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"La chance vient à l'esprit qui est prêt à la recevoir." 1)

                                                                 Louis Pasteur

"Quand on aperçoit combien la somme de nos

"ignorances dépasse celle de nos connaissances,

"on se sent peu porté à conclure trop vite." 2)

Louis De Broglie

"One has to learn to consider causes rather than

"symptoms of undesirable events and avoid hypo-

"critical  attitudes."
                                                       Alessandro Birolini

1) "Opportunity comes to the intellect which is ready to receive it."

2) "When one recognizes how much the sum of our ignorance
2) "exceeds that of our knowledge, one is less ready to draw rapid
2) "conclusions."



Preface to the 7 th Edition

The large interest granted to the 6th edition (over 2000 on-line requests per year) incited me for a 7th
and last edition of this book (11 editions with the 4 German editions 1985 - 97).

The book shows how to build in, evaluate, and demonstrate reliability, maintainability, and
availability of components, equipment, and systems.  It presents the state-of-the-art of reliability
engineering, both in theory and practice, and is based on the author's more than 30 years experience
in this field, half in industry (part of which in setting up the Swiss Test. Lab. for VLSI, 1979 -  83 in
Neuchâtel) and half as Professor of Reliability Engineering at the Swiss Federal Institute of Technology
(ETH), Zurich.  Considering that performance, dependability, cost, and time to market are key factors
for today's products and services, but also that failure of complex systems can have major safety
consequences, reliability engineering becomes a necessary support in developing and producing
complex equipment and systems.

The structure of the book has been conserved through all editions, with main Chapters 1 to 8 and
Appendices A1 to A11 (A10 & A11 since the 5th Edition 2007).  Chapters 2, 4, and 6 deal carefully
with analytical investigations, Chapter 5 with design guidelines, Chapters 3 and 7 with tests,
and Chapter 8 with activities during production.  Appendix A1 defines and comment on the terms
commonly used in reliability engineering.  Appendices A2 - A5 have been added to support managers in
answering the question of how to specify and achieve high reliability (RAMS) targets for complex
equipment and systems.  Appendices A6 -  A8 are a compendium of probability theory, stochastic
processes, and mathematical statistics, as necessary for Chapters 2, 4, 6, and 7, consistent from a
mathematical point of view but still with reliability engineering applications in mind (demonstration of
established theorems is referred, and for all other propositions or equations, sufficient details for
complete demonstration are given).  Appendix A9 includes statistical tables, Laplace transforms, and
probability charts.  Appendix A10 resumes basic technological component's properties, and Appendix
A11 gives a set of 70 problems for homework.

This structure makes the book self contained as a text book for postgraduate students or courses in
industry (Fig. 1.9 on p. 24), allows a rapid access to practical results (as a desktop reference), and offers
to theoretically oriented readers all mathematical tools to continue research in this field.

The book covers many aspects of reliability engineering using a common language, and has been
improved step by step.  Methods & tools are given in a way that they can be tailored to cover different
reliability requirement levels, and be used for safety analysis too.  A large number of tables (60),
figures (190), and examples (210 of which 70 as problems for homework), as well as comprehensive
reference list and index, amply support the text.  This last edition reviews, refines, and extends all
previous editions.  New in particular includes:

• A strategy to mitigate incomplete coverage (p. 255), yielding new models (Table 6.12 c & d, p. 256).

• A comprehensive introduction to human reliability with a set of design guidelines to avoid human
errors (pp. 158-159) and new models combining human errors probability and time to accomplish a
task, based on semi-Markov processes (pp. 294-298).

• An improvement of the design guidelines for maintainability (pp. 154-158).

• An improvement of reliability allocation using Lagrange multiplier to consider cost aspects (p. 67).

• A comparison of four repair strategies (Table 4.4, p. 141).

• A comparison of basic models for imperfect switching (Table 6.11, p. 248).

• A refinement of approximate expressions, of concepts related to regenerative processes, and of the
use and limitations of stochastic processes in modeling reliability problems (e.g. Table 6.1, p. 171).

• New is also that relevant statements and rules have been written cursive and centered on the text.

Furthermore,

• Particular importance has been given to the selection of design guidelines and rules, the devel-
opment of approximate expressions for large series-parallel systems, the careful simplification of
exact results to allow in-depth trade off studies, and the investigation of systems with complex
structure (preventive maintenance, imperfect switching, incomplete coverage, elements with more
than one failure mode, fault tolerant reconfigurable systems, common cause failures).
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• The central role of software quality assurance for complex equipment and systems is highlighted.

• The use of interarrival times starting by x = 0 at each occurrence of the event considered, instead of
the variable t, giving a sense to MTBF and allowing the introduction of a failure rate λ( )x  and a
mean time to failure MTTF also for repairable systems, is carefully discussed (pp. 5-6, 41, 175,
316, 341, 378, 380) and consequently applied.  Similar is for the basic difference between failure
rate, (probability) density, and renewal density or intensity of a point process (pp. 7, 378, 426, 466,
524).  In this context, the assumption as-good-as-new after repair is critically discussed wherever
necessary, and the historical distinction between nonrepairable and repairable items is scaled down
(removed for reliability function, failure rate, MTTF, and MTBF);  national and international
standards should better consider this fact and avoid definitions intrinsically valid only for constant
(time independent) failure rates.

• Also valid is the introduction since the 1st edition of indices Si for reliability figures at system level
 (e.  g.  ,MTTFSi) where S stands for system and i is the state entered at t = 0 (system referring to the
highest integration level of the item considered, and t = 0 being the beginning of observations, x = 0
for interarrival times).  This is mandatory for judicious investigations at the system level.

• In agreement with the practical applications, MTBF is reserved for MTBF = 1 / λ.

• Important prerequisites for accelerated tests are carefully discussed (pp. 329-334), in particular to
transfer an acceleration factor A from the MTTF ( ).MTTF MTTFA1 2=  to the (random) failure-
free time τ ( ).τ τ1 2= A .

• Asymptotic & steady-state is used for stationary, by assuming irreducible embedded chains;  repair
for restoration, by neglecting administrative, logistical, technical delays;  mean for expected value.
For reliability applications, pairwise independence assures, in general, totally (mutually, statisti-
cally, stochastically) independence, independent is thus used for totally independent.

The book has growth from about 400 to 600 pages, with main improvements in the 4th to 7th Editions.

• 4th Edition: Complete review and general refinements.
• 5th Edition: Introduction to phased-mission systems, common cause failures, Petri nets, dynamic

FTA, nonhomogeneous Poisson processes, and trend tests; problems for homework.
• 6th Edition: Proof of Eqs. (6.88) & (6.94), introduction to network reliability, event trees & binary

decision diagrams, extensions of maintenance strategies and incomplete coverage,
refinements for large complex systems and approximate expressions.

The launching of the 6th Edition of this book coincided with my 70th anniversary, this was
celebrated with a special Session at the 12th Int. Conf. on Quality and Dependability CCF2010 held in
Sinaia (RO), 22-24 September 2010.  My response to the last question at the interview [1.0] given to
Prof. Dr. Ioan C. Bacivarov, Chairman of the International Scientific Committee of CCF2010, can help
to explain the acceptance of this book:

" Besides more than 15 years experience in the industry, and a predisposition to be a self-taught
man, my attitude to life was surely an important key for the success of my book.  This is best
expressed in the three sentences given on the first page of this book.  These sentences, insisting
on generosity, modesty and responsibility apply quite general to a wide class of situations and
people, from engineers to politicians, and it is to hope that the third sentence, in particular, will
be considered by a growing number of humans, now, in front of the ecological problems we are
faced and in front of the necessity to create a federal world wide confederation of democratic
states in which freedom is primarily respect for the other ."

The comments of many friends and the agreeable cooperation with Springer-Verlag are gratefully
acknowledged.  Looking back to all editions (1st German 1985), thanks are due, in particular, to K.P.
LaSala for reviewing the 4th & 6th Editions [1.17], I.C. Bacivarov for reviewing the 6th Edition [1.0],
book reviewers of the German editions, P. Franken and I. Kovalenko for commenting Appendices A6 -
A8, A. Bobbio F. Bonzanigo, M. Held for supporting numerical evaluations, J. Thalhammer for
supporting the edition of all figures, and L. Lambert for reading final manuscripts.

Zurich and Florence, September 13, 2013                     Alessandro Birolini



Contents

1   Basic Concepts, Quality & Reliability (RAMS) Assurance of Complex Equip. & Systems .  .  1

1.1 Introduction  .    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   1

1.2 Basic Concepts .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   2

1.2.1 Reliability .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   2
1.2.2 Failure .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   3
1.2.3 Failure Rate, MTTF, MTBF  .  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   4
1.2.4 Maintenance, Maintainability .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   8
1.2.5 Logistic Support .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   8
1.2.6 Availability .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   9
1.2.7 Safety, Risk, and Risk Acceptance .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   9
1.2.8 Quality .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  11
1.2.9 Cost and System Effectiveness.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .     .    .  11
1.2.10 Product Liability .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  15
1.2.11 Historical Development .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    .  16

1.3 Basic Tasks & Rules for Quality & Rel. (RAMS) Assurance of Complex Eq. & Systems . 17

1.3.1 Quality and Reliability (RAMS) Assurance Tasks .   .   .    .   .   .   .   .   .   .   .   .   .  17
1.3.2 Basic Quality and Reliability (RAMS) Assurance Rules  .  .   .   .   .   .   .   .   .   .   .  19
1.3.3 Elements of a Quality Assurance System.   .   .  .   .   .   .   .   .   .   .   .  .   .  .   .  .  .  21
1.3.4 Motivation and Training  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  .  24

2 Reliability Analysis During the Design Phase (Nonrepairable Elements up to System Failure)  .  .  25

2.1 Introduction .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  25

2.2 Predicted Reliability of Equipment and Systems with Simple Structure  . .   .   .   .   .   .  28

2.2.1 Required Function .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  28
2.2.2 Reliability Block Diagram .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  28
2.2.3 Operating Conditions at Component Level, Stress Factors .   .   .   .   .   .   .   .   .  33
2.2.4 Failure Rate of Electronic Components .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  35
2.2.5 Reliability of One-Item Structures .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  39
2.2.6 Reliability of Series-Parallel Structures .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  41

2.2.6.1 Systems without Redundancy .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  41
2.2.6.2 Concept of Redundancy .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  42
2.2.6.3 Parallel Models .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  43
2.2.6.4 Series - Parallel Structures .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  45
2.2.6.5 Majority Redundancy .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  49

2.2.7 Part Count Method .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  51
2.3 Reliability of Systems with Complex Structure .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  52

2.3.1 Key Item Method .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  52
2.3.1.1 Bridge Structure .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  53
2.3.1.2 Rel. Block Diagram in which Elements Appear More than Once .   .   .  54

2.3.2 Successful Path Method .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  55
2.3.3 State Space Method .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  56
2.3.4 Boolean Function Method .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  57
2.3.5 Parallel Models with Constant Failure Rates and Load Sharing .   .   .   .   .   .   .   61
2.3.6 Elements with more than one Failure Mechanism or one Failure Mode .   .  .   .   64
2.3.7 Basic Considerations on Fault Tolerant Structures  .   .   .   .   .   .   .   .   .   .   .   .   66

2.4 Reliability Allocation and Optimization  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   67

IX



X Contents

2.5 Mechanical Reliability, Drift Failures  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   68

2.6 Failure Modes Analyses .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   72

2.7 Reliability Aspects in Design Reviews .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   77

3 Qualification Tests for Components and Assemblies .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   81

3.1 Basic Selection Criteria for Electronic Components .  .   .   .   .   .   .   .   .   .   .   .   .   .   .   81

3.1.1 Environment .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   82
3.1.2 Performance Parameters .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   84
3.1.3 Technology .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   84
3.1.4 Manufacturing Quality .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   86
3.1.5 Long-Term Behavior of Performance Parameters .   .   .   .   .   .   .   .   .   .   .   .   .   86
3.1.6 Reliability .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   86

3.2 Qualification Tests for Complex Electronic Components .   .   .   .   .   .   .   .   .   .   .   .   .   87

3.2.1 Electrical Test of Complex ICs .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   88
3.2.2 Characterization of Complex ICs .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   90
3.2.3 Environmental and Special Tests of Complex ICs .  .   .   .   .   .   .   .   .   .   .   .   .   92
3.2.4 Reliability Tests .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 101

3.3 Failure Modes, Mechanisms, and Analysis of Electronic Components .   .   .   .   .   .   . 101

3.3.1 Failure Modes of Electronic Components .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 101
3.3.2 Failure Mechanisms of Electronic Components .   .   .   .   .   .   .   .   .   .   .   .   . 102
3.3.3 Failure Analysis of Electronic Components .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 102
3.3.4 Present VLSI Production-Related Reliability Problems  .   .   .  .   .   .    .   .   .   . 106

3.4 Qualification Tests for Electronic Assemblies .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 107

4 Maintainability Analysis .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 112

4.1 Maintenance, Maintainability .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 112

4.2 Maintenance Concept .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 115

4.2.1 Fault Detection (Recognition) and Localization.   .   .   .   .   .   .   .   .   .   .   .   .   . 116
4.2.2 Equipment and Systems Partitioning .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 118
4.2.3 User Documentation .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 118
4.2.4 Training of Operation and Maintenance Personnel .   .   .   .   .   .   .   .   .   .   .   . 119
4.2.5 User Logistic Support .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 119

4.3 Maintainability Aspects in Design Reviews .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 121

4.4 Predicted Maintainability .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 121

4.4.1 Calculation of MTTRS .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 121
4.4.2 Calculation of MTTPMS .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 125

4.5 Basic Models for Spare Parts Provisioning .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 125

4.5.1 Centralized Logistic Support, Nonrepairable Spare Parts .   .   .   .   .   .   .   .   .   . 125
4.5.2 Decentralized Logistic Support, Nonrepairable Spare Parts .   .   .   .   .   .   .   .   . 129
4.5.3 Repairable Spare Parts .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 130

4.6 Maintenance Strategies  .  .   .   .   .   .   .   .    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 134
4.6.1 Complete renewal at each maintenance action  .   .   .   .   .   .   .   .   .   .   .   .   .   . 134
4.6.2 Block replacement with minimal repair at failure .   .   .   .   .   .   .   .   .   .   .   .   . 138
4.6.3 Further considerations on maintenance strategies .   .   .   .   .   .   .   .   .   .   .   . 139

4.7 Basic Cost Considerations .   .   .   .   .   .   .    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 142

5 Design Guidelines for Reliability, Maintainability, and Software Quality .   .   .   .   .   .   . 144

5.1 Design Guidelines for Reliability .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 144

5.1.1 Derating .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 144



Contents XI

5.1.2 Cooling .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 145
5.1.3 Moisture .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 147
5.1.4 Electromagnetic Compatibility, ESD Protection .   .   .   .   .   .   .   .   .   .   .   .   . 148
5.1.5 Components and Assemblies .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 150

5.1.5.1 Component Selection .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 150
5.1.5.2 Component Use .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 150
5.1.5.3 PCB and Assembly Design .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 151
5.1.5.4 PCB and Assembly Manufacturing .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 152
5.1.5.5 Storage and Transportation .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 153

5.1.6 Particular Guidelines for IC Design and Manufacturing .   .   .   .   .   .   .   .   .   . 153
5.2 Design Guidelines for Maintainability .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 154

5.2.1 General Guidelines .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   154
5.2.2 Testability .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 155
5.2.3 Connections, Accessibility, Exchangeability .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 157
5.2.4 Adjustment .  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 158
5.2.5 Human, Ergonomic, and Safety Aspects  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 158

5.3 Design Guidelines for Software Quality .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 159

5.3.1 Guidelines for Software Defect Prevention .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 162
5.3.2 Configuration Management .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 165
5.3.3 Guidelines for Software Testing .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 166
5.3.4 Software Quality Growth Models .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 166

6 Reliability and Availability of Repairable Systems .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 169

6.1 Introduction, General Assumptions, Conclusions .   .   .    .    .   .   .   .   .   .   .   .   .   .   . 169

6.2 One-Item Structure .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 175

6.2.1 One-Item Structure New at Time t = 0 .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 176
6.2.1.1 Reliability Function .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 176
6.2.1.2 Point Availability .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 177
6.2.1.3 Average Availability .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 178
6.2.1.4 Interval Reliability .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 179
6.2.1.5 Special Kinds of Availability .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 180

6.2.2 One-Item Structure New at Time t = 0  and with Constant Failure Rate λ .   .   . 183
6.2.3 One-Item Structure with Arbitrary Conditions at t = 0  .   .   .   .   .   .   .   .   .   . 184
6.2.4 Asymptotic Behavior .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   185
6.2.5 Steady-State Behavior .  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 187

6.3 Systems without Redundancy .  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 189

6.3.1 Series Structure with Constant Failure and Repair Rates .   .   .   .   .   .   .   .   .   . 189
6.3.2 Series Structure with Constant Failure and Arbitrary Repair Rates .   .   .   .   .   . 192
6.3.3 Series Structure with Arbitrary Failure and Repair Rates .   .   .   .   .   .   .   .   .   . 193

6.4 1-out-of-2 Redundancy  (Warm, one Repair Crew)   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 196

6.4.1 1-out-of-2 Redundancy with Constant Failure and Repair Rates .   .   .   .   .   .   . 196
6.4.2 1-out-of-2 Redundancy with Constant Failure and Arbitrary Rep. Rates .  .  .   .  204
6.4.3 1-out-of-2 Red. with Const. Failure Rate in Reserve State & Arbitr. Rep. Rates . 207

6.5 k-out-of-n Redundancy  (Warm, Identical Elements, one Repair Crew) .    .    .    .    .   .   .   . 213

6.5.1 k-out-of-n Redundancy with Constant Failure and Repair Rates  .   .   .   .   .   .   . 214
6.5.2 k-out-of-n Redundancy with Constant Failure and Arbitrary Repair Rates .  .   . 218

6.6 Simple Series - Parallel Structures  (one Repair Crew)   .   .    .   .   .   .   .   .   .   .   .    .   .   . 220

6.7 Approximate Expressions for Large Series - Parallel Structures .   .   .   .    .   .   .   .   .   .  226

6.7.1 Introduction .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 226
6.7.2 Application to a Practical Example .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 230



XII Contents

6.8 Systems with Complex Structure  (one Repair Crew) .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 238

6.8.1 General Considerations .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 238
6.8.2 Preventive Maintenance   .  .   .   .  .   .   .   .   .   .  .   .   .   .   .   .   .   .   .   .   .   .   . 240
6.8.3 Imperfect Switching.    .   .   .   .   .   .   .   .   .  .   .   .   .   .   .   .   .   .   .   .  .  .   . 243
6.8.4 Incomplete Coverage  .   .   .   .   .   .   .   .   .  .   .   .   .   .   .   .   .   .   .   .   . .   .  . 249
6.8.5 Elements with more than two States or one Failure Mode .   .   .   .   .   .   .   .   . 257
6.8.6 Fault Tolerant Reconfigurable Systems  .   .   .   .  .   .   .   .   .   .   .   .   .   .   .  . 259

6.8.6.1 Ideal Case .   .    .   .   .   .   .   .   .   .  .   .   .   .   .   .   .   .   .   .   .   .   .   . 259
6.8.6.2 Time Censored Reconfiguration  (Phased-Mission Systems) .   .   .   .   .  . 259
6.8.6.3 Failure Censored Reconfiguration    .   .   .   .   .   .  .   .   .   .   .   .   .   .  266
6.8.6.4 Reward and Frequency / Duration Aspects .    .   .   .   .   .   .   .   .   .   .    270

6.8.7 Systems with Common Cause Failures .   .   .   .   .   .   .   .   .   .    .   .   .   .   .   . 271
6.8.8 Basic Considerations on Network-Reliability .    .    .    .    .    .    .   .    .   .   .   . 275
6.8.9 General Procedure for Modeling Complex Systems .  .     .   .   .   .    .   .   .   .   . 277

6.9 Alternative Investigation Methods  .   .   .   .   .   .   .   .   .   .    .   .   .    .   .   .   .   .   .   .   . 280

6.9.1 Systems with Totally Independent Elements  .   .   .   .   .   .   .   .  .   .   .   .    .   . 280
6.9.2 Static and Dynamic Fault Trees .   .   .   .   .      .   .   .   .   .   .   .   .   .   .   .   .  .   . 280
6.9.3 Binary Decision Diagrams .  .   .  .   .   .  .   .   .   .  .   .  .   .   .  .   .   .   .   .   .   .  . 283
6.9.4 Event Trees .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  .   .   .   .   .  .   .   .   .   .   .   .  . 286
6.9.5 Petri Nets .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  .   .   .   .    .   . 287
6.9.6 Numerical Reliability and Availability Computation    .    .    .   .    .   .   .    .    . 289

6.9.6.1 Numerical Computation of System's Reliability and Availability  .   .   . 289
6.9.6.2 Monte Carlo Simulations .   .     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 290

6.9.7 Approximate expressions for Large, Complex Systems: Basic Considerations.   . 293
6.10 Human Reliability   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  294

7 Statistical Quality Control and Reliability Tests .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 299

7.1 Statistical Quality Control .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 299

7.1.1 Estimation of a Defective Probability p .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 300
7.1.2 Simple Two-sided Sampling Plans for Demonstration of a Def. Probability p  .  . 302

7.1.2.1 Simple Two-sided Sampling Plan .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 303
7.1.2.2 Sequential Test .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 305

7.1.3 One-sided Sampling Plans for the Demonstration of a Def. Probability p  .   .   . 306
7.2 Statistical Reliability Tests .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 309

7.2.1 Reliability and Availability Estimation & Demon. for a given fixed Mission  .   . 309
7.2.2 Availability Estimation & Demonstration for Continuous Operation (steady-state) 311

7.2.2.1 Availability Estimation  (Erlangian Failure-Free and/or Repair Times) . .   .  311
7.2.2.2 Availability Demonstration  (Erlangian Failure-Free and/or Repair Times) 313
7.2.2.3 Further Availability Evaluation Methods for Continuous Operation .   . 314

7.2.3 Estimation and Demonstration of a Const. Failure Rate λ  (or of  MTBF =1 / )λ .  . 316
7.2.3.1 Estimation of a Constant Failure Rate λ  .   .   .   .   .   .   .   .   .   .   .   .    318
7.2.3.2 Simple Two-sided Test for the Demonstration of λ  .   .   .   .   .   .   .   .  320
7.2.3.3 Simple One-sided Test for the Demonstration of λ  .   .   .   .   .   .   .   .  324

7.3 Statistical Maintainability Tests .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 325

7.3.1 Estimation of an MTTR .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 325
7.3.2 Demonstration of an MTTR .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 327

7.4 Accelerated Testing .  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 329

7.5 Goodness-of-fit Tests .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 334

7.5.1 Kolmogorov-Smirnov Test .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 334
7.5.2 Chi-square Test .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 338



Contents XIII

7.6  Statistical Analysis of General Reliability Data .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 341
7.6.1 General considerations   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 341
7.6.2 Tests for Nonhomogeneous Poisson Processes .   .   .   .   .   .   .   .   .   .   .   .   .   . 343
7.6.3 Trend Tests .   .   .   .   .  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 345

7.6.3.1 Tests of a HPP versus a NHPP with increasing intensity   .  .   .   .   .   . 345
7.6.3.2 Tests of a HPP versus a NHPP with decreasing intensity    .  .   .   .   .  . 348

 7.6.3.3   Heuristic Tests to distinguish between HPP and Monotonic Trend  .  .  . 349
7.7 Reliability Growth .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 351

8 Quality & Reliability (RAMS) Assurance During Production Phase  (Basic Considerations) . 357

8.1 Basic Activities .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 357

8.2 Testing and Screening of Electronic Components .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 358

8.2.1 Testing of Electronic Components .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 358
8.2.2 Screening of Electronic Components .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 359

8.3 Testing and Screening of Electronic Assemblies .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 362

8.4 Test and Screening Strategies, Economic Aspects .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 364

8.4.1 Basic Considerations .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 364
8.4.2 Quality Cost Optimization at Incoming Inspection Level .   .   .   .   .   .   .   .   .   . 367
8.4.3 Procedure to handle first deliveries .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 372

Appendices  (A1 - A11)

A1 Terms and Definitions .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 373

A2 Quality and Reliability (RAMS) Standards .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  387

A2.1 Introduction .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 387

A2.2 General Requirements in the Industrial Field  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 388

A2.3 Requirements in the Aerospace, Railway, Defense, and Nuclear Fields   .   .   .   .   .   . 390

A3 Definition and Realization of Quality and Reliability (RAMS) Requirements .   .   .   .   . 391

A3.1 Definition of Quality and Reliability (RAMS) Requirements .   .   .   .   .   .   .   .   .   .   . 391

A3.2 Realization of Quality & Reliability (RAMS) Requirements for Complex Eq. & Syst.  . 393

A3.3 Elements of a Quality and Reliability (RAMS) Assurance Program  .   .   .   .   .   .   .   . 398
A3.3.1 Project Organization, Planning, and Scheduling .   .   .   .   .   .   .   .   .   .   . 398
A3.3.2 Quality and Reliability (RAMS) Requirements.   .   .   .   .   .   .   .   .   .   .   .   . 399
A3.3.3 Reliability, Maintainability, and Safety Analysis    .   .   .   .   .   .   .   .   .   .   . 399
A3.3.4 Selection and Qualification of Components, Materials, Manuf. Processes .   . 400
A3.3.5 Softwaer Quality Assurance .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 400
A3.3.6 Configuration Management .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 401
A3.3.7 Quality Tests .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 402
A3.3.8 Quality Data Reporting System .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 404

A4 Checklists for Design Reviews .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 405

A4.1 System Design Review .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 405
A4.2 Preliminary Design Reviews .   .   .   .   .   .   .   . .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 406
A4.3 Critical Design Review  (System Level) .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 409

A5 Requirements for Quality Data Reporting Systems .  .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 410

A6 Basic Probability Theory .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 413

A6.1 Field of Events .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 413

A6.2 Concept of Probability .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 415



XIV Contents

A6.3 Conditional Probability, Independence .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 418

A6.4 Fundamental Rules of Probability Theory .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 419
A6.4.1 Addition Theorem for Mutually Exclusive Events .   .   .   .   .   .   .   .   .   .   . 419
A6.4.2 Multiplication Theorem for Two Independent Events .   .   .   .   .   .   .   .   . 420
A6.4.3 Multiplication Theorem for Arbitrary Events .   .   .   .   .   .   .   .   .   .   .   .   . 421
A6.4.4 Addition Theorem for Arbitrary Events .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 421
A6.4.5 Theorem of Total Probability .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 422

A6.5 Random Variables, Distribution Functions .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 423

A6.6 Numerical Parameters of Random Variables .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 429
A6.6.1 Expected Value  (Mean) .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 429
A6.6.2 Variance .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 432
A6.6.3 Modal Value, Quantile, Median .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 434

A6.7 Multidimensional Random Variables, Conditional Distributions .   .   .   .   .   .   .   .   . 434

A6.8 Numerical Parameters of Random Vectors .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 436
A6.8.1 Covariance Matrix, Correlation Coefficient .   .   .   .   .   .   .   .   .   .   .   .   . 437
A6.8.2 Further Properties of Expected Value and Variance .   .   .   .   .   .   .   .   .   . 438

A6.9 Distribution of the Sum of Indep. Positive Random Variables and of τmin , τmax   . 438

A6.10 Distribution Functions used in Reliability Analysis .   .   .   .   .   .   .   .   .   .   .   .   . 441
A6.10.1 Exponential Distribution .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 441
A6.10.2 Weibull Distribution .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 442
A6.10.3 Gamma Distribution, Erlangian Distribution, and χ2 -Distribution .   . 444
A6.10.4 Normal Distribution .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 446
A6.10.5 Lognormal Distribution .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 447
A6.10.6 Uniform Distribution .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 449
A6.10.7 Binomial Distribution .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 449
A6.10.8 Poisson Distribution .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 451
A6.10.9 Geometric Distribution .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 453
A6.10.10 Hypergeometric Distribution .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 454

A6.11 Limit Theorems .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 454
A6.11.1 Laws of Large Numbers .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 455
A6.11.2 Central Limit Theorem .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 456

A7 Basic Stochastic-Processes Theory .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  460

A7.1 Introduction .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 460

A7.2 Renewal Processes .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 463
A7.2.1 Renewal Function, Renewal Density .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 465
A7.2.2 Recurrence Times .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 468
A7.2.3 Asymptotic Behavior .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 469
A7.2.4 Stationary Renewal Processes .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 471
A7.2.5 Homogeneous Poisson Processes  (HPP) .    .   .   .   .   .   .   .   .   .   .   .   .   .   . 472

A7.3 Alternating Renewal Processes .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 474
A7.4 Regenerative Processes with a Finite Number of States.   .   .   .   .   .   .   .   .   .   .   .   . 478
A7.5 Markov Processes with a Finite Number of States .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 480

A7.5.1 Markov Chains with a Finite Number of States .  .   .   .   .   .   .   .   .   .   .   .   480
A7.5.2 Markov Processes with a Finite Number of States  .   .   .   .   .   .   .   .   .   .   . 482
A7.5.3 State Probabilities and Stay Times in a Given Class of States.   .   .   .   .   .   . 491

A7.5.3.1 Method of Differential Equations .   .   .   .   .   .   .   .   .   .   .   .   . 491
A7.5.3.2 Method of Integral Equations .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 495
A7.5.3.3 Stationary State and Asymptotic Behavior .   .   .   .   .   .   .   .   . 496

A7.5.4 Frequency / Duration and Reward Aspects .   .   .   .   .   .   .   .   .   .   .   .   . 498
A7.5.4.1 Frequency / Duration .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 498
A7.5.4.2 Reward  .  .   .   .   .   .   .   .   .   .  .   .   .   .   .   .   .   .   .   .   .   .   .   . 500



Contents XV

A7.5.5 Birth and Death Process .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 501

A7.6 Semi-Markov Processes with a Finite Number of States .   .   .   .   .   .   .   .   .   .   .   . 505

A7.7 Semi-regenerative Processes with a Finite Number of States.   .   .   .   .   .   .   .   .   .   . 510

A7.8 Nonregenerative Stochastic Processes with a Countable Number of States  .  .   .   .   . 515
A7.8.1 General Considerations .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 515
A7.8.2 Nonhomogeneous Poisson Processes  (NHPP)    .   .   .   .   .   .   .   .   .   .   .   . 516
A7.8.3 Superimposed Renewal Processes   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 520
A7.8.4 Cumulative Processes   .   .   .   .   .  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 521
A7.8.5 General Point Processes .   .   .   .   .   .   .   .   .   .    .   .   .   .   .   .   .   .   .   .   . 523

A8 Basic Mathematical Statistics .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 525

A8.1 Empirical Methods .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 525
A8.1.1 Empirical Distribution Function .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 526
A8.1.2 Empirical Moments and Quantiles .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 528
A8.1.3 Further Applications of the Empirical Distribution Function .   .   .   .   .   .   . 529

A8.2 Parameter Estimation .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 533
A8.2.1 Point Estimation .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 533
A8.2.2 Interval Estimation .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 538

A8.2.2.1 Estimation of an Unknown Probability p .   .   .   .   .   .   .   .   .   . 538
A8.2.2.2 Estimation of Param. λ  for Exp. Distrib.: Fixed T, instant. repl.  . 542
A8.2.2.3 Estimation of Param. λ  for Exp. Distrib.: Fixed n, no repl.  .   .   . 543
A8.2.2.4 Availability Estimation  (Erlangian Failure-Free and/or Repair Times) 545

A8.3 Testing Statistical Hypotheses .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 547
A8.3.1 Testing an Unknown Probability p .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 548

A8.3.1.1 Simple Two-sided Sampling Plan .   .   .   .   .   .   .   .   .   .   .   .   . 549
A8.3.1.2 Sequential Test .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 550
A8.3.1.3 Simple One-sided Sampling Plan .   .   .   .   .   .   .   .   .   .   .   .   . 551
A8.3.1.4 Availability Demonstr. (Erlangian Failure-Free and/or Rep. Times) .  . 553

A8.3.2 Goodness-of-fit Tests for Completely Specified F ( )0 t .   .   .    .   .   .   .   .   . 555
A8.3.3 Goodness-of-fit Tests for F ( )0 t  with Unknown Parameters .   .   .   .   .   .   . 558

A9 Tables and Charts .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 561

A9.1 Standard Normal Distribution .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 561

A9.2   χ2- Distribution  (Chi-Square Distribution) .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 562

A9.3 t - Distribution  (Student distribution) .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 563

A9.4 F - Distribution  (Fisher distribution) .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  564

A9.5 Table for the Kolmogorov-Smirnov Test .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 565

A9.6 Gamma Function .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 566

A9.7 Laplace Transform .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 567

A9.8 Probability Charts  (Probability Plot Papers)  .   .  .   .    .   .   .   .   .   .   .   .   .   .   .   .   . 569
A9.8.1 Lognormal Probability Chart .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 569
A9.8.2 Weibull Probability Chart .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 570
A9.8.3 Normal Probability Chart .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 571

A10 Basic Technological Component's Properties   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 572

A11 Problems for Homework .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 576

Acronyms .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 582

References .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 583

Index .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 605



1 Basic Concepts, Quality and Reliability
(RAMS) Assurance of Complex Equipment
and Systems

Considering that complex equipment and systems are generally repairable, contain
redundancy and must be safe, the term reliability appears often for reliability,
maintainability, availability &  safety.  RAMS (in brackets) is used to point out this
wherever necessary in the text.  The purpose of reliability (RAMS) engineering is to
develop methods and tools to evaluate and demonstrate reliability, maintainability,
availability, and safety of components, equipment & systems, as well as to support
development and production engineers in building in these characteristics.  In order
to be cost and time effective, reliability (RAMS) engineering must be integrated in
the project activities, support quality assurance and concurrent engineering efforts,
and be performed without bureaucracy.  This chapter introduces basic concepts,
shows their relationships, and discusses the tasks necessary to assure quality and re-
liability (RAMS) of complex equipment & systems with high quality and reliability
(RAMS) requirements.  A comprehensive list of definitions is given in Appendix A1.
Standards for quality and reliability (RAMS) assurance  are discussed in Appendix A2.
Refinements of management aspects are given in Appendices A3 - A5.

1.1 Introduction

Until the nineteen-sixties, quality targets were deemed to have been reached when
the item considered was found to be free of defects or systematic failures at the time
it left the manufacturer.  The growing complexity of equipment and systems, as well
as the rapidly increasing cost incurred by loss of operation as a consequence of
failures, have brought to the forefront the aspects of reliability, maintainability,
availability, and safety.  The expectation today is that complex equipment and
systems are not only free from defects and systematic failures at time t = 0
(when they are put into operation), but also perform the required function failure
free for a stated time interval and have a fail-safe behavior in case of critical or
catastrophic failures.  However, the question of whether a given item will operate
without failures during a stated period of time cannot be simply answered by yes
or no, on the basis of a compliance test.  Experience shows that only a probability
for this occurrence can be given.  This probability is a measure of the item’s
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� Springer-Verlag Berlin Heidelberg 2014
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2 1  Basic Concepts, Quality and Reliability (RAMS) Assurance of Complex Equipment & Systems

reliability and can be interpreted as follows:

If n statistically identical and independent items are put into operation at
time t = 0 to perform a given mission and ν ≤ n  of them accomplish it
successfully, then the ratio ν / n  is a random variable which converges
for increasing n to the true value of the reliability (Appendix A6.11).

Performance parameters as well as reliability, maintainability, availability, and safety
have to be built in during design & development and retained during production and
operation of the item.  After the introduction of some important concepts in Section
1.2, Section 1.3 gives basic tasks and rules for quality and reliability assurance of
complex equipment and systems with high quality and reliability requirements
(see Appendix A1 for a comprehensive list of definitions and Appendices A2 - A5
for a refinement of management aspects).

1.2 Basic Concepts

This section introduces important concepts used in reliability engineering and
shows their relationships (see Appendix A1 for a more complete list).

1.2.1 Reliability

Reliability is a characteristic of the item, expressed by the probability that it will
perform its required function under given conditions for a stated time interval.
It is generally designated by R.  From a qualitative point of view, reliability can be
defined as the ability of the item to remain functional.  Quantitatively, reliability
specifies the probability that no operational interruptions will occur during a stated
time interval.  This does not mean that redundant parts may not fail, such parts can
fail and be repaired (without operational interruption at item (system) level).  The
concept of reliability thus applies to nonrepairable as well as to repairable items
(Chapters 2 and 6, respectively).  To make sense, a numerical statement of reliability
(e. g. R = 0 9. ) must be accompanied by the definition of the required function, the
operating conditions, and the mission duration.  In general, it is also important to
know whether or not the item can be considered new when the mission starts.

An item is a functional or structural unit of arbitrary complexity (e.g. component,
assembly, equipment, subsystem, system) that can be considered as an entity for
investigations. 

+)   It may consist of hardware, software, or both and may also include
human resources.  Often, ideal human aspects and logistic support are assumed,
even if (for simplicity) the term system is used instead of technical system.

__________________
+)  System refers in this book, and often in practical applications, to the highest integration level of the

item considered.
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The required function specifies the item's task.  For example, for given inputs,
the item outputs have to be constrained within specified tolerance bands (perfor-
mance parameters should always be given with tolerances).  The definition of the re-
quired function is the starting point for any reliability analysis, as it defines failures.

Operating conditions have an important influence on reliability, and must there-
fore be specified with care.  Experience shows for instance, that the failure rate of
semiconductor devices will double for operating temperature increase of 10 20 to C° .

The required function and /  or operating conditions can be time dependent.
In these cases, a mission profile has to be defined and all reliability figures will be
related to it.  A representative mission profile and the corresponding reliability
targets should be given in the item's specifications.

Often the mission duration is considered as a parameter t, the reliability function
is then defined by R( )t .  R( )t  is the probability that no failure at item level will
occur in the interval ( , ]0 t .  The item's condition at t = 0 (new or not) influences fi-
nal results.  To consider this, in this book reliability figures at system level will have
indices Si (e. g.  R ( )Si t ), where S stands for system and i is the state entered at t = 0
(Tab. 6.2).  State 0, with all elements new, is often assumed at t = 0, yielding R ( ).S t0

A distinction between predicted and estimated or assessed reliability is
important.  The first one is calculated on the basis of the item’s reliability structure
and the failure rate of its components (Sections 2.2 & 2.3), the second is obtained
from a statistical evaluation of reliability tests or from field data by known
environmental and operating conditions (Section 7.2).

The concept of reliability can be extended to processes and services as well,
although human aspects can lead to modeling difficulties (Sections 1.2.7, 5.2.5, 6.10).

1.2.2 Failure

A failure occurs when the item stops performing its required function.  As simple as
this definition is, it can become difficult to apply it to complex items.  The failure-
free time (hereafter used as a synonym for failure-free operating time) is generally a
random variable.  It is often reasonably long;  but it can be very short, for instance
because of a failure caused by a transient event at turn-on.  A general assumption in
investigating failure-free times is that at t = 0 the item is free of defects and
systematic failures.  Besides their frequency, failures should be classified (as far as
possible) according to the mode, cause, effect, and mechanism:

 1. Mode:  The mode of a failure is the symptom (local effect) by which a failure
is observed;  e. g., opens, shorts, or drift for electronic components (Table 3.4);
brittle rupture, creep, cracking, seizure, fatigue for mechanical components.

 2. Cause:  The cause of a failure can be intrinsic, due to weaknesses in the item
and / or wear out, or extrinsic, due to errors, misuse or mishandling during the
design, production, or use.  Extrinsic causes often lead to systematic failures,
which are deterministic and should be considered like defects (dynamic
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defects in software quality).  Defects are present at t = 0, even if often they
can not be discovered at t = 0.  Failures appear always in time, even if the
time to failure is short as it can be with systematic or early failures.

 3. Effect:  The effect (consequence) of a failure can be different if considered on
the item itself or at higher level.  A usual classification is:  non relevant,
partial, complete, and critical failure.  Since a failure can also cause further
failures, distinction between primary and secondary failure is important.

 4. Mechanism:  Failure mechanism is the physical, chemical, or other process
resulting in a failure (see Table 3.5 (p. 103) for some examples).

Failures can also be classified as sudden and gradual.  In this case, sudden and
complete failures are termed cataleptic failures, gradual and partial failures are
termed degradation failures.  As failure is not the only cause for the item being
down, the general term used to define the down state of an item (not caused by a
preventive maintenance, other planned actions, or lack of external resources) is 

1.2.3 Failure Rate, MTTF, MTBF

The failure rate plays an important role in reliability analysis.  This Section intro-
duces it heuristically, see Appendix A6.5 for an analytical derivation.

Let us assume that n statistically identical, new, and independent items are put
into operation at time t = 0, under the same conditions, and at the time t a subset
ν( )t  of these items have not yet failed.  ν( )t  is a right continuous decreasing step
function (Fig. 1.1).  t tn1 , ..., , measured from t = 0, are the observed failure-free
times (operating times to failure) of the n items considered.  They are independent
realizations of a random variable τ (hereafter identified as failure-free time) and
must not be confused with arbitrary points on the time axis ( t t1 2

* *, ,...  ).  The quantity

Ê[ ]τ = + +…t t
n

n1 (1.1)

is the empirical mean (empirical expected value) of τ.  Empirical quantities are
statistical estimates, marked with  ̂  in this book.  For n → ∞, Ê [ ]τ  converges to the
true mean E[ ]τ = MTTF  given by Eq. (1.8) (Eqs. (A6.147), (A8.7)).  The function

R̂( )
( )

t
t

n= ν
(1.2)

is the empirical reliability function, which converges to R( )t  for n →∞ (Eq. (A8.5)).
For an arbitrary time interval ( ],t t t+ δ , the empirical failure rate is defined as

ˆ ( )
( ) ( )

( )
.λ ν ν δ

ν δ
t

t t t
t t

= − +
(1.3)

ˆ( )λ δt t  is the ratio of the items failed in the interval ( , ]t t t+δ  to the number of items
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Figure 1.1   Number ν( )t  of (nonrepairable) items still operating at time t

still operating (or surviving) at time t.  Applying Eq. (1.2) to Eq. (1.3) yields

ˆ( ) .R̂( ) R̂( )

R̂( )
λ δ

δ
t

t t t

t t
= − +

(1.4)

For R  &derivable,( )t n t→ →∞ δ 0, ˆ ( )λ t  converges to the (instantaneous) failure rate

λ( ) .R( ) /

R( )
t

d t dt

t
=

−
(1.5)

Considering R( )0 1=  (at t = 0 all items are new), Eq. (1.5) leads to

R( )
( )

t e
x dx

t

=
− ∫ λ

0 ,                   (for  R ( ) ) .0 1= (1.6)

The failure rate λ( )t  given by Eqs. (1.3) - (1.5) applies in particular to
nonrepairable items (Figs. 1.1 & 1.2).  However,

considering Eq. (A6.25) λ( )t  can also be defined for repairable items
which are as-good-as-new after repair (renewal), taking instead of t the
variable x starting by x =0 at each renewal (as for interarrival times);
this is important when investigating repairable systems, and holds in
particular for λ λ( )x =  (see remarks on pp. 6, 40 - 41, 378, 380).

If a repairable system cannot be restored to be as-good-as-new after repair (with re-
spect to the state considered), i. e., if at least one element with time dependent failure
rate has not been renewed at every repair, failure intensity z ( )t  has to be used (see
pp. 378, 426, 524 for comments).  The use of hazard rate for λ( )t  should be avoided.
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In many practical applications, λ λ( )t =  can be assumed.  Eq. (1.6) then yields

R( )t e t= − λ ,                   (for  λ λ( ) ),t = (1.7)

and the failure-free time τ > 0 is exponentially distributed (F( ) Pr{ } );t t e t= ≤ = − −τ λ1

for this, and only in this case, the failure rate λ  can be estimated by
λ̂ / = k T , where T is a given (fixed) cumulative operating time and k the
total number of failures during T  (Eqs. (7.28) and (A8.46)).

The mean (expected value) of the failure-free time τ > 0 is given by (Eq. (A6.38))

MTTF t d tE= =
∞
∫   [ ] R( )τ
0

, (1.8)

where MTTF stands for mean time to failure.  For λ λ( )t =  it follows E[ ] /τ λ= 1 .
A constant (time independent) failure rate λ  is often considered also for

repairable items.  Assuming that the item is as-good-as-new after each repair,
successive failure-free times are then independent random variables, exponentially
distributed with the same parameter λ , and with mean

MTBF = 1 / λ,                  (for  λ λ( ) ,x =  x starting at 0 after each repair). (1.9)

MTBF stands for mean operating time between failures. Also because of the statisti-
cal estimate MTBF T kˆ /=  used in practical applications (p. 318), MTBF should be con-
fined to the case of repairable items with constant failure rate.  However, at compo-
nent level MTBF = − −10 108 8 1h for = hλ  has no practical significance.  For systems
with >2 states, MUTS  (system mean up time) is used (p. 278, Table 6.2).  Finally,

it must be pointed out that for a repairable item, the only possibility to
have successive statistically identical and independent operating times
after each repair (interarrival times), giving a sense to a mean operating
time between failures (MTBF), is to re-establish at each repair an as-
good-as-new situation, replacing all parts with non constant failure rates.

The failure rate of a large population of statistically identical and independent
items exhibits often a typical bathtub curve (Fig. 1.2) with the following 3 phases:

 1. Early failures:  λ( )t  decreases (in general) rapidly with time;  failures in this
phase are attributable to randomly distributed weaknesses in materials,
components, or production processes.

 2. Failures with constant (or nearly so) failure rate:  λ( )t  is approximately
constant;  failures in this period are Poisson distributed and often cataleptic.

 3. Wear out failures:  λ( )t  increases with time;  failures in this period are attribut-
able to aging, wear out, fatigue, etc. (e. g. corrosion, electromigration).

Early failures are not deterministic and appear in general randomly distributed in
time and over the items.  During the early failure period, λ( )t  must not necessarily
decrease as in Fig. 1.2, in some cases it can oscillate.  To eliminate early failures,
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Figure 1.2  Typical shape for the failure rate of a large population of statistically identical and inde-
pendent (nonrepairable) items  (dashed is a possible shift for a higher stress, e. g. ambient temperature)

burn-in or environmental stress screening is used (Chapter 8).  Early failures must be
distinguished from defects and systematic failures, which are present at   t = 0, deter-
ministic, caused by errors or mistakes, and whose elimination requires a change in
design, production process, operational procedure, documentation or other.  Length
of early failure period varies in practice from few h to some 1'000 h.  The presence of
a period with constant (or nearly so) failure rate λ λ( )t ≈  is realistic for many
equipment & systems, and useful for calculations.  The memoryless property, which
characterizes this period, leads to exponentially distributed failure-free times and to
a time homogeneous Markov process for the time behavior of a repairable system if
also constant repair rates can be assumed (Chapter 6).  An increasing failure rate
after a given operating time ( > 10 years for many electronic equipment) is typical
for most items and appears because of degradation phenomena due to wear out.

A possible explanation for the shape of λ( )t  given in Fig. 1.2 is that the popu-
lation contains n pf  weak elements and n pf( )1 −  good ones.  The distribution of
the failure-free time can then be expressed by a weighted sum of the form
F( ) F ( ) ( F ( ))t t tp pf f= + −1 21 , where F ( )1 t  can be a gamma ( )β <1  and F ( )2 t  a
shifted Weibull ( )β >1  distribution (Eqs. (A6.34), (A6.96), (A6.97)), see also pp. 337,
355 & 467 for alternative possibilities.

The failure rate strongly depends upon the item's operating conditions, see e. g.
Figs. 2.4 - 2.6 and Table 2.3.  Typical figures for λ  are 10 10−  to 10 7 1− −h  for
electronic components at 40°C , doubling for a temperature increase of 10 to 20°C .

From Eqs. (1.3) -  (1.5) one recognizes that for an item new at   t = 0 and δ t →0,
λ δ( )t t  is the conditional probability for failure in ( , ]t t t+δ  given that the item has
not failed in ( , ]0 t .  Thus, λ( )t  is not a density as defined by Eq. (A6.23) and must
be clearly distinguished from the density f( )t  of the failure-free time ( f( )t tδ  is the
unconditional probability for failure in ( , ]t t t+δ ), from the failure intensity z ( )t  of
an arbitrary point process, and form the intensity h ( )t  or m ( )t  of a renewal or
Poisson process (Eqs. (A7.228), (A7.24), (A7.193));  this also in the case of a homo-
geneous Poisson process,  see pp. 378, 426, 466, 524 for further considerations.

The concept of failure rate applied to humans yields a shape as in Fig. 1.2.
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1.2.4 Maintenance, Maintainability

Maintenance defines the set of actions performed on the item to retain it in or to
restore it to a specified state.  Maintenance is thus subdivided into preventive main-
tenance, carried out at predetermined intervals to reduce wear out failures, and
corrective maintenance, carried out after failure detection and intended to put the
item into a state in which it can again perform the required function.  Aim of a
preventive maintenance is also to detect and repair hidden failures, i. e., failures in
redundant elements not detected at their occurrence.  Corrective maintenance is also
known as repair, and can include any or all of the following steps: detection,
localization (isolation), correction, checkout.  Repair is used in this book as a syno-
nym for restoration, by neglecting logistic and administrative delays.  To simplify
calculations, it is generally assumed that the element in the reliability block diagram
for which a maintenance action has been performed is as-good-as-new after mainte-
nance.  This assumption is valid for the whole equipment or system in the case of
constant failure rate for all elements which have not been repaired or replaced.

Maintainability is a characteristic of the item, expressed by the probability that a
preventive maintenance or a repair of the item will be performed within a stated
time interval for given procedures and resources (skill level of personnel, spare
parts, test facilities, etc.).  From a qualitative point of view, maintainability can be
defined as the ability of the item to be retained in or restored to a specified state.
The mean (expected value) of the repair time is denoted by MTTR (mean time to
repair (restoration)), that of a preventive maintenance by MTTPM.  Maintainability
has to be built into complex equipment and systems during design and development
by realizing a maintenance concept.  Due to the increasing maintenance cost,
maintainability aspects have grown in importance. However, maintainability
achieved in the field largely depends on the resources available for maintenance
(human and material), as well as on the correct installation of the equipment or
system, i. e. on the logistic support and accessibility.

1.2.5 Logistic Support

Logistic support designates all actions undertaken to provide effective and
economical use of the item during its operating phase.  To be effective, logistic
support should be integrated into the maintenance concept of the item under
consideration and include after-sales service.

An emerging aspect related to maintenance and logistic support is that of
obsolescence management, i. e ., how to assure functionality over a long operating
period (e. g. 20 years) when technology is rapidly evolving and components need
for maintenance are no longer manufactured.  Care has to be given here to design
aspects, to assure interchangeability during the equipment’s useful life without
important redesign (standardization has been started [1.5, 1.11, A2.6 (IEC 62402)]).
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1.2.6 Availability

Availability is a broad term, expressing the ratio of delivered to expected service.
It is often designated by A and used for the stationary & steady-state value of the
point and average availability ( )PA AA= .  Point availability (PA(t)) is a characteristic
of the item expressed by the probability that the item will perform its required func-
tion under given conditions at a stated instant of time t.  From a qualitative point of
view, point availability can be defined as the ability of the item to perform its
required function under given conditions at a stated instant of time (dependability).

Availability evaluations are often difficult, as logistic support and human factors
should be considered in addition to reliability and maintainability.  Ideal human and
logistic support conditions are thus often assumed, yielding to the intrinsic
(inherent) availability.  In this book, availability is used as a synonym for intrinsic
availability.  Further assumptions for calculations are continuous operation and
complete renewal of the repaired element in the reliability block diagram (assumed
as-good-as-new after repair).  For a given item, the point availability PA( )t  rapidly
converges to a stationary & steady-state value, given by (Eq. (6.48))

PA MTTF MTTF MTTR= +/ ( )  . (1.10)

PA is also the stationary & steady-state value of the average availability ( )AA
giving the mean (expected value) of the percentage of the time during which the
item performs its required function.  PAS  and AAS  is used for considerations at
system level.  Other availability measures can be defined, e. g. mission availability,
work-mission availability, overall availability (Sections 6.2.1.5, 6.8.2).  Application
specific figures are also known, see e. g. [6.12].  In contrast to reliability analyses for
which no failure at item (system) level is allowed (only redundant parts can fail and
be repaired on line), availability analyses allow failures at item (system) level.

1.2.7 Safety, Risk, and Risk Acceptance

Safety is the ability of the item not to cause injury to persons, nor significant material
damage or other unacceptable consequences during its use.  Safety evaluation must
consider the following two aspects:  Safety when the item functions and is operated
correctly and safety when the item, or a part of it, has failed.  The first aspect deals
with accident prevention, for which a large number of national and international
regulations exist.  The second aspect is that of technical safety which is investigated
in five steps (identify potential hazards, identify their causes, determine their effect,
classify their effect as per Fig. 2.13, investigate possibilities to avoid the hazard or at
least to mitigate its effect), using similar tools as for reliability.  However, a distinc-
tion between technical safety and reliability is necessary.  While safety assurance ex-
amines measures which allow the item to be brought into a safe state in the case of
failure (fail-safe behavior), reliability assurance deals with measures for minimizing
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the total number of failures.  Moreover, for technical safety the effects of external
influences like human errors, catastrophes, sabotage, etc. are of great importance and
must be considered carefully.   The safety level of the item influences the number of
product liability claims.  However, increasing in safety can reduce reliability.

Closely related to the concept of  safety are those of risk, risk management, and
risk acceptance; including risk analysis & assessment [1.3, 1.9, 1.21, 1.23, 1.26, 1.28].
Risk problems are often interdisciplinary and have to be solved in close cooperation
between engineers and sociologists to find common solutions to controversial
questions.  An appropriate weighting between probability of occurrence and effect
(consequence) of a given accident is important.  The multiplicative rule is one
among different possibilities.  Also it is necessary to consider the different causes
(machine, machine & human, human) and effects (location, time, involved people,
effect duration) of an accident.  Statistical tools can support risk assessment.
However, although the behavior of a homogenous human population is often known,
experience shows that the reaction of a single person can become unpredictable
(see Section 6.10 for basic considerations on human reliability).  Similar difficulties
also arise in the evaluation of rare events in complex systems.  Risk analyses are ba-
sically performed with tools used for failure modes and effect analysis (Section 2.6).
However, for high-risk systems, refinements are often necessary, for instance, using
the risk priority number concept with logarithmic scale [2.82].

Quite generally, considerations on risk and risk acceptance should take into
account that the probability p1  for a given accident which can be caused by one of n
statistically identical and independent items, each of them with occurrence
probability p, is for n p small ( , )n p→ →∞ 0  nearly equal to n p as per

p n p p n p e n p n p n pn np
1 1 11= − ≈ ≈ − ≈− −( ) ( ) . (1.11)

Equation (1.11) follows from the binomial distribution and the Poisson
approximation (Eqs. (A6.120) & (A6.129)).  It also applies with n p Ttot= λ  to the
case in which one assumes that the accident occurs randomly in the interval ( , ]0 T ,
caused by one of n independent items (systems) with failure rates λ λ1, ,… n, where
λ λ λtot n= + … +1  .  This is because the sum of n independent Poisson processes is
again a Poisson process (Eq. (7.27)) and the probability λ λ

tot
TT e tot−  for one

failure in the interval ( , ]0 T  is nearly equal to λ tot T .  Thus, for n p << 1 or
λ tot T << 1 it holds that

p n p Tn1 1≈ ≈ + … +( ) .λ λ (1.12)

Also by assuming a reduction of the individual occurrence probability p
(or failure rate λi ), one recognizes that in the future it will be necessary either to
accept greater risks p1  or to keep the spread of high-risk technologies under tighter
control.  Similar considerations apply to environmental stresses caused by mankind.
Aspects of ecologically acceptable production, use, disposal, recycling, reuse of pro-
ducts should become subject for international regulations (sustainable development).
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In the context of a product development, risks related to feasibility and time to
market within the given cost constraints must also be considered during all develop-
ment phases (feasibility checks in Fig. 1.6 and Tables A3.3 & 5.3).

Mandatory for risk management are psychological aspects related to risk
awareness and safety communication.  As long as a danger for risk is not  perceived,
people often do not react.  Knowing that a safety behavior presupposes a risk
awareness, communication is an important tool to avoid that the risk related to a
given system will be underestimated, see e. g. [1.23, 1.26].

1.2.8 Quality

Quality is understood as the degree to which a set of inherent characteristics fulfills
requirements.  This definition, given now also in the ISO 9000: 2000 family [A1.6],
follows closely the traditional definition of quality, expressed by fitness for use, and
applies to products and services as well.

1.2.9 Cost and System Effectiveness

All previously introduced concepts are interrelated.  Their relationship is best shown
through the concept of cost effectiveness, as given in Fig. 1.3.  Cost effectiveness is
a measure of the ability of the item to meet a service demand of stated quantitative
characteristics, with the best possible usefulness to life-cycle cost ratio.  It is often
referred also to as system effectiveness.  Figure 1.3 deals essentially with technical
and cost aspects.  Some management aspects are considered in Appendices A2 - A5.
From Fig. 1.3, one recognizes the central role of quality assurance, bringing
together all assurance activities (Section 1.3.3), and of dependability (collective term
for availability performance and its influencing factors).

As shown in Fig. 1.3, life-cycle cost (LCC) is the sum of cost for acquisition, oper-
ation, maintenance, and disposal of the item.  For complex systems, higher reliability
leads in general to higher acquisition cost and lower operating cost, so that the
optimum of life-cycle cost seldom lies at extremely low or high reliability figures.
For such a system, per year operating & maintenance cost often exceeds 10% of ac-
quisition cost, and experience shows that up to 80% of the life-cycle cost is fre-
quently generated by decisions early in the design phase.  To be complete, life-cycle
cost should also take into account current and deferred damage to the environment
caused by production, use, and disposal of the item.  Life-cycle cost optimization
falls within the framework of cost effectiveness or systems engineering.  It can be
positively influenced by concurrent engineering [1.16, 1.22].  Figure 1.4 shows an
example of the influence of the attainment level of quality and reliability targets
on the sum of cost of quality and operational availability assurance for two sys-
tems with different mission profiles [2.2 (1986)], see Example 1.1 for an introduction.
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Example 1.1

An assembly contains n  independent components each with a defective probability p .  Let ck  be
the cost to replace k  defective components.  Determine  (i) the mean (expected value) C i( )  of the
total replacement cost (no defective components are allowed in the assembly) and  (ii) the mean
of the total cost (test and replacement) C ii( )  if the components are submitted to an incoming
inspection which reduces defective percentage from p to p0 (test cost ct  per component).

Solution

(i) The solution makes use of the binomial distribution (Appendix A6.10.7) and question (i) is
also solved in Example A6.19.  The probability of having exactly k  defective components in
a lot of size n  is given by (Eq. (A6.120))

p
n

k
p pk

k n k= −






−( )1 . (1.13)

The mean C i( )  of the total cost (deferred cost) caused by the defective components follows
then from the weighted sum

C c p c
n

k
p pi k k

k

n

k
k n k

k

n

( ) ( )= = −
=

−

=
∑ ∑ 





1 1

1 . (1.14)

(ii) To the cost caused by the defective components, calculated from Eq. (1.14) with p0 instead
of p, one must add the incoming inspection cost n ct

C nc c
n

k
p pii t k

k n k

k

n

( ) ( )= + −






−

=
∑ 0 01

1

. (1.15)

The difference between C i( )  and C ii( ) gives the gain (or loss) obtained by introducing the
incoming inspection, allowing thus a cost optimization (see also Section 8.4 for a deeper
discussion).

Using Eq. (A7.42) instead of (A6.120), similar considerations to those in Example
1.1 yield for the mean (expected value) of the total repair cost Ccm  during the
cumulative operating time T  of an item with failure rate λ  and cost ccm  per repair

C T c ccm cm
T

MTBF
cm= =λ  . (1.16)

(In Eq. (1.16), the term λ T  gives the mean value of the number of failures during T
(Eq. (A7.42)), and MTBF  is used as MTBF = 1 / λ .)

From the above considerations, the following equation expressing the mean C  of
the sum of the cost for quality assurance and for the assurance of reliability,
maintainability, and logistic support of a system can be obtained

C C C C C C c OA Tc n cq r cm pm l
T

MTBF
cm S off d d

S

= + + + + + + − +( )1  . (1.17)

Thereby, q  is used for quality, r for reliability, cm  for corrective maintenance, pm
for preventive maintenance, l  for logistic support, off for down time & d  for defects.
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Figure 1.3   Cost Effectiveness (System Effectiveness) for complex equipment & systems with high
quality and reliability (RAMS) requirements (see Appendices A1 - A5 for definitions & management
aspects;  dependability can be used instead of operational availability, for a qualitative meaning)
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MTBFS and OAS  are the system mean operating time between failures (assumed
here = 1 / λS ) and the system steady-state overall availability (Eq. (6.196) with Tpm
instead of TPM ).  T  is the total system operating time (useful life) and nd  is the
number of hidden defects discovered (and eliminated) in the field.  Cq , Cr , Ccm ,
C pm , and Cl  are the cost for quality assurance and for the assurance of reliability,
repairability, serviceability, and logistic support, respectively.  ccm , coff , and cd  are
the cost per repair, per hour down time, and per hidden defect, respectively
(preventive maintenance cost are scheduled cost, considered here as a part of C pm ).
The first five terms in Eq. (1.17) represent a part of the acquisition cost, the
last three terms are deferred cost occurring during field operation.  A model for
investigating the cost C  according to Eq. (1.17) was developed in [2.2 (1986)], by
assuming Cq , Cr , Ccm , C pm , Cl , MTBFS , OAS , T , ccm , coff , cd , and nd  as
parameters and investigating the variation of the total cost expressed by Eq. (1.17)
as a function of the level of attainment of the specified targets, i. e., by intro-
ducing the variables g QA QAq g= / ,  gr gMTBF MTBFS S= / ,  gcm gMTTR MTTRS S= / ,
gpm gMTTPM MTTPMS S= / , and gl gMLD MLDS S= / , where the subscript g denotes the
specified target for the corresponding quantity.  A power relationship

C C gi ig i
mi= (1.18)

was assumed between the actual cost Ci , the cost Cig  to reach the specified target
(goal) of the considered quantity, and the level of attainment of the specified target
( 0 1< <ml  and all other mi > 1).  The following relationship between the number of
hidden defects discovered in the field and the ratio C Cq qg/  was also included in
the model

n
C C g

d
q qg

m
q
m md q d

= − = −
1

1
1

1
( / )

. (1.19)

The final equation for the cost C as function of the variables gq , gr , gcm , gpm , and
gl  follows then as (using Eq. (6.196) for OAS )

   C C g C g C g C g C g
Tc

g
qg q

m
rg r

m
cmg cm

m
pmg pm

m
lg l

m cm

r Sg

q r cm pm l

MTBF
= + + + + +

   + −
+ +

+ −
⋅ ⋅ +

( ) ( )1
1

1
1 1

1
1

g g g g g T

Tc
g

c

r cm

g

g r l

g

g

g

pm pm

off

q
m m dMTTR

MTBF

MLD

MTBF

MTTPMS

S

S

S

S q d
.  (1.20)

The relative cost C Cg/  given in Fig. 1.4 is obtained by dividing C  by the value
Cg  form Eq. (1.20) with all gi = 1.  Extensive analyses with different values for mi,
Cig , MTBFSg , MTTRSg , MLDSg , MTTPMSg , Tpm , T , ccm , coff , and cd  have shown
that the value C Cg/  is only moderately sensitive to the parameters mi.
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Figure 1.4  Basic shape of the relative cost C Cg/  per Eq. (1.20) as function of gq QA QAg= /  and
gr MTBF MTBF gS S= /  (quality assurance and reliability assurance as in Fig. 1.3) for two complex
systems with different mission profiles  (the specified targets gq = 1  and gr = 1 are dashed)

1.2.10 Product Liability

Product liability is the onus on a manufacturer (producer) or others to compensate
for losses related to injury to persons, material damage, or other unacceptable
consequences caused by a product (item).  The manufacturer has to specify a safe
operational mode for the product (user documentation).  In legal documents
related to product liability, the term product often indicates hardware only and
the term defective product is in general used instead of defective or failed product.
Responsible in a product liability claim are all those people involved in the design,
production, sale, and maintenance of the product (item), inclusive suppliers.
Often, strict liability is applied (the manufacturer has to demonstrate that
the product was free from defects).  This holds in the USA and increasingly
in Europe [1.10].  However, in Europe the causality between damage and defect has
still to be demonstrated by the user (see p. 382 for further considerations).

The rapid increase of product liability claims (alone in the USA, 50,000 in
1970 and over one million in 1990) cannot be ignored by manufacturers.
Although such a situation has probably been influenced by the peculiarity of
US legal procedures, configuration management and safety analysis (in particular
causes-to-effects analysis, i. e., FMEA / FMECA or FTA as introduced in Section 2.6)
as well as considerations on risk management should be performed to  increase
safety and avoid product liability claims (see Sections 1.2.7, 2.6 & 6.10, and
Appendix A.3.3).
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Table 1.1   Historical development of quality assurance (management) and reliability engineering

before 1940 Quality attributes and characteristics are defined.  In-process and final tests are
carried out, usually in a department within the production area.  The concept of
quality of manufacture is introduced.

1940 - 50 Defects and failures are systematically collected and analyzed.  Corrective actions
are carried out.  Statistical quality control is developed.  It is recognized that quality
must be built into an item.  The concept quality of design becomes important.

1950 - 60 Quality assurance is recognized as a means for developing and manufacturing an
item with a specified quality level.  Preventive measures (actions) are added to tests
and corrective actions.  It is recognized that correct short-term functioning does not
also signify reliability.  Design reviews and systematic analysis of failures (failure
data and failure mechanisms), performed often in the research & development area,
lead to important reliability improvements.

1960 - 70 Difficulties with respect to reproducibility and change control, as well as interfacing
problems during the integration phase, require a refinement of the concept of
configuration management.  Reliability engineering is recognized as a means of
developing and manufacturing an item with specified reliability.  Reliability
estimation methods and demonstration tests are developed.  It is recognized that
reliability cannot easily be demonstrated by an acceptance test.  Instead of a reliabili-
ty figure ( / )λ λ or MTBF =1 , contractual requirements are for a reliability assurance
program.  Maintainability, availability, and logistic support become important.

1970 - 80 Due to the increasing complexity and cost for maintenance of equipment and
systems, the aspects of man-machine interface and life-cycle cost become important.
Customers require demonstration of reliability and maintainability during the
warranty period.  Quality and reliability assurance activities are made project specific
and carried out in close cooperation with all engineers involved in a project.
Concepts like product assurance, cost effectiveness and systems engineering are
introduced.  Human reliability and product liability become important.

1980 - 90 Testability is required.  Test and screening strategies are developed to reduce testing
cost and warranty services.  Because of the rapid progress in microelectronics,
greater possibilities are available for redundant and fault tolerant structures.
Software quality becomes important.

after 1990 The necessity to further shorten the development time leads to the concept of con-
current engineering.  Total Quality Management (TQM) appears as a refinement to
quality assurance as used at the end of the seventies.  RAMS is used for reliability,
availability, maintainability & safety,  reliability engineering for RAMS engineering.

1.2.11 Historical Development

Methods and procedures of quality assurance and reliability engineering have been
developed extensively over the last 60 years.  For indicative purpose, Table 1.1 sum-
marizes major steps of this development and Fig. 1.5 shows the approximate distri-
bution of the effort between quality assurance and reliability engineering during the
same period of time.  Because of the rapid progress of microelectronics, considera-
tions on redundancy, fault-tolerance, test strategy, and software quality gains in
importance.  A skillful, allegorical presentation of the story of reliability is in [1.25].
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Figure 1.5  Approximate distribution of the effort between quality assurance and reliability (RAMS)

engineering for complex equipment & systems with high quality and reliability (RAMS) requirements

1.3  Basic Tasks & Rules for Quality and Reliability
(RAMS) Assurance of Complex Equip. & Systems

This section deals with some important considerations on the organization of quality
and reliability assurance in the case of complex repairable equipment and systems
with high quality and reliability requirements.  In this context, the term reliability
appears for reliability, availability, maintainability, and safety (RAMS).  This minor
part of the book aims to support managers in answering the question of how to
specify and realize high reliability (RAMS) targets for equipment and systems.
Refinements are in Appendix A3 for complex equipment and systems for which
tailoring is not mandatory, with considerations on quality management and total
quality management (TQM) as well.  As a general rule, quality assurance and reliabil-
ity (RAMS) engineering must avoid bureaucracy, be integrated in project activities,
and support quality management and concurrent engineering efforts, as per TQM.

1.3.1 Quality and Reliability (RAMS) Assurance Tasks

Experience shows that besides the prevention of defects and systematic failures,

which remains the primary task of a quality assurance system,

the development and production of complex repairable equipment and systems with
high reliability (RAMS) targets requires specific activities during all life-cycle phases
of the item considered.  Figure 1.6 shows the life-cycle phases and Table 1.2 gives
the main tasks for quality and reliability (RAMS) assurance.  Depicted in Table 1.2 is
also the period of time over which the tasks have to be performed.  Within a project,
the tasks of Table 1.2 must be refined in a project-specific quality and reliability
(RAMS) assurance program (Appendix A3).
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Table 1.2   Main tasks for quality and reliability (RAMS) assurance of complex equipment & systems
with high quality and reliability requirements  (the bar height is a measure of the relative effort)

Specific during

Main tasks for quality and reliability (RAMS) assurance of
complex equipment and systems, conforming to TQM
(see Table A3.2 for greater details and a possible task assignment;
software quality appears in tasks 4, 8-11, 14-16, see also Section 5.3)

1. Customer and market requirements

2. Preliminary analyses

3. Quality and reliability aspects in specs, quotations, contracts, etc.

4. Quality and reliability (RAMS) assurance

5. Reliability and maintainability analyses

6. Safety and human factor analyses

7. Selection and qualification of components and materials

8. Supplier selection and qualification

9. Project-dependent procedures and work instructions

10. Configuration management

11. Prototype qualification tests

12. Quality control during production

13. In-process tests

14. Final and acceptance tests

15. Quality data reporting system

16. Logistic support

17. Coordination and monitoring

18. Quality costs

19. Concepts, methods, and general procedures (quality and reliability)

20. Motivation and training
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• Spare part

provisioning D
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Figure 1.6    Basic life-cycle phases of complex equipment and systems  (the output of a given
phase is the input to the next phase), see Tab. 5.3 (p. 161) for software

1.3.2 Basic Quality and Reliability (RAMS) Assurance Rules

Performance, dependability, cost, and time to market are key factors for today's
products and services.  Taking care of the considerations in Section 1.3.1, the basic
rules for a quality and reliability (RAMS) assurance optimized by considering cost
and time schedule aspects (conforming to TQM) can be summarized as follows:

 1. Quality and reliability (RAMS) targets should be just as high as necessary to
satisfy real customer needs

→ Apply the rule "as-good-as-necessary".

 2. Activities for quality & reliability (RAMS) assurance should be performed con-
tinuously throughout all project phases, from definition to operating phase

→ Do not change the project manager before ending the pilot production.

 3.Activities must be performed in close cooperation between all engineers
involved in the project (Table A3.2)

→ Use TQM and concurrent engineering approaches.

 4. Quality and reliability (RAMS) assurance activities should be monitored by a
central quality & reliability assurance department (Q & RA), which cooperates
actively in all project phases (Fig. 1.7 and Table A3.2)

→ Establish an efficient and independent quality & reliability assurance
department (Q & RA) active in the projects.
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Management

QI

Marketing R & D Production Central Q&RA

Figure 1.7   Basic organizational structure for quality and reliability (RAMS) assurance in a company
producing complex equipment and systems with high quality and reliability (RAMS) requirements
(connecting lines indicate close cooperation;  A denotes assurance,  I  inspection,  Q quality,
R reliability (RAMS))

Figure 1.7 shows a basic organization which could embody the above rules and
satisfy requirements of quality management standards (Appendix A2).  As shown
in Table A3.2, the assignment of quality and reliability (RAMS) assurance tasks
should be such, that every engineer in a project bears his /  her own responsibilities
(as per TQM).  A design engineer should for instance be responsible for all aspects
of his /  her own product (e. g. an assembly) including reliability, maintainability and
safety, and the production department should be able to manufacture and test such
an item within its own competence.  The quality & reliability (RAMS) assurance
department (Q & RA in Fig. 1.7) can be for instance responsible for (see also
Tab. A3.2)

 • setting targets for quality and reliability (RAMS) levels,

 •  preparation of guidelines and working documents (quality and reliability
(RAMS) aspects),

 • coordination of the activities belonging to quality and reliability (RAMS)
assurance,

 • reliability (RAMS) analyses at system level,

 • qualification, testing, and screening of components and material (quality and
reliability aspects),

 • release of manufacturing processes (quality and reliability (RAMS) aspects),

 • development and operation of the quality data reporting system,

 • acceptance testing (with customers).

This central quality and reliability (RAMS) department should not be too small
(credibility) nor too large (sluggishness).
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1.3.3 Elements of a Quality Assurance System

As stated in Sections 1.3.1, many of the tasks associated with quality assurance
(in the sense of quality management as per TQM) are interdisciplinary.  In order to
have a minimum impact on cost and time schedules, their solution requires the
concurrent efforts (close cooperation) of all engineers involved in a project.
To improve coordination, it is useful to group the quality assurance activities
(see also Fig. 1.3 and Appendix A3.3):

 1. Configuration Management:  Procedure used to specify, describe, audit &
release the configuration of the item, as well as to control it during
modifications or changes.  Configuration management is an important tool for
quality assurance.  It can be subdivided into configuration identification,
auditing (design reviews), control, and accounting (Appendix A3.3.6).

 2. Quality Tests:  Tests to verify whether the item conforms to specified require-
ments.  Quality tests include incoming inspections, as well as qualification
tests, production tests, and acceptance tests.  They also cover reliability,
maintainability, safety, and software aspects.  To be cost effective, quality tests
must be coordinated and integrated into a test strategy.

 3. Quality Control During Production:  Control (monitoring) of the production
processes and procedures to reach a stated quality of manufacturing.

 4. Quality Data Reporting System (FRACAS): A system to collect, analyze &
correct all defects and failures (faults) occurring during the production and test
of the item, as well as to evaluate and feedback the corresponding quality and
reliability (RAMS) data.  Such a system is generally computer-aided.  Analysis
of failures and defects must be traced to the cause, to avoid repetition of the
same problem, and be pursued at least during the warranty period (Fig. 1.8).

 5. Software quality:  Procedures and tools to specify, develop, and test software
(appears in tasks 4, 8 - 11,14 - 16 of Tables 1.2 & A3.2, see also Section 5.3).

Configuration management spans from the definition up to the operating phase
(Appendices A3 & A4).  Quality tests encompasses technical and statistical aspects
(Chapters 3, 7, and 8).  The concept of a quality data reporting system is depicted
in Fig. 1.8 (see Appendix A5 for basic requirements).  Table 1.3 shows an example
of data reporting sheets for PCBs evaluation.

The quality and reliability (RAMS) assurance system must be described in an ap-
propriate quality handbook supported by the company management. A possible con-
tent of such a handbook for a company producing complex equipment and systems
with high quality & reliability (RAMS) requirements is: • General, •  Project Organi-
zation, •  Quality Assurance (Management) system, •  Quality & Reliability (RAMS)
Assurance Program, • Reliability Engineering, • Maintainability Eng., • Safety & Hu-
man Eng., • Software Quality Assurance, • Logistic Support, • Motivation & Training.
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Table 1.3   Example of information status for PCBs (populated printed circuit board’s) from a
quality data reporting system

a)   Defects and failures (faults) at PCB level

Period: . . . .

No. of PCBs Rough classification No. of faults Measures Cost

PCB tested with
faults

% assem-
bling

sol-
dering

board com-
ponent

total per
PCB

short
term

long
term

pro-
duction

Q A other
areas

b)   Defects and failures (faults) at component level

Period: . . . . PCB: . . . . No. of PCBs: . . . .

Compo- Manufac- No. of components Number of No. of faults per place of occurrence

nent turer Same
type

Same
application

faults % incoming
inspection

in-process
test

final test warranty
period

c)   Cause analysis for defects and failures (faults) due to components

Period: . . . .

Compo-
Cause Percent defective (%) Failure rate (10 9 1− −h ) Measures

nent PCB sys-
tematic

inherent
failure

not iden-
tified

observed predicted observed predicted short
term

long
term

d)   Correlation between components and PCBs

Period: . . . .

Com-
ponent

PCB
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1.3.4 Motivation and Training

Cost effective quality and reliability (RAMS) assurance /  management can be
achieved if every engineer involved in a project is made responsible for his /  her
assigned activities (e. g. as per Table A3.2).  Figure 1.9 shows a comprehensive,
practice oriented, motivation and training program in a company producing complex
equipment and systems with high quality and reliability (RAMS) requirements.

Basic training

Advanced training Advanced training

Special training

Title: Quality Management and
Reliability (RAMS) Engineering

Aim: Introduction to tasks, methods, and
organization of the company's quality
and reliability (RAMS) assurance

Participants: Top and middle management, project
managers, selected engineers

Duration: 4 h (seminar with discussion)
Documentation: ca. 30 pp.

Title: Methods of Reliability (RAMS)
Engineering

Aim: Learning the methods used in
reliabiliy (RAMS) assurance

Participants: Project managers, engineers
from marketing & production,
selected engineers from
development

Duration: 8 h (seminar with discussion)
Document.: ca. 40 pp.

Title: Reliability (RAMS) Engineering
Aim: Learning the techniques used

in reliabilty (RAMS) engineering
(applications oriented and
company specific)

Participants: Design engineers, Q&RA
specialists, selected engineers
from marketing and production

Duration: 24 h (course with exercices)
Document.: ca. 150 pp.

Title: Special Topics*

Aim: Learning special tools and
techniques

Participants: Q&RA specialists, selected
engineers from development
and production

Duration: 4 to 16 h per topic
Document.: 10 to 20 pp. per topic

*Examples:  Statistical Quality Control,
Test and Screening Strategies, Software
Quality, Testability, Reliability and Avail-
ability of Complex Repairable Systems,
Fault Tolerant Systems with Hardware and
Software, Mechanical Reliability, Failure
Mechanisms and Failure Analysis, etc.

Figure 1.9   Example for a practical oriented training and motivation program in a company
producing complex equipment and systems with high quality and reliability (RAMS) requirements



2  Reliability Analysis During the Design Phase
(Nonrepairable Elements up to System Failure)

Reliability analysis during the design and development of complex components,
equipment, and systems is important to detect and eliminate reliability weaknesses
as early as possible and to perform comparative studies.  Such an investigation
includes failure rate and failure mode analysis, verification of the adherence to
design guidelines, and cooperation in design reviews.  This chapter presents meth-
ods and tools for failure rate and failure mode analysis of complex equipment and
systems considered as nonrepairable up to system failure (except for Eq. (2.48)).
After a short introduction, Section 2.2 deals with series -  parallel structures.
Complex structures, elements with more than one failure mode, and parallel models
with load sharing are investigated in Section 2.3.  Reliability allocation with cost
considerations are discussed in Section 2.4, stress /  strength and drift analysis in
Section 2.5.  Section 2.6 deals with failure mode and causes-to-effects analyses.
Section 2 . 7  gives a checklist for reliability aspects in design reviews.
Maintainability is considered in Chapter 4 and repairable systems are investigated
in Chapter 6 (including complex systems for which a reliability block diagram
does not exist, imperfect switching, incomplete coverage, reconfigurable systems,
common cause failures, as well as an introduction to network reliability, BDD, ET,
dynamic FT,  Petri nets, and computer-aided analysis).  Design guidelines are in
Chapter 5, qualification tests in Chapter 3, reliability tests in Chapters 7 & 8.
Theoretical foundations for this chapter are in Appendix A6.

2.1 Introduction

An important part of the reliability analysis during the design and development of
complex equipment and systems deals with failure rate and failure mode
investigation as well as with the verification of the adherence to appropriate design
guidelines for reliability.  Failure modes and causes-to-effects analysis is considered
in Section 2.6, design guidelines are given in Chapter 5.  Sections 2.2 - 2.5 are
devoted to failure rate analysis.

A. Birolini, Reliability Engineering, DOI: 10.1007/978-3-642-39535-2_2,
� Springer-Verlag Berlin Heidelberg 2014
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Investigating the failure rate of a complex equipment or system leads to the
calculation of the predicted reliability, i. e., that reliability which can be calculated
from the structure of the item and the reliability of its elements.  Such a prediction is
necessary for an early detection of reliability weaknesses, for comparative studies,
for availability investigation taking care of maintainability and logistic support, and
for the definition of quantitative reliability targets for designers and subcontractors.
However, because of different kind of uncertainties, the predicted reliability can
often be only given with a limited accuracy.  To these uncertainties belong

 • simplifications in the mathematical modeling (independent elements, complete
and sudden failures, no flaws during design and manufacturing, no damages),

 • insufficient consideration of faults caused by internal or external interference
(switching, transients, EMC, etc.),

 • inaccuracies in the data used for the calculation of the component failure rates.

On the other hand, the true reliability of an item can only be determined by
reliability tests, performed often at the prototype's qualification tests, i. e., late in
the design and development phase.  Practical applications also shown that with an
experienced reliability engineer, the predicted failure rate at equipment or
system level often agree reasonably well (within a factor of 2) with field data.
Moreover, relative values obtained by comparative studies generally have a much
greater accuracy than absolute values.  All these reasons support the efforts for a
reliability prediction during the design of equipment and systems with specified
reliability targets.

Besides theoretical considerations, discussed in the following sections,
practical aspects have to be considered when designing reliable equipment and
systems, for instance with respect to operating conditions and to the mutual
influence between elements (input / output, load sharing, effects of failures,
transients, etc.).  Concrete possibilities for reliability improvement are

 • reduction of thermal, electrical and mechanical stresses,

 • correct interfacing of components and materials,

 • simplification of design and construction,

 • use of qualitatively better components and materials,

 • protection against ESD and EMC,

 • screening of critical components and assemblies,

 • use of redundancy,

in that order.  Design guidelines (Chapter 5) and design reviews (Tables A3.3, 2.8,
4.3, and 5.5, Appendix A4) are mandatory to support such improvements.
This chapter deals with nonrepairable (up to system failure) equipment and
systems.  Maintainability is discussed in Chapter 4.  Reliability and availability of
repairable equipment and systems is considered carefully in Chapter 6.
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Required function
(mission profile)

yes

no

• Set up the reliability block diagram
(RBD), by performing a FMEA where
redundancy appears

• Determine the component stresses
• Compute the failure rate λi of each

component
• Compute R(t) at the assembly level
• Check the fulfillment of reliability

design rules
• Perform a preliminary design review

Eliminate reliability weaknesses
• component/material selection
• derating
• screening
• redundancy

Go to the next assembly or to the
next integration level

Reliability
goals achieved?

Figure 2.1    Reliability analysis procedure at assembly level

Taking account of the above considerations, Fig. 2.1 shows the reliability
analysis procedure used in practical applications at assembly level.  The proce-
dure of Fig. 2.1 is based on the part stress method discussed in Section 2.2.4
(see Section 2.2.7 for the part count method).  Also included are a failure modes
and effects analysis (FMEA / FMECA), to check the validity of the assumed
failure modes, and a verification of the adherence to design guidelines for relia-
bility in a preliminary design review (Section 5.1, Appendices A3.3.5 & A4).
Verification of the assumed failure modes is mandatory where redundancy
appears, in particular because of the series element in the reliability block diagram
(see for instance Example 2.6, Sections 2.3.6 for elements with more than one
failure mode & 6.8.7 for common cause failures, and Figs. 2.8 - 2.9 & 6.17 - 6.18
for a comparative investigation).  To simplify the notation, in Chapters 2 and 6
reliability will be used for predicted reliability and system for technical system
(i. e., for a system with ideal human factors and logistic support).



28 2   Reliability Analysis During the Design Phase

2.2 Predicted Reliability of Equipment and
Systems with Simple Structure

Simple structures are those for which a reliability block diagram exists and can be
reduced to a series / parallel form with independent elements.  For such an item, the
predicted reliability is calculated according to following procedure (Fig. 2.1):

 1. Definition of the required function and of its associated mission profile.
 2. Derivation of the corresponding reliability block diagram (RBD).
 3. Determination of the operating conditions for each element of the RBD.
 4. Determination of the failure rate for each element of the RBD.
 5. Calculation of the reliability for each element of the RBD.
 6. Calculation of the item (system) reliability function R ( )S t .
 7. Performance of a preliminary design review.
 8. Elimination of reliability weaknesses and return to step 1 or 2, as necessary.

This section discusses at some length steps 1 to 6, see Example 2.6 for the
application to a simple situation.  For the investigation of equipment and systems
for which a reliability block diagram does not exist, one refers to Section 6.8.

2.2.1 Required Function

The required function specifies the item's (system's) task.  Its definition is the
starting point for any analysis, as it defines failures.  For practical purposes,
parameters should be defined with tolerances and not merely as fixed values.

In addition to the required function, environmental conditions at system level
must also be defined.  Among these, ambient temperature (e. g. +40°C), storage tem-
perature (e. g. –20 to +60°C), humidity (e. g. 40 to 60%), dust, corrosive atmosphere,
vibrations (e. g. 0 5. gn, at 2 to 60 Hz ), shocks, noise (e. g. 40 to 70 dB), and power
supply voltage variations (e. g. ±20%).  From these global environmental conditions,
the constructive characteristics of the system, and the internal loads, operating
conditions (actual stresses) for each element of the system can be determined.

Required function and environmental conditions are often time dependent, lead-
ing to a mission profile (operational profile for software).  A representative mission
profile and the corresponding reliability targets should be defined in the system
specifications (initially as a rough description and then refined step by step), see the
remark on p. 38, as well as Section 6.8.6.2 for phased-mission systems.

2.2.2 Reliability Block Diagram

The reliability block diagram (RBD) is an event diagram.  It answers the following
question:  Which elements of the item under consideration are necessary for the
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Assembly

Component E1 E2 E3 E4 E5 E6

System

Equipment A B C D E

I II III

IV

V

a b

c d

e

Figure 2.2   Procedure for setting up the reliability block diagram (RBD) of a system with four levels

fulfillment of the required function and which can fail without affecting it?  Setting
up a RBD involves, at first, partitioning the item into elements with clearly defined
tasks.  The elements which are necessary for the required function are connected in
series, while elements which can fail with no effect on the required function
(redundancy) are connected in parallel.  Obviously, the ordering of the series
elements in the reliability block diagram can be arbitrary.  Elements which are not
relevant for (or used in) the required function under consideration are removed (put
into a reference list), after having verified (FMEA) that their failure does not affect
elements involved in the required function.  These considerations make it clear that
for a given system, each required function has its own reliability block diagram.

In setting up the reliability block diagram, care must be taken regarding the fact
that only two states (good or failed) and one failure mode (e. g. opens or shorts) can
be considered for each element.  Particular attention must also be paid to the correct
identification of the parts which appear in series with a redundancy (see e. g. Section
6.8).  For large equipment and systems the reliability block diagram is derived top
down as indicated in Fig. 2.2 (for 4 levels as an example).  At each level, the
corresponding required function is derived from that at the next higher level.

The technique of setting up reliability block diagrams is shown in the Examples
2.1 to 2.3 (see also Examples 2.6, 2.13, 2.14).  One recognizes that a reliability
block diagram basically differs from a functional block diagram.  Examples 2.2, 2.3,
2.14 also show that one or more elements can appear more than once in a reliability
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block diagram, while the corresponding element is physically present only once in
the item considered.  To point out the strong dependence created by this fact, it is
mandatory to use a box form other than a square for these elements (in Example 2.2,
if E2 fails the required function for mission 1 & 2 is fulfilled only if E E E1 3 5, ,  work).
To avoid ambiguities, each physically different element of the item should bear its
own number. The typical structures of reliability block diagrams are summarized in
Table 2.1 (see Sect. 6.8 for cases in which a reliability block diagram does not exist).

Example 2.1

Set up the reliability block diagrams for the following circuits:

E1

E2u1
R2 u2

R1

   

E3

E1 RB1

E2 RB2

Rc

TR1

TR2
E5

B

B
E4

C
E

C

E

E3E2 E5

E1

E6 E7 E8

E4

HF-

ampl.
Mixer

IF-

ampl. Dem.
LF-

ampl.

Osc.

L

(i) Res. voltage divider (ii) Electronic switch (iii) Simplified radio receiver

Solution

Cases (i) and (iii) exhibit no redundancy, i. e., for the required function (tacitly assumed here) all
elements must work.  In case (ii), transistors TR1 and TR2 are redundant if their failure mode is a
short between emitter and collector (the failure mode for resistors is generally an open).  From
these considerations, the reliability block diagrams follows as

E2E1
E5

E4

E3E2E1

(i) Resistive voltage divider (ii) Electronic switch

E3 E4 E5 E6E2E1 E7 E8

(iii) Simplified radio receiver

Example 2.2
An item is used for two different missions with the corresponding reliability block diagrams
given in the figures below.  Give the reliability block diagram for the case in which both
functions are simultaneously required in a common mission.

E1

E2

E3

E4E2

E1

E5

Mission 1 Mission 2

Solution
The simultaneous fulfillment of both required functions
leads to the series connection of both reliability block
diagrams.  Simplification is possible for element E1 but
not for element E2 .  A deeper discussion on phased-
mission reliability analysis is in Section 6.8.6.2.

E1

E2

E3

E4E2

E5

Mission 1 and 2
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Table 2.1   Basic reliability block diagrams and associated reliability functions (nonrepairable up to
system failure, new at t = 0 ( ( ) )RS0 0 1= , independent elements (except E2  in 9), active redundancy,
ideal failure detection & switch; 7-9 complex structures, can't be reduced to a series-parallel structure)

Reliability Block Diagram
Reliability Function

( ( ) ; ( ), ( ) )R t R tS S i i i= = =R R R0 0 1 Remarks

1                
E
   i R RS i=

One -item structure,
 

 

λ λ λ( ) ( )t R t ei i t= ⇒ = −

2   
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   1
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   2
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   n R RS i

i

n
=

=
∏

1

Series structure,
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1 2
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− − − −
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The element E 2  appears
twice in the reliability block
diagram (not in the hardware)
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Table 2.2    Most important parameters influencing the failure rate of electronic components
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Digital and linear ICs D x x x x x x x x x

Hybrid circuits D D D D D x x x x x x x x x x

Bipolar transistors D D x x x x x x x x x x

FETs D D x x x x x x x x x

Diodes D x x x x x x x x x x x x

Thyristors D x x x x x x x x x x x

Optoelectronic components D x x x x x x x x

Resistors D D x x x x x

Capacitors D D x x D x x x x

Coils, transformers D x x x x x x

Relays, switches D x x x x x x D x x x

Connectors D x x x x D x x x x

Example 2.3
Set up the reliability block diagram for the electronic
circuit shown on the right.  The required function asks for
operation of P2 (main assembly) and of P1 or P1'  (control
cards); E E1 4to   protect shorts at the input of P1 and P1' .

Solution P1'

P2

P1 E7

E9

E8U2

U1

E4

E3

E5

E6

E1

E2

This example is not as trivial as Examples 2.1 and 2.2.  A good way to derive the reliability block
diagram is to consider the mission " P1 or P1'  must work" and " P2  must work" separately, and
then to put both missions together as in Example 2.2 (see e. g. also Example 2.14 on pp. 68-69).

E1

E6
E8E4

E5 E7

E6
E3

E5 E2

E9

Also given in Table 2.1 are the associated reliability functions for the case of non-
repairable systems (up to system failure) with active redundancy and independent
elements except case 9 (Sections 2.2.5, 2.2.6, 2.3.1); see Section 2.3.5 for load
sharing, Section 2.5 for mechanical systems, and Chapter 6 for repairable systems.

D denotes dominant,   x denotes important
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Figure 2.3    Load (power) capability and typical derating curve (dashed) for a bipolar Si-transistor
as function of the ambient temperature θA ( P =  dissipated power, PN =  rated power at 40 °C)

2.2.3 Operating Conditions at Component Level, Stress Factors

The operating conditions of each element in the reliability block diagram influence
the item’s reliability and have to be considered.  These operating conditions are
function of the environmental conditions (Section 3.1.1) and internal loads, in
operating and dormant state.  Table 2.2 gives an overview of the most important
parameters influencing electronic component failure rates.

A basic assumption is that components are in no way over stressed.  In this
context it is important to consider that the load capability of many electronic
components decreases with increasing ambient temperature.  This in particular for
power, but often also for voltage and current.  As an Example, Fig. 2.3 shows the
variation of the power capability as function of the ambient temperature θ A for a
bipolar Si transistor (with constant thermal resistance RJA).   The continuous line
represents the load capability.  To the right of the break point the junction temper-
ature is nearly equal to 175°C (max. specified operating temperature).  The dashed
line gives a typical derating curve for such a device.  Derating is the designed
(intentional) non utilization of the full load capability of a component with the pur-
pose to reduce its failure rate.  The stress factor (stress ratio, stress) S is defined as

S =
°

applied load

rated load at 40 C
. (2.1)

To give a touch, Figs. 2.4 - 2.6 show the influence of the temperature (ambient θA ,
case θC  or junction θJ) and of the stress factor S on the failure rate of some
electronic components (from IEC 61709 [2.22]).  Experience shows that for a good
design and θ A ≤ °40 C  one should have 0 1 0 6. .< <S  for power, voltage, and
current, S ≤ 0 8.  for fan-out, and S ≤ 0 7.  for Uin of lin. ICs (see Table 5.1 for
greater details).  S < 0 1.  should also be avoided.
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Figure 2.4    Factor πT  as function of the case temperature θC  for capacitors and resistors, and
factor πU  as function of the voltage stress for capacitors  (examples from IEC 61709 [2.22])

10

100

1000

0.01
0 40 80 120 160

π
T

θJ [°C]

0.1

1

ICs, Transistors, Reference-
and Microwavediodes
EPROM, OTPROM,
EEPROM, EAROM
Diodes and/or Power Devices

0

0 40 80 120 160
θJ [°C]

π
T

100

200

300

400

ICs, Transistors, Reference- and Microwavediodes
EPROM, OTPROM, EEPROM, EAROM
Diodes and/or Power Devices
Resistors
Transformers, Inductors, Coils

Figure 2.5    Factor πT  as function of the junction temperature θ J   (left, half log for semiconductors
and right, linear for semiconductors, resistors and coils;  examples from IEC 61709 [2.22])
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function of voltage and current stress for optoelectronic devices  (examples from IEC 61709 [2.22])
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2.2.4 Failure Rate of Electronic Components

The failure rate λ( )t  of an item is the conditional probability referred to δ t  of a
failure in the interval ( , ]t t t+ δ  given that the item was new at t = 0 and did not fail
in the interval ( , ]0 t , see Eqs. (1.5), (2.10), (A1.1), (A6.25).  For a large population
of statistically identical and independent items, λ( )t  exhibits often three successive
phases:  One of early failures, one with constant (or nearly so) failure rate and one
involving failures due to wear out (Fig. 1.2).  Early failures should be eliminated by
a screening (Chapter 8).  Wear out failures can be expected for some electronic
components (electrolytic capacitors, power and optoelectronic devices, ULSI-ICs),
as well as for mechanical and electromechanical components.  They must be
considered on a case-by-case basis in setting up a preventive maintenance strategy
(Sections 4.6 & 6.8.2).

To simplify calculations, reliability prediction is often performed by assuming a
constant (time independent) failure rate during the useful life

λ λ( )t = .

This approximation greatly simplify calculation, since a constant (time independent)
failure rate λ  leads to a flow of failures described by a homogeneous Poisson
process with intensity λ  (process with memoryless property, see Eqs. (2.14),
(A6.29) & (A6.87), as well as Appendix A7.2.5).

The failure rate of components can be assessed experimentally by accelerated
reliability tests or from field data (if operating conditions are sufficiently well
known), with appropriate data analysis (Chapter 7).  For established electronic and
electromechanical components, models and figures for λ  are often given in failure
rate handbooks [2.20 - 2.30, 3.66, 3.67].   Among these, FIDES Guide 2009  A (2010)
[2.21], IEC 61709 (1996, Ed. 2 2011) [2.22], IEC TR 62380 (2004) [2.23], IRPH 2003 [2.24],
MIL HDBK-217 G (draft, Ed. H in preparation) [2.25], RDF-96 [2.28], RIAC-HDBK-217
Plus (2008) [2.29], Telcordia SR-332 (Rev. 3, 2011) [2.30].  IEC 61709 gives laws of
dependency of the failure rate on different stresses (temperature, voltage, etc.) and
must be supported by a set of reference failure rates λref  for standard industrial
environment (40°C ambient temperature θ A, GB  as per Table 2.3, and steady-state
conditions in field).  IRPH 2003 is based on IEC 61709 and gives reference failure
rates.  Effects of thermal cycling, dormant state, and ESD are considered in IEC TR
62380 and RIAC-HDBK-217 Plus.  Refined models are in FIDES Guide 2009 A.  MIL-

HDBK-217 was up to revision F  (Not. 2, 1995) the most common reference, it is
possible that starting with revision H it will take back this position.  For mixed
components / parts, ESA Q-30-08, NSWC-11, and NPRD-2011 can be useful [2.20, 2.26,
2.27].  An international agreement on failure rate models for reliability predictions
at equipment and systems level in practical applications should be found, also to
simplify comparative investigations (see e. g. [1.2 (1996)] and the remark on p. 38).
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Table 2.3   Indicative figures for environmental conditions and corresponding  factors πE

Stress πE  factor

Environment Vibrations Sand Dust RH (%) Mech. shocks ICs DS R C

GB    (+5 to +45°C)

(Ground benign)

2 – 200 Hz
≤ 0.1 gn

l l 40 – 70    ≤ 5 gn  / 22 ms 1 1 1 1

GF    (-40 to +45°C)

(Ground fixed)

2 – 200 Hz
1 gn

m m 5 – 100   ≤ 20 gn  / 6 ms 2 2 3 3

GM    (-40 to +45°C)

(Ground mobile)

2 – 500 Hz
2 gn

m m 5 –100 10 gn  / 11 ms
to 30 gn  / 6 ms

5 5 7 7

NS    (-40 to +45°C)

(Nav. sheltered)

2 – 200 Hz
2 gn

l l 5 – 100 10 gn  / 11 ms
to 30 gn  / 6 ms

4 4 6 6

NU    (-40 to +70°C)

(Nav. unsheltered)

2 – 200 Hz
5 gn

h m 10–100 10 gn  / 11 ms
to 50 gn / 2.3 ms

6 6 10 10

C = capacitors, DS = discrete semicond., R = resistors, RH = rel. humidity, h = high, m = med., l = low, g n≈10 m/s2

(GB is Ground stationary weather protected in [2.24, 2.25, 2.30] and is taken as reference value in [2.22, 2.23])

Failure rates are taken from one of the above handbooks or from one's own
field data for the calculation of the predicted reliability.  Models in these hand-
books have often a simple structure, of the form

λ λ π π π π= 0 T E Q A (2.2)
or

λ π π π π= + + +Q T E LC C C( ...)1 2 3 , (2.3)

with π π πQ Q Q= component  assembly  .  , often further simplified to

λ λ π π π= ref T U I , (2.4)

by taking π πE Q= = 1 because of the assumed standard industrial environment
( θA = °40 C, GB  as per Table 2.3, and steady-state conditions in field) and standard
quality level.  Indicative figures are in Tables 2.3, 2.4, A10.1, and in Example 2.4.

λ lies between 10 10 1− −h  for passive components and 10 7 1− −h  for VLSI ICs.
The unit 10 9 1− −h  is designated by FIT (failures in time or failures per 10 9 h ).

For many electronic components, λ increases exponentially with temperature,
doubling for an increase of 10 to 20°C.  This is considered by the factor π T , for
which an Arrhenius Model is often used, yielding for the ratio of π T  factors at
temperatures T2, T1 (for the case of one dominant failure mechanism, Eq. (7.56))

π
π

T

T

E

k T TA e
a

2

1

1 2

1 1

= ≈
−( )

. (2.5)

Thereby, A is the acceleration factor, k the Boltzmann constant ( 8 6 10 5. ⋅ − eV / K),
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Table 2.4    Reference values for the quality factors πQ component

Qualification

Reinforced CECC 
 * no special

Monolithic ICs 0.7 1.0 1.3

Hybrid ICs 0.2 1.0 1.5

Discrete Semiconductors 0.2 1.0 2.0

Resistors 0.1 1.0 2.0

Capacitors 0.1 1.0 2.0

* reference value in [2.22 -224, 2.28], class II in [2.30]  (corresponds to MIL-HDBK-217 F classes B, JANTX, M)

T the temperature in Kelvin degrees (junction for semiconductor devices), and Ea
the activation energy in eV.  As given in Figs. 2.4 - 2.6, experience shows that a
global value for Ea  often lie between 0 3. eV and 0 6. eV for Si devices.  The design
guideline θJ ≤ °100 C , if possible θJ ≤ °80 C , given in Section 5.1 for semiconductor
devices is based on this consideration (see π T  in linear scale on Fig. 2.5).
However, it must be pointed out that each failure mechanism has its own activation
energy (see e. g. Table 3.5), and that the Arrhenius model does not hold for all elec-
tronic devices and for any temperature range (e. g. limited to about 0   C   ICs).for− °150

Models in IEC 61709 assumes for π T  two dominant failure mechanisms with
activation energies Ea1

 and Ea 2
 (about 0 3. eV for Ea1

 and 0 6. eV for Ea 2
).  The

corresponding equation for π T  takes in this case the form

π T

z E z E

z E z E

a e a e

a e a e

a a

ref a ref a
=

+ −

+ −

1 2

1 2

1

1

( )

( )
, (2.6)

with 0 1≤ ≤a , z T T kref= −( / / ) /1 1 2 , zref refT T k= −( / / ) /1 1 1 , and Tref = 313 K (40°C).
Multiple failure mechanisms are also considered in FIDES Guide 2009A  [2.21, 3.32].

It can be noted that for T T T2 1= + ∆ , Eq. (2.5) yields A e T E k Ta≈ ∆ / 2
1  (straight line

in Fig. 7.10).  Assuming ∆T  normally distributed (during operation), it follows from
case (i) of Example A6.18 that the acceleration factor A is lognormally distributed;
this can be used to refine failure rate calculations for missions with variable oper-
ating temperature, see also [3.57 (2005), 3.61] and remarks to Eqs. (7.55) & (7.56).

For components of good commercial quality, and using π πE Q= = 1, failure rate
calculations lead to figures which for practical applications in standard industrial
environments (θA = °40 C, GB  as per Table 2.3, and steady-state conditions in field)
often agree reasonably well with field data (up to a factor of 2).  This holds at equip-
ment & system level, although deviations can occur at component level, depending
on the failure rate catalog used (see e. g. Example 2.4).  Greater differences can
occur if field conditions are severe or not sufficiently well known.  However, com-
parisons with obsolete data should be dropped and it would seem to be opportune to
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unify models and data, taking from each model the "good part" and putting them
together for "better" models (strategy applicable to many situations).  Models for
prediction in practical applications should remain reasonably simple, laws for
dominant failure mechanisms should be given in standards, and the list of reference
failure rates λref  should be yearly updated.  Models based on failure mechanisms
(physics of failure) have to be used as basis for simplified models, see e . g .  [2.15,
3.55, 3.58, 3.66, 3.67] for concrete steps in this direction and pp. 102, 103, and 333 for
some considerations.  Also it can become necessary to consider temperature and
stress dependent parameters. The assumption λ < − −10 9 1h  should be confined to
components with stable production process and a reserve to technological limits.

Calculation of the failure rate at system level often requires considerations on
the mission profile.  If the mission can be partitioned in time spans with almost
homogeneous stresses, switching effects are negligible, and the failure rate is time
independent (between successive state changes of the system), the contribution of
each time span can be added linearly, as often assumed for duty cycles.  With these
assumptions, investigation of phased-mission systems is possible (Section 6.8.6.2).

Estimation and demonstration of component's and system's failure rates are
considered in Section 7.2.3, accelerated tests in Section 7.4.

Example 2.4
For indicative purpose, following table gives failure rates calculated according to some different
data bases [ 2.30 (2001), 2.24, 2.23] for continuous operation in non interface application;
θA = °40 C, θJ = °55 C, S = 0 5. , GB , and πQ =1 as for CECC certified and class II Telcordia;
Pl is used for plastic package;  λ in 10 9 1− −h  (FIT), quantified at 1 10 9 1. h− −  (see also Tab. A10.1).

Telcordia
2001

IRPH
2003

IEC **

62380
2004

λref
*

DRAM, CMOS, 1 M, Pl 32 10 6 10

SRAM, CMOS, 1 M, Pl 60 30 11 30

EPROM CMOS, 1 M, Pl 53 30 20 20

16 Bit P(10 )5µ TR , CMOS, Pl 18 (60) (10) 40

Gate array, CMOS, 30,000 gates , 40 Pins, Pl 17 35 17 25

Lin, Bip, 70 Tr, Pl 33 7 21 10

GP diode, Si, 100 mA , lin, Pl 4 1 1 2

Bip. transistor, 300  mW, switching, Pl 6 3 1 3

JFET, 300  mW, switching, Pl (28) 5 1 4

Ceramic capacitor, 100 nF , 125°C , class 1 1 1 1 1

Foil capacitor, 1µF 1 1 1 1

Ta solid (dry) capacitor, herm., 100 µF , 0 3. /Ω V 1 1 1 2

MF resistor, 1/4 W, 100 kΩ 1 1 1 1

Cermet pot, 50 kΩ , < 10 annual shaft rot. (20) (30) 1 6

* suggested values for computations per IEC 61709 [2.22], θA = °40 C;   ** production year 2001 for ICs
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______________
+)  If the mission duration is a random time τW > 0, Eq. (2.76) applies, see also Eq. (6.244).

2.2.5 Reliability of One-Item Structures

A one-item nonrepairable structure is characterized by the distribution function
F( ) Pr{ }t t= ≤τ  of its failure-free time τ > 0,  hereafter used as a synonym for
failure-free operating time.  The reliability function R( )t , i. e. the probability of no
failure in the interval ( , ]0 t , follows as (Eq. (A6.24))

R( ) Pr{ ( , ] } Pr{ } F( )t t t t= = > = −no failure in 0 1τ , 
+)      F R( ) , ( ) .0 0 0 1= = (2.7)

R( )0 1=  implies item new at t = 0, and is a consequence of F( )0 0= .  At system level,

to specify the state at t = 0, R ( )Si t  will be used starting from Section 2.2.6;
thereby, S stands for system (the highest integration level of the item
considered) and i for the state entered at t = 0 (R ( ) ,Si Table0 1 6 2=   . );
i =0 holds for system new at t = 0, yielding R ( ) R ( )S St0 0 0 with  =1.

In this section, as in Chapter 1 & Appendix A6.5, item new at t = 0 is tacitly assumed.
The mean (expected value) of the failure-free time τ , designated as MTTF

(mean time to failure), can be calculated from Eq. (A6.38) as

MTTF dt t= =
∞
∫E[ ] ( ) .τ  R  
0

(2.8)

Should the item exhibit a useful life limited to TL , Eq. (2.8) yields MTTF dL

T
t t

L= ∫ R( ) .
0

In the following, TL =∞  is tacitly assumed (except in Example 6.25 suppl. results).
Equation (2.8) is an important relationship.  It is valid not only for a one-item
structure, often considered as an indivisible entity, but it also holds for a one-item
structure of arbitrary complexity;  R ( )S i t  & MTTFS i will be used to emphasize this

MTTF dSi Si t t=
∞
∫ R ( )
0

. (2.9)

Assuming R( )t  derivable, the failure rate λ( )t  of a nonrepairable one-item
structure new at t = 0 is given by (Eq. (A6.25))

λ τ δ τ
δ δ

( ) lim Pr{ }
R( ) /

R( )
,t

t
t t

t
tt

d d
t t

t= < ≤ + > =
↓

−
0

1  (2.10)

with R( )t  as per Eq. (2.7).  Considering R( )0 1= , Eq. (2.10) yields

R( )
( )

t e
x dx

t

=
− ∫ λ

0 , (2.11)

from which, for λ λ( )t = ,

R( )t e t= − λ . (2.12)
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The mean time to failure is in this case equal to 1 / λ .  In practical applications

1 / λ = MTBF (2.13)

(1 / λS SMTBF=  for systems) is often used, where MTBF stands for mean operating
time between failures, expressing a figure applicable to repairable structures.   Be-
cause of the often used estimate MTBF T kˆ /=  (Eq. (7.28)) and also to avoid misuses,

MTBF should be confined to repairable items with constant (time independ-
ent) failure rate which are as-good-as-new after repair (pp. 6, 316, 380).

As shown by Eq. (2.11), the reliability function of a nonrepairable one-item
structure new at t = 0 is completely defined by its failure rate λ( )t .  In the case of
electronic components, λ λ( )t =  can often be assumed.  The failure-free time τ then
exhibits an exponential distribution (F( ) Pr{ } )t t e t= ≤ = − −τ λ1 .  For a time dependent
failure rate (e. g. λ( )t  as in Fig. 1.2), the distribution function of the failure-free time
can often be approximated by the weighted sum (Eq. (A6.34)) of a Gamma distribu-
tion (Eq. (A6.97)), β < 1) and a shifted Weibull distribution (Eq. (A6.96), β > 1).

Equations (2.7), (2.8), (21.0) - (2.12) implies that the nonrepairable one-item
structure is new at time t = 0.  Also of interest in, some applications, is the probabil-
ity of failure-free operation during an interval ( , ]0 t  under the condition that the
item has already operated without failure for x0 time units before t = 0.  This quan-
tity is a conditional probability, designated by R( )t x0  and given by (Eq. (A6.27))

R( ) Pr{ } ,
R( )

R( )

( )
t x t x x

t x

x
e

x dx
x

t x

0 0 0
0

0

0

0

= > + > = =+ − ∫
+

τ τ
λ

   R ( ) .0 1= (2.14)

For λ λ( )x = , Eq. (2.14) reduces to Eq. (2.12).  This memoryless property occurs only
with constant (time independent) failure rate.  Its use greatly simplifies calcula-
tions, in particular in Chapter 6 for repairable systems.  R( )t x0  has to be distin-
guished from the interval reliability IR ( , ) Pr{ in [ , ] }t t t t tup+ = + =θ θ new at 0
per Eq. (6.26), which applies to repairable items.  In particular,

for a nonrepairable item IR ( , ) R( )t t t+ +=θ θ , and this is a good reason
to avoid to use IR( , )t t1 2  as reliability R( , )t t1 2 , see also pp. 179, 384, 426.

In some applications, it can appear that elements of a population of similar items
exhibits different failure rate.  Considering as an example the case of components
delivered from two manufacturer with proportion p p&  ( )1 −  and failure rates λ1
& 2λ , the reliability function of an arbitrarily selected component is (Eq. (A6.34))

R R R( ) ( ) ( ) ( ) ( )t p t p t pe p et t= + − = + −− −
1 21 11 2λ λ .

According to Eq. (2.10), it follows for the failure rate that

λ λ λλ λ λ λ( ) ( ( ) ) / ( ( ) ) .t p e p e p e p et t t t= + − + −− − − −1 21 2 1 21 1 (2.15)
λ( )t  decrease monotonically from p pλ λ1 21+  ( )−  to the minimum of { , }λ λ1 2 .
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As a final remark, let us point out that Eqs. (2.8) and (2.9) can also be used for
repairable i t ems .  In fact, assuming that at failure the item is replaced by a
statistically equivalent one, or repaired to as-good-as-new, a new independent
failure-free time τ with the same distribution function as the former one is started
after repair (replacement), yielding the same expected value.  However, for these
cases the variable x starting by x = 0 after each repair has to be used instead of t
(as for interarrival times).  With this,

MTTFS i can be used for the mean time to failure of a system, independently
of whether it is repairable or not;  the only assumption is that the system is
as-good-as-new after repair, with respect to the state Z i entered at t = 0.

This applies, in particular, to systems described by Markov and semi-Markov proc-
esses (Tables 6.1 & 6.2 on pp. 171-173), and implies that at each repair all non
repaired (renewed) elements in the system have constant failure rates (if the failure
rate of one non renewed element is not constant, difficulties can arise, also in the
case of an as-bad-as-old hypothesis, see pp. 138, 427, 519 for greater details).

2.2.6 Reliability of Series - Parallel Structures

For nonrepairable items (up to item failure), reliability calculation at equipment and
systems level can often be performed using models of Table 2.1 (p. 31).  The one-
item structure has been introduced in Section 2.2.5.  Series, parallel, and series -
parallel structures are considered in this Section.  Section 2.3 deals with the last 3
models of Table 2.1.  To unify notation, system will be used for the item investigated,
and it is assumed that at t = 0 the system in new (yielding R ( )S t0 , with R ( )S 0 0 1= ).

2.2.6.1 Systems without Redundancy

From a reliability point of view, a system has no redundancy (series model) if all
elements must work in order to fulfill the required function.  The reliability block
diagram consists in this case of the series connection of all elements ( E1 to En) of
the system (row 2 in Table 2.1).  For calculation purposes it is often assumed that
each element operates and fails independently from every other element (p. 52).  For
series systems, this assumption must not (in general) be verified, because the first
failure is a system failure for reliability purposes.  Let ei be the event

{ } ( , ]e E t ti i≡ ={element works without failure in the interval new at }.   0 0

The probability of this event is the reliability function R ( )i t  of element Ei , i. e.

Pr{ } Pr{ } R ( )e t ti i i= > =τ ,                  R ( ) .i 0 1= (2.16)
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The system does not fail in the interval ( , ]0 t  if and only if all elements, E En1 , ,…

do not fail in that interval, thus

R ( ) Pr{ }S nt e e0 1= ∩ …∩ .

Here and in the following, S stands for system and 0 specifies that the system is
new at t = 0 .  Due to the assumed independence among the elements E En1 , ,…  and
thus among e en1, ,… , it follows (Eq. (A6.9)) that for the reliability function R ( )S t0

R ( ) R ( ) ,S it t
i

n

0
1

=
=

∏                    R ( ) ,i 0 1= (2.17)

holds.  The failure rate of the system can be calculated from Eq. (2.10)

λ λS it t
i

n

( ) ( )=
=
∑

1
, 
+)

(2.18)

Equation (2.18) leads to the following important conclusion:

The failure rate of a series system (system without redundancy),
consisting of independent elements (p.52), is equal to the sum of the
failure rates of its elements.

The system's mean time to failure follows from Eq. (2.9).  The special case in which
all elements have a constant failure rate λ λi it( ) =  leads to

R ( ) ,          ( ) ( ) .S
t

S S i St e t tS

i

n

S
MTTF0 0

1

1= = = =−

=
∑  ,  

+)
 λ λ λ λ

λ
        (2.19)

2.2.6.2 Concept of Redundancy

High reliability, availability, and / or safety at equipment and systems level can often
only be reached with the help of redundancy.  Redundancy is the existence of more
than one means (in an item) for performing the required function.  Redundancy does
not just imply a duplication of hardware, since it can be implemented at the
software level or as a time redundancy.  However, to avoid common cause and
single-point failures, redundant elements should be realized (designed and
manufactured) independently from each other.  Irrespective of the failure mode
(e. g. shorts or opens), redundancy still appears in parallel on the reliability block
diagram, not necessarily in the hardware (Example 2.6).  In setting up the relia-
bility block diagram, particular attention must be paid to the series element to a
redundancy.  An FMEA (Section 2.6) is generally mandatory for such a decision.
Should a redundant element fulfill only a part of the required function a pseudo
redundancy exist.  From the operating point of view, one distinguishes between
active, warm, and standby redundancy:
______________
+)  In Eq. (2.18) and in the following, λS t( ) is used instead of λS t0 ( )  also to point out that for con-

siderations on the failure rate, the item (system) is generally assumed new at t = 0 (Eq. (2.10)).
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 1. Active Redundancy (parallel, hot):  Redundant elements are subjected from the
beginning to the same load as operating elements;  load sharing is possible,
but is not considered in the case of independent elements (Section 2.2.6.3).

 2. Warm Redundancy (lightly loaded):  Redundant elements are subjected to a
lower load until one of the operating elements fails; load sharing is present;
however, the failure rate is lower in reserve than in operation (Section 2.3.5).

 3. Standby Redundancy (cold, unloaded):  Redundant elements are subjected to
no load until one of the operating elements fails; no load sharing is possible,
and the failure rate in reserve state is assumed to be zero (Section 2.3.5).

Important redundant structures with independent elements in active redundancy
are considered in Sections 2.2.6.3 to 2.3.4.  Warm and standby redundancies are
investigated in Section 2.3.5 and Chapter 6 (repair rate µ =0).

2.2.6.3 Parallel Models

A parallel model consists of n (often statistically identical) elements in active
redundancy, of which k ( )1 ≤ <k n  are necessary to perform the required function
and the remaining n k−  are in reserve.  Such a structure is designated as a k-out-of-n
(or k-out-of-n: G) redundancy.  Investigation assumes, in general, independent
elements (see Sections 2.3.5, 6.4, 6.5 for load sharing and Section 6.8 for further
refinements like imperfect switching, common cause failures etc.).

Let us consider at first the case of an active 1-out-of-2 redundancy as given in
Table 2.1 (row 3).  The required function is fulfilled if at least one of the elements
E1 or E2 works without failure in the interval ( , ]0 t .  With the same notation as for
Eq. (2.16) it follows that (Eq. (A6.13))

R ( ) Pr{ } Pr{ } Pr{ } Pr{ }S t e e e e e e0 1 2 1 2 1 2= ∪ = + − ∩ ; (2.20)

from which, due to the assumed independence among the elements E E1 2  &  and
thus among the events e e1 2 &  (Eqs. (A6.8), (2.16))

R ( ) R ( ) R ( ) R ( ) R ( ) ,S t t t t t0 1 2 1 2= + −                 R ( ) R ( ) .1 20 0 1= = (2.21)

The mean time to failure MTTFS 0  can be calculated from Eq. (2.9). For two identical
elements with constant failure rate λ ( R R )( ) ( )1 2t t e t= = −λ  it follows that

R ( )S
t tt e e0

22= −− −λ λ ,   λ λ
λ

λS t
e t

e t( ) ,=
−

−

−

−2
1

2
   MTTFS 0

2 1

2

3

2
= =−

λ λ λ
. (2.22)

Equation (2.22) shows that in the presence of redundancy, the system failure rate
λS t( ) is a function of time (strictly increasing from 0 to λ), even if the element's
failure rate λ  is constant.  However, the stochastic behavior of the system is still de-
scribed by a Markov process (Section 2.3.5).  This time dependence becomes negli-
gible in the case of repairable systems (see Eq. (6.94) for const. failure & repair rates).
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1-out-of-3: R
S0

(t) = 3 e–λ t – 3 e–2 λ t + e–3 λ t , MTTF
S0

= 11 / (6 λ)

1-out-of-2: R
S0

(t) = 2 e–λ t –  e–2 λ t , MTTF
S0

= 9 / (6 λ)

One item: R
S0

(t) = e–λ t , MTTF
S0

= 1 / λ

2-out-of-3: R
S0

(t) = 3 e–2 λ t – 2 e–3 λ t , MTTF
S0

= 5 / (6 λ)

R
S0

(t)

0

1

0.8

0.6

0.4

0.2

1/λ 2/λ
t

Figure 2.7  Reliability functions for the one-item structure (as reference) and for some active redun-
dancies  (nonrepairable up to system failure, constant failure rates, identical and independent
elements, ideal failure detection & switch, no load sharing  (see Section 2.3.5 for load sharing))

Generalization to an active k-out-of-n redundancy (k-out-of-n: G) with n identical
( R ( ) R ( ) R( )1 t t tn= … = = ) and independent elements follows from the binomial
distribution (Eq. (A6.120)) by setting p t= R( )

R ( ) R ( ) ( R( ))S
i n i

i k

n
t t t

n

i0 1= ( ) − −

=
∑

 

,                  R( ) .0 1= (2.23)

R ( )S t0  is the sum of the probabilities for 0 1, , ..., n k−  failures ( , ,. .., )i n n k= −1  and
can be interpreted as the probability of observing at least k successes in n Bernoulli
trials with p t= R( ).  The case k = 1 yields (with R t= R ( ) and R( )0 1= )

R ( ) .( ) ( ) ( ) ( )S
i n i

i

n
i n i n

i

n
nt

n

i

n

i
R R R R R R0

1 0
1 1 1 1 1 

  

 = ( ) = ( )− − − − = − −−

=

−

=
∑ ∑ (2.24)

The mean time to failure MTTFS 0  can be calculated from Eq. (2.9), yielding

R andS
t

St e n MTTF
n0 01 1

1
1

1

2

1
( ) ( )                ( )= − − − = + + …+λ

λ
(2.25)

for k =1 and R( ) .t e t= −λ   The improvement in MTTFS 0  shown by Eq. (2.25)
becomes much greater when repair without interruption of operation at system level
is possible (µ λ/ 2  instead of 3 2/  for an active 1-out-of-2 redundancy, where
µ = 1 / MTTR is the constant repair rate, see Tables 6.6 & 6.8).  However,

as shown in Fig. 2.7, the increase of the reliability function R ( )S t0
caused by redundancy is important for short missions ( t << 1 / λ ), even in
the nonrepairable case.

If the elements of a k-out-of-n active redundancy are independent but different,
computation must consider all ( )n

i  subsets with exactly i elements up and n i−  ele-
ments down, and sum from i k=  to n (for k =1, Eq.(2.24) applies as R RS i0 1 1= − −∏ ( )).
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In addition to the k-out-of-n redundancy described by Eq. (2.23), of interest in
some applications are cases in which the fulfillment of the required function asks
that not more than n k−  consecutive elements fail (in linear or circular arrangement).
Such a structure can allow more than n k−  failures and is thus at least as reliable as
the corresponding k-out-of-n redundancy.  For a 3-out-of-5 redundancy it holds e. g.
R R R R R R R R R RS 0

5 4 3 2 2 3 45 1 10 1 1 1= + − + − − + −( ) ( ) ( ) ( )+        7  f o r l inear a n d  R R R RS 0
5 45 1= + −( )

+ − + −10 1 5 13 2 2 3R R R R( ) ( )  for circular arrangement ( ( ) ( )R R R R R RS 0
5 4 3 25 1 10 1= + − + −

according to Eq. (2.23)).  The model considered here differs from the so called
consecutive k-out-of-n: F system, in which the system is failed if k or more con-
secutive elements are failed [2.31, 2.38, 2.42].  Examples for consecutive k-out-of-n
structures are conveying systems and relay stations.  However, for this kind of
application it is important to verify that all elements are independent, in particular
with respect to common cause failures, load sharing, etc. (of course, for k = 1 the
consecutive k-out-of-n: F system reduces to a series model).

2.2.6.4 Series - Parallel Structures

Series - parallel structures can be investigated through successive use of the results
for series and parallel models.  This holds in particular for nonrepairable systems
with active redundancy and independent elements (p. 52).  To demonstrate the
procedure, let us consider row 5 in Table 2.1:

1st step: The series elements E1  - E3 are replaced by E8, E4  - E5 by E9, and
E6  - E7 by E10, yielding

E8

E9

E10
with

R ( ) R ( )R ( )R ( )

R ( ) R ( )R ( )

R ( ) R ( )R ( )

8 1 2 3

9 4 5

10 6 7

t t t t

t t t

t t t

=
=

=

2nd step: The 1-out-of-2 redundancy E8  - E9 is replaced by E11, giving

E10E11
with R ( ) R ( ) R ( ) R ( ) R ( )11 8 9 8 9t t t t t= + −

3rd step: From steps 1 and 2, the reliability function of the system follows as
(with R t R tS S i i i= = =R ( ), R ( ) R ( ) ,0 0 1  ,     i = 1, ..., 7 ) 

       R R R R R R R R R R R R R R RS = = + −11 10 1 2 3 4 5 1 2 3 4 5 6 7( ) . (2.26)

The mean time to failure can be calculated from Eq. (2.9).  Should all elements have
a constant failure rate ( λ1 to λ7), then
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R ( ) ( ) ( ) ( )
S

t t tt e e e0
1 2 3 6 7 4 5 6 7 1 2 3 4 5 6 7= − + + + + − + + + − + + + + + ++ −λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

and

MTTFS 0
1 1

1 2 3 6 7 4 5 6 7

=
+ + + +

+
+ + +λ λ λ λ λ λ λ λ λ

                 .−
+ + + + + +

1

1 2 3 4 5 6 7λ λ λ λ λ λ λ
(2.27)

Under the assumptions of active redundancy, nonrepairable (up to system failure),
independent elements (p. 52), and constant failure rates, the reliability function
R ( )S t0  of a series - parallel structure is given by a sum of exponential functions.
The mean time to failure MTTFS0  follows then directly from the exponent terms
of R ( )S t0 , see Eq. (2.27) for an example.

The use of redundancy implies the introduction of a series element in the relia-
bility block diagram which takes into account the parts which are common to the
redundant elements, creates the redundancy (Example 2.5), or assumes a control
and / or switching function.  For a design engineer it is important to evaluate the
influence of the series element in a redundant structure.  Figures 2.8 and 2.9 allow
such an evaluation to be made for the case of constant failure rates, independent
elements, and active redundancy.  In Fig. 2.8, a one-item structure ( E1 with failure
rate λ1) is compared with a 1-out-of-2 redundancy with a series element ( E2 with
failure rate λ2).  In Fig. 2.9, the 1-out-of-2 redundancy with a series element E2 is
compared with the structure which would be obtained if a 1-out-of-2 redundancy for
E2 with a series element E3 would become necessary.  Obviously λ λ λ3 2 1< <
( λ λ1 2=  for Fig. 2.8 and λ λ λ1 2 3= =  for Fig. 2.9 have an indicative purpose only).
The three cases are labeled a, b, and c.  The upper parts of Figs. 2.8 and 2.9 depict
the reliability functions and the lower parts the ratios MTTF MTTFS b S a0 0/  and
MTTF MTTFS c S a0 0/ , respectively.  Comparison between case a of Fig. 2.8 and case c
of Fig. 2.9, given as MTTF MTTFS c S a0 0/  on Fig. 2.8, shows the lower dependency
on λ λ2 1/ .  From Figs. 2.8 and 2.9 following design guideline can be formulated:

To approach the 1.5 MTTF gain given by the redundancy (Eq. (2.25)
with n=2), the failure rate λ2  of the series element in a nonrepairable
(up to system failure) 1-out-of-2 active redundancy should not be
larger than 10% of the failure rate λ1 of the redundant elements
(similar is for λ3  in Fig. 2.9);  thus,

    10 <<λ λ λ3 2 10 1.  . (2.28)

The investigation of the structures given in Figs. 2.8 &  2.9 for the repairable case
(µ =1 / MTTR as constant repair rate) leads in Section 6.6 to more severe conditions
( λ λ λ λ µ λ2 1 2 1 10 01 0 002< <. .       / > 500 in general,  and  for ) , see Figs. 6.17 & 6.18.

Influence of imperfect switching, as well as incomplete coverage, common cause
failures, and other more, are investigated for the repairable case in Section 6.8.



2.2   Predicted Reliability of Equipment and Systems with Simple Structures 47

a) E1 R tS a
t

0
1( ) e–= λ , MTTFS a0

1

1

=
λ

b)

1-out-of-2
active (E1' = E1)

E1'

E1

E2 R tS b
t t t

0
22 1 1 2( ) ( e – e )e– – –= λ λ λ , MTTFS b0

2 1

21 2 1 2

=
+ +λ λ λ λ

–

0 0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1.0

λ
1
t

R
S0b

 for λ
2
 = 0

R
S0b

 for λ
2
 =  0.05 λ

1

R
S0b

 for λ
2
 = 0.1 λ

1

R
S0a

R
S0b

 for λ
2
 = λ

1

R
S0

(t)

MTTF
S0b

MTTF
S0a

MTTF
S0c

MTTF
S0a

0.6

1.0

1.4 1.4

1

0.6

1.2

0.8

1.2

0.8

10–2 10–1 100

λ
2
 / λ

1

λ 3 =
 0

λ 3 =
 0

.1
 λ

2

Figure 2.8   Comparison between the one-item structure and a 1-out-of-2 active redundancy with
series element: nonrepairable (up to system failure), independent elements, constant failure rates
λ1 &  λ2   ( λ1 remains the same in both structures, equations from Table 2.1, given on the right-
hand side is MTTF MTTFS c S a0 0/ with MTTFS c0  from Fig. 2.9;  see Fig. 6.17 for the repairable case)



48 2   Reliability Analysis During the Design Phase

b)

E1'

E1

E2 R tS b
t t t

0
22 1 1 2( ) ( e – e )e– – –= λ λ λ , MTTFS b0

2 1

21 2 1 2

=
+ +λ λ λ λ

–

c)

1-out-of-2
active (E1' = E1)

E1'

E1

1-out-of-2
active (E2' = E2)

E2'

E2

E3
R tS c

t t
0

22 1 1( ) ( e – e )– –= λ λ

            ( e – e )e– – –2 2 2 32λ λ λt t t ,

MTTF
S c0

1 2

4

2 2

1 2 2

1 2 3

1 2 3

3

1 2 3

2 2

=

− + +

+ +
− + +

+ + +

 

              
 

                
 

/
/
(

/

( )

( )

)

( )

/

λ λ λ
λ λ λ

λ λ λ
λ λ λ

0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1.0
λ

3
 = 0.01 λ

2
, λ

2
 = 0.01 λ

1

λ
3
 = 0.01 λ

2
, λ

2
 = 0.1 λ

1

λ
3
 = 0.1 λ

2
, λ

2
 = 0.1 λ

1

λ
3
 = 0.2 λ

2
, λ

2
 = 0.1 λ

1

One item (R
S0a

(t))

λ
3
 =  λ

2 
= λ

1

λ
1
t

R
S0c

(t)

MTTF
S0c

MTTF
S0b

1.0
10–2 10–1 100

1.1

1.2

1.3

1.4

λ
3
 = 0

λ
3
 = 0.01 λ

2

λ
3
 = 0.1 λ

2

λ
3
 = 0.2 λ

2

λ
2
 / λ

1

Figure 2.9  Comparison between basic series-parallel structures:  nonrepairable (up to system fail-
ure), active redundancy, independent elements, constant failure rates λ λ1 3 to   ( λ1 and λ2  remain
the same in both structures, equations from Table 2.1;  see Fig. 6.18 for the repairable case)
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2.2.6.5 Majority Redundancy

Majority redundancy is a special case of a k-out-of-n redundancy, frequently used in,
but not limited to, redundant digital circuits.  2 1n +  outputs are fed to a voter whose
output represents the majority of its 2 1n +  input signals (N-modular redundancy).
The investigation is based on the previously described procedure for series - parallel
structures, see for example the case of n = 1 (active redundancy 2-out-of-3 in series
with the voter Eν) given in row 6 of Table 2.1.  The majority redundancy realizes in
a simple way a fault-tolerant structure without the need for control or switching
elements.  The required function is performed with no operational interruption up
to the time point of the second failure, while the first failure is automatically
masked by the majority redundancy.  In digital circuits, the voter for a majority
redundancy with n = 1 consists of three two-input NAND and one three-input
NAND gate, for a bit solution.  An alarm circuitry is also simple to realize, and
can be implemented with three two-input EXOR and one three-input O R gates
(Example 2.5).  A similar structure as for the alarm circuitry can be used to realize
a second alarm circuitry giving a pulse at the second failure, expanding thus the
2-out-of-3 active redundancy to a 1-out-of-3 active redundancy (Problem 2.6
in Appendix A11).  A majority redundancy can also b e realized with software
(N-version programming).  Without loss of generality, majority redundancy applies
to serial or parallel n bit words (bytes).  See e. g. [6.65 (Chapter 4)] for a deeper
discussion.

Example 2.5

Realize a majority redundancy for n = 1 with voter and alarm signal at the first failure of a
redundant element  (a bit solution with "1" for operating and "0" for failure).

Solution

Using the same notation as for Eq. (2.16),
the 2-out-of-3 active redundancy can be
implemented by ( )e e1 2∩ ∪  ( )e e1 3∩ ∪
( )e e2 3∩ .  With this, the functional
block diagram of the voter for a majority
redundancy with n = 1 is obtained as
realization of the logic equation related to
the above expression.  The alarm circuitry
giving a logic 1 at the occurrence of the
first failure is also easy to implement.
Also it is possible to realize a second alarm
circuitry to detect the second failure,
expanding the 2-out-of-3 to a 1-out-of-3
redundancy (Problem 2.6 in Appendix A11;
see also Fig. 2.7 for a comparison).

    

Alarm

    

Voter

E1

E3

E2
Output

Alarm

Input
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Example 2.6

Compute the predicted reliability for the following circuitry, for which the required function asks
that the LED must light when the control voltage u1 is high.  The environmental conditions
correspond to GB  in Table 2.3, with ambient temperature θA = °50 C  inside the equipment and
30˚C at the location of the LED; quality factor πQ = 1 as per Table 2.4.

u1 : 0.1 V and 4 V

VCC : 5 V

LED : 1 V at 20 mA, Imax = 100 mA

RC : 150 Ω, 1/2 W, MF

TR1 : Si, 0.3 W, 30 V, β > 100, plastic

RB1 : 10 kΩ, 1/2 W, MF
TR1

B

Eu1

C

VCC

RB1

Rc

LED

Solution

The solution is based on the procedure given in Fig 2.1.

1. The required function can be fulfilled since the transistor works as an electronic switch
with IC ≈ 20 mA and IB ≈ 0 33. mA in the on state (saturated) and the off state is assured
by u1 0 1= . V.

2. Since all elements are involved in the required function, the reliability block diagram consists
of the series connection of the five items E1 to E5, where E5 represents the printed circuit
with soldering joints.

E1 � LED, E2 � RC, E3 � RB1, E4 � TR1
E5 � PCB and solder jointsE3 E4 E5E2E1

3. The stress factor of each element can be easily determined from the circuitry and the given
rated values.  A stress factor 0.1 is assumed for all elements when the transistor is off.
When the transistor is on, the stress factor is 0.2 for the diode and about 0.1 for all
other elements.  The ambient temperature is 30°C for the LED and 50°C for the remaining
elements.

4. The failure rates of the individual elements is determined (approximately) with data from
Section 2.2.4 (Example 2.4, Figs. 2.4 - 2.6, Tables 2.3  and 2.4 with π πE Q= = 1).  Thus,

LED : λ1 ≈ 1.3 ·10
–9

 h
–1

Transistor : λ4 ≈ 3 ·10
–9

 h
–1

Resistor : λ2 = λ3 ≈ 0.3 ·10
–9

 h
–1

,

when the transistor is on.  For the printed circuit board and soldering joints, λ5
9 12 10= ⋅ − −h

is assumed.  The above values for λ remain practically unchanged when the transistor is off
due to the low stress factors (the stress factor in the off state was set at 0.1).

5. Based on the results of Step 4, the reliability function of each element can be determined
as R ( )i

tt e i= −λ

6. The reliability function R ( )S t0  for the whole circuitry can now be calculated. Equation (2.19)
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yields R ( ) .
S t e t= − ⋅ −6 9 10 9

.  For 10 years of continuous operation, for example, the predicted
reliability of the circuitry is > 0 999. .

7. Supplementary result:  To discuss this example further, let us assume that the failure rate of
the transistor is too high (e. g. for safety reasons) and that no transistor of better quality can be
obtained.  Redundancy should be implemented for this element.  Assuming as failure modes
short between emitter and collector for transistors and open for resistors, the resulting
circuitry and the corresponding reliability block diagram are

LED

TR1
B

E

u1

C

VCC

RB1

Rc

E

CBRB2
TR2

E5E3

E4

E7

E2E1 E6

E1 to E5 as in point 2

E6 = RB2 = RB1 , E7 = TR2 = TR1
^ ^ ^ ^

Due to the very small stress factor, calculation of the individual element failure rates yields
the same values as without redundancy.  Thus, for the reliability function of the circuitry one
obtains, assuming independent elements (up to failure),

     R ( ) ( ).
S t e e et t t

0
9 9 94 2 10 3 10 6 102= −− ⋅ − ⋅ − ⋅− − − ,

from which it follows that

      R ( )         .
S t e tt

0
94 2 10 610≈ ≤− ⋅ − for h .

Circuitry reliability is then practically no longer influenced by the transistor.  This agrees with
the discussion made with Fig. 2.7 for λ t << 1.  If the failure mode of the transistors were an
open between collector and emitter, both elements E4  and E7  would appear in series in the
reliability block diagram; redundancy would be a disadvantage in this case.  The intention
to put R RB B1 2  and   in parallel (redundancy) or to use just one basis resistor is wrong, the
functionality of the circuitry would be compromised because of the saturation voltage of TR2 .

2.2.7 Part Count Method

In an early development phase, for logistic purposes, or in some particular
applications, a rough estimate of the predicted reliability can be required.  For such
an analysis, it is generally assumed that the system under consideration is without
redundancy (series structure as in Section 2.2.6.1) and the calculation of the failure
rate at component level is made either using field data or by considering
technology, environmental, and quality factors only.  This procedure is known as
part count method [2.25] and differs basically from the part stress method
introduced in Section 2.2.4.  Advantage of a part count prediction is the great
simplicity, but its usefulness is often limited to specific applications.
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2.3 Reliability of Systems with Complex Structure

Complex structures arise in many applications, e. g. in power, telecommunications,
defense, and aerospace systems.  In the context of this book, a structure is complex

when the reliability block diagram either cannot be reduced to a series-
parallel structure with independent elements or does not exist.

For instance, a reliability block diagram does not exist if more than two states (good
/ failed) or one failure mode (e. g. short or open) must be considered for an element.
Moreover, the reduction of a reliability block diagram to a series - parallel structure
with independent elements is in general not possible with distributed (meshed) struc-
tures or when elements appear in the diagram more than once (cases 7-9 in Tab. 2.1).
The term independent elements refers to independence up to the system failure, in
particular without load sharing between redundant elements (see Section 2.3.5 and
Chapter 6 for load sharing).  For comparative investigations in Chapter 6, the term
totally independent elements will be used to indicate independence with respect to
operation and repair (each element in the reliability block diagram operates and
fails independently from every other element and has its own repair crew).

Analysis of complex structures can become time-consuming.  However, methods
are well developed, should the reliability block diagram exist and the system satisfy:

 1. Only active (parallel) redundancy is considered.
 2. Elements can appear more than once in the reliability block diagram, but

different elements are independent (totally independent for Eq. (2.48)).
 3. On / off operations are either 100% reliable, or their effect has been consid-

ered in the reliability block diagram according to the above restrictions.

Under these assumptions, analysis can be performed using Boolean models.  How-
ever, for practical applications, simple heuristically oriented methods apply well.
Heuristic methods are given in Sections 2.3.1-2.3.3, Boolean models in Section 2.3.4.

Section 2.3.5 deals then with warm redundancy, allowing for load sharing.
Section 2.3.6 considers elements with two failure modes.  Stress / strength analysis
are discussed in Section 2.5.  Further aspects, as well as situations in which the relia-
bility block diagram does not exist, are considered in Section 6.8 (see also Section
6.9 for an introduction to BDD, dynamic FT, Petri nets & computer-aided analysis).

As in Section 2.2.6 and Chapter 6, reliability figures have the indices Si , where
S stands for system and i for the state entered at t = 0 ( i = 0 for system new).

2.3.1 Key Item Method

The key item method is based on the theorem of total probability (Eq. (A6.17)).
Assuming the item (system) new at t = 0, the event {item operates failure free in
( , ]0 t  | system new at t = 0}, or {system up in ( , ]0 t  | system new at t = 0}, can be split



2.3   Reliability of Systems with Complex Structure 53

E
1

E
2

E
4

E
5

E
3

Figure 2.10    Reliability block diagram for a bridge circuit with a bi-directional connection on E5

into the following two complementary events (p. 414)

{( ( , ] ( , ]) }Element  in system  in system new at  E up t up t ti 0 0 0∩ =
and

{( ( , ] ( , ] ) }Element  fails in system  in  system new at E t up t ti 0 0 0∩ = .

From this it follows (Example A7.2, p. 481) that, for the reliability function R ( )S t0 ,

R ( ) R ( ) Pr{ ( )}S i it up E upt t t t0 0 0 0= ∩ =system in ( , ]  in ( , ] system new at 

   system in ( , ]  in ( , ] system new at   
(2.29)

+ − ∩ =( R ( )) Pr{ ( )} ,1 0 0 0i it t t tup E failed

where R ( ) Pr{ } Pr{ }i i i it t t t tE up E up E= = = = in ( , ]   system new at  in ( , ]  new at    0 0 0 0
as in Eq. (2.16).  Element Ei  must be chosen in such a way that a series - parallel
structure is obtained for the reliability block diagrams conditioned by the events
{ }E upi t in ( , ]0  and { }Ei t failed in ( , ]0 .  Successive application of Eq. (2.29) is also
possible (Examples 2.9 and 2.14).  Sections 2.3.1.1 and 2.3.1.2 present two typical
situations.  In the context of Boolean functions, the above decomposition is known
as a Shannon decomposition (Eq. (2.38)) and leads in particular to binary decision
diagrams (Section 6.9.3).

2.3.1.1 Bridge Structure

The reliability block diagram of a bridge structure with a bi-directional connection
is shown in Fig. 2.10 (row 7 in Table 2.1).  Element E5 can work with respect to the
required function in both directions, from E1 via E5 to E4 and from E2 via E5 to
E3.  It is therefore in a key position (key element).  This property is used to
calculate the reliability function by means of Eq. (2.29) with E Ei = 5.  For the con-
ditional probabilities in Eq. (2.29), the corresponding reliability block diagrams are

E
1

E
3

E
4

E
2

E
1

E
3

E
4

E
2

E5 did not fail in ( , ]0 t E5 failed in ( , ]0 t

From Eq. (2.29), it follows that (with R t R tS S i i i i= = = =R R   Rand0 0 1 1 5( ), ( ) , ( ) , ...,, )

 ( )( ) ( )( )R R R R R R R R R R R R R R R R R R RS = + − + − + − + −5 1 2 1 2 3 4 3 4 5 1 3 2 4 1 2 3 41 . (2.30)
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Same considerations apply to the bridge structure with a directed connection (row 8
in Table 2.1).  Here, Ei  must be E E E E1 2 3 4, , ,  or  (preferably E E1 4or ), yielding

 ( ) ( ) ,R R R R R R R R R R R R R R R R RS + (1 )     [ ] (2.31)= + + − − + − −4 2 1 3 5 3 5 2 1 3 5 3 5 4 1 3

when choosing E Ei = 4, and to the same result

 ( ) ( ) ,R R R R R R R R R R R R R R R R RS = + + − − + − −1 3 4 2 5 2 5 3 4 2 5 2 5 1 2 4[ ] + (1 )    

when choosing E1. Example 2.7 shows a further application of the key item method.

Example 2.7

Give the reliability of the item according to case a) below.  How much would the reliability be
improved if the structure were be modified according to case b)?  (Assumptions: nonrepairable
up to system failure, active redundancy, independent elements, R ( ) R ( ) R ( )' ' 'E E Et t t1 1 1= = =
R ( )1 t  and R ( ) R ( ) R ( )'E Et t t2 2 2= = ).

E1''

E1 E2

E2'

E1'

E1''

E1 E2

E2'

E1'

Case a) Case b)

Solution

Element E1'  is in a key position in case a).  Thus, similarly to Eq. (2.30), one obtains
R R R R R R R R Ra= − + − −1 2 2 1 1 2 1 22 1 2

2 2 2
( ) ( )( ) with R ta 0a= R ( ), R ti i i i= = =R ( ), R ( ) , .,0 1 1 2

Case b) represents a series connection of a 1-out-of-3 redundancy with a 1-out-of-2 redundancy.
From Sections 2.2.6.3 and 2.2.6.4 it follows that R R R R R Rb = − + −1 2 1 1 23 3 2

2
( )( ), with

R tb 0b= R ( ), R ti i i i= = =R ( ), R ( ) , .,0 1 1 2   From this,

R R R R R Rb a− = − −2 1 11 2 2 1
2( )( ) . (2.32)

The difference R Rb a−  reaches as maximum the value 2 27/  for R1 1 3= /  and R2 1 2= / , i. e.
R Rb a57 /108  and  = = 49 108/  ( R R R R R Rb a  for    − = = = = =0 0 1 0 11 1 2 2, , , ); the advantage

of case b) is small, as far as reliability is concerned.

2.3.1.2 Reliability Block Diagram in Which at Least One Element
Appears More than Once

In practice, situations often occur in which an element appears more than once in
the reliability block diagram, although, physically, there is only one such element in
the system considered.  These situations can be investigated with the key item
method introduced in Section 2.3.1.1, see  Examples 2.8, 2.9, and 2.14.
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Example 2.8

Give the reliability for the equipment introduced in Example 2.2 (p. 30).

Solution

In the reliability block diagram of Example 2.2, element E2  is in a key position.  Similarly to
Eq. (2.30) it follows that

R R R R R R R R R R RS = + − + −2 1 4 5 4 5 2 1 3 51( ) ( ) , (2.33)

with R tS S= R ( )0  and R ti i i i= = =R ( ), R ( ) , ..., .,0 1 51

Example 2.9

Give the reliability for the redundant circuit of Example 2.3 (p. 32).

Solution

In the reliability block diagram of Example 2.3, U1 and U2 are in a key position.  Using the
method introduced in Section 2.3.1 successively on U1 and U2, i. e. on E5 and E6 , yields.

R R R R R R R R R R R R R R R R R R R R

R R R R R

S = + − + − + −

+ −
9 5 6 1 7 4 8 1 4 7 8 2 3 2 3 6 1 2 7

5 3 4 6 8

1

1

{ [ ( )( ) ( ) ]

( ) }              .

With R R R R R R R R R R R R RD U I II1 2 3 4 5 6 7 8 9= = = = = = = = =,  ,  ,   it follows that

R R R R R R R R R R R R RS U U D D D D U D= − − + −II [ ( ) ( ) ( ) ]I I I2 2 2 12 2 2 2 , (2.34)

with R t R t R t R t R t iS S U U D D I I II II i= = = = = = =R ( ) R ( ), R ( ), R ( ), R ( ) R ( ) ( , ..., ) .,0 0 1 1 9,     

2.3.2 Successful Path Method

In this and in the next section, two general (closely related) methods are introduced.
For simplicity, considerations will be based on the reliability block diagram given in
Fig. 2.11.  As in Section 2.2.6.1, ei  stands for the event

{ ( , ] }element   in the interval  new at E up ti t0 0= ,

hence Pr{ } R ( )ei i t=  with R ( )i 0 1= , as in Eq. (2.16), and Pr{ } R ( )ei i t= −1 .
The successful path method is based on the following concept:

The system fulfills its required function if there is at least one path between
the input and the output upon which all elements perform their required
function.

Paths must lead from left to right and may not contain any loops.  Only the given
direction is possible along a directed connection.  The following successful paths
exist in the reliability block diagram of Fig. 2.11
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E4E
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5
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E4

Figure 2.11    Reliability block diagram of a complex structure (elements E3 and E4  appear each
twice in the RBD, the directed connection has reliability 1)

e e e e e e e e e e e e e e e1 3 4 1 3 5 1 4 5 2 3 5 2 4 5∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩,    ,    ,    ,    .

Consequently it follows that

R ( ) Pr{( ) ( ) ( )S t e e e e e e e e e0 1 3 4 1 3 5 1 4 5= ∩ ∩ ∪ ∩ ∩ ∪ ∩ ∩
     ( ) ( )}∪ ∩ ∩ ∪ ∩ ∩e e e e e e2 3 5 2 4 5 ;

from which, using the addition theorem of probability theory (Eqs. (A6.14), (A6.15)),

R R R R R R R R R R R R R R R R R R R RS = + + + + −1 3 4 1 3 5 1 4 5 2 3 5 2 4 5 1 3 4 52

        − − − +R R R R R R R R R R R R R R R R R1 2 3 5 1 2 4 5 2 3 4 5 1 2 3 4 5, (2.35)

with R t R tS S i i i i= = = =R R   Rand0 0 1 1 5( ), ( ), ( ) , ...,, .  Equation (2.35) follows also
(directly) using the key item method (Section 2.3.1) successively on E3 and E5
( R R R R R R R R R R R R R R R R RS = + − + − + − + −3 5 1 2 1 2 5 1 4 3 4 5 1 2 1 21 1[ ( ) ( ) ] ( ) ( ) ).

2.3.3 State Space Method

This method is based on the following concept:

To each element Ei is assigned an indicator (binary process) ζi t( ) with the
following property: ζi t( ) = 1 as long as Ei does not fail, and ζi t( ) = 0 if Ei
has failed ( ( ) )ζi 0 1= .  For any given (fixed) t ≥ 0, the vector with compo-
nents ζi t( ) determines the system state.  Since each element in the interval
(0, t] functions or fails independently of the others, 2 n states are possible
for an item with n elements.  After listing the 2 n possible states at time t, all
those states are determined in which the system performs the required
function.  The probability that the system is in one of these states is the
reliability function R ( )S t0  of the system considered (with R ( )S 0 0 1= ).

The 2 n possible conditions at time t for the reliability block diagram of Fig. 2.11 are
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E

E

E

E

E

1

2

3

4

5

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

A "1" in this table means that the element or item considered has not failed in (0, t]
(see footnote on p. 58 for fault tree analysis).  For Fig. 2.11, the event

{ ( , ] }system   in the interval  new at up t t0 0=

is equivalent to the event

{ ( ) ( ) ( )

( ) ( ) ( )

(

e e e e e e e e e e e e e e e

e e e e e e e e e e e e e e e

e e e e e

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4

∩ ∩ ∩ ∩ ∪ ∩ ∩ ∩ ∩ ∪ ∩ ∩ ∩ ∩
∪ ∩ ∩ ∩ ∩ ∪ ∩ ∩ ∩ ∩ ∪ ∩ ∩ ∩ ∩
∪ ∩ ∩ ∩ ∩ 55 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

) ( ) ( )

( ) ( ) .

∪ ∩ ∩ ∩ ∩ ∪ ∩ ∩ ∩ ∩
∪ ∩ ∩ ∩ ∩ ∪ ∩ ∩ ∩ ∩

e e e e e e e e e e

e e e e e e e e e e }

After appropriate simplification, this reduces to

{( ) ( ) ( )e e e e e e e e e e e e2 3 5 1 3 4 5 1 2 3 4 5∩ ∩ ∪ ∩ ∩ ∩ ∪ ∩ ∩ ∩ ∩
∪ ∩ ∩ ∩ ∪ ∩ ∩ ∩( ) ( )e e e e e e e e1 2 4 5 2 3 4 5 },

from which

R ( ) Pr{( ) ( ) ( )S t e e e e e e e e e e e e0 2 3 5 1 3 4 5 1 2 3 4 5= ∩ ∩ ∪ ∩ ∩ ∩ ∪ ∩ ∩ ∩ ∩
               ( ) ( )}∪ ∩ ∩ ∩ ∪ ∩ ∩ ∩e e e e e e e e1 2 4 5 2 3 4 5 . (2.36)

Evaluation of Eq. (2.36) leads to Eq. (2.35).  Note that all events in the state space
method (columns in state space table & terms in Eq. (2.36)) are mutually exclusive.

2.3.4 Boolean Function Method

The Boolean function method generalizes & formalizes the methods based on the re-
liability block diagram (Section 2.2) and those introduced in Sections 2.3.1 - 2.3.3.
For this analysis, besides the 3 assumptions given on p. 52, it is supposed that the
system considered is coherent (see Eq. (2.37) for a definition); i. e., basically, that
the state of the system depends on the states of all of its elements and the structure
function (Eq. (2.37)) is monotone (implying in particular, that for a system down no
additional failure of any element can bring it in an up state and, for a repairable
system, if the system is up it remains up if any element is repaired).  Almost all
systems in practical applications are coherent.  In the following, up is used for
system in operating state and down  for system in a failed state (in repair if
repairable).
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A system is coherent if its state can be described by a structure function φ

φ φ ζ ζ= … =
( , , )1

1
n

for system up

0           for system down
 +) (2.37)

of the indicators (binary processes) ζ ζi i t= ( ), defined in Section 2.3.3 
++ )  ( ζi = 1 if

element Ei  is up and ζi = 0 if element Ei  is down), for which the following applies:

   1.  φ depends on all the variables ζi ( , ..., )i n= 1 .

   2.  φ is non decreasing in all variables (with φ = 0 for all ζi = 0, φ =1 for all ζi = 1).

φ is a Boolean function and can thus be written as (Shannon decomposition)

  

 
 

)   ,        
                                                      (2.38) 

φ φ
φ

ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

( , , ) ( , , , , , , )

( ( , , , , , , ) .,,.. .
1 1 1 1

1 1 1

1

1 0 1

… = … …

+ − … …
− +

− + =

n i i n

i i i n

i

i n

Equation (2.38) is similar to Eq. (2.29).  Successive Shannon's decompositions
leads to Binary Decision Diagrams (BDD), see Section 6.9.3.

Since the indicators ζi and the structure function φ take only values 0 and 1, it
follows that E[ ( )] . Pr{ ( ) } .Pr{ ( ) } Pr{ ( ) }ζ ζ ζ ζi i i it t t t= = + = = =1 1 0 0 1 ;  thus,

R ( ) Pr{ ( ) } E[ ( )]i i it t t= = =ζ ζ1 ,                R ( ) , ,..., ,i i n0 1 1= =  (2.39)

applies for the reliability function R ( )i t  of element Ei  
++ ) , and

R ( ) ( ( ), , ( )) E[ ( ( ), , ( ))]S n nt t t t t0 1 11= … ={ }= …Pr    φ ζ ζ φ ζ ζ ,   R ( ) ,S 0 1= (2.40)

applies for the reliability function R ( )S t0  of the system (calculation of E [ ]φ  is
often easier than calculation of Pr{ }φ = 1 ).

The Boolean function method transfers thus the problem of calculating R ( )S t0
to that of the determination of the structure function φ ζ ζ( ,..., )1 n .  Two methods
with a great intuitive appeal are available for this purpose (for coherent systems):

 1. Minimal Path Sets approach:  A set Pi  of elements is a minimal path set if the
system is up when ζ j = 1 for all   E j i∈ P  and ζk = 0 for all Ek i∉ P , but this
does not apply for any subset of Pi   (for the bridge in Fig. 2.10, {1,3}, {2,4},
{1,5,4}, and {2,5,3} are the minimal path sets).  The elements E j  within Pi
form a series model with structure function

  

φ ζP
P

i j
E j i

=
∈

∏   . (2.41)

If for a given system there are r minimal path sets, these form an active
1-out-of-r redundancy, yielding (see also Eq. (2.24))

______________
+)  In fault tree analysis (FTA), "0" for up and "1" for down is often used [A2.6 (IEC 61025)].

++) No distinction is made here between Boolean random variable ζ i  and Boolean variable (realiza-
tion of ζ i  );  equations with ζ i i St t t( ), R ( ), R ( )0  are intended to apply for every given (fixed) t ≥ 0 ;
considering that each ζ i  takes values 0 & 1 and appears only in linear form, addition, subtraction
& multiplication can be used (in particular    ,  ) . ζ ζ ζ ζ ζ ζ ζ ζ ζ ζi j i j j ji i i i≡ ∧ ≡ ∨ ≡− − − −1 1 1 1( )( ) ,
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φ φ φζ ζ ζ= … = − − = − −
= ∈=
∏ ∏∏( , , ) ( ) ( )1

1 1
1 1 1 1n

i

r

j
Ei

r

i
j i

  P
P

. (2.42)

2. Minimal Cut Sets approach:  A set Ci is a minimal cut set if the system is down
when ζ j = 0 for all E j i∈C  and ζk = 1 for all Ek i∉C , but this does not apply
for any subset of   Ci  (for the bridge in Fig. 2.10, {1,2}, {3,4}, {1,5,4}, and
{3,5,2} are the minimal cut sets).  The elements E j  within   C i  form a parallel
model (active redundancy with k = 1) with structure function (Eq. (2.24))

φ ζC
C

i j
E j i

= − −
∈

∏1 1( ) . (2.43)

If for a given system there are m minimal cut sets, these form a series model,
yielding (see also Eq. (2.17))

φ φ φζ ζ ζ   = … = = − −
= ∈=

∏ ∏∏( , , ) ( ( ))1
1 1

1 1n i j
i

m

Ei

m

j i

C
C

. (2.44)

A series model with elements E En1, ...,  has one path set and n cut sets, a parallel
model (1-out-of-n) has one cut set and n  path sets.  Algorithms for finding all
minimal path sets and all minimal cut sets are known, see e. g. [2.33, 2.34 (1975)].

For coherent nonrepairable systems (up to system failure) with structure func-
tion φ ζ ζ( ,..., )1 n  per Eq. (2.42) or (2.44), the reliability function R ( )S t0  follows
(for any given (fixed) t > 0, R ( )S 0 0 1= ) from Eq. (2.40) or directly from

  
R ( ) Pr{ } Pr{ }S r Ct

m0 1
1 1 1 0 0

1
= = ∪ … ∪ = = − = ∪ … ∪ =φ φ φ φP P C . (2.45)

Equation (2.45) has a great intuitive appeal.  For practical applications, the follow-
ing bounds on the reliability function R ( )S t0  can often be used [2.34 (1975)]

Pr{ }  R  Pr{ }φ φC Pi
i

m

S i
i

r

t= ≤ − =
= =
∏ ≤ ∏1 1 0

1
0

1

( ) . (2.46)

If the minimal path sets have no common elements, the right-hand inequality of Eq.
(2.46) becomes an equality, similar is for the minimal cut sets (left-hand inequality).

For coherent nonrepairable systems (up to system failure) with independent ele-
ments, the reliability function R ( )S t0  can also be obtained, considering ζ ζ ζi i i= ,

directly from the structure function φ ζ ζ( ,..., )1 n  given by Eqs. (2.42) or (2.44),
by substituting R ( )i t  for ζi (Eqs. (2.39), (2.40), (A6.68), (A6.69)).

Also it is possible to use the disjunctive normal form φ ζ ζD n( , , )1 …  or conjunctive
normal form φ ζ ζL n( , , )1 …  of the structure function φ ζ ζ( , , )1 … n , yielding

R ( ) ( , , ) ( , , )S D n L nt R R R R0 1 1= … = …  φ φ ,    R t ni i i i= = =R ( ), R ( ) , ...,,0 1 1   . (2.47)
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The path sets given on p. 56 are the minimal path sets for the reliability block dia-
gram of Fig. 2.11.  Equation (2.35) follows then from Eq. (2.40), using Eq. (2.42)
for φ ζ ζ( , , )1 5… = − − − − − − 1 1 1 1 1 11 3 4 1 3 5 1 4 5 2 3 5 2 4 5( ) ( ) ( ) ( ) ( ),ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ
simplified by considering ζ ζ ζi i i= , and substituting R ( )i t  for ζi in the final
φ ζ ζ( , , )1 5… , see also the footnote on p. 58.  Investigation of the block diagram of
Fig. 2.11 by the method of minimal cut sets is more laborious.  Obviously, minimal
path sets and minimal cut sets deliver the same structure function, with different
effort depending on the structure of the reliability block diagram considered
(structures with many series elements can be treated easily with minimal path sets).

Example 2.10

Give the structure function according to the minimal path sets and the minimal cut sets approach
for the following reliability block diagram, and calculate the reliability function assuming
independent elements and active redundancies.

E1

E3

E2

E4

E5 E2

Solution

For the above reliability block diagram, there exist 2 minimal path sets   P1,  P2  and 4 minimal
cut sets C C1 4, ,… , as given below.

E1

E3

E2

E4

E5 E2

C1 C2 C3 C4

P2

P1

The structure function follows then from Eq. (2.42) for the minimal path sets

φ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ( , , ) ( ) ( )1 5 1 2 5 2 3 4 5 1 2 5 2 3 4 5 1 2 3 4 51 1 1… = − − − = + −

or from Eq. (2.44) for the minimal cut sets (in both cases by considering ζ ζ ζ ζ ζ ζ ζi i i i j j i= =,  )

φ ζ ζ ζ ζ ζ ζ ζ ζ( , , ) [ ( )( )][ ( )( )][ ( )][ ( )]1 5 1 3 1 4 5 21 1 1 1 1 1 1 1 1 1… = − − − − − − − − − −
                  = + − + −( )( )ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ1 3 1 3 1 4 1 4 2 5

       = + −ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ1 2 5 2 3 5 1 2 3 4 54 .

Assuming independence for the (different) elements, it follows for the reliability function
(for both cases and with R t R tS S i i i i= = = =R R  and  R0 0 1 1 5( ) , ( ), ( ) , ...,, )

R R R R R R R R R R R R RS = + −1 2 5 2 3 4 5 1 2 3 4 5.

Supplementary results: Calculation with the key item method leads directly to

R R R R R R R R R RS = + − + −2 1 3 4 1 3 4 5 21( ) ( )  . 0.
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Figure 2.12    Diagram of the transition probabilities in ( , ]t t t+ δ  for a k-out-of-n redundancy,
nonrepairable, constant failure rates during the sojourn time in every state (not necessarily at a state
change), ideal failure detection & switch;   t arbitrary,  δ t →0, Markov process, Z n k− +1  down state)

For coherent repairable systems with elements which are as-good-as-new after
repair and totally independent (every element operates and is repaired independently
from each other element, i. e., has its own repair crew and continues operation
during the repair of a failed element), expressions for R ( )S t0  can be used to
calculate the point availability PA ( )S t0 , substituting R ( )i t  with PA ( )i t0 .  For Eq.
(2.47) this leads to

PA ( ) ( , , ) ( , , )S D n L nt PA PA PA PA0 1 1= … = …φ φ , (2.48)

with PAi i t= PA ( )0  for the general case (Eq. (6.17)) or PA i MTTF MTTF MTTRi i i = +/ ( )

for steady-state or t → ∞  (Eq. (6.48)).  However, in practical applications, a repair
crew for each element in the reliability block diagram of a system is not available
and, except for redundant elements, not failed elements often stop to operate during
the repair of a failed element.  Nevertheless, Eq. (2.48) can be used as an approxi-
mation (upper bound) for PA ( )S t0 .  For repairable elements, the indicator (binary
process) ζ i t( ) given in Section 2.3.3 alternates between ζ i t( ) =1 for element Ei
operating (up) and ζ i t( ) = 0 for Ei  in repair (down), yielding E ζ i it t( ) PA ( )[ ] = 0 .
In practical applications, it is often preferable to compute 1 0− PA ( ) .S t

2.3.5  Parallel Models with Const. Failure Rates & Load Sharing

In the redundancy structures investigated in the previous sections, all elements were
operating under the same conditions.  For this type of redundancy, called active
(parallel) redundancy, the assumed statistical independence of the elements
implies, in particular, that there is no load sharing.  This assumption does not arise
in many practical applications, for example, at component level or in the presence
of power elements.  The investigation of the reliability function in the case of
load sharing or of other kinds of dependency involves the use of stochastic
processes.  The situation is simple if one can assume that the failure rate of each
element can change only when a failure occurs.  In this case, the general model for
a k-out-of-n redundancy is a death process as given in Fig. 2.12 (birth and death
process as in Fig. 6.13 for the repairable case with constant failure & repair rates).
Z Zn k0 1, ,… − +  are the states of the process.  In state Zi , i elements are down.
At state Zn k− +1 the system is down.
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Assuming

λ = failure rate of an element in the operating state (2.49)
and

λ λ λr reserve state r= ≤failure rate of an element in the   ( ), (2.50)

the model of Fig. 2.12 considers in particular the following cases:

 1. Active redundancy without load sharing (independent elements)

ν λi i n kn i= − = … −( ) , , ,0 , (2.51)

λ is the same for all states.

 2. Active redundancy with load sharing ( ( ))λ λ= i

ν λi i n kn i i= − = … −( ) ( ) , , ,0 , (2.52)

λ( )i  increases at each state change.

 3. Warm (lightly loaded) redundancy ( )λ λr <

ν λ λi r i n kk n k i= + − − = … −( ) , , ,0 , (2.53)

λ and λr  are the same for all states.

 4. Standby (cold) redundancy ( )λr ≡ 0

ν λi i n kk= = … −, , ,0 , (2.54)

λ is the same for all states.

For a standby redundancy, it is assumed that the failure rate in the reserve state is
≡ 0 (the reserve elements are switched on when needed).  Warm redundancy is
somewhere between active and standby ( 0 < <λ λr ).  It should be noted that the
k-out-of-n active, warm, or standby redundancy is only the simplest representatives
of the general concept of redundancy.  Series - parallel structures, voting techniques,
bridges, and more complex structures are frequently used (see Sections 2.2.6,
2.3.1 - 2.3.4, and 6.6 - 6.8 with repair rate µ = 0, for some examples).  Furthermore,
redundancy can also appear in other forms, e. g. at software level, and the benefit of
redundancy can be limited by the involved failure modes as well as by control and
switching elements (see Section 6.8 for some examples).
For the analysis of the model shown in Fig. 2.12, let

P ( ) Pr{ }i it Z t= the process is in state  at time (2.55)

be the state probabilities ( i n k= … − +0 1, , ).  P ( )i t  is obtained by considering the
process at two adjacent time points t and t t+ δ  and by making use of the
memoryless property resulting from the constant failure rate assumed between
consecutive state changes (Appendix A7.5).  The function P ( )i t  thus satisfies the
following difference equation
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P ( ) P ( )( ) P ( ) ,        , ,i i i i it t t t t t t i n k+ = − + +− − = … −δ ν δ ν δ δ1 1 1 1ο , (2.56)

where ο( )δt  denotes a quantity having an order higher than that of δ t  (Eq. (A7.89)).
For δt →0, there follows a system of differential equations describing a death process

P ( ) P ( )
.

0 0 0t t= −ν
P ( ) P ( ) P ( ) ,         
.

 , ,i i i i i i n kt t t= − + − − = … −ν ν 1 1 1 ,

P ( ) P ( )
.

n k n k n kt t− + − −=1 ν . (2.57)

Assuming the initial conditions P ( ) P ( )i j j i0 1 0 0= = ≠ and  for  at t = 0, the
solution (generally obtained using the Laplace transform) leads to P ( )i t ,
i n k= … − +0 1, , .  Knowing P ( )i t , one can evaluate the reliability function R ( )S t

R ( ) P ( ) P ( )S i n kt t t
i

n k

= = −
=

−

∑ − +
0

1 1 (2.58)

and the mean time to failure from Eq. (2.9).  Assuming, for instance. P ( )0 0 1=
as initial condition, the Laplace transform of R ( )S t0 ,

R̃ ( ) R ( )S Ss t e dts t
0 0

0

= −
∞
∫ , (2.59)

is given by (with P̃ ( )n k s− +1  obtained recursively from Eq. (2.57))

R̃ ( ) .( ) ( )

( ) ( )S s
s s

s s s
n k n k

n k
0

0 0

0
=

+ … + − …
+ … +

− −

−

ν ν ν ν
ν ν

(2.60)

The mean time to failure follows then from

MTTFS S0 0 0= R̃ ( ) , (2.61)

yielding (using dy ds y d y ds s s n k/ (ln ) / ) ... ( )= + − .   y (     = +with 0ν ν  in the numerator)

MTTFS
ii

n k

0
1

0

=
=

−

∑ ν
. (2.62)

Thereby, S stands for system and 0 specify the initial condition P ( )0 0 1=  (Table 6.2).
A k-out-of-n standby redundancy (Eq. (2.54)) leads to (Tab. A9.7b, Eq. (A7.102))

R ( )
( )

!S
i

kt e
k t

i
t

i

n k

0
0

= −

=

−

∑ λ λ (2.63)

and

MTTF
n k

kS0
1

=
− +

λ
. (2.64)

Equation (2.63) gives the probability for up to n k−  failures ( , ,..., )0 1 n k−  in ( , ]0 t
by constant failure rate k λ, and shows the relation existing between the Poisson dis-
tribution and the occurrence of exponentially distributed events (Appendix A7.2.5).
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For the case of a k-out-of-n active redundancy without load sharing, it follows
from Eqs. (2.62) and (2.51) that

MTTF
k nS0

1 1 1= + … +
λ

( ) , (2.65)

see also Table 6.8 with µ = 0, and λ λr = .  Some examples for R ( )S t0  with different
values for n and k are given in Fig. 2.7.

2.3.6 Elements with more than one Failure Mechanism or
one Failure Mode

In the previous sections, it was assumed that each element exhibits only one
dominant failure mechanism, causing one dominant failure mode; for example
intermetallic compound causing a short, or corrosion causing an open, for integrated
circuits.  However, in practical applications, components can have some failure
mechanisms and fail in different manner (see e. g. Table 3.4).  A simple way to
consider more than one failure mechanism is to assume that each failure mech-
anism is independent of each other and causes a failure at item level.  In this case, a
series model can be used by assigning a failure rate to each failure mechanism, and
Eq. 2.18 or Eq. 7.57 delivers the total failure rate of the item considered.  More
sophisticated models are possible.  A mixture of failure rates and / or mechanisms
has been discussed in Section 2.2.5 (Eq. (2.15)).  This section will consider as an
example the case of a diode exhibiting two failure modes.  Let

R( ) Pr{ ( , ] }t t t= =no failure in  |  diode new at   0 0

R( ) R( ) Pr{ ( , ] }t t t t= − = =1 0 0failure in |  diode new at   

R ( ) Pr{ ( , ] }U t t t= =open in |  diode new at  0 0

R ( ) Pr{ ( , ] }K t t t= =short in  |  diode new at  0 0 .

Obviously (Example 2.11)

1 − = = +R( )t t t tU KR( ) R ( ) R ( ). (2.66)

The series connection of two diodes exhibits a circuit failure if either one open or
two shorts occur.  From this,

R R R R R RS U K U U K= − − + = − +1 1 22 2 2 2( ) , (2.67)

with RS S t= R ( )0 , RK K t= R ( ), RU U t= R ( ).
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Similarly, for two diodes in parallel (Example 2.12),

R R R R R RS K U K K U= − − + = − +1 1 22 2 2 2( ) . (2.68)

To be simultaneously protected against at least one failure of arbitrary mode (short
or open), a quad redundancy is necessary.  Depending upon whether opens or shorts
are more frequent, a quad redundancy with or without a bridge connection is used.
For both these cases it follows that

R R R R RS U U K K= − + −2 22 4 2 2( ) , (2.69)

and

R R R R RS K K U U= − + −2 22 4 2 2( ) . (2.70)

Equations (2.67) to (2.70) can be obtained using the state space method introduced
in Section 2.3.3,  however with three states for every element (good, open (U), and
short (K) leading to a state space with 3n  elements in each line, see Example 2.12).

Equations (2.67) and (2.68) yield for n  diodes, R R RS U
n

K
n= − − +1 1( )  and

R R RS K
n

U
n= − − +1 1( ) , respectively.

Example 2.11
In an accelerated test of 1000 diodes, 100 failures occur, of which 30 are opens and 70 shorts.
Give an estimate for R , RU , and RK .

Solution

The maximum likelihood estimate of an unknown probability p is, according to Eq. (A8.29),

ˆ /p k n= .  Hence, 
^

.R = 0 1,  
^

.RU = 0 03,  and  
^

.RK = 0 07.

Example 2.12
Using the state space method, give the reliability of two parallel connected diodes, assuming that
opens and shorts are possible.

Solution
Considering the three possible states (good (1), open (U), and short (K)), the state space for two
parallel connected diodes is

D U U U K K K
D U K U K U K
S

1

2

1 1 1
1 1 1
1 1 0 1 0 0 0 0 0

D
1

D
2

From the above table, it follows that

R S R R R R R RS K U U K K= = = + + +Pr{ }0 2 22 2

           = − − + + + = − +2 1 2 22 2 2 2( )R R R R R R R R R RU K K U U K K K K U .

The linear superposition of the two failure modes, appearing in the final result for RS , do not
apply necessarily to arbitrary structures.
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2.3.7 Basic Considerations on Fault Tolerant Structures
In applications with high reliability, availability or safety requirements, items
must be designed to be fault tolerant at components level (see e. g. pp. 51, 64-65),
and / or fault tolerant reconfigurable at equipment and systems level.  This means
that at system level, the item considered should be able to recognize a fault (failure
or defect) and quickly reconfigure itself in such a way as to remain safe and possibly
continue to operate with minimal performance loss (fail-sale, graceful degradation).

Methods to investigate fault tolerant items have been introduced in Sections
2.2.6.2 through 2.3.6, in particular Sections 2.2.6.5 (majority redundancy) and 2.3.6
(quad redundancy).  The latter is one of the few structures which can support
at least one failure of any mode, the price paid is four devices instead of one.  Other
possibilities are known to implement fault tolerance at components level, e. g. [2.41].

Repairable fault tolerant reconfigurable systems are considered carefully in
Chapter 6, in particular Section 6.8 for non ideal reconfiguration (imperfect switch-
ing, incomplete coverage, a. o.).  It is shown, that the stochastic processes introduced
in Appendix A7 can be used to investigate reliability and availability of fault
tolerant systems for cases in which a reliability block diagram does not exist as well.

To avoid common cause or single-point failures, redundant elements should be
designed and produced independently from each other, in critical cases with dif-
ferent technology, tools, and personnel.  Investigation of all possible failure (fault)
modes during the design of fault tolerant equipment and systems is mandatory.  This
is generally done using failure modes and effects analysis (FMEA / FMECA), fault
tree analysis (FTA), causes-to-effects diagrams or similar tools (Sections 2.6 & 6.9),
supported by appropriate investigation models (see e .  g. Examples 6.15 & 6.17).
Failure modes analysis is essential where redundancy appears, among other to
identify the parts which are in series to the ideal redundancy (in the reliability block
diagram), to discover interactions between elements of the given item, and to find
appropriate measures to avoid failure propagation (secondary failures).

Protection against secondary failures can be realized, at component level, with
decoupling elements such as diodes, resistors, capacitors (diodes E1- E4 in Example
2.3).  Other possibilities are the introduction of standby elements which are acti-
vated at failure of working elements, the use of basically different technologies for
redundant elements, etc.  As a general rule, all parts which are essential for basic
functions (e. g. interfaces and monitoring circuitries) have to be designed with care.
Adherence to appropriate design guidelines is important (Chapter 5).  Detection
and localization of hidden failures as well as avoidance of false alarms (caused
e. g. by synchronization problems) is mandatory.  These and similar considerations
applies in particular for equipment and systems with high reliability and / or safety
requirements, as used e. g. in aerospace, automotive, and nuclear applications.

In digital systems, fault tolerance can often be obtained using error correction
techniques (see e. g.[4.22] for an application).  Basic possibilities for redundancy in
software are N-version programming and N self configuring programming.
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2.4 Reliability Allocation and Optimization

With complex equipment and systems, it is important to allocate reliability goals at
subsystem and assembly levels early in the design phase.  Such an allocation
motivates the design engineer to consider reliability aspects at all system levels.

Allocation is simple if the item (system) has no redundancy and its components
have constant failure rates.  The system's failure rate λS  is then constant and equal
to the sum of the failure rates of its elements (Eq. (2.19)).  In such a case, the
allocation of λS  can be done as follows:

 1. Break down the system into elements E En1 , , .…

 2. Define a complexity factor ki  for each element ( 0 1≤ ≤ki , k kn1 1+ … + = ) .

 3. Determine the duty cycle di  for each element ( di = operating time of element
Ei  / operating time of the system).

 4. Allocate the system's failure rate λS  among elements E En1 , ,…  according to

λ λ λ λi S i i S ik d di i= = ∑/ ,                     . (2.71)

Should all elements have the same complexity ( / )k k nn1 1= … = =  and the same
duty cycle ( ) ,d d n1 1= … = =  then λ λi S n= / .

Often it is necessary to consider cost aspects.  Assuming that for element Ei
the cost relation to the failure rate is of the form ci i if= ( )λ , e. g .  ci i ib= / λ ,
cost optimization ask for the minimization of  C i fi i i ic= =∑ ∑ ( )λ .  For the case of
a series system with elements E E1 2and , this leads to take λ1 as solution of

d f f dS( ( ) ( )) /1 1 2 1 1 0λ λ λ λ+ − =

and λ2  as λ λ λ2 1= −S  .  For a series system with elements E En1 , ,… , the method
of the Lagrange multiplier, yielding λ λ1 , ,… n as solution of the system of n + 1
algebraic equations

λ λ λ
φ
λ

S n

i
i n

− − − =
∂
∂

= =







1

1

0

0

...

, ,, ... ,        
(2.72)

with φ λ λ α λ λ α λ λ λ( , ... , , ) ( ) ... ( ) . ( ... ) ,1 1 1 1n n n S nf f   = + + + − − −  or methods based on
linear or nonlinear programming can be used, as necessary.  For instance, Eq. (2.72)
with ci i i i if b= =( ) /λ λ  yields λ λi S j ib bj i i j n= + ≠ =∑/ .( / ) , , , ... ,1 1     

Complexity and duty cycle can be integrated in ci i if= ( )λ , considering also
empirical data as well as aspects of technology risk and failure effect (consequence).

Should individual element failure rates not be constant and / or the system con-
tain redundancy, allocation of reliability goals is more laborious, see e. g. [2.34 (1965)].
In the case of repairable series - parallel structures, one can often assume that the
failure rate at equipment and systems level is basically fixed by the series elements
(Section 6.6, Example 4.2), and thus concentrate the allocation to these elements.
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2.5 Mechanical Reliability, Drift Failures

As long as the reliability is considered to be the probability R for a mission success
(without relation to the distribution of the failure-free time), the reliability analysis
procedure for mechanical equipment and systems is similar to that used for
electronic equipment and systems and is based on the following steps:

 1. Definition of the system and of its associated mission profile.

 2. Derivation of the corresponding reliability block diagram.
 3. Determination of the reliability for each element of the reliability block diagram.

 4. Calculation of the system reliability RS  ( RS0  to point out system new at t = 0).
 5. Elimination of reliability weaknesses and return to step 1 or 2, as necessary.

Such a procedure is currently used in practical applications and is illustrated by
Examples 2.13 and 2.14.

Example 2.13

The fastening of two mechanical parts should be easy and reliable.  It is done by means of two
flanges which are pressed together with 4 clamps E1 to E4  placed 90° to each other.  Experience
has shown that the fastening holds when at least 2 opposing clamps work.  Set up the reliability
block diagram for this fixation and compute its reliability (each clamp is news at t = 0 and has
reliability R R R R R1 2 3 4= = = = ).

Solution

Since at least two opposing clamps ( E1 and E3 or E2
and E4 ) have to function without failure, the reliability
block diagram is obtained as the series connection of E1
and E3 in parallel with the series connection of E2  and
E4 , see graph on the right.  Under the assumption that

E
1

E
3

E
4

E
2

clamp is independent from every other one, the item reliability follows from R R RS 0 2 2 4= − .

Supplementary result:  If two arbitrary clamps were sufficient for the required function, a 2-out-
of-4 active redundancy would apply yielding (Tab. 2.1)  R R R RS 0

2 3 46 8 3= − + .

Example 2.14

To separate a satellite's protective shielding, a special
electrical-pyrotechnic system described in the functional
block diagram on the right is used.  An electrical signal
comes through the cables E1 and E2  (redundancy) to the
electrical-pyrotechnic converter E3 which lights the fuses.
These carry the pyrotechnic signal to explosive charges for
guillotining bolts E12  and E13 of the tensioning belt.
The charges can be ignited from two sides, although one
ignition will suffice (redundancy).  For fulfillment of the

E1

E3

E2

E4 E5

E13E12

E10

E9
E11E8

E6 E7

required function, both bolts must be exploded simultaneously.  Give the reliability of this
separation system as a function of the reliability R R1 13, ,…  of its elements (news at t = 0).
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Solution
The reliability block diagram is easily obtained by considering first the ignition of bolts E12  &
E13 separately and then connecting these two parts of the reliability block diagram in series.

E1

E10

E8

E4

E11

E7

E5

E2

E3

E9

E6

E5

E4

E13

E10

E11

E12

Elements E4 , E5, E10 , and E11 each appear twice in the reliability block diagram.  Repeated
application of the key item method (successively on E5, E11, E4 , and E10 , see Section 2.3.1 and
Example 2.9), by assuming that the elements E E1 13, ,…  are independent, leads to

R R R R R R R R R R R R R R R R R R R RS 0 3 12 13 1 2 1 2 5 11 4 10 6 8 6 8 7 9 7 9= + − + − + −{( ) [ { ( ) ( )

        + − + − + − + − }( ) } ( ) ] ( ) ( )1 1 4 1 1 510 8 9 8 9 11 4 6 7 10 4 6 7 10R R R R R R R R R R R R R R R R

    = + − + − + −{R R R R R R R R R R R R R R R R R R R3 12 13 1 2 1 2 4 5 10 11 6 8 6 8 7 9 7 9( ) ( ) ( )

           + − + − }( ) ( ) .1 14 10 5 8 9 11 5 11 4 6 7 10R R R R R R R R R R R R (2.73)

More complicated is the situation when the reliability function R( )t  is required.
For electronic components it is possible to operate with the failure rate, since models
and data are often available.  This is generally not the case for mechanical parts,
although failure rate models for some parts and units (bearings, springs, couplings,
etc.) have been developed [2.26, 2.27].  If no information about failure rates is
available, a general approach based on the stress-strength method, often supported
by finite element analysis, can be used.  Let ξL t( ) be the stress (load) and ξS t( ) the
strength, a failure occurs at the time t for which | ( ) | | ( ) |ξ ξL St t>  holds for the first
time.  Often, ξL t( ) and ξS t( ) can be considered as deterministic values and the
ratio ξ ξS Lt t( ) / ( ) is the safety factor.  In many practical applications, ξL t( ) and
ξS t( ) are random variables, often stochastic processes.  A practical oriented
procedure for the reliability analysis of mechanical systems in these cases is:

 1. Definition of the system and of its associated mission profile.

 2. Formulation of failure hypotheses (buckling, bending, etc.) and validation of
them using an FMEA /  FMECA (Section 2.6);  failure hypotheses are often
correlated, this dependence must be identified and considered.

 3. Evaluation of the stresses applied with respect to the critical failure hypotheses.

 4. Evaluation of the strength limits by considering also dynamic stresses, notches,
surface condition, etc.

 5. Calculation of the system reliability (Eqs. (2.74) – (2.80)).
 6. Elimination of reliability weaknesses and return to step 1 or 2, as necessary.

Reliability calculation often leads to one of the following situations:

 1. One failure hypothesis, stress & strength > 0; the reliability function is given by

R ( ) Pr{ ( ) ( ),   }S S Lt x x x t0 0= > < ≤ξ ξ ,                 R ( )S 0 0 1= . (2.74)
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 2. More than one (n >1) failure hypothesis that can be correlated, stresses and
strength > 0;  the reliability function is given by

R ( ) Pr{( ( ) ( )) ( ( ) ( ))S S L S Lt x x x x0 1 1 2 2
= > ∩ > ∩ …ξ ξ ξ ξ

         ∩ > < ≤( ( ) ( )),   }ξ ξS Ln n
x x x t0 ,                  R ( )S 0 0 1= . (2.75)

Equation (2.75) can take a complicated form, according to the degree of dependence
encountered.

The situation is easier when stress and strength can be assumed to be
independent and positive random variables.  In this case, Pr{ }ξ ξ ξS L L x> = =
Pr{ } F ( )ξS Sx x> = −1  and the theorem of total probability leads to

R ( )S S S L L St R x x dx0 0
0

1= = > = −
∞
∫Pr{ } f ( ) ( F ( ))ξ ξ . (2.76)

Examples 2.15 and 2.16 illustrate the use of Eq. (2.76).

Example 2.15
Let the stress ξL  of a mechanical joint be normally distributed with mean mL = 100 N/mm2 and
standard deviation σL = 40 N/mm2 .  The strength ξS  is also normally distributed with mean
mS = 150 N/mm2 and standard deviation σS = 10 N/mm2.    Compute the reliability of the joint.

Solution
Since ξL  and ξS  are normally distributed, their difference is also normally distributed
(Example A.6.17).  Their mean and standard deviation are m mS L− = 50 N/mm2 and

σ σS L
2 2 41+ ≈ N/mm2, respectively.   The reliability of the joint is then given by (Table A9.1)

R e dx e dyS S L S L

x

y
0 0 0 89

1

41 2 0

1

2

50 2

2 412 2 2

50 41

= > = − > = = ≈
−∞

−
∞−

⋅

−

∫ ∫Pr{ } Pr{ } . .
( )

/

/

ξ ξ ξ ξ
π π

Example 2.16
Let the strength ξS  of a rod be normally distributed with mean mS = −450 N/mm2

0 01. t N /mm h2 1−  and standard deviation σS t= + −25 0 001N /mm N /mm h2 2 1. .   The stress ξL
is constant and equal 350 N/mm2.   Calculate the reliability of the rod at t = 0 and t = 104 h .

Solution
At t = 0, mS = 450 N/mm2 and σS = 25 N/mm2.  Thus (as for Example 2.15),

R e dyS
y

S L0
21

2
0 999972

350 450
25

= > = ≈−
−

∞
∫Pr{ } . ./ξ ξ

π

After 10,000 operating hours, mS = 350 N/mm2  and σS = 35 N/mm2.   The reliability is then

R e dy e dyS
y y

S L0
2 21

2

1

2
0 52

350 350
35

2

0

= > = = =− −
−

∞ ∞
∫ ∫Pr{ } ./ /ξ ξ

π π
.
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Equation (2.76) holds for a one-item structure.  For a series model, i. e., in
particular for the series connection of two independent elements one obtains:

 1. Same stress ξL    ( ξ ξL S i
, > 0)

R x x x dxS S L S L L S S0
0

1 2 1 2
1 1= > ∩ > = − −

∞

∫Pr{ } f ( )( F ( ))( F ( ))ξ ξ ξ ξ . (2.77)

 2. Independent stresses ξL1
 and ξL2

  ( ξ ξL Si i
, > 0 )

RS S L S L S L S L0 1 1 2 2 1 1 2 2
= > ∩ > = > >Pr{ } Pr{ }Pr{ }ξ ξ ξ ξ ξ ξ ξ ξ

       = − − =
∞∞
∫∫( f ( )( F ( )) )( f ( )( F ( )) ) ^

L S L Sx x dx x x dx R R
1 1 2 2

1 1
00

1 2 . (2.78)

For a parallel model, i. e., in particular for the parallel connection of two non
repairable independent elements it follows that:

 1. Same stress ξL   ( ξ ξL Si
, > 0)

R x x x dxS S L S L L S S0
0

1 1
1 2 1 2

= − ≤ ∩ ≤ = −
∞

∫Pr{ } f ( )F ( )F ( )ξ ξ ξ ξ . (2.79)

 2. Independent stresses ξL1
 and ξL2

  ( ξ ξL Si i
, > 0 )

R R R R R R RS S L S L0 1 2 1 2 1 21 1 1 1
1 1 2 2

  = ≤ ≤ = =− − − − + −Pr{ }Pr{ } ^ ( )( )ξ ξ ξ ξ . (2.80)

As with Eqs. (2.78) and (2.80), the results of Table 2.1 (p. 31) can be applied in the
case of independent stresses and elements.  However, this ideal situation is seldom
true for mechanical systems, for which Eqs. (2.77) and (2.79) are often more
realistic.  Moreover, the uncertainty about the exact form of the distributions for
stress and strength far from the mean value, severely reduce the accuracy of the
results obtained from the above equations in practical applications.  For mechanical
items, tests are thus often the only way to evaluate their reliability.  Investigations
into new methods are in progress, paying particular attention to the dependence
between stresses and to a realistic truncation of the stress and strength distribution
functions or densities (Eq. (A6.33)).  Other approaches are possible for mechanical
systems, see e. g. [2.61-2.77].

For electronic items, Eqs. (2.76) and (2.77) - (2.80) can often be used to
investigate drift failures.  Quite generally, all considerations of Section 2.5 could be
applied to electronic items.  However, the method based on the failure rate,
introduced in Section 2.2, is easier to be used and works reasonably well in many
practical applications dealing with electronic and electromechanical equipment
and systems.
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2.6 Failure Modes Analyses

Failure rate analyses (Sections 2.1 - 2.5) basically do not account for the mode and
effect (consequence) of a failure.  To understand the mechanism of system failures
and in order to identify potential weaknesses of a fail-safe concept it is necessary to
perform a failure modes analysis, at least where redundancy appears and for critical
parts of the item considered.  Such an analysis is termed FMEA (Failure Modes and
Effects Analysis) or alternatively FMECA (Failure Modes, Effects, and Criticality
Analysis) if also the failure severity is of interest.  If failures and defects have to be
considered, fault modes is to use, allowing errors / flaws as possible causes as well.
An FMEA / FMECA consists of the systematic analysis of failure (fault) modes, their
causes, effects, and criticality [2.81, 2.83, 2.84, 2.87-2.93, 2.96-2.98], including com-
mon mode & common cause failures as well.  All possible failure (fault) modes for
the item considered, their causes and consequences are systematically investigated,
in one run or in several steps (design FMEA /  FMECA, process FMEA / FMECA).
For critical cases, possibilities to avoid the failure (fault) or to minimize (mitigate)
its consequence must be analyzed and corresponding corrective (or preventive)
actions have to be realized.  The criticality describes the severity of the consequence
of the failure (fault) and is designated by categories or levels which are function of
the risk for damage or loss of performance.  Considerations on failure modes for
electronic components are in Tables 3.4 & A10.1 and Section 3.3.

The FMEA / FMECA is a bottom-up (inductive) procedure, performed as a team
work with designer & reliability engineers.  The procedure is established in interna-
tional standards [2.89].  It is easy to understand but can become time-consuming for
complex equipment and systems.  For this reason it is recommended to concentrate
efforts to critical parts, in particular where redundancy appears.  Table 2.5 shows a
procedure for an FMEA / FMECA.  Basic are steps 3 to 8.  Table 2.6 gives an example
of a detailed FMECA for the switch in Example 2.6, Point 7.  Each row of Tab. 2.5
is a column in Tab. 2.6.  Other sheets are possible [2.83, 2.84, 2.89].  Quite generally,

an FMEA / FMECA is mandatory in the presence of redundancy, and /  or
for items with fail-safe behavior, to verify effectiveness and to define
elements in series on the reliability block diagram;  it is useful to support
safety and maintainability analyses, and should be performed prior to a
final reliability prediction.

To visualize the item's criticality, the FMECA is often completed by a criticality grid
(criticality matrix), see e. g. [2.89].  In such a matrix, each failure (fault) mode give
an entry (dot) with criticality category as ordinate and probability of occurrence as
abscissa (Fig. 2.13).  Generally accepted classifications are minor (I), major (II),
critical (III), catastrophic (IV) for the criticality level, and very low, low, medium,
high for the probability of occurrence.  In a criticality grid, the further an entry is far
from the origin, the greater is the necessity for a corrective or preventive action.
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Table 2.5   Basic procedure for performing an FMECA ** (according also to IEC 60812 [2.89])

1. Sequential numbering of the step.

2. Designation of the element or part under consideration, short description of its function,
and reference to the reliability block diagram, part list, etc.  (3 steps in IEC 60812)

3. Assumption of a possible failure 
* mode  (all possible failure 

* modes have to be considered).

4. Identification of possible causes for the failure 
* mode assumed in step 3  (a cause for a failure 

*

can also be a flaw in the design phase, production phase, transportation, installation or use).

5. Description of the symptoms which will characterize the failure 
* mode assumed in step 3 and

of its local effect (output / input relationships, possibilities for secondary failures, etc.).

6. Identification of the consequences of the failure 
* mode assumed in step 3 on the next higher

integration levels (up to the system level) and on the mission to be performed.

7. Identification of failure 
* detection provisions and of corrective actions which can mitigate the

severity of the failure 
* mode assumed in step 3, reduce the probability of occurrence, or ini-

tiate an alternate operational mode which allows continued operation when the failure 
* occurs.

8. Identification of possibilities to avoid the failure 
* mode assumed in step 3, and realization of

corresponding corrective (or preventive) actions.

9. Evaluation of the severity of the failure 
* mode assumed in step 3 (FMECA only); e. g. I for

minor, II for major, III for critical, IV for catastrophic (or alternatively, 1 for failure 
* to com-

plete a task, 2 for large economic loss, 3 for large material damage, 4 for loss of human life).

10. Estimation of the probability of occurrence (or failure rate) of the failure 
* mode assumed

in step 3 (FMECA only), with consideration of the cause of failure 
* identified in step 4,

e. g. very low, low, medium, high.

11. Formulation of pertinent remarks which complete the information in the previous columns
and also of recommendations for corrective actions, which will reduce the consequences of
the failure 

* mode assumed in step 3 (e. g. introduction of failure 
* sensing devices).

IV

III

II

I

Very low Low Medium High

Probability of failure / fault

C
ri

tic
al

ity

Figure 2.13    Example of criticality grid for an FMECA (according to IEC 60812 [2.89])

*  fault is to use if failures and defects have to be considered, allowing errors / flaws as possible causes as well;
** steps 1 to 11 are columns in Tab. 2.6,  FMEA by omitting steps 9 & 10

The procedure for an FMEA / FMECA has been developed for hardware, but
can also be used for software as well [2.87, 2.88, 5.75, 5.79] .  For mechanical items,
the FMEA / FMECA is an essential tool in reliability analyses (Section 2.5).
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Table 2.6   Example of a detailed  for elements  in Point 7 of Example 2.6  (p. 51)FMECA E E1 7−
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Table 2.6    (cont.)
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Ext. LED
faulty

O of
RB1

O of
RB2

O of
RC

O of
TR1

O of
TR2

S of
TR1

S of
TR2

LED does not light → “1”
(Top event)

Figure 2.14  Example of fault tree (FT) for the electronic switch given in Example 2.6, Point 7, p. 51
(O = open, S = short, Ext. are possible external causes, such as power out, manufacturing error, etc.);
as in use for FTA, "0" holds for operating and "1" for failure (Section 6.9.2)

A further possibility to investigate failure and defect causes-to-effects relation-
ships is the Fault Tree Analysis (FTA) [2.89 (IEC 61025)].  The FTA is a top-down
(deductive) procedure in which the undesired event, for example a critical failure at
system level, is represented (for coherent systems) by AND and OR combinations of
causes at lower levels.  It is a current rule in FTA [2.89 (IEC 61025)] to use "0" for
operating and "1" for failure (the top event "1" being in general a failure).  Some
examples for fault trees (FT) are in Figs. 2.14, 6.40 - 6.42.  In a fault tree, a cut set
is a set of basic events whose occurrence (of all) causes the top event to occur.
Minimal cut sets, defined as per Eq. (2.43) can be identified.  Algorithms have been
developed to obtain all minimal cut sets (and minimal path sets) belonging to a
given system, see e. g. [2.33, 2.34 (1975)].  From a complete and correct fault tree it is
possible to compute the reliability for the nonrepairable case and the point availabi-
lity for the repairable case, when active redundancy & totally independent elements
(p. 52) can be assumed (Eqs. (2.45) & (2.48), Section 6.9.1).  To consider some de-
pendencies, dynamic gates have been introduced (Section 6.9.2).  For computation
purposes, binary decision diagrams (BDD) have been developed (Sections 6.9.3).

Compared to FMEA / FMECA, FTA can take external influences or causes (hu-
man and / or environmental) better into account, and handle situations where more
than one primary fault (multiple faults) has to occur in order to cause the undesired
event at system level.  However, it does not necessarily go through all possible fault
modes.  Combination of FMEA / FMECA and FTA can provide better assurance for
completeness of analysis.  However, for consistency checks, FMEA / FMECA and
FTA should be performed separately and independently.  FMEA / FMECA and FTA
can also be combined with Event Tree Analysis (Section 6.9.4), leading to
causes-to-effects charts and showing relationship between causes and their single
or multiple consequences as well as efficacy of mitigating factors.

Further methods /  tools which can support causes-to-effects analyses are sneak
analysis (circuit, path, timing), worst-case analysis, drift analysis, stress-strength
analysis, Ishikawa diagrams, Kepner-Tregoe method, Shewhart cycles (Plan-Ana-
lyze-Check-Do), and Pareto diagrams, see e. g. [1.22, 2.14, A2.6 (IEC 60300-3-1)].
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Effect
Minor causes

Material

HumanMethod

Machine
Major causes

Figure 2.15    Typical structure of a causes-to-effects diagram (Ishikawa or fishbone diagram);
causes can often be grouped into Machine, Material, Method, and Human (Man), into failure
mechanisms, or into a combination of all them, as appropriate

Table 2.7 gives a comparison of important tools used for causes-to-effects analyses.
Figure 2.15 shows the basic structure of an Ishikawa (fishbone) diagram.
The Ishikawa diagram is a graphical visualization of the relationships between
causes and effects, grouping the causes into machine, material, method, and human
(man), into failure mechanisms, or into a combination of all them, as appropriate.

Performing an FMEA / FMECA, FTA, or any other similar investigation pre-
supposes a detailed technical knowledge and thorough understanding of the item
and the technologies considered.  This is necessary to identify all relevant failure
modes and potential errors / flaws (during design, development, manufacture, opera-
tion), their causes, and the more appropriate corrective or preventive actions.

2.7 Reliability Aspects in Design Reviews

Design reviews are important to point out, discuss, and eliminate design weak-
nesses.  Their objective is also to decide about continuation or stopping of the
project on the basis of objective considerations (feasibility checks in Fig. 1.6 and in
Tables 5.3 and A3.3).  The most important design reviews are described in Table
A3.3 for hardware and in Table 5.5 for software.  To be effective, design reviews
must be supported by project specific checklists.  Table 2.8 gives a catalog of
questions which can be used to generate project specific checklists for reliability
aspects in design reviews (see Table 4 .3  for maintainability and Appendix A4 for
other aspects).  As shown in Table 2.8, checking the reliability aspects during a
design review is more than just verifying the value of the predicted reliability or
the source used for failure rate calculation. The purpose of a design review is,
in particular, to discuss selection and use of components and materials, adherence
to given design guidelines, presence of potential reliability weaknesses, and results
of analyses and tests.  Tables 2.8 and 2.9 can be used to support this aim.
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Table 2.7    Important tools for causes-to-effects-analysis  (see also [A2.6 (IEC 60300-3-1)] and
Sections 6.9.2 - 6.9.4)

Tool Description Application Effort 
**

FMEA / FMECA

(Failure Modes
& Effects Anal-
ysis / Failure
Modes, Effects
& Criticality
Analysis) 

*

Systematic bottom-up investigation of
the effects (consequences) at system
(item) level of the failure 

* modes of
all parts of the system considered,
and analysis of the possibilities to
reduce (mitigate) these effects and / or
their occurrence probabilities

Development phase (design
FMEA / FMECA) and
production phase (process
FMEA / FMECA);  mandatory
for all interfaces, in particular
where redundancy appears
and for safety relevant parts

Very large
if perfor-
med for all
elements
( ≥ 0 1.  MM
for a PCB)

FTA

(Fault Tree
Analysis,  see
Section 6.9.2
for dynamic FT)

Quasi-systematic top-down investi-
gation of the effects (consequences)
of faults (failures and defects)
as well as of external influences on
the reliability and / or safety of the
system (item) considered;  the top
event (e. g. a specific catastrophic
failure*) is the result of AND & OR

combinations of elementary events

Similar to FMEA / FMECA;
however, combination of more
than one fault (or elementary
event) can be better consid-
ered as by an FMEA / FMECA;
also is the influence of exter-
nal events (natural catastro-
phe, sabotage etc.) easier to
be considered

Large to
very large,
if many top
events are
considered

Ishikawa
Diagram
(Fishbone
Diagram)

Graphical representation of the
causes-to-effects relationships;  the
causes are often grouped in four
classes:  machine, material, method /
process, and human (man) dependent

Ideal for team-work
discussions, in particular for
the investigation of design,
development, or production
weaknesses

Small to
large

Kepner-
Tregoe
Method

Structured problem detection,
analysis, and solution by complex
situations;  the main steps of the
method deal with a careful problem
analysis, decision making, and
solution weighting

Generally applicable,
especially by complex
situations and in inter-
disciplinary work-groups

Largely
dependent
on the
specific
situation

Pareto
Diagram

Graphical presentation of the
frequency (histogram) and
(cumulative) distribution of the
problem causes,  grouped in
application specific classes

Supports the objective decis-
ion making in selecting the
causes of a fault and defining
the appropriate corrective ac-
tion  (Pareto rule:  80% of the
problems are generated by
20% of the possible causes)

Small

Correlation
Diagram

Graphical representation of (two)
quantities with possible functional
(deterministic or stochastic) relation
on an appropriate x/y-Cartesian
coordinate system

Assessment of a relationship
between two quantities Small

*  fault is to use if failures and defects have to be considered, allowing errors / flaws as possible causes as well
** MM stays for man month
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Table 2.8    Catalog of questions which can be used to generate project specific checklists for the
evaluation of reliability aspects in preliminary design reviews (Appendices A3 and A4) of complex
equipment and systems with high reliability requirements  (see p. 120 for maintainability, including
human and ergonomic aspects)

1. Is it a new development, redesign, or change / modification?

2. Is there test or field data available from similar items?  What were the problems?

3. Has a list of preferred components been prepared and consequently used?

4. Is the selection / qualification of nonstandard components and material specified?  How?

5. Have the interactions among elements been minimized?  Can interface problems be expected?

6. Have all the specification requirements of the item been fulfilled?  Can individual
requirements be reduced?

7. Has the mission profile been defined?  How has it been considered in the analysis?

8. Has a reliability block diagram been prepared?  Are series elements to redundant parts been
carefully evaluated? How?

9. Have the environmental conditions for the item been clearly defined?  How are the
operating conditions for each element?

10. Have derating rules been appropriately applied?

11. Has the junction temperature of all semiconductor devices been kept lower than 100˚C?

12. Have drift, worst-case, and sneak path analyses been performed?  What are the results?

13. Has the influence of on-off switching and of external interference (EMC) been considered?

14. Is it necessary to improve the reliability by introducing redundancy?  Have common cause
failures (faults) been avoided?

