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Foreword

I compliment the authors in this book because it brings together mathematical
methods for the solution of multivariable polynomial equations that hardly are
covered side by side in any ordinary mathematical book: The book explains both
algebraic (exact) methods and numerical (approximate) methods. It also points
to the recent combination of algebraic and numerical methods (hybrid methods),
which is currently one of the most promising directions in the area of computer
mathematics. The reason why this book manages to bring the algebraic and the
numerical aspect together is because it is strictly goal oriented toward the solution
of fundamental problems in the area of geodesy and geoinformatics – e.g., the
positioning problem – and the solution of application problems does not allow
purism in methodology but, rather, has to embrace different approaches with
different benefits in different circumstances.

Personally, it is very fulfilling for me to see that my Groebner bases methodol-
ogy, mainly by the work of the authors, finds now also useful applications in the
area of geodesy and geoinformatics. Since the book compares, in the applications,
Groebner bases and resultants as the two main algebraic approaches, it also gives a
lot of new motivations for further mathematical research in the relationship between
these two approaches, which is still not well understood.

All good wishes for the further success of this book in the community of both
geoinformatics and computer mathematics!

Hagenberg, Austria Prof. Dr.phil. Dr.h.c.mult. Bruno Buchberger
September 2009 Professor of Computer Mathematics and

Head of Softwarepark Hagenberg
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Preface to the First Edition

While preparing and teaching “Introduction to Geodesy I and II” to undergraduate
students at Stuttgart University, we noticed a gap which motivated the writing of
the present book: Almost every topic that we taught required some skills in algebra
and, in particular, computer algebra! From positioning to transformation problems
inherent in geodesy and geoinformatics, knowledge of algebra, and application
of computer algebra software were required. In preparing this book therefore, we
have attempted to put together basic concepts of abstract algebra which underpin
the techniques for solving algebraic problems. Algebraic computational algorithms
useful for solving problems which require exact solutions to nonlinear systems
of equations are presented and tested on various problems. Though the present
book focuses mainly on the two fields, the concepts and techniques presented
herein are nonetheless applicable to other fields where algebraic computational
problems might be encountered. In engineering for example, network densification
and robotics apply resection and intersection techniques which require algebraic
solutions.

Solution of nonlinear systems of equations is an indispensable task in almost all
geosciences such as geodesy, geoinformatics, and geophysics (just to mention but a
few) as well as robotics. These equations which require exact solutions underpin the
operations of ranging, resection, intersection, and other techniques that are normally
used. Examples of problems that require exact solutions include:

• three-dimensional resection problem for determining positions and orientation of
sensors, e.g., camera, theodolites, robots, scanners, etc.,

• coordinate transformation to match shapes and sizes of points in different
systems,

• mapping from topography to reference ellipsoid,
• analytical determination of refraction angles in GPS meteorology.

The difficulty in solving explicitly these nonlinear systems of equations has led
practitioners and researchers to adopt approximate numerical procedures, which
often have to do with linearization, approximate starting values, and iterations,
and sometimes require a lot of computational time. In order to offer solutions to
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viii Preface to the First Edition

the challenges posed by nonlinear systems of equations, this book provides, in a
pioneering work, the application of ring and polynomial theories, Groebner basis,
polynomial resultants, Gauss-Jacobi combinatorial, and Procrustes algorithms.
Users faced with algebraic computational problems are thus provided with algebraic
tools that are not only a must but essential and have been out of reach. For
these users, most algebraic books at their disposal have unfortunately been written
in mathematical formulations suitable to mathematicians. We strive to simplify
the algebraic notions and provide examples where necessary to enhance easier
understanding.

For those in mathematical fields such as applied algebra, symbolic computations
and application of mathematics to geosciences, etc., the book provides some
practical examples of application of mathematical concepts. Several geodetic and
geoinformatic problems are solved in the book using methods of abstract algebra
and multidimensional scaling. These examples might be of interest to some
mathematicians.

Chapter 1 introduces the book and provides a general outlook on the main
challenges that call for algebraic computational approaches. It is a motivation for
those who would wish to perform analytical solutions. Chapter 2 presents the basic
concepts of ring theory relevant for those readers who are unfamiliar with abstract
algebra and therefore prepare them for latter chapters which require knowledge of
ring axioms. Number concept from operational point of view is presented. It is
illustrated how the various sets of natural numbers N, integers Z, quotients Q, real
numbers R, complex numbers C, and quaternions H are vital for daily operations.
The chapter then presents the concept of ring theory. Chapter 3 looks at the basics
of polynomial theory, the main object used by the algebraic algorithms that will be
discussed in the book. The basics of polynomials are recaptured for readers who
wish to refresh their memory on the basics of algebraic operations. Starting with the
definition of polynomials, Chap. 3 expounds on the concept of polynomial rings,
thus linking it to the number ring theory presented in Chap. 2. Indeed, the theorem
developed in the chapter enables the solution of nonlinear systems of equations that
can be converted into (algebraic) polynomials.

Having presented the basics in Chaps. 2 and 3, Chaps. 4, 5, 6, and 7 present
algorithms which offer algebraic solutions to nonlinear systems of equations. They
present theories of the procedures starting with the basic concepts and showing how
they are developed to algorithms for solving different problems. Chapters 4, 5,
and 6 are based on polynomial ring theory and offer an in-depth look at the
basics of Groebner basis, polynomial resultants, and Gauss-Jacobi combinatorial
algorithms. Using these algorithms, users can develop their own codes to solve
problems requiring exact solutions.

In Chap. 7, the Global Positioning Systems (GPS) and the Local Positioning
Systems (LPS) that form the operational basis are presented. The concepts of local
datum choice of types E

� and F
� are elaborated, and the relationship between

local reference frame F
� and the global reference frame F

�, together with the
resulting observational equations, is presented. The test network “Stuttgart Central”
in Germany that we use to test the algorithms in Chaps. 4, 5, and 6 is also presented
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in this chapter. Chapter 8 deviates from the polynomial approaches to present a
linear algebraic (analytical) approach of Procrustes that has found application in
fields such as medicine for gene recognition and sociology for crime mapping. The
chapter presents only the partial Procrustes algorithm. The technique is presented as
an efficient tool for solving algebraically the three-dimensional orientation problem
and the determination of vertical deflection.

From Chaps. 9 to 15, various computational problems of algebraic nature are
solved. Chapter 9 looks at the ranging problem and considers both the GPS pseudo-
range observations and ranging within the LPS systems, e.g., using EDMs. The
chapter presents a complete algebraic solution starting with the simple planar case
to the three-dimensional ranging in both closed and overdetermined forms. Critical
conditions where the solutions fail are also presented. Chapter 10 considers the
Gauss ellipsoidal coordinates and applies the algebraic technique of Groebner basis
to map topographic points onto the reference ellipsoid. The example based on the
Baltic Sea level project is presented. Chapters 11 and 12 consider the problems of
resection and intersection, respectively.

Chapter 13 discusses a modern and relatively new area in Geodesy, the GPS
meteorology. The chapter presents the theory of GPS meteorology and discusses
both the space-borne and ground- based types of GPS meteorology. The ability of
applying the algebraic techniques to derive refraction angles from GPS signals is
presented. Chapter 14 presents an algebraic deterministic version to outlier problem,
thus deviating from the statistical approaches that have been widely publicized.
Chapter 15 introduces the seven-parameter datum transformation problem com-
monly encountered in practice and presents the general Procrustes algorithm. Since
this is an extension of the partial Procrustes algorithm presented in Chap. 8, it is
referred to as Procrustes algorithm II. The chapter further presents an algebraic
solution of the transformation problem using Groebner basis and Gauss-Jacobi
combinatorial algorithms. The book is completed in Chap. 16 by presenting an
overview of modern computer algebra systems that may be of use to geodesists
and geoinformatists.

Many thanks to Prof. B. Buchberger for his positive comments on our Groebner
basis solutions; Prof. D. Manocha who discussed the resultant approach; Prof.
D. Cox who also provided much insight in his two books on rings, fields, and
algebraic geometry; and Prof. W. Keller of Stuttgart University Germany, whose
door was always open for discussions. We sincerely thank Dr. J. Skidmore for
granting us permission to use the Procrustes “magic bed” and related materials from
Mythweb.com. Thanks to Dr. J. Smith (editor of Survey Review), Dr. S. J. Gordon,
and Dr. D. D. Lichti for granting us permission to use the scanner resection figures
appearing in Chap. 12. We are also grateful to Chapman and Hall Press for granting
us permission to use Fig. 9.2 where malarial parasites are identified using Procrustes.
Special thanks to Prof. I. L. Dryden for permitting us to refer to his work and all the
help. Many thanks to Ms F. Wild for preparing Figs. 16.9 and 17.7. We acknowledge
your efforts and valuable time. Special thanks to Prof. A. Kleusberg of Stuttgart
University Germany; Prof. T. Tsuda of Radio Center for Space and Atmosphere,
Kyoto University Japan; Dr. J. Wickert of GeoForschungsZentrum Potsdam (GFZ),
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Germany; and Dr. A. Steiner of the Institute of Meteorology and Geophysics,
University of Graz, Austria, for the support in terms of literature and discussions
on Chap. 18. The data used in Chap. 13 were provided by GeoForschungsZentrum
Potsdam (GFZ). For these, the authors express their utmost appreciation.

The first author also wishes to express his utmost sincere thanks to Prof. S.
Takemoto and Prof. Y. Fukuda of the Department of Geophysics, Kyoto University,
Japan, for hosting him during the period of September 2002 to September 2004.
In particular Chap. 13 was prepared under the supervision and guidance of Prof.
Y. Fukuda: Your ideas, suggestions, and motivation enriched the book. For these,
we say arigato gozaimashita – Japanese equivalent to thank you very much. The
first author’s stay at Kyoto University was supported by Japan Society of Promotion
of Science (JSPS): The author is very grateful for this support. The first author is
grateful to his wife Mrs. Naomi Awange and his two daughters Lucy and Ruth who
always brightened him up with their cheerful faces. Your support, especially family
time that I denied you in order to prepare this book, is greatly acknowledged. Naomi,
thanks for carefully reading the book and correcting typographical errors. However,
the authors take full responsibility of any typographical error. Last but not least, the
second author wants to thank his wife Ulrike Grafarend, his daughter Birgit, and
his son Jens for all the support over these many years as they were following him at
various places around the globe.

Kyoto, Japan and Stuttgart, Germany Joseph L. Awange
September 2004 Erik W. Grafarend



Preface to the Second Edition

This work is in essence the second edition of the 2005 book by Awange and Gra-
farend Solving Algebraic Computational Problems in Geodesy and Geoinformatics.
This edition represents a major expansion of the original work in several ways.

Realizing the great size of some realistic geodetic and geoinformatic problems
that cannot be solved by pure symbolic algebraic methods, combinations of the
symbolic and numeric techniques, so-called hybrid techniques, have been intro-
duced. As a result, new chapters have been incorporated to cover such numeric
methods. These are Linear Homotopy in Chap. 6 and the Extended Newton-Raphson
in Chap. 8, with each chapter accompanied by new numerical examples. Other
chapters dealing with the basics of polynomial theory, LPS-GPS orientations, and
vertical deflections, as well as GNSS meteorology in environmental monitoring,
have been refined. We also point out that computer algebra system (Chap. 16) of
the first edition has been omitted in the present book due to the rapid changing of
computational algorithms.

In the meantime, since the date of the first edition, some earlier methods have
been improved. Therefore, chapters like Procrustes Solution and Datum Trans-
formation Problems have been expanded and the associated improvements in the
symbolic-numeric methods are demonstrated for the case of affine transformation
with nine parameters.

In order to emphasize the theoretical background of the methods and their
practical applications to geodetic and geoinformatic problems, as well as to compare
and qualify them for different applications, the book has been split into two
parts. Part I covers the theoretical concepts of the algebraic symbolic and numeric
methods, and as such, readers already familiar with these can straight away move
to the applications covered in Part II of the book. Indeed, Part II provides in-depth
practical applications in geodesy and geoinformatics.

Perhaps the most considerable extension from a theoretical as well as from a
practical point of view is the electronic supplement to the book in CD form. This
CD contains 20 chapters and about 50 problems solved with different symbolic,
numeric, and hybrid techniques using one of the leading computer algebraic systems
CAS’s Mathematica. The notebooks provide the possibility of carrying out real-time
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computations with different data or models. In addition, some Mathematica modules
representing algorithms discussed in the book are supplied to make it easier for the
reader to solve his/her own real geodetic/geoinformatic problems. These modules
are open source; therefore they can be easily modified by users to suit their
own special purposes. The effectiveness of the different methods is compared and
qualified for different problems and some practical recipes given for the choice of
the appropriate method. The actual evaluation of the codes as parallel computation
on multi-core/processor machines is also demonstrated. For users not familiar with
the Mathematica system, the pdf versions of the notebooks are also provided.

Last, but not least, the company of the authors has also been extended, demon-
strating that nowadays the cooperation of peoples from different scientific fields is
indispensable when writing such a comprehensive book.

Overall, in this second edition, we have tried to bring together the basic theories
and their geodesic/geoinformatic applications as well as the practical realization of
these algorithms. In addition, the extensive references listing should help interested
readers to immerse themselves in the different topics more deeply.

We have attempted to correct the various errors that were inadvertently left in the
first edition; however readers are encouraged to contact us about errors or omissions
in the current edition.

Many thanks go to Prof. B. Buchberger, the father of Groebner basis method, for
his positive comments on our Groebner basis solutions and for agreeing to write
a foreword for our book and to Prof. R. Lewis for explaining his EDF method
(Early Discovery Factor) to compute Dixon resultant as well as for carrying out
some computations with his algebraic computer code Fermat. We are also grateful to
Dr. D. Lichtblau for helping us to learn the proper and efficient use of Mathematica,
especially the Groebner basis algorithm as well as, to write some appreciating words
for the back cover of the book. Special thanks to Dr. K. Flemming and Dr. C. Hirt
of Curtin University for sparing time to proofread this edition and for providing
valuable comments. Further thanks to K. Flemming for preparing Fig. 20.4.

J.L. Awange wishes to express his utmost sincere thanks to Prof. B. Heck
of the Department of Physical Geodesy (Karlsruhe University, Germany) for
hosting him during the period of the Alexander von Humboldt Fellowship (2008–
2011). In particular, your ideas, suggestions, and motivations on Chap. 6 enriched
the book. J.L. Awange is further grateful to Prof. B. Veenendaal (HoD, Spatial
Sciences, Curtin University of Technology, Australia) and Prof. F. N. Onyango
(Vice Chancellor, Maseno University, Kenya) for the support and motivation that
enabled the preparation of this edition. Last, but not least, J.L. Awange’s stay at
Curtin University of Technology is supported by Curtin Research Fellowship, while
his stay at Karlsruhe University is supported by Alexander von Humboldt’s Ludwig
Leichhardt’s Memorial Fellowship: The author is very grateful for this financial
support.

Perth, Australia, Stuttgart, Germany, Joseph L. Awange
and Budapest, Hungary Erik W. Grafarend
October 2009 Béla Paláncz

Piroska Zaletnyik
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This third edition that includes a completely revised form of the techniques
presented in the previous editions introduces three new symbolic-numeric methods
that have started to spread in geospatial sciences. The employment of these
efficient methods is required mainly by the wide-spreading application of laser
techniques producing huge cloud of data, hence necessitating a change of title
from Algebraic Geodesy and Geoinformatics in the second edition to Geospatial
Algebraic Computation in the current edition. In the first part of the book, these
three new Chaps. 10, 11, and 12 (Pareto Optimality of Multi-objective Optimization,
Symbolic Regression, and Robust Estimation) represent the increasing importance
of intelligent data analysis and the modern handling of large data sets. In addition,
the linear homotopy chapter in the second edition is extended to incorporate the
nonlinear homotopy.

In the second part of the book, the applications of these techniques are illustrated
in practical geodetic problems, such as global and local positioning by ranging,
resections, and intersections; datum transformation problems; GNSS environmental
monitoring; detecting outliers; modeling local GPS/leveling geoid undulations;
estimation of geometric primitives in LiDAR cloud of data; application of robust
parameter estimation for GNSS data; and so on. The earlier topics as polynomials,
Groebner basis, resultants, Gauss-Jacobi combinatorial and Procrustes algorithms,
homotopy methods, as well as the new ones are illustrated by numerous practical
geodetic examples in the form of fully explained notebooks created by the latest
version of Mathematica in cloud computing environment representing the state of
art of symbolic-numeric computation techniques. In addition these generally usable
functions and packages are attached as the accompanying electronic material.

J.L. Awange wishes to express his sincere thanks to Prof. B. Heck (Karlsruhe
Institute of Technology (KIT), Germany) for hosting him during the period of his
Alexander von Humboldt Fellowship (June to September 2015), Prof. Y. Fukuda
(Kyoto University, Japan) for hosting him during the period of his Japan Society of
Promotion of Science (JSPS) Fellowship (October to December 2015), and Prof R.
Goncalves of Federal University of Pernambuco (Brazil) for hosting him during his
Science Without Boarder (January to March 2016). Parts of this book were written
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during these periods. He is also grateful to Prof. B. Veenendaal (head of Department,
Spatial Sciences, Curtin University, Australia) for the support and motivation that
enabled the preparation of this edition. He also wishes to acknowledge the support
of Alexander von Humboldt that facilitated his stay at KIT, JSPS that supported
his stay at Kyoto University, and Capes for supporting his stay in Brazil. To
all, he says, “ahsante sana” (Swahili for thank you very much). Special thanks
go to his family, namely, Mrs Naomi Awange, Lucy Awange, and Ruth Awange
who had to contend with his long periods of absence from home. B. Paláncz
expresses his high appreciation and thanks to Prof. Bert Veenendaal the head of
the Department of Spatial Sciences (Curtin University, Australia) for his hospitality
and financial support of his visiting Curtin. Béla Paláncz wishes also to thank the
TIGeR Foundation for financing part of his stay at Curtin University, Perth. This is
a TIGeR No. 633

Curtin University, Australia, Joseph L. Awange
Karlsruhe Institute of Technology, Germany, Béla Paláncz
Kyoto University, Japan and
Federal University of Pernambuco, Brazil,
Budapest University of Technology and Economics Budapest, Hungary
July 2015
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Chapter 1
Introduction

1.1 Motivation

A potential answer to modern challenges faced by geospatialists such as geodesists
and geoinformatists (see, e.g., Sect. 1.3), lies in the application of algebraic and
numeric computational techniques. The present book provides an in-depth look
at algebraic computational methods and combines them with special local and
global numerical methods like the Extended Newton-Raphson and the Homotopy
continuation method to provide smooth and efficient solutions to real life-size
problems often encountered in geodesy and geoinformatics, but which cannot
be adequately solved by algebraic methods alone. Some new but very effective
techniques in geospatial, e.g., multiobjective optimization, symbolic regression, and
robust estimation are also introduced.

Algebra has been widely applied in fields such as robotics for kinematic
modelling, in engineering for offset surface construction, in computer science for
automated theorem proving, and in Computer Aided Design (CAD). The most well-
known application of algebra in geodesy could perhaps be the use of Legendre
polynomials in spherical harmonic expansion studies. More recent applications of
algebra in geodesy are shown in the works of Biagi and Sanso [84], Awange [17],
Awange and Grafarend [44], and Lannes and Durand [320], the latter proposing a
new approach to differential GPS based on algebraic graph theory.

The present book is divided into two parts. Part I focuses on the algebraic and
numerical methods and presents powerful tools for solving algebraic computational
problems inherent in geodesy and geoinformatics. The algebraic methods are
presented with numerous examples of their applicability in practice. Part I may
therefore be skipped by readers with an advanced knowledge in algebraic methods,
and who are more interested in the applications of the methods which are presented
in part II. In addition, electronic supplementary materials are provided where users
can find mathematica notebooks that can be used to carry out symbolic-numeric
computations using the suggested methods utilizing their own data.

© Springer-Verlag Berlin Heidelberg 2016
J.L. Awange, B. Paláncz, Geospatial Algebraic Computations,
DOI 10.1007/978-3-319-25465-4_1
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1.2 Modern Challenges

In daily geodetic and geoinformatic operations, nonlinear equations are encountered
in many situations, thus necessitating the need for developing efficient and reliable
computational tools. Advances in computer technology have also propelled the
development of precise and accurate measuring devices capable of collecting large
amount of data. Such advances and improvements have brought new challenges to
practitioners in fields of geosciences and engineering, which include:

• Handling in an efficient and manageable way the nonlinear systems of equations
that relate observations to unknowns. These nonlinear systems of equations
whose exact (algebraic) solutions have mostly been difficult to solve, e.g.,
the transformation problem presented in Chap. 20 have been a thorn in the
side of users. In cases where the number of observations n and the number
of unknowns m are equal, i.e., n D m, the unknown parameters may be
obtained by solving explicitly (in a closed form) nonlinear systems of equations.
Because of the difficulty in practise of obtaining reliable closed form procedures,
approximate numerical methods have been adopted. Such procedures depend on
some approximate starting values, linearization and iterations. In some cases, the
numerical methods used are unstable or the iterations fail to converge, depending
on the initial “guess” [417, pp. 340–342]. The other shortcoming of approximate
numerical procedures has been pointed out by Cox et al. [136, pp. 28–32],
who in their book have shown that systems of equations with exact solutions
become vulnerable to small errors introduced during the process of establishing
the roots. In the case of extending the partial solution to the complete solutions of
the system, errors may accumulate and thus become very large (ill-conditioned
problems). If the partial solution was derived by iterative procedures, then the
errors incurred during the root-finding may blow up during the extension of the
partial solution to the complete solution (back substitution). Last but not least,
nonlinear systems may have more solutions and one may need to discover all of
them and select the proper one. However, numerical techniques may just lead
to convergence to one of the solutions. There exists therefore a strong need
for unified procedures that can be applied in general to offer exact solutions to
nonlinear systems of equations.

• Managing large amounts of data. In GPS meteorology for example, more than
1000 satellite occultations are obtained on a daily basis, from which the bending
angles of the signals are to be computed. In practice, the nonlinear system of
equations for bending angles is often solved using numerical approaches such
as Newton’s method iteratively. An explicit formula could, however, be derived
from the nonlinear system of equations, as presented in Chap. 18.

• Obtaining a unified closed form solution (e.g., Awange et al. [42]) for different
problems. For a particular problem, several procedures are often put forward in
an attempt to offer exact solutions. The GPS pseudo-range problem for example,
has attracted several exact solution procedures, as outlined in the works of [60,
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223, 301, 302, 338, 466]. It is desirable in such a case to have a unified solution
approach which can easily be applied to all problems in general.

• Controlling approximate numerical algorithms that are widely used (see, e.g.,
Awange [39]).

• Obtaining computational procedures that are time saving.
• Having computational procedures that do not peg their operations on approxi-

mate starting values, linearization or iterations.
• Taking advantage of the large storage capacity and fast speed of modern comput-

ers to solve problems which have hitherto evaded solution as well as utilize the
multicore computers providing excellent tools for parallel computation.

• Prove the validity of theorems and formulae that are in use, which were derived
based on a trial and error basis.

• Perform rigorous analysis of the nonlinearity effects on most models that are in
operation, but assume or ignore nonlinearity.

1.3 Facing the Challenges

These challenges and many others had existed before, and earlier researchers
had acknowledged the fact and realized the need for addressing them through
the development of explicit solutions. Merritt [369] had, for example, listed the
advantages of explicit solutions as;

1. the provision of satisfaction to the users (photogrammetrists and mathematicians)
of the methods,

2. the provision of data tools for checking the iterative methods,
3. the desire by geodesists whose task of control network densification does not

favour iterative procedures,
4. the provision of solace and,
5. the requirement of explicit solutions rather than iterative by some applications.

Even though such advantages had been noted, their actual realization was out of
reach as the equations involved were large and required more than a pen and
paper to solve. Besides, another drawback was that these exact solutions were
like a rare jewel. The reason for this was partly because the methods required
extensive computations and partly because the resulting symbolic expressions
were too large and required computers with large storage capacity. Until recently,
computers that were available could hardly handle large computations due to the
lack of sufficiently fast Central Processing Unit (CPU), shortage of Random Access
Memory (RAM) and limited hard disk storage capacity. The other setback was that
some of the methods, especially those from algebraic fields, were formulated based
on theoretical concepts that were hard to realize or comprehend without the help
of computers. For a long time therefore, these setbacks hampered progress in the
development of explicit procedures. The painstaking efforts to obtain exact solutions
discouraged practitioners to the extent that the use of numerical approaches were the
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order of the day. Most of these numerical approaches had no independent methods
for validation, while other problems evaded numerical solutions and required closed
form solutions.

In some applications, explicit formulae rather than numerical solutions are
desirable. In such cases, explicit procedures are usually employed. The resulting
explicit formulae often consist of univariate polynomials relating the unknown
parameters (unknown variables) to the known variables (observations). By inserting
numeric values into these explicit formulae, solutions can immediately be computed
for the unknown variables. In order to gain a deeper understand of this discussion,
let us consider a case where students have been asked to integrate the function
f .x/ D x5 with respect to x. In this case, the power of x, i.e., 5 is definite and
the integration can easily be performed. Assume now that for a specific purpose,
the power of x can be varied, taking on different values say n D 1; 2; 3; : : :. In such
a case, it is not prudent to integrate x raised to each power, but to seek a general
explicit formula by integrating

Z
xndx; (1.1)

to give

xnC1

nC 1: (1.2)

One thereafter needs only to insert a given value of n in (1.2) to obtain a solution.
In practice, several problems require explicit formulae as they are performed
repeatedly.

Besides the requirement of exact solutions by some applications, there also exists
the problem of exact solutions of overdetermined systems (i.e., where more obser-
vations than unknown exist). In reality, field measurements often result in more data
being collected than is required to determine the unknown parameters, with exact
solutions to the overdetermined problems being just one of the challenges faced.
In some applications, such as the 7-parameter datum transformation discussed in
Chap. 20, where coordinates have to be transformed from local coordinate systems
to the global coordinate system and vice versa, the handling of stochasticities
of these systems still poses a serious challenge to users. Approximate numerical
procedures which are applied in practice do not offer a tangible solution to this
problem. Other than the stochasticity issues, numerical methods employed to solve
the 7-parameter datum transformation problem require some initial starting values,
linearization and iterations as already mentioned. In Photogrammetry, where the
rotation angles are very small, the initial starting values are often set to zero.
This, unfortunately, may not be the case for other applications in geosciences. In
Chap. 9 we present powerful analytical and algebraic techniques developed from
the fields of multidimensional scaling and abstract algebra to solve the problem.
In particular, the Procrustes algorithm, which enjoys wide use in fields such as
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medicine and sociology, is straightforward and easy to program. The advantages
of these techniques are; the non-requirements of the conditions that underpin
approximate numerical solutions, and their capability to take into consideration
weights of the systems involved.

