth
as a whole, as in rotation dynamics, or, on a smaller scale, with the response of the
planet to the redistribution of surface loads and seismic sources associated with
earthquakes faulting the lithosphere.

When we had the idea for this book, our major concern was to write something
that could be used by students to write their own codes for solving problems in
linear viscoelasticity and, at the same time, to tell them what we have learned in
rotation dynamics and related processes like induced sea-level changes.

Now we realize that we can go beyond the original scope of our work and
consider it as a tool for gaining an in-depth physical insight into the complex
relations among the various processes involving our planet, from surface and deep
mantle processes to rotation instabilities and, eventually, long timescale climate
variability.

In the following decades, major advancements in our understanding of the
dynamics and evolution of the Earth as an integrated system, including a variety of
geophysical processes that affect the life of human beings, will come from joint
efforts in geophysics and geodesy, from a tight link between the mathematical
modeling of geophysical phenomena and the constraints provided by the gravity
field, of its time-dependent and static components at long and short wavelengths,
and by the geodetically detected crustal deformation. Our book provides the
mathematical formulation to establish the link between geophysics and geodesy.

Our book opens up new perspectives on the physics of the Earth’s interior,
looking at our planet in an integrated fashion and focusing on the geophysical and
geodetic techniques that record, over a broad spectrum of spatial wavelengths, the
ongoing modifications in the shape and gravity of the Earth. Basic issues related to
the rheological properties of the Earth’s mantle and to its slow deformation will be
understood, within the framework of an analytical normal mode theory;
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fundamentals of this theory are developed in the first, tutorial part, while a wide
range of applications are considered in the second part. With respect to the first
edition, we improved substantially our formalism for viscoelastic relaxation,
implementing the compressible model, starting from a new analytical compressible
solution that, although within some simplifying assumptions, is a step ahead with
respect to previous ones, allowing the reader to understand some basic aspects of
viscoelastic compressible relaxation. The formalism is now completely
self-contained, and all the aspects from viscoelastic relaxation, Earth’s deformation
at various spatial and temporal scales, rotation, and gravity are now framed within a
unitary self-consistent theory.

Although the first edition contained already some applications to other planets in
our Solar System, notably on Polar Wander, we have added a chapter on defor-
mation and stresses of icy moons. Since the publication of the first edition, we
learned that also planetary scientists have used the theory and models of our book
for solid planets and moons. Many icy moons around Jupiter and Saturn are thought
to possess relatively large shallow low-viscosity zones under their icy crusts, per-
haps even in the form of inviscid water layers. Shallow low-viscosity zones
introduce additional complications in theory and modeling. Apart from this, tidal
interaction is the dominant forcing mechanism for moons around the giant planets
in the Solar System. The reader can find both theory and models for such
tidal-forced objects that have shallow low-viscosity or water layers in Chap. 9.

In the study of the physics of the Earth’s interior, this book bridges the gap
between seismology and geodynamics, making a step ahead in this respect com-
pared to the first edition, by introducing the new physics of the gravitational effects
of large earthquakes at subduction zones, nowadays made possible by the new
gravity data from space missions.

Our hope is of course that not only graduate students but also researchers
working in the fields touched upon by this book may find it useful for their own
work and teaching.

Milan Roberto Sabadini
Delft Bert Vermeersen
Milan Gabriele Cambiotti
February 2016
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Foreword to the First Edition

With this book we provide graduate students with the mathematical techniques
necessary to solve some basic problems related to the deformation of the Earth by a
variety of geophysical and geological processes involving the rheological behavior
of the mantle. We deal with global processes involving the deformation of the Earth
as a whole, as in rotation dynamics, or, on a smaller scale, with the response of the
planet to the redistribution of surface loads and seismic sources associated with
earthquakes faulting the lithosphere.

When we had the idea for this book, our major concern was to write something
that could be used by students to write their own codes for solving problems in
linear viscoelasticity and, at the same time, to tell them what we have learned in
rotation dynamics and related processes like induced sea-level changes.

Now we realize that we can go beyond the original scope of our work and
consider it as a tool for gaining in-depth physical insight into the complex relations
among the various processes involving our planet, from surface and deep mantle
processes to rotation instabilities and, eventually, long time scale climate
variabilities.

In the following decades, major advancements in our understanding of the
dynamics and evolution of the Earth as an integrated system, including a variety of
geophysical processes that affect the life of human beings, will come from joint
efforts in geophysics and geodesy, from a tight link between the mathemati-
calmodeling of geophysical phenomena and the constraints provided by the gravity
field, of its time dependent and static components at long and short wavelengths,
and by the geodetically detected crustal deformation. Our book provides the
mathematical formulation to establish the link between geophysics and geodesy.

Our book opens up new perspectives on the physics of the Earth’s interior,
looking at our planet in an integrated fashion and focusing on the geophysical and
geodetic techniques that record, over a broad spectrum of spatial wavelengths, the
ongoing modifications in the shape and gravity of the Earth. Basic issues related to
the rheological properties of the Earth’s mantle and to its slow deformation will be
understood, within the framework of an analytical normal mode theory;
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fundamentals of this theory are developed in the first, tutorial part, while a wide
range of applications are considered in the second part.

In the study of the physics of the Earth’s interior, this book bridges the gap
between seismology and geodynamics.

Our hope is of course that not only graduate students but also researchers
working in the fields touched upon by this book may find it useful for their own
work and teaching.

Milan Roberto Sabadini
Delft Bert Vermeersen
December 2003
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Chapter 1
Viscoelastic Relaxation Theory, Momentum
and Poisson Equations

Abstract This chapter dealswith the expansion in spheroidal and toroidal harmonics
of themomentumandPoisson equations, for spherical, self-gravitating, stratified, vis-
coelastic planets. For the linear viscoelastic Maxwell rheology, the Correspondence
Principle is considered for obtaining the viscoelastic solution from the equivalent
elastic problem. Both normal mode and complex contour integration techniques are
used for anti-transforming the field from the s-domain to the time domain. Bound-
ary conditions at the surface of the planet, at the core-mantle boundary and at the
internal interfaces between layers of different elastic and density characteristics, are
obtained. Point sources for loads and dislocations, the latter limited to the spheroidal
component for applications to gravitymodeling, are expanded in spherical harmonics
for Green function derivation.

1.1 Rheological Models

In modeling a particular geophysical phenomenon, the choice of the rheology used
depends on (1) mathematical difficulty, (2) the quality of the geophysical data which
the calculations of the model are required to match and (3) our knowledge of the
rheological behavior of themedium at hand. Over the last few decades a considerable
amount of knowledge has been gained about mantle rheology in terms of the values
of rheological parameters and deformation mechanisms. For instance, what is most
important, as far as mantle convection is concerned, is clearly the strong temperature
dependence of the viscosity which the laboratory-derived values of the activation
energy and volume seem to suggest. This intense interest in understanding convec-
tion in a fluidwithmarkedly temperature-dependent viscosity is attested by the recent
fundamental studies by geophysicists using analytical, numerical and experimental
methods. In what follows, however, rather than discussing topics of mantle rheology
and mantle convection, for which we refer to the book by Ranalli (1995), we will
try to address the main questions that are at issue in attempting to study transient
and long time scale geodynamic phenomena in a wide arc of time scales, rang-
ing from years, characteristic of post-seismic deformation, to hundreds of millions

© Springer Science+Business Media Dordrecht 2016
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Relaxation Theory to Solid-Earth and Planetary Geophysics,
DOI 10.1007/978-94-017-7552-6_1

1



2 1 Viscoelastic Relaxation Theory, Momentum and Poisson Equations

Fig. 1.1 Diagram illustrating the relation of the characteristic time scale for several geophysical
phenomena to the Maxwell time τ of the mantle defined as τ = ν1/μ1—with ν1 and μ1 denoting
respectively the steady state mantle viscosity and rigidity—which separates the steady state and the
transient regimes of mantle creep

of years as in the case of true polar wander driven by subduction, making use of
the relaxation theory in viscoelasticity with different models of mantle rheology.
In Fig. 1.1 we sketch the entire geodynamic spectrum spanning the whole range of
phenomenological time scales. One of the key questions is whether one can devise
a constitutive law which can satisfactorily model all these phenomena, from the
anelastic transient regime to the steady-state domain.

The appropriate constitutive relation which is to be employed in analyzing tran-
sient geodynamic phenomena, such as post glacial rebound (PGR) orGlacial Isostatic
Adjustment (GIA), is currently a matter of controversy in geophysics. Advocates of
non-linear rheology (e.g. Melosh 1980) use as supporting arguments the labora-
tory data of single-crystal olivine whose power law index is about three (Goetze
1978; Durham and Goetze 1977). But there is now mounting evidence that at the
stress levels in post glacial rebound (less than 102 bar) the creep mechanism may in
fact be linear for polycrystalline aggregates (Relandeau 1981) since grain boundary
processes, such as Coble creep, may become dominant. There are also recent the-
oretical studies indicating that the power law index changes gradually with stress
and hence the transition stress which marks the boundary between linear and non-
linear behavior is not as sharply defined as has previously been thought (Greenwood
et al. 1980). Indeed, a proper mathematical formulation of the mixed initial and
boundary-value problems associated with non-linear viscoelasticity is a formidable
one, fraught with numerical difficulties. It is also important to note that there is no
unambiguous evidence in either the post glacial rebound event or in other types
of geodynamic data which absolutely requires a non-linear viscoelastic rheology,
in spite of claims to the contrary. For these reasons, geophysicists tend to prefer
the simple linear models in viscoelasticity, which allow for a considerably simpler
mathematical treatment of the dynamics. Moreover, the linear approach also allows
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Fig. 1.2 Mechanical analog
of Maxwell rheology. The
elastic response is governed
by the shear modulus μ1 of
the spring while the
long-term creep is controlled
by the viscosity ν1 of the
dashpot

one to study easily the potentially interesting effects of the interaction between
transient and steady-state rheologies. The simplest viscoelastic model which can
describe theEarth as an elastic body for short time scales and as a viscousfluid for time
scales characteristic of continental drift is that of a linear Maxwell solid. Figure1.2
shows a standard one-dimensional spring and dashpot analog of the Maxwell rheol-
ogy. The speed for shear wave propagation depends on the square root of the instan-
taneous rigidity μ1, whereas the strength of mantle convection depends inversely
upon the magnitude of the steady-state viscosity ν1.

A powerful method of solving transient problems of linear viscoelasticity has
been the use of the Correspondence Principle (Peltier 1974), which allows one to
employ the elastic solution of a given problem in the Laplace-transformed version
of the corresponding viscoelastic problem. The Correspondence Principle for the
Maxwell rheology and viscoelastic relaxation theory is introduced hereafter in this
chapter.

1.2 Mathematics

The following mathematical model describes the response of a self-gravitating
Earth’s model to external forces, loads seated at its surface or interior and dislo-
cations. We will assume that the rheological laws (relating stress to strain and strain
rate) are linear and that the strain is infinitesimal. We do not deal with non-linear
constitutive equations and finite strain theory, but that does not imply that these are
not important for the Earth Sciences. However, for a wide spectrum of solid Earth
relaxation processes, we can neglect both.

For long time scale processes the inertial forces vanish and the conservation
of linear momentum requires that the body force F per unit volume acting on the
infinitesimal element of the continuum body is balanced by the stress acting on the
surface of the element. At any instant of time t , we thus have for the Cauchy stress
tensor σ acting on the infinitesimal element

∇ · σ + F = 0 (1.1)

that is the momentum equation that must be solved within the whole volume of the
Earth.
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The body force F accounts for gravitation due to the Earth, internal and surface
loads, and external bodies responsible for tidal forces. It also accounts for all kinds
of other contributions like centrifugal and seismic forces. We decompose the body
force F into a non-conservative force M (i.e., the equivalent body force for shear
dislocations, Eq. (1.221)) and a conservative force that we express in terms of the
gradient of the potential φ

F = M − (ρ + ρL
)∇φ (1.2)

where ρ and ρL are the densities of the Earth and loads, and the potential φ consists
of the gravitational potentials of the Earth, φE , and loads, φL , and the tidal, φT ,
and centrifugal, φC , potentials. Note that each term in Eqs. (1.1) and (1.2) has the
dimension of N/m3, or force per unitary volume.

φ = φE + φL + φT + φC (1.3)

The gravitational potentials φE and φL are due to the density of the Earth ρ and loads
ρL , respectively, while the tidal potential is due to the density of external bodies ρT .
They satisfy the following Poisson equations

∇2φE = 4π G ρ (1.4)

∇2φL = 4π G ρL (1.5)

∇2φT = 4π G ρT (1.6)

where G is the universal gravitational constant. Note that the density ρT of external
bodies, responsible for the tidal potential φT , does not enter the momentum equation
(1.1) via Eq. (1.2) because, by definition, external bodies do not load the Earth, i.e.,
the balance of forces acting on external bodies does not involve surface forces from
the Earth. The centrifugal potential φC due to the Earth’s rotation is defined by

φC = 1

2

[
(ω · r)2 − ω2 r2

]
(1.7)

where ω and r are the angular velocity of the Earth and the position vector, and
ω = |ω| and r = |r| are the rotation rate and the radial distance from the Earth’s
centre.

The potential φ thus solves the Poisson equation

∇2φ = 4π G
(
ρ + ρL + ρT

)− 2ω2 (1.8)

where the latter term in the right-hand side (RHS) results from the Laplacian of
the centrifugal potential, ∇2φC = −2ω2. Differently from the momentum equation
(1.1), whichmust be solved onlywithin the volume of the Earth, the Poisson equation
(1.8) must be solved also outside the Earth.
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Within the Lagrangian approach, we describe the deformed Earth in terms of
displacements of the particles of the continuum body

r = x + u(x, t) (1.9)

where t is the time, and x and r denote the initial and current positions of the
particle subjected to the displacement u. Following the work of Wolf (1991), we
then introduce the decomposition of scalar, vector and tensor fields into initial fields,
(i.e., the fields at the initial time), and local and material incremental fields

f (r, t) = f0(r) + f �(r, t) (1.10)

f (r, t) = f0(x) + f δ(x, t) (1.11)

where f stands for the generic field. The initial field f0 (denoted with the subscript
0) describes the initial state of the undeformed Earth. The local incremental field f �

(denoted with the superscript �) is the increment of the field at point r with respect
to the initial field at the same position r . The material incremental field f δ (denoted
with the superscript δ) is the increment of the field at point r with respect to the initial
field at point x, which is the initial position of the particle that is currently located
at r , Eq. (1.9).

Local and material incremental fields only differ for the so called advective incre-
mental field, which is the difference between the initial field evaluated at the current
and initial positions of the particle. Particularly, within the assumption of infinitesi-
mal deformations, this difference is a first–order term that cannot be neglected

f δ = f � + u · ∇ f0 (1.12)

This relation holds both in Lagrangian and Eulerian formulations, i.e., when the
incremental fields are functions of the initial and current positions of the particle,
because differences among incremental fields are of the second order and can be
ignored.

Because the undeformed Earth is in non-rotating hydrostatic equilibrium, the
initial potential φ0 is the gravitational potential due to the initial density ρ0, i.e., the
density of the undeformed Earth, and satisfies the Poisson equation

∇2φ0 = 4π G ρ0 (1.13)

Also, the initial Cauchy stress tensor σ 0 is the initial hydrostatic stress

σ 0 = −p0 1 (1.14)

where 1 and p0 are the identity matrix and the initial hydrostatic pressure, entering
with the minus sign according to the convention that stress are positive when they
act in the same direction as the outward normal to the surface. From the momentum
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equation at the initial time, we thus find the condition of non-rotating hydrostatic
equilibrium

−∇p0 − ρ0 ∇φ0 = 0 (1.15)

In the following, we describe perturbations of the Cauchy stress tensor σ in terms
of the material increment

σ (r, t) = −p0(x) 1 + σ δ(x, t) (1.16)

for which the constitutive equations of elastic and viscoelastic materials hold and
are expressed as functions of strain and strain rate. Differently, the natural choice
for perturbations of the total potential φ and the density of the Earth ρ are the local
increments

φ(r, t) = φ0(r) + φ�(r, t) (1.17)

ρ(r, t) = ρ0(r) + ρ�(r, t) (1.18)

Then, in view of Eqs. (1.13) and (1.15) and after substitution of Eqs. (1.2) and (1.16)–
(1.18) into Eqs. (1.1) and (1.8), we obtain the incremental momentum and Poisson
equations

∇ · σ δ + ∇ (u · ∇p0) − ρ� ∇φ0 − ρ0 ∇φ� − ρL ∇φ0 + M = 0 (1.19)

∇2φ� = 4π G
(
ρ� + ρL + ρT

)− 2ω2 (1.20)

in which only first-order terms enter. The first term in Eq. (1.19) describes the con-
tribution from the material incremental stress and the second term accounts for the
advection of the initial hydrostatic pressure

p0(r) = p0(x) + u(x, t) · ∇p0(x) (1.21)

after Eq. (1.15) is applied at r

−∇p0(r) − ρ0(r)∇φ0(r) = 0 (1.22)

The third term describes the buoyancy forces due to density changes (i.e., compress-
ibility), the fourth term describes the gravity perturbations (i.e., self–gravitation) due
to any kind of forcing, and the fifth and sixth terms account for the weight of loads
and non-conservative forces.

For self–gravitating Earth’s models, the local incremental potential φ� must be
obtained self–consistently together with the local incremental density ρ�. This cou-
ples the momentum and Poisson equations, Eqs. (1.19)–(1.20), via the continuity
equation of mass written as

ρ� = −∇ · (ρ0 u) = −ρ0 � − u · ∇ρ0 (1.23)
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Here, the first term of the RHS describes the density perturbation due to the volume
variation � of the particle

� = ∇ · u (1.24)

and the second term the advection of the initial density field. In this respect, the first
term of the RHS of Eq. (1.23) is the material incremental density ρδ

ρδ = −ρ0 � (1.25)

1.2.1 The Linear Maxwell Solid

The equations above need to be supplemented by the constitutive equation describing
how material incremental stress and strain (or strain rate) are related to each other.
Within the first–order perturbation theory, the strain tensor ε is defined by

ε = 1

2

[∇ ⊗ u + (∇ ⊗ u)T
]

(1.26)

where⊗ and T stand for the algebraic product and the transpose. This representation
of the strain tensor is based on the dyadic formulation, following Ben-Menahem and
Singh (2000), and it is equivalent to its usual definition in terms of its Cartesian
components εi j

εi j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
(1.27)

where x1, x2 and x3 are the Cartesian coordinates. The dyadic formulation allows to
deal with stress and strain tensors without choosing a specific coordinate system, and
to obtain general expressions for the gradient and curl of vectors and the divergence
of tensors that hold in any coordinate system. In Appendix A some basic results
of dyadic and vector identities are provided, to which we refer to make easier for
the reader, in particular, the expansion of the momentum equations in spherical
harmonics.

In the following, wewill assume linear and isotropic constitutive equations andwe
focus on the viscoelastic rheology. We also assume that perturbations are isentropic
and isochemical because viscoelastic relaxation processes of the Earth occur on
time scales much smaller than those of heat diffusion and changes in the chemical
composition of the rock. Particularly, we consider the viscoelasticMaxwell rheology
defined by the following constitutive equation

σ δ = κ � 1 + 2 q  ∂tεD (1.28)
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where ∂t and  stand for the partial derivative with respect to time t and the time
convolution

(q  ∂tεD) (t) =
t∫

0

q(t − t ′) ∂t ′εD(t ′) dt ′ (1.29)

and κ , q and εD are the adiabatic bulk modulus, the shear relaxation function and
the deviatoric strain tensor

εD = ε − �

3
1 (1.30)

In this respect, the first and second terms in the RHS of Eq. (1.28) describe isotropic
and deviatoric material incremental stresses, respectively, and, particularly, the factor
κ � multiplying the identity matrix 1 corresponds to the negative of the material
incremental pressure

pδ = −κ � (1.31)

as it can be understood after substitution of Eq. (1.28) into Eq. (1.16).
For the Maxwell solid, the shear relaxation function takes the following form

q(t) =
{

μ exp
(− t

τ

)
t ≥ 0

0 t < 0
(1.32)

where τ is the Maxwell time defined by the ratio between viscosity and rigidity
(Lamé parameter)

τ = ν

μ
(1.33)

By means of the Maxwell rheology, we describe the transition from the elastic to
the Newtonian fluid behavior of the Earth that occurs on the timescale given by the
Maxwell time τ . Despite the constitutive equations of both elastic and Newtonian
fluid bodies relating stress at a given time to only strain and strain rate at that time,
the Maxwell rheology relates the viscoelastic stress at a given time to the whole
strain rate history before that time, as pointed out by the time convolution between
the shear relaxation function and the deviatoric strain rate in Eq. (1.28).

Note that the Maxwell solid does not account for bulk relaxation because the
adiabatic bulk modulus κ is simply a constant. The latter is defined starting from the
differential form of the density state function ρ(p, s, c) that describes the density of
a particle as function of its pressure p, entropy s and chemical composition c

dρ = ∂ρ

∂p

∣∣∣
∣
s,c

dp + ∂ρ

∂s

∣∣∣
∣
p,c

ds + ∂ρ

∂c

∣∣∣
∣
p,s

dc (1.34)

We choose the entropy as thermodynamic quantity rather than the temperature as
we are focusing on isentropic perturbations. By considering the differentials dρ,
dp, ds and dc as perturbations with respect to the initial state of the particle, they
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actually correspond to material incremental fields ρδ , pδ , sδ and cδ . Thus, within the
assumption of isentropic and isochemical pertubations (i.e., for sδ = 0 and cδ = 0),
we obtain

ρδ = ∂ρ

∂p

∣∣∣∣
s0,c0

pδ (1.35)

where the subscript 0 denotes initial fields. By making use of Eqs. (1.25) and (1.31)
into Eq. (1.35), we thus obtain the definition of the adiabatic bulk modulus κ entering
the consitutive equation (1.28) in terms of the partial derivative of the density with
respect to the pressure at the initial state

ρ0

κ
= ∂ρ

∂p

∣∣∣∣
s0,c0

(1.36)

1.2.2 Compressible and Incompressible Earth’s Models

By definition, there are no volume changes � within incompressible materials.
Instead, they occur within compressible materials. This makes differences both in the
style of deformation and in the interpretation of density stratifications at the initial
state of hydrostatic equilibrium.

During the deformations, incompressible materials must be able to react to
isotropic stresses. From Eq. (1.31), we thus require that the bulk modulus κ is infi-
nitely large in order that the incremental pressure pδ remains finite in the limit of �

going to zero and of κ going to infinity (Love 1911, Sect. 154)

pδ = lim
�→0 κ→∞ (−κ �) (1.37)

In this respect, the bulk modulus is sometimes called modulus of incompressibility.
On the contrary, compressible materials are characterized by a finite bulk modulus.

Incompressible and compressible Earth’s models also differ in their initial state
of hydrostatic equilibrium, once the compression of the Earth due to its own weight
(i.e., self-compression) is accounted for self-consistently. To better understand this
issue, let us consider the initial density ρ0 = ρ(p0, s0, c0) as function of the initial
pressure p0, entropy s0 and chemical composition c0 and take its gradient

∇ρ0 = ∂ρ0

∂p

∣∣∣
∣
s0,c0

∇p0 + ∂ρ0

∂s

∣∣∣
∣
p0,c0

∇s0 + ∂ρ0

∂c

∣∣∣
∣
p0,s0

∇c0 (1.38)

Let us also assume that theEarth’smodel is spherically symmetric, an assumption that
wewill adopt later in this book. The initial density, entropy and chemical composition
only depend on the radial distance from the Earth’s centre r and, thus, we have
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∇ρ0 = ∂rρ0 er ∇s0 = ∂r s0 er ∇c0 = ∂r c0 er (1.39)

and, from the condition of hydrostatic equilibrium, Eq. (1.15), the gradient of the
initial pressure yields

∇p0 = −ρ0 ∇φ0 = −ρ0 g er (1.40)

where er and g are the unit vector pointing outward the Earth’s centre and the gravity
acceleration for a spherically symmetric Earth

g(r) = 4π G

r2

r∫

0

ρ0(r
′) r ′2 dr ′ (1.41)

Then, Eq. (1.38) can be arranged as follows

∂rρ0 = −ρ2
0 g

κ
+ γ (1.42)

where γ is the compositional coefficient given by

γ = ∂ρ

∂s

∣
∣∣∣
p0,c0

∂r s0 + ∂ρ

∂c

∣
∣∣∣
p0,s0

∂r c0 (1.43)

Equation (1.42) is named the generalizedWilliamson–Adams equation (Wolf and
Kaufmann 2000; Cambiotti and Sabadini 2010). The first term in the RHS shows
how compressibility, via the bulk modulus κ , characterizes the initial density profile
of the Earth. A finite bulk modulus yields a negative density gradient ∂rρ0 and the
initial density increases with depth accordingly to compression of the Earth due to its
own weight (i.e., self–compression). The second term, the compositional coefficient
γ , takes into account the departure from the self–compression due to non-adiabatic
and chemically heterogeneous stratifications, i.e., when the gradient of the initial
entropy, ∂r s0, and chemical composition, ∂r c0, differ from zero. Their contribution
does not amount to more than 10–20% of the actual density gradient of the Earth
(Birch 1952, 1964; Wolf and Kaufmann 2000) and it occurs likely in the outermost
layers of the Earth, like the transition zone and the lithosphere. The core and the lower
mantle, instead, deviate marginally from the adiabatic and chemically homogeneous
stratification.

Afterwards, we will call compressional stratifications or wewill say that a layer of
the Earth is in a neutral state of equilibrium if the stratification is adiabatic and chem-
ically homogeneous (γ = 0). Instead, we will refer to non-adiabatic and chemically
heterogeneous stratifications (γ �= 0) as compositional stratifications.
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1.2.3 The Correspondence Principle

The Laplace transform of a function f (t) is formally defined by

L[ f ] =
∫ ∞

0
f (t)e−st dt, (1.44)

with L, t and s being the Laplace transform operator, time and Laplace variable
(which has dimension of inverse time). Introducing f̃ (s) = L[ f ] for brevity, it
is straightforward to show that the Laplace transform of the time derivative of the
function f (t) yields

L[∂t f ] = s f̃ (s) − f (0) (1.45)

and that the Laplace transform of the time convolution of two functions f (t) and
h(t) yields the product of the Laplace transforms f̃ (s) and h̃(s)

L[ f  h] = f̃ (s) h̃(s) (1.46)

with  denoting the time convolution operator and s the Laplace variable.
In the followingwewill consider external forcing and loading that act on the Earth

starting immediately after the initial time, at t = 0+, and we restrict our attention on
right-handed functions that differ from zero only for t > 0

f+(t) = f (t) H(t − 0+) (1.47)

Here H(t) is the Heaviside function. It is a discontinuous function, whose value is
zero for negative arguments and one for positive arguments, and its derivative yields
the Dirac delta function δ(t)

∂t H(t) = δ(t) (1.48)

The Laplace transform of the right-handed function f+(t) is the same of the
original function f (t)

f̃+(s) = f̃ (s) (1.49)

while its Laplace transform yields

L[∂t f+(t)] = s f̃ (s) (1.50)

because the second term of the RHS of Eq. (1.45) disappears due to the step-like
discontinuity of f+(t) at t = 0+. From now on, we intend time-dependent functions
describing forcings and perturbations as right-handed functions, even though the
subscript + will be omitted in order to not overwhelm the text.
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Exercise 1 Prove that the time convolution between the exponential e−t/τ , with τ

as a constant (the Maxwell time), and the Heaviside function H(t) yields

e−t/τ  H = τ
(
1 − e−t/τ

)
(1.51)

Exercise 2 Prove that the Laplace transforms of theDirac delta, δ(t), andHeaviside,
H(t), functions and of the exponential e−t/τ yield

L[δ(t)] = 1 L[H(t)] = 1

s
L [e−t/τ

] = 1

s + 1
τ

(1.52)

By making use of Eq. (1.50), the Laplace transform of the constitutive equation
for the Maxwell solid, Eq. (1.28), yields

σ̃ δ
(s) = κ �̃(s) 1 + 2 μ̂(s) ε̃D(s) (1.53)

with μ̂(s) being the following function of the Laplace variable s

μ̂(s) = μ s

s + 1
τ

(1.54)

Note that Eq. (1.53) has the same form of the Hooke’s law for linear elastic solids

σ δ = κ � 1 + 2μ εD (1.55)

where μ̂(s) and the Laplace transforms of the fields are replaced by the shearmodulus
μ and the same fields in the time domain. So we can derive equations for viscoelas-
tic bodies in the Laplace domain from elastic body equations. Particularly, after
Laplace transformation, the momentum and Poisson equations for the viscoelastic
body are formally equivalent to those for the elastic solid. We thus solve the equiva-
lent elastic problem in the Laplace domain and, only at the last stage, wewill perform
the inverse Laplace transform of the solution to obtain the viscoelastic solution in
the time domain. In this respect, we will also refer to the viscoelastic solution in the
Laplace domain as the associated elastic solution.

The so-calledCorrespondence Principle (Peltier 1974;Wu andPeltier 1982) states
that the time dependent viscoelastic solution of the momentum and Poisson equa-
tions can be found in a unique way after the inverse Laplace transformation of the
associated elastic solution. In the light of this analogy between the elastic and vis-
coelastic problems, afterwards we will omit the tilde to denote Laplace transforms
and we do not distinguish between the shear modulus μ and the function μ̂(s),
Eq. (1.54). In this respect, the following results can be seen both as the solution of
the elastic static problem and the associated viscoelastic solution.



1.3 Expansion in Spherical Harmonics 13

1.3 Expansion in Spherical Harmonics

In the following wewill consider spherically symmetric Earth’s models composed of
several concentric layers as the core, the lower and upper mantle and the lithosphere.
Within each layer thematerial parameters, consisting of the initial densityρ0, the bulk
modulus κ , the shear modulus μ and the viscosity ν, are continuous functions of the
only radial distance from the Earth’s centre r . At the internal boundaries separating
two layers of the Earth, these parameters may have step-like discontinuities due to
the specific chemical compositions and phases of the rock of each layer.

The most widely used spherically symmetric Earth’s model is the Preliminary
Reference Earth Model PREM (Dziewonski and Anderson 1981) that specifies the
material parameters of the main layers of the Earth in terms of polynomials of the
radial distance from the Earth’s centre r . It thus accounts for the continuous variations
of the material parameters and discontinuities at the interfaces between the layers.
As it concerns the rheology, we will consider models with a fluid core, a viscoelastic
mantle, with viscosity of about 1021 Pa s, and an elastic or viscoelastic (but more
viscous than the mantle) lithosphere of about 100 km.

The spherical symmetry of theEarth’smodel is herein exploited to further simplify
the incremental momentum and Poisson equations and discuss fundamental aspects
of the style of deformation. We thus consider the spherical reference frame and we
denote with r , θ and ϕ the radial distance from the Earth’s centre, the colatitude and
the longitude; er , eθ and eϕ denote the respective unit vectors. We also recall that the
gradient and Laplacian operators in spherical coordinates are

∇ = er
∂

∂r
+ eθ

1

r

∂

∂θ
+ eϕ

1

r sin θ

∂

∂ϕ
(1.56)

∇2 = ∂2

∂r2
+ 2

r

∂

∂r
+ 1

r2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2

)
(1.57)

In view of the spherical symmetry, the initial density, potential and pressure only
depend on the radial distance from the Earth’s centre r and their gradients have
no angular components, as already shown in Eqs. (1.39)–(1.40). The incremental
momentum and Poisson equations (1.19)–(1.20) become

∇ · σ δ − ρ0 ∇ (g u · er ) + ρ0 � g er − ρ0 ∇φ� − ρL g er + M = 0 (1.58)

∇2φ� = −4π G (ρ0 � + ∂rρ0 u · er ) + 4π G
(
ρL + ρT

)− 2ω2 (1.59)

We also introduce the spherical harmonic expansions of the potential φ and the
decomposition of the displacement u into spheroidal, uS , and toroidal, uT , displace-
ments

φ�(r, θ, ϕ) =
∞∑

�=0

�∑

m=−�

��m(r) Y�m(θ, ϕ) (1.60)
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u = uS + uT (1.61)

with

uS(r) =
∞∑

�=0

�∑

m=−�

[U�m(r) R�m(θ, ϕ) + V�m(r) S�m(θ, ϕ)] (1.62)

uT (r) =
∞∑

�=0

�∑

m=−�

W�m(r) T �m(θ, ϕ) (1.63)

Here, Y�m are the spherical harmonics of degree � = 0, . . . ,∞ and order m =
−�, . . . , �, and R�m , S�m and T �m are the spherical harmonic vectors defined by

R�m = Y�m er (1.64)

S�m = r ∇Y�m = ∂θY�m eθ + ∂ϕY�m

sin θ
eϕ (1.65)

T �m = ∇ × (r Y�m) = ∂ϕY�m

sin θ
eθ − ∂θY�m eϕ (1.66)

with r = r er being the position vector. Also, the scalars ��m , U�m , V�m and W�m

are the respective spherical harmonic coefficients and we will simply refer to them
as the potential, the radial and tangential spheroidal displacements, and the toroidal
displacement. Note that the spherical harmonic vectors S00 and T00 yield zero and,
in this respect, tangential spheroidal and toroidal displacements of harmonic degree
� = 0 do not contribute to deformations. Thus, we can set the respective spherical
harmonic coefficients to zero, V00 = W00 = 0.

Further details about spherical harmonics and spherical harmonic vectors are
discussed in Ben-Menahem and Singh (2000). Here we only explicit the definition
of spherical harmonics

Y�m(θ, ϕ) = P�m(cos θ) ei m ϕ (1.67)

where P�m are the associated Legendre polynomials. The latter, form ≥ 0, are given
by

P�m(x) = 1

2� �!
(
1 − x2

)m/2 d�+m
(
x2 − 1

)�

dx�+m
(1.68)

and, for m < 0,

P�−m(x) = (−1)m
(� − m)!
(� + m)! P�m(x) (1.69)

We also recall that the spherical harmonics are eigenfunctions of the angular part of
the Laplacian operator in spherical coordinates, Eq. (1.57), so that
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∇2Y�m = 1

r2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2

)
Y�m = −�(� + 1)

r2
Y�m (1.70)

Spherical harmonics are normalized as

∫

�

Y�mY
∗
�′m ′d� = N�mδ�l ′δmm ′ (1.71)

where N�m denotes the normalization factor.

N�m = 4π

2 � + 1

(� + m)!
(� − m)! (1.72)

1.3.1 Volume Changes and Surface Forces

After substitution of Eqs. (1.61)–(1.63) into (1.24), we obtain the spherical harmonic
expansions of the volume change �

� = ∇ · u =
∞∑

�=0

�∑

m=−�

χ�m Y�m (1.73)

where the scalar χ�m is given by

χ�m = ∂rU�m + 2

r
U�m − � (� + 1)

r
V�m (1.74)

Exercise 3 Prove Eq. (1.74). Make use of the operator identities you find in
Appendix A.

It is noteworthy that the toroidal displacement does not contribute to volume changes,
i.e., ∇ · uT = 0. Furthermore, because the toroidal displacement has no component
along er , it does not contribute to the advection of the initial density field of the
Earth’s models, which can be only radial for Eq. (1.39). This means that the local
incremental density is only due to spheroidal deformations

ρ� = −ρ0 ∇ · uS − ∂rρ0 uS · er (1.75)

and that toroidal deformations do not directly contribute to the local incremental
gravitational potentialφ�. Actually, aswewill show in awhile, toroidal deformations
are completely decoupled from spheroidal deformations and perturbations of the
gravitational potential. They can be studied separately.
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Let us now consider the spherical harmonic expansion of the material incremental
stress σ δ · er acting on a surface element with outward normal er . From the definition
of the strain tensor, Eq. (1.26), and the Hooke’s law, Eq. (1.55) or, equivalently, the
constitutive equation for the Maxwell solid in the Laplace domain, Eq. (1.53), after
some straightforward algebra we obtain

σ δ · er = λ � er + μ [∇ (u · er ) − (∇er ) · u + (er · ∇) u] (1.76)

where λ is the second Lamé parameter that is expressed in terms of the shear modulus
μ (also known as first Lamé parameter) and the bulk modulus κ

λ = κ − 2

3
μ (1.77)

Then, by substituting the spherical harmonic expansions for displacements and vol-
ume changes, Eqs. (1.61)–(1.63) and (1.73), we obtain

σ δ · er =
∑

�m

(R�m R�m + S�m S�m + T�m T�m) (1.78)

where the spherical harmonic coefficients R�m , S�m and T�m are given by

R�m = λ χ�m + 2μ∂rU�m (1.79)

S�m = μ

(
∂r V�m + U�m − V�m

r

)
(1.80)

T�m = μ

(
∂rW�m − W�m

r

)
(1.81)

We will refer to R�m and S�m as the radial and tangential spheroidal stresses and to
T�m as the toroidal stress.

1.3.2 Spheroidal and Toroidal Deformations

The results of this Sect. 1.3.2 are based on the dyadic formalism, exploited in Appen-
dix A. The divergence of thematerial incremental Cauchy stress tensor, assuming the
elastic or the viscoelastic rheology, Eqs. (1.53) and (1.55), and using the definition
of the strain tensor, Eq. (1.26), can be arranged as follow

∇ · σ δ = λ ∇� + �∇λ + μ
(∇2u + ∇�

)+ ∇μ · (∇u + u∇) (1.82)

which simplifies into
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∇ · σ δ = (λ + μ ) ∇� + ∂rλ � er + μ∇2u+ ∂rμ [2 ∂ru + er × (∇ × u)] (1.83)

owing to the spherical symmetry of the Earth’s model, i.e., ∇μ = ∂rμ er and ∇λ =
∂rλ er .

Exercise 4 Prove Eq. (1.83). Make use of the dyadic identities of Appendix A.

By making use of Eq. (1.83), expanding it in spherical harmonics together with
Eq. (1.59), we finally obtain the spherical harmonic coefficients of the radial and
tangential spheroidal components of the momentum equation,

−ρ0 ∂r��m − ρ0 ∂r (g U�m) + ρ0 g χ�m + ∂r (λ χ�m + 2μ∂rU�m)

+ 1

r2
μ [4 r ∂rU�m − 4U�m + �(� + 1)(3 V�m −U�m − r ∂r V�m)]

− ρL
�m g + mR

�m = 0 (1.84)

−ρ0

r
��m − ρ0

r
g U�m + λ

r
χ�m + ∂r

[
μ

(
∂r V�m + 1

r
U�m − 1

r
V�m

)]

+ 1

r2
μ [5U�m + 3 r ∂r V�m − V�m − 2 �(� + 1) V�m] + mS

�m = 0 (1.85)

the toroidal component,

∂r

[
μ

(
∂rW�m − W�m

r

)]
+ μ

(
3

r
∂rW�m − 1 + �(� + 1)

r2
W�m

)
+ mT

�m = 0

(1.86)
and the Poisson equation

∇2
r ��m = −4π G (ρ0 χ�m +U�m ∂rρ0) + 4π G

(
ρL

�m + ρT
�m

)
(1.87)

where ρL
�m , ρT

�m , m
R
�m , m

S
�m and mT

�m are the spherical harmonic coefficients of the
densities of loads and external bodies, and of the non-conservative forces

ρL =
∞∑

�=0

�∑

m=−�

ρL
�m Y�m (1.88)

ρT =
∞∑

�=0

�∑

m=−�

ρT
�m Y�m (1.89)

M =
∞∑

�=0

�∑

m=−�

(
mR

�m R�m + mS
�m S�m + mT

�m T�m
)

(1.90)
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and ∇2
r is the radial part of the Laplacian operator ∇2

∇2
r = ∂2

r + 2

r
∂r − �(� + 1)

r2
(1.91)

Exercise 5 Prove Eqs. (1.84)–(1.86), making use of Appendix A.

Expansion of Eqs. (1.84), (1.85) and (1.86) can be easily derived by making use of
the vector identities shown in Appendix A, based on the dyadic formalism, to which
we refer for whom willing to undertake the job of deriving these equations starting
from Eq. (1.83).

The radial and tangential spheroidal components of the momentum equation,
Eqs. (1.84)–(1.85), and the Poisson equation, Eq. (1.87), are decoupled from the
toroidal component of the momentum equation, Eq. (1.86). In this respect, spher-
oidal and toroidal deformations can be studied separately. Furthermore, it is also
noteworthy that spheroidal perturbations are triggered by all kind of forcing that
we are considering (loads and tidal, centrifugal and seismic forces), while toroidal
deformations are triggered only by seismic forces. This reflects the fact that loading,
tidal and centrifugal forcings are axially symmetric.

Equations (1.84)–(1.87) hold only for harmonic degree � greater than 0. They can
be extended to the case of harmonic degree � = 0 with the care of omitting the tan-
gential spheroidal and toroidal components of the momentum equation, Eqs. (1.85)–
(1.86), and setting to zero the tangential spheroidal coefficients of the displacement,
V00 = 0, in the radial component of the momentum equation and Poisson equation,
Eqs. (1.84) and (1.87). In this respect, the case of harmonic degree � = 0 would
require a specific treatment that we do not discuss as it has little relevance for the
geophysical processes considered in this book. Also the case of harmonic degree
� = 1 would require a specific treatment, although for different reasons related to
the fact that perturbations of harmonic degree � = 1 may involve a net shift of the
centre of mass of the Earth. For the readers who may be interested in these issues, we
refer to Farrell (1972) for surface load problems as in the case of ice sheet loading, to
Sun and Okubo (1993) for earthquake forcing and to Greff-Lefftz (2011) for internal
loads and tidal and centrifugal forcing.

Regardless these specific treatments for perturbations of harmonic degrees � = 0
and � = 1, however, we note that the perturbation of the total gravitational potential
(including contributions from bothmass rearrangement of the Earth and from surface
and internal loads) for these harmonic degrees must be zero in order that the mass
and the centre of mass of the system are preserved.

1.4 Spheroidal Deformations

The radial and tangential spheroidal components of the momentum equation and
the Poisson equation constitute a system of three differential equations of second
order in the unknowns U�m , V�m and ��m . This differential system must be solved
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for each harmonic degree, except � = 0 � = 1 as anticipated, from the centre to
the surface of the Earth where proper boundary conditions uniquely determine the
solution. Analytical solutions of these differential equations will be considered in
Chap.2, with some restrictions on thematerial parameters of the Earth’smodel. Here,
in order to define proper boundary conditions and compute numerical solutions of the
viscoelastic problem for general spherically symmetric Earth’s models, we cast these
differential equations into the form of six differential equations of the first–order that
are suitable for numerical integration in the radial variable r by means of algorithms
like Runge-Kutta. We therefore introduce the spheroidal 6–vector solution y�m

y�m = (U�m, V�m, R�m, S�m, ��m, Q�m)T (1.92)

where the first and second components are the radial and tangential displacements,
the third and fourth components the radial and tangential stresses, the fifth component
the potential and the sixth component the so called ‘potential stress’. The latter is
defined by

Q�m = ∂r��m + � + 1

r
��m + 4π G ρ0U�m (1.93)

and its meaning will be clarified in Sect. 1.6.2, when we discuss the boundary con-
ditions at the internal interfaces and at the surface of the Earth.

From the radial and tangential spheroidal components of the momentum equa-
tion, Eqs. (1.84)–(1.85), the Poisson equation, Eq. (1.87), and the definition of radial,
tangential and potential stresses, Eqs. (1.79)–(1.80) and (1.93), after some straight-
forward algebra we obtain the following linear differential system for the spheroidal
vector solution

d y�m(r)

dr
= A�(r) y�m(r) − f �m(r) (1.94)

where A� is the 6 × 6–matrix depending on the material parameters of the Earth’s
model, on the radial distance from the Earth’s centre r and on the harmonic degree �

A�(r) =
⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

− 2 λ
r β

�(�+1) λ

r β
1
β

0 0 0

− 1
r

1
r 0

1
μ

0 0

4
r

(
3 κ μ

r β
−ρ0 g

)
�(�+1)

r

(
ρ0 g − 6 κ μ

r β

)
− 4μ

r β

�(�+1)
r − ρ0 (�+1)

r ρ0

1
r

(
ρ0 g − 6μκ

r β

)
2μ

r2

[
�(�+1)

(
1+ λ

β

)
−1

]
− λ

r β
− 3

r
ρ0

r 0

−4π G ρ0 0 0 0 − �+1
r 1

− 4π G ρ0 (�+1)
r

4π G ρ0 �(�+1)
r 0 0 0

�−1
r

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

(1.95)

with
β = λ + 2μ (1.96)

http://dx.doi.org/10.1007/978-94-017-7552-6_2
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The non-homogeneous term f �m of the differential system (1.94) accounts for terms
related to massive bodies other than the Earth and seismic forces. Remembering that
for tidal and centrifugal forcings we provide in the following a formulation in terms
of boundary conditions at the Earth’s surface, we have

f �m = ρL
�m f L� + m�m (1.97)

with

f L� =
(
0, 0, − (2 � + 1) g

4π r2
, 0, 0, − (2 � + 1)G

r2

)T

(1.98)

where the third, fifth an sixth components of f L� are those of the vector

bL(r) =
(

− (2 � + 1) g(r)

4π r2
, 0,− (2 � + 1)G

r2

)T

(1.99)

defined in Sect. 1.6.1, Eq. (1.129), for an arbitrary depth r rather than at the Earth’s
surface and

m�m = (0, 0, mR
�m, mS

�m, 0, 0
)T

(1.100)

Exercise 6 Verify that, with the above definition of the spheroidal vector solution
(1.92), the matrix A(r) entering the system of differential equations (1.94) takes the
form given in Eq. (1.95).

Exercise 7 Verify that, with the above definition of the spheroidal vector solution
(1.92), the spheroidal forcing vector takes the form given by Eqs. (1.97)–(1.98),
once the harmonic expansion for the point-load source in Eq. (1.216) appearing in
Sect. 1.10.1 is taken into account.

1.5 Toroidal Deformations

Similarly to the case of spheroidal deformations, we define the toroidal 2-vector
solution y�m as follows

y�m = (W�m, T�m)T (1.101)

where the first and second components are the toroidal displacement and stress,
respectively. The component (1.86) of the momentum equation can be cast into a
linear differential system like Eq. (1.94)

d y�m(r)

dr
= A�(r) y�m(r) − f �m(r) (1.102)
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where now y�m and A� are the toroidal 2−vector solution (1.101) and the following
2 × 2-matrix

A� =
( 1

r
1
μ

μ(�(�+1)−2)
r2 − 3

r

)
(1.103)

and the dishomogeneous term f�m only accounts for toroidal components of seismic
forces

f �m = m�m (1.104)

with
m�m = (0, mT

�m

)T
(1.105)

1.6 Boundary Conditions

In order to obtain the solution of the associated elastic problem, the above equations
must be solved within each viscoelastic layer of the Earth’s model and supplemented
by proper boundary conditions at the bottomand top interfaces. Each layer is bounded
by another viscoelastic layer, or by the fluid outer core, or by the Earth’s surface. For
each kind of interface we thus need to specify proper boundary conditions.

In the following, we denote the number of layer of the Earth’s model with N and
the radial distance from the Earth’s centre of the top interface of the j th layer with
r j . We order the layers in such a way that r j−1 < r j for j = 2, . . . N . Particularly,
r j are interfaces within the viscoelastic mantle for j = 2, . . . , N − 1, while r1 and
rN are the core and Earth’s radii, also denoted by rC and a, respectively.

1.6.1 The Earth’s Surface

We begin by considering the Earth’s surface boundary conditions. We distinguish
between massive bodies outside the Earth and loads seated at the Earth’s surface or
its interior. By definition, the load density ρL is zero outside the Earth

ρL(r > a) = 0 (1.106)

while the density of external bodies ρT is zerowithin a sphere of radius aT containing
the Earth

ρT (r < aT ) = 0 (1.107)

with aT greater than the Earth’s radius, aT > a.
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We write the load density ρL as the sum of the density of internal loads ρ I and
the surface density of loads seated at the Earth’s surface σ L

ρL(r) = ρ I (r) + σ L δ(r − a) (1.108)

where δ is the Dirac delta function.
For internal loading and tidal, centrifugal and seismic forcings, the Earth’s surface

is stress free. For the case of surface loading, instead, the tangential stress S�m is still
zero while the radial stress R�m must compensate the weight of the surface density

R�m(a−) = −g(a) σ L
�m (1.109)

where σ L
�m are the spherical harmonic coefficients of the surface density σ L .

An additional condition can be found for the potential stress Q�m . By applying the
Gauss theorem at the incremental Poisson equation (1.20) within a volume embedded
in an infinitesimal pill-box at the Earth’s surface, we obtain

∂rφ
�(a−) = ∂rφ

�(a+) − 4π G ρ0(a
−)u(a−) · er − 4π G σ L (1.110)

where we have assumed that the initial density ρ0 is zero outside the Earth (i.e., we
neglect the atmosphere)

ρ0(r > a) = 0 (1.111)

Equation (1.110) expresses the radial derivative of the potential within the Earth,
a−, in terms of the radial derivative of the potential outside the Earth, a+, and con-
tributions from perturbations of the Earth’s surface topography and surface loading.
After spherical harmonic expansion, Eq. (1.110) can be arranged as follows

Q�m(a−) = ∂r��m(a+) + � + 1

a
��m(a+) − 4π G σ L

�m (1.112)

where we have used the fact that the potential is continuous across any interface

��m(a+) = ��m(a−) (1.113)

The first term in the RHS of Eq. (1.112) can be further specified by considering
the dependence of the potential on the radial distance from the Earth’s centre. First,
we distinguish between gravitational, tidal and centrifugal potentials as in Eq. (1.3).
From Eqs. (1.106) to (1.107), the Poisson Eqs. (1.5)–(1.6) for the gravitational and
tidal potentials become Laplace equations outside the Earth and within the sphere of
radius aT containing it, respectively. After spherical harmonic expansion, we thus
obtain

∇2
r �

G
�m = 0 (r > a) (1.114)

∇2
r �

T
�m = 0 (r < aT ) (1.115)
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where �G
�m and �T

�m are the spherical harmonic coefficients of the gravitational and
tidal potentials, φG and φT , respectively. By imposing the regularity conditions at
the infinity (in the limit for r → ∞) and the centre of the Earth (r = 0), the solutions
of the above Laplacian equations read

�G
�m(r) = �G

�m(a)
( r
a

)−�−1
(r > a) (1.116)

�T
�m(r) = �T

�m(a)
( r
a

)�

(r < aT ) (1.117)

Here �G
�m(a) and �T

�m(a) must be intended as constants of integration. The gravita-
tional potential at the Earth’s surface�G

�m(a)will be obtained solving the viscoelastic
problem, while the tidal potential �T

�m(a) is prescribed by the external bodies for
which we are solving the problem

�T
�m(a) = −4π G a

2 � + 1

∫ ∞

aT

ρT
�m(r)

(a
r

)�−1
dr (1.118)

as for Eq. (3.17) and thereafter for this case of external bodies.
After expansion in spherical harmonics of Eq. (1.7) we obtain for the centrifugal

potential φC from Eq. (3.25) evaluated with respect to n̂

φC(r, θ, ϕ) = �C
00(r) Y00(θ, ϕ) +

2∑

m=−2

�C
2m(r) Y2m(θ, ϕ) (1.119)

where the spherical harmonic coefficients �C
00 anc �C

2m are given by

�C
00(r) = −ω2 r2

3
(1.120)

�C
2m(r) = ω2 r2

3

(2 − m)!
(2 + m)! Y

∗
2m(θC , ϕC) (m = −2, . . . , 2) (1.121)

while the others are zero, �C
�m = 0 for � = 1, 3, . . . ,∞. Here, θC , ϕC are the

colatitude and longitude of the angular velocity ω. Note that the � = 2 spherical
harmonic coefficients �T

2m and �C
2m share the same dependence on r , i.e., r2. In this

respect, the following treatment will be done assuming

�C
�m(r) = �C

�m(a)
( r
a

)�

(1.122)

because we do not consider � = 0 perturbations and �C
�m(a) = 0 for � =

1, 3, . . . ,∞.

http://dx.doi.org/10.1007/978-94-017-7552-6_3
http://dx.doi.org/10.1007/978-94-017-7552-6_3
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By using these results, Eq. (1.112) becomes

Q�m(a−) = 2 � + 1

a

(
�T

�m(a) + �C
�m(a)

)− 4π G σ L
�m (1.123)

where the terms related to the gravitational potential �G
�m in the RHS cancel each

other via Eq. (1.116)

∂r�
G
�m(a+) = −� + 1

a
�G

�m(a) (1.124)

and the radial derivatives of the tidal and centrifugal potentials have been obtained
from Eqs. (1.117) and (1.122)

∂r�
T
�m(a+) = �

a
�T

�m(a) (1.125)

∂r�
C
�m(a+) = �

a
�C

�m(a) (1.126)

In summary, for the forcings that we are considering, the tangential stress S�m

is zero at the Earth’s surface while the radial, R�m , and potential, Q�m , stresses are
constrained by Eqs. (1.109) and (1.123). We collect these findings in the following
compact form, assuming a unitary surface density anomaly as appropriate in Green
functions generation as done in Chap.2, accounting for the spherical harmonic com-
ponents of the point load given by Eq. (1.216)

P1 y(a−) = b (1.127)

where P1 is the projector for the third, fourth and sixth components of the spheroidal
vector solution, and b is the 3–vector

b = σ L
�mb

L + (�T
�m(a) + �C

�m(a)
)
bT (1.128)

with

bL =
⎛

⎝
− (2 �+1) g(a)

4π a2

0
− (2 �+1)G

a2

⎞

⎠ (1.129)

bT =
⎛

⎝
0
0

2 �+1
a

⎞

⎠ (1.130)

To keep similar expressions for the spheroidal and toroidal components at the
Earth’s surface, in the following we will denote by P1 and P2 the projectors over the
second constrained component of the toroidal vector solution, namely the stress, and

http://dx.doi.org/10.1007/978-94-017-7552-6_2
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respectively over the unconstrained first component of the toroidal vector solution,
the displacement, similarly to the spheroidal part.

At the Earth’s surface, the toroidal counterpart of Eq. (1.127)must furnish a stress-
free boundary condition, which means b = 0 where the latter is a one dimensional
vector.

1.6.2 Chemical Boundaries

Between two viscoelastic layers, we assume a chemical boundary where the material
does not cross the interface. Internal interfaces where the material does cross the
interface undergoing a phase change, are named phase-change boundaries. Chemical
boundaries are adequate for viscoelastic deformation on timescale comparable or
smaller than those of ice ages, hundreds of thousand years, although the lower-upper
mantle interface is likely to be partly a chemical and partly a phase-change boundary:
this possibility is controversial and we simply ignore it. Phase-change boundaries
are certainly appropriate for mantle convection studies when modeling whole mantle
circulation. In Chaps. 3 and 7, we will consider the impact of mantle convection on
the rotational stability of Earth: in this case, however, we will use a simplified phase-
change interface to model the whole mantle circulation, by assuming that the density
is constant through the interface, in such a way to mimic the behavior of a more
realistic phase-change boundary accross which the material is not subject to any
isostatic restoring force when crossing the phase-change interface, since its density
changes according to the background value.

At chemical boundaries, there is no cavitation and no slip between two adjacent
layers, and the stress components are continuous. By definition, also the potential
perturbation is continuous while its radial derivative is discontinuous at density con-
trast interfaces. This results applying the Gauss theorem at the incremental Poisson
equation (1.20) within a volume embedded in an infinitesimal pill-box at an internal
interface

∂rφ
�(r+

j ) − ∂rφ
�(r−

j ) = −4π G �ρ j u(r j ) · er (1.131)

where �ρ j is the density contrast between the two layers (that is positive if the inner
layer is denser than the outer layer)

�ρ j = ρ0(r
+
j ) − ρ0(r

−
j ) (1.132)

Equation (1.131) shows that topography perturbations of the internal interfaces affect
the local incremental potential in terms of the surface density given by product of the
radial displacement and the density contrast. This product describes the local incre-
mental density localized at the internal interfaces. After spherical harmonic expan-
sion, Eq. (1.131) can thus be arranged in the continuity condition for the potential
stress

Q�m(r+
j ) = Q�m(r−

j ) (1.133)

http://dx.doi.org/10.1007/978-94-017-7552-6_3
http://dx.doi.org/10.1007/978-94-017-7552-6_7
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In the light of the above remarks, all the components of the spheroidal and toroidal
vector solutions are continuous at chemical boundaries

y�m(r+
j ) = y�m(r−

j ) (1.134)

1.6.3 Core-Mantle Boundary

The conditions at the core-mantle boundary (CMB) have been disputed among geo-
physicists since the work of Longman (1962, 1963). This controversy focuses on the
treatment of the continuity conditions for the radial deformation at the CMB for the
case in which the fluid core deviates from the neutral state of equilibirum, i.e., when
the core stratification is non-adiabatic and chemically heterogeneous. Indeed, as we
are going to show, for such stratifications the solution of the momentum and Pois-
son equations leads to the conclusion that radial and geoid displacements coincide.
This also implies that no isostatic compensation of the mantle bumping into the core
would be possible and this is not the case of reality. This problem was named the
Longman (1962) paradox. Differently, the Longman (1962) paradox does not subsist
if the core is in a neutral state of equilibrium, and the CMB conditions are derived
in a straightforward way.

According to Sect. 1.2.2, in order to discriminate between the neutral state of equi-
librium from departures due to non-adiabatic and chemically heterogeneous stratifi-
cations, we consider the generalized Williamson-Adams equation (1.42): the neutral
state of equilibrium (or compressional stratification) is characterized by a zero com-
positional coefficient (γ = 0), while non-adiabatic and chemically heterogeneous
stratifications by a non-zero compositional coefficient (γ �= 0).

We deal with the fluid core as an inviscid body, in which there is no deviatoric
stress. Only the � dependencemust be considered, in absence ofm dependent forcing.
Thematerial incremental stress is given by thematerial incremental hydrostatic stress

σ δ(x, t) = −pδ 1 = κ � 1 (1.135)

and the radial and tangential stresses become

R� = κ χ� (1.136)

S� = 0 (1.137)

The CMB is a chemical boundary through which the material does not cross. Dif-
ferently from solid–solid interfaces, for which all the components of the spheroidal
vector solution must be continuous at the interface, the CMB is a free–slip boundary
where the solid mantle can slip over the inviscid core without tangential stresses,
Eq. (1.137). We thus write the spheroidal vector solution at the bottom of the solid
mantle as
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y(r+
C ) =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

U�(r
−
C )

0
R�(r

−
C )

0
��(r

−
C )

Q�(r
−
C )

⎞

⎟⎟⎟⎟⎟
⎟
⎠

+ C2

⎛

⎜⎜⎜⎜⎜
⎜
⎝

0
1
0
0
0
0

⎞

⎟⎟⎟⎟⎟
⎟
⎠

(1.138)

where the tangential stress is set to zero and we consider the tangential displacement
as a constant of integration denoted by C2.

The inviscid core can be dealt with either as an elastic bodywith the shearmodulus
μ set to zero (Longman 1963) or as a viscoelastic body in the Laplace domain, with
the Laplace variable s set to zero (Wu and Peltier 1982), since μ̂(0) = 0 from
Eq. (1.54). We thus obtain the radial and tangential components of the momentum
equation for the inviscid body from Eqs. (1.84) to (1.85) setting μ = 0

∂r R�

ρ0
− ∂r (g U�) + g χ� − ∂r�� = 0 (1.139)

R�

ρ0
− g U� − �� = 0 (1.140)

where we have assumed that the bulk modulus κ does not depend on the radius r .
We omit the terms related to the forcing because they do not contribute within the
core.

Following the treatment of Longman (1962), we subtract the radial derivative of
the second equation from the first equation

κ

ρ2
0

(
∂rρ0 + ρ2

0 g

κ

)
χ� = 0 (1.141)

The quantity within the bracket in the LHS depends only on the material parame-
ter of the Earth’s model and, after comparison with Eq. (1.42), corresponds to the
compositional coefficient γ . Furthermore, bymaking use of Eqs. (1.140)–(1.141) for
eliminating the radial displacement and volume changes into the Poisson equation
(1.87), the latter becomes a second order differential equation in the only potential
��m

∇2
r �� = 4π G ∂rρ0

��

g
(1.142)

In the limit r → 0 the solution of the above differential equation ψ�(r) satisfies

lim
r→0

r−� ψ�(r) = 1 (1.143)
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since around the Earth’s centre within a small volume ∂rρ0 = 0 holds, so that the
solution ψ�(r) satisfies the Laplace equation, must be regular at the r = 0, and is
thus proportional to r �.

When the density in the core is not constant, Eq. (1.142) must be solved numeri-
cally and depends on the harmonic degree � and on the densityρ0 via the ratio between
the initial density gradient and gravity, ∂rρ0/g. By denoting the regular solution as
ψ� such that it satisfies the limit given by Eq. (1.143) we write the potential �� as

��(r) = C1 ψ�(r) (1.144)

where C1 is a constant of integration. If ∂rρ0 = 0, we simply have ��(r) = C1r �.
Solutions of the radial and tangential components of the momentum equation,

Eqs. (1.139)–(1.140), are perturbed states of hydrostatic equilibrium, where per-
turbed equipotential, isobaric and equal density surfaces coincide (Chinnery 1975).
For compressional stratification, Eq. (1.141) is identically satisfied for any volume
change χ� because the compositional coefficient is zero, γ = 0. This means that
Eqs. (1.139)–(1.140) are not linearly independent. We thus restrict our attention
only on the tangential component, Eq. (1.140), from which we constrain the radial
stress (or the volume change from Eq. (1.136)) in terms of the gap between radial
displacements and geoid perturbations

R� = ρ0 g

[
U� −

(
−��

g

)]
= ρ0 g C3 (1.145)

that we consider as a constant of integration, C3, which is equivalent to assume that
the pressure is constant within the core in the state of hydrostatic equilibrium. This
allows us to obtain the radial displacement and the potential stress in terms of the
constants of integration C1 and C3

U� = −C1
ψ�

g
+ C3 (1.146)

Q� = C1 q� + 4π G ρ0 C3 (1.147)

where q� is defined by

q� = ∂rψ� + � + 1

r
ψ� − 4π G ρ0

g
ψ� (1.148)

By making use of Eqs. (1.144)–(1.147) into the CMB conditions, Eq. (1.138), we
thus express the spheroidal vector solution at the bottom of the solid mantle as

y�(r
+
C ) = IC C (1.149)



1.6 Boundary Conditions 29

where IC is the core-mantle boundary (CMB) matrix

IC =

⎛

⎜⎜⎜⎜
⎜⎜
⎝

−ψ�(rC)/g(rC) 0 1
0 1 0
0 0 g(rC) ρ0(r

−
C )

0 0 0
ψ�(rC) 0 0
q�(rC) 0 4π G ρ0(r

−
C )

⎞

⎟⎟⎟⎟
⎟⎟
⎠

(1.150)

and C is the vector of constants of integration

C = (C1,C2,C3) (1.151)

As we will see in Sect. 1.7, these constants of integration must be determined
using the boundary condition at the Earth’s surface for the stress components of the
spheroidal vector solution. Once obtained, the perturbed state of the solid mantle is
completely determined. Differently, the perturbed state of the core is determined only
for some aspects. Indeed, the constants of integrations only determine the potential
within the core, the radial displacement and the radial stress at the CMB. Other infor-
mation about the core, instead, remain undetermined within the present assumptions.
Particularly, below the CMB, we do not know volume changes, displacements and
radial stresses.

For compositional stratifications (γ �= 0) the above boundary conditions must be
reconsidered. In this case, Eq. (1.141) constrains volume variation χ� to be zero

χ� = 0 (1.152)

From Eq. (1.136), this also constrain the radial stress to zero and, from Eq. (1.140),
radial displacements and geoid perturbations must coincide

U� = −��

g
(1.153)

This condition means that all particles located at a given equipotential surface at the
initial state of hydrostatic equilibrium (which defines a material interface) must be
displaced over the same perturbed equipotential surface (Chinnery 1975). This con-
strains to zero the constant of integration C3 entering the radial stress, Eq. (1.145),
and one should conclude that isostatic compensation at the CMB is thus impossi-
ble for an inviscid core with compositional stratification. This problem was named
Longman (1962) paradox and debated in the seventies bymany authors, amongwhich
Smylie and Mansinha (1971), Pekeris and Accad (1972) and Chinnery (1975).

By considering perturbations of the inviscid core in the frequency ω-domain,
Pekeris and Accad (1972) obtained the static solution as the limit case of the dynamic
problem for ω → 0. They pointed out that static volume variations are indeed zero
for compositional stratifications, with the exception of an infinitesimally thin layer



30 1 Viscoelastic Relaxation Theory, Momentum and Poisson Equations

just below the CMB where volume variations may occur. Thus, Eq. (1.153) does not
hold in this thin boundary layer and isostatic compensation of the above solid mantle
is obtained by a non-zero gap between radial displacements and geoid perturbations.
In light of this, CMB conditions for compressional and compositional stratifications
are formally equivalent, although isostatic compensation is achieved in very different
ways: for compressional stratifications, perturbations involve the whole core, while,
for compositional stratifications, they are confined in a thin boundary layer just below
the CMB.

Smylie and Mansinha (1971) and Chinnery (1975) obtained CMB conditions for
compositional stratifications by assuming that radial displacement can be discon-
tinuous at the CMB. This discontinuity, howevfer, should not be intended literally.
Indeed, in view of Eq. (1.153), these authors considered geoid perturbations within
the inviscid core as radial displacements and, thus, the discontinuity actually corre-
sponds to a non-zero gap between radial displacement and geoid perturbations, in
agreement with the finding of Pekeris and Accad (1972). In this respect, we also note
that the arguments of Denis (1989) (see their Sect. 5.3) against CMB conditions of
Smylie and Mansinha (1971) and Chinnery (1975) were incorrect. Particularly, we
refer to when Denis (1989) writes that the analogy of the mantle bumping into the
core like a boat on a lake is misleading since (i) the boat problem is a local problem,
while the static-core problem is a global one, and (ii) water level around the boat
can rise by a finite amount, while the fluid core cannot since it is closed by an elastic
or viscoelastic membrane, the above solid mantle. Indeed, it is not physically sound
thinking that the boat problem cannot be solved as a global problem, where forces
acting on and within the lake are also balanced, and for the simple geometrical rea-
son that Longman (1962) paradox concerns only perturbations of harmonic degrees
greater than 0, which do not affect the total volume of the core.

For toroidal perturbations the toroidal stress component T� is zero at the CMB, as
the core is assumed to be inviscid, while the toroidal displacement is unconstrained

W�(rC) = C (1.154)

with C as an integration constant. We thus write the CMB conditions for the toroidal
solution vector as in Eq. (1.149), with the exception that Cc = C and that IC is
defined by

IC =
(
1
0

)
(1.155)

In view of this we thus have

y�(r
+
C ) = IC Cc (1.156)

which is formally identical to Eq. (1.149).
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1.7 Elastic and Viscoelastic Solutions

The general solution of the differential system (1.94) or (1.102) reads

y�m(r) = ��(r, r0)y0 −
r∫

r0

��(r, r
′) f �m(r ′) dr ′ (1.157)

where y0 is the Cauchy datum at the radius r0

y�m(r0) = y0 (1.158)

and �� is the so called propagator matrix. The latter is the 6 × 6-matrix for the
spheroidal case and the 2 × 2-matrix for the toroidal case that solve the following
homogeneous differential system

d��(r, r ′)
dr

= A�(r)��(r, r
′) (1.159)

with the Cauchy datum at the radius r ′ given by the identity matrix 1

��(r
′, r ′) = 1 (1.160)

For the toroidal case, the forcing term is limited to the seismic sources. In this
respect, each column of the propagator matrix is one of the six linearly independent
solution of the homogeneous differential system

dy�m

dr
= A� y�m (1.161)

When the integration of Eq. (1.159) in a viscoelastic layer of the Earth’smodel arrives
at an internal chemical boundary, we impose the continuity of the propagator and we
continue the integration in the new layer according to Eq. (1.134)

��(r
+
j , r ′) = ��(r

−
j , r ′) (1.162)

In this way the spheroidal and toroidal vector solutions y�m , Eq. (1.157), satisfy the
conditions for the chemical boundaries between the viscoelastic layers of the Earth’s
model.

We imposeCMBconditions in the general solution (1.157) by choosing the bottom
of the mantle as the radius from which the integration starts, r0 = r+

C , and equating
the Cauchy datum y0 to the RHS of Eq. (1.149) or (1.156)

y�m(r+
C ) = y0 = IC C (1.163)
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This yields
y�m(r) = ��(r, r

+
C )ICC − w(r) (1.164)

where, for brevity, we have defined

w(r) =
∫ r

r+
C

��(r, r
′) f �m(r ′) dr ′ (1.165)

without the explicit dependence on �,m to not overwhelm the following equations.
The three constants of integrationC entering theCMBconditions are estimated by

imposing the boundary conditions at the Earth’s surface (1.127). From Eq. (1.164)
and by recalling that the vector solution in the LHS of Eq. (1.127) refers to the
solution just below the Earth’s surface, we write

P1y�m(a−) = P1
(
��(a

−, r+
C )ICC − w(a−)

) = b (1.166)

where b is zero for the toroidal part being the Earth’s surface stress free.
Note that w is evaluated at a−, i.e., the integration from the bottom of the mantle

entering Eq. (1.165) ends just below the Earth’s surface, a−. This means that sur-
face loadings do not actually contribute to the integral since their effect is already
accounted for by the Earth’s surface boundary condition via the b term, Eq. (1.128).
In other words, the vector solution always must be intended as evaluated below the
Earth’s surface a because it refers to perturbations of the Earth, and only the density
of internal loads and seismic forces contribute to the vector w. The dishomogeneous
term f �m does not thus include those terms that are zero within the Earth, i.e., the
surface density σ L

�m and the density of external bodies ρT
�m

f �m = ρ I
�m f L + m�m (1.167)

in agreement with Eq. (1.97) where the superscript I for internal loads is used rather
than themore general L; the toroidal case is limited to the solely seismic term denoted
by the second term in the RHS.

Then, using Eq. (1.166) for obtaining the constants of integration C

C = (P1 ��(a, rC) IC)−1 (P1 w(a) + b) (1.168)

where now the minus sign is omitted in a− and the plus sign is omitted in r+
C ,

Eq. (1.164) becomes

y�m(r) = ��(r, rC)IC (P1 ��(a, rC) IC)−1 (P1 w(a) + b) − w(r) (1.169)

This is the solution of the associated elastic problem that uniquely determines the
spheroidal deformations and the perturbations of the potential within the Earth,
as well as the radial and tangential spheroidal stresses and the potential stress, in
response to internal and surface loading, and tidal, centrifugal and seismic forcings.
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1.7.1 Load and Tidal Love Numbers

Within the perspective of applications of the present theory to the modeling of geo-
detic observations, we consider the solution, denoted byK, for the radial and tangen-
tial spheroidal displacements and local incremental potential at the Earth’s surface

K�m(a) =
⎛

⎝
U�m(a)

V�m(a)

��m(a)

⎞

⎠ (1.170)

From Eq. (1.169) we obtain

K�m(a) = P2 y�m(a) = B�(a) (P1 w(a) + b) − P2 w(a) (1.171)

where P2 is the projector for the first, second and fifth components of the spheroidal
vector solution and, for brevity, we have defined

B�(r) = P2��(r, rC)IC (P1 ��(a, rC) IC)−1 (1.172)

Seismic forces need a specific treatment of the non-conservative force M enter-
ing the dishomogeneous term f �m , Eq. (1.97), via the vector m�m . We first deal
only with loadings and external potentials and we set the seismic forcing to zero in
the non homogeneous term f �m , postponing to Sect. 1.10.2 the discussion on fault
discontinuities.

We then introduce the so called Love numbers k. They are non-dimensional Green
functions that linearly relate the perturbations K to internal and surface loads, and
tidal and centrifugal potentials

K�m(a) = NL

a∫

rC

kL
� (r)

(
δ(r − a) σ L

�m + ρ I
�m(r)

)
dr

+ NT kT
(
�T

�m(a) + �C
�m(a)

)
(1.173)

where the surface density contribution entering the b vector as in Eq. (1.128) has
been included in the integrand andNL andNT are the dimensional diagonal matrices

NL = G

a
Diag[1/g(a), 1/g(a), 1] (1.174)

NT = Diag[1/g(a), 1/g(a), 1] (1.175)

where kL and kT are load and tidal Love numbers, respectively, that we obtain from
comparison among Eqs. (1.97), (1.128), (1.165), (1.171) and (1.173), remembering
that w = 0 for tidal and centrifugal loadings.
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kL
� (r) = N−1

L (B�(a)P1 − P2)��(a, r) f L� (r) (1.176)

kL
� (a) = N−1

L B�(a) bL (1.177)

kT� = N−1
T B�(a) bT (1.178)

It is noteworthy that Eq. (1.177) can be also obtained from Eq. (1.176) for r = a.
We note here that the Love number is function of the material stratification of the
Earth’s models and the harmonic degree � via the propagator matrix ��, but not on
the order m. Note also that perturbations due to tidal and centrifugal forces share the
same Green function, the tidal Love number kT� (a), and that the load Love number
kL

� (r) depends on the radial distance from the Earth’s centre r where the load is
sitting.

1.7.2 Application of the Correspondence Principle

The components of the load and tidal Love numbers consist of the so called radial,
tangential and gravitational Love numbers, that we denote by h�, l� and k�, respec-
tively. They are defined by

kL
� (r) =

⎛

⎝
hL

� (r)
l L� (r)

−(r/a)� − kL� (r)

⎞

⎠ (1.179)

kL
� (a) =

⎛

⎝
hL

� (a)

l L� (a)

1 + kL� (a)

⎞

⎠ (1.180)

Due to the term (r/a)� and the unit in the third components, the gravitational Love
numbers kL� (r) and kL� (a) describe only the gravitational potential that is due to
density perturbations of the Earth, without including the direct contributions from
load densities and external potentials.

Equation (1.173) can be seen as the solution of the static elastic problem or the
associated elastic solution, i.e., the solution of the viscoelastic problem in the Laplace
domain accordingly to the Correspondence Principle. In the first case, the fields are
in the time domain and the propagator matrix depends on the shear modulus μ. Then
Eq. (1.173) can readily be used for modeling elastic perturbations at the Earth’s
surface, for which the Love number k� is named elastic kE , denoted by the subscript
E , now on omitting the �,m in K and � in k to not overwhelm the writing of the
Love numbers, since we want to emphasize their elastic component and the residues
corresponding to the s-singularities. In the second case, we must intend formulas
as in the Laplace domain, where fields are the Laplace transform of fields and the
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propagator matrix�� depends on the function μ̂(s) of the Laplace variable s defined
by Eq. (1.54), rather than the shear modulus μ. We then define the viscoelastic Love
number k in the time domain in terms of its Laplace transform k̃(s) that we obtain
from Eqs. (1.176)–(1.178)

k̃
L
(r, s) = L [kL(r, t)

] = N−1
L (B�(a)P1 − P2)��(a, r) f L(r)

∣∣
μ=μ̂(s)

(1.181)

k̃
T
(a, s) = L [kT (t)

] = N−1
T B�(a) bT

∣∣
μ=μ̂(s) (1.182)

where we have indicated the dependence on the Laplace variable s via the function

μ̂(s) that substitutes the shear modulusμ. Note that we do not have given k̃
L
(a, s) as

for Eq. (1.177), since it can be obtained from Eq. (1.181) when the r -dependence of
f L(r) is δ(r − a) for surface density anomalies. μ̂(s) affects the propagator matrix
�� and also the matrix B�, Eq. (1.172). Note that the limit of Eqs. (1.181)–(1.182)
for |s| → ∞ converges to the elastic Love numbers kL

E and kTE

lim|s|→∞
k̃
L
(r, s) = kL

E (r) (1.183)

lim|s|→∞
k̃
T
(s) = kTE (1.184)

because the limit of μ̂(s) for |s| → ∞ converges to the shear modulus μ, Eq. (1.54)

lim|s|→∞
μ̃(s) = μ (1.185)

With these definitions, the associated elastic solution in the Laplace domain
becomes

K̃(s) = NL

∫ a

rC

k̃
L
(r, s)

(
δ(r − a) σ̃ L

�m(s) + ρ̃ I
�m(r, s)

)
dr

+ NT k̃
T
(s)
(
�̃T

�m(a, s) + �̃C
�m(a, s)

)
(1.186)

and, after inverse Laplace transform of the product of two functions, Eq. (1.46), we
obtain the viscoelastic perturbations K in the time domain as the time convolution
of the viscoelastic Love number k and the time histories of the forcing terms

K(t) = NL

a∫

rC

kL(r, t) 
(
δ(r − a) σ L

�m(r, t) + ρ I
�m(r, t)

)
dr

+ NT kT (t) 
(
�T

�m(a, t) + �C
�m(a, t)

)
(1.187)
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The viscoelastic Love numbers, with k standing for kL and kT , must be obtained
by inverse Laplace transformation of Eqs. (1.181)–(1.182). The inverse Laplace
transform is formally defined by complex integration along the Bromwich path

k(t) = L−1
[
k̃(s)

]
= 1

2π i

c+i∞∫

c−i∞
k̃(s) es t ds (1.188)

The real constant c is chosen such that the singularities of the integrand k̃(s) es t

are either all on the left or all on the right side of the vertical line running from c−i∞
to c + i∞. Closing the contour with a half-circle CR of radius R (either on the left
of the line or on the right, depending on where the singularities are situated) leads to
the following complex contour integration

k(t) = − 1

2π i
lim
R→∞

∫

CR

k̃(s) es t ds + 1

2π i

∮

�

k̃(s) es t ds (1.189)

where � is an arbitrary closed contour which contains all the singularities. By con-
sidering Eqs. (1.183)–(1.184), and that the inverse Laplace transform of the unit 1
yields the Dirac delta δ(t), it is easy to show that the first term of the RHS of Eq.
(1.189) becomes kE δ(t), so that Eq. (1.189) can be written as follows

k(t) = kE δ(t) + 1

2π i

∮

�

k̃(s) es t ds (1.190)

This representation of the viscoelastic Love number separates the instantaneous
elastic response of the viscoelastic Earth’s model to the imposition of loading and
external potentials from the following response due to viscoelastic relaxation of the
deviatoric stress. We mantain this distinction by defining the viscous Love number
kV

kV (t) = 1

2π i

∮

�

k̃(s) es t ds (1.191)

and writing the Love numbers k as

k(t) = kE δ(t) + kV (t) (1.192)

1.8 The Relaxation Spectrum

The singularities of the integrand k̃(s) es t within the complex closed contour � arise
from different sources. The first source of singularities arises when the differential
system (1.159) is non–uniformly Lipschitzian, not satisfying the Lipschitz condition
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| f (r) − f (r ,)| ≤ K |r − r,| ,∀ (r, r,) ∈ [rC, a] and K a positive constant, due to the
singularities of the propagator matrix ��: inspection of the function μ̂(s) and of the
elements of the matrix A�, defined in Eqs. (1.54) and (1.95), leads to the conclusion
that the differential system is not-uniformly Lipschitzian for s = 0, s = −τ−1 and
s = −ς−1, where ς is the so called compressional transient time (Cambiotti et al.
2009; Cambiotti and Sabadini 2010) defined by

ς = τ

(
1 + 4μ

3 κ

)
(1.193)

which makes singular some elements of the A� matrix given by Eq. (1.95), being
responsible for β = 0 in Eq. (1.96) once μ̂(s), Eq. (1.54), is considered.

We denote the set of non–uniformly Lipschitzian zones as N

N = {0} ∪ Nτ ∪ Nς (1.194)

with

Nτ =
{
s ∈ R

∣∣∣∣ s = − 1

τ(r)
∀ r ∈ [rC , a]

}
(1.195)

Nς =
{
s ∈ R

∣∣∣∣ s = − 1

ς(r)
∀ r ∈ [rC , a]

}
(1.196)

This singularity at the origin of the Laplace domain occurs because μ̂(s = 0) = 0 and
the momentum equation becomes the equation for the inviscid body. This demands
a specific treatment, like that discussed in Sect. 1.6.3 for the inviscid core. Cambiotti
and Sabadini (2010) show that the origin of the Laplace domain is not a singularity if
the stratification of the mantle is compressional (γ = 0), while it is the cluster point
of a infinite denumerable set of roots if the stratification is compositional (γ �= 0).

The second source of singularities comes from the determination of the constants
of integration C using the boundary conditions at the Earth’s surface, Eq. (1.168).
Indeed, the inverse of the 3 × 3-matrix

[P1��(a, r) IC ]μ=μ̂(s) (1.197)

may be singular for some values of the Laplace variable s. In this respect, we recast
the matrix B� as follows

B�(r)|μ=μ̂(s) = (P2��(r, rC) IC) (P1��(a, rC) IC)†
∣∣
μ=μ̂(s)

D(s)
(1.198)

where † stands for the matrix of complementary minors, and D(s) is the so called
secular determinant

D(s) = det (P1��(a, r) IC)|μ=μ̂(s) (1.199)
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The singularities thus occur for the solutions of the so called secular equation

D(s) = 0 (1.200)

when the secular determinant entering the denominator of Eq. (1.198) is zero. Tanaka
et al. (2006) proved that these solutions, satisfying Eq. (1.200), must be on the real
axis of the Laplace domain, i.e., �s = 0. We denote the set of these singularities
as S

S = { s ∈ R| D(s) = 0} (1.201)

Experience and analytical proofs have lead to the conclusion that the solutionof the
secular equation (1.200) are finite or, at themost, infinite denumerable (theymay have
cluster points belonging to the non-uniformly Lipschitzian zone N ). Furthermore,
they are first-order roots and, in this respect, the Love numbers in the Laplace domain
have first-order poles at these roots. This is the simplest type of singularity we deal
with by means of the residue theorem derived in Appendix B on analytical functions.
Particularly, each root contributes to the complex integration along the closed contour
� entering Eq. (1.191) for

∮

� j

k(s) es tds = k j e
s j t (1.202)

where s j and � j denote the j th first-order pole and the closed path containing only
this root, and k j is the residue

k j = lim
s→s j

(s − s j )k(s) (1.203)

on the basis of the residue theorem.
This shows that each root s j is associatedwith a response of the viscoelasticEarth’s

model due to the imposition of loading and external potentials. These responses are
called normal modes and have characteristic relaxation times t j given by the inverse
of the root s j . They describe the transition from the elastic to fluid behavior due
to viscoelastic relaxation of deviatoric stress. The roots s j depend generally on the
material parameters of all the layers of the viscoelastic Earth’s model and on the
harmonic degree � (and thus must be determined for each harmonic degree). It turns
out that the roots s j are negative but density inversion at the internal interfaces
between the layers of the model, when the density of the layers is lower than that of
the neighboring layer above (Plag and Jüttner 1995; Vermeersen andMitrovica 2000;
Cambiotti andSabadini 2010), and unstable compositional stratifications, for positive
compositional coefficients γ > 0 (see Chap.2; Cambiotti et al. 2009; Cambiotti and
Sabadini 2010), trigger positive normal mode roots s j . According to Eq. (1.202),
these positive roots are responsible for the divergence of the displacements and the
potential at large timescales, called Rayleigh-Taylor instabilities. If that is the case,
unstable convective motions will be triggered in the Earth’s model and the theory as
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developed in this book breaks down on timescales comparable with the characteristic
relaxation time of Rayleigh-Taylor instabilities, t j = −1/s j .

For simple layered incompressible models, the total number of normal modes is
finite and can be determined by means of the following rules:

• At each boundary between two viscoelastic layers, one buoyancymode is triggered
if the densities on both sides of the boundary are different. Buoyancy modes
between two mantle layers are usually labelled Mi , with i = 1, 2, . . .. At the same
boundary, two additional relaxation modes are triggered if the Maxwell times of
both sides of the boundary are different. These paired modes are called transient
viscoelastic modes as they have relatively short relaxation times and therefore
usually labelled Ti+ and Ti−, with i = 1, 2, . . ..

• If one side of the boundary is elastic and the other is viscoelastic, as the interface
between the elastic lithosphere and the viscoelastic mantle, one buoyancy mode
and one transient viscoelastic mode are triggered, labelled M0 and L0 in this case,
the first due to the density contrast between the atmosphere and the viscoleatic
mantle beneath the lithosphere.

• If the lithosphere is viscoelastic or we consider the viscoelastic upper mantle as
the outermost layer, the viscoelastic Earth’s surface contributes with a buoyancy
mode that is also labelledM0, confusinglywith one of the two transient viscoelastic
modes that are triggered at the interface between the elastic lithosphere and the
viscoelastic mantle.

• The core-mantle boundary contributes with one buoyancy mode, labelled C0.

Density contrasts thus provide the most important modal contributions, the buoy-
ancy modes, and the amplitude of the former, and the depth where they are located,
determine the characteristic time scale over which the density contrast interface
adjusts once displaced by any geophysical forcing. Each mode contrbution, due to
density, viscosity, elasticity contrasts, or due to compressional dilatation and con-
traction, as hereinafter, has its own clear and simple physical explanation.

Compressible layered models and the self-compressed compressible sphere share
the same normal modes of layered incompressible models (Sect. 2.3) and additional
relaxations modes associated to compressibility (Han and Wahr 1995; Cambiotti
et al. 2009; Cambiotti and Sabadini 2010):

• Each viscoelastic compressible layer triggers two modes. These paired modes are
called transient compressible modes as they have relatively short relaxation times
and usually labelled Zi+ and Zi−, with i = 1, 2, . . ..Within the same layer, also an
infinite denumerable set of modes is triggered. They are called dilatational modes,
labelled D j , with j = 1, . . . ,∞, and their characteristic times converge to the
compressional transient time ς in the limit for j → ∞

lim
j→∞ sD j = −ς−1 (1.204)

The normal modes defined above complete those for compressible Earth’s models
with compressional stratifications (γ = 0), i.e.when the initial density stratification is

http://dx.doi.org/10.1007/978-94-017-7552-6_2
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due to the only self-compression of the Earth. Instead, compositional stratifications
(γ �= 0) trigger another infinite denumerable set of buoyancy modes with very
long characteristic times. They are called compositional modes, labelled C j , with
j = 1, . . . ,∞. These modes can be both stable, sC j < 0, and unstable, sC j > 0,
and their poles sC j monotonically converge to the origin of the Laplace domain for
j → ∞

lim
j→∞ sC j = 0 (1.205)

The stable casewill be carefully discussed inChap.2. In the unstable case, instead, the
compositional modes describe Rayleigh-Taylor instabilities that occur on timescales
of the order of the shortest characteristic time tC1 = −1/sC1 , with j = 1.

The presence of dilatational and compositional modes arises theoretical and
computational problems in obtaining all the contributions from normal modes, Eq.
(1.202). However, it is sufficient to detect the first few of these modes in order that
the Green functions converge to the exact ones. In fact, for j → ∞, the residues
kD j and kC j of dilatational and compositional modes go to zero sufficiently fast so
that their summation converges once the first few of them are taken into account
(Cambiotti et al. 2009; Cambiotti and Sabadini 2010).