15. Has an FMEA / FMECA been performed, at least for the parts where redundancy appears?
How?  Are single-point failures present?  Can nothing be done against them?  Are there
safety problems?  Can liability problems be expected?

16. Does the predicted reliability of each element correspond to its allocated value?
With which π-factors it has been calculated?

17. Has the predicted reliability of the whole item been calculated?  Does this value
correspond to the target given in the item's specifications?

18. Are there elements with a limited useful life?

19. Are there components which require screening?  Assemblies which require
environmental stress screening (ESS)?

20. Can design or construction be further simplified?

21.

22

Is failure detection, localization, and removal easy?

Are hidden failures possible?  Is their effect (consequence) minimized?  How?

23. Have reliability tests been planned?  What does this test program include?

24. Have the aspects of manufacturability, testability, and reproducibility been considered?

25. Have the supply problems (second source, long-term deliveries, obsolescence) been solved?
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Table 2.9    Example of form sheets for detecting and investigating potential reliability weaknesses
at assemblies and equipment level

a) Assembly design

Com- Failure rate λ Deviation from Component Problems during El. test and

 
 Po

si
tio

n

ponent Param-
eters

λ
(FITs)

reliability design
guidelines

selection and
qualification

design, develop.,
manufact., test, use

screening

b) Assembly manufacturing

Item Layout Placing
Solder-

ing
Clean-

ing
El.

tests
Screen-

ing
Fault (defect,

failure) analysis
Corrective

actions
Transportation

and storage

c) Prototype qualification tests

Item Electrical tests
Environmental

tests Reliability tests
Fault (defect,

failure) analysis
Corrective

actions

d) Equipment and systems level

Assembling Test
Screening

(ESS)
Fault (defect,

failure) analysis
Corrective

actions
Transportation

and storage
Operation
(field data)



3 Qualification Tests for
Components and Assemblies

Components, materials, and assemblies have a great impact on the quality and
reliability of the equipment and systems in which they are used.  Their selection and
qualification has to be considered with care by new technologies or important
redesigns, on a case-by-case basis.  Besides cost and availability on the market,
important selection criteria are intended application, technology, quality, long-term
behavior of relevant parameters, and reliability.  A qualification test includes char-
acterization at different stresses (for instance, electrical and thermal for electronic
components), environmental tests, reliability tests, and failure analysis.  After some
considerations on selection criteria for electronic components (Section 3.1), this
chapter deals with qualification tests for complex integrated circuits (Section 3.2)
and electronic assemblies (Section 3.4), and discusses basic aspects of failure
modes, mechanisms, and analysis of electronic components (Section 3.3).
Procedures given in this chapter can be extended to nonelectronic components  and
materials as well.  Reliability related basic technological properties of electronic
components are summarized in Appendix A10.  Statistical tests are in Chapter 7,
test and screening strategies in Chapter 8, design guidelines in Chapter 5.

3.1 Basic Selection Criteria for Electronic Components

As given in Section 2.2 (Eq. (2.18)), the failure rate of equipment and systems
without redundancy is the sum of the failure rates of their elements.  Thus, for large
equipment and systems without redundancy, high reliability can only be achieved
by selecting components and materials with sufficiently low failure rates.
Useful information for such a selection are:

1. Intended application, in particular required function, environmental condi-
tions, as well as reliability and safety targets.

2. Specific properties of the component or material considered, in particular
technological limits, useful life, long term behavior of relevant parameters.

3. Possibility for accelerated tests.

A. Birolini, Reliability Engineering, DOI: 10.1007/978-3-642-39535-2_3,
� Springer-Verlag Berlin Heidelberg 2014
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4. Results of qualification tests on similar components or materials.

5. Experience from field operation.

6. Influence of derating, influence of screening

7. Potential design problems, in particular sensitivity of performance
parameters, interface problems, EMC.

8. Limitations due to standardization or logistic aspects.

9. Potential production problems (assembling, testing, handling, storage, etc.).

10. Purchasing considerations (cost, delivery time, second sources, long-term
availability, quality level).

As many of the above requirements are conflicting, component selection often
results in a compromise.  The following is a brief discussion of the most important
aspects in selecting electronic components (see e. g. [3.1, 3.10, 3.15] for greater details).

3.1.1 Environment

Environmental conditions have a major impact on the functionality and reliability of
electronic components, equipment, and systems.  They are defined in international
standards [3.8]. Such standards specify stress limits and test conditions, among
others for

heat (steady-state, rate of temperature change), cold, humidity, precipitation
(rain, snow, hail), radiation (solar, heat, ionizing), salt, sand, dust, noise,
vibration (sinusoidal, random), shock, fall, acceleration.

Several combinations of stresses have also been defined, for instance,

temperature and humidity, temperature and vibration, humidity and vibration.

Not all stress combinations are relevant and by combining stresses, or in defining
sequences of stresses, care must be taken to avoid the activation of failure
mechanisms which would not appear in the field.

Environmental conditions at equipment and systems level are given by the
application.  They can range from severe, as in aerospace and defense fields
(with extreme low and high ambient temperatures, 100% relative humidity, rapid
thermal changes, vibration, shock, and high electromagnetic interference), to
favorable, as in computer rooms (with forced cooling at constant temperature and
no mechanical stress).  International standards can be used to fix representative
environmental conditions for many applications, e. g. IEC 60721 [3.8].  Table 3.1
gives examples for environmental test conditions for electronic / electromechanical
equipment and systems.  The stress conditions given in Table 3.1 have indicative
purpose and have to be refined according to the specific application, to be cost and
time effective.
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Table 3.1    Examples for environmental test conditions for electronic / electromechanical equipment
and systems  (according to IEC 60068 [3.8])

Environmental
condition

Stress profile, procedure Induced failures

Dry heat

48 or 72 h  at 55, 70 or 85°C:

El. test, warm up ( 2°C min/ ), hold (80% of test
time), power-on (20% of test time), el. test, cool
down (1°C min/ ), el. test between 2 and 16 h

Physical:  Oxidation, structural
changes, softening, drying out,
viscosity reduction, expansion

Electrical: Drift parameters, noise,
insulating resistance, opens, shorts

Damp heat
(cycles)

2, 6, 12 or 24 x 24 h  cycles 25 ÷ 55°C with rel.
humidity over 90% at 55°C and 95% at 25°C:

El. test, warm up ( 3h ), hold ( 9 h ), cool down
(3h), hold ( 9 h ), at the end dry with air and el.
test between 6 and 16 h

Physical:   Corrosion, electrolysis,
absorption, diffusion

Electrical:   Drift parameters,
insulating resistance, leakage
currents, shorts

Low
temperature

48 or 72 h  at –25, –40 or –55°C:

El. test, cool down ( 2°C min/ ), hold (80% test
time), power-on (20% test time), el. test, warm
up (1°C min/ ),  el. test between 6 and 16 h

Physical:  Ice formation, structural
changes, hardening, brittleness,
increase in viscosity, contraction

Electrical:  Drift parameters, opens

Vibrations
(random)

30 min  random acceleration with rectangular
spectrum 20 to 2000 Hz and an acceleration
spectral density of 0.03, 0.1, or 0 3 2. gn / Hz :

El. test, stress, visual inspection, el. test
Physical:   Structural changes,
fracture of fixings and housings,

Vibrations
(sinusoidal)

30 min  at 2 gn  ( 0 15. mm), 5 gn  ( 0 35. mm),
or 10 gn  ( 0 75. mm) at the resonant freq. and
the same test duration for swept freq. (3 axes):

El. test, resonance determination, stress at the
resonant frequencies, stresses at swept freq.
(10 to 500 Hz), visual inspection, el. test

loosening of connections, fatigue

Electrical:   Opens, shorts, contact
problems, noise

Mechanical
shocks
(impact)

1000, 2000 or 4000 impacts (half sine curve 30
or 50 gn  peak value and 6 ms  duration in the
main loading direction or distributed in the
various impact directions:

El. test, stress (1 to 3 impacts/s), inspection
(shock absorber), visual inspection, el. test

Physical:   Structural changes,
fracture of fixings and housings,
loosening of connections, fatigue

Free fall

26 free falls from 50 or 100 cm  drop height
distributed over all surfaces, corners and edges,
with or without transport packaging:

El. test, fall onto a 5cm thick wooden block
(fir) on a 10 cm  thick concrete base, visual
insp., el. test

Electrical:   Opens, shorts, contact
problems, noise

gn ≈ 10
2

m/s   el. = electrical; 
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At component level, to the stresses caused by the equipment or system
environmental conditions add those stresses produced by the component itself,
due to its internal electrical or mechanical load.  The sum of these stresses gives
the operating conditions, necessary to determine the stress at component level
and the corresponding failure rate.  For instance, the ambient temperature inside
an electronic assembly can be just some few °C higher than the temperature of
the cooling medium, if forced cooling is used, but can become more than 30°C
higher than the ambient temperature if cooling is poor.

3.1.2 Performance Parameters

The required performance parameters at component level are defined by the
intended application.  Once these requirements are established, the necessary
derating is determined taking into account the quantitative relationship between
failure rate and stress factors (Sections 2.2.3, 2.2.4, 5.1.1).  It must be noted that the
use of "better" components does not necessarily imply better performance and / or
reliability.  For instance, a faster IC family can cause EMC problems, besides higher
power consumption and chip temperature.  In critical cases, component selection
should not be based only on short data sheet information.  Knowledge of parameter
sensitivity can be mandatory for the application considered.

3.1.3 Technology

Technology is rapidly evolving for many electronic components, see Fig. 3.1 and
Table A10.1 for some basic information.  As each technology has its advantages
and weaknesses with respect to performance parameters and / or reliability, it is
necessary to have a set of rules which can help to select a technology.  Such rules
(design guidelines in Section 5.1) are evolving and have to be periodically refined.

Of particular importance for integrated circuits (ICs) is the selection of the
packaging form and type.

For the packaging form, distinction is made between inserted and surface mount
devices.  Inserted devices offer the advantage of easy handling during the manufac-
ture of PCBs and also of lower sensitivity to manufacturing defects or deviations.
However, number of pins and frequency are limited (up to 68 I /  O and 20 Mhz).
Surface mount devices (SMD) are cost and space saving and have better electrical
performance because of the shortened and symmetrical bond wires, in particular
flatpack (up to 450 I / O and 250 Mhz) and ball grid array (up to 450 I / O and 1 Ghz).
However, compared to inserted devices, they have greater junction to ambient
thermal resistance (Table 5.2), are more stressed during soldering, and solder joints
have a much lower mechanical strength (Section 3.4).  Difficulties can be expected
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Figure 3.1    Basic IC technology evolution

with pitch lower than 0 3. mm , especially if thermal and /  or mechanical stresses
occur in field (Sections 3.4 and 8.3), in particular for J Lead (PLCC).

Packaging types are subdivided into hermetic (ceramic, cerdip, metal can)
and nonhermetic (plastic) packages.  Hermetic packages should be preferred in
applications with high humidity or in corrosive ambiance, in any case if moisture
condensation occurs on the package surface.  Compared to plastic packages
they offer lower thermal resistance between chip and case (Table 5.2), but are
more expensive and sensitive to damage (microcracks) caused by inappropriate
handling (mechanical shocks during testing or PCB production).  Plastic packages
are inexpensive, less sensitive to thermal or mechanical damage, but are
permeable to moisture (other problems related to epoxy, such as ionic
contamination and low glass-transition temperature, have been solved).
However, better epoxy quality as well as new passivation (glassivation) based on
silicon nitride leads to a much better protection against corrosion than formerly
(Section 3.2.3, point 8).

If the results of qualification tests are good, the use of ICs in plastic packages
can be allowed if one of the following conditions is satisfied:

 1. Continuous operation, relative humidity < 70%, noncorrosive or marginally
corrosive environment, junction temperature  ≤ °100 C , and equipment useful
life less than 10 years.

 2. Intermittent operation, relative humidity < 60%, noncorrosive environment,
no moisture condensation on the package, junction temperature ≤ °100 C , and
equipment useful life less than 10 years.

For ICs with silicon nitride passivation (glassivation), the conditions stated in
Point 1 above should also apply for the case of intermittent operation.
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Figure 3.2    Long-term behavior of performance parameters

3.1.4 Manufacturing Quality

The quality of manufacture has a great influence on electronic component
reliability.  However, information about global defective probabilities (fraction of
defective items) or agreed AQL values (even zero defects) are often not sufficient to
monitor the reliability level (AQL is nothing more than an agreed upper limit of the
defective probability, generally at a producer risk α ≈ 10%, see Section 7.1.3).
Information about changes in the defective probability and the results of the cor-
responding failure analysis are important.  For this, a direct feedback to the compo-
nent manufacturer is generally more useful than an agreement on an AQL value.

3.1.5 Long-Term Behavior of Performance Parameters

The long-term stability of performance parameters is an important selection criterion
for electronic components, allowing differentiation between good and poor
manufacturers (Fig. 3.2).  Verification of this behavior is generally undertaken with
accelerated reliability tests (trends are often enough for many practical applications).

3.1.6 Reliability

The reliability of an electronic component can often be specified by its failure rate λ.
Failure rate figures obtained from field data are valid if intrinsic failures can be
separated from extrinsic ones and reliable data / information are available.  Those
figures given by component manufacturers are useful if calculated with appropriate
values for the (global) activation energy (for instance, 0 4 0 6. . to eV for ICs) and
confidence level (> 60% two sided or > 80% one sided, see Section 7.2.3.1).
Moreover, besides the numerical value of λ, the influence of the stress factor
(derating) S is important as a selection criteria (Eq. (2.1), Table 5.1).



3.2   Qualification Tests for Complex Electronic Components 87

3.2 Qualification Tests for Complex
Electronic Components

The purpose of a qualification test is to verify the suitability of a given item
(material, component, assembly, equipment, system) for a stated application.
Qualification tests are often a part of a release procedure.  For instance, prototype
release for a manufacturer and release for acceptance in a preferred list (qualified
part list) for a user.  Such a test is generally necessary for new technologies or after
important redesigns or production processes changes.  Additionally, periodic requal-
ification of critical parameters is often necessary to monitor quality and reliability.

Electronic component qualification tests cover characterization, environmental
and special tests, as well as reliability tests.  They must be supported by intensive
failures (faults) analyses to investigate relevant failure mechanisms (and causes).
For a user, such a qualification test must consider:

 1. Range of validity, narrow enough to be representative, but sufficiently large
to cover company's needs and to repay test cost.

 2. Characterization, to investigate the electrical performance parameters.

 3. Environmental and special tests, to check technology limits.

 4. Reliability tests, to gain information on the failure rate.

 5. Failure analysis, to identify failure causes and investigate failure mechanisms.

 6. Supply conditions, to define cost, delivery schedules, second sources, etc.

 7. Final report and feedback to the manufacturer.

The extent of the above steps depends on the importance of the component being
considered, the effect (consequence) of its failure in an equipment or system, and the
experience previously gained with similar components and with the same manu-
facturer.  National and international activities are moving toward agreements which
should make a qualification test by the user unnecessary for many components [3.8,
3.19].  Procedures for environmental tests are often defined in standards [3.8, 3.12].

A comprehensive qualification test procedure for ICs in plastic packages is
given in Fig. 3.3.  One recognizes the major steps (characterization, environmental
and special tests, reliability tests, and failure analysis) of the above list.
Environmental tests cover the thermal, climatic, and mechanical stresses expected in
the application under consideration.  The number of devices required for the re-
liability tests should be determined in order to expect 3 to 6 failures during burn-in.
The procedure of Fig. 3.3 has been applied extensively (with device-specific aspects
like data retention and programming cycles for nonvolatile memories, or modifica-
tions because of ceramic packages) to 12 memories each with 2 to 4 manufacturers
for comparative investigations [3.6, 3.2 (1993), 3.16].  The cost for a qualification test
based on Fig. 3.3 for 2 manufacturers (comparative studies) can exceed US$ 50 000, .
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Test vector Logical
comparator

Expected output

Input OutputDUT
(IC)

Result

strobe, delayed by the specified propagation time

Figure 3.4  Principle of functional and AC testing for LSI and VLSI ICs  (DUT=device under test)

3.2.1 Electrical Test of Complex ICs

Electrical test of VLSI ICs is performed according to the following three steps:

 1. Continuity test.

 2. Test of DC parameters.

 3. Functional and dynamic test (AC).

The continuity test checks whether every pin is connected to the chip.  It consists
in forcing a prescribed current (100µA) into one pin after another (with all other
pins grounded) and measuring the resulting voltage.  For inputs with protection
diodes and for normal outputs this voltage should lie between − 0 1.  and −1 5. V.

Verification of DC parameters is simple.  It is performed according to the
manufacturer's specifications without restrictions (disregarding very low input
currents).  For this purpose a precision measurement unit (PMU) is used to force a
current and measure a voltage ( VOH , VOL , etc.) or to force a voltage and measure a
current ( IIH , IIL , etc.).  Before each step, the IC inputs and outputs are brought to
the logical state necessary for the measurement.

The functional test is performed together with the verification of the dynamic
parameters, as shown in Figure 3.4.  The generator in Fig. 3.4 delivers one row after
another of the truth table which has to be verified, with a frequency fo.  For a 40-
pin IC, these are 40-bit words.  Of these binary words, called test vectors, the inputs
are applied to the device under test (DUT) and the expected outputs to a logical
comparator.  The actual outputs from the DUT and the expected outputs are
compared at a time point selected with high accuracy by a strobe.  Modern VLSI
automatic test equipment (ATE) for digital ICs have test frequencies fo > 600 MHz
and an overall precision better than 200 ps  (resolution < 30 ps).  In a VLSI ATE not
only the strobe but other pulses can be varied over a wide range.  The dynamic
parameters can be verified in this way.  However, the direct measurement of a
time delay or of a rise time is in general time-consuming.  The main problem with
a functional test is that it is not possible to verify all the states and state sequences
of a VLSI IC.  To see this, consider for instance, that for an n × 1 cell memory there
are 2 n states and n! possible address sequences, the corresponding truth table
would contain 2 n n⋅ ! rows, giving more than 10100for n = 64.  The procedure used in
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25, 70 and 125°C)

Passivation
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Technological and special
investigations, e. g.
• Latch-up (for CMOS)
• Hot carriers
• Dielectric breakdown
• Electromigration
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• Data retention (memories)

Electrostatic Discharge
(ESD) at 500, 1000,
2000 V, until VESD and at
VESD –250 V (HBM), el.
test before and after stress
(incl. leak. currents)

Failure Analysis

Final Report

High temperature storage
(168 h at 150°C)*,
electr. test at 0, 16, 24 and
168 h at 70°C

Thermal cycles
(2000 × –65/+150°C)*,
electr. test at 0, 1000, 2000
cycles at 70°C

2000 h burn-in at 125°C,
electr. test at 0, 16, 64,
250, 1000 and 2000 h
at 70°C, failure analysis
at 16,  64, 250, 1000 and
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Screening
(e.g. MIL-STD 883 class
B without internal visual
inspection)

120/85 test (408 h*** at
120°C, 85% RH, VCC =
5.5 V), electr. test at 0,
96, 192, 408 h*** at
70°C, failure analysis at
192, 408 h*** (recovery
1–2 h, electr. test within
8 h after recovery)

DC characterization
(histograms at –55, 0,
25, 70 and 125°C)

85/85 test (2000 h at
85°C, 85% RH,
VCC = 7 V)**, electr. test
at 0, 500, 1000, 2000 h at
70°C, failure analysis at
500, 1000, 2000 h (recov-
ery 1–2 h, electr. test
within 8 h after recovery)

Solderability

(6 ICs)

(6 ICs)

Figure 3.3    Example for a comprehensive qualification test procedure for complex ICs in
plastic (Pl) packages, see Sections 3.2 and 3.3 for details  (industrial applications with normal
environmental conditions ( GB in Table 2.3), 3 to 6 expected failures during reliability test
( Aλ ≈ ⋅ − −2 10 5 1h  in this example), RH = relative humidity, passivation = glassivation)
* 150°C by Epoxy resin, 175°C by Silicon resin;  ** new is 40/93 tests for 168 to 500 h;
*** 1000 h  by Si N3 4  passivation
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Figure 3.5    Examples for memories test patterns  (see Table 3.2 for pattern sensitivity)

practical applications takes into account one or more of the following

•  partitioning the device into modules and testing each of them separately,
•  finding out regularities in the truth table or given by technological properties,

• limiting the test to the part of the truth table which is important for the
application under consideration.

The above limitations rises the question of test coverage, i. e., the percentage of
faults which are detected by the test.  A precise answer to this question can only be
given in some particular cases, because information about the faults which
actually appear in a given IC is often lacking.  Fault models, such as stuck-at-zero,
stuck-at-one, or bridging are useful for PCB’s testing, but generally of limited
utility for a  test engineer at the component level.

For packaged VLSI ICs, the electrical test should be performed at 70°C or at the
highest specified operating temperature.

3.2.2 Characterization of Complex ICs

Characterization (electrical characterization) is a parametric, experimental analysis
of the electrical properties of a given IC.  Its purpose is to investigate the influence
of different operating conditions such as supply voltage, temperature, frequency,
and logic levels on the IC's behavior and to deliver a cost-effective test program for
incoming inspection.  For this reason a characterization is performed at 3 to 5
different temperatures and with a large number of different patterns.
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Table 3.2   Kindness of various test patterns for SRAMs, and approximate test times for a 100 ns
128 8K ×  SRAM [3.6] (Rel. Lab. at the ETH Zurich, tests Sentry S50, scrambling IDS5000 EBT)

Functional Dyn. parameters Number of Approx. test time[s]
Test pattern D, H, S, O C* A, RA C** test steps bit addr. word addr.

Checkerboard fair poor –– –– 4 n –– 0.05

March good poor poor –– 5n –– 0.06

Diagonal good fair poor poor 10 n 1 0.13

Surround good good fair fair 26n −16 n 27 0.34

Butterfly good good good fair 8 23 2n n/ + 8 10⋅ 3 38

Galloping one good good good good  4 62n n+ 4 10⋅ 5 7 103⋅
A =  addressing,   C =  cap. coupling,   D  =  decoder,   H  =  stuck at   0 or  at 1,    O =  open,   S =  short,
RA = read amplifier recovery time;   * pattern dependent;   ** pattern and level dependent

Referring to the functional and AC measurements, Figure 3.5 shows some basic
patterns for memories.  These patterns are generally performed twice, direct and
inverse.  For the patterns of Fig. 3.5, Table 3.2 gives a qualitative indication of the
corresponding pattern sensitivity for static random access memories (SRAMs),
and the approximate test time for a 128 8K ×  SRAM (see e. g. [3.6, 3.2 (1989, 1993)]
for greater details and new patterns).  Quantitative evaluation of pattern sensitivity
or of test coverage is seldom possible; in general, because of the limited validity of
fault models available (Sections 4.2.1 and 5.2.2).  As shown in Table 3.2, test time
strongly depends on the pattern selected.  As test times greater than 10 s  per pattern
are long also in the context of a characterization (the same pattern is repeated several
thousands times, see e . g .  Fig. 3.6), development of efficient test patterns is
mandatory [3.6, 3.2 (1989), 3.16, 3.20].  For such investigations, relationship between
address and physical location (scrambling table) of the corresponding cell on the
chip is important (in particular considering the increased presence of spare rows /
columns in large memories [3.11]).  If design information is not available, electron
beam tester (EBT) can be helpful to establish the scrambling table [3.6].

An important evaluation tool during a characterization of complex ICs is the
shmoo plot.  A shmoo plot is the representation in an x / y - diagram of the operating
region of an IC as a function of two parameters.  As an example, Fig. 3.6 gives the
shmoo plots for t A  versus VCC  of a 128 8K ×  SRAM for two patterns and two
ambient temperatures [3.6].  For Fig. 3.6, test pattern has been performed about 4000
times ( )2 29 61× × , each with a different combination of VCC  and t A .  If no fault is
detected, an x, otherwise a •, is plotted (defective cells are generally retested once,
to confirm the fault).  As shown in Fig. 3.6, a small (probably capacitive) coupling
between nearby cells exists for this device, as a butterfly pattern is more sensitive
than the diagonal pattern to this kind of fault.  Statistical evaluation of shmoo plots is
often done with composite shmoo-plots in which each record is labeled in 10% steps.
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Table 3.3    DC parameters for a 40 pin CMOS ASIC specially developed for high noise immunity
and with Schmitt-trigger inputs (20 ICs)

25°C 70°C

VDD 12 V 15 V 18 V 12 V 15 V 18 V

min 310 410 560 260 340 470

IDD  (µA) mean 331 435 588 270 358 504

max 340 450 630 290 390 540

V H0  (V) min 11.04 14.16 17.24 10.96 14.12 17.16

( I H0 2 4= . mA ) mean 11.14 14.25 17.32 11.03 14.15 17.24

max 11.20 14.33 17.40 11.12 14.20 17.32

V L0  (V) min 0.40 0.36 0.32 0.44 0.24 0.32

( I L0 2 4= . mA) mean 0.47 0.42 0.38 0.52 0.45 0.41

max 0.52 0.44 0.44 0.60 0.52 0.48

min 2.65 3.19 3.89 2.70 3.19 3.79

VHyst  (V) mean 2.76 3.33 3.97 2.75 3.32 3.93

max 2.85 3.44 4.09 2.85 3.44 4.04

From the above considerations one recognizes that in general only a small
part of the possible states and state sequences can be tested.  The definition of
appropriate test patterns must thus pay attention to the specific device, its
technology and regularities in the truth table, as well as to information about
its application and experience with similar devices [3.6, 3.2 (1989)].  A close
cooperation between test engineer and  user, and also if possible with the device
designer and manufacturer, can help to reduce the amount of testing.

As stated in Section 3.2.1, measurement of DC parameters presents no
difficulties.  As an example, Table 3.3 gives some results for an application
specific CMOS-IC (ASIC) specially developed for high noise immunity.

3.2.3 Environmental and Special Tests of Complex ICs

The aim of environmental and special tests is to submit a given IC to stresses which
can be more severe than those encountered in field operation, in order to investi-
gate technological limits and failure mechanisms.  Such tests are often destructive.
A failure analysis after each stress is important to evaluate failure mechanisms and
to detect degradation (Section 3.3).  Kind and extent of environmental and special
tests depend on the intended application ( GF  for Fig. 3.3) and specific characteris-
tics of the component considered.  The following is a description of the environ-
mental and special tests given in Fig. 3.3 (considerations on production related
potential reliability problems are in Sections 3.3 & 3.4, see also Figs. 3.7, 3.9, 3.10):
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Figure 3.6   Shmoo plots of a 100 ns  128 8K ×  SRAM for test patterns  a) Diagonal and b) Butterfly
at two ambient temperatures 0°C ( •) and 70°C (x) (Rel. Laboratory at the ETH Zurich)

 1. Internal Visual Inspection:  Two ICs are inspected and then kept as a reference
for comparative investigation (check for damage after stresses).  Before
opening (using wet chemical or plasma etching), the ICs are x-rayed to locate
the chip and to detect irregularities (package, bonding, die attach, etc.) or
impurities.  After opening, inspection is made with optical microscopes
(conventional or stereo) and SEM if necessary.  Improper placement of bonds,
excessive height and looping of the bonding wires, contamination, etching, or
metallization defects can be seen.  Many of these deficiencies often have only
a marginal effect on reliability.  Figure 3.7a shows a limiting case (mask
misalignment).  Figure 3.7b shows voids in the metallization of a 1M DRAM.

 2. Passivation Test:  Passivation (glassivation) is the protective coating, usually
silicon dioxide (PSG) and / or silicon nitride, placed on the entire (die) surface.
For ICs in plastic packages it should ideally be free from cracks and pinholes.
To check this, the chip is immersed for about 5 min  in a 50°C warm mixture
of nitric and phosphoric acid and then inspected with an optical microscope
(e. g. as in MIL-STD-883 method 2021 [3.12]).  Cracks occur in a silicon
dioxide passivation if the content of phosphorus is < 2%.  However, more
than 4% phosphorus activates the formation of phosphoric acid.  As a solution,
silicon nitride passivation (often together with silicon dioxide in separate
layers) has been introduced.  Such a passivation shows much more resistance
to the penetration of moisture (see humidity tests in Point 8 below) and of
ionic contamination.
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 3. Solderability:  Solderability of tinned pins should no longer constitute a
problem today, except after a very long storage time in a non-protected
ambient or after a long burn-in or high-temperature storage.  However,
problems can arise with gold or silver plated pins, see Section 5.1.5.4.  The
solderability test is performed according to established standards (e. g. IEC
60068-2 or MIL-STD-883 [3.8, 3.12]) after conditioning, generally using the
solder bath or the meniscograph method.

 4. Electrostatic Discharge (ESD):  Electrostatic discharges during handling, as-
sembling, and testing of electronic components and populated printed circuit
boards (PCBs) can destroy or damage sensitive components, particularly semi-
conductor devices.  All ICs families and many discrete electronic components
are sensitive to ESD.  Integrated circuits have in general protection circuitries,
passive and more recently active (factor ≥  2). To determine ESD immunity, i. e.,
the voltage value at which damage occurs, different pulse shapes (models) and
procedures to perform the test have been proposed.  For semiconductor de-
vices, the human body model (HBM), the charged device model (CDM), and
the machine model (MM) are the most widely used.  Both, CDM and MM can
produce very short (some few 100 ps) and high (10 A peak) pulses, whereas
pulses of HBM have rise time of 10 ns, peak of 1.3 A and decay time of 150 ns.
The CDM seems to apply better than the HBM in reproducing some of the
damage observed in field applications.  Based on the experiences gained in
qualifying 12 memory types according to Fig. 3.3 [ 3.6, 3.2 (1993)], following
procedure can be suggested for the HBM:

1. 9 ICs divided into 3 equal groups are tested at 500, 1000, and 2000 V,
respectively.  Taking note of the results obtained during these preliminary
tests, 3 new ICs are stressed with steps of 250 V up to the voltage at which
damage occurs ( )VESD .  3 further ICs are then tested at VESD − 250 V to
confirm that no damage occurs.

2. The test consists of 3 positive and 3 negative pulses applied to each pin
within 30 s .  Pulses are generated by discharging a 100 pF  capacitor
through a 1 5. kΩ resistor placed in series to the capacitor (HBM), wiring
inductance < 10µH. Pulses are between pin and ground, unused pins open.

3. Before and after each test, leakage currents (when possible with the limits
±1pA  for open and ±200 nA  for short) and electrical characteristics are
measured (electrical test as after any other environmental test).

Experience shows that an electrostatic discharge often occurs between 1000
and 4000 V.  The model parameters of 100 pF and 1 5. kΩ for the HBM are
average values measured with humans (80 to 500 pF , 50 to 5000 Ω , 2 kV on
synthetic floor and 0 8. kV on an antistatic floor with a relative humidity of
about 50%).  A new model for latent damages caused by ESD has been
developed in [3.60 (1995)].  Protection against ESD is discussed in Sections
5.1.4 and 5.1.5.4, see also Section 3.3.4.
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a) Alignment error at a contact window
(SEM, ×10 000, )

d) Silver dendrites near an Au bond ball
(SEM, × 800 )

b) Opens in the metallization of a 1 M DRAM
bit line, due to particles present during the
photolithographic process (SEM, × 2 500, )

e) Electromigration in a 16K Schottky TTL
PROM after 7 years field operation
(SEM, × 500)

c) Cross section through two trench-capacitor
cells of a 4 M  DRAM   (SEM, × 5 000, )

f) Bond wire damage (delamination) in a
plastic-packaged device after 500 50× − /
+ °150 C thermal cycles   (SEM, × 500)

Figure 3.7   Examples of SEM investigations / analyses on ICs (Rel. Laboratory at the ETH Zurich);
see also Figs. 3.9 & 3.10
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 5. Technological Characterization:  Technological investigations are performed
to check technological and process parameters with respect to adequacy and
maturity.  The extent of these investigations can range from a simple check
(Fig. 3.7c) to a comprehensive analysis, because of detected weaknesses.
Refinement of techniques and evaluation methods for technological
characterization is still in progress, see e. g. [3.30  - 3.67, 3.70 -  3.93].  The
following is a simplified, short description of some important technological
characterization methods for VLSI ICs:

• Latch-up is a condition in which an IC latches into a nonoperative state
drawing an excessive current (often a short between power supply and
ground), and can only be returned to an operating condition through
removal and reapplication of the power supply.  It is typical for CMOS
structures, but can also occur in other technologies where a PNPN structure
appears.  Latch-up is primarily induced by voltage overstresses (on signals
or power supply lines) or by radiation.  Modern devices often have a
relatively high latch-up immunity (up to 200 mA  injection current).  A
verification of latch-up sensitivity can become necessary for some special
devices (ASICs for instance).  Latch-up tests stimulate voltage overstresses
on signal and power supply lines as well as power-on / power-off sequences.

• Hot Carriers arise in micron and submicron MOSFETs as a consequence of
high electric fields (104 to 105 V/cm ) in transistor channels.  Carriers may
gain sufficient kinetic energy (some eV, compared to 0 02. eV in thermal
equilibrium) to surmount the potential barrier at the oxide interface.  The
injection of carriers into the gate oxide is generally followed by electron-
hole pairs creation and causes an increasing degradation of the transistor
parameters, in particular an increase with time of the threshold voltage VTH
which can be measured in NMOS transistors.  Effects on VLSI and ULSI ICs
are an increase of switching times (access times in RAMs for instance),
possible data retention problems (soft writing in EPROMs) and in general an
increase of noise.  Degradation through hot carriers is accelerated with
increasing drain voltage and lowering temperature (negative activation
energy of about − −0 1 0 2. .to eV).  The test is generally performed under
dynamic conditions, at high power supply voltages (7 to 9 V) and at low
temperatures ( − °50 C ).

• Time-Dependent Dielectric Breakdown (TDDB) occurs in very thin gate
oxide layers (< 20 nm ) as a consequence of extremely high electric fields
( 10 107 8- V/cm).  The mechanism is described by the thermochemical (E)
model up to about 10 7V/cm and by the carrier injection (1/E) model up to
about 2 10. 7V/cm.  An approach to unify both models has been proposed in
[3.46 (1999)].  As soon as the critical threshold is reached, breakdown takes
place, often suddenly.  The effects of gate oxide breakdowns are increased
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leakage currents or shorts between gate and substrate.  The development in
time of this failure mechanism depends on process parameters and oxide
defects.  Particularly sensitive are memories > 4 M.  An Arrhenius model
can be used for the temperature.  Time-dependent dielectric breakdown tests
are generally performed on special test structures (often capacitors).

• Electromigration is the migration of metal atoms, and also of Si at the Al / Si
interface, as a result of very high current densities, see Fig. 3.7e for an
example of a 16 K TTL PROM after 7 years of field operation.  Earlier
limited to ECL, electromigration also occurs today with other technologies
(because of scaling).  The median t50 of the failure-free time as a function of
the current density and temperature can be obtained from the empirical
model given by Black [3.33], t B j en E k Ta

50 = − / , where Ea = 0 55. eV for
pure Al ( 0 75. eV for Al-Cu alloy), n = 2 , and B is a process-dependent
constant.  Electromigration tests are generally performed at wafer level on
test structures.  Measures to avoid electromigration are optimization of grain
structure (bamboo structures), use of Al-Si-Cu alloys for the metallization
and of compressive passivation, as well as introduction of multilayer
metallizations.

• Soft errors can be caused by the process or chip design as well as by process
deviations.  Key parameters are MOSFET threshold voltages, oxide
thickness, doping concentrations, and line resistance.  If for instance, the
post-implant of a silicon layer has been improperly designed, its
conductivity might become too low.  In this case, the word lines of a DRAM
could suffer from signal reductions and at the end of the word line soft errors
could be observed on some cells.  As a further example, if logical circuits
with different signal levels are unshielded and arranged close to the border
of a cell array, stray coupling may destroy the information of cells located
close to the circuit (chip design problem).  Finally, process deviations can
cause soft errors.  For instance, signal levels can be degraded when metal
lines are locally reduced to less than half of their width by the influence of
dirt particles.  The characterization of soft errors is difficult in general.  At
the chip level, an electron beam tester allows the measurement of signals
within the chip circuitry.  At the wafer level, single test structures located in
the space between the chips (kerf) can be used to measure and characterize
important parameters independently of the chip circuitry.  These structures
can usually be contacted by needles, so that a well equipped bench setup
with high-resolution I-V and C-V measurement instrumentation would be a
suitable characterization tool.

• Data Retention and Program /  Erase Cycles are important for nonvolatile
memories (EPROM, EEPROM, FLASH).  A test for data retention generally
consists of storage (bake) at high temperature (2000 h  at 125°C for plastic
packages and 500 h  at 250°C for ceramic packages) with an electrical test at
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70°C at 0, 250, 500, 1000, and 2000 h  (often using a checkerboard pattern
with measurement of tAA  and of the margin voltage).  Experimental
investigation of EPROM data retention at temperatures higher than 250°C
shown a deviation from the charge loss predicted by the thermionic model
[3.6].  Typical values for program / erase cycles during a qualification test are
100 for EPROMs and 10,000 for EEPROMs and Flash memories.

 6. High-Temperature Storage:  The purpose of high-temperature storage is the
stabilization of the thermodynamic equilibrium, and consequently of the IC's
electrical parameters.  Failure mechanisms related to surface problems
(contamination, oxidation, contacts, charge induced failures) are activated.  To
perform the test, the ICs are placed on a metal tray (pins on the tray to avoid
thermal voltage stresses) in an oven at 150°C for 168 h .  Should solder-ability
be a problem, a protective atmosphere ( N )2  can be used.  Experience shows
that for a mature technology (design and production processes), high
temperature storage produces only a very few failures (see also Section 8.2.2).

 7. Thermal Cycles:  The purpose of thermal cycles is to test the IC's ability to
support rapid temperature changes.  This activates failure mechanisms related
to mechanical stresses caused by mismatch in the expansion coefficients of
the materials used, as well as wear-out because of fatigue, see Fig. 3.7f for
an example.  Thermal cycles are generally performed from air to air in a two-
chamber oven (transfer from one chamber to the other with a lift).  To perform
the test, the ICs are placed on a metal tray (pin on the tray to avoid
thermal voltage stresses) and subjected to 2,000 thermal cycles from –65°C
(+0, –10) to +150°C (+15, –0), transfer time ≤ 1min , time to reach the specified
temperature ≤ 15 min , dwell time at the temperature extremes ≥ 10 min .
Should solderability be a problem, a protective atmosphere ( N )2  can be used.
Experience shows that for a mature technology (design and production
processes), failures should not appear before some thousand thermal cycles
(lower figures for power devices).

 8. Humidity or Damp Heat Test, 85/85 and pressure cooker:  The aim of hu-
midity tests is to investigate the influence of moisture on the chip surface, in
particular corrosion.  It applies to nonhermetic (plastic) packages, and follow-
ing two procedures are often used:

(i) Atmospheric pressure, 85 2± °C  and 85 5± % rel. humidity (85/85 Test)
for 500 to 2 000, h  (new trend 40/93 tests for 168 to 500 h ).

(ii) Pressurized steam, 110 2± °C  or 120 2± °C  or 130 2± °C  and 85 5± % rel.
humidity (pressure-cooker test or highly accelerated stress test (HAST))
for 24 to 408 h  (1 000, h  for silicon nitride passivation).

In both cases, a voltage bias is applied during exposure in such a way that
power consumption is as low as possible, while the voltage is kept as high as
possible (reverse bias with adjacent metallization lines alternatively polarized
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high and low, e.  g. 1h  o n  / 3 h  off intermittently if power consumption is
greater than 0 01. W ). For a detailed procedure one may refer to IEC 60749 [3.8].
In the procedure of Fig. 3.3, both 85/85 and HAST tests are performed in order
to correlate results and establish (empirically) a conversion factor.  Of great
importance for applications is the relation between the failure rates at elevated
temperature and humidity (e. g. 85/85 or 120/85) and at field operating
conditions (e. g. 40/60).  A large number of models have been proposed in the
literature to empirically fit the acceleration factor A associated with  85/85 test

A
RH

RH
=

failure rate  at  85 / 85 (  

failure rate at lower stress (   
2

1

λ θ
λ θ

, )

, )
.2

1
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In Eqs. (3.2) to (3.6), Ea  is the activation energy, k the Boltzmann constant
(8 6 10 5. ⋅ − eV / K), θ the temperature in °C, T the absolute temperature (K), RH
the relative humidity, and C1 to C4 are constants.  Equations (3.2) to (3.6) are
based on the Eyring model (Eq. (7.59)), the influence of the temperature and
the humidity is multiplicative in Eqs. (3.2) to (3.5).  Eq. (3.2) has the same
structure as in the case of electromigration (Eq. (7.60)).  In all models, the
technological parameters (type, thickness, and quality of the passivation, kind
of epoxy, type of metallization, etc.) appear indirectly in the activation energy
Ea  or in the constants C1 to C4.  Relationships for HAST are more empirical.
From the above considerations, 85/85 and HAST tests can be used as
accelerated tests to assess the effect of damp heat combined with bias on ICs
by accepting a numerical uncertainty in calculating the acceleration factor.  As
a global value for the acceleration factor referred to operating field conditions
of 40°C and 60% RH, one can assume for PSG a value between 100 and 150 for
the 85/85 test and between 1,000 and 1,500 for the 120/85 test.  To assure 10
years field operation at 40°C and 60% RH, PSG-ICs should thus pass without
evident corrosion damage about 1 000, h  at 85/85 or 100 h  at 120/85.  Practical
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Table 3.4    Indicative values for failure modes of electronic components  (%)

Component Shorts Opens Drift Functional

Digital bipolar ICs 50*∆ 30* — 20

Digital MOS ICs 10∆ 70* — 20

Linear ICs — 25+ — 75++

Bipolar transistors 80 20 — —

Field effect transistors (FET) 80∆ 10 10 —

Diodes (Si) general purpose 80 20 — —
Zener 70 20 10 —

Thyristors 20 20 50 10 ◊

Optoelectronic (optocoupler) 10 5 0 4 0 —

Resistors, fixed (film) — 60 40 —

Resistors, variable (Cermet) — 60 30 10 #

Capacitors foil 15 80 5 —
ceramic 70 10 20 —

Ta (solid) 80 15 5 —

Al (wet) 3 0 3 0 4 0 —

Coils 20 80 — —

Relays (electromechanical) 20 — — 8 0 †

Quartz crystals — 8 0 2 0 —

* input and output half each;  ∆ short to VCC  or to GND half each;  + no output;
++ improper output;  ◊ fail to off;   # localized wear-out;   † fail to trip / spurious trip ≈ 3 / 2

results show that silicon-nitride glassivation offers a much greater resistance
to moisture than PSG by a factor up to 10 [3.6].

Also related to the effects of humidity is metal migration in the presence of reactive
chemicals and voltage bias, leading to the formation of conductive paths (dendrites)
between electrodes [3.36], see an example in Fig. 3.7d on p. 95.  A further problem
related to plastic packaged ICs is that of bonding a gold wire to an aluminum
contact surface.  Because of the different interdiffusion constants of gold and
aluminum, an inhomogeneous intermetallic layer (Kirkendall voids) appears at high
temperature and / or in presence of contaminants, considerably reducing the
electrical and mechanical properties of the bond [3.53].  Voids grow into the gold
surface like a plague, from which the name purple plague derives.  Purple plague
was an important reliability problem in the sixties.  It propagates exponentially at
temperatures greater than about 180°C.  Although almost generally solved (bond
temperature, Al-alloy, metallization thickness, wire diameter, etc.), verification after
high temperature storage and thermal cycles is a part of a qualification test,
especially for ASICs and devices in small-scale production.
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3.2.4 Reliability Tests

The aim of a reliability test for electronic components is to obtain information
about
  • early failures
  • failure rate
  • long-term behavior of critical parameters,
  • effectiveness of screening to be performed at the incoming inspection.

The test consists in general of a dynamic burn-in with electrical measurements and
failure analysis at appropriate time points (Fig. 3.3), also for some components
which have not failed (check for degradation).  The number (n) of devices under test
can be estimated from the predicted failure rate λ  and the acceleration factor A
(Eq. (7.56)) in order to expect 3 to 6 failures (k) during burn-in ( n k A t≈ / ( )λ ).
Half of the devices can be submitted to a screening (Section 8.2.2) to better isolate
early failures.  Statistical data analyses are given in Chapter 7 and Appendix A8.

3.3 Failure Modes, Failure Mechanisms, and
Failure Analysis of Electronic Components

This section introduces some basic concepts and considerations on failure modes,
mechanisms, and analysis of electronic components.  It aims to bring the attention to
this field, important for both equipment and systems level reliability engineering.
For greater details see e. g. [3.30 - 3.67].

3.3.1 Failure Modes of Electronic Components

A failure mode is the symptom (local effect) through which a failure is observed.
Typical failure modes are opens, shorts, drift, functional faults for electronic, and
brittle fracture, creep, buckling, fatigue for mechanical components.  Average values
for the relative frequency of failure modes in electronic components are given in
Table 3.4, see also e. g. [3.58 (2013)].  The values given in Table 3.4 have indicative
purpose and have to be completed by application specific results, as far as necessary.

The different failure modes of hardware, often influenced by the specific appli-
cation, cause difficulties in investigating the effect  of a given failure, and thus in the
concrete implementation of redundancy (series if short, parallel if open).  For
critical situations it can become necessary to use quad redundancy (Section 2.3.6).
Quad redundancy is the simplest fault tolerant structure which can accept at least
one failure (short or open) of any one of the 4 elements involved in the redundancy.



102 3   Qualification Tests for Components and Assemblies

3.3.2 Failure Mechanisms of Electronic Components

A failure mechanism is the physical, chemical, or other process that leads to a failure.
A large number of failure mechanisms have been investigated in the literature,
see e. g. [3.30 - 3.67, 3.70 - 3.93], in particular [3.49, 3.66, 3.67] for recent publications.
For some of them, appropriate physical explanations have been found.  For others,
models are empirical and often of limited validity.  Evaluation of models for failure
mechanisms should be developed in two steps:

(i) verify the physical validity of the model and (ii) give its analytical for-
mulation with the appropriate set of parameters to fit the model to the data.

In any case, experimental verification of the model should be performed with at
least a second, independent experiment, and limits of the model should be clearly
indicated.  The two most important models used to describe failure mechanisms of
electronic components, the Arrhenius and Eyring models, are introduced in Section
7.4 with accelerated tests (Eqs. (7.56) - (7.60)).  Models to describe the influence of
temperature and humidity in damp heat tests have been given with Eqs. (3.2) - (3.6).
A new model for latent damages caused by ESD is given in [3.60 (1995)].  Table 3.5
summarizes some important failure mechanisms for ICs, specifying influencing
factors and the approximate distribution of the failure mechanisms for plastic-
packaged ICs in industrial applications (see also pp. 93 - 100 and 333 - 334).  The
percentage of misuse and mishandling failures can vary over a large range (20-80%)
depending on the design engineer using the device, the equipment manufacturer and
the end user.  For ULSI-ICs one can expect that the percentage of failure
mechanisms related to oxide breakdown and hot carriers will grow in the future.
Comments on failure mechanisms are also in Sections 3.4, 8.2 & 8.3.

3.3.3 Failure Analysis of Electronic Components

The aim of a failure analysis is to investigate the failure mechanisms and find
out possible failure causes.  A procedure for failure analysis of complex ICs (from
an user's point of view) is shown in Fig. 3.8.  It is based on the following steps:

 1. Failure detection and description:  A careful description of the failure, as
observed in situ, and of the surrounding circumstances (operating conditions
at the failure occurrence) is important.  Also necessary are information on the
IC itself (type, manufacturer, manufacturing data, etc.), on the electrical
circuitry in which it was used, on the operating time, and if possible on the
tests to which the IC was submitted previous to the final use (evaluation of
possible damages, e. g. ESD).  In a few cases the failure analysis procedure
can be terminated, if evident mishandling or misuse failure can be confirmed.

 2. Nondestructive analysis:  The nondestructive analysis begins with an external
visual inspection (mechanical damage, cracks, corrosion, burns, overheating,
etc.), followed by an x-ray inspection (evident internal fault or damage) and a
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Table 3.5  Basic failure mechanisms of ICs in plastic package (see also pp. 93 -  100 and 333 -  334)
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careful electrical test (Section 3.2.1). For ICs in hermetic packages, it can also
be necessary to perform a seal test and if possible a dew-point test.  The result
of the nondestructive analysis is a careful description of the external failure
mode and a first information about possible failure causes and mechanisms.
For evident failure causes, the failure analysis can be terminated.

 3. Semidestructive analysis:  The semidestructive analysis begins by opening the
package, mechanically for hermetic packages and with wet chemical (or
plasma etching) for plastic ICs.  A careful internal visual check is then
performed with optical microscopes, conventional 1000 ×  or stereo 100 × .
This evaluation includes opens, shorts, state of the passivation / glassivation,
bonding, damage due to ESD, corrosion, cracks in the metallization,
electromigration, particles, etc.  If the IC is still operating (at least partially),
other procedures can be used  to localize more accurately the fault on the die.
Among these are the electron beam tester (or other voltage contrast
techniques), liquid crystals (LC), infrared thermography (IRT), emission
microscopy (EMMI), or one of the methods to detect irregular recombination
centers, like electron beam induced current (EBIC) or optical beam induced
current (OBIC).  For further investigations it is then necessary to use a
scanning electron microscope (SEM).  The result of the semidestructive
analysis is a careful description of the internal failure mode and an improved
information about possible failure causes and failure mechanisms.  In the case
of evident failure causes, the failure analysis procedure can be terminated.

 4. Destructive Analysis:  A destructive analysis is performed if the previous
investigations yield unsatisfactory results and there is a realistic chance of
success through further analyses.  After removal of the passivation and other
layers (as necessary) an inspection is carried out with a scanning electron
microscope supported by a material investigation (e. g. EDX spectrometry).
Analyses are then continued using methods of microanalysis (electron
microprobe, ion probe, diffraction, etc.) and performing microsections.  The
destructive analysis is the last possibility to recognize the original failure
cause and the failure mechanisms involved.  However, it cannot guarantee
success, even with skilled personnel and suitable analysis equipment.

 5. Failure mechanism analysis:  This step implies a correct interpretation of the
results from steps 1 through 4.  Additional investigations have to be made in
some cases, but questions related to failure mechanisms can still remain open.
In general, feedback to the manufacturer at this stage is mandatory.

 6. Final report:  All relevant results of the steps 1 to 5 above and the agreed
corrective actions must be included in a (short and clear) final report.

 7. Corrective actions:  Depending on the identified failure causes, appropriate
corrective actions should be started.  These have to be discussed with the IC
manufacturer as well as with the equipment designer, manufacturer, or user
depending on the failure causes which have been identified.
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2a. Failure cause follows from the
analysis of the external causes

4. Destructive analysis
• material analysis at the surface (EDX)
• glassivation/passivation removal
• material analysis (EDX)
• metallization removal
• SEM examination
• analysis in greater depth (possibly with

microsections, FIB, TEM, SEM, etc.)

1. Failure detection and description
• component identification
• reason/motivation for the analysis
• operating conditions at failure
• test / screening applied to the device

2. Nondestructive analysis
• external visual inspection
• x-ray microscope examination
• ultrasonic microscope analysis
• electrical test
• high-temperature storage
• seal test, (possibly also a dew point test)
• some other special tests, as necessary

3. Semidestructive analysis
• package opening
• optical microscope inspection
• failure (fault) localization on the chip

(liquid crystals, microthermography,
electron beam tester, emission
microscope, OBIC, EBIC, etc.)

• preliminary analysis with  the scanning
electron microscope (SEM)

5. Failure mechanism analysis

6. Failure analysis report

7. Corrective actions (with manufacturer)

1a. Failure cause follows from the
analysis of the conditions at failure

3a. Failure cause follows from the
analysis of the internal causes

Figure 3.8 Basic procedure for failure analysis of complex ICs from an user's point of view
(see e. g. [3.48 (2005/2009)] for greater details from a manufacturing's point of view)

The failure analysis procedure described in Section 3.3.3 for ICs can be applied to
other electronic or mechanical components and extended to cover populated
printed circuit boards (PCBs) as well as subassemblies or assemblies.
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3.3.4   Present VLSI Production-Related Reliability Problems

Production-related potential reliability problems, i. e., flaws or damages which
can lead to failures, can occur for VLSI devices at packaging or soldering level
(Fig. 3.10), as well as on silicon dies.  Those on dies are often more difficult to
identify.  Following examples show some cases for production-related potential
reliability problems on silicon dies, in grown difficulty with respect to their
identification [3.48 (2005/2009)], see also Fig. 3.7a & b for further examples).

Fig. 3.9a shows a contact step coverage flaw.  The contact to a diffusion in bulk
silicon is made by the first metal layer, which usually is protected by a barrier
against Al penetration into bulk-silicon.  However, the first metal layer often must
adapt itself to some topography.  Design rules make sure that the contact is flat
enough.  However, if the contact slopes are too steep (e. g. etching process problem)
the step coverage may be reduced.  In this case, electric contact is often still given,
but melting or electromigration may start, leading to a failure.  OBIRCH (optical
beam induced resistivity change) can help to detect such weak contacts.

Fig. 3.9b shows a wafer processing flaw.  Semiconductor devices include at least
one poly-Si layer, which usually performs MOS-transistor gates.  It is isolated
versus bulk silicon by a thin (some nm) gate-oxide, or by a more thick field oxide in
active regions.  The isolation against further poly-Si layers is given by a self-grown
re-oxidation of the poly-Si surface and (in part) by doped silicate-glass (PSG, BPSG).
In the structuration process of poly-Si (usually photolithography and plasma
etching), an improper etching process may result in poly-Si residues or particles,
which during subsequent re-oxidation form an irregular and thin oxide around them-
selves. A short at t = 0 will be avoided;  however, a latent short path is created and a
small voltage peak may be enough to breakdown the oxide causing a leakage path.

Figs. 3.9c and 3.9d show a ESD damage giving failures at t = 0 or latent failures,
formerly considered as mechanical surface damage.  Silicon dies are often delivered
as wafers to customers which perform subsequent pre-assembly processes (wafer
dicing, back grinding, and pick & place).  These operations can include great risks
for electrostatic discharge from robotics equipment to the device via device
passivation (e. g. when the picker setup of the pneumatic handler moves rapidly on a
Teflon bearing).  The term ESDFOS (electrostatic discharge from outside-to-surface)
has been introduced to describe this failure cause.  Like a lightning-strike, the
electrostatic spark comes onto the passivation, cracks it, melts the aluminum of the
top metal and cracks the interlevel dielectric (ILD), where the metal underneath
locally melts and penetrates into the crack.  Depending from the degree of Al
penetration, the damage causes a failure at t = 0 or a latent failure.   Periodic audits
with survey and location of air ionizer fans, grounding concepts, materials, etc. is an
effective method against this damage.

Further examples related to wafer sawing, poly-Si residues, and RFID devices
are in [3.48 (2008, 2009)].
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a) A steep slope topography causing a bad
contact coverage with Al ( × 5000)

c) Latent ESDFOS damage, see also Fig. 3.9d
( × 5000)

                   

b)  Slightly oxidized poly residue (small
white line) buried between a poly-Si-
gate and a neighbored contact ( × 5000)

d) Short of two top metal layer as consequence
of an ESDFOS damage ( × 5000)

Figure 3.9  Examples of production-related (hidden) potential reliability problems in Si-dies [3.48];
see also Figs. 3.7 & 3.10

3.4 Qualification Tests for Electronic Assemblies

As outlined in Section 3.2 for components, the purpose of a qualification test is to
verify the suitability of a given item (electronic assemblies in this section) for a
stated application.  Such a qualification involves performance, environmental &
reliability tests, and has to be supported by a careful failures (faults) analysis.
To be efficient, it should be performed on prototypes which are representative
for the production line in order to check not only the design but also the production
process.  Results of qualification tests are an important input to the critical design
review (Table A3.3).  This section deals with qualification tests of electronic
assemblies, in particular of populated printed circuit boards (PCBs).
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The aim of the performance test is similar to that of the characterization
discussed in Section 3.2.2 for complex ICs.  It is an experimental analysis of the
electrical properties of the given assembly, with the purpose of investigating the
influence of the most relevant electrical parameters on the behavior of the assembly
at different ambient temperatures and power supply conditions (see Section 8.3 for
considerations on electrical tests of PCBs).

Environmental tests have the purpose of submitting the given assembly to
stresses which can be more severe than those encountered in the field, in order
to investigate technological limits and failure mechanisms (see Section 3.2.3 for
complex ICs).  The following procedure, based on the experience with a large
number of equipment [3.76], can be recommended for assemblies of mixed
technology used in high reliability (or safety) applications (total ≥ 10 assemblies):

 1. Electrical behavior at extreme temperatures with functional monitoring, 100 h
at − °40 C, 0°C, and + °80 C  (2 assemblies, as reference also for failure analysis).

 2. 4,000 thermal cycles − + °40 120/ C  with functional monitoring, ≤ °5 C / min  or
≥ °20 C / min  within the components according to the field application,
≥ 10 min  dwell time at − °40 C and ≥ 5 min  at 120°C  after the thermal
equilibrium has been reached within ± 5°C  (total dwell times of about 20 & 10
min, 40 & 20 min for lead-free solder;  ≥ 3 assemblies, metallographic analysis
after 2,000 and 4,000 cycles).

 3. Random vibrations at low temperature, 1h  with 2 6− grms , 20 500− Hz  at
− °20 C   (2 assemblies).

 4. EMC and ESD tests  (2 assemblies).

 5. Humidity tests, 240 h  85/85 test  (1 assembly).

Experience shows [3.76] that electronic equipment often behaves well even under
extreme environmental conditions (operation at + °120 C  and − °60 C , thermal cycles
− + °40 120/ C  with up to 60°C / min  within the components, humidity test 85/85,
cycles of 4 h  95/95 followed by 4 h  at − °20 C , random vibrations 20 500− Hz  at
4 grms  and − °20 C , ESD / EMC with pulses up to 15 kV).  However, problems related
to crack propagation in solder joints appear, and metallographic investigations on
more than 1,000 microsections [3.76] confirm that cracks in solder joints are
initiated by production flaws (Fig. 3.10 d  -  f ) or by microvoids caused by creep.
The above holds in particular for Sn-Pb solder.  For lead-free solder, greater sensitivi-
ty to fast thermal cycles and vibrations can be expected, see e. g. [3.79 (2011), 3.90].

Many of the production flaws with inserted components (Fig. 3.10 a  - c) cause
only minor reliability problems and can often be avoided (for instance, voids can be
eliminated by a better plating of the through-holes).  Since even voids up to 50% of
the solder volume do not severely reduce the reliability of solder joints, it is
preferable to avoid rework.  Poor wetting of the leads or the excessive formation of
brittle intermetallic layers are major potential reliability problems for solder joints.
This last kind of defects must be avoided through a better production process.
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More critical are surface mount devices (SMD), for which clear crack propaga-
tion in solder joints often begins after some few thousand thermal cycles.  Extensive
investigations [3.79 (1996)] show that crack propagation is almost independent of
pitch, at least down to a pitch of 0 3. mm , and that solder joints of IC's with shrinking
pitches are less critical (due to leads flexibility).  A new model based on creep
(intended as elevated temperature, time dependent deformation) to describe the
viscoplastic behavior of SMT solder joints, proposed in [3.92] for Sn62Pb36Ag2,
applies also to lead-free solder alloys, see e. g. [3.79 (02, 05, 08, 11].  The model
outlines the strong impact of deformation energy on damage evolution.  Besides dif-
fusion creep, at very low stress (thermal gradient), basically two different deforma-
tion mechanisms are present, grain boundary sliding (GBS) at low thermal gradient
and dislocation climbing (DC) at high thermal gradient.  Each mechanism causes
microvoids, in locally restricted recrystallized areas within the joint, that evolve to
cracks.  The strain rate in steady-state can be described by an Eyring model similar
as for electromigration (Eq. (7.60)) with two additive terms and activation energies
E EaGSB aDC&  [3.92, 3.79 (02, 05, 08, 11)]; other models are e. g. in [3.90].   Hence,

attention must be paid in defining environmental and reliability tests or
screening procedures for assemblies in SMT, mandatory is to activate
only failure mechanisms which would also be activated in the field.

Dwell time during thermal cycles also plays an important role.  It must be long
enough to allow relaxation of the stresses, and depends on temperature, temperature
swing, and materials stiffness;  dwell times of about 20 min at − °20 C  and 10 min at
100°C  (40 and 20 min for lead-free) seems reasonable.

Reliability tests at assembly and higher integration level have as a primary
purpose the detection of all early failures (Section 7.7) and an estimation of the
failure rate (Section 7.2.3).  Precise information on the failure rate shape is seldom
possible from reliability tests, because of cost and time limits.  If reliability tests are
necessary, the following procedure can be used (total ≥ 8 assemblies):

 1 . 4 000, h  dynamic burn-in at 80°C  ambient temperature (≥ 2  assemblies,
functional monitoring, intermediate el. tests at 24, 96, 240, 1,000, and 4 000, h ).

 2. 5,000 thermal cycles − + °20 100/ C  with ≤ °5 C / min  for applications with
slow heat up and ≥ °20 C / min  for rapid heat up, dwell time ≥ 10 min  at
− °20 C  and ≥ 5 min  at 100°C  after the thermal equilibrium has been reached
within ± ° C5   (total dwell times of about 20 & 10 min, 40 & 20 min for lead-free
solder;  ≥ 3 assemblies, metallographic analysis after 1,000, 2,000, and 5,000
cycles;  crack propagation can be estimated using a Coffin-Manson rela-
tionship of the form N A n= ε  with ε α α θ= −( ) /B C l d∆ , the parameter A has
to be determined experimentally at different temperature swings).

 3. 5,000 thermal cycles 0 80/ + °C , with temperature gradient as in point 2 above,
combined with random vibrations 1grms , 20 500− Hz  (≥ 3 assemblies,
metallographic analysis after 1,000, 2,000, and 5,000 cycles).
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a) Void caused by an s-shaped pin gassing
out in the area A ( × 20)

d) A row of voids along the pin of an SOP
package ( × 30)

b) Flaw caused by the insertion of the
insulation of a resistor network ( × 20)

e) Soldering defect in a surface mounted
resistor ( × 30 )

c) Defect in the copper plating of a hole in
a multilayer printed board ( × 50)

f) Detail A of Fig. 3.10e ( × 500)

Figure 3.10    Examples of production flaws responsible for the initiation of cracks in solder joints
a) - c)  inserted devices,  d) - f)  SMD  (Rel. Laboratory at the ETH Zurich);  see also Figs. 3.7 & 3.9
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Thermal cycles with random vibrations highly activate failure mechanisms at the
assembly level, in particular crack propagation in solder joints.  If such a stress
clearly occurs in the field, insertion technology would be more appropriate for high
reliability or safety applications.  Figure 3.11 shows a comparative investigation of
crack propagation [3.79 (1993)].

Preliminary results show that lead-free solder joints are more sensitive than
Sn-Pb solder joints to manufacturing flaws or defects, in particular, to mechanical
vibrations and fast thermal cycles, see e. g. [3.79 (02, 05, 11), 3.90].  For this reason,
tests and /  or screening on assemblies (PCBs) manufactured with lead-free solder
should take care of the stress really encountered in the field (see also Sections
5.1.5.4 and 8.3).

QFP, 52 pins, pitch 0.65mm. tin plated

QFP, 52 pins, pitch 0.65mm, unplated

SOP, 28 pins, pitch 1.27mm, tin plated

SOP, 28 pins, pitch 1.27mm, unplated

Ceramic capacitor, tin plated

Ceramic capacitor, unplated

MELF resistor, tin plated

MELF resistor, unplated
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Figure 3.11    Crack propagation in different SMD solder joints as a function of the number of
thermal cycles  ( δ l l/ = crack length in % of the solder joint length,  mean over 20 values,  thermal
cycles –20/+100°C with 60°C/min inside the solder joint;   Rel. Laboratory at the ETH Zurich)



4 Maintainability Analysis

At equipment and systems level, maintainability has a great influence on reliability
and availability.  This holds, in particular, if redundancy has been implemented and
redundant parts can be repaired (restored) on line, i. e., without interruption of oper-
ation at system level.  Maintainability is thus an important parameter in the optimi-
zation of reliability, availability, and life-cycle cost.  Achieving high maintainability
in complex equipment and systems requires appropriate activities which must be
started early in the design & development phase and be coordinated by a mainte-
nance concept.  To this concept belong failure detection & localization (built-in tests),
partitioning of equipment and systems into (as far as possible) independent line
replaceable units, and logistic support.  A maintenance concept has to be tailored to
the equipment or system considered.  Its definition and realization must be actively
supported by the project manager.  After some basic concepts, Section 4.2 deals with
a maintenance concept for complex equipment and systems. Section 4.3 discusses
maintainability aspects in design reviews.  Section 4.4 gives methods and tools for
maintainability prediction.  Spare parts provisioning & repair strategies are careful-
ly considered in Sections 4.5 & 4.6; cost optimization in Sections 4.5 - 4.7.  Design
guidelines for maintainability are given in Section 5.2.  The influence of preventive
maintenance, imperfect switching, and incomplete coverage on system's reliability &
availability is investigated in Section 6.8.  For simplicity, delays (administrative,
logistic, technical) are neglected and repair is thus used for restoration.

4.1 Maintenance, Maintainability

Maintenance defines all those actions performed on the item to retain it in or to
restore it to a specified state.  Maintenance includes thus preventive maintenance,
carried out at scheduled intervals, according to prescribed procedures to reduce the
probability of failures or the degradation of the functionality of the item,
and corrective maintenance, initiated after fault (defect or failure) detection and
intended to bring the item into a state in which it can again perform the required
function ( Fig. 4.1).   The aim of preventive maintenance must also be to detect
and repair hidden faults, for instance undetected failures in redundant elements.

Corrective maintenance is also known as repair (restoration) and can include any or
all of following steps:  detection (recognition), localization (isolation), correction
(disassemble, remove, replace, reassemble, adjust), and function checkout (Fig. 4.1).

A. Birolini, Reliability Engineering, DOI: 10.1007/978-3-642-39535-2_4,
� Springer-Verlag Berlin Heidelberg 2014
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• Test of all relevant functions, also to
detect hidden failures

• Activities to compensate for drift and to
reduce wearout failures

• Overhaul to increase useful life

PREVENTIVE   MAINTENANCE
(retainment of the item functionality)

CORRECTIVE   MAINTENANCE
(reestablishment of the item functionality)

MAINTENANCE

• Failure detection (recognition)
• Failure localization (isolation, diagnosis)
• Failure correction (removal)
• Function checkout

Figure 4.1   Basic maintenance tasks, disregarded from administrative, logistic, and technical delays
(fault is to use if failures and defects have to be considered, allowing errors / flaws as possible causes as well)

The time elapsed from the failure occurrence until the start-up after function
checkout, including all delays (administrative, logistic, technical), is often denoted
as restoration time (see [A1.4] for a comprehensive maintenance time diagram).
For simplicity, in this book delays are neglected (except in Example 6.7 (p. 203) and
Fig. A7.12 (p. 512));  thus, repair will be used for restoration.  The situation in which
only a part of the item is repaired (minimal repair) is considered in Section 4.6.2.

Maintainability is a characteristic of the item, expressed by the probability that
preventive maintenance (serviceability) or repair (repairability) of the item will
be performed within a stated time interval by given procedures and resources.  If τ '

and τ '' are the (random) times required to carry out a repair and a preventive
maintenance, respectively, then

Repairability and   Serviceability= ≤ = ≤Pr{ }           Pr{ }' ''τ τx x . (4.1)

Considering τ τ' and ''  as interarrival times, the variable x is used instead of t
in Eq. (4.1).  For a rough characterization, the means (expected values) of τ'  and τ' '

E[ ]'τ = =MTTR mean time to repair   (mean time to restoration)

E mean time to preventive maintenance[ ]''τ = =MTTPM

are often used.  Assuming x as a parameter, Eq. (4.1) gives the distribution functions
of τ ' and τ '', respectively.  These distribution functions characterize the
repairability and the serviceability of the item considered.  Experience shows that
τ ' and τ '' often exhibit a lognormal distribution (Eq. (A6.110)).  The typical shape
of the corresponding density is shown in Fig. 4.2.  A characteristic of the lognormal
density is the sudden increase after a period of time in which its value is practically
zero, and the relatively fast decrease after reaching the maximum (modal value x M ) .
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x  [h]
1 2 3 4

ψ

E[τ]
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µ 'e−µ' (x− ψ), x ≥ ψ

e
− (ln(λx))2

2σ 2

x σ 2 π

x0,5

Figure 4.2    Density of the lognormal distribution function for λ = 0 6. h-1 and σ = 0 3.
(dashed is the approximation given by a shifted exponential distribution with same mean)

This shape can be accepted, taking into consideration the main terms of a repair
time (Fig. 4.1).  However, calculations using a lognormal distribution can become
time-consuming.  In practical applications it is therefore useful to distinguish
between one of the following two situations:

 1. Investigation of maintenance times, often under assumption of ideal logistic
support:  In this case, the actual distribution function must be considered,
see Sections 7.3 and 7.5 for some examples with a lognormal distribution.

 2. Investigation of the reliability and availability of repairable systems:  The
exact shape of the repair time distribution has in general less influence on the
reliability and availability values at system level, as long as the MTTR is
unchanged and MTTR MTTF<<  holds (Examples 6.8, 6.9, 6.10);  in this case,
the actual repair time distribution function can often be approximated by an
exponential function with same mean (Example 6.10).

A refinement of Point 2 above, is to use a shifted exponential distribution function
(Examples 6.9 & 6.10, pp. 206 & 207).  Figure 4.2 shows (dashed) an example with

ψ τ λ λσ σ σ= − = − −−xM e e eVar[ ] ( .' / /2 2 22  ) 

The parameter µ ' of the exponential d. f. follows from the equality of the mean values

MTTR ee= = + → = −σ λ µψ µ λ λψσ2 22 1
2/ ' '/ /     ( )/ ./    (4.2)
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For the numerical example given in Fig. 4.2 ( . , . ; .λ σ= = ≈0 6 0 3 1 75h   h, -1 MTTR

Var h 2≈ 0 29. ) one obtains ψ ≈ 0 99. h  and µ ' . .≈ 1 32 h -1   A shift which considers
equal mean and variance leads to µ ' .≈1 9 h -1 & ψ ≈1 2. h .  For a deeper investigation,
one can refer to Examples 6.8 - 6.10.  In some cases, an Erlang distribution
(Eq. (A6.102)) with β ≥ 3 can be assumed for repair times, yielding simple results.

As in the case of the failure rate λ ( )x , for a statistical evaluation of repair
times ( ' )τ  it would be preferable to omit data attributable to systematic failures.
For the remaining data, a repair rate µ ( )x  can be obtained from the distribution
function G( ) Pr{ }'x x= ≤τ , with density g( ) G( ) /x d x dx= , as per Eq. (A6.25)

µ τ δ τ
δ δ

( ) lim Pr{ } ,' '
g( )

G( )
x x x x x

x x

x

x
= < ≤ +  > = −

↓ −0

1

1
   (4.3)

(considering that τ ' starts anew at each repair (restoration), x is used instead of t).
Maintenance is often performed by the user;  thus, in evaluating the maintaina-

bility achieved in the field, the influence of the logistic support must be considered.
MTTR requirements are discussed in Appendix A3.1.  MTTR estimation and
demonstration is considered in Section 7.3.

4.2 Maintenance Concept

Like for reliability, maintainability must be built into equipment and systems during
the design and development phase.  This, in particular, because maintainability
cannot be easily predicted by analytical methods, and a maintainability improve-
ment often requires important changes in layout or construction of the item (system)
considered.  For these reasons, attaining a prescribed maintainability in complex
equipment and systems generally requires the planning and realization of a
maintenance concept.  Such a concept must be supported by the project manager,
and deals with the following aspects (see e. g. [4.18] for greater details):

1. Fault detection and localization, including checkout after repair (localization
can be subdivided in isolation and diagnosis, and fault is used to consider
failures and defects).

2. Partitioning of the equipment or system into independent line replaceable
units (LRUs),i. e., in spare parts at equipment and systems level (line repair-
able, last repairable, or last replaceable is often used for line replaceable).

3. Preparation of the user documentation (operating & maintenance manuals).
4. Training of operating and maintenance personnel.
5. Logistic support for the user, including after-sales service.

This section introduces the above points for the case of complex equipment and
systems with high maintainability requirements.
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Table 4.1    Semiautomatic and automatic fault (failures and defects) detection and localization

Status Test Operation
Rough (quick test) Complete (functional test) Monitoring

Pr
op

er
tie

s

• Testing of all important
functions, if necessary
with help of external
test equipment

• Initiated by the operating
personnel, then runs
automatically

• Periodic testing of all important
functions

• Initiated by the operating
personnel, then runs
automatically or semi-autom.
(possibly without external
stimulation or test equipment)

• Monitoring of all
important functions and
automatic display of
complete and partial faults

• Performed with built-in
means (BIT / BITE)

A
dv

an
ta

ge
s • Lower cost

• Allows fast checking of
the functional conditions

• Gives a clear status of the func-
tional conditions of the item

• Allows fault localization
down to LRU level

• Runs automatically
on-line, i. e. in background

• Allows fault localization
down to LRU level

D
ra

w
ba

ck
s • Limited fault localization

(isolation and diagnosis)
capability

• Relatively expensive
• Runs generally off-line

(i. e. not in background)

• Expensive

LRU = line replaceable unit;  BIT = built-in test;  BITE = built-in test equipment

4.2.1 Fault Detection (Recognition) and Localization

For complex equipment and systems, detection of partial faults (failures and de-
fects) or of hidden faults (e. g. failures of redundant elements) can become difficult.
For this reason, a status test, initiated by operating personnel, or an operation
monitoring, running autonomously, must often be implemented.  Properties, advan-
tages, and disadvantages of both methods are summarized in Table 4.1.  The choice
between a status test or a more complete operating monitoring must consider cost,
reliability, availability, and safety requirements at system level.

The goal of fault localization (isolation and diagnosis) is to isolate faults
(failures and defects) down to the line replaceable units (LRUs), i. e., to the part
which is considered as a spare part at equipment and systems level.  LRUs are
generally assemblies, e. g. populated printed circuit board, or units which for repair
purposes are considered as an entity and replaced on a plug-out / plug-in basis to
reduce repair times.  Repair of LRUs is generally performed by specialized personnel
and repaired LRUs are stored for reuse.  Fault isolation should be performed using
built-in test (BIT) facilities, if necessary supported by built-in test equipment (BITE).
Use of external special tools should  be avoided, however check lists and portable
test equipment can be useful to limit the amount of built-in facilities.

Fault detection and fault localization are closely related.  They characterizes the
testability and should be considered together using common hardware and /  or
software.  A high degree of automation should be striven for, and test results should
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be automatically recorded.  A one-to-one correspondence between test messages
and content of the user documentation (operating and maintenance manuals)
must be assured.

Built-in tests (BIT) should be able to detect and localize also hidden faults
(e. g. failures and defects in redundant elements) as well as software defects.  This
ability is generally characterized by the following testability parameters:

 • degree of fault detection (coverage, e. g. 99% of all relevant failures),
 • degree of fault localization (e. g. down to LRUs),
 • correctness of the fault localization (e. g. 95%),
 • test duration (e. g. 1s).

The first two parameters can be expressed by a probability, and distinction between
failures and defects is important.  As a measure of the correctness of the fault
isolation capability, one can use the ratio between the number of correctly isolated
faults and the number of isolation tests performed.  This figure, similar to that of test
coverage, must often remain at an empirical level, because of the lack of exact
information about the defects and failures really present in the item considered.
For the test duration, it is generally sufficient to work with mean values.  Failure
(fault) modes analysis methods (FMEA / FMECA, FTA, cause-to-effect charts, etc.)
are useful to check the effectiveness of built-in facilities (Section 2.6).  Models for
incomplete failure (fault) coverage are investigated in Section 6.8.4.

Built-in test facilities, in particular built-in test equipment (BITE), must be
defined taking into consideration not only of price / performance aspects but also of
their impact on the reliability and availability of the equipment or system in which
they are used.  Standard BITE can often be integrated into the equipment or system
considered.  However, project specific BITE is generally more efficient than
standard solutions.  For such a selection, the following aspects are important:

 1. Simplicity:  Test sequences, procedures, and documentation should be as easy
as possible.

 2. Standardization:  The greatest possible standardization should be striven for,
in hardware and software.

 3. Reliability:  Built-in facilities should have a failure rate of at least one order of
magnitude lower than that of the equipment or system in which they are used;
their failure should not influence the item's operation (FMEA / FMECA).

 4. Maintenance:  The maintenance of BIT / BITE must be simple and should not
interfere with that of the equipment or system;  the user should be connected
to the field data change service of the manufacturer.

For some applications, it is important that fault localization (or at least part of the
diagnosis) can be remotely controlled.  Such a requirement can often be satisfied, if
stated early in the design phase.  Remote diagnosis  must be investigated on a case-
by-case basis, using results from a careful failure modes and effects analysis (FMEA).
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A further step on above considerations leads to maintenance concepts which allow
automatic or semiautomatic reconfiguration of the item after failure.

Preliminary investigations on a new approach for mission oriented high safety
systems (superimposing periodic check to the preventive maintenance) are in [4.26];
see also [4.4] for diagnostic aspects.

Design guidelines for maintainability are given in Section 5.2.  Effects of
imperfect switching and incomplete coverage are investigated in Section 6.8.

4.2.2 Equipment and Systems Partitioning

The consequent partitioning of complex equipment and systems into (as far as
possible) independent line replaceable units (LRUs) is important for good main-
tainability.  Partitioning must be performed early in the design phase, because of
its impact on layout and construction of the equipment or system considered.
LRUs should constitute functional units and have clearly defined interfaces with
other LRUs.  Ideally, LRUs should allow a modular construction of the equipment or
system, i. e., constitute autonomous units which can be tested each one independ-
ently from every other, for hardware as well as for software.

Related to the above aspects are those of accessibility, adjustment, and
exchangeability.  Accessibility should be easy for LRUs with limited useful life, high
failure rate, or wear out.  The use of digital techniques largely reduces the need for
adjustment (alignment).  As a general rule, hardware adjustment in the field should
be avoided.  Exchangeability can be a problem for equipment and systems with long
useful life.  Spare parts provisioning and aspects of obsolescence can in such cases
become mandatory (Section 4.5).

4.2.3 User Documentation

User (or product) documentation for complex equipment and systems can include
all of the following Manuals or Handbooks

 • General Description
 • Operating Manual
 • Preventive Maintenance (Service) Manual
 • Corrective Maintenance (Repair) Manual
 • Illustrated Spare Parts Catalog
 • Logistic Support.

It is important for the content of the user documentation to be consistent with the
hardware and software status of the item considered.  Emphasis must be placed on a
clear and concise presentation, with block diagrams, flow charts, check lists. The
language should be easily understandable to non-specialized personnel.  Procedures
should be self sufficient and contain checkpoints to prevent the skipping of steps.
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Table 4.2    Maintenance levels in the defense area

logistic
level

Location Carried out by Tasks

Level 1 Field
Operating
personnel

• Simple maintenance work
• Status test
• Fault detection (recognition)
• Fault localization down to subsystem level

A
dv

an
ce

d
m

ai
nt

en
an

ce
se

rv
ic

e

Level 2 Cover
First line
maintenance
personnel

• Preventive maintenance
• Fault localization down to LRU level
• First line repair (LRU replacement)
• Functional test

Level 3 Depot Maintenance
personnel

• Difficult maintenance
• Repair of LRUs

B
ac

k-
up

m
ai

nt
en

an
ce

se
rv

ic
e

Level 4
Arsenal
or
Industry

Specialists
from arsenal
or industry

• Reconditioning work
• Important changes or modifications

LRU = line replaceable unit (spare part at system level);   fault includes failures and defects

4.2.4 Training of Operation and Maintenance Personnel

Suitably equipped, well trained, and motivated maintenance personnel are an impor-
tant prerequisite to achieve short maintenance times and to avoid human errors.
Training must be comprehensive enough to cover present needs. However, for com-
plex systems it should be periodically updated to cover technological changes intro-
duced in the system and to further motivate operation and maintenance personnel.

4.2.5 User Logistic Support

For complex equipment and systems, customers (users) generally expect from the
manufacturer a logistic support during the useful life of the item under consid-
eration.  This can range from support on an on-call basis up to a maintenance
contract with manufacturer's personnel located at the user site.  One important
point in such a logistic support is the definition of responsibilities.  For this reason,
maintenance is often subdivided into different levels (four for military applications
(Table 4.2) and three for industry, in general).  The first level concerns simple
maintenance work such as the status test, fault detection and fault localization down
to the subsystem level.  This task is generally performed by operating personnel.
At the second level, fault localization is refined, the defective LRU is replaced by a
good one, and the functional test is performed.  For this task first line maintenance
personnel is often required.  At the third level, faulty LRUs are repaired by
maintenance personnel and stored for reuse.  The fourth level is generally relates to
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Table 4.3 Catalog of questions which can be used to generate project specific checklists for the evalu-
ation of maintainability aspects in preliminary design reviews (Appendices A3, A4) of complex equip-
ment & systems with high maintainability requirements  (fault used for failure & defect, p. 79 for rel.)

1. Has the equipment or system been conceived with modularity in mind?  Are the modules
functionally independent and separately testable?

2. Has a concept for fault detection and localization been planned and realized?  Is fault detection
automatic?  Which kind of faults are detected?  How does fault localization work?
Is localization down to line replaceable units (LRUs) possible?  How large are values for fault
detection and fault localization (coverage)?

3. Can redundant elements be repaired on-line?

4. Are enough test points provided?  Do they have pull-up/pull-down resistors?

5. Have hardware adjustments (or alignments) been reduced to a minimum?  Are the adjustable
elements clearly marked and easily accessible?  Is the adjustment uncritical?

6. Has the amount of external test equipment been kept to a minimum?

7. Has the standardization of components, materials, and maintenance tools been considered?

8. Are line replaceable units (LRUs) identical with spare parts?  Can they be easily tested?
Is a spare parts provisioning concept available?

9. Are all elements with limited useful life clearly marked and easily accessible?

10. Are access flaps (and doors) easy to open (without special tools) and self-latching?  Have
plug-in unit guide rails self-blocking devices?  Can a standardized extender for PCBs be used?

11. Have indirect connectors been used?  Is the plugging-out/plugging-in of PCBs (LRUs) easy?
Are power supplies and ground distributed across different contacts?

12. Have wires and cables been conveniently placed?  Also with regard to maintenance?

13. Are sensitive elements sufficiently protected against mishandling during maintenance?

14.

15.

Can preventive maintenance be performed on-line?  Does preventive maintenance also
allow the detection of hidden faults?

Have maintainability tests been planned?  What does this test program include?  Has
a test strategy from incoming inspection to system test been conceived?  It is appropriate?

16. Which part of the item (system) can be considered as-good-as-new after a maintenance action?

17. Have man-machine, ergonomic, and human aspects been sufficiently considered to avoid
mistakes at operation or maintenance?

18.

19.

20.

Have all safety aspects also for operating and maintenance personnel been considered?
Also in the case of failure (FMEA / FMECA, FTA, etc.)?

Is remote control, detection, diagnosis, maintenance possible?  Which of them and how?

Has the predicted maintainability been calculated?  How?

overhaul or revision (essentially for mechanical parts subjected to wear, erosion,
scoring, etc.) and performed at the manufacturer's site by specialized personnel.

For large mechanical systems, maintenance can account for over 30% of the
operating cost.  A careful optimization of these cost may be necessary in many
cases.  The part contributed by preventive maintenance is more or less deterministic.
For the corrective maintenance, cost equations weighted by probabilities of
occurrence can be established from considerations similar as those given in
Sections 1.2.9 and 8.4, see also Sections 4.5, 4.6, and 4.7.
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4.3 Maintainability Aspects in Design Reviews

Design reviews are important to point out, discuss, and eliminate design weak-
nesses.  Their objective is also to decide about continuation or stopping of the
project on the basis of objective considerations (feasibility checks in Tables A3.3 &
5.3 and Fig. 1.6).  The most important design reviews (PDR & CDR) are described in
Table A3.3 for hardware and in Table 5.5 for software.  To be effective, design
reviews must be supported by project specific checklists.  Table 4.3 gives a catalog
of questions which can be used to generate project specific checklists for
maintainability aspects in design reviews (see Table 2.8 for reliability and
Appendix A4 for other aspects).  As shown in Table 4.3, checking maintainability
during a design review deals with all involved aspects, including adherence to given
design guidelines, testability, coverage, man-machine and human factors, logistic
support, remote maintenance, and predicted maintainability.

4.4 Predicted Maintainability

Knowing the reliability structure of a system and the reliability and maintainability
of its elements, it is possible to calculate the maintainability of the system
considered as a one-item structure (e .  g. calculating the reliability function and
the point availability at system level and extracting g( )t  as the density of the repair
time at system level using Eqs. (6.14) and (6.18)).  However, such a calculation
soon becomes laborious for arbitrary systems (Chapter 6).  For many practical
applications it is often sufficient to know the mean time to repair at system level
MTTRS  (expected value of the repair (renewal) time at system level) as a function
of the system reliability structure, and of the mean time to failure MTTFi  and
mean time to repair MTTRi of its elements.  Such a calculation is discussed in
Section 4.4.1.  Section 4.4.2 deals then with the calculation of the mean time to
preventive maintenance at system level MTTPMS.  The method used in Sections
4.4.1 and 4.4.2 is easy to understand and delivers mathematically exact results for
MTTRS  and MTTPMS .  Use of statistical methods to estimate or demonstrate a
maintainability or an MTTR are discussed in Sections 7.2.1, 7.3, 7.5, and 7.6.

4.4.1 Calculation of MTTRS

Let us first consider a system without redundancy, with elements E En1 , ,…  in series
as given in Fig. 6.4.  MTTFi  and MTTRi  are the mean time to failure and the mean
time to repair of element Ei , respectively ( ), ,i n= …1 .  Assume now that each
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element works for the same cumulative operating time T (the system is disconnected
during repair, or repair times are neglected because of MTTR MTTFi i<< ) and let T
be arbitrarily large.  In this case, the mean (expected value) of the number of
failures of element Ei  during T is given by (Eq. (A7.27))

T

MTTFi

.

The mean of the total repair time necessary to restore the T MTTFi/  failures follows
then from

MTTR
T

MTTFi
i

.

For the whole system, there will be in mean

T

MTTFii

n

=
∑

1

(4.4)

failures and a mean total repair time of

MTTR
T

MTTF
i

ii

n

=
∑

1

  . (4.5)

From Eqs. (4.4) and (4.5) it follows then for the mean time to repair (restoration)
at system level MTTRS , the final value

MTTRS

i

i

MTTR MTTF

MTTF

i
i

n

i

n
=

=

=

∑

∑

 /

/

.
1

1
1

(4.6)

Equation (4.6) gives the mathematically exact value for the mean repair time
at system level MTTRS , under the assumption that at system down (during a repair)
no further failures can occur and that switching is ideal (no influence on the
reliability).  From Eq. (4.6) one can easily verify that

MTTR MTTRS = ,     for     MTTR MTTR MTTRn1 = … = = ,

and

MTTR
n

MTTRS i
i

n

=
=
∑1

1
,     for     MTTF MTTFn1 = … = .
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Example 4.1

Give the mean time to repair at system level MTTRS for the following system.

MTTF = 500 h
MTTR =     2 h

MTTF = 400 h
MTTR =  2.5 h

MTTF = 250 h
MTTR =     1 h

MTTF = 100 h
MTTR =  0.5 h

How large is the mean of the total system down time during the interval ( , ]0 t  for t → ∞ ?

Solution

From Eq. (4.6) it follows that

MTTRS =

+ + +

+ + +
= ≈−

2

500

2 5

400

1

250

0 5

100

1

500

1
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1

250

1
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0 01925

0 0185
1 04

1

h

h

h

h

h

h

h

h

h h h h
h

h

. .

.

.
. .

The mean down time at system level is also 1 04. h, because for a system without redundancy it
holds that down time = repair time.  The mean operating time at system level in the interval ( , ]0 t
can be obtained from the expression for the average availability AAS  (Eqs. (6.23), (6.24), (6.48),
and (6.49))

lim [ ( , ]] / ( )
t

St t AA t MTTF MTTF MTTRS S S→∞
= ⋅ = ⋅ +E total operating time in   0 .

From this, the mean of the total system down time during ( , ]0 t  for t → ∞  follows from

limE[ ( , ]] . . / ( ).
t

St t t AA t MTTR MTTF MTTRS S S→∞
= − = +total system down time in  0

Numerical computation then leads to

t t t tMTTR MTTF MTTR MTTR MTTFS S S S S
. / ( . / . . .)  h h-1+ ≈ = ⋅ ⋅ ≈1 04 0 0185 0 019 .

If every element exhibits a constant failure rate λ i  , then MTTFi i= 1 / λ  and

MTTR MTTRS
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  with,         .   
(4.7)

Equations (4.6) and (4.7) can also be used for systems with redundancy.
However, in this case, a distinction at system level between repair time and down
time is necessary.  If the system contains only active redundancy, the mean time to
repair at system level MTTRS  is given by Eq. (4.6) or (4.7) by summing over all
elements of the system, as if they were in series (a similar consideration holds for
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spare parts provisioning).  By assuming that failures of redundant elements are
repaired without interruption of operation at system level, Eq. (4.6) or (4.7) can
be used to obtain an approximate value of the mean down time at system level,
by summing only over all elements without redundancy (series elements), see
Example 4.2.

Example 4.2

How does the MTTRS  of the system in Example 4.1 change, if an active redundancy is
introduced to the element with MTTF = 100 h ?

MTTF = 500 h
MTTR =     2 h

MTTF = 400 h
MTTR =  2.5 h

MTTF = 250 h
MTTR =     1 h

MTTF = 100 h
MTTR =  0.5 h

MTTF = 100 h
MTTR =  0.5 h

Under the assumption that the redundancy is repaired without interruption of operation at system
level, is there a difference between the mean time to repair and the mean down time at system
level?

Solution

Because of the assumed active redundancy, the operating elements and the reserve elements show
the same mean number of failures.  The mean system repair time follows from Eq. (4.6) by
summing over all system elements, yielding

MTTRS =

+ + + +

+ + + +
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However, the system down time differs now from the system repair time.  Assuming for the
redundancy an availability equal to one (for constant failure rate λ = 1/ MTTF , constant repair
rate µ = 1/ MTTR, and one repair crew, Table 6.6 (p. 201) gives for the 1-out-of-2 active
redundancy PA AA= = + + +µ λ µ λ λ µ µ( ) ( ( ) )/2 2 2  yielding AA = 0 99995.  for this example),
the system down time is defined by the elements in series on the reliability block diagram (see
Point 9 in Section 6.8.9 (Eq. (6.295)) for precise considerations), thus

mean down time at system level =

h

h

h

h

h

h

h h h

hMDTS ≈
+ +

+ +
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Similarly to Example 4.1, the mean of the system down time during ( , ]0 t  follows from

limE[ ( , ]] ( ) . . .
t

s
MDT

t t AA t t tS

SMTTF→∞
= − ≈ = ⋅ ⋅ ≈total down time in h h   .-10 1 1 68 0 0085 0 014



4.4   Predicted Maintainability 125

4.4.2 Calculation of MTTPMS

Based on the results of Section 4.4.1, calculation of the mean time to preventive
maintenance at system level MTTPMS  can be performed for the following two cases:

1. Preventive maintenance is carried out at once for the entire system, one element
after the other.  If the system consists of elements E En1 , ,…  (arbitrarily grouped
on the reliability block diagram) and the mean time to preventive maintenance of
element Ei  is MTTPMi , then (Eq. (A6.68))

MTTPM MTTPMS i
i

n

=
=
∑

1
. (4.8)

2. Every element Ei  of the system is serviced for preventive maintenance
independently of all other elements and has a mean time to preventive
maintenance MTTPMi .  In this case, Eq. (4.6) can be used with MTBPMi  instead
of MTTFi  and MTTPMi  instead of MTTRi , where MTBPMi  is the mean time
between preventive maintenance for the element Ei .

Case 2 has a practical significance when preventive maintenance can be performed
without interruption of the operation at system level.

4.5 Basic Models for Spare Parts Provisioning

Spare parts provisioning is important for systems with long useful life or when short
repair times and /  or independence from the manufacturer is required (spare part is
used here e. g. for line replaceable unit (LRU)).  Basically, a distinction is made
between centralized and decentralized logistic support.  Also important is to take
into account whether spare parts are repairable or not.  This section presents the
basic models for the provision of nonrepairable and of repairable spare parts.
For nonrepairable spare parts, the cases of centralized and decentralized logistic
support are considered in order to quantify the advantage of a centralized logistic
support with respect to a decentralized one.  More general maintenance strategies
are discussed in Section 4.6, cost specific aspects in Sections 4.5 - 4.7.

4.5.1   Centralized Logistic Support, Nonrepairable Spare Parts

In centralized logistic support, spare parts are stocked at one place.  The basic
problem can be formulated as follows:
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At time t = 0, the first  part is put into operation, it fails at time t = τ1 and
is replaced (in a negligible time) by a second part which fails at time
t = +τ τ1 2  and so forth;  asked is the number n of parts which must be
stocked in order that the requirement for parts during the cumulative
operating time T is met with a given (fixed) probability γ .

To answer this question, the smallest integer n must be found for which

Pr{ }τ τ γ1 + … + > ≥n T (4.9)

holds. In general, τ τ1 , ,… n are assumed to be independent positive random varia-
bles with the same distribution function F( ), )x  F0 0= , density f( )x , and finite mean
E[ ]τ i = E[ ]τ = MTTF  & Var[ ] Var[ ]τ τi = .  If the number of parts is calculated from

n T MTTF= / , (4.10)

the requirement can only be covered (for T large) with a probability of 0.5.  Thus,
more than T MTTF/  parts are necessary to meet the requirement with γ > 0 5. .

According to Eq. (A7.12), valid for renewal processes, the probability as per
Eq. (4.9) can be expressed by the ( )n − 1 th convolution of the distribution function
F( )t  with itself, i. e.

Pr{ } F ( )τ τ1 1+ … + > = −n nT T ,

with        and  F ( ) F( )   F ( ) F ( )f( ) ,    1 1
0

1T T T T x x dx nn n

T
= = − >−∫ . (4.11)

Of the distribution functions F( )x  used in reliability theory, a closed, simple form
for the function F ( )n x  exists only for the exponential, gamma, and normal distri-
bution functions, yielding a Poisson, gamma, and normal distribution, respectively.
In particular, the exponential distribution F( )x e x= − −1 λ  leads to (Eq. (A7.39))

Pr{ }
( )

!
τ

λ λ
i

i
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i
e
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i

n T
> =

= =

−
∑ ∑ −

1 0

1
  . (4.12)

The important case of the Weibull distribution F( ) ( )x e x= − −1 λ β
 must be solved

numerically.  Figure 4.3 shows the results with γ  and β as parameters [4.2 (1974)].
For n large, an approximate solution for a wide class of distribution functions

F( )x  can be obtained using the central limit theorem.  From Eq. (A6.148) if follows
that (considering Var[ ]τ < ∞ )

lim Pr
E[ ]

Var[ ]
( ) ( ) ,{ } /

n

i

i

n

xn
x x xe dyy

→ =

∞

∞
> = −−

= − = −∑ ∫     
τ τ

τ π1

21

2

2 1 Φ Φ (4.13)

and thus, using x n n TVar[ ] E[ ]τ τ+ = ,
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Figure 4.3  Number n of parts necessary to cover a cumulative operating time T with probability
≥ γ , i. e. smallest n for which Pr{ }τ τ γ1+ … + > ≥n T  holds, with Pr{ } ( )τ λ β

i
xx e≤ = − −1  and

MTTF = +Γ( / ) /1 1 β λ  (dashed the results given by the central limit theorem as per Eq. (4.15);
β = 1 yields the exponential distribution function)

lim Pr { } /

/( ])E[ Var[ ]
n

i
i

n

n n

T e dyy

T
→∞ =

> =∑ =−
∞

−

∫τ
π

τ τ

γ
1

2 2
1

2
 (4.14)

Setting ( E[ ]) / Var[ ]T n n d− = −τ τ  it follows that for n → ∞

n d d T= + + =[ ]        / ./ ( ) / E[ ] Var[ ] E[ ]/ ,     withκ κκ τ τ τ2 2 22 (4.15)

A similar approximation can also be obtained from Eq. (A7.34).
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Figure 4.4    Coefficient of variation for the Weibull distribution for 1 3  ≤ ≤β

From Eqs. (4.13) to (4.15) one recognizes that d is the γ quantile of the standard
normal distribution ( γ = − − =1 Φ Φ( ) ( )d d ), yielding e. g. (Table A9.1)

γ  = 0.99 0.95 0.90 0.75 0.5

d  = 2.33 1.64 1.28 0.67 0

Equation (4.15) gives for γ ≤ 0 95.  a good approximation of the number of parts n
down to low values of n (see e. g. Fig. 4.3).  κ τ τ= Var[ ] E[ ]/  is the coefficient of
variation ( κ =1 for the exponential distribution and κ β β= + + −Γ Γ( / ) / ( ( / ))1 2 1 1 12

for the Weibull distribution (Fig. 4.4)).
For the case of a Weibull distribution with β ≥ 1, approximate values for n

obtained using the central limit theorem (Eq. (4.15)) are shown dashed in Fig. 4.3.
For β =1, deviation from the exact value is < 1 3.  for γ ≤ 0 95.  and n ≥ 5; this
deviation drops off rapidly for increasing values of β ( F ( )n x  already approaches
a normal distribution for small n).  From Eqs. (4.13) - (4.15) one recognizes that for
γ = 0 5. , d = 0 and thus, for n large, n T= / E[ ]τ  (Eq. (4.10)).

Let us now consider the case in which the same part occurs k times in the system.
For F( ) ,x e x= − −1 λ  i. e. E[ ] /τ λ κ= 1   = 1and  , Eqs. (4.12) - (4.15) hold with

λ λ'= k ,                     k = 1 2, , ... , (4.16)

instead of λ.  This is because the sum of independent Poisson processes is a
Poisson process (Eq. (7.27)) and k parts must be operating for the required function.
The same holds if l systems use the same part, one or more per system with total
k parts of the same type, and storage is centralized (Example 4.3).  Considering that
k ≥1 parts are available at t =0 (operating at t =0), it is reasonable to define as
number of spare parts nsp  (at system level) the quantity

n n ksp = − ,                 k = 1 2, , ... , (4.17)

where n is the number of parts obtained from Eq. (4.12) with λ λ' = k  instead of λ,
see Examples 4.3 and 4.4 for practical applications.
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Example 4.3
A part with constant failure rate λ = − −10 3 1h  is used three times in a system ( )k = 3 .  Give the
number of spare parts ns p  which must be stored to cover a cumulative operating time
T = 10 000, h  with a probability γ ≥ 0 90. .

Solution
Considering k Tλ = 30, the exact solution is given by the smallest integer n nsp = − 3  for which

30
0 930

0

1 i

i

n

i
e

!
.−

=

−
∑ ≥

holds (Eq. (4.12)).  From Table A9.2 it follows, for q = − =1 0 9 0 1. .  and t qν,
.= =2 30 60 , the

value ν = 75 2.  (lin. interpolation);  thus, ν = 76 and (Appendix A9.2 & Eq. (4.12)) n = =ν / 2 38
(same results from Fig. 7.3 for m = 30  & γ = 0 9. , yielding n c= + =1 38, and with Eq. (4.15) for
κ =1 and d =1 28. ,  yielding n = 38 ( [ . . ] . )0 64 0 64 30 37 92 2+ + ≈ ).  Thus, considering that 3
parts are operating at t = 0, it follows that (Eq. (4.17)) nsp = − =38 3 35.

4.5.2 Decentralized Logistic Support, Nonrepairable Spare Parts

For users who have the same system located at different places, spare parts are often
stored decentralized, i .  e., separately at each location (decentralized means that
spare parts cannot be transferred from one location to another location).  If there are
l systems, each with a given part, and the storage of spare parts is decentralized at
each system (or location), a first approach could be to store with each system the
same number of spare parts obtained using Eqs. (4.9) and (4.17).  In this case, the
total number of parts would be n l. , i. e. ( ) .n k l−  spare parts.  This number n of parts,
which would be sufficient to meet, with a probability > γ  (often >> γ ) the needs of
the l systems with a centralized storage (Example 4.4), would now in general be too
small to meet all the individual needs at each location.  In fact, assuming that fail-
ures at each location are independent, and that with n parts the probability of meeting
the needs at any location individually is γ , then the probability of meeting the need
at all locations is γ l .  Thus, to meet the need at the l locations with a probability γ

n l ndec l= . (4.18)

parts are required, where nl is computed for each location individually with

γ γl
l= .  , (4.19)

e. g. using Eq. (4.15) with dl  instead of d  (  Φ Φ( ) , ( ) ).d d l
l= =γ γ  To make a compa-

rison between a centralized and a decentralized logistic support, let us assume that the
part considered appears k times in each of the l locations, has constant failure rate λ,
and k T d dlλ >> >2 24 4/ /  holds.  In this case, Eqs. (4.15) & (4.16) lead to

n k T d k T k T d k≈ + >> =λ λ λ γ, / , , , ...,                    probability   2 4 1 2 . (4.20)
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Example 4.4
Let λ = − −10 4 1h  be the constant failure rate of a part in a given system.  The user has 6 locations
( l = 6) and would like to achieve a cumulative operating time T = 50 000, h at each location with
a probability γ ≥ 0 95. .  How many spare parts can be saved using a centralized logistic support?

Solution
From Fig. 4.3 ( T MTTF/ = 5, γ = ≈0 95 0 99

6
. . ), Fig 7.3 ( m = 5,  γ = 0 99. , c nl= − 1), or

from a χ2 −Table ( t qν, = 10, q= − =1 0 99 0 01. . , ν = 2nl ) each user would need nl = 12 parts
( nl = 14 using Eq. (4.15) with d dl= = 2 33.  and λT = 5);  thus ndec = =6 12 72.  parts and (Eq.
(4.17)) nspdec = − =72 6 66  spare parts.  Combining the storage ( l = 6), it follows from Fig. 7.3
( m= 30, γ = 0 95. , c n cen= − 1)  or from Table A9.2 ( t qν, = 60, q = 0 05. ,  ν = 2ncen) that
ncen = 40 ( ncen = 41 using Eq. (4.15) with d = 1 64.  and λT = 30);  thus, nspcen = − =40 6 34.
A centralized storage would save 66 34 72 40 32− − = (or )  spare parts (Eq. (4.23) gives 1.57
instead of 1.8 (left) and 1.67 instead of 1.94 (right), because k Tλ = 5  is not >> =dl

2 4 1 36/ . ) .

Supplementary result:  Provisioning independently for each location with γ = 0 95.  yields nl =10
(Fig. 4.3 with T MTTF/ = 5 & γ = 0 95. ) and thus n = =6 10 60. .

For centralized logistic support, Eq. (4.20) yields

ncen l k Tl k T d l k T d k l≈ + >> =λ λ λ γ, / , , , ...,          ,  probability  2 4 1 2 . (4.21)

For decentralized logistical support, Eq. (4.20) yields

ndec k Tl k T dl k T d k ll≈ + >> =( ) , , , , ...,λ λ λ γ         / 4 ,    probability  2 1 2 , (4.22)

where dl  is obtained as for d  in Eq. (4.15) with γ γl
l=  instead of γ (for example,

d =1 64.  for γ = 0 95.  and dl = 2 57.  for l = 10 i. e. for γ l = 0 9949. , see Table A9.1).
From the above considerations it follows that for k T d dlλ >> >2 24 4/ /  (Example 4.4)

n
n

n

n
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l k T

spdec

spcen

k T T

l k T T

d

d
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+
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−1

1

1

1

1
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( /

( /
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) /
,λ

λ

λ λ

λ λ
                or      (4.23)

with Φ Φ( ) ( ) .d d l
l= =γ γ  and   Setting λ τT T T MTTF= =/ [ ] / ,E  Eq. (4.23) can be used

for arbitrary distribution of the spare parts failure-free time τ (Appendix A7.8.3).

4.5.3 Repairable Spare Parts

In Sections 4.5.1 and 4.5.2 it was assumed that the spare parts (LRUs) were
nonrepairable, i. e., that a new spare part was necessary at each failure.  In many
cases, spare parts can be repaired and then stored for reuse.  Calculation of the
number of spare parts which should be stored can be performed in a way similar to
the investigation of a k-out-of-n standby redundancy, where k is the number of parts
used in the system (as in Eq. (4.17)) and n is the smallest integer to be determined
such that the requirement is met with a given (fixed) probability γ .  Following two
cases have to be considered:
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 1. γ  is the probability that a request for a spare part at a time point t can be met
without time delay;  in this case, γ can be considered as the point availability
PAS  (in steady-state to simplify investigations) and n is the smallest integer
such that PAS ≥ γ  for a given (fixed) γ .

 2. γ is the probability that any request for a spare part during the time interval
(0, t] will be met without time delay;  in this case, γ can be considered as the
reliability function R ( )S t0  and n is the smallest integer such that R ( )S t0 ≥ γ
for given (fixed) γ  and t.

If the spare parts have constant failure rate λ = 1 / MTTF  and constant repair rate
µ = 1 / MTTR, birth-and-death processes can be used (Section A7.5.5).  To simplify
investigations and to agree with results in Chapter 6, it is assumed that only one
spare part at a time can be repaired (only 1 repair crew is available) and no further
failures are considered when a request for a spare part cannot be met (corresponds
to the assumption no further failure at system down (Fig. 6.13)).

For Case 1 above, Eq. (6.138) with λr ≡ 0 and Eq. (6.140) yield

PA P PS j n k
j

n k

= = − ≥
=

−
∑ − +

0
1 1                          γ (4.24)

with

P kj
ij

i

i i n k

i

n k
= =

=

− +

∑
= … − +

π

π
π λ µ

0

1
0 1  ( / )             ,  , ,and  . (4.25)

Asked is the smallest integer n which satisfies Eq. (4.24) for given (fixed) γ , k,
λ µ, and .  Often n k= + 1 (one spare part) or n k= + 2  (two spare parts) will
be sufficient.  In these cases, results of Table 6.8 yield

PA kS
k k

n n ksp

1

1

1
1

2 2 2
2=

+ +
−≈

λ λµ µ
λ µ

/
/

( )
( ) ,      

                                                     = - = 1     spare part,  1    repair crew,  Case 1,
    (4.26)

PA kS
k k k

nsp n k

2
31

1
1

2

3 3 2 2 2 3
=

+ + +
=

≈ −

−

λ λ µ λµ µ
λ µ

/
( / )

( )
,   

      =  spare parts,      1    repair crew,  Case    1   .                                       .
   (4.27)

If PAS2 is still < γ , more than 2 spare parts are necessary.  A good approximation
for the number ns p  of spare parts can be obtained using the smallest integer
n n ks p = −  satisfying (Table 6.8)

PA kS n n kn
n

spsp
sp≈ − +

≥ = −1
1

 ,          spare parts, 1 repair crew, Case    1 .( / )λ µ γ  (4.28)

Using results of Appendix A7.5.5 (Eq. (A7.157)) and for kλ<<µ , it can be shown
that approximations per Eqs. (4.27) & (4.28) hold also if the assumption "no further
failures are considered when a  request for a  spare part cannot b e met" is  not made.
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Example 4.5

A system contains k = 100  identical parts (LRUs) with a constant failure rate λ = − −10 5 1h  and
which can be repaired with a constant repair rate µ = − −10 1 1h .  (i)  Give the number of spare
parts which must be stored in order to meet without any time delay and with a probability
γ ≥ 0 99.  a request for a spare part at a time point t  (consider the steady-state only, one repair
crew, and no further failure when a request for a spare part cannot be met).  (ii)  If one spare part
is stored ( n k= + 1), how large is the probability that any request for a spare part during the time
interval ( , ]0 104 h  will be met without any time delay?

Solution

(i)  Taking n k= + 1 (1 spare part), Eq. (4.26) yields

PAS1

1

1 10 10 100 10 10 10
1

100 10

10
0 9999

4 10 5 1 2

5

1
2=

+ ⋅ ⋅ ⋅ +
≈ − ≈

− − − −

−

− / ( )
(

.
) . .

Thus only one spare part ( )ns p= 1  must be stored.

(ii)  For n k= + 1, Eq. (4.29) yields R ( ) .
S t e t

01
0 00001≈ −  and thus R eS0

4 0 1
1

10 0 91( . .)
.h ≈ ≈−

Supplementary result:  To reach R ( ) .S 0
4

10 0 99≥  one needs nsp=2  spare parts (R ( ) . ).S0
4

2
10 0 999=

The case in which nsp+ 1 repair crews are available (instead of 1 repair crew) is
considered by Eq. (4.32) for comparative investigations.

For Case 2 above, the reliability function can be approximated by an exponential
function (Eq. (6.93)), yielding (Eqs. (6.144) & (6.145) with ν λi k= )

R tS
k n n ke t

sp0 1
1

2
( ) ( ) /≈ − λ µ    ,              = - =  spare part,  1 repair crew,       Case 2 ,      (4.29)

R tS
k n n ke t

sp02

3 2
( ) ( ) / ,           = - = 2      spare par st             ,  1 repair crew,       Case 2 .≈ − λ µ    (4.30)

If RS t02( ), with t  as mission time, is still < γ , more than 2 spare parts are necessary.
A good approximation for the number ns p  of spare parts can be obtained using the
smallest integer n n ks p = −  satisfying (Table 6.8)

R tS
k n knsp

n

spe t n
s p

0
1

( ) ( / )≈ ≥− +  = -       spare  parts, 1 repair crew,  Case2.
    

,       µ λ µ γ    (4.31)

For Eqs. (4.29) to (4.31) it holds necessarily that no further failures are
considered when a request for a spare part cannot be met (system down states
are made absorbing for reliability calculations).  The case in which ns p  repair crews
are available is considered by Eq. (4.33) for comparative investigations.  Example
4.5 gives a practical application.

Assuming for comparative investigations that each of the n n ksp = −  spare parts
can be repaired independently from each other ( nsp + 1 repair crew) and no further
failures when a request for a spare part cannot be met, results of Section A7.5.5,
with ν λi k i n k= = … −,    0, , ,  and θ µi i i n k= = … − +,   1 1, , ,  yield (see also Eq. (6.149))
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PA k nS nsp
nsp sp

sp
sp

n n k
n  (        / , (4.32)  spare parts,

     repair crews,   Case 1,
≈ − ++ = −

+1 11
1

λ µ/ ) ( )!

and, with νi as before and θ µi i i n k= = … −,   1, , ,

R t
S nsp

spt e k n n n k
n

nsp sp

sp0

1

( ) /( / ) ( ) !≈ − = −+   
           

  spare parts,
       repair crews,   Case 2.    , (4.33)µ λ µ

Using results of Appendix A7.5.5 (Eq. (A7.157)), and for kλ<<µ , it can be shown
that the approximation per Eqs. (4.32) holds also if the assumption "no further
failures are considered when a  request for a  spare part cannot b e met" is  not made.
For Eq. (4.33) it holds necessarily that no further failures are considered when a
request for a spare part cannot be met (system down states are absorbing).

Generalization of the repair rate leads to semi-regenerative processes with n k− +1
regeneration and n k−  not regeneration states (Section 6.5.2, Appendix A7.7).
For instance, assuming for the repair time a density g(t), a mean MTTR, and a
variance Var [ ']τ , Eq. (6.110) with k λ λ instead  of  and λ r ≡ 0 (see supplementary
results in Example A7.12) and g̃( )λ  per Eq. (6.113), lead to

PAS
k

k k k k

k k

n n k

MTTR MTTR

MTTR MTTR MTTR

s p

1 2

2 2 2

1

1 1 2 1

2 2
=

+ + +

− + −

= −

≈

≈ ≈>

λ

λ λ λ λ τ

λ τ λ

( ) g̃ ( ) ( )

( ) ( ) / ( )

(    
           

Var[ '] ) 2

Var[ '] /  

 = 1 spare part,  1 repair crew,   Case 1.

1

     
  ,

    
/

 

(4.34)

Similarly, Eq. (6.108) with k rλ λ λ instead of   and  ≡ 0  and Eq. (6.114) lead to

R t t
S

k MTTRe ek k t

n n ks p

01
1

1

2
( ) ( g̃( ) ,( )≈ ≈− −

= − =

− (4.35)
    

 spare part,  1 repair crew,   Case2.
 

  λ λ λ

The last approximation in Eq. (4.34) assumes  for the coefficient of variation κ that

κ τ τ2 ' 2 '= Var [ ]  E [ ]  / ≤ 1,     (4.36)

which holds for distribution functions used for repair times (increasing repair rate).
Assuming MTTR = 1/ µ , i. e., the same mean time to repair disregarding the
distribution of the repair time, the last approximations in Eqs. (4.34) and (4.35)
yield the same result as given by Eqs. (4.26) and (4.29), showing, once more, the
small  influence of the repair time distribution on results at system level.  The last
approximation in Eq. (4.35) is obtained by assuming k MTTRλ <<1 ,  i. e. using
g̃( )k k MTTRλ λ≈ −1    (Eq. (6.114).  For the approximation in Eq. (4.34) it was
necessary to use g̃( ) ( ) (k k kMTTR MTTRλ λ λ τ≈ − + +1 2 2  Var[ ' ] ) /2  (Eq. (6.113)).

Taking RS
t MTTFt e S( ) /= −    in Eqs. (4.31), (4.33) & (4.35), and PAS  as in

Eqs. (4.28), (4.32) & (4.34), PAS  can be expressed as  (Eq. (A7.189))
   PA MTTR MTTFS S S≈ −1 / ,     (4.37)
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___________________

+ )  Considering the remarks to Eqs. (A6.27) - (A6.29), preventive maintenance is useful (necessary)
only for items with increasing failure rate, tacitly assumed here.

+ + ) Replacement is used here instead of renewal, to agree with established literature.

with MTTR MTTR n k MTTR MTTRS S S= = − + =1 1 1/ , / ( ) ,µ µ        &      respectively.
The results of Sections 4.5.1 - 4.5.3, in particular those on decentralized logistic

support, can be extended to cover the case of systems with different spare parts.

4.6 Maintenance Strategies

Maintenance strategies can be very different according to the objective to be
reached (choice between maintenance policies, minimization of system down time
or spare parts, availability maximization by given cost and / or logistic support, etc.).
Among possible maintenance strategies [2.34, 4.0, 4.1, 4.2, 4.6, 4.8, 4.14, 4.18, 4.30,
6.3, A7.4 (1962)], this section unifies and extends basic repair / replacement policies.
Preliminary investigations on a new approach for mission oriented high safety
systems (superimposing a periodic check to the preventive maintenance) are in [4.26].
Cost aspects are considered in this section and in Section 4.7.  For undetected fault
times, e. g. by uncovered (latent) failures, one can refer to Eqs. (A6.30) & (6.223).

In the following it is assumed that the item is new at t =0, its failure-free time
τ > 0 has distribution function F ( )x , density f ( )x , E[ ] Var[ ]&τ τ <∞  and, in Sections
4.6.1 & 4.6.2, repairs / replacements are performed in a negligible time.  Section
4.6.1 considers the case in which the item is as-good-as-new after each maintenance
action, planned (preventive maintenance) or at failure.  In section 4.6.2, the item is
as-good-as-new only after planned maintenance actions, but as-bad-as-old after
repairs (minimal repair at failure).  Further considerations are in Section 4.6.3. + )

4.6.1 Complete renewal at each maintenance action

In this section it is assumed that each maintenance action, planned or at failure,
brings the item considered to as-good-as-new (see e. g. remarks on pp. 8 and 171 for
complex items), yielding to a renewal point for the underlying point process.

Among possible strategies to avoid wear out failures or effects of sudden
failures, replacements + + )  can be performed basically

    (a) at a given (fixed) operating time TPM  or at failure if the operating time is
shorter than TPM   (age replacement, Fig. 4.5a),

    (b) at given (fixed) time points T TPM PM, , ... 2  or at failure  (block replacement,
Fig. 4.5b),

  (fix) only at given (fixed) time points T TPM PM, , ... 2   (fix replacement, Fig. 4.5c),
  ( )of only at failure  (ordinary renewal process without truncation).
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Figure 4.5  Possible time schedules for a repairable item with preventive maintenance (PM) and
repair (renewal) times of negligible length  (item new at t = 0 and at each repair or PM,  x starts by 0

at each renewal point):   a) After TPM  operating hours or at failure (age replacement);  b) At fixed
times T TPM PM, , ...2  or at failure (block replacement);  c) At times T TPM PM, , ...2  (fix replacement)

Considering first the case of age replacement (Fig. 4.5a), results of Appendix
A7.2 for renewal processes and Section 4.5 for spare parts provisioning can be used,
taking for the failure-free time τrepla  the truncated distribution function Frepla x( )

F Pr{ } .   (4.38)
F      
             ,              

for  
F F

for     repla replax x
x x T

x T
PM

repl a
PM

( )
( ) ,

( ) ( ) .= ≤ =




< <
= =

≥
τ

0
0 0 0

1

Taking care of Pr F { } ( )τrepl PM PMa
T T= = −1 , the mean time to replacement follows as

E [ ] f F   ))  F .
    

  (4.39)τrepl PM PM PMa
x x dx T T x dx T

T TPM PM

= + − = − <∫ ∫( ) ( ( ( ( ))
0 0

1 1

Defining as  νa t( )  the number of renewals in ( , ]0 t  on age replacement policy
(replacements at failure & preventive maintenance), it follows from Eq. (A7.15) that

E [ ( )] H                    
 
,

     
,   (4.40)(0) H

 
                               

   
ν νa at t t a a= > = =( ) ( ) ,0 0 0

(with F F F1( ) ( ) ( )x x repl a x= =  in Eq. (A7.15)).  Furthermore, Eq. (A7.27) yields

lim ( ( ) )/ ,
t

repla

T

t t ta
x dx

PM

→∞
= −∫E [ ( )]

 
 E [ ] = 

F
     /
 

ν τ 1
0     (4.41)

in the proportion F ( )TPM  for replacements at failure and 1 − F ( )TPM  for replace-
ments at age.  Thus, with c cf ar and   as cost for replacement at failure and at age,
the mean total cost per unit time (cost rate) is

lim ( ) ( ( ))]/ ] [ .( ( ))
t

c t c ca PM ar PM

T

f

PM

T T x dx
→∞

= ∫+ − −E [ F  F
             

 
(4.42)

 
/      F1 1

0
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From Eq. (4.42) one recognizes that E [        for    c ta PMT/ ] → ∞ → 0 and
→ → ∞cf PMT/ ]

 
E [     for  τ ; with 

 
E [ ]τ  as mean of the failure-free time τ of the

item considered (Eq. (A6.38)).  Optimization of 
 
ca t/  is considered with Eq. (4.49).

Reliability and availability is investigated in Section 6.8.2 (Eqs. (6.192) - (6.195)).
For the case of block replacement (Fig 4.5b), one or more failures can occur

during an interval ( ,  ( + )kT k TPM PM1 ]  ( , ,...),k = 0 1  with consequent repair.  For the
expected total number of renewals in ( , ]0 nTPM  on block replacement policy
(replacements at failure and preventive maintenance) it follows that

E [ ( )] ( ) , , , ... ,ν νb PM PMnT n T n n TPM b= + =H                   > 0,  (0) = H(0) = 0,1 2 (4.43)

where H( )TPM  is the renewal function at TPM  (Eq. (A7.15) with F F1( ) ( )x x=  as distri-
bution function of the failure-free time of the item considered.  With c cf br&   as
cost for replacement at failure and at T TPM PM, , ...2 , respectively, the mean total cost
per unit time is

E [ H               
 
,
 

= .    ,   
 

 Hc c cb PM PM br PMnT Tf PMT T/ ] ( )[ /] ( )= + > 0 0 0 (4.44)

From Eq. (4.44) one recognizes that E [   for c nb PM PMT T/ ] → →∞ 0 and, using Eq.
(A7.27), E [

 
E [     for  c cb PM PMnT Tf/ /] ]→ → ∞τ ; with 

 
E [ ]τ  as mean of the failure

free time τ of the item considered. Optimization of cb  is considered with Eq. (4.52).
For fix replacement (Fig. 4.5c), i .  e., replacement only at times T TPM PM, , ...2

(taking in charge that for a failure in ( ,  ( + )kT k TPM PM1 ] ( , ,...)k = 0 1  the item is down
from failure time to (k +1)TPM ), the expected number of renewals in ( , ]0 nTPM  is

E [ ( )] , , , ...ν νf ix nT nPM n TPM fix= =                     , > 0, (0) = 0.1 2 (4.45)

With  cfix as cost for replacement at T TPM PM, , ...2 , the mean total cost per unit time is

E [           c cfix PM PMnT f T/ ] / .= (4.46)

The number of failures in ( , ]0 nTPM  has a binomial distribution.  Setting  cd =  cost
per unit down time, Eq. (A6.30) yields E [        Fc cfix PM

T
PMnT c Tf

PM
d x dx/ ] [ ] / .( )= + ∫0

The replacement only at failure leads to an ordinary renewal process (Appendix
A7.2), yielding results of Section 4.5 on spare parts provisioning, in particular,

lim E  E   ,    /  , > 0, (0) =
        

0,    
 

(4.47)
 

n o f PM PMnT nT n TPM o f→ ∞
= =[ ( )] [ ] , , ...ν τ ν1 2

with 
 
E [ ]τ  as mean of the failure-free time τ of the item considered, and

lim E             E  , > 0
  

 .
n

c nTof PM fc n TPM→ ∞
= =[ / ] / ,[ ]. , , ...τ 1 2 (4.48)

One recognizes that for large nTPM,  E [ ( )] E[ ( )] E [ ( )].ν ν νof PM a PM b PMnT nT nT≤ ≤
This follows for νof  versus νa  by comparing Eqs. (4.41) and (4.47), and for νa

versus νb heuristically from Fig. 4.5 (at least one failure-free time will be truncated
for large n and the probability for a truncation is greater for case b) than for case a))
or by considering H F    ,( ) ( ( ( )) )/t t x dx

t
≥ −−∫ 1 1

0
 for increasing failure rate [2.34 (1965)].
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Example 4.6
Investigate Eqs. (4.49) and (4.52).

Solution
(i) To Eq. (4.49), with TPM aopt  replaced by T  for simplicity, one can recognize that for strictly

increasing failure rate λ( )x , λ ( ) ( ( )) ( )T x dx T
T

1
0

− −∫ F  F  is strictly increasing in T, from 0 to
λ τ( ) [ ] .∞ −E  1   In fact, for T T2 1>  it holds that

λ λλ( ) ( ( )) ( ( )) ( ) ( )) ( ) ( ( )) ( ) ,( )T x dx x dx T x dx T x dx T
T

T

T

T

T T

T2
0

1 0
1 1 1

1

2
1

2

1

2 1

1 1− − −+ − − > −∫ ∫ ∫ ∫F  F F f   F  F

considering λ λ( ) ( )T T2 1>  and f  F   <  )       F( )) ( ) ( ( )) ( ( ( )) .x dx x x dx T x dx
T

T

T

T

T

T

1

2

1

2

1

2
1 12∫ ∫ ∫= − −λ λ Thus,

T  < ∞  exist for λ τ( ) [ ] ( )/∞ >− −E 1 c c ca r a rf , i. e. for λ τ( ) ( [ ] ( ) )∞ > −c c cf f a r/ E .  However,
an analytical expression for TPMa opt  is rarely possible, see e.g. [4.8] for numerical solutions.

(ii) To Eq. (4.52) one can recognize that for strictly increasing failure rate λ( )x , T T Th H   ( ) ( )−
→ − >( [ ] / [ ]) /1 2 0Var E2τ τ  for T → ∞  and thus, considering H( )0 0= , at least one T  < ∞
exist for ( [ ] / [ ]) / /1 2− >Var E   2τ τ c cbr f .  This follows from Eqs. (A7.28) & (A7.31) by
considering Var E2[ ] [ ]τ τ<  for strictly increasing failure rate [2.34 (1965)], see e. g. Fig. 4.4.

For age and block replacement policy it is basically possible to optimize TPM .
Setting the derivative with respect to TPM  equal to 0, Eq. (4.42) yields for TPMaopt

λ ( ) ( ( )) ( ) , ,T x dx TPMaopt

TPMa

PMaopt
f

a r

opt

f

c
c c

ar

ar
c c1

0
− − = −∫ >F   F          (4.49)

with λ( )x  as failure rate of the item considered (Eq. (A6.25)), and thus (Eq. (4.42))

lim ] ( ) (
t

a arc c c
opt f PMaopt

t T
→∞

= −E [
 

)
 

/
 

,λ     (4.50)

if TPMa opt
< ∞  exist.  For strictly increasing failure rate λ( )x , TPMa opt

< ∞  exist for

λ τ( ) ( [ ]( ))∞ > −c c cf f ar/  E ,      (4.51)

see Example 4.6.  λ τ( ) ( [ ]( ))∞ ≤ −c c cf f ar/ E , λ λ( )x = , or c cf ar ≤  leads to a
replacement only at failure ( )TPM = ∞ .  Similarly, Eq. (4.44) yields

T T TPMb PMb PM b fopt opt opt
c cbrh H     ,( ) ( ) /− =     (4.52)

with h H( ) ( ) /x d x dx=  as renewal density (Eq. (A7.18)), and thus (Eq. (4.44))

lim ] (
t opt f PMbc cb t T

opt→∞
=E [

 
h )

 
/

 
,     (4.53)

if TPMbopt
< ∞  exist.  Equation (4.52) is a necessary condition (only).  For strictly

increasing failure rate, at least one TPMbopt
< ∞  exist for

1 2− >Var E 2 /  [ ] / [ ]τ τ c cbr f ,     implying also    c cf br  ,> 2     (4.54)

see Example 4.6.  1 2− ≤Var E   2 /  [ ] / [ ]τ τ c cbr f  or λ λ( )x =  leads to a replacement
only at failure ( )TPM = ∞ .
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Comparison of cost per unit time is straightforward for fix replacement versus
replacement only at failure (Eqs. (4.46) & (4.48)), but can become laborious for age
replacement versus block replacement and /  or replacement only at failure (Eqs.
(4.42), (4.44)), (4.48), and (4.49) -  (4.54)).  In general, it must be performed on a
case-by-case basis, often taking care that c c cf ar br>  >    and of other aspects like e. g.
the importance to avoid wear out or sudden failures.  Besides remarks to Eqs. (4.51)
& (4.54) for λ λ( )x = , the following general results can be given for large t nTPM or :

1. For strictly increasing failure rate λ λ τ( ) ( ) ( [ ]( ))x c c cf f arand / E ∞ > −  (Eq. (4.51)),
TPMa opt

 < ∞  exist (see e . g.  [4.8] for numerical solutions) and, for large t,
optimal age replacement (Eq. (4.50)) is better (cheaper) than replacement only
at failure (     E [c ta / ]  per Eq. (4.42) crosses from above  E [ / E c cof t f/ ] [ ]= τ ).

2. Considering Eq. (A7.28) for an ordinary renewal process ( [ ]),MTTF MTTFA= =E τ
it follows that H(  E Var E 2T TPM PM) / [ ] ( [ ] / [ ] ) /→ + −τ τ τ 1 2  for TPM → ∞ .  Thus,
considering Eqs. (4.53)&(4.48), for c cbr f/ ( [ ] / [ ]) /< −1 2Var E 2τ τ  optimal block
replacement can be better (cheaper) than replacement only at failure; however,
this implies Var E 2[ ] / [ ]τ τ < 1 (strictly increasing failure rate) and c cf br  .> 2

3. For c f c cbr ar> ≥  optimal age replacement is better (cheaper) than optimal
block replacement [4.1];  however, often one has  c cbr ar< .

4. For   c c car br f= = ,  E [ ] [ ] [ ]c c cof nT nT nTPM PM PMa b  / / /    E                  E                 ≤ ≤  (follows from
E [ ( )] E[ ( )] E [ ( )]ν ν νo f PM PM PMnT nT nTa b≤ ≤ , see remarks to Eq. (4.48)).

4.6.2 Block replacement with minimal repair at failure

Let now consider the situation in which the item is as-good-as-new after planned
replacements, but as-bad-as-old after repairs;  i. e., minimal repair is performed, and
the item's failure rate after repair is assumed to be the same as just before failure
[2.34, 6 .1].  However, minimal repair means that only the failed part Ei of the
item is repaired to as-good-as-new;  λi x( ) restarts at λi ( )0 , and for λ λi ix( ) ( )≠ 0
the item's failure rate can only approximately be the same as just before the failure
(see also pp. 427 & 519).

One can recognize that the case of maintenance only at failure leads to a non-
homogeneous Poisson process with intensity m ( )t  equal the failure rate λ ( )t  of the
item considered and mean value function M( ) ( ) ,t x dx

t= ∫ λ
0

 i. e. (considering F( )0 0= )

m
f

F
( ) ( )

( )

( )
t t

t

t
= =

−
λ

1
   and  M  lnm  F

f

F
( ) ,( ) ( ( ))

( )

( )
t x dx dx t

t t x

x
= = = −∫ ∫

−
−

0 0 1
1 (4.55)

see Point 2 on p. 519.  For this reason, minimal repair can not be considered for a
maintenance only at failure, because for strictly increasing failure rate the item
continue to degenerate and at a given time it will be necessary to reestablish the
as-good-as-new situation for the whole item.
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Similar is for age replacement, in particular for TPM  large.  For an exact evalua-
tion, results from Appendices A7.4 (p. 479) and A7.6 (p. 514) on regenerative proc-
esses can be used (successive occurrence of replacements at age constitute a cycle).

For block replacement with minimal repair, change with respect to Section 4.6.1
is the fact that between consecutive replacements at T TPM PM, , ...2  the involved
point process is a nonhomogeneous Poisson process (Eq. (4.55), Appendix A7.8.2).
Defining    and   c cbr f mr

 as cost for replacement at block and minimal repair,
respectively, the total cost per unit time follows as (see also Eqs. (4.44) & (4.55))

E     /
  M   F

[ ]
ln

.
( ) ( ( ))

c nTbmr PM
f mr br f mr brc T c

T

c T c

T

PM

PM

PM

PM

= =
+ − − +1

(4.56)

From Eq. (4.56) one recognizes that E  /    for[ ]c nT Tb mr PMPM → →∞ 0 and → ∞cf mr
λ ( )

for  TPM → ∞ .  Optimization of TPM  yields (considering ∂ ∂ =/ TPM 0  and Eq. (4.55))

T T dPMbmropt PMbmropt

T

br f mr
t t c c

PM b mropt

         
 

λ λ( ) ( ) / .− =∫
0

(4.57)

and thus Eqs. (4.55) & (4.56))

E       ) ,/   [ ] (c nT c Tb mropt PM bmropt f mr PM bmropt= λ (4.58)

if TPM bmropt < ∞  exist.  For λ( )t  strictly increasing, with λ( )0 0= , T T t dt
Tλ λ( ) ( ) − ∫

0

is strictly increasing in T and can cross from below c cbr f mr
/   at T TPM bmropt= < ∞  .

This occurs for λ( )∞ = ∞ ;  for λ λ( )∞ ∞= < ,   TPM bmropt < ∞  exist for

lim         ,  .            = ( )
t

t c cx dx
t

br mrf→ ∞
− ∫ > ∞[ ( ) ] /λ λ λ λ

0
(4.59)

No solution exist for λ( )t  constant.  Taking as an example a Weibull distribution
(Eq. A.6.89), for which λ β λβ β( )t t= −1  and E      [ ] ( / )) /τ β λ= +Γ 1 1  one obtains for β > 1

TPM bmropt

c cb r f m r

  
 

   =
−/ (( ) )ββ

λ

1
 and     /E    .

 
 

  [ ]
( )

c nT
c

b mropt PMbmropt
b r

PMb mropt
T

≈
−

β

β 1

    (4.60)

Cost comparison with results of Section 4.6.1 has to be performed on a case-by-case
basis.  For the Weibull distribution, Eqs. (4.60) and (4.48) show, for instance, that
for    ( - 1)c cf br fmr

c> −( ( / ))/ ) ( /β ββ β1 1Γ  replacement only at failure is better (cheaper)
than block replacement with minimal repair (using  ( (1    Γ Γ+ =1 1/ )) ( ( / )) /β β ββ β β).

4.6.3 Further considerations on maintenance strategies

For the case of non negligible repair and preventive maintenance times, with
mean MTTR and MTTPM , asymptotic & steady-state overall availability OAS
(Eq. (6.196)) can be optimized with respect to preventive maintenance period TPM .
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In fact, considering Eq. (4.41), Eq. (6.196) leads to OAS arepl E=  [ ] /τ
  E  F )  F ))+ +      [ [ ] ( ( ( ]τ repl PM PMa T TMTTR MTTPM1 −  for age replacement, Eq. (4.43) to

OAS = T T TPM PM PM MTTR MTTPM H / [ ( ) ]+ +  for block replacement, and Eq. (4.56) to
OA T T x dxS PM PM MTTR MTTPM

T
M  =  +       / [ ( ) ]

0
λ∫ +  for block replacement with minimal

repair.  Optimization follows using ∂ ∂ =PA TS PM/ 0, and leads to Eqs. (4.49),
(4.52), (4.57) with   &c car br  replaced by MTTPM ,   c f  by MTTR ,   cf mr  by MTTMR ,
respectively ( MTTMR = mean time to minimal repair).

Besides the previous  replacement strategies, a further possibility is to assume
that at times T TPM PM, , ... 2  the system is inspected, and replacement at ( + )k TPM1  is
performed only if a failure is occurred between k T k TPM PM    ( + )and 1 .  If the failure-
free time τ is > 0 with F Pr( ) { }x x= ≤τ , the replacement time τ rep  has distribution

Pr{ } = F F                 Fτ rep PM PM PMk T kT k T k= − − = =( ) (( ) ) , ., , ... , ( )1 1 2 0 0      (4.61)

This case has been investigated in [6.17] with cost considerations.  If ci =  inspection
cost, cr =  cost for replacement, and cd =  cost for unit of time (h) in which the
system is down waiting for replacement ( c c ci r d, ,  > 0), the total cost C  per unit
time is for t n TPM= ∞→  given by

C
nc

nT

c n T

nT

c c

T

c c MTTF
ci r rep d rep

rep

i r

rep

d

rep
d

PM

PM

PM PM
= + +

−
+ += −

 E [ ] E ]

E[ ]

 

E [ ] E [ ]
, 

 (4.62)

/ [τ τ τ

τ τ τ

where MTTF= E [ ]τ . For TPM → ∞ , E [ ]τ repl → ∞  and C cd→ . Thus, inspection is use-
ful for C cd< .  For given F ( )x  it is possible to find a TPM  which minimizes C  [6.17].

For the mission availability and work-mission availability, as defined by Eqs.
(6.28) and (6.31), it can be asked in some applications that the number of repairs
(replacements) be limited to N (e. g. because only N  spare parts are available).  In
this case, the summation in Eqs. (6.29) and (6.32) goes up to n N= + 1.  If k ele-
ments E Ek1,...,  with constant failure rates λ λ1,..., k  and constant repair rates µ µ1,..., k
are in series, a good approximation for the work-mission availability with limited
repairs is obtained by multiplying the probability for total system down time ≤ x for
unlimited repairs (Eq. (7.22) with λ λ µ µ= =S S and  from Table 6.10 (2 nd row))
with the k probabilities that Ni  spare parts will be sufficient for element Ei [6.11].

A strategy can also be based on the repair time τ ' itself.  Assuming, for instance,
that if the repair is not finished at time ∆ the failed element is replaced at time ∆ by
a new one in a negligible time, the distribution function G( )x  of the repair times τ '

is truncated at ∆ (Eq. (4.38)).  For the case of const. repair rate µ, the Laplace trans-
form of G( )x  to be used in reliability computations is given by (Appendix A9.7)
˜ ( ) ( . ( )( )G  )    ,/s s e s ss= ++ − +µ µµ ∆  yielding E [ '] ( ) /τ µµ= − −1 e ∆  as per Eq. (4.39).

Further maintenance strategies are, for instance, in [2.34, 4.18, 4.30, A7.4 (62)].
A comparison between some different maintenance strategies with respect to relia-
bility and availability is given in Table 4.4 for a basic reliability structure (Fig. 6.15).
Expression for MTTFS 0 is the same for all cases in Table 4.4 and given by Eq. (6.157).
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λν

Z1

Z2

Z0
Z3

Z4

µν

λ

µ2 λ

µ

λνµ

a) One repair crew, no repair priority,
no FF

PA AAS S= , obtained by solving   (see Eq. (1.157) for MTTFS 0)

( ) , , ,2 + = + = + =λ λ µ µ µ λ µ µ λv v v v vP P P P P P P P0 1 2 1 0 3 3 2       

( ) , ,λ λ µ λ µ+ + = + =v P P P P P P P P2 0 4 0 1 2 3 42 1  + + + +

is given by (Eq. (6.162))

PA AA P PS S= = + =
+ + + +

0 2 2 2

1

2 1 1

  

2 + ) / )

    

1 /        λ λ µλ µ λ λ λ µ
νν ν ν/ ( ) / ( (

     ≈ − − − + + +1 2 2 2 2 32 2 2 2 3λ µ λ µ λ λ µ λ λ λλ λ µν ν ν ν ν/ ( / ) / ( ) /

λν

Z1

Z2

Z0
Z3

Z4

µν

λ

µ2 λ

λνµ
µν

b) One repair crews, repair priority
on Eν , no FF

PA AAS S= , obtained by solving   (see Eq. (1.157) for MTTFS 0)

( ) ,  , ,2 + = + = =λ λ µ µ µ λ µ λv v v v v vP P P P P P P0 1 2 1 0 3 2    

( ) , ,λ λ µ λ µ µ+ + = + + =v vP P P P P P P P P2 0 3 4 0 1 2 3 42 1+ + + +

is given by (Eq. (6.160))

PA AA P PS S= = + =
+ + +

0 2 2 2

1

1 2 1 2

   

  µλ µ λ µ λν ν )/ / ( /

                                   ≈ − − +1 2 42 3λ µ λ µ λ µν ν/ ( / ) ( / )

λν

Z1

Z2

Z0
Z3

Z4

µν

λ

2 µ2 λ

µ

λνµ
µν

c) 2 repair crews, no priority, no FF

PA AAS S= , obtained by solving   (see Eq. (1.157) for MTTFS 0)

( ) , , ( ) ,2 + = + = + + =λ λ µ µ µ λ µ µ µ λνv v v v vP P P P P P P P0 1 2 1 0 3 3 2

( ) , ,λ λ µ λ µ µν+ + = + + =v P P P P P P P P P2 0 3 4 0 1 2 3 42 2 1  + + + +

is given by

PA AA P PS S= = + =
+ + + + +

0 2 2 2

1

1 1 2

   

/ / )// ( ( )λ µ λ µ λ µ λ µ µν ν ν ν

             ≈ − − + + +1 2 2 3 2 2λν µν λ µ λ µ λ λν µ µ µν/ ( / ) ( / ) / ( )

λν

Z2

Z0
Z3

Z4

µν

λ

2 µ2 λ

µ

λνµ µν

Z6

λ

2 µ
λνµν

Z5

2 λ

µ λ

µν

Z1

d) Totally independent elements,
i. e. 3 repair crews

PA AAS S= , obtained by solving   (see Eq. (1.157) for MTTFS 0)

( ) , ( ) ,2 + = + 2 + = + +λ λ µ µ λ µ λ µ µv v v vP P P P P P P0 1 2 1 0 3 5

( ) , ( ) ,λ λ µ λ µ µ µ λ µ µ λν ν ν+ + = + + + + + =v P P P P P P P2 0 3 4 5 5 12 2 2    

( ) , ( ) , ,λ µ µ λ µ λ µ λ µν ν ν ν+ + = + + = + =P P P P P P P P3 2 6 4 2 6 0 62 2 1 +... +

(or directly using Eq. (2.48) or Table 6.9), is given by

PA AA P PS S= = + =
+ +

−
+0 2 2

1

1

2

1

1

1λ µ λ µ λ µ
ν ν/

(
/ ( / )

) 

              ≈ − − + +1 22 3 2 2λ µ λ µ λ µ λ λν µ µ νν ν/ ( / ) ( / ) /

approximations given up to ( )/λ µ 3;  considering ( )3λ λ µν+ <  it holds that PA PA PA PAS a S b S c S d) ) ) )≈ ≈ ≈< < < ;
for case d, failures at system down possible (7 instead of 2 83=  states because of 2 identical redundant elements)

Table 4.4   Four repair strategies applied to a 1-out-of-2 active redundancy in series with Eν as per
Figs. 6.15 & A7.6  (constant failure and repair rates ( , , )λ λ µ µν ν<< , ideal failure detection &

switch, Markov processes, no FF =no further failures at system down for cases a - c, PA AAS S= = as-
ymptotic & steady-state point and average availability;  same MTTFS 0 given by Eq. (6.157) for a - d)
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4.7 Basic Cost Considerations

Cost considerations are important in practical applications and apply, in particular,
to spare parts provisioning (Section 4.5) and maintenance strategies (Section 4.6).
In addition to the considerations in Sections 4.5 and 4.6, this section considers two
basic models based on homogeneous Poisson processes (HPP) with fixed and
random costs.

As a first example consider the case in which a constant cost c0  is related to
each repair of a given item.  Assuming that repair duration is negligible and times
between successive failures are independent and exponentially distributed with
parameter λ , the failure flow is a homogeneous Poisson process and the probability
for n failures during the operating time t is given by (Eq. (A7.41))

Pr{ ] } Pr{ }
( )

! .( )
, , , ...

, ( ),n n
t

n
tt t

n
e

n
t  failures  in (0,         
 

   λ ν λ
λ

ν
λ= ==

=
> =

−
0 1 2

0 0 0 (4.63)

Eq. (4.63) is also the probability that the cumulated repair cost over t is C n c=
0

.

Mean and variance of C  are (Eqs. (A6.40) and (A6.46) with Eq. (A7.42))

E [ ]C c t= 0 λ      and     Var [ ] .C c t=
0
2 λ (4.64)

For large λ t , C  is approximately normally distributed (Eqs. (A6.105)) with mean
and variance as per Eq. (4.64), see e.g. [A8.8].

If repair cost is a random variable ξ i > 0 distributed according to F Pr{ } ( )x i x= ≤ξ
( F  ( ) , ), ,...0 0 1 2= =i , ξ ξ1 2, , ...   are mutually independent and independent of the
count function ν( )t  giving the number of failures in the operating time interval
( , ]0 t , and ξ t  is the sum of ξ i  over ( , ]0 t , it holds that (Eq. (A7.218))

ξ ξ
ν

ν ν ξ νt i t t t
i

t

t=
=

>∑ = = = =
1

1 2 0 0 0 0 0
( )

( ) , , ... . , ( ) , ( ) .                     ,  ,     for      (4.65)

ξ t  is distributed as the (cumulative) repair time for failures occurred in a total
operating time t  of a repairable item, and is thus given by the work-mission
availability WMAS0( , )T x0  (Eq. (6.32) with T t0 = ).  Assuming that the failures flow
is a homogeneous Poisson process (HPP) with parameter λ , all ξ i  are mutually
independent, independent of ν( )t , and have the same exponential distribution with
parameter µ, Eq.  (6.32) with constant failure and repair rates λ λ µ µ( ) ( )x x= =and   
and T t0 =  yields (Eqs. (6.33), (A7.219))
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Mean and variance of ξ t  follow as (Eq. (A7.220), see also Eqs. (4.66), (A6.38),
(A6.45), (A6.41))

E [ ] /ξ λ µt t=       and     Var   .      [ ] /ξ λ µt t= 2 2 (4.67)

Furthermore, for t → ∞ the distribution of ξ t  approach a normal distribution with
mean and variance as per Eq. (4.67).  Moments of ξ t  can also be obtained for
arbitrary F Pr{ } ( )x i x= ≤ξ , with F ( )0 0=  (Example A7.14, Eq. (A7.221))

E E        E[ ] [ ( )] [ ]ξ ν ξt it=    and  Var E        Var       Var E           2[ ] [ ] [ ]( ) ( ) .ξ ν ξ ν ξt i it t= [ ] [ ]+ (4.68)

Of interest in some practical applications can also be the distribution of the time τC
at which the cumulative cost ξ t  crosses a give (fixed) barrier C.  For the case given
by Eq. (4.66) (in particular for ξ i > 0), the events

 >           and  { } { }τ ξC t t C≤ (4.69)

are equivalent.  Form Eq. (4.66) it follows then (Eq. (A7.223))
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(in Eq. (4.70), C  has dimension of µ−1).
More general cost optimization strategies are often necessary in practical

applications.  For example, spare parts provisioning has to be considered as a
parameter in the optimization between performance, reliability, availability, logistic
support and cost, taking care of obsolescence aspects as well.  In some cases, one
parameter is given (e. g. cost) and the best logistic structure is sought to maximize
system availability or system performance.  Basic considerations, as discussed
above and in Sections 1.2.9, 8.4, A6.10.7, A7.5.3.3, apply.  However, even assuming
constant failure and repair rates, numerical solutions can become necessary (see e. g.
[4.32]).



5 Design Guidelines for Reliability,
Maintainability, and Software Quality

Reliability, maintainability, and software quality have to be built into complex
equipment and systems during the design and development phase.  This has to
be supported by analytical investigations (Chapters 2, 4, 6) as well as by design
guidelines and tests (Chapters 5, 3, 7, 8).  Developing design guidelines demands
practical experience and engineering feeling.  Adherence to such guidelines limits
the influence of those aspects which can invalidate the models assumed for analyti-
cal investigations, and improve the inherent reliability, maintainability, and safety of
both hardware & software.  Each industry producing equipment and systems with
high reliability (RAMS) requirements is aware of the necessity for such guidelines.
This chapter gives a comprehensive list of design guidelines for reliability, maintain-
ability (incl. human and safety aspects), and software quality of complex electronic
and electromechanical equipment and systems, harmonized with industry's needs
[1.2 (1996)] (see e. g. also [1.22, 5.0, 5.14, 5.28, 6.82] for military applications).

5.1 Design Guidelines for Reliability

Reliability analysis in the design and development phase (Chapter 2) gives an
estimate of an item’s true reliability, based on some assumptions regarding data
used, interface problems, dependence between components, compatibility between
materials, environmental influences, transients, EMC, ESD, etc., as well as on the
quality of manufacture and the user’s skill level.  To consider exhaustively all these
aspects is difficult.  The following design guidelines can be used to alleviate
intrinsic weaknesses and improve the inherent reliability of complex equipment
and systems.

5.1.1 Derating

Thermal and electrical stresses greatly influence the failure rate of electronic
components.  Derating is mandatory to improve the inherent reliability of equipment
and systems.  Table 5.1 gives recommended stress factors S (Eq. (2.1)) to be used

A. Birolini, Reliability Engineering, DOI: 10.1007/978-3-642-39535-2_5,
� Springer-Verlag Berlin Heidelberg 2014
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Table 5.1    Recommended derating values for electronic components at ambient
temperature 20 40° ≤ ≤ °C CθA

Component Power Voltage Current Internal
Temperature

Frequency

Resistors
• Fixed 0.6 0.8
• Variable 0.6 0.7
• Thermistors 0.4 0.7

Capacitors
• Film, Ceramic 0.5 0.5
• Ta (solid) 0.5 0.5
• Al (wet) 0.8 0.5

Diodes
• Gen. purpose 0.5* 0.6 0.7
• Zener 0.6 0.7

Transistors 0.5* 0.7 0.7 0 1. fT

Thyristors, Triacs 0.6* 0.6 0.7

Optoelectronic
devices

0.5** 0.5 0.8

ICs
• Linear 0.7 0.8+ 0.7x 0.9
• Voltage reg. 0.7+ 0.7x

• Digital bipolar 0.8+ 0.7x

• Digital MOS 0.8+ 0.7x 0.9

Coils, Transf. 0.5

Switches, Relays 0.4–0.7++ 0.7 0.5

Connectors 0.7 0.6 0.8 0.5

* breakdown voltage;   ** isolation voltage ( 0 7. for Uin );
+ sink current;   ++ low values for inductive loads;   x θJ ≤ °100 C

for industrial applications (40°C ambient temperature θ A, GB  as per Table 2.3).  For
θ A > °40 C, a further reduction of S is necessary, in general, linearly up to the limit
temperature, as shown in Fig. 2.3.  Too low values of S ( S < 0 1. ) can also cause prob-
lems.  S = 0 1.  can be used in many cases to calculate the failure rate in a standby or
dormant state.  As rule of thumb, 0 1 0 5. .≈< ≈<S  is a good choice for reliability.

5.1.2 Cooling

As a general rule, the junction temperature θJ  of semiconductor devices should be
kept as near as possible to the ambient temperature θA  of the equipment or system
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in which they are used;  if not possible,

θJ ≤ °100 C  is recommended for a reliable design.

In a steady-state situation, i. e. with constant power dissipation P, the following
relationships

θ θJ A JAR P= + (5.1)

or
θ θJ A JC CS SAR R R P= + + +( ) (5.2)

can be established and used to define the allowed thermal resistance

RJA for junction – ambient RJC for junction – case

RCS for case – surface RSA for surface – ambient,

where surface is used for heat sink.

Example 5.1
Determine the thermal resistance RSA  of a heat sink by assuming P = 400 mW, θJ = °70 C ,
θA = °40 C, and R RJC CS+ = °35 C/W .

Solution
From Eq. (5.2) it follows that

R
P

R RSA
J A

JC CS RSA=
−

− − = ° − ° = °
θ θ

 
.

        and thus      
C

W
C/W C/W

30

0 4
35 40 .

For many practical applications, thermal resistance can be assumed to be
independent of the temperature.  However, RJC generally depends on the package
used (lead frame, packaging form and type), RCS varies with the kind and thickness
of thermal compound between the device package and the heat sink (or device
support), and RSA is a function of the heat-sink dimensions and form as well as of
the type of cooling used (free convection, forced air, liquid-cooled plate, etc.).
Indicative thermal resistance values RJC  and RJA  for free convection in ambient air
without heat sinks are given in Table 5.2.  The values of Table 5.2 are indicative
and have to be replaced with specific values for exact calculations.

Cooling problems should not only be considered locally at the component level,
but be integrated into a thermal design concept (thermal management).  In defining
the layout of an assembly, care must be taken in placing high power dissipation
parts away from temperature sensitive components like wet Al capacitors and
optoelectronic devices (the useful life is reduced by a factor of 2 for a 10 20− °C
increase of the ambient temperature).  In placing the assemblies in a rack, the
cooling flow should be directed from the parts with low toward those with high
power dissipation.
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Table 5.2    Indicative thermal resistance values for semiconductor component packages

Package form Package type RJC [ ]°C/W RJA [ ]°C/W **

DIL Plastic 10 - 40 30 - 100

DIL Ceramic/Cerdip 7 - 20 30 - 100

PGA Ceramic 6 - 10* 20 -   40*

SOL, SOM, SOP Plastic (SMT) 20 - 60* 70 - 240*

PLCC Plastic 10 - 20* 30 -   70*

QFP Plastic 15 - 25* 30 -   80*

TO Plastic            2 - 20 60 - 300

TO Metal 2 - 5   —

JC = junction to case;   JA = junction to ambient;  *lower values for > 64 pins;
**free convection at 0.15 m/s  (factor 1 5 2. −  lower for forced cooling at 4 m/s)

5.1.3 Moisture

For electronic components in non hermetic packages, moisture can cause drift and
activate various failure mechanisms such as corrosion and electrolysis (see pp. 98-
100 for considerations on ICs). Critical in these cases is not the water itself, but the
impurities and gases dissolved in it.  If high relative humidity can occur, care must
be taken to avoid the formation of galvanic couples as well as condensation or ice
formation on the component packages or on conductive parts.

As stated in Section 3.1.3, the use of ICs in plastic packages can be allowed if
one of the following conditions is satisfied:

1. Continuous operation, relative humidity < 70%, noncorrosive or marginally
corrosive environment, junction temperature ≤100°C, and equipment useful life
less than 10 years.

2. Intermittent operation, relative humidity < 60%, noncorrosive environment, no
moisture condensation on the package, junction temperature ≤100°C, and
equipment useful life less than 10 years.

For ICs with silicon nitride passivation, intermittent operation holds also for Point 1.
Drying materials should be avoided, in particular if chlorine compounds are

present.  Conformal coating on the basis of acrylic, polyurethane, epoxy, silicone or
fluorocarbon resin 25 125− µm  thick, filling with gel, or encapsulation in epoxy or
similar resins are currently used (attention must be given to thermomechanical
stresses at hardening).  The use of hermetic enclosures for assemblies or equipment
should be avoided if condensation cannot be excluded.  Indicators for moisture are
increasing leakage current or decreasing insulation resistance.  In a corrosive en-
vironment, the contact of metals with different electrical affinity should be avoided.
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5.1.4 Electromagnetic Compatibility, ESD Protection

Electromagnetic compatibility (EMC) is the ability of the item to function properly
in its intended electromagnetic environment without introducing unacceptable
electromagnetic noise (disturbances) into that environment.  EMC has thus two
aspects, susceptibility and emission.  Agreed susceptibility and emission levels are
given in international standards (IEC 61000 [3.8]).  Electrostatic discharge (ESD)
protection is a part of an electromagnetic immunity concept, mandatory for
semiconductor devices (p. 94).  Causes for EMC problems in electronic equipment
and systems are, in particular,

  • switching and transient phenomena,

  • electrostatic discharges,

  • stationary electromagnetic fields.

Coupling can be

  • conductive (galvanic),

  • through common impedance,

  • by radiated electromagnetic fields.

In the context of ESD or EMC, disturbances often appears as electrical pulses with
rise times tr  in the range 0.1 to 10 kV / ns , peak values of 0.1 to 10 kV, and energies
of 0.1 to 103 mJ  (high values for equipment).  EMC aspects, in particular ESD
protection, have to be considered early in the design and development of equipment
and systems.  The following design guidelines can help to avoid problems:

1. For high speed logic circuits ( f > 50 MHz ) use a whole plane (layer of a
multilayer), or at least a tight grid for ground and power supply, to minimize
inductance and to ensure a distributed decoupling capacitance (4 layers as
signal /  VCC  / ground / signal or better 6 layers as shield / signal / VCC  /
ground / signal / shield are recommended).

2. For low frequency digital circuits, analog circuits, and power circuits use a
single-point ground concept, and wire all different grounds separately to a
common ground point at system level (across antiparallel suppressor diodes).

3. Use low inductance decoupling capacitors (generally 10 nF  ceramic
capacitors, placed where spikes may occur, i. e., at every IC for fast logic and
bus drivers, every 4 ICs for HCMOS) and a 1µF  metallized paper (or a 10µF
electrolytic) capacitor per board;  in the case of a highly pulsed load, locate the
voltage regulator on the same board as the logic circuits.

4. Avoid logic which is faster than necessary and ICs with widely different
rise times; adhere to required rise times and use Schmitt-trigger inputs if
necessary.
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5. Pay attention to dynamic stresses (in particular of breakdown voltages on
semiconductor devices) as well as of switching phenomena on inductors or
capacitors;  implement noise reduction measures near the noise source
(preferably with Zener diodes or suppressor diodes).

6. Match signal lines whose length is greater than v tr⋅ ,  also when using dif-
ferential transmission  (often possible with a series resistor at the source or a
parallel resistor at the sink, ν = signal propagation speed ≈ c r r/ ε µ );  for
HCMOS also use a 1 2 to kΩ pull-up resistor and a pull-down resistor equal to
the line impedance Z0, in series with a capacitor of about 200 pF  per meter of
line.

7. Capture induced noise at the beginning and at the end of long signal lines using
parallel suppressors (suppressor diodes), series protectors (ferrite beads) or
series/parallel networks (RC), in that order, taking into account the required
rise and fall times.

8. Use twisted pairs for signal and return lines (one twist per centimeter);  ground
the return line at one end and the shield at both ends for magnetic shielding (at
more points to shield against electric fields);  provide a closed (360°) contact
with the shield for the ground line;  clock leads should have adjacent ground
returns;  for clock signals leaving a board consider the use of fiber optics, coax,
trileads, or twisted pairs in that order.

9. Avoid apertures in shielded enclosures (many small holes disturb less than a
single aperture having the same area);  use magnetic material to shield against
low-frequency magnetic fields and materials with good surface conductivity
against electric fields, plane waves, and high frequency magnetic fields (above
10 MHz , absorption loss predominates and shield thickness is determined more
for its mechanical rather than for its electrical characteristics);  filter or trap all
cables entering or leaving a shielded enclosure (filters and cable shields should
make very low inductance contacts to the enclosure);  RF parts of analog or
mixed signal equipment should be appropriately  shielded (air core inductors
have greater emission but less reception capability than magnetic core
inductors);  all signal lines entering or leaving a circuit should be investigated
for common mode emission;  minimize common mode currents.

10. Implement ESD current-flow paths with multipoint grounds at least for plug-in
populated printed circuit boards (PCBs), e. g. with guard rings, ESD networks,
or suppressor diodes, making sure in particular that all signal lines entering or
leaving a PCB are sufficiently ESD protected (360° contact with the shield if
shielded cables are used, latched and strobed inputs, etc.);  ground to chassis
ground all exposed metal, if necessary use secondary shields between sensitive
parts and chassis;  design keyboards, consoles, and other operating parts to be
immune to ESD.
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5.1.5 Components and Assemblies

5.1.5.1 Component Selection

1. Pay attention to all specification limits given by the manufacturer and com-
pany-specific rules, in particular dynamic parameters and breakdown limits.

2. Limit the number of entries in the list of preferred parts (QPL) and, wherever
possible, ensure a second source procurement;  if obsolescence problems are
possible (very long warranty or operation time), observe this aspect in the QPL
and / or in the design / layout of the equipment or system considered.

3. Use non-qualified parts and components only after checking the technology
and reliability risks involved (the learning phase at the manufacturer's plant
can take more than 6 months);  in the case of critical applications, intensify the
feedback to the manufacturer and plan appropriate incoming inspections.

5.1.5.2 Component Use

1. Tie unused logic inputs to the power supply or to the ground, usually through
pull-up /  pull-down resistors (100 kΩ  for CMOS), also to improve testability;
pull-up / pull-down resistors are also recommended for inputs driven by three-
state outputs;  respect fan-out capabilities;  unused outputs are generally open,
but a default value must be assigned to unselected lines (e. g. bus).

2. Protect all CMOS terminals from or to a connector with a 100 kΩ  pull-up / pull-
down resistor and a 1 10 to kΩ  series resistor (latch-up) for an input, or an
appropriate series resistor for an output (add diodes if Vin and Vout cannot be
limited between − 0 3. V  and V VDD + 0 3. );  observe power-up and power-down
sequences, make sure that the ground and power supply are applied before and
disconnected after the signals.

3. Analyze the thermal stress (internal operating temperature) of each part and
component carefully, placing dissipating devices away from temperature-
sensitive ones, and adequately cooling components with high power
dissipation (failure rates double generally for a temperature increase of
10 20− °C );  for semiconductor devices, design for a junction temperature
θJ ≤ °100 C  (if possible keep θJ ≤ °80 C ).

4. Pay attention to transients, especially in connection with breakdown voltages
of transistors ( VBEO ≤ 5 V; stress factor S < 0 5.  for VCE , VGS , and VDS ).

5. Derate power devices more than signal devices (stress factor S < 0 4.  if more
than 105 power cycles occur during the useful life).

6. Avoid special diodes (tunnel, step-recovery, pin, varactor, which are 2 to 20
times less reliable than normal Si diodes);  Zener diodes are about one half as
reliable as Si switching diodes, their stress factor should be > 0 1. .
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7. Allow a ±30% drift of the coupling factor for optocoupler during operation;
regard optocouplers and LEDs as having a limited useful life (generally > 106 h
for θJ < °40 C  and < 105 h  for θJ > °80 C ), design for θJ ≤ °70 C  (if possible
keep θJ < °40 C );  pay attention to optocoupler voltage ( S ≤ 0 3. ).

8. Observe operating temperature, voltage stress (DC and AC), and technological
suitability of capacitors for a given application: Foil capacitors have a
reduced impulse handling capability;  wet Al capacitors have a limited useful
life (which halves for every 10°C increase in temperature), a large series
inductance, and a moderately high series resistance;  for solid Ta capacitors
the AC impedance of the circuitry as viewed from the capacitor terminals
should not be too small (the failure rate is an order of magnitude higher
with 0 1. Ω / V  than with 2 Ω / V, although new types are less sensitive);
use a 10 100− nF  ceramic capacitor parallel to each electrolytic capacitor;
avoid electrolytic capacitors < 1µF .

9. Cover EPROM windows with metallized foils, also when stored.
10. Avoid the use of variable resistors in final designs (50 to 100 times less

reliable than fixed resistors);  for power resistors, check the internal operating
temperature as well as the voltage stress.

5.1.5.3 PCB and Assembly Design   (see also Section 5.2)

1. Design all power supplies to handle permanent short circuits and monitor for
under / over voltage (protection diode across the voltage regulator to avoid
V Vout in>  at power shutdown);  use a 10 100 to nF  decoupling ceramic
capacitor parallel to each electrolyte capacitor.

2. Clearly define, and implement, interfaces between different logic families.
3. Establish timing diagrams using worst-case conditions, also taking the effects

of glitches into consideration.
4. Pay attention to inductive and capacitive coupling in parallel signal leads

( 0 5 1. − µH/m , 50 100− pF /m );  place signal leads near to ground returns and
away from power supply leads, in particular for clocks;  for high-speed cir-
cuitries, investigate the necessity for wave matching (parallel resistor at sink,
series at source);  introduce guard rings or ground tracks to limit coupling.

5. Place all input /  output drivers close together, near the connectors, but away
from clock circuitry and power supply lines (inputs latched and strobed).

6. Observe the power-up and power-down sequences, especially in the case of
different power supplies (no signals applied to unpowered devices).

7. Protect PCBs against damage through insertion or removal under power.
8. For critical redundancies, verify carefully failure modes and possible

protections;  avoid to use the same power supply and to put all on the same
PCB.
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9. For PCBs employing surface mount technology (SMT), make sure that the
component spacing is not smaller than 0 5. mm  and that the lead width and
spacing are not smaller than 0 25. mm ;  test pads and solder-stop pads should
be provided;  for large leadless ceramic ICs, use an appropriate lead frame
(problems in SMT arise with soldering, heat removal, mismatch of expansion
coefficients, pitch dimensions, pin alignment, cleaning, and contamination);
pitch < 0.3 mm can give production problems.

10. Assure appropriate labeling of each hardware part, homogeneous orientation
of ICs, and enough spacing between components for clips or test probes;  as a
general rule, testability of PCBs and assemblies should be considered early in
the design of the layout (number and dimension of test points, pull-up / pull-
down resistors, activation / deactivation of three-state outputs, see also Section
5.2);  manually extend the capability of CAD tools, if necessary.

11. Make sure that the mechanical fixing of power devices is appropriate, in
particular of those with high power dissipation;  avoid having current carrying
contacts under thermomechanical stress.

12. Avoid the need for special manufacturing processes (i.e. of processes which
quality can't be tested directly on the product, have high requirements with
respect to reproducibility, or can have an important negative effect on the
product quality or reliability).

5.1.5.4 PCB and Assembly Manufacturing

1. Ground with 1MΩ resistors tools and personnel for assembling, soldering, and
testing;  avoid touching active parts of components during assembling;  use
soldering irons with transformers and grounded tips.

2. When using automatic placing machines, verify that for inserted devices only
the parts of pins free from insulation goes into the soldering holes and IC pins
are not bent into the soldering holes (Fig. 3.10).  For surface mount devices
(SMD), make sure that the correct quantity of solder material is deposited, and
that the stand-off height between the component body and the printed circuit
surface is not less than 0 25. mm  (pitch < 0 3. mm  can  give production
problems);  see also Section 3.4 for further aspects.

3. For lead-free solder (as per EU Directive 2002 / 95 / EC), a major problem is the
higher eutectic temperature (217°C for Sn-Ag-Cu, 226°C for Sn-Ag-Cu-Sb,
against 183°C for Sn-Pb), yielding peak solder temperatures up to 270°C (245°C
for Sn-Pb);   careful attention to rules 4 - 8 is asked  (it seems reasonable, at
present, to agree that for standard industrial applications (p. 35) with low
thermal gradient (≤ °5 C /min) no new important reliability problems arise with
lead-free solder (see also Sections 3.4 & 8.3 and, e. g., [3.79, 3.90] as well as
IPC-STDs for greater details);  however, more defects / damages (barrel & foil
cracking, voiding, bridging, etc.) are possible.
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4. Control the soldering temperature profile; choose the best compromise
between soldering time and soldering temperature (for Sn-Ag-Cu about 3 s at
260°C for wave and 60 s  at 235°C for reflow), as well as an appropriate
preheating (about 60 s  to reach 150°C);  check the solder bath periodically.

5. For surface mount technology (SMT) give preference to IR reflow soldering
and provide good solder-stop pads (vapor-phase can be preferred for substrates
with metal core or PCBs with high component density);  avoid having inserted
and surface mounted devices (SMD) on the same (two-sided) PCB (thermal
shock on the SMD with consequent crack formation and possible ingress of
flux to the active part of the component, in particular for ceramic capacitors
greater than 100 nF and large plastic ICs).

6. For high reliability application pay attention to mitigate whisker growth, e. g.
prefer satin Sn layers and avoid the use of hot air solder leveling (HASL).

7. For high reliability applications, wash PCBs and assemblies after soldering
(deionized water (< 5µS / cm ), in any case with halogen-free liquids);  check
periodically the washing liquid for contamination;  use ultrasonic cleaning only
when resonance problems in components are excluded.

8. Avoid having more than one heating process that reaches the soldering tem-
perature, and hence any kind of rework;  for temperature sensitive devices,
consider the possibility of protection during soldering (e. g. cooling ring).

9. Avoid soldering gold-plated pins;  if not possible, tin-plate the pins in order to
reduce Au concentration to < 4% in the solder joint (intermetallic layers) and
< 0 5. % in the solder bath (contamination), 0 2. µm <Au thickness < 0 5. µm .

10. Avoid any kind of electrical overstress when testing components, PCBs or
assemblies;  avoid removal and insertion under power.

5.1.5.5 Storage and Transportation

1. Keep storage temperature between 10 and 30°C, relative humidity between 40
and 60%;  avoid dust, corrosive atmospheres, and mechanical stresses;  use
hermetically sealed containers only for high-humidity environments.

2. Limit the storage time by implementing first-in / first-out rules (storage time
should be no longer than two years, just-in-time shipping is often only
possible for a stable production line).

3. Ensure antistatic storage and transportation of all ESD sensitive electronic
components;  use metallized, unplasticized bags, avoid PVC for bags.

4. Transport PCBs & assemblies in antistatic containers with connectors shorted.

5.1.6 Particular Guidelines for IC Design and Manufacturing

1. Reduce latch-up sensitivity by increasing critical distances, changing local
doping, or introducing vertical thick-oxide isolation.
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2. Avoid significant voltage drops along resistive leads (poly-Si) by increasing
line conductivity and/or dimensions or by using multilayer metallizations.

3. Give sufficient size to the contact windows and avoid large contact depth and
thus sharp edges (slopes);  ensure material compatibility, in particular with
respect to metallization layers.

4. Take into account chemical compatibility between materials and tools used in
sequential processes;  limit the use of planarization processes to uncritical
metallization line distances;  employ preferably stable processes (low-risk
processes) which allow a reasonable parameter deviation;  control carefully the
wafer raw material (CZ / FZ material, crystal orientation, O2  conc., etc.).

5.2 Design Guidelines for Maintainability

Maintainability, even more than reliability, must be built into complex equipment
and systems.  This has generally to be performed project specific with a mainte-
nance concept.  However, a certain number of design guidelines for maintainability
apply quite generally.  These will be discussed in this section for the case of
complex electronic equipment and systems with high maintainability requirements
(see e. g. also [1.22, 5.0, 5.14, 5.28, 6.82] for military applications).

5.2.1 General Guidelines

1. Partition the equipment or system into line replaceable units (LRUs), often
PCBs for electronic systems, and apply techniques of modular construction,
starting from the functional structure;  make modules functionally independent
and electrically as well as mechanically separable;  develop easily identifiable
and replaceable LRUs which can be tested with commonly available test
equipment.

2. Plan and implement a concept for automatic faults ( failures and defects)
detection and automatic or semiautomatic faults localization (isolation and
diagnosis) down to the line replaceable unit (LRU) level, including hidden
faults (failures & defects) and software defects as far as possible.

3. Aim for the greatest possible standardization of parts, tools, and testing
equipment;  keep the need for external testing facilities to a minimum.

4. Consider environmental conditions (thermal, climatic, mechanical) in field
operation as well as during transportation and storage  (see Section 5.2.5 for
human, ergonomic and safety aspects).

5. Plan and realize an appropriate logistic support including user documentation,
training of operating & maintenance personnel, and logistic support in field.
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5.2.2 Testability   (see also Section 5.1.5.3)

Testability includes the degrees of faults (failure and defects) detection and
localization, the correctness of test results, and test duration (Section 4.2.1).
High testability can be achieved by improving observability (the possibility to check
internal signals at the outputs) and controllability (the possibility to modify internal
signals from the inputs).

1. Avoid asynchronous logic (asynchronous signals should be latched and
strobed at the inputs);  use only one master clock.

2. Avoid WIRED-ORs and simplify logical expressions as far as possible.
3. Improve testability of connection paths and simple circuitry using ICs with

boundary-scan (IEEE STD 1149 [4.13]).
4. Separate analog and digital circuit paths, as well as circuitries with different

supply voltages;  make power supplies mechanically separable.
5. Make feedback paths separable
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8. Fix acceptable limits for all measurable parameters;  identify all only indirectly
measurable parameters and define appropriate measurement (test) procedures.

9. Introduce built-in test (BIT) and corresponding BITE, as necessary to reach the
required coverage level, in particular for critical functions and to satisfy
operation monitoring (Table 4.1), i. e. implement built-in self-test (BIST);
however, minimize the amount of data to be recorded for monitoring purposes.

10. Design BIT / BITE considering worst-case operating conditions, and so that their
failure does not influence system's operation (FMEA);  for critical functions,
introduce redundancy also for BIT/BITE.

11. Implement means to identify whether hardware or software has caused a
failure message, wherever possible.

12. Introduce test modi also for the detection of hidden faults (e. g. failures or
defects in redundant elements);  if not possible, give appropriate test proce-
dures in the user documentation.

13. Provide manual test sequences to support testability, and describe them clearly
in the user documentation.

14. Rely to a connector critical nodes of LRUs (to avoid internal probing access)
and locate I/O test points close to each other, wherever possible.

15. Provide enough test points (at a minimum on functional-unit inputs and outputs,
as well as on bus lines) and support them with pull-up / pull-down resistors
(Point 2 on p.150, Point 10 on p.152);  provide access for a probe, taking into
account the capacitive and / or resistive load, reflections, and possible prob-
lems related to buffers;  document all test points in the user documentation.

16. Make use of a scan path to reduce test time, wherever possible;  the basic idea
of a scan path is shown on the right-hand side of Fig. 5.1, the test procedure is:

1. Activate the MUX control signal (connect Z to B).
2. Scan-in with n clock pulses an appropriate n-bit test pattern, this pattern

appears in parallel at the FF outputs and can be read serially with n − 1
additional clock pulses (repeat this step to completely test MUXs & FFs).

3. Scan-in with n clock pulses a first test pattern for the combinatorial logic
(feedback part) and apply an appropriate pattern also to the input x−  (both
patterns are applied to the combinatorial circuit and generate correspond-
ing results which appear at the output y−  and at the inputs A of the MUXs).

4. Verify the results at the output y− .

5. Deactivate the MUX control signal (connect Z to A).
6. Give one clock pulse (feedback results appear parallel at the FF outputs).
7. Activate the MUX control signal (connect Z to B).
8. Scan-out with n − 1 clock pulses and verify the results, at the same time a

second test pattern for the combinatorial circuit can be scanned-in.
9. Repeat steps 3 – 8 up to a satisfactory test of the combinatorial part of the

circuit (see e. g. [4.17, 4.31] for special test algorithms).
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Figure 5.1    Basic structure of a synchronous sequential circuit, without (left) and
with (right) a scan path  ( )n = 3

5.2.3 Connections, Accessibility, Exchangeability

1. Use preferably indirect plug connectors;  distribute power supply and ground
over several contacts (20%, far from signal leads);  standardize pin assignment;
plan to have reserve contacts (e. g. for test stimuli);  avoid any external me-
chanical stress on connectors;  define only one kind of extender for PCBs and
plan its use;  use fiber-optic connections for critical applications.

2. Standardize connectors and wires color as far as possible.
3. For not soldered or screwed connections, give preference to wire wrap.
4. Route wires and cables connections as clearly as possible, avoiding un-

necessary overlapping and mechanical strains.
5. Provide self-latching access flaps of sufficient size.
6. Avoid the use of more than 4 fasteners to fix case or covers and the need for

special tools;  use clamp fastening with torque-set.
7. Assure accessibility to LRUs by considering the frequency of maintenance

tasks, and make them accessible without removal of other LRUs.
8. Provide for speedy replaceability by means of plug-out / plug-in techniques.
9. Prevent faulty installation or connection of (not interchangeable) LRUs through

mechanical keying.
10. Provide good access to degrading parts (also for cleaning & lubrification).
11. Locate LRU's identification and modification plates so as to be easily readable.
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5.2.4 Adjustment

1. Limit any form of hardware adjustment (or alignment) in the field.
2. If an adjustment becomes unavoidable, describe the procedure carefully in

the user documentation, make the adjustment easily accessible, and avoid
sensitive adjustments.

5.2.5 Human, Ergonomic, and Safety Aspects

Human and ergonomic factors can have a great influence on the reliability, main-
tainability, availability, and safety of complex equipment and systems.  Experience
shows that safety critical failures at system level are often caused by human errors
related to design, manufacturing, installation (incl. handling & transportation),
operation, or maintenance.

Errare humanum est should always be considered by a designer.  Thus, because
of the difficulties in modeling human's behavior in emergency situations, prevention
must be preferred to modeling and, as for software quality, extensive requirements
and design rules become important (see e. g. [5.14, 6.82] for military applications).
The following are basic design rules useful to avoid human errors during de-
velopment, manufacturing, installation, and use of complex equipment and systems
with high reliability and / or safety requirements, or at least to limit their effects
(see pp. 10, 294 - 298 for modeling and further considerations).

1. Clearly define which subfunctions (of the required function) will be performed
by machine and which by human.

2. Analyze the tasks assigned to the human and partition them in appropriate
subtasks, separating operation and maintenance tasks  (analysis focuses on
input information to human, evaluation process, action to be taken, environ-
ments & constraints, tools & job aids, skill required, feedback).

3. For safety critical decisions or subtasks, bypass the human wherever possible,
e. g. using majority redundancy also for actuators (series for close, parallel for
open) or, at least, introduce two-step actions (the first step being reversible).

4. Design go / no-go or fail-safe circuitries to warn from (or avoid) safety critical
failures.

5. Make alarms (acoustic and/or visual), clear, different for each relevant malfunc-
tion, and so that they can be correctly interpreted by operators & maintainers,
taking care of their reaction time (use preferably tones for status indications
and speech for all other information);  minimize the number of alarms.

6. Use visual presentation for information which are long, complex, or needed later.
7. Limit the use of color-coded information (if necessary, combine color informa-

tion with appropriate acoustical signals).
8. Describe system status, detected fault, and action to be accomplished concisely

in full text and make them easily readable.
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9. Consider ergonomic as well as man-machine aspects to avoid mistakes at
operation or maintenance;  in particular, select carefully shape & placement of
control knobs and the layout of operating consoles.

10. Adapt control and display elements to the required skill for operators and
maintainers.

11. In displaying information, consider that the optimal visual field is 15 degrees
up, down, left, and right (order information left to right and top to bottom).

12. Simplify as far as possible operation and maintenance.
13. Use high standardization in selecting operational and maintenance tools.
14 Make any labeling simple and clear.
15. Conceive operation and maintenance procedures to be as simple as possible,

taking care also of the user’s skill level;  order all steps in a logical sequence;
document, wherever possible, the steps by a visual feedback, and describe
them clearly and concisely in the user documentation.

16. Fix in the user documentation all assumptions (requirements) regarding skill,
training, motivation, and work conditions for operators and maintainers,
as well as related organizational controls.

5.3 Design Guidelines for Software Quality

Software plays an increasingly role in equipment and systems, both in terms of
technical relevance and of development cost (often higher than 70% even for small
systems).  Unlike hardware, software does not go through a production phase.  Also,
software cannot break or wear-out.  However, it can fail to satisfy its required func-
tion because of defects which manifest themselves while the system is operating
(dynamic defects).  A fault in the software is thus caused by a defect, even if it ap-
pears randomly in time, and software problems are basically

quality problems which have to be solved with quality assurance tools
(defect prevention, configuration management, testing, and quality data
reporting system, as given in Section 1.3.3, see also Appendix A3.3.5).

This also because questions like "what is a software failure?" and "do software reli-
ability models serve their intended purpose?" are still open, see e. g. [5.48, 5.78, 5.83].

For equipment and systems exhibiting high reliability or safety requirements,
software should be conceived and developed to be defect tolerant (Table 5.4), i. e.,
to be able to continue operation despite the presence of software defects.  For this
purpose, redundancy considerations are necessary, in time domain (protocol with
retransmission, cyclic redundancy check, assertions, exception handling, etc.), space
domain (error correcting codes, parallel processes, etc.), or as a combination of both.
Moreover, if the interaction between hardware and software in the realization of the
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required function at the system level is large (embedded software), redundancy
considerations should also be extended to cover hardware defects and failures, i. e.,
to make the system fault tolerant (Sections 2.3.7 and 6.8.3 - 6.8.8).  In this context,
effort should be devoted to the investigation of causes-to-effects aspects
(FMEA / FMECA) of hardware and software faults from a system level point of view,
including hardware, software, human factors, and logistic support as well.

This section introduces basic concepts and tools for software quality assurance,
with particular emphasis on design guidelines and preventive actions.  Because of
their utility in debugging complex software packages, models for software quality
growth are also discussed (Section 5.3.4).  Greater details for SQ assurance plans
can be found in [A2.8, 5.41 - 5.83], in particular [A2.8 (730), 5.54, 5.60, 5.70, 5.76].

A first difference between hardware and software appears in the life-cycle
phases (Table 5.3).  In contrast to Fig. 1.6, the production phase does not appear
in the software life-cycle phases, since software can be copied without errors.

A second basic distinction between hardware and software is given by the
quality attributes (Table 5.4).  The definitions of Table 5.4 extend those in
Appendix A1 and take care of established standards [A2.8, 5.60 - 5.62].  Not all
quality attributes of Table 5.4 can be fulfilled at the same time.  In general,

a priority list of quality attributes must be established and
consequently followed by all engineers involved in a project.

A further difficulty is the quantitative evaluation (assessment) of software quali-
ty attributes, i. e., the definition of software quality metrics. An attempt to aggregate
(as user) some of the attributes in Table 5.4 is in [5.55], see also IEEE Std 1061 [5.61].

From the above considerations,

(i)  software quality (SQ) can be defined as the degree to which a software
package possesses a stated combination of quality attributes, and

(ii) mandatory for software quality assurance is a partition of the software
life-cycle into clearly defined phases, each of them closed with a
comprehensive design review.

If supported by an appropriate set of software quality metrics, this allows an
objective assessment of the quality level achieved.  However, since only a limited
number of quality attributes can be reasonably well satisfied by a specific software
package, the main purpose of software quality assurance is to maximize the common
part of the quality attributes needed, specified, and realized.  To reach this target,
specific activities have to be performed during all software life-cycle phases.
Many of these activities can be derived from hardware quality assurance tasks,
in particular regarding preventive actions (defect prevention), configuration man-
agement, testing, and corrective actions, taking care that

auditing software quality assurance activities in a project must be more
intensive and with a shorter feedback than for hardware (Fig. 5.2, Tab. 5.5).
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Table 5.3   Software life-cycle phases  (see Fig. 1.6 on p. 19 for hardware life-cycle phases)

Phase Objective / Tasks Input Output

Concept
• Problem definition
• Feasibility check

• Problem description
• Constraints on computer

size, programming
languages, I/O, etc.

• System specifications for
functional (what) and per-
formance (how) aspects

• Proposal for the defini-
tion phase

Definition
• Investigation of

alternative solutions
• Interface definitions

• Feasibility check
• System specifications
• Proposal for the

definition phase

• Revised system
specifications

• Interface specifications
• Updated estimation of

cost and schedule
• Feedback from users
• Proposal for the design,

coding, and testing phase

Design,
Coding,
Testing

• Setup of detailed
specifications

• Software design
• Coding
• Test of each module
• Verification of

compliance with
module specifications
(design reviews)

• Data acquisition

• Feasibility check
• Revised system

specifications
• Interface specifications
• Proposal for the design,

coding, and testing
phase

• Definitive flowcharts,
data flow diagrams, and
data analysis diagrams

• Test procedures
• Completed and tested

software modules
• Tested I/O facilities
• Proposal for the

integration, validation,
and installation phase

• Software documentation

Integration,
Validation,
Installation

• Integration and
validation of the
software

• Verification of com-
pliance with system
specifications
(design reviews)

• Setup of the definitive
documentation

• Feasibility check
• Completed and tested

software modules
• Tested I/O facilities
• Proposal for the

integration, validation,
and installation phase

• Completed and tested
software

• Complete and definitive
documentation

Operation,
Maintenance

• Use/application of the
software

• Maintenance (corrective
and perfective)

• Completed and tested
software

• Complete and definitive
documentation

With the design and development of complex equipment & systems, the separation
between hardware and software quality assurance should be scaled down, taking
from each side the "good part" of methods and tools and putting them together for
new "better" methods and tools (strategy of wide applicability, see Appendix A3.3).
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Table 5.4    Important software quality attributes and characteristics

Attribute Definition

Compatibility Degree to which two or more software modules or packages can perform their
required functions while sharing the same hardware or software environment

Completeness Degree to which a software module or package possesses the functions
necessary and sufficient to satisfy user needs

Consistency Degree of uniformity, standardization, and freedom from contradiction within
the documentation or parts of a software package

Defect Freedom
(Reliability)

Degree to which a software package can execute its required function without
causing system failures

Defect Tolerance
(Robustness)

Degree to which a software module or package can function correctly in the
presence of invalid inputs or highly stressed environmental conditions

Documentation Totality of documents necessary to describe, design, test, install, and maintain
a software package

Efficiency Degree to which a software module or package performs its required function
with minimum consumption of resources (hardware and / or software)

Flexibility Degree to which a software module or package can be modified for use in
applications or environments other than those for which it was designed

Integrity Degree to which a software package prevents unauthorized access to or
modification of computer programs or data

Maintainability Degree to which a software module or package can be easily modified to
correct faults, improve the performance, or other attributes

Portability Degree to which a software package can be transferred from one hardware or
software environment to another

Reusability Degree to which a software module can be used in another program

Simplicity Degree to which a software module or package has been conceived and
implemented in a straightforward and easily understandable way

Testability
Degree to which a software module or package facilitates the establishment of
test criteria and the performance of tests to determine whether those criteria
have been met

Usability Degree to which a user can learn to operate, prepare inputs for, and interpret
outputs of a software package

see also [A1.5];   software module is used here also for software element

5.3.1 Guidelines for Software Defect Prevention

Defects can be introduced in different ways and at different points along the life
cycle phases of software.  The following are some causes for defects:

1. During the concept and definition phase

      • misunderstandings in the problem definition, (the final user itself my have
         an incomplete vision of what is truly desired),
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Figure 5.2    Procedure for software development (top-down design and bottom-up integration
with vertical and horizontal control loops)

• constraints on CPU performance, memory size, computing time,
I/O facilities or others,

• inaccurate interface specifications,
• too little attention to user needs and / or skills.

2. During the design, coding, and testing phase

• inaccuracies in detailed specifications,
• misinterpretation of detailed specifications,
• inconsistencies in procedures or algorithms,
• timing problems,
• data conversion errors,
• complex software structuring or large dependence between software modules.

3. During the integration, validation, and installation phase

• too large interaction between software modules,
• errors during software corrections or modifications,
• unclear or incomplete documentation,
• changes in the hardware or software environment,
• exceeding important resources (dynamic memory, disk, etc.).
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Defects are thus generally caused by human errors (software developer or user).
Their detection and removal become more expensive as the software life cycle
progresses (often by a factor of 10 between each of the four main phases of
Table 5.3, as in Fig. 8.2 for hardware).  Considering that many defects can remain
undiscovered for a long time after the software installation (since detected only
by particular combinations of data and system states), the necessity for defect
prevention through an appropriate software quality assurance becomes mandatory.
Following design guidelines can be useful:

1. Fix written procedures / rules and follow them during software development,
such rules specify quality attributes, with project specific priority,  and
corresponding quality assurance procedures.

2. Formulate detailed specifications and interfaces as carefully as possible,
such specifications / interfaces should exist before coding begins.

3. Give priority to object oriented programming.
4. Use well-behaved high-level programming languages, assembler only when

a problem cannot be solved in other way;  use established CASE tools for
program development and testing (see e. g. IEEE Std 14102-2010 [5.61]).

5. Partition software into independent software modules (modules should be
individually testable, developed top-down, and integrated bottom-up (Fig. 5.2)).

6. Take into account all constraints given by I/O facilities.
7. Develop software able to protect itself and its data;  plan for automatic testing

and validation of data.
8. Consider aspects of testing / testability as early as possible in the development

phase;  increase testability through the use of definition languages (Vienna,
RTRL, PSL, IORL).

9. Improve understandability and readability of software by introducing appropri-
ate comments.

10 Document software carefully and carry out sufficient configuration
management, in particular with respect to design reviews (Table 5.5).

Software for on-line systems (embedded software) should further be conceived
to be, as far as possible, tolerant on hardware failures and to allow a system re-
configuration, particularly in the context of a fail-safe concept (hardware and
software involved in fail-safe procedures should be periodically checked during
the operation phase).  For this purpose, redundancy considerations are necessary,

•  in the time domain (protocol with retransmission, cyclic redundancy check,
assertions, exception handling, etc.),

• in the space domain (error correcting codes, NVP, NVS, NSCP (N-self config-
uring programming) or parallel processing, used in a majority redundancy, etc.),

or in a combination of them.  Moreover, if the interaction between hardware
and software in the realization of the required function at the system level is large,
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Table 5.5    Software design reviews (IEEE Std 1028-1988 [A2.8])

Type Objective

Management
Review

Provide recommendations for the following
• activities progress, based on an evaluation of product development status
• changing project direction or identifying the need for alternate planning
• adequate allocation of resources through global control of the project

E
va

lu
at

io
n

Technical
Review

Evaluate a specific software element and provide management with
evidence that
• the software element conforms to its specifications
• the design (or maintenance) of the software element is being done according

to plans, Standards, and guidelines applicable for the project
• changes to the software element are properly implemented and affect only

those system areas identified by change specifications

Software
Inspection

Detect and identify software element defects, in particular
• verify that every software element satisfies its specifications
• verify that every software element conforms to applicable Standards
• identify deviations from standards and specifications
• evaluate software engineering data (e. g. defect and effort data)

V
er

if
ic

at
io

n

Walk-
through

Find defects, omissions, and contradictions in the software elements and
consider alternative implementations (long associated with code examination,
this process is also applicable to other aspects, e. g. architectural design, detailed
design, test plans / procedures, and change control procedures)

software element is used here also for software module;  see also Tab. A3.3 for system oriented design reviews;
gate review is often used instead of design review

redundancy considerations should be extended to cover hardware defects & failures,
i. e., to make the system fault tolerant (Sections 2.3.7, 6.8).  In this context, effort
should be devoted to the investigation of causes-to-effects aspects (criticality) of
hardware & software faults from a system level point of view, including hardware,
software, human factors, logistic support (Sections 2.6, 4.2, 6.10, [1.7, 2.87, 2.88, 5.75] ).

5.3.2 Configuration Management

Configuration management is an important quality assurance tool during the design
and development of complex equipment and systems, both for hardware and
software.  Applicable methods and procedures are outlined in Section 1.3.3 and
discussed in Appendices A3 and A4 for hardware.  Some of these methods have
been introduced in software standards [A2.8 (828-2012)].  Of particular importance
for software are design reviews, as given in Table 5.5 (see also Table A3.3 for
hardware aspects), and configuration control, i. e. the management of changes and
modifications.
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5.3.3 Guidelines for Software Testing

Planning for software testing is generally a difficult task, as even small programs
can have an extremely large number of states which makes a complete test impos-
sible.  A test strategy is then necessary. The problem is also known for hardware, for
which special design guidelines to increase testability have been developed (Section
5.2). The most important rule, which applies to both hardware and software, is the

partitioning of the item (hardware or software) into independent modules
which can be individually tested & integrated bottom-up to build the system.

Many rules can be project specific.  The following design guidelines can be useful
in establishing a test strategy for software used in complex equipment and systems:

1. Plan software tests early in the design and coding phases, and integrate them
step by step into a test strategy.

2. Use appropriate tools (debugger, coverage-analyzer, test generators, etc.).
3. Perform tests first at the module level, exercising all instructions, branches and

logic paths.
4. Integrate and test successively the modules bottom-up to the system level.
5. Test carefully all suspected paths (with potential defects) and software parts

whose incorrect running could cause major system failures.
6. Account for all defects which have been discovered with indication of running

time, software & hardware environments at the occurrence time (state, param-
eter set, hardware facilities, etc.), changes introduced, and debugging effort.

7. Test the complete software in its final hardware and software environment.

Testing is the only practical possibility to find (and eliminate) defects.  It includes
debug tests (generally performed early in the design phase using breakpoints, desk
checking, dumps, inspections, reversible executions, single-step operation, or traces)
and run tests.  Although costly (often up to 50% of the software development cost),
tests cannot guarantee freedom from defects.  A balanced distribution of the efforts
between preventive actions (defect prevention) and testing must thus be found for
each project.

5.3.4 Software Quality Growth Models

Since the beginning of the seventies, a large number of models have been proposed
to describe the occurrence of software defects during operation of complex equip-
ment and systems.  Such an occurrence can generate a failure at system level and
appears often randomly distributed in time.  For this reason, modeling has been
done in a similar way as for hardware failures, i. e., by introducing the concept of
software failure rate.  Such an approach may be valid to investigate software quality
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growth during software validation and installation, as for the reliability growth
models developed in the sixties for hardware (Section 7.7).  However,

from the considerations in Sections 5.3.1 - 5.3.3, the main target should be
the development of software free from defects, and thus to focus effort on
defect prevention rather than on defect modeling, see e. g. [5.78] .

Because of their use in investigating software quality growth, this section introduces
briefly some basic models known for software defect modeling  (see Section 7.7 for
further possible models, and p. 168 for some critical remarks):

1. Between consecutive occurrence points of a software defect, the "failure rate"
is a function of the number of defects present in the software.  This model
leads to a death process and is known as Jelinski-Moranda model.  If at t = 0
the software contains n defects, the probability P ( ) Pr{i t i=  defects have been
removed up to the time  defects were presentt n at t = 0} can be calculated
recursively from (Problem A7.4 in Appendix A11)
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0 1
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n i x
i

t

= = − + − = …− − −
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or directly as

P ( ) ( ) ,          , ,( )
i

t i n i tt e e i n
n
i

= − = …( ) − − −1 1λ λ   . (5.4)

Figure 5.3 shows P ( )0 t  to P ( )3 t  for n =10.  This model can be easily
extended to cover the case in which the parameter λ also depends on the
number of defects still present in the software.

2. Between consecutive occurrence points of a software defect, the "failure rate"
is a function of the number of defects still present in the software and of the
time elapsed since the last occurrence point of a defect.  This model
generalizes Model 1 above and can be investigated using semi-Markov
processes (Appendix A7.6).
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Figure 5.4    Simplified modeling for the time behavior of a system whose failure is caused
by a hardware failure ( Z Zi i→ ' ') or by the occurrence of a software defect ( Z Zi i→ ')

3. The flow of occurrence of software defects constitutes a nonhomogeneous
Poisson process (Appendix A7.8.2).  This model has been extensively investi-
gated in the literature, together with reliability growth models for hardware,
with different assumptions on the form of the process intensity (Section 7.7).

4. The flow of occurrence of software defects constitutes an arbitrary point proc-
ess. This model is very general but difficult to investigate.

Models 1 and 2, above, my have a theoretical foundation.  However, in practical
applications they often suffer from the lack of information, for instance about the
number of defects actually present in the software, and data.  Also they do not take
care of the criticality (effect at system level) of the defects still present in the
software under consideration (several minor faults are in general less critical than
just one major fault).  The use of nonhomogeneous Poisson processes is discussed in
Section 7.7, see e. g. also [6.1, A7.30] for some critical comments.  As a general rule,

models based on the remaining number of defects in the software (errors
at start), as well as oversimplified models, e. g. [5.80], should be avoided.

For systems with hardware and software, one can often assume that defects in
the software will be detected and eliminated one after the other.  Only hardware fail-
ures should remain.  Figure 5.4 shows a possibility to take this into account [6.10].
However, interdependence between hardware and software can be greater as as-
sumed in Fig. 5.4.  Also is the number (n) of defects in the software at the time t = 0
unknown and by eliminating a software defect new defects can be introduced.

For all the above reasons, modeling software defects as well as systems with
hardware and software is still in progress.
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6  Reliability & Availability of Repairable Systems

Reliability and availability analysis of repairable systems is generally performed
using stochastic processes, including Markov, semi-Markov, and semi-regenerative
processes.  A  comprehensive introduction to these processes is in Appendix A7
with reliability applications in mind.  Equations used for Markov and semi-Markov
models are summarized in Table 6.2.  This chapter investigates many of the reliabi-
lity models useful for practical applications, some of which were developed for this
book (Sections 6.8 & 6.10).  Reliability figures at system level have indices Si  (e. g.
MTTFSi ), where S stands for system (the highest integration level of the item
considered) and i is the state entered at t = 0.  After a discussion on assumptions &
conclusions, Section 6.2 investigates the one-item structure under general conditions.
Sections 6.3 - 6.6 deal with series, parallel, and series - parallel structures.  To unify
models and simplify calculations, it is assumed that the system has only one repair
crew and no further failures occur at system down.  Starting from constant failure &
repair rates (Markov models), generalization is performed step by step (beginning
with the repair rates) up to the case in which the process involved is regenerative
with a minimum number of regeneration states.  Approximate expressions for large
series -parallel structures are investigated in Section 6.7.  Section 6.8 considers syst-
ems with complex structure for which a reliability block diagram often does not
exist.  On the basis of practical examples, preventive maintenance, imperfect
switching, incomplete coverage, elements with > 2 states, phased-mission systems,
common cause failures, and general reconfigurable fault tolerant systems with
reward & frequency /  duration aspects are investigated.  Basic considerations on
network reliability are given in Section 6.8.8 and a general procedure for complex
structures is in Section 6.8.9.  Section 6.9 introduces alternative investigation me-
thods (dynamic FTA, BDD, event trees, Petri nets, computer-aided analysis), and gives
a Monte Carlo approach useful for rare events.  Human reliability is discussed in
Section 6.10.  Results are summarized in tables.  Asymptotic & steady-state is used
for stationary, mean for expected value, independent for totally (mutually, statisti-
cally, stochastically) independent.  Selected examples illustrate the practical aspects.

6.1   Introduction, General Assumptions, Conclusions

Investigation of the time behavior of repairable systems spans a very large class of
stochastic processes, from simple Poisson process through Markov and semi-
Markov processes up to sophisticated regenerative processes with only one or just
a few regeneration states.  Nonregenerative processes are rarely considered because
of mathematical difficulties.  Important for the choice of the class of processes to be

A. Birolini, Reliability Engineering, DOI: 10.1007/978-3-642-39535-2_6,
� Springer-Verlag Berlin Heidelberg 2014

169



170 6   Reliability and Availability of Repairable Systems

used are the distribution functions for the failure-free and repair times involved.  If
failure and repair rates of all elements in the system are constant (time independent)
during the stay time in every state (not necessarily at a state change, e. g. because of
load sharing), the process involved is a time-homogeneous Markov process with a
finite number of states, for which stay time in every state is exponentially distributed.
The same holds if Erlang distributions occurs (supplementary states, Section 6.3.3).
The possibility to transform a given stochastic process into a Markov process by
introducing supplementary variables is not considered here.  Generalization of the
distribution functions for repair times leads to semi-regenerative processes, i. e., to
processes with an embedded semi-Markov process.  This holds, in particular, if the
system has only one repair crew, since each termination of a repair is a regeneration
point (because of the constant failure rates).  Arbitrary distributions of repair and
failure-free times lead in general to nonregenerative stochastic processes.

Table 6.1 shows the processes used in reliability investigations of repairable
systems, with their possibilities and limits.  Appendix A7 introduces these processes
with particular emphasis on reliability applications.  All equations necessary for the
reliability and availability calculation of systems described by time-homogeneous
Markov processes and semi-Markov processes are summarized in Table 6.2.

Besides the assumption about the involved distribution functions for failure-free
and repair times, reliability and availability calculation is largely influenced by the
maintenance strategy, logistic support, type of redundancy, and dependence between
elements.  Existence of a reliability block diagram is assumed in Sections 6.2 - 6.7,
not necessarily in Sections 6.8 - 6.10.  Results are expressed as functions of time by
solving appropriate systems of differential (or integral) equations, or given by the
mean time to failure or the steady-state point availability at system level ( MTTFSi or
PAS ) by solving appropriate systems of algebraic equations.  If the system has no
redundancy, the reliability function is the same as in the nonrepairable case.  In the
presence of redundancy, it is generally assumed that redundant elements will be
repaired on line, i.e. without operational interruption at system level.  Reliability
investigations thus aim to find the occurrence of the first system down, whereas the
point availability is the probability to find the system in an up state at a time t,
independently of whether down states at system level have occurred before t.

In order to unify models and simplify calculations, the following assumptions
are made for analyses in Sections 6.2 - 6.7 (partly also in Sections 6.8 - 6.10).

 1. Continuous operation:  Each element of the system is in operating or
reserve state, when not under repair or waiting for repair. (6.1)

 2. No further failures at system down (no FF):  At system down the system is
repaired (restored) according to a given maintenance strategy to an up
state at system level from which operation is continued, failures during a
repair at system down are not considered. (6.2)

 3. Only one repair crew:  At system level only one repair crew is available,
repair is performed according to a stated strategy (e. g. first-in / first-out). (6.3)
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Table 6.1   Basic stochastic processes used in reliability & availability analysis of repairable systems

      Stochastic process                       Can be used in modeling Back-
ground

Diffi-
culty

Renewal process One-item structures with arbitrary failure rates,
negligible repair times, new after repair

Renewal
theory Medium

Alternating renewal proc.
(SMP with 2 states)

One-item repairable structures with arbitrary
failure and repair rates, new after repair

Renewal
theory Medium

Markov process (MP)

(finite state space, time-
homogeneous, regenerative
at every time point t )

Systems of arbitrary structure whose elements
have constant failure and repair rates during
the stay time in every state (not necessarily at
a state change, e. g. because of load sharing) *

Differen-
tial eqs.
     or
Integral
equations

 Low

Semi-Markov process
with > 2 states (SMP)
(regenerative at state change)

Some (few) systems with only one repair
crew, whose elements have constant failure
and arbitrary repair rates 

*

Integral
equations Medium

Semi-regenerative process
(process with an embedded
SMP with ≥ 2 states)

Systems of arbitrary structure with only one
repair crew, whose elements have constant
failure and arbitrary repair rates *

Integral
equations  High

Regenerative process
with just one regeneration
state

Systems of arbitrary structure whose elements
have constant failure and arbitrary repair rates 

*

(in some cases const. failure rate only in a reserve state)

Integral
equations

High to
very high

Nonregenerative
process

Systems whose elements have arbitrary failure
and repair rates

Partial
diff. eqs.

High to
very high

repaired elements new after repair (yielding system new (with respect to a specific state) for constant failure rates of all ele-
ments and only one repair crew);     * constant failure / repair rates can be extended to Erlang distribution (Fig. 6.6)

 4. Redundancy:  Failure detection & switch are ideal, and redundant elements
are repaired on line, i. e. without interruption of operation at system level. (6.4)

 5. States:  Each element in the reliability block diagram has only two states
(good or failed), and is as-good-as-new after each repair (restoration). (6.5)

 6. Independence: Failure-free (failure-free operating) and repair (restoration)
times of each element are stochastically independent, > 0, and continuous
random variables with finite mean ( , )MTTF MTTR  and variance. (6.6)

 7. Support:  Preventive maintenance is neglected and logistic support is ideal
(repair time = restoration time = down time). (6.7)

The above assumptions holds for Sections 6.2 -  6.7, and apply in many practical
applications.  However, assumption (6.5) must be critically verified for the aspect as-
good-as-new, when repaired elements contain parts with time dependent failure rate
which have not been replaced by new ones at repair;  with (6.3), it applies at system
level only if at each repair all non-replaced parts have constant failure rates.