The solution of unknown parameters from nonlinear observational equations are
only meaningful if the observations themselves are pure and uncontaminated by
gross errors (outliers). This raises the issue of outlier detection and management.
Traditionally, statistical procedures have been put forward for detecting outliers in
observational data sample. Once detected, the observations that are considered to
be outliers are isolated and the remaining pure observations used to estimate the
unknown parameters. Huber [281] and Hampel et al [254], however, point out the
dangers that exist in such an approach, namely false rejection of otherwise good
observations, and the false retention of contaminated observations. To circumvent
these dangers, robust estimation procedures were proposed in 1964 by the father of
robust statistics, P. J. Huber [279] to manage outliers without necessarily rejecting
outlying observations. In Chap. 11, robust estimation methods are introduced,
demonstrating how to eliminate outliers. In addition, as we shall see in Chap. 19,
several contributions to outlier management using robust techniques have been put
forward. Chapter 19 deviates from the statistical approaches to present an algebraic
outlier diagnosis tool that enjoys the advantages already discussed.

On the instrumentation front, there has been a tremendous improvement in
computer technology. Today’s laptops are made with large storage capacity with
high memory, thus enabling faster computations. The wide spread availability of
multicore processors as well as some Computer Algebraic System (CAS) such as
Mathematica and Maple offer the possibility for parallel computing without any
special knowledge. Problems can now be solved using algebraic methods that would
have been impossible to solve by hand.

1.4 Concluding Remarks

This book covers both algebraic (“exact”), numerical (“approximate”), and a
combination of both methods, therefore presents modern and efficient techniques
for solving geodetic and geoinformatics algebraic problems, with the aim of meet-
ing the challenges addressed above. Examples are illustrated using Mathematica
software package to demonstrate the computer algebra techniques of Groebner
basis and resultants. Global and local numerical solution methods e.g., extended
Newton-Raphson and homotopy, are also presented. An accompanying CD-ROM
is included which contains Mathematica notebooks with computational illustrations
and application packages to solve real-life problems in geodesy and geoinformatics,
such as resection, intersection, and orientation problems.
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Chapter 2
Basics of Ring Theory

2.1 Some Applications to Geodesy and Geoinformatics

This chapter presents the concepts of ring theory from a geodetic and geoinformatics
perspective. The presentation is such that the mathematical formulations are
augmented with examples from the two fields. Ring theory forms the basis upon
which polynomial rings operate. As we shall see later, exact solution of algebraic
nonlinear systems of equations are pinned to the operations on polynomial rings. In
Chap. 3, polynomials will be discussed in detail. In order to understand the concept
of polynomial rings, one needs first to be familiar with the basics of ring theory.
This chapter is therefore a preparation for the understanding of the polynomial
rings presented in Chap. 3. Ring of numbers which is presented in Sect. 2.2 plays
a significant role in daily operations. They permit operations addition, subtraction,
multiplication and division of numbers. For those engaged in data collection, ring
of numbers play the following role;

• they specify the number of sets of observations to be collected,
• they specify the number of observations or measurements per set,
• they enable manipulation of these measurements to determine the unknown

parameters.

We start by presenting ring of numbers. Elementary introduction of the sets of
natural numbers, integers, rational numbers, real numbers, complex numbers and
quaternions are first given before defining the ring. We strive to be as simple as
possible so as to make the concepts clear to readers with less or no knowledge of
rings.

© Springer-Verlag Berlin Heidelberg 2016
J.L. Awange, B. Paláncz, Geospatial Algebraic Computations,
DOI 10.1007/978-3-319-25465-4_2
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2.2 Numbers from Operational Perspective

When undertaking operations such as measurements of angles, distances, gravity,
photo coordinates, digitizing of points etc., numbers are often used. Measured values
are normally assigned numbers. A measured distance for example can be assigned
a value of 100 m to indicate the length. Numbers, e.g., 1; 2; : : : ; also find use as;

• counters to indicate the frequency of taking measurements,
• counters indicating the number of points to be observed or,
• passwords to;

– the processing hardware (e.g. computers),
– softwares (such as those of Geographical Information Systems (GIS) pack-

ages) and,
– accessing pin numbers in the bank!

In all these cases, one operates on a set of natural numbers

N D f0; 1; 2; : : : :g; (2.1)

with 0 added. The number 0 was invented by the Babylonians in the third century
B.C.E, re-invented by the Mayans in the fourth century C.E and in India in the fifth
century [284, p. 69]. The set N in (2.1) is closed under;

• addition, in which case the sum of two numbers is also a natural number (e.g.,
3C 6 D 9) and,

• multiplication, in which case the product of two numbers is a natural number
(e.g., 3 � 6 D 18).

Subtraction, i.e., the difference of two natural numbers is however not necessarily a
natural number (e.g. 3� 6 D �3). To circumvent the failure of the natural numbers
to be closed under subtraction, negative numbers were introduced and added in
front of natural numbers. For a natural number n for example, �n is written. This
expanded set

Z D f�2;�1; 0; 1; 2; : : : :g; (2.2)

is the set of integers. The letter Z is adopted from the first letter of the German word
for integers “Zahl”. The set Z is said to have:

• an “additive identity” number 0 which when added to any integer n preserves the
“identity” of n, e.g., 0C 13 D 13,

• “additive inverse” �n which when added to an integer n results in an identity 0,
e.g., �13C 13 D 0. The number �13 is an additive inverse of 13.

The set Z with the properties “addition” and “additive inverse” enables one to
manipulate numbers by being able to add and subtract. This is particularly helpful
when handling measured values. It allows for instance the solution of equations of
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type yC m D 0, where m is an integer. In-order to allow them to divide numbers as
is the case with distance ratio observations, “multiplicative identity” and “inverse”
have to be specified as:

• “multiplicative identity” is the integer 1 which when multiplied with any integer
n preserves the “identity” of n, e.g., 1 � 13 D 13,

• “multiplicative inverse” is an integer m such that its multiplication with an integer
n results in an identity 1, e.g., m � n D 1.

For a non-zero integer n, therefore, a multiplicative inverse
1

n
has to be specified.

The multiplicative inverse of 5 for example is
1

5
. This leads to an expanded set

comprising of both integers and their multiplicative inverses as

Q D f�2;�1
2
;�1; 0; 1; 2; 1

2
; : : : :g; (2.3)

where a new number has been created for each number except �1; 0; 1. Except for
0, which is a special case, the set Q is closed under “additive” and “multiplicative
inverses” but not “addition” and “multiplication”. This is circumvented by incorpo-

rating all products of integers and multiplicative inverses m � 1
n
D m

n
, which are

ratios of integers resulting into a set of rational numbers Q. Q is the first letter of
Quotient and is closed since:

• For every rational number, there exist an additive inverse which is also a rational

number, e.g., � 1
13
C 1

13
D 0.

• Every rational number except 0 has a multiplicative inverse which is also a

rational number, e.g., 13 � 1

13
D 1.

• The set of rational numbers is closed under addition and multiplication, e.g.,
1

3
C 1

3
D 2

3
and

1

3
� 1
3
D 1

9
.

The set Q is suitable as it permits addition, subtraction, multiplication and division.
It therefore enables the solution of equations of the form ny � m D 0, fm; ng being
arbitrary integers, with n ¤ 0. This set is however not large enough as it leaves
out the square root of numbers and thus cannot measure the Pythagorean length.
In geodesy, as well as geoinformatics, the computation of distances from station
coordinates by Pythagoras demands the use of square root of numbers. The set of
quotient Q is thus enlarged to the set of real numbers R, where the positive real
numbers are the ones required to measure distances as shall be seen in Chaps. 15, 16,
and 17. Negative real numbers are included to provide additive inverses. The set R
also possesses multiplicative inverses. This set enables the solution of equations of
the form y2 � 3 D 0 ) y D ˙p3, which is neither integer nor rational. The
set R is however not large enough to provide a solution to an equation of the form
y2C1 D 0. It therefore gives way to the set C of complex numbers, where i2 D �1.
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The set C can be expanded further into a set H of quaternions which was
discovered by W. R. Hamilton on the 16th of October 1843, having worked on the
problem for 13 years (see Note 2.1 on p. 13). Even as he discovered the quaternions,
it occurred to him that indeed Euler had known of the existence of the four square
identity in 1748 and that quaternion multiplication had been used by Rodrigues in
1840 to compute the product of rotations in R

3 [474]. Indeed as we shall see in
Chap. 7, Gauss knew of quaternions even before Hamilton, but unfortunately, he
never published his work. In geodesy and geoinformatics, quaternions have been
used to solve the three-dimensional resection problem by [229]. They have also
found use in the solution of the similarity transformation problem discussed in
Chap. 20 as evidenced in the works of [465, 485, 486, 549].

Quaternion is defined as the matrix

�
.aC di/ .bC ci/
.�bC ci/ .a � di/

�
jfa; b; c; dg 2 R; (2.4)

which is expressed in terms of unit matrices 1; i; j; k as

2
664

�
aC di bC ci
�bC ci a � di

�
D a

�
1 0

0 1

�
C b

�
0 1

�1 0
�
C c

�
0 i
i 0

�
C d

�
i 0
0 �i

�

a1C biC cjC dk;

(2.5)

where 1; i; j;k are quaternions of norm 1 that satisfy

2
664

i2 D j2 D k2 D �1
ij D k D �ji
jk D i D �kj
ki D j D �ik:

(2.6)

The norm of the quaternions is the determinant of the matrix (2.4) and gives

det

�
.aC di/ .bC ci/
.�bC ci/ .a � di/

�
D a2 C b2 C c2 C d2; (2.7)

which is a four square identity. This matrix definition is due to Cayley, while
Hamilton wrote the rule i2 D j2 D k2 D ijk D �1 that define quaternion
multiplication from which he derived the four square identity [474, p. 156].

We complete this section by defining algebraic integers as

Definition 2.1 (Algebraic) A number n 2 C is algebraic if

an˛
n C an�1˛n�1 C : : :C a1˛ C a0 D 0; (2.8)
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and it takes on the degree n if it satisfies no such equation of lower degree and
a0; a1; : : : ; an 2 Z.

We shall see in Chap. 3 that Definition (2.1) satisfies the definition of a univariate
polynomial.

Note 2.1 (Hamilton’s Letter) How can one dream about such a “quaternion alge-
bra” H ? W. R. Hamilton (16th October 1843) invented quaternion numbers as
outlined in a letter (1865) to his son A. H. Hamilton for the following reason:

If I may be allowed to speak of myself in connection with the subject, I might do so in a way
which would bring you in, by referring to an antequaternionic time, when you were a mere
child, but had caught from me the conception of a vector, as represented by a triplet; and
indeed I happen to be able to put the finger of memory upon the year and month –October,
1843– when having recently returned from visits to Cork and Parsonstown, connected with
a meeting of the British Association, the desire to discover the laws of the multiplication
referred to regained with me a certain strength and earnestness, which had for years been
dormant, but was then on the point of being gratified, and was occasionally talked of with
you. Every morning in the early part of the above cited month, on my coming down to
breakfast, your (then) little brother William Edwin, and yourself, used to ask me, “well,
Papa, can you multiply triplets”? Whereto I was always obliged to reply, with a sad shake
of the head: “No, I can only add and subtract them.”

But on the 16th day of the same month – which happened to be a Monday, and a Council day
of the Royal Irish Academy – I was walking in to attend and preside, and your mother was
walking with me, along the Royal Canal, to which she had perhaps driven; and although
she talked with me now and then, yet an under-current of thought was going on in my
mind, which gave at last a result, whereof it is not too much to say that I felt at once the
importance. An electric circuit seemed to close; and a spark flashed forth. The herald (as I
foresaw, immediately) of many long years to come of definitely directed thought and work,
by myself if spared, and at all events on the part of others, if should even be allowed to
live long enough distinctly to communicate the discovery. Nor could I resist the impulse –
unphilosophical as it may have been – to cut with a knife on a stone of Brougham Bridge,
as we passed it, the fundamental formula with the symbols, i; j; k; namely

i2 D j2 D k2 D ijk D �1;

which contains the solution of the problem, but of course, as an inscription, has long since
mouldered away. A more durable notice remains, however, on the Council Books of the
Academy for that day (October 16th, 1843), which records the fact, that I then asked for and
obtained base to read a paper on quaternion, at the First General Meeting of the Session:
which reading took place accordingly, on Monday the 13th of the November following.

2.3 Number Rings

In everyday lives of geodesists and geoinformatists, rings are used albeit without
being noticed: A silent tool without which perhaps they might find the going tough.
In the preceding section, the sets of integers Z, rational numbers Q, real numbers
R and complex numbers C were introduced as being closed under addition and
multiplication. Loosely speaking, a system of numbers that is closed under addition
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and multiplication is a ring. A more precise definition of a ring based on linear
algebra will be given later.

It suffices at this point to think of the sets Z, Q, R and C, upon which we
manipulate numbers, as being a collection of numbers that can be added, multiplied,
have additive identity 0 and multiplicative identity 1. In addition, every number in
these sets has an additive inverse thus forming a ring. Measurements of distances,
angles, directions, photo coordinates, gravity etc., comprise the set R of real
numbers. This set as we saw earlier is closed under addition and multiplication.
Its elements were seen to possess additive and multiplicative identities, and also
additive inverses, thus qualifying to be a ring.

In algebra books, one often encounters the term field which seems somewhat
confusing with the term ring. In the brief outline of the number ring above, whereas
the sets Z, Q, R and C qualified as rings, the set N of natural numbers failed as it
lacked additive inverse. The sets Q, R and C also have an additional property that
every number n ¤ 0 in the ring has a multiplicative inverse. A ring in which every
n ¤ 0 has a multiplicative inverse is called a field. The set Z therefore is not a field
as it does not have multiplicative inverse. In this book, the terms ring and field will
be used interchangeably to refer to the sets Q, R and C which qualify both as rings
and as fields.

A curious reader will note that the term number ring was selected as the heading
for this section and used in the discussion. This is because we have several other
types of rings that do not use numbers as objects. In our examples, we used numbers
to clarify closeness under addition and multiplication. We will see later in Chap. 3
that polynomials, which are objects and not numbers, also qualify as rings. For daily
measurements and manipulation of observations, number rings and polynomial
rings suffices. Other forms of rings such as fruit rings, modular arithmetic rings
and congruence rings are elaborately presented in algebra books such as [284]
and [366]. In-order to give a precise definition of a ring, we begin by considering
the definition of linear algebra. Detailed treatment of linear algebra is presented
in [70, 71, 372, 490].

Definition 2.2 (Linear algebra) Algebra can be defined as a set S of elements
and a finite set M of operations. In linear algebra the elements of the set S are
vectors over the field R of real numbers, while the set M is basically made up of two
elements of internal relation namely “additive” and “multiplicative”. An additional
definition of the external relation expounds on the term linear algebra as follows: A
linear algebra over the field of real numbers R consists of a set R of objects, two
internal relation elements (either “additive” or “multiplicative”) and one external
relation as follows:

.opera/1 DW ˛ W R � R! R

.opera/2 DW ˇ W R � R! R or R � R! R

.opera/3 DW � W R � R! R:
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The three cases are outlined as follows:

* With respect to the internal relation ˛ (“join”), R as a linear space in a vector
space over R; an Abelian group written “additively” or “multiplicatively”:

a;b; c 2 R

Axiom “Additively” “Multiplicatively”
written Abelian group written Abelian group
˛.a; b/ DW a C b ˛.a; b/ DW a ı b

1 Associativity G1C W .a C b/C c D G1ı W .a ı b/ ı c D
D a C .b C c/ D a ı .b ı c/

(additive assoc.) (multiplicative assoc.)
2 Identity G2C W a C 0 D a G2ı W a ı 1 D a

(additive identity, (multiplicative identity
neutral element) neutral element)

3 Inverse G3C W a C .�a/ D 0 G3ı W a ı a�1 D 1
(additive inverse) (multiplicative inverse)

4 Commutativity G4C W a C b D b C a G4ı W a ı b D b ı a
(additive commutativity, (multiplicative comm.,

Abelian axiom) Abelian axiom)

with the triplet of axioms fG1C;G2C;G3Cg or fG1ı;G2ı;G3ıg constituting
the set of group axioms and fG4C;G4ıg the Abelian axioms. Examples of groups
include:

1. The group of integer Z under addition.
2. The group of non-zero rational number Q under multiplication.
3. The set of rotation about the origin in the Euclidean plane under the operation of

composite function.

* With respect to the external relation ˇ the following compatibility conditions are
satisfied

a;b 2 R; t; u 2 R

ˇ.t; a/ DW t � a

1 distr. D1C W t � .aC b/ D .aC b/ � t D D1ı W t � .a ı b/ D .a ı b/ � t
D t � aC t � b D a � tC b � t D .t � a/ ı b D a ı .b � t/

1st additive distributivity 1st multiplicative distributivity
2 distr. D2C W .tC u/ � a D a � .tC u/ D D2ı W .t ı u/ � a D a � .t ı u/

D t � aC u � a D a � tC a � u D t ı .u � a/ D .a � t/ ı u
2nd additive distributivity 2nd multiplicative distributivity

D3 W 1 � a D a � 1 D a .left and right identity/
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* With respect to the internal relation � (“meet”) the following conditions are
satisfied

a;b; c 2 R; t 2 R

�.a;b/ DW a � b

Axiom Comments
1 Ass. G1� W .a � b/ � c D a � .b � c/ Associativity w.r.t

internal multiplication

1 dist. D1 � CI a � .b C c/ D a � b C a � c Left and Right
.a C b/ � c D a � c C b � c additive dist. w.r.t

internal multiplication

1 dist. D1 � ıI a � .b ı c/ D .a � b/ ı c left and right
.a ı b/ � c D a ı .b � c/ multiplicative dist. w.r.t

internal multiplication

2 dist. D2 � �I t � .a � b/ D .t � a/ � b left and right dist.
.a � b/� t D a � .b � t/ of internal and external

multiplication

Definition 2.3 (Ring) An Algebra is called a ring with identity if the following
two conditions encompassing (seven conditions) hold:

(a) The set R is an Abelian group with respect to addition, i.e., four conditions
fG1C;G2C;G3C;G4Cg of Abelian group hold, and (b) The set R is a semi-
group with respect to multiplication; that is, fG1�;G2�g holds.

2.4 Concluding Remarks

The concept of numbers and ring of numbers have been presented from a geodetic
and geoinformatics perspective. In the next chapter, the number ring will provide
the framework for discussing polynomial rings, the main algebraic tool that permits
the solution of algebraic nonlinear systems of equations. The basics of ring algebra
discussed provides fundamentals required to understand the materials that will be
presented in latter chapters. For more detailed coverage of rings, we refer to [319].



Chapter 3
Basics of Polynomial Theory

3.1 Polynomial Equations

In geodesy and geoinformatics, most observations are related to unknowns param-
eters through equations of algebraic (polynomial) type. In cases where the observa-
tions are not of polynomial type, as exemplified by the GPS meteorology problem
of Chap. 18, they are converted into polynomials. The unknown parameters are
then be obtained by solving the resulting polynomial equations. Such solutions
are only possible through application of operations addition and multiplication
on polynomials which form elements of polynomial rings. This chapter discusses
polynomials and the properties that characterize them. Starting from the definitions
of monomials, basic polynomial aspects that are relevant for daily operations are
presented. A monomial is defined as

Definition 3.1 (Monomial) A monomial is a multivariate product of the form
x˛11 x˛22 : : : x

˛n
n ; .˛1; : : : ; ˛n/ 2 Z

nC in the variables x1; : : : ; xn.

In Definition 3.1 above, the set Z
nC comprises positive elements of the set of

integers (2.2) that we saw in Chap. 2, p.10.

Example 3.1 (Monomial) Consider the system of equations for solving distances in
the three-dimensional resection problem given as (see, e.g., (16.44) on p. 347)

2
664

x21 C 2a12x1x2 C x22 C ao D 0
x22 C 2b23x2x3 C x23 C bo D 0
x23 C 2c31x3x1 C x21 C co D 0
where x1 2 R

C; x2 2 R
C; x3 2 R

C:

The variables fx1; x2; x3g are unknowns while the other terms are known coefficients.
The products of variables

˚
x21; x1x2; x

2
2; x2x3; x

2
3; x3x1

�
are monomials in fx1; x2; x3g.

© Springer-Verlag Berlin Heidelberg 2016
J.L. Awange, B. Paláncz, Geospatial Algebraic Computations,
DOI 10.1007/978-3-319-25465-4_3
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The summation of monomials form polynomials is defined as:

Definition 3.2 (Polynomial) A polynomial f 2 k Œx1; : : : ; xn� in variables
x1; : : : ; xn with coefficients in the field k is a finite linear combination of monomials
with pairwise different terms expressed as

f D
X
˛

a˛x˛; a˛ 2 k; x˛ D .x˛1 ; : : : ; x˛n/; ˛ D .˛1; : : : ; ˛n/; (3.1)

where a˛ are coefficients in the field k, e.g., R or C and x˛ the monomials.

Example 3.2 (Polynomials) Equations

2
4 x21 C 2a12x1x2 C x22 C ao D 0

x22 C 2b23x2x3 C x23 C bo D 0
x23 C 2c31x3x1 C x21 C co D 0;

in Example 3.1 are multivariate polynomials. The first expression is a multivariate
polynomial in two variables fx1; x2g and a linear combination of monomials˚
x21; x1x2; x

2
2

�
. The second expression is a multivariate polynomial in two variables

fx2; x3g and a linear combination of the monomials
˚
x22; x2x3; x

2
3

�
, while the third

expression is a multivariate polynomial in two variables fx3; x1g and a linear
combination of the monomials

˚
x23; x3x1; x

2
1

�
.

In Example 3.2, the coefficients of the polynomials are elements of the set Z.
In general, the coefficients can take on any sets Q, R, C of number rings. These
coefficients can be added, subtracted, multiplied or divided, and as such play a key
role in determining the solutions of polynomial equations. The definition of the set to
which the coefficients belong determines whether a polynomial equation is solvable
or not. Consider the following example:

Example 3.3 Given an equation 9w2 � 1 D 0 with the coefficients in the integral
domain, obtain the integer solutions. Since the coefficient 9 2 Z, the equation does

not have a solution. If instead the coefficient 9 2 Q, then the solution w D ˙1
3

exist.

From Definition 2.1, polynomials become algebraic once (3.1) is equated to 0. The
fundamental problem of algebra can thus be stated as the solution of equations of
form (3.1) equated to 0.

3.2 Polynomial Rings

In Sect. 2.3, the theory of rings was introduced with respect to numbers. Apart from
the number rings, polynomials are objects that also satisfy ring axioms leading
to “polynomial rings” upon which operations “addition” and “multiplication” are
implemented.
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3.2.1 Polynomial Objects as Rings

Polynomial rings are defined as

Definition 3.3 (Polynomial ring) Consider a ring R say of real numbers R. Given
a variable x … R, a univariate polynomial f .x/ is formed (see Definition 3.2 on p. 18)
by assigning coefficients ai 2 R to the variable and obtaining summation over finite
number of distinct integers. Thus

f .x/ D
X
˛

c˛x˛; c˛ 2 R; ˛ � 0

is said to be a univariate polynomial over R. If two polynomials are given such
that f1.x/ D P

i
cixi and f2.x/ D P

j
djxj; then two binary operations “addition” and

“multiplication” can be defined on these polynomials such that:

(a) Addition: f1.x/C f2.x/ DP
k

ekxk; ek D ck C dk; ek 2 R

(b) Multiplication: f1.x/:f2.x/ DP
k

gkxk; gk D P
iCjDk

cidj; gk 2 R.

A collection of polynomials with these “additive” and “multiplicative” rules form
a commutative ring with zero element and identity 1. A univariate polynomial f .x/
obtained by assigning elements ci belonging to the ring R to the variable x is called
a polynomial ring and is expressed as f .x/ D RŒx�: In general the entire collection of
all polynomials in x1; : : : ; xn, with coefficients in the field k that satisfy the definition
of a ring above are called a polynomial rings.

Designated P; polynomial rings are represented by n unknown variables xi over k
expressed as P WD k Œx1; : : : ; xn� : Its elements are polynomials known as univariate
when n D 1 and multivariate otherwise. The distinction between a polynomial ring
and a polynomial is that the latter is the sum of a finite set of monomials (see e.g.,
Definition 3.1 on p. 17) and is an element of the former.

Example 3.4 Equations

2
4 x21 C 2a12x1x2 C x22 C ao D 0

x22 C 2b23x2x3 C x23 C bo D 0
x23 C 2c31x3x1 C x21 C co D 0

of Example 3.1 are said to be polynomials in three variables Œx1; x2; x3� forming
elements of the polynomial ring P over the field of real numbers R expressed as
P WD R Œx1; x2; x3�.
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Polynomials that we use in solving unknown parameters in various problems,
as we shall see later, form elements of polynomial rings. Polynomial rings provide
means and tools upon which to manipulate the polynomial equations. They can
either be added, subtracted, multiplied or divided. These operations on polynomial
rings form the basis of solving systems of equations algebraically as will be made
clear in the chapters ahead. Next, we state the theorem that enables the solution of
nonlinear systems of equations in geodesy and geoinformatics.

Theorem 3.1 Given n algebraic (polynomial) observational equations, where n is
the dimension of the observation space Y of order l in m unknown variables, and
m < n is the dimension of the parameter space X, the application of least squares
solution (LESS) to the algebraic observation equations gives .2l � 1/ as the order
of the set of nonlinear algebraic normal equations. There exists m normal equations
of the polynomial order .2l� 1/ to be solved.

:proof :

Given nonlinear algebraic equations fi 2 kf�1; : : : ; �mg expressed as

2
66666664

f1 2 kf�1; : : : ; �mg
f2 2 kf�1; : : : ; �mg

:

:

:

fn 2 kf�1; : : : ; �mg;

(3.2)

with the order considered as l, we write the objective function to be minimized as

k fk2 D f 21 C : : : :C f 2n j 8fi 2 kf�1; : : : ; �mg; (3.3)

and obtain the partial derivatives (first derivatives of 3.3) with respect to the
unknown variables f�1; : : : ; �mg. The order of (3.3) which is l2 then reduces to
.2l � 1/ upon differentiating the objective function with respect to the vari-
ables �1; : : : ; �m: Thus resulting in m normal equations of the polynomial order
.2l� 1/. |
Example 3.5 (Pseudo-ranging problem) For pseudo-ranging or distance equations,
the order of the polynomials in the algebraic observational equations is l D
2. If we take the “pseudo-ranges squared” or “distances squared”, a necessary
procedure in-order to make the observation equations “algebraic” or “polynomial”,
and implement least squares solution (LESS), the objective function which is of
order l D 4 reduces by one to order l D 3 upon differentiating once. The normal
equations are of order l D 3 as expected.
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The significance of Theorem 3.1 is that all overdetermined observational equations
of interest are successfully converted to “algebraic” or “polynomial” equations.
This implies that problems requiring exact algebraic solutions must first have their
equations converted into algebraic. This will be made clear in Chap. 18 where
trigonometric nonlinear system on equations are first converted into algebraic.

3.2.2 Operations “Addition” and “Multiplication”

Definition 3.3 implies that a polynomial ring qualifies as a ring based on the
applications of operations “addition” and “multiplication” on its coefficients. Of
importance in manipulating polynomial rings using operations “addition” and
“multiplication” is the concept of division of polynomials defined as

Definition 3.4 (Polynomial division) Consider the polynomial ring kŒx� whose
elements are polynomials f .x/ and g.x/. There exists unique polynomials p.x/ and
r.x/ also elements of polynomial ring kŒx� such that

f .x/ D g.x/p.x/C r.x/ ;

with either r.x/ D 0 or degree of r.x/ is less than the degree of g.x/.