Modal components to the deformation and gravity, resulting from the Correspon-
dece Principle, provide us a clear physics and makes it possible a deep comprehen-
sion of the intimate nature of the viscoelastic behaviour of the Earth, which would
be impossible to attain for example via standard integration in time.

It is thus possible, with the above rules, to determine the total number of modes
of equation (1.200). This is of importance as solving this equation has to be done
numerically. However, this root-solving is the only non-analytical part of the vis-
coelastic relaxation method when incompressible models, as in Chap.2, Sect. 2.3,
are considered.

The root-solving procedure usually consists of two parts: grid-spacing, followed
by a bisection algorithm. In the grid-spacing part, the s-domain is split into a number
of discrete intervals. For each s-value at a boundary of an interval, the value of
the determinant expressed by Eq. (1.200) is calculated, after which this value is
multiplied with the value of the determinant of the s-value of the boundary next to
it. If this product is positive, then the determinant has not changed in sign (or has
changed an even number of times). If the product is negative, then we are sure that
there is (at least) one root inside the interval bounded by the two s-values for which
the determinant was calculated. In that case, the interval is split up in two parts,
and the procedure of determining the product of the determinant of the bounding
s-values is repeated. The interval where the determinant changes sign will result
again in a negative product, and for this interval the procedure of cutting the interval
in two, etc., is repeated. Thus the s-value where the determinant (1.199) is equal to
zero becomes progressively better estimated with each further step in this bisection
algorithm. Of course, it can happen that the determinant (1.199) changes sign over
a small s-interval twice or even more times. It is thus necessary to choose small
grids in the s-domain (in practice, it appears that especially the two modes of each

http://dx.doi.org/10.1007/978-94-017-7552-6_2
http://dx.doi.org/10.1007/978-94-017-7552-6_2
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T -modepair have inverse relaxation times (s-values) that are very close to eachother).
Only after the complete number (determined with the rules above) of roots/modes
of equation (1.200) has been found can one be sure that the complete signal will be
retrieved after inverse-Laplace transformation. For this final step in the relaxation
modeling procedure we use the so-called method of complex contour integration.
Those readers who are not acquainted with this technique will find an overview in
Appendix B.

1.8.1 Modal and Non-modal Contributions

The Love number k̃(s) has thus two different types of not analyticity. The first comes
from a denumerable set of poles s j ∈ S0. The second comes from the continuous
set N of the Maxwell and compressional transient times τ and ς . Accordingly to
Fang and Hager (1995), we will refer to these contributions as the “modal” and “non-
modal” contributions, respectively. The modal contribution can be explicited in the
viscoelastic Love number by making use of the residue theorem as in Eq. (1.202)

k(t) =
∑

s j∈S0

k j e
s j t + 1

2π i

∮

�

kN (s) ds + kE δ(t) (1.206)

Here, k̃N (s) stands for the non-modal contribution that we cannot further explicit
and must be obtained by complex integration along the closed contour �.

The non-modal contribution is inherently associated with the continuous vari-
ations of the Maxwell and compressional transient times. Indeed, as discussed in
Spada et al. (1992a), Han and Wahr (1995), Vermeersen and Sabadini (1997) and
Cambiotti et al. (2009), these singularities do not contribute to the perturbations in
the time domain if there are only isolated points in the Laplace s-domain. This is the
case for layered Earth’s models, where the elastic parameter and the viscosity are
constant within each layer, because the Maxwell and compressional transient times
do not vary within each layer. Equation (1.191) thus becomes

kV (t) =
∑

s j∈S0

k j e
s j t (1.207)

On the contrary, we have verified that a not zero contribution comes from the setN
when it is continuous (Cambiotti and Sabadini 2010; Cambiotti et al. 2010) and we
must evaluate the complex contour integration along the contour � in Eq. (1.206).



42 1 Viscoelastic Relaxation Theory, Momentum and Poisson Equations

1.9 The Complex Contour Integration

For applications of the present theory formodelling perturbations in the time domain,
we do not need to investigate any time the relaxation spectrum.We just need to know
where the singularities are located in order to choose the closed contour � that
contains them, and then perform the complex contour integration in Eq. (1.191).
This approach was implemented by Tanaka et al. (2006) for modelling post-seismic
perturbations due to the December 2004 Sumatran earthquake. In the following we
describe some aspects necessary for obtaining stable numerical codes able to compute
the viscoelastic response in awide range of time scales, from the instantaneous elastic
response to the billion year time scales.

Figure1.3 shows the contour � (dashed line) that we use in Eq. (1.191) and the
contour of Tanaka et al. (2006) (solid line). The difference consists in the fact that our
contour is situated on the half space with positive real part of the Laplace variable s,
�s > 0, only for the semi–circle of radius R

R = max
{
5 sC1, 10

−5 kyr−1} (1.208)

where sC1 is the largest positive pole of the first compositional mode due to unsta-
ble compositional stratifications. The factor 5 and the lower bound 10−5 kyr−1 in
Eq. (1.208) have been chosen in order to avoid numerical instability in the radial
Gill-Runge-Kutta integration of the differential system (1.159) near the pole sC1 and
the origin of the Laplace domain, s = 0. This choice reduces the numerical instabil-
ity in the numerical evaluation of Eq. (1.191) due to the term e�s t , which diverges
in the limit t → ∞ if �s > 0. The pole sC1 is obtained by means of a root-finding
algorithm, which can be applied safely in the positive half of the real axis because

Fig. 1.3 The closed contour
� and that used in Tanaka
et al. (2006) (dashed and
solid lines, respectively)
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the non–uniformly Lipschitzian zoneN is situated in the negative half, by definition,
Eq. (1.194).

The value Z defining the lowest �s < 0 of the contour � is chosen as

Z = −11

10

1

τ(r∗)
(1.209)

where r∗ is the radius at which the Maxwell relaxation time τ assumes its smallest
value. Singularities can in fact be composed only of isolated poles s j ∈ S0 if �s <

−τ(r∗), and our experience has shown that there are no poles such that s j < −τ(r∗).
We choose 1 kyr−1 for the greatest and lowest �s of the contour �. Increasing the

time t , numerical instabilities may occur due to the sign oscillations of ei�s t near the
imaginary axis, for small �s. Indeed, elsewhere the term e�s t goes rapidly to zero
increasing t , since �s < 0, and this damps the oscillations of ei �s t . To avoid the
numerical instability near the imaginary axis, particularly for those s with �s ≥ 0,
we proceed as follows. We adopt an adaptive Cavalieri-Simpson method to evaluate
the contour integral entering Eq. (1.191) and, at each stage, we increase artfully
the sampling of the integrand k̃(s) by using the same second order interpolating
polynomial on which the Cavalieri-Simpsonmethod is based. In this way the number
of steps at which k̃(s) is effectively evaluated depends only on the smoothness or
stiffness of k̃(s) along the contour �, rather than on the condition t �s � 2π

proposed by Tanaka et al. (2006). The time scale at which the numerical instability
due to the oscillation of ei�s t occurs is increased by about 1–2 orders of magnitude,
under the same number of effective evaluations of k̃(s).

1.10 Point Sources

1.10.1 Point Loads

In order to obtain the Green functions for radial and tangential displacements and
gravitational potential perturbations due to loading, we consider a point-like load
with mass ML located at the point r L along the polar axis. Such a point-like mass
has the following density distribution, in terms of the Dirac delta δ

ρL(r) = ML δ(r − r L) (1.210)

and it is responsible for the gravitational potential

φL(r) = − G ML

|r − r L | (1.211)

Note the negative sign opposite with the definition usually followed in geo-
desy, as for Eq. (1) in Chao and Gross (1987): our definition is in agreement with
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Eq. (1.2) where, in physics, the force is the negative of the gradient of the potential.
In the following we shall make use of the expansions in Legendre polynomials of
Eqs. (1.210)–(1.211)

ρL(r, θ) =
∞∑

�=0

ρL
� (r) P�(cos θ) (1.212)

φL(r, θ) =
∞∑

�=0

�L
� (r) P�(cos θ) (1.213)

where the scalars ρL
� and �L

� depend solely on the radial distance r from the Earth’s
centre and on the harmonic degree �. By considering that the three-dimensional Dirac
delta in spherical coordinates is given by

δ(r − r L) = δ(r − rL)

r2
δ(θ) δ(ϕ − ϕL)

sin θ
(1.214)

with rL = (rL , 0, ϕL), and that

δ(θ) δ(ϕ − ϕL)

sin θ
=

∞∑

�=0

2 � + 1

4π
P�(cos θ) (1.215)

we have

ρL
� (r) = ML δ(r − rL)

2 � + 1

4π r2
(1.216)

Furthermore, by considering that the inverse of the distance between the observation,
r , and load, r L , points in spherical coordinates reads

1

|r − r L | = 1
√
r2 + r2L − 2 r rL cos θ

(1.217)

and that the generating function of the Legendre polynomials is

1√
1 + x2 − 2 x cos θ

=
∞∑

�=0

x� P�(cos θ) (1.218)

with x ≤ 1, we have

�L
� (r) =

⎧
⎪⎨

⎪⎩

−G ML
rL

(
r
rL

)�

r ≤ rL

−G ML
rL

(
r
rL

)−(�+1)
r ≥ rL

(1.219)

to be compared with Eqs. (1.116)–(1.117).
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Exercise 8 Expand a disk load of angular radius α, sitting at the radial distance rL
along the polar axis, in Legendre polynomials. Make use of the Legendre equation,
satisfied by the Legendre polynomials, that you can obtain from Eq. (1.70): you will
get Eq. (19) of Sabadini et al. (1982).

1.10.2 Fault Discontinuities

Earthquakes yield a discontinuity in the displacement across the fault plane, where
the rock fractures. By denoting with dS = dS n an infinitesimal surface element of
the fault plane of area dS and unit normal vector n, we thus impose the following
condition for displacements due to earthquakes

δu = δu v = lim
ε→0

[u(r0 + ε n) − u(r0 − ε n)] (1.220)

where r0 is the position of the infinitesimal surface element, and δu = δu v is the
displacement discontinuity of length δu and direction v. Discontinuities which are
parallel to the fault plane (v · n = 0) are called tangential (or shear) displacement
dislocations. Discontinuities which are normal to the fault plane (v · n = 1) are
called tensile dislocations. Between the two types of dislocations, we will focus only
on the former as it is responsible for the main contribution to co- and post-seismic
perturbations.

Smylie and Mansinha (1971), Manshina (1979) and Ben-Menahem and Singh
(2000) have shown that the effect of dislocations is equivalent to including an extra
body forceM in the momentum equation. For shear dislocations, the equivalent body
force is the double couple

M = M (n ⊗ v + v ⊗ n) · ∇0δ(r − r0) (1.221)

where M is the moment of each couple given by

M = μ(r0) δu dS (1.222)

and the gradient operator ∇0 operates on the coordinates of the seismic source point
r0 = (r0, θ0, ϕ0). In order to understand the definition of the equivalent body force
M, Eq. (1.221), we rewrite it as the sum of two single couples Mn,v and Mv,n

M = Mn,v + Mv,n (1.223)

The single couple Mn,v (and similarly Mv,n) is given by two opposite point-like
forces of magnitude F and direction v located at points r0 ± ε/2 n

Mn,v = F v δ(r − (r0 + ε/2 n)) − F v δ(r − (r0 − ε/2 n)) (1.224)
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and, in the limit for F going to infinity and ε going to zero, it yields

Mn,v = M n v · ∇0δ(r − r0) (1.225)

Here, we have assumed that the product between F and ε remains finite and it
coincides with the seismic moment M given by Eq. (1.222)

M = lim
F→∞,ε→0

F ε (1.226)

In order to obtain the forcing m�m , Eq. (1.100), entering the differential system
(1.94) via the dishomogeneous term f �m , Eq. (1.97), we must expand in spheri-
cal harmonics the expression for the double couple, Eq. (1.221). First we recast
Eq. (1.221) as follows

M = M n · [v · ∇0 ⊗ (δ(r − r0) 1)] + M v · [n · ∇0 ⊗ (δ(r − r0) 1)] (1.227)

where we have utilized∇0δ(r− r0)⊗1 = ∇0⊗(δ(r − r0) 1), based on∇⊗(u 1) =
∇u ⊗ 1.

The above expression for the double couple is convenient as the spherical harmonic
expansion of the three-dimensionalDirac delta δ(r−r0)multiplied by the unit diadyc
1 yields

δ(r − r0) 1 = δ(r − r0)

r2

∞∑

�=0

�∑

m=−�

1

N�m

[
R�m(θ, ϕ) R∗

�mθ0, ϕ0)

+S�m(θ, ϕ) S∗
�m(θ0, ϕ0) + T �m(θ, ϕ) T ∗

�m(θ0, ϕ0)
]

(1.228)

according to Eqs. (F.17) and (F.25) of Ben-Menahem and Singh (2000) and the
asterisc standing for the complex conjugate.

The Green functions for the displacement and the gravitational potential pertur-
bation due to the seismic forcing are obtained by considering the infinitesimal fault
plane dS located along the polar axis, i.e., taking the limit of Eq. (1.227) for the
colatitude θ0 and longitude ϕ0 of the seismic source going to zero. In view of this,
we shall use the following limits

lim
θ0,ϕ0→0

eθ (θ0, ϕ0) = x1 (1.229)

lim
θ0,ϕ0→0

eϕ(θ0, ϕ0) = x2 (1.230)

lim
θ0,ϕ0→0

er (θ0, ϕ0) = x3 (1.231)
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where x j are the Cartesian unit vectors of the geographical reference (x1 points to
the Greenwich meridian while x3 points to the north pole, i.e., coincides with the
present-day rotation axis), and

lim
θ0,ϕ0→0

Y ∗
�m(θ0, ϕ0) = δm0 (1.232)

lim
θ0,ϕ0→0

∂Y ∗
�m(θ0, ϕ0)

∂θ0
= 1

2

[
�(� + 1) δm1 − δm(−1)

]
(1.233)

lim
θ0,ϕ0→0

1

sin θ0

∂Y ∗
�m(θ0, ϕ0)

∂ϕ0
= i

2

[
�(� + 1) δm1 + δm(−1)

]
(1.234)

lim
θ0,ϕ0→0

∂

∂θ0

(
∂Y ∗

�m(θ0, ϕ0)

∂ϕ0

)
= − i

4

[
(� + 2)!
(� − 2)! δm2 − δm(−2)

]
(1.235)

Then, by making use of Eq. (1.228) into Eq. (1.227) and by considering the limit
of the latter for θ0 and ϕ0 going to zero in order to locate the double couple along the
polar axis, we obtain

M = M
∞∑

�=0

�∑

m=−�

[
mR

�m(r) R�m(θ, ϕ) + mS
�m(r) S�m(θ, ϕ) + mT

�m(r) T �m(θ, ϕ)
]

(1.236)
where

mR
�m(r) = 1

N�m
lim

θ0,ϕ0→0

{
n ·
[
v · ∇0

(
δ(r − r0)

r2
R∗

�m(θ0, ϕ0)

)]

+v ·
[
n · ∇0

(
δ(r − r0)

r2
R∗

�m(θ0, ϕ0)

)]}
(1.237)

mS
�m(r) = 1

�(� + 1) N�m
lim

θ0,ϕ0→0

{
n ·
[
v · ∇0

(
δ(r − r0)

r2
S∗

�m(θ0, ϕ0)

)]

+v ·
[
n · ∇0

(
δ(r − r0)

r2
S∗

�m(θ0, ϕ0)

)]}
(1.238)

mT
�m(r) = 1

�(� + 1) N�m
lim

θ0,ϕ0→0

{
n ·
[
v · ∇0

(
δ(r − r0)

r2
T ∗

�m(θ0, ϕ0)

)]

+v ·
[
n · ∇0

(
δ(r − r0)

r2
T ∗

�m(θ0, ϕ0)

)]}
(1.239)
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In the following we will do not discuss further the toroidal component of the
seismic force, since our book is particularly devoted to the latest developments of
gravity measurements from space in terms of the gravity signature, depending solely
on the spheroidal part, from giant earthquakes at subduction zones.

By writing the unit direction v of the slip and the unit normal n to the infinitesimal
fault plane in terms of dip, α, and slip, γ , angles

v = cos γ x1 + sin γ cosα x2 + sin γ sin δ x3 (1.240)

n = − sin α x2 + cosα x3 (1.241)

after some straightforward algebra, Eqs. (1.237)–(1.238) can be cast as follows

mX
�m(r) = δ(r − r0)

r2 r0
m(0)X

�m (r) + ∂

∂r

(
δ(r − r0)

r2

)
m(1)X

�m (r) (1.242)

where X denotes the spheroidal radial, X = R, and tangential, X = S, components
of the seismic force, and m(x)X

�m , for x = 0, 1 and X = R, S, is given by

m(0)R
�0 = −2 � + 1

4π
sin 2δ sin γ (1.243)

m(0)R
�1 = 2 � + 1

8π
(cos δ cos γ − i cos 2α sin γ ) (1.244)

m(0)R
�2 = 0 (1.245)

m(1)R
�0 = −2 � + 1

4π
sin 2α cos γ (1.246)

m(1)R
�1 = 0 (1.247)

m(1)R
�2 = 0 (1.248)

m(0)S
�0 = 2 � + 1

8π
sin 2δ sin γ (1.249)

m(0)S
�1 = 2 � + 1

8π � (� + 1)
(− cos δ cos γ + i cos 2δ sin γ ) (1.250)

m(0)S
�2 = 2 � + 1

16π � (� + 1)
(2 i sin δ cos γ + sin 2δ sin γ ) (1.251)

m(1)S
�0 = 0 (1.252)
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m(1)S
�1 = 2 � + 1

8π � (� + 1)
(− cos δ cos γ + i cos 2δ sin γ ) (1.253)

m(1)S
�2 = 0 (1.254)

with i being the imaginary unit. The scalars m(0)X
�m and m(1)X

�m of order |m| > 2 are
zero and their expression for m = −1,−2 are obtained by the above expressions by
considering that

mX
�−m = (−1)m

(� − m)!
(� + m)! m̄

X
�m (1.255)

In view of these results, the vector m�m , Eq. (1.100), which describes the seismic
force and enters the differential system (1.94) via the dishomogeneous term f �m ,
Eq. (1.97), takes the following form

m�m(r) = M

r2

(
δ(r − r0)

r0
m(0)

�m + ∂δ(r − r0)

∂r
m(1)

�m

)
(1.256)

where the vectors m(x)
�m , for x = 0, 1, are given by

m(x)
�m =

(
0, 0,m(x)R

�m ,m(x)S
�m , 0, 0

)T
(1.257)

The differential system (1.94) for the seismic problem thus becomes

dy�m

dr
= A�m y�m − M

r2

(
δ(r − r0)

r0
m(0)

�m + ∂δ(r − r0)

∂r
m(1)

�m

)
(1.258)

that is solved by
y�m(r) = ��(r, rC) IC C − w(r) (1.259)

Here, w is defined by Eq. (1.165) and, for the seismic force, yields

w(r) = M

r20
H(r − r0)��(r, r0)

[
m(0)

�m

r0
+ 2m(1)

�m

r0
+ A�(r0)m

(1)
�m

]

(1.260)

It is important to note the second term within the brackets of the RHS of Eq.
(1.260). This term results from the fact that the expression for m�m obtained above,
Eq. (1.256), which is similar to that obtained by Smylie and Mansinha (1971) and
Manshina (1979) (but for some convention about spherical harmonics), also depends
on the radial variable r rather than on the only radius of the seismic source r0. If this
dependence is omitted, the theory for the seismic source of Smylie and Mansinha
(1971) and Manshina (1979) yields
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w�m(r) = M

r20
H(r − r0)��(r, r0)

[
m(0)

�m

r0
+ A�(r0)m

(1)
�m

]

(1.261)

and it would differ from that discussed in Takeuchi and Saito (1972). References to
Smylie and Mansinha (1971) and Manshina (1979) should not neglect this subtle
dependence and use Eq. (1.260) rather than Eq. (1.261).

Both spheroidal radial, R�m , and tangential, S�m , components of stress must be
zero at the Earth’s surface, as well as the potential stress Q�m . Then, the Earth’s
surface boundary conditions are those for a free surface

P1 y�m(a) = 0 (1.262)

After elimination of the constants of integration C imposing the free Earth’s surface
boundary conditions (1.262) from Eq. (1.259), the solution K for the radial and
tangential spheroidal displacements and local incremental potential at the Earth’s
surface becomes

K = (B� P1 − P2) w(a) (1.263)

according to Eq. (1.171).
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Chapter 2
Incompressible and Compressible Analytical
Viscoelastic Models

Abstract In this chapter we will derive the analytical solutions for two most rep-
resentative cases of Earth’s models: the stratified viscoelastic incompressible model
and the self-compressed viscoelastic compressible sphere. Within the scheme of the
Correspondence Principle, these analytical solutions make possible to gain a deep
insight into the relaxation spectra of incompressible and compressible Earth’s mod-
els, via normal modes or complex contour integration. Love numbers, for surface,
unitary, constant loads, are finally explored during their time evolution.

2.1 Analytical Solution

By considering the general solution for the spheroidal and toroidal vector solution
y�m given by Eq. (1.169) in Chap. 1, its analytical expression can be obtained once
specified the analytical expressions for the core-mantle boundary matrix IC and the
propagator matrix ��. This is possible by imposing some restrictions on the material
parameters of the Earth’s model that will be introduced later. Here, we recall that the
vector b, Eq. (1.128), describes the Earth’s surface boundary conditions and it differs
from zero only for surface loading and tidal forcing, while the vector w, Eq. (1.165),
describes internal loading and seismic forcing.

2.2 Green Functions for Incompressible and Compressible
Stratified Viscoelastic Earth’s Models

Four major layers build our Earth’s models, the lithosphere, the upper and lower
mantle and the core. Each one of these layers can in principle be subdivided into other
layers, but this four-layer scheme continues to be valid, since any further stratified
model would continue to carry an elastic lithosphere, a viscoelastic upper mantle,
a viscoelastic lower mantle and an inviscid core. Thus from the point of view of
rheology, the Maxwell Model of Fig. 1.2 will be appropriate for the upper and lower
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Fig. 2.1 Schematic Earth’s model, including the lithosphere, gray, the upper mantle, dark green,
the lower mantle, light green, and the core, red

mantle, the green layers of Fig. 2.1, while the lithosphere would be characterized
solely by the spring of Fig. 1.2.

The core will always be inviscid, and we will not consider the differentiation
between the inner and the outer core. When dealing with other planetary bodies, as
Europa in Chap. 9, we will modify the outermost layers, in such a way to account
for an icy “lithosphere” and a fluid global ocean underneath, and the mantle will
also be considered different from the Earth’s one in terms of its dimension. Earth’s
models can be differentiated in many more layers than those of Fig. 2.1, but the
major discontinuities in density, at the CMB and upper-lower mantle, remain fixed
at 3485 and 5701 km from the centre of the planet. It is worthwhile to remind that the
mantle layers are green in our cartoon of the Earth since olivine and pyroxene, the
major constituents of the mantle, carry beautiful green colors in the visible frequency
range, as observed in samples lifted at the Earth’s surface from the mantle by tectonic
processes. Peridot (i.e., the gem variety of olivine—The Egyptians fashioned peridot
beads as long as 3500 years ago!) is used in jewelry, which makes our planet a
precious source of gemstones in the Universe!

2.2.1 Core-Mantle Boundary (CMB) Matrix

In order to specify the core-mantle boundary (CMB) matrix, Eq. (1.150), we must
obtain the solution ψ� of the Poisson equation for the inviscid core, Eq. (1.142), that
satisfies the regularity condition at the Earth’s centre, Eq. (1.143). Within the assump-
tion of an homogeneous core, i.e., with a constant density profile, the Eq. (1.142)
becomes the Laplace equation for ψ� because its right-hand side yields zero

∇2
r ψ� = 0 (2.1)
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This equation admits two independent solutions

ψ�(r) = c r � + c∗ r−(�+1) (2.2)

where c and c∗ are two integration constants. However, by considering the regularity
condition at the Earth’s centre, Eq. (1.143), we are left only with

ψ�(r) = r � (2.3)

and the quantity q� defined in Eq. (1.148) yields

q�(r) = 2 (� − 1) r �−1 (2.4)

where we used the following expression for the gravity within an homogeneous
sphere of density ρC

g(r) = 4 π

3
G ρC r (2.5)

Then, in the case of an homogeneous core, we can further specify the general
expression of the CMB matrix, Eq. (1.150), as follows

IC =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

−r �/g(rC) 0 1
0 1 0
0 0 g(rC) ρC
0 0 0
r � 0 0

2 (� − 1) r �−1 0 4 π G ρC

⎞

⎟⎟⎟⎟⎟
⎟
⎠

(2.6)

This is Eq. (63) of Sabadini et al. (1982).

2.2.2 Propagators and Fundamental Matrices

As already argued in Sect. 1.7, the propagator matrix solves the homogeneous system
given by Eq. (1.159), with the Cauchy datum and the continuity condition across
internal interfaces of radius r j , as in Eqs. (1.160) and (1.162). In this chapter we derive
the fundamental solutions for an incompressible model and for the self-compressed
compressible sphere, which allow us to build the propagator.

Considering that the solution of a system of N homogeneous first order differential
equations can be expressed as a linear combination of N independent solutions, both
spheroidal and toroidal vector solutions y� of the homogeneous differential system
within the same layer, say the j th viscoelastic layer,

dy�(r)

dr
= A�(r) y�(r) r j−1 < r < r j (2.7)
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can be expressed as follows

y�(r) = Y�(r)C r j−1 < r < r j (2.8)

where Y� is the fundamental 6×6- or 2×2-matrix, whose columns are independent
solutions of the spheroidal or toroidal homogeneous differential system (2.7) in the
j th layer, and C is a vector of integration constants. Note that only the harmonic
degree � enters, being the order m dependence due to the non-homogeneous forcing.
This allows us to cast the propagator matrix ��(r, r ′), when r and r ′ belong to the
j th layer of the Earth’s models, in the following form

��(r, r
′) = Y�(r)Y−1

� (r ′) r j−1 < r < r j (2.9)

in such a way that it solves the homogeneous differential system (2.7) and satisfies
the Cauchy datum ��(r ′, r ′) = 1. When r and r ′ belong to different layers, say
j th and i th layers, with j > i , the propagator matrix can be obtained using the
continuity condition Eq. (1.134) at the chemical interfaces between these two layers,
i.e. y�(r

+
k ) = y�(r

−
k ) at rk for k = i, . . . , j − 1. We thus obtain, from Eqs. (1.134),

(2.8) and (2.9)

��(r, r
′) = ��(r, r j )

(
j∏

k=i+1

��(rk, rk−1)

)

��(ri , r
′) (2.10)

In order to obtain an analytical expression for the propagator matrix �� we thus
need to obtain the linear independent solutions of the homogeneous differential
system (2.7) in each layer of the Earth’s model. They can be obtained analytically
both for incompressible and compressible Earth’s models with some restrictions on
the material parameters, leading to incompressible models, or on the density profile,
leading to a new analytical compressional model. Particularly, for layered models we
will require that the two Lamé parameters are constant in each layer of the Earth, i.e.,
∂rλ = 0 and ∂rμ = 0. Furthermore, rather than solving Eq. (2.7), we will consider
the original momentum and Poisson equations, after spherical harmonic expansion,
Eqs. (1.84)–(1.87), where the forcing terms will be omitted because we are now
interested in the solution of the homogeneous problem.

In order to simplify the following treatment, it is useful to introduce the quantity
H� defined by

H� = ∂r V� + V� −U�

r
(2.11)

and to consider the radial (1.84), tangential (1.85) and toroidal (1.86) components
of the momentum equation (without the forcing terms) multiplied by 1/ρ0, r/ρ0 and
1/μ, respectively, and cast them as follows within the assumption of constant elastic
parameters
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β

ρ0
∂rχ� − ∂r (gU ) + g χ� − ∂r�� + μ

ρ0

�(� + 1)

r
H� = 0 (2.12)

β

ρ0
χ� − gU� − �� + μ

ρ0
∂r (r H�) = 0 (2.13)

∇2
r W� = 0 (2.14)

It is interesting to note that the terms β/ρ0 nd μ/ρ0 entering Eqs. (2.12) and (2.13)
correspond to the square of the compressional and shear wave velocities.

The Poisson equation without the forcing terms becomes

∇2
r �� = −4 π G (ρ0 χ� +U� ∂rρ0) (2.15)

Exercise 9 Verify that the spheroidal radial (1.84) and tangential (1.85), and toroidal
tangential (1.86) components of the momentum equation can be cast as in Eqs. (2.12)–
(2.14)

2.3 Layered Incompressible Models

In the case of incompressibility, volume variations � are constrained to zero

χ� = 0 (2.16)

From Eq. (1.74), we then express the tangential displacement V� as function of the
radial displacement U�

V� = r ∂rU� + 2U�

�(� + 1)
(2.17)

and the quantity H� defined in Eq. (2.11) becomes

H� = ∇2
r (U� r)

�(� + 1)
(2.18)

Furthermore, as pointed out in Sect. 1.2.2, incompressible materials are charac-
terized by an infinitely large bulk modulus κ in order that they are able to react to
isotropic stresses. We thus require that the product κχ� remains finite in the limit
of χ� going to zero and of κ going to infinity (Love 1911, Sect. 154). We define this
limit with the quantity p� according to Eqs. (1.31) and (1.37)

p� = lim
χ�→0 κ→∞ −κχ� (2.19)
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Note that the same limit for λχ� and β χ� converges to p� since μχ� goes to zero.
In view of this, the radial stress component R�, Eq. (1.79), becomes

R� = −p� + 2 μ∂rU� (2.20)

We also assume that the initial density is homogeneous within each layer of the
Earth’s model

∂rρ0 = 0 (2.21)

even though it may differ from a layer to another, due to the specific chemical
composition and phase of each layer of the Earth. From the generalized Williamson-
Adams equation (1.42), this corresponds to the case in which the compositional
coefficient γ defined in Eq. (1.43) is zero, i.e., every incompressible layer is in a
neutral state of equilibrium.

In view of Eqs. (1.75), (2.16) and (2.21), there are no local density perturbations
ρ� within the layers, and the Poisson equation (2.15) becomes the Laplace equation

∇2
r �� = 0 (2.22)

and it admits two independent solutions which takes the following form

�� = c3 r
� + c∗

3 r
−(�+1) (2.23)

where r � and r−(�+1) are the regular and irregular solutions at the Earth’s centre,
respectively. Here c3 and c∗

3 are two constants of integration and the subscript 3 is
used for convenience.

The absence of local density perturbations ρ� within the layers does not mean
that there are no gravitational perturbations ��

� . Indeed, density perturbations occur
at the Earth’s surface, as well as at any internal chemical interfaces separating two
neighboring layers of the Earth, where the density contrast �ρ j differs from zero

�ρ j = ρ0(r
+
j ) − ρ0(r

−
j ) (2.24)

Here r j is the radius of the interface, with the superscripts + and − indicating that
the density is evaluated just above and below of the interface. Indeed, within the
assumption of infinitesimal perturbations, the radial displacement ur (r j , θ) of the
interface (i.e., the perturbation of the topography of the interface) yields a surface
density anomaly given by the negative of the product between the density contrast
�ρ j and the radial displacement ur (r j , θ)

ρ� = −�ρ j ur (r j , θ) δ(r − r j ) (2.25)

with δ being the Dirac delta function. Equation (2.25) can be also obtained from the
right-hand side of Eq. (1.75) by considering that the radial derivative of a function
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with a step-like discontinuity at r = r j yields the Dirac delta δ(r − r j ) multiplied
by the value of the step, the density contrast �ρ j in our case

∂rρ0 = �ρ j δ(r − r j ) (2.26)

For each interface there is a surface density perturbation that contributes to the grav-
itational perturbation via the Poisson equation and it affects the momentum equation
in terms both of gravity perturbations and buoyancy forces, i.e., the fourth and third
terms in Eq. (1.19). Note that the effects of these surface density perturbations are
already accounted for by the way in which we have defined the potential flux Q�m ,
Eq. (1.123), and by the requirement that it is continuous across the internal interfaces.

In view of Eqs. (2.16) and (2.19), the radial (2.12) and tangential (2.13) compo-
nents of the momentum equation simplify into

∂r�� + μ

ρ0

�(� + 1)

r
H� = 0 (2.27)

�� + μ

ρ0
∂r (r H�) = 0 (2.28)

where �� is defined by

�� = − p�

ρ0
− gU� − �� (2.29)

By applying the operator ∂r + 2/r to Eq. (2.27) and subtracting Eq. (2.28) mul-
tiplied by �(� + 1)/r2 we obtain

∇2
r �� = 0 (2.30)

the terms in H� canceling each other

(
∂r + 2

r

)
�(� + 1) H�

r
− �(� + 1)

r2
∂r (r H�) = 0 (2.31)

Since �� satisfies the Laplace equation (2.30), it thus takes the following form,
with the same dependence of �� obtained in Eq. (2.23) on the radial distance r from
the Earth’s centre

�� = − μ

ρ0
c1 r

� − μ

ρ0
c∗

1 r
−(�+1) (2.32)

where c1 and c∗
1 are two constants of integration that have been multiplied by −μ/ρ0

for convenience, as it will be apparent in the following. Then, by substituting this
solution into Eq. (2.27) and by making use of Eq. (2.18), we obtain a dishomogeneous
differential equation of the second order in U�

∇2(U� r) = c1 � r � − c∗
1 (� + 1) r−(�+1) (2.33)
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It is solved by the two particular solutions

U� = c1
� r �+1

2(2 � + 3)
+ c∗

1
(� + 1) r−�

2(2 � − 1)
(2.34)

and by the two linearly independent solutions of the homogeneous differential equa-
tion, i.e., when c1 and c∗

1 are set to zero in Eq. (2.33),

U� = c2 r
�−1 + c∗

2 r
−(�+2) (2.35)

Summing up all the contributions, we obtain

U� = c1
� r �+1

2(2 � + 3)
+ c2 r

�−1 + c∗
1

(� + 1) r−�

2(2 � − 1)
+ c∗

2 r
−(�+2) (2.36)

and, using this into Eq. (2.17), the tangential displacement V� yields

V� = c1
(� + 3) r �+1

2 (2 � + 3)(� + 1)
+ c2

r �−1

�
+ c∗

1
(2 − �) r−�

2 �(2 � − 1)
− c∗

2
r−(�+2)

� + 1
(2.37)

Exercise 10 Verify that the radial, R�, tangential, S�, and potential, Q�, stress com-
ponents of the spheroidal solution y, as defined in Eqs. (2.20), (1.80) and (1.93),
respectively, take the form

R� = c1
� ρ0 g r + 2 (�2 − � − 3)μ

2 (2 � + 3)
r � + c2 [ρ0 g r + 2 (� − 1) μ] r �−2

+ c3 ρ0 r � + c∗
1

(� + 1) ρ0 g r−2 (�2 + 3 � − 1)μ

2 (2 � − 1)
r−(�+1)

+ c∗
2 [ρ0 g r − 2 (� + 2) μ] r−(�+3) + c∗

3 ρ0 r−(�+1)

(2.38)

S� = c1
� (� + 2)

(2 � + 3)(� + 1)
μ r � + c2

2 (�−1)

�
μ r (�−2)

+ c∗
1

(�2 − 1)

� (2 � − 1)
μ r−(�+ 1) + c∗

2
2 (�+ 2)

� + 1 μ r−(�+3)

(2.39)

Q� = c1
2πGρ0�

2l + 3 r �+1 + c2 4 π G ρ0 r �−1 + c3(2 � + 1) r �−1

+ c∗
1

2 π G ρ0 (� + 1)

2 l−1 r−l + c∗
2 4 π G ρ0 r−(l+2)

(2.40)

For each layer of the Earth’s model (assuming that each layer has material parame-
ters ρ0 and μ which are constant inside it), on the basis of Eqs. (2.23), (2.36)–(2.37)
and (2.38)–(2.40), the spheroidal vector solution y can be written as

y�(r) = Y�(r)C� (2.41)

http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
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where Y� is the fundamental matrix

Y�(r) =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

lr l+1

2(2l+3)
rl−1 0

(l+3)rl+1

2(2l+3)(l+1)
rl−1

l 0
(lρ0gr+2(l2−l−3)μ)rl

2(2l+3)
(ρ0gr + 2(l − 1)μ)rl−2 ρ0rl

l(l+2)μrl

(2l+3)(l+1)

2(l−1)μrl−2

l 0 . . .

0 0 rl
2πGρ0lr l+1

2l+3 4πGρ0rl−1 (2l + 1)rl−1

(l+1)r−l

2(2l−1)
r−l−2 0

(2−l)r−l

2l(2l−1)
− r−l−2

l+1 0
(l+1)ρ0gr−2(l2+3l−1)μ

2(2l−1)rl+1
ρ0gr−2(l+2)μ

rl+3
ρ0

rl+1

. . .
(l2−1)μ

l(2l−1)rl+1
2(l+2)μ
(l+1)rl+3 0

0 0 1
rl+1

2πGρ0(l+1)

(2l−1)rl
4πGρ0

rl+2 0

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

(2.42)

and C� is the vector of integration constants

C� = (
c1, c2, c3, c

∗
1, c

∗
2, c

∗
3

)T
(2.43)

The regular and singular part of the fundamental matrix are the first three columns
and last three columns respectively, the first going to zero at the Earth’s centre and they
are given by Eqs. (46) and (48) in Sabadini et al. (1982), where the singular part of the
incompressible solution was given for the first time for a stratified viscoelastic Earth.
The asterisk for denoting the part of the vector of integration constant multiplying
the singular part of the fundamental matrix is also taken from Sabadini et al. (1982).

Each column of the fundamental matrix Y� represents an independent solution of
the linear differential system (1.161) in the incompressible case, i.e., in the limit of
the matrix A defined in Eq. (1.95) for the bulk modulus κ going to infinity

∂rY� =
(

lim
κ→∞A�

)
Y� (2.44)

Note that, from Eqs. (1.77) and (1.96), also λ and β go to infinity
The analytical expression of the fundamental solution (2.42), which includes the

regular and singular part at the Earth’s centre was first obtained in Sabadini et al.
(1982), after the regular part was given first in Wu and Peltier (1982), their Eqs. (30a)–
(30d). The reader should note that the terms of the third and sixth columns of the
fundamental matrix Y�(r) have the opposite sign with respect to the corresponding
terms in Eqs. (46) and (48) of Sabadini et al. (1982) due to the sign definition of the
φ gravitational potential in this book with respect to Sabadini et al. (1982), to match
herein the definition of the perturbation of the gravitational potential in agreement

http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
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with Eqs. (1.60) and (1.2). The results are of course the same, for both Sabadini et al.
(1982) and what we show in this book: we now simply avoid a somehow confusing
artificial change of sign in the definition of the gravitational potential. Several works
and results from other groups streamed from this fundamental solution describing a
self-gravitating, viscoelastic, stratified Earth. It should be noted on the other hand,
that some applications of Y�(r), as for the case of co-seismic deformation, is not
appropriate because in that case the effects of compressibility play a key role, but
this will be analyzed in Chap. 5.

The inverse of the fundamental matrix Y� has the form

Y−1
� (r) = D�(r) Ȳ�(r) (2.45)

with D� being a diagonal matrix with elements

diag [D�(r)]

= 1
2 �+1

(
�+1
r�+1 , �(�+1)

2(2 �−1)r�−1 , − 1
r�−1 , �r � , �(�+1)

2(2 �+3)
r �+2 , r �+1

) (2.46)

and

Ȳ�(r) =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

ρgr
μ

−2(�+2) 2 �(�+2) − r
μ

�r
μ

ρr
μ

0

− ρgr
μ

+ 2(�2+3 �−1)

�+1 −2(�2−1)
r
μ

(2−�)r
μ

− ρr
μ

0

4πGρ 0 0 0 0 −1
ρgr
μ

+2(�−1) 2(�2−1) − r
μ

− (�+1)r
μ

ρr
μ

0

− ρgr
μ

− 2(�2−�−3)

l −2 �(�+2)
r
μ

(�+3)r
μ

− ρr
μ

0

4πGρr 0 0 0 2 �+1 −r

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

(2.47)

Although it would be quite laborious to derive such an analytical compact form of
a 6 × 6 inverse matrix by hand, this can be done nowadays by means of an algebraic
software package like Mathematica. It was first done by (Spada et al. 1990, 1992).
Of course, it is not difficult to show analytically that Y�(r)Y−1

� (r) = 1, with 1 being
the identity matrix, by hand! With respect to (Spada et al. 1990, 1992), the elements
of D�(r) and Ȳ�(r) are changed accordingly to account for our own definition of the
sign of the perturbation of the gravitational potential.

2.4 Relaxation Times for Incompressible Earth’s Models

In order to gain insights into the physics of the relaxation processes, it is impor-
tant to take a close look at the relaxation times corresponding to the modes excited
by discontinuities in the physical parameters of simple Earth’s models. We will
consider the spheroidal case. Equations (2.42) and (2.45) allow us to build the propa-
gator, Eq. (2.9), and to derive the normalized secular determinant D(s), Eq. (1.199).

http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_5
http://dx.doi.org/10.1007/978-94-017-7552-6_1


2.4 Relaxation Times for Incompressible Earth’s Models 63

Fig. 2.2 With s normalized
by 1 kyr, plot of the function
defined as f (D�(s)) =
sgn(D�(s)) × log(|D�(s)|)
if |D(s)| > 10.0 and
f (D�(s)) = D�(s)/10.0) if
|D�(s)| ≤ 10.0 as function
of log(−1/(s × kyr)) and its
zero crossings, providing the
relaxation times Ti = −1/si ,
for the 5-layer
incompressible model of
Table 2.1 and l = 2, 10, 100
from top to bottom. This
calculation and
corresponding figure have
been kindly provided by
Shuang Yi, from the Key
Laboratory of Computational
Geodynamics from the
University of the Chinese
Academy of Sciences
(UCAS), January 2015
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Figure 2.2, kindly provided by S. Yi (personal communication), portrays f (D�(s)) =
sgn(D�(s)) × log(|D�(s)|) if |D(s)| > 10.0 and f (D�(s)) = D�(s)/10.0) if
|D�(s)| ≤ 10.0 as function of log(−1/(s × kyr)), which means that s, negative,
expressed in 1/s is normalized by 1 kyr = 3.153 × 1010 s, for the harmonic degrees
� = 2, 10 and 100, from top to bottom and for the 5-layer, incompressible Earth’s
model displayed in Table 2.1. The zero crossings are the relaxation times correspond-
ing to the normal modes Ti = −1/si of the 5-layer Earth’s model. According to the
rules established in Sect. 1.8 for counting the normal modes for incompressible mod-
els, Fig. 2.2 portrays 9 zero crossings, or normal modes of the secular determinant
D(s) as expected for the five-layer model of Table 2.1: four transient modes T 1–
T 4 are triggered at the two interfaces between the viscoelastic layers, at 5951 and

http://dx.doi.org/10.1007/978-94-017-7552-6_1
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Table 2.1 Parameters for the 5-layer fixed-boundary contrast Earth’s model

Layer r (km) ρ (kg/m3) ν (Pa s) μ (N/m2)

1 6371−6251 3070 Elastic 5.76 × 1010 Lithosphere

2 6251−5951 3070 1021 5.76 × 1010 Shallow upper mantle

3 5951−5701 3850 1021 1.06 × 1011 Transition zone

4 5701−3480 4970 1021 2.16 × 1011 Lower mantle

5 3480 − 0 10,750 Inviscid 0 Inviscid fluid core

r is the distance with respect to the centre of the Earth, ρ the density of the layer, and μ the rigidity

5701 km, because their Maxwell times are different (from Table 2.1); two buoyancy
modes, M1 and M2 are triggered at these two interfaces between viscoelastic layers,
M1 at 5701 and M2 at 5951 km; the density contrast between the viscoelastic man-
tle and the outer atmosphere triggers the mantle mode M0, the rheological contrast
between the viscoelastic mantle and the elastic lithosphere triggers L0 and finally the
density contrast between the mantle and the core triggers the core mode C0, giving a
final total count of nine modes. The slowest modes have been named M1 and M2 by
Wu and Peltier (1982) and are associated with the two internal chemical boundaries
at 670 and 420 km. These M1 and M2 modes will be quoted several times in the
book when dealing with the geophysical processes affected by the slow readjustment
of the 670 and 420 km density discontinuities.

The longest Ti correspond to the buoyancy M2 and M1 modes in the extreme right
of the abscissa, and for � = 2 they are TM2 = 2.01×107 yr, TM1 = 7.44×105 yr, due
to density contrasts between viscoelastic internal layers. To the left, towards shorter
times, we catch the core modeC0 = 9.48×103 yr, the mantle mode M0 = 2.33×103

yr, the lithospheric mode L0 = 5.89 × 102 yr and then, at the shortest times, the
couple of transient relaxation times T 1–T 4, 4.92 × 102, 3.73 × 102, 2.83 × 102 and
2.55×102 yr. Increasing the harmonic degree at � = 10 the transient relaxation times
remain constant, while the three modes L0, M0 and C0 move to the right, towards
longer times, while M1 and M2 do the opposite. When � = 100 the transient modes
merge together and the two adjacent modes become indistinguishable at this scale,
apparently reducing the nine modes to seven modes. The lithospheric mode L0
moves towards the slowest M1, M2 modes, while the latter get close to one another.
Figure 2.3, kindly provided by S. Yi (personal communication), shows for the same
Earth’s model of Table 2.1 the relaxation times as a function of the harmonic degree
from � = 2 to � = 100, in order to provide a more precise determination of the zero
crossings and relaxation time values with respect to Fig. 2.2.

Figure 2.3 portrays in detail the relaxation times for � = 2–100, which in Fig. 2.2
are shown solely for � = 2, 10 and 100. This representation allows us to perceive
that each viscoelastic mode follows its own peculiar branch for varying harmonic
degree �, so the M1, M2 modes become faster with increasing � compared to their
slowest � = 2 counterparts. The � = 100 M2 for example is faster by almost two
orders of magnitude compared to � = 2, from about twenty million years to three
hundred thousand years. On the opposite, the C0 mode becomes slower, while the
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Fig. 2.3 Relaxation times Ti
in kyr for the 5-layer
incompressible model of
Table 2.1 and l = 2–100. As
for Fig. 2.2, this calculation
and corresponding figure
have been kindly provided
by Shuang Yi, from UCAS,
January 2015
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M0 mode is the slowest for � = 30, about seven thousand years compared to two 2.5
thousand years for � = 2, becoming fast again for � = 100. The L0 mode becomes
slower for increasing � in a non monotonic way, and the transient modes become
indistinguishable in pairs. This result shows the richness in time scales caused by the
Earth’s stratification and wavelength decomposition.

We now have a closer look at the relaxation times as a function of the harmonic
degree � as in Fig. 2.3 but for 5-layer Earth’s models with varying viscosity ratio
between the lower and upper mantle and between the transition zone and the upper
mantle. The relaxation times for these 5-layer models are shown in Figs. 2.4 and 2.5
as a function of the harmonic order �, for varying ratio B = ν2/ν1 between the lower
and upper mantle viscosity from 1 to 200, and for varying ratio C = ν3/ν1 between
the viscosity of the transition zone and that of the upper mantle by the same amount.
All the � patterns resemble that of Fig. 2.3.

The relaxation times Ti = −1/si are expressed in years, ranging from � = 2
to � = 100. Figure 2.4 deals with a viscosity increase in the lower mantle, with
the ratio B between the lower and upper mantle viscosity ranging from 1 to 200.
OM stands for an old viscosity model in which the upper mantle viscosity is fixed
at 1021 Pa s, while NM stands for a new viscosity model in which ν1 is fixed at
0.5×1021 Pa s, in agreement with the recent analyses by Lambeck et al. (1990),
Vermeersen and Sabadini (1999), Devoti et al. (2001) based on postglacial rebound
modeling from different perspectives, sea-level changes in the far field and long-
wavelength geopotential variations. These models are chemically stratified at 420 and
670 km depth and the viscosity is uniform in the whole upper mantle; this stratification
supports nine relaxation modes.
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Fig. 2.4 Relaxation times in years as a function of the harmonic degree � and varying lower mantle
viscosity. The parameter B = ν2/ν1 is varied from 1 to 200. OM corresponds to ν1 = 1021 Pa s,
while NM corresponds to ν1 = 0.5 × 1021 Pa s (Fig. 2 in Spada et al. 1992)

Fig. 2.5 Relaxation times in years as a function of the harmonic degree � and varying lower mantle
viscosity. The parameter C = ν3/ν1 is varied from 1 to 200. LB corresponds to ν1 = 0.5 × 1021

Pa s and ν2 = 2 × 1021 Pa s, while UB corresponds to ν1 = 0.5 × 1021 Pa s and ν2 = 2 × 1022 Pa
s (Fig. 3 in Spada et al. 1992)

At low degrees, Fig. 2.4, the transient times T1−T4 are followed by the lithospheric
(L0) mode and by the core (C0) and mantle (M0) modes, as portrayed in the panel
NM by B = 1, with B = ν2/ν1 denoting the ratio between the lower to upper mantle
viscosity. When B is increased from 1 to 200, all the curves are moved upward toward
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slower relaxation times. This upward migration occurs first for longer wavelengths,
say lower than � = 10, followed by the shorter ones, which are less affected by
lower mantle viscosity. For shorter wavelengths only the M1, M2 and core modes
have slower relaxation times, while the lithospheric and mantle modes are rather
unaffected, the deformation at such high harmonic degrees being concentrated in
the upper mantle and thus unaffected by lower mantle viscosity variations. The NM
curves, in the left panel, can be obtained from their counterparts in the right panel
by a uniform downward shift towards faster relaxation times, in agreement with the
lowering of the global mantle viscosity of this model.

Figure 2.5 shows the effects of a viscosity increase in the transition zone for the
new model NM, with C = ν3/ν1 denoting the ratio between the viscosity in the
transition zone ν3 with respect to the viscosity in the upper mantle. These models,
with a stiff transition zone at the upper lower mantle boundary, are based on the
laboratory studies by Karato (1989) and Meade and Jeanloz (1990), which suggest
that the transition zone may form a layer of relatively high viscosity between the
upper and lower mantle. Panel LB, with LB standing for lower branch, corresponds
to an upper mantle viscosity of 0.5×1021 Pa s and to ν2 = 2×1021 Pa s in the lower
mantle, while UB, with UB standing for upper branch, corresponds to the same upper
mantle viscosity and to a higher lower mantle viscosity of ν2 = 2 × 1022 Pa s. LB
and UB for the lower mantle viscosity stand for the two possible viscosity solutions
when true polar wander data and variations in the long-wavelength gravity field are
used to constrain the viscosity of the lower mantle (see Chaps. 4 and 5). Viscosity
increase in the hard layer influences all the modes for all the models, in particular
the M1 and M2 modes, which is not surprising as these modes are excited by the
discontinuities that bound the region where the viscosity is varied. With respect to
the previous figure, all the modes are now affected by the viscosity increase in the
transition layer which, lying close to the surface, is also able to affect the short
wavelength, high-degree modes.

Exercise 11 Making use of the analytical fundamental solution for the incompress-
ible, homogeneous Earth’s model, show that the loading Love number kL2 can be cast
in the following form in the Laplace transform domain

kL2 (s) = −1

(1 + μ̂(s))
(2.48)

while the tidal Love number kT2 becomes

kT2 (s) = 3/2

(1 + μ̂(s))
(2.49)

where μ̂(s) is given by Eq. (1.54), with the elastic μ multiplied by the normalization
factor 19/(2ρg(a)a), valid for � = 2.

http://dx.doi.org/10.1007/978-94-017-7552-6_4
http://dx.doi.org/10.1007/978-94-017-7552-6_5
http://dx.doi.org/10.1007/978-94-017-7552-6_1
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2.5 The Self-compressed, Compressible Sphere

Cambiotti and Sabadini (2010) found the analytical solution of viscoelastic pertur-
bations in the Laplace domain for a specific self-gravitating compressible Maxwell
Earth’s model, called “self-compressed compressible sphere”. This model is com-
posed of an incompressible inviscid core and a compressible Maxwell mantle with
constant shear modulus, μ, bulk modulus, κ, and viscosity, ν. In order to account
for the self-compression of the mantle at the initial state of hydrostatic equilibrium,
the initial density profile within the mantle varies with the radial distance from the
Earth’s centre r according to

ρ0(r) =
{ 3 α

2 rC
0 ≤ r ≤ rC

α
r rC < r ≤ a

(2.50)

where rC , a and α are the radius of the core, the Earth’s radius and a constant related
to the total Earth mass ME by

ME = 2 π α a2 (2.51)

This choice of the initial density profile fixes the initial gravity acceleration g within
the mantle to

g = 2 π G α (2.52)

with G being the universal gravitational constant.
Depending on the bulk modulus κ, the self-compressed compressible sphere

describes compressional or compositional stratifications of the mantle. Indeed, from
the generalized Williamson-Adams equation (1.42) with the compositional coeffi-
cient set to zero, γ = 0, we obtain that compressional stratifications are characterized
by a constant bulk modulus to which we will refer as compressional bulk modulus
κ0

κ0 = g α = 2 π G α2 (2.53)

Departures from this value result in compositional stratifications. Particularly, the
compositional coefficient γ yields

γ = −ε α

r2
(2.54)

with
ε = κ − κ0

κ
(2.55)

As it results from the analysis of the relaxation spectrum of the self-compressed
compressible sphere, that we will discuss later in Sect. 2.5.2, the compositional strat-
ification is stable if κ > κ0 and unstable if κ < κ0. This also results from the

http://dx.doi.org/10.1007/978-94-017-7552-6_1
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comparison between the generalized Williamson-Adams equation (1.42) and the
expression for the square of the Brunt-Väisälä frequency ω

ω2 = − g

ρ0

(
∂rρ0 + g ρ2

0

κ

)
= −g γ

ρ0
(2.56)

The Brunt-Väisälä frequency ω characterizes the motion of a particle in the ideal fluid
that adiabatically moves away from its equilibrium position. The particle will oscillate
around its equilibrium position with frequency ω if ω2 > 0, while it will continue to
move away from its equilibrium position if ω2 < 0. Differently, the particle remains
in the new position due to the perturbation if ω = 0. Although the present theoretical
framework is based on the assumption of quasi-static deformations (we neglect the
inertial forces in the momentum equation), the analysis of the sign of ω2 allows
to establish if the viscoelastic model is stable or unstable (Plag and Jüttner 1995;
Vermeersen and Mitrovica 2000). In view of Eq. (2.56), the stability only depends on
the sign of the compositional coefficient γ. The model is stable if γ ≤ 0 and unstable
if γ > 0. For instance layered compressible models present the unstable Rayleigh–
Taylor modes (Plag and Jüttner 1995) and, indeed, their compositional coefficient
becomes positive because the radial derivative of the density is zero in this case. An
alternative way to describe layered compressible models consists in the assumption
that they are incompressible at the initial state of hydrostatic equilibrium, i.e., they
have an infinitely large bulk modulus at the initial state, κ → ∞, and a finite bulk
modulus during the perturbations. This would imply that γ = 0 from Eq. (2.56),
but it is not a self-consistent with compressibility during deformation and so we
reject this interpretation, which also contrasts with the presence of Rayleigh–Taylor
instabilities.

In view of the way in which we have defined the self-compressed compressible
sphere, we have the possibility of studying the effects of the compressional and
compositional stratifications on the relaxation process of Maxwell Earth’s models.
Previous analytical solutions were obtained assuming material or local incompress-
ibility and for the case of the “homogeneous compressible sphere” (Gilbert and
Backus 1968). Only the latter model actually accounts for compressibility during
perturbations, but all the material parameters, included the initial density, are con-
stant from the centre to the surface of the Earth. Its analytical solution has been
widely used, first, in seismology and, after, in viscoelastic modelling (Vermeersen
et al. 1996b). Nevertheless, it neglects the self-compression at the initial state of
hydrostatic equilibrium since it has a constant density profile: in this respect, the
homogeneous compressible sphere is always unstable. Instead, our self-compressed
compressible sphere (Cambiotti and Sabadini 2010) takes into account compress-
ibility both during the perturbations and at the initial state, having a depth dependent
density profile, Eq. (2.50). In addition to this qualitative improvement with respect
to the homogeneous compressible sphere, our model also reproduces the density
contrast at the core-mantle boundary, although it neglects other density contrasts
within the mantle due to the simple Darwin-law used to describe the compressibility
at the initial state. This also results into a better reproduction of the actual initial

http://dx.doi.org/10.1007/978-94-017-7552-6_1
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Fig. 2.6 Initial gravity
acceleration g of PREM
(black solid line), the
self-compressed
compressible sphere (our
new model, grey line) and the
homogeneous compressible
sphere (Gilbert and Backus
1968 black dashed line). The
core-mantle boundary
corresponds to the
normalized radius 0.547

gravity acceleration predicted by PREM, which is indeed almost constant within
the mantle as in Eq. (2.52). We show this in Fig. 2.6 where we compare the initial
gravity acceleration predicted by PREM and the gravity from the self-compressed
and homogeneous compressible spheres.

2.5.1 The Analytical Solution

In order to solve the spheroidal radial and tangential components of the momentum
equation and the Poisson equation, Eqs. (2.12), (2.13) and (2.15), for compressible
Earth’s models with constant elastic parameters κ and μ, it is convenient obtain-
ing first two differential equations that involve only the radial and tangential dis-
placements. This is possible owing to the specific initial density and gravity of the
self-compressed compressible sphere, Eqs. (2.50) and (2.52). The first differential
equation is obtained by subtracting to the radial component (2.12) of the momentum
equation the derivative of the tangential component (2.13) with respect to the radial
variable r

(
β

α
− g

)
χ� + μ

α

[
r2∂2

r H� + 3 r ∂r H� + (1 − �(� + 1)) H�

] = 0 (2.57)

The second differential equation is obtained by applying the operator ∂r + 2/r to
the radial component Eq. (2.12) of the momentum equation and subtracting to it the
tangential component Eq. (2.13) multiplied by �(� + 1)/r2
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− ∇2
r �� + ∇2

(
β

α
χ� − gU�

)

+
(

g − β

α

)
1

r
∂r

(
r2χ�

) + μ

α

�(� + 1)

r
H� = 0 (2.58)

Here, we also substitute the Laplacian of the potential by means of the Poisson
equation (2.15) together with Eqs. (2.50) and (2.52)

∇2
r �� = −2 g α

r

(
χ� − 1

r
U�

)
(2.59)

This yields

2 g α

r

(
χ� − 1

r
U�

)
+ ∇2

(
β

α
χ� − gU�

)

+
(

g − β

α

)
1

r
∂r

(
r2χ�

) + μ

α

�(� + 1)

r
H� = 0 (2.60)

Let us now suppose that the six linearly independent solutions of Eqs. (2.57) and
(2.60) may have the following form

U� = u r z (2.61)

V� = v r z (2.62)

with u, v and z as constants, and substitute these trial solutions. From Eqs. (2.57)
and (2.60), we thus obtain

μ

α
r z−1 {u [Z − z (ζ + 1) − 2 ζ] − v [Z z − �(� + 1) (1 + ζ)]} = 0 (2.63)

μ

α
r z−2

{
u

[
g α

μ
(Z + 2)(z + 1) + (Z − 2)(z + 1) ζ − �(� + 1)(ζ + 1)

]

−v �(� + 1)

[
g α

μ
(Z + 2) + Z ζ − (ζ + 1)(z + 1)

]}
= 0 (2.64)

Here, Z is the second order polynomial in z

Z = z2 + z − �(� + 1) (2.65)

and ζ is given by

ζ = β − g α

μ
(2.66)
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Since it has been possible to collect the dependence on the radial variable r in
Eqs. (2.63) and (2.64), the latter can be seen as equations for the constants u, v and
z. Solving Eq. (2.63) for v, we obtain

v = u
Z − z (ζ + 1) − 2 ζ

Z z − �(� + 1) (1 + ζ)
(2.67)

and, using this in Eq. (2.64), after some straightforward algebra, it yields the following
third-order polynomial in Z

a0 + a1 Z + a2 Z
2 + Z3 = 0 (2.68)

with a0, a1 and a2 being constant coefficients, which depend solely on the material
parameters and the harmonic degree �

a2 = 4
g α

β
− 2 (2.69)

a1 = �(� + 1)

(
g α

β
(ζ + 3) − 4

)
(2.70)

a0 = 2 �(� + 1)
g α

β
(ζ − 1) (2.71)

In order to satisfy Eq. (2.68), Z has to be one of the three roots Z j , with j =
1, 2, 3, of the third-order polynomial of the LHS. We do not report here the lengthy
expressions for Z j . However, we note that they only depend on the harmonic degree �

and on the material parameters of the self-compressed compressible sphere via g α/β
and ζ. Then, by considering that Z is a second order polynomial in the constant z,
the latter can assumes only two values z j and z j+3 for each root Z j

z j = −1

2

(
1 + √

1 + 4 (�(� + 1) + Z j )
)

(2.72)

z j+3 = −1

2

(
1 − √

1 + 4 (�(� + 1) + Z j )
)

(2.73)

We thus have obtained six constants z j that, once substituted into Eqs. (2.61),
(2.62) and (2.67), yield six linearly independent solutions of the two differential
Eqs. (2.63)–(2.64)

U� =
6∑

j=1

u j r
z j (2.74)

V� =
6∑

j=1

u j v j r
z j (2.75)
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where u j are the constants of integration and, according to Eq. (2.67), v j are given
by

v j = Z j − z j (ζ + 1) − 2 ζ

Z j z j − �(� + 1) (1 + ζ)
(2.76)

Since Z j has been defined only for j = 1, 2, 3, we impose that Z4, Z5 and Z6

coincide with Z1, Z2 and Z3.
The solution for the gravitational potential ��m is obtained by substituting

Eqs. (2.74)–(2.75) into the Poisson equation (2.59). This yields the following non-
homogeneous differential equation of the second order in ��m

∇2�� = −2
6∑

j=1

u j r
z j−2 g

[
(z j + 1) − �(� + 1) v j

]
(2.77)

It is solved by the particular solution

�� =
6∑

j=1

u j p j r
z j (2.78)

with

p j = 2 g
�(� + 1)(1 − ζ) − Z2

j

Z j (Z j z j − �(� + 1) (ζ + 1))
(2.79)

and by the two solutions of the homogenenous differential equation (i.e., the Laplace
equation)

�� = c r � + c∗ r−(�+1) (2.80)

with c and c∗ being constants of integration. The latter, however, must not be con-
sidered. Indeed they solve neither the radial nor the tangential components of the
momentum Eqs. (2.12)–(2.13), once set U�m and V�m to zero. This is due to the
fact that we have already used the Poisson equation (2.59) to obtain Eq. (2.60) from
Eq. (2.58).

Within the solid mantle of the self-compressed compressible model, on the basis
of Eqs. (2.74), (2.75) and (2.78), the spheroidal vector solution y defined in Eq. (1.92)
yields

y�(r) = Y�(r)C (2.81)

where Y� and C are the so called fundamental matrix for the self-compressed com-
pressible sphere and the vector of constants of integration

Y� =
(
y(1)
� , y(2)

� , y(3)
� , y(4)

� , y(5), y(6)
�

)
(2.82)

C = (u1, u2, u3, u4, u5, u6)
T (2.83)

http://dx.doi.org/10.1007/978-94-017-7552-6_1
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with y( j) being the six linearly independent solutions

y( j)
� (r) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

r z j

v j r z j[
β z j + 2 λ − �(� + 1) v j λ

]
r z j−1

μ
[
1 + (z j − 1)v j

]
r z j−1

p j r z j[
2 g + (z j + � + 1) p j

]
r z j−1

⎞

⎟⎟⎟⎟⎟⎟
⎠

(2.84)

Note that the fundamental matrix Y� describes the dependence on the radial dis-
tance from the Earth’s centre r of the propagator matrix ��, which solves the homo-
geneous differential system (1.159). We have

��(r, r
′) = Y�(r)Y−1

� (r ′) (2.85)

This result can be used to solve more sophisticated models composed of different
layers within the mantle, each with different (but constant) shear and bulk moduli, and
viscosities. Nevertheless, the density profile must be the same given by Eq. (2.50).
It is sufficient to use the fundamental matrix Y� to obtain the propagator matrix
�� in each layer and, then, impose chemical boundary conditions at the internal
interfaces for propagating the solution from the inner to the outer layers. In this way,
the self-compressed compressible sphere also takes into account the contrasts of the
rheological parameters at the main Earth’s interfaces, but not the density contrasts.

2.5.2 The Relaxation Spectrum of the Self-compressed
Compressible Sphere

Let us now consider the self-compressed compressible sphere with compressional
stratification, that we denote with CC0, where the compositional coefficient is zero,
γ = 0. The viscoelastic mantle is characterized by shear modulus μ = 1.45 × 1011

Pa and viscosity ν = 1021 Pa s. The radius of the core is 3480 km and the Earth’s
radius is 6371 km. In order to respect the total Earth’s mass ME = 5.97 × 1024 kg,
the density profile given by Eq. (2.50) is characterized by α = 2.34 × 1010 kg/m2

and, from Eq. (2.53), the compressional bulk modulus is κ0 = 2.23×1011 Pa, which
is comparable to the range of PREM bulk modulus in the transition zone, from
1.53×1011 Pa to 2.56×1011 Pa. The resulting density of the core is 10096.3 kg/m3,
which differs by 8 % from the volume-averaged PREM density of the core and
its density profile within the mantle differs from that of PREM by 9, 6 and 21 %
at the Moho discontinuity, the 670 km discontinuity and the core-mantle boundary,
respectively. Nevertheless, the model density differs from PREM by 41 % at the
Earth’s surface, due to the compositional decrease of the Earth’s density within the
crust.

http://dx.doi.org/10.1007/978-94-017-7552-6_1


2.5 The Self-compressed, Compressible Sphere 75

Fig. 2.7 Pole values s j of
the relaxation modes of the
models CC0 (dot points) and
MC (cruciform points). The
inverse Maxwell and
compressional transient
times of both models are
τ−1 = 4.58 kyr−1 and
ς−1 = 2.49 kyr−1

In Fig. 2.7 we compare the relaxation spectra (up to the harmonic degree � =
100) of the self-compressed compressible sphere with compressional stratification,
CC0, and of a two layered compressible model, that we denote with MC, consisting
of homogeneous core and mantle, where the material parameters are constant and
obtained from the model CC0 by means of volume averages, with mantle density of
4623 kg/m3. Note that these two models share the M0 and C0 buoyancy modes, the
pair of compressional transient modes, Z0+ and Z0−, and the dilatational modes
(also abbreviated as D-modes). The pair of compressional transient modes, Z0+ and
Z0−, have been identified and discussed for the first time in Cambiotti et al. (2009)
in the case of layered compressible models. Nevertheless, only the layered model
MC has the Rayleigh–Taylor modes (also abbreviated as RT-modes) that are, indeed,
absent in the relaxation spectrum of the self-compressed model CC0.

The transient relaxation spectra of the models CC0 and MC, characterized by the
D-modes and the pair of the modes Z0+ and Z0−, differ mainly at low harmonic
degree, while the differences decrease at high harmonic degrees. Instead, the C0
buoyancy mode presents important differences at all harmonic degrees and the M0
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buoyancy mode agrees only at the first 10 harmonic degrees. Such a circumstance is
due to the different density profiles of the two models, since the elastic parameters
and the viscosity are the same. We thus safely argue that the differences in the pole
values are caused by the different density contrasts of the two models at the core-
mantle interface and Earth’s surface, respectively, which affect mainly the buoyancy
modes C0 and M0.

Let us now consider two representative self-compressed compressible spheres
characterized by stable and unstable compositional stratifications, where the bulk
modulus κ differs from the compressional bulk modulus κ0. Contributions from
compositional and non-adiabatic stratification do not amount to more than 10–20 %
of that of the compressional stratification (Birch 1952, 1964; Wolf and Kaufmann
2000); we assume bulk modulus of 2.62×1011 and 1.94×1011 Pa to describe stable
and unstable compositional stratifications, respectively. They correspond to values
of −0.15 and 0.15 for the parameter ε, Eq. (2.55), and, in this respect, we denote
these two models with CC−0.15 and CC0.15.

Figure 2.8 compares the relaxation spectra of the self-compressed compressible
spheres with compressional and compositional stratifications. Note that the compo-
sitional models CC−0.15 and CC0.15 share the same relaxation modes of the compres-
sional model CC0, but they have further relaxation modes that are infinite denumer-
able, with the origin of the Laplace domain as cluster point. The latter relaxation
modes are stable for ε = −0.15 and unstable for ε = 0.15, in agreement with the
analysis of the gravitational stability based on the sign of the Brunt–Väisälä frequency
ω2, Eq. (2.56). They thus describe relaxation processes involved by the compositional
stratification and, for this reason, we called them compositional modes (also abbrevi-
ated as C-modes). With respect to the common relaxation modes of the three models,
we note that they differ mainly in the transient region where the characteristic relax-
ation times of the D-modes and of the pair of transient compressional modes Z0+
and Z0− of the models CC−0.15 and CC0.15 are greater and lower than those of the
the model CC0, reflecting the different compressional transient times ς , Eq. (1.193),
that decrease for increasing bulk modulus, 0.43, 0.40 and 0.37 kyr for ε = −0.15, 0
and 0.15.

2.5.3 The Compositional Modes

The denumerable set of C-modes originates from the oscillating behavior of the
secular determinant D�(s) near the origin. It occurs on the positive or negative real
axis of the Laplace domain, depending on the sign of the compositional coefficient
γ. Such a behavior is like that of the secular determinant of layered compressible
models to which the Rayleigh–Taylor modes are associated, with the exception that
the RT-modes are always unstable because layered compressible Earth’s models have
always an unstable compositional stratification.

Let us now derive an approximated analytical expression for the pole values of the
C-modes. After substitution of the analytical expression for the propagator matrix

http://dx.doi.org/10.1007/978-94-017-7552-6_1
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Fig. 2.8 Pole values s j of
the relaxation modes of the
models CC0 (dot points),
CC−0.15 (diamond points)
and CC0.15 (cruciform
points). The inverse Maxwell
relaxation time of all three
models is τ−1 = 4.58 kyr−1

while the inverse
compressional relaxation
times are ς−1 = 2.49, 2.67
and 2.33 kyr−1, respectively

�� of the self-compressed compressible sphere, Eq. (2.85) into the expression for
the secular determinant D, Eq. (1.199), and after expansion in Taylor series of the
function μ̂(s), Eq. (1.54), we obtain that the dominant terms of the secular determinant
D is proportional to

D�(s) ∝
(

a

rC

)i
(

κ0 �(�+1) ε
μ̂(s)

) 1
4

− 1 (2.86)

By equating to zero the RHS of Eq. (2.86), we thus obtain the following approximated
analytical expression for the roots of the secular equation (1.200), which are the poles
sCm of the compositional modes

sCm = −�(� + 1)
κ0 ε

ν

(
log

( rC
a

)

πm

)4

+ O(m−6) (2.87)

http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
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for m = 1, . . . ,∞. It confirms that the compositional modes are an infinite denu-
merable set of relaxation modes and that the origin of the Laplace domain, s = 0, is
the cluster point of the poles sCm for m → ∞ since they converge to zero as m−4.
Besides this, the dependence of Eq. (2.87) on the parameter ε gives us the possibility
to show analytically that a little deviation from the completely compressional stratifi-
cation is sufficient to activate the compositional modes. Particularly, they are stable if
ε > 0 and unstable if ε < 0. This suggests that the Rayleigh–Taylor modes are actu-
ally a particular case of the compositional modes and that the compositional modes
describe buoyancy relaxation processes arising from deviations of the stratification
from the neutral state of equilibrium. This interpretation is furthermore supported by
the characteristic relaxation times of the compositional and Rayleigh–Taylor modes.
As shown in Figs. 2.7 and 2.8, their upper limits are of similar order of magnitude,
that is greater than 10–102 kyr. This short time scales, however, are due to the use
of simplified models. Indeed, more realistic Earth’s models based on PREM predict
much larger characteristic relaxation times of order 1–100 Myr (Plag and Jüttner
1995; Vermeersen and Mitrovica 2000).

These findings contrast with the interpretation of Han and Wahr (1995) that a
continuous density profile yields a continuous spectrum of buoyancy modes. This
interpretation was based on the investigation of the relaxation spectrum of layered
compressible models, where each density contrast contributes with a buoyancy mode
Mi. For very fine layered models, where small density contrasts are introduced in
order to simulate the continuous variations of the PREM density, the number of
buoyancy modes Mi is large. This large number of modes was interpreted by Han
and Wahr (1995) as evidence that continuous variations of the initial density imply a
continuous set of buoyancy modes in the region of small Laplace variable s. In view
of the relaxation spectrum of the self-compressed compressible sphere, however,
we can say that this is not the case. Indeed, despite the continuous variations of the
initial density described by the Darwin-law profile, Eq. (2.50), it is remarkable that
no additional buoyancy modes other than the M0 and C0 modes are present in the
compressional model CC0 and that only a discrete, although infinite denumerable,
set of compositional modes are triggered by compositional stratifications.

Even if Han and Wahr (1995) supported the normal mode approach, we note that
their conclusion about the presence of a continuous spectrum in the buoyancy region
has weakened the normal mode approach, discouraging further investigations of the
relaxation spectrum for not layered Earth’s models, where the continuous variations
of the material parameters within the layers of the Earth are taken into account. On
the contrary, our results indicate that such an analysis can be done and interesting
physical knowledge of the viscoelastic relaxation processes at large timescales can
be obtained as we will show in Sect. 2.6.
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2.6 Viscoelastic Perturbations Due to Surface Loading

In order to investigate the role of the initial state of the viscoelastic Earth’s model,
characterized by compressional or compositional stratifications, we focus on Love
numbers k for loads seated at the Earth’s surface (we will omit the superscript L and
the harmonic degree � to not overwhelm the text): they are relevant in Glacial Isostatic
Adjustment (GIA) studies. We consider herein perturbations within the mantle for
which the Love numbers for surface loading in the Laplace s-domain read, according
to Eqs. (1.172), (1.177) and (1.179)

k̃(r, s) = N−1
L B�(r)bL

∣∣
μ=μ̂(s)

(2.88)

with the tilde standing for the Laplace transform and the dimensional matrix NL

given by Eq. (1.174). According to Eq. (1.179), k̃(r, s) provides h̃, l̃ and k̃, the radial,
tangential and gravitational viscoelastic Love numbers in the Laplace domain and
their dependence on the radial distance from the Earth’s centre r refers to where we
calculate the perturbations. In this respect, note that the matrix B� also depends on
r , according to Eq. (1.172).

In view of the study of relaxation spectrum of the self-compressed compressible
sphere, the viscoelastic Love numbers can be recast by a spectrum of relaxation
modes

k̃(r, s) = kE (r) +
∑

j∈S

k j (r)

s − s j
(2.89)

where kE consists of the elastic Love numbers, k j contains the residues of the j th
relaxation mode and s j is the corresponding pole. Here, S denotes the whole set of
relaxation modes, which is denumerable but infinite (Cambiotti and Sabadini 2010).
The set S of relaxation modes is split into two types:

S = F ∪ C (2.90)

The set F of fundamental modes appears both for compressional and compositional
stratifications: the M0 and C0 buoyancy modes (associated with the Earth’s surface
and CMB), the pair of transient compressible modes, Z− and Z+, and the infinite
and denumerable set of dilatational modes, Dm, with m = 1, . . . ,∞. The set C of
compositional modes, Cm, with m = 1, . . . ,∞ is again denumerable and infinite but
is triggered only in the case of compositional stratifications.

The fundamental modes describe the transition from the elastic to the Newtonian-
fluid behavior, while the compositional modes control the long time-scale perturba-
tions towards the isostatic equilibrium described by the inviscid fluid. Accordingly,
we split the perturbations K, due to a point-like surface load of unit mass with Heav-
iside time history, into contributions describing the elastic response, the transition to
the Newtonian fluid and the final transition towards the isostatic equilibrium

http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
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K (r, t) =
⎛

⎝
U (r, t)
V (r, t)
�(r, t)

⎞

⎠ =

kE (r) −
∑

j∈F

k j (r)

s j

(
1 − es j t

) −
∑

m∈C

kCm (r)

sCm

(
1 − esCm t

)
(2.91)

where U , V and � are the degree-� non-dimensional radial and tangential displace-
ments (normalized by a/ME ), and gravitational potential perturbation (normalized
by a g/ME ). In view of the fact that the poles s j of the fundamental modes are nega-
tive and that their characteristic relaxation times,

∣∣1/s j
∣∣, are shorter than those of the

compositional modes, |1/sCm|, we can write the final transition towards the isostatic
equilibrium as

K (r, t) = kS(r) + KC(r, t) (2.92)

where kS is the secular perturbation due to the elastic response and the relaxation of
the fundamental modes

kS(r) = kE (r) −
∑

j∈F

k j (r)

s j
(2.93)

and where KC is the perturbation due to the only compositional modes

KC(r, t) =
⎛

⎝
UC(r, t)
VC(r, t)
�C(r, t)

⎞

⎠ = −
∞∑

m=1

kCm (r)

sCm

(
1 − esCm t

)
(2.94)

As compressional stratifications have no compositional modes, the viscoelastic
Love number k̃(s) is an analytic function in a neighbourhood of the origin of the
Laplace domain, s = 0. Thus, k̃(s = 0) exists and is finite. From Eqs. (2.89) and
(2.93), we obtain the following identity

kS(r) = k̃(r, s = 0) (2.95)

This implies that the summation over the strengths k j/s j of the fundamental modes
entering Eq. (2.93) converges to a finite value. Furthermore, the secular perturba-
tions describe the isostatic equilibrium to surface loading (Wu and Peltier 1982). In
this respect, the secular radial displacement and gravitational-potential perturbation
satisfy the isostatic conditions at the Earth’s surface a

lim
t→∞U (a, t) = hS(a) = −2 � + 1

2
(2.96)

lim
t→∞ �(a, t) = kS(a) = −1 (2.97)
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Perturbations below the Earth’s surface, as well as the tangential displacement at
the Earth’s surface, are instead unconstrained due to the indeterminateness of static
perturbations of the inviscid body discussed by (Longman 1962, 1963). They must
be obtained solving the whole viscoelastic problem and using Eq. (2.93).

2.7 Toroidal Solution

The toroidal vector solution Eq. (1.101) does not depend whether the material is
compressible or incompressible. In fact, the only material parameter entering the
toroidal component of the momentum Eq. (1.86) is the rigidity μ. By assuming the
latter constant within each layer of the Earth’s model, ∂rμ = 0, Eq. (1.86) simplifies
into

μ∇2
r W� = 0 (2.98)

This is the Laplacian equation for W�m and the two independent solutions are

W� = c r � + c∗ r−(�+1) (2.99)

with c and c∗ as integration constants. By substituting Eq. (2.99) into Eq. (1.81), we
obtain the solutions for the toroidal component of the stress

T� = cμ (� − 1) r �−1 − c∗μ (� + 2) r−�−2 (2.100)

and, thus, we can write the toroidal solution vector as follows

y�(r) = Y�(r)C (2.101)

where Y� is the fundamental matrix for toroidal deformations

Y� =
(

r � r−�−1

μ (� − 1) r �−1 −μ (� + 2) r−�−2

)
(2.102)

and C is the vector of integration constants

C = (
c, c∗)T (2.103)

y�(rC) = IC Cc (2.104)

http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
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2.8 Time Dependent Loading Love Numbers

When our Earth’s models are forced by loading or tidal forcing, the Green func-
tions are named Love numbers, for loads and tidal potentials. Love numbers can
in principle be generalized to earthquake forcing. In this Section we consider only
the loading case, since the tidal case will be considered in Chap. 3 when dealing
with the readjustment of the rotational bulge in Sect. 3.6. Figure 2.9 portrays the time
evolution in log(t) of the convolution between the Love numbers and the Heaviside
function, given by Eq. (2.94). The time interval spans a wide range of time scales,
from one tenth of an year to 103 Gyr. The Love numbers are all amplified in time,
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Fig. 2.9 Loading Love numbers convolved with the Heaviside function, from the elastic limit, left,
to the fluid (long time) limit, right, in the abscissa. Columns from left to right, refer to the harmonic
degree � = 2, 10, 100. The first row stands for the radial Love number H�, the second row for the
tangential Love number L�, the third row for the gravitational potential Love number K� and the
bottom fourth row stands for the gravitational potential log(1 + K�), including the direct effect of
the unitary load. Capital letters are used since the Love numbers are convolved with the Heaviside
function. Continuous and dashed curves stand for compressible and incompressible models, all
based on PREM stratification. The viscosity in each layer below the 80 km thick elastic lithosphere
is fixed at 1021 Pa s in the upper mantle. In the lower mantle, the viscosity is 1021 Pa s, black, 1022

Pa s, blue and 1023 Pa s, red

http://dx.doi.org/10.1007/978-94-017-7552-6_3
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from the elastic limit in the left of the abscissa to the fluid (long time) limit, right
in the abscissa, due to viscoelastic relaxation: in terms of normal modes, such an
amplification is caused by the decay of the exponentials

(
1 − esi t

)
in Eq. (2.94)

which sum up to the elastic contribution.
The largest differences among the various models, in terms of incompressible

versus compressible or low versus high lower mantle viscosities, occur for the low-
ermost harmonic degree � = 2 both for the elastic limit and transients, and such
differences tend to diminish for � = 100, with the three viscosity models becoming
indistinguishable. The � = 2 is in fact sensitive to the global properties of the Earth,
in terms of elastic, density and viscosity stratification, while the sensitivity of the
highest harmonics is limited to the outermost properties of the Earth.

The � = 2 Love numbers show clearly the effects of lower mantle viscosity
increase from 1021 to 1023 Pa s, causing the corresponding increase from 103 to 105

yr for global mantle relaxation, during which Love numbers are amplified. It is also
notable that H� and K� portray a monotonic increase carrying the same sign, while
the horizontal Love number L� portrays a non-monotonic behavior, changing also the
sign when increasing the harmonic degree. It is also notable that incompressibility,
dashed lines, impacts in particular the horizontal Love number, and so the component
of the displacement field for surface loads, in the whole range of time windows, from
the elastic limit, through the intermediate time scales when the Love numbers are
amplified, to the fluid (long time) limit. It is interesting to look at the effects of
viscosity changes in the outermost part of the planet, in the asthenosphere, as in
Fig. 2.10. A striking difference from Fig. 2.9 is that the highest harmonic � = 100
is sensitive to the viscosity of the outermost part of the Earth as visible in the third
column, to confirm that the longest wavelengths sample the deepest mantle, and
the shortest ones the shallowest portion of the Earth. For � = 100, in particular
the compressible Earth portrays for the three Love numbers Hl , Ll , Kl an important
sensitivity to the asthenospheric viscosity, with time scales in the amplification of
the Love numbers ranging from 101 to 104 yr, corresponding to a viscosity increase
from 1019 to 1021 Pa s.

The horizontal Love number L� and � = 10 portrays a variability in time at
shorter time scales once compared to Fig. 2.9, with the amplification starting at t = 3
yr instead of t = 102 yr. The Love number K� for � = 2, 10 is not sensitive to
the asthenospheric viscosity, since the gravitational field is most affected by the
properties of the mantle as in Fig. 2.9, while the quantity 1 + K� is sensitive to the
outermost asthenospheric viscosity, but solely when K�, for � = 2, 10, is close to its
long term (fluid) value −1.
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Fig. 2.10 As Fig. 2.9, except for viscosity changes in the 200 km asthenosphere below the 80 km
thick elastic lithosphere. Note that the abscissa with respect to Fig. 2.9 has been lowered by one
order of magnitude. Black, blue and red curves stand for 1019, 1020 and 1021 Pa s in the
asthenosphere. The viscosity is 1021 Pa s in the upper mantle below the asthenosphere and 1022 Pa
s in the lower mantle

It is interesting to note that the viscosity of the asthenosphere affects to some
extent also the slowest time scales, due to the interplay between the viscosity and
the density stratification in the outermost part of the Earth.
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Chapter 3
Rotational Dynamics of Viscoelastic
Planets: Linear Theory

Abstract The linearized theory of rotation for viscoelastic planetary bodies, like
the Earth, is developed. The MacCullagh’s formula linking the inertia and gravita-
tional perturbations is self-consistently derived within our formalism. The concept
of True Polar Wander (TPW) is introduced, and attention is devoted to the physics of
viscoelastic, rotational bulge readjustment. Different rotation theories that appeared
in the literature are compared, including the effects of non-hydrostatic bulge contri-
bution and compressible versus incompressible rotational bulge readjustment. The
long-term behavior of the rotation equation is considered, and a linearized theory
for TPW driven by mantle convection is provided. The Earth, Mars and Venus are
compared in terms of the ability of their rotation axis to wander.

3.1 Introduction to Earth’s Rotation

The rotation of the Earth is not regular. It changes on virtually every time scale we
know in both position of the rotation axis and rotation rate. Even in our daily lives we
sometimes experience the consequences of such changes, such as the second that is
subtracted or added to clocks at the beginning of a new year. Although this second is
not much more than a curiosity for most of us, the rotational changes that it implies
can influence our lives in a more fundamental sense. There are indications that the
emergence of the great ice ages some 2million years ago was triggered by a gradual
shift of the rotation axis over the Earth’s surface, combined with wandering of the
continents and associated changes in ocean currents (note that we are talking here
about the onset of ice ages—the period of the 100,000year cycles of ice build-up
and decay is determined by astronomical causes). In the 19th century, both the rate
of rotation and the position of the rotation axis were shown to be variable. Nowadays
we know that these changes occur on all time scales: from shorter than a day to
geological ones of hundreds of millions of years. The changes in position of the
rotation axis can be divided into two main categories: those in which the position of
the axis changes with respect to the distant stars but not with respect to the Earth’s
surface, and vice versa. For the latter category, it looks to a hypothetical observer
in space as though the Earth shifts underneath its rotation axis as a solid unit while

© Springer Science+Business Media Dordrecht 2016
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the rotation axis itself remains fixed with respect to the stars, while for an observer
on Earth it looks as though the rotation axis is wandering over the Earth’s surface.
Displacements of the axis of rotation with respect to the fixed stars (changes in which
the whole planet is moving rigidly as one unit) are mainly due to external forces,
notably the gravitational interactions between the Earth and the Sun, the Moon and
the other planets of the Solar System. The astronomically well-known precession and
nutation are examples of this. The external forces exert a net torque on the equatorial
bulge of the Earth, as a consequence of which the rotation axis spins. The most
important periods are about 26,000years (precession) and 18.6years (nutation).