At system level, reliability figures have indices Si MTTFSi   (  ,e.  g. )  where S stands
for system and i is the state entered at t = 0, see Table 6.2 (system refers in this book,
often in practical applications, to the highest integration level of the item considered;
t = 0 is the beginning of observations, x = 0 for interarrival times).  Assuming irre-
ducible embedded Markov chains, asymptotic & steady-state is used for stationary.
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Table 6.2  Relationships for the reliability, point availability & interval reliability of systems described
by time-homogeneous Markov processes or semi-Markov processes  (Appendices A7.5 & A7.6)
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Table 6.2    (cont.)
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Section 6.2 considers the one-item repairable structure under general assump-
tions, allowing a careful investigation of the asymptotic and stationary behavior.
For basic reliability structures encountered in practical applications (series, parallel,
and series-parallel), investigations in Sections 6.3 - 6.6 begin by assuming constant
failure and repair rates for every element in the reliability block diagram.
Distributions of repair times, and as far as possible of failure-free times, are then
generalized step by step up to the case in which the process involved remains
regenerative with a mini-mum number of regeneration states.  This, also to show
capability & limits of the models involved.  For large series-parallel structures,
approximate expressions are carefully developed in Section 6.7.  Procedures for
investigating repairable systems with complex structure (for which a reliability
block diagram often does not exist) are given in Section 6.8 on the basis of practical
examples, including imperfect switching, incomplete coverage, more than 2 states,
phased-mission systems, common cause failures, and fault tolerant reconfigurable
systems with reward & frequency / duration aspects.  It is shown that tools developed
in Appendix A7 (Tab. 6.2) can be used to solve many of the problems occurring in
practical applications, on a case-by-case basis working with the diagram of
transition rates or a time schedule.  Alternative investigation methods, as well as
computer-aided analysis are discussed in Section 6.9 and a Monte Carlo approach
useful for rare events is given.  Human reliability is considered in Section 6.10.

From the results of Sections 6.2 - 6.10, the following conclusions can be drawn:

 1. As long as MTTR MTTFi i<<  holds for each element Ei  in the reliability block
diagram, the shape of the distribution function of the repair time has small
influence on MTTFS  and PA AAS S=  (Examples 6.8, 6.9, 6.10).

 2. As a consequence of Point 1, it is preferable to start investigations by assuming
Markov models (constant failure & repair rates for all elements, Table 6.2); in a
second step, more appropriate distribution functions can be considered (p. 277).

 3. The assumption (6.2) of no further failure at system down has no influence on
the reliability function; it allows a reduction of the state space and simplifies
availability & interval reliability calculations (yielding good approximations).

 4. Already for moderately large systems, use of Markov models can become
time-consuming (up to  .e n! states for a rel. block diagram with n elements);
approximate expressions are thus important, and the macro-structures intro-
duced in Section 6.7 (Table 6.10) adheres well to many practical applications.

 5. For large systems or complex structures, following possibilities are available:
•  work directly with the diagram of transition rates (Section 6.8),
•   calculation of the mean time to failure and steady-state availability at

system level only (Table 6.2, Eqs. (A7.126), (A7.173), (A7.131), (A7.178)),
•  use of approximate expressions (Sections 6.7 & 6.9.7, Tables 6.9 & 6.10),
•  use of alternative methods or of Monte-Carlo simulation (Section 6.9).

 6. Human reliability has to be evaluated on a case-by-case basis; having in mind,
as far as possible, to bypass or greatly support dangerous human decisions.
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E

Figure 6.1    Reliability block diagram for a one-item structure

6.2 One-Item Structure

A one-item structure is an unit of arbitrary complexity, generally considered as an
entity for investigations.  Its reliability block diagram is a single element (Fig. 6.1).
Considering that in practical applications a repairable one-item structure can have
the complexity of a system, and also to use the same notation as in the following
sections of this chapter,

reliability figures are given with indices S Si or   (e. g. PA t MTTFS Si Si, ,( )R  ),
where S stands for system and i specifies the state ( )Zi  entered at t = 0
(S alone for steady-state ( )PA AAS S  ,   and Z0 for item (system) new at t = 0).

Under the assumptions (6.1) - (6.3) and (6.5) -  (6.7), the repairable one-item
structure is completely characterized by the distribution function of the failure-free
times τ τ0 1 0, ,…>

F ( ) Pr{ } F( ) Pr{ }, , ,..., ,

( ) ( ) ,A i
i xx x x x
A

= ≤ = ≤ = >
= =

τ τ0
1 2 0

0 0 0
     and      (6.8)  

F F
 

with densities

f ( ) f( ) ,F ( ) F( )
A x x

d x

dx

d x

dx
A= =          and     (6.9)

the distribution function of the repair times τ τ0 1 0' ', ,…>

G ( ) Pr{ } G( ) Pr{ },' '
, ,... ,

( ) ( ) ,A i
i x

A
x x x x= ≤ = ≤ = >

= =
τ τ0

1 2 0
0 0 0

    and       (6.10)    
G G

 

with densities

g ( ) g( ) ,G ( ) G( )
A x x

d x

dx

d x

dx
A= =         and    (6.11)

and the probability p that the one-item structure is up at t = 0

p up t= =Pr{ } at 0 (6.12)

or
1 0− = =p down tPr{ } (i.e. under repair) at ,

respectively.  τ0 & τ0'  belong to the same item, as τi  & τi' ;  all are interarrival times,
and x is used instead of t.  MTTF MTTRi i i i i= = ∞ ≥E[ ] E[ ] Var[ ], Var[ ] <    τ τ τ τ, ,' ' ( )1

are tacitly assumed.  With these assumptions, the time behavior of the one-item
structure can be investigated with an alternating renewal process (Appendix A7.3).
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Figure 6.2    Possible time behavior for a repairable one-item structure new at t = 0  (repair times
greatly exaggerated, alternating renewal process with regeneration points 0, Sduu1 , Sduu2 ,... for a
transition from down state to up state given that the item is up at t = 0 (marked by •))

Section 6.2.1 considers the one-item structure new at t = 0, i. e., the case p = 1
and F ( ) F( )A x x= , with arbitrary F(x) and G(x).  Generalization of the initial
conditions at t = 0 (Sections 6.2.3) allows in Sections 6.2.4 and 6.2.5 a depth
investigation of the asymptotic and steady-state behavior.

6.2.1 One-Item Structure New at Time t 0=

Figure 6.2 shows the time behavior of a one-item structure new at t = 0.  τ τ1 2, ,…
are the failure-free times. They are statistically independent and distributed
according to F( )x  as per Eq. (6.8).  Similarly, τ τ1 2' ', ,… are the repair times,
distributed according to G( )x  as per Eq. (6.10).  Considering assumption (6.5),
the time points 0 1, ,Sduu … are regeneration points (see the footnote on p. 464)
and constitute an ordinary renewal process embedded in the original alternating
renewal process.  Investigations of this Section are based on this property (Sduu
means a transition from down (repair) to up (operating) starting up at t = 0).

6.2.1.1 Reliability Function

The reliability function R ( )S t0  gives the probability that the item operates failure
free in ( , ]0 t  given item new at t = 0

R ( ) Pr{ ( , ] }S t t t0 0 0= =up in new at . (6.13)

Considering Eqs. (2.7) and (6.8) it holds that

R ( ) Pr{ } F( )S t t t0 1 1= > = −τ , (6.14)

yielding R ( )S t e t
0 = − λ  for the case of constant failure rate λ.  The mean time to

failure given item new at t = 0 follows from Eq. (A6.38)

MTTF t dtS S0 0
0

=
∞
∫ R ( ) , (6.15)
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with upper limit of the integral TL  should the useful life of the item be limited to TL
( R ( )S t0  jumps to 0 at t TL= ).  In the following, TL =∞  is tacitly assumed, yielding
MTTFS0 1= / λ  for the case of constant failure rate λ.

6.2.1.2 Point Availability

The point availability PAS t0 ( ) gives the probability of finding the item operating
at time t given item new at t = 0

PA ( ) Pr{ }S t up t t0 0= = at new at . (6.16)

For PAS t0( ) it holds that

PA ( ) F( ) ( )( F( ))S duu

t
t t x t x dx0

0

1 1= − + − −∫ h . (6.17)

A( )t  is often used instead of PA ( )S t0 .  Equation (6.17) is derived in Appendix
A7.3 (Eq. (A7.56)) using the theorem of total probability.  1 − F( )t  is the probability
of no failure in ( , ]0 t , h ( )duu x dx  gives the probability that any one of the
regeneration points S Sduu duu1 2, , … lies in ( , ]x x dx+ , and 1 − −F( )t x  is the
probability that no further failure occurs in ( , ]x t .  Using Laplace transform
(Appendix A9.7) and considering Eq. (A7.50) with F ( ) ( )A x F x= , Eq. (6.17) yields

P̃ A ( ) .
˜ ( )

( ˜ ( ) ˜ ( ))
S s

s

s s s
0

1

1
= −

−
f

f g
(6.18)

f̃( )s  and g̃( )s  are the Laplace transforms of the failure-free time and repair time
densities, respectively (given by Eqs. (6.9) and (6.11)).

Example 6.1

a)  Give the Laplace transform of the point availability PAS t0 ( ) for the case of a constant
failure rate λ  ( ( ) )λ λx = .

b)  Give the Laplace transform and the corresponding time function of the point availability for
the case of constant failure and repair rates λ and µ ( ( ) ( ) )λ λ µ µx x= = and   .

Solution

a)  With F( )x e x= − −1 λ
 or f( ) ,x e x= −λ λ  Eq. (6.18) yields

  P̃ A ( ) / ( ( g̃( )).S s s s0 1 1= + −λ (6.19)

 Supplementary results:  g( ) ( ) / ( )x x e x= − −α α β α β1 Γ  (Eq. (A6.98)) yields

P̃ A ( )
( )

( ) ( )
.

S s
s

s s
0 =

+

+ + −

α

λ α λ α

β

β β
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b) With f( )x e x= −λ λ  and g( ) ,x e x= −µ µ  Eq. (6.18) yields

P̃ A
( )

( )S s
s

s s0 =
+

+ +
µ

λ µ
,

    and thus (Table A9.7)

PA ( ) ( / ) (( ) )S t e t e t e t
0 1 1 1=

+
+

+
≈ − + ≈ − −− + − −µ

λ µ
λ

λ µ
λ µ λ

µ
λ
µ

λ µ µ µ      . (6.20)

PA ( )S t0  converges rapidly, exponentially with a time constant 1 1/ ( ) /λ µ µ+ ≈ = MTTR  to
the asymptotic value µ λ µ λ µ/ ( ) /+ ≈ −1 , see Section 6.2.4 for an extensive discussion.

Supplementary results: Because of λ λ( ) ,t =  the probability to be up at time t and have a failure
in ( , ]t t t+δ  is given by PAS0 ( ) ,t tλδ  see also the footnote on p. 475.

PA ( )S t0  can also be obtained using renewal process arguments (Appendices A7.2,
A7.3, A7.6).  After the first repair the item is as-good-as-new.  Sduu1 is a
regeneration point and from this time point the process restarts anew as at t = 0.
Therefore

Pr{ } PA ( )up t S x t xduu S at 1 0= = − . (6.21)

Considering that the event

{ }up t at 

occurs with exactly one of the following two mutually exclusive events

{ ( , ]}no failure in 0 t
or

{ }S t up tduu1 < ∩  at 

it follows that

PA ( ) F( ) ( ( )* ( ))PA ( )S S

t
t t x x t x dx0 0

0

1= − + −∫ f g , (6.22)

where f( ) g( )x x∗  is the density of the sum τ τ1 1+ '  (see Fig 6.2 and Eq. (A6.75)).
Equation (6.22) is the integral equation for PA ( )S t0 , and yields also to Eq. (6.18).

6.2.1.3 Average Availability

The average availability AAS t0( ) is defined as the expected proportion of time in
which the item is operating in ( , ]0 t  given item new at t = 0

AA ( ) E[ ( , ] ]S t
t

up t t0
1

0 0= = total  time in new at . (6.23)
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Considering PA ( )S x0  from Eq. (6.17), it holds that

AA ( ) PA ( ) .S S

t
t

t
x dx0

1
0

0

= ∫ (6.24)

Eq. (6.24) has a great intuitive appeal.  It can be proved by considering that the time
behavior of the repairable item can be described by an indicator (binary process)
ζ( )t  taking values 1 for up and 0 for down.  From this, E  PA       ζ( ) . ( ( ))t tS[ ] = − +0 1 0
1.    PA     PA   S St t0 0( ) ( )=  and, taking care of ζ ( ) ( , ]x dx

t up t=∫0 0total  time in , it follows
that (by Fubini's theorem [A6.6 (Vol. II)] and assuming existence of the integrals)

AA ( ) E[ ( ) ] E [ ( )] ( ) .S

t t

S

t
t

t
x dx

t
x dx

t
x dx0

1

0

1

0

1
0

0

= = =∫ ∫ ∫   PAζ ζ

6.2.1.4 Interval Reliability

The interval reliability IR ( , )S t t0 +θ  gives the probability that the item operates
failure free during an interval [ , ]t t+θ  given item new at t = 0

IR ( , ) Pr{ in [ , ] }S t t up t t t0 0+ = + =θ θ new at . (6.25)

The same method used to obtain Eq. (6.17) leads to

IR ( , ) F( ) ( )( F( ))S duu

t
t t t x t x dx0

0

1 1+ = − + + − + −∫θ θ θh . (6.26)

Example 6.2
Give the interval reliability IR ( , )S t t0 + θ  for the case of a constant failure rate λ ( λ λ( )x = ).

Solution
With F( )x e x= − −1 λ

 it follows that

IR ( , ) ( ) ( ) ( )( ) [ ( ) ] .S t t e x e dx e x e dx et
duu

t x
t

t
duu

t x
t

0
0 0

+ = + = +− + − + − − − − −∫ ∫θ λ θ λ θ λ λ λθh h

Comparison with Eq. (6.17) for F( )x e x= − −1 λ  yields

IR ( , ) PA ( ) . ,S St t t e0 0+ = −θ λ θ              for λ λ( )x = . (6.27)

It must be pointed out that the product rule in Eq. 6.27, expressing Pr{ [ , ]up t t in +θ
newat  at new at no failure in  at t t t t t tup up= = = ⋅ +0 0} Pr{ } Pr{ ( , ] }θ , holds only

because of constant failure rate λ λ( )x =  (memoryless property, Eq. (2.14));  in the
general case, the second term is Pr{ ( , ] ( )}no failure in at new at t t t tup+ ∩ =θ 0 ,
which differs from Pr{ ( , ] }no failure in att t tup+ θ .  Also should the use of
IR( , )t t1 2  as reliability R( , )t t1 2  be dropped, to avoid misuses (see remarks on pp. 40
and 426).
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6.2.1.5 Special Kinds of Availability

In addition to the point and average availability (Sections 6.2.1.2 and 6.2.1.3), there
are several other kinds of availability useful for practical applications [6.5 (1973)]:

1. Mission Availability: The mission availability MAS To ot0 ( , ) gives the
probability that in a mission of total operating time (total up time) To  each
failure can be repaired within a time span to , given item new at t = 0

MA each individual failure occuring in a mission withS o oT t0( , ) Pr{=
  total operating time can be repaired in a time new atT t to o≤ = 0}. (6.28)

Mission availability is important in applications where interruptions of length
≤ to  can be accepted.  Its computation considers all cases with n = …0 1, ,
failures, taking care that at the end of the mission the item is operating
(to reach the given (fixed) operating time To). 

+)  Thus, for given To > 0 and to ,

MA   S o o o n o n o o
nT t T T T t

n
0 11

1
( , ) F( ) (F ( ) F ( )) (G( ))= − + − +

∞

=
∑ (6.29)

holds.  F ( ) F ( )n o n oT T− +1  is the probability for n  failures during the total
operating time To  (Eq. (A7.14) with F ( ) F( )A x x= );  ( ( ))G to

n is the probability
that all n repair times will be shorter than to .  For constant failure rate λ it
holds that F ( ) F ( ) ( ) / !n o n o o

n TT T T e no− =+
−

1 λ λ  (Eq. (A7.41)) and thus

MA ( , ) ( G( ))
S o o

To t oT t e0
1= − −λ ,             for λ λ( )x = . (6.30)

2. Work-Mission Availability: The work-mission availability WMA ( , )S oT x0  gives
the probability that the sum of the repair times for all failures occurring in a
mission of total operating time (total up time) To  is ≤ x , given item new at t = 0

WMA ( , ) Pr{S oT x0 = sum of the repair times  for all failures occurring
               in a mission of total operating time is new at    T x to ≤ = 0}. (6.31)

Similarly as for Eq. (6.29) it follows that for given (fixed)  To > 0 and x > 0 +)

WMA ( , ) F( ) (F ( ) F ( )) G ( )S o o n o n o n
n

T x T T T x0 1
1

1= − + − +
=

∞
∑  , ++) (6.32)

where G ( )n x  is the distribution function of the sum of n repair times with dis-
tribution G( )x  (as per Eq. (A7.12)).  As for the mission availability, the item
is up at the end of the mission (to reach the given (fixed) operating time To).
For constant failure and repair rates ( )λ µ , , Eq. (6.32) yields (Eq. (A7.219))

__________________
+)   An unlimited number n of repair is assumed here, see e. g. Section 4.6 (p. 140) for n limited.
++)  See e.g. p. 522 for a possible application of Eq. (6.32) to a cumulative damage model.
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WMA [
( )

!
( )

!
]( , ) ( )

(S o
T x TT x e

T

n

x

k

n

n

k

k

n

T eS T0 1 0 0

1 0

1
0

0 0 0
= − − +

∞

= =

−
∑ ∑

−
λ µ λ µ

λ
    

> 0 given,   x > 0, ,

(6.33)

 
 WMA , 0) = . 

Defining DT  as total down time and UT DTt= −  as total up time in ( , ]0 t , one
recognizes that for given t, Pr {   in ( } =  new atDT x x xt t tS0 0 0, ] ( , )WMA≤ = −
holds for an item described by Fig. 6.2 ( , )t tx> < ≤0 0 .  However, the item
can now be up or down at t, and the situation differs thus from that defined by
Eq. (6.31), for which the item is up at the given cumulative operating time To .
WMA ( , )S t x x0 −  has been investigated in [A7.29 (1957)];  besides a closed ana-
lytical expression for constant failure and repair rates ( , )λ µ , it is shown that
the distribution of DT converges for t → ∞ to a normal distribution with mean
t tλ λ µ λ µ/( ) /+ ≈  and variance t t  2 23 2λµ λ µ λ µ/( ) /+ ≈ .  It can be noted that
referred to Eqs. (6.32) and (6.33), mean and variance of the total repair time
are given exactly by T0 λ µ/  and T0 2 2 λ µ/ , respectively (Eq. (A7.220)).

3. Joint Availability:  The joint availability JA ( , )S t t0 + θ  gives the probability of
finding the item operating at the time points t and t+ θ , given item new at
t = 0  ( t , θ given, see e. g. [6.15 (1999), 6.28] for stochastic demand)

JA ( , ) Pr{( ) }S t t t t t0 0+ = ∩ + =θ θup at up at  new at . (6.34)

For the case of constant failure rate λ λ( )x = , Eq. (6.27) yields

JA ( , ) PA ( ) PA ( ).
S S St t t0 0 0+ =θ θ ,             for λ λ( )x = . (6.35)

For arbitrary failure rate, one has to consider that { }|up upt t t at  at   new at ∩ + =θ 0
occurs with one of the following 2 mutually exclusive events (Appendix A7.3)

{ [ , ] }up t t t in  new at   + =θ 0

     or
{( }up t t up t t at  next failure occurs before  at  ) new at   ∩ + ∩ + =θ θ 0 .

The probability for the first event is the interval reliability IR ( , )S t t0 + θ  given
by Eq. (6.26).  For the second event, it is necessary to consider the distribution
function of the forward recurrence time in the up state τRu t( ) .  As shown in
Fig. 6.3, τRu t( )  can only be defined if the item is up at time t, hence

Pr{ } Pr{ ( ( )}τ Ru t x t up t t x up t t( ) > new at  in , + ]  at new at  = = ∩ =0 0

and thus, as for Example A7.2 and considering Eqs. (6.16) and (6.25),

Pr{ )
Pr{ in [ , ] }

Pr{ }

IR ( , )

PA ( )

) .

}τ

τ

Ru
S

S

t t
t

t t

t t

t
x

up t t x

up

x

x
Ru

(  new at 
new at

 at new at
  

 

 F ( (6.36)

> = =
+ =

=
=

+

= −

0
0

0

1

0

0
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t

τ    (t)
  Rd 

t
t

τ    (t)
  Ru

t

For constant failure rate λ λ( )x =  one has 1 F− −=τ
λ

Ru
x e x( ) , as per Eq. (6.27).

Considering Eq. (6.36) it follows  that

JA ( , ) IR ( , ) ( ) ( ) ( )

IR ( , )
IR ( , )

PA ( ) ,

S S S S

S
S

S

t t t t

t t
t t

t x x dx

x

x
x dx

Ru
0 0 0 1

0

0
0

1
0

+ = + + −

= + −
+

−

∫

∫

θ θ θ

θ θ

τ

θ

∂

∂

θ

PA  f PA

                        
 

                     
  
                

 

(6.37)

where PA ( ) Pr{ }S t t tup1 0= = at  a repair begins at  is given by

PA ( ) ( ) ( F( ))S dud

t
t th x x dx1

0

1= − −∫ , (6.38)

w i t h  h ( ) g( ) g( ) f( ) g( ) g( ) f( ) g( ) f( ) g( )dud t t t t t t t t t t= + ∗ ∗ + ∗ ∗ ∗ ∗ +… ( Eq. (A7.50)).
JA ( , )S t t0 + θ  can also be obtained in a similar way to P A ( )S t0  in Eq. (6.17),
by considering the alternating renewal process starting up at the time t with
τRu t( ) distributed according to F (τRu

x) as per Eq. (6.36).  This leads to

J h   A ( , ) IR ( , ) ) ( F( )) ,' (S St t t t
duu

x x dx0 0
0

1+ = + + − −∫θ θ θ
θ

(6.39)

with h ) ( ) ( ) ) g ( ) f ( ) g( ) ... ,' ( ' ' (
duu Ru Ru

x x g x x x xx= ∗ + ∗ ∗ ∗ +f   f  τ τ  see Eq. (A7.50),

and f   f      F IRτ τ τ ∂ ∂
Ru Ru Ru

x S S St t t tx d x dx x x' ( ) PA ( ) ( ) PA ( ) ( ) / ( , ) /= = = − +0 0 0 , see

Eqs. (6.36) and (6.37).  Similarly as for τRu t( ) , the distribution function for

the forward recurrence time in the down state τRd t( )  is given by (Fig. 6.3)

Pr{ ( ) } h ( ) ( G( )) ( PA ( )),/τRd udu St t t tx y x y dy
t

≤ = = − − + − −∫| new at   0 1 1 1
0

0 (6.40)

with h ( ) f( ) f( ) g( ) f( )udu t t t t t= + ∗ ∗ + … (Eq. (A7.50)).  For constant failure

rate λ λ( )x = , Eq. (6.37) or (6.39) leads to Eq. (6.35), by considering Eq. (6.19).

Other kinds of availability are possible.  For instance, availability by omitting down
times for repair shorter than a given fixed or random time ∆  has been investigated
recently in [6.48], yielding for the case of fixed ∆  to lim  PA

t
t e

→ +∞
= − + −

∆ ∆ ∆( ) ( ) .1 1
λ

λ µ µ µ

      •, ▲  regeneration points

Figure 6.3    Forward recurrence times τRu t( ) and τRd t( )  in an alternating renewal process
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Table 6.3    Results for a repairable one-item structure new at t = 0  and with constant failure rate λ

                                Repair rate    Remarks, Assumptions
    arbitrary (µ(x))            constant (µ) 

*

1. Reliability func-
tion R ( )S t0

e t− λ e t− λ R ( ) Pr{ ( , ]
}

|S t up t
t

0 0
0

=
=

in
new at 

2. Point
availability

     PA ( )S t0

e

e

t

x t x
duu

t

dx

− +
− −∫

λ

λh ( ) ( )

0

µ

λ µ

λ

λ µ
λ µ

µ λ µ λ µ

+ +
− ++

≈ ≈+ −

e t( )

/ ( ) /1  * *

PA ( ) Pr{
},    

|S

duu

t up t
t h

f g f g f g

0
0

=
= =

+ + …∗ ∗ ∗ ∗

at 
new at 

3. Average
availability

     AA ( )S t0

1
0

0t
x dxS

t

PA ( )∫
µ

λ µ

λ

λ µ

λ µ

λ µ µ
+

+
−

+

− +

≈ − −

( )

( )

( )

( / )( / )

1
2

1 1 1

e t

t

t  * *

AA ( ) E[
] }| /

S t up
t t t

0
0

=
=

total  time 
in (0,  new at 

 4. Interval reliabil-
ity IR ( , )S t t0 + θ PA ( )S t e0

− λ θ
µ

λ µ

λ

λ µ

λ θ λ µ λ θ

λθλ µ

e e

e

t− − + −

−
+

+
+

≈ −

( )

( / )1  * *

IR ( , ) Pr{
] }|

S t t up
t t t

0
0

+ =
+ =

θ
θ

 in 
[ ,  new at 

5. Joint availability

    JA ( , )S t t0 + θ PA ( )PA ( )S St0 0 θ PA ( )PA ( )S St0 0 θ
JA ( , ) Pr{

},
PA ( )

|
S

S

t t up t
up t t

x

0

0

0
+ ∩=

+ =
θ

θ
 at 

 at new at 
as in point 2

6. Mission
availability

     MA ( , )S o fT t0

e T to f− −λ ( G( ))1 e To
te f− −λ µ

MA ( , ) Pr{

| }

S o f

o

T t

T
t tf

0

0

=

≤ =

each  fail-
ure in a mission with total op -
 erating time can be repaired
in a time new at  

see Eq. (6.33) for the work-mission availability & Eq. (6.196) for the overall availability;   up = operating state;
*

 Markov process;   * *
 approximations valid for λ µ<<  and t MTTR> =10 10/ µ

6.2.2 One-Item Structure New at Time t 0=  and with
Constant Failure Rate λλλλ

In many practical applications, a constant failure rate λ can be assumed.  In this
case, the expressions of Section 6.2.1 can be simplified making use of the
memoryless property given by the constant failure rate.  Table 6.3 summarizes
the results for the cases of constant failure rate (λ) and constant or arbitrary
repair rate ( µ or µ( ) ( ) / ( ( ))x x x= −g G1 ).  Approximations in Table 6.3 are valid
for λ µ<<  and t MTTR> =10 10/ µ .  For points 3 in Table 6.3 it can be noted that
AAS0 0 1( ) = , as for PA ( )S0 0 , and that the convergence of AAS t0( ) toward
AA PAS S=  is slower than that of PA ( )S t0 .  The product rule for IR ( , )S t t0 + θ  and
JA ( , )S t t0 + θ  is valid only because of the constant failure rate λ .
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6.2.3 One-Item Structure with Arbitrary Conditions at t 0=

Generalization of the initial conditions at time t = 0, i. e., the introduction of p,
F ( )A x  and G ( )A x as defined by Eqs. (6.12), (6.8), and (6.10), leads to a time
behavior of the one-item repairable structure described by Fig. A7.3 and to the
following results:

 1. Reliability function R ( )S t

R ( ) Pr{ ( , ] } F ( )S At up t up t t= = = − in   at 0 0 1 . (6.41)

Equation (6.41) follows from Pr{ [ , ]}up tin 0 = Pr{ up t at = ∩0 Pr{ ( , ]}up tin 0
= = ⋅ = =Pr{ } Pr{ ( , ] }up t up t up t at  in  at  0 0 0 p p RA St t. F ( )) . ( )(1 − =  .

  2. Point availability PA ( )S t

PA ( ) Pr{ }S t up t=  at = − + − −∫p t x t x dxA duu

t
[ F ( ) h ( )( F( )) ]1 1

0

                                        + − − −∫ ( ) h ( )( F( )) ,1 1
0

p x t x dxdud

t
                    (6.42)

with h ( ) f ( ) g( ) f ( ) g( ) f( ) g( )duu A At t t t t t t= ∗ ∗ ∗ ∗ …+ +  and h ( ) g ( )dud At t= +
g ( ) f( ) g( ) g ( ) f( ) g( ) f( ) g( )A At t t t t t t t∗ ∗ + ∗ ∗ ∗ ∗ + …  (see also Eq. (A7.50)).

 3. Average availability AA ( )S t

AA ( ) E [ ( , ]] PA ( )S S

t
t

t
up t

t
x dx= = ∫1

0
1

0

total  time in . (6.43)

 4. Interval reliability IR ( , )S t t + θ

IR ( , ) Pr{ [ , ]}S t t t t+ = +θ θup in

        = − + + − + −∫p t x t x dxA duu

t
[ F ( ) h ( )( F( )) ]1 1

0

θ θ

                                    
   

(6.44)  ( ) h ( )( F( )) .+ − − + −∫1 1
0

p x t x dxdud

t
θ

 5. Joint availability JA ( , )S t t + θ

JA ( , ) Pr{ }S t t up t up t+ = ∩ +θ θ at  at

   
     

    (6.45)          = + −−
+

∫IR ( , ) PA ( )
IR ( , )

,S St t
t t

x dxS x

x
θ θ∂

∂

θ
1

0

with IR ( , )S t t + θ  from Eq. (6.44) and PA ( )S t1  from Eq. (6.38).
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 6. Forward recurrence times  ( τRu t( )  and τRd t( )  as in Fig. 6.3)

Pr{ } IR ( , ) / PA ( )τ Ru S St x t t x t( )  ≤ = − +1 , (6.46)

with IR ( , )S t t x+  according to Eq. (6.44) and PA ( )S t  from Eq. (6.42), and

Pr{ }
Pr{ [ , ]}

PA ( )
τRd

S
t x

down t t x

t
( )

 in 
≤ = −

+
−

1
1

, (6.47)

where

Pr{ [ , ]} h ( ) ( G( ))down t t x p y t x y dyudu

t
 in + = − + −∫ 1

0

         + − − + + − + −∫( )[ G ( ) h ( ) ( G( )) ] ,1 1 1
0

p t x y t x y dyA udd

t

with h ( ) f ( ) f ( ) g( ) f( ) f ( ) g( ) f( ) g( ) f( )udu A A At t t t t t t t t t= ∗ ∗ ∗ ∗ ∗ ∗ …+ + +  and
h ( )udd t  = ∗ + ∗ ∗ ∗ + …g ( ) f( ) g ( ) f( ) g( ) f( )A At t t t t t .

Expressions for mission availability and work-mission availability are generally
only used for items new at time t = 0 (see [6.5 (1973)]  for a generalization.

6.2.4 Asymptotic Behavior

As t → ∞ expressions for the point availability, average availability, interval relia-
bility, joint availability, and distribution functions of the forward recurrence time
(Eqs. (6.42)-(6.47)) converge to quantities which are independent of t and of the
initial conditions at t = 0.  Using the key renewal theorem (Eq. (A7.29)) it follows
that (see also Example 6.3 and Eqs. (A7.58) - (A7.63))

lim  PA ( ) ,
t

S St PA
MTTF

MTTF MTTR→∞
= =

+
(6.48)

lim  AA ( )
t

S S St AA PA
MTTF

MTTF MTTR→∞
= = =

+
, (6.49)

lim  IR ( , ) IR ( ) ( F( ))
t

S St t y dy
MTTF MTTR→∞

+ = = −
+

∞
∫θ θ
θ

1
1 , (6.50)

lim  JA ( , ) JA ( ) PA ( )
t

S S S et t
MTTF

MTTF MTTR→∞
+ = =

+
θ θ θ 0 , (6.51)

lim  Pr{ ( ) } ( F( ))
t

Ru
MTTF

x

t x y dy
→∞

≤ = −∫τ
1

0

1 , (6.52)

lim  Pr{ ( ) } ( G( )) ,
t

Rd

x

t x y dy
MTTR→∞

≤ = −∫τ
1

1
0

 (6.53)
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where MTTF i= E[ ]τ , MTTR i= E[ ]'τ , i = …1 2, ,  (Fig. 6.2), and PA ( )0e θ  is the point
availability according to Eq. (6.42) with p = 1 and F ( )A t  from Eq. (6.57) or (6.52).
In practical applications, PA and A A (or P AS and AAS for system oriented values)
are often referred as availability and denoted by A.  The use of PA AAS S= =
( ) /MTBF MTTR MTBF−  is to avoid, because it implies MTBF MTTF MTTR= + .

Example 6.3

Show that for a repairable one-item structure in continuous operation (Point 1, p. 170), the limit

lim PA ( )
t

SS
MTTF

MTTF MTTR
t PA

→∞
= =

+

is valid for any distribution function F( ), F ( ), ( ), ( )x x x xA AG G  satisfying conditions (A7.9) -
(A7.11), and for which f f g g( ), ( ), ( ), ( )x x x xA A  go to 0 as x →∞ .

Solution

Using the renewal density theorem Eq. (A7.31) it follows that

lim h ( ) lim h ( ) .
t

duu
t

dudt t
MTTF MTTR→∞ →∞

= =
+
1

Furthermore, applying the key renewal theorem Eq. (A7.29) to PA ( )S t  given by Eq. (6.42) yields

lim PA ( ) (

( F( ))

(

( F( ))

) )
t

S t p

x dx

p

x dx

MTTF MTTR MTTF MTTR→∞

∞ ∞

= − +

−

+ −

−∫ ∫

+ +
1 1

1

1

1
0 0

    =
+

+ −
+

=
+

p
MTTF

MTTF MTTR
p

MTTF

MTTF MTTR

MTTF

MTTF MTTR
( ) .1

The limit MTTF MTTF MTTR/ ( )+  can also be obtained from the final value theorem of the
Laplace transform (Table A9.7), considering for s → 0

f̃ ( ) , f̃ ( ) ,( ) ( )s s s s s sMTTF A= − + = − +1 1o o    E[ ] 0τ

g̃ ( ) ,  g̃ ( )( ) ( )s s s s s sMTTR A= − + = − +1 1o    oE[ ]0
'τ ,      (6.54)

with o ( )s  as per Eq. (A7.89) and using Eq. (A7.50).  When considering  g̃( )λ  for availability
calculations, the approximation given by Eq. (6.54) often leads to PAS = 1, already by simple
redundancy structures.  In these cases, Eq. (6.113) has to be used.

In the case of constant failure & repair rates ( ( ) ( ) )λ λ µ µx x= = ,  Eq. (6.42) yields
(Eq. (A7.50), Table A9.7)

PA ( ) ( ) ( )( ) ( ) .S S St e ep PA p PAt t=
+

+ −
+

= + −− + − +µ
λ µ

µ
λ µ

λ µ λ µ (6.55)

Thus, for this important case, the convergence of PA ( )S t  toward PAS = +µ λ µ/( )  is
exponential with a time constant 1 1/ ( ) /λ µ µ+ < = MTTR .  In particular, for p = 1,
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i. e. for PA ( )S 0 1=  and PA ( ) PA ( )S St t≡ 0 , it follows that

PA ( ) ( ) /
S S

MTTRt PA MTTRe e et t t
0 − = − + − −≤ = 

+
λ

λ µ
λ
µ

λ µ µ λ . (6.56)

Generalizing the distribution function G( )x  of the repair time and /  or F( )x  of the
failure-free time, PA ( )S t0  can oscillate damped (as in general for the renewal
density h(t) given by Eq. (A7.18)).  However, for constant failure rate λ  and
providing λ MTTR  sufficiently small and some rather weak conditions on the
density g( )x , lower and upper bounds on PA ( )S t0  can be found [6.25]

PA ( ) ( / )
S

MTTRt
MTTR

l
MTTR

MTTR
t tc e0

1

1 1
1 0≥

+ +
− + ≥−

λ

λ

λ
λ    ,              

and

PA ( ) ( / )
S

MTTRt u
MTTR

MTTR

MTTR
t tc e0

1

1 1
1 0≤ +

+ +
− + ≥

λ

λ

λ
λ   ,             .

cl =1 holds for many practical applications ( λ MTTR << 0 1. ).  Sufficient conditions
for cu =1 are given in [6.25].  However, conditions on cu  are less important as
on cl , since PAS t0 1( ) ≤  is always true.  The case of a gamma distribution with
density g( ) / ( )x x e x= − −α ββ β α1 Γ , mean β α/ , and shape parameter β ≥ 3, leads for
instance to | |PA ( ) /

S S
MTTRt ePA MTTR t

0 − ≤ −λ  at least for t MTTR≥ =3 3β α/ .

6.2.5 Steady-State Behavior

For

p x y dy x y dy
MTTF

MTTF MTTR MTTF

x

MTTR

x

A A= = − = −
+

∫ ∫,  ( ) ( ( )) , G ( ) ( ( ))  F F  G
1

0

1

0

1 1 (6.57)

as initial conditions /  distribution at t =0, the alternating renewal process describ-
ing the time behavior of a one-item repairable structure is stationary (in steady-
state), see Appendix A7.3.  With p, F ( )A t , and G ( )A t  as per Eq. (6.57), the expres-
sions for the point availability (6.42), average availability (6.43), interval reliability
(6.44), joint availability (6.45), and the distribution functions of the forward recur-
rence times (6.46) & (6.47) take the values given by Eqs. (6.48) - (6.53) for all t ≥ 0,
see Example 6.4 for the point availability PAS .  This relationship between asymp-
totic & steady-state (stationary) behavior is important in practical applications
because it allows the following interpretation (see also remarks on pp. 472 & 477):

A one-item repairable structure is in steady-state (stationary behavior) if it
began operating at the time t = − ∞  and will be considered only for t ≥ 0, the
time t = 0 being an arbitrary time point.
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Table 6.4    Results for a repairable one-item in asymptotic & steady-state (stationary) behavior

             Failure and repair rates          Remarks, assumptions
Arbitrary Constant *

1. Pr{ }up t at = 0
(p)

MTTF

MTTF MTTR+

µ

λ µ+
MTTF

i
i= ≥E[ ] ,    τ 1

MTTR
i

i= ≥E[ ] ,    'τ 1

2. Distribution of τ0
( FA x x( ) Pr{ }= ≤τ 0 )

1
1

0
MTTF

x dx

t

( F( ))−∫ 1 − −e tλ
F ( )A x  is also the distribution

function of τ Ru t( )  as in Fig. 6.3

(F ( ) Pr{ ( ) })A Rux t x= ≤τ

3. Distribution of τ0
'

(G ( ) Pr{ })'
A x x= ≤τ 0

1
1

0
MTTR

x dx

t

( G( ))−∫ 1 − −e tµ
G ( )A x  is also the distribution

function of τ Rd t( )  as in Fig. 6.3

(G ( ) Pr{ ( ) })A Rdx t x= ≤τ

4. Renewal densities
h ( )ud t  = h ( )du t ,

     (i. e. failure frequency
= repair frequency)

1

MTTF MTTR+
λ µ

λ µ+

h ( ) h ( ) ( )h ( ),

h ( ) h ( ) ( )h ( ),
du duu dud

ud udu udd

t p t p t

t p t p t

=
=

+ −

+ −

1

1

p as in point 1 → =h ( )du t h ( )ud t

5. Point availability
( PAS )

MTTF

MTTF MTTR+

µ

λ µ+
PA up tS = Pr{ } at ,    t ≥ 0

6. Average availability
( AAS )

MTTF

MTTF MTTR+

µ

λ µ+
AA

t
tS = 1

0E[ ( , ]]total up time in ,
 t > 0

7. Interval reliability
( IR ( )S θ )

( F( ))1 −∫

+

∞
x dx

MTTF MTTR

θ
µ

λ µ
λθ

+
−e

IR ( ) Pr{ [ , ]}S up t tθ θ  in = + , 
t ≥ 0

8. Joint availability
( JAS ( )θ )

MTTF

MTTF MTTR

S e

S e

⋅

+

= ⋅

PA ( )

PA PA ( )

0

0

θ

θ

µ

λ µ

µ

λ µ

λ µ

λ
λ µ θ

+ +

+
+

− +

(

)

( )

( )

e

JA ( ) Pr( }S up t up tθ θ= ∩ + at at ,

PA ( ) PA ( )S e S0 θ θ=   as per
 Eq. (6.42) with p = 1 and F ( )A t
 as in point 2

λ =  failure, µ =repair rate;   up = operating state;   * Markov process

For constant failure rate λ and repair rate µ, the convergence of PA ( )S t0  to PAS
is exponential with time constant ≈ =1/µ MTTR (Eqs. (6.20) & (6.55)).  Extrapolating
the results of Section 6.2.4, one can assume that for practical applications, the func-
tion PA ( )S t0  is captured at least for some t t> >0 0  in the band | |PA ( )S St PA0 − ≈

λ MTTR e t MTTR − /
 when generalizing the distribution function of repair times.  Thus,

for practical purposes one can assume that after a time t MTTR≈ 10 , the point
availability PA ( )S t0  has reached its steady-state (stationary) value PA AAS S=

(this, considering e− −≈10 55 10.   and λMTTR ≤ −10 2 , see Tab. 6.3).  Important results
for the steady-state behavior of a repairable one-item structure are in Table 6.4.
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Example 6.4

Show that for a repairable one-item structure in steady-state, i. e. with p, F ( )A x , and G ( )A x  as
per Eq. (6.57), the point availability is PA ( ) / ( )S St PA MTTF MTTF MTTR= = +  for all t ≥ 0.

Solution

Applying the Laplace transform to Eq. (6.42) and using Eqs. (A7.50) and (6.57) yields

PÃ ( ) (
f̃( )

f̃( )
g̃( )

f̃( ) g̃( )

f̃( )
)  S s

s

s

s

s

s
s

s s

s

s

MTTF

MTTF MTTR MTTF

MTTF
= −

−
+

−

−
⋅

−
+

1 1

1

1

1
2

+ ⋅

−

−
⋅

−
+

MTTR

MTTF MTTR

MTTR

s

s

s s

s

s

1

1

1

g̃( )

f̃( ) g̃( )

f̃( )
,

and finally

PÃ ( ) (
f̃( )

)
[ f̃( )][g̃( ) f̃( ) g̃( ) g̃( )]

( ) [ f̃( ) g̃( )]
, 

S s
s

s

s

s s s s s

s s s

MTTF

MTTF MTTR MTTF MTTF MTTR
= −

−
+

− − + −

−+ +

1 1 1 1

12 2

from which

PÃ ( )  . 
S

Ss
s

PA

s

MTTF

MTTF MTTR
= ⋅ =

+

1

and thus PA ( )S St PA=  for all t ≥ 0.

6.3   Systems without Redundancy

The reliability block diagram of a system without redundancy (series structure,
series model) consists of the series connection of all its elements E1, ... , En , see
Fig. 6.4.  Each element Ei  in Fig. 6.4 is characterized by the distribution functions
F ( )i x  for the failure-free time and G ( )i x  for the repair time.+)

6.3.1 Series Structure with Constant Failure and
Repair Rates

In this section, constant failure and repair rates are assumed, i. e.

F ( )i
xx e i= − −1 λ ,                  x i> =0 0 0, ( ) , F (6.58)

and

G ( )i
xx e i= − −1 µ ,                  x i> =0 0 0, ( ) , G (6.59)

__________________
+)  It can be noted that for a series structure, assumption (6.2) of no further failures at system down

implies also assumption (6.3) of only one repair crew.
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EnE2E1

Figure 6.4    Reliability block diagram for a system without redundancy (series structure)

i=1

n

1 – ∑λ
i
δ t

λ1 δt

µ1 δt

λ2 δt

µ2 δt

λ3 δt

µ3 δt

λn δtµn δt

Z1

Z2

Z0

1 – µn δt
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Z3

1 – µ3 δt

1 – µ2 δt

1 – µ1 δt

Figure 6.5    Diagram of the transition probabilities in ( , ]t t t+ δ  for a repairable series structure
with constant failure & repair rates λ µi i , , ideal failure detection & switch, no further failures at
system down  ( Z Z n1, ...,  down states (absorbing for reliability calculation), arbitrary t , δ t ↓0,
Markov process)

holds for i n= …1, , .  Because of Eqs. (6.58) and (6.59), the stochastic behavior of
the system is described by a time-homogeneous Markov process.  Let Z0 be the
system up state and Zi  the state in which element Ei  is down.  Taking assump-
tion (6.2) into account, i. e. of no further failures at system down, the corresponding
diagram of transition probabilities in ( , ]t t t+δ  (p. 487) is given in Fig. 6.5.
Equations of Table 6.2 can be used to obtain the expressions for the reliability
function, point availability and interval reliability.  With U Z= { }0 , U Z Z n= …{ , , }1

and the transition rates according to Fig. 6.5, the reliability function (see Table 6.2
for notation) follows from

R ( ) ,                S
tt e S

S i
i

n

0
1

= − = ∑
=

λ λ λwith , (6.60)
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and thus, for the mean time to failure,

MTTFS
S

0
1

=
λ

. (6.61)

The point availability is given by

PA ( ) P ( )S t t0 00= , (6.62)

with P ( )00 t  from (Table 6.2)

P ( ) P ( )00 0
01

t e e t x dxS S

i

n
t

i
x

i

t

= + −− −∫∑
=

λ λλ

P ( ) P ( ) ,         , , ,i i
x

t
i nt e t x dxi0 00

0

1= −− = …∫ µ µ (6.63)

yielding for the Laplace transform (Table A9.7) of PA ( )S t0

P̃ A ( ) ˜ ( )

)

.

(
S s s

s
s

i

ii

n0 00
1

1
1

= =

+
+

=
∑

P
λ

µ

(6.64)

From Eq. (6.64) there follows the asymptotic & steady-state value of the point and
average availability PA AA sS S s Ss= = → 0

lim ( )
~

PA

PA AAS S
i

ii

n
i

ii

n

= = −
+

≈

=

=∑
∑1

1
1

1
1

λ
µ

λ
µ   . (6.65)

Because of the constant failure rate of all elements, the interval reliability can be
directly obtained from Eq. (6.27) by

IR ( , ) PA ( )S St t t e S0 0+ = −θ λ θ, (6.66)

with the asymptotic & steady-state value

IR ( ) PAS S e Sθ λ θ= − , (6.67)

where (Eq. (6.60))

 λ λS i
i

n
= ∑

=1
.
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6.3.2 Series Structure with Constant Failure and
Arbitrary Repair Rates

Generalization of the repair time distribution functions G ( )i x , with densities g ( )i x
and G ( )i 0 0= , leads to a semi-Markov process with state space Z Zn0 , ,… , as in
Fig. 6.5 (this because of Assumption (6.2) of no further failures at system down).
The reliability function and the mean time to failure are still given by Eqs. (6.60)
and (6.61).  For the point availability let us first calculate the semi-Markov
transition probabilities Q ( )ij x  using Table 6.2

Q ( ) Pr{ ,   }0 0 0 0i i k ix x k i= ≤ ∩ > ≠τ τ τ

  = = −− −

≠

−∏∫ λ λ
λ

λ λ λ
i

y y

k i

x
i

S

xe e dy ei k S

0

1( ),     i n= …1, , ,

Q ( ) G ( ),        ., ,i i i nx x0 1= = … (6.68)

The system of integral Equations for the transition probabilities P ( )ij t  follows then
from Table 6.2

P ( ) P ( )00 0
01

t e e t x dxS St
i

x
i

x

i

n
= + −− −

=
∫∑λ λλ ,

P ( ) g ( )P ( ) ,         , ,i i i n
t

t x t x dx0 00 1

0

= − = …∫ . (6.69)

For the Laplace transform of the point availability PA ( ) P ( )S t t0 00=  one obtains
finally, from Eq. (6.69),

P̃ A ( ) ˜ ( )

g̃ ( ) ( g̃ ( ))

,
S

S i i
i

n

i i
i

n
s s

s s s s
0 00

1 1

1 1

1

= =

+ −

=

+ −
= =
∑ ∑

P   

λ λ λ

(6.70)

from which, the asymptotic & steady-state value of the point and average availability

PA AAS S

i i
i

n
MTTR

= =
+

=
∑

1

1
1
λ

, (6.71)

obtained using  lim
s

s s MTTR
→

− =
0

1(  ̃g ( )) . , as per Eq. (6.54), and (Eq. (A6.38))

MTTR t dti i= −
∞
∫ ( G ( ))1
0

. (6.72)

The interval reliability can be calculated from Eq. (6.66), with PA ( )S t0  per Eq.
(6.70), or Eq. (6.67) with PAS  per Eq. (6.71), see Example 6.5 for an application.
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Example 6.5

A system consists of elements E1 to E4  which are necessary for the fulfillment of the required
function (series structure). Let the failure rates λ1

3 110= − −h , λ2
3 10 5 10= ⋅ − −. h ,

λ3
4 110= − −h , λ4

3 12 10= ⋅ − −h  be constant and assume that for all elements the repair time is
lognormally distributed with parameters λ = −0 5 1. h  and σ = 0 6. .  Assuming that no further
failures can occur at system down (failures during repair are not considered), give the reliability
function for a mission of duration t = 168 h, the mean time to failure, the asymptotic & steady-
state values of the point and average availability, and he asymptotic & steady-state values of the
interval reliability for θ = 12 h .

Solution

The system failure rate is λ λ λ λ λS = + + + = ⋅ − −
1 2 3 4

4 136 10 h , according to Eq. (6.60).
The reliability function follows as R ( ) .

S
tt e0

0 0036= − , from which RS0 168 0 55( ) .h ≈ . The
mean time to failure is MTTFS S0 1 278= ≈/ λ h . The mean time to repair is obtained from
Table A6.1 as E[ ] ( ) / .' /τ λσ= = ≈e MTTR

2 2 2 4 h . For the asymptotic & steady-state values
of the point and average availability as well as for the interval reliability for θ = 12 h  it
follows from Eqs. (6.71) and (6.67) that PA AAS S= = + ⋅ ⋅ ≈−1 1 36 10 2 4 0 9914/ ( . ) .  and
IR ( ) . ..

S e12 0 991 0 950 0036 12≈ ⋅ ≈− ⋅ .

6.3.3 Series Structure with Arbitrary Failure and
Repair Rates

Generalization of repair and failure-free time distribution functions leads to a
nonregenerative stochastic process.  This model can be investigated using
supplementary variables, or by approximating the distribution functions of the
failure-free time in such a way that the involved stochastic process can be reduced
to a regenerative process.  Using for the approximation an Erlang distribution
function leads to a semi-Markov process.  As an example, let us consider the case of
a two-element series structure ( E1, E2) and assume that the repair times are
arbitrary, with densities g ( )1 x  and g ( )2 x , and the failure-free times have densities

f ( )1 1
2 1x x e x= −λ λ ,                 x > =0 0 01, ( ) , f (6.73)

and

f ( )2 2
2x e x= −λ λ ,                  x > =0 0 02, ( ) . f . (6.74)

Equation (6.73) is the density of the sum of two exponentially distributed random
time intervals with density λ λ

1
1e x− .  Under these assumptions, the two-element

series structure corresponds to a 1-out-of-2 standby redundancy ( ), 'E E1 1  with con-
stant failure rate λ1 and repair only at the failure of both elements E E1 1and ' , in
series with an element ( )E2  with constant failure rate λ2.  Figure 6.6 gives the
equivalent reliability block diagram and the corresponding state transition diagram.
This diagram only visualizes the possible transitions.  Z0 and Z1'  are the system up
states,  Z1'  and Z2'  are supplementary states necessary for calculation.  For the
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1-out-of-2
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Figure 6.6    Equivalent reliability block diagram and state transition diagram for a two series
element system ( E1 and E2 ) with arbitrarily distributed repair times, constant failure rate for E2 ,
and Erlangian ( n = 2 ) distributed failure-free time for E1  (ideal failure detection & switch, repair
of E E1 1and ' only at the failure of both E E1 1and ' (state Z 1), no further failures at system down
Z Z Z1 2 2

, ,
'  down states (absorbing for reliability calculation), semi-Markov process)

semi-Markov transition probabilities Q ( )ij x  one obtains (Table 6.2, Fig. 6.6)

Q ( ) Q ( ) )' '
( )(01 11 1

0

1 2 1 21

1 2

1x x e e dy ey y
x

x= = = −− −
+

− +∫ λ λ λ λ
λ λ

λ λ ,

Q ( ) Q ( ) )' '
( )(02 1 2

2

1 2

1 1 2x x e x= = −
+

− +λ
λ λ

λ λ ,

Q ( ) Q ( ) g ( )’ ’20 21 2
0

x x y dy
x

= = ∫ ,

Q ( ) g ( )10 1
0

x y dy
x

= ∫ . (6.75)

From Eq. (6.75) it follows that (Tables 6.2 & A9.7, and Eq. (6.54) for PA AAS S= )

R ( ) ) )( ( ( )
S

t t tt t e e t e0 1 11 1 2 1 1 2= =+ +− − − +λ λλ λ λ λ , (6.76)

MTTFS0
2 1 2

1 2
2

= +
+

λ λ
λ λ( )

, (6.77)

P̃ A ( ) ˜ ( ) ˜ ( )
( g̃ ( ))]

[ ( g̃ ( ))] g̃ ( )
,S ss s

s s

s s s0
1 2 2 1

1 2 2
2

1
2

1

1

1
= + = + + − +

+ + − −
P P

 [    
00 01'

λ λ λ
λ λ λ

(6.78)

PA AAS S
MTTR MTTR

=
+ +

= 2

2 2 2 2 1 1λ λ
, (6.79)

IR ( ) .( ) ( )

S
MTTR MTTR

eθ λ θ
λ λ

λ λ θ
= +

+ +

− +2

2 2
1

2 2 1 1

1 2
(6.80)
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Table 6.5    Results for a repairable system without redundancy (elements E1, ..., En  in series),
ideal failure detection & switch, no further failures at system down

              Quantity                      Expression           Remarks, assumptions

1. Reliability function
( R ( )S t0 )

                       R ( )i
i

n
t

=
∏

1

Independent elements (up to system
failure), R ( ) , , ...,i i n0 1 1= =  

2. Mean time to system
failure  ( MTTFS0)

                    R ( )S t dt0
0

∞

∫
R ( ) ( )i St e R t ei St t= =−

→
−λ λ

 0

and   MTTFS S0 1= / λ  with
λ λ λS n= + … +1

3. System failure rate
up to system failure
( λS t( ))

                      λi
i

n

t( )
=
∑

1

Independent elements
(up to system failure)

4. Asymptotic &
steady-state value of
the point availability
& average availability
( PA AAS S= )

a)   
1

1

1

1

1+
≈ −

=

=∑
∑

λ
µ

λ
µ

i

i

i

i

i

n
i

n *

 b)  
+

≈ −∑

=
∑ =

 1

1
1

1
1

λ

λ

i i
i

n i

MTTR

i
i

n
MTTR

c)  
1

1 22 2 1 1+ +λ λMTTR MTTR /

At system down, no further failures can
occur:

a) Constant failure & repair rates
λ µi i&  for element Ei
( , , )i n= …1  (Fig. 6.5)

b) Constant failure rate λi  and
arbitrary repair rate µ i x( ) with
MTTR i =  mean time to  repair for
element  Ei    ( , , )i n= …1

c) 2-element series structure with failure
rates λ λ1

2 x x/ ( )1 1+  for E1 and λ 2  for
E 2 , arbitrary repair rates (Fig. 6.6)

5. Asymptotic & steady-
state value of the inter-
val reliability  (IR ( ))S θ

                  PA eS
S−λ θ Each element has constant failure    rate

λ i ,  λ λ λS n= + … +1

* Supplementary results:   For totally independent elements (n repair crews and possible failures also at system
down) it holds that (Table 6.9) PAS i i i i i i= + ≈ −Π Σ( / ( / ) ) /1 1 1λ µ λ µ .

The interval reliability IR ( , )S t t0 + θ  can be obtained from

IR ( , ) P ( )R ( ) P ( )R ( )' 'S S St t t t0 00 0 01 1+ = +θ θ θ ,

with R ( ) ,'
( )

S e1
1 2θ λ λ θ= − +  and R ( )S0 θ  per Eq. (6.76) with θ instead of t.

Important results for repairable series structures are summarized in Table 6.5.
Asymptotic results for arbitrary failure and repair rates are investigated e. g. in [2.34
(1975)] yielding AA PAS S i

n
i i i

n
i iMTTR MTTF MTTR MTTF= = +∑ ≈ ∑= =1 1

1 1
/ ( ) )/ /               1 -         for

the asymptotic & steady-state value of the point and average availability (Point 4 of
Table 6.5).  AA PAS S i

n
i iMTTR MTTF= = + =∑1 1

1
/ ( )/      follows also in a way similar to

the development of Eq. (4.6).
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E1

E2

1-out-of-2

Figure 6.7   1-out-of-2 redundancy reliability block diagram  (for ideal failure detection and switch)

6.4  1-out-of-2 Redundancy  (Warm, one Repair Crew)

The 1-out-of-2 redundancy, also known as 1-out-of-2: G, is the simplest redundant
structure arising in practical applications.  It consists of two elements E1 and E2,
one of which is in the operating state and the other in reserve, when not under repair
or waiting for repair.  When a failure occurs, one element is repaired while the other
continues operation. The system is down when an element fails while the other one
is being repaired (assumption (6.2) is thus here automatically satisfied).  Assuming
ideal failure detection and switching, the reliability block diagram is a parallel
connec-tion of elements E1 and E2, see Fig. 6.7.

Investigations are based on assumptions (6.1) - (6.7).  This implies, in particular,,
that repair of a redundant element begins at failure occurrence and is performed
without interruption of operation at system level.  Distribution functions of repair
and failure-free times are generalized step by step, beginning with exponential, up to
the case in which the process involved has only one regeneration state.  Influence of
preventive maintenance, switching, incomplete coverage, common cause failures are
considered in Section 6.8, travel time in Example 6.7 (pp. 203-204) and Fig. A7.12.

6.4.1 1-out-of-2 Redundancy with Constant Failure and
Repair Rates

Because of the constant failure and repair rates, the time behavior of the 1-out-of-2
redundancy can be described by a time-homogeneous Markov process.  The number
of states is 3 if elements E1 and E2 are identical (Figs. 6.8 or A7.4a) and 5 if they
are different (Figs. 6.9 or A7.4b, see also the footnote on p. 487);  the diagrams of
transition probabilities in ( , ]t t t+δ  are in Figs. 6.8 and 6.9, or A7.4, respectively.

Let us consider the case of identical elements E1 and E2 (see Example 6.6 for
different elements) and assume as distribution function of the failure-free time

F( )x e x= − −1 λ ,                    x > =0 0 0, ( ) , F (6.81)

in the operating state and

F ( )r
xx e r= − −1 λ ,                 x r> =0 0 0, ( ) , F (6.82)

in the reserve state.  This includes active (parallel) redundancy for λ λr = , warm re-
dundancy for λ λr < , and standby redundancy for λr ≡ 0.  Repair times are assumed
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Z0 Z1 Z2

a)

1 – (λ + λr) δt 1 – (λ + µ) δt 1 – µ δt

(λ + λr) δt λ δt

µ δtµ δt                 

Z0 Z1 Z2

b)

1

(λ+λ  ) δ t
          r

µ δt

λ δt

1 – (λ + λr) δt 1 – (λ + µ) δt

   ρ ρ λ λ ρ ρ ρ ρ λ ρ λ ρ ρ λ λ ρ ρ λ ρ λ ρµ µ µ µ01 0 10 21 2 12 1 01 0 10 12 1 2 1= = + = = = = = + = = + = = = + =r r, , , , , , ,

Figure 6.8   Diagrams of the transition probabilities in ( , ]t t t+ δ  for a repairable 1-out-of-2 warm
redundancy with two identical elements, constant failure and repair rates ( , )λ λ µ, r , ideal failure
detection & switch, one repair crew  ( Z 2   down state, arbitrary t, δ t ↓0, Markov process (see foot-
note on p. 497))   a) For the point availability;  b) For the reliability function ( Z 2  absorbing state)

to be independent of failure-free times and distributed according to

G( )x e x= − −1 µ ,                    x > =0 0 0, ( ) . G (6.83)

Refinements are in Examples 6.6 (different elements) and 6.7 (travel time). For
more general situations (particular load sharing, more repair crews, failure and / or
repair rates changing at a state transition, etc.), birth and death processes (Appendix
A7.5.5) can often be used.  For all these cases, investigations are generally perfor-
med using the method of differential equations (Table 6.2 and Appendix A7.5.3.1).
Figure 6.8 gives the diagram of transition probabilities in ( , ]t t t+ δ  for the point
availability (Fig. 6.8a) and the reliability function (Fig. 6.8b), respectively.

Considering the memoryless property of exponential distributions (Eq. (A6.87)),
the system behavior at times t and t t+δ  can be described by following difference
equations for the state probabilities P ( ) Pr{ }i it tZ≡ process in at  , i = 0 1 2, ,  (Fig. 6.8a)

P ( ) P ( ) ( ( ) ) P ( )0 0 11t t t t t tr+ = − + +δ λ λ δ µδ
P ( ) P ( ) ( ( ) ) P ( ) ( ) P ( )1 1 0 21t t t t t t t tr+ = − + + + +δ λ µ δ λ λ δ µδ
P ( ) P ( ) ( ) P ( )2 2 11t t t t t t+ = − +δ µδ λδ .

For δt ↓ 0, it follows that

P
.

( ) ( )P ( ) P ( )0 0 1t t tr= − + +λ λ µ

P
.

( ) ( )P ( ) ( )P ( ) P ( )1 1 0 2t t t tr= − + + + +λ µ λ λ µ

P
.

( ) P ( ) P ( )2 2 1t t t= − +µ λ . (6.84)

The system of differential equations (6.84) can also be obtained directly from Table
6.2 and Fig. 6.8a.  Its solution leads to the state probabilities P ( )i t , i = 0 1 2, , .
Assuming as initial conditions at t = 0, P ( )0 0 1=  and P ( ) P ( )1 20 0 0= = , the above
state probabilities are identical to the transition probabilities P ( )0i t , i = 0 1 2, , , i. e.,
P ( ) P ( )00 0t t≡ , P ( ) P ( )01 1t t≡ , and P ( ) P ( )02 2t t≡ .  The point availability PA ( )S t0
is then given by (see Table 6.2 for notation)

PA ( ) P ( ) P ( )S t t t0 00 01= + . (6.85)

PA ( )S t1  or PA ( )S t2  could have been determined for suitable initial conditions.
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From Eq. (6.85) it follows for the Laplace transform of PA ( )S t0  that

P̃ A ( ) ˜ ( ) P̃ ( )
(( ) )) ( )( )

[( )( ) ( )]S s s s
s s s

s s s s
r

r
0 00 01

2
= =+

+ + + + +
+ + + + + +

P  ,  
 

 

µ λ µ λ λ
λ λ λ µ µ µ

(6.86)

and thus for t → ∞   (Table A9.7)

lim PA ( ) ,( )

( ) ( )

( )

t

r

r

r
S St PA P P

→∞
= = = ≈+

+ +
+ + +

−
+

0 0 1
2

2 21   
µ µ λ λ

λ λ λ µ µ
λ λ λ

µ (6.87)

with Pi it t j it t= =
→∞ →∞
lim limP ( ) P ( ), i j, , ,= 0 1 2 (Eq. (A7.129)).  If PA ( )S St PA0 =  for t ≥ 0 ,

then PA AAS S=  is also the point & average availability in steady-state.  Obviously,
P PAS2 1= − .  Investigation of PA ( )S t0  for λ λr =  leads to (Eq. (6.86), Tab. A9.7)

PA
with

,

S0   

    )

( ) ( ) ,/ ( )

, ( / ) / ( / ) ( /

t PA a e a e

a

S
a t a t a a a a= + − −

= − + −+ + ≈ − +−

2 2
2 1 1 2 2 1

2

1 2

1 2 1 3 2 2 1

λ

µ λ µ µ λ µ λ µ µ λ µ

and PAS  per Eq. (6.87).  Using a a1 2
2 22 2= + + µ λµ λ , it follows that PA ( ) .S 0 0 1=

Furthermore, d dS t tPA ( ) /0 0 =  at t =  0 , yielding PA ( )S t0 1=   for some t , )+  and
a1 2, → −   µ  for λ → 0.  From these results, and considering λ µ<< , following ap-
proximation can be used for practical applications ( ),e e ea t a t t a a1 2 1 2

2≈ ≈ − ≈µ µ 

PA   (6.88)       .                      S0,  PA (0) = 1              S S S
t tt PA PA e0 01( ) ( ) ,

)≈ + − − +
>µ

Equation (6.88) is similar to Eq. (6.20);  it holds also for 0 ≤ ≤λ λr  and is
an important result in developing, with Eq. (6.94), approximate expressions
for large series-parallel systems, based on macro-structures (Table 6.10).

To calculate the reliability function it is necessary to consider that the 1-out-of-2
redundancy will operate failure free in ( , ]0 t  only if in this time interval the down
state at system level (state Z2) will not be visited.  To recognize if Z2 has been en-
tered before t it is sufficient to make Z2 absorbing (Fig. 6.8b).  In this case, if Z2 is
entered the process remains there indefinitely.  Thus, the probability of being in Z2
at t is the probability of having entered Z2  before the time t, i. e. the unreliability
1 − R ( )S t .  To avoid ambiguities, the state probabilities in Fig. 6.8b are marked by
an apostrophe (prime).  The procedure is similar to that for Eq. (6.84) and leads to

P ( ) ( )P ( ) P ( )' ' '
.

0 0 1t t tr= − + +λ λ µ

P ( ) ( )P ( ) ( ) P ( )' ' '
.

1 1 0t t tr= − + + +λ µ λ λ

P ( ) P ( )' '
.
2 1t t= λ , (6.89)

and to the corresponding state probabilities P ( )'
0 t , P ( )'

1 t , and P ( )'
2 t .  With the initial

_________________

+) More precisely, PA          S t t0 1 2 2( ) ≈ −λ  for t↓0 , using ex x x≈ + +1 22/   (further approximations are pos-
sible for particular values of λ µ, ; however, Eqs. (6.88) & (6.94) better agree for macro-structures).



6.4   1-out-of-2 Redundancy 199

conditions at t = 0, P ( )'
0 0 1=  and P ( ) P ( )' '

1 20 0 0= = , the state probabilities P ( )'
0 t , P ( )'

1 t
and P ( )'

2 t  are identical to the transition probabilities P ( ) P ( )' '
00 0t t≡ , P ( ) P ( )' '

01 1t t≡
and P ( ) P ( )' '

02 2t t≡ .  The reliability function is then given by (Table 6.2 for notation)

R ( ) P ( ) P ( )' 'S t t t0 00 01= + . (6.90)

Equations (6.89) &  (6.90) yield following Laplace transform for R ( )S t0

R̃ ( ) ,( ) ( )

( )( )S s
s

s s s
r

r
0 =

+ + + +
+ + + +

λ µ λ λ
λ λ λ µ (6.91)

from which the mean time to failure ( MTTFS S0 0 0=R̃ ( ) , Eq. (2.61)) follows as

MTTFS
r

r r
0

2
=

+ +
+

≈
+

λ λ µ
λ λ λ

µ
λ λ λ( ) ( )

. (6.92)

Investigation of R ( )S t0  for λ λr =  leads to (Eq. (6.91), Table A9.7)

        ) ,

with   
.  

R ( ) ( ) (/

,
[( ) / ] (( ) / )

S
r t r tt r e r e r r

r

0 2 1 2 1

1 2

1 2

2 23 2 3 2 2

= − −

= − + +− + −λ µ λ µ λ

For λ µ<< , it follows that r1 ≈ −µ  and r2 0≈ , yielding

R ( )S
rt e t

0 2≈  .  
+)

(6.93)

Using 1 1 2− ≈ −ε ε /  for 2 3 1 1 8 32
2 2r = − + − − +( ) ( / ( ) )λ µ λ λ µ  leads to r2 2 32≈ − +λ λ µ/ ( ) .

R ( )S t0  can thus be approximated by a decreasing exponential function with time
constant MTTFS 0

23 2≈ +( ) / .λ µ λ + )   Considering λ µ<< , extension to a warm re-
dundancy 0 ≤ ≤λ λr  leads to

R ( ) ,
)

, ( ) ,
( ) ( )

.S tt e S t
S

r

r

r

SMTTF0 0 0 1
1

20
≈ − > = = =

+

+

+

+

++ ≈λ λ
λ λ λ

λ λ µ

λ λ λ
µ

R
 

 
S0   

 
 (6.94)

Similarly as for PA ( )S t0 , d dS t tR 0 0( ) / =  at t =0, and thus RS t0 1( )=  for some t . 
+)

Concluding the above investigations, results of Eqs. (6.88) & (6.94) show that:

For λ λ µ, r << , a repairable 1-out-of-2 warm redundancy with constant
failure & repair rates λ λ µ, ,r , and one repair crew, behaves approximately
like a one-item structure with constant failure rate λ λ λ λ µS r≈ +( ) /  and
repair rate µ µS ≈ ; result on which the macro structures method (Tab. 6.10)
can be based  (µ µS ≈ 2  for two repair crews (Tab. 6.9)).

__________________

+)  More precisely, R           PA   S St t t tr r0 01 2 11 2
2 2 2( ) / ( )≈ − ≈ − ≈λ  for t ↓0, using ex x x≈ + +1 22/  .

++) This result can be extended to an arbitrary repair rate, using MTTFS0  per Eq. (6.108).



200 6   Reliability and Availability of Repairable Systems

Using Eq. (6.291), the system mean up time MUTS  follows as (Example 6.29)

MUT
PA

f

P P

P
MTTFS S

S

udS

r

r

r

r

= = =+ + +

+
=

+ +
+

≈<0 1

1

2

0λ
µ µ λ λ

λµ λ λ
µ λ λ
λ λ λ

  .
( )

( ) ( )
(6.95)

Considering that the return from the down state Z 2  is to the up state Z1  (Fig. 6.8 a),
it holds MUT MTTFS S= 1 (Example 6.29, p. 279);  furthermore, only one repair crew
leads to MDT MTTRS = =1/µ , yielding PA MUT M UT M DTS S S S= +/ ( ) as for Eq. (6.87).

Because of the memoryless property of the time-homogeneous Markov process,
the interval reliability follows directly from the transition probabilities P ( )ij t  and
the reliability functions R ( )Si t   (Table 6.2).  In particular, P ( )0 0 1=  yields

IR ( , ) P ( )R ( ) P ( )R ( )S S St t t t0 00 0 01 1+ = +θ θ θ , (6.96)

with P ( )00 t , P ( )01 t  as in Eq. (6.85). The asymptotic & steady-state value follows as

IR ( ) R ( ) R ( ) R ( )
R ( ) ( )R ( )

( ) ( )S S S SP P S r S

r
θ θ θ θµ θ µ λ λ θ

λ λ λ µ µ
= + = ≈+ +

+ + +0 0 1 1 0
2

2

0 1 .

Further results for a 1-out-of-2 redundancy are in Sections 6.8.3 (imperfect
switching), 6.8.4 (incomplete coverage), and 6.8.7 (common cause failures).

To compare the effectiveness of calculation methods, let us now express the
reliability function, point availability, and interval reliability using the method of
integral equations (Appendix A7.5.3.2).  Equation (A7.102) and Fig. 6.8a yield

Q ( ) Pr{ } Pr{ } ( )
01 01 011 1 1x x x e e ex x xr r= ≤ = − > = − = −− − − +τ τ λ λ λ λ ,

Q ( ) Pr{ } ( )( )
10 10 12 10

0
1x x e e dy ey y

x
x= ≤ ∩ > = = −− −

+
− +∫τ τ τ µ µ λ µ

λ µ
λ µ ,

Q ( ) Pr{ } ( )( )
12 12 10 12

0
1x x e e dy ey y

x
x= ≤ ∩ > = = −− −

+
− +∫τ τ τ λ λ µ λ

λ µ
λ µ ,

Q ( ) Pr{ }21 21 1x x e x= ≤ = − −τ µ .

From Table 6.2 it follows then that

R ( ) ( ) R ( )( ) ( )
S

t
r

x
S

t
t e e t x dxr r0 1

0
= + + −− + − +∫λ λ λ λλ λ ,

R ( ) R ( )( ) ( )
S

t x
S

t
t e e t x dx1 0

0
= + −− + − +∫λ µ λ µµ  , (6.97)

for the reliability functions R ( )S t0  and R ( )S t1 , as well as

P ( ) P ( ) ,( ) ( )( )00 10
0

t te e x dxr rt x
t

r= − + ++ −+ −∫λ λ λ λλ λ    P ( ) P ( ) ,20 10
0

t te x dxx
t

= − −∫µ µ

P ( ) P ( ) P ( ) ,( ) ( )
10 00

0
20

0
t t te x dx e x dxx

t
x

t
= − + − +− + −∫ ∫µ λλ µ λ µ
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Table 6.6   Reliability function R ( )S t0 , point availability PAS t0( ) , mean time to failure MTTFS0 ,
and steady-state point & average availability PA AAS S=  & interval reliability IR ( )S θ  for a repairable
1-out-of-2 redundancy with two identical elements, constant failure & repair rates λ λ µ, ,r  ,  ideal
failure detection & switch, one repair crew (Markov process, approximations valid for ( ) )λ λ µ+ <<r

Standby ( λr ≡ 0 ) Warm ( λ λr < ) Active (λ λr = )

R ( )S t0
* ≈

−
+e
tλ

λ µ

2

2 ≈
− +

+ +e
r

r

tλ λ λ
λ λ µ
( )

2 ≈
−

+e
t2

3

2λ
λ µ

PAS t0 ( ) * ≈ + − −PA PA t
S S e( )1 µ ≈ + − −PA PA t

S S e( )1 µ ≈ + − −PA PA t
S S e( )1 µ

MTTFS0
* 2

2 2

λ µ

λ

µ

λ

+
≈  

2λ λ µ

λ λ λ

µ

λ λ λ

+ +

+
≈

+
r

r r( ) ( )

3

2 22 2

λ µ

λ

µ

λ

+
≈

PA AAS = S
**

µ λ µ

λ λ µ µ

( )

( )

+

+ + 2

≈ −1 2( / )λ µ

µ λ λ µ

λ λ λ µ µ

( )

( ) ( )

+ +

+ + +
r

r
2

≈ − +1 2λ λ λ µ( ) /r

µ λ µ

λ λ µ µ

( )

( )

2

2 2

+

+ +

≈ −1 2 2( / )λ µ

IR ( )S θ ** ≈ RS0( )θ ≈ RS0( )θ ≈ RS0( )θ

* new at t = 0 ;  ** asymptotic & steady-state value (for practical applications, convergence of PAS0 ( )t  to PAS
and of IRS0 ( , )t t + θ  to IRS ( )θ  is good after t MTTR≈ =10 10/ µ , see also p. 198)

Supplementary results:   See Example 6.6 for two different elements and Table 6.9 for two different elements
and two repair crews (active redundancy);  assuming in Fig. 6.8a Z Z2 0→  with µg
instead of Z Z2 1→  with µ  yields PA AAS S g= −≈    1 2 2λ µµ/  (active redundancy).

and

P ( ) P ( ) ,( ) ( )
01 11

0

t tr e x dxr x
t

= + −− +∫ λ λ λ λ         P ( ) P ( ) ,21 11
0

t te x dxx
t

= − −∫µ µ

P ( ) P ( ) P ( ) ,( ) ( )( )
11 01

0
21

0

t t te e x dx e x dxt x
t

x
t

= − + − ++ − + −− +∫ ∫λ µ λ µµ λλ µ         (6.98)

for the transition probabilities.  The solution of the system of integral equations
(6.97) yields, in particular, Eq. (6.91) and the solution of the systems of integral
equations (6.98) yields, in particular, Eq. (6.86).  Equations (6.97) and (6.98) show
how the use of integral equations leads to a quicker solution than differential
equations, for the case of arbitrary initial conditions at t = 0.

Table 6.6 summarizes the main results of Section 6.4.1.  It gives approximate
expressions valid for λ µ<<  and distinguishes between the cases of active ( λ λr = ),
warm ( λ λr < ), and standby redundancy ( λr ≡ 0).
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From Table 6.6 and Eqs. (6.15) &  (6.20), the improvement in MTTFS 0  brought
by a repairable redundancy 1-out-of-2 (with ideal failure detection & switch, and
repair on line of a redundant element) is given by

 active standby

MTTF

MTTF

S out of

S one item

0 1 2

0

− − − ≈     

µ λ
λ

µ
λ

/

/

2

1 2

2
=             

µ λ
λ

µ
λ

/

/

2

1
=

(for the nonrepairable case, the gain were 1.5 & 2, respectively, Table 6.6 with µ=0).
Investigation of the unavailability in steady-state 1 − PAS  leads to

 active standby

1

1

1 2−

−
− − − ≈

PA

PA

S

S one item

out of 2
2

2( / )

/

λ µ
λ µ

λ
µ

=
( / )

/

λ µ
λ µ

λ
µ

2
=

Above results can be extended to cover situations in which failure or repair rates
are modified at state changes, e.  g. because of load sharing, differences within
elements, repair priority, or other.  Such requirements can be introduced in the dia-
gram of transition probabilities in ( , ]t t t+δ , see for instance Figs. 2.12, A7.4 - A7.6.

Example 6.6
Give the mean time to failure MTTFS0  and the asymptotic & steady-state value of the point
availability PAS for a 1-out-of-2 active redundancy with two different elements E E1 2& , constant
failure and repair rates λ λ µ µ1 2 1 2, , ,  (one repair crew, ideal failure detection & switch).
Solution
Figure 6.9 gives the reliability block diagram and the diagram of transition probabilities in
( , ]t t t+ δ . MTTFS0  and PAS  can be calculated from appropriate systems of algebraic equations.
According to Table 6.2 and considering Fig. 6.9 it follows for the mean time to failure that

MTTF MTTF MTTFS S S0 1 1 2 2 1 21= + + +( ) / ( )λ λ λ λ 

MTTF MTTFS S1 1 0 2 11= + +( ) / ( )µ λ µ ,    MTTF MTTFS S2 2 0 1 21= + +( ) / ( )µ λ µ ,

which leads to

MTTFS0
1 2 2 1 1 1 2 2 2 1

1 2 1 2 1 2

=
+ + + + + +

+ + +

( ) ( ) ( ) ( )

( )
,

λ µ λ µ λ λ µ λ λ µ

λ λ λ λ µ µ
(6.99)

and in particular for λ µ1 1<<  and λ µ2 2<< ,

MTTFS0 1 2 1 2 1 2≈ +µ µ λ λ µ µ/ (( )) . (6.100)

As for Eq. (6.93), the reliability function can be expressed by

R ( )   .
( )

( )S t e tS S
SMTTF0

1 1 1

0

1 2 1 2

1 2
1 2

1 2
≈ − = ≈

+
= +λ λ

λ λ µ µ

µ µ
λ λ µ µ  with  (6.101)

λ λ λ1 2= =  &  µ µ µ1 2= =  yield results as per Table 6.6 (for active redundancy).  For the
asymptotic & steady-state value of the point availability and average availability,
PA AA P P PS S= = + +0 1 2  holds with P0 , P1, and P2  as solution of (Table 6.2)
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λ1 δt

µ1δt

µ1δt

µ2 δt

µ2 δt

λ2 δt

λ1 δt
1 – ( λ1 + µ2) δt

λ2 δt

1 – ( λ2 + µ1) δt

Z1
Z3

Z4
Z2

Z0

1 – µ1δt

1 – µ2 δt

1 – ( λ1 + λ2) δt

ρ01 = ρ24 = λ1;  ρ02 = ρ13 = λ2;  ρ10 = ρ32 = µ1;  ρ20 = ρ41 = µ2
(for RS(t) set ρ32 = ρ41 = 0)

1-out-of-2
active

(E1 ≠ E2 )

λ1, µ1

λ2, µ2

E1

E2

Figure 6.9  Reliability block diagram and diagram of transition probabilities in ( , ]t t t+ δ  for a
repairable 1-out-of-2 active redundancy with two different elements, const. failure &  repair rates
( , , , ),λ λ µ µ1 2 1 2  ideal failure detection & switch, one repair crew  ( Z Z3 4&  down states (absorbing
for reliability calculation), arbitrary t, δ t ↓ 0, Markov process)

( )λ λ µ µ1 2 0 1 1 2 2+ = +P P P ,    ( )λ µ λ µ2 1 1 1 0 2 4+ = +P P P ,

( )λ µ λ µ1 2 2 2 0 1 3+ = +P P P ,    µ λ1 3 2 1P P= ,    µ λ2 4 1 2P P= .

One (arbitrarily chosen) of the five equations must be dropped and replaced by
P P P P P0 1 2 3 4 1+ + + + = .   The solution yields P0  through P4 , from which

PA AA P P PS S= = + + =

+
+ + + +

+ + + + +

0 1 2
1 2 1

2
2
2

1 2 1 2

1 2 1 2 1 2 1 2 1 2

1

1
λ λ µ µ λ λ µ µ

µ µ µ µ λ λ λ λ µ µ

[ ( ) ( )]

[ ( ) ( )]

, (6.102)

yielding, for λ µ1 1<<  and λ µ2 2<< ,

PA AAS S= ≈ − + = − +1 11 2

1
2

2
2 1

2
2
2 1

1

2

2

1

2

2

1

λ λ

µ µ
µ µ

λ
µ

λ
µ

µ
µ

µ
µ( ) . ( ).  . (6.103)

λ λ λ1 2= =  & µ µ µ1 2= =  yield results as per Table 6.6 (for active redundancy).

Example 6.7
As a refinement of the case investigated with Fig. 6.8 assume that to the repair time, distributed
according to G ( ) ,x e R x= − −1 µ  a wait time for travel distributed according to W( )x e W x= − −1 µ

has to be added to the repair time for a failure occurred when both units are up (one operating,
the other in reserve state).  Repairs for failures occurred during the travel time or a repair do not
need to wait for a further travel time.  As before, the system has only one repair crew.
Investigate the mean time to failure MTTFS0  and the steady sate availability PA AAS S= .
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Solution
The system behavior can be described by a 5 states Markov process (graph). MTTFS0   follows as
solution of (Table 6.2, M MTTFi S i=  ) :  M M r0 1 1= + +/ ( ),λ λ   ; M MW W1 11= + +( ) / ( ),'µ λ µ
M MR R1 01' ( ) / ( ) ,= + +µ λ µ  yielding

MTTFS
R W

R W

R W

r r
0

1 1 1 1
=

+ +
+ + +

+
+

+ ≈
λ λ

λ µ λ µ
λ λ λ µ µ

µ µ
λ λ λ

( )( )

( )( )

/ ( / / )

( )
.   

 (6.103)

PA AAS S=  follows as solution of (Table 6.2):
µ λW P P2 1= ,  ( ) ,'λ λ µ+ =r P PR0 1  ( ) ( ) ,λ µ λ λ+ +=W P Pr1 0
( ) ,' 'λ µ µ µ+ +=R W RP P P1 1 2 P P P P P0 1 1 2 2 1+ + + + =' ' , yielding

λ

1

λ + λ
r λ

µ
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Z0 Z1
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µ
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µ
R
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r

r

R W R W

R W R W R

R

R

W

R

W

     =

  

 

                                               (6.104)
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For µ W =∞  and µ µR = , Eqs. (6.103) & (6.104) yield Eqs. (6.92) & (6.87); µ W = 0  yields results
for the nonrepairable case;  µ µ µW R= =  yields MTTFS r0 2≈ +µ λ λ λ/ ( ), PA rS ≈ − +1 3 2λ λ λ µ( ) / .

Supplementary results:  Addition of a travel time to each repair has no practical significance.
Generalization of distribution functions for repair and travel time lead
to a 4 states semi-regenerative process with 3 reg. states (Fig. A7.12).

6.4.2  1-out-of-2 Redundancy with Constant Failure and
Arbitrary Repair Rates

Consider now a 1-out-of-2 warm redundancy with 2 identical elements E E E1 2= = ,
failure-free times distributed according to Eqs. (6.81) & (6.82), and repair time with
mean MTTR < ∞ , distributed according to an arbitrary distribution function G( )x
with G( )0 0=  and density g( )x .  The time behavior of this system can be described
by a process with states Z0, Z1 , and Z2.  Because of the arbitrary repair rate, only
states Z0 and Z1  are regeneration states.  These states constitute a semi-Markov
process embedded in the original semi-regenerative process (Fig. A.7.11).  The
semi-Markov transition probabilities Q ( )ij x  are given by Eq. (A7.182).  Setting
these quantities in the equations of Table 6.2 (SMP), by considering Q ( ) Q ( )0 01x x=
and Q ( ) Q ( ) Q' ( )1 10 12x x x= +  as per Eq. (A7.183), it follows for the reliability
functions R ( )Si t

R ( ) ( ) R ( )( ) ( )
S

t
r

x
S

t
t e e t x dxr r0 1

0
= + + −− + − +∫λ λ λ λλ λ ,

R ( ) ( G(t)) ( ) R ( ) ,S
t x

S

t
t e g x e t x dx1 0

0

1= − + −− −∫λ λ (6.105)
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and for the transition probabilities P ( )ij t  of the embedded semi-Markov process

P ( ) ( ) P ( )( ) ( )
00 10

0
t te e x dxr rt

r
x

t

= + + −− + − +∫λ λ λ λλ λ ,

P ( ) g( ) P ( ) g( ) ( )P ( ) ,10 00
0

10
0

1t t tx e x dx x e x dxx
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x
t

= − + − −− −∫ ∫λ λ

P ( ) ( G( )) g( ) P ( ) g( ) ( )P ( ) ,11 01
0

11
0

1 1t t t te x e x dx x e x dxt x
t

x
t

= − + − + − −− − −∫ ∫λ λ λ

P ( ) ( ) P ( ) .( )
01 11

0
t tr

x
t

e x dxr= + −− +∫ λ λ λ λ
                                                       (6.106)

The solution of Eqs. (6.105) leads to

R̃ ( )
( ) ( g̃( ))

( )[( ( ) ( g̃( ))]
,S s

s s

s s s
r

r
0

1

1
= + + + − +

+ + + − +
λ λ λ λ

λ λ λ λ
(6.107)

and, considering MTTFS S0 0 0= R̃ ( )  (Eq. (2.61)),

MTTFS
r

r r
0

1

1

1

1
=

+ + −
+ − + −

≈λ λ λ λ
λ λ λ λ λ λ λ

( ) ( g̃( ))

( ) ( g̃( )) ( ) ( g̃( ))
. (6.108)

The Laplace transform of the point availability PA ( ) P ( ) P ( )S t t t0 00 01= +  follows
as solution of Eqs. (6.106)

P̃ A ( ) P̃ ( ) P̃ ( ) ,( )[ g̃( ) g̃( )] ( )( g̃( ))

( )[( )( g̃( )) g̃( )]
S s s s

s s s s

s s s s s
r

r
0 00 01

1 1

1
= =+

+ − + + + + − +
+ + + − + +

λ λ λ λ λ
λ λ λ λ

  

(6.109)

and leads to the asymptotic & steady-state point and average availability PA AAS S=

(considering 
s → 0
lim ( g̃( ))1 − =s s MTTR.  as per Eq. (6.54))

PA AAS S
r

r

r

rMTTR MTTR
= = + + −

+ +
= + −

+ +
λ λ λ λ λ
λ λ λ λ λ

λ λ λ
λ λ λ λ λ

g̃( ) ( )( g̃( ))

( ) g̃( )

( g̃( ))

( ) g̃( )

1 1 . (6.110)

where

MTTR x x dx x dx= = −
∞ ∞
∫ ∫g ( ) ( G( )) ,
0 0

1 (6.111)

and g̃( )λ  is the Laplace transform of the density g( )x  for s = λ , see Examples 6.8 &
6.9 for the approximation of g̃( )λ .  Calculation of the interval reliability is difficult
because state Z1 is regenerative only at its occurrence point (Fig. A7.11).  However,
for λ MTTR << 1, g̃( )λ →1 and the asymptotic value of the state probability for Z1
( P

t
t1 01=

→ ∞
lim P ( )) becomes very small with respect to that for Z0 ( P

t
t0 00=

→ ∞
lim P ( )).

For the asymptotic & steady-state value of the interval reliability it holds then that

IR ( ) R ( ) R ( ) / ( ) g̃( )g̃( )S S S rP MTTRθ θ θ λ λ λ λ λλ λ≈ = + +0 0 0  ( ). (6.112)

In practical applications, λ MTTR < 0 01.  and Eq. (6.112) yields IR ( ) R ( )S Sθ θ≈ 0 .
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Example 6.8
Let the density g( )x  of the repair time τ ' of a system with constant failure rate λ > 0 be
continuous and assume furthermore that λ τ λE[ ]' = <<MTTR 1 and λ τVar[ '] < MTTR .
Investigate the quantity g̃ ( )λ  for λ → 0.

Solution
For λ →0, λ MTTR <<1 & λ τVar[ '] < MTTR , the 3 first terms of the series expansion of e t−λ

lead to

g̃( ) g( ) g( )(
( )

) E[ ] E[ ] /' 'λ λ
λ

λ τ τ λλ= ≈ − + = − +−
∞ ∞

∫ ∫t e dt t t
t

dtt

0 0

1
2

1 2
2

2 2 .

From this, follows the approximate expression (Eq. (A6.45))

g̃ ( ) ( Var[ ']) /λ λ λ τ≈ − + +1 22 2MTTR MTTR . (6.113)

In many practical applications,

g̃ ( )λ λ≈ −1 MTTR (6.114)

is a sufficiently good approximation, however not in calculating steady-state availability
(Eq. (6.114) would give for Eq. (6.110) PAS = 1, thus Eq. (6.113) has to be used).

Supplementary results: g( )x e x= −µ µ
 leads to  g̃( ) / ( ) / ( / )λ µ λ µ λ µ λ µ= + +≈ −1 2  which

agree with Eq. (6.113), considering     and MTTR = =1 1 2/ Var[ ' ] / .µ τ µ

Example 6.9
In a 1-out-of-2 warm redundancy with identical elements E1 and E2  let the failure rates λ in the
operating state and λr  in the reserve state be constant.  For the repair time let us assume that
it is distributed according to G( ) '( )x e x= − − −1 µ ψ  for x > ψ  and G( )t = 0  for x ≤ ψ , with
MTTR ≡ >1 /µ ψ .  Assuming λ ψ << 1, investigate the influence of ψ on the mean time to

failure MTTRS 0  and on the asymptotic & steady-state value of the point availability PAS .

Solution
With

g̃( ) '
'

'

'

'
( )'( )λ µ

µ
λ µ

µ
λ µ

λµ ψ λ λ ψ

ψ
ψ= =

+ +
−− − −

∞
−∫ ≈e dt et t  1

and considering MTTR t g t dt t e dtt= = = +
∞

− −
∞

∫ ∫ ≡( ) ' '
'( ) ,

0

1 1
µ ψ µ µ

µ ψ
ψ

  i. e., µ µ µψ' / ( )= −1

and thus g̃ ( ) ( ) ( ( ))/λ µ λψ λ µ λψ≈ − + −1 1 , Eq. (6.108) (left-hand equality) and Eq. (6.110)
lead to the approximate expressions

MTTFS
r

r
0 0

2 1
,

( )

( )
ψ

λ λ µ λ ψ

λ λ λ> ≈
+ + −

+
and

PAS
r

r

r

r
,

( ( ))

( )( ( )) ( )

( ) ( ))

( ( ))
.ψ

µ λ λ µ λ ψ

λ λ λ µ λψ µ λ ψ

λ λ λ µψ

µ λ λ µ λ ψ> ≈
+ + −

+ + − + −
≈ −

+ −

+ + −0

1

1 1
1

1

12

On the other hand, ψ = 0 leads to 1 − = +g̃( ) / ( )λ λ λ µ  and thus (Eqs. (6.92) and (6.87))

MTTF r

r

PA r

r
S S0 0 0

2

2, ,( )

( )

( ) ( )
.

ψ ψ

λ λ µ

λ λ λ

µ λ λ µ

λ µ λ λ µ= ==
+ +

+
=

+ +

+ + +
and         

Assuming µ >> λ, λr yields (considering λψ λ µ< <</ 1)

MTTF

MTTF

PA

PA

S

S

S

S

r0 0

0 0

0

0

1 1 1
,

,

,

,

ψ

ψ

ψ

ψ
λ ψ λ ψ

λ λ
µ

>

=

>

=
≈ ≈− +

+
≈   and        . (6.115)
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Equation (6.115) allows the conclusion to be made that:

For λ MTTR << 1, the shape of the distribution function of the repair time has
(as long as MTTR is unchanged) a small influence on results at system level,
in particular on the mean time to failure MTTFS0  and on the asymptotic &
steady-state value of the point availability PAS  of a 1-out-of-2 redundancy.

Above conclusion can often be extended to more complex structures.  Example 6.10
shows a numerical comparison for the case of a 1-out-of-2 parallel redundancy.

Example 6.10
A 1-out-of-2 parallel redundancy with identical elements E1 and E2  has failure rate λ = − −10 2 1h
and lognormally distributed repair times with mean MTTR = 2 4. h  and variance 0 6 2. h  (Eqs.
(A6.112), (A6.113) with λ σ= 0.438  h = 0.315−1, ).  Compute the mean time to failure MTTFS0
and the asymptotic & steady-state point and average availability PAS  with approximate
expressions:  (i)  g̃( )λ  from Eq. (6.114);  (ii)  g̃( )λ  from Eq. (6.113);  (iii)  g( ) ' ' ( )t e t= − −µ µ ψ ,
t ≥ ψ , ψ = 1 3. h , 1 1 1/ .'µ = h , 1 2 4/ .µ = h  (Eq. (4.2));  (iv)  g( )t e t= −µ µ  and 1 2 4/ .µ = h .

Solution
(i)  With g̃( ) .λ = 0 976  it follows (Eq. (6.108)) that MTTFS0 2183≈ h  and (Eq. (6.110))
PAS = 1.   (ii)  With g̃( ) .λ ≈ 0 9763 it follows (Eq. (6.108)) that MTTFS0 2211≈ h  and (Eq.

(6.110)) PAS ≈ 0 9994. .  (iii) Example 6.9 yields MTTFS0 1 3 2206, .ψ = ≈h h  and PAS , .ψ = ≈1 3 h
0 9995. .  (iv)  From Eqs. (6.92) and (6.87) it follows that MTTFS0 2233≈ h  and PAS ≈ 0 9989. .

Supplementary results: Numerical computation with the lognormal distribution ( .MTTR = 2 4h,
Var [ ] . )'τ = 0 6 2h  yields MTTFS0 ≈ 2186h  and PAS ≈ 0 9995. .  For a
failure rate λ= − −10 3 1h ,  results were:  209'333h, 1;  209'611h, 0.999997;
209'563h, 0.999995;  209'833, 0.999989;  209'513h, 0.999994.

6.4.3   1-out-of-2 Redundancy with Constant Failure Rate
only in the Reserve State, Arbitrary Repair Rates

Generalization of repair and failure rates for a 1-out-of-2 redundancy leads to a
nonregenerative stochastic process.  However, in many practical applications it can
be assumed that the failure rate in reserve state is constant.  If this holds, and the
1-out-of-2 redundancy has only one repair crew, then the process involved is
regenerative with exactly one regeneration state [6.5 (1975)] .

To see this, consider a 1-out-of-2 warm redundancy, satisfying assumptions
(6.1) - (6.7), with failure-free times distributed according to F( )x  in operating state
and V( )x e r x= − −1 λ  in reserve state, and repair times distributed according to G( )x
for repair of failures in operating state and W( )x  for repair of failures in reserve
state ( F V G( ) ( ) ( ) W( ) ,0 0 0 0 0= = = =  densities f (x), v g w    xfor ,( ), ( ), ( )x x x → → ∞0
means and variances < ).∞   Figure 6.10a shows a possible time schedule and
Fig.  6.10b  gives  the  state  transition  diagram  of  the  involved  stochastic  process.
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Figure 6.10   Repairable 1-out-of-2 warm redundancy with constant failure rate λr  in reserve state,
arbitrary failure rate in operating state, arbitrary repair rates, ideal failure detection & switch, one
repair crew (  & Z Z3 4  down states, absorbing for rel. calculation):  a) Possible time schedule (repair
times exaggerated);  b) State transition diagram to visualize state transitions (Z1 regeneration state)

States Z Z Z0 1 2, ,  are up states.  Z1  is the only regeneration state ( Z Z Z Z0 2 3 4, , ,  are
not regeneration states).  At its occurrence, a failure-free time of the operating ele-
ment and a repair time for a failure in the operating state are started (Fig. 6.10a).
The occurrence of Z1  is a regeneration point with respect to Z1  and in this appli-
cation a renewal point for the whole process.  It brings the process to a situation of
total independence from the previous development (the process restarts anew).
From this, it is sufficient to investigate the behavior between two consecutive regen-
eration points, and from t = 0 up to the first regeneration point (Appendix A7.4).

Let us consider first the case in which the regeneration state Z1  is entered at
t = 0 ( SRP0), and let SRP1 be the first regeneration point after t = 0.  The reliability
function R ( ) ] |S t t tZ1 0 01= =Pr{up in ( , entered at }     is given by

R ( ) F( ) ( )R ( )S S

t
t t x t x dx1 1 1

0
1= − + −∫ u , (6.116)

with
1 01− = > =F( ) Pr{ }t Zt tfailure -free  time of the operating  element  entered at  +)

and

u system  not failed in (0,

 in (  entered at   

1 1 1 1
0

1 1 0

( )R ( ) Pr{( ]

, ] ) }.

x t x dx S S

up S Z

S RP RP

t

RP

t

t t

− = ≤ ∩

∩ =

∫

__________________
+)  Z t1 0 entered at  =  implies operating element new at t = 0, see Figs. 6.10a and 6.11.
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Figure 6.11    Possible time schedules for the 1-out-of-2 redundancy according to Fig. 6.10 for the
cases in which state Z1  (a, b) or state Z 0  with both elements new (c, d) is entered at t = 0

The first regeneration point SRP1 occurs at the time x (within the interval (x, x+dx])
only if at this time the operating element fails (for the first time) and the reserve
element is ready to enter the operating state.  u ( )1 x , defined as (Example A7.2)

u ( ) lim Pr{(

} ,
1

0
1

1

1

0

x
x

x S x x x

Z
x

RP

t

= < ≤ + ∩

=
↓δ δ

δ system not  failed in (0, ]) 
  

  

 entered at  

follows from (Fig. 6.11a)

u ( ) f( )PA ( )1 x x xd= , (6.117)

with

PA ( ) Pr{ }d x up x Z t= =reserve element  at time  entered at 1 0

= − −∫ h ( )' ( )
dud

x y
x

y e dyrλ

0

(6.118)

and (with ∗ as convolution (Eq. (A6.75)))

h ( ) g( ) g( ) v( ) w( ) g( ) v( ) w( ) v( ) w( )'dud y y y y y y y y y y= + ∗ ∗ + ∗ ∗ ∗ ∗ + … .
(6.119)

The point availability PA Pr{  entered at up at S t t tZ1 1 0( ) }= =  is given by

PA ( ) F( ) u ( )PA ( ) u ( )PA ( )S S

t

S

t

t t x t x dx x t x dx1 1 1
0

2 1
0

1= − + − + −∫ ∫ , (6.120)

with 1 − F( )t  as for Eq. (6.116),
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u ( )PA ( ) Pr{(

}
1 1 1

0
1

0

x t x dx S t S

Z

S RP

t

RP

t t

− = ≤ ∩

∩ =

∫ system not failed in (0, ] 

)

  

up at   entered at    ,

  

1

and

u ( )PA ( ) Pr{( ]

}
2 1 1 1

0 0

x t x dx S t S

Z

S RP RP

t

t t

− = ≤ ∩

∩ =

∫ system failed in (0,

 )

   

up at   entered at    .1

u ( )2 x , defined as (Example A7.2)

u ( ) lim Pr{(2
0

1
1

x
x

x S x x x
x

RP= < ≤ + ∩
↓δ δ

δ system failed in (0, ])

                                                                              entered at  Z t1 0= } ,

follows from (Fig. 6.11b)

u ( ) g( )F( ) h ( )w( ) (F( ) F( ))'2
0

x x x y x y x y dyudd

x

= + − −∫ (6.121)

with

h ( ) g( ) v( ) g( ) v( ) w( ) v( )'udd y y y y y y y= ∗ + ∗ ∗ ∗ + … . (6.122)

One recognizes that u ( ) u ( )1 2x x+  is the density of the interval times S SRPi RPi+ −1   
separating consecutive regeneration points SRPi i( =0 1, , ... , SRP0 0≡ ), i. e. separating
consecutive renewal points of the embedded renewal process.

Consider now the case in which at t = 0 the state Z0 with both elements new is
entered.  The reliability function R ( ) ] |S t t Z with both elements new0 00= Pr{up in ( ,       
is entered at t =0} is given by

R ( ) F( ) u ( )R ( )S S

t
t t x t x dx0 3 1

0

1= − + −∫ , (6.123)

with (Fig. 6.11c)

u ( ) lim Pr{(3
0

1
1

x
x

x S x x x
x

RP= < ≤ + ∩
↓δ δ

δ system not  failed in (0, ])

| } f ( )PA ( ) ,      is entered at Z with both elements new t x x0 00= =     (6.124)

where

PA ( ) Pr{ . }0 0x up x Z with both elem new t= =reserve element  at time      is entered at 0

            = +− − −∫e y e dyr rx
duu

x y
x

λ λh ( )' ( )

0
, (6.125)

with

h ( ) v( ) w( ) v( ) w( ) v( ) w( )'
duu y y y y y y y= ∗ + ∗ ∗ ∗ + … . (6.126)
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The point availability PA Pr{      is enteredup at   S t t Z with both elements new0 0( ) |=
at t =0} is given by

PA ( ) F( ) u ( ) PA ( ) u ( ) PA ( )S S

t

S

t

t t x t x dx x t x dx0 3 1
0

4 1
0

1= − + − + −∫ ∫ , (6.127)

with (Fig. 6.11d)

u ( ) lim Pr{(  4
0

1
1

x
x

x S x x x Z with both
x

RP= < ≤ + ∩
↓δ δ

δ  system failed in (0, ] )   0

   } h ( )w( ) (F( ) F( ))'        is entered at elements new t y x y x y dyudu

x

= = − −∫0
0

  (6.128)

and

h ( ) v( ) v( ) w( ) v( ) v( ) w( ) v( ) w( ) v( )'
udu y y y y y y y y y y= + ∗ ∗ + ∗ ∗ ∗ ∗ +… .    (6.129)

One recognizes that u ( ) u ( )3 4x x+  is the density of the time from t = 0, when the
state Z0  is entered with both elements new, to the first regeneration point SRP1,
i. e. to the first renewal point of the embedded renewal process with density
u ( ) u ( )1 2x x+  for the time intervals separating consecutive renewal points.

Equations (6.116), (6.120), (6.123), (6.127) can be solved using Laplace trans-
forms (LT).  However, analytical difficulties can arise when calculating LT for
F( )x , G( )x , W( )x , u ( )1 x , u ( )2 x , u ( )3 x , u ( )4 x  or at the inversion of final
equations.  Easier is the calculation of the mean time to failure MTTFS S0 0 0=

~
R ( )

(Eqs. (2.59), (2.61)) and of the asymptotic & steady-state point and average
availability PA AA s sS S S Ss s

s s= = =
→ →0 00 1lim ( ) lim ( )

~ ~
PA PA , for which the following

expressions can be found using LT (see Eqs. (6.123) & (6.116) for MTTFS0  and
Eqs. (6.120) or (6.127) for PAS , and consider (Eq. (6.54)) 

s
s s MTTF

→
− =

0
1lim ( ( )) / )f  

~

MTTF MTTFS

x dx

x dx
0 1

3
0

1
0

1

   , [ ] = +

∞

∞

∫

∫−

u ( )

u ( )

(6.130)

and

lim PA ( ) lim PA ( ) ,

(u ( ) u ( ))
t

S
t

S S St t PA AA
MTTF

x x x dx
→∞ →∞

= = = =
+

∞

∫
0 1

1 2
0

 (6.131)

with

MTTF x dx= −
∞

∫ ( F( ))1
0

. (6.132)

Eq. (6.131) considers that PAS  exists (p. 478-79) and that u ( ) u ( )1 2x x+  is the
density of a random variable with finite mean (and thus         u u1 2

0
1

∞
∫ + =( ( ) ( ))x x dx );

same for u ( ) u ( )3 4x x+ .
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It must be pointed out that R ( )S t0  and PA ( )S t0  apply only to the case in which
at t = 0 both elements are new (Fig. 6.11 c & d).  Situations with arbitrary initial
conditions at t = 0 (e. g. entering state Z0 with the operating element not new or
entering state Z2) are not considered here because their computation requires the
knowledge of the time spent in the operating state before t = 0.

The model investigated in this section has as special cases that of Section 6.4.2
( F( )x e x= − −1 λ , W( ) G( )x x= ) and the 1-out-of-2 standby redundancy with identi-
cal elements and arbitrarily distributed failure-free and repair times (Example 6.11).

Table 6.7 summarizes the results for the 1-out-of-2 redundancy with arbitrary
repair rates, and failure rates as general as possible within a regenerative process.

Example 6.11

Using the results of Section 6.4.3, give the expressions for the reliability function R tS0( )  and the
point availability PA ( )S t0  for a 1-out-of-2 standby redundancy with 2 identical elements,
failure-free time distributed according to F( )x , with density f( )x , and repair time distributed
according to G( )x with density g( )x .

Solution

For a standby redundancy, u ( ) f( )G( )1 x x x= , u ( ) g( ) F( )2 x x x= , u ( ) f( )3 x x= , and u ( )4 0x ≡
(Eqs. (6.117), (6.121), (6.124), and (6.128)).  From this, the expressions for R ( )S t0 , R ( )S t1 ,
PA ( )S t0 , and PA ( )S t1  can be given.  The Laplace transforms of R ( )S t0  and PA ( )S t0  are

R̃ ( )
f̃( ) f̃( ) ( f̃( ))

( ũ ( ))
,

S s
s

s

s s

s s0
1

1 1

1
=

−
+

−
−

(6.133)

PÃ ( )
f̃( ) f̃( ) ( f̃( ))

[ (ũ ( ) ũ ( ))]
, 

S s
s

s

s s

s s s0
1 2

1 1

1
=

−
+

−
− +

(6.134)

with

ũ ( ) f( ) G( )1
0

s t t e dts t= −
∞
∫      and      ũ ( ) g( ) F( ) .2

0
s t t e dts t= −

∞
∫

The mean time to failure MTTFS0  follows from Eq. (6.133) as MTTFS S0 0 0=
~
R ( ) , or directly

from Eq. (6.130),

MTTF MTTF
MTTF

x x dx
S0

0
1

= +
−

∞
∫

   

f ( ) G( )

. (6.135)

The asymptotic & steady-state value of the point and average availability PA AAS S=  follows
from Eq. (6.134) as PA AA s PA sS S s S= =

→ 0
0lim ( )˜   or directly form Eq. (6.131),

PA AA
MTTF

x d x x
S S= = ∞

∫ (F( ) G( ))

.

0

(6.136)
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Table 6.7   Mean time to failure MTTFS0 , steady-state point & average availability PA AAS S= , and
steady-state interval reliability IR ( )S θ  for a repairable 1-out-of-2 redundancy with two identical
elements, arbitrary repair rates, failure rates as general as possible within a regenerative process,
ideal failure detection & switch, one repair crew  (regenerative process as per Fig. 6.10)

Standby ( )λ r ≡ 0 Warm ( λ r < λ ) Active ( λ λr = )

Distribution
of the  OS F( )x               1 − −

e
xλ F( )x 1 − −

e
xλ

failure-free
times  RS - 1 − −

e rxλ
1 − −

e rxλ
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e
xλ
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t E
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availability
( PA AAS S= ) *

MTTF

x d F x x( ( )G( ))
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∫
λ λ λ

λ λ λ λ λ
+ −

+ +
r

r MTTR g

( g̃( ))

( ) ˜( )

1
MTTF
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( ( ) ( ))1 2
0

+

∞

∫
2

2

−
+

g̃( )

g̃( )

λ
λ λMTTR

Interval reliability
( IR ( )S θ ) *

≈ R ( )S0 θ ≈ R ( )S0 θ ≈ R ( )S0 θ ≈ R ( )S0 θ

u1(x), u2(x), u3(x) as per Eqs. (6.117), (6.121), (6.124);   OS = operating state;   RS = reserve state
* asymptotic & steady-state value

6.5     k-out-of-n Redundancy  (Warm, Identical Elements,
one Repair Crew)

A k-out-of-n redundancy, also known as k-out-of-n: G, consists of n often identical
elements, of which k are necessary for the required function and n - k are in reserve
state, when not under repair or waiting for repair..  Assuming ideal failure detection
and switching, the reliability block diagram is as given in Fig. 6.12.  Investigations
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Figure 6.12   k-out-of-n redundancy reliability block diagram (ideal failure detection & switch)

in this Section assume identical elements E En1 , ,… , only one repair crew, and no
further failures at system down (failures during repair at system level are not consid-
ered, as per assumption (6.2)).  Section 6.5.1 considers the case of warm redundancy
with constant failure rate λ in the operation state and λ λr <  in the reserve state as
well as constant repair rate µ.  This case includes active redundancy ( λ λr = ) and
standby redundancy ( λr ≡ 0).  An extension to cover other situations in which the
failure rate is modified at state changes (e. g. for load sharing) is possible using
equations for the birth and death process developed in Appendix A7.5.5 (see also
pp. 61-64).  Section 6.5.2 investigates a k-out-of-n active redundancy with constant
failure rate and arbitrary repair rate.  The influence of series elements (including
switching elements) is considered in Sections 6.6 - 6.7.  Imperfect switching,
incomplete coverage, and common cause failures are investigated in Section 6.8.

6.5.1  k-out-of-n Redundancy with Const. Failure & Repair Rates

Assuming constant failure and repair rates, the time behavior of the k-out-of-n
redundancy with identical elements can be investigated using a birth and death
process (Appendix A7.5.5).  Figure 6.13 gives the corresponding diagram of
transition probabilities in ( , ]t t t+ δ .  From Fig. 6.13 and Table 6.2, the following
system of differential equations can be established for the state probabilities P ( )j t =
Pr{ }in state  at Z j t  of a k-out-of-n warm redundancy with one repair crew and no
further failures at system down (constant failure rates λ λ  & r  and repair rate µ)

P ( ) P ( ) P ( )
.

0 0 0 1t t t= − +ν µ
P ( ) P ( ) ( ) P ( ) P ( ),         
.

 , ,j j j j j j j n kt t t t= − + +− − + = … −ν ν µ µ1 1 1 1 ,

P ( ) P ( ) P ( )
.

n k n k n k n kt t t− + − − − += −1 1ν µ , (6.137)
with

ν λ λj r j n kk n k j= + − − = … −( ) ,          , ,  0 . (6.138)
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Z1 Zn-k Zn-k+1Z2Z0

1 – µ δt1 – ( ν1 + µ) δt1 – ν0 δt

ν0 δt

µ δt

1 – ( ν2 + µ) δt 1 – ( νn-k + µ) δt

ν1 δt ν2 δt νn-k–1 δt νn-k δt

µ δt µ δt µ δt µ δt

Figure 6.13  Diagram of transition probabilities in ( , ]t t t+δ  for a repairable k-out-of-n warm redun-
dancy with n identical elements, constant failure and repair rates  ( , )λ λ µ, r , ideal failure detection
& switch, one repair crew, no further failures at system down  (  Zn k− +1  down state (absorbing for
reliability calculation), arbitrary t, δ t↓ 0, Markov process (birth and death))

For the investigation of more general situations (arbitrary load sharing, more
than one repair crew, or other cases in which failure and / or repair rates change at a
state transition) one can use the birth and death process introduced in Appendix
A7.5.5.  The solution of the system (6.137) -  (6.138) with the initial conditions at
t = 0, P ( )i 0 1=  and P ( )j 0 0=  for j i≠ , yields the point availability (see Table 6.2
for notations)

PA ( ) P ( )Si ijt t
j

n k

=
=

−

∑
0

, (6.139)

with P ( ) P ( )ij jt t≡  from Eq. (6.137) with P ( )i 0 1= .  In many practical applications,
only the asymptotic &  steady-state value of the point availability PAS  is required.
This can be obtained by setting P ( )

.
j t = 0 and P ( )j jt P=  ( , , )j n k= … − +0 1  in

Eq. (6.137).  The solution yields (Eqs. (A7.134) & (A7.151))

PA P P P P

PA

S j n k j j
j

i

i

S

n k n k n k
n k

j

n k
i

i

i

n k
= = − =

=
+ + + +

− + =
…

=

− + − − −
− −

=

−
−∑

∑
=

− +
=1 1 0

1
0 0 1

1
0 1

0

0 1

0

1 0 1,      ,     

i.e.,

with    π
π

π
π π

µ ν µ ν ν µ ν ν µ
µ

ν ν

µ
 ,  ,

... ...
nn k n k n k

n k n k

n k
n k− + − − −

− − −

−
− ++ + + + +

≈ −
1

0 0 1
1

0 1 0

0
1

1
ν µ ν ν µ ν ν µ ν ν

ν ν
µ... ... ...

...
         . 

(6.140)

PAS  is also the asymptotic & steady-state value of the average availability AAS .
As shown in Example A7.11 (Eq. (A7.157), for 2 ν µj <  it holds that

P Pj i j n k
i j

n k

>
= +

− +
∑ = … −

1

1

0,      , ,    .

From this, the following bounds on PAS  can be used in many practical applications
(assuming 2νj < µ,  j = 0, …, n-k) to obtain an approximate expression for PAS

P PA P Pj S i j i n k
j

i

j

i

= =
∑ ∑≤ < + = … −

0 0
0,      , ,    . (6.141)
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The reliability function follows from Table 6.2 and Fig. 6.13

R ( ) R ( )S
t x

S

t
t e e t x dx0 0 1

0

0 0= + −− −∫ν νν

R ( ) [ R ( ) R ( )]( ) ( )

, , ,
Sj

t
j Sj Sj

x
t

j n k

t e t x t x e dxj j= + − + −− +
+ −

− +

= … − −
∫ν µ ν µν µ1 1
0 1 1

  ,  

R ( ) R ( )( ) ( )
Sn k

t
Sn k

x
t

t e t x e dxn k n k−
− +

− −
− += + −− −∫ν µ ν µµ 1

0

, (6.142)

with νi as in Eq. (6.138).  Similar results hold for the mean time to failure

MTTF MTTFS S0 1 01= + / ν

MTTF MTTF MTTFSj j Sj Sj j j n k= + + ++ − = … − −( ) / ( )   ,       , ,1 1 1 1 1ν µ ν µ ,

MTTF MTTFSn k Sn k n k− − − −= + +( ) / ( )1 1µ ν µ . (6.143)

The solution of Eqs. (6.142) and (6.143), shows that R ( )Si t  and MTTFSi depend
on n k−  only.  This leads for n k− =1 to

R̃ ( )
( ) ( )

,S s
s

s s s
01

0 1

0 1
=

+ + +
+ + +

ν ν µ
ν ν µ

      MTTFS 0
0 1

0 1 0 1
1
=

+ +
≈

ν ν µ
ν ν

µ
ν ν

, (6.144)

and for n k− = 2 to

R̃ ( )
( ) ( ) ( )

( ) ( ) ( )
,S s

s s

s s s s
02

0 1 2 1 0

0 1 2 0 1 2 1 0
=

+ + + + + + −
+ + + + + + + −

ν ν µ ν µ ν ν µ
ν ν µ ν µ ν ν ν ν ν µ

MTTFS0
2 0 1 0 0 1

0 1 2

2

0 1 2
2

=
+ + + + +

≈
ν ν ν µ µ ν µ ν ν

ν ν ν
µ

ν ν ν
( ) ( ) . (6.145)

This property holds for the point availability PAS  as well, see Table 6.8 for results.
Because of the constant failure rate, the interval reliability follows directly from

IR ( , ) P ( )R ( ),         , , ,Si ij Sj i n kt t t
j

n k

+ =
=

−
∑ = … −θ θ

0
0  (6.146)

with P ( )ij t  as in Eq. (6.139) and R ( )S i θ  from Eq. (6.142) with t = θ .  The
asymptotic & steady-state value is then given by

IR ( ) R ( )S j SjP
j

n k

θ θ=
=

−
∑

0
, (6.147)

with Pj  from Eq. (6.140).  Table 6.8 summarizes the main results for the k-out-of-n
warm redundancy with identical elements, constant failure & repair rates, one repair
crew, and no further failures at system down.
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Table 6.8    Mean time to failure MTTFS0 , steady-state point & average availability PA AAS S= ,
and steady-state interval reliability IR ( )S θ  for a repairable k-out-of-n warm redundancy with
n identical elements, constant failure & repair rates λ λ µ, , r  ( λ λr <  for reserve state, λr ≡ 0 for
standby), ideal failure detection and switch, one repair crew, and no further failures at system down
(Markov process (birth and death) as per Fig. 6.13)

Mean time to failure  ( MTTFS0 )
Asymptotic & steady-state point and average

availability  ( PA AAS S= )

Interval
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(IR ( ))S θ

gen.
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( )( )r r ≈ R ( )S0 θ

n k−
arbitrary

≈
…

−

−

µ
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ν λ λi rk n k i= + − −( ) , i n k= … −0, , ;  λ λ, r = failure rates (λ λ λν νr n k
n kactive red n k= → ⇒ … −−

− +=  . ! / ( ) ! ;0
1 1

λr ≡ →0 s dby redundancy kn k
n ktan  ( ) ) ;⇒ … =−

− +ν ν λ0
1   µ =  repair rate ( /MTTRS = 1 µ  because of only

one repair crew, see the discussion to Eqs. (6.148) & (6.149) for n repair crews);  R ( )S0 θ from Eq. (6.142), see
[6.5 (1985)] for exact solutions

Assuming for comparative investigations with Table 6.8, totally independent
elements (i. e. n repair crews) and using PAS  for PA AAS S= , following approximate
expressions can be found for active redundancy (see Table 6.9 or e. g. [6.27, 6.43])

 

 
  repair crews,  active redundancy,  / << 1   (6.148)
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and for standby redundancy (see e. g. [6.43] )

MTTF
n k

k

PA
k

n k

S

n k

n k

S

n k
n

0 1

1
1

1

 

(6.149)

        

 
 

 repair crews,  standby,  redundancy,  / << 1
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− +
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( / )

( ) !
.
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λ µ
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As for Eq. (A7.189), PAS  in Eq. (6.148) and Eq. (6.149) can be expressed as
PAS S SMTTR MTTF≈ −1 /  with MTTRS n k= − +1 1/ ( ) µ  and MTTF MTTFS S= 0;
the same holds for the results of Tables 6.6 & 6.8, considerng MTTRS = 1 /µ
because of only one repair crew.  Comparing results of Eq. (6.148) with those of
Table 6.8 for λ λr = , one recognizes that MTTF MTTFS IE S MS

n k0 0/ ( )!≈ −  and
PA PA n kSIE SMS

/ / ( )!≈ − +1 1 , with PA PAS S= −1 ; where IE stands for independent
elements (Eq. (6.148) or Table 6.9) and MS for macro-structure (Tables 6.8 or 6.10).

6.5.2    k-out-of-n Redundancy with Constant Failure  and
Arbitrary Repair Rates

Generalization of the repair rate, by conserving constant failure rates ( , )λ λr , only
one repair crew, and no further failure at system down, leads to stochastic processes
with 2 1( )n k− +  states, of which n k− +1 regeneration & n k−  not regeneration states
( Z Z0 1,  & Z2  in Fig. A7.11 for n k− =1, Z Z Z0 1 2, , '   &   Z Z2 3,  in Fig. A7.13 for n k− =2).

As an example let us consider a 2-out-of-3 active redundancy, i. e. a majority
redundancy, with 3 identical elements, failure rate λ and repair time distributed
according to G( )x  with G( )0 0=  and density g( )x .  Because of the assumption of
no further failure at system down, results of Section 6.4.2 for the 1-out-of-2 warm
redundancy can be used for n k− =1 by setting k λ  instead of λ  (see Example A7.12
and also Tab. 6.8 row n k− =1).  For the 2-out-of-3 active redundancy one has to set
2 λ  instead of λ ( )k =2  and λ  instead of λr  (active redundancy) in Eqs. (6.108) &
(6.110) to obtain Eqs. (6.152) & (6.155).  However, in order to show the utility of
time schedules, an alternative derivation is given below.

Using Fig. 6.14a, the following integral equation can be established for the
reliability function R ( )S t0  (see Table 6.2 for notations)

R ( ) ( G( ))

g( ) R ( )) .

( )

( )
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t x t x

t

x y x
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yt

t e e e t x dx

e y x e t y dx dy

0
3 3 2
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3 2
0

00

3 1

3

= + − −

+ − −

− − − −

− − −

∫

∫∫

λ λ λ

λ λ

λ

λ
                                   

     (6.150)

The Laplace transform of R ( )S t0  follows as
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a) Calculation of R ( )S t0 b) Calculation of PA ( )S t0

Figure 6.14  Possible time schedule for a repairable 2-out-of-3 active redundancy with 3 identical
elements, constant failure rate, arbitrary repair rate, ideal failure detection & switch, one repair
crew,  no further failures at system down  (repair times exaggerated)
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and (considering MTTFS S0 0 0= R̃ ( )) the mean time to failure as

MTTFS0
5 3 2

6 1 2
= −

−
g̃( )

( g̃( ))
.λ

λ λ
(6.152)

For the point availability, Fig. 6.14b yields
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Asymptotic & steady-state value of the point and average availability follows from

PA AA s sS S
s

S
MTTR

= = =
→

−
+

lim P ̃A ( )
g̃( )

g̃( )
,

0
0

3 2

2 2 6

λ
λ λ

(6.155)

by considering 
s→0
lim ( g̃( )) .1 − =s s MTTR  as per Eq. (6.54).  For the approximation of

g̃( ),2 λ  Eq. (6.113) must be used.  For the asymptotic & steady-state value of the
interval reliability, Eq. (6.112) can be used in most applications.  Generalization of
failure and repair rates leads to nonregenerative stochastic processes.



220 6   Reliability and Availability of Repairable Systems

6.6  Simple Series - Parallel Structures (one Repair Crew)

A series - parallel structure is an arbitrary combination of series and parallel models,
see Table 2.1 (rows 2 - 6) for some examples.  Such a structure is generally investig-
ated on a case-by-case basis using the methods of Sections 6.3 – 6.5.  If the time be-
havior can be described by a Markov or semi-Markov process, Table 6.2 can be
used to establish equations for the reliability function, point availability, and interval
reliability (inclusive mean time to failure and asymptotic & steady-state values).

As a first example, let us consider a repairable 1-out-of-2 active redundancy with
elements E E E1 2= =  in series with a switching element Eν (see Table 6.11a on
p. 248 for the case of a warm redundancy).  The failure rates λ and λν as well as the
repair rates µ and µν are constant (time independent).  The system has only one
repair crew, repair priority on Eν (a repair on E1 or E2  is stopped as soon as a
failure of Eν occurs, see Example 6.12 for the case of no priority), and no further
failures at system down (failures during a repair at system level are not considered).
Figure 6.15 gives the reliability block diagram and the diagram of transition
probabilities in ( , ]t t t+ δ .  The reliability function can be calculated using Table 6.2,
or directly by considering that for a series structure the reliability at system level is
still the product of the reliability of the elements

R ( ) R ( )S S
tt t e v0 0= −

1-out -of -2
 λ . (6.156)

Because of the term e t−λν , the Laplace transform of RS t0( ) follows directly from
the Laplace transform of the reliability function for the 1-out-of-2 parallel redund-
ancy RS0 1-out -of -2

 (Eq. (6.91) with λ λr = ), by replacing s  with s + λν (Table A9.7)
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( ) ( ) ( )

.S s
s

s s s
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v v v
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+ + + + + +
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The mean time to failure MTTFS0  follows from MTTFS S0 0 0= R̃ ( )
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v

v v v
0 2 2
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2
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=

+ +
+ + +

=
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≈
+

λ λ µ
λ λ λ λ µ λ λ λ λ λ µ λ λ µν ν ν( ) ( ) / ( ) /
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(6.157)

The last part of Eq. (6.157) clearly shows the effect of the series element Eν
(see Eq. (6.160) for a discussion).  The asymptotic & steady-state value of the point
and average availability PA AAS S=  is obtained as solution of following system of
algebraic equations (Fig. 6.15 and Table 6.2)
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v2 3 4 0 4 2
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+ + =
λ λ µ

µ µ λ
λ
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( ), .                (6.158)
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1-out-of-2 active
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ρ01  = ρ23  = λν ;  ρ02  = 2 λ ;  ρ10  = ρ32  = µν ;  ρ20   = ρ42   = µ ;  ρ24  = λ ;x

(for RS(t) set ρ10 = ρ32  = ρ42 = 0)

λν , µν

Eν

Z
   0

Z
   1

Z
   2

Z
   3

Z
   4

1 – µνδt

λνδt
µνδt

µ δt

λ δt 1 – µ δt
1 – (λ+λν+µ) δt

µ  δt

2 λ δt

1 – (2 λ+λν) δt

λνδt

µνδt

1 – µν δt

Figure 6.15  Reliability block diagram and diagram of transition probabilities in ( , ]t t t+ δ  for a
repairable 1-out-of-2 active redundancy with a series (switch) element Eν , E E E1 2= = , constant
failure and repair rates ( , , ),λ λ µ µν ν , ideal failure detection & switch, one repair crew, repair
priority on Eν , no further failures at system down  ( Z Z Z1 3 4, ,  down states (absorbing for reliability
calculation), arbitrary t , δ t ↓ 0, Markov process)

Note: The diagram of transition probabilities would have 8 states ( )2 3  for the case of totally inde-
pendent elements ( E E1 2≠ , 3 repair crews), 9 states for the case as in Fig. A7.6c, and 16 states
(p. 226) for E E1 2≠ , one repair crew and repair as per first-in first-out (see footnote on p. 487).

For the solution of the system given by Eq. (6.158), one (arbitrarily chosen)
equation must be dropped and replaced by P P P P P0 1 2 3 4 1+ + + + = .  The solution
yields P0  through P4 , from which (considering λ µi i<<  for the approximation)

PA AA P PS S
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/
.    (6.159)

As for the mean time to failure (Eq. (6.157)), the last part of Eq. (6.159) shows
the influence of the series element Eν.  This influence becomes negligible for

λ λ µν << 2 2 /
              

( λ µ µ λ µν ν<< =( / ) ( / ) ) .2 2   for  PA AASS
                  

(6.160)

For the asymptotic & steady-state value of the interval reliability it follows (Tab. 6.2)

IR ( ) R ( ) R ( ) . R ( )S S S S SP P PAθ θ θ θ= + ≈0 0 2 2 0 , (6.161)

Example 6.12
Give the reliability function and the asymptotic & steady-state value of the point and average
availability for a 1-out-of-2 active redundancy in series with a switching element, as in Fig. 6.15,
but without repair priority on the switching element.
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Figure 6.16   Reliability block diagram and state transition diagram for a repairable 2-out-of-3
majority redundancy with constant failure rates λ for E and λν  for Eν , arbitrary distributed
repair times, ideal failure detection & switch, one repair crew, no repair priority, no further failures
at system down  ( Z Z Z2 3 4, ,  down states (absorbing for reliability calculation), Z Z Z0 1 4, ,
constitute an embedded semi-Markov process)

Solution
The diagram of transition probabilities in ( , ]t t t+ δ  of Fig. 6.15 can be used by changing the
transition from state Z3 to state Z2  to one from Z3 to Z1 and  µ µν  in  .  The reliability function
is still given by Eq. (6.156), since states Z1, Z3, and Z4  are absorbing states for reliability
calculations.  For the asymptotic & steady-state value of the point and average availability
PA AAS S= , the system of algebraic equations (6.158) is modified to
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and the solution yields (considering P P1 4 1+ + =...  and λ µi i<<  for the approximation)
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Comparison of Eq. (6.159) with Eq. (6.162) shows the advantage ( / )≈ 2 2λλ µν  of
the repair priority on Eν on the availability PA AAS S=  (no change for MTTFS0 ).

As a second example let us consider a 2-out-of-3 majority redundancy (2-out-of-
3 active redundancy in series with a voter Eν) with arbitrary repair rate.
Assumptions (6.1) - (6.7) also hold here, in particular (6.2), i. e. no further failures at
system down.  The system has constant failure rates, λ for the three redundant
elements and λν  for the series element Eν, and repair time distributed according to
G( )x  with G( )0 0=  and density g( )x .  Figure 6.16 shows the corresponding
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reliability diagram and the state transition diagram. Z0  and Z1  are up states.  Z0 , Z1
and Z4 are regeneration states and constitute a semi-Markov process embedded in
the original process.  This property will be used for the investigations.  From Fig.
6.16 and Table 6.2 there follows for the semi-Markov transition probabilities
Q   Q  Q  Q Q Q01 10 04 40 121 134( ), ( ), ( ), ( ) , ( ), ( )x x x x x x   (similar as for Figs. A7.11 - A7.13)
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Q ( )121 x  is used to calculate the point availability.  It accounts for the process
returning from state Z2 to state Z1 and that Z2 is not a regeneration state
(probability for the transition Z Z Z1 2→ → 1, see also Fig. A7.11a), similarly for
Q ( )134 x .  Q' ( )12 x  and Q' ( )13 x  as given in Fig 6.16 are not semi-Markov transition
probabilities ( Z2 and Z3 are not regeneration states).  However,

Q ( ) Pr{ ( )} ( G(y)) ,'12 12 13 12 10 12
2

0
2 1x x e e dyy y

x
v= ≤ ∩ > ∩ > = −− −∫τ τ τ τ τ λ λ λ

Q ( ) Pr{ ( )} Q ( )' ' /13 13 12 13 10 13 12 2x x x v= ≤ ∩ > ∩ > =τ τ τ τ τ λ λ ,

yields an equivalent Q Q1 10 12 13( ) ( ) Q' ( ) Q' ( )x x x x= + +  useful for the calculation of the
reliability function.  Considering that Z0  and Z1  are up states and regeneration
states, as well as the above expressions, the following system of integral equations
can be established for the reliability functions R ( )S t0  & R ( ),S t1  as per Eq. (A7.172),
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(6.164)
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The system of equations (6.164) for R ( )S t0  & R ( )S t1  has a great intuitive appeal and
could have been written without the use of Qij x( ) .  Its solution yields, in particular,

R̃ ( )
g̃( )
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s s

s s s
v v

v v v
0

5 3 2

2 3 1 2
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(6.165)

and (considering MTTFS S0 0 0= R̃ ( ))

MTTFS
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R̃ ( )S s0  and MTTFS0  could have been obtained as for Eq. (6.157) by setting
s s= + λν in Eq (6.151).  For the point availability, calculation of the transition
probabilities P ( )ij t  with Table 6.2 (or Eq. (A7.169)) and Eq. (6.163) leads to
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From the two systems of integral equations (6.167) it follows the point availability
PA ( )S t0 = P ( )00 t +  P ( )01 t  and (using Laplace transform) the asymptotic & steady-
state value
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with MTTR as per Eq. (6.111).  For λν = 0, Eqs. (6.166) & (6.168) yield Eqs. (6.152)
& (6.155).  For the asymptotic & steady-state value of the interval reliability, the
following approximate expression can often be used for practical applications

IR ( ) . R ( )S S SPAθ θ≈ 0   ,
                                                                            

(6.169)

with PA AAS S=  per Eq. (6.168), see Example 6.13.

Example 6.13

(i) Give using Eqs. (6.166) and (6.168) the mean time to failure MTTFS0  and the asymptotic &

steady-state point and average availability PA AAS = S  for the case of a constant repair rate
µ λ λν>> , .  (ii) Compare for the case of constant repair rate the true value of the interval
reliability I R ( )S θ  with the approximate expression given by Eq. (6.169).

Solution

(i)  With G( )x e x= − −1 µ  it follows that g̃( ) / ( )2 2λ λ µ λ λ µ+ = + +v v  and thus from Eq. (6.166)
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and from Eq. (6.168)
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(Eq. (6.171) follows also from Eq. (6.162) by replacing 2λ λ λ λ µ µνwith   3 ,  1.  with 2 , and   with ) .
It can be noted that the influence of the series element Eν becomes negligible for

λ λ µν << 6 2 / .
                                                                                          

(6.172)

(ii)  With P ( )00 t  and P ( )01 t  from Eq. (6.167) it follows for the asymptotic & steady-state value
of the interval reliability (Table 6.2) that
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(6.173)

The approximate expression according to Eq. (6.169) yields
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0

i.e., practically the same result as per Eq. (6.173), considering R ( ) R ( )S S1 0θ θ<≈  .
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To give a better feeling for the mutual influence of the different parameters
involved, Figs. 6.17 and 6.18 compare the mean time to failure MTTFS0  and the
asymptotic & steady-state unavailability 1 − PAS  of some basic series -  parallel
structures.  The equations are taken from Table 6.10 which summarizes results of
Sections 6.2-6.6 for constant failure & repair rates.  Comparison with Figs. 2.8 & 2.9
(nonrepairable case) confirms that the most important gain is obtained by the first
step (structure b), and shows that the influence of series elements is much greater in
the repairable than in the nonrepairable case (p. 46).  Referring to the structures a),
b), and c) of Figs. 6.17 and 6.18 the following design rule can be formulated:

To approach the µ λ/ 2 1 MTTF gain given by the redundancy (p. 202),
the failure rate of the series element in a repairable 1-out-of-2 active
redundancy should not be greater than 1% (0.2% for µ λ/ 1 >  500)
of the failure rate of the redundant elements;  i. e.,

  λ λ λ λ µ λ2 10 01 0 002 12 1< <. .        / > 500. in general,  and  for (6.174)

6.7 Approximate Expressions for Large
Series - Parallel Structures + )

6.7.1 Introduction

Reliability and availability calculation of large series - parallel structures rapidly
becomes time-consuming, even if constant failure rate λi  and repair rate µi  is
assumed for each element Ei  of the reliability block diagram and only mean time to
failure MTTFS0  or steady-state availability PA AAS S=  is required.  This is because
of the large number of states involved, which for a reliability block diagram with n
elements can reach 1 1

11 0+ ∏∑ ∑ ≈= − += == <      k n i e nk n i

n
i
n

i
n! / . !!  by n different elements and

repair as per first-in first-out (see e. g. Notes to Figs. 6.15 & 6.20).  2 n states holds
for nonrepairable systems or for repairable system with totally independent elements
(Point 1 below).  Use of approximate expressions becomes thus important.  Besides
the assumption of one repair crew and no further failure at system down (Sections
6.2 - 6.6, partly 6.7 -  6.10), given below as Point 3, further assumptions yielding
reliability & availability approximate expressions are possible for constant failure
rate λ i and constant repair rate µ λi i>>  for each element Ei .  Here some examples:

 1. Totally independent elements (IE): If each element of the reliability block dia-
gram operates and is repaired independently from each other (active redundan-
cy, independent elements, one repair crew per element), series-parallel structures

 ____________
+) A broad literature deals with approximate expressions, mainly on limiting values for the reliability

function or for the steady-state availability, see e. g. [2.34, 6.3, 6.19, 6.43, A7.10, A7.26, A7.27].
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Figure 6.17   Comparison between the one-item structure and a 1-out-of-2 active redundancy with a
series element:  repairable, constant failure & repair rates ( , , )λ λ µ1 2 , ideal failure detection &
switch, one repair crew, repair priority on E2 , no further failure at system down  (Markov processes,
λ1 remains the same in both structures, Eqs. from Table 6.10;  on the right, MTTF MTTFS c S a0 0/  and
( )/ ( )1 1− −PA PASc Sa  with MTTFS c0  and 1− PASc  from Fig. 6.18;  see Fig. 2.8 for nonrepairable)
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Figure 6.18    Comparison between basic series - parallel structures:  repairable, active redundancy,
constant failure & repair rates ( , , , )λ λ λ µ1 2 3 , ideal failure detection & switch, one repair crew,
repair priority on E3, no further failure at system down  (Markov processes, λ1 and λ2  remain the
same in both structures;  equations from Table 6.10;  see Fig. 2.9 for the nonrepairable case)
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can be reduced to one-item structures, which are themselves successively
integrated into further series - parallel structures up to the system level.  To
each of the one-item structure obtained, the mean time to failure MTTFS0  and
steady-state availability PAS , calculated for the underlying series - parallel
structure, are used to compute an equivalent MTTRS from PA MTTFS S= /
( )MTTF MTTRS S+  using MTTFS MTTFS= 0 .  To simplify calculations, and con-
sidering comments to Eq. (6.94), constant failure rate λS SMTTF=1 0/  and con-
stant repair rate µS SMTTR=1/  are assumed for each of the one-item structures
obtained.  Table 6.9 (p. 232) summarizes basic series - parallel structures based
on totally independent elements (see Section 6.7.2 for a selected example). 

+)

 2. Macro-structures (MS):  A macro-structure is a series, parallel, or simple
series - parallel structure which is considered as a one-item structure for
calculations at higher levels, integrated into further macro-structures up to
system level [6.5 (1991)].  It satisfies Assumptions (6.1) - (6.7), in particular
one repair crew for each macro-structure and no further failures during a
repair at the macro-structure level.  The procedure is similar to that of point 1
above (see also the remarks to Eqs. (4.37) and (6.94)).  Table 6.10 (p. 233)
summarizes basic macro-structures useful for practical applications (see
Section 6.7.2 for a selected example). 

+)

 3. One repair crew and no further failures at system down (no FF): Assumptions
(6.3) & (6.2), valid for all models of Sections 6.2 - 6.7 (except Eqs. (6.148),
(6.149)) apply in many practical situations.  No further failures at system
down means that failures during a repair at system level are not considered.
This assumption has no influence on the reliability function at system level
and its influence on the availability is limited if λ<< µ  holds for each element.

 4. Cutting states:  Removing the states with more than k failures from the dia-
gram of transition probabilities in ( , ]t t t+ δ  (or the state transition diagram)
produces in general an important reduction of the state diagram.  The choice of
k (often k = 2 ) is based on the required precision.  An upper bound on the error
for the asymptotic & steady-state availability PA AAS S= ( based on the mapping
of states with k failures at system level in state Zk  of a birth & death process
and using Eq. (A7.157) (P Pk ii k

n> = +∑ 1   ) has been introduced in [2.50 (1992)].

 5. Clustering of states:  Grouping of elements in the reliability block diagram or
of states in the diagram of transition probabilities in ( , ]t t t+ δ  produces in
general an important reduction of the number of states in the state diagram.

Combination of the above methods is possible, see also Sections 6.8.9 & 6.9.7
and the footnote on p. 226 for further considerations.  However, as a basic rule,

series elements must be grouped before any analysis (2nd row of Table 6.10).

 ____________
+) Methods 1 & 2 apply for constant failure & repair rates for each element, yielding approximately

constant failure & repair rates ( , )λ µS S  for the reduced structure (Eqs. (6.88), (6.94), (6.48)).
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Figure 6.19   Basic reliability block diagram for a repairable uninterruptible electrical power supply

Considering that the steady-state probability for states with more than one failure
decreases rapidly as the number of failures increases (~ /λ µ for each failure, see e. g.
pp. 237 and 269 and the corresponding Figs. 6.20 and 6.34), all methods given
above yield good approximate expressions for MTTFS 0  and PAS  in practical
applications.  However, referring to the unavailability 1 − PAS , method 1 above can
deliver lower values, for instance a factor 2 with an order of magnitude ( / )λ µ 2  for a
1-out-of-2 active redundancy (compare Tables 6.9 & 6.10).  Analytical comparison
of the above methods is difficult, in general.  Numerical investigations show a close
convergence of the results given by the different methods, as illustrated for instance
in Section 6.7.2 (p. 237) for a practical example with low values for µ / λ .

6.7.2 Application to a Practical Example

To illustrate how methods 1 to 3 of Section 6.7.1 work, let us consider the
system with a reliability block diagram as in Fig. 6.19, and assume system new at
t = 0, active redundancy, constant failure rates λ λ1 3- , constant repair rates µ µ1 3- ,
λ µi i<< , repair priority E1, E3, E2 [6.5 (1988)].  Except for some series elements
(to be considered separately in a final step), the reliability block diagram of Fig. 6.19
describes an uninterruptible power supply (UPS) used for instance to buffer electrical
power network failures in computer systems ( E1 being the power network). 

+)

Although limited to 4 elements, the stochastic process describing the system of
Fig. 6.19 would contain up to 65 states if the assumption of no further failure at
system down were dropped (pp. 226, 235).  Assuming no further failure at system
down, the state space is reduced to 12 states (Fig. 6.20).  In the following, the mean
time to failure ( MTTFS0 ) and the asymptotic & steady-state point and average avail-
ability ( PA AAS S= ) of the system given by Fig. 6.19 is investigated using method 1
(Table 6.9), method 2 (Table 6.10), and method 3 (Table 6.2) of Section 6.7.1.  For a
numerical comparison, results are given on p. 237 (also for method 4 and for the
exact solution obtained by dropping the assumption of no further failure at system
down), showing that all methods used deliver good approximate expressions.
____________
+) A refinement to include the battery discharge has been investigated in [6.47 (2002)].
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Method 1 of Section 6.7.1 yields, using Table 6.9,
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From Eqs. (6.175) – (6.177) it follows that
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Method 2 of Section 6.7.1 yields, using Table 6.10,

λ1 , µ1

E1

2 2λ , µ

E2 3 3λ , µ

E3λ 2 , µ2

E2

System



232 6   Reliability and Availability of Repairable Systems

Table 6.9    Basic structures to investigate large series-parallel systems by assuming totally inde-
pendent elements (each element operates and is repaired independently from every other element):
active redundancy, constant failure & repair rates ( ) ,λ µi i<<  ideal failure detection & switch,
n repair crews (one for each element), Markov processes  (for rows 1 to 5 see Table 6.4, Eqs. (6.60)
& (2.48), (6.99) & (2.48), (6.170) with λν = 0 & (2.48), and (6.148), respectively;  λ S SMTTF≡1 0/

and µS SMTTR≡1 / ≈ −λ S SPA/ ( )1  used to simplify the notation;  PA AAS S= )
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Table 6.10 Basic macro-structures to investigate large series-parallel systems by successive building
of macro-structures bottom up to system level, independent elem., active redundancy, const. failure &

repair rates ( ) ,λ µi i<<  ideal failure detection & switch, one repair crew per macro-structure, repair
priority on Eν , no further failure at macro-structure down, Markov proc.  (for rows 1-6 see Table
6.4, Eqs. (6.60) & (6.65), (6.100) & (6.103), (6.157) & (6.159), (6.170) & (6.171), and (6.60), (6.65) &

Tab. 6.8, resp.; λ µ λS S S S S SMTTF MTTR PA≡ ≡ ≈ −1 1 10/ / / ( ),  used to simplify the notation; PA AAS S= )
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From Eqs. (6.180) and (6.181) it follows that
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Method 3 of Section 6.7.1 yields, using Table 6.2 and Fig. 6.20, the following
system of algebraic equations for the mean time to failure ( M MTTFi Si= )
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 ,,
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From Eqs. (6.184) and (6.185) it follows that
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Figure 6.20   Reliability block diagram and diagram of transition probabilities in ( , ]t t t+ δ  for the
system described by Fig. 6.19 with active redundancy, const. failure & repair rates ( , ) ,λ µi i  ideal
failure detection & switch, one repair crew, repair priority in the sequence E E E1 2 3, ,  , no further
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Similarly, for the asymptotic & steady-state value of the point and average avail-
ability PA AAS S=  the following system of algebraic equations, can be obtained using
Table 6.2 and Fig. 6.20

ρ µ µ µ ρ λ0 0 1 1 2 2 3 3 1 1 1 0P P P P P P= + + =, ,

ρ λ µ µ µ ρ λ µ2 2 2 0 3 4 2 6 1 7 3 3 3 0 1 102P P P P P P P P= + + + = +, ,

ρ λ λ µ ρ λ λ µ4 4 3 2 2 3 1 8 5 5 2 4 3 6 1 92P P P P P P P P= + + = + +, ,

ρ λ µ µ ρ λ λ6 6 2 2 3 5 1 11 7 7 2 1 1 22P P P P P P P= + + = +, ,

ρ λ λ ρ λ8 8 1 4 3 7 9 9 1 5P P P P P= + =, ,

ρ λ λ ρ λ λ10 10 3 1 1 3 11 11 1 6 2 7P P P P P P= + = +, . (6.188)

with ρi  as in Eq. (6.185).  One (arbitrarily chosen) of the Eqs. (6.188) must be
dropped and replaced by   P P P0 1 11 1+ + + =K .  The solution yields P0 to P11,
from which

PA P P P b b b b b b bS = + + = + + + + + + +0 7 0 1 2 3 4 5 6 71... ( ), (6.189)
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An analytical comparison of Eqs. (6.186) with Eqs. (6.178) and (6.182) or of
Eq. (6.189) with Eqs. (6.179) and (6.183) is time consuming.  Numerical evaluation
yields (λ and µ in h −1, MTTF in h)
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λ1 1/100 1/100 1/1,000 1/1,000

λ2 1/1,000 1/1,000 1/10,000 1/10,000

λ3 1/10,000 1/10,000 1/100,000 1/100,000

µ1 1 1/5 1 1/5

µ2 1/5 1/5 1/5 1/5

µ3 1/5 1/5 1/5 1/5

MTTFS0  (Eq. (6.178), totally IE) ≈ 1.58·10 5+ 9.30·10+4 1.66·10+7 9.93·10+6

MTTFS0  (Eq. (6.182), MS)           ≈ 1.53·10 5+ 9.14·10+4 1.65·10+7 9.91·10+6

MTTFS0  (Eq. (6.186), no FF)       ≈ 1.59·10 5+ 9.33·10+4 1.66·10+7 9.93·10+6

MTTFS0  (Method 4, Cutting)       ≈ 1.49·10 5+ 9.29·10+4 1.65·10+7 9.92·10+6

MTTFS0  (only one repair crew)   ≈ 1.60·10 5+ 9.33·10+4 1.66·10+7 9.93·10+6

1 − PAS  (Eq. (6.179), totally IE)   ≈ 5.25·10 6− 2.63·10 5− 5.03·10 8− 2.51·10 7−

1 − PAS  (Eq. (6.183), MS)            ≈ 2.81·10 5− 5.45·10 5− 2.62·10 7− 5.05·10 7−

1 − PAS  (Eq. (6.189), no FF)        ≈ 6.61·10 6− 6.00·10 5− 6.06·10 8− 5.06·10 7−

1 − PAS  (Method 4, Cutting)        ≈ 2.99·10 5− 5.56·10 5− 2.65·10 7− 5.06·10 7−

1 − PAS  (only one repair crew)     ≈ 6.58·10 6− 5.63·10 5− 6.06·10 8− 5.06·10 7−

Also given in the above numerical comparison are the results obtained by method 4
of Section 6.7.1 (for a given precision of 10 8−  on the unavailability 1 − PAS ) and
by dropping the assumption of no further failures at system down in method 3.
These results confirm that for λ µi i<<  good approximate expressions for practical
applications can be obtained from all the methods presented in Section 6.7.1.
The influence of λ i i/ µ  appears, for instance, when comparing columns 1 with 2 and
columns 3 with 4.  The results obtained with method 1 of Section 6.7.1 (Eqs. (6.178)
and (6.179)) give higher values for MTTFS0  and PAS  than those obtained with
method 2 (Eqs. (6.182) and (6.183)), because of the assumption that each element
has its own repair crew (totally independent elements).  Comparing the results form
Eqs. (6.186) and (6.189) with those for the case in which the assumption of no
further failures at system down is dropped (only one repair crew), shows (for this
example) the small influence of this assumption on final results.

For indicative purpose and to support the validity of approximate expressions,
the following are the state probabilities for the numerical example according to the
first column above, obtained by solving (Eq. (6.189), i. e ., with the assumption of
one repair crew and no further failure at system down as per Fig. 6.20.
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more exactly:(  9

P P

P P P P P

10
5

11
60 587 10 0 62 10

0 0 7 8 110 97 6499684018 0 9999933933087 0 0000066066913

≈ ≈− −

≈ + + ≈ + + ≈

. . , . .

. , ... . , ... . ) .

Supplementary results:  From Eqs. (6.290) & (6.29) - Fig. 6.20, MUTS ≈1 52 10 5. . h  for the 1st and
≈ 9 90 10 6. . h  for the 4th column (row no FF); MDTS = 11/µ  because of the repair priority on E1.
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6.8   Systems with Complex Structure  (one Repair Crew)

Structures and models investigated in the previous sections of this chapter were
based on the existence of a reliability block diagram (RBD) and on some simplifying
assumptions ((6.1) - (6.7)).  In particular, elements of the RBD with only two states,
repaired as-good-as-new at failure, and ideal fault coverage & switching.  This was,
so far, good to understand basic investigation methods and tools ( see e. g. Figs. 6.9
&  6.10).  However, in practical applications more complex situations can arise.
This section uses tools developed in Appendix A7 (summarized in Table 6.2 for
Markov & semi-Markov processes) to investigate complex fault tolerant repairable
systems for cases in which a reliability block diagram does not exist or can not easily
be found.  Constant failure and, in general, also constant repair rates are assumed.
It is shown that many problems occurring in practical applications can be solved on
a case-by-case basis using a diagram of transition probabilities or a time schedule.
To improve readability, δ t  &  1−ρ δi t  are omitted from the diagrams of transition
probabilities in ( , ]t t t+δ , yielding diagrams of transition rates.  Of course, new
systems can lead to "new models", and a broad literature is known on this subject.

After some general considerations in Section 6.8.1, Section 6.8.2 deals with as-
pects of preventive maintenance.  Sections 6.8.3 & 6.8.4 consider imperfect switch-
ing & incomplete coverage (see also Eqs. (A6.30) & (6.223) for undetected fault time).
Elements with more than 2 states or one failure mode are discussed in Section 6.8.5.
Section 6.8.6 investigates fault tolerant reconfigurable systems (reconfiguration at
failure and phased-mission systems) by considering also reward and frequency /
duration aspects.  Section 6.8 7 deals with systems with common cause failures.
Section 6.8.8 presents some basic considerations on network reliability, and Section
6.8.9 summarizes the procedure for modeling systems with complex structure.
Alternative investigation methods (dynamic FTA, BDD, ETA, Petri nets, computer-
aided analysis) are introduced in Section 6.9 and a Monte Carlo procedure useful
for rare events is given.  Human reliability is discussed in Section 6.10.

However, as a general rule,

modeling complex systems is a task which must be solved in close coop-
eration between project and reliability engineers on a case-by-case basis.

6.8.1 General Considerations

In the context of this book, a structure is complex when the reliability block diagram
either does not exist or cannot be reduced to a series-parallel structure with inde-
pendent elements (p. 52).

If the reliability block diagram exists, but not as series-parallel structure,
reliability and availability analysis can be performed using one or more of the
following assumptions (as in previous sections, failure-free time is used as a
synonym for failure-free operating time, repair as a synonym for restoration):
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1. For each element in the reliability block diagram, failure-free times and
repair times are statistically independent.

2. Failure and repair rates of each element are constant (time independent).
3. Each element in the reliability block diagram has constant failure rate.
4. The flow of failures is a Poisson process (homogeneous or nonhomogeneous).
5. No further failures are considered (can occur) at system down (no FF).
6. Redundant elements are repaired on-line (no interruptions at system level).
7. After each repair, the repaired element is as-good-as-new.
8. After a repair, the system is as-good-as-new with respect to a specific state.
9. Only one repair crew is available, repair is started as soon as the repair crew

is free (first-in first-out) or according to a given repair priority.
10. Totally independent elements, i. e., each element operates and is repaired

independently of every other element (n repair crews for n elements).
11. Ideal failures (faults) detection and localization;  in particular, no hidden

failures (faults) and false alarms.
12. Failure-free & repair times are > 0 and continuous with finite mean & variance.
13. For each element, the mean time to repair is much lower than the mean time

to failure ( MTTR MTTFi i<< ).
14. Switches and switching operations are 100% reliable and have no aftereffect.
15. Preventive maintenance is not considered.

A clear formulation of the assumptions stated is important to fix the validity of the
results obtained.  Often it is tacitly assumed that each element has only 2 states
(good / failed), one failure mode (e. g. shorts or opens), and a time invariant required
function (e. g. continuous operation of all elements).  Elements with more than two
states or one failure mode are discussed in Section 6.8.5 (see also Section 2.3.6 for
the nonrepairable case).  A time dependent operation and /  or required function can
be investigated when constant failure rate is assumed (Section 6.8.6.2).

The following is a brief discussion of the above assumptions.  With assumptions
1 and 2, the time behavior of the system can be described by a time-homogeneous
Markov process with a finite number of states.  Equations can be established using
the diagram of transition rates &  Table 6.2. Difficulties can arise for the large
number of states involved (p. 226).  In such cases, a first possibility is to limit
investigation to the calculation of the mean time to failure MTTFSi and the
asymptotic & steady-state point and average availability PA AAS S= ,  i. e., to the solu-
tion of algebraic equations.  A second possibility is to use approximate expressions
(Section 6.7) o r special software tools (Section 6.9.6).  Assumption 3 assures the
existence of a regenerative process with at least one regeneration state.  Assumption
4 often applies to systems with a large number of elements.  As shown in Sections
6.3 -  6.6, assumption 5 simplifies calculation of the point availability and interval
reliability.  It has no influence on reliability function & MTTFSi, and can be used for
approximate expressions when assumption 13 applies (see e. g. Section 6.7.2).
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Assumption 6 must be met during the system design.  If not satisfied,

improvements given by redundancy are questionable;  in such cases, at least
fault detection & localization should be implemented (Sections 4.2.1, 6.8.4).

Assumptions 7 &  8 are in general satisfied if either assumption 2 or 3 holds.
Assumption 7 is frequently used, its validity must be verified.  Assumption 8 is used
only with 2 or 3 (Table 6.1, pp. 478 - 479).  Assumption 9 simplifies calculation and
is useful for deriving approximate expressions (if 13 holds).  Together with 3, the
system behavior can be described by a semi-regenerative process (Table 6 .1 ,
Appendix A7.7).  Assumption 3  alone assures t h a t the involved process i s
regenerative with at least one regeneration state.  With assumption 10, point
availability can be computed using the reliability equation for the nonrepairable case
(Eq. (2.48)).  This assumption rarely applies in practical applications.  However, it
allows a simple calculation of an upper bound on the point availability.  Assumption
13 is generally met.  It leads to approximate expressions, as illustrated in Section 6.7
or by using asymptotic expansions [6.19, A7.26].  As shown in Examples 6.8 - 6.10,
the shape of the distribution function of the repair time has small influence on
results at system level ( ( )), ,MTTF PAS S S0 IR θ , if assumption 13 holds.  Assumptions
14 & 15 simplify investigations, they are valid for all models in Sections 6.2 - 6.7.

If the reliability block diagram does not exists, stochastic processes and tools
introduced in Appendix A7 can be used to investigate reliability and availability of
fault tolerant systems, on the basis of the diagram of transition rates or a time
schedule, see Sections 6.8.3 - 6.8.7 for some examples on systems with imperfect
switching, incomplete coverage, more than two states or one failure mode, reconfi-
gurable structure, and common cause failures.

However, investigation of large series - parallel structures or of complex struc-
tures is in general time-consuming and can become mathematically intractable.  As a
first step it is thus useful to operate with Markov models, refinements can be con-
sidered on a case-by-case basis, see pp. 277 - 279, 293 - 294 for general procedures.
Alternative investigation methods (dynamic FTA, BDD, ETA, Petri nets, computer-
aided analysis) are introduced in Section 6.9, and a Monte Carlo procedure for rare
events is given in Section 6.9.6.2.  Human reliability is discussed in Section 6.10.

6.8.2 Preventive Maintenance

Preventive maintenance is necessary to avoid wear-out failures and to identify
and repair hidden failures, e .  g. failures of redundant elements which cannot be
detected during normal operation.  This section investigates a one-item repairable
structure with preventive maintenance at T TPM PM, , ...2   .  Results are basic for the
investigation of more complex structures and will be useful in the following
sections to investigate fault tolerant repairable systems (Section 6.8.6).  Further
models / strategies for preventive maintenance are possible (Section 4.6).
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Figure 6.21   Reliability functions for a one-item structure with preventive maintenance (of negli-
gible duration) at times T TPM PM, , ...2  for 2 distribution functions F( ) ( )t tS= −1 0R  of the failure-
free times (item new at t T TPM PM= 0 2, , , ...; left strictly increasing, right constant failure rate)

The item considered is new at t =0 and has failure-free & repair times distribu-
ted according to F( )x  & G( )x  with densities f ( )x  & g( )x  ( F G( ) ( ) )0 0 0= = .  Preven-
tive maintenance is of negligible time duration (specialized personnel, no logistic
delays) and restores the item to as-good-as-new.  If a preventive maintenance is due
at a time in which the item is under repair, one of the following cases will apply:

1. Preventive maintenance will not be performed (included in the running
repair, considering that after each repair the item is as-good-as-new).

2. Preventive maintenance is performed, i. e., a running repair is terminated with
the preventive maintenance in a negligible time span (this maintenance
strategy is known as block replacement policy (Section 4.6)).

Both situations can occur in practical applications.  In case 2, times 0 2, , , ...T TPM PM

are renewal points.  This case will be considered in the following.
The reliability function R ( )S PM

t0  for case 2 above can be calculated from

R ( ) R ( ) ( )  , R ( ) R ( ) ,S SPM
t t t t TPM S PM S0 0 1 0 0 0 00 0

= = − < ≤ = =F   ,                  for

R ( ) R ( )R ( ), ( ) , ,S S
n

PM S PMPM
t T t n T nT t n T nPM PM0 0 0 1 1= − < ≤ + ≥  for    (6.192)

with R ( ) F( )S x x0 1= −  (Eq. (6.14)).  Figure 6.21 shows the shape of R ( )S t0  and
R ( )S PM

t0  for an item with strictly increasing (left) and constant (right) failure rate.
Because of the memoryless property of the exponential distribution function,

R ( ) R ( )S SPM
t t e t

0 0= = −λ         holds for  F( ) .x e x= − −1 λ (6.193)

From Eq. (6.192), the mean time to failure with preventive maintenance MTTFS PM0
is 
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Figure 6.22 Point availability for a repairable one-item structure with preventive maintenance (of
negligible duration) at times T TPM PM, , ...2  (item new at t T TPM PM= 0 2, , , ... and after each repair)

For F( ) ,x e x= − −1 λ  Eq. (6.194) yields MTTFS PM0 1= =/ [ ]λ τE .  For a strictly increas-
ing failure rate λ( )x  it holds (for TPM < ∞ ) that MTTFS PM0 > E[ ]τ ; the contrary is
for strictly decreasing λ( )x .  To see this, consider that

  R R R E[ ]    R )E [  S

T

S S
T

S PM PM PMt d t t dt t d t T T T
PM

PM
0

0
0

0
0 0( ) ( ) ( ) ( ]| ,∫ ∫ − ∫ −= = − >

∞ ∞
τ τ τ

with τ  as failure-free time of the item considered and E  [ ]|τ τ− >T TPM PM  as per
Eq. (A6.28);  the rest of the proof follows from remark 2 to Eq. (A6.28).  Optimiza-
tion of preventive maintenance period must consider Eq. (6.194) as well as cost, lo-
gistic support, and other relevant aspects (MTTFS PM0 →∞  for TPM → 0 and f ( ) ) .+ =0 0

Calculation of the point availability PA ( )S PM
t0  for case 2 above leads to

PA ( ) PA ( ) ,  ,S SPM
t t t TPM0 0 0= ≤                         for <

PA ( ) PA ( ), ( ) , ,S S PMPM
t t n T nT t n T nPM PM0 0 1 1= − ≤ < + ≥           for  (6.195)

with PA ( )S t0  from Eq. (6.17).  Figure 6.22 shows a typical shape of PA ( ) .S PM
t0

If the time duration for the preventive maintenance is not negligible, it is useful
to define, in addition to the availabilities introduced in Section 6.2.1, the overall
(or operational) availability OAS , defined for t →∞  as the ratio of the total up time
to the sum of total up and down time in ( , ]0 t . Defining MTTF=  mean time to
failure and MDT =  mean down time (with MTTR=  mean time to repair, MTTPM =
mean time to preventive maintenance, MLD =  mean logistic delay and TPM =
preventive maintenance period (referred to up time) it follows that (see e. g. p. 122)

OAS
MTTF

MTTF MDT
MTTF

MTTF MTTR MLD MTTPM MTTF TPM

=
+

=
+ + + ( / )

.   (6.196)

MLD=0 yields the technical availability.  In some cases, standby times are added to
operating time.  Other figures are possible, see e. g. [6.12] for railway applications.

Further maintenance strategies are investigated in Section 4.6.  Undetected fault
time τUFT  is considered in Eq. (A6.30), see also Eq. (6.223) for an application.
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Example 6.14

Assume a nonrepairable (up to system failure) 1-out-of-2 active redundancy with two identical
elements with constant failure rate λ .  Give the mean time to failure MTTFS PM0 by assuming a
preventive maintenance with period TPM <<1 / λ.  The preventive maintenance is performed in a
negligible time span and restores the 1-out-of-2 active redundancy to as-good-as-new.

Solution

For a nonrepairable (up to system failure) 1-out-of-2 active redundancy with two identical
elements with constant failure rate λ , the reliability function is given by Eq. (2.22)

R ( )S
t tt e e0

22= −− −λ λ

The mean time to failure with preventive maintenance follows from Eq. (6.194) as

MTTF

e e

e e
S PM

TPM
T T

T T

S

S PM

PM PM

PM PM

t dt

T0
0

2

2

0

0
1

2
1

1

2
1

1 2
= =

− − −

− +

∫

−

− −

− −

R ( )

R ( )

( ) ( )
.     

λ λ
λ λ

λ λ

Using 
 

+ /e x xx− ≈ −1 22  it follows that

MTTF
T T

T T
S PM

PM PM

PM PM

MTBF MTBF T MTBFPM0 2 2 2

2 1
1         

 (6.197)( =  for   ≈
−

= =
λ λ

λ. / / ) .

Without preventive maintenance, Eq. (2.22) yields MTTF MTBF MTBFS0 3 2 1 5 1= = =/ . ( / ) .λ λfor 
Equation (6.197) clearly shows the gain given by the preventive maintenance.

6.8.3 Imperfect Switching

In practical applications, switching is necessary for powering down failed elements
and powering up repaired elements.  In some cases it is sufficient to locate the
switching element in series with the redundancy on the reliability block diagram,
yielding series - parallel structures as investigated in Section 6.6.  However, such  an
approach is often too simple to cover real situations.  This section shows this on the
basis of practical examples.  Further considerations are given in Section 6.8.4
dealing with incomplete coverage.

As a first example, Fig. 6.23 shows a situation in which measurement points M1
and M2, switches S1 and S2, as well as a control unit C  must be considered.
To simplify, let us consider only the reliability function in the nonrepairable case
(up to system failure).  From a reliability point of view, switch S i , element E i , and
measurement point M i  in Fig. 6.23 are in series ( , )i = 1 2 .  Let τb1 and τb2 be the
corresponding failure-free times with distribution function F ( )b x  and density f ( )b x .
τc  is the failure-free time of the control device with distribution function F ( )c x  and
density f ( ).c x  Consider first the case of standby redundancy and assume that at t = 0
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Figure 6.23   Functional block diagram for a 1-out-of-2 active redundancy with switches S1 and S2,
measurement points M1 and M2, and control device C

element E1 is switched on.  A system failure in the interval ( , ]0 t  occurs with one of
the following mutually exclusive events

{ ( ) }τ τ τ τc b b b t> ∩ + ≤1 1 2        or      { }τ τc b t< ≤1 .

It is implicitly assumed here that a failure of the control device has no influence on
the operating element, and does not lead to a commutation to E2.  A verification of
these conditions by an FMEA (Section 2.6) is necessary.  With these assumptions,
the reliability function R ( )S t0  of the system described by Fig. 6.23 is given by
(nonrepairable case, system new at t = 0)

R ( ) [ f ( )( F ( ))F ( ) f ( )F ( ) ]S b c b

t

b c

t
t x x t x dx x x dx0

0 0
1 1= − − − +∫ ∫ . (6.198)

Assuming further f ( )b b
xx e b= −λ λ  and f ( ) ,c c

xx e c= −λ λ  Eq. (6.198) yields

R ( ) ( )S
t t tt e e eb c b

c
b0 1= + −− − −λ λ λλ

λ
 (6.199)

and

MTTFS
b c

b b c
0

2
=

+
+

λ λ
λ λ λ( )

. (6.200)

λc ≡ 0 leads to the results of Section 2.3.5 for the 1-out-of-2 standby redundancy
(Eqs. (2.63), (2.64)).  Assuming now an active redundancy (at t = 0, E1 is put into
operation and E2 into the reserve state), a system failure occurs in the interval ( , ]0 t
with one of the following mutually exclusive events

{ }τ τ τ τb c b bt t1 1 2≤ ∩ > ∩ ≤        or      { }τ τc b t< ≤1 .

The reliability function is then given by (nonrepairable case, system new at t = 0)

R ( ) [F ( ) f ( )( F ( )) f ( )F ( ) ]S b b c

t

b c

t
t t x x dx x x dx0

0 0

1 1= − − +∫ ∫ . (6.201)
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From Eq.(6.201) and assuming f ( )b b
xx e b= −λ λ and f ( )c c

xx e c= −λ λ it follows that

R ( ) ( ) ,S
t tt e eb c

b c

b b

b c

b c0
2 2= +

+
−

+
− − +λ λ

λ λ
λ

λ λ
λ λ λ (6.202)

and

MTTFS
b c

b b c

b

b c b c
0

2

2
=

+
+

−
+ +

λ λ
λ λ λ

λ
λ λ λ λ( ) ( ) ( )

. (6.203)

λc ≡ 0 leads to the results of Section 2.2.6.3 for the 1-out-of-2 active redundancy
(Eq. (2.22)).  From Eqs. (6.200) and (6.203) one recognizes that for λ λc b>>

MTTFS c bb0 1≈ >>/ λ λ λ,            for  , (6.204)

for both standby and active redundancy, i. e., to a situation as where no redundancy.
As a second example consider a 1-out-of-2 warm redundancy with constant fail-

ure rates λ λ, r  & repair rate µ λ λ>> , r . The switching element can fail with constant
failure rate λσ  and failure mode stuck at the state occupied just before failure. At
first, let us consider the case  in which the failure of the switch can be immediately
detected and repaired with constant repair rate µ λσ σ>> .  Furthermore, assume only
one repair crew, repair priority on the switch, and no further failure at system down.
Asked are mean time to system failure MTTFS0  for system new (state Z0) at t = 0
and asymptotic & steady-state (stationary) point and average availability PA AAS S= .
The involved process is a time-homogeneous Markov process.  Figure 6.24 give the
diagrams of transition rates for reliability and availability calculation, respectively
(down states Z Z Z2 2 2, ,' '' ).  From Fig. 6.24a & Table 6.2 or Eq. (A7.126) it follows
that MTTFS0  is given as solution of the following system ( )M MTTFi Si≡

ρ λ λ λ ρ λ µ
ρ λ µ ρ µ

σ σ

σ σ

0 0 0 1 0 0 1 0

1 1 1 0 1 1 1

1 1

1 1 6 205
M M M M M M

M M M M M
r r= + + + = + +

= + + = +
' ' ' '

' ' '

( ) ,

, , ( . )
   ,          

                                        

yielding

MTTFS
r r r

rr
0

1 1 0 1 1 1 0 1

1 1 0 0 1 1 1 0 1

=
− + + + + + +

− − − + +

( )[ ( )] ( )[ ( ) ]

( )( ) [ ( )]

' ' ' ' ' ' '

' ' ' ' ' ' '
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                                          .    (6.206)≈ ≈
+ + + + +

+ + + +

µ λ λ λ λ λ µ µ

λ λ λ λλ µ µ

µ

λ λ λ λλ µ µ
σ σ

σ σ σ σ

2 3r r

r r

( ) /

( ) / ( ) /

Last approximation assumes ( ) .3 λ λ λ µ µ µσ σ+    &r+ ≈<<   From this approximate
expression it follows that the effect of imperfect switching with failure mode stuck at
the state occupied just before failure, immediately detected and repaired, becomes
negligible for (see Eqs. (6.212) and (6.239) for more severe conditions)

      ) / .λ λ λ µ µσ σ<< +( r (6.207)

λ µσ σµ= ∞<0 (0 < , ) yields MTTFS r r0 2= + + +( ) / ( )λ λ µ λ λ λ , as for ideal switch
(Table 6.6).       >> (     ) /λ λ λ µ µσ σ+ r  yields MTTFS0 ≈ µ µ λ λ µσ σ/   , i. e. similar as for a
1-out-of-2 active redundancy with 2 different elements λ µ λ µσ σ, ,&   (Eq. (6.100)).
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Figure 6.24   Diagram of transition rates for a repairable 1-out-of-2 warm redundancy with constant
failure & repair rates ( , ),λ λ µ , r  imperfect switching (failure rate λσ, repair rate µ σ, failure mode
stuck at the state occupied), ideal failure detection and localization, one repair crew, switch repaired
with repair priority, no further failure at system down, ( , ,' ' 'Z Z Z2 2 2   down states (absorbing for
reliability calculation), Markov process)

From Fig. 6.24b and Table 6.2 it follows that PA AAS S=  is given as solution of

ρ µ µ ρ λ ρ λ λ µ µ µ
ρ λ λ ρ λ µ ρ λ

σ σ σ σ

σ σ

0 0 0 1 0 0 0 1 1 0 1 2 2

1 1 0 1 2 2 1 2 2 2 1

P P P P P P P P P P

P P P P P P P P
r

r

= + = = + + + +
= + = + =

' ' ' ' ' ' ,

' ' ' ' ' ' '

( ),   ,               

,   ,  ,

 

     ρ λ2 2 0 6 208'' '' ' ( . )P P=

One of the Eq. (6.208), arbitrarily chosen, must be replaced by Pi∑ = 1.  The
asymptotic & steady-state point and average availability follows then from
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+

Equation (6.209) allows similar conclusions as given by Eq. (6.206), same for µ µσ = .

λσ= 0 yields results for ideal switch  (0 < µσ <∞) .

Further models for imperfect switching are conceivable.  For instance, by assum-
ing that for the model of Fig. 6.24 failure of the switch can only be detected and re-
paired at system down together with failed elements, e. g. at a repair rate µg .  This
situation is known in power systems as refuse to start.  Figure 6.25 gives the
corresponding diagrams of transition rates for reliability and availability calcula-
tion, respectively (down state Z2).  Results are given in Example 6.15.  A further
possibility is to assume no connection as failure mode (Fig. 6.31) or a probability c
that the switch will perform correctly when called to operate (Figs. 6.27, 6.28).
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Figure 6.25  Diagram of transition rates for a repairable 1-out-of-2 warm redundancy with const.
failure & repair rates ( , ),λ λ µ , r  imperfect switching (failure rate λσ , failure mode stuck at the
state occupied), ideal failure detection and localization for the redundant elements, one repair crew,
failure of the switch repaired at system down with failed elements at a repair rate µ g , no further fail-
ure at system down  ( Z 2  down state (absorbing for rel. cal.), Markov process (see footnote on p. 497))

Example 6.15
Compute the mean time to system failure MTTFS0  and the steady-state point and average
availability PA AAS S=  for the 1-out-of-2 warm redundancy as per Fig. 6.25  ( , , , ) .λ λ λ µ µσ      <<r g

Solution
From Fig. 6.25a and Table 6.2, MTTFS0  is given as solution of ( )M MTTFi S i

≡

ρ λ λ λ ρ µ ρσ0 0 0 1 1 1 0 0 01 1 1M M M M M Mr= + + + = + =' ' '( ) , ,   ,                 (6.210)

yielding

MTTFS
r

r r
0

2 1
=

+ + + +

+ + +

+

+ +
≈

( ) ( ) /

( ) ( )

( / )

( )

λ λ µ λ λ µ λ
λ λ λ λ λ µ

µ λ λ

λ λ λ λ µ
σ

σ

σ

σ
. 

  
  

                               
 (6.211)

Because of the not detected failure of the switch, the condition on λσ to approach results for ideal
switching (Table 6.6) is more severe as Eq. (6.207) and given by

λ λσ µ λλ λ µ λ λ λσ σ<< <<<( / , ) .+ / ,  )          (which implies considering >> ,   r 1 (6.212)

From Fig. 6.25b and Table 6.2 or Eq. (A7.127) it follows that PA AAS S=  is given as solution of

ρ µ µ ρ λ ρ λ λ ρ λ λσ0 0 1 2 0 0 0 1 1 0 2 2 1 0P P P P P P P P P Pg r= + = = + = +, 
   ,         ,    ' ' '( ) . (6.213)

One of the Eq. (6.213), arbitrarily chosen, must be replaced by P P P P0 0 1 2 1+ + + =' .  The asymp-
totic & steady-state point and average availability PA AA P P PS S= = + +0 0 1'  follows then from

PA AAS S
r

g r g

r

g

= = ≈ −
+

+ + +

+ + + +

+ +1

1
2 1

1
λ λ λ λ µ λ

µ λ λ λ µµ λ λ

λ λ λ λ µ

µµσ σ

σ σ

σ

( )

( ) ( / )

( )
.           (6.214)

Equation (6.214) allows same conclusions for λσ as for Eq. (6.211).  λ µ µσ = ∞<0 (0< , )g
yields results for ideal switch (Table 6.6), assuming µ µg ≈  and apart of 2λ instead of λ be-
cause of the transition Z Z2 0→ .       >> (     ) /λ λ λ λ µσ + r  yields MTTFS 0 1 1≈ +/ /λ λσ  as for a non-
repairable 1-out-of-2 standby redundancy with λ λσ & ) and PA AAS S g= ≈ −1 λ µσ /  as for a
repairable one-item.
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Table 6.11 resumes basic models for the investigation of imperfect switch in a
repairable 1-out-of-2 warm redundancy with constant failure and repair rates λ λ µ ,  r ,

(see pp. 257 - 258 for 2 failure modes for the switch, and Table 6.6 for ideal switch).

Table 6.11  Basic models for imperfect switching in a repairable 1-out-of-2 warm redundancy with
constant failure & repair rates ( )λ µi i<< , one repair crew, no further failures at system down

µ

λ

µ

Z0 1λ + λr

λν
µν λν

µν

Z2

Z1 Z3

Z4

MTTFS
r r

0

1

2
=

+ + + + +λ λ λ λ λ λ λ µν ν( ) / ( )

PAS
r

r

*

( )

( )

=
+ +

+
+ +

1

1
λ
µ

λ λ λ
µ λ λ µ

ν

ν

λ ν  = 0 , yields                MTTF PAS S0 &  as for ideal switch (Table 6.6)

a) Switch in series to the 1-out-of-2 redundancy, repair priority on switch  (Fig. 6.15, Eqs. (6.157) & (6.159))**
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λ λ λ µ µσ σ<< ( )+ &/            yields                                  as for ideal switch  (Table 6.6)r S SMTTF PA0

b) Imperfect switching with failure mode stuck at the state occupied before failure, const. failure & repair rates
λσ σµ& , ideal failure detection & localization, repair priority on switch  (Fig. 6.24, Eqs. (6.206) & (6.209))
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λ λ λ λ µ µ µσ<< ≈( ) / &+ and          yieldr g S SMTTF PA0  as for ideal switch

c) Similar as case b), but switch repaired at system down with failed elements at repair rate µg ,
ideal failure detection and localization for the redundant elements  (Fig. 6.25, Eqs. (6.211) & (6.214))
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λ λ λ λ µ λ λ λ µ µ µ µ µο σ σ σ<< << ≈ ≈( +  , ,  +  ) /  and or r) / (

 yield                  &   MTTF PAS S0   as for ideal switch  (Table 6.6)

d) Switch with failure modes stuck at the state occupied & no connection, constant failure and repair rates
λ µσ σ,  & λ µo o,  , ideal failure detection & localization, repair priority on switch  (Eqs. (6.238), (6.240))

*  PAS  is used for PA AAS S= ;    ** with 2 λ λ+ r  instead of 3 λ  and λ λ+ r  instead of 2 λ
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6.8.4 Incomplete Coverage

Incomplete fault (failure & defect) coverage occurs because of lack or failure in the
fault detection and /  or localization (pp. 113 & 116).  Fault coverage is defined as
the proportion of faults that can be detected and localized under given conditions. 

+)

It applies in particular to redundant structures.  A fault coverage greater as 0.95 is
often required for complex equipment.  Lacks in the detection and / or localization
lead to hidden faults, often not covered by automatic or semi-automatic diagnosis,
and thus localizable only at a repair or preventive maintenance.  Hidden failures can
cause serious reduction of the advantage given by a redundancy (Eqs. (6.220) &
(6.222) or (6.228) & (6.229)).  As a general rule, fault coverage has to be investigated
on a case-by-case basis, considering following two aspects

• false detection and / or localization (or alternatively false alarm),
• no detection and / or localization possible (or alternatively no alarm emitted).

Following an illustrative example, this section discusses some basic models for
incomplete coverage. ++)   A way to compensate incomplete coverage is introduced
at the end of the 3th footnote on this page, and illustrated with 2 new models in cases
c & d of Table 6.12 (p. 256), implying the realization of an operation monitoring as
per Table 4.1, with the necessary BIT / BITE (see also the remarks on pp. 250 & 255).
However,

for critical applications, majority redundancy remains the best way to
compensate incomplete coverage (in a 2-out-of-3 redundancy, the first
failure is captured on line and no switch is necessary, see pp. 49, 164, 295).

Consider first the case of a 1-out-of-2 active redundancy with two different
elements E E1 2& , and assume that failures of E1  can be localized and repaired
only at a repair of E2  or at a preventive maintenance.  Elements E1 and E2 have
constant failure rates ( ), ,λ λ λ λ1 2 1 2≠ ≈ but still with  the repair time of E2 is distrib-
uted according to G( )x  ( G( )0 0= , density g( )x ), and preventive maintenance, incl.
repair of E1 and /  o r E2, takes a negligible time (see Example 6.17 for constant
repair rate). +++)  If no preventive maintenance is performed, Fig. 6.26a shows a pos-
sible time schedule of the system (new at t = 0), yielding for the reliability function

R ( ) ( G( ))( )
S

t x t
t

x t
t

t e e e dx e e t x dx0 1
0

2
0

1 2 1 2 2 1 1= + +− + − − − −∫ ∫ − −λ λ λ λ λ λλ λ

                         
 (6.215)

   
    

+ − −− −∫∫ λ λ λ
2 0

00
2 1e e y x t y dx dyx y

S

yt

g( )R ( ) .

__________________
 +)

   This often used definition does not consider the effect of undetected faults.
++)

  Undetected fault time τUFT  is investigated by Eq. (A6.30), see also Eq. (6.223) for an application.
+++)

 It is tacitly assumed, that at each regeneration point ( t = 0, end of a repair or preventive mainte-
nance), E2  is put in operation and E1  in reserve;  moreover no common cause failures occur, and
automatic failure detection in E E1 2&  and localization in E2 , as well as switching operations, are
ideal.  A possible procedure being that at a failure (output E2 ≠ output E1), operation is continued
with E1  in the case of failure localized in E2 , or with E2  if not (Table 6.12 cases c & d).
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Figure 6.26  Possible time schedules for the reliability investigation of a repairable 1-out-of-2 active
redundancy with hidden failures in E1  and constant failure rates (see also the footnotes on p. 249)

The Laplace transform of R ( )S t0  follows as

R̃ ( ) ,( ) ( ) ( ) ( g̃( ))

( ) ( ) ( ) ( ) ( ) g̃( )
S s

s s s s

s s s s s s
0

1 1 2 2 2 1

1 2 1 2 1 2 2 1

1
=

+ + + + + − +

+ + + + − + + +

λ λ λ λ λ λ

λ λ λ λ λ λ λ λ
   (6.216)

and the mean time to failure becomes

MTTFS0 1 1 2 2
2

1 1 2 1 2 1 2
2

11= + + − + −[ ( ) ( g̃( ))] [ ( ) g̃( )]/ .λ λ λ λ λ λ λ λ λ λ λ λ (6.217)

Example 6.16 discusses Eq. (6.217).  The point availability PAS t0 ( ) is investigated
in Example 6.17 for the case of constant repair rates.  If preventive maintenance is
performed at times  T TPM PM, ,2 … and after each preventive maintenance (assumed
of negligible duration, also considering a possible repair of E2 and / or E1) the sys-
tem is as-good-as-new, the times 0 2, , , T TPM PM … are regeneration points for the
system.  R ( )S PM

t0  and MTTFS PM0  follow from Eqs. (6.192) & (6.194), with
R ( )S t0  as per Eq. (6.215).  For T MTTRPM >> , PA ( ) PA ( )S S S SPM

t t PA AA0 0≈ ≈ =
can often be used.  Optimization of TPM  must consider cost and logistic aspects too.

Equations (6.217), (6.218) & (6.220) show that a repairable 1-out-of-2 active
redundancy with hidden failures in one element (E1), which can be localized and
repaired only at a repair of the second element or at a preventive maintenance,
behaves like a nonrepairable 1-out-of-2 standby redundancy.  However, if failure
localization and repair of element E1  can start at failure occurrence (after checking
E2  as per the 3th footnote on p. 249), the situation of an ideal active 1-out-of-2
repairable redundancy is reestablished (even by assuming a lower repair rate for E1,
e. g. because of a travel time for specialized personnel), see Tab. 6.12 cases c & d;

this bears out, how important it is, in the presence of redundancy to investi-
gate failure modes, failure localization, and check strategy at failure (FMEA).
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Example 6.16
Give approximate expressions for the mean time to failure MTTFS0  per Eq. (6.217).

Solution
For g̃( )λ1 1→ , it follows from Eq. (6.217) that

MTTFS0 1 2 1 2 1 21 1≈ + = +( ) / / /λ λ λ λ λ λ . (6.218)

A better approximation using g̃( )λ λ1 11= − MTTR  yields (with MTTR as per Eq. (6.111))

MTTF MTTR MTTRS0 1 2 2
2

1 2 21≈ + + +( ) / ( ( ))λ λ λ λ λ λ . (6.219)

Example 6.17
Investigate R ( )S t0  per Eq. (6.216), MTTFS0  and MTTFS PM0 per  Eqs. (6.217) and (6.194),
PA AAS S=  and PA AAS SPMPM

= , and the undetected fault time τUFT  for the case of constant
repair rate µ  for E2 and µ g for E1 together with E2 ( , , )λ λ µ µ1 2 << g .

Solution
With g̃( ) / ( )s s+ = + +λ µ λ µ1 1  it follows from Eq. (6.216) that

R̃ ( ) [( ) ( ) ( )] ( ) ( ) ( )/S s s s s s s s0 1 2 1 2 2 1 2 1 2= + + + + + + + + + + +λ λ λ µ λ λ λ λ λ λ µ ,

and thus (Table A9.7b) R ( ) ( )
S

t t tt Ae Be C e0 1 2 1 2= + +− − − + +λ λ λ λ µ  with

A B C= ≈ = ≈ = ≈
− +

− + −
− − +
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−
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+ +

λ λ λ µ

λ λ λ µ
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2 2 1
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2 1

1 1 2

2 1 1

1

2 1

1 2

1 2

0
( )
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( )
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( ) ( )
, , .    

The mean time to failure MTTFS0  follows as

MTTFS S0 0 0 1 2 1 2
2

1 2 1 2

1 2

1 2 1 2

1 2

1 2

= = ≈ ≈
+ + +

+ +

+

+ +

+
R̃ ( )

( ) ( )

( )

( )

( )
.

λ λ λ µ λ

λ λ λ λ µ

λ λ µ

λ λ λ λ µ

λ λ

λ λ
(6.220)

One recognizes, that λ λ µ1 2+ <<  yields directly to

R ( ) ( ) / ( )S
t tt e e0 2 1 2 11 2≈ − −− −λ λ λ λλ λ      and    MTTFS0 1 21 1≈ +/ / .λ λ (6.221)

The point availability PAS t0 ( )  (as well as R ( )S t0 ) can be obtained
using a 4 states Markov process with up states Z Z Z0 1 1  , , '  & down state
Z 2  (absorbing for R ( )S t0 ), see graph (similar as Fig. 6.25b) and footnote
on p. 249.  The asymptotic & steady-state point and average availability
PA AAS S=  is obtained by solving (Table 6.2) ( ) ,λ λ µ µ1 2 0 1 2+ = +P P Pg
λ λ2 1 1 0P P' = , ( )λ µ λ1 1 2 0+ =P P , P P P P0 1 1 2 1+ + + =' , yielding

λ2

λ2

Z0 Z2

µ
µg

Z1

Z1'
λ1

λ1

PA A

                    

 (6.222)S SA P P P

g

g

= = + + = ≈ −
+

+ +

+ + +

+0 1 1

1

1
1

1 2 1 2

1 1 2 2
2

1 2

1 2
'

( )

[ ( ) ( ) ]

( )
.

λ λ λ λ µ

µ λ µ λ λ λ

λ λ

µ λ λ

The undetected fault time τUFT  is in this case the stay time in Z1', thus (Eqs. (A7.166) & (A7.132))

E[ ] /τ λUFT = 1 2     &   E total undetected time in (0,
'

[ ]] . . / ( ) .t t P t= ≈ +
1 1 1 2λ λ λ (6.223)

In the case of preventive maintenance at T TPM PM, ,2 … (regeneration points at t TPM= 0, , 
2TPM , …), Eq. (6.194) with R ( )S t0  per Eq. (6.221) yields

MTTF
e e

e e TS PM

T T

T T

PM PM

PM PM PM
0

2 1 1 2

1 2

1 1

1 1

21 2

2
1

1
2

≈
− − −

− − −
≈

− −

− −

λ λ λ λ
λ λ

λ λ

λ λλ λ

( ) / ( ) /

( ) ( )
. 

 
 (6.224)

The last part of Eq. (6.224) follows with e x x x− ≈ − +λ λ λ1 22( ) / .  For T MTTRPM >> =1 /µ
PA ( ) PA ( )S PM S S St t PA AA0 0≈ ≈ =  with PA AAS S=  per Eq. (6.222) can often be used.
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Figure 6.27  State transition diagram for a repairable 1-out-of-2 active redundancy with const. fail-
ure & repair rates ( )λ µ , , incomplete coverage (identification of failed element with probability c),
one repair crew  (Z 2  down state (absorbing for rel. calculation), semi-Markov proc.; see also Fig. 6.28)

A model often used to consider incomplete coverage assumes that a failure can
be localized (BIT / BITE) only with a probability c  (coverage c). 

+)  This will be
investigated in the following for the case of a 1-out-of-2 active redundancy with
identical elements and constant failure & repair rates λ µ, .  At a failure, outputs of
both elements differ and with probability 1 − c  the failed element can not be
identified and disconnected, yielding a system failure.  This case is similar to that of
imperfect switching mentioned at the end of Section 6.8.3 and is also known as no
start at call [6.34].  Figure 6.27 gives the state transition diagram of the involved
semi-Markov process.  The transition from state Z1 '  occurs instantaneously to Z1
with probability   P1 1' = c or to Z 2 with   P12 1' = −c.  Because of the constant failure &
repair rates, investigation can also be based on a Markov process with the diagram
of transition rates given in Fig 6.28 (see Examples 6.18 & 6.19 for the equivalence).

Example 6.18
Give the mean time to system failure MTTFS0  and the asymptotic & steady-state point and
average availability PA AAS S=  for the 1-out-of-2 active redundancy as per Fig. 6.27 ( )λ µ<< .

Solution
From Fig. 6.27 and Table 6.2 or Eq. (A7.173), MTTFS0  is given as solution of  M T Mc1 1 1' '= +  
M T M M T M0 0 1 1 1 0= + = + +        ,', ( ( ))/µ λ µ  with, M MTTFi S i

≡ , Ti i x dx= −
∞
∫ ( ( ))1
0

Q    ,  Q ( ) Q ( )i ijx xj=∑
(Eqs. (A7.166) and (A7.165)).  Considering Fig. 6.27 i t  follows that T T0 11 2 0= =/ , ,'λ
T T1 21 1= + =/ ( ), / ,λ µ µand    yielding

MTTF
c

c
c
c cS

T T T
0 1

2

2 2 2 1
0 1 1

2= ≈
+ +

− + =
+ +

+ − + −
'

/ ( ) ( ) ( )
.

µ λ µ
λ µ λ
λ λ µ µ

µ

λ λµ
(6.225)

From Fig. 6.27 and Table 6.2 or Eq. (A7.178), PA AA P P PS S= = + +0 1 1'  is given as

PA AA T T T T T T TS S= = + + + + +( ) ( )' ' ' '/P P P P P P P0 0 1 1 1 1 0 0 1 1 1 1 2 2 . (6.226)

Thereby,   P j  are the state probabilities of the embedded Markov chain, obtained as solution of

  P P P P P P P P P P0 1 1 0 1 1 2 2 1 11= = = ++ + − +µ λ µ λ λ µ/ ( ), ( ) / ( )' ' ',               ,  =       c c  (Table 6.2), yielding
(considering P P P P0 1 1 2 1+ + + =' ) P P+1 22 2 2= + − = + − −( ) ( ) ( ( )/λ µ λ µ µ λ µ µ λ µ µ)     / ( (                     + 2 )  ),    c c c
P P = /0 1 2= −' )µ λ µ µ( ( + 2 ) c .   From Eq. (6.226) it follows then

PA AA cS S= = ≈+ + − − + − +( ) ( ( )) ( )/ . ( . )µ λµ µ λµ λ λ µ µ λ λ µ µ µ λµ2 22 2 2 1 2 2 6 227+     +      c) (/ 2

__________________
+)  A weak point of this model is the assumption of c constant over time and failures;  a refinement

with share of the failure rate in λ λ λ= +c u  is in the models c & d introduced in Table 6.12 (p. 256).
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Figure 6.28  State transition diagram for a repairable 1-out-of-2 active redundancy with const. fail-
ure & repair rates ( )λ µ , , incomplete coverage (identification of failed element with probability c ,
i. e., with probability 1− c the system goes down because outputs of both elements differ), one repair
crew,  Markov process ( Z 2  down state (absorbing for reliability calculation);  see also Table 6.12b)

Example 6.19
Give the mean time to system failure MTTFS0  and the asymptotic & steady-state point and
average availability PA AAS S=  for the 1-out-of-2 active redundancy as per Fig. 6.28 ( )λ µ<< .

Solution
From Fig. 6.28 & Table 6.2 or Eq. (A7.126), MTTFS 0 is given as solution of ( )with M MTTFi Si

≡

2 1 2 10 1 1 0λ λ λ µ µ    and  ( + )  ,M M M Mc= + = +  yielding

MTTF c c cS0
22 2 2 2 1= + + + − ≈ + −[ ] / [ ( )] / ( )] .[λ µ λ λ λ µ µ µ λ λµ (6.228)

From Fig. 6.28 and Table 6.2 or Eq. (A7.127), PA AAS S=  is given as solution of 2 0 1λ µP P= , 
( + )  +   and      = 1,λ µ λ µP P P P P Pc1 0 2 0 1 22= + +  yielding

PA AA P P
c

S S c
= = + ≈

+
−

+ −
+ −

 =      

+

 

+      
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1
1

2 2 1

2
2
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2λ λ µ µ

µ λµ

λ λ µ

µ λµ( )
.

( )
(6.229)

Comparison of Eqs. (6.225) with (6.228)&(6.227) with (6.229) shows the equivalence
of the models of Figs. 6.27 & 6.28 (see Section 6.10 for a further application of semi-
Markov processes).  For c = 1, Eqs. (6.228) & (6.229) yield results of Table 6.6 for
an ideal 1-out-of-2 active redundancy.  For c=0, Eqs. (6.228) & (6.229) yield results
for a one-item with failure rate 2 λ  and repair rate µ   (most unfavorable case,
because at the first failure it is not possible to identify the failed element, yielding to
a system down).  Comparison of Eqs. (6.92) with (6.228) and (6.87) with (6.229)
shows that the effect of incomplete coverage is negligible for

2 1 2 12 1 0 1λµ λ λ µ λ µ( ) / .. / )− −<< >> > −c c c             ,         or ( e. g.  (6.230)

Condition (6.230) can be hard to realize for complex equipment and remains the
same also if repair of a hidden failure brings the system to state Z0 (Example 6.20).
A further possibility is investigated in Example 6.21 by assuming that at the occur-
rence of a hidden failure, one of the two elements is selected to continue operation
and the selected element is not failed with probability p.

All these investigations show that for critical applications, majority
redundancy or a check strategy as described on pp. 249 & 255, realized in
the models c & d of Table 6.12 (p. 256), has to be preferred.
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Example 6.20
Investigate MTTFS0  and PA AAS S=  for the model given by Fig. 6.28 by assuming that a repair
for a hidden failure (transition Z Z0 2→ ) brings the system to state Z0  and not to Z1  ( )λ µ<< .

Solution
MTTFS0  is given by Eq. (6. 228).  The point availability
PAS t0 ( )  can be obtained using a 4 states Markov process
with up states Z Z0 1  and  and down states Z Z1 2' and , see
graph.  The asymptotic & steady-state point and average
availability PA AAS S=  is obtained by solving (Table 6.2)
2 0 1 1λ µ µP P P= +' , ( ) ,λ µ λ µ+ = +P P Pc1 0 22   µ λP Pc1 02 1' ( ) ,= −  
and P P P P0 1 1 2 1+ + + =' , yielding 2 λ c
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Example 6.21
Investigate MTTFS0  and PA AAS S=  for the model considered in Example 6.20 by assuming that
at the occurrence of a hidden failure (outputs of both elements differ and failed element can not
be detected), one of the two elements is selected to continue operation and the selected element is
with probability p not failed (safety is not relevant).

Solution

R ( )S t0  and PAS t0 ( )  can be obtained using a  5 states
Markov process with up states Z Z Z0 1 1  , , '  and down states
Z Z2 2 , ' ( Z Z2 2 , ' absorbing for R ( )S t0 ), see graph.
MTTFS 0 is given as solution of ( )with M MTTFi Si

≡ ,
2 1 2 10 1 1λ λ λ   + 2 ( - )  ,M M Mc c p= + '  ( + ) λ µ µM M1 01= + ,
( + ) λ µ µM M1 01'= + , yielding
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The asymptotic & steady-state point and average availability PA AAS S=  is obtained by solving
(Table 6.2) 2 0 1 1 2λ µP P P P= + +  ( )' ' , ( )λ µ λ µ+ = +P P Pc1 0 22 , ( ) ( )'λ µ λ+ = −P p Pc1 02 1 ,
µ λP P P2 1 1= +( )' , P P P P P0 1 1 2 2 1+ + + + =' ' , yielding

PA A     

 (6.233)
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Comparison of Eq. (6.232) with (6.228) and Eq. (6.233) with (6.231) shows that
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λ λµ

λ λµ
λ µ

λ µ

Both ratios are 1 for a coverage c =1. One recognizes also that results of Example
6.20 are those of Example 6.21 for p = 0, and that for p = 1, Eqs. (6.232) & (6.233)
yield results for ideal coverage (Table 6.6), as for c = 1.
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Figure 6.29   Diagram of transition rates for a one-item structure with incomplete coverage and 2
failures modes for the diagnosis  (const. failure and repair rates λ λ λ λ µC NC DF DD ,  ,, , , ideal fail-
ure localization, Z Z Z Z2 3 4 5, , ,  down states (absorbing for reliability calculation), Markov process)

Influence of preventive maintenance at T TPM PM, , ...2   (regeneration points at
t = 0 ,T TPM PM, , )2 …  can be investigated as discussed in Example 6.17, often using

R ( ) /
S

MTTFSt e t
0 0≈ −      and     | PA   PA PA  

S S St e t
0 1( ) ( )|− ≈ − −µ , (6.235)

or PAS S St PA AA0 ( ) ≈ = , (see Eqs. (6.94) & (6.88) and the discussion to Eq. (6.56)).
Other possibilities to consider for incomplete coverage are conceivable.

Assuming, for instance, that in a 1-out-of-2 active redundancy at a failure of one
element (outputs of both elements differ), one element is instantaneously selected
(without any check) to continue operation and with probability p the selected
element is not failed, leads to the model of Example 6.20 with c p= .

A further possibility, which considers false alarm with failure rate λDF  and
alarm defection with failure rate λDD , shown in Fig. 6.29 with a repair rate µ for all
failure modes, has been proposed in [6.42] and yields ( λ λ λ λ λ λD DD DF C NC= + +, = )

MTTFS
DD

D
0 =

+
+

λ λ
λ λ λ( )

    &    PA AA P PS S
DD

DD D
= = =

+

++ +
 +      0 1

µ λ λ

µ λ λ λ λ λ

( )

( ) ( )
.    (6.236)

see also Fig. 3 of [6.42] and Fig. 1 of [1.13] for further refinements.
However,

if the design allows that at a failure in a 1-out-of-2 repairable redundancy
( ) output outputE E2 1≠  an appropriate test signal is automatically started
(BIT / BITE) and operation is continued with the not failed element, the
situation of an ideal active 1-out-of-2 repairable redundancy (Table 6.6) is
reestablished (as per the 3th footnote on p. 249 and remark on p. 250, as-
suming no common cause failures and thus that one element is not failed),
see cases c & d in Table 6.12.

This bears out, again, how important it is, in presence of redundancy to investigate
failure modes, failure localization, and check strategy at failure.  Table 6.12 resumes
basic models for incomplete coverage in a repairable 1-out-of-2 active redundancy
with constant failure & repair rates (for the approximations, λ µ λ µ λ µ1 1 1 1 2 2u u c c/ / /<≈ ≈
is assumed in case c ( λ λ1 1u c<  being a requirement) similar is for case d ).
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Table 6.12 Basic models for incomplete coverage in a repairable 1-out-of-2 active redundancy with
constant failure & repair rates ( )λ µi i<< , no further failures in a series structure partly down or at
system down, one repair crew, no common cause failures  (for c) & d) see remarks on pp. 249 & 255)
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b)  Identification of the failed element only with probability c  (Fig. 6.28, Eqs. (6.228) & (6.229))
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c)  At failure (output output ) E E2 1≠  appropriate test signals are automatically started (BIT) and operation is
continued with the not failed element  (notes on pp. 249 & 255; coverage 100% in E E c2 1  &   ,  0% in E u1 )
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d)  At failure (output output ) E E2 1≠  appropriate test signals are automatically started (BIT) and operation
is continued with the not failed element  (notes on pp. 249 & 255; coverage 100% in E ic , 0% in E iu )

c and u refer to 100% and 0% coverage, respectively;   * PAS  is used for PA AAS S=
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Figure 6.30  Diagram of transition rates for an item with 3 states: good, waiting for repair, repair
(constant failure, failure localization & repair rates ( , ' )λ µ µ & , Z Z1 1, ' down states, Markov proc.)

6.8.5   Elements with more than two States or one Failure Mode

Elements with more than two states (good / failed for instance) or one failure mode
(e. g. open or short) often arise in practical applications.  Some considerations have
been given in Sections 2.3.6 & 6.8.4.  This section shows, on the basis of practical ex-
amples, that items with more than two states or one failure mode can be investigated
using the diagram of transition rates, see also pp. 266 - 269 for a further application.

As a first example consider an item with the three states good, waiting for repair,
repair [6.14] . Figure 6.30 shows this model.  From Fig. 6.30 & Table 6.2 it holds that

MTTFS0 1= / λ       and       PA AAS S= = + + µµ µµ λ µ µ'/ ( ' ( ')). (6.237)

The item in Fig. 6.30 behaves like a one-item structure with failure rate λ  and repair
time with mean MTTRtot = +1 1/ / 'µ µ  (Erlang distributed ( n =2 , Eq. (A6.102)) for µ µ= ').

More complex structures can also be investigated, see e. g. [6.14].
As a second example consider a 1-out-of-2 warm redundancy with constant

failure rate λ λ, r  and repair rate µ.  The switching element can fail with constant
failure rate λσ  for failure mode stuck at the state occupied just before failure or λο
for failure mode no connection.  Failure of the switch can be immediately detected
and repaired with constant repair rate µσ  or µο .  Furthermore, assume only one
repair crew, repair priority on the switch, and no further failure at system down
(also for the switch, no further failure is possible after a failure with one of the two
possible failure modes).  Asked is the mean time to system failure MTTFS0  for
system new (in state Z0) at t =0.  The involved process is a time-homogeneous
Markov process.  Figure 6.31 gives the diagrams of transition rates for reliability
calculation (see Example 6.22 for availability).  Comparing Fig. 6.31 with Fig. 6.24a,
one recognizes that MTTFS0  is given by Eq. (6.206) with ρ λ λ λ λσ0 = + + + or  and
ρ λ λ λ µσ1= + + +o  (i. e. adding λο to ρ ρ0 1 and ).  From this,

MTTFS
r

r r

r

0
2 3

2 2
   o

o o

≈ + + + + + +

+ + + + + + +

µ λ λ λ λ λ λ µ µ

λ µ λ λ λ λµ µ λλ µ µ λ λ λ
σ σ

σ σ σ

( ) /

[ / ] / ( )
.    (6.238)

The approximation assumes µ µ λ λ λσ σ, >> , ,   o .  The failure rate λο (for no
connection) is dominant and acts similarly as λσ  in Example 6.15 (Eq (6.212)).
The effect of imperfect switching becomes negligible for

λ λ λ λ µ λ λ λ µ µο σ σ µ µ λ λ λ λσ σ ο<< << >>(   and      ) /+ +      ( ,     r r r) / ( , , , ) . (6.239)

λ µo o(0 <= ∞<0 ) leads to Eq. (6.206), λ λ µ µσ σo o(0 <= = ∞<0 , ) yields results for
ideal switch (Table 6.6).
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Figure 6.31   Diagram of transition rates for reliability calculation for a repairable 1-out-of-2 warm
redundancy with constant failure & repair rates λ λ µ , r , , switch with failure modes stuck at the
state occupied and no connection with constant failure & repair rates λσ σµ,  and λ µo o, ,
respectively, ideal failure detection and localization, one repair crew, repair priority on switch
( Z 2  down state (absorbing for reliability calculation), Markov process)

Example 6.22 investigates PA AAS S=  for the system described by Fig. 6.31 by
assuming a repair rate µo for failure mode no connection and µσ  for failure mode
stuck at the state occupied just before failure, one repair crew, and repair priority
for switch failures (for the switch only a failure mode is possible at a time).  From
Eq. (6.240) one recognizes that imperfect switching acts for PA AAS S=  in a similar
way as for MTTFS0  (Eq. (6.239)).

A more complex system is considered in Section 6.8.6.3 (pp. 266 - 269).  Further
models for systems with more than two states or one failure mode are conceivable.