For univariate polynomials, as in Definition 3.4, the Euclidean algorithm employs
operations “addition” and “multiplication” to factor polynomials in-order to reduce
them to satisfy the definition of division algorithm.

3.3 Factoring Polynomials

In-order to understand the factorization of polynomials, it is essential to revisit
some of the properties of prime numbers of integers. This is due to the fact that
polynomials behave much like integers. Whereas for integers, any integer n > 1

is either prime (i.e., can only be factored by 1 and n itself) or a product of prime
numbers, a polynomial f .x/ 2 kŒx� is either irreducible in kŒx� or factors as a product
of irreducible polynomials in the field kŒx�. The polynomial f .x/ has to be of positive
degree. Factorization of polynomials play an important role as it enables solution of
polynomial roots as will be seen in the next section. Indeed, the Groebner basis
algorithm presented in Chap. 4 makes use of the factorization of polynomials.
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3.4 Polynomial Roots

More often than not, the most encountered interaction with polynomials is perhaps
the solution of its roots. Finding the roots of polynomials is essential for most
computations that we undertake in practice. As an example, consider a simple planar
ranging case where distances have been measured from two known stations to an
unknown station (see e.g, Fig. 4.1 on p. 38). In such a case, the measured distances
are normally related to the coordinates of the unknown station by multivariate
polynomial equations. If for instance a station P1, whose coordinates are fx1; y1g
is occupied, the distance s1 can be measured to an unknown station P0. The
coordinates fx0; y0g of this unknown station are desired and have to be determined
from distance measurements. The relationship between the measured distance and
the coordinates is given by

s1 D
p
.x1 � x0/2 C .y1 � y0/2: (3.4)

Applying Theorem 3.1, a necessary step to convert (3.4) into polynomial, (3.4) is
squared to give a multivariate quadratic polynomial

s21 D .x1 � x0/
2 C .y1 � y0/

2: (3.5)

Equation (3.5) has two unknowns thus necessitating a second distance measurement
to be taken. Measuring this second distance s2 from station P2, whose coordinates
fx2; y2g are known, to the unknown station P0 leads to a second multivariate
quadratic polynomial equation

s22 D .x2 � x0/
2 C .y2 � y0/

2: (3.6)

The intersection of the two Eqs. (3.5) and (3.6) results in two quadratic equations
ax20 C bx0 C c D 0 and dy20 C ey0 C f D 0 whose common roots give the desired
coordinates x0; y0 of the unknown station P0. In Sect. 4.1, we will expound further
on the derivation of these multivariate quadratic polynomial equations.

In Sect. 3.6, we will discuss the types of polynomials with real coefficients.
Suffice to mention at this point that polynomials, as defined in Definition 3.2 with
the coefficients in the field k, has a solution � such that on replacing the variable x˛;
one obtains

an�
n C an�1�n�1 C : : :C a1� C a0 D 0 : (3.7)

From high school algebra, we learnt that if � is a solution of a polynomial f .x/,
also called the root of f .x/, then .x � �/ divides the polynomial f .x/. This fact
enables the solution of the remaining roots of the polynomial as we already know.
The division of f .x/ by .x � �/ obeys the division rule discussed in Sect. 3.2.2. In
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a case where f .x/ D 0 has many solutions (i.e., multiple roots �1; �2; : : : ; �m), then
.x � �1/; .x � �2/; : : : ; .x � �m/ all divide f .x/ in the field k.

In general, a polynomial of degree n will have n roots that are either real or
complex. If one is operating in the real domain, i.e., the polynomial coefficients are
real, the complex roots normally results in a pair of conjugate roots. Polynomial
coefficients play a significant role in the determination of the roots. A slight
change in the coefficients would significantly alter the solutions. For ill-conditioned
polynomials, such a change in the coefficients can lead to disastrous results.
Methods of determining polynomial roots have been elaborately presented by [417].
We should point out that for polynomials of degree n in the field of real numbers
R however, the radical solutions exist only for polynomials up to degree 4. Above
this, Niels Henrick Abel (1802–1829) proved through his impossibility theorem that
the roots are insolvable, while Evariste Galois (1811–1832) gave a more concrete
proof that for every integer n greater than 4, there cannot be an explicit formula for
the roots of a general nth degree polynomial in terms of coefficients.

3.5 Minimal Polynomials

In Sect. 2.3, we presented the number rings concept and extended the sets from
that of natural numbers N to the complex number C in-order to cater for expanded
operations. For polynomials, roots may fail to exist in one set say Q but exist in
another set R as we saw in Sect. 2.2. The polynomial y2 � 12 D 0, for example, has
no roots in QŒy� but the roots˙12 exist in R. The expansion of the set from Q to R

is also called field extension of k. It may occur however that in the polynomial ring
kŒx�, the solution � satisfy not only the polynomial p.x/ but also another polynomial
h.x/, where p.x/ and h.x/ are both elements of kŒx�. In case several polynomials in
kŒx� have � as a root, and the polynomials are multiples of a polynomial of least
degree that also contains � as root, this polynomial of least degree is termed the
minimal polynomial.

As an example, consider two polynomials�1�2x2Cx4 and x�x2C2x3�2x4�
x5 C x6 with a similar root

p
1Cp2 illustrated in Figs. 3.1 and 3.2 respectively.

The polynomial�1� 2x2C x4 having the lowest degree is the minimal polynomial.
In dealing with Groebner basis in Chap. 4 for example, it will be seen that several

polynomials in the field kŒx� contain the same root �. This property will be used to
reduce several multivariate polynomials to univariate polynomials of higher degree
whose solutions fulfill the multivariate polynomials.
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Fig. 3.1 The minimal polynomial �1� 2x2 C x4 for the root a
q
1C p
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Fig. 3.2 A polynomial x � x2 C 2x3 � 2x4 � x5 C x6 with the same root
q
1C p

2, but not a
minimal polynomial for this root

3.6 Univariate Polynomials with Real Coefficients

As we shall see later, the solution of a system of polynomial equations can be
reduced to the solution of a univariate polynomial of higher degree. Therefore it is
useful to study the solution of polynomials with a single variable. In this section we
revisit the various types of univariate polynomials with the coefficients in the field
R of reals, which we often use to manipulate measurements. We recapture the basic
high school mathematics of inferring the roots of polynomials from the coefficients.
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3.6.1 Quadratic Polynomials

In Sect. 3.4 we introduced the quadratic equations and demonstrated their
association with distance measurements. In general, the simplest polynomial is
the linear polynomial cx C d D 0 which is solved for x by simply multiplying
both sides of the equation by the inverse of c, provided that c ¤ 0 holds. The
solution thus becomes x D �c�1d. Polynomials of degree 2 are known as quadratic
polynomials. For univariate cases, they take the form ax2 C bxC c D 0. For simple
cases such as x2C2x D 0, the solution can be obtained by factorization, e.g., x.xC2/
leading to x D 0 or x D �2. The general solution of quadratic equations of the form
ax2 C bxC c D 0 with real coefficients fa; b; cg is givenby the quadratic formulae

x D �b˙pb2 � 4ac

2a
; (3.8)

or

x D 2c

�b˙pb2 � 4ac
: (3.9)

Press [417] discourages the use of (3.8) or (3.9) in the determination of the two roots
for cases where a or c (or both) are small since this leads to inaccurate solutions.
The main reason cited is that when either the coefficient a or c (or both) is small,
one of the roots involves the subtraction b from a very nearly equal value. They
instead propose the formula

q D �1
2
ŒbC Sign.b/

p
b2 � 4ac� ; (3.10)

with Sign.x/ giving�1, 0 or 1 depending on whether x is negative, zero, or positive.
The two roots are then given by

x1 D q

a
; x2 D c

q
: (3.11)

In computer algebra software of Maple and Mathematica, the roots of a quadratic
polynomial are obtained via

• Matlab: x D roots .Œa b c�/; where Œa b c� is a vector containing the coefficients
in the field R of reals. The quadratic equation can also be solved using the solve
command, e.g., solve.ax2 C bxC c D 0; x/, where x indicates the variable to be
solved.
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• Mathematica: x D RootŒf ; k�, where f is the quadratic equation and k the kth
root. The quadratic equation can also be solved using the solve command, e.g.,
NSolveŒax2 C bxC c; x�.

In general, every quadratic polynomial has exactly two real or two complex roots.
From the coefficients, if b2 � 4ac > 0, the roots are real but if b2 � 4ac < 0 the
roots are a pair of non real complex numbers. The case where b2 � 4ac D 0 gives
real and identical roots and is also known as the bifurcation point upon which the
roots change sign.

3.6.2 Cubic Polynomials

These are polynomials of degree 3 and take the form ax3 C bx2 C cxC d D 0.
Like quadratic polynomials, simple cases can also be solved via factorization

e.g., x3 � 2x D 0 is factored as x.x2 � 2/ to give the solutions x D 0; x D �p2
or x D Cp2. Another approach would be to reduce the cubic polynomial such that
the polynomials of degree 2 are eliminated to give a simplified version of the form
y3 C eyC f D 0 known as a reduced cubic polynomial. The simplified version can
then be solved for the roots via Cardano’s formula as

y D 3

r
� f

2
CpT C 3

r
� f

2
�pT; (3.12)

where T D . e

3
/3C. f

2
/2. Once one real root say �1 has been obtained, the polynomial

y3C eyC f D 0 is divided by .y� �1/ and the resulting quadratic polynomial solved
for the remaining roots. An alternative approach is presented by [417] who proceed
as follows: Let fa; b; cg be the real coefficients of a cubic polynomial. Compute

2
66664

K � a2 � 3b

g

L � 2a3 � gabC 27c

54
:

(3.13)
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If K and L are real, and L < K, then the cubic polynomial has three real roots
computed by

2
666666664

x1 D �2
p

Kcos.
�

3
/� a

3

x2 D �2
p

Kcos.
� C 2�

3
/ � a

3

x3 D �2
p

Kcos.
� � 2�
3

/ � a

3
;

(3.14)

where1

� D cos�1.
Lp
K3
/:

Using computer algebra software of Mathematica, the roots of a cubic polynomial
are obtained via

• Mathematica: x D RootŒf ; k�, where f is the cubic equation, and k, the kth
root. The quadratic equation can also be solved using the solve command, e.g.,
NSolveŒax3 C bx2 C cxC d; x�. Considering a = 1, the solution is

x D

8̂
<̂
ˆ̂:

�.b=3/� .2.1=3/.�b2C3c//

.3.�2b3C9bc�27dC3p3
p�b2c2C4c3C4b3d�18bcdC27d2/.1=3//

C

C .�2b3C9bc�27dC3p3
p�b2c2C4c3C4b3d�18bcdC27d2/.1=3/

.3�2.1=3// ;

x D

8̂
<̂
ˆ̂:

�.b=3/C ..1Ci
p
3/.�b2C3c//

.3�2.2=3/.�2b3C9bc�27dC3p3
p�b2c2C4c3C4b3d�18bcdC27d2/.1=3//

�

� ..1�i
p
3/.�2b3C9bc�27dC3p3

p�b2c2C4c3C4b3d�18bcdC27d2/.1=3//
.6�2.1=3// ;

x D

8̂
<̂
ˆ̂:

�.b=3/C ..1�i
p
3/.�b2C3c//

.3�2.2=3/.�2b3C9bc�27dC3p3 �b2c2C4c3C4b3d�18bcdC27d2p/
.1=3/

/

�

� ..1Ci
p
3/.�2b3C9bc�27dC3p3

p�b2c2C4c3C4b3d�18bcdC27d2/.1=3//
.6�2.1=3//

In general, if �1; �2; �3 are the roots of a cubic polynomial, the discriminant D can
de defined as

D D .�1 � �2/2.�1 � �3/2.�2 � �3/2; (3.15)

1The origin of the equation is traced by the authors to chapter VI of François Viète’s treatise “De
emendatione” Published in 1615
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and computed from the coefficients a; b; c; d to infer on the nature of the roots.
Considering a D 1, [284] gives the formula of the discriminant D from the
coefficients b; c; d as

D D 18bcd � 4b3dC b2c2 � 4c3 � 27d2: (3.16)

If D > 0 then the roots of the cubic polynomial are real and distinct. If D < 0,
then one of the roots is real and the remaining two are non real complex conjugate.
In a case where D D 0, multiple roots all which are real are given. In case the
coefficients b; c; d are all positive, then all the three roots will be negative, while if
b; d are negative and c positive, all the roots will be positive.

3.6.3 Quartic Polynomials

Quartic polynomials are those of degree 4. In a case where one root �1 exist for
a polynomial p.x/ D 0, the division algorithm can be applied to obtain the factor
.x � �1/f .x/. Here, f .x/ is a cubic polynomial that can be solved as discussed in
Sect. 3.6.2 to give at least one real root. The quartic polynomial

ax4 C bx3 C cx2 C dxC e D 0

therefore has at least two real roots. The following conditions may apply for a
quartic polynomial:

• p.x/ has four real roots.
• p.x/ has two real roots and two complex conjugate roots.
• p.x/ has no real roots.

The solution of a quartic polynomial proceeds via substitution approach in-order to
reduce it. Considering a case where a D 1, the quartic polynomial

x4 C bx3 C cx2 C dxC e D 0

is reduced by substituting x D zC a, with a 2 R, to

Z4 C CZ2 C EZ C F D 0

which is solved for g.Z/ D 0. The solutions of g.Z/ D 0 satisfies those of p.x/ D 0
(see Sect. 3.5). Z4 C CZ2 C EZ C F D 0 is called the reduced quartic polynomial
which can be solved as discussed by [284, pp. 159–166].

Solution of the roots of quartic polynomials using Mathematica is as follows:

• Mathematica: x D RootŒ f ; k�, where f is the quartic equation and k the kth
root. The quadratic equation can also be solved using the solve command, e.g.,
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NSolveŒax4 C bx3 C cx2 C dx C e; x�. In the accompanying CD, one of the
Mathematica solution when a D 1 is presented.

In general, if �1; �2; �3; �4 are the roots of a quartic polynomial, the discriminant D
can be defined as

D D .�1 � �2/2.�1 � �3/2.�1 � �4/2.�2 � �3/2.�2 � �4/2.�3 � �4/2; (3.17)

and computed from the coefficients b; c; d; e to infer on the nature of the roots.
Considering a D 1, [284, p. 171] gives the formula of the discriminant D from
the coefficients b; c; d; e as

D D

2
666664

18bcd3 C 18b3cde � 80bc2de � 6b2d2eC 144cd2e

C144b2ce2 � 128c2e2 � 192bde2C b2c2d2 � 4b3d3 � 4c3d2

�4b2c3eC 16c4e � 27d4 � 27b4e2 C 256e3:

(3.18)

If D > 0 then all the roots of the quartic polynomial are real and distinct or all the
four roots are pairs of non real complex conjugates. If D < 0, then two roots are real
and distinct while the other two are complex conjugates. For a case where D D 0,
at least two of the roots coincide.

3.7 Methods for Investigating Roots

3.7.1 Logarithmic and Contour Plots on Complex Plane

Here we introduce two graphical and an algebraic – numeric method to find roots of
polynomials. Let us consider the following polynomial

f D �2829C 65593z� 228035z2C 536375z3� 295200z4C 222000z5; (3.19)

Plotting the logarithmic of the absolute value of f .z/C1 on the complex plane leads
to Fig. 3.3. The additive constant is used to avoid singularity at abs. f .z// D 0. The
“holes” on the surface show the approximate positions of the roots. To get better
approximation, we can display Re. f .z// D 0 and Im. f .z// D 0 contours on the
complex plane in Fig. 3.4. The cross points of these contours represent locations of
the roots.
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Fig. 3.3 The surface of the
function log.abs. f .z// C 1/

on the complex plane

Im (z)

Re (z)

Fig. 3.4 The contour plot of
f .z/ on the complex plane.
Along the lines the real and
imaginary parts are zero

Re (z)

Im
 (

z)

3.7.2 Isograph Simulator

Let us consider the exponential form of the complex numbers z D rexp.i�/, and
display f .z/ as function of � at constant r. Changing r values, find the proper r
value at which the curve of f .z/ crosses the origin of the coordinate system of the
complex plane (0, 0). The function IsoGraphSimulator in Mathematica simulates
this process. The numerical values of the roots are computed via NSolve and are as
presented in Fig. 3.5.
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|x|=0.051165 |x|=0.213937 + 0.29782 I

|x|=0.425345 + 1.29279 I |x|=0.425345 – 1.29279 I

|x|=0.213937 – 0.29782 I

Fig. 3.5 The contour plot of f .z/ on the complex plane. Along the lines the real and imaginary
parts are zero

3.7.3 Application of Inverse Series

We consider the x D r.y/, as the inverse mapping of y D f .x/. Then the roots of
f .x/ can be computed as r.0/, while f .r.0// D 0. In order to illustrate the idea let us
consider the power series expansion for following second order polynomial, about
the point x D 0 to order four,

y D f .x/ D cC bxC ax2 (3.20)

The inverse series provides the approximation of the inverse function r.y/,

r.y/ D .y � c/

b
� .a.y� c/2/

b3
C .2a2.y � c/3/

b5
� .5a3.y � c/4/

b7
(3.21)

The r.0/ gives the root of the polynomial f .x/ as

r.0/ D � c

b
� ac2

b3
� 2a2c3

b5
� 5a3c4

b7
: (3.22)
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One may recognize that the .kC 1/th term can be expressed as

� akb�1�2kc1CkBinomialŒ2k; k�

1C k
; (3.23)

indeed, for example, considering the first four terms, we get

� c

b
� ac2

b3
� 2a2c3

b5
� 5a3c4

b7
: (3.24)

However, with infinity terms we get the analytical solution,

b

�
�1C

q
b2�4ac

b2

�

2a
(3.25)

Now we can apply this method to the polynomial considered as an example,

f .x/ D �2829C65593z�228035z2C536375z3�295200z4C222000z5 (3.26)

whose inverse is

r.y/ D 0:0000152455.y C 2829:/C 8:08033� 10�10.y C 2829:/2C
5:66776� 10�14.y C 2829:/3 C 3:91367� 10�18.y C 2829:/4 C 2:14685 � 10�22.y C 2829:/5C
2:00147� 10�27.y C 2829:/6 � 1:89902� 10�30.y C 2829:/7 � 3:98433� 10�34.y C 2829:/8�
5:76614� 10�38.y C 2829:/9 � 6:85252� 10�42.y C 2829:/10 � 6:79426� 10�46.y C 2829:/11�
5:16349� 10�50.y C 2829:/12 � 1:66894� 10�54.y C 2829:/13 C 3:69854� 10�58.y C 2829:/14C
1:05096� 10�61.y C 2829:/15 C 1:77627� 10�65.y C 2829:/16 C 2:38232� 10�69.y C 2829:/17C
2:64939� 10�73.y C 2829:/18 C 2:32786� 10�77.y C 2829:/19 C 1:18834� 10�81.y C 2829:/20

One of the real roots is

r.0/ D 0:051165

Using this root, we can reduce the order of our polynomial to a quartic. For further
details, see Chap. 2 of the accompanying CD.

3.8 Computation of Zeros of Polynomial Systems

In one variable case, the polynomial,

p.x/ D adxd C ad�1x.d�1/ C : : :C a2x
2 C a1xC a0 (3.27)

has d roots, counting multiplicities, in the field C of complex numbers according
to the fundamental theorem of algebra. However in multivariable case, the situation
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is more complicated. To keep the discussion easy and transparent, we consider a
system of two polynomials. Let us consider the following system,

G D a1 C a2xC a3xyC a4y
H D b1 C b2x2yC b3xy2

(3.28)

Theorem 3.2 (Bézout’s Theorem) Consider two polynomial equations in two
unknowns: g.x; y/ D h.x; y/ D 0. If this system has only finitely many zeros
.x; y/ 2 C

2, then the number of zeros is at most deg.g/ � deg.h/. Here deg.g/ and
deg.h/ are the total degree of g(x,y) and h(x,y), respectively, see Sect. 3.1

In this case, these two polynomials have precisely four distinct zeros .x; y/ 2 C
2 for

generic choices of coefficients ai and bj. It means that a certain polynomial in the
coefficients ai, bj, called the discriminant, should be non-zero. The discriminant can
be computed via the function Resultant, which is zero if and only if the polynomials
have a common root, see details in Chap. 5.

Bézout’ s theorem would predict 2 � 3 D 6 common zeros for our system.
Indeed, in projective geometry we would expect the cubic curve .G D 0/ and
the quadratic curve .H D 0/ to intersect in six points. However, the system has
actually 4 common roots. To understand why is four and not six let us consider
convex polygons associated with our system. A polytope is a subset of Rn which is
the convex hull of a finite set of points. A 2-dimensional polytope is called polygon.
Consider a polynomial f .x; y/,

f .x; y/ D a1x
u1yv1 C a2x

u2yv2 C : : :C amxum yvm

This is a polygon in R
2 having at most m vertices. In general, every polynomial

in n unknowns can be represented by a Newton polytope in R
n. Let us consider

the Newton polygons of our systems. The Newton polygon of the polynomial G is
quadrangel with points (0,0), (1,0),(1,1) and (0,1), while that of the polynomial H is
a triangle (0,0), (2,1), (1,2), see Fig. 3.6.
The Minkowski sum of the two polygons, P and Q in the plane is

PC Q D pC q W p 2 P; q 2 Q (3.29)

The Newton polygon of the product of two polynomials is the Minkowski sum of
the Newton polyon of these two polynomials, namely

New.G � H/ D New.G/C New.H/ (3.30)
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Fig. 3.6 Mixed area of
Newton-polygons of the two
polynomials

The corresponding points can be seen on Fig. 3.6. So the Minkowski sum of the
polygons mirrors the algebraic operation of multiplying polynomials. If P and Q are
any two polynomials then their mixed area can be defined as it follows.

M.P;Q/ D area.PC Q/� area.P/� area.Q/ (3.31)

In our case,

M.New.G/;New.H// D 13

2
� 1 � 3

2
D 4 (3.32)

This number coincides with the number of common zeros of G and H. This is not
an accident, but is an instance of the general theorem of Bernstein.

Theorem 3.3 (Bernstein’s Theorem) If G and H are two generic bivariate poly-
nomials, then the number of non-zero solutions of G.x; y/ D H.x; y/ D 0 2 C

2

equals the mixed area M.New.G/;New.H//.

Elimination theory deals with the problem of eliminating one or more variables
from a system of polynomial equations, thus reducing the problem to a smaller
problem in fewer variables. For instance, if we wish to solve,

U D a0 C a1xC a2x
2IV D b0 C b1xC b2x

2 (3.33)
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for U D V D 0 with a2 ¤ 0 and b2 ¤ 0, we can eliminate the variable x to get
a polynomial of degree 4 which is the resultant. This resultant vanishes if and only
if the given quadratic polynomials have common complex root x. This resultant
method can be extended for case n > 2 and various determinants formulae are
known for multivariate resultant, see Chap. 5. Other approaches include Groebner
basis and homotopy which are discussed in the Chaps. 4 and 7 respectively.

3.9 Concluding Remarks

What we have presented is just a nutshell of the topic “polynomials”. Several books,
e.g., [62, 366, 419, 551] are dedicated specifically to it.



Chapter 4
Groebner Basis

There are no good, general methods for solving systems of more
than one nonlinear equation. Furthermore, it is not hard to see
why (very likely) there never will be any good, general
methods:. . .

W. H. Press et al.

4.1 The Origin

This chapter presents you the reader with one of the most powerful computer algebra
tools, besides the polynomial resultants (discussed in the next chapter), for solving
algebraic nonlinear systems of equations which you may encounter. The basic tools
that you will require to develop your own algorithms for solving problems requiring
closed form (exact) solutions are presented. This powerful tool is the “Gröbner
basis” written in English as Groebner basis. It was first suggested by B. Buchberger
in 1965, a PhD student of Wolfgang Groebner (1899–1980). Groebner, already
in 1949, had suggested a method for finding a linearly independent basis of the
vector space of the residue class ring of the polynomial ring modulo a polynomial
ideal. In studying termination of this method, Buchberger came up both with the
notion of Groebner bases (certain generating sets for polynomial ideals) and with
an always terminating algorithm for computing them. In 1964, H. Hironaka (1931-)
had independently introduced an analogous notion for the domain of power series
in connection with his work on resolution of singularities in algebraic geometry and
named it standard basis [323, p. 187]. However, he did not give any method for
computing these bases. B. Buchberger decided to honour his thesis supervisor W.
Groebner by naming the standard basis for Ideals in polynomial rings k Œx1; : : : ; xn�

as Groebner basis [103].
In this book, as in modern books, we will adopt the term Groebner basis and

present the subject in the simplest form that can easily be understood from geodetic
as well as geoinformatics perspective.

As a recipe, consider that most problems in nature, here in geodesy, geoinfor-
matics, machine vision, robotics, surveying etc., can be modelled by nonlinear
systems of equations. Let us consider a simple case of planar distance measurements
in Fig. 4.1. Equations relating these measured distances to the coordinates of an
unknown station were already presented in Sect. 3.4. In that section, we did relate

© Springer-Verlag Berlin Heidelberg 2016
J.L. Awange, B. Paláncz, Geospatial Algebraic Computations,
DOI 10.1007/978-3-319-25465-4_4

37
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Fig. 4.1 Planar distance
observations

P0

P1

P2

S1

S2

the measured distances fsi; i D 1; 2g to the coordinates of the unknown station
by (3.5) and (3.6). We stated that the intersection of these two equations lead to
univariate polynomials whose solution give the desired position of an unknown
station. We did not however give any explanation on how the univariate polynomials
are derived from the set of multivariate quadratic polynomials (3.5) and (3.6). The
derivation of the univariate polynomials from systems of nonlinear equations form
one of the major tasks of Groebner basis. Let us denote the distance fsi; i D 1; 2g
by fdi; i D 1; 2g and re-write (3.5) and (3.6) respectively as

d21 D .x1 � x0/
2 C .y1 � y0/

2 (4.1)

and

d22 D .x2 � x0/
2 C .y2 � y0/

2: (4.2)

The task confronting us now is to obtain from these two nonlinear equations
the coordinates fx0; y0g of the unknown station P0. In case (4.1) and (4.2) were
linear, the solution for fx0; y0g would have been much easier. One could simply
solve them using either matrix inversion, graphically, Gauss-Jordan or Gauss
elimination techniques. Unfortunately they are nonlinear and can not be solved
using the procedures above. Groebner basis and polynomial resultant approaches
are algebraic techniques that are proposed to offer solutions to nonlinear systems of
equations such as (4.1) and (4.2).