Displacements of the axis of rotation with respect to a fixed position on the
Earth’s surface are mainly due to mass displacements in the interior of the Earth and
in the hydrosphere and atmosphere. These mass displacements will generally induce
changes in the moments and products of inertia. As the Earth is a deformable body,
the rotation axis will readjust itself to the new situation by shifting over the surface.
The rotation axis does not change its position with respect to the stars, as during
these mass displacements the angular momentum of the Earth is preserved.

Apart from tidal interactions, there are a number of possiblemechanisms responsi-
ble for the observed rotational variations, like growth and decay of ice sheets, changes
in sea-level, ocean currents, winds and changes in the pressure distribution of the
atmosphere, seasonal changes, earthquakes, tectonic plate movements, changes in
convection of mantle and core, and interactions between the core and mantle. Each
of these mechanisms operates on specific time scales and this is reflected in the time
scales on which the rotation of the Earth changes.

Table3.1 gives a rough indication of the observed present-day variations in posi-
tion of the polar axis. The observed changes in the position of the rotation axis with
respect to the Earth’s surface consist of two kinds of movements: periodic and linear.
The periodic motions consist mainly of two periods. The annual wobble is princi-
pally due to seasonally varying zonal winds. The cause of the Chandler wobble is
a combination of processes in the oceans and atmosphere. This periodic movement,
which is essentially the free precession of the Earth, was theoretically predicted in
the 18th century by Euler (therefore it is also called the Eulerian free precession) but
not observed until the end of the 19th century.

Figures3.1 and 3.2 show the motion of the pole and the Length Of Day (LOD)
changes. The time series are obtained at the Centro di Geodesia Spaziale (CGS) “G.
Colombo” of the Agenzia Spaziale Italiana (ASI) from the Satellite Laser Ranging
(SLR) observations on LAGEOS 1, LAGEOS 2, and since mid-2002, Etalon 1 and
Etalon 2, applying the state-of-the-art computation models (mostly following the

Table 3.1 Variations in the position of the rotation axis with respect to the crust

Type Magnitude Presumed cause

Annual wobble 5m per year Atmospheric pressure

Chandler wobble 10m per 14months Not well known

Secular drift 1m per 10years Glacial rebound, mantle
convection, large earthquakes
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Fig. 3.1 Polar motion, from
1982 to 2015, from ASI/CGS
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International Earth Rotation and Reference Systems Service, IERS, conventions).
The observations are processed in intervals of 7days to generate a loosely-constrained
solution for station coordinates and Earth Orientation Parameters (EOP) (Xp, Yp
and LOD), which is the standard solution delivered by ASI/CGS as Official IERS
Analysis Centre. The EOPs shown in the figures have been rotated and translated
into the ITRF2008 reference frame in order to represent the motion of the rotation
axis of the Earth relative to the crust. The Chandler and the annual frequencies are
the major components of the motion and give the well known pulsating shape. The
contemporary secular drift, whose direction is shown in Fig. 3.1 by the red lines
connecting the centre of the wobbling pole, has been determined by astrometric
observation. Post Glacial Rebound (PGR), Chap.4, resulting from the decay of huge
ice sheets is thought to be the main cause of this secular drift, although mantle
convection and earthquakes (Cambiotti et al. 2016) might also make a contribution.

The observed LOD changes are shown in Fig. 3.2 while the mechanisms that are
thought to be responsible for them are indicated in Table3.2.

http://dx.doi.org/10.1007/978-94-017-7552-6_4
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Table 3.2 Variations in the length of day

Time scale Magnitude Presumed cause

Daily ms Atmosphere and tides

Annual ms Seasons

Decades 10ms Core-mantle coupling

>100years 2 ms per 100 years Tidal interaction, glacial
rebound, large earthquakes

Short-time LOD fluctuations are very well explained by changes in the pressure
distribution over the globe and zonal winds. Changes on time scales of a few tens of
years are attributable to the exchange of angular momentum between the fluid outer
core and the lower mantle, as they appear to be correlated with changes in magnetic
field strength. The tidal exchange of angular momentum between the Earth and the
Moon and between the Earth and the Sun is responsible for a long-term trend. The
secular decrease of the rotation velocity is due to the fact that the Earth is rotating
faster around its axis than the Moon is revolving around the Earth, and because
the Earth is not perfectly elastic. As a result, the line connecting the Earth and the
Moon does not coincide exactly with the line between the centre of the Earth and the
place on the surface that shows the maximum tidal height. This gives a net torque,
which brakes the Earth’s rotation rate and accelerates the Moon in its orbit around
the Earth. As the Earth rotates with a progressively slower rate, the centrifugal force
diminishes. As a consequence, the ellipticity of the Earth decreases.

This brief overview shows that the variations in the rotation of the Earth can
produce a rich ensemble of geophysical and geodetic phenomena. In this chapter
we will first derive the mathematical expressions for polar wander and changes in
the length of day for a rigid Earth’s model. Then, we will derive the mathematical
formalism for the viscoelastic adjustment of the equatorial bulge, which plays an
important role in any realistic consideration about the rotation of the Earth.

3.1.1 Liouville Equations

In this section we assume that the Earth is rigidly rotating and that torques, mass
displacements and relative motions can perturb the rotation.

If L denotes the torque, H the angular momentum and ω the angular velocity,
then in a reference frame co-rotating with the Earth, Euler’s dynamic equation reads

dH
dt

+ ω × H = L (3.1)

where
H(t) = I(t) · ω + h(t) (3.2)
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in which

Ii j (t) =
∫

ρ(rkrkδi j − rir j )dV (3.3)

and

h(t) =
∫

ρ(r × v)dV (3.4)

In these equations r denotes the coordinates of the mass element characterized
by the density ρ, I is the inertia tensor, Ii j denotes the component of I and the
velocity v occurs with respect to the coordinate system, leading to the relative angular
momentum h(t).

In this book we assume that v = 0, so that H is simply

H = I · ω (3.5)

Substituting Eq. (3.5) into Eq. (3.1) leads to the so-called Liouville equation

d

dt
(I(t) · ω) + ω × (I(t) · ω) = L (3.6)

As above, and in the following, the symbol
∫
means integration over the volume.

3.2 MacCullagh’s Formula

Near the boundary of a body departing slightly from spherical symmetry, the degree
2 contribution of the gravitational potential can be arranged in terms of the inertia
tensor I, according to MacCullagh’s formula (Jeffreys 1976, p. 574), derived from
now on by making use of the dyadic formalism. Within this framework, the inertia
tensor reads

I =
∫

ρ(r)
(
r2 1 − r ⊗ r

)
dV =

∫
ρ(r)M(θ,ϕ) r2 dV (3.7)

where θ and ϕ are the angular coordinates of r and M is defined as

M(θ,ϕ) r2 = r2 1 − r ⊗ r =
(
2

3
1 + Q(θ,ϕ)

)
r2 (3.8)

M(θ,ϕ) = 2

3
1 + Q(θ,ϕ) (3.9)

where Q takes the form

Q(θ,ϕ) = 1

3
1 − r̂ ⊗ r̂ (3.10)
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Exploiting the cartesian coordinates of the dyadic product r̂ ⊗ r̂ in terms of sine
and cosine functions, it is shown thatQ(θ,ϕ) is an expansion of degree two spherical
harmonics, where the isotropic term 1

3 1, representing the spherical harmonic term
of degree zero, is canceled by the same term with opposite sign entering the dyadic
product.

Exercise 12 Expand Q(θ,ϕ) in spherical harmonics, showing that they are limited
to degree two, as in the following equation

Q(θ,ϕ) =
2∑

m=−2

Qm Y2m(θ,ϕ) (3.11)

The density ρ(r) in the inertia tensor is the density in the initial state ρ0(r) plus
the perturbation ρ�(r). Focusing our attention on the latter, we split the perturbation
in the inertia tensor �I in its harmonic contributions which, from the definition of
M(θ,ϕ) and from the expansion of the density field

ρ�(r) =
∞∑

�=0

�∑

m=−�

ρ�
�m(r) Y�m(θ,ϕ) (3.12)

becomes
�I = �I0 + �I2 (3.13)

�I0 =
a∫

0

∫

�

ρ�(r)
(
2

3
1Y ∗

00

)
r4 sin θ dθ dϕ dr

= 8π

3
1

a∫

0

ρ�
00(r) r

4 dr (3.14)

�I2 =
a∫

0

∫

�

ρ�(r)

(
2∑

m=−2

Q∗
m Y ∗

2m

)

r4 sin θ dθ dϕ dr

=
2∑

m=−2

Q∗
m N2m

a∫

0

ρ�
2m(r) r4 dr (3.15)

where Q(θ,ϕ) has been equivalently expanded in conjugate spherical harmonics,
being a real quantity and the normalization factor N�m given by Eq. (1.72).

The inertia tensor perturbation �I can be expressed in terms of the degree two
component of the geopotential perturbation φ�

2m(a) evaluated at the Earth’s surface

http://dx.doi.org/10.1007/978-94-017-7552-6_1
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φ�
2m(a) = −4π G

5 a3

a∫

0

ρ�
2m(r) r4 dr (3.16)

The above expression can be demonstrated as follows. Starting from

φ(r) = −G
∫

ρ(r ′)
∣
∣r − r ′∣∣ dV

′

= −G

a∫

0

⎡

⎣
∫

�

ρ(r ′)
∣∣r − r ′∣∣ d�

⎤

⎦ r ′2 dr ′ (3.17)

and making use of

1
∣∣r − r ′∣∣ = 1

r

1
√
1 + (

r ′
r

)2 − 2
(
r ′
r

)
cos γ

= 1

r

∞∑

�=0

(
r ′

r

)�

P�(cos γ) (3.18)

where r ′ < r and γ denotes the angular distance between r and r ′

P�(cos γ) =
�∑

m=−�

(� − m)!
(� + m)! Y�m(θ,ϕ) Y ∗

�m(θ′,ϕ′) (3.19)

we obtain

φ�(r) = −
∞∑

�=0

4π G r

(2 � + 1)

�∑

m=−�

Y�m(θ,ϕ)

a∫

0

ρ�
�m(r ′)

(
r ′

r

)�+2

dr ′ (3.20)

where this expansion is applied to the perturbation φ�(r) rather than φ(r); we obtain

φ�
�m(r) = − 4π G

(2 � + 1) r (�+1)

a∫

0

ρ�
�m(r ′) r ′�+2 dr ′ (3.21)

Particularly, for � = 2, we obtain

φ�
2m(r) = −4π G

5 r3

a∫

0

ρ�
2m(r ′) r ′4 dr ′ (3.22)
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For r = a we finally obtain the MacCullagh’s formula expressed within our own
formalism

�I2 = − 5a3

4πG

2∑

m=−2

N2mQ∗
m φ�

2m(a) (3.23)

3.2.1 Inertia Perturbations Due to Changes
in the Centrifugal Potential

The centrifugal potential

φC(r) = 1

2

[
(r · ω)2 − ω2 r2

] = ω2 r2

2

(
cos2 γ − 1

)

= ω2 r2

3
(P2(cos γ) − 1) (3.24)

and the addition theorem Eq. (3.19) yield

φC(r) = ω2 r2

3

[

−Y ∗
00(n̂) Y00(r̂) +

2∑

m=−2

(2 − m)!
(2 + m)! Y

∗
2m(n̂) Y2m(r̂)

]

(3.25)

where
ω = ω n̂ (3.26)

and where the spherical harmonics are expressed in terms of the normalized vectors
n̂ and r̂ rather than in terms of the angular distances respect to the polar reference
axis of these vectors.

The centrifugal potential induces the following perturbation in the geopotential
at the radius a of the spherically symmetric Earth’s model, expressed in terms of the
tidal Love number

φ�
2m(a) = kT2 (t) � φC

2m(a, t) (3.27)

By substitution

�Iω2 = − 5 a3

4π G

2∑

m=−2

Q∗
m N2m kT2 � φC

2m(a)

= − 5 a3

4π G
kT2 �

(
2∑

m=−2

Q∗
m N2m φC

2m(a)

)
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= − 5 a3

4π G
kT2 �

(
2∑

m=−2

Q∗
m N2m

4π

5

ω2 a2

3

1

N2m
Y ∗
2m(n̂)

)

(3.28)

�Iω2 finally reads, once Eqs. (3.11) and (3.10) are used,

�Iω2 = −a5 ω2

3G
kT2 �

(
2∑

m=−2

Q∗
m Y ∗

2m(n̂)

)

= −a5 ω2

3G
kT2 �

(
1

3
1 − n̂ ⊗ n̂

)
(3.29)

or

�Iω2 = − a5

3G
kT2 �

(
ω2

3
1 − ω ⊗ ω

)

= a5

3G
kT2 �

(
ω ⊗ ω − ω2

3
1
)

(3.30)

We require that the trace of the inertia tensor does not change during centrifugal
deformation which makes the inertia due to the initial non rotating state plus that due
to rotation to become

I(t) = I δi j + a5

3G
kT2 (t) �

(
ωi (t)ω j (t) − 1

3
ω2(t) δi j

)
(3.31)

I , G and kT2 are the inertia of the non rotating spherical Earth, the Gravitational
Constant and the degree-2 tidal gravitational Love number in the time t-domain. The
MacCullagh’s formula (Jeffreys 1976; Eq. (5.2.3) of Munk and MacDonald 1960)
coincides with the above Eq. (3.31).

By assuming that the Earth has reached its rotating equilibrium state with the
constant angular velocity before the beginning of any geophysical process ω =
(0, 0,�), we get

I(t = 0) = Diag [A, A,C] (3.32)

with Diag [A, A,C],C and A denoting the 3×3 diagonal matrix and the equilibrium
polar and equatorial inertia moments given by

C = I + 2

3

a5 �2

3G
kTF A = I − 1

3

a5 �2

3G
kTF (3.33)

so that

kTf = 3G(C − A)

a5�2
(3.34)



96 3 Rotational Dynamics of Viscoelastic Planets: Linear Theory

as it results for ω = (0, 0,�), with kTf being the tidal gravitational fluid limit of the
Maxwell model. This latter is defined as the limit for t → ∞ of the convolution of
the degree-2 tidal gravitational Love number kT2 with theHeaviside time history H(t)

kTf = lim
t→∞ kT2 (t) � H(t) (3.35)

We note that the word “fluid” is poorly chosen when some layers are purely elastic
and cannot relax their stresses. It would be less confusing to use the expression tidal
“equilibrium” limit (Mitrovica et al. 2005). It is only to be in agreement with all our
predecessors that we keep the inaccurate but widely used term of tidal “fluid” limit.

Equations (3.32)–(3.35) imply that before any perturbation in rotation, the Earth
is subject to a constant rotation for a time scale greater than the longest characteristic
relaxationMaxwell timeof all the viscoelastic layers. In particular, in the case of a 120
km thick viscoelastic lithosphere with viscosity νL higher than 1024 Pa s and rigidity
volume averaged from PREM (Dziewonski and Anderson 1981), this relaxation
Maxwell time is greater than the characteristic time scale of 1Myr characterizing ice
age cycling, a major forcing for long term changes in rotation. This shows that the
theory, based on Eq. (3.32) to estimate the initial state of rotational equilibrium, with
C and A given by Eq. (3.33), can also be used on a time scale in which the elastic
and the highly viscous viscoelastic lithosphere are distinguishable (see for instance
Fig. 1 in Wu and Peltier (1982)).

In the perspective of studying the ice age TPWbymeans of compressibleMaxwell
Earth’smodels based on PREM, some remarks on the tidal fluid limit kTf are required.
Indeed PREM has an unstable compositional stratification above the 670 km dis-
continuity (Plag and Jüttner 1995) corresponding to an imaginary Brunt–Väiäsala
frequency (i.e., the radial density increases with depth less than what should be
expected from the self-compression of the entire Earth). This unstable stratification
generates growing modes which do not converge for t → ∞ in Eq. (3.35). These
modes similar to Rayleigh Taylor instabilities are discussed in various papers, as RT-
modes in Plag and Jüttner (1995), Vermeersen and Mitrovica (2000), and included
in the wider class of compositional C-modes in Cambiotti and Sabadini (2010), as
discussed in Sect. 2.5.3. As shown in Vermeersen and Mitrovica (2000) these modes
are characterized by long relaxation times of 102−103 Myr and thus their effects are
negligible on the time scale of the ice ages. In order to avoid these modes, following
Chinnery (1975), we compute the tidal fluid limit kTf by considering the viscoelastic
layers of the Maxwell Earth’s model as inviscid, with the exception of the elastic
layers. This approach is in agreement with the theory of the equilibrium figure of the
rotating Earth at first order accuracy and it does not differ from the assumption that
Maxwell Earth’s models are in hydrostatic equilibrium before the loading of the last
ice age, as usually done in post glacial rebound studies.

Besides this, note that we have defined kTf in the time t-domain. This is due to the
fact that it is not possible to use its alternative definition in terms of the limit s → 0
of the tidal gravitational Love number k̃T2 (s) in the Laplace s-domain. Indeed the

http://dx.doi.org/10.1007/978-94-017-7552-6_2
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origin s = 0 of the Laplace s-domain is the cluster point of the denumerable set of
the poles of the C-modes, both for stable and unstable compositional stratifications
(Cambiotti and Sabadini 2010), as discussed in Sect. 2.5.

3.3 Linearized Liouville Equations

If � denotes the mean Earth’s rotation frequency, then the components of ω can be
expressed in the dimensionless quantities mi as

ω = (ω1,ω2,ω3) = �(m1,m2, 1 + m3). (3.36)

The quantities mi are small whenever the deviations from the reference axis of
rotation are small. By assuming that the changes in Ii j are small compared to the
moment of inertia in the initial state, the inertia tensor can be written as

Ii j =
⎛

⎝
A + �I11(t) �I12(t) �I13(t)

�I21(t) A + �I22(t) �I23(t)
�I31(t) �I32(t) C + �I33(t)

⎞

⎠ , (3.37)

in which A and C denote the moments of inertia for an equatorial principal axis and
the polar principal axis, respectively. We assume that the initial mass distribution
of the Earth is symmetric with respect to the rotation axis, so that the moments of
inertia for the two principal equatorial axes are both equal to A. To first order

I · ω =
⎛

⎝
(A + �I11)ω1 + �I12ω2 + �I13ω3

�I21ω1 + (A + �I22)ω2 + �I23ω3

�I31ω1 + �I32ω2 + (C + �I33)ω3

⎞

⎠

≈
⎛

⎝
�(Am1 + �I13)
�(Am2 + �I23)

�(C + Cm3 + �I33)

⎞

⎠ (3.38)

so

ω × (I · ω) ≈
⎛

⎝
�2(Cm2 − Am2 − �I23)
�2(Am1 + �I13 − Cm1)

0

⎞

⎠ (3.39)

resulting, from Eq. (3.6), into

A�ṁ1 + �2(C − A)m2 = −�� İ13 + �2�I23 (3.40)

A�ṁ2 − �2(C − A)m1 = −�� İ23 − �2�I13 (3.41)

http://dx.doi.org/10.1007/978-94-017-7552-6_2
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C�2ṁ3 = −�2� İ33 (3.42)

where we have assumed L = 0 and the dot denotes the time derivative. With the
Eulerian free precession frequency defined as

σr = C − A

A
� (3.43)

we can write

ṁ1

σr
+ m2 = φ2 (3.44)

ṁ2

σr
− m1 = −φ1 (3.45)

ṁ3 = φ̇3 (3.46)

in which

φ1 = 1

(C − A)
(�I13 + �−1� İ23) (3.47)

φ2 = 1

(C − A)
(�I23 − �−1� İ13) (3.48)

φ3 = 1

C
(−�I33) (3.49)

are the dimensionless excitation functions.
Neglecting influences of the time variations of the inertia (� İi j = 0), these

excitation functions reduce for polar wander to the following complex notation

� = φ1 + iφ2 = �I13
C − A

+ i
�I23
C − A

(3.50)

With this and the polar shift in complex notation m = m1 + im2, the linearized
Liouville equation for polar wander can be written from Eqs. (3.44) and (3.45) in
complex notation, with i the imaginary unit, as

i
ṁ
σr

+ m = � (3.51)
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3.4 The Concept of True Polar Wander (TPW)

At the end of the 19th century the theoretically predicted wobbling of the Earth’s
rotation axis with respect to the Earth’s surface was observed. Two periodic move-
ments have in fact been discerned from astronomical observations: one with a com-
ponent of one year, related to seasonal influences, and one with a component of
about 14months, which was readily associated with Euler’s free nutation of a rotat-
ing deformable body. From astronomical observations, Lambert (1922) and Wanach
(1927) derived that the rotation axis of the Earth, besides these two periodic compo-
nents, also shows a secular (linear) displacement with respect to the Earth’s surface.
Lambert (1922) found from an observation time series covering the period 1900–
1917 that on the Northern Hemisphere the axis moves in the direction of 90◦W
longitude with a speed of 1.72◦ per million years (deg/Myr). On the basis of a some-
what longer time series (1900–1926), Wanach (1927) found a value of 1.31 deg/Myr
in the direction 42◦W longitude. These observations have been refined as longer time
series became available and after the influence of continental drift had been recog-
nized and was corrected for. One of the most recent values comes from McCarthy
and Luzum (1996), who report a polar wander speed of 0.925◦ ± 0.022◦ 1/Myr in
the direction 75.0◦ ± 1.1◦W longitude. To put these values in perspective: the yearly
and 14-month harmonic components have amplitudes of about 10–15m; the secular
component that results after filtering these two harmonic components out has a rate of
about 10cm per year (one degree of latitude on the Earth’s surface is about 111km).

The observed polar wander is not an artificial consequence of continental drift
(the plate on which an observatory is situated shifts with respect to the other plates;
the plate through which the rotation axis of the Earth pierces shifts with respect
to the deep mantle; etc.). That is, polar wander is corrected for these plate motions.
Uncorrected polarwander is usually dubbed apparent polarwander (APW); corrected
polar wander is usually called true polar wander (TPW). Thus, the secular shift of
the rotation axis is not due to the continental drift of the particular plate which it
pierces on the Northern or Southern Hemisphere, which would be called APW, but
is supposed to reflect a true wander with respect to the deep mantle. It is therefore
called TPW. The question which emerges immediately from this ‘with respect to the
deep mantle’ is how one can determine the mantle reference frame. For long-term
TPW, the hot-spot reference frame is usually taken for this fixed reference frame.

Hot-spots are point-like places on the Earth’s surface that show a higher heat
flow than average. They are often associated with large basaltic outpourings, both on
continents and in oceans, moving relatively undisturbed through mid-ocean ridges.
Whereas the rising material that forms the mid-ocean ridges (raised lineaments in
the oceans that signify the places where the plates drift apart) is generally thought
to have its origin in the shallow upper mantle, the relatively undisturbed movement
of these hot spots through mid-ocean ridges indicates that the rising material of the
hot spots comes from the deep mantle. Although there is some inter-hot-spot drift it
remains limited to velocities of a few cm per year at most, whereas plates move with
velocities up to 5–10cm per year. Thus, a relatively stable (stable down to a few cm
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per year) hot-spot reference frame can be established that is thought to coincide with
a hypothetical deep-mantle reference frame. Here we will loosely refer to the term
TPW with respect to this reference frame. Although the true nature of hot-spots is
still a matter of debate, one may associate them with more or less stationary mantle
convection patterns. This would imply that whenever a large change of the global
convection pattern emerges, being accompanied by a large reorganization of the
plates, then the concept of true polar wander becomes meaningless as the hot-spot
reference frame is destroyedor reorganized.This limits the concept ofTPWtoperiods
of about 100Myr, and one should be careful not tomisinterpret a redistribution of hot-
spots during plate reorganization periods as a “catastrophic turnover” of the rotation
axis. Apart from this, there is evidence of TPW on timescales of both millions of
years (Besse and Courtillot 1991) and thousands of years (Dickman 1977). Over
the thousands of years Nakiboglu and Lambeck (1980), Sabadini and Peltier (1981)
have shown that the present-day TPW can be explained by post glacial rebound due
to the disappearance of the huge Pleistocene ice sheets. A number of papers have
been published in recent years that argue for additional forcings being responsible
for causing the observed present-day polar drift other than post glacial rebound.

On the million-year time scale, subduction (e.g. Ricard et al. 1992) and mantle
convection (e.g. Steinberger and O’Connell 1997) are considered to be the major
contributors to TPW, while on the thousand-year time scale the redistribution of
surface loads due to the growing and melting of huge ice sheets is considered to be
one of the main forcing mechanisms for TPW. Steinberger and O’Connell (1997)
derive from their mantle heterogeneities advection model a contribution of 40% to
the observed secular TPW rate. Contemporary forcings might induce TPW rates
comparable to the secular TPW velocity: some of the models in Vermeersen et al.
(1994) on (geoid-constrained) neotectonics of theHimalayas andTibetan Plateau and
in James and Ivins (1997) on mass changes of the Greenland ice sheet induce TPW
velocity rates which are comparable to the observed present-day TPW rate. Taken
together, all these geophysical forcings (mantle convection, tectonics, present-day
ice and water redistributions, etc.), with their associated uncertainties, make it very
difficult to extract unique information about the viscosity of the Earth’s mantle from
TPW simulations.

We can thus conclude that starting from the work by Gold (1955),
Munk and MacDonald (1960), issues related to the secular change of the Earth’s
rotation axis named True Polar Wander (TPW), never ceased to be discussed or
questioned. Progress has been made since the sixties, on two major aspects: the first
deals with the improvement in the modeling of the Earth, in terms of rheological
stratification, and the second is related to the new insights on surface and deep seated
density anomalies originating from ice ages and mantle convection as major sources
of polar wander. After decades, we are however still in the situation in which it is
necessary to come back to some basic TPW issues to dig out deeper insights into the
physics of this aspect of the dynamics of our planet, focusing, in particular, on the
nature, elastic or viscoelastic, of the outermost part of our planet.

Ricard et al. (1993a) first exploited the rotational behavior of elastic versus vis-
coelastic outermost part of the Earth, introducing the T1 time scale characterizing
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the readjustment of the equatorial bulge, based on realistically stratified viscoelastic
Earth’s models. Vermeersen and Sabadini (1999) pointed out the reduction in the
TPW displacements for Maxwell Earth’s models carrying a viscoelastic lithosphere
compared to those with an elastic one. Nakada (2002) went thoroughly into the issue
related to the rheology of the lithosphere by considering highly viscous viscoelastic
lithospheres and he showed as the TPW rates in the lower mantle viscosity range
1021–1022 Pa s are extremely sensitive to the choice of the rheology of the lithosphere,
elastic or viscoelastic with high viscosity. This might be seen as surprising since the
high viscous viscoelastic lithosphere is expected to behave as an elastic one for time
scales of 1 Myr comparable to that of post glacial rebound. Mitrovica et al. (2005)
named this sensitivity of the TPW predictions the “Nakada paradox” and (as cited
by Nakada) “has suggested that this paradox originates from an inaccuracy in the
traditional rotation theory associated with the treatment of the background equi-
librium rotating form upon which any load- and rotation-induced perturbations are
superimposed (e.g. Wu and Peltier 1984)”.

Starting from these preliminary remarks, Mitrovica et al. (2005) suggest a new
treatment of the rotational dynamics where the observed fluid Love number is used
in the linearized Euler dynamic equation, rather than the tidal fluid limit deduced
self-consistently from the Maxwell Earth’s model used to evaluate the load-induced
perturbations of the inertia tensor and the readjustment of the equatorial bulge. This
apparently minor change (the discrepancy between the observed and tidal fluid limits
is about 1%) has a potentially large impact on TPW predictions and would solve the
“Nakada paradox”.

We enlighten in the following the differences between the so called “traditional
approach” (Sabadini and Peltier 1981; Sabadini et al. 1982; Wu and Peltier 1984)
and the treatment indicated by Mitrovica et al. (2005). We will show results from a
newly developed compressible model, including the methodology to transform the
results from the Laplace domain into the time domain. This will clarify some issues
related to the use of the normalmode relaxation approachwithin rotational problems.
We will explore the role of the non hydrostatic contribution to the fluid Love number
from mantle convection calculations in order to make our estimates of TPW rates,
within the scheme proposed by Mitrovica et al. (2005), as realistic as possible.

3.4.1 Reference Frame

As in a deformable Earth there are no stable reference frames in the strict sense,
it is necessary to define such a reference system in a practical way. For short-term
polar wander it is convenient to take the geographical frame as reference frame. It
can be defined as the mean position of a number of fixed points in stable continental
areas. For long-term true polar wander the choice of a reference frame becomes more
complicated, as the whole mantle can change its configuration. Usually, the hot-spot
reference frame is taken as the frame in which the mean mantle material is stable.
The relative velocities between the hot spots are generally found to be a factor of



102 3 Rotational Dynamics of Viscoelastic Planets: Linear Theory

one tenth smaller than the relative plate velocities. m1 and m2 now give the resultant
polar shift in radians: m1 in the x-direction, which is chosen to be in the equatorial
plane from the centre of the Earth towards the Greenwich meridian, and m2 in the
y-direction, which is chosen to be in the equatorial plane from the centre of the Earth
towards 90◦ East longitude. m3 gives the change in the length of day in radians per
sidereal day.

For loadings that change with much smaller frequencies than σr , the linearization
of the Liouville equation leads ultimately to

m1 = �I13
C − A

rad x−component of polar shift (3.52)

m2 = �I23
C − A

rad y−component of polar shift (3.53)

m3 = −�I33
C

rad change in length of day. (3.54)

The equatorial flattening is of great importance: if C were equal to A, then the
Eulerian free precession frequency, Eq. (3.43), would be zero, the excitation func-
tions, Eqs. (3.47) and (3.48), would be infinite and, according to Eqs. (3.52) and
(3.53), the polar shift infinitely large.

Exercise 13 For the Earth, C = 8.0394 × 1037 kg m2 and A = 8.0131 × 1037 kg
m2, determine the period of the Eulerian free precession.

3.4.2 Adjustment of the Equatorial Bulge

Another important issue is that Eq. (3.51) does not take a shift in the equatorial bulge
into account. To put it differently: it gives the polar wander for a rigid planet. If the
rotation axis had to coincide with the axis perpendicular to the plane of the equatorial
flattening before a mass change occurs, then, after the mass change, Eq. (3.51) would
give the new position of the rotation axis that coincides with the axis of maximum
moment of inertia. This new position would not be perpendicular to the plane of the
equatorial flattening whenever the perturbing mass is not on the poles or the equator.
A wobble ensues, which should have the frequency given by Eq. (3.43). At the end of
the 19th century astronomers looked for this frequency in their observations but did
not find it. However, they found a strong wobble, the so-called Chandler wobble, that
had a period 4months greater than the Eulerian free precession period. It was soon
realized that the Chandler wobble is nothing else than the Eulerian free precession
and that the 4-month period extension is due to the elastic properties of the Earth. The
deformation of the Earth is also responsible for the decay of the wobble amplitudes
on time scales of a few decades, implying that the wobbles must be maintained by
geophysical forcings. And, as we have already seen in the introduction, the tidal
deceleration of the Earth’s rotation also requires that (visco)elastic adjustment of
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the equatorial bulge be taken into account. Finally, for long-term polar wander it is
obvious that the shift of the equatorial bulge has to be taken into account. There are
indications that polar wander over geological times may amount up to several tens
of degrees, while today the equatorial bulge is almost perpendicular to the Earth’s
rotation axis.

We now add to Eq. (3.31) the contributions from surface and internal loads, which
allow us to subdivide the inertia tensor into three terms

Ii j (t) = I δi j + a5

3G
kT2 (t) �

(
ωi (t)ω j (t) − 1

3
ω2(t) δi j

)
+ I Li j (t) (3.55)

describing the inertia tensor of the spherically symmetric Earth’s model, the effects
of the centrifugal potential and the remaining contributions, from surface and internal
loads.

Exercise 14 Show that the changes in the products of inertia �Iω
13 and �Iω

23 due to
changes in the centrifugal potential can be expressed in a linear approximation as

�Iω
13(t) = a5kT2 (t)

3G
∗ (ω1(t)ω3(t)) ≈ a5kT2 (t)�2

3G
∗ m1(t) (3.56)

�Iω
23(t) = a5kT2 (t)

3G
∗ (ω2(t)ω3(t)) ≈ a5kT2 (t)�2

3G
∗ m2(t) (3.57)

The forcing function�R for rotational deformation can then bewritten in complex
notation as

�R(t) = �Iω
13(t)

C − A
+ i

�Iω
23(t)

C − A
≈ kT2 (t)

kTf
∗ m (3.58)

withm = m1 + im2.

3.5 Developments of Linearized Rotation Theories

The theory of relating changes in mass distribution to changes in rotation for a vis-
coelastic Earth has been developed over many years. Burgers (1955), acknowledging
Gold (1955) as source of inspiration, built such a model in which the rheology con-
sisted of a variation of the Kelvin-Voigt model (the Newtonian element was replaced
by a Maxwell element). References to further early attempts can be found in Munk
and MacDonald (1960). Multi-layer viscoelastic relaxation models for Earth’s rota-
tion driven by ice cycles were built by Sabadini et al. (1982), Wu and Peltier (1984).
The simulations we present are based upon the theory of Sabadini et al. (1982),
but the theory of Wu and Peltier (1984) is equivalent to Sabadini et al. (1982) after
the Chandler wobble is filtered out in the theory of the latter (Sabadini et al. 1984;
Vermeersen et al. 1996b; Mitrovica and Milne 1998).
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The linearized Liouville equation (3.51) including both loading and tidal forcings,
can be written as

i
ṁ
σr

+ m = � (3.59)

with the forcing function� consisting of two parts:� = �L +�R , with�L the part
describing the direct geodynamic forcing and�R the induced rotational deformation.

The linearized Liouville equation can thus be expressed as

i
ṁ
σr

+ (1 − kT2
kTf

)m = �L (3.60)

or

i
ṁ
σ0

+ m = �L (3.61)

with

σ0 = (1 − kT2
kTf

)σr (3.62)

and

�L = kTf
kTf − kT2

�L (3.63)

The term σ0 is the frequency of the Chandler wobble. Its 4-month decrease with
respect to the frequency of the Eulerian free precession frequency σr is due to the
quotient kT2 /kTf .

Exercise 15 Show, assuming that kT2 is not time-dependent, that the solution of Eq.
(3.61) is

m(t) = −iσ0e
iσ0t

t∫

−∞
�L(τ )e−iσ0τdτ (3.64)

and determine m(t) for the following two cases:

(1) �L(t) = �0H(t), with �0 time-independent and H the Heaviside function;
(2) �L(t) = �0δ(t), with �0 being time-independent.
Draw your solutions in the (m1, m2)-plane for both cases (1) and (2). Assume that
at time t = 0 the rotation pole is at the origin.

We now make use of the Liouville equation in the form of Eq. (3.60) transformed
into the Laplace domain

i s

σr
m̃(s) +

(

1 − kT2 (s)

kTf

)

m̃(s) = �̃L(s) (3.65)
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where i and σr are the imaginary number and the Eulerian free precession frequency
of the rigid Earth and the forcing in the RHS is cast in terms of the convolution
between the direct effect of the load φ̃(s) and the response of the Earth via the
loading Love number k̃ L(s)

�̃L(s) =
(
1 + k̃ L2 (s)

)
φ̃(s) (3.66)

The tilde stands for the Laplace transform and φ̃(s) = φ1(s)+ iφ2(s), Eqs. (3.47)
and (3.48). When modal expansion of the tidal Love number kT2 (s)

kT2 (s) = kTE +
M∑

j=1

kTj
s − s j

(3.67)

is performed in Eq. (3.65), we obtain

(

i
s

σr
+ 1 − 1

kTf

(

kTe +
M∑

i=1

kTi
s − si

))

m̃ = �̃L(s) (3.68)

In order to address attention solely on the rotational part, with kTf = kT2 (s = 0)
being the tidal fluid Love number, we obtain

kTf = kTe +
M∑

i=1

kTi
−si

(3.69)

and
kTi
si

+ kTi
s − si

= kTi s

si (s − si )
(3.70)

Equation (3.68) becomes

s

(

1 + i
σr

kTf

M∑

i=1

kTi
si (s − si )

)

m̃(s) = −iσr �̃L(s) (3.71)

becoming

s

(

1 +
M∑

i=1

xi
s − si

)

m̃(s) = −iσr �̃L(s) (3.72)

with

xi = i
σr kTi
kTf si

(3.73)
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Now

1 +
M∑

i=1

xi
s − si

=
∏M

j=1(s − s j )
∏M

j=1(s − s j )
+

M∑

i=1

xi

∏M
j 	=i (s − s j )

∏M
j=1(s − s j )

(3.74)

where
∏M

j 	=i means
∏M

j=1 without the term j = i .
The right-hand side of the above equation

∏M
j=1(s − s j ) + ∑M

i=1 xi
∏M

j 	=i (s − s j )
∏M

j=1(s − s j )
(3.75)

can be transformed into ∑M
i=0 αi si

∏M
j=1(s − s j )

(3.76)

(whereby it immediately follows that αM = 1), and consequently

1 +
M∑

i=1

xi
s − si

=
∏M

j=1(s − a j )
∏M

j=1(s − s j )
(3.77)

with ai being the M complex roots of the equation

M∑

i=0

αi s
i = 0 (3.78)

We thus obtain

s

∏M
j=1(s − a j )

∏M
j=1(s − s j )

m(s) = −iσr �̃L(s) (3.79)

becoming

m̃(s) = −iσr

∏M
j=1(s − s j )

s
∏M

j=1(s − a j )
�̃L(s) (3.80)

that can be cast as

m̃(s) = −iσr

⎛

⎝ A0

s
+

M∑

j=1

A j

s − a j

⎞

⎠ �̃L(s) (3.81)

In this expression, the terms a j are the inverse relaxation times from the tidal
problem for the M modes, having the strength given by the residues A j . The residue
A0 gives the strength of the secular term. m(s) is defined in such a way that the
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real-valued component gives the polar wander in the direction of the Greenwich
meridian, and the imaginary-valued component the polar wander in the direction 90◦
to the east.

Equation (3.81) forms the basis of realistic models of Earth’s rotation that takes
solid-Earth’s deformation and its consequential shifts in the equatorial bulge self-
consistently into account (with one restriction: the Liouville expression has been
linearized and therefore polar wander needs to be restricted to about 10◦ over the
Earth’s surface, or about 1000km, at most).

The loading term entering Eq. (3.81) can be made explicit

φ̃(s) = �I L13(s) + i�I L23(s)

C − A
(3.82)

to give

m̃(s) = −iσr

(
A0

s
+

M∑

j=1

A j

s − a j

)(
1 + kLe +

M∑

j=1

kLj
s − s j

)
�I L13(s) + i�I L23(s)

C − A

(3.83)
The inertia products refer to the perturbations of the rigid Earth, since the elastic

and viscoelastic contribution is included in the terms within the brackets. kLe is the
elastic load Love number and the terms kLj are the load Love numbers of the Mj
modes, accompanied by their (negative) inverse relaxation times s j of Chap.1; the
superscript L is used to differentiate the loading Love number from the tidal one. In
this book, perturbations in rotation are due to surface or internal mass anomalies, not
to earthquakes: the latter can be considered for their effects on rotation in Sabadini
et al. (2007) and, most recently, in Cambiotti et al. (2016). As already observed for
the tidal Love number, only the degree two harmonic component of the loading Love
number enters the rotation equations.

Equation (3.83) can further be simplified to (e.g. Vermeersen et al. 1994)

m̃(s) = −iσr
�I L13(s) + i�I L23(s)

C − A

(
A∗
0

s
+

M∑

i=1

βi

s − si
+

M∑

i=1

γi

s − ai

)
(3.84)

in which

βi = A0
kLi
si

+
M∑

j=1

A jkLi
si − a j

, (3.85)

γi = Ai (1 + kLe ) −
M∑

j=1

AikLj
s j − ai

(3.86)

and
A∗
0 = A0(1 + kLf ) (3.87)

http://dx.doi.org/10.1007/978-94-017-7552-6_1
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in which the fluid limit (s = 0) of the load Love number is given by

kLf = kLe −
M∑

i=1

kLi
si

(3.88)

Exercise 16 Show that the coefficients βi are identically equal to zero.

3.5.1 Comparison Between Different Rotation Theories

As elucidated by Eq. (3.83), in the case of polar wander there are two relaxation
mechanisms at work: load relaxation, as a consequence of a redistribution of loads
over and within the Earth, and tidal-effective (or centrifugal) relaxation, as a con-
sequence of the centrifugal force acting on a rotating Earth. This centrifugal force
causes the equatorial bulge of the Earth to be displaced over the Earth’s surface in
a manner not unlike a wave traveling over the ocean’s surface. This ‘polar wander’
movement goes on until the Earth’s rotation axis coincides with the axis of maximum
moment of inertia of the mass distribution.

The theory that is used to study changes in the second degree harmonic of the
geoid J̇2 and polar wander can be found in a number of past publications (e.g. Naki-
boglu and Lambeck 1980; Sabadini and Peltier 1981; Sabadini et al. 1982, 1984,
1988, 1993; Wu and Peltier 1984; Peltier 1985; Spada et al. 1992; Ricard et al. 1992,
1993a; Mitrovica and Peltier 1993; Vermeersen et al. 1994, 1996b, 1997; Peltier
and Jiang 1996). The models in all these references employ a viscoelastic Maxwell
rheology for a spherical Earth’s model (that is, normal mode theory is first applied to
a non-rotating spherical Earth’ model, after which the required rotating ellipsoidal
Earth’s model is obtained by applying the centrifugal potential). Differences in the
models in the above references exist in, for example, the number of layers that the
Earth’s model has, the way in which the differential equations are solved (analyt-
ically or numerically), whether the Lamé parameter λ is taken as finite or infinite
(compressible or incompressible) and whether the models allow only for surface
loads or also for internal mantle loads.

The theories developed by Sabadini et al. (1982),Wu and Peltier (1984) have been
shown to be equivalent in Sabadini et al. (1984), Vermeersen and Sabadini (1996).
Specifically, Sabadini et al. (1984) have shown that the secular polar wander terms
are the same, while Vermeersen and Sabadini (1996) have demonstrated that when
the Chandler wobble is filtered from the model of Sabadini et al. (1982), then to a
high approximation the same polar wander curves are obtained compared to those
found with the model of Wu and Peltier (1984) for all timescales.

In Spada et al. (1992b), an analytical theory is developed for polar wander
and J̇2 models for Earth’s stratifications with 5 layers at most. Vermeersen et al.
(1996a),Vermeersen andSabadini (1996) have developed the analytical theory for the
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relaxation of an Earth’s model consisting of an arbitrary number of layers. In this
section we concentrate on those aspects that are specifically associated with study-
ing rotational changes by means of analytical models in which the Earth is radially
stratified with any number of layers.

3.5.2 Omission of the M0 Rotation Mode

A number of authors have reported during the past decade that studies on glacially
induced displacement of the axis of rotationwith respect to the Earth’s surface named
TPW, allow in general formultiple solutions for the lowermantle viscosity if theTPW
is known and all the other rheological, elastic and constitutional parameters are fixed
(Fig. 20 inYuen et al. 1986; Fig. 5 in Spada et al. 1992b; Fig. 1 inMilne andMitrovica
1996). These multiple-branch solutions are found in other geophysical signatures
related to glacially induced solid-Earth deformation like post-glacial rebound, free-
air gravity anomalies, and changes in the non-tidal acceleration of the Earth. We will
come back to these points in detail in the following Chap.4.

Although the theories described by Sabadini et al. (1982), Wu and Peltier (1984)
appear to have a number of differences, Sabadini et al. (1984) have shown that the
formulations are equivalent to some extent. The proof of the equivalence of Eqs.
(16) and (17) in Sabadini et al. (1984) for the secular rotation term is an important
result in this respect. Another result mentioned in Sabadini et al. (1984) is that each
of the load relaxation modes has a corresponding rotational relaxation mode. This
correspondence remains an important issue since, inWuandPeltier (1984) theoretical
development, one of the corresponding modes, the M0 rotational relaxation mode,
is lacking (see also Table1 in Sabadini et al. 1984). We show explicitly that the
absence of the M0 rotational relaxation mode does not affect the TPW-rate behavior.
As support for this result, it should be noted that the TPW predictions of Milne and
Mitrovica (1996), Fig. 1, which agree with earlier analyses (e.g. Spada et al. 1992b),
are based on theory which is equivalent to Wu and Peltier’s (1984) approach. In this
section it is first shown thatWu and Peltier’s (1984) approach in deleting theChandler
wobble acts to remove the M0 rotational mode. A new analytical approximation
formula for the M0 rotational relaxation mode, which incorporates the Chandler
wobble frequency for a stratified Earth as the imaginary part, is derived below. It
will be shown, using numerical tests, that this approximation formula is extremely
accurate. It is shown that the model approach used in Sabadini et al. (1982), Wu and
Peltier (1984) lead to the same secular TPW results.

Equation (64) in Wu and Peltier (1984) becomes in our notation

m(s) = − iσr �̃L(s)

s
(
1 + i

∑M
j=1

x ′
j

s − s j

) (3.89)

http://dx.doi.org/10.1007/978-94-017-7552-6_4
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The terms x ′
i = (σr kTi )/(kTf si ) do not contain the imaginary unit i as the previously

defined xi in Eq. (3.73) do and have the same dimension as s j (parameters kTj are the
same as the parameters t j used in Wu and Peltier (1984)).

For inverse Laplace transformation of Eq. (3.89) the complex-valued roots of the
denominator on the right hand side have to be found. At this stage, Wu and Peltier
(1984) make the point that the unity term in the denominator of Eq. (3.89) can be
neglected. This is only correct, however, if the imaginary parts of the roots have the
same magnitude or are much smaller than the magnitude of the real parts. This is
indeed the case for M − 1 roots, but it is not true for one root which has a much
larger imaginary part than real part. This root turns out to be the rotational root that
gives the relaxation of the fundamental mantle mode as real part and the Chandler
wobble as imaginary part.

The omission of this rotational root in Wu and Peltier (1984) will become more
apparent when we rewrite the term inside the brackets of Eq. (3.89) as

1 + i
M∑

j=1

x ′
j

s − s j
=

∏M
j=1(s − s j ) + i

∑M
k=1 x

′
k

∏M
j 	=k(s − s j )

∏M
j=1(s − s j )

(3.90)

It is clear that if the first term of the numerator on the right hand side of Eq. (3.90)
is deleted, the numerator is reduced from an expression of order M to an expression
of order M − 1. This would imply that one of the M load relaxation modes would
have no rotational counterpart. Neglecting the first term of the numerator of Eq.
(3.90) on the right hand side of the equation is correct for the M − 1 roots for which
the imaginary part is orders of magnitude smaller than the real part, as outlined by
Wu and Peltier (1984). For these roots, the approximation

M∑

k=1

x ′
k

M∏

j 	=k

(s − s j ) = 0 (3.91)

is valid, being a purely real expression resulting in M −1 real roots. These real roots
constitute the M − 1 rotational inverse relaxation times associated with all modes
except the M0 mode.

For a root which has a large imaginary value, comparative in strength with the
variables x ′

j , an argument that the first term of the numerator on the right hand side of
Eq. (3.90) is negligible with respect to the second term of this numerator, is no longer
valid. In fact, such a complex-valued root leads to a real part, i.e. the M0 rotational
relaxation mode, which has the same order of magnitude as the other (real) M − 1
roots.

This complex-valued mode, with the Chandler wobble frequency for a stratified
Earth as imaginary part, has thus to be derived from the complete complex-valued
equation
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Table 3.3 Density and rigidity values for the 5-layer model

r (km) ρ (kg/m3) μ (N/m2)

6371 − 6250 3184 6.02 ×1010

6250 − 5951 3434 7.27 ×1010

5951 − 5701 3857 1.06 ×1011

5701 − 3480 4878 2.19 ×1011

3480 − 0 10,932 0

M∏

j=1

(s − s j ) + i
M∑

k=1

x ′
k

M∏

j 	=k

(s − s j ) = 0 (3.92)

A highly-accurate analytical approximation formula can be derived from Eq.
(3.92) for the M0 rotational relaxation mode. This approximation facilitates polar
wander simulations in Earth’s models with a large number of layers. Indeed, it is well
known that complex rootfinding procedures are numerically more difficult to apply
and are less reliable than real-valued rootfinding procedures. When an analytical
formula can be obtained for the only complex root that has a non-negligible imaginary
part, one can employ rootfinding procedures for real numbers using Eq. (3.91) instead
of complex numbers using Eq. (3.92) in TPW calculations.

Before deriving this formula, an example concerning the foregoing remarksmight
be illustrative. Table3.3 gives the values for the densities and rigidities of a 5-layer
model. The mantle has a uniform viscosity of 1021 Pa s. In Table3.4 the 9 inverse
load relaxation times s j and the 9 rotational relaxation roots a j are given for this
5-layer Earth’s model. The complex rotational relaxation roots a j are determined by
applying a complex rootfinding procedure to Eq. (3.78). It is clear from Table3.4
that 8 roots have imaginary values which are negligible in strength, and that 1 root
has a large imaginary value. This large imaginary value represents the Chandler
wobble. The real value of this root is the M0 rotational relaxation mode. This mode
is not negligible at all; on the contrary, it is often the strongest relaxation mode,
as illustrated by the last two columns in Table3.4. In Table4 of Wu and Peltier
(1984), where 9 load relaxation and 8 rotational relaxation roots are given, it is
this M0 rotational relaxation mode which is lacking. The small imaginary values of
the other rotational relaxation roots in Table3.4 indicate that these modes are also
characterized by wobbles. One can easily prove from Eq. (3.92) that the imaginary
parts of these modes are not equal to zero, thus excluding the possibility that these
imaginary values are the result of numerical inaccuracies. This is interesting from a
physical point of view, although the amplitudes of these wobbles are too small to be
of any immediate physical significance.

Filtering the Chandler wobble out after the rotational relaxation roots have been
found is not the same as deleting the mode in which the Chandler wobble will
appear before Eq. (3.92) is solved. One might thus think that the omission of the
M0 rotational relaxation mode has marked consequences for the TPW simulations.
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Table 3.4 Inverse load relaxation times s j , inverse rotational relaxation times a j , load Love num-
bers kLj and tidal-effective Love numbers kTj for the 9 relaxation modes of the 5-layer model of

Table3.3, with a uniform mantle viscosity of 1021 Pa s

Mode −s j (kyr−1) −a j (kyr−1) kLj (kyr−1) kTj (kyr−1)

M2 2.90 × 10−5 7.32×10−5− i9.64×10−10 −1.45 × 10−7 7.17 × 10−9

M1 1.29 × 10−3 1.06× 10−2 − i1.73× 10−6 −7.01 × 10−5 7.72 × 10−6

L0 1.09 × 10−1 1.19× 10−1 − i1.89× 10−6 −1.69 × 10−4 7.84 × 10−4

C0 4.50 × 10−1 1.02 − i1.50 × 10−4 −1.41 × 10−1 8.08 × 10−2

M0 2.02 1.95 − i5.10 × 103 −3.32 × 10−1 4.21 × 10−1

T1 2.48 2.38 − i2.19 × 10−5 −7.82 × 10−2 8.13 × 10−2

T2 2.84 2.62 − i2.45 × 10−5 −2.80 × 10−1 3.73 × 10−1

T3 3.56 3.47 − i2.60 × 10−5 −9.95 × 10−2 1.13 × 10−1

T4 4.00 3.89 − i2.94 × 10−5 −1.15 × 10−1 1.79 × 10−1

The labeling of the modes agrees with the labeling in Table4 of Wu and Peltier (1984). Note that
the M0 mode is the strongest mode for both load relaxation and tidal-effective relaxation

However, Eq. (79) in Wu and Peltier (1984) contains the extra term D1 f (t) inside
the square brackets, which is only created when the number of rotational relaxation
modes is one less than the number of load relaxation modes. It will be shown that this
term contains approximately the same contribution as is found from the relaxation
of the M0 rotational relaxation mode after the Chandler wobble is filtered out. This
equivalence will be pointed out and discussed after the analytical formula for the M0
rotational relaxation mode has been derived.

3.5.3 Analytical Formula for the M0 Rotation Mode

As shown in the last section, the numerator on the right hand side of Eq. (3.90) has
M − 1 solutions s = a j ( j = 1,..., M − 1) for which the imaginary part can be
neglected. These M − 1 solutions can be found by applying a real-valued rootfinder
procedure to Eq. (3.91). The root which contains the Chandler wobble as imaginary
part and theM0 rotational relaxationmode as real partmust be solved fromEq. (3.92).
If we split this root s = aM0 into its real and imaginary parts as aM0 = aR + iaI ,
then it is clear from Table3.4 that |aI | 
 |aR| and |aI | 
 |sk | hold for all M load
relaxation modes kLi .

With this, the first term of Eq. (3.92) can be approximated by

M∏

j=1

(s − s j ) ≈ i MaM
I + i M−1

M∑

k=1

(aR − sk)a
M−1
I (3.93)

while the second term of Eq. (3.92) can be approximated by
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i
M∑

k=1

x ′
k

M∏

j 	=k

(s − s j ) ≈ i M
M∑

k=1

x ′
ka

M−1
I + i M−1

M∑

k=1

x ′
k

M∑

j 	=k

(aR − s j )a
M−2
I (3.94)

The sum of Eqs. (3.93) and (3.94) has terms which all contain either i M or i M−1.
Irrespective of the value of M , the terms must thus obey the relations

aM
I +

M∑

k=1

x ′
ka

M−1
I ≈ 0 (3.95)

and
M∑

k=1

(aR − sk)a
M−1
I +

M∑

k=1

x ′
k

M∑

j 	=k

(aR − s j )a
M−2
I ≈ 0 (3.96)

Equation (3.95) yields the expression for the imaginary part of the root as

aI ≈ −
M∑

k=1

x ′
k (3.97)

while Eq. (3.97) in Eq. (3.96) leads to

−
(

M∑

k=1

(aR − sk)

) (
M∑

k=1

x ′
k

)

+
M∑

k=1

x ′
k

M∑

j 	=k

(aR − s j ) ≈ 0 (3.98)

and this can be reduced to
M∑

k=1

x ′
k(aR − sk) ≈ 0 (3.99)

FromEqs. (3.97) and (3.99)we thus have asM th complex-valued root ofEq. (3.92)

aM0 ≈
(

M∑

k=1

x ′
ksk/

M∑

k=1

x ′
k

)

− i
M∑

k=1

x ′
k (3.100)

The real part of this root gives the rotational inverse relaxation time of the fun-
damental mantle mode M0, while the imaginary part gives the Chandler wobble
frequency σ0 of the stratified model (compare also with Wu and Peltier’s (1984)
Eq. (68))

σ0 ≈
M∑

k=1

x ′
k (3.101)

or
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σ0 ≈ σr

M∑

k=1

kTj
kTf s j

(3.102)

For the 5-layer model in Table3.3 the complex root as given by Eq. (3.100) has
the value

aM0 = −1.9467033513 + 5096.94178i kyr−1 (3.103)

while from a complex rootfinder applied to Eq. (3.92) with quadruple precision the
root is determined as having the value

aM0 = −1.9467033558 + 5096.94204i kyr−1 (3.104)

The analytical formula (3.100) thus gives an extremely accurate approximation
of aM0.

3.5.4 Unification of the Different Approaches

Equations (3.100) and (3.102) are not only useful in themodel approach following the
methodof Sabadini et al. (1982), but also prove helpful in establishing the equivalence
with the model approach in Wu and Peltier (1984) for secular TPW.

If we consider Eq. (79) ofWu and Peltier (1984), then the formulation of Sabadini
et al. (1982) alters this equation by the following four points:

(1) The term D1 in Wu and Peltier’s (1984) Eq. (79) becomes zero. This term D1

is an elastic term which arises from the first term (being 1) on the right hand side of
Wu and Peltier’s (1984) Eq. (75). The term D1 is a direct consequence of the fact
that there is one rotational relaxation mode less than the number of load relaxation
modes. This term of unity would be absent if there were N rotational relaxation
modes corresponding with the N load relaxation modes inside the square brackets
of the last line in Wu and Peltier’s (1984) Eq. (74).

(2) The term D2 becomes −iσ0D2 in Wu and Peltier’s (1984) Eq. (79), but at the
same time the term D2 is divided by the extra root −aM0 of our Eq. (3.100) in Wu
and Peltier’s (1984) Eq. (80). As the imaginary part is orders of magnitude larger
than the real part, the effect onWu and Peltier’s (1984) Eq. (80) is that D2 is to a high
approximation divided by −iσ0, so that the total effect on Wu and Peltier’s (1984)
Eq. (79) is that the original term D2 remains unchanged (note that our roots ai have
the opposite sign of Wu and Peltier’s (1984) corresponding roots λi ).

(3) The terms Ei in Wu and Peltier’s (1984) Eq. (79) become −iσ0Ei , but at the
same time the terms Ei inWuandPeltier’s (1984)Eq. (80) are to a high approximation
divided by the extra term −iσ0, which is again a consequence of the fact that the
extra rotational relaxation mode has an imaginary term in our Eq. (3.100), being
orders of magnitude larger than the real part. The net effect is thus, just as in point
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(2), that the terms Ei remain to a high approximation unchanged in Wu and Peltier’s
(1984) Eq. (79).

(4) The final change in Wu and Peltier’s (1984) Eq. (79) concerns the addition of
the extra term EN f ∗ exp(aM0t). This term causes the wobble. It turns out that if
this extra term is averaged over time, i.e. when the wobble is filtered out, then the
contribution which remains is numerically equal to D1 to a high approximation.

The net effect of points (1)–(4) is thus that the elastic term D1 in Wu and Peltier’s
(1984) theory contains the signal due to the M0 rotational relaxation mode of Saba-
dini et al. (1982) when the Chandler wobble is filtered out. Together with points (2)
and (3), one thus can conclude that to a high approximation the theoretical develop-
ments in Sabadini et al. (1982), Wu and Peltier (1984) lead to the same results for
secular TPW simulations.

A first step to unify the approaches by Sabadini et al. (1982); Wu and Peltier
(1984) was taken in Sabadini et al. (1984).

3.6 Non-hydrostatic Bulge Contribution

Mitrovica et al. (2005) noticed that the inertia tensor of the real Earth is not only
that of a homogeneous rotating planet plus an ice load perturbation as implied by
Eq. (3.55), but that perturbations due to the mantle 3D structure are also present.
Coming back to the stage before the linearization of the Euler dynamic equation
(3.6), this is equivalent to adding to the equilibrium inertia tensor obtained by the
rotational spin-up of the model, Eq. (3.32), the perturbations �I C11, �I C22 and �I C33 in
the diagonal components due to mantle convection. This choice implies that mantle
convection does not directly drive polar motion, since the off-diagonal components
�I C13 and �I C23 due to mantle convection are not added, or, alternatively, that the axis
of rotation has already readjusted to the slowly evolving convection forcing so that the
off-diagonal inertia perturbations are only those arising from post glacial rebound.
This assumption implies that the evolution of the convective mantle is so slow that it
appears frozen during the glaciation-deglaciation phases. Since the series of eight ice
age cycles occurs over 800 kyr, this remains probably a reasonable approximation
but not necessarily so and convection may also have contributed to the TPW during
this period. According to Besse and Courtillot (1991), over geological times the
TPW occurs indeed at rates not much slower than those due to glacial readjustments.
This suggests that the two processes of mantle driven and surface driven TPW may
interact with each other. Before Mitrovica et al. (2005), in all studies of glaciation
induced TPW, the diagonal components �I C11, �I C22 and �I C33 were not introduced,
and the mantle was considered without lateral density variations. The role of mantle
convection was studied separately from the ice age TPW, as was done by Ricard et al.
(1993a).

By keeping the assumption of symmetry around the polar axis,�I C11 = �I C22, and
the superscript C standing for convection, we therefore perform the changes
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C → C + �I C33 A → A + �I C11 + �I C22
2

(3.105)

Particularly, Eq. (3.34) has to be written as

kTf,obs = kTf + β = 3G (C − A)

a5 �2
(3.106)

with kTf,obs being the observed fluid Love number and

β = 3G

a5 �2

(
�I C33 − �I C11 + �I C22

2

)
(3.107)

with β = 0.008, to which we refer as the β correction to the tidal fluid limit kTf
following Eq. (16) in Mitrovica et al. (2005). The kTf obs is thus an observation and
kTf a prediction from viscoelastic modelling, while β is the contribution of mantle
convection, assumed frozen during the period of ice age TPW. In view of this, Eq.
(3.65) becomes

i s

σr
m̃(s) +

(

1 − kT2 (s)

kTf + β

)

m̃(s) = (
1 + kL2 (s)

)
φ̃(s) (3.108)

Making use of kTf obs = kTf + β, rather than kTf , has thus the meaning of coupling, in
a simplified fashion and within a linearized scheme, the effects of the ice age TPW
with those from mantle convection, but assuming for the latter only its contribution
to the non hydrostatic ellipsoidal shape of the Earth (�I C11, �I C22 and �I C33 differing
from zero) and not its active driving effect (�I C13, �I C23 assumed equal to zero). It
should be noted that Eq. (3.108) is the counterpart, within our formalism, of Eq. (6) in
Mitrovica et al. (2005), based on the formalism of Wu and Peltier (1984), which we
have previously demonstrated to be equivalent to ours for loadings changing slowly
with respect to σr , that corresponds to neglecting the first term i s

σr
m̃(s) in the left

member of Eq. (3.108).
For layered incompressible models, in which the number of modes is known a

priori, it is possible to show analytically how the β correction impacts the linearized
equation for the ice age TPW. From the normal mode expansions of the gravitational
tidal Love numbers in the Laplace s-domain

kT2 (s) = kTE +
M∑

j=1

kTj
s − s j

(3.109)

with kTE , k
T
j and s j being the elastic gravitational Love number, the residues and the

poles of the j th relaxationmode.The long termbehavior,when s = 0, is controlled by
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kTf = kTE −
M∑

j=1

kTj
s j

(3.110)

and therefore kT2 (s) can be rearranged as follows, in agreement with Eq. (3.70)

kT2 (s) = kTf + s
M∑

j=1

kTj
s j

(
s − s j

) (3.111)

Similarly, the loading Love number kL2 (s) can be arranged as follows

kL2 (s) = kLf + s
M∑

j=1

kLj
s j

(
s − s j

) (3.112)

This allows us to collect in Eq. (3.65) (i.e. in the case β = 0 where the initial
flattening is only due to rotation without contribution from mantle dynamics) a term
linear in the Laplace variable s, in agreement with the definition given in Eq. (3.66)

s

⎛

⎝ i

σr
− 1

kTf

M∑

j=1

kTj
s j

(
s − s j

)

⎞

⎠ m̃(s) =
⎛

⎝1 + kLf + s
M∑

j=1

kLj
s j

(
s − s j

)

⎞

⎠ φ̃(s)

(3.113)
as in Eq. (3.71), which is the above equation multiplied by −iσr . By solving this
equation for m̃(s), we obtain

m̃(s) =
1 + kLf + s

∑M
j=1

kLj
s j(s − s j)

s
(

i
σr

− 1
kTf

∑M
j=1

kTj
s j(s − s j)

) φ̃(s) (3.114)

where the factor s collected at the denominator is responsible for the so-called sec-
ular term, which characterizes the ice age TPW in such a way that it gains a net
displacement at the end of each ice age cycle.

If now we want to account for the contribution of mantle convection to the inertia
tensor by applying the β correction, Eq. (3.114) becomes

m̃(s) =
1 + kLf + s

∑M
j=1

kLj
s j(s − s j)

β
kTf +β

+ s
(

i
σr

− 1
kTf +β

∑M
j=1

kTj
s j(s − s j)

) φ̃(s) (3.115)

The secular term is, in this case, substituted by an extra exponential decaying term,
which drags the equatorial bulge and forces the ice age TPW to return to the initial
position of the rotation axis, after a sufficiently long time. This can be explained in the
following way.While the hydrostatic flattening readjusts during the ice age TPW, the
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mantle density anomalies act as a counterweight that limits the polar excursion and
ultimately control the position of the pole (Fig. 14 of Mitrovica et al. 2005). We will
show that these considerations are not restricted to the simple layered incompressible
models, but they extend also to the case ofmore realistic compressiblemodels, used in
Chap.4, which take into account the continuous variations of thematerial parameters.
It is noteworthy that our advanced Earth’s models have a continuous relaxation
spectrum (Fang and Hager 1995; Tanaka et al. 2006; Cambiotti and Sabadini 2010),
which does not allow the analytical derivation of Eqs. (3.114) and (3.115) based on
the discretized normal mode expansion given by Eq. (3.109).

3.7 Readjustment of the Rotational Bulge

The term (1 − kT2
kTf

) entering Eq. (3.60) represents the readjustment of the rotational

equatorial bulge to a new rotation axis, where the total readjustment is obtained when
kTf −kT = 0.When the Earth is elastic, this readjustment is instantaneous, otherwise
it takes time, and this term tells us how fast this readjustment is. We first elucidate
the role of the rheology of the lithosphere, elastic or viscoelastic. We assume that the
120km thick viscoelastic lithosphere has a very high viscosity νL = 1026 Pa s. The
lower and uppermantle viscosities are νLM = 1022 and νUM = 1021 Pa s. Sections3.7
and 3.8 are based on the material parameters, density ρ, rigidity μ and bulk modulus
k as given in Table1 of Dziewonski and Anderson (1981), interpolated in terms of
polynomials depending on the radial distance r from the Earth’s centre, so as to
produce a continuous variation of the material parameters, without any fine layering.
Rather than normalmodes, anti-transformation from the s-domain to the time domain
is carried out via complex contour integration, as enlightened in Sect. 1.9.

In Fig. 3.3a we compare the time evolution of the Green function kTf − KT , with
capital KT being the convolution of the tidal gravitational Love number kT2 with
the Heaviside time history H , for the models with the elastic (E, solid line) and
viscoelastic (V, dashed line) lithospheres

KT (t) = kT2 (t) � H(t) (3.116)

We obtain kTf,E = 0.920 and kTf,V = 0.934 for the cases of elastic and viscoelastic
lithospheres. The difference between the tidal fluid limits kTf,V − kTf,E = 0.014
reflects a difference in the equilibrium flattening. The elastic lithosphere carries a
finite strength that, instead, the model with the viscoelastic lithosphere does not
have, being fully relaxed at large time (i.e., the elastic lithosphere is pre–stressed
while the viscoelastic lithosphere is in hydrostatic equilibrium). Note that the Green
function kTf,E − KT

E for the elastic lithosphere case (solid line) is always smaller
than the Green function kTf,V − KT

V for the viscoelastic case (dashed line). Within 10
Myr, kTf,E − KT

E approaches zero, namely the equatorial bulge readjusts completely

http://dx.doi.org/10.1007/978-94-017-7552-6_4
http://dx.doi.org/10.1007/978-94-017-7552-6_1
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Fig. 3.3 a, b Readjustment of the equatorial bulge, kTf − KT , and c load response, 1 + K L , for
compressible PREM with elastic (solid) and high viscous viscoelastic (dashed) lithosphere and
lower mantle viscosity νLM = 1022 Pa s. In panel (b), enlarged from panel (a), the difference
between the readjustment of the equatorial bulge of the model with the elastic (E) and viscoelastic
(V) lithosphere is also shown, kTf,V − KT

V − (kTf,E − KT
E ) (dash–dotted line)

to a new rotation axis. On the contrary kTf,V − KT
V is 0.014 at 10 Myr, which is

precisely the difference between the tidal fluid limits kTf,V and kTf,E . This indicates
that the accumulated stresses during the displacement of the equatorial bulge are
almost completely relaxed within the viscoelastic mantle, but they are still present in
the viscoelastic lithosphere with high viscosity. Indeed the viscoelastic lithosphere
behaves as an elastic body at time scales lower than the lithosphericMaxwell time, 30
Myr. We show this in Fig. 3.3b for the time window of 50 Myr where, in addition to

the previous Green functions, we plot also their difference kTf,V −KT
V −

(
kTf,E − KT

E

)

(dash–dotted line). Before 10 Myr, the Green functions KT
V and KT

E coincide and the
only difference between kTf,V − KT

V and kTf,E − KT
E is due to the difference in tidal

fluid limits kTf,V − kTf,E = 0.014. After 10 Myr this difference is reduced since the
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viscoelastic lithosphere relaxes and the rotational bulge readjusts completely to the
new rotation axis. Nevertheless, as shown in Fig. 3.3a, this process is intermingled
with the gravitational overturning due to the unstable compositional stratification
of PREM above the 670 km discontinuity (Plag and Jüttner 1995). The unstable
compositional modes (Cambiotti and Sabadini 2010) make KT change sign. The
cuspidal point at t = 400 Myr represents, in the logarithmic scale, this change
of sign, from positive to negative, of the Green function kTf,V − KT

V for the case
of viscoelastic lithosphere. For the elastic lithosphere case, the change of sign of
the Green function kTf,E − KT

E occurs at 130 Myr. This overturn is a mathematical
consequence of the unstable PREM stratification but has little physical consequence
because TPW is anyway dominated by mantle convection on this long time scale
(Spada et al. 1992b).

In Fig. 3.3c we compare the time evolution of the Green function 1+K L , with K L

being the convolution of the load gravitational Love number kL2 with the Heaviside
time history H , for models with elastic (E, solid line) and viscoelastic (V, dashed
line) lithospheres

K L(t) = kL2 (t) � H(t) (3.117)

It expresses the return to isostatic compensation of a surface point–like load, that
is obtained when 1+K L = 0. The two load Green functions agree up to 10 Myr, but
after this time 1 + K L

V goes to zero for the viscoelastic lithosphere case as the load
becomes fully compensated. Instead, 1+K L

E for the elastic lithosphere case converges
to the value of 0.01, which is the gravitational anomaly 1+kLf,E remaining because of
the elastic support. In the end, starting from 1 Gyr, the gravitational overturn breaks
the final equilibrium with the load, the cuspidal points at 2.3 and 1.3 Gyr for the
elastic and viscoelastic lithosphere cases, respectively, having the same meaning as
in Fig. 3.3a.

These findings show that over the time scale of post glacial rebound and until
10Myr as well, there are no significant differences between the tidal, KT , and load,
K L , Green functions computed with an elastic lithosphere or with a viscoelastic
lithosphere with high viscosity, νL = 1026 Pa s. However the wandering of the
rotation pole involves not only the Love numbers KT and K L at short time period but
also the limit at infinite time of the tidalGreen function KT , which is the so called tidal
fluid limit kTf as seen inEq. (3.69). Particularly, the rheology of the lithosphere, elastic
or viscoelastic (i.e., fluid at infinite time) does affect the TPW because it controls the
equilibrium figure of the Earth because kTf,V ≥ kTf,E (see also Fig. 1 inMitrovica et al.
2005). The equilibrium figures are different for the two cases and the rotation of the
modelwith the high viscous viscoelastic lithosphere ismore stable since its equatorial
bulge is not able to readjust to a new rotation axis on the ice age time scale (Mitrovica
et al. 2005). From Fig. 3.3, we can understand that the sensitivity on the lithospheric
rheology, pointed out by Nakada (2002), actually is due to the stabilizing effects
of delay of the readjustment of the rotational bulge. Classically, the lower mantle
viscosity νLM was considered as the main parameter controlling this delay. Instead,
adopting Earth’s models with the high viscous viscoelastic lithosphere allows to
take into account also the delay associated with the high lithospheric viscosity νL,
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in addition to that associated with the lower mantle viscosity νLM. In view of this,
models with elastic and viscoelastic lithospheres are not expected do lead to the
same TPW.

3.8 Compressible and Incompressible Readjustment
of the Equatorial Bulge

Incompressible Maxwell Earth’s models have been widely used in the last three
decades for TPW simulations. For this reason we now compare these models with
the compressible Maxwell Earth’s models. At the same time, we quantify the effects
of the different rheologies of the lithosphere, elastic or viscoelastic.

Figure3.4 shows the comparison between the compressible (solid line) and incom-
pressible (dashed line) Green functions kTf,E − KT

E in the case of an elastic (E)
lithosphere, 120km thick. The lower mantle viscosity νLM is increased by one order
of magnitude from 1021 to 1023 Pa s from top to bottom panel. The time window
considered is 10Myr, much longer than the ice age time scale of 1Myr. In general the
compressible rotational bulge readjusts faster than the incompressible one. Indeed,
the Green function kTf,E − KT

E for the compressible model is lower than that for the
incompressible model, with the exception of the time intervals 3× 102–4× 103 kyr
(panel (a)) and 103–104 kyr (panel (b)) for the lower mantle viscosities νLM = 1021

and 1022 Pa s, respectively. For νLM = 1023 Pa s (panel c) the two models predict
very similar values until 1 Myr, where the compressible rotational bulge begins to
readjust faster to the new rotation axis than the incompressible rotational bulge.

In Fig. 3.5, the elastic (E) lithosphere has been replaced by the viscoelastic (V)
lithosphere, with viscosity νL = 1026 Pa s. In this case, the Green function kTf,V −KT

V
for the compressible model is always lower than that for the incompressible model.
The vertical scale has been reduced compared to Fig. 3.4. Indeed, at 10kyr, all the
layers have significantly relaxed except for the high viscous viscoelastic lithosphere,
which behaves as an elastic body as shown in Fig. 3.3b. At 10 Myr both the com-
pressible and incompressible Green functions kTf,V − KT

V differ from zero by the dis-
crepancy kTf,V − kTf,E . Since k

T
f,E depends on the rheology of the elastic lithosphere,

compressible, 0.920, or incompressible, 0.918, the discrepancy kTf,V − kTf,E for the
compressible model, 0.014, is smaller than that for the incompressible model, 0.016.
Thus, before 10 Myr, the viscoelastic compressible lithosphere is more deformable
than the incompressible lithosphere and this explains the fact that the compressible
bulge readjust faster than the incompressible bulge.

Figure3.6 shows the comparison between the compressible (solid line) and incom-
pressible (dashed line) Green function 1 + K L

E for the elastic (E) lithosphere case.
As in Figs. 3.4 and 3.5, the lower mantle viscosity νLM is increased of one order of
magnitude from 1021 to 1023 Pa s in each panel and we consider a time window of
10 Myr. The Green function 1 + K L

E for the compressible model is always lower
than for the incompressible models, indicating that compressible models are more



122 3 Rotational Dynamics of Viscoelastic Planets: Linear Theory

Fig. 3.4 Readjustment of the equatorial bulge, kTf,E − KT
E , for compressible (solid) and incom-

pressible (dashed) PREM with elastic lithosphere. The lower mantle viscosity νLM is a 1021 Pa s,
b 1022 Pa s and c 1023 Pa s

deformable. The difference between the compressible and the incompressible cases
is larger for the load response than for the equatorial bulge readjustment (compare
Fig. 3.6 with Figs. 3.4 and 3.5). Particularly, in the elastic limit t → 0, the read-
justment of the equatorial bulge is marginally affected by the different rheologies
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Fig. 3.5 Readjustment of the equatorial bulge, kTf,V − KT
V , for compressible (solid) and incom-

pressible (dashed) PREM with viscoelastic lithosphere. The lower mantle viscosity νLM is a 1021

Pa s, b 1022 Pa s and c 1023 Pa s, and the lithosphere viscosity νL is always 1026 Pa s

(see Figs. 3.4 and 3.5), while compressible and incompressible cases differ by 10%
for loading, Fig. 3.6. We do not show the results for the model with the viscoelastic
lithosphere since, on the time scale of 10 Myr, they are very similar to those shown
in Fig. 3.6 for the elastic lithosphere case.

By comparing the Green functions between the panels of Figs. 3.4, 3.5 and 3.6, we
note that the increase of the lower mantle viscosity νLM by two orders of magnitude,
from 1021 to 1023 Pa s, delays by about two orders of magnitude the time at which



124 3 Rotational Dynamics of Viscoelastic Planets: Linear Theory

Fig. 3.6 Load response 1 + K L
E of the compressible (solid) and incompressible (dashed) PREM

with the elastic lithosphere. The lower mantle viscosity νLM is a 1021 Pa s, b 1022 Pa s and c 1023

Pa s

compressibility becomes effective during the transient, from 10 to 103 kyr, both for
loading and equatorial bulge readjustments. Particularly, for the high lower mantle
viscosity νLM = 1023 Pa s (panel (c)), the compressibility is almost undistinguishable
from incompressibility on time scale of the ice ages, 1 Myr.
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3.9 Long-Term Behavior of the Rotation Equation

The rotation Eq. (3.114) is characterized by terms of different nature, the first one
with the pole in s = 0 and the second one consisting of a summation over a series
of poles in s = ai . Independently of the strength of these two contributions, the
physics of these two contributions is quite different. Once multiplied in the Laplace
domain by 1/s, denoting a constant load in time, the term in A0 provides a polar
wander which grows linearly in time, while the terms in ai excite exponentially
decaying polar shifts. The impact of the different nature of these terms on polar
wander studies has not been elucidated in the literature, mainly because interest has
been focussed on the present day rotational response of the Earth to the last glacial
cycle of the Pleistocene deglaciation, which arises solely from the exponential terms.
This section is thus devoted to the understanding of the physics underlying these two
different classes of s-poles.

It is possible to get a deep insight into the physics of the s = 0 pole, whose
strength is given by A0, in terms of normal mode theory by studying the long-term
behavior of the equation for retrieving m(s). In Eq. (3.71) we can take the limit for
|s| � |si |, which makes this rotation, Eq. (3.71), to take the form

m(s) = −iσr�L(s)

s(1 − iσr

kTf
T1)

(3.118)

with T1 denoting the time scale of readjustment of the equatorial bulge given by

T1 =
N∑

i=1

kTi
s2i

(3.119)

Comparison between Eqs. (3.118) and (3.83) indicates that the explicit expression
of the term A0 is given by

A0 = 1

(1 − iσr

kTf
T1)

, (3.120)

since the s = 0 limit of the two equations must coincide. Equation (3.118) becomes
in the time domain

d

dt
m = −iσr�L

1 − iσr

kTf
T1

= −iσr A0�L (3.121)

The basic equations for true polar wander in the s = 0 limit can thus be cast in
terms of the time scale required for the readjustment of the rotational bulge induced
by perturbation in the Earth’s rotation, as shown in Sabadini and Yuen (1989) or
Spada et al. (1992b). The long time scale rotational state of the Earth depends on the
rheology of the mantle through the term T1.
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(a) (b)

Fig. 3.7 T1 as a function of the lower mantle-upper mantle viscosity ratio ν2/ν1. ν1 is fixed at
1021 Pa s. The solid line corresponds to a mantle of uniform density to mimic the effects of a
completely adiabatic mantle, while the dashed curve stands for a fully non-adiabatic (chemical)
670km discontinuity. Panels a and b stand for a model without lithosphere (lithospheric thickness
L = 0) and for a model carrying a lithosphere of 100km (L = 100 km)

In the following Fig. 3.7, the time scale T1 associated to the readjustment of the
equatorial bulge is plotted for a 4-layer Earth’s model, as a function of the viscosity
ratio between the lower and upper mantle, for two different lithospheric thicknesses
L (L = 0, panel (a) and L = 100 km, panel (b)) and for a fully adiabatic and
chemical boundary at 670km (solid and dashed curves).

Exercise 17 Taking into account the expression of the fluid tidal Love number

kTf = kTe −
M∑

i=1

kTi
si

(3.122)

and the first order approximation of the relaxing terms above, demonstrate that the
long time scale version of the rotation equation takes the form in the time domain

d

dt
m(t) = 1

(1/kTf + i/Ro)

�I13 + i�I23
T1(C − A)

(3.123)

where the dimensionless rotational number Ro is defined by

Ro = �T1 J2
I ∗ , (3.124)

being I ∗ = A/MEa2, J2 the dynamic form factor given by

J2 = (C − A)

MEa2
(3.125)
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and T1 as given by Eq. (3.119).

Equation (3.123) shows that true polar wander can thus be given in terms of
the dimensionless parameter Ro and contains in a simple, clear fashion, the physics
underlying the long-term rotation behavior. This number depends on the separation
of the two time scales 2π�−1 and T1, the former providing the length of the sidereal
day and the latter providing the span of time required for the readjustment of the
rotational bulge due to perturbations in the Earth’s rotation (Sabadini andYuen 1989).
Depending on the two limits Ro 
 1 and Ro � 1, it is in fact possible, as we show
in Sect. 3.11 dealing with the rotational behavior of the terrestrial planets, to quantify
their long-term rotational behavior. Through T1, Ro depends on the rheology of the
mantle. A precise estimate of this number for the solid planets cannot be obtained due
to the large uncertainties in their rheological structure. In spite of the uncertainties
due to our lack of information concerning mantle rheology, reasonable bounds for
Ro can be deduced for most of the solid planets, sufficient to describe the basic
characteristics of their long-term rotation. This problem will be tackled in Sect. 3.11.

3.9.1 Theory for Rotation Changes Due to Mantle Convection

TPW is generally taken as evidence of time-dependent mantle convection (Spada
et al. 1992) and Pleistocene ice sheet melting (Sabadini and Peltier 1981; Mitrovica
et al. 2005; Cambiotti et al. 2010). Owing to the ability of the rotational bulge to
relax and readjust to perturbations of the rotation axis on a time scale T1 that ranges
from 1 to 100 kyr, depending on the internal viscoelastic stratification as shown in
Fig. 3.7 (Ricard et al. 1993a), the Earth’s rotation axis constantly tracks theMaximum
Inertia Direction of Mantle Convection (MID-MC) on the million year time scale
of mantle convection. On this long time scale, TPW simulations are often based on
the assumption that the planet readjusts without delay and that the rotation axis and
the MID-MC coincide (Jurdy 1978; Steinberger and O’Connell 1997; Rouby et al.
2010). We show in this section that this assumption is not correct and we quantify the
offset between the rotation axis and the MID-MC in terms of the Earth’s viscosity
stratification.

Using mantle density anomalies observed by seismic tomography, Ricard and
Sabadini (1990) showed out that the present-day rotation axis lags behind the MID-
MC by some degrees. Ricard et al. (1993a) pointed out that the planet, submitted
to a change of inertia of order E attributable to mantle convection, wanders with a
characteristic time of order T1 (C−A)/E , whereC and A are the polar and equatorial
inertia moments and T1 is given by Eq. (3.119). In view of this, the Earth can shift
its rotation pole from a starting position to a new position in a time larger than a few
100 kyr or a few million years. On the basis of similar arguments, Steinberger and
O’Connell (1997) estimated that the offset between the rotation axis and theMID-MC
should be less than 1◦, even for an high viscousmantle with lower mantle viscosity of
1023 Pa s. This estimate, however, was obtained assuming a MID-MC rate less than
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0.2◦/Myr during the past 50Myr. Accounting for the delay of the readjustment of
the rotational bulge and allowing for an offset between the geographic north pole and
the present-day MID-MC, Richards et al. (1997) estimated TPW paths for different
viscosity profiles of the mantle. Nevertheless, they did not quantify the offset and
concluded that the influence of the delay on TPW is small.

In light of this, although Ricard et al. (1993a), Richards et al. (1997), Steinberger
and O’Connell (1997) provided some insights into the long time scale rotational
behavior of the Earth, a concise and complete picture of the problem has been lacking
until the work by Cambiotti et al. (2011) came out, providing a new treatment of the
non-linear Liouville equation to describe the long time scale rotational behavior of
the Earth via a simple linear theory. This new treatment, in connection with seismic
tomography, is thoroughly explored in the following.

We start with the basic laws governing the relative motion of the rotation axis
with respect to the MID-MC. This relative motion is dealt with in the reference
frame defined by the three eigenvectors ek of mantle convection inertia tensor C

C =
3∑

k=1

Ck ek ⊗ ek (3.126)

where the algebraic product symbol is omitted in the following between two vectors,
and where Ck are the inertia moments. Here C3 is the maximum inertia moment
(C3 ≥ C2 and C3 ≥ C1) and e3 is the MID-MC. This is a time dependent reference
frame and, from geometric considerations (Ben-Menahem and Singh 2000), the time
derivatives of the eigenvectors ek yield

dek
dt

= ξ × ek (3.127)

where ξ is the angular velocity of the mantle convection inertia that we write as
follows

ξ = −V2 e1 + V1 e2 + V3 e3 (3.128)

in such a way that V1 and V2 are the components of the MID-MC velocity de3/dt
along the equatorial axes e1 and e2. V3 describes the counterclockwise rotation rate
of the equatorial axes around the MID-MC.

Wewrite the Earth’s angular velocityω asω = ω n, whereω and n are the rotation
rate and rotation axis. Within the reasonable assumption that the angle between the
rotation axis and MID-MC is small, the rotation axis n can be expressed in terms of
direction cosines m1 and m2 along the equatorial axes e1 and e2,

n = m1 e1 + m2 e2 + e3 (3.129)

The time variation of Earth’s angular velocity ω is therefore
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dω

dt
= n

dω

dt
+ ω

dn
dt

(3.130)

where the first term on the right is related to the change of the length of the day
and the second term to the TPW velocity v = dn/dt which, assuming that the time
evolution of mantle convection is slow, becomes

v =
(
dm1

dt
+ V1

)
e1 +

(
dm2

dt
+ V2

)
e2 (3.131)

Equations (3.129) and (3.131) are correct to first order, for small m1, m2 and ξ (i.e.,
neglecting terms of order mi m j or mi Vj ).

The rotation axis, averaged over a few Chandler periods, is aligned with the direc-
tion ofmaximum total inertia (Munk andMacDonald 1960), i.e., is the eigenvector of
the sum of the inertia tensors due to the rotational bulge,B, andmantle convection,C,

n × (B + C) · n = 0 (3.132)

We take into account the relaxation of the rotational bulge by means of the long-
term approximation given by Eq. (7.10) first provided by Spada et al. (1992), Ricard
et al. (1993a) and derived from MacCullagh’s formula, Eq. (3.31), for centrifugal
deformation. The second term of Eq. (7.10), pertaining to changes in the Earth’s
rotation, can be cast as follows

B = α ω2

[(

1 − 2 T1
kTf ω

dω

dt

)(
nn − 1

3
1
)

− T1
kTf

(nv + vn)

]

(3.133)

where ω is the Earth’s rotation rate, 1 the identity matrix, T1 the time scale of read-
justment of rotational bulge given by Eq. (3.119) and α ω2 the difference between
polar and equatorial inertia moments of the hydrostatic rotational bulge. The time
scale T1 can be easily computed for any spherically symmetric viscoelastic Earth’s
model and is of the order of 30 kyr, as shown in Fig. 3.7 (Ricard et al. 1993a).