Example 6.22
Investigates the asymptotic & steady-state point and average availability PA AAS S=  for the
model considered in Fig. 6.31 by assuming no further failures at system down ( )λ µi i<< .
Solution
PA AAS S=  (as well as PAS t0 ( ) ) can be obtained using a
9 states Markov process with up states Z Z Z Z0 0 1 1   , , ,' '  and
down states Z Z Z Z Z1 1 2 2 2'' ' ' ' ' ' '   , , , ,  (absorbing for
reliability calculation), see graph, by solving (Table 6.2)
( ) ' ' ' 'λ λ λ λ µ µ µσ σ+ + + + +=r P P P Po o  0 0 1 1 , µ λo oP P1 0'' ' = ,
( ) 'λ λ µ λσ σ+ + =r P P0 0 , ( ) ' 'λ µ λ λσ σ+ +=P P Pr1 0 1, µo P1''
= λoP1, µ λ µσP P P2 1 2= + ' , µ λσP P2 1' '= , µ λσP P2 0'' '= , and
P P P P P P P P P0 0 1 1 1 1 2 2 2 1+ + + + + + + + =' ' ' ' ' ' ' ' ' ' , yielding
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Equation (6.240) allows similar conclusions as given by Eq. (6.239), same for µ µ µσo = = .
λo = 0 leads to Eq. (6.209), λ λσo = = 0 yields results for ideal switch  (0 < oµ µσ, ) .< ∞
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6.8.6 Fault Tolerant reconfigurable Systems

Fault tolerant structures are able to detect and localize faults (failures & defects) and
reconfigure themselves to continue operation with minimum loss of performance
and / or safety (graceful degradation).  Such a characteristic must be built in during
design & development.  Typical examples of fault tolerant systems are safety circuits
as well as power and telecommunication networks.  Following a short discussion on
ideal reconfiguration, this section deals with reconfiguration occurring at given fixed
times or at failure by considering also non ideal conditions, for instance imperfect
switching in Section 6.8.6.3.  Investigation is based on tools introduced in Appendix
A7 and summarized in Table 6.2.  Constant failure and repair rates are assumed,
yielding to time-homogeneous Markov processes.  Procedures are illus-trated on a
case-by-case basis using diagrams of transition rates.

6.8.6.1 Ideal case

Each redundant structure belongs to a fault tolerant reconfigurable structure and
must be validated for this purpose during design & development, for instance with
an FMEA (Section 2.6).  For the redundant structures investigated in Sections 2.2,
2.3.1 -  2.3.5, 6.4 -  6.7 and Appendix A7, independent elements (p. 52), ideal fault
coverage, ideal switching, and no reduction of system performance at failure of a
redundant element was assumed.  Because of these assumptions, investigations
often lead to series - parallel structures (Sections 6.6 & 6.7).  Imperfect switching,
incomplete coverage, and items (systems) with more than two states or failure
modes are considered in Sections 2.3.6, 6.8.3 - 6.8.5, 6.8.6.3.  Sections 6.8.6.2 and
6.8.6.3 investigate time and failure censored reconfiguration, and Section 6.8.6.4
considers reward & frequency / duration aspects.  In addition, Sections 6.8.7 - 6.8.9
deal with common cause failures, basic considerations on reliability networks, and a
general procedure for complex repairable systems.  Alternative investigation
methods for complex systems and aspects of human reliability are introduced in
Sections 6.9 and 6.10, respectively.

6.8.6.2 Time Censored Reconfiguration (Phased-Mission Systems)

In some practical applications, systems are used for different required functions.
If each required function can be considered separately from one another, inves-
tigation is performed by considering a reliability block diagram (if it exist) for each
required function (p. 29).  Otherwise, if mission phases follow each other, investiga-
tion must consider the system reconfiguration at the end of each phase and one
define this as a phased-mission system.  Investigation of phased-mission systems
can be more time consuming as stated e. g. in [2.7, 2.18, 6.24, 6.33, 6.41], dealing with
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binary state assignment (basically limited to totally independent elements (p. 52)),
considering time dependent failure or repair rates (breaking the Markov property),
using semi-Markov processes (of limited validity), or missing Assumption 4 below
(important when transferring state probabilities at the end of phase k to initial prob-
abilities for phase k + 1).  A lower bound RS l0  on the reliability RS0  for the whole
mission is obtained by connecting the reliability block diagrams for each phase in
series for the whole mission duration. 

+)  An upper bound on RS0  is given by the
smaller of the reliability for each phase, taken separately, by assuming that all
elements involved are as-good-as-new at begin of the phase considered;  thus,

R R RS l S k S k n n0 0 0 1≤ ≤ =min ( )                     (for  phases)., , ... , (6.241)

Examples 6.23 - 6.25 illustrate basic aspects. For the availability, Eq. (6.246) applies.
Following some general assumptions in Point (i), a practice oriented procedure

for reliability and availability analysis of repairable phased-mission systems, which
considers standby redundancy and arbitrary repair strategy, is given in Point (ii).

(i)  General assumptions:

1. Failure & repair rates ( λ µi i & ) of all elements are constant during the sojourn
time in any state within each phase, but can change (stepwise) at a state (or
phase) change because of change in configuration, component use, stress,
repair strategy or other (see also p. 38);  for all elements it holds that λ µi i<< .

2. At the beginning of the phased-mission all elements are as-good-as-new.
3. Phase duration T Tn1 ,... ,  are given (fixed) values, each of them so large that

asymptotic &  steady-state values for availability can be assumed for every
phase (T Tn i1 10,... , / > µ  for all elements, see Section 6.2.5 and Table 6.6).

4. For availability investigation, not used elements in a phase are either as-good-
as-new and put in standby (failure rate λ ≡ 0) at begin of the phase or repaired
(Assumption 3) and then put in standby (repair priority on elements used);
for reliability investigation, down states at system level are absorbing states
and the above rule holds for elements which have not caused system down.

5. The system has only one repair crew and no further failures can occur at sys-
tem down;  system down is an absorbing state for reliability;  for availability,
the system is restored to an operating state according to a given repair strategy.

6. Fault coverage, switch & logistic support are ideal, no preventive maintenance.
7. For each phase, a reliability block diagram exists.

Reduction of above assumptions is possible, for instance, on the basis of the models
discussed in Sections 6.8.2 - 6.8.5.

_____________
+) Assuming that the mission is of given (fixed) duration, RS0  is the reliability for the whole mission,

similar for PA AAS S=  (mission availability has been reserved for Eq. (6.29));  R PA AAS S S0 & =  are
thus numbers within [0,1], not function RS t0 ( ) or PAS t0 ( ), this applies also to Example 6.25.
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Figure 6.32  Diagrams of transition rates for a one-item used in a mission with phase 1 followed by
phase 2 (failure rate λ1 & λ2 , duration T1 & T2, respectively); Z Z11 2 1, ,,  down states

Example 6.23
A one-item is used in a mission with phase 1 (duration T1, const. failure rate λ1), followed by
phase 2 (duration T2, const. failure rate λ2). Compute the reliability function for item new at t = 0.
Solution
For the reliability RS 0  for the whole mission it holds that ( T1, T2 given (fixed))

R
S

e e eT T T T
0

1 1 2 2 1 1 2 2

= ∩ =
= =− − − +

Pr phase 1 failure free  phase 2 failure free Pr phase 1 failure free    Pr phase 2

failure free phase 1 failure free        .
           (6.242)  

{ } { } . {

| } . ( )λ λ λ λ

The product rule in Eq. (6.242) holds only because of constant failure rates (Eqs. (2.14), (A6.29)).

Example 6.24
Show that Eq. (6.242) can be obtained using a Markov approach, i. e., working with two separate
transition rate diagrams for phase 1 and for phase 2, and setting final state probabilities from
phase 1 as initial-state probabilities for phase 2.
Solution
Figure 6.32 gives the diagrams of transition rates for phase 1 and 2 (separately).  For phase 1,
the state probability P1, 0

' ( )t  follows from P  P
•

1, 0
'

1, 0
'( ) ( )t t= − λ1  (Table 6.2, Eq. (A7.115), yield-

ing P1, 0
' ( ) ,t e t= − λ1  for P

1, 0
' ( )0 1= .  Thus,

R )  P1,0
'

S T T e T
0 1 1

1 1( ( )= = −λ    and   P  1,1
' ( )T e T

1 1 1 1= − −λ .

P1,1
' ( )t  follows from P  P1, 0

' 1,1'( ) ( )t t+ = 1 or by solving P  P
•

1,1
'

1, 0
'( ) ( )t t= λ1  with P1,1

' ( )0 0= .
Similarly, for phase 2 with t starting at t T= 1,

P  P
•

2, 0
'

2, 0
'( ) ( )t T t T− = − −1 2 1λ ,   with   P  P  2, 0

'
1, 0
'( ) ( ) ;T T e T

1 1
1 1= = −λ

yielding P      2, 0
'  ( ) ,( )t T e eT Tt T t T T− = − − − ≤ < +1 1 1 2 1 1 1 2

λ λ , and thus

R + T )  P   2 2, 0
'

S
T T T T

ST T T e e e R0 1 1 2 0
1 1 2 2 1 1 2 2( ( ) ( )

.= + = = =− − − +λ λ λ λ (6.243)

Example 6.25
A one-item system with reliability function RS t0 ( ) is used for a mission of random duration
τ W > 0 distributed according to F PrW Wt t( ) { }= ≤τ  with FW ( )0 0=  and density fW t( ) .  Give
the reliability, first for the general case and then by assuming constant failure rate λ  and
exponentially distributed mission duration (fW t e t( ) )= −δ δ .
Solution
As mission duration can take any time between ( , )0 ∞ , reliability takes a constant value given by

R t t dtS w S0 0
0

=
∞
∫ f R  ( ) ( ) , (6.244)

(see also Eq. (2.76)).  For fW t e t( )= −δ δ  and constant failure rate λ, Eq. (6.244) yields

R R RS S S0 0 01= + ≈ ≈δ δ λ δ λ δ λ δ λ  ,       and thus,   for >>    and  for <</ ( ) / . (6.245)

Supplement. results:  If the mission duration is limited to TW , τW > 0 is a truncated random
variable and Eq. (6.245) becomes RS

Tw0        = ( +   )  eδ λ δ λδ λ− + +( ) / ( ) .
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(ii) Procedure for reliability & availability computation of repairable phased-mission
systems with fixed phase duration T Tn1, ... , ,  satisfying the general assumptions (i):

1. Group series elements used in all phases (power supply, cooling, etc.) in one
element to be considered in final results (Table 6.10, 2n d row, Eqs. (6.257), (6.258)).

2. Draw the diagram of transition rates for reliability evaluation, separately for
each phase ( , ... , )1  n , beginning by phase 1 with Z 1 0,  (1 referring to phase 1
and 0 being the state in which all elements are as-good-as-new); down states
at system level are absorbing states;  use the same state numbering for the
same state appearing in successive phases;  however, state Zk i,  correspond-
ing to a state Zc i,  in a phase c preceding phase k  can also contain as-good-as-
new elements appearing in phase k  but not in a pervious phase, or standby
elements (not used in phase k) with failure rate λ ≡ 0;  for k > 1, state Z k , 0
contains all as-good-as-new elements used in phase k and (as necessary)
elements not used in phase k  which are standby with failure rate λ ≡ 0 (as-
good-as-new is same as operating or ready to operate, because of λ i  const.).

3. For availability investigation, use results of Table 6.10 (or extend diagrams of
transition rates, allowing a return to an operating state after system down
according to a given repair strategy) to compute the asymptotic & steady-state
availability for each phase separately ( PA AAk S k S, ,=  for phase k ), taking care
of elements which are not used in the phase considered and can act as standby
redundancy ( λ ≡ 0) for working elements;  for the whole mission it holds then

PA AA PA AAS S k S k S k n n= ≥ = =min (  ,                  (for  phases)., , , ... ,) 1 (6.246)

4. For reliability investigation, compute the reliability function R  1 0 1, ( )S T  at the
end of phase 1 starting in state Z1 0,  at t = 0 in the same way as for a one
mission system (Table 6.2), as well as states probabilities P1 1,

' ( )j T  for all up
states Z j1, ;  if Z j1,  (possibly with further as-good-as-new elements used in
phase 2) is an up state in phase 2, P1 1,

' ( )j T  becomes the probability P  2 0,
' ( )j

to start phase 2 in Z j2, ;  if Z j1,  is a (system) down state in phase 2, P1 1,
' ( )j T

adds to the initial probability of starting phase 2 in the (system) down state;  if
Z j1,  does not appear in phase 2, P1 1,

' ( )j T  adds to the initial probability in
state Z 2 0,  to give P  02 0,' ( ) (from rule 2 above and verifying that for each
phase the sum of all states probabilities is 1);  reliability calculation must take
care of elements which are not used in the phase considered and can act as
standby redundancy ( )λ ≡ 0  for working elements;  continuing in this way,
the reliability RS 0  for the whole mission starting phase 1 in Z 1 0,   , follows as

R TS n j n U n
Z Uj n

n0 =
∈
∑ =P  ,                set of up states in phase ,' ( ) . (6.247)

5. If a state Zk i,  does not appear in the phase k +1, the general rule 4 applies.

6. To avoid ambiguities, x starting by x = 0 at the begin of each phase is used.
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Figure 6.33   Reliability block diagrams and diagram of transition rates for reliability calculation of a
phased-mission system with 3 phases (the diagram for phase 2 takes care that one element E2  is put
in standby with λ2 0≡  as soon as available from phase 1);  dashed are indicated to which states the
final state probabilities of phase 1 and phase 2 are transferred as initial probabilities for phase 2 and
phase 3, respectively (constant failure & repair rates ( , )λ µi i , ideal failure detection & switch, one
repair crew, repair as per first-in first-out, Z Z Z11 2 1 3 1, , ,, ,  down states, Markov process)

As an example, let us consider the phased-mission system with 3 phases of given
(fixed) duration T T T1 2 3,   and , described by the 3 reliability block diagrams and the
corresponding diagrams of transition rates for reliability investigation given in
Fig. 6.33.  The diagram of transition rates for phase 2 considers that in phase 2 only
one element E2 is used and assumes that the second element E2 is put in standby
redundancy with failure rate λ2 0≡  (either from state Z1 0,  or as soon as repaired if
from state Z1 2, , assumption 4 on p. 262).  Dashed is given to which states the final
state probabilities at time T1 for phase 1 and T2 (T T1 2+   with respect to time t) for
phase 2 are transferred as initial probabilities for the successive phase.  Let us first
consider the asymptotic & steady-state availability PA AAS S=  for the whole mission.
From Tables 6.10 and 6.6, it follows for the 3 phases (taken separately) that

PA AA

PA AA

PA AA

S S

S S

S S

1 1 1 1 2 2
2

1 1

2 2

3 3 2 2
2

1 2 1

1 2

1 2 2 1
2 2

2
3 3

2

1 1 3 3
2

1

, ,

, ,

, ,

( / ) ( / ) ( / ) ,

( / ) ( / ) ,

( / ) ( / ) ( / ) ( /

= ≈ − − ≈ −

= ≈ − −
= ≈ − − − ≈ −

λ µ λ µ λ µ

λ µ λ µ
λ µ λ µ λ µ λ µµ1) .              (6.248)  

The 2 nd equation considers that in phase 2 one of the elements E2 acts as standby
redundancy with failure rate λ2 0≡  (assumption 4 on p. 262), combining thus results
from Tables 6.6 (1 2 2

2− ( / )λ µ ) and 6.10 (2 nd row).  Equation (6.246) yields then

PA AA PA AAS S k S k S k  ( ) / ,        min    1= = =≥ −≈, , , , .1 1 1 2 3λ µ (6.249)
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For the reliability RS0 , for the whole mission starting in state Z1 0,  (elements news)
at t =0, the diagrams of transition rates of Fig. 6.33 yield for phases 1, 2, 3 the fol-
lowing coupled system of differential equations for the state probabilities (Table 6.2;
P i j,

'  is used instead of Pi j x,
' ( ) , x starts by x =0 at the beginning of each phase)

 P P P    P P P

 P P )P            with  P     P P

• •

•
1,0
'

1,2
'

1,1
'

= − + + = − + + +

= + + = =

( ) ' ' , ( ) ' ' ,

' ( ' , ' ( ) , ' ( )

, , , ,

, , , ,

λ λ µ λ λ µ λ

λ λ λ

1 2 1 0 2 1 2 1 2 2 1 2 2 1 0

1 1 0 1 2 1 2 1 0 1 1 1

2 2

0 1 0 ..

, , , , ,

, ,

' ( ) ;

( ) ' ' ' , ( ) ' ' ,

( ) ' '

2

2 3 2 0 2 2 2 3 2 3 2 3 2 2 4 3 2 2

2 3 2 2 2 2 2 0 3 2

0 0

2 2

2

=

= − + + + = − + + +

= − + + + +

P P P P     P P P

P P P P

• •

•
2,0
'

2,4
'

2,2
'

λ λ µ µ λ λ µ λ

λ λ µ λ µ ,, , ,

, , , , , , ,

' , ( ) ' ' ,

( ) ' ' ' , ' ' ( '
5 2 3 3 2 5 2 2 3

2 3 3 2 3 3 2 0 2 2 4 2 2 2 3 2 3 2 3 2 4 22
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 P P P P   P P P )(P P
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• •
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2,1
'
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2 1 2T

From Eq. (6.247) it follows then

R T T T T TS0 3 0 3 3 2 3 3 3 3 3 4 3 3 5 3  P P P P P    .= + + + +,
'

,
'

,
'

,
'

,
'( ) ( ) ( ) ( ) ( ) (6.251)

Analytical solution of the system given by Eq. (6.250) is possible, but time consum-
ing.  A numerical solution is given in Example 6.26.  A lower bound RS l0  on the
reliability RS 0 for the whole mission is obtained by connecting the reliability block
diagrams for each phase in series (Eq. (6.241)).  For Fig. 6.33, this corresponds,
nearly, to consider phase 3 for a time span T T T1 2 3+ +   (per assumption 4 on p. 262,
for element E2 a second element E2 in standby redundancy is available in phase 2).
Using RS l

Se T T T MTTF
0 1 2 3 0≈ − + +( ) /  with MTTFS 0  as per Table 6.10 (2 nd & 3 rd row), it

follows that

 >     
    R RS S

T T T
l

e0 0
2 21 2 3 1 2

2
2 3

2
3≈ − + + + +( ) ( / / )λ λ µ λ µ . (6.252)

An upper bound on RS0 follows from Eq. (6.241), see Example 6.26.
If the second element E2 were not available in phase 2 as standby redundancy,

PA AAS S2 2 1 2 2, , /= ≈ − λ µ  and, from Eq. (6.249), PA AAS S= ≈ −1 2 2λ µ/ , since
λ µ λ µ1 1 2 2/ /<  can be assumed when considering the reliability block diagram
for phase 1.  In this case, and assuming that the second element E2 would be
repaired before the end of phase 2 (if in a failed state at the end of phase 1),
the diagram of transition rates for phase 2 would be equal to that for phase 1, with
λ λ1 2→ , λ λ µ µ2 3 2 3→ →, , Z Z Z Z1 0 2 0 1 1 2 1, , , ,, ,→ → Z Z1 2 2 3, , ,→  and

P P P    P P     P2 0 1 0 1 1 2 1 2 1 11 1 2 30 0 0 0, , , , , ,' ( ) ' ( ) ' ( ) ' ( ) ' ( ) ' ( ), ,= + = =T T T . (6.255)
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Example 6.26
Give the numerical solution of Eqs. (6.250) and (6.251) for λ1

4 110= − −h , λ2
2 110= − −h

λ3
3 110= − −h , µ µ µ1 2 3

10 5= = = −. , h  T1 168=  h , T2 336=  h , and T3 672=  h .

Solution
Numerical solution of the 3 coupled systems of differential equations given by Eq. (6.250) yields

 P    P   P  

P   P = 0.00009   P = 0.375278
3 0 3 3 2 3 3 3 3

3 4 3 3 5 3 31 3

0 598655 0 023493 0 002388

0 000092 4
,

'
,

'
,

'

,
'

,
'

,
'

( ) . , ( ) . , ( ) . ,

( ) . , ( ) , ( )

T T T

T T T

= = =

=     (6.253)

(with 6 digits because of P3 4 3,
' ( )T  and P3 5 3,

' ( )T ).  RS0  follows then from Eq. (6.251)

R TS0 3 1 31 0 625= − = P ,
' ( ) . .     (6.254)

Supplementary results:  Computing lower and upper bound on RS0  as per Eqs. (6.252)
and (6.241), yields for the above example 0 55 0 710. .≤ ≤RS
(considering assumption 4 on p. 262 for RS l0 ).

The corresponding initial probabilities for phase 3 would be

P P    P P  P P  

P P P                                                                   
             

      (6.256)

3 0 2 0 2 31 2 1 2 3 3 2 3 2

3 2 3 4 3 5

0 0 0

0 0 0 0

, , , , , ,

, , ,

' ( ) ' ( ) ' ( ) ' ( ) ' ( ) ' ( )

' ( ) ' ( ) ' ( ) .

, , ,= = =

= = =

T T T

If an element Eser  where common to all 3 phases in Fig. 6.33 (i. e. in series with
all 3 reliability block diagrams), Table 6.10 (2 nd row) can be used to find

PA AAS Stot tot ser ser= ≈ − −1 1 1λ µ λ µ/ / (6.257)

(considering Eq. (6.249)) and, with RS 0 from Eq. 6.251,

R R eS S
T T T

tot
ser0 0 1 2 3≈ − + +. λ ( ) . (6.258)

The above procedure can be extended to consider more than one repair crew
at system level or any kind of repair (restore) strategy.  Other procedures (models)
are conceivable.  For instance, for nonrepairable systems (up to system failure) of
complex structure, and with independent elements (parallel redundancy), it can be
useful to number the states using binary considerations.

For randomly distributed phase duration, Eq. (6.246) can be used for availa-
bility.  Reliability can be obtained by expanding results in Examples 6.23 - 6.25.

An alternative approach for phased-mission systems is to assume that at the
beginning of each mission phase, the system is as-good-as-new with respect to the
elements used in the mission phase considered (required elements are repaired
in a negligible time at the begin of the mission phase, if they are in a failed state,
and not required elements can be repaired during a phase in which they are not
used).  This assumption can be reasonable for some repairable systems and highly
simplifies investigation.  For this case, results developed in Section 6.8.2 for
preventive maintenance can be used, and lead to (for phases 1, 2,...)



266 6   Reliability and Availability of Repairable Systems

R t R t t T

R T R t T T t T

R T R T T R t T

S S

S S

S S S

( ) ( ) ,

( ) ( ) ,   

( ) ( ) (

*

* * * *

* * *

= ≤
= − ≤
= − −

1 1

1 1 2 1 1 2

1 1 2 2 1 3

0                  
 
   

                                   
  for

    
<

                                              for <
            22 2 3

* * *) ,            for <

                                                                                                                              
 

  
  (6.259)
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for the reliability function, and
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    (6.260)M

for the point availability.  S i  is the state from which the i th mission phase starts;
0 1 2, , , .....* *T T  are the time points on the time axis at which the mission phase 1, 2, 3, ...
begin (the mission duration of phase i being here T T Ti i

*  with − =−1 0 0* * ).

6.8.6.3 Failure Censored Reconfiguration

In most applications, reconfiguration occurs at the failure of a redundant element.
Besides cases with ideal fault coverage, ideal switching, and no system performance
reduction at failure (Sections 2.2, 2.3, and 6.4 - 6.7), more complex structures often
arise in practical applications (see Sections 6.8.3 - 6.8.5 for some examples).
Such structures must be investigated on a case-by-case basis, and an FMEA / FMECA
(Section 2.6) is mandatory to validate investigations.  Often it is necessary to
consider that after a reconfiguration, the system performance is reduced, i. e . ,
reward and frequency / duration aspects have to be involved in the analysis.

A reasonably simple and comprehensive example is a power system substation.
Figure 6.34 gives the functional block diagram and the diagram of transition rates
for availability calculation, µg ≡ 0 for reliability investigation.  Z12 is the down state.
The substation is powered by a reliable network and consists of:

• Two branch designated by A A1 2&  and capable of performing 100% load,
each with HV switch, HV circuit breaker and control elements, transformer,
measurement & control elements, and LV switch.

• Two busbars designated by C C1 2&  and capable of performing 100% load
(failure rate basically given by double contingency of faults on control elements).

• A coupler between the busbars, designated by B and capable of performing
100% load; failure modes stuck at the state occupied just before failure(does not
open), failure rate λ σB , and no connection (does not close), failure rate λ οB .

Load is distributed between C C1 2 and  at 50% rate each.  The diagram of transition
rates is based on an extensive FMEA / FMECA [6.20 (2002)] showing in particular the
key position of the coupler B in the reconfiguration strategy.  Coupler B is normally
open.  A failure of B is recognized only at a failure of A or C.  From state Z0, B  can
fail only with failure mode no connection (does not close), from Z Z1 2 or  only with
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Figure 6.34   Functional block diagram and diagram of transition rates for a repairable power system
substation with active redundancy,  constant failure and repair rates ( λ λ λ λσ οA A B B1 2,    , , ,
 ,  λ λ µ µ µC C A C g1 2 , , , ), imperfect switching of B (failure modes does not open ( λ σB , from
Z Z1 2 and ) or no connection ( λ οB , from Z 0 )), failure of B recognized only at failure of A or C,
ideal failure detection & localization for A and C, one repair crew, repair priority on C, no further
failure at system down ( Z 12  down state (absorbing for rel. calculation ( )µg ≡ 0 ), Markov process)

stuck at the state occupied just before failure (does not open).  Constant failure &
repair rates λ λ λ σA A B1 2,   , ,   ,   λ λ λοB C C, 1 2  & µ µ µA C g, ,  are assumed.  µ µA C&  are
the same also if a repair of B is necessary; µg 

is larger than µ µA C& .  From the
down state ( Z12 ) the system returns to state Z0.  Furthermore, only one repair crew,
repair priority on C (followed by C+B, A, A+B), and no further failure at system
down (50% load is an up state with reduced performance) are assumed.  Asked are
mean time to system failure MTTFS0  for system new (in state Z0) at t = 0 and
asymptotic &  steady-state point and average availability PA AAS S= .  The involved
process is a time-homogeneous Markov process.  If results are required for 100%
load, Z Z6 12−  are down states (see Section 6.8.6.4 for reward considerations).  To
simplify investigation, λ λ λA A1 2= = A and λ λ λC C C1 2= =  are assumed.  To increase
readability, the number of states in Fig. 6.34 has been reduced as per Point 2 on p. 277).

From Fig. 6.34 and Table 6.2 or Eq. (A7.126) it follows that MTTFS 0  is given
as solution of the following system of algebraic equations (with M MTTFi Si= )
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Because of λ λ λ λ λ λA A C C C1 2 1 2= = == A,  and the symmetry in Fig. 6.34 it follows that
ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ2 1 4 3 7 6 9 8 11 10 2 1 4 3 7 6 9 8 11 10= = = = =, , , and , ,   , , .  = = = = =, M M M M M M M M MM
This has been considered in solving the system of algebraic equations (6.261).
From Eq. (6.261) it follows that
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MTTFS0  per Eq. (6.262) can be approximated by
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(6.265)
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yielding MTTFS A C B B0
22 0≈ = =+ = =µ λ λ λ λ µ µ µσ ο/ ( )          andfor A C   (1-out-of-2 active

redundancy with A and C in series, as per Table 6.10, 2 nd & 3 rd row).
From Fig. 6.34 and Table 6.2 or Eq. (A7.127) it follows that the asymptotic &

steady-state point and average availability PA AAS S=  is given as solution of
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(6.266)

One of the Eq. (6.266) must be dropped and replaced by Pi∑ =1.  The solution yields

P P b P P P b P P P P P b P

P P P P P P P b P
B Bo

C Bo A Bo

1 2 1 0 3 4 1 0 3 5 0 5 8 9 2 0

6 7 0 5 5 6 10 11 0 5 10 12 3 0

= = = = = = =
= = + = = =

, / , / ,

( / , / , ,

  ,   

        (6.267)

λ ρ λ ρ
λ ρ λ ρ ρ λ λ ρ ρ

σ
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From Eqs. (6.267) - (6.269) it follows that
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PA AAS S=  per Eq. (6.270) can be approximated by
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yielding PA AAS S A C B B A C g= ≈ + = = = = =−1 2 02 ((      for andoλ λ µ λ λ µ µ µ µσ) / )  (1-out-
of-2 active redundancy with A and C in series, as per Table 6.10).  Equations (6.265)
and (6.271) show the small influence of the coupler B.  A numerical evaluation with
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yields, from Eqs.(6.262) & (6.270),

MTTF PA AAS S S0
9 97 36 4 10 1 1 63 10≈ = ≈ − −. . . . .h     &    

and, from Eqs. (6.265) & (6.271), MTTF PA AAS S S0
9 97 36 10 1 1 78 10≈ ≈ −−. . . . h &       =  ;

moreover,
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Considering the substation as a macro-structure (first row in Table 6.10), it holds
that  =PA AAS S S S≈ −1 λ µ/  and RS

tt e S( ) ≈ −λ , with µ µ λS S Sg MTTF= = and      1 0/ .
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6.8.6.4 Reward and Frequency / Duration Aspects

For some applications, e. g. in power and communication systems, it is of impor-
tance to consider system performance also in the presence of failures.  Reward and
frequency /  duration aspects are of interest to evaluate system performability.  For
constant failure and repair rates (time-homogeneous Markov processes), asymptotic
& steady-state system failure frequency fudS , system repair(restoration) frequency
fduS , system mean up time MUTS , and system mean down time MDTS  (mean repair

(restoration) duration at system level) are given as (Eqs. (A7.141) - (A7.146)) +)

f P f Pud S j j i duS i i j
Z U Zi U Z U Z Uj i j

MUT MDTS S       = = = =
∈ ∈ −

∈
− ∈

∑ ∑∑ ∑ +( ) ( ) / ( )ρ ρ 1  (6.272)

and
MDT MUTS S S S S udS PA PPA PA PA f S j

Z Uj

= = ∑− − =
∈

       (         (       ,   ,   (6.273)1 1) )/ /

respectively  (Eq. (6.273) can be heuristically explained, considering that for T → ∞ ,
( )1−PA TS  is the total mean down time and T fduS.  the total mean number of repairs
in ( , ]0 T ).  U is the set of states considered as up states for fudS  and MDTS  calcula-
tion, U

−  is the complement to the totality of states considered.  Pj  is the asymptotic
& steady-state probability of state Z j  and ρj i  the transition rate from Z j  to Zi .  In
Eq. (6.272), all transition rates ρ j i  leaving state Z Uj ∈

  
 toward Z Ui ∈ −

 are considered
(cumulated states).  Example 6.27 gives an application to the substation of Fig. 6.34.

Example 6.27
Give the failure frequency fudS and the mean (expected) failure duration MDTS in steady-state
for the substation of Fig. 6.34 for failures referred to a load loss of 100% and ≥ 50%, respectively.

Solution
For loss of 100% load, Fig. 6.34 with U UZ Z Z= =−{ , ..., } , { }0 11 12       yields ( Pi  as per Eq. (6.267))

f P P P P PudS A C A C loss =100 1 6 8 10 32 2 2% ( )( ) ( )+ + + + + +λ λ λ λ .

For loss of ≥ 50% load, Fig. 6.34 with U Z Z U Z Z= − = −−{ { }0 5 6 12  }   and  yields

f P P P PudS C A C A C A C loss  =    ≥ + + + + + +50 0 1 3 52 2 2 2 2 2% ( ) ( ) ( )λ λ λ λ λ λ λ  .

From Eq. (6.273) it follows that

MDT P fS udS loss  loss100 12 100% %/= , MDT fS udSP P P P loss  loss≥ ≥= − + + +50 501 2 20 1 3 5% %( ( ) ) / .

The numerical example on p. 269 yields    h      expected failures loss
-1fudS 100 136 10 1012 6

%
. (≈ ≈− −

  per   year),     783.10 h loss 50% fudS ≈ − −9 1 ( .≈ −7 10 3   expected   failures   per   year) ,
MDTS loss 100% = h = 1 /   and     h . S  loss  50 %12 4µg MDT ≥ ≈ .

Supplementary results:  For the system mean up time MUT MDT PA PAS S S S= −. / ( )1  , the numerical
example on p. 269 yields MUT MTTFS S loss h100 12 1 63 109

0% ( / . ) .≈ ≈<

____________
+) Similar results hold for semi-Markov processes.
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Example 6.28
Give the mean (expected) reward rate  in steady-state for the substation of Fig. 6.34.

Solution
Considering Fig. 6.34 and the numerical example on p. 269 it follows that

MIRS P P P P P P P = 1 . (  0 1 3 5 6 8 102 2 0 5 2 2 2+ + + + + +) . . ( ) ≈ 0 9999984. .   

The reward rate ri  takes care of the performance reduction in the state
considered, ( ri = 0  for down states, 0 1< <ri  for partially down states, and ri = 1 for
up states with 100% performance).  From this, the mean (expected) reward rate
in steady-state or for t → ∞, MIRS , is given as (Eq. (A7.147))

MIRS i
i

m

r Pi=
=
∑

0

,
                                                                                                       

 (6.274)

see Example 6.28 for an application.  The mean (expected) accumulated reward in
steady-state (or for t → ∞) follows as MAR MIRS St t( ) . = .  Pi  in Eq. (6.274) is the
asymptotic & steady-state probability of state Zi , giving also the expected percent-
age of time the system stays at the performance level specified by Zi  (Eq. (A7.132)).

6.8.7 Systems with Common Cause Failures

In some practical applications it is necessary to consider that common cause failures
can occur.  Common cause failures (C) are multiple failures resulting from a single
cause.  They must be distinguished from common mode failures, which are multiple
failures showing the same symptom.  Common cause failures can occur in hardware
as well as in software.  Their causes can be quite different.  Some possible causes
for common cause failures in hardware are:

•  overload (electrical, thermal, mechanical),

•  technological weakness (material, design, production),

•  misuse (e. g. caused by operating or maintenance personnel),

•  external event.

Similar causes can be found for software.
In the following, a 1-out-of-2 active redundancy is used as a basic example for

investigating effects of common cause failures.  Results (Eqs. (6.276) & (6.280))
show that common cause failure acts (in general) as a series element in the system's
reliability structure, with failure rate equal the occurrence rate δC  of the common
cause failure and repair (restoration) rate equal the remove rate µC  of the common
cause failure.  Equation (6.280) or graphs given by Figs. 2.8 & 6.17, and rules (2.28)
& (6.174) can be used to limit effects of common cause failures (δC  instead of λ2 ).
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Figure 6.35   Diagram of transition rates for the 1-out-of-2 active redundancy of Fig. 6.36 with
common cause failures (C) for 4 different basic possibilities, constant failure and repair rates
( , , , )λ µ µ µ C Ci , constant occurrence rates for C ( , ),  often with =δ δ δ δC Ci Ci C  ideal failure detec-
tion and switch, one repair crew, repair priority on C, no further failures at system down (except for
δ δC C41 45, )    ( Z Z Z Z1 3 4 5,   , ,  down states (absorbing for reliability calculation), Markov processes)

Figure 6.35 gives the diagrams of transition rates for the repairable 1-out-of-2
active redundancy of Fig. 6.36 with common cause failures for 4 different basic
possibilities (C refers to common cause failures, repair priority on C, one repair
crew, no further failures at system down except for δ δC C41 45, ).  To clarify results,
occurrence rates δ Ci and repair rates µ Ci for common cause failures are assumed to
be each other different when moving from one state to the other (δ δC C01 ≡  and
µ µC C10 ≡  is used to simplify the interpretation of Eqs. (6.276) &  (6.279)).  The 4
possibilities of Fig. 6.35 are resumed in Fig. 6.36 for investigation.  From Fig. 6.36
and Table 6.2, MTTFS0  is given as solution of the following system of algebraic
equations (all down states ( Z Z Z Z1 3 4 5,   , , ) are absorbing for reliability investigation)

( ) .2 1 2 10 2 2 0λ λ λ µ µδ δ δ+ + + + + += =C S S S SMTTF MTTF MTTF MTTF  ,   ( )

 
C21 C23    (6.275)

From Eq. (6.275), MTTFS0  follows as (for δ δ λC C≡ ≤01 ),
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Figure 6.36   Reliability block diagram and diagram of transition rates for availability calculation of a
1-out-of-2 active redundancy with common cause failures (C) for different possibilities as per Fig. 6.35
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Furthermore, from Fig. 6.36 and Table 6.2, the asymptotic & steady-state point and
average availability PA AAS S =  is given as solution of the following system of
algebraic equations

ρ µ µ ρ δ δ δ ρ δ

ρ δ ρ λ µ ρ λ µ µ
0 0 1 2 1 1 0 21 2 41 4 5 5 45 4

3 3 23 2 4 4 2 54 5 2 2 0 32 3 42

P P P P P P P P P

P P P P P P P P P

C C C C C

C C C

= + = + + =

= = + = + +

, , ,

,

                

            ,        .                               (6.277)

One of the Eq. (6.277) must be dropped and replaced by P P0 5 1+ + =...  (the first
equation because of the particular cases investigated below).  The solution yields

PA AA P PS S
a

a a a aC C C

=
+

+ + +
= + =0 2

1 2

3 1 1 2 41 1 2 21 1δ ρ δ ρ δ ρ/ / /
. (6.278)
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δδ δ µ ρ µ ρ δ δ µ ρ µC C C C C C21 23 3 32 41 45 5 54+ + = = + + =, , .    ,    4

Considering λ µ δ µ δ µ<< << <<, ,   C C Ci Ci it follows  that

PA AAS S C C C C C= <≈ + ≈ −    µ δ µ δ µ/ ( ) / .1 (6.279)

Equations (6.276) and (6.278) show that the effect of common cause failures
becomes negligible for

δ λ µ δ δ δ λ µC C C C<< << <<2 2
21 23/ , , , .                 assuming     (6.280)
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Equations (6.276) & (6.278) can be used to investigate Fig. 6.35 (for instance, with
δ δ δ µ µC C C C C23 41 45 32 540 0= = = < < ∞, ,    for case a), yielding
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ements, repair for C can include that for a failure
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c) C on elements in working or repair state, repair
for C can include that for other failures

d) C on elements in working or repair state,
repair as for case b)

Often δ δ δ δ δ µ µ µC C C C C C C C21 23 41 45 32 54= = = = = =&  can be assumed.  Case b) corre-
sponds then to a 1-out-of-2 active redundancy in series with a switch (Eqs. (6.157),
(6.159)).  Further approximations are possible, e. g. using 1 1 3 4 5− + + += =PA PA P P P PS S .

Equations (6.276) -  (6.280) clearly show the effect (consequence) of common
cause failures on a 1-out-of-2 active redundancy:

The common cause failure acts as a series element with failure rate equal
the occurrence rate δC  of the common cause failure and repair
(restoration) rate µC  equal the removal rate of the common cause failure;
it becomes negligible for δ λ µC << 2 2 /  (Eq. (6.280), see also Fig. 6.17). +)

The above rule can be extended to cover situations in which the common cause
failure acts on all redundant elements of a redundant structure.  From this:

Good protection against common cause failures can only be given if each
element of a redundant structure is realized with different technology
(materials & tools), electrically, mechanically and thermally separated, and
not designed by the same designer (true also for common faults in software).

Concrete protection against common cause failures must be worked out on a case-
by-case basis.  In verifying such a protection, an FMEA/FMECA is mandatory for
hardware and software.  In some applications, common cause failures can occur with
a time delay on elements of a redundant structure (e. g. drop of a cooling ventilator);
in this cases, automatic fault detection can avoid secondary failures.  Some practical
considerations on failure rates for common cause failures in electronic equipment
are in [A2.6 (61508-6)], giving δ λC / .≈ 0 005 as achievable value (see rule (6.174)).
 ____________

+) Situation similar to that of imperfect switch with no connection (Eqs. (6.238), (6.239)).
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Figure 6.37 a) Network with 3 nodes & bi-directional connection from each node to each other node;
b) 2-terminal RBD for connection N N1 2, , nodes 100% reliable;  c) 2-terminal RBD for connection
N N1 2, , edges and nodes can fail;  d) RBD for all-terminal reliability, edges and nodes can fail

6.8.8 Basic Considerations on Network Reliability

A network (telecommunication, power, neuronal, or other) can often be regarded,
for modeling purposes, as a graph with N nodes and up to ( )N

2  edges (or links).
Edges can be directed or bi-directional.  Nodes and / or edges can fail and can have
two or more states.  Furthermore, for reliability investigations, distinction is made
between 2-terminal and k-terminal ( )2 < ≤k N  connections.  Networks can thus have
very complex (meshed) reliability structures, some of which have been investigated
since the 1950s, with increasing interest in the last years, see e. g. [2.32, 6.51 - 6.70].

For the case of only two states for nodes and edges, small networks can be
investigated with methods introduced in Sections 2.3.1  - 2.3.3 (nonrepairabe) or 6.2  -
6.8.7 (repairable).  For large networks, solutions using minimal path or cut sets,
i. e. based on Boolean functions (Section 2.3.4), are possible, manually, using binary
decision diagrams (Section 6.9.3), or with help of dedicated computer programs, see
e.g. [6.53 (2007, 2009), 6.56, 6.58, 6.59].  Multi-states for nodes and / or edges have to
be considered when dealing with capacity problems, and some results for 2-terminal
networks are known, see e. g. [6.53 (2009), 6.56 - 6.60, 6.64].

In the following, two basic network structures are investigated using the key item
method given in Section 2.3.1 (see also Points 7 & 8 of Table 2.1 for further examples).

Figure 6.37a shows a network with 3 nodes N N N1 2 3, ,  and 3 bi-directional edges
E E E12 13 23, , .  The reliability block diagram (RBD) for connection N N1 2,  is given
in Fig. 6.37b if only edges can fail and in Fig. 6.37c if nodes and edges can fail.  The
reliability function (nonrepairable) related to Fig. 6.37c follows as for Eq. (2.26)

R R R R R R R R R R RS N N E E E N E E E NN N0 1 2 1 2 12 13 23 3 12 13 23 3,
] ,= + − [

                             
(6.281)

with R R t R R t RS S i i iN N N N0 01 2 1 2
0 1, , ( ) , ( ), ( ) .= = =   Figure 6.37d gives the RBD for   all-

terminal.   For this case, all nodes are in series and {( , ) ( , ) ( , )}N N N N N N1 2 1 3 2 3∩ ∩
= ∩{( , , )}(N N N N1 2 1 3 )     is used.  The reliability function (nonrepairable case)
can be computed using e.g. E12 as key item (Eq. (2.29)), yielding
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Figure 6.38 a) Network with 4 nodes & bi-directional connection from each node to each other
node;  b) 2-terminal RBD for nodes N N1 2& , edges and nodes can fail;  c) RBD for all-terminal
reliability, edges and nodes can fail  (RBD = reliability block diagram)

R R R R R R R R R R R RS N N N E E E E E E E Eall0 1 2 3 12 13 23 13 23 12 13 23
= + − + [

         ,               ( ) ] (6.282)

with R R R R t R R t Ri i S all S all i i i= = = =−1 0 10 0, ( ) , ( ), ( ) .   Considering Eq. (2.48), PA ti ( )
instead of R ti ( ) in Eqs. (6.281) & (6.282) leads to the point availability PA tS 0( ) for
the case of totally independent elements N N N E E E1 2 3 12 13 23, , , , ,  (p. 52).  To compute
the reliability for the repairable case or the point availability for non totally independ-
ent elements, the states space method introduced above in this chapter can be used.

Figure 6.38a shows a network with 4 nodes N N N N1 2 3 4, , ,  and 6 bi-directional
edges E E E E E E12 13 14 23 24 34, , , , , .   Assuming that nodes and edges can fail, the relia-
bility block diagram is given in Fig. 6.37b for connection N N1 2,  and Fig. 6.38c for
all-terminal.  Successively use of the key item method ( ), , ,on E E N N12 34 3 4  yields

R R R R R R R R R R R R R R R R

R R R R R R R R R R R R R R

S N N E E E N N E E E E E E E E

N E E N N E E E N E E N E E

N N0 1 2 1 2 12 12 34 3 4 13 14 13 14 23 24 23 24

4 13 23 3 4 14 24 34 3 13 23 4 14 24

, [ { [

]

{

}

( )( )

(

= + + − + −

+ + −+ + RR R R R R RN E E N E E3 13 23 4 14 24
)}], 

(6.283)

Similarly, Fig. 6.38c leads to (key item method on  E E E E12 13 14 24, , , )

R R R R R R R R R R R R R R R R

R R R R R R R R R R R R R R

S all N N N N

b b b

0 12 13 14 24 34 13 14 23 34 23 34

14 12 13 14 23 24 23 24 14 13 14

1 2 3 4
1 1 1 1= − − − − + + −

+ + − + ++

[
]

{

} { }

[ ] [

]

( )( )( ) ( )

[ ( ) ] ,                   (6.284)

with R R R R R R R R Rb= + − +24 23 34 23 34 24 23 34
( ) ; from this, R R R R R RS Nall0

4 3 4 5 616 33 24 6= − + −[ ]

for R R R RN N Ei i j
= = ,   (see also the remark to Eq. (6.282) for the repairable case).

Besides deterministic networks, some kinds of stochastic and evolving networks
have been investigated, for instance by assuming that for bi-directional edges, every
pair of nodes has a probability p to be connected (Erdõs-Renyi) or there is a proba-
bility p k( ) that a randomly selected node has k edges ( ( )p k  can be a Poisson dis-
tribution (Erdõs-Renyi) or a given power law), see e. g. [6.51-6.55] for greater details.
However, because of their complexity, investigation of networks is still in progress.
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Figure 6.39  Example for a reduction of a diagram of transition rates for MTTFS0  calculation
(note that ( ) ( ) ( ) ( / )/ // / /λ λ λ λ λ λ λ λ0 2 0 1 2 0 0 11 1 1 1+ + + += )

6.8.9 General Procedure for Modeling Complex Systems

On the basis of the tools introduced in Appendix A7 and results in Sections 6.8.1 -
6.8.8, following procedure can be given for reliability and availability investi-
gation of complex systems, both when a reliability block diagram exists or not
(for series-parallel structures, Section 6.7 applies, in particular Table 6.10, p. 233).

1. As a first step operate with time-homogeneous Markov processes, i. e . ,
assume that failure and repair rates of all elements are constant during the
stay time in every state, and can change (stepwise) only at state changes, e. g.
because of change in configuration, component use, stress, repair strategy or
other (dropping this assumption leads to non-Markovian processes, as shown
e. g. in Section 6.4.2, pp. 204 - 207).  In a further step, refinements can be con-
sidered on a case-by-case basis using more complex regenerative processes.

2. Group series elements and assign to each macro-structure E En1, ...,  a failure
rate λ λ λS n= …+ +1  and repair (restoration) rate  µ λ λ µ λ µS S n n= + +…/ ( / / )1 1
(Table 6.10).  A further reduction of a diagram of transition rates is possible
in some cases (see e.g. [6.32, 6.40], p. 229, Figs. 6.27 & 6.28, 6.30, 6.39).

3. Perform an FMEA (Section 2.6) to fix all relevant failure modes and to verify
actual system capability for detection, localization, reconfiguration, graceful
degradation at failure, and protection against common cause / mode failures.

4. Draw the diagram of transition rates and verify its correctness (see Fig. 6.20,
p. 235 & Fig. 6.34, p. 267 for two comprehensive examples);  important is the
identification of up states which have a direct transition to a down state at
system level (e. g. Z Z Z1 3 7, −  in Fig. 6.20), i. e. of critical operating states.

5. Identify the transition rates between each state (combination of failure and
repair rates), by considering assumed repair (restoration) priorities, retained
failure modes, and particularities specific to the system considered
(dependence between elements, sequence of failure or failure modes, etc.).

6. For reliability calculation, the mean time to system failure MTTFSi  for system
entering state Zi  at t = 0 is obtained by solving (Eq. (A7.126))

ρ ρ ρ ρi Si ij Sj Z U ijMTTF MTTF
Z U j ij

i i
j j i

m

= + ∑
∈ ≠
∑ ∈ =

= ≠
1

0

,
,

,
,

 

   

      
      

  

  

   

   

  

  

 .

 
  

(6.285)
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 Thereby, U is the set of up states,  U
−

 the set of down states (U U∪ − =
{ , ... , }Z Zm0 ), ρij  the transition rate from state Z Ui ∈  to state Z Uj   ∈ , and
ρi the sum of all transition rates leaving state Z i  (Table 6.2).  The system of
algebraic equations (6.285) delivers all MTTFSi  for any Z Ui ∈

 
 entered at t = 0

(note that for Markov processes, the condition ' ' Zi  is entered at t = 0" can be
replaced by "system in Zi  at t = 0").  At system level,

R  
S

MTTFt e t S0 0( ) /≈ − (6.286)

can often be used (in Z0 all elements are operating or ready to operate, i. e.,
as-good-as-new because of the memoryless Markov property).

7. The asymptotic ( t → ∞) & steady-state (stationary) point and average
availability PA AAS S=  is given as (Eq. (A7.134))

PA AA PS jS
Z Uj

= =
∈
∑      (6.287)

with Pj  as solution of (Eq. (A7.127), for irreducible embedded Markov chain)

ρ ρ ρ ρj j i i j P P j mP P
i i j

m

j j j j i
i i j

m

j

m

= ∑∑
= ≠ = ≠=
∑ = = =
0 00

1
, ,

,  , ,  , .      (6.288)with   > 0,   0,  ...      

One equation for Pj , arbitrarily chosen, must be replaced by Pj∑ =1.  Equa-
tion (6.288) states that in steady-state, the probability to live Zj  is equal to
the probability to come to Zj . For further availability figures see pp. 180-182.

8. Considering the constant failure rate for all elements, the asymptotic & steady-
state interval reliability follows as (Eq. (6.27))

IR ( , ) / /( )S St t PA e eMTTF MTTFS j SP
Z Uj

+ ≈ − ∑ −=
∈

θ θ θ0 0 . (6.289)

9. The asymptotic &  steady-state system failure frequency fudS  and system
mean (expected) up time MUTS  are given as (Eqs. (A7.141) & (A7.142))

fudS j j i j j iP P
Z U Zi U Z U Zi Uj j

 =
∈ ∈ ∈ ∈

−−
∑ ∑= ∑

,

( )ρ ρ (6.290)

and
MUTS S udSPA f= / , (6.291)

respectively.  U is the set of states considered as up states for fudS  and MUTS
calculation, U

−  the complement to the totality of states considered.  The
same is for the system repair (restoration) frequency fduS  and the system
mean (expected) down time MDTS , given as (Eqs. (A7.143) & (A7.144))

f duS i i j i ijP P

Z U Z U Z U Z U
i j i j

  =
−

∈ ∈
−

∈ ∈

∑ ∑= ∑
,

( )ρ ρ (6.292)

and

MDTS S duSPA f= −( ) / ,1 (6.293)
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respectively.  MUTS  is the mean of the time in which the system is moving in
the set of up states Z Uj ∈

  
 before a transition in the set of down states Z Ui ∈ −

occurs, in steady-state or for t →∞ .  MDTS  is the mean repair (restoration)
time at system level.  fudS  is the system failure intensity zS t( ) (Eq. (A7.230),
in steady-state or for t →∞ .  It is not difficult to recognize that one has

f fudS duS S S Sz MUT MDT= = = +1 / ( ), (6.294)

see Example 6.29 for a practical application. Equations (6.291), (6.293),
(6.294) lead to the following important relation

MDT MUT PA PAS S S S= −( ) /1       (as per PA MUT MUT MDTS S S S= +/ ( )) . (6.295)

MUT MTTFS S≈< 0  can often be used in practical applications;  however,
            can not be used forP MTTF MUTj Sj SZj U∈
∑   (see the remark on p. 500).

10. The asymptotic & steady-state mean (expected) reward rate MIRS  is given
by (Eq. (A7.147))

MIRS ir Pi
i

m

=
=
∑

0
   .    

                                                                                   (6.296)

Thereby, ri = 0  for down states, 0 1< <ri  for partially down states, and ri =1
for up states with 100% performance.  The asymptotic & steady-state
mean (expected) accumulated reward MARS  follows as (Eq. (A7.148))

MAR MIRS St t( ) .= . (6.297)

If the process involved is non-Markovian, it can be useful to operate with a time
schedule (see e. g. Figs. 6.10 & A7.11), and the above steps have to be changed,
as necessary.  Alternative investigation methods are introduced in Section 6.9.
Failure-free time means failure-free operating time and repair is used as a synonym
for restoration.

Example 6.29
Investigate MUTS MDTS udS duSf f, , ,   and  for the 1-out-of-2 redundancy of Fig. 6.8a.

Solution
The solution of Eq. (6.84) with P ( ) ,

.
, ,i t i= =0 0 1 2 ,yields (Eq. (6.87))

P Pr r r0 1
2 2 2= =+ + + + + + +µ λ λ λ µ µ µ λ λ λ λ λ µ µ/ / .[ ( )( ) ] ( ) [( )( ) ]         and     

From Fig. 6.8a and Eqs. (6.290) & (6.291) it follows that (see also Eq. (6.95) for MUTS )

MUT MDT udS duS MUT MDTS S f fr

r S S

r

r

= = = = =
+ +

+ +

+

+ + +

λ λ µ

λ λ λ µ
µλ λ λ

λ λ λ µ µ( )

( )

( ) ( )
,        ,    .       

1 1
2

For this example it holds that MUTS MTTFS= 1   (with MTTFS1 from Eq. (6.285) or, from Eq. (6.89)
with P ' ( )1 0 1= , see also Eq. (A7.154));  this is because the system enters state Z1 after each
system failure.  Furthermore, because of the return from the down state Z 2  to the up state Z 1 as
in Fig. 6.8a it hods that MDT MTTRS = =1 /µ  (follow also from the memoryless property of the
time-homogeneous Markov process and Fig. 6.8a).
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6.9 Alternative Investigation Methods

The methods given in sections 6.1 to 6.8 are based on Markov, semi-Markov and
semi-regenerative processes, according to the involved distributions for failure-free
and repair times.  They have the advantage of great flexibility (arbitrary redundancy
and repair strategy, incomplete coverage or switch, common cause failures, etc.) and
transparency.  Further tools are known to model repairable systems, e. g. based on
dynamic fault trees or Petri nets.  For very large or complex systems, numerical
solution or Monte Carlo simulation can become necessary.  Many of these tools are
similar in performance and versatility (Petri nets are equivalent to Markov models),
other have limitations (fault tree analyses are basically limited to totally independent
elements and Monte Carlo simulations delivers only numerical solutions), so that
choice of the tool is often related to the personal experience of the analyst (see e. g.
[A2.6 (61165, 60300-3-1), 6.30, 6.39 (2005)] for comparisons).  However,

modeling large complex systems requires a close cooperation between
project and reliability engineers.

After a recall for systems with totally independent elements, Sections 6.9.2 to 6.9.5
introduce dynamic fault trees, BDD, event trees and Petri nets.  Sections 6.9.6 & 6.9.7
consider numerical solutions & approximate expressions for large complex systems.
Human reliability is discussed in Section 6.10.

6.9.1 Systems with Totally Independent Elements

Totally independent elements means that each element operates and, if repairable, is
repaired independently of any other element in the system considered.  Elements are
boxes in a reliability block diagram and, for repairable elements, total independence
implies that each element has its repair crew and continues opera-tion during the
repair of a failed element.  This does not imply that the (physically) same element
cannot appear more times in a reliability block diagram (Example 2.3).  The reliabili-
ty function R ( )S t0  of nonrepairable (up to system failure) systems with totally inde-
pendent elements has been investigated in Chapter 2.  As stated with Eq. (2.48),
equation for R ( )S t0  is also valid for the point availability PA ( )S t0  of repairable
systems, substituting PA i t( ) to R ( )i t .  This rule can be used to get an upper bound
on PA ( )S t0  for the case in which each element does not have its repair crew.  Ba-
sically, the reliability function for repairable systems can not be given using Bool-
ean methods; however, an approximation can be found in some cases (Section 6.9.7).

6.9.2 Static and Dynamic Fault Trees

A fault tree (FT) is a graphical representation of the conditions or other factors
causing or contributing to the occurrence of a defined undesirable event, referred as
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top event.  In its original form, as introduced in Section 2.6 (p. 76), a fault tree
contains only static gates (essentially AND and OR for coherent systems) and is thus
termed static fault tree.  Such a fault tree can handle combinatorial events,
qualitatively (similar as for an FMEA, Section 2.6) or quantitatively (as with
Boolean functions, Section 2.3.4).  As in the current literature [2.85, 6.38, A2.6(IEC
61025)], "0" will be used also here for operating and "1" for failure (this in contrast
to the notation used in Sections 2.2 & 2.3 for reliability investigations based on the
reliability block diagram with 1 for up and 0 for down).  With this notation, OR
gates represent in fault trees a series structure and AND gates a parallel structure
with active redundancy (Figs. 2.14, 6.40-6.42).  In setting up a fault tree, a reliability
block diagram can be useful.  However, fault trees can also consider external events.
Figure 6.40 gives two examples of reliability structures with corresponding static
fault trees (see Table 2.1 and Example 6.30 for computations based on the reliability
block diagram, Section 6.9.3 for computations based on binary decision diagrams).

Static fault trees can be used to compute reliability and availability for the case
of totally independent elements (active redundancy and each element has its own
repair crew).  Reliability computation for the non-repairable case (up to system
failure) using fault tree analysis (FTA) leads to

1 1 1 10
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0
1

− − − −= =
= =
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for the series structure with independent elements, and to
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(6.299)

,  

for the k-out-of-n active redundancy with identical and independent elements
(Eqs. (2.17) and (2.23), R Ri it t( ) ( )= − =1  failure probability).  For complex
structures, computation uses binary decision diagrams (based on the Shannon
decomposition of the fault tree structure function, see Section 6.9.3) or minimal path
or cut sets (Eqs. (2.42), (2.44)), often supported by computer programs.

However, because of their basic structure, static fault trees can not handle states
or time dependencies (in particular standby redundancy & repair strategy).  For these
cases, it is necessary to extend static fault trees, adding so called dynamic gates to
obtain dynamic fault trees. Important dynamic gates are [2.85, 6.38, A2.6(IEC 61025)]:

• Priority AND gate (PAND), the output event (failure) occurs only if all input
events occur and in sequence from left to right.

• Sequence enforcing gate (SEQ), the output event occurs only if input events
occur in sequence from left to right and there are more than two input events.

• Spare gate (SPARE), the output event occurs if the number of spares is less
than required.
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Figure 6.40   a) Reliability block diagram and corresponding static fault tree for a 2-out-of-3 active
redundancy with switch element;  b) Functional block diagram and corresponding static fault tree for
a redundant computer system [6.30];    Note:  "0" holds for operating (up), "1" for failure (down)

Further gates (choice gate, redundancy gate, warm spare gate) have been suggested,
e. g. in [6.38].  All above dynamic gates requires a Markov analysis, i. e., states
probabilities must be computed by a Markov approach (constant failures & repair
rates), yielding results used as occurrence probability for the basic event replacing
the corresponding dynamic gate.  Use of dynamic gates in dynamic fault tree
analysis, with corresponding computer programs, has been carefully investigated,
e. g. in [2.85, 6.36, 6.38].

Fault tree analysis (FTA) is an established methodology for reliability and
availability analysis (emerging in the nineteen-sixties with investigations on
nuclear power plants).  However, the necessity to use Markov approaches to
solve dynamic gates can limit its use in practical applications.  Moreover, FTA has
the same limits as those of methods based on binary considerations (fault trees,
reliability block diagrams (RBD), binary decision diagrams (BDD), etc.).  However,
reliability block diagrams and fault trees are valid support in generating transition
rates diagrams for Markov analysis.  So once more,

combination of investigation tools is often a good way to solve difficult
problems.
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6.9.3  Binary Decision Diagrams

A binary decision diagram (BDD) is a directed acyclic graph obtained by successive
Shannon decomposition (Eq. (2.38)) of a Boolean function.  It applies in particular
to the structure functions developed in Section 2.3.4 for coherent systems, using
minimal path or cut sets.  This allows for easy computation of the reliability function
R ( )S t0  for the nonrepairable case (Eqs. (2.45), (2.47)) or point availability  PA ( )S t0
for repairable totally independent elements (Eqs. (2.45), (2.48)).  Frequently, BDDs
are used to compute R ( )S t0  or PA ( )S t0  for systems completely described by a fault
tree with corresponding fault tree structure function φ ζ ζFT n( , ..., )1 .  φ ζ ζFT n( , ..., )1
follows from a fault tree, see e. g. Figs. 6.41 & 6.42, or from the corresponding reli-
ability block diagram, considering "0" for operating (up) and "1" for failure (down).

In relation to fault trees, a BDD is constructed starting from the top event, i. e. from
φ ζ ζFT n( , ..., )1 , down to the sink boxes using the Shannon decomposition (Eq. (2.38))
of the fault tree structure function at the node considered.  Each node refers to a vari-
able of φ ζ ζFT n( , ..., )1  and has 2 outgoing edges, 0-edge for operating and 1-edge for
failure.  Input to a node can be one or more outgoing edges from other nodes.  The
BDD terminates in 2 sink boxes labeled 0 for operating (up), 1  for failure (down).
Indication 0 or 1 and an arrow help to identify the outgoing edge.  Figure 6.41 gives
two basic reliability block diagrams with corresponding fault trees, φFT , and BDDs.
Also given are the reliability functions for the nonrepairable case R ( )S t0  and RS t0 ( ):

To obtain R ( )S t0 , one moves from the top of the BDD following all possible
paths down to the sink box "0", taking in a multiplicative way R ( )i t  or
R Ri it t( ) ( )= −1  according to the value 0 or 1 assumed by the variable ζi
considered  (similarly for R  ,S t0 ( )  for PAS t0 ( ) consider Eq. (2.48) or (2.45)).
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Example 6.30

Give the reliability function R ( )S t0  for the nonrepairable case and the point availability PA ( )S t0

for the system of Fig. 6.40b, by assuming totally independent elements and using the reliability
block diagram's method with R R R R RD D D D D11 12 21 22

= = = = ,
 
R R RM M M1 2

= = , R R RP P P1 2
= = , R ( ) .i it R=

Solution

The reliability block diagram follows from
the functional block diagram of Fig. 6.40b
(Section 2.2.2), or from the corresponding
fault tree (Fig. 6.40b, considering "0" for
operating (up) and "1" for failure (down)).
As element M3  appears twice in the reliab-
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with R ti i i= =R  and R( ), ( )0 1.  Following the assumed totally independence of the elements
(each of the 10 elements has its own repair crew), the point availability PA ( )S t0  is also given by
Eq. (6.300) substituting R ti i with  PA ( ) (   PA AAi i=  for steady-state or t → ∞).

Figure 6.42 considers the basic structures given in Fig. 6.40.  The reliability function
R ( )S t0  for the nonrepairable case follows, for the structure of Fig. 6.42b, from
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with R t R t R RS S i i i i i0 0 0 1 1= = = = −R ( ), R ( ), R ( ) ,   Setting R R RM M M1 2
= = , R R RP P P1 2

= = ,
R R R R RD D D D D11 12 21 22

= = = = , one obtains Eq. (6.300).  Similarly,
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which verify 1 0 0− =R RS S .  Assuming totally independent elements (Section 6.9.1),
Eq. (6.301) delivers PA ( )S t0  by substituting Ri  with PA i t( ) (or with PAi  for PAS ).

Evaluation of binary decision diagrams (and fault trees) is generally supported
by dedicated computer programs, see e. g. [2.32, 2.36, 2.37, 6.63 (2009), 6.66].  For hand
evaluation, it is often more favorable to work directly with the key item method
introduced in Section 2.3.1 (as in Example 6.30).
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Figure 6.42   Reliability block diagrams with corresponding fault trees, φFT  , and binary decision
diagrams (BDDs) for the 2 structures of Fig. 6.40   ( ζ i  refers to Ei ;  "0" holds for operating, "1" for
failure;  R t R t R RS S i i i i i0 0 0 1 1= = = = −R ( ), R ( ) , R ( ) , )

To consider "1" for operating (up) and "0" for failure (down), as in Sections 2.2
and 2.3, it is sufficient to change AND with OR and Ri  with Ri .
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Figure 6.43   Basic structure of an event tree

6.9.4  Event Trees

Event trees can be used to support and extend effectiveness of failure modes and
effects analyses introduced in Section 2.6 [A2.6 (IEC 62502)].  Event tree analysis
(ETA) is a bottom-up (inductive) logic procedure combining advantages of FMEA /
FMECA and FTA.  It applies, in particular, for risk analysis of large complex systems
of any type with interacting internal and external factors (technical, environmental,
human).  The basic idea is to give an answer to the question

What happens if a given initiating event occurs ?

The answer is given by investigating propagation of initiating events, in particular
efficacy of mitigations (barriers) introduced to limit effects of the initiating event
considered (column 8 in Table 2.6).  An initiating event can be a fault or an external
event (e. g. loss of power, fire, sabotage).  A comprehensive list of initiating events
must be prepared at the begin of the analysis.

Figure 6.43 shows the basic structure of an event tree for the case of two coupled
systems (A and B), each with two mitigating factors (barriers) δi for the initiating
event α  considered.  Each mitigation is successful with Pr{ }δ i  and unsuccessful
(failure) with Pr{ } Pr{ }δ δ i i= −1 .  The probability for the outcome ω in Fig. 6.43 is
computed following the path leading to ω and is given by (Eq. (A6.12))

Pr{ } Pr{ } Pr{ } Pr{ } Pr { )}
Pr{ ( } Pr{ ( }

ω α δ δ δ δ δ α α
δ δ δ δ δ δ δ

α δ
α α

δ= =∩ ∩ ∩ ∩
∩ ∩ ∩ ∩ ∩

∩A A B B A A A

B A A B A A B

1 2 1 2 1 2 1

1 1 2 2 1 2 1

  
       

(
 )  )    .                (6.303)

Computation of conditional probabilities can be laborious.  Substituting λα to Pr{ },α
Eq. (6.303) delivers the failure rate (occurrence frequency) of the outcoming event ω.

As for FMEA/FMECA & FTA, time evolution can not be easily considered in ETA.
An extension like for dynamic FT (Section 6.9.2) is possible.  In particular, Pr{ }δi  can
be issued from the top event of an FT, allowing handling of common cause events.
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6.9.5 Petri Nets

Petri nets (PN) were introduced 1962 [6.35, 6.6] to investigate in particular synchro-
nization, sequentiality, concurrency, and conflict in parallel working digital systems.
They are well established in the literature, see e. g. [2.40, 6.0, 6.6, 6.8, 6.30, 6.39 (1999),
A2.6 (IEC 62551)].  Important for reliability investigations was the possibility to
create algorithmically the diagram of transition rates belonging to a given Petri net.
With this, investigation of time behavior on the basis of time-homogeneous Markov
processes was open (stochastic Petri nets).  Extension to semi-Markov process is
easy [6.8].  This section introduces Petri nets from a reliability analysis point of view.

A Petri net (PN) is a directed graph involving 3 kind of elements:

• Places P Pn1, ...,  (drawn as circles):  A place Pi is an input to a transition Tj  if
an arc exist from Pi to Tj  and is an output of a transition Tk and input to a
place Pl  if an arc exist from Tk to Pl  ;  places may contain token (black spots)
and a PN with token is a marked PN.

• Transitions T Tm1, ...,  (drawn as empty rectangles for timed transitions or bars
for immediate transitions):  A transition can fire, taking one token from each
input place and putting one token in each output place.

• Directed arcs:  An arc connects a place with a transition or vice versa and
has an arrowhead to indicate the direction;  multiple arcs are possible and
indicate that by firing of the involved transition a corresponding number of
tokens is taken from the involved input place (for input multiple arc) or put
in the involved output place (for output multiple arc);  inhibitor arcs with a
circle instead of the arrowhead are also possible and indicate that for firing
condition no token must be contained in the corresponding place.

Firing rules for a transition are:

1. A transition is enabled (can fire) only if all places with an input arc to the
given transition contain at least one token (no token for inhibitor arcs).

2. Only one transition can fire at a given time;  the selection occurs according
to the embedded Markov chain describing the stochastic behavior of the PN.

3. Firing of a transition can be immediate or occurs after a time interval τij > 0
(timed PN);  τij > 0 is in general a random variable (stochastic PN) with
distribution function Fij x( ) when firing occurs from transition Ti to place
Pj  (yielding a Markov process for Fij

x
x e ij( ) = − −1 λ , i. e. with transition

rate λij , or a semi-Markov process for Fij x( ) arbitrary, with Fij ( )0 0= ).

From rule 3, practically only Markov processes (i. e. constant failure and repair rates)
will occur in Petri nets for reliability applications (Section 6.4.2).  Two further
concepts useful when dealing with Petri nets are those of marking and reachability:

• A marking M m mn= { }1, ...,  gives the number mi of token in the place Pi at a
given time point and defines thus the state of the PN.

• M j  is immediately reachable from Mi ,  if M j  can be obtained by firing a
transition enabled by Mi .
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Figure 6.44  Top:  Reliability block diagram (a), diagram of transition rates (c), Petri net (PN) (b),
and reachability tree (d) for a repairable 1-out-of-2 warm redundancy with two identical elements,
const. failure & repair rates ( , , )λ λ µr , one repair (restoration) crew  ( Z 2  down state, Markov proc.)
Bottom:  Reliability block diagram (a), diagram of transition rates (c), Petri net (b), and reachability
tree (d) for a repairable 1-out-of-2 active redundancy with two identical elements and switch in
series, constant failure and repair rates ( , , ),λ λ µ µν ν , one repair crew, repair priority on switch,
no further failures at system down  ( Z Z Z1 3 4,   ,  down states, Markov process)

With M0 as marking at time t =0, M Mk1,. ..,  are all the (different) marking reachable
from M0; they define the PN states and give the reachability tree, from which, the
diagram of transition rates of the corresponding Markov model follows.  Figure 6.44
gives some examples of reliability structures with corresponding PN.
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6.9.6  Numerical Reliability and Availability Computation

Investigation of large series - parallel structures or of complex systems (for which a
reliability block diagram does not exist) is in general time-consuming and can
become mathematically intractable.  A large number of computer programs for
numerical solution of reliability and availability equations as well as for
Monte Carlo simulation have been developed.  Such a numerical computation
can be, in some cases, the only way to get results.  However, although appealing,
numerical solutions can deliver only case-by-case solutions and can causes
problems  (instabilities in the presence of sparse matrices, prohibitive run times for
Monte Carlo simulation of rare events or if confidence limits are required).  As a
general rule, analytically exact solutions (Sections 6.2 to 6-6, 6.8) or approximate
expressions (Sections 6.7, 6.9.7) should be preferred whenever possible.

Section 6.9.6.1 discusses requirements for a versatile program for the numerical
solution of reliability & availability equations.  Section 6.9.6.2 gives basic considera-
tions on Monte Carlo simulation and introduces an approach useful for rare events.

6.9.6.1 Numerical Computation of System's Reliability and Availability

Analytical solution of algebraic or differential / integral equations for reliability and
availability computation of large or complex systems can become time-consuming.
Software tools exist to solve this kind of problems.  From such a software package
one generally expects high completeness, usability, robustness, integrity, and
portability (Table 5.4).  The following is a comprehensive list of requirements:

General requirements:

1. Support interface with CAD/CAE and configuration management packages.
2. Provide a large component data bank with the possibility for manufacturer

and company-specific labeling, and storage of non application-specific data.
3. Support different failure rate models [2.20 - 2.30].

4. Have flexible output (regarding medium, sorting capability, weighting),
graphic interface, single & multi-user capability, high usability & integrity.

5. Be portable to different platforms.

Specific for nonrepairable (up to system failure) systems:

1. Consider reliability block diagrams (RBD) of arbitrary complexity and with
a large number of elements ( , )≥ 1 000  and levels ( )≥ 10 ;  possibility for any
element to appear more than once in the RBD;  automatic editing of series
and parallel models;  powerful algorithms to handle complex structures;
constant or time dependent failure rate for each element;  possibility to han-
dle as element macro-structures or items with more than one failure mode.

2. Easy editing of application-specific data, with user features such as:
• automatic computation of the ambient temperature at component level

with freely selectable temperature difference between elements,
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• freely selectable duty cycle from the system level downwards,
• global change of environmental and quality factors, manual selection of

stress factors for tradeoff studies or risk assessment, manual introduction
of field data and of default values for component families or assemblies.

3. Allow reuse of elements with arbitrary complexity in a RBD (libraries).

Specific for repairable systems:

1. Consider elements with constant failure rate and constant or arbitrary repair
rate, i. e., handle Markov and (as far as possible) semi-regenerative processes.

2. Have automatic generation of the transition rates ρij  for Markov model and
of the involved semi Markov transition probabilities Q xij ( ) for systems with
constant failure rates, one repair crew, and arbitrary repair rate (starting e. g.
from a given set of successful paths);  automatic generation and solution of
the equations describing the system's behavior.

3. Allow different repair strategies (first-in first-out, one repair crew or other).
4. Use sophisticated algorithms for quick inversion of sparse matrices.
5. Consider at least 20,000 states for the exact solution of the asymptotic &

steady-state availability PA AAS S=  and mean time to system failure MTTFSi .
6. Support investigations yielding approximate expressions (macro-structures,

totally independent elements, cutting states or other, see Section 6.7.1).

A scientific software package satisfying many of the above requirements has been
developed at the Reliability Lab. of the ETH [2.50].  Refinement of the requirements
is possible.  For basic reliability computation, commercial programs are available
[2.50-2.60].  Specialized programs are e. g. in [2.6, 2.18, 2.59, 2.85, 6.23, 6.24, 6.43];
considerations on numerical methods for reliability evaluation are e. g. in [2.56].

6.9.6.2 Monte Carlo Simulations

The Monte Carlo technique is a numerical method based on a probabilistic
interpretation of quantities obtained from algorithmically generated random
variables.  It was introduced 1949 by N. Metropolis and S. Ulman [6.31].  Since this
time, a large amount of literature has been published, see e. g. [6.4, 6.13, A7.18].
This section deals with some basic considerations on Monte Carlo simulation useful
for reliability analysis and gives an approach for the simulation of rare events which
avoids the difficulty of time truncation because of amplitude quantization of the
digital numbers used.

For reliability purposes, a Monte Carlo simulation can basically be used to
estimate a value (e. g. an unknown probability) or simulate (reproduce) the
stochastic process describing the behavior of a complex system.  In this sense, a
Monte Carlo simulation is useful to achieve results, numerically verify an analytical
solution, get an idea of the possible time behavior of a complex system or determine
interaction among variables.  Two main problems related to Monte Carlo simulation
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are the generation of uniformly distributed random numbers ( ζ ζ ζ0 1 2 1, ,..., n −
with pi

n= 1 2/ ) in the interval [ , )0 1  and the transformation of these numbers in
random variables with prescribed distribution functions.  A congruential relation

ς ςn na b m+ = +1       ( ) mod , (6.304)

where mod is used for modulo, is frequently used to generate pseudorandom
numbers [6.29] (for simplicity, pseudo will be omitted in the following).  Trans-
formation to an arbitrary distribution function F( )x  is often performed with help
of the inverse function F −1( )x , see Example A6.18 on p. 448.  The method of the
inverse function is simple but not necessarily good enough for critical applications.

A further question arising with Monte Carlo simulation is that of how many
repetitions n  must be run to have an estimate of the unknown quantity within a
given interval ± ε at a given confidence level γ .  For the case of an event with
probability p and assuming n sufficiently large as well as p p or  -( )1  not very small
(min ( , ( )) )n p n p1 5− ≥ , Eq. (A6.152) yields for p known

n
t

p p= −+( ) ( )( )/1 2 2 1γ
ε         i. e.       n

t
max ( )

( )/= +1 2 2
2

γ

ε   for p = 0 5. , (6.305)

where t ( )/1 2+ γ  is the ( ) /1 2+ γ  quantile of the standard normal distribution;
for instance,   for   and     for  = 0.9   = 0.95t ( )/ . .1 2 1 645 1 96+ =γ γ γ  (Appendix A9.1).
For p totally unknown, the value p = 0 5.  has to be taken.  Knowing the number of
realizations k in n trials, Eq. (A8.43) can be used to find confidence limits for p.

To simulate (reproduce) a time-homogeneous Markov process, following
procedure is useful, starting by a transition in state Zi  at the arbitrary time t =0:

1. Select the next state Z j  to be visited by generating an event with probability

  

P P Pij
ij

i
j i ii i ij

j i
ij

j ij

m

j

m

= ∑ ∑≠ ≡ = =
= =≠ ≠

ρ
ρ ρ ρ,  ( ) ,      ,

, ,
,               

   
0 1

0 0
   (6.306)

according to the embedded Markov chain (for uniformly distributed random
numbers ξ in [ , )0 1  it holds that Pr{ } Pr{ } ).ξ ξ≤ < ≤ − == =x x x x px xi j j i ij,   i.e.

2. Find the stay time (sojourn time) in state Zi  up to jump to the next state Z j
by generating a random variable with distribution function (Example A6.18)

F ( )i j
xx e i= − −1 ρ . (6.307)

3. Jump to state Z j .

Extension to semi-Markov processes is easy [A7.2 (Ph. D. thesis 1974)].  For semi re-
generative processes, states visited during a cycle must be considered (Fig. A7.11).
The advantage of this procedure is that transition sequence and stay (sojourn) times
are generated with only a few random numbers.  A disadvantage is that the stay
times are truncated because of the amplitude quantization of F ( )i j x .
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Figure 6.45   Block diagram of the programmable generator for renewal processes

To avoid truncation problems, in particular when dealing with rare events distri-
buted on the time axis, an alternative approach implemented as hardware generator
for semi-Markov processes in [A7.2 (Ph. D. thesis 1974)] can be used.  To illustrate
the basic idea, Fig. 6.45 shows the structure of the generator for renewal processes.
The generator is driven by a clock ∆ ∆t x=  and consists of three main elements:

• a generator for pseudorandom numbers ξi uniformly distributed in [ , )0 1 ,
ζ ζ ζ0 1 2 1, ,... , n −  with pi

n= 1 2/  for digital computers ( ξ λi k<  in Fig. 6.45);
•  a comparator, comparing at each clock the actual random number ξi with λk

and giving an output pulse, marking a renewal point, for ξ λi k< ;
•  a function generator creating λk  and starting with λ1 at each renewal point.

It can be shown ( λk kw≡  in [A7.2 (1974 & 1977)] ) that for

λk k x k x k x= − − − −( ( ) (( ) )) ( (( ) )) ,/F F F∆ ∆ ∆1 1 1          k = =1 2 0 0, ,... , ( ) ,F (6.308)

the sequence of output pulses is a realization of an ordinary renewal process with
distribution function F( )k x∆  for times ( )τ  between successive renewal points.  λk  is
the failure rate related to the arithmetic random variable ( )τ  with distribution
function F( )k x∆ , λ λ τ τk k k x k x≡ = = > −( ) Pr{ ( ) }|∆ ∆1 , as given on p. 428.  Generated
random times ( )τ  are not truncated, since the last part of F ( )k x∆  can be approxim-
ated by a geometric distribution ( λk = const. ,  Eq. (A6.132)).  A software realization
of the generator of Fig 6.45 is easy, and hardware limitations can be better avoided.

The homogeneous Poisson process (HPP) can be generated using λk  = constant,
the generated random time interval have then a geometric distribution.  For a non-
homogeneous Poisson process (NHPP) with mean value function M( )t , generation
can be based on the considerations given on pp. 517 - 518 (for fixed t T= , generate k
according to a Poisson distribution with parameter M( )T  (Eq. (A7.190), similar as
for Eq. (6.306)) and then k random variables with density m M( ) / ( )t T ;  the ordered
values are the k occurrence times of the NHPP on ( , )0 T , see Example A7.13, p. 519).
Also is the extension to semi-Markov processes easy [A7.2 (Ph. D. thesis 1974)].
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6.9.7  Approximate Expressions for Large Complex Systems:
Basic Considerations

Approximate expressions for the reliability and availability of large series-parallel
structures, whose elements E E En1 2, , ... ,  have constant failure and repair rates
λ µi i i n, , ...,,    =1 , have been developed in Section 6.7, in particular using macro-
structures (Table 6.10) or totally independent elements (Table 6.9).  Thereby, based
on the results obtained for the repairable 1-out-of-2 redundancy (Eqs. (6.88) & (6.94)
with λ λr = ), a series, parallel, or simple series - parallel structure is considered as a
one-item structure with constant failure and repair rates λS , µS  for calculations, and
integrated into further macro-structures bottom up to system level.

Expressions for small complex systems, for which a reliability block diagram
either does not exist or cannot be reduced to a series-parallel structure with
independent elements, have been carefully investigated in Sections 6.8.2 -  6.8.7,
assuming no further failures at system down and taking care of imperfect switching,
incomplete coverage, more than one failure mode, reconfiguration strategy (time
censored (phased-mission) or failure censored), and common cause failures.

Investigation methods and tools for large complex systems are still in progress.
Clustering of states (p. 229) is often possible by conserving exact results.  Cutting
states with more than one failure (p. 229) is applicable, simplify investigations and
delivers approximate expressions for reliability and availability often sufficiently
good for practical applications (see, for instance, the numerical evaluations on
pp. 237, 269).  State merging in Markov transition diagrams is conceivable, but
basically limited to the case in which transitions from a block of merged states to an
unmerged state have the same transition rates [6.40].  To give a feeling for MTTFS0
calculation, consider the state reduction in Fig. 6.39 and the possibility to eliminate
state Z0 '  in Fig. 6.25a (p. 247) by introducing between Z0  and Z2  the transition rate

λλ λ µ λ λ λ µ λ λ µσ σ( ) /[ ( ) ( ]+ + + + +2 r . (6.309)

Also limited is the exploitation of symmetries in Markov transition diagrams [6.32].
A general procedure delivering often useful upper bounds on the mean time to

failure MTTFS0  and the asymptotic & steady-state availability PA AAS S=  at system
level can be (for coherent systems (p. 57)):

1. Assume totally independent elements (Section 6.9.1) E En1,.. .,  with constant
failure rates λ i and repair rates    µ µi i n= =, , .., .1

2. Compute PA A AS S=  as per Eq. (2.48), i. e., substituting in the structure
function φ ζ ζ( ,..., )1 n , given by Eqs. (2.42) or (2.44), ζi with

PASi i i n= +µ λ µ/ ( ),          .= , ... ,1 (6.310)

3. Compute MTTFS0 from PA MTTF MTTF MTTRS S S S= +/ ( )  (Eq. (A7.189))

MTTF PAS SS PA0 1≈ −  / ,µ( ) (6.311)
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i. e. by assuming

MTTF MTTF MTTRS S S≈ ≈0 1     and      / .µ (6.312)

On the basis of the results obtained for the 1-out-of-2 redundancy (Eqs. (6.88) and
(6.94) with λ λr = ),

RS
t MTTFt e S0 0( ) /≈ −           and       PAS St PA0( ) ≈ (6.313)

can often be assumed at system level.  To give a touch for the above approxima-
tions, consider a k-out-of-n active redundancy.  Comparison of results in Table 6.9
(or Eq. (6.148)) for totally independent elements (IE) and in Table 6.10 for macro-
structures (MS) with one repair crew and no further failures at system down, yields

MTTF MTTF n kS IE S MS0 0      / ( ) !≈ − (6.314)
and

   ( ) ( ) / ( ) ! ./ /1 1 1 10 0 0 0− − − += ≈PA PA PA PA n kS IE S MS S IE S MS
(6.315)

Thus, for weak redundancy levels (small values of n k− ), the assumption of totally
independent elements can yield good upper bounds on mean time to failure MTTFS0
and asymptotic & steady-state availability PA AAS S=  at system level.  However,
exact evaluation of the validity of Eqs. (6.311) - (6.313) can be performed only on a
case-by-case basis, and for very complex systems a dedicated computer program or
a Monte Carlo simulation can be often the only practicable way to get results.

6.10   Human Reliability

For complex equipment and systems, human and ergonomic factors can have a great
influence on the reliability, maintainability, availability, and safety.  Disregarding of
design and manufacturing flaws, experience show that in emergency situations more
than 80% of the safety related system failures are caused by human errors during
operation or maintenance (false detection, diagnosis, action planing or execution).
Although the behavior of a homogenous human population is often known, the reac-
tion of a single person can become unpredictable, in particular when under stress or
faced to unexpected events (pp. 10, 158).  Thus, wherever possible, humans should
be bypassed in safety critical decisions or, at least, two-step actions should be
introduced (the first step being reversible).  Moreover, although training and
motivation of operators and maintainers is important, extensive requirements
and design guidelines are necessary to avoid human errors or limit their effects, in
particular in space, nuclear, military and medical applications, see e. g. [5.14, 6.82].

All tools discussed in Section 2.6 and Chapter 6 are useful to investigate human
reliability, in particular FMEA / FMECA (including human errors as possible causes),
FTA, event trees, and stochastic models.  Procedures to evaluate the probability
of human errors, in view also of risk assessment, have been developed since the
1970s [6.83];  many computer supported, e. g. REHMS-D [6.78], and most of them for
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nuclear applications, see e. g. [6.71] for a recent extensive review.  These procedures
can be grouped in two classes based on

• reliability techniques used for hardware (e. g. THERP & SPAR [6.89 & 6.75]),
• cognitive human models (e. g. REHMS-D [6.78] & CREAM [6.76 (1998)]).

The method used for the first class is to partition the task performed by the human in
subtasks and assign to each subtask a misleading probability;  the human error  prob-
ability can then be expressed as a function of misleading probabilities, from a prod-
uct to elaborated expressions (p. 10).  A further possibility used, is to assign constant
failure & repair rates to the human and integrate them in Markov models [6.73].
Cognitive models are more complex, and consider human functions as based on four
subfunctions (sensing, information processing, decision, response) assisted by a
memory, taking care also of the variability of the human performances caused by
temporary psychological, physical, or environmental changes, see e.g. [6.76 (2009)].

Because of its complexity, and of the necessity to distinguish between failures
for hardware and errors for human activities,

human reliability continues to be a research field (for models & data);
modeling must be supported by extensive preventive actions during the
development of complex equipment and systems (as for software) and,
wherever possible, humans should be bypassed in safety critical decisions
(e. g. using majority redundancy also for actuators, or two-step actions).

Section 5.2.5 (p. 158) deals with design guidelines useful to avoid human errors or
to limit their effects.  In the following, three basic models, combining human error
probability and time necessary to accomplish a task assigned to a human, are intro-
duced.  This, using semi-Markow processes (Appendix A7.6), which are character-
ized by the property that given a state Zi  entered at time t, the next state Z j  to be
visited is selected with a probability Pi j  and the stay time in Zi  is a random variable
τij > 0 whose distribution depends only on Zi  and Z j , not on t (for instance, Zi  is a
partial failure or a failure of a redundant element, Pi j  an error probability, and τij  is
lognormally distributed).  Use of Markow processes is less appropriate because of
their memoryless property.  Investigated in this section is the reliability, extension to
safety or to availability is possible (e. g. Example 6. 31 for the model of Fig. 6.46).
It turn out that these new models are refinements of those developed for imperfect
switching & incomplete coverage (Figs. 6.25 & 6.27).  To simplify investigations,

it is assumed that no system failure is caused by human during the time it
takes a decision (state Z1'  in Figs. 6.46 - 6.48 & Example 6.31).

Consider first a repairable 1-out-of-2 active redundancy with E E E1 2= =  and
constant failure & repair rates λ µ&  , and assume that at a failure of E E1 2 or , the
human performance is characterized by a probability ph to take a wrong decision or
make a false action;  i.  e., for instance, the probability for disconnecting (or causing
failure of) the not failed element.  Further, assume that the time to take the decision
and make a corresponding action is a random variable τh > 0 with distribution Fh x( )
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Figure 6.46   State transition diagram for reliability calculation of a repairable 1-out-of-2 active
redundancy ( )E E E1 2= =  with const. failure & repair rates ( )λ µ , , incomplete human performance
(false action with probability ph  yielding Z Z1 2' ),→  Z2 down state, semi-Markov proc. (see Fig. 6.27)

and mean E [ ]τh hM= <∞  ( Fh x( )  is e. g. a lognormal distribution (Eq. (A6.110)), not
necessarily an exponential because of its memoryless property (Eq. (A6.87)).
Considering the constant failure and repair rates λ µ&   and that τh is common to
the good and wrong decision and action, the system can be investigated using a
semi-Markov process (Appendix A7.7). 

+)  Figure 6.46 gives the corresponding state
transition diagram for reliability calculation (see Example 6.31 for availability).
From Fig. 6.46 and Table 6.2 or Eq. (A7.173), MTTFS0 is given as solution of

M T M0 0 1= +  ' ,   M T p Mh1 1 11' ' ( )= + − ,   M T M1 1 0= + + ( / ( )) ,µ λ µ (6.316)

with M MTTFi Si≡ ,  Ti i x dx= −∫∞
( ( ))10 Q    , Q ( ) Q ( )i ijx xj=∑  (Eqs. (A7.166) &  (A7.165)).

Considering Fig. 6.46 it follows that T T Mh0 11 2= =/ , &'λ  T1 1= +/( )λ µ , yielding

MTTFS
h h hM p

p

M

p ph h h
0

1 2 2 1

2

1 2

2 2
= + + + −

+
+

+ +
≈ ≈

( )( ) ( )

( )

( )

( ) ( )
.

λ µ λ λ
λ λ µ

µ λ
λ λ µ

µ
λ λ µ     (6.317)

The approximation considers 0 1≤ ≤ph  and assumes 2 1λ µ<< , / .Mh   For

µ λ λ µp ph h<< <<      i. e.       ,/ (6.318)

the human influence become negligible.  However, would become should be used in-
stead of become to point out that the effect (consequence) of a failure has not been
considered.  Mh = 0 implies the unit step function for Fh x( ) , yielding to the model
of Fig. 6.27 with c p=1 −  (Eq. (6.225)), which can be described also by a time-
homogeneous Markov process (Fig. 6.28, Examples 6.18, 6.19).  For the reliability
function, the approximation R  

S
MTTFt e t S0 0( ) /≈ −  can often be used (Eq. (6.94)).

As a second example, consider a repairable 1-out-of-2 active redundancy with
elements E E E1 2= = , a series element Eν and constant failure & repair rates
( , , )λ λ µ µν ν ,  , and assume that at a failure of E E1 2  or  , the human performance is
characterized by a probability ph to take a wrong decision or make a false action;
i. e., for instance, the probability for disconnecting (or causing failure of) the not
failed element.  Figure 6.46 leads to Fig. 6.47 and (Table 6.2 or Eq. (A7.173))

M T M0 0 12 2= + +λ λ λν' / ( ), M T p Mh1 1 11' ' ( )= + − , M T M1 1 0= + + +µ λ λ µν/( ).  (6.320)

with M MTTFi Si≡ , Ti i x dx= −∫∞
( ( ))10 Q    , Q ( ) Q ( )i ijx xj=∑  (Eqs. (A7.166) & (A7.165)).

______________
+) Two τ with Pr{ τ11' ≤ x }= Pr{ τ1 2' ≤ x  } would imply p p11 1 2 1 2' ' /= =  (Eqs. (A7.100) & (2.76)).
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Figure 6.47  State transition diagram for reliability calculation of a repairable 1-out-of-2 active
redundancy with elements E E E1 2= =  and series element Eν , constant failure & repair rates
( , , )λ λ µ µν ν , , incomplete human performance (false action with probability ph  yielding Z Z1 2' ),→

Z2 down state, semi-Markov process  (see also Fig. 6.27)

Using Fig. 6.47 it follows that T T Mh0 11 2= + =/ ( , ) , &'λ λν  T1 1= + +/( )λ λ µν , yielding
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The approximation considers 0 1≤ ≤ <ph & λ λν , and assumes 2 1λ µ<< , / Mh .  For

µ λ λ λ λ µν νp ph h<< + << +      i. e.      ( ) / , (6.322)

the human influence becomes negligible (apart for the consequence).  The influence
of series element Eν has been investigated on p. 221.   Ph hc M= − = =( ),1 0λν  yields
Eq. (6.225) for incomplete coverage.  Fig. 6.47 can also be used for a k-out-of- ( )k+1
active redundancy with series element Eν and no further failure at system down.

Example 6.31
Investigate PA AAS S=  for the model of Fig. 6.46 by assuming that the false decision (with ph )
can cause a failure or a disconnection of the not failed element with probability psf  or 1− psf .
Solution
For the availability computation, the state transition diagram of Fig. 6.46 becomes
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with a = P P P+ h sf h( ) ( )λ µ λ+ −1 .  P Ph s f hc M= − = =( ), ,1 1 0 yields Eq. (6.227) for incomplete coverage.
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Figure 6.48   State transition diagram for reliability calculation of a repairable 1-out-of-2 active
redundancy with elements E E E1 2= =  and series element Eν , constant failure & repair rates
( , , )λ λ µ µν ν , , incomplete human performance (false action with probability ph  yielding Z Z1 2' ),→

alarm circuitry with constant failure rate λa  (detection and repair only at system down), Z2 down
state, semi-Markov process  (see also Fig. 6.27)

As a third example, consider a 1-out-of-2 active redundancy with E E E1 2= = ,
a series element Eν and constant failure & repair rates ( , , )λ λ µ µν ν, , and assume
that at a failure of E E1 2 or  an alarm is given and the human performance is
characterized by a probability ph to take a wrong decision or make a false action;
i. e., the probability for disconnecting (or causing failure of) the not failed element.
Furthermore, the alarm circuitry has constant failure rate ( )λa , failure detection &
repair can only occur at system down, and after a failure of the alarm circuitry,
a failure of E E E1 2    ,  or ν  is a system failure.  Fig 6.47 leads to Fig. 6.48 and (Table
6.2 or Eq. (A7.173))
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with M MTTFi Si≡ , Ti i x dx= −∫∞
( ( ))10 Q    , Q ( ) Q ( )i ijx xj=∑   (Eqs. (A7.166) & (A7.165)).

Using Fig. 6.48 it follows that T T Ma h0 11 2= + + =/( , , ) , &'λ λ λν  T1 1= + +/( )λ λ µν , and thus
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The approximation considers 0 1≤ ≤ <ph & λ λν , and assumes λ λ µa hM<< <<3 1, / .  For

µ λ λ λ λ µν νp ph h<< + << +      i. e.      ( ) / ,    (6.325)

the human influence becomes negligible (apart for the consequence).  For p Mh h≡ ≡ 0,
the influence of the alarm circuitry becomes negligible for

µ λ λ λ λ λ λ λ λ µν νa a<< + << +2 2( ()       i. e.      ) / ,    (6.326)

which is similar to the influence of the series element Eν (Eq. (6.160)).



7  Statistical Quality Control and Reliability Tests

Statistical quality control and reliability tests are performed to estimate or demon-
strate quality and reliability characteristics on the basis of data collected from sam-
pling tests.  Estimation leads to point or interval estimate, marked with  ̂  in this
book; demonstration is a test of a given hypothesis on the unknown characteristic.
Estimation and demonstration of an unknown probability is investigated in Section
7.1 for the case of a defective probability p and in Section 7.2.1 for some reliability
figures.  Procedures for availability estimation and demonstration for the case of
continuous operation (steady-state) are given in Section 7.2.2.  Estimation and de-
monstration of a constant failure rate λ  (or MTBF for the case MTBF =1/λ) are dis-
cussed in depth in Sections 7.2.3.  The case of an MTTR is considered in Section 7.3.
Basic models for accelerated tests are discussed in Section 7.4.  Goodness-of-fit tests
based on graphical & analytical procedures are summarized in Section 7.5.  General
reliability data analysis, including test on nonhomogeneous Poisson processes and
trend tests, are discussed in Section 7.6; models for reliability growth in Section 7.7.
A comprehensive introduction to the mathematical foundations for this chapter is
given in Appendix A8.  To simplify the notation, sample is used for random sample,
mean for expected value, and independent for totally (mutually, statistically, stochas-
tically) independent.  Furthermore, the indices Si , with S referring to system (the
highest integration level of the item considered) and i for the state entered at t = 0,

are omitted in this chapter (MTBF used for MTBFS0 and PA for PAS).

Selected examples illustrate the practical aspects.

7.1 Statistical Quality Control

One of the main purposes of statistical quality control is to use sampling tests to
estimate or demonstrate the defective probability p of a given item, to a required
accuracy and often on the basis of tests by attributes (i. e., tests of type good / bad).
However, considering p as an unknown probability, a broader field of applications
can be covered by the same methods.  Other topics, such as tests by variables and
statistical processes control [7.1-7.5], are not considered in this book.

In this section, p will be considered as a defective probability (fraction of defec-
tive items).  It will be assumed that p is the same for each element in the sample
considered and that each sample element is independent from each other.  These
assumptions presuppose that the lot is homogeneous and much larger than the
sample.  They allow the use of the binomial distribution (Appendix A6.10.7).

A. Birolini, Reliability Engineering, DOI: 10.1007/978-3-642-39535-2_7,
� Springer-Verlag Berlin Heidelberg 2014
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7.1.1 Estimation of a Defective Probability p

Let n be the size of a (random) sample from a large homogeneous lot.  If k defective
items have been observed within the sample of size n,  then (Eq. (A8.29))

ˆ /p k n= (7.1)

is the maximum likelihood point estimate of the defective probability p for an
item in the lot under consideration.  ˆ /p k n=  is unbiased ( E [ ˆ]p p= ) and k  is a suffi-
cient statistic (delivers the complete information about p, Appendix A8.2.1).
Furthermore, Var Var[ ˆ] [ ] / ( ) /p k n p p n= = −2 1  (Eqs. (A6.123), (A6.40), (A6.46)).
For a given confidence level γ β β= − −1 1 2 ( 0 1 11 2< < − <β β ), the lower p̂l  and
upper p̂u limit of the confidence interval for p can be obtained from

n

i
p p

n

i
p pl l

i k

n

i

k
i n i

u
i

u
n i



 − = 



 − =− −

= =
∑ ∑ˆ ( ˆ )                ˆ ( ˆ )1 12

0
1β βand  (7.2)

for 0 < <k n, and from

ˆ ˆp pl
n

u k= = − = = −0 1 1 0 1 1        and                      for       ( ,      )β γ β (7.3)

or from

ˆ ˆ ) ,p pl
n

u k n= = = = −β γ β2 1 1 2          and                      for  (          (7.4)

see Eqs. (A8.37) to (A8.40) and the remarks given there.  β1 is the risk that the true
value of p is larger than p̂u and β2 the risk that the value of p is smaller than p̂l .
The confidence level is nearly equal to (but not less than) γ β β= − −1 1 2 .  It can be
considered as the relative frequency of cases in which the interval [ ˆ , ˆ ]p pl u  overlaps
(covers) the true value of p, in an increasing series of repetitions of the experiment
of taking a random sample of size n.

In many practical applications, a graphical determination of p̂l  and p̂u is
sufficient.  The upper diagram in Fig. 7.1 can be used for β β1 2 0 05= = . , the lower
diagram for β β1 2 0 1= = .  ( γ = 0 9.  and γ = 0 8. , respectively).  The continuous lines in
Fig. 7.1 are the envelopes of the staircase functions (k, n integer) given by Eq. (7.2).
They converge rapidly, for min ( , ( ))n p n p1 5− ≥ , to the confidence ellipses (dashed
lines in Fig. 7.1).  Using the confidence ellipses (Eq. (A8.42)), p̂l  and p̂u can be
calculated from (Eq. (A8.43))

ˆ ,
,

. / /
p l u

k b b k k n b

n b
=

( )+ +− − +

+

0 5 1 42 2

2
            β β γ1 2 1 2= = −( ) / . (7.5)

b is the  1 1 2 1 2− − = +( ) / ( ) /γ γ  quantile of the standard normal distribution Φ( )t ,
given for some typical values of γ  by (Table A9.1)

γ = 0.6 0.8 0.9 0.95 0.98 0.99

b = 0.84 1.28 1.64 1.96 2.33 2.58
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Figure 7.1    Confidence limits p̂l  and p̂u  for an unknown probability p  (e. g. defective probability)
as a function of the observed relative frequency k n/  ( n =  sample size,  k =  observed events);
γ =  confidence level = 1 1− −β β2, here with β β1= 2   (continuous lines are the exact solution per
Eqs. (7.2) - (7.4), dashed the confidence ellipses per Eq. (7.5))

Example: n = 25, k = 5 gives ˆ / .p k n= = 0 2 and for γ = 0 9.  the confidence interval [ . , . ]0 08 0 38
([ . , . ]0 0823 0 3754  using Eq. (7.2), and [ . , . ]0 1011 0 3572  using Eq. (7.5))
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The confidence limits p̂l  and p̂u can also be used as one-sided confidence
intervals.  In this case (Eq. (A8.44)),

0

1

1

1

1

2

≤ ≤
≤ ≤

≤

≥

= −

= −

p p

p p
u p p

p p

u

l l

ˆ   

ˆ  

ˆ ) ,  

 ˆ ) , 

         

   

  

.

   

       (7.6)

 (or simply         

(or simply          

with  

with                                

γ β

γ β

Example 7.1

In a sample of size n = 25, k = 5 items were found to be defective.  Determine for the underlying
defective probability p, (i) the point estimate, (ii) the interval estimate for γ = 0 8.  ( β β1 2 0 1= = . ),
(iii) the upper bound on p for a one sided confidence interval with γ = 0 9. .

Solution

(i) Equation (7.1) yields the point estimate ˆ / .p = =5 25 0 2 .   (ii) For the interval estimate, the
lower part of Fig. 7.1 leads to the confidence interval [ . , . ]0 10 0 34 ,  [ . , . ]0 1006 0 3397  using
Eq. (7.2) and [ . , . ]0 1175 0 3194  using Eq. (7.5).   (iii) With γ = 0 9.  it holds p ≤ 0 34. .

Supplementary result:  The upper part of Fig. 7.1, would lead to p ≤ 0 38.  with γ = 0 95. .

Note that the role of k n/  and p can be reversed and Eq. (7.5) can be used to
calculate the limits k1 and k2 of the number of observations k in n  independent
trials (e. g. the number k of defective items in a sample of size n) for given
probability γ β β= − −1 1 2 (with β β1 2= ) and known values of p and n (Eq. (A8.45))

k n p b n p p1 2 1, ( ) .= +− − (7.7)

As in Eq. (7.5), the quantity b in Eq. (7.7) is the ( ) /1 2+ γ  quantile of the standard
normal distribution (e. g. b = 1 64.  for γ = 0 9. , Table A9.1).  For a graphical solution,
Fig. 7.1 can be used by taking the ordinate p as known, and by reading k n1 /  and
k n2 /  from the abscissa.

7.1.2 Simple Two-sided Sampling Plans for the Demonstration
of a Defective Probability p

In the context of acceptance testing, the demonstration of a defective probability p
is often required, instead of its estimation (Section 7.1.1).  The main concern of this
test is to check a zero hypothesis H p p0 0:  <  against an alternative hypothesis
H p p1 1:  >  on the basis of the following agreement between producer and consumer:

The lot should be accepted with a probability nearly equal to (but not less
than) 1 − α  if the true (unknown) defective probability p is lower than p0,
but rejected with a probability nearly equal to (but not less than) 1 − β if p is
greater than p1    ( p0 , p p1 0> , and 0 1 1< < − <α β  are given (fixed) values) .

p0 is the specified defective probability and p1 is the maximum acceptable defective
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probability.  α is the allowed producer's risk (type I error), i. e., the probability of
rejecting a true hypothesis H p p0 0:  < .  β  is the allowed consumer's risk (type II
error), i. e ., the probability of accepting the hypothesis  H p p0 0: <  when the
alternative hypothesis H p p1 1:  >  is true.  Verification of the agreement stated above
is a problem of statistical hypothesis testing (Appendix A8.3) and can be performed,
for instance, with a simple two-sided sampling plan or a sequential test.  In both
cases, the basic model is the sequence of Bernoulli trials, as introduced in Appendix
A6.10.7.

7.1.2.1 Simple Two-sided Sampling Plan

The procedure (test plan) for the simple two-sided sampling plan is as follows
(Appendix A8.3.1.1):

 1. From p0, p1, α, and β, determine the smallest integers c and n which satisfy

n

i
p pi n i

i

c




 − ≥ −−

=
∑ 0 01 1

0

( ) α (7.8)

and

n

i
p pi n i

i

c




 − ≤−

=
∑ 1 11

0

( ) .β (7.9)

 2. Take a sample of size n, determine the number k of defective items in the
sample, and

• reject :  ,            if   H p p k c0 0< >

• accept :  ,            if   H p p k c0 0< ≤ . (7.10)

The graph of Fig. 7.2 visualizes the validity of the above rule (see Appendix
A8.3.1.1 for a proof).  It satisfies inequalities (7.8) & (7.9), and is known as operat-
ing characteristic curve (or acceptance probability curve).  For each value of p, it
gives the probability of having no more than c defective items in a sample of size n.
Since the operating characteristic curve decreases monotonically in p, the risk for a
false decision decreases for p p< 0 and p p> 1, respectively.  It can be shown that
the quantities c and np0 depend only on α, β, and the ratio p p1 0/  (discrimination
ratio).  Table 7.3 (p. 323) gives c and np0 for some important values of α, β and
p p1 0/  for the case where the Poisson approximation (Eq. (A6.129)) applies.

Using the operating characteristic curve, the Average Outgoing Quality (AOQ)
can be calculated.  AOQ represents the mean percentage of defective items that reach
the customer, assuming that all rejected samples have been 100% inspected, and that
the defective items have been replaced by good ones, and is given by
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Figure 7.2    Operating characteristic curve (acceptance probability curve) as a function of the defec-
tive probability p for p p n c0 12 4 0 1 510 14= = ≈ ≈ = =<%, %, . , ,α β  as per Table 7.3   (see also Fig. 7.3)
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0

The maximum value of AOQ is the Average Outgoing Quality Limit [7.4, 7.5].
Obtaining the solution of inequalities (7.8) and (7.9) is time-consuming.  For

small values of p0 & p1 (up to a few %), the Poisson approximation (Eq. (A6.129))

n

i
p p

n p

i
ei n i

i
np( ) − ≈− −( )

( )

!
1

can be used.  Introducing the Poisson approximation in Eqs. (7.8) and (7.9) leads to
a Poisson distribution with parameters m n p1 1=  and m n p0 0= , which can be
solved using a table of the χ2-distribution (Table A9.2).  Alternatively, the curves
of Fig. 7.3 provide graphical solutions, sufficiently good for practical applications.
Exact solutions are in Table 7.3 (p. 323).

Example 7.2
Determine, using the Poisson approximation, the sample size n and the number of allowed
defective items c to test the null hypothesis H p p0 0 1: %< =  against the alternative hypothesis
H p p1 1 2: %> =  with producer and consumer risks α β α β= = ≈ ≈<0 1 0 1. . ) (which means .

Solution
Considering α β= = 0 1.  & p p1 0 2/ = , Table 7.3 (p. 323) yields c =14 and n p T0 0 10 17= =λ .
from which n = 1017, for α β≈ ≈ 0 093. .  The graph of Fig. 7.3 yields practically the same
result:  c = 14, m0 10 2≈ .  and m1 20 4≈ .  for α β≈ ≈< 0 1. .  Results using directly Table A9.2 lead
to ν = 30  (value of ν  for which t tq qν ν, ,/

2 1
2=  with q1 0 1= ≤α .  q2 1 0 9= − ≥β . ) and,

with linear interpolation, F( . ) . .20 34 0 093 0 1≈ <≈ =α  and  F( . ) . .40 68 0 906 1 0 9≈ >≈ − =β ; thus,
c = − =ν / 2 1 14  and n= ⋅ =20 34 2 0 01 1017. / ( . ) . (Graphical and analytical methods require a
solution by successive approximation:  choice of c, starting at c = 0, and check of conditions for
α and β by considering the ratio p p1 0/ .)
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7.1.2.2 Sequential Test

The procedure for a sequential test is as follows (Appendix A8.3.1.2):

 1. In a Cartesian coordinate system draw the acceptance line y n a n b1 1( ) = −
and the rejection line y n a n b2 2( ) = + , with

a b b
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(7.12)

 2. Select one item after another from the lot, test the item, enter the test result in
the diagram drawn in step 1, and stop the test as soon as either the rejection or
the acceptance line is crossed.
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Figure A8.8 shows acceptance and rejection lines for p0 1= %, p1 2= % & α β≈ ≈ 0 2. .
The advantage of the sequential test is that on average it requires a smaller sample
size than the corresponding simple two-sided sampling plan (Example 7.10 or
Fig. 7.8).  A disadvantage is that the test duration (sample size) is random.

7.1.3 One-sided Sampling Plans for the Demonstration
of a Defective Probability p

The two-sided sampling plans of Section 7.1.2 are fair in the sense that for α β= ,
both producer and consumer run the same risk of making a false decision.  In
practical applications however, one-sided sampling plans are often used, i. e., only
p0 and α  or p1 and β  are specified.  In these cases, the operating characteristic

curve (acceptance probability curve) is not completely defined.  For every value of c
( , , )c = …0 1  a smallest n  ( , , )n = …1 2  exists which satisfies inequality (7.8) for a
given p0 and α, or a largest n exists which satisfies inequality (7.9) for a given p1
and β .  One recognizes that operating characteristic curves become steeper as the
value of c increases (see e. g. Figs. 7.4 or A8.9).  Hence, for small values of c, the
producer (if p0 and α  are given) or the consumer (if p1 and β  are given) can be
favored .  Figure 7.4 (obtained from Fig. 7.3) visualizes the reduction of the
consumer risk (from β ≈ 0 88.  for c=0 or ≈ 0 97.  for c =7) by increasing values of
the defective probability p or values of c, see Fig 7.9 for a counterpart.

When only p0  and α  or p1  and β  are given, it is usual to set in these cases

p AQL p LTPD0 1= =          and         , (7.13)

respectively, where AQL  is the Acceptable Quality Level and LTPD is the Lot
Tolerance Percent Defective (Eqs. (A8.79) to (A8.82)).

A large number of one-sided sampling plans for the demonstration of AQL
values are given in national and international standards (IEC 60410, ISO 2859,
MIL-STD-105, DIN 40080 [7.3]). Many of these plans have been established
empirically.  The following remarks can be useful when evaluating such plans:

 1. AQL values are given in %.
 2. The values for n and c are in general obtained using the Poisson approximation.
 3. Not all values of c are listed, the value of α often decreases with increasing c.
 4. Sample size is related to lot size, and this relationship is empirical.
 5. A distinction is made between reduced tests (level I), normal tests (level II) and

tightened tests (level III);  level II is normally used;  transition from one level to
another is often given empirically (e. g. transition from level II to level III is
necessary if 2 out of 5 successive independent lots have been rejected and a
return to level II follows if 5 successive independent lots are passed).

 6. The value of α is not given explicitly (for c = 0, for example, α is approxi-
mately 0.05 for level I, 0.1 for level II, and 0.2 for level III).
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Figure 7.4   Operating characteristic curves (acceptance probability curves) as a function of the
defective probability p  for p AQL0 0 65= = . % with sample sizes n=20, 80, 500 as per Table 7.1
( α ≈ = ≈ = ≈ =0 12 0 0 09 1 0 02 7. , . , . for  for  for c c c  per Fig. 7.3 or Table A9.2)

Table 7.1 presents some test procedures for AQL values from IEC 60410 [7.3] and
Fig. 7.4 shows the corresponding operating characteristic curves for AQL = 0 65. %
and sample size n = 20,80, and 500.

Test procedures for demonstration of LTPD values with given (fixed) customer
risk β are for example in [3.12 (S-19500)].  They are often based on the Poisson
approximation (p. 304) and can be easily established using a χ2

 - table (Appendix
A9.2) or Fig. 7.3.  For given β  and LTPD, the values of n and c can be obtained
taking in Fig. 7.3

( )

!

m

i

i
m

i
e

c −

=
∑ =

0
β

and reading m np nLTPD= =  for c = 0 1 2, , ,...  (Example: β = =0 1 2. %& LTPD
yields m = 3 9.  for c = 1, and from this n = =3 9 0 02 195. / . ; the procedure is thus:
test 195 items and reject LTPD = 2% if more than 1 defect occur).

In addition to the simple one-sided sampling plans described above, multiple
one-sided sampling plans are often used to demonstrate AQL values.  In a double
one-sided sampling plan, the following procedure is used:

 1. Take a first sample of size n1 and accept definitely if no more than c1 defects
occur, but reject definitely if exactly or more than d1 defects have occurred.

 2. If after the first sample the number of defects is greater than c1 but less than d1,
take a second sample of size n2 and accept if there are totally (in the first and
second sample) no more than c2 defects; elsewhere reject.

The operating characteristic curve (acceptance probability curve) for a double one-
sided sampling plan can be calculated as
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Table 7.1    Test procedures for AQL demonstration (test level II, from IEC 60410 [7.3])

Sam- AQL in %

Lot size ple
size

0.04 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5

C
od

e

N n c c c c c c c c c c c c

A 2 - 8 2 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 0
B 9 - 15 3 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 0 ↑
C 16 - 25 5 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 0 ↑ ↓
D 26 - 50 8 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 0 ↑ ↓ 1
E 51 - 90 13 ↓ ↓ ↓ ↓ ↓ ↓ ↓ 0 ↑ ↓ 1 2
F 91 - 150 20 ↓ ↓ ↓ ↓ ↓ ↓ 0 ↑ ↓ 1 2 3

G 151 - 280 32 ↓ ↓ ↓ ↓ ↓ 0 ↑ ↓ 1 2 3 5
H 281 - 500 50 ↓ ↓ ↓ ↓ 0 ↑ ↓ 1 2 3 5 7
J 501 - 1200 80 ↓ ↓ ↓ 0 ↑ ↓ 1 2 3 5 7 10

K 1.2k - 3.2k 125 ↓ ↓ 0 ↑ ↓ 1 2 3 5 7 10 14
L 3.2k - 10k 200 ↓ 0 ↑ ↓ 1 2 3 5 7 10 14 21
M 10k - 35k 315 0 ↑ ↓ 1 2 3 5 7 10 14 21 ↑
N 35k - 150k 500 ↑ ↓ 1 2 3 5 7 10 14 21 ↑ ↑
P 150k - 500k 800 ↓ 1 2 3 5 7 10 14 21 ↑ ↑ ↑
Q over 500k 1250 1 2 3 5 7 10 14 21 ↑ ↑ ↑ ↑

use the first sampling plan above for ↑ or below for ↓,   c = number of allowed defects
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(7.14)

Multiple one-sided sampling plans are also given in national and international
standards, see for example IEC 60410 [7.3] for the following double one-sided
sampling plan to demonstrate AQL = 1%

Sample Size n1 n2 c1 d1 c2

 281 - 500  32  32 0 2 1

 501 - 1,200  50  50 0 3 3

1,201 - 3,200  80  80 1 4 4

3,201 - 10,000 125 125 2 5 6

The advantage of multiple one-sided sampling plans is that on average they
require smaller sample sizes than would be necessary for simple one-sided
sampling plans.  A disadvantage is that the test duration is not fixed in advance.
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7.2 Statistical Reliability Tests

Reliability tests are useful to evaluate the reliability achieved in a given item.  Early
initiation of such tests allows quick identification and cost-effective correction of
weaknesses not discovered by reliability analyses.  This supports a learning process,
often related to a reliability growth program (Section 7.7).  Since reliability tests are
generally time-consuming and expensive, they must be coordinated with other tests.
Test conditions should be as close as possible to those experienced in the field.
As with quality control, a distinction is made between estimation and demonstration
of a specific reliability figure.  Section 7.2.1 uses results of Section 7.1 for reliabil-
ity and availability testing for the case of a given (fixed) mission.  In section 7.2.2 an
unified method for availability estimation and demonstration for the case of
continuous operation is introduced.  Section 7.2.3 deals carefully with estimation
and demonstration of a constant failure rate λ  (or MTBF for the case MTBF = 1 / λ).
Furthermore, maintainability tests are considered in Section 7.3, accelerated tests in
Section 7.4, goodness-of-fit tests in Section 7.5, general reliability data analysis and
trend tests in Section 7.6, and reliability growth in Section 7.7. To simplify notations,

the indices Si  are omitted (R, PA, MTBF, λ used for RS0, PAS, MTBFS0, λS).

7.2.1  Reliability & Availability Estimation and Demonstration
for the Case of a given fixed Mission

Reliability (R) and availability (asymptotic & steady-state point and average availa-
bility PA AA= ) are often defined as success probability for a given (fixed) mission.
Their estimation and demonstration can thus be performed as for an unknown
probability p (Section 7.1) by setting, for convenience,

p R= −1         or       p PA AA= − = −1 1 .

For a demonstration, the null hypothesis H p p0 0: <  is converted to H R R0 0:  >  or
H AA AA0 0: , >  which adheres better to the concept of reliability or availability.  The
same holds for any other reliability figure expressed as an unknown probability p.

The above considerations hold for a given (fixed) mission, repeated as n
Bernoulli trials.  However, for the case of continuous operation, estimation and
demonstration of an availability can leads to a difficulty in defining the time points
t t tn1 2, ,...,  at which the n observations according to Eqs. (7.2) - (7.4) or (7.8) - (7.10)
have to be performed.  The case of continuous operation is considered in Section
7.2.2 for availability and Section 7.2.3 for reliability.  Examples 7.3 -  7.6 illustrate
some cases of reliability tests for given fixed mission.

Example 7.3
In a reliability test 95 of 100 items pass.  Give the confidence interval for R at γ = 0 9.  ( ).β β1 2=
Solution
With p R= −1  and ˆ .R = 0 95 the confidence interval for p follows from Fig. 7.1 as [0.03, 0.10].
The confidence interval for R is then [ . , . ]0 9 0 97 ;  Eq. (7.5) leads to [ . , . ]0 901 0 975  for R.
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Example 7.4

The reliability of a given subassembly was R = 0 9.  and should have been improved through
constructive measures.  In a test of 100 subassemblies, 94 of them pass the test.  Check with a
type I error α = 20% the hypothesis H R0 0 95: .> .

Solution

For p R0 01 0 05= − = . , α = 20%, and n = 100 , Eq. 7.8 delivers c = 7 (see also the graphical
solution from Fig. 7.3 with m n p= =0 5 and acceptance probability ≥ − =1 0 8α . , yielding
α ≈ 0 15.  for m = 5  and c = 7).  As just k = 6 subassemblies have failed the test, the hypothesis
H R0 0 95: .>  can be accepted (must not be rejected) at the level 1 0 85− ≈α . .

Supplementary result: Assuming as an alternative hypothesis H R1 0 90: .< , or p p> =1 0 1. ,
the type II error β can be calculated from Eq. (7.9) with c = 7 & n = 100
or graphically from Fig. 7.3 with m n p= =1 10, yielding β ≈ 0 2. .

Example 7.5

Determine the minimum number of tests n that must be repeated to verify the hypothesis
H R R0 1 0 95: .> =  with a consumer risk β = 0 1. .  What is the allowed number of failures c?

Solution

n and c must satisfy the inequality (7.9) with p R1 11 0 05= − = .  and β = 0 1. , i. e.,

n

i
i n i

i

c




 ⋅ −

=

<≈∑ 0 05 0 95 0 1

0

. . . .

The number of tests n is a minimum for c = 0.  From 0 95 0 1. .n ≈< , it follows that n = 45,
yielding β ≈ 0 099.   (calculation with the Poisson approximation (Eq. (7.12)) yields n = 46 ,
a graphical solution with Fig. 7.3 leads to m ≈ 2 3.  and then n m p= ≈/ 1 46).

Example 7.6

Continuing with Example 7.5,  (i) find n for c = 2  and  (ii) how large would the producer risk
be for c = 0 and c = 2  if the true reliability were R = 0 97. ?

Solution

(i) From Eq. (7.9),

n

i
i n i

i





 ⋅ −

=

<≈∑ 0 05 0 95 0 1

0

2

. . .

and thus n = 105 (Fig. 7.3 yields m ≈ 5 3.  and n ≈ 106 ; from Table A9.2, ν = 6 , t 6 0 9 10 645, . .=
and n = 107 ).

(ii) The producer risk is

α = − 



 ⋅ −

=
∑1 0 03 0 97

0

n

i
i n i

i

c

. . ,

hence, α ≈ 0 75.  for c = 0 and n = 45, α ≈ 0 61.  for c = 2  and n = 105  (Fig. 7.3, yields
α ≈ 0 75.  for c = 0 and m = 1 35. , α ≈ 0 62.  for c = 2  and m = 3 15. ;  from Table A9.2, α ≈ 0 73.
for ν = 2  and t 2 2 7, .α= , α ≈ 0 61.  for ν = 6  and t 6 6 3, .α =  lin. int. (0.74 and 0.61 from [A9.1]) ).
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7.2.2  Availability Estimation & Demonstration for the Case of
Continuous Operation  (asymptotic & steady-state values)

As refinement on the procedure given in Section 7.2.1, availability estimation and
demonstration for a repairable item in continuous operation can be based on results
given in Section 6.2 for the one-item repairable structure.  Point estimate (with
corresponding mean and variance) for the availability can be found for arbitrary
distributions of failure-free and repair times (Section 7.2.2.3).  However, interval
estimation and demonstration tests can lead to some difficulties.  An unified
approach for estimating & demonstrating the asymptotic and steady-state point and
average availability PA AA=  for the case of exponentially or Erlangian distributed
failure-free and /  o r repair times is introduced in Appendices A8.2.2.4 & A8.3.1.4
(to simplify the notation, PA AA=  is used for PA AAS S= ).

Sections 7.2.2.1 and 7.2.2.2 deal with this approach.  The case of exponentially
distributed failure-free & repair times, i. e., constant failure & repair rates ( ( )λ λx = ,
µ µ( ) )x =  is considered in detail, extension to Erlangian distributions is outlined.
Point and average unavailability ( ( )1 0− PAS t  and 1 0− AAS t( )) converge for this
case rapidly and exponentially to the asymptotic & steady-state value (Table 6.3)

PA PA AA= =− −1 1 = = + ≈+ <λ λ µ λ µ λ µ λ µ/ ( ) ( / ) / ( / ) / .. 1

To simplify considerations, it will be first assumed that the observed time interval
( , ]0 t  is >> 1 / µ , terminates at the conclusion of a repair, and exactly k (or n) failure-
free times τi  and repair times τ i'  have occurred.  Furthermore, considering λ µ<< ,

PAa = λ µ/ (7.15)

is estimated instead of PA = +λ λ µ/( ) (absolute error less than ( / )λ µ 2).  λ µ/  is a
probabilistic value of the asymptotic & steady-state unavailability and has his statis-
tical counterpart in DT UT/ , where DT and UT are the observed down and up times.
The procedures developed in Appendices A8.2.2.4 and A8.3.1.4 are based on the
fact that the quantity µ λ. / .  DT UT  has a Fisher distribution (F-distribution) with
ν ν1 2 2= = k  (or 2n) degrees of freedom.  Section 7.2.2.1 deals with estimation of PAa ,
Section 7.2.2.2 with demonstration of PA .  Alternative methods are discussed in
Section 7.2.2.3.

7.2.2.1 Availability Estimation  (Erlangian Failure-Free and / or Repair Times)

Having observed for an item good-as-new at t =0 and after each repair (Fig. 6.2),
with constant failure & repair rates λ  & µ, an operating time UT t tk= + …+1  and a re-
pair time DT t tk= + … +1

' ' , the maximum likelihood point estimate for PAa = λ µ/  is

PA DT UT t t t ta k k
ˆ

( / )ˆ ( ) / ( ) ./ ' '= = = … …+ + + +λ µ  1 1 (7.16)

DT / UT is biased, unbiased is ( / ) / ,1 1 1− >k DT UT k  (p. 555).  PAa  =λ µ/  is an approx-
imation for PA = +λ λ µ/ ( ), good for practical applications (abs. error < ( / )λ µ 2 ).
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Figure 7.5 Confidence limits PA PA PA PAl aa l

ˆ ˆ ˆ
 /  

ˆ
 /   ≈  and PA PA PA PAu aau

ˆ ˆ ˆ
 /  

ˆ
 /   ≈  per Eq. (7.17) for an

unknown asymptotic & steady-state unavailability λ λ µ λ µ/ ( ) / ( / ) ,+ = = = = +− −PA PA AA PAa1 1 1

PA DT UTa
ˆ /= =  maximum likelihood estimate for λ µ/ , UT t tk= + … +1 , DT t t k= + … +1

' ' ,
γ β β= =− −1 1 2  confidence level, here β β γ1 2 1 2= = −( ) /     (• result for Example A8.8)

For given β β γ β β1 2 1 21,   ,  = − −  ( )0 1 11 2 < < − <β β , lower PA al
ˆ

 and upper PAau
ˆ

confidence limits for PAa  are given by (Eq. (A8.65))

PAa l aPA
ˆ = ˆ

 / F 2 2 1 2k k, , −β     and    PA PAau a
ˆ . = ˆ

 F 2 2 1 1k k, , −β , (7.17)

where F 2 2 1 2k k, , −β  and F 2 2 1 1k k, , −β  are the 1 12 1− −β β and      quantiles of the Fisher (F  -)
distribution with 2 k degrees of freedom (Appendix A9.4).  PA PA PA PAal aul u

ˆ ˆ
/ /

ˆ ˆ≈
≈ = + ≈PA PAa / /1 1λ µ  can often be used.  Figure 7.5 gives the confidence limits
for β β γ1 2 1 2= = −( ) / ,  useful for practical applications (Example A8.8).  One sided
confidence intervals are

0 11 11 2≤ ≤ ≤ <= − = −PA PA PA PAu l
ˆ

,   
ˆ

,    and   with withγ β γ β . (7.18)

Corresponding values for the availability can be obtained using PA PA= −1 .
If failure free and /  or repair times are Erlangian distributed (Eq. (A6.102)) with

βλ λ= n  & βµ µ= n , F 2 2 1 2k k, , −β  and F 2 2 1 1k k, , −β  have to be replaced by F 2 2 1 2kn knµ λ β, , −

and F 2 2 1 1kn knλ µ β, , − , for unchanged MTTF & MTTR (Example A8.11).  Results based
on the distribution of DT (Eq. (7.22) are not free of parameters (Section 7.2.2.3).
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7.2.2.2  Availability Demonstration  (Erlangian Failure-Free and / or Repair Times)

In the context of an acceptance testing, demonstration of the asymptotic & steady-
state point and average availability ( )PA AA=  is often required.  The item is assumed
as-good-as-new at t =0 and after each repair, and for practical applications it is use-
ful to work with the unavailability PA PA= −1 .  The main concern of this test is to
check a zero hypothesis H PA PA0 0:  <  against an alternative hypothesis H PA PA1 1: >
on the basis of the following agreement between producer and consumer:

Items should be accepted with a probability nearly equal to (but not less
than) 1− α  if the true (unknown) unavailability PA  is lower than PA0 ,
but rejected with a probability nearly equal to (but not less than) 1 − β  if PA
is greater than PA1   (PA0 , PA PA1 0> , 0 1 1< < <−α β  are given (fixed) values).

PA0  is the specified unavailability and PA1  is the maximum acceptable unavaila-
bility.  α  is the allowed producer's risk (type I error), i. e ., the probability of
rejecting a true hypothesis H PA PA0 0:  < .  β is the allowed consumer's risk (type II
error), i. e ., the probability of accepting the hypothesis H PA PA0 0:  <  when the
alternative hypothesis H PA PA1 1: >  is true.  Verification of the agreement stated
above is a problem of statistical hypothesis testing (Appendix A8.3) and different
approach are possible.  In the following, the method developed in Appendix
A8.3.1.4 is given (comparison with other methods is in Section 7.2.2.3).

Assuming constant failure and repair rates λ λ( )x =  and µ µ( )x = , the procedure
is as follows (Eqs. (A8.91) - (A8.93), see also [A8.29, A2.6 (IEC 61070)]):

 1. For given (fixed) PA0 , PA1, α , and β  ( 0 1 1< < <−α β ), find the smallest
integer n (1, 2, ...) which satisfy (Eq. (A8.91))

F2n,2n, 1−α  .  F2n,2n, 1−β  ≤  
PA

PA

PA

PA

PA PA

PA PA
1

0

0

1

1 0

0 1

1

1
. ( )

( )
,  =

−
−

(7.19)

where F 2n, 2n,  1 − α  and F 2n, 2n,  1 −β  are the 1  & 1  − −α β  quantiles of the F-
distribution with 2n degrees of freedom (Appendix A9.4), and compute the
limiting value (Eq. (A8.92))

δ =  F 2n, 2n,  1 − α PA PA0 0/ =  F 2n, 2n,  1 − α ( ) / .1 0 0− PA PA (7.20)

 2. Observe n failure-free times t tn1, ,…  & corresponding repair times t tn1' ', ,… , and

• reject   if  ( ) / ( )            H PA PA t t t tn n0 1 10: , ' '< + …+ + …+ > δ

• accept  if   ( ) / ( )           H PA PA t t t tn n0 1 10: , ' ' .< + …+ + …+ ≤ δ (7.21)

Table 7.2 gives n and δ  for some values of PA PA1 0/  used in practical applications
(Table A9.4, [A9.2, A9.3]).  It must be noted that the test duration is not fixed
in advance.  However, results for fixed time sample plans are not free of parameters
(remark to Eq. (7.22)).  Values for the availability can be obtained using PA PA= −1 .
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Table 7.2    Number n of failure-free times τ τ1, ,… n  & corresponding repair (restoration) times
τ τ1

' ', ,… n , and limiting value δ of the observed ratio ( ) ( )' ' /t t t tn n1 1+ … + + … +  to demonstrate
PA PA< 0  against PA PA> 1 for various values of α (producer risk), β (consumer risk), and PA PA1 0/

PA PA

PA
1 0 2

0 1 2

/

( / ) * * *

=
>

PA PA

PA
1 0 4

0 3 4

/

( / ) * * *

=
>

PA PA

PA
1 0 6

0 5 6

/

( / ) * * *

=
>

α β≈ ≈< 0 1.
n

PA PA

=
=

29

1 41 0 0

*

. /δ
n

PA PA

=
=

8

1 93 00

*

. /δ
n

PA PA

=
=

5

2 32 00

* *

. /δ

α β≈ ≈< 0 2.
n

PA PA

=
=

13

1 39 00

*

. /δ
n

PA PA

=
=

4

1 86 00

* *

. /δ
n

PA PA

=
=

3

2 06 00

*

. /δ

* a lower n as per Eq. (7.19) can be given (with corresponding δ per Eq. (7.20)) for PA0 0 99≤ . ;
* * same as * for PA0 0 98< . ;   * * * given by 0 10 1< <PA PA,

If failure free and / or repair times are Erlangian distributed (Eq. (A6.102)) with
βλ λ=n  & βµ µ=n , F 2 2 1n n, , − α  and F 2 2 1n n, , −β  have to be replaced by F 2 2 1n n n n. ., ,µ λ α−

and F 2 2 1n n n n. ., ,λ µ β− , for unchanged MTTF & MTTR (Example A8.11).  Results
based on the distribution of DT (Eq. 7.22) are not parameter free (Section 7.2.2.3).

7.2.2.3  Further Availability Evaluation Methods for Continuous Operation

The approach developed in Appendices A8.2.2.4 & A8.3.1.4 and given in Sections
7.2.2.1 & 7.2.2.2 yields to exact solutions based on the Fisher distribution for
estimating and demonstrating an availability PA AA= , obtained by investigating
DT UT/  for exponentially or Erlangian distributed failure-free and / or repair times.
Exponentially distributed failure-free times can be assumed in many practical
applications.  The distribution of repair (restoration) times can often be approxi-
mated by an Erlang distribution (Eq. (A6.102)) with β ≥ 3.  Generalization of the
distribution of failure-free or repair times can lead to difficulties.  In the following
some alternative approaches for estimating and demonstrating an availability
PA AA=  are briefly discussed and compared with the approach given in Sections
7.2.2.1 & 7.2.2.2 (item's behavior still described by an alternating renewal process
as per Fig. 6.2)).

A first possibility is to consider only the distribution of the down time DT (total
repair or restoration time) in a given time interval ( , ]0 t .  At the given (fixed) time
point t the item can be up or down, and Eq. (6.33) with t x−  instead of T0  gives the
distribution function of DT (Eq. (7.22)).  Moments of DT have been investigated in
[A7.29 (1957)], mean and variance of the unavailability PA PA DT t= − =1 E[ / ]  can
thus be given for arbitrary distributions of failure-free and repair times.  In particu-
lar, for the case of constant failure and repair rates ( λ λ( )x = , µ µ( )x = ) it holds that
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However, already for the case of constant failure and repair rates, results for interval
estimation and demonstration test are not free of parameters (function of µ [A8.29]
or λ [A8.18]).  The use of the distribution of DT, or DT t/  for fixed t, would bring
the advantage of a test duration t fixed in advance, but results are not free of
parameters and the method is thus of limited utility.

A second possibility is to assign to the state of the item an indicator ζ ( )t
taking values 1 for item up and 0 for item down (binary process, Boolean variable).
In this case it holds that PA Pr{ }( ) ( )t t= =ζ 1 , and thus E[ ] = PAζ ( ) ( )t t  and
Var[ ] = E[ ] E [ ] = PA PA2ζ ζ ζ( ) ( ) ( ) ( )( ( ))t t t t t2 1− −  (Eq. (A6.118)).  Investigation on
PA( )t  reduces to that on ζ( )t , see e. g. [A7.4 (1962)]. In particular, estimation and de-
monstration of PA( )t  can be based on observations of ζ ( )t  at time points t t1 2< < ... .
A basic question here, is the choice of the observation time points (randomly, at con-
stant time intervals ∆= −+t ti i1 , or other).  For the case of constant failure & repair
rates ( )λ µ  & , PA( )t  convergence rapidly to PA AA = = ≈ −+µ λ µ λ µ/( ) /1 . (Eq. (6.20)).
Furthermore, because of the constant failure rate, the joint availability is given by
(Eqs. (6.35)) JA ( , ) PA ( ) PA ( ).

S S St t t0 0 0+ =∆ ∆ , relation which can be extended to
an arbitrary number of observation points (Eq. (A6.9)).  Estimation and demonstra-
tion for the case of observations at constant time intervals ∆  can thus be reduced to
the case of an unknown probability p e= = ≈− − −PA( ) ( ) ( )∆ ∆ ∆1 1PA  /µ λ µ  as per
Eq. (6.20), yielding p ≈ λ ∆  for ∆ << 1/µ  or p ≈ λ µ/  for ∆ >> 1/ µ  (Section 7.1).

A further possibility is to estimate and demonstrate λ µ    &  separately (Eqs.
(7.28) - (7.30) and (7.33) - (7.35)), and consider PA AA= ≈ λ µ/ .

A one-sided interval estimation PA AA PA u= ≈ ≤     λ µ/ ˆ  for an item described
by Fig. 6.2 and Eq. (7.22), using the Chebyshev's inequality (Eqs. (A6.49)) in the
form Pr     i. e. { / / } / ( ) ,| |DT t t− −> ≤ = =λ µ λ µ β γε ε2 12 2 1  for ε λ µ γ= −2 12 / ( ) ,t

has been proposed in [7.14].  This leas to Pr    { / / }DT t > + ≤ −λ µ γε 1 , or
Pr    { / / }DT t ≤ + ≥λ µ ε γ;  thus, Pr       }{ ˆ

PA PA u≤ ≥ γ with PA u tˆ ˆ / ˆ ˆ / ˆ ( )
 

         ,= −+λ µ λ µ γ2 12  t
as test time, and λ µˆ ˆ    &  estimates for λ µ    &  (Eqs. (7.28), (7.23)-(7.25) as appropriate).

The different methods can basically be discussed by comparing Figs. 7.5 & 7.6
and Tables 7.2 & 7.3.  Analytical results based on the Fisher distribution yield
broader confidence intervals and longer demonstration tests (which can be partly
compensated by accepting higher values for PA PAu l

ˆ / ˆ  or PA PA1 0/ , considering the
low values of PA  and that λ µ    &  are unknown); the advantage being an exact
knowledge of the involved errors (β β1 2, ) or risks (α β, ).  However, for some
aspects (test duration, possibility to verify maintainability with selected failures)
it can become more appropriate to estimate and demonstrate λ µ    &  separately.
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7.2.3  Estimation & Demonstration of a Constant Failure Rate λλλλ
(or of MTBF for the Case MTBF = 1 / λλλλ    )

A constant (time independent) failure rate λ λ( )x =  occurs in many practical applica-
tions for nonrepairables items, as well as for repairable items which are assumed
as-good-as-new after repair, x being the variable starting by x =0 at the beginning
of the failure-free time considered  (as for interarrival times, pp. 5-6, 41, 378, 380).
λ λ( )x =  implies that failure-free times are independent and exponentially distributed
with the same parameter λ (Eq. (A6.81)).  In this case, the reliability function is given
by R x e x( ) = − λ  and for the mean time to failure, MTTF = 1 / λ  holds for all failure-
free times (Eq. (A6.84)).  If the repair time is not negligible, MTBF (mean operating
time between failures) is used instead of MTTF.  However,

considering that to give a sense to an MTBF, the repaired item must be as-
good-as-new after each repair, λ λ( )x =  yields MTBF =1/λ;  also because
of the statistical estimate MTBF T kˆ /=  used in practical applications
(p. 318), and to avoid misuses, MTBF is confined in this book to the case
of repairable items with λ λ( )x = .(see also the remarks on pp. 6 & 380).

A reason for assuming λ λ( )x =  is that by neglecting renewal times (for repair or
replacement at failure), i. e. by considering only operating times, the flow of failures
constitute a homogeneous Poisson process (p. 472).  This property characterizes
exponentially distributed failure-free times and highly simplifies investigations.

This section deals with estimation and demonstration of a constant failure rate
λ , or of MTBF for the case MTBF=1/ λ (see Sections 7.5 -  7.7 for further results).
In particular, the case of a given (fixed) cumulative operating time T, obtained with
one or more statistically identical and independent items which are as-good-as-new
after each repair or replacement at failure, is considered (footnote on p. 318).
Due to the relationship between exponentially distributed failure-free times and the
homogeneous Poisson process (Eq. (A7.39)) as well as the additive property of
Poisson processes (Example 7.7),

for constant failure rate λ λ( )x  = , the fixed cumulative operating time T
can be partitioned in an arbitrary way from failure-free times of
statistically identical and independent items,

see note to Table 7.3 for a practical rule.  Following are two basic situations:

 1. Operation of a single item immediately renewed at failure, here T t= .
 2. Operation of n identical items, each of them being immediately renewed

at failure, here, T n t n= = …  ( , , )1 2 .

As stated above, for constant failure rate λ λ( )x  =  and immediate renewal, the
failure process is a homogeneous Poisson process with intensity λ  for n = 1, or n λ
for n > 1, over the fixed time interval ( , ] ]( , /0 0T n T n n = 1,   for or for >1.  Hence,
the probability for k failures within the cumulative operating time T is (Eq. (A7.41))
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Statistical procedures for the estimation and demonstration of a failure rate λ can
thus be based on the evaluation of the parameter ( )m T= λ  of a Poisson distribution.

In addition to the case of a given (fixed) cumulative operating time T (with
immediate renewal), discussed above and investigated in Sections 7.2.3.1 - 7.2.3.3,
for which the number k of failures in T is a sufficient statistic and ˆ /λ = k T  is an
unbiased estimate for λ ,  further possibilities are known.  Assuming n  identical
items at t = 0 and labeling the individual failure times as t t1 2< < …, measured
from t = 0, also following censoring cases can occur in practical applications ( )k > 1 :

 1. Fixed number k of failures, the test is stopped at the k th failure and failed items
are not renewed; an unbiased point estimate of the failure rate λ  is (Eq. (A8.35))

λ̂ ( ) [ ( ) ( ) ( ) ( )]/ = − + − − + …+ − + − −k n t n t t n k t tk k1 1 11 2 1 1

      = + …+ +− −( ) ( )/ [ ]k n kt t tk k1 1 . (7.23)

 2. Fixed number k of failures, the test is stopped at the k th failure and failed items
are instantaneously renewed; an unbiased point estimate for λ  is

λ̂ ( ) ( ( ( ( )/ ) ... ) / = − + −− + + − =−k n t n t t n t t k n tk k k1 11 2 1 1  . (7.24)

 3. Fixed test time Ttest , failed items are not renewed;  a biased point estimate of
the failure rate λ  (given k items have failed in ( , ]0 Ttest ) is

λ̂ [ ( ) ( ) ( )] /[ ] ./ ( ) ( ) = =+ − − +…+ − − +…+ + −k n t t t n k T k t t Tn t n ktest k k test1 2 1 11 (7.25)

Example 7.7
An item with constant failure rate λ operates first for a fixed time T1 and then for a fixed time
T2 .  Repair times are neglected.  Give the probability that k failures will occur in T T T= +1 2 .

Solution
The item's behavior within each of the time periods T1 and T2  can be described by a
homogeneous Poisson process with intensity λ.  From Eq. (A7.39) it follows that
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The last part of Eq. (7.26) follows from the binomial expansion of ( )T T k
1 2+ .  Eq. (7.26) shows

that for λ constant, the cumulative operating time T can be partitioned in an arbitrary way from
failure-free times of statistically identical and independent items (see note to Table 7.3 for a rule).
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Supplementary result:  The same procedure can be used to prove that the sum of two independent
homogeneous Poisson processes with intensities λ1 and λ2  is a
homogeneous Poisson process with intensity λ λ1 2+ ;  in fact,

Pr{ },k Tfailures in ( 0,
 

 
 

 
  

1] λ λ2
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(7.27)
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This result can be extended to nonhomogeneous Poisson processes.

7.2.3.1 Estimation of a Constant Failure Rate λλλλ      (or of MTBF for MTBF = 1/λλλλ    ) 
+)

Let us consider an item with a constant failure rate λ λ( )x  = .  If during the given
(fixed) cumulative operating time T 

+)
 exactly k failures have occurred, the maximum

likelihood point estimate for the unknown parameter λ follows as (Eq. (A8.46))

λ λ λ λ λˆ         .,  ˆ ˆ          ... ,= , , ,   E[  ] =  ,   Var[  ] = /= k

T
k T0 1 2 (7.28)

λ̂ / = k T  is unbiased, i.e. E  [ ˆ ]λ λ=  and k  is a sufficient statistic (Appendix A8.2.1).
Furthermore, Var  Var[ ˆ ] [ ] / /λ λ= =k T T2  (Eqs. (A6.128),(A6.40),(A6.46)).  For a given
confidence level γ β β= − −1 1 2  ( 0 1 11 2< < − <β β )  and k > 0, lower λ̂ l  and upper λ̂ u
limits of the confidence interval for λ can be obtained from (Eqs. (A8.47) - (A8.51))
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ˆ ˆ
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or from

λ
χ

λ
χ

β βˆ ˆ, ( ),
          ,  and         l u

k k

T T
= = + −2

2
2 1 1
2

2 1

2 2
(7.30)

using the quantile of the χ2- distribution (Table A9.2).  For k = 0, Eq. (A8.49) yields

λ λ βˆ ˆ          ln( / ) / ,     and            l u T= =0 1 1         with  γ β= −1 1. (7.31)

Figure 7.6 gives confidence limits λ λˆ / ˆ  
l  & λ λˆ / ˆ  

u  for β β γ1 2 1 2= = −( ) / , with λ̂ / =k T ,
useful for practical applications.

For the case MTBF =1 / λ , MTBF T k kˆ / ,= ≥1 , is biased;  unbiased is, for λT>> 1,
MTBF T kˆ / ( )= + 1  (  E[ ]T k e T/ ( ) ( ) / ,+ = − −1 1 λ λ  Eqs. (A6.40), (A6.39), (A7.41)).
For practical applications, MTBF MTBFl uu lˆ / ˆ ˆ /ˆ≈ ≈1 1λ λ      and   can often be used.

––––––––––––
+) The case considered in Sections 7.2.3.1-7.2.3.3 corresponds to a sampling plan with n ≥1 statistical-

ly identical & independent items and k failures in the given (fixed, cumulative) operating time T
(T is often considered as time interval ( , / ]0 t T n=  by assuming immediate repair or replacement to
as–good-as-new of failed elements, yielding a homogeneous Poisson process (HPP) with intensity
n λ as flow of failures);  fixed T (or t T n= / ) is known as Type 1 (time) censoring.
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Figure 7.6  Confidence limits λ λˆ / ˆ  
l , λ λˆ / ˆ  

u  for an unknown constant failure rate λ  per Eqs. (7.28)
& (7.29), T =given (fixed) cumulative operating time (time censoring), k =  number of failures
during T ( )k ≥1 , γ β β= =− −1 1 2  confidence level, here β β γ1 2 1 2= = −( ) /   (see footnote on p. 318;
for MTBF =1/ ,λ  MTBFl u

ˆ / ˆ≈1 λ  & MTBFu l
ˆ / ˆ≈1 λ can  often be used;  • result for Examples 7.8, 7.13)

Confidence limits λ̂ l , λ̂ ucan also be used to give one-sided confidence intervals:

0 2 10 1≤ ≤ = = −λ λ β γ βˆ                       with andu ,
or

λ λ β γ β≥ = = −ˆ ,                            with andl 1 20 1 , (7.32)

For practical applications, MTBF MTBFl u≥ ≈ˆ ˆ/1 λ  & MTBF MTBFu l≤ ≈ˆ ˆ/1 λ  can often
be used, for the case MTBF =1 / λ.

Example 7.8
In testing a subassembly with constant failure rate λ, 4 failures occur during T = 104 cumulative
operating hours (footnote on p. 318).  Find the confidence interval for λ for a confidence level
γ = 0 8.   (β β1 2 0 1= = . ).
Solution
From Fig. 7.6 it follows that for k = 4  and γ = 0 8. , λ λˆ

/
ˆ

.  
l ≈ 0 44 and λ λˆ

/ ˆ  
u ≈ 2.  With T = 104 h ,

k = 4 , and λ̂ = ⋅ − −4 10 4 1h , the confidence limits are  ˆ .λl ≈ ⋅ − −1 7 10 4 1h  and λ̂u ≈ ⋅ − −8 10 4 1h .

Supplementary result:  Corresponding one-sided conf. interval is λ ≤ ⋅ − −8 10 4 1h  with γ = 0 9. .
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In the above considerations (Eqs. (7.28) - (7.32)), the cumulative operating time
T was given (fixed), independent of the individual failure-free times and the number
n of items involved (Type I (time) censoring, see also the footnote on p. 318).  The
situation is different when the number of failures k is given (fixed), i. e., when the
test is stopped at the occurrence of the k  h failure (Type I1 (failure) censoring).
Here, the cumulative operating time is a random variable (term ( ) / ˆk − 1 λ  of Eqs.
(7.23) & (7.24)).  Using the memoryless property of homogeneous Poisson processes,
it can be shown that the quantities ( ) , ,, , ..., ,t t ti i i k− =− =1 1 2 0 0   are independent obser-
vations of exponentially distributed random variables with parameters n λ  for Eq.
(7.24) and  ( )n i− + 1 λ  for Eq. (7.23), respectively.  This is necessary and sufficient
to prove that the λ̂  given by Eqs. (7.23) and (7.24) are maximum likelihood
estimates for λ.  For confidence intervals, results of Appendix A8.2.2.3 can be used.

In some practical applications, system's failure rate confidence limits as a
function of component's failure rate confidence limits is asked.  Monte Carlo simu-
lation can help.  However, for a series system with n elements, constant failure rates
λ λ1,..., n , time censoring, and same observation time T, Eqs. (2.19), (7.28) & (7.27)
yield ˆ ˆ ˆ...λ λ λS n= + +1 .  Furthermore, for given fixed T, 2 T iλ  (considered here as
random variable, Appendix A8.2.2.2) has a χ2- distribution with 2 1( )ki +  degrees of
freedom (Eqs. (A8.48) & (A8.51), Table A9.2);  thus, 2 T Sλ  has a χ2- distribution
with 2 1( )ki +∑  degrees of freedom (Appendix A9.2, Example A6.15).  From this,
and considering the shape of the χ2- distribution (Tab. A9.2, [A9.2, A9.3]), it holds
that Pr      { ...ˆ ˆ }λ λ λ γS nu u

≤ ≥+ +1 , with λ̂ iu  (upper limit of the confidence interval for
λ i ) obtained from   Pr          Pr        { ˆ } { ˆ } .2 2 0 7T Ti i i iu u

λ λ λ λ γ≤ ≤= = > , i n=1, ..., .  Extensions
to different observation times Ti, series-parallel structures, and Erlangian distributed
failure-free times are investigated e. g. in [7.17].  Estimation of λ µ/  as approxi-
mation for an unavailability λ λ µ/ ( )+  is discussed in Section 7.2.2.1.

7.2.3.2 Simple Two-sided Test for the Demonstration of a Constant
              Failure Rate λλλλ  (or of MTBF for the case MTBF = 1/λλλλ) 

+ )

In the context of an acceptance test, demonstration of a constant failure rate λ
(or of MTBF for the case MTBF =1 / λ) is often required, not merely its estimation
as in Section 7.2.3.1.  The main concern of this test is to check a zero hypothesis
H 0 0:  λ λ<  against an alternative hypothesis H1 1:  λ λ> , on the basis of the
following agreement between producer and consumer:

Items should be accepted with a probability nearly equal to (but not less than)
1 − α  if the true (unknown) failure rate λ  is less than λ0  , but rejected with a
probability nearly equal to (but not less than) 1 − β   if λ  is greater than λ1
( λ0, λ λ1 0> , and 0 1 1< < <−α β  are given (fixed) values).

_____________
+ )

 See footnote on p. 318.
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λ0 is the specified λ  and λ1 is the maximum acceptable λ  ( 1 0/ m  and 1 1/ m  in
IEC 61614 [7.19] or 1 0/θ θ and 1/ 1  in MIL-HDBK-781  [7.23] for the case MTBF =1 /λ).
α is the allowed producer's risk (type I error), i. e., the probability of rejecting a true
hypothesis H 0 : λ λ< 0 . β is the allowed consumer's risk (type II error), i. e., the prob-
ability of accepting H0 when the alternative hypothesis H1 : λ λ> 1 is true.  Evalua-
tion of the above agreement is a problem of statistical hypothesis testing (Appendix
A8.3), and can be performed e. g. with a simple two-sided test or a sequential test.

With the simple two-sided test (also known as the fixed length test), the
cumulative operating time T (footnote on p. 318) and the number of allowed failure
c during T are fixed quantities.  The procedure (test plan) follows in a way similar to
that developed in Appendix A8.3.1.1 as:

 1. From λ λ0 1,  , α, β determine the smallest integer c and the value T satisfying

( )

!

λ λ α0 0

0
1

T i
T

i

c

i
e −

=
∑ ≥ − (7.33)

     and

( )

!

λ λ β1 1

0

T i
T

i

c

i
e −

=
∑ ≤ . (7.34)

 2. Perform a test with a total cumulative operating time T (see footnote on p. 318),
determine the number of failures k during the test, and

• reject   < ,          if   0H k c0 : λ λ >

• accept  < ,          if   0H k c0 : λ λ ≤ . (7.35)

For the case MTBF =1 / λ , the above procedure can be used to test H MTBF MTBF0 0:   >
against H MTBF MTBF1:   < 1, by replacing λ0 1 0= / MTBF  and λ1 1 1= / MTBF .

Example 7.9
Following conditions have been specified for the demonstration (acceptance test) of the constant
(time independent) failure rate λ  of an assembly:  λ0 1 2000= / h  (specified λ ), λ1 1 1000= / h
(minimum acceptable λ ), producer risk α = 0 2. , consumer risk β = 0 2. .  Give:  (i) the cumula-
tive test time T and the allowed number of failures c during T;  (ii) the probability of acceptance
if the true failure rate λ  were 1 3000/ h.

Solution
(i) From Fig. 7.3, c = 6  and m ≈ 4 6.  for Pr{ } .acceptance ≈ 0 82 , c = 6  and m ≈ 9 2.  for
Pr{ } .acceptance ≈ 0 19  (see Example 7.2 for the procedure);  thus c = 6  and T ≈ 9200h.
These values agree well with those obtained from Table A9.2 ( )ν =14 , as given also in Table 7.3.
(ii) For λ = 1 3000/ h , T = 9200 h , c = 6

Pr{ / }
Pr{ }

!
. ,

.
.

acceptance
 

h
no more than 6 failures  in h = 1 /                 h

λ
λ

=
= = = ≈−

=
∑

1 3000
9200 3000 0 96

3 07
3 07

0

6

T
i

e
i

i

see also Fig. 7.3 for m = 3 07.  and c = 6 .
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Figure 7.7    Operating characteristic curve (acceptance probability curve) as a function of the con-
stant failure rate λ  for λ0 1 2000= / h , λ1 1 1000= / h , α β≈ ≈< 0 2. ;  T = 9200 h  and c = 6  as per
Table 7.3, see also Fig. 7.3  (holds for MTBF0 2000= h  and MTBF1 1000= h , for the case MTBF=1/λ)

The graph of Fig. 7.7 visualizes the validity of the above agreement between
producer and consumer (customer).  It satisfies the inequalities (7.33) and (7.34),
and is known as operating characteristic curve (or acceptance probability curve).
For each value of λ , it gives the probability of having not more than c failures
during a cumulative operating time T.  Considering that, for constant failure rate the
operating characteristic curve as a function of λ  is strictly decreasing, the risk for a
false decision decreases for λ λ< 0 and λ λ> 1, respectively.  It can be shown that the
quantities c and λ0T  only depend on α, β, and the ratio λ λ1 0/  (discrimination ratio).

Table 7.3 gives c  and λ0T  for some values of α, β  and λ λ1 0/  useful for
practical applications.  For the case MTBF = 1/ λ , Table 7.3 holds for testing
H MTBF MTBF0 0:  >  against H MTBF MTBF1:  < 1, by setting λ0 01= / MTBF  and
λ1 11= / MTBF .  Table 7.3 can also be used for the demonstration of an unknown
probability p (Eqs. (7.8) and (7.9)) in the case where the Poisson approximation
applies.  A large number of test plans are in international standards [7.19 (61124)].

In addition to the simple two-sided test described above, a sequential test is often
used (see Appendix A8.3.1.2 & Section 7.1.2.2 for an introduction and Fig. 7.8 for an
example).  In this test, neither the cumulative operating time T (footnote on p. 318),
nor the number c of allowed failures during T are specified before the test begins;

the number of failures is recorded as a function of the (running) cumulative
operating time (normalized to 1 0/ λ ), and the test is stopped as soon as the
resulting staircase curve crosses the acceptance line or the rejection line.

Sequential tests offer the advantage that the test duration is on average shorter than
with simple two-sided tests.  Using Eq. (7.12) with p e t

0 1 0= − −λ δ , p e t
1 1 1= − −λ δ ,

n T t= / δ , and δt → 0 (continuous in time), the acceptance and rejection lines are
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Table 7.3   Number of allowed failures c during the cumulative operating time T (footnote on p. 318)
and value of λ0T  to demonstrate λ λ< 0  against λ λ> 1 for various values of α (producer risk), β
(consumer risk), and λ λ1 0/    (can be used to test MTBF MTBF< 0 against MTBF MTBF> 1 for the case
MTBF =1/λ or, using λ0 0T n p= , to test p p< 0 against p p> 1 for an unknown probability p <<1)

λ λ1 0 1 5/ .= λ λ1 0 2/ = λ λ1 0 3/ =

α β≈ ≈< 0 1.

c
T

=
≈

≈ ≈

40
32 980
0 098

λ
α β

.
( . )

c
T

=
≈

≈ ≈
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0 098

*

.
( . )

λ
α β

c
T

=
≈
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0 096

λ
α β
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( . )

α β≈ ≈< 0 2. 
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α β
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α β
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0 2997
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α β
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( . )
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1 850
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α β
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( . )

c
T
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≈

≈ ≈

1
0 920
0 236

λ
α β

.
( . )

number of items under test ≈ T λ 0, as a rule of thumb;  * c=13 yields λ0 9 48T = .  and α β≈ ≈ 0 1003.

• acceptance line : ( )y x a x b1 1= − , (7.36)

• rejection line : y x a x b2 2( ) = + , (7.37)

with x t tT T T= = =λ λδ δ0 0
 . / ,  running cumulative operating time (footnote on p.

318), and

a b b= = =− − −( / )

( / )

( ) /

( / )
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( / )ln
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ln
ln

.,         ,         
λ λ

λ λ
α β

λ λ
β α

λ λ
1 0

1 0 1 0 1 0

1
1

1
2

1

 
(7.38)

Sequential tests used in practical applications are given in international standards
[7.19 (61124)].  To limit testing effort, restrictions are often placed on the test
duration and the number of allowed failures.  Figure 7.8 shows two truncated
sequential test plans for α β≈ ≈ 0 2.  and λ λ1 0/ =1.5 and 2, respectively.  The lines
defined by Eqs. (7.36) - (7.38) are shown dashed in Fig. 7.8a.

Example 7.10
Continuing with Example 7.9, give the expected test duration by assuming that the true λ  equals
λ0  and a sequential test as per Fig. 7.8 is used.

Solution
From Fig. 7.8 with λ λ1 0 2/ =  it follows that E [ ]test duration λ λ= ≈0 2 4 48000. / λ = h.
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                             a)                                                                      b)
Figure 7.8    a) Sequential test plan to demonstrate λ λ< 0  against λ λ> 1  for α β≈ ≈ 0 2.   and
λ λ1 0 1 5/ .=  (top), λ λ1 0 2/ =  ( bottom), as per IEC 61124 and MIL-HDBK-781 [7.19, 7.23]
(dashed on the left are the lines given by Eqs. (7.36) - (7.38));   b) Expected test duration until
acceptance (continuous) and operating characteristic curve (dashed) as a function of λ λ0 /
(can be used to test MTBF MTBF< 0  against MTBF MTBF> 1, for the case MTBF =1 / λ)

7.2.3.3 Simple One-sided Test for the Demonstration of a Constant
Failure Rate λλλλ  (or of MTBF for the case MTBF = 1/λλλλ    ) + )

Simple two-sided tests (Fig. 7.7) and sequential tests (Fig. 7.8) have the advantage
that, for α β= , producer and consumer run the same risk of making a false decision.
However, in practical applications often only λ0 and α or λ1  and β, i. e. simple one-
sided tests, are used.  The considerations of Section 7.1.3 apply, and care should be
taken with small values of c, as operating with λ0 & α (or λ1  & β)) the producer
(or consumer) can be favored (see e. g. Problem 7.6 on p. 579).  Figure 7.9 shows
the operating characteristic curves for various values of c as a function of λ  for the
demonstration of λ < 1 1000/ h  against λ > 1 1000/ h  with consumer risk β ≈ 0 2.  for
λ = 1 1000/ h , and visualizes the reduction of producer's risk ( .α λ≈ 0 8 =1/1000h)for
by decreasing λ , or increasing c (counterpart of Fig. 7.4).

_____________
+ )

 See footnote on p. 318.
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Figure 7.9   Operating characteristic curves (acceptance probability curves) for λ1 1 1000= / h ,
( ˆ ) , .= =LTPD β 0 2, and c = 0 ( T =1610h), c =1 ( T = 2995h), c = 2 ( T = 4280h), c = 5 ( T = 7905h),
and c=∞ ( T =∞) as per Fig. 7.3 or Table A9.2  (holds for MTBF1 1000= h , for the case MTBF=1/λ)

7.3 Statistical Maintainability Tests

Maintainability is generally expressed as a probability.  In this case, results of
Sections 7.1 and 7.2.1 can be used to estimate or demonstrate maintainability.
However, estimation and demonstration of specific parameters, for instance MTTR
(mean time to repair, used as a synonym for mean time to restoration in this book,
see pp. 113 & 381) is important for practical applications.  If the underlying random
variables are exponentially distributed (constant repair rate µ), the results of Section
7.2.3 for a constant failure rate λ  can be used.  This section deals with the
estimation and demonstration of an MTTR by assuming that repair time is
lognormally distributed (for Erlangian distributed repair times, results of Section
7.2.3 can be used, considering Eqs. (A6.102) - (A6.104)).

7.3.1 Estimation of an MTTR

Let t tn' ', ,1 …  be independent observations (realizations) of the repair time τ ' of
a given item.  From Eqs. (A8.6) and (A8.10), the empirical mean and variance of
τ '  are given by

Ê[ ]' ' ,τ =
=
∑1

1n
ti

i

n
(7.39)
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and
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E . (7.40)

Both estimates are unbiased, i. e. E[Ê[ ]] E[ ]' 'τ τ= = MTTR & E[Vâr [ ]] Var[ ]' 'τ τ= ;
furthermore, Var[ Ê[ ]] Var[ ] /' 'τ τ= n  (Appendix A8.1.2).  As stated above, the repair
time τ ' can often be assumed lognormally distributed with distribution function

F( ) { } /

ln( )

t t e dxx

t

= ≤ = −
−∞
∫Pr     ' τ

π

λ
σ

1

2
22 (7.41)

(Eq. (A6.110)), and mean & variance given by (Eqs. (A6.112) and (A6.113))

E[ ] ,         Var[ ] ( )' '
/

τ τ
σ σ σ

λ λ
σ= = = = −−

MTTR
e e e

MTTR e
2 2 22 2

2
22 1 . (7.42)

Form Example A6.18 (p. 448) one recognizes that ln τ ' is normally distributed with
mean ln /1 λ  and Variance σ 2.  Using Eqs. (A8.24) and (A8.27), the maximum
likelihood estimations of λ and σ 2 follow as

λ λσˆ  ˆ[ ]
'

/ '              ˆ [ln ( )]   and  = =
= =

∏ ∑1 1

1

1 2

1

2
t n

t
ii

n n
i

i

n
. (7.43)

A point estimate for λ and σ can also be obtained by the method of quantiles.  The
idea is to substitute some particular quantiles with the corresponding empirical
quantiles to obtain estimates for λ or σ.  For t = 1 / λ, ln( )λ t = 0 and F( / ) .1 0 5λ = ,
therefore, 1 / λ  is the 0.5 quantile (median) t0 5.  of the distribution function F( )t
given by Eq. (7.41).  From the empirical 0.5 quantile ˆ '' inf ( : F̂ ( ' ) . ).t t tn0 5 0 5= ≥
an estimate for λ follows as

λ̂
ˆ '

.

. = 1

0 5t
(7.44)

Moreover, t e= σ λ/  yields F( / .eσ λ) = 0 841 (Table A9.1);  thus e tσ λ/ .= 0 841 is
the 0.841 quantile of F( )t  given by Eq. (7.41).  Using λ = 1 0 5/ .t  and
σ λ= =ln( ).t 0 841  ln( / ). .t t0 841 0 5 , an estimate for σ is obtained as

σ̂ ln( ) .ˆ / ˆ' '
. .

 = t t0 841 0 5 (7.45)

Furthermore, considering F( / . .e− )= − =σ λ 1 0 841 0 159, i. e.  t e0 159. /= −σ λ , it follows
that e t t2

0 841 0 159
σ λ λ= . ./  and thus Eq. (7.45) can be replaced by

σ̂ ln ( ) .ˆ / ˆ'
.        '

0.159= 1
2 0 841t t (7.46)
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The possibility of representing a lognormal distribution function as a straight line,
to simplify interpretation of data, is discussed in Section 7.5.1 (Fig. 7.14, Appendix
A9.8.1).

To obtain interval estimates for the parameters λ and σ, note that the logarithm
of a log normally distributed variable is normally distributed with mean ln ( / )1 λ
and variance σ 2. Applying the transformation t ti i

' 'ln→  to the individual
observations t tn' ', ,1 …  and using the results known for the interval estimation of
the parameters of a normal distribution [A6.1, A6.4], the confidence intervals

[
ˆ , ˆ

]
, ( )/ ( )/

n n

n n

σ
χ

σ
χγ γ

  
 

    ,

2 2

1 1 2
2

1 1 2
2

− + − −
(7.47)

for σ2 , and

[ , ]               ˆ ˆ ˆ
, ( )/λ λε ε σε γ

   with
 

 e e
n

tn
− =

− − +
1 1 1 2 (7.48)

for λ can be found with λ̂  and σ̂  as in Eq. (7.43). χn q−1
2

,  and t n q−1,  are the q
quantiles of the χ2 and t-distribution with n − 1 degrees of freedom, respectively
(Tables A9.2 and A9.3).

Example 7.11
Let 1.1, 1.3, 1.6, 1.9, 2.0, 2.3, 2.4, 2.7, 3.1, and 4 2. h be 10 independent observations
(realizations) of a lognormally distributed repair time.  Give the maximum likelihood estimate
and, for γ = 0 9. , the confidence interval for the parameters λ and σ2 , as well as the maximum
likelihood estimate for MTTR.

Solution
Equation (7.43) yields ˆ .λ ≈ −0 476 1h  and ˆ .σ2 0 146≈  as  maximum likelihood estimates for λ
and σ2 .   From Eq. (7.42), MTTR eˆ / . ..≈ ≈−0 073 10 476 2 26h h .  Using Eqs. (7.47) and (7.48), as
well as Tables A9.2 and A9.3, the confidence intervals are [ . / . , . / . ]1 46 16 919 1 46 3 325 ≈
[ . , . ]0 086 0 44  for σ2  and [ . , . ] [ . , . ]. . . .0 476 0 476 0 38 0 600 127 1 833 0 127 1 833 1 1e e− ⋅ ⋅ − −≈h h  for λ ,
respectively.

7.3.2 Demonstration of an MTTR

The demonstration of an MTTR (in an acceptance test) will be investigated here by
assuming that the repair time τ ' is lognormally distributed with known σ2  (method
1-A of MIL-HDBK-470 [7.23]).  A rule is asked to test the null hypothesis
H MTTR MTTR0 0:  =  against the alternative hypothesis H MTTR MTTR1 1:  =  for
given type I error α and type II error β (Appendix A8.3).  The procedure (test plan)
is as follows:
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 1. From α and β  ( 0 1 1< < − <α β ), determine the quantiles tβ  and t1−α  of the
standard normal distribution (Table A9.1)

1

2

1

2

2 22 2
1

1
π π

β α
β α

e dx e dxx
t

x
t

− −
−

= = −
−∞ −∞
∫ ∫          and/ /               . (7.49)

From MTTR 0  and MTTR1, compute the sample size n (next highest integer)

n e
t tMTTR MTTR

MTTR MTTR
= −− −

−

( )

( )
( )1 0 1

2

1 0
2

2 1α β σ . (7.50)

 2. Perform n independent repairs and record the observed repair times t tn' ', ,1 …
(representative sample of repair times).

 3. Compute Ê[ ]'τ  according to Eq. (7.39) and reject H MTTR MTTR0 : 0=  if

Ê[ ]' /( )( )τ α σ> = + −−c tMTTR e n0 1 11
2 , (7.51)

otherwise accept H 0.

The proof of the above rule implies a sample size n > 10, so that the quantity Ê[ ]'τ
can be assumed to have a normal distribution with mean MTTR and variance
Var[ ] /'τ n  (Eqs. (A6.148), (A8.7), (A8.8)).  Considering the type I and type II errors

α τ β τ= > = ≤= =Pr{Ê[ ] },   Pr{Ê[ ] }' 'c cMTTR MTTR MTTR MTTR      0 1 ,

and using Eqs. (A6.105) and (7.49), the relationship

c t tMTTR n MTTR n= + = +−0 11 0 1α βτ τVar [ ] / Var [ ] /' ' (7.52)

can be found, with Var [ ]'0 τ  for t1−α  and Var [ ]'1 τ  for tβ  according to Eq. (7.42)
( Var [ ]' ,( ) ,i ie MTTR iτ σ= − =2 21 0 1).  The sample size n  (Eq. (7.50)) follows then
from Eq. (7.52).  The right hand side of Eq. (7.51) is equal to the constant c as per
Eq. (7.52).  The operating characteristic curve (OC) can be calculated from

Pr{ } Pr{Ê[ ] }' /acceptance   MTTR MTTR x
d

c e dx= ≤ = −
−∞
∫τ

π
1

2

2 2 , (7.53)

with (considering Eqs. (A6.105) and (7.52))

d t n e
MTTR

MTTR

MTTR

MTTR
= − − −−

0 0 2
1 1 1α σ( / ( )   )   .

Replacing in d the quantity n e/ ( )σ2
1−  from Eq. (7.50) one recognizes that the

operating characteristic curve is independent of σ2 (rounding of n neglected).
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Example 7.12
Give the rejection conditions (Eq. (7.51)) and the operating characteristic curve (OC) for the dem-
onstration of MTTR MTTR= =0 2 h against MTTR MTTR= =1 2 5. h with α β= = 0 1.  and σ2 0 2= . .

Solution

For α β= = 0 1. , Eq. (7.49) and Table A9.1 yield
t1 1 28− =α . , tβ = −1 28. .From Eq. (7.50) it follows
n = 30 .  The rejection condition is then given by

t
e

i
i =
∑ > + =

−

1

30

2 1 1 28 30 66 6
0 2 1

30
'  h  h( . ) .

.

.

From Eq. (7.53), the OC follows as

Pr{ } ,/acceptance  MTTR e x dx
d

= −
−∞
∫

1

2

22

π

with d MTTR≈ −25 84 11 64. / .h   (see graph).
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7.4 Accelerated Testing

The failure rate λ of electronic components lies typically between 10 10−  and
10 7 1− −h , and that of assemblies in the range of 10 7−  to 10 5 1− −h .  With such figures,
cost and scheduling considerations demand the use of accelerated testing for λ
estimation and demonstration, in particular if reliable field data are not available.
An accelerated test is a test in which the applied stress is chosen to exceed that
encountered in field operation, but still below the technological limits.  This in order
to shorten the time to failure of the item considered by avoiding an alteration of the
involved failure mechanism (genuine acceleration).  In accelerated tests, failure
mechanisms are assumed to be activated selectively by increased stress. The
quantitative relationship between degree of activation and extent of stress, i. e. the
acceleration factor A, is determined via specific tests.  Generally,

it is assumed that the stress will not change the type of the failure-free
time distribution function of the item under test, but only modify the para-
meters, this hypothesis is assumed to be valid; however, its verification is
mandatory before any statistical evaluation of data from accelerated tests.

Many electronic component failure mechanisms are activated through an increase
in temperature.  Calculating the acceleration factor A, the Arrhenius model can often
be applied over a reasonably large temperature range ( about for   C   ICs ).0 150− °   The
Arrhenius model is based on the Arrhenius rate law [7.10, 3.43], which states that the
rate v of a simple (first-order) chemical reaction depends on temperature T as

v v e E k Ta= −
0

/ . (7.54)



330 7   Statistical Quality Control and Reliability Test

Ea  and v0  are parameters, k is the Boltzmann constant ( k = ⋅ −8 6 10
5

. eV / K), and
T the absolute temperature in Kelvin degrees. Ea  is the activation energy and is
expressed in eV.  Assuming that the event considered (for example the diffusion
between two liquids) occurs when the chemical reaction has reached a given
threshold, and the reaction time dependence is given by a function r ( )t , then the
relationship between the times t1  and t2  necessary to reach at two temperatures
T1 and T2 a given level of the chemical reaction considered can be expressed as

v t v t1 1 2 2r( ) r( )= .

Furthermore, assuming r( ) ~t t , i. e. a linear time dependence, it follows that

v t v t1 1 2 2= .

Substituting in Eq. (7.54) and rearranging, yields

t
t

e

E

k T T
a

1

2

2

1

1 1

1 2
  = =

−
ν
ν

( )

.

By transferring this deterministic model to the mean times to failure MTTF1  and
MTTF2  or to the constant failure rates λ2  and λ1 (using MTTF =1 / )λ  of a given
item at temperatures T1 and T2 , it is possible to define an acceleration factor A

A MTTF MTTF A= =1 2 2 1/ /,      or, , ,for time independent failure rate   λ λ    (7.55)

expressed by

A e

E

k T T

a

=
−( )

.

1 1

1 2
 

 
+)

 
  (7.56)

The right hand sides of Eq. (7.55) applies to the case of a constant (time independ-
ent but stress dependent) failure rate λ λ( )t = , for which E Var[ ] [ ] /τ τ λ= = 1
holds (with τ as time to failure).  Assuming that the left hand sides of Eq. (7.55)
applies quite general (for time dependent failure rates) to mean time to failure
( [ ] )E MTTFτ =  and standard deviation ( [ ] )Var τ  as well, and that the type of the
distribution function is the same at temperatures T1 and T2 , it can be shown that for
the distribution functions frequently used in reliability engineering (Table A6.1) the
following holds for the parameters:  λ λ2 1= A  for exponential, Gamma, Weibull, and
lognormal; β β2 1=  for Gamma and Weibull; σ σ2 1=  for lognormal; m m A2 1 = /  &
σ σ2 1 = /A   for normal distribution.++)   This yields F  = Fτ τ1 2

( ) (_ )t t
A

 and thus τ τ1 = 2A ,

_____________
+) The case T T T2 1= + ∆ , yielding a straight line in Fig 7.10 and a lognormal distribution for λ( )t ,

is discussed on p. 37.
++) The demonstration is analytical for the exponential, Gamma, lognormal, and normal case;  for

Weibull, a quasi-analytic demonstration is possible using relations for Γ( )z+1  & Γ( )2z  on p. 566.
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Figure 7.10    Acceleration factor A according to the Arrhenius model (Eq. (7.56)) as a function of
θ2  for θ1 35=  and 55°C, and with Ea  in eV as parameter  ( θi iT= − 273)

where τ τ1  & 2 are the (random) times to failure at temperatures T1 & T2 , with dis-
tribution functions F & F  τ τ1 2

( ) ( )t t  belonging (per assumption) to the same family
(case Vii in Example A6.18 and Eqs. (A6.40), (A6.46) with C A= ).

Equation (7.56) can be reversed to give an estimate Êa  for the activation energy
Ea  based on the mean times to failure MTTFˆ

1  and MTTFˆ
2  (or the failure rates

λ̂1 and λ̂2) obtained empirically from two life tests at temperatures T1 and T2.
However, at least three tests at T1, T2, and T3 are necessary to verify the model.

The activation energy is highly dependent upon the particular failure mechanism
involved (see Table 3.5 for some indicative figures).  High Ea  values lead to high
acceleration factors.  For ICs,  global values of Ea  lie between 0.3  and 0 7. eV,
values which could basically be obtained empirically from the curves of the failure
rate as a function of the junction temperature.  However, it must be noted that the
Arrhenius model does not hold for all electronic devices and for any temperature
range, see e. g. also [7.13, 7.15, 7.22] for further critical remarks on accelerated tests.

Figure 7.10 shows the acceleration factor A from Eq. (7.56) as a function of θ2
in °C, for θ1 35=  and 55°C and with Ea  as parameter (θ i iT= − 273).
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In particular for the case of a constant (time independent) failure rate, the
acceleration factor A  can be used as a multiplicative factor in the conversion of the
cumulative operating time from stress T2 to stress T1 (Example 7.13, see also the
remark to Eq. (7.55)).  In practical applications, the acceleration factor A  lies
between 10 and some few hundreds, seldom > 1000 (Examples 7.13 & 7.14).

If the item under consideration exhibits more than one dominant failure mechan-
ism or consists of series elements E En1, ,…  having different failure mechanisms,
the series reliability model (Sections 2.2.6.1 and 2.3.6) can often be used to
calculate the compound failure rate λS T( )2  at temperature T2 by considering the
failure rates λi T( )1  and the acceleration factors A i  of the individual elements +)

λ λS i iT A T
i

n
( ) ( )2 1

1
=

=
∑ . (7.57)

Equation (7.57) applies for series structures, see p. 364 for further considerations.

Example 7.13
Four failures have occurred during 107 cumulative operating hours (footnote on p. 318) of a
digital CMOS IC at a chip temperature of 130°C.  Assuming θ1 35= °C , a constant failure rate λ,
and an activation energy Ea = 0 4. eV, give the interval estimation of λ for γ = 0 8. .

Solution
For θ1 35= °C, θ2 130= °C, and Ea = 0 4. eV it follows from Fig. 7.10 or Eq. (7.56) that A ≈ 35 .
The cumulative operating time at 35°C is thus T = ⋅0 35 109. h  and the point estimate for λ is
ˆ / .λ = ≈ − −k T 11 4 10 9 1  .              h .  With k = 4  and γ = 0 8. , it follows from Fig. 7.6 that ˆ / ˆ .λ λl ≈ 0 44

and ˆ / ˆλ λu ≈ 2;  the confidence interval for λ is therefore [ , . ]5 22 8 10 9 1⋅ − −h .

Example 7.14
A PCB contains 10 metal film resistors with stress factor S = 0 1.  and λ( ) . .25 0 2 10 9 1° = − −C h ,
5 ceramic capacitors (class 1) with S = 0 4.  and λ( ) . .25 0 8 10 9 1° = − −C h , 2 electrolytic capacitors
(Al wet) with S = 0 6.  and λ( ) .25 6 10 9 1° = − −C h , and 4 ceramic-packaged linear ICs with
∆ = °θJA 10 C and λ( )35 20 10 9 1° = ⋅ − −C h .  Neglecting the contribution of printed wiring and
solder joints, give the failure rate of the PCB at a burn-in temperature θA of 80°C on the basis of
failure rate relationships given in Figs. 2.4 & 2.5.

Solution
The resistor and capacitor acceleration factors can be obtained from Fig. 2.4 as

resistor: A ≈ ≈2 5 0 7 3 6. / . .
ceramic capacitor (class 1): A ≈ ≈3 8 0 45 8 4. / . .
electrolytic capacitor (Al wet): A ≈ ≈13 6 0 35 38 9. / . . .

Using Eq. (2.4) for the ICs, it follows that λ ∼ ΠT .  With θJ = °35 C  and 90°C , the acceleration
factor for the linear ICs can then be obtained from Fig. 2.5 as A ≈ ≈10 0 9 11/ . .  From Eqs.
(2.19) & (7.57), the failure rate of the PCB follows as

λ( ) ( . . )25 10 0 2 5 0 8 2 6 4 20 10 100 109 1 9 1° ≈ ⋅ + ⋅ + ⋅ + ⋅ ≈ ⋅− − − −C h h

λ λ( ) ( . . . . . . . ) . . . ( ) .80 10 0 2 3 6 5 0 8 8 4 2 6 38 9 4 20 11 10 1 4 10 259 1 6° ≈ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ≈ ≈ °+ + + − − −C        h h 14  C-1

_____________
+) Elements with similar failure mechanisms can be grouped in one element, as per Eqs. (2.18), (2.19).
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A further model for investigating the time scale reduction (time compression)
resulting from an increase in temperature has been proposed by H. Eyring [3.43,
7.25].  The Eyring model defines the acceleration factor as

A T T e
B
k T T=

−
( )/

( )

2 1

1 1

1 2 , (7.58)

where B is not necessarily an activation energy.  Eyring also suggests the following
model, which considers the influences of temperature T and of a further stress X

A T T m e
B

k T T
X C

D

k T
X C

D

k Te=
− + − +

( )
( ) [ ( ) ( )]

/2 1
1 2

1
1

2
2

1 1

. (7.59)

Equation (7.59) is known as the generalized Eyring model.  In this multiplicative
model, a function of the normalized variable x X X= / 0 can also be used instead of
the quantity X  itself (for example xn, 1/xn, ln xn  ln ( / )1 xn ).  B is not necessarily an
activation energy, C & D constants.  The generalized Eyring model led to accepted
models, for electromigration (Black, m X j j B E C D Xn

a= = = = = =0 1 01 2 1 2, ln ( / ) , , ,
in Eq. (7.59)), corrosion (Peck), and voltage stress (Kemeny) [3.33,.3.56, 3.67]

A
j

j
n e

E

k T T
a

=
−

( ) ,
( )

2

1
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1 2    A e
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k T
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=
+( / )max ,0 1+ 

(7.60)

where j =  current density, RH =  relative humidity, and V  = voltage, respectively
(see also Eqs. (3.2) - (3.6) and Table 3.5).  For voltage stress, a refined model of the
form A e Va Vo= −γ ( )  is discussed e. g. in [3.67].

For failure mechanisms related to mechanical fatigue, Coffin-Manson simplified
models [2.61, 2.72] (based on the inverse power law) can often be used, yielding for
the number of cycles to failure

A
N

N

T

T
T= =1

2

2

1
( )

∆
∆

β        or       A
N

N

G

G
M= =1

2

2

1
( ) β , (7.61)

where ∆T  refers to thermal cycles, G to vibration tests (0 5 0 8. .< <βT , 0 7 0 9. .< <βM

often occur in practical applications).  For damage accumulation, Miner's hypothesis
of independent damage increments [3.52] can be used in some applications.  Known
for conductive-filament formation is the Rudra's model [3.62].  Models for solder joints
are discussed e. g. in [3.79 (2011), 3.90], see also Section 3.4 for some considerations.

Refinement of the above models is in progress in the context of physics of
failures (PoF) [2.15, 3.49, 3.66, 3.67], in particular for ULSI ICs and considering stress
dependent parameters and time dependent failure rates, with emphasis on:

1. New failure mechanisms in oxide and package, as well as new externally
induced failure mechanisms.

2. Identification and analysis of causes for early failures or premature wear-out.
3. Development of physical models for failure mechanisms and of simplified

models for reliability predictions in practical applications.

Such efforts will give better physical understanding on components failure rates.
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In addition to the accelerated tests discussed above, a rough estimate of compo-
nent life time can often be obtained through short-term tests under extreme stresses
(HALT, HAST, etc.).  Examples are humidity testing of plastic-packaged ICs at
high pressure and nearly 100% RH, or tests of ceramic-packaged ICs at up to 350°C.
Experience shows that under high stress, life time is often lognormally distributed,
thus with strong time dependence of the failure rate (Table A6.1).  Highly acceler-
ated stress tests (HAST) and highly accelerated life tests (HALT) can activate failure
mechanisms which would not occur during normal operation, so care is necessary in
extrapolating results to situations exhibiting lower stresses.  Often, the purpose of
such tests is to force (not only to activate) failures.  They belong thus to the class of
semi-destructive or destructive tests, often used at the qualification of prototype
to investigate possible failure modes, mechanisms and / or technological limits.
The same holds for step-stress accelerated tests (often used as life tests or in
screening procedures), for which, accumulation of damage can be more complex as
given e. g. by the Miner's hypothesis or in [7.20, 7.28].  A case-by-case investigation
is mandatory for all this kind of tests.

7.5 Goodness-of-fit Tests

Let t t1 , ,… n be n independent observations of a random variable τ distributed
according to F( )t , a rule is asked to test the null hypothesis H t t0 0: F( ) F ( ) = , for a
given type I error α (probability of rejecting a true hypothesis H 0), against a
general alternative hypothesis H t t1 0: F( ) F ( )≠ .  Goodness-of-fit tests deal with such
testing of hypothesis and are often based on the empirical distribution function
(EDF), see Appendices A8.3 for an introduction.  This section shows the use of
Kolmogorov-Smirnov and chi-square tests (see p. 556 for Cramér - von Mises tests).
Trend tests are discussed in Section 7.6.

7.5.1 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test (p. 556) is based on the convergence for n → ∞  of
the empirical distribution function (Eq. (A8.1))
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, i n= −1 2 1, , ..., ,                  (7.62)

to the true distribution function, and compares the experimentally obtained F̂ ( )n t
with the given (postulated) F ( )0 t .  F ( )0 t  is assumed here to be known and conti-
nuous, t t n( ) ( )...1 < <  are the ordered observations.  The procedure is as follows:
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Figure 7.11  Largest deviation y1−α  between a postulated distribution function F ( )0 t  and the corre-
sponding empirical distribution function F̂ ( )n t  at the level 1 − α   ( Pr{ F ( ) }D y tn ≤ = −−1 0 1α α true )

 1. Determine the largest deviation Dn  between F̂ ( )n t  and F ( )0 t

D t tn n
t

= −
−∞< <∞

sup F̂ ( ) F ( )| |0  . (7.63)

 2. From the given type I error α and the sample size n, use Table A9.5 or
Fig. 7.11 to determine the critical value y1−α.

 3. Reject if      H D yt t n0 0 1: F( ) F ( )  = > −α  ;    otherwise accept H 0.

This procedure can be easily combined with a graphical evaluation of data.  For this
purpose, F̂ ( )n t  and the band F ( )0 1t y± −α  are drawn using a probability chart on
which F ( )0 t  can be represented by a straight line.  If F̂ ( )n t  leaves the band
F ( )0 1t y± −α , the hypothesis H t t0 0: F( ) F ( ) =  is to be rejected (note that the band
width is not constant when using a probability chart).  Probability charts are
discussed in Appendix A.8.1.3, examples are in Appendix A9.8 and Figs. 7.12 -
7.14.  Example 7.15 (Fig. 7.12) shows a graphical evaluation of data for the case of
a Weibull distribution, Example 7.16 (Fig. 7.13) investigates the distribution
function of a population with early failures and a constant failure rate using a
Weibull probability chart, and Example 7.17 (Fig. 7.14) uses the Kolmogorov-
Smirnov test to check agreement with a lognormal distribution.  If F ( )0 t  is not
completely known, a modification is necessary (Appendix A8.3.3).

Example 7.15
Accelerated life testing of a wet Al electrolytic capacitor leads following 13 ordered observations
of lifetime: 59, 71, 153, 235, 347, 589, 837, 913, 1185, 1273, 1399, 1713, and 2567 h.  (i) Draw
the empirical distribution function of data on a Weibull probability chart. (ii) Assuming that the
underlying distribution function is Weibull, determine λ̂  and β̂  graphically (p. 531).  (iii) The
maximum likelihood estimation of λ & β yields ˆ .β = 1 12, calculate λ̂  and compare with (ii).
Solution
(i) Figure 7.12 presents the empirical distribution function F̂ ( )n t  on Weibull probability paper.
(ii) The graphical determination of λ and β leads to (straight line (ii)) ˆ /λ ≈ 1 840 h  and ˆ .β ≈ 1 05.
(iii) With ˆ .β ≈ 1 12, Eq. (A8.31) yields ˆ /λ ≈ 1 908 h  (straight line (iii))  (see also Example A8.12).
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Figure 7.12    Empirical distribution function F̂ ( )n t  and estimated Weibull distribution functions
((ii) and (iii)) as per Example 7.15 (see Appendix A8.1.3, in particular the remark on p. 531)
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Figure 7.13  S-shape of a weighted sum F F F( ) ( ) ( ) ( )t t tp pa b= + −1  of a Weibull distribution F ( )a t
and an exponential distribution F ( )b t  per Example 7.16, useful to detect (describe) early failures
(wear-out failures for slope 1 at the beginning and >1 at the end, see also pp. 7, 355 & 467 for
alternative possibilities and pp. 7 & 444 when early failures and wear-out can occur)
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Example 7.16

Investigate the mixed distribution function F( ) . [ ] . [ ]( . ) ..
t e et t= − + −− −0 2 1 0 8 10 1 0 00050 5

 on a
Weibull probability chart (describing a possible early failure period).

Solution

The weighted sum of a Weibull distribution (with β = 0 5. , λ = −0 1 1. h , and MTTF = 20 h )
and an exponential distribution (with λ = −0 0005 1. h  and MTTF = =1 2000/ λ h) represents the
distribution function of a population of items with
early failures up to about t ≈ 300 h, see graph;
λ( ) [ . ( . ) . ] /. ( . ) ..t t e et t= +− − −0 01 0 1 0 00040 5 0 1 0 00050 5

[ . . ]( . ) ..0 2 0 80 1 0 00050 5e et t− −+  is nearly constant at
0 0005 1. h−  for t  between 300  and 300.000h, so
that for t > 300 h  a constant failure rate can be as-
sumed ( ( ) . ( ) . ;1 300 0 69 300 0 00051 1− ≈ ≈ −F ,  hλ
1 300 000 6 10 300 000 0 000566 1− ≈ ≈− −F ( . ) . ( . ) . ) .,  hλ
Figure 7.13 gives the function F( )t  on a Weibull
probability chart, showing the typical s-shape.   

0.0015

100 200 300

              –1λ (t)   [h    ]

t  [h]

0.0010

0.0005

0 400

Example 7.17

Use the Kolmogorov-Smirnov test to verify with a type I error α = 0 2. , whether the repair time
defined by the observations t t1 10, ,…  of Example 7.11 are distributed according to a lognormal
distribution function with parameters λ = −0 5 1. h  and σ = 0 4.  (hypothesis H0).

Solution

The lognormal distribution (Eq. (7.41)) with λ = −0 5 1. h  and σ = 0 4.  is represented by a straight
line on Fig. 7.14 ( F ( )0 t ).  With α = 0 2.  and n = 10 , Table A9.5 or Fig. 7.11 yields
y1 0 323− =α .   and thus the band F ( ) .0 0 323t ± .  Since the empirical distribution function F̂ ( )n t
does not leave the band F ( )0 1t y± −α , the hypothesis H0 can be accepted.

7.5.2 Chi-square Test

The chi-square test (χ2-test, pp. 557  -  560) can be used for continuous or
noncontinuous F ( )0 t .  Furthermore, F ( )0 t  need not to be completely known.

For F ( )0 t  completely known, the procedure is as follows:

 1. Partition the definition range of the random variable τ into k intervals
(classes) ( , ], ( , ], , ( , ]a a a a a ak k1 2 2 3 1… + ; the choice of the classes must
be made independently of the observations t tn1 , ,…   (made before test
begin) and based on the rule: n pi

>≈ 5 , with pi as per Eq. (7.64)).

 2. Determine the number of observations ki  in each class ( , ]a ai i+1 ,
i k= …1, ,   ( ki =  number of t j  with a t ai j i< ≤ +1, k k nk1 + … + = ).

 3. Assuming the hypothesis H 0, compute the expected number of
observations for each class  ( , ]a ai i+1

n p n a ai i i i k= −+ = …(F ( ) F ( )),         , ,0 01 1     ,  p pk1 1+ +… = . (7.64)
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Figure 7.14    Kolmogorov-Smirnov test to check the repair time distribution as per Example 7.17
(the distribution function with λ̂  and σ̂  from Example 7.11 is shown dashed for information only)

 4. Compute the statistic
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1
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−
= −

= =
∑ ∑

( )
. (7.65)

 5. For a given type I error α, use Table A9.2 or Fig. 7.15 to determine
the ( )1 − α  quantile of the chi-square distribution with k − 1 degrees of
freedom χ αk− −1 1

2
,  .

 6. Reject  H t t0 0: F( ) F ( ) =    if  Xn k
2 2

1 1> − −χ α,  ;   otherwise accept H 0  .

If F ( )0 t  is not completely known (F ( ) F ( , , , )0 0 1t t r= …θ θ , where θ θ1, ,… r  are
unknown parameters, r k< − 1), modify the above procedure after step 2 as follows:

 3’. On the basis of the observations k i  in each class ( , ]a ai i+1 , i k= …1, ,

determine the maximum likelihood estimates for the parameters
θ θ1, ,… r  from the following system of (r) algebraic equations

k

p

pi

i ri

k
i r

j j j
j r

( , , )
. ( , , )

,          ˆ , ,
θ θ

∂ θ θ
∂θ θ θ

11

1 0 1
…

…
=

=
=∑ = …        (7.66)

with p a ai i r i r= … − … >+F ( , , , ) F ( , , , )0 1 1 0 1 0θ θ θ θ , p pk1 1+ +… = , and
for each class ( , ]a ai i+1  compute the expected number of observations

n p n a ai i r i r i kˆ [F ( , ˆ , , ˆ ) F ( , ˆ , , ˆ )],          , ,= … − …+ = …0 01 1 1 1θ θ θ θ . (7.67)
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 4’. Calculate the statistic

ˆ ( ˆ )

ˆ ˆ
Xn

k n p

n p

k

n p
ni i

ii

k
i

ii

k2
2

1

2

1
=

−
= −

= =
∑ ∑ . (7.68)

 5’. For given type I error α, use Table A9.2 or Fig. 7.15 to determine the
( )1−α  quantile of the χ2distribution with k r− −1  degrees of freedom.

 6’. Reject H t t0 0: F( ) F ( ) =   if ˆ
,Xn k r

2 2
1 1> − − −χ α  ;   otherwise accept H 0.

Comparing the above two procedures, it can be noted that the number of degrees of
freedom has been reduced from k − 1 to k r− −1 , where r is the number of para-
meters of F ( )0 t  which have been estimated from the observations t tn1, ,…  using the
multinomial distribution (Example A8.13, see Example 7.18 for an application).

Example 7.18

Let 160, 380, 620, 650, 680, 730, 750, 920, 1000, 1100, 1400, 1450, 1700, 2000, 2200, 2800,
3000, 4600, 4700, and 5000 h be 20 independent observations (realizations) of the failure-free
time τ for a given assembly.  Using the chi-square test for α = 0 1.  and the 4 classes ( , ]0 500 ,
( , ]500 1000 , ( , ]1000 2000 , ( , )2000 ∞ , determine whether or not τ is exponentially distributed
(hypothesis H t e t

0 1: F( )  = − −λ , λ unknown).

Solution

The given classes yield number of observations of k1 2= , k2 7= , k3 5= , and k4 6= .
The point estimate of λ is then given by Eq. (7.66) with p e ei

a ai i= −− − +λ λ 1 , yielding for λ̂
the numerical solution ˆ .λ ≈ ⋅ − −0 562 10 3 1h .  Thus, the numbers of expected observations in
each of the 4 classes are according to Eq. (7.67) n p̂ .1 4 899= , n p̂ .2 3 699= , n p̂ .3 4 90= , and
n p̂ .4 6 499= .  From Eq. (7.68) it follows that ˆ .X20

2 4 70=  and from Table A9.2, χ
2 0 9
2 4 605, . .= .

The hypothesis H t e t
0 1: F( ) = − −λ  must be rejected since ˆ

,Xn k r
2

1 1
2> − − −χ α .

10
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Figure 7.15  ( )1− α  quantile (α percentage point) of the chi-square distribution with ν degrees of
freedom ( ,χν α1

2

− , see also Table A9.2)
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Example 7.19
Let F( )t  be the distribution function of the failure-free time of a given item.  Suppose that at
t = 0  an unknown number n of items are put into operation and that at the time tk  exactly k item
are failed (no replacement or repair has been done).  Give a point estimate for n.
Solution
Setting p tk= F ( ), the number k of failures in ( , ]0 tk  is binomially distributed (Eq. (A6.120))

Pr{ ( , } ( ) , (( ) ) .k t p p p p tk
k n k

kk
n
k failures in ]                 with F      0 1= = − =−                         (7.69)

An estimate for n using the maximum likelihood method, L
n
k p pk n k= − −( ( ) )  1  as per Eq. (A8.23)

and ∂ = =ln / ˆL   for  ∂n n n0 , yields   ( / / ,( ) ( ! ) ( ( ) ( )n
k e k n n kk n n k ≈ − − −  Stirling's formula p. 566)

ˆ ( )/ /n k p k tk= = F .                               ( ( ) / !p np kk
npe k≈ −    yields also  ˆ / . )n k p=              (7.70)

Supplementary results:  If F( )t  is unknown, ˆ ( )Fk t  can be obtained using t tk1,...,  and Eq. (A8.1).

7.6 Statistical Analysis of General Reliability Data

7.6.1 General considerations

In Sections 7.2 - 7.5, data were issued from a sample of a random variable τ , i. e.,
they were n independent realizations (observations) t tn1, ,…  of a random variable
τ > 0 distributed according to (a postulated) F( ) Pr{ }t t= ≤τ  with F( )0 0= , and
belonging to one of the following equivalent situations:

 1. Life times t tn1, ,…  of n statistically identical and independent items, all
starting at t =0 when plotted on the time axis  (Figs. 1.1, 7.12, 7.14, A8.1).

 2. Failure-free times separating successive failure occurrences of a repairable
item (system) with negligible repair times and repaired (restored) as a whole to
as-good-as-new at each repair;  i.e., statistically identical & independent inter-
arrival times with a common distribution function, yielding a renewal process.

To this data structure belongs also the case considered in Example 7.19.
A basically different situation arises when the observations are arbitrary points

on the time axis (i. e. a general point process).  To distinguish this case, the involved
random variables are labeled τ τ1 2

* *, ,... , with t t1 2
* *    ,   ,... for the corresponding realiza-

tions ( t t1 2
* * ...< <   tacitly assumed).  This situation often occurs in reliability tests;

for instance, when only the failed element in a system is repaired to as-
good-as-new, and at least one element in the system has a time dependent
failure rate;  in this case, failure-free times (interarrival times, by assuming
negligible repair times) are neither independent nor equally distributed.

Except for very large systems, for which the flow of failures can be supposed to
converge to a homogeneous Poisson process (p. 521), and case 2 above, only the
case of a system with constant failure rates for all elements ( ,... , )λ λ1 n  leads
(if failed elements are quickly repaired to as-good-as-new in a negligible time)
to interarrival times which are independent random variables with a common dis-
tribution function F ( )x , i. e. to a renewal process  (a homogeneous Poisson process
with F ( )x e S x= − −1 λ  for a series system).  Shortcomings are known [6.1, 7.11, A7.30].
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Easy to investigate, when observing data on the time axis, are also cases
involving nonhomogeneous Poisson processes (Sections 7.6.2, 7.6.3, 7.7, Appendix
A7.8.2).  However, more general situations, can lead to difficulties, except for some
general results valid for stationary point processes (Appendices A7.8.3 - A7.8.5).

From all the above considerations, the following basic rule should apply:

If neither a Poisson process (homogeneous or nonhomogeneous) nor a
renewal process can be assumed for the underlying point process, care is
necessary in identifying possible models;  in any case, validation of model
assumptions (physical & statistical aspects) should precede data analysis.

The homogeneous Poisson process (HPP), introduced in Appendix A7.2.5 as a
particular renewal process, is the simplest point process.  It is memoryless, and tools
for a statistical investigation are well known.  Nonhomogeneous Poisson processes
(NHPPs) are without aftereffect (Appendix A7.8.2), and for investigation purposes
they can be transformed into an HPP (Eq. (A7.200)).  Investigations on renewal
processes (Appendix A7.2) can be reduced to that of independent random variables
with a common distribution function (cases 1 and 2 on p.341).  However, disre-
garding the last part of the above general rule can lead to mistakes, even in the
presence of renewal processes or independent realizations of a random variable τ .
As an example, let us consider an item with two independent failure mechanisms,
one appearing with constant failure rate λ0

3 110= − − h  and the second (wear-out)
with a shifted Weibull distribution F( ) ( ( ))t e t= − − −1 λ ψ β with λ ψ= =− −10 102 1 4 h  h, ,
and β =3 ( , ( ) )t t t> = ≤ψ ψ  for F 0 .  The failure-free time τ  has the distribution
function F ( )t e t= − −1 0λ  for 0 < ≤t ψ and, as for case 2 in Eq. (A6.34),
F    ( ) . ( ( ))t e et t= − − −−1 0λ λ ψ β  for t > ψ  (failure rate λ λ ψ( )t t= ≤0 for   and
λ λ β λβ βψ ψ( ) (t t t= − >0 +  ) -1 for  , similar to a series model with independent elements
(Eq. (2.18)).  If the presence of the above two failure mechanisms is not known,
neither suspected, and the test is stopped (censored) at 104 h , the wrong conclusion
can be drawn that the item has a constant failure rate of 10 3 1− − h .

Investigation of cases involving general point processes is beyond the scope of
this book (only some general results are given in Appendices A7.8.3 -  A7.8.5).
A large number of ad hoc procedures are known in the literature, but they often
only apply to specific situations and their use needs a careful validation of the
assumptions stated with the model.

After some considerations on tests for nonhomogeneous Poisson processes in
Section 7.6.2, Sections 7.6.3.1 and 7.6.3.2 deal with trend tests to check the as-
sumption homogeneous Poisson process versus nonhomogeneous Poisson process
with increasing or decreasing intensity.  A heuristic test to distinguish a homogene-
ous Poisson process from a general monotonic trend is discussed in Section 7.6.3.3;
however, as stated in the above general rule, the validity of a model should be
checked also on the basis of physical considerations on the item considered,
in particular for the property without aftereffect, characterizing Poisson processes.
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7.6.2 Tests for Nonhomogeneous Poisson Processes

A nonhomogeneous Poisson process (NHPP) is a point processes which count func-
tion ν( )t  has unit jumps, independent increments (in nonoverlapping intervals),
and satisfies for any b a> ≥ 0 (Appendix A7.8.2)

Pr{ ( , ]} ,
(M( ) M( )) , , , ...,

, ( ) .!
(M( ) M( ))k a b

b a k
a b Mk

k
e b aevents in     (7.71) = − =

≤ < =− − 0 1 2
0 0

For a b t= =0 &  it holds that Pr{ ( ) } (M( )) / !M( ) .ν t ek t kk t= = −    M( )t  is the mean
value function of the NHPP, giving the expected number of points (events) in ( , ]0 t

M( ) E                                                 ,  M fort t t t t= [ ] > = ≤ν ( ) ., ( )0 0 0 (7.72)

M( )t t= λ  yields a homogeneous Poisson process (HPP).  Assuming M(t) derivable,

m( ) ( ) / , ( ) ,t d t dt t t t= ≥ > = ≤  ,                                 m forΜ 0 0 0 0 (7.73)

is the intensity of the NHPP and has for δ t ↓ 0  following interpretation (Eq. (A7.194))

Pr{ ( , ]} ( )one event in m( ) o t t t t t t+ +=δ δ δ . (7.74)

Because of independent increments (in nonoverlapping intervals), the number of
events (failures) in a time interval ( , ]t t+θ  (Eq. (7.71) with a t=  & b t= + θ ) and
the rest waiting time to the next event from an arbitrary time point t (Eqs. (A7.196))

Pr{ ( ) } Pr{ ( , ]} ( ( ) ( ))τ R
t x tt x t t x e x> = =+ − + − ≥no event in    , ,M M  0    (7.75)

are independent of the process development up to time t;  i. e., the Poisson process is
a process without aftereffect (memoryless if homogeneous).  The mean E [ ( )]τR t  is
thus also independent of the process development up to time t ((Eq. (A7.197))

E M M   [ ( )] ( ( ) ( ))τ R
t x tt dxe= ∫ − + −

∞

0
.