4.2 Basics of Groebner Basis

Groebner basis, in some sense, is a generalization to the multivariate case of the
notion of greatest common divisors for systems of univariate polynomials. Its direct
application is the elimination of variables in nonlinear systems of equations. Let us
start by the problem of finding the greatest common divisors in Example 4.1:
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Example 4.1 (Greatest common divisors (gcd)) Given the numbers 12, 20, and 18,
find their greatest common divisor. We proceed by writing the factors as

12 D 22:31:50
20 D 22:30:51
18 D 21:32:50

3
5! 21:30:50 D 2; (4.3)

leading to 2 as the greatest common divisor of 12, 20 and 18. Next, let us consider
the case of univariate polynomials f1; f2 2 kŒx� in (4.4).

f1 D 3x4 � 3x3 C 8x2 C 2x � 5
f2 D 5x4 � 4x2 � 9xC 21

�
! Euclidean algorithmD f 2 kŒx�: (4.4)

Equation (4.4) employs the Euclidean algorithm which obtains one univariate
polynomial as the gcd of the two univariate polynomials f1 and f2. If on the other
hand expressions in (4.4) were not univariate but multivariate, e.g., g1; g2 2 kŒx; y�
as in Eq. (4.5), then one applies the Buchberger algorithm which is discussed in
Sect. 4.3.

g1 D xyC x � y � 1
g2 D xy � x � yC 1

�
! Buchberger algorithm! Groebner basis: (4.5)

Groebner basis therefore, is the greatest common divisors of a multivariate system
of polynomial equations fg1; g2g.

Groebner basis as stated earlier is useful for eliminating variables in nonlinear
systems of equations. Gauss elimination technique on the other hand is applicable
for linear cases as shown in Example 4.2.

Example 4.2 (Gauss elimination technique) Solve the linear system of equations

2
4 �xC yC 2z D 2

3x � yC z D 6
�xC 3yC 4z D 4:

(4.6)

The first step is to eliminate x in the second and third expressions of (4.6). This
is achieved by multiplying the first expression by 3 and adding to the second
expression to give the second expression of (4.7). The third expression of (4.7) is
obtained by subtracting the first expression from the third expression in (4.6).

2
4�xC yC 2z D 2

2yC 7z D 12
2yC 2z D 2:

(4.7)
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The second step is to eliminate y in the second and third expressions of (4.7). This
is achieved by subtracting the second expression from the third expression in (4.7)
to give (4.8).

2
4�xC yC 2z D 2

2yC 7z D 12
�5z D �10:

(4.8)

The solution of z D 2 in (4.8) can now be substituted back into the second equation
2yC 7z D 12 to give the value of y D �1, which together with the value of z D 2

are substituted into the first equation to give the value of x D 1 to complete the
Gauss elimination technique.

In many applications however, equations relating unknown variables to the
measured (observed) quantities are normally nonlinear and often consist of many
variables (multivariate). In such cases, the Gauss elimination technique for the
univariate polynomial equations employed in Example 4.2 gives way to Groebner
basis as illustrated in Examples 4.3 and 4.4. In general, the Groebner basis algorithm
reduces a system of multivariate polynomial equations. This is done by employing
operations “addition” and “multiplication” on a polynomial ring (see Sect. 3.2.2) to
give more simplified expressions. Given a system of polynomial equations which are
to be solved explicitly for unknowns, e.g., (4.1) and (4.2), Groebner basis algorithm
is applied to reduce the set of polynomials into another set (e.g., from a system
F.x; y; z/ to another system G.x; y; z/) of polynomials with suitable properties that
allow solution. If F.x; y; z/ is a set of nonlinear system of polynomial equations,
Groebner basis eliminates variables in a manner similar to Gauss elimination
technique for linear cases to reduce it to G.x; y; z/. With Lexicographic ordering
of the monomials (see Definition A.2 in Appendix A.1 on p. 501), one expression in
G.x; y; z/ always turns out to be a univariate polynomial. Its roots are easily obtained
using algebraic software of Matlab, Mathematica or Maple, and can be substituted
in the other elements of the set G.x; y; z/ to obtain a complete solution which also
satisfy the original set F.x; y; z/. Examples 4.3 and 4.4 elaborate on the application
of Groebner basis.

Example 4.3 (Groebner basis computation) Let us consider a simple example
from [106]. Consider a set F.x; y/ D ff1; f2g to have as its elements

�
f1 D xy � 2y
f2 D 2y2 � x2;

(4.9)

where ff1; f2g 2 I are the generators of the Ideal I (see definition of Ideal on
p. 42). We now seek a simplified set of generators of this Ideal using Buchberger
algorithm. By employing operations “addition” and “multiplication”, the Groebner
basis algorithm (also called Buchberger algorithm) reduces the system of nonlinear
equations (4.9) into another set G of F as

G WD f�2x2 C x3;�2yC xy;�x2 C 2y2g ! fG1;G2;G3g: (4.10)
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In Mathematica software, using the lexicographic order x > y, i.e., x comes before y,
the Groebner basis could simply be computed by entering the command

G D GroebnerBasisŒF; fx; yg�: (4.11)

It is easy to see that

�
f1
f2

�
D
�
0

0

�
G1.x/C

�
1

0

�
G2.x; y/C

�
0

�1
�

G3.x; y/; (4.12)

consequently, the roots of f1 and f2 are the same as G1.x/, G2.x; y/, and G3.x; y/,
where G1.x/ depends only on x. The set G in (4.10) contains one univariate
polynomial �2x2 C x3, which can easily be solved using roots command in Matlab
for solutions fx D 0; x D 0; x D 2g and substituted in any of the remaining elements
of the set G to solve for y. The solutions of G, i.e., the roots fx D 0; x D 0; x D 2g
and those of y satisfy polynomials in F. This can be easily tested by substituting
these solutions into (4.9) to give 0.

Let us consider as a second example an optimization problem with constraint.

Example 4.4 (Minimum and maximization problem) Find the minimum and maxi-
mum of f .x; y; z/ D x3 C 2xyz � z2, such that g.x; y; z/ D x2 C y2 C z2 � 1. First,
we obtain the partial derivatives of f � L g D 0 with respect to fx; y; z;Lg, where L
is the lagrangean multiplier as

@f

@fx; y; z;Lg WD F D

2
664
3x2 C 2yz� 2xL D 0
2xz � 2yL D 0
2xy � 2z� 2zL D 0
x2 C y2 C z2 � 1 D 0:

(4.13)

Groebner basis is invoked in Mathematica by

GroebnerBasisŒfFg; fx; y;L; zg�;

which leads to

G D

2
6666666664

�44zC 655z3 � 1763z5 C 1152z7;
�2568zC 3835LzC 25987z3 � 19584z5;
�34515LC 15340L3 C 75551z2 � 318214z4C 223488z6;
�118yz� 453z2 C 118yz3 C 1605z4 � 1152z6;
3835LyC 2556zC 3835yz2 � 1404z3 � 1152z5;
�34515C 15340L2C 34515y2C 117762z2 � 367003z4C 268416z6;
�7670LC 11505xC 11505yzC 134419z2 � 477321z4C 335232z6

(4.14)
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The solution of z in the first expression of (4.14) can then be substituted into the
fourth expression �118yz � 453z2 C 118yz3 C 1605z4 � 1152z6; to give the value
of y. The obtained values of z and y are then substituted into the last expression
of Eq. (4.13) to give the value of x, and thus complete the Groebner basis solution.
Later in the chapter, we will introduce the reduced Groebner basis which can be
used to obtain directly the first expression of (4.14), i.e., the univariate polynomial
in z.

The theory behind the operation of Groebner basis is however not so simple.
In the remainder of this chapter, we will try to present in a simplified form the
algorithm behind the computation of Groebner bases. In Chap. 3, we learnt that
polynomials are elements of a ring and that they satisfy the ring axioms of addition
and subtraction. The computation of Groebner basis is achieved by the capability to
manipulate the polynomials to generate Ideals defined as

Definition 4.1 (Ideal) An Ideal is generated by a family of generators as consisting
of the set of linear combinations of these generators with polynomial coefficients.
Let f1; : : : ; fs and c1; : : : ; cs be polynomials in k Œx1; : : : ; xn�, then

< f1; : : : ; fs > D
sX

iD1
cifi: (4.15)

In (4.15), < f1; : : : :; fs > is an Ideal and if a subset I � k Œx1; : : : ; xn� is an Ideal, it
must satisfy the following conditions [135, p. 29];

• 0 2 I,
• If f ; g 2 I; then f C g 2 I (i.e., I is an additive subgroup of the additive group of

the field k),
• If f 2 I and c 2 k Œx1; : : : ; xn�, then cf 2 I (i.e., I is closed under multiplication

ring element).

Example 4.5 (Ideal) Equations (4.1) and (4.2) are expressed algebraically as

�
f1 WD .x1 � x0/2 C .y1 � y0/2 � d21
f2 WD .x2 � x0/2 C .y2 � y0/2 � d22;

(4.16)

where polynomials f f1; f2g belong to the polynomial ring RŒx0; y0�. If the
polynomials

�
c1 WD 4x0 C 6
c2 WD x0 C y0

(4.17)
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also belong to the same polynomial ring RŒx0; y0�, an Ideal is generated by a linear
combination

I WD
2
4 < f1; f2 >D c1 f1 C c2 f2

D .4x0 C 6/f1 C .x0 C y0/f2:
(4.18)

In this case, f f1; f2g are said to be generators of the Ideal I.

Definition 4.1 of an Ideal can be presented in terms of polynomial equa-
tions f1; : : : ; fs 2 k Œx1; : : : ; xn�. This is done by expressing the system of polynomial
equations as

2
666664

f1 D 0
f2 D 0
:

:

fs D 0;

(4.19)

and using them to derive others by multiplying each individual equation fi by another
polynomial ci 2 k Œx1; : : : ; xn� and summing to get c1 f1 C c2 f2 C : : : C cs fs D 0

(cf., 4.15). The Ideal< f1; : : : ; fs > thus consists of a system of equations f1 D f2 D
: : : D fs D 0, thus indicating that if f1; : : : ; fs 2 k Œx1; : : : ; xn�, then < f1; : : : ; fs >
is an Ideal generated by f1; : : : ; fs, i.e., being the basis of the Ideal I.

In this case, a collection of these nonlinear algebraic equations forming Ideals
are referred to as the set of polynomials generating the Ideal and forms the elements
of this Ideal. Perhaps a curious reader may begin to wonder why the term Ideal is
used. To quench this curiosity we refer to [381, p. 220] and quote from [70, p. 59]
who wrote:

On the origin of the term Ideal, the concept is attributed to Dedekind who
introduced it as a set theoretical version of Kummer’s “Ideal number” to
circumvent the failure of unique factorization in certain natural extension
of the domain Z. The relevance of Ideal in the theory of polynomial rings
was highlighted by Hilbert Basis Theorem. The systematic development of
Ideal theory; in more general rings is largely due to E. Noether . In the older
literature, the term “module” is sometimes used for “Ideal” (cf., [347]). The
term “ring” seems to be due to D. Hilbert; Kronecker used the term “order”
for ring.

Example 4.6 (Ideal) Consider Example 4.3 with polynomials in R Œx; y�. The Ideal
I D< xy � 2y; 2y2 � x2 >.

The generators of an Ideal can be computed using the division algorithm defined
as (cf., Definition 3.4 of polynomial division on p. 21)
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Definition 4.2 (Division algorithm) Fix a monomial order of polynomials say x >
y for polynomials F D .h1; : : : ; hs/. Then every f 2 k Œx; y� can be written in the
form f D a1h1 C a2h2 C : : : C ashs C r; where ai; r 2 k Œx; y� and either r D 0 or
a linear combination with coefficients in k of monomials, none of which is divisible
by any of LT. f1/; : : : ;LT. fs/ (see Definition A.5 on p. 502 for leading term LT).

Example 4.7 (Division algorithm in a univariate case) Divide the polynomial f D
x3 C 2x2 C xC 5 by h D x2 � 2. We proceed as follows:

2
66666664

xC 2
x2 � 2 j x3 C 2x2 C xC 5

x3 � 2x
2x2 C 3xC 5
2x2 � 4
3xC 1;

(4.20)

implying x3 C 2x2 C x C 5 D .x C 2/.x2 � 2/ C .3x C 1/, with a D .x C 2/ and
r D .3xC 1/.

The division algorithm given in Definition 4.2 fits well to the case of univariate
polynomials as the remainder r can uniquely be determined. For multivariate
polynomials, the remainder may not be uniquely determined as this depends on the
order of the divisors. The division of the polynomial F by f f1; f2g where f1 comes
before f2 may not necessarily give the same remainder as the division of F by f f2; f1g
in whose case the order has been changed. This problem is overcome if we pass
over to Groebner basis where the existence of every Ideal is assured by the Hilbert
Basis Theorem [135, pp. 47–61]. The Hilbert Basis Theorem assures that every Ideal
I � k Œx1; : : : ; xn� has a finite generating set, that is I D< g1; : : : ; gs > for some
fg1; : : : ; gsg 2 I: The finite generating set G in Hilbert Basis Theorem is what is
known as a basis. Suppose every non-zero polynomial is written in decreasing order
of its monomials:

nX
iD1

dixi; di ¤ 0; xi > xiC1; (4.21)

if we let the system of generators of the Ideal be in a set G, a polynomial f is reduced
with respect to G if no leading monomial of an element of G (LM (G )) divides the
leading monomial of f (LM(f )). The polynomial f is said to be completely reduced
with respect to G if no monomials of f is divisible by the leading monomial of an
element of G [144, pp. 96–97].

The basis G, which completely reduces the polynomial f and uniquely deter-
mines the remainder r is also known as the Groebner basis and is defined as follows:

Definition 4.3 (Groebner basis) A system of generators G of an Ideal I is called a
Groebner basis (with respect to the order<) if every reduction of f 2 I to a reduced
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polynomial (with respect to G ) always gives zero as a remainder. This definition is
a special case of a more general definition given as: Fix a monomial order and let
G D fg1; : : : :; gtg � k Œx1; : : : :; xn� : Given f 2 k Œx1; : : : :; xn� ; then f reduces to
zero Modulo G, written as

f !G 0; (4.22)

if f can be written in the form (cf., 4.19 on p. 43)

f D a1g1 C : : :C atgt (4.23)

such that whenever aigi ¤ 0; we have multideg(f )� multideg(aigi ) (see Defini-
tion A.5 on p. 502 for leading term LT, LM and Multideg).

Following the Definition 4.3, the reader can revisit Examples 4.3 and 4.4 which
present the Groebner basis G of the original system F of equations.

Groebner basis has become a household name in algebraic manipulations and
finds application in fields such as mathematics and engineering for solving partial
differential equations e.g., [339, p. 432]. It has found use as a tool for discovering
and proving theorems to solving systems of polynomial equations as elaborated in
publications by [107]. Groebner basis also give a solution to the Ideal membership
problem. By reducing a given polynomial f with respect to the Groebner basis G, f
is said to be a member of the Ideal if zero remainder is obtained. This implies
that if G D fg1; : : : ; gsg is a Groebner basis of an Ideal I � k Œx1; : : : ; xn�

and f 2 k Œx1; : : : : ; xn� a polynomial, f 2 I if and only if the remainder on division
of f by G is zero. Groebner bases can also be used to show the equivalence of
polynomial equations. Two sets of polynomial equations will generate the same
Ideal if and only if their Groebner bases are equal with respect to any term ordering,
e.g., the solutions of (4.10) satisfy those of (4.9). This property is important in
that the solutions of the Groebner basis will satisfy the original system formed by
the generating set of nonlinear equations. It implies that a system of polynomial
equations f1.x1; : : : ; xn/ D 0; : : : ; fs.x1; : : : ; xn/ D 0 will have the same solutions
with a system arising from any Groebner basis of f1; : : : ; fs with respect to any term
ordering. This is the main property of Groebner basis that is used to solve systems
of polynomial equations as will be explained in the next section.

4.3 Buchberger Algorithm

The B. Buchberger algorithm is the algorithm that computes Groebner bases from
given systems of polynomial equations by cancelling the leading terms of these
polynomials. With the lexicographic ordering chosen, one of the elements of the
resulting Groebner basis is often a univariate polynomial whose roots can be
obtained using Matlab’s “roots” command. Given polynomials g1; : : : : ; gs 2 I, the
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algorithm seeks to derive the Groebner basis of this Ideal. Systems of equations
g1 D 0; : : : : ; gs D 0 to be solved in practice are normally formed by these
same polynomials which here generate the Ideal. The algorithm computes the
Groebner basis by making use of pairs of polynomials from the original polynomials
g1; : : : : ; gs 2 I and computes the subtraction polynomial known as the S �
polynomial defined [135, p. 81] as:

Definition 4.4 (S–polynomial1) Let f ; g 2 k Œx1; : : : xn� be two non-zero polyno-
mials. If multideg .f / D ˛ and multideg .g/ D ˇ, then let � D �1; : : : ; �n, where
�i D max f˛i; ˇig for each i. x� is called the Least Common Multiple (LCM) of
LM( f ) and LM(g) expressed as x� D LCM fLM. f /;LM.g/g. The S � polynomial
of f and g is given as

S. f ; g/ D x�

LT.f /
f � x�

LT.g/
g: (4.24)

Expression (4.24) gives S as a linear combination of the monomials

x�

LT. f /
;

x�

LT.g/
;

with polynomial coefficients f and g and thus belongs to the Ideal generated by f
and g (e.g., Definition 4.1 for Ideal on p. 42).

Example 4.8 (S–Polynomial) Consider two polynomials in variables fx; y; zg as

�
g1 D x2 C 2a12xyC y2 C aoo

g2 D y2 C 2b23yz �Cz2 C boo:
(4.25)

with the lexicographic ordering defined as x > y > z, the S– polynomial S.g1; g2/
is computed as

2
66666666666664

LM.g1/ D x2; LM.g2/ D y2;LT.g1/ D x2; LT.g2/ D y2

LCM.LM.g1/;LM.g2// D x2y2

S D x2y2

x2
.x2 C 2a12xyC y2 C aoo/� x2y2

y2
.y2 C 2b23yzC x23 C boo/

D y2x2 C 2a12xy3 C y4 C aooy2 � x2y2 � 2b23x2yx3 � x2x23 � boox2

D �boox2 � 2b23x2yx3 � x2x23 C 2a12xy3 C y4 C aooy2

(4.26)

1For the terms appearing in this definition, refer to Appendix A.1, Definition A.5 on p. 502
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Theorem 4.1 (Groebner basis in terms of S– polynomial) A basis G is
Groebner basis if and only if for every pair of polynomials f and g of G,
S.f ; g/ reduces to zero with respect to G.

Theorem 4.1 (and the notion of S-polynomial) together with its proof is
exclusively due to Buchberger [103, 104] and is the essence of his PhD
thesis, namely, that the theorem shows that, given a polynomial set F,
it is possible to decide algorithmically whether or not F is a Groebner
basis! It is therefore on the basis of this Theorem that the Buchberger
algorithm for constructing Groebner bases hinges!

The implication of Definition 4.1 is the following: Given two polynomials f ; g 2
G such that LCMfLM.f /;LM.g/g D LM.f /:LM.g/, the leading monomials of f and
g are relatively prime leading to S.f ; g/ !G 0: The concept of prime integer is
documented in [283, pp. 1–17].

Example 4.9 (Computation of Groebner basis from the S � polynomials) By com-
pleting the example given by [144, pp. 101–102], we illustrate how the Buchberger
algorithm works. Let us consider the Ideal generated by the polynomial equations

2
4 g1 D x3yz � xz2

g2 D xy2z � xyz
g3 D x2y2 � z;

(4.27)

with the lexicographic ordering x > y > z adopted. The S–polynomials to be formed
are S.g1; g2/, S.g2; g3/ and S.g1; g3/. We consider first S.g2; g3/ and show that the
result is used to suppress g1. Consequently any pair S.g1; gi/ (e.g., S.g1; g2/ and
S.g1; g3/) containing g1 will not be considered. With LT.g2/ D xy2z and LT.g3/ D
x2y2 the LCM.g2; g3/ D x2y2z. The S–polynomials is then computed as

2
6666664

S.g2; g3/ D x2y2z

xy2z
g2 � x2y2z

x2y2
g3

D .x2y2z � x2yz/ � .x2y2z � z2/

D �x2yzC z2:

(4.28)

One immediately notes that the leading term of the resulting polynomial
LT(S.g2; g3/) is not divisible by any of the leading terms of the elements of G.
The remainder upon the division of S.g2; g3/ by the polynomials in G is not zero
(i.e., when reduced with respect to G). The set G therefore is not a Groebner basis.
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The resulting polynomial is denoted g4, and its negative (to make calculations more
reliable) added to the initial set of G leading to

2
664

g1 D x3yz � xz2

g2 D xy2z � xyz
g3 D x2y2 � z
g4 D x2yz � z2:

(4.29)

The S–polynomials to be formed are now S.g1; g2/; S.g1; g3/; S.g1; g4/; S.g2; g4/
and S.g3; g4/: In the set of G, one can write g1 D xg4 leading, without any change,
to the suppression of g1 leaving only S.g2; g4/ and S.g3; g4/ to be considered. Then

�
S.g2; g4/ D xg2 � yg4
D �x2yzC yz2;

(4.30)

is reduced by adding g4 to give g5 D yz2 � z2; a non zero value. The set G, which is
still not a Groebner basis now becomes

2
664

g2 D xy2z � xyz;
g3 D x2y2 � z;
g4 D x2yz� z2;
g5 D yz2 � z2:

(4.31)

The S–polynomials to be considered are now S.g3; g4/; S.g2; g5/; S.g3; g5/ and
S.g4; g5/. We have

�
S.g3; g4/ D zg3 � yg4
D yz2 � z2;

(4.32)

which upon subtraction from g5 reduces to zero. Further,

2
4 S.g2; g5/ D zg2 � xyg5

D �xyz2 C xyz2

D 0
(4.33)

and

�
S.g4; g5/ D zg4 � x2yg5

D x2z2 � z3;
(4.34)
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which is added to G as g6 giving

2
666664

g2 D xy2z � xyz;
g3 D x2y2 � z;
g4 D x2yz� z2;
g5 D yz2 � z2;
g6 D x2y2 � z3:

(4.35)

The S polynomials to be formed next are S.g3; g5/; S.g2; g6/; S.g3; g6/; S.g4; g6/ and
S.g5; g6/:We now complete the example by illustrating that all these S�polynomials
reduce to zero as follows:

2
666664

S.g3; g5/ D z2g3 � x2yg5 D x2yz2 � z3 � zg4 D 0
S.g2; g6/ D xzg2 � y2g6 D �x2y2z2 C y2z3 C y2g4 D 0
S.g3; g6/ D z2g3 � y2g6 D y2z3 � z3 � .yz � z/g5 D 0
S.g4; g6/ D zg4 � yg6 D yz3 � z3 � zg5 D 0
S.g5; g6/ D x2g5 � yg6 D �x2z2 C yz3 C g6 � zg5 D 0;

(4.36)

comprising the Groebner basis of the original set in (4.27).
The importance of S–polynomials is that they lead to the cancellation of the

leading terms of the polynomial pairs involved. In so doing, polynomial variables
are systematically eliminated according to the ordering chosen. For example if the
lexicographic ordering x > y > z is chosen, x will be eliminated first, followed by y
and the final expression may consist only of the variable z. Cox et al [136, p. 15] has
indicated the advantage of lexicographic ordering as being the ability to produce
Groebner basis with systematic elimination of variables. Graded lexicographic
ordering (see Definition A.3 of Appendix A.1 on p. 502), on the other hand has
the advantage of minimizing the amount of computational space needed to produce
the Groebner basis.

Buchberger algorithm is therefore a generalization of the Gauss elimination
procedure for linear systems of equations as shown in Examples 4.2, 4.3 and 4.4.
If we now put our system of polynomial equations to be solved in a set G, S–pair
combinations can be formed from the set of G as illustrated in Examples 4.1 and 4.9.
The theorem, known as the Buchberger’s S–pair polynomial criterion, gives the
criterion for deciding whether a given basis is a Groebner basis or not. It suffices
to compute all the S–polynomials and check whether they reduce to zero. Should
one of the polynomials not reduce to zero, then the basis fails to be a Groebner
basis. Since the reduction is a linear combination of the elements of G, it can be
added to the set G without changing the Ideal generated. Buchberger [105] gives
an optimization criterion that reduces the number of the S–polynomials already
considered in the algorithm. The criterion states that if there is an element h of G
such that the leading monomial of h, i.e., LM(h), divides the LCM( f ; g 2 G), and if
S. f ; h/ ; S.h; g/ have already been considered, then there is no need of considering
S. f ; g/ as this reduces to zero.
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The essential observation in using Groebner bases to solve systems of polynomial
equations is that the variety (simultaneous solution of systems of polynomial
equations) does not depend on the original system of the polynomials F WD
f f1; : : : ; fsg, but instead on the Ideal I generated by F. This therefore means that
the variety V D V.I/. One makes use of the special generating set (Groebner basis)
instead of the actual system F. Since the Ideal is generated by F, the solutions
obtained by solving the affine variety of this Ideal satisfies the original system F
of equations as already stated. Buchberger [104] proved that V.I/ is void, and thus
giving a test as to whether a system of polynomial F can be solved. The solution
can be obtained if and only if the computed Groebner basis of Ideal I has 1 as its
element. Buchberger [104] further gives the criterion for deciding if V.I/ is finite.
If the system has been proved to be solvable and finite then [524, theorem 8.4.4,
p. 192] gives a theorem for deciding whether the system has finitely or infinitely
many solutions. The Theorem states that if G is a Groebner basis, then a solvable
system of polynomial equations has finitely many solutions if and only if for every
xi; 1 � i � n; there is a polynomial gi 2 G such that LM.gi/ is a pure power of xi.
The process of addition of the remainder after the reduction by the S–polynomials,
and thus expanding the generating set is shown by [104], [136, p. 88] and [144,
p. 101] to terminate.

The Buchberger algorithm thus makes use of the subtraction polynomials known
as the S–polynomials in Definition 4.4 to eliminate the leading terms of a pair of
polynomials. In so doing, and if lexicographic ordering is chosen, the process ends
up with one of the computed S–polynomials being a univariate polynomial which
can be solved and substituted back in the other S–polynomials using the extension
theorem [136, pp. 25–26] to obtain the other variables.

Mathematica Computation of Groebner Basis

Groebner basis can be computed using algebraic softwares of Mathematica
(e.g.,version 10 onwards). In Mathematica, Groebner basis command is executed
by writing

GroebnerBasisŒfpolynomialsg; fvariablesg�; (4.37)

Mathematica prompt computes the Groebner basis for the Ideal generated by the
polynomials with respect to the monomial order specified by monomial order
options.

Example 4.10 (Mathematica computation of Groebner basis) In Example 4.3 on
p. 40, the systems of polynomial equations were given as

�
f1 D xy � 2y
f2 D 2y2 � x2:
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Groebner basis of this system would be computed by

GroebnerBasisŒf f1; f2g; fx; yg�; (4.38)

leading to the same values as in (4.10).

With this approach, however, one obtains too many elements of Groebner basis
which may not be relevant to the task at hand. In a case where the solution of a
specific variable is desired, one can avoid computing the undesired variables, and
alleviate the need for back-substitution by simply computing the reduced Groebner
basis. In this case (4.37) modifies to

GroebnerBasisŒfpolynomialsg; fvariablesg; felimsg�; (4.39)

where elims is for elimination of the variable to be eliminated. Whereas the term
reduced Groebner basis is widely used in many Groebner basis literature, we point
out that within Mathematica software, the concept of a reduced basis has a different
technical meaning. In this book, as in its predecessor, and to keep with the tradition,
we maintain the use of the term reduced Groebner basis.