Equation (3.133) for the inertia of the rotational bulge is derived in the following.
The long-term approximation of the MacCullagh’s formula given in Eq. (10) of
Ricard et al. (1993a) can be written in the dyadic formulation as follows

B = α

[(
ω j ωk − 1

3
ω2 δ jk

)
− T1

kTf

(
ω̇ j ωk + ω j ω̇k − 2

3
ωp ω̇p δ jk

)]

x j xk

(3.134)

http://dx.doi.org/10.1007/978-94-017-7552-6_7
http://dx.doi.org/10.1007/978-94-017-7552-6_7
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where x j and ω j are the unit vectors of the geographical reference frame and the
corresponding components of Earth’s angular velocity ω

ω = ω n = ωi xi (3.135)

and
α = kTf a

5/(3G) (3.136)

with kTf being the degree-2 tidal gravitational fluid limit, Eq. 3.35 (Cambiotti et al.
2010; Chambat et al. 2010). The time derivative of Eq. (3.135) yields

ω̇ = ω̇ n + ω v = ω̇i xi (3.137)

Making use of the algebra of the dyadics, we note that

ω j ωk x j xk = ωω = ω2 nn (3.138)

ω2 δ jk x j xk = ω2 1 (3.139)

ω̇ j ωk x j xk = ω̇ω = ω ω̇ nn + ω2 vn (3.140)

ω j ω̇k x j xk = ωω̇ = ω ω̇ nn + ω2 nv (3.141)

ωp ω̇p δ jk x j xk = ω ω̇ 1 (3.142)

The two quantities within the round brackets of Eq. (3.134) can be cast as follows

(
ω j ωk − 1

3
ω2 δ jk

)
x j xk = ω2

(
nn − 1

3
1
)

(3.143)

(
ω̇ j ωk + ω j ω̇k − 2

3
ωp ω̇p δ jk

)
x j xk

= 2ω ω̇

(
nn − 1

3
1
)

+ ω2 (vn + nv) (3.144)

and, by using these results in Eq. (3.134), we obtain Eq. (3.133).

Exercise 18 Derive Eq. (3.134) making use of Eq. (1.45) and of the first order
expansion of the tidal Love number in the s-domain.

http://dx.doi.org/10.1007/978-94-017-7552-6_1
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Equation (3.133) accounts for the readjustment of the rotational bulge due to
variations of the length of day via the term proportional to dω/dt . However, as
we neglect the time derivative of the angular momentum in the Liouville equation
averaged over a few Chandler periods, the length of day remains constant and the
small quantity (2T1/kTf ω)(dω/dt) can also be neglected.

Thus, by solving Eq. (3.132) using Eqs. (3.126), (3.129), (3.131) and (3.133), we
obtain a first order differential equation for each direction cosine mi

dmi

dt
+ mi

T α
Ci

= −Vi (i = 1, 2) (3.145)

where T α
Ci

are time scales defined by

T α
Ci

= α ω2

kTf (C3 − Ci )
T1 (i = 1, 2) (3.146)

Equations (3.145) and (3.146) show that Vi are the forcings of the relative motion
of the rotation axis and that the time scales T α

Ci
controlling this relative motion

are the time scale T1 of the rotational bulge readjustment increased by the factor
α ω2/(C3 − Ci ).

The difference between polar and equatorial inertia moments of the hydrostatic
rotational bulge α ω2 has been estimated (Chambat et al. 2010)

α ω2 ≈ 1.0712 × 10−3 MEa
2 (3.147)

The differences between the inertia moments of mantle convection, C3 − Ci , are
typically of the order of the differences between the observed total inertia moments
of the Earth (usually defined as A, B andC), minus the hydrostatic contribution α ω2

(Chambat and Valette 2001)

C3 − C1 ≈ (C − A) − α ω2 = 1.48 × 10−5 MEa
2

C3 − C2 ≈ (C − B) − α ω2 = 0.78 × 10−5 MEa
2

(3.148)

As already argued in Ricard et al. (1993a), the time scales T α
Ci

are greater than T1
by a factor of about 100. Assuming T1 = 30 kyr, the relative motion of the rotation
axis is controlled by the time scales T α

Ci
≈ 3Myr, comparable with those of mantle

convection, say greater than 1Myr. These findings show that the previous approxi-
mation based on the assumption that the rotational bulge readjusts instantaneously
to perturbations of the rotation axis is not accurate. This approximation missed in
fact a fundamental aspect of TPW dynamics: the inertia perturbations due to mantle
convection are two orders of magnitude smaller than those of the rotational bulge.
Such a small quantity increases the time scales for viscoelastic readjustment of the
rotational bulge during the TPW to values comparable to those of mantle convection.
Furthermore, the two direction cosines m1 and m2 behave differently as T α

C1
and T α

C2
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are likely to differ due to the dependence in Eq. (3.146) on the differences C3 − C1

and C3 −C2 (they differ by a factor of 2 at present-day). The time scales T α
Ci

evolve
in time, potentially becoming infinite during inertial interchanges (Richards et al.
1999), a case that would invalidate our linearized approach.

The role of the time scales T α
Ci
becomes clear once we assume them as constants.

In this case, the solution of the linearized Earth’s rotation differential equations, Eq.
(3.145), yields

mi (t) = −e−t/T α
Ci � Vi (i = 1, 2) (3.149)

where � stands for the time convolution: this solution shows that the time scales
T α
Ci

are the relaxation times for the relative motion of the rotation pole forced by
the MID-MC velocity components Vi . In this respect, Eq. (3.145) and its particular
solution, Eq. (3.149), allow us to catch the effects on TPW dynamics due to the
delay of the readjustment of the rotational bulge and to the time evolution of mantle
convection. AMID-MC velocity, constant for a time greater than T α

Ci
, drives the pole

at the same velocity, dmi/dt = 0, but with the pole lagging behind the MID-MC by
the angle

mi = −T α
Ci
Vi (i = 1, 2) (3.150)

This result has the same physical meaning as Eq. (1) of Steinberger and O’Connell
(1997). Furthermore, from Eq. (3.149), it is also clear that variations of theMID-MC
velocity, occurring on times comparable or smaller than T α

Ci
, break the equilibrium

of the relative position of the rotation axis with respect to the MID-MC given by Eq.
(3.150). Particularly, they yield different TPW and MID-MC velocity amplitudes
and directions. This result cannot be inferred within the previous framework (Ricard
et al. 1993a; Richards et al. 1997; Steinberger and O’Connell 1997) and shows that
estimates of TPW ratesmust account both for fluctuations of the Earth’s inertia tensor
and of the delay of readjustment of the rotational bulge.

3.10 Time-Dependent Inertia Due to Mantle Convection

Let us consider the components Ci j = xi · C · x j and Bi j = xi ·B · x j of the mantle
convection and rotational bulge inertia tensors in the geographical reference frame
with unit vectors x1, x2 and x3 (x1 points to the Greenwich meridian, while x3
points to the north pole, i.e., coincides with the present-day rotation axis). In view
of Eq. (3.132), at present time t = 0, the total inertia tensor (mantle convection plus
rotational bulge) has zero off-diagonal components along x3

Ci3(0) + Bi3(0) = 0 (i = 1, 2) (3.151)

and, by making use of Eq. (3.133), we obtain in the geographycal reference frame
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Ci3(0) = α ω2 T1 xi · v(0) (i = 1, 2) (3.152)

corresponding to Eqs. (8)–(9) of Ricard et al. (1993b) or Eq. (3) of Steinberger and
O’Connell (1997). Thus, the off-diagonal componentsC13(0) andC23(0) of themantle
convection inertia tensor are non-zero in a wandering planet (i.e., when v(0) 	= 0)
and cannot be estimated from observations of the total inertia of the Earth as they
are compensated by the rotational bulge not yet readjusted to the north pole. They
must be estimated from 3-D models of Earth’s density anomalies, accounting for
the effect of dynamic topography (Ricard et al. 1993b), or by solving the rotational
problem as we show in the following.

We compute the mantle convection inertia tensor by means of our previously
developed modelling strategy (Ricard et al. 1993b; Richards et al. 1997), assuming
that largest changes in mantle density heterogeneities are likely caused by subduc-
tion. We use reconstructions of global plate motions for Cenozoic and late Mesozoic
(Lithgow-Bertelloni et al. 1993), to inject cold slabs into themantle where plates con-
verge. In order to account for present-day geoid, for much of the observed seismic
heterogeneities of the mantle and for the long term rotational stability of the Earth
indicated by paleomagnetic data (Richards et al. 1997), we consider lower/upper
mantle and lithosphere/uppermantle viscosity ratios of η1 = 30 and η2 = 10, respec-
tively. The sinking velocity of slabs when they enter the lower mantle is reduced by a
factor of 4.4 (the velocity decrease is expected to scale roughly with the logarithm of
the viscosity increase). This relation between viscosity increase and velocity reduc-
tion is a crude estimate that neglects the complexity of thermal exchanges between
the slabs and the transition zone (Otha 2010), but it is validated by the good fit to the
geoid and to the lowermantle tomography provided by the sinking slabmodel (Ricard
et al. 1993b). Our kinematic approach is independent of any assumed absolutemantle
viscosity and yields an average sinking velocity of slabs in the lower mantle of order
1.6cm yr−1. This typical sinking velocity has been confirmed by other studies (e.g.
Meer et al. 2010).

This kinematic model of themantle time-dependent density anomalies is certainly
simple but it provides a robust estimate of the inertia tensor which is related to a radial
integral of the longest wavelengths of the density anomalies (harmonic degree 2).
Therefore, the details of paleo-reconstructions do not impact this model. This model
should provide a better estimate of the time dependent evolution of Earth’s inertia
than complex dynamicmodels (e.g. Steinberger 2000) that requiremanyquestionable
assumptions (a backward in time advection of the present density anomalies that
requires the choice of an absolute viscosity and assumes a depth dependent rheology
in contradiction with the very existence of plates).

The kinematic slab model provides a time-dependent inertia tensor Cslab(t). At
present time, this model, Cslab(0), maximizes the correlation with the observed iner-
tia deduced from the geoid, Cobs , and is in good agreement with tomography. As
discussed previously, the mantle inertia tensor Cobs observed from geoid does not
account for the two off-diagonal components along x3 that, according to Eq. (3.152),
are related to the history of TPW. As a consequence we consider that Earth’s rotation
is forced by
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C(t) = Cslab(t) + Cobs − Cslab(0) + δC (3.153)

where δC stands for the two present-day off-diagonal terms C13(0) and C23(0).
This inertia tensor C(t) is in agreement with that observed and has a time depen-

dence estimated from slab paleo-positions.We then constrain the two unknown terms
C13(0) and C23(0) by solving the non-linear Liouville equation (3.132) for a given
time scale T1 and by requiring that the present-day rotation axis n(0) coincides with
the geographical north pole. In this way, the present-day total inertia C(0) + B(0)
has zero off-diagonal components along x3, as required by Eq. (3.151). Note also
that the term Cobs −Cslab(0) entering Eq. (3.153) accounts for any contribution other
than slab subduction that can be assumed to remain constant with time, as large-
scale upwellings (Rouby et al. 2010) and the two large low shear velocity provinces
(LLSVPs) in Earth’s lowermost mantle (Torsvik et al. 2006; Steinberger and Torsvik
2010). This term is small as the slabs by themselves explain most of the geoid, which
suggests that the LLSVPs should not affect significantly the inertia tensor.

This approach is somewhat similar to themethodused inRichards et al. (1997) (see
their note 26). However, it does not arbitrarily assume that the present-day mantle
inertia terms C13(0) and C23(0) are zero. The latter assumption has been made in
Steinberger and O’Connell (1997), Schaber et al. (2010). It implies the coincidence
between the present-day rotation axis and theMID-MCwhich is in contradictionwith
the observation of ongoing TPW as shown in Eq. (3.152). Instead, by solving for
the two unknown terms, C13 and C23, we respect the correct physics of the problem.
Notice also that we solve the Liouville equations from past (starting ∼100Myr ago)
to present. It is incorrect to try to solve the Liouville equation backward in time as
was done in Schaber et al. (2010) which results in rotation axis apparently preceding
the MID-MC rather than lagging behind the MID-MC as it should (see their Fig. 5).

In the following, we will express the off-diagonal terms C13 and C23 of the mantle
convection inertia tensor in terms of theC21 and S21 geoid coefficients in meters, that
are due to mantle convection alone and would be observed in the absence rotation.
They are related to each other as follows

C13 = −ME a
2

√
5

3

C21

a

C23 = −ME a
2

√
5

3

S21
a

(3.154)

3.10.1 TPW Simulations

Figure3.8 compares TPW paths obtained for three time scales T1 = 0, 30 and
100 kyr. The case of T1 = 0 corresponds to the readjustment of the rotational bulge
without delay. For viscosity ratios of η1 = 30 (lower to upper mantle) and η2 = 10
(lithosphere to upper mantle), the time scales T1 = 30 and 100 kyr correspond to
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Fig. 3.8 TPW paths for
three time scales T1 = 0, 30
and 100 kyr (solid, dashed
and dot lines with circles,
triangles and stars,
respectively). The symbols
are given at intervals of
10Myr. The present–day
MID–MC positions for three
time scales T1 = 0, 30 and
100 kyr are also shown
(circles, triangles and stars,
respectively). Only when the
rotational bulge readjusts
instantaneously (T1 = 0), the
MID–MC coincides with the
north pole

upper mantle viscosities of about 1021 and 3.3 × 1021 Pa s, respectively (the time
scale T1 is proportional to the upper mantle viscosity νM , as discussed in Ricard
et al. (1993a, b). As initial condition for the Liouville equation, we assume that the
rotation axis coincides with the MID-MC at 100Myr before present. However, in
view of Eq. (3.149), it should be noticed that the TPW path is affected by the initial
condition only for a time of order T α

Ci (Fig. 3.9), about 3 and 9Myr for T1 = 30 and
100 kyr.

Due to the differences in the relaxation of the rotational bulge, TPW paths differ
from each other. Particularly, the polar excursion in the past 10Myr reduces from6.9◦
for T1 = 0 (black dot) to 5.3◦(black triangle) and 3.6◦ (black star) for T1 = 30 and
100 kyr with respect to the north pole (circle). Furthermore, the present-dayMID-MC
occupies different positions, reflecting the estimated C21 and S21 geoid coefficients
due to mantle convection driven by slab subduction (Table3.5). Particularly, for
T1 = 0, the present-day MID-MC is at the north pole since the rotational bulge
readjusts instantaneously. On the contrary, for T1 = 30 and 100 kyr, the present-day
MID-MC are displaced by 3.4◦ and 7.1◦ towards 68.9◦E and 64.6◦E, respectively.

A reduction of the polar excursion by increasing the time scale T1 is expected
on physical grounds, once the herein developed linearized differential equations
and solutions, Eqs. (3.145) and (3.149), are considered to reinterpret the non-linear
calculations. For the three time scales T1 = 0, 30 and 100 kyr, Fig. 3.10 compares the
MID-MC and TPW rates. For T1 = 0, the rotational bulge readjusts instantaneously
and, thus, the MID-MC and TPW rates and paths coincide. Particularly, the TPW
rate is affected by every short-term fluctuation of Earth’s inertia tensor. Instead, for
T1 = 30 and 100 kyr, the inhibition of the bulge relaxation filters out in time the
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Fig. 3.9 Time scales T α
C1

and T α
C2

(solid and dashed
lines, respectively)
controlling the relative
motion of the rotation axis
with respect to the
MID–MC, Eq. (3.146), for
the time scale T1 = 30 and
100 kyr (black and gray
lines, respectively)

Table 3.5 Present–day C21 and S21 geoid coefficients due to mantle convection estimated from
seismic tomography (top line, coefficients obtained using the tomographic model Smean of Becker
and Boschi (2002) as described in Ricard et al. (1993b) or self–consistently estimated from TPW
dynamics driven by the model of subduction, for the three time scales T = 0, 30 and 100 kyr
(bottom lines)

Geoid coefficients (m) C21 S21

Seismic tomography −1.00 0.53

TPW dynamics (T1 = 0) 0 0

TPW dynamics (T1 = 30 kyr) −1.05 −2.07

TPW dynamics (T1 = 100 kyr) −2.87 −4.19

short-term fluctuations of Earth’s inertia, thus smoothing TPW rates. Furthermore,
accordingly to Eq. (3.149), variations of TPW rates are delayed with respect to those
of MID-MC by a time comparable to the time scales T α

Ci (Fig. 3.9). Particularly, this
yields an increase of the present-day TPW rate since the MID-MC rate increases
by about 1◦ Myr−1 in the past 10Myr. Compared to the present-day TPW rate of
1.24◦ Myr−1 for T1 = 0, the present-day TPW rates of 0.85◦ and 0.55◦ Myr−1 for
T1 = 30 and 100 kyr, respectively, are reduced by 32 and 56%.

Together with the TPW rate increase, the offset angle between the rotation axis
and the MID-MC also increases, see Fig. 3.11. For T1 = 30 and 100 kyr, they are
about 0.8◦ and 2.2◦ in the past 50Myr and they increase to 3.4◦ and 7.1◦ at the
present-day due to the acceleration of the MID-MC in the past 10Myr. Differently,
the present-day TPW directions are only slightly affected by the readjustment of
rotational bulge (Fig. 3.8) and they point towards 66.7◦E, 61.5◦E and 55.7◦E for T1 =
0, 30 and 100 kyr, respectively. Even though the estimated TPW rates are in rough
agreement with the observation of 0.925 ± 0.022◦ Myr−1 (McCarthy and Luzum
1996), these results are in contrastwith the observed direction towardsNewfoundland
(75.0◦ ± 1.1◦W). The general motion since the early Tertiary (50–60Myr) of about
4◦−9◦ toward Greenland is however in agreement with paleomagnetic data (Besse
and Courtillot 2002), although we do not obtain the period of (quasi) standstill at
10−50Myr.



3.10 Time-Dependent Inertia Due to Mantle Convection 137

(a) (b) (c)

Fig. 3.10 MID–MC, |de3/dt |, and TPW, |v|, rates (solid and dashed lines, respectively) for the
three time scales T1 = 0, 30 and 100 kyr (panels a, b and c, respectively). The MID–MC and TPW
rates coincide for T1 = 0. The TPW rates for T1 = 30 and 100 kyr are zero at 100Myr before
present since we have imposed as initial condition that the rotation axis and the MID–MC coincide
at that time. The TPW simulations do not depend on the initial condition after a time comparable
with the time scales T α

Ci

Fig. 3.11 Offset angle,
arccos (n · e3), between the
rotation axis and the
MID–MC for the time scales
T1 = 30 and 100 kyr (solid
and dashed lines,
respectively). For T1 = 0 the
offset angle is zero at any
time since the rotational
bulge readjusts
instantaneously

These results based on the linearization of the Liouville equation provided in
Eq. (3.145) allow us to reinterpret TPW simulations. Discerning between the effects
of the delay of the readjustment of the rotational bulge from those of the specific
mantle convection models used in TPW simulations, we have pointed out when the
former can affect significantly both TPWpath and rates. Previously developedmantle
circulation model (Ricard et al. 1993b; Richards et al. 1997), implemented within
our new scheme, show that the delay of the readjustment of the rotational bulge can
shift the TPW and MID-MC paths by several degrees and affects present-day TPW
rates by about 50%.

The slow change of the mantle convection inertia tensor remains the main factor
explaining the long-term rotational stability of the Earth (Richards et al. 1997).
However, as clearly indicated by Eqs. (3.145) and (3.149), the relaxation of the
rotational bulge introduces a further stabilizing effect. Indeed, it filters out every
short-term fluctuations of the Earth’s inertia tensor and delays variations of TPW
rates by the time scales T α

Ci
, Eq. (3.146), with respect to those of the MID-MC. This

yields significant differences between TPW and MID-MC rates, particularly during
the past 10Myr for our mantle convection model.
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In addition to slab subduction, we have accounted also for any other contribu-
tions to mantle density anomalies that can be assumed to remain constant with time.
Furthermore, the present-day C21 and S21 geoid coefficients due to mantle density
anomalies alone, which cannot be observed since they are compensated by the rota-
tional bulge not yet readjusted to the north pole, have been estimated self-consistently
with TPW dynamics. Within our framework, it is possible to check whether TPW
simulations are in agreement with seismic tomography. By using in Eqs. (3.152)
and (3.154) the C21 and S21 geoid coefficients obtained from the tomographic model
Smean of Becker and Boschi (2002) (see Table3.5), which is an average of different
recent models, we obtain a present-day TPW direction of 28◦W, in rough agreement
with the observed direction towards Newfoundland, and a present-day TPW rate of
0.0123◦/T1, inversely proportional to the time scale T1 (the observed TPW rate of
0.925◦ ± 0.022◦ Myr−1 is explained when T1 = 13 kyr). Nevertheless, these esti-
mates concern only the present-day and are not consistent with TPW simulations
obtained using the time evolution of mantle convection inferred from global plate
motions (Ricard et al. 1993b; Lithgow-Bertelloni et al. 1993).

The combined use of seismic tomography and reconstructions of global plate
motions could greatly improve our understanding of both past and present-day TPW
driven by mantle convection. However, these two data sets cannot be used at the
same time to simulate TPW if the delay of the rotational bulge is accounted for. Fur-
thermore, in order to fulfill observations, the contribution to TPW from Pleistocene
ice sheet melting must be also considered, being comparable in magnitude with that
from mantle convection and pointing towards Newfoundland (Mitrovica et al. 2005;
Cambiotti et al. 2010). As it occurs on a much shorter period than mantle convection,
PGR affects TPW, but its contribution to Earth’s inertia tensor remains negligible
compared to that of the mantle 3D structure.

3.11 Polar Wander on the Earth, Moon, Mars and Venus

Despite the uncertainties due to our lack of information concerning mantle rheology,
for most of the solid planets we can deduce reasonable bounds for the rotational
number Ro defined in Eq. (3.124) that are sufficient to describe the basic character-
istics of their long-term rotation, as shown in this Sect. 3.11 reworked from Spada
et al. (1996). Our results are summarized in Fig. 3.12, where Ro is estimated via Eq.
(3.124) and plotted as a function of T1 for various models of planetary interiors.

The first Earth’s model, Ear-1 (solid squares as all the other Earth’s models), is
characterized by a uniformmantlewith viscosity ν = 1021 Pa s overlaid by a 100-km-
thick elastic lithosphere;model Ear-2 includes, in addition, a density increase through
the 670-km-depth seismic discontinuity, with �ρ/ρ = 9% (Sabadini and Yuen
1989). Numerical values of densities and elastic rigidities needed for the derivation
of T1 are the same as those employed in previous studies (Spada et al. 1993).

Observed values for the dynamic form factor, normalized mean inertia, and
mean rotational velocity of the Earth are J2 = 1.08263 × 10−3, I ∗ = 0.3306 and
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Fig. 3.12 Diagram showing
the values assumed by the
rotational number Ro as a
function of the time-scale T1
for different models of
planetary interiors (Fig. 1 in
Spada et al. 1996)
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� = 7.292115 × 10−5 s−1. Values of Ro and T1 for the Earth register their largest
amplitudes for model Ear-3, characterized by the same density profile as Ear-2 but
differing by a viscosity jump of a factor of 50 at 670-km depth. Values of Ro for the
Earth vary between ∼6× 103 for model Ear-1 and 2.5× 105 for Ear-3; intermediate
values of Ro (∼2 × 104) are found for model Ear-2.

For Mars (solid circles in Fig. 3.12) we have employed two different values for
mantle viscosity: ν = 1021 Pa s for both models Mar-1 and Mar-3 and ν = 1022

Pa s for Mar-2. These values were chosen on analogy with the Earth because of the
large uncertainties in the rheological profile of Mars (Phillips and Lambeck 1980).
Lithospheric thickness is fixed at 300km for Mar-1 and Mar-2 and at 100km for
Mar-3 (Phillips and Lambeck 1980). The core radius for the whole set of Martian
models is 1300km with J2 = 1.960 × 10−3, I ∗ = 0.345 and � = 7.09 × 10−5 s−1

(see Balmino et al. 1982; Bills, 1989; Cole, 1978). The Martian density profile is
consistent with the results reported by Johnston et al. (1974). The small difference
between the Ro values in models Mar-1 and Mar-3 indicates that the lithospheric
thickness has a minor influence on the rotational number. While the Ro values for
Mar-1 and Mar-3 are very close to those estimated for Ear-2, Ro for Mar-2 attains a
value slightly exceeding Ear-3.

The two different models considered for Venus (solid triangles in Fig. 3.12) are
characterized by a 100-km-thick elastic lithosphere and by a core radius of 3240km.
The reference values for mantle viscosity of Venus are ν = 1021 Pa s for model Ven-
1 and 1022 Pa s for Ven-2 and are consistent with those suggested by the observed
offset between its spin axis and the direction of largest inertia (Mottinger et al. 1985;
Nerem et al. 1993; Konopliv and Sjogren, 1994). A commonly adopted value for
the normalized mean moment of inertia of Venus is I ∗ = 0.33 (Mottinger et al.
1985). The slow rate of rotation (� = 2.9910−7s−1 and small dynamic form factor
(J2 = 4.0×10−4) are responsible for the low Ro values found forVenus (Ro ∼ 10−1).
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Rough estimates of Ro and T1 for the Moon and Mercury are also shown. For the
Moon (diamond) they are based on classical results about the internal constitution and
rheology of this body (Toksöz 1974; Nakamura 1983). Adopted numerical values of
J2 and I ∗ for the Moon are 2.036× 10−4 and 0.3905 (Bills and Ferrari 1977, 1980).
The two considered models for Mercury (open circles in Fig. 3.12 are characterized
by a 100-km-thick lithosphere and by a silicate mantle with viscosity of 1021 Pa s
(Mer-1) and 1022 Pa s (Mer-2). The radius of the iron core is 1700 km (∼0.8% of the
radius of the body), and mantle density is fixed at 3000 kg/m3 (Cole 1978). For this
model, I ∗ ∼ 0.337 and we have adopted the reference values J2 = 80 × 10−6 and
� = 1.219 × 10−6 s−1 (Zharkov and Trubistyn 1978). The most striking feature in
Fig. 3.12 is that the rotational number Ro formodels Ven-1 andVen-2 ranges between
∼10−1 and 1, i.e. 4–6 orders of magnitude smaller than the corresponding values for
the Earth and Mars. The smallness of Ro for Venus in comparison with Mars and
the Earth is primarily a consequence of the small rate of rotation and the resulting
small dynamical form factor J2 (Mottinger et al. 1985), if we assume that its gross
viscosity structure is similar to that of the other two planets (Phillips and Lambeck
1980; Kiefer et al. 1986).

Venus would only attain a rotational number comparable with that of the Earth
and Mars if its viscosity were several orders of magnitude higher than the Earth’s
viscosity, which is unlikely due to the convective properties of this planet as revealed
by its gravity field (Kiefer et al. 1986). Mercury and the Moon are characterized by
Ro values ranging between 10 and 102.

We can discuss the behavior of the Liouville equations in the two limits, Ro � 1
and Ro 
 1. Figure3.13 deals with the case of a point mass δm acting within the
mantle of the planet and located in the yz-plane of the non-inertial Cartesian frame
rotating with the body. For Ro 
 1 and constant inertia perturbation �I23, Eq.
(3.123) provides mx ∼ 0 and

my = kTf
�I23

(C − A)

t

T1
, (3.155)

which shows that the body’s pole of rotation moves in the yz-plane, toward δm if
�I23 is positive and in the opposite direction if �I23 is negative. This is expected for
the Earth and Mars, whose Ro exceeds 104 (see Fig. 3.12). The linearized Liouville
equations (3.123) for Ro � 1 predict a different pole path,

mx = ��I23
A

t, (3.156)

which shows that the pole initially moves at right angles with respect to the plane
containing the mass anomaly. For Venus, whose rotation number Ro lies in the range
10−1 − 1, the pole wanders in a direction which forms an angle γ = tan−1Ro with
respect to the xz-plane.

Both Eqs. (3.155) and (3.156) are valid for small excursions of the axis of rotation.
Numerical analyses of the fully non-linear Liouville equations for both Mars and



3.11 Polar Wander on the Earth, Moon, Mars and Venus 141

Fig. 3.13 Incipient motion of the rotation axis predicted by the Liouville equations for a planet
excited by an internal mass heterogeneity δm. For large rotational numbers (Ro 
 1), the pole is
moved toward the source along the path Oa (black arrow) if the non-hydrostatic geoid anomaly
associated with the dynamic compensation of δm is negative. For positive anomalies, the pole
moves in the opposite direction, along Oa′ (grey arrow). This behavior is expected for the Earth and
Mars, whose Ro clearly exceeds unity (see Fig. 3.12). The rotation axis of a planet characterized
by Ro � 1 is initially forced along the direction Ob (or Ob’, depending upon the sign of the geoid
anomaly). Redrawn from Fig. 2 in Spada et al. (1996)

Venus, (Spada et al. 1996), show that the qualitative behavior of these asymptotic
expressions are preserved in the long-term limit. Note that Eq. (3.156) provides only
the initial amplitude and direction of the damped wobble which is retrieved from the
non-linear Liouville equations. Figure3.13 helps to explain the physical meaning of
the rotational number Ro: it describes how the pole of rotation approaches the mass
anomaly, wobbling around it with decreasing amplitude due to viscous dissipation
for Ro � 1 or wandering in the plane containing the initial position of the pole
and the mass anomaly for Ro 
 1. This different behavior is due to the efficiency
of the equatorial bulge in stabilizing the rotation of the planet, with Ro 
 1 being
indicative of an important equatorial bulge responsible for a slow wandering of
the axis of rotation, while the opposite limit favors mega-wobbles around the mass
anomaly.

If the time scale for readjustment of the equatorial bulge T1 and the length of
day Tr = 2π�−1 are well separated and J2 is large, the rotational number is large,
and the planets experience true polar wander; a smaller separation on these time
scales and a small dynamic form factor J2 implies, on the other hand, that TPW is
inhibited. For Venus, the smallness of Ro is primarily due to the long rotational period
Tr and small dynamic flattening J2. Since in this case the centrifugal contribution
to the total inertia of Venus is small, we expect that the rotational dynamics of this
body is intermediate between that of a rigid body (with no rotational deformation
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Fig. 3.14 Percentage
strength r2m of the harmonic
degree 2 component for the
topographies of the Earth,
Mars and Venus. Redrawn
from Fig. 7 in Spada et al.
(1996)

Earth

Mars
Venus

(Lambeck 1980) or Ro = 0 and with the spin axis not necessarily parallel to the
main inertia axis) and that of the Earth, whose bulge stabilizes the excursions of the
axis of rotation by always trying to keep it parallel to the direction of the principal
inertia axis (Ricard et al. 1993a). With respect to the time constant T1 characterizing
the readjustment of the equatorial bulge, the new non-dimensional rotational number
Ro defined here accounts simultaneously for the rheological structure of the planet
through the T1 dependence and for the basic rotation through �.

The percentage strength r2m of the order m components, defining the degree 2
topography for the three planets, is shown in Fig. 3.14; this strength is defined as

r2m = |tm2 |2
∑2

k=0 |t k2 |2
, (3.157)

(Spada et al. 1994) where, for the Earth and Venus, tm2 are the spherical harmonic
degree 2 components of the dynamic topography that are supported by the inter-
nal flow driven by mantle sources; for Mars, tm2 are simply the components of the
observed topography, which is not dynamic but induced by surface loads. In rotation
dynamics the degree l = 2 geoid anomaly component controls the style of long-term
polar motion, as discussed in the previous figure, so that, in order to discuss the
effects of rotation on the shape of the planets, we must consider the topographic fea-
tures related to the non-hydrostatic geoid for the three planets. The non-hydrostatic
geoid is mostly related to internal mass anomalies for the Earth and Venus and to the
observed topography due to surface lithospheric relief forMars. In order to derive the
dynamic topography for the Earth, the harmonic coefficients derived by Cazenave
et al. (1989) from the observed topography has been used, after removal of the effects
due to the cooling of the oceanic lithosphere and of the topography excess in con-
tinental areas. The dominant order 2 component is a feature that characterizes the
degree 2 of the dynamic topography of the Earth (Cazenave et al. 1989; Ricard and
Vigny 1989) and the observed topography of Mars. As shown in this figure for the
Earth, the topography, induced by internal sources, carries up to 88% of the total
strength in comparison to 7% for the order zero and 5% of order 1 (Cazenave et al.
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1989; Cazenave and Thoraval 1994; Spada et al. 1994). For Mars, this is mainly due
to surface volcanic loads and does not originate from deep-seated internal dynamic
processes, such as subduction or density anomalies in the mantle, as indicated by
the correlation between the surface topography and the gravity field (e.g. Bills and
Ferrari 1978; Phillips andLambeck 1980). The equatorial position of the largest topo-
graphic feature of the Martian lithosphere implies a dominant order 2 component in
the degree 2 of both topographies, which carries 75% of the strength at this degree
(Bills and Ferrari 1978) and the associated geoid (Sjogren et al. 1975), which shows,
in fact, a significant correlation with the Martian topography (Balmino et al. 1982).
Due to the topography of the Tharsis region the shape of Mars is thus elongated
along an axis lying in the equatorial plane. Unlike Mars, the observed topography of
Venus originates essentially from internal processes and is well correlated with the
geoid (Kiefer et al. 1986), so that, to a good approximation, the topography of this
planet is the dynamic topography.

This figure suggests a correlation between the dominance of the order 2 component
for the Earth and Mars and TPW; Venus, where mega-wobbling is the mechanism
for reaching rotation equilibrium rather than polar wander, does not in fact show
this feature. As noted in the discussion of the previous figure, Mars can displace the
excess topography at the equator by means of polar wander; since the topography
is clustered in longitude, the displacement of the excess topography at the equator
will induce a large order 2 component. This is similar to what occurs for the Earth,
but in a more subtle way, because internal density anomalies rather than surface
ones are responsible for the displacement of the rotation pole. On time scales of
billions of years, even for the Earth long-term TPW is able to maintain the maxima
of the harmonic degree 2 non-hydrostatic geoid at the equator, favoring at the same
time the sectorial component of order 2 in the dynamic topography, rather than the
zonal component, if the mantle is stratified in viscosity. TPW’s internal origin makes
the rotational behavior of the Earth extremely sensitive to the viscosity profile of
the mantle; for a viscosity increase in the lower mantle of at least one order of
magnitude, in agreement with global geoid models (Ricard et al. 1984; Richards and
Hager 1984) and some postglacial rebound calculations (Spada et al. 1991), positive
density anomalies in themantle like subductions induce at the surface a positive geoid
anomaly and a negative dynamic topography, a ‘hole’ that is carried at the equator
together with the positive geoid anomaly. This ‘hole’ in the dynamic topography
at the equator is, of course, responsible for a strong longitudinal dependence in the
order 2 component, as observed in the previous figure for the Earth. It is thus a
fact that the shape of the Earth agrees well with that of a rotating planet where
subduction is the major mechanism driving long-term polar wander and where the
lower mantle is stiffer than the upper mantle. This means that polar wander is a
mechanism that can modify the figure of the Earth and Mars. The similarity of these
two planets in the degree 2 component of the topography appears not to be a simple
coincidence but rather related to long-term excursions of the rotation axis. Let us
consider as an exception to this rule the case of Venus, which does not have the ability
to wander and carries not this signature but rather a large order zero component in the
dynamic topography and geoid (Mottinger et al. 1985; Bills andKobrick 1985) that is
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indicative of an isotropic distribution of mass anomalies within the mantle and zonal
symmetry not degraded by TPW.Although the tectonics responsible for the observed
morphology on the Earth,Mars andVenus is different (e.g. Head and Solomon 1981),
essentially because subduction is a major mechanism on the Earth, but is inhibited on
Mars and Venus by thick (Phillips and Lambeck 1980) or buoyant (Anderson 1980,
1981) lithospheres, important analogies can be found in their rotational dynamics.

This walk on terrestrial planets has shown that Mars and the Earth belong to the
category that allows long-term polar wander by means of a slow drift of the pole
of rotation associated with the readjustment of the equatorial bulge; Venus belongs
to the second category, where a perturbation in the moment of inertia induces a
mega-wobble due to the smallness of the equatorial bulge, the axis of rotation and
maximum inertia not necessarily being aligned on long time-scales. Although the
Earth and Venus belong to the two different categories, their driving mechanism
comes from internal sources, unlike Mars, where lithospheric phenomena are the
main sources of polar wander. The role played by the viscous properties of themantle
of the three planets, whose viscosities are within one or two orders ofmagnitude from
one another, is crucial to our analysis. The similarity in the viscosity structure is the
common characteristic enabling us to elucidate the peculiar features in their rotation,
the other ingredient being the length of the sidereal day that determines the size of
the equatorial bulge. The equatorial location of the volcanic complex onMars is thus
likely to be a consequence of polarwander, as indicated by our quantitative analysis in
this section. This finding allows us to elucidate the influence of TPW on the degree
2 pattern of the topography associated with the volcanic complex (Willeman and
Turcotte 1982) and to draw a comparison with the other two planets considered in our
analysis. The rotation parameters and the rheology of the mantle can be conveniently
expressed by means of a non-dimensional rotational number that tells us when a
planet experiences TPW. There is thus a close connection between different aspects
of the dynamics of terrestrial planets, which involve apparently separate realms of
planetary physics such as rheology of the interiors, rotation, gravity, surface tectonics,
and internal processes.
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Chapter 4
TPW and J̇2 Induced by Ice-Sheet Loading

Abstract This chapter is devoted to the study of TPW and J2 variations due to
post glacial rebound (PGR), in practice to the modeling of the Earth’s rotation and
changes in the flattening driven by the melting of the huge Pleistocenic ice-sheets.
The latter are herein responsible for the present-day drift of the rotation axis towards
Newfoundland and for the change in the non-tidal dynamic form factor J2. We
show how this modeling allows us to obtain the viscosity profile of the mantle,
discussing about two possible lowermantle viscosities, the former favoring a uniform
mantle viscosity and the latter a substantially stiffer lower mantle. The path of the
rotation pole is analyzed in terms of mantle viscosity and of the rheology of the
lithosphere, being elastic or viscoelastic. The effects of a non-hydrostatic bulge, due
to asymmetric density distribution in the mantle, is then studied in terms of its effects
on TPW driven by ice-ages.

4.1 TPW and J̇2 from PGR

Nakiboglu and Lambeck (1980) and Sabadini and Peltier (1981) have shown that
the present-day secular drift of the rotation axis of about 1deg/Myr, roughly 10cm
every year towards Newfoundland, can be explained by post-glacial rebound due
to the disappearance of the Pleistocene ice sheets. Although the rate of polar shift
appears to be highly dependent on mantle viscosity, thus not being discriminative
with respect to pointing out the cause behind the observed shift (changing the load,
another value for the viscosity is found so that the observed polar wander drift rate
is matched again), the direction of the polar shift is seen as a strong indication that
post-glacial rebound is the main driving mechanism, as shown in Fig. 4.1. We will
assume in this chapter, however, that polar wander during the past one million years
has been caused mainly by the waxing and waning of great ice sheets.

Even with the most simple ice models, for instance containing three ice disks
covering Canada, Scandinavia and Antarctica and melting 10,000years ago, the
direction of the secular drift resulting from the present-day, solid-Earth rebound is
quite accurately reproduced. Although there is a high correlation, it is not the same
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Fig. 4.1 Cartoon showing the Pleistocene ice sheets and the direction of the present-day secular
wander of the rotation axis. Polar motion is given in the Conventional International Origin (CIO)
coordinates (x axis through Greenwich), on the basis of the reduction of the International Latitude
Service data as described by Dickman (1977). Redrawn from Fig. 1 in Sabadini and Peltier (1981)

as a proof. The possibility that the high correlation might be a coincidence cannot be
excluded at the moment. Indeed, a number of papers have been published in recent
years that argue for additional forcing being responsible for causing the observed
present-day polar drift. Regarding this issue, it is interesting to quote the new find-
ings by Cambiotti et al. (2016) who obtained that the two opposing processes of
coseismic and interseismic deformations, due to large megathrust earthquakes at
subduction zones, make the rotation axis wander around the north pole with maxi-
mum polar excursions of about one meter since 1900. Particularly, the rotation axis
moves towards about Newfoundland when the interseismic deformations dominate
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over coseismic ones, during phases of low seismicity or, equivalently, when most of
the fault system associated with plate boundaries is locked. In the other case, when
megathrust earthquakes occur, the rotation axis is suddenly shifted in the almost
opposite direction, toward about 133◦E. Furthermore, since interseismic and coseis-
mic deformations do not exactly compensate each other on the time scales of decades
or centuries, the rotation axis gains, at present and with respect to its initial position
at the north pole at 1900, a net shift of 110cm towards 151◦E and of 86cm toward
119◦ W in the cases of partial and full seismic coupling. In order to achieve these
new results, it has been necessary to implement a global seismicity model from plate
tectonic models, in conjunction with the seismic forcings built within the scheme
of the compressible models described in Chap. 3. It is thus interesting to note that,
once translated into a TPW velocity with the necessary caution since we are dealing
with discontinuous events such as earthquakes, we obtain rates of about 1cm/yr, one
order of magnitude smaller than the observed one: it is also important to enlighten
that when the interseimic deformation dominates, the direction is concordant with
the observed one.

In parallel with the analysis of a TPW driven by post-glacial rebound, this chapter
will also dealwith an analysis of the degree twoharmonic component of the geopoten-
tial perturbation, J̇2, providing a detailed analysis of the higher harmonics, including
the effects of present-day ice loss in Antarctica and Greenland, in Chap. 5. The
perturbation of the the dynamical form factorJ�

2 (t) = (C�(t) − A�(t))/MEa2 can
be expressed in terms of the perturbation of the geopotential φ�

20, with C(t) and
A(t) the polar and the equatorial moments of inertia of the Earth.

Exercise 19 From the MacCullagh’s formula Eq. (3.23), show that J�
2 (t) = a

GME

φ�
20(t).

In the following, the symbol � is omitted in J2(t) and J̇2(t) in order to not
overwhelm the text.

4.2 The Inference of Mantle Viscosity from TPW
and J̇2 Data

The inference of the viscosity structure of themantle is a basic issue in geodynamics.
A variety of important geodynamical processes, from the long time scale convection
in the mantle to the faster response of the Earth to Pleistocene deglaciation, depend
on this parameter.

The viscosity of the Earth plays a major role in the connection between changes
in surface load and changes in Earth’s rotation. If the viscosity of the Earth is high,
deformation does not proceed so readily as if the viscosity is low. In the case of
the connection between changes in surface load and induced polar wander, there are
two relaxation processes: load relaxation and centrifugal relaxation. The interplay
between these two relaxation processes, elucidated in Chap.3, is what makes the

http://dx.doi.org/10.1007/978-94-017-7552-6_3
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dependence on viscosity somewhat complicated but certainly interesting to be ana-
lyzed. In spite of the efforts of several authors in the last decades, a general consensus
on the viscosity profile of the mantle has not been reached yet. The use of two dif-
ferent classes of observables in modeling mantle deformation processes, convection
and postglacial rebound, which occur on different time scales, is certainly one of the
major causes for the discrepancies among the various inferences of mantle viscosity.
It has been suggested that the creep properties of the mantle do not remain constant
at short and long time scales. Convection and PGRmay be controlled by steady-state
and transient creep, respectively. If this is the case, modeling of postglacial rebound
by means of a steady-state rheology causes a bias in the inference of viscosity (Saba-
dini et al. 1985; Peltier 1985). This point of view has been weakened by rebound
analyses showing that a number of glacial isostatic adjustment data are consistent
with a conspicuous viscosity increase in the lower mantle (Nakada and Lambeck
1989) that is generally found from long-wavelength geoid analyses (Richards and
Hager 1984). Papers by Forte and Mitrovica (1996), Mitrovica and Forte (1997)
reinforce this indication by means of a joint inversion of mantle convection and PGR
data that require a significant viscosity increase with depth in the mantle. Estimated
viscosity profiles differ substantially from one another, even within the various post-
glacial rebound analyses. Typically, some studies predict a rather uniform mantle
viscosity (Richards et al. 1999; Tushingham and Peltier 1992; Spada et al. 1992b),
while other analyses require a substantial viscosity contrast at the interface between
the upper and lower mantle (Lambeck et al. 1990). Mitrovica (1996), to whom we
refer for an exhaustive discussion of these issues, has provided a possible explanation
for these apparently contradictory results. He suggests that they are consequences of
a misinterpretation of the Haskell (1935) value, considered as limited to the upper
mantle after the results of modern seismology. Other causes of apparent inconsis-
tencies among the various glacial isostatic studies may be ascribed to the use of
different Earth’s models, different observables considered by the various authors,
and insufficient search in the parameter space of the rebound models (Lambeck et al.
1996).

Other uncertainties that accompany deriving radial viscosity profiles from rota-
tional studies are the neglect of lateral viscosity variations and uncertainties in the
load history of the Pleistocene ice models. There are reasons, however, that these
will affect the results to a lesser extent. Although large lateral variations in viscosity
are very likely to be present in the upper mantle, their influence on second-degree
harmonics is found to be small (D’Agostino et al. 1997). For low-degree phenomena
like Earth’s rotation and global geoid change we thus expect that volume averaging
over lateral viscosity variations in the upper mantle, and using this value in our mod-
els, will give about the same results as when models are used in which these lateral
viscosity variations are retained. To put this in another way, it might be very difficult
to obtain information on lateral viscosity variations from degree 2 rotational data, just
as it is also difficult to obtain detailed information on the radial viscosity profile for
a large number of layers from studying harmonic degree 2 phenomena only. Indeed,
Earth’s models based on the theory developed in Chap.2 would show that for har-
monic degree 2, saturated continuum limits are reached for the Love numbers from

http://dx.doi.org/10.1007/978-94-017-7552-6_2
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models with a small number of layers largely independent on the form of the radial
viscosity profile. Considering this, and considering the uncertainties with respect to
the forcing mechanisms, we have decided to take only two viscosity layers in the
models shown in this chapter, whereas the elastic parameters and density that we
use (PREM) can be more finely graded or continuously varying. From earlier studies
(e.g., Wu and Peltier 1984), it is known that the last ice age has the most impact on
present-day rotational changes, thereby diminishing the influence of uncertainties in
the history of former Pleistocene ice cycles.

The observational data considered in this section are taken from Dickman (1977)
as shown in Fig. 4.1 and McCarthy and Luzum (1996) for TPW, and from Yoder
et al. (1983) and Devoti et al. (1997) for J̇2. For a review on how these data have
been derived see the introduction to the paper by Peltier and Jiang (1996).

4.3 Loading

From oxygen isotope analysis of ocean sediments (e.g., Shackleton and Opdyke
1976), it has been deduced that the great ice sheets had a growth period of about
90,000years and a decay period of about 10,000years, so a total period of about
100,000years for one complete cycle. Water contains the isotopes 16O and 18O;
depending on the amount of ice that has accumulated on land, the relative abundance
of the two isotopes which are incorporated in ocean sediments will vary due to their
specific mass difference: the lighter isotope evaporates more easily from the oceans,
giving an over-abundance of this isotope in ice with respect to ocean water, thus
creating an over-abundance of the heavier isotope in the oceans during glacial times,
which is recorded in the sediments. The period of 100,000years is equal to the time
in which the ellipticity of the orbit of the Earth around the Sun changes (one of the
periods in the so-called Milankovitch cycle of harmonic variations of the Earth’s
orbit around the Sun), but whether there is a direct connection between ellipticity
change and ice age cycles is a contentious issue at the moment. Many researchers
accept the theory that the change in ellipticity can trigger and end an ice age cycle
indirectly, that is, the change in solar insolation is not considered powerful enough to
induce a glacial period directly but it can trigger non-linear changes in ocean currents,
which can be the driving agent of the climate change. However, more recently, other
theories have emerged, such as that in which changes in interplanetary dust density
with a period of 100,000years as a result of changes in orbital inclinationmight be the
prime mover (Muller and MacDonald 1995; Farley and Patterson 1995). Whatever
the cause, oxygen isotope analyses have discerned at least eight glacial cycles during
the Pleistocene.

Figure4.2 shows a cartoon of the ice load model that will be used to study the
influence of ice age cycles on polar wander (Vermeersen et al. 1997; Vermeersen and
Sabadini 1999).
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Fig. 4.2 Pleistocene glaciation and deglaciation history as used in the models. The history contains
seven glacial ramp-shaped cycles followed by a linear ice accumulation period and a deglaciation
period consisting of a set of discrete unloading steps, after ICE-3G (Tushingham and Peltier 1991).
Each cycle has a 90 kyr glaciation period. The seven glacial pre-cycles have deglaciation periods of
10 kyr. The final glacial cycle, which starts 18 kyr before present, has a 13 kyr deglaciation period
of Heaviside loadings. The ice masses are assumed to remain constant after 5 kyr before present.
The maximum amount of ice accumulated at the end of a glaciation period is the same as ICE-3G
gives at 18 kyr before present. The minimum amount of ice at the end of a deglaciation period is
the same as ICE-3G gives at 5 kyr before present (Fig. 2 in Vermeersen et al. 1997)

In order to make use of Eq. (3.84) and of the ICE-3G model by Tushingham and
Peltier (1991), we must specify the Laplace transform of the loading history f̃ (s).
The saw-tooth function appropriate for describing the nth cycle of the load is given,
in time domain, by

f (t) =
{ t − a(n − 1)

b if a(n − 1) < t < a(n − 1) + b
an − t
a − b a(n − 1) + b < t < an

In the Laplace domain the load time history becomes

f̃ (s) =
8∑

n=1

e−a(n−1)s − e−a(n−1)s−bs

bs2
− e−a(n−1)s−bs − e−ans

(a − b)s2
(4.1)

where 8 cycles of glaciation-deglaciation are considered, with the a = 100 kyr
denoting the glaciation phase and b = 10 kyr the deglaciation phase.

Inserting Eq. (4.1) into Eq. (3.84) and transforming back into the time domain,
we obtain first that the contribution arising from the secular term A∗

0 for each cycle,
after the end of the last glacial event, is given by

m(t)sec = −iσr
�I L13 + i�I L23

C − A

A∗
0a

2
(4.2)

Thus, for times after the termination of ice ages, the displacement of the axis
of rotation arising from the A∗

0 term given by Eq. (3.87) remains constant to the net
shift acquired during the active phases. This result is relevant for the interpretation of
TPW driven by the continuous occurrence of ice ages, but it does not account for the

http://dx.doi.org/10.1007/978-94-017-7552-6_3
http://dx.doi.org/10.1007/978-94-017-7552-6_3
http://dx.doi.org/10.1007/978-94-017-7552-6_3
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effects of stabilizing internal mass distribution contributing to the non-hydrostatic
bulge, as shown afterward.

The contribution arising from the ai poles becomes appropriate for quantifying
the present-day polar wander, after the 8th cycle

m(t) =
8∑

n=1

(

M∑

i=1

(
−iσr

�I L13 + i�I L23
C − A

)

×[ γi

ba2i
{eai [t−a(n−1)] − eai [t−a(n−1)−b]}

− γi

(a − b)a2i
{eai [t−a(n−1)−b] − eai (t−an)}]) (4.3)

where summation over n corresponds to the eight glacial cycles considered in the
modeling. From this expression form(t) we obtain limt→∞ m(t) = 0, which shows
that for long time scales there is no net polar wander associated with viscoelastic
relaxation modes.

ICE-3G consists of a total of 808 circular disk loads representing the Laurentide
ice sheet, the Fennoscandian ice sheet, the Northern part of Russia, Antarctica,
and the southwest of South America. For all these disks, ICE-3G gives the ice decay
of the last Pleistocene cycle via a set of decrements, starting 18 kyr before present
and ending 5 kyr before the present. The Antarctic ice sheet starts to melt at a later
stage than the ice sheets of the Northern Hemisphere. The Pleistocene glaciation-
deglaciation history, as used in the modeling, is shown in Fig. 4.2, while the total ice
mass of all the disks is plotted as a function of time in Fig. 4.3 for the final deglaciation
phase. It might be interesting to note that there are some negligible changes from
5 to 3kyr before present; from 3 kyr to present the ice masses of all disks remain
constant.

Fig. 4.3 Enlargement of the
final deglaciation phase in
Fig. 4.2. The discrete time
steps of the ICE-3G model
are shown. The ice mass on
the vertical axis represents
the ice of all sheets (Fig. 3 in
Vermeersen et al. 1997)
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Our eight complete glacial cycles consist of seven glacial saw-tooth pre-cycles,
while the eighth cycle consists of a linear glaciation phase which ends 18 kyr before
present, followed by ICE-3G. Each cycle is connected to its previous and following
ones. Each of the seven precycles consists of a 90 kyr linear growth phase and a 10
kyr linear decay phase. The minimum amount of ice is the same as in ICE-3G at
present, while the maximum amount of ice is the same as in ICE-3G 18 kyr before
present. Both the polar wander rates and the J̇2 rates are determined at present, with
J̇2 strictly linked to the degree 2 component of the perturbation in the geopotential.

For this temporal history the Laplace-transformed function f̃ (s) can be easily
determined and substituted in the multidisk equivalents of the above formulations.
The temporal history is simple enough, consisting of a combination of Heaviside
functions and linear functions, so that performing the inverse transformations of the
loading history can be done analytically, similarly to Eq. (4.1).

The TPW models can be relatively easily implemented in computer codes when
all inverse relaxation times si and ai are detected by a root-finding procedure, as
discussed in Chap. 2. This is certainly the case withmodels which only have a limited
number of layers, such as the five-layer incompressible models used in Spada et al.
(1992b). Problems arise when not all the roots are found, as is rather the rule than
the exception in models with a large number of layers. In models where only load
relaxation is important, as for J̇2, it does not matter if modes that have far too low a
strength to be of any importance are not taken into account (or remain undetected).
This is the case, for instance, of those long-term buoyancymodes which are triggered
by small density contrasts between two layers as discussed in Chap.2. However, for
polar wander it is necessary to take into account all the ai rotational counterparts of
the si modes.

4.4 Mantle Viscosity

This Sect. 4.4, reworked from Vermeersen et al. (1997), deals with the effects of
viscosity variations in the mantle on TPW and J̇2. Figures4.4, 4.5, 4.6, 4.7, 4.8,
4.9, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15 and 4.16 are based on incompressible Earth’s
models described by Eqs. (2.42)–(2.47).

We consider five cases with varying layering, 5-, 31-, 56-layer models plus two
with varying depth between the upper and lower mantle at 971 and 1471km depth
rather than 670km, whose density and elastic parametrization is based on PREM
(Dziewonski andAnderson 1981). These five cases have not been selected at random;
all have special meanings.

To gain some insight into the effects of stratification on relaxation, we shall
start with simple 5-layer models. An elastic lithosphere with a thickness of 120km
surrounds the viscoelastic mantle having a viscosity of 1021 Pa s.

Five-layer models have been used in the past in the context of analytical viscoelas-
tic, incompressible relaxation modeling (e.g., Spada et al. 1992b; Ricard et al. 1993;
Vermeersen et al. 1994). There is one important difference, however, in comparison

http://dx.doi.org/10.1007/978-94-017-7552-6_2
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http://dx.doi.org/10.1007/978-94-017-7552-6_2
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Fig. 4.4 The present-day TPW velocity as a function of the lower mantle viscosity for two 5-
layer Earth’s models. For this figure the ice load consisted of the Fennoscandian, Laurentian, and
Antarctic ice sheets modeled as homogeneous disks. The value of the viscosity of the upper mantle
is 1021 Pa s. The solid curve depicts the solution by the volume-averaged Earth’s model in Table4.2,
and the dashed curve depicts the solution from the fixed boundary contrast Earth’ model in Table4.1
as used in Spada et al. (1992b). The hatched area depicts the observed present-day secular drift
ranging between the error bars as given by McCarthy and Luzum (1996)

Fig. 4.5 The present-day true polar wander velocity as a function of the viscosity of the lower
mantle for a volume-averaged Earth’s model. The upper mantle has a viscosity of 1021 Pa s. The
number of layers for the three curves is indicated in the top right corner. The lightly hatched area
depicts the observed present-day secular drift ranging between the error bars as given by Dickman
(1977). The darkly hatched area depicts the observed present-day secular drift ranging between the
error bars as given by McCarthy and Luzum (1996)
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Fig. 4.6 Present-day change in the non-tidal dynamic form factor J̇2 as a function of lower mantle
viscosity and upper mantle viscosity of 1021 Pa s. The solid and dashed curves correspond to
volume-averaged models of 5 and 31 layers. The hatched area depicts the observed present-day J̇2
in the range −2.5 ± 0.7 × 10−11 yr−1 where the lower bound corresponds to the solution CGS96
from the Centre of Space Geodesy in Matera (Italian Space Agency), derived from LAGEOS I and
LAGEOS II monthly estimates over the time interval 1985–1996 (Devoti et al. 1997), and the upper
bound corresponds to the the estimate obtained by Yoder et al. (1983)
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Fig. 4.7 Effects of the depth of the viscosity contrast on present-day TWP as a function of the
value of the viscosity of the lower mantle. The standard 31-layer model in Table4.3 is used as the
Earth’s model. The three cases depict the results for the boundary between the upper and lower
mantle (upper and lower mantle defined with respect to viscosity) at 1471, 971 and 670km depths.
The upper mantle has a viscosity of 1021 Pa s. The hatching has the same meaning as in Fig. 4.5
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Fig. 4.8 Effects of the depth of the viscosity contrast on the present-day secular variation in J̇2 as a
function of the value of the viscosity of the lower mantle. The standard 31-layer model in Table4.3
is used as the Earth’s model. The three cases depict the results for the boundary between the upper
and lower mantles (upper and lower mantles are defined with respect to viscosity) at 1471, 971, and
670km depth. The upper mantle has a viscosity of 1021 Pa s. The hatching has the same meaning
as in Fig. 4.6
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Fig. 4.9 Effects of a lower value for the upper mantle viscosity on present-day TPW as a function
of the value of the viscosity of the lower mantle. The standard 31-layer model in Table4.3 is used
as the Earth’s model. The solid curve depicts the case of an upper mantle viscosity of 1020 Pa s. The
dotted curve depicts the case of an upper mantle viscosity of 1021 Pa s. The two cases for the upper
mantle viscosity between these two values are depicted by the short-dashed curve for the case of
5×1020 Pa s and by the long-dashed curve for the case of 2×1020 Pa s. The hatching has the same
meaning as in Fig. 4.5
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Fig. 4.10 Effects of a lower value for upper mantle viscosity on present-day secular variation in
J̇2 as a function of the value of the viscosity of the lower mantle. The standard 31-layer model in
Table4.3 is used as the Earth’ model. The solid curve depicts the case of an upper mantle viscosity
of 1020 Pa s. The dotted curve depicts the case of an upper mantle viscosity of 1021 Pa s. The two
cases for the upper mantle viscosity in between these two values are depicted by the short-dashed
curve for the case of 5× 1020 Pa s and by the long-dashed curve for the case of 2 × 1020 Pa s. The
hatching has the same meaning as in Fig. 4.6

Fig. 4.11 TPW displacement during eight cycles of glaciation-delaciation, and 3× 105 yr after the
end of deglaciation at time = 0, for a 3-layer model consisting of an elastic lithosphere, a uniform
viscoelastic mantle of 1021 Pa s and a core. All the poles in s = 0 and s = ai are considered for the
solid curve, while the dashed one corresponds to A∗

0 = 0. Redrawn from Fig. 9 in Sabadini et al.
(2002)
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Fig. 4.12 TPW displacement during eight cycles of glaciation-deglaciation, and 3 × 106 yr after
the end of deglaciation at time = 0, for the 5-layer model of Table4.2. The upper and lower mantle
viscosity is fixed at 1021 Pa s. All the poles in s = 0 and s = ai are considered for the dashed curve,
while the solid one corresponds to A∗

0 = 0. Redrawn from Fig. 10 in Sabadini et al. (2002)

Fig. 4.13 TPW as a function of time (present is time = 0) for the ice load forcing of Fig. 4.2. The
mantle viscosity is fixed at 1021 Pa s. The thickness of the lithosphere is 120km. Two cases are
depicted, for an elastic lithosphere, solid curve, and a viscoelastic one, dashed curve, with the same
viscosity of the mantle. The horizontal scale differs from the previous two figures, ending at time
= 100 kyr. The 5-layer model in Table4.2 has been used

with the stratification that is used between the 5-layer models in this section and the
one that has been used in the past. The elastic parameterization and density profile
were based on what we will dub from now on fixed-boundary contrast models (e.g.,
Sabadini et al. 1982a; Yuen et al. 1982). The densities for the layers (lithosphere,
shallow upper mantle, transition zone, lower mantle) in these models were chosen
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Fig. 4.14 TPW as a function of time for the ice load forcing history in Fig. 4.2 and an elastic
lithosphere, but nowwith equalwaxing andwaning time scales of 50,000years. Themantle viscosity
is uniformly 1021 Pa s. With respect to Fig. 4.13, the end of the last deglaciation phase corresponds
to the end of the horizontal scale

Fig. 4.15 TPW as a function of time (the present is time = 0) for the ice load forcing of Fig. 4.2
and 31-layer Earth’s model in Table4.3. Two cases are depicted: the solid curve for a homogeneous
mantle viscosity of 1021 Pa s; the dashed curve for the case of an uppermantle viscosity of 5×1020 Pa
s and a lower mantle viscosity of 1022 Pa s. As for Fig. 4.14, the end of the last deglaciation phase
corresponds to the end of the horizontal scale

in such a way that the final assemblage contained density contrasts which agreed
with the density contrasts given by PREM for the interfaces. Thus, for example, the
density contrast at the boundary between the transition zone and the lower mantle
is about 10 fixed-boundary contrast model, agreeing with the value PREM gives,
but the lithosphere has, according to Table4.1, a density of 4120kg/m3, which is far
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Fig. 4.16 The TPW displacement m(t) due only to the last ice age for the compressible (solid)
and incompressible (dashed) PREM with the elastic lithosphere. The lower mantle viscosity is
νLM = 1021 (a), νLM = 1022 (b) and νLM = 1023 (c)Pa s

Table 4.1 Parameters for the 5-layer fixed-boundary contrast Earth’s model

Layer r (km) ρ (kg/m3) μ (N/m2)

1 6371 − 6271 4120 7.28 × 1010 Lithosphere

2 6271 − 5951 4120 9.54 × 1010 Shallow upper mantle

3 5951 − 5701 4220 1.10 × 1011 Transition zone

4 5701 − 3480 4508 1.99 × 1011 Lower mantle

5 3480 − 0 10,925 0 Inviscid fluid core

r is the distance with respect to the centre of the Earth, ρ the density of the layer, and μ the rigidity

greater than the volume-averaged density of the lithosphere as given in Table4.2 (in
fact, the highest density that PREM gives for a layer in the top 120km is less than
3381kg/m3). It is important to realize that the 5-layer models in the following are,
unless stated explicitly otherwise, volume-averaged models. The density contrasts
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Table 4.2 Parameters for the 5-layer volume-averaged Earth’s model

Layer r (km) ρ (kg/m3) μ (N/m2)

1 6371 − 6250 3184 6.0243 × 1010 Lithosphere

2 6250 − 5951 3434 7.2666 × 1010 Shallow upper
mantle

3 5951 − 5701 3857 1.0639 × 1011 Transition zone

4 5701 − 3480 4878 2.1944 × 1011 Lower mantle

5 3480 − 0 10,925 0 Inviscid fluid core

r is the distance with respect to the centre of the Earth, ρ the density of the layer, and μ the rigidity

at the boundaries are thus not fixed to the values PREM gives as they were in all
5-layer models, which, as we know, have been published in the past.

For ourmodels,wehave taken thePREMvalues fromTables II and III ofDziewon-
ski and Anderson (1981). In these tables, PREM contains 55 layers between the Core
Mantle Boundary (CMB) and the surface. Thus we have included the 56-layer cases
in our models. In the 31-layer model the lithosphere is taken as homogeneous, while
every 3 mantle layers of PREM in succession (except for the 4 layers nearest to the
core: these layers are volume-averaged as pairs) are reduced by the volume-averaging
procedure to two layers. Thus we end up with a minimal number of three cases (5,
31 and 56 layers), which we can posit as indicative of changes that can be expected
for any other number of layers.

The TPW results for a viscosity of 1021 Pa s in the upper mantle and varying
lowermantle viscosity are portrayed in Fig. 4.4; only for this Fig. 4.4, the Laurentide,
Fennoscandian, andAntarctic ice sheets are taken into account as disks, in agreement
with the analyses by Richards et al. (1999) and Spada et al. (1992b). This figure
shows, within the scheme of a 5-layer model consisting of the lithosphere, three
layers in the mantle and a core, the effects of constraining the average values of the
density and rigidity in each layer on the basis of PREM (solid curve) or, alternatively,
the effects of constraining the density and rigidity contrasts at the 420 and 670km
discontinuities in agreement with PREM (dashed curve). The latter procedure was
used in the past in TPW models based on analytical schemes (Sabadini et al. 1982a;
Richards et al. 1999; Spada et al. 1992b). The values used in the 5-layer models
are given in Table4.1 for the fixed boundary contrast model and in Table4.2 for
the volume-averaged model. The two schemes predict quite different TPW signals,
although the major characteristics of the two curves are the same: a general decay
from high TPW value for an isoviscous mantle, the vanishing of the signal for a
lower mantle viscosity of 1023 Pa s, and a non-monotonic behavior from 3 × 1021

to 1022 Pa s. The fixed boundary contrast model (dashed curve) portrays a well-
developed local maximum at 1022 Pa s. In particular, the dashed curve crosses the
observational datum of McCarthy and Luzum (1996) for a lower mantle viscosity
of 1.5 × 1021 Pa s. On the basis of this result an almost homogeneous mantle was
deduced from previous TPW and J̇2 studies (Sabadini et al. 1982a; Richards et al.
1999; Spada et al. 1992b). The extra buoyancy of the model with volume-averaged
densities, due to the large density contrasts at 420 and 670km depth, is responsible
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for an increase in the TPW signal in the whole range of lower mantle viscosities
once compared with the fixed boundary contrast 5-layer model, which has the major
effect of displacing the crossing of the TPW curve with the observed values to higher
viscosities. As we will see below, this result has a major impact on the interpretation
of the viscosity profile of the mantle based on TPW analysis, and is caused by the
density contrasts as being non-adiabatic in nature, as discussed in Chaps. 1 and 2.

This Fig. 4.4 is a nice example of how the inference of the lower mantle viscosity
depends on the hypotheses underlying the Earth’s model, resulting into 1.5×1021 Pa
s for the fixed density contrast model or 1022 Pa s for the 5-layer, volume averaged
density model, where the dashed and solid curves cross the observational datum. The
lower mantle viscosity inference depends also on how much of the observational
datum is attributed to PGR: a recent, comprehensive discussion on the potential
contributors to the McCarthy and Luzum (1996) datum is provided by Nakada et al.
(2015), where the TPW contributions arising from PGR and present-day melting
in Greenland, Antarctica and mountain glaciers is evaluated, including the effects
due to the differences between the ICE-5G (Peltier 2004) and ANU (Australian
National University) ice models. Keeping in mind that for TPW the contributions
must be summed up vectorially, it is clear that the consequence of including other
contributions beyond PGR would be to displace in the TPW figures of this chapter
the observational datum up or down with respect to the model curves, which would
lead to different lower mantle viscosity estimates. This chapter is instead based on
the assumption that the whole observational datum is due to PGR.

Figure4.5 shows the effects of distributing the density contrasts of the mantle in
a large number of layers. PREM contains 56 layers in the lithosphere and mantle.
The 31-layer model in Table4.3 is deduced from PREM in such a way that the layers
take on a progressively larger thickness from the Earth’s surface to the core.

With respect to the simpler 5-layer model with volume-averaged densities, the
buoyancy is now smoothly distributed over the mantle instead of being concentrated
at the four major boundaries. Layering has, in fact, a major effect because it modifies
the TPW curve in the proximity of the inflection of the curve at a lower mantle
viscosity of 1022 Pa s, where crossing with the observations occurs. While for lower
mantle viscosity ranging from1021 to 3×1021 Pa s density stratification has negligible
effects, PREM predicts a quite different behavior with respect to the simpler 5-layer
model for viscosities higher than 3 × 1021 Pa s. In fact, the TPW signal increases
in the proximity of the observational data, causing a multiplicity of lower mantle
viscosity solutions. These results indicate a trade-off between density and viscosity
stratification in themantle. Another remarkable result of this figure is that differences
between the curves corresponding to 31 and 56 layers are negligible, indicating that
as far as rotational calculations are concerned, the continuous behavior in the sense
discussed in Chap. 2 is already reached with 31-layer models. Increasing the number
of layers does not provide any further information on TPW.

It is interesting to compare the sensitivity of TPW as to density stratification with
that portrayed by J̇2 for a simplified Earth’s model and load. In Fig. 4.6, J̇2 is shown
for a 5-layer and 31-layer models with a fixed upper mantle viscosity of 1021 Pa s,
varying lower mantle viscosity and realistic loading history. Density stratification

http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_2
http://dx.doi.org/10.1007/978-94-017-7552-6_2
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Table 4.3 Parameters for the standard 31-layer volume-averaged Earth’s model derived from
PREM

Layer r (km) ρ (kg/m3) μ (N/m2)

1 6371.0 − 6368.0 1020 2.66 × 1010 Lithosphere

2 6368.0 − 6356.0 2600 2.66 × 1010

3 6356.0 − 6346.6 2900 4.41 × 1010

4 6346.6 − 6331.0 3372 6.81 × 1010

5 6331.0 − 6311.0 3372 6.78 × 1010

6 6311.0 − 6291.0 3372 6.75 × 1010

7 6291.0 − 6251.0 3372 6.71 × 1010

8 6251.0 − 6221.0 3372 6.67 × 1010 Shallow upper mantle

9 6221.0 − 6186.0 3372 6.63 × 1010

10 6186.0 − 6151.0 3372 6.58 × 1010

11 6151.0 − 6106.0 3449 7.48 × 1010

12 6106.0 − 6061.0 3476 7.64 × 1010

13 6061.0 − 6016.0 3503 7.81 × 1010

14 6016.0 − 5971.0 3529 7.97 × 1010

15 5971.0 − 5921.0 3755 9.39 × 1010 Transition zone

16 5921.0 − 5871.0 3819 1.01 × 1011

17 5871.0 − 5821.0 3882 1.09 × 1011

18 5821.0 − 5771.0 3945 1.17 × 1011

19 5771.0 − 5736.0 3980 1.21 × 1011

20 5736.0 − 5701.0 3988 1.23 × 1011

21 5701.0 − 5650.0 4397 1.59 × 1011 Lower mantle

22 5650.0 − 5600.0 4423 1.68 × 1011

23 5600.0 − 5400.0 4501 1.78 × 1011

24 5400.0 − 5200.0 4620 1.91 × 1011

25 5200.0 − 4900.0 4759 2.06 × 1011

26 4900.0 − 4600.0 4921 2.24 × 1011

27 4600.0 − 4300.0 5078 2.41 × 1011

28 4300.0 − 4000.0 5205 2.58 × 1011

29 4000.0 − 3700.0 5379 2.74 × 1011

30 3700.0 − 3480.0 5509 2.89 × 1011

31 3480.0 − 0 10,932 0 Inviscid fluid core

r is the distance with respect to the centre of the Earth, ρ the density of the layer, and μ the rigidity.
The outermost 3km of water carry the same rigidity of the underlying crustal layer, for numerical
stability

has no effects on J̇2 between a 5-layer model and PREM once volume-averaged
parameters are used. This different behavior with respect to TPW is not surprising
since TPW solutions have the extra viscoelastic readjustment of the equatorial bulge
above the load readjustment, which is the only one present in J̇2.
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In Chap.5 we come back in greater details on the issue of the amount of the
observed J̇2 which must be attributed to PGR and to present-day glacial forcing,
analogously to TPW and to the analysis carried out by Nakada et al. (2015) also for
J̇2, particularly in view of the changes in J̇2 obtained from SLR over the time interval
1992–2009 (Cheng et al. 2013). The figures of this chapter are based on the J̇2 value
consistent with −3 ± 0.5 × 10−11 yr−1 value by Stephenson and Morrison (1995).
As for TPW, moving up and down the observational datum attributable to J̇2, the
lower mantle viscosity inference varies: we refer to Nakada et al. (2015) for a very
detailed discussion on these viscosity inferences depending on the observed changes
in J̇2 after 1992 and on estimated contributions from present-day glacial forcing.

4.4.1 Variations in Depth of the Two-Layer Mantle Viscosity
Profile

In this section we consider the possibility that the boundary where the viscosity
contrast occurs does not coincide with the seismologically inferred base of the upper
mantle. Two depths are considered, 971 and 1471km, so both are deeper than the
670km one shown for comparison. The 1471km depth is close to the depth of
1400km considered in the relative sea-level analysis by Mitrovica (1996) and the
TPW and J̇2 studies by Peltier and Jiang (1996), while 971km is an intermediate
value.

For the upper layer viscosity fixed at 1021 Pa s, Fig. 4.7 portrays the TPW curves
for the three different depths as a function of lower layer viscosity. Increasing the
viscosity in the lower layer has the effect of reducing the TPW from about 3◦ Myr−1

for a viscosity of 1021 Pa s to zero. Although the shape of the curves is the same for
the three different depths, the deepening of the viscosity contrast has the major effect
of diminishing the local maximum at 1022 Pa s. For 1471km this local maximum
disappears and is barely visible for 971km. The modification in the shape of the
curves has the important consequence of reducing the ambiguity in the inference
of the lowermost viscosity from the admissible range of 2.8 × 1021–1.5 × 1022 Pa
s for 670km to the narrower range of 3–5 ×1021 Pa s for 1471km when Dickman
(1977) data are considered. The most recent TPW data by McCarthy and Luzum
(1996) require a value of 4× 1021 Pa s, being intermediate between the two previous
estimates. Notice that, irrespective of the depth of the boundary, the same value of
TPW is retrieved when the lowermost viscosity equals the viscosity of the upper
layer, as expected. The non-monotonic decrease in TPW obtained in this chapter,
with a local maximum in proximity of 1022 Pa s, is also shown by Yuen and Sabadini
(1984), Spada et al. (1992b), consistently with the results obtained by Milne and
Mitrovica (1996) based on compressible models.

Figure4.8 deals with a similar analysis for J̇2. The most apparent effects of the
increase with depth of the viscosity contrast are the disappearance of the high-
viscosity solution branch of 2 × 1023 Pa s for 1471km in the right portion of the

http://dx.doi.org/10.1007/978-94-017-7552-6_5
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figure and the smooth increase, from 1.5–2.8 ×1021 to 2.5–5 ×1021 Pa s, of the
low-viscosity branch. The increase in the J̇2 signal for lowermost mantle viscosities
higher than 3 × 1021 Pa s when the viscosity contrast is located deeper than 670km
agrees with the results of Mitrovica and Peltier (1993). This behavior in the J̇2 curve
has the important implication of allowing for a single solution in the lowermost vis-
cosity and, when comparison is made with the TPW curve for 1471km in Fig. 4.7,
allowing for the simultaneous fit of the TPW and J̇2 data with a viscosity in the lower
layer of 3–5 ×1021 Pa s when the TPW data by Dickman (1977) and 4 × 1021 Pa s
with the latest TPW data (McCarthy and Luzum 1996) are considered. For 670km
it is not possible to obtain a simultaneous fit of both TPW and J̇2 for any value
of the lower mantle viscosity when the new TPW data are considered. With Dick-
man (1977) TPW data the two viscosity solutions barely overlap at 2.5 × 1021 Pa s,
degrading the simultaneous TPW and J̇2 fit for the depth of the viscosity contrast at
670km with respect to 1471km.

The important conclusion that we can draw from the results in Figs. 4.7 and 4.8
is that when self-consistent, viscoelastic, stratified Earth’s models are considered, a
viscosity of 1021 Pa s cannot be limited to the seismically defined upper mantle but
must be considered appropriate for a wider region of the mantle to depths of about
1400km. It should be emphasized that this conclusion is strongly supported by the
new TPW data (McCarthy and Luzum 1996), which definitively rule out a viscosity
of 1021 Pa s only for the upper mantle, while the TPW data by Dickman (1977) only
showan indication in this sense because of the larger error bounds. This finding is only
apparently inconsistent with previous analyses based on incompressible rotational
deformation models, as in Sabadini et al. (1982a), Yuen and Sabadini (1984), Spada
et al. (1992b). In these references a simultaneous fit of TPW and J̇2 data was found
from an assumed value for the viscosity of the upper mantle of 1021 Pa s and a
moderate viscosity increase in the lower mantle by a factor of 2. However, these
previous results were derived from simplified 4-layer or 5-layer Earth’s models,
where the density contrasts at the internal boundaries were fixed according to PREM
instead of the layers having volumetric density averages derived from PREM. Our
findings are in complete agreementwith a similar analysis of relative sea-level data by
Mitrovica (1996), who, with amore rigorous scheme based on the resolving power of
relative sea-level kernels, has demonstrated that the value of 1021 Pa s is appropriate
for a region of the mantle extending to greater depths than the upper mantle defined
by seismology. The value of 1021 Pa s, first proposed by Haskell (1935), was in
fact somehow arbitrarily limited to the upper mantle after modern seismology had
located the boundary between the upper and lower mantles at 670km, as pointed out
by Mitrovica (1996).

4.4.2 Upper Mantle Viscosities Lower Than 1021 Pa s

In the previous section we saw that within the framework of a multilayered, vis-
coelastic Earth’s model based on PREM a simultaneous fit to TPW and J̇2 data is not
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possible when the viscosity value of 1021 Pa s is limited to the upper mantle. In this
section the depth of the viscosity contrast is fixed at 670km and the upper mantle
viscosity is modified in order to get a simultaneous fit with TPW and J̇2 data when
the lower mantle viscosity is varied from 1021 to 1024 Pa s, as in the previous figures.

In Fig. 4.9 the upper mantle viscosity is reduced from 1021 Pa s (dotted curve) to
1020 Pa s (solid curve); intermediate values are 5 × 1020 Pa s (short-dashed curve)
and 2 × 1020 Pa s (long-dashed curve). The reduction in the upper mantle viscosity
diminishes the TPW signal in the whole range of viscosities, but it should be noted
that this occurs in a non-linear fashion. A reduction factor of 2 from 1021 Pa s to
5×1020 Pa s hasminor effects, except for a small increase in the proximity of the local
maximum at 1022 Pa s. A decrease in the upper mantle viscosity from 5 × 1020 Pa s
to 2 × 1020 Pa s causes a further increase in proximity of the local maximum and a
decrease in the range of lower mantle viscosities from 1021 Pa s to 4×1021 Pa s. This
reduction in the signal is confirmed by the upper mantle viscosity of 1020 Pa s, which
provides the smallest TPW values for lower mantle viscosities smaller than 1022 Pa s.
Although in a non-linear fashion, the reduction of the upper mantle viscosity has the
effect of displacing the TPW curve to the left. Except for the lowest upper mantle
viscosity of 1020 Pa s, which predicts a lower mantle of 2.5×1021 Pa s, the inference
of the viscosity value of the lower mantle is not affected by a reduction factor of 5
from the reference value of 1021 Pa s. The reduction of the upper mantle viscosity
has, on the other hand, the major effect of increasing the viscosity contrast at 670km
from 3 for the short-dashed curve, corresponding to 1021 Pa s, to 8 or 20 for the upper
mantle viscosities of 5 × 1020 and 2 × 1020 Pa s, respectively.

In Fig. 4.10, the same analysis is carried out for J̇2. The curves are the same as
in Fig. 4.9. As in the case of Fig. 4.8, the major effects of the viscosity decrease are
visible in the high-value region of the lower mantle viscosities for viscosities higher
than 1023 Pa s. Major modifications with respect to the upper mantle viscosity of
1021 Pa s also occur in proximity to the maximum of the curves and for lower mantle
viscosities higher than 3 × 1021 Pa s.

The reduction of the peak value located at the lower mantle viscosity of 3 ×
1022 Pa s and the increase in the signal for lowermantle viscosities larger than 1023 Pa
s agree with the results obtained by Mitrovica and Peltier (1993). The reduction in
the upper mantle viscosity is responsible for an increase in the range of admissible
lower mantle viscosities from 1.5–3 ×1021 to 1.5 − 4 × 1021 Pa s for an upper
mantle viscosity of 1020 Pa s. With respect to the upper mantle value of 1021 Pa s,
the J̇2 curves for reduced upper mantle viscosities are displaced to the right. This
allows a simultaneous fit with the TPW data of McCarthy and Luzum (1996) for a
viscosity increase at 670km, which can be as high as factors of 20 and 30 for upper
mantle viscosities of 2 × 1020 and 1020 Pa s, respectively. It should be noted that a
simultaneous fit of TPW and J̇2 for an upper mantle viscosity of 5 × 1020 Pa s can
only be obtained with the data of Dickman (1977), which have larger error bounds.

In comparison with the recent TPW data by McCarthy and Luzum (1996), those
by Dickman (1977) are less discriminating in ruling out a viscosity value of 1021 Pa s
above the 670km discontinuity, although a clear tendency to prefer a lower value
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for the upper mantle viscosity is also shown by Dickman (1977) data by means of
enlarging the interval of admissible viscosity solutions for the two data sets.

The upper and lower mantle viscosities of 1 − 5 × 1020 and 2.5 − 4 × 1021 Pa s
inferred from the McCarthy and Luzum (1996) TPW data are consistent with the
estimates made by Lambeck et al. (1990) of 3 − 5 × 1020 and 2 − 7 × 1021 Pa s
for these parameters, although our results have the tendency to remain in the lower
limit of Lambeck et al. (1990) predictions. This tendency is probably attributable to
model differences with Lambeck et al. (1990) analysis, where attention is focused on
a different PGR signal, such as sea level in the far field, and compressible viscoelastic
models with a lithospheric thickness smaller than ours. If we focus on the viscosity
contrast at the boundary between the upper and lower mantles, we obtain a complete
agreement with the findings of Lambeck et al. (1990), whose preferred upper and
lower mantle viscosity contrast ranges between a factor of 4 and 25.

The results shown in this section indicate that the different viscosity models
obtained in the past are mainly a consequence of a different way of mantle strat-
ification. For an upper mantle viscosity varying between 1020 and 1021 Pa s, the
shape of the TPW and J̇2 curves as a function of the viscosity of the lower mantle
agrees with both previous analytical results based on simplifiedmantle models (Yuen
and Sabadini 1984; Spada et al. 1992b) and findings by Milne and Mitrovica (1996).
The TPW curves show a non-monotonic decrease in the signal from about 3◦ Myr−1

for an isoviscous mantle to zero for lower mantle viscosities higher than 1023 Pa s,
with a characteristic upwarping in proximity of 1022 Pa s. The local maximum in
TPW simulations is responsible for a multiplicity of solutions in the inference of
lower mantle viscosity from 3× 1021 to 1022 Pa s. These findings are in distinct con-
trast with analyses by Peltier and Jiang (1996), who, for viscosity contrasts located
at 670km, predict that TPW is negligible in the proximity of 1022 Pa s, where our
local maximum of 0.9◦ Myr−1 is located. When the depth of the viscosity contrast
is increased from 670 to 1471km in the lower mantle, the multiplicity of solutions
for both TPW and J̇2 in the inference of the viscosity of the lowermost portion of
the mantle disappears. In the TPW curve this occurs via a reduction in the local
maximum at 1022 Pa s at a single crossing of the observational data, while in J̇2 the
high-branch viscosity solution disappears because of an increase in the signal beyond
−3 × 10−11 yr−1 for viscosities in the lowermost mantle higher than 3 × 1021 Pa s.
If the viscosity contrast is located at depths of about 1400km, TPW and J̇2 data
allow for an unambiguous viscosity solution for the upper portion of the mantle of
1021 Pa s, agreeing with Haskell (1935) viscosity. A viscosity of 1021 Pa s limited to
the upper mantle has been retrieved in some previous TPW and J̇2 analyses because
of the underestimate of mantle buoyancy in simplified five-layer fixed boundary
contrast models and of the trade-off between the density and the viscosity profile
(e.g., Spada et al. 1992b). If the viscosity contrast is located at 670km depth, which
defines the boundary between the upper and the lower mantles based on seismolog-
ical data, TPW and J̇2 indicate a clear trend toward viscosities in the upper mantle
lower than the Haskell value of 1021 Pa s. This increases the viscosity contrast to a
factor of 20, in agreement with the far-field RSL analysis by Lambeck et al. (1990)
and with the studies on the long-wavelength geoid anomalies supported by mantle
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convection (Richards and Hager 1984). When analytical stratified models
carrying all the buoyancy of PREM are considered, it becomes possible to explain
some apparently contradictory results of recent inferences of mantle viscosity.

4.5 Ice Age Cycles and the Polar Wander Path:
Lithospheric and Mantle Rheology

In the former section present-day polar wander as a consequence of PGR is consid-
ered. Figures4.11, 4.12, 4.13, 4.14 and 4.15 show instead the modeled polar wander
over the complete ice-age cycles period in Fig. 4.2, with the ice load of this figure as
input, in the absence of any internal stabilizing mass distribution, considered later
in this chapter. In Figs. 4.11, 4.12, 4.13, 4.14 and 4.15 the minus sign of the TPW
displacement means that the rotation pole moves towards Russia, opposite to the
present-day one shown in Fig. 4.1.

As shown by Eq. (3.84), the displacement of the axis of rotation during the active
phase of loading depends not only on the viscous relaxation terms with the poles in
s = ai , but also on the pole in s = 0, which provides the secular term.

To gain insight into the physics of the Earth’s rotation during the active phase of
loading, we start in Fig. 4.11 with a simple but tutorial Earth’s model, not containing
the 670km discontinuity, characterized by a uniform mantle density (ρ = 4314
kg/m3) and viscosity (ν1 = 1021 Pa s). The solid curve accounts for both the s = 0
and s = ai poles, while the dashed one does not contain the contribution from s = 0,
namely A∗

0 = 0. The solid curve shows that the axis of rotation oscillates in phase
with the glacial cycles around a mean position that increases in time in a linear
fashion.

Immediately after the ice begins to grow 806,000years before the present, the
direction of polar wander is toward Russia. This is understandable, as the ice load
that has most effect on the rotation axis is the one over Canada, the Laurentide.
When this ice sheet begins to form, there will be an excess mass over Canada. A
deformable rotating body will react to an excess mass through centrifugal force by
moving its rotation axis in such a way that the excess mass will be as far away from
the rotation axis as possible. Thus the rotation axis moves in the direction opposite
to where the surface load is until the maximum of the ice load has been reached.
When the ice starts to melt, this mechanism is reversed, and the axis of rotation
turns back towards Canada, giving rise to the ’saw-teeth’ pattern characterizing the
displacement plotted in the figures of this chapter. The direction of polar wander
during ice melt is thus at 180◦ opposite to the direction during ice growth, that is,
during periods of ice melt the rotation axis moves in the direction of Canada (as it
is doing at present). The long-term TPW direction is, according to Figs. 4.11, 4.12,
4.13, 4.14 and 4.15, in the same direction as it is during periods of ice growth, so in
the direction of Russia.

http://dx.doi.org/10.1007/978-94-017-7552-6_3


172 4 TPW and J̇2 Induced by Ice-Sheet Loading

The s = 0 pole is clearly themajor contributor to the net shift of the axis of rotation
after the end of the last deglaciation, as indicated by the constant horizontal line. This
is confirmed by the dashed curve at the bottom of this figure, which corresponds to
contributions arising solely from the s = ai poles. These poles do not contribute to
the net shift of the axis of rotation during the continuous occurrence of ice ages. The
net shift of the axis of rotation is due to the s = 0 pole. Furthermore, the velocity
of polar wander averaged over the complete period of ice loading can be very high,
about 1deg/Myr, at least for a mantle viscosity of 1021 Pa s (Sabadini et al. 1982b,
1983; Sabadini and Vermeersen 1997).