Furthermore, if 0 1 2< < < …τ τ* *  are the occurrence times (arrival times) of the event
considered (e. g. failures of a repairable system), measured from t =0, it holds
for m ( )t > 0 (M(t) derivable and strictly increasing) that the quantities

ψ ψτ τ1 2 21
* * * *( ) ( ) ...= < = <M M     (7.76)

are the occurrence times in a homogeneous Poisson processes with intensity one
(Eq. (A7.200)).  Moreover, for given (fixed) t T=  and ν ( )T n= , the occurrence
times 0 1< < … < <τ τ* *  n T  have the same distribution as if they where the order
statistic of n independent identically distributed random variables with density

m M( ) / ( )t T ,                  0 < <t T , (7.77)

and distribution function M M( ) ( )/t T  on ( , )0 T  (Eq. (A7.205)).
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Equation (7.74) gives the unconditional probability for one event in ( ],t t t+ δ .
Thus, m ( )t  refers to the occurrence of any one of the events considered.
It corresponds to the renewal density h ( )t  and the failure intensity z( )t , but differs
basically from the failure rate λ ( )t  (see remarks on pp. 7, 378, 426, 466, 524).

Nonhomogeneous Poisson processes (NHPPs) are introduced in Appendix A7.8.2.
Some examples are discussed in Section 7.7 with applications to reliability growth.
Assuming that the underlying process is an NHPP, estimation of the model
parameters (parameters θ of m ( ),t θ ) can be performed using the maximum
likelihood method on the basis of observed data 0 1 2< < <…< <t t tn T* * *  (time
censoring; t t1 2

* *, , ...   are the observed values (realizations) of τ τ1 2
* *, ,... and  * is used

to explicitly indicate that t t1 2
* *, , ...   are points on the time axis and not independent

realizations of a random variable τ (e. g. as in Figs. 1.1, 7.12, 7.14)).  Considering
Eqs. (7.71) and (7.74), the likelihood function follows as (Eq. (7.102))

L = −
=

∏e T ti
i

n
M ( ) m( )*

1
, (7.78)

and delivers the maximum likelihood estimate θ̂  for the parameters θ  of m( ),t θ
by solving ∂ =L   = for / ˆ∂θ θ θ0 , where  θ can be a vector (see e. g. Eq. (7.104) for
the parameters α β and  of the NHPP with m( )t t= −αβ β 1).  Using the property
stated by Eq. (7.76), statistical tests for exponential distribution or for homogeneous
Poisson processes (Appendix A8.2.2.2 and Section 7.2.3) can be applied to NHPPs
as well.  Furthermore, using the property stated by Eq. (7.77), the goodness-of-fit
tests introduced in Appendix A8.3.2 & Section 7.5 (Kolmogorov - Smirnov, chi-square,
Cramér - von Mises) can be used to verify agreement of observed data t tn T1

* *, ,… <
with a postulated M0( )t .  For the Kolmogorov-Smirnov test, the procedure given in
Section 7.5.1 applies with

F̂ ( ) ( ) / ( )n t t T = ν ν (7.79)

and
F ( ) ( ) / ( ))0 t t T= M M0 0 , (7.80)

where ν ( )t  is the observed number of events in ( ],0 t  (p. 520).
More difficult is the situation when the assumption that the underlying model is

an NHPP must also be verified by a statistical data analysis, for instance with a
goodness-of-fit test.  The problem in not completely solved.  However, the property
given by Eqs. (7.76) and (7.77) can be used for goodness-of-fit of the NHPP with
incompletely specified (up to the parameters) mean function M0 ( )t .  The chi-square
test holds with the procedure given in Section 7.5.2 and Appendix A8.3.3.  For a
first evaluation, the Kolmogorov - Smirnov test (and tests based on a quadratic
statistics) can be used, taking half (randomly selected) of the observations t tn1

* *, ,…
to estimate the parameters and continuing with the whole sample the procedure
given in Section 7.5.1 for the goodness-of-fit test [A8.11, A8.32].
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7.6.3 Trend Tests

In reliability engineering one is often interested to test if there is a monotonic trend
in the times between successive failures (interarrival times) of a repairable system
with negligible repair (restoration) times.  For instance, in order to detect the end of
an early failure period or the beginning of a wear-out period.  Such tests extend the
tests for exponentiality or for homogeneous Poisson processes introduced in Section
7.2.3 (see also Sections 7.5, A8.2.1, A8.2.2, A8.3.2, A8.3.3).  If the underlying point
process can be approximated by a renewal process, a graphical approach can be
used in detecting the presence of trends, see e. g. Fig. 7.13 for the case of early
failures.  In the case of a nonhomogeneous Poisson process (NHPP), a trend is given
by an increasing or decreasing intensity m ( )t ,  e .  g .  β β> <1 1 or  in Eq. (7.99).
Trend tests can also be useful in investigating what kind of alternative hypothesis
should be considered when an assumption is to be made about the statistical
properties of a given data set.  However,

trend tests check, in general, a postulated hypothesis against a more or
less broad alternative hypothesis;  care is therefore necessary in drawing
conclusions from this tests, and the basic rule given on p. 342 applies.

In the following, some trend tests used in reliability data analysis are discussed,
among them the Laplace test (see e. g. [A8.1] for greater details).

7.6.3.1 Tests of an HPP versus an NHPP with increasing intensity

The homogeneous Poisson process (HPP) is a point process which count function
ν( )t  has stationary and independent Poisson distributed increments in nonover-
lapping intervals (Eqs. (A7.41)).  Interarrival times in an HPP are independent
and distributed according to the same exponential distribution F( )x e x= − −1 λ

(occurrence times are Erlangian distributed, Eqs. (A7.39), (A6.102)).  The parameter
λ  characterizes completely the HPP.  λ  is at the same time the intensity of the HPP
and the failure rate λ( )x  for all interarrival times, x starting by 0 at each occurrence
time of the event considered (e. g. failure of a repairable system with negligible
repair (restoration) times).  This numerical equality has been the cause for mis-
interpretations and misuses in practical applications, see e. g. [6.1, 7.11, A7.30].  The
homogeneous Poisson process has been introduced in Appendix A7.2.5 as a
particular renewal process.  Considering ν( )t  as the count function giving the
number of events (failures) in ( , ]0 t , Example A7.13 (Eq. (A7.213)) shows that :

For given (fixed) T and ν ( )T n=  (time censoring), the normalized arrival
times 0 11< < < <τ τ* */ ... /T Tn  of a homogeneous Poisson process (HPP)
have the same distribution as if they where the order statistic of n  inde-
pendent identically uniformly distributed random variables on (0, 1)     (7.81)

Similar results hold for an NHPP (Eq. (A7.206)) :



346 7   Statistical Quality Control and Reliability Test

For given (fixed) T and ν ( )T n=  (time censoring), the normalized
arrival times 0 <    M M        M M( ) / ( ) ... ( ) / ( )* *τ τ1 1T Tn< < <  of a nonhomo-
geneous Poisson process (NHPP) with mean value function M( )t  have
the same distribution as if they where the order statistic of n independ-
ent identically uniformly distributed random variables on (0, 1).             (7.82)

With the above transformations, properties of the uniform distribution can be used
to support statistical tests on homogeneous and nonhomogeneous Poisson processes.

Let ω  be a continuous uniformly distributed random variable with density

f      ,               on   (0,1)   f ) = 0     outside  (0,1) ,ω ω( ) (x x= 1 (7.83)

and distribution function F (0, )  on   ω ( )x x= 1 .  Mean and variance of ω  are given by
(Eqs. (A6.37) and (A6.44))

E[ ] = 1 /    and  Var[ ] =1       ω ω2 12/ . (7.84)

The sum of n independent random variables ω  has mean n / 2  and variance n /12.
The distribution function Fω n x( )  of ω ω1+ +... n  is defined on ( , )0 n  and can be com-
puted using Eq. (A7.12).  Fω n x( )  has been investigated in [A8.8], yielding to the
conclusion that Fω n x( )  rapidly approach a normal distribution as n increases.  For
practical applications one can assume that for given (fixed) T and ν ( ) ,T n= ≥ 5  the
sum of the normalized arrival times 0 11< < …< <τ τ* */ /T Tn   of an HPP is distributed as

Pr{[ ( / ) / ] }* / ,/ /τ
π

i
i

n
T n n x e d yy x−∑ ≤ ≈

= −∞

− − ∞ < < ∞∫2 12
1

2

2

2
 

1
     x

 ,   (7.85)

(Eq. (A6.148)).  Equation (7.85) can be used to test an HPP (m ( )t = λ ) versus an
NHPP with increasing intensity m M( ) ( ) /t t td d= .  Considering the observations
(realizations) 0 1 2< << < <t t t n T* * *...  , the corresponding test procedure is:

 1. Compute the statistic

[ / / ]( ) /* /t T ni
i

n
n−

=
∑ 2

1
12    ,                 t ii

* th=  arrival time. (7.86)

 2. For given type I error α determine the critical value t1−α  (1−α  quantile of
the standard normal distribution, e. g. t1 1 64 0 05− ≈ =α α. .   for  (Tab. A9.1)).

 3. Reject the hypothesis H 0  :  the underlying point process is an HPP, against
H1  :  the underlying process is an NHPP with increasing intensity, at 1−α
confidence, if [ ( / ) / ] / /*t ti T n n

i

n − >
=

∑ −2 12
1 1   ;α   otherwise accept H 0.     (7.87)

A test based on Eqs. (7.86) -  (7.87) is called Laplace test and was introduced by
Laplace as a test of randnomness.  From Eq. (7.87) one recognizes that ti T

i

n */
=

∑
1

 is a
sufficient statistic (Appendix A8.2.1).  It can be noted that for H1 true ( m ( )t
increasing), most of the arrival times (failures) tend to occur after T / 2, in-
creasing the term [ ( / ) / ] / /*ti T n n

i

n −
=

∑ 2 12
1

  .   Example 7.20 gives an application.
For failure censoring, Eq. (7.86) holds by summing over n −1 and taking T tn= *

(see e. g. [A8.1] ).
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A further possibility to test an HPP ( m ( )t = λ ) versus an NHPP with increasing
intensity m M( ) ( ) /t t td d=  is to use the statistic

ln ( / ) .*T ti
i

n

=
∑

1
(7.88)

Considering (Eq. (A7.213)) that for given (fixed) T and ν ( )T n= , the normalized
arrival times 0 11 1< < < <= =ω τ ω τ* */ ... /T Tn n  of an HPP have the same distribution as
if they where the order statistic of n independent identically uniformly distributed
random variables on (0, 1), and that (Example 7.21) 2 2

1 1
  =   ln ( / )* lnT t ii

n

i

n

i= =
∑ ∑ − ω  has a

χ2- distribution (Eq. (A6.103)) with 2n degrees of freedom

F    ( ) Pr{ ln / }( )
( )!

* /x x y e dyT
n

i
i

n

n
n

x
y= ≤ =

=
∑ ∫

−
− −2

1

2 11

1

0

2τ , (7.89)

the statistic given by Eq. (7.88) can be used to test an HPP ( m ( )t = λ ) versus
an NHPP with increasing intensity m M  .( ) ( ) /t t td d=   The corresponding test
procedure is:

 1. Compute the statistic

2
1

  ln ( / )*T ti
i

n

=
∑ ,                 t ii

* th=  arrival time. (7.90)

 2. For given type I error α determine the critical value χ α2
2

n,  (α  quantile of
the χ2- distribution, e. g. χ αα2

2 7 96 8 0 05
n

n
,

. .&≈ = =   for  (Table A9.2)).

 3. Reject the hypothesis H0 :  the underlying point process is an HPP, against
H1:  the underlying process is an NHPP with increasing intensity, at 1− α
confidence, if 2

1 2
2  <   ln ( / )*

,
T t ii

n

n=
∑ χ

α ;   otherwise accept H 0.                        (7.91)

From Eq. (7.91) one recognizes that 2
1

  ln ( / )*T t ii

n

=
∑  is a sufficient statistic (Appendix

A8.2.1).  It can be noted that for H1 true ( m ( )t  increasing), 2
1

  ln ( / )*T t ii

n

=
∑  tends

to assume small values.  Example 7.22 gives an application.  For failure censoring,
Eq. (7.90) holds by summing over n −1 and taking T tn= * (see e. g. [A8.1] ).

Example 7.20
In a reliability test, 8 failures have occurred in T =10 000, h  and t t1 8 43 000* *... ,+ + = h  has been
observed.  Test with a risk α = 5% (at 95% confidence), using the rule (7.87), the hypothesis
H0 :  the underlying point process is an HPP, against H1 :  the underlying process is an NHPP
with increasing intensity.

Solution
From Table A9.1 t0 95 1 64 4 3 4 0 816 0 367. . ( . ) / . .= > =−  and H0  can not be rejected.
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Example 7.21
Let the random variable ω  be uniformly distributed on (0,1).  Show that η ω= − ln( )  is distributed
according to Fη( )t e t= − −1  on ( , )0 ∞ , and thus 2 2

1 1
−

= =
∑ = ∑ln( )ω ηi
i

n

i
i

n
= χ

2
2

n
.

Solution
Considering that for 0 1< <ω , − ln( )ω  is a decreasing function defined on ( , )0 ∞ , it follows that
the events { } { ( ) ( )}ω η ω≤ =− > −x x  and ln  ln  are equivalent.  From this (see also Eq. (A6.31)),

x x x      ln = =≤ > −Pr{ } Pr{ ( )}ω η  and thus, using − ln( =x t) , one obtains Pr{ }   η> = −t e t  and thus

F    η η( ) Pr{ } .t t e t= = −≤ −1 (7.92)

From Eqs. (A6.102)-(A6.104), 2 2
1 1
−

= =
∑ = ∑ln( )ω ηi
i

n

i
i

n
 2 2

1 1
−

= =
∑ ∑=ln      ( )ω ηii

n

ii

n
 has a χ2−distribution

with 2n degrees of freedom.

Example 7.22
In a reliability test, 8 failures have occurred in T =10 000, h  at 850 1200 2100, , ,   3900, 4950, 5100
8300, 9050h.  Test with a risk α = 5% (at 95% confidence), using the rule (7.91), the hypothesis
H0 :  the underlying point process is an HPP, against the alternative hypothesis H1 :  the
underlying process is an NHPP with increasing intensity.

Solution
From Table A9.2, χ16 0 05

2
1 87 96 2 17 5, . . ( ( / ( / ) .* *) ... )≈ =< + +     ln lnT t T t  and H0  can not be rejected.

7.6.3.2 Tests of an HPP versus an NHPP with decreasing intensity

Tests of a homogeneous Poisson process (HPP) versus a nonhomogeneous Poisson
process (NHPP) with a decreasing intensity m M( ) ( ) /t t td d=  can be deduced from
those for increasing intensity given in section 7.6.3.1.  Equations (7.85) and (7.89)
remain true.  However, if the intensity is decreasing, most of the failures tend to
occur before T / 2  and test procedure for the Laplace test has to be changed in:

 1. Compute the statistic

[ / / ]( ) /* /t T ni
i

n
n−

=
∑ 2

1
12    ,                  t ii

* th=  arrival time. (7.93)

 2. For given type I error α determine the critical value t α  (α  quantile of the
standard normal distribution, e. g. t α α≈ − =1 64 0 05. .   for  (Tab. A9.1)).

 3. Reject the hypothesis H0 :  the underlying point process is an HPP, against
H1:  the underlying process is an NHPP with decreasing intensity, at 1− α

 confidence, if [ ( / ) / ] / /*t ti T n n
i

n − <
=

∑ 2 12
1

  α ;   otherwise accept H 0.       (7.94)

From Eq. (7.94) one recognizes that ti T
i

n */
=

∑
1

 is a sufficient statistic (Appendix
A8.2.1).  It can be noted that for H1 true ( m ( )t  decreasing), most of the arrival
times (failures) tend to occur before T / 2, decreasing [ ( / ) / ] / /*ti T n n

i

n −
=

∑ 2 12
1

  .
Example 7.23 gives an application.  For failure censoring, Eq. (7.93) holds by
summing over n −1 and taking T tn= * (see e. g. [A8.1] ).
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Example 7.23
Continuing Example 7.20, test using the rule (7.94) and the data of Example 7.20, with a
risk α = 5% (at 95% confidence), the hypothesis H0 :  the underlying point process is an HPP,
against the alternative hypothesis H1 : the underlying process i s  a n NHPP with decreasing
intensity.

Solution
From Table A9.1, t0 05 1 64 0 367, . .≈ − <  and H0  can not be rejected.

Example 7.24
Continuing Example 7.22, test using the rule (7.96) and the data of Example 7.22, with a risk
α = 5% (at 95% confidence), the hypothesis H0 : the underlying point process is an HPP, against
the alternative hypothesis H1 : the underlying process is an NHPP with decreasing intensity.

Solution
From Table A9.2, χ

16 0 95
2

1 826 3 2 17 5
, .

. ( ( / ( / )) .* *) ...≈ > =+ +  ln lnT t T t  and H0  can not be rejected.

For the test according to the statistic (7.88), the test procedure is:

1. Compute the statistic

2
1

  ln ( / )*T ti
i

n

=
∑ ,                 t ii

* th=  arrival time. (7.95)

2. For given type I error α determine the critical value χ α2 1

2

n, −  ( 1−α  quantile
of the χ2 distribution, e. g. χ αα2 1

2 26 3 8 0 05
n

n
,

. .&− ≈ = =  for  (Table A9.2)).
3. Reject the hypothesis H0 :  the underlying point process is an HPP, against

H1:  the underlying process is an NHPP with decreasing intensity, at 1− α
  confidence, if 2

1
2 1
2

  >   ln ( / )*
,T t i

i

n

n
=

−∑ χ α ;  otherwise accept H 0.                       (7.96)

From Eq. (7.96) one recognizes that 2
1

  ln ( / )*T t ii

n

=
∑  is a sufficient statistic (Appendix

A8.2.1).  It can be noted that for H1 true ( m ( )t  decreasing), 2
1

  ln ( / )*T t ii

n

=
∑  tends

to assume large values.   Example 7.24 gives an application.  For failure censoring,
Eq. (7.95) holds by summing over n −1 and taking T tn= * (see e. g. [A8.1] ).

7.6.3.3 Heuristic Tests to distinguish between HPP and General Monotonic Trend

In some applications, only little information is available about the underlying point
process describing failures occurrence of a complex repairable system.  As in the
previous sections, it will be assumed that repair times are neglected.  Asked is a test
to identify a monotonic trend of the failure intensity against a constant failure
intensity given by a homogeneous Poisson process (HPP).

Consider first, investigations based on successive interarrival times.  Such an
investigation should be performed at the beginning of data analysis, also because
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it can quickly deliver a first information about a possible monotonic trend
(e. g. interarrival times become more and more long or short).  Moreover, if the
underlying point process describing failures occurrence can be approximated by a
renewal process (interarrival times are independent and identically distributed),
procedures of Section 7.5 based on the empirical distribution function (EDF) have a
great intuitive appeal and can be useful in testing for monotonic trends of the failure
rate as well, see Examples 7.15 - 7.17 (Figs. 7.12 - 7.14).  In particular, the graphical
approaches given in Example 7.16 (Fig. 7.13) would allow the detection and
quantification of an early failure period.  The same would be for a wear-out period.
Similar considerations hold if the involved point process can be approximated by a
nonhomogeneous Poisson process (NHPP), see Sections 7.6.1 - 7.6.3.2 and 7.7.

If a trend in successive interarrival times is recognized, but the underlying
point process can not be approximated by a renewal process (including the homo-
geneous Poisson process (HPP)) or an NHPP, a further possibility is to consider the
observed failure time points t t1 2

* * ...< <    directly.  As shown in Appendix A7.8.5,
a mean value function Z( ) Et t= [ ( )]ν  can be associated to each point process,
where ν( )t  is the count function giving the number of failures occurred in ( , ]0 t
( ZS t( ) and νS t( ) should be used for considerations at system level).  From the
observed failure time points (observed occurrence times) t t1 2

* * ...< <   , the empirical
mean value function ˆ ˆ [ ( )]Z( ) Et t= ν  follows as

ˆ ˆ [ ( )]
*

* * , , ...
Z( ) E

       for

        for ,                  
 
.

 

  
t

t t

t t t
t

i i i i
=

<

≤ <
=





 + =
ν

0 1

1 1 2
(7.97)

The mean value function Z( )t  corresponds to the renewal function H( )t  in a
renewal process (Eq. (A7.15));  z( ) Z( )t t td d= /  is the failure intensity and corre-
spond to the renewal density h( )t  in a renewal process (Eqs. (A7.18) & A7.24)).
For a homogeneous Poisson process (HPP), Z( )t  takes the form (Eq. (A7.42))

Z( ) Et t t= =[ ( )]ν λ . (7.98)

Each deviation from a straight line Z( )t a t= .  is thus an indication for a possible
trend (besides statistical deviations).  As shown in Example A7.1 (Fig. A7.2) for a
renewal process, early failures or wear-out gives a basically different shape of the
underlying renewal function, a convex shape for the case of early failures and a
concave shape for the case of wear-out.  This property can be used to recognize the
presence of trends in a point process, by considering the shape of the associated
empirical mean value function Ẑ( )t  given by Eq. (7.97), see e. g. [7.24].  However,

such a procedure remains a very rough evaluation (see Fig. A7.2 for the
case of a renewal process);  care is thus necessary when extrapolating
results, e. g. about the failure rate value after the early failure period or
the percentage of early failures.
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7.7 Reliability Growth

At the prototype qualification tests, the reliability of complex equipment & systems
can be less than expected.  Disregarding any imprecision of data or model used in
calculating the predicted reliability (Chapter 2), such a discrepancy is often the con-
sequence of weaknesses (errors, flaws, mistakes) during design or manufacturing.
For instance, use of components or materials at their technological limits or with
internal weaknesses, cooling, interface or EMC problems, transient phenomena,
interference between hardware and software, assembling or soldering problems,
damage during handling, transportation or testing, etc.  Errors and flaws cause de-
fects and systematic failures.  Superimposed to these are early failures and failures
with constant failure rate (wear-out should not be present at this stage).  However,

a distinction between deterministic faults (defect & systematic failures)
and random faults (early failures & failures with constant failure rate)
is only possible with a cause analysis;  such an analysis is necessary to
identify and eliminate causes of observed faults (redesign for defects and
systematic failures, screening for early failures, and repair for failures
with constant failure rate), and initiates a learning process improving the
reliability of the equipment or system considered.

Of course, defects and systematic failures can also be randomly distributed on the
time axis, e. g. caused by a mission dependent time-limited overload, by software
defects, or simply because of the system complexity.  However, they still differ
from failures, as they are basically independent of operating time (disregarding
systematic failures which can appear only after a certain operating time, e. g. as for
some cooling or software problems).

The aim of a reliability growth program is the cost-effective improvement of
the item’s reliability through successful correction / elimination of the causes of
design or production weaknesses.  Early failures should be precipitated with an
appropriate screening (environmental stress screening (ESS)), see Section 8.2 for
electronic components, Section 8.3 for electronic assemblies, and Section 8.4 for
cost aspects.  Considering that flaws found during reliability growth are in general
deterministic (defects and systematic failures), reliability growth is performed dur-
ing prototype qualification tests and pilot production, seldom for series-produced
items (Fig. 7.16).  Stresses during reliability growth are often higher than those
expected in the field (as for ESS).  Furthermore, the statistical methods used to
investigate reliability growth are in general basically different from those given in
Section 7.2 for standard reliability tests (e. g. to estimate or demonstrate a constant
failure rate λ).  This is because during the reliability growth program, design and / or
production changes or modifications are introduced in the item(s) considered and
statistical evaluation is not restarted after a change or modification.
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Prediction Target
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First
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Design Qualification Production Life-Cycle
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Figure 7.16   Qualitative visualization of a possible reliability growth

A large number of models have been proposed to describe reliability growth for
hardware and software, see e. g. [5.68, 5.71, 7.31-7.49, A2.6 (61014 & 61164)], some of
them on the basis of theoretical considerations.  A practice oriented model,
proposed by J.T. Duane [7.36], refined in [7.35 (1975)], and carefully investigated in
[A8.1], known also as the AMSAA model, assumes that the flow of events (system
failures) constitutes a nonhomogeneous Poisson process (NHPP) with intensity

m( )
M( )

,       ,, , , ( )t
d t

dt
t t t t= = − > < < > = ≤         m for   αβ β α β1 0 0 1 0 0 0 (7.99)

and mean value function

M            M for   ( ) ,         . , , , ( )t t t t t= > < < > = ≤α β α β0 0 1 0 0 0 (7.100)

M(t) gives the expected number of failures in ( , ]0 t .  m( )t tδ  is the probability for
one failure (any one) in ( , ]t t t+δ  (Eq. (7.74)).  It can be shown that for an NHPP,
m( )t  is equal to the failure rate λ( )t  of the first occurrence time (Eq. (A7.209).
Thus, comparing Eqs. (7.99) & (A6.91) one recognizes that for the NHPP described
by Eq. (7.99), the first occurrence time has a Weibull distribution;  however,

m( )t  and λ( )t  are fundamentally different (see remarks on pp. 7, 344, 378,
426, 466, 524), and all others interarrival times do not follow a Weibull
distribution and are neither independent nor identically distributed.

Because of the distribution of the first occurrence time, the NHPP process described
by Eq. (7.99) is often (improperly) called Weibull process, causing great confusion.
Also used is the term power law process.  Nonhomogeneous Poisson processes are
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investigated in Appendix A7.8.2.
In the following, an NHPP will be assumed as underlying model;

verification of this assumption is mandatory, and should be based also
on physical considerations on the nature /  causes of the  defects and
systematic failures involved (not only on statistical aspects).

If the underlying process is an NHPP, estimation of the model parameters (α and β
in the case of Eq. (7.99)) can easily be performed using observed data.

Let us consider first the time censored case (Type I censoring) and assume that
up to the given (fixed) time T, n events have occurred at times 0 1 2< < <…< <t t tn T* * * .
t t1 2
* *, , ...   are the realizations (observations) of the arrival times τ τ1 2

* *, , ...  and *

indicates that t t1 2
* *, , ...   are points on the time axis and not independent realizations

of a random variable τ with a given (fixed) distribution function (e.  g. as in
Figs. 1.1. 7.12, 7.14).  Considering the main property of an NHPP, i. e., that the
number of events in nonoverlapping intervals are independent and distributed
according to (Eq. (A7.195))

Pr{ ( , ]} , ( . )(M( ) M( )) , , ,
, ( ) .!

(M( ) M( ))k a b
b a k

a bk

k
e b aevents in     

...
   0 M= − =

≤ < =− − 0 1 2
0 0 7 101

and the interpretation of the intensity m( )t  given by Eq. (7.74) or Eq. (A7.194),
the following likelihood function (Eq. (A8.24)) can be found for the parameter
estimation of the intensity m( )t

L m( ) m( ) m( )* * * * * * * * *M( ) (M( ) M( )) (M( ) M( )) (M( ) M( ))= − − − − − − −… −t t te e e et t t t t T t
n n n n1 1 2 2 1 1         

       = −
=
∏e T ti
i

n
M ( ) m( )*

1
. (7.102)

Equation (7.102) considers no event (k = 0 in Eq. (7.101)) in each of the non-
overlapping intervals  ( , ) , ( , ) , ... , ( , )* * * *0 1 1 2t t t tn T     and applies to an arbitrary NHPP.
For the Duane model it follows that

 L   = =− − −

= =
∏ ∏e eT n nt ti
i

n

i
i

n
TM( ) m( )* *

1 1

1α β α β β , (7.103)

or

ln L ln( ) ( ) ln( )*= − + −
=
∑n T ti
i

n
αβ α ββ 1

1
 .

The maximum likelihood estimates α̂  and β̂  of the parameters α  and β  are then
obtained from

∂
∂α

∂
∂βα α β β

lnL lnL

ˆ ˆ= =
= =0           and              0,
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Example 7.25
During the reliability growth program of a complex equipment, the following data was gathered:
T = 1200 h , n = 8 and ln( / )*T ti∑ = 20.  Assuming that the underlying process can be
described by a Duane model, estimate the intensity at t = 1200 h  and the value attainable at
t + =∆ 3000 h  if the reliability growth would continue with the same statistical properties.

Solution
With T = 1200 h , n = 8 and ln( / )*T t i∑ = 20, it follows from Eq. (7.104) that ˆ .β = 0 4 and
ˆ .α ≈ 0 47.  From Eq. (7.105), the estimate for the intensity leads to m̂( ) .1200 2 67 10 3 1≈ ⋅ − −h

( ˆ ( )M 1200 8≈ ).  The attainable intensity after an extension of the program for reliability growth
by 1800 h  is given by Eq. (7.106) as ˆ ( ) .m h3000 1 54 10 3 1≈ ⋅ − − .

yielding

β α
β

ˆ ˆ

ln( / )*
ˆ

.             and           
 

= =

=
∑

n n

T t
T

i
i

n

1

(7.104)

An estimate for the intensity of the underlying nonhomogeneous Poisson process is

ˆ ( ) ˆ ˆ , .ˆm                       t t t T= − < <α β β 1 0 (7.105)

With known values for α̂  and β̂ , Eq. (7.105) can be used to extrapolate the
attainable intensity if the reliability growth process were to be continued with the
same statistical properties for a further time span ∆  after T, yielding

ˆ ( ) ˆ ˆ ( ) , .ˆm                      > 0T T+ = + −∆ ∆ ∆α β β 1 (7.106)

see Example 7.25 for a practical application.
In the case of event censoring, i. e., when the test is stopped at the occurrence of

the n th event (Type II censoring), Eq. (7.104) holds by summing over n − 1 and
taking  T tn= * , see e. g. [A8.1].

Interval estimation for the parameters α and β can be found, see for
instance [A8.1].

For goodness-of-fit-tests one can consider the property of nonhomogeneous
Poisson processes that, for given (fixed) T and knowing that n events have been ob-
served in ( , )0 T , i. e. for given T & ν ( )T n= , the occurrence times 0 1< < …< <τ τ* *  n T
have the same distribution as if they where the order statistic o f n independent
and identically distributed random variables with density m M( ) / ( )t T , on ( , )0 T
(Eq. (A7.205)).  For example, the Kolmogorov-Smirnov test (Section 7.5) can be
used with F̂ / )( ) ( ) (n t t T = ν ν  (Eq. (7.79)) and F ( ) ( ) / ( ))0 t t T= M M0 0  (Eq. (7.80)),
see also Appendices A7.8.2 and A8.3.2.  Furthermore, it holds that if τ τ1 2* * ...< <  are
the occurrence times of an NHPP, then ψ ψ ττ1 1 2 2

* * * *( ) ( ) ...= < = <M M  are the occurrence
times in a homogeneous Poisson process (HPP) with intensity one (Eq. (A7.200)).
Results for independent and identically distributed random variables, for HPP or for
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exponential distribution function can thus be used.
Important is also to note that for an NHPP, distribution and mean value of the

random time τR t( ) from an arbitrary (fixed) time point t ≥ 0 to the next event
(failure) are independent of the process development up to the time t.  For E [ ( )]τ R t
it holds, in particular (Eq. (A7.197)),

E no event in  [ ( )] Pr{ ( , ]} (M( ) M( ))τ R
t x tt t t x dx dxe= + =

∞
− + −

∞
∫ ∫
0 0

. (7.107)

Assuming thus, to have for a given (fixed) t t= >0 0

M  M    or     m( ) ( ) ( ) ,t x t x t x0 0 0+ = + + =λ λ         t0  given (fixed), x > 0,  ( 7.108)

i. e. a constant failure rate λ  after an early failure period of length t 0 , it follows
that

E [ ( )] /τ λR t x0 1+ = .                                             t0  given (fixed), x > 0.  ( 7.109)

Similarly, for

M M     or  m( ) ( ) ( ) ,t x t x t x x0 0 0
1+ = + + = −α αββ β   t0  given (fixed), x > 0,   (7.110)

it follows that

E   ,[ ( )] /( )/ /τ αβ β
R t 0 1 10 1+ = +Γ                          t0  given (fixed), (7.111)

(Appendix A9.6 or Eq. (A6.92) with λ α β= 1/ ).  For repairable items (systems) with
negligible repair (restoration) times, equations (7.108) - (7.111) give

a possibility, for modeling an early failures period followed by constant
failure rate (Eqs. (7.108), (7.109)) or a period of constant failure rate
followed by wear-out (7.110), (7.111));  this, in addition to the remarks
on pp. 7, 428, 467, and Figs. 7.13 or A7.2 for non-repairable items
(combination of models is also possible).

The Duane model often applies to electronic, electromechanical, and
mechanical equipment and systems.  It can also be used to describe the occurrence
of software defects (dynamic defects).  However, other models have been discussed
in the literature especially for software (Section 5.3.4).  Among these, the
logarithmic Poisson model, which assumes a nonhomogeneous Poisson process
with intensity

m( )        m( ) , ,t
t

t
t

t= =
+

+
+

∞ ≥
1 1

0
δ γ

α
β

α β δ γ   or                   0 < , , , < . (7.112)

For the logarithmic Poisson model, m( )t  is monotonically decreasing with
m( )0 < ∞  and  m( ) = 0∞ .  Considering M( )0 0= , it follows that
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M( )
ln ( / )

 M( ) ln ( / )         t
t

t t=
+

= + +1
1 1γ δ

γ
β α    or      . (7.113)

Models combining in a multiplicative way two possible mean value functions M( )t
have been investigated in [7.33] by assuming

M( ) ln( / ) ( ) M( ) [ ( / ) ]/ / ,t t e t t ta b t e tb= − − = − + −+ ⋅1 1 1 1    .   and   α γβ γ (7.114)

with a b t, , , , , .          > 0  α γ β0 1 0< < ≥    In both cases, the intensity m(t) grows from 0 to
a maximum, from which it goes to 0 with a shape similar to that of the models given
by Eq. (7.112).

The models described by Eqs. (7.100), (7.113) & (7.114) are based on
nonhomogeneous Poisson processes, satisfying thus the properties discussed in
Appendix A7.8.2.  However,

although appealing, nonhomogeneous Poisson processes (NHPP) can not
solve all reliability growth modeling problems, basically because of their
intrinsic simplicity related to the assumption of independent increments
(in nonoverlapping intervals).

The consequence of this assumption, is that the involved process (NHPP) is a
process without aftereffect for which the waiting time to the next event from an
arbitrary (fixed) time point t is independent of the process development up to time t
(Eq. (7.75)).  Furthermore, the failure rate referred to the first occurrence time
τ1

* is the intensity of the underlying NHPP, and τ1
* characterizes thus the NHPP

(follows form Eq. (A7.209)

Pr{ }* ( ) ( )
τ1 1 1 0≤ = − = −− − ∫

t e t e
x dx

t

M  
m

  ,

or by comparing Eq. (7.75) for t =0 with Eq. (2.11), considering Eq. (2.7) & M( )0 0= ;
see Point 2 on p. 519 for the extension to the n th  interarrival time η τ τn n n n= − − >* * , ) .1 1

From the above considerations,

an NHPP (even less an HPP) can not be used to estimate the number of
defects present in a software package (e. g. at t= 0), see also [A7.30] for
further comments.

In general, it is not possible to fix a priori the model to be used in a given situation.
For hardware as well as for software, a physical motivation of the model, based on
failure or defect (fault) mechanisms /  causes, can help in such a choice.  Having
a suitable model, the next step should be to verify that assumptions made are
compatibles with the model and, after that, to check the compatibility with data.
Misuses or misinterpretations can occur, often because of dependencies between
the involved random variables.



8 Quality & Reliability (RAMS) Assurance During
the Production Phase  (Basic Considerations)

Reliability (RAMS) assurance has to be continued during the production phase,
coordinated with other quality assurance activities.  In particular, for monitoring and
controlling production processes, item configuration, in-process and final tests,
screening procedures, and collection, analysis & correction of defects and failures.
The last measure yields to a learning process whose purpose is to optimize the
quality of manufacture, taking into account cost and time schedule limitations.
This chapter introduces some basic aspects of quality and reliability (RAMS)
assurance during production, discusses test and screening procedures for electronic
components and assemblies, introduces the concept of cost optimization related to a
test strategy and develops it for a cost optimized test and screening strategy at the
incoming inspection.  For greater details on qualification & monitoring of
production processes one may refer to [7.1 -  7.5, 8.1 - 8.14].  Models for reliability
growth are discussed in Section 7.7.

8.1 Basic Activities

The quality and reliability (RAMS) level achieved during the design and
development phase must be retained during production (pilot and series production).
The following basic activities support this purpose (see also Table A3.2, points 7-16).

1. Management of the item’s configuration (review and release of the production
documentation, control and accounting of changes and modifications).

2. Selection and qualification of production facilities and processes.

3. Monitoring and control of the production procedures (assembling, testing,
transportation, storage, etc.).

4. Protection against damage during production (electrostatic discharge (ESD),
mechanical, thermal, electrical stresses).

5. Systematic collection, analysis, and correction of defects and failures
occurring during the item's production or testing (back to the root cause).

6. Quality and reliability (RAMS) assurance during procurement (documentation,
incoming inspection, supplier audits).

A. Birolini, Reliability Engineering, DOI: 10.1007/978-3-642-39535-2_8,
� Springer-Verlag Berlin Heidelberg 2014
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7. Calibration of measurement and testing equipment.

8. Performance of in-process and final tests (functional and environmental).

9. Screening of critical components and assemblies. +)

10. Optimization of the cost and time schedule for testing and screening
(realization of a test and screening strategy).

Configuration management, monitoring of corrective actions, and some important
aspects of statistical quality control and reliability tests have been considered in
Section 1.3, Chapter 7, and Appendices A3 - A5.  The following sections present test
and screening procedures for electronic components and assemblies, introduce the
concept of test and screening strategy, and develop it for a cost optimized test and
screening strategy at the incoming inspection.  Although focused on electronic
systems, many of the considerations given below applies to mechanical systems as
well.  For greater details on qualification & monitoring of production processes one
may refer to [7.1 - 7.5, 8.1  - 8.14], see also Section 7.7 for reliability growth.

8.2   Testing and Screening of Electronic Components

8.2.1  Testing of Electronic Components

Most electronic components are tested today by the end user only on a sampling
basis.  To be cost effective, sampling plans should also consider the quality
assurance effort of the component's manufacturer, in particular the confidence
which can be given to the data furnished by him.  In critical cases, the sample
should be large enough to allow acceptance of more than 2 defective components
(Sections 7.1.3, 3.1.4).  100% incoming inspection can be necessary for components
used in high reliability and /  or safety equipment and systems, new components,
components with important changes in design or manufacturing, or for some critical
components like power semiconductors, mixed-signal ICs, and complex logic ICs
used at the limits of their dynamic parameters.  This, so long as the fraction of
defective remains over a certain limit, fixed by technical and cost considerations.
Advantages of a 100% incoming inspection of electronic components are:

1. Quick detection of all relevant defects.
2. Reduction of the number of defective populated printed circuit boards (PCBs).
3. Simplification of the tests at PCB level.
4. Replacement of the defective components by the supplier.
5. Protection against quality changes from lot to lot, or within the same lot.
_____________
+) Highly accelerated stress screening (HASS) must be critically evaluated before use.
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Despite such advantages, different kinds of damage (overstress during testing,
assembling, soldering) can cause problems at PCB level.  Defective probability p
(fraction of defective items) lies for today's established components in the range of a
few ppm (part per million) for passive components up to some thousands of ppm for
complex active components.  In defining a test strategy, a possible change of p from
lot to lot or within the same lot should also be considered. An example of test
procedure for electronic components is given in Section 3.2.1 for VLSI ICs.  Test
strategies with cost consideration are developed in Section 8.4.

8.2.2 Screening of Electronic Components

Electronic components new on the market, produced in small series, subjected to an
important redesign, or manufactured with insufficiently stable process parameters
can exhibit early failures, i. e., failures during the first operating hours (seldom over
thousand hours).  Because of high replacement cost at equipment level or in the
field, components exhibiting early failures should be eliminated before they are
mounted on printed circuit boards.  Defining a cost-effective screening strategy is
difficult for at least following two reasons:

1. It may activate failure mechanisms that would not appear in field operation.

2. It could introduce damage (ESD, transients) which may be the cause of
further early failures.

Ideally, screening should be performed by skilled personnel, be focused on the
failure mechanisms which have to be activated, and not cause damage or alteration.
Experience on a large number of components [3.2, 3.6, 8.22] shows that for
established technologies and stable process parameters, thermal cycles for discrete
(in particular power) devices and burn-in for ICs are the most effective steps to
precipitate early failures.  Table 8.1 gives possible screening procedures for elec-
tronic components used in high reliability and / or safety equipment and systems.

Screening procedures and sequences are in national and international standards
[8.27, 8.28, 8.32].  The following is an example of a screening procedure for ICs in
hermetic packages for high reliability or safety applications:

1. High-temperature storage:  The purpose of high temperature storage is the
stabilization of the thermodynamic equilibrium and thus of the IC electrical
parameters.  Failure mechanisms related to surface problems (contamination,
oxidation, contacts) are activated.  The ICs are placed on a metal tray (pins on
the tray to avoid thermal voltage stresses) in an oven at 150°C for 24 h.
Should solderability be a problem, a protective atmosphere (N2) can be used.

2. Thermal cycles:  The purpose of thermal cycles is to test the ICs ability to
endure rapid temperature changes, this activates failure mechanisms rela-
ted to mechanical stresses caused by mismatch in expansion coefficients of the
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 Table 8.1  Example of test and screening procedures for electronic components used in high reliabi-
lity and/or safety equipment & systems (apply in part also to SMD; see Section 7.1 for sampling plans)

Component Sequence

Resistors Visual inspection,  20 thermal cycles for resistor networks ( − + °40 125/ C)*,
48 h  steady-state burn-in at 100°C and 0 6. PN

*,  el. test at 25°C *

Capacitors

• Film Visual inspection,  48 h  steady-state burn-in at 0 9. maxθ  and UN
*,  el. test at

25°C (C, tan δ , Ris)*,  measurement of Ris at 70°C *

• Ceramic Visual inspection,  20 thermal cycles ( θextr )*,  48 h  steady-state burn-in at UN
and 0 9. maxθ *,  el. test at 25°C (C, tan δ , Ris )*,  measurement of Ris  at 70°C *

• Tantalum
(solid)

Visual inspection,  10 thermal cycles ( θextr )*,  48 h  steady-state burn-in at UN
and 0 9. maxθ  (low ZQ)*,  el. test at 25°C (C, tan δ , Ir )*,  meas. of Ir  at 70°C *

• Aluminum
(wet)

Visual inspection,  forming (as necessary),  48 h  steady-state burn-in at UN
and 0 9. maxθ *,  el. test at 25°C (C, tan δ , Ir )*,  measurement of Ir  at 70°C*

Diodes (Si) Visual inspection,  30 thermal cycles ( − + °40 125/ C)*, 48 h  reverse bias burn-
in at 125°C *,  el. test at 25°C ( Ir , UF , UR min )*,  seal test (fine/gross leak) *+

Transistors (Si) Visual inspection,  20 thermal cycles ( − + °40 125/ C)*,  50 power cycles
( 25 125/ °C , ca. 1min  on / 2 min  off) for power elements*,  el. test at 25°C
(β, ICEO , UCEO min )*,  seal test (fine/gross leak) *+

Optoelectronic

• LED, IRED Visual inspection,  72 h  high temp. storage at 100°C *,  20 thermal cycles
( − + °20 80/ C)*,  el. test at 25°C (UF , URmin )*,  seal test (fine/gross leak) *+

• Optocoupler Visual inspection,  20 thermal cycles ( − °25 100/ C ),  72 h  reverse bias burn-in
(HTRB) at 85°C *,  el. test at 25°C ( I IC F/ , UF , UR min , UCEsat , ICEO ),   seal
test (fine/gross leak) *+

Digital ICs

• BiCMOS Visual inspection,  reduced el. test at 25°C,  48 h  dyn. burn-in at 125°C *,
el. test at 70°C *,  seal test (fine/gross leak) *+

• MOS (VLSI) Visual inspection,  reduced el. test at 25°C (rough functional test, IDD), 72 h
dyn. burn-in at 125°C *,  el. test at 70°C *,  seal test (fine/gross leak) *+

• CMOS (VLSI) Visual inspection,  reduced el. test at 25°C (rough functional test, IDD), 48 h
dyn. burn-in at 125°C *,  el. test at 70°C *,  seal test (fine/gross leak) *+

• EPROM,
EEPROM
(>1M)

Visual inspection,  programming (CHB),  high temp. storage ( 48 125h C/ ° ),
erase,  programming (inv. CHB),  high temp. storage ( 48 125h C/ ° ),  erase,
el. test at 70°C,  seal test (fine/gross leak) *+

Linear ICs Visual inspection,  reduced el. test at 25°C (rough functional test, ICC , offsets),
20 thermal cycles ( − + °40 125/ C)*,  96 h  reverse bias burn-in (HTRB) at
125°C with red. el. test at 25°C *,  el. test at 70°C *, seal test (fine/gross leak) *+

Hybrid ICs Visual inspection,   high temp. storage ( 24 125h C/ ° ),  20 thermal cycles
( − + °40 125/ C),  constant acceleration (2,000 to 20,000 gn / 60s)*,  red. el.
test  at 25°C,  96 h  dynamic burn-in at 85 to 125°C,  el. test at 25°C,  seal test
(fine/gross leak) *+

* sampling basis;  + hermetic packages;   el. = electrical,  red. = reduced,  N = rated value,  CHB = checkerboard
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material used.  Thermal cycles are generally performed air to air in a two-
chamber oven (transfer from low to high temperature chamber and vice versa
using a lift).  The ICs are placed on a metal tray (pins on the tray to avoid
thermal voltage stresses) and subjected to at least 10 thermal cycles from –65
to +150°C (transfer time ≤ 1min , time to reach the specified temperature
≤ 15 min , dwell time at the temperature extremes ≥ 10 min ).  Should
solderability be a problem, a protective atmosphere (N2) can be used.

3. Constant acceleration:  The purpose of the constant acceleration is to check
the mechanical stability of die-attach, bonding, and package.  This step is
only performed for ICs in hermetic packages, when used in critical
applications.  The ICs are placed in a centrifuge and subjected to an accelera-
tion of 30 000, gn  ( 300 000, m /s2 ) for 60 seconds (generally z-axis only).

4. Burn-in:  Burn-in is a relatively expensive, but efficient screening step that
provokes for ICs up to 80% of the chip-related and 30% of the package-related
early failures.  The ICs are placed in an oven at 125°C for 24 to 168h and are
operated statically or dynamically at this temperature (cooling under power at
the end of burn-in is often required).  Ideally, ICs should operate with
electrical signals as in the field.  The consequence of the high burn-in
temperature is a time acceleration factor A often given by the Arrhenius
model (Eq. (7.56))

A e

E

k T T
a

= ≈
−

λ
λ

2

1

1 2

1 1
( )

,

where Ea  is the activation energy, k the Boltzmann's const. (8 6 10 5. ⋅ − eV / K),
and λ1 and λ2 are the failure rates at chip temperatures T1 and T2 (in K),
respectively, see Fig. 7.10 for a graphical representation.  The activation
energy Ea  varies according to the failure mechanisms involved.  Global
average values for ICs lie between 0.3 and 0 7. eV.  Using Eq. (7.56), the
burn-in duration can be calculated for a given application.  For instance, if the
period of early failures is 3 000, h , θ1 55= °C , and θ2 130= °C  (junction temp.
in °C), the effective burn-in duration would be of about 50 h  for Ea ≈ 0 65. eV
and 200 h  for Ea ≈ 0 4. eV (Fig. 7.10).  It is often difficult to decide whether a
static or a dynamic burn-in is more effective.  Should surface, oxide, and
metallization problems be dominant, a static burn-in is better.  On the other
hand, a dynamic burn-in activates practically all failure mechanisms.  It is
therefore important to make such a choice on the basis of practical experience.

5. Seal:  A seal test is performed to check the seal integrity of the cavity around
the chip in hermetically-packaged ICs.  It begins with the fine leak test:  ICs
are placed in a vacuum (1h  at 0 5. mmHg) and then stored in a helium
atmosphere under pressure (ca. 4 h  at 5 atm );  after a waiting period in open
air ( 30 min ), helium leakage is measured with the help of a specially
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calibrated mass spectrometer (required sensitivity approx. 10 8− atm cm / s3 ,
depending on the cavity volume).  After the fine leak test, ICs are tested for
gross leak:  ICs are placed in a vacuum ( 1h  at 5 mmHg) and then stored under
pressure (2 h  at 5 atm ) in fluorocarbon FC-72;  after a short waiting period in
open air (2 min ), the ICs are immersed in a fluorocarbon indicator bath (FC-
40) at 125°C; a continuous stream of small bubbles or two large bubbles from
the same place within 30 s indicates a defect.

8.3 Testing and Screening of Electronic Assemblies

Electrical testing of electronic assemblies, for instance populated printed circuit
boards (PCBs), can be basically performed in one of the following ways:

1. Functional test within the assembly or unit in which the PCB is used.

2. Functional test with help of a functional test equipment.

3. In-circuit test followed by a functional test with the assembly or unit in which
the PCB is used.

The first method is useful for small series production.  It assumes that components
have been tested (or are of sufficient quality) and that automatic or semi-automatic
localization of defects on the PCB is possible.  The second method is suitable for
large series production, in particular from the point of view of protection against
damage (ESD, backdriving, mechanical stresses), but can be expensive.  The third
and most commonly used method assumes the availability of an appropriate in-
circuit test equipment.  With such an equipment, each component is electrically
isolated and tested statically or quasi-statically.  This can be sufficient for passive
components and discrete semiconductors, as well as for SSI and MSI ICs, but it
cannot replace an electrical test at the incoming inspection for LSI and VLSI ICs
(functional tests on in-circuit test equipment are limited to some few 100 kHz  and
dynamic tests (Fig. 3.4) are not possible).  Thus, even if in-circuit testing is used,
incoming inspection of critical components should not be omitted.  A further
disadvantage of in-circuit testing is that the outputs of an IC can be forced to a LOW
or a HIGH state.  This stress (backdriving) is generally short ( 50 ns), but may be
sufficient to cause damage to the IC in question.  In spite of this, and of some other
problems (polarity of electrolytic capacitors, paralleled components, tolerance of
analog devices), in-circuit testing is today the most effective means to test populated
printed circuit boards (PCBs), on account of its good defect localization capability.

Because of the large number of components & solder joints involved, the defec-
tive probability of a PCB can be relatively high in stable production conditions too.
Experience shows that for a PCB with about 500 components and 3,000 solder joints,
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the following indicative values can be expected (see Table 1.3 for fault report forms):

 • 0 5 2. %  to  defective PCBs  (often for 3/4 assembling and 1/4 components),
 • 1.5 defects per defective PCB (mean value).

Considering such figures, it is important to remember that defective PCBs are often
reworked and that a repair or rework can have a negative influence on the quality
and reliability of a PCB.

Screening populated printed circuit boards (PCBs) or assemblies with higher
integration level is generally a difficult task, because of the many different
technologies involved.  Experience on a large number of PCBs [8.22 (1989), 3.76]
leads to the following screening procedure which can be recommended for PCBs
used in high reliability and / or safety applications (SMT and mixed technology) :

1. Visual inspection and reduced electrical test.
2. 100 thermal cycles ( 0°C / +80°C ) with temperature gradient ≤ °5 C / min  (within

the components), dwell time ≥ 10 min  after the thermal equilibrium has been
reached within ± 5°C, power off during cooling  (gradient ≥ °20 C / min  only if
this also occurs in the field and is compatible with the PCB technology).

3. 15 min  random vibration at 2 grms , 20 - 500Hz  (to be performed if significant
vibrations occur in the field).

4. 48 h   run-in at ambient temperature, with periodic power on/off switching.
5. Final electrical and functional test.

Extensive investigations on SMT assemblies [3.92, 3.81, 3.79 (96,02,05,0.8,11), 3.90],
show that basically two different deformation mechanisms can be present in solder
joints (Section 3.4), grain boundary sliding at rather low temperature gradients and
low stiffness of the structure component - PCB, and dislocation climbing at higher
temperature gradients and high stiffness (e. g. for leadless ceramic components);

for this reason, screening of populated PCBs in SMT should be avoided
if the temperature gradient occurring in the field is not known.

Preventive actions, to build in quality and reliability during manufacturing, have to
be preferred.  This holds in particular for lead-free solder joints, which are more
sensitive than Sn-Pb solder joints to manufacturing flaws or defects, mechanical
vibrations, and fast thermal cycles (see also Sections 3.4 & 5.1.5.4).

The above procedure can be considered as an environmental stress screening
(ESS), often performed on a 100% basis in a series production of PCBs used in high
reliability and /  or safety applications to provoke early failures.  It can serve as a
basis  for screening at higher integration levels.

Thermal cycles can be combined with power on /  off switching or vibration to
increase effectiveness.  However, in general a screening strategy for PCBs (or at
higher integration level) should be established on a case-by-case basis, and be
periodically reconsidered (reduced or even canceled if the percentage of early
failures drops below a given value, 1% for instance).
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Burn-in at assembly level is often used as an accelerated reliability test
to validate a predicted assembly's failure rate λS .  Assuming that the assembly
consists of elements E En1, ,…  in series, with failure rates λ λ1 1 1( ), ( )T Tn ... ,  at
temperature T1 and activation factors A An1,  ... ,  for a stress at temperature T2,
the assembly failure rate λS T( )2  at temperature T2 can be calculated from
Eqs. (2.19) & (7.57) as

λ λS i iT A T
i

n
( ) ( )2 1

1
=

=
∑ .

Evaluation of the experimentally obtained failure rate λS T( )2  can follow as given in
Section 7.2.3.  However, because of the many different technologies often used in
an assembly (e. g. populated PCB), T2 is generally chosen < °100 C .  Equation (7.57)
basically holds for series structures.  In the presence o f redundancy,  distinction
should be made if the assembly is repairable or not during burn-in.  However,

in both cases, assuming λ λi it( )= , the contribution of redundancies to
λS  can often be neglected for a burn-in duration << 1 / λm , where
λ λ λm n= max { , ... , }1  (Eq. (6.157) and Fig. 2.7).

8.4 Test and Screening Strategies, Economic Aspects

8.4.1 Basic Considerations

In view of the optimization of cost associated with testing and screening during
production, each manufacturer of high-performance equipment and systems is
confronted with the following question:

What  is the most cost-effective approach to eliminate all defects,
systematic failures, and early failures prior to shipment to the customer ?

The answer to this question depends essentially on the level of quality, reliability,
and safety required for the item considered, the consequence of a defect or a failure,
the effectiveness of each test or screening step, as well as on the direct and deferred
cost involved (warranty cost for instance).  A test and screening strategy should
thus be tailored to the item considered, in particular to its complexity, technology,
and production procedures, but also to the facilities and skill of the manufacturer.
In setting up such a strategy, the following aspects must be considered:

1. Cost equations should include deferred cost (for instance, warranty cost and
cost for loss of image).
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Incoming inspection

PCB assembling and soldering

Visual inspection

In-circuit test

Screening

In-circuit test

Functional test

Unit assembling and testing

Storage, shipping, use

Repair

Figure 8.1    Flow chart as a basis for the development of a test and screening strategy for
electronic assemblies (e. g. populated printed circuit boards (PCBs))

2. Testing and screening should begin at the lowest level of integration and be
selective, i. e., consider the effectiveness of each test or screening step.

3. Qualification tests on prototypes are important to eliminate defects and
systematic failures, they should include performance, environmental &
reliability tests.

4. Testing and screening should be carefully planned to allow h i g h
interpretability of the results, and be supported by a quality data reporting
system (Fig. 1.8).

5. Testing and screening strategy should be discussed early in the design phase,
during design reviews.

Figure 8.1 can be used as start point for the development of a test and screening
strategy at the assembly level.

A basic relationship between test strategy and cost is illustrated in the
example of Fig. 8.2, in which two different strategies are compared.  Both cases
in Fig. 8.2 deal with the production of a stated quantity of equipment or systems
for which a total of 100,000 ICs of a given type are necessary.  The ICs are delivered
with a defective probability p = 0 5. %.  During production, additional defects occur
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Figure 8.2    Comparison between two possible test strategies  (figures for defects and cost have to be
considered as expected values, number of defects on the basis of 100,000 ICs at the input):
a) Emphasis on assembly test;   b) Emphasis on incoming inspection ( DPr =  detection probability)

as a result of incorrect handling, mounting, etc., with probabilities of 0.01% at the
incoming inspection, 0.1% at assembly level, and 0.01% at equipment level.
The cost of eliminating a defective IC is assumed to be $ 2  (US$) at the incoming
inspection, $ 20 at assembly level, $ 200 at equipment level, and $ ,2 000 during
warranty.  The two test strategies differ in the probability (DPr) of detecting and
eliminating a defect.  This probability is for the four levels 0.1, 0.9, 0.8, 1.0 in the
first strategy and 0.95, 0.9, 0.8, 1.0 in the second strategy.  It is assumed, in this
example, that the additional cost to improve the detection probability at incoming
inspection ( $ , )+ 20 000  are partly compensated by the savings in the test at the
assembly level ( $ , )− 10 000 .  As Fig. 8.2 shows, total cost of the second test strategy
are (for this example) lower ( $ , )21 900  than those of the first one.

Number of defects and cost are in all this kind of considerations expected values
(means of random variables).  The use of arithmetic means in the example of
Fig. 8.2, on the basis of 100,000 ICs at the input, is for convenience only.
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Models like that of Fig. 8.2 can be used to identify weak points in the production
process (e. g. with respect to the defective probabilities at the different production
steps) or to evaluate the effectiveness of additional measures introduced to decrease
quality cost.

8.4.2 Quality Cost Optimization at Incoming Inspection Level

In this section, optimization of quality cost in the context of a testing and
screening strategy is solved for the case of the choice between a 100% incoming
inspection and an incoming inspection on a sampling basis.  Two cases will be
distinguished, incoming inspection without screening (test only, illustrated by
Fig. 8.3 and Fig. 8.4) and incoming inspection with screening (test and screening,
illustrated by Fig. 8.5 and Fig. 8.6). +)  The following notation is used:

At = probability of acceptance at the sampling test (i. e., probability of having
no more than c defective components in a sample of size n  (function of
pd , given by Eq. (A6.121) with p pd=  and k c= , see also Fig. 7.3 for a
graphical solution using the Poisson approximation)

As = same as At , but for screening (screening with test)

cd = deferred cost per defective component

c f = deferred cost per component with early failure

cr = replacement cost per component at the incoming inspection ( cr  includes
component cost and cost for test and / or screening, as appropriate)

ct = testing cost per component (test only)

cs = screening cost per component ( cs  includes cost for screening and test)

Ct = expected value (mean) of the total cost (direct and deferred) for
incoming inspection without screening (test only) of a lot of N
components

Cs = expected value (mean) of the total cost (direct and deferred) for
incoming inspection with screening (screening with test) of a lot of N
components

n = sample size

N = lot size

pd = defective probability (defects are recognized at the test)

p f = probability for an early failure (early failures are precipitated by the
screening)

_____________
+) The concept of average outgoing quality (Eq. (7.11)) can be used to compute the mean percentage

of components with defects or early failures (as function of pd  or pf ) that reach the assembly line
in the case of a sampling test at the incoming inspection.
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Ct = (1− At ) (N − n) (c t + pd cr )''

Ct
' = n (c t + p

d
cr )

Ct
''' = At pd (N −n)c d

Figure 8.3   Model for quality cost optimization (direct and deferred cost) at the incoming inspection
without screening of a lot of N components  (all cost are expected values, see Fig. 8.5 for screening)

Consider first the incoming inspection without screening (test only).  The corre-
sponding model is shown in Fig. 8.3.  From Fig. 8.3, the following cost equation
can be established for the expected value (mean) of the total cost Ct

C C C Ct t t t= + +' '' '''

    = + + − − + + −n c p c N n A c p c N n A p ct d r t t d r t d d( ) ( )( )( ) ( )1

   = + + − − +N c p c N n A p c c p ct d r t d d t d r( ) ( ) [ ( )]. (8.1)

Investigating Eq. (8.1) leads to the following cases:

1. For pd = 0, At = 1 and thus

C n ct t= . (8.2)

2. For a 100% incoming inspection, n N=  and thus

C N c p ct t d r= +( ). (8.3)

3. Considering the term related to ( )N n At− , it follows that

c cd r
c

p
t

d
< + (8.4)

yields
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Figure 8.4    Practical realization of the procedure described by the model of Fig. 8.3

C N c p ct t d r< +( ),

and thus a sampling test is more cost effective.

4. On the other hand,

c cd r
c

p
t

d
> + (8.5)

yields

C N c p ct t d r> +( )

and thus, a 100% incoming inspection is more cost effective.

A practical realization of the procedure according to the model of Fig. 8.3 is given
in Fig. 8.4.  The sample of size n, to be tested instead of the 100% incoming inspec-
tion if the inequality (8.4) is fulfilled, is used to verify the value of pd , which
for the actual lot can differ from the assumed one (estimation of pd  using results
of Section 7.1.1, or demonstration of pdactual c c ct d r< −/ ( ) for given c c cd r t, , ,
e. g. using one-sided sampling plan with AQL c c ct d r= −/ ( ), AQL c c ct d r< −/ ( ) or
LTPD c c ct d r= −/ ( ), see the considerations on pp. 306 - 307 to fix the values for n
and c).
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Figure 8.5    Model for quality cost optimization (direct and deferred cost) at the incoming inspection
with screening of a lot of N components  (all cost are expected values;  screening includes test)

As a second case, let us consider the situation of an incoming inspection with
screening (Section 8.2).  Figure 8.5 gives the corresponding model and leads to the
following cost equation for the expected value (mean) of the total cost Cs  

+)

C n c p p c N n A p c A p c A c p cs s f d r s f f t d d t t d r= + + + − + + − +[ ( ) ] ( ) [ ( )( )]1

+ − − + +( )( )[ ( ) ]N n A c p p cs s f d r1

       = + + + − +N c p p c N n A p c A p cs f d r s f f t d d[ ( ) ] ( ) [

+ − + − + +( )( ) ( ( ) )]1 A c p c c p p ct t d r s f d r . (8.6)

Considering the term related to ( )N n As− , it follows that for

p c A p c A c p c c p p cf f t d d t t d r s f d r+ + − + < + +( )( ) ( )1 (8.7)

a sampling screening (with test) is more cost effective than a 100% screening (with
test).  A practical realization of the procedure according to the model of Fig. 8.5
is given in Fig. 8.6.  As in Fig. 8.4, the sample of size n to be screened instead of
the 100% screening if the inequality (8.7) is fulfilled, is used to verify the values
of pd  and pf , which for the actual lot can differ from the assumed ones (see the
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Figure 8.6    Practical realization of the procedure described by Fig. 8.5  (screening includes test)

considerations on p. 369 to fix the values for n and c ).  The first inequality in
Fig. 8.6 is valid for

p cf f >> A p c A c p ct d d t t d r+ − +( )( )1 ,

i .  e. for p c p cf f d d>> , by assuming At →1 and considering that early failures
generally appear in the field;  it can be refined to better satisfy the inequality (8.7),
as necessary.  The second inequality in Fig. 8.6 refers to the cost for incoming
inspection without screening (inequality (8.4)), and uses the actual pd , obtained
from the sample test of size n.
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8.4.3 Procedure to handle first deliveries

Components, materials, and externally manufactured subassemblies or assemblies
should be submitted at the first delivery to an appropriate selection procedure.
Part of this procedure can be performed in cooperation with the manufacturer to
avoid duplication of efforts.  Figure 8.7 gives the basic structure of such a
procedure, see Sections 3.2 and 3.4 for some examples of qualification tests
for components and assemblies.

Component/material

Qualification test

yes

Qualification
test

necessary?

Procedure for qualified
components and materials

First lot

100% incoming
inspection

(test and screening)

no

Material/
component

appropriate?

Reject

External
experience

Empirical values
for p  , p   (Fig. 8.6)       d     f

no

yes

Figure 8.7    Selection procedure for non qualified components and materials



Appendices  (A1 - A11)

A1    Terms and Definitions

System,  Systems Engineering,  Concurrent Engineering,  Cost Effectiveness,  Quality

Reliability

Item

Required Function,  Mission Profile

Reliability Block Diagram,  Redundancy

Failure,  Failure Rate,  Failure Intensity,  Derating

FMEA,  FMECA,  FTA

Reliability Growth,  Environmental Stress Screening,  Burn-in, Run-in

MTTF,  MTBF

Quality Data Reporting System

Capability

Availability,  Dependability

Preventive Maintenance,  MTTPM,  MTBUR

Corrective Maintenance,  MTTR

Maintainability

Logistic Support

Fault

Quality Management, Total Quality Management (TQM)

Configuration Management,  Design Review

Quality Test

Safety

Quality Control during Production

Life Time,  Useful Life

Life-Cycle Cost,  Value Engineering,  Value Analysis

Product Assurance,  Product Liability

Defect,  Nonconformity

Systematic Failure

Failure

Quality Assurance

Figure A1.1    Terms most commonly used in reliability (RAMS) engineering

Appendix A1 defines and comments on the terms most commonly used in reliability
engineering (Fig. A1.1).  Table 5.4 (p. 162) extends this appendix to software quality
(see also [A1.5, A1.6] ).  Attention has been paid to the adherence to relevant inter-
national standards [A1.1 - A.1.7] and recent trends [A1.4], respecting coherence
(in particular in the definition / discussion on Fault  R, , , , ( ) , ( )).MTBF MTTF MTTR t tλ

A. Birolini, Reliability Engineering, DOI: 10.1007/978-3-642-39535-2,
� Springer-Verlag Berlin Heidelberg 2014
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Availability, Instantaneous Availability, Point Availability  ( ( )) PA t    [A1.4]

Probability that the item is in a state to perform as required at a given instant.

Perform as required means perform the required function under stated conditions.  At system level,
PAS t( )  is used (system refers in this book, and often in practical applications, to the highest
integration level of the item considered).  Instantaneous availability is often used.  The use of A( )t
should be avoided, to elude confusion with other kind of availability (e. g. average availability
AA( )t , mission availability MA( , )T t0 0 , and work-mission availability WMA( , )T x0  as given in
Section 6.2).  A qualitative definition, focused on ability, is also possible and belongs to the concept
of dependability.  The term item stands for a structural unit of arbitrary complexity.  Stated
conditions generally refer to given environmental conditions, continuous operation (item down only
for repair), renewal at failure (as-good-as-new after repair), and ideal human factors & logistic
support.  For an item with more than one element, as-good-as-new after repair refers in this book to
the repaired element in the reliability block diagram.  This assumption is valid for the whole item
(system), only in the case of constant failure rates for all not renewed elements.  Assuming renewal
for the whole item, the asymptotic & steady-state value of the point availability can be expressed by
PA MTTF MTTF MTTR= +/ ( )  ( ( )/PA MUT MUT MDTS S S S= +  at system level).  PA is also the

asymptotic & steady-state value of the average availability AA (often given as availability A).  The
convergence of  PA( )t  to PA AA=  is discussed in Section 6.2 (in particular on pp. 178, 186-7, 188).

Burn-in  (nonrepairable items)

Type of screening test while the item is in operation.

For electronic devices, stresses during burn-in are often constant higher ambient temperature (e. g .
125°C  for ICs) and constant higher supply voltage.  Burn-in can be considered as a part of a screen-
ing procedure, performed on a 100% basis to provoke early failures and to stabilize characteristics of
the item.  Often it can be used as an accelerated reliability test to investigate item’s failure rate.

Burn-in, Run-in  (repairable items)

Process of increasing the reliability of hardware by employing functional
operation of all items in a prescribed environment, with corrective
maintenance during the early failure period.

The term run-in is often used instead of burn-in.  The stress conditions have to be chosen as near as
possible to those expected in field operation.  Faults detected during burn-in / run-in can be deter-
ministic (defects or systematic failures) during the pilot production, but should be attributable only to
early failures (randomly distributed) during the series production (see also Reliability Growth).

Capability  [A1.4]

Ability to meet stated quantitative dependability characteristics under
given internal conditions.

Performance (technical performance) is often used instead of capability.
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Concurrent Engineering

Systematic approach to reduce the time to develop, manufacture, and
market the item, essentially by integrating production activities into the
design & development phase.

Concurrent engineering is achieved through intensive teamwork between all engineers involved in
the design, production, and marketing of the item.  It has a positive influence on the optimization
of life-cycle cost.

Configuration Management

Procedure to specify, describe, audit, and release the configuration of the
item, as well as to control it during modifications or changes.

Configuration includes all of the item’s functional and physical characteristics as given in the
documentation (to specify, produce, test, accept, operate, maintain, and logistically support the item)
and as present in the hardware and /  or software.  In practical applications, it is useful to subdivide
configuration management into configuration identification, auditing, control (design reviews),
and accounting.  Configuration management is of great importance during the design & development
phase.

Corrective Maintenance

Maintenance carried out after fault detection to restore the item to a
specified state.

A fault is a state, and can result from a defect or a failure.  Corrective maintenance is also known as
repair and can include any or all of the following steps: detection (recognition), localization
(isolation), correction (disassemble, remove, replace, reassemble, adjust), and function checkout.
In this book, fault detection time as well as administrative, logistic & technical delays are neglected,
repair is thus used as a synonym for restoration.  To simplify calculations, it is generally assumed
that the repaired element in the reliability block diagram is as-good-as-new after each repair
(including a possible environmental stress screening (ESS) of the corresponding spare parts).  This
assumption applies to the whole item (system) only if all nonrepaired elements have constant failure
rates (see Failure rate for further comments).

Cost Effectiveness

Measure of the ability of the item to meet a service demand of stated
quantitative characteristics, with the best possible usefulness to life-cycle
cost ratio.

System effectiveness is often used instead of cost effectiveness.
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Defect

Nonfulfillment of a requirement related to an intended or specified use.

From a technical point of view, a defect is similar to a nonconformity;  however, not necessarily from
a legal point of view (in relation to product liability, nonconformity should be preferred).  Defects do
not need to influence the item’s functionality.  They are caused by errors or mistakes during design,
development, production, or installation.  The term defect should be preferred to that of error, which
is a cause.  Unlike failures, which always appear in time (randomly distributed), defects are present
at t = 0 .  However, some defects can only be recognized when the item is operating and are referred
to as dynamic defects (e. g. in software).  Similar to defects, with regard to causes, are Systematic
failures  (e. g. caused by a cooling problem);  however, they must not be present at t=0.

Dependability  [A1.4]

Ability to perform as and when required.

Dependability is used generally in a qualitative sense to describe the ability to perform the required
function under stated conditions at a given instant or for a given time interval, including thus its
influencing factors like reliability, maintainability, and logistic support.

Derating

Designed reduction of stress from the rated value to enhance reliability.

The stress factor S expresses the ratio of actual to rated stress under standard operating conditions
(generally at 40°C ambient temperature, see p. 33).  Designed is used as a synonym for deliberated.

Design Review

Independent, documented, comprehensive examination of the design to
evaluate the capability of the design to meet all requirements, to identify
deviations or problems, and to propose solutions.

Design reviews are an important tool for quality assurance and TQM  during the design and
development of hardware and software (Tables A3.3, 5.3, 5.5, 2.8, 4.3, Appendix A4).  An important
objective of design reviews is also to decide about continuation or stopping the project, on the basis
of objective considerations (feasibility check in Tables A3.3 & 5.3, and Fig. 1.6).

Environmental Stress Screening  (ESS)

Test or set of tests intended to remove defective items, or those likely to
exhibit early failures.

ESS is a screening procedure often performed at assembly (PCB) or equipment level on a 100% basis
to find defects and systematic failures during the pilot production (Reliability Growth), or to provoke
early failures in a series production.  For electronic items, it consists generally of temperature cycles
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and / or random vibrations.  Stresses are in general higher than in field operation, but not so high as to
stimulate new failure mechanisms.  Experience shows that to be cost effective, ESS has to be tailored
to the item and production processes.  At component level, the term screening is often used.

Failure  [A1.4]

Loss of ability to perform as required.

Perform as required means perform the required function under stated conditions.  Failure is an
event leading to an inoperative state.  It should be considered (classified) with respect to the mode,
cause, effect, and mechanism.  The cause of a failure can be intrinsic (early failures, failures with
constant failure rate, wear-out failures) or extrinsic (systematic failures, i. e., failures resulting from
errors or mistakes in design, production, or operation which are deterministic and have to be
considered as defects).  The effect (consequence) of a failure can be different if considered on the
directly affected item or on a higher level.  A failure is an event appearing in time (randomly
distributed), in contrast to a Defect which is present at t = 0 (even if hidden).

Failure Intensity  (z( ))t    [A1.4]

Limit, if it exists, of the expected (mean) number of failures of a
repairable item within time interval ( , ]t t t+δ , to δ t  when δ t → 0.

At system level, zS t( ) is used (system refers in this book, and often in practical applications, to
the highest integration level of the item considered).  Failure intensity applies for repairable items,
in particular when repair times are neglected.  It must be clearly distinguished from Failure Rate,
and is investigated in Appendix A7 for Poisson processes (homogeneous (z( ) )t = λ  & nonhomo-
geneous ( mz( ) ( ))t t= ) and renewal processes ( hz( ) ( ))t t= .  For practical applications and δ t →0
it holds that z( ) }t t t t tδ δν ν= + − =Pr{ ( ) ( ) 1 , ν ( ) ]t t= number of failures in (0,   .

Failure Modes and Effects Analysis  (FMEA)

Qualitative method of analysis that involves the study of possible failure
modes in subitems, and their effects on the item.

See FMECA for comments.

Failure Modes, Effects, and Criticality Analysis  (FMECA)   [A1.4]

Quantitative or qualitative method of analysis that involves failure modes
and effects analysis together with a consideration of the probability of the
failure mode occurrence and the severity of the effects.

Goal of an FMEA or FMECA is to identify all potential hazards and to analyze the possibilities of
reducing (mitigating) their effect and / or occurrence probability.  All possible failure modes with
corresponding causes have to be considered bottom-up from lowest to highest integration level of the
item considered.  Often one distinguishes between design and process (production) FMEA or
FMECA.  Fault modes is to use if failures and defects have to be considered, allowing errors as
possible causes as well.
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Failure Rate  ( ( ))λ t

Limit, if it exists, of the conditional probability that the failure occurs
within time interval ( , ]t t t+δ , to δ t  when δ t → 0, given that the item
was new at t =0 and did not fail in the interval ( , ]0 t   (Eq. (A1.1)).

At system level, λS t( )  is used (system refers in this book, and often in practical applications, to the
highest integration level of the item considered).  The failure rate applies in particular for nonrepair-
able items.  In this case, if τ > 0 is the item failure-free time, with distribution F Pr( ) { },t t= ≤τ
(F ( ) )0 0=  and density f ( ),t  the failure rate λ( )t  follows as (Eq. (A6.25), R( ) ( )t t= −1 F )

λ τ δ τ
δ δ

( ) lim Pr{ }
f( )

F( )

R( ) /

R( )
, ( ) .t

t
t t t t

t
t

t t
t t

t

d d
F= < ≤ + > =

↓ − = − =
0

1

1
0 0 0      ,  > (A1.1)

Considering R( ) ( )0 1 0 1= − =F , Eq. (A1.1) yields R( ) ( )t e x dxt
= −∫ λ0  and thus, R( )t e t= −λ  for

λ λ( )t = .  This important result characterizes the memoryless property of the exponential distribution
F ( )t e t= − −1 λ , expressed by Eq. (A1.1) for λ λ( )t = .  Only for λ λ( )t =  one can estimate the failure
rate λ by ˆ / ,λ = k T  where T is the given (fixed) cumulative operating time and k >0 the total number
of failures during T (Eq. (7.28)).  Figure 1.2 shows a typical shape of λ( )t  for a large population of
statistically identical and independent items.  However, considering Eq. (A1.1),

the concept of failure rate also applies to repairable items which are as-good-as-new
after repair (as a whole or with respect to the state considered), taking instead of t the
variable x starting by 0 after each repair, as for interarrival times.

This extension is necessary when investigating repairable systems (Chapter 6).  If a repairable system
cannot be restored to be as-good-as-new after repair (as a whole or with respect to the state consid-
ered), i. e. if at least one element with time dependent failure rate has not been renewed at each repair,
Failure Intensity z ( )t  has to be used.  The distinction between failure rate λ( )t  and failure intensity
z ( )t  or intensity h ( )t  or m ( )t  (for a renewal or Poisson process) is important.  z ( )t , h ( )t , m ( )t
are unconditional intensities (Eqs. (A7.229), (A7.24), (A7.194)) and differ basically from λ( )t , even
for a homogeneous Poisson process, for which z h m( ) ( ) ( )t t t= = = λ  holds (Eq. (A7.42), see also pp.
7, 466, 516, 524).  For λ( )t , force of mortality [6.1, A7.30] and hazard rate have been suggested;
both terms should be avoided, and conditional failure rate (Eq. (6.28)) could be a good choice for
failure rate.  Also important is to note that λ( )t  is not a (probability) density (p. 426).

Fault  [A1.4]

State of inability to perform as required, for internal reason.

Perform as required means perform the required function under stated conditions.  A fault is a state
resulting from a defect or a failure, having as possible cause an error or flaw for defects & systematic
failures, a failure mechanism for failures.  Not considered as fault are down states caused by external
actions or events (preventive maintenance, loss of resources). For software, faults result from defects.

Fault Tree Analysis  (FTA)

Analysis using logic diagrams, showing the faults of subitems, external events,
or combination thereof, which cause a predefined, undesired event at item level.

FTA is a top-down approach, which allows inclusion of external causes more easily than for an
FMEA / FMECA.  However, it does not necessarily go through all possible fault modes.  Combination
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of FMEA / FMECA with FTA leads to causes-to-effects chart, showing the logical relationship
between identified causes and their single or multiple consequences (see Sections 2.6, 6.9.2-6.9.3).

Item   [A1.4]

Subject being considered.

An item is a functional or structural unit, generally considered as an entity for investigations.  It can
consist of hardware and / or software and include human resources.  For hardware it can be, for
instance, a part, component, device, assembly, equipment, subsystem or system.

Life Cycle Cost  (LCC)

Sum of the cost for acquisition, operation, maintenance, and disposal or
recycling of the item.

Life-cycle cost have to consider also the effects to the environment of the production, use & disposal
or recycling of the item considered (sustainable development).  Their optimization uses cost effec-
tiveness or systems engineering tools and can be positively influenced by concurrent engineering.

Lifetime

Time span between initial operation and failure of a nonrepairable item.

Logistic Support

All actions undertaken to provide effective and economical use of the
item during its operating phase.

An emerging aspect related to logistic support is that of obsolescence management, i. e., for instance,
how to assure operation over 20 years when components need for maintenance are no longer
manufactured (see e. g. [A2.6 (IEC 62402)]).

Maintainability

Probability that a given maintenance action, performed under stated
conditions and using stated procedures and resources, can be completed
within a given time interval.

Maintainability is a characteristic of the item and refers to preventive and corrective maintenance.
A qualitative definition, focused on ability, is also possible.  In specifying or evaluating maintainabi-
lity, it is important to consider the available logistic support (procedures, personnel, spare parts, etc.).

Mission Profile

Specific tasks which must be fulfilled by the item, under stated
conditions, during a given time interval.

The mission profile defines the required function and the environmental conditions as a function of
time.  A system with a variable required function is termed a phased-mission system (Section 6.8.6.2).
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MTBF

Mean operating time between failures

At system level, MTBFS  is used (system refers in this book, and often in practical applications,
to the highest integration level of the item considered).  MTBF applies for repairable items (systems).
However,

it is important to recognize that operating times between successive system failures will
have the same mean (expected value) only if they are independent and have the same
distribution function, i. e. if the system is as-good-as-new after each repair; if only the
failed element is restored to as-good-as-new after repair and at least one non-restored
element has a time dependent failure rate, successive operating times between system
failures are neither independent nor have a common distribution  (see also pp. 6 & 316).

In the case of a series-system with constant failure rates λ λ1, ..., n  for elements E En1,..., , the flow of
failures at system level is given by a homogeneous Poisson process, for which successive inter-
arrival times (operating times between failures) are independent and distributed according to
F   ( ) ( )...x e ex xn S= − = −− −+ +1 11λ λ λ , with mean MTBFS S= 1/λ  (repaired elements are assumed
to be as-good-as-new, yielding system as-good-as-new because of constant failure rates λ λ1, ..., n ,
and x is used instead of t by considering interarrival times).  The homogeneous Poisson process
often holds, approximately, also for redundant structures (Eq. (6.94)), as well as for very large
systems (Section 7.6.1 and Appendix A7.8.3).  For all these reasons, and also because of the estimate
MTBF T kˆ / , =  often used in practical applications (although valid only for λ λ( )t = , Eq. (7.28)),

MTBF  should be confined to repairable systems with constant failure rates for all elements
(shortcomings are known, see e. g. [6.1, 7.11, A7.30]).  In this book, MTBF  is reserved for

MTBF = 1 / λ               ( / )and MTBFS S= 1 λ , (A1.2)

as generally occurs in practical applications (often tacitly and without distinction between repairable
and nonrepairable items).  MTBF is thus considered in this book as a particular case of the MTTF.
However, at components level, MTBF = 1 / λ should be avoided ( MTBF = = − −10 108 8 1h  for  hλ
has no practical significance).  The use of MOTBF instead of MTBF can cause troubles.  Further
considerations at system level are in the comments on MTTF.

MTTF

Mean time to failure.

At system level, MTTFS  is used (system refers in this book, and often in practical applications, to the
highest integration level of the item considered).  MTTF is the mean (expected value) of the item
failure-free time τ > 0.  It can be computed from the reliability function R( )t  as MTTF dt t=

∞
∫ R ( )0 ,

with TL  as upper limit of the integral if the useful life is limited to TL  (R( ) ) .t t TL  for  = >0

MTTF applies for both nonrepairable and repairable items, if one assumes that after repair
the item is as-good-as-new and the variable x starting by x = 0  after each repair is used
instead of t, as for interarrival times (see remarks on Failure Rate and on p. 41 & 316)

As for MTBF, the condition to have the system as-good-as-new after each repair (as a whole or with
respect to the state considered), necessary to give a sense to an MTTF, applies only if the repaired
element is as-good-as-new and all nonrepaired elements have constant (time independent) failure
rates.  This holds, in particular, for systems described by Markov processes, for which all elements
have constant failure and repair rates.  For such systems, MUTS  (system mean up time in steady-
state or for t →∞) is used at system level instead of MTTFS  (Eq.(A7.142) or (6.293), as well as
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Eq. (A7.179) for semi-Markov processes).  For practical applications, MUT MTTFS S≈ 0  can often
be used, where S  stands for system and 0  for the state entered at t = 0 (system new, p. 279).
An unbiased, empirical estimate for MTTF

 
is MTTF t t nn

ˆ ( ) / = + … +1 , where t tn1, ,…  are
observed failure-free times of n statistically identical and independent items.  The use of mean
operating time to failure for MTTF can cause troubles, as MTTF refers to failure-free times.

MTTPM

Mean time to preventive maintenance

Time to preventive maintenance means time to perform a preventive maintenance.

MTBUR

Mean time between unscheduled removals.

MTTR

Mean time to repair / Mean time to restoration.

Mean time to restoration is to use, if administrative, logistic, and technical delays must be considered.
Except for Example 6.7 & Fig. A7.12, in this book all delays are neglected, and repair is used as a
synonym for restoration  (it can be noted that mean time to restore is used for high redundant sys-
tems, as mean time to switch to a redundant backup unit [4.21]).  MTTR is the mean (expected value)
of the item repair time, and can be computed from the distribution function G( )t  of the repair time as
MTTR dt t= −∞∫ ( ( ))10 G .  MTTR implies that the repaired item is as–good-as-new after each repair.

At system level, same considerations hold as for MTTF.  For system described by Markov or semi-
Markov processes, MDT MUT PA PAS S S S= −( ) /1  is used (Eq. (A7.146) or (6.295) & (A7.179)) with
MDTS =  system mean down time (often further simplified as in Tables 6.9 and 6.10 with
MDT MTTRS S S≈ ≈1/ ) .µ   In specifying or evaluating MTTR, it is necessary to consider

 
the logistic

support available for repair (procedures, personnel, spare parts, test facilities, etc.).  Repair time is
often lognormally distributed.  However, for reliability or availability calculation of repairable
systems, a constant repair rate µ =1 / MTTR ) can often be used to get valid approximate results, as
long as MTTR MTTFi i<<  holds for each element in the reliability block diagram (Examples 6.8 -  10).
An unbiased, empirical estimate of MTTR

 
is MTTR t t nn

ˆ ( ) / = + …+1 , where t tn1, ,…  are observed
repair times of n statistically identical and independent items.

Nonconformity  [A1.4]

Non-fulfillment of a requirement.

From a technical point of view, nonconformity is close to defect, however not necessarily from a
legal point of view.  In relation to product liability, nonconformity should be preferred.

Preventive Maintenance  [A1.4]

Maintenance carried out to mitigate degradation and reduce the
probability of failure.

The aim of preventive maintenance must also be to remove hidden failures (faults for failure and



382 A1   Terms and Definitions

defects), e. g. undetected failures in redundant elements.  To simplify computations, it is generally
assumed that the element in the reliability block diagram for which a preventive maintenance has
been performed is as-good-as-new after preventive maintenance.  This assumption applies to the
whole item (system) only if all components of the item (which have not been renewed) have constant
failure rates.  Preventive maintenance is generally performed at scheduled time intervals.

Product Assurance

All planned and systematic activities necessary to provide adequate
confidence that the item will meet all specified quality and reliability
(RAMS) requirements.

The concept of product assurance is used in particular in aerospace programs.  It includes quality
assurance as well as reliability, maintainability, availability, safety, and logistic support engineering.

Product Liability

Generic term used to describe the onus on a producer or others to make
restitution for loss related to personal injury, property damage, or other
harm caused by the product.

The manufacturer (producer) has to specify a safe operational mode for the product (item).
If strict liability applies, the manufacturer has to demonstrate (at a claim) that the product was
conforming to all applicable specifications (i. e. free from defects and intrinsic systematic failures)
when it left the production plant.  This holds in the USA and partially also in Europe [1.10].
However, in Europe the causality between damage and nonconformity has still to be demonstrated
by the user and the limitation period is short (often 3 years after the identification of the
damage, defect, and manufacturer, or 10 years after the appearance of the product on the market).
A return to tort liability (the user has to demonstrate the nonconformity of the product (item))
is not desirable.  Moreover, it is hoped that liability will be extended to better cover software aspects.

Quality

Degree to which a set of inherent characteristics fulfills requirements.

This definition, given also in the ISO 9000 family [A1.6, A2.9], follows closely the traditional
definition of quality as fitness for use, and refers to products and services as well.

Quality Assurance

All planned and systematic activities necessary to provide adequate
confidence that quality requirements will be fulfilled.

Quality assurance is a part of quality management, as per ISO 9000 [A2.9].  It refers to hardware and
software as well, and includes configuration management, quality tests, quality control during  pro-
duction, quality data reporting systems, and software quality (Fig. 1.3).  For complex equipment and
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systems, quality assurance activities are coordinated by a quality and reliability (RAMS) assurance
program (Appendix A3).  An important target for quality assurance is to achieve the quality
requirements with a minimum of cost  and time.  Concurrent engineering also strive to short the time
to develop & market the product.

Quality Control During Production

Control of the production processes and procedures to reach a stated
quality of manufacturing.

Quality Data Reporting System

System to collect, analyze, and correct all defects and failures occurring
during production and test of the item, as well as to evaluate and
feedback the corresponding quality and reliability (RAMS) data.

A quality data reporting system is generally computer aided. Its basic concept is illustrated in Fig. 1.8.
Analysis of defects and failures must be traced to the cause in order to determine the best corrective
action necessary to avoid repetition of the same problem.  For complex systems, the quality data
reporting system should remain active during the operating phase (at least during warranty).

Quality Management

Coordinated activities to direct and control an organization with regard to quality.

Organization is defined as group of people and facilities (e. g. a company) with an arrangement
of responsibilities, authorities, and relationships [A2.9].

Quality Test

Test to verify whether the item conforms to specified requirements.

Quality tests include incoming inspections, qualification tests, production & acceptance tests, and
cover performance, reliability, maintainability, safety, and software aspects.  To optimize cost
and time schedule, tests should be integrated in a test (and screening) strategy at system level.
The terms inspection should be avoided.

Redundancy

Provision of more than one means for performing the required function.

For hardware, distinction is made between active (hot, parallel), warm (lightly loaded), and standby
(cold) redundancy.  Redundancy does not necessarily imply a duplication of hardware; it can, for
instance, be implemented at the software level or as a time redundancy.  To avoid common cause
failures, redundant elements should be realized independently from each other.  Should the redundant
elements fulfill only a part of the required function, a pseudo redundancy is present.
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Reliability  ( R, R( )t )

Probability that the item is able to perform as required for a given time interval.

Perform as required means perform the required function under stated conditions.  According to the
above definition, reliability is a characteristic of the item, generally designated by R for the case of a
fixed mission and R( )t  for a mission with t as a parameter.  At system level R ( )S i t  is used, where
S stands for system and i for the state entered at t = 0, Table 6.2 (system refers in this book, and
often in practical applications, to the highest integration level of the item considered).  A qualitative
definition, focused on ability, is also possible.  R( )T  gives the probability that no operational
interruption at item (system) level will occur during a stated mission of duration T.  This does not
mean that redundant parts may not fail, such parts can fail and be repaired.  Thus,

the concept of reliability applies for nonrepairable as well as for repairable items.

Should T be considered as a variable t, the reliability function is given by R( )t .  If τ is the failure-
free time, with F ( ) Pr{ }t t= ≤τ  & F ( )0 0= , then R ( ) Pr{ } F ( ) R( ) .t t t= > = − =τ 1 0 1&   The con-
cept of reliability can also be used for processes or services, although modeling human aspects can
lead to some difficulties (pp. 10, 294 - 8).  To avoid misinterpretations, R( , )t t1 2  should be reserved
for the interval reliability IR( , )t t1 2  as per Eq. (6.25), see the remarks on pp. 40, 179, 426.

Reliability Block Diagram

Logical block diagram showing how failures of subitems, represented by
the blocks, can result in a failure of the item.

The reliability block diagram (RBD) is an event diagram.  It answers the question:  Which elements
of the item are necessary to fulfill the required function and which ones can fail without affecting it?
The elements (blocks in the RBD) which must operate are connected in series (the ordering of these
elements is not relevant for reliability computation) and the elements which can fail (redundant
elements) are connected in parallel.  Elements which are not relevant (used) for the required function
are removed from the RBD and put into a reference list, after having verified (FMEA) that their
failure does not affect elements involved in the required function.  In a reliability block diagram,
redundant elements still appear in parallel, irrespective of the failure mode.  However, only one
failure mode (e. g. short, open) and two states (good , failed) can be considered for each element.

Reliability Growth  [A1.4]

Iterative process for reliability improvement by addressing design and
manufacturing weaknesses.

Faults detected during a reliability growth program are often deterministic (defects or systematic
failures present in every item of a given lot), and less frequently caused by early failures or
failures with constant failure rate.  Reliability growth is thus performed during the pilot production,
seldom for series-produced items.  Investigation of the cause of each fault is important to select the
most appropriate corrective action.  As for environmental stress screening (ESS), stresses during
reliability growth often exceed those expected in field operation, but are not so high as to stimulate
new failure mechanisms (see also Burn-in).  Models for reliability growth can also be used to
investigate the occurrence of defects in software.  Although software defects often appear in time
(dynamic defects), software quality should be preferred to software reliability.
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Required Function  [A1.4]

Function considered necessary to fulfill a given requirement.

The definition of the required function is the starting point for every reliability analysis, as it defines
failures.  However, difficulties can appear with complex items (systems).  For practical purposes,
parameters should be specified with tolerances.

Run-in   (see  Burn-in)

Safety

Ability of the item to cause neither injury to persons, nor significant
material damage or other unacceptable consequences.

Safety expresses freedom from unacceptable risk of harm.  In practical applications, it is useful to
subdivide safety into accident prevention (the item is safe working while it is operating correctly) and
technical safety (the item has to remain safe even if a failure occurs).  Technical safety can be defined
as the probability that the item will not cause injury to persons, significant material damage or other
unacceptable consequences above a stated (fixed) level for a given time interval, when operating
under stated conditions.  Methods and procedures used to investigate technical safety are similar to
those used for reliability analyses, however with emphasis on fault / failure effects (consequences).
In particular, safety analysis includes identification of potential hazards, identification of their
causes, determination of their effect, classification of their effect & probability of occurrence,
and investigation of possibilities to avoid hazards or at least to mitigate their effects.

System   [A1.4]

Set of interrelated elements that collectively fulfill a requirement.

A system generally includes hardware, software, services, and personnel (for operation and support)
to the degree that it can be considered self-sufficient in its intended operational environment.
For computations, ideal conditions for human factors and logistic support are often assumed, leading
to a technical system.  For simplicity, system is used in this book as a synonym for technical system.
Elements of a system are e. g. components, assemblies, equipment, and subsystems, for hardware.
For maintenance purposes, systems are partitioned into independent line replaceable units (LRUs),
i. e. spare parts at equipment and systems level.  System refers in this book, and often in practical
applications, to the highest integration level of the item considered.

Systematic Failure  [A1.4]

Failure that consistently occurs under particular conditions of handling,
storage or use.

Systematic failures are also known as dynamic defects, for instance in software quality, and have a
deterministic character.  However, they must not be present at t = 0 (e. g. cooling problems) and,
because of the item's complexity, can appear as if they were randomly distributed in time.
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Systems Engineering

Application of the mathematical and physical sciences to develop
systems that utilize resources economically for the benefit of society.

TQM and concurrent engineering can help to optimize systems engineering.

Total Quality Management  (TQM)

Management approach of an organization centered on quality, based on
the participation of all its members, and aiming at long-term success
through customer satisfaction and benefits to all members of the
organization and to society.

Within TQM, everyone involved in the product (directly during development, production,
installation, and servicing, or indirectly with management or staff activities) is jointly responsible for
the quality of that product.

Useful Life  [A1.4]

Time interval, from first use until user requirements are no longer met,
due to economics of operation and maintenance, or obsolescence.

Useful life refers to repairable equipment and systems (see Lifetime for nonrepairable items).
Economic aspects can be related to an unacceptable failure intensity or other.  Typical values for
useful life are 3 to 6 years for commercial applications, 5 to 15 years for military installations, and
10 to 30 years for distribution or power systems.

Value Analysis   (VA)

Optimization of the item's configuration, as well as of the production
processes and procedures, to provide the required item characteristics
at the lowest possible cost without loss of capability, reliability,
maintainability, and safety.

Value Engineering  (VE)

Application of value analysis methods during the design phase to
optimize the life-cycle cost of the item.



A2 Quality and Reliability (RAMS) Standards

Complex equipment & systems must be safe and, when repairable, reliability implies
also maintainability and availability.  RAMS is used here, as well as in Chapter 1 and
Appendix A3, to point out this fact.  To assure RAMS figures, besides quantitative
requirements ( ,/MTBF =1 λ  MTTR, availability) customers require a quality assur-
ance /  management system and often also the realization of an assurance program.
Such general requirements are covered by  national and international standards,
the most important of which are briefly discussed in this appendix. The term
management is used explicitly where the organization (company) is involved, as per
ISO 9000: 2000 family and TQM (total quality management).  A basic procedure for
setting up and realizing quality and reliability (RAMS) requirements for complex
equipment and systems, with the corresponding quality and reliability (RAMS)
assurance program, is discussed in Appendix A3.

A2.1 Introduction

Customer requirements for quality and reliability (RAMS) can be quantitative or
qualitative.  As with performance parameters, quantitative requirements are given
in system specifications and contracts.  They fix, in particular, targets for reliabi-
lity, maintainability, availability, and safety, as necessary, along with associated
specifications for required function, operating conditions, logistic support, and
criteria for acceptance tests.  Qualitative requirements are in national and interna-
tional standards, and generally deal with a quality assurance /  management system.
Depending upon the field of application (aerospace, nuclear, defense, or industrial),
these requirements can be more or less stringent.  Objectives of such standards are
in particular:

1. Harmonization of quality assurance /  management systems, as well as of
terms and definitions.

2. Enhancement of customer satisfaction.
3 Standardization of configuration, operating conditions, logistic support, and

test procedures, as well as of selection /  qualification criteria for
components, materials, and production processes.

Important standards for quality and reliability (RAMS) assurance /  management are
given in Table A2.1, see [A2.0 - A2.13] for a comprehensive list.  Some of the
standards in Table A2.1 are briefly discussed in the following sections.

A. Birolini, Reliability Engineering, DOI: 10.1007/978-3-642-39535-2,
� Springer-Verlag Berlin Heidelberg 2014
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A2.2 General Requirements in the Industrial Field

In the industrial field, the ISO 9000: 2000 family of standards [A2.9] supersedes the
ISO 9000: 1994 family and open a new era in quality management requirements.
Many definitions of the ISO 8402 (1994) have been revised and integrated in the
ISO 9000 (2005) [A1.6, A2.9].  Structure & content of the ISO 9000: 2000 family are
new, and adhere better to industrial needs and to the concept depicted in Fig. 1.3.
Eight basic quality management principles have been identified and considered:
Customer Focus, Leadership, Involvement of People, Process Approach, System
Approach to Management, Continuous Improvement, Factual Approach to Decision
Making, and Mutually Beneficial Supplier Relationships.

ISO 9000 (2005) describes fundamentals of quality management systems and
specify the terminology involved.

ISO 9001 (2008) specifies that for a company or organization it is necessary to
have a quality management system that demonstrate its ability to provide products
that satisfy customer needs and applicable regulatory requirements.  It focus on
four main chapters:  Management Responsibility, Resource Management, Product
and / or Service Realization, and Measurement.  A quality management system must
ensure that everyone involved with a product (in its development, production,
installation, or servicing, as well as in a management or staff function) shares
responsibility for the quality of that product, in accordance to TQM (total quality
management).  At the same time, the system must be cost effective and contribute to
a reduction of time to market.  Thus, bureaucracy must be avoided and such a
system must cover all aspects related to quality, reliability, maintainability,
availability, and safety, including management, organization, planning, and
engineering activities.  Customer expects today that only items with agreed
requirements will be delivered.

ISO 9004 (2009) provides guidelines that consider efficiency & effectiveness of the
quality management system  (see e. g. ISO / IEC 15288 (2008) for life cycle processes).

The ISO 9000: 2000 family deals with a broad class of products and services
(technical and non-technical), its content is thus lacking in details, compared with
application specific standards used e. g. in aerospace, railway, defense, and nuclear
industries (Appendix A2.3).  It has been accepted as national standards in many
countries, and international recognition of certification has been greatly achieved.

Dependability aspects, focusing on reliability, maintainability, and logistic
support of systems are considered in IEC standards, in particular IEC 60300 for
global requirements and IEC 60605, 60706, 60812, 61014, 61025, 61078, 61124, 61163,
61165, 61508, 61709, and 62380 for specific aspects, see [A2.6] for a comprehensive
list.  IEC 60300 deals with dependability programs (management, task descriptions,
and application guides).  Reliability tests for constant failure rate λ (or of MTBF for
the case MTBF = 1/ λ) are considered in IEC 61124.  Maintainability aspects are in
IEC 60706 and safety aspects in IEC 61508.
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Table A2.1 Main Stds for quality and reliability (RAMS) assurance of equipment & systems [A2.0-13]

Industrial

1987-   Int. ISO 9000: 2005 Quality Management Systems – Fundamentals and Vocabulary

1987-   Int. ISO 9001: 2008 Quality Management Systems – Requirements  (Cor. 1: 2009)

1987-
2002-

  Int.

  Int.

ISO 9004: 2009

ISO/IEC 15288

Quality Management Systems – Managing the Sustained Success

Systems & Software Eng. – System Life cycle Processes (2008)

2009-

1984-

  Int.

  Int.

IEC 31010

IEC 60300

Risk Manag. - Risk Assessment Techniques  (2009)

Dependability Management   -1  (2003): Systems,
-2 (2004): Guidelines ,  -3 (2001-2011): Application Guides

1978-   Int. IEC 60605 Equip. Rel. Testing,  -2 (1994): Test Cycles,  -4 (2001): λ Estim.,
-6 (2007): Goodness-of-fit for λ ;   see also IEC 61124

1982-

2005-

  Int.

  Int.

IEC 60706

IEC 61508-SER

Guide on Maintainability of Equip.,  -2 (2006): Requirements,
-3 (2006): Data Evaluation,  -5 (2007): Testability

Functional Safety of el./el. progr. Safety-Related Systems (-0 to -7)

1997-   Int. IEC 61124 Rel. testing - Compliance tests for λ (2012, supers. IEC 60605-7)

1969–  Int. IEC (other as above) 60068, -319, -410, -447, -721, -749, -812, 61000, -014,-025,-070,
-078, -123, -160, -163, -164, -165, -649, -650, -703, -709, -710,
-882, -907, 62010, -198, -278, -308, -380, -396, -402, -429, -502,
-506 (draft), -508, -550 (draft), -551, 628

1998-   Int. IEEE Std 1332 IEEE Standard Reliability Program for the Development and Pro-
duction of El. Systems & Equipment (see also 1413, 1624, 1633)

1999-
1985

  EU
  EU

EN 50126
85 / 374

Railway: RAMS Spec. & Dem. (1999), see also IEC 62278
Product Liability

Software Quality

1987-   Int. IEEE Software and Systems Eng. Stds, in particular  730, 828, 829, 830,
982, 1012, 1016, 1028, 1044, 1045, 1062, 1061, 1063, 1074, 1175,
12207, 1228, 1420, 1465, 1517, 1633, 1636, 1734, 14102, 14471,
14764, 15026, 15939, 16326, 26513, 27748, 9003

2012-

1998-

Defense

  Int.
   Int.

IEC 62628
ISO/IEC

Guidance on Software Aspects of Dependability (2012)
12207, 14764 , 15026, 15288 , 15289, 15940, 16085, 16326, 18018,

24766, 26511, 26512, 26514, 26702, 29148, 29119

1959- USA MIL-Q-9858 Quality Program Requirements, replaced by ISO 9000:2005

1965- USA MIL-STD-785 Rel. Prog. for Syst. & Eq. Dev. & Prod., repl. by GEIA-STD-0009

1987- USA MIL-HDBK-781 Rel. Test Met., Plans, Env. for Eng. Dev, Qual., Prod (Ed.A,1996)

1966-
1966-

USA
USA

MIL-HDBK-470
MIL-STD-882

Designing & Dev. Maintainable Systems (Ed. A, Not. 2, 2012)
System Safety (Ed. E 2012)

2008- USA GEIA-STD-0009  Rel. Progr. Std. for Systems Design, Dev. & Manuf. (ANSI-GEIA)

2008-
2011-

NATO
EU

ARMP-1
Expert Group 17

NATO Requirements for Reliability & Maintainability (2008)
Europ. HDBK for Defense Procurement: Dependability & Safety

Aerospace
1998
2004-

USA
(NASA)

STD-8729.1
STD-8739.8

Planning, Developing & Managing an Effective R&M Program
Software assurance Standard

1996- EU ECSS-E Engineering (-00, -10)
(ESA) ECSS-M Project Management (-00, -10, -20, -30, -40, -50, -60,-70)

ECSS-Q Product Assurance (-00, -20, -30, -40, -60, -70, -80)

2003-  EU EN 9100-2009 Quality Management System: Req. for Avionics, Space & Defense
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For electronic equipment & systems, IEEE Std 1332-1998 [A2.7] has been issued
as a baseline for a reliability program for the development and production phases.
This document, reinforced with IEEE Std 1413-2010, 1413.1-2002, 1624-2008 & 1633-
2008, gives in short form the basic requirements, putting an accent on an active
cooperation between supplier (manufacturer) and customer, and focusing three main
aspects:  Determination of the Customer's Requirements, Determination of a Process
that satisfy the Customer's Requirements, and Assurance that Customer's Require-
ments are met.  Examples of comprehensive requirements for industry application
are e. g. in [A2.2, A2.3].  Software aspects are considered in IEEE Stds [A2.8], ISO / IEC
Stds [A2.9 (12207 & following)], and in IEC 62628 (2012) [A2.6].  Requirements for
product liability are in national and international directives, see for instance [1.10].

A2.3 Requirements in the Aerospace, Railway,
Defense, and Nuclear Fields

Requirements in space and railway fields generally combine the aspects of quality,
reliability, maintainability, safety, and software quality in well conceived Product
Assurance or RAMS documents [A2.3,  A2.4, A2.12].  Similar is in the avionics field,
issued by reinforcing the ISO 9000: 2000 family [A2.3 (2003), A2.5, A2.6 (IEC 62396)].
One can expect that space and avionics will unify standards in an Aerospace Series.

MIL-Standards have played an important role in the last 40 years, in particular
MIL-Q-9858, MIL-STD-470,-471,-781,-785,-882, and corresponding MIL-HDBK [A2.10].
MIL-Q-9858 (first Ed. 1959), now replaced by ISO 9000: 2000 family, was the basis for
many quality assurance standards.  However, as it does not cover specific aspects
of reliability, maintainability & safety, MIL-STD-785, -470 &  -882 were issued.
MIL-STD-785 (first Ed. 1965), now ANSI-GEIA-STD-0009 [A2.0], was the basis for most
reliability programs.  MTBF   =1 / λ  acceptance tests in MIL-STD-781 (first Ed. 1965)
are now in MIL-HDBK-781.  MIL-STD-470 (first Ed. 1966), now MIL-HDBK-470, re-
quires the realization of a maintainability program, with emphasis on design rules,
design reviews & FMEA / FMECA.  Maintainability demonstration is also covered by
MIL HDBK-470.  MIL-STD-882 requires a safety program, in particular analysis of
potential hazards.  For NATO countries, AQAP Requirements, now ARMP-1, were
issued starting 1968.  MIL-STDs  / HDBKs have dropped their importance (since 1998).
However, they can still be useful in developing procedures for industrial
applications.  ANSI-GEIA-STD-0009 (2008) [A2.0], focusing on four main objectives
(Understand the User's Requirements and Constraints, Design &  Redesign for
Reliability, Produce Reliable Systems, Monitor User Reliability), opens probably a
new era for MIL-Documents, insisting more on "what to do" rather than on "how do".

The nuclear field has its own specific, well established standards with emphasis
on safety aspects, design reviews, configuration accounting, traceability, qualifica-
tion of components / materials / production processes, and quality tests.



A3 Definition and Realization of Quality
and Reliability (RAMS) Requirements

For complex equipment & systems, reliability implies also maintainability, availabil-
ity and safety.  RAMS is used here, in Appendix A2, and in Chapter 1 to point out
this fact.  In defining quality and reliability (RAMS) requirements, it is important that
market needs, life-cycle cost aspects, time to market as well as development and
production risks (for instance when using new technologies) are considered with
care.  For complex equipment and systems with high quality and reliability (RAMS)
requirements, the realization of such requirements is best achieved with

a quality and reliability (RAMS) assurance program, integrated in the
project activities and performed without bureaucracy.

Such a program (plan with a time schedule) defines the project specific activities for
quality and reliability (RAMS) assurance and assigns responsibilities for their
realization in agreement to TQM.  This appendix discusses important aspects in
defining quality & reliability (RAMS) requirements and the content of a quality
& reliability (RAMS) assurance program for complex equipment and systems with
high quality and reliability requirements for the case in which tailoring is not
mandatory.  It has been added to support managers in answering the question of

how to specify and achieve high reliability (RAMS) targets for complex
equipment and systems.

For less stringent requirements, tailoring is necessary to meet real needs and to be
cost and time effective.  Software specific quality assurance aspects are considered
in Section 5.3.  Examples for check lists for design reviews are in Table 2.8, Table
4.3, and Appendix A4;  requirements for a quality data system are in Appendix A5.

A3.1  Definition of Quality and Reliability (RAMS)
Requirements

In defining quantitative, project specific, quality and reliability (RAMS) require-
ments, attention has to be paid to the actual possibility to realize them (development
and production), as well as to demonstrate them at a final or acceptance test.
These requirements are derived from customer or market needs, taking care of
limitations given by technical, cost, and ecological aspects.  This section deals
with some important considerations by setting MTBF, MTTR, and steady-state
availability ( )PA AA=  requirements.  MTBF is used for MTBF =1 / λ , where λ is
the constant (time independent) failure rate of the item (system) considered.

A. Birolini, Reliability Engineering, DOI: 10.1007/978-3-642-39535-2,
� Springer-Verlag Berlin Heidelberg 2014
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Table A3.1    Indicative values of failure rates λ and mean expected number m y% / of failures
per year and 100 items for a duty cycle d = 30% and d = 100% ( θA = °40 C )

d = 30% d = 100%

λd [ ]10 9 1− −h m y% / λ [ ]10
9 1− −

h m y% /

Telephone exchanger 2,000 2 6,000 6

Telephone receiver (multifunction) 200 0.2 600 0.6

Photocopier incl. mechanical parts 30 000, 30 100 000, 100

Personal computer 3,000 3 9,000 9

Radar equipment (ground mobile) 300 000, 300 900 000, 900

Control card for automatic process control 300 0.3 900 0.9

Mainframe computer system — — 20 000, 20

Tentative targets for MTBF, MTTR, and PA are set by considering

• operational requirements relating to reliability, maintainability, and availability
• required function, expected environmental conditions, allowed logistic support

• experience with similar equipment or systems

• possibility for redundancy at higher integration level

• requirements for life-cycle cost, dimensions, weight, power consumption, etc.
• ecological consequences (sustainability, sustainable development).

Typical figures for failure rates λ  of electronic assemblies (PCBs) are between 100
and 1 000 10 9 1, ⋅ − −h  at ambient temperature θ A of 40°C and with a duty cycle d of 0.3,
see Table A3.1 for some examples.  The duty cycle ( 0 1< ≤d ) gives the mean of the
ratio between operational time and calendar time.  Assuming a constant failure rate
λ and no reliability degradation caused by power on / off, an equivalent failure rate

λ λd d= . (A3.1)

can be used for practical purposes.  Often it can be useful to operate with the
mean expected number of failures per year and 100 items

m y d d%/ , %= ⋅ ⋅ ≈ ⋅λ λ8 600 100 106h h . (A3.2)

m y%/ < 1 is a good target for equipment and can influence acquisition cost.
Tentative targets are refined successively by performing rough analysis and com-

parative studies (allocation down to assemblies is often necessary (Eqs. (2.71),(2.72)).
For acceptance testing (demonstration) of an MTBF for the case MTBF =1 / λ , the

following data are important  (Sections 7.2.3.2 and 7.2.3.3):

1. MTBF0 =  specified MTBF and / or MTBF1 =  minimum acceptable MTBF.
2. Required function (mission profile).
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3. Environmental conditions (thermal, mechanical, climatic).
4. Allowed producer's and /   or consumer's risks (α and /   or β).
5. Cumulative operating time T and number c of allowed failures during T.
6. Number of systems under test ( T MTBF/ 0  as a rule of thumb).
7. Parameters which should be tested and frequency of measurement.
8. Failures which should be ignored for the MTBF acceptance test.
9. Maintenance and screening before the acceptance test.

10. Maintenance procedures during the acceptance test.
11. Form and content of test protocols and reports.
12. Actions in the case of a negative test result.

For acceptance testing (demonstration) of an MTTR, the following data are
important (Section 7.3.2):

1. Quantitative requirements (MTTR, variance, quantile).
2. Test conditions (environment, personnel, tools, external support, spare parts).
3. Acceptance conditions (number of repairs and observed empirical MTTR).
4. Extent of repairs to be undertaken for the case of simulated / introduced failures.
5. Allocation of the repair time (detection, localization, correction, checkout).
6. Form and content of test protocols and reports.
7. Actions in the case of a negative test result.

Availability usually follows from the relationship PA MTBF MTBF MTTR= +/ ( ).
However, specific test procedures for PA AA=  are given in Section 7.2.2).

A3.2 Realization of Quality & Reliability (RAMS) Re-
quirements for Complex Equipment & Systems

For complex items, in particular at equipment & systems level, quality and reliability
targets are best achieved with a quality and reliability (RAMS) assurance program,
integrated in the project activities and performed without bureaucracy.  In such a
program, project specific tasks and activities are clearly described and assigned.
Table A3.2 can be used as a checklist by defining the content of a quality and relia-
bility (RAMS) assurance program for complex equipment and systems with high
quality and reliability requirements, when tailoring is not mandatory (see also
Section 5.3 & [A2.8 (730-2002)] for software specific quality assurance aspects).
Tab. A3.2 is a refinement of Tab. 1.2 and shows a possible task assignment in a
company as per Fig. 1.7. Depending on the item technology & complexity, or be-
cause of tailoring, Tab. A3.2 is to be shortened or extended. The given responsibil-
ities (R, C,  I) can be modified to reflect the company's personnel situation.  For a
description of reliability assurance tasks see e. g. [A2.0, A2.2, A2.6 (60300), A3.1].
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Table A3.2 Basic tasks and possible tasks assignment for quality and reliability (RAMS) assurance of
complex equipment and systems with high quality and reliability requirements, when tailoring is not
mandatory  (software quality appears in tasks 4, 8 - 11, 14 - 16, see also the remark on p. 159)

Basic tasks and possible tasks assignment for quality and
reliability (RAMS) assurance, in agreement to Fig. 1.7 and TQM

(checklist for the preparation of a quality and reliability assurance
program;  R stands for responsibility, C for cooperation (must
cooperate), I for information (can cooperate);  software quality appears
in tasks 4, 8 - 11, 14 - 16, see also the remark on p. 159)
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1 Customer and market requirements

  1 Evaluation of delivered equipment and systems R I I C
  2 Determination of market and customer demands and real

needs R I I C
  3 Customer support R C

2 Preliminary analyses

  1 Definition of tentative quantitative targets for reliability,
maintainability, availability, safety, and quality level C C C R

  2 Rough analyses and identification of potential problems I C R
  3 Comparative investigations I C R

3 Quality and reliability (RAMS) aspects in specifications,
quotations, contracts, etc.
  1 Definition of the required function I R C
  2 Determination of (external) environmental conditions C R C
  3 Definition of realistic quantitative targets for reliability,

maintainability, availability, safety, and quality level C C C R
  4 Specification of test and acceptance criteria C C C R
  5 Identification of the possibility to obtain field data R C
  6 Cost estimate for quality & rel. (RAMS) assurance activities C C C R

4 Quality and reliability (RAMS) assurance program

  1 Preparation C C C R
  2 Realization

– design and evaluation I R I C
– production I I R C

5 Reliability and maintainability analyses

  1 Specification of the required function for each element R C
  2 Determination of environmental, functional, and time-

dependent stresses (detailed operating conditions) R C
  3 Assessment of derating factors C R
  4 Reliability and maintainability allocation C R
  5 Preparation of reliability block diagrams

– assembly level R C
– system level C R

  6 Identification and analysis of reliability weaknesses
(FMEA/FMECA, FTA, worst-case, drift, stress-strength-
analyses, etc.)
– assembly level R C
– system level C R
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Table A3.2   (cont.)

M R&D P Q&R

  7 Carrying out comparative studies
– assembly level R C
– system level C R

  8 Reliability improvement through redundancy
– assembly level R C
– system level C R

  9 Identification of components with limited lifetime I R C
10 Elaboration of the maintenance concept I R I C
11 Elaboration of a test and screening strategy C C C R
12 Analysis of maintainability R C
13 Elaboration of mathematical models C R
14 Calculation of the predicted reliability and maintainability

– assembly level I R C
– system level I C R

15 Reliability and availability calculation at system level I I R

6. Safety and human factor analyses

  1 Analysis of safety (avoidance of liability problems)
– accident prevention C R C C
– technical safety

• identification and analysis of critical failures and of risk
situations (FMEA/FMECA, FTA, etc.)
– assembly level R C
– system level I C R

• theoretical investigations C R
  2 Analysis of human and ergonomic factors C R C C

7. Selection and qualification of components and materials

  1 Updating of the list of preferred components and materials I C I R
  2 Selection of non-preferred components and materials R C C
  3 Qualification of non-preferred components and materials

– planning C I R
– realization C R
– analysis of test results I I R

  4 Screening of components and materials I C R

8. Supplier selection and qualification

  1 Supplier selection
– purchased components and materials R C C
– external production C R C

  2 Supplier qualification (quality and reliability (RAMS))
– purchased components and materials I I R
– external production I I R

  3 Incoming inspections
– planning C C R
– realization R C
– analysis of test results C R
– decision on corrective actions

• purchased components and materials C C R
• external production R C C
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Table A3.2   (cont.)
M R&D P Q&R

9. Project-dependent procedures and work instructions

  1 Reliability guidelines I C I R
  2 Maintainability, safety, and human factors guidelines C C I R
  3 Software quality guidelines I R I C
  4 Other procedures, rules, and work instructions

• for development R I C
• for production I R C

  5 Compliance monitoring C C C R

10. Configuration management

  1 Planning and monitoring C C C R
  2 Realization

– configuration identification
• during design R C
• during production I R C
• during use (warranty period) R I I C

– configuration auditing (design reviews, Tables A3.3, 5.3, 5.5) C R C C
– configuration control (evaluation, coordination,

and release or rejection of changes and modifications)
• during design C R C C
• during production C C R C
• during use (warranty period) R C C C

– configuration accounting R C C

11. Prototype qualification tests

  1 Planning I R I C
  2 Realization C R C C
  3 Analysis of test results I R I C
  4 Special tests for reliability, maintainability, and safety I C C R

12. Quality control during production

  1 Selection and qualification of processes and procedures R C C
  2 Production planning C R C
  3 Monitoring of production processes I R C

13. In-process tests

  1 Planning C R C
  2 Realization I R I

14. Final and acceptance tests

  1 Environmental tests and/or screening of series-produced
items
– planning I C C R
– realization I I C R
– analysis of test results I C C R

  2 Final and acceptance tests
– planning C C C R
– realization I I C R
– analysis of test results C C C R

  3 Procurement, maintenance, and calibration of test equipment I C C R
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Table A3.2   (cont.)
M R&D P Q&R

15. Quality data reporting system (see e. g. Fig 1.8)

  1 Data collection C C C R
  2 Decision on corrective actions

– during prototype qualification R I C
– during in-process tests C R C
– during final and acceptance tests C C C R
– during use (warranty period) R C C C

  3 Realization of corrective actions on hardware or software
(repair, rework, waiver, scrap, etc.) I C C R

  4 Implementation of the changes in the documentation
(technical, production, customer) C C C R

  5 Data compression, processing, storage, and feedback I I I R
  6 Monitoring of the quality data reporting system I I I R

16. Logistic support

  1 Supply of special tools and test equipment for maintenance C R I C
  2 Preparation of customer / user documentation R C I I
  3 Training of operating and maintenance personnel R I I I
  4 Determination of the required number of spare parts,

maintenance personnel, etc. R C C C
  5 After-sales (after market) support R I I C

17. Coordination and monitoring (quality and reliability (RAMS))

  1 Project-specific C C C R
  2 Project-independent I I I R
  3 Planning and realization of quality audits

– project-specific C C C R
– project-independent I I I R

  4 Information feedback I I I R

18. Quality cost

  1 Collection of quality cost C C C R
  2 Cost analysis and initiation of appropriate actions C C C R
  3 Preparation of periodic and special reports C C C R
  4 Evaluation of efficiency of quality & rel. (RAMS) assurance I I I R

19. Concepts, methods, and general procedures (quality and
reliability (RAMS))

  1 Development of concepts C C C R
  2 Investigation of methods I I I R
  3 Preparation and updating of the quality handbook C C C R
  4 Development of software packages I I I R
  5 Collection, evaluation, and distribution of data,

experience and know-how I I I R

20. Motivation and training (quality and reliability (RAMS), Fig 1.9)

  1 Planning C C C R
  2 Preparation of courses and documentation C C C R
  3 Realization of the motivation and training program C C C R
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A3.3  Elements of a Quality and Reliability (RAMS)
Assurance Program

The basic elements o f a  quality and reliability (RAMS) assurance program, as
defined in Appendix A.3.2, can be summarized as follows:

1. Project organization, planning, and scheduling
2. Quality and reliability (RAMS) requirements
3. Reliability, maintainability, and safety analysis
4. Selection and qualification of components, materials, and processes
5. Software quality assurance
6. Configuration management
7. Quality tests
8. Quality data reporting system

These elements are discussed in this section for the case of complex equipment and
systems with high quality & reliability requirements (RAMS), when tailoring is not
mandatory.  In addition, Appendix A4 gives a catalog of questions useful to generate
checklists for design reviews and Appendix A5 specifies the requirements for a
quality data reporting system.  As suggested in task 4 of Table A3.2, the realization
of a quality and reliability (RAMS) assurance program should be the responsibility of
the project manager.  It is appropriate to separate the quality and reliability (RAMS)
assurance program for the development phase and for the production phase.

A3.3.1 Project Organization, Planning, and Scheduling

A clearly defined project organization and planning is necessary for the realization
of a quality and reliability (RAMS) assurance program.  Organization and planning
must also satisfy present needs for cost management and concurrent engineering.

The system specification is the basic document for all considerations at project
level.  The following is a typical outline for system specifications:

1. State of the art, need for a new product
2. Target to be achieved
3. Cost, time schedule
4. Market potential (turnover, price, competition)
5. Technical performance
6. Environmental conditions
7. Operational capabilities (reliability, maintainability, availability, logistic support)
8. Quality and reliability (RAMS) assurance, inclusive software quality assurance

 9. Special aspects (new technologies, patents, value engineering, etc.)
10. Appendices
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The organization of a project begins with the definition of the main task groups.
The following groups are usual for a complex system: Project Management, Sys-
tems Engineering, Life-Cycle Cost, Quality and Reliability (RAMS) Assurance
(incl. software quality assurance), Software Development and Validation,
Assembly Design, Prototype Qualification Tests, Production, Integration and
Final Testing.  Project organization, task lists, task assignment, and milestones
can be derived from the task groups, allowing the quantification of the personnel,
material, and financial resources needed for the project.  The quality and reliability
(RAMS) assurance program must assess that the project is clearly and suitably
organized and planned.

A3.3.2 Quality and Reliability (RAMS) Requirements

Important steps in defining quality and reliability (RAMS) targets for complex
equipment and systems have been discussed in Appendix A.3.1.

A3.3.3 Reliability, Maintainability, and Safety Analysis

Reliability and safety analyses include, in particular, failure rate analysis, failure
modes analysis (FMEA / FMECA, FTA), sneak circuit analysis (to identify latent paths
which can cause unwanted functions or inhibit desired functions, while all
components are functioning properly), evaluation of concrete possibilities to
improve reliability and safety (derating, screening, redundancy), as well as
comparative studies; see Chapters 2 - 6  for methods and tools.

The quality and reliability (RAMS) assurance program must consider tasks 5, 6, 9
of Table A3.2 and show what is actually being done for the project considered.
In particular, it should be able to supply answers to the following questions:

1. Which derating rules are considered?
2. How are the actual component-level operating conditions determined?
3. Which failure rate data are used?  Which are the associated factors (π πE Q& )?
4. Which tool is used for failure modes analysis?  To which items does it apply?
5. Which kind of comparative studies will be performed?
6. Which design guidelines for reliability, maintainability (incl. human, ergonomic,

& safety aspects), and software quality are used? How will their adherence be
verified?

Additionally, interfaces to the selection and qualification of components and
materials, design reviews, test and screening strategies, reliability tests, quality data
reporting system, and subcontractor activities must be shown.  The data used
for components failure rates calculation should be critically evaluated (source,
present relevance, assumed environmental and quality factors π πE Q& ).
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A3.3.4 Selection and Qualification of Components, Materials,
and Manufacturing Processes

Components, materials, and production processes have a great impact on product
quality and reliability.  They must be carefully selected and qualified.  Examples
for qualification tests on electronic components and assemblies are given in
Chapter 3.  For production processes one may refer e. g. to [8.1 - 8.14, 3.70 - 3.93].

The quality and reliability (RAMS) assurance program should give how
components, materials, and processes are (or have already previously been) selected
and qualified.  In particular, the following questions should be answered:

1. Does a list of preferred components and materials exist?  Will critical
components be available on the market-place at least for the required
production and warranty time?

2. How will obsolescence problems be solved?
3. Under what conditions can a designer use non qualified components / materials?
4. How are new components selected?  What is the qualification procedure?
5. How have the standard manufacturing processes been qualified?
6. How are special manufacturing processes qualified?

Special manufacturing processes are those which quality can't be tested directly on
the product, have high requirements with respect to reproducibility, or can have an
important negative effect on the product quality or reliability.

A3.3.5 Software Quality Assurance

For complex equipment and systems, software quality assurance can take a great
portion of the effort devoted to the quality and reliability (RAMS) assurance program.
Considering that software faults are caused by defects, even if they appears ran-
domly in time (dynamic defects), software problems are basically quality problems
which have to be solved with quality assurance tools (defect prevention, con-
figuration management, testing, and quality data reporting system), as described in
Sections 5.3.1 - 5.3.3 and Appendices A3.3.6 - A3.3.8.  Defects modeling can be
useful in the context of software quality growth (Section 5.3.4).

The quality and reliability (RAMS) assurance program should, in particular,
answer the following questions (see e. g. also Section 5.3, Appendix A4.2 (Point l),
and [A2.8, A2.9 (29119)] for further specific questions):

1. What is the priority list of quality attributes (Table 5.4)?  How will the customer
(user) be involved in this list?  How it is assured that this list will be conse-
quently followed by all engineers involved in the project?

2. Which project specific written procedures (in particular design guidelines) will
be worked out?  From who?  How it is assured that these procedures will be
followed by all engineers in the project?



A3.3   Elements of a Quality and Reliability (RAMS) Assurance Program 401

• System specifications
• Quotations, requests
• Interface

documentation
• Planning and control

documentation
• Concepts/strategies

(maintenance, test)
• Analysis reports
• Standards, handbooks,

general rules

PROJECT
DOCUMENTATION

DOCUMENTATION

• Work breakdown
   structures
• Drawings
• Schematics
• Part lists
• Wiring plans
• Specifications
• Purchasing doc.
• Handling/transportation/

storage/packaging doc.

TECHNICAL
DOCUMENTATION

• Operations plans/records
• Production procedures
• Tool documentation
• Assembly

documentation
• Test procedures
• Test reports
• Documents pertaining to

the quality data
   reporting system

PRODUCTION
DOCUMENTATION

• Customer system
specifications

• Operating and
maintenance manuals

• Spare part catalog

CUSTOMER
(User, Product)

DOCUMENTATION

Fig. A3.1    Possible documentation outline for complex equipment and systems

3. How is the software life-cycle partitioned (Table 5.3)?  Is each of these phases
closed with a comprehensive design review (Tables 5.5)?

4. Is the software configuration management at the same level as that for hardware?
5. How is the software test strategy?  Who is involved in its definition / approval?
6. How it is assured that the software will be conceived and developed to be defect

tolerant?

A3.3.6 Configuration Management

Configuration management is an important tool for quality assurance, in particular
during design and development.  Within a project, it is often subdivided into
configuration identification, auditing, control, and accounting.

The identification of an item is recorded in its documentation. A possible
documentation outline for complex equipment and systems is given in Fig. A3.1.

Configuration auditing is done via design reviews (often also termed gate
review), the aim of which is to assure /  verify that the item (system) will meet all
requirements.  In a design review, all aspects of design and development (selection
and use of components and materials, dimensioning, interfaces (hardware and /  or
software), software aspects, etc.), production (manufacturability, testability, repro-
ducibility), reliability, maintainability, safety, patent regulations, value engineer-
ing, and value analysis are critically examined with the help of checklists.  The most
important design reviews are described in Table A3.3 on p. 403, see also Table 5.5
on p. 165 for software aspects.  For complex systems a preproduction design review
or a review of the first production unit is often required.  A further important
objective of design reviews is to decide about continuation or stopping the project
considered, on the basis of objective considerations (feasibility check in Tables A3.3
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and 5.3, Fig. 1.6).  About a week before the design review, participants should
present project specific checklists, see Appendix A4 and Tables 2.8 and 4.3 for
some suggestions.  Design reviews are chaired by the project manager and should
cochaired by the project quality and reliability (RAMS) assurance manager.  For
complex equipment and systems, the review team may vary according to the
following list:

• project manager,
• project quality and reliability (RAMS) assurance manager,
• designer(s),
• independent design engineer or external expert,
• representatives from production, marketing, customer (as necessary / appropriate).

Configuration control includes evaluation, coordination, and release or rejection
of all proposed changes and modifications.  Changes occur as a result of mistakes,
defects, or failures; modifications are triggered by a revision of system specifications.

Configuration accounting ensures that all approved changes and modifications
have been implemented and recorded.  This calls for a defined procedure, as
changes / modifications must be realized in hardware, software, and documentation.

A faultless correspondence between hardware or software and documentation is
important during all life-cycle phases of a product.  Complete records over all life-
cycle phases become necessary if traceability is explicitly required, as e. g. in the
aerospace or nuclear field.  Partial traceability can also be required for products
which are critical with respect to safety, or because of product liability.

Referring to configuration management, the quality and reliability (RAMS)
assurance program should, in particular, answer the following questions:

 1. Which documents will be produced by whom, when, and with what content?
 2. Does document contents agree with quality and reliability (RAMS) requirements?
 3. Is the release procedure for technical and production documentation compa-

tible with quality requirements?
 4. Are the procedures for changes / modifications clearly defined?
 5. How is compatibility (upward and / or downward) assured?
 6. How is configuration accounting assured during production?
 7. Which items are subject to traceability requirements?

A3.3.7 Quality Tests

Quality tests are necessary to verify whether an item conforms to specified require-
ments.  Such tests include incoming inspections, qualification tests, production &
acceptance tests, and cover performance, reliability, maintainability, safety, and
software aspects.  To optimize cost and time schedule, tests should be integrated in a
test (and screening) strategy at system level.
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Table A3.3   Design reviews during definition, design & development of complex equipment & systems

System Design Review
(SDR)

Preliminary Design Reviews
(PDR)

Critical Design Review
(CDR)

To
 b

e 
pe

rf
or

m
ed

At the end of the definition
phase

During the design phase, each
time an assembly has been
developed

At the end of prototype
qualification tests

G
oa

l • Critical review of the system
specifications on the basis of
results from market research,
rough analysis, comparative
studies, patent situation, etc.

• Feasibility check

• Critical review of all
documents belonging to the
assembly under consider-
ation (calculations,
schematics, parts lists, test
specifications, etc.)

• Comparison of the target
achieved with the system
specifications requirements

• Checking interfaces to other
assemblies

• Feasibility check

• Critical comparison of
prototype qualification test
results with system
requirements

• Formal review of the
correspondence between
technical documentation
and prototype

• Verification of mannufac-
turability, testability, and
reproducibility

• Feasibility check

In
pu

t • Item list
• System specifications (draft)
• Documentation (analyses,

reports, etc.)
• Checklists (one for each

participant) *

• Item list
• Documentation (analyses,

schematics, drawings, parts
lists, test specifications,
work breakdown structure,
interface specifications,
etc.)

• Reports of relevant earlier
design reviews

• Checklists (one for each
participant) *

• Item list
• Technical documentation
• Testing plan and

procedures for prototype
qualification tests

• Results of prototype
qualification tests

• List of deviations from the
system requirements

• Maintenance concept
• Checklists (one for each

participant) *

O
ut

pu
t • System specifications

• Proposal for the design phase
• Interface definitions
• Rough maintenance and

logistic support concept
• Report

• Reference configuration
(baseline) of the assembly
considered

• List of deviations from the
system specifications

• Report

• List of the final deviations
from the system specs.

• Qualified and released
prototypes

• Frozen technical
documentation

• Revised maintain. concept
• Production proposal
• Report

 * see Appendix A4 for a catalog of questions to generate project specific checklists, and Tab. 5.5 for  software
specific aspects;   gate review is often used, in software projects, instead of design review
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For hardware, methods for statistical quality control, reliability and maintainabi-
lity tests (incl. accelerated tests), as well as qualification tests and screening
procedures are carefully discussed in Chapter 7 and Sections 3.2 - 3.4 & 8.2 - 8.3,
respectively.  Test and screening strategies with cost optimization are developed
in Section 8.4.  Reliability growth is investigated in Section 7.7.

For software, basic considerations on testing are given in Section 5.3.3, see e. g.
[A2.8, A2.9 (29119)] for greater details.  Models for software quality growth are
discussed in Section 5.3.4.

The quality and reliability (RAMS) assurance program should, in particular,
answer the following questions:

1. What are the test and screening strategies at system level?
2. How are subcontractors / suppliers selected, qualified and monitored?
3. What is specified in the procurement documentation?
4. How is the incoming inspection performed?
5. Which components and materials are 100% tested?  Which are 100% screened?

What are the procedures for screening?
6. How are prototypes qualified?  Who decides on test results?
7. How are production tests performed?  Who decides on test results?
8. Which procedures are applied to defective or failed items?
9. What are the instructions for handling, transportation, storage, and shipping?

10. How is the software test strategy?  Who is involved in its definition / approval?

A3.3.8 Quality Data Reporting System

Starting at the prototype qualification tests, all defects and failures should be sys-
tematically collected, analyzed and corrected.  Analysis should go back to the cause
of the fault, in order to find those actions most appropriate for avoiding repetition
of the same problem.  The concept of a quality data reporting system is illustrated in
Fig. 1.8 and applies basically to hardware and software;  detailed requirements are
given in Appendix A5.

The quality and reliability (RAMS) assurance program should, in particular,
answer the following questions:

1. How is the collection of defect and failure data carried out?  At which project
phase is started with?

2. How are defects and failures analyzed?
3. Who carries out corrective actions?  Who monitors their realization?  Who

checks the final configuration?
4. How is evaluation and feedback of quality and reliability data organized?
5. Who is responsible for the quality data reporting system?  Does production have

their own locally limited version of such a system?  How does this systems
interface with the company's quality data reporting system?
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In a design review, all aspects of design and development (selection and use of
components and materials, dimensioning, interfaces (hardware and /  or software),
software aspects, etc.), production (manufacturability, testability, reproducibility),
reliability, maintainability, safety, patent regulations, value engineering, and value
analysis are critically examined with the help of checklists.  The most important
design reviews are described in Table A3.3 on p. 403, see also Table 5.5 on p. 165
for software aspects.  A further objective of design reviews is to decide about
continuation or stopping the project on the basis of objective considerations
(feasibility check in Tables A3.3 & 5.3 and in Fig. 1.6).  This appendix gives a cata-
log of questions which can be used to generate project specific checklists for design
reviews for complex equipment and systems with high quality & reliability (RAMS)
requirements.

A4.1 System Design Review  (Table A3.3)

1. What experience exists with similar equipment or systems?
2. What are the goals for performance (capability), reliability, maintainability,

availability, and safety?  How have they been defined?  Which mission
profile (required function and environmental conditions) is applicable?

3. Are the requirements realistic?  Do they correspond to a market need?
4. What tentative allocation of reliability and maintainability down to assembly

/ unit level was undertaken?
5. What are the critical items?  Are potential problems to be expected (new

technologies, components or materials interfaces hardware and /  or software)?
6. Have comparative studies been done?   What are the results?
7. Are EMC interference problems (external / internal) to be expected?
8.  Are interface problems (hard / hard, hard / soft, soft /  soft) to be expected?
9. Are there potential safety / liability problems?

10. Is there a maintenance concept?  Do special ergonomic requirements exist?
11. Are there special software requirements?
12. Has the patent situation been verified?  Are licenses necessary?
13. Are there estimates of life-cycle cost?  Have these been optimized with

respect to reliability and maintainability requirements?
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14. Is there a feasibility study?  Where does the competition stand?
Has development risk been assessed?

15. Is the project time schedule realistic?  Can the system be marketed at the
right time?

16. Can supply problems be expected during production ramp-up?

A4.2 Preliminary Design Reviews   (Table A3.3)

a) General

1. Is the assembly /  unit under consideration a new development or only a
change / modification?  Can existing items (e. g. sub assemblies) be used?

2. Is there experience with similar assembly / unit?  What were the problems?
3. Is there redundancy hardware and /  or software?  Have common cause

failures (faults) been avoided?
4. Have customer and market demands changed since the beginning of

development?  Can individual requirements be reduced?
5. Can the chosen solution be further simplified?
6. Are there patent problems?  Do licenses have to be purchased?
7. Have expected cost and deadlines been met?  Were value engineering used?

b) Environmental Conditions

1. Have environmental conditions been defined?  As a function of time?  Were
these consequently used to determine component operating conditions?

2. How were EMC interference been determined?  Has his influence been
taken into account in worst case calculation / simulation?

c) Performance Parameters

1. How have been defined the main performance parameters of the assembly /
unit under consideration?  How was their fulfillment verified (calculations,
simulation, tests)?

2. Have worst case situations been considered in calculations / simulations?
3. Have interference problems EMC (external / internal) or between hardware

and software been solved?  How?
4. Have applicable standards been observed during design and development?
5. Have interface problems (hardware /  hardware, hardware /  software, software /

software) been solved?  How?
6. Have prototypes been adequately tested in laboratory?  How?
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d) Components and Materials

1. Which components and materials do not appear in the preferred lists?
For which reasons?  How were these components and materials qualified?

2. Are incoming inspections necessary?  For which components and materials?
How and where will they be performed?

3. Which components and materials were screened?  How and where will
screening be performed?

4. Are suppliers guaranteed for series production?  Is there at least one second
source for each component and material?  Have requirements for quality,
reliability, and safety been met?

5. Are obsolescence problems to be expected?  How will they be solved?

e) Reliability

See Table 2.8  (p. 79).

f) Maintainability

See Table 4.3  (p. 120).

g) Safety, Sustainability  (sustainable development)

1. Have applicable standards concerning accident prevention and sustainable
development  been observed?

 2. Has safety been considered with regard to external causes (natural
catastrophe, sabotage, etc.)?  How?

3. Has an FMEA/FMECA or similar causes-to-effects analysis been performed?
Are there failure modes with critical or even catastrophic consequence?
Can these be avoided?  Have all single-point failures been identified?  Can
these be avoided?

4. Has a fail-safe analysis been performed?  What were the results?
5. What safety tests are planned?  Are they sufficient?
 6. Have safety aspects been dealt with adequately in the documentation?

h) Human and Ergonomic Aspects  (see also Section 5.2.5, pp. 158-159)

1. Have operating and maintenance procedures been defined with regard to the
training level of operators and maintainers?

2. Have ergonomic factors been taken into account by defining operating
conditions and operating sequences?

3. Has the man-machine interface been sufficiently considered?
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 i) Standardization

1. Have standard components and materials been used wherever possible?
2. Has items exchangeability been considered during design and construction?

 j) Configuration

1. Is the technical documentation (schematics, drawings, etc.) complete,
free of errors, and does it reflect the current state of the assembly /  unit
considered and of the project?

2. Have all interface problems (hardware /  hardware, hardware /  software,
software /  software) been solved?  How?

3. Can the technical documentation be frozen and considered as reference
documentation (baseline)?

4. How is compatibility (upward and / or downward) assured?

 k)   Production and Testing

1. Which qualification tests are foreseen for prototypes?  Have reliability,
maintainability, and safety aspects been sufficiently considered in these tests?

2. Have all questions been answered regarding manufacturability, testability,
and reproducibility?

3. Are special production processes necessary? How were the qualification results?
4. Are special transport, packaging, or storage problems to be expected?

 l) Software quality (see e.g. Section 5.3 & [A2.8, A2.9 (29119)] for further specific questions)

1. Which priority list of quality attributes (Table 5.4) has been defined?  How
were the user involved in this list?  How it has been assured that this list
was consequently followed by all engineers involved in the project?

2. Which project specific written procedures for software quality have been
worked out?  By whom?  How it has been assured that these procedures
were consequently followed by all engineers involved in the project?

3. How has been the software life-cycle partitioned?  Was each phase (Table 5.3)
closed with a comprehensive design review (Tables  5.5)?

4. Were the interface specifications between software modules as well as
between software and hardware clear, complete, and precise?

5. Is the software defect tolerant?

6. Has a fail-safe strategy been realized?  Considering also hardware faults?

7. Has the software configuration management been consequently realized?

8. Has been the test strategy carefully defined and consequently realized?

9. Is an appropriate software quality growth program been realized?  Are all
information (Appendix A5) carefully recorded?  What are the results?
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A4.3 Critical Design Review   (System Level, Table A3.3)

a) Technical Aspects

1. Does the documentation allow an exhaustive and correct interpretation of
test procedures and results?  Has the technical documentation been frozen?
Has conformance with present hardware and software been checked?

2. Has a representative mission profile, with the corresponding required func-
tion and environmental conditions, been clearly defined for reliability tests?

3. Have fault criteria been defined for critical parameters?  Is an indirect
measurement planned for those parameters which cannot be measured
accurately enough during tests?

4. Have EMC aspects been tested?  How?  What were the results?
5. Have human and ergonomic aspects (pp. 158-159) been checked?  How?
6. How have test specifications and procedures for functional, environmental,

and reliability tests been defined?
7. How have test criteria for maintainability been defined?  Which

failures were simulated / introduced?  How have personnel and material
conditions been fixed?

8. How has availability been tested?  In accordance with Section 7.2.2?
9. How have test criteria for safety been defined (accident prevention and

technical safety)?
10.  Have defects and failures been systematically analyzed (mode, cause, effect)?
11.  Has the usefulness of corrective actions been verified?  How?  Also with

respect to cost?
12.  Have all deviations been recorded?  Can they be accepted?
13.  Does the system still satisfy customer / market needs?
14.  Are manufacturability and reproducibility guaranteed within the

framework of a production environment?
15.  Can packaging, transport and storage cause problems?

b) Formal Aspects

1. Is the technical documentation complete?
2. Has the technical documentation been checked for correctness?

For coherence?
3. Is uniqueness in numbering guaranteed?  Even in the case of changes?
4. Is hardware labeling appropriate?  Does it satisfy production and

maintenance requirements?
5. Has conformance between prototype and documentation been checked?
6. Is the maintenance concept fully realized?  Inclusive logistic support?

Are spare parts having a different change status fully interchangeable?
7. Are production tests sufficient from today’s point of view?



A5 Requirements for
Quality Data Reporting Systems

A quality data reporting system (known also as failure reporting and corrective
action system, FRACAS) is a system to collect, analyze, and correct all defects and
failures occurring during production and testing of an item, as well as to evaluate
and feedback the corresponding quality and reliability (RAMS) data (Fig. 1.8, p. 22).
The system is generally computer-aided.  Analysis of failures and defects must go
back to the root cause in order to determine the most appropriate (corrective) action
necessary to avoid repetition of the same problem.  The quality data reporting
system applies to hardware and software.  It should remain active during the
operating phase, at least for the warranty time, to collect also field data.  This
appendix summarizes the requirements for a computer-aided quality data reporting
system for complex equipment and systems (see e. g. [A5.1 - A5.6] for applications).

a) General Requirements

1. Updating, completeness, and utility of the delivered information must
be the primary concern (best compromise).

2. A high level of usability & integrity, and minimal manual intervention
should be a goal.

3. Procedures and responsibilities should be clearly defined (several levels
depending upon the consequence of defects or failures).

4. The system should be flexible and easily adaptable to new needs.

b) Requirements for Data Collection

1. All data concerning defects and failures (relevant to quality, reliability,
maintainability, and safety) have to be collected, from the begin of
prototype qualification tests to (at least) the end of the warranty time.

2. Data collection forms should

• be preferably 8" × 11" or A4 format

• be project-independent and easy to fill in
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A5   Requirements for Quality Data Reporting Systems 411

•  ensure that only the relevant information is entered and answers the
questions:  what,  where,  when,  why,  and how?

• have a separate field (20-30%) for free-format comments (requests for
analysis, logistic information, etc.), these comments do not need to be
processed and should be easily separable from the fixed portion of the
form.

3. Description of the symptom (mode), analysis (cause, effect), and corrective
action undertaken should be recorded in clear text and coded at data entry
by trained personnel.

4. Data collection can be carried out in different ways

• at a single reporting location (adequate for simple problems which
can be solved directly at the reporting location)

• from different reporting locations which report the fault (defect or failure),
analysis result, and corrective action separately.

Operating, reliability, maintainability, or logistic data can also be reported.

5. Data collection forms should be entered into the computer daily (on line if
possible), so that corrective actions can be quickly initiated (for field data,
a weekly or monthly entry can be sufficient for many purposes).

c) Requirements for Analysis

1. The cause should be found for each defect or failure

• at the reporting location, in the case of simple problems

• by a fault review board, in critical cases.

2. Failures (and defects) should be classified according to

• mode
– sudden failure (short, open, fracture, etc.)
– gradual failure (drift, wear-out, etc.)
– intermittent failures,  others if needed

• cause
– intrinsic (inherent weaknesses, wear-out, or any other intrinsic cause)
– extrinsic (systematic failure; i. e., misuse, mishandling, design, or

manufacturing error / mistake)
– secondary failure

• effect
– irrelevant
– partial failure
– complete failure
– critical failure (safety problem).

3. Consequence of the analysis (repair, rework, change, scraping) must be reported.



412 A5   Requirements for Quality Data Reporting Systems

d) Requirements for Corrective Actions

1. Every record is considered pending until the necessary corrective action
has been successfully completed and certified.

2. The quality data reporting system must monitor all corrective actions.

3. Procedures and responsibilities pertaining to corrective action have
to be defined (simple cases usually solved by the reporting location).

4. The reporting location must be informed about a completed corrective
action.

e) Requirements Related to Data Processing, Feedback, and Storage

1. Adequate coding must allow data compression and simplify data processing.

2. Up-to-date information should be available on-line.

3. Problem-dependent and periodic data evaluation must be possible.

4. At the end of a project, relevant information should be stored
for comparative investigations.

f) Requirements Related to Compatibility with other Software Packages

1. Compatibility with company's configuration management and data
banks should be assured.

2. Data transfer with the following external software packages
should be assured (as far as possible / necessary)

• important reliability data banks

• quality data reporting systems of subsidiary companies

• quality data reporting systems of large contractors.

The effort required for implementing a quality data reporting system as described
above can take 3 - 6 man-years for a medium-sized company.  Competence for oper-
ation and maintenance of the quality data reporting system should be with the com-
pany’s quality and reliability (RAMS) assurance department (Fig. 1.7, Table A3.2).
The priority for the realization of corrective actions is project specific and should be
fixed by the project manager.  Major problems (defects and failures) should be
discussed periodically by a fault review board chaired by the company’s quality and
reliability (RAMS) assurance manager, which should have, in critical cases defined
in the company's quality assurance handbook, the competence to take go /  no-go
decisions.



A6 Basic Probability Theory

In many practical situations, experiments have a random outcome;  i.  e., results can-
not be predicted exactly, although the same experiment is repeated under identical
conditions.  Examples in reliability engineering are failure-free time of a given sys-
tem, repair time of an equipment, inspection of a given item during production, etc.
Experience shows that as the number of repetitions of the same experiment in-
creases, certain regularities appear regarding the occurrence of the event considered.
Probability theory is a mathematical discipline which investigates laws describing
such regularities.  The assumption of unlimited repeatability of the same experiment
is basic to probability theory.  This assumption permits the introduction of the con-
cept of probability for an event starting from the properties of the relative frequency
of its occurrence in a long series of trials.  The axiomatic theory of probability,
introduced by A.N. Kolmogorov [A6.10], brought probability theory to a mathemat-
ical discipline.  In reliability analysis, probability theory allows the investigation of
the probability that a given item will operate failure-free for a stated period of time
under given conditions, i. e., the calculation of the item’s reliability on the basis of a
mathematical model.  The corresponding rules are presented in Sections A6.1 - A6.4.
The following sections are devoted to the concept of random variables, necessary to
investigate reliability as a function of time and as a basis for stochastic processes
(Appendix A7) and mathematical statistics (Appendix A8).  This appendix is a com-
pendium of probability theory, consistent from a mathematical point of view but
still with reliability engineering applications in mind (demonstration of established
theorems is referred, and for all other propositions or equations, sufficient details for
complete demonstration are given).  To simplify the notation, mean is used for
expected value, and independent for totally (mutually, statistically, stochastically)
independent (p. 419).  Selected examples illustrate the practical aspects.

A6.1 Field of Events

As introduced 1933 by A.N. Kolmogorov [A6.10], the mathematical model of an
experiment with random outcome is a triplet   [ , , Pr]Ω F , also called probability
space.  Ω is the sample space,   F  the event field, and Pr the probability of each
element of   F .  Ω is a set containing as elements all possible outcomes of the experi-
ment considered.  Hence Ω = { , , , , , }1 2 3 4 5 6  if the experiment consists of a single
throw of a die, and Ω = ∞( , )0  in the case of failure-free times of an item.  The
elements of Ω are called elementary events and are represented by ω.  If the logical
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statement “the outcome of the experiment is a subset A of Ω’’ is identified with the
subset A itself, combinations of statements become equivalent to operations with
subsets of Ω.  If the sample space Ω is finite or countable, a probability can be
assigned to every subset of Ω.  In this case, the event field   F  contains all subsets of
Ω and all combinations of them.  If Ω is continuous, restrictions are necessary.  The
event field   F  is thus a system of subsets of Ω to each of which a probability has
been assigned according to the situation considered.  Such a field is called a σ-field
( σ-algebra) and has the following properties:

 1. Ω is an element of   F .
 2. If A is an element of   F , its complement A  is also an element of   F .
 3. If A A1 2, , … are elements of F , the countable union A A1 2∪ ∪ … is also an

element of F .

From the first two properties it follows that the empty set Ø  belongs to F .  From
the last two properties and De Morgan's law one recognizes that the countable
intersection A A1 2∩ ∩ … also belongs to F .  In probability theory, the elements of
F  are called (random) events.  The most important operations on events are the
union, the intersection, and the complement:

 1. The union of a finite or countable sequence A A1 2, , … of events is an event
which occurs if at least one of the events A A1 2, , … occurs;  it will be denoted
by A A1 2∪ ∪ … or by  U i iA .

 2. The intersection of a finite or countable sequence A A1 2, , … of events is an
event which occurs if each one of the events A A1 2, , … occurs;  it will be
denoted by A A1 2∩ ∩ … or by  I i iA .

 3. The complement of an event A is an event which occurs if and only if A does
not occur; it is denoted by A , A A A= ∉ ={ : } \ω ω Ω , A A∪ = Ω, A A∩ = Ø.

Important properties of set operations are:

• Commutative law : A B B A A B B A∪ = ∪ ∩ = ∩;  

• Associative law : A B C A B C A B C A B C∪ ∪ = ∪ ∪ ∩ ∩ = ∩ ∩( ) ( ) ; ( ) ( ) 

• Distributive law : A B C A B A C A B C A B A C∪ ∩ = ∪ ∩ ∪ ∩ ∪ = ∩ ∪ ∩( ) ( ) ( ); ( ) ( ) ( )

• Complement law : A A A A∩ = ∪ =Ø  ; Ω
• Idempotent law : A A A A A A∪ = ∩ =;  

• De Morgan’s law : A B A B A B A B∪ = ∩ ∩ = ∪;  

• Identity law : A A A A B A B= ∪ ∩ = ∪; ( ) . 

The sample space Ω is also called the sure event and Ø is the impossible event.  The
events A A1 2, , … are mutually exclusive if A Ai j∩ = Ø holds for any i j≠ .  The
events A and B are equivalent if either they occur together or neither of them occur,
equivalent events have the same probability.  In the following, events will be mainly
enclosed in braces {}.
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A6.2 Concept of Probability

Let us assume that 10 samples (random samples) of size n = 100 were taken from a
large and homogeneous lot of populated printed circuit boards (PCBs), for incoming
inspection.  Examination yielded the following results:

Sample number: 1 2 3 4 5 6 7 8 9 10

No. of defective PCBs: 6 5 1 3 4 0 3 4 5 7

For 1000 repetitions of the “testing a PCB” experiment, the relative frequency of the
occurrence of event {PCB defective} is

6 5 1 3 4 0 3 4 5 7

1000

38

1000
3 8

+ + + + + + + + + = = . %.

It is intuitively appealing to consider 0.038 as the probability of the event {PCB
defective}.  As shown below, 0.038 is a reasonable estimation of this probability (on
the basis of the experimental observations made).

Relative frequencies of the occurrence of events have the property that if n is the
number of trial repetitions and n A( ) the number of those trial repetitions in which
the event A occurred, then

ˆ ( )
( )

p A
n A

nn = (A6.1)

is the relative frequency of the occurrence of A, and the following rules apply:

1. R1: ˆ ( )p An ≥ 0.

2. R2: ˆ ( )pn Ω = 1.

3. R3: if the events A Am1, ,…  are mutually exclusive, then n A Am( )1 ∪ … ∪ =
n nA Am( ) ( )1 + … +  and ˆ ˆ ˆ( ) ( ) ( )p p pn n nA A A Am m1 1∪ … ∪ = + … + .

Experience shows that for a second group of n trials, the relative frequency ˆ ( )p An
can be different from that of the first group.  ˆ ( )p An  also depends on the number of
trials n.  On the other hand, experiments have confirmed that with increasing n,  the
value ˆ ( )p An  converges toward a fixed value p A( ), see Fig. A6.1 for an example.
It therefore seems reasonable to designate the limiting value p A( ) as the probability
Pr A{ }  of the event A , with ˆ ( )p An  as an estimate of Pr A{ } .  Although intuitive,
such a definition of probability would lead to problems in the case of continuous
(non-denumerable) sample spaces.

Since Kolmogorov's work [A6.10], the probability Pr A{ }  has been defined as a
function on the event field  F  of subsets of Ω.  The following axioms hold for this
function:
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Figure A6.1    Example of relative frequency k n/  of “heads” when tossing a symmetric coin n times

1. Axiom 1: For each   A ∈F  is Pr{ }A ≥ 0.

2. Axiom 2: Pr{ }Ω = 1.

3. Axiom 3: If events A A1 2, , … are mutually exclusive, then

Pr{ } Pr{ }A Ai i
ii=

∞
=

=

∞
∑

1 1
U .

Axiom 3 is equivalent to the following statements taken together:

4. Axiom 3’: For any finite collection of mutually exclusive events,
Pr{ } Pr{ } Pr{ }A A A An n1 1∪ … ∪ = + … + .

5. Axiom 3’’: If events A A1 2, , … are increasing, i. e. A An n⊆ +1, n = …1 2, , ,

then 
  
lim Pr{ } Pr{ }.
n

n iA A
i→∞

=
=

∞

1
U

The relationships between Axiom 1 and R 1, and between Axiom 2 and R 2 are
obvious.  Axiom 3 postulates the total additivity of the set function Pr A{ } .  Axiom
3’ corresponds to R3.  Axiom 3’’ implies a continuity property of the set function
Pr A{ }  which cannot be derived from the properties of ˆ ( )p An , but which is of great
importance in probability theory.  It should be noted that the interpretation of the
probability of an event as the limit of the relative frequency of occurrence of this
event in a long series of trial repetitions, appears as a theorem within the probability
theory (laws of large numbers, Eqs. (A6.144) and (A6.146)).

From axioms 1 to 3 it follows that:

Pr{ }Ø = 0 ,

Pr{ } Pr{ }A B≤  if A B⊆ ,

Pr{ } Pr{ }A A= −1 ,

0 1≤ ≤Pr{ }A .
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When modeling an experiment with random outcome by means of the
probability space   [ , , Pr]Ω F , the difficulty is often in the determination of the
probabilities Pr A{ }  for every   A ∈F .  The structure of the experiment can help
here.  Beside the statistical probability, defined as the limit for n → ∞  of the
relative frequency k n/ , the following rules can be used if one assumes that all
elementary events ω have the same chance of occurrence:

 1. Classical probability (discrete uniform distribution):  If Ω is a finite set and A
a subset of Ω, then

Pr{ }A
A

=
number of elements in
number of elements in Ω

or

Pr{ } .A =
number of favorable outcomes
number of possible outcomes

(A6.2)

 2. Geometric probability (spatial uniform distribution):  If Ω is a set in the plane
R 2 of area Ω and A a subset of Ω, then

Pr{ } .A
A= area of

area of Ω (A6.3)

It should be noted that the geometric probability can also be defined if Ω is a part of
the Euclidean space having a finite area.  Examples A6.1 and A6.2 illustrate the use
of Eqs. (A6.2) and (A6.3).

Example A6.1

From a shipment containing 97 good and 3 defective ICs, one IC is randomly selected.  What is
the probability that it is defective?

Solution

From Eq. (A6.2),

Pr{ } .IC defective =
3

100

Example A6.2

Maurice and Matthew wish to meet between 8:00 and 9:00 a.m. according to the following rules:
1) They come independently of each other and each will wait 12 minutes.   2) The time of arrival
is equally distributed between 8:00 and 9:00 a.m.   What is the probability that they will meet?

Solution

Equation (A6.3) can be applied and leads to, see graph,

Pr{Matthew meets Maurice}
1 2

0.8 0.8
2

1
0.36 .=

− ⋅

=
Arrival
of Maurice

Arrival of Matthew

8:00
8:00

9:00

9:00
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Another way to determine probabilities is to calculate them from other
probabilities which are known.  This involves paying attention to the structure of the
experiment and application of the rules of probability theory (Appendix A6.4).  For
example, the predicted reliability of a system can be calculated from the reliability
of its elements and the system’s structure.  However, there is often no alternative to
determining probabilities as the limits of relative frequencies, with the aid of
statistical methods (Appendices A6.11 and A8).

A6.3 Conditional Probability, Independence

The concept of conditional probability is of great importance in practical
applications.  It is not difficult to accept that the information “event A has occurred
in an experiment” can modify the probabilities of other events.  These new
probabilities are defined as conditional probabilities and denoted by Pr{ }B A .
If for example A B⊆ , then Pr{ }B A =1, which is in general different from the
original unconditional probability Pr{ }B .  The concept of conditional probability
Pr{ }B A  of the event B under the condition “event A has occurred”, is introduced
here using the properties of relative frequency.  Let n be the total number of
trial repetitions and let n A( ), n B( ), and n A B( )∩  be the number of occurrences of
A, B and A B∩ , respectively, with n A( ) > 0 assumed.  When considering only the
n A( ) trials (trials in which A occurs), then B occurs in these n A( ) trials exactly
when it occurred together with A in the original trial series, i. e. n A B( )∩  times.
The relative frequency of B in the trials with the information “A has occurred” is
therefore

n A B

n A

p A B

p A

n A B

n

n A

n

n

n

( )

( )

ˆ ( )

ˆ ( )

( )

( )
.∩

= =
∩

∩

(A6.4)

Equation (A6.4) leads to the following definition of the conditional probability
Pr{ }B A  of an event B under the condition A  (i. e., assuming that A has occurred)

Pr{ } ,        
Pr{ }

Pr{ }
 Pr{ }B A

A B

A
A=

∩
>        0. (A6.5)

From Eq. (A6.5) it follows that

Pr{ } Pr{ } Pr{ } Pr{ } Pr{ }A B A B A B A B∩ = = . (A6.6)

Using Eq. (A6.5), probabilities Pr{ }B A  will be defined for all B ∈F .  Pr{ }B A



A6.3   Conditional Probability, Independence 419

is a function of B which satisfies Axioms 1 to 3 of Appendix A6.2, obviously with
Pr{ }A A = 1.  The information “event A has occurred” thus leads to a new
probability space   [ , , Pr ]A A AF , where  FA consists of events of the form A B∩ , with

  B ∈F  and Pr { } Pr{ }A B B A= ,  see Example A6.5.  However, when considering
Eq. (A6.6), another definition, with symmetry in A and B  is obtained, where
Pr{ }A > 0 is not required.

It is reasonable to define the events A and B as independent if the information
“event A has occurred” does not influence the probability of the occurrence of event
B, i. e., if

Pr{ } Pr{ }B A B= . (A6.7)

From the above considerations, two events A & B are independent if and only if

Pr{ } Pr{ } Pr{ }A B A B∩ = . (A6.8)

For n > 2, the events A 1,…,An are totally (mutually, statistically, stochastically)
independent if and only if for each 1 < ≤k n and arbitrary 1 1≤ < < ≤i i nk...

Pr{ } Pr{ } Pr{ }A A A Ai i i ik k1 1
∩ …∩ = … (A6.9)

holds.  Note that for totally (mutually, statistically, stochastically) independence,
pairwise independence is a necessary but not sufficient condition for n > 2 (see e. g.
[A6.6 (Vol 1), A6.7] for some examples).  However, for reliability applications,
pairwise independence assures in general totally independence;

for this reason, independent will be used in this book for totally
(mutually, statistically, stochastically) independent.

A6.4 Fundamental Rules of Probability Theory

The probability calculation of event combinations is based on the fundamental rules
of probability theory introduced in this section.

A6.4.1 Addition Theorem for Mutually Exclusive Events

The events A and B are mutually exclusive if the occurrence of one event excludes
the occurrence of the other, formally A B∩ = Ø.  Considering a component which
can fail due to a short or an open circuit, the events

{failure occurs due to a short circuit}
and

{failure occurs due to an open circuit}
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are mutually exclusive.  Application of Axiom 3 (Appendix A6.2) leads to

Pr{ } Pr{ } Pr{ }A B A B∪ = + . (A6.10)

Equation (A6.10) is considered a theorem by tradition only;  indeed, it is a particular
case of Axiom A3 in Appendix A6.2.

Example A6.3

A shipment of 100 diodes contains 3 diodes with shorts and 2 diodes with opens.  If one diode is
randomly selected from the shipment, what is the probability that it is defective?

Solution

From Eqs. (A6.10) and (A6.2),

Pr{diode defective} +
2

100
= =

3

100

5

100
.

If the events A A1 2, , … are mutually exclusive ( A Ai j∩ = Ø for all i j≠ , they are
also totally exclusive.  According to Axiom 3 it follows that

Pr{ } Pr{ }A A Ai
i

1 2∪ ∪ … = ∑ . (A6.11)

A6.4.2 Multiplication Theorem for Two Independent Events

The events A a n d B  are independent if the information about occurrence (or
nonoccurrence) of one event has no influence on the probability of occurrence of the
other event ( Pr{ } Pr{ }, Pr{ } Pr{ })B A B A B A= = .  In this case Eq. (A6.8) applies

Pr{ } Pr{ } Pr{ }A B A B∩ = .

Example A6.4

A system consists of two elements E1 and E2  necessary to fulfill the required function.  The
failure of one element has no influence on the other.  R1 0 8= .  is the reliability of E1 and
R2 0 9= .  is that of E2  .  What is the reliability RS  of the system?

Solution

Considering the assumed independence between the elements E1 and E2  and the definition of
R1, R2 , and RS  as R E1 1= Pr{ }fulfills the required function , R E2 2= Pr{ fulfills the required
function}, and R E ES = ∩Pr{ }1 2fulfills the required function fulfills the required function , one

obtains from Eq. (A6.8)

R R RS = =1 2 0 72. .
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A6.4.3 Multiplication Theorem for Arbitrary Events

For arbitrary events A and B, with Pr{ }A > 0 and Pr{ }B > 0, Eq. (A6.6) applies

Pr{ } Pr{ } Pr{ } Pr{ } Pr{ }A B A B A B A B∩ = = .

Example A6.5
2 ICs are randomly selected from a shipment of 95 good and 5 defective ICs.  What is the
probability of having  (i) no defective ICs, and  (ii) exactly one defective IC?

Solution
(i)  From Eqs. (A6.6) and (A6.2),

Pr{first IC good second IC good}∩ = ⋅ =95

100

94

99
0 902. .

(ii) Pr{ }exactly one defective IC = Pr{( )first IC good second IC defective∩ ∪ (first IC defective ∩
second IC good)};  from Eqs. (A6.6) and (A6.2),

Pr{one IC defective}= ⋅ + ⋅ =95

100

5

99

5

100

95

99
0 096. .

Generalization of Eq. (A6.6) leads to the multiplication theorem

Pr{ } Pr{ } Pr{ } Pr{ ( )}A A A A A A A An1 1 2 1 3 1 2∩ ∩ = ∩K

                         K KPr{ ( )}A A An n1 1∩ ∩ − . (A6.12)

Here, Pr{ }A An1 1 0∩ … ∩ >−  is assumed.  An important special case arises when
the events A1,…,An are independent, in this case Eq. (A6.9) yields

Pr{ } Pr{ } Pr{ } Pr{ }A A A A An n i
i

n

1 1
1

∩ …∩ = … =
=
∏ .

This last equation implies that A1,…,An are totally (mutually, statistically, stochasti-
cally) independent (independent in this book, as pointed out with Eq. (A6.9)).

A6.4.4 Addition Theorem for Arbitrary Events

The probability of occurrence of at least one of the arbitrary events A and B
(not necessarily mutually exclusive, nor independent) is given by

Pr{ } Pr{ } Pr{ } Pr{ }A B A B A B∪ = + − ∩ . (A6.13)

To prove this, consider Axiom 3 and the partitioning of the events A B∪  and B into
mutually exclusive events ( A B A A B∪ = ∪ ∩( ) and B A B A B= ∩ ∪ ∩( ) ( )).
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Example A6.6
To increase the reliability of a system, 2 machines are used in active (parallel) redundancy.  The
reliability of each machine is 0.9 and each machine operates and fails independently of the other.
What is the system’s reliability?

Solution
From Eqs. (A6.13) and (A6.8), Pr{the first machine fulfills the required function ∪ the second
machine fulfills the required function} = + − ⋅ =0 9 0 9 0 9 0 9 0 99. . . . . .

The addition theorem can be generalized to n arbitrary events.  For n = 3 one obtains

Pr{ } Pr{ ( )}A B C A B C∪ ∪ = ∪ ∪ = + ∪ − ∩ ∪Pr{ } Pr{ } Pr{ ( )}A B C A B C

              = + + − ∩ − ∩Pr{ } Pr{ } Pr{ } Pr{ } Pr{ }A B C B C A B

  Pr{ } Pr{ }               − ∩ + ∩ ∩A C A B C . (A6.14)

In general, Pr{ }A An1∪ … ∪  follows from the so-called inclusion / exclusion method

Pr{ } ( )A A Sn k
k

k

n

1 1 1

1
∪ …∪ = − +

=
∑ (A6.15)

with

  

S A Ak i ik
i i nk

= ∩ ∩
≤ < < ≤

∑ Pr{ }
...

1
1 1

K . (A6.16)

It can be shown that S A A Sn= ∪ …∪ ≤ Pr{ }1 1,  S S S≥ −  1 2 ,  S S S S≤ +−  1 2 3,  etc.
Although the upper bounds do not necessarily decrease and the lower bounds do not
necessarily increase, a good approximation for S often results from only a few Si
(considering e. g. the Fréchet theorem S S n k kk k+ ≤ − +1 1( ) / ( )).

A6.4.5 Theorem of Total Probability

Let A A1 2, , … be mutually exclusive events ( A Ai j i j∩ = ≠Ø, ), Ω = ∪ ∪ …A A1 2 ,
and Pr{ }Ai > 0, i = …1 2, , .  For an arbitrary event B  one has B B= ∩ Ω
= ∩ ∪ ∪ … = ∩ ∪ ∩ ∪ …B A A B A B A( ) ( ) ( )1 2 1 2 , where the events B A∩ 1, B A∩ 2,
are mutually exclusive.  Use of Axiom 3 (Appendix A6.2) and Eq. (A6.6) yields

Pr Pr{ } Pr{ }Pr{ }B B A A B Ai
i

i
i

i{ } = ∩ =∑ ∑ . (A6.17)

Equation (A6.17) expresses the theorem of total probability.  Equations (A6.17) and
(A6.6) lead to the Bayes theorem, which allows calculation of the a posteriori
probability Pr{ }A Bk , k = …1 2, ,  as a function of a priori probabilities Pr{ }Ai ,

Pr{ }
Pr{ }

Pr{ }

Pr{ } Pr{

Pr{ } Pr{ }

} .A B
A B

B

A B A

A B A
k

k k k

i i
i

=
∩

=
∑  

(A6.18)
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Example A6.7
ICs are purchased from 3 suppliers ( A1, A2 , A3) in quantities of 1000, 600, and 400 pieces,
respectively.  The probabilities for an IC to be defective are 0.006 for A1, 0.02 for A2 , and 0.03
for A3.  The ICs are stored in a common container disregarding their source.  What is the
probability that one IC randomly selected from the stock is defective?

Solution
From Eqs. (A6.17) and (A6.2),

Pr{the selected IC is defective} = + + =
1000

2000

600

2000

400

2000
0 006 0 02 0 03 0 015. . . . .

Example A6.8
Let the IC as selected in Example A6.7 be defective.  What is the probability that it is from
supplier A1?

Solution

From Eq. (A6.18),   Pr{IC from IC defective} 1
 

A = =
( / ) . .

.
. .

1000 2000 0 006

0 015
0 2

A6.5 Random Variables, Distribution Functions

If the result of an experiment with a random outcome is a (real) number, then the
underlying quantity is a (real) random variable.  For example, the number appearing
when throwing a die is a random variable taking on values in { , , }1 6… .  Random
variables are designated hereafter with Greek letters τ, ξ , ζ, etc.  The triplet

  [ , , Pr]Ω F  introduced in Appendix A6.2 becomes   [ , , Pr]R B , where   R = −∞ ∞( , ) and
  B  is the smallest event field containing all (semi) intervals ( , ]a b  with a b< . The
probabilities Pr{ } Pr{ }A A= ∈τ ,    A ∈B  , define the distribution law of the random
variable τ .  Among the many possibilities to characterize this distribution law, the
most frequently used is to define

F( ) Pr{ }t t= ≤τ . (A6.19)

F( )t  is called the (cumulative) distribution function of the random variable τ +).  For
each t, F( )t  gives the probability that the random variable will assume a value
smaller than or equal to t .  Since s t>  implies { } { } ( ),τ τ≤ ≤ ≤t ts F  is a non-
decreasing function. Moreover, F( )−∞ = 0 and F( ) .∞ = 1  If Pr{ }τ = >t0 0 holds, then
F( )t  has a jump of height Pr{ } ( ) ( )τ = − −t t t0 0 0 0= F F  at t0 .  As stated also with
Eq. (A6.19), F( )t  is continuous from the right (Fig. A8.1);  however, F( )t  can have
at most a countable number of jumps (see e. g. [A6.7]).  The probability that the

––––––––––
+) From a mathematical point of view, the random variable τ  is defined as a measurable mapping

of Ω  onto the axis of real numbers R = ∞ ∞−( , ), i.e. a mapping such that for each real value x
the set of ω for which { ( ) }τ τ ω= ≤ x  belongs to  F ; the distribution function of τ  is then
obtained by setting F( ) Pr{ } Pr{ : ( ) }t t t= ≤ = ≤τ ω τ ω .
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random variable τ takes on a value within the interval ( , ]a b  is
Pr{ } ( ) ( )a b b a< ≤ = −τ F F .

The following two kinds of random variables are of particular importance:

 1. Discrete random variables:  A random variable τ is discrete if it can only assume
a finite or countable number of values, i. e., if there is a sequence t t1 2, ,…  such that

p t pk k kk
= = =∑Pr{ },         τ with      1. (A6.20)

A discrete random variable is best described by a table

Values of
Probabilities

    
  

τ t t
p p

1 2
1 2

…
…

The distribution function F( )t  of a discrete random variable τ is a step function

F( ) .
:

t pk
k t tk

=
≤

∑

Assuming the sequence t t1 2, ,… ordered ( )t tk k< +1 , then

F( ) ,  ( , , , ... , , ) .t p t t tj k t t p
j k

k k=
≤

+∑ ≤ < = < =   for    1 0 1 2 00 1 0 (A6.21)

If only the value k = 1 occurs in Eqs. (A6.21), τ is a constant ( τ = =t C1 ).  A
constant C can thus be regarded as a random variable with distribution function

F( )
 
 .

t
t

t
= 

<
≥

0
1

for C

for C

An important special case is that of arithmetic random variables.  τ is arithmetic
if it can take the values … − …, , , ,∆ ∆t t0 , with probabilities

p k tk k= = = … − …Pr{ },         , , , , .τ ∆ 1 0 1

 2. Continuous random variables:  The random variable τ is absolutely continuous
if a function f ( )x ≥ 0 exists such that

F( ) Pr{ } f( )t t x dx
t

= ≤ =
−∞
∫τ . (A6.22)

f ( )t  is called (probability) density of the random variable τ and satisfies

f( )t ≥ 0     and     f( )t dt
−∞

∞
∫ = 1.

F( )t  and f( )t  are related (almost everywhere) by (Fig. A6.2)

f F( ) ( ) / .t d t dt= (A6.23)

Mixed distribution functions, exhibiting jumps and continuous growth, can occur in
some applications, requiring a piecewise definition of the distribution function.
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0.2

0

0.4

0.6

0.8

a b
t   [h]

F(t)

1.0

0

0.1

0.2

0.3

0.4

a b
t   [h]

f (t) [h-1]

F(b)–F(a) =Pr{a<τ≤b}

b

∫
a

f(t)dt=Pr{a<τ≤b}

Figure A6.2    Relationship between the distribution function F( )t  and the density f( )t

In reliability theory, τ > 0 generally denotes (as in this book) the failure-free time
(failure-free operating time) of an item, distributed according to F( ) Pr{ }t t= ≤τ
with F( )0 0= .  The reliability function R( )t  (also known as survival function)
gives the probability that the item new at t =0 will operate failure-free in ( , ]0 t ; thus,

F( ) Pr{ }t t= ≤τ  and R F( ) Pr{ } ( )t t t= > = −τ 1 ,    t > = =0 0 0 0 1, ( ) , R( ) F .    (A6.24)

The failure rate λ( )t   (instantaneous failure rate in some standards) of an item
new at  t = 0 and exhibiting a continuous failure-free time τ > 0 is defined as

λ τ δ τ
δ δ

( ) Pr{ }lim .t t t t t
t t

= < ≤ + >
↓0

1
 .

Calculation leads to (Eq. (A6.5) and Fig. A6.3a)

λ
δδ δ

τ δ τ
τ δ

τ δ
τ

( ) lim . lim . ,Pr{ }

Pr{ }

Pr{ }

Pr{ }
t

t

t t t t

t t

t t t

ttt
==

↓↓

< ≤ + ∩ >
>

< ≤ +
>00

1 1
  

and thus, assuming the existence of f ( ) F( ) /t t td d= ,

λ( )
( )

( )

( ) /

( )
,t

t

t

t t

t

d d=
−

= −
f

F
 

R

R1
       t t t t t> = ≤ 00 ,   ( ( ) = F( ) = f 0 for λ ( ) ).     (A6.25)

It is important to distinguish between density f ( )t  and failure rate λ ( )t .  For an item
new at  t = 0 & δ t →0, f ( )t tδ  is the unconditional probability for failure in ( , ]t t t+δ ,
whereas λ δ( )t t  is the conditional probability for failure in ( , ]t t t+δ  given that the
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___________________

+) The quantity λ ( )t , termed failure rate in this book and in most standards (Eq. (A6.25)), is known
also as hazard rate, force of mortality, density rate.  To avoid ambiguities, conditional failure rate
could be a good choice for failure rate.

item has not failed in ( , ].0 t   Moreover, f( )t td
0

1
∞∫ =  and λ( )t td

0

∞∫ ∞ ∞= − =  ln ln R(0)  R( )  ,
showing that λ ( )t  is not a density (as defined by Eqs. (A6.22) - (A6.23)). 

+)

The failure rate λ ( )t  applies to nonrepairable items.  However,

considering Eq. (A6.25) it can also be defined for repairable items which
are as-good-as-new after repair (renewal), taking instead of t  the
variable x starting by x = 0 at each r epair (as for interarrival times);
this is necessary when investigating repairable items (systems).

If a repairable item can not be restored to as-good-as-new after repair, failure
intensity z ( )t  (Eq. (A7.228)) has to be used (see pp. 377 & 524).

λ ( )t  completely define R( )t .  In fact, considering R( )0 1= , Eq. (A6.25) yields

Pr{ } ( ) ( ) .
( )

, R( )τ
λ

> = − =
−

= ∫
> =t t t e

x dx
t

t

1 0 0 0 1F R ,                 (A6.26)

from which R( )t e t x= −λ λ λ   .for ( ) =
The probability for failure-free operation in ( , ]0 t  given that at  t = 0 the item has

already operated a failure-free time x0 0>  is often asked; Eqs. (A6.5) & (A6.26) yield

Pr{ } ) ( ) ( ) .| | /
( )τ τ λ> + > = = + = −

+
∫

t x x t x t x x e x dx
x

t x

0 0 0 0 0 0

0

 R( R R  (A6.27) 
    

R ( | )t x0  is the conditional reliability function.  Equations (A6.25) & (A6.27) lead to

− = =
∞

+ − >
∞
∫ ∫   

    

 

& =
R

R 
E[  

     
]

               
=

(A6.28)

   |
dR t x dt

R t x

x
x

t x t x x x R t x dt dx
x

( )

( )

( )
( )

| /

|
( )( ) ( ) .| |0

0 0
0 0 0 0

0
0

0

λ λ τ τ

The 2nd part of Eq. (A6.28) gives the mean of the survival failure-free time at age x0
(conditional mean).  From Eqs. (A6.26)-(A6.28) following conclusions can be drawn:

1.  The conditional failure rate λ ( )|t x0  at time t  given that the item has
operated failure-free a time x0  before  t = 0  is the failure rate at time t x+ 0 .

2. For strictly increasing failure rate λ( )t  it holds that R R R( ) ( ) . ( )t x t x+ <0 0

and E   E[ ] [ ]| ;τ τ τ− > <x x0 0  the contrary for strictly decreasing failure rate.
3. In point 2, =  instead of < holds if and only if λ λ( )t = , i. e., if the failure-free

time is exponentially distributed.

To point 2, note that for λ( )t  strictly increasing R R
 

( | ) ( )
( ) ( )

,t x te e
x dx x dx

x

t x t

0
00

0

= < =
−∫ − ∫
+

λ λ

yielding R R R( ) ( ) . ( )t x t x+ <0 0  & E   E[ ] [ ]| .τ τ τ− > <x x0 0  In addition to Eq. (A6.27),

Pr     ,        for    and  { } Pr{ }| | ,τ τ τ τ> + > > > + > > > >t u u t s s s u t0 0

holds for λ ( )t  strictly increasing, reinforcing that the probability of surviving a
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0
t

t t+δt

τ

t

τ
τ

τ
τ

τUFT

0

0 TPM 3TPM2TPM

Renewal pointxb)a)

Figure A6.3  Visual aids to investigate:  a) The failure rate λ( )t ;   b) The undetected fault time τUFT

further period t decreases with the achieved age (contrary for decreasing failure rate).
No aging exists in the case of a constant failure rate, i. e. for R( ) ,t e t= −λ  yielding

Pr{ } ( ) ( ) Pr{ } ,| |τ τ τ λ> + > >= = = = −t x x t x t t e t
0 0 0R R    λ λ( ) .t =    (A6.29)

Equation (A6.29) expresses best the memoryless property of the exponential
distribution (Eq.(A6.81)), for which, and only for which, it holds that λ λ( )t = .

For a time dependent failure rate λ( )t , above considerations lead to concepts like

(i) bad-as-old or minimal repair (λ( )t  after repair ≈ λ( )t  just before failure;
idealized model, if the repaired part has time dependent failure rate (pp. 138 & 519)),

(ii) new-better-than-used ( R R R( ) ( ) ( )t x t x+ <0 0 , follows for λ( )t  strictly increasing),

(iii) new-worse-than-used ( R R R( ) ( ) ( )t x t x+ >0 0 , follows for λ( )t  strictly decreasing),

(iv) new-better-than-used in expectation  ( E   E[ ] [ ] ,|τ τ τ− > <x x0 0  follows from ii),
(v) new-worse-than-used in expectation  ( E   E[ ] [ ]| ,τ τ τ− > >x x0 0  follows from iii),

on which, maintenance strategies can be based (see e. g. [2.34, 4.14, 4.18, 6.3, A7.4(62)]
and remarks on pp. 134 and 519).  Maintenance strategies are considered in
Sections 4.6 & 6.8.2.  Equality holds in (i) - (v) if and only if λ λ( )t =  (Eq. (A6.29));
case which should be clearly distinguished from both increasing or decreasing λ( )t ,
also because of the memoryless property which characterizes λ λ( )t = .

In applications dealing with preventive maintenance (Section 6.8.2), distribu-
tion and mean of the undetected (latent) fault time τUFT  are often of interest.
Considering a repairable one-item structure with failure-free time τ > 0 distributed
according to F( ) Pr{ }x x= ≤τ , on which preventive maintenance (PM) is performed
at 0, TPM , 2TPM , …  and at each PM the item is as-good-as-new, distribution and
mean of τUFT , taking at each PM τ τUFT PMT= 0  for  > , follows as (Fig. A6.3b)

F F   

   E[ ] = F   = F = F  

,

 
         (A6.30)

   ,       F  F F

0 0 0

UFT UFT PM

UFT UFT PM

x x T x

x d x T x dx x dx

x T TPM PM

PM PM PM

UFT

T T T

( ) Pr{ } ( )

( ( )) ( ) ( ) ,

( ) , ( ) ( ) ,= ≤ = − − < ≤ =

− −

= −

∫ ∫ ∫

τ

τ

1

1

0 0 0 0 1

yielding F
UFT

PMx e T x( ) ( )= − −λ  and E[ ]τ λ λ
UFT PM PMT e T= − − −( ) /1 ≈ λT TPM PM

. / 2 for
F( )x e x= − −1 λ  & λTPM <<1.  Less realistic seems to consider for τUFT  only the cases
with τ < TPM , yielding F F F

UFT PM PMx T x T( ) ( ) ( )/= − −1 , and E[ ]τ
UFT PMT≈ / 2  for

F( )x e x= − −1 λ  & λTPM << 1.  Further aspects related to undetected fault times are
discussed with Eq. (6.223), dealing with incomplete coverage in redundant structures.
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For an arithmetic random variable, the failure rate is defined as

λ τ τ( ) Pr{ ( ) }  /    |      , ,k k t k t p pk i
i k

k= = > − = ∑
≥

= …∆ ∆1 1 2  ,       .

Following concepts are important to reliability theory (see also Eqs. (A6.78), (A6.79)
for minimum ( )minτ  and maximum ( )maxτ  of a set of random variables τ τ1, ,… n):

 1. Function of a random variable:  If u( )x  is a strictly increasing, continuous
function and τ a continuous random variable with distribution function F ( )τ t ,
then Pr{ } Pr{ ( ) ( )}τ η τ≤ = = ≤t tu u , and η τ= u( )  has distribution function

F u F u , η τη τ( ) Pr{ } Pr{ ( )} ( )( )t t t t= ≤ = ≤ =− −1 1 (A6.31)

with u ( )−1 x  as inverse function of u( )x ;  see Example A6.18 on p. 448
(for strictly decreasing u( )x , f fη τ( ) (u ( )) u ( ) /| |t t d t dt= − −1 1 ).

  2. Distributions with random parameter:  If the distribution function F( ),t δ  of τ
depends on a parameter δ with density fδ( )x , then for τ it holds that

F F f                     .0( ) Pr{ } ( , ) ( ) , ,t t t x dx t= ≤ =
∞
∫ ≥τ δ δ δ
0

(A6.32)

  3. Truncated distribution:  In some practical applications it can be assumed that
realizations ≤ a  or > b of a random variable ξ with distribution function F(t)
are discarded (e. g. lifetimes ≤ 0 ).  For a truncated random variable it holds that

F( ) /| (
.

( ) ( )) ( ( ) ( ))t a b
t a

t a b a a t b
t b

    
 

                                 
  

                                

for
F F F F for

for
< ≤ =







≤
− − < ≤

>
ξ

0

1
(A6.33)

  4. Mixture of distributions:  Some possibilities of how early failures and wear-out,
with distribution function F   F1 2and( ) ( )t t , can be considered are, for instance,

• for any of the items considered, only early failures (with probability p) or
wear-out (with probability 1 − p) can appear,

• both failure mechanisms can appear in any item,
• a percentage p of the items will show both failure mechanisms and 1 − p

only one failure mechanism, e. g. wear-out governed by F2 ( )t .

The distribution functions F(t) of the failure-free time are in these three cases:

F F F1 2( ) ( ) ( ) ( )t t tp p= + −1 ,

F F F F F F F1 2 1 2 1 2( ) ( ( ))( ( )) ( ) ( ) ( ) ( )t t t t t t t= − − − = + −1 1 1 ,

F F F F F F F F F F1 2 1 2 2 1 2 1 2( ) [ ( ) ( ) ( ) ( )] ( ) ( ) ( ) ( ) ( ) ( ) .t t t t t t t t t tp p p p= + − + − = + −1     (A6.34)

The first case gives a mixture with weights p  and 1 − p  (Example 7.16).  The
second case corresponds to a series model with two independent elements,
(Eq. (2.17)). The 3th case is a combination of both previous cases. The mixture
can be extended to n components, yielding F F with =( ) ( ) .t p t pk kn kn=∑ ∑ 1

The main properties of the distribution functions frequently used in reliability theory
are summarized in Table A6.1 and discussed in Appendix A6.10.
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A6.6 Numerical Parameters of Random Variables

For a rough characterization of a random variable τ, some typical values such as the
expected value (mean), variance, and median can be used.

A6.6.1 Expected Value (Mean)

For a discrete random variable τ taking values t t1 2, , …, with probabilities p p1 2, , …,
the expected value or mean E[ ]τ  is given by

E[ ] ,τ = ∑      t pk kk
(A6.35)

provided the series converges absolutely.  If τ only takes the values t tm1, ,… ,  Eq.
(A6.35) can be heuristically explained as follows.  Consider n repetitions of a trial
whose outcome is τ and assume that k1 times the value t1 , …, km  times the value
tm  has been observed ( n k km= +…+1 ), the arithmetic mean of the observed values is

( ) / / / .t k t k n t k n t k nm m m m1 1 1 1+ …+ = + …+

As n → ∞ , k ni /  converges to pi (Eq. (A6.146)), and the above mean tends towards
the expected value E[ ]τ  given by Eq. (A6.35).  For this reason, expected value and
mean are often used for the same quantity E[ ]τ ; this will often occur in this book.
From Eq. (A6.35), the mean of a constant C is the constant itself

E[ ]C C= .

For a random variable taking values 0 & 1 with probabilities p0  & p p1 01= −  one has

E[ ] . . .τ = + =0 10 1 1p p p (A6.36)

The mean of a continuous random variable τ with density f( )t  is given by

E[ ] ( )τ =
−∞

∞
∫ t t dtf , (A6.37)

provided the integral converges absolutely.  For positive continuous random varia-
bles, Eq. (A6.37) yields (Example A6.9)

E[ ] ( ) ( ) R( ) ,τ τ= = −( ) =
∞ ∞∞
∫ ∫∫ >t t td t dt t dtf F                  . 0
0 00

1 (A6.38)

For the expected value of the random variable η τ= u( )

E[ ] u( )   E[ ] u( ) ( )η η= =∑ ∫
−∞

∞
t p t t dtk k

k
         or         f (A6.39)

holds, provided that u( )x  is continuous and series & integral converge absolutely.
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Table A6.1   Distribution functions used in reliability analysis  (with x instead of t for interarrival times)

Name Distribution Function
F( ) Pr{ }t t= ≤τ

Density
f( ) F( ) /t d t dt=

Parameter Range

Exponential 1 − −e tλ

         
1 2 3

λ

f(t)

0
λ t

t t t> = ≤0 0 0   (F( ) , )

λ > 0

Weibull 1 − −e t( )λ β

1 2 3 4

λ
β=3

0.5λ

f(t)

0
λ t

t t t> = ≤0 0 0   (F( ) , )

λ β, > 0

Gamma
1 1

0Γ( )β
β

λ
x dxe x

t
− −∫

1 2 3 4 5

0.5λ
β= 0.5

0.25λ

f(t)

0
λ t

t t t> = ≤0 0 0   (F( ) , )

λ β, > 0

Chi-square
( )χ 2

x e dxx
t

ν

ν ν

/ /

/ ( / )

2 1 2

0

22 2

− −∫

Γ
         

t [h]
0

           –1
f(t) [h    ] ν=4

0.2
0.1

2 4 6 8 10

t t t> = ≤0 0 0   (F( ) , )

ν = …1 2, ,  (degrees

of freedom)

Normal
1

2

22 2

σ π

σe x m
dx

t
− −

−∞
∫ ( ) /

     200 400 600

           –1
f(t) [h    ]

0
t [h]

m=300h
σ=80h

0.005
0.0025

∞ < < ∞t m,

σ > 0

Lognormal 1

2

22

π

λ
σ

e x dx

t

−

−∞
∫ /

ln ( )

         
0

           –1
f(t) [h    ]

t [h]

             –1λ=0.6h
σ=0.30.8

0.4

2 41 3 5

t t t> = ≤0 0 0   (F( ) , )

λ σ, > 0

Binomial
Pr{ }

( )

ζ ≤ =

= −
=

−

∑

( )
k p

p p p

i
i

k

i
i n in

i

0

1
      

p
  i

i
0

0.2
0.1

p=0.5
n=8

82 4 6

k n= …0, ,

0 1< <p

Poisson

Pr{ }

!

ζ ≤ =
=
∑

= −

k pi
i

k

p m
i

ei
i

m

0

      
2 4 6 8

p
  i

i
0

0.2
0.1

m=3
k = …0 1, ,

m > 0

Geometric
Pr{ } ( )

( )

ζ ≤ = = − −
=
∑

= − −

k p pi
i

k
k

p p pi
i

1
1 1

1 1

      

p
  i

9
i

1 3 5 7

0.2
0.1

p=0.2

0

k = …1 2, ,

0 1< <p

Hyper-
geometric

Pr{ }ζ ≤ = ( )( )
( )

∑
−
−

=
k

K N K

N
n

ni i

i

k

0

p
  i

8
i

0 2 4 6

0.2
0.1

N=1000
n=100
K=20

k
K n

= …
…

0 1, ,
   , min( , )



A6.6   Numerical Parameters of Random Variables 431

Table A6.1    (cont.)

Failure Rate
λ( ) f( ) / ( F( ))t t t= − 1

Mean
E[ ]τ

Variance
Var[ ]τ

Properties

   

λ

1 2

λ(t)

0
λ t

1

λ

1
2λ

Memoryless:

Pr{ | }τ τ> + > =t x x0 0 Pr{ }τ λ> = −t e t

 

λ

1

λ(t)

0
λ t

0.5 1.5

2λ
3λ β=3

 

Γ ( )+
1

1
β

λ

Γ Γ( ) ( )1 1
2 12

2

+ − +
β β

λ

Monotonic failure rate, strictly

increasing for  β > 1  ( λ ( )+ =0 0 , λ( )∞ = ∞ ),
decreasing  for  β < 1  ( λ ( )+ = ∞0 , λ( )∞ = 0)

 

λ

2

λ(t)

0
λ t

2λ
β=0.5

1 3 4

β

λ

β

λ 2

Laplace transf. exists: f̃( ) / ( )s s= +λ λβ β ;

Monotonic failure rate with λ λ( )∞ = ;

Exp. for β =1,  Erlangian for β = =n 2 3, ,...
(sum of n exp. distrib. random variables | )λ

 

ν=4

0.5

2 4 6 8

             –1λ(t) [h    ]

t  [h]
0

ν 2 ν

Gamma with β ν ν= =/ , , , ...2 1 2  and λ =1 2/ ;

for = 2, 4,...ν
ν

⇒ = − ∑ −

=

−
F( )

!

( / ) /
/

t
i

t i
te

i
1

2 2

0

2 1

(sum of ν / 2 exp. distrib. random var. | / )λ=1 2

200 400 600

             –1λ(t) [h    ] m=300h
σ=80h

0.01
0.02

t [h]
0

m σ2

F( ) (( ) / )

( ) /

t t m

t x
t

e dx

= −

= −
−∞
∫

Φ

Φ

σ

π

1
2

2

2

   

             –1λ=0.6h
σ=0.3

             –1λ(t) [h    ]

1
2

1 2 3 4
t [h]

0

e σ

λ

2 2/ e e2

2

2 2σ σ

λ

−
F( ) ( ln( ) / )t t= Φ λ σ ;

ln τ   has a normal distribution with

m = =ln ( / ) E[ ]1 λ τln  and σ τ2 = Var [ ]ln

     not relevant n p n p p( )1 −
pi = Pr{i successes in n Bernoulli trials}

 (n independent trials with Pr{ }A p= );

 Random sample with replacement

     not relevant m m

m t t t i iie= ⇒ −λ λ λ( ) ! Pr{/ =  failures in
                                         ( , };0 t ] λ

n

i

n p

i
p p

i n i n p
i

e( ) −
− −≈( )

( )

!
1

  
i

3 5 7

0.2
0.1

p=0.2λ(i)

0
1

1
p

1
2

− p

p

Memoryless: Pr ( ) ;{ }ζ ζ> + > = −i j i p j1

pi =  Pr{first success in a sequence of

Bernoulli trials occurs at the i th trial}

     not relevant n
K
N

K n N K N n

N N

( ) ( )

( )

− −

−2 1
Random sample without replacement
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Example A6.9
Prove Eq. (A6.38).

Solution

R( ) F( ) f( )t t x dx

t

= − =
∞

∫1
 
yields R( ) ( f( ) )t dt x dx dt

t0 0

∞ ∞∞

∫ ∫∫=

Changing the order of integration it follows that (see graph)

R E[ ]( ) ( ) f( ) f( )t dt dt x dx x x dx
x

0 00 0

∞ ∞ ∞

∫ ∫∫ ∫= = = τ .
0

t+dt

x

t

t

x x+dx

Supplementary results: Integrating by parts Eq. (A6.37) yields Eq. (A6.38) if lim( ( ))) . F(
x

x x
→∞

− =1 0

This holds for E[ ] .τ < ∞   To see this, consider 
c

d

c

d
x cf(x)dx f(x)dx∫ ∫≥

= −c d c( ( ) ( )).F F   Thus, lim ( ( )) . f(x)dx F
d c

d
x c c

→ ∞
∫ ≥ −1  Given E[ ] ,τ < ∞

one can find for an arbitrarily small ε > 0 a c  such that 

∞
∫ <

c
xf(x)dx ε.

From this, c c( ( ))1 − <F ε and thus lim ( ( ))) . F(c
c

c
→ ∞

− =1 0

Two particular cases of Eq. (A6.39) are:

 1. u( )x xC= ,

E[ ] ( ) E[ ], .C C Ct t dt Cτ τ= =
−∞

∞
− ∞ < < ∞∫ f                (A6.40)

 2. u( )x xk= , which leads to the k th  moment of τ,

E[ ] ( ) ,         .τk k kt t dt=
−∞

∞
>∫ f       1 (A6.41)

Further important properties of the mean are given by Eqs. (A6.68) and (A6.69).

A6.6.2 Variance

The variance of a random variable τ is a measure of the spread (or dispersion) of the
random variable around its mean E[ ]τ .  Variance is defined as

Var[ ] E ( E[ ])[ ]τ τ τ= − 2 , (A6.42)

and can be calculated as

Var[ ] ( E[ ])τ τ= −∑ t pk k
k

2 (A6.43)

for a discrete random variable, and as

Var[ ] ( E[ ]) ( )τ τ= −
−∞

∞
∫ t t dt2 f (A6.44)
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for a continuous random variable.  In both cases,

Var[ ] E[ ] (E[ ])τ τ τ= −2 2. (A6.45)

If E[ ]τ  or Var[ ]τ  is infinite, τ is said to have an infinite variance.  For arbitrary
constants C and A, Eqs. (A6.45) and (A6.40) yield

Var[ ] Var[ ] , .C CA Cτ τ− = − ∞ < < ∞2                (A6.46)
and

Var[ ]C = 0.

The quantity

σ τ= Var[ ] (A6.47)

is the standard deviation of τ and, for τ ≥ 0,

κ σ τ= / E[ ]
(A6.48)

is the coefficient of variation of τ.  The random variable

( E[ ]) /τ τ σ−

has mean 0 (Eqs. (A6.40) & (A6.68)) and variance 1 (Eq. (A6.46)), and is a
standardized random variable.

A good understanding of the variance as a measure of dispersion is given by the
Chebyshev's inequality, which states (Example A6.10) that for every ε > 0

Pr{ E[ ] } Var[ ] .| | /τ τ ε τ ε− ≤>  2 (A6.49)

The Chebyshev inequality (known also as Bienaymé-Chebyshev inequality) is more
useful in proving convergence than as an approximation.  Further important
properties of the variance are given by Eqs. (A6.70) and (A6.71).

Generalization of the exponent in Eqs. (A6.43) and (A6.44) leads to the k th

central moment of τ

E[( E[ ]) ] ( E[ ]) f( ) ,         τ τ τ− = −
−∞

∞
∫ >k kt t dt k       1. (A6.50)

Example A6.10
Prove the Chebyshev inequality for a continuous random variable (Eq. (A6.49)).

Solution
For a continuous random variable τ with density f( )t , the definition of the variance implies

Pr{ E[ ] } f( ) f( )| |
| [ ]| | [ ]|

( E[ ] )
τ τ ε

τ ε τ ε

τ

ε
− > = ≤

− > − >
∫ ∫

−
t dt t dt

t E t E

t
 

2

2

                                          ≤
−

=
−∞

∞

∫
( E[ ])

f( ) Var[ ]
t

t dt
τ

ε ε
τ

2

2

1
2

.



434 A6   Basic Probability Theory

A6.6.3 Modal Value, Quantile, Median

In addition to the moments discussed in Appendices A6.6.1 and A6.6.2, the modal
value, quantile, and median are defined as follows:

 1. For a continuous random variable τ, the modal value is the value of t for
which f( )t  reaches its maximum; the distribution of τ is multimodal if f( )t
exhibits more than one maximum.

 2.The q quantile is the value tq  for which F( )t  reaches the value q ,
t t tq q= ≥inf{ : F( ) } ; in general, F( )tq q=  for a continuous random variable
( t p , for which 1 − = =F( ) ( )t tp p pQ , is termed percentage point).

 3. The 0.5 quantile ( t 0 5. ) is the median.

A6.7 Multidimensional Random Variables,
Conditional Distributions

Multidimensional random variables (random vectors) are often required in reliability
and availability investigations of repairable systems.  For random vectors, the
outcome of an experiment is a point in the n-dimensional space R n.  The prob-
ability space [Ω , F, Pr] introduced in Appendix A6.1 becomes [ , ,R Bn n Pr] ,where
  B n is the smallest event field which contains all "intervals" of the form ( , ]a b1 1
… =( , ]a bn n {( , , ) : ( , ] , }, ,t t tn i i ia b i n1 1… ∈ = …    .  Random vectors are designated by
Greek letters with an arrow ( τ τ τ→= …( , , )1 n , ξ ξ ξ

→
= …( , , )1 n , etc.).  The probabil-

ities Pr{ } Pr{ }A A= ∈
→
τ ,   A n∈B  define the distribution law of τ

→
 (n-dimensional

distribution function) .  The function

F( , , ) Pr{ , , }t t t tn n n1 1 1… = ≤ … ≤τ τ , (A6.51)

where

{ , , } {( ) ( )}τ τ τ τ1 1 1 1≤ … ≤ ≡ ≤ ∩ … ∩ ≤t t t tn n n n ,

is the distribution function of the random vector τ→ , known as joint distribution
function of τ τ1, ,… n  .  F( , , )t tn1 …  is:

 • monotonically nondecreasing in each variable,

 • zero (in the limit) if at least one variable goes to − ∞ ,
 • one (in the limit) if all variables go to ∞,

 • continuous from the right in each variable,

 •  such that the probabilities Pr{ , , }a b a bn n n1 1 1< ≤ … < ≤τ τ , calculated for
arbitrary a an1, ,… , b bn1, ,…  with a bi i< , are not negative (see e. g. [A6.7]).
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It can be shown that every component τ i of τ τ τ
→

= …( , , )1 n  is a random variable
with distribution function, marginal distribution function,

F Fi i i i it t t( ) Pr{ } ( , , , , , , )= ≤ = ∞ … ∞ ∞ … ∞τ ,        F Fi i( ) , ( )−∞ ∞= =0 1. (A6.52)

Similarly as for events (Eq. (A6.9)), the random variables τ τ1, ,… n of τ
→

 are totally
(mutually, statistically, stochastically) independent (independent in this book, p.419)
if and only if, for any 1< ≤k n and k-tulpe   ( , , )t tk

k
1 … ∈ R , 

  
F F( , , ) ( )t t tk i i

i

k
1

1
K =

=
∏

holds, see e. g. [A6.7].  In particular,

  

F F( , , ) ( )t t tn i i
i

n

1
1

K =
=
∏ (A6.53)

must be satisfied for arbitrary t tn1, ,… .  Equation (A6.53) is equivalent to

  
Pr{ ( )} Pr{( )}τ τi i

i

n

i

n

i iB B∈ = ∈
= =

∏
1 1

I

for every Bi ∈ B n.
The random vector τ τ τ

→
= …( , , )1 n  is absolutely continuous if a function

f( , , )x xn1 0… ≥  exists such that for any n and n-tulpe t tn1, ,…

F f( , , ) ( , , )t t x x dx dxn n n

t t n

1 1 1

1

… = … … …
−∞ −∞
∫ ∫  . (A6.54)

f( , , )x xn1 …  is the density of τ
→

, known also as joint density of τ τ1, ,… n, and
satisfies the condition

… … … =
−∞

∞

−∞

∞
∫ ∫ f( , , ) .x x dx dxn n1 1 1

For any subset   A ∈B n, it follows that

Pr{( , , ) } ( , , )τ τ1 1 1… ∈ = … … …∫ ∫n n nA t t dt dt
A

f . (A6.55)

The density of τ i (marginal density) can be obtained from f( , , )t tn1 …  as

f fi i n i i nt t t dt dt dt dt( ) ( , , )= … … … …
−∞

∞

−∞

∞
∫ ∫ − +1 1 1 1  . (A6.56)

If the random variables τ τ1, ,… n of τ
→

 are independent ( totally, mutually,
statistically, stochastically independent) and have densities f ( ) ,... ,f ( )1 x xn , the
random vector τ

→ has density

f f    .( , , ) ( )t t tn i i
i

n

1
1

… =
=
∏ (A6.57)
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For a two dimensional continuous random vector τ τ τ
→

= ( , )1 2 , the function

f
f

f1
2 2 1

1 2

1

( )
( , )

( )
t t

t t

t
=  (A6.58)

is the conditional density of τ2 under the condition τ1 1= t , with f ( )1 1 0t > .
Similarly, f ( ) f( , ) f ( )| /1 1 2 1 2 2 2t t t t t=  is the conditional density for τ1 given τ2 2= t ,
with f ( )2 2 0t > .  For the marginal density of τ2 it follows that

f f f f2 2 1 2 1 1 1 2 2 1 1( ) ( , ) ( ) ( )t t t dt t t t dt= =
−∞

∞

−∞

∞
∫ ∫ . (A6.59)

Therefore, for any A ∈B 2

Pr{ } ( ) ( ( ) ( ) )τ2 2 2 2 1 1 2 2 1 1 2∈ = =∫ ∫∫
−∞

∞
A t dt t t t dt dt

A A

f f f  , (A6.60)

and in particular

F f f f2 2 2 2 2 1 1 2 2 1 1 2( ) Pr{ } ( ) ( ( ) ( ) )t t t dt t t t dt dt
tt

= ≤ = =
−∞

∞

−∞−∞
∫∫∫τ  . (A6.61)

Equations (A6.58) & (A6.59) lead to the Bayes theorem for continuous random
variables

f f f f f2 2  2 2 1 2 1 1 2 2 1 1 2 2( ) ( ( ) ( )) ( ) ( )/ ,t t t t t t t t dt=
−∞

∞
∫

used in Bayesian statistics.
Two dimensional distribution function, known as bivariate distributions, have

been proposed for some reliability models, see e. g. [2.34 (1975)].