Example 4.11 (Mathematica computation of reduced Groebner basis) In Exam-
ple 4.10, one would compute the reduced Groebner basis using (4.39) as

GroebnerBasisŒff1; f2g; fx; yg; fyg�; (4.40)

which will return only �2x2 C x3. Note that this form is correct only when the
retained and eliminated variables are disjoint. If they are not, there is absolutely no
guarantee as to which category a variable will be put in! As an example, consider
the solution of three polynomials x2 C y2 C z2 � 1, xy� zC 2, and z2 � 2xC 3y. In
the approach presented in (4.40), the solution would be

GroebnerBasisŒfx2Cy2Cz2�1; xy�zC2; z2�2xC3yg; fx; y; zg; fx; yg�; (4.41)

leading to

f1024� 832z� 215z2 C 156z3 � 25z4 C 24z5 C 13z6 C z8g: (4.42)

Lichtblau (Priv. Comm.) however suggests that the retained variable, in this case .z/
and the eliminated variables .x; y/ be separated, i.e.,

GroebnerBasisŒfx2 C y2 C z2 � 1; xy � zC 2; z2 � 2xC 3yg; fzg; fx; yg�: (4.43)

The results of (4.43) are the same as those of (4.41), but with the advantage of a
vastly better speed if one uses an ordering better suited for the task at hand, e.g.,
elimination of variables in this example. For the problems that are solved in our
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books, the condition of the retained and eliminated variables being disjoint is true,
and hence the approach in (4.41) has been adopted.

The univariate polynomial �2x2 C x3 D x2.x � 2/ is then solved for x.

The values of y from Example 4.3 can equally be computed from (4.40) by replacing
y in the option part with x and thus removing the need for back substitution. We leave
it for the reader to compute the values of y from Example 4.3 and also those of z in
Example 4.4 using reduced Groebner basis (4.39) as an exercise. The reader should
confirm that the solution of y leads to y3 � 2y with the roots y D 0 or y D ˙1:4142.
From experience, we recommend the use of reduced Groebner basis for applications
in geodesy and geoinformatics. This will; fasten the computations, save on computer
space, and alleviates the need for back-substitution.

4.4 Concluding Remarks

Using the Groebner basis, most systems of nonlinear equations that are encountered
in geodesy and geoinformatics can be solved. All that is required of the user is to
write algorithms that can easily be run in Mathematica or Maple using the steps
discussed. In latter chapters, we will demonstrate how algorithms using Groebner
basis can be written for various tasks. Application of the technique in geodesy can
be found in the works of [17, 18, 20, 27, 30, 34, 36]. Several publications exist
on the subject, e.g., [70, 71, 107, 133, 135, 136, 144, 323, 414, 477, 498, 524].
For readers who may be interested in exploring the subject further, these literature
and similar others are worth reading. The Groebner bases approach presented in
this chapter adds to the treasures of methods that are useful for solving nonlinear
algebraic systems of equations in geodesy, geoinformatics, machine vision, robotics
and surveying.

Finally, we begun the chapter by a quote from [417]. We think that indeed,
systems of more than one nonlinear equations are solvable, and the answer lies in
commutative algebra!



Chapter 5
Polynomial Resultants

5.1 Resultants: An Alternative to Groebner Basis

Besides Groebner basis approach discussed in Chap. 4, the other powerful algebraic
tools for solving nonlinear systems of equations are the polynomial resultants
approaches. While Groebner basis may require large storage capacity during its
computations, polynomial resultants approaches presented herein offers remedy to
users who may not be lucky to have computers with large storage capacities. This
chapter presents polynomial resultants approaches starting from the resultants of
two polynomials, known as the “Sylvester resultants”, to the resultants of more than
two polynomials in several variables known as “multipolynomial resultants”. In nor-
mal matrix operations in linear algebra, one is often faced with the task of computing
determinants. Their applications to least squares approach are well known.

For polynomial resultants approaches discussed herein, the ability to compute
determinants of matrices is the essential requirement. We will look at how they
are formed and applied to solve nonlinear systems of equations. Indeed [462] had
already used the resultant technique to the R2 ! R2 mapping of gravitation lens.
Such mapping describes the light rays which run from a deflector plane (lens) to an
observer. For simple lenses such as point masses in galactic fields, [462] observed
the global mapping to be an algebraic expression whose inversion led to the problem
of solving a polynomial in two variables. Further use of polynomial resultants in
geodesy is exemplified in the works of [343, pp. 72–76] and [25, 31, 37].

5.2 Sylvester Resultants

Sylvester resultants approach is useful for solving explicitly nonlinear systems of
equations with two polynomials in two variables. Problems in this category could
be those of two dimensional nature such as planar ranging, planar resection etc., as
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shall be seen in subsequent chapters. Polynomial resultants approach is based on
homogeneous polynomials defined as

Definition 5.1 (Homogeneous polynomial) If monomials of a polynomial p with
non zero coefficients have the same total degree, the polynomial p is said to be
homogeneous.

Example 5.1 (Homogeneous polynomial equation) A homogeneous polynomial
equation of total degree 2 is s D x2 C y2 C z2 C xyC xzC yz, since the monomials
fx2; y2; z2; xy; xz; yzg all have the sum of their powers (total degree) being 2.

To set the ball rolling, let us examine next the resultant of two univariate polynomi-
als s; t 2 kŒx� of positive degree as

�
s D k0xi C : : : :C ki; k0 ¤ 0; i > 0
t D l0xj C : : : :C lj; l0 ¤ 0; j > 0:

(5.1)

The resultant of s and t, denoted Res.s; t/; is the .iC j/ � .iC j/ determinant

Res .s; t/ D det

2
666666666666666666664

k0 k1 k2 : : : ki 0 0 0 0 0

0 k0 k1 k2 : : : ki 0 0 0 0

0 0 k0 k1 k2 : : : ki 0 0 0

0 0 0 k0 k1 k2 : : : ki 0 0

0 0 0 0 k0 k1 k2 : : : ki 0

0 0 0 0 0 k0 k1 k2 : : : ki

l0 l1 l2 : : : lj 0 0 0 0 0

0 l0 l1 l2 : : : lj 0 0 0 0
0 0 l0 l1 l2 : : : lj 0 0 0
0 0 0 l0 l1 l2 : : : lj 0 0
0 0 0 0 l0 l1 l2 : : : lj 0
0 0 0 0 0 l0 l1 l2 : : : lj

3
777777777777777777775

; (5.2)

where the coefficients of the first polynomial s in (5.1) occupy j rows, while those
of the second polynomial t occupy i rows. The empty spaces are occupied by zeros
as shown above such that a square matrix is obtained. This resultant is known as the
Sylvester resultant and has the following properties [136, §3.5] and [478];

1. Res.s; t/ is a polynomial in k0; : : : ; ki; l0; : : : ; lj with integer coefficients.
2. Res.s; t/ D 0 if and only if s.x/ and t.x/ have a common factor in kŒx�.
3. There exist a polynomial q; r 2 kŒx� such that qsC rt D Res.s; t/.

Sylvester resultants can be used to solve systems of polynomial equations in two
variables as shown in Example 5.2. It should also be pointed out that Mathematica
has a built in function for computing Sylvester resultant written simply as

ResultantŒ2x3 C x2 � 3xC 6;�5x2 C 2x � 13; x�
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where equations are placed in the brackets with the last element of the bracket
indicating the variable to be eliminated. This illustration gives the resultant as
�17908.

Example 5.2 (Sylvester resultants solution of systems of nonlinear equations) Con-
sider the system of equations given in [478, p. 72] as

�
p WD xy � 1 D 0
q WD x2 C y2 � 4 D 0: (5.3)

In-order to eliminate one variable e.g., x, the variable y is hidden, i.e., the variable
say y is considered as a constant (polynomial of degree zero). We then have the
Sylvester resultant from (5.2) as

Res .s; t; x/ D det

2
4 y �1 0

0 y �1
1 0 y2 � 4

3
5 D y4 � 4y2 C 1; (5.4)

which is the necessary condition of the existence of the solution of the following
linear homogeneous system of equation

0
@ xp.x/

P.x/
q.x/

1
A D

2
4 y �1 0

0 y �1
1 0 y2 � 4

3
5
2
4 x2

x1

x0

3
5 ; (5.5)

that can be readily solved for the variable y and substituted back in any of the
equations in (5.3) to obtain the values of the variable x. Alternatively, the procedure
can be applied to derive x directly. Hiding x, one obtains with (5.2)

Res .s; t; y/ D det

2
4 x �1 0

0 x �1
1 0 x2 � 4

3
5 D x4 � 4x2 C 1: (5.6)

The roots of the univariate polynomials (5.4) and (5.6) are then obtained using the
Matlab’s root command as

fx; yg D roots.Œ 1 0 �4 0 1� / D ˙1:9319 and ˙ 0:5176: (5.7)

In (5.7), the row vector Œ 1 0 �4 0 1� are the coefficients of the quartic polynomials
in either (5.4) or (5.6). Zeros are the coefficients of the variables fx3; y3g and fx; yg.
The solutions in (5.7) satisfy the polynomials in (5.4) and (5.6). They also satisfy
the original nonlinear system of equations (5.3). In (5.4) and (5.6), the determinant
can readily be obtained from MATLAB software by typing det.A/, where A is the
matrix whose determinant is desired.
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For two polynomials in two variables, the construction of resultants is relatively
simpler and algorithms for the execution are incorporated in computer algebra
systems. Resultants of more than 2 polynomials of multiple variables are however
complicated. For their construction, we turn to the multipolynomial resultants.

5.3 Multipolynomial Resultants

Whereas the resultant of two polynomials in two variables is well known and
algorithms for computing it well incorporated into computer algebra packages
such as Maple, multipolynomial resultants, i.e., the resultant of more than two
polynomials still remain an active area of research. This section therefore extends
on the use of Sylvester resultants to resultants of more than two polynomials of
multiple variables, known as multipolynomial resultants.

The need for multipolynomial resultants method in geodesy and geoinformatics
is due to the fact that many problems encountered require the solution of more
than two polynomials of multiple variables. This is true since we are living in a
three-dimensional world. We shall therefore understand the term multipolynomial
resultants to mean resultants of more than two polynomials. We treat it as a
tool besides Groebner bases, and perhaps more powerful to eliminate variables in
systems of polynomial equations. In defining it, [356] writes:

Elimination theory, a branch of classical algebraic geometry, deals with conditions for
common solutions of a system of polynomial equations. Its main result is the construction of
a single resultant polynomial of n homogeneous polynomial equations in n unknowns, such
that the vanishing of the resultant is a necessary and sufficient condition for the given system
to have a non-trivial solution. We refer to this resultant as the multipolynomial resultant and
use it in the algorithm presented in the paper.

In the formation of the design matrix whose determinants are needed, several
approaches can be used as discussed in [350, 353–356] who applies the eigenvalue-
eigenvector approach, [111] who uses characteristic polynomial approach, and [476,
478] who proposes a more compact approach for solving the resultants of a ternary
quadric using the Jacobian determinant approach. In this book, two approaches are
presented; first the approach based on F. Macaulay [346] formulation (the pioneer of
resultants approach) and then a more modern approach based on B. Sturmfels’ [478]
formulation.

5.3.1 F. Macaulay Formulation

With n polynomials, the construction of the matrix whose entries are the coefficients
of the polynomials f1; : : : ; fn can be done in five steps as follows:

Step 1: The given polynomials f1 D 0; : : : ; fn D 0 are considered to be homoge-
neous equations in the variables x1; : : : ; xn and if not, they are homogenized. Let
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the degree of the polynomial fi be di. The first step involves the determination of
the critical degree given by [56] as

d D 1C
X

.di � 1/: (5.8)

Step 2: Once the critical degree has been established, the given monomials of the
polynomial equations are multiplied with each other to generate a set X. The
elements of this set consists of monomials whose total degree equals the critical
degree. Thus if we are given polynomial equations f1 D 0; : : : ; fn D 0, each
monomial of f1 is multiplied by those of f2; : : : ; fn, those of f2 are multiplied by
those of f3; : : : ; fn until those of fn�1 are multiplied by those of fn. The set X of
monomials generated in this form is

Xd D fxd j d D ˛1 C ˛2 C : : : C ˛ng; (5.9)

with the variable xd D x˛11 : : : x
˛n
n .

Step 3: The set X containing monomials each of total degree d is now partitioned
according to the following criteria [111, p. 54]

2
66666664

Xd
1 D fx˛ 2 Xd j ˛1 � d1g

Xd
2 D fx˛ 2 Xd j ˛2 � d2 and ˛1 < d1g
: : :

: : :

: : :

Xd
n D fx˛ 2 Xd j ˛n � dn and ˛i < di; for i D 1; : : : ; n � 1g:

(5.10)

The resulting sets of Xd
i are disjoint and every element of Xd is contained in exactly

one of them.

Step 4: From the resulting subsets Xd
i � Xd, a set of polynomials Fi which are

homogeneous in n variables are defined as

Fi D Xd
i

xdi
i

fi: (5.11)

From (5.11), a square matrix A is now formed with the row elements being the
coefficients of the monomials of the polynomials Fi jiD1; :::;n and the columns
corresponding to the N monomials of the set Xd. The formed square matrix A is
of the order

�
d C n � 1

d

�
�
�

dC n � 1
d

�
;
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and is such that for a given polynomial Fi in (5.11), the row of the square matrix A
is made up of the symbolic coefficients of each polynomial. The square matrix A
has a special property that the non trivial solution of the homogeneous equations Fi

which also form the solution of the original equations fi are in its null space. This
implies that the matrix must be singular or its determinant, det.A/, must be zero. For
the determinant to vanish, therefore, the original equations fi and their homogenized
counterparts Fi must have the same non trivial solutions.

Step 5: After computing the determinant of the square matrix A above, [346] sug-
gests the computation of extraneous factor in-order to obtain the resultant. Cox
et al. [136, Proposition 4.6, p. 99] explains the extraneous factors to be integer
polynomials in the coefficients of NF0; : : : ; NFn�1, where NFi D Fi.x0; : : : ; xn�1; 0/.
It is related to the determinant via

determinant D Res.F1; : : : ;Fn/:Ext; (5.12)

with the determinant computed as in step 4, Res.F1; : : : ;Fn/ being the multipoly-
nomial resultant and Ext the extraneous factor. This expression was established as
early as 1902 by F. Macaulay [346] and this procedure of resultant formulation
thus named after him. Macaulay [346] determines the extraneous factor from
the sub-matrix of the N � N square matrix A and calls it a factor of minor
obtained by deleting rows and columns of the N � N matrix A. A monomial
x˛ of total degree d is said to be reduced if xdi

i divides x˛ for exactly one i. The
extraneous factor is obtained by computing the determinant of the sub-matrix of
the coefficient matrix A, obtained by deleting rows and columns corresponding
to reduced monomials x˛:

For our purpose, it suffices to solve for the unknown variable hidden in the
coefficients of the polynomials fi by obtaining the determinant of the N � N square
matrix A and equating it to zero neglecting the extraneous factor. This is because
the extraneous factor is an integer polynomial and as such not related to the variable
in the determinant of A. The existence of the non-trivial solutions provides the
necessary and sufficient conditions for the vanishing of the determinant.

5.3.2 B. Sturmfels’ Formulation

Given three homogeneous equations of degree 2 as

F1 WD a11x2 C a12y2 C a13z2 C a14xyC a15xzC a16yz D 0

F2 WD a21x2 C a22y2 C a23z2 C a24xyC a25xzC a26yz D 0

F3 WD a31x2 C a32y2 C a33z2 C a34xyC a35xzC a36yz D 0;
(5.13)
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the Jacobian determinant is computed by

J D det

2
66666666664

@F1
@x

@F1
@y

@F1
@z

@F2
@x

@F2
@y

@F2
@z

@F3
@x

@F3
@y

@F3
@z

3
77777777775

; (5.14)

resulting in a cubic polynomial in the coefficients fx; y; zg. Since the determinant
polynomial J in (5.14) is a cubic polynomial, its partial derivatives will be quadratic
polynomials in variables fx; y; zg and are written in the form

@J

@x
WD b11x

2 C b12y
2 C b13z

2 C b14xyC b15xzC b16yz D 0

@J

@y
WD b21x

2 C b22y
2 C b23z

2 C b24xyC b25xzC b26yz D 0

@J

@z
WD b31x

2 C b32y
2 C b33z

2 C b34xyC b35xzC b36yz D 0:

(5.15)

The coefficients bij in (5.15) are cubic polynomials in aij of (5.13). The final step
in computing the resultant of the initial system (5.13) involves the computation of
the determinant of a 6 � 6 matrix given by

Res222.F1;F2;F3/ D det

2
66666664

a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
b11 b12 b13 b14 b15 b16
b21 b22 b23 b24 b25 b26
b31 b32 b33 b34 b35 b36

3
77777775
: (5.16)

The resultant (5.16) vanishes if and only if (5.13) have a common solution fx; y; zg;
where fx; y; zg are complex numbers or real numbers not all equal zero. The
subscripts on the left-hand-side of (5.16) indicate the degree of the polynomials
in (5.13) whose determinants are sought.
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5.3.3 The Dixon Resultant

5.3.3.1 Basic Concepts

Consider a system of polynomials

F D ff0; f1; : : : ; fdg (5.17)

where

fi D
X
˛2Ai

ci;˛xxx
˛ (5.18)

and

xxx˛ D x˛11 x˛22 : : : x
˛d
d (5.19)

for each i D 0; : : : ; d, and with the polynomial coefficient ci;˛ , which are also
sometimes referred to as the parameters of the system. In general, we consider a
collection of polynomials in x1,. . . ,xd with coefficients in the field of an arbitrary
ringAi � Nd [131]. Elimination theory tells us how to construct a single polynomial
of d homogeneous polynomial equations in d unknowns, such that its vanishing is a
necessary and sufficient condition for a given system to have a non-trivial solution.
This single polynomial is called a resultant polynomial [356].

One way to compute the resultant of a given polynomial system is to construct a
matrix with the property that whenever the polynomial system has a solution, such
a matrix has a deficient rank, thereby implying that the determinant of any maximal
minor is a multiple of the resultant. A simple way to construct a resultant matrix
is to use the dialytic method [83], i.e. multiply each polynomial with a finite set of
monomials, and rewrite the resulting system in matrix form. We call such matrix the
dialytic matrix.

This alone, however, does not guarantee that a matrix so constructed is a resultant
matrix. Note that such matrices are usually quite sparse: matrix entries are either
zero or coefficients of the polynomials in the original system. Good examples
of resultant dialytic matrices are Sylvester [480] for the univariate case, and
Macaulay [347], as well as the Newton sparse matrices of Canny and Emiris [113]
for the multivariate case, where they all differ only in the selection of multiplier
monomial sets.

In contrast to dialytic matrices, the Dixon matrix is dense since its entries are
determinants of the coefficients of the polynomials in the original system. It has the
advantage of being an order of magnitude smaller in comparison to a dialytic matrix,
which is important as the computation of the symbolic determinant of a matrix is
sensitive to its size. The Dixon matrix is constructed through the computation of the
Dixon polynomial, which is expressed in matrix form.
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Below, the generalized multivariate Dixon formulation for simultaneously elim-
inating many variables from a polynomial system and computing its resultant is
briefly reviewed [132].

Let �i .xxx˛/ D �
˛1
1 . . .�˛i

i x
˛iC1

iC1 . . . x˛d
d where i 2 f0; 1; : : : ; dg and the � 0

i s are new
variables; �0 .xxx˛/ D xxx˛ . Now �i is extended to polynomials in a natural way as

�i
�

fj .x1; . . . ; xd/
� D fj .�1; . . .�i; xiC1; . . . ; xd/ (5.20)

Given a polynomial system F D f f0; f1; : : : fdg, the Dixon polynomial is defined
as

	 . f0; f1; . . . fd/ D ı .x1; : : : ; xd; �1; : : : ; �d/

D
dY

iD1

1

�i � xi
Det

0
BBBBBBB@

�0 . f0/ �0 . f1/ : : : �0 . fd/
�1 . f0/ �1 . f1/ : : : �1 . fd/
: : : : : :

: : : : : :

: : : : : :

�d . f0/ �d . f1/ : : : �d . fd/

1
CCCCCCCA
: (5.21)

The order in which the original variables in x are replaced by new variables in ���
is significant in the sense that the Dixon polynomial computed using two distinct
variable orderings may differ.

A Dixon polynomial ı( xxx, ��� ) can be written in bilinear form as [132],

ı .x1; . . . ; xd; �1; . . .�d/ D
�X
�X
�XT ; (5.22)

where


 = (�ˇ1 ,. . . ,�ˇk ) and XXX = (x˛1 ; : : : ; x˛s ) are row vectors. The k � s matrix���
is called the Dixon matrix.

5.3.3.2 Formulation of the Dixon Resultant

Cayley’s Formulation of Bézout’s Method

Let us recall here the Cayley’s [115] formulation of Bezout’s method [379] for
solving two polynomial equations in the univariate case. However, this method is
actually due to Euler (e.g., Salmon [456]).

Let us consider two univariate polynomials f (x) and g(x), and let

deg D max.degree. f /; degree.g// (5.23)
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and � be an auxiliary variable. The quantity

ı.x; �/ D 1

x � � det

�
f .x/ g.x/
f .�/ g.�/

�
D f .x/g.�/ � f .�/g.x/

x � � (5.24)

is a symmetric polynomial in x and � of deg-1 which is called the Dixon polynomial
of f and g. Every common zero of f and g is a zero of ı(x,�) for all values of � .

Example 5.3 Let us consider two univariate polynomials with parameter � ,

f .x/ D .x � 1/.xC 3/.x � 4/ D 12� 11x� 2x2 C x3

g.x/ D .x � �/.xC 4/ D �4� C 4x � �xC x2:
(5.25)

The Dixon polynomial is then expressed as

ı D 1

x � � det

�
f .x/ g.x/
f .�/ g.�/

�
; (5.26)

which on substituting Eq.(5.25) gives

ı D 1

x � � det

�
12� 11x� 2x2 C x3 �4� C 4x � �xC x2

12� 11� � 2�2 C �3 �4� C 4� � �� C �2
�
; (5.27)

and evaluating the determinant and simplifying leads to �48C 56� � 12xC 8�x�
4�x2� 12� C 8�� C 3x� � 2�x� C 4x2� ��x2� � 4��2C 4x�2 ��x�2C x2�2.

Hence, at a common zero, each coefficient of � i in ı vanishes, leading to

�2 W �4� C 4x � �xC x2 D 0
�1 W �12C 8� C 3x � 2�xC 4x2 � �x2 D 0
�0 W �48C 56� � 12xC 8�x � 4�x2 D 0:

(5.28)

It is a homogeneous system in variables x0, x1 and x2.

0
@ �4� 4 � � 1

�12C 8� 3 � 2� 4 � �
�48C 56� �12C 8� �4�

1
A
0
@ x0

x1

x2

1
A D

0
@00
0

1
A (5.29)

This system has non-trivial solutions if and only if its determinant D is zero. D
is called the Dixon resultant of f and g. The matrix of the system M is the Dixon
matrix,

M D
0
@ �4� 4 � � 1

�12C 8� 3 � 2� 4 � �
�48C 56� �12C 8� �4�

1
A (5.30)



5.3 Multipolynomial Resultants 63

and its determinant is

D D �480C 440� C 80�2 � 40�3 (5.31)

The polynomials have common zeros if D vanishes. Indeed, solving the equation
D D 0 we get
�1 D �3; �2 D 1and �3 D 4

5.3.3.3 Dixon’s Generalization of the Cayley-Bézout Method

Dixon [151] generalized Cayley’s approach to Bezout’s method to systems of three
polynomials equations in three unknowns. Let

f .x; y; z/ D 0
g.x; y; z/ D 0
h.x; y; z/ D 0:

(5.32)

Now, the Dixon polynomial is defined by

ı.x; y; z; �; �/ D 1

.x � �/.y � �/ det

0
@ f .x; y; z/ g.x; y; z/ h.x; y; z/

f .�; y; z/ g.�; y; z/ h.�; y; z/
f .�; �; z/ g.�; �; z/ h.�; �; z/

1
A (5.33)

Example 5.4 Let us consider the three-variate polynomials

f D x2 C y2 � 1
g D x2 C z2 � 1
h D y2 C z2 � 1:

(5.34)

The Dixon polynomial is

ı.x; y; z; �; �/ D 1

.x � �/.y � �/det

0
@ x2 C y2 � 1 x2 C z2 � 1 y2 C z2 � 1
�2 C y2 � 1 �2 C z2 � 1 y2 C z2 � 1
�2 C �2 � 1 �2 C z2 � 1 �2 C z2 � 1

1
A :
(5.35)

Equation (5.35) leads to yz � 2x2yzC y� � 2x2y� C z� � 2x2z� C �� � 2x2��
Now we eliminate the variables y and z. Considering that

ı.x; y; z; �; �/ D �� �1 � 2x2
�C �y

�
1 � 2x2

�C �z
�
1 � 2x2

�C yz
�
1 � 2x2

�
;

(5.36)
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and the system of equations to be

: y0z0 y1z0 y0z1 y1z1

�0�0 W 0 0 0 1 � 2x2

�1�0 W 0 0 1 � 2x2 0

�0�1 W 0 1 � 2x2 0 0

�1�1 W 1 � 2x2 0 0 0

; (5.37)

The Dixon matrix is then given as

M D

0
BB@
0 0 0 1 � 2x2

0 0 1 � 2x2 0
0 1 � 2x2 0 0

1 � 2x2 0 0 0

1
CCA ; (5.38)

and its determinant, the Dixon resultant, as D D 1 � 8x2 C 24x4 � 32x6 C 16x8:

Dixon [151] proved that for the three polynomials of degree two, the vanishing of D
is a necessary condition for the existence of a common zero. Furthermore, D is not
identically zero, namely, it is not zero for every value of x.

5.3.3.4 Improved Dixon Resultant: Kapur-Saxena-Yang Method

Dixon’s method and proofs easily generalize to a system of n+1 generic n degree
polynomials in n unknowns (for more details, see, e.g., [298]). Recall that a
polynomial is generic if all its coefficients are independent parameters, unrelated
to each other. A polynomial in n variables is n-degree if all powers to the maximum
of each variable appear in it. Dixon’s method only applies to generic n degree
polynomials. If this condition fails, then one can face the following problems:

(a) The Dixon matrix, M, may be singular;
(b) After removal of the rows and columns containing zeros, the vanishing of the

determinant of the Dixon matrix, D, may not give a necessary condition for the
existence of a common zero;

(c) After removal of the rows and columns containing zeros, the Dixon matrix may
not even be square. Hence, its determinant cannot be defined.

Kapur et al. [298] addressed all three problems successfully, provided a certain
precondition holds. Namely, assuming that the column that corresponds to the
monomial 1 D x01x

0
2 : : :, the Dixon matrix is not a linear combination of the

remaining ones. If this precondition is true, then D D 0 is a necessary condition of
common zeros. This theorem yields a simple algorithm for obtaining the necessary
condition D D 0, which is called the Kapur-Saxena-Yang-Dixon resultant [378].
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The algorithm involves the following:

(1) Compute the Dixon matrix M. If the precondition holds, continue;
(2) Reduce the M rows without scaling to row echelon form, M’.
(3) Compute the product D of the pivots of M’.