If the viscosity is increased, the velocity of polar wander is reduced accordingly.
Indeed, the s = 0 pole contributes a large net shift of the axis of rotation only if the
mantle viscosity is about 1021 Pa s. The relaxation terms associated with the s = ai
poles do not play any role in the net shift, according to the decaying ai exponentials
of Eq. (3.84). If the mantle is not stratified in density, and the viscosity is low, large
excursions of the rotation pole can be obtained, in the absence of stabilizing internal
density anomalies due to long term mantle convection.

The physics underlying the s = 0 pole is evident in Eq. (3.87) where the loading
part yields (1 + kLf ). The latter quantifies the amount of isostatic disequilibrium
after complete relaxation has taken place. The (1+ kLf ) factor depends on the elastic
properties of the lithosphere, and would be zero if the lithosphere is absent. The term
A∗
0 = A0(1 + kLf ) shows that the contribution arising from the s = 0 pole depends

linearly on the load, which is not isostatically compensated. The contribution from
the s = 0 pole after the end of the last ice age is identical to that produced by a
constant load that stands on the Earth’s surface for a span of time corresponding
to the eight cycles, with an ice mass which is one-half of the ice mass at the ice
maximum, as indicated by the 1/2 factor multiplying the term A∗

0 in Eq. (4.2).
Figure4.12 deals with the 5-layer, volume-averagedmodel in Table4.2, character-

ized by a chemical density contrast at 420 and 670km. In comparison with Fig. 4.11,
the effect of density stratification is a reduction of the net shift of the rotation axis
after the eight glacial cycles and the appearance of an exponential behavior in the
mean rotational response of the Earth, as already shown by Sabadini and Vermeersen
(1997). The most interesting result in Fig. 4.12, in comparison to Fig. 4.11, involves
the substantial reduction of the contribution from the s = 0 pole on the net shift
of the pole. Comparison between the dashed and solid curves, corresponding to the
cases in which the s = 0 pole is included (dashed) or not included (solid), shows
that, in contrast with the previous case of a uniform mantle, the slow s = ai poles
play a major role on the long term displacement of the rotation axis. The density
stratification of the mantle is responsible for a stabilization of the Earth’s rotational
state; in particular its rotation behavior is controlled by the density contrasts occur-
ring in the transition zone. Density stratification in the transition zone introduces in
fact the long rotational relaxation modes, as shown in Table3.4, second column.

This decrease in the contribution from the s = 0 pole is accompanied by
an increase in the contribution from the ai modes, corresponding to the slowest
relaxation rotational modes (which are associated with the density contrasts of the
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transition zone). This slowest relaxation is responsible for the exponential decay
of the displacement of the axis of rotation at the end of the glaciation-deglaciation
phases and of the smoothing of the displacement pattern during the interglacial peri-
ods with respect to Fig. 4.11. It is clear that the appearance of the slow relaxation
rotational modes in the 5-layer model is responsible for the increase in the strength
γi/ai relative to the A∗

0 contribution, which causes a substantial modification of the
pattern of the polar wander curves, from a linear and sharp growth to smooth expo-
nential relaxations compared to Fig. 4.11. The net long-lasting shift remaining up to
3 × 103 kyr is due to the fact that after an ice cycle has been completed the Earth
is still out of isostatic equilibrium. The relaxation times of some of the modes by
which the Earth relaxes to the changed surface mass distribution are in fact longer
than the periods of the ice cycles. Comparison between Figs. 4.11 and 4.12 indicates
that, since the Earth is chemically stratified, the realistic pattern of polar wander is
that portrayed by the 5-layer model, where the dominant role is played by the s = ai
poles. This has important implications for the net shift of the axis of rotation that the
Earth can gain during a finite series of ice ages. The shift that is acquired permanently
is that associated with the s = 0 pole, while that due to relaxation is recovered after
the series of cycles once a sufficiently long span of time has elapsed. This span of
time is controlled by the slowest rotational mode, as shown by the part of the curve
in Fig. 4.12 after the end of active glaciation phases. After the last glacial event the
axis of rotation comes back to a position close to the initial one before the beginning
of the first cycle, with an offset due to the net shift gained by the pole in s = 0.
These results elucidate the major impact of density stratification on the asymptotic
behavior of the rotation equations, with a reduction of a factor 14 from the 0.7◦ net
shift of the 3-layer model to 0.05◦ of the 5-layer one after complete relaxation, which
takes several million years.

The cases of Earth’s models with the top 120km characterized by both an elastic
and a viscoelastic rheology are portrayed, solid and dashed curves, in Fig. 4.13 where
the span of time after the end of the last deglaciation is 100 kyr, to enlarge the
horizontal scale so that tomake evident the displacement pattern during the glaciation
and deglaciation phases.

The viscosity of the mantle (and lithosphere in the case of the viscoelastic top
layer) is 1021 Pa s. The number of layers in the Earth’smodel is five (volume-averaged
parameters for homogeneous lithosphere, shallow upper mantle, transition zone,
lower mantle and core, Table4.2). Figure4.13 shows several interesting aspects. It
is clear that the question whether the lithosphere is purely elastic or whether it has
a finite viscosity is an important one: the long-term trend differs by about a factor
of two. Another point that immediately strikes the eyes is that there is a short-term
trend (the ’saw-tooth’ profiles on time scales of about 100,000years) and a long-
term trend. The long-term trend is not zero, the average position of the rotation axis
gradually shifting further away from its initial position 806,000years ago as time
proceeds up to the present. One might perhaps think that this is due to the waxing
phases of the ice cycles being longer than the waning phases.

Figure4.14 shows that this is not the case. In Fig. 4.14 the time of a phase of ice
growth has been taken as being equal to the time of a phase of ice decay: both have a
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period of 50,000years. A comparison of Fig. 4.13with Fig. 4.14 (when the case of the
elastic lithosphere is considered) shows that the average polar wander (the long-term
trend) is the same; only the short-term trend shows differences in the sense that the
‘saw-teeth’ of the corresponding curve in Fig. 4.13 have been smoothed. The reason
why there is a net, almost linearly increasing, long-term TPW trend is that after an
ice cycle has been completed the Earth is still out of isostatic equilibrium, as for the
explanation above for Fig. 4.12. The relaxation times of some of the modes by which
the Earth relaxes to the changed surface mass distribution are even longer than the
periods of the ice cycles. Thus it also becomes understandable why in the case of
an elastic lithosphere in Fig. 4.13 the displacement of the polar axis is greater than
in the case of a viscoelastic lithosphere: an elastic lithosphere prohibits complete
relaxation even on long time scales, whereas a viscoelastic lithosphere will relax
completely within a finite time.

Except for the simplistic model of Fig. 4.11, Figs. 4.12, 4.13 and 4.14 portray
smooth reversals from ice growing to ice melt and in particular in Fig. 4.14, with the
equal waxing and waning periods, the relaxation of the solid Earth is such that the
sharp teeth are replaced by smooth curves.

Whether polar wander is mainly caused by ice age cycles, bymantle convection or
tectonics is thus an important question: if the present-day (secular) polar wander has
to be considered, then the direction of polar wander induced by the Pleistocene ice
age cycles is towards Canada; if the polar wander path over the whole Pleistocene has
to be considered, then the direction is towards Russia. Note that the magnitudes of
the long-term trend are an order of magnitude smaller than the magnitudes during an
ice cycle. This implies that if both mantle convection and ice mass variations were to
have a comparable influence on driving polar wander during ice ages on a time scale
of one million years, on time scales of 10,000–100,000years ice mass variations
would have a far greater influence than mantle convection. The question of whether
mantle convection, or ice age cycles, is the main driver of polar wander during recent
times is as old as the first observations of the secular drift of the rotation axis. Apart
from the direction discussed above, the figures of this Section might offer another
observable that could distinguish between ice ormantle convection being responsible
for TPW. If polarwanderwere triggered by subduction of ocean lithosphere, the polar
wander trend would be a smooth one over millions of years (e.g., Spada et al. 1992a),
without the ‘saw-teeth’ on a 100,000year time scale that are triggered by ice ages.
Might such saw-teeth be discerned from paleomagnetic data? Although it would be
an extremely important observation, chances that we might ever detect them are very
slim. If we consider the error bars in the TPW data of Besse and Courtillot (1991)
and compare them with the 0.1◦ accuracy in Fig. 4.12 that is needed to discern the
to-and-fro movements of the rotation axis, then we learn that there is a discrepancy in
accuracy of one to two orders of magnitudes. A lowering of the standard deviations
by one to two orders of magnitude seems to be virtually impossible. A polar wander
of 0.1◦ might even be below the threshold of intrinsic errors of paleomagnetic field
measurements (C. Duermeijer, personal communication), so it is very unlikely that
such small magnitudes might ever be discernible from paleomagnetic observations.
One last aspect worthmentioning concerns the behavior of polar wander in the future.
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It is clear that if a new ice age period were to begin, that is, if a ‘new Laurentide
ice sheet’ were to form over Canada, then the long-term trend before the present
would resume after time = 0 in Fig. 4.13. However, if there were not to be another
ice age period, then the polar wander would be as depicted in Fig. 4.13 for times
after time = 0. The movement of the rotation axis would be such that it would relax
towards the original position it had left 806,000years before the present (R. Gordon,
personal communication). Although it is not visible in the figure, there still would be
a difference between the two cases depicted in Fig. 4.13 after a long time had elapsed:
the rotation axis would go on moving in the direction it is moving at present, that
is, it would move on until the negative gravity anomaly created by the vanished ice
sheet over Canada were on the North Pole.

Here we see how important the question of the rheology of the lithosphere is for
the movement of the rotation axis. The curves in Figs. 4.13 and 4.14 are based on
a 5-layer model and a mantle with a uniform viscosity of 1021 Pa s. In the previous
Sect. 4.4 we saw that the viscosity of the upper mantle is more likely to be lower than
this value, and the viscosity of the lower mantle higher. The effects of both layering
and viscosity can be seen in Fig. 4.15.

Here we have used the 31-layer Earth’s model in Table4.3. The lithosphere is
elastic. The solid curve depicts the case of a uniform viscosity of 1021 Pa s again.
Although at first sight the differences with the corresponding curve in Fig. 4.13,
produced with a 5-layer Earth’s model, might not seem to be dramatic, the long-term
TPW rate does differ considerably between the two uniform 1021 Pa s cases upon
closer inspection (to see this the reader might put a ruler in such a way as to connect
the peaks in each of the curves). More eye-striking in Fig. 4.15 is the huge reduction
of polar wander for the case of a lower mantle viscosity of 1022 Pa s.

4.6 Ice Age True Polar Wander in a Compressible
and Non-hydrostatic Earth

This Sect. 4.6 is based on the Earth’s models of Sects. 3.7 and 3.8, in which the
material parameters vary continuously in terms of the Earth’s distance r from the
centre. Once the Green functions kTf − kT2 (t) and 1 + kL2 (t) are introduced into the
linearized rotation equations, the pole displacementm(t), Eqs. (3.65) and (3.66), can
be computed. For the ice loading, we consider only the last ice age, characterized by
linear glaciation and deglaciation phases of 90 and 10 kyr and the samemaximum ice
sheet inertia perturbations as inMitrovica et al. (2005),�I ice13 = −6.67×1031 kg m2

and �I ice23 = 2.31 × 1032 kg m2, where the self-explanatory superscript ice rather
than the L of Eq. (3.83) is used. In this Sect. 4.6, TPW displacement is positive
towards Russia, opposite to the sign convention of the previous TPW figures of this
chapter.

Figures4.16 and 4.17 compare the TWP displacements m(t) for compress-
ible (solid line) and incompressible (dashed line) models with the elastic and the
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Fig. 4.17 The TPW
displacement m(t) due only
to the last ice age for the
compressible (solid) and
incompressible (dashed)
PREM with the viscoelastic
lithosphere, νL = 1026 Pa s.
The lower mantle viscosity is
νLM = 1021 (a),
νLM = 1022 (b) and
νLM = 1023 (c)Pa s. The
small negative values of m(t)
indicate that the rotation pole
has crossed its initial position

viscoelastic lithospheres, both without considering any non hydrostatic contribution
from mantle convection that will be discussed later. TPW displacements are herein
computed for increasing lower mantle viscosities νLM , from 1021 (panel a) to 1023 Pa
s (panel c), both in Figs. 4.16 and 4.17.

The shape of TPW displacement curves is characterized by an increasing dis-
placement during the glaciation phase, from 10 to 90 kyr, away from Hudson bay
followed by a still ongoing displacement towards Hudson Bay. Starting from the
elastic lithosphere results, Fig. 4.16, the TPW displacements for the compressible
models are always smaller than those for the incompressible ones, except when
νLM = 1021 Pa s (panel a) in the time interval 120–200 kyr. This finding is in
agreement with the Green functions of Fig. 3.3, illustrating that the incompressible
lithosphere does not readjust to centrifugal forces and loads as fast as the more
deformable compressible one, and thus the ice age loading drives more efficiently
the polar wander for incompressible models.

As already observed from the Green functions, an increase of the lower mantle
viscosity νLM reduces the differences between the compressible and incompressible
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4.6 Ice Age True Polar Wander in a Compressible and Non-hydrostatic Earth 177

models, as clearly shown in Fig. 4.16c. The TPW displacements are always positive,
meaning that the rotation pole never crosses the initial north pole while it moves back
towards Hudson bay. Indeed the displacementsm(t) at t = 1Myr differ significantly
from the initial north pole position at zero, particularly for lower mantle viscosities
1021 and 1022 Pa s, Fig. 4.16a, b, and for the incompressible models. This shows
that each glaciation cycle moves the pole by a finite amount away from Hudson bay
not only for the layered incompressible models of Figs. 4.11, 4.12, 4.13 and 4.15 as
the secular term of Eq. (3.87) implies within the frame of normal mode expansion,
but also for continuous, compressible or incompressible models based on contour
integration in the complex plane: this finite amount is on the other hand smaller for
continuously stratified models, due to the overestimated density contrast between
the lithosphere and the outer atmosphere within the frame of 5-layer models.

The models with the viscoelastic lithosphere are depicted in Fig. 4.17. The
TPW displacements resemble those shown in Fig. 4.16 for the case of the elastic
lithosphere, although with some reduction in amplitudes. This behavior is more
effective for the lower mantle viscosity νLM = 1021 Pa s, characterized by almost a
factor of 2 reduction (compare panels (a) of Figs. 4.16 and 4.17). This indicates that
the difference between the viscoelastic lithosphere and the elastic one is the largest
for a soft lower mantle. Differently from Fig. 4.16, now the rotation pole crosses the
initial north pole at about 200 kyr, Fig. 4.17a, and at 700 kyr, Fig. 4.17b, both for com-
pressible and incompressible models, while for the lower mantle with high viscosity,
Fig. 4.17c, the crossing occurs at 500 kyr only for the compressible model. Thus the
TPW displacement of models with a viscoelastic lithosphere does not end up with
any finite displacement away from Hudson bay (Mitrovica et al. 2005). This drastic
reduction of the TPW displacement is due to the increased delay in the readjustment
of the hydrostatic equatorial bulge due to the high viscous viscoelastic rheology of
the lithosphere which stabilizes rotationally the planet or, we can say, over-stabilizes
the latter.

The drastic reduction of the TPW displacement when the viscosity of the vis-
coelastic lithosphere is reduced to that of the upper mantle, νL = 1021 Pa s, compared
to the elastic case, has been shown first in Vermeersen and Sabadini (1999), their
Fig. 8, for the full series of ice age cycles. Two effects are involved: first, the easier
relaxation of the lithospheric stresses accumulated during the polar excursion allows
the equatorial bulge to readjust faster, as shown by Fig. 3.7, and, second, the full
isostatic compensation of the load over the whole ice cycles reduces the perturbation
of the inertia tensor due to the ice age loading. The isostatic compensation is the
most effective in stabilizing the Earth’s rotation, as indicated by the reduction of the
TPW displacement. The importance of the full isostatic compensation in TPW pre-
dictions can be understood by considering that the viscoelastic lithosphere nullifies
the secular term responsible of a net shift of the rotation axis away from Hudson bay
after the end of each ice age cycle. Indeed, the load fluid Love number being kLf = 1
for the viscoelastic lithosphere, the factor s can be simplified from the numerator
and the denominator of Eq. (3.114), within the frame of normal mode analysis.

Although carried out with different values for the lithospheric viscosity νL , the
viscoelastic TPWcalculation ofVermeersen andSabadini (1999),Nakada (2002) and
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Mitrovica et al. (2005) and those given in Fig. 4.17 behave as expected on the basis
of the underlying physical hypotheses and are completely coherent among them-
selves and the importance of the viscoelastic rheology for the lithosphere, responsi-
ble for the delay of the readjustment of the hydrostatic equatorial bulge due to the
high lithospheric viscosity νL , is well explained within the frame of the “traditional
approach”, independently from any stabilizing effect of internal mass anomalies.

Another interesting observation can be drawn by comparing Fig. 4.4, based on
our work of the nineties, with our latest Figs. 4.16 and 4.17. For the lower mantle
viscosity of νLM = 1021 Pa s, the incompressible models, layered as in Fig. 4.4 or
continuous as in Figs. 4.16 and 4.17, double the TPW rate of the incompressible
model based on fixed density contrasts (Fig. 4.4, dashed curve) or that of the con-
tinuous compressible models (Figs. 4.16 and 4.17, solid curves), the latter carrying
the same non adiabatic density contrasts as the former incompressible fixed density
contrast model: we can deduce this result from the tangent to the displacement curves
in Figs. 4.16 and 4.17. The TPW rates of the fixed density contrast incompressible
model and those of the continuous compressible models are around the same, which
leads us to conclude that a) continuous or layered density profiles are equivalent, b)
incompressible models mimic the behavior of realistic compressible models once
only the major non adiabatic density discontinuities are taken in account and c) den-
sity increase for incompressible models is non adiabatic away from these density
discontinuities, as we can more rigorously argue on the basis of Sect. 1.2.2. Equation
(1.42) shows in fact that when the bulk modulus k goes to infinity, γ is necessar-
ily different from zero to sustain a density stratification, which is in this case non
adiabatic. These findings show that non adiabaticity makes the Earth rotationally
unstable in the lower mantle viscosity range νLM = 1021 − 1022 Pa s.

4.6.1 The Role of Mantle Heterogeneities

In order to estimate the correction β, Eq. (3.107), Mitrovica et al. (2005) consider
the difference between the observed fluid Love number kTf,obs and the tidal fluid limit
kTf,II coming from the second-order theory of the hydrostatic equilibrium figure of

the rotating Earth (Nakiboglu 1982). These authors found that β = kTf,obs − kTf,II =
0.008: this difference represents the non-hydrostatic contribution due to the lateral
density variations and dynamic topography sustained by convection.

Nakiboglu’s hydrostatic flattening is close to the values given by other authors
(Denis 1989; Alessandrini 1989). However as the β parameter is the small difference
between two large numbers (observed fluid Love number and tidal fluid limit), the
β deduced from these different authors only agree within 10%; notice that all these
papers are based onPREM(Dziewonski andAnderson 1981)whichwas in agreement
with an Earth’s mass and inertia that have been sligthly reevaluated since then.
The hydrostatic flattening according to Clairaut’s first order theory is essentially
controlled by I/Ma2 (Radau’s result, where I , M and a are the Earth’s, inertia, mass
and radius), a parameter equal to 0.3308 in PREM while the most recent estimate is

http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_3


4.6 Ice Age True Polar Wander in a Compressible and Non-hydrostatic Earth 179

Fig. 4.18 The TPW
displacement m(t) due to the
last ice age only of the
compressible (solid) and
incompressible (dashed)
PREM with the viscoelastic
lithosphere, νL = 1026 Pa s,
and the non-hydrostatic
correction β = 0.008. The
lower mantle viscosity is
νLM = 1021 Pa s (a),
νLM = 1022 Pa s (b) and
νLM = 1023 Pa s (c). The
negative values of m(t)
indicate that the rotation pole
has already crossed its initial
position

0.33069 (Chambat and Valette 2001). This reevaluation should reduce the predicted
hydrostatic flattening and, by consequence, increase β. Clearly a more rigorous
estimate of the hydrostatic flattening is needed but is beyond the goal of this book
(see Chambat et al. 2010). It seems qualitatively that the β parameter chosen by
Mitrovica et al. (2005) might be a conservative value that could be increased up to
β = 0.01. Mitrovica et al. (2005) were aware of the possible uncertainity on the β
parameter and indeed they consider the reasonable range 0.006 < β < 0.01 in their
Fig. 10.

Wenowquantify the effects of the slowmantle convection formodelswith a highly
viscous viscoelastic lithosphere, νL = 1026 Pa s, bymaking use of the same β correc-
tion as inMitrovica et al. (2005), namelyβ = 0.008 in Eq. (3.106). Figure4.18 shows
the effects of this non hydrostatic contribution to the equatorial bulge, to be compared
with Fig. 4.17. For the soft lower mantle νLM = 1021 Pa s (panels a of Figs. 4.17 and
4.18), the minor differences during the active loading glaciation-deglaciation phase,
from 10 to 100 kyr, are accompanied by large deviations at the end of the unloading.
At 100 kyr, the displacement is reduced by a factor of 3 with respect to the compress-
ible model and almost by a factor of 2 with respect to the incompressible one. For
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the higher lower mantle viscosities νLM = 1022 Pa s (panels b) and νLM = 1023 Pa s
(panels c), the effects of the non hydrostatic contribution are not as important. The
TPW displacement for νLM = 1021 Pa s is severely affected by the non hydrostatic
contribution and both compressible and incompressible models predict a change of
sign in the displacementm(t) at about 15 kyr after the end of deglaciation, Fig. 4.18a,
with the axis of rotation being displaced toward the deglaciated region with respect
to the initial north pole. The crossing of the initial north pole occurs earlier in time
also for the higher viscosity cases, Fig. 4.18b, c, but not as dramatically as for the
models with the soft lower mantle of νLM = 1021 Pa s.

This crossing of the initial north pole occurs both for the high viscosity lithosphere
and in the presence of a non hydrostatic correction β. It is a completely different
process than that due to the coupling in the linearized rotation equations of the
direction cosines m1(t) and m2(t) involved by the first term of the right side of
Eqs. (3.65) and (3.108), neglected in the present work followingMitrovica andMilne
(1998). This coupling explains the 14month Chandler wobble and a small amplitude
wobble with a period much larger than the 1Myr considered in Figs. 4.17 and 4.18.

We now investigate the sensitivity of the present-day TPW predictions to the
rheology of the lithosphere and to the β correction. Figure4.19 shows the present-
day TPW rate, namely the time derivative of the displacements of Figs. 4.16, 4.17 and
4.18 evaluated at 6 kyr after the end of unloading, as a function of the lower mantle

Fig. 4.19 The present-day TPW rate, here denoted by dtm(t), with β correction due to a single ice
age, evaluated at 6 kyr after the end of the deglaciation, as function of the lowermantle viscosity νLM ,
for PREM with the elastic lithosphere (thick solid line), the high viscosity viscoelastic lithosphere,
(dashed line), νL = 1026 Pa s, and with the non-hydrostatic contribution β = 0.008 (dash-dotted
line). The thin solid lines refer to the PREM with the hard viscoelastic lithosphere and the non
hydrostatic correction β varying from 0.002 to 0.016 by steps of 0.002, from top to bottom. The
sign of dtm(t) indicates whether the rotation pole moves forward to, negative, or go away from,
positive, the Hudson Bay
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viscosity νLM .We use the compressiblemodelwith a viscoelastic lithosphere (dashed
line) and we vary the β correction (thin solid lines) by steps of 0.002 from 0.002 to
0.016, around the value of 0.008 (dash-dotted line) used in Mitrovica et al. (2005).
The case with an elastic lithosphere is indicated by the thick solid line. In this figure,
only one ice cycle is considered. The largest sensitivity of TPW rates to lithospheric
rheology and β correction occurs for lower mantle viscosities νLM smaller than
1022 Pa s. At νLM = 1021 Pa s the predicted rates vary from −0.91deg/Myr, for
the model with the elastic lithosphere (thick solid line), to −0.29deg/Myr, for the
model with the viscoelastic lithosphere and the correction β = 0.008 (dash-dotted
line). As first shown by Mitrovica et al. (2005), the effects of the non hydrostatic
bulge is to dampen TPW rates when the lower mantle viscosity νLM is in the range
1021–1022 Pa s. For very large β corrections, 0.014 and 0.016, the damping effect of
the non hydrostatic bulge is made evident by the change of sign of the TPW rate,
indicating that the rotation pole crosses its initial position and is going now away
fromHudson bay once again. The non hydrostatic contribution from convection is so
effective in fixing the rotation axis that the pole of rotation comes back to its initial
position without any finite displacement of the pole or even over-shooting the initial
north pole.

A better comparison with Mitrovica et al. (2005) results, and a more realistic
estimate of present-day TPW rates, is obtained by considering the full series of
eight ice age cycles, as shown in Fig. 4.20. For the elastic lithosphere case and when
νLM = 1021 Pa s, adding the seven previous ice age cycles to the single one of
Fig. 4.19, increases the TPW rates by a factor of 2, while for νLM greater than
1022 Pa s the increase is only of 10% or less. On the contrary, for the model with the
viscoelastic lithosphere, both with or without the non hydrostatic contribution, the
previous seven ice ages have a negligible effect, the differences being lesser than 5%
for the whole range of lower mantle viscosity. This shows that the TPW rate remains
mostly sensitive to only the last ice age.

Fig. 4.20 The same as
Fig. 4.19, but for the full
series of eight ice ages
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Fig. 4.21 The present TPW
displacement m(t) due to the
full series of eight ice ages,
evaluated at 6 kyr after the
end of the deglaciation, as
function of the lower mantle
viscosity νLM , for PREM
with the elastic lithosphere
(thick solid line), the high
viscosity viscoelastic
lithosphere, (dashed line),
νL = 1026 Pa s, and with the
non hydrostatic correction
β = 0.008 (dashed-dot line).
The thin lines refer to PREM
with the viscoelastic
lithosphere and the non
hydrostatic correction β
varying from 0.002 to 0.016
by steps of 0.002, from top
to bottom. The negative
values of m(t) indicates that
the rotation pole has already
crossed its initial position.
The panel (b) shows the
enlargement of the panel
(a) in the range of −0.015 to
0.03◦

TPW predictions are sensitive to the previous seven ice ages mainly for lower
mantle viscosity in the range 1021 − 1022 Pa s as it results from the comparison of
Figs. 4.19 and 4.20 for themodel with the elastic lithosphere (thick solid lines).With-
out a high viscosity viscoelastic lithosphere or without a non hydrostatic contribution
from mantle convection, the only stabilizing effect is the delay in the readjustment
of the hydrostatic equatorial bulge to the axis of instantaneous rotation controlled by
the lower mantle viscosity νLM , which becomes smaller and smaller decreasing νLM

so making TPW sensitive to the previous ice cycles.
The damping effect due to the high viscosity of the lithosphere and to the non

hydrostatic contribution is more evident in the displacement of the rotation axis than
in the TPW rate, as we show in Fig. 4.21. After the eight ice age cycles, in the case
of the elastic lithosphere (thick solid line), the axis of rotation is displaced from its
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initial position by 0.27◦, at νLM = 1021 Pa s, and this value diminishes gradually with
the lower mantle viscosity to about 0.02deg/Myr at νLM = 1023 Pa s. The rheology
change from elastic (thick solid line) to viscoelastic (dashed line) lithosphere causes
reductions in the TPW displacements by factors ranging from 20, at νLM = 1021 Pa
s, to 2, at νLM = 1023 Pa s. The value obtained for our compressible model with
the elastic lithosphere and the low lower mantle viscosity of νLM = 1021 Pa s is
very similar to what is obtained in Vermeersen and Sabadini (1999) for a simpler 5-
incompressible model. The TPW displacements are subjected to further reductions
when a β correction is added. Particularly, for β = 0.008 (dash-dotted line), the
rotation pole crosses the initial north position. Generally, as shown in Fig. 4.21b,
the TPW displacements for the viscoelastic lithosphere range in a narrow interval of
−0.011◦ to 0.022◦ for any values of the lower mantle viscosity νLM , even without
the β correction.

The present-day TPW rates obtained by using the correction β = 0.008 reaches
at most −0.71deg/Myr for a lower mantle viscosity νLM = 8 × 1021 Pa s. This
is −0.29deg/Myr lower than the observed rate of −1deg/Myr. Our findings fully
support the results obtained by Mitrovica et al. (2005) and, having been obtained
on the basis of compressible Earth’s models which take into account continuous
variations of the material parameters, and thus relying on the contour integration
rather than on normal mode summation, they provide an independent confirmation.
Even if we consider models with elastic lithosphere we obtain the same TPW pre-
dictions once the tidal fluid limit kTf,E = 0.920 from modeling is replaced by the
estimate kTf,obs = 0.942 of Mitrovica et al. (2005), their Eq. (16). Indeed the stabi-
lizing effect of the larger non hydrostatic bulge for models with elastic lithosphere,
β = kTF,obs − KT

F,E = 0.022, would be quantitatively the same of the two stabilizing
effect acting in the case ofmodelswith the highly viscous viscoelastic lithosphere: the
delayed readjustment of the equatorial bulge togetherwith the smaller nonhydrostatic
bulge, β = kTf,obs − kTf,V = 0.008. This means that TPW studies cannot discriminate
between the effects of the lithospheric rheology and of the lateral density variations
and dynamic topography sustained by convection. In any case, the parameter β has
to be consistent with mantle convection models.

TPW predictions using the traditional approach where the equilibrium flattening
is self consistently computed (Sabadini and Peltier 1981; Sabadini et al. 1982a; Wu
and Peltier 1984) and the scheme proposed by Mitrovica et al. (2005) where the
observed tidal fluid number is considered differ in the lower mantle viscosity range
νLM = 1021 − 1022 Pa s. The motion of the rotation axis, given by the linearized
Liouville equation (3.65), depends on the load-induced perturbation, 1+ k̃ L2 (s), and
on the readjustment of the equatorial bulge, kTF − k̃T2 (s). Over the time of ice age,
the load, k̃ L2 (s), and tidal, k̃T2 (s), Love numbers, computed for models with an elastic
and high viscous viscoelastic lithosphere are the same. Nevertheless, the traditional
approach leads to different TPW predictions due to the fact that the high viscous
viscoelastic lithosphere implies an extra delay of the readjustment of the equatorial
bulge, compared to the elastic lithosphere. The elastic and viscoelastic lithospheres
are indeed associated with different stress patterns. Frozen stresses are present in the

http://dx.doi.org/10.1007/978-94-017-7552-6_3
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elastic lithosphere before and after the glaciation, while the viscoelastic lithosphere
is initially stress free and it builds up stress that cannot relax during the polar motion
for high lithospheric viscosities.

In order to take into account the difference between observed and modelled tidal
fluid numbers, Mitrovica et al. (2005) introduce the β-correction, Eq. (3.107). This
scheme represents a first attempt to couple mantle convection with ice age TPW
within a linear rotation theory. As first enlightened by Mitrovica et al. (2005), this
ice age-convection coupling dampens present-day ice age TPW rates since the non
hydrostatic extra bulge, frozen within the planet, stabilizes the planet by slowing
down the displacement of the axis of rotation away from this fixed orientation so
effectively that the rotation pole goes back to its initial position at large time.

With the extra degree of freedom given by the parameter β, models with elastic
and highly viscous elastic lithosphere lead to the same ice age TPW prediction. It
is therefore difficult to choose the most appropriate lithospheric rheology when the
distinction is made between the actual shape of the Earth and its equilibrium shape.
We agree however with Mitrovica et al. (2005) that using a viscoelastic lithosphere
in the framework of the traditional theory seems reasonable because it is simpler (but
not necessary true) to start from a relaxed lithospheric stress and because the tidal
fluid limit from the viscoelastic modelling is closer to observation and thus a smaller
mantle contribution β needs to be introduced.

The present-day value of β, related to the excess flattening due to mantle con-
vection, cannot be best evaluated than by subtracting the computed hydrostatic tidal
fluid limit to the observed fluid Love number, Eq. (3.107). On geological time scale,
as the Earth is constantly reorienting to maximize its equatorial inertia, i.e., to be
more flattened than the hydrostatic estimate, β should always remain positive except
maybe during exceptional inertial interchange polar excursion (Richards et al. 1999).
The value of the non hydrostatic contribution β due to convection can be estimated
by means of convection models or, for the last hundred million years, from paleo-
reconstruction of plate tectonics (Ricard et al. 1993b). The difference between the
time dependent inertia terms remains of the same order than Mitrovica et al. (2005)
estimate of 0.008 within a factor 2. This means that the Earth’s rotation axis is
always very stable with respect to short term forcings like glaciations: as soon as the
forcing vanishes, the mantle anomalies force the rotation axis to come back to its
initial position. Mantle convection, can drive large TPW displacements (Spada et al.
1992b).

Once the Mitrovica et al. (2005) estimate of the correction β = 0.008 is taken
into account, the highest present-day TPW rate of 0.71deg/Myr from glacial forcing
is obtained for a lower mantle viscosity of 1022 Pa s, which means that at least 30%
of the observed value of 1deg/Myr remains unexplained. This implies that mantle
convection, or other mechanisms such as large earthquakes must contribute to polar
motion to be compliant with observations. Recent mantle circulation models by
Schaber et al. (2010), characterized by a large heat flux at the core-mantle boundary,
require a lower mantle viscosity of 1023 Pa s to stabilize the planet rotation, leading
to TPW rates of about 0.5deg/Myr in rough agreement with the direction towards
Newfoundland in the last 100Myr. The first self-consistent TPW calculations from

http://dx.doi.org/10.1007/978-94-017-7552-6_3
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mantle convection have been obtained by Ricard et al. (1993) and already required
a substantial increase in the lower mantle viscosity, 1022 Pa s at least, to rotationally
stabilize the planet. The ice age TPW in addition to the TPW driven by mantle
convection and earthquakes are thus needed to fulfill observations, requiring lower
mantle viscosity ranging from 1022 to 1023 Pa s. If this is the case, the β-correction
proposed byMitrovica et al. (2005) would only impact marginally the estimate of ice
ageTPWrates, as itwould be the high viscosity of the lowermantle thatwould control
the TPW. It is notable that an inconsistency for lower mantle viscosity predictions
between glacial and convection forcing continues to exist. Indeed, for the Schaber
et al. (2010) estimate of 1023 Pa s lower mantle viscosity, glacial forcing would
provide at most TPW rates of 0.1deg/Myr that, summed to the convection TPW rate
of 0.5deg/Myr, would not explain the observation of 1deg/Myr. The exact balance
of the TPW, between deglaciation and other forcing, is therefore not yet understood.
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Chapter 5
Detection of the Time-Dependent Gravity
Field and Global Change

Abstract In this chapter we consider the effects on J̇� due to both the deglaciation
of the Pleistocene and present-day ice loss in Antarctica and Greenland. The secular
drift up to degree 6 from time series of the zonal coefficients of the Earth’s gravity
field from Satellite Laser Ranging (SLR) data are compared with predictions from
viscoelastic Earth’s models forced by PGR, to infer the mantle viscosity and the
present-day ice instabilities in Antarctica and Greenland. The cumulative effects of
the spherical harmonic perturbations on the gravity field is analyzed on the basis of
the GRACE space gravity mission, to enlighten the importance of a precise PGR
modeling for a correct interpretation of the anomalous gravity pattern from GRACE.
Global deformation patterns from PGR are shown, in terms of vertical and horizontal
displacements. We show how it is possible to make use of GRACE data to develop a
new branch of seismology, whichwe name “gravitational” seismology, to retrieve the
source parameters of giant, thrust earthquakes at subduction zones, as the Sumatran,
2004, and Tohoku-Oki, 2011, earthquakes. We develop the Gravitational Centroid
Moment Tensor solution (GCMT) for a point source, for the Tohoku-Oki earthquake,
comparing it with classical solutions from wave seismology.

5.1 Changes in the Long-Wavelength Geoid Components
from Satellite Laser Ranging Techniques

In the dynamic Satellite Laser Ranging (SLR) data analysis, the satellite’s orbit can
be used as a gravity probe to monitor the time-varying gravity field. A long history of
SLR observations of the geodetic satellites LAGEOS-I, LAGEOS-II, Starlette and
Stella have been analyzed by Devoti et al. (2001) to estimate the time series of the
low degree zonal coefficients in the Earth’s gravity field and derive their secular drifts
up to 6 degrees. Comparison of these zonal rates with the results of the viscoelastic
Earth’s models in Chaps. 1 and 2, forced by PGR, shows that the SLR-retrieved even
and odd zonals can be used today to infer the mantle viscosity and the lithospheric
thickness. The a-dimensional components of the perturbation of the gravitational
potential of the Earth are defined as J�(t) = − a

Gφ�
�0(t), which means that φ�

�0(t)
is divided by the gravitational potential of a unitary mass located at the north pole
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at the Earth’s surface, according to Eq. (1.219) for ML = 1 kg and rL = a, in order
to make J�(t) a-dimensional. In the following, the symbol � for the perturbation of
the J�(t) or J̇�(t) is omitted, to not overwhelm the writing.

In Devoti et al. (2001) the observations of four geodetic satellites are analyzed for
the period 1987–1998, spanning 11years of LAGEOS-1 and Starlette observations
and 5 and 4years of LAGEOS-2 and Stella observations. Unmodeled and mismod-
eled tidal and non-gravitational perturbations could in principle affect the long-term
gravity signal and may partly explain the discrepancies between the time derivatives
of the zonals given in Tables5.1 and 5.2.

Another critical point in treating a long period of tracking data arises from the
lack of homogeneity in data quality and distribution. Devoti et al. (2001) provide a
detailed description of the techniques applied to recover the zonals given in Tables5.1
and 5.2. Figure5.1 shows the characteristics of the satellites which have been used
to retrieve the SLR solution analyzed in this chapter. Figure5.2 shows the MLRO
(Matera Laser Ranging Observatory) of the Centre of Space Geodesy “G. Colombo”
in Matera (Italy) (Italian Space Agency, ASI) for SLR analyses.

Exercise 20 Making use of the � = 2 loading Love number kL2 for the uniform
viscoelastic Earth’smodel obtained from the Exercise 11 inChap. 2, and a = 6.371×
106 m,ρ = 5517kg/m3, g = 9.8m/s2 andME = 5.976×1024 kg, evaluate themantle
viscosity ν so that it fits the modeled J̇2 with the observed value −2.9× 10−11 yr−1

Table 5.1 Even degree zonal secular drift estimated by different authors, units: 10−11 yr−1

Author J̇2 J̇4 J̇6

Yoder et al. (1983) −3.0

Rubincam (1984) −2.6 ± 0.6

Cheng et al. (1989) −2.5 ± 0.3 0.3 ± 0.6

Gegout and Cazenave (1993) −2.8 ± 0.4

Eanes (1995) −2.4 ± 0.2

Nerem and Klosko (1996) −2.8 ± 0.3 0.2 ± 1.5

Cazenave et al. (1996) −3.0 ± 0.5 −0.8 ± 1.5

Cheng et al. (1997) −2.7 ± 0.4 −1.4 ± 1.0 0.3 ± 0.7

Devoti et al. (2001) −2.9 ± 0.2 0.6 ± 0.5 0.3 ± 0.3

Table 5.2 Odd degree zonal secular drift estimated by different authors, units: 10−11 yr−1

Author J̇3 J̇5 J̇odd J̇odd
( J̇3 + 0.837 J̇5) ( J̇3 + 0.9 J̇5)

Nerem and Klosko (1996) 1.6 ± 0.4

Cheng et al. (1997) −1.3 ± 0.5 2.1 ± 0.6 0.5 0.6

Devoti et al. (2001) 0.5 ± 0.2

Regarding Cheng et al. (1997), the J̇odd data are obtained from the merging of the two separate odd
zonals according to the coefficients appearing in the first row
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Fig. 5.1 Satellites for laser tracking used in the SLR analyses of this chapter, with the Earth in the
background

obtained byDevoti et al. (2001),with themass of the ice load beingMI = 2×1020 kg,
assuming for simplicity θ = 0◦ and that the whole ice sheet melted instantaneously
12 × 103 yr ago (Answer: ν = 1.78 × 1021 Pa s, lower branch, and 8.5 × 1023 Pa s,
upper branch).

In order to explore the capability of our SLR-retrieved zonals to infer the mantle
viscosity and the lithospheric thickness L , we model the viscoelastic response of our
planet to Pleistocene deglaciation, the major contributor to the zonal rates given in
Tables5.1 and 5.2; the ice model is the ICE-3G by Tushingham and Peltier (1991), as
appropriate as the ICE5G (Peltier 2004) and ANU (Australian National University)
(Nakada et al. 2015) ice models when dealing with the geophysical observables
which depend on the gross features of the loading history, as the low harmonics of
the gravity field. In this section, present-day forcing is not included in the modeling,
and we thus assume that Pleistocene deglaciation is the only forcing contributor. We
can look for discrepancies in the results of the modeling as possible indicators for
present-day ice melt or growth. In Figs. 5.3 and 5.4 a χ2 analysis is carried out for
each of the zonals in Tables5.1 and 5.2 estimated by Devoti et al. (2001) in order to
explore their preferred lower and uppermantle viscosities, ν2 and ν1, and lithospheric
thickness, L , and to elucidate possible discrepancies among these best-fit parameters.
The χ2 analysis for each zonal separately is given by

χ2 = (
J̇ mod
l − J̇ obs

l

σ obs
l

)2, (5.1)



192 5 Detection of the Time-Dependent Gravity Field and Global Change

Fig. 5.2 MLRO (Matera Laser Ranging Observatory) of the Centre of Space Geodesy
“G. Colombo” in Matera, Italy (Italian Space Agency, ASI.)

where J̇obs and J̇mod correspond to the zonal in the tables and that retrieved from the
models, respectively; σl represents the standard deviation of the observed value.

The region where χ2 attains its (local) minimum gives the best fit between
observed and modeled values. In agreement with Vermeersen et al. (1998) where,
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Fig. 5.3 χ2 analysis for the time derivatives of the zonals by Devoti et al. (2001) given in Tables5.1
and 5.2 for varying upper and lower mantle viscosities

except for the oddone, theχ2 analysiswas carriedout for all the zonals simultaneously
or the zonal plus TPW, the best fit in Fig. 5.3 falls into twomain regions, one in which
the lower mantle viscosity ν2 is high, of the order of 1023 Pa s or higher, and another
one in which it is of the order of 1021 Pa s or lower.

Figure5.3 shows that the tendency of this multiplicity of solutions is a character-
istic of each zonal. The best-fit ν2 varies among the zonals, with a clear tendency
for J̇odd , J̇4 and J̇6 towards lower mantle viscosities that fall beyond the limits stated
above, with ν2 < 1021 Pa s and ν2 > 1023 Pa s. By contrast, the best-fit lower mantle
viscosity for J̇2 is 21.2 in the logarithmic scale. This discrepancy between J̇2 and
the other zonals indicates that, beyond post-glacial rebound, another mechanism of
mass redistribution must be active. Another interesting result in Fig. 5.3 is that the
best-fit upper mantle viscosity is lower than 1021 Pa s, for ν2 = 1021.2: in particu-
lar, ν1 = 1020.6 Pa s for J̇2. For the best-fit corresponding to ν2 > 1023 Pa s, it is
interesting to note that the upper mantle viscosity should be higher than 1021 Pa s.

These results indicate an upper mantle viscosity considerably lower than 1021 Pa s
for a lower mantle viscosity of the order of 1021−1022 Pa s, in good agreement with
previous findings (Nakada and Lambeck 1989; Forte andMitrovica 1996). The zonal
analysis carried out in Fig. 5.3 shows that the sensitivity to lower mantle viscosity
variation is highest for J̇2 and J̇odd , lowest for J̇6 and somehow intermediate for J̇4.
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Fig. 5.4 χ2 analysis for the time derivatives of the zonals by Devoti et al. (2001) given in Tables5.1
and 5.2 for varying upper mantle viscosity and lithospheric thickness

The highest sensitivity to upper mantle viscosity variations is portrayed by J̇2 for ν2
of the order of 1021 Pa s, and by the other zonals for ν2 of the order of 1023 Pa s.

The same χ2 analysis is carried out in Fig. 5.4 for lithospheric thickness and
upper mantle viscosity. As observed in Fig. 5.3, the preferred upper mantle viscosity
is generally lower than 1021 Pa s. In particular, a local minimum in J̇6 corresponds
to an upper mantle viscosity of 20.5 in logarithmic scale.

Consistent with J̇6, the log of upper mantle viscosities of about 20.5 are indicated
by J̇odd . This tendency to uppermantle viscosities lower than 1021 Pa s is portrayed by
J̇2 and J̇4 too, although the sensitivity to upper mantle viscosity variations is lowest
for J̇4. When we consider the best-fit lithospheric thickness, it is remarkable that J̇6
and J̇odd are sensitive to lithospheric thickness variations and favour a lithosphere
of 60–100km. This finding is in contrast with J̇2, where local minima indicate a
lithospheric thickness lower than 40km, as also preferred by J̇4, or higher than
180km. This discrepancy could also be interpreted as an indication of ongoing mass
redistribution over the Earth.

Some interesting observations arise if we compare the viscosity values that fit the
various harmonics or we test the mutual consistency of the different SLR analyses
in Tables5.1 and 5.2. For an upper mantle viscosity of 1021 Pa s, J̇2 can be fitted
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by a lower mantle viscosity of 1.5 × 1021 Pa s, while J̇odd in this section or in
Cheng et al. (1997) requires a lower mantle viscosity of 2−6× 1020 Pa s; the datum
in Nerem and Klosko (1996) for J̇odd requires 1.0 × 1021 Pa s. The J̇4 from Nerem
and Klosko (1996) and the SLR analysis carried out in this section agree within 2σ ,
but the sign is opposite with respect to the model predictions. Our modeling, with a
mantle viscosity of 1021 Pa s, agrees in amplitude and sign with Cheng et al. (1997)
but only in amplitude with the SLR analysis by Devoti et al. (2001). For J̇6, our SLR
analysis agrees with Cheng et al. (1997) and is coherent with our model predictions
as far as the amplitude is concerned, but is opposite in sign. These findings show that
discrepancies still exist between model predictions and the various SLR analyses, as
well as among the SLR analyses themselves.

These results show that SLR-retrieved low degree geoid components J2 and Jodd
can be used in principle to constrain the rheology of the mantle and lithospheric
thickness. Discrepancies in the viscosity values needed to fit the zonal rates when
Pleistocene deglaciation is the only forcing mechanism are a strong indication that
mass redistribution is actually occurring over the Earth, eventually being associated
with mass instabilities in Greenland and Antarctica, as also suggested by Johnston
and Lambeck (1999): these arguments are explored in the following section.

5.2 Trade-Off Between Lower Mantle Viscosity
and Present-Day Mass Imbalance in Antarctica
and Greenland

Two major mechanisms are responsible for the secular changes in the gravitational
field: the Pleistocene deglaciation, as shown in Fig. 4.2, and the present-day mass
instability in Antarctica, Greenland and Alpine glaciers. The Earth is affected today
by the first mechanism because of the viscous memory of the mantle and by the
second due to ongoing surface mass redistribution.

In the previous section, comparison between SLR-retrieved zonals and predic-
tions from viscoelastic models driven solely by Pleistocene deglaciation showed that
this mechanism cannot be the only source of time variations of the gravity field. In
fact, discrepancies in the viscosity profiles required to reproduce the different zonals
when the only forcing mechanism is PGR seem to indicate ongoing mass redistrib-
ution over the Earth as related to global change and eventually associated with mass
instabilities in Antarctica and Greenland. Both the even and odd zonal geopotential
components of the gravity field, up to harmonic degree l = 6, are used in this section
in conjunction with the modeled ones to infer the key parameters that control the
two major mechanisms above: the viscosity, characterizing the flow properties of the
mantle, and the ice mass imbalance in Antarctica and Greenland, which are thought
to be the contributors to ongoing mass redistribution.

http://dx.doi.org/10.1007/978-94-017-7552-6_4
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The J̇odd contribution by Devoti et al. (2001) in Table5.2 can be better estimated
by the following expression appropriate for a single satellite solution (Starlette)
(Schutz et al. 1993)

J̇odd = J̇3 + 1.04 J̇5 − 0.53J7 − 0.81 J̇9 + 0.13 J̇11
+ 0.52 J̇13 + 0.06 J̇15 − 0.3 J̇17 − 0.11 J̇19 + 0.14 J̇21. (5.2)

The highest odd zonals are not considered since they would enter Eq. (5.2) with
coefficients smaller than 0.1. Except for J̇odd of Eq. (5.2), we will assume in our
study that all the other zonals are sufficiently well separated so as to draw sound
geophysical conclusions. In this section, we make use of the zonal secular drifts of
Cheng et al. (1997) andDevoti et al. (2001) given inTables5.1 and 5.2, except for J̇odd
in Devoti et al. (2001) now based on Eq. (5.2). These data are used to constrain the
upper and lower mantle viscosities and the amount of mass imbalance in Antarctica
and Greenland by means of the χ2 analysis for each zonal separately, as discussed
in the previous section, in order to emphasize that the simultaneous fit of all the
zonals can occur only for a specific range of lower mantle viscosity values and ice
mass imbalance, which allows the minima in χ2 for the different J̇l to overlap in the
viscosity space.

Ice mass imbalance in Antarctica and Greenland is varied until the best-fit lower
mantle viscosities obtained from Eq. (5.1) are the same for all the zonals. Ice mass in
Antarctica is varied in our modeling within the bounds of−500 to+400 Gt/yr, as per
previous observations of grounded ice (Warrick et al. 1996; Bentley and Giovinetto
1991; Jacobs 1992). For Greenland we have considered the case of ice loss from 0
to −144Gt/yr, the latter corresponding to a sea-level rise of 0.4mm/yr for a 1 ◦C
warming (Oerlemans 1991). The viscoelastic part of the Earth’smodel is only needed
for the Pleistocene deglaciation, while present-daymass imbalance in Antarctica and
Greenland requires the elastic component. A better physical insight into the results of
the viscosity inversion can be gained if we show first the dependence of the J̇l on the
lowermantle viscosity and on the rate ofmelting in the polar regions. In Fig. 5.5 the J̇l
are shown as a function of lower mantle viscosity for Pleistocene (solid), Pleistocene
plus ice loss in Antarctica of −500Gt/yr (dashed), and Pleistocene plus ice loss
in Antarctica and Greenland of −500 and −144Gt/yr (dotted), with J̇odd based on
the Eq. (5.2). Note the sensitivity of the zonals to lower mantle viscosity variations
and the dominant effect of ice loss in Antarctica with respect to Greenland. The
peak value in the J̇2 in the solid curves for the Pleistocene deglaciation is displaced
from 2× 1022 hboxPa s, corresponding to J̇2, towards lower values of lower mantle
viscosity for increasing harmonic order, in agreement with Mitrovica and Peltier
(1993), down to 3 × 1021 Pa s for J̇6. The modeled zonals show the tendency to
admit two intersections of the model results, with the horizontal stripes depicting
the Cheng et al. (1997), Devoti et al. (2001) zonal secular drifts, light and dark
gray, respectively, thus providing two possible lower mantle viscosities. The lower
viscosity solution corresponds to a situation of sustained flow in the mantle and a
present-day configuration which is close to global post-glacial isostatic equilibrium,
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Fig. 5.5 J̇l as a function of lower mantle viscosity, ranging from 1021 to 1023 Pa s. The numbers
in the top, left part of the panels indicate the harmonic degree or the cumulative odd degrees as in
Eq. (5.2), in the bottom, right panel. Upper mantle viscosity is fixed at 5× 1020 Pa s. The light and
dark gray stripes stand for the Cheng et al. (1997), Devoti et al. (2001) solutions. Solid curves corre-
spond to Pleistocene deglaciation, dashed ones to Pleistocene plus maximum ice loss in Antarctica
and the dotted ones include maximum ice loss in Greenland. The modeled results for J̇odd stand
for the combination of zonals given by Eq. (5.2)

while the higher viscosity solution corresponds to reduced mantle flow and large
isostatic disequilibrium. The solid curves show that Pleistocene forcing does not
allow a simultaneous fit of the SLR data for all the zonals with the same lower
mantle viscosity. The scenarios of ice mass imbalance in Antarctica and Greenland
suggest that this inconsistency, already noted in the previous section, could be due
to some amount of ice mass instability occurring today in these two regions but not
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included in the solid curves. The dashed and dotted curves show how ice loss in
Antarctica and Greenland impacts the results of the Pleistocene deglaciation.

With respect to the Pleistocene solid curves, the effects ofmelting inAntarctica are
to displace the peak values in J̇l in the direction of theCheng et al. (1997),Devoti et al.
(2001) data for the even and odd zonals, eventually exceeding the data themselves as
shown by the dashed curves for J̇6 and the odd zonals because of the extreme value
of −500Gt/yr used in the simulations. Comparison between the dashed and dotted
curves shows that ice loss in Greenland reinforces the effects of Antarctica on the
even zonals and counteracts Antarctica on the odd ones (Mitrovica and Peltier 1993;
James and Ivins 1997). These results indicate that ice growth in Antarctica must
be excluded because it would cause a displacement of the Pleistocene curves in the
opposite direction with respect to Cheng et al. (1997) and Devoti et al. (2001), while
at the same time suggesting that present-day mass imbalance may make possible to
solve for the inconsistencies in the lower mantle viscosity inferences noted above.

In the following figures, both SLR solutions are used within a χ2 approach, where
ice mass loss in Antarctica and Greenland is added to Pleistocene deglaciation;
the effects of Alpine glaciers are negligible and have not been considered. Since
Antarctica is the largest contributor, we have adopted the strategy of constraining ice
loss in Antarctica first by means of Cheng et al. (1997), where the odd zonals are not
contaminated by higher harmonic components; the effects of ice loss in Greenland
on viscosity estimates are then analyzed. After having explored all the possibilities
for ice loss in Antarctica between 0 and −500Gt/yr, we find that the best-fit lower
mantle viscosities from the different zonals in Cheng et al. (1997) are the same
if ice mass imbalance is close to −250Gt/yr, which will be used throughout. The
left columns in Figs. 5.6 and 5.7 correspond to this scenario and provide the χ2

patterns for the zonal secular drifts of Cheng et al. (1997) and Devoti et al. (2001),
respectively; melting in Greenland at the rate of −144Gt/yr is added in the right
columns. χ2 varies as a function of upper and lower mantle viscosity, horizontal
and vertical scales, respectively. The grey scale provides the χ2 values, with the
minima providing the best-fit solutions given by the darkest gray. Figure5.6, left
column, shows that for −250Gt/yr of ice loss in Antarctica the best-fit lower mantle
viscosity log solutions overlap for all the zonals and that for the best resolved zonals
J̇2, J̇3 and J̇5 the χ2 minimum does not coincide with 21.2, corresponding to the
first intersection of the J̇2 solid curve with SLR data, top left panel in Fig. 5.5, but
is displaced to higher values, 21.6–22.0 in logarithmic scale; J̇4 and J̇6 are coherent
with this picture, although less resolved. A substantial change in the rate ofmelting in
Antarcticawith respect to−250Gt/yrwould not allow a simultaneous fit of the zonals
with the same viscosity profile. This imbalance of −250Gt/yr is within the range of
−500 to 400Gt/yr resulting from observations of grounded ice but is higher than the
−60 ± 76Gt/yr, mainly fromWest Antarctica, obtained from 5yrs of satellite radar
altimeter data (Wingham et al. 1998). This discrepancy could arise from the adopted
Pleistocene forcing model ICE-3G or from the underestimation, in the treatment of
radar altimeter data, of the accumulation rate that could have hidden an imbalance
larger than the −60Gt/yr (Wingham et al. 1998). When Greenland is added, right
column, the tendency to higher lower mantle viscosities is reinforced. J̇2 portrays a
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Fig. 5.6 χ2 patterns for the
J̇l , Eq. (5.1), as a function of
upper and lower mantle
viscosities, these parameters
varying as shown by the
horizontal and vertical
scales. Observational data
are taken from the Cheng
et al. (1997) solution,
Tables5.1 and 5.2. The
minima correspond to the
darkest gray. Pleistocene
plus ice loss in Antarctica
(−250Gt/yr) are considered
in the left column. In the
right column ice loss of
−144Gt/yr in Greenland is
added
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Fig. 5.7 χ2 patterns for the
J̇l , as in Fig. 5.6, for the
Devoti et al. (2001) solution,
with J̇odd given by the
combination of Eq. (5.2).
The left and right columns
correspond to the same
forcing in Fig. 5.6

single minimum at 22.0–22.8 for the log of the lower mantle viscosity, in agreement
with the now better defined minima of J̇4 and J̇6. J̇3 now splits into two possible
viscosity solutions, with the highest viscosity still coherent with the patterns of the
other zonals. χ2 portrays a weak dependence on the upper mantle viscosity for all
the zonals. Cheng et al. (1997) provide a clear indication for ice loss in Antarctica
and for a further viscosity increase in the lower mantle once ice loss in Greenland
is added to that in Antarctica. Intermediate values of ice loss in Greenland between
0 and −144Gt/yr would provide values of the log of the lower mantle viscosities
between 21.6–22.0 and 22.0–22.8. The χ2 patterns relative to the Devoti et al. (2001)
solution, Fig. 5.7, are in close agreement with Cheng et al. (1997) as far as J̇2 and
J̇6 are concerned, with higher resolution in the location of the minima, but differ in
J̇4, portraying two possible viscosity solutions as expected, on the other hand, on
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the basis of Fig. 5.3. J̇odd cannot be directly compared with the separate J̇3 and J̇5
in Cheng et al. (1997), being a summation of a larger number of odd zonals, but
it is remarkable that it portrays some similarities with the Cheng et al. (1997) odd
components. The lowest χ2 value region in fact overlaps in the two SLR solutions,
with a better defined minimum in Cheng et al. (1997) of χ2 = 0.0−0.2 with respect
to 1.4–1.6 in Devoti et al. (2001), contaminated by several odd zonals. When ice loss
in Greenland is added in the right column, the tendency towards higher lower mantle
viscosities also appears in Fig. 5.7. The lowest χ2 value for J̇odd and upper mantle
viscosities of the order of 1020 Pa s now overlaps with the minima of the other zonals,
improving the coherence with Cheng et al. (1997).

The J̇l results can be strengthened by TPW simulations. Historical and modern
polar motion data, as given in McCarthy and Luzum (1996), are now compared
with modeled TPW predictions to validate, by means of an independent source, the
results obtained solely on the basis of the SLR analysis. Figure5.8 shows the TPWχ2

patterns when the observational datum of 0.333±0.008 arcsec/century is considered
(McCarthy and Luzum 1996) with the top and bottom panels corresponding to the
same forcing of the left and right columns in Figs. 5.6 and 5.7, respectively. Note the
overlapping of the TPWand J̇2 χ2 minima for the log of the lowermantle viscosity of
21.8 when ice loss is limited to Antarctica, top panel. This finding solves the apparent

Fig. 5.8 χ2 patterns for
TPW. The top panel
corresponds to Pleistocene
deglaciation and ice loss in
Antarctica, while ice loss in
Greenland is added in the
bottom panel
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paradox noted in the past consisting of TPW data systematically requiring higher
values of lower mantle viscosities with respect to J̇2 when Pleistocene deglaciation
is the only forcing mechanism (Vermeersen et al. 1997). In the bottom panel, the
TPW pattern favors an increase of the log of the lower mantle viscosity to 22.4–22.6,
in agreement with J̇l simulations for melting in Greenland of −144Gt/yr. Ice mass
imbalance in Greenland does not degrade the coherence between the lower mantle
viscosity inferred from the J̇l and TPW obtained in the top panel.

We have thus obtained that the χ2 viscosity patterns based on the low degree
J̇l in Cheng et al. (1997) are the same if the rate of melting in Antarctica is con-
strained to −250Gt/yr, corresponding to a sea-level rise of 0.7mm/yr, and if the
lower mantle is more viscous than the upper mantle. This scenario is coherent with
Devoti et al. (2001), even if the J̇3 and J̇5 zonals are contaminated by higher degree
contributions. The tendency of the lower mantle viscosity solutions towards values
higher than 1021 Pa s whenmelting in Antarctica is added to Pleistocene deglaciation
agrees with previous indications based on the temporal variations of the gravity field
(Mitrovica and Peltier 1993; Nerem and Klosko 1996). In particular, our inference
of lower mantle viscosity when Antarctica is the major contributor to present mass
imbalance is in close agreement with the findings of a previous analysis by Johnston
and Lambeck (1999) based solely on J̇2, on the assumption that the non-steric com-
ponent of sea-level rise is 1mm/yr. The novelty of our analysis stands on the release
of this assumption on sea-level rise thanks to the joint use of the accurately detected
even and odd zonal components of the SLR-retrieved gravity field. The non-steric
component of sea-level rise that results from our study is at most 1.1mm/yr, of which
0.7 from Antarctica and 0.4mm/yr from Greenland, within the best estimate total
sea level rise of 1.8mm/yr, which includes 0.4mm/yr of thermal expansion of the
oceans. Our analysis reconciles lower mantle viscosity inferences from Pleistocene
deglaciationwith those based on the long-wavelength, static components of the geoid
anomalies and true polar wander driven by internal mass heterogeneities, which indi-
cate a lower mantle more viscous than the upper mantle (e.g. Hager 1984; Sabadini
and Yuen 1989; Ricard et al. 1993; Forte andMitrovica 1996). This unification of the
viscosity inferences resulting from geodynamical processes spanning different time
scales, from thousands to hundreds of millions of years, is made possible nowadays
bymeans of the accurate detection of the even and odd zonal components of the time-
dependent gravity field, proving that the SLR technique will remain a fundamental
tool to constrain the global dynamics of our planet.

5.3 Time Dependent Gravity Field from the GRACE
Space Mission: The Importance of PGR Models

Dedicated satellite gravity missions like GRACE contribute substantial improve-
ments towards the higher harmonics, with respect to the previous sections of this
chapter (e.g. Kaufmann 2000; Velicogna and Wahr 2002; Wahr and Davis 2002).
This section enlightens the importance of the PGRmodels built on the incompressible
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fundamental solution Y�, Eq. (2.42), for a correct interpretation of the secular com-
ponents of the time dependent gravity field derived from GRACE. Any kind of
geophysical process, that is responsible for the redistribution of mass over the Earth
and within the mantle, changes the gravity field whose variations are monitored by
GRACE space gravity mission, at higher wavelengths with respect to those consid-
ered in the previous sections.

The correct identification of the gravitational spatial and temporal signature of
each geophysical process, from hydrology, from the atmoshpere, the oceans, and
from the solid Earth, is thus extremely important to correctly estimate the most
important phenomena related to global changes, such as the present-day ice mass
loss in Greenland and Antarctica and the related effect on sea-level changes: the
latter in fact depend on an accurate determination of PGR, which in turn depends on
the assumed solid Earth’s parameters entering the fundamental solution Y� and on
the deglaciation model.

The time dependent surface density anomalies due to PGR can be converted
into water equivalent (w.e.) units, as in Fig. 5.9, where the w.e. PGR mass variation
trend in cm/yr is given for the 5-layer, viscoelastic incompressible model depicted
in Table5.3, in agreement with the most appropriate mantle viscosities of 1022 Pa s
as in Sect. 5.2 and in agreement with Tosi et al. (2005). As far as ice loading hystory
is concerned, this figure is based on the ICE-3G ice-sheet model for the Pleistocene
deglaciation by Tushingham and Peltier (1991). Deglaciation centres produce spots
of geoid increase over Hudson bay and Antarctica that can be as large as 2mm/yr, as
well as over the Gulf of Bothnia, due to the uplift of the Earth’s crust, where crustal
material substitutes the air or the water, of lower density.

Over the deglaciation centres, the Earth’s crust uplifts, which is translated into
an increase in water equivalent ranging between 4cm/yr over Hudson Bay and

Fig. 5.9 PGR mass variation trend in water equivalent (cm/yr). The Earth’s model parameters are
given in Table5.3. This figure is taken from Barletta et al. (2008), their Fig. 5.8

http://dx.doi.org/10.1007/978-94-017-7552-6_2
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Table 5.3 Parameters for the 5-layer Earth’s model

Layer r (km) ρ (kg/m3) μ (Pa) ν (Pa s)

1 6371.0 3196.9 5.98 × 1010 1.00 × 1050

2 6250.0 3457.7 7.41 × 1010 1.00 × 1020

3 5951.0 3882.3 1.09 × 1011 1.00 × 1020

4 5701.0 4890.6 2.21 × 1011 1.00 × 1022

5 3480.0 10925. 0.0 0.0

r is the distance with respect to the centre of the Earth, ρ the density of the layer, μ the rigidity
and ν the viscosity

Antarctica, or about 2cm/yr over the Gulf of Bothnia, while over the peripheral
oceanic and continental areas we note a decrease of 0.5–1.0cm/yr, due to the down-
flexure of the portion of the lithosphere in the periphery of the uplifting deglaciation
centres. Over continental areas, such as central Africa, south America and Australia,
water equivalent increases slightly, by about 2–3mm/yr, due to a slight uplift of the
continents caused by the levering effects of the subsiding oceanic basins, as described
in Mitrovica and Peltier (1991).

The incompressible viscoelasticmodel results of Fig. 5.9 can be comparedwith the
mapofmass variation linear trends inwater equivalent (w.e.) of Fig. 5.10, expressed in
cm/yr as for Fig. 5.9, based on the linear regression of individual gravity coefficients
fromGRACE, then summed together, according to the methodology of Barletta et al.
(2008), to whom we refer for details regarding the data treatment procedures which
have allowed to obtain the results of Fig. 5.10.

These figures from the real gravity observations show major features, such as the
red spots of mass growing over Hudson bay and Gulf of Bothnia, in Scandinavia,
clearly due to the PGR induced uplift of the crust seen also in the model results
of Fig. 5.9, the mass decrease in Greenland, at its southeastern edge, and the blue
and red spots of decreasing and increasing mass in Antarctica, close to each other,
at 240◦ and 290◦ longitude. Other features are related to hydrological effects. It is
worthwhile noting that both Figs. 5.9 and 5.10 have been obtained by truncating the
series of harmonic coefficients at l = 70, in agreement with GRACE resolution, and
the gravity time series cover the period December 2002 to March 2006.

Subtracting the PGR contribution of Fig. 5.9 from the GRACE trends of Fig. 5.10,
the following Fig. 5.11 is obtained which, once compared with Fig. 5.10a, shows
that the large spot over Hudson Bay disappears, making this region stable, and the
gravity gain over Scandinavia is also reduced, as expected since the PGR contribution
has been removed. In Antarctica, the increase in water equivalent seen in GRACE
data at 290◦ longitude is disrupted by subtraction of PGR effects, and the decrease
observed in Fig. 5.10 in the blue spot of Western Antarctica at 240◦ is enhanced.
This figure shows that mass variations trends over Antarctica and Greenland from
GRACE time series trade off with mass estimates from PGR over these regions,
particularly in Antarctica. It has already been shown, by means of previous SLR
and GRACE analyses (Tosi et al. 2005; Chen et al. 2006a, b; Luthcke et al. 2006;
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Fig. 5.10 Map of mass variation trend in water equivalent (w.e.), expressed in cm/yr. This map is
smoothed with a 500km Gaussian filter, panel (a), and with a 400km one, panel (b). This figure is
taken from Barletta et al. (2008), their Fig. 5.6

Velicogna and Wahr 2005, 2006a, b), that PGR trades off with present-day mass
imbalance in Antarctica and Greenland, as also shown in Sect. 3.2, which means that
mantle viscosity, controlling the present-day mass variation from PGR, impacts the
estimates of present-day ice mass, the latter depending only on the elastic properties
of the Earth.

Once the updated upper and lower mantle viscosities of Table5.3, 1020 and 1022

Pa s, nowadays considered the most realistic, in the incompressible, viscoelastic
model are used as in Barletta et al. (2008), a substantial mass loss in both Antarc-
tica and Greenland is obtained, of −171 ± 39 and −101 ± 22Gt/yr, or 109 tons
per year: this scenario is portrayed by Fig. 5.11, although realistic constraints to
the trend in ice mass loss derived from GRACE provide a range of variations
wider that that commonly stated, ranging from −209Gt/yr to an accumulation of
88Gt/yr for Antarctica, and from −122 to −50Gt/yr for Greenland, as shown in
Barletta et al. (2008). It is remarkable that the upper bounds of this GRACE derived
ice mass loss in Antarctica and Greenland are only slightly lower, by the 16 and

http://dx.doi.org/10.1007/978-94-017-7552-6_3
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Fig. 5.11 GRACE mass variation trend in water equivalent, after removal of PGR contribution,
based on the model parameters of Table5.3. This figure is taken from Barletta et al. (2008), their
Fig. 5.9

15% respectively, than those of −250 and −144Gt/yr inferred in Sect. 5.2 from the
J̇� low degrees. These deviations are expected, due to the different time coverage
of the two SLR and GRACE data sets of Sects. 5.2 and 5.3, which may be affected
by possible changes in the rate of ice mass loss for Antarctica and Greenland. The
reader should be made aware, on the other hand, that the fate of these estimates is to
be continuously updated, due to the improvement in the accuracy of the gravity data
and to the increase on the time interval spanned by the gravity time series.

The results of this section clearly show the major step-ahead made in our under-
standing of the time dependent gravity field at high harmonics from the GRACE
space gravity mission with respect to the SLR time series of previous sections, lim-
ited at the lowermost harmonics, although the accuracy in the estimate of the latter
has not been taken over yet.

5.3.1 Global Vertical and Horizontal Displacements
from PGR

It is interesting to look at PGR not only from the perspective of gravity changes as in
the previous sections, but also from that of vertical and horizontal displacements at
the Earth’s surface. The results in Fig. 5.12, portraying the modeled global deforma-
tion pattern induced by PGR from Marotta (2003), show that vertical and horizontal
velocities associated with PGR are sensitive to the rheological or viscosity stratifi-
cation of the mantle, where the viscosity describes the flow properties of the mantle.
Figure5.12a corresponds to an upper mantle viscosity νUM = 0.5 × 1021 Pa s and
a lower mantle viscosity νLM = 1.0 × 1021 Pa s defining the PGR-21 model; the
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Fig. 5.12 a corresponds to an upper mantle viscosity νUM = 0.5 × 1021 Pa s and a lower-mantle
viscosity νLM = 1.0 × 1021 Pa s (PGR-21). b corresponds to νUM = 0.5 × 1021 Pa s and
νLM = 1.0 × 1022 Pas (PGR-22). The elastic lithosphere is 80km thick, and both lithosphere and
mantle are incompressible. Redrawn from Fig. 1 of Marotta (2003)

bottom panel corresponds to νUM = 0.5 × 1021 Pa s and νLM = 1.0 × 1022 Pa s,
defining the PGR-22 model. These results are based on the normal-mode relaxation
and propagator theory described in Chaps. 1 and 2, within the frame of the incom-
pressible models based on Eq. (2.42). The redistribution of the glacial melt water
on the viscoelastic Earth is solved within the ICE-3G model by Tushingham and
Peltier (1991), by using the spectral analysis first implemented by Mitrovica and
Peltier (1991), appropriate for sea-level change calculations, as discussed in Chap.6.
The elastic lithosphere is 80km thick, and both lithosphere and mantle are incom-
pressible, as stated above, which means that density remains constant within each
layer of the radially stratified Earth’s model and that, at a fixed position in space,
density changes can occur only via displacements of interfaces separating material

http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_2
http://dx.doi.org/10.1007/978-94-017-7552-6_2
http://dx.doi.org/10.1007/978-94-017-7552-6_6
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with different density. The lithosphere, the upper mantle, and the lower mantle are
subdivided into thinner layers such that, taken collectively, these parts of the planet
contain 31 layers whose physical properties are volumetrically averaged from realis-
tic, seismologically retrieved Earth’s stratification (Dziewonski andAnderson 1981):
this stratification is realistic and is also used for some models of Chap. 4.

The vertical deformation represented by the colors is characterized by uplifting
centres over deglaciated areas in North America, Northern Europe, and Antarctica,
where ice-sheet complexes where located, in agreement with ICE-3G, and by subsi-
dence in the periphery of these deglaciation centres. It should be recalled that these
global deformation patterns represent, in terms of vertical and horizontal velocities
in millimeter per year, the mathematical simulation of present-day deformation of
the Earth, forced by ice-sheet disintegration during the Pleistocene, and is going on
today because of the viscous memory of the Earth, as sketched by the dashpot in
Fig. 1.2. The horizontal velocity field is characterized by two different components:
a global one, directed northward or southward with respect to the Earth’s equatorial
region because of the suction effect of the mantle material towards the deglaciated
regions of the Northern and Southern Hemispheres, and a regional one directed radi-
ally outward from the centre of the different deglaciation zones. The relative strengths
of these components, as the intensity of vertical motions, depend on the viscosity
ratio between the upper and lower mantle, as comparison of panel (b) and panel
(a) shows. Increasing the viscosity in the lower mantle to 1022 Pa s, with respect to
1021 Pa s, makes mantle material more difficult to relax after deglaciation, which
maintains larger horizontal and vertical velocities for the present-day situation, as
portrayed in Fig. 5.12b. For lower-mantle viscosity of 1021 Pa s, it is remarkable that
the outward horizontal velocity from deglaciation centres is larger than the global
velocity due to material flow from the equatorial region of the mantle, particularly
visible in North America. Increasing the lower-mantle viscosity makes the global
flow from the equatorial region larger, as anticipated above, which in turn damp-
ens, at deglaciation centres, the outward velocity directed towards the equator. This
effect can be better visualized in Fig. 5.13, which focuses on PGR velocity patterns
in Europe from Marotta and Sabadini (2002).

Figure5.13 is an enlargement of the Fennoscandia region from Fig. 5.12, showing
vertical and horizontal velocity fields in Europe for the two Earth’s models intro-
duced in Fig. 5.12, namely PGR-21 (a) and PGR-22 (b). Two different components
of the horizontal velocity field can be distinguished, a global north-trending one,
due to the suction effect of mantle material from the equator towards the deglaciated
regions of theNorthernHemisphere, as anticipated above, and a regional one directed
radially outward from the centre of deglaciation in the Gulf of Bothnia. Each compo-
nent prevails over the other depending on the viscosity ratio between the upper and
lower mantle. For PGR-21, top panel, the two deformation styles in the deglaciated
region and in the far field are well separated, as indicated by the outward horizon-
tal velocities of at most 0.6mm/yr in proximity of the deglaciated region, and by

http://dx.doi.org/10.1007/978-94-017-7552-6_4
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Fig. 5.13 a, b Enlargements
of the European region from
Fig. 5.12 (Fig. 2 in Marotta
and Sabadini 2002)
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the north-trending lower values, less than 0.2mm/yr, in the far field. The vertical
deformation is characterized by two uplifting centres in the north-eastern region
where ice-sheet complexes were located. The Mediterranen region is affected by a
subsidence of −1mm/yr, which will become important in the sea-level calculations
of Chap.6, with the adjacent European continental region essentially unaffected by
vertical motions. The deformation pattern portrayed in panels (a) of Figs. 5.12 and
5.13 agrees with the findings of Mitrovica et al. (1994) (their Fig. 3), except for the
slightly smaller rates due to the overall reduction in the upper- and lower-mantle vis-
cosity by a factor 2 in our case. For PGR-22, bottom panel, the high north-trending
component of the horizontal velocity, exceeding the local outward velocity in the
southern part of the deglaciation region, is caused by the larger global isostatic dis-
equilibrium of the planet with respect to PGR-21 due to the higher viscosity. The
latter induces a substantial increase in the horizontal velocity, up to 2.4mm/yr in the
north and 1.2–1.6mm/yr in the far field. In comparison with the top panel, there is a
notably substantial intensification of the uplift, affecting a wider region. Subsidence
increases in the Mediterranean region to −2mm/yr, extending its influence even in
Central Europe, at a rate of −1mm/yr. Generally speaking, these PGR patterns of
3-D deformation predicted bymodels have proved to be consistent among the various
studies (James and Ivins 1997; Mitrovica et al. 1993).

5.4 The 2004 Sumatran and 2011 Tohoku-Oki Giant
Earthquakes

Similar to surface and internal loads, also the mass redistribution caused by great
earthquakes affects the Earth’s gravity field in terms of long-wavelength permanent
signatures, nowadays detectable by space gravity missions, as GRACE (Gross and
Chao 2006): these gravity data provide new insights for understanding the physics of
extreme natural events, such as the giant earthquakes of magnitude Mw higher than
8.5, which struck our planet in the past decade, the 2004 Sumatran (Han et al. 2006;
Panet et al. 2007; Linage et al. 2009; Cambiotti et al. 2011; Broerse et al. 2011), the
2010 Maule (Han et al. 2010; Heki and Matsuo 2010) and the 2011 Tohoku-Oki
(Matsuo and Heki 2011; Han et al. 2011; Cambiotti and Sabadini 2012; Zhou et al.
2012) earthquakes. These megathrust earthquakes occur within subduction environ-
ments of fast converging oceanic and continental plates, and cause volume changes
of rocks in the region surrounding the fault, as well as deformation of the Earth’s sur-
face and internal layer boundaries carrying density contrasts. Due to the uplift of the
ocean floor, they also displace ocean water away from the near field, causing a gravi-
tational signature whose amplitude is comparable with that frommass rearrangement
within the solid Earth (Linage et al. 2009; Cambiotti et al. 2011; Broerse et al. 2011).

http://dx.doi.org/10.1007/978-94-017-7552-6_6
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5.4.1 Modeling the 2004 Sumatran Earthquake

The coseismic geoid and gravity anomalies from the 2004 Sumatran earthquake
build on our new, compressible, self-gravitating Earth’s model described in Sect. 3.8.
This new model, based on PREM (Dziewonski and Anderson 1981), represents the
elastic limit of viscoelastic models, recently used for post-glacial rebound studies
(Cambiotti et al. 2010) and developed for coseismic studies by Smylie andMansinha
(1971) and Sun and Okubo (1993). Our approach differs from that followed by Gross
and Chao (2006) and Linage et al. (2009), the latter using compressible models based
on a free oscillation scheme. The gravitational part of the phenomenon is dealt with
self-consistently and, in this respect, the modeling is similar to that used by Pollitz
et al. (2006) for the study of postseismic relaxation following the 2004 Sumatran
earthquake. The effects of compressibility are taken into account both in the initial
state and during the perturbations (Cambiotti et al. 2010), on the basis of Runge-Kutta
integration in the radial variable of the differential equations describing momentum
conservation and self-gravitation, as described in Chap.1. The gravitational effect
of the sea-level feedback is important for the 2004 Sumatran earthquake (Linage
et al. 2009) and is thus self-consistently included in the treatment of the global
ocean layer of PREM. In this way, the approaches used by Han et al. (2006) and
Linage et al. (2009) are refined in the results shown in this section although, from
a quantitative point of view, the approach used in the present analysis does not
significantly change the results presented by these authors. This novel theoretical
treatment in the modeling is accompanied by new efforts in the treatment of the
GRACE data time series that are aimed at optimizing the estimate of the coseismic
gravitational component of the 2004 Sumatran earthquake, thus providing a realistic
comparison between observations and models, as described in detail in Cambiotti
et al. (2011). The 2004 Sumatran earthquake was one of the strongest non-periodic
gravity variations that occurred at the Earth’s surface in the last decade. However, the
analysis of the earthquake signature in GRACE data is quite challenging because of
the step-like shape of the phenomenon. Additional contaminationmay originate from
other phenomena occurring in the Sumatran region, such as hydrological and residual
ocean circulation cycles. Particular attention has thus been devoted at removing those
signals other than the coseismic jump from GRACE data time series. Gravity data
from GRACE are then exploited to help constraining the seismic source model of
the 2004 Sumatran earthquake obtained by the multiple Centroid Momentum Tensor
(CMT) source analysis of Tsai et al. (2005). In the following, in fact, the results are
based on the seismic source model of Tsai et al. (2005), which is composed of five
point-like sources with total seismic moment of 1.17×1023 Nm, and on the use of an
isotropic 350km Gaussian filtering (Wahr et al. 1998). Although more realistic slip
distributions over the fault are typically used to explain seismic waves and ground
motions from GPS (Ammon et al. 2005), the along strike five seismic source model
used by Tsai et al. (2005) is used since at the limited spatial resolution of GRACE
data the difference with respect to more realistic slip distributions is expected to be
small. Slip distribution along dip affects instead the long wavelength seismic signal,
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a sensitivity that can be used to obtain information about the depth at which the
largest seismic moment has been released.

Figure5.14 shows the coseismic geoid anomalies for our compressible self-
gravitating Earth’s model, after we eliminate (Fig. 5.14a) or we include (Fig. 5.14b)
the 3km thick ocean layer of PREM; thesemodels are namedS-PREM(Solid PREM)
and O-PREM (Ocean PREM). In order to gain insight into the physics of the coseis-
mic gravitational perturbations due to the 2004 Sumatran earthquake, particularly
regarding the asymmetry between the negative and positive gravitational anomalies
observed in GRACE data (Han et al. 2006; Linage et al. 2009) we consider the geoid
anomalies rather than the gravity ones. This choice allows us to compare geoid anom-
alies and radial displacements in terms of sea level variations describing the water
redistribution responsible for the sea-level feedback on the geoid anomalies them-
selves. The sea-level variation is in fact the difference between the geoid variation
and the radial displacement of the sea-bottom.

To better isolate the main features of the coseismic phenomenon and the main
physical processes affecting it, we focus out attention on the asymmetry coefficient
AS, defined as the ratio between the absolute values of the minimum negative and
maximum positive geoid anomalies. For S-PREM, maximum and minimum geoid
anomalies are +2.57 and −2.28mm, respectively, and the asymmetry coefficient is
AS = 0.88. The bipolar shape of the geoid anomalies of S-PREM closely resembles
that of the gravity anomalies of Sun and Okubo (1993), their Fig. 7, for a dip-slip
sourcewithin a spherically symmetric, self-gravitatingEarth’smodel as in the present
case. The positive geoid anomaly is slightly higher in absolute value than the negative

Fig. 5.14 Coseismic geoid anomalies for compressible. a S-PREM and b O-PREM, after the
350km Gaussian filtering
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one. ForO-PREMmaximumandminimumgeoid anomalies of+1.24 and−2.52mm
are obtained leading to an asymmetry coefficient AS = 2.03.

Indeed, as shown in Fig. 5.15, the geoid anomalies due to the sea-level feedback,
obtained by subtracting the geoid anomalies for O-PREM (Fig. 5.14b) from those
for S-PREM (Fig. 5.14a), is negative almost everywhere and is of the same order of
magnitude as the geoid anomalies for S-PREM,with aminimum value of−1.33mm.
In order to better understand this issue, in Fig. 5.16 we show the radial displacements
at the solid Earth’s surface for both S-PREM (Fig. 5.16a) and O-PREM (Fig. 5.16b),
after the 350km Gaussian filtering for the sake of comparison with the geoid anom-
alies shown in Fig. 5.14. Note that the predicted maximum uplift, +93.1mm, has an
absolute value that ismuch larger than themaximumdown-drop,−18.3mm, by about
a factor of 5 for S-PREM. Furthermore, the loading due to water redistribution has a
negligible effect on the radial displacement because the maximum uplift, +97.0mm,
and down-drop, −18.6mm, for O-PREM differ from those for S-PREM by less than
3%. These differences are, however, comparable with the geoid anomalies shown in
Fig. 5.14. The radial displacement is larger than the geoid anomaly by almost two
order of magnitude, indicating that the coseismic sea-level variation is mainly due
to the variation of the topography rather than that of the geoid and that the uplifted
crust displaces away the ocean water thus reducing the geoid anomalies in the near
field of the Sumatran earthquake as visible from Fig. 5.14b compared to Fig. 5.14a, in
agreement with Linage et al. (2009) who first suggested that the asymmetry towards
the negative pole of the coseismic gravity anomalies observed in GRACE data is due
the sea-level feedback.

Fig. 5.15 Coseismic geoid
anomalies due to the
sea-level feedback, obtained
by subtracting the
compressible O-PREM and
S-PREM geoid anomalies
shown in Fig. 5.14, after the
350km Gaussian filtering
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Fig. 5.16 Coseismic radial displacements for compressible a S-PREM and b O-PREM, after the
350km Gaussian filtering for the sake of comparison with the geoid anomalies shown in Fig. 5.14
in terms of sea-level variations

5.4.2 The GRACE Data

The peculiar step-like shape of the signature due to an earthquake is quite difficult
to resolve in gravitational data analyses using standard approaches. The time reso-
lution of the GRACE data is the highest ever achieved by a satellite only campaign
on gravity variations, but it still poorly resolves coseismic phenomena in detail.
The 1-month time resolution is adequate, but it does not allow discrimination of
very short time-scale phenomena and the coseismic signal is clearly contaminated
by postseismic effects and by any other phenomena that occurred in the same geo-
graphical area during and immediately after the earthquake. Moreover, the peculiar
noise of GRACE data, the so called stripes, is particularly strong at equatorial lat-
itudes; thus, its typical north–south shape can affect the quality of the data in the
Sumatran region. A good treatment of the stripes is therefore important. Among the
various solutions proposed, wemake use of the DDK3 anisotropic filtering described
by Kusche (2007) and Kusche et al. (2009) to extract the earthquake gravity signal.
Kusche et al. (2009) provide three anisotropic filterswith different spatial resolutions.
To better address the main features of the local scale signature of the 2004 Sumatran
earthquake, the DDK3 filter is used at the highest spatial resolution. Depending on
the comparison criterion, this filter is roughly equivalent to an isotropic Gaussian
filter of about 240–330km half width, close to the limit of the GRACE nominal res-
olution; the main features of the 2004 Sumatran earthquake as recorded in GRACE
data are provided on the basis of the gravity anomaly representation in µGal. The
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other natural choice, the geoid representation, which is more global, is prone to
leakage of signals from nearby regions as for the case of hydrology: the gravity
anomaly representation is less sensitive to this kind of contamination. GRACE Level
2 data have been processed and provided to the scientific community by three offi-
cial analysis centres: the Centre for Space Research (CSR, University of Texas), the
GeoForschungsZentrum (GFZ, Potsdam) and the Jet Propulsion Laboratory (JPL,
California Institute of Technology). In order to optimize the information from these
different solutions, the analysis is performed on the average of CSR and GFZ data,
for each (common) month of the two time series (i.e. present in the series of both
processing centres), although separate usage of the two time series is not expected
to impact the results of the study. The average is done after applying the corrections
prescribed to the Stokes coefficients of the two data sets and replacing the degree-
2 order-0 Stokes coefficient with its more stable estimate from the Satellite Laser
Ranging constellation satellites as recommended. The GFZ solution is truncated at
the harmonic degree 60 in order to conform to the lower spatial resolution of the CSR
solution. Figure5.17 shows the original GRACE data time series in gravity anomaly
representation (thin solid line, cross-shaped points) at the two points (94.2◦E, 2.1◦N)
and (97.0◦E, 7.7◦N) in the south-west and north-east near field of the Sumatran
trench. GRACE data time series are then smoothed in the time domain by means
of a Gaussian filter, to reduce the variability due to seasonal and interannual signals
due to hydrology from the continent and to the residual ocean circulation compo-
nent present in the data, while preserving permanent co- and postseismic signatures
and signals due to medium and long-period hydrological cycles of periods greater
than 2years. After the Gaussian smoothing in the time domain, black-solid line in
Fig. 5.17, the latter shows evident long-term signals that cannot be considered as
only coseismic jumps. Therefore, in order to remove these signals and to estimate
only the coseismic jump, the smoothed time series are fitted by means of a coseis-
mic discontinuity and a linear trend, representing the simplest approximation before
implementing the exponential one. On this basis, Fig. 5.18 is generated, representing
the coseismic jump, Fig. 5.18a and the postseismic signal, Fig. 5.18b. Figure5.18
shows the estimated coseismic jump and postseismic contribution 5years after the
earthquake. The maximum coseismic gravity anomaly is +6.1 ± 1.5µGal and the
minimum is −12.7± 0.9µGal at (95.6◦E, 0.7◦N) and (97.0◦E, 6.3◦N). The peak-to-
peak coseismic jump is thus +18.8 ± 1.7µGal, while the asymmetry coefficient is
AS = 2.1 ± 0.5. The postseismic contribution can be as important as the coseismic
one, with maximum, +8.7 ± 0.7 µGal, and minimum, −7.1 ± 1.6µGal, values at
(94.2◦E, 4.9◦N) and (99.8◦E, 9.1◦N).