A6.8 Numerical Parameters of Random Vectors

Let τ τ τ
→

= …( , , )1 n  be a random vector, and u a continuous real-valued function
in R n.  The expected value or mean of the random variable u( )τ

→
 is

E[u( )] u( , , ) p( , , ), ,τ→ = … … …
= =

∑ ∑
i

k

i n n n
i

k

t t i ii
n

n

1

1

1
1

1 1
1

(A6.62)

for the discrete case and

E[u( )] u( , , ) f( , , )τ→ = … … … …
−∞

∞

−∞

∞
∫∫ t t t t dt dtn n n1 1 1 (A6.63)

for the continuous case, assuming that series and integral converge absolutely.
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As an example for n =2 , the conditional expected value (mean) of τ2 given
τ1 1= t  follows in the continuous case from Eqs. (A6.36) and (A6.58) , as

E[ ] ( ) .| |τ τ2 1 1 2 2 1 2= =
−∞

∞
∫t t t t dtf  (A6.64)

Thus the unconditional expected value (mean) of τ2 can be obtained from

E[ ] E[ ] f ( ) .|τ τ τ2 2 1 1 1 1 1= =
−∞

∞
∫ t t dt (A6.65)

Equation

 

(A6.65) is known as the formula of total expectation and is useful in
practical applications.

A6.8.1 Covariance Matrix, Correlation Coefficient

Assuming for τ τ τ
→

= …( , , )1 n  that Var[ ]τ i < ∞ , i n= …1, , , an important rough
characterization of a random vector is the covariance matrix | |aij , where
(Eq. (A6.68))

a ij i j i i j j

i j i j

= = − −

= −

Cov[ , ] E[( E[ ])( E[ ])]

E[ ] E[ ] E[ ] .

τ τ τ τ τ τ

τ τ τ τ    
                       

                                            (A6.66) 

The diagonal elements of the covariance matrix are the variances of components τ i,
i n= …1, , .  Elements outside the diagonal give a measure of the degree of
dependency between components (obviously a aij ji= ).  For τi  independent of τ j ,
a aij ji= = 0 holds.

For a two dimensional random vector τ τ τ
→

= ( , )1 2 , the quantity

ρ τ τ
τ τ

σ σ
( , )

Cov[ , ]
1 2

1 2

1 2

=
⋅

(A6.67)

is the correlation coefficient of the random variables τ1 and τ2, provided

             σ τi i i= < ∞ =Var[ ] ,   ,1 2.

The main properties of the correlation coefficient are:

 1. | |ρ ≤ 1,

 2. if τ1 and τ2 are independent, then ρ = 0,

 3. ρ = ±1 if and only if τ1 and τ2 are linearly dependent.

The contrary in Point 2 is not necessarily true.
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A6.8.2 Further Properties of Expected Value and Variance

Let τ τ1, ,… n be arbitrary random variables (components of a random vector τ
→

)
and C Cn1, ,…  constants.  Using Eq. (A6.63) with u( , )t t t t1 2 1 2= + , Eq.(A6.56), and
Eq. (A6.40) for n = 2 , and similarly as for Eq. (A6.14) for n > 2 , it follows that

E[ ] E[ ] E[ ] , .C C C Cn n n n Ci1 1 1 1τ τ τ τ+ …+ = + …+ ∞ < ∞       -  <  (A6.68)

If τ1 and τ2 are independent, Eqs. (A6.63) and (A6.57)  &  Eq. (A6.45) yield

E[ ] E[ ] E[ ]τ τ τ τ1 2 1 2=    &    Var[ ] E[ ] E[ ] E [ ] E [ ].τ τ τ τ τ τ1 2 1 2 1 2
2 2 2 2= − (A6.69)

For independent random variables τ τ1, ,… n, using Eq. (A6.42) in the form
Var[ ] ...τ τ τ τ τ τ τ τ τ τ1 1 1 1 1+…+ − −− − −= − =n n n n nE[ ( E[ ] E[ ]) ] E[( E[ ] E[ ]) ]+  ...+ +  ...+2 2

and Eqs. (A6.45), (A6.68) & (A6.69), it follows that

Var[ ] Var[ ] Var[ ] .τ τ τ τ1 1+ …+ = + …+n n (A6.70)

For arbitrary random variables τ τ1, ,… n, Eq. (A6.66) and the same procedure
used for Eq. (A6.70) yield

Var[ ] Var[ ] Cov[ , ] ,τ τ τ τ τ1
1

+ =… + ∑ ∑
= <

n j i j

n

j i j 
+ 2 (A6.71)

Cov[ , ]τ τi j  summing over n n( ) /−1 2 terms.

A6.9 Distribution of the Sum of Independent
Positive Random Variables and of τmin , τmax

Let τ1 and τ2 be independent non-negative arithmetic random variables with
a ii = =Pr{ }τ1 , b ii = =Pr{ }τ2 , i = …0 1, , .  Obviously, τ τ1 2+  is also arithmetic, and
therefore (theorem of total probability (Eq. (A6.17)) and Eq. (A6.7))

c k i k ik
i

k
= + = = = ∩ = −

=
Pr{ } Pr{ { }}τ τ τ τ1 2 1 2

0
U

    = = = − =
=

−
=

∑ ∑Pr{ }Pr{ } .τ τ1
0

2
0

i k i a b
i

k

i k i
i

k
(A6.72)

The sequence c c0 1, , … is the convolution of the sequences a a0 1, , … and b b0 1, , ….
Now, let τ1 and τ2 be two independent positive continuous random variables

with distribution functions F ( )1 t , F ( )2 t  and densities f ( )1 t , f ( )2 t , respectively
( F ( ) F ( )1 20 0 0= = ).  Using Eq. (A6.55), it can be shown (Example A6.11 and
Fig. A6.4) that for the distribution of η τ τ= +1 2
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0
t

x t

η

τ1
τ 2

Figure A6.4    Visual aid to compute the distribution of η τ τ= +1 2  ( τ τ1 2 0, > )

F ( ) Pr{ } ( ) F ( )η ηt t x t x dx
t

= ≤ = −∫ f1 2
0

,        t t t> = ≤0 0 0, ( ) , F  for η (A6.73)

holds, and

f f fη( ) ( ) ( )t x t x dx
t

= −∫ 1 2
0

,          t t t> = ≤0 0 0, ( ) . f  for η (A6.74)

The extension to two independent continuous random variables τ1 and τ2 defined
over ( , )−∞ ∞  leads to

F f F and f f fη η( ) ( ) ( )                ( ) ( ) ( )t x t x dx t x t x dx= − = −
−∞

∞

−∞

∞
∫ ∫1 2 1 2 .

The right-hand side of Eq. (A6.74) represents the convolution of the densities f ( )1 t
and f ( )2 t , and will be denoted by

f f = f f
0

1 2 1 2( ) ( ) ( ) ( )x t x dx t t
t

− ∗∫ . (A6.75)

The Laplace transform (Appendix A9.7) of f ( )η t  is thus the product of the Laplace
transforms of f ( )1 t  and f ( )2 t

˜ ( ) ˜ ( )˜ ( ) .f f fη s s s= 1 2 (A6.76)

Example A6.11

Prove Eq. (A6.74).

Solution

Let τ1  and τ 2  be two independent positive and continuous random variables with distribu-
tion functions F ( )1 t , F ( )2 t  and densities f ( )1 t , f ( )2 t , respectively (F ( ) F ( ) )1 20 0 0= = .  From
Eq. (A6.55) with f( , ) f ( ) f ( )x y x y= 1 2  it follows that (see also the graph)
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F ( ) Pr{ } f ( ) f ( )η η τ τt t x y dx dy
x y t

= = + ≤ =
+ ≤
∫∫1 2 1 2

 = = −
−
∫∫ ∫( f ( ) ) f ( ) ( ) f ( )2
00

1 2 1
0

y dy x dx F t x x dx
t xt t

which proves Eq. (A6.73).  Eq. (A6.74) follows with F ( )2 0 0= .
0

x

y

t

tx+dxx

Example A6.12

Two machines are used to increase the reliability of a system.  The first is switched on at time
t = 0 , and the second at the time of failure of the first one, standby redundancy.  The failure-free
times of the machines, denoted by τ1 and τ2  are independent exponentially distributed with
parameter λ (Eq. A6.81)).  What is the reliability function of the system?

Solution
From R ( ) Pr{ } Pr{ }S t t t= + > = − + ≤τ τ τ τ1 2 1 21  and Eq. (A6.73) it follows that

R ( ) ( )( )
S

x t x
t

t tt e e dx e t e= − − = +− − − − −∫1 1
0

λ λλ λ λ λ .

R ( )
S

t  gives the probability for no failures ( e t−λ ) or exactly one failure ( λ λt e t− ) in ( , ]0 t .

Sums of positive random variables occur in reliability theory when investigating
repairable systems (e. g. Example 6.12).  For n ≥ 2 , the density f ( )η t  of η τ τ= +…+1 n
for  independent positive continuous random variables τ τ1 , ,… n follows as

f f fη( ) ( ) ( )t t tn= ∗ … ∗1 . (A6.77)

Other important distribution functions for reliability analyses are the minimum
τmin  and the maximum τmax of a finite set of positive, independent random
variables τ τ1, ,… n; for instance, as failure-free time of a series or a 1-out-of-n
parallel system, respectively.  If τ τ1 , ,… n are positive, independent random variables
with distribution functions F ( ) Pr{ }i it t= ≤τ , F ( )i 0 0= , i n= …1, , , then

Pr{ } Pr{ } ( ( ))minτ τ τ> = > ∩ … ∩ > = −∏
=

t t t tn i
i

n

1
1

1 F , (A6.78)

and

Pr{ } Pr{ } ( )maxτ τ τ≤ = ≤ ∩ … ∩ ≤ = ∏
=

t t t tn i
i

n

1
1

F . (A6.79)

It can be noted that the failure rate related to τmin  is given by (Eq. (A6.26))

λ λ λS nt t t( ) ( ) ( )= + … +1 , (A6.80)

where λ i t( ) is the failure rate related to F ( )i t .  The distribution of τmin  leads for
F ( ) ... F ( )1 t tn= =  and n→ ∞ to the Weibull distribution [A6.8].  For the mixture of
distribution functions one refers to the considerations given by Eqs. (A6.34) & (2.15).
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___________________

+) Note that only F ( )t  has been defined right continuous (Eq. (A6.19)).

A6.10 Distribution Functions used in Reliability
Analysis

This section introduces the most important distribution functions used in reliability
analysis, see Table A6.1 for a summary.  The variable t, used here for convenience,
applies in particular to nonrepairable items (failure-free times τ > 0 ).  For interar-
rival times (e. g. when considering repairable systems), x has to be used instead of t.

A6.10.1 Exponential Distribution

A continuous positive random variable τ has an exponential distribution if

F                 F  for  ( ) ,    ; ( ( ) ) .t e t t t t= − − > > = ≤1 0 0 0 0λ λ (A6.81)

The density is given by

f( ) ,       ; ( ( ) ) .t e t t t t= − > > = ≤λ λ λ                f  for  0 0 0 0 +) (A6.82)

and the failure rate (Eq. (A6.25)) by

λ λ( )t = ,                            ( ( ) ) .t t t> = ≤0 0 0                for  λ +) (A6.83)

The mean & variance can be obtained from Eqs. (A6.37), (A6.82) & (A6.41),
(A6.45), (A6.82) as

E[ ] /τ λ= 1 (A6.84)
and

Var[ ] / .τ λ= 1 2 (A6.85)

The Laplace transform of f( )t  is, according to Table A9.7,

f̃( ) .s
s

=
+
λ

λ
(A6.86)

Example A6.13
The failure-free time τ of an assembly is exponentially distributed with λ = − −10 5 1h . What is the
probability of τ being  (i) over 2 000, h, (ii) over 20 000, h, (iii) over 100 000, h , (iv) between
20 000, h and 100 000, h ?

Solution
From Eqs. (A6.81), (A6.24) and (A6.19) one obtains

(i) Pr{ , } ..τ > = ≈−2 000 0 980 02h e ,

(ii) Pr{ , } ..τ > = ≈−20 000 0 8190 2h e ,

(iii) Pr{ , } Pr{ / E[ ]} .τ τ λ τ> = > = = ≈−100 000 1 0 3681h e ,

(iv) Pr{ , , } ..20 000 1 0 000 0 4510 2 1h < 0 hτ ≤ = − ≈− −e e .
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___________________

+) λ ( )t  is increasing if λ λ( ) ( )t t t t2 1 2 1≥ >   for  and strictly increasing if λ λ( ) ( ) .t t t t2 1 2 1> >   for

For an exponential distribution, the failure rate is constant (time independent)
and equal to λ.  This important property is a characteristic of the exponential
distribution and does not appear with any other continuous distribution.  It greatly
simplifies calculation because of the following properties:

 1. Memoryless property:  Assuming that the failure-free time is exponentially
distributed and knowing that the item is functioning at the present time, its
behavior in the future will not depend on how long it has already been
operating.  In particular, the probability that it will fail in the next time inter-
val δt  is constant and equal to λ δt .  This is a consequence of Eq. (A6.29)

Pr{ }τ τ λ> + > = −t x x e t
0 0 . (A6.87)

 2. Constant failure rate at system level:  If a system without redundancy consists
of elements E En1 , ,…  and the failure-free times τ τ1 , ,… n of these elements are
independent and exponentially distributed with parameters λ λ1 , ,… n then,
according to Eqs. (A6.78) and (A6.25), the system failure rate is also constant
(time independent) and equal to the sum of the failure rates of its elements

R ( ) ,           S
t t tt e e en S

S n= … =− − − = + … +λ λ λ λ λ λ1
1 with . (A6.88)

However, it must be noted that the expression λ λS i= ∑  is a characteristic of the
series model with independent elements, and also remains valid for the time
dependent failure rates λ λi i t= ( ), see Eqs. (A6.80) and (2.18).

A6.10.2 Weibull Distribution

The Weibull distribution can be considered as a generalization of the exponential
distribution.  A continuous positive random variable τ has a Weibull distribution if

F                    F  for  ( ) ,( )  ; , ( ( ) ) .t e t t t t= − − > > = ≤1 0 0 0 0λ λ ββ (A6.89)

The density is given by

f            f  for      ( ) ( ) ,( ) ; , ( ( ) ) .  t t e t t t t= − − > > = ≤λβ λ β βλ λ β1 0 0 0 0 (A6.90)

and the failure rate (Eq. (A6.25)) by

λ βλ λ β λ β λ( ) ( ) ,   ; , ( ( ) ) .t t t t t= − > > = ≤1 0 0 0 0                          for   (A6.91)

λ is the scale parameter (F(t) depends on λt  only) and β the shape parameter.
β = 1 yields the exponential distribution.  For β > 1, the failure rate λ( )t  is strictly
increasing 

+), with λ ( )+ =0 0 & λ ( ) .∞ =∞   For β < 1, λ( )t  is strictly decreasing, with
λ ( )+ =∞0  and λ ( )∞ = 0.  The mean & variance are given by (Eqs. (A6.37), (A6.90),
(A6.94) & (A6.45), (A6.41), (A6.90), (A6.94), and Appendix A9.6 for Γ Γ( ) ( )z z z+ =1 )
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E[ ]
( / ) ( / )τ β β

λ λβ
= =+Γ Γ1 1 1

(A6.92)

and

Var[ ]
( / ) ( / ) ,τ β β

λ
= + − +Γ Γ1 2 1 12

2 (A6.93)

where

Γ( )z x e dxz x= − −
∞
∫ 1

0
,                z > 0, (A6.94)

is the complete Gamma function (Appendix A9.6).  The coefficient of variation
κ τ τ= Var  [ ] E[ ]/  is plotted in Fig. 4.5.  For a given E[ ]τ , the density of the
Weibull distribution becomes peaked with increasing β.  An analytical expression
for the Laplace transform of the Weibull distribution function does not exist.

For a system without redundancy (series model) whose elements have
independent failure-free times τ τ1, ,… n distributed according to Eq. (A6.89), the
reliability function is given by

RS
t n tt e e( ) ( )( ) ( ' )= =− −λ λβ β ,                t S> =0 0 1, R ( ) , (A6.95)

with λ λ β
'= n .  Thus, the failure-free time of the system has a Weibull distribution

with parameters λ β'  and .
The Weibull distribution with β > 1 often occurs in practical applications as a

distribution of the failure-free time of components which are subject to wear-out
and / or fatigue (lamps, relays, mechanical components, etc.).  It was introduced
by W. Weibull in 1951, related to investigations on fatigue in metals [A6.20].
B.W. Gnedenko showed that a Weibull distribution occurs as one of the extreme
value distributions for the smallest of n →∞  independent random variables with the
same distribution function (Weibull-Gnedenko distribution [A6.7, A6.8]).

The Weibull distribution is often given with the parameter α λβ=  instead of λ
or also with three parameters (see Example A6.14 and pp. 531-532 for a discussion)

F             F for  (( ) ,     ( ( )) , , ( ) ) . t e t t t t= − − − > > = ≤1 0 0λ ψ ψ λ β ψβ (A6.96)

Example A6.14
Shows that for a three parameter Weibull distribution, also the time scale parameter ψ can be
determined (graphically) on a Weibull probability chart, e. g. for an empirical evaluation of data.

Solution
In the coordinates system log ( ) log log ( / ( ( )))10 10 10 1 1t t and F−  the 2 parameter Weibull distri-
bution function (Eq. (A6.89)) appears as a straight line, allowing a graphical determination of λ β  ,
(see Eq. (A8.16) & Fig. A8.2).  The three parameter Weibull distribution (Eq. (A6.96)) leads to a
concave curve.  In this case, for two arbitrary points t t t1 2 1 and >  it holds, for the mean point on
log log ( / ( ( )))10 10 1 1−F t , defining tm , that log log ( / ( ( ))) log log ( / ( ( )))10 10 1 10 10 21 1 1 1− + − =F Ft t
2 1 110 10log log ( / ( ( ))),−F tm  considering Fig. A8.2 & a (b a) / (a b) /+ +2 = 2− .  From this, Eq. (A8.16)
with F ( )t  per Eq. (A6.96) leads to  ( )( ) ( )t t t m2 1 2− − −=ψ ψ ψ  and ψ = − + −( ) /( )t t t t t tm m1 2 1 22 2 .
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A6.10.3 Gamma Distribution, Erlangian Distribution,
and χ2 -Distribution

A continuous positive random variable τ has a Gamma distribution if

F   
(A6.97)

   F  for  ( ) Pr{ } ,  
( )

( , )

( )
;  , ( ( ) ) .t t x dxe x tt

t t t= ≤ = =− > > ≤− =∫τ
β

β
λ γ β λ

β
λ β

1

0
0 0 0 01

Γ Γ

Γ  is the complete Gamma function (Eq. (A6.94)).   γ is the incomplete Gamma
function (Appendix A9.6).  The density of the Gamma distribution is given by

f ,              f  for  ( )     
( )

( )
 ;  , ( ( ) ) .t

t te t t t=
−

− > > = ≤λ λ β

β
λ λ β

1

0 0 0 0
Γ

(A6.98)

and the failure rate is calculated from λ( ) ( ) / ( F( ))t t t= −f 1 .  For β = =n 1 2, , ...
(Eq. (6.102)) it holds that       

i=0
λ λ λ( ) [ ( )! ( ) / ! ]/t tn n it n i

n= −− −∑1 1
1

.  λ ( )t  is constant
(time independent) for β = 1, strictly decreasing for β < 1 and strictly increasing for
β > 1.  However, λ( )t  always converges to λ for t → ∞, see Tab. A6.1.  A Gamma
distribution with β < 1 mixed with a three-parameter Weibull distribution (Eq.
(A6.34, case 1)) can be used as an approximation to a distribution function yielding
a bathtub curve (Fig. 1.2) as failure rate.

The mean & variance are given by (Eqs. (A6.37), (A6.98), (A6.94) & (A6.45),
(A6.41), (A6.98), and Appendix A9.6 for Γ Γ( ) ( )z z z+ =1 )

E[ ] /τ β λ= (A6.99)
and

Var[ ] / .τ β λ= 2 (A6.100)

The Laplace transform (Table A9.7) of the Gamma distribution density is

f̃ ( ) ./ ( )s s= +λ λβ β (A6.101)

From Eqs. (A6.101) and (A6.76), it follows that the sum of two independent
Gamma-distributed random variables with parameters λ, β1 and λ, β2 has a Gamma
distribution with parameters λ, β β1 2+  (Example A6.15).

Example A6.15
Let the random variables τ1 and τ2  be independent and distributed according to a Gamma
distribution with the parameters λ and β.  Determine the density of the sum η τ τ= +1 2 .

Solution
According Eq. (A6.98), τ1 and τ2  have density f( ) ( ) ( )./t t e t= − −λ λ ββ λ1 Γ  The Laplace trans-
form of f( )t  is f̃( ) / ( )s s= +λ λβ β  (Table A9.7).  From Eq. (A6.76), the Laplace transform of the
density of η τ τ= +1 2  follows as f̃ ( ) / ( )η

β βλ λs s= +2 2 .  The random variable η τ τ= +1 2  thus
has a Gamma distribution with parameters λ and 2β  (generalization to n > 2 is immediate).

Supplementary result:  More generally, if τ1 and τ2  are Gamma distributed with parameters λ,
β1 and λ, β2 , τ τ1 2+  is Gamma distributed with parameters λ, β β1 2+ .
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For β = = …n 2 3, , , the Gamma distribution given by Eq. (A6.97) leads to an
Erlangian distribution with parameters λ  and n (exponential distribution for β =1).
Considering Eqs. (A6.86), (A6.77) and (A6.101) with β = n, it follows that:

I f  τ i s  Erlang distributed with parameters λ  and n ,  then τ can be
considered as the sum of n independent, exponentially distributed random
variables with parameter λ ( ...τ τ τ= + +1 n  with Pr{ } ,τ λ

i t e t≤ = − −1  i n= …1, , ).

The Erlangian distribution can be obtained by partial integration of the right-hand
side of Eq. (A6.97), with β = n, yielding (see also Eq. (A7.39))

F       
(A6.102)

         F for( ) Pr{ }
( )

( )

!
( ( ) ), . ,t t e d x en n

x t

i
t t t t n

xt n i

i

n

= ≤+…+ > = ≤ ≥= = −
−

− −∫
=

−

∑τ τ
λ λ λ

1
0

0 0 0 1
1

1
0

1

Γ

From Example A6.15, if failure-free times are Erlangian distributed with parameters
( , )n λ , the sum of k failure-free times is Erlangian distributed with parameters ( , )kn λ .

For λ = 1 2/  and β ν= / 2 , ν = …1 2, , , the Gamma distribution given by
Eq. (A6.97) is a chi-square distribution ( χ2- distribution) with ν degrees of freedom.
The corresponding random variable is denoted χ ν

2 .  The chi-square distribution with
ν degrees of freedom is thus given by (see also Appendix A9.2)

F          
F for  

=1, 2, 3, ... .

         
(A6.103)

( ) Pr{ }
( )

/

( )
/

/ , ( ( ) ),t t x e dx y e dyx
t t

y t t t
= = =

> = ≤≤
−

−
−

−∫ ∫χν ν

ν

ν ν

ν

ν
2

1

0

2
1

2 02

2
1

2
2

2
1

2 0 0 0

Γ Γ

From Eqs. (A6.97), (A6.102), and (A6.103) it follows that

2 1λ τ τ( )+ … + n (A6.104)

has a χ2 distribution with ν = 2 n degrees of freedom.  If ξ ξ1, ,… n are inde-
pendent, normally distributed random variables with mean m and variance σ 2, then

( ) ( )
ξ

σ σ
ξi m

i

n

i
i

n

m
−

= =
∑ ∑= −

1 1

2 1
2

2 

is χ2 distributed with n degrees of freedom (see Problem A6.7 in Appendix A11 for
n =1 and Example 6.15 for n > 1, as well as Appendix A9.4 for further relations).
Above considerations show the importance of the χ2-distribution.  The χ2-distribu-
tion is also used to compute the Poisson distribution (Eq. (A6.130), Eq. (A6.102)
with n=ν /2 & λ =1 2/ , or Eq. (A6.126) with k = −ν /2 1 & m t= /2, ν=2 4, ,...).

Example A6.16
Prove the affirmation to Eq. (A6.104).

Solution
From Eq. (A6.102) it follows that Pr{ ... } Pr{ ( ... ) }τ τ τ λ τ τ τ λ1 2 1 22 2+ + + ≤ = + + + ≤ =n nt t

x xdx nnt e−∫ −1
0

λ
/ ( )Γ . 2λt y=  yields Pr{ ( ... ) }2 1 2λ τ τ τ+ + + ≤ =n y x xdx nny e−∫ −1

0
2/ / ( )Γ .

Finally, setting x z= / 2 it follow that Pr{ ( ... ) }2 1 2λ τ τ τ+ + + ≤ =n y z dx nny z ne− −∫ 1
0

2 2/ / ( ).Γ
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A6.10.4 Normal Distribution

A widely used distribution function, in theory and practice, is the normal distri-
bution, or Gaussian distribution.  The random variable τ has a normal distribution if

F( ) ,

( )

/ , , .t e dy e

y mt
x mdx t

t m

= =
−

− ∞
−

− ∞

−

∫ ∫
−

− ∞ < < ∞ >
1

2

2
1

2

2

2

2 2 0
σ π

σ
π

σ

σ         (A6.105)

The density of the normal distribution is given by

f ,          

( )

, ,t e

t m

t m( ) =
−

−∞ < < ∞ >

−
1

0
2

2

2

2

σ π
σ σ            . (A6.106)

The failure rate is calculated from λ( ) f( ) /( F( ))t t t= −1 .  The mean and variance are
(Eqs. (A6.37), (A6.106) with x mt= −( ) / σ 2, (A6.44), the Poisson integral (p. 566),
and xe dx e dx d da e dx x e dx a a ax ax a ax ax− − ⇒ − = − == = − =

− ∞

∞

− ∞

∞

− ∞

∞

− ∞

∞
∫ ∫ ∫ ∫2 2 2 2 20 2 1& / ( )/ / / , )π π

E[ ]τ = m (A6.107)
and

Var[ ]τ σ= 2 , (A6.108)

The density of the normal distribution is symmetric with respect to the line x m= .
Its width depends upon the variance.  The area under the density curve is equal to
(Table A9.1, [A9.1])

 • 0.6827     for the interval m ± σ ,  • 0.9999367    for the interval m ± 4σ ,
 • 0.95450   for the interval m ± 2 σ ,  • 0.9999932    for the interval m ± 4 5. σ ,
 • 0.99730   for the interval m ± 3σ ,  • 0.99999943  for the interval m ± 5σ .

A normal distributed random variable takes values in ( , )− +∞ ∞ .  However, for
m > 3 σ  it is often possible to consider it as a positive random variable in practical
applications.  m ± 6 σ  is often used as a sharp limit for controlling the process quality
(6-σ approach).  By accepting a shift of the mean of ± 1 5. σ  in the manufacturing
process, the 6-σ  approach yields (for a normal distribution) 3 4.  ppm  right and
3 4.  ppm  left the sharp limit ( . )m ± 4 5  σ .

If τ has a normal distribution with parameters m and σ 2, ( ) /τ σ− m  is normally
distributed with parameters 0 and 1, which is the standard normal distribution Φ( )t

Φ( ) /t e dxx
t

= −
−∞
∫1

2

22

π
. (A6.109)

If τ1 and τ2 are independent, normally distributed random variables with
parameters m1, σ 1

2, and m2, σ2
2, η τ τ= +1 2 is normally distributed with parameters

m m1 2+ , σ σ1
2

2
2+  (Example A6.17).  This rule can be generalized to the sum of n

independent normally distributed random variables, and extended to dependent
normally distributed random variables (Example A6.17, supplementary results).
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Example A6.17

Let the random variables τ1 and τ2  be independent and normally distributed with means m1 and
m2  and variances σ1

2 and σ2
2 .  Give the density of the sum η τ τ= +1 2 .

Solution

According to Eq. (A6.106) and the results of Appendix A6.9, the density of η τ τ= +1 2  follows as

f ( )
(

( ) ( )
)

η
σ σ

π σ σ
t dxe

x m t x m

=
−

−
+

− −

−∞

∞
∫

1

2 1 2

1 2
2

1
2

2

2
22 2     .

Setting u x m= − 1 & v t m m= − −1 2 , considering

u v u u v v2 2
2

1
2

2
2

1
2

2
2

1 2

1

2 1
2

2
2

2

1
2

2
2σ σ

σ σ

σ σ

σ

σ σ σ σ σ
+

+

+
+

+

−
= −













( )
,

and setting finally u v yσ σ σ σσ σ σ σ1
2

2
2

1
2

2
2

1 2 1 2
+ +− =/ /  , the result

fη
σ σ

σ σ( )

( )

( )t e

t m m

=
π +

−
− −

+1

2
1
2

2
2

2

1
2

2
2

1 2

2

is obtained.  Thus the sum of two independent normally distributed random variables is also
normally distributed with mean m m1 2+  and variance σ σ1

2
2
2+ .

Supplementary results:  If τ1 and τ2  are not independent, the distribution function of τ τ1 2+
is still a normal distribution with m m m= +1 2 , but with variance
σ σ σ ρ σ σ2

1
2

2
2 2 1 2= + +  [A6.7] ( ρ =  correlation coefficient, Eq. (A6.67)).

The normal distribution often occurs in practical applications, also because the
distribution function of the sum of a large number of independent random variables
converges under weak conditions to a normal distribution (central limit theorem,
Eq. (A6.148)).

A6.10.5 Lognormal Distribution

A continuous positive random variable τ  has a lognormal distribution if its
logarithm is normally distributed (Example A6.18).   For the lognormal distribution,

F  

      (A 6.110)

  
-

 
ln(  

  (F for
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(ln( ))
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The density is given by

f     f  for  ( ) ,       (ln ) /  ;  , ( ( ) ) . t e
t

t t t t= − > > = ≤
1

2
0 0 0 0

2 22

σ π
λ σλ σ (A6.111)

The failure rate is calculated from λ( ) ( ) / ( F( ))t t t= −f 1 , see Table A6.1 for an
example.  The mean and variance of τ are (Eqs. (A6.37), (A6.111), (A6.41), (A6.45),
Poisson integral (p. 566), Problem A6.8 in Appendix A11)

E[ ] //τ λσ= e
2 2 (A6.112)

and

Var[ ] / ,( )τ λσ σ= −e e2 22 2

(A6.113)

respectively.  The density of the lognormal distribution is practically zero for some t
at the origin, increases rapidly to a maximum and decreases quickly (Fig. 4.2).  It ap-
plies often as model for repair times (Section 4.1) or for lifetimes in accelerated
reliability tests (Section 7.4) and appears when a large number of independent
random variables are combined in a multiplicative way (additive for η τ= ln , i. e. for
normal distribution).  Notation with m or  lna = − ( )λ  is often used.  It must also be
noted that σ λτ τ2 = = =Var[ ] E[ ]( )ln   and  ln ln 1 /m  (Example A6.18).

Example A6.18
Show that the logarithm of a lognormally distributed random variable is normally distributed.

Solution
For

f ( ) (ln ln ) /
τ

λ σ

σ π
t

t
e t= − +1

2

2 22

and η τ= ln , Equation (A6.31) yields ( u( ) lnt t=  and u − =1( )t e t )

f ( ) ,( ln ) / ( ln ) / ( ) /
η

σ σ σπ

λ σ

π

λ σ

π

σt e e e e
e t

t t t t m= = =− + − + − −1

2

2 1

2

2 1

2

2
2 2 2 2 2 2

with m= ln( / )1 λ ;  η τ= ln  is thus normally distributed with mean m= ln( / )1 λ  and variance σ2 .

Supplementary results  (considering Eqs.(A6.31),(A6.106)&(A6.111),(A6.90)&(A6.82),(A6.114):

(i) u u ln  ( ) ( ) ( );t t te t= =−1 :        Normal distribution  →  Lognormal distribution,

(ii) u ln u  ( ) ( ) ( );t t t e t= =−1 :     Lognormal distribution  →  Normal distribution,

(iii) u u  ( ) ( ) /;t t tt= =− −−λ λβ β ββ1 11 : Weibull distribution  →  Exponential distribution,

(iv) u u  ( ) ( )/ ;t tt t= =− −−λββ β βλ1 11 : Exponential distribution  →  Weibull distribution,

(v) u u   ( ) F ( ) ( ) F ( );t t t t= =− −
η η

1 1 : Uniform distribution on ( , )0 1   →  F ( )η t ,

(vi) u u   ( ) F ( ) ( ) F ( );t t t t= =− −
τ τ

1 1 : F ( )τ t   →  Uniform distribution on ( , )0 1 ,

(vii) u  .       u( ) ; ( ) / :t t t tC C= =−1   F ( ) F ( / ) ( ) ( / ) /η ητ τt t t tC C C= =  and  f f ,

u       u( ) ; ( ) :t t t tC C= − = +−1    F ( ) F ( ) ( ) ( )η τ η τt t t tC C= + = +  and  f f

    In Monte Carlo simulations, more elaborated algorithms than F ( )η
− 1 t  are often used.
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A6.10.6 Uniform Distribution

A continuous random variable τ is uniformly distributed in the interval ( , )a b  if it
has the distribution function

F

if

if( ) Pr{ }

.

t t

t a
t a

b a
a t b

t b

= ≤ =










≤
−
−

< <

≥

τ

0

1

(A6.114)

The density is then given by

f for( )             t
b a

a t b=
−

< <
1

.

The uniform distribution is a particular case of the geometric probability introduced
by Eq. (A6.3), for R 1 instead of R 2.

Considering the property mentioned by case (V) of Example A6.18, the uniform
distribution in the interval [ , )0 1  plays an important role in simulation problems
(discrete random variables ζ ζ ζ0 1 2 1, ,..., n −  with pi

n= 1 2/ , for digital computers).

A6.10.7 Binomial Distribution

Consider a trial in which the only outcomes are either a given event A  or its com-
plement A .  These outcomes can be represented by a random variable of the form

δ = 



1

0

if occurs

otherwise.

A
(A6.115)

δ is called a Bernoulli variable.  If

Pr{ }         Pr{ }δ δ= = = = −1 0 1p p and      ,                0 1< <p , (A6.116)

then
E[ ] ( )δ = ⋅ + ⋅ − =1 0 1  p p p , (A6.117)

and (Eq. (A6.45))

Var[ ] E[ ] E [ ]δ δ δ= − = − = −( )2 2 2 1p p p p . (A6.118)

An infinite sequence of independent Bernoulli variables

δ δ1 2, , …

with the same probability Pr{ }δi p= =1 , i ≥ 1, is called a Bernoulli model or a
sequence of Bernoulli trials.  The sequence δ δ1 2, , … describes, for example, the
model of the repeated sampling of a component from a lot of size N, with K
defective components ( p K N= / ) such that the component is returned to the lot
after testing (sample with replacement).  The random variable
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ζ δ δ= + … +1 n (A6.119)

is the number of ones occurring in n Bernoulli trials.  The distribution of ζ is
given by

p k p pk
k n k k n p

n

k
= = = ( ) − − = … < <Pr{ } ( ) ,        , , ,  ζ 1 0 0 1    . (A6.120)

Equation (A6.120) is the binomial distribution, see example A6.19 for an application.
ζ is obviously a non-negative, arithmetic random variable taking on values in
{ , , , }0 1 … n  with probabilities pk .  To prove Eq. (A6.120), consider that

p pk n k
k k n( ) Pr{ }1 1 1 0 01 1− = = ∩ … ∩ = ∩ = ∩ … ∩ =− +δ δ δ δ

is the probability of the event A occurring in the first k trials and not occurring in the
n k−  following trials;  furthermore in n trials there are

n n n k

k

n

k n k

n

k

( ) ( )

!

!

! ( )!

− … − +
−

= = ( )1 1 
 

different possibilities of occurrence of k ones and n k−  zeros ( k ! considers that the k
ones can not be distinguished, yielding k ! identical possibilities).  The addition the-
orem (Eq. (A6.11)) then leads to Eq. (A6.120), see example A6.19 for an application.

For the random variable ζ defined by Eq. (A6.119) it follows that (Example
A6.20)

Pr{ }  ( )    , , ,  ζ ≤ = ( ) −
=

− = … < <∑k p p
i

k n

i
i n i k n p

0
0 0 11    ,      , (A6.121)

E[ ]ζ = n p , (A6.122)

Var[ ] ( )ζ = −n p p1 . (A6.123)

Example A6.19
A populated printed circuit board (PCB) contains 30 ICs.  These are taken from a shipment in
which the probability of each IC being defective is constant and equal to 1%.  What are the
probabilities that the PCB contains (i) no defective ICs, (ii) exactly one defective IC, and
(iii) more than one defective IC?

Solution
From Eq. (A6.120) with p = 0 01. ,

(i) p0
300 99 0 74= ≈. . ,

(ii) p1
2930 0 01 0 99 0 224= ⋅ ⋅ ≈. . . ,

(iii) p p p p2 30 0 11 0 036+ … + = − − ≈ . .

Knowing pi  and assuming C ii = cost for  repairs (because of i defective ICs) it is easy to
calculate the mean C of the total cost caused by the defective ICs ( C p C p C= + … +1 1 30 30 ) and
thus to develop a test strategy based on cost considerations (Section 8.4).
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Example A6.20
Give mean and variance of a binomially distributed random variable with parameters n and p.

Solution
Considering the independence of δ δ1, ,… n , the definition of ζ  (Eq. (A6.119)), and from
Eqs. (A6.117), (A6.118), (A6.68), and (A6.70) it follows that

E[ ] E[ ] E[ ]ζ δ δ= + … + =1 n n p

and

Var[ ] Var[ ] Var[ ] ( )ζ δ δ= + … + = −1 1n n p p .

A further demonstration follows, as for Example A6.21, by considering that

k p p n p p p n p p p n p
n

k

k n k

k

n n

k

k n k

k

n
m

i

i m i

i

m( ) ( ) ( )− = − = − =−

=

−

−

− −

=

−

=
∑ ∑ ∑( ) ( ) ( )1 1 1

1

1

1

1

1 0

.

For large n , the binomial distribution converges to the normal distribution
(Eq. (A6.149), convergence good for min ( , ( ))n p n p1 5− ≥ ).  For large n  and
small values of p the Poisson approximation (Eq. (A6.129)) can be used.
Exact calculations of Eq. (A6.120) can be based upon the relationship between
the binomial and the Beta or the Fisher distribution (Appendix A9.4).

Generalization of Eq. (A6.120) for the case where one of the events A Am1, ,…
can occur with probability p pm1, ,…  at every trial, leads to the multinomial
distribution

Pr{ ,in trials occurs  times,  occurs  times}n A k A km m1 1 …

= =
 !n n n k k

k k

n

k k

m

m

k
m
k

m

k
m
k

p p p pm m( ) ...( ( ... ) )

! ! ! !

− − + + +
…

…
…

…−

−

1 11 1

1 1
1

1
1

1 1 , (A6.124)

with k k nm1 + … + =   and p pm1 1+ … + =  (the demonstration is similar to that for
( )n

k  with Eq. (A6.120)).

A6.10.8 Poisson Distribution

A non-negative, arithmetic random variable ζ has a Poisson distribution if

p k ek
m k m

m

k

k
= = = − = … >Pr{ } ,

!
, , ,    ζ                   0 1 0, (A6.125)

and thus

Pr{ } ,
!

, , ,    ζ ≤ =
=

− = … >∑k e
m

i

i

i

k
m k m

0
0 1 0                       . (A6.126)
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The mean and the variance of ζ are (Example A6.21)

E[ ]ζ = m
(A6.127)

and
Var[ ]ζ = m . (A6.128)

The Poisson distribution often occurs in connection with exponentially
distributed failure-free times.  In fact, Eq. (A6.125) with m t= λ  gives the
probability of k failures in the time interval ( , ]0 t , given λ  and t  (Eq. (A7.41)).

The Poisson distribution is also used as an approximation of the binomial
distribution for n → ∞  and p → 0 such that n p m= < ∞ .  To prove this
convergence, called the Poisson approximation, set m n p= ;  Eq. (A6.120) then
yields

pk
n

k n k

m

n

m
n

n n n k

n

m

k

m

n
k n k

k

k
n k=

−
− =

− … − +
−− −!

!( )!
( ) ( )

( ) ( ) .
!

( )1
1 1

1

                                                     = − … −
−

− −1 1
1

1
1

1( ) ( ) .
!

( )
n

k

n

m

k

m

n

k
n k ,

from which (for k < ∞ , m n p= < ∞) it follows that (considering lim ( / ) )
n

mm n n e
→∞

−− =1

lim ( ) ,         
!n

k
k n k m m n pp p p e

n

k

m

k

k

→∞
− − == ( ) − =1       . (A6.129)

Using partial integration one can show that

mi

i

k

i
m

k
k y

m

k
k x

m
e y e dy x e dx

k! ! !
/− − −

=
∑ ∫ ∫= =− −

+
0

1
1

1
0

1

2
2

0

2

1
. (A6.130)

The right-hand side of Eq. (A6.130) is a chi-square distribution (Eq. (A6.103)) with
ν / 2 1= +k  and t m= 2 .  A table of the chi-square distribution can thus be used for a
numerical evaluation of the Poisson distribution (Table A9.2).

Example A6.21
Give mean and variance of a Poisson-distributed random variable.

Solution
From Eqs. (A6.35) and (A6.125),

E[ ]
! ( )! !

ζ = = = =−
∞

−
∞

−
∞

=

−

= =
∑ ∑ ∑

−
k

m

k

m
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m

i

k

k

k

k

i

i

e m e m e mm m m

0

1

1 01
   .

Similarly, from Eqs. (A6.45), (A6.41), (A6.125), and considering k k k k2 1= − +( ) ,

Var[ ]
!

[ ( ) ]
!

ζ = − = −−
∞

−
∞

= =
∑ ∑ − +k

m

k
k k k

m

k

k

k

k

k

e m e mm m2 2

0 0

2
1
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−
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∞∞

==
∑∑ m e m m m e m m m

m

k

m m
k m

i

i

ik

2
2

2 2 2

2 02 ( )! !
.
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A6.10.9 Geometric Distribution

Let δ δ1 2, , ...  be a sequence of independent Bernoulli variables resulting from
Bernoulli trials.  The positive arithmetic random variable ζ defining the number of
trials to the first occurrence of the event A has a geometric distribution

p k p pk
k k p= = = − − = … < <Pr{ } ( ) ,         , , ,ζ 1 1 1 2 0 1        . (A6.131)

Equation (A6.131) follows from the definition of Bernoulli variables δi (Eq.
(A6.115))

p k p pk k k
k= = = = ∩ …∩ = ∩ = = −− −Pr{ } Pr{ } ( )ζ δ δ δ1 1

10 0 1 1 .

The geometric distribution is the only discrete distribution which exhibits the
memoryless property, as does the exponential distribution for the continuous case.
In fact, from Pr{ } Pr{ } ( )ζ δ δ> = = ∩ … ∩ = = −k pk

k
1 0 0 1  and, for any k and j > 0,

it follows that

Pr{ } ( ) Pr{ }
( )

( )
ζ ζ ζ> + > = = − = >−

−

+
k j k p j

p

p

k j

k
j1

1
1  .

The failure rate (p. 428) is time independent and given by (considering Eqs.
(A6.131) & (A6.133))

λ ζ ζk k k p
p p

p

k

k
( ) = = > − = ==

−
−

−

−
Pr{ }

( )

( )
1

1

1

1

1
,     , , ,k p= … < <1 2 0 1 . (A6.132)

For the distribution function of the random variable ζ defined by Eq. (A6.131) one
obtains

Pr{ } Pr{ } ( )ζ ζ≤ = = − > = − −
=
∑k p k pi
i

k
k

1
1 1 1 . (A6.133)

Mean and variance are (considering    ,               nx x x n x x x xn
n

n
n

x
= =

∞ ∞
<∑ = ∑ =− + −

1
2

1
31 1 12 1/ ( ) ( ) /( ) , )

E[ ]ζ =
1
p (A6.134)

and

Var[ ] .ζ =
−1

2

p

p
(A6.135)

If Bernoulli trials are carried out at regular intervals ∆t , then Eq. (A6.133)
provides the distribution function of the number of time units ∆t  between successive
occurrences of the event A under consideration;  for example, breakdown of a
capacitor, interference pulse in a digital network, etc.

Often the geometric distribution is considered with     p p pk
k k= − =( ) , , , ...1 0 1 ,

in this case E[ ] ( ) /ζ = −1 p p  and Var[ ] ( ) /ζ = −1 2p p .
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A6.10.10 Hypergeometric Distribution

The hypergeometric distribution describes the model of a random sample without
replacement.  For example, if it is known that there are exactly K defective
components in a lot of size N, then the probability of finding k defective components
in a random sample of size n is given by (Eq. (A6.2), [A6.6 (Vol 1)])

p kk k K n

K

k

N K

n k

N

n

= = =



















−
−

= …Pr{ } ,         , , , min ( , )ζ         0 1 . (A6.136)

Equation (A6.136) defines the hypergeometric distribution.  Since for fixed n and k
( )0 ≤ ≤k n

lim  Pr{ } ( ) ,         ,
N

n

k
k n k K

N
k p p p

→∞
−= = ( ) − =ζ 1   with  

the hypergeometric distribution can, for large N, be approximated by the binomial
distribution with p K N= / .  For the random variable ζ defined by Eq. (A6.136) it
holds that

Pr{ } ,         , , , min ( , ) ,ζ ≤ =



















−
−

=
= …∑k

K

i

N K

n i

N

n
i

k
k K n            

0
0 1 (A6.137)

E n
K

N
[ ] ,ζ = (A6.138)

and (see e. g. [A9.1)

Var[ ]
( )( )

( )
.ζ = − −

−

K n N K N n

N N2 1
(A6.139)

A6.11 Limit Theorems

Limit theorems are of great importance in practical applications because they can be
used to find approximate expressions with the help of known (tabulated)
distributions.  Two important cases will be discussed in this section, the laws of
large numbers and the central limit theorem.  The laws of large numbers provide
additional justification for the construction of probability theory on the basis of
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relative frequencies.  The central limit theorem shows that the normal distribution
can be used as an approximation in many practical situations.

A6.11.1 Laws of Large Numbers

Two notions used with the laws of large numbers are convergence in probability and
convergence with probability one.  Let ξ ξ1 2, ,…, and ξ  be random variables on a
probability space   [ , , Pr]Ω F .  ξn converge in probability to ξ  if for arbitrary ε > 0

lim Pr{ }| |ξ ξ εn
n

− > =
→∞

0,                           ε > 0, (A6.140)

holds.  ζn converge to ζ with probability one if

Pr{lim } . ξ ξnn
= =

→∞
1 (A6.141)

The convergence with probability one is also called convergence almost sure (a. s.).
An equivalent condition for Eq. (A6.141) is

lim Pr{ sup }| |
n k n

k
→∞ ≥

− > =ξ ξ ε 0,                  ε > 0. (A6.142)

This clarifies the difference between Eq. (A6.140) and the stronger condition
given by Eq. (A6.141).

Let us now consider an infinite sequence of Bernoulli trials (Eqs. (A6.115),
(A6.119), and (A6.120)), with parameter p A= Pr{ }, and let Sn   (ζ  in Eq. (A6.119))
be the number of occurrences of the event A in n trials

Sn n= + … +δ δ1 . (A6.143)

The quantity S nn /  is the relative frequency of the occurrence of A in n Bernoulli
trials.  The weak law of large numbers states that for every ε > 0,

lim Pr{ }| |
n

nS

n
p

→∞
− > =ε 0,                         ε > 0. (A6.144)

Equation (A6.144) is a consequence of Chebyshev's inequality (Eq. (A6.49) with
E[ / ]S n pn =  &  Var [ / ] ( ) /S n p p nn = −1  per Eqs. (A6.122),(A6.123),(A6.40),(A6.46)).
Similarly, for a sequence of independent identically distributed random variables
τ τ1 ,..., n , with mean E[ ]τ i a=  & variance n niVar[ ]τ σ= 2    ( , , )i n= …1 ,

lim Pr{ ( ) }| |
n i

n

n i a
→∞ =

− > =∑1

1
0τ ε ,              ε > 0. (A6.145)

According to Eq. (A6.144), the sequence S nn /  converges in probability to
p A= Pr{ }.   Moreover, according to the Eq. (A6.145), the arithmetic mean
( ) /t tn n1 + … +  of n  independent observations of the random variable τ (with a
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finite variance) converges in probability to E[ ]τ .  Therefore, ˆ /p S nn=  and
ˆ ( ) /a nt tn= + … +1  are consistent estimates of p A= Pr{ } and a = E[ ]τ , respectively

(Eq. (A8.19)).  Equation (A6.145) is also a consequence of Chebyshev's inequality
(Eq. (A6.49)).

A firmer statement than the weak law of large numbers is given by the strong
law of large numbers,

Pr{ lim }
n

S
n

pn
→∞

= = 1. (A6.146)

According to Eq. (A6.146), the relative frequency S nn /  converges with probability
one (a.  s.) to p A= Pr{ }.  Similarly, for a sequence of independent identically
distributed random variables τ τ1, ,… n, with mean E[ ]τ i a= < ∞  and variance
n niVar[ ]τ σ= 2   ( , , ) ,i = …1 2

Pr{ lim ( ) }
n i

n

n i a
→∞ =

∑ = =1

1
1τ . (A6.147)

The proof of the strong law of large numbers (A6.146) and (A6.147) is more
laborious than that of the weak law of large numbers, see e. g. [A6.6 (vol. II), A6.7].

A6.11.2 Central Limit Theorem

Let τ τ1 2, ,… be independent identically distributed random variables with mean
E[ ]τ i a= < ∞  and variance n niVar[ ]τ σ= 2 , i = …1 2, ,  ;  for every t < ∞  it holds that
(see e. g. [A6.6 (vol. II), A6.7, A8.8] )

lim Pr{ }
( )

/ ..
n n

x
ti na

i

n

t e dx
→∞

−∑
−

−∞

= ≤ = ∫
τ

σ π
1 1

2

2 2 . (A6.148)

Equation (A6.148) is the central limit theorem.  It says that for large values of n, the
distribution function of the sum τ τ1+…+ n of independent identically distributed
random variables τ i can be approximated by the normal distribution with
mean E[ ] E[ ]τ τ τ1 + … + = =n in n a  and variance Var[ ]τ τ1 + … + =n n niVar[ ]τ σ= 2 .
The central limit theorem is of great theoretical and practical importance, in
probability theory and mathematical statistics.  It includes the integral Laplace
theorem (De Moivre-Laplace) for the case where τ δi i=  are Bernoulli variables,

lim Pr{ }
( )

( )

/ ..
n n p p

x
ti n p

i

n

t e dx
→∞

∑

−
−

−∞

−
= ≤ = ∫

δ

π
1

1 2

1 2 2 . (A6.149)

δi∑  is the random variable ζ in Eq. (A6.119) for the binomial distribution, i. e.,
it is the total number of occurrences of the event considered in n Bernoulli trials.
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From Eq. (A6.149) it follows that for n → ∞   and δ = −t np p n( ) /1

Pr{( } ,      ) ,/
( )δ

δ
π
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i
i

n
n p p

n
x np e dx
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−∑
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→ ∞− ≤ → −∫1

2

1
1 2 2       

or, for arbitrary ε > 0,

Pr{ } ,   | |
/

( )

 
δ
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i

n
n p p

n
np e dxx
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=
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→∞− ≤ → −∫1 2
1

2

2

2

0

       ., > 0 (A6.150)

Setting the right-hand side of Eq. (A6.150) equal to γ allows determination of the
number of trials n for given γ, p, and ε which are necessary to fulfill the inequality
| |( ) /...δ δ ε1 + + − ≤n n p    with a probability γ.  This result is important for reliability
investigations using Monte Carlo simulations, see Eq. (A6.152).

The central limit theorem can be generalized under weak conditions to the
sum of independent random variables with different distribution functions (see e. g.
[A6.6 (Vol. II), A6.7, A8.8]), the meaning of these conditions being that each individual
standardized random variable ( )E[ ] Var[ ]/τ τ τi i i−  provides a small contribution to
the standardized sum (Lindeberg conditions).

Examples 6.22-6.24 give some applications of the central limit theorem.

Example A6.22

The series production of a given assembly requires 5,000 ICs of a particular type.  0.5% of these
ICs are defective.  How many ICs must be bought in order to be able to produce the series with a
probability of γ = 0 99. ?

Solution

Setting p = =Pr{ } .IC defective 0 005, the minimum value of n satisfying

Pr ) , Pr , .{( } { }n i
i

n

i
i

n

n− =≥ ≤ − ≥ =
= =
∑ ∑δ δ γ5 000 5 000 0 99

1 1

must be found.  Rearranging Eq. (A6.149) and considering t t= γ  leads to

lim Pr{ }( )
/

n
n p p

t

i
i

n

t n p dxe
x

→∞
−

−∞
≤ + =

=
∑

−
∫ =δ γ

π

γ

γ1
1

1 2

2 2
 ,

where t γ  denotes the γ  quantile of the standard normal distribution Φ( )t  given by Eq. (A6.109)
or Table A9.1.  For γ = 0 99.  one obtains from Table A9.1 t tγ = =0 99 2 33. . .  With p = 0 005. , it
follows that

δ i
n

n n n= − ≤ ⋅ ⋅ +∑1 5 000 2 33 0 005 0 995 0 005, . . . . . .

Thus, n = 5 036,  ICs must be bought  ( 5 025 5 000 5 000 0 005, , , . .= +  ICs would lead to γ ≈ 0 5. ).
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Example A6.23

Electronic components are delivered with a defective probability p = 0 1. %.   (i) How large is the
probability of having exactly 8 defective components in a (homogeneous) lot of size n = 5 000, ?
(ii) In which interval [ , ]k k1 2  around the mean value n p = 5  will the number of defective
components lie in a lot of size n = 5 000,  with a probability γ  as near as possible to 0 95.  ?

Solution

(i) The use of the Poisson approximation (Eq. (A6.129)) leads to

p e8

8
55

8
0 06528≈ ≈−

!
. ,

the exact value (obtained with Eq. (A6.120)) being 0.06527.  For comparison, the following
are the values of pk obtained with the Poisson approximation (Eq. (A6.129)) in the first row
and the exact values from Eq. (A6.120) in the second row

k = 0 1 2 3 4 5 6 7 8 9

pk ≈ 0.00674 0.03369 0.08422 0.14037 0.17547 0.17547 0.14622 0.10444 0.06528 0.03627

pk ≈ 0.00672 0.03364 0.08401 0.14036 0.17552 0.17570 0.14630 0.10448 0.06527 0.03624

(ii) From the above table one recognizes that the interval [ , ] [ , ]k k1 2 1 9=  is centered on the mean
value n p =5  and satisfy the condition " . "γ   as near as possible to 0 95  ( γ = p p p1 2 9+ + +...
≈ 0 96. ).  A good approximation for k k1 2 and can also be obtained using Eq. (A6.151) to
determine ε = −( ) /k k n2 1 2  by given p, n , and t( ) /1 2+γ

ε γ= =
− −

+
k k

n

n p p

n
t2 1

1 22

1( )
( )/ , (A6.151)

where t( ) /1 2+γ  is the  ( ) /1 2+ γ  quantile of the standard normal distribution (Eq. (A6.109),
Appendix A9.1).  Equation (A6.151) is a consequence of Eq. (A6.150), considering that
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with  k n p1= −( )ε  and  k n p2 = +( )ε ;  from which (Eq. (A6.150))

A n n p p k k n n p p nt t= = − −+ +− =( )/ ( )// /( ) ( ) ( )1 2 2 1 1 21 2 1γ γε ε    or    =  / .

With γ = 0 95. , t t( ) / . .1 2 0 975 1 96+ = =γ  (Table A9.1), n p= =5 000 0 001, , . and   one
obtains nε = 4 38. ,  yielding k np n1 0 62= − =ε .    ( 0) and  ( )≥ = + = ≤k nnp n2 9 38ε . .
The same solution is also given by Eq. (A8.45)

k np b np p12 1, ( )= +− − ,      i. e.   k k b np p n2 1 2 1 2− = − =( ) ε,

considering b t= +( ) / .1 2γ
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Example A6.24

As an example belonging to both probability theory and statistics, determine the number n  of
trials necessary to estimate an unknown probability p  within a given interval ± ε  at a given
probability γ  (e. g. for a Monte Carlo simulation).

Solution

From Eq. (A6.150) it follows that for n → ∞
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and thus n n p p tε γ/ ( ) ( ) /1 1 2− = +  ,  from which

n
t

p p= −+
( ) ( )

( ) /1 2 2 1
γ

ε , (A6.152)

where t( ) /1 2+γ  is the ( ) /1 2+ γ  quantile of the standard normal distribution Φ( )t  (Eq. (A6.109),
Appendix A9.1).   The number of trials n depend on the value of p and is a maximum ( nmax ) for
p = 0 5. .  The following table gives nmax for different values of ε and γ

ε 0.05 ( . )2 0 1ε = 0 025 2 0 05. ( . ) ε =

γ 0.8 0.9 0.95 0.8 0.9 0.95
t( ) /1 2+γ 1.282 1.645 1.960 1.282 1.645 1.960

nmax 164 271 384 657 1,082 1,537

Equation (A6.152) has been established by assuming that p is known.  Thus, ε  refers to the num-
ber of observations in n trials ( 2

2 1
ε n k k= −  as per Eqs. (A6.151) and (A6.152) or Eq. (A8.45)

with b t= +( )/1 2γ ).  However, the role of   andp k n/  can be reversed by assuming that the number
k of realizations in n trials is known.  In this case, for n large and p p  or ( )1 −  not very small
(min ( , ( )) )n p n p1 5− ≥ , ε refers to the width of the confidence interval for p ( 2ε = −ˆ ˆp pu l
as per Eq. (A8.43) with k k n b( / ) /1 42− >>  and n b>> 2).  The two interpretations of ε
(ε = ( ) /k k n2 1 2−  per Eq. (A6.151) or (A6.152) and ε = −( ˆ ˆ ) /p pu l 2 per Eq. (A8.43) are basically
different (probability theory and statistics) and agree only because of n → ∞  (see also pp. 530,
542, 543-544).  For n small, or p p ( )1 −  very small, the binomial distribution has to be used
(Eqs. (A6.121), (A8.37), (A8.38)).



A7 Basic Stochastic - Processes Theory

Stochastic processes are a powerful tool for investigating reliability and availability
of repairable equipment and systems.  A stochastic process can be considered as
a family of time-dependent random variables or as a random function in time,
and thus has a theoretical foundation based on probability theory (Appendix A6.7).
The use of stochastic processes allows analysis of the influence of the failure-free
and repair time distributions of elements, as well as of the system’s structure, repair
strategy, and logistic support, on the reliability and availability of a given system.
Considering applications given in Chapter 6, this appendix mainly deals with
regenerative stochastic processes with a finite state space, to which belong renewal
processes, Markov processes, semi-Markov processes, and semi-regenerative pro-
cesses, including reward and frequency / duration aspects.  However, because of their
importance in reliability investigations, some nonregenerative processes (in parti-
cular the nonhomogeneous Poisson process) are introduced in Appendix A7.8.
This appendix is a compendium of the theory of stochastic processes, consistent
from a mathematical point of view but still with reliability engineering applications
in mind (demonstration of established theorems is referred, and for all other
propositions or equations, sufficient details for complete demonstration are given).
To simplify the notation, mean is used for expected value, and independent
for totally (mutually, statistically, stochastically) independent (p. 419).  Selected
examples illustrate the practical aspects.

A7.1 Introduction

Stochastic processes are mathematical models for random phenomena evolving over
time, such as the time behavior of a repairable system or the noise voltage of a
diode.  They are designated hereafter by Greek letters ξ( )t , ζ( )t , η( )t , ν( )t  etc.

To introduce the concept of stochastic process, consider the time behavior of a
system subject to random influences and let T be the time interval of interest, e. g.
T = ∞[ , )0 .  The set of possible states of the system, i. e. the state space, is assumed
to be a subset of the set of real numbers.  The state of the system at a given time t0
is thus a random variable ξ( )t0 .  The random variables ξ( )t , t T∈ , may be
arbitrarily coupled together.  However, for any n = …1 2, , , and arbitrary values
t tn T1 , ,… ∈ , the existence of the n-dimensional distribution function (Eq. (A6.51))

F( , , , , , ) Pr{ ( ) , , ( ) }x x t t t x t xn n n n1 1 1 1… … = ≤ … ≤ξ ξ , (A7.1)

is assumed, where ξ ξ ξ ξ( ) , , ( ) ( ) ( )t t t tx x x xn n n n1 1 1 1≤ … ≤ ≡ ≤ ∩ … ∩ ≤  is used.

A. Birolini, Reliability Engineering, DOI: 10.1007/978-3-642-39535-2,
� Springer-Verlag Berlin Heidelberg 2014
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ξ ξ( ), ..., ( )t tn1  are thus the components of a random vector ξ
→

( )t .  It can be shown
that the family of n-dimensional distribution functions (Eq. (A7.1)) satisfies the
consistency condition

F F  ( , , , , , , , , , , , ) ( , , , , , ),    x x t t t t x x t tk k k n k k k n1 1 1 1 1… ∞ … ∞ … … = … …+ <

and the symmetry condition

F F( , , , , , ) ( , , , , , ),x x t t x x t ti i i i n nn n1 1 1 1… … = … …
                                                                  for  i n i i j ii j i∈ … ≠ ≠{ , , },    1 .

Conversely, if a family of distribution functions F x xn nt t( , ..., , , ..., )1 1  satisfying the
above consistency and symmetry conditions is given, then according to a theorem of
A.N. Kolmogorov [A6.10], a distribution law on a suitable event field  B T  of the
space   R

T  consisting of all real functions on T exists.  This distribution law is the
distribution of a random function ξ( )t , t T∈ , usually referred to as a stochastic
process.  The time function resulting from a particular experiment is called a sample
path or realization of the stochastic process.  All sample paths are in   R

T , however
the set of sample paths for a particular stochastic process can be significantly
smaller than R T , e. g. consisting only of increasing step functions.  In the case of
discrete time, the notion of a sequence of random variables ξn, n T∈  is generally
used.  The concept of a stochastic process generalizes the concept of a random
variable introduced in Appendix A6.5.  If the random variables ξ( )t  are defined as
measurable functions ξ ξ ω( ) ( , )t t= , t T∈ , on a given probability space   [ , , Pr]Ω F
then

F( , , , , , ) Pr{ : ( , ) , , ( , ) }x x t t t x t xn n n n1 1 1 1… … = ≤ … ≤ω ξ ω ξ ω ,

and the consistency and symmetry conditions are fulfilled.  ω represents the random
influence.  The function ξ ω( , )t , t T∈ , is for a given ω  a realization of the
stochastic process.

The Kolmogorov theorem assures the existence of a stochastic process.  How-
ever, the determination of all n-dimensional distribution functions is practically
impossible, in general.  Sufficient for many applications are often some specific
parameters of the stochastic process involved, such as state probabilities or stay
(sojourn) times.  The problem considered, and the model assumed, generally allow
determination of

 • the time domain T (continuous, discrete, finite, infinite)
 • the structure of the state space (continuous, discrete)
 • the dependency structure of the process under consideration (e. g. memoryless)
 • invariance properties with respect to time shifts (time-homogeneous, stationary).

The simplest process in discrete time is a sequence of independent random
variables ξ ξ1 2, , ….  Also easy to describe are processes with independent incre-
ments, for instance Poisson processes (Appendices A7.2.5 & A7.8.2), for which
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Pr{ ( ) , ( ) ( ) , , ( ) ( ) }ξ ξ ξ ξ ξt x t t x t t xn n n0 0 1 0 1 1≤ − ≤ … − ≤ =−

                                 Pr{ ( ) } Pr{ ( ) ( ) }ξ ξ ξt x t t xi i i
i

n

0 0 1
1

≤ − ≤−
=

∏ (A7.2)

holds for arbitrary n = …1 2, , , x xn1, ,… , and t tn T0 < … < ∈ .
For reliability investigations, processes with continuous time parameter t ≥ 0

and discrete state space { , , }Z Zm0 …  are important.  Among these, following proc-
esses will be discussed in the following sections (see Table 6.1 for a comparison)

  • renewal processes
  • alternating renewal processes
  • Markov processes
  • semi-Markov processes
  • semi-regenerative processes (processes with an embedded semi-Markov process)
  • regenerative processes with just one regeneration state
  • particular nonregenerative processes (e. g. nonhomogeneous Poisson processes).

Markov processes represent a straightforward generalization of sequences of
independent random variables.  They are processes without aftereffect.  With this,
the evolution of the process after an arbitrary time point t only depends on t and
on the state occupied at t, not on the evolution of the process before t.  For time-
homogeneous Markov processes, the dependence on t also disappears (memoryless
property).  Markov processes are very simple regenerative stochastic processes.
They are regenerative with respect to every state and, if time-homogeneous, also
with respect to any time t.  Semi-Markov processes have the Markov property at the
time points of any state change; i. e., all states of a Semi-Markov process are
regeneration states.  In a semi-regenerative process, a subset { , , }, ,Z Zk k m0 0… < <
of the state space { , , }Z Zm0 …  are regeneration states and constitute an embedded
semi-Markov process.  Quite generally,

at the occurrence of a regeneration state the process forgets its foregoing
evolution and restarts anew with respect to the regeneration state
considered;  successive occurrence points of a regeneration state Zi
constitute thus a renewal process embedded in the original process
(see Figs. A7.3, A7.11 - A7.13 and pp. 478 - 79 & 514).

Nonregenerative processes occur in particular with reliability data analysis.
In order to describe the time behavior of systems which are in statistical

equilibrium (steady-state), stationary and time-homogeneous processes are suitable.
The process ξ( )t  is stationary (strictly stationary) if for arbitrary n = …1 2, , ,
t tn1, ,… , and time span a ( t ti i a T i n, , , ...,+ ∈ = 1 )

F F( , , , , , ) ( , , , , , )x x t a t a x x t tn n n n1 1 1 1… + … + = … … . (A7.3)

For n = 1, Eq. (A7.3) shows that the distribution function of the random variable
ξ( )t  is independent of t.  Hence, E[ ( )]ξ t , Var[ ( )]ξ t , and all other moments are
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independent of time.  For n = 2 , the distribution function of the two-dimensional
random variable ( ξ( )t , ξ( )t u+ ) is only a function of u.  From this it follows that the
correlation coefficient between ξ( )t  and ξ( )t u+  is also only a function of u

ρξξ
ξ ξ ξ ξ

ξ ξ
( , )

E[( ( ) E[ ( )]) ( ( ) E[ ( )])]

Var[ ( )]Var[ ( )]
t t u

t u t u t t

t u t
+ = + − + −

+

                  = =+ −E[ ( ) ( )] E [ ( )]

Var[ ( )]
( )

ξ ξ ξ
ξ

ρξξ
t t u t

t
u

2

. (A7.4)

Besides stationarity in the strict sense, stationarity is also defined in the wide sense.
The process ξ( )t  is stationary in the wide sense if the mean E[ ( )]ξ t  the variance
Var[ ( )]ξ t , and the correlation coefficient ρξξ( , )t t u+  are finite and independent of t.
Stationarity in the strict sense of a process having a finite variance implies
stationarity in the wide sense.  The contrary is true only in some particular cases,
e. g. for the normal process (process for which all n-dimensional distribution
functions ( Eq. (A7.1) are n-dimensional normal distribution functions, see
Example A6.17).

A process ξ( )t  is time-homogeneous if it has stationary increments, i. e., if for
arbitrary n = …1 2, , , values x xn1

, ,… , disjoint intervals ( , )t i ib , and time span a
( , , , , , ... ,t ti i i ia b b a T i n+ + ∈ = 1 )

Pr{ ( ) ( ) , , ( ) ( ) }ξ ξ ξ ξt a b a x t a b a xn n n1 1 1+ − + ≤ … + − + ≤

                                  = − ≤ … − ≤Pr{ ( ) ( ) , , ( ) ( ) }ξ ξ ξ ξt b x t b xn n n1 1 1 . (A7.5)

If ξ( )t  is stationary, it is also time-homogeneous. The contrary is not true, in general.
However, time-homogeneous Markov Processes become stationary as  t → ∞ .

The stochastic processes discussed in this appendix evolve in time, and their
state space is a subset of natural numbers.

A7.2 Renewal Processes

In reliability theory, renewal processes describe the model of an item in continuous
operation which is replaced at every failure, in a negligible amount of time, by a
new, statistically identical item.  Results for renewal processes are basic and useful
in practical applications.

To define the renewal process, let τ τ0 1, , … be (stochastically) independent and
non-negative random variables distributed according to

F                   A xx x( ) Pr{ }, ,= ≤ ≥τ0 0 (A7.6)
and

F            ( ) Pr{ },         , , .,x xi i x= ≤ = ≥…τ 1 2 0 (A7.7)
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Figure A7.1  a) Possible time schedule for a renewal process;   b) Corresponding count function ν( )t
(S1, S2, . . . are renewal points +), x start by 0 at t = 0  and at every renewal point)
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or equivalently the sequence τ τ0 1, , … constitutes a renewal process.  The points
S S1 2, ,… on the time axis are renewal points, and at these points the process
restarts anew, as a whole +).  The renewal process is thus a particularly simple
point process.  The arcs relating the time points 0 1 2, , ,S S … on Fig. A7.1a help to
visualize the underlying point process.  A count function

ν
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, , , ( ) ,,
t

t
n S t Sn n n t t

=
<

≤ <


 + = … = ≤

0 0

1 1 2 0 0

for 
for                 

 
 for 

can be associated to a renewal process, giving the number of renewal points in the
interval ( , ]0 t  (Fig. A7.1b).  Renewal processes are ordinary for F ( ) F( )A x x= ,
otherwise they are modified (stationary for F ( )A x  as in Eq. (A7.35)).  For F ( )A x =
F( ) ,x e x= − −1 λ  the renewal process is a homogeneous Poisson process (p. 472).

To simplify investigations, let us assume in the following that

F F    for          A x x x( ) ( ) ,   = = ≤0 0 (A7.9)
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As τ τ0 10 0> > …, ,  are interarrival times, the variable x starting by 0 at t = 0 and at
every renewal point S S1 2, , … (arrival times) is used instead of t  (Fig. A7.1a).

___________________

+) Regeneration point instead of renewal point will be used when the process restarts anew with
respect to a specific state  (see e. g. Fig. A7.3 on p. 475 and Figs. A7.11-A7.13 on pp. 511-513).
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A7.2.1 Renewal Function, Renewal Density

Consider first the distribution function of the number of renewal points ν( )t  in the
time interval ( , ]0 t .  From Fig. A7.1,

Pr{ } Pr{ } Pr{ }ν t n S t S tn n( ) ≤ − = > = − ≤1 1

           F  = − ≤ = −+ … + − = …1 10 1 1 2Pr{ } ( ),  . , ,τ τn n nt t (A7.12)

The functions Fn t( )  can be calculated recursively (Eq. A6.73))

F F                   F F
 
for 1 0 0 01( ) ( ) , , ( ) ( ) ,t tA t t t tA= > = = ≤

F F f     F
 
for n n

t
n t t tt t x x dx n+ = … > = ≤= −∫ +1

0

1 2 0 0 01( ) ( ) ( ) ,      , , , , ( ) . (A7.13)

From Eq. (A7.12) it follows that

Pr{ ( ) } Pr{ ( ) } Pr{ ( ) } ( ) ( ),     , , ,ν ν νt n t n t n t tn n n= = ≤ − ≤ − = − + = …1 1 1 2F F

(A7.14)
and thus, for the expected value (mean) of ν( )t ,

E[ ( )] [ ( ) ( )] ( ) ( ), , ( ) ,ν t n t t t tn n
n

n
n

t t t= − = =+
=

∞

=

∞
> = ≤∑ ∑F F F H     H for1

1 1
0 0 0  (A7.15)

The function H( )t  defined by Eq. (A7.15) is the renewal function.  Due to
F ( ) F( )A 0 0 0= =  one has H( )0 0= .  The distribution functions Fn t( )  have densities

f f  and f f x)f
(A7.16)

 f f
 
for 

 1 1
0

2 3 0
0 01( ) ( )  ( ) ( ( ) ,   

, , , ,
( ) ( ) ,t t t t x dxA n n

t

n t
t t tn= = −− = … >

= = ≤∫

and are thus the convolutions of f( )x  with f ( )n x−1 .  Changing the order of summa-
tion and integration one obtains from Eq. (A7.15)

H( ( ) ( ) , ( ) .t x dx x dxn

t

n
n

n

t
t t t) f  f  ,             H  

 
for = =∫∑ ∑∫

=

∞

=

∞
> = ≤

01 10

0 0 0 (A7.17)

The function

h ) f
H )

                  h  
 

for ( ( )
(

, , ( ) ,t t
d t

d t n
n

t t t= =
=

∞
> = ≤∑

1
0 0 0 (A7.18)

is the renewal density, or renewal points frequency.  h ( )t  is the failure intensity
z ( )t  (Eq. (A7.228)) for the case in which failures of a repairable item (system) with
negligible repair times can be described by a renewal process (see also Eqs. (A7.24)
and (A7.229)).



466 A7   Basic Stochastic-Processes Theory

H( )t  and h( )t  per Eqs. (A7.15) and (A7.18) satisfy

H ) F H f )( ( ) ( ) (t t x t x dxA

t
= ∫+ −

0
  and  h ) f h f )( ( ) ( ) ( .t t x t x dxA

t
= ∫+ −

0
(A7.19)

Equations (A7.19), known as renewal equations, have a solution with Laplace
transforms  (Appendix A9.7) [A7.9 (1941)]

˜ ( )
˜ ( )

f̃( )

f̃ ( )

( f̃( ))
H

F
s A As

s

s

s s
= =

− −1 1
       and      h̃( ) .f̃ ( )

f̃( )
s A s

s
=

−1
(A7.20)

Furthermore, for H( )t  it can be shown that

H    ( ) ,t
t

MTTF
≥ − 1 (A7.21)

with MTTF  as per Eq. (A7.11) (see e. g. [2.34 (1965)] for a two sided bound).
For an ordinary renewal process ( F ( ) F( )A x x= ) it holds that

h̃ ( ) f̃( ) f̃( )) ./ (o s s s= − 1 (A7.22)

Thus, an ordinary renewal process is completely characterized by its renewal
density h ( )o t  or renewal function H ( )o t  (the index o referring to an ordinary
renewal process).  In particular, it can be shown (see e. g. [6.3 (1983)]) that

Var [ ( )] ( ) ( ) ( ) ( ( ))νo o o o

t

ot t x t x dx t= + − −∫H  h  H H2
0

2. (A7.23)

It is not difficult to recognize that H( ) E[ ( )]t t= ν  and Var[ ( )]ν t  are finite for
all t < ∞ .

The renewal density h( )t  has the following important meaning:

Due to the assumption F ( ) F( )A 0 0 0= = , it follows that

lim Pr{ ( ) ( ) } , ,
δ δ

δν ν
t

t
t

t t t
↓

>+ − > =
0

0
1 1 0                 

and thus, for δ t↓0,

Pr{ ( , ]} h( ) ( ).any one of the renewal points or or lies in   oS S t t t t t t1 2 … =+ +δ δ δ

(A7.24)

Equation (A7.24) gives the unconditional probability for one renewal point in
( , ]t t t+δ .  h ( )t  corresponds thus to the failure intensity z ( )t  for an arbitrary point
process (Eq. (A7.228)) or the intensity m ( )t  for a Poisson process (homogeneous
(Eq. (A7.42)) or nonhomogeneous (Eq. (A7.193))), but differs basically from the
failure rate λ ( )t  defined by Eq. (A6.25), which gives ( )( )for λ δt t  the conditional
probability for a failure in ( , ]t t t+δ  given item new at t = 0 and no failure in ( , ]0 t .
λ ( )t  can thus be used, as a function of t only for τ0.  This distinction is important
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also for the case of a homogeneous Poisson process ( F ( ) F( ) ,A x x e x= = − −1 λ
 p. 472),

for which λ λ( )x =  holds for all interarrival times (with x starting by 0 at every
renewal point) and h ( )t =λ  holds for the whole process (see also pp. 378 and 426).
Misuses are known, see e. g. [6.1].

Example A7.1 discusses the shape of H( )t  for some practical applications.

Example A7.1
Give the renewal function H( )t , analytically for

(i) fA ( ) f( )x x e x= = −λ λ (Exponential)

(ii) fA ( ) f( ) . ( )x x x e x= = −0 5 2λ λ λ (Erlang with n = 3)

(iii) fA( ) f( ) ( ) ( )/x x x e x= = − −λ λ ββ λ1 Γ   (Gamma),

and numerically for λ λ( )x =  for 0 < ≤x Ψ  and λ λ β λβ β( ) ( )x xw= + − −Ψ 1 for x > Ψ, i. e. for

(iv) F F
for  

for  x
f(y)  

                                 

              A x x
x

x xdy
e

e w

x x
( ) ( ) ( )( )

= =
< ≤

>
=

−
−

∫




−

− + −
0

1 0

1

λ
β β

ψ
λ λ Ψ Ψ

with λ = ⋅ − −4 10 6 1h , λw = − −10 5 1h , β = 5, ψ = ⋅2 105 h  (wear-out), and for

(v) F FA x x( ) ( )=  as in case (iv) but with β = 0 3.  and ψ = 0 (early failures).

Give the solution in a graphical form for cases (iv) and (v)  ( f ( ) f( ) ( ) ( )A A0 0 0 0 0= = = =F F ).

Solution
The Laplace transformations of f ( )A t  and f( )t  for the cases (i) to (iii) are (Table A9.7b)

(i) f̃ ( ) f̃( ) / ( )A s s s= = +λ λ

(ii) f̃ ( ) f̃( ) / ( )A s s s= = +λ λ3 3

(iii) f̃ ( ) f̃( ) / ( )A s s s= = +λ λβ β,

h̃( ) h̃ ( )s so=  follows from Eq. (A7.22) yielding h( ) h ( )t to=  and H H ho( ) ( ) ( )t t x dx
t

= = ∫0
(i) h̃( ) /s s= λ  and H( )t t= λ

(ii) h̃( ) / ( ) / [( ) ]s s s s s s= + + = + +λ λ λ λ λ λ3 2 2 3 3
2

2 3
4

23 3  

and H( ) [ sin( / )]/t t e tt= − + +−1

3

2

3
3 2

3
1 3 2λ λλ π   (using d t dt s s2 2H     h ( ) ( )˜= )
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n nt
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∞
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β
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1

01 Γ
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Cases (iv) and (v) can only be solved numerically or by simulation.  Figure A7.2 gives the results
for these two cases in a graphical form (see Eq. (A7.28) for the asymptotic behavior of H( )t ,
dashed line in Fig. A7.2a).  Figure A7.2 shows that the convergence of H( )t  to its asymptotic
value is reasonably fast.  The shape of H( )t  allows recognition of the presence of wear-out
(case iv) or early failures (case v), but can not deliver valid indications on the failure rate shape
(see Section 7.6.3.3 & Problem A7.2 in Appendix A11).  Cases iv & v are also discussed on pp. 7,
337-8, 355-6; see also Section 7.6 for considerations with nonhomogeneous Poisson processes.
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Figure A7.2   a) Renewal function H( )t  and  b) Failure rate λ( )x  and density f ( )x  for cases
(iv) & (v) in Example A7.1  ( H( )t  was obtained empirically, simulating 1000 failure-free times
and plotting H( )t  as a continuous curve; δ σ= −[ ( / ) ] /MTTF 2 1 2  per Eq.(A7.28))

A7.2.2 Recurrence Times

Consider now the distribution functions of the forward recurrence time τR t( ) and
the backward recurrence time τS t( ).  As shown in Fig. A7.1a, τR t( ) and τS t( ) are
the time intervals from an arbitrary time point t forward to the next renewal point
and backward to the last renewal point (or to the time origin), respectively.  It
follows from Fig. A7.1a that the event τR t x( ) >  occurs with one of the following
mutually exclusive events

A S t x0 1= > +{ }

A S t t x Sn n n n n= ≤ ∩ > + − = …{ }        .( ) ( ) ,         , ,τ 1 2
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Obviously, Pr{ } ( )A F xA t0 1= − + .  The event An  means that exactly n renewal
points have occurred before t and the ( )n +1 th renewal point occurs after t x+ .
Considering that Sn  and τn are independent, it follows that

Pr{ } Pr{ },        , ,A S y t x yn n n n     ,= = > + − = …τ 1 2 ,

and thus, from the theorem of total probability (Eq. (A6.17))

Pr{ ( ) } ( ) ( )( ( )) , , ,τ R A

t
t x t x y t x y dy t x> = − + + − + −∫ >1 1

0

0F h F           

yielding finally, for the forward recurrence time τR t( ),

Pr{ ( ) } ( ) ( )( ( )) , , .τ R A

t
t x t x y t x y dy t x≤ = + − − + −∫ >F h F         1

0

0 (A7.25)

The distribution function of the backward recurrence time τS t( ) can be obtained as

Pr{ ( ) }
 

( ) ( ( ))

.

τS t x
y t y dy x t

x t
t x

t

≤ = ∫





− − <

≥ >
−

h F for 0 <

for

              1

1 0

(A7.26)

Since Pr{ } F ( )S t tA0 1> = − , the distribution function of τS t( ) makes a jump of
height 1−F ( )A t  at the point x t= .

A7.2.3 Asymptotic Behavior

Asymptotic behavior of a renewal process (generally of a stochastic process) is
understood to be the behavior of the process for t → ∞ .  The following theorems
hold with MTTF and σ  as per Eq. (A7.11)  (some of these theorems can be proved
with less restrictive assumptions as conditions (A7.9) - (A7.11)):

 1. Elementary Renewal Theorems [A7.9 (1941), A7.24 (1954)]:  If conditions
(A7.9) - (A7.11) are fulfilled, then

lim [ ( )] lim ( ) )

lim [ ( )] ) .

/ ) / /

/ /

t t

t

t t

t t

t t MTTF

MTTF

→∞ →∞

→∞

= =

=

(E  H  ,

(    Var                                                    
 
 (A7.27)

(  

  

ν

ν σ

1

2 3

It can also be shown [6.17] that lim ( ( ) / ) /
t

t t MTTF
→∞

=ν 1  holds with probability 1.

 2. Tightened Elementary Renewal Theorem [A7.24 (1954)]: If conditions (A7.9) -
(A7.11) are fulfilled, then

lim (H( ) ) .
t

t
t

MTTF MTTF

MTTF

MTTF

A

→∞
− = − +

σ 2

22

1
2

(A7.28)
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 3. Key Renewal Theorem [A7.24 (1954)]:  If conditions (A7.9) -  (A7.11) are
fulfilled, U( )z ≥ 0 is bounded, nonincreasing, and Riemann integrable over
the interval ( , )0 ∞ , and h( )t  is a renewal density, then

lim ( ) ( ) ( ) .
t

t
t y y dy z dz

MTTF→∞

∞
− =∫ ∫ U h  U

0 0

1
(A7.29)

For any a > 0, the key renewal theorem leads, with

U
for
otherwise,

( )z
z a

=
< <{1 0

0

to the Blackwell’s Theorem [A7.24 (1954)]

lim
( ) ( ) , .

t MTTF
a

t a t

a→∞
>

+ − =H H
                   

1
0 (A7.30)

 4. Renewal Density Theorem [A7.9 (1941), A7.24 (1954)] :  If conditions (A7.9) -
(A7.11) are fulfilled, f ( )A x  & f( )x  go to 0 as x → ∞ , then

lim ( ) .
t

t
MTTF→∞

=h
1

(A7.31)

 5. Recurrence Time Limit Theorems:  Assuming U( ) ( )z F x z= − +1  in Eq. (A7.29)
and considering F ( )A ∞ =1  & MTTF y dy = F( ( ))1

0
−

∞
∫  , Eq. (A7.25) yields

lim Pr{ ( ) } ( F( )) ( F( ))
t

R

x

t x x z dz y dy
MTTF MTTF→∞

∞
≤ = − − + = −∫ ∫τ 1

1
1

1
1

0 0
. (A7.32)

For  t → ∞ , the density of the forward recurrence time τR t( ) is thus given by
fτ R

x( )= ( / .1 − F( ))x MTTF    Considering E τ i MTTF[ ]= < ∞,  σ τ2 1= <∞ ≥Var[ ] ( ) ,i i

and E τ R t( ) ,[ ] < ∞  it follows that lim ( ( ))) F(
x

x x
→∞

− =2 1 0 (supplementary results in
Example A6.9( c> 1), p. 432).  Integration by parts and Eq. (A6.45) lead to

lim ( ) ( F( ))
t

R t x x dx
MTTF

MTTF

MTTF→∞

∞
[ ] = −∫E  =  +  .τ σ1

1
2 20

2
(A7.33)

The result of Eq. (A7.33) is important to clarify the waiting time paradox :

(i)  lim ( )
t R t
→ ∞

[ ] =E τ MTTF i MTTF i/ , , ,2 0 0 holds  for i. e. for                   2σ τ= ≥=

and 

(ii) lim ( )
t R t
→ ∞

[ ] =E τ E  τ λi MTTF i[ ]= = ≥1 0/ , ,  holds for  F FA x x e x( ) ( ) .= = − −1 λ

Similar is for τS t( ).  For a simultaneous observation of τR t( ) and τS t( ),
it must be noted that in this cases τR t( ) and τS t( ) belong to the same τi
and are independent only for case (ii).  Considering Eqs. (A7.37) & (A7.32),
Eq. (A7.33) holds for any t > 0 in the case of a stationary renewal process.
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 6.  Central Limit Theorem for Renewal Processes ([A6.6 (Vol. II), A7.24 (1955),
A7.29  (1956)] ):  If conditions (A7.9) - (A7.11) are fulfilled, then

lim Pr {
( ) /

/
} /

t

t t

t
x

MTTF

MTTF
y

x
e dy

→∞
− ≤ = −

−∞
∫ν

σ π3

1

2
22 . (A7.34)

Equation (A7.34) is a consequence of the central limit theorem (Eq. (A6.148));
it shows that ν( )t  is for t →∞  normally distributed with mean t MTTF/  and
variance σ 2 3t MTTF/ ,

Equations (A7.27) - (A7.34) show that renewal processes encountered in practical
applications converge to a statistical equilibrium (steady-state) as t → ∞ , see
Appendix A7.2.4 for a discussion on stationary renewal processes.

A7.2.4 Stationary Renewal Processes

The results of Appendix A7.2.3 allow a stationary renewal process to be defined as
follows:

A renewal process is stationary (in steady-state) if for all t > 0 the
distribution function of τR t( ) in Eq. (A7.25) does not depend on t.

It is intuitively clear that such a situation can only occur if a particular relationship
exists between the distribution functions F ( )A x  and F( )x  given by Eqs. (A7.6) and
(A7.7).  Assuming , as initial distribution at t =0,

F ( ) ( F( )) , F ( ) F ( ) ,A
MTTF

x
x x x xx y d y A= −∫ = = ≤

1
1

0
0 0            > 0 ,  for (A7.35)

it follows that f ( ) ( F( )) /A x x MTTF= −1 , ˜ ( ) ( ˜( ) / ( )f f )A s s s MTTF= −1 , and thus from
Eq. (A7.20)

˜( .
,h )s

s MTTF
=

1

yielding

h )                       h  for  .( , , ( )t
MTTF

t t t= > = ≤
1

0 0 0 (A7.36)

With F ( )A x  & h( )x  from Eqs. (A7.35) & (A7.36), Eq. (A7.25) yields for any t x, > 0

Pr{ ( ) } ( ( )) ( ( )) ( ( ))[ ]τR MTTF

t x

MTTF

x

t x y dy t x y dy y dy
t

≤ − − + − −= − =
+
∫ ∫ ∫

1
1 1 1

0

1

00

F F F ,

as for Eq. (A7.32).                                                                                    (A7.37)
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Equation (A7.35) is thus a necessary and sufficient condition for stationarity of the
renewal process with Pr{ } F( )τ i x x≤ = , i ≥ 1,  > 0 ,  for x x xF ( ) .= ≤0 0

It is not difficult to show that the count process ν( )t  given in Fig. 7.1b,
belonging to a stationary renewal process, is a process with stationary increments.
For any t, a > 0, and n = …1 2, ,  it follows that

Pr{ ( ) ( ) } Pr{ ( ) } ( ) ( )ν ν νt a t n a n a an n+ − = = = = − +F F 1 ,

with F ( )n a+1  as in Eq. (A7.13) and F ( )A x  as in Eq. (A7.35).  Moreover, for a
stationary renewal process, H( ) /t t MTTF=  and the mean number of renewals
within an arbitrary interval ( , ]t t a+  is

H H( ) ( ) / .t a t a MTTF+ − =

Comparing Eqs. (A7.32) and (A7.37) it follows that under weak conditions,
as t →∞  each renewal process becomes stationary.  For reliability applications,

a stationary renewal process can thus be regarded as a renewal process
with arbitrary initial condition (F ( ))A x  which has been started at t = −∞
and will only be considered for t ≥ 0  ( t = 0 being an arbitrary time point);

in other words,

for reliability applications, asymptotic & steady-state can be used as a
synonym for stationary (see e. g. also pp. 187-188, 477, 479, 498, 509, 514).

It can be noted that for a stationary renewal process, Eq. (A7.33) holds for t ≥0. The
important properties of stationary renewal processes are summarized in Table A7.1.

A7.2.5 Homogeneous Poisson Processes (HPP)

The renewal process, defined by Eq. (A7.8), with

F F           F F  for  xA
x x xx x e x A( ) ( ) ,  , ( ( ) ( ) ).= = − − > > = = ≤1 0 0 0 0λ λ (A7.38)

is a homogeneous Poisson process (HPP), and the contrary is true. F ( )A x  per
Eq. (A7.38) fulfills Eq. (A7.35) and thus, the Poisson process is stationary.
From Appendices A7.2.1 to A7.2.3 it follows that (see also Example A6.21)

Pr{ } ( ) ,
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1
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t x
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n
nt t e

t

i
xd x

i n
eF                       

(A7.39)
    

-

( - )!

 f F            n n
t n nt d t dt e t n( ) ( ) / ( ) ,

  
/ ( ) ! ,, ,= = − − = …−λ λλ 1 1 21 (A7.40)

Pr{ ( ) } ( ) ( ) ,  
( )

!
  , , , , ( )ν λ λt k t t ek k

t k t
t

k

k
= = − =+ − = … ≡F F   F1 0 1 2 10 , (A7.41)
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* F F f f H h forA A( ) ( ) ( ) ( ) ( ) ( ) ,x x x x xt t t= = = = = = ≤0 0

H( ) ,        h( ) ,[ ( )] [ ( )]t t tt t t= == =E Var           ν ν λλ λ , (A7.42)

Pr{ ( ) } ,           , > 0,τ λ
R

x xt x e t≤ = − −1 (A7.43)

Pr{ ( ) }
.

τ
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S
x

t x e x t
x t

≤ = −



− < <
≥ >

1
1 0

        for
                   for

0

  
(A7.44)

As a result of the memoryless property of the exponential distribution, the count
function ν( )t  (as in Fig A7.1b) has independent increments (Eq. (A7.2).  Quite
generally, a point process is a homogeneous Poisson process (HPP), with intensity λ ,
if the associated count function ν( )t  has stationary independent increments and sat-
isfy Eq. (A7.41). Alternatively, a renewal process satisfying Eq. (A7.38) is an HPP.

Substituting for λ t  in Eq. (A7.41) a nondecreasing function M( )t > 0, a non-
homogeneous Poisson process (NHPP) is obtained (Appendix A7.8.2).  The NHPP is
a point process with independent Poisson distributed increments.  Because of inde-
pendent increments, the NHPP is a process without aftereffect (memoryless if HPP)
and the sum of Poisson processes is a Poisson process (Eq. (7.27) for HPP).
Moreover, the sum of n independent renewal processes with low occurrence con-
verge for n →∞  to an NHPP, to an HPP in the case of stationary independent renewal
processes (Appendix A7.8.3).  However, despite its intrinsic simplicity, the NHPP is
not a regenerative process, and in statistical data analysis, the property of independ-
ent increments is often difficult to be proven.  Nonhomogeneous Poisson processes
are introduced in Appendix A7.8.2 and used in Sections 7.6 & 7.7 for reliability tests.

Table A7.1    Main properties of a stationary renewal process

Expression Comments, assumptions

1. Distribution function of τ0 FA
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A7.3 Alternating Renewal Processes

Generalization of the renewal process given in Fig. A7.1a by introducing a positive
random replacement time ( )'τ > 0 , distributed according to G( )x , leads to the
alternating renewal process.  An alternating renewal process is a process with two
states, which alternate from one state to the other after a stay (sojourn) time distrib-
uted according to F( )x  and G( )x , respectively (it is a 2 states semi-Markov process,
see Appendices A7.6 & A7.7 and the footnote on p. 505).  Considering the reliability
and availability analysis of a repairable item in Section 6.2 and in order to simplify
the notation, these two states will be referred to as the up state and the down state,
abbreviated as u and d, respectively.

To define an alternating renewal process, consider two independent renewal
processes { }τ i  and { }'τ i , i = …0 1, , .  For reliability applications, τi  denotes the i th

failure-free time and τ i
' the i  th  repair (restoration) time.  These random variables

are distributed according to

F   for   and    F for         F F  forA i i x x x xx x A( )  ( ) , , , ( ) ( ) ,τ τ0 1 0 0 0≥ > = = ≤ (A7.45)

G   for   and   G  for          G G  forA i i x x x xx x A( ) ( )' ' , , ( ) ( ) ,,τ τ0 1 0 0 0≥ > = = ≤ (A7.46)

with densities f ( )A x , f( )x , g ( )A x , g( )x , and means

MTTF x dx MTTFi i A= = =−
∞

≥∫E[ ] , E[ ]( ( ))         ,τ τ1
0

1 0F         , (A7.47)

and

MTTR x dx MTTRi i A= = =−
∞

≥∫E[ ] ,      E[ ]’ , ’( ( ))τ τ1
0

1 0G           , (A7.48)

where MTTF and MTTR are used for mean time to failure and mean time to repair
(restoration).  E[ ], E[ ], [ ] , [ ] ,’ ’τ τ τ τi i i ii Var Var   ,≥ 0  are assumed < ∞ .  The sequences

τ τ τ τ τ τ τ τ τ τ τ τ0 1 1 2 2 0 1 1 2 2 33, , , , , ,  , , , , , ,' ' ' ' ' '          … …  and (A7.49)

form two modified alternating renewal processes, starting at t = 0 with τ0 and τ0' ,
respectively.  Figure A7.3 shows a possible time schedule of these two alternating
renewal processes (repair times greatly exaggerated).  Embedded in every one of
these processes are two renewal processes with renewal points Sudui or Suddi
marked with ▲  and Sduui or Sdudi marked with • , where udu denotes a transition
from up to down given up at t = 0, i. e.,

  
S Sudu udu i i

i
i

1
0 0 1 1 1 1 1= = + + + + +− − >τ τ τ τ τ τ ( ' ) ( ' ) ,        and        K .

These four embedded renewal processes are statistically identical up to the time
intervals starting at t = 0 ( τ τ τ τ τ τ0 0 1 0 1 0, , , ' ' '+ + ).  The corresponding densities are



A7.3   Alternating Renewal Processes 475

up

down

τ
  1

τ'
  1

τ
  2

τ
  3

τ
  0

τ'
  2

τ'
  3

0
t

Sudu1 Sduu1 Sudu2 Sduu2 Sudu3 Sduu3

up

down

τ
  1

τ'
  1

τ
  2

τ
  3

τ
  4

τ'
  2

τ'
  3

0
t

τ'
  0

Sdud1 Sudd1 Sdud2 Sudd2 Sdud3 Sudd3 Sdud4

Figure A7.3    Possible time schedule for two alternating renewal processes starting at t = 0  with τ0
and τ0

' , respectively  (shown also the 4 embedded renewal processes with renewal points  • & ▲ ,
regeneration points for the states up & down of the alternating renewal process, see footnote on p. 464)

f f g g f gA A A Ax x x x x x( ),   ( ) ( ),   ( ) ( ),   ( )∗ ∗

for the time interval starting at t = 0, and

f g( ) ( )x x∗

for all others. The symbol ∗ denotes convolution (Eq. (A6.75)).
Results of Appendix A7.2 can be used to investigate the embedded renewal

processes of Fig. A7.3.  Equation (A7.20) yields Laplace transforms of the renewal
densities h ( )udu t , h ( )duu t , h ( )udd t , and h ( )dud t

˜ ( ) , ˜ ( ) ,
˜ ( )
˜ ( ) ˜ ( )

˜ ( ) ˜ ( )
˜ ( ) ˜ ( )

h        h
f

f g

f g

f g
udu duus sA As

s s

s s

s s
= =

− −1 1

˜ ( ) , ˜ ( )
˜ ( ) ˜ ( )

˜ ( ) ˜ ( )

˜ ( )
˜ ( ) ˜ ( )

.h        h
g f

f g

g

f g
 
+)

udd duds sA As s

s s

s

s s
= =

− −1 1
(A7.50)

To describe the alternating renewal process defined above (Fig. A7.3), let us
introduce the two-dimensional stochastic process ( ζ( )t , τ ζR t t( )( )) where ζ( )t  de-
notes the state of the process (repairable item in reliability application)

ζ( )
 
 .

t
u

d

t

t
=





      
     

if the item is up at time 

if the item is down at time 

τRu t( ) and τRd t( ) are thus the forward recurrence times in the up and down states,
respectively, provided that the item is up or down at the time t, see Fig. 6.3.

___________________

+) It can be noted that f fA
xx x e( ) ( ) ,= = −λ λ  i. e. constant failure rate λ , yields, for item new at t = 0,

h PA (t)udu t e t
S( ) ( ) ( )( ) /= + + =− +λ µ λ λ µ λλ µ

0 , as per Eq. (6.19);  showing once more the
memoryless property of exponentially distributed failure-free times.
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To investigate the general case, both alternating renewal processes of Fig. A7.3
must be combined.  For this let

p t p t= = − = =Pr{ }      Pr{ }item up at  and item down at0 1 0 . (A7.51)

In terms of the process ( ζ( )t , τ ζR t t( )( )),

p u x x uA Ru= = = ≤ =Pr{ ( ) }, ( ) Pr{ ( ) ( ) },ζ τ ζ0 0 0      F   

1 0 0 0− = = = ≤ =p d x x dA RdPr{ ( ) }, ( ) Pr{ ( ) ( ) }ζ τ ζ     G   .

Consecutive jumps from up to down form a renewal process with renewal density

h h h      h h for  ud udu udd t t t tt p t p t udu udd( ) ( ) ( ) ( ) , , ( ) ( ) .= + − > = = ≤1 0 0 0 (A7.52)

Similarly, the renewal density for consecutive jumps from down to up is given by

h h h        h h fordu duu dud t t t tt p t p t duu dud( ) ( ) ( ) ( ) , , ( ) ( ) .= + − > = = ≤1 0 0 0 (A7.53)

Using Eqs. (A7.52) and (A7.53), and considering Eq. (A7.25), it follows that ( )θ ≥0

Pr{ ( ) ( ) }ζ τ θt u tRu= ∩ >

       F h F= − + + − − +∫p t x t x dxA du

t
( ( )) ( )( ( ))1 1

0

θ θ (A7.54)

and
Pr{ ( ) ( ) }ζ τ θt d tRd= ∩ >

       G h G= − − + + − − +∫( )( ( )) ( )( ( ))1 1 1
0

p t x t x dxA ud

t
θ θ . (A7.55)

Setting θ = 0 in Eq. (A7.54) yields

Pr{ ( ) } ( ( )) ( )( ( ))ζ t u p t x t x dxA du

t
= = − + − −∫1 1

0
F h F . (A7.56)

The probability PA( ) Pr{ ( ) }t t u= =ζ  is called the point availability and IR( , ]t t + =θ
Pr{ ( ) ( ) }ζ θτt tu Ru= ∩ >  the interval reliability of the given item (see Section 6.2
for further considerations).

An alternating renewal process, characterized by the parameters p, F ( )A x , F( )x ,
G ( )A x , and G( )x  is stationary if the two-dimensional process (ζ( )t , τ ζR t t( )( )) is
stationary.  As with the renewal process it can be shown that an alternating renewal
process is stationary if and only if

p x y dy G x y dy
MTTF

MTTF MTTR MTTF MTTR
A

x

A

x

= = − = −
+

∫ ∫,    ( ) ( ( )) ,    ( ) ( ( )) ,F F G
1

1
1

1
0 0

  (A7.57)
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hold as initial condition / distributions at t =0, with MTTF & MTTR as in Eqs. (A7.47)
& (A7.48). In particular, for t ≥0 the following relationships apply for the stationary
alternating renewal process (see Examples 6.3 & 6.4 for PA, Eq.(6.50) for IRS ( )θ )

PA( ) Pr{ }t t PA
MTTF

MTTF MTTR
= = =

+
item up at , (A7.58)

IR( , ) Pr{ }t t t t+ = +θ θitem up at and remains up until

    IR  = − =
+

∞
∫1

( F( )) ( )
MTTF MTTR Sy dy1

θ
θ . (A7.59)

Condition (A7.57) is equivalent to

h ( ) h ( )
1

, .ud du MTTF MTTR
tt t= =

+
≥           0 (A7.60)

Moreover, application of the key renewal theorem (Eq. (A7.29)) to Eqs. (A7.54) -
(A7.56) yields (for θ > 0 given (fixed), see Example 6.3 for PA )

lim Pr{ ( ) ( ) } ( F( ))
1

t
Ru MTTF MTTR

t u t y dy
→∞ +

∞
= ∩ > = −∫ζ τ θ

θ
 1 , (A7.61)

lim Pr{ ( ) ( ) } ( G( ))
1

t
Rd MTTF MTTR

t d t y dy
→∞ +

∞
= ∩ > = −∫ζ τ θ

θ
 1 , (A7.62)

lim Pr{ ( ) } lim PA( ) .
t t

MTTF

MTTF MTTR
t t PAu

→∞ →∞ +
= = = =ζ (A7.63)

Under weak conditions, irrespective of its initial conditions p, F ( )A x , and G ( )A x , an
alternating renewal process has for t →∞  an asymptotic behavior which is identical
to the stationary state (steady-state).  Thus, for reliability applications,

a stationary alternating renewal process can be regarded as an alterna-
ting renewal process with arbitrary initial conditions (p, F ( )A x , G ( ))A x
which has been started at t = −∞  and will only be considered for t ≥ 0
( t = 0 being an arbitrary time point);

in other words,

for reliability applications, asymptotic & steady-state can be used as a
synonym for stationary (see e. g. also pp. 187-188, 472, 479, 498, 509, 514).

It can be noted that the results of this section remain valid even if independence
between τi and τi

' within a cycle (e. g. τ τ0 1+ ' , τ τ1 2+ ' , …) is dropped;  only
independence between cycles is necessary.  For exponentially distributed τi and
τi

', i. e., for constant failure rate λ  and repair rate µ  in reliability applications,
the convergence of PA( )t  towards PA  stated by Eq. (A7.63) is of the form
PA( )t PA− = + ≈− + −( / ( )) ( / )( )λ λ µ λ µλ µ µe et t , see Eq. (6.20).  The case of general
repair rate is discussed at the end of Section 6.2.4.
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___________________

+) Renewal point instead of regeneration point is to use, because the whole process restarts anew.

A7.4 Regenerative Processes with a
Finite Number of States

A regenerative process with a finite number of states Z Z m0 , ,…  is characterized by
the property that there is a sequence of random points on the time axis, regeneration
points, at which the process

forgets its foregoing evolution and, from a probabilistic point of view,
restarts anew with respect to the regeneration state considered.

The times at which a regenerative process restarts, occur when the process returns to
some states defined as regeneration states.  The sequence of these time points for a
specific regeneration state is a renewal process embedded in the original stochastic
process.  For instance, a renewal process is a regenerative process with one state+),
both states of an alternating renewal process (Fig. A7.3) and, assuming an
irreducible embedded Markov chain, all states of a time-homogeneous Markov
process & a semi-Markov process (Eqs. (A7.77), (A7.95) & (A7.158)) are regeneration
states.  However, in practical applications there are processes in discrete state space
with only few (Figs. 6.10, A7.11 - A7.13) or even with no regeneration states;

a regenerative process must have at least one regeneration state, and the
set of regeneration states constitutes a semi-Markov process embedded
in the original process.

A regenerative process with states space Z Z m0 , ,…  and an embedded semi-Markov
process on the regeneration states Z Zk0 ,..., , 0< <k m , is (in this book) a semi-
regenerative process (Appendix A7.7), and has k+1 embedded renewal processes.

In the following, a basic result for regenerative processes is given focusing on
an arbitrarily chosen regeneration state and the related embedded renewal process.
So considered, the process consists of independent cycles which describe the time
behavior of the process between two consecutive regeneration points.   The i th cycle
is characterized by a positive random variable τci

 (duration of cycle i) and a
stochastic process ξi x( ) defined for 0 ≤ <x ci

τ  (content of cycle).  The pieces ξn x( )
( ), ,n cx

n
= … ≤ <0 1 0, τ  are independent, and for n ≥ 1 identically distributed cycles.

The time points S c1 0
= τ , S c c2 0 1

= +τ τ , ...  form a renewal process, for which we
assume that τc0

 and τci
, i ≥ 1, have distribution functions F ( )A x  for τc0

 & F( )x  for
τci

, densities f ( )A x  &  f( )x , and finite means TA  & Tc and variances σ A
2

 &  σ c
2 ,

respectively F ( ) F( ) ( ) ( )( )A Ax x x x x= = = = ≤f f  for 0 0 .  ξ( )t  is then given by

ξ ξ
ξ( )

( )  
( )  , ., ,

t
t t
t t

S
S S Sn n n n n

= 
≤ <

− ≤ < + = …
0 1

1

0
1 2

  for
 for        

The regenerative structure is sufficient for the existence of an asymptotic
behavior (limiting distribution) for the process as t →∞ (provided T TA c, < ∞ ).  This
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limiting distribution is determined by the behavior of the process between two
consecutive regeneration points (belonging to the same embedded renewal process)
[A7.9 (1949 & Vol 2), A7.24, 6.3 (1983)].  Defining h( )t  as the renewal density of the
embedded renewal process, and setting

U( , ) Pr{ ( ) },         , , , { , , } ,x x xi c i Z Z
i mΒ Β Β= ∩ >∈ = … ⊆ …ξ τ          1 2 0

it follows, similarly to Eq. (A7.25), that

Pr{ ( ) } Pr{ ( ) } h( )U( , )ξ ξ τt t t x t x dxc

t
∈ ∈= ∩ > + −∫Β Β Β0

0
0

   . (A7.64)

For any given distribution of the cycle ξi x( ), 0 ≤ <x ci
τ , i ≥ 1, with T Ec ci= < ∞[ ]τ ,

there exists a stationary regenerative process ξe t( ) with regeneration points Sei
,

i ≥ 1.  The cycles ξen
x( ) , 0 ≤ <x en

τ , have for n ≥ 1 the same distribution law as
ξi x( ), 0 ≤ <x ci

τ .  The distribution law of the starting cycle ξe x
0

( ), 0
0

≤ <x eτ , can
be computed from the distribution law of ξi x( ), 0 ≤ <x ci

τ   (see e. g. Eq. (A7.57) for
an alternating renewal process).  In particular [A7.24 (1955), 6.3],

Pr{ ( ) } U( , )ξe
cT

x dx0 1

0
∈ =

∞
∫Β Β , (A7.65)

with T Ec ci= < ∞[ ]τ , i ≥ 1.  Furthermore, for S1 0=  and g( )x  non-negative, strictly
increasing, and continuous , it holds that [6.3]

E[g( ( ))] E[ g( ( )) ]ξ ξ
τ

e
cT

x dx
c

0
1

1
0

1

= ∫ . (A7.66)

Equation (A7.66) is known as the stochastic mean value theorem for regenerative
processes, and can be extended to every non-negative function g( )x .  Assuming, for
instance, ξi x( )=1 for item up & ξi x( )=0 for item down for the alternating renewal
process, and g( )x x= , Eq. (A7.66) yields E [ Pr{ }ξ ξe e( )] ( )0 0 1= = = p (Eq. (A7.57)).

Since Tc < ∞  and U( , )x Β  is ≥ 0, nonincreasing and ≤ − ≤1 Pr{ }τci
x  for all x > 0,

it follows from Eq. (A7.64) and the key renewal theorem (Eq. (A7.29)) that

lim Pr{ ( ) } U( , )
t c

t
T

x dx
→∞

∞
∈ = ∫ξ Β Β1

0
             T Ec ci= < ∞[ ]τ , i ≥ 1. (A7.67)

Equations (A7.65), (A7.67) show that under weak conditions, as t →∞ a regenerative
process becomes stationary (see Eqs. (A7.188) & (A7.188a) for a semi–regenerative
process, and the example at the bottom of p. 514, as well as Eqs. (6.110) & (6.131),
for practical applications).  As for renewal (p. 472), alternating renewal (p. 477),
Markov (p. 498), and semi-Markov (p. 509) processes, for reliability applications,

a stationary regenerative process can be considered as a regenerative
process with arbitrary distribution of the starting cycle, which has been
started at t = −∞  and will only be considered for t ≥ 0  ( t = 0 being an
arbitrary time point).
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A7.5 Markov Processes with a Finite Number of States

Markov processes are processes without aftereffect.  They are characterized by the
property that for any (arbitrarily chosen) time point t their evolution after t depends
on t and the state occupied at t, but not on the process evolution up to the time t.  In
the case of time-homogeneous Markov processes, dependence on t also disappears.
In reliability theory, these processes describe the behavior of repairable systems
with constant failure and repair rates for all elements.  Constant rates are required
during the stay (sojourn) time in every state, not necessarily at state changes (e. g. be-
cause of load sharing).  After an introduction to Markov chains, time-homogeneous
Markov processes with a finite number of states are introduced as basis for Chapter 6.

A7.5.1 Markov Chains with a Finite Number of States

Let ξ ξ0 1, , … be a sequence random variables taking values on { , , }, ,Z Z mm0 0… < <∞
e. g. the sequence of consecutively occurring states of an arbitrary system.  T h e
sequence { }, , , ...ξn n = 0 1  constitutes a Markov chain with state space { , , },Z Zm0 …
0< <∞m , if for n = 0 1 2, , , ... and arbitrary i j i i mn, , , , { , , }   0 1 0… ∈ …−

  
Pr{ ( )}ξ ξ ξ ξn j n i n i iZ Z Z Z

n+ −= = ∩ = ∩ ∩ =−1 1 01 0
  K

  
                                  = = = =+Pr{ } ( )ξ ξn j n i ijZ Z n1 P (A7.68)

holds.+)  The quantities Pi j n( )  are the (one step) transition probabilities of the
Markov chain.  Investigation will be limited here to time-homogeneous Markov
chains, for which the transition probabilities P ij n( )  are independent of n

  P Pi j i jn n j n nZ Z i( )        Pr{ },  , ,= = + = …= =ξ ξ1 0 1     . (A7.69)

For simplicity, Markov chain will be used in the following for time-homogeneous
Markov chains.  The probabilities  P ij  satisfy the relationships

  
P Pi j i j

j

m

i j m≥ =
=
∑ ∈ …0 1

0

0               , , { , , }and          . (A7.70)

A matrix with elements 
  Pij  as in Eq. (A7.70) is a stochastic matrix.  The k-step tran-

sition probabilities are the elements of the k th power of the stochastic matrix with
elements Pij .  For instance, k =2 leads to (Example A7.2, Eq. (A6.17))

  
Pi j nn j n i

k

m

n j n k iZ Z Z Z Z( ) Pr{ } Pr{( ) }2
2

0
2 1= =+

=
+ += = = = ∩ =∑ξ ξ ξ ξ ξ

  

       
  

   

,= = = = = ∩ =
=

+ + +∑ Pr{ }Pr{ ( )}
k

m

n k n i n j n i n kZ Z Z Z Z
0

1 2 1ξ ξ ξ ξ ξ

––––––––––
+) ξ ξ0 1, , ...  identify only successive transitions (in the same state for   Pi i    ( )n > 0) without relation to the

time axis;  this is important when considering Markov chains embedded in stochastic processes.
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Example A7.2
Assuming Pr{ }C > 0, prove that Pr{( ) } Pr{ }Pr{ ( )}A B C B C A B C∩ = ∩   .

Solution
For Pr{ }C > 0 it follows that

Pr{( ) }
Pr{ }

Pr{ }

Pr{ } Pr{ ( )}

Pr{ }
Pr{ } Pr{ ( )} .A B C

A B C

C

B C A B C

C
B C A B C∩ =

∩ ∩
=

∩ ∩
= ∩

 
  

from which, considering the Markov property (Eqs. (A7.68)),

  
P P Pi j

k

m

n k n i n j n k ik k j
k

m
Z Z Z Z( ) Pr{ } Pr{ }2

0
1 2 1

0
=

=
+ + +

=
∑ ∑= = = = =ξ ξ ξ ξ  . (A7.71)

Results for k > 2  follow by induction.
The distribution law of a Markov chain is completely given by the initial

distribution

A Zi i i m= = = …Pr{ },         , , ,ξ0 0   (A7.72)

with Ai∑ =1, and the transition probabilities 
  Pij .  For arbitrary i i mn0 0, , { , , }… …∈

  
Pr{ }ξ ξ ξ0 1 0 0 1 10 1

= ∩ = ∩ …∩ = = … −Z Z Zi i n i n nn
Ai i i i iP P ,

and the state probability (absolute probability) follows as (Eq. (A6.17))

  
Pr{ } ,         , , .ξn j i i j nZ A n

i

m
= = ( ) = …

=
∑ P

0
1 2   (A7.73)

A Markov chain with transition probabilities 
  Pij  is stationary (in steady-state)

if and only if the state probabilities   P j n jZ= =Pr{ }ξ , j m= …0, , , are independent
of n, i. e., if the initial distribution Ai  (Eq. (A7.72)) is a solution (  P j ) of the system

  
P P P P Pj i i j j j j m

i

m

j

m

= ∑
= =
∑ ≥ = = …

0 1
0 1 0,                  , , ,with and   . (A7.74)

The system given by Eq. (A7.74) must be solved by replacing one (freely chosen)
equation by   P j∑ =1.  Pj  per Eq. (A7.74) expresses that

in steady-state, the probability to be in Zj  is equal to that to come in Zj .

P P0 , ,… m  from Eq. (A7.74) define the stationary distribution of the Markov chain
with transition probabilities   Pij .

A Markov chain with transition probabilities   Pij  is irreducible if every state can
be reached from every other state, i. e., if for each (i, j) there is an n i j= n ( , ) such that

  P i j
n i j m n( ) ∈ … ≥> 0 0 1,         ,    , { , , }     . (A7.75)

It can be shown that the system (A7.74) possesses (for m < ∞) a unique solution with
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P P P Pj m j m> =+ + + = …0 11 2 0  ,          ... , ,          and  , (A7.76)

only if the Markov chain is irreducible, see e. g. [A7.3, A7.9 (V. I)].  In this case, the
stationary distribution is also an ergodic distribution, i. e. P Pj n ij

n=
→ ∞

lim .( )  

A7.5.2 Markov Processes with a Finite Number of States +)

A stochastic process ξ ( )t  with state space { , , }, ,Z Z mm0 0… < <∞  is a Markov process
in continuous time ( )t ≥0  with a finite number of states, if for n = 0 1 2, , , ..., arbitrary
time points t t t ta n+ > > >…> ≥0 0, and arbitrary i j i i mn, , , , { , , }   0 0… ∈ …

Pr{ ( ) ( ( ) ( ) ( ) )}ξ ξ ξ ξt a Z t Z t Z t Zj i n i in
+ = = ∩ = ∩ …∩ = 0 0

        = + = =Pr{ ( ) ( ) }ξ ξt a Z t Zj i (A7.77)

holds.  ξ( )t  ( )t ≥ 0  is a jump function (jump process), as visualized in Fig. A7.10.
The conditional state probabilities in Eq. (A7.77) are the transition probabilities
of the Markov process and they will be designated by P ( , )ij t t a+

P , Pr{ ( ) ( ) }i j j it t a t a Z t Z+( ) = + = =ξ ξ ,                t a≥ >0 0, . (A7.78)

Equations (A7.77) and (A7.78) give the probability that ξ ( )t a+  will be Z j  given
that ξ ( )t  was Zi .  Between t  and t a+  the Markov process can visit any other state
(this is not the case in Eq. (A7.95), in which Z j  is the next state visited after Zi).

The Markov process is time-homogeneous if

P ( , ) P ( )i j i jt t a a+ = ,                t a≥ >0 0, . (A7.79)

In the following only time-homogeneous Markov processes in continuous time
( )t ≥ 0  and with a finite number of states ( )m+1  is considered.  Equation (A7.79)
expresses the memoryless property of the time-homogeneous Markov processes.
From these property, for arbitrary t ≥ 0 and given a > 0, P ( )ij t a+  satisfy the
Chapman-Kolmogorov equations

P ( ) P ( )P ( ) ,        , , , { , , }, i j ik k j t a i j mt a t a
k

m

+ =
=

∈∑ ≥ > …
0

0 0 0       (A7.80)

whose demonstration is similar to pij
( )2  in Eq. (A7.71).  Furthermore P ( )ij a  satisfy

P ( ) P ( )  ,    , ,i j i j a i ma a
j

m

≥ =
=
∑ ≥ = …0 1

0
0 0      and             , , (A7.81)

and thus form a stochastic matrix.  Together with the initial distribution

P ( ) Pr{ ( ) },         , ,i i i mZ0 0 0= = = …ξ     , (A7.82)

––––––––––
+)  Continuous (parameter) Markov chain is often used in the literature. Use of Markov process should

help to avoid confusion with Markov chains embedded in stochastic processes (footnote on p. 480).
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the transition probabilities P ( )ij a  completely determine the distribution law of the
Markov process.  In particular, the state probabilities

P ( ) Pr{ ( ) },         , , , ,j j t j mt t Z= = > = …ξ    0 0 (A7.83)

follows as (theorem of total probability (Eq. (A6.17)) and Eq, (A7.82))

P ( ) P ( )P ( ) ,   .      j i i j
i

m
tt t=

=
>∑ 0

0
0   (A7.84)

Setting

P ( )i j i j
i j

i j
0

0

1
= =





≠

=
δ

     

    

for

for
(A7.85)

and assuming that the transition probabilities P ( )ij t  are continuous at t =0, it can
be shown that P ( )ij t  are also differentiable at t =0  (see e. g. the discussion to
Eqs. (A7.105) - (A7.106).  Thus, the limiting values

lim
P ( )

,        lim
P ( )

   ,
δ δ

δ
δ

ρ δ
δ

ρ
t

i j
i j i j

t
i

t

t

t

t
i i

↓
≠

↓
= − =

0 0

1
for  and       , (A7.86)

exist and satisfy

ρ ρi i j i m
j
j i

m
=

=
≠

∑ = …
0

0,         , , .    (A7.87)

Equation (A7.86) can be written in the form

P ( )          P ( ) ( )ij i j i i it t t t t tδ ρ δ δ δ ρ δ δ( ) = + − = +o and      o1 , (A7.88)

where ο( )δt  denotes a quantity having an order higher than that of δ t , i. e.

lim
( )

δ

δ
δt

t

t↓
=

0
0

o
. (A7.89)

Considering for any t ≥ 0 and δ t > 0

P  ij j it t t Z t Z( ) Pr{ ( ] ( ) }δ ξ δ ξ= + = = ,

the following useful interpretation for ρij  and ρi can be obtained for arbitrary t and
δ t↓ 0

Pr{ ( , ] ( ) } ( )jump from  to  in  o  i jZ Z t t t t Z t ti i j+ = = +δ ξ ρ δ δ

Pr{ ( , ] ( ) } ( )leave  in   = o  Z t t t t Z t ti i i+ = +δ ξ ρ δ δ . (A7.90)

It is thus reasonable to define ρij  and ρi as transition rates (for a Markov process,
ρij  plays a similar role to that of the transition probability Pij  for a Markov chain).
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Setting a t= δ  in Eq. (A7.80) yields

P ( ) P ( )P ( ) P ( )P ( )i j ik k j
k
k j

m

i j j jt t t t t t+ +=
=
≠

∑δ δ δ
0  

or
P ( ) P ( ) P ( ) P ( )

,P ( ) P ( )
i j i j k j

k
k j

m
j jt t t

t

t

t

t

tik i jt t
+ −

= +
−

=
≠

∑
δ

δ

δ

δ

δ

δ0

1

and then, taking into account Eq. (A7.86), it follows that

•

P ( ) P ( ) P ( ) ,      , , { , , } .
i j i j j i k

k
k j

m

k jt t t t i j m= − + >
=
≠

∈∑ …ρ ρ
0

0 0   
     

(A7.91)          
  

  

Equations (A7.91) are the Kolmogorov's forward equations.  With initial conditions
P ( )ij ij0 = δ  as in Eq. (A7.85), they have a unique solution which satisfies
Eq. (A7.81).  In other words, the transition rates according to Eq. (A7.86) or
Eq. (A7.90) uniquely determine the transition probabilities P ( )i j t .  Setting a t= δ  in
Eq. (A7.80) and using P ( ) P ( ) P ( ) P ( )P ( )i j

k i
ik k j i i i jt t t t t t+ = +

≠
∑δ δ δ   , P ( )i j t  also

satisfy the Kolmogorov's backward equations

•

P ( ) P ( ) P ( ) ,        
 
, , { , , }

i j i i j i k k j
k
k i

m
t t t t i j m= − + >

=
≠

∈∑ …ρ ρ
0

0 0        , (A7.92)

Equations (A7.91), (A7.92) can be written in matrix form P P
•

=( ) ( )t t ΛΛΛΛ  & P
•

=( )t ΛΛΛΛ      P ( )t
yielding, with P(0) = I (Eq.(A7.85)), the (formal) solution P(t) = eΛΛΛΛt  (ΛΛΛΛ    =    ) .ρij

The following description of the time-homogeneous Markov process, with
initial distribution P ( )i 0  and transition rates ρij , i j m, { , , }∈ …0 , provides
a better insight into the structure of a Markov process as a pure jump
process (Fig. A7.10, [A7.2 (1985)]);  it is the basis for investigations of
Markov processes by means of integral equations (Section A7.5.3.2), and is
the motivation for the introduction of semi-Markov processes (Section A7.6).

Let ξ ξ0 1, , … be a sequence of random variables taking values in { , , }Z Zm0 …  deno-
ting the states successively occupied and η η0 1, , … a sequence of positive random
variables denoting the stay  times between two consecutive state transitions.  Define

  
P Pi j

i j

i
i j i i i j m= ≡≠ ∈ …

ρ
ρ ,    ,         , { , , } and             0 0 , (A7.93)

(see the footnote on p. 487 for a discussion on   P i i ≡ 0).  Assume furthermore that

Pr{ } P ( ),         , ,ξ0 00= = = …Zi i i m     , (A7.94)

and, for n = 0 1 2, , , ..., arbitrary i j i i mn, , , , { , , }0 1 0… ∈ …− , and arbitrary x x xn, , ,0 1 0… − > ,



A7.5   Markov Processes with a Finite Number of States 485

Pr {( ) ( )}ξ η ξ η ξ η ξn j n n i n n i iZ x Z x Z x Z+ − −= ∩ ≤ = ∩∩ = ∩ …∩ = ∩ = =1 1 1 1 0 0 01 0
  

  
  =                 (A7.95)Pr{( ) } Q ( ) F ( ) ( ) . .ξ η ξ ρ

n j n n i ij i j i j i j
xZ x Z x x e i+

−= ∩ ≤ = = = = −1 1P P

In Eq. (A7.95) (as well as in Eq. (A7.158)),

Z j  is the next state visited after Zi; this is not the case in Eq. (A7.77),
see also the remark to Eq. (A7.106).

Q ( )ij x  is thus defined only for j i xii≠ ≡  (Q ( ) )0 .  For Eq. (A7.95), it holds that

  P Pi j n j n iZ Z i i= = =+ ≡Pr{ },        ξ ξ1 0    with      ,

F ( ) Pr{ ( )}i j n n i n jx x Z Z= ≤ = ∩ =+η ξ ξ    ,1 (A7.96)

and the last part of Eq. (A7.95) is a consequence of the memoryless property of the
time-homogeneous Markov process (see also Eq. (A7.102)).  From these considera-
tions it follows that ξ ξ0 1, ,… is a Markov chain with initial distribution

  P i iZ( ) Pr{ }0 0= =ξ

and transition probabilities Pij , embedded in the original process.  Q ( )ij x  is a
semi-Markov transition probability and will as such be discussed in Section A7.6.
Now, define (see e. g. Fig. A7.10)

S Sn n n0 0 10 1 2= = + …+ − = …,        ,      , , ,η η         

ξ ξ( )     t tn n nS S n= − − ≤ <1 1 1 2 for ,                  = , , ... .                               (A7.97)

From Eq. (A7.97) and the memoryless property of the exponential distribution
(Eq. (A6.87)) it follows that ξ ( )t , t ≥ 0 is a Markov process with initial distribution

P ( ) Pr{ ( ) }i iZ0 0= =ξ ,

and transition rates

ρ
δ

δ ξ
δ

i j
t

i j it
t t tZ Z t Z j i= + =

↓
≠lim Pr{ ( , ] ( ) } , ,    

0

1 jump from  to  in      

ρ
δ

δ ξ ρ
δ

i
t

i i i jt
t t tZ t Z

j
j i

m

= + = =
↓ =

≠

∑lim Pr{ ( , ] ( ) }
0

1

0

leave in  
 
.  

                   
  (A7.98)

The evolution of a time-homogeneous Markov process with transition rates ρij  and
ρi can thus be described in the following way [A7.2 (1974 ETH, 1985)]:

If at t = 0 the process enters the state Zi , i. e. ξ0 = Zi, the next state to be
entered, say Z j  ( )j i≠  is selected according to the probability

P Pi j i i≥ ≡0 0  ( ) , and the stay (sojourn) time in Zi is a random variable
η 0 with distribution function

Pr{ ( )}|η ξ ξ ρ
0 0 1 1≤ = ∩ = = − −x Z Z ei j

xi  ,           x > 0;
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as the process enters Z j , the next state to be entered, say Z k  ( )k j≠ , will
be selected with probability   P Pjk j j≥ ≡0 0  ( ) and the stay (sojourn) time
η1 in Z j  will be distributed according to

Pr{ ( )}η ξ ξ ρ
1 2 1≤ = ∩ = = − −x Z Z en j k

xj  ,          x > 0,

etc.

The sequence ξn, n = …0 1, ,  of the states successively occupied by the process is
that of the Markov chain embedded in ξ( )t , the so called embedded Markov chain.
The random variable η n is the stay (sojourn) time of the process in the state defined
by ξn.  From the above description it becomes clear that every state Zi , i m= …0, , ,
is a regeneration state.

In practical applications, the following procedure can be used to f ind the
quantities Q ( )ij x , P ij  & F ( )ij x  in Eq. (A7.95) for time-homogeneous Markov proc-
esses and in Eqs. (A7.158) & (A7.161) for semi-Markov processes [A7.2 (1985)]:

If the process enters the state Zi at an arbitrary time, say at t = 0, then a
set of independent random times τij > 0 , j i≠ , begin ( τij  is the stay
(sojourn) time in Zi with the next jump to Z j );  the process will then jump
to Z j  at the time x if τi j x=  and τ τik i j>  for (all) k i j≠ ,  ( , , { , , }) .i j k m∈ …0

In this interpretation, the quantities Q ( )i j x , Pi j , and F ( )i j x  are given by

Q ( ) Pr{ , } ,, , ( ) ,i j i j ik i j k i j j i x xx x i j= ≤ ∩ > ≠ ≠ = ≤τ τ τ     x 0, Q for> 0 0 (A7.99)

  P Pi j ik i j k i j i j i i= > = ∞≠ ≡Pr{ , } Q ( ) ,, ,τ τ                     0 (A7.100)

F ( ) Pr{ } ,, , ( )i j i j ik i j k i j j i x xx x i j= ≤ > ≠ ≠ = ≤τ τ τ  ,       | x 0, F for>   .0 0  (A7.101)

Assuming for the time-homogeneous Markov process (memoryless property)

Pr{ } , ,τ ρ
i j

x j ix e i j≤ = − − ≠1            x 0 ,>

it follows that (as for Eq. (A7.95)),

Q ( ) ( ) ,– –

,

,
( ) ,i j i j

y y

k
k i j

mx
x

ij
x e e dy ei j i k

i j

i
i j i

x x
= = −

=
≠

−∏∫ ≠
= ≤

ρ ρ ρ ρ
ρ
ρ

00

1
0 0    

x 0,
Q for   

(A7.102)
 

>

P P Pi j
ij

i
i j j i ii iQ i j

j
j i

m

i j
j
j i

m

= = ∞ ≠ ≡ = =
=
≠

=
≠

∑ ∑
ρ
ρ ρ ρ( ) , , , ,

                              
0,  (A7.103)

 0 0
1

F ( ) , ( )i j
x j i x xx e i i j= − − ≠ = ≤1 0 0ρ ,
                

                    (A7.104)x 0, F for>  .  

It should be emphasized that due to the memoryless property of the time-homogene-
ous Markov process, there is no difference whether at t = 0 the process enters Zi  or
it is already there. However, this is not true for semi-Markov processes (Eq. A7.158)).
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Quite generally,

a repairable system can be described by a time-homogeneous Markov
process if and only if all random variables occurring (failure-free, repair,
wait, travel times, etc.) are independent and exponentially distributed.

If some times are Erlang distributed (Appendix A6.10.3), the time evolution can be
described by a time-homog. Markov process with supplementary states (Fig. 6.6).

A powerful tool when investigating time-homogeneous Markov processes is the
diagram of transition probabilities in ( , ]t t t+ δ , where  δ t↓ 0  and t is an arbitrary
time point (e. g. t = 0).  This diagram is a directed graph with nodes labeled by states
Zi , i m= …0, , , and arcs labeled by transition probabilities P ( )ij tδ , where terms of
order ο δ( )t  are omitted.  It is related to the state transition diagram of the system
involved, take care of particular assumptions (such as repair priority, change of
failure or repair rates at a state change, etc.), and has often more than 2 n states, if n
elements in the reliability block diagram are involved (Fig. A7.6, Section 6.7.1).
Taking into account Eq. (A7.99), it follows that for δ t → 0

Pr{( ( ) ( , ]) ( ) }ξ δ δ ξt Z t Zj i= ∩ =only one jump occurs in  0 0

                      o
      

 (A7.105)= − = +− −
= ≠
∏( ) ( ) ,

, ,
1

0
e e t ti j ik

k k i j

m
t t

i j
ρ δ ρ δ ρ δ δ

and

Pr{( ( ) ( , ]) } ( )ξ δ δ ξ δt Z t Z tj i= ∩ ( ) = =more than 1 jump in o 0 0 . (A7.106)

From this,

P o  i j i j j it t t( ) ( ),     δ ρ δ δ= + ≠            and       P ( ) ( )i i it t tδ ρ δ δ= − +1 o ,

as with Eq. (A7.88).  Although for δ t → 0 it holds that P ( ) Q ( )i j i j i jt t tδ δ ρ δ= = ,
P ( )i j tδ  per Eq. (A7.79) and Q ( )i j tδ  per Eq. (A7.95) are basically different.  With

Q ( )i j x , Z j  is the next state visited after Zi , this is not the case for P ( )i j x . +)

Examples A7.3 to A7.5 give the diagram of transition probabilities in ( ],t t t+δ
for some typical structures for reliability applications.  The states in which the sys-
tem is down are gray.  In state Z0 all elements are up (operating or in reserve). 

++)

Example A7.3
Figure  A7.4 shows several possibilities for a 1-out-of-2 redundancy. The difference with respect

to the number of repair crews appears when leaving states Z2  for case a) and Z3 for cases b) and

c);  cases b) and c) are identical when two repair crews are available.

______________
+) Note also that   P i i ≡ 0 refers to the embedded Markov chain only, and does not imply ρi i = 0

  ( ,ρ δ ρ δi i it t= −1  see e. g. Figs. A7.6 & A7.8).
++) The memoryless property, characterizing the time-homogeneous Markov processes, is satisfied in

all diagrams of Fig. A7.4 and in all similar diagrams given in this book.  Assuming, for instance,
that at a given time t the system of Fig. A7.4b left is in state Z4 , development after t is independ-
ent of how many times before t the system has oscillate e. g. between Z Z Z Z Z Z2 0 2 0 1 3, , , ,or    .
Necessary and sufficient for a Markov process is that all stay times are exponentially distributed.
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E
   1

E
   2

1-out-of-2

Distribution of failure-free times
• operating state: F( )t e t= − −1 λ

• reserve state: F( )t e r t= − −1 λ

Distribution of repair time:  G( )t e t= − −1 µ

one repair crew two repair crews

a)

Z0 Z1 Z2

1 – (λ + λr) δt 1 – (λ + µ) δt 1 – µ δt

(λ + λr) δt

µ δt

λ δt

µ δt

ρ01 = λ + λr;   ρ10 = ρ21 = µ;   ρ12 = λ

Z0 Z1 Z2

1 – (λ + λr) δt 1 – (λ + µ) δt 1 – 2µ δt

(λ + λr) δt

µ δt

λ δt

2µ δt

ρ01 = λ + λr;   ρ10 = µ;   ρ12 = λ;   ρ21 = 2µ

1 
– 

µ 1
 δ

t

1 – (λ2 + µ1) δt

b)
ρ01 = ρ24 = λ1;   ρ02 = ρ13 = λ2;
ρ10 = ρ32 = µ1;   ρ20 = ρ41 = µ2

Z1

Z3

Z2

Z0

Z4

1 – (λ1 + µ2) δt

λ1 δt

µ1 δtµ2 δt

λ2 δt

1 
– 

µ 2
 δ

t

µ2 δt
µ1 δt

λ1 δt

1 
– 

(λ
1 +

 λ
2)

 δ
t

λ2 δt

ρ01 = ρ23 = λ1;   ρ02 = ρ13 = λ2;
ρ10 = ρ32 = µ1;   ρ20 = ρ31 = µ2

1 – (λ2 + µ1) δt

Z1

Z3

Z2

Z0

λ2 δt

µ2 δt

µ1 δt

λ1 δt

1 – (λ1 + µ2) δt

λ2 δt

µ2 δt

µ1 δt
λ1 δt

l–
(µ

1+
µ 2

)δ
t

l–
(λ

1+
λ 2

)δ
t

c)
ρ01 = ρ23 = λ1;   ρ02 = ρ13 = λ2;
ρ10 = ρ32 = µ1;   ρ20 = µ2

1 
– 

µ 1
 δ

t

λ2 δt

λ1 δtλ2 δt

λ1 δt

µ2 δt

µ1 δt

1 – (λ1 + µ2) δt

1 
– 

(λ
1 +

 λ
2)

 δ
t

1 – (λ2 + µ1) δt

µ1 δt

Z1

Z3

Z2

Z0

l – (λ1+µ2) δ t

ρ01 = ρ23 = λ1;   ρ02 = ρ13 = λ2;
ρ10 = ρ32 = µ1;   ρ20 = ρ31 = µ2

λ2 δt

µ2 δt

λ1 δt

µ1 δt

λ2 δt

1 – (λ2 + µ1) δt

l–
(µ

1+
µ 2

)δ
t

λ1 δt

µ1 δt

µ2 δt

l–
(λ

1+
µ 2

)δ
t

Z1

Z3

Z2

Z0

Figure A7.4  Diagram of transition probabilities in ( , ]t t t+δ  for a repairable 1-out-of-2 redundancy
(constant failure rates λ λ,  r  and repair rate µ ):  a) Warm redundancy with E E1 2=  ( λ λr = →
active, λr ≡ →0  standby);  b) Active redundancy, E E1 2≠ , left with repair as per first-in first-out;
c) Active redundancy, E E1 2≠ , left with repair priority on E1 (ideal failure detection and switch,
Z Z Z2 3 4for a), ,  down states, t arbitrary, δ t↓0, Markov proc.; see Tables 6.6, 6.9, 6.10 for results)
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k-out-of-n
(active)

E1 = E2 = … = En = E

Distribution of

• failure-free operating times:  F(t)=1 – e
–λt

• repair times:  G(t)=1 – e
–µt

E1

E1

En

µδ t 2µδ t 2µδ t 2µδ t 2µδ t 2µδ t 2µδ t

Z0 Zn-k Zn-k+1 Zn-k+2 Zn

1 – ν0 δt 1 – (ν1 + µ) δt 1 – (νn-k + 2µ) δt 1 – (νn-k+1 + 2µ) δt 1 – (νn-k+2 + 2µ) δt 1 – 2µ δt

νi  = (n – i) λ  and  ρi (i+1)  = νi   for  i = 0, 1, … , n – 1 ;     ρ10 = µ ;     ρi (i–1) = 2µ   for  i = 2, 3, … , n

ν0 δt ν1 δt νn-k-1δt νn-k δt νn-k+1δt νn-k+2δt νn-1δt

Z1

a)

Z0 Z1 Zn-k Zn-k+1

1 – ν0 δt 1 – (ν1 + µ) δt 1 – (νn-k + 2µ) δt 1 – 2µ δt

µδ t 2µδ t 2µδ t 2µδ t

ν0 δt ν1 δt νn-k-1δt νn-k δt

νi  = (n – i) λ  and  ρi (i+1)  = νi   for  i = 0, 1, … , n – k ;     ρ10 = µ ;     ρi (i–1) = 2µ  for  i = 2, 3, … , n – k + 1

b)

Figure A7.5   Diagram of transition probabilities in ( , ]t t t+ δ  for a repairable k-out-of-n
active redundancy with two repair crews  (constant failure rate λ and constant repair rate µ ):  
a) The system operates up to the failure of the last element;    b) No further failures at system down
(system up if at least k elements are operating, ideal failure detection and switch, Z Zn k n− +1, ...,
down states, t arbitrary, δ t ↓ 0, Markov process;  see Section 6.5 for results)

Example A7.4

Figure A7.5 shows two cases of a k-out-of-n active redundancy with two repair crews.  In the first
case, the system operates up to the failure of all elements (with reduced performance from state
Zn k− +1).  In the second case no further failures can occur when the system is down.

Example A7.5

Figure A7.6 shows a series - parallel structure consisting of the series connection (in the reliabil-
ity sense) of a 1-out-of-2 active redundancy, with elements E E E2 3= =  and a switching element
E1.  The system has only one repair crew.  Since one of the redundant elements E2  or E3 can be
down without having a system failure, in cases a) and b) the repair of element E1 is given first
priority.  This means that if a failure of E1 occurs during a repair of E2  or E3, the repair is
stopped and E1 will be repaired.  In cases c) and d) the repair priority on E1 has been dropped.
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1-out-of-2 (active)

E
   3

E
   2

E
   1

E2 = E3 = E

Distribution of

• failure-free times:  F(t)= 1– e-λ t for E ,   F(t)= 1– e-λ1t for E1
• repair times:  G(t)= 1– e-µ t for E ,   G(t)= 1– e-µ1t for E1

1 
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µ 1
 δ

t

λ1 δt

1 – (λ1 + µ) δt

1 – (2 λ + µ1) δt

µ1 δt

Z1

Z2

Z0
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2 λ δt

µ1 δt

λ1 δt
µ1 δt

λ1 δt

λ δt
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µ δt

1 – (λ + λ1 + µ) δt

2 λ δt

µ δt
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Z1

Z2

Z0
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µ1 δt
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1 – (λ + λ1 + µ) δt

2 λ δt

µ δt

1 
– 

(2
 λ

 +
 λ

1)
 δ

t 1 – µ1 δt

µ1 δt
λ1 δt

1 – µ δt

ρ01 = ρ25 = ρ46 = λ1;   ρ02 = ρ15 = 2 λ;   ρ24 = λ;
ρ10 = ρ52 = ρ64 = µ1;   ρ20 = ρ42 = µ;     ρ56 = λ

ρ01 = ρ23 = λ1;   ρ02 = 2 λ;   ρ24 = λ;
ρ10 = ρ32 = µ1;   ρ20 = ρ42 = µ

a) Repair priority on E1 b) As a), but no further failures at
system down

1 
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µ 
δt

λ1 δt

1 – (λ1 + µ) δt

1 – (2 λ + µ1) δt

µ1 δt

Z1

Z2

Z0

Z5

Z6

Z4

2 λ δt

µ1 δt

λ1 δt
µ1 δt

λ δt

1 – (λ + µ1) δt

λ δt

µ δt

1 – (λ + λ1 + µ) δt

2 λ δt
µ δt

1 
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(2
 λ

 +
 λ

1)
 δ

t

Z8
Z3

Z7

1 
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µ 1
 δ

t

1 
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µ 
δtµ δt

λ δt

1 – (λ + µ) δt

µ δt

µ δt

λ1 δt

λ1 δt
Z1

Z2

Z0
Z3

Z4

µ1 δt

λ δt

µ δt

1 – (λ + λ1 + µ) δt

2 λ δt

µ δt

1 
– 

(2
 λ

 +
 λ

1)
 δ

t 1 – µ1 δt

λ1 δt

1 – µ δt

1 – µ δt

µ δt

ρ01 = ρ23 = ρ47 = λ1;  ρ02 = ρ15 = 2 λ;  ρ10 = ρ52 = ρ64 = µ1;
ρ20 = ρ31 = ρ42 = ρ73 = ρ85 = µ;   ρ24 = ρ38 = ρ56 = λ

ρ01 = ρ23 = λ1;   ρ02 = 2 λ;   ρ24 = λ;
ρ10 = µ1;   ρ20 = ρ31 = ρ42 = µ

c) No repair priority  (repair as per first-in first-out,
yielding 16 states for E E1 2≠  )

d) As c), but no further failures at
system down

Figure A7.6 Diagram of transition probabilities in ( , ]t t t+δ  for a repairable series - parallel structure
with E E E2 3= =  and one repair crew:  a) Repair priority on E1 and system operates up to the failure
of the last element;   b) Repair priority on E1 and at system failure no further failures can occur;
c) & d) as a) & b), but with repair as per first-in first-out  (const. failure & repair rates λ λ µ µ, , ,1 1 ,
ideal failure detection & switch, Z Z Z1 3 8, −  down states, t arbitrary, δ t ↓ 0, Markov process)
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___________________

+) Reliability figures at system level will have indices Si  (e. g. MTTFS i), where S stands for system
and i is the state entered at t = 0  (system refers in this book, and often in practical applications,
to the highest integration level of the item considered, i = 0 refers in this book to item new).

A7.5.3 State Probabilities and Stay Times (Sojourn Times)
in a Given Class of States

In reliability theory, two important quantities are the state probabilities and the
distribution function of the stay (sojourn) times in the set of system up states.  The
state probabilities allow calculation of the point availability.  The reliability function
can be obtained from the distribution function of the stay time in the set of system
up states.  Furthermore, a combination of these quantities allows, for time-homoge-
neous Markov processes, a simple calculation of the interval reliability. 

+)

In such analyses, it is useful to partition the system state space into two
complementary sets U  and U

U system up states   set of the    (up states at system level)=

U system down states   set of the    (down states at system level)= . (A7.107)

Partition of the state space in more than two classes is possible, see e. g. [A7.28].
Calculation of state probabilities and stay (sojourn) times can be carried out for

Markov processes using the method of differential equations or of integral equations.

A7.5.3.1 Method of Differential Equations

The method of differential equations is the classical one used in investigating
time-homogeneous Markov processes, and is based on the diagram of transition
probabilities in ( ],t t t+δ .  Consider a time-homogeneous Markov process ξ ( )t
with arbitrary initial distribution P ( ) Pr{ ( ) }i iZ0 0= =ξ  and transition rates ρij  and ρi
(Eq. (A7.98)).  The state probabilities defined by Eq. (A7.83)

P ( ) Pr{ ( ) },         , , , ,j j j m tt t Z= = = … >ξ        0 0

satisfy the system of differential equations

P ( ) P ( ) P ( ) ,       , , , ,j j j i i j
i
i j

m
j m tt t t j j i

i
i j

m•
= − + ∑

=
≠

= … > =∑
=
≠

ρ ρ ρ ρ
0

0 0
0

   .  (A7.108)

Equation (A7.108) uses the memoryless property of the time-homogeneous Markov
process & Eq. (A7.90), and follows from P ( ) P ( ) ( ) P ( )j j i ijt t t t tt j i j

+ = − +
≠

∑δ ρ δ ρ δ1   ,
see also Example A7.6).  The point availability PA ( )S t , for arbitrary initial condi-
tions at t =0, follows then from 

+)

PA ( ) Pr{ ( ) } P ( ) ,  .S j tt t U t
Z Uj

= ∈ =
∈

∑ >ξ               0 (A7.109)
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In reliability analysis, particular initial conditions (Eq.(A7.82)) are often of interest.
Assuming

P ( )      P ( )    ,i j j i0 1 0 0= = ≠and   for             (A7.110)

i .  e., that the system is in Z i  at t =0, the state probabilities P ( )j t , obtained as
solution of Eq. (A7.108) with initial conditions per Eq. (A7.110), become the
transition probabilities P ( )ij t  defined by Eqs. (A7.78) & (A7.79) +)

P ( ) P ( )i j jt t≡ ,                i j m, { , , }.∈ …0 (A7.111)

The point availability, designated with PA ( )Si t  (footnote on p. 491) is then given by

PA ( ) Pr{ ( ) ( ) } P ( ), ,..., ,
PA ( ) .Si i i j

i m t
Z U

t t U Z t
Z U Si i

j

= ∈ = =
∈

∑ = >
= ∈ξ ξ     (A7.112)      

,

                                                                                             

for
0 0 0

0 1

PA ( )Si t  is the probability that the system is in one of the up states at t, given it was
in Zi  at t = 0;  thus, PA ( )Si 0 1=  holds only for Z Ui ∈ .  Example A 7.6 illustrate
calculation of the point-availability for a 1-out-of-2 active redundancy.

Example A7.6
Assume a 1-out-of-2 active redundancy, consisting of 2 identical elements E E E1 2= =  with
constant failure rate λ and repair rate µ, and only one repair crew.  Give the state probabilities of
the involved Markov process ( E1 and E2  are new at t = 0).

Solution
Figure A7.7 shows the diagram of transition probabilities in ( , ]t t t+ δ  for the investigation of
the point availability.  Because of the memoryless property of the involved Markov Process,
Fig A7.7 and Eqs. (A7.83) & (A7.90) lead to the following system of difference equations
(by omitting the terms in ο( )δt , as per Eq. (A7.89))

P ( ) P ( )( ) P ( )0 0 11 2t t t t t t+ = − +δ λ δ µ δ

P ( ) P ( )( ( ) ) P ( ) P ( )1 1 0 21 2t t t t t t t t+ = − + + +δ λ µ δ λ δ µ δ

P ( ) P ( )( ) P ( )2 2 11t t t t t t+ = − +δ µ δ λ δ ,

and then, as δ t ↓ 0,

P ( ) P ( ) P ( )0 2 0 1
•

= − +t t tλ µ

P ( ) ( )P ( ) P ( ) P ( )1 1 0 22
•

= − + + +t t t tλ µ λ µ

P ( ) P ( ) P ( )2 2 1

•
= − +t t t  µ λ . (A7.113)

The system of differential equations (A7.113) also follows from Eq. (A7.108) with the ρij from
Fig. A7.7.  The solution for given initial conditions at t = 0 , e. g. P ( )0 0 1= , P ( ) P ( )1 20 0 0= = ,
leads to state probabilities P ( )0 t , P ( )1 t , and P ( )2 t , and to the point availability according to Eqs.
(A7.111) & (A7.112) with i = 0  (see pp. 197-198 and Example A7.9 (p. 503) for a detailed solu-
tion, Eq. (6.88) for an approximation, and Table 6.6 (p. 201) for a summary of important results).

______________
+) Enters Z i  will be necessary for semi-Markov processes, often Z Zi = 0  denoting all elements new.
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Z1 Z2Z0

2 λ δt

1 – 2 λ δt

λ δt

µ δt µ δt

1 – µ δt1 – ( λ + µ) δt

Figure A7.7   Diagram of the transition probabilities in ( , ]t t t+ δ  for availability calculation of a
repairable 1-out-of-2 active redundancy with E E E1 2= = , constant failure rate λ, constant repair
rate µ , and one repair crew  (ideal failure detection and switch, Z 2  down state, t arbitrary, δ t↓ 0,
Markov process with ρ λ ρ µ01 102= =, ,    ρ λ ρ µ12 21= =, , ρ λ ρ λ µ ρ µ0 1 22= = + =, ,  )

A further important quantity for reliability analyses is the reliability function
R ( )S t ;  i. e., the probability of no system failure (no failure at system level) in ( , ]0 t .
R ( )S t  can be calculated using the method of differential equations if all states in U
are declared to be absorbing states.  This means that the process will never leave Z k
if it jumps into a state Z Uk ∈ .  It is not difficult to see that in this case, the events

{ }first system failure occurs before t
and

{ }system is in one of the states at U t

are equivalent, so that the probability to be in one of the states in U is the required
reliability function, i. e., the probability that up to the time t the process has never
left the set of up states U.  To make this analysis rigorous, consider the modified
Markov process ξ' ( )t  with transition probabilities Pi j t' ( )  and transition rates

ρ ρ ρ ρ ρ
i j i j i i i j

j i j

Z U Z Ui j i

m

'   ,       '   ,   '    '
,

= ∈ = ∈ =
= ≠

∑if if .
       (A7.114)0

0

The state probabilities P ' ( )j t  of ξ' ( )t  satisfy the following system of differential
equations (see Example A7.7 for an application)

P ' ( ) ' P '( ) P '( ) ' , , , ' ' .
, ,

,...,j j j j jt t t ti j
j i j

m

j i j

m

i j m i
•

= − + > =
= ≠ = ≠
∑ ∑=ρ ρ ρ ρ
0 0

0 0           (A7.115)

Assuming as initial conditions P ( )'i 0 1=  and P ( )'j 0 0=  for j i≠ , with Z Ui ∈ , the
solution of Eq. (A7.115) leads to the state probabilities P ' ( )j t  and from these to the
transition probabilities (as for Eq. (A7.111))

P ( ) P ( )' '
i j jt t≡ . (A7.116)

The reliability function R ( )Si t  is then given by (footnote on p. 491)

R ( ) Pr{ ( ) ( ) } P ( ),   .' ,
R ( ) .Si i
Z U tt x U x t Z ti j

Z Uj

i

S i
= ∈ < ≤ = =

∈
∑ ∈ >

=
ξ ξfor     ,

 
 

(A7.117)

   0 0 0
0 1
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Z1 Z2Z0

2 λ δt

1 – 2 λ δt

λ δt

µ δt

11 – ( λ + µ) δt

Figure A7.8   Diagram of the transition probabilities in ( , ]t t t+ δ  for the reliability function of a
repairable 1-out-of-2 active redundancy with E E E1 2= = , constant failure rate λ, constant repair rate
µ , one repair crew (ideal failure detection and switch, Z 2  down state (absorbing), t arbitrary, δ t ↓ 0,
Markov process (see footnote on p. 497) with ρ λ ρ µ01 102= =, ,  ρ λ12 = , ρ λ0 2= ,   ρ λ µ ρ1 2 1= + =, )

Example A7.7 illustrates the calculation of the reliability function for a 1-out-of-2
active redundancy.  Finally,

the probabilities marked with ' ( P ' ( ))i t  are reserved for reliability cal-
culation, when using the method of differential equations;  this to avoid
confusion with the corresponding quantities for the point availability.

Equations (A7.112) and (A7.117) can be combined to determine the probability
that the process is in an up state (set U) at t and does not leave the set U in the time
interval [ , ]t t + θ , given ξ ( )0 = Zi .  This quantity is the interval reliability
IR ( , )Si t t +θ .  Due to the memoryless property of the involved Markov process,

IR ( , ) Pr{ ( ) ( ) }

P ( ) . R ( ) , , ..., , , ,

Si i

i j Sj

t t t t

t

x U x Z

Z Uj

i m t

+ = ∈ ≤ ≤ + =

=
∈
∑ = >

θ ξ θ ξ

θ θ

for  

                                                            (A7.119)

0

0 0

with P ( )ij t  as given in Eq. (A7.111) and R ( )Si θ  per Eq. (A7.117) with t =θ .

Example A7.7
Investigate the reliability function for the same case as in Example A7.6; i. e., the probability that
the system has not left the states Z0  and Z1 up to time t.

Solution
The diagram of transition probabilities in ( , ]t t t+ δ  of Fig. A7.7 is modified as in Fig. A7.8 by
making the down state Z2  absorbing.  For the state probabilities it follows that (Example A7.6)

P ' ( ) P ' ( ) P ' ( )0 02 1
•

= − +t t tλ µ

P ' ( ) ( )P ' ( ) P ' ( )1 1 02
•

= − + +t t tλ µ λ

P ' ( ) P ' ( )2 1
•

=t tλ . (A7.118)

The solution of Eq. (A7.118) with the given initial conditions at t = 0 ( P ' ( )0 0 1= ,
P ' ( ) P ' ( )1 20 0 0= = ) leads to the state probabilities P ' ( )0 t , P )'(1 t  and P ' ( )2 t , and then to the
transition probabilities and to the reliability function according to Eqs. (A7.116) and (A7.117),
respectively (dashed state probabilities should avoid confusion with the solution given by
Eq. (A7.113);  see pp. 198-199 and Example A7.9 (p. 503) for a detailed solution, Eq. (6.94) for
an approximation, and Table 6.6 (p. 201) for a summary of important results).
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A7.5.3.2 Method of Integral Equations

The method of integral equations is based on the representation of the time-
homogeneous Markov process ξ ( )t  as a pure jump process by means of ξn  and ηn
as introduced in Appendix A7.5.2 (Eq. (A7.95), Fig. A7.10).  From the memoryless
property it uses only the fact that jump points (in a new state) are regeneration
points of ξ ( )t .

The transition probabilities P ( ) Pr{ ( ) ( ) }ij j it t Z Z= = =ξ ξ 0  can be obtained by
solving the following system of integral equations

P ( ) P ( ) , ,, { , , },ij ij
t

ik
x

kj

t
i j m tt e e t x dxi i

k
k i

m
= + −− − … >∫∑

=
≠

∈δ ρρ ρ   
0

0 0
0

 (A7.120)

with ρ δρi ijj i ij= =≠∑  , 0 for j i≠ , δ i i =1, and Pij ij( )0 =δ  per Eq. (A7.85).  The first
term of Eq. (A7.120) only holds for j i=  and gives the probability that the process
will not leave the state Zi ( e tit ij j i− = > ≠ρ τPr{ }    for all ).  To prove the second
term of Eq. (A7.120), consider that it holds

P ( ) Pr{ ( )

( ) } ,
ij k kt Z x x t x Z

Z
k
k i

m

i

= < ≤ =
==

≠

∑    first jump in at  for  and 

is a regeneration point  (A7.121) 

 

    
0

0

0

ξ
ξ

this term gives the probability that the process will first move from Zi  to Zk  at x  for
0 < ≤ ≠x k it , , and take into account that occurrence of Zk  is a regeneration point
( Pr { } ( ) ( ) /   ξ η ξ ρ ρρ

1 0 0 1= ≤ = = =∩ − −Z x Z Q x ek ik
x

ik ii i , yields dQ x dx eik ik
xi       ( ) / = −ρ ρ

and Pr { ( ) ( )} ( )ξ ξ η ξt tZ Z x Z P xj i k kj= = = = =∩ ∩ −   ) .0 0 1   Equation (A7.121) then
follow from the theorem of total probability (Eq. (A6.17)).

In the same way as for Eq. (A.120), it can be shown that the reliability function
R ( )Si t , as defined in Eq. (A7.117), satisfies the following system of integral
equations

R ( ) R ( ) .,  ,
.

,
R ( )Si i i j i Sj
Z U tt t x dxe et

t
x

Z Uj
j i

i ij
j
j i

m
i

S i
= + ∑− − −∫∑

∈
≠

=
≠

= ∈ >
=

ρ ρρ ρ ρ
0

0
0 10

           ,

 
 (A7.122)

Point availability PA ( )Si t  and interval reliability IR ( , )Si t t + θ  are given by
Eqs. (A7.112) and (A7.119), with Pi j t( ) per Eq. (A7.120); see, for instance,
Eqs. (6.85) and (6.96) for a 1-out-of-2 redundancy.

Use of integral equations, as in Eq. (A7.122), for PA ( )Si t  leads to
mistakes, since R ( )Si t  and PA ( )Si t  describe two basically different
situations (summing for PA ( )Si t  over all states j i≠  yields PA ( )Si t = 1,
as for Eq. (A7.112) with j m= 0, ..., ).
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The systems of integral equations (A7.120) and (A7.122) can be solved using
Laplace transforms.  Referring to Appendix A9.7,

P̃ ( ) P̃ ( ) ,   ,,    , { , , }i j k j i j ms sij

i

ik

ik
k i

m

s s i ij

j i

m

j

= + ∑
+ +

= ∈ …
=
≠

=
≠

∑
δ

ρ ρ
ρ

ρ
ρ

       
       

(A7.123)
0

0
0

and

R̃ ( ) R̃ ( ) ,     , .Si Sj Z Us s
s si

ij

iZj U
j i

i ij

j i

m

i
j

= + ∑
+ +∈

≠
≠

∑ = ∈
=

1

0ρ

ρ

ρ
ρ ρ (A7.124) 

                 

 

A direct advantage of the method based on integral equations appears in the
calculation of MTTFS i , i. e., of the system mean time to failure, provided the system
is in state Z Ui ∈  at t = 0.  Considering Eqs. (A6.38) & (2.61), or Appendix A9.7,
it follows that

MTTFSi Si Sit dt= =
∞
∫ R ( ) R̃ ( )
0

0  . (A7.125)

Thus, according to Eq. (A7.124), MTTFS i  satisfies the following system of
algebraic equations  (see Example A7.9 for an application)

MTTF MTTFSi Sj Z U
i

i j

iZ U
j i

i i j

j i

m

i

j
j

= + ∑
∈
≠ ≠

∑ = ∈
=

1

0ρ
ρ
ρ ρ ρ               , ,  . (A7.126)

A7.5.3.3 Stationary State and Asymptotic Behavior

The determination of time-dependent state probabilities or of the point availability
of a system whose elements have constant failure and repair rates is still possible
using differential or integral equations.  However, it can become time-consuming.
The situation is easier where the state probabilities are independent of time, i. e.,
when the process involved is stationary (the system of differential or integral
equations reduces to a system of algebraic equations):

A time-homogeneous Markov process ξ ( )t  with states Z Zm0 , ,…  is
stationary, if its state probabilities P ( ) Pr{ ( ) }i it t Z= =ξ , i m= …0, ,  do not
depend on t.

This can be seen from the following relationship

Pr{ ( ) ( ) } Pr{ ( ) }P ( ) P ( )ξ ξ ξt Z t Z t Z t t t ti n i i i i i i n nn n n1 1 2 1 11 1 1 2 1
= = = = …∩ … ∩ − −

− −

which, according to the Markov property (Eq. (A7.77)) must be valid for arbitrary
t tn1 < … <  and i i mn1 0, , { , , }… ∈ … .  For any a > 0 this leads to

Pr{ ( ) ( ) } Pr{ ( ) ( ) }ξ ξ ξ ξt Z t Z t a Z t a Zi n i i n in n1 11 1
= ∩ … ∩ = = + = ∩ … ∩ + = .
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From P ( ) P ( )i it ta+ =  it follows P ( ) P ( )i i it P= =0 , and, in particular, P ( )i t
•

= 0.  Conse-
quently, the process ξ ( )t  is stationary (in steady-state) if and only if its initial distri-
bution (initial conditions Pi i iZ= = =P ( ) Pr{ ( ) }0 0ξ , i m= …0, , , satisfy (Eq. (A7.108))

P Pj j i i j P P j m
i
i j

m

j j j j i
i
i j

m

j

m
ρ ρ ρ ρ= ∑∑

=
≠

∑ ≥ = = =
=
≠

=0
1

00
,    ,   ,   .      

(A7.127)

with   0 ,      0,  ... ,  

The system of Eq. (A7.127) must be solved by replacing one (arbitrarily chosen)
equation by Pj∑ = 1.  Every solution of Eq. (A7.127) with Pj ≥ 0, j m= …0, , , is a sta-
tionary initial distribution of the Markov process.  Equation (A7. 127) expresses that

Pr to come out from state Z Pr to come in state Zj j{           } { }= ,

also known as generalized cut sets theorem (see e. g. also Eq. (A7.152)).
A Markov process with a finite number of states ( )m < ∞  is irreducible if for

every pair i j m, { , , }∈ …0  there exists a t such that P ( )ij t > 0;  i. e., if every state can
be reached from every other state.  It can be shown that if P ( )ij t0 0>  for some
t0 0> , then P ( )ij t > 0 for any t > 0.  A Markov process is irreducible if and only if its
embedded Markov chain is irreducible (Eq. (A7.75)). For an irreducible Markov proc-
ess, there exist quantities Pj j m> = …0 0, ,, ,  with P Pm0 1+…+ = , such that independently
of the initial condition P ( )i 0  the following holds (Markov theorem, e. g. [A6.6  (V. 1)])

lim P ( ) ,         , ,
t

j j j mt P
→∞

= > = …0 0      . (A7.128)

For any i m= …0, ,  it follows then that

lim P ( ) ,         , ,
t

i j j j mt P
→∞

= > = …0 0     . (A7.129)

The set of values P Pm0 , ,…  from Eq. (A7.128) is the limiting distribution of the
Markov process.  From Eq. (A7.129) it follows (as for Eq. (A7.76)), that for an ir-
reducible Markov process the limiting distribution is the only stationary and ergodic
distribution, i. e., the only solution of Eq. (A7.127) with Pj > 0, j m= … < ∞0, , .+)

Further important results follow from Eqs. (A7.174) - (A7.180).  In particular,

• the initial distribution in steady-state A ( ) ( ) /° = − −
i j i i j ix Pe i x1 ρ ρ ρ   (Eq. (A7.181)),

• the frequency   h Pi i i= ρ , of consecutive occurrences of state Zi  (Eq. (A7.181a)),

• the relation between stationary values Pi per Eqs. (A7.175) & (A7.103) for the
embedded Markov chain and Pi per Eq. (A7.127) for the involved Markov
process (Eq. (A7.176) with   Ti i= 1 / ρ  per Eqs. (A7.166), (A7.165), (A7.102))

Pi
i i

k k
k

m
=

∑
=

P

P

/

/
.

ρ

ρ
0

(A7.130)

______________
+) On the contrary, if the embedded Markov chain is not irreducible (Fig. A7.8), the consequence of

Z 2  absorbing is that lim P ( )
t

t
→ ∞

=2 1 and lim P ( ) lim P ( )
t t

t t
→ ∞ → ∞

= =0 1 0 (according to Eq. (A7.127)).
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From the results given by Eqs. (A7.127) - (A7.129), the asymptotic & steady-state
value of the point availability PAS  follows as

lim  PA ( ) , .
t

S i S j
Z U

t PA P
j

i m
→∞ ∈

= = ∑ =,                ... ,0 (A7.131)

For the interval reliability, Eq. (A7.119) holds with P ( )ij t  as per Eq. (A7.129).
If K is a subset of { , , }Z Zm0 … , the Markov process is irreducible, and P Pm0 , ,…

are the limiting probabilities obtained from Eq. (A7.127) then,

Pr{ lim } ,
( , ]

t

Z K
j

j

j

t

t
P

Z K→∞

∈
= =

∈
∑

total sojourn time in states  in   0
1 (A7.132)

irrespective of the initial distribution P ( ),..., P ( )0 0 0m .  From Eq. (A7.132) it follows

Pr{ lim }
( , ]

t
j S

t

t
P PA

Z Uj
→∞

= = =
∈

∑total operating time in 0
1.

The average availability of the system can be expressed as (see Eq. (6.24))

AA ( ) E[ ] PA ( ) .( , ] ( )Si Si

t
t

t
t t x dxZi= = = ∫1 0 0 1

0
total operating time in  ξ    (A7.133)

The above considerations lead to (for any Z Ui ∈ )

lim AA ( ) .
t

Si S S jt AA PA P
Z Uj

→∞
= = =

∈
∑ (A7.134)

Expressions k Pk∑  are useful in practical applications, e. g. for cost optimizations.
Except for investigations on the reliability function (RS t( ))  (see footnote on

p. 497), an irreducible embedded Markov chain can be assumed in reliability
applications.  For such cases, according to Eqs. (A7.127) and (A7.128),

asymptotic & steady-state can be used as a synonym for stationary
(see e. g. also pp. 187-188, 472, 477, 479, 509, 514).

A7.5.4 Frequency / Duration and Reward Aspects

In some applications, it is important to consider the frequency with which failures at
system level occur and the mean duration of system down time (or operating time)
in stationary state.  Also of interest is the investigation of fault tolerant systems for
which a reconfiguration can take place after a failure, allowing continuation of
operation with defined loss of performance (reward).  Basic considerations on these
aspects are given in this section.  Some applications are in Section 6.8.6.

A7.5.4.1 Frequency / Duration

To introduce the concept of frequency / duration let us consider the one-item struc-
ture discussed in Appendix A7.3 as application of the alternating renewal process.
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As in Appendix A7.3 assume an item (system) which alternates between operating
state, with mean time to failure MTTF, and repair state, with complete renewal and
mean repair time MTTR.  In the stationary state, the frequency at which item failures
fud  or item repairs (restorations) fdu occurs  is given as (Eq. (A7.60))

f f t tud du ud du
MTTF MTTR

t= = = =
+

≥h ( ) h ( )
1

.,            0 (A7.135)

Furthermore, for the one-item structure, the mean up time MUT  is

MUT MTTF= . (A7.136)

Consequently, considering Eq. (A7.58) the basic relation

PA f
MTTF

MTTF MTTR
ud MUT= =

+
  . ,           i. e.   MUT PA fud= / , (A7.137)

can be established, where PA is the point availability (probability to be up) in the
stationary state.  Similarly, for the mean failure duration MDT  one has

MDT MTTR= (A7.138)

and thus

1− = =
+

PA f
MTTR

MTTF MTTR
du MDT. ,       i. e.  MDT PA fdu= −( ) / .1 (A7.139)

Constant failure rate λ =  1 / MTTF  and repair (restoration) rate µ = 1/ MTTR  leads to

PA PA f fud du
. .( ) ,     λ µ= − = =1 (A7.140)

which expresses  the stationary property of time-homogeneous Markov processes,
as particular case of Eq. (A7.127) with m = { , }0 1 .

For systems of arbitrary complexity with constant failure and repair (restoration)
rates, described by time-homogeneous Markov processes (Appendix A7.5.2),
generalization of Eqs. (A7.135) & (A7.137) yields for the asymptotic & steady-state
system failure frequency fudS  and system mean (expected) up time MUTS

f P PudS j j i j j i
Z U Zi U Z U Zi Uj j

 =
∈ ∈ ∈ ∈

−−
∑ ∑= ∑

,

( )ρ ρ      (A7.141)

and
MUTS j udS S udSP f PA f

Z Uj

= =
∈

∑( ) ,/ /      (A7.142)

respectively.  U is the set of states considered as up states for fud S  and MUTS
calculation, U

−
 the complement to the totality of states considered.  MUTS  is the

mean of the time in which the system is moving in the set of up states Z Uj ∈
  

 before
a transition to the set of down states Z Ui ∈ −

 occurs in the stationary case or for
t → ∞ .  In Eq. (A.7.141), all transition rates ρj i  leaving state Z Uj ∈

  
 toward Z Ui ∈ −

are considered (cumulated states).  Similar results hold for semi-Markov processes.
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Equations (A7.141) & (A7.142) have a great intuitive appeal:  (i) Because of the mem-
oryless property of the time-homogeneous Markov processes, the asymptotic &
steady-state probability to have a failure in ( , ]t t t+δ  is   fudS tδ   ( i i) Setting UT
as up time and ν ( )t  as number of failures in ( , ]0 t ,  lim (  

t SUT PAt
→∞ =/ )  a n d

lim (  
t

t t fudS→∞ =ν( ) / ) , lead to UT MUT PA ft S S udS/ ( ) /ν → =  for t → ∞ .
Similar results hold for the system repair (restoration) frequency fduS  and system

mean (expected) down time MDTS  (mean repair (restoration) time at system level)

f P PduS i i j i ij

Z U Z U Z Ui j i Z Uj

     =
−

∈ ∈
−

∈

∑ ∑=
∈

∑
,

( )ρ ρ (A7.143)

and
MDTS i duS S duSP f PA f

Z Ui

= = −
−∈

∑  (         ) ( ) ./ /1 (A7.144)

respectively.
fduS  is the system failure intensity z t zS S( ) =  as per Eq. (A7.230) in steady-state

or for t → ∞ .  Considering that every failure at system level is followed by a repair
(restoration) at system level, one has f fudS duS=   and thus  (see also Eq. (A7.60))

f f PduS udS S i j j j iz Pi

Z U Z U Z U Z U

S S

i j j i

MUT MDT= = = = +
−

∈ ∈ ∈ ∈

∑ ∑
−

, ,

/ ( ) .ρ ρ =  1 (A7.145)

Equations (A7.142), (A7.144), and (A7.145) yield to the following important
relation between MDTS  and MUTS  (see also Eqs. (A7.137) & A7.139))

MDT MUT PA PAS S S S= −( ) /1  . (A7.146)

Equation (A7.146) satisfy PA MUT MUT MDTS S S S= +/ ( ) as per Eqs. (6.48) & (6.49).
Computation of the frequency of failures ( )fduS  and mean failure duration

( )MDTS  based on fault tree and corresponding minimal cut-sets (Sections 2.3.4, 2.6)
is often used in power systems [6.4, 6.22], where f d Pf f f,   and  appear for fduS ,
MDTS , and 1 − PAS .  The central part of Eq. (A7.145) is known as theorem of cuts.

Although appealing withP MTTF MTTFj Sj Sj
Z Uj

,          ,
∈
∑  from Eq. (A7.126) & Pj

from Eq. (A7.127), can not be used to compute MUTS ,

Eq. (A7.127) refers to a steady-state, not compatible with Eq. (A7.126).  However,
MUT P MTTF MTTFS S S≈ ≈0 0 0  can often be used in practical applications, see Eq.
(6.95), Example 6.29 on p. 279 & the numerical results in Example 6.27 on p. 270.

A7.5.4.2 Reward

Complex fault tolerant systems have been conceived to be able to reconfigure them-
selves at the occurrence of a failure and continue operation, if necessary with re-
duced performance.  Such a feature is important for many systems, e. g. production,
information, and power systems, which should assure continuation of operation
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Z1 Z2Z0

1 – ( ν1 + θ1) δt1 – ν0 δt

ν0 δt

1 – ( ν2 + θ2) δt 1 – θn δt

ν1 δt ν2 δt νn–1 δt

θ1 δt θ2 δt θ3 δt θn δt

Zn

Figure A7.9    Diagram of transition probabilities in ( , ]t t t+ δ  for a birth and death process with
( )n + < ∞1  states (t arbitrary, δ t ↓ 0, Markov process)

after a system failure.  Besides fail-safe aspects, investigation of such systems is
based on the superposition of performance behavior (often assumed deterministic)
and stochastic dependability behavior (including reliability, maintainability, avail-
ability, and logistic support).  Considering that Pi  is the asymptotic & steady-state
probability to be in state Zi  (Eqs. (A7.83), (A7.128), (A7.127)), giving also the
expected percentage of time the system stays at the performance level specified by
Zi  (Eq. (A7.132)), a straightforward possibility is to assign to every state Zi  of the
dependability model a reward rate 0 1≤ ≤ri  which take care of the performance
reduction in the state considered.  From this, the mean (expected) reward rate
MIRS t( )  can be calculated in stationary state as

MIRS
i

m
r Pi i=

=
∑

0

.
                                                                                 

  (A7.147)

Thereby, ri = 0  for down states and ri =1 for up states with 100% performance.  The
mean (expected) accumulated reward MARS t( ) follows for the stationary state as

MAR MIR   .S St x dx tMIRS
t

( ) ( ) .= =∫
0

(A7.148)

MARS t( ) gives the reward over ( , ]0 t  on the basis of the stay (sojourn) times in each
state.  Other metrics are possible, e. g. reward impulses at state transition, expected
ratio of busy channels etc. (see e. g. [6.19 (1995), 6.26, 6.34]).  Of less importance for
practical applications is the use of reward aspects for R ( )Si t  or MTTFS i .  For the
purpose of this book, application in Section 6.8.6.4 will be limited to Eq. (A7.147).

A7.5.5 Birth and Death Process

A birth and death process is a Markov process characterized by the property that
transitions from a state Zi  can only occur to state Zi+1 (birth) or Zi−1 (death).  In the
time-homogeneous case, it is used to investigate k-out-of-n redundancies with iden-
tical elements and constant failure & repair rates during the stay (sojourn) time in
any given state (not necessarily at state transitions, e. g. load sharing).  The diagram
of transition probabilities in ( , ]t t t+ δ  is given in Fig. A7.9.  νi and θi are the tran-
sition rates from state Zi to Zi+1 and Zi to Zi−1, respectively  (transitions outside
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Example A7.8
Assuming Eq. (A7.150) prove Eq. (A7.151) .

Solution
Considering Eqs. (A7.149) & (A7.150), Pj  are the solution of following system of algebraic eqs.

0 0 0 1 1= − +ν θP P

M

0 1 1 1 1 1 1= − + + +− − + + = … −( ) ,    ,, ,ν θ ν θj j j j j j jP P P j n      

M
0 1 1= − + − −θ νn n n nP P .

From the first equation it follows P P1 0 1= 0ν θ/ .  With this P1 , the second equation leads to

P P P P P2
1 1

2
1

0

2
0

1 1

2

0

1

0

2
0

0 1

1 2
0=

+
− =

+
⋅ − =

ν θ
θ

ν
θ

ν θ
θ

ν
θ

ν
θ

ν ν
θ θ

( ) .

Recursively one obtains

P P Pj
j

j
j j n=

…

…
=−

= … =
ν ν

θ θ
ππ0 1

1
0 0 1 0,         , , ,          1 .

P0  follows then from P Pn0 1+ … + = .

neighboring states can occur in ( , ]t t t+ δ  only with probability ο δ( )).t  The system
of differential equations describing the birth and death process given in Fig. A7.9 is

P ( ) ( )P ( ) P ( ) P ( )j j j j j j j jt t t t
•

= − + + +− − + +ν θ ν θ1 1 1 1

              with       θ ν ν θ0 1 1 0 0= = = =− + = … < ∞n n j n,    , , . (A7.149)

The conditions ν j > 0 ( , , )j n= … −0 1  and θ j > 0 ( , , )j n= … < ∞1  are sufficient
for the existence of the limiting probabilities (see e. g. [6.3 (1983), A6.6  (Vol. I)])

lim  P ( ) ,          
t

j jt P P Pj j
j

n

→∞
= > =

=
∑     with   and  0 1

0
. (A7.150)

It can be shown (Example A7.8), that the probabilities Pj  are given by

P Pj j j i n
i

n

i
i

i

j= =
=
∑ = =

…
…

=−π π π π π
ν ν

θ θ0 0
0

0 1 0 1

1

 with  ,   / ,      & , ... , . (A7.151)

From Eq. (A7.151) one recognizes that

Pk k k kPν θ= + +1 1 ,              k n= … −0 1, , ,

yielding (Fig. A7.9)

Pk k k k k k kP P.( ) ,ν θ ν θ+ = +− − + +1 1 1 1   k n n n= … = = = =− +0 00 1 1, , , . θ ν ν θ   (A6.152)

The values of Pj  given by Eq. (A7.151) can be used in Eq. (A7.134) to calculate
the stationary (asymptotic &  steady-state) value of the point availability.  The
system mean time to failure follows from Eq. (A7.126).  Examples A7.9 and A7.10
are applications of the birth and death process.
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Example A7.9

For the 1-out-of-2 active redundancy with one repair crew of Examples A7.6 and A7.7, i. e. for
ν λ0 2= , ν λ1 = , θ θ µ1 2= = , U Z Z= { , }0 1  and U Z= { },2  give the asymptotic & steady-
state value PAS  of the point availability and the mean time to failure MTTFS0  and MTTFS1.

Solution

The asymptotic & steady-state value of point availability is given by Eqs. (A7.131) and (A7.151)

PA P P PS = + = =
+

+ +
=

+

+ +
+0 1 0 1 0 2 2

1 2

1 2 2

2

2

2

2
( )

/

/ / ( )
,π π

λ µ

λ µ λ µ

µ λµ

λ λ µ µ
(A7.153)

as per Eq. (6.87).  The system's mean time to failure follows from Eq. (A7.126), with
ρ ρ λ01 0 2= = ,  ρ λ12 = ,    and  ρ µ ρ λ µ10 1= = +, , as solution of

MTTF MTTFS S0 11 2= +/ λ

MTTF MTTFS S1 0

1
=

+
+

+λ µ

µ

λ µ
,

yielding

MTTF MTTFS S0 1
3

2

2

22 2
= =

+ +λ µ

λ

λ µ

λ
           and  . (A7.154)

Example A7.10

A computer system consists of 3 identical CPUs. Jobs arrive independently and the arrival times
form a Poisson process with intensity λ .  The duration of each individual job is distributed
exponentially with parameter µ.  All jobs have the same memory requirements D .  Give for
λ µ= 2  the minimum size n of the memory required in units of D, so that in the stationary case
(asymptotic & steady-state) a new job can immediately find storage space with a probability γ of
at least 95%.  When overflow occurs, jobs are queued.

Solution

The problem can be solved using the following birth and death process

1 – ( λ + µ) δt1 – λ δt

λ δt

µ δt 2µ δt 3µ δt 3µ δt 3µ δt 3µ δt

λ δt λ δt λ δt λ δt λ δt

1 – ( λ + 2µ) δt 1 – ( λ + 3µ) δt 1 – ( λ + 3µ) δt

Z0 Z1 Z2 Zn Zn+1

In state Zi , exactly i memory units are occupied.  n is the smallest integer such that in the steady-
state, P Pn0 1 0 95+ … + = ≥− γ .   (if the assumption were made that jobs are lost if overflow
occurs, then the process would stop at state Zn ).  For steady-state, Eq. (A7.127) yields

0 0 1= − +λ µP P

0 20 1 2= − + +λ λ µ µP P P( )

0 2 31 2 3= − + +λ λ µ µP P P( )

0 3 32 3 4= − + +λ λ µ µP P P( )

  M
0 3 3 21 2= − + + >+ +λ λ µ µP P P ii i i( ) ,          .
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The solution leads to

P P P
P

P ii

i

i i
i

1 0
0
2 02 3

9

2 3
2=

⋅
= ≥=

−

λ

µ

λ
µ

λ µ
  

/
( )                and for  .

Considering lim  
n

i
i

n
P

→∞ =
∑ =

0
1 (Eq. (A7.150)), 

λ
µ3

2

3
1= = <a  & lim 

n

i

i

n
a

a

a→∞ =
∑ =

−2

2

1
 it follows that

P Pi

i
0 0

2
1

9

2 3
1

3

2 3
1

2
[

/
] [

( / )

( / )
]( )+ + = + +

−
=

=

∞
∑λ

µ
λ µ λ

µ
λ µ

λ µ
,

and thus,

P0 2

2 3

6 4
=

−

+ +

( / )

/ ( / )
.

λ µ

λ µ λ µ
The size of the memory n can now be determined from

2 3

6 4
1

9
2 32

2

1( / )

/ ( / )
[ (

/
) ]

−

+ +
+ + >

=

−

≈∑
λ µ

λ µ λ µ

λ
µ

λ µ
γi

i

n
.

For λ µ/ = 2  and γ = 0 95. , the smallest n satisfying the above equation is n = 9  ( P0 1 9= / ,

    for  P P ii
i i

1
12 9 2 3 2= = ≥−/ , / ,  yielding P P P0 1 8 0 961+ + + ≈... . ).

As shown by Examples A7.9 and A7.10, reliability applications of birth and
death processes identify νi as failure rates and θi as repair rates.  In this case,

ν θj j j n<< + = … −1 0 1,         , ,                        ,

with v j j  and θ +1  as in Fig. A7.9.  Assuming

max                         { / } ,  , , ,ν θj j r j nr+ < < = … −=1 0 1 0 1, (A7.155)

the following relationships for the steady-state probability Pj  can be obtained
(Example A7.11)

P Pj i r j n
r

r r n j
i j

n

≥ −
−

< < = … −
−

= +
∑1

1 1
0 1 0 1

( )
        , ,   , ,     . (A7.156)

Thus, for r ≤ 1 2/ , i. e. for 2 1ν θj j≤ +  ( , , )j n= … −0 1 , it follows that

P Pj i j n
i j

n

j j>
= +

+∑ ≤ = … −
1

12 0 1,         , , ,                       ν θ . (A7.157)

Equation (A7.157) states that for 2 20 1 1ν θ ν θ≤ ≤−,..., n n  the steady-state probability
in a state Zj  of a birth and death process described by Fig. A7.9 is grater than the
sum of steady-state probabilities in all states following Z j , j n= −0 1, ...,  [2.50 (1992)];
property useful in developing approximate expressions for system availability
(however, the condition max { / } / ,ν θj j + ≤1 1 2  sufficient for reliability applications,
can be weakened for arbitrary birth and death processes).
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___________________

+) A semi-Markov process (SMP) with states Z Z0 1,  and       P P P P00 11 01 100 1= = = =( )  is an alternating
renewal process (Appendix A7.3 and Fig. A7.3);  the case of only one state is not considered as a
SMP but as a renewal process (Appendix A7.2 and Fig. A7.1a).

Example A7.11
Assuming Eq.(A7.155), prove Eqs. (A7.156) and (A7.157).

Solution
Using Eq. (A7.151),

P

P

ii j
n

j

i j
n

j

i

ji j

n j

j

j j

j j

j n

j n

i= +
=

= +

= + +

+

+ +

−

+

∑ ∑
= ∑ = + + … +

…
…

1 1

1 1

1

1 2

1

1

π
π

π
π

ν

θ

ν ν

θ θ

ν ν

θ θ
.

Setting max  for   and{ / }    , , ,ν θi i r r i j j n+ = < < = + … −1 0 1 1 1, it follows that

P P r r r r r ri ji j
n n j n j/ ( ) / ( ) ,= +

− −∑ ≤ + + … + = − −1
2 1 1

and thus Eq. (A7.156).  Furthermore, considering 0 1< <r  and ( ) { , ,..., }n j n− ∈ 0 1  it follows
that ( )1 1− <−r n j  and, for r ≤ 1 2/ , r r/ ( )1 1− ≤ ; thus, r ≤ 1 2/  yields r r rn j( ) / ( )1 1 1− − <−

and hence Eq. (A7.157).

A7.6 Semi-Markov Processes with a
Finite Number of States

The description of Markov processes given in Appendix A7.5.2 allows a straight-
forward generalization to semi-Markov processes.  In a semi-Markov process, the
sequence of consecutively occurring states forms an embedded time-homogeneous
Markov chain, just as with Markov processes.  The stay (sojourn) time in a given
state Zi  is a random variable τij > 0 whose distribution depends on Zi  and on the
following state Z j ,  but in contrast to time-homogeneous Markov processes it is
arbitrarily and not exponentially distributed.  Related to semi-Markov processes are
Markov renewal processes N Zi it t( ) ( , ]={ }number of transitions to state  in 0   [A7.23].

To define semi-Markov processes, let ξ ξ0 1, ,… be the sequence of consecutively
occurring states, i. e., a sequence of random variables taking values in { , , }Z Zm0 … ,
and η η0 1, ,… the stay times between consecutive states, i. e., a sequence of random
variables > 0.  A stochastic process ξ ( )t  with state space { , , }, ,Z Z mm0 0… < <∞  is a
semi-Markov process in continuous time ( )t ≥0  with a finite number of states, if for
n = 0 1 2, , , ... ,  arbitrary i j i i mn, , , , { , , } ,0 1 0… ∈ …−  and arbitrary x x xn, , ,0 1 0… − >

Pr {( ) ( )}ξ η ξ η ξ η ξn j n n i n n i iZ x Z x Z x Z+ − −= ∩ ≤ = ∩∩ = ∩ …∩ = ∩ = =1 1 1 1 0 0 01 0
  

                                    =     Pr{( ) } Q ( )ξ η ξn j n n i i jZ x Z x+ = ∩ ≤ = =1
+) (A7.158)

holds.  ξ ξ η( )t t= ≤ <   for   00 0  and ξ ξ η η η η( ) ... ... ,t tn n n= + + − + +≤ <   for    0 1 0  & n ≥ 1
is a jump process, as visualized in Fig. A7.10.



506 A7   Basic Stochastic-Processes Theory

t
0

x0 x0x0

ξ0 = Zi0

ξ1 = Zi1

ξ2 = Zi2

η2η1η0

ξ(t)

S0 S1 S2

regeneration point

Figure A7.10  Possible realization for a semi-Markov process  (x starts by 0 at every state change)

The functions Q ( )ij x  in Eq. (A7.158), defined for j i≠ , are the semi-Markov
transition probabilities, often known as one-step transition probabilities ( see
remarks with Eqs. (A7.95) - (A7.101)).  Setting

Q ( ) , , ,i j i j j i i i∞ = ≠ ≡P P                                        0 (A7.159)

and, for  Pij > 0,

  F ( ) Q ( ) ,/        , , ( ) ,ij i j i j j i x x xx x i j= ≠ > = ≤P                 F  for 0 0 0 (A7.160)

leads to

Q ( ) F ( ), , , ( ) ,ij ij ij j i x x xx x i j= ≠ > = ≤P                                Q  for 0 0 0 (A7.161)

with (Example A7.2)

  

P P Pij n j n i ij nZ Z i i i j
j
j i

m

= = = = ∞ ∑+ ≡ = =
=
≠

Pr{ } Q ( ) , , , , , ..., ,ξ ξ1 0 0 1 2 1
0

 
                

  (A7.162)

and
F ( ) Pr{ ( ) },   ,

( ) .i j n n i n j
j i n

x x
x x Z Z

i j
= ≤ = ∩ =+ ≠

= ≤
η ξ ξ       = 0,1, 2, ...

F  for 
  

1 0 0
 (A7.163)

The interpretation of the quantities Q ( )ij x  given by Eqs. (A7.99) - (A7.101) are
useful for practical applications (see for instance Eqs. (A7.182) - (A7.187)).

P i i ≡ 0 is mandatory for time-homogeneous Markov processes (with a finite
number of states), as well as for the semi-Markov processes used in reliability
analysis.  However, as pointed out in the footnote on p. 510, P i i > 0 must be
accepted for a semi-Markov process embedded in a semi-regenerative process.

From Eq. (7.158), the consecutive jump points at which the process enters Z i are
regeneration points.  This holds for any i m ∈ …{ , , }0  and thus,

all states of a semi-Markov process are regeneration states.

The renewal density of the embedded renewal process of consecutive jumps in Zi
(i-renewals) will be denoted as h ( )i t , see Eq. (A7.177) for the stationary case.
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The initial distribution, i. e. of the vector ( ξ ξ0 0≡ ( ), ξ1, η0° ), is given by

    A ( ) Pr{ } P ( ) F ( )( )° = ∩ = ∩ ≤ == °
i j x Z Z Z x xi j i i i j i jξ ξ η0 1 0 0residual sojourn time  in P o

(A7.164)

with P ( ) Pr{ ( ) }i iZ0 0= =ξ , pij  as per Eq. (A7.162), and F ( ) Pr{ij x° = residual sojourn
time      in )|  η ξ ξ0 0 1° ≤ = ∩ =Z x Z Zi i j( ( ) }.  ξ ( )0  is used here for clarity instead of ξ0.
The semi-Markov process is memoryless only at the transition points from one state
to the other.  To have the time t =0 as a regeneration point, the initial condition
ξ ( )0 =Zi , sufficient for time-homogeneous Markov processes, must be reinforced by

Z is entered at ti     = 0.

The sequence ξ ξ ξ0 10≡ …( ), ,  forms a Markov chain, embedded in the semi-
Markov process, with transition probabilities Pij  as per Eq. (A7.162) and initial
probabilities P ( )i 0 , i m= …0, , .  F ( )i j x  is the conditional distribution function of
the stay (sojourn) time in Z i  with consequent jump in Z j  (next state to be visited).
F ( )i j

xx e i= − −1 ρ  ( ), { , , }i j m∈ …0 , yields to a time-homogeneous Markov process.
An example of a two state semi-Markov process is the alternating renewal

process given in Appendix A7.3  ( Z up0 = , Z down1 = , P P01 10 1= = , F ( ) F( )01 x x= ,
F ( ) G( )10 x x= , F ( ) F ( )0

° =x xA , F ( ) G ( )1
° =x xA , P ( )0 0 = p , P ( ) ) .1 0 1= − p

In many applications, the quantities Q ( )ij x , or   P ij  and F ( )ij x , can be evaluated
using Eqs. (A7.99) - (A7.101), as shown in Appendix A7.7 and Sections 6.3 – 6.6.

For the unconditional stay (sojourn) time in Zi , the distribution function is

  

Q ( ) Pr{ } F ( ) Q ( ) ,i n n i ij ij ijx x Z x x

j i
j

m

j i
j

m

= ≤ = = =
≠
=

≠
=

∑ ∑η ξ 
      

(A7.165) P
0 0

with Q ( )ij x  as per Eq. (A7.161) & Q ( )i ∞ = 1, and the mean

T x dxi i= − < ∞
∞
∫ ( Q ( )) .1
0

 (A7.166)

In the following it will be assumed that

q ( ) Q ( ) /i j x d x dxij= (A7.167)

exists for all i j m, { , ..., }∈ 0 .
Consider first the case in which the process enters the state Zi  at t = 0, i. e. that

P ( )        F ( ) F ( ) i ij ijx x0 1= =and     o .

The transition probabilities

P ( ) Pr{ ( )   }i j it t Z Z tj= = =ξ  is entered at 0 (A7.168)

can be obtained by generalizing Eq. (A7.120),

P ( ) ( Q ( )) q ( )P ( ) P ( )ij ij i ik kj
t

tt t x t x dx

k i
k

m

ij ij= − + −∫∑
≠
=

=δ δ1
0

0
0

 ,       (A7.169)> 0, ,  
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with δ i j  & Q ( )i t  per Eqs. (A7.85) & (A7.165).  Note that in Q ( ) ,ij jx Z  is the next state
visited after Z i , but this is not the case for Pi j t( ).  The state probabilities follow as

P ( ) Pr{ ( ) } Pr{ } P ( ) ,j i i j tt t Z Z t tj
i

m

= = = =
=
∑ >ξ is entered at   ,      0

0

0 (A7.170)

with P ( )j t ≥ 0, i j m, { , ..., }∈ 0 , and P ( ) P ( )0 1t tm+…+ = .  If the state space is divided
into the complementary sets U for the up states and U  for the down states, as in
Eq. (A7.107), the point availability follows from Eq. (A7.112)

PA ( ) Pr{ ( ) ( ) } P ( ), ,..., ,
PA ( ) ,Si i i j

i m t
Z U

t t U Z t
Z U Si i

j

= ∈ = =
∈

∑ = >
= ∈ξ ξ     (A7.171)      

,

                                                                                             

for
0 0 0

0 1

with P ( )i j t  per Eq. (A7.169), see also the remark at the bottom of p. 495.  The
probability that the first transition from a state in U to a state in U  occurs after the
time t, i. e. the reliability function, follows from Eq. (A7.122) as

R ( ) Pr{ ( )

Q ( ) q ( )R ( ) ,  

}

, , R ( )

Si

i i j Sj

t
Z U t

t x t t

t x t x dx

U x Z i

i S i
Z U

j i
j

=

= − + −

∈ < ≤ =

∫∑ ∈ > =
∈
≠

ξ  for  is entered at   

    (A7.172),

0 0

1
0

0 0 1

with Q ( )i t  & q ij x( )  as per Eqs. (A7.165) & (A7.167).  The mean of the stay (sojourn)
time in U, i. e. the system mean time to failure, follows from Eq. (A7.172) as solution
of the following system of algebraic equations (with Ti  as per Eq. (A7.166))

  

MTTF MTTFS i i S Z UT ij j
Z U

j i

i

j

= +
∈
≠

∑ ∈P ,            . (A7.173)

Consider now the case of a stationary semi-Markov process.  Under the assump-
tion that the embedded Markov chain is irreducible (every state can be reached from
every other state with probability > 0), the semi-Markov process is stationary if and
only if the initial distribution (Eq. (A7.164)) is given by [6.3, A7.22, A7.23, A7.28]

  

A       .ij
i i j

ij
i i j

ijx y dy y dy

k k
k

m
T

x

Ti

xP° = =

=
∑

− −∫ ∫( ) ( F ( )) ( F ( ))
P P P

P
0

1 1
0 0

(A7.174)

In Eq. (A7.174), Pij  are the transition probabilities (Eq.(A7.162)) and   Pi the sta-
tionary distribution of the embedded Markov chain;    Pi are the unique solutions of

P P P P P P Pj i i j i i
i

m

i j i j j j
j

m

j m= ∑≡ = ∞ >
=
∑

=
= =, , , ( ),  ,    .     (A7.175)with       Q 0, ... ,0 0 1

0 0

The system given by Eq. (A7.175) must be solved by replacing one (arbitrarily
chosen) equation by  P j∑ =1.  It differs from that of Eq. (A7.74) because of P i i ≡ 0.
For the stationary semi-Markov process (with irreducible embedded Markov chain),
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the state probabilities are independent of time and given by [6.3, A7.22, A7.23, A7.28]

  

P ( )    ,     , , , ,i i
i

i i
t P

T

T

i i

k k

i m
T

T
t

k

m= = =
∑
=

≥ = …
P

P
0

0 0    (A7.176)

with Ti < ∞  per Eq. (A7.166) and   Pi  from Eq. (A7.175).  Pi per Eq. (A7.176) and
Aij x° ( ) per Eq. (A7.174) are thus the initial conditions at t =0.  Tii  is the mean of
the time interval between two consecutive occurrences of the state Zi  (in steady-
state).  These time points form a stationary renewal process with renewal density

  

h t hi i
i i

i
i m

T
t

k k
T

k

m( )        ,  , ., ,= = =
∑
=

≥ = …
1

0

0 0
P

P
                              (A7.177)

hi is the frequency of successive occurrences of state Zi.  In Eq. (A7.176), Pi can be
heuristically interpreted as P T T T Ti t i i i i i it t=

→∞
=lim  [( / ) ] / /  or as ratio of the mean

time in which the embedded Markov chain is in state Zi  to the mean time in all
states P T Ti i i k k

= ∑P P/ .  Similar is for Aij x° ( ) in Eqs. (A7.174), considering also
Eq. (A7.35).  The stationary (asymptotic and steady-state) value of the point
availability PAS  and average availability AAS  follows from Eq. (A7.176)
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S S
i iPi
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m
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∑
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0

. (A7.178)

Similarly as for Markov processes, the system mean up time, mean down time, and
failure & repair frequencies are given by (Eq. (A7.141) - (A7.146), (A7.103))
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1
P

Under the assumptions made above (continuous sojourn times with finite means,
irreducible embedded Markov chain), following holds for i j m, { , , }∈ …0  regardless of
the initial distribution at t =0 [6.3, A7.22, A7.23, A7.28]
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Except for investigations on the reliability function (RS t( ))  (see footnote on
p. 497), an irreducible embedded Markov chain can be assumed in reliability
applications.  For such cases, according to Eqs. (A7.176) and (A7.180),

asymptotic & steady-state can be used as a synonym for stationary
(see e. g. also pp. 187-188, 472, 477, 479, 498, 514).
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___________________

+) For a time-homogeneous Markov process, this rule holds at any arbitrary time t > 0.
++)

 As discussed in Example A7.12, Pi i > 0 must be accepted for an embedded semi-Markov process
(during a transition Z Z Z1 2→ → 1 the embedded Markov chain remains in Z1 , making a transition
Z Z1 1→  at the transition points Z Z2→ 1 of the original process);  Figures A7.11 - A7.13, 6.10, 6.14,
6.16, and the corresponding investigations, give some examples as how to operate.

For the alternating renewal process (Fig. A7.3, Z up0 = ,  Z down1= ) it holds that

    P P00 11 0= = ,      P P P P10 01 0 11 1 2= = ⇒ = = /  (embed. Markov chain), T TMTTF MTTR0 1= =,
T T T T00 11 0 1= = + ;  Eqs. (A7.176) leads to P MTTF MTTF MTTR MTTR MTTF0 1= ≈+ −/ ( ) / .
This example shows the basic difference between Pj  as stationary distribution of
the embedded Markov chain and the limiting state probability Pi in state Zi  of the
original process ( Pi is related to the stay time in Zi  ,  Pj  to the state changes).

For a stationary time-homogeneous Markov processes (Appendix A7.5.3.3),
Eqs. (A7.166), (A7.165) & (A7.102) yield Ti i=1 / .ρ   From Eqs. (A7.174), (A7.176),
(A7.103) & (A7.104) it follows then

A   /ij i i i j ix xe P° −= −( ) ( ) ,1 ρ ρ ρ (A7.181)

and (Eq. (A7.177))

h t h P P T Ti i i i i i i i i m( ) /    , , .= = = …      = =1 /  ,ρ 0 (A7.181a)

A7.7 Semi-regenerative Processes with a
Finite Number of States

As pointed out in Appendix A7.5.2, the time behavior of a repairable system can be
described by a time-homogeneous Markov process if and only if failure-free and
repair times of all elements are exponentially distributed (constant failure and repair
rates during the stay time in each state, with possible stepwise change at state transi-
tions, e. g. because of load sharing).  Except for Erlang distributions (Section 6.3.3),
non exponentially distributed repair and / or failure-free times lead in some cases to
semi-Markov processes (Sections 6.2, 6.3.2, 6.8.4 (Fig. 6.27), 6.10) and in general
to processes with only few regeneration states or to nonregenerative processes.

To make sure that the time behavior of a system can be described by a
semi-Markov process, there must be no “running” time (failure-free or
repair) at any state change which is not exponentially distributed. +)

Figure A7.11 shows the case of a process with states Z Z Z0 1 2, ,  in which only states
Z0  and Z1 are regeneration states.  Z0  

&
 
Z1 form a semi-Markov process embedded

in the original process, on which investigations can be based.  Processes with an
embedded semi-Markov process with irreducible Markov chain are called (in this
book) semi-regenerative processes.  Their investigation can become time-consu-
ming and has to be performed on a case-by-case basis, often using a time schedule.++)
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(for Z0 and Z1,
(respectively)
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Figure A7.11  a) Possible time schedule for a 1-out-of-2 warm redundancy with constant failure rates
( , ),λ λr  arbitrary repair rate (density g( ), ( )x G 0 0= ), one repair crew (repair times greatly exag-
gerated), ideal failure detection & switch;  b) State transition diagram for the embedded semi-Markov
process with states Z Z0,  1 (regeneration states), Q'

12  is not a semi-Markov transition probability and
during a transition Z Z Z1 2→ → 1 the embedded Markov chain (on Z Z0, ) 1  remains in Z1 , Z 2  down
state (absorbing for rel. calculation);  holds also for a k-out-of-n warm redundancy with n k− =1

Example A7.12 investigates a basic situation.