This algorithm was implemented into Mathematica by Nakos and Williams [378,
379]. We employ this to illustrate how the last example could be solved. In
Mathematica 5.2 [491], the Dixon resultant prompt is called by typing

	 ResultantDixon:

In solving Eq.(5.35), we first compute the Dixon polynomial using

DixonPolynomialŒf f ; g; hg; fy; zg; f�; �g�;

followed by the Dixon matrix using

M D DixonMatrixŒf f ; g; hg; fy; zg; f�; �g�

which leads to

0
BB@
0 0 0 1 � 2x2

0 0 1 � 2x2 0
0 1 � 2x2 0 0

1 � 2x2 0 0 0

1
CCA : (5.39)

The Dixon resultant is then computed via DixonResultantŒf f ; g; hg; fy; zg; f�; �g�,
which gives the determinant of the Dixon matrix as 1 � 8x2 C 24x4 � 32x6 C 16x8.
Since all these functions are in-built, one can proceed to compute the Dixon resultant
directly without going through Dixon polynomial and matrix.

5.3.3.5 Heuristic Methods to Accelerate the Dixon Resultant

The basic idea of the Dixon method is to construct a square matrix M whose
determinant D is a multiple of the resultant. Usually M is not unique, it is obtained
as a maximal minor, in a larger matrix we shall call MC, and there are usually many
maximal minors – any one of which will do. The entries in M are polynomials in
parameters. The factors of D that are not the resultant are called the spurious factors,
and their product is sometimes referred to as the spurious factor.

The naive way to proceed is to compute D, factor it, and separate the spurious
factor from the actual resultant. But there are problems. On one the hand, the
determinant may be so large as for it to be impractical or even impossible to
compute, even though the resultant is relatively small, the spurious factor is huge.
On the other hand, the determinant may be so large that factoring it is impractical.
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Lewis developed three heuristic methods to overcome these problems [328, 329].
The first may be used on any polynomial system. It uses known factors of D to
compute other factors. The second also may be used on any polynomial system and
it discovers factors of D so that the complete determinant is never produced. The
third applies only when the resultant appears as a factor of D in certain exponential
patterns. These methods were discovered by experimentation and may apply to other
resultant formulations, such as the Macaulay.

5.3.3.6 Early Discovery of Factors: The EDF Method

This method is to exploit the observed fact that D has many factors. In other words,
we try to turn the existence of spurious factors to our advantage. By elementary row
and column manipulations (Gaussian elimination) we discover probable factors of
D and extract them from M0 � M. This produces a smaller matrix M1, still with
polynomial entries, and a list of discovered numerators and denominators. Here is a
very simple example.

Example 5.5 Given initially

M0 D
�
9 2

4 4

�
numerators W ___ denominators W ___

We factor a 2 out of the second column, then a 2 from the second row. Thus

M0 D
�
9 1

2 1

�
numerators W 2; 2 denominators W ___

Note that 9 � 4 � 2 � 4 D 2 � 2 � .9 � 1 � 2 � 1/.
We change the second row by subtracting 2/9 of the first

M0 D
�
9 1

0 7=9

�
numerators W 2; 2 denominators W ___

We pull out the denominator 9 from the second row, and factor out 9 from the
first column:

M0 D
�
1 1

0 7

�
numerators W 2; 2; 9 denominators W 9

Note that 9 � 7=9� 1 � 0 D 2�2�9
9
� .1 � 7 � 1 � 0/.

We “clean up” or consolidate by dividing out the common factor of 9 from the
numerator and denominator lists; any one that occurs may be erased and the list
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compacted since the first column is canonically simple. We have hence finished one
step of the algorithm, and have produced a smaller M1

M1 D .7/ numerators W 2; 2 denominators W ___

The algorithm terminates by pulling out the 7:

numerators W 2; 2; 7 denominators W ___

Realize, however, that the det.M0/ D det

�
9 2

4 4

�
D 2 � 2 � 7 D 28

As expected (since the original matrix contained all integers) the denominator list is
empty. The product of all the entries in the numerator list is the determinant, but we
never needed to deal with any number larger than 9.

The accelerated Dixon resultant by the Early Discovery Factors (Dixon – EDF)
algorithm, was suggested and implemented in the computer algebra system Fermat
by Lewis [328, 330].

The Dixon resultant is a very attractive tool for solving system of multivariate
polynomial geodetic equations (see [396]). Comparing it to other multipolynomial
resultants like Strumfels’s method, it has the advantages of (i) its small size and high
density of the Dixon matrix, (ii) faster computational speed and (iii) being robust.

5.4 Concluding Remarks

With modern computers, the polynomial resultant approaches discussed can easily
be used to develop algorithms for solving systems of nonlinear equations. Compared
to Groebner basis, these have the advantage of not computing extra parameters, thus
requiring less computer memory. Its shortcoming, however, lies in the formation of
the design matrix which become more complicated and cumbersome as the number
of polynomials and variables increases. Unless Groebner basis fails, we recommend
it for solving geodetic and geoinformatics nonlinear systems of equations. It can
be especially effective if the coefficients of the polynomials are integers, rational or
even floating point numbers (see NSolve in Mathematica which employs numerical
Groebner basis). On the other hand, the polynomial resultants approach comes in
handy when the computer’s space is limited and the coefficients of the polynomials
are not numbers but symbols. With modern computer storage capacity though, most
problems requiring algebraic solutions in the fields mentioned above can easily be
handled by Groebner basis without fear of a computer breakdown. Publications on
the subject include: [25, 31, 37, 56, 111, 112, 114, 136, 151, 188, 189, 237, 313, 345–
348, 350, 353–360, 375, 456, 476, 478, 509, 513].
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Besides Groebner bases and polynomial resultants techniques, there exists
another approach for eliminating variables developed by W. WU [527] using
the ideas proposed by [431]. This approach is based on Ritt’s characteristic set
construction and was successfully applied to automated geometric theorem by Wu.
This algorithm is referred as the Ritt-Wu’s algorithm [360].



Chapter 6
Linear and Nonlinear Homotopy

6.1 Introductory Remarks

A fundamental task in geodesy is the solving of systems of equations. Many
geodetic problems are represented as systems of multivariate polynomials. A
common problem in solving such systems is improper initial starting values
for iterative methods, leading to the convergence to solutions with no physical
meaning, or convergence that requires global method. Although symbolic methods
such as Groebner bases or resultants have been shown to be very efficient, i.e.,
providing solutions for determined systems such as 3-point problem of 3D affine
transformation, the symbolic algebra can be very time consuming, even with special
Computer Algebra Systems (CAS). This Chapter proposes the Homotopy method
that can be implemented easily in high level computer languages like C++ and
Fortran, which are faster than the interpreter type CAS by at least two orders
of magnitude. Using Mathematica, the power of Homotopy is demonstrated by
solving three nonlinear geodetic problems: resection, GPS positioning and affine
transformation. The method enlarging the domain of convergence is found to be
efficient, less sensitive to rounding errors, and has a lower complexity compared to
other local methods like Newton-Raphson.

The Chapter is organized as follows: In Sect. 6.2, a background to linear
homotopy is presented. Section 6.3 presents the definition and basic concepts of
homotopy required to understand the solution of nonlinear equations. Section 6.4
demonstrates how to employ homotopy methods to solve nonlinear equations and
systems of equations. For simplicity, a quadratic and a third degree polynomial
equations are used to illustrate the approach. Although the suggested technique can
be applied to square systems, overdetermined problems can also be solved after
transforming the N-point problem into a square one in a least squares sense. In
part II of the book, it will be demonstrated how the technique can be used to solve
three nonlinear geodetic problems. Section 6.5 introduces the reader to nonlinear
homotopy and its applications.
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6.2 Background to Homotopy

Solving nonlinear systems, especially algebraic polynomial systems, is a fundamen-
tal problem that occurs frequently in various fields of science and engineering, like
robotics, computational chemistry, computer vision, computational geometry, and
signal processing. Using numerical algorithms to solve polynomial systems with
tools originating from algebraic geometry is the main activity in so-called Numerical
Algebraic Geometry, see e.g., [469, 470]. This is a new and developing field on
the crossroads of algebraic geometry, numerical analysis, computer science and
engineering.

The homotopy continuation method is a global numerical method for solving
nonlinear systems in general, and also polynomial systems, see [235]. This method
is used to locate all geometrically isolated roots as well as decompose positive
dimensional solution sets into irreducible components [500]. Homotopy continu-
ation has been established as a reliable and efficient method for solving polynomial
systems over the last two decades, originating from the works of [154, 186].
Some computer codes have been developed for homotopy methods, for example
Bertini [66], HOM4PS [324], HOMPACK [510], PHCpack [499], and PHoM [242].
Other codes are written in Maple (see e.g., [331]) and Matlab [147]. Recently, codes
for fixed point and Newton homotopy were developed in Mathematica see [87, 88].

In geodesy, several algebraic procedures have been put forward for solving non-
linear systems of equations (see, e.g., [44, 397]). The procedures suggested in these
studies, such as Groebner bases and resultant approaches, are, however, normally
restricted by the size and complexity of the nonlinear systems of equations involved.
In most cases, the symbolic computations are time consuming. These symbolic
computations were necessitated by the failure to obtain suitable starting values for
numerical iterative procedures. In situations where large systems of equations are to
be solved (e.g., affine transformation), and where symbolic methods are insufficient,
there exists the need to investigate the suitability of other alternatives. One such
alternative is linear homotopy.

In this Chapter linear homotopy continuation methods are introduced (see [308]).
The definitions and basic ideas are considered and illustrated. The general algo-
rithms of the linear homotopy method are considered: iterated solution of homotopy
equations via Newton-Raphson method; and as an initial value problem of a system
of ordinary differential equations. The efficiency of these methods are illustrated
here by solving polynomial equation systems in geodesy, namely the solution
of 3D resection, GPS navigation and 3D affine transformation problems. Our
computations were carried out with Mathematica and Fermat computer algebra
systems on a HP workstation xw 4100 with XP operation system, 3 GHz P4 Intel
processor and 1 GB RAM. The details can be found in MathSource (Wolfram
Research Inc.) in [397], while the mathematical background of the algorithms is
discussed in this chapter, and in the literature, e.g. [470]. The application of the
implemented Mathematica functions is illustrated in the Appendix A.3.
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6.3 Definition and Basic Concepts

The continuous deformation of an object to another object is known as homotopy.
Let us consider two univariate polynomials p1 and q1 of the same degree,

p1.x/ D x2 � 3 (6.1)

q1.x/ D �x2 � xC 1: (6.2)

The linear convex function, H, expressed by the variables x and �, gives the
homotopy function defined as

H.x; �/ D .1 � �/p1.x/C �q1.x/ ; (6.3)

where � 2 Œ0; 1�.
In geometric terms, the homotopy H provides us with a continuous deformation

from p1, which is obtained for � D 0 by H.x; 0/, to q1, which is obtained for � D 1
by H.x; 1/. The homotopy function for different � values, � D 0; 0:1; : : : ; 1 can be
seen on Fig. 6.1. It is called linear homotopy because H is a linear function of the
variable �.

The polynomial p1 is called the start system and the polynomial q1 is called the
target system.

–1

–2

–3

0.5 1.0 1.5–1.0 –0.5–1.5–2.0

p1

q1

H(x, l)

1

Fig. 6.1 The homotopy H for the polynomials p1 and q1 (Eqs. (6.1), (6.2) and (6.3)) for different
values of �. Note � D 0 .p1/ and � D 1 .q1/
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6.4 Solving Nonlinear Equations via Homotopy

The homotopy continuation method deforms continuously the known roots of the
start system into the roots of the target system. Now, let us look at how homotopy
can be used to solve a simple polynomial equation. Considering a polynomial of
degree two (i.e., a quadratic equation),

q.x/ D x2 C 8x � 9; (6.4)

whose roots (q.x/ D 0) are desired. Instead of this polynomial, we consider a
simpler one by deleting the middle term. The roots of this simpler polynomial can
be found easily by inspection,

p.x/ D x2 � 9: (6.5)

This polynomial also has two roots and will be considered as the start system for
the target system, Eq. (6.4). The linear homotopy can then be defined as follows (see
Fig. 6.2)

H.x; �/ D .1 � �/p.x/C �q.x/

D .1 � �/ �x2 � 9�C � �x2 C 8x � 9� D x2 C 8x� � 9:
(6.6)

The homotopy continuation method deforms continuously the known roots of the
start system p(x) = 0, into the roots of the target system q(x) = 0 (see Figs. 6.3
and 6.5). Let us solve the equation H.x; �/ D 0 for different values of � as a

150

100

50

–10 –5 5 10
x

p(x)

q(x)
H(x,λ)

Fig. 6.2 The homotopy H (Eq. 6.6) for the polynomials p.x/ and q.x/ (Eqs. (6.4) and (6.5),
respectively)
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50

40

30

20

10

–10

q(x)

p(x)

1 2 3 5
x

H(x,λ)

4

Fig. 6.3 Deformation of a root of the polynomial p.x/ into a root of the polynomial q.x/ for the
case of x0 D 3

Table 6.1 The roots of the
deforming polynomials for
the case of x0 D 3 (Eq. 6.7)

i �i xi

0 0.0 3.00000

1 0.2 2.30483

2 0.4 1.80000

3 0.6 1.44187

4 0.8 1.18634

5 1.0 1.00000

parameter. Considering x0 D 3, one of the solutions of p.x/ D 0, as an initial guess
value, and solving H.x; �1/ D 0, where �1 D 0:2, we employ the Newton-Raphson
method repeatedly, with �i D 0:2; 0:4; 0:6; 0:8; 1:0 (see Table 6.1 and Fig. 6.3) by

xi D NewtonRaphson .H .x; �i/ ; fx; xi�1g/ ; (6.7)

where xi�1 is the initial value for the Newton-Raphson method.
The homotopy path is the function x D x.�/, where in every point H.x; �/ D 0, see
Fig. 6.4. The points in Fig. 6.4. represent the discrete points of the homotopy path,
where H.xi; �i/ D 0 for every i D 0; : : : ; 5. The second root of Eq. (6.4) can be
computed similarly by starting from x0 D �3. We now obtain the following values,
shown in Table 6.2 and Fig. 6.5, with the points of the homotopy path shown in
Fig. 6.6.
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3.0

2.5

2.0

1.5

0.2 0.4 0.6 0.8 1.0

p(3)=0

q(1)=0

λ

x(λ)

Fig. 6.4 The path of homotopy transforming the root of p.x/ into the root of q.x/ for the case of
x0 D 3

Table 6.2 The roots of the
deforming polynomials for
the case of x0 D �3

i �i xi

0 0.0 �3.00000

1 0.2 �3.90483

2 0.4 �5.00000

3 0.6 �6.24187

4 0.8 �7.58634

5 1.0 �9.00000

80

60

40

20

–20

x

p(x)

–2–4–6–8–10

q(x)

H(x,λ)

Fig. 6.5 Deformation of a root of the polynomial p.x/ into a root of the polynomial q.x/ for the
case of x0 D �3
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0.2 0.4 0.6 0.8 1.0

q(–9)=0

p(–3)=0–3

–4

–5

–6

–7

–8

x(λ)

λ

Fig. 6.6 The path of homotopy transforming the root of p.x/ into the root of q.x/ for the case of
x0 D �3

6.4.1 Tracing Homotopy Path as Initial Value Problem

Comparing the homotopy solution with the traditional Newton-Raphson solution,
if �� is small enough, the convergence may be ensured in every step. One can
consider this root-tracing problem as an initial value problem of an ordinary
differential equation. Considering H.x; �/ D 0 for every � 2 Œ0; 1�, therefore

dH.x; �/ D @H

@x
dxC @H

@�
d� � 0 � 2 Œ0; 1�: (6.8)

Then the initial value problem is

Hx
dx.�/

d�
C H� D 0 (6.9)

with

x.0/ D x0: (6.10)

Here, Hx is the Jacobian of H with respect to xi, i D 1; : : : ; n, for the case of n
nonlinear equations with n variables. In our single variable case, see Eq. (6.6),

@H

@x
D 2xC 8� (6.11)
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and

@H

@�
D 8x: (6.12)

Considering that x D x.�/, we obtain

dx.�/

d�
D �H�

Hx
D � 8x.�/

2x.�/C 8� D �
4x.�/

x.�/C 4� (6.13)

with the initial value

x.0/ D 3: (6.14)

The initial value problem given by Eqs. (6.13) and (6.14) can be solved by any
numerical integration technique. The most simple is the Euler method and the most
popular is the Runge-Kutta method and its numerous variations, see [117]. Here
we employed the built-in solver of Mathematica, NDSolve, see [257, 397]). The
numerical solution of this initial value problem can be seen in Fig. 6.7 for the case
of x0 D 3.

This is the continuous path of the homotopy function, Eq. (6.6), where in every
point H.x; �/ � 0. Then one of the roots of the target system, Eq. (6.4) is x.1/ D 1.
Considering x0 D �3 as the initial value, we get the other root, x.1/ D �9. In the

0.2 0.4 0.6 0.8 1.0

2.5

2.0

3.0

1.5

x(λ)

λ

Fig. 6.7 Solution of homotopy equation as an the initial value problem
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multivariate case we have to compute the inverse of the Jacobian, namely the initial
value problem which is expressed as

dx.�/

d�
D �H�1

x H� (6.15)

with

x.0/ D x0: (6.16)

Here H�1
x is the inverse of the Jacobian Hx with respect to xi, i D 1; : : : ; n, in the case

of n nonlinear equations with n variables. To carry out the numerical integration, any
numerical method can be used, for example the Runge-Kutta method. The inverse
can be computed in a symbolic way for a limited size like n = 6 or 8. For larger
systems, a special method is employed, which is more effective than any other
standard numerical computation of the inverse of a matrix, see [187]. We consider a
new parameter in Eq. (6.8), namely the parameter t, then

dH.x.t/; �.t// D @H

@x
dx.t/C @H

@�
d�.t/ � 0 �.t/ 2 Œ0; 1�: (6.17)

This means that with s.t/ D fx.t/; �.t/g we obtain

Hs.s.t//
ds

dt
D 0; (6.18)

where Hs is the Jacobian of the homotopy function with respect to s having nC 1
dimensions. Then the ith derivative function can be expressed as

dsi

dt
D .�1/iC1 det

�
H.1/

s ; : : : ;H.i�1/
s ;H.iC1/

s ; : : : ;H.nC1/
s

�
; (6.19)

where H.i/
s is the ith column of the Jacobian matrix Hs.s.t//, see [187]. However,

in that case one needs to check the upper bound of the integration parameter, since
integration should be carried out up to t�, where �.t�/ D 1, see e.g., [87]. Therefore,
it is reasonable to eliminate the last derivative of vector s, namely

dsnC1
dt
D d�

dt
: (6.20)

Considering that

dsi

dt
D dxi

dt
D dxi

d�

d�

dt
D dxi

d�

dsnC1
dt

; (6.21)
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and

dxi

d�
D dxi

dt
=

d�

dt
D dsi

dt
=

dsnC1
dt

; (6.22)

for i D 1; 2; : : : ; n. The integration now can be carried out with the independent
variable � on [0, 1].

Sometimes the integration can fail because of a singularity in the Jacobi matrix of
H.x; �/. In order to avoid this, we consider a modified complex homotopy function,

H.x; �/ D �.1� �/p1.x/C �q1.x/ (6.23)

where � is a random complex number. Consequently the homotopy path goes in
the region of the complex number thus avoiding singularity in the real domain.
For almost all choices of a complex constant � , all solution paths defined by the
homotopy above are regular, i.e.: for all � 2 Œ0; 1�, the Jacobian matrix of H.x; �/ is
regular and no path diverges.

6.4.2 Types of Linear Homotopy

As we have seen, the start system can be constructed intuitively, reducing the
original system (target system) to a more simple system (start system), whose roots
can be easily computed. In order to obtain all roots of the target system, the start
system should have as many roots as the target system.1 The start system can be
constructed in many ways, however there are two typical types of the start systems
which are usually employed.

6.4.2.1 Fixed Point Homotopy

The start system can be considered as

p.x/ D x � x0 (6.24)

where x0 is a guess value for the root of the target system q.x/ D 0. In this case, the
homotopy function is

H.x; �/ D .1 � �/ .x � x0/C �q.x/: (6.25)

1Remark: However, there are certain theorems that place smoothness restrictions on the input
functions, under which all solutions of the target system are found. See [10].
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6.4.2.2 Newton Homotopy

Another construction for the start system is to consider p.x/ as

p.x/ D q.x/� q.x0/: (6.26)

In this case the homotopy function is

H.x; �/ D .1 � �/.q.x/� q.x0//C �q.x/ (6.27)

or

H.x; �/ D q.x/� .1 � �/q.x0/: (6.28)

Although the Newton homotopy is one of the easiest homotopies to use, one
does not have guarantees that all solutions will be found, see [122]. There are other
methods to construct start systems for linear homotopy. In the following section, we
shall see how one can define a start system for polynomial systems automatically.

6.4.2.3 Start System for Polynomial Systems

A fundamental question is, how can we find the proper start system,
which will provide all solutions of the target system? This problem can
be solved if the nonlinear system is specially a system of polynomial
equations.

Let us consider the case where we are looking for the homotopy solution of f .x/ D
0, where f .x/ is a polynomial system, f .x/ W Rn ! R

n. To get all solutions, one
should find a proper polynomial system as the start system, g.x/ D 0, where g.x/ W
R

n ! R
n with known and easily computable solutions. An appropriate start system

can be generated in the following way, see [263].
Let fi.x1; : : : ; xn/, i D 1; : : : ; n be a system of n polynomials. We are interested in

the common zeros of the system, namely f D .f1.x/; : : : ; fn.x// D 0. Let dj denote
the degree of the jth polynomial – that is the degree of the highest order monomial
in the equation. Then such a starting system is,

gj.x/ D ei�j

	
x

dj

j �
�
ei	j
�dj


D 0; j D 1; : : : ; n (6.29)

where �j and 	j are random real numbers in the interval [0, 2 �] and here i is
the imaginary value. If no random complex numbers are introduced for the initial
values, this may lead to singularity in the Jacobian of the Newton’s method. The
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equation above has the obvious particular solution xj D ei	j and the complete set of
the starting solutions for j D 1; : : : ; n is given by

e
i
	
	jC 2�k

dj



; k D 0; 1; : : : ; dj � 1: (6.30)

Bezout’s theorem, see [308], states that the number of isolated roots of such a
system is bounded by the total degree of the system, d D d1d2 
 
 
 dn. We illustrate
the discussion above by means of Example 6.1. However, we should mention, that
there is a tighter upper bound for the number of the solutions introduced as the
BKK-bound (due to contributions by Bernstein, Khovanskii and Kushnirenko) and
using “mixed volumes”, see [81, 82]. For dense systems, i.e., if all monomials have
non-zero coefficients, this quantity gives us back the Bezout’s bound, whereas in
many other cases it might be much smaller.

Example 6.1 Let us consider the following system

f1.x; y/ D x2 C y2 � 1 (6.31)

f2.x; y/ D x3 C y3 � 1: (6.32)

With the degrees of the polynomials being d1 D 2 and d2 D 3, this system has
six pairs of roots (i.e., d1d2 D 2�3 D 6) listed in Table 6.3 resulting from the direct
solution.
Now we compute a start system and its solutions by considering Eqs. (6.29)
and (6.30) with n D 2 and x1 D x; and x2 D y, the resulting start system consisting
of two equations. Employing Eq. (6.29), the first equation is

g1.x; y/ D ei�1.xd1 � �ei	1
�d1
/ (6.33)

or in its trigonometric form

g1.x; y/ D .cos�1 C i sin�1/
�
x2 � .cos 	1 C i sin 	1/2

�
: (6.34)

Table 6.3 Roots of system
Eqs. (6.31)–(6.32)

x y

0 1

0 1

1 0

1 0

�1� i
p

2
�1C i

p

2

�1C i
p

2
�1� i

p

2
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which can be simplified as

g1.x; y/ D
�
x2 � cos 2	1 � i sin 2	1

�
.cos�1 C i sin �1/ (6.35)

Generating two real random numbers, 	1 and �1 in the interval [0, 2 �], we may get

g1.x; y/ D .0:673116C 0:739537i/
��0:933825C 0:35773iC x2

�
: (6.36)

The second equation can be generated in the same way with randomly generated
real numbers, 	2 and �2.

g2.x; y/ D .�0:821746� 0:569853i/
��0:957532� 0:288325iC y3

�
: (6.37)

The first equation has the following roots, considering Eq. (6.30) with d1 D 2

x1 D ei.	1C 2�0
2 / D 0:983317� 0:1819i; (6.38)

and

x2 D ei.	1C 2�1
2 / D �0:983317C 0:1819i: (6.39)

Similarly, the second equation has three roots, d2 D 3

y1 D ei.	2C 2�0
3 / D �0:413328� 0:910582i (6.40)

y2 D ei.	2C 2�1
3 / D 0:995251C 0:0973382i (6.41)

y3 D ei.	2C 2�2
3 / D �0:581923C 0:813244i: (6.42)

All combinations of these roots
˚
xi; yj

�
are the roots of the start system,

fx1; y1g D f0:983317� 0:1819i;�0:413328� 0:910582ig (6.43)

fx1; y2g D f0:983317� 0:1819i; 0:995251C 0:0973382ig (6.44)

fx1; y3g D f0:983317� 0:1819i;�0:581923C 0:813244ig (6.45)

fx2; y1g D f�0:983317C 0:1819i;�0:413328� 0:910582ig (6.46)

fx2; y2g D f�0:983317C 0:1819i; 0:995251C 0:0973382ig (6.47)

fx2; y3g D f�0:983317C 0:1819i;�0:581923C 0:813244ig (6.48)
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The homotopy function is given by

H.x; y; �/ D .1 � �/
�

g1.x; y/
g2.x; y/

�
C �

�
f1.x; y/
f2.x; y/

�
; (6.49)

and the corresponding differential equation system

d

d�

�
x.�/
y.�/

�
D �H�1

x;y H� (6.50)

where

Hx;y D
 
�@f1
@x C .1 � �/@g1

@x �
@f1
@y C .1 � �/@g1

@y

�
@f2
@x C .1 � �/@g2

@x �
@f2
@y C .1 � �/@g2

@y

!
(6.51)

and

H� D
�

f1.x; y/� g1.x; y/
f2.x; y/� g2.x; y/

�
: (6.52)

Hence, we must solve this system with six initial values. These initial values –
the solutions of the start system – will provide the start points of the six homotopy
paths. The end points of these paths are the six desired solutions of the original
system f1 D 0 and f2 D 0. In this case, the trajectories of the solution of the system
of differential equations, Eq. (6.50) will be complex. The curves in Fig. 6.8 shows
the homotopy paths belonging to the six initial values given by, Eqs. (6.43), (6.44),
(6.45), (6.46), (6.47) and (6.48). The curves show the paths on the complex plane,
where axis Re stands for the real and axis Im stands for the imaginary parts of
a complex number. The parameter value � is increasing along the path from the
solution of the start system, � = 0 up to the solution of the target system, � = 1, the
end point of the curve. Along the paths the homotopy function is H D 0 for all �.
The end points of the homotopy paths are listed in Table 6.4

Computations can be easily achieved using the CAS system Mathematica, as
illustrated in the Appendix A.3 where this example is solved.