5.4.3 Constraining the 2004 Sumatran Earthquake

In order to make the comparison between coseismic jump estimates from observa-
tionswith those frommodels significant, it is important to apply the same spatial filter
used to deal with GRACE data to models because the spatial features of the seismic
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Fig. 5.17 Original (thin solid lines, cross-shaped points) and smoothed (thick solid lines) DDK3-
filtered GRACE data time series at points (94.2◦E, 2.1◦N) and (97.0◦E, 7.7◦N), in the a south-west
and b north-east near field of the Sumatran trench

Fig. 5.18 Coseismic gravity anomalies, (a), and b postseismic contribution, 5years after the earth-
quake obtained by the non-linear fitting to the smoothed DDK3-filtered GRACE data time series

signature make the gravity anomalies very sensitive to the type of filtering. The use
of different filters would yield unphysical differences, which would make the com-
parison less effective. For this reason and owing to the easy implementation of the
filter DDK3, made available by Kusche et al. (2009), DDK3-filtered CSR-GFZ solu-
tions are compared with equivalently filtered coseismic models. To compare with the
coseismic jump obtained from observations, Fig. 5.19a shows the coseismic gravity
anomalies obtained for compressible O-PREM including the sea level feedback and
based on the seismic source model of Tsai et al. (2005), after the DDK3 filtering. A
maximum of +8.6 µGal and a minimum of −10.0 µGal gravity anomalies at points
(92.8◦E, 2.1◦N) and (97.0◦E, 6.3◦N) are obtained in Fig. 5.19a from the modeling.
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Fig. 5.19 DDK3-filtered coseismic gravity anomalies for compressible O-PREM, obtained using
the a original and bmodified seismic source models of Tsai et al. (2005), with source depth below,
25km, and above, 15km, the Moho discontinuity, respectively. The dip angles for the modified
seismic source models have been increased by 50%

The peak-to-peak gravity anomaly obtained from the model, +18.6µGal, is in agree-
ment, within one sigma error, with the observed one, +18.8 ±1.7 µGal, while the
asymmetry coefficient AS = 1.2 differs from the observed one, AS = 2.1 ± 0.5, by
about two-sigma error. The asymmetry coefficient AS depends mainly on the sea
level feedback and the latter is sensitive to changes of the topography at the bottom
of the ocean, which is in turn dependent on the depth of the source. Once we set at
15km the depth of the source as in Fig. 5.19b, shallower than the original Tsai et al.
(2005) solution at 25km depth, the agreement with observations is improved. In this
case, both the peak-to-peak gravity anomaly and the asymmetry coefficient AS from
modeling match the best estimates from observations, 18.8µGal and 2.1, suggesting
that the physics of this giant earthquake is represented correctly.

Compressibility is an important feature of co-seismic perturbations, as shown in
the following by comparing compressible and incompressible Earth’smodels in order
to catch the role of compressibility in co-seismic studies. In Fig. 5.20 we compare
DDK3-filtered co-seismic gravity anomalies for compressible (a) and incompress-
ible (b) S-PREM by using the modified seismic source model. The peak-to-peak
gravity anomalies are 22.8 and 23.4µGal, while the asymmetry coefficients AS
are 0.8 and 0.6, for compressible (a) and incompressible (b) S-PREM, respectively.
The two bipolar patterns are asymmetric towards the positive co-seismic gravity
anomaly, particularly in the incompressible case once compared to the compress-
ible model. A detailed discussion on the shortcomings of incompressibility versus
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Fig. 5.20 a Compressible, b incompressible

realistic compressible Earth’s models is found in Cambiotti et al. (2011), clearly
showing the necessity of incorporating compressibility in co-seismic models, not
only for these megathrust earthquakes. In particular, incompressibility severely
affects the gravity anomaly caused by the sea-level feedback associated with the
amount of sea water that is washed out from the epicentral region, which is of impor-
tance in order to correctly interpret the gravity patterns due to thrust earthquakes in
oceanic environments.

5.4.4 The 2011 Tohoku-Oki Earthquake: Gravitational
Seismology

Anovel procedure for estimating the principal seismic source parameters (hypocentre
and moment tensor) relying solely on space gravity data from GRACE and our new
compressible Earth’s model, has been applied for the first time to the 2011 Tohoku
earthquake in Cambiotti and Sabadini (2013). It yields a seismic source model that
is consistent with a thrust earthquake and geological information of the subduction
zone, closely resembling the Global CMT (Centroid-Moment-Tensor) Project solu-
tion based on teleseismic wave inversion: the moment magnitude Mw is slightly
higher, 9.13 ± 0.11 compared to the CMT 9.08 one, and the hypocentre is further
offshore by about 40kmwithin the oceanic plate. This procedure has thus become an
important tool in seismology, complementing centroid-moment-tensor analyses by
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exploiting the new gravity data fromGRACE.Within the context of a CMT solution,
coseismic gravity changes is now modelled for a point-like seismic source by means
of our compressible model described in Chap.3 (Cambiotti et al. 2011) based on
PREM (Dziewonski and Anderson 1981), as for the previous sections on the Suma-
tran eartquake, but with the crust and lithospheric mantle substituted by a regional
average of CRUST2.0 (Bassin et al. 2000). Following the probabilistic approach to
the nonlinear inverse problem by Mosengard and Tarantola (2002) and localizing in
space the DDK3-filtered GRACE and synthetic gravity anomalies on the basis of
the Slepian, optimally concentrated functions as described in Cambiotti and Saba-
dini (2012), the earthquake CMT parameters are obtained for the best model, thus
providing the first self-consistent GCMT (Gravitational Centroid Moment Tensor)
solution, as given in Table5.4. The synthetic gravity pattern based on these inverted
parameters is given in Fig. 5.21b, closely resembling that from GRACE data given
in Fig. 5.21a. It is worthwhile to note that the bipolar shape of the gravity is the same
of the 2004 Sumatran earthquake, with minima and maxima inverted with respect
to Fig. 5.14b due to the opposite direction of plate convergence of the Indian and

Table 5.4 Best principal seismic source parameters of GCMT, global CMT project and USGS
solutions

GCMT Global CMT Project USGS

Hypocentre

Depth (km) 16.1 20.0 10.0

Latitude 37.75◦ ± 0.46◦N 37.5◦N 38.5◦N
Longitude 143.47◦ ± 0.46◦E 143.1◦E 142.6◦E
Moment tensor (1022 N m)

Mrr 2.45 ± 1.15 1.730 2.03

Mθθ −0.12 ± 0.70 −0.281 −0.16

Mϕϕ −2.33 ± 0.91 −1.450 −1.87

Mrθ 2.17 ± 0.59 2.120 2.06

Mrϕ 5.33 ± 0.95 4.550 3.49

Mθϕ −1.07 ± 0.31 −0.657 −0.60

Seismic moment (1022 N m)

Double couple 6.32 ± 2.94 5.31 4.54

Residual dipoles 0.32 ± 0.55 0.01 −0.05

Moment magnitude

Double couple 9.13 ± 0.11 9.08 9.04

Residual dipoles 8.34 ± 0.32 7.27 7.73

Fault plane geometry

Dip 12.2◦ ± 3.1◦ 10◦ 14◦

Slip 89.7◦ ± 8.5◦ 88◦ 68◦

Strike 201.9◦ ± 7.8◦ 203◦ 187◦

http://dx.doi.org/10.1007/978-94-017-7552-6_3
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Fig. 5.21 Coseismic gravity anomalies a estimated fromGRACE gravity data and bmodeled using
the GCMT solution, after DDK3 filtering and spatial localization within a circular cup (dashed
circle) of half-width 8◦ and centered at the USGS mainshock

Fig. 5.22 GCMT, Global
CMT Project and USGS
focal mechanisms and mean
epicentres within the crust
and the lithospheric mantle
(white and black stars,
respectively). The dashed
ellipse indicates the
two-sigma errors of the
GCMT solution

Pacific Oceans underneath Eurasia. The negative pole in the hanging-wall side has
the minimum gravity anomaly of −8.3 ± 1.6µGal at (138.6◦ E, 38.9◦ N), and the
positive pole in the foot-wall side that is characterized by two maxima of + 4.2±1.5
µGal and + 4.1 ±1.1 µGal at (140.8◦ E, 33.3◦ N), and (146.9◦ E, 37.8◦ N). Note
that this two-dome structure of the positive pole in the offshore region is also present
in the observations of Fig. 5.21a. It is due to the use of the anisotropic DDK3-filter
and to the gravity reduction caused by ocean water removal from the uplifted crust,
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a phenomenon that leaves two small domes, remnants of the broader and higher
central positive pole caused by mass rearrangement of the solid Earth, as first shown
in Cambiotti and Sabadini (2012).

Table5.4 compares our solution, which we name Gravitational Centroid Moment
Tensor (GCMT) solution,with twoclassical seismologicalCMTsolutions, theGlobal
CMT Project one and the USGS (United States Geological Survey) one. The GCMT
andGlobal CMTProject solutionswell agreewith each other within one-sigma error:
the GCMT moment magnitude Mw = 9.1± 0.11 is slightly higher compared to the
9.08 Global CMT Project solution. Our higher estimate of the moment magnitude
may, in part, reflect the influence of afterslip in GRACEmeasurements. This afterslip
is thought to be a substantial fraction of the seismic moment in the weeks following
the main shock (Ozawa et al. 2011).

The GCMT solution instead differs from the USGS solution especially for the
location of the epicentre, as shown in Fig. 5.22 and the geometry of the fault discon-
tinuity. The USGS solution is indeed characterized by a strike angle of 187◦, which
is not well aligned with the local trench and by a significant along-strike component
of slip, the rake angle being 68◦.
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Chapter 6
Sea-Level Changes

Abstract Sea-level changes, geoid and gravity anomalies due to PGR are first con-
sidered on the global scale. The effects of TPW on sea-level changes is studied,
focusing on the effects of radial viscosity variations in the mantle. The Mediter-
ranean Sea is then taken as a test area to simulate the simultaneous effects on sea-level
changes from PGR and active tectonics. The first, self-consistent simulations of sea-
level changes due to subduction within a viscoelastic framework are also provided,
to enlighten the effects on sea-level changes due to the transient relative motion
between the geoid surface and the sea-bottom topography, for the global subduction
pattern.

6.1 The Issue of Sea-Level Change, a Present-Day Concern

To the general public it seems a rather obvious fact that if the ice sheets of Antarctica
and Greenland melted, sea level would rise. In fact, there is wide-spread concern that
global warming of the Earthmight inducemelt of the present-day large ice sheets and
thereby induce a global sea-level rise, leading to flooding of lowlands. Although the
link between ice melt and sea-level rise might seem obvious, the relation between ice
mass changes and sea-level variations is more complicated. It might sound strange
when one first hears about it, but ice melt could actually induce a sea-level drop at
some places on the Earth’s surface. And perhaps it is even more surprising that this
has been known for more than a century.

In this oversimplified picture of ice melt and sea-level rise we neglect that ice has
mass. Mass has the property of attracting other masses around it. So an ice sheet on
a continent attracts the water of the oceans. Thus, the water near an ice sheet will be
elevated with respect to a situation in which this gravitational interaction does not
occur. If the ice sheet melts, this gravitational attraction effect, or self-gravitation,
disappears too. Woodward (1998) showed that it is not a small, negligible effect.
He derived the following formula for the ratio of the change in sea level with self-
gravitation taken into account and the sea-level change without the self-gravitation
of the ice sheet taken into account. If the ice sheet, modeled as a point source, were
to melt, this ratio is:
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(
1

2 sin(θ/2)
− 1 − ρE

3ρw

)
/

ρE

3ρw

. (6.1)

In Eq. (6.1) θ is the angular distance from the ice sheet, ρE the mean density of
the Earth, and ρw the density of the water. Equation (6.1) shows that the ratio is not
dependent on the total mass of the ice sheet. A derivation of Eq. (6.1) can also be
found in Farrell and Clark (1976). From Eq. (6.1) one can easily compute that sea
level will drop in the oceans as a result of ice melt within a distance of about 20◦ (on
the Earth’s surface equal to about 2200km) from the former ice sheet. Even within
60◦ (equal to about 6700km), sea level will rise less than if the amount of water from
the ice sheet had been distributed uniformly (‘eustatically’) over the oceans. But, on
the other hand, at distances exceeding 60◦ sea level will rise more than the eustatic
value. So if all the Greenland ice were concentrated on the southern tip of Greenland
and were to melt, then the effect of self-gravitation would cause a sea-level drop at
the coast of Iceland, a smaller sea-level rise than the eustatic one at the coast near
New York and a larger sea-level rise than the eustatic one at the coast of Australia.

The relation between ice melt and sea-level change is clearly not so simple as we
generally might think. Although the total amount of ice that melts is equal to the
total amount of water that is added to the oceans, the redistribution of the melt water
is not uniform. The situation becomes even more complicated if one considers the
fact that the solid Earth is not rigid. Placing a load on the Earth’s surface will cause
an immediate (elastic) subsidence of the surface underneath the load, followed by
a time-dependent and spatially dependent subsidence and uplift pattern caused by
viscoelastic flow in the Earth’s interior, as we have learned from Chaps. 1 and 2. This
implies that if ice and water are redistributed over the Earth’s surface, the solid Earth
will react to it. Solid-Earth deformation due to a changed surface load can still be
observed today in Canada and Scandinavia. Some 10,000years ago the last of the
great Ice Ages ended with the melt-down of the Laurentide and Fennoscandian ice
sheet complexes, which covered these regions with a maximum height of about 3km.
Today the Earth is still rebounding to the disappearance of the Pleistocene ice-sheets,
with maximum uplift rates of about 1cm per year near the center of the Bothnic Gulf
and near the south of Hudson Bay. So the relation ice melt = sea-level rise, which we
have had to modify because of the effect of self-gravitation, must be expanded to a
three-component relation (continental) ice/sea level/solid Earth. Ice melt will cause
a sea-level change and both components will induce solid-Earth deformation. But
solid-Earth deformation in turn will induce a sea-level change again.Whereupon this
sea-level change will induce solid-Earth deformation, and so on. It is clear that this
relationship is a non-linear one. The formulations for this relationship were derived
in the 1970s and have become known as the ‘sea-level equation’, which is an integral
equation. In a very condensed form the equation for the relative sea-level change
reads (Farrell and Clark 1976)

S = ρI
φ

g
∗ L + ρw

φ

g
∗ S + C, (6.2)
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inwhich S denotes the change in sea level, L the change in (continental) ice thickness,
φ the Green function for the variation in the gravitational potential, ρI the density
of the ice and g the surface gravity. C is a constant which is to be determined by
invoking the condition that the total amount of ice change is equal to the total amount
of sea-level change. The asterisk denotes time convolution. Note that the sea-level
change S is both on the left-hand side and on the right-hand side of Eq. (6.2).

With this sea-level equation, by which the sea-level change and solid Earth’s
deformation interrelationship as function of ice mass variations (and solid Earth’s
models) can be handled, present-day sea-level variations can be modeled adequately,
both for sea-level changes due to Pleistocene deglaciation and to recent continental
ice mass changes (Farrell and Clark 1976; Peltier and Andrews 1976; Wu and Peltier
1983; Nakada and Lambeck 1987; Lambeck et al. 1990; Mitrovica and Peltier 1991;
Johnston 1993; Di Donato et al. 2000; Mitrovica and Vermeersen 2002).

Melting ice causes a redistribution of mass of the rotating Earth. A redistribution
of mass affects the moments and products of inertia. A deformable rotating body will
react to such changes by adjusting rotation rate and position of its rotation axis with
respect to the body’s geography. For the Earth it implies that the three components
ice-mass changes/sea level variations/solid Earth’s deformationwill affect theEarth’s
rotation. But changes in the Earth’s rotation in turn could affect the three components
again, as described in Chap.3. Sea level and solid-Earth deformation can be affected
by the change in centrifugal force accompanying rotation changes. Ice can be affected
as a redistribution of mass of a rotating body will generally affect the position of the
rotation axis with respect to the body’s geography, so the position of the latter with
respect to the Sun (the position of the rotation axis does not change with respect to
its surroundings: to an outside observer it looks as if the body is shifting underneath
its rotation axis, while the rotation axis remains fixed with respect to the inertial
system of its surroundings). For the Earth this implies that the distribution of oceans
and (partly ice-covered) land over the planet’s surface will change with respect to
the plane of the Earth’s orbit around the Sun, although the angle of the rotation axis
with respect to this plane remains fixed. Such a global shift can induce changes in
the ocean’s currents, enhance or reduce the amount of continental areas around the
poles available for ice to settle on, and increase or decrease ice melt due to changes
in insolation angle. It is clear that in order to be self-consistent we have to extend the
three-component relationship ice/sea level/solid Earth’s deformation with a fourth
component: polar wander.

6.2 Sea-Level Variations, Geoid and Gravity Anomalies
Due To Pleistocene Deglaciation

The importance of Pleistocene deglaciation on the interpretation of sea-level variabil-
ities has been addressed by several authors. For example, Lambeck and Nakiboglu
(1984) find that post glacial rebound may contribute between 30 and 50% of the

http://dx.doi.org/10.1007/978-94-017-7552-6_3
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present-day secular rise in sea level of 1.8mm/yr (Douglas 1995). Although there
are many uncertainties in estimating such a percentage, such figures show the poten-
tial importance of including solid-Earth deformation processes in studies on sea-level
variations.

Both the absolute value of the contemporary global (eustatic) sea-level rise and the
effect that PGR has on contemporary sea-level variations are not well known at the
moment. Whereas the former is mainly a matter of measurements, the uncertainty
in the contribution that post-glacial rebound has on present-day global sea-level
variations ismainly due to insufficient knowledge about the Pleistocene ice sheets and
the rheological properties of the Earth. However, differences in modeling approaches
for establishing the relationship between PGR and sea-level variations can also be a
source of discrepancies.

The results shown in this chapter make use, for the first time in glacial-rebound
induced sea-level studies, of an analytical scheme described in previous chapters in
dealing with stratified, incompressible Earth’s models.

6.2.1 Mathematical Formulation

In the present analysis we show some results mainly focussed on the sensitivity of
density and viscosity stratification in sea-level modeling.

The sea-level variations and geoid are based on the following equations, in rela-
tion to the herein defined Green functions � and � for the gravitational potential
perturbation and radial displacement of the solid surface.

The geoid anomaly G and the vertical displacement R are given by Mitrovica
and Peltier (1989), whose expressions are reproduced to adapt our formalism to their
sea-level change theory

G(θ, ϕ, t) = 1

g

t∫

−∞

∫ ∫

�

a2 σ(θ ′, ϕ′, t ′) �(γ, t − t ′) d�′ dt ′ (6.3)

R(θ, ϕ, t) =
t∫

−∞

∫ ∫

�

a2 σ(θ ′, ϕ′, t ′) �(γ, t − t ′) d�′ dt ′ (6.4)

where a is the mean radius of the Earth, g is the gravity, γ represents the angular
distance between the impulse load point (θ, ϕ′) and the observation point (say θ, ϕ),
t is the time, � represents the complete solid angle and σ is the surface load whose
spherical harmonic coefficients are

σ�m(t) =
N∑

n=1

δσ n
�mH(t − tn), (6.5)
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with N denoting the number of time steps in which the surface load is subject to a
change; H is the Heaviside step function and

δσ n
�m = ρI δ I

n
�m + ρW δSn,e

�m , (6.6)

where ρI and ρW are, respectively, the densities of ice and water, δ I n�m and δSn,e
�m

denote the spherical harmonic coefficients of the increments in the ice masses and
eustatic sea level at the various time steps

δSn,e
�m = ρI

ρW

4πa2

Ao
δ I n00C�m, (6.7)

where C�m are the spherical harmonic coefficients of the ocean function, defined to
be unity over the ocean and zero over the remaining surface of the Earth, and Ao is
the present area of the oceans; Eq. (6.7) is Eq. (53) in Mitrovica and Peltier (1991).

The Green functions �, � are given by

�(γ, t) = ag

ME

∞∑

�=0

⎧
⎨

⎩
(1 + kL�e)δ(t) +

M∑

j=1

kL�j exp(s�j t)

⎫
⎬

⎭
P�(cos γ ), (6.8)

�(γ, t) = a

ME

∞∑

�=0

⎧
⎨

⎩
hL

�eδ(t) +
M∑

j=1

hL
�j exp(s�j t)

⎫
⎬

⎭
P�(cos γ ) (6.9)

which are Eq. (8) by Mitrovica and Peltier (1991), except Eq. (6.8) includes the
direct effect of the load, namely the term 1 in the first brackets; P�(γ ) is the Legen-
dre polynomial given by Eq. (1.68), ME is the mass of the Earth, δ is the Dirac
delta function and kL�e, h

L
�e denote the spherical harmonic components of the elastic

load Love numbers for the perturbation to the gravitational potential and the radial
displacement, defined in Eqs. (1.179) and (1.180). The terms kL�j , h

L
�j represent the

viscous components of the same numbers for the individual modes j with negative
inverse relaxation times s�j , with the � dependence explicitly given.

Solving the integration in time and over the surface of the Earth in Eqs. (6.3) and
(6.4) yields

G(θ, ϕ, t) = GE (θ, ϕ, t) + GV (θ, ϕ, t) (6.10)

R(θ, ϕ, t) = RE (θ, ϕ, t) + RV (θ, ϕ, t) (6.11)

where the superscripts E and V denote the elastic and viscous components, as given
below (Di Donato et al. 2000)

http://dx.doi.org/10.1007/978-94-017-7552-6_1
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GE (θ, ϕ, t) = 4πa3

ME

∞∑

�=2

(1 + kL�e)

(2� + 1)

�∑

m=−�

σ�m(t)Y�m(θ, ϕ) (6.12)

RE (θ, ϕ, t) = 4πa3

ME

∞∑

�=2

hL
�e

(2� + 1)

�∑

m=−�

σ�m(t)Y�m(θ, ϕ) (6.13)

GV (θ, ϕ, t)

= 4πa3

ME

∑

�,m

⎧
⎨

⎩

M∑

j=1

kL�j
(−s�j )(2� + 1)

N∑

n=1

δσ n
�m

[
1 − exp

(
s�j (t − tn)

)]
⎫
⎬

⎭
Y�m(θ, ϕ)

(6.14)

RV (θ, ϕ, t)

= 4πa3

ME

∑

�,m

⎧
⎨

⎩

M∑

j=1

hL
�j

(−s�j )(2� + 1)

N∑

n=1

δσ n
�m

[
1 − exp

(
s�j (t − tn)

)]
⎫
⎬

⎭
Y�m(θ, ϕ),

(6.15)

with Y�m given in Eq. (1.67).
The relative sea-level change, which will be denoted by RSL from now on instead

of S as in Mitrovica and Peltier (1989), is the difference between the changes in the
geoid and radial displacement projected over the surface of the oceans (Farrell and
Clark 1976), namely

RSL(θ, ϕ, t) = C(θ, ϕ) (G(θ, ϕ, t) − R(θ, ϕ, t)) (6.16)

The sea-level change has the following explicit expression (Eq. (18) in Di Donato
et al. (2000))

RSL(θ, ϕ, t)

= C(θ, ϕ)
∑

�,m

{

E� T� σ�m(t) + T�

N∑

n=1

δσ n
�m β�(t − tn)

}

Y�m(θ, ϕ), (6.17)

with

E� = 1 + kE� − hE
� (6.18)

β�(t − tn) =
M∑

j=1

(kL�j − hL
�j )

(−s�j )

[
1 − exp

(
s�j (t − tn)

)]
, (6.19)

T� = 4πa3

ME (2� + 1)
. (6.20)

Equations (6.18), (6.19) and (6.20) are Eqs. (16) and (22) in Mitrovica and Peltier
(1991).

http://dx.doi.org/10.1007/978-94-017-7552-6_1
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The self-consistent sea-level calculation requires the solution of an integro-
differential equation that can be solved by means of the pseudo-spectral approach
first outlined and implemented byMitrovica and Peltier (1991), where a detailed and
clear discussion of the method can be found. The sea-level rates due to glacial isosta-
tic adjustment that we present here have been calculated by means of this formalism,
while the geoid computations are based on the so-called eustatic approximation in
which the water is distributed uniformly in the oceans (Wu and Peltier 1983). In
order to make estimates of the geoid and free-air gravity anomalies due to post-
glacial rebound, the eustatic approximation is certainly satisfactory as these global
signatures are relatively insensitive to the detailed history of water redistribution in
the oceans.

6.2.2 Sea-Level Variations, the Geoid and Free-Air Gravity
Anomalies

In the computations that follow, 5- and 31-layer incompressible Earth’s models are
considered, Eqs. (2.42)–(2.47), whose parameters will be those in Tables4.2 and
4.3. The lithospheric thickness is fixed at 120km and the upper mantle viscosity
at 1021 Pa s, while the viscosity of the lower mantle will be 1021 Pa s for model 1,
5 × 1021 Pa s for model 2 and 1022 Pa s for model 3. Models 1 and 3 represent
two end-members for a homogeneous and stratified mantle, while model 2 is an
intermediate case. Model 3 is in closer agreement with mantle convection results
(Ricard and Vigny 1989) and with the J̇� results from the SLR analyses of Chap. 5.

For the loading history, the ICE-3G model by Tushingham and Peltier (1991),
shown in Fig. 4.3, is adopted. In the calculations of the geoid and gravity anomalies,
summation is carried up to degree 80. This is a truncation high enough to estimate
the major signal and its pattern.

Figure6.1 provides the present-day geoid anomaly due to Pleistocene deglaciation
for the 5-layer Earth’smodel 1. The peak anomalies of−9,−4 and−10m are located
over Hudson Bay, the Gulf of Bothnia and the Antarctic region, respectively, where
the largest ice sheets were located. As already observed by Mitrovica and Peltier
(1989) for the northern regions, these anomalies are comparable with the observed
geoid in the range of harmonic degrees 10 < � < 22. Longer wavelengths are
in fact correlated with geoid anomalies due to mantle convection (Mitrovica and
Peltier 1989). The pattern of geoid anomalies is rather smooth, in agreement with
the dominant low frequency content of geopotential perturbation. This issue will be
considered later on when dealing with gravity anomalies and their richer content at
high harmonic degrees. A remarkable feature of this geoid is the positive anomaly of
about 1m located in theAtlantic and Pacific oceans, clearly due to themantlematerial
which has flowed away from the glaciated regions during the phase of glaciation
towards the equatorial regions. In these oceanic regions, where the geoid anomaly
is positive, the present-day rates of change of the geoid predicted by Mitrovica and

http://dx.doi.org/10.1007/978-94-017-7552-6_2
http://dx.doi.org/10.1007/978-94-017-7552-6_2
http://dx.doi.org/10.1007/978-94-017-7552-6_4
http://dx.doi.org/10.1007/978-94-017-7552-6_4
http://dx.doi.org/10.1007/978-94-017-7552-6_5
http://dx.doi.org/10.1007/978-94-017-7552-6_4
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Fig. 6.1 Global map of the present-day geoid anomaly due to Pleistocene deglaciation for Earth’s
model 1 (� = 2, 80)

Fig. 6.2 Global map of the present-day geoid anomaly due to Pleistocene deglaciation for Earth’s
model 3 (� = 2, 80)

Peltier (1991), using the same ice model and mantle viscosity profile are negative,
indicating that this geoid anomaly is decreasing to restore isostatic equilibrium.

Figure6.2 provides the geoid anomaly for the 5-layerEarth’smodel 3.With respect
to Fig. 6.1, it is remarkable that the geoid pattern is maintained, except for the peak
values of the anomalies, which are larger than in the homogeneous model. The
highest anomaly is of course caused by the larger amount of isostatic disequilibrium
maintained by the high viscosity of model 3, in comparison with the homogeneous
one. The peak values of the anomalies are now −36, −12 and −30m, about a factor
four larger than for model 1. It is also remarkable that even the positive anomalies
in the oceans are larger than the corresponding ones in Fig. 6.1, in agreement with
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Fig. 6.3 Global map of the present-day free-air gravity anomaly computed using Earth’s model 1
(� = 2, 80)

the larger amount of mantle material stored beneath the ocean basins that, due to the
higher viscosity, has not flowed yet under the continental areas to fill the large mass
deficit.

In Fig. 6.3, the free-air gravity anomaly is provided for model 1. The peak values
of the gravity anomalies are located, as expected, in the centre of the deglaciated
areas and are, respectively, −18 mgal over Antarctica, −10 mgal over Hudson Bay
and −6 mgal over the Northern part of Europe in agreement with the findings first
reported by Mitrovica and Peltier (1989). The pattern of the gravity anomalies has
a close resemblance to the geoid. As expected, the pattern of the free-air gravity
anomalies is not as smooth as the pattern of the geoid, due to the faster decay with
distance of the signal from the anomalous masses, indicating a richer high-frequency
content in the free-air gravity anomalies in comparison to the geoid ones.

In order to appreciate the high-frequency content in the free-air gravity anomaly,
the case inwhich only spherical harmonic coefficients in the degree range l = 80, 200
have been retained is considered in Fig. 6.4. A signal of −3 mgal is obtained in the
Antarctic region and −1 mgal in the other deglaciated centres.

Figure6.5a, b show the predicted present-day rates of sea-level change for the
31-layer Earth’s model 2, in northern Europe and in the Mediterranean region,
respectively. The lower mantle viscosity of model 2 is consistent with inferences
based on post-glacial relative sea-level variations in northern Europe (Lambeck et al.
1990) and numerical predictions of post-glacial sea-level change in southern Europe
(Mitrovica and Davis 1995). The sea-level Eq. (6.16) is solved using the pseudo-
spectral algorithm by Mitrovica and Peltier (1991) with a truncation at degree and
order 256, so the spatial resolution is sufficient to model sea-level increase in small
regions. The highest rates are obtained of course in the centre of deglaciation, the
Gulf of Bothnia. The uplift of the land causes a sea-level fall of−11mm/yr there. On
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Fig. 6.4 Global map of the present-day free-air gravity anomaly computed for Earth’s model 1 by
retaining only the spherical harmonic coefficients in the degree range � = 80, 200

the periphery of the uplifting region, the land is subsiding due to the collapse of the
peripheral bulge, causing a sea-level increase that, along the coastal areas of northern
Europe, can be as high as 1–2mm/yr. Sea-level increase along the coasts of northern
continental Europe is subject to large variabilities, from 0.4mm/yr near the French
coast to 1–1.5mm/yr along the coasts of The Netherlands and Germany. It should be
noted that the collapse of the peripheral bulge decreases in central Europe. Further to
the south, sea level is actually increasing, with rates in the order of 0.6–0.8mm/yr in
the centralMediterranean due to the subsidence of the sea bottom caused by thewater
load. The periphery of the Mediterranean Sea is characterized by a weak sea-level
rise with rates from 0.2 to 0.4 mm/yr in the Adriatic Sea and about 0.4mm/yr along
the Mediterranean coast of France. Here the rates of sea-level change have small
values due to the levering effect (Nakada and Lambeck 1989): the subsidence of sea
basins is contoured by the uplift of the surrounding continents. This sea-basin sub-
sidence is due to mantle material presently flowing from the Mediterranean region
towards the Fennoscandian region in northern Europe. These last values are compa-
rable with the sea-level changes due to active tectonics in the central Mediterranean:
finite-element calculations of active tectonics in peninsular Italy have indicated that
overthrusting of the Apennines onto the Adriatic plate is responsible for a sea-level
increase of 0.4mm/yr (Negredo et al. 1997). The peak value in the central Mediter-
ranean due to post-glacial rebound is thus comparablewith that due to active tectonics
(Di Donato et al. 1999).

The model results indicate that glacial isostatic readjustment of the solid Earth
can induce sea-level variations in sea basins located in the far field with respect
to the centres of deglaciated regions in the order of 1mm/yr, of the same order of
magnitude as those induced by tectonic processes in the Mediterranean, as shown in
the following section.
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(a)

(b)

Fig. 6.5 The present-day rates of sea-level change. a In northern Europe and b in theMediterranean
region due to Pleistocene deglaciation for Earth’s model 2 (� = 2, 256)

6.3 Glacial Isostatic Adjustment (GIA) Versus Tectonic
Processes: The Example of the Mediterranean Sea

TheAdriatic Sea and the coastlines of peninsular Italy represent an important area for
studying sea-level changes because model predictions can be used to gauge the risk
of sea-level rise on the historically important cities of Venice and Ravenna. Further-
more, the current level of ancient Roman ruins in this part of theMediterranean, rela-
tive to present-day sea-level, provide high-quality sea-level records (Pirazzoli 1998)
(see Fig. 6.6).
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Fig. 6.6 Map of the study area with site locations and observational sea-level rates in mil-
limeters per year superimposed. Error bars for Venice and Ravenna are also included (Fig. 1 in
Di Donato et al. (1999))

For example, archaeological evidence in the Istria promontory, in the north Adri-
atic coast of Croatia, indicates a sea-level rise of 0.7mm/yr (Pirazzoli 1998; Degrassi
1955). At the Roman fluvial harbor of Aquileia. in the northernmost part of the Adri-
atic, sea-level has risen by at least 0.8m since the first half of the first century A.D.,
providing a lower bound for the rate of sea-level rise of 0.4mm/yr (Schmiedt 1979). In
Ravenna, Roman ruins are currently located 2–3m below sea level (Roncuzzi 1970),
suggesting a rate of sea-level rise in the range of 1.0–1.5mm/yr, or 1.1± 0.2 mm/yr
(Pirazzoli 1998), while Flemming (1992) estimates a sea-level rise of 0.5mm/yr in
Venice, to which we can safely attribute conservative error bounds of ±0.2 mm/yr
following Flemming (1992). At Egnatiæ, in Apulia, graves, harbor constructions and
a partially submerged Roman caldarium indicate a net sea-level rise in the southern
part of the Adriatic coasts of Italy (Pirazzoli 1998). These sea-level data are all based
on archaeological ruins and are not affected by the subsidence induced by water
extraction, which has hit the cities of Ravenna and Venice in the last 40years, or by
neotectonic faulting, absent in the area.

These archaeological constraints are characterized by some potentially significant
geographic variability, although they indicate a remarkably coherent sea-level rise in
the northern Adriatic sea in the order of 1.0mm/yr in the last 2000years. This change
is unlikely to reflect a global signal, since the estimated present-day eustatic sea-level
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rise of 1.8mm/yr has not persisted over the last two millennia (Douglas 1995). It is
reasonable, therefore, to look for other causes to explain these data, and the most
obvious candidates are active tectonics and GIA. Although the impact of both active
tectonics and GIA on sea-level changes is widely recognized (Mitrovica and Peltier
1991; Pirazzoli 1997), the tectonic contribution to sea-level data has to date been
quantified only indirectly on the basis of residuals between sea-level observations
and modeled GIA effects (Lambeck 1995). In contrast to this indirect approach,
in the following the effects of both these processes are self-consistently taken into
account using tectonic and GIA models, as first shown in Di Donato et al. (1999).
The resulting pattern of predicted sea-level changes can be compared directly with
sea-level observations. This modeling is appropriate for time scales ranging between
103 and 105 yr and, thus, the results can be compared with the above archaeological
data, which have a 103 yr time scale.

Active tectonic processes in the centralMediterranean, namely the Africa-Eurasia
convergence and subduction in the southern Tyrrhenian, are modeled by means
of finite-element solutions in a half-space domain. The model, which extends ear-
lier work by Negredo et al. (1997), allows lateral variations in the rheology of the
lithosphere and mantle which are consistent with tectonic structures in the central
Mediterranean. Figure6.7 is a cartoon representing the mesh of the finite-element
model of peninsular Italy, which includes the deep tectonic structures of the central
Mediterranean Sea.

In comparison to that study (Negredo et al. 1997), the present tectonic model
is characterized by a realistic geometry of the Apennine chain overthrusting onto
the Adriatic domain (Fig. 6.7). The push of the African continent is indicated by
the thick arrows, directed roughly to the north, in agreement with VLBI solutions
(Lanotte et al. 1996). The Tyrrhenian subduction is portrayed by the deep lithospheric
structure beneath theCalabrianArc, with geometric characteristics in agreementwith
seismic tomography (Spakman 1990). The tectonic structures, based on geological
and seismological data, are sufficiently well constrained so as not to require a sensi-
tivity analysis based on the parameters characterizing the tectonic model. The active
push of Africa and the slab pull underneath the Calabrian Arc are responsible for
deformation of the whole domain situated between the African block and the Alps,
in particular of the coastlines of peninsular Italy.

The redistribution of water due to ice-sheet disintegration is a global process.
Predictions of sea-level variations due toGIAarebasedon the formulationprovided at
the beginning of this chapter. The predictions incorporate the effects of deglaciation,
based on the ICE-3G reconstruction of Tushingham and Peltier (1991), on crustal
and sea surface changes in the Mediterranean Sea.

The glacially induced sea-level variations in the area arise from various coupled
processes: loading associated with Pleistocene meltwater filling the Mediterranean
Sea, the rebound in Fennoscandia that drives mantle flow from the Mediterranean
region to the uplifting area centered in the Gulf of Bothnia and long-wavelength
motion of the water away from the Mediterranean and towards subsiding regions at
the periphery of previously glaciated areas (Mitrovica and Davis 1995), as shown
in Sect. 6.2.2. The tectonic and postglacial rebound models have consistent values
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Fig. 6.7 Cartoon portraying the mesh of the finite element tectonic model of the central Mediter-
ranean Sea. The lithosphere, upper and lower mantle are indicated. The dipping plate is the sub-
ducted oceanic lithosphere beneath the Calabrian Arc in the southern part of peninsular Italy. The
coastlines of Italy are drawn on the top, with the thick curve with the finer mesh indicating the
decoupling zone of the Apennines with respect to the Adriatic plate on the right. The horizontal
arrows indicate the push of Africa; slab pull is activated in the subducted lithosphere. Redrawn
from Fig. 2 in Di Donato et al. (1999)

for the thickness and rheology of the lithosphere and the viscosity within the upper
and lower mantle. The elastic structure is constrained by the seismic model PREM
(Dziewonski and Anderson 1981) and the Earth’s model has a 120km-thick elastic
lithosphere for modeling the GIA. Both the models are characterized by an upper
mantle viscosity of 1021 Pa s and a viscosity increase in the lower mantle of a factor
30, in agreement with long-wavelength geoid modeling (Ricard and Vigny 1989)
and the results in Chap. 5. This viscosity profile reconciles the inference derived
from long-term tectonic processes (Ricard and Vigny 1989) with glacio-isostatic
analyses that indicate substantial viscosity increase in the lower mantle (Mitrovica
and Forte 1997). Equations of Sect. 6.2.1 and the iterative pseudo-spectral formalism
described in Mitrovica and Peltier (1991) have been used in order to determine the
gravitationally self-consistent sea-level changes described hereafter. The tectonic
model, which is not self-gravitating, assumes that the geoid does not change during
deformation. The sea-level change is, in this case, due to the motion of the sea floor.
This assumption is justified by results from studies of sea-level changes due to slow

http://dx.doi.org/10.1007/978-94-017-7552-6_5
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Fig. 6.8 Present-day rates of sea-level change due to active tectonics in the Adriatic Sea, the basin
surrounded by Albania, Croatia and Italy. Redrawn from Fig. 3 in Di Donato et al. (1999)

tectonic forcings (Piromallo et al. 1997), which will be described in the last section
of this chapter.

Figure6.8 reproduces the sea-level rates accounting only for the effects of active
tectonics.

The pattern of sea-level change along the Adriatic coasts shows a high variability
due to the geometrical complexity of the tectonic structures activated by the interac-
tion between the Apennine mountain belt, the Adriatic plate to the east and the Alps
to the north, as visualized in Fig. 6.7. Active tectonics is responsible for significant
rates of sea-level rise in the western coasts of the Adriatic sea. This sea-level rise is
due to the downflexure of the Adriatic plate underneath the overthrusting Apennine
belt, whose eastern border is represented by the thick line in Fig. 6.7 separating the
Tyrrhenian sector of the Italian peninsula to the west and the Adriatic domain to
the east. Overthrusting of the Apennines is caused by the push of Africa from the
south and by the decoupling, on geological time scales, of the western and eastern
parts of the peninsula via a megafault. Figure6.8 clearly indicates that active tec-
tonics alone cannot explain archaeologically inferred sea-level records within the
Adriatic. At Aquileia and the Istria promontory the tectonic model provides at most
0.1–0.2mm/yr, which is at least 0.3mm/yr lower than the observed trend in this
region (Schmiedt (1979)). The highest predicted sea-level rise in the Adriatic Sea
due to active tectonics is 0.4–0.5mm/yr, occurring in the Po delta plain, although at
Ravenna even in this case the model predictions are significantly below the sea-level
rise of 1.1±0.2 mm/yr recorded at this site (Pirazzoli 1998). The predicted sea-level
rise at Ravenna achieves a maximum because the Adriatic platform experiences the
largest subsidence at this site due to the arquated geometry of the Apennines, and our
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Fig. 6.9 Present-day rates of sea-level change due to GIA in the Adriatic Sea. Redrawn from Fig. 4
in Di Donato et al. (1999)

predictions therefore reflect the three-dimensional geometry of the tectonic regime.
In Apulia active tectonics yields a sea-level fall of about 0.1 mm/yr due to crustal
uplift. This fall is consistent with the tectonic uplift of Apulia occurring on the time
scale of millions of years (Pirazzoli 1998).

Figure6.9 deals with the effects of GIA. The most noticeable effect of the
water load is a long-wavelength sea-level rise in the Adriatic Sea, increasing from
0.3–0.4mm/yr in the northern part of the basin and along the coasts of Albania and
Croatia to 0.5–0.6mm/yr in Apulia. The large subsidence of the sea basin causes
a slight uplift of the surrounding continental areas due to the flexural behavior of
the lithosphere, which is thus ultimately responsible for the decrease in the sea-level
signal in the eastern part of the Adriatic coast. Although the amplitude of this signal
is somewhat dependent on the viscosity model assumed for the upper and lower
mantle and on the thickness of the lithosphere, the pattern agrees well with previous
results by Mitrovica and Davis (1995), with whom our results have been checked
for stratified viscosity models in the Mediterranean Sea up to harmonic degree 256.
The GIA model alone cannot entirely explain the datum at Aquileia and the Istria
promontory, since the model prediction reaches only 0.3–0.4mm/yr at this site; the
discrepancy between GIA prediction and observation is large at Ravenna, where
the GIA simulation predicts rates of only 0.4–0.5mm/yr. In Apulia, our GIA model
correctly predicts the sea-level rise at Egnatiæ, indicating that GIA is the dominant
mechanism for sea-level change over the last thousand years at this site (as opposed
to the above noted dominant tectonic effects in Apulia over time scales of millions of
years). Figures6.8 and 6.9 show that active tectonics and GIA are unable to account
for the observed sea-level rise when taken separately.
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Fig. 6.10 Present-day rates of sea-level change due to GIA and active tectonics. Redrawn from
Fig. 5 in Di Donato et al. (1999)

Figure6.10 shows the combined sea-level effects of active tectonics and GIA. In
the northernmost part of the Adriatic Sea, where the Istria promontory and Aquileia
are located, our combined models of GIA and active tectonics predict a sea-level
rise of 0.4–0.5mm/yr, in good agreement with archaeological data in Aquileia and,
to a somewhat lesser extent, with the data in the Istria promontory. It is remarkable
that such a conclusion on the necessity to incorporate both active tectonics and GIA
in the northernmost sector of the Adriatic Sea can be drawn on the basis of the
lower bound for sea-level rise of 0.4mm/yr at the site of Aquileia. If we move to
the south, along the western part of the Adriatic Sea in proximity to Venice and
Ravenna, the modeling accounts for a substantial amount of the variation in the sea-
level records from Venice to Ravenna; as noted already, sea-level records vary from
0.5±0.2mm/yr inVenice (Flemming 1992) to 1.1±0.2mm/yr in Ravenna (Pirazzoli
1998), in agreement with our results, varying from 0.75 to 0.95mm/yr between these
two localities. Model results tend to underestimate the geographical variations in
sea-level changes, perhaps due to small-scale tectonic features not taken into account
in the modeling. It is remarkable, nevertheless, that the simulations reproduce the
correct geographical trend, fromwhich it is possible to conclude that the dependence
of sea-level records on geographic location is due, in large part, to active tectonics.
Compaction of the sediments, not modeled in the present analysis, could contribute
to the sea-level record at Ravenna, and thus increase our prediction toward the higher
bound on the observed trend. At Egnatiæ, a sea-level rise of 0.5mm/yr agrees with
the observed trend at this site.

Simultaneous modeling of active tectonics and Pleistocene ice-sheet disintegra-
tion in the central Mediterranean Sea makes it possible predictions on the trends in
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sea-level rise due to slow geodynamical processes. Consistency between data and
model results in trends and magnitude of sea-level rise indicates that the major con-
tributors to sea-level rise have been properly taken into account. A major finding is
that contributions to sea-level rise due to GIA and active tectonics are comparable
in the studied area, since active tectonics here is characterized by horizontal veloc-
ities at sub-centimeter level (Lanotte et al. 1996). In other tectonic environments in
the Mediterranean Sea, with more significant horizontal velocities, active tectonics
would provide higher sea-level signals, as in the island of Crete in the Aegean Sea
(Lambeck 1995). The results in this section clearly show that it is possible to quantify
the effects of active tectonics and GIA on sea-level rise in an area of great interest not
only for the presence of cities like Venice and Ravenna, witnesses of a unique histor-
ical past, but also for the impact that climatic changes and anthropogenic activities,
such as water and gas extraction, could have on the acceleration of sea-level rise.

6.4 Sea-Level Fluctuations Induced by Polar Wander

Glacial isostatic adjustment and tectonics are responsible for sea-level fluctuations
at the regional scale, as shown in the previous Section. Polar wander of a viscoelas-
tic stratified Earth can induce, instead, global sea-level fluctuations comparable to
the short-term component in the eustatic sea-level curves that show a characteristic
pattern where sea-level rise and fall can occur simultaneously, depending on the geo-
graphical location (Sabadini et al. 1990). This simultaneous occurrence of sea-level
rise and fall, visible as episodes of deposition or non-deposition of marine sediments
in different parts of the world, has led to the proposal that at least some sea-level
rises and falls must be global, or eustatic, in character. This simultaneous occurrence
of sea-level rise and fall is in distinct contrast to the main assumption underlying
the reconstruction of eustatic curves, i.e., that global sea-level events produce the
same depositional sequence everywhere. This apparent contradiction may be due
to the poor time resolution of the stratigraphic records in the distant past, which
is comparable to the timescale of polar motion, and to non-uniform data coverage.
The results presented in this Section show that polar wander should be added to
the list of geophysical mechanisms (the others are glacial instabilities, plate tectonic
mechanisms, subduction, sea-floor spreading, and thermal and compaction-induced
subsidence) that can control the third-order cycles in sea level. RSL fluctuations due
to variations in the centrifugal force associated with long-term wander of the Earth’s
rotation axis can be predicted theoretically for radially stratified viscoelastic Earth’s
models. The possible causes for these long-term displacements of the rotation axis
can originate in the mantle, as suggested by the rotational responses of the Earth
to the tectonic mechanisms described in Chap. 7, or can be caused by the surface
redistribution of melt water from ice ages, as shown in Chap.4. In this section the
possible dynamic sources of polar wander are disregarded and attention is drawn
instead to the effects on RSL induced by polar wander rates that agree with those
induced by the geophysical processes considered in the other chapters of this book.

http://dx.doi.org/10.1007/978-94-017-7552-6_7
http://dx.doi.org/10.1007/978-94-017-7552-6_4
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In the Laplace transform domain, the perturbation in the centrifugal potential
depends, to first order, on the s-dependent direction cosines m1(s), m2(s) of the
unitary rotation axis n̂(s) as for Eq. (3.129), which means that it depends on the
m = −1, m = 1 harmonic order

φC(θ, ϕ, s) = �2 a2

3

[
1

6
Y ∗
2,−1(n̂(s)) Y2,−1(r̂) + 1

6
Y ∗
21(n̂(s)) Y21(r̂)

]
(6.21)

as obtained from Eq. (3.25), where � is the rotation rate of the Earth, a is the Earth’s
radius and r̂ depends on the colatitude and longitude θ ,ϕ of the observer. Because our
model is radially symmetric, and the distribution of the ocean is assumed uniform,
this � = 2, m = −1, m = 1 perturbation potential induces a signal in the relative
sea-level fluctuation of the same angular degree and order, as for Eqs. (3.56) and
(3.57) for the inertia perturbation due to the centrifugal potential. Neglecting the
effects of self-attraction of the uniform ocean and of the geographical distribution of
the coastlines, the RSL from Eq. (6.16) is then

RSL(θ, ϕ, s) = (1 + kT2 (s) − hT
2 (s))φC(θ, ϕ, s)/g, (6.22)

where kT2 and hT
2 are the � = 2 components of the tidal Love numbers for the

gravitational potential and vertical displacement, respectively, obtained from the
boundary conditions at the Earth’s surface given by Eq. (1.127) and g is the gravity.
Neglecting the self-attraction of the ocean has the effect of producing an increase of
at most 10% on our results. The term 1+ kT2 (s) yields the deformation of the ocean
surface relative to the Earth’s centre, whereas hT

2 controls the vertical displacement
of the sea-bottom.

Owing to the lag between these two contributions, perturbations in the centrifu-
gal potential induce sea-level fluctuations, as shown by the drawing in Fig. 6.11.
The white arrow indicates the direction of the polar wander, and the solid and dashed
curves depict the shift of the equipotential surface (geoid). Highstands and lowstands
are generated depending on the latitude and longitude of the observation points with
respect to the polar motion. To quantify these sea-level fluctuations for incompress-
ible Earth’s models, it is necessary to make use of the spectral decomposition of the
tidal Love numbers, which are recoverable by means of the normal mode theory,
as shown in Sects. 1.8 and 2.3. The model used for the following simulations is a
4-layer model as in Table7.1 of the following Chap.7 on TPW forced by sinking
slabs, with viscosity ν1 and ν2 in the upper and lowermantle. The upper-lowermantle
interface is located at a depth of 670km and modeled in such a way as to simulate
themechanical behavior of phase-change or chemical transitions, which are assumed
fully adiabatic and non-adiabatic. The fully adiabatic mantle is modeled by deleting
theM1 buoyancymode. Polar wander rate in the following simulations is 1 Deg/Myr,
of the same order of TPW induced by post-glacial rebound or tectonic mechanisms
(Chaps. 4 and 7). The results for different polar wander rates can be obtained by
means of linear scaling.

http://dx.doi.org/10.1007/978-94-017-7552-6_3
http://dx.doi.org/10.1007/978-94-017-7552-6_3
http://dx.doi.org/10.1007/978-94-017-7552-6_3
http://dx.doi.org/10.1007/978-94-017-7552-6_3
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_2
http://dx.doi.org/10.1007/978-94-017-7552-6_7
http://dx.doi.org/10.1007/978-94-017-7552-6_4
http://dx.doi.org/10.1007/978-94-017-7552-6_7
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Fig. 6.11 Pictorial representation of sea-level fluctuation induced by polarwander. Thewhite arrow
denotes the direction of polar drift at a rate ṁ = 1 Deg/Myr. The solid and dashed curves represent
the deformation of geoid and topography of the sea floor at time t = t0, when the perturbation is
initially imposed, and at a subsequent time t = t1. Sea level is unperturbed at the equator, but rises
and falls occur in the northern and southern hemispheres

In Fig. 6.12 the perturbative potential is applied at time t = 0; the evolution of the
sea level at mid-latitudes, where the effects are larger owing to the latitudinal depen-
dence of the perturbation, is depicted. Sea-level fluctuations are extremely sensitive
to viscosity stratification and lithospheric thickness. These curves are characterized
by transient behavior, more pronounced for high lower mantle viscosities, followed
by a linear trend, which is connected to a constant rate of polar wander. For smooth
viscosity contrasts, phase-change models (dashed curves) produce a smaller signal
than chemically stratified ones (solid curves). For the chemically stratified mod-
els, deflections of the 670km discontinuity induce a buoyant restoring force which
inhibits viscous relaxation in the mantle. This, in turn, reduces the vertical uplift of
the sea floor and helps to maintain the offset between sea-floor topography and the
geoid. For high viscosity contrasts (ν2 = 1023 Pa s), the stiffening of the lowermantle
overcomes the dynamic effects associated with the nature of the 670km discontinu-
ity. Thus phase-change and chemically stratified models exhibit the same behavior.
The dotted curve, corresponding to a model with a reduced lithospheric thickness
of 50km, shows the sensitivity of sea-level fluctuations induced by polar wander
to variations in lithospheric thickness. High viscosity contrast models thus predict
sea-level fluctuations in the order of several tens of meters on timescales of 1 Myr,
which are comparable to the third-order cycle in the eustatic curves.

It is useful to analyze the behavior of the rate of sea-level fluctuations (Fig. 6.13).
Rates in the order of 0.05–0.1mmyr−1 aremaintained for timescales of 0.5Myr if the
viscosity contrast is sufficiently high (ν2/ν1 = 50–100). For uniformmodels, or mild
viscosity contrasts (ν2/ν1 = 1–10), rates of sea-level fluctuations decay in a few tens
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Fig. 6.12 Time dependence of relative sea-level fluctuations at mid-latitudes (θ = 45◦, φ = 0◦),
corresponding to ṁ = 1Deg/Myr and polar motion toward Greenwich. The perturbative potential is
applied at time t = 0. Solid curves correspond to chemically stratified models (fully non-adiabatic)
and dashed ones correspond to fully adiabatic phase changes. Lithospheric thickness is 100km,
except for the dotted curve, which corresponds to 50km. The upper mantle viscosity ν1 is 1021 Pa s,
and the lower mantle viscosity ν2 is varied from 1021 Pa s (bottom) to 1023 Pa s (top)

Fig. 6.13 Time dependence
of ˙RSL in mm/yr. Solid
curves correspond to
chemically stratified models
and dashed ones correspond
to fully adiabatic phase
changes. For ν2 = 1023 Pa s,
the chemical transition and
phase-change models are
indistinguishable. Results for
ν2 = 1022 Pa s are also
shown

of thousands of years. After the decay of the initial transient, the rates reach a final
value of 0.02mm/yr, irrespective of the rheological stratification. As expected, phase-
change models produce lower rates, except for high viscosity contrasts, in which
case these models are indistinguishable from chemically stratified ones. We find that
rates of sea-level fluctuations are around one order of magnitude smaller than those
associatedwith vertical deformation of the seafloor,which are 1–1.5mm/yr. The rates
predicted by our model are of the same order of magnitude as the short-wavelength
ones associated with temporal variations of the horizontal tectonic stress field in the
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lithosphere (Sect. 6.3). From these results, it is clear that the proposed mechanism of
polar wander is efficient in inducing sea-level fluctuation, especially during epochs
of rotational instabilities, caused by mantle flows. Significant shift of the rotation
pole occurred, for example, during the Late Cretaceous. The results shown in this
section indicate that the highstand or lowstand system tracts observed in one part
of the world are not necessarily correlated with the same depositional sequence
in another geographic location. A highstand in a marine package in the Northern
Hemisphere can, in fact, be coeval with a lowstand in the Southern Hemisphere at
the same longitude if the only active mechanism that induced the eustatic sea level
event was polar wander.

6.5 Sea-Level Changes Induced by Subduction

The effects of tectonics on relative sea-level changes have been shown at the regional
scale. In this section we explore the effects of tectonics, in particular subduction, at
the global scale. As in the case of the effects of rotation, we neglect the self-attraction
of the oceans and the geographical distribution of the coastlines.

RSL is determined by the difference in height between the surface of the non-
hydrostatic geoid and the surface of dynamic topography: in Fig. 6.14 we illustrate
the different contributions to the determination of RSL. The direct contribution of
internal mass anomalies to the gravity potential is given by the term that would
constitute the only contribution to the potential in the case of a rigid Earth (Lambeck
1980). However, in a viscoelastic Earth, an additional compensating effect is induced
by the deflection of the interfaces. The internal masses and the deflected interfaces

Fig. 6.14 Schematic
representation for the various
contributions to RSL
determination. RSL is
determined by the offset in
height between the surface of
the resultant geoid and the
dynamic topography, as
shown by the arrow (adapted
from Ricard and Vigny
(1989))
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together modify the sea water surface. In Fig. 6.14, the resultant geoid and dynamic
topography appear to be highly correlated both in amplitude and sign. However, this
is only to be considered as a schematic representation and not as a general rule, since
geoid and topography usually have much different amplitudes, as we will point out
later on, and they may also be opposite in sign.

The generalized Love numbers used in this section are those appropriate for
internal loads, Eq. (1.179) (Ricard et al. 1992; Sabadini et al. 1990, 1993); they
display an elastic response and various viscoelastic relaxation contributions, as in
the case of the Love numbers for surface loads introduced in Sects. 1.7.1 and 1.7.2.

6.5.1 Sea-Level Variations, Geoid Anomalies
and The Long-Wavelength Dynamic Topography

The study of geophysical observables related to the geoid and dynamic topogra-
phy is fundamental for the understanding of relative fluctuations in the mean sea
level. Several works have already analyzed in detail the geoid anomalies as in
Ricard et al. (1992), while we will focus our attention on the dynamic topography
in the present Section. Since dynamic topography shows a strong degree 2 content
well correlated with the non-hydrostatic geoid and with hot anomalies in the lower
mantle (Cazenave et al. 1989; Ricard and Vigny 1989), the study of the degree 2
Love number for the topography turns out to be particularly interesting. Moreover,
long-wavelength responses clearly illustrate the effects of mantle rheology and strat-
ification on geoid and dynamic topography. We will develop our analysis up to a
higher harmonic degree, � = 20, which is more appropriate to describe features
such as subduction zones. The 4-layer, incompressible Earth’s model described in
Table7.1 is employed as in Sect. 6.4, with both phase-change and chemical interface
at 670km. A pure phase change interface implies a whole mantle convection, since
themantlematerial is allowed to flow across the boundary. A fully non-adiabatic den-
sity jump across the discontinuity (chemical interface), on the contrary, separates the
mantle flow and generates a layered convection with two superimposed convective
cells (e.g., Ricard et al. 1992; Piromallo et al. 1997).

Figure6.15 shows the degree 2 dynamic topography as a function of depth. We
locate a point mass anomaly characterized by a Heaviside time-history at a depth d in
the mantle in order to compare the effects of loads positioned at various depths. The
different curves represent the dimensionless values of the topography computed at
the time indicated (expressed in kiloyears) and normalized to the spectral amplitude
of the load (Piromallo et al. 1997). In this figure the viscosities of the lower and
upper mantles are both fixed at 1021 Pa s. No lithosphere is included in the results
portrayed in the left column panels (Fig. 6.15a, c, e and g), while a 100km thick
elastic lithosphere is present in the right column (Fig. 6.15b, d, f and h). The 670km
depth interface is characterized by a physical discontinuity in the four top panels
and by a chemical change in the four bottom panels. While models (a), (b), (e) and

http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_7
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6.15 Time evolution for topography as a function of the point source depth d (normalized to
the Earth’s radius a) and time t. A physical interface is assumed at 670km of depth in the four top
panels, while a chemical change is considered in the four bottom panels. A 100km-thick lithosphere
(L) is present in the right column panels. A viscosity contrast between the lower and the upper
mantle (ν2/ν1 = 30) is assumed in models c, d, g and h. The curves have been computed at different
times, expressed in kiloyears after the initiation of loading (Fig. 2 in Piromallo et al. 1997)
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(f) are isoviscous, models c, d, g and h are characterized by the presence of a sharp
viscosity contrast between the lower and the upper mantle (ν2/ν1 = 30). The upper
mantle viscosity is kept fixed at 1021 Pa s. The elastic response (t = 0) induces a
negative surface topography and does not show large differences among the various
models since themass is not compensated, thus causing a downward deflection of the
surface. As time increases up to the fluid limit (t = ∞), the characteristic features
of the different models are clearly displayed. For a physical discontinuity at 670km
(Fig. 6.15a, b, c and d) the dynamic topography is always negative. Topography
vanishes for masses located at the core-mantle boundary in the asymptotic regime:
for long time-scales, the masses are isostatically compensated by the density jump
between the core and the mantle.

The time required to reach the isostatic regime is a few thousand years in the case
of an isoviscous mantle (Fig. 6.15a, b), while it rises to values in the order of 104

yr when the lower mantle is 30 times more viscous (Fig. 6.15c, d). For a chemical
transition (Fig. 6.15e, f) masses located at 670km depth are locally compensated,
while those in the lower mantle cause a topographic high at the surface. In these
latter models the asymptotic value is reached after a longer time interval due to the
influence of the slower relaxation mode associated with the weak density jump at
670kmof depth. The viscosity increase causes a depression of the surface topography
associated with lower mantle loads (Fig. 6.15g, h). It is worth noting that topography
values are larger in the models with the lithosphere due to the stress concentration
in the vicinity of an elastic element. Note, too, that a mass, when situated close to
the surface, induces a topography which is approximately independent on mantle
stratification: this corresponds to the usual concept of isostasy.

In Fig. 6.16 the same kind of analysis for � = 2 is performed for RSL curves.
It clearly appears that RSL shows a trend which is opposite to that of the dynamic
topography at the surface.We generally observe, above a mass excess, a highstand of
the sea level, except in the case of chemical transition, in which a lowstand is possible
for lower mantle heterogeneities. The fact that RSL curves are roughly opposite to
those of the topography shows that the contribution of the latter overwhelms the signal
due to the geoid. Gurnis (1990a), by means of a one-dimensional kinematic model,
studied the influence of the admittance (ratio of geoid to dynamic topography) on
continental flooding. He has shown that the maximum allowable admittance is close
to 0.11 for long wavelengths (Gurnis 1990b). Our results reinforce these findings.

6.5.2 A Single Sinking Slab

We shall now consider RSL variations associatedwith amass anomalywhichmimics
the effects of a slab sinking in themantle at a constant velocity. Themain assumptions
of our model are: (i) the head of the mass sinks vertically, (ii) the mass extends
from the surface to its head and thus increases with time, (iii) the sinking velocity
corresponds to a typical velocity of subduction, (iv) the total mass of the anomaly is
2×1019 kg, corresponding to a slab pull of 5×1013 N/m along a trench 4000km long
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6.16 Time evolution for RSL (d, t) as a function of depth of the point source d (normalized
to the Earth’s radius) and time t . A physical interface is assumed at 670km depth in the four top
panels, while a chemical change is considered in the four bottom panels. A 100km-thick lithosphere
is present in the right column panels. A viscosity contrast between the lower and the upper mantle
(ν2/ν1 = 30) is assumed in models c, d, g and h. The curves have been computed at different times,
expressed in kiloyear, after the initiation of loading (Fig. 3 in Piromallo et al. 1997)
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(see Turcotte and Schubert 1982). We consider a total mass of the anomaly, which is
of the same order of magnitude as the ice sheets in the northern hemisphere during
the Pleistocene deglaciation. This allows for a direct comparison of RSL variations
due to various geophysical processes. For the sake of simplicity, we simulate the
mass as a column composed of identical point elements progressively switching on
at increasing depths from the surface down to the 670km depth discontinuity.

In each panel of Fig. 6.17 three values for the velocity of subduction are consid-
ered (2, 5 and 10cm/yr). The � = 2 harmonic degree RSL is expressed in meters.
We obtain only positive variations for RSL, thus showing that a subducting mass
produces a highstand in sea level for each of our eight models. Another feature com-
mon to all models is the monotonically increasing trend of the three curves from the
initial instant up to the point where subduction stops (with a gradient clearly depend-
ing on the subduction velocity). We observe an exponential decay in the condition
of isostatic equilibrium (Fig. 6.17e–h), governed by the relaxation of the chemical
upper-lower mantle interface (see Spada et al. 1992; Ricard et al. 1992). For the
models with a physical interface (Fig. 6.17a–d) the asymptotic regime is reached
on shorter time-scales. The fastest process (Fig. 6.17a, b and d with v = 10 cm/yr)
produces the largest variation, with 8m of RSL in a time span of about 7 million
years. In each figure, the three curves share the same asymptotic limit, independent
of the velocity of subduction. For different models the fluid limit varies considerably,
ranging from larger amplitudes for isoviscous models with a physical discontinuity
(Fig. 6.17a, b) to smaller ones formodelswith a chemical interface and no lithosphere
(Fig. 6.17e, g). In two-layered convective models, we notice that RSL varies rapidly
at the beginning of subduction and progressively slows down as time increases. This
trend is likely explained by the decrease in amplitudewith depth of theGreen function
for dynamic topography, which mostly contributes to RSL as we already observed.
RSL fluctuations are inhibited by viscosity contrasts, unlike in uniform models.

6.5.3 A Distribution of Slabs

RSL is now portrayed for a realistic distribution of slabs along the present-day con-
vergent margins. The sinking slabs are discretized by means of point loads (slablets)
subducting with the same constant velocity (following the approach in Ricard et al.
1993). In the following simulations, it is assumed that no anomalies are present in
the mantle before the initiation of subduction, which starts simultaneously along
all the margins. All the slabs are then introduced at the same time, sinking into the
mantle at a constant velocity, v = 5 cm/yr, and stopping when they have reached the
670km interface. Figures6.18 and 6.19 depict the RSL variations expanded up to
harmonic degree � = 20, 15 Myr after the beginning of subduction. At this time,
all the slabs have reached the 670km depth and a steady-state situation is achieved
by the complete relaxation of the viscoelastic flow. The harmonic degree � = 20
corresponds to a wavelength of about 2000km, which allows a satisfactory spatial
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6.17 RSL variations, expressed in meters, as a function of time from the starting of subduction
for a single slab sinking down to 670km. The three curves for each panel correspond to the different
values of average velocity of subduction v = 2, 5, 10 cm/yr, as indicated in panels (a) and (c). The
succession ofmodels is the same as described in the previousfigures (Fig. 4 in Piromallo et al. 1997)
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Fig. 6.18 Map of the RSL variation induced by a realistic distribution of slabs up to degree 20, 15
Myr after the beginning of subduction. The model has a 100km thick elastic lithosphere, a physical
interface at 670km and an isoviscous mantle. Contours are 400m apart. Redrawn from Fig. 5 in
Piromallo et al. (1997)

Fig. 6.19 Same as in Fig. 6.18, but with a viscosity contrast (ν2/ν1 = 30) between the lower and
the upper mantle (model d). Redrawn from Fig. 6 in Piromallo et al. (1997)

resolution. The two maps display the results for models including a lithosphere and
a physical change at the 670km depth discontinuity.

In Fig. 6.18 the mantle is isoviscous and corresponds to the model of Figs. 6.15b
and 6.16b, while in Fig. 6.19 a ν2/ν1 = 30 viscosity contrast is assumed, as in
Figs. 6.15d and 6.16d. Since RSL is solely induced by slabs, the resulting patterns
are strongly influenced by subduction margins, where large positive RSL variations
are found, associatedwith small signals in the surrounding ocean basins. The contrast
of viscosity within the mantle notably inhibits the variations in RSL. An upper bound
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for RSL variations induced by subduction yields values in the order of 0.1mm/yr and
is in agreement with previous studies by Gurnis (1992) based on two-dimensional
models and comparablewith the value attributed to changes in the large-scale tectonic
regime of the Earth.

The contribution of the dynamic topography is by far more relevant than geoid
variations in the assessment of RSL changes. Results from different models bear evi-
dence of the impact, in terms of time-scales and amplitudes, of the overall viscosity
profile and of the nature of the seismic discontinuities in the mantle in determining
RSL. The presence of exponentially decaying viscoelastic relaxation times is clearly
evident in the models with a chemical interface. RSL rates are enhanced by the elas-
tic lithosphere, the physical interface at 670km depth and uniform mantle viscosity.
Subduction is an important geophysical mechanism controlling long-term sea-level
curves in addition to glacial variations, polarwander, plate tectonicmechanisms, ther-
mal and compaction-induced subsidence. We refer to the work by Austermann and
Mitrovica (2015) where the effects of shoreline migrations in sea-level calculations
are considered, within the frame of fluid Love numbers resulting from viscoelastic
Earth’s modeling, combining the effects of mantle convection, ice mass changes and
sediment redistribution, for a simple but physically sound example.
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Chapter 7
TPW Driven by Subduction: Non-linear
Rotation Theory

Abstract This chapter deals with the development of a non-linear rotation theory,
driven by internal density anomalies, as for those due to mantle convection, for a
stratified, viscoelastic, incompressible Earth. We show how mantle convection TPW
represents a very powerful constraint for the mantle viscosity profile, and our finding
is that the lower mantle has to be definitively stiffer than the upper mantle.

7.1 Formulation of the Non-linear Rotation Problem

When dealing with marked excursions of the rotation axis, such as TPW driven by
subduction, wemust use, as shown in this section reworked fromRicard et al. (1993),
the fully non-linear Eq. (3.6), where the inertia tensor I can be divided into three
contributions of decreasing amplitudes

I(t) = I δi j + a5k2T (t)

3G
∗(ωi (t)ω j (t) − 1

3
ω2(t)δi j ) + (δ(t) + kL2 (t))∗�Ii j (t) (7.1)

where the asterisk denotes the time convolution and the first two terms are those of
Eq. (3.31). The three terms on the right-hand side are of the order of 0.33 MEa2,
1.08× 10−3 MEa2 and 10−5 MEa2, where ME and a are the mass and the radius of
the Earth.

The degree � = 2 Love numbers k2T (t) and kL2 (t) are based on the fundamental
matrix Y2(a) for an incompressible Earth’s model, as for Eqs. (2.42)–(2.47).

The first term I δi j denotes the tensor of a spherical non-rotating Earth and is equal
to 0.33 MEa2. The second term results from the centrifugal potential deforming the
Earth. This means that any change in rotation is equivalent to a new potential applied
to the Earth’s surface. When under such a boundary condition, the planet matches an
inertia tensor equal to the convolution of kT2 (t), the tidal Love number of harmonic
degree 2, with the time history of the centrifugal potential. As we have already seen
in Eqs. (3.32)–(3.34), the contribution related to the rotation shows that a planet,
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rotating at a constant velocity �, reaches a steady-state axi-symmetrical shape with
a polar inertia

C = I + 2kTf a
5

9G
�2 (7.2)

and two equatorial inertia

A = I − kTf a
5

9G
�2 (7.3)

where kTf denotes the fluid tidal Love number defined in Eq. (3.35) and the amplitude
of the rotational contribution to inertia is

C − A = kTf a
5

3G
�2 (7.4)

If we assume that the Earth is close to hydrostatic equilibrium, we find that this value
can be identified with the observed dynamic flattening C − A = 1.08× 10−3 MEa2.

The third term in the inertia tensor I, Eq. (7.1) is related to the mass redistribution
due to geophysical processes inside the Earth or at its surface, with kL2 denoting the
loading Love number appropriate for surface loading, or internal loads; in Eq. (7.1),
�Ii j (t) represents the inertia changes due to a given geophysical process, without
taking into account any dynamic deformation. These inertia changes act directly
on the planet through the Dirac delta function and �Ii j (t) generalizes, also for
internal loads, the terms �I L13, �I L23 entering Eq. (4.2) or (4.3) for surface ice loads,
and include the time dependent part of the inertia perturbation, so leading to the
complete inertia perturbation tensor. The convolution accounts for the effects of
isostatic compensation. The amplitude of �Ii j can be estimated for the excitation
sources. For example, the Pleistocene deglaciation inChap. 4 corresponds to a change
of inertia with an amplitude of about 10−5 MEa2.

In Chaps. 3 and 4 we made use of linearized rotation equations, so that only the
perturbations of ω with respect to a starting vector � were considered. The general
non-linear problem governed by the fully non-linear rotational equations has been
solved for very simple models and for constant excitation sources (Lefftz et al.
1991; Munk and MacDonald 1960). This section deals with the effects of a time-
dependent mantle mass redistribution on the Earth’s rotation. The impact of slow
varying processes on rotation was first considered within a self-consistent fully non-
linear approach by Ricard et al. (1993). Internal mass redistribution could induce a
TPW velocity comparable to the observed value of around 1Deg/Myr and eventu-
ally move the Earth’s pole to a great extent. The practical problem in dealing with
these issues is to compute realistic Love numbers and to efficiently perform the
convolutions in the previous equations.
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When dealing with large excursions of the rotation axis, it is necessary to over-
come the numerical difficulties of solving the non-linear problem arising from the
interaction of different time scales spanning various decades. These time constants
range from zero (the elastic impulse) to a relaxation time of several million years
associated with the M1 mode, the slowest relaxation mode in the four-layer Earth’s
model considered in this chapter, Table7.1.

Such a very large M1 time span also holds for the geophysical excitations, pre-
venting any direct approach to the integro-differential system above. The complexity
of numerical integration is further increased by the fact that ω(t) does not monoto-
nously vary but revolves at a Chandler period of about 435days around an average
solution. An approximate solution of these equations is thus necessary. Since this
Section deals with very slow geophysical processes like plate motions and mantle
convection, our excitation function varies with time constants larger than 1 Myr.
To begin with, let us assume that our Earth’s model has no internal non-adiabatic
density discontinuity, so that the M1 mode is not excited and the slowest relaxation
time is much smaller than 1 Myr. In this case, |si t | � 1 or |s| � si and we can thus
approximate the loading Love number as

kL2 (t = ∞) = kLE −
M∑

i=1

kLi
si

. (7.5)

This enables us to identify the time-dependent isostatic Love number kL2 (t) with
its fluid limit kLf .

We cannot directly make use of the fluid limit kTf for the tidal case because
the time-dependent readjustment of the equatorial bulge during polar wander
must be self-consistently taken into account. Since the approximation is somewhat
more complex here, we must allow for the possibility of a time-dependent readjust-
ment of the equatorial bulge during polar wander. Thus, in the Laplace domain

kT2 (s) = kTE +
M∑

i=1

kTi
s − si

(7.6)

Table 7.1 Parameters for the 4-layer fixed-boundary contrast Earth’s model

Layer r (km) ρ (kg/m3) μ (N/m2)

1 6371 − 6271 2689 2.82 × 1010 Lithosphere

2 6271 − 5951 4430 8.37 × 1010 Upper mantle

3 5701 − 3480 4919 2.17 × 1011 Lower mantle

4 3480 − 0 10,927 0 Inviscid fluid core

r is the distance with respect to the centre of the Earth, ρ the density of the layer, and μ the rigidity
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as Eq. (3.109) and |s| � si to first order in s/si , wemake the first order approximation

kT2 (s) = kTE −
M∑

i=1

kTi
si

(
1 + s

si

)
(7.7)

which leads to Eq. (3.134) once included in Eq. (7.1) in the s-domain, and then
anti-transformed from the s- to the t-domain.

By defining the fluid tidal Love number as in Eq. (7.5), we have

kT2 (s) = kTf − T1s (7.8)

where T1 is defined as in Eq. (3.119).
It should be noted that in Ricard et al. (1993) the time scale for the readjustment of

the equatorial bulge is defined by T ∗
1 = T1/kTf which makes in the quoted paper this

time scale to appear as kTf T1 rather than T1, according to our herein definition, which
has to be taken into account when comparing the equations of this chapter, which
agrees with the definition given in Eq. (3.119), with those of Ricard et al. (1993).

The expansion given by Eq. (7.8) is valid for |s| � |sM1|, meaning that our
approximation holds for geophysical processes slower than the relaxation time con-
trolling the readjustment of the non-adiabatic discontinuity at the 670km depth. The
quality of the approximation for the tidal Love number is reinforced by the fact that,
for most of the realistic models of the Earth’s mantle, the amplitude of the residue
kTM1 is negligible. Put in another way, this vanishing strength means that a change in
the Earth’s centrifugal potential induces no appreciable displacement of the 670km
depth interface.

M1 plays amajor role in the loading problem.When kL(s) is computed formasses
found inside themantle, the amplitude kLM1 associatedwith theM1mode can be large.
We thus separate the slowest mode from the fast relaxing ones and use the following
equation for kL2 (t)

kL2 (t) = kLf + kLM1

sM1
esM1t . (7.9)

In this equation, expressing the convolution of the loading Love number with a
Heaviside function, it is assumed that on the given time scale all the modes, except
possibly the M1 mode, have already relaxed and the convolution entering Eq. (7.1)
between the exponential part of kL2 (t) and �Ii j can thus be easily performed numer-
ically.

The quantity 1+ kLf , for the harmonic degree � = 2, as a function of depth of the
excitation source is shown in Fig. 7.1 for a number of Earth’s models.

These functions are zero for mass anomalies close to the core-mantle boundary.
For non-adiabatically stratified models (bottom row), the mass anomalies are also
perfectly compensated for when they are close to the density jump at 670km depth.
For masses at the surface, 1+ kLf is also zero in the case without the lithosphere (left

http://dx.doi.org/10.1007/978-94-017-7552-6_3
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(a) (b)

(c) (d)

Fig. 7.1 Perturbation in the inertia in the long-term approximation due to an inertia source of unit
amplitude introduced at time t = 0 in the mantle. This perturbation 1 + kLf is plotted as a function
of the mass anomaly depth, from the normalized Earth’s surface at 0.0 to the CMB, for a viscosity
jump at the upper-lower mantle interface by a factor of 1, 10, 30, 50 or 100. In the first row, the
mantle density is uniform, in the second row it increases by 9 % at 670km depth. A lithosphere is
present in the right column. Redrawn from Fig. 4 in Ricard et al. (1993)

column), while a slight undercompensation is supported by elastic stresses when the
lithosphere is present (right column). In the case of moderate viscosity increases in
the mantle, a positive mass anomaly gives rise to a negative 1+ kLf ; larger viscosity
variations can impose a positive 1 + kLf . As the inertia tensor is related to the geoid
of degree 2, the excitation functions 1 + kLf only differ from the geoid kernels by a
normalization factor (Ricard et al. 1984; Richards and Hager 1984). The long-term
limits of the viscoelasticmodelswithout purely elastic lithospheres exactly reproduce
what has been found for purely viscous steady-state models.
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The equivalence between long-term viscoelastic models and viscous steady-state
models needs some clarification. That is, when t → ∞ or s → 0, our viscoelastic
model assumes the character of a Newtonian viscous fluid (Wu and Peltier 1982)
and has the same surface Love numbers. For internal loads, the displacements inside
the viscoelastic mantle tend to infinity when s → 0, but the associated velocities
approach finite values equal to those obtained via steady-state viscous models.When
s → 0, the viscous limit of a viscoelasticmodel cannot be directly obtained by setting
s = 0 in the rheological law, which would correspond to the rheology of an inviscid
fluid. That steady-state viscous models can be used even for time-dependent loads is
due to the fact that interface deformations are generally faster than the time-varying
positions of the loads. However, the expression of kL2 (t), which explicitly includes
the time dependence of the M1 mode, allows us to take into account the upper-
lower mantle interface, which readjusts slowly. The need for keeping the M1 mode
in the convolution of the load history with the isostatic Love numbers is illustrated
in Fig. 7.2. We computed the time-dependent excitation function 1 + kLf for four
chemically stratified models. While in the top row of Fig. 7.2 the mantle viscosity
is uniform, it increases by a factor of 50 in the lower row. The right column differs
from the left by the presence of a lithosphere. The corresponding Love numbers are
plotted by a dashed line, 0.2 Myr (panel (a)) or 1 Myr (panels (b), (c) and (d)) after
the imposition of a Heaviside load. Since at such time the Love numbers are far from
reaching their asymptotic values (full lines), it is necessary to account for the explicit
time-dependence of the M1 mode when chemically stratified models are used.

Inserting Eq. (7.8) into Eq. (7.1), the latter transformed into the s-domain, and
taking into account that the image of a time derivative ḟ (t) is s f (s) in the s-domain,
we can express the total inertia tensor in the time domain after anti-Laplace trans-
formation as

I = I δi j + a5kTf
3G

(
ωiω j − 1

3
ω2δi j

)
− a5T1

3G

(
ω̇iω j + ωi ω̇ j − 2

3
ωl ω̇lδi j

)
+ Ei j

(7.10)
where

Ei j = (δ(t) + kL2 (t))∗�Ii j (t) (7.11)

consistently with Eq. (7.1) and with Eqs. (3.134)–(3.136).
By neglecting the terms ω̈ and ω̇2 for consistency with the previous approxima-

tions, and remembering that ω3 contains the zero-order term as in Eq. (3.129), these
definitions and the basic Eq. (3.6) with L = 0 give us (Ricard et al. 1993)

�i j (ω)ω̇ j + �i j (ω, E, Ė)ω j = 0 (7.12)
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(a) (b)

(c) (d)

Fig. 7.2 Inertia perturbation 1 + kLf computed at time t = 0.2 Myr or t = 1 Myr after the
introduction of a mass anomaly (dashed line). A solid line depicts the fluid limit obtained at very
long times. The models used in the four panels are stratified in density and the long-term behavior
is controlled by the M1 mode. On top, the mantle viscosity is uniform, at bottom it increases by a
factor of 50. A lithosphere is present in the right column. For cases (b–d) the asymptotic regime is
only reached after millions of years. Redrawn from Fig. 5 of Ricard et al. (1993)

where

� =
⎛

⎜
⎝

I T1a5

3G ω2ω3 − T1a5

3G ω2ω2

− T1a5

3G ω2ω3 I T1a5

3G ω2ω1
T1a5

3G ω2ω2 − T1a5

3G ω2ω1 I

⎞

⎟
⎠ (7.13)

� =
⎛

⎝
Ė11 	3 −	2

−	3 Ė22 	1

	2 −	1 Ė33

⎞

⎠ (7.14)
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and

	i = Ei jω j . (7.15)

Exercise 21 Derive Eq. (7.12), starting from Eqs. (7.10) and (7.11) and from the
definitions given in Eqs. (7.13) to (7.15).

These equations can also be found in Ricard et al. (1993), their Eqs. (11)–(15).
Since the diagonal terms of � are smaller than the non-diagonal terms, a further
approximation might neglect them (Lefftz et al. 1991). In such a case, � is not
invertible and the conservation of ω2 must be imposed. Even by including its diag-
onal terms, the matrix � is not numerically ill-conditioned. The approximation, i.e.
neglecting the diagonal terms, provides insight into the basic physics of polar wander
on a long-term scale. This approximation is equivalent to replacing Eq. (3.6) by

I · ω = αω, (7.16)

where α is unknown. The Euler equation degenerates into an eigenvalue problem:
the angular momentum I · ω remains constantly parallel to the angular velocity ω.
Likewise, the equation above indicates that the non-diagonal terms of I, namely
�I13 and �I23, in a reference frame where z coincides with ω, are zero in the long-
term approximation. Note, of course, that the inertia matrix I includes not only the
effects of internal masses in a dynamic non-rotating Earth but also the rotational
deformations. The main inertia of the exciting source is not necessarily parallel to
the rotation axis.We can check the validity of our equations by computing the change
in the rotation vector (0, 0,�) when perturbed at time t = 0 by a change in inertia.
By taking into account that

C − A = kTf a
5

3G
�2 (7.17)

by disregarding the terms that include ω1 and ω2, since we start from an initial
configuration (0, 0, �) in which these are zero, and by assuming that ω3 is equal to
�, the previous matrix Eq. (7.12) yields

ω̇1 + iω̇2 = �

(
1

T1/kTf + i I/[�(C − A)]

)
E13 + i E23

C − A
(7.18)

ω̇3 = −�
Ė33

I
. (7.19)

Exercise 22 Derive the linearized Eqs. (7.18) and (7.19) from Eq. (7.12).

Polar motion and change in length of day are governed by these equations, decou-
pled as in Eqs. (3.51) and (3.46). In fact, the first equation above, appropriate for
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long time scales, coincides with Eqs. (3.51) and (3.46) once the explicit expression
of T1 given by Eq. (3.119) is considered, except for the appearance of the moment of
inertia I , instead of the equatorial moment of inertia A, due to our approximations.

This equation affords a better understanding of the differences between the inertia
tensor of the non-rotating dynamic Earth I δi j +Ei j and the rotating dynamic Earth I.
The observed present-day polar wander has a velocity of 1 Deg/Myr, is directed
toward Hudson Bay and is mainly related to post-glacial rebound (Vermeersen and
Sabadini 1997). Although the elapsed time since the deglaciation is too short for a
complete relaxation of the modes involved in the tidal relaxation process, we can use
this equation to estimate the order of magnitude of the excitation presently driving
the pole. For T1 = 20kyr, which corresponds to a viscosity increase in the mantle of
around 25, as shown in Fig. 3.7, the excitation E/(C − A) amounts to 3.5× 10−4, a
value which can be translated into terms of a geoid anomaly of degree 2 and order
1 of about 7m. While the tensor E of the non-rotating Earth presents non-diagonal
terms E31 and E32 associated with a 7-m high geoid anomaly of degree 2 and order
1, the tensor I of the rotating Earth is purely axi-symmetrical and associated with
a geoid without terms of degree 2 and order 1. The very existence of the tensor E
only arises from the observation of polar wander. We can see from this linearized
equation that the planet, subjected to a change of inertia of order E , will wander
with a characteristic time of order T1(C − A)/E . A lower bound for this time scale
can be estimated from the ratio of the Earth’s flattening (=21km) to the geoid height
anomalies of degree 2 (=100 m). This characteristic time is thus larger than 200
T1. That is, under a change of inertia, the Earth can shift its rotation pole from a
starting position to a new position on a time scale larger than a few 100kyr or 1Myr,
depending upon its internal stratification.