Example A7.12
Consider a 1-out-of-2 warm redundancy as in Fig. A7.4a with constant failure rates λ in operating
&  λr  in reserve state and one repair crew with arbitrarily distributed repair time (density
g( ), ( )x G 0 0= ).  Give the transition probabilities for the embedded semi-Markov process.
Solution
As Fig. A7.11a shows, only states Z0  and Z1 are regeneration states.  Z 2  is not a regeneration
state because at the transition points into Z2  a repair with arbitrary repair rate is running.  Thus,
the process involved is not a semi-Markov process.  However, states Z 0  and Z1 form an
embedded semi-Markov process on which investigations can be based.  The transition probabili-
ties of the embedded semi-Markov process (on Z Z0 , ) 1  are (Fig. A7.11, Eqs. (A7.99) - (A7.101))

Q ( ) Q ( ) ,( )
01 0 1x x e r x= = − − +λ λ       Q ( ) ( ) ( ) ,121 1x y e dyy

x
  g

0
= −∫ −λ

Q ( ) ( ) G( ) G( ) .10
0

x y e dy x e e y dyy
x

x y
x

     g      

0
= =∫ + ∫− − −λ λ λλ  (A7.182)

Q ( )121 x  is used to calculate the point availability (Eqs. (6.106), (6.109)).  It accounts for the
transitions throughout the not regeneration down state Z 2 .  During a transition Z Z Z1 2→ → 1 , the
embedded Markov chain remains in Z1 (Fig. A7.11a, footnote on p. 510), and for the embedded
Markov chain it holds that   P P P P00 01 10 110 1 1= = = = −, , ˜ ( ), ˜ ( )g gλ λ  with g    g

 

~
( ) ( )λ λ

0

∞
= −∫ x dxe x

= >Pr failure-free repair{ }τ τ .  This is important for the calculation of Q ( )1 x , see below.
Q ' ( )12 x  as given in Fig. A7.11b is not a semi-Markov transition probability;  however, Q ' ( )12 x
expressed as (see Fig. A7.11a)

Q ' ( ) ( ( )) G( )12
0 0

1 1x e y dy e e y dy
x

y x y
x

= − = − −∫ ∫− − −λ λλ λ λG     ,

yields

Q ( ) Q ( ) Q ' ( ) ( ( )) .1 10 12 1 1x x x x e x= =+ − − −G λ  (A7.183)

Supplementary results: Section 6.4.2 investigates reliability & availability.  k λ  instead of λ in
Eqs. (A7.182) & (A7.183) yields results for a k-out-of-n warm redundan-
cy with n k− =1, one repair crew, and no further failure at system down.



512 A7   Basic Stochastic-Processes Theory
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(for Z0 , Z1 and
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Q 121'
Q11'

Q1'0
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Figure A7.12  a) Possible time schedule for a 1-out-of-2 warm redundancy with constant failure
rates ( , )λ λr , arbitrary repair times (density g( ), ( )x G 0 0= ), arbitrary travel times (density
w W( ), ( )x 0 0= ) for failures in state Z 0 , one repair crew (repair times greatly exaggerated), ideal
failure detection and switch;   b )  State transition diagram for the embedded semi-Markov process
with states Z Z Z0 1 1, , '  (regeneration states), Z 2  down state (absorbing for reliability calculation)

As a second example, let us assume that for the 1-out-of-2 warm redundancy of
Fig. A7.11, a travel time with density w(x) must be considered before a repair for a
failure in state Z0 can be made.  Figure A7.12 gives a possible time schedule and
the state transition diagram of the involved semi-regenerative process.  States Z 0 ,
Z Z1 1, ' are regeneration states, and constitute an embedded 3 states semi-Markov
process.  Z2  is not a regeneration state.  The transition probabilities of the embed-
ded semi-Markov process (on Z Z Z0 1 1, , ' ) are (Fig. A7.12, Eqs. (A7.99) - (A7.101))

Q ( ) Q ( ) ( )
01 0 1x ex r x= = − − + λ λ ,      Q ( ) ( ) ,

'11
x y e dyy

x
= ∫ −w

0

λ

Q ( ) ( ) ( ) ( )'121 1x z e y z dz dyz
x y

= −∫ −∫ − w  g  
00

,λ

Q ( ) ( )'1 0 x y e dyy
x

= ∫ −g
0

λ ,      Q ( ) ( )( )' '1 21 1x y e dyy
x

= −∫ −g
0

λ . (A7.184)

Q ( ) Q ( )' ' '121 1 21x x&  (with Laplace transform ˜ ( ) ( ˜ ( ) ˜ ( )) ˜( ) /'Q w w g121 s s s s s= − + λ  &
Q̃ ( ) (˜ ( ) ˜ ( )) / )' '1 21 s s s s= − +g g λ  are used to calculate the point availability. They account
for the transitions throughout the not regeneration down state Z2.  The quantities

Q ' ( ) ( ( ))12 1x e W y dyy
x

= −−∫ λ λ
0

     and    Q ' ( ) ( ( ))'1 2 1x e y dyy
x

= −−∫ λ λ G
0

(A7.185)

are not semi-Markov transition probabilities;  however, they are necessary to calcu-
late Q Q Q1 12'( ) ( ) ( )'x x x= +11  & Q Q Q'

1 1 0 1 2' ' '( ) ( ) ( )x x x= + . Investigation is similar to
that of Fig. A7.11, yielding 9 integral equations to compute P  P  P00 01 01( ), ( ) , ( )'t t t  and
then PA P P P+S t t t t0 00 01 01( ) ( ) ( ) ( )'= +  (a good approximation for PA AAS S=  follows
often using the first 2 terms of the series expansion of ˜( ˜) ( )) .g w&s s  Example 6.7 in-
vestigates MTTFS 0 and PA AAS S=  for exponentially distributed travel & repair times.
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Figure A7.13   a) Possible time schedule for a k-out-of-n warm redundancy with n k− = 2, constant
failure rates ( , )λ λr , arbitrary repair rate (density g( ), ( )x G 0 0= ), one repair crew (repair times
greatly exaggerated), no further failure at system down, ideal failure detection & switch, operating and
reserve elements not separately shown;   b) State transition diagram for the embedded semi-Markov
proc. with states Z Z Z0 1 2, , '  (regeneration states), Z 3 down state (absorbing for reliability calculation)

As a further example, Fig. A7.13 gives a possible time schedule for a k-out-of-n
warm redundancy with n k− =2, const. failure rates ( , )λ λr , arbitrary repair rate (den-
sity g( ), ( )x G 0 0= ), only one repair crew, no further failure at system down.  Given is
also the state transition diagram of the involved semi-regenerative process. States
Z Z Z0 1 2, , '  are regeneration states, Z Z2 3&  are not regeneration states.  The transi-
tion probabilities of the embedded semi-Markov process are (Eqs.(A7.99)-(A7.101))
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λ
. (A7.186)

Q ( ) Q ( )' ' ',1232 2 32x x  are used to calculate the point availability.  They account for the
transitions throughout the not regeneration down states Z Z2 3and /or .  Q ( )121 x  is
used for the point availability and reliability calculation.  The quantities

Q ' ( ) ( ( ))[ ) ]( ( ) ( ) ,123
0

1x y k e k e dz dy
yx

rr
k z k y z= − +∫ − + − −∫ G

   0   
λ λ λλ λ λ

Q ' ( ) ( ( ))'2 3 1x k e y dyk y
x

= −∫ −λ λ G
 

 
0                                                          

 (A7.187)

are not semi-Markov transition probabilities;  however, necessary to compute Q1( )x =
Q Q Q123

'
10 121( ) ( ) ( )x x x+ +  and Q Q Q  2 3''

2 2 1' '( ) ( ) ( )x x x= +  (note that Z2  is an up state).
For instance, MTTFS S0 0 0= ˜ ( )R  (Eq. (A7.125)) follows as solution of (Eq. (A7.172))
˜ ( ) ( ˜ ( )) / ˜ ( ) ˜ ( )R q q RS Ss s s s s0 0 01 11= − +  and ˜ ( ) ( ˜ ( )) / ˜ ( ) ˜ ( ) ˜ ( ) ˜ ( )R  q q R q RS S Ss s s s s s s1 1 10 0 121 11= − + + ,

as given in Table 6.8 (p. 217) for g( ) , .x n ke x= − =−µ µ 2
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Following, considerations on semi-regenerative processes refine those given in
Appendix A7.4 for regenerative processes.  A pure jump process ξ ( )t , t ≥ 0, with
state space Z Zm0 , ,…  is semi-regenerative, with regeneration states Z Zk0 , ,… ,
0< <k m, if the following holds:  Let ζ ζ0 1, ,… be the sequence of successively occur-
ring regeneration states and ϕ ϕ0 1, ,… the random time intervals between consecu-
tive occurrence of regeneration states, assumed continuous, > 0 & with finite mean.
Then, Eq. (A7.158) with ζn, ϕn instead of ξn, ηn must be fulfilled;  in other words,

ζ ( )t  as given by ζ ζ( )t = 0  for 0 0≤ <t ϕ  and ζ ζ( )t n=  for  ϕ ϕ0 1+ + − ≤K n t

  < + +ϕ ϕ0 K n, n ≥1, is a semi Markov process with state space Z Zk0 , ,…
embedded in the original process ξ ( )t  with state space Z Zm0 , ,… .

The piece ξ ( )t ,  ϕ ϕ ϕ ϕ0 1 0+…+ − +…+≤ <n nt , n≥1, o f the original process is a cycle
(p. 478).  Its distribution depends on the regeneration state involved.  The epochs at
which a given state Zi i k, ,0≤ ≤  occurs are regeneration points and constitute a re-
newal process, belonging to Zi  , embedded in ξ ( )t   (see Fig. A7.3 for a simple case).

In reliability applications, the set of regeneration states is in general a subset of
the system up states.  The procedure used to develop Eqs. (A7.182) -  (A7.187) can
help to find the transition probabilities involved (see also the footnote on p. 510).

An irreducible embedded Markov chain (p. 481) on Z Zk0 , ,… , continuous F ( )ij x ,
x i j k> …∈0 0, , { , , }  & finite mean cycle lengths for the embedded semi-Markov proc.,
are sufficient for the existence of the limiting state probabilities Pe  [A7.9, A7.24, 6.3]

P t Ze et
e m= =

→∞
= …lim Pr{ ( ) }, .       , ,ξ        0 (A7.188)

Denoting by Ti < ∞  the mean stay time in the state Zi , i k= …0, , , and by Tii < ∞  the
mean of the time interval between two consecutive occurrences of Zi , it holds that

lim Pr{ ( ) } / , ,        , ,
t

t Z P T Ti i i i i i k
→∞

= = = = …ξ         0 (A7.188a)

(see also Eq. (A7.176) and Eq. (A7.67) with T E Tc ci ii= =[ ]τ ).  Consecutive cycles
of same type are possible, yielding transitions to a same state for the embedded
Markov chain if the cycle contains not regeneration states ( Z Z Z1 2→ → 1 in Fig.
A7.11a, footnote on p. 510).  However, as for Markov & semi-Markov processes,

an irreducible embedded Markov chain can not be assumed for
investigations on the reliability function (RS t( ))  (see footnote on p. 497).

For the 1-out-of-2 warm redundancy of Fig. A7.11 it holds for the embedded
Markov chain P P P P P00 01 10 10 11 100 1 1= = = ∞ = −, , ˜ ( ) ,  Q ( ) =     g λ =   g1− ˜ ( )λ , and thus

  P1 1 1 1 2= ≈+ >/( ˜ ( )) /g λ  &  P P0 11 1 1 2= − = + <≈˜ ( ) /( ˜ ( )) /g gλ λ ;  furthermore, T r0 1= +/( )λ λ ,
T1 1= −( ( )) /

~
g λ λ , T r MTTR00 1= + +/ ( ) ˜ ( )/λ λ λ    g  and T MTTR r11 = +  +   g~( ) /( )λ λ λ  yields

P T T0 0 00= / , P T T1 1 11= / , and PA P PS = +0 1  as per Eq. (6.110)  (T T0 1&  follow
from Eq. (A7.166) with Q ( Q (,0 1x x) ) as per Eqs. (A7.182), A7.183);  T T00 11&  are
obtained from Fig. A7.11a considering T TMTTR MTTRr11 001 1= =+ + + −    g g~ ~

( ) ( / ( )) ( ( )) ,λ λ λ λ
                g g g     g               g ,~ ~ ~ ~ ~

( ) ( / ( )) ( ( )) ( ) ( /( )) ( ( )) ( ) ( / ( )) ...λ λ λ λ λ λ λ λ λ λ λMTTR MTTR MTTRr r r+ −+ + − + + + + + +1 1 2 1 1 3 12

  repairg g failure free time >
~

( ) ( ) Pr{ }, ... / ( ) ) .λ τλ= = + + + = −−∞∫ −x e dx x x xx
0

2 21 2 3 1 1
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A7.8 Nonregenerative Stochastic Processes with a
Countable Number of States

The assumption of arbitrarily (not exponentially) distributed failure-free and repair
(restoration) times for the elements of a system, already leads to nonregenerative
stochastic processes for simple series or parallel structures. After some general
considerations, nonregenerative processes used in reliability analysis are introduced.

A7.8.1 General Considerations

Solutions for nonregenerative stochastic processes are often problem-oriented.
However, as a possible general method, transformation of the given stochastic
process into a Markov or a semi-Markov process by a suitable state space extension
can be used in some cases by one of the following ways:

 1. Approximation of distribution functions:  Approximating the involved distri-
bution functions (for repair and / or failure-free times) by an Erlang distribu-
tion (Eq. (A6.102)) allows a transformation of the original process into a time-
homogeneous Markov process through introduction of additional states.

 2. Introduction of supplementary variables:  Introducing for every element of a
system as supplementary variables the failure-free time since the last repair
and the repair time since the last failure, the original process can be trans-
formed into a Markov process with state space consisting of discrete and
continuous parameters. Investigations usually lead to partial differential
equations which have to be solved with corresponding boundary conditions.

The first method is best used when repair and /  or failure rates are monotonically
increasing from zero to a final value, its application is easy to understand (Fig. 6.6).
The second method is general [A7.4 (1955)], but often time-consuming.

A further method is based on the general concept of point process.  Considering
the sequence of jump times τn* and states ξn  entered at these points, an equivalent
description of the process ξ( )t  is obtained by a marked point process (τ ξn n* , ),
n = 0 1, , ... .  Analysis of the system’s steady-state behavior follows using Korolyuk’s
theorem Pr{ ( , ]} ( )jump into during  Z i t t t t ti+ = +δ λ δ ο δ∆ ,  with λ i iZ∆ =E number of jumps in   [

during the unit time interval]), see e. g. [A7.11, A7.12].  As an example, consider a repaira-
ble coherent system with n totally independent elements (p. 61).  Let ζ1 ( ), ,t …  ζ n t( )
and ζ ( )t  be the binary processes with states 0 (down) & 1 (up) describing elements
and system, respectively.  If the steady-state point availability of every element

lim  PA ( ) lim  Pr{ ( ) } ,  , ,
t

i
t

i
MTTF

MTTF MTTR
i nt t PAi

i

i i→∞ →∞ +
= …= = = =ζ 1 1   ,

exists, then the steady-state point availability of the system is given by Eq. (2.48)
and can be expressed as (see e. g. [6.3, A7.10])



516 A7   Basic Stochastic-Processes Theory

PAS MTTF MTTF MTTRS S S= +/ ( ) . (A7.189)

However, investigation of the time behavior of systems with arbitrary failure and / or
repair rates can become time-consuming.  In these cases, approximate expressions
(Sections 6.7, 6.9.7) or Monte Carlo simulations (Sec. 6.9.6.2) can help to get results.

A7.8.2 Nonhomogeneous Poisson Processes (NHPP)

A nonhomogeneous Poisson process (NHPP) is a point process with independent
Poisson distributed increments, i. e., a sequence of points (events) on the time axis,
whose count function ν ( )t  has independent increments (in nonoverlapping
intervals) and satisfy

Pr{ ( ) }
(M( ))

!
, , , ... , ( ) ( ) ( )M( )ν ν νt ek

t
t t

k

k
t k t t t= = >− = = ≤ = [ ]  

(A7.190)
,       .        for  ,  M E          0 0 1 0 0

ν ( )t  gives the number of events in ( , ]0 t .  In the following, ν ( )t  is assumed right
continuous with unit jumps.  M( )t  is the mean of ν ( )t , called mean value function,

M( ) E                                                 ,  M fort t t t t= [ ] > = ≤ν ( ) , ( ) ,0 0 0 (A7.191)

and it holds that (Eqs. (A6.127) & (A6.128), Example A6.21)

Var E = M( )                           ,  M forν ν( ) ( ) , ( ) .t t t t t t[ ] [ ]= > = ≤0 0 0 (A7.192)

M( )t  is a nondecreasing, continuous function with M( ) 0  for  t t= ≤ 0 , often assumed
increasing, unbounded, and absolutely continuous.  If

m( ) ( ) / , ( ) ,t d t dt t t t= ≥ > = ≤  ,                                 m forΜ 0 0 0 0 (A7.193)

exists, m ( )t  is the intensity of the NHPP.  Eqs. (A7.193) and (A7.191) yield

Pr{ ( ) ( ) } ( ) , ,ν δ ν δ δ δt t t t t t t t+ − = = + > ↓1 0 0m( ) o  ,                  (A7.194)

and no distinction is made between arrival rate and intensity.  Equation (A7.194)
gives the unconditional probability for one event (e. g. failure) in ( , ]t t t+δ .  m( )t
corresponds to the renewal density h ( )t  (Eq. (A7.24)) but differs basically from the
failure rate λ( )t , see remark on p. 378.  Equation (A7.194) also shows that an NHPP
is locally without aftereffect.  This holds globally (Eq.(A7.195)) and characterizes
the NHPP.  However, memoryless, i. e. with independent and stationary increments,
is only the homogeneous Poisson process (HPP), for which M( )t t= λ  holds.

Nonhomogeneous Poisson processes have been greatly investigated in the
literature, see e. g. [6.3, A7.3, A7.12, A7.21, A7.25, A7.30, A8.1].  This appendix gives
some important results useful for reliability analysis.  These results hold for HPPs
( M( )t t= λ ) as well, and most of them are a direct consequence of the independent
increments property.  In particular, the number of events in a time interval ( , ]a b
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_____________
+) * is used to explicitly show that t t1 2* *, , ...   (as realizations of τ τ1 2* *, , ...  ) are points on the time

axis and not independent observations of a random variable τ (e. g. as in Figs. 1.1, 7.12 & 7.14).

Pr  { events in (a,b] Pr  { events in (a,b]a     
  (A7.195)

k kH
b a

k
k a b

k
b ae} }

(M( ) M( ))

!
,

, , ... , ,

(M( ) M( )))
=

−= −

= < <

−

0 1 0

and the rest waiting time τR t( ) from an arbitrary t > 0 to the next event

Pr{ ( ) } Pr{ ( , ] }

Pr{ ( , ]} ,( ( ) ( )) , ( . )

τR t t
t x t

t x H t t x H

t t x te x

> = +
= + = − + − >

  

M M

no event in
                             no event in    ,           A0 7 196

are independent of the process development up to time t ( history   or )H Ha t ;  i. e. the
Poisson process is a process without aftereffect (memoryless if homogeneous).  The
mean E [ ( )]τR t  is thus also independent of the process development up to time t

E  M M   [ ( )] ( ( ) ( ))τ R
t x tt dxe= ∫ − + −

∞

0
. (A7.197)

Let now 0 1 2< < < …τ τ* *  be the occurrence times (arrival times) of the event
considered (e. g. failures of a repairable system), measured from the origin t = =τ0 0*

and taking values 0 1 2< <  <t t* * ... . 
+)  Furthermore, let η τ τn n n= − −

* *
1 be the n th interar-

rival time ( n ≥ 1).  Considering M( ) , , * *0 0 0 00 0= > = =t tτ , and assuming M( )t  deriva-
ble, strictly increasing (m ( ) )t > 0 , and unbounded ( M( ) )∞ = ∞ , the following holds:

1. The occurrence times (arrival times) τ τ1 2
* *, ,... have joint density

f    

(A7.198)

 ..., m )           mM  M M      ( ,* * * * * * * * * * *, ) ( ( )( ( ) ( )) ( ) , ... ,t t t e en i
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t tt t t t t ti i n n1 2 1 0 1
1 1

0= =− −
=

−
=

−∏ ∏ = < < <

(follows from Eqs. (A7.194) & (A7.195)) and marginal distribution function

F     
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=
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1 2 (A7.199)

with density f m  M M
i i i i

it t t e t ii( ) ( ) ( ) /* * * *( ) ( )!= − − −1 1  & mean E f[ ]* ( )τ i x x dxi=∫ ∞
0

(events { }* *τi it≤  and {at least i events have occurred in ( , ]}*0 ti  are equivalent).

2. The quantities

ψ ψτ τ1 1 2 2
* * * *( ) ( ) ...= < = <M M     (A7.200)

are the occurrence times in an HPP with intensity one (M( ) )t t=  (follows from

 = =   (M ) (  ( ) (M  E[   ( )] E [ M ] =    M (M  .- -     -1 1  1 )ν ν ν ν νψ ψ ψτ τ τν* * * * * *( ) ) ( )) ( ( )) ( ))t t t t t t t t→ ⇒ = =

3. The conditional distribution functions of η τ η ηn n n ngiven x x+ + = =1 1 1&     1
* ,... ,  are

Pr{ } Pr { ... }

{

*

( ( ( ( )* *) )) *

*

η η η ηn n n n

m y dy
n

x x x x x t

t

x n n

n n t
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e t x t
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n x
+ + +
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≤ = = = ≤ + =

−= =− + − − −
+

1 1 1 1 1

1 1 1

            

Pr no event   in (
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     e =               M M ** *, ]}t xn + ,       (A7.201)
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and

Pr M M       { } ,* * * *... ( ( ) ( )) , ,τn n n
t t

nt x x x t e n n t t+
− −≤ = = −+ + + ≥ >1 1 2 1 1  (A7.202)

(both follow directly from Eq. (A7.196)).

4. For given (fixed) t T=  and ν( )T n=  (time censoring), the joint density of the
occurrence times 0 1< < … < <τ τ* *  n T  under the condition ν( )T n=  is given by

f   ...,                       (A7.203)      m M 0< < ...< <*( , , ) ! ( / ),* * * *( ) ( ) * , , , ... ,t t t n nn i n
i

n

t T t t T n1 2
1

1 1 2= =
=
∏

(see Eq. (A7.210)) and that of 0 1< < … < <τ τ* *  n T  ∩ ν( )T n=  is

 f    ..., , f   ..., m  

(A7.204)

 
M M
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< =
=
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(follows from Eqs. (A7.203) and (A7.190)).  From Eq. (A7.203) one
recognizes that for given (fixed) t T=  and ν( )T n= , the occurrence times
0 1< < … < <τ τ* *  n T  have the same distribution as if they where the order sta-
tistic of n independent identically distributed random variables with density

m M( ) / ( )t T ,                 0 < <t T  , (A7.205)

& distribution function M M( ) ( )/t T  on ( , )0 T  (compare Eqs. (A7.210), (A7.211)).

5. Furthermore, for given (fixed) t T=  and ν( )T n= , the quantities

0 <    M M        M M( ) / ( ) ... ( ) / ( )* *τ τ1 1T Tn< < < (A7.206)

have the same distribution as if they where the order statistic of n inde-
pendent identically distributed random variables uniformly distributed on (0,1)
(follows from Point 2 above (Eqs. (A7.200) & (A7.213)).  For failure
censoring (test stopped at t n

* ), Eqs. (A7.203) -  (A7.206) and (A7.210) -
(A7.213) hold, taking T tn= −* 0 and multiplying over n −1 instead of n,
yielding e. g. f (  (m( ) / M( ),...,

-
t t n n t tn i n

i

n

1 1 1 1
1

1
* * * *| ) ( ) ! )− − = − ∏

=
 for Eq. (A7.210).

6. The quantity

( ( )) / ( )ν( ) M Mt t t− (A7.207)

has for t→∞ a standard normal distribution (follows form the central limit
theorem for renewal processes (Eq. (A7.34)) and Eqs. (A7.191) & (A7.192).

7. The sum of n independent NHPPs with mean value function Mi t( ) and
intensity mi t( )  is an NHPP with mean value function and intensity

M M     m  ,        and   M  m for  ( ) ( ) ( ) ( ) ( ) ( ) ,t t t ti i
i

n

i

n

i im t t t= =
= =
∑ ∑ = = ≤

1 1
0 0 (A7.208)

respectively  (follows from the independent increments property of NHPPs and
Eq. (A7.190), see Eq. (7.27) for HPPs).
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Example A7.13
Show that for given (fixed) T and ν ( ) ,T n=  the occurrence times 0 1< <…< <τ τ* *   n T  in a non homo-
geneous Poisson Process with intensity m( )t  have the same joint density as the order statistic of n
independent identically distributed random variables with density m M( ) / ( )t T  on ( , ).0 T

Solution
For an NHPP with intensity m( )t , the occurrence times 0 1< <…< <τ τ* *   n T  given T (fixed) and
ν ( )T n=  have joint density (Eqs. (A7.194) & (A7.195) and considering 0 1< < < <t t n T* *... )

f f  m m

m
 

* * * M M M M
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  (A7.210)T t Tn T
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ne n n t T− −

=
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1

Furthermore, considering that for a set of n realizations of a given random variable there are n!
permutations giving the same order statistic (p.526), the joint density of the order statistic of n in-
dependent identically distributed random variables with density m M( ) ( )/t T  on ( , )0 T  is given by

 f  m M* * *
    

on  (       (A7.211).     ( , , ..., ) ! ( ( ) / ( ))* , ), ...* * *t t t n n t Tn i
i

n

T t t t Tn1 2 1 2
1

0 0=
=

∏ < < < < <

Supplementary results:  For a homogeneous Poison Process (HPP), Eq. (A7.205) yields

m M( ) ( )/ /t T T=1  & f  ( , ..., )* * ! /t t n n Tn
n

1 =  on ( , ) .0 T    (A7.212)

Furthermore, when considering τi T* / , Eq. (A7.205) and point VII in
Example A6.18 with C T=1 /  (p. 448) yield

T t T T T T t t nn n. ( . ) / ( ) . !/ ( , ..., )* *m M   & f . on (0,1)= = =λ λ 1 1    (A7.213)

Thus, for given (fixed) T and ν ( )T n= , arrival times 0 1< < < <…τ τ* *   n T

of an HPP have the same distribution as if they where the order
statistic of n independent identically uniformly distributed random
variables on (0,T), on (0,1) for 0 11< < … < <τ τ* */ /T Tn   .

From the above properties, the following conclusions can be drawn:

1. For i = 1, Eq. (A7.199) yields

Pr{ }* ( ) ( )
τ1 1 1 0≤ = − = −− − ∫

t e t e
x dx

t

M  
m

  ; (A7.209)

thus, comparing Eqs. (A7.209) & (A6.26) it follows that the intensity of an NHPP
is equal to the failure rate of the first occurrence time η τ1 1= * (see also Point 2).

2. Taking ∂ ∂/ x  in Eq. (A7.201), Eq. (A6.25) show that the failure rate referred to
the interarrival time η τ τn n n+ += −1 1

* * given τn nt* *=  is independent of the process
development up to the time tn

* and is equal to the failure rate at time tn x* +  re-
ferred to the first interarrival time η1 or arrival time τ1

* ( )*η τ1 1= ;  i. e., for n ≥1,
     mλ λη ηn n nx xt t t xn+

= + = +
1 1
( ) ( ) ( )| * * * , as per Eq. (A6.28).  This leads to the concept

of as-bad-as-old, used in some considerations on repairable systems subjected to
minimal repair (only failed parts are restored to as-good-as-new, Section 4.6.2).
However, if a repaired part has a time dependent failure rate, the system failure
rate can not, after repair, be the same as just before failure ( ≈ in (i) on p. 427).
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3. From Eq. (A7.202), the distribution of the occurrence time τn+1
*  depends only on

τn
* ; thus, τ τ1 2

* *, ,... is a Markov sequence.
4. From Eq. (A7.204) one can obtain Eq. (A7.198) when considering that

Pr{ ( , ]}* *( ( ) ( )) ,no event in M M   t en
T nT t= − −  and vice versa.

5. Equations (A7.198) and (A7.199) show that for an NHPP, occurrence (arrival)
times are not independent; the same is for interarrival times, which are neither
independent nor identically distributed.

Thus, the NHPP is not a regenerative process.  On the other hand, the homogeneous
Poisson processes (HPP) is a renewal process, with independent interarrival times
distributed according to the same exponential distribution (Eq. (A7.38)) and inde-
pendent Erlang (Gamma) distributed occurrence times (Eqs. (A7.39)). & (A6.102)
However, because of independent increments, the NHPP is without aftereffect
(memoryless if HPP) and the sum of Poisson processes is a Poisson process, both in
homogeneous and non-homogeneous case (Eq. (7.27)).  Convergence of a point
process to an NHPP or to an HPP is discussed in Appendices A7.8.3 and A7.8.5.

Although appealing, the assumption of independent increments, mandatory
for Poisson processes (HPP and NHPP), can limit the validity of models
used in practical applications with arbitrary failure and / or repair rates.

However, the properties in Points 1 - 7 above (in particular Eqs. (A7.200) & (A7.206))
are useful for statistical tests on NHPPs, as well as for Monte Carlo simulations.
Results for exponential distributions or for HPPs can be used and the Kolmogorov-
Smirnov test holds with F ( ) ( ) / ( )0 t t T=M M0 0  &  F̂ ( ) ( ) / ( )n t t T= ν ν  (Section 7.6).
Equation (A7.205) is useful to generate realizations of an NHPP (generate k for
given T and M( )T  (Eq. (A7.190)), then k random variables with density m M( ) / ( )t T ;
the ordered values are the k occurrence times of the NHPP on ( , )0 T , see also p. 291;
same for a homogeneous Poisson process, using M( ) .T T= λ

A7.8.3 Superimposed Renewal Processes

Consider a repairable series system with n totally independent elements (p. 52) and
assume that repair times are negligible and that after each repair (renewal) the
repaired element is as-good-as-new.  Let MTTFi  be the mean time to failure of
element Ei  and MTTFS  that of the system.  The flow of system failures is given by
the superposition of n independent renewal processes, each of them related to an
element of the system.  If νS t( ) is the count function at system level giving the
number of system failures in ( , ]0 t  and νi t( ) that of element Ei , it holds that

ν ν νS i
i

n
t t t i t t i n( ) ( ) ., ( ) , , , ...,=

=
∑ > = ≤ =  ,                 for

1
0 0 0 1 2 (A7.214)

νi t( )  is a random variable, distributed as per Eq. (A7.12).  Thus, for the mean value
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function at system level Z S t( ) it follows that (Eqs. (A6.68) and (A7.15))

Z t t t tS S
i

n

i
i

n

i t t tS( ) ( ) ( ) ( ) , ( ) ,= = =[ ] [ ]∑ ∑ > = ≤E E H ,  
= =

       Z for ν ν
1 1

0 0 0 (A7.215)

yielding for the failure intensity at system level z tS ( ) (Eq. (A7.18))

z t t t t t tS S i
i

i
i

d d d d t z
n n

S t t( ) ( ) / ( ) / ( ) , ( ) .= = = > = ≤∑ ∑Z   H  h    ,     
= =

for 
1 1

0 0 0 (A7.216)

In Eqs. (A7.215) and (A7.216), Hi t( ) and h i t( ) are the renewal function and
renewal density of the renewal process related to element Ei .  However, the point
process yielding νS t( ) is not a renewal process.  Simple results hold for
homogeneous Poisson processes (HPP) only, whose sum is an HPP (Eq. (7.27)) and
thus a renewal process.  The same holds for nonhomogeneous Poisson processes
(NHPP), but an NHPP is not a renewal process.

For independent renewal processes, it can be shown that:

 1. The sum of n independent stationary renewal processes is a stationary renewal
process with renewal density (follows from Eqs. (A7.36) & (A7.215))

h    h  
(A7.217) 
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 2. For t →∞ , νS t( ) is normally distributed (Eqs. (A7.214) & (A7.34), Example A6.17).

 3. For n → ∞, the sum of n independent renewal processes with very low occur-
rence (one occurrence of any type and ≥ 2  occurrences of all types are
unlikely) and for which lim ( ) ( ) ( ) ( )Pr{ }

n
i ii

n
t ta a

→∞ = − −= =∑ ν ν         M M1
1

 holds for
any fixed t ta and < , converge to an NHPP with E [ ( )] Mν t t= ( ) for all t > 0
(Grigelionis [A7.14], see also [A7.12, A7.30]);  furthermore, if all renewal densi-
ties h i t( ) are bounded (at t =+ 0), the sum converge for n →∞  to an HPP [A7.14].

 4. For t →∞  and n →∞ , the sum of n independent renewal processes with low
occurrence (one occurrence of any type is unlikely) converge to an HPP with
renewal density as per Eq. (A7.217) [A7.17] , see also [A7.8, A7.12, A7.30] .

A7.8.4 Cumulative Processes

Cumulative processes [A7.24(1955), A7.4 (1962)], also known as compound processes
[A7.3, A7.9 (Vol. 2), A7.21], are obtained when at the occurrence of each event in a
point process, a random variable is generated and the stochastic process given by the
sum of these random variables is considered.  The involved point process is often
limited to a renewal process (including the homogeneous Poisson process (HPP),
yielding a cumulative or compound Poisson process) or a nonhomogeneous Poisson
process (NHPP).  The generated random variable are independent, if not otherwise
stated, and can have arbitrary distribution.  Cumulative processes can be used to
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model some practical situations; for instance, the total maintenance cost for a
repairable system over a given period of time or the cumulative damage caused by
random shocks on a mechanical structure (assuming linear damage superposition).
If a subsidiary series of events is generated instead of a random variable and the two
types of events are indistinguishable, the process is a branching process [A7.3,
A7.21, A7.30], discussed e. g. in [6.1, A7.4 (1968)] as a model to describe failure
occurrence when secondary failures are triggered by primary failures.

Let ν( )t  be the count function giving the number of events (on the time axis) of
the involved point process (Fig. A7.1), ξ i  the generated random variable at the
occurrence of the i th event, and ξ t  the sum of ξ i  over ( , ]0 t

ξ ξ
ν

ν ν ξ νt i t t t t t t
i

t

=
=

∑ = = ≤ = =>
1

1 2 0 0 0 0 0
( )

( ) , , . .. . , ( ) , ( ) . ,            , for      for  (A7.218)

The stochastic process of value ξ t ( )t ≥ 0  is a cumulative process.
Assuming that the random variables ξ i  are > 0, (totally) independent,

independent from ν( )t  and distributed according to G ( )x , it is not difficult to
recognize that ξ t  is distributed as the total repair time (total down time) for failures
occurred in a total operating time (total up time) t of a repairable item, and is thus
given by the work-mission availability (Eq. (6.32)).

In the following, results are given for the case in which the involved point pro-
cess is an HPP with parameter λ and the generated random variables are (totally)
independent, independent from ν( )t ,  and have same exponential distribution with
parameter µ.  Equation (6.33) with T t0 =  yields
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Mean and variance of ξ t  follow as (Eqs. (A7.219), (A6.38), (A6.45), (A6.41))

E [ ] /ξ λ µt t=       and     Var         .[ ] /ξ λ µt t= 2 2 (A7.220)

Furthermore, for t →∞ the distribution of ξ t  approaches a normal distribution with
mean and variance as per Eq. (A7.220) (see the discussion to Eq. (6.33)).  Moments
of ξ t  can also be obtained using the moment generating function (Table A9.7a)
or directly by considering Eq. (A7.218), yielding (Example A7.14)

E E        E[ ] [ ( )] [ ]ξ ν ξt it=   and  Var E        Var       Var E           2[ ] [ ] [ ]( ) ( ) .ξ ν ξ ν ξt i it t= +[ ] [ ]  (A7.221)

Of interest in practical applications (e. g. cost optimizations) can also be the
distribution of the time τC  at which the process ξ t ( )t > 0  crosses a give (fixed)
barrier C.  For the case given by Eq. (A7.219), in particular for ξ i > 0, the events

 >           and  { } { }τ ξC t t C≤ (A7.222)
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Example A7.14
Prove Eq. (A7.221).

Solution
Considering ξ i > 0, (mutually) independent, independent of ν ( )t  and with finite mean & var-
iance, Eq. (A7.218) yields, for given  (fixed) ν( )t n=   (Appendix A6.8)

E  E         and      Var  Var    .[ ( ) ] [ ] [ ( ) ] [ ]| |ξ ν ξ ξ ν ξt t n n i t t n n i= = = = (A7.224)

From Eq. (A7.224) it follows then (considering ν ( ) , ,...t = 1 2 )

E  Pr  E       Pr  n      E   

                                                                
      E                     Pr E E
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are equivalent.  Form Eq. (A7.219) it follows then ( C  has dimension of µ−1)
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A7.8.5 General Point Processes

A point process is an ordered sequence of points on the time axis, giving for exam-
ple the failure occurrence of a repairable system.  Poisson and renewal processes are
simple examples of point processes.  Assuming that simultaneous events can not
occur (with probability one) and assigning to the point process a count function ν( )t
giving the number of events occurred in ( , ]0 t , investigation of point processes can
be performed on the basis of the involved count function ν( )t .  However, arbitrary
point processes can lead to analytical difficulties, and results are known only for
particular situations (low occurrence rate, stationary, regular, etc.).  In reliability
applications, general point processes can appear for example when investigating
failure occurrence of repairable systems by neglecting repair times.  In the
following, only some basic properties of general point processes will be discussed,
see e. g. [A7.10, A7.11, A7.12, A7.30] for greater details.

Let ν( )t  be a count function giving the number of events occurred in ( , ]0 t ,
assume ν( )0 0=  and that simultaneous occurrences are not possible.  The under-
lying point process is stationary if ν( )t  has stationary increments (Eq. (A7.5)),
and without aftereffect if ν( )t  has independent increments (Eq. (A7.2)).  The sum of
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independent stationary point processes is a stationary point process.  The same holds
for processes without aftereffect.  However, only the homogeneous Poisson process
(HPP) is stationary and without aftereffect (memoryless).

For a general point process, a mean value function

Z( ) E ,                     Z for t t t t t= > = ≤[ ( )] , ( ) ,ν 0 0 0 (A7.227)

giving the mean (expectation) of the number of points (events) in ( , ]0 t  can be
defined.  Z( )t  is a nondecreasing, continuous function with Z( ) 00 = , often assumed
increasing, unbounded and absolutely continuous.  If

z
 Z E

 ,                   z for ( )
( ) [ ( )]

, ( ) ,t
d t

dt

d t

dt
t t t= = ≥ > = ≤

ν
0 0 0 0 (A7.228)

exists, z( )t  is the intensity of the point process.  Equations (A7.228) & (A7.227) yield

Pr{ ( ) ( ) } ( ) , ,ν νδ δ δ δt t t t t t t t+ − = = + > ↓1 0 0z( ) o  ,                   (A7.229)

and no distinction is made between arrival rate and intensity.  z( )t tδ  gives the
unconditional probability for one event (failure) in ( , ]t t t+δ .  z( )t  corresponds thus
to m( )t  (Eq. (A7.193)) and h( )t  (Eq. (A7.24)), but differs basically from the
failure rate λ( )t  (Eq. (A6.25)) which gives ( ( ) )as  λ δt t  the conditional probability
for a failure in ( , ]t t t+δ  given that the item was new at t = 0 and no failure has
occurred in ( , ]0 t .  This distinction is important also for the case of a homogeneous
Poisson process (Appendix A7.2.5), for which λ λ( )x =  holds for all interarrival
times (with x starting by 0 at every renewal point) and h ( )t =λ  holds for the whole
process.  Misuses are known, in particular when dealing with reliability data
analysis (see e. g. [6.1, A7.30] and comments on pp. 378 & 380, Appendix A7.8.2,
and Sections 1.2.3, 7.6, 7.7).  Thus, as a first rule to avoid confusion,

for repairable items, it is mandatory to use for interarrival times the
variable x starting by 0 at every repair (renewal), instead of t.

Some limits theorems on point processes are known, in particular on the
convergence to an HPP, see e. g. [A7.10, A7.11, A7.12] .

In reliability applications, z( )t  is called failure intensity [A1.4] , ROCOF (rate of
occurrence of failures) in [6.1].  z( )t  applies in particular to repairable systems when
repair (restoration) times are neglected.  In this case, νS t( ) is the count function
giving the number of system failures occurred in ( , ]0 t , with ν( )0 0= , and

z
 Z E

 ,                  z for S
S S

t t tt
d t

dt

d t

dt S( )
( ) [ ( )]

, ( ) ,= = ≥ > = ≤
ν

0 0 0 0 (A7.230)

is the system failure intensity.



A8 Basic Mathematical Statistics

Mathematical statistics deals basically with situations which can be described
as follows:  Given a population of statistically identical and independent elements
with unknown statistical properties, measurements regarding these properties are
made on a (random) sample of this population and on the basis of the collected data,
conclusions are made for the remaining elements of the population.  Examples are
the estimation of an unknown probability (e.  g .  a  defective probability p) , the
parameter estimation for the distribution function of an item’s failure-free time τ, or
a decision whether the mean of τ is greater than a given value.  Mathematical
statistics thus goes from observations (realizations) of a given (random) event in a
series of independent trials to search for a suitable probabilistic model for the event
considered (inductive approach).  Methods used are based on probability theory and
results obtained can only be formulated in a probabilistic language.  Risk mini-
mization for a false conclusion is an important objective in mathematical statistics.
This Appendix introduces the basic concepts of mathematical statistics necessary for
the quality and reliability tests given in Chapter 7.  It is a compendium of
mathematical statistics, consistent from a mathematical point of view but still with
reliability engineering applications in mind (demonstration of established theorems
is referred, and for all other propositions or equations, sufficient details for complete
demonstration are given).  Emphasis is on empirical methods, parameter estimation,
and testing of hypotheses.  To simplify the notation, sample is used for random
sample, mean for expected value, and independent for totally (mutually, statisti-
cally, stochastically) independent (p. 419).  Estimated (or empirical) values are
marked with  ̂ .  Selected examples illustrate the practical aspects.

A8.1 Empirical Methods

Empirical methods allow a quick and easy evaluation / estimation of the distribution
function and of the mean, variance, and other moments characterizing a random
variable.  These estimates are based on the empirical distribution function and have
a great intuitive appeal.  An advantage of the empirical distribution function,
when plotted on an appropriate probability charts (probability plot papers, p. 531),
is to give a simple visual rough check as to whether the assumed model seems
correct.

A. Birolini, Reliability Engineering, DOI: 10.1007/978-3-642-39535-2,
� Springer-Verlag Berlin Heidelberg 2014
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A8.1.1 Empirical Distribution Function

A sample of size n of a random variable τ with the distribution function F( )t  is
a random vector τ τ τ→

= …( , , )1 n  whose components τi are assumed (totally)
independent and identically distributed random variables with F( ) Pr{ }t ti= ≤τ ,
i n= …1, , .  For instance, τ τ1 , ,… n are the failure-free times (failure-free operating
time) of n items randomly selected from a lot of statistically identical items with a
distribution function F( )t  for the failure-free time τ.   The observed failure-free
times, i. e. the realization of the random vector τ τ τ→

= …( , , )1 n , is a set t tn1 , ,…  of
independent real values (> 0 in the case of failure-free times).  Distinction between
random variables τ τ1 , ,… n and their observations t tn1 , ,…  is important from a
mathematical point of view. 

+)

When the sample elements (observations) are ordered by increasing magnitude,
an order statistic (order sample) t t n( ) ( ), ,1 …  is obtained.  In life tests, observations
t tn1, ,…  constitute often themselves an order statistic.  An advantage of an order
statistic of n observations on independent, identically distributed random variables
with density f(t) is the simple form of the joint density f f( ,... , ) ! ( )( ) ( ) ( )t t tn i in1 = Π
(Example (A7.13, on p. 519).

With the purpose of saving test duration and cost, life tests can be terminated
(stopped) at the occurrence of the k th ordered observation (kth failure) or at a given
(fixed) time Ttest .  If the test is stopped at the kth failure, a type II censoring occurs
(from the left if the time origin of all observations is not known).  A type I
censoring occurs if the test is stopped at Ttest .  A third possibility is to stop the test
at a given (fixed) number k of observations (failures) or at Ttest  whenever the
first occurs.  The corresponding test plans are termed (n, r− , k), (n ,  r− , Ttest ), and
(n, r− , (k, Ttest )), respectively, where r−  stands for "without replacement".  In many
applications, failed items can be replaced (for instance in the case of a repairable
item or system); in these cases, r−  is changed with r in the test plans.

For a set of ordered observations t t n( ) ( ), ,1 … , the right continuous function
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is the empirical distribution function (EDF) of the random variable τ, see Fig. A8.1
for a graphical representation.  F̂ ( )n t  expresses the relative frequency of the event
{ }τ ≤ t  in n independent trial repetitions, and provides a well defined estimate of

––––––––––
+) The investigation of statistical methods and the discussion of their properties can only be based

on the (random) sample τ τ1 , ,… n.  However, in applying the methods for a numerical
evaluation (statistical decision), the observations t t n1 , ,…  have to be used.  For this reason, the
same equation (or procedure) can be applied to τi or t i  according to the situation.
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Figure A8.1  Example of an empirical distribution function ( , , ( ) , , ( )t t t tn n1 1… …≡  is assumed here)

the distribution function F( ) Pr{ }t t= ≤τ .  The symbol ˆ  is hereafter used to denote
an estimate of an unknown quantity.  As stated in the footnote on p. 526, when
investigating the properties of the empirical distribution function F̂ ( )n t  it is
necessary in Eq. (A8.1) to replace the observations t t n( ) ( ), ,1 …  by the sample
elements τ τ( ) ( ), , .1 … n

For given F( )t  and any fixed value of t , the number of observations ≤ t,
i. e. n n tF̂ ( ) , is binomially-distributed (Eq. (A6.120)) with parameter p t= F( ), mean

E n t n tn[ F̂ ( )] F( )= , (A8.2)

and variance

Var[ F̂ ( )] F( )( F( ))n t n t tn = −1 , (A8.3)

(Eqs. (A6.122) & (A6.123)).  Moreover, application of the strong law o f large
numbers (Eq. (A6.146)) shows that for any given (fixed) value of t, F̂ ( )n t  converges
to F( )t  with probability one for n → ∞ .  This convergence is uniform in t and holds
for the whole distribution function F( )t .  Proof of this important result is given in
the Glivenko-Cantelli theorem [A8.4, A8.14, A8.16], which states that the largest
absolute deviation between F̂ ( )n t  and F( )t  over all t, i. e.

D t tn
t

n= −
−∞ < <∞

sup F̂ ( ) F( )  , (A8.4)

converges with probability one toward 0
Pr{ lim }

n
nD

→∞
= =0 1. (A8.5)
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In life tests, observations t tn1, ,…  constitute often themselves an order statistic.
This is useful for statistical evaluation of data.  However, if the test is stopped at
the occurrence of the k th failure or at Ttest  and k or Ttest  are small, the homogeneity
of the sample can be questionable and the shape of F(t) could change for
t tt Tk test> > or   (e. g. because of wear-out, see the remark on p. 342).

A8.1.2 Empirical Moments and Quantiles

The moments of a random variable τ are completely determined by the distribution
function F( ) Pr{ }t t= ≤τ .  The empirical distribution F̂ ( )n t  introduced in Appendix
A8.1.1 can be used to estimate the unknown moments of τ.

The observed values t t n( ) ( ), ,1 …  having been fixed, F̂ ( )n t  can be regarded as the
distribution function of a discrete random variable with probability p nk = 1 /  at the
points t k( ), k n= 1, ..., .  Using Eq. (A6.35), the corresponding mean is the empirical
mean (empirical expectation) of τ and is given by

Ê[ ]τ =
=
∑1

1
n

ti
i

n
. (A8.6)

Taking into account the footnote on p. 526, Ê[ ]τ  is a random variable with mean

E[Ê[ ]] E[ ] E[ ] E[ ]τ τ τ τ= = =
=
∑1 1

1
n i

i

n

n n , (A8.7)

and variance

Var[Ê[ ]] Var[ ] Var[ ]
Var[ ]τ τ τ τ= = =

=
∑1 1

1
2n n ni

i

n
n   . (A8.8)

Equation (A8.7) shows that Ê[ ]τ  is an unbiased estimate of E[ ]τ , see Eq. (A8.18).
Furthermore, from the strong law of large numbers (Eq. (A6.147)) it follows that
for n → ∞ , Ê[ ]τ  converges with probability one toward E[ ]τ

Pr{ lim ( ) E[ ]}
n i

n

n i
→∞ =

∑ = = 
1

1
1τ τ . (A8.9)

The exact distribution function of Ê[ ]τ  is known in a closed simple form only
for some particular cases (normal, exponential, Gamma distributions).  However,
the central limit theorem (Eq. (A6.148)) shows that for large values of n the
distribution of Ê[ ]τ  can always be approximated by a normal distribution with
mean E[ ]τ  and variance Var[ ] /τ n .

Based on F̂ ( )n t , Eqs.(A6.43) & (A8.6) provide an estimate of the variance of τ as
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which is unbiased, i. e.

E[Vâr[ ]] Var[ ] .τ τ= (A8.11)

The empirical higher-order moments (Eqs. (A6.41) and (A6.50)) can be
estimated with

1 1
1

1 1
n n

t ti i
k

i

n
k

i

n

= =
∑ ∑− −                  ( Ê[ ]) .and τ (A8.12)

The empirical quantile t̂ q  is defined as the q quantile (Appendix A6.6.3) of the
empirical distribution function F̂ ( )n t

ˆ inf { : F̂ ( ) }t tq n t q= ≥ . (A8.13)

A8.1.3 Further Applications of the
Empirical Distribution Function

Comparison of the empirical distribution function F̂ ( )n t  with a given distribution
function F( )t  is the basis for several non-parametric statistical methods.  These
include goodness-of-fit tests, confidence bands for distribution functions, and
graphical methods using probability charts (probability plot papers).

A quantity often used in this context is the largest absolute deviation Dn  between
F̂ ( )n t  and F( )t , defined by Eq. (A8.4).  If the distribution function F( )t  of the
random variable τ is continuous, then the random variable F( )τ  is uniformly
distributed on ( , )0 1 .  It follows that Dn  has a distribution independent of F( )t .
A.N. Kolmogorov showed [A8.20] that for F( )t  continuous and x > 0,

lim Pr{ F( )} ( )
n

n
k k x

k
n D x t e

→∞
−

=

∞
≤ = + −∑  1 2 1 2

1

2 2 .

The series converges rapidly for x > 1     or ,, / /y x n n= > 1  so that k = 1 yields

lim Pr{ F( )} .
n

n
n yD y t e

→∞
−≤ ≈ − 1 2 2 2 (A8.14)
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Table A8.1    Values of y1− α , for which Pr{ F( )}D y tn ≤ = −− 1 1α α  

n a = 0.2 a = 0 1. a = 0 05.

 2 0.684 0.776 0.842

 5 0.447 0.509 0.563

10 0.323 0.369 0.409

20 0.232 0.265 0.294

30 0.190 0.218 0.242

40 0.165 0.189 0.210

50 0.148 0.170 0.188

for n > 50 ≈<1 07. / n ≈<1 22. / n ≈<1 36. / n

The distribution function of Dn  has been tabulated for small values of n [A8.2,
A8.27], see Table A9.5 and Table A8.1.  From the above it follows that:

For a given continuous distribution function F( )t , the band F( )t y± −1 α
overlaps the empirical distribution function F̂ ( )n t  with probability 1 − αn
where α αn →  as n → ∞, with y1 − α defined by

Pr{ F( )}D y tn ≤ = −−1 1α α (A8.15)

and given in Table A9.5 or Table A8.1.

From Table A8.1 one recognizes that the convergence α αn →  is good (for practical
purposes) for n > 50.  If F( )t  is not continuous, it can be shown that with y1− α
from Eq. (A8.15), the band F( )t y± −1 α overlaps F̂ ( )n t  with a probability 1 − αn' ,
where α α αn

' '→ ≤  as n → ∞.
The role of F( )t  and F̂ ( )n t  can be reversed (see also pp. 459, 542, 543), yielding:

The random band F̂ ( )n t y± −1 α  overlaps the true (unknown) distribution
function F( )t  with probability 1 − αn , where α αn →  as n → ∞ .

This last consideration is an aspect of mathematical statistics, while the former one
(in relation to Eq. (A8.15)) was a problem of probability theory.  One has thus the
possibility to estimate an unknown continuous distribution function F( )t  on the
basis of the empirical distribution function F̂ ( )n t , see e. g. Figs. 7.12 and 7.14.

Example A8.1

How large is the confidence band around F̂ ( )n t  for n = 30  and for n = 100  if α = 0 2. ?

Solution

From Table A8.1, y0 8 0 19. .=  for n = 30  and y0 8 0 107. .=  for n = 100 . This leads to the band
F̂ ( ) .n t ± 0 19  for n = 30  and F̂ ( ) .n t ± 0 107  for n = 100 .
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To simplify investigations, it is often useful to draw F̂ ( )n t  on a probability chart
(probability plot paper).  The method is as follows:

The empirical distribution function F̂ ( )n t  is drawn in a system of
coordinates in which a postulated type of continuous distribution function is
represented by a straight line;  if the underlying distribution F( )t  belongs to
this type of distribution function, then for a sufficiently large value of n the
points ( t ti n i( ) ( ), F̂ ( )) will approximate to a straight line (a systematic
deviation from a straight line, particularly in the domain 0 1 0 9. F̂ ( ) .< <n t ,
leads to rejection of the type of distribution function assumed).

This can also be used as a simple rough visual check as to whether an assumed
model (F( ))t  seems correct.  In many cases, estimates for unknown parameters of
the underlying distribution function F( )t  can be obtained from the estimated
straight line for F̂ ( )n t .  Probability charts for the Weibull (including exponential),
lognormal and normal distribution functions are given in Appendix A9.8, some
applications are in Section 7.5.

The following is a derivation of the Weibull probability chart.  The function

F( )t e t= − − ( )1 λ β

can be transformed to log ( ( F( ))) ( ) log ( )/10 101 1 − =t t eλ β  and finally to

log log ( ) log ( ) log ( ) log log ( )
F( )

10 10
1

1
10 10 10 10−

= + +
t

t eβ β λ . (A8.16)

In the system of coordinates log ( )10 t  and log log ( / ( F( ) )10 10 1 1 − t  ) , the Weibull
distribution function given by F( ) ( )t e t= − −1 λ β  appears as a straight line.  Fig. A8.2
shows this for β = 1 5.  and λ = 1 800/ h .  As illustrated by Fig. A8.2, the parameters
β and λ can be obtained graphically

 • β is the slope of the straight line, it appears on the scale log log ( / ( F( )))10 10 1 1 − t
if t is changed by one decade (e. g. from 102 to 103 h in Fig. A8.2),

 • for log log ( / ( F( ))) log log ( )10 10 10 101 1 − =t e , i. e. on the dashed line in Fig. A8.2,
one has log ( )10 0λ t =  and thus λ = 1 / t .

The Weibull probability chart also applies to the exponential distribution (β = 1).
For a three parameter Weibull distribution (   F    ( ) , )( ( ))t e t t= − − − >1 λ ψψ β  one

can operate with the time axis t t'= −ψ, giving a straight line as before, or consider
the concave curve obtained when using t (see Fig. A8.2 for an example).
Conversely, from a concave curve describing a Weibull distribution (for instance, in
the case of an empirical data analysis) it is possible to find ψ  using the relationship
ψ = − + −( ) ( )/t t t t t tm m1 2 1 2

2 2  existing between two arbitrary points t t1 2,  and tm
obtained from the mean of F(t1 )  and F( t2 ) on the scale log log ( / ( F( )))10 10 1 1 − t ,
see Example A6.14 for a derivation and Fig. A8.2 for an application with t1 400= h 
and  ht2 1000= , yielding  htm = 600  and ψ = 200h .
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Figure A8.2    Weibull probability chart:  The distribution function F( ) ( )t e t= − −1 λ β
 appears as

a straight line  (in the example λ = 1 800/ h  and β = 1 5. );  for a three parameter distribution
F( )t = 1 − − − >e t t    ( ( )) ,λ ψψ β , one can use t t'= −ψ  or operate with a concave curve and
determine (as necessary) ψ λ β ,  and  ,  graphically  (dashed curve for λ = 1 800/ h , β = 1 5. , and
ψ = 200h as an example)
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A8.2 Parameter Estimation

In many applications it can be assumed that the type of distribution function F( )t  of
the underlying random variable τ is known.  This means that F( ) F( , , , )t t r= …θ θ1  is
known in its functional form, the real-valued parameters θ θ1, ,… r  having to be
estimated.  The unknown parameters of F( )t  must be estimated on the basis
of the (totally) independent observations t tn1 , ,…  of the random variable τ .
A distinction is made between point and interval estimation.

A8.2.1 Point Estimation

Consider first the case where the given distribution function F( )t  only depends on
a parameter θ, assumed hereafter as an unknown constant + ) .   A point estimate
for θ is a function

ˆ u( , , )θn nt t= …1
(A8.17)

of the observations t tn1, ,…  of the random variable τ (not of the unknown
parameter θ itself).  The estimate θ̂n is

 • unbiased, if

E[ˆ ]θ θn = , (A8.18)

 • consistent, if θ̂n converges to θ in probability, i. e., if for any ε > 0

lim Pr{ | ˆ | }
n

n
→∞

− > = θ θ ε 0 , (A8.19)

 • strongly consistent, if θ̂n converges to θ with probability one

Pr{lim ˆ }
n

n
→∞

= =θ θ 1, (A8.20)

 • efficient, if

E[(ˆ ) ]θ θn − 2 (A8.21)

is minimum over all possible point estimates for θ,

 • sufficient (sufficient statistic for θ), if θ̂n delivers the complete information about θ
(available in the observations t tn1, ,… ), i. e., if the conditional distribution of τ→

for given θ̂n does not depend on θ.

––––––––––
+) Bayesian estimation theory (based on the Bayes theorem (Eq. (A6.18) & note to Eq. (A6.58)),

which considers θ as a random variable and assigns to it an a priori distribution function, will not
be considered in this book (as a function of the random sample, θ̂n  is a random variable, while θ
is an unknown constant).  However, a Bayesian statistics can be useful if knowledge on the a
priori distribution function is well founded, for these cases one may refer e. g. to [A8.24, A8.25].
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For an unbiased estimate, Eq. (A8.21) becomes

E[(ˆ ) ] E[(ˆ E[ˆ ]) ] Var[ˆ ]θ θ θ θ θn n n n− = − =2 2 . (A8.22)

An unbiased estimate is thus efficient if Var[ ˆ ]θn  is minimum over all possible point
estimates for θ, and consistent if Var[ ˆ ]θn → 0 for n → ∞ .  This last statement is a
consequence of Chebyschev’s inequality (Eq. (A6.49)).  Efficiency can be checked
using the Cramér -  Rao inequality and sufficiency using the factorization criterion
of the likelihood function, other useful properties of estimates are asymptotic
unbiasedness and asymptotic efficiency, see e. g. [A8.1, A8.23].

Several methods are known for estimating θ. To these belong the methods
of moments, quantiles, least squares, and maximum likelihood.  The maximum
likelihood method is commonly used in engineering applications.  It provides point
estimates which under general conditions are consistent, asymptotically unbiased,
asymptotically efficient, and asymptotically normally distributed.  Furthermore,
if an efficient estimate exists, then the likelihood equation (Eqs.(A8.23) & A8.24))
has this estimate as a unique solution, and an estimate θ̂n is sufficient if and only if
the likelihood function  can be written in two factors, one depending on t tn1, ,…
only, the other on θ and ˆ u ( , , )θ n nt t= …1  (Examples A8.2 - A8.4), see e. g. [A8.1,
A8.8, A8.15, A8.23].

The maximum likelihood method was developed 1921 by R.A. Fisher [A8.15]
and is based on the following idea:

Maximize, with respect to the unknown parameter θ , the probability (Pr)
that in a sample of size n, exactly the values t tn1, ,…  will be observed
(i. e., maximize the probability of observing that record); this by maximizing
the likelihood function (L ~ Pr), defined as

L( , , , ) p ( ),           p ( ) Pr{ },t t tn i
i

n

i i1
1

… =
=
∏ = =θ θ τθ  with (A8.23)

in the discrete case, and as

L( , , , ) f( , ) , f( , )t t t tn i
i

n

i1
1

… =
=
∏θ θ θ          with  as density function, (A8.24)

in the continuous case.

Since the logarithmic function is monotonically increasing, the use of ln(L) instead
of L leads to the same result.  If L( , , , )t tn1 … θ  is derivable and the maximum
likelihood estimate θ̂n exists, then it will satisfy the equation

∂ θ
∂θ θ θ

L( , , , )

ˆ

t tn

n

1 0
…

=
=

, (A8.25)
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or
∂ θ

∂θ θ θ

ln(L( , , , ))

ˆ

t tn

n

1 0
… =

=
. (A8.26)

The maximum likelihood method can be generalized to the case of a distribution
function with a finite number of unknown parameters θ θ1, ,… r .  Instead of Eq.
(A8.26), the following system of r algebraic equations must be solved

  

∂ θ θ
∂θ θ θ

ln(L( , , , , , ))
,      

ˆ
, , 

t tn r

i
i r

i in

1 1 10
K K

=
= …=   . (A8.27)

The existence and uniqueness of a maximum likelihood estimate is satisfied in most
practical applications (Eq. (A8.26) or (A8.27) is necessary and sufficient for the
existence of a maximum).

To simplify the notation, in the following the index n will be omitted for
the estimated parameters.

Example A8.2
Let t tn1, ,…  be independent observations of an exponentially distributed failure-free time τ.
Give the maximum likelihood estimate for the unknown parameter λ of the exponential
distribution.

Solution

With f( , )t e tλ λ λ= − , Eq. (A8.24) yields L( , , , ) ( )t t en
n t tn

1
1… = − + … +λ λ λ ,  from which

ˆ .λ = + … +
n

t t n1
(A8.28)

This case corresponds to a sampling plan with n elements without replacement, terminated at the
occurrence of the n th failure.  λ̂ depends only on the sum t t n1 + … + , not on the individual values
of ti ;  t t n1 + … +  is a sufficient statistic and λ̂  is a sufficient estimate  ( L . / ˆ= −1  λ λ λn e n ).
However, ˆ / ( )λ = + … +n t t n1  is a biased estimate, unbiased is ˆ ( ) / ( )λ = − +… +n t tn1 1 , as well
as Ê [ ] ( ) /τ = +…+ t t nn1  given by Eq. (A8.6).

Example A8.3

Assuming that an event A has occurred exactly k times in n Bernoulli trials, give the maximum
likelihood estimate for the unknown probability p for event A to occur.

Solution
Using the binomial distribution (Eq. (A6.120)), the likelihood function (Eq. (A8.23)) becomes

L p p 1 p L +k
k n k= = − = + − −−( )      ln ln ln ( ) ln( )         ( ) or          ( )n

k
n
k k p n k p1 .

This leads to

ˆ / .p k n= (A8.29)

p̂  is the observed relative frequency, it is unbiased and depends only on k , i. e. on the number of

the event occurrences in n independent trials;  k is a sufficient statistic and p̂  is a sufficient

estimate  ( ( )   . (1 L p p= − −( ) [ ] )ˆ ˆ )n
k

p p n1 .
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Example A8.4

Let k kn1, ,…  be independent observations of a random variable ζ distributed according to the
Poisson distribution defined by Eq. (A6.125).  Give the maximum likelihood estimate for the
unknown parameter m of the Poisson distribution.

Solution

Using Eq. (A6.120), the likelihood function becomes

L
m

k k
e L (k k ) m m k k

k k

1 n

nm
1 n 1 n

1 n
=

…
= + … + − − …

+ … +
−

! !
  or     ( ! !),            ln ln lnn

and thus

ˆ .m
k k

n
n=

+ … +1 (A8.30)

m̂  is unbiased.  It depends only on the sum k kn1 +… + , not on the individual ki ;  k kn1 + … +  is

a sufficient statistic and m̂  is a sufficient estimate  ( ( / ! ! )) .ˆL ). m en n m= … −1 1k kn
m (  

Example A8.5

Let t tn1, ,…  be independent observations of a Weibull distributed failure-free time τ.  Give the
max. likelihood estimate for the unknown parameters λ and β.
Solution

With f( , , ) ( ) ( )t t e tλ β β λ λ β λ β= − −1  (Eq. (A6.90)), it follows from Eq. (A8.24) that

L( , , , , ) ( ) ( )t t e tn
n t t

i
i

n
n

1
1

1

1… = − + … + −

=
∏λ β β λβ λ ββ β β

,

yielding (Eq. (A8.27) and considering a ex x a= ln )

ˆ
ln

ln          ˆ

ˆ

ˆ ˆ[ ] / ˆ
β λ

β

β β

β=
∑

∑
− ∑ =

∑

=

= =

=



















−

t t

t
n

t
n

t

i
i

n

i
i

n

i
i

n

i

i
i

n
1

1 1

1

1

1

1

and    . (A8.31)

The solution for β̂  is unique and can be found, using Newton’s approximation method (the value
obtained from the empirical distribution function can give a good initial value, see Fig. 7.12).

Due to cost and time limitations, the situation often arises in reliability applica-
tions in which the items under test are run in parallel and the test is stopped before
all items have failed.  If there are n items, and at the end of the test k have failed
(at the individual failure times (times to failure) t t tk1 2< <… < )  and n k−  are still
working, then the operating times T Tn k1, ,… −  of the items still working at the end of
the test should also be accounted for in the evaluation.  Considering a Weibull
distribution as in Example A8.5, and assuming that the operating times T Tn k1, ,… −
have been observed in addition to the failure-free times t tk1, ,… , then

L( , , , , ) ~ ( ) ( ) ( )t t e t ek
k t t

i
i

k
T

j

n k
k j

1
1

1 1

1… − + … + −

=

−

=

−
∏ ∏λ β β λβ λ β λβ β β β

    ,
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leads to (Eq. (A8.27) and considering a ex x a= ln )

ˆ

ln ln

ln

ˆ ˆ

ˆ ˆ
,β

β β

β β
=

+

+

−
= =

−

= =

−
=

∑ ∑

∑ ∑
∑





















−

t t T T

t T
k

t

i i
i

k

j j
j

n k

i
i

k

j
j

n k i
i

k1 1

1 1

1

1

1

  ˆ .[ ]
ˆ ˆ

/ ˆ
λ

β β

β
=

∑ + ∑
= =

−

k

t Ti
i

k

j
j

n k

1 1

1
        (A8.32)

The calculation method for Eq.(A8.32) applies for any distribution function, yielding

L f( , ) ( ( , ))= −∏ ∏t Tii jj
θ θ  . F1 , (A8.33)

where i sums over all observed times to failure, j sums over all failure-free times,
and θ can be a vector.  However, following two cases must be distinguished:

(i) T Tn k kt1 = =−... = , i. e., the test is stopped at the (random) occurrence of the
k th failure (Type II censoring),

(ii) T T Tn k test1=…= =−  is the given (fixed) test duration (Type I censoring).

The two situations are basically different and this has to be considered in
data analysis, see e. g. the discussion below with Eqs. (A8.34) and (A8.35).

For the exponential distribution ( )β = 1 , Eq. (A8.31) reduces to Eq. (A8.28)
and Eq. (A8.32) to

ˆ .λ =
∑ ∑
= =

−
+

k

t Ti
i

k

j
j

n k

1 1

 

(A8.34)

If the test is stopped at the occurrence of the k th failure, as per (i) above,
T Tn k kt1 = = =−...  holds in general, and the quantity T n kr kt t tk= + + + −1 ... ( )  is the
random cumulative operating time over all items during the test.  This situation
corresponds to a sampling plan with n elements without replacement (renewal),
censored at the occurrence of the k th failure.  Because of the memoryless property
of the Poisson process (Eqs. (7.26) and (7.27)), Tr  can be calculated as
T nr t= +1 ( )( ) ... ( )( )n n kt t tt k k− − + + − + − −1 12 1 1 = t t tk n k k1 + + + −... ( )  (Eq. (7.23)).
It can be shown that ˆ /λ = k Tr  is biased, unbiased is

ˆ
... ( )

.λ =
+ + + −

−k

t t tk n k k

1

1
(A8.35)

If the test is stopped at the fixed time Ttest , T n k Tr kt t test= + + + −1 ... ( ) , as per (i) above,
(Eq.(7.25)).  In this case, Ttest  is given (fixed) but k as well as t tk1,...,  are random.
This situation corresponds to a sampling plan with n elements without replacement,
censored at a fixed test time Ttest .  Also for this case, k Tr/  is biased.  However,

important for practical applications, also because results are not biased
( )for k >1 , is the case with replacement (Appendix A8.2.2.2, Section 7.2.3).
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Figure A8.3    Examples of confidence intervals for θ ≥ 0

A8.2.2 Interval Estimation

As shown in Appendix A8.2.1, a point estimation has the advantage of providing an
estimate quickly.  However, it does not give any indication as to the deviation of the
estimate from the true parameter.  More information can be obtained from an
interval estimation.  With an interval estimation, a random interval [ ˆ , ˆ ]θ θl u  is
sought such that it overlaps (covers) the true value of the unknown parameter θ with
a given probability γ.  [ ˆ , ˆ ]θ θl u  is the confidence interval, θ̂l  and θ̂u are the lower
and upper confidence limits, and γ is the confidence level.  γ has the following
interpretation:

In an increasing number of (totally) independent samples of size n (used to
obtain confidence intervals), the relative frequency of the cases in which the
confidence intervals [ ˆ , ˆ ]θ θl u  overlap (cover) the unknown parameter θ
converges to the confidence level γ β β= − −1 1 2  ( )0 1 11 2< < − <β β .

β1  and β2  are the error probabilities related to the interval estimation.  If γ can not be
reached exactly, the true overlap probability should be near to, but not less than, γ.

The confidence interval can also be one-sided, i. e. [ , ˆ ]0 θ u  or [ ˆ , )θ l ∞  for θ ≥ 0.
Figure A8.3 shows some examples of confidence intervals.

The concept of confidence intervals was introduced independently by J. Neyman
and R. A. Fisher around 1930.  In the following, some important cases for quality
control and reliability tests are considered.

A8.2.2.1 Estimation of an Unknown Probability p

Consider a sequence of Bernoulli trials (Appendix A6.10.7) where a given event A
can occur with constant probability p at each trial.  The binomial distribution

p p pk
k n kn

k= ( ) − −( )1
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gives the probability that the event A will occur exactly k times in n independent
trials.  From the expression for pk , it follows that

Pr{ } .k A n k p p p
n

i
i n i

i k

k

1 2 1
1

2

≤ ≤ =






−( ) −

=
∑observations of in trials      (A8.36)

However, in mathematical statistics, the parameter p is unknown.  A confidence
interval for p is sought, based on the observed number of occurrences of the event A
in n Bernoulli trials.  A solution to this problem has been presented 1934 by Clopper
and Pearson [A8.6].  For given γ β β= −−1 1 2  ( )0 1 11 2< < − <β β  the following holds:

If in n Bernoulli trials the event A has occurred k times, there is a probability
nearly equal to (but not smaller than) γ β β= − −1 1 2 that the confidence inter-
val [ ˆ , ˆ ]p pl u  overlaps the true (unknown) probability p, with p̂l  & p̂u given by

n
i

k np pl l
i k

n
i n i( ) −( ) =−

=
∑ < <ˆ ˆ ,  1 2 0              forβ , (A8.37)

and

n
i

k np pu
i

u
n i

i

k ( ) −( ) =−

=
∑ < <ˆ ˆ ,  1 1

0
0       forβ ; (A8.38)

for k = 0  take

ˆ       ˆ ,     p pl u
n= = − = −0 1 1 1 1and            withβ γ β , (A8.39)

and for k = n take

ˆ       ˆ ,    p pl
n

u= = = −β γ β2 1 1 2and            with . (A8.40)

Considering that k is a random variable, p̂l  and p̂u are random variables.
According to the footnote on p. 526, it would be more correct (from a mathematical
point of view) to compute from Eqs. (A8.37) and (A8.38) the quantities pkl  and
pku, and then to set p̂ pl k l=  and p̂ pu ku= .  For simplicity, this has been omitted

here.   Assuming p as a random variable, β1 and β2 would be the probabilities for p
to be greater than p̂u and smaller than p̂ l , respectively (Fig. A8.3).

The proof of Eqs. (A8.38)  is based on the monotonic property of the function

B
n
i

i
n

i n(k, p p 1 p
i 0

k
) ( )= ( ) −∑ −

=
.

For given (fixed) n, Bn (k, p) decreases in p for fixed k and increases in k for fixed p
(Fig. A8.4).  Thus, for any p pu> ˆ  it follows that

B k p B kn n up( , ) ( , )< =ˆ β1.

For p pu> ˆ , the probability that the (random) number of observations in n trials will
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Figure A8.4    Binomial distribution as a function of p for n fixed and two values of k

take one of the values 0 1, , ,… k  is thus < β1 (for p p> ' in Fig. A8.4, the statement
would also be true for a K k> ).  This holds in particular for a number of
observations equal to k and proves Eq. (A8.38).  Proof of Eq. (A8.37) is similar.

To determine p̂l  & p̂u per Eqs. (A8.37) & (A8.38), a Table of the Fisher distribu-
tion (yielding e. g. ˆ ( )pu k= + 1  F 2 ( + ), 2 ( - ),  k n k1 1 1− β  / [ ( )n k k− + + 1  F 2 ( + ), 2 ( - ),  k n k1 1 1− β  ],
Appendix A9.4) or of the Beta function can be used.  However, for n sufficiently
large and β β γ1 2 1 2= = −( ) / , one of the following approximate solutions can be
used in practical applications:

 1. For large values on n (min( , ( )) )n p n p1 5− ≥ , a good estimate for p̂l  and p̂u
can be found using the integral Laplace theorem.  Taking ε = −b nn p p ( ) /1

and considering δi
i

n
k

=
∑ =

1
 (or rearranging Eq. (A6.149)), Eq. (A6.150) yields

lim Pr{ }( )
( ) /

n
x

b
k
n

p
b p p

n
e dx

→∞
−− ≤

− = ∫2
2

21 2

2
2

0
  

π
. (A8.41)

The right-hand side of Eq. (A8.41) is equal to the confidence level γ , i. e.

2

2
2

0

2

π
γ e dxx

b
−∫ =/ .

Thus, for a given γ , the value of b can be obtained from a table of the normal
distribution (Table A9.1).  b is the  1 2 2 1 2/ / ( ) /+ = +γ γ  quantile of the
standard normal distribution Φ( )t , i. e., b t= +( )/1 2γ  giving e. g. b = 1 64.  for
γ = 0 9. .  On the left-hand side of Eq. (A8.41), the expression

( )
( )k

n p
b p p

n− =
−

2
2 1

(A8.42)
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Figure A8.5    Confidence limits (ellipses) for an unknown probability p with a confidence level
γ β β= − − =1 0 91 2 . , here with β β1 = 2, and for n = 10 , 25, 50, 100   (according to Eq. (A8.43))

is the equation of the confidence ellipse.  For given values of k,  n, and b,
confidence limits p̂l  and p̂ucan be determined as roots of Eq. (A8.42)

ˆ ,
,

. / /
p l u

k b b k k n b

n b
=

( )+ +− − +

+

0 5 1 42 2

2
            β β γ1 2 1 2= = −( ) / , (A8.43)

see Figs. A8.5 and 7.1 for some Examples.

 2. For small values of n, confidence limits can be determined graphically from
the envelopes of Eqs. (A8.37) and (A8.38) for β β γ1 2 1 2= = −( ) / , see Fig. 7.1
for γ = 0 8.  and γ = 0 9. .  For n > 50, the curves of Fig. 7.1 practically agree
with the confidence ellipses given by Eq. (A8.43).

One-sided confidence intervals can also be obtained from the above values for
p̂l  and p̂u.  Figure A8.3 shows that

0 11 11 2≤ ≤ ≤ ≤= − = −p p p pu lˆ ,     ˆ ,        and    with withγ β γ β . (A8.44)

Example A8.6
Using confidence ellipses, give the confidence interval [ ˆ , ˆ ]p pl u  for an unknown probability p for
the case n = 50 , k = 5, and γ = 0 9. .

Solution
Setting n = 50 , k = 5, and b = 1 64.  in Eq. (A8.43) yields the confidence interval [ . , . ]0 05 0 19 ,
see also Fig. 8.5 or Fig. 7.1 for a graphical solution.

Supplementary results: Corresponding one-sided confidence intervals would be p ≤ 0 19.  or
p ≥ 0 05.  with γ = 0 95. .
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The role of k  /  n  and p can be reversed, and Eq. (A8.42) can be used (as
consequence of Eq. (A8.41)) to solve a problem of probability theory, i. e., to
compute for a given probability γ β β= − −1 1 2 with β β1 2= , the limits k1 and k2
of the number of observations k in n independent trials for given (fixed) values of p
and n (e. g. the number k of defective items in a sample of size n);  see also the
remarks on pp. 459, 530, 543)

k n p b n p p1 2 1, ( ) .= +− − (A8.45)

As in Eq. (A8.43), the quantity b in Eq. (A8.45) is the  ( ) /1 2+ γ  quantile of the
normal distribution (e. g. b = 1 64.  for γ = 0 9.  from Table A9.1).  For a graphical
solution, Fig. A8.5 can be used, taking the ordinate p as known and by reading k n1 /
and k n2 /  from the abscissa.  An exact solution follows from Eq. (A8.36).

A8.2.2.2 Estimation of the Parameter λλλλ for an Exponential Distribution:
Fixed Test Duration (Time Censoring), Instantaneous Replacement

Consider an item having a constant failure rate λ and assume that at each failure it
will be immediately replaced by a new, statistically equivalent item, in a negligible
replacement time (Appendix A7.2).  Because of the memoryless property (constant
failure rate), the number of failures in ( , ]0 T  is Poisson distributed and given by
Pr{ } ( ) !/k T T e kk T failures in 0,  ( ] = −λ λ λ  (Eq. (A7.41)).  The maximum likelihood
point estimate for λ follows from Eq. (A8.30), with n = 1 and m T= λ , as

ˆ .λ = k

T
(A8.46)

Similarly, estimation of the confidence interval for the failure rate λ can be
reduced to the estimation of the confidence interval for the parameter m T= λ  of a
Poisson distribution.  Considering Eqs. (A8.37) and (A8.38) and the similarity
between the binomial and the Poisson distribution, the confidence limits λ̂ l  and λ̂u
can be determined for given β β1 2, ,

 γ β β= − −1 1 2  ( )0 1 11 2< < − <β β  from

( )

!
  for  0 = ,                2

ˆ ˆλ λ βl
iT

i
T ke l

i k

−

=

∞

∑ > , (A8.47)

and

( ˆ )

!

ˆ
,

λ λ βu
iT

i
T ke u

i

k

  for                  −

=
∑ = >

0
1 0; (A8.48)

for k = 0  takes

ˆ              ˆ ln ,         
( / )

   λ λ β
γ βl u T

= = = −0
1

11
1and  with . (A8.49)
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On the basis of the known relationship to the chi-square ( )χ2  distribution
(Eqs. (A6.102), (A6.103), Appendix A9.2), the values λ̂ l  and λ̂u from Eqs. (A8.47)
and (A8.48) follow from the quantiles of the chi-square distribution, as

ˆ ,,
   λ

χ β
l k

k

T
= >

2
2

2

2
0                   for , (A8.50)

and

ˆ ,,
   λ

χ β
u k

k

T
= + −( )

≥
2 1 1
2

1

2
0       for . (A8.51)

β β γ1 2 1 2= = −( ) /  is frequently used in practical applications.  Fig. 7.6 gives the
results obtained from Eqs. (A8.50) and (A8.51) for β β γ1 2 1 2= = −( ) / .

One-sided confidence intervals are given as in the previous section by

0 1 11 2≤ ≤ ≥= − = −λ λ λ λγ β γ βˆ ,      ˆ ,  u l    and   with with . (A8.52)

The situation considered by Eqs. (A8.47) to (A8.51) corresponds also to that of a
sampling plan with n elements with replacement, each of them with failure rate
λ λ' /= n , terminated at a fixed test time T Ttest = .  This situation is basically different
from that presented by Eq. (A8.34) and in Section A8.2.2.3.

A8.2.2.3 Estimation of the Parameter λλλλ for an Exponential Distribution:
Fixed Number n of Failures (Failure Censoring), no Replacement

Let τ τ1 , ,… n be independent random variables distributed according to a common
distribution function F( ) Pr{ }t ti e t= ≤ = − −τ λ1 , i n= 1, ..., .  From Eq. (A6.102),

Pr{ }
( )

( )!!
τ τ λ λ

λ
1

1

1
11
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− −
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t e x e dx

i

i

n

i
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and thus

Pr{ }
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a b x e dxn n
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a

b
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1
1

1
1 .

Setting a n= (1 – ) /ε λ2  and b n= (1+ ) /ε λ1  it follows that
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Reversing the role of λ λ &  ˆ /( , , )= …n t tn1 , i.e. considering λ̂  given and λ  as random
variable, Eq. (A8.54) can be used to compute the confidence limits λ̂ l  and λ̂u (see
also pp. 459, 530, 542).  For β β1 2, ,

 γ β β= − −1 1 2   ( )0 1 11 2< < − <β β , this leads to

Pr{( )ˆ )ˆ}(
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( )
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Figure A8.6    Probability γ that the interval ( ) ˆ1 ± ε λ  overlaps the true value of λ for the case of a
fixed number n of failures  ( ˆ / ( )λ = + … +n t tn1 ,  Pr{ } ,τ λ≤ = − −t e t1   • for Example A8.7)

i. e.

ˆ ( ) ˆ       ˆ ( ) ˆ ˆ / ( , , ) ,λ ε λ λ ε λ λl u n t tn= − = + = …1 12 1 1&  ,       with  (A8.56)

and ε1, ε2 given by (see also Fig. A8.3 with θ λ= )
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Using the definition of the chi-square distribution (Appendix A9.2), it follows that
1 2 1 21 2 1

2
2 2

2

1 2
+ = − =−ε χ ε χβ β( ) / ( ) /

, ,n n
n n and     and thus

             and          ˆ ˆ, ,
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l u
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2

1

2 1
2

1

2 1

2 2
(A8.58)

ε2 1=  or ε1 = ∞  lead to one-sided confidence intervals [ , ˆ ]0 λu  or [ ˆ , )λ l ∞ .  Figure
A8.6 gives the graphical relationship between n, γ , and ε ε ε1 2= =  (Example A8.7).

The case considered by Eqs. (A8.53) to (A8.58) corresponds to the situation
described in Example A8.2 (sampling plan with n elements without replacement,
terminated at the n th failure), and differs statistically from that in Section A8.2.2.2.
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Example A8.7
For the case considered by Eqs. (A8.53) to (A8.58), give for n = 50  and γ = 0 9.  the two-sided
confidence interval for the parameter λ of an exponential distribution as a function of λ̂ .
Solution
From Figure A8.6, ε = 0 24.  yielding the confidence interval [ . ˆ , . ˆ ]0 76 1 24λ λ .

A8.2.2.4 Availability Estimation  (Erlangian Failure-Free and / or Repair Times)

Considerations of Section A8.2.2.3 can be extended to estimate the availability of a
repairable item (described by the alternating renewal process of Fig. 6.2) for the
case of Erlangian distributed failure-free and / or repair times (Appendix A6.10.3),
and in particular for the case of constant failure and repair rates (Appendix A6.10.1).

Consider a repairable item in continuous operation, new at t =0 (Fig. 6.2), and
assume constant failure and repair rates λ λ µ µ( ) , ( )x x= =  (x  starting by 0 at the
beginning of each operating or repair time, respectively).  For this case, point and
average unavailability converge (Tables 6.3 & 6.4) to the asymptotic & steady-state
value 1 1− − += =PA AAS S λ λ µ/ ( ), given here as PA AA=  to simplify notation

PA P AA AA= − = − = +1 1A = λ λ µ/ ( ).

λ λ µ/( )+  is a probabilistic value and has his statistical counterpart in DT UT DT/( )+ ,
where DT  is the down  (repair) time and UT DTt= −  the up (operating) time
observed in ( , ]0 t .  To simplify considerations, it will be assumed in the following
t MTTR>> = 1 /µ  and that at the time point t a repair is terminated and k failure-free
and repair times have occurred ( , , ... ) .k =1 2    Furthermore,

PAa = λ µ/     instead of    PA PA PAa a  /(1 / ) / )+= ≈ −λ µ λ µ(1 (A8.59)

will be used here, yielding the counterpart DT UT/   ( PA PA PAa a − < <( / )λ µ 2 ).+)

Considering that at the time point t a repair is terminated, it holds that

UT DT t t t tk k/ ( ) ( ) ,/ ' '= + + + +… …1 1

where t ti i  & '  are the observed values of failure-free and repair times τ τi i &  ' , re-
spectively.  According to Eqs. (A6.102) -  (A6.104), the quantity 2 1λ τ τ( )+…+ k
has a χ2- distribution with ν = 2 k  degrees of freedom; same for the repair times
2 1µ τ τ( )' '+ … + k .  From this, it follows (Appendix A9.4, footnote on p. 526) that
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is distributed according to a Fisher (F -) distribution with ν ν1 2 2= = k  degrees of free-
dom ( /UT DT  is a random variable, PAa =λ µ/  is regarded as an unknown parameter)

Pr{ }
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k y
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2
(A8.61)
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Having observed for a repairable item described by Fig. 6.2 with constant failure
rate λ  and repair rate µ λ>> , an operating time UT t tk= + +…1  and a repair time
DT t tk= + +…1' ' , the maximum likelihood estimate for PAa = λ µ/  is

PA DT UT t t t ta k k
ˆ

( / )ˆ ( ) / ( )/ ' '= = = … …+ + + +λ µ  1 1 (A8.62)

(Eq. (A8.25) with L UT DT PA UT DT PA UT DT PAa
k

a
k

a
k( / , / /[( ) ] ( ( ) )/) ~ − +1 21  per Eq.

(A8.61));   DT UT/  is biased, unbiased is ( / ) / ,1 1− k DT UT  k > 1 (Example A8.10).
With the same considerations as for Eq. (A8.54), Eq. (A8.61) yields  ( k =1 2, , ...)

Pr{ }( ) ( )
( ) !

( )! ( )

DT

UT
a

DT

UT

k

k
PA

x

x
dx

k

k
1 12 1

2 1

1 12

1

2
1

1

2

1

− < ≤ + = −

− +

−

−

+

∫ε ε
ε

ε

  , (A8.63)

and thus to the confidence limits PA PA PA PAa a a al u

ˆ
( ) ˆ ( ) ˆ= − = +1 12 1ε ε 

ˆ    and , with

PAa
ˆ  as in Eq. (A8.62) and ε ε1 2,   related to the confidence level  γ β β= − −1 1 2  by
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From the definition of the Fisher (F  -) distribution (Appendix A9.4), it follows that
ε1 =F 2 2 1 1

1k k, , − −β  and  ε2 1= −  F 2 2 2k k, , β ; and thus, using F ν ν β1 2 2, , =1 / F ν ν β2 1 21, , − ,

PAa l aPA
ˆ = ˆ

 / F 2 2 1 2k k, , −β     and    PA PAau a
ˆ . = ˆ

 F 2 2 1 1k k, , −β , (A8.65)

where F 2 2 1 2k k, , −β  and F 2 2 1 1k k, , −β  are the 1 12 1− −β β and      quantiles of the Fisher (F  -)
distribution with 2 k degrees of freedom (Appendix A9.4).  PA PA PA PAal aul u

ˆ ˆ
/ /

ˆ ˆ≈
≈ = + ≈PA PAa / /1 1λ µ  can often be used.  Figure 7.5 gives the confidence limits
for β β γ1 2 1 2= = −( ) / ,  useful for practical applications (Example A8.8).  One sided
confidence intervals are

0 11 11 2≤ ≤ ≤ <= − = −PA PA PA PAu l
ˆ

,   
ˆ

,    and   with withγ β γ β . (A8.66)

Corresponding values for the availability can be obtained using PA PA= −1 .
If failure free and /  or repair times are Erlangian distributed (Eq. (A6.102)) with

βλ λ= n  & βµ µ= n , F 2 2 1 2k k, , −β  and F 2 2 1 1k k, , −β  have to be replaced by F 2 2 1 2kn knµ λ β, , −

and F 2 2 1 1kn knλ µ β, , − , for unchanged MTTF & MTTR (Example A8.11).  Results based
on the distribution of DT (Eq. (7.22) are not free of parameters (Section 7.2.2.3).

Example A8.8
For the estimation of an availability PA, UT = 1750h, DT = 35h and k =  5 failures and repairs have
been observed.  Give for const. failure & repair rates the 90% lower limit of PA (Fig.7.5 , γ = 0 8. ) .
Solution
From Eqs. (A862),(A8.65),(A8.66) & Tab. A9.4a follows PA u

ˆ
% . .≈ 2 2 323 and thus PA > 95 3. %.

Suppl. results:  Erlangian distrib. times yield PA nu
ˆ

% . . , ≈ =2 1 819 3µ  and  ≈ = =2 1 61 3% . . , .n nµ λ
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A8.3 Testing Statistical Hypotheses

When testing a statistical hypothesis, the objective is to solve the following problem:

From one’s own experience, the nature of the problem, or simply as a
basic hypothesis, a specific null hypothesis H 0  is formulated for the
statistical properties of the random variable considered;  asked is a rule
(test plan) which allows rejection or acceptance of H 0  on the basis of the
(totally) independent realizations of this random variable in a suitable
sample.

If R is the unknown reliability of an item, following null hypotheses H 0  are possible:

1a) H 0:  R R= 0,

1b) H0 :  R R> 0 ,

1c) H0 :  R R< 0 .

To test whether the failure-free time of an item is distributed according to an
exponential distribution F ( )0 1t e t= − − λ with unknown λ, or F ( )0 1 0t e t= − − λ  with
known λ0 , the following null hypotheses H 0 can be formulated:

2a) H0 :  the distribution function is F ( )0 t ,

2b) H0 :  the distribution function is different from F ( )0 t ,

2c) H0 :  λ λ= 0, provided the distribution is exponential,

2d) H0 :  λ λ< 0, provided the distribution is exponential,

2e) H0 :  the distribution function is 1 − −e tλ , parameter λ unknown.

It is usual to subdivide hypotheses into parametric (1a, 1b, 1c, 2c, 2d) and non-
parametric ones (2a, 2b, and 2e).  For each of these types, a distinction is also made
between simple hypotheses (1a, 2a, 2c) and composite hypotheses (1b, 1c, 2b, 2d, 2e).
When testing a hypothesis, two kinds of errors can occur (Table A8.2):

 • type I error,  when rejecting a true hypothesis H 0;  the probability of this error
is denoted by α

 • type II error,  when accepting a false hypothesis H 0;  the probability of this
error is denoted by β (to compute β, an alternative hypothesis H1 is necessary,
β is then the probability of accepting H 0 assuming H1 is true).

If the sample space is divided into two complementary sets, A for acceptance and A
for rejection, the type I and type II errors are given by

α = Pr{ }sample in  trueA H0 , (A8.67)

  β = Pr{ ( )}sample in  false trueA H H0 1 . (A8.68)

Both kinds of error are possible and cannot be minimized simultaneously.  Often α
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Table A8.2    Possible errors when testing a statistical hypothesis

H0 is rejected H0 is accepted

H0 is true false  →  type I error (α) correct

H0 is false ( H1 is true) correct false  →  type II error (β)

___________________

+) Considering the visualization given with Eqs. (A8.69) & (A8.70), H0  is true for p p<
0

 and H1  is
true for p p> 1 ;  between p p0 1  and    both hypothesis are false.

is selected and a test is sought so that, for a given H1, β will be minimized.  It can
be shown that such a test always exists if H 0 and H1 are simple hypotheses [A8.22].
For given alternative hypothesis H1, β  can often be calculated and the quantity

  1 1− =β Pr{ }sample in  trueA H  is referred as the power of the test.
The following sections consider some procedures for quality control and reliabi-

lity tests, see Chapter 7 for refinements and applications. Such procedures are
basically obtained by investigating suitable quantities observed in the sample.

A8.3.1 Testing an Unknown Probability p

Let A be an event which can occur at every independent trial with the constant, un-
known probability p. A rule (test plan) is sought which allows testing the hypothesis

H p p0 0: < , 0
p

p
0

H0

1 (A8.69)

against the alternative hypothesis

H p p p p1 1 1 0:        ( )> ≥ . 0 p
p
1

1

H1
(A8.70)

The type I error should be nearly equal to (but not greater than) α for p p= 0.  The
type II error should be nearly equal to (but not greater than) β for p p= 1.  Such a
situation often occurs in practical applications, in particular in:

 • quality control, where p  refers to the defective probability or fraction of
defective items,

 • reliability tests for a given fixed mission, where it is usual to set p R= −1
(R = reliability).

In both cases, α is the producer’s risk and β the consumer’s risk. 
+)  The two most

frequently used procedures for testing hypotheses defined by (A8.69) and (A8.70),
with p p1 0> , are the simple two-sided sampling plan and the sequential test
(one-sided sampling plans are considered in Appendix A8.3.1.3).
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A8.3.1.1 Simple Two-sided Sampling Plan

The rule for the simple two-sided sampling plan (simple two-sided test) is:

1. For given p0, p p1 0> , α, and β ( 0 1 1< < − <α β ), compute the smallest integers
c and n which satisfy

n

i
p pi n i

i

c ( ) − ≥ −−
=
∑ 0 0

0
1 1( ) α (A8.71)

and

n

i
p pi n i

i

c ( ) − ≤−
=
∑ 1 1

0
1( ) β . (A8.72)

2. Perform n independent trials (Bernoulli trials), determine the number k in which
the event A (component defective for example) has occurred, and

• reject    if             H p p k c0 0: ,< > ,

• accept   if             H p p k c0 0: ,< ≤ . (A8.73)

As in the case of Eqs. (A8.37) and (A8.38), the proof of the above rule is
based on the monotonic property of B c pn

n
i

i n ip pi
c( , ) ( ) ( ) ,= − −
=

∑  10  see also Fig A8.4.
For known n, c, and p, B c pn( , )  gives the probability of having up to c defectives in a
sample of size n.  Thus, assuming H 0 true, it follows that the probability of rejecting
H 0 (i. e., the probability of having more than c defectives in a sample of size n) is
smaller than α

Pr{ } ( )rejection of  true   H H p p
n

i
i n i

p p
i c

n

0 0
1

1
0

= ( ) − <−
<

= +
∑ α .

Similarly, if H1 is true ( p p> 1), it follows that the probability of accepting H 0 is
smaller than β

Pr{ } ( )acceptance of  true   H H p p
n

i
i n i

p p
i

c

0 1
0

1
1

= ( ) − <−
>

=
∑ β .

The assumptions made with Eqs. (A8.71) and (A8.72) are thus satisfied.  As shown
by the above inequalities, the type I error and the type II error are for this case < α
for p p< 0 and < β  for p p> 1, respectively.  Figure A8.7 shows the results for
p0 1= % , p1 2= % , and α β= ≈< 20%.  The curve of Fig. A8.7 is known as the
operating characteristic curve (OC).  If p0 and p1 are small (up to a few %) or close
to 1, the Poisson approximation (Eq. (A6.129))

n

i

m

k
p p ei n i m m n p

k( ) − ≈− − =( ) ,          
!

1     

is generally used.
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Figure A8.7  Operating characteristic curve (acceptance probability curve) as a function of the un-
known probability p for fixed n & c  ( p0 1= %, p1 2= %, α β≈ ≈ 0 185. , n= 462, c = 6 as per Tab. 7.3)

A8.3.1.2 Sequential Test

Assume that in a two-sided sampling plan with n = 50 and c = 2 , a 3 rd defect,
i. e. k = 3, occurs at the 12 th trial.  Since k c> , the hypothesis H 0 will be rejected as
per procedure (A8.73), independent of how often the event A will occur during the
remaining 38 trials.  This example brings up the question of whether a plan  can be
established for testing H 0 in which no unnecessary trials (the remaining 38 in the
above example) have to be performed.  To solve this problem, A. Wald proposed
the sequential test [A8.33].  For this test, one element after another is taken from the
lot and tested.  Depending upon the actual frequency of the observed event, the
decision is made to either

• reject   H0 ,

• accept H0 ,

• perform a further trial.

The testing procedure can be described as follows (Fig. A8.8):

In a system of Cartesian coordinates, the number n of trials is recorded on the
abscissa and the number k of trials in which the event A occurred on the
ordinate;  the test is stopped with acceptance or rejection as soon as the
resulting staircase curve k n=f ( ) crosses the acceptance or the rejection line
given in the Cartesian coordinates for specified values of p0, p1, α , and β .

The acceptance and rejection lines can be determined from:

Acceptance line :     k an b= − 1, (A8.74)

Rejection line :        k an b= + 2 , (A8.75)

with
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Figure A8.8    Sequential test for p0 1= %, p1 2= % , and α β= ≈ 20%
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Figure A8.8 shows acceptance and rejection lines for p0 1= %, p1 2= %, α β= = 20%.
Practical remarks to sequential tests are given in Sections 7.1.2.2 and  7.2.3.2.

A8.3.1.3 Simple One-sided Sampling Plan

In many practical applications only p0 and  α  or p1 and  β  are specified;  i. e., one
want to test H p p0 0  : <  against H p p1 0  : >  with given type I error α, or H p p0 1  : <
against H p p1 1  : >  with given type II error β.  For these cases, only Eq. (A8.71) or
Eq. (A8.72) can be used and the test plan is a pair (c, n) for each selected value of
c = …0 1, ,  and calculated value of n.  Such plans are termed one-sided sampling plans.

Setting p p1 0=  in the relationship (A8.70) or in other words, testing

H p p0 0:  < , (A8.77)

against

H p p1 0:  > , (A8.78)

with type I error α, i. e., using one (c, n) pair (for c = …0 1, , ) from Eq. (A8.71) and
the test procedure (A8.73), the type II error can become very large and reach the
value 1 − α  for p p= 0.  Depending upon the value selected for c = …0 1, ,  and that
calculated for n (the smallest integer n which satisfies Eq. (A8.71)), different plans
(pairs of (c, n)) are possible.  Each of these plans yields different type II errors.
Figure A8.9 shows this for some values of c (the type II error is the ordinate of the
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Figure A8.9    Operating characteristics curves (acceptance probability curves) as a function of the
unknown probability p for p AQL0 1= = %, producer risk α ≈ 0 1.  and c = 0 ( n = 10 ), c = 1 ( n = 53),
c = 2  ( n = 110 ), c = 3 ( n = 174 ) and c = ∞ ( n = ∞) as per Fig. 7.3

operating characteristic curve for p p> 0 ).  In practical applications, it is common
usage to define

p0 = AQL, (A8.79)

where AQL stands for Acceptable Quality Level.  The above considerations show
that with the choice of only p0  and α (instead of p0, p1, α, and β) the producer can
realize an advantage, particularly if small values of c are used.

On the other hand, setting p p0 1=  in the relationship (A8.69), or testing

H p p0 1:  < , (A8.80)

against

H p p1 1:  > , (A8.81)

with type II error β, i. e., using one (c, n) pair (for c = …0 1, , ) from Eq. (A8.72)
and the test procedure (A8.73), the type I error can become very large and reach
the value 1 − β  for p p= 1.  Depending upon the value selected for c = …0 1, ,
and that calculated for n  (the largest integer n  which satisfies Eq. (A8.72)),
different plans (pairs of (c, n)) are possible.  Considerations here are similar to
those of the previous case, where only p0 and α were selected.  For small values
of c the consumer can realize an advantage.  In practical applications, it is common
usage to define

p1 = LTPD , (A8.82)

where LTPD stands for Lot Tolerance Percent Defective.  Further remarks on
one-sided sampling plans are in Section 7.1.3.
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A8.3.1.4  Availability Demonstration  (Erlangian Failure-Free and/or Repair Times)

Considerations of Section A8.2.2.4 on availability estimation can be extended to
demonstrate the availability of a repairable item, described by the alternating
renewal process of Fig. 6.2, for the case of Erlangian distributed failure-free and / or
repair times (Appendix A6.10.3).  In particular thus, for the case of constant failure
and repair rates (exponentially distributed failure-free and repair times).

Consider a repairable item in continuous operation, new at t = 0 (Fig. 6.2), and
assume constant failure and repair rates λ λ µ µ( ) , ( )x x= =  (x  starting by 0 at the
beginning of each operating or repair time, respectively).  For this case, point and
average unavailability converge (Tables 6.3, 6.4) to the asymptotic & steady-state
value 1 1− − += =PA AAS S λ λ µ/ ( ), given here as PA AA=  to simplify notation

PA P AA AA= − = − = +1 1A =  λ λ µ/ ( ) . (A8.83)

λ λ µ/( )+  is a probabilistic value of the asymptotic & steady-state unavailability and
has his statistical counterpart in DT UT DT/ ( )+ , where DT is the down (repair) time
and UT the up (operating) time observed in ( , ]0 t .   From Eq. (A8.83) it follows that

PA

PA

PA

PA1 −
= =  

λ
µ

.

As in Appendix A8.2.2.4, it will be assumed that at the time point t a repair is
terminated, and exactly n failure free and n repair times have occurred.  However,
for a demonstration test, PA PA or  will be specified (Eqs. (A.8.88) -  (A8.89)) and
DT UT/  observed.  Similar as for Eq. (A8.60), the quantity (see footnote on p. 526)

PA

PA

DT

UT

n

n

n

n

n

n
. . /

/

' ' ' '( )

( )
  = =

+ +

+ +

+ +

+ +

…
…

…
…

µ
λ

τ τ
τ τ

µ τ τ
τ τλ

1

1

1

1

2 2

2 2
(A8.84)

is distributed according to a Fisher (F -) distribution with ν ν1 2 2= = n degrees of
freedom (Appendix A9.4). From this (with DT UT/  as a random variable),

Pr{ } Pr{ }. .
( )!

[( )!] ( )

PA

PA

DT

UT
x

DT

UT
x

PA

PA

y
dy

n

n y

x n

n
     ≤ ≤= = ∫−

− +

−2 1

1 12

1

2
0

(A8.85)

Setting

δ = x PA PA. / , (A8.86)

Eq. (A8.85) yields

Pr{ } .
( )!

[ ( )!] ( )

. /
DT

UT

n

n

y
dy

n

n

PA PA

y
≤

+
= −

−

−
∫δ

δ
    

2 1

1 0
2

1

21
(A8.87)

Considering DT UT n n/ (( ) / )' '= + … + + … +τ τ τ τ1 1 , i. e., the sum of n repair times
divided by the sum of the corresponding n failure-free times, a rule for testing

H PA PA0 0:   < (A8.88)
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against the alternative hypothesis

H PA PA PA PA1 1 1 0:         ( )> ≥        (A8.89)

can be established (as in Appendix A8.3.1.1) for given type I error (producer risk)
nearly equal to (but not greater than) α for PA PA= 0  and type II error (consumer
risk) nearly equal to (but not greater than) β for PA PA= 1  (Table A8.2)

Pr{ } Pr{ }| |
DT

UT

DT

UT
PA PA PA PA> = ≤ =≤ ≤δ δα β0 1   and       . (A8.90)

From Eqs. (A8.87) & (A8.90), and considering the Fisher (F  -) distribution (Appen-
dix  A9.4), it follows that δ . /PA PA0 0 ≥  F2n, 2n,  1 − α  and δ . /PA PA1 1 ≤  F 2 2n n, , β.
Eliminating δ (using F ν ν β1 2, , =  1 /F ν ν β2 1 1, , −  and taking the sign = for F 2n,2n,  1 − α  or
for F 2 2n n, , β),  the rule for testing H PA PA0 0:    =  against H PA PA1 1:  =  follows as
(see also [A8.29, A2.6 (IEC 61070)]):

 1. For given PA 0 , PA1 , α, and β ( 0 1 1< < − <α β ), find the smallest integer n
(1, 2, ...) which satisfy

F2n,2n, 1−α  .  F2n,2n, 1−β  ≤  
PA

PA

PA

PA

PA PA

PA PA
1

0

0

1

1 0

0 1

1

1
. ( )

( )
,  =

−
−

(A8.91)

where F 2n, 2n,  1 − α  and F 2n, 2n,  1 −β  are the 1   and 1  − −α β quantiles of the
F-distribution with 2 n degrees of freedom (Appendix A9.4, [A9.2 -  A9.6]),
and compute the limiting value

δ = F 2n, 2n,  1 − α PA PA0 0/ =  F 2n, 2n,  1 − α ( ) /1 0 0− PA PA . (A8.92)

 2. Observe n failure free times t tn1, ,…  and corresponding repair times t tn1', , '…
and

• reject    if             H PA PA
t t

t t
n

n
0 0

1

1
:  ,

' '
< + … +

+ … +
> δ

• accept   if      H PA PA
t t

t t
n

n
0 0

1

1
:  , .

' '
< + … +

+ … +
≤ δ (A8.93)

Corresponding values for the availability can be obtained using PA PA= −1 .
If failure free and / or repair times are Erlangian distributed (Eq. (A6.102)) with

βλ λ=n  & βµ µ=n , F 2 2 1n n, , − α  and F 2 2 1n n, , −β  have to be replaced by F 2 2 1n n n n. ., ,µ λ α−

and F 2 2 1n n n n. ., ,λ µ β− , for unchanged MTTF & MTTR (Example A8.11).  Results
based on the distribution of DT (Eq. 7.22) are not parameter free (Section 7.2.2.3).

Example A8.9
For the demonstration of an availability PA, customer and producer agree the following
parameters: PA PA0 11 6 10= = = =%, %, %  α β .  Give for the case of constant failure and repair
rates ( λ λ µ µ λ( ) ( )x x= = >> and ) the number n of failures and repairs that have to be observed
and the acceptance limit δ = ( ) ( )' ' /t t t tn n1 1+ … + + … + .
Solution
Eq. (A8.91) & Table A9.4a yields n = 5 ((F10 10 0 9

2 2 22 32 6 99 1 94 2 59, , . ) . ( . / . ) .= < =<   (F 8 8 09
2

, , . ) ),
see also Tab. 7.2.  δ =F 10 10 0 9, , . PA PA0 0/ = =2 32 1 99 0 0235. . / .  follows from Eq. (A8.92).

Suppl. result: Erlangian distr. repair times with nµ= 3 yields n= = <3 0 0288 6 32, . . )δ  (2.85 .2.13 .
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Example A8.10
Give an unbiased estimate for PAa = λ µ/ .
Solution
Considering λ µ/  as a random variable, Eq. (A8.61) yields

Pr { .. ( ) !

[ ( ) ! ] ( )
}       

λ
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UT

D T

k
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y

y

x
x dy

k

k
≤ =

−

− +
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∫
2 1

1 10
2

1

2

From this, one recognizes (Table A9.4) that λ µUT DT/  has a F- distribution with ν ν1 2 2= = k .
Thus, E [ ]   λ µUT DT kk k/ / ( ) ,= − >1 1  (Table A9.4), and

E [ ]             λ µ/ ,ˆ . .=
−

>
DT

UT
k

k
k

1
1

λ µ/̂ / = DT UT  is biased; unbiased is ( / ) / , .1 1 1− >k DT UT k    

Example A8.11
Give the degrees of freedom of the F-distribution for the case of Erlangian distributed failure-free
& repair times with parameters λ λ

*, n & µ µ*, n , respectively  ( λ λ λ
*= n  & µ µ µ*= n  because of the

unchanged MTTF n= =1/ / *λ λλ  & MTTR n= =1/ / *µ µµ  as per Eqs. (A6.84), (A6.106), (A6.99)).
Solution
Let τ τ1 + … + k  be the exponentially distributed failure-free times with mean MTTF = 1 / λ .  If the
actual failure-free times are Erlangian distributed with parameters λ λ

*, n  and mean
MTTF n= =λ λ λ/ /* 1 , Eqs. A(6.102) - (A6.104) show that the quantity

2 11 12 1 1 2λ τ τ τ τ τ τ
λ λ

* ( ... ... ... )+ + + + + + + +n k k kn ,

corresponding to the sum of k Erlangian ( , )*λ λn  distributed failure-free times, has a χ2 -  distri-
bution with ν λ= 2k n  degrees of freedom (Eq. (A6.102)). Similar is for the repair times τi' .
Thus, the quantity (Eq. (A8.60))
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obtained by considering λ λ λ= */ ,n µ µ µ= */n (to conserve MTTF MTTRn n= = = =1 1/ / ),/ , /* *λ µλ µλ µ
has a F-distribution with ν λ1 2= k n.  and ν µ2 2= k n.  degrees of freedom (Appendix A9.4).
Similarly (Eq. (A8.84)),
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has a F-distribution with ν µ1 2= n n.  and ν λ2 2= n n.  degrees of freedom (Appendix A9.4)

A8.3.2 Goodness-of-fit Tests for Completely Specified F ( )0 t

Goodness-of-fit tests have the purpose to verify agreement of observed data with
a postulated (completely specified or only partially known) model, see e. g. [A8.9].
A typical example is as follows:  Given t tn1, ,…  as n independent observations of a
random variable τ, a rule is sought to test the null hypothesis

H t0 0: F ( )the distribution function of isτ , (A8.94)

against the alternative hypothesis
H t1 0: F ( )the distribution function of is notτ . (A8.95)
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F ( )0 t  can be completely defined (as in this section) or depend on some unknown
parameters which must be estimated from the observed data (as in the next section).
In general, less can be said about the risk of accepting a false hypothesis H 0

(to compute the type II error β , a specific alternative hypothesis H1  must be
assumed).  For some distribution functions used in reliability theory, particular
procedures have been developed, often with different alternative hypotheses H1  and
investigation of the corresponding test power, see e. g. [A8.1, A8.9, A8.23].  Among
the distribution-free procedures, the Kolmogorov-Smirnov, Cramér - von Mises,
and chi-square ( )χ2  tests are frequently used in practical applications to solve the
goodness-of-fit problem given by Eqs. (A8.94) & (A8.95).  These tests are based
upon comparison of the empirical distribution function (EDF) F̂ ( )n t , defined by
Eq. (A8.1), with a postulated distribution function F ( )0 t .

 1. The Kolmogorov-Smirnov test uses the (supremum) statistic

D t tn
t

n= −
−∞ < <∞

sup F̂ ( ) F( ) (A8.96)

introduced in Appendix A8.1.1.  A. N. Kolmogorov showed [A8.20] that if
F ( )0 t  is continuous, the distribution of Dn  under the hypothesis H 0  is
independent of F ( )0 t .  For a given type I error α, the hypothesis H 0  must
be rejected for

D yn > −1 α , (A8.97)

where y1−α  is defined by

Pr{ }D y Hn > =−1 0α α is true  . (A8.98)

Values for y1−α are given in Tables A8.1 and A9.5.  Figure A8.10 illustrates
the Kolmogorov-Smirnov test with hypothesis H 0  not rejected.  Because of
its graphical visualization, in particular when probability charts are used
(Appendix A8.1.3, Section 7.5, Appendix A9.8), the Kolmogorov-Smirnov
test is often used in reliability data analysis.

 2. The Cramér - von Mises  test uses the  statistic

W n t t d tn n
2

0
2

0= −[ ]
−∞

+∞
∫ F̂ ( ) F ( ) F ( )  . (A8.99)

As in the case of the Dn statistic, for F ( )0 t  continuous the distribution of Wn
2 

is independent of F ( )0 t  and tabulated (see for instance [A9.5]).  The Cramér -
von Mises statistic belongs to the so-called quadratic statistics defined by

Q n t t t d tn n= −[ ]
−∞

+∞
∫ F̂ ( ) F ( ) ( ) F ( )0

2
0 ψ , (A8.100)
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Figure A8.10 Kolmogorov-Smirnov test  ( n = 20 , α = 20%)

where ψ( )t  is a suitable weight function.  ψ( )t ≡ 1 yields the Wn
2 statistic and

ψ ( ) F ( ) ( F ( ))t t t  = −[ ] −
0 01 1

 yields the Anderson - Darling statistic An
2.  Using

the transformation z ti i( ) ( )( )= F0 , calculation of Wn
2 and in particular of An

2

becomes easy, see e. g. [A8.10].  This transformation can also be used for the
Kolmogorov-Smirnov test, although here no change occurs in Dn .

 3.The chi-square ( χ2) goodness-of-fit test starts from a selected partition
( , ]a a1 2 , ( , ]a a2 3 , …, ( , ]a ak k+1  of the set of possible values of τ and uses
the statistic

X nn
k n p

n p

k

n p
i i

ii

k
i

ii

k
2

1 1

2 2

= = −
−

= =
∑ ∑( )

  , (A8.101)

where

k n a ai n i n i= −+( F̂ ( ) F̂ ( ))1  (A8.102)

is the number of observations (realizations of τ) in ( , ]a ai i+1  and

n p n a ai i i= −+(F ( ) F ( ))0 01 (A8.103)

is the expected number of observations in ( , ]a ai i+1 ;  obviously, k k nk1 + + =...

and p pk1 1+ + =... .  Under the hypothesis H 0, K. Pearson [A8.28] has shown
that the asymptotic distribution of Xn

2 for n → ∞  is a χ2- distribution with
k − 1 degrees of freedom.  Thus, for given type I error α,

lim Pr{ },
n

n k H
→∞ − −> =Χ2 2

01 1χ αα true (A8.104)

holds, and the hypothesis H 0  must be rejected if

Χn k
2

1 1
2> − −χ α,  . (A8.105)

χ αk− −1 1
2

, is the (1 − α) quantile of the χ2- distribution with k − 1 degrees of
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freedom (Table A9.3).  The classes ( , ]a a1 2 , ( , ]a a2 3 , …, ( , ]a ak k+1  have to
be chosen before the test is performed, in such a way that all pi are
approximately equal.  Convergence is generally good, even for relatively
small values of n ( n pi ≥ 5).  Thus,

by selecting the classes ( , ]a a1 2 , ( , ]a a2 3 , …, ( , ]a ak k+1  (before the test
is performed) one should take care that all n pi are almost equal and ≥ 5.

Example A8.12 shows an application of the chi-square test.
When in a goodness-of-fit test, the deviation between F̂ ( )n t  and F ( )0 t  seems

abnormally small, a verification against superconform (superuniform if the transfor-
mation z ti F i( ) ( )( )= 0  is used) can become necessary.  Tabulated values for the
lower limit l1−α for Dn  are e. g. in [A8.1] (for instance, α α= → − =0 1 0 571. . /l n ).

Example A8.12

Accelerated life testing of a wet Al electrolytic capacitor leads to the following 13 ordered
observations of lifetime: 59, 71, 153, 235, 347, 589, 837, 913, 1185, 1273, 1399, 1713, and
2567 h.  Using the chi-square test and the 4 classes ( , ]0 200 , ( , ]200 600 , ( , ]600 1200 , ( , )1200 ∞ ,
verify at the level α = 0 1.  (i. e. with first kind error α = 0 1. ) whether or not the failure-free
time τ of the capacitors is distributed according to the Weibull distribution

F ( ) ( )
.

0
101

3 1 2
t t e t= ≤ = − − −

Pr{ }τ  (hypothesis H t e t
0 0

101
3 1 2

  : F ( ) ( )
.

= − − −
).

Solution

The given classes yield number of observations of k1 3= , k2 3= , k3 3= , and k4 4= .
The numbers of expected observations in each classes are, according to Eq. (A8.103),
n p1 1 754= . , n p2 3 684= . , n p3 3 817= . , and n p4 3 745= . .  From Eq. (A8.101) it follows
that X13

2 1 204= .  and from Table A9.2, χ 3 0 9
2 6 251, . .= .  H t e t

0 0
101

3 1 2
  : F ( ) ( )

.
= − − −

 can be
accepted since Xn k

2
1 1

2< − −χ α,   (see also Fig. 7.12).

A8.3.3 Goodness-of-fit Tests for a Distribution F ( )0 t
with Unknown Parameters

The Kolmogorov-Smirnov test and the tests based on quadratic statistics can be
used with some modification when the underlying distribution function F ( )0 t  is not
completely known (unknown parameters).  The distribution of the involved statistic
Dn, Wn

2, An
2 must be calculated (often using Monte Carlo simulation) for each type

of distribution and can depend on the true values of the parameters [A8.1].  For
instance, in the case of an exponential distribution F ( , )0 1t e tλ λ= − −  with
parameter λ estimated as per Eq. (A8.28) ˆ / ( )λ = + … +n t tn1 , the values of y1−α
for the Kolmogorov-Smirnov test have to be modified from those given in
Table A8.1, e. g. from y n1 1 36 0 05− = =α α. / .   for  and y n1 1 22 0 1− = =α α. / .  for
to [A8.1]
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α α= → =−0 05 1 091. . /y n ,

α α= → =−0 10 1 01. . /y n . (A8.106)

Also a modification of Dn  in D D n n nn n' ( . / )( . / . / )= − + +0 2 1 0 26 0 5  is recom-
mended [A8.1].  A heuristic procedure is to use half of the sample (randomly
selected) to estimate the parameters and continue with the whole sample and the
basic procedure given in Appendix A8.3.2 [A8.11, A8.32].

The chi-square ( )χ2  test offers a more general approach.  Let F ( , ,..., )0 1t rθ θ  be
the assumed distribution function, known up to the parameters θ θ1 1, , ( )… < −r r k .  If

• the unknown parameters θ θ1, ,… r  are estimated according to the maximum
likelihood method on the basis of the observed frequencies ki  using the
multinomial distribution (Eq. (A6.124)), i. e. from the following system of r
algebraic equations (Example A8.13)

k

p

pi

i r

i r

j j ji

k
j r

( , , )

( , , )
 . ,         ˆ , ,

θ θ
∂ θ θ

∂θ θ θ
1

1

1
10

…
…

=
= = …∑ =  , (A8.107)

   with

p a ai i r i r= … − … >+F ( , , , ) F ( , , , ) ,0 1 01 1 0θ θ θ θ

p pk1 1+ … + = ,

   and
k k nk1 + … + = ,

• 
∂
∂θ
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j

 and ∂
∂θ ∂θ

2 pi

j m

 exist  ( i k= 1, ..., ; j m r k, , ...,= < −1 1),
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∂
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pi

j
 is of rank r,

then the statistic
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ˆ ˆ
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k n p

n p
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n p
ni i

ii

k
i

ii

k
2

2

1

2

1
= − = −

= =
∑ ∑ , (A8.108)

calculated with ˆ F ( , ˆ , , ˆ ) F ( , ˆ , , ˆ )p a ai i r i r= … − …+0 01 1 1θ θ θ θ , has under H 0

asymptotically for n → ∞  a χ2- distribution with k r− −1  degrees of freedom
(R. A. Fisher [A8.15 (1924)]), see Example 7.18 for a practical application.  Thus, for
a given type I error α,

lim Pr{ ˆ },n k rn H
→∞ − − −> =Χ  true2 2

01 1χ αα , (A8.109)

holds, and the hypothesis H 0  must be rejected if

Χ̂ .,
 

n k r
2 2

1 1> − − −χ α (A8.110)
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χ αk r− − −1 1
2

,  is the (1 − α) quantile of the χ2- distribution with k r− −1  degrees of
freedom.  Calculation of the parameters θ θ1, ,… r  directly from the observations
t tn1, ,…  can lead to wrong decisions.

Example A8.13

Prove Eq. (A8.107).

Solution

The observed frequencies k kk1, ,…  in the classes ( , ]a a1 2 , ( , ]a a2 3 , …, ( , ]a ak k+1  result from
n  trials, where each observation falls into one of the classes ( , ]a ai i+1  with probability
p a ai i r i r= … − …+F ( , , , ) F ( , , , ),0 1 1 0 1θ θ θ θ i k= …1, , .  The multinomial distribution applies.

Taking into account Eq. (A6.124),

Pr{ ,in trials occurs  times,n A k1 1 … A k
n

k k
p pk k

k

k
k

k
koccurs  times} =

!

1
1

1

! !…
…

with

k k nk1 + … + =  and p pk1 1+ … + = ,

the likelihood function (Eq. (A8.23)) becomes

L( , , )
!

! !
p p

n

k k
p pk

k

k
k
k k

1
1

1
1… =

…
… (A8.111)

or

ln L( , , ) ln
!

! !
ln lnp p

n

k k
k p k pk

k
k k1

1
1 1… =

…
+ + … + ,

with

p pi i r= …( , , )θ θ1 ,  p pk1 1+ … + = ,  and  k k nk1 + … + = .

Equation (A8.107) follows then from

∂

∂θ

lnL

j

= 0  for  θ θj j= ˆ   and  j r= …1, , ,

which complete the proof.  A practical application with r = 1 is given in Example 7.18.



A9 Tables and Charts

A9.1 Standard Normal Distribution

Definition

Parameters

Properties

t t
t

dx

d

e x

y m z i t
i

t:  

:

:

( ) Pr{ } ,

E[ ] ,   Var[ ] ,   E[ ]

( ) . ,  

/

( )/ ,
( ) )

       

/

     

  

 

  

(  

  Modal value

  • 

Φ

Φ Φ

= ≤ =

= = =

=

−

− = +
= −

−∞
− ∞ < < ∞∫τ

τ τ τ

π

σ σ

1

2
2 2

1 1 2

0 1

0 0 5 (( ) / ( ) ( )

E[ ]  Var[ ] (

~ /

F( ) Pr{ }
( )

t d t t t t

m m t

e

e

t t

t

y m

       
symmetric about 

For and has distribution i .e .

  

  

                      •      ,  ( - ) /   ) ,

− =

= ≤

→ →

=
−

−

− = −

= =
−

2

2

2

2

1

2

2

0 1

2

Φ Φ

Φτ τ σ τ σ

τ
σ π

σ
∞∞

−
− ∞

−

−∞

∞
−

∫ = =

∫

−
∫

=−
−

t
x t m

i t i tm t

dy e

e e dy

t m

dx

Characteris
tic function ei t y

y m

1

2

2

1

2
2

2

2

2

2 2

π

σ π
σ

σ

σ

τ σϕ

/

( ) /

( ) /

( )

:
( )

Φ

-
     

 

             

              

( t) = E[ ] =

Table A9.1  Standard normal distribution Φ( ),t t0 3≤ <  ( / ), ( ) /t t e tt≥ ≈ − −3 1
2 2 2Φ π  [A9.1-A9.6]

t 0 1 2 3 4 5 6 7 8 9

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7703 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767
2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9820 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

Examples: Pr{ . } . ;  Pr{ } Pr{ } . .τ τ τ≤ = ≤ − = − ≤ = − =2 33 0 9901 1 1 1 1 0 8413 0 1587

A. Birolini, Reliability Engineering, DOI: 10.1007/978-3-642-39535-2,
� Springer-Verlag Berlin Heidelberg 2014
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A9.2 χ2- Distribution (Chi - Square Distribution)
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 Poisson distribution:
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ννn
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Table A9.2    0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9,0.95, 0.975 quantiles of the χ2- distribution

( t q qν νχ, ,= 2  for which F ( ),χν q q2 = ; χν ν, ( /)q x2 22 1 2≈ + −  for ν > 100 )  [A9.1 - A9.6]

ν \ q 0.05 0.10 0.20 0.40 0.60 0.80 0.90 0.95 0.975

1 0.0039 0.0158 0.0642 0.275 0.708 1.642 2.706 3.841 5.024
2 0.103 0.211 0.446 1.022 1.833 3.219 4.605 5.991 7.378
3 0.352 0.584 1.005 1.869 2.946 4.642 6.251 7.815 9.348
4 0.711 1.064 1.649 2.753 4.045 5.989 7.779 9.488 11.143
5 1.145 1.610 2.343 3.655 5.132 7.289 9.236 11.070 12.833
6 1.635 2.204 3.070 4.570 6.211 8.558 10.645 12.592 14.449
7 2.167 2.833 3.822 5.493 7.283 9.803 12.017 14.067 16.013
8 2.733 3.490 4.594 6.423 8.351 11.030 13.362 15.507 17.535
9 3.325 4.168 5.380 7.357 9.414 12.242 14.684 16.919 19.023
10 3.940 4.865 6.179 8.295 10.473 13.442 15.987 18.307 20.483
11 4.575 5.578 6.989 9.237 11.530 14.631 17.275 19.675 21.920
12 5.226 6.304 7.807 10.182 12.584 15.812 18.549 21.026 23.337
13 5.892 7.042 8.634 11.129 13.636 16.985 19.812 22.362 24.736
14 6.571 7.790 9.467 12.078 14.685 18.151 21.064 23.685 26.119
15 7.261 8.547 10.307 13.030 15.733 19.311 22.307 24.996 27.488
16 7.962 9.312 11.152 13.983 16.780 20.465 23.542 26.296 28.845
17 8.672 10.085 12.002 14.937 17.824 21.615 24.769 27.587 30.191
18 9.390 10.865 12.857 15.893 18.868 22.760 25.989 28.869 31.526
19 10.117 11.651 13.716 16.850 19.910 23.900 27.204 30.144 32.852
20 10.851 12.443 14.578 17.809 20.951 25.038 28.412 31.410 34.170
22 12.338 14.041 16.314 19.729 23.031 27.301 30.813 33.924 36.781
24 13.848 15.659 18.062 21.652 25.106 29.553 33.196 36.415 39.364
26 15.379 17.292 19.820 23.579 27.179 31.795 35.563 38.885 41.923
28 16.928 18.939 21.588 25.509 29.249 34.027 37.916 41.337 44.461
30 18.493 20.599 23.364 27.442 31.316 36.250 40.256 43.773 46.979
40 26.509 29.051 32.345 37.134 41.622 47.269 51.805 55.758 59.342
60 43.188 46.459 50.641 56.620 62.135 68.972 74.397 79.082 83.298
80 60.391 64.278 69.207 76.188 82.566 90.405 96.578 101.879 106.629

100 77.929 82.358 87.945 95.808 102.946 111.667 118.498 124.342 129.561

x -1.645 -1.282 -0.842 -0.253 0.253 0.842 1.282 1.645 1.960

Examples:   F( ) . . ;
!

F( ) . ), . , . , .
t t

i
e

i

i
16 0 9 16 0 9

13

0

8

0 9 23 542 1 26 18 0 10
16 0 9
2 13

= → = = = − = ≈−
=
∑χ ν    for 
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A9.3 t  - Distribution (Student Distribution)
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with    •  Cauchy distribution:      F( )t ν = 1

Table A9.3    0.7, 0.8, 0.9, 0.95, 0.975, 0.99, 0.995, 0.999 quantiles of the t - distribution

( t qν,  = t ν,q  for which F ( ),t qqν = )   [A9.1 - A9.6]

ν \ q 0.7 0.8 0.9 0.95 0.975 0.99 0.995 0.999

1 0.7265 1.3764 3.0777 6.3138 12.7062 31.8207 63.6574 318.3088
2 0.6172 1.0607 1.8856 2.9200 4.3027 6.9646 9.9248 22.3271
3 0.5844 0.9785 1.6377 2.3534 3.1824 4.5407 5.8409 10.2145
4 0.5686 0.9410 1.5332 2.1318 2.7764 3.7469 4.6041 7.1732
5 0.5594 0.9195 1.4759 2.0150 2.5706 3.3649 4.0321 5.8934
6 0.5534 0.9057 1.4398 1.9432 2.4469 3.1427 3.7074 5.2076
7 0.5491 0.8960 1.4149 1.8946 2.3646 2.9980 3.4995 4.7853
8 0.5459 0.8889 1.3968 1.8595 2.3060 2.8965 3.3554 4.5008
9 0.5435 0.8834 1.3839 1.8331 2.2622 2.8214 3.2498 4.2968
10 0.5415 0.8791 1.3722 1.8125 2.2281 2.7638 3.1693 4.1437
11 0.5399 0.8755 1.3634 1.7959 2.2010 2.7181 3.1058 4.0247
12 0.5386 0.8726 1.3562 1.7823 2.1788 2.6810 3.0545 3.9296
13 0.5375 0.8702 1.3502 1.7709 2.1604 2.6503 3.0123 3.8520
14 0.5366 0.8681 1.3450 1.7613 2.1448 2.6245 2.9768 3.7874
15 0.5357 0.8662 1.3406 1.7531 2.1315 2.6025 2.9467 3.7328
16 0.5350 0.8647 1.3368 1.7459 2.1199 2.5835 2.9208 3.6862
17 0.5344 0.8633 1.3334 1.7396 2.1098 2.5669 2.8982 3.6458
18 0.5338 0.8620 1.3304 1.7341 2.1009 2.5524 2.8784 3.6105
19 0.5333 0.8610 1.3277 1.7291 2.0930 2.5395 2.8609 3.5794
20 0.5329 0.8600 1.3253 1.7247 2.0860 2.5280 2.8453 3.5518
22 0.5321 0.8583 1.3212 1.7171 2.0739 2.5083 2.8188 3.5050
24 0.5314 0.8569 1.3178 1.7109 2.0639 2.4922 2.7969 3.4668
26 0.5309 0.8557 1.3150 1.7056 2.0555 2.4786 2.7787 3.4350
28 0.5304 0.8546 1.3125 1.7011 2.0484 2.4671 2.7633 3.4082
30 0.5300 0.8538 1.3104 1.6973 2.0423 2.4573 2.7500 3.3852
40 0.5286 0.8507 1.3031 1.6839 2.0211 2.4233 2.7045 3.3069
60 0.5272 0.8477 1.2958 1.6706 2.0003 2.3901 2.6603 3.2317
80 0.5265 0.8461 1.2922 1.6641 1.9901 2.3739 2.6387 3.1953

100 0.5261 0.8452 1.2901 1.6602 1.9840 2.3642 2.6259 3.1737
∞ 0.5240 0.8418 1.2820 1.6450 1.9600 2.3260 2.5760 3.0900

Examples:   F( ) ., . , .t t16 0 9 16 0 90 9= → = t 16 0 9 16 0 1 16 0 11 3368 0 1, . , . , .. ; F ( ) .= = → =t t t 16 0 1 1 3368, . .= −
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A9.4 F - Distribution (Fisher Distribution)

Definition t t
x

x
dx

t

t t t

: F( ) Pr{ } ,,

( )

( ) ( )

( ) ) ,

( ) /

( ) /( )

,  

= ≤ =
+

+
−

+
∫

> = ≤ =

Fν ν

ν ν

ν ν

ν

ν ν
ν ν

ν ν

ν ν

ν ν1 2

1 2

1 2

1
2

2
2

1

1 2

2

2 2

1 2

2 2

2

1 2

1 20

0 0 0

Γ

Γ Γ

              (F   for            11 2

2

2 2

2 41 2
2

1 2
2

1

2

2

2
2

1 2

1 2
2

2

2 4

2 1 1 2 22 2

, ,

,
( )

( ) ( )
,:

/  

E[ ]   Var[ ]

( )  ( )  

, ( ) , ( )

( )

…

−
+ −

− −
= =

− +

> >

>

 (degrees of freedom)

 

Modal value =

 :       

Parameters

Quantiles

F Fν ν ν ν ν ν

ν

ν
ν

ν ν ν
ν ν ν

ν ν ν ν

                       

•

•  

 - distribution:  

Binomial distribution:  

2  ,     ,      
independent distributed2

t t

Relationships

n

i
ip

ν ν α ν ν α ν ν α ν ν α

χ ν

χ ν
χ

ν ν ν ν
ν

ν

χ χ χ

1 2 1 2 2 1 2 1

2 2

1 11 1

1 2

1

2 1 2

1

2

2

2

, , , , , , , ,/ /

:
,

/

/

= ==

( )

− −

=

F F

F

(( ) F ( )

( ) ( )

( ) ( )

( )

/ , /•
,

,

1

2 2 1
0

1 1

1 2

2 21 2

1

2 1

1 2

1 2

−

= − = +

= =

−

+

=

− +

−
∑ =p

n k k

n i

i

k p k

p n k 
  

                                                                                
                  

 with   and   
  

                        
     Beta distribution:     

ν ν

ν ν
ν

ν ν
ν ν

ν ν
B

F

F
    

 ,
 

                                  
  

    has a Beta distribution with density f   

χ χ χ
ν ν ν1 1 2

2 2 2

1 11
0 1

/

( )
/

( )

( )

( ) ( ) ( )
,

+

=
−

+

− −
< <Ba b t

t ta b

a b a b
t

Γ Γ Γ

Table A9.4a    0.90 quantiles of the F - distribution  ( t ν ν1 2 0 9, , .  = F ν ν1 2 0 9, , .  for which

F (F ν ν1 2 0 9, , . ) = 0 9. )   [A9.1 - A9.6]

ν ν
2

1\ 1 2 3 4 5 6 8 10 20 50 ∞

1 39.86 49.50 53.59 55.83 57.24 58.20 59.44 60.19 61.74 62.69 63.33
2 8.526 9.000 9.162 9.243 9.293 9.325 9.367 9.392 9.441 9.471 9.491
3 5.538 5.462 5.391 5.343 5.309 5.285 5.252 5.230 5.184 5.155 5.134
4 4.545 4.325 4.191 4.107 4.051 4.010 3.955 3.920 3.844 3.795 3.761
5 4.060 3.780 3.619 3.520 3.453 3.404 3.339 3.297 3.207 3.147 3.105
6 3.776 3.463 3.289 3.181 3.107 3.055 2.983 2.937 2.836 2.770 2.722
7 3.589 3.257 3.074 2.960 2.883 2.827 2.752 2.702 2.595 2.523 2.471
8 3.458 3.113 2.924 2.806 2.726 2.668 2.589 2.538 2.425 2.348 2.293
9 3.360 3.006 2.813 2.693 2.611 2.551 2.469 2.416 2.298 2.218 2.159
10 3.285 2.924 2.728 2.605 2.522 2.461 2.377 2.323 2.201 2.117 2.055
12 3.176 2.807 2.605 2.480 2.394 2.331 2.245 2.188 2.060 1.970 1.904
14 3.102 2.726 2.522 2.395 2.307 2.243 2.154 2.095 1.962 1.869 1.797
16 3.048 2.668 2.462 2.333 2.244 2.178 2.088 2.028 1.891 1.793 1.718
18 3.007 2.624 2.416 2.286 2.196 2.130 2.038 1.977 1.837 1.736 1.657
20 2.975 2.589 2.380 2.249 2.158 2.091 1.998 1.937 1.794 1.690 1.607
30 2.881 2.489 2.276 2.142 2.049 1.980 1.884 1.819 1.667 1.552 1.456
50 2.809 2.412 2.197 2.061 1.966 1.895 1.796 1.729 1.568 1.441 1.327

100 2.756 2.356 2.139 2.002 1.906 1.834 1.732 1.663 1.494 1.355 1.214
1000 2.711 2.308 2.089 1.950 1.853 1.780 1.676 1.605 1.428 1.273 1.060

∞ 2.705 2.303 2.084 1.945 1.847 1.774 1.670 1.599 1.421 1.263 1.000

Example:   ν ν1 2 10 16 0 910 16= = → =,  , , .  t F 10 16 0 9 2 028, , . .=
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Table A9.4b  0.95 quantiles of the F - distribution ( t ν ν1 2 0 95, , .  = F ν ν1 2 0 95, , .  for which
F (F ν ν1 2 0 95, , . ) = 0 95. )   [A9.1 - A9.6]

ν ν
2

1\ 1 2 3 4 5 6 8 10 20 50 ∞

1 161.4 199.5 215.7 224.6 230.2 234.0 238.9 241.9 248.0 251.8 254.3
2 18.51 19.00 19.16 19.25 19.30 19.33 19.37 19.40 19.45 19.48 19.50
3 10.13 9.552 9.277 9.117 9.013 8.941 8.845 8.785 8.660 8.581 8.526
4 7.709 6.944 6.591 6.388 6.256 6.163 6.041 5.964 5.802 5.699 5.628
5 6.608 5.786 5.409 5.192 5.050 4.950 4.818 4.735 4.558 4.444 4.365
6 5.987 5.143 4.757 4.534 4.387 4.284 4.147 4.060 3.874 3.754 3.669
7 5.591 4.737 4.347 4.120 3.971 3.866 3.726 3.636 3.444 3.319 3.230
8 5.318 4.459 4.066 3.838 3.687 3.580 3.438 3.347 3.150 3.020 2.928
9 5.117 4.256 3.863 3.633 3.482 3.374 3.230 3.137 2.936 2.803 2.707

10 4.965 4.103 3.708 3.478 3.326 3.217 3.072 2.978 2.774 2.637 2.538
12 4.747 3.885 3.490 3.259 3.106 2.996 2.849 2.753 2.544 2.401 2.296
14 4.600 3.739 3.344 3.112 2.958 2.848 2.699 2.602 2.388 2.240 2.131
16 4.494 3.634 3.239 3.007 2.852 2.741 2.591 2.493 2.276 2.124 2.010
18 4.414 3.555 3.160 2.928 2.773 2.661 2.510 2.412 2.191 2.035 1.917
20 4.351 3.493 3.098 2.866 2.711 2.599 2.447 2.348 2.124 1.966 1.843
30 4.171 3.316 2.922 2.690 2.534 2.420 2.266 2.165 1.932 1.761 1.622
50 4.034 3.183 2.790 2.557 2.400 2.286 2.130 2.026 1.784 1.599 1.438

100 3.936 3.087 2.695 2.463 2.305 2.191 2.032 1.927 1.676 1.477 1.283
1000 3.851 3.005 2.614 2.381 2.223 2.108 1.948 1.840 1.581 1.363 1.078

∞ 3.841 2.996 2.605 2.372 2.214 2.099 1.938 1.831 1.570 1.350 1.000

A9.5 Table for the Kolmogorov - Smirnov Test

D t tn n t
tt

n= −
∞< <∞
sup F̂ ( ) F ( ) ,

–
F̂ ( )
F ( )

0
0

     

         

       = empirical distribution function  (Eq. (A8.1))

 
= postulated continuous distribution

 
function  

Table  A9.5 1 −α quantiles of the distrib. funct. of Dn  (Pr{ }D y Hn ≤ = −−1 1α α0 true )   [A9.2 - A9.6]

n α = 0.20 0.10 0.05 0.02 0.01 n α = 0.20 0.10 0.05 0.02 0.01

1 0.900 0.950 0.975 0.990 0.993 21 0.226 0.259 0.287 0.321 0.344
2 684 776 842 900 929 22 221 253 281 314 337
3 565 636 708 785 829 23 216 247 275 307 330
4 493 565 624 689 734 24 212 242 269 301 323
5 447 509 563 627 669 25 208 238 264 295 317
6 410 468 519 577 617 26 204 233 259 290 311
7 381 436 483 538 576 27 200 229 254 284 305
8 358 410 454 507 542 28 197 225 250 279 300
9 339 387 430 480 513 29 193 221 246 275 295

10 323 369 409 457 489 30 190 218 242 270 290
11 308 352 391 437 468 32 184 211 234 262 281
12 296 338 375 419 449 34 179 205 227 254 273
13 285 325 361 404 432 36 174 199 221 247 265
14 275 314 349 390 418 38 170 194 215 241 258
15 266 304 338 377 404 40 165 189 210 235 252
16 258 295 327 366 392 42 162 185 205 229 246
17 250 286 318 355 381 44 158 181 201 224 241
18 244 279 300 346 371 46 155 177 196 219 235
19 237 271 301 337 361 48 151 173 192 215 231
20 232 265 294 329 352 50 148 170 188 211 226

Example:  n y= = → =−20 0 10 0 2651, . .α α
    for
n > 50

<≈
1 070

1 2

.
/n

<≈
1 220

1 2

.
/n

<≈
1 360

1 2

.
/n

≈<
1 520

1 2

.
/n

<≈
1 630

1 2

.
/n
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A9.6 Gamma Function

Definition z x dx

Special values
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Duplication:   

Incomplete Gamma function:
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1

0

1 0
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∞

∫ ∫ >

π

γ

•• -     distribution   :  2 (F  as in Appendix A9.2)χ γ ν ν
( ) ,( ) F( ) ( )t

t t
2 2 2

= Γ

Table A9.6    Gamma function for 1 00 1 99. .≤ ≤t  (t real), for other values use Γ Γ( ) ( )z z z+ =1
[A9.1 - A9.6]

t 0 1 2 3 4 5 6 7 8 9

1.00 1.0000 .9943 .9888 .9835 .9784 .9735 .9687 .9641 .9597 .9554
1.10 .9513 .9474 .9436 .9399 .9364 .9330 .9298 .9267 .9237 .9209
1.20 .9182 .9156 .9131 .9107 .9085 .9064 .9044 .9025 .9007 .8990
1.30 .8975 .8960 .8946 .8934 .8922 .8911 .8902 .8893 .8885 .8878
1.40 .8873 .8868 .8863 .8860 .8858 .8857 .8856 .8856 .8857 .8859
1.50 .8862 .8866 .8870 .8876 .8882 .8889 .8896 .8905 .8914 .8924
1.60 .8935 .8947 .8959 .8972 .8986 .9001 .9017 .9033 .9050 .9068
1.70 .9086 .9106 .9126 .9147 .9168 .9191 .9214 .9238 .9262 .9288
1.80 .9314 .9341 .9368 .9397 .9426 .9456 .9487 .9518 .9551 .9584
1.90 .9618 .9652 .9688 .9724 .9761 .9799 .9837 .9877 .9917 .9958

Examples:   Γ( . ) .1 25 0 9064= ;  Γ Γ( . ) ( . ) . ./0 25 1 25 0 25 3 6256= = ;  Γ Γ( . ) . ( . ) .2 25 1 25 1 25 1 133= ⋅ =
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A9.7 Laplace Transform

Definition s e t dt
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Table A9.7a    Properties of the Laplace Transform

Transform Domain Time Domain

Linearity a s a s1 1 2 2F̃ ( ) F̃ ( )+ a t a t1 1 2 2F ( ) F ( )+

Scale Change F̃( / )s a a a t aF( ),    > 0

Shift F̃( )s a− e tat F( )

e sas− F̃( ) F( ) u( ),   t a t a a− − >** 0

Differentiation s s sn n nF̃( ) F( ) F ( )( )− + − … − +− −1 10 0 d t d tn n
F( ) /

d s d sn n
F̃( ) / ( ) F( )−1 n nt t

Integration
1
s

sF̃( );       
1
s sF̃ ( )+ α F( )x dx

t

0
∫ ;       F( )x e dxx

t
−∫ α

0

F̃( )z d z
s

∞

∫
F( )t

t

Convolution
(F F )1 2∗ F̃ ( ) F̃ ( )1 2s s F ( ) F ( )1 2

0

x t x dx
t

−∫

Initial Val. Theorem 

Final Val. Theorem
 

*

   lim F̃( )

lim F̃( )
s

s

s s

s s
→ ∞

↓ 0

limF( )

limF( )

( )
t

t

t

t
↓

→∞

= +
0

0F

* Existence of the limit is assumed;    ** u(t) is the unit step function (see Table A9.7b)
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Table A9.7b    Important Laplace Transforms

Transform Domain Time Domain
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A9.8 Probability Charts
A distribution function appears as a straight line when plotted on a probability chart
belonging to its family.  The use of probability charts (probability plot papers).
simplifies the analysis and interpretation of data, in particular of life times or
failure-free times (failure-free operating time).  In the following the charts for
lognormal, Weibull, and normal distributions are given.

A9.8.1 Lognormal Probability Chart

The distribution function (Eq. (A6.110), Table A6.1)

F           
 (F(  for  

 ( )

(ln ln )
ln( )

/ ;
) )

,t e dy e dx
y

y
t

t
x t

t t
= =

− −

−∞

>
= ≤

>
+

∫ ∫1

2 0

1

2

2 0
0 0

01
2

2 2 2

σ π π
λ σ

λ
σ

λ
σ

appears as a straight line on the chart of Fig. A9.1 (λ in h 1−  for t in h), see Fig. 7.14.
F( ) . ,t = 0 5  yielding λ = 1 0 5/ . ,t  and F( ) . ,t = 0 99  yielding ln( / .. . ) /t t0 99 0 5 2 33σ ≈ , can
be used for a graphical estimation of ˆ ˆλ σ  and .
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Figure A9.1    Lognormal probability chart
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A9.8.2 Weibull Probability Chart

The distribution function F( ) ( )t e t= − −1 λ β , t t t> = ≤ >0 0 0 0 F  for  ( ( ) ), , λ β  (Eq.
(A6.89), Table A6.1) appears as a straight line on the chart of Fig. A9.2 (λ in h 1−  for
t in h), see Fig. A8.2.  On the dashed line, λ =1/ t ;  furthermore, β appears on the
scale log log ( F( )10 10

1
1− t

) when t is varied by one decade (Figs. A8.2, 7.12, 7.13).

   
   

   
   

   
   

   
   

1
lo

g 10
lo

g 10
(–

––
––

––
)

   
   

   
   

   
   

  1
–

F(
t)

F
(t

)

   
  4

10
   

  3
10

   
  2

10
10

0
2

4
6

8
   

  1
10

2
4

6
8

2
4

6
8

2
4

6
8

t  
 [

h]
0.

01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
08

0.
1

0.
15

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
95

0.
99

0.
99

9

–
2.

0

–
1.

5

–
1.

0

–
0.

5

0.
0

+
0.

5

λ 
t =

 1

Figure A9.2    Weibull probability chart



A9   Tables and Charts 571

–5 –4 –3 –2 –1 0 1 2 3 4 5
0.0001

0.0005
0.001
0.002

0.005
0.01

0.02

0.05

0.10

0.20

0.30

0.40

0.50
0.60

0.70

0.80

0.90

0.95

0.98

0.99

0.995

0.998
0.999

0.9999

t – m––––σ

t – m(––––)σΦ

Figure A9.3    Normal probability chart (standard normal distribution)

A9.8.3 Normal Probability Chart

The distribution function (Eq. (A6.105), Table A6.1)

F     ( ) ( ) ,   

( )

/ , ,  t e dy e dx

y m
t m

t
x t m t m= = =

−

−∞
− −

−∞
− ∞ < < ∞ >

− −

∫ ∫1

2

1

2
2 0

2

2 2 2

σ π π σ σσ
σ

Φ

appears as a straight line on the chart of Fig. A9.3.  F(t) = 0.5, yielding m t= 0 5. , and
F(t) = 0.99, yielding σ ≈ −( ) /. . .t t0 99 0 5 2 33 , can be used for a graphical estimation of
ˆ ˆm  and .σ   However, it is often more useful to estimate ˆ ˆm  and σ  as per Eqs.

(A8.6), (A8.10) and to operate with Φ ( ) .
ˆ

ˆ
t m−

σ
  

 



A10 Basic Technological Component's Properties

Component Technology, Characteristics Sensitive to Application

Fixed resistors

• Carbon film A layer of carbon film deposited at high
temperature on ceramic rods;  ±5% usual;
medium TC;  relatively low drift (–1 to
+4%);  failure modes:  opens, drift, rarely
shorts;  elevated noise;  1 Ω to 22 MΩ;
low λ (0.2 to 0.4 FIT)

Load, temperature,
overvoltage,
freq. ( > 50 MHz),
moisture

Low power (≤1W),
moderate tempera-
ture (< 85 C)°
and frequency
( ≤ 50 MHz)

• Metal film Evaporated NiCr film deposited on
aluminum oxide ceramic;  ±5% usual;
low TC;  low drift (±1%);  failure modes:
drift, opens, rarely shorts;  low noise;
10 Ω to 2 4. MΩ; low λ  (0.2 FIT)

Load, temperature,
current peaks,
ESD, moisture

Low power
( ≤ 0 5. W), high
accuracy and
stability, high freq.
( ≤ 500 MHz)

• Wire-
wound

Usually NiCr wire wound on glass fiber
substrate (sometimes ceramic);  precision
(±0.1%) or power (±5%);  low TC;  failure
modes:  opens, rarely shorts between
adjacent windings;  low noise;  0 1. Ω  to
250 kΩ ;  medium λ (2 to 4 FIT)

Load, temperature,
overvoltage,
mechanical stress
(wire < µ25 m ),
moisture

High power, high
stability, low
frequency
( ≤ 20 kHz)

• Thermistors
(PTC, NTC)

PTC:  Ceramic materials ( BaTiO3  or
SrTiO3 with metal salts) sintered at high
temperatures, showing strong increase of
resistance (103  to 104) within 50°C;
medium λ (4 to 10 FIT, large values for
disk and rod packages)

NTC: Rods pressed from metal oxides and
sintered at high temperature, large neg. TC
( TC   -˜ 1 2/ T  );  failure rate as for PTC

Current and voltage
load, moisture

PTC:  Temperature
sensor, overload
protection, etc.

NTC: Compen-
sation, control,
regulation,
stabilization

Variable resist.

• Cermet Pot.,
Cermet Trim

Metallic glazing (often ruthenium oxide)
deposited as a thick film on ceramic rods
and fired at about 800°C;  usually ±10%;
poor linearity (5%);  medium TC;  failure
modes:  opens, localized wear-out, drift;
relatively high noise (increases with age);
20 Ω - 2 MΩ ; low to medium λ  (5-20 FIT)

Load, current,
fritting voltage
( < 1 5. V ),
temperature,
vibration,

Should only be
employed when
there is a need for
adjustment during
operation, fixed
resistors have to

• Wirewound
Pot.

CuNi / NiCr wire wound on ceramic rings
or cylinders (spindle-operated potentiom.);
normally ± 10%; good linearity (1%);
precision or power;  low, nonlinear TC;
low drift;  failure modes: opens, localized
wear-out, relatively low noise;  10 Ω  to
50 kΩ ; medium to large λ (10 to 100 FIT)

noise, dust,
moisture,
frequency (wire)

be preferred for
calibration during
testing;  load
capability propor-
tional to the part of
the resistor used

Table A10.1 gives some basic technological properties of electronic components to
support reliability evaluations (see also Chapters 3 & 5, and e. g. [3.1, 3.10, 3.23, 3.58]).

Table A10.1   Basic technological properties of electronic components

A. Birolini, Reliability Engineering, DOI: 10.1007/978-3-642-39535-2,
� Springer-Verlag Berlin Heidelberg 2014
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Table A10.1   (cont.)

Component Technology, Characteristics Sensitive to Application

Capacitors

• Plastic
(KS, KP,
KT, KC)

Wound capacitors with plastic film (K) of
polystyrene (S), polypropylene (P), poly-
ethylene-terephthalate (T) or polycarbo-
nate (C) as dielectric and Al foil;  very
low loss factor (S, P, C);  failure modes:
opens, shorts, drift;  pF to µF;  low λ
(1 to 3 FIT)

Voltage stress,
pulse stress (T, C),
temperature (S, P),
moisture* (S, P),
cleaning agents (S)

Tight capacitance
tolerances, high
stability (S, P), low
loss (S, P), well-
defined temper-
ature coefficient

• Metallized
plastic
(MKP,
MKT,
MKC,
MKU)

Wound capacitors with metallized film
(MK) of polypropylene (P), polyethylene-
terephthalate (T), polycarbonate (C) or
cellulose acetate (U);  self-healing;  low
loss factor;  failure modes:  opens, shorts;
nF to µF;  low  λ (1 to 2 FIT)

Voltage stress,
frequency (T, C,
U), temperature
(P), moisture*

(P, U)

High capacitance
values, low loss,
relatively low
frequencies
( < 20 kHz for
T, U)

• Metallized
paper (MP,
MKV)

Wound capacitors with metallized paper
(MP) and in addition polypropylene film
as dielectric (MKV);  self-healing;  low
loss factor;  failure modes:  shorts, opens,
drift;  0 1. µF  to mF;  low λ (1 to 3 FIT)

Voltage stress and
temperature (MP),
moisture*

Coupling,
smoothing,
blocking (MP),
oscillator circuits,
commutation,
attenuation (MKV)

• Ceramic Often manufactured as multilayer capaci-
tors with metallized ceramic layers by sin-
tering at high temperature with controlled
firing process (class 1: εr < 200, class 2:
εr ≥ 200 );  very low loss factor (class 1);
temperature compensation (class 1);  high
resonance frequency:  failure modes:
shorts, drift, opens;  pF to µF;  low λ
(0.5 to 2 FIT)

Voltage stress,
temperature (even
during soldering)
moisture*, aging at
high temperature
(class 2)

Class 1: high
stability, low loss,
low aging;

class 2: coupling,
smoothing,
buffering, etc.

• Tantalum
(solid, dry)

Manufactured from a porous, oxidized
cylinder (sintered tantalum powder) as
anode, with manganese dioxide as
electrolyte and a metal case as cathode;
polarized; medium frequency-dependent
loss factor;  failure modes:  shorts, opens,
drift;  0 1. µF  to mF;  low to medium λ
(1 to 5 FIT, 20 to 40 FIT for bead)

Incorrect polarity,
voltage stress, AC
resistance (Z0) of
the el. circuit
(new types less
sensitive),
temperature,
frequency (>1kHz),
moisture*

Relatively high
capacitance per
unit volume, high
requirements with
respect to reliabil-
ity, Z0 1≥ Ω/V

• Aluminum
(wet)

Wound capacitors with oxidized Al foil
(anode and dielectric) and conducting
electrolyte (cathode);  also available with
two formed foils (nonpolarized);  large,
frequency and temperature dependent loss
factor;  failure modes:  drift, shorts, opens;
µF to 200 mF ;  medium to large λ
(5 to 10 FIT);  limited useful life
(function of temperature and ripple)

Incorrect polarity
(if polarized),
voltage stress,
temperature,
cleaning agent
(halogen), storage
time, frequency
( > 1kHz ),
moisture*

Very high capacit-
ance per unit
volume, uncritical
applications with
respect to stability,
relatively low
ambient
temperature
(0 to 55°C)
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Table A10.1   (cont.)

Component Technology, Characteristics Sensitive to Application

Diodes (Si)

• General
purpose

PN junction produced from high purity Si
by diffusion;  diode function based on the
recombination of minority carriers in the
depletion regions;  failure modes:  shorts,
opens;  low λ  (1 to 3 FIT, θJ = °40 C ,
10 FIT for rectifiers with θJ = °100 C)

Forward current,
reverse voltage,
temperature,
transients,
moisture*

Signal diodes
(analog, switch),
rectifier, fast
switching diodes
(Schottky,
avalanche)

• Zener Heavily doped PN junction (charge carrier
generation in strong electric field and
rapid increase of the reverse current at low
reverse voltages);  failure modes:  shorts,
opens, drift;  low to medium λ  (2 to 4 FIT
for voltage regulators ( θJ = °40 C), 20 to
50 FIT for voltage ref. ( θJ = °100 C))

Load, temperature,
moisture*

Level control,
voltage reference
(allow for ±5%
drift)

Transistors

• Bipolar PNP or NPN junctions manufactured
using planar technology (diffusion or ion
implantation);  failure modes:  shorts,
opens, thermal fatigue for power trans.;
transistor function based on minority
carrier transport;  low to medium λ  (2 to 6
FIT for θJ = °40 C, 20 to 60 FIT for
power transistors and θJ = °100 C)

Load, temperature,
breakdown voltage
(VBCEO, VBEBO),
moisture*

Switch, amplifier,
power stage (allow
for ±20% drift,
±500% for ICBO)

• FET Voltage controlled semicond. resistance,
with control via diode (JFET) or isolated
layer (MOSFET); transist. function based on
majority carrier transport;  N or P channel;
depletion or enhancement type (MOSFET);
failure modes:  shorts, opens, drift; medium
λ  (3 to 10 FIT for θJ = °40 C, 30 to 60
FIT for power transistors and θJ = °100 C)

Load, temperature,
breakdown voltage,
ESD, radiation,
moisture*

Switch (MOS) and
amplifier (JFET)
for high-resistance
circuits (allow for
±20% drift)

Controlled
rectifiers
(Thyristors,
triacs, etc.)

NPNP junctions with lightly doped inner
zones (P, N), which can be triggered by a
control pulse (thyristor), or a special
antiparallel circuit consisting of two
thyristors with a single firing circuit
(triac);  failure modes:  drift, shorts, opens;
large λ (20 to 100 FIT for θJ = °100 C)

Temperature,
reverse voltage,
rise rate of voltage
and current,
commutation
effects, moisture*

Controlled
rectifier,
overvoltage and
overcurrent
protection (allow
for ±20% drift)

Opto-
semiconductors
(LED, IRED,
photo-sensitive
devices, opto-
couplers, etc.)

Electrical/optical or optical/electrical con-
verter made with photosensitive semicon-
ductor components;  transmitter (LED,
IRED, laser diode etc.), receiver (photo-
resistor, photo-transistor, solar cells etc.),
optocoupler, displays;  failure modes:
opens, drift, shorts;  medium to large λ (2
to 100 FIT, 20 no. of pixels  for LCD);
limited useful life

Temperature,
current, ESD,
moisture*,
mechanical stress

Displays, sensors,
galvanic sepa-
ration,  noise
rejection (allow
for ±30% drift)
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Table A10.1   (cont.)

Component Technology, Characteristics Sensitive to Application

Digital ICs

• Bipolar Monolithic ICs with bipolar transistors
(TTL, ECL, I L2 ), important AS TTL
( 6 mW , 2 ns, 1 3. V ) and ALS TTL
(1mW, 3ns , 1 8. V);  VCC = −4 5 5 5. . V ;
Zout < 150 Ω  for both states;  low to
medium λ  (2 to 6 FIT for SSI/MSI,
20 to 100 FIT for LSI/VLSI)

Supply voltage,
noise ( > 1V),
temperature
( 0 5. eV), ESD,
rise and fall times,
breakdown BE
diode, moisture*

Fast logic (LS TTL
ECL ) with
uncritical power
consump., rel. high
cap. loading,
θJ < °175 C
( < °200 C for SOI)

• MOS Monolithic ICs with MOS transistors,
mainly N channel depletion type (formerly
also P channel);  often TTL compatible
and therefore VDD = −4 5 5 5. . V (100 µW ,
10 ns ); very high Zin ; medium Zout (1 to
10 kΩ); medium to high λ  (50 to 200 FIT)

ESD, noise
( > 2 V ), temper-
ature ( 0 4. eV ), rise
and fall times,
radiation, moisture*

Memories and
microprocessors
high source
impedance, low
capacitive loading

• CMOS Monolithic ICs with complementary en-
hancement-type MOS transistors;  often
TTL compatible and therefore VDD = 4 5.
−5 5. V ;  power consumption ~ f  (10 µW
at 10 kHz , VDD = 5 5. V , CL = 15 pF );
fast CMOS (HCMOS, HCT) for 2 to 6 V
with 6 ns at 5Vand 20 µW  at 10 kHz :
large static noise immunity ( 0 4. VDD);
very high Zin ; medium Zout  (0.5 to
5 kΩ );  low to medium λ  (2 to 6 FIT for
SSI/MSI, 10 to 100 FIT for LSI/VLSI)

ESD, latch-up,
temperature
( 0 4. eV ), rise and
fall times, noise
( > 0 4. VDD),
moisture*

Low power
consumption, high
noise immunity,
not extremely high
frequency, high
source impedance,
low cap. load,
θJ < °175 C, for
memories:
< °125 C

• BiCMOS Monolithic ICs with bipolar and CMOS
devices;  trend to less than 2 V  supplies;
combine the advantages of both bipolar
and CMOS technologies

similar to CMOS
similar to CMOS
but also for very
high frequencies

Analog ICs

• Operational
amplifiers,
comparators,
voltage
regulators,
etc.

Monolithic ICs with bipolar and / or FET
transistors for processing analog signals
(operational amplifiers, special amplifiers,
comparators, voltage regulators, etc.);
up to about 200 transistors;  often in metal
packages; medium to high λ (10 - 50 FIT)

Temperature
( 0 6. eV ), input
voltage, load
current, moisture*

Signal processing,
voltage reg., low to
medium power
consump. (allow
for ±20% drift),
θJ < °175 C ( 125<
for low power)

Hybrid ICs

• Thick film,
thin film

Combination of chip components (ICs,
transistors, diodes, capacitors) on a thick
film 5 20− µm or thin film 0 2 0 4. .− µm
substrate with deposited resistors and
connections;  substrate area up to 10 2cm ;
medium to high λ (usually determined by
the chip components)

Manufacturing
quality,
temperature,
mechanical stress,
moisture*

Compact and
reliable devices
e. g. for avionics
or automotive
(allow for ±20%
drift)

ESD = electrostatic discharge;   TC = temperature coefficient;   λ  in 10 9 1− −h , indicative values for
standard industrial environment ( )θA= °40 C,  GB ;  failure modes given in decreasing probability of
occurrence (see also Table 3.4);   * nonhermetic packages



A11 Problems for Homework

In addition to the 140 Examples, the following are 70 selected problems for home-
work, ordered for Chapters 2, 4, 6, 7, A6, A7, A8  (* means can be time-consuming).

Problem 2.1
Draw the reliability block diagram corresponding to the fault tree given by Fig. 6.40b (p. 282).

Problem 2.2
Compare the mean time to failure MTTFS  and reliability function R tS ( )  of the following reliability
block diagrams for the case nonrepairable and constant failure rate λ  for elements E E1 4,..., .

1-out-of-2 active
(E
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=

 
E

2 
=

 
E

3 
=
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E
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2-out-of-4 active
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E)
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E
4

Problem 2.3
Compare the mean time to failure MTTFS  for cases 7 and 8 of Table 2.1 (p. 31) for E E E1 5= = =...

and constant failure rates λ λ λ1 5= = =... .

Problem 2.4
Compute the reliability function R tS ( ) for case 4 of Table 2.1 (p. 31) for n k= =3 2, , E E E1 2 3≠ ≠ .

Problem 2.5
Investigate R tS 0 ( ) for t <<1/λ  for different k-out-of-n active redundancies (Fig. 2.7 on p. 44).

Problem 2.6 
*

Give a realization for the circuit to detect the occurrence of the second failure in a majority redundan-
cy 2-out-of-3 (Example 2.5, p. 49), allowing an expansion of a 2-out-of-3 to a 1-out-of-3 redundancy.
(Hint:  Isolate the first failure and detect the occurrence of the second failure using e. g. 6 two-input
AND, 3 two-input EXOR, 1 three-input OR, and adding a delay δ  for an output pulse of width δ .)

Problem 2.7 
*

Demonstrate the result given by Eq. (2.62) and apply this to the active redundancy.

Problem 2.8 
*

Compute the reliability function R tS ( )  for the Π  circuit with bi-directional connections given below,

E
1

E
2

E
4

E
7

E
3

E
6

E
8

E
5

(Hint:  Use the key item method (Eq. (2.29)) on E E7 8& ).

Problem 2.9 *

Problem 2.8 using the minimal path set or cut set method (Section 2.3.4), compare computation times.

Problem 2.10 
*

Prove Eq. (2.73).

Problem 2.11 
*

Investigate practically applicable truncation possibilities for stress and / or strength distributions.

A. Birolini, Reliability Engineering, DOI: 10.1007/978-3-642-39535-2,
� Springer-Verlag Berlin Heidelberg 2014
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Problem 4.1
Compute the MTTRS  for the structure of case 5 in Table 2.1 on p. 31, assumed repairable with
λ λ λ1

3
2

4
3

210 10 10= = =− − −h h h-1 -1 -1, , ,  λ λ λ λ4
3

5
2

6
4

7
510 10 10 10= = = =− − − −h h h h-1 -1 -1 -1, , , ,

and µ µ µ µ µ µ µ1 4
1

3 5
1

2 6
1

7
10 5 0 2 1 2= = = = = = =− − − −. , . , , .h h h h   Compare the obtained MTTRS

with the mean down time at system level MDTS  per Eq. (6.295).  (Hint:  consider Example 4.2, use
Table 6.10 to compute MTTFS0  & PAS ,  and assume MUT MTTFS S= 0 .)

Problem 4.2
Give the number of spare parts necessary to cover with a probability γ ≥ 0 9.  an operating time of
50 000, h  for the system given by case 6 of Table 2.1 (p.31) for λ λ λ1 2 3

310= = = − h-1, λν = −10 5h-1.
(Hint:  Assume equal allocation of γ  between Eν  and the 2-out-of-3 active redundancy.)

Problem 4.3
Same as for Problem 4.2 by assuming that spare parts are repairable with µ µ µ µν1 2 3= = = = 0.5 h-1.
(Hint: consider only the case with RS t0 ( ) and assume equal allocation of γ  between Eν  and the
2-out-of-3 active redundancy.)

Problem 4.4
Give the number of spare parts necessary to cover with a probability γ ≥ 0 9.  an operating time
of 50 000, h  for an item with Erlangian distributed failure-free times with λ = −10 3 h-1  and n = 3.
(Hint:  Consider Appendix A6.10.3.)

Problem 4.5
Develop the expression allowing the computation of the number of spare parts necessary to cover
with a probability ≥ γ  an operating time T for an item with failure-free times distributed according
to a Gamma distribution.  (Hint:  Consider Appendix A6.10.3, and Table A9.7b.)

Problem 4.6 
*

Give the number of spare parts necessary to cover with a probability γ ≥ 0 9.  an operating time
of 50 000, h  for a 1-out-of-2 standby redundancy with constant failure rate λ = −10 3 h-1  for the
operating element ( λ ≡ 0 for the reserve element).  Compare the results with those obtained for
an active 1-out-of-2 redundancy with failure rate λ = −10 3 h-1  for the active and the reserve element.

Problem 4.7 
*

A series-system consists of operationally independent elements E En1 ,...,  with constant failure
rates λ λ1 ,..., n .  Let ci  be the cost for a repair of element Ei .  Give the mean (expected value)
of the repair cost for the whole system during a total operating time T  for all elements.
(Hint:  Consider Appendix A7.2.5 and assume negligible repair (renewal) times.)

Problem 4.8 
*

An item has a constant failure rate λ and a constant repair rate µ.  Compute the mean of the repair
cost during a total operating time T0  given the fixed cost c0  for each repair.  Assuming that down
time for repair has a cost cd  per hour, compute the mean value of the total cost for repair and down
time during a total operating time T0 .  (Hint:  Consider Appendices A7.2.5 and A7.8.4.)

Problem 4.9 
*

Prove that for the case of constant failure rate λ λ( )x =  and negligible repair (renewal) times,
the optimal repair strategy is repair at failure.

Problem 4.10 
*

Investigate the comparison between age and block replacement (Section 4.6.1).

Problem 4.11 
*

Investigate the practical applicability of the concept as-bad-as-old. (Hint: consider Appendix A7.8.2.)
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Problem 6.1
Compare the mean time to failure MTTFS0  and the asymptotic & steady-state point and average
availability PA AAS S=  for the two reliability block diagrams of Problem 2.2, by assuming
constant failure rate λ and constant repair rate µ for each element and only one repair crew.
(Hint:  Use the results of Table 6.10.)

Problem 6.2
Give the asymptotic & steady-state point and average availability PA AAS S=  for the bridge given
by Fig. 2.10, p. 53, by assuming identical and independent elements (each element has its own repair
crew) with constant failure rate λ and constant repair rate µ.  (Hint:  Use results of Section 2.3.4.)

Problem 6.3
Develop Eqs. (6.32) & (6.33) and discuss (prove) the remarks to Eq. (6.33).

Problem 6.4
investigate the structure of Fig. 6.15 (p. 221) by assuming that Eν  is a main equipment controlled
by E E1 2 and  in which E2  is an operator in standby redundancy, active only at a failure of E1
(µ µ µν λ λ λ2 1 1 2 3>> >> >> , , , no further failure at system down, 3 repair crews available).

Problem 6.5
For the 1-out-of-2 warm redundancy of Fig. 6.8 (p. 197) show that P MTTF P MTTFi SSi∑ = 0 0
+ P MTTFS1 1  differs from MUTS .  (Hint:  Consider Appendix A7.5.4.1.)

Problem 6.6 
*

Give the mean time to failure MTTFS0  and the asymptotic & steady-state point and average availa-
bility PA AAS S=  for the reliability block diagram given by case 5 of Table 2.1 (p. 31) by assum-
ing constant failure rates λ λ1 7, ... ,   and constant repair rates µ µ1 7, ... ,  :  (i) For independent
elements (Table 6.9);  (ii) Using results for macro-structures (Table 6.10);  (iii) Using a Markov
model with only one repair crew, repair priority on elements E6  and E7 , and no further failure at
system down.  Compare results by means of numerical examples.  (Hint:  For (iii), consider Point 2
of Section 6.8.9 and Eqs (6.157) & (6.159).)

Problem 6.7 
*

Prove the results in Point 5 of Table 6.3 (p. 183), theoretically, from Eq. (6.37), and just by
considering the memoryless property given by a constant (time independent) failure rate λ λ( )x = .

Problem 6.8 
*

Give the asymptotic & steady-state point and average availability PA AAS S=  for the Π  circuit of
Problem 2.8, by assuming identical and independent elements with constant failure rate λ and
constant repair rate µ, each element has its own repair crew.  (Hint:  Use results of Section 2.3.4.)

Problem 6.9 
*

For the 1-out-of-2 warm redundancy given by Fig. 6.8 (p. 197) compute for states Z Z0 1 2, ,  Z :
(i) The states probabilities P P P0 1 2, ,   of the embedded Markov chain;  (ii) The steady-state
probabilities P P P0 1 2, ,  ;  (iii) The mean stay (sojourn) times T T T0 1 2, ,  ;  (iv) The mean recur-
rence times T T T00 11 22, ,  .  (Hint:  Consider Appendices A7.5.3.3, A7.5.4.1, and A7.6.)

Problem 6.10 
*

Prove Eqs. (6.130) and (6.131).

Problem 6.11 
*

Prove Eqs. (6.166) and (6.168).

Problem 6.12 
*

Prove the conclusions as per Eqs. (6.207) & (6.212), i. e. prove Eqs. (6.206), (6.209), (6.211),
and (6.214).
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Problem 7.1
For an incoming inspection one has to demonstrate a defective probability p = 0 01. .  An AQL = 0 01.
with producer risk α = 0 1.  is agreed.  Give the sample size n for a number of acceptable defectives
c = 0 1 2 5 10, , , , . Compute the consumer risk β for the corresponding values of c.  (Hint: Use Fig. 7.3.)

Problem 7.2
For the demonstration of an MTBF = =1 4 000/ 'λ h  one agrees with the producer the following
rule:  MTBF MTBF0 14 000 2 000= =' 'h,  h,  = = 0.2α β  .  Give the cumulative test time T  and the
number c of allowed failures.  How large would the acceptance probability be for a true
MTBF  of   h  and of   1 '500h,5 000'  respectively?    (Hint:  Use Table 7.3 and Fig. 7.3.)

Problem 7.3
For the demonstration of an MTTR  one agrees with the producer the following rule:
MTTR MTTR0 11 1 5= =h,  h,  = = 0.2. α β .  Assuming a lognormal distribution for the repair

times with σ2 0 2= . , give the number of repair and the allowed cumulative repair time.  Draw the
operating characteristic curve as a function of the true MTTR .  (Hint:  Use results of Section 7.3.2.)

Problem 7.4
During an accelerated reliability test at θJ = °125 C, 3 failures have occurred within the cumulative
test time of 100'000h (failed devices have been replaced).  Assuming an activation energy
Ea = 0 5. eV,  give for a constant failure rate λ the maximum likelihood point estimate and the

confidence limits at the confidence levels γ = 0 8.  and γ = 0 2.  for θJ = °35 C.  How large is the upper
confidence limit at the confidence levels γ = 0 9.  and γ = 0 6. ?   (Hint:  Use Eq. (7.56) & Fig. 7.6.)

Problem 7.5
For the demonstration of an MTBF = =1 10 000/ 'λ h  one agrees with the producer the following
rule:  MTBF = 10 000' h , acceptance risk 20%.  Give the cumulative test time T for a number of
allowed failures c = 0 1 2 6, , ,  by assuming that the acceptance risk is:  (i) The producer risk α
(AQL case);  (ii) The consumer risk β  (LTPD case).  (Hint:  Use Fig. 7.3.)

Problem 7.6
Compare the amount of time necessary to test with c=1 MTBF = >1 500/λ h against MTBF< 500h
with:  (i) α β= =01 0 9. ( . )  and (ii) β α= =0 1 0 9. ( . ) .  For which values of true MTBF, producer and
consumer have the same risk (0.5) to make a false decision in cases (i) and (ii)?  (Hint:  Use Fig. 7.3.)

Problem 7.7
For a reliability test of a nonrepairable item, the following 20 failure-free times have been observed
300, 580, 700, 900, 1'300, 1'500, 1'800, 2'000, 2'200, 3'000, 3'300, 3'800, 4'200, 4'600, 4'800, 5'000,
6'400, 8'000, 9'100, 9'800h.  Assuming a Weibull distribution, plot the values on a Weibull probability
chart (p. 570) and determine graphically the parameters λ β  &  .  Compute the maximum likelihood
estimates for λ β  &   and draw the corresponding straight line.  Draw the random band obtained
using the Kolmogorov theorem (p. 530) for α = 0 2. .  It is possible to affirm that the observed
distribution function belongs to the Weibull family?   (Hint:  Use results of Section 7.5.1.)

Problem 7.8 
*

Prove the statements given in the footnote ++) on p. 330.

Problem 7.9 
*

Prove the procedures given in Sections 7.6.3.1 & 7.6.3.2 (Eqs. (7.86), (7.87), (7.90), (7.91), (7.93-96)).
Problem 7.10 

*

For a repairable electromechanical system, the following arrival times t i
* of successive failures have

been observed during T = 3 000' h :  450, 800, 1'400, 1'700, 1'950, 2'150, 2'450, 2'600, 2'850, 2'950h.
Test the hypothesis H0: the underlying point process is an HPP, against H1: the underlying process
is an NHPP with increasing density.  Fit a possible M ( )t .  (Hint:  Use results of Section 7.6.3.)
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Problem A6.1
Devices are delivered from source A with probability p and B with probability 1− p.  Devices from
source A have constant failure rate λA , those from source B have early failures and their failure-free
time is Gamma distributed (Eq. (A6.97)) with parameters λB  and β < 1.  The devices are mixed.
Give the resulting distribution of the failure-free time and the MTTF for a device randomly selected.

Problem A6.2
Show that only the exponential distribution (Eq. (A6.81)), in continuous time, and the geometric
distribution (Eq. (A6.131)), in discrete time, possess the memoryless property. (Hint: Use Eq. (A6.27)
and the considerations in Appendices A6.5 and A7.2.)

Problem A6.3
Show that the failure-free time of a series-system with independent elements E En1 ,..., , each with
Weibull distributed failure-free times with parameters λ βi  and , is distributed according to a Weibull
distribution with parameters λ βS  and , give λS .  (Hint:  Consider Appendix A6.10.2.)

Problem A6.4
Show that the probability to have exactly k failures in the operating time T of a system with constant
failure rate λ, repaired as-good-as-new at each failure, is given by ( ) / !λ λT kk Te −

Problem A6.5
Prove cases (i), (iii), and (v) given in Example A6. 18 (p. 448).

Problem A6.6 
*

Show that the sum of independent random variables having a common exponential distribution are
Erlangian distributed.  Same for Gamma distributed random variables, giving a Gamma distribution.
Same for normal distributed random variables, giving a normal distribution.

Problem A6.7 
*

Show that the square of a standard normal distributed random variable (Eq.(A6.109)) is χ2  distrib-
uted with ν=1.  (Hint: Use fη ( )t  per Eq. (A6.31), u ( ) ,t t= 2  & consider −∞ < <∞ < = <∞τ η τ& .)0 2

Problem A6.8*

Show that mean & variance of a lognormally distributed random variable are given by Eqs. (A6.112),
(A6.113). (Hint:  Use x t= (ln ) /λ σ 2  and then y x= − σ / 2  for mean, y x= − σ . 2  for variance.)

Problem A7.1
Prove that for a homogeneous Poisson process with parameter λ, the probability to have k events
(failures) in ( , ]0 T  is Poisson distributed with parameter λT .

Problem A7.2
Determine graphically from Fig. A7.2 (p. 468) the mean time to failure of the item considered in
Case V of Example A7.1.  (Hint:  Use Eq. (A7.30).)   Compare this result with that obtained for Case
V with λw = 0, i. e., as if no early failures where present.  Same for Case IV, and compare the result
with that obtained for Case IV with ψ → ∞ , i. e., as if the wear-out period would never occur.

Problem A7.3
Prove Eq.(A7.33) for the mean of the forward recurrence time τ R t( ) in a renewal process for t →∞ .
Show that for a homogeneous Poisson process it holds that the mean of τ R t( ) is independent of t and
equal the mean of the successive interarrival times ( / ) .1 λ  Explain the waiting time paradox (p. 470).

Problem A7.4
Prove Equation (5.3) and give an explication for the validity of Eq. (5.4).  (Hint:  use results of Sec-
tion 2.3.5 with ν λi n i i n= − = −( ) , , ..., ,,  0 1 1  and, for Eq. (5.4), consider a series model with E En1= =... .
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Problem A7.5
Prove that for a nonhomogeneous Poisson process with intensity m M( ) ( ) /t d t dt= , the probability
to have k events (failures) in the interval ( , ]0 T  is Poisson distributed with parameter M M( ) ( )T − 0 .

Problem A7.6
Investigate the cumulative damage caused by Poisson distributed shocks with intensity λ, each of
which causes a damage ξ > 0 exponentially distributed with parameter η > 0, independent of the
shock and of the cumulated damage.  (Hint:  Consider Appendix A7.8.4.)

Problem A7.7
Investigate the renewal densities hud t( ) and hdu t( ) (Eqs. (A7.52), (A7.53)) for the case of constant
failure and repair (restoration) rates λ and µ.  Show that they converge exponentially for t → ∞  with
a time constant 1 / ( + ) 1 /λ µ µ≈  toward their final value λµ λ µ λ/ ( + ) ≈ .  (Hint: Use Table A9.7b.)

Problem A7.8
Let 0 1 2< < < …τ τ* *  be the occurrence times (failure times of a repairable system) of a non-
homogeneous Poisson process with intensity m M( ) ( ) /t d t dt= > 0 (from the origin t = =τ 0 0* ) ,
show that the quantities ψ ψτ τ1 1 2 2

* * * *( ) ( ) ...= < = <M M      are the occurrence times in a homog.
Poisson process with intensity one, i. e with M( )t t= .  (Hint:  Consider the remarks to Eq. (A7.200).)

Problem A7.9
Let τ τ1

* *< … < <n T  be the failure times (arrival times) in the interval ( , ]0 T  of a repairable system.
Assuming a nonhomogeneous Poisson process with intensity m M( ) ( ) /t d t dt= > 0, show that
(for given T  and ν ( )T n= ), the quantities 0<    M M        M M( ) / ( ) ... ( ) / ( )* *τ τ1 1T Tn< < <  have the
same distribution as if they where the order statistics of n independent identically distributed random
variables uniformly distributed on (0,1).  (Hint:  Consider the remarks to Eq. (A7.206).)

Problem A7.10 
*

Using Eqs. (A7.186),(A7.187),(A7.171),(A7.173), prove for g( )x e x= −µ µ
 results in Tab. 6.8 ( ) .n k− =2

Problem A7.11*

Prove Eq. (A7.220).  (Hint: use Eqs. (A6.38) and (A6.45).)

Problem A8.1
Prove Eqs. (A8.10) and (A8.11).

Problem A8.2
Give the maximum likelihood point estimate for the parameters λ and β of a Gamma distribution
(Eq. (A6.97)) and for m  and σ  of a normal distribution (Eq. (A6.105)).

Problem A8.3 
*

Investigate mean and variance of the point estimate ˆ /λ = k T  given by Eq. (7.28).

Problem A8.4 
*

Investigate mean and variance of the point estimate ˆ ( ) / ( ( ) )λ = − + … + + −k t t n k tk k1 1  given by
Eq. (A8.35).  Same for ˆ / ( )λ = + … +n t t n1  given by Eq. (A8.28).

Problem A8.5 
*

Prove Eq. (A8.32).  (Hint: use Eq. (A8.27).)

Problem A8.6*

Prove Eq. (A8.62).  (Hint: use Eqs. (A8.61) & (A8.24).)

Problem A8.7 
*

Develop the procedure (Eqs. (A8.91) - (A8.93)) for the demonstration of an availability PA for the
case of constant failure rate and Erlangian distributed repair times with parameter β µµ = n .



Acronyms

ACM : Association for Computing Machinery, New York, NY 10036
AFCIQ : Association Française pour le Contrôle Industriel de la Qualité, F-92080 Paris
ANSI : American National Standards Institute, New York, NY 10036
AQAP : Allied Quality Assurance Publications (NATO-Countries)
ASQ : American Society for Quality, Milwaukee, WI 53203
CECC : Cenelec Electronic Components Committee, B-1050 Brussels
CEEES Confederation of European Environmental Engineering Societies (www.ceees.org/)
CENELEC : European Committee for Electrotechnical Standardization, B-1050 Brussels
CNET : Centre National d'Etudes des Telecommunications, F-22301 Lannion
DGQ : Deutsche Gesellschaft für Qualität, D-60549 Frankfurt a. M.
DIN : Deutsches Institut für Normung, D-14129 Berlin 30
DOD : Department of Defense, Washington, D.C. 20301
EOQC : European Organization for Quality Control, B-1000 Brussels
EOS/ESD : Electrical Overstress/Electrostatic Discharge
ESA : European Space Agency, NL-2200 AG Noordwijk
ESREF : European Symp. on Rel. of Electron. Devices, Failure Physics and Analysis
ETH : Swiss Federal Institute of Technology, CH-8092 Zurich
EXACT : Int. Exchange of Authentic. Electronic Comp. Perf. Test Data, London, NW4 4AP
FRACAS : Failure Reporting and Corrective Actions System
GEIA : Government Electronics and Information Association, Ann Arbor, MI 48108
GIDEP : Government-Industry Data Exchange Program, Corona, CA 91720
GPO : Government Printing Office, Washington, D.C. 20402
GRD : Gruppe Rüstung, CH-3000 Bern 25
IEC (CEI) : International Electrotechnical Commission, CH-1211 Geneva 20, P.. Box131
IECEE : IEC System for Conformity Testing & Certif. of Electrical Equip., CH-1211 Geneva 20
IECQ : IEC Quality Assessment System for Electronic Components, CH-1211 Geneva 20
IEEE : Institute of Electrical and Electronics Engineers, Piscataway, NJ 08855-0459
IES : Institute of Environmental Sciences, Mount Prospect, IL 60056
IPC : Institute for Interconnecting and Packaging El. Circuits, Lincolnwood, IL 60646
IRPS : International Reliability Physics Symposium (IEEE), USA
ISO : International Organization for Standardization, CH-1211 Geneva 20, P.. Box56
MIL-STD : Military (USA) Standard, Standardiz. Doc. Order Desk, Philadelphia, PA19111-5094
NASA : National Aeronautics and Space Administration, Washington, D.C. 20546
NTIS : National Technical Information Service, Springfield, VA 22161-2171
NUREG US. Nuclear Regulatory Commission, Washington DC 20555-0001
RAC : Reliability Analysis Center, Rome, NY 13442-4700 (now RIAC)
RAMS : Reliability, Availability, Maintainability, Safety  (also Rel. & Maint. Symp., IEEE)
RIAC : Reliability Information Analysis Center, Utica, NY 13502-1348 (formerly. RAC)
Rel. Lab. : Reliability Laboratory at the ETH  (now at EMPA  S173, CH-8600 Dübendorf)
RL : Rome Laboratory, Griffins AFB, NY 13441-4505
SAQ : Schweizerische Arbeitsgemeinschaft für Qualitätsförderung, CH-4600 Olten
SEV : Schweizerischer Elektrotechnischer Verein, CH-8320 Fehraltorf
SNV : Schweizerische Normen-Vereinigung, CH-8008 Zurich
SOLE : Society of Logistic Engineers, Huntsville, AL 35806
VDI/VDE : Verein Deutscher Ing./Verband Deut. Elektrotechniker, D-60549 Frankfurt a. M.

(see also the  Index)

A. Birolini, Reliability Engineering, DOI: 10.1007/978-3-642-39535-2,
� Springer-Verlag Berlin Heidelberg 2014

582



References
(see Acronyms on p. 582)

1  Basic Concepts, Historical Development, Quality & Reliability Assurance

[1.0] Bacivarov I.C., "Prof. A. Birolini, a Guru of European Reliability" & "Lesson from a life dedicated to
reliability", Asigurarea Calitatii- Quality Assurance, 16(2010)63, pp. 2-3 & 16(2010)64, pp. 5-7;  "A.
Birolini, Reliability Engineering - A Bible of Reliability", Proc.CCF2010, 4pp.

[1.1] Birnbaum Z.W. et al., "Multi-component systems & structures and their reliability", Technometrics,
3(1961), pp. 55-77.

[1.2] Birolini A., "Product assurance tasks and organization", Proc. 21st EOQC Conf., Varna 1977, Vol.1, pp.
316-29;   "Qualitäts- und Zuverlässigkeitssicherung komplexer Systeme: Teil 1 und 2", Bull. SEV/VSE,
70 (1979), pp. 142-48 and 237-43;  "Reliability engineering: Cooperation between University and
Industry at the ETH Zurich", Quality Eng., 8(1996)4, pp. 659-74;  "Lesson from a life dedicated to
reliability", Quality Assurance" (Asigurarea Calitatii), 16(2010)64,  pp. 5-7.

[1.3] Braband J., Risiko analysen in der Eisenbahn-Automatisierung, 2005, Eurailpress, Hamburg.
[1.4] Buckley F.J., Configuration Manag.: Hardware, Software, Firmware, 1993, IEEE Press, Piscataway NJ.
[1.5] Condra L.W. et al., "Electronic components obsolescence, IEEE Trans. Comp., Pack.. & Manuf.

Technol., 20(1997), pp. 368-71.
[1.6] Dersin P., "Predicting the expected duration and cost of reliability-related warranty extension", Proc.

λ/µ 15 Conf., Lille, France, Oct. 2006, Section 2D, 4 pp.
[1.7] Dougherty M.E. et al.,  Human Reliability Analysis, 1988, Wiley, NY.
[1.8] Feigenbaum A.V.,  Total Quality Control, 3rd Ed. 1983, McGraw-Hill, NY.
[1.9] Frenkel M. et al.,  Risk Management, 2000, Springer, Berlin.
[1.10] Gay T.F. (Ed.),  Product Liability in Europe, 1993, 2nd Ed., ORGALIME, Brussels, see also

EUR Council Directive 85/374/EEC (Regulations concerning liability for defective products).
[1.11] Haug S. et al., "Impact of electronic comp. obsolescence on commercial aerospace", Aerospace Mag.,

1999, March , pp. 26-31;  see also CENELEC ES 59010 (2001) and IEC 62402 (2007).
[1.12] IEEE,  Special issue on:  50th Anniversary IEEE Rel. Soc.,  IEEE Trans. Rel., 47(1998)3-SP.
[1.13] Irland E. A., "Assuring quality and reliability of complex electronic systems:  Hardware and software",

Proc. IEEE, 76(1988)1, pp. 5-18.
[1.14] Juran J.M., et al.,  (Eds)., Quality Control Handbook, 4th Ed. 1988, McGraw-Hill, NY.
[1.15] Kuehn R., "Four decades of reliability experience",  Proc. Ann. Rel. & Maint. Symp., 1991, pp. 76-81.
[1.16] Kusiak A. (Ed.),  Concurrent Engineering: Automation, Tools and Techniques, 1993, Wiley, NY.
[1.17] LaSala K.P., "Book review - Rel. Eng. 4th Ed.", IEEE Rel. Newslettre, 50(2004)3 Aug. 2004, 2pp.;

Book review - Rel. Eng. 6th Ed.", IEEE Rel. Newslettre, 57(2011)1 Feb. 2011, 3pp.
[1.18] Mattana G.,  Qualità, Affidabilità, Certificazione, 15th Ed. 2005, Angeli, Milano.
[1.19] Meindi J.D. (Ed.), Special Issue on Limits of Semiconductor Technology, Proc. IEEE, 89(2001)3.
[1.20] Moore E.F. et al.,   "Reliable circuits using less reliable relays", J. of the Franklin Inst., 262(1956), pp.

191-208 and 281-297.
[1.21] Peters G.A., "Risk analysis", Technology, Law and Insurance, (1997) 2, pp. 97-110.
[1.22] RAC,  Reliability Toolkit: Commercial Practices Edition, 1995;  Maintainability Toolkit, 1999,

RAC, Rome NY  (now RIAC, Utica, NY).
[1.23] Roeser S. et al. (Ed.),  Handbook of Risk Theory, 2012, Springer, Berlin-Heidelberg-NY.
[1.24] Taguchi G.,  System of Experimental Design-Engineering Methods to Optimize Quality and Minimize

Costs, Vol. 1 & 2., 1987, Unipub, White Plains NY.
[1.25] Turconi G., "Ulysses, Scylla, Charybdis - story of rel.", Proc. Ann. Rel. & Main. Symp., 2002, pp. 135-9.
[1.26] Umiker B. et al., "Wie lassen sich grosse Industriekatastrophen verhüten?", Manag. Zeitschrift, 1(1987),

pp. 15-22; "Innovation and resistance to it", 7th Bbuilding Congress, Zurich, Nov. 13, 2008;  Umiker B.
(www.wuco.ch), "The modern art of a discourse on risk", 4th Europ. Conf. on Safety Anal. & Risk
Manag., Rome, Oct. 19, 1993;  "Risk management: Concept and implementation", ASCOM Tech. Mag.,
3(1994), pp. 33-36;  "The coconut effect", Amer. Soc. for Ind. Security Meeting, Zurich ETH, June 4,
1997;  "Krisenbewältigung durch Innovation", 2009, Bau &Architecktur 4(2009), pp. 2-4.

[1.27] Von Neumann J.,  "Probabilistic logic's and the synthesis of reliable organisms from unreliable
components", Ann. of Math. Studies, 34(1956), pp. 43-98.

[1.28] Wang J.X. et al.,   Risk Engineering and Management, 2000, Dekker, NY.

see also [A1.1 to A5.6]

A. Birolini, Reliability Engineering, DOI: 10.1007/978-3-642-39535-2,
� Springer-Verlag Berlin Heidelberg 2014

583



584 References

2  Reliability Analysis

Reliability Techniques

[2.1] Arlat J. et al., "Fault injection and dependability evaluation of fault tolerant systems", IEEE Trans.
Comp., 42(1993)8, pp. 913-23.

[2.2] Birolini A.,  Zuverlässigkeit von Schaltungen und Systemen, 1982, ETH Zurich;  Modelle zur
Berechnung der Rentabilität der Q.- und Z.-Sicherung komplexer Waffensysteme, 1986, GRD, Bern;
Zuverlässigkeit von Geräten und Systemen, 1985, 1988, 1991, 1997, Springer, Berlin.

[2.3] Catuneanu V.M. et al.,  Reliability Fundamentals, 1989, Elsevier, Amsterdam.
[2.4] Denson W., "The history of reliability prediction", IEEE Trans. Rel., 47(1998)3-SP, pp. SP-321-28.
[2.5] Dhillon B.S. et al.,  "Common-cause failures in engineering systems: A review", Int. J. Rel., Qual. &

Safety Eng., 1(1994), pp. 103-29.
[2.6] Dugan J.B., "Automated analysis of phased-mission reliability", IEEE Trans. Rel., 40(1991), pp. 45-52.
[2.7] Esary J.D. et al., "Rel. an. of phased missions", Proc. Conf. Rel. & Fault Tree An., 1975, pp. 213-36.
[2.8] Friedman M.A. et al.,  "Reliability techniques for combined hardware/software systems", Proc. Ann.

Rel. & Maint. Symp., 1992, pp. 290-293.
[2.9] Klaassen K.,  "Active red. in analog el. systems", Proc. Ann. Rel. & M. Symp., 1975, pp. 573-78.
[2.10] MIL-HDBK-338B (1998): Electronic Reliability Design Handbook.
[2.11] Mitra S. et al., "Common-mode failures in redundant VLSI systems: A survey", IEEE Trans. Rel.,

49(2000)3, pp. 285-95.
[2.12] O' Connor P.D.T.,  Practical Reliability Engineering, 3th Ed. 1991, Wiley, NY.
[2.13] Pahm H., ed.  Handbook of Reliability Engineering, 2003, Springer, Berlin & NY.
[2.14] RAC, WCCA: Worst Case Circuit Analysis Appl. Guidelines, 1993;  RTMG: Thermal Manag.

Guidebook, 1994;  RADC-TR-90-109:  Integration of Sneak Analysis with Design, 1990;  Reliability
Toolkit: Commercial Practices Edition, 1995, RAC, Rome NY  (now RIAC, Utica NY).

[2.15] Rhoads M.J.,  Design for Rel. Handbook, AMSAA TR-2011-24, AMSAA, Aberdeen Prov. G., Maryland.
[2.16] Roush M.L. et al.,  Applied Reliability Engineering, 2002, Center for Rel. Eng., Maryland.
[2.17] Siewiorek D.P., "Architecture of fault-tolerant computers", Proc. IEEE, 79(1991)12, pp. 1710-34;  -et

al.,  Reliable Computer Systems Design and Evaluation, 1992 (3d Ed. 1998), Dig. Press, Bedford MA.
[2.18] Somani A.K. et al., "Computational-efficient phased-mission reliability analysis for systems with

variable configurations", IEEE Trans. Rel., 41(1992)4, pp. 504-11.
[2.19] Tomek L. et al., "Rel. models of fife-critical real-time systems", Proc IEEE, 79(1994)1, pp. 108-21.

see also [1.22, 2.31-2.49, 2.61-2.98, 5.0-5.83, 6.0-6.90, A2.0-A2.13]

Component Failure Rate Models & Data

[2.20] ESA ECSS-Q-HB-30-08A: Comp. Rel. Data Sources & their Use, 2011;   Q-ST-30-11C: Derating, 2011.
[2.21] FIDES Guide 2009A (2010): Rel. Methodology for Electronic Systems, Paris (www.fides-reliability.org).
[2.22] IEC 61709 (1996, Ed. 2 2011): Electronic Components - Reliability - Reference Condition for Failure

Rates and Stress Models  for Conversion.
[2.23] IEC/TR 62380 (2004): Reliability Data Handbook  (formerly RDF 2000/UTE C80-810: Recueil de

Données de Fiabilité, CNET Lannion).
[2.24] IRPH 2003: Italtel Reliability Prediction HDBK, 2003, Italtel, Milano.
[2.25] MIL-HDBK-217G (draft): Reliability Prediction of Electronic Equipment  (Rev. H planned, see also

McLeish J.C., Enhancing MIL-HDBK-217 Rel. Predictions with Physics of Failure Methods, Proc.
Ann. Rel. & Maint. Symp., 2010, pp. 6-10).

[2.26] NSWC-11: HDBK of Reliability Prediction Procedures for Mechanical Equipment, 2011, Naval
Surface Warfare Center- Carderock Division, West Bethesda MA.

[2.27] RAC, NONOP-1: Nonoperating Rel. Data, 1992;  NPRD-2011: Nonelectronic Parts Rel. Data, 2011;
TR-89-177: VHSIC/ VHSIC Rel. Modeling;  TR-90-72: Rel. Analysis Assessment of Adv. Technologies,
RAC, Rome, NY  (now RIAC, Utica NY).

[2.28] RDF 96:  Recueil Données de Fiabilité des Comp. Electroniques, 1996, Thomson-CSF, Grenoble.
[2.29] RIAC-HDBK-217Plus:  Handbook 217Plus Rel. Prediction Models, 2008, RIAC, Utica, NY
[2.30] SR-332: Rel. Prediction Procedure for El. Equip., Issue 3, 2011, Telcordia Technol.,  Red Bank NJ.

see also [1.22, 3.1, 3.10, 3.15, 358, 3.66, 3.67, A2.7];   for Bellcore see [2.30]



References 585

Reliability of Large / Complex Structures

[2.31] Agarwal M. et al., "CERT analysis of cons. k-out-of-n: F systems", IEEE Trans. Rel., 56(2007)1, pp. 26-34.
[2.32] Arunkumar S. et al.,  "Enumeration of all minimal cut-sets for a node pair in a graph", IEEE Trans. Rel.,

28(1987)1, pp. 51-55.
[2.33] Bansal V.K.,  "Minimal path-sets and minimal cut-sets using search techniques", Microel. & Rel.,

22(1982)6, pp. 1067-1075.
[2.34] Barlow R.E. et al.,  Mathematical Theory of Reliability, 1965, Wiley, NY;  Statistical Theory of

Reliability and Life Testing, 1975, Holt Rinehart, NY.
[2.35] Bellcore SR-TSY-001171, Methods and Procedures for System Reliability Analysis, 1989.
[2.36] Bryant R.E., "A graph based algorithm for Boolean function manip.", IEEE Trans. Comp., 35(1986)8,

pp. 677-91;  "Symbolic Boolean manip. with ordered BDD", ACM Comp. Surv., 24(1992), pp. 293-318..
[2.37] Carrasco J.A. et al.,  "An algorithm to find minimal cuts of coherent fault-trees with event-classes using

a decision tree", IEEE Trans. Rel., 48(1999)1, pp. 31-41.
[2.38] Cluzeau, T. et al., "An efficient algorithm for computing the rel, of consecutive k-out-of-n: F systems",

IEEE Trans. Rel., 57(2008)1, pp. 84-87.
[2.39] Esary J.D. et al.,  "Relationship between system failure rate and component failure rates",

Technometrics 5(1963)2, pp. 183-189;  Coherent structures of non-identical components"
Technometrics 5(1963)2, pp. 191-209.

[2.40] Hura G.S.,  "A Petri net approach to enumerate all system success paths for rel. evaluation of complex
systems";   "Petri net approach to the analysis of a structured program";   "Petri net as a mod. tool",
Microel. & Rel., 22 (1982)3, pp. 427-39, (1983) pp. 157-59, 467-75, 851-53.

[2.41] Keymeulen D. et al., "Fault-tolerant evolvable hardware using field-programmable transistor arrays",
IEEE Trans. Rel., 49(2000)3, pp. 306-16.

[2.42] Kossow A. et al.,  "Failure probability of strict consecutive-k-out-of-n: F systems", IEEE Trans. Rel.,
36(1987)5, pp. 551-53;   "Rel. of consecutive-k-out-of-n: F systems with nonidentical component rel.",
IEEE Trans. Rel., 38(1989), pp. 229-33;  "Mean time to failure for linear-consec.-k-out-of-n: F
systems", IEEE Trans. Rel., 40(1991)3, pp. 271-72;  "Rel. of linear consecutive connected systems with
multistate comp.", IEEE Trans. Rel., 44(1995)3, pp. 518-22.

[2.43] Krishna C.M. et al.,  "Optimal configuration of redundant real-time systems in the face of correlated
failures", IEEE Trans. Rel., 44(1995)4, pp. 587-94.

[2.44] Kuo W. et al., "An annotated overview of system reliability optimization", IEEE Trans. Rel., 49(2000)2,
pp. 176-87.

[2.45] Luo T. et al., "Improved alg. for coherent-system rel.", IEEE Trans. Rel., 47(1998)1, pp. 73-78.
[2.46] Myers A.F., "k-out-of-n:G system reliability with imperfect fault coverage", IEEE Trans. Rel.,

56(2007)3, pp. 464-73.
[2.47] Prasad V.R. et al. "Rel. optimiz. of coherent systems", IEEE Trans. Rel., 49(2000), pp. 323-30.
[2.48] Schneeweiss W., Boolean Functions with Eng. Applications & Comp. Progr. 1989, Springer, Berlin.
[2.49] Xing L., "Rel. evaluation of phased-mission systems with imperfect fault coverage and common-cause

failures", IEEE Trans. Rel., 56(2007)1, pp. 58-68.

see also [2.97, 6.0-6.90]

Software Tools

[2.50] Bernet R., "CARP - A program to calculate the predicted reliability", 6th Int. Conf. on Rel. & Maint.,
Strasbourg 1988, pp. 306-10;  Modellierung reparierbarer Systeme durch Markoff- und
Semiregenerative Prozesse, 1992, Ph.D.Thesis 9682, ETH Zurich;   Birolini A. et al, CARAP ETH
Technical Spec., 1995, Report S10, ETH Zürich, Rel. Lab.;   Kovalenko I. and Kuznetov N., Basis of
the RS-Program/Guidance to the RS-Program, 1997, Rep. S13/S14, ETH Zurich, Rel. Lab.

[2.51] Bowles J.B. et al.,  "Comparison of commercial reliability-prediction programs", Proc. Ann. Rel. &
Maint. Symp., 1990, pp. 450-55.

[2.52] Dylis D.D. et al., "A comprehensive reliability assessment tool for electronic systems", Proc. Ann. Rel.
& Maint. Symp., 2001, pp. 308-13.

[2.53] Gymayr J., et al., "Fault-tree analysis: a knowledge-engineering approach", IEEE Trans. Rel.,
44(1995)1, pp. 37-45.

[2.54] Item, Item Toolkit for RAMS, 2001, Item Software, Fareham, Hampshire UK.
[2.55] Jaeger H., "RAMTOOL", Proc. ETH/IEEE Int. Symp. on Rel. Eng. 2'000, ETH Zurich, Rel. Lab.,

Oct. 17, 1996;  Zuverlässigheit und Materialerhaltbarkeit, Bundesakad. W.W., Mannheim, 1998.



586 References

[2.56] Lindemann C., et al., "Numerical methods for reliability evaluation of Markov closed fault-
tolerant systems", IEEE Trans. Rel., 44(1995)4, pp. 694-704.

[2.57] RAC, PRISM System Reliability Assessment Software, 2001, RAC Rome, NY (s. also [1.22]).
[2.58] Relex, Visual Reliability Software, 2001, Relex Software, Greensburg PA.
[2.59] Sahner R. et al.,  "Rel. modeling using SHARPE", IEEE Trans. Rel. 36(1987), pp. 186-93.
[2.60] Telcordia, Automated Rel. Prediction Procedure, Telcordia Technology, Red Bank NJ.

see also [1.22, 2.6, 2.18, 2.74, 2.76, 4.24, 4.32, 6.18, 6.43]

Mechanical Reliability

[2.61] Barer R.D.,  Why Metals Fail, 3rd Ed. 1974, Gordon & Breach, NY.
[2.62] Beitz W. et al. (Ed.), Handbook of Mechanical Engineering, 1994, Springer, Berlin.
[2.63] Bogdanoff J.L. et al.,  Probabilistic Models for Cumulative Damage, 1985, Wiley, NY.
[2.64] Carter A.D.S.,  Mechanical Reliability, 2nd Ed. 1986, Macmillan, London.
[2.65] Collins J.A.,  Failure of Materials in Mechanical Design, 1981, Wiley, NY.
[2.66] Engelmaier W.,  Reliable Surface Mount Solder Attachments Through Design & Manuf. Quality, 1993,

Rep. L21, ETH Zurich, Rel. Lab. (also Proc. ETH/IEEE Workshop SMT, 1992).
[2.67] Freddi S.,  Design of Experiment, Course at the 15th Symp. Danubia-Adria, Bertinoro, 1998.
[2.68] Hutchings F. et al. (Ed.),  Failure Analysis, 1981, Am. Soc. Met., Metals Park OH.
[2.69] Kececioglu D.,  Reliability Eng. Handbook (Vol. 1 & 2), 1991, Prentice, Englewood Cliffs NJ;   - et al.,

"Combined-stress fatigue reliability analysis", Proc. Ann. Rel. & Maint. Symp., 1998, pp. 202-08;  - et
al., "A unified approach to random fatigue reliability quantification under random loading", Proc. Ann.
Rel. & Maint. Symp., 1998, pp. 308-13.