Some features of our Mathematica implementation are as follows:

1. Direct computation of the homotopy paths using the standard Newton-Raphson
method.

2. Computation of the homotopy paths using numerical integration. An implicit
differential equation system can be transformed into an explicit one by computer
algebra for the case of 6–8 variables, or special numerical techniques without
inversion can be used for the case of higher dimensions.

3. Computation of a proper start system using Bezout’s theorem for systems of
multivariate polynomial equations, providing initial values for all paths of roots.
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Fig. 6.8 Homotopy paths starting from the six starting values expressed by (6.43), (6.44), (6.45),
(6.46), (6.47) and (6.48)
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Table 6.4 Homotopy
solutions of the system
described by
Eqs. (6.31)–(6.32)

x y

0. 1.

0. 1.

1. 0.

1. 0.

�1:� 0:707107i �1:C 0:707107i
�1:C 0:707107i �1:� 0:707107i

4. Visualization of the paths of all trajectories for the case of arbitrary numbers of
variables and systems.

Generally, all of these functions can be parameterized freely, that is the start system
and the type of linear homotopy can be defined by the user. In addition, any
computation can be carried out to any degree of precision.

6.5 Nonlinear Homotopy

In [401], linear homotopy was introduced and its applications to geodesy presented.
Never before had the concept of nonlinear homotopy been used by the geodetic
community. This is partly attributed to the complexity of the involved equations and
partly due to the computational time required. Recently, however, [387] suggested
the possibility of constructing nonlinear homotopy. In this section, [387] idea is
developed for geodetic applications and an example of its use illustrated.

Since the linear homotopy function H.x; �/ is just a linear combination of the
starting p.x/ and the target system q.x/, it is a first order polynomial of the homotopy
parameter � (see, e.g., [47], p. 64).

H.x; �/ D .1 � �/p.x/C �q.x/: (6.53)

It would be reasonable to think that a nonlinear homotopy, let say a second order
homotopy can be constructed as a second order polynomial of �. However [387]
suggested the following analogy to create a second order homotopy function. Nor
et al.’s [387] idea of nonlinear homotopy function comes from the construction of
the Bezier splines. Bezier curves are used to draw smooth curves along points on a
path. In case of two points (P0, P1) in Fig. 6.9, the point Q0 runs from P0 to P1 while
the parameter � changes from 0 to 1, i.e.,

!
Q0 D .1 � �/

!
P0 C �

!
P1; � 2 Œ0; 1� (6.54)
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Fig. 6.9 Linear Bezier spline

Fig. 6.10 Quadratic Bezier
spline

In case of three points (P0, P1, P2), e.g., Fig. 6.10, the point Q0 runs from P0 to
P1, while point Q1 runs from P1 to P2, i.e.,

!
Q1 D .1 � �/

!
P1 C �

!
P2; � 2 Œ0; 1� (6.55)

and point R0 runs along a smooth path from P0 to P2, i.e.,

!
R0 D .1 � �/

!
Q0 C �

!
Q1; � 2 Œ0; 1� (6.56)

or

!
R0 D .1 � �/2

!
P0 C 2.1 � �/�

!
P1 C �2

!
P2; � 2 Œ0; 1� (6.57)
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Considering analogy between the Bezier curve construction and the quadratic
homotopy function, [387] suggested the following casting,

P0 � p.x/
P1 � H.x; �/

P2 � q.x/;
(6.58)

from which the second order homotopy function becomes

H2.x; �/ D .1 � �/2p.x/C 2�.1� �/H.x; �/C �2q.x/
D .1 � �/2p.x/C 2�.1� �/..1 � �/p.x/C �q.x//C �2q.x/; (6.59)

which surprisingly is a third order polynomial of �.
Example of its Application to Geodesy (GPS Pseudorange Problem)Example of its Application to Geodesy (GPS Pseudorange Problem)Example of its Application to Geodesy (GPS Pseudorange Problem): In order to

discover the features of this nonlinear homotopy, the overdetermine GPS positioning
problem (i.e., the case of n > 4 satellite) is illustrated. The prototype equation
expressing the known satellite positions .ai; bi; ci/, unknown receiver position
.x1; x2; x3/, ands clock bias .x4/ is

gi D di �
q
.x1 � ai/

2 C .x2 � bi/
2 C .x3 � ci/

2 � x4; (6.60)

for i D 1; 2; : : : n. The overdetermined system can then be converted into a
determined system using the least square technique. Given the objective function
to be minimized as

G .x1; x2; x3; x4/ D
nX

iD1
g2i ; (6.61)

its partial derivative with respect to the unknown receiver position and clock bias
variables xi; i D 1; 2; : : : 4 leads to a determined nonlinear system of four equations

g1 DP�1Cn
iD0 �

2.x1�ai/
	
�x4�
p
.x1�ai/

2C.x2�bi/
2C.x3�ci/2Cdi



p
.x1�ai/

2C.x2�bi/
2C.x3�ci/

2

g2 DP�1Cn
iD0 �

2.x2�bi/
	
�x4�
p
.x1�ai/

2C.x2�bi/
2C.x3�ci/2Cdi



p
.x1�ai/

2C.x2�bi/
2C.x3�ci/

2

g3 DP�1Cn
iD0 �

2.x3�ci/
	
�x4�
p
.x1�ai/

2C.x2�bi/
2C.x3�ci/2Cdi



p
.x1�ai/

2C.x2�bi/
2C.x3�ci/

2

g4 DP�1Cn
iD0 �2

�
�x4 �

q
.x1 � ai/

2 C .x2 � bi/ 2 C .x3 � ci/
2 C di

�
:

(6.62)
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Table 6.5 Results of the
solutions of the GPS
pseudorange problem from
various methods

Method Running time (s) Norm of error

Linear homotopy (1) 1.30 0.04424

Nonlinear homotopy 1.94 0.03125

Numerical Groebner basis 0.06 0.0690

Linear homotopy (2) 2.58 0.0358

The resulting determined system above is then solved using both linear and
nonlinear second order homotopy. The starting system can be created via fixed point
homotopy see, e.g., [401]. First computations are made with the same medium step
size for both linear as well as nonlinear homotopy. The results of the computations
are summarized in Table 6.5 where they shows the running time of the nonlinear
homotopy to be higher than that of the linear homotopy, but with smaller error. To
clarify the situation, a second computation with linear homotopy (2) using smaller
step size in order to decrease its error was undertaken. In that case, the running
time increased considerably and the error was higher than that of the nonlinear
homotopy. It means that nonlinear homotopy may provide shorter running time
at the same error limit. As a check to the computation, the system of nonlinear
equations is solved using numerical Groebner basis. Groebner basis leads to a faster
computational time but with higher error. Considering its running time, one should
take into consideration that numerical Groebner basis is a compiled function, while
the homotopy function runs in interpreter mode.

6.6 Concluding Remarks

As demonstrated in these examples, the homotopy method proves to be a powerful
solution tool in solving nonlinear geodetic problems, especially if it is difficult to
find proper initial values to ensure the convergence of local solution methods. Linear
homotopy is robust and enlarges the convergency region of the local methods. This
global numerical method can be successful when symbolic computation based on
Groebner basis or Dixon resultant fail because of the size and complexity of the
problem. However, to reduce the number of paths to be traced as indicated by
Bezout’s theorem as the upper bound of the number of solutions, it is important to
find a proper starting system to ensure fewer initial value problems to solve. Since
the different homotopy paths can be traced independently, parallel computations can
be efficiently employed reducing the computation time considerably.

This method provides the geodesy community with an additional powerful
mathematical tool that is useful, not only in root finding, but also in solving complex
problems that can be transformed into systems of polynomial equations. We have
also shown that it offers faster computations and in some cases solves complex
problems where existing methods such as Groebner basis or even local numerical
methods, such as Newton-type methods, fail.



Chapter 7
Solutions of Overdetermined Systems

“Pauca des Matura” – a few but ripe – C. F. Gauss

7.1 Estimating Geodetic and Geoinformatics Unknowns

In geodesy and geoinformatics, field observations are normally collected with the
aim of estimating parameters. Very frequently, one has to handle overdetermined
systems of nonlinear equations. In such cases, there exist more equations than
unknowns, therefore “the solution” of the system can be interpreted only in a certain
error metric, i.e., least squares sense.

In geodynamics for example, GPS and gravity measurements are undertaken with
the aim of determining crustal deformation. With improvement in instrumentation,
more observations are often collected than the unknowns. Let us consider a simple
case of measuring structural deformation. For deformable surfaces, such as mining
areas, or structures (e.g., bridges), several observable points are normally marked
on the surface of the body. These points would then be observed from a network of
points set up on a non-deformable stable surface. Measurements taken are distances,
angles or directions which are normally more than the unknown positions of the
points marked on the deformable surface leading to redundant observations.

Procedures that are often used to estimate the unknowns from the measured
values will depend on the nature of the equations relating the observations to the
unknowns. If these equations are linear, then the task is much simpler. In such cases,
any procedure that can invert the normal equation matrix such as least squares,
linear Gauss-Markov model etc., would suffice. Least squares problems can be
linear or nonlinear. The linear least squares problem has a closed form (exact)
solution while the nonlinear problem does not. They first have to be linearized and
the unknown parameters estimated by iterative refinements; at each iteration the
system is approximated by a linear one.

Procedures for estimating parameters in linear models have been documented
in [303]. Press et al. [417] present algorithms for solving linear systems of
equations. If the equations relating the observations to the unknowns are nonlinear
as already stated, they have first to be linearized and the unknown parameters
estimated iteratively using numerical methods. The operations of these numerical
methods require some approximate starting values. At each iteration step, the
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preceding estimated values of the unknowns are improved. The iteration steps are
repeated until the difference between two consecutive estimates of the unknowns
satisfies a specified threshold. Procedures for solving nonlinear problems such as
the Steepest-descent, Newton’s, Newton-Rapson and Gauss-Newton’s have been
discussed in [417, 482]. In particular, [482] recommends the Gauss-Newton’s
method as it exploits the structure of the objective function (sum of squares) that
is to be minimized. In [484], the manifestation of the nonlinearity of a function
during the various stages of adjustment is considered. While extending the work
of [311] on nonlinear adjustment with respect to geometric interpretation, [220, 221]
have presented the necessary and sufficient conditions for least squares adjustment
of nonlinear Gauss-Markov model, and provided the geometrical interpretation
of these conditions. Another geometrical approach include the work of [90],
while non geometrically treatment of nonlinear problems have been presented
by [68, 314, 365, 415, 454, 458].

This Chapter presents different approaches for solving the problem. Two proce-
dures; the Algebraic LEast Square Solution (ALESS) discussed in Sect. 7.2 and
the Gauss-Jacobi combinatorial approach presented in Sect. 7.3. For the ALESS
approach, the original problem is transformed into a minimization problem con-
structing the objective function symbolically. The overdetermined system is then
converted into a determined one by defining the objective function as the sum of the
square of residuals of the equations. The necessary condition for the minimum is set
such that each partial derivatives of the objective function should be zero. In this
case the determined model will consist of as many equations as many parameters
that were in the original overdetermined model.

7.2 Algebraic LEast Square Solution (ALESS)

7.2.1 Transforming Overdetermined Systems to Determined

Let � be the objective function to be minimized

�.p1; p2; : : : ; pn/ D
X

f 2i ; (7.1)

where n is the number of the unknown parameters – pj . j D 1 : : : n) – and fi .i D
1 : : :m/ are the observational equations. The objective function should be minimized
according to the necessary condition of the minimum,

@�

@p1
D 0; @�

@p2
D 0; : : : ; @�

@pn
D 0: (7.2)
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Now the system consists of as many equations as the number of the unknown
parameters. The solution of the original, overdetermined system (in least square
sense) will also be the solution of this “square determined system”.

Let us suppose, that our nonlinear system is a system of multivariate polynomial
equations, then the following theorem can be considered:

Theorem 7.1 Given m algebraic (polynomial) observational equations, where m is
the dimension of the observation space Y of order l in n unknown variables, and n
is the dimension of the parameter space X. Then there exists n normal equations of
the polynomial order .2l� 1/ to be solved with algebraic methods.

This solution will be the algebraic least square solution (ALESS) of the overdeter-
mined system.

Proof

Let us consider the following system,

e1.x; y/ D x2 C y � 3

e2.x; y/ D xC 1

8
y2 � 1

e3.x; y/ D x � y

(7.3)

here n D 2, m D 3 and l D 2. The objective function to be minimized is

� D e21Ce22Ce23 D 10�2x�4x2Cx4�6y�2xyC2x2yC7
4

y2C1
4

xy2C 1

64
y4: (7.4)

The total order of the objective function is 2l D 4. The overdetermined system
has a solution from the point of view of least square sense, the global minimum of
this objective function.

Now, We need to find the solutions of the original system by solving the
determined problem. Considering the necessary condition for the minimum as

f1 D @�

@x
D �2 � 8xC 4x3 � 2yC 4xyC 1

4
y2 D 0

f2 D @�

@y
D �6 � 2xC 2x2 C 7

2
yC 1

2
xyC 1

16
y3 D 0;

(7.5)

one obtains the determined system where the total order of both equations is 3, i.e.,
2l�1 D 3. Therefore, according to Bezout’s theorem, the number of the roots of the
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system is at most 3�3 D 9. Solving this square system leads to 6 complex solutions
and 3 real ones. The real solutions are

x1 D �1:371 y1 D �0:177989
x2 D 1:24747 y2 D 1:27393
x3 D �2:69566 y3 D �4:24638;

(7.6)

which upon being substituted to the objective function � results into the residuals
(ri) as

r1 D 8:71186
r2 D 0:232361
r3 D 4:48362:

(7.7)

From these residuals, the admissible real solutions is the one which provides the
least value of the residual (ri), i.e., the second solution. In this case, the solution in
least squares sense is

x2 D 1:24747 y2 D 1:27393: (7.8)

|
Comparing the method to the direct global minimization, one may realize that

the so called “parasitic” roots arise, i.e., 9 instead of 1.

7.2.2 Solving the Determined System

It is possible to find the solutions of the determined square system using local or
global methods. Local methods such as the extended Newton-Raphson (see Chap. 8)
or homotopy (see Chap. 6)) can be used if a good initial values are known. Usually,
these initial values can be calculated from the solution of a minimal subset (see
Palancz et al. [398, 399, 547]). Using global methods, one should find all of the
real solutions of the determined system representing the original overdetermined
system. This is then followed by selecting solutions that provide the least value of
the objective function (global minimum).

Let us examine two methods of finding all of the roots of the previous polynomial
system (Eq. 7.5). The two main types of the algebraic methods that are at our
disposal, which we have encountered in the previous chapters are:

• symbolic solutions using computer algebra as resultants or Groebner basis
• global numerical methods like linear homotopy
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As an illustration, considering our problem, we solve the polynomial system via
reduced Groebner basis using Mathematica as

GroebnerBasisŒff1; f2g; fx; yg; fyg�
GroebnerBasisŒff1; f2g; fx; yg; fxg�;

which leads to

� 318C 256x� 231x2 � 292x3 C 166x4 C 186x5 C 44x6 � 56x7 C 8x9 D 0;
� 24576� 110592yC 147456y2 � 39168y3C 2016y5 � 48y6 C 104y7 C y9 D 0:

Solving the above univariate polynomials provide the real solution for variable x as

x1 D �2:69566 x2 D �1:371 x3 D 1:24747;

and those of the variable y as

y1 D �4:24638 y2 D �0:177989 y3 D 1:27393;

which are the same solutions we obtained in the previous section. The solutions
giving minimum residuals (Eq. 7.4) are

x D 1:24747 y D 1:27393:

In general, for exact solution of determined systems, NSolve, the built-in function
of Mathematica, which utilize numerical Groebner basis seems to be a good choice.
However, if the system has many roots without physical meaning and one does not
need to compute all of the roots, the linear homotopy of fixed point or FindRoot
built-in Mathematica can be an appropriate method. Whereas the statement above
refers to Mathematica, it is essential for users to know that other algebraic packages,
e.g., Matlab and Maple also have similar capabilities as Mathematica.

To demonstrate the global numerical method, let us employ the linear homotopy.
As our example is a polynomial system, we can use the automatically generated
start systems with random complex numbers (see Sect. 6.4.2.3). The target system
is given by

f1.x; y/ D �2 � 8xC 4x3 � 2yC 4xyC 1

4
y2 D 0

f2.x; y/ D �6 � 2xC 2x2 C 7

2
yC 1

2
xyC 1

16
y3 D 0:



94 7 Solutions of Overdetermined Systems

with x; y variables. The degrees of the polynomials are d1 D 3 and d2 D 3. The start
system is given by

g1.x; y/ D .�0:814932C 0:579556i/.�0:550639C 0:834743iC x3/

g2.x; y/ D .0:858366� 0:513038i/.�0:77� 0:638044iC y3/

and its initial values, the solutions of the start system are presented in Table 7.1.
The number of paths is 9. Employing the direct path tracing technique we get as

solutions in Table 7.2.
The real solutions are the same as we have seen before. The paths of the good

solution can be seen in Fig. 7.1.

Table 7.1 Initial values of
the homotopy function

x y

�0:193155 C 0:981168i �0:288775 � 0:957397i
�0:193155 C 0:981168i 0:973518 C 0:228612i
�0:193155 C 0:981168i �0:684743 C 0:728785i
�0:753139 � 0:657861i �0:288775 � 0:957397i
�0:753139 � 0:657861i 0:973518 C 0:228612i
�0:753139 � 0:657861i �0:684743 C 0:728785i
0:946294 � 0:323307i �0:288775 � 0:957397i
0:946294 � 0:323307i 0:973518 C 0:228612i
0:946294 � 0:323307i �0:684743 C 0:728785i

Table 7.2 End points of the
homotopy paths

x y

�1:371 �0:177989
�0:987112 C 1:25442i 2:21036C 1:61614i
�2:69566 �4:24638
0:33941C 0:679091i �0:606933� 7:81887i

�0:987112 � 1:25442i 2:21036� 1:61614i
0:33941� 0:679091i �0:606933C 7:81887i
2:0573C 1:28006i �0:0282082 � 7:43985i
1:24747 1:27393

2:0573� 1:28006i �0:0282082 C 7:43985i
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Fig. 7.1 The paths of the good solution
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7.3 Gauss-Jacobi Combinatorial Algorithm

In this section a combinatorial method is presented. The advantage of this method
is that solving a sub-problems in symbolic form, the numerical solution of all of the
combinatorial subproblems can be speedily computed, and using proper weighting
technique, the solutions can be easily achieved. However, the disadvantage of the
method is that for a vastly overdetermined problem, combinatorial explosion results.
To avoid this, one of the appropriate approaches is to solve a few sub-problems in
a closed form and choose the initial solutions that are in the correct vicinity of the
desired solutions and use them as starting values for a least square optimization. In
Mathematica for example, choosing initial solutions that are in the correct vicinity
would involve calling FindMinimum, (Lichtblau, Private Communication) and in
Lichtblau[269]. Alternatively, another local method, e.g., the Extended Newton-
Raphson method discussed in Chap. 8 can also be employed starting with the
weighted sub-problem solutions.

7.3.1 Combinatorial Approach: The Origin

Presented in this chapter is an alternative approach to traditional iterative numerical
procedures for solving overdetermined problems, i.e., where more observations than
unknown exist. This approach, which we call the Gauss-Jacobi combinatorial has
the following advantages:

1. From the start, the objective is known.
2. It does not require linearization.
3. The need for iteration does not exist.
4. The variance-covariance matrices of all parameters are considered.
5. It can be exploited for outlier diagnosis.

The combinatorial approach traces its roots to the work of C. F. Gauss which was
published posthumously (see Appendix A.2). Whereas the procedures presented
in Chaps. 4 and 5 solve nonlinear systems of equations where the number of
observations n and unknowns m are equal, i.e., n D m, Gauss-Jacobi combinatorial
solves the case where n > m. In Fig. 4.1 on p. 38 for example, two distance
measurements from known stations P1 and P2 were used to determine the position
of unknown station P0. Let us assume that instead of the two known stations, a third
distance was measured from point P3 as depicted in Fig. 7.2. In such a case, there
exist three possibilities (combinations) for determining the position of the unknown
station P0. Recall that for Fig. 4.1 on p. 38, two nonlinear distance equations were
written (e.g., Eqs. 4.1 and 4.2). For Fig. 7.2, systems of distance equations could
be written for combinations fP1P0P2g, fP1P0P3g and fP2P0P3g. For combination
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Fig. 7.2 Planar distance
observations

P2
P1

P0

P3

fP1P0P2g for example, one writes

d21 D .x1 � x0/
2 C .y1 � y0/

2 (7.9)

and

d22 D .x2 � x0/
2 C .y2 � y0/

2: (7.10)

Equations (7.9) and (7.10) lead to solutions fx0; y0g1;2 as position of the unknown
station P0, where the subscripts indicate the combinations used. Combination
fP1P0P3g gives

d21 D .x1 � x0/
2 C .y1 � y0/

2 (7.11)

and

d23 D .x3 � x0/
2 C .y3 � y0/

2; (7.12)

leading to solutions fx0; y0g1;3 as the position of the unknown station P0. The last
combination fP2P0P3g has

d22 D .x2 � x0/
2 C .y2 � y0/

2 (7.13)

and

d23 D .x3 � x0/
2 C .y3 � y0/

2; (7.14)

as its system of equations leading to solutions fx0; y0g2;3. The solutions fx0; y0g1;2,
fx0; y0g1;3 and fx0; y0g2;3 from these combinations are however not the same due to
unavoidable effects of random errors. It is in attempting to harmonize these solutions
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to give the correct position of point P0 that C. F. Gauss proposed the combinatorial
approach. He believed that plotting these three combinatorial solutions resulted in an
error figure with the shape of a triangle. He suggested the use of weighted arithmetic
mean to obtain the final position of point P0. In this regard the weights were obtained
from the products of squared distances P0P1, P0P2 and P0P3 (from unknown station
to known stations) and the square of the perpendicular distances from the sides of the
error triangle to the unknown station. According to [381, pp. 272–273], the motto
in Gauss seal read “pauca des matura” meaning few but ripe. This belief led him
not to publish most of his important contributions. For instance, [381, pp. 272–273]
writes

Although not all his results were recorded in the diary (many were set down only in letters
to friends), several entries would have each given fame to their author if published. Gauss
knew about the quaternions before Hamilton. . . .

Unfortunately, the combinatorial method, like many of his works, was later to be
published after his death (see e.g., Appendix A.2). Several years later, the method
was independently developed by C. G. I. Jacobi [285] who used the square of
the determinants as the weights in determining the unknown parameters from the
arithmetic mean. Werkmeister [519] later established the relationship between the
area of the error figure formed from the combinatorial solutions and the standard
error of the determined point. In this book, the term combinatorial is adopted
since the algorithm uses combinations to get all the finite solutions from which
the optimum value is obtained. The optimum value is obtained by minimizing the
sum of square of errors of pseudo-observations formed from the combinatorial
solutions. For combinatorial optimization techniques, we refer to [176]. We will
refer to this combinatorial approach as the Gauss-Jacobi combinatorial algorithm
in appreciation of the work done by both C. F. Gauss and C. G. I. Jacobi.

In the approaches of C. F. Gauss and later C. G. I. Jacobi, one difficulty however
remained unsolved. This was the question of how the various nonlinear systems of
equations, e.g., (7.9 and 7.10), (7.11 and 7.12) or (7.13 and 7.14) could be solved
explicitly! The only option they had was to linearize these equations, which in
essence was a negation of what they were trying to avoid in the first place. Had
they been aware of algebraic techniques that we saw in Chaps. 4 and 5, they could
have succeeded in providing a complete algebraic solution to the overdetermined
problem. In this chapter, we will complete what was started by these two gentlemen
and provide a complete algebraic algorithm which we name in their honour.
This algorithm is designed to provide a solution to the nonlinear Gauss-Markov
model. First we define both the linear and nonlinear Gauss-Markov model and then
formulate the Gauss-Jacobi combinatorial algorithm in Sect. 7.3.3.
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7.3.2 Linear and Nonlinear Gauss-Markov Models

Linear and nonlinear Gauss-Markov models are commonly used for parameter
estimation. Koch [303] presents various models for estimating parameters in linear
models, while [222] divide the models into non-stochastic, stochastic and mixed
models. We limit ourselves in this book to the simple or special Gauss Markov
model with full rank. For readers who want extensive coverage of parameter
estimation models, we refer to the books of [222, 303]. The use of the Gauss-Jacobi
combinatorial approach proposed as an alternative solution to the nonlinear Gauss-
Markov model will require only the special linear Gauss-Markov model during
optimization. We start by defining the linear Gauss-Markov model as follows:

Definition 7.1 (Special linear Gauss-Markov model) Given a real n � 1 random
vector y 2 R

n of observations, a real m � 1 vector � 2 R
m of unknown fixed

parameters over a real n � m coefficient matrix A 2 R
n�m; a real n � n positive

definite dispersion matrix †; the functional model

A� D Efyg;Efyg 2 R.A/; rkA D m;† D Dfyg; rk† D n (7.15)

is called special linear Gauss-Markov model with full rank.

The unknown vector � of fixed parameters in the special linear Gauss-Markov
model (7.15) is normally estimated by Best Linear Uniformly Unbiased Estimation
BLUUE, defined in [222, p. 93] as

Definition 7.2 (Best Linear Uniformly Unbiased Estimation BLUUE) An m�1
vector O� D Ly C � is V � BLUUE for � (Best Linear Uniformly Unbiased
Estimation) respectively the .V �Norm) in (7.15) when on one hand it is uniformly
unbiased in the sense of

Ef O�g D EfLyC �g D � for all � 2 R
m; (7.16)

and on the other hand in comparison to all other linear uniformly unbiased
estimators give the minimum variance and therefore the minimum mean estimation
error in the sense of

trDf O�g D Ef. O� � �/0. O� � �/g D
D �2L†L D kLk2V D min

L
;

(7.17)

where L is a real m � n matrix and � an m � 1 vector.

Using (7.17) to estimate the unknown fixed parameters’ vector � in (7.15) leads to

O� D .A0†�1A/�1A0†�1y; (7.18)
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with its regular dispersion matrix

Df O�g D .A0†�1A/�1: (7.19)

Equations (7.18) and (7.19) are the two main equations that are applied during the
combinatorial optimization. The dispersion matrix (variance-covariance matrix) †

is unknown and is obtained by means of estimators of type MINQUE, BIQUUE or
BIQE as in [202, 422–426, 457]. In Definition 7.1, we used the term ‘special’. This
implies the case where the matrix A has full rank and A0†�1A is invertible, i.e.,
regular. In the event that A0†�1A is not regular (i.e., A has a rank deficiency), the
rank deficiency can be overcome by procedures such as those presented by [222,
pp. 107–165], [303, pp. 181–197] and [102, 218, 219, 367, 371, 408] among others.

Definition 7.3 (Nonlinear Gauss-Markov model) The model

Efyg D y � e D A.�/;Dfyg D †; (7.20)

with a real n � 1 random vector y 2 R
n of observations, a real m� 1 vector � 2 R

m

of unknown fixed parameters, n � 1 vector e of random errors (with zero mean
and dispersion matrix †), A being an injective function from an open domain into
n�dimensional space R

n.m < n/ and E the “expectation” operator is said to be a
nonlinear Gauss-Markov model.