Resolving the non-linear equations above can be performed by a standard Runge-
Kutta algorithm, as done in Ricard et al. (1993), which generalizes for a stratified
Earth and a complex load history the solution obtained by Milankovitch (1934) in a
discussion of possible polar wander induced by the distribution of continents on top
of a homogeneous viscoelastic Earth.

7.2 Polar Wander Velocity for a Distribution of Slabs

An idealized model for mass redistribution within the mantle, first modeled in Ricard
et al. (1993), is nowpresented to show the effects of convection on theEarth’s rotation,
based on the formulation of the previous Sect. 7.1. This simple model catches some
of the basic features of mantle convection and is inspired by Goldreich and Toomre
(1969). We assume that slabs randomly distributed on the sphere, the analogues of
Gold (1955) beetles, are falling inside the mantle with a new slab sinking every two
million years. Their velocity in the upper mantle is equal to 10cm/yr and is reduced
according to the increase in mantle viscosity in the lower mantle. On average, eight
slabs are present at the same time in the upper mantle and all have the same mass of
2 × 1019 kg. We computed from this mantle convection model, the inertia tensor of
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(a)

(b)

Fig. 7.3 Velocity of polar wander and normalized components of the angular velocity vector in
an Earth-fixed reference frame induced by a random distribution of sinking slabs. In panel a the
mantle is uniform and the Earth rotation axis is highly unstable. Increasing viscosity by a factor
30 in the lower mantle b drastically reduces the amplitude of TPW rate. The 670km depth interface
is supposed to be a phase-change discontinuity. Redrawn from Fig. 9 in Ricard et al. (1993)
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our Earth’s model in a constant geographical framework for a time span of 500 Myr.
The results are depicted in the following Fig. 7.3, panels (a) and (b), for two different
rheological stratifications. Our Earth’s model is adiabatically stratified in both cases.
In panel (a), the mantle is uniform, whereas in panel (b) the lower mantle viscosity
is increased by a factor 30. The bottom part of each panel shows the variations of the
three components of the rotation vector in a geographical framework.

The amplitude of the initial rotation vector has been used to normalize the velocity
components. The top part of each panel shows the rate of TPW in Deg/Myr; the
dashed line represents the average TPW velocity. Note the striking differences in the
rotation behavior between a uniform and a stratified mantle, panels (a) and (b). A
viscosity increase at 670km depth inhibits mantle flow and slows the average TPW
velocity below 1 Deg/Myr. This slow-down is due to three concurrent effects, related
to the viscosity increase. First, the viscosity increase reduces the slab velocities
and, hence, the amplitudes of the time derivatives of the inertia tensor. Second, the
viscosity increase reduces the amplitude of the loading excitation term 1 + kLf , at
least for a viscosity increase lower than 100. And, third, it increases the time T1 of
the rotational response by channeling the flow into the upper mantle. Each slab in
the model with a homogeneous mantle crosses the whole mantle in about 30 Myr, so
that, after a transient regime of 30 Myr, our model reaches a steady-state behavior
where the slabs are uniformly distributed in the mantle.
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Chapter 8
Post-seismic Deformation

Abstract This chapter deals with the mechanism of stress relaxation due to the
viscous flow after the occurrence of an earthquake, leading to post-seismic deforma-
tion. We consider stress relaxation operating both in the Earth’s mantle or in the low
viscosity layers of the crust. We elucidate the influence of lithospheric and mantle
stratification on post-seismic deformation, both at the global scale and the the local
scale. The aim is to provide a powerful tool for the interpretation of GNSS (Global
Navigation Satellite System), SAR (Synthetic Aperture Radar) and GRACE data
sampled at seismically active regions, where earthquakes occur within the plates or
at their boundaries. Particular attention is devoted to some seismically active regions
in the Mediterranean area, where we first discovered the signatures of post-seismic
deformation.

8.1 Global Post-seismic Deformation

Theoccurrence of faulting in the lithosphere is responsible for an instantaneous defor-
mation of the Earth’s surface, which is called co-seismic deformation. In response
to the induced elastic stress in the mantle and in the crust, creep occurs in this deep
portion of the planet, or in the ductile portion of the crust, via viscoelastic stress
relaxation. Immediately after the occurrence of the earthquake, the mechanism of
stress release due to viscous flow in the ductile part of the Earth’s crust starts to oper-
ate, leading to post-seismic deformation. The delayed deformation of the lithosphere
caused by stress relaxation in the mantle or in the low viscosity layers of the crust is
called post-seismic deformation. In this section, and within the frame of an incom-
pressible Earth’s model based on the fundamental matrix given by Eq. (2.42), we
deal with the effects of a realistic PREM-based Dziewonski and Anderson (1981)
lithosphere andmantle stratification on post-seismic deformation after a series of pre-
liminary analyses based on simplifiedmodels carrying atmost four layers, namely the
lithosphere, the upper and lower mantle and the core. Relaxation is here considered
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to occur in the mantle, while in the following section the effects of stress relaxation
in the ductile portion of the crust will be considered. As we saw in Chap.5, the
implementation of compressibility as discussed in Sects. 2.5–2.8 is key for a correct
modeling of co-seismic deformation, as shown in Sect. 5.4.3, Fig. 5.20 for example,
but incompressibility can be considered a reasonable approximation when dealing
with post-seismic deformation, when the Earth’s material behaves as a viscous fluid.
Our analysis is key to the understanding of plate-mantle interaction, especially for
the correct interpretation of geodetic VLBI and GPS data of plate deformation when
earthquakes occur within the plate or at its boundaries. Improvements in satellite
differential radar interferometry (Massonnet et al. 1993) or in precise GPS moni-
toring of crustal motions necessitate realistic and precise models of co-seismic and
post-seismic effects, which must include sphericity, self-gravitation and stratifica-
tion of the lithosphere and mantle, as first outlined in the present analysis based on a
completely analytical approach. In order to study post-seismic deformation we have
to go up to harmonic degrees of the order of 103, one order of magnitude higher than
in post-glacial rebound, as the peaks of the total strength of the modes as a function
of zonal degree can be situated at zonal degrees of several thousands for shallow
earthquakes in the upper crust, as considered in this section.

With respect to post glacial rebound, the toroidal solutions must also be consid-
ered. The procedure for solving post-seismic problems in viscoelasticity was first
described by Sabadini et al. (1994a).

Figure8.1, dealing with the relaxation times as a function of harmonic degree,
shows that the modes form nice continuous-like patterns with increasing harmonic
degree. Themodel used in this calculation is a 10-layermodel, averaged fromPREM,
in which the uppermost mantle is stratified into four viscoelastic layers, with varying
density and rigidity but uniform viscosity of 1020 Pa s, in agreement with the findings
of Chap.5; the transition zone and lower mantle are homogeneous. The model is
presented in Table8.1, where the viscosity is volume-averaged from the convex
viscosity profile given in Fig. 1 of Vermeersen and Sabadini (1997).

The fastest transient viscoelasticmodes superimpose at the bottomof the scale. For
all the models shown here carrying a different number of layers, all the theoretically
predicted modes have been successfully detected, which guarantees that the basis
upon which our fields are developed is complete. It should be noted too that not all of
the theoretically predicted 17 modes are important. For example, the top four modes
for each harmonic degree in Fig. 8.1, which are the internal-mantle buoyancy modes,
have extremely long relaxation times (some even exceed the age of the Earth) and
extremely small strengths. Still, their detection is useful in checking that all modes
which do have non-negligible strengths have been detected.

In order to elucidate the influence of lithospheric and mantle stratification on
post-seismic deformation, we show in the following figures the displacement pattern
for a vertical, point-like, dip-slip source embedded at 100-km depth at the base of
the lithosphere; the seismic moment of the source is fixed at 1022 Nm, characteristic
of a large earthquake. Radial displacement fields are sampled at an azimuth of 90◦
with respect to the strike of the fault, in the subsiding portion of the Earth’s sur-
face; tangential displacements are sampled at 45◦. At 180◦ from the direction that
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Fig. 8.1 Relaxation times, in years, as a function of the harmonic zonal degree for the 10-layer
model averaged from PREM and described in Table8.1; the elastic lithosphere has three layers
and the uppermost mantle is divided into four viscoelastic layers with a viscosity of 1020 Pa s. The
fundamental mantle modes are indicated by M0 (Fig. 1 in Sabadini and Vermeersen (1997a))

Table 8.1 Parameters for the 10-layer volume-averagedEarth’smodel. r is the distancewith respect
to the centre of the Earth, ρ the density of the layer, and μ the rigidity

Layer r (km) ρ (kg/m3) μ (N/m2) ν (Pa s)

1 6371–6356 2283 2.66 × 1010

2 6356–6331 3194 5.91 × 1010 Elastic lithosphere

3 6331–6251 3372 6.77 × 1010

4 6251–6221 3372 6.69 × 1010 1.5 × 1020

5 6221–6151 3372 6.61 × 1010 2.5 × 1020 Uppermost mantle

6 6151–6061 3462 7.56 × 1010 4.5 × 1020

7 6061–5971 3515 7.89 × 1010 7.0 × 1020

8 5971–5701 3857 1.06 × 1011 3.0 × 1021 Transition zone

9 5701–3480 4878 2.19 × 1011 2.4 × 1022 Lower mantle

10 3480–0 10, 932 Inviscid fluid core

The viscosity ν is volume-averaged from the convex viscosity profile provided by Vermeersen and
Sabadini (1997)
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we have considered, we would have obtained the same displacement patterns, but
with the reversed sign. Figure8.2 shows, for a fixed distance of 200km from the
epicentre of the fault and varying time after the occurrence of the earthquake, the
radial and tangential displacement components, (a) and (b) respectively. Remarkable
differences can be observed among the 4- and 10-layer volume-averaged models and
model P1 as used in previous analyses by Piersanti et al. (1995) and Sabadini et al.
(1995), in which the rigidity and density parameters were taken from fixed-boundary
contrast models. The parameters for the 4-layer volume-averaged model are given
in Table8.2; the parameters for model P1 can be found in Table1 of Piersanti et al.
(1995).

For radial displacement, panel (a), the volume-averaged models predict an
increase in the post-seismic deformation; model P1 (short-dashed curve) predicts
the opposite behavior, a reduction in the post-seismic signal. Although similar to
the 10-layer model in the amplification of the post-seismic deformation, the 4-layer
model (solid curve) predicts, both in the elastic and long time-scale limit, a radial
displacement which is higher by a factor two in comparison to the 10-layer mod-
els (dashed curve). While the behavior of the old P1 model is due to the absence
of elastic stratification between the lithosphere and the mantle, responsible for an
overestimated lithospheric rigidity, deviations in the 4-layer model with respect to
the 10-layer one are due to the absence of stratification in the elastic lithosphere
in the 4-layer model. This finding clearly indicates the necessity of stratifying the
lithosphere in global post-seismic deformation models.

This result is not surprising, since the final state, after relaxation has taken place
in the mantle, depends solely on the elastic properties of the lithosphere. We have
verified that a further refinement of the lithospheric layering does not modify the
results with respect to the 10-layer model. The largest rigidity and density contrasts
within the lithosphere are located at the base of the upper and of the lower crust, with
the remaining portion of the lithosphere essentially homogeneous, which guarantees
that a three-layered lithosphere is sufficient to provide realistic estimates of the effects
of earthquakes on global co-seismic and post-seismic deformation.

In panel (b) of Fig. 8.2, a similar analysis is carried out for the tangential dis-
placement, measured in the outward direction with respect to the dislocation, at
45◦ from the strike of the fault. On analogy with what is obtained in panel (a), the
tangential displacement of the P1 model is also subject to a substantial reduction
during post-seismic deformation. This is in distinct contrast with the results of the
volume-averaged models, which show a small reduction in the signal with respect
to the co-seismic deformation. Comparison between the 4- and 10-layer models
reinforces the conclusion drawn from the analysis in panel (a) of the importance of
stratifying the outer elastic layer of the Earth for realistic estimates of post-seismic
displacements.

Figure8.3 shows the displacement as a function of the distance from the epicentre
for the samemodels in Fig. 8.2, but for fixed time intervals after the earthquake; the 4-
and 10-layer viscositymodels are averaged from the convex viscosity profile of Fig. 1
in Vermeersen and Sabadini (1997). The viscosity values can be found in Tables8.1
and 8.2. The panels depict three snapshots of the deformation: panel (a) for the elastic
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Fig. 8.2 Radial displacement, top panel, and tangential displacement, bottom panel, in centimeters
as a function of time in years after the occurrence of the faulting, at t = 0year; the source is a
vertical, point-like dip-slip, with a seismic moment of 1022 Nm. Negative values denote subsidence;
the distance from the epicentre of the fault is D = 200km. The parameters for the 4- and 10-layer
volume-averaged models are given in Tables8.1 and 8.2; model P1 is given in Table1 of Piersanti
et al. (1995). (Fig. 2 in Sabadini and Vermeersen 1997a)
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Table 8.2 Parameters for the 4-layer volume-averaged Earth’s model

layer r (km) ρ (kg/m3) μ (N/m2) ν (Pa s)

1 6371–6250 3234 5.99 × 1010 Elastic lithosphere

2 6250–5701 3631 8.60 × 1010 1.6 × 1021 Upper mantle

3 5701–3480 4878 2.17 × 1011 2.4 × 1022 Lower mantle

4 3480–0 10, 932 Inviscid fluid core

r is the distance with respect to the centre of the Earth; ρ the density of the layer, and μ the rigidity.
The viscosity ν is volume averaged from the convex profile models, as for Table8.1

limit, and panel (b) for an intermediate time at which the post-seismic deformation is
still evolving and for the long time-scale limit. Themost striking result in this figure is
that the 10-layer model behaves in a completely different fashion from the simplified
P1 and 4-layer models, in all three time snapshots. In the elastic limit, the P1 and
4-layer model overestimate the radial displacement by more than a factor of two.
During the transient at t = 103 year, the P1 model predicts a substantial reduction
rather than a smooth amplification of the post-seismic signal, as predicted by the
volume-averaged 4- and 10-layer models. In the far field, we notice an upwarping of
the lithosphere for the 10-layer model, which is not predicted by the 4-layeredmodel,
due to the overestimated rigidity of the outer elastic layer. In the long time-scale
configuration, the 10-layer model does not show a visible increase in the deformation
in the near field, while in the far field this model has rebounded with an annihilation
of the upwarping that was noted during the transient regime. This result indicates,
as expected, that mantle relaxation has a strong control of post-seismic deformation
in the far field from the epicentre of large earthquakes, and thus ultimately controls
plate-mantle interaction. In this final state, the old P1 model predicts a pattern which
does not show any resemblance to the more realistically stratified models, providing
a smooth deformation of a few centimeters, in comparison with the 50cm at 50km
from the epicentre as predicted by the 10-layer model. Except for the post-seismic
deformation in the far field noted above, the drastically different behavior of the three
models is due to whether the lithosphere has been stratified or not.

Figure8.4 shows the effects of mantle viscosity stratification based on the com-
parison between two 10-layer models, with the same lithospheric stratification, for
a uniform mantle viscosity of 1021 Pa s and convex viscosity profile. The elastic and
long time-scale limits of the homogeneous and convex viscosity mantle are the same
(short-dashed and dotted curves, respectively): being identical, the elastic profiles
of the mantle and lithosphere control the initial and final configurations. While in
proximity to the epicentre, at distances of the order of 10–100 km, the two models
behave in a similar fashion (except for a 10 per cent smaller signal at 50km for the
homogeneous model caused by a higher viscosity in the upper mantle), in the far
field the homogeneous and convex mantle viscosity models produce a quite different
response at intermediate time-scales of 1–1000 year. As already noted in the dis-
cussion of panel (b) in Fig. 8.3, displacement in the far field occurs in the opposite
direction with respect to that experienced in the near field. The convex viscosity
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Fig. 8.3 Radial displacement as a function of the distance from the fault in the elastic limit, top
panel, and at t = 1,000year after the earthquake together with the long time-scale t =∞ limit, bottom
panel. The curves depict the cases for the 10-layer model, solid curve, 4-layer model, dashed curve,
and model P1, short-dashed curve. The mantle viscosity of the 4- and 10-layer models is given in
Tables8.1 and 8.2. Model P1 has a uniformmantle viscosity of 1021 Pa s. In all cases the lithosphere
is elastic (Fig. 3 in Sabadini and Vermeersen 1997a)
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Fig. 8.4 Comparison between a 10-layer model with a uniform viscosity of 1021 Pa s, dashed
curve, and convex viscosity, solid curve, at t = 1,000 year after the earthquake. The short-dashed
and dotted curves denote the elastic and long time-scale limits of the two models (Fig. 4 in Sabadini
and Vermeersen 1997a)

profile model predicts, in fact, positive vertical displacements of about 3cm, while
the homogeneous viscosity mantle model does not show any visible evidence of
relaxation, still providing the values of co-seismic deformation. This result clearly
indicates the importance of mantle rheological stratification in controlling the defor-
mation of the plate in the far field during post-seismic deformation. The upward
deflection of the lithosphere in the far field caused by the convex viscosity mantle is
due to the upper mantle, which is softer than in the homogeneous model.

The elastic stratification of the lithosphere has a major influence on post-seismic
deformation; at least three layers in the lithosphere, averaged from PREM, are nec-
essary to obtain a correct estimate of the deformation following large earthquakes,
both in the near field and in the far field. We have verified that a further increase in
the eleven lithospheric layers of PREM produces a minor refinement in post-seismic
deformation estimates in comparisonwith themajor improvement that is gained from
one to three lithospheric layers. The modification in the deformation pattern during
the evolution from the initial elastic state to the long time-scale one is controlled by
mantle rheology: viscoelastic stratification of the mantle has a major influence on the
rebound of the lithosphere in the far field following the earthquake. In comparison
with the required stratification of the lithosphere, the same fineness of layering is
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not needed in the mantle, in agreement with the result that mantle rheological strat-
ification controls the global pattern of post-seismic deformation in the far field, not
being sensitive to the short wavelength features of the mantle structure.

8.2 Post-seismic Deformation for Shallow Earthquakes

In the previous section large and deep earthquakes were considered in order to elu-
cidate the global properties of post-seismic deformation by focusing in particular on
stress relaxation in the mantle. In this section the normal mode method is applied
to carry out the effects of stress relaxation in the lower crust. By dealing with shal-
low sources and rheologically stratified crusts, the normal mode expansion must be
performed to high harmonic degrees, up to l = 6000, to resolve post-seismic dis-
placements for earthquakes whose faults cut a thin upper elastic crust overlying a
viscoelastic lower crust. It is possible to show that the high resolution in co-seismic
displacements necessitates summation to over 4×104 spherical harmonics, while for
estimating rates of deformation, due to stress relaxation in the lower crust, summa-
tion over spherical harmonics of a few times 103 is sufficient. The models shown in
this chapter are totally new with respect to those which stemmed from Piersanti et al.
(1995) in terms of both the large number of layers dealt with in the present book,
first made possible by the grid-spacing procedures described at the end of Sect. 1.8,
representing the real heart of this new family of post-seismic deformation models.

8.2.1 The Umbria-Marche (1997) Earthquake

So as to show the effects of stress relaxation in the lower crust, the Umbria-Marche
(Mw = 6.0) 1997 moderate-size earthquake, characteristic of a slowly deforming
plate boundary in the central Mediterranean, is modeled in this Sect. 8.2.1, reworked
from Riva et al. (2000), by means of the normal mode method. Central Italy is under-
going continental extension and experienced the moderate Umbria-Marche 1997
normal faulting earthquake sequence. Deep seismic reflection studies (CROP03)
and the 1997 earthquake sequence clearly show a seismogenic layer decoupled from
the lower crust by a sizeable transition zone. In accord with these observations,
the modeling is based on a crust divided into three layers: an elastic upper crust, a
transition zone and a low-viscosity lower crust, as shown in Fig. 8.5.

The fault is embedded in the upper crust. The calculation of post-seismic defor-
mation requires the assumption of a layered viscoelastic Earth’s model. Nearly all
viscoelastic relaxation studies (Ma and Kusznir 1995; Pollitz 1996) assume a three-
layer model schematizing the brittle upper crust (UC), the lower crust (LC) and the
mantle. Seismological and geological observations from regions of active faulting
suggest that the seismogenic UC is likely to be separated from the LC by a transition
zone (TZ)where both brittle and ductile processes can occur (Chen andMolnar 1983;
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Fig. 8.5 Earth’s model and
viscosity parameters used for
the Umbria-Marche
earthquake, redrawn from
Fig. 1 in Riva et al. (2000)

Meissner and Strehlau 1982; Scholz 1990; Sibson 1989). These observations are
more frequent in regions of active continental extension (Jackson and White 1989).
The recent CROP03 seismic reflection profile (Pialli et al. 1998), designed for the
study of the deep crust in the northern Apennines, imaged the top of the fully ductile
LC using regional high-amplitude reflectors. Below the Umbria-Marche extensional
belt, the top of the LC is about 20km deep, with a Moho around 35km (Coli 1988).
Cattaneo et al. (2000) show an abrupt cutoff of the 1997 aftershock sequence at
about 9km of depth. Thus the seismic activity is largely restricted to the uppermost
10km of the deforming continental crust and leaves room for a 10km-thick TZ above
15km of LC as imaged by the CROP03 section (Fig. 8.5). The TZ acts in the normal
modemodeling as a layer which decouples the elastic UC from the low-viscosity LC.
Accordingly, themodeling is based onfive layers (Fig. 8.5). The relevant stratification
is consistent with the range of regional velocity models estimated via the analysis of
surface-wave dispersion (Calcagnile and Panza 1981) and regional gravity and heat
flow anomalies (Della Vedova et al. 1991; Marson et al. 1995) and other relevant
geological and geophysical data (Du et al. 1998). The Umbria-Marche earthquake
sequence started on September 26, 1997, and took place in a complex deforming
zone along a normal fault system in the central Apennines. This shallow sequence
was followed by a mantle event on March 26, 1997 (Mw 5.2) located at a depth of
46km (Aoudia et al. 2000; Saraó et al. 1998). Only the strongest earthquake of the
Umbria-Marche sequence that took place on the 26 September 1997 at 9:40 (Mw
= 6.0) is considered in the modeling. The seismic moment is based on the solution
in Saraó et al. (1998) retrieved by broad-band waveform inversion, in good agree-
ment with the CMT solution (Ekstrom et al. 1998). The application below makes it
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possible to elucidate the characteristics of post-seismic deformation in the studied
region and to provide a first-order estimate of the expected vertical velocities.

To illustrate the sensitivity of the results on the depth of the source, the finiteness
of the source in the vertical direction is neglected, and besides the source depth of
7km (Aoudia et al. 2003; Saraó et al. 1998), a case in which the source is embedded
at a depth of 3km is also considered to simulate the effects of a fault nearly reaching
the surface. We distribute the seismic moment along a line of dislocations whose
length along strike is 10km; the source has thus an infinitesimal extension (a point)
in the down dip direction. The dip of the fault is 37◦, in agreement with the Saraó
et al. (1998) solution. In order to resolve the deformation produced by this fault,
summation of 4000 normal modes is performed, which ensures convergence of the
solution. The vertical deformation is considered in the following simulations, being
most relevant to normal faults; the results are evaluated at the surface along a line
perpendicular to the strike of the fault, crossing its centre. In the whole set of panels,
the fault is dipping to the left, and the distance is measured from the intersection of
the upward prolongation of the fault with the Earth’s surface. In Fig. 8.6, the depth
is fixed at 7km.

Figure8.6a portrays the co-seismic and post-seismic vertical deformation, mea-
sured at the surface. The co-seismic component (solid line) shows the deformation
pattern characteristic of normal faulting, with an uplifted, localized footwall and a
broad subsidence in the hanging wall. The post-seismic component (dashed line),
which includes the co-seismic one plus the extra deformation resulting from the
relaxation in the viscoelastic medium, is responsible for a broadening of the sub-
sidence, which also affects the footwall. Post-seismic displacements are recorded
after complete relaxation occurred in the viscoelastic layers. The largest co-seismic
displacement is −8cm 10km from the fault. Due to the relaxation, the maximum
displacement increases to −12cm, and a broad area, which remained at rest during
the co-seismic deformation, is now subject to subsidence at distances of tens of kilo-
meters. This effect is due to the decoupling of the uppermost part of the crust with
respect to the lower layers. The occurrence of normal faulting and the extension at
the bottom of the UC, below the neutral plane, is responsible for the down flexure of
this layer, visible in the broad subsidence in Fig. 8.6a.

Figure8.6b provides another perspective to this physics, with the vertical veloc-
ities expected at different times after the earthquake. The wide region of negative
velocity marks the broad down-flexure of the UC. The two regions of low velocity
represent the peripheral response of the layer to the subsidence. Another interesting
characteristics in Fig. 8.6b is the short wavelength feature at the centre of the sub-
siding area: we can recognize the relative maximum corresponding to the footwall
and the largest subsidence of the hanging wall, within a generalized subsidence. The
highest velocity is −0.85mm/yr in the hanging wall, immediately after the earth-
quake, at t = 0. Due to the relatively high viscosity of the TZ (1019 Pa s), this velocity
shows a minor reduction after 10 year, and after 50 year there is still a visible signal
of −0.25mm/yr. If, for the TZ, a viscosity of 1018 Pa s is also considered, hence
coupled with the LC, the highest velocity increases by one order of magnitude to
−8.5mm/yr. Since the viscosity of the TZ and LC is largely uncertain, probably



280 8 Post-seismic Deformation

Fig. 8.6 Co-seismic and
post-seismic vertical surface
displacements and rates
calculated for a 7-km deep
normal faulting line-source,
redrawn from Fig. 2 in Riva
et al. (2000). The profiles are
across the centre of the fault
(x = 0km) and perpendicular
to its strike. The fault is
dipping to the left and is
buried in the upper layer of
Fig. 8.5. a Co-seismic (solid
line) and post-seismic
(dashed line) displacements.
b Post-seismic rates due to
relaxation in the TZ expected
at different times after the
earthquake, with t = 0, 10,
20, 50 year, solid, dashed,
dash-dotted and dotted,
respectively. c Post-seismic
rates due to relaxation in the
mantle expected at t = 0, 100,
500, 1000 year, solid,
dashed, dash-dotted and
dotted, respectively, after the
earthquake

(a)

(b)

(c)

ranging between 1018 and 1019 Pa s, it is likely that the largest subsidence rates in the
highly deforming area of the hanging wall vary in the range that we have estimated.
Comparison between the ongoing GPS campaigns and model predictions is crucial
in estimating the effective viscosity of the TZ and LC.

Figure8.6c deals with stress relaxation limited to the mantle, with sampling times
increased with respect to the previous cases. The deformation pattern is broadened
since stress relaxation involves a larger portion of the Earth and the global subsidence
disappears because the whole crust is now coupled. The amplitude of the vertical
velocity in the earthquake area is substantially reduced since the whole planet is
now involved in the deformation, as indicated by the slow decay at increasing dis-
tance from the epicentral area and longer relaxation times with respect to Fig. 8.6b.
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Fig. 8.7 Co-seismic and
post-seismic vertical surface
displacements and rates
calculated for a 3-km deep
normal faulting line-source,
redrawn from Fig. 3 in Riva
et al. (2000). Terminology as
in Fig. 8.6

(a)

(b)

(c)

Figure8.6b, c show that for shallow normal faulting the TZ and LC play a major role
in comparison to stress relaxation in the mantle, which is actually negligible.

In Fig. 8.7 the source is embedded at a depth of 3km, in the top half of the
UC. In comparison with Fig. 8.6, the pattern of both co-seismic and post-seismic
displacement in Fig. 8.7 becomes sharper, and the largest co-seismic subsidence in
the hanging wall is increased by a factor of two with respect to the case of 7k of
depth (Fig. 8.6a). The uplift in the footwall, with respect to Fig. 8.6a, is subject to a
larger increase, by a factor of three. The difference between the highest uplift in the
footwall and subsidence in the hanging wall is thus doubled with respect to Fig. 8.6a.
This increase in the amplitude of the displacement and sharpening of its pattern is
attributable to the decrease in the wavelength caused by the shallower source depth
in comparison with Fig. 8.6. The most interesting difference with respect to Fig. 8.6
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is the upward migration of the post-seismic displacement pattern with respect to the
co-seismic one. An extensional source located above the neutral plane of the UC
causes a bendingmoment opposite to the one induced by the deeper source in Fig. 8.6,
and the Earth’s surface is thus subject to a general uplift, rather than subsidence. From
Figs. 8.6a and 8.7a, depending on the location of the source beneath or above the
neutral plane, the post-seismic curves lie completely above or below the co-seismic
one. These findings differ from those reported by Ma and Kusznir (1995) where,
due to the finiteness of the source in the vertical direction, the fault cuts the whole
UC through its neutral plane, which causes the crossing of the curves depicting the
post-seismic and co-seismic vertical displacement.

When attention is drawn to the velocity pattern in Fig. 8.7b, the global upwarping
observed in the post-seismic displacement also affects the vertical velocity, in agree-
ment with the previous observations on the flexural properties of the UC. Uplift
velocities of 1.2mm/yr are in fact obtained in the hanging wall region, close to
the footwall. This tendency of a general upwarping is visible also in Fig. 8.7c, where
relaxation involves only themantle. In comparisonwith Fig. 8.6c, we note an increase
in the uplift velocity. For Fig. 8.7c the same observations about Fig. 8.6c can bemade,
except that now the uplift of the footwall is enhanced with respect to the subsidence
in the hanging wall.

The detection of post-seismic deformation in the Umbria-Marche area is an
extremely challenging task due to the smallness of the expected signal, of the order
of a few millimeters per year, for both vertical and horizontal components. In order
to reveal post-seismic effects in the area, a series of GPS campaigns has been under-
taken in order to detect in particular the horizontal deformation components. The
results of this surveying, along a baseline perpendicular to the major fault activated
during the 1997 Umbria-Marche seismic sequence, is shown in Fig. 8.8. In order to
provide results independent from the reference system, the displacements are eval-
uated with respect to the town of Spello, indicated by A0. These results represent a
first evidence of horizontal post-seismic deformation for shallow earthquakes in the
Mediterranean region, as shown in Aoudia et al. (2003). Figure8.8, redrawn from
Aoudia et al. (2003), provides the comparison between the GPS baseline variations
and the modeled ones as a function of the baseline length in kilometers from the
reference site of Spello (A0). All baseline variations are positive, except A0 − A1,
which indicates a general trend of post-seismic extension across the fault. Bernese
4.2 and GIPSY 2.6 estimates are shown as one sigma error bars and the model results
correspond to a transition zone viscosity of 1018 Pa s and a lower crust viscosity of
1017 Pa s using different fault models, indicated by FM1, FM2 and FM3, as indicated
in the caption. FM1 (dotted) is not adequate to explain the observations at different
sites and does not reproduce the general pattern of baseline variations shown by the
two GPS analyses. FM2 (dashed) reproduces only part of the observations and the
general trend, while FM3 (solid) is the best performing one, being able to reproduce
almost all the observations and the general baseline variation pattern. These findings
demonstrate the important role of GPS survey in seismogenic zones in revealing the
physics of post-seismic deformation and providing a fundamental tool in modern
seismic hazard studies.
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Fig. 8.8 2002–1999 baseline length variations along the GPS section with respect to the A0 site
using GIPSY and Bernese solutions, gray and black vertical bars, respectively, versus viscoelastic
model predictions for the fault model FM1 (Salvi et al. 2000), FM2 (Zollo et al. 1999) and FM3
(Basili and Meghraoui 1999) fault models, using a viscosity of 1018 and 1017 Pa s for the transition
zone and lower crust, respectively

The results of this section provide a first estimate of the expected rates of post-
seismic deformation in theUmbria-Marche epicentral area. Fine rheological layering
in the crust plays a major role in the interplay between relaxation in the TZ and
LC with respect to relaxation in the mantle as shown in Sect. 8.1 when shallow
and moderate normal faulting earthquakes are considered in the relaxation theory.
Unlike large and generally deep earthquakes (Melosh 1983; Pollitz and Sacks 1997;
Suito and Hirahara 1999; Thatcher and Rundle 1979), shallow andmoderate normal-
faulting earthquakes are free of the influence of lower lithospheric viscous coupling,
while the TZ and low-viscosity LC impose a pattern and a scale on post-seismic
deformation. For normal faulting, these applications show the relevance of the depth
of the source with respect to the thickness of the elastic layer in controlling post-
seismic upwarping or downwarping, as emphasized by Thatcher and Rundle (1979)
and Melosh (1983) for thrust faults. Since the elastic layer is the upper crust rather
than the whole lithosphere, these findings show that the results obtained by Thatcher
and Rundle (1979) and Melosh (1983) are scale-invariant and applicable to dip-
slip sources embedded in an elastic layer of any thickness overlying a viscoelastic
one. Furthermore, the pattern of widening and narrowing of the deformation due
to stress relaxation at different depths (Figs. 8.6 and 8.7) is in agreement with the
results obtained by King et al. (1988) using a simpler model. These findings show
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that an appropriate test area for applying the viscoelastic relaxation theory at high
harmonic degrees and for studying the effects of the TZ and LC in Italy’s central
Apennines, where a clear cutoff in the depth distribution of earthquakes indicates
that the seismogenic layer is limited to the first ten kilometers of the crust and a
well-developed TZ lies below this depth, above a low-viscosity LC.

8.2.2 The Irpinia (1980) Earthquake

Comparison of measured vertical displacements from two leveling campaigns per-
formed in 1981 and 1985 in the epicentral area of the 1980 Irpinia earthquake
(Mw = 6.9) and predictions from viscoelastic Earth’ models reveals the occurrence
of post-seismic deformation due to stress relaxation in the ductile part of the crust,
south of the area explored in the previous Sect. 8.2.1. In proximity of the major fault,
the leveling lines show a peculiar upwarping of the crust, accumulated during the
time interval 1981–1985.

Here we test the mechanism of stress relaxation in the ductile parts of the crust
after the occurrence of the shallow, normal-fault 1980 Irpinia earthquake, following
the study byDalla Via et al. (2003). The joint studies of local andworld-wide seismo-
logical data, static deformations and geological evidences have provided a detailed
picture of the complex mechanism of this event (De Natale et al. 1988; Pantosti
and Valensise 1990; Pingue and De Natale 1993; Westaway and Jackson 1984). The
main event consisted of three distinct subfaults at least, ruptured at intervals of about
20 s from each other. Surface faulting linked to this earthquake was well evident at
several places and in particular on the main fault (first subevent), with dislocation
up to 1.2 m. The total seismic moment inferred for this event is 3 × 1019 Nm.

The asymptotic expression of the fundamental solutions of the incompressible,
self-gravitating, spherical, viscoelastic Earth for high harmonic degree described in
DallaVia et al. (2003)makes possible, for this 1980 Irpinia application, to sum40,000
spherical harmonic contributions in the co-seismic part and 6000 ones in the post-
seismic part, which guarantees the attainment of the highest resolution both in the
co-seismic and post-seismic components. The Earth’s model, described in Table8.3,
consists of 5 layers including a purely elastic upper crust (UC), a viscoelastic lower
crust (LC), the mantle (M) and the core (IC).

The depths of the crustal layers and their elastic values have been taken from the
average depths of the seismogenic crust and MOHO in the southern Apennine area
(Mostardini and Merlini 1986), while the deeper layers are based on standard global
Earth’s models. The upper limit of the lower crust, 18.5km, has been chosen tomatch
the maximum depths of earthquakes in this area on the basis of the assumption that
the viscoelastic, ductile lower crust inhibits seismic fracture.

Viscosity in the lower crust has been varied from typical values of 1019 Pa s
(Pollitz et al. 1998). In order to mimic the reduction of the viscosity within the lower
crust and the decoupling between the lower crust and the mantle, as expected on the
basis of strength reduction with depth for the continental lithosphere under extension
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Table 8.3 Viscoelastic model parameters for the 1980 Irpinia earthquake

Layer Depth ρ ν μ

(km) (kg/dm3) (Pa s) (GPa)

UC 0–18.5 2.65 ∞ 32.5

LC 18.5–28.5 2.75 1 · 1018 33.7

0.75 · 1019
1 · 1019
∞

LCB 28.5–32.5 2.90 1018 35.5

∞
M 32.5–2891 3.39 1021 73.5

IC 2891–6372 10.93 – –

UC Upper crust; LC Lower crust; LCB Lower crust bottom; M Mantle; IC Inviscid core

(Cosgrove 1997; Lynch and Morgan 1987), the bottom of the lower crust, LCB in
Table8.3, has been reduced by one order of magnitude with respect to the normal
value of 1019 Pa s. Due to the simplified viscosity profile within the lower crust, only
the effective viscosity resulting from the volumetric averagewithin the two viscoelas-
tic layers characterizing the lower crust can be compared with post-seismic results
from other tectonic environments (Pollitz et al. 1998, 2000). A standard mantle (M)
of 1021 Pa s below the lower crust does not portray any sizeable deformation over
the time-scale of post-seismic deformation.

The assumed fault system consists of three normal subfaults as shown in Fig. 8.9,
including the three leveling lines considered, namely CZT2 (diamonds), CZT3
(crosses) and IGM81 lines (circles), measured immediately after the main shock
and four years later; the thin curve in Fig. 8.9, starting from Eboli and routing to
Grottaminarda through Potenza and the IGM81 profile, represents the leveling line
along which the co-seismic vertical displacement has been measured (Arca et al.
1983; De Natale et al. 1988). The surface projections of the three faults F1, F2 and
F3 are shown by the light gray; the fault parameters of this model, shown in Table8.4,
are taken from Pingue and De Natale (1993). The total seismic moment has been
inferred from seismological and geodetic data; for the main fault F1 the seismic
moment M0 is fixed at 24.4 × 1018 Nm, at 2.5 × 1018 Nm for F2 and at 3.2 × 1018

Nm for F3. The slip angle is fixed at −90◦ for each fault. Slip on the three sub-faults
has been considered homogeneous in the first tests. Subsequently, by maintaining
the seismic moment constant to M0 = 3.0 × 1019 Nm, the slip distribution on the
main fault has been varied with depth in order to reduce the misfit between model
predictions and observations.

Fig. 8.10 shows the observed displacements resulting from the leveling lines in
Fig. 8.9, where the black vertical bars reproduce the observations and their average
errors; the curves represent the modeled vertical displacements due to viscoelastic
relaxation without the co-seismic component, computed for various combinations of
slip distribution and viscosities. In order to carry out a comparison independent of
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Fig. 8.9 Fault model of the Irpinia 1980 earthquake. The leveling lines IGM81 (black dots), CZT2
(squares) and CZT3 (gray dots) are also indicated. F1, F2 and F3 indicate the three faults, at 0, 18
and 40s, respectively, as given in Table8.4; the dashed lines provide the surface evidence of the
faults. The first (1) and last (54, 58) benchmarks of each leveling line are also shown. Redrawn
from Fig. 1 in Dalla Via et al. (2003)

Table 8.4 L1 fault length

Sub L1 L2 Top Disl. Str. Dip

Event (km) (km) (km) (cm) (◦) (◦)
F1(0 s) 25 20 1.0 150 317 60

F2(18s) 22 14 1.0 25 310 20

F3(40s) 13 10 1.3 75 120 85

L2 fault width along slip direction. Top depth of fault top margin. Disl. mean dislocation. Str. strike

the choice of the zero in the leveling, each model result has been uniformly shifted
in such a way that the mean residual vanishes. The grey curves correspond to the
reference model characterized by a uniform distribution of the seismic moment over
the fault and by a lower crust viscosity, between 18.5 and 28.5km depth, of 1019 Pa s
(Table8.3). Although the trends shown by this model agree with some basic features
of the three lines, such as the subsidence along points 1–20 and the following uplift of
IGM81, the general uplift along CZT2 and the uplift between points 1–50 of CZT3,
the gray curves always underestimate the observations, especially the upward bulge
of 20–30mm of CZT3 and the drastic increase in the uplift at point 20 of IGM81. In
order to increase the upwarping of the crust along CZT3, where this line crosses the
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Fig. 8.10 Leveling data for the three lines and modeling results: the gray curves correspond to
a transition zone viscosity of 1019 Pa s and a uniformly distributed seismic moment, the dotted
ones to the same viscosity but non-homogeneous seismic moment according to Table8.5. The black
solid curves correspond to a lower crust (LC) viscosity of 0.75× 1019 Pa s and the seismic moment
distribution in Table8.5. Redrawn from Fig. 2 in Dalla Via et al. (2003)

Table 8.5 Seismic moment distribution along the fault width (L2); M = M0/5 where M0 is given
in the text; the fault description is given in Table8.4

Fault fraction F1 F2 F3

1/5 0.8 × M 2.0 × M 2.0 × M

2/5 1.2 × M 2.0 × M 2.0 × M

3/5 1.5 × M 1.0 × M 1.0 × M

4/5 1.0 × M 0.0 × M 0.0 × M

5/5 0.5 × M 0.0 × M 0.0 × M

major fault, it is necessary to distribute the seismic moment in such a way that the
maximum slip occurs at depths of about 10km, as shown in Table8.5, resulting in
the dotted curves in Fig. 8.10.

This best-fit seismic moment distribution has been chosen by minimizing the
L1 norm of the residuals between observations and model predictions for all the
three lines simultaneously. The long-wavelength uplift between points 1–35 of CZT3
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Fig. 8.11 Modeling results superimposed on the leveling lines and faults in Fig. 8.9, corresponding
to the post-seismic displacement accumulated in the period 1981–1985 (in mm) due to crustal
relaxation; fault parameters and lower crust viscosity are those corresponding to the black curves
in Fig. 8.10. Redrawn from the top panel of Fig. 3 in Dalla Via et al. (2003)

increases with respect to the dotted curve to 12mm; the same is true for CZT2 for
points 1–25, where uplift reaches 10 mm. Particularly evident is the tendency to
reproduce the change from subsidence into uplift along IGM81 from the benchmarks
15 to 35. The fit between the observations and model results can be substantially
improved by reducing the viscosity in the lower crust from 1019 to 0.75× 1019 Pa s,
as shown in Table8.3 for the LC layer in the case of non-uniform seismic moment
distribution, as indicated by the black solid curves. The increase to 23mm in the
maximum along CZT3 is accompanied by an increase to 15mm and 10mm along
CZT2 and IGM81, respectively. The general trend of observed displacements now
appearswell reproduced by the best-fitmodel, except for somehigh frequency signals
at very localized zones and a rather systematic underestimation of displacements in
the northernmost zone of the IGM81 line.

Figure8.11 provides an areal view of the post-seismic vertical displacement accu-
mulated in the period 1981–1985, with characteristic zones of uplift and subsidence;
this figure corresponds to the same viscosity model of Fig. 8.10, characterized by
lower crust relaxation (solid curves). Two major features are notable: the broadness
of the area affected by subsidence and uplift and the amplitude of the displacement,
of the order of 10 and 40mm for uplift and subsidence. These effects are indicative
of stress release at depth and of the ability of the viscoelastic part of the crust to
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channel the flow at large distances from the fault. The expected present-day peak-
to-peak post-seismic vertical displacement, 22years after the earthquake, is 120cm,
characterized by the same pattern as in Fig. 8.11.

In the case of the 1980 Irpinia earthquake area, we thus have evidence that, once
averaged over the thickness of the lower crust of 14km, the effective average viscosity
of 0.6 × 1019 Pa s agrees within the order of magnitude with the ‘normal’ lower
crust viscosity of about 1019 Pa s obtained by Pollitz et al. (1998) from post-seismic
relaxation following the 1989 Loma Prieta earthquake.

The characteristic wavelength of the post-seismic deformation in the Irpinia area
is supporting evidence for viscoelastic relaxation in the lower crust rather than in the
uppermost part of the mantle, unlike the 1992 Landers earthquake where there are
indications that relaxation also involves a weak upper mantle. An additional result
from post-seismic displacement modeling in this area consists of further details
about the fault slip with respect to the previous results. It appears that higher slip
concentration at around 10km depth is able to give a best fit to the observed data.
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Chapter 9
Icy Moons

Abstract This chapter is devoted to the influence of a viscoelastic interior and a
non-zero obliquity on diurnal and non-synchronous rotation (NSR) stresses shaping
the tectonic features of the icy moons around the giant planets in our Solar System,
like Europa, Ganymede and Callisto around Jupiter, and Titan and Enceladus around
Saturn. Since the late 1970s, the icy moon became one of the most interesting plan-
etary objects of study. Flybys of the Voyager I and II spacecraft and recent missions
to Europa (Galileo) and Titan and Enceladus (Cassini-Huygens) have shown us that
these moons are intricate and fascinating worlds on their own. Many might possess
liquid layers under their icy crusts and with tidal energy and volcanism present they
might even offer the best chances for natural habitats and perhaps even of existing
extra-terrestrial lifeforms in our Solar System. Induced effects of tidal deformation
and stresses might give us clues about the interior of these icy moons, especially
about the existence and properties of shallow fluid or low-viscous layers. In this
chapter the viscoelastic normal mode theory is further developed by including shal-
low low-viscosity layers in themodels for icymoons in general, and for Jovianmoon,
Europa in particular. As an example, we apply the developed theory to the modeling
of surface stresses on Europa. This chapter is derived from the work by Hermes M.
Jara-Orué and Bert L.A. Vermeersen entitled ‘Effects of low-viscous layers and a
non-zero obliquity on surface stresses induced by diurnal tides and non-synchronous
rotation: the case of Europa (Jara-Orué and Vermeersen 2011).

9.1 Diurnal and Non-synchronous Rotation (NSR)
Stresses Acting on Europa’s Surface

The determination of Europa’s second-degree gravitational coefficients J2 and C22

from the Doppler shift of Galileo’s radio signal during four close flybys has allowed
us to have a better understanding about the internal structure of this peculiar icy
moon. Under the assumption of hydrostatic equilibrium, the measured values for J2
andC22 imply a differentiated interior consisting of at least threematerial layers: a Fe
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or Fe–FeS metallic core, a silicate mantle and a 80–70m thick H2O layer (Anderson
et al. 1998; Sohl et al. 2002; Schubert et al. 2009). Due to the similar densities of
liquid water and solid ice, it is not possible to determine unambiguously from the
gravity data whether Europa’s H2O shell is subdivided into a global liquid ocean and
an overlying ice shell (Anderson et al. 1998; Sohl et al. 2002). However, the existence
of a global subsurface ocean below Europa’s ice shell is essentially confirmed by the
detection of an induced magnetic field by Galileo’s magnetometer (Khurana et al.
1998; Kivelson et al. 2000; Zimmer et al. 2000; Hand and Chyba 2007; Schilling
et al. 2007), and by the existence of a complex network of intersecting cracks, bands
and ridges on Europa’s surface (e.g. Geissler et al. 1998; Greeley et al. 1998; Hoppa
et al. 1999b, c; Pappalardo et al. 1999; Kattenhorn and Hurford 2009). Europa’s liq-
uid ocean would be in direct contact with the underlying silicates, as the pressure
at the rock-water interface is too low for the formation of high-pressure ice phases
(e.g. Sotin and Tobie 2004). The currently undetected, but plausible, existence of
hydrothermal seafloor systems would then allow for a mechanism to supply energy
and nutrients to Europa’s ocean (Hand et al. 2009), increasing the habitability poten-
tial of this Jovian moon.

The formation of tectonic features (cracks, bands and ridges) has been attributed
to various sources of stresses acting at different timescales. On a 3.55-days timescale,
stresses at the icy surface are induced by the diurnal tides induced by the
non-zero eccentricity of Europa’s orbit (Greenberg et al. 1998; Hoppa et al. 1999b, c;
Greenberg et al. 2003; Harada andKurita 2006;Wahr et al. 2009), the non-zero obliq-
uity of Europa’s spin axis (Bills 2005; Hurford et al. 2009; Rhoden et al. 2010, 2011),
and physical librations of a decoupled shell (Van Hoolst et al. 2008; Rhoden et al.
2010). Diurnal stresses have been mainly used to model the formation of cycloidal
features (Hoppa et al. 1999b; Hurford et al. 2007, 2009; Rhoden et al. 2010) and
strike-slip faults (Hoppa et al. 1999c; Preblich 2007; Rhoden et al. 2011) on Europa’s
surface. On a much longer timescale, stresses may be induced by true polar wander
(TPW) of the spin axis with respect to the icy surface (Ojakangas and Stevenson
1989a; Leith and McKinnon 1996; Matsuyama and Nimmo 2008; Schenk et al.
2008) and/or by non-synchronous rotation (NSR) of a decoupled shell (Leith and
McKinnon 1996; Greenberg et al. 1998; Kattenhorn 2002; Greenberg et al. 2003;
Hurford et al. 2007; Harada and Kurita 2007; Wahr et al. 2009). These slow stress-
ing mechanisms lead to large (∼MPa) stresses, which have been used to model the
formation of global-scale surface features (Leith andMcKinnon 1996; Geissler et al.
1998; Greenberg et al. 1998; Schenk et al. 2008). In addition, large isotropic stresses
(up to ∼0 MPa) can result from thickening of the ice shell (Nimmo 2004).

Diurnal stresses acting on Europa’s surface have been usually computed bymeans
of the thin shell approximation (Leith and McKinnon 1996; Greenberg et al. 1998;
Hoppa et al. 1999b; Hurford et al. 2007, 2009; Rhoden et al. 2010, 2011). In this
method, which is based on the work of Melosh (1980b), Europa is assumed to be
a thin elastic icy shell floating on a global liquid ocean (Hurford et al. 2007). A
more realistic model by Harada and Kurita (2006) analyzes the influence of a dif-
ferentiated internal structure on the surface diurnal stress, focusing on the relation
between the magnitude of surface stresses and the thickness of the material layers.
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Harada and Kurita (2006) show that surface diurnal stresses only depend on the
thickness of the ice shell, hence supporting the assumption made by the thin shell
approximation regarding the effect of the deep interior. Themethods discussed above
inherently assume that Europa’s ice shell behaves elastically when forced by diurnal
tides. However, as suggested by thermal models (e.g. Hussmann et al. 2002; Tobie
et al. 2003) and impact crater models (Schenk 2002), the lower portion of Europa’s
ice shell most probably behaves in a viscoelastic way under the influence of diurnal
tides. Recent modeling by (Wahr et al. 2009) includes the effect of viscoelasticity
on surface diurnal stresses, thereby offering a potential method to study the effect of
such a layer. However, the discussion in Wahr et al. (2009) only focuses on cases for
which Europa’s interior behaves nearly elastically with respect to diurnal tides.

Europa’s decoupled ice shell can experience slow non-synchronous rotation
as a result of the acting tidal torque and lateral thickness variations in the shell
(Greenberg and Weidenschilling 1984; Ojakangas and Stevenson 1989b; Bills et al.
2009). If existing, NSR would be a slow periodic process with a period (>11, 000
years) comparable to the characteristic Maxwell relaxation time (τ = viscos-
ity/rigidity) of the lithospheric shell (see Sect. 9.7). Hence, viscoelastic relaxation
in the lithospheric shell is expected to have an important influence on the magnitude
and orientation of NSR stresses at Europa’s surface. Nevertheless, NSR stresses act-
ing on Europa’s surface have been often computed through application of the thin
shell approximation to determine the elastic stress fields induced by the current tidal
bulge and by the original tidal bulge (Leith and McKinnon 1996; Greenberg et al.
1998; Hurford et al. 2007). The rotation angle between the two elastic stress fields,
usually referred to as the accumulated degrees of NSR, defines the amount of NSR
stress that accumulates in the shell (e.g. Greenberg et al. 1998).More realistic models
of surface NSR stresses by Harada and Kurita (2007) and Wahr et al. (2009) have
focused on the determination of the stress directly from the Maxwell viscoelastic
equations of motion and the acting NSR tidal potential. This kind of modeling has
two main advantages with respect to the simpler thin shell approximation: (1) it
includes viscoelastic relaxation effects into the computation of NSR stresses, and
(2) it allows to relate the obtained stress field to the rheological properties of the
interior. Both aforementioned studies obtain similar results for the relation between
the simulated NSR stress and the rheological properties of the icy shell. However,
both studies take a different approach to analyze the effect of viscoelastic relaxation
on surface NSR stresses. The work by Harada and Kurita (2007) constrains the mag-
nitude of diurnal and NSR stresses to be comparable, as previously suggested by
Greenberg et al. (1998). As a result, Harada and Kurita (2007) implicitly assume
that NSR stresses are severely affected by viscoelastic relaxation in the lithospheric
shell. This assumption inherently leads to a westward shift of 45◦ in the surface
distribution of the NSR stress field; the same as the one predicted in Greenberg et al.
(1998). On the other hand, the work by Wahr et al. (2009) takes into consideration
that NSR stresses could be larger in magnitude than diurnal stresses. Therefore, the
westward shift of the NSR stress field does not necessarily have to be equal to 45◦.
This conclusion has a large effect on the determination of the time elapsed since the
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formation of a surface feature (Wahr et al. 2009), especially if the relaxation state of
the NSR stress field changes with time.

Although the studies by Harada and Kurita (2007) and Wahr et al. (2009) already
discussed the influence of viscoelasticity on surface stresses, their treatment ismostly
focused on NSR stresses. Viscoelastic effects on diurnal stresses have often been
neglected by considering quasi-elastic interior models. However, thermal models
of Europa’s ice shell have often assumed that the lower convective portion of the
ice (asthenosphere) has a Newtonian viscosity in the range 1013–1015 Pa s (see e.g.
Hussmann et al. 2002; Sotin and Tobie 2004; Nimmo and Manga 2009). In this
range, not only tidal heat dissipation becomes largest but also the viscoelastic effect
on diurnal stresses. As a result, we aim to extend the determination of diurnal stresses
to interior models with a 2-layered ice shell, in which the Maxwell time of the lower
icy sublayer is smaller or comparable to the orbital period, as suggested by thermal
modeling. In addition we will take into account the effect of a non-zero obliquity
on diurnal stresses from a viscoelastic perspective. Regarding NSR stress modeling,
we will discuss the effect of the viscosity of the lower ice layer as a function of the
amount of relaxation. In addition, we allow NSR stresses to be larger, comparable
and smaller than diurnal stresses in order to infer the possible relation between the
resulting NSR-diurnal stress field and the observed features.

The viscoelastic modeling of tidal deformation and stresses on Europa’s surface is
based on three aspects: determination of the tidal forcing, assumptions on Europa’s
internal configuration and determination of Europa’s viscoelastic response being
underlain by a shallow-viscosity layer to tidal forces.

9.2 The Tidal Potential

The shape and orientation of the tidal bulgewould remain fixed to the satellite’s figure
if the satellite would always show exactly the same face to the tide-raising planet.
This particular configuration would take place if: (1) the satellite’s orbit around the
planet would be circular (zero eccentricity), (2) the spin axis of the satellite would be
perpendicular to its orbital plane (zero obliquity), and (3) the spin rate of the satellite
would be synchronous to its orbital motion (synchronous rotation).

None of these requirements apply to Europa, as shown in Fig. 9.1. In fact, in the
top panel of this figure we observe that the tidally locked orbit of Europa around
Jupiter is slightly eccentric. While completing one orbit around Jupiter, Europa has
rotated once around its own rotation axis. The eccentricity causes that Jupiter librates
diurnally in the sky as seen from the surface of Europa. The angle alpha is thus not
constant along the orbit, as Europa rotates with a constant angular velocity around
its own rotation axis, but with a varying orbital velocity around Jupiter due to the
eccentricity. Thus, also the tidal bulge of Europa will librate diurnally, as portrayed
by the bottom panel, resulting in differential tidal friction within the interior of
Europa and thus in heat dissipation. This tidal friction will decrease the eccentricity
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Fig. 9.1 Top tidally locked
orbit of Europa around
Jupiter. Bottom diurnal
libration of the tidal bulge of
Europa

of the orbit of Europa around Jupiter. It is the 1:2:4 orbital resonance of Europa with
neighboring Io and Ganymede that maintains the eccentricity.

First of all, the 1:2:4 Laplace resonance between the orbital motions of Io, Europa
and Ganymede prevents the orbit of Europa to become circular. In addition, the
obliquity of Europa’s spin axis cannot be exactly equal to zero as a consequence of
precession of Europa’s orbital plane (Bills 2005). Furthermore, a global subsurface
ocean might decouple the rotational motion of Europa’s ice shell from the rotational
motion of the rocky interior. As a result, the positive net tidal torque experienced by
the satellitemight only affect the spin rate of the decoupled ice shellwhereas the rocky
interior remains tidally locked (e.g. Greenberg andWeidenschilling 1984; Ojakangas
and Stevenson 1989b). Although non-synchronous rotation (NSR) of Europa’s ice
shell is strongly favored by the orientation of tectonic features (e.g. Greenberg et al.
1998; Hoppa et al. 2001; Kattenhorn 2002; Greenberg et al. 2003; Hurford et al.
2007; Rhoden et al. 2010), the torque caused by Jupiter’s gravitational attraction on
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permanent asymmetries in Europa’s figure might counteract the net tidal torque and
maintain synchronicity of the spin rate (Greenberg and Weidenschilling 1984; Bills
et al. 2009). The contribution of the permanent asymmetries to the evolution of the
spin rate depends on the difference between the two principal equatorial moments
of inertia (i.e. B − A) and the orientation of the longest axis (related to moment of
inertia A) with respect to the direction of the planet (see e.g. Goldreich et al. 1966).

The tidal force field acting on Europa’s surface is subjected to periodic variations
on a diurnal timescale (≈3.55days), which are mainly the result of the slightly ellip-
tical shape of Europa’s orbit around Jupiter (with eccentricity e = 0.0094). Diurnal
changes in the magnitude of the tidal forces acting on Europa, which are caused by
periodic variations in the distance between Europa and Jupiter, lead to continuous
stretching and squeezing of the tidal bulge. On the other hand, diurnal changes in the
orientation of the tidal field with respect to the surface, which are caused by differ-
ences between Europa’s spin rate and the instantaneous orbital rate, lead to periodic
longitudinal migrations of the tidal bulge. In both cases, the materials composing the
interior of Europa will continuously try to deform accordingly to the shape dictated
by the acting diurnal tidal field. This periodic reshaping of Europa’s interior leads to
the generation of frictional heat in the interior and ∼100kPa stresses at the surface
(see Sect. 9.7 for a more detailed analysis).

Also on a diurnal timescale, the tidal force field acting on Europa’s surface experi-
ences additional periodic variations as the obliquity of Europa’s spin axis is non-zero
(ε ≈ 0.1◦). The most important effect of Europa’s non-zero obliquity is that it causes
diurnal changes in the latitudinal orientation of the tidal bulge. As a result, the obliq-
uity introduces an additional source of heat dissipation in the interior and stresses at
the surface of Europa. For example, Europa’s non-zero obliquity might have played
a substantial role in the formation of cycloidal cracks crossing the equator, as sug-
gested by Hurford et al. (2009).

In addition, the tidal field acting on the surface of Europa might be subjected
to (periodic) variations on timescales much larger than one Europan day. Here we
assume that the spin rate of Europa’s decoupled ice shell is slightly faster than syn-
chronous, in accordance with the geological evidence (Greenberg et al. 1998; Hoppa
et al. 2001; Kattenhorn 2002; Greenberg et al. 2003; Hurford et al. 2007; Rhoden
et al. 2010). As a consequence, the tidal bulge exerted by Jupiter on Europa would
slowly migrate in westward direction with respect to a meridian attached to the icy
surface. A complete revolution of the tidal bulge with respect to Europa’s surface (i.e.
the period of NSR) would take more than 12,000years (Hoppa et al. 1999a). Non
synchronous rotation is a very important process in the analysis of surface stresses
for two reasons: (1) it might be a source of large ∼MPa stresses (Harada and Kurita
2007; Wahr et al. 2009) and (2) it changes the longitude of tectonic features. NSR
stresses have been often related to the formation of global lineaments on Europa’s
surface (see e.g. Greenberg et al. 1998; Harada and Kurita 2007; Hurford et al. 2007;
Wahr et al. 2009).

In this book tidal forces are expressed as minus the gradient of a scalar field,
Eqs. (1.2) and (1.3) and the tidal potential�T , on the basis of Eqs. (1.60) and (1.219),
can then be expressed as a series of spherical harmonics

http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1


9.2 The Tidal Potential 299

φT = −G MT
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R

∞∑

�=2

( a

R

)�

P�(cos θ) (9.1)

where G, MT , a and R are defined as the universal gravitational constant, the mass
of the primary, the mean radius of Europa and the distance from the centre of Europa
to the primary (rL in Eq. (1.219)). The function P� is defined as the Legendre poly-
nomial of spherical harmonic degree �. The angle θ is now the angular distance of
a point on the surface of Europa with respect to the line connecting the centres of
Europa and Jupiter.With respect to Jara-Orué andVermeersen (2011) the tidal poten-
tial carries the opposite sign, to make all the perturbed potentials considered in this
book consistent with Eqs. (1.2) and (1.60). The series of spherical harmonics given
by Eq. (9.1) converges rapidly as the term (a/R)� decreases exponentially when the
harmonic degree � increases. In the case of Jupiter’s tide on Europa, the contribution
of the second degree term is already about 430 times larger than the contribution of
the third degree term. Hence, we can safely express the tidal potential exerted by
Jupiter on Europa by only taking into account the second degree term.

Thereafter, we apply the method of Kaula (1964) to express the tidal potential in
terms of the Keplerian elements describing the motion of Jupiter with respect to a
reference frame attached to Europa’s rotating surface, in which the z-axis coincides
with Europa’s spin axis and the x-axis points towards Jupiter at pericenter. We sim-
plify the resulting expression by taking into account that Europa’s eccentricity and
obliquity are small, i.e. we consider terms only up to first order in eccentricity and
obliquity and neglect any cross terms of the eccentricity and obliquity. Moreover, we
neglect the effect of NSR on the eccentricity tide and obliquity tide because these
terms are approximately two orders of magnitude smaller than the effect of NSR
on the main “static” tide. Then, the resulting expression for the tidal potential �T

exerted by Jupiter on Europa becomes

φT = (na)2
{
φ0

T + φns
T + φe1

T + φe2
T + φo1

T

}
(9.2)

where

φT
0 = − 1

2
P20(θ) + 1

4
Pθ
2,2 cos (2ϕ) , (9.3)

φT
ns = − 1

2
P22(θ) sin (2ϕ + 	ns t) sin (	ns t) , (9.4)

φT
e1 = − 3e

2
P20(θ) cos(nt), (9.5)

φT
e2 = e

4
P22(θ) [3 cos (2ϕ) cos(nt) + 4 sin (2ϕ) sin(nt)] , (9.6)

φT
o1 = Pθ

21 cos(ε) sin(ε) cos(ϕ) sin(ω + nt), (9.7)

where e and n are respectively the eccentricity and themeanmotion of Europa’s orbit,
ε is the obliquity of Europa’s spin axis and ω is the argument of pericentre measured

http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
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Table 9.1 Physical parameters: tidal potential acting on Europa

Parameter Symbol Value Unit Reference

Mean radius a 1562 km (Seidelmann et al. 2007)

Mean motion n 101.37472 ◦/day (e.g. Bills 2005)

Eccentricity e 0.0094 – (e.g. Wahr et al. 2009)

Obliquity ε 0.1 ◦ (Bills 2005)

Argument of
pericenter

ω 345 ◦ (Hurford et al. 2009)

Angular rate
of NSR

	ns <0.03 ◦/year (Hoppa et al. 1999a)

Period of NSR Tns >12, 000 years (Hoppa et al. 1999a)

with respect to the ascending node where Europa’s orbital plane crosses Europa’s
equatorial plane. The variable 	ns describes the constant angular rate of NSR, i.e.
the difference between Europa’s angular spin rate and Europa’s mean orbital rate.
The numerical values corresponding to the aforementioned parameters are listed in
Table9.1.

Furthermore, the angles θ and ϕ are, respectively, the colatitude and longitude of
a point on Europa’s surface. Finally, the associated Legendre polynomials P20(θ),
P21(θ) and P22(θ) are, according to Eq. (1.68), given by

P20(θ) = 3 cos2(θ) − 1

2
, (9.8)

P21(θ) = 3 sin(θ) cos(θ), (9.9)

P22(θ) = 3 sin2(θ). (9.10)

Equations (9.2)–(9.7) show that the tidal potential acting on Europa consists of a
static component and several time-dependent components. The term φT

0 represents
the time invariant potential, although the second term of Eq.9.3 would contain a time
variable component if physical librations of the ice shell (Van Hoolst et al. 2008;
Baland and Van Hoolst 2010) would be taken into account. The term φT

0 would
completely define the tidal potential acting on Europa’s surface if Europa’s orbit
would be circular, its rotation synchronous and its obliquity zero. In that particular
case, the stresses induced by the formation of the bulge would have had sufficient
time to relax completely and tidal heat would not be dissipated in the interior of
Europa. The term φT

ns describes the contribution of NSR to the tidal potential. This
term is only non-zero and time dependent if the ice shell rotates non-synchronously
with respect to the orbital motion, i.e. when 	ns �= 0. Finally, the terms φT

e1, φ
T
e2 and

φT
o1 represent the diurnal tidal potential resulting form the non-zero eccentricity of

Europa’s orbit (first two terms) and the non-zero obliquity of Europa’s spin axis (last
term).

http://dx.doi.org/10.1007/978-94-017-7552-6_1
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9.3 The Interior of Europa

The materials composing the interior of Europa and other planetary satellites do
not respond in a perfectly elastic way to the acting tidal forces at either diurnal
timescales nor at timescales relevant to NSR. Part of the interior’s response is delayed
with respect to the onset time of the tidal forcing as a result of viscous relaxation
effects. Therefore, the interior of a planetary satellite will most probably behave as
a viscoelastic body rather than as a purely elastic or fluid body (see e.g. Tobie et al.
2005).

The internal structure of Europa has been assumed to consist of five homogeneous
and incompressible spherical layers: a fluid metallic core of Fe and/or FeS, a large
silicatemantle, a liquid ocean, awarm low-viscous ice-I layer and a cold high-viscous
ice-I layer on top. The radius r and density ρ of each of these concentric spherical
layers needs to be such that the complete model of Europa’s interior satisfies the
conditions on average density (ρav = 2989 kg/m3) and normalized mean moment
of inertia ( I

Ma2 = 0.346) (Anderson et al. 1998). The methodology used to model
the layered structure of Europa’s interior follows the approach outlined in Sohl et al.
(2002) and Harada and Kurita (2006).

Although the entire ice shell is assumed to have a constant density ρ and rigidity
μ, we subdivide the ice shell in two layers with different viscosities ν. The introduced
viscosity contrast leads to the existence of two ice layers with different mechanical
and thermal properties (viscosity is a function of temperature). The subdivision of
the ice shell in two layers is consistent with thermal models dealing with stagnant
lid convection in the ice shell (e.g. Hussmann et al. 2002; Tobie et al. 2003) and with
the morphology of impact craters on Europa’s surface (Schenk 2002).

Here we will make use of various models of Europa’s interior to analyze the
relation between tidal stresses at the surface and the parameters defining the interior.
To reduce the number of plausible models, we do not change the size of the core
(600km), the thickness of the H2O layer (130km), the thickness of the lithosphere
(5km), the densities of ice and liquid water (937 and 1000 kg/m3, respectively),
the rigidity of the silicate mantle (65GPa) and the viscosities of the mantle and the
lithosphere (1019 and 1021 Pa s, respectively). We vary the total thickness of the ice
shell from 5 to 130km (no ocean), the rigidity of ice-I from 1 to 10GPa, and the
viscosity of the asthenosphere from 1012 to 1017 Pa s. However, we will limit the

Table 9.2 Reference 5-layer model of Europa’s interior

Layer Outer radius (km) Density (kg/m3) Rigidity (GPa) Viscosity (Pa s)

Lithosphere 1562 937.0 3.487 1021

Asthenosphere 1557 937.0 3.487 1014

Ocean 1532 1000.0 0 0

Silicate mantle 1432 3453.6 65.000 1019

Core 600 5565.8 0 0
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graphical representation of spatial and temporal variations of surface stresses to our
standard model of Europa’s interior, which is defined by the physical parameters
listed in Table9.2.

9.4 The Impulse Tidal Response of Europa

9.4.1 The Impulse Response of Interior Models with a Global
Subsurface Ocean

Whereas in this book the Laplace transform has been used, since the tidal forc-
ing exerted by Jupiter on Europa shows a harmonic behavior, it would seem more
appropriate to use the Fourier approach to determine the tidal response of a Maxwell
viscoelastic body (see e.g. Moore and Schubert 2000; Tobie et al. 2005; Harada and
Kurita 2007; Rappaport et al. 2008; Roberts and Nimmo 2008; Wahr et al. 2009).
Nevertheless, in the remaining of this Chapter we proceed our treatment of the tidal
response by means of the Laplace transform, herein indicated explicitly by tilde
overlying the fields. This choice is based on two reasons: (1) to analyze the char-
acteristics of the relaxation process in more detail, and (2) to avoid the presence of
complex-valued variables prior to the determination of the rotation modes from the
linearized Liouville equation (relevant for the treatment of True Polar Wander).

The classical propagator matrix method as dealt with in Sect. 2.1.2 inherently
implies propagation of the radial functions ỹ1 to ỹ6 from the core-mantle boundary
(CMB) to the surface through exclusively viscoelastic material layers. However, as
suggested in Sect. 9.3, our models of Europa’s interior include a material layer with
zero rigidity between two viscoelastic layers: the subsurface ocean. The presence
of a liquid ocean between the mantle and the ice shell changes the dynamics of the
interior’s response as fluid layers are not able to propagate mechanical quantities,
such as deformations and stresses, from the top of the silicate mantle to the base of
the ice shell. Therefore, the response of the ice shell is mechanically decoupled from
the response of the silicate mantle, although remaining gravitationally coupled.

The presence of a liquid inviscid ocean in the interior of Europa introduces a chal-
lenge to the application of the propagator matrix method. An internal fluid material
layer (with μ̃ = 0) would cause a singularity in the radial propagation of the tangen-
tial displacement ỹ2. This singularity degenerates the propagation of the remaining
mechanical quantities (ỹ1, ỹ3 and ỹ4) and the potential stress ỹ6 through the liquid
ocean. In order to circumvent this problem, we assume that Europa’s subsurface
ocean is in a state of hydrostatic equilibrium in both the undeformed and deformed
cases and that the deformations of the fluid follow equipotential surfaces (based on
Chinnery 1975). In this way, the physical behavior of Europa’s putative subsurface
ocean is fully determined by Poisson’s equation. If we further assume that Europa’s
ocean is incompressible and non-stratified, Poisson’s equation (1.87) reduces to

http://dx.doi.org/10.1007/978-94-017-7552-6_2
http://dx.doi.org/10.1007/978-94-017-7552-6_1
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Laplace’s equation because χ̃� and
∂ρ0

∂r become equal to zero. Then, fromEqs. (1.142)
and (1.91) the relevant set of differential equations can be written as

dỹ5
dr

= ỹ7, (9.11)

dỹ7
dr

= �(� + 1)

r2
ỹ5 − 2

r
ỹ7, (9.12)

which depend only on the degree � as the tidal potential given by Eq. (9.1) and
where the auxiliary radial function ỹ7 is simply defined as the radial derivative of the
perturbed potential, i.e.

ỹ7 = ∂�̃�

∂r
(9.13)

or, alternatively, in terms of the potential stress Q̃� (compare Eq. (1.93))

ỹ7 = Q̃� − � + 1

r
�̃� − 4πGρ0Ũ� = Q̃∗

�. (9.14)

The same equations would hold if the subsurface ocean would be stratified in
several layers with different densities. From Eqs. (9.14) and (1.153) we obtain

Q̃∗(i)
� = Q̃∗(i+1)

� − 4πG
(
ρ

(i+1)
0 − ρ

(i)
0

) �
(i+1)
�

g(ri+1)
. (9.15)

where i is a fluid layer overlying fluid layer i + 1 and r is the outer radius of a given
fluid layer. Equation (9.15) also takes into account that the radial deformation of fluid
layers follows the shape of an equipotential surface, as Eq. (1.53) tells us.

The introduction of a subsurface ocean decouples the propagation of the tidal
response from the core-mantle boundary to the surface in three parts: propagation
through the mantle, propagation through the ocean and propagation through the ice
shell. Thefirst and last propagation steps obey the equations ofmotion for viscoelastic
bodies, while the second propagation obeys the equations of motion for fluid layers
(Eqs. (9.11) and (9.12)). In order to couple the three parts of the propagation, we need
to provide a set of boundary conditions at the interfaces between the ocean and both
the underlying silicate mantle and the overlying ice shell. Then, the general structure
of the adapted propagator matrix method becomes:

• The solution vector at the core-mantle boundary (CMB) is propagated through the
silicate mantle by means of the viscoelastic propagator matrix,

• At the mantle-ocean interface, a set of boundary conditions relates the solution
vector at the top of the silicate mantle to the solution vector at the bottom of the
ocean,

• The solution vector at the bottom of the ocean is propagated through the liquid
ocean by means of the fluid propagator matrix,

http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_1
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Fig. 9.2 Definition of the
nomenclature used to
describe the internal layers
of Europa. Layers
1 ≤ i ≤ n − 1 are the ice
shell, layer i = n is the
ocean, layers
n + 1 ≤ i ≤ N − 1 are the
solid mantle and layer
i = N is the fluid core

• At the ocean-ice interface, we again link the solution vector at the top of the ocean
to the solution vector at the bottom of the ice shell by a set of boundary conditions,

• The solution vector at the base of the ice shell can be further propagated up to the
surface by means of the viscoelastic propagator matrix.

In our tidal modeling, the layered internal structure of an icy moon with N layers
is presented in the following way: layers 1 ≤ i ≤ n − 1 represent the ice shell, layer
i = n represents the liquid ocean, layers n + 1 ≤ i ≤ N − 1 represent the silicate
mantle and layer i = N is the fluid core (see Fig. 9.2).

The presence of a subsurface ocean precludes the propagation of mechanical
quantities (i.e. deformations and stresses) from the top of themantle to the base of the
ice shell, thereby implying that only the perturbed gravitational potential ( ỹ5 = �̃�)
and its radial derivative (ỹ7 = Q̃∗

�) can be propagated through the liquid ocean. As a
result, the response of the ice shell is mechanically decoupled from the response of
the mantle, albeit remaining gravitationally coupled.

The propagation of the gravity-related radial functions ỹ5 and ỹ7 through a liquid
layer is governed by the set of differential equations (9.11) and (9.12). This set of
equations can alternatively be written as

(
�̃�

Q̃∗
�

)
=

(
r � r−(�+1)

�r �−1 −(� + 1)r−(l+2)

)(
C1

C2

)
= Ỹ�(r, s)C̃�. (9.16)

where Ỹ� is the fundamental matrix and C̃� is a vector of integration constants.
The Laplace variable s could be omitted in the fluid fundamental matrix, since no
s-dependent term enters its definition, Eq. (9.16).
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In contrast to all other radial functions, Q̃∗
� is characterized by being discontinuous

at the interface between two fluid layers with different densities and at the bound-
aries with viscoelastic layers. Since we want to keep the number of discontinuous
boundaries as low as possible (i.e. two boundaries), we simplify the modeling by
assuming that the density is constant throughout the entire ocean layer. As a result,
we can relate the solution vector at the top of the ocean to the solution vector at the
bottom of the ocean by

(
�̃

(n)
� (rn)

Q̃∗(n)
� (rn)

)
= B̃

f
�

(
�̃

(n)
� (rn+1)

Q̃∗(n)
� (rn+1)

)
(9.17)

in which B̃
f
� is the fluid propagator matrix, as for the first term in the right hand

member of Eq. (1.157), defined by

B̃
f
� = Ỹ

(n)

� (rn, s)
(
Ỹ

(n)

� (rn+1, s)
)−1

(9.18)

as for Eq. (2.9) and where the fundamental matrix Ỹ
(n)

� (rn, s) is built over the appro-
priate terms of Eq. (2.42) defining the incompressible fundamental matrix. The sit-
uation would be slightly more complicated for stratified oceans, as each additional
boundary would result in an additional discontinuity in Q̃∗

� .

9.4.2 Boundary Conditions

Ascanbe seen fromEq. (9.17) only twoelements of the solutionvector are propagated
through fluid layers, whereas propagation through viscoelastic layers requires all six
elements of the solution vector. A proper set of boundary conditions is required to
express the conditions at the viscoelastic side of a fluid-solid interface in terms of the
conditions at the fluid side of the same interface. In the case of a subsurface ocean,
we need to define such boundary conditions at two interfaces:

1. At the ocean-ice interface: the radial deformation of the ocean Ũ (n)
� (rn) cannot

followan equipotential surface as the icy shell prevents such a radial displacement.
A constant term K4 takes into account the difference between the shape of the
ideal equipotential surface at the top of the ocean layer and the shape of the
icy shell at its base. Furthermore, the pressure induced by this constant term K4

defines the radial stress σ̃ (n)
rr,�(rn) at the top of the ocean. The tangential deformation

Ṽ (n−1)
� (rn) at the base of the icy shell is assumed to be decoupled from the motion

of the ocean and equal to a constant K5. The tangential stress at the interface is
zero in the absence of acting tangential traction. By taking into account continuity
of the six elements across the ocean-ice interface and the boundary condition for

http://dx.doi.org/10.1007/978-94-017-7552-6_1
http://dx.doi.org/10.1007/978-94-017-7552-6_2
http://dx.doi.org/10.1007/978-94-017-7552-6_2
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the tangential deformation, we can define the set of boundary conditions at the
ocean-ice interface as (adapted from Greff-Lefftz et al. 2000):

⎛

⎜
⎜⎜⎜⎜⎜
⎜
⎝

Ũ (n−1)
� (rn)

Ṽ (n−1)
� (rn)

σ̃
(n−1)
rr,� (rn)

σ̃
(n−1)
rθ,� (rn)

�̃
(n−1)
� (rn)

Q̃(n−1)
� (rn)

⎞

⎟
⎟⎟⎟⎟⎟
⎟
⎠

=

⎛

⎜
⎜⎜⎜⎜⎜
⎜
⎝

�̃
(n)
� (rn)

g(rn)
+ K4

K5

ρ
(n)
0 g(rn)K4

0
�̃

(n)
� (rn)

Q̃(n)
� (rn) + 4πGρ

(n)
0 K4

⎞

⎟
⎟⎟⎟⎟⎟
⎟
⎠

(9.19)

where the sixth element of the solution vector at the base of the icy shell,
Q̃(n−1)

� (rn), can alternatively be expressed as

Q̃(n−1)
� (rn) = Q̃∗(n)

� (rn) + � + 1

rn
�̃

(n)
� + 4πGρ

(n)
0

(
−�̃

(n)
� (rn)

g(rn)
+ K4

)

(9.20)

2. At the mantle-ocean interface: the set of boundary conditions at this interface
slightly differs from the set corresponding to the ocean-ice interface (Eq. (9.19)).
The first difference is related to the tangential deformation at the top of the mantle
Ṽ (n+1)

� (rn+1), which does not propagate further to the base of the ocean as the
tangential motion of both layers is assumed to be decoupled (free-slip boundary
condition). The second difference is related to the radial deformation at the top
of the mantle Ũ (n+1)

� (rn+1), which at this boundary is defined as the difference
between the equipotential shape and a constant K6 (Greff-Lefftz et al. 2000).
By taking these observations into account, the set of boundary conditions at the
mantle-ocean interface can be written as (adapted from Greff-Lefftz et al. 2000):

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

�̃
(n)
� (rn+1)

g(rn+1)

Ṽ (n)
� (rn+1)

σ̃
(n)
rr,�(rn+1)

σ̃
(n)
rθ,�(rn+1)

�̃
(n)
� (rn+1)

Q̃(n+1)
� (rn+1)

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜
⎜⎜
⎝

Ũ (n+1)
� (rn+1) + K6

−
−ρ

(n)
0 g(rn+1)K6

0
�̃

(n+1)
� (rn+1)

Q̃(n)
� (rn+1) − 4πGρ

(n)
0 K6

⎞

⎟⎟⎟⎟⎟
⎟⎟
⎠

(9.21)

where the sixth element of the solutionvector at the topof themantle, Q̃(n+1)
� (rn+1),

can also be written as

Q̃(n+1)
� (rn+1) = Q̃∗(n)

� (rn+1) + � + 1

rn+1
�̃

(n)
� (rn+1) + 4πGρ

(n)
0

(
−�̃

(n)
� (rn+1)

g(rn+1)
− K6

)

(9.22)

These additional boundary conditions increase the level of complexity of the propa-
gator matrix technique, as will be shown in the following Sect. 9.4.3.
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9.4.3 Application to Icy Moons I: Normal Modes

In order to determine which relaxation modes are applicable to our interior models,
we need to find the M non-zero roots of the secular determinant (compare with
Eq. (1.200))

det(W̃1) = 0. (9.23)

These roots are defined as the inverse relaxation times s j ( j = 1, 2, . . . M) of the
interior model or, alternatively, as the free oscillations of the model. The roots are
the solutions of the characteristic equation

0 = W̃1C̃�, (9.24)

where C̃� = (K1 K2 K3 K4 K5)
T is the 5×1 vector of unknowns and W̃1 is the 5×5

propagator matrix defined by (see C.1 for derivation)

W̃1 =

⎛

⎜⎜
⎜⎜⎜
⎝

0 0 L�,1 L�,2 L�,3

0 0 B̃
sm
�,41 B̃

sm
�,42 B̃

sm
�,43

R�,3 B̃
si
�,32 G�,11 G�,12 G�,13

R�,4 B̃
si
�,42 G�,21 G�,22 G�,23

R�,6 B̃
si
�,62 G�,31 G�,32 G�,33

⎞

⎟⎟
⎟⎟⎟
⎠

. (9.25)

Equation (9.25) contains four groups of elements, each of them having a specific
relation to the unknown constants K1 to K5. The first group includes the nine terms
G�,vw (row 1 ≤ v ≤ 3 and column 1 ≤ w ≤ 3), which are explicitly defined by
Eq. (C.11). These terms describe the propagation of the conditions at the CMB to the

surface. The second group includes the terms R�,y and B̃
si
�,y2 (y ∈ {3, 4, 6}). These

terms together describe the propagation of the conditions at the ocean-ice boundary
to the surface. The third group contains the terms B̃

sm
�,4x (x ∈ {1, 2, 3}). This group

of terms denotes the boundary condition on the tangential stress at the mantle-ocean
boundary. Finally, the fourth group includes the terms L�,x (x ∈ {1, 2, 3}), which are
defined by Eq. (C.16). These terms represent the boundary condition on the radial
deformation at the mantle-ocean boundary. The last two conditions can be safely
used as both the tangential stress and the radial deformation at the mantle-ocean
boundary cannot be propagated through the ocean layer.

9.4.4 Application to Icy Moons II: Impulse Response
to Tidal Forces

After determining the M normal modes of our interior model and their correspond-
ing relaxation times and modal strengths, we proceed with the computation of the

http://dx.doi.org/10.1007/978-94-017-7552-6_1
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response of our interior model to a unit impulse tidal forcing. This so-called unit
impulse response of the interior to the acting tides is a property of the interior and
hence it does not depend on the forcing itself.

Tidal forces constrain the parameters σ̃rr,�, σ̃rθ,� and Q̃� of the solution vector at
the surface, such that the boundary condition vector b̃ becomes

b̃ =
(
0 0 0 0

(2� + 1)

a

)T

(9.26)

as for Eq. (1.130) where the last three elements refer to the boundary conditions at
the surface and the first two refer to the additional boundary conditions at the mantle-
ocean boundary (see C.1 for a more detailed explanation).

The boundary condition vector b̃ provides five constraints, which can be related
to the unknown constants K1 to K5 bymeans of the propagator matrix W̃1 Eq. (9.25);
i.e.

b̃ = W̃1C̃� (9.27)

In a similar way, we can relate the remaining three elements of the solution vector
at the surface (i.e. Ũ�, Ṽ� and �̃�) to the conditions at the CMB and ocean-ice
boundary (i.e. K1 to K5) by means of a different propagator matrix, which we will
denote as W̃2. After some analytical manipulation we can express the unconstrained
part of Eq. (C.1) as

X̃�(s) =
⎛

⎝
Ũ�(R, s)
Ṽ�(R, s)
�̃�(R, s)

⎞

⎠ = P35W̃2C̃� (9.28)

where X̃�(s) is the impulse response at the surface, W̃2 is the propagator matrix
defined by Eq. (C.20) and P35 is a projection matrix that filters out the first two ele-
ments of the product between W̃2 and C̃�. The derivation of the propagator matrix
W̃2, which basically follows the same steps as the derivation of W̃1, is shortly out-
lined in C.11.

Thereafter, we substitute Eq. (9.27) into Eq. (9.28) in order to obtain a more con-
venient expression for the unit impulse response X̃�(s) at the surface, i.e.:

X̃�(s) =
⎛

⎝
Ũ�(R, s)
Ṽ�(R, s)
�̃�(R, s)

⎞

⎠ = P35W̃2

(
W̃1

)−1
b̃ (9.29)

where the inverse of the propagator matrix W̃1 can alternatively be written as the

ratio between its matrix of complementary minors W̃
†
1 and its determinant, i.e.

(
W̃1

)−1 = W̃
†
1

det
(
W̃1

) (9.30)

http://dx.doi.org/10.1007/978-94-017-7552-6_1
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Equation (9.30) clearly shows that each of the M relaxation modes produces a
singularity in the unit impulse response, because the determinant of the matrix W̃1

becomes zero for all s = s j . As a final step, we apply complex contour integration
to Eq. (9.29) to obtain the following expression for the unit impulse response to tidal
forces

X̃�(s) =
⎛

⎝
Ũ�(R, s)
Ṽ�(R, s)
�̃�(R, s)

⎞

⎠ = Ke
�(R) +

M∑

j=1

K j
� (R)

s − s j
(9.31)

in which the elastic limit parameter Ke
�(R) is given by

Ke
�(R) = lim

s→∞P35W̃2

(
W̃1

)−1
b̃ (9.32)

and the vector residues K j
�(R) are given by

K j
�(R) = P35

⎛

⎜
⎝

W̃2

(
W̃1

)†

d
ds det

(
W̃1

)

⎞

⎟
⎠

s=s j

b̃ (9.33)

where the derivative to s of the function det
(
W̃1

)
at s = s j is calculated by Ridder’s

method of polynomial extrapolation (Press et al. 1996).
Although Eqs. (9.31)–(9.33) already give a representation of the viscoelastic

response of a planetary body to tidal forces, it is common to express the unit response
in terms of the Love numbers h2, l2 and k2.