[2.70] Kutz M. (Ed.),  Mechanical Engineers’ Handbook, 1986, Wiley, NY.
[2.71] Lewis E.E., "A load-capacity interference model for common-mode failures in 1-out-of-2: G systems",

IEEE Trans. Rel., 50(2001)1, pp. 47-51.
[2.72] Manson S.S.,  Thermal Stress and Low-Cycle Fatigue, 1981, Krieger, Malabar FL.
[2.73] Nelson J. et al., "Rel. models for mech. equip..", Proc. Ann. Rel. & Maint. Symp., 1989, pp. 146-53.
[2.74] NSWC-11: HDBK of Reliability Prediction Procedures for Mechanical Equipment, 2011, Naval Surface

Warfare Center- Carderock Division, West Bethesda MA.
[2.75] Padgett W.J., "A multiplicative damage model for strength of fibrous composite materials", IEEE

Trans. Rel., 47(1998)1, pp. 46-52.
[2.76] Pozsgai P. et al., "SYSLEB: A Tool for the Calculation of the System Reliability from raw Failure

Data", Proc. Ann. Rel. & Maint. Symp., 2002, pp. 542-49.
[2.77] RAC,  NPS: Mechanical Applications in Reliability Engineering, 1993, Rome NY  .

see also [2.26, 2.27, 3.52, 3.70-3.93]

Failure (Fault) Modes and Effects Analysis (FMEA), Fault Tree Analysis (FTA)

[2.80] Bednarz S. et al., "Efficient analysis for FMEA", Proc. Ann. Rel. & Maint. Symp., 1988, pp. 416-21.
[2.81] Bowles J.B., "The new SAE FMECA Std", Proc. Ann. Rel. & Maint. Symp., 1998, pp. 48-53; - et al.,

"Software FMEA for small embedded control syst., "Proc. Ann. Rel. & Maint. Symp., 2001, pp. 1-6.
[2.82] Braband J., "Improving the risk priority number concept", J. of System Safety, Q2(2003), pp. 21-23.
[2.83] Chrysler, Ford, GM,  Potential FMEA, 2nd Ed. 1995 (also as SAE J-1739).
[2.84] DIN 25419: Störfallablaufanalyse, 1977-79;   25424: Fehlerbaumanalyse, 1981;  25448: Ausfall-

effektanalyse, 1980;    31000: Allg. Leit. für das sicherheitsgerechte Gestalten tech. Erzeug., 1979.
[2.85] Dugan J.B. et al., "Dynamic fault tree models for fault tolerant comp. syst.", IEEE Trans. Rel.,

41(1992), pp. 363-77 (see also Rel. Eng. & Syst. Safety, 39(1993), pp. 291-307);  "Developing a low-
cost high-quality software tool for dyn. fault-tree anal.", IEEE Trans. Rel., 49(2000),pp. 49-59.

[2.86] ESA ECSS-Q-30-02A: .Space product assurance, FMECA, 2001.
[2.87] Goddard P.L., "Software FMEA techniques", Proc. Ann. Rel. & Maint. Symp., 2000, pp. 118-23.
[2.88] Hall F.M. et al., "Hardware / Software FMECA", Proc. Ann. Rel. & Maint. Symp., 1983, pp. 320-27.
[2.89] IEC 60812 (2006): Procedure for FMEA;  61025((2006): Fault Tree Analysis (FTA).
[2.90] Jackson T., "Integrated sneak circuit analysis and FMEA", Proc. Ann. Rel. & Maint. Symp., 1986,

pp. 408-414.
[2.91] Keene S.J., "Eng. application of failure data", Proc. Ann. Rel. & Maint. Symp., 1971, pp. 104-09.



References 587

[2.92] MIL-STD-1629A (1998):  Procedures for Performing a FMECA.
[2.93] Onodera K., "Effective technique of FMEA at each life-cycle", Proc. Ann. Rel. & Maint. Symp. 1997,

pp. 50-56.
[2.94] Picciolo G. et al., "Thermoelectrical power station rel. assessment", Proc. PMAPS 2002, pp. 347-53.
[2.95] Price C.J. et al., "Identifying design glitches through automated design analysis", Proc. Ann. Rel. &

Maint. Symp., 1999, pp. 277-82.
[2.96]    RAC:  FMECA, 1993;  FTA, 1990; WCCA (Worst Case Circuit Anal.), 1992  (now RIAC, Utica NY).
[2.97] Schneeweiss W.,  The Fault Tree Method, 1999, LiLoLe, Hagen.
[2.98] Stamenkovic B. et al.,   "Failure modes, effects and criticality analysis: The basic concepts and

applications",  Proc. Int. Summer Seminar, Dubrovnik, 1987, pp. 21-25.

see also [1.22, 3.58 (2013), 5.82, 5.75, 5.79, 3.58 (2013)]

3  Qualification of Components and Assemblies

Selection Criteria and Qualification Tests for Components

[3.1] Bajenescu T.I. et al., Component Reliability for Electronic Systems, 2010, Artech House, Norwood MA.
[3.2] Birolini A.,  "Möglichkeiten und Grenzen der Qualifikation, Prüfung und Vorbehandlung von ICs", QZ,

27(1982)11, pp. 321-26;  "Prüfung und Vorbehandlung von Bauelem. und bestück. Leiterplatten",
VDI/VDE Fachtagung, Karlsruhe 1984, VDI Bericht Nr. 519, pp. 49-61;  "Neue Ergebnisse aus der
Qualif. grosser Halbleiterspeicher", me, 7(1993) 2, pp. 98-102;   –  et al., "Test and screening strategies
for large memories", 1st European Test Conf., Paris: 1989, pp. 276-83.

[3.3] Brambilla P. et al., "Rel. evaluation of plastic-packaged device for long life applications by THB test",
Microel. & Rel., 26(1986)2, pp. 365-84.

[3.4] Diaz C. et al., "Electrical overstress & electrostatic discharge", IEEE Trans. Rel., 44(1995)1, pp. 2-5.
[3.5] ESA PSS 01-603: ESA Preferred parts List, 3rd Ed. 1995.
[3.6] ETH Zurich Reliability Lab.,  Reports Q2-Q12: Qualification Test for DRAMs 256Kx1, SRAMS

32Kx8, EPROMs 32Kx8, SRAMs 8Kx8, DRAMs 1Mx1, EEPROMs 8Kx8, SRAMs 128Kx8, DRAMs
4Mx1, EEPROMs 32Kx8, EPROMs 64Kx16, and FLASH-EPROMs 128Kx8. 1988-92.

[3.7] Gerling W., "Modern reliability assurance of integrated circuits". Proc. ESREF'90, Bari, pp. 1-12.
[3.8] IEC 60068-1 to -2 (1983-2012): Environmental Testing ;   60319 (1999): Presentation and Spec. of Rel.

Data for El. Comp.;  60721-1 to -2 (1982-2012): Classification of Envir. Cond.;  60749-1 to -40 (2002-
2012): Semiconductor Devices - Mech. and Climatic Test Methods;  61000-1 to -6 (1990-2012):
Electromag. Compatibility;   see also QC 001001 (2000): Basic Rules of IEC Quality Assessment Syst.
for Electron. Comp. (IECQ), QC 001002-1006, QC 200000, QC 210000.

[3.9] IEEE,  Special issues on:   Reliability of Semiconductor Devices, Proc. IEEE, 62(1974)2;   Micron and
Submicron Circuit Engineering, Proc. IEEE, 71(1983)5;   Integrated circuit technologies of the future,
Proc. IEEE, 74(1986)12;    VLSI Reliability, Proc. IEEE, 81(1993)5.

[3.10] Jensen F., Electronic Component Reliability, 1995, Wiley, NY.
[3.11] Lin H-Y. et al., "Efficient algorithm for space alloca. prob.", IEEE Trans. Rel., 55(2006)2, pp. 369-78..
[3.12] MIL-STD-883H (2010): Test Methods and Procedures for Microelectronics;  see also -199, -202, -750,

-810, -976, -M-38510, -S-19500.
[3.13] Murari B. et al., Smart Power ICs: Technologies and Applications, 1996, Springer, Berlin.
[3.14] Powell R.F.,  Testing Active and Passive Electronic Components, 1987, Dekker, NY.
[3.15] RAC, Parts Selection, Application and Control, 1993;   Reliable Appl. of Components, 1993;  Reliable

Appl. of Microcircuits, 1996;  Reliable Appl. of Hybrids, 1993;  Reliable Appl. of Multichip Modules,
1995, RAC, Rome NY  (now RIAC, Utica NY).

[3.16] Ratchev D., "Are NV-Mem. non-volatile?" Proc. 1993 IEEE Workshop on Memory Test., pp. 102-06.
[3.17] RIAC, Reliability of Compound Semiconductor Analogue ICs, 2006, RIAC, Utica NY.
[3.18] Sawada K. et al.,   "An evaluation of IDDQ versus conventional testing for CMOS sea-of-gate ICs", Int.

Test Conf., 1992, pp. 158-67.
[3.19] Thomas R.W.,  "The US Department of Defense procurement strategy and the semiconductor industry

in the 1990's", Proc. 4th Int. Conf. Quality in El. Comp., Bordeaux 1989, pp. 1-3.
[3.20] van de Goor A.J,  Testing Semiconductor Memories, 1991, Wiley, NY.
[3.21] Williams T.W. (Ed.),  VLSI - Testing, 1986, North-Holland, Amsterdam.



588 References

[3.22] Wolfgang E. et al.,  "Electron beam testing", Proc. ESREF'90, Bari, pp. 111-120.
[3.23] Zinke O. et al.,  Widerstände, Kondensatoren Spulen und ihre Werkstoffe, 1982, Springer, Berlin.

see also [2.10, 5.1-5.20, 8.21-8.35]

Failure Mechanisms, Failure Analysis

[3.30] Amerasekera E., Campbell D.,   Failure Mechanisms in Semiconductor Devices. 1987, Wiley, NY.
[3.31] Barbottin G., et al. (Eds.),  Instabilities in Silicon Devices, 1986, North-Holland, Amsterdam.
[3.32] Bayle F. et al., "Temperature acceleration models in rel. predictions: Justification & improvements",

Proc. Ann. Rel. & Maint. Symp., 2010, 7 pp.
[3.33] Black J.R., "Electromigration failure mode in Aluminum metallization for semiconductor devices",

Proc. IEEE, 57(1969)9, pp. 1587-94.
[3.34] Ciappa M.,  Ausfallmech. integrierter Schaltungen, 1991, Rep. F1 & F4, ETH Zurich, Rel. Lab.;  - et al.,

"Rel. of laser-diode modules in temperature-uncontrolled env.", Int. Rel. Phys. Symp., 1994, pp. 466-69;
- et al., "Lifetime pred. of IGBT modules for traction appl.", Proc. Int. Rel. Phys. Symp., 2000, pp. 210-16 .

[3.35] Chakravarthi AT. et al.,"A comprehensive framework for predictive modeling of negative bias temperature
instability", Proc. Int. Rel. Phys. Symp., 2004, pp. 273-282.

[3.36] Dantzig J.A. et al., "Solidification", EPFL Press. 2009, pp. 287-298, ISBN 978-2-940222-17-9.
[3.37] Deal B.E. et al., "Characteristic of the surface-state charge of thermally oxidized silicon", J. of

Electrochem. Soc., 114(1967), pp. 266-274.
[3.38] Dieci D. et al. "Breakdown and degradation issues and the choice of a safe load line for power HFET

operation", Proc. Int. Rel. Phys. Symp., 2000, pp. 258-63.
[3.39] Fantini F.,  "Reliability and failure physics of integrated circuits", in Dinemite II, (Vol. IV),

Interuniversitair Micro-Elektronica Centrum, 1986, Leuven, pp. 1-30.
[3.40] Fung R.C.-Y. et al.,  "Latch-up model for the parasitic p-n-p-n path in bulk CMOS", IEEE Trans. El.

Devices, 31(1984)1, pp. 113-20.
[3.41] Ghidini G. et al.,  "Charge trapping mechanism under dynamic stress and their effect on failure time",

Proc. Int. Rel. Phys. Symp., 1999, pp. 88-92.
[3.42] Gieser H.A. et al., "A CDM reproducible field degradation and its reliability aspects", Proc. ESREF'' 93,

Bordeaux , 5pp., see also Qual. & Rel. Eng. International, 10(1994)4, pp. 341-45.
[3.43] Glasstone S., Laidler K.J., Eyring H.E.,  The Theory of Rate Processes, 1941, McGraw-Hill, NY.
[3.44] Herrmann M.,  Charge Loss Modeling of EPROMs with ONO Interpoly Dielectric, 1994, Ph.D. Thesis

10817, ETH Zurich;   - et al., "Field and high- temperature dependence of the long-term charge loss in
EPROMs", J. Appl. Phys., 77 (1995)9, pp. 4522-40.

[3.45] Howes M.J. et al. (Eds.),  Rel. and Degradation - Semiconductor Dev. & Circuits, 1981, Wiley, NY.
[3.46] Hu C. (Ed.),  Nonvolatile Semicond. Mem.: Tech., Design, Appl., 1991, IEEE Press, Piscataway NJ;

-et al., "A unified gate oxide rel. model", Proc. Int. Rel. Phys. Symp., 1999, pp. 47-51;  "Exp. evidence
for V-driven breakdown in ultra thin gate ox.", Proc. Int. Rel. Phys. Symp. ,2000, pp. 7-15.

[3.47] Hu C.-K. et al., "Electromigr. of Cu/low dielectric const. interconnect", Microel. Rel., 46(2006), pp. 213-31.
[3.48] Jacob P., private commun. 2005/2009, peter.jacob@empa.ch;  "Poly-si extensions and etching residues

as a rel. risk" Microsyst Technol, 15(2009)1, pp. 169-74;  "Surface ESD in assembly fab mach. as a
functional and rel. risk", Microel. Rel., 48(2008), pp. 1608-12; - et al. "FIB voltage contrast localization
& analysis of contac-via-chains", Proc. SPIE, Edinburgh 1999, pp. 273-79;  "Electrostatic effects on
semiconductor tools", Microel. Rel., 44(2004), pp. 1787-92;  "Electrostatic discharge directly to the chip
surface, caused by autom. post-wafer processing", Microel. Rel., 45(2005), pp. 1174-80;  "Manuf.-
robotics-induced damages on semicond. dies", Proc. IPFA 2005, pp. 307-12;  "Unusual defects,
generated by wafer sawing", Microel. Rel., 48(2008), pp. 1253-57;  "Reading distance degradation
mechanism of near-field RFID devices", Microel. Rel., 49(2009), pp. 1288-92.

[3.49] JEDEC, Failure Mechanism and Models for Semicond. Devices, JEP 122G, 2011, JEDEC, Arlington, VA.
[3.50] Lantz L., "Soft errors induced by α - particles", IEEE Trans. Rel., 45 (1996)2, pp. 174-79.
[3.51] Li E. et al., "Hot carrier effects in nMOSFETs in 0.1µm CMOS tech.", Proc. Int. Rel. Phys. Symp.,

1999, pp. 253-8;   "Hot carrier ind. degr. in subµ dev.", Proc. Int. Rel. Phys. Symp., 2000, pp. 103-7.
[3.52] Miner M.A.,  "Cumulative damage in fatigue", J. of Appl. Mech., 12(1945)Sept., pp. A159-64.
[3.53] Nakajiam H., "The discovery and acceptance of the Kirkendall effect: The result of a short research

career", JOM, 49(1997)6, pp. 15-19.
[3.54] Ohring M., Reliability and Failure of Electronic Materials and Devices, 1998, Academic Press, NY.



References 589

[3.55] Pecht M.G. et al., Guidebook for Managing Silicon Chip Reliability, 1999, CRC Press, NY;  et al,
Influence of Temperature on Microelectronics and System Reliability: A PoF Approach, 2006,
Lavoisier, Paris.

[3.56] Peck D.S., "Comprehensive model for humidity testing correlation", Proc. Int. Rel. Phys. Symp., 1986,
pp. 44-50;  - et al., "Highly accelerated stress Tutorial Int. Rel. Phys. Symp., 1990, pp. 4.1-27.

[3.57] Pierrat L., "Estimation de la prob. de déf. par interaction de 2 lois Weibull", Rev. Stat. Appl.., 1992, pp.
5-13;  "La variabilité stat. de la température et son infl. sur la durée de vie", Congrès IMAPS 05,
Grenoble;  "La fiabilité des comp. de puissance", inv. paper S1-4 Coll. EPF'06, Grenoble.

[3.58] RAC/RIAC, RIAC-FMD-2013: Failure Mode / Mech. Distribution, 2013;  MFAT-1: Microel. Failure
Analysis Tech. , 1981;  MFAT-2: GaAs Microcircuit Char. & Failure Anal. Techn, 1988,  RAC,  Rome  NY,
now RIAC, Utica NY.

[3.59] Rajusman R., "Iddq testing  for CMOS VLSI", Proc. IEEE, 88(2000)4, pp. 544-66.
[3.60] Reiner J., "Latent gate oxide defects caused by CDM-ESD", Proc. EOS/ESD Symp, 1995, pp. 6.5.1-11,

also in Jour. of Electrostatic, 38(1996) pp. 131-57;  Latent Gate Oxide Damage Induced by Ultra fast
Electrostatic Discharge, 1995, Ph.D. Thesis 11212, ETH Zurich;  - et al. "Impact of ESD-induced soft
drain junction damage on CMOS product lifetime", Microel. Rel., 40(2000), pp. 1619-28.

[3.61] Reynolds F., "Thermally Accelerated Aging of Semic. Comp.", Proc. IEEE., 62(1974)2, pp. 212-22.
[3.62] Rudra B.,"Failure mech. models for conductive-filament formation", IEEE Trans. Rel., 43(1994)3, pp.54-60.
[3.63] Srinivasan G., "Modeling cosmic-ray-induced soft errors in IC's", IBM J. R&D, 40(1996)1,  pp. 77-90.
[3.64] Takeda E. et al., "An empirical model for devices degradation due to hot-carrier injection", IEEE

Electron Device Letters, 1983, pp. 111-113.
[3.65] Troutmann R.R., "Latch-up in CMOS technol.", IEEE Circuits and Dev. Mag., (1987)5, pp. 15-21.
[3.66] VITA, ANSI/VITA 51.0-2008:Reliability Prediction, 2008; 51.2-2011: Physic of Failure (PoF) Reliabi-

lity Prediction, 2011, Fountain Hills, AZ.
[3.67] White M. et al., Microelectronics Reliability: Physics-of-Failure Based Modeling and Lifetime

Evaluation, NASA WBS: 939904.01.11.10, JPL Publ. 08-5 2/08, 2008, Pasadena CA.

see also [1.19, 2.27 (TR), 2.61-2.77, 3.70-3.93]

Micro Connections and Packaging

[3.70] ASM,  Packaging, Vol. 1, 1989, ASM Int., Material park OH.
[3.71] Bell.H. et al.,  Reflow Technology: Fundamentals of Reflow Soldering, 2009, Rehm Thermal Systems, D

89143, Blaubeuren, Germany
[3.72] Barker D.B., Dasgupta A., Pecht M., "Printed-wiring-board solder-joint fatigue-life calculation under

thermal and vibration loading", Proc. Ann. Rel. & Maint. Symp., 1991, pp. 451-59.
[3.73] Birolini A. et al., "Exp. Ergebnisse zur Q. & Z. der SMT mit Pitch 0.5 mm", me, (1995)5, pp. 28-33.
[3.74] Darveause R. et al.,  "Constitutive relations for tin-based solder joints.", IEEE Trans. Compon., Pack.,

and Manuf. Technol., 15 (1992) 6, pp. 1013-24.
[3.75] Engelmaier, W., "Environmental stress screening and use environments - their impact on solder joint

and plated-through-hole rel.", Proc. Int. Electronics Pack. Conf., Marlborough MA, 1990, pp. 388-93.
[3.76] ETH Zurich, Rel. Lab., Reports P3-P18: Qualification Tests on 7 Telecom. Equipment, 1989-91.
[3.77] Fenech A. et al., "Determination of thermomechanical behavior of microel. packaging based on

mictostructural analysis", Proc. ESREF'' 94, Glasgow, 1994, pp. 405-10.
[3.78] Frear D.R. (Ed.), The Mechanics of Solder Alloy Interconnections, 1994, Van Nostrand Reinh, NY.
[3.79] Grossmann G., Zuv. von Weichlotstellen, 1993, Rep. L29, ETH Zurich, Rel. Lab.; Produktion und

Prüfung von Testprints der SMT Fine Pitch, 1996, Rep. K12, ETH Zurich, Rel. Lab.;   "Metallurgical
consid. for acc. testing of el. equip.", IEEE Trans. Comp., Pack. & Manuf. Technol., 20(1997)2, pp.
213-18;  "The deformation of Sn62Pb36Ag2 and its impl. on the design of thermal cycling for el.
assemblies", IEEE Trans. CMPT, 22(1999)1, pp. 71-79;  "Accelerated testing methodology for lead-free
solder" in Lead-Free Solder Interconnect Rel., ed. D. Shangguan, 2005, ASM Int., Ohio; - et al.,
"Proper. of thin layers of Sn62Pb36Ag2", Proc. 1995 IEMT Symp., pp. 502-07;  "Metallurgical consid.
for accel. testing of el. equip.", Proc. 1996 IEMT Symp., pp. 298-304;  "Lifetime ass. of soft sold. joints
on the base of the behav. of Sn62Pb36Ag2", Proc. 1997 IEMT Symp., pp. 256-63; "Results of comp. rel.
tests on lead-free solder alloys", Proc 2002 ECTC Symp., 1232-37;   Eds. The ELFNET Book on Failure
Mech., Testing Methods & Quality issues of Lead-Free Solder Interconnects, 2011, Springer, Berlin.

[3.80] Held M. et al., "Fast power cycling test for IGBT's in traction appl.", Proc. PDES, 1997, pp. 425-30.



590 References

[3.81] Heiduschke K., "The logarithmic strain space description", Int. J. Solids Structures, 32 (1995), pp.
1047-62 and 33(1996) pp. 747-60;  Kontinuumsmech. und Finite Element Mod. (URMEL), 1996,
Report K11, ETH Zurich, Rel. Lab.;  - et al., "Modeling fatigue cracks with spatial shape", Proc. EuPac
'94, pp. 16-23;  "Damage and micro-crack evolution in SMT joints", Proc. EuPac '96, pp. 112-15.

[3.82] IEC 62137: Test Methods for SM Boards of area array type package,  -1-1 to -1-5 (2007-09): SM Solder
Joints,  -3 (2011): Guidance of Environmental & Endurance Tests Methods for Solder Joints.

[3.83] IEEE,  Special issue on:  Plastic Encapsulated Microcircuits, IEEE Trans. Rel., 42(1993)4.
[3.84] IPC-SM-785, Guidelines for Accelerated Rel. Testing of Surface Mount Solder Attachments, 1992;

IPC/JEDEC J-STD-020C, Moisture/Reflow Sensitivity Classif. of Nonhermetic Solid State SMD, 2004.
[3.85] Jacob P. et al., "Reliability Testing and Analysis of IGBT Power Semiconductor Modules ", Proc.

ISTFA'94, Los Angeles CA 1994, pp. 319-25.
[3.86] Jud P. et al., "Local creep in SNAg3.8Cu0.7 lead-free solder", J. Electr. Mater., 34(2005)9, pp. 1206-14.
[3.87] Pecht M., (Ed.) Handbook of Electronic Package Design, 1991, Dekker, NY;  – et al., "Are compo-

nents still the major problem?, IEEE Trans. Comp., Hybr. & Manuf. Technol., 15(1992), pp. 1160-64.
[3.88] Philofsky E., "Design limits when using Au-Al bonds", Proc. Int. Rel. Phys. Symp., 1986, pp. 114-19.
[3.89] Reed J.R.,  Risk Assessement of Printed Wiring Board Alternative Finishes, 2000, Raytheon, Austin TX.
[3.90] Shangguan D. (Ed.), Lead-Free Solder Interconnect Reliability, 2005, ASM International, Ohio.
[3.91] Tullmin M. et al., "Corrosion of metallic materials", IEEE Trans. Rel., 44 (1995)2, pp. 271-78.
[3.92] Weber L., Material- & Schädigungsmod. bei Pb-Zn-Ag-Lot,1996, Rep. K10, ETH Zurich, Rel. Lab.;

Creep-fatigue behavior of eutectic Sn62Pb36Ag2 solder, 1997, Ph. D. Thesis 12251, ETH Zurich.
[3.93] Wu W. et al., "dv/dt induced latching failure in IGBT's", Proc. Int. Rel. Phys. Symp., 1994, pp. 420-24;

"Investigation on the long term rel. of power IGBT modules", Proc. ISPSD 95, 1995, pp. 443-48.

see also [5.4, 5.18, 8.21-8.35]

4  Maintainability Analysis

[4.0] Belzunce F. et al., "Comparison of expected failure times for several replacement policies", IEEE
Trans. Rel., 55(2006)4, pp. 400-05.

[4.1] Berg M., "A proof of optimality for age replacement policies", J. Appl. Prob., 13(1976), pp. 751-59;
-  et al., "Comparison of age, block & failure repl. policies", IEEE Trans. Rel., 27(1978)1, pp. 25-29.

[4.2] Birolini A.,  "Spare parts reservation of components subjected to wear-out or fatigue according to a
Weibull disturb.", Nuclear Eng. & Design, 27(1974), pp. 293-98;  "Basic stochastic models for a cost
optim. spare parts provision", Inv. Paper Ann. Conv. AICE 2000, Univ. Bocconi Milano, pp. 1-16.

[4.3] Blanchard B.S. et al., Maintainability: Principles and Practices, 1969, MacGraw-Hill, NY;  Logistics
Engineering and Management, 4th Ed., 1991, Prentice Hall, Englewood Cliffs, NJ;   Maintainability: A
Key to Effective Serviceability and Maintenance Management, 1995, Wiley, NY;   Systems Engineering
and Analysis, 3th Ed., 1998, Prentice Hall, Englewood Cliffs, NJ.

[4.4] Bonivento C. et al., "A framework for reliability analysis of complex diagnostic systems", Proc. 5th
IFAC Symp. on Fault Detection, Supervision & Safety of tech. processes, 2003, pp. 567-72.

[4.5] Collett R.E. et al.,  "Integration of BIT effectiveness with FMECA", Proc. Ann. Rel. & Maint. Symp.,
1984, pp. 300-305.

[4.6] Dersin P. et al., "Selecting test and maintenance strategies to achieve availability target with lowest
life-cycle-cost", Proc. Ann. Rel. & Maint. Symp., 2008, pp. 301-06.

[4.7] Garnero M.A. et al., "Optimization of bearing-inspection intervals", Proc. Ann. Rel. & Maint. Symp.,
1998, pp. 332-38.

[4.8] Glasser G.J., "The age replacement problem",  Technometrics, 9(1967), pp. 83-91.
[4.9] Hofstädt H. et al.,  "Qualitative testability analysis and hierarchical test pattern generation: A new

approach to design for testability", Proc. Int. Test. Conf., 1987, pp. 538-46.
[4.10] Hughes G.F., et al., "Improved disk-driver failure warnings", IEEE Trans. Rel., 51(2002)3, pp. 350-57.
[4.11] IEC 60706 (2006): Guide on Maintainability of Equipment,  -2 (2006): Requirements,  -3 (2006): Data

Collection,  -5 (2007): Testability.
[4.12] IEEE  Special issues on:  Maintainability, Trans. Rel., 30(1981)3;  Fault-tolerant computing, Computer,

17(1984)8,  Trans. Rel., 36(1987)2,  Trans. Comp., 39(1990)4 & 41(1992)5;   Fault tolerance in VLSI,
Proc. of the IEEE, 74(1986)5;  Testing, Trans. Ind. El., 36(1989)2;   Software tools for hardware test.,
Computer, 22(1989)4;   Fault-tolerant systems,  Computer,  23(1990)7.



References 591

[4.13] IEEE-STD 1149.1, .4, .7, .8 (2001-2012): Test Access Part and Boundary-Scan Architecture.
[4.14] Kuo W. et al., Maintenance Theory of Reliability, 2005, Springer, London.
[4.15] Lee K.W. et al.,  "A literature survey of the human reliability component in a man-machine system",

IEEE Trans. Rel., 37(1988), pp. 24-34.
[4.16] Lee P.A. et al.,   Fault Tolerance, Principles and Practice, 2nd Ed. 1990, Springer, Berlin.
[4.17] McCluskey E.J.,  Logic Design Principles, 1986, Prentice-Hall, Englewood Cliffs NJ.
[4.18] MIL-HDBK-470A (1997, Not 2, 2012): Designing and Developing Maintainable Products & Systems,

-472 (1966, Not 1, 1984): Maintainability Prediction, -2165 (1995): Testability programs;  DoD-
HDBK-791F (1988): Main-tainability Design Techniques - Metric.

[4.19] Nakagawa T., Maintenance Theory of Reliability, 2005, Springer, London.
[4.20] Pradhan D.K. (Ed.), Fault-Tolerant Computing, Vol.1 & 2, 1986, Prentice-Hall, Englewood Cliffs NJ.
[4.21] RAC,  MKIT: Maintainability Toolkit, 2000, RAC, Rome NY  (now RIAC, Utica NY).
[4.22] Redimbo G.R, "Reliability levels for fault-tolerant linear processing using real number correction", IEE

Proc. Comput. Dig. Tech., 143(1996)Nov., pp. 355-63.
[4.23] Retterer B.L. et al., "Maintainability - historical perspective", IEEE Trans. Rel., 33(1984)1, pp. 56-61.
[4.24] Robach C. et al.,  "CATA: a c.-aided test anal. syst.", IEEE Des. & Test Comp. Mag., (1984)5, pp. 68-79.
[4.25] Savir J. et al.,  "Random pattern testab. of delay faults", IEEE Trans. Comp., 37(1988)3, pp. 291-300.
[4.26] Schagaev I.  "Reliability of malfunction tolerance", Proc. IMSCIT, 2008, pp. 733-38;  see also UK

Patent GB 2448351 (21.09.2011) or http://www.it-acs.co.uk/files/GB24483518.pdf.
[4.27] Simpson W.R. et al.,  System Test- and Diagnosis, 1995, Kluwer Acad. Press, Boston.
[4.28] VDI 4003 Bl.3:  Allg. Forderungen an ein Sicherungsprogramm: Instandhaltbarkeit, 1983.
[4.29] Wagner K.D. et al.,  "Pseudorandom testing", IEEE Trans. Comp., 36(1987)3, pp. 332-43.
[4.30] Wang H.,  "A survey of maintenance policies of deteriorating systems", Europ. J. of Op. Res..,

139(2002)3, pp. 469-89.
[4.31] Williams T.W. et al.,   "Design for testability - a survey", Proc.  IEEE, 71(1983)1, pp. 98-112;

- Ed.,  VLSI Testing  (Vol. 5 of Advances in CAD for VLSI), 1986, North Holland, Amsterdam.
[4.32] Willimann B.,  Optimale Auslegung Logistik kompl. Systeme, 1993, Ph.D. Thesis 10313, ETH Zurich.

see also [5.21-5.32, 6.82, 6.86]

5  Design Guidelines for Reliability, Maintainability, and Software Quality

Reliability

[5.0] AMCP 706-196, "Engineering Design HDBK: Design for Reliability", 1976, US Army Materiel
Command, Alexandria VA;  see also 706-197,...,-200.

[5.1] Boxleitner W.,  "Electrostatic Discharge" in  Electronic Equip., 1989, IEEE Press, Piscataway NJ.
[5.2] Catrysse J., "PCB & syst. design under EMC constr.", Proc. 11th Int. Zurich EMC Symp., 1995, pp. 47-58.
[5.3] Deutsch A., "Electrical characteristics of interconnections for high-performance systems", Proc. IEEE,

86(1998)2, pp. 315-55.
[5.4] Gallo A.A. et al.,  "Popcorning: A failure mechanism in plastic-encapsulated microcircuits", IEEE

Trans. Rel., 44(1995)3, pp. 362-67.
[5.5] Gardner J.R., "The appropriateness of plastic encapsulated microcircuits in a specific wooden-round

application", IEEE Trans. Rel., 45(1996)1, pp. 10-17.
[5.6] Goedbloed J.J., Electromagnetic Compatibility, 1992, Prentice Hall, NY.
[5.7] Haseloff E.,  Was nicht im Datenblatt steht, 1992, Appl.-Bericht EB 192, Texas Instruments, Freising;

"Entwicklungsrichtlinien für schnelle Logikschaltungen und Systemen", Proc. ETH/IEEE Conf. on
Design Rules for Rel., EMC, Maint., Soft. Qual., 1993, ETH Zurich, Rel. Lab., pp. 5.1-17.

[5.8] Hellström S.,  ESD-The Scourge of Electronics, 1998, Springer, Berlin.
[5.9] Hirschi W., "EMV gerechte Auslegung elektron. Geräte", Bull. SEV/VSE, 83(1992)11, pp. 25-29.
[5.10] IEEE Trans. Rel.  Special issue on:  Design for reliability, 40(1991)3 and 44(1995)2;  Plastic encaps.

microcircuits, 42(1993)4.
[5.11] IEEE-STD 1100-2005:  IEEE Recom. Practice for Powering and Grounding Sensitive El. Equip.
[5.12] IPC, ANSI/IPC-SM-782:  Surface Mount Land Patterns (Config. and Design Rules), 1987.
[5.13] Mannone P., " Careful design methods to prevent CMOS latch-up", EDN, Jan. 26, 1984, 6 pp.
[5.14] MIL-HDBK-338B (1998):  Electronic Reliability Design Handbook.
[5.15] Pecht M.G. et al.,  "Thermal rel. manag. in PCB des.", Proc. Ann. Rel. & Maint. Symp., 1987, pp. 312-15.



592 References

[5.16] RAC,  SOAR-6: ESD Control in the Manuf. Envir, 1986;  TR-82-172: Thermal Guide for Rel.
Eng., 1982;   VZAP: ESD Susceptibility Data, 1991, RAC, Rome NY  (now RIAC, Utica NY).

[5.17] Sergent J. et al.,  Thermal Management Handbook, 1998, McGraw-Hill, NY.
[5.18] Solberg V., Design Guidelines for Surface Mount and Fine Pitch Technol., 1996, McGraw- Hill, NY.
[5.19] Vinson J.E. et al., "Electrostatic discharge in semiconductor devices Protection Techniques", Proc.

IEEE, 88(2000)12, pp. 1878-900;  -  "- : An Overview", Proc. IEEE, 86(1998)2, pp. 399-418.
[5.20] White D.R.J.,  EMI Control in the Design of Printed Circuit Boards and Backplanes, 1982, Interf.

Control Tech., Gainesville VI.

see also [1.22, 2.11, 2.12, 2.14, 2.15, 3.1-3.93, 8.1-8.14]

Maintainability and Human Aspects

[5.21] Abramovici M. et al.,  Digital System Testing & Testable Design, 1990, Computer Scient. Press, NY.
[5.22] Bennetts R.G.,  Design of Testable Logic Circuits, 1984, Addison-Wesley, London.
[5.23] Benso A. et al., "An on-line BIST RAM architecture with self-repair capability", IEEE Trans. Rel.,

51(2002), pp. 123-128.
[5.24] DoD, AMCP-706-132:  Eng. Design Handbook - Maintenance Eng. Tech., 1975;  -133: -Maintainability

Eng. Theory & Practice, 1975;  DoD-HDBK-791 (AM): Maintainability Design Tech. - Metric, 1988.
[5.25] Fuhrman C. et al, Fault Coverage in Fault Tolerant Syst., Tech. Rep. 95/109, EPFL Lausanne, 1995.
[5.26] Lala K.P.,  Fault Tolerant & Fault Testable Hardware Design, 1985, Prentice-Hall, Engl. Cliffs NJ.
[5.27] Maunder C., The Board Designer's Guide to Testable Logic Circuits, 1992, Addison-Wesley, Reading

MA;  A universal framework for manag. Built-In Test, Proc. Int. Test Conf., Paris 1995, 8 pp.
[5.28] MIL-HDBK-470A (1997, Not2, 2012),  Designing and Developing Maintainable Products & Systems,

Vol. II: Design Guidelines;   DoD-HDBK-791F (1988): Maintainability Design Techniques - Metric.
[5.29] Richards D.W. et al.,  "Smart BIT - an approach to better system-level built-in test", Proc. Ann. Rel. &

Maint. Symp., 1987, pp. 31-34.
[5.30] Robinson G. et al.,  "Interconnect testing of boards with partial boundary-scan", Proc. Int. Test Conf.,

1990, paper 27.3.
[5.31] Sinanoglu O. et al., "Test power reduction through computationally efficient, decoupled scan chain

modifications", IEEE Trans. Rel., 54(2005)2, pp. 215-23.
[5.32] Ye N., "The presentation of knowledge and state-information for system fault diagnosis", IEEE Trans.

Rel., 45(1996)4, pp. 638-45.

see also [4.5, 4.7, 4.9-4.13, 4.18, 4.21]

Software Quality

[5.41] ACM Special issues on:  Software Testing,  Commun. of the ACM, 31(1988)6;  Software Quality,
Commun. of the ACM, 36(1993)11.

[5.42] Aggarwal K.K. et al., "An integrated measure of software maintainability", Proc. Ann. Rel. & Maint.
Symp., 2002, pp. 235-41.

[5.43] Avresky D. et al., "Fault injection for formal test. of fault tolerance", IEEE Trans. Rel.,45(1996)3,pp.443-55.
[5.44] Braude E.J., (Ed.), Software Engineering: Selected Readings, 2000, IEEE Press, Piscataway NJ.
[5.45] Brocklehurst S. et al., "Recalibrating soft. rel. models", IEEE Trans. Soft. Eng., 16(1990)4, pp. 458-69.
[5.46] BWB,  Software-Entwicklungsstandard der BWB - Vorgehensmodell, 1991.
[5.47] Chen M-H, et al., "Effect of testing techniques on software rel. estimates using a time domain model",

IEEE Trans. Rel., 44(1995)1, pp. 97-103.
[5.48] Chillier R., "What is software failure?", IEEE Trans. Rel., 45(1996)3, pp. 354-55.
[5.49] Costa E.O., et al., al., "Exploring genetic programming and Boosting techniques to model software

reliability",  IEEE Trans. Rel., 56(2007)3, pp. 422-34.
[5.50] Deconick G. et al., "The EFTOS approach to dependability in embedded supercomputing", IEEE Trans.

Rel., 51(2002)1, pp. 76-90.
[5.51] Deriennic H., et al.,  "Use of failure-intensity models in the software-validation phase for

telecommunications", IEEE Trans. Rel., 44(1995)4, pp. 658-65.
[5.52] ESA PSS-05-04:  Guide to the Software Architect, 1992;   -05: Detailed Design and Prod., 1992; -08:

Project Management, 1994;  -09: Configuration Manag., 1992;  -11: Quality Assurance, 1993.
[5.53] Fakhre-Zakeri I. et al.,  "Mixture models for reliability of software with imperfect debugging", IEEE

Trans. Rel., 44(1995)1, pp. 104-13.



References 593

[5.54] Fenton N. et al.,  Software Reliability and Metrics, 1991, Elsevier, London.
[5.55] Garzia M. R., "Assessing software rel. from the customer's perspective", Proc. ISAS 2006, and in

Kanoun K. et.al. Ed., Dependability Benchmarking for Computer Systems, 2008, Wiley, NY.
[5.56] Grady R., "Practical results from measur. soft. quality", Commun. of the ACM, 36(1993)11, pp. 62-68.
[5.57] Herrmann D.S. et al., "The bridge between hardware, software, and system safety and reliability",  Proc.

Ann. Rel. & Maint. Symp., 1999, pp. 396-402.
[5.58] Hou R-H, et al., "Optimal release policy for hypergeometric distribution software-reliability growth

model", IEEE Trans. Rel., 45(1996)4, pp. 646-51.
[5.59] Huang C-Y. et al., "Analysis of incorporating logistic testing-effort function into software reliability

modeling", IEEE Trans. Rel., 51(2002)3, pp. 261-70.
[5.60] IEC 62628 (2012): Guidance on Software Aspects of Dependability.
[5.61] IEEE-STD-828-2012: Configuration Manag. in Systems and Software Eng.,  -1012-2012: System and

Software verification and Validation,  -1016-2009: Software Design,  -1028-2008: Software Review and
Audits;  -1061-1968: Software Quality Metrics,  -14102-2010:Guidelines for the Evaluation and
Selection of  CASE Tools;   see also [A2.8] and Tab. A2.1.

[5.62] ISO/IEC 90003:2004: Guidelines for Appl. of ISO 9001:2000 to Computer Software;  12207:2008:
Software Life-Cycle Processes;  29119-1 to -5 (draft): Software Testing;   see also Tab. A2.1.

[5.63] Kline M.B., "Software and Hardware R&M - what are the differences?", Proc. Ann. Rel. & Maint.
Symp., 1980, pp. 179-84.

[5.64] Kumar R. et al., "Neural-network techniques for software-quality evaluation", Proc. Ann. Rel. & Maint.
Symp., 1998, pp. 155-60.

[5.65] Lanning D.L. et al., "Fault severity in models of fault-correction activity", "An empirical model of
enhancement-induced defect activity in software", "The impact of software enhancement on software
reliability", IEEE Trans. Rel., 44(1995)4, pp. 666-82.

[5.66] Le Traon Y. et al., "Efficient object-oriented integration and regression testing", IEEE Trans. Rel.,
49(2000)1, pp. 12-25.

[5.67] Leveson N.G.,, "Software safety in computer-controlled systems", Computer, (1984)2, pp. 48-55;
"Software safety: why, what, and how",  ACM Computing Surveys, 18(1986)2, pp. 125-63.

[5.68] Littlewood B. et al.,  "The risk of software". Scient. Amer., 1992, pp. 38-43;  "Validation of ultrahigh
dependability for software-based syst", Commun. of the ACM, 36(1993)11, pp. 69-80;  Littlewood B.,
"Evaluation of software reliability - achievements and limitations", Proc. ETH/IEEE Int. Symp. on Rel.
Eng. 2'000, ETH Zurich, Rel. Lab., Oct. 17, 1996, 22 pp.

[5.69] Lloyd C. et al., "Estimating the number of faults:  Efficiency of removal, recapture, and seeding", IEEE
Trans. Rel., 48(1999)4, pp. 369-76.

[5.70] Lyu M.R. Ed.,   Handbook of Software Rel. Eng., 1995, IEEE Comp. Soc. Press, Piscataway NJ
[5.71] Musa J.D.,  Software Reliability Engineering, 2004, Author House, Bloomington;  "An overview of

software rel. engineering" and "The operational profile", in Özekici S., Ed.: Reliability and Maintenance
of Complex Systems, 1996, Springer, Berlin.

[5.72] Parnas D.L et al., "Evaluation of safety-critical software", Commun. ACM, 33(1990)6, pp. 636-48.
[5.73] Pham H., System Software Reliability, 2007, Springer, London.
[5.74] Pflegger S.L., "Measuring software reliability", IEEE Spectrum, Aug. 1992, pp. 56-60.
[5.75] Reifer D.J.,  Software Failure Modes and Effects Anal.", IEEE Trans. Rel., 28(1979)3, pp. 247-49.
[5.76] SAQ, 10300: Software Qualität.s. & CASE, 1995;  10301: HDBK Beschaffung von Software, 1996;

10302: HDBK Audits im Soft.-Bereich, 1996; 10303: Grundlagen zum Umgang mit Soft. Probl. 1997.
[5.77] Schneidewind N.F., "Rel. modeling for safety-critical soft.", IEEE Trans. Rel., 46(1997)1, pp. 88-98.
[5.78] Singpurwalla N.D., "The failure rate of software: does it exist?", IEEE Trans. Rel., 44(1995)3, pp. 463-

69;  - et al., "Assessing the rel. of software", in Özekici S., Ed.: Rel. and Maint. of Complex Systems,
1996, Springer, Berlin, pp. 345-367;  - et al., Statistical Methods in Rel. Eng. 1999, Springer, NY.

[5.79] Stankovic J.A., "A serious problem for next-generation system", Computer, 21(1988)10, pp. 10-19.
[5.80] Teng X. et al., "A software-reliability growth model for n-version programming systems", IEEE Trans.

Rel., 51(2002)3, pp. 311-21;  - et al., "Reliability modeling of hardware and software interactions, and
its applications", IEEE Trans. Rel., 55(2006)4, pp. 571-77.

[5.81] USAF, "Air Force Weapon System Software Manag. Guidebook", 2008, SAF Acq. Center of Ex. Webseite.
[5.82] Wallace D. et al., "An analysis of selected software safety Std.", IEEE AES Mag., 1992, pp. 3-14.
[5.83] Wei Y., "Do software reliability prediction models serve their intended purpose?", in IEEE Rel. Soc. 2010

Tech. Rep.;   Improve the prediction accuracy of software rel. growth models, IEEE Int. Symp. on Soft. Rel
Eng. (ISSRE), 2010.

see also [1.13, 2.8, 6.23, A2.8]



594 References

6  Reliability and Availability of Repairable Equipment and Systems

[6.0] Ajmone-Marsan M. et al., "A class of general stochastic Petri nets for performance ev. of multiproc.
systems", ACM Trans. Comp. Syst., 2(1984)2, pp. 93-122;  Performance Models of Multiprocessor
Systems, 1986, MIT Press;  Modeling with Generalized Stochastic Petri Nets, 1995, Wiley, NY.

[6.1] Ascher H., "Evaluation of repairable system rel. using the bad-as-old concept",  IEEE Trans. Rel.,
17(1968)2, pp. 103-10; - et al.,  Repairable Systems Reliability, 1984, Dekker, NY (new Ed. in prep.).

[6.2] Beaudry D., "Performance-related rel. meas. for comp. syst.", IEEE Trans. Comp., 27(1978), pp. 540-7.
[6.3] Beichelt F., et al.,  Zuverlässigkeit & Instandhaltung - Math. Methoden, 1983, Technik, Berlin;

Beichelt F.,  Zuverlässigkeits- und Instandhaltbarkeitstheorie, 1993, Teubner, Stuttgart.
[6.4] Billinton R. et al.,  Reliability Evaluation of Power Systems, 1996, Plenum Press, NY;   Reliability

Assessment of Electric Power Systems using Monte Carlo Methods, 1994, Plenum Press, NY.
[6.5] Birolini A.,  "Comments on Renewal theoretic aspects of two-unit redundant systems", IEEE Trans.

Rel., 21(1972)2, pp. 122-23;  "Generalization of the expressions for rel. and availability of rep. items",
Proc. 2. Int. Conf. on Struct. Mech. in Reactor Techn., Berlin: 1973, Vol. VI, pp. 1-16; "Some appl. of
regenerative stochastic processes to reliability theory - part two:  Reliability and availability of 2-item
redundant systems", IEEE Trans. Rel., 24(1975)5, pp. 336-40;  On the Use of Stochastic Processes in
Modeling Reliability Problems (Habil. Thesis ETH), 1985, Springer, Berlin (Lect. Notes Ec. & Math.
Syst. Nr. 252); Qualität & Zuverlässigkeit technischer Systeme, 1985, 1988, 1991, 1997, Springer, Berlin.

[6.6] Bobbio A., "System modeling with Petri nets" in Colombo G. et al. (eds.), System Rel Assessment, 1990,
ECSC, EEC, EAEC, Brussels;  "Stoch. reward models for performance & dependab. analysis", J. of
Commun., 43(1992)1, pp. 27-35.

[6.7] Bondavalli A. et al.,  "Dependability modeling and evaluation of multiple-phased systems using
DEEM", IEEE Trans. Rel., 53(2004)4, pp. 509-22.

[6.8] Choi, H. et al.,  "Markov regenerative stochastic Petri nets", Performance Ev., 20(1994), pp. 337-57.
[6.9] Ciardo G. et al., "A decomposition approach for stochastic reward net models", Performance Eval.,

18(1993)4, pp. 37-59.
[6.10] Costes A. et al., "Reliability and availability models for maintained systems featuring hardware failures

and design faults", IEEE Trans. Comp., 27(1978)6, pp. 548-60.
[6.11] Crow L.H., "A method for achieving an enhanced mission capability", Proc. Ann. Rel. & Maint. Symp.,

2002, pp. 153-57.
[6.12] Dersin P. et al., "Mass transit system service quality: Trade-off analysis on reliability, maintainability

and logistics", Proc. Ann. Rel. & Maint. Symp., 1995, pp. 515-28;  "
[6.13] Dubi A.,  Monte Carlo Applications in System Engineering, 2000, Wiley, NY.
[6.14] Endrenyi J.,  "Three state models in power system reliability evaluations", IEEE Trans. Power Syst.,

90(1971), pp. 1909-16;   Reliability Modeling in Power Systems, 1978, Wiley, NY.
[6.15] Finkelstein M.,  "Multiple availability on stoch. demand", IEEE Trans. Rel., 48(1999)1, pp. 19-24;

- et al., "Laplace-tr. & fast-repair approx. for mult. avail.", IEEE Trans. Rel., 51(2002)2, pp. 168-76.
[6.16] Fitzgerald K. et al.,  "Rel. model. & ass. of star-graph networks", IEEE Trans. Rel., 51(2002)1, pp. 49-57.
[6.17] Gaede K.W.,  Zuverlässigkeit Mathematische Modelle, 1977, Hanser, Munich.
[6.18] Garriba G.,  "Repair proc. fundamentals & comput.", Rep. EUR-5232e, Nucl. Res. Center Ispra, 1974.
[6.19] Gnedenko B.V. et al.,  "Mathematical Methods of Reliability Theory, 1969, Academic, NY  (1968,

Akademie, Berlin);  Probabilistic Reliability Engineering, 1995, Wiley, NY.
[6.20] Guenzi G. et al.,  "Stochastic processes and reliability: Applications to repairable systems", Atti

Giornata AICE 1999, Univ. Bocconi Milano, pp. 69-119;   Guenzi G.,  private commun., 2002.
[6.21] Hall J.D. et al.,  "Frequency and duration methods for power system reliability calculation", IEEE

Trans. Power Syst., 87(1968)9, pp. 1787-96, see also 88(1969)4, pp. 107-20.
[6.22] IEEE-STD 493-2007:  IEEE Recomm. Practice for Design of Reliable Industrial & Com. Power Syst.
[6.23] Kanoun K. et al.,  "Fault-tolerant system dependability: Explicit modeling of hardware and software

component-interactions", IEEE Trans. Rel., 49(2000)4, pp. 363-75.
[6.24] Kim K. et al., "Phased-mission system rel. under Markov env.", IEEE Trans. Rel., 43(1994)2, pp. 301-09.
[6.25] Kovalenko I. et al.,  "Uniform exponential bounds for the availability of a repairable system",

in Exploring Stochastic laws, Homage to V.S. Korolyuk, 1995, VSP, Utrecht, pp. 233-42.
[6.26] Kreimer J.,  "Effectiveness-analysis of real-time data acquisition and processing multichannel syst.",

IEEE Trans. Rel., 51(2002)1, pp. 91-99.
[6.27] Kullstam A.,  "Availability, MTBF and MTTR for repairable M-out-of-N Systems", IEEE Trans. Rel.,

30(1981)4, pp. 393-94.
[6.28] Lee K.V., "Stochastic model for random request availability", IEEE Trans. Rel., 49(2000)1, pp. 80-84.



References 595

[6.29] MacLaren M.D. et al.,  "Uniform random number generators", J. ACM, 12(1965), pp. 83-89.
[6.30] Malhotra M. et al.,  "Power-hierarchy of dependability-model types", IEEE Trans. Rel., 43(1994)3, pp.

493-502; "Dependability mod. using Petri-Nets", IEEE Trans. Rel., 44(1995)3, pp. 428-40 (1996, p.272).
[6.31] Metropolis N. et al.,  "The Monte Carlo method", J. Amer. Stat. Assoc., 44(1949), pp. 335-41.
[6.32] Obal D.W. et al., "Detecting and exploiting symmetry in discrete-state Markov models", IEEE Trans.

Rel., 56(2007)4, pp. 643-54.
[6.33] Ou Y. et al.,  "Multi-phase reliability analysis for dynamic and static phases", Proc. Ann. Rel. & Maint.

Symp., 2002, pp. 404-10;  "Modular solution of dynamic multi-phase systems", IEEE Trans. Rel.,
53(2004)4, pp. 499-508.

[6.34] Pagès M.C.,  System Reliability Evaluation and Prediction in Engineering, 1986, Springer, Berlin.
[6.35] Petri C.A.,  Kommunikation mit Automaten, Ph.D. thesis University of Bonn, 1962 (also as

Communication with Automata, RADC TR-65-377, 1966).
[6.36] Pullum L.L. et al.,  "Fault tree models for the analysis of complex computer-based systems", Proc. Ann.

Rel. & Maint. Symp., 1996, pp. 200-07.
[6.37] Rai S. et al. (Ed.),  Advances in Distributed Systems Reliability and Distributed Computing Network

Reliability, 1990, IEEE Press, Piscataway NJ.
[6.38] Ren Y.et al., "Design  reliable systems using static & dynamic fault trees", IEEE Trans. Rel., 47(1998)3,

pp. 234-44.
[6.39] Schneeweiss W.,  Petri Nets for Rel. Modeling, 1999, LiLoLe, Hagen;  "Tutorial: Petri nets as a

graphical description medium for many rel. scenarios", IEEE Trans. Rel., 50(2001)2, pp. 159-64;  Petri
Net Picture Book, 2004, LiLoLe, Hagen;  The Modeling World of Rel. & Safety Eng., 2005, LiLoLe,
Hagen;  Renewal Processes for Reliability Modeling, 2009, LiLoLe, Hagen.

[6.40] Shooman M.,  "Simplification of Markov models by state merging", Proc. Ann. Rel. & Maint. Symp.,
1987, pp. 159-64.

[6.41] Smotherman M. et al.,  "A nonhomogeneous Markov model for phased-mission reliability analysis",
IEEE Trans. Rel., 38(1989)5, pp. 585-90.

[6.42] Turconi G. et al., "A design tool for fault tolerant systems", Proc. Ann. Rel. & Maint. Symp.,  2000,
pp. 317-26.

[6.43] Ushakov I.A. et al.,  Handbook of Reliability Engineering, 1994, Wiley, NY.
[6.44] Villemeur A.,  Reliability, Availability, Maintainability  & Safety Assessment, Vol. 1,1992, Wiley, NY.
[6.45] Walzer M. et al.,  The modeling world of reliability / safety engineering, 2005, LiLoLe, Hagen.
[6.46] Xing L.,  "Reliability analysis of phased--mission systems with imperfect fault coverage and common-

cause failures", IEEE Trans. Rel., 56(2007)1, pp. 58-68.
[6.47] Yin L. et al.,  "Uncertainty analysis in rel. modeling", Proc. Ann. Rel. & Maint. Symp., 2001, pp. 229-34;

"Application of semi-Markov processes and CTMC to evaluation of UPS system availability", Proc. Ann.
Rel. & Maint. Symp., 2002, pp. 584-91.

[6.48] Zheng Z. et al.,  "A study on a single-unit Markov repairable system with repair time omission", IEEE
Trans. Rel., 55(2006)2, pp. 182-88.

[6.49]     Zhihua T. et al.,  "BDD-based rel. analysis of phased-mission systems with multimode failures", IEEE
Trans. Rel., 55(2006)2, pp. 350-60.

see also [2.1-2.20, 2.31-2.49, 2.85, A2.5 (61165), A7.2, A7.4, A7.10, A7.20, A7.26-A7.30]

Networks Reliability & Availability

[6.51] Albert R. et al.,  "Statistical mech. of complex networks", Rev. Modern Physics, 74(2002)1, pp. 47-97.
[6.52] Aiello W. et al., "Augmented ring networks", IEEE Trans. Par. & Distrib. Sys., 12(2001)6, pp. 598-

609.
[6.53] Bobbio A.,  "Struttura delle reti in un mondo interconnesso", Mondo Dig., 20(2006)Dic, pp. 3-18;

_ et al., "Binary decision diagrams in network rel. analysis" Proc. DCDS07, 2007, pp. 57-62;  "A tool
for network rel. analysis", in Int. Conf. on Computer Safety, Rel., and Security,  SAFECOMP 2007, Ed.
Saglietti F. et al., 2007, Springer, Berlin, pp. 417-22;  "Reliability and quality of services in weighted
probabilistic networks using ADD", Proc. Ann. Rel. & Maint. Symp., 2009, pp. 19-24.

[6.54] Colbourn C.J., The Combinatorics of Network Reliability, 1987, Oxford Univ. Press;  - et al., Network
Reliability a Computational Environment, 1995, CRC Press, Boca Raton FL.

[6.55] Frank H. et al., Communication, Transmission, & Transp. Networks, 1971, Addison-Wesley, Reading MA.
[6.56] Jane C.C. et al.,  "A practical algorithm for computing multi-state two-terminal reliability", IEEE

Trans. Rel., 57(2008)2, pp. 295-302.



596 References

[6.57] Kuo S.Y. et al.,  "Efficient and exact reliability evaluation for networks with imperfect vertices", IEEE
Trans. Rel., 56(2007)2, pp. 288-300.

[6.58] Lee S.M. et al.,  "Sequential capacity determination of subnetworks in network performance analysis",
IEEE Trans. Rel., 53(2004)4, pp. 481-86.

[6.59] Lin Y.-K.,  "Reliability of a stochastic-flow network with unreliable branches & nodes under budget
constraints", IEEE Trans. Rel., 53(2004)3, pp. 381-87.

[6.60] Manzi E, et al.,  "Fishman's sampling plan for comp. network rel.", IEEE Trans. Rel., 50(2001)1, pp. 41-6.
[6.61] Moskowitz F.,  "Analysis of redundancy networks", AIEE Trans. Comm. El.., 35(1958), pp. 627-32.
[6.62] Pan Y., "Fault tolerance in the block-shift network", IEEE Trans. Rel., 50(2001)1, pp. 85-91.
[6.63] Page L.B. et al., "Reliability polynomials and link importance in networks", IEEE Trans. Rel.,

43(1994)1, pp. 51-58;  see also: Traldi L., "Commentary on", IEEE Trans. Rel., 49(2000)3, p. 322.
[6.64] Satisatian S. et al., "An algorithm for lower reliability bounds of multistate two-terminal networks",

IEEE Trans. Rel., 55(2006)2, pp. 199-206.
[6.65] Shooman M.L.,  Reliability of Computer Systems and Networks, 2002, Wiley, NY.
[6.66] Shier D.R.,  Network Reliability and Algebraic Structures, 1991, Oxford Univ. Press, NY.
[6.67] Tenenbaum A.S.,  Computer Networks, 3d Ed., 1996, Prentice-Hall, Englewood Cliffs NJ.
[6.68] Tu H.Y. et al., "Families of optimal fault-tolerant multiple-bus networks", IEEE Trans. Par. & Distrib.

Sys., 12(2001)1, pp. 60-73.
[6.69] Yeh W.C.,  "A simple heuristic algorithm for generating all minimal paths", IEEE Trans. Rel.,

56(2007)3, pp. 488-94.
[6.70] Zhou L., Availability Anal. & Optim. in Optical Transp. Networks, 2007, Ph.D. Thesis 17191, ETH Zurich.

Human Reliability

[6.71] Bell J, et al, Review of Human Rel. Ass. Methods, RR679, 2009, Health & Safety Exec. UK, www.hse.gov.uk.
[6.72] Courdier S. et al, "Equipment failures: causes and consequences in endoscopic gynecologic surgery",

J. Minimally Invasive Gynecology, 16(2009)1, pp. 28-33.
[6.73] Dhillon B.S., Modeling human errors in repairable systems, Proc. Ann. Rel. & Maint. Symp., 1989,

pp. 418-424;  Human Reliability and Error in Transportation Systems, 2007, Springer, London;
Human Reliability, Error, and Human Factors in Engineering Maintenance, 2009, CRC Press, NY.

[6.74] Dougherty E.M. et al, Human Reliability Analysis, 1988, Wiley, NY;  "Human rel. analysis: where
shouldst thou turn?", Rel. Eng. & System Safety, 29(1990), pp. 283-299.

[6.75] Gertman D.L. et al, The SPAR-H Human Rel. Analysis Method, NUREG/CR-6883, 2005.
[6.76] Hollnagel E., Cognitive Reliability and Error Analysis Method: CREAM, 1998, Elsevier, London;  The

ETTO Principle - Efficiency - Thoroughness - Trade-0ff, 2009, Ashgate, London.
[6.77] Kirwan B., A Guide to Practical Human Reliability Assessment, 1994, Taylor & Francis, London.
[6.78] LaSala K.P., "Survey of industry human performance reliability practices", IEEE Rel. Soc. Newsletter,

36(1990)2, pp. 7-8; Reducing human performance-related risks with REHMS-D, Proc. Ann. Rel. &
Maint. Symp., 1999, pp. 288-92;  A Practical Guide to Developing Reliable Human-Machine Systems
and Processes, 2002,  RAC,  Rome  NY (now RIAC, Utica NY).

[6.79] Lee K.W. et al, "A literature search of the human rel. component in a man-machine system", IEEE
Trans. Rel., 37(1988)1, pp. 24-34.

[6.80] Llory M., L'accident de la centrale nucleaire de Three Mile Island, 1999, l'Harmattan, Lyon.
[6.81] Lydell B.O.Y., "Human rel. methodology: State of the art", Rel. Eng. & Sys. Safety, 36(1992), pp. 15-21.
[6.82] MIL-STD 1472G (2012), Human Eng.;  MIL-HDBK-759C (1998),  Human Eng. Design Guidelines,

see also DoD HFE TAG (2000): Human Eng. Design Data Digest  (www.hfetag.com/).
[6.83] Rasmussen N.C., WASH 1400, The Reactor Safety Study, 1975, US Nucl. Reg. Com.;  Methods of Hazard

Anal. & Nucl. Safety Eng., 1981, MIT;   see also Chang R. et al, SOARCA, 2012, US Nucl. Reg. Com.
[6.84] Ribette P., private communication, 2011.
[6.85] Salvendy G. (Ed.), Handbook of Human Factors and Ergonomics, 4th Ed., 2012, Wiley, NJ.
[6.86] Sanders M.S. et al, Human Factors in Engineering and Design, 1987, McGraw-Hill, .NY.
[6.87] Smith D.J., The Safety Critical Handbook 3th Ed., 2010, Elsevier, London.
[6.88] Spurgin A.J., Human Reliability Assessment: Theory & Practice, 2010, CRC Press, NY.
[6.89] Swain A.D. et al, HDBK of Human Rel. An. with emp. on nucl. power plant appl., NUREG/CR-1278, 1983;

Swain A.D., "Human rel. anal.: need, status, trends, limit.", Rel. Eng. & Sys. Safety, 29(1990), pp. 301-13.
[6.90] Wickens C. et al, An Intr. to Human Factors Eng., 2nd Ed., 2004, Pearson Ed. Inc., Upper Saddle River, NJ.

see also [1.3, 1.7, 1.9, 1.21, 1.23, 1.26, 1.28] and http://en.wikipedia.org/wiki/human_reliability



References 597

7  Statistical Quality Control and Reliability Tests

Statistical Quality Control

[7.1] ANSI Z1.1 and Z1.2-1958:  Guide for Quality Control and Control Chart Method of Analyzing Data;
Z1.3-1959: Control Chart Method of Controlling Quality During Production.

[7.2] Chandra M.J.,  Statistical Quality Control, 2001, CRC Press, NY.
[7.3] IEC 60410 (1973): Sampling Plans and Procedures for Inspection by Attributes,  see also MIL-STD-105,

-414, -1235;   DIN 40080,  DGQ-SAQ-OeVQ 16-01,  ISO 2859.
[7.4] Sarkadi K. et al.,  Mathematical Methods of Statistical Quality Control, 1974, Academic Press, NY.
[7.5] SAQ-DGQ-OeVQ, DGQ16-01:  Attributprüfung 9th Ed. 1986;  16-26: Meth. zur Ermittlung geeigneter

AQL-Werte. 4rd Ed. 1990; 16-31/-32/-33: SPC 1/2/3 Stat. Prozesslenkung, 1990.

Reliability Tests

[7.10] Arrhenius S.  "Über die Reaktionsgeschwindigkeit bei der Inversion von Rhorzücker durch Sauren", Z.
Phys.-Ch., 1889, 23pp.

[7.11] Ascher H.E. et al.,  "Spurious exponentiality observed when incorrectly fitting a distribution of
nonstationary data", IEEE Trans. Rel., 47(1998)4, pp. 451-59;  Ascher H., "A set-of-numbers is not a
data-set", IEEE Trans. Rel., 48(1999)2, pp. 135-40; see also [6.1].

[7.12] CEEES: The Different Type of Tests and their Impact on Product Reliability, Publ. N° 9-2009, ISSN
1104-6341, Confederation of European Environmental Eng. Soc.  (www.ceees.org/).

[7.13] Chan V. et al.,  "A Failure-Time Model for Infant-Mortality and Wearout Failure Modes", IEEE Trans.
Rel., 48(1999)4, pp. 377-87.

[7.14] Dersin P. et al.,  "Statistical estimation and demonstration of complex systems availability", Proc. λ/µ
15 Conf., Lille, France, Oct. 2006, Section 6C, 6 pp.

[7.15] Evans R.A.,  "Accelerated testing", IEEE Trans. Rel., 26(1977)3, p. 241 and 40(1991)4, p. 491.
[7.16] Glen A.G. et al.,  "Order statistics in goodness-of-fit test.", IEEE Trans. Rel., 50(2001)2, pp. 209-13.
[7.17] Gnedenko B.V. et al.,  Statistical Reliability Engineering, 1999, Wiley, NY.
[7.18] Hu J.M. et al.,  "Rate of failure-mechanisms identification in accelerated testing", Proc. Ann. Rel. &

Maint. Symp., 1992, pp. 181-88.
[7.19] IEC 60319 (1999): Pres. and Spec. of Rel. Data for El. Comp.;  60605: Equip. Rel. Testing, -2(1994):

Test Cycles, -4(2001): Estimation for λ, -6(2007): Goodness-of-fit for λ;  60706: Maintainability,
-2(2006):Req., -3(2006): Data Coll., -5(2007): Testability;  61070 (1991): Availability Demonstration;
61123 (1991): Success Ratio (supers. 60605-5);  61124 (2012): λ Demonstration (supers. 60605-7);
61163-1 &-2 (2006 & 1998): Screening Assemblies & Comp.;  61649 (2008): Weibull Data;  61650
(1997): Comparison of two λ;  61710 (2000):Goodness-of-fit tests;  62506 (2013): Accelerated Tests.

[7.20] Khamis I.H. et al., "A new model for step-stress testing", IEEE Trans. Rel., 47(1998)2, pp. 131-34.
[7.21] Liao C.-M. et al., "Optimal design for step-stress accelerated degradation tests", IEEE Trans. Rel.,

55(2006)1, pp. 59-66.
[7.22] Meeker W.Q. et al.,  "Pitfalls of accelerated testing", IEEE Trans. Rel., 47(1998)2, pp. 114-18;

"Accelerated degradation tests:  Modeling and analysis", Technometrics, 40(1998)2, pp. 89-99.
[7.23] MIL-HDBK-470A (1997, Not2, 2012), Designing & Develop. Maintainable Products & Systems, see also

-HDBK-472 (1966, Not1, 1984);  MIL-HDBK-781A (1996): Rel. Test Methods, Plans, and Environments
for Eng., Dev., Qualification & Prod., see also IEC 61124 (2012): λ Demonstration (supers. 60605-7).

[7.24] MØltoft J.,  "Reliability engineering based on field information - the way ahead", Qual. & Rel. Eng.
Int., 10(1994)2, pp. 399-409.

[7.25] Nelson W.,  Accelerated Testing, 1990, Wiley, NY;   "A bibliography of accelerated test plans", IEEE
Trans. Rel., 54(2005)2, pp. 194-97.

[7.26] Peck D.S. et al.,  Accelerated Testing HDBK, 1987, Techn. Ass., Portola Valley CA.
[7.27] Shaked M. et al.,  "Nonparametric estimation and goodness-of-fit-testing of hypotheses for distributions

in accelerated life testing", IEEE Trans. Rel., 31(1982)1, pp. 69-74.
[7.28] Teng S-L. et al.,  "A least-squares approach to analyzing life-stress relationship in step-stress

accelerated life tests", IEEE Trans. Rel., 51(2002)2, pp. 177-82.
[7.29] Thomas E.F.,  "Reliability testing pitfalls", Proc. Ann. Rel. & Maint. Symp., 1974, pp. 78-83.
[7.30] Viertl R.,  Statistical Methods in Accelerated Life Testing, 1988, Vandenhoeck, Göttingen.

see also [A8.1 - A8.35]



598 References

Reliability Growth

[7.31] Barlow R. et al.,  "Classical and Bayes approach to ESS- a comparison", Proc. Ann. Rel. & Maint.
Symp., 1990, pp. 81-84.

[7.32] Benton A. et al.,  "Integrated reliability-growth testing", Proc. Ann. Rel. & Maint. Symp., 1990,
pp. 160-66.

[7.33] Brinkmann R.,  Modellierung des Zuverlässigkeitswachstums komplexer, reparierbarer Systeme, 1997,
Ph.D. Thesis 11903, ETH Zurich.

[7.34] CEEES Publ. Nr 9: Rel. for a Mature Product from Beginning of Useful Life, 2009 (ISSN 1104-6341),
Confederation of European Environmental Eng. Soc.  (www.ceees.org/).

[7.35] Crow L.H.,  "On tracking reliability growth", Proc. Ann. Rel. & Maint. Symp., 1975, pp. 438-43;
"Methods for assessing rel. growth potential", Proc. Ann. Rel. & Maint. Symp., 1982, pp. 74-78;
"Confidence interval procedures for the Weibull process with appl. to rel. growth", Technometrics
24(1982)1, pp. 67-72;  "On the initial system rel.", Proc. Ann. Rel. & Maint. Symp., 1986, pp. 115-19;
"Evaluating the rel. of repairable systems", Proc. Ann. Rel. & Maint. Symp., 1990, pp. 275-79;
"Confidence intervals on the reliability of repairable systems", Proc. Ann. Rel. & Maint. Symp., 1993,
pp. 126-34; "The extended continuous evaluation rel. growth model", Proc. Ann. Rel. & Maint. Symp.,
2010, pp. 275-79;  -  et al., "Reliability growth estimation with missing data", Proc. Ann. Rel. & Maint.
Symp., 1988, pp. 248-53.

[7.36] Duane J.T.,  "Learning curve approach to rel. monitoring", IEEE Trans. Aerosp., (1964)2, pp. 563-66.
[7.37] Evans R.A.,  "Assuming, of course that", IEEE Trans. Rel., 46(1997)2, p. 161;  "Whence come the

data?, IEEE Trans. Rel., 46(1997)3, p. 305.
[7.38] Fries A. et al., "A survey of discrete rel.-growth models", IEEE Trans. Rel., 45(1996)4, pp. 582-604.
[7.39] IEC 61014 (2003): Programs for Reliability Growth ;  61164 (2004): Reliability Growth - Statistical

Tests and Estimation Methods.
[7.40] IES,  Reliability Growth Processes and Management, 1989.
[7.41] Jääskeläinen P.,  "Rel.  growth and Duane learning curves", IEEE Trans. Rel., 31(1982)2, pp. 151-54.
[7.42] Jayachandran T. et al.,  "A comparison of rel. growth models", IEEE Trans. Rel., 25(1976)1, pp. 49-51.
[7.43] Kasouf G. et al.,  "An integrated missile reliability growth program", Proc. Ann. Rel. & Maint. Symp.,

1984, pp. 465-70.
[7.44] MIL -HDBK-189C (2011): Reliability Growth Management.
[7.45] Rees R.A.,  "A data-set in not truth", IEEE Trans. Rel., 46(1997)3, p. 306.
[7.46] RIAC, Achieving System Reliability Growth Through Robust Design and Test, 2011, Utica, NY.
[7.47] VDI 4009 Bl.8:  Zuverlässigkeitswachstum bei Systemen, 1985.
[7.48] Wong K.L.,  "A new environmental stress screening theory for electronics", Proc. Ann. Tech. Meeting

IES, 1989, pp. 218-24;   "Demonstrating reliability and reliability growth with data from environmental
stress screening", Proc. Ann. Rel. & Maint. Symp., 1990, pp. 47-52.

[7.49] Yamada S. et al,  "Reliability growth models for hardware and software systems based on
nonhomogeneous Poisson processes - a survey",  Microel. & Rel., 23(1983), pp. 91-112.

see also [5.58, 5.59, 5.68-5.71]

8  Quality and Reliability Assurance During the Production Phase

Production Processes

[8.1] Desplas E.P., "Rel. in the manufacturing cycle", Proc. Ann. Rel. & Maint. Symp., 1986, pp. 139-44.
[8.2] DGQ 16-31/-32/-33:  SPC 1/2/3 Statistische Prozesslenkung, 1990.
[8.3] Ellis B.N.,  Cleaning and Contamination of Electronics Components and Assemblies, 1986,

Electrochemical Publ., Ayr (Scotland).
[8.4] Hnatek E. R.,  Integrated Circuit Quality and Reliability, 2nd Ed. 1999, Dekker, NY.
[8.5] Grossmann G., "Contamination of various flux-cleaning combinations on SMT assemblies, Soldering &

SMT, 22 (1996) Feb.,  pp. 16-21;
[8.6] Lea C.,  A Scientific Guide to SMT, 1988, Electrochemical Publ., Ayr (Scotland).
[8.7] Lenz E.,  Automatisiertes Löten elektronischer Baugruppen, 1985, Siemens, Munich.
[8.8] Pawling J.F. (Ed.),  Surface Mounted Assemblies, 1987, Electrochemical Publ., Ayr (Scotland).
[8.9] Pecht M. et al.,  Contamination of Electronic Assemblies, 2002, CRC Press, NY.



References 599

[8.10] Prasad R.P.,  Surface Mount Technology, 1989, Van Nostrand Reinhold, NY.
[8.11] Shewhart W.A.,  "Quality control charts", Bell Tech. J., 5(1926) pp. 593-603.
[8.12] Stein R.E.,  Re-Engineering the Manufacturing System, 4th Printing 1996, Dekker, NY.
[8.13] Vardaman J. (Ed.), Surface Mount Technology: Recent Japanese Dev, 1993, IEEE Press, Piscataway NJ.
[8.14] Wassink R.J.K.,  Soldering in Electronic, 2nd Ed. 1989, Electrochemical Publ., Ayr (Scotland).

see also [3.48, 3..89, 3.82, 3.70-3.92]

Test and Screening Strategies

[8.21] Bennetts R.G.,  Introduction to Digital Board Testing, 1981, Crane Russak, NY.
[8.22] Birolini A.,  "Möglichkeiten und Grenzen der Qualifikation, Prüfung und Vorbeh. von ICs", QZ,

27(1982)11, pp. 321-326;   "Prüfung und Vorbeh. von Bauelementen und Leiterplatten", VDI-Bericht
Nr. 519, pp. 49-61 1984;   "VLSI testing and screening", Journal of Env. Sciences (IES),  May/June
1989, pp. 42-48;   "Matériels électroniques: stratégies de test et de déverminage", La Revue des Lab.
d'Essais, 1989 pp. 18-21;  – et al.,. "Experimentelle Ergebnisse zur Qualität und Zuverlässigkeit der
SMT mit Pitch 0.5 mm", me (1995) 5, pp. 28-33.

[8.23] Bullock M., "Designing SMT boards for in-circuit testability", Proc. Int. Test Conf., 1987, pp. 606-13.
[8.24] De Cristoforo R., "Env. stress screening: lesson learned", Proc. Ann. Rel.&Maint. Symp., 1984, pp.129-33.
[8.25] Desplas E.,  "Reliability in the manuf. cycle", Proc. Ann. Rel. & Maint. Symp., 1986, pp. 139-144.
[8.26] Geniaux B. et al.,   Déverminage des matériels électroniques, 1986, ASTE, Paris;   "Climatique et

déverminage",  La Revue des Lab. d'Essais, Sept. 1989, pp. 5-8.
[8.27] IEC 61163: Reliability Stress Screening - Part 1 (2006): Repairable Assemblies; - Part 2 (1998):

Electronic Components.
[8.28] IES,  Environmental Stress Screening Guideline for Assemblies, 1988;   Guidelines for Parts, 1985;

Environmental Test Tailoring, 1986;   Environmental Stress Screening, 1989.
[8.29] Kallis J.M. et al.,  "Stress screening of electronic modules: Investigation of effects of temp. rate-of-

change", Proc. Ann. Rel. & Maint. Symp., 1990, pp. 59-66.
[8.30] Kim K. et al.,  "Some considerations on system burn-in", IEEE Trans. Rel., 54(2005)2, pp. 207-14.
[8.31] Kindig W. et al.,  "Vibration, random required", Proc. Ann. Rel. & Maint. Symp., 1984, pp. 143-47.
[8.32] MIL-HDBK-344A (2012): Environmental Stress Screening of Electronic Equipment ,  see also -HDBK-

263 , -2164, and -STD-810, -883.
[8.33] Parker P. et al.,  "A study of failures identified during board level environmental stress testing", IEEE

Trans. Comp. and Manuf. Technol., 15(1992)3, pp. 1086-92.
[8.34] Pynn C.,  Strategies for Electronics Test, 1986, McGraw-Hill, NY.
[8.35] Wennberg S.R. et al.,  "Cost-effective vibration testing for automotive electronic", Proc. Ann. Rel. &

Maint. Symp., 1990, pp. 157-159.

see also [3.31-3.66, 3.70-3.93]

A1  Terms and Definitions

[A1.1] EOQC (1976):  Glossary of Terms Used in Quality Control.
[A1.2] EN 13306 (2010):  Maintenance Terminology.
[A1.3] ESA, ECSS-P-001A (Rev. 1, 1997): Space Product Assurance - Glossary of Terms.
[A1.4] IEC 60050-191 (2004, 2nd Ed. in press):  International Electrotechnical Vocabulary - Dependability.
[A1.5] IEEE-Std 15026-1-2011, see ISO/IEC 15026-1;  IEEE/ISO/IEC 24765-2010: System and Software Eng.

-  Vocabulary.
[A1.6] ISO 9000 (2005): Quality Management Systems - Fundamentals & Vocabulary.
[A1.7] ISO/IEC 2382-14 (1997): Infor. Technology Vocabulary: Rel., Maint., Availab.;  15026-1 (2010, Cor 1

2012): Systems & Soft. Eng. - Concepts & Vocabulary; 29119-1 (draft): Softwt. Testing - Concepts &
Vocabulary.

[A1.8] MIL-STD-109B (1969): Quality Assurance Terms and Definitions;  -280A (1969): Def. of Item Levels
and Related Terms;  -721C (1981): Def. of Terms for Reliability & Maintainability.

[A1.9] Parr J.D. et al.,  "Standardization of reliability / maintainability / availability metrics for US AFSCN
common user element", Proc. Ann. Rel. & Maint. Symp., 1999, pp. 13-18.



600 References

A2   Quality and Reliability Standards  (Customer Requirements, Guidelines)

[A2.0] ANSI /  GEIA-STD-0009 (2008): Rel. Program Std. for Systems Design, Develop. and Manufacturing,
TechAmerica  (see ITEA, 29(2008)3, pp. 254-62),  see also Implementation Guide, JA1000/1 (2012).

[A2.1] Benski C., "Dependability Stds: An int. perspective", Proc. Ann. Rel. & Maint. Symp., 1996, pp. 13-6.
[A2.2] Bellcore TR-NWT-000418 (1997, Issue 4): Generic Rel. Ass. Req. for Fiber Optic Transport Syst.
[A2.3] EN 50126 (1999): Railway Applications -  Spec. and Dem. of RAMS;  9100-2003: Quality Manag.
[A2.4] ESA ECSS-M-00 (2000): Space Project Management,  see also -10 to -70;  - Q-00 (1996): Space Product

Assurance,  see also -20 (QA), -30 (Dependability), -40 (Safety), -60 (El. Components), -70 (Materials &
Processes), -80 (Software);   - E-00 (1996): Space Eng., -10 (System Eng.).

[A2.5] FAA-HDBK-006A (2008): RAM Handbook, Fed. Aviation Administration, Washington.
[A2.6] IEC 60068-1 to -2 (1983-2012): Environm. Tests;  60300: Dependability Manag, -1 (2003): System,

-2 (2004): Guidelines,  -3-1 to -5, -10 to -12, -14 to -16 (1999-2011) Appl. Guides;  60319 (1999): Spec. of
Rel. Data for El. Comp.;  60410 (1973) Sampling plans by Attrib.;  60447 (2004): Man-Machine-Interf.;
60605: Eq. Rel. Test, -2 (1994) Test Cycles, -4 (2001) λ Estim., -6 (2007) Goodness-of-fit for λ;  60706:
Maintainability, -2(2006) Req., -3(2006) Data Coll., -5(2007) Testability;  60721-1 to -2 (1982-2012):
Env. Cond.;  60749-1 to -40 (2002-12): Semicond. Tests;   60812 (2006): FMEA;  61000 -1 to -6 (1990-
2012): EMC;  61014 & 61164 (2003 & 2004): Rel. Growth;  61025 (2006): FTA;  61070 (1991):
Availability Dem.;  61078 (2006): Rel. Block Diagr.;  61123 (1991): Success Ratio (sup. 60605-5);  61124
(2012): λ Dem. (sup. 60605-7);  61160 (2005): Design Reviews;  61163-1 &-2 (2006 &1998): Screening;
61165 (2006): Markov. Tech.;  61508 -0 to -7 (2005-10): Funct. Safety;  61649 (2008): Weibull Anal.;
61650 (1997): Comparison of two λ;  61703 (2001, new Ed. in prep.): Math. expressions;  61709 (2011):
Failure Rates Models;  61710 (2000): Goodness-of-fit tests;  61882 (2001):  Hazard Studies;  61907
(2009): Comm. Networks Dep.;  62010 (2005): Maint. Manag.;  62137-1 (2007-9), -3 (2011): Tests for
SM Boards;  62198 (2001): Project Risk Manag.;  62239 (2012): Proc. Manag. Avionics;  62278 (2002),
-3(2010): Railway RAMS;  62308 (2006): Rel. Assess.;  TR 62380 (2004): Rel. Data HDBK;  62396
(2012): Proc. Manag. for Avionics; 62402 (2007): Obsolescence Manag.;  62429 (2007): Screening;
62502 (2010): Event Trees;  62506 (2013): Accel. Tests; 62508 (2010): Human Aspects; 62550 (in prep.):
Spare Parts;  62551 (2012): Petri Nets;  62628 (2012): Guidance on Software Aspects of Dependability.

[A2.7] IEEE-Std 493-2007: Rec. Practice for Design of Reliable Ind. & Comm. Power Systems;  -1332-1998:
Standard Reliability Program;  -1413-2010: Standard Framework for Rel. Prediction of Hardware;
-1413.1-2002: Guide for Selecting and Using Rel. Predictions based on IEEE 1413;  - 1624-2008:
Standard for Organizational Rel. Capability;   -1633-2008: Recommended Practice on Software Rel.

[A2.8] IEEE-Stds in Soft. Eng.: Tab. A2.1 in particular  730-2002: Quality Ass. Plan,  828-2012: Conf. Manag.;
-1012-2012: System & Software Verif. & Valid.; -1016-2009: Software Design,  -1028-2008: Software
Reviews & Audits; ..-15026, see ISO/IEC 15026;   -1633-2008: Recom. Practice on Software Rel.

[A2.9] ISO 9000 (2005): Quality Management Systems (QMS) - Fund. & Vocabulary;  9001 (2008/Cor 1:2009):
QMS - Requirements ;  9004 (2009): QMS - Managing the Sustained Success of an Organization;  10005
(2005): QMS - Guidelines for Quality Plans;  10006 (2003): QMS - Guidelines for Quality Management
in Projects;  10007 (2003): QMS - Guidelines for Configuration Manag.;   10012 (2003): Measurement
Management Systems - Requirements;  10013 (2001): Guidelines for Quality Management System
Documentation;  10015 (1999): QM - Guidelines for Training;  12207 (2008): Systems & Software Eng. -
Software Life Cycle Process,  see also 90003, 14764, 15026, 15288, 15289, 15940, 16085, 16326, 18018,
24766, and IEC 62628;  14001 (2004/Cor 1:2009): Environmental Manag. Systems - Req.;  27005 (2011):
Security Techniques - Risk Management;  ISO/IEC/IEEE 29119-1 to -5 (draft): Software Testing.

[A2.10] MIL-STD--781D, repl. by HDBK-781: Rel. Testing, -785B: Rel. Progr., repl. by [A2.0], -810G (2008):
Env. Test Methods,  -882E (2012): System Safety, -883H (2010): Test Proc. for Microel., -1472G (2012):
Human Eng., -1521B (1995): Tech. Reviews, -1629A (1998): FMECA, -1686 (1995): ESD;   MIL-HDBK-
189C (2011): Rel. Growth, -217G (draft, H planned): Rel. Pred., -263B (1994): ESD, -338B (1998): El.
Rel. Des., -344A (2012): ESS; -454B (2007): Gen. Guidelines for El. Eq., -470A (1997): Maintainable.
Sys., -472 (1966): Maint. Pred., -759C (1998): Human Eng., -781A (1996): Rel. Test., -791 (1988):
Maint. Design, -2164 (1986): ESS, -2165  (1995): Testability;   MIL-Q-9858A: Quality Req. (repl. by ISO
9001), H-46855 (1990): Human Eng ., -S-19500 (1980): Gen. Spec. Semicond.;  DoD Dir. 5134.01 (2005).
NATO ARMP-1 (2008): NATO Req. for Reliability and Maintainability  (see also AQAP-1-15).

[A2.11] Miller J. et al., "Dependability Stds: International coop.", Proc. Ann. Rel. & Maint. Symp., 1998, pp. 26-9.
[A2.12] NASA NHB 5300.4-1A, 1B, 2B, 1969-71; -STD-8729.1: Planning, Dev., Manag. an Eff. RAM Prog.,1998.
[A2.13] Rooney J.P., "IEC 61508: Opportunity for rel.", Proc. Ann. Rel. & Maint. Symp., 2001, pp. 272-77.
see also  [5.61, A1.1-A1.9, A3.3] and Table A2.1



References 601

A3  Quality and Reliability Assurance Program

[A3.1] AT&T (1990), Reliability by Design: A Guide to Reliability Management;  see also [A2.2].
[A3.2] Carrubba E.R., Commercial vs. DoD rel. progr.", Proc. Ann. Rel. & Maint. Symp., 1981, pp. 289-92.
[A3.3] DoD, DoD Guide for Achieving Reliability, Availability and Maintainability, August 2005; RIWG:

Report of Rel. Improvement Group, Vol. 1 & 2, September 2008 (Office of the secretary of defense);
Sample Reliability Language for DoD Acquisition Contracts, 2008, Washington.

[A3.4] IEEE-Std 730-2002: IEEE Standard for Software Quality Assurance Plans.
[A3.5] MIL-STD-785B (1998): Rel. Progr. for Systems & Equip. Dev. & Production, replaced by [A2.0].
[A3.6] NASA NHB 5300.4 -1A (1970):  Rel. Progr. Prov. for Aero. & Space System Contractors.

see also [1.2, 1.4, 1.8, 1.14,, 1.15, 1.18, A1.1-.9, A2.1-.13, A.4.1-.6, A.5.1-.6]

A4  Design Reviews

[A4.1] ASQC,  Configuration Management, 1969.
[A4.2] IEC 61160 (2005): Formal Design Review.
[A4.3] IEEE Std 828-2012: Configuration Management in Systems and Software Engineering,  1028-2008:

Standard for Software Reviews and Audits.
[A4.4] MIL-STD-1521B (1985): Technical Review and Audits for Systems, Equipment, and Comp. Programs.
[A4.5] Samaras T.T., Fundamentals of Configuration Management, 1971, Wiley, NY.
[A4.6] VDI Bericht 192: Konzeptionen und Verfahrensweisen für Entwurfsüberprüfungen, 1973.

see also [1.4, 1.8, 1.14]

A5  Quality Data Reporting System

[A5.1] ASQC,  A Rel. Guide to Failure Reporting, Analysis, and Corrective Action Systems, 1977.
[A5.2] Collins J.A. et al., "Helicopter failure modes and corrective actions", Proc. Ann. Rel. & Maint. Symp.,

1975, pp. 504-10.
[A5.3] IEC 60300-3-2 (2004): Dependability Manag. - Guide for the Collection of Dependability Data from

Field,  see also 60706-3.
[A5.4] MIL-STD-2155 (1985): Failure Reporting, Analysis & Corrective Action System (FRACAS).
[A5.5] NASA TND-5009 (1969): An Introduction to Computer-Aided Reliability Data Analysis.
[A5.6] Thomas E., "Appl. of unified data base technol.", Proc. Ann. Rel. & Maint. Symp., 1984, pp. 192- 96.

A6  Probability Theory

[A6.1] Aitchison J. et al.,  The Lognormal Distribution, 1969, Univ. Press, Cambridge.
[A6.2] Breiman L.,  Probability, 1968, Addison-Wesley, Reading MA.
[A6.3] Bühlmann H. et al.,  Einführung in die Theorie & Praxis der Entscheidung, 1969, Springer, Berlin.
[A6.4] Crow E.L. et al.,  Lognormal Distributions - Theory and Applications, 1988, Dekker, NY.
[A6.5] Evans D.M.,  Probability and its Applications for Engineers, 1992, Dekker, Milwaukee.
[A6.6] Feller W.,  An Introduction to Probability Theory and its Applications, Vol. I 2nd Ed. 1957, Vol. II

1966, Wiley, NY.
[A6.7] Gnedenko B.W., Theory of Probability, 1967, Cheslea, NY;  Lehrbuch der Wahrscheinlichkeits-

rechnung, 3th Ed. 1962, Akademie, Berlin.
[A6.8] Gumbel E.J.,  Statistical Theory of Extreme Values and Some Practical Applications, 1954, National

Bureau of Standards, Washington.
[A6.9] Johnson N.L. et al.,  Distributions in Statistics, Vol. 1 - 4, 1969 to 1972, Wiley, NY.
[A6.10] Kolmogoroff A.N.,  Grundbegriffe der Wahrscheinlichkeitsrechnung, 1933, Springer, Berlin.



602 References

[A6.11] Kuhn P.N., Computational Probability, 1980, Academic Press, NY.
[A6.12] Laha R.G. et al.,  Probability Theory. 1979, Wiley, NY.
[A6.13] Ochi M.K.,  Applied Probability and Stochastic Processes, 1990, Wiley, NY.
[A6.14] Rao M.M.,  Probability Theory with Applications, 1984, Academic Press, Orlando.
[A6.15] Roberts R.A.,  An Introduction to Applied Probability, 1992, Addison-Wesley, Reading MA.
[A6.16] Rényi A.,  Wahrscheinlichkeitsrechnung, 2nd Ed. 1966, VEB Deut. Verlag der Wiss., Berlin.
[A6.17] Shiryayev A.N.,  Probability, 1984, Springer, NY.
[A6.18] Stark H., et al.,  Probability, Random Processes and Estimation Theory for Engineers, 1986, Prentice

Hall, Englewood Cliffs NJ.
[A6.19] Trivedi K.S.,  Probability and Statistics with Reliability, Queuing, and Computer Science Applications,

2nd Ed. 2001, Wiley, NY.
[A6.20] Weibull W., "A statistical distrib. function of wide applicability", J. Appl. Mech., 1951, pp. 293-97.

A7  Stochastic Processes

[A7.1] Asmussen S.,  Applied Probability and Queues, 1986, Wiley, Chicherster.
[A7.2] Birolini A.,  Semi-Markoff und verwandte Prozesse:  Erzeugung und Anwendungen auf Probleme der

Zuverlässigkeits- und Übertragungstheorie, Ph.D. Thesis 5375, ETH Zurich, 1974, also in AGEN-
Mitt., 18(1975), pp. 3-52 and part in "Some applications of regenerative stoch. processes to rel. theory -
Part One & Two", IEEE Trans. Rel., 23(1974)3, pp. 186-94 & 24(1975)5, pp. 336-40 and "Hardware
simulation of semi-Markov & related proc.", Math. & Comp. in Simul., 19(1977), pp. 75-97 & 183-91;
On the Use of Stoch. Processes in Modeling Rel. Problems, 1985, Springer, Berlin (Lect. Notes Ec. &
Math. Syst. 252);   Qualität und Zuverlässigkeit technischer Systeme, 1985, 88,91, 97, Springer, Berlin.

[A7.3] Cinlar E.,  Introduction to Stochastic Processes, 1975, Prentice Hall, Englewood Cliffs NJ.
[A7.4] Cox D.R., "The analysis of non-markovian stoch. proc. by the inclusion of sup. variables", Proc.

Cambridge Phil. Soc., 51(1955), pp. 433-41;    Renewal Theory, 1962, Methuen, London;   - et al.,
The Statistical Analysis of Series of Events, 2nd Ed. 1968, Methuen, London.

[A7.5] Csenki A. ,"Mission availability for rep. semi-Markov systems", Statistics, 26(1995), pp. 75-87.
[A7.6] Cramér H., "Model building with the aid of stoch. proc.", Technometrics, 6 (1964), pp. 133-59;

- et al.,  Stationary and Related Stochastic Processes, 1967, Wiley, NY.
[A7.7] Downton F., "Stoc. models for successive failures", Proc. 38th Sess. Int. Stat. Inst., 44(1971)1, pp. 667-94.
[A7.8] Drenick R.F., "The failure law of complex equipment", J. Soc. Ind. Appl. Math., 8(1960),pp. 680-90.
[A7.9] Feller W.,  "On the integral eq. of renewal theory", Ann. Math. Statistics, 12(1941), pp. 243-67;

"Fluctuation theory of recurrent events", Trans. Amer. Math. Soc. 67(1949), pp. 98-119;  "On semi-
Markov-proc.", Proc. Nat. Acad. Scient. (USA), 51(1964), pp. 653-59;  An Introduction to Probability
Theory and its Applications, Vol. I 3th Ed. 1968, Vol. II 2nd Ed. 1966, Wiley, NY.

[A7.10] Franken P. et al.,  "Reliability analysis of complex repairable systems by means of marked point
processes", J. Appl. Prob., 17(1980), pp. 154-67;   - et al., "Reliability analysis of complex systems
with repair", EIK, 20(1984), pp. 407-22.

[A7.11] Franken P. et al.,  Queues and Point Processes, 1982, Wiley, NY.
[A7.12] Gnedenko B.W. et al., (Ed.),  Handbuch der Bedienungstheorie, vol. & II 1983, Akad., Berlin.
[A7.13] Gnedenko B.W. et al.,  Introduction to Queuing Theory, 1989, Birkhäuser, Basel.
[A7.14] Grigelionis B.I.,  "Limit theorems for sums of repair processes", Cybernetics in the Serv. of Comm.,

2(1964), pp. 316-41.
[A7.15] Johnson N. L., "A proof of Wald's theorem on cumul. sums", Ann. Math. Stat., 30(1959), pp. 1245-47.
[A7.16] Karlin S. et al.,  "The differential equations of birth and death processes, and the Stieltjes moment

problem", Trans. Amer. Math. Soc., 86(1957), pp. 489-546;  "The classification of birth and death
processes", Trans. Amer. Math. Soc., 85(1957), pp. 366-400;   "Coincidence properties of birth and
death processes", Pacific J. Math., 9(1959), pp. 1109-40.

[A7.17] Khintchine A.Y.,  Mathematical Methods in the Theory of Queuing, 1960, Griffin, London.
[A7.18] Kovalenko I.N. et al., Models of Random Processes, 1996, CRC Press, NY.
[A7.19] Lévy P., "Processus semi-markoviens", Proc. Int. Congr. Math. Amsterdam, 3(1954), pp. 416-26.
[A7.20] Osaki S. et al.,  (Eds.),  Stochastic Models in Reliability Theory, 1984, Springer, Berlin (Lect. Notes in

Ec. and Math. Syst. Nr. 235).
[A7.21] Parzen E.,  Stochastic Processes, 3rd Printing 1967, Holden-Day, San Francisco.



References 603

[A7.22] Pavlov I.V., "The asymptotic distribution of the time until a semi-Markov process gets out of a kernel",
Eng. Cybernetics, (1978)5, pp. 68-72.

[A7.23] Pyke R., "Markov renewal processes: definitions and preliminary properties", Annals Math. Statistics,
32(1961), pp. 1231-42;   "Markov renewal proc. with finitely many states", Annals Math. Stat.,
32(1961), pp. 1243-59;   -  et al., "Limit theorems for Markov renewal proc.", Annals Math. Stat.,
35(1964), pp. 1746-64;    "The existence and uniqueness of stationary measures for Markov renewal
proc.",  Annals Math. Stat., 37(1966), pp. 1439-62.

[A7.24] Smith W.L., "Asymptotic renewal theorems", Proc. Roy. Soc. Edinburgh, 64(1954), pp. 9-48;
"Regenerative stochastic processes, Proc. Int. Congress Math. Amsterdam, 3(1954), pp. 304-05;
"Regenerative stoch. processes", Proc. Roy. Soc. London, Ser. A, 232(1955), pp. 6-31; "Renewal
theory and its ramifications", J. Roy. Stat. Soc., Ser. B, 20(1958), pp. 243-302; "Remarks on the paper:
Regenerative stochastic processes", Proc. Roy. Soc. London, Ser. A, 256(1960), pp. 496-501.

[A7.25] Snyder D.L. et al.,  Random Point Processes in Time and Space, 2nd Ed. 1991, Springer, Berlin.
[A7.26] Solovyev A.D., "The problem of optimal servicing", Eng. Cybernetics, 8(1970)5, pp. 859-68;

"Asymptotic distribution of the moment of first crossing of a high level by a birth and death proc.",
Proc. sixth Berkeley Symp. Math. Stat. Prob., 3(1970), pp. 71-86;  "Asymptotic behavior of the time of
first occurrence of a rare event in a reg. process", Eng. Cybernetics, 9(1971)6, pp. 1038-48.

[A7.27] Srinivasan S.K. et al.,  Probabilistic Analysis of Redundant Systems, 1980, Springer, Berlin (Lect.
Notes Ec. & Math. Syst. 175);   Stochastic processes, 2nd Ed. 1988, Tata McGraw-Hill, New Delhi.

[A7.28] Störmer H.,  Semi-Markoff-Prozesse mit endlich vielen Zuständen, 1970, Springer, Berlin (Lect. Notes
in Op. Res. and Math. Syst. Nr. 34).

[A7.29] Takács L., "On a probability theorem arising in the theory of counters", Proc. Camb. Phil. Soc.
52(1956), pp. 488-98;   "On certain sojourn time problems in the theory of stoch. proc.", Acta Math.
(Hungar), 8(1957), pp. 169-91;   Stochastic Processes, Problems and Solutions, 4th Ed. 1968,
Methuen, London.

[A7.30] Thompson W.A., Jr., "On the foundations of reliability", Technometrics, 23(1981)1, pp. 1-13;   Point
Processes Models with Applications to Safety and Reliability, 1988, Chapman & Hall, N Y.

see also [2.34, 6.0-6.80]

A8  Mathematical Statistics

[A8.1] Bain L. et al.,  Statistical Analysis of Rel. and Life-Testing Models, 2nd Ed. 1991,  Dekker NY.
[A8.2] Birnbaum Z.W., "Numerical tabulation of the distribution of Kolmogorov's statistic for finite

sample size",  Annals Stat. Ass., 47(1952), pp. 425-41.
[A8.3] Cain S.R., "Distinguishing between lognormal and Weibull distributions", IEEE Trans. Rel.,

51(2002)1, pp. 32-38.
[A8.4] Cantelli F.P., "Considerazioni sulla legge uniforme dei grandi numeri e sulla generalizzazione di un

fondamentale teorema del Sig. Paul Lévy", Giornale Attuari, 1933, pp. 327-38;  "Sulla determinazione
empirica delle leggi di probabilità", Giorn. Attuari, 1933, pp. 421-24.

[A8.5] Chernoff H. et al.,  "The use of maximum Likelihood estimates in χ2 goodness-of-fit",  Ann. Math.
Stat., 25(1954), pp. 579-86.

[A8.6] Clopper C.J. et al.,  "The use of confidence or fiducial limits illustrated in the case of the binomial",
Biometrika, 26(1934), pp. 404-13.

[A8.7] Cochran W.G., "The χ2 tests of goodness of fit",  Ann. Math. Stat., 23(1952), pp. 315-45.
[A8.8] Cramér H.,  Mathematical Methods of Statistics, 1946, 19th Printing 1999, Univ. Press, Princeton.
[A8.9] d'Agostino R.B. et al.,  Goodness-of-fit-Techniques, 1986, Dekker, NY.
[A8.10] Darling D., "Kolmogorov-Smirnov, Cramer-von Mises tests", Ann. Math. Stat., 28(1957), pp. 823-38.
[A8.11] Durbin J.: Distribution Theory for Tests Based on the Sample Dis. Function, SIAM Publ. No. 9,

Philadelphia, 1973.
[A8.12] Epstein B, et al., "Life testing",  J. Amer. Stat. Ass., 48(1953), pp. 486-502;  "Truncated life tests in the

exp. case", Ann. Math. Stat., 25(1954), pp. 555-64;  "Sequential life tests in the ex. case", Ann. Math.
Stat., 26(1955), pp. 82-93;   "Test for the validity of the assumption that the underlying distribution of
life is exponential" Part I & II, Technometrics, 2(1960), pp. 93-101 & 167-83;  Statistical life tests
acceptance procedures", Technometrics, 2(1960), pp. 435-54; "The exact analysis of sequential life
tests with particular application to AGREE plans", Rel.  & Maint. Conf., 1963, pp. 284-310.



604 References

[A8.13] Feller W., "On the Kolmogorov-Smirnov limit theorems for empirical distributions", Ann. Math. Stat.,
19(1948), pp. 177-89.

[A8.14] de Finetti B., "Sull'approssimazione empirica di una legge di probab.", Giorn. Attuari, 1933, pp. 415-20.
[A8.15] Fisher R.A., "On the mathematical foundations of theoretical statistics", Phil. Trans., A 222(1921), pp.

309-68;   "The conditions under which χ2 measures the discrepancy between observation and
hypothesis", J. Roy Stat. Soc., 87(1924), pp. 442-50;  "Theory of statistical estimation", Proc.
Cambridge Phil. Soc., 22(1925), pp. 700-25.

[A8.16] Gliwenko V., "Sulla determinazione emp. delle leggi di probabilità", Giorn. Attuari, 1933,  pp. 92-99.
[A8.17] Gumbel E.J., Statistical theory of extreme value and some practical applications, Nat. Bureau of

Standards, Appl. Math. Series 33, 1954;  Statistics of Extremes, 1958, Columbia Univ. Press, NY.
[A8.18] Hällgren B., "Availability compliance testing of systems with long mean time between failures", Rel.

Engineering, 15(1986), pp. 83-94.
[A8.19] Kalbfleisch J.D. et al.,  Statistical Analysis of Failure Time Data, 2. Ed. 2002, Wiley, NY.
[A8.20] Kolmogoroff A.N., "Sulla determinazione empirica di una legge di distribuzione", Giorn. Attuari,

1933, pp. 83-91.
[A8.21] Lawless J. F.,  Statistical Models and Methods for Lifetime Data, 1982, Wiley, NY.
[A8.22] Lehmann E.L.,  Testing Statistical Hypotheses, 1959, Wiley, NY.
[A8.23] Mann N.R. et al.,  Methods for Statistical Analysis of Reliability and Life Data, 1974, Wiley, NY.
[A8.24] Mason R.L. al.,  Statistical Design and Analysis of Experiments, 2003, Wiley Inter., NY.
[A8.25] Martz H.F. et al.,  Bayesian Reliability Analysis, 1982, Wiley, NY.
[A8.26] Meeker W.Q. et al.,  Statistical Methods for Reliability Data, 1998, Wiley, NY.
[A8.27] Miller L.H., "Table of % points of Kolmogorov statistics", J. Amer. Stat. Ass., 51(1956), pp. 111-21.
[A8.28] Pearson K., "On deviations from the probable in a correlated system of variables", Phil. Magazine,

50(1900), pp. 157-75.
[A8.29] Rise J., "Compliance test plans for availability", Proc. Ann. Rel. & Maint. Symp., 1979, pp. 368-73.
[A8.30] Serfling R.J.,  Approximation Theorems of Mathematical Statistics, 1980, Wiley, NY.
[A8.31] Smirnov N., "On the estimation of the discrepancy between empirical curves of distribution for two

independent samples", Bull. Math. Moscow Univ., 2(1939), fasc. 2.
[A8.32] Stephens M., "On the half-sample method for goodness-of-fit", J. Roy. Stat. Soc., B40(1978), pp. 64-70.
[A8.33] Wald A.,  Sequential Analysis 1947, Wiley, NY;   Statistical Decision Functions, 1950, Wiley, NY.

A9  Tables

[A9.1] Abramowitz M. et al., (Eds.),  Handbook of Mathematical Functions, 11th Ed. 1974, Dover, NY.
[A9.2] Ciba-Geigy,  Wissenschaftliche Tabellen, Vol. 3, 8th Ed. 1980, Ciba-Geigy, Basel.
[A9.3] Fisher R.A. et al.,  Statistical Tables for Biological, Agricultural and Medical Research, 6th Ed. 1974,

Longman, London.
[A9.4] Jahnke-Emde-Lösch,  Tables of Higher Functions, 7th Ed. 1966, Teubner, Stuttgart.
[A9.5] Owen D.B.,  Handbook of Statistical Tables, 1962, Addison-Wesley, Reading MA.
[A9.6] Pearson E.S. et al.,  Biometrika Tables for Statisticians, Vol. I, 3rd Ed. 1966, University Press,

Cambridge.



Index

(less relevant places (not bold) are often omitted,
bold italic refers to definitions or key places)

A priori / a posteriori probability  422, 533
Absolute probability  481  →  State probability
Absolutely continuous  424, 435
Absorbing state  197, 198, 493, 494
Accelerated test  35, 82, 86, 98-99, 101, 102, 329-34,

335-36, 364, 374, 448, 558
Acceleration factor  36, 99, 101, 329-33
Acceptable Quality Level (AQL)  86, 306-08, 552
Acceptance line  305, 322-24, 550-51
Acceptance probability curve
     → Operating characteristic curve
Acceptance test  →  Demonstration
Accessibility  8, 118, 157
Accident prevention  9, 385
Accumulated operating time  →  Cumulative op. time
Accumulated reward  271, 279, 501
Acquisition cost  11, 13, 14, 379, 392
Activation energy  37, 86, 97, 99, 103, 330, 331, 361
Active redundancy  31, 43, 43-61, 62, 64, 68, 196, 201,

213, 217, 232, 233, 364, 383
•  with common cause failures  271-73

Addition theorem  419, 421-22, 450
Additional / supplementary states  193, 515
Adjustment  118, 158
Administrative delay  113, 375
Advantage

•  in-circuit test  362
•  redundancy (nonrepairable)  44
•  repair priority  222
•  repairable redundancy  202
•  100% incoming inspection  358-59
 (see also  Favored)

Aerospace  390
Aftereffect  →  Without aftereffect
After-sale  8, 13
Age replacement  134, 135-39
Aging 6, 427  (see also Wear-out, As-bad-as-old)
Alarm / alarm circuitry   49, 255, 158, 249, 298
Alarm defection  255
Alignment  →  Adjustment
Allocation (reliability)   67, 392, 394
All-terminal  275-76
Alternating renewal processes  176, 474-77, 478, 507, 510
Alternative hypothesis ( H1)  302, 313, 320, 327, 334, 547
Alternative investigation methods  280-94
AMSAA model  352

Anderson - Darling statistic  557
Antistatic  94, 153   (see also Electrostatic Discharge)
AOQ / AOQL  303-04
Aperture in shielded enclosure  149
Approximate expressions 59, 124, 174, 186-87, 198-99,

201-2, 206-07, 213, 215, 217, 226, 229-30, 232, 233,
243, 245, 247, 251, 279, 293-94, 452, 504, 516

Approximation for
•  a distribution function  7. 193, 428, 447, 448, 451,

452, 456-59, 469-71, 497, 509, 515
•  a Laplace transform  186, 206
•  a MTTF MUTS S,   200, 232, 233, 279
•  a point availability  183, 186-87, 198, 201, 206,

215, 232, 233, 294, 512
•  a reliability function  199, 201, 278, 294
•  a repair function  114, 187, 206-07
•  a series-parallel structure  232, 233
•  an interval reliability  183, 200, 205, 278

AQL  →  Acceptable Quality Level
Arbitrary failure and repair rates  171, 176-82, 188,

193-95, 207-13
Arbitrary initial conditions (one item)  184-87
Arbitrary repair rate  171, 183, 188, 192-95, 204-12,

213, 218-19, 222-25, 249-50, 510-14
Arithmetic random variable  424, 428, 430, 438,

450-54
Arrhenius model  36-37, 97, 102, 329-31, 361
Arrival rate  516, 524  (see also Intensity)
Arrival / occurrence time  343, 353, 464, 517, 518
As-bad-as-old  41, 138-39, 427, 519
As-good-as-necessary  19
As-good-as-new  5, 6, 8, 40-41, 61, 134, 171, 173, 178,

239-40, 241, 316, 341, 374, 375, 378, 380, 381, 427
Assessed reliability  3
    (see also Demonstration, Estimation)
Assumptions  31, 39, 41, 43, 52, 170-71, 238-40, 260
Assurance program / tasks
    →  RAM / RAMS assurance program
Asymptotic behavior

•  alternating renewal processes  477
•  correspondence with steady-state and stationary

472, 477, 498, 509
•  Markov processes  496-98
•  one-item structure  185-87
•  regenerative processes  478-79, 514
•  renewal processes  469-71
•  semi-Markov processes  508-09

   (see also  Stationary, Steady-state)
Asynchronous logic  155
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Attainable intensity  354
Attributes (test by)  299
   (see also Software quality)
Audits  106, 357, 397
Availability  9, 374  →  Point availability (PA)
   (see also Intrinsic, Joint, Mission, Operational,

Overall, Technical, Work-mission availability)
  •  approximate expressions  178, 183, 187
Availability estimation and demonstration  311-15,

545-46, 553-55
Average availability (AA)  9, 178-79, 183, 188, 498
Average Outgoing Quality  (AOQ)  303-04
Axioms of probability theory  416

Backdriving  362
Backward equation  →  Kolmogorov equation
Backward recurrence time  468-69
Bad-as-old (BAO)  →  As-bad-as-old
Bamboo structure  97
Baseline  →  Reference documentation
Basic rules  →  Rules for
Bathtub curve  6-7, 444
Bayes theorem  422, 436
Bayesian estimate / statistics  436, 533
BDD  →  Binary decision diagram
Bernoulli distribution  →  Binomial distribution
Bernoulli trials / model  449, 453, 455, 535, 538
Bernoulli variable  449, 453
Beta distribution  540, 546, 564
Biased  311, 317, 318, 529, 535, 537, 555
Bi-directional connection  31, 53, 275
Binary decision diagram (BDD) 53, 58, 76, 283-85
Binary process  56, 58, 61, 315, 515   (see also Indicator)
Binomial distribution  44, 300-04, 310, 430-31, 449-51,

527, 535, 539-42, 549
Binomial expansion  317
Birth and death process  131, 197, 214-17, 501-05
Birth processes  →  Birth and death process
BIST  →  Built-in self-test
BIT  →  Built-in test
BITE  →  Built-in test equipment
Bivariate distribution  436
Black model  97, 333
Blackwell theorem  470
Block replacement  134, 135-39, 241
Bonding  93, 95, 100, 103, 104
Boolean function / method  57-61, 275, 280
Boolean variable  58, 315  (see also  Indicator)
Bottom-up  72, 78, 163, 164, 166, 286, 377
Boundary-scan  155
Boundary sliding  109, 363
Bounds  59, 61, 187, 215, 229, 240, 260, 264, 265, 280,

293-94   (see also Interval estimation)

Branching processes  521
Breakdown  96-97, 102, 106, 145, 149, 150
Bridge structure  31, 53-54
Bridging  90
Built in  1, 2, 8, 16, 115, 144, 259
Built-in self-test (BIST)  156
Built-in test  (BIT)  66, 116-17, 156, 249, 252
Built-in test equipment (BITE)  116-17, 156
Burn-in  6-7, 89, 101, 109, 360, 361, 364, 374
    (see also Dynamic burn-in, Static burn-in)
Bypass  158, 294, 295

Calibration 358
Capability  13, 152, 374, 386, 405
Capacitors (use & limits)  100, 145, 146, 148, 151, 573
Captured  188
Care  342, 345, 350, 363
CASE  164
Case-by-case  35, 81, 138, 139, 174, 220, 238, 240,

249, 259, 266, 274, 277, 289, 294, 334, 363, 510
Cataleptic failure  4, 6
Cauchy  distribution  563
Cause-to-effects-analysis / chart  15, 22, 66, 72-80,

160, 165, 351, 377, 378
Causes for
  •  common cause failures  271
  •  hardware defects / failures  95, 103, 106-07, 109-11,

271, 351, 362-63, 376, 377, 385, 411
  •  software defects  162-65
  •  weaknesses  162-65, 351
CCF  →  Common cause failure
CDM  →  Charged device model
Censoring  318, 320, 346-49, 353, 354, 518, 526, 537
Central limit theorems  126, 456, 457-59, 471, 528
Central moments  433
Centralized logistic support  125-29, 130
Ceramic capacitor  145, 148, 151, 153, 573
Cerdip  147
Certification  388
Change  7, 165, 351, 357, 402
Chapman-Kolmogorov equations  482
Characteristic function  561, 567
Characterization (electrical)  89, 90, 91-93, 108
Charge spreading  103
Charged device model (CDM)  94
Chebyshev inequality  315, 433, 455, 456, 534
Check list 77, 79, 120, 393-97, 394-404, 405-09
Check strategy  21, 249, 250, 253, 255, 256, 257, 258
Chi-square ( )χ 2  distribution  430-31, 445, 562
  •  relation to exponential, normal, Poisson

distribution  445, 562
Chi-square ( )χ 2  test  338-40, 344, 557-60
Claim  15, 382  (see also Product liability)
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Classical probability  417
Clock  149, 151, 155, 156
Close cooperation  →  Cooperation
Clustering of states  229, 293
CMOS terminals  150
Coating  147
Coefficient of variation  128, 433
Coffin-Manson  109, 333
Cognitive  295
Coherent system  57, 58, 59, 61
Cold redundancy  →  Standby redundancy
Combination of

•  methods / tools  76-78, 282
•  stresses  82, 111, 333, 334

Commercial program  290
Common cause

•  events  286
•  failures  42, 45, 66, 72, 79, 245, 255, 271-74, 277,

286, 383, 406  (see also  Single-point failures)
Common ground point  148
Common mode currents  149
Common mode failures  72, 271, 277
Comparative studies / comparisons 14-15, 26, 31, 38, 44,

47-48, 78, 116, 119, 130, 133, 202, 206, 207, 217-18,
227-28, 232, 233, 237, 272-73, 366, 467-68, 572-76

Compatibility  148 , 154 , 162, 402, 408
Complementary event / complement of events  414
Complete Gamma function  443, 444, 566
Completeness  162
Complex structure / system   31, 52, 53-61, 64-66,

68-69, 238, 239-76, 277-79, 280-92, 293-94
Complexity factor  67
Components & materials (basic considerations)  407
Components properties  572-75   (see also Design
     guidelines and Technological properties / limits)
Composite hypotheses  547
Composite shmoo-plot  91
Compound failure rate  332
Compound processes →  Cumulative processes
Compression  →  Time compression
Computer-aided reliability prediction  35, 289-92
Conclusions  174
Concurrent engineering  11, 16, 19, 375, 379, 383, 398
Condition for

•  Markov processes  462, 482, 487
•  memoryless property  427, 442, 482
•  Poisson processes 472
•  regenerative processes  478
•  renewal processes  463-64
•  semi-Markov processes  462, 505, 510
•  semi-regenerative processes  462, 478, 514

Conditional density / distribution function 436, 507, 517
Conditional mean / expected value  426, 437

Conditional failure rate  378, 426
Conditional probability  418-19, 426, 466, 480, 482, 506
Conditional reliability function  40, 426
Conductive-filament  333
Confidence ellipse  300-301, 540-541
Confidence interval  301, 312, 319, 538, 539-46
Confidence level  86, 300, 318, 538, 546
Confidence limits  538

•  availability PA=AA  311-12, 545-46
•  failure rate λ  318-20, 542-45
•  failure rate at system level λS   320
•  one sided  302, 312, 319, 538
•  parameters of a lognormal distribution  327
•  unknown probability  p  300-02, 538-42

 in particular  301, 312, 319, 538
Configuration  375  (see also Documentation)
Configuration accounting  396, 402
Configuration auditing  396, 401-02

 (see also Design reviews)
Configuration control  165, 396, 402
Configuration  identification  396, 401
Configuration management  13, 15, 16, 18, 21, 160,

164, 165, 357, 358, 375, 396, 401-03
Conformal coating  →  Coating
Congruential relation  291
Conjunctive normal form  59
Connections  157
Connector  145, 150,151, 153, 156, 157
Consecutive k-out-of-n systems  45
Consequence  →  Failure effect, Fault effect
Consistency checks  76
Consistency condition  461
Consistency (software)  162
Consistent estimates  456, 533, 534
Constant acceleration test  361
Constant failure rate λ
   •  as necessary condition  6, 40, 171, 179, 259-66,

378, 316-25, 332, 380, 427, 472, 487,482-505
   •  concept 6, 316, 441-42, 427
   •  estimation  317, 318-20, 535, 542-44
   •  demonstration  320-25
   •  investigations with  6, 35, 40, 61-64, 183, 187, 188,

201, 217, 232, 233, 296-98, 378, 426-27, 441-42,
472-73, 482-505

Constant repair rate µ  183, 188, 201, 217, 226,
232, 233, 381, 482-505

Consumer risk β   303, 306, 313, 314, 321, 323, 548,
554  (see also Type II error)

Contamination  85, 93, 98
Continuity test  88
Continuous from the right  423-34, 526-27
Continuous param. Markov chain → Markov process
Continuous random variable 424-5, 430-1, 435-6, 441-8
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Contract  387, 394  (see also System specifications)
Controllability  155
Convergence almost sure  →  Conv. with probability 1
Convergence in probability  455
Convergence quickness  127, 186-87, 198, 301, 307,

312, 319, 325, 416, 528, 544, 552
•  PA t( ) → PA   183, 186-87, 198
•  RS t e S t( ) → −λ  199

Convergence with probability one  455
Convolution  438-39, 475, 485, 567
Cooling  84, 145-47, 150, 153, 351
Cooperation  10, 19, 20, 21, 92, 238, 280, 387-90,

394-97
Corrective actions  16, 22, 72, 73, 77, 80, 104-05,

160, 358, 383, 404, 412
     (see also Quality data reporting system)
Corrective maintenance  8, 112-13, 118, 120, 375
     (see also Repair)
Correlation coefficient  437, 447, 462-63
Correlation diagram  78
Correspondence  →  Equivalence
Corrosion  6, 83, 85, 98-100, 102, 103, 147, 333
Cost / cost equations  12, 14, 67, 135-43, 367-71,

450, 498
Cost effectiveness  11, 13, 16, 309, 375, 379
Cost optimization  11-15, 16, 67, 120, 134-43, 143,

242, 364-71, 375, 379, 386, 392, 398, 450, 498, 522
Cost rate / cost per unit time  12-14, 139-40
Count function / process ( ( ))ν t   5, 464, 472, 516, 522
Coupler  268  (see also  Switch)
Coupling  91, 97, 148, 151
Covariance matrix  437
Coverage 117, 249 →  Incomplete coverage, Test cov.
Cracks  85, 93, 102, 104, 106, 108-11, 153
Cramér - von Mises test  344, 556
Creep deformation  108-09
Critical

•  application  253
•  decision  294
•  design review (CDR)  107, 444400003333, 444400008888−−−−00009999
•  operating states  277

Criticality  72-73, 160, 165, 168
Criticality grid / criticality matrix  72-73
Cumulated states  270, 499
Cumulative damage  333, 522
Cumulative distribution function  →  Distribution funct.
Cumulative operating time  316, 317, 318-20, 321, 332

•  Random cumulative operating time  537
Cumulative processes  521-23
Customer documentation  →  User documentation
Customer requirements / needs  19 , 387-90, 391-93, 394
Customer risk  →  Consumer risk
Cut sets  →  Minimal cut sets

Cut sets / cuts theorem  497 , 500
Cutting of states  229, 237, 293
Cycle (regenerative process)  291, 477, 478-79, 514
Cycles to failure  333

Damage  85, 94, 100, 102, 104, 106, 107, 152, 333,
334, 351, 357, 359, 362

Damage evolution / accumulation  109, 333
Damp test  →  Humidity test
Data

•  analysis  341-56, 569-71
•  collection  21, 22, 23, 383, 410-12
•   retention  89, 97-98

DC parameter  88, 92
Death process  61-64
     (see also Birth and death process)
Debug test  166
Debugging  160, 166
Decentralized logistic support  129-30, 134
Decoupling device  32, 66, 148, 151  (see also Elements

with more than one failure mechanism / mode)
Decreasing failure rate  6-7, 242, 337-38, 442, 444
    (see also Strictly increasing / decreasing failure rate)
Decreasing intensity  6-7, 345, 348-49
Defect  1, 4, 6-7, 72, 159, 162-66, 351, 364-65, 376,

377, 378, 381, 384, 400
     (see also Dynamic defect, Nonconformity)

•  causes / examples  95, 102, 106-07, 110, 152-53,
162-64, 351, 358-59, 362-63, 365-66

•  detection   →  Fault detection
•  elimination (software)  166
•  prevention hardware  66, 79, 120, 144-54, 154-

59, 357-58, 391-09
•  prevention software  159-65, 167

Defect freedom (reliability for software)  162, 166
Defect tolerant (software)  159-60, 162, 164
Defective probability  12, 86, 299-308, 359, 362-63,

365-66, 367-72, 548
Deferred cost  12, 14, 364, 366-71, 389
Definition of probability  416-17
Definitions and terms  2-15, 162, 373-86
Deformation mechanisms / energy  109, 363
Degradation  4, 7, 66, 92, 96, 101, 112, 392
     (see also Graceful degradation)
Degree of freedom  430, 445, 557, 559, 562-64
De Moivre -  Laplace theorem  456, 540
Demonstration

•  availability  313-15, 393, 553-55
•  defective (or unknown) probability  p   302-08,

309-10, 548-52   (in particular 305, 323)
•  constant failure rate λ or MTBF =1 / λ   320-25,

392-93   (in particular 305, 323)
•  MTTR  327-29, 393
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De Morgan's laws  414
Dendrites  95, 100
Density  424, 430, 435
Density rate  426  →  Failure rate
Dependability  9, 11, 13, 374, 376, 388, 389, 501
Derating  33, 79, 82, 84, 86, 144-45, 376
Design FMEA / FMECA  72, 78, 377
Design guidelines 13, 25-27, 66, 77, 79, 84, 396, 399

•  components / assemblies  150-53
•  cooling  145-47
•  derating  37, 144-45
•  EMC / ESD  148-49
•  ergonomic / human / safety aspects  158-59
•  maintainability  154-159
•  moisture  147
•  package form / type  147
•  reliability  144-54
•  software quality  159-68
•  temperature  37, 145-47
•  testability  155-57
 (see also Rules)

Design reviews  13, 16, 21, 26, 27, 77, 79, 107, 120,
160, 164, 165, 365, 376, 396, 401-02, 403, 405-09

Design rules  →  Rules
Destructive analysis / test  92, 104, 105, 334
Detection  →  Fault detection
Deterministic  →  Defect, Systematic failure
Device under test (DUT)  88
Dew point  104
Diagnosis  113, 115, 116, 120, 249
     (see also Fault localization)
Diagram of transitions

•  probabilities 61, 190, 197, 203, 215, 221, 235,
487, 488-90, 491, 493, 494, 501, 503

•  rates  204, 238, 246, 247, 251, 253-58, 261, 263,
267, 272-73, 277, 288

•  states  194, 208, 222, 252, 511, 512, 513
Die-attach  93 , 361
Dielectric breakdown  →  Time dielectric breakdown
Difference between  →  Distinction between
Different elements  44, 202-03, 232, 233
Difference equations  62-63, 197, 492
Different required functions  29, 259
Differential equations (method of)  63, 197-99, 491-94
Directed connection / arc  31, 55, 275, 287
Discrete random variable  424, 429, 430, 449-54
Discrimination ratio  303, 322
Disjunctive normal form  59
Dislocation climbing  109, 363
Dispersion  →  Variance
Disposal  13, 19, 379
Distinction between

•  active and standby redundancy  43, 62-64, 201, 207

•  arrival times and interarrival times  464, 517
•  deterministic and random failure / faults 351
•  failure and defect  3-4, 117, 351, 376, 377, 378
•  Markov and semi-Markov process 462, 505
•  renewal and regeneration point  464, 475, 478, 514
•  reliability and availability 9, 170, 374, 384, 492, 493
•  reliability and interval reliability  40, 179, 493, 494
•  reliability and safety  9, 384, 385
•  repairable and nonrepairable  202
•  software and hardware quality assurance  161
•  time and failure censoring  320, 537, 542-44
•  time-homogeneous and stationary  462-63
•  λ ( )t  and f ( )t   7, 425-26
•  λ ( )t  and h ( )t , m ( )t   7, 352, 378, 466-67
•  λ ( )t  and zS t( )  7, 378, 524
•  MTBF and MTTF   39-40, 380
•  MUTS  and P MTTFi S i∑     500
•  P ( )i j tδ  and Qi j t( )δ   487
•    Pi  and Pi   497, 509, 510, 514
•  t t1 2

* *, , . ..   and t t1 2, , . ..    341, 353, 517
•  τ τ1 2

* *, , ...  and τ τ1 2, , ...    341, 517
Distributed / meshed systems / structures  52, 275-76
Distribution function  423, 430-31, 434, 441-54

•  with random parameter  428
Distribution law  423, 434, 481, 483
Documentation  7, 15, 19, 118, 161, 162, 163-64, 400-03
Does not close  →  No connection
Does not open  →  Stuck at state
Dominant failure mechanism / rate  38, 257, 332
Dormant state  33, 36, 145
Double one-sided sampling plan  307-08
Down / down state ( , )d U   277-78, 474-75, 491, 508
Down time  123-24, 140, 181, 242, 270, 314-15, 522
     (see also System mean down time ( )MDTS )
Drift  71, 76, 79, 83, 100, 101, 147, 151, 572-75
Drivers  151
Drying material  147
Duane model  352-54
Duration  (sojourn, stay)  →  Stay time
Duty cycle  38, 67, 290, 392
Dwell time  98, 108, 109, 361, 363
Dynamic burn-in  101, 109, 361   (see also Burn-in)
Dynamic defect  3-4, 159, 355, 376, 384, 385, 400
Dynamic fault tree / gate  76, 281-82
Dynamic gate  76, 281
Dynamic parameter  88, 150, 358
Dynamic stress  69, 149

Early failures  4, 6-7, 35, 101, 109, 333, 337-38, 345,
350, 351, 355, 359, 364, 374, 376, 377, 428, 467-68

Early failures period  6-7, 337-38, 345, 350, 351, 355
EBIC (electron beam induced current)  104, 105
Ecological / Ecologically acceptable  10, 391, 392
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EDF  →  Empirical distribution function
Edges  275
EDX spectrometry  104, 105
Effect  →  Failure effect, Fault effect, Error effect
Effectiveness  →  Cost effectiveness
Efficiency (software)  162
Efficient estimates  533, 534
Electrical characterization  90, 91-93, 108
Electrical overstress  96, 153, 365
Electrical test

•  assemblies  362-63
•  components  88-92

Electrolysis  147
Electromagnetic compatibility (EMC)  79, 82, 84, 108,

144, 148-49, 351, 405
Electromigration  6, 89, 95, 97, 103, 106, 333
Electron beam induced current (EBIC)  104
Electron beam tester  91, 104
Electronic assemblies

•  accelerated test  332
•  design guidelines  151-53
•  qualification test  107-11
•  testing and screening  362-64

Electrostatic Discharge (ESD)  89, 94, 102, 104,
106-07, 108, 144, 148-49, 153, 357

Elementary event  414
Elementary renewal theorem  469
Elements of a quality assurance system  13, 21
Elements which appear more than once in an RBD

29-30, 31, 32, 53, 54, 56, 68, 275-76, 284, 285, 289
Embedded

•  Markov chain  252, 291, 478, 480, 485, 486,497,
505, 508, 509, 510, 514

•  renewal process 176, 210-11, 462, 474-75, 478-79,
506, 514

•  semi-Markov proc. 171, 204, 223, 462, 510, 511-13
Embedded software  160, 164
EMC  →  Electromagnetic compatibility
Emergency situation  158, 294
Emission (EMC)  148
Emission microscopy (EMMI)  104
Empirical

•  distribution function  334-39, 526-32
•  evaluation of data  336-39, 443, 525-32, 569-71
•  failure rate  4-5
•  mean / variance / moments  4, 325, 326, 528-29
•  methods,  525-32
•  moments / quantiles  325-26, 528-29
•  reliability function  4-5

Empty set  414
Environmental

•  conditions/stress 28, 33, 36, 79, 82-4, 154, 379, 406
•  stress screening  →  ESS

Environmental and special tests
•  assemblies  108-09
•  components  89, 92-100

Equations for Markov & semi-Markov models  172-73
Equivalence between asymptotic, stationary , steady-

state  171, 187-88, 472, 477, 479, 498, 509, 514
Equivalent events  414
Ergodic distribution  482, 497
Ergonomics  120, 158-59, 294, 395, 407, 409
Erlang distribution  193, 312. 314. 445, 546. 554
Error / mistake 3, 6, 72, 76, 78, 95, 158-59, 160,

163-64, 294-98, 351, 376, 377, 378   (see also
Human)

Error correcting code  66,160, 164
Error effect  294-95
ESD  →  Electrostatic discharge
ESS  6, 351, 363, 376, 384   (see also Screening)
Estimate  →  Empirical   and  Parameter estimation
Estimated reliability  3
Estimation (statistical)

•  availability  311-12, 315, 545-46
•  failure rate λ or MTBF = 1 / λ   (T fixed)  316-20,

535, 537, 542-43   (in particular  319)
•  failure rate λ  (k fixed)  317, 537, 543-44
•  HPP / Poisson distribution  536, 542
•  MTTR   325-27
•  NHPP  353-54, 520
•  point / interval  (basic theory)  533-46
•  probability p, R, PA=AA   300-02, 309-10, 535,

538-42, 545-46   (in particular 301, 309, 312)
ETA →  Event tree analysis
Euler integral  566
Events / field of events  413-16
Event tree analysis (ETA)  76, 286, 295
Evolution of a Markov / semi-Markov process  485-86, 510
Examples of real systems  30, 32, 68, 235, 267, 275, 276
Exchangeability  118, 157
Expanding a 2-out-of-3 to a 1-out-of-3 redundancy  49
Expected percentage of performance  271, 501
Expected percentage of time in a state 173, 498, 507, 514
Expected value  429, 431, 436   →  Mean
Exponential distribution  6, 40, 126, 174, 238-40,

279,378, 427, 430-31, 441-42
    (see also Constant λ)
External cause/event/influence 10, 76, 78, 271, 281, 286
External initialization  155
Extreme value distributions  443
Extrinsic  3-4, 86, 377, 411
Eyring model  99, 102, 333

Factorial  566
Fail-safe  1, 9, 66, 72, 158, 164, 480
Failure 1, 3-4, 6-7, 377, 378, 385  (see also Fault)
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Failure analysis  87, 89, 95, 101, 102-05
Failure cause 3-4, 10, 73, 95, 105, 106-7, 110, 377, 411
Failure censoring  →  Censoring
Failure collection  →  Fault collection
Failure coverage  →  Incomplete coverage
Failure detection  →  Fault detection
Failure effect  →  Fault effect
Failure-free operating time 39 , 425  → Failure-free time
Failure-free time 3-6, 39-40, 175, 238-40, 378, 425, 442
Failure frequency  →  System failure frequency
Failure hypothesis  69-70
failure intensity z ( )t   5, 7, 279, 350, 377, 466, 521, 523

•  at system level zS t( )  521
Failure localization  →  Fault localization
Failure mechanism 4, 37, 38, 64, 96-100, 102, 103, 108,

109, 111, 333-34, 342, 358-63, 377, 428
•  analysis / modeling  39, 99, 102-03, 329-34, 356

Failure mode  3, 27, 42, 62, 64, 66, 101, 277, 377, 411
•  examples  51, 64-65, 100, 249, 266-67, 572-76
•  distribution  100, 572-76
•  investigation 64-65, 72-78, 243-47, 257-58, 266-69

Failure modes analysis  →  FMEA / FMECA
Failure propagation  →  Secondary failures
Failure rate λ λ λ, ( ), ( )t x   4-7, 32-38, 39, 101, 109, 344,

378, 425-28, 431, 441, 442, 444, 453, 466, 516, 524
•  analyses  25-67
•  confidence limits  319, 320
•  estimation  318-20, 535, 537, 542-44
•  demonstration  320-25  (in particular 323)
•  distinction to  →  Distinction between
•  handbooks  35-36
•  models / modeling  35-37, 38, 99, 329-33, 334
•  of a series system  31, 42
•  of mixed distributions  41, 428
•  temperature dependence  3, 34-35, 37,  329-34
•  values  36, 38, 50, 329, 392, 572-75

       (see also Conditional failure rate)
Failure recognition   →  Fault detection
Failure severity  72-73
Failure tolerant → Fault tolerant reconfigurable system
Failures with constant failure rate λ  6-7, 35
False alarm  66, 239, 249, 255
Fatigue  83, 98, 101, 103, 333, 443  (see also Wear-out)
Fault  4, 72-73, 78, 165, 377, 378
Fault collection  20, 21, 357, 410-12
Fault coverage 249  →  Incomplete coverage
Fault criteria  408   (see also Fault effect)
Fault detection 79, 88, 90, 102, 105, 113, 116, 117-18,

120, 154-59, 166, 240, 249, 274, 358-72, 405-09
Fault effect / consequence  4, 10, 72-80, 87, 101, 240,

294-95, 377, 385, 407, 409, 411   (see also Error
effect, ETA, FMEA / FMECA, FTA, Negligible)

Fault localization   112, 113, 116, 117, 154, 249-55, 362

Fault models  / modeling  90-91, 243-58, 266-74, 356
Fault modes and effects analysis  →  FMEA
Fault review board  411, 412
Fault sensing device  73
Fault tolerant structures / reconfigurable systems

16, 49, 64-65, 66, 101, 159, 160, 164-65, 240,
259-72, 275-76, 498-501

Fault tree / Fault tree analysis  66, 76, 78, 280-85, 378
Fault tree structure function  283-85
Favored (can be)  306, 324
Feasibility / feasibility check  11, 19, 77, 121, 161,

376, 401, 403, 405, 406
Feedback  22, 86, 87, 104, 150, 156, 160, 161
Fiber optic  157
Field data  35, 36, 37, 51, 341-50, 410
Field data change service  117
Field of events  413-16
Field operation  82, 83
Figures  →  Numerical values,
Final value theorem  567
Fine leak test  361-62
Finite element analysis  69
Firing rule  287
First delivery  372
First-in / first-out 153, 226, 235, 239, 259, 263, 290, 488
First production item  400
Fishbone diagram  →  Ishikawa diagram
Fisher / F-distribution  312-14, 451, 534, 540, 545-

46, 553-55, 559, 564-65
FIT (Failures in time)  36
Fit of models  102
Fitness for use  11, 382  →  Quality
Fix replacement  134-35, 136, 138
Fixed length test  →  Simple two-sided test
Flaw  73, 95, 106-11, 351, 376
    (see also Error / Mistake)
Flexibility (software)  162
Flow of failures / events  168, 316, 318, 352, 520
FMEA / FMECA 27, 42, 66, 69, 72-73, 74, 78, 79, 117,

120, 156, 160, 244, 259, 266, 274, 277, 377, 384, 394
Force of mortality  378, 426  →  Failure rate
Formation  →  Motivation and training
Forward equation  →  Kolmogorov equation
Forward recurrence time  182, 185, 187, 468-69, 470,

473, 476   (see also Rest waiting time)
FRACAS →  Quality data reporting system
Fractile →  Quantile
Fraction of defective items  →  Defective probability
Frequency / duration  266, 270-71, 278, 498-501, 509-10
Frequency of failures / repairs f fudS duS=   266,

270-71, 278-79, 498-500, 509-10
Frequency of states occurrence  465, 476, 497, 509, 510
FTA  →  Fault Tree Analysis
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Function of a random variable  428, 429, 448
Functional block diagram  29, 30, 32, 68, 244, 267, 282
Functional test  88, 90-92

Gain  →  Improvement
Gamma distribution  126, 187, 330, 430-31, 444-45
Gamma function 444, 566 → Complete, Incomplete G. f.
Gate review  →  Design review
Gaussian distribution  →  Normal distribution
General reliability data  341-56
Generalized cut sets theorem  497, 502
Generalized Eyring model  333
Generating function  → Moment generating function
Generation of nonhomogeneous Poisson proc.  520
Generator for stochastic jump processes  291-92
Genuine acceleration  329
Geometric distribution  292, 430-31, 453
Geometric probability  417
Glass transition temperature  85
Glassivation  →  Passivation
Glitches  151
Glivenko-Cantelli theorem  527
Go / no go decision  158, 412
Gold-plated pins  94, 153
Gold wires  100
Good-as-new  →  As-good-as-new
Goodness-of-fit tests  334-40, 344, 354, 555-60
Graceful degradation  66, 259, 277
Gradual failure  4
Grain boundary sliding  109, 363
Graphical evaluation / approach 335, 336, 339,

345, 350, 529-32
Grigelionis theorem  521
Gross leak  361-62
Ground  148-49, 150, 151, 152, 157
Ground tracks  151
Guard rings  149, 151
Guidelines  →  Design guidelines

Halogen-free  153
HALT  →  Highly accelerated life test
Handbooks  21, 35, 36, 584, 600
Handling  85, 94
HASL  →  Hot air solder leveling
HASS  →  Highly accelerated stress screening
HAST  →  Highly accelerated stress test
Hazard rate  5, 378, 426  →  Failure rate
Hazards / hazard rate  5, 378
HBM  →  Human body model
HCMOS  149
Hermetic enclosure  147, 153
Hermetic package  85, 104, 147, 359-62
Heuristic methods   52-57, 341-50, 467

Hidden defect  14, 107, 117, 154, 156, 377
Hidden failures / faults  8, 66, 79, 112 ,116 ,117, 120,

154, 156, 240, 249-56, 377, 381
High temperature storage  89, 98, 359, 360
Higher-order moments  432, 433, 529
Highly accelerated life test (HALT)  334
Highly accelerated stress screening (HASS)  358
Highly accelerated stress tests (HAST)  98, 99, 334
Historical development  16, 17, 85
Homogeneous  → Time-homogeneous
Homogeneous Poisson process →  Poisson process
Hot air solder leveling  153
Hot carriers  89, 96, 102, 103
Hot redundancy  →  Active redundancy
HPP  →  Homogeneous Poisson process
Human aspects / factors 2, 3, 9, 10, 27, 73, 76, 120, 154,

158-59, 164-65, 294-98, 374, 384, 385, 395, 407, 409
Human body model (HBM)  94
Human errors  10, 119, 158-59, 164, 294-95
Human reliability  111177774444, 222299994444−−−−99998888,
   (see also Risk management)
Humidity tests  89, 98-100   (see also HAST, Moisture)
Hypergeometric distribution  430-31, 454
Hypotheses

•  failure  69
•  statistical  302, 314, 320-21, 547, 548-50

Idempotency  414
IE  →  Totally independent elements
Imperfect switching →  Switch
Impossible event  444411114444             (see also Empty set φ)
Improvement through

•  preventive maintenance  240-42, 243, 250
•  redundancy  40, 47, 48, 202, 227, 228
•  repair  202, 227, 228

Impulse δ(t)  568
In steady state  →  Stationary
In-circuit test  362
In-process tests  396
Inclusion / Exclusion  422
Incoming inspection  21, 90, 150, 358, 362, 365, 366-71
Incomplete coverage  116-17, 249-56, 280
Incomplete Gamma function  444, 566
Increasing failure rate  6-7, 134-40, 241, 242, 442
   (see also Strictly increasing / decreasing failure rate)
Increasing intensity  345-48
Independent   (see also Totally independent)

•  elements  31, 52, 171, 232, 233, 239, 280
•  events  419, 421
•  increments 343, 356, 461-62, 473, 516, 520, 524
•  random variables  435, 437, 438, 438-40, 445, 447,

456, 460, 486, 525, 526, 533, 547
•  stress / strength  70-71
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Indicator  56, 58, 61, 315   (see also  Binary process)
Indices  3, 39, 169, 173, 175, 238, 491
Indirect plug connectors  120, 157
Induced failure / failure mechanism  83, 333
Inductive / capacitive coupling  91, 148, 151
Industrial applications (environment)  36, 37, 38, 145
Influence of

•  common cause failures / events → Common cause
•  failure mode  243-58, 266-69
•  number of repair crews  141, 217-18
•  preventive maintenance  134-40, 240-43
•  repair priority  141
•  repair time distribution  114-15, 133-34, 206-07
•  series element  225, 227-28, 297
•  travel time  203-04, 512

Information feedback  22, 104, 382-83, 412
Infrared thermography (IRT)  104, 152
Inherent  →  Intrinsic
Initial conditions / distribution   63, 184-85, 187, 197-99,

215, 471, 477, 481, 482-83, 497, 507, 508-09
Initial value theorem  567
Initiating event  286
Input / output pins / driver  150, 151   (see also CMOS)
Inserted components  84, 108, 110, 111, 152
Inspection (quality)  20, 21, 365-66, 367-71, 372, 383
Instantaneous availability   →  Point availability
Instantaneous failure rate 425  →  Failure rate
Instantaneous reward rate  →  Reward rate
Integral equations (method of)  172, 178, 192, 200-01,

204-05, 208-12, 218-19, 223-24, 495-96
Integral Laplace theorem  456, 540
Integrated circuits (ICs) 34-38, 84-85, 87-101,

147, 150, 153, 332, 358, 359-62, 365-66, 575
Integrity  162, 289, 410
Intensity

•  failure intensity  7, 344, 350, 365, 366, 377, 378,
500, 521, 524,

•  of a point process  524
•  of a Poisson process  316, 317, 342, 343, 345-49,

352, 353-56, 473, 503, 516, 517-19
Interactions  66, 160, 163, 164-65
Interarrival times  5, 6, 40, 41, 113, 175, 316, 341, 345,

349-50, 378, 380, 381, 426, 464, 467, 517, 524
Interchangeability  8   (see also Obsolescence)
Interface

•  hardware  66, 78, 79, 82, 118, 144, 151
•  hardware / software  351
•  software  161, 163, 164, 408
•  Si/SiO2, Al/Si  96, 97

Interference  351, 405
Intermetallic compound / layer  100, 103, 108, 153
Intermittent operation  85, 147
Internal visual inspection  89, 93, 104

Intersection of events  414
Interval estimate (λ) at system level  320
Interval estimation  300-02, 311-12, 315, 318-20, 327,

354, 538, 539-46   (in particular  301, 312, 319 )
•  failure rate λ  318-20, 542-44
•  human  296, 297, 298
•  number of trials  459
•  number of observations  452, 457, 542
•  point availability  311-12, 545-46
•  unknown probability p  300-02, 309, 538-42

Interval reliability  40, 172-73, 179, 183, 184, 188,
195, 200, 201, 205, 213, 216, 278, 476, 494

Intrinsic  3, 9, 86, 144, 377, 411
Intrinsic (inherent) availability  9, 13
Inverse function  291, 428
Inverse power law  333
Ion migration  103
Irreducible Markov chain / process  481-82, 497,

508-09, 514
IRT  →  Infrared thermography
Ishikawa diagram  76-77, 78
ISO 9000: 2020 family  11, 388-89
Item  2, 379

Joint availability   181-82, 183, 184, 188, 315
Joint density / distribution  434-35, 517, 519
Joint distribution function  434
Jump processes  482, 484, 495, 505-06, 514
Junction temperature 33, 79, 145-47, 150, 331
Just-in-time  153

k-out-of-n: F  44445555
k-out-of-n: G →  k-out-of-n redundancy
k-out-of-n consecutive  →  Consecutive
k-out-of-n redundancy  31, 44, 61-64, 130-34, 213-16,

217, 218-19, 232, 233, 489, 501-03, 511, 513
k-terminal  275
Kepner-Tregoe  76, 78
Key item method 52-53, 54-56, 60, 68-69, 275-76, 284
Key renewal theorem 185, 186, 470, 477, 479
Kindness (test pattern)  91
Kirkendall voids  100
Kolmogorov backward / forward equations  484
Kolmogorov-Smirnov test  334-39, 344, 354, 520,

556, 558-59, 565   (theorem  529-30)
Korolyuk theorem  515
kth moment / kth central moment  432-33

Lack in the diagnosis  249
Lagrange multiplier  67
Laplace test  346, 348
Laplace transform  63, 196-97, 567-68, 439, 444, 496
Large complex repairable systems  293-94
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Large series-parallel repairable structures  226-37
Last repairable  unit  →  Line replaceable unit
Last replaceable unit  →  Line replaceable unit
Latch-up  89, 96, 103, 150, 153
Latent damage  →  Damage, Potential rel. problem
Latent failure  →  Damage, Hidden failures
Latent fault time  →  Undetected fault time
Law of large numbers  455-56
Lead-free solder  108, 109, 111, 152, 363
Leadless  152
Leak test  →  Seal test
Learning process / phase  150, 309, 351-52, 358
Level I, II, III  →  Normal test
Liability  →  Product liability
Life cycle cost (LCC)  11, 13, 16, 112, 375, 379,

386, 391, 392, 399
Life-cycle phases  19 (hardware), 161 (software)
Lifetime  341, 379, 386
Lightly loaded redundancy  →  Warm redundancy
Like new  →  As-good-as-new
Likelihood function → Maximum likelihood function
Limit of models  102, 520
Limit theorems of probability theory  454-60
Limited useful life (components)  146, 150-51, 573-74
Limiting distribution / state probability   478, 497,

502, 509, 514  (see also Asymptotic)
Lindeberg conditions  457
Line repairable unit  →  Line replaceable unit
Line replaceable unit (LRU)  115, 119, 125, 154, 385
Link  →  Edge
Liquid crystals  104
List of preferred parts (LPP)  → Qualified part list
Load capability  33
Load sharing  43, 52, 61, 62-64, 171, 197, 202,

214, 480, 501
Localization  →  Fault localization
Logarithmic Poisson model  355
Logistic delay   113, 375, 381
Logistic support 8, 13, 115, 119, 125, 129, 154, 170,

171, 242, 501, 379, 397
Lognormal distribution  37, 114, 193, 207, 330,

325-29, 339, 430-31, 447-48, 569
Lognormal probability chart  339, 569
Long-term behavior / stability  86, 101
Loss of image  364
Loss of performance  259, 270
Lot tolerance percent defective (LTPD)  306-07, 552
Lover confidence limit  →  Confidence limits
Lower bound ( PA  ,  R( ) ( ))t t  59, 187, 260, 262, 264, 315
    (see also Interval estimation)
Lowest replaceable unit  →  Line replaceable unit
LRU  →  Line replaceable unit
LTPD  →  Lot tolerance percent defective

Machine model (MM)  94
Macro-structures (MS) 174, 199, 229, 233, 234, 237, 269
Maintainability  1, 8, 9, 13, 113-15, 162, 379, 388-90

•  analysis  72, 121-125, 394-95, 399
•  engineering 13
•  estimation / demonstration  325-29, 393
•  guidelines  154-59
•  program  333399990000
•  software  111166662222

Maintenance 8, 113
•  concept  8, 112, 115, 116-20
•  cost  134-43, 522
•  levels  119-20
•  strategy  35, 134-41, 240-48, 257-58, 265-66, 427

Majority  redundancy  31, 49, 66, 158, 164, 217,
218-19, 222-25, 233, 249, 253, 295

Man-machine  16, 120, 159, 407  (see also Ergonomics)
Mandatory for  (see also Condition for, Model validity)

•  accelerated tests  329
•  common cause failures   274
•  component's selection  84-86
•  elements appearing more than once  in a rel. block

diagram 29-30, 31, 32, 56, 69
•  fail-safe behavior  72
•  fault tolerant systems  66
•  general data analysis  342
•  human reliability  158-59, 295
•  incomplete coverage  249, 253, 255
•  Markov process  171, 487, 506
•  Memoryless  40, 427 , 442
•  MTBF and related interarrival times 6, 40, 341, 380
•  MTTFSi   40-41
•  Poisson processes  (HPP and NHPP)  520
•  reconfiguration  266
•  redundancy  27, 42, 66, 72, 79, 240, 250, 255, 275
•  regenerative processes  171, 478
•  reliability growth  353
•  reliability improvement  27, 78   (see also Design

guidelines, Design reviews)
•  repairable systems  240, 524
•  risk management  11
•  short-term tests (HALT, HAST, step-stress)  329,

334  (see also Model validity / verification)
•  semiconductor devices   150
•  semi-Markov processes  510
•  semi-regenerative processes  171, 514
•  SMT  109, 363
•  software quality / quality assurance  159, 166
•  test hardware and software  166

Manufacturability  401
Manufacturing process 106-11, 152-53, 357-72, 400
Manufacturing quality  16, 20, 86, 357-72
Margin voltage  98
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Marginal density  / distribution function  435, 517
Market / market needs  19, 375, 383, 388, 391, 394,

398, 403, 405, 406, 409   (see also Time to market)
Marked point processes  515
Marking  287
Markov chain  480-82   (see also Embedded M. c.)
Markov model  61-64, 129-34, 141, 167, 171, 172-73,

189-91, 196-204, 214-18, 220-21, 225-26, 230-37,
245-48, 251-74, 277-79, 294, 482-505

Markov processes with a finite number of states
•  basic characteristics  462, 482-487, 496-501, 510
•  process evolution  485-86
•  simulation  291-93

Markov property  482   (see also Memoryless)
Markov renewal processes  505
Markov sequence  520
Markov theorem  497
Match / Matching  149, 151
Mathematical statistics  525, 526-60
Maximum ( τ max)  440
Maximum acceptable p MTBF , PA,  λ,  302 ,313, 321, 392
Maximum likelihood function / method  300, 311, 315,

318, 326, 341, 344, 353-54, 534, 535-37, 559
MDT  →  Mean down time
Mean (expected value)  6, 39-40, 277-79, 429, 431,

432, 436, 438, 522-23, 528-29
•  accumulated reward  271, 279, 501
•  down / up time  124, 200, 237, 242, 270, 278-79,

499-500, 509
•  expected failures per year  270, 392
•  instantaneous reward rate  271, 279, 501
•  logistic delay (MLD)  242
•  number of failures / repairs  270, 278-79, 499-500
•  operating time between failures MTBF 6, 40, 316, 380

   acceptance test  392-93
   estimation / demonstration  316-25

•  sojourn time in Z i  251, 507, 510, 514 (see also Stay)
•  survival failure-free time  426
•  time between consec. occurrence of Z i   509, 514
•  time to failure ( , )MTTF MTTFS i   6, 39, 41, 63,

172-73, 176, 201, 217, 227-28, 232, 233, 277, 278,
380, 496, 508

•  time to preventive maintenance (MTTPM)  8,
113, 121, 125, 381

•  time to repair (MTTR)  8, 9, 113, 121-24, 381, 474
   acceptance test  393
   estimation / demonstration  325-29

•  time to restoration  →  Mean time to repair
•  time to system failure  →  Mean time to failure
•  undetected (latent) fault time τUFT   251, 427
•  up time (MUT)  →  Mean down / up time

Mean value function  343, 350, 352, 355, 516 , 524
•  at system level  520

Mean value theorem  479
Mechanical fatigue  333   (see also Fatigue, Coffin)
Mechanical keying / fixing  152, 155 , 157
Mechanical reliability  68-71, 73
Mechanical stress  169-71, 83, 98
Mechanism  →  Failure mechanism
Median  114, 434
Memories  90-91, 95, 97-98, 151
Memoryless  7, 278, 342, 427, 431, 462, 507, 516, 524
Memoryless property  7, 35, 40, 62, 179, 183, 241, 317,

378, 427, 442, 453, 462, 473, 482, 486, 487, 500, 516
Meniscograph method  94
Merging  →  State merging
Meshed  →  Distributed
Metal migration  100, 103  (see also Electromigration)
Metallization  97, 103
Metallographic investigation  95, 104, 107, 108-10
Method of

•  Boolean function 57-61
•differential equations  63, 173, 197-99, 491-94
•  integral eqs  172, 200-01, 204-05, 495-96, 508
•  key item  52-53, 54-56, 60, 68-69, 275-76, 284

Metrics  (software quality)  160
Microcracks  →  Cracks
Microsections  95, 104, 105, 107, 108, 110
Microvoids  108, 109
Miner's hypothesis  333, 334
Minimal cut sets  59, 60, 76, 275, 281, 283
Minimal operating state →  Critical operating states
Minimal path sets  58, 60, 76, 275, 281, 283
Minimal repair  138-39, 427
Minimum ( τ min)  440
Minimum acceptable  p MTBF , PA,  λ,   302, 313,

321, 392
Mishandling  →  Misuse
Misleading probability  295
Mission availability  180
Mission profile 3, 28, 38, 68, 69, 79, 238, 379, 392, 408
Mission reliability   260   →  Reliability  (R)
Mistake  →  Error
Misuse  102, 103, 179, 271, 384
Mitigate  72, 73, 76, 286, 377  (see also Check strategy)

•  incomplete coverage  255
Mixed distribution function  424
Mixture of distributions  7, 41, 338, 428
MLD  →  Mean logistic delay
MM  →  Machine model
Modal value  113-14, 434
Mode  →  Failure mode
Model validity / verification 102, 109, 117, 168, 238-40,

249, 252, 277, 280, 295, 329, 331, 332-34, 341-42,
344, 353, 356  , 510, 520   (see also Assumptions,
Mandatory)
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Modeling early  failures / wear-out period  7, 337,
355, 428, 443, 444, 467-68

Models for cost optimization  →  Cost optimization
Models for failure rates / mechanisms   35-38, 94,

96-100, 102, 103, 109, 329-34, 428
Models for faults  →  Fault models
Modification  162, 163, 165, 351, 357, 402
Modified renewal process  464
Module / Modular

•  hardware  118, 120, 154-55
•  software  161-63, 164, 166

Moisture  85, 93, 98-99, 147
Moment generating function  522, 567
Monotone / Monotony  57
Monotonic trend (test for)  345-50
Monte Carlo simulation 280, 290-92, 294, 448, 457, 520
More than one failure mechanism / mode → Multiple
More than one repair crew  217-18, 232, 488, 489, 503-

504  (see also Totally independent elements)
More than 2 states  →  Multiple failure modes / mech.
Motivation / training / training level  18, 24, 115, 119,

154, 159, 294, 397, 407
MP  →  Markov process
MS →  Macro-structures
MTBF  →  Mean operating time between failures
MTBUR (mean time between unsched. removals) 381
MTTF  →  Mean time to failure
MTTPM  →  Mean time to preventive maintenance
MTTR  →  Mean time to repair / restoration
Multi-states  →  More than 2 states
Multidimensional random variable → Random vector
Multifunction system  →  Phased-mission system
Multilayer  97, 110, 148, 154
Multimodal  434
Multinomial distribution  340, 451, 559, 560
Multiple failure modes / mechanisms 37, 64-65, 66, 76,

248, 255, 257-58, 266-69, 275, 332, 342, 363, 428
Multiple fault / consequences  76, 274, 378
Multiple one-sided sampling plans  307-08
Multiplication theorem  420-21
Multi point ground  149
MUT  →  Mean up time
Mutually exclusive events  57, 178, 181, 244, 414, 415,

416, 419, 420, 422, 468
Mutually independent . 419, 435   →  Independent
MUX  155, 156

N self configuring programming (NSCP)  66, 164
n-dimensional distribution function  434, 460
    (see also Random vector)
N-modular redundancy  49
N-version programming (NVP / NVS)  49, 66, 164
NBTI  (negative bias temperature instability)  103

Negligible
•  alarm circuitry  298
•  common cause failure  273-74
•  human error  296, 297, 298
•  incomplete coverage  253, 255, 256
•  imperfect switching  245, 246, 247, 248, 257
•  series element to a redundancy  46-48, 221,

225, 226
Network reliability  275-76
New-better-than-used  427
New-worse-than-used  427
NHPP  →  Nonhomogeneous Poisson process
No aging  427   (see also Constant failure rate)
No connection  245, 257-58, 266-69
No FF (no further failures at system down)  170,

174, 229, 233, 235, 239, 489, 490
No start at call  252  (see also Refuse to start)
Nodes  275
Non- irreducible Markov chain  497
Non-markovian  277
Non-parametric  529
Nonelectronic components  35
Nonconformity  376, 381
Nondestructive analysis  102, 105
Nonhermetic packages   85, 89, 98   (see also Plastic)
Nonhomogeneous Poisson processes (NHPP)  138-39,

168, 342, 343-49, 352-56, 473, 516-20
•  tests  343-49, 520

Nonregenerative stochastic processes  170, 171,
193, 207, 219, 478, 515-24

Nonrepairable item (up to system failure)  5-6, 39-57,
61-71, 243-44, 275-76, 283-85

Normal distribution  37, 70-71, 126, 128, 142, 328, 330,
430-31, 446-47, 456-59, 471, 518, 528, 561, 571

Normal probability chart  571
Normal process  463
Normal / reduced / tightened test  306
Not regeneration state  208, 218, 511-13
Null hypothesis ( H0 )  302, 313, 320, 327, 547-48
Number of observations  457, 458, 542
Number of states  56, 65, 221, 226, 235, 490
Number of trials  291, 457
Numerical

•  computation  289-92
•  examples (some few important)  50-51, 70,

207, 237, 264, 269, 270, 310, 332, 335, 338,
457-59, 467, 558

•  test conditions  83, 89, 94, 98, 99-100, 108-09,
359-62, 363

•  values for derating  145
•  values for failure modes  100
•  values for failure rates  7, 36-38, 50-51, 392, 572-75
•  values for defective probability  359, 362-63
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OBIC (optical beam induced current)  104, 105
Object oriented programming  164
Observability  155
Obsolescence  8, 118, 143, 150, 379, 400
OC  →  Operating characteristic curve
Occurrence frequency  286
Occurrence rate  271, 274
Occurrence time  →  Arrival time
On line / without interruption  112, 124, 125, 170,

171, 196, 239, 240
One-item structure  39-41, 175-89, 240-43
One-out-of-2tworedundancy  43-44, 196-213, 232, 233,

243-58, 271-74, 296-98, 488, 492-94, 511-12
   (in particular 196-99, 201, 213, 232, 233, 488, 492-94)
One regeneration state  196, 171, 207, 208, 478
One repair crew  →  Only one repair crew
One-sided confidence interval  302, 312, 319, 320, 538
One-sided sampling plan (for p)  306-08, 551-52
One-sided tests to demonstration  λ or MTBF = 1 / λ

324-25
One-step transition probability  506
Only one repair crew
     all models of Chapter 6 except pp. 217-18, 231,

232, 276, 280-85, 294, 488-89, 503, 515
Operating characteristic curve  303-04, 307, 322, 324,

325, 329, 549-50, 552
Operating (field) conditions  3, 7, 28, 33, 79, 84, 99,

102, 376, 394, 406
Operating console  149, 159
Operation monitoring  116, 156, 249
Operational availability  13, 242
Operational profile  28
Optical beam induced current (OBIC)  104
Optimal derating  33, 145
Optimization  67, 112, 120, 143, 364, 375, 386

•  cost 12-15, 67, 120, 137-40, 142-43, 358, 366-71
•  preventive maintenance period  137-38, 139,

140, 241-43, 250-51
•  reliability allocation  67
•  steady-state availability  143

Optoelectronic / Optocoupler  145, 146, 151
Order statistic  343, 345-47, 354, 518, 519, 526, 536
Order(ed) observations / sample  334, 335, 343, 345,

346, 347, 354, 518, 519, 526, 528, 558
Ordinary renewal process  292, 464
Organization  (company structure)  20, 388
Outcoming event  286
Outgoing quality (AOQ)  303-04, 367
Overall availability  9, 139-40, 242
Overstress / overload  33, 103, 153, 351, 359
Oxidation  98
Oxide / oxide breakdown 96-97, 102, 103, 106-7, 333

Package / Packaging 84-85, 100, 104, 146-47, 333
   (see also Hermetic, Plastic)
Pairwise independent  419
Parallel model  31, 43-45, 61-64, 196-201, 213-

19, 232, 233, 243-59, 271-74, 488-89, 492-94,
501-03, 511-13

Parallel redundancy  →  Active redundancy
Parameter estimation  300-02, 309, 311-12, 315,

316-20, 325-27, 353-54, 533-46
     (in particular 301, 312, 319, 533, 538)
Pareto  76,78
Part count method  51
Part stress method  27, 33-38, 50-51  (see also 69-71)
Partition(ing)  29, 38, 58, 90, 115, 118, 154, 158,

160, 164, 166
Partitioning  cumulative op. time  316, 317, 323, 393
Passivation / Passivation test 85, 89, 93, 100, 104-6, 147
Path  55, 58, 166
Path set  →  Minimal path sets
Pattern sensitivity  91, 93
PCB  →  Populated printed circuit board
Pearson / Pearson theorem  539, 557
Percentage point  434
Performability  / Performance  270, 374  →  Capability
Performance effectiveness  →  Reward
Performance parameters / test  84, 86, 108, 406
   (see also Characterization)
Petri nets  287-88
Phased-mission systems  28, 30, 38, 259-66, 379
Physical models  38, 333
Physics of failures  38 , 333   (see also Failure mech.)
Piecewise definition  424, 567
Pilot production  19, 351, 357, 374, 376, 384
Pinholes  93
Pitch  85, 109, 152, 363
Plastic / Plastic packages  88883333−−−−88885555, 99998888−−−−111100000000, 111144447777, 111155552222
Plug-in / plug-out  116, 157
PoF →  Physics of failures
Point availability  ( PA =S i S St PA AA( ), ) 9, 170, 374

•  computation  9, 61, 172-73, 177, 183, 184, 185, 188,
195, 197-98, 201, 209, 213, 217, 233, 278, 515-16

•  definition  9, 173, 177, 374, 476, 492, 498, 508
•  demonstration  313-14, 315, 553-54
•  estimation  311-12, 315, 545-46
•  with preventive maintenance  242

Point estimate at system level (λ)  320
Point estimation  300, 311, 317, 318, 325-26, 354,

533-37, 542, 546
Point processes  168, 341, 464, 515, 523-24

Poisson approximation  10, 304, 322, 451, 452
Poisson distribution 305, 317, 430-31, 451-52, 536
Poisson's integral  446, 448, 566
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Poisson processes
•  homogeneous (HPP) 7, 35, 142, 316, 317-18, 341-42,

345-49, 350, 378, 380, 467, 472-73, 516-20,  522-24
•  nonhomogeneous (NHPP)  168, 343-56, 516-20
•  simulation  520

Populated printed circuit board (PCB)  23, 84, 85, 90,
94, 107-11, 116, 149, 151-53, 157, 358, 362-66

Portability (software)  162
Possible causes

•  common cause failures  66, 271
•  defects / latent failures 106-07, 108-10, 148, 162-63
•  single point failures  66

Potential reliability problem  95, 106-07, 110
    (see also Damage, Weaknesses)
Power devices   96, 98, 150, 151, 152
Power Law / Power Law process  333, 352
Power of a (statistical) test  548, 556
Power supply  83, 96, 108, 148, 151, 152, 155, 157
Power-up / power-down  150, 151
ppm  359, 446
Practical aspects for MTBF / MTTR demonstration 392-93
Predicted maintainability  121-25
Predicted reliability   3, 25-27, 50-51, 35-38, 28-71,

169-294, 394-95
Preferred part list (PPL)  →  Qualified part list (QPL)
Preheating  153
Preliminary design reviews 403, 406-08

→ Design reviews
Preliminary / rough analyses  51, 392, 394
Premature wear-out  333
Pressure cooker  →  HAST
Preventive actions / measures  16, 22, 72-79, 120,

144-66, 357-58, 363, 393-404, 405-09
Preventive maintenance  8, 112-13, 134-40, 240-43,

249-51, 381-82, 427
Primary failure  4
Printed circuit board  →  Populated printed circuit board
Printed wiring board  →  Populated printed circuit board
Priority /priority list  160, 164, 400, 408
Probability  415-18
Probability chart  335, 336-37, 339, 443, 531-32, 569-71
Probability density   →  Density
Probability plot paper  →  Probability chart
Problems for homework   576-81
Procedure for  (see also Rule for)

•  analysis of binary decision diagrams (BDD)  283
•  analysis of complex rep. systems  277-79, 293-94
•  analysis of mechanical systems  69-70
•  analysis of phased mission systems  262
•  binary decision diagrams  283
•  chi-square test  338-40, 557-58
•  cost optimization  12-15
•  cost optimization at incoming inspections  364-72

•  demonstration of
 availability (PA=AA)  313-15, 553-55

      MTTR  327-329, 393
      probability p  302-08, 309-10, 548-52
       λ  or  MTBF = 1 / λ   305, 315, 320-25
       (in particular  305, 314, 323)
•  double one-sided sampling plan  307-08
•  electrical test of compl. ICs  88-90, 90-93
•  environmental test

  assemblies (PCBs)  108-09
        ICs 92-100
•  ESD test  94
•  estimation of

  availability (PA=AA)  311-12, 545-46
  MTTR  325-27

        parameters  353-54, 533-46
       probability p  300-02, 309, 535, 538-42
       λ  or MTBF =1 / λ   318-20, 535, 537, 542-45
        in particular  301, 312, 319
•  event trees  286
•  failure analysis  105
•  first delivery  372
•  FMEA / FMECA  72-73, 74-75
•  frequency / duration  278-79, 498-501
•  graphical estimation of F( )t    334-39, 529-32
     (see also  349-50, 351-56, 467, 555-57, 569-71)
•  goodness-of-fit tests
       Anderson-Darling / Cramér - von Mises  556-57
       Kolmogorov-Smirnov 334-9, 344, 354, 556, 558-9
       χ 2 test  338-40, 557-60
•  Laplace test 346, 348
•  maintenance  161
•  mechanical system's analysis  67-68, 69
•  modeling complex rep. systems  277-79, 293-94
•  phased-mission systems investigation  262
•  qualification test
       assemblies 108-09

  complex ICs  87, 89
       first delivery  372
•  quality assurance  17-20, 21-24, 387-90, 391-412
•  quality cost optim. at incoming inspection  364-72
•  RAMS assurance  17-20, 21-24, 387-90, 391-412
•  reliability allocation  67
•  reliability engineering  13, 393-95
•  reliability prediction  2-3, 25-28, 52, 67-69, 238-40,

277-79, 294, 394-95   (see also  28-51, 53-67)
•  reliability test
      accelerated tests  330, 332, 333
      statistical aspects  309-25, 334-56, 525-60
         (in particular  305, 314, 319, 323)
      technical aspects  101, 109, 359-64
•  screening of
       assemblies  363-64
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       components  359-62
•  sequential test  305-06, 322-24, 550-51
•  simple one-sided test plan  306-07, 324-25, 551-52
•  simple two-sided test plan  302-05, 320-23, 549-50
•  software development & test  162-65 & 166-67
•  test and screening  87-111, 358-71
    in particular  89, 360, 367-71
•  transition probabilities  (determination of)  172-73,

485-86, 506-07, 511-13  (see e. g. 200-01, 204-05)
•  transition rates  (determination of)  172-73, 485-87,

(see e. g. 197, 203, 215, 235, 246, 258, 267, 273)
•  trend tests  346-49

Process FMEA / FMECA  72, 78
Process reliability  3
Processes with independent increments  343-50,

351-56, 461-62, 473, 516-20, 524
Processes with stationary increments  463, 473, 516
Procurement  357, 402
Producer risk α  86, 303, 306, 313, 314, 321, 323, 548,

554  (see also Type I error)
Product assurance  16, 382, 389, 390
Product liability  10, 15, 376, 381, 382, 402
Production

•  documentation  401
•  FMEA / FMECA  →  Process FMEA / FMECA
•  flaw  85, 106, 107, 108, 110
•  procedures  357, 396
•  process  6, 21, 87, 98, 106, 107, 110, 357-58,

364-66, 376-77, 382, 387, 390, 396, 400
•  related rel. problems  95, 106-07, 110

Program / erase cycles  97, 360
Program for quality & rel. assurance 17-19, 391, 393-409
Project documentation  401
Project management  17-24, 159-68, 398
Project manager  398, 401, 412
Project quality & reliability assurance manager  401
Propagation (of events) 286
Protection against

•  common cause failures  66, 274
•  damage  362
•  ESD / EMC 94, 148-50
•  damage  362
•  incomplete coverage 249, 253
•  single point failures 66
•  shorts / opens  32, 64-65, 94

    (see also Design guidelines  and  Rules)
Prototype 18, 19, 87, 107, 334, 351, 365, 396, 397,

399, 402, 403, 406, 408-09
Pseudo redundancy  42, 383
Pseudorandom number  291-92
PSG  99993333, 99999999   (see also Passivation)
Pull-up / pull-down resistor  149, 150, 152, 156
Purple plague  100, 103

Quad redundancy  65, 66, 101
Quadratic statistics  344, 556
Qualification tests  18, 87, 107, 351, 365, 396, 402, 403

•  assemblies  107-11
•  components  89, 87-107
•  prototypes  351, 396

Qualified part list (QPL)  87, 150, 395, 400, 407
Quality  11, 16, 382
Quality and reliability (RAMS) assurance program

16, 17-18, 24, 387-90, 393-412
Quality and reliability requirements  387-90, 391-93
Quality and reliability standards  387-90
Quality assurance  11, 13, 16, 17-24, 358, 376, 382,

394-97, 398-412   (see also Design guidelines)
Quality assurance department  19, 20
Quality assurance / management system  21, 382, 388
Quality attributes for software  160, 162
Quality control / test  13, 16, 21, 383, 396

•  statistical aspect  299-308
Quality cost  367, 397  (see also Cost optimization)
Quality data reporting system 21-23, 365, 383, 397,

404, 410-12
Quality factor πQ   36-37
Quality growth (software)  166-68
Quality handbook  21, 397
Quality management  16, 20, 21, 24, 382, 383, 388

(see also Quality assurance, TQM)
Quality of design  16
Quality of manufacturing  16, 21, 86, 357-58
Quality metric for software  160
Quality tests  13, 21, 383, 398, 402, 404
Quantile  128, 434, 562-65
Quick test  116

RAM / RAMS assurance program
   →  Quality and reliability assurance program
RAM / RAMS engineering   →  Reliability eng.
Random cumulative operating time  537
Random duration (phased-mission systems)  261, 265
Random numbers  →  Pseudorandom numbers
Random sample  →  Sample
Random variable  423-25
Random vector  434-38, 460-63
Random vibrations  83, 108, 109, 111
Rare event  10, 288, 292
RBD  →  Reliability block diagram
Reachability tree  287-88
Realization (time schedule / simulation) of a

stochastic process  176, 208-09, 219, 250,
292-93, 461, 464, 475, 506, 511-14

Realization of RAMS requirements
   →  Quality and reliability assurance program

Reason for  →  Causes for
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Recognition  →  Failure detection
Reconfiguration  66, 118, 164, 238, 500-01

•  failure censored  266-69
•  time censored (phased-mission system)  259-66
•  with reward and frequency / duration  270-71

Recrystallization  109
Recurrence time  181, 182, 185, 468-69, 476, 517
Recurrence time limit theorem  470
Recycling  10, 19, 379
Redesign  8, 87, 351, 359
Reduced test  →  Normal / reduced / tightened test
Reduction (diagram of transition rates)  277, 293
Redundancy  31, 42-49, 51, 53-61, 65, 68, 101, 227-28,

232-33, 235, 244, 250, 259, 267, 275-76, 284, 383
     (see also Active, One-out-of-2, k-out-of-n,

Standby, Warm redundancy)
•  for software  42, 49, 159, 164
•  practical example  30, 32, 49, 51, 65, 235,

244, 267, 282
•  realization  42-43, 49, 51, 65, 66, 101

Reference documentation  403, 408
Reference failure rates  36, 38, 572-75
Reflow soldering  153
Refuse to start  246
Regeneration point  170, 176, 178, 208, 464, 475, 478,

495, 506, 514   (see also Renewal point, Distinction)
Regeneration state  208, 223, 462, 478, 506, 511-13
Regenerative processes 171, 462, 478-479, 514  (see also

Markov, Semi-Markov, Semi-regenerative processes)
Rejection line  305, 322-24, 550
Relation between  (see also Distinction between)

•  distribution functions   445, 452, 562, 563, 564
•  stationary and asymptotic & steady-state  472,

477, 479, 498, 509
•  stochastic processes  171, 505
•  Pi  and Pi   497, 510, 514

Relative frequency 300-02, 415-18, 455, 526, 535, 540-42
Relative humidity  98-99, 147, 153
Relaxation  109
Release procedure  87, 402
Reliability  2-3, 13, 39, 170, 184, 199, 384
    (see also Assessed, Estimated, Predicted)

•  allocation / optimization  67, 392, 394
•  analysis 13, 16, 25-79, 144-53, 169-294, 394-95, 399
     (in particular  25-27, 31, 172-73, 201, 233, 277-79)
•  as selection criterion  86
•  assurance  →  Quality & rel.  assurance program
•  block diagram (RBD)  28-32, 68, 238, 384

(see 238-80 if the RBD doesn't exist)
•  block diagram with repetition of at least 1 element
      →  Same element(s) in reliability block diagrams
•  demonstration  →  Reliability tests
•  engineering 13, 16

•  estimation  →  Reliability tests
•  function  3, 39, 58, 63, 69-71, 172-73, 174, 176,

184, 190, 199, 384, 425, 426, 493, 495, 508
    with preventive maintenance  241-43
   (see also Conditional rel. function, Rel. analysis)
•  growth  309, 351-56, 384   (see also  166-68)
•  guidelines  144-53
•  human  →  Human reliability
•  improvement  26-27, 144-53, 154-68, 391-409
•  long term behavior (components)  86
•  mechanical  →  Mechanical reliability
•  optimization  67
•  prediction  →  Procedure for
     computer aided  289-92
•  tests
     physical  35, 89, 101, 109-11

     statistical  (estimation & demonstration)
         as failure rate ( ( ) )λ λor  R t e t= −   309-25

         for a fixed mission  (R)  309-10
      (see also Procedure for reliability tests)
•  weaknesses  77, 80, 309
•  with preventive maintenance  241-43

Remote control / diagnostic / maintenance  117-18, 120
Renewal density 344, 465, 466, 475, 516
     (see also Frequency)
Renewal density theorem  470
Renewal equation  466
Renewal function  465
Renewal point  135, 208, 241, 292, 464, 474, 475, 524
    (see also Regeneration point  478)
Renewal points frequency  →  Renewal density
Renewal processes  126, 134, 136, 171, 292, 342,

350, 463-64, 465-73, 478, 520-21
•  embedded  210, 474-75, 478, 506, 514
•  simulation  291-92

Repair  8, 113, 170-71, 351, 375, 381
•  frequency  →  System repair frequency
•  priority  141, 220-21, 233, 235, 239, 242, 246,

258, 267, 272, 277, 488, 490
      (see also Maintenance strategy)
•  rate  115, 177-78, 183, 201, 204-05, 213, 232, 233
      (see also Approximation for a repair function)
•  strategy  →  Maintenance strategy
•  time  8, 113-15, 115-20, 121-24, 325-29, 381

Repairability  113  →  Corrective maintenance
Repairable items / systems  5-6, 40, 169-298
Repairable spare parts  130-34   (see also Spare parts)
Repairable versus nonrepairable  40, 202, 378, 380,

383, 426
Replaceability  157
Replacement policy  134, 135-40   (see also Centralized

and  Decentralized logistic support)
Report / information status  →  Status test
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Reproducibility  16, 79, 401, 408, 409
Requalification  2, 87
Required function  3, 28, 29, 239, 259, 379, 385, 392
Requirements → Quality and reliability requirements,
Reserve contacts  157
Reserve / reserve state  42-43, 62 ,170, 196, 207, 249
Residual failure-free time → Survival failure-free time
Rest waiting time  343, 517
    (see also Waiting time paradox)
Restart anew  178, 462, 464, 478
Restoration  8, 112, 113, 171, 375  →  Repair
Restoration frequency   →  System repair frequency
Restoration time  113   →  Repair time
Results (tables / graphs)  31, 44, 48-49, 111, 127, 141,

172-73, 183, 188, 195, 201, 213, 217, 227-28, 232,
233, 237, 241, 248, 256, 264, 269, 301, 303, 305,
312, 314, 319, 322, 325, 329, 323, 324, 331, 336,
337, 339, 430-31, 468, 473, 532, 544, 550, 551, 552

    (see also Numerical examples)
Reusability (software)  162
Reuse  10, 116, 119, 130
Reverse bias  98-99, 360
Reward  238, 266-67, 270-71, 279, 498, 500-01
Reward rate  271, 279, 501
Rework  108, 153, 363
Rise time  88, 94, 148, 149
Risk 9-11, 67, 72, 150, 295, 369, 385, 391, 395, 406

•  acceptance  10
•  analysis / management  10, 11, 286, 294, 389
•  assessment  294
•  awareness / perception  11
•  development / production  11, 387, 391, 406
•  priority number concept  10
•  statistical  300, 303, 306, 322, 324, 525
•  technology  67, 150

   (see also Confidence level γ, Consumer risk β ,
Producer risk α, Type I error α, Type II error β )

Robustness (software)  162  →  Defect tolerant
ROCOF  524
Rough analysis  51, 350, 392, 394, 437
Rule for   (see also Procedures for)

•  check at failure  249, 250, 253, 255, 256
   (see also Check strategy)
•  common cause failures  274
•  convergence of PA to  ( )t PA   183, 186-87, 198
•  convergence of R to S t e S t( ) −λ   197
•  critical decisions / failures 72, 73, 76, 158,

294, 295
•  data analysis  342
•  derating  33, 145
•  firing  287
•  FMEA / FMECA  72
•  imperfect switching  245, 247, 257

•  incomplete coverage  249, 253, 255
•  junction temperature  37, 146, 150
•  Markov processes  487, 510
•  partition of cumulative op. time 317, 323, 393
•  phased-mission systems  262
•  power-up / power-down  150, 152
•  quality and reliability (RAMS) assurance  19
•  redundancies  46, 226, 250, 254, 257
•  reliability allocation  67
•  semi-Markov processes  505, 510
•  series / parallel structures  46, 226
•  software defect models  167-68
•  software quality assurance  159-66, 167
•  use of ICs in plastic packages  85, 147
   (see also Condition, Design guidelines,

Mandatory, Procedure for)
Run-in  363, 374
Run test  166

Safety  1, 9-10, 13, 15, 66, 158, 259, 385, 390,
395, 402, 407

•  analysis / assurance / improvement 9-10, 66,
72-80, 158-59, 294-98, 385, 395, 399

•  engineering 13
•  factor  69

Same element(s) in the reliability block diagrams  30,
31, 32, 54-6, 57, 58, 60, 68-9, 275-6, 284, 285, 290

Same stress  71
Sample  299, 526
Sample path  461
Sample space (Ω)  413-14
Sample without replacement  454
Sampling tests / plans ( , , , , / , )p R PA MTBF MTTF  λ λ=1

299-329, 334-49, 367-71, 533-46, 548-60
Scale parameter  442
Scan path  156-57
Scanning electron microscope  95, 104, 105, 107
Schmitt-trigger  92, 148
Scrambling table  91
Screening

•  assemblies  79, 351, 363-64   (see also ESS)
•  components  79, 359-62

   (see also Testing / screening, Technological charact.)
Screening strategy  →  Strategy
Seal test  361-62
Second source  79, 81, 87, 150, 407
Secondary failure  4, 66, 73, 274, 411, 522
Selection criteria for

•  electronic components  81-86, 150, 395, 400, 572-5
•  materials  395, 400
•  special manufacturing processes  400

SEM  →  Scanning electron microscope
Semidestructive analyses / tests 104, 105, 334
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Semi-Markov processes  167, 171, 172, 193-95, 462,
474-77, 484, 486, 505-10
•  simulation  291-92

Semi-Markov process embedded → Semi-regenerative
    process, Embedded semi-Markov process
Semi-Markov transition probability 171, 172, 192-94,

200, 223, 252, 292, 296-98, 485-86, 506-07, 511,
512, 513

Semi-regenerative processes  170, 171, 204-07,
218-19, 222-25, 240, 462, 478, 510-13, 514

Sequential test  305-06, 322-24, 550-51
Series element  46-48, 66, 72, 220, 221, 225, 226-28
Series model / structure / system  31, 41-42, 121-23,

189-95, 342, 428, 442, 443, 520
Series - parallel model / structure / system  31, 45-49,

124, 141, 220-37, 284, 285, 289, 490
     (in particular  31, 47, 227, 233,  see also

71 for stress-strength)
Series production  19, 351, 357, 374, 376, 384
Serviceability 113  →  Preventive maintenance
Services reliability  3
Set operations  414
Shannon decomposition / expansion/tree 53, 58, 283-5
Shape of the

•  failure rate  7, 337-38, 444
•  repair time density / distribution  114, 174, 206-07
•  renewal function  467-68  (see also 524)

Shape parameter  442
Shewhart cycles  76
Shield / shielded enclosure  149
Shmoo plot  91, 93
Shock  83
Short-term test  334   (see also HALT, HASS, HAST)
Silicon nitride glassivation  →  Passivation
Silver plated pins  94
Simple hypotheses  547
Simple one-sided sampling plan  306-07, 551-52
Simple one-sided test  324-25
Simple structure  28, 31 (1-6), 39-51, 175-237
Simple two-sided sampling plan  302-04, 549-50
Simple two-sided test  320-23
Simplicity (software)  162
Simulation  →  Monte Carlo
Single-point failure  42, 66, 79, 407
Single-point ground  148
Six-σ approach  446
Skill  144 , 158 , 159, 163
Sleeping state  →  Dormant state
SMD / SMT  84, 109-11, 152-53, 363
•  test & screening  109
SMP  →  Semi-Markov process
Sneak analyses  76, 79, 399
Soft error  89, 97

Software
•  attributes 160,162   → Software quality attributes
•  causes for defects  162-63, 271
•  common faults / failures  271, 274
•  configuration management  160, 164, 165,400, 408
•  defects  117, 154, 159-60, 162-66, 351, 355
•  defect modeling   166-68, 400
•  defect prevention  162-65
•  defect tolerant   159, 401, 408
•  design reviews  160, 161, 164, 165, 400, 408
•  development procedure  160-65
•  documentation  161, 162, 163,164
•  embedded  160, 164
•  error correcting codes  164

•  errors at start ( )t =0   168, 356
•  failure rate 166
•  FMEA / FMECA  72-73, 160
•  interaction  163, 164-65
•  interface  161, 163, 164, 408
•  life-cycle phases  160, 161, 400, 408
•  metrics  160, 162
•  object oriented  164
•  packages  188
•  quality  13, 21, 160, 162, 384
•  quality assurance  13, 16, 17, 21, 159-68, 400, 408
     (see also Design guidelines)
•  quality attributes  160, 162, 400, 408
•  quality growth  166-68, 351-56, 408
•  redundancy  66, 164
•  reliability (defect freedom)  →  Software quality
•  specifications  161, 163, 164
•  standards  160, 165, 166 , 389, 390
•  test strategy   401, 408  (see also Software testing)
•  testing / validation  163, 164, 166
•  time / space domain  159, 160, 164
•  Validation  161 , 163 , 166

Sojourn time  →  Stay time
Solder joint  108-11, 152-53, 333, 362-63
Solder-stop pads  152
Solderability test  89, 94
Soldering temperature profile  84-85, 153
Spare parts provisioning  116, 118, 125-34, 142
Special diodes  150
Special manufacturing processes  152, 400
Special tools  116, 120, 157
Specifications  3, 18, 19, 161, 163, 164, 387, 394,

398, 402, 403, 408-09
Specified p MTBF , PA,  λ,   302, 313, 321, 392
Standard deviation  433
Standard industrial environment  36, 37
Standard normal distribution  126, 430-31, 446,

456-59, 471, 561, 534, 540, 571
Standardization  117, 120, 154, 159, 167, 387, 408
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Standardized random variable  433, 446
Standards 35-36, 38, 78, 143, 160, 162, 165, 306, 387-90
Standby redundancy  43, 62-63, 201, 212, 213, 217, 218,

243-45, 383, 440   (see also Active  and  Warm red.)
Standby time  242
State clustering  →  State space reduction
State merging  →  State space reduction
State probability  62, 172-73, 197, 481, 483, 491,

497-98, 508-09
•  numerical values  237, 269

State space  460-63
State space extension  193-95, 487 , 515
State space method  56-57, 65
State space reduction  229, 277, 293
State transition diagram  →  Diagram of transitions
Static burn-in  361   (see also Burn-in)
Static fault tree  76, 281, 282, 283, 285
Stationary / steady-state   (see also Asymptotic behav.)

•  alternating renewal process  187-89, 476-77
•  behavior at system level  278
•  distribution  481, 497, 508-10
•  increments (time-homogeneous)  463, 472, 473
•  initial distribution  481, 497, 508-10
•  Markov chain  481
•  Markov process  172-73, 496-98, 510
•  one-item structure  187-89, 311-15
•  point process  523
•  processes  462-63
•  regenerative process  479
•  renewal process  471-72
•  semi-Markov process  172-17, 508-10

Statistical decision  526
Statistical equilibrium → Steady-state → Stationary
Statistical error  →  Statistical risk
Statistical hypothesis  547-48
Statistical maintainability tests  325-29
Statistical process control  299
Statistical quality control  16, 299-308
Statistical reliability tests  309-24, 334-56, 525-60
Statistical risk  525   (see also α β β β γ, , , ,    1 2 )
Statistically independent  419, 435   →  Independent
Statistics  →  Mathematical statistics
Status / status test  116, 119, 249
Stay time (sojourn time)  170, 171, 173, 260, 271, 277,

292, 480, 486, 487, 491, 501, 505, 507, 508, 510, 514
Steady-state  →  Stationary / steady-state
Steady-state properties of Markov proc. 496-501, 510
Step-stress tests  334
Stiffness  109, 363
Stirling's formula  341, 566
Stochastic demand  181
Stochastic evolving network  276
Stochastic matrix  480, 482

Stochastic mean value theorem  479
Stochastic Petri  net  287
Stochastic processes  61-4, 169, 171, 172-3, 460, 460-524
Stochastically independent  419, 435   →  Independent
Storage / transportation  153
Strategy

•  cost optimization  143, 364-71, 450
•  incoming inspection  366-72
•  maintenance  35, 125, 134-41, 240-43
•  spare parts provisioning  125-34
•  test  21, 120, 166, 359, 364-66, 368-69, 372, 383, 395
•  test & screening 21, 120, 363, 364-72, 383, 395

     (see also Check strategy, Cost)
Stress factor 33, 86, 144-45, 150-51, 376
    (see also Derating)
Stress-strength method  69-71, 76
Strict liability  →  Product liability
Strict sense stationary  462
Strictly increasing / decreasing failure rate  137, 138,

139, 241, 242, 426, 442, 444
Strong law of large numbers  456, 527
Strongly consistent  533
Structure function  55558888  , 59, 283, 285
    (see also  Fault tree structure function)
Stuck-at-state   245-47, 248, 257-58, 266-69
Stuck-at-zero / at-one  90
Student distribution (t-distribution)  563
Subcontractor  399, 402   (see also Supplier)
Successful path method  55-56
Successive approximation  304
Sudden failure  4, 411
Sufficient statistic/estim. 300, 318, 346-49, 533, 534-36
Sum of

•  Homog. Poisson processes 10, 122, 317-8, 473, 521
•  Nonhomogeneous Poisson proc. 473, 518, 521
•  Point processes  524
•  Random variables  438-40, 445, 447, 455, 464-65
•  Renewal processes  520-21

Superconform / superuniform  558
Superimposed processes  →  Sum of
Superposition  →  Sum of
Supplementary / additional states  193-95, 515
Supplementary variables  193-94, 515
Supplier  15, 105, 357, 358, 372, 395, 407
Suppressor diodes  148, 149
Sure event 414   (see also Sample space Ω)
Surface mount devices / technique  →  SMD / SMT
Survival failure-free time  426
Survival function  426  →  Reliability function
Susceptibility  148  →  EMC
Sustainable development  10, 379, 392, 407
Switch  46, 47, 48, 49, 149, 220-25, 226, 227-28,

243-47, 249-55, 257-58, 266-69, 282-85, 289
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Switching phenomena  148, 149
Symmetry condition  461
Symptom  →  Failure mode
Synonyms used in this book

•  failure-free time  for  failure-free operating time 425
•  independent  for  totally (mutually, statistically,

stochastically) independent  419 , 435
•  mean  for  expected value  525
•  reliability function  for  survival function  425
•  repair  for  restoration  420
•  sample  for  random sample  525
•  stationary  for  asymptotic and steady-state  169,

472, 477, 498, 509
System  2, 3, 29, 31, 39, 169-71, 172-73, 175, 277-79,

293-94, 385
•  confidence limits  (on λ)  320
•  design review 403, 405-6  (see also Design review)
•  down time  →  Down time, Mean down time
•  effectiveness  →  Cost effectiveness
•  failure frequency ( )fudS   270, 278, 499-500
•  failure intensity  279, 500, 524
•  function  →  Structure function
•  mean down time ( )MDTS   270, 278-79, 499-500
•  mean time to failure referred to state Z MTTFi S i ( )
   44441111, 173   →  Mean time to failure
•  mean up time ( )MUTS   270, 278-79, 499-500
•  reconfiguration →  Reconfiguration
•  repair frequency ( )fduS   270, 279, 500
•  restoration frequency → System repair frequency
•specifications  387, 398-9  (see also Specifications)
•  status  159   (see also Status)
•  up time  →  Up time, Mean up time
•  without redundancy  →  Series model

Systematic failure  1, 3-4, 6-7, 115, 351, 364, 365,
374, 376, 377, 378, 382, 384, 385

Systems engineering  11, 16, 17, 379, 386, 388
Systems with complex structure  31, 52, 52-66, 68,

238-79, 293-94
Systems with hardware and software  168
Systems with more than 2 states or one failure mode →

More than two states or one failure mode

Tailoring  17, 364, 377, 391, 393, 394, 398
Tasks / task assignment 17-20, 295, 393-97
Tchebycheff →  Chebyshev
t-distribution  →  Student's distribution
Team work  10, 72, 78, 375
Technical availability  242  →  Overall availability
Technical delay  113, 375, 381
Technical safety  →  Safety
Technical system  4  →  System
Technological characterization

•  assemblies  107-11

•  components  89, 87-107
•  prototypes  351, 396

Technological properties / limits  10, 32, 38, 84-85, 86,
92, 96-100, 108, 147-53, 329, 334, 351, 363, 572-75

Temperature dependence  3, 34-35, 37, 329-34
Test (statistical)

•  unknown availability  313-15, 553-55
•  unknown distribution function  334-40, 555-60
•  unknown MTTR   327-29, 393
•  unknown probability  302-08, 309-10, 548-52
•  unknown λ or MTBF = 1 / λ   320-25, 392-93
•  statistical hypotheses (basic theory)  547-60

    (in particular  305, 314, 323, 328)
Test (technical))

•  assemblies  108, 362-63
•  components  88-92, 358-59

Test & screening procedure → Procedure for screening
Test and screening strategy   →  Strategy
Test by attributes / by variables  299
Test conditions  83, 89, 93-101, 108-09, 359-62, 363
Test coverage 90, 91, 117, 156 (see also Incomplete cov.)
Test modi  156
Test pattern  90-93
Test plan  303, 305, 313, 314, 321, 323, 328, 549,

550, 551-52, 554
Test point  152, 156
Test power  →  Power of a test
Test procedure  →  Procedure for test and screening
Test stimuli  157
Test strategy  →  Strategy
Test structure  97
Test time partitioning  →  Partitioning
Test vector  88
Testability  79, 116-17, 150, 152, 155-57, 401

•  software  162 , 164, 166
Testing  →  Test
TDDB  →  Time-dependent dielectric breakdown
Theorem

•  addition 419, 422
•  Bayes  422, 436
•  Blackwell  470
•  central limit  126, 456, 457-59, 471
•  cut sets / cuts  497 / 500
•  De Moivre -  Laplace  456, 540
•  Elementary renewal  469
•  Final value / Initial value  567
•  Fréchet  422
•  Fubini 179
•  Generalized cut sets  497, 502
•  Glivenko-Cantelli  527
•  Grigelionis  521
•  Initial value  567
•  Integral Laplace  456, 540
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•  Key renewal  185, 186, 470, 477, 479
•  Kolmogorov  529
•  Korolyuk  515
•  Limit theorems of probability theory 454-56, 457-60
•  Markov  497
•  Mean value  479
•  Multiplication  420-21
•  Pearson  539, 557
•  Recurrence time limit  470
•  Renewal density  470
•  Stochastic mean value  479
•  Tightened elementary renewal  469
•  Total probability  422

Thermal cycles  89, 95, 98, 108, 109, 111, 359-61, 363
Thermal design concept / management  146
Thermal resistance  84, 85, 146-47
Thermal stress  150
Thermomechanical stress  147, 152
Three parameter Weibull distribution  443, 531-32
Three states  64-65, 152
Tightened elementary renewal theorem  469
Tightened test  →  Normal / reduced / tightened test
Time censored reconfiguration → Phased-mission sys.
Time censoring  →  Censoring
Time compression  333
Time consuming  174, 226, 240, 289, 515, 516
Time-dependent dielectric breakdown  89, 96-97, 103
Time domain  159 , 164
Time-homogeneous

•  Markov chains  480
•  Markov processes  171, 172-73, 462, 482-505
•  Poisson processes  472
•  processes  463

Time redundancy  42, 164, 383
Time schedule (diagram)  176, 182, 208, 209, 219,

238, 250, 464, 475, 511, 512, 513
Time to market 11, 19, 388, 391, 406  (see also Market)
Timing diagram / problems 151, 163
Top-down  76, 78, 163, 164, 378
Top event  76, 78, 280-81, 283, 286
Tort liability  →  Product liability
Total additivity  416
Total down time  124, 181, 522   (see also MDT)
Total expectation  437
Total operating time  →  Total up time
Total probability  52, 70, 177, 422, 469, 481, 483, 495
Total probability theorem  422
Total quality management (TQM)  16, 17, 18, 19, 20,

21, 376, 386, 388, 391
Total up time  180, 181, 500, 522   (see also MUT)
Totally exclusive events → Mutually exclusive events
Totally independent elements  52, 61, 217-18, 226, 229,

231, 232, 237, 275-76, 280-85, 293, 294, 515

Totally independent  419, 435   →  Independent
Traceability  390, 402
Training  →  Motivation / training / training level
     (see also Motivation & training , Skill)
Transformation of

•  random variables  291, 428, 448
•  stochastic processes  345-46, 515, 518-19

Transient phenomena  144, 148, 150
Transition diagram  →  Diagram of transitions
Transition probability  172-73, 197, 199, 480, 482,

492, 493, 495, 507   (see also Diagram of)
Transition rate  287, 483, 485  (see also Diagram of)
Transportation / storage  153
Travel time  203-04, 512
Trend test  345-50
Triplet  413, 423
True reliability   26
Truncated distribution / random variable  71, 135,

136, 140, 291, 292, 428, 568
     (see also  71 for stress-strength)
Truth table  88, 90, 92
Twisted pairs  149
Two chamber oven  98, 361
Two dimensional random vector 436
Two failure mechanisms  332, 342, 363, 428
    (see also Multiple failure modes / mechanisms)
Two failure modes  64-65, 66, 255, 257-58, 266-69
    (see also Multiple failure modes / mechanisms)
Two-sided confidence interval   →  Confidence interval
Two-sided test / sampling plan

•  availability PA AA=   313-14, 553-55
•  const. failure rate λ or MTBF = 1 / λ   320-24
•  unknown probability p  302-06, 549-51;

    (in particular  305, 314, 323)
Two step action  158 , 294 , 295
Type I (time) / II (failure) censoring  →  Censoring
Type I / II error (α / β)  303-08, 313-14, 321-25,

327-29, 334-40, 346-49, 547-48, 549-60
    (see also Producer risk, Consumer risk)

Ultrasonic cleaning  153
Unavailability  61, 237, 309, 311-15, 545-46, 553-55
Unbiased  300, 311, 318, 528, 529, 533-37, 555
Uncertainty (mech. rel.)  71
Unconditional

•  expected value (mean)  437
•  probability  344, 426, 466, 474, 516, 524
•  stay time  507

Uncovered latent failures  134
Understandability / readability (software)  164
Undetected failure / fault time τUFT    249, 251, 427
Uniform distribution  345, 346, 448, 449
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Uniformly distributed
•  random numbers  291, 292
•  random variables  345, 346, 449

Unify methods / models / data  35, 38, 161,
169, 170-71

Uninterruptible power supply (UPS)  230-37
Union of events  414
Unit step function u ( )t   567, 568
Unknown probability  291, 299-308, 309-10, 311-15,

315, 459, 535, 538-42, 549-52, 545-46, 553-55
     (see also Defective probability)
Unload redundancy  →  Standby redundancy
Unused logic inputs  150
Up / up states ( , )u U   57, 278, 474-75, 491, 508
Up time  181, 278-79, 499-500, 522
    (see also System mean up time ( )MUTS )
Upper bound  59, 187, 240, 260, 280, 281, 294
Upper confidence limit  →  Confidence limits
Usability  162, 289, 410
Use of R t t( , )1 2   40, 179, 384
Useful life 13, 35, 39, 81, 85, 119, 125, 177, 380, 386

(for components  146, 150, 151, 573, 574)
 User / User doc.  15, 117, 118, 154, 156, 159, 397, 401

Validation (software)  161 , 163 , 166
Validity   →  Model validity
Value Analysis  386, 401
Value Engineering  386, 401
Variable resistor  100, 145, 151, 572
Variable (test by)  299
Variance  431, 432-33, 438, 523, 528
Vibrations  82, 83, 108, 109, 111, 333, 363
Viscoplastic deformation  109
Visual inspection  89, 93, 102, 104
Voids  93, 100, 108, 109 , 110
Voltage bias  /reverse bias 98, 99, 100, 360
Voltage stress  333
Voter  49, 222, 282, 285

Wafer  97, 106, 153
Waiting redundancy   →  Warm redundancy
Waiting time  →  Stay time
Waiting time paradox  470
Warm redundancy 43, 62, 196-200, 201, 213, 217, 245-

48, 258, 383   (see also Active red., Standby  red.)
Warranty  16, 21, 364, 383
Wash / Washing liquid  153
Wave matching  151
Weak law of large numbers  455
Weaknesses analysis  6, 26-27, 68, 69, 72-80, 309,

405-09  (see also 87-111, 144-68, 351-56, 367,
410-12, Design reviews, Rules)

Wear-out / wear-out failures  6-7, 8, 35, 98, 240, 333,
336, 337, 342, 345, 350, 351, 377, 428, 443, 467-68

Wear-out period  6, 336, 345, 350, 355
Weibull distribution  126-28, 335-38, 342, 430-31,

440, 442-43, 531-32, 535-38, 570
Weibull probability chart  335-38, 443, 531-32, 570
Weibull process  352
Weighted sum  7, 12, 14, 41, 337-38, 368-71, 428

(see also Cost /cost equations , Mixture)
Whisker growth  153
Wide sense stationary  463
Wire wrap  157
Without aftereffect  342, 343, 356, 462, 473, 480,

516, 517, 520, 523
Without interruption  →  On line
Without redundancy  →  Series model
Work-mission availability  142, 180-81, 522
Worst case analysis  76, 79, 151, 394, 406

X-ray inspection  102

Zener diodes  145, 149, 150
Zero defects  86
Zero hypothesis  →  Null hypothesis H0

1-out-of-2  →  One-out-of-two
1-out-of-2: G  →  One-out-of-two
6-σ approach  446
85/85 test  →  Humidity test
α  particles  103
α β;   (producer/type I risk; consumer/type II)  547-48
β β γ1 2  , ,   (γ β β= − − =1 1 2  confidence level)  538
λ  (constant (time independent) failure rate)  6, 171,

378, 426-27   (see also Constant failure rate,
Repairable versus nonrepairable)

µ  (constant (time independent) repair rate)  115, 171
(see also λ )

χ 2  (Chi-square)  562
η τ τn n n= − −* *

1  (interarrival times)  517
ο ( )δ t   (Landau notation)  483
i = −

−−−
√ 1  561, 567

Π  circuit   576
S0  (indices for state Z 0  entered at t =0 ) 52, 172-73
t t1 2, , . ..   (realizations of τ )   4-5, 526-27, 336, 339
t t

1 2
* *, , . ..   (arbitrary points on the time axis)  346-50,

517-20
τ   (failure -free time)  425
τ '  (repair time)  113
τ τmin max,    440

 ̂   is used for an estimated (or empirical) value 299, 528
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