While the solution of the linear Gauss-Markov model by Best Linear Uniformly
Unbiased Estimator (BLUUE) is straight forward, the solution of the nonlinear
Gauss-Markov model is not straight forward owing to the nonlinearity of the
injective function (or map function) A that maps Rm to R

n. The difference between
the linear and nonlinear Gauss-Markov models therefore lies on the injective
function A. For the linear Gauss-Markov model, the injective function A is linear
and thus satisfies the algebraic axiom discussed in Chap. 2, i.e.,

A.˛�1 C ˇ�2/ D ˛A.�1/C ˇA.�2/; ˛; ˇ 2 R; �1; �2 2 R
m: (7.21)

The m–dimensional manifold traced by A.:/ for varying values of � is flat. For
the nonlinear Gauss-Markov model on the other hand, A.:/ is a nonlinear vector
function that maps R

m to R
n tracing an m–dimensional manifold that is curved.

The immediate problem that presents itself is that of obtaining a global minimum.
Procedures that are useful for determining global minimum and maximum can be
found in [417, pp. 387–448].

In geodesy and geoinformatics, many nonlinear functions are normally assumed
to be moderately nonlinear thus permitting linearization by Taylor series expansion
and then applying the linear model (Definition 7.1, Eqs. 7.18 and 7.19) to estimate
the unknown fixed parameters and their dispersions [303, pp. 155–156]. Whereas
this may often hold, the effect of nonlinearity of these models may still be sig-
nificant on the estimated parameters. In such cases, the Gauss-Jacobi combinatorial
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algorithm presented in Sect. 7.3.3 can be used as we will demonstrate in the chapters
ahead.

7.3.3 Gauss-Jacobi Combinatorial Formulation

The C. F. Gauss and C. G. I Jacobi [285] combinatorial Lemma is stated as follows:

Lemma 7.1 (Gauss-Jacobi combinatorial) Given n algebraic observation equa-
tions in m unknowns, i.e.,

a1xC b1y � y1 D 0
a2xC b2y � y2 D 0
a3xC b3y � y3 D 0;

: : : :

(7.22)

for the determination of the unknowns x and y, there exist no set of solutions fx; ygi;j
from any combinatorial pair in (7.22) that satisfy the entire system of equations.
This is because the solutions obtained from each combinatorial pair of equations
differ from the others due to the unavoidable random measuring errors. If the
solutions from the pair of the combinatorial equations are designated x1;2; x2;3; : : :
and y1;2; y2;3; : : : with the subscripts indicating the combinatorial pairs, then the
combined solutions are the sum of the weighted arithmetic mean

�

�

�

�

x D �1;2x1;2 C �2;3x2;3 C : : : :
�1;2 C �2;3 C : : : : ; y D �1;2y1;2 C �2;3y2;3 C : : : :

�1;2 C �2;3 C : : : : ; (7.23)

with f�1;2; �2;3; : : :g being the weights of the combinatorial solutions given by the
square of the determinants as

�1;2 D .a1b2 � a2b1/2

�2;3 D .a2b3 � a3b2/2

: : : :

(7.24)

The results are identical to those of least squares solution in linear case.

The proof of Lemma 7.1 is given in [278] and [514, pp. 46–47]. For nonlinear
cases however, the results of the combinatorial optimization may not coincide with
those of least squares as will be seen in the coming chapters. This could be attributed
to the remaining traces of nonlinearity following linearization of the nonlinear
equations in the least squares approach or the generation of weight matrix by the
combinatorial approach. We will later see that the combinatorial approach permits
linearization only for generation of the weight matrix during optimization process.
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Fig. 7.3 Levelling network

P1 P2

P3

y1

y2

y3

P4
y4

y6

y5

Levelling is one of the fundamental tasks carried out in engineering, geody-
namics, geodesy and geoinformatics for the purpose of determining heights of
stations. In carrying out levelling, one starts from a point whose height is known
and measures height differences along a levelling route to a closing point whose
height is also known. In case where the starting point is also the closing point, one
talks of loop levelling. The heights of the known stations are with respect to the
mean sea level as a reference. In Example 7.1, we use loop levelling network to
illustrate Lemma 7.1 of the Gauss-Jacobi combinatorial approach.

Example 7.1 (Levelling network) Consider a levelling network with four-points in
Fig. 7.3 below.

Let the known height of point P1 be given as h1. The heights h2 and h3 of points
P2 and P3 respectively are unknown. The task at hand is to carry out loop levelling
from point P1 to determine these unknown heights. Given three stations with two of
them being unknowns, there exist

�
3

2

�
D 3Š

2Š.3 � 2/Š D 3

number of combinatorial routes that can be used to obtain the heights of points P2
and P3. If station P4 is set out for convenience along the loop, the levelling routes
are fP1 � P2 � P4 � P1g; fP2 � P3 � P4 � P2g; and fP3 � P1 � P4 � P3g: These
combinatorials sum up to the outer loop P1�P2�P3�P1: The observation equations
formed by the height difference measurements are written as

x2 � h1 D y1
x3 � h1 D y2
x3 � x2 D y3
x4 � h1 D y4
x4 � x2 D y5
x4 � x3 D y6;

(7.25)
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which can be expressed in the form of the special linear Gauss-Markov model (7.15)
on p. 98 as

E

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

2
66666664

y1 C h1
y2 C h1

y3
y4 C h1

y5
y6

3
77777775

9>>>>>>>=
>>>>>>>;
D

2
66666664

1 0 0

0 1 0

�1 1 0

0 0 1

�1 0 1

0 �1 1

3
77777775

2
4 x2

x3
x4

3
5 ; (7.26)

where y1; y2; : : : :; y6 are the observed height differences and x2; x3; x4 the unknown
heights of points P2;P3;P4 respectively. Let the dispersion matrix Dfyg D † be
chosen such that the correlation matrix is unit (i.e., † D I3 D †�1 positive definite,
rk†�1 D 3 D n), the decomposition matrix Y and the normal equation matrix
A0†�1A are given respectively by

Y D

2
66666664

y1 C h1 0 0

0 0 y2 C h1
0 y3 0

�.y4 C h1/ 0 y2 C h1
y5 �y5 0

0 y6 �y6

3
77777775
; A0†�1A D

2
4 3 �1 �1
�1 3 �1
�1 �1 3

3
5 : (7.27)

The columns of Y correspond to the vectors of observations y1, y2 and y3 formed
from the combinatorial levelling routes. We compute the heights of points P2 and
P3 using (7.18) for each combinatorial levelling routes as follows:

• Combinatorials route(1): = P1 � P2 � P4 � P1. Equations (7.27) and (7.18) leads
to the partial solutions

O�route.1/ D
1

2

2
666666664

y1 C h1
2
� y5
2
� y4
2

y1
2
� y4
2

y1
2
� h1
2
C y5
2
� y4

3
777777775

(7.28)
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• Combinatorials route(2): = P2 � P3 � P4 � P2 gives

O�route.2/ D
1

2

2
66666664

y5
2
� y3
2

y3
2
� y6
2

y6
2
� y5
2

3
77777775
: (7.29)

• Combinatorials route(3): = P3 � P1 � P4 � P3 gives

O�route.3/ D
1

2

2
666666664

y4
2
� y2
2

y4
2
C y6
2
� h1
2
� y2

h1
2
� y2
2
� y6
2
C y4

3
777777775
: (7.30)

The heights of the stations x2; x3; x4 are then given by the summation of the
combinatorial solutions

2
4 x2

x3
x4

3
5 D O�l D O�route.1/ C O�route.2/ C O�route.3/ D

1

2

2
666666664

y1 C h1
2
� y3
2
� y2
2

y1
2
C y3
2
� h1
2
� y2

y1
2
� y2
2

3
777777775
:

(7.31)

If one avoids the combinatorial routes and carries out levelling along the outer route
P1 � P2 � P3 � P1, the heights could be obtained directly using (7.18) as

2
4 x2

x3
x4

3
5 D O�l D .A0†�1A/�1A0†�1

2
66666664

y1 C h1
�.y2 C h1/

y3
0

0

0

3
77777775
D 1

2

2
666666664

y1 C h1
2
� y3
2
� y2
2

y1
2
C y3
2
� h1
2
� y2

y1
2
� y2
2

3
777777775
;

(7.32)

In which case the results are identical to (7.31). For linear cases therefore, the results
of Gauss-Jacobi combinatorial algorithm gives solution (7.31) which is identical
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to that of least squares approach in (7.32), thus validating the postulations of
Lemma 7.1.

|

7.3.3.1 Combinatorial Solution of Nonlinear Gauss-Markov Model

The Gauss-Jacobi combinatorial Lemma 7.1 on p. 100 and the levelling example
were based on a linear case. In case of nonlinear systems of equations, such
as (7.9 and 7.10), (7.11 and 7.12) or (7.13 and 7.14), the nonlinear Gauss-Markov
model (7.20) is solved in two steps:

• Step 1: Combinatorial minimal subsets of observations are constructed and
rigorously solved by means of either Groebner basis or polynomial resultants.

• Step 2: The combinatorial solution points obtained from step 1, which are
now linear, are reduced to their final adjusted values by means of Best Linear
Uniformly Unbiased Estimator (BLUUE). The dispersion matrix of the real
valued random vector of pseudo-observations from Step 1 are generated via
the nonlinear error propagation law also known as the nonlinear variance-
covariance propagation.

7.3.3.2 Construction of Minimal Combinatorial Subsets

Since n > m we construct minimal combinatorial subsets comprising m equations
solvable in closed form using either Groebner basis or polynomial resultants. We
begin by giving the following elementary definitions:

Definition 7.4 (Permutation) Let us consider that a set S with elements fi; j; kg 2 S
is given, the arrangement resulting from placing fi; j; kg 2 S in some sequence is
known as permutation. If we choose any of the elements say i first, then each of the
remaining elements j; k can be put in the second position, while the third position is
occupied by the unused letter either j or k. For the set S, the following permutations
can be made:

�
ijk ikj jik
jki kij kji:

(7.33)

From (7.33) there exist three ways of filling the first position, two ways of filling
the second position and one way of filling the third position. Thus the number of
permutations is given by 3 � 2 � 1 D 6. In general, for n different elements, the
number of permutation is equal to n � : : : � 3 � 2 � 1 D nŠ

Definition 7.5 (Combination) If for n elements only m elements are used for
permutation, then we have a combination of the mth order. If we follow the definition
above, then the first position can be filled in n ways, the second in fn� 1g ways and
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the mth in fn� .m� 1/g ways. In (7.33), the combinations are identical and contain
the same elements in different sequences. If the arrangement is to be neglected, then
we have for n elements, a combination of mth order being given by

Ck D
�

n
m

�
D nŠ

mŠ.n �m/Š
D n.n� 1/ : : : .n �mC 1/

m � : : : � 3 � 2 � 1 : (7.34)

Given n nonlinear equations to be solved, we first form Ck minimal combinatorial
subsets each consisting of m elements (where m is the number of the unknown
elements). Each minimal combinatorial subset Ck is then solved using either of the
algebraic procedures discussed in Chaps. 4 and 5.

Example 7.2 (Combinatorial) In Fig. 7.2 for example, n D 3 and m D 2, which
with (7.34) leads to three combinations given by (7.9 and 7.10), (7.11 and 7.12)
and (7.13 and 7.14). Groebner basis or polynomial resultants approach is then
applied to each combinatorial pair to give the combinatorial solutions fx0; y0g1;2,
fx0; y0g1;3 and fx0; y0g2;3.

7.3.3.3 Optimization of Combinatorial Solutions

Once the combinatorial minimal subsets have been solved using either Groebner
basis or polynomial resultants, the resulting sets of solutions are considered as
pseudo-observations. For each combinatorial, the obtained minimal subset solutions
are used to generate the dispersion matrix via the nonlinear error propagation
law/variance-covariance propagation e.g., [222, pp. 469–471] as follows:

From the nonlinear observation equations that have been converted into its
algebraic (polynomial) via Theorem 3.1 on p. 20, the combinatorial minimal subsets
consist of polynomials f1; : : : ; fm 2 kŒx1; : : : ; xm�, with fx1; : : : ; xmg being the
unknown variables (fixed parameters) to be determined. The variables fy1; : : : ; yng
are the known values comprising the pseudo-observations obtained following closed
form solutions of the minimum combinatorial subsets. We write the polynomials as

2
66666664

f1 WD g.x1; : : : ; xm; y1; : : : ; yn/ D 0
f2 WD g.x1; : : : ; xm; y1; : : : ; yn/ D 0

:

:

:

fm WD g.x1; : : : ; xm; y1; : : : ; yn/ D 0;

(7.35)

which are expressed in matrix form as

f WD g.x; y/ D 0: (7.36)
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In (7.36) the unknown variables fx1; : : : ; xmg are placed in a vector x and the
known variables fy1; : : : ; yng in y. Error propagation is then performed from pseudo-
observations fy1; : : : ; yng to parameters fx1; : : : ; xmg which are to be explicitly
determined. They are characterized by the first moments, the expectations Efxg D
�x and Efyg D �y, as well as the second moments, the variance-covariance
matrices/dispersion matrices Dfxg D †x and Dfyg D †y. From [222, pp. 470–
471], we have up to nonlinear terms

Dfxg D J�1
x Jy†yJ0

y.J
�1
x /0; (7.37)

with Jx; Jy being the partial derivatives of (7.36) with respect to x,y respectively
at the Taylor points .�x;�y/. The approximate values of unknown parameters
fx1; : : : ; xmg 2 x appearing in the Jacobi matrices Jx; Jy are obtained either
from Groebner basis or polynomial resultants solution of the nonlinear system of
equations (7.35).

Given Ji D J�1
xi

Jyi from the ith combination and Jj D J�1
xj

Jyj from the jth
combination, the correlation between the ith and jth combinations is given by

†ij D Jj†yjyi J
0

i : (7.38)

The sub-matrices variance-covariance matrix for the individual combinatorials
†1;†2;†3; : : : ;†k (where k is the number of combinations) obtained via (7.37)
and the correlations between combinatorials obtained from (7.38) form the variance-
covariance/dispersion matrix

† D

2
66666664

†1 †12 : : : †1k

†21 †2 : : : †2k

: †3

: :

: :

†k1 : : : †k

3
77777775

(7.39)

for the entire k combinations. This will be made clear by Example 7.4. The obtained
dispersion matrix † is then used in the linear Gauss-Markov model (7.18) to obtain
the estimates O� of the unknown parameters �. The combinatorial solutions are
considered as pseudo-observations and placed in the vector y of observations, while
the design matrix A comprises of integer values 1 which are the coefficients of the
unknowns as in (7.42). The procedure thus optimizes the combinatorial solutions by
the use of BLUUE. Consider the following example.

Example 7.3 From Fig. 7.2 on p. 96, three possible combinations each containing
two nonlinear equations necessary for solving the two unknowns are given and
solved as discussed in Example 7.2 on p. 105. Let the combinatorial solutions
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fx0; y0g1;2, fx0; y0g1;3 and fx0; y0g2;3 be given in the vectors zI.y1; y2/, zII.y1; y3/ and
zIII.y2; y3/ respectively. If the solutions are placed in a vector zJ D Œ zI zII zIII �

0

; the
adjustment model is then defined as

EfzJg D I6�3�3�1;DfzJg from variance=covariancepropagation: (7.40)

Let

�n D LzJ subject to zJ WD
2
4 zI

zII

zIII

3
5 2 R

6�1; (7.41)

such that the postulations trDf�ng D min; i.e., “best,” and Ef�ng D � for all �n 2
R

m i.e., “uniformly unbiased” holds. We then have from (7.39), (7.40) and (7.41)
the result

O� D .I0

3�6†zJ I6�3/I
0

3�6†�1
zJ

zJ (7.42)

OL D argftrDf�ng D tr L†yL
0 D min j UUEg

The dispersion matrix Df O�g of the estimates O� is obtained via (7.19). The shift from
arithmetic weighted mean to the use of linear Gauss Markov model is necessitated as
we do not readily have the weights of the minimal combinatorial subsets but instead
have their dispersion matrices obtained via error propagation/variance-covariance
propagation. If the equivalence Theorem of [222, pp. 339–341] is applied, an
adjustment using linear Gauss Markov model instead of weighted arithmetic mean
in Lemma 7.1 is permissible.

Example 7.4 (Error propagation for planar ranging problem) For the unknown
station P0.X0;Y0/ 2 E

2 of the planar ranging problem in Fig. 7.2 on p. 96, let
distances S1 and S2 be measured to two known stations P1.X1;Y1/ 2 E

2 and
P2.X2;Y2/ 2 E

2 respectively. The distance equations are expressed as

�
S21 D .X1 � X0/2 C .Y1 � Y0/2

S22 D .X2 � X0/2 C .Y2 � Y0/2;
(7.43)

which are written algebraically as

�
f1 WD .X1 � X0/2 C .Y1 � Y0/2 � S21 D 0
f2 WD .X2 � X0/2 C .Y2 � Y0/2 � S22 D 0:

(7.44)
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On taking total differential of (7.44), we have

2
666664

df1 WD 2.X1 � X0/dX1 � 2.X1 � X0/dX C 2.Y1 � Y0/dY1�
�2.Y1 � Y0/dY � 2S1dS1 D 0

df2 WD 2.X2 � X0/dX2 � 2.X2 � X0/dX C 2.Y2 � Y0/dY2�
�2.Y2 � Y0/dY � 2S2dS2 D 0:

(7.45)

Arranging (7.45) with the unknown terms fX0;Y0g D fx1; x2g 2 x on the left-hand-
side and the known terms

fX1;Y1;X2;Y2; S1; S2g D fy1; y2; y3; y4; y5; y6g 2 y;

on the right-hand-side leads to

Jx

�
dX0
dY0

�
D Jy

2
66666664

dS1
dX1
dY1
dS2
dX2
dY2

3
77777775
; (7.46)

with

Jx D

2
6664

@f1
@X0

@f1
@Y0

@f2
@X0

@f2
@Y0

3
7775 D

��2.X1 � X0/ �2.Y1 � Y0/
�2.X2 � X0/ �2.Y2 � Y0/

�
; (7.47)

and
2
66666666664

Jy D

2
6664

@f1
@S1

@f1
@X1

@f1
@Y1

0 0 0

0 0
@f2
@S2

@f2
@X2

@f2
@Y2

3
7775 D

D
�
2S1 �2.X1 � X0/ �2.Y1 � Y0/ 0 0 0

0 0 0 2S2 �2.X2 � X0/ �2.Y2 � Y0/

�
:

(7.48)
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If we consider that

Dfxg D †x D
"
�2X0 �X0Y0

�Y0X0 �2Y0

#

Dfyg D †y D

2
66666664

�2S1 �S1X1 �S1Y1 �S1X2 �S1S2 �S1Y2

�X1S1 �2X1 �X1Y1 �X1S2 �X1X2 �X1Y2

�Y1S1 �Y1X1 �2Y1 �Y1S2 �Y1X2 �Y1Y2

�S2S1 �S2X1 �S2Y1 �2S2 �S2X2 �S2Y2

�X2S1 �X2X1 �X2Y1 �X2S2 �2X2 �X2Y2

�Y2S1 �Y2X1 �Y2Y1 �Y2S2 �Y2X2 �2Y2

3
77777775
;

(7.49)

we obtain with (7.46), (7.47) and (7.48) the dispersion (7.37) of the unknown
variables fX0;Y0g D fx1; x2g 2 x.

7.3.3.4 The Gauss-Jacobi Combinatorial Algorithm

The Gauss-Jacobi combinatorial program operates in three phases. In the first phase,
one forms minimal combinations of the nonlinear equations using (7.34) on p. 105.
Using either Groebner basis or polynomial resultants, the desired combinatorial
solutions are obtained. The combinatorial results form pseudo-observations, which
are within the solution space of the desired values. This first phase in essence
projects a nonlinear case into a linear case. Consequently, the simple average of
the solution can be good initial guess values for further linear iteration or local
minimization.

Once the first phase is successfully carried out with the solutions of the vari-
ous subsets forming pseudo-observations, the nonlinear variance-covariance/error
propagation is carried out in the second phase to obtain the weight matrix. This
requires that the stochasticity of the initial observational sample be known in-order
to propagate them to the pseudo-observations.

The final phase entails the adjustment step, which is performed to obtain the
barycentric values. Since the pseudo-observations are linearly independent, the
special linear Gauss-Markov model (see Definition 7.1 on p. 98) is employed.

Stepwise, the Gauss-Jacobi combinatorial algorithm proceeds as follows:

• Step 1: Given an overdetermined system with n observations in m unknowns,
using (7.34), form minimal combinations from the n observations that comprise
m equations in m unknowns.

• Step 2: Solve each set of m equations from step 1 above for the m unknowns
using either Groebner basis or polynomial resultant algebraic techniques.

• Step 3: Perform the nonlinear error/variance-covariance propagation to obtain
the variance-covariance matrix of the combinatorial solutions obtained in Step 2.



110 7 Solutions of Overdetermined Systems

• Step 4: Using the pseudo-observations of step 2, and the variance-covariance
matrix from step 3, adjust the pseudo-observations via the special linear Gauss-
Markov model to obtain the adjusted position of the unknown station.

Figure 7.4 summarizes the operations of the Gauss-Jacobi combinatorial algorithm
which employs Groebner basis or polynomial resultants as computing engines to
solve nonlinear systems of equations (e.g., Fig.7.5).

or

Combinatorial
appoach

C. F. Gauss Posthumous ~(1828) C. G. I. Jacobi (1841)

Overdetermined
problems

Gröbner basis Resultant approach

Computa�onal engine

Nonlinear error propaga�on

Linear Gauss Markov

Solu�on

Fig. 7.4 Gauss-Jacobi combinatorial algorithm

Nonlinear system of mul�variate polynomials

 Gröbner Basis

Solu�on

Mul�polynomial
Resultant

Univariate polynomial

Back subs�tu�on

Solu�on

Linear
Homotopy

Matlab/Mathema�ca/Maple

Fig. 7.5 Combinatorial computing engine
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7.4 Concluding Remarks

In Chaps. 4 and 5, Groebner basis and polynomial resultants algorithms as well
as the homotopy methods in Chap. 6 were presented for solving in exact form the
nonlinear systems of equations. It was demonstrated in this chapter how they play
a leading role in overcoming the major difficulty that was faced by C. F. Gauss
and C. G. I. Jacobi. The key to success is to use these algebraic techniques as
the computing engine of the Gauss-Jacobi combinatorial algorithm. In so doing, an
alternative procedure to linearized and iterative numerical procedures that peg their
operations on approximate starting values was presented. Such algebraic technique
for solving overdetermined problems requires neither approximate starting values
nor linearization (except for the generation of the weight matrix). With modern
computing technology, the combinatorial formation and computational time for
geodetic or geoinformatics’ algebraic computational problems is immaterial. In the
chapters ahead, the power of this technique will be demonstrated. Further materials
on the topic are presented in [241, 243].

ALESS method has provided a different approach for solving overdetermined
systems by transforming them into square systems. Using this method, the number
of equations equals the number of the unknown variables, independently from the
number of equation of the original system. Consequently, overdetermined system
can be solved efficiently with this method (unlike Gauss-Jacobi combinatorial
algorithm where the combinatorial explosion impedes the solution of big overde-
termined systems). The solution of the transformed square system is possible also
with local and with global methods. Figure 7.6 gives a summary of the algebraic

Nonlinear Problems

Nonlinear system of
polynomial equa�ons

Overdetermined
problems

Gröbner bases Mul�polynomial
resultant

Gauss-Jacobi
combinatorial

 F. Macaulay (1902) 
formula�on

B. Sturmfels (1998) 
formula�on

ALESS

Dixon‘s
formula�on

Fig. 7.6 Algebraic solution approach. Here, the nonlinear system of equations implies determined
nonlinear system of equations
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algorithms and show when each procedure can be applied. Since the solution of the
sub-systems are independent, parallel computation can be employed successfully.

In addition, homotopy method can also be employed for deterministic systems
as a numerical algebraic method. For overdetermined systems, a local numerical
method, the Extended Newton method discussed in the next chapter is available.



Chapter 8
Extended Newton-Raphson Method

8.1 Introductory Remarks

In Chap. 7, we have seen that overdetermined nonlinear systems are common in
geodetic and geoinformatic applications, that is there are frequently more measure-
ments than it is necessary to determine unknown variables, consequently the number
of the variables n is less then the number of the equations m. Mathematically,
a solution for such systems can exist in a least square sense. There are many
techniques to handle such problems, e.g.,:

• Direct minimization of the residual of the system, namely the minimization of
the sum of the least square of the errors of the equations as the objective. This
can be done by using local methods, like gradient type methods, or by employing
global methods, like genetic algorithms.

• Gauss-Jacobi combinatorial solution. Having more independent equations, m,
than variables, n, so m > n, the solution – in a least-squares sense – can be
achieved by solving the


m
n

�

combinatorial square subsets (n � n) of a set of m equations, and then weighting
these solutions properly. The square systems can be solved again via local
methods, like Newton-type methods or by applying computer algebra (resultants,
Groebner basis) or global numerical methods, like linear homotopy presented in
Chap. 6.

• Considering the necessary condition of the minimum of the least square error,
the overdetermined system can be transformed into a square one via computer
algebra (see ALESS in Sect. 7.2). Then, the square system can be solved again

© Springer-Verlag Berlin Heidelberg 2016
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by local or global methods. It goes without saying that this technique works for
non-polynomial cases as well.

• For the special type of overdetermined systems arising mostly from datum trans-
formation problems, the so called Procrustes algorithm can be used. There exist
different types of them, partial, general and extended Procrustes algorithms.
These methods are global and practically they need only a few or no iterations.

In this chapter, a special numerical method is introduced, which can solve
overdetermined or underdetermined nonlinear systems directly. In addition, it
is robust enough to also handle determined systems when the Jacobian is ill-
conditioned. Our problem is to solve a set of nonlinear equations

f .x/ D 0 (8.1)

where f W Rm ! Rn; namely x 2 Rm and f 2 Rn:

If n D m and the Jacobi matrix has a full rank everywhere, in other words the
system of equations is regular, and if in addition, the initial value of the iteration
is close enough to the solution, the Newton-Raphson method ensures quadratic
convergence. If one of these conditions fails, for example the system is over or under
determined, or if the Jacobi matrix is singular, one can use the Extended Newton-
Raphson method, see e.g. [75, 76, 173, 262, 420]. In addition isolated multiple roots
may cause low convergency. To restore quadratic convergence, a deflation method
can be used, see Zhao [550]. Let us illustrate these problems with the following
examples.

8.2 The Standard Newton-Raphson Approach

Consider the set of nonlinear equations,

fi .x1; x2; : : : ; xn/ D 0; i D 1; : : : ; n

which can be written in compact form as

f .x/ D 0

We wish to find the set of xi satisfying this system, therefore let us to expand it
in a Taylor series about the xk iterate, where the superscript k denotes the iterative
number

fi
�
xkC1� D fi

�
xk
�C

nX
jD1

@fi
@xj

ˇ̌
ˇ̌
ˇ̌
xk

	
xkC1

j � xk
j



C : : :
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which define the Jacobian matrix,

Jk
i;j D

@fi
@xj

ˇ̌
ˇ̌
xk

and the set fi
�
xkC1� D 0:Then;

Jk