Application of the adapted propagator matrix technique to Europa leads to the
determination of the unit impulse response X̃�(s) of Europa’s interior to tidal forces.
The unit impulse response of a planetary body, which is formally defined as the
response of the body to a unit impulse excitation applied at t = 0, depends only on
the structural and rheological properties of the interior. The actual tidal response of
Europa follows from the product between the calculated unit impulse response X̃�(s)
and the acting tidal potential φ̃T (s); both expressed in the Laplace domain according
to the correspondence principle. The equivalent response in the time domain can
then be determined by applying the inverse Laplace transform to the outcome of the
aforementioned product.

As can be observed from Eqs. (9.2) and (9.31), both the unit impulse response
and the tidal potential are expanded in spherical harmonics. However, as can be
seen from Eq. (9.2), the tidal potential acting on Europa is completely defined by its
second harmonic degree. Therefore, we only need the second-degree term of the unit
impulse response expansion in order to determine the tidal response of Europa at its
surface. This term, i.e. X̃2(s), follows directly from Eq. (9.31)
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X̃2(s) =
⎛

⎝
Ũ2(R, s)
Ṽ2(R, s)
�̃2(R, s)

⎞

⎠ = Ke
2(R) +

M∑

j=1

K j
2(R)

s − s j
(9.34)

where R is the mean radius of Europa, s is the Laplace variable and j = 1, 2, . . . M
are the M relaxation modes of Europa’s interior and surface. Each of these relaxation
modes is characterized by an inverse relaxation time s j , which can be found by
computing the non-zero roots of Eq. (9.23). The elastic limit parameter Ke

2(R) and
the vector residues K j

2(R) are mathematically defined by Eqs. (9.32) and (9.33),
respectively.

9.5 Radial Deformation at the Surface

At any point on Europa’s surface, the deformation induced by the continuously acting
diurnal tides can be subdivided in three orthogonal components: radial deformation
ur , tangential deformation along meridians uθ and tangential deformation along cir-
cles of latitude uϕ . Each of these deformation components depends on the properties
of the interior and the diurnal tidal potential accordingly to the following relations
(adapted from e.g. Alterman et al. 1959):

ur (a, θ, ϕ, t) = L−1

(
−h̃2

g0
φ̃T (a, θ, ϕ, s)

)

(9.35)

uθ (a, θ, ϕ, t) = L−1

(
−l̃2
g0

∂φ̃T (a, θ, ϕ, s)

∂θ

)

(9.36)

uφ(a, θ, ϕ, t) = L−1

(

− l̃2
g0 sin(θ)

∂φ̃T (a, θ, ϕ, s)

∂ϕ

)

(9.37)

where the symbol L−1 represents the inverse Laplace transform.
Henceforth we focus on the radial deformation ur at the surface caused by diurnal

tides, as futuremissions carrying an altimeter could be able to determine the existence
of a subsurface ocean from direct measurements of the radial deformation at the
surface (Moore and Schubert 2000; Wahr et al. 2006; Rappaport et al. 2008; Clark
et al. 2010). We expand Eq. (9.35) by making use of the analytical expressions for
the Love number h̃2 and the diurnal potential φ̃T (R, θ, ϕ, s) (Laplace transform of
Eq. (9.2)). After some analytical manipulation, the radial deformation ur at a given
time t can be defined as the sum of an elastic component ue

r and a viscous component
uv

r , defined by
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ue
r =1

4
(na)2

{
he
2

g0

(
− 6eP20(θ) cos(nt) + 4P21(θ) cos(ε) sin(ε)

[
cos(ϕ) sin(ω + nt)

]

+ eP22(θ)

[
4 sin(2ϕ) sin(nt) + 3 cos(2ϕ) cos(nt)

])
(9.38)

uv
r = 1

4
(na)2

M∑

j=1

hv
2, j

g0

1
√
1 + �2

j

(
− 6eP20(θ) cos

(
nt − arctan(� j )

)

+ 4P21(θ) cos(ε) sin(ε)
[
cos(ϕ) sin

(
ω + nt − arctan(� j )

) ]

+ eP22(θ)

[
4 sin(2ϕ) sin

(
nt − arctan(� j )

) + 3 cos(2ϕ) cos
(
nt − arctan(� j )

)
])}

(9.39)

We observe that the elastic deformation ue
r , which is defined by Eq. (9.38) is directly

proportional to the diurnal tidal potential by a constant he
2

g0
. On the other hand, the

viscous deformation (Eq. (9.39)) is characterized by a phase delay and attenuation of
the diurnal tide. Both effects are unambiguously related to the dimensionless para-
meter � j , which is formally defined as the ratio between the mean angular velocity
of Europa’s orbit (n) and the inverse relaxation time (−s j ) of the jth relaxation mode,
i.e.

� j = n

−s j
= 2πτ j

T
(9.40)

where τ j is the relaxation time of the jth relaxation mode and T is the orbital period.
Although every relaxation mode j contributes in a characteristic way to the radial

deformation at the surface, not all modal contributions are large enough to introduce
an observable viscoelastic effect on the total radial deformation. In order to analyze
which relaxation modes dominate the viscoelastic response, we present in Fig. 9.3 a
graphical representation of the influence of the ratio � j on the attenuation of a modal
strength hv

2 j and consequently on the amplitude of the radial deformation.
If one takes into consideration that complete attenuation is represented by a value

of zero in Fig. 9.3 and no attenuation is represented by a value of one, we observe: (1)
the radial deformation induced by a relaxation mode j becomes independent from
the relaxation time τ j for values of � j smaller than 0.1, i.e. for relaxation times τ j

shorter than 1.36h inEuropa’s case, (2) the radial deformation induced by a relaxation
mode vanishes almost completely for values of � j larger than 100, i.e. for relaxation
times τ j larger than 52.5days in Europa’s case. Consequently, only relaxation modes
with a strong modal strength hv

2 j and a short relaxation time (τ j < 52.5 days) will
have a non-negligible effect on the magnitude of the radial deformation. In a similar
way, Fig. 9.3 clearly shows that relaxation modes with a very short relaxation time
(� j < 0.01 or τ j < 8min in Europa’s case) contribute in a practically elastic way to
the radial deformation, as their corresponding phase-lag becomes negligibly small.
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Fig. 9.3 Theoretical effect of the ratio � j = n
−s j

on the contribution of a relaxation mode j to

the surface diurnal stress at the surface, and effect of the ratio � = μ/η
n on the relaxation state of

diurnal stresses at the surface. Regarding the ratio� j , the dark curve represents the attenuation of the
corresponding modal strength hv

2 j (1 is no attenuation and 0 is complete attenuation) and the light
curve shows the phase-lag of the contribution of mode j to the diurnal stress. Regarding the ratio�,
the dark curve presents the importance of viscous relaxation on the magnitude of diurnal stresses
at the surface (1 means that stresses are elastically stored, whereas 0 means complete relaxation of
the stresses) and the light curve gives the phase-lead caused by relaxation

The phase-lag of the contribution of a given relaxation mode to the radial deforma-
tion increases significantly for larger relaxation times, becoming 90◦ for values of
� j larger than 100. However, such slow relaxation modes do not affect the phase of
the deformation field due to the strong attenuation they experience.

In agreement with (Moore and Schubert 2000), we can conclude that viscoelastic-
ity has two important effects on Europa’s radial deformation due to diurnal tides: (1)
it might increase the magnitude of the deformation at the surface, and (2) it causes a
delay in the tidal response. If we assume that the density and rigidity of ice-I are con-
stant throughout the entire ice shell, the adopted five layer model of Europa’s interior
(see Sect. 9.3) will trigger six relaxation modes in accordance with the discussion at
the end of Sect. 9.4.3: the core mode C0, the surface mode M0, the buoyancy modes
M2 and M3 at the ocean-ice and ocean-mantle interfaces, and the transient modes T1

and T2 at the boundary between the two ice layers (see Table 9.3).
From these relaxation modes, only the transient modes might have relaxation

times which are sufficiently fast to have an effect on the radial deformation induced
by tides. In other words, the viscoelastic character of the radial deformation at the
surface is governed by the structural and rheological properties of the ice layers.
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Table 9.3 Tidal response of the reference model of Europa’s interior to diurnal tidal forces

Mode τ j (s) � j (–) he
2 or h

v
2 j (–) l22 or l

v
2 j (–)

Elastic − − 1.15100 × 100 3.07996 × 10−1

C0 7.02026 × 1010 1.43745 × 106 5.17509 × 10−2 1.40296 × 10−2

M3 9.15741 × 109 1.87504 × 105 7.16925 × 10−1 1.94722 × 10−1

M2 9.75577 × 1010 1.99756 × 106 1.38050 × 10−3 2.35200 × 10−4

M0 2.91957 × 1011 5.97802 × 106 3.69559 × 10−2 1.00498 × 10−2

T1 1.73366 × 105 3.54978 × 100 7.19132 × 10−5 6.00107 × 10−3

T2 3.07948 × 104 6.30543 × 10−1 8.49611 × 10−2 2.26471 × 10−2

9.6 Stresses at the Surface of Europa

9.6.1 Diurnal Stresses at the Surface

Here we develop a method to derive the diurnal stress field at Europa’s surface from
the tidal viscoelastic response given by Eq. (9.34). This method is broadly similar to
the one by (Wahr et al. 2009), however some important differences arise from the
way both methods calculate the tidal Love numbers. Due to the subdivision of the
non-elastic response into several relaxation modes, our method enables us to get a
deeper insight into the physics of relaxation by studying the contribution of each
relaxation mode to the tidal response. In addition, our method remains stable in the
fluid limit. This allows us to determine the tidal response and subsequent stresses of
interior models containing viscoelastic layers with a very small Maxwell time (i.e.
low viscosity and low rigidity).

σi j = L−1
(
�̃δi j + 2μ̃(s)ε̃i j (s)

)
(9.41)

where δi j is the Kronecker delta, L−1 is the inverse Laplace transform, ε̃i j (s) is the
strain tensor and �̃ is the product between the compliance λ̃(s) and the dilatation
∇ · ũ. The strain tensor ε̃i j (s) at the surface is related to the tidal response through
the strain-displacement relations:

ε̃rr = 1

g0

∂

∂r

(
−h̃2(a, s)φ̃T

)
(9.42)

ε̃rθ = 0 (9.43)

ε̃rϕ = 0 (9.44)
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ε̃θθ = 1

rg0

(

−l̃2(a, s)
∂2φ̃T

∂θ2
− h̃2(a, s) φ̃T

)

(9.45)

ε̃ϕϕ = 1

rg0

(

−
[
h̃2(a, s) − 6l̃2(a, s)

]
φ̃T + l̃2(a, s)

∂2φ̃T

∂θ2

)

(9.46)

ε̃θϕ = 1

rg0
l̃2(a, s)

(

− 1

sin θ

∂2φ̃T

∂θ∂ϕ
+ cos θ

sin2 θ

∂φ̃T

∂ϕ

)

(9.47)

where the Laplace-transform of the diurnal tidal potential at the surface (φ̃T ) is a
function of s, θ and ϕ, i.e. φ̃T = φ̃T (a, s, θ, ϕ). The diurnal tidal potential is defined
by the terms φ̃T

e1, φ̃
T
e2 and φ̃T

o1 in Eq. (9.2).
Furthermore, the mean normal stress �̃ = ∑∞

�=0 λ̃χ̃�Y�(θ, ϕ) is related to the
tidal response by the surface boundary condition regarding the radial stress (i.e.
σ̃rrl(R, s) = 0). We can write:

�̃ = 2μ̃(s)

rg0

(
−2h̃2(a, s) + 6l̃2(a, s)

)
φ̃T (9.48)

The non-zero elements of the stress tensor acting on the surface of an incom-
pressible Maxwell body can then be retrieved by substituting Eqs. (9.42)–(9.48) into
Eq. (9.41), i.e.

σθθ = L−1

(

2μ̃(s)
1

rg0

{

−l̃2(a, s)
∂2φ̃T

∂θ2
− 3

(
h̃2(a, s) − 2l̃2(a, s)

)
φ̃T

})

(9.49)

σϕϕ = L−1

(

2μ̃(s)
1

rg0

{

−3
(

h̃2(a, s) − 4l̃2(a, s)
)

φ̃T + l̃2(a, s)
∂2φ̃T

∂θ2

})

(9.50)

σθϕ = L−1

(

2μ̃(s)
l̃2(a, s)

rg0

{

− 1

sin θ

∂2φ̃T

∂θ∂ϕ
+ cos θ

sin2 θ

∂φ̃T

∂ϕ

})

(9.51)

Equations (9.49)–(9.51) show that viscoelasticity influences the state of stresses
at the surface in two ways: (1) through the compliance μ̃(s), which is related to the
rheological properties of the lithosphere, and (2) by the viscoelastic response itself,
which is represented by the Love numbers h̃2(a, s) and l̃2(a, s). If we redefine the
compliance μ̃(s) as

μ̃(s) = μ − μ · μ

ν

s + μ

ν

= μ

(
1 − 1

1 + sτM

)
= μ

(
1 − η(s, τM)

)
(9.52)
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where τ = ν/μ is defined as the characteristic Maxwell time of the lithosphere. This
parameter gives an indication of the time scale at which the rheological behavior of
a material shows a transition from elastic to viscous. The term η(s, τM) represents
the relaxation of the elastic shear modulus as a function of s and the Maxwell time
τM . A close inspection of Eq. (9.52) shows that relaxation becomes more important
for time scales much larger than the characteristic Maxwell time (i.e. s � 1/τM ).
Based on these definitions, we can also refer to the compliance μ̃(s) as the effective
shear modulus of the lithosphere.

Explicit analytical expressions for the diurnal stresses σθθ , σϕϕ and σθϕ can be
derived by substituting the Laplace transform of Eq. (9.2) (only the diurnal terms φT

e1,
φT

e2 and φT
o1) into Eqs. (9.49)–(9.51). After some rather lengthy analytical manipula-

tions, we obtain
σθθ = σ e

θθ + σv
θθ (9.53)

σϕϕ = σ e
ϕϕ + σv

ϕϕ (9.54)

σθϕ = σ e
θϕ + σv

θϕ (9.55)

where the contribution of the elastic response (superscript e) and relaxation modes
(superscript v) to the diurnal stress tensor are given by

σ e
θθ = 1

2

n2aμ

g0

1
√
1 + �2

{
− 6eβθθ

2,0(θ) cos
(

nt + arctan(�)
)

+ eβθθ
2,2(θ)

[
4 sin(2ϕ) sin

(
nt + arctan(�)

)
+ 3 cos(2ϕ) cos

(
nt + arctan(�)

)]

+ 4 cos(ε) sin(ε)βθθ
2,1(θ)

[
cos(ϕ) sin

(
ω + nt + arctan(�)

)]}
(9.56)

σv
θθ = 1

2

n2aμ

g0

1√
1 + �2

M∑

j=1

(
1

√
1 + �2

j

·
{

− 6eβθθ, j
2,0 (θ) cos

(
nt − arctan(� j ) + arctan(�)

)

+ 4eβθθ, j
2,2 (θ) sin(2ϕ) sin

(
nt − arctan(� j ) + arctan(�)

)

+ 3eβθθ, j
2,2 (θ) cos(2ϕ) cos

(
nt − arctan(� j ) + arctan(�)

)

+ 4 cos(ε) sin(ε)βθθ, j
2,1 (θ)

[
cos(ϕ) sin

(
ω + nt − arctan(� j ) + arctan(�)

)]})
(9.57)

σ e
ϕϕ = 1

2

n2aμ

g0

1
√
1 + �2

{
− 6eβϕϕ

2,0(θ) cos
(

nt + arctan(�)
)

+ eβϕϕ
2,2(θ)

[
4 sin(2ϕ) sin

(
nt + arctan(�)

)
+ 3 cos(2ϕ) cos

(
nt + arctan(�)

)

+ 4 cos(ε) sin(ε)βϕϕ
2,1(θ)

[
cos(ϕ) sin

(
ω + nt + arctan(�)

)]}
(9.58)
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σv
ϕϕ = 1

2

n2aμ

g0

1√
1 + �2

M∑

j=1

(
1

√
1 + �2

j

·
{

− 6eβϕϕ, j
2,0 (θ) cos

(
nt − arctan(� j ) + arctan(�)

)

+ 4eβϕϕ, j
2,2 (θ) sin(2ϕ) sin

(
nt − arctan(� j ) + arctan(�)

)

+ 3eβϕϕ, j
2,2 (θ) cos(2ϕ) cos

(
nt − arctan(� j ) + arctan(�)

)

+ 4 cos(ε) sin(ε)βϕϕ, j
2,1 (θ)

[
cos(ϕ) sin

(
ω + nt − arctan(� j ) + arctan(�)

)]})
(9.59)

σ e
θϕ = 1

2

n2aμ

g0

1
√
1 + �2

·
{

eβθϕ
2,2(θ)

[
8 cos(2ϕ) sin

(
nt + arctan(�)

)
− 6 sin(2ϕ) cos

(
nt + arctan(�)

)]

+ 4 cos(ε) sin(ε)βθϕ
2,1(θ)

[
sin(φ) sin

(
ω + nt + arctan(�)

)]}
(9.60)

σv
θϕ = 1

2

n2aμ

g0

1
√
1 + �2

M∑

j=1

(
1

√
1 + �2

j

·

{
8eβθϕ, j

2,2 (θ) cos(2φ) sin
(

nt − arctan(� j ) + arctan(�)
)

− 6eβθϕ, j
2,2 (θ) sin(2ϕ) cos

(
nt − arctan(� j ) + arctan(�)

)

+ 4 cos(ε) sin(ε)βθϕ, j
2,1 (θ)

[
sin(ϕ) sin

(
ω + nt − arctan(� j ) + arctan(�)

)]})

(9.61)

where the Beta-functions depend on the elastic Love numbers he
2a and le

2, the modal
strengths hv

2, j and lv2, j , and the co-latitude θ . These functions are listed in C.2. The
dimensionless ratios � and � j are defined as

� = μ/ν

n
= T

2πτM
, (9.62)

and

� j = n

−s j
= 2πτ j

T
, (9.63)

where n is the mean angular velocity of Europa’s orbit, T is the orbital period, −s j

is the inverse relaxation time of the mode j , and τ j = −1/s j is the corresponding
relaxation time.

From a theoretical point of view, the dimensionless ratio � describes the relax-
ation state of diurnal stresses at Europa’s surface. As can be observed from Fig.9.3,
relaxation at the surface starts to become important for values of � larger than 0.1.
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In the case of Europa’s lithosphere,� > 0.1 would correspond to viscosities smaller
than 1.7 × 1015 Pa s for a rigidity μ = 3.487GPa, or to viscosities smaller than 4.9
× 1014 Pa s for a rigidity μ = 1GPa. Such low viscosities are, however, more rep-
resentative for the lower portion of the icy shell and are several orders of magnitude
smaller than the plausible values for the viscosity of a cold, conducting lithosphere
(Hussmann et al. 2002; Nimmo and Manga 2009). For this reason, we can state that
diurnal stresses are elastically stored in the lithosphere due to the high viscosity of
the upper ice layer and/or the high frequency of the forcing function. This statement
is in agreement with (Wahr et al. 2009).

On the other hand, viscoelasticity could have an important effect on themagnitude
and geographical distribution of surface diurnal stresses. As shown by Eqs. (9.57),
(9.59) and (9.61), every relaxation mode j contributes in a non-elastic way to the
surface diurnal stress. However, not all modal contributions are large enough to
induce an observable viscoelastic effect on the diurnal stress field. Figure9.3 depicts
a graphical representation of the influence of the ratio � j on the contribution of a
relaxation mode j to the surface diurnal stress. The dark curve in Fig. 9.3 gives the
effect of � j on the modal strengths (hv

2 j and lv2 j ), and hence on the magnitude of the
viscoelastic contribution to the surface diurnal stress.Weobserve that the contribution
of relaxation modes with � j larger than 100 (i.e. τ j larger than 52.5days in Europa’s
case) can be safely neglected, as their corresponding modal strengths are reduced by
more than two orders of magnitude. Therefore, the slow-relaxing modes C0, M3, M2

and M0 (see the numerical values presented in Table9.3 for an example) will not have
an influence on diurnal stresses. Only the fast-relaxing transient modes T1 and T2

remain as potential candidates, with T2 as the most influential mode due to its larger
modal strengths and its faster relaxation time. In addition, � j introduces a phase
delay in the tidal response which generates a westward shift of the stress patterns
at the surface. The light curve in Fig. 9.3 shows that relaxation modes with a very
short relaxation time (� j < 0.01 or τ j < 8min in Europa’s case) contribute in an
effectively elastic way to the surface diurnal stress, as their corresponding phase-lag
becomes negligibly small. The phase-lag increases significantly for larger relaxation
times, becoming 5.82◦ for � j = 0.1, 45◦ for � j = 1 and 84.3◦ for � j = 10.
Since the ratio � j has opposite effects on the magnitude and phase-lag (Fig. 9.3), the
viscoelastic effect on surface diurnal stresses will be largest for strong modes with
� j ∼ 1. In our modeling, the relaxation time of the strong transient mode T2 satisfies
the condition � j ∼ 1 only if the viscosity of the asthenosphere ranges between
1014 and 1015 Pa s. These are typical values for the viscosity of a high-dissipative
and convective asthenosphere, hence viscoelastic effects on Europa’s diurnal stress
field are plausible. The effect of viscoelasticity is enhanced by thick ice layers and
high values for the rigidity of ice, as both parameters lead to an increase of the
modal strengths. Although not directly relevant to Europa, viscoelastic effects on the
diurnal stress field become dominant for oceanless models with an extremely low-
viscous asthenosphere (less than 1013 Pa s). In these cases, the diurnal stress field at
the surface will be considerably different than in all cases with a subsurface ocean.
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9.6.2 NSR Stresses at the Surface

Based on the interpretation of tectonic features, non synchronous rotation (NSR) of
Europa’s ice shell has been widely suggested as an important mechanism to generate
large stresses (∼MPa) on the surface (Leith and McKinnon 1996; Greenberg et al.
1998; Gleeson et al. 2005; Harada and Kurita 2007; Hurford et al. 2007; Kattenhorn
and Hurford 2009; Sotin et al. 2009; Wahr et al. 2009). From a dynamical perspec-
tive, NSR would take place if tidal torques acting on the decoupled shell would drive
the rotation of the shell to a slightly faster than synchronous state (Greenberg and
Weidenschilling 1984). However, as shown by Bills et al. (2009), the tidal torque
acting on Europa cannot be large enough to overcome the counteracting gravitational
torque exerted by Jupiter on permanent asymmetries in the figure of Europa (repre-
sented by the difference between the equatorial moments of inertia, i.e. B − A). In
addition, recent research by Goldreich and Mitchell (2010) points out that the tidal
torque is counteracted by an elastic torque resulting from rotation of the shell with
respect to the equilibrium figure of the ocean. Despite the occurrence of NSR cannot
be precluded from this study, the resulting stresses on the surface would be too small
to create a crack (Goldreich andMitchell 2010). Although NSR of Europa’s ice shell
is strongly opposed by the dynamical considerations discussed above, NSR is still
possible if driven by mass displacements in the interior of the body (Ojakangas and
Stevenson 1989b; Bills et al. 2009).

Here we compute the NSR stress field at Europa’s surface from the Maxwell vis-
coelastic response (Eq. (9.34)) and the NSR forcing function (term φ̃ns

T in Eq. (9.2))
by applying the methodology introduced in Sect. 9.6.1. As a result, we are allowed to
write each non-zero element of theNSRstress tensor in the formgiven byEqs. (9.49)–
(9.51). Before using these equations to compute NSR surface stresses, we need to
remark that the Love numbers h̃2 and l̃2 required for NSR calculations differ from
the Love numbers used to derive the diurnal response (compare Tables9.3 and 9.4).

The different set of tidal Love numbers results from our assumption to keep the
rocky interior synchronously locked while the ice shell experiences NSR. As the
rocky mantle remains tidally locked, the stresses induced by the formation of the
mantle’s bulge had sufficient time to relax completely and, therefore, the response of

Table 9.4 Tidal response of the reference model of Europa’s interior to NSR forces

Modea τ j (yr) γ j
b he

2 or h
v
2 j (–) le2 or l

v
2 j (–)

Elastic − − 1.85155 × 100 4.95366 × 10−1

M2 9.24992 × 103 9.68650 × 100 3.60537 × 10−2 9.80448 × 10−3

M0 3.09117 × 103 3.23707 × 100 1.80231 × 10−3 3.07295 × 10−4

T1 5.49324 × 10−3 5.75251 × 10−6 1.16432 × 10−4 9.28203 × 10−3

T2 9.84029 × 10−4 1.03047 × 10−6 1.53522 × 10−1 4.09211 × 10−2

aThe core-mode C0 and the mantle-mode M3 vanish from the NSR response, since we assumed
that the synchronously locked rocky interior behaves as a fluid with respect to NSR forces
bCorresponds to the minimum period of NSR, i.e. Tns = 12,000 years (� ≈ 0.1)
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the rocky interior to the NSR forcing function can be described as being purely fluid.
From a modeling perspective, we can describe this physical behavior by decreasing
the rigidity of the mantle μ to values relevant for near-fluid materials, i.e.μ ≈ 0 (see
also Wahr et al. 2009). After taking these observations into account, we can proceed
to express the NSR stress field at Europa’s σ̂i j as a combination of a purely elastic
part (superscript e) and the contribution from the relaxation modes (superscript v):

σ̂θθ = σ̂ e
θθ + σ̂ v

θθ (9.64)

σ̂ϕϕ = σ̂ e
ϕϕ + σ̂ v

ϕϕ (9.65)

σ̂θϕ = σ̂ e
θϕ + σ̂ v

θϕ (9.66)

where the individual stress components in Eqs. (9.64)–(9.66) are defined by

σ̂ e
θθ = 1

2

n2rμ

g0

1√
�2 + 1

αθθ
2,2(θ) cos

(
2ϕ + 2	ns t + arctan(�)

)
(9.67)

σ̂ v
θθ = 1

2

n2rμ

g0

1√
�2 + 1

M∑

j=1

{
1

√
1 + γ 2

j

α
θθ, j
2,2 (θ)·

cos
(
2ϕ + 2	ns t + arctan(�) − arctan(γ j )

)}
(9.68)

σ̂ e
ϕϕ = 1

2

n2rμ

g0

1√
�2 + 1

α
ϕϕ
2,2(θ) cos

(
2ϕ + 2	ns t + arctan(�)

)
(9.69)

σ̂ v
ϕϕ = 1

2

n2rμ

g0

1√
�2 + 1

M∑

j=1

{
1

√
1 + γ 2

j

α
ϕϕ, j
2,2 (θ)·

cos
(
2ϕ + 2	ns t + arctan(�) − arctan(γ j )

)}
(9.70)

σ̂ e
θϕ = −n2rμ

g0

1√
�2 + 1

α
θϕ
2,2(θ) sin

(
2ϕ + 2	ns t + arctan(�)

)
(9.71)

σ̂ v
θϕ = − n2rμ

g0

1√
�2 + 1

M∑

j=1

{
1

√
1 + γ 2

j

α
θϕ, j
2,2 (θ)·

sin
(
2ϕ + 2	ns t + arctan(�) − arctan(γ j )

)}
(9.72)

where the alpha functions describe the dependence of NSR stresses on the interior’s
response (Love numbers) and the co-latitude (see C.2). Furthermore, the dimension-
less ratio�, which describes the relaxation state of NSR stresses at Europa’s surface,
is defined by



320 9 Icy Moons

� = μ/ν

2	ns
= Tns

4πτM
, (9.73)

and the ratio γ j , which describes the influence of a relaxation mode to NSR stresses,
is defined by

γ j = 2	ns

−s j
= 4πτ j

Tns
. (9.74)

In Eqs. (9.73) and (9.74), the frequency of the NSR forcing function is defined
as twice the constant angular rate of NSR, i.e. 2	ns . This definition is motivated by
the fact that a fixed point on the surface of Europa’s rotating shell crosses the tidal
bulge twice during one period of NSR, under the assumption that the angular rate
	ns remains constant.

The combined effect of� and γ j on the various components of theNSR stress field
can be analyzed with support of Figs. 9.4 and 9.5, in which the relaxation behavior
of very fast relaxation modes (i.e. γ j � 0.1) provides a good approximation to the
behavior of the purely elastic contribution to NSR stresses.

Both figures show that viscoelastic relaxation in the lithospheric shell starts to
strongly influence the behavior of NSR stresses when � becomes larger than ∼0.1.
However, as shown by Fig. 9.4, viscoelastic relaxation has a relatively larger effect
on nearly-elastic contributions to NSR stresses (γ j<0.1) than on contributions from
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slow relaxation modes. This behavior is logical, as stresses related to slow relax-
ation modes are already attenuated by the viscoelastic character of the response
itself. Besides attenuation of the magnitude, viscoelastic relaxation also introduces a
westward shift on the spatial distribution of stress patterns at the surface. Figure9.5
shows that the longitudinal shift in westward direction can become as large as 45◦ for
�<100 and γ j<0.1, i.e. in a regime where NSR stresses are being severely relaxed
away.

In the particular case of our reference model of Europa’s interior (see Table9.2),
theMaxwell relaxation time of the lithosphere is about 9,000years and� = 1 would
correspond to Tns ≈ 110,000 years. The suggested minimum for the period of NSR
(Tns = 12, 000 years) would then correspond to� ≈ 0.1, and hence we can state that
viscoelastic relaxation would always play an important role in the study of stresses
induced by NSR of Europa’s ice shell. Furthermore, we can deduce from Table9.4
that the contributions from the slower relaxation modes M0 and M3 are already atten-
uated at � ≈ 0.1 as their γ j ’s exceed the imposed threshold of 0.1. For values of �

in the vicinity of the fluid limit, all relaxation modes would be affected in the same
way (Figs. 9.4 and 9.5), and therefore the relative contribution of the slow relaxation
modes M0 and M3 to the total stress at the surface will increase.
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9.7 Stress Patterns on Europa’s Surface

The diurnal and NSR stress fields acting on Europa’s surface are important factors
in the study of the formation and evolution of tectonic features on Europa’s surface.
Stress fields on planetary surfaces are commonly expressed in location-dependent
coordinates defined by the so-called principal axes. These axes are aligned in such a
way that the planes normal to them are not affected by shear stresses (Ranalli 1995).
The normal stresses working along the principal axes are defined as the principal
stresses. The derivation of principal stresses and axes is a typical eigenvalue prob-
lem applied to the diurnal stress tensor (Eqs. 9.53–9.61) and/or NSR stress tensor
Eqs. (9.64)–(9.72), where the principal stresses are given by the eigenvalues and
the principal axes by the corresponding eigenvectors. The resulting diurnal stress
field acting at the surface of the reference model of Europa’s interior is graphically
presented in Fig. 9.6 at four different positions along Europa’s orbit.

As expected, the diurnal stress field closely follows the radial displacement field,
showing tension where Europa’s figure stretches (red lines in Fig. 9.6) and compres-
sion where Europa’s figure squeezes (blue lines in Fig. 9.6). This result is rather
expected because diurnal stresses acting on Europa’s surface are always elastically
stored in the lithosphere, i.e. � � 0.1 (see Fig. 9.3).

Although the largest part of diurnal stresses is caused by the eccentricity, we can-
not neglect the effect of a small non-zero obliquity. As can be observed from Fig. 9.6,
a small obliquity of 0.1◦ already breaks the symmetric distribution of stress patterns

Fig. 9.6 Diurnal stress field at the surface of the reference model of Europa’s interior (Table9.2)
for an eccentricity e = 0.0094 and an obliquity ε = 0.1◦. The stress patterns are given at four
different positions on Europa’s orbit around Jupiter
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Fig. 9.7 Diurnal stress field at the surface of the reference model of Europa’s interior (Table9.2)
for an eccentricity e = 0.0094 and an obliquity ε = 0.5◦. The stress patterns are given at four
different positions on Europa’s orbit around Jupiter

with respect to the equator. This effect is enhanced for larger values for the obliquity,
as is clearly shown by Fig. 9.7 for a hypothetical obliquity of 0.5◦.

The rupture of the symmetry with respect to the equator leads latitudinal shifts of
the tensile and compressive bulges, thereby yielding changes in the orientation and
magnitude of the diurnal stress patterns (see Fig. 9.7). In our example, increasing the
obliquity from 0.1◦ to 0.5◦ leads, on average, to ∼9% larger stresses at Europa’s
surface, wheras the effect on the spatial distribution is clearly visible from Figs. 9.6
and 9.7. At mid-latitudes, where the influence of a non-zero obliquity is largest,
diurnal stresses can locally become even twice as large after increasing the value of
the obliquity from 0.1◦ to 0.5◦.

Diurnal stresses at the surface of Europa depend on the rheological and structural
properties of the interior through the tidal Love numbers h2 and l2. From all physical
parameters of the interior, the largest effect on the tidal response, deformations and
stresses is caused by the existence or non-existence of a subsurface ocean below the
ice shell. As shown by Figs. 9.8 and 9.9, diurnal stresses are often much larger (more
than one order of magnitude) when a subsurface ocean is present below the ice shell.

However, as shown by Fig. 9.8, diurnal stresses might become even larger if an
extremely low-viscous asthenosphere (i.e. ηast = 1012 Pa s) extends down to the
upper boundary of the silicate mantle. This peculiar behavior is caused by a decrease
in the relaxation time of the strong transient modes T1 and T2 towards values com-
parable to the inverse of Europa’s mean motion (keep in mind that the relaxation
time of the transient modes T1 and T2 does not necessarily need to be comparable to
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Fig. 9.9 Magnitude of the largest tensile stresses acting on Europa’s surface as a function of the
rigidity of ice, thickness of the ice shell and viscosity of the asthenosphere. The black dashed curves
correspond to an ice rigidity of μice = 3.487GPa and the gray dashed curves to an ice rigidity of
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the Maxwell time of the asthenosphere). Since also the modal strengths of T1 and T2

become larger than the elastic Love numbers, the diurnal stress field at the surface
will be characterized by a large longitudinal phase shift which can exceed the 40◦.



9.7 Stress Patterns on Europa’s Surface 325

The influence of a subsurface ocean on the surface diurnal stresses is by far the
largest, but certainly not the only one. As shown by Fig. 9.9, the magnitude of surface
diurnal stresses depends roughly linearly on the elastic rigidity of the lithospheric
shell, especially for models with a thin ice shell (less than 10km). However, devia-
tions from a perfect linear relation are clearly observable as the thickness of the shell
increases. These deviations are caused by the combined effect of the asthenosphere’s
thickness and viscosity, and are enhanced at larger values for the elastic rigidity of
ice-I. As shown in Fig. 9.9, the largest deviations from the elastic state (represented by
the curves for ηast = 1016 Pa s) occur for values of the asthenosphere’s viscosity for
which the Maxwell relaxation time of this layer approaches the inverse of Europa’s
mean motion (i.e. ηast = 1014 Pa s to ηast = 1015 Pa s). For extremely low values
for the asthenosphere’s viscosity (i.e. ηast = 1012 Pa s), the asthenosphere behaves
as a fluid. Hence, as can be observed from Fig. 9.9, the magnitude of surface diurnal
stresses is nearly independent of the ice thickness.

The combined effect of the asthenosphere’s viscosity and thickness also leads to
a westward shift in the surface distribution of the surface stress patterns. The amount
of phase shift ζ depends on the ratio � j of the dominant relaxation mode T2, and
is therefore strongest when the relaxation time of T2 is comparable to the inverse
of Europa’s mean angular velocity. This effect is illustrated in Fig. 9.10, where we
observe that phase shifts up to ζ = 7◦ are plausible for interior models with a thick
ice shell and highly dissipative asthenosphere (i.e. ηast = 1014 Pa s).

The value of the phase shift, however, does not indicate the actual longitudinal
shift of the stress patterns at Europa’s surface. Instead, it denotes the time delay of
the shell’s response expresses as a difference in true anomaly. Due to eccentricity of
Europa’s orbit, the actual westward shift of the surface patterns will oscillate around
the value of the phase shift during one orbital revolution. Figure9.10 also shows
that the phase shift becomes negligibly small as the behavior of the asthenosphere

Fig. 9.10 Phase shift of
diurnal stress field as a
function of the thickness of
the entire ice layer and of
different values of the
viscosity of the
asthenosphere. In all cases,
the bottom of the ocean is set
at 130km from the surface,
the rigidity of ice at
μice = 3.487GPa, the
eccentricity at e = 0.0094
and the obliquity at ε = 0◦
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becomes nearly elastic (ηast ≥ 1016 Pa s) or nearly fluid (ηast ≤ 1013 Pa s). As a
result, we can conclude that viscoelasticity only influences the diurnal stress field if
the characteristic Maxwell time of the asthenosphere does not deviate by approxi-
mately one order of magnitude from the inverse mean motion 1/n.

The diurnal stress field resulting from our modeling closely resembles the results
published in previous studies (Greenberg et al. 1998; Harada and Kurita 2006; Wahr
et al. 2009). However, some differences arise from the Maxwell viscoelastic treat-
ment of the interior’s rheology, the non-zero obliquity, incompressibility and the use
of different interior models. As partially shown in Fig. 9.9, the viscoelastic represen-
tation of the tidal response leads to variations up to 20% in the magnitude of diurnal
stresses. As mentioned above, viscoelasticity might also shift the entire stress field
in westward direction, especially if the relaxation time of the strong transient mode
T2 is comparable to the inverse of Europa’s mean motion. These typical viscoelastic
effects are not observed in the surface stress modeling by Greenberg et al. (1998) and
Harada and Kurita (2006), as they assume a perfectly elastic tidal response; neither
in the modeling by Wahr et al. (2009), as they only explicitly show cases for which
viscoelasticity becomes unimportant. In addition, our modeling of the obliquity’s
effect on surface diurnal stresses resembles the modeling by Rhoden et al. (2010)
for nearly elastic bodies. Obviously, some differences arise from our viscoelastic
treatment.

In contrast to diurnal stresses, NSR stresses at the surface of Europa might
experience severe relaxation effects depending on the rheological properties of the
lithosphere. The relaxation state of NSR stresses at Europa’s surface depends on the
dimensionless parameter �, which is proportional to the ratio between the period of
NSR and the Maxwell relaxation time of the lithosphere see Eq. (9.73). As shown
by Figs. 9.4 and 9.5, viscoelastic relaxation starts to affect the magnitude and spatial
distribution of NSR stresses for � > 0.1 and becomes more severe as � increases.
At � = 100, viscoelastic relaxation already reduces the magnitude of NSR stresses
by two orders of magnitude and shifts the entire stress field by nearly 45◦ in westward
direction.

In the particular case of our reference model of Europa’s interior, the Maxwell
relaxation time of the lithosphere is equal to about 9,100years and hence � = 0.1
would correspond to a period ofNSR approximately equal to 11,500years. This value
for Tns is slightly smaller than the assumed minimum value for Tns (12,000years),
meaning that the NSR stress field at the surface of our reference model will always
show signs of viscoelastic relaxation. The effects of viscoelastic relaxation are clearly
visible in Fig. 9.11, where the NSR stress field at Europa’s surface is depicted for
� = 0.1, 1, 10 and 100.

There, we clearly observe that an increasing � leads to a gradual decrease of
the magnitude of NSR stresses and a gradual shift of the entire stress field in west-
ward direction. For � = 100, in accordance with our theoretical expectations, the
magnitude of NSR stresses becomes nearly two orders of magnitude smaller than
for � = 0.1 and the entire stress field is shifted by approximately 45◦ in westward
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Fig. 9.11 NSR stress field at the surface of the reference model of Europa’s interior as a function
of the ratio � = μ/η

2	ns
. For the rheological properties of the reference model of Europa’s interior,

� = 0.1 corresponds to Tns = 11, 419 years,� = 1 to Tns = 114, 188 years,� = 10 to Tns ≈ 1.14
million years and � = 100 to Tns ≈ 11.4 million years

Fig. 9.12 Magnitude of
largest NSR tensile stresses
at Europa’s surface as a
function of the ice thickness,
ice rigidity and viscosity of
the asthenosphere for � = 1.
The black dashed lines
correspond to a rigidity of
μice = 3.487GPa and the
gray dashed lines to a
rigidity of μice = 1GPa
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direction. The exact value of the longitudinal shift does not depend on the viscoelas-
tic response of Europa’s interior, as shown by Figs. 9.12 and 9.13; at least for our
reference model of Europa’s interior.
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Fig. 9.13 Magnitude of
largest NSR tensile stresses
at Europa’s surface as a
function of the ice thickness,
ice rigidity and viscosity of
the asthenosphere for
� = 100. The black dashed
lines correspond to a rigidity
of μice = 3.487GPa and the
gray dashed lines to a
rigidity of μice = 1GPa
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However, Figs. 9.12 and 9.13 also show that the situation is different for othermod-
els of Europa’s interior, especially if the viscosity of the asthenosphere is increased
towards 1016 Pa s or more. In the high-viscous range, i.e. ηast ≥ 1016 Pa s, the magni-
tude of the largest NSR stresses will strongly depend on the thickness and viscosity
of the asthenosphere, as shown by Figs. 9.12 and 9.13. The strong dependence on
the properties of the asthenosphere is caused by the relaxation of the ocean/ice
boundary, represented by the buoyancy mode M2. In the high-viscous range (i.e.
ηast ≥ 1016 Pa s), this relaxation mode is characterized by having the slowest relax-
ation of all inducedmodes andbyhaving a notoriously large tangentialmodal strength
lv2 j . As a result, the effect of M2 on NSR stresses is negligibly small for values of �

corresponding to elastic storage of stresses or even moderate relaxation (i.e.� < 1).
The effect of M2 on NSR stresses clearly increases as relaxation becomes more
severe, leading to the large deviations observed in Fig. 9.13 for� = 100. In our mod-
eling, the relaxationmode M2 can become sufficiently strong for ηast ≥ 1017 Pa s and
� ≥ 100 to shift the entire NSR stress field by more than 45◦ in westward direction,
altering the usual orientation of the NSR stress patterns.

Although viscoelastic relaxation severely reduces the magnitude of NSR stresses,
the NSR stress field remains larger than the ever-acting diurnal stress field for
�< 43◦ (i.e. Tns< 4.9 million years in the case of our reference model). That
means that NSR stresses will dominate the state of stresses at Europa’s surface if the
lithosphere is viscous enough to prevent strong viscoelastic relaxation or if NSR is
sufficiently fast to reduce the value of the ratio �. In other cases, the state of stresses
at Europa’s surface will be dominated by the diurnal stress field.
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9.8 Morphology of the Europa Icy Moon

The main goal for modeling tidal stresses at Europa’s surface is to study the origin
and formation of the observed tectonic features. These features are thought to have
formed as a result of tensile failure of Europa’s icy surface (Greenberg et al. 1998).
Tensile failure most probably initiates when the acting tensile stresses exceed the
tensile strength of the surface ice. Estimates of the poorly known tensile strength of
ice-I at conditions relevant to Europa range from 40kPa to several MPa, depending
on porosity and contamination of the surface ice (Hoppa et al. 1999b; Schulson 2001;
Lee et al. 2005). Here we have dealt with the modeling of diurnal and NSR stresses
acting at Europa’s surface. Diurnal stresses are often related to the origin and forma-
tion of multi-arc cycloidal features on Europa’s surface, whereas NSR stresses are
often required to explain the formation of long arcuate lineaments (e.g. Wahr et al.
2009).

As shown by Fig. 9.8, diurnal stresses at the surface of oceanless models of
Europa’s interior are usually much smaller than the plausible values for the ten-
sile strength of ice (40kPa to several MPa). Failure of the icy surface due to solely
diurnal stresses, as suggested by the existence of numerous cycloidal lineaments
on Europa’s surface, would therefore require the existence of a subsurface ocean.
However, diurnal stresses might exceed the tensile strength of ice if the silicate man-
tle would be in direct contact with an extremely low-viscous asthenosphere (ηast

less than ∼1012 Pa s). The resulting surface stress field, although large in magnitude
(>100kPa, see Fig. 9.8), will considerably differ from the stress field at the surface
of interior models with a subsurface ocean. The question remains whether the orien-
tation of existing cycloids can be explained by the diurnal stress field at the surface
of an oceanless Europa.

The presence of a subsurface ocean, however, does not inherently guarantee that
the acting diurnal stresses can be large enough to cause failure of the icy surface.
As shown in Fig. 9.9, diurnal stresses do not exceed the tensile strength of ice when
the rigidity of the icy lithosphere is assumed to be as low as 1GPa. However, due
to our poor knowledge regarding the mechanical strength of Europa’s surface ice,
we cannot preclude the possibility that diurnal cracking would occur for such a low
rigidity. On the other hand, the sole effect of diurnal stresses could lead tomechanical
failure of a 10GPa icy lithosphere, but only if the tensile strength of the surface ice
remains lower than≈300kPa. This result strongly suggests that diurnal formation of
cycloidal features would preclude the existence of a non-contaminated, non-porous
upper lithosphere. In addition, as shown by Fig. 9.7, a non-zero obliquity breaks
the north-south symmetry of the diurnal stress field, allowing for an explanation for
equator-crossing cycloidal features (Hurford et al. 2009).

If one takes into account that Europa’s ice shell would rotate faster than synchro-
nous, tensile stresses up to several MPa might be induced at the surface, depending
on the rheological properties of the lithosphere and the rate of non-synchronous
rotation. Since NSR is assumed to be a slow process (>104 years), the magnitude of
NSR stresses at Europa’s surface can be severely reduced by viscoelastic relaxation
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(see Sect. 9.7). The amount of viscoelastic relaxation acting onNSR stresses is physi-
cally described by the parameter�, which is directly proportional to the ratio between
the period of NSR and the Maxwell time of the lithosphere. As a result, slow NSR
and low-values for the viscosity of the icy lithosphere would lead to an increase of
the ratio �, enhancing viscoelastic relaxation of NSR stresses.

NSR stresses, if present, do not act alone on Europa’s surface but superimpose
upon the ever-acting diurnal stresses.Variations in the value of�, i.e. in the relaxation
state of NSR stresses, can reduce or enhance the importance of NSR stresses relative
to diurnal stresses and lead to changes in the spatial and temporal distribution of the
combined stress field. Without the effect of viscoelastic relaxation (i.e. � < 0.1),
NSR stresses would be much larger than diurnal stresses (approximately a factor
42 in the case of our standard model as shown by Figs. 9.6 and 9.11 for � = 0.1).
Hence, the spatial and temporal distribution of the NSR-diurnal stress patterns will
hardly change on a diurnal scale. Increasing the effect of viscoelastic relaxation on
NSR stresses towards � ≈ 30 gradually enhances the effect of diurnal stresses on
the combined field. The combined NSR-diurnal stress field experiences periodic lon-
gitudinal oscillations on a diurnal timescale, which gradually become larger as �

increases. When � becomes larger than ∼30 (depending on the interior’s model),
longitudinal oscillations of the combined stress field can no longer be sustained by
the strongly relaxed NSR stress field. The combined stress field would then become
diurnal-like, as can be observed from Fig. 9.14.

Fig. 9.14 Combined diurnal-NSR stress field at the surface of our reference model of Europa for
� = 40, e = 0.0094 and ε = 0.1◦. The stress patterns are given at four different positions on
Europa’s orbit around Jupiter
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We can use the combined NSR-diurnal stress field to analyze the formation of
the diverse lineament morphologies observed on Europa’s surface. The formation of
long arcuate lineaments requires either a slowly-changing stress field or unrealisti-
cally fast crack propagation speeds. The combined NSR-diurnal stress field remains
nearly static as long as the NSR component clearly dominates the spatial-temporal
distribution of the surface stress patterns. In ourmodeling, theNSR component keeps
the combined stress field nearly static for values of � approximately smaller than 5
(equivalent to about 8◦ of NSR). On the other hand, the formation of cycloidal fea-
tures requires a highly-variable stress field and slow crack propagation speeds. The
combined NSR-diurnal stress field becomes highly-variable (diurnal-like) for values
of � larger than 30 (equivalent to about 2◦ of NSR). An interesting characteristic
of Europa’s surface is that cycloidal features coexist with global arcuate lineaments,
implying variations of the relaxation parameter � throughout the geological history
of Europa’s surface. Temporal variations of the relaxation parameter � can either be
caused by secular variations in the rotation rate of Europa’s ice shell, changes in the
rheological properties of the surface ice, or both of them. Changes in tidal heat dissi-
pation with time, due to e.g. the time evolution of the orbit’s eccentricity (Hussmann
and Spohn 2004), could then lead to changes in the ice shell thickness distribution
with time, affecting Europa’s rotation rate (through the principal moments of inertia
of the shell) and thereby the relaxation parameter �. Moreover, the same changes
in tidal dissipation could also induce variations in the viscosity of the icy surface
and � (Wahr et al. 2009). Consequently, variations of the relaxation parameter �

as a function of time would require the existence of a dynamic ice layer covering a
subsurface ocean.

It is worth to mention that the methodology presented in Sects. 9.4 and 9.6 implic-
itly assumes that Europa’s interior behaves as an incompressible Maxwell body.
However, the effects of compressibility are known to be generally less than about
20% in magnitude. At the same time, we consider the assumption of linear rhe-
ology of more severe influence as the rheology of planetary ices is known to be
best described by non-Newtonian rheological models (Durham et al. 1997, 2001;
Goldsby and Kohlstedt 2001) and all materials are known to be compressible. The
study of Europa’s surface stress field from a non-Newtonian perspective is inher-
ently numerical and depends strongly on the poorly known properties of ice-I at
Europan conditions. Nevertheless, the dependence of the effective viscosity on the
stress (non-linear effect) is small compared to the dependence on the temperature
(Showman and Han 2004), as diffusion creep might be the dominating flow mech-
anism for all grain sizes (Moore 2006). By comparing our results with simulations
from the viscoelastic SatStress software of Wahr et al. (2009), we obtain differences
in magnitude up to ∼20% for equivalent interior models; i.e. much less than the
differences caused by the poorly constrained rigidity of ice (see Fig. 9.9). We assign
the obtained differences in magnitude to compressibility and partially to the fact
that we treated Europa’s inner structure as differentiated into a liquid metallic core
and a rocky mantle, whereas Wahr et al. (2009) considered a single homogeneous
core/mantle layer with a higher density than our silicate mantle. Although the effect
of compressibility on the magnitude of surface tidal stresses is similar to e.g. the
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influence of a low-viscous asthenosphere, it is less important for our purposes as
compressibility does not affect the orientation of the global stress patterns.

Diurnal stresses at Europa’s surface might experience the effects of viscoelas-
tic relaxation of the asthenosphere, mainly in the form of a longitudinal shift of
the surface stress patterns. However, as discussed in Sect. 9.7, the relevance of the
viscoelastic effect is limited to interior models with a thick and highly dissipative
asthenosphere. On timescales relevant for NSR (>104 years) the magnitude and
phase shift of NSR surface stresses can be affected by viscoelastic relaxation of the
ice/shell boundary. This effect, however, becomes only important whenNSR stresses
experience strong viscoelastic relaxation in the lithospheric shell (i.e. � ∼ 100 or
larger). The combination of NSR and diurnal stresses for different amounts of vis-
coelastic relaxation of NSR stresses in the lithosphere leads to a large variety of
global stress fields that might explain the formation of the large diversity of linea-
ment morphologies observed on Europa’s surface.

In addition, we have shown that even a small obliquity breaks the symmetric
distribution of surface stress patterns with respect to the equator. The effect of a
small obliquity on the local magnitude and orientation of diurnal stress patterns is
largest at mid-latitudes and when Europa is located 90◦ away from the nodes formed
by the intersection of Europa’s orbital and equatorial planes (see Fig. 9.7). In those
cases, local differences in magnitude up to more than 100% with respect to the
eccentricity-only case are possible, even for very small obliquities (<0.25◦). Diur-
nal stresses induced by the obliquity can offer an explanation for the existence of
equator-crossing cycloids and the southern shift of the Wedges region, as suggested
by (Hurford et al. 2009; Rhoden et al. 2010).
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Appendix A
Dyads and Vector Identities

This Appendix is partially based on Appendix A-Algebra and Calculus of Dyadics in
Ben-Menahem and Singh (2000), to whomwe refer for details. We recall herein only
the basic definition of a dyad, and provide those vector identities that are necessary
to expand in spherical harmonics the momentum equation. The dyad formulation is
useful since these vector identities are valid for any coordinate system.

The most general dyad is the juxtaposition of any two vector a and b defined as

ab =
∑

α, β

aα bβ eαeβ (A.1)

where α and β vary from 1 to 3 and eα , eβ denote the unit vectors along the respective
xα , xβ axes; Eq. (A.1) is known as the algebric product between a and b, different
from the scalar, a · b, and cross, a × b, products.

The first vector of the dyad is called antecedent and the second one the consequent;
if we reverse the order of the vectors in the dyad we obtain its transpose, herein
indicated by the superscript T , as for example the transpose of the dyad entering the
definition of the strain Eq. (1.26), as for the following f vector and the ∇ gradient

(∇ f )T = f∇ (A.2)

where the symbol ⊗ of the algebraic product is now on omitted, to make easier the
comparison with Appendix A of Ben-Menahem and Singh (2000) where the former
is also omitted.

We now list the vector identities for deriving Eq. (1.83)

∇(uv) = (∇u)v + u(∇v) (A.3)

∇ f − f∇ = −1 × (∇ × f ) (A.4)
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where 1 denotes the unitary dyad.

∇ · (uD) = u(∇ · D) + (∇u) · D (A.5)

where D denotes a dyad.

∇ · (u1) = ∇u (A.6)

∇ · (∇ f ) = ∇2 f (A.7)

∇ · (∇ f )T = ∇(∇ · f ) (A.8)

A.1 Divergence and Volume Changes

The divergence of the spherical harmonic vectors yields

∇ · R�m = 2

r
Y�m (A.9)

∇ · S�m = −�(� + 1)

r
Y�m (A.10)

∇ · T �m = 0 (A.11)

when the following identities are considered

∇ · (u f ) = u∇ · f + (∇u) · f (A.12)

∇ × (u f ) = u∇ × f + (∇u) × f (A.13)

∇ · er = 2

r
(A.14)

∇ · ( f × g) = (∇ × f ) · g − f · (∇ × g) (A.15)

It is noteworthy that toroidal deformations have no radial components and does
not involve volume changes �. In fact the divergence of the toroidal part of the
displacement, which is given by Eqs. (1.63) and (1.66), yields, on the basis of Eq. A.5

∇ · uT =
∑

�m

(∂rW�m er · T �m + W�m∇ · T �m) = 0 (A.16)

On the contrary, the divergence of the spheroidal part of the displacement, which is
given by Eqs. (1.62), (1.64) and (1.65), yields, on the basis of Eq. A.5
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∇ · uS =
∑

�m

(∂rU�m er · R�m +U�m∇ · R�m

+ ∂r V�m er · S�m +U�m∇ · S�m) =
∑

�m

χ�m Y�m (A.17)

with χ�m given by

χ�m = ∂rU�m + 2

r
U�m − � (� + 1)

r
V�m (A.18)

The spherical harmonic expansion of the volume change � can thus be written as
follows

� =
∑

χ�m Y�m (A.19)

A.2 Laplacian Entering the Divergence
of the Cauchy Stress Tensor

From

∇2 ( f a) = a∇2 f + f ∇2a + 2∇ f · (∇a) (A.20)

∇er = 1

r

(
eθ eθ + eφeφ

)
(A.21)

∇2er = − 2

r2
er (A.22)

the Laplacian of the spherical harmonic vector R�m reads

∇2R�m = 1

r2
[2 (S�m − R�m) − �(� + 1) R�m] (A.23)

Making use of

∇2∇ f = ∇∇2 f (A.24)

we obtain the Laplacian of the spherical harmonic vector S�m

∇2S�m = −�(� + 1)

r2
(S�m − 2 R�m) (A.25)
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From

∇2∇ × f = ∇ × ∇2 f (A.26)

∇r = 1 (A.27)

∇ × (∇ f ) = 0 (A.28)

we obtain the Laplacian of the spherical harmonic vector T �m

∇2T �m = −�(� + 1)

r2
T �m (A.29)

A.3 Vector Product Entering the Divergence of the Cauchy
Stress Tensor

Making use of

∇ × ∇ × f = ∇(∇ · f ) − ∇2 f (A.30)

we obtain

er × (∇ × (U�mR�m)) = U�m

r
S�m (A.31)

er × (∇ × (V�mS�m)) = −
(
V�m

r
+ ∂r V�m

)
S�m (A.32)

er × (∇ × (W�mT �m)) = −
(
W�m

r
+ ∂rW�m

)
T �m (A.33)



Appendix B
Analytical Functions

A function f (z) in the complex plane is called analytical in a point z = z0 if f (z) is
differentiable in z = z0 and in a small surrounding area. Mathematically stated: the
derivative

d f

dz
= lim

δz→0

δ f

δz
= lim

δz→0

f (z + δz) − f (z)

z + δz − z
(B.1)

should exist. If we split the function f into real and imaginary parts as f = u + iv
and z into z = x + iy, then we get

δ f

δz
= δu + iδv

δx + iδy
(B.2)

Setting (δx → 0, δy = 0) gives:

lim
δz→0

δ f

δz
= lim

δx→0

(
δu

δx
+ i

δv

δx

)
= ∂u

∂x
+ i

∂v

∂x
(B.3)

while setting (δx = 0, δy → 0) gives:

lim
δz→0

δ f

δz
= lim

δy→0

(
−i

δu

δy
+ δv

δy

)
= −i

∂u

∂y
+ ∂v

∂y
(B.4)

Existence of d f /dz thus leads to the following two conditions:

∂u

∂x
= ∂v

∂y
and

∂u

∂y
= −∂v

∂x
(B.5)

which are called the Cauchy-Riemann conditions.
The Cauchy theorem states the following: if f (z) is analytical inside a region

bounded by the closed contour C , then
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∮

C

f (z)dz = 0 (B.6)

We can proof the Cauchy theorem by using the Stokes’ theorem for converting a
line integral over a closed contour into a surface integral:

∮

C

f (z)dz =
∮

C

(udx − vdy) + i
∮

C

(vdx + udy) (B.7)

The Gauss lemma states that
∮

C

f (x, y)dx = −
∫

S

∂ f

∂y
dxdy (B.8)

∮

C

f (x, y)dy =
∫

S

∂ f

∂x
dxdy (B.9)

where the surface S is contoured by C . Applying the Gauss lemma to Eq. (B.7) we
obtain

∮

C

f (z)dz =
∫

S

(
−∂v

∂x
− ∂u

∂y

)
dxdy

+ i
∫

S

(
∂u

∂x
− ∂v

∂y

)
dxdy (B.10)

Applying the Cauchy-Riemann conditions to the above equation we obtain

∮

C

f (z)dz = 0. (B.11)

B.1 Cauchy Integral Representation

Let us assume that f (z) is an analytical function within the domain R. We can show
that, if C is a closed curve in R, the following Cauchy integral representation holds

f (z) = 1

2π i

∮

C

f (z
′
)

z ′ − z
dz

′
(B.12)

for any z internal to C .
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We consider the quantity

f (z
′
) − f (z)

z ′ − z
(B.13)

Since f is a continuous function, for any ε > 0 we can find δ(ε) > 0 such that for

|z ′ − z| < δ(ε) (B.14)

we have

| f (z ′
) − f (z)| < ε (B.15)

C denotes a circle in the z
′
plane centered on z of radius r < δ(ε) expressed by

z
′ = z + reiθ (B.16)

The modulus of the integral of equation (B.13) over C satisfies
∣∣∣∣∣∣

∮

C

f (z
′
) − f (z)

z ′ − z
dz

′

∣∣∣∣∣∣
<

ε

r
2πr. (B.17)

In fact, over C we have that |z ′ − z| = r which results into
∣∣∣∣∣∣

∮

C

f (z
′
) − f (z)

z ′ − z
dz

′

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∮

C

f (z
′
) − f (z)

r
dz

′

∣∣∣∣∣∣
. (B.18)

The Darboux inequality for functions of complex variables states that the above
modulus of the integral over C is always smaller than the maximum of the value
attained by the function which is integrated, ε

r in our case, multiplied by the length
of the arc along which the function is integrated, 2πr in our case, leading to equation
Eq. (B.17) from Eq. (B.18).

If we take the limit ε → 0, the right part of Eq. (B.17) vanishes, leading to

∮

C

f (z
′
) − f (z)

z ′ − z
dz

′ = 0 (B.19)

We thus obtain

∮

C

f (z
′
)

z ′ − z
dz

′ = f (z)
∮

C

dz
′

z ′ − z
. (B.20)
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From Eq. (B.16) we obtain

∮

C

dz
′

z ′ − z
= i

∮

C

dθ = 2π i (B.21)

that finally leads to

f (z) = 1

2π i

∮

γ

f (z
′
)

z ′ − z
dz

′
(B.22)

which finally proves the result, since the curves γ andC are equivalent for theCauchy
Theorem, being obtained one from the other by continuous deformation within the
domain R where f (z) is analytical.

From the Cauchy integral representation of the function f (z) it is straightforward
to obtain the following representation of the nth derivative of f (z)

dn f (z)

dzn
= n!

2π i

∮

γ

f (z
′
)

(z ′ − z)n+1
dz

′
. (B.23)

B.2 Residue Theorem

If f (z) is analytical within the domain D, except for a number of isolated singular-
ities, the Residue Theorem holds, which states that the integral of f (z) extended to
any closed curve γ in D, not passing through any singular point of f (z), is equal to
2π i the sum of the residues of the singularities of f (z) internal to γ .

Let us consider the function

f (z) = g(z)

(z − z0)k
(B.24)

where g(z) is analytical; f (z) is singular with a pole of kth order in z = z0. On the
basis of the integral representation of the derivatives of an analytical function, we
obtain

∮

γ

g(z)

(z − z0)k
dz = 2π i

(k − 1)!
dk−1

dzk−1
g(z)|z=z0 . (B.25)

By definition,

|Res f (z)|z=z0 = 1

2π i

∮

γ

f (z)dz (B.26)
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which gives on the basis of equation (B.23)

|Res f (z)|z=z0 = 1

2π i

∮

γ

g(z)

(z − z0)k
dz. (B.27)

Taking into account theCauchy representation of the kth derivative of an analytical
function g(z), the above expression becomes

|Res f (z)|z=z0 = 1

(k − 1)!
dk−1g(z)

dzk−1
|z=z0 (B.28)

or

|Res f (z)|z=z0 = 1

(k − 1)! lim
z→z0

dk−1

dzk−1
(z − z0)

k f (z) (B.29)

If we have a simple pole in z = z0, the above expression becomes

|Res f (z)|z=z0 = lim
z→z0

(z − z0) f (z) (B.30)



Appendix C
Icy Moons

C.1 Derivation of the Propagator Matrices W̃1 and W̃2

The presence of an internal liquid ocean divides the propagation process into three
regions of application, namely: the silicate mantle, the liquid ocean and the ice shell.
Here, we combine the propagation within each of these separate regions into one
single propagator matrix by explicit application of the boundary conditions given by
Eqs. (9.19) and (9.21).

We start the combination process by relating the conditions at the free (unforced)
surface to the solution vector at the base of the ice shell, i.e.

⎛

⎜⎜⎜⎜⎜⎜⎝

Ũ (1)
� (R)

Ṽ (1)
� (R)

0
0

�̃
(1)
� (R)

0

⎞

⎟⎟⎟⎟⎟⎟⎠
= B̃

si
�

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Ũ (n−1)
� (rn)

Ṽ (n−1)
� (rn)

σ̃
(n−1)
rr,� (rn)

σ̃
(n−1)
rθ,� (rn)

�̃
(n−1)
� (rn)

Q̃(n−1)
� (rn)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(C.1)

where B̃
si
� is the ice propagator matrix within the icy layers from surface of Europa

to the bottom of the ocean, according to the scheme of Fig. 9.2, based on Eqs. (2.9),
(2.10) where the fundamental matrix Ỹ� is that of an incompressible viscoelastic
material given by Eq. (2.42).

Equation (C.1) introduces three constraints to the propagation problem, as both
stress elements (σ̃rr,� and σ̃rθ,�) and the so-called potential stress (Q̃�) are bydefinition
equal to zero at the surface in the free surface case.Here,we recall that the free surface
case is used to determine the normal modes or free oscillations of our interior model.
The determination of these modes and their corresponding relaxation times and
strengths is a very important step in the calculation of the viscoelastic response of
an icy moon to tidal forces, because these modes describe the effect of viscoelastic

© Springer Science+Business Media Dordrecht 2016
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relaxation on the response at the surface. Consequently, we proceed our discussion
by only taking into account the constrained part of the solution vector, i.e.

0 = P1 B̃
si
�

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Ũ (n−1)
� (rn)

Ṽ (n−1)
� (rn)

σ̃
(n−1)
rr,� (rn)

σ̃
(n−1)
rθ,� (rn)

�̃
(n−1)
� (rn)

Q̃(n−1)
� (rn)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(C.2)

where the projector operator P1 is given by

P1 =
⎛

⎝
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞

⎠ (C.3)

Thereafter, we apply the set of boundary conditions at the ocean-ice interface (Eq.
(9.19)) to the right side of Eq. (C.2). This step leads to the following expression

d̃s = B̃
R1
�

⎛

⎜⎜⎝

�̃
(n)
� (rn)
g(rn)

�̃
(n)
� (rn)

Q̃(n)
� (rn)

⎞

⎟⎟⎠ (C.4)

where the matrix B̃
R1
� is defined as

B̃
R1
� = P1B̃

si
�

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
(C.5)

and the vector d̃s as

d̃s =
⎛

⎜⎝
−R�,3K4 − B̃

si
�,32K5

−R�,4K4 − B̃
si
�,42K5

−R�,6K4 − B̃
si
�,62K5

⎞

⎟⎠ (C.6)

with R�,y (y ∈ {3, 4, 6}) defined by

R�,y = B̃
si
�,y1 + ρ

(n)
0 g(rn)B̃

si
�,y3 + 4πGρ

(n)
0 B̃

si
�,y6 (C.7)
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In Eqs. (C.6) and (C.7) the subscripts refer to an individual element of the ice

propagator matrix B̃
si
� . By convention, the first digit in the subscript indicates the

row and the second digit the column.
The next step is to express the right hand side of Eq. (C.4) in terms of the conditions

at the bottom of the ocean layer. Substitution of Eqs. (9.19) and (9.20) into Eq. (C.4)
yields

d̃s = B̃
R1
�

⎛

⎜⎜⎝

1
g(rn)

(
−̃B

f
�,11�̃

(n)
� (rn+1) − B̃

f
�,12 Q̃

∗(n)
� (rn+1)

)

B̃
f
�,11�̃

(n)
� (rn+1) + B̃

f
�,12 Q̃

∗(n)
� (rn+1)

B̃
f
�,21�̃

(n)
� (rn+1) + B̃

f
�,22 Q̃

∗(n)
� (rn+1) + J

⎞

⎟⎟⎠ (C.8)

where B̃
f
� is defined in Eq. (9.18) and where the auxiliary variable J is defined by

J =
(

� + 1

rn
− 4πGρ

(n)
0

g(rn)

) (
B̃

f
�,11�̃

(n)
� (rn+1) + B̃

f
�,12 Q̃

∗(n)
� (rn+1)

)
(C.9)

Moreover, the radial functions �̃
(n)
� (rn+1) and Q̃∗(n)

� (rn+1) at the bottom of the
ocean can be expressed in terms of the conditions at the CMB by applying the set
of boundary conditions at the mantle-ocean interface (Eq. 9.21) and the viscoelastic
propagation through the silicate mantle. Then, we can write Eq. (C.8) as follows

d̃s =
⎛

⎝
G�,11 G�,12 G�,13

G�,21 G�,22 G�,23

G�,31 G�,32 G�,33

⎞

⎠ C̃c,� (C.10)

where the elements G�,vw (row 1 ≤ v ≤ 3 and column 1 ≤ w ≤ 3) are defined by

G�,vw = − B̃
R1
�,v1

g(rn)

(
B̃

f
�,11B̃

sm
�,5w + B̃

f
�,12Z�,w

)

+ B̃
R1
�,v2

(
B̃

f
�,11B̃

sm
�,5w + B̃

f
�,12Z�,w

)

+ B̃
R1
�,v3

(
B̃

f
�,21B̃

sm
�,5w + B̃

f
�,22Z�,w

)

+ B̃
R1
�,v3

(
� + 1

rn
− 4πGρ

(n)
0

g(rn)

) (
B̃

f
�,11B

sm
�,5w + B̃

f
�,12Z�,w

)
(C.11)

in which

Z�,w = B̃
sm
�,6w +

(
4πGρ

(n)
0

g(rn+1)
− � + 1

rn+1

)
B̃
sm
�,5w − 4πG

g(rn+1)
B̃
sm
�,3w (C.12)
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where B̃
sm
� denotes the propagator within the mantle layers from the bottom of the

ocean to the coremantle boundary, according to the scheme of Fig. 9.2, based on Eqs.
(2.9), (2.10) and (1.164)where the fundamentalmatrix Ỹ� is that of an incompressible
viscoelastic material given by Eq. (2.42) and the core-mantle boundary conditions
are based on Eq. (1.150), but for the core of Europa.

As can be seen from Eq. (C.10), we only applied three constraints to a problem
having six unknowns (K1 to K6). The additional constraints can be obtained from
the radial functions that cannot be propagated through the ocean layer, but that are
related to the CMB-constants K1 to K3 through the set of boundary conditions at
the mantle-ocean interface. The first additional constraint is defined by taking into
account continuity of radial stress at the mantle-ocean boundary. We can express the
constant K6 in terms of the CMB-constants,

K6 = − 1

ρ
(n)
0 g(rn+1)

(
B̃
sm
�,31 B̃

sm
�,32 B̃

sm
�,33

)
C̃c,� (C.13)

thereby reducing the number of unknowns to five (K1 to K5).
A second additional constraint can be introduced by taking into account continuity

of tangential stress at the mantle-ocean boundary by the following expression:

0 =
(
B̃
sm
�,41 B̃

sm
�,42 B̃

sm
�,43

)
C̃c,� (C.14)

The third and last additional constraint can be obtained from the boundary con-
dition regarding the radial displacement at the mantle-ocean interface. We can write
the following relation

0 =
(
L�,1 L�,2 L�,3

)
C̃c,� (C.15)

where the elements L�,w are defined by

L�,w = B̃
sm
�,1w − 1

ρ
(n)
0 g(rn+1)

B̃
sm
�,3w + 1

g(rn+1)
B̃
sm
�,5w (C.16)

Finally, combination of Eqs. (C.10), (C.14) and (C.15) allows us to write out the
propagator matrix W̃1 that relates the five defined constraints to the five unknowns,
i.e.

W̃1 =

⎛

⎜⎜⎜⎜⎜⎝

0 0 L�,1 L�,2 L�,3

0 0 B̃
sm
�,41 B̃

sm
�,42 B̃

sm
�,43

R�,3 B̃
si
�,32 G�,11 G�,12 G�,13

R�,4 B̃
si
�,42 G�,21 G�,22 G�,23

R�,6 B̃
si
�,62 G�,31 G�,32 G�,33

⎞

⎟⎟⎟⎟⎟⎠
(C.17)
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which satisfies the characteristic equation

0 = W̃1C̃� (C.18)

where C̃� = (K1 K2 K3 K4 K5)
T .

In a similar way as for the constrained part of Eq. (C.1), we can express the
unconstrained parameters at the surface directly in terms of the unknown constants
K1 to K5. After some analytical manipulation we obtain

X̃�(s) =
⎛

⎝
Ũ�(R, s)
Ṽ�(R, s)
�̃�(R, s)

⎞

⎠ = P35W̃2C̃� (C.19)

where X̃�(s) is defined as the unit impulse response, W̃2 is the propagator matrix,
C̃� is the vector of unknown constants and P35 is a projection matrix that filters out
the first two elements of the product between W̃2 and C̃�. The propagator matrix W̃2

itself is defined by

W̃2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 L�,1 L�,2 L�,3

0 0 B̃
sm
�,41 B̃

sm
�,42 B̃

sm
�,43

R�,1 B̃
si
�,12 G ′

�,11 G ′
�,12 G ′

�,13

R�,2 B̃
si
�,22 G ′

�,21 G ′
�,22 G ′

�,23

R�,5 B̃
si
�,52 G ′

�,31 G ′
�,32 G ′

�,33

⎞

⎟⎟⎟⎟⎟⎟⎠
(C.20)

where the elements G ′
�,vw (row 1 ≤ v ≤ 3 and column 1 ≤ w ≤ 3) are defined by

G ′
�,vw = − B̃

R2
�,v1

g(rn)

(
B̃

f
�,11B̃

sm
�,5w + B̃

f
�,12Y�,w

)

+ B̃
R2
�,v2

(
B̃

f
�,11B̃

sm
�,5w + B̃

f
�,12Y�,w

)

+ B̃
R2
�,v3

(
B̃

f
�,21B̃

sm
�,5w + B̃

f
�,22Y�,w

)

+ B̃
R2
�,v3

(
� + 1

rn
− 4πGρ

(n)
0

g(rn)

) (
B̃

f
�,11B̃

sm
�,5w + B̃

f
�,12Y�,w

)
(C.21)

with

B̃
R2
� = P2B̃

si
�

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
(C.22)
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and P2 given by

P2 =
⎛

⎝
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0

⎞

⎠ (C.23)

C.2 Auxiliary Variables in Stress Equations

The elements of the diurnal stress tensor at the surface, which are mathematically
defined by Eqs. (9.56) to (9.61), depend on the Love numbers (i.e. on the properties
of the interior) and the co-latitude through the Beta-functions. These functions are
listed below

βθθ
2,0(θ) = 3

4

(
3he2 − 10le2

)
cos(2θ) + 3

4

(
he2 − 2le2

)
(C.24)

β
θθ, j
2,0 (θ) = 3

4

(
3hv

2 j − 10lv2 j
)
cos(2θ) + 3

4

(
hv
2 j − 2lv2 j

)
(C.25)

βθθ
2,1(θ) = 3

2

(
3he2 − 10le2

)
sin(2θ) (C.26)

β
θθ, j
2,1 (θ) = 3

2

(
3hv

2 j − 10lv2 j
)
sin(2θ) (C.27)

βθθ
2,2(θ) = − 3

2

(
3he2 − 10le2

)
cos(2θ) + 9

2

(
he2 − 2le2

)
(C.28)

β
θθ, j
2,2 (θ) = − 3

2

(
3hv

2 j − 10lv2 j
)
cos(2θ) + 9

2

(
hv
2 j − 2lv2 j

)
(C.29)

β
ϕϕ
2,0(θ) = 3

4

(
3he2 − 8le2

)
cos(2θ) + 3

4

(
he2 − 4le2

)
(C.30)

β
ϕϕ, j
2,0 (θ) = 3

4

(
3hv

2 j − 8lv2 j
)
cos(2θ) + 3

4

(
hv
2 j − 4lv2 j

)
(C.31)

β
ϕϕ
2,1(θ) = 3

2

(
3he2 − 8le2

)
sin(2θ) (C.32)

β
ϕϕ, j
2,1 (θ) = 3

2

(
3hv

2 j − 8lv2 j
)
sin(2θ) (C.33)

β
ϕϕ
2,2(θ) = − 3

2

(
3he2 − 8le2

)
cos(2θ) + 9

2

(
he2 − 4le2

)
(C.34)

β
ϕϕ, j
2,2 (θ) = − 3

2

(
3hv

2 j − 8lv2 j
)
cos(2θ) + 9

2

(
hv
2 j − 4lv2 j

)
(C.35)

β
θϕ
2,1(θ) = 3le2 sin(θ) (C.36)

β
θϕ, j
2,1 (θ) = 3lv2 j sin(θ) (C.37)

β
θϕ
2,2(θ) = 3le2 cos(θ) (C.38)

β
θϕ, j
2,2 (θ) = 3lv2 j cos(θ) (C.39)
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In a similar way, the NSR stress tensor at Europa’s surface (Eqs. (9.67) to (9.72))
depends on the Love numbers and co-latitude through the following alpha-functions

αθθ
2,2(θ) = − 3

2

(
3ĥe2 − 10l̂ e2

)
cos(2θ) + 9

2

(
ĥe2 − 2l̂ e2

)
(C.40)

α
θθ, j
2,2 (θ) = − 3

2

(
3ĥv

2 j − 10l̂v2 j
)
cos(2θ) + 9

2

(
ĥv
2 j − 2l̂v2 j

)
(C.41)

α
ϕϕ
2,2(θ) = − 3

2

(
3ĥe2 − 8l̂ e2

)
cos(2θ) + 9

2

(
ĥe2 − 4l̂ e2

)
(C.42)

α
ϕϕ, j
2,2 (θ) = − 3

2

(
3ĥv

2 j − 8l̂v2 j
)
cos(2θ) + 9

2

(
ĥv
2 j − 4l̂v2 j

)
(C.43)

α
θϕ
2,2(θ) = 3l̂ e2 cos(θ) (C.44)

α
θϕ, j
2,2 (θ) = 3l̂v2 j cos(θ) (C.45)

where the elastic Love numbers ĥe2 and l̂ e2, and modal strengths ĥv
2 j and l̂v2 j refer to

the tidal response of interior models in which the silicate mantle has been assumed
to behave as a fluid with respect to NSR (see Sect. 9.6.2).

http://dx.doi.org/10.1007/978-94-017-7552-6_9
http://dx.doi.org/10.1007/978-94-017-7552-6_9
http://dx.doi.org/10.1007/978-94-017-7552-6_9


Index

A
Adjustment of the equatorial bulge, 102
Adriatic, 234–236, 238, 239
Angular momentum, 90
Angular velocity, 90
Antarctica, 149, 151, 195, 203, 233
Apennines, 234, 237, 238, 278
Apparent Polar Wander, see polar wander
Apulia, 236, 240
Aquileia, 236, 239, 241

B
Bernese software, 282
Bothnic Gulf, 226, 233, 237
Boundary conditions, 21

centrifugal, 24
external, 21
internal, 19
internal forcing, 43, 45
surface, 21, 32
tidal, 24

Bromwich path, 36
Bulk modulus, 8

C
Calabrian Arc, 237
Canada, 149, 171
Cauchy integral representation, 342
Cauchy-Riemann conditions, 341
Cauchy theorem, 341
Cavitation, 25
Centrifugal potential, inertia perturbations,

94
Chandler wobble, 88, 102

frequency, 104

Chemical boundaries, 25
Chemical stratification, 65
CMB, see core-mantle boundary
Coble creep, 2
Complex contour integration, 42, 118, 309

analytical functions, 341
poles, 38, 42

Compressibility, 11, 211, 217, 270, 331
Continental drift, 99
Convolution, 227, 257, 258, 260, 262
Core, 88
Core-mantle boundary, 26, 29

boundary conditions, 26, 350
interface matrix, 29, 54

Correspondence Principle, 3, 11
Crete, 242
Crust, 88

lower crust, 277
transition zone, 277
upper crust, 277

Cycloidal cracks, 294, 329

D
Darboux inequality, 343
Decoupling, 303
Delta function, 43, 229
Density stratification, 173

PREM, 96
Dislocation sources

forcing terms, 45
Displacements, 5, 16, 29, 206, 213
Diurnal stresses, 294, 313, 322
Diurnal tides, 293, 310, 314
Dyadic formulation, 7, 337
Dynamic form factor J2, 126

changes, 149
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356 Index

Dynamic topography, 142, 246, 251

E
Earth’s models, 62

31-layer models, 161, 166
56-layer models, 164
five-layer models

fixed-boundary contrast, 64, 163
volume-averaged, 164

half-space models, 237
PREM, 156, 269

Earthquakes
Irpinia (1980), 284

leveling campaigns, 284
seismic moment, 284

Sumatran (2004), 211
Tohoku-Oki (2011), 218
Umbria-Marche (1997), 277

GPS campaigns, 282
Earth’s rotation, 87
Eccentricity, 296
Egnatiæ, 236, 240, 241
Equatorial bulge, 102

readjustment time scale, 125
Euler equation, 90, 264
Eulerian free precession, 102

frequency, 98, 104
Europa, 293, 301, 329

F
Finite-element models, 237
Fourier approach, 302
Fundamental solution matrix

compressible case, 73
incompressible case, 61

inverse, 62

G
Galileo, 293
Gauss lemma, 342
Gauss theorem, 22
Geographical frame, 101, 267
Geoid, 228, 246

geoid anomalies, 212, 227, 231, 247
long-wavelength components, 189

GIA, see Glacial Isostatic Adjustment
GIPSY software, 282
Glacial Isostatic Adjustment, 2, 202, 206,

231, 235
Global change, 189, 195
GPS, 269, 270

GPS campaigns, 280
GRACE, 202, 214, 219
Gravitational constant, 95
Gravitational potential field, 189
Gravitational seismology, 189, 215, 218
Gravity, 28, 40
Gravity anomalies

free-air (GIA), 231
Green functions, 82

gravitational potential, 227, 228
radial displacement, 228

Greenland, 151, 195, 203

H
Heaviside function, 104, 156, 229
Himalayas, 100
Hooke’s law, 12
Horizontal displacements (GIA), 206
Hot-spot reference frame, 99, 101
Hudson Bay, 226, 233
Hydrostatic equilibrium, 258
Hydrostatic pressure, 5

I
Ice Age cycles, 171
Ice Ages, 87
Ice mass changes

Antarctica, 196, 198
Greenland, 196, 201
ICE-3G, 155, 203, 231
present-day, 195
saw-tooth function, 154

Ice sheets
Antarctica, 155, 157, 164
Fennoscandia, 155, 157, 164, 226
Laurentide, 155, 157, 164, 171, 226

Ice shell decoupling, 295, 297
ICE-3G, see ice mass changes
Icy moons, 293
Incompressibility, 123, 217
Incompressible models, 57

spheroidal solution, 61
Inertia

moments of inertia, 97
products of inertia, 103

Inviscid core, 26, 27, 29, 30,
Istria, 239, 241

J
Jupiter, 293
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K
Kelvin-Voigt model, 103
Keplerian elements, 299
Kronecker delta function, 313

L
Lamé parameters, 3, 8, 108
Laplace domain, 11, 104, 259
Laplace equation, 22, 28
Laplace resonance, 297
Laplace transform, 11
Laplace variable, 11
Late Cretaceous, 246
Layering, 118
Legendre polynomials, 14
Length of day variations, 102
Libration, 296
Linearized Liouville equations, 97
Linearized rotation theories, 103
Liouville equation, 90, 91, 98
Lithosphere

thickness, 126, 139, 191
Loading, 153

ice sheets, 149
Love numbers, 82

elastic limit, 107
fluid limit, 96, 105, 259
gravitational potential, 229, 243
radial displacement, 229, 243
tangential displacement, 347
tidal Love number, 118

fluid limit, 260
Low-viscosity layers, 293

M
MacCullagh’s formula, 91
Mantle, 2
Mantle convection, 1, 3, 89, 100, 171, 174,

231, 247, 259, 265
Mantle stratification, 170, 269
Mantle viscosity, 2, 151, 156

convex, 270, 271
from TPW and J̇2, 151
lower mantle, 195

multi-branch solutions, 65, 165, 193,
206, 231

two-layer profile, 167
uniform, 111
upper mantle, 168

Mars, 138
Maxwell model, 3
Maxwell time, 2
Mediterranean, 233–235

Mega-wobble, 141, 143, 144
Mercury, 139
Milankovitch cycle, 153
Momentum equation, 3, 4, 6, 17
Moon, 88, 139

N
Non-Hydrostatic bulge contribution, 115
Non-synchronous rotation (NSR), 293, 318
Normal modes

buoyancy modes, 39
compositional modes, 76
dilatational modes, 75
high degree modes, 277
transient modes, 39

Numerical integration, 19
Nutation, 88

O
Obliquity, 294
Ocean function, 229
Oxygen isotopes, 153

P
PGR and GRACE data, 202
Phase-change boundaries, 25, 243, 247
Planets, 138
Pleistocene deglaciation, 227
Poisson equation, 4
Polar shift, 102
Polar wander, 87, 99, 124, 127, 149

Apparent Polar Wander, 99
terrestrial planets and Moon, 138
True Polar Wander, 99, 257

path, 135, 171
velocities, 132, 265

Poles, see complex contour integration
Post-glacial rebound, see Glacial Isostatic

Adjustment
Post-seismic deformation, 215, 269

global, 269
shallow earthquakes, 277

Precession, 88
PREM, see Earth’s models
Propagator matrix, 56
Pseudo-spectral technique, 231

R
Radial displacement (GIA), 206
Ravenna, 235, 236, 239, 241
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Rayleigh-Taylor instabilities, 38, 40, 76
Reference frame, 101
Relaxation modes, 39, 65, 76

C0 mode, 66
L0 mode, 66
M0 mode, 66
M0 rotation mode, 109

analytical formula, 112
M1 and M2 modes, 64
M1 mode, 243, 259, 260
total number, 39

Relaxation times, 62
tidal forcing, 106

Residue theorem, 344
Rheological models, 1
Rheologies, 1

constitutive law, 2
non-linear, 2

Rigidity, 2
Roman ruins, 235, 236
Root-solving procedure, 40

bisection algorithm, 40
complex numbers, 111
grid-spacing, 40

Rotation
Earth, 87
terrestrial planets, 127, 138

Rotational deformation
excitation functions, 98
forcing function, 103
rigid Earth, 246

Rotational number, 126, 138, 141
Rotation equation

long-term behavior, 124
Rotation frequency, 97
Rotation theories

comparison, 108
linearized, 103
non-linear, 257
unification, 114

Runge-Kutta propagation, 42, 211, 265

S
Satellite Laser Ranging, 189
Scandinavia, 149
Sea-level changes, 225, 227, 228, 231, 246

eustatic, 226
induced by polar wander, 242
induced by subduction, 246
relative sea-level changes, 230
self-gravitation, 225
third-order cycle, 244

Sea-level equation, 226

Secular determinant, 37, 38, 307
Seismic moment, 211, 270
Self-compression, 9
Self-gravitation, 6, 211
Shear relaxation function, 8
SLR, see Satellite Laser Ranging
Solution vector, 19, 303

spheroidal, 19
toroidal, 20

Spello, 282
Spherical coordinates, 13
Spherical harmonics, 13
Spheroidal equations, 19
Stiffness, see fundamental solutions matrix
Strain rate, 3
Strain tensor, 7
Stratification, 156
Stress, 2

non-hydrostatic, 6
Stress-strain relations, 7, 313
Stress tensor, 6, 314
Subduction, 257

distribution of slabs, 251
single sinking slab, 249
slab distribution, 251, 265

T
Tectonic processes, 235
Thin shell approximation, 294
Tibetan Plateau, 100
Tidal deformation, 293
Tidal energy, 293
Tidal locking, 297
Tidal potential, 296, 298
Tidal stresses, 293
Tides, 294
Toroidal equations, 20
Torque, 90
Transition zone

high-viscosity models, 67
True Polar Wander, see polar wander

V
Venice, 235, 236, 241
Venus, 139
Viscoelasticity, 12, 270, 295, 312
Viscosity, 1

steady-state, 3
Viscous response, 42
VLBI, 237, 270
Volume-averaged models, 156
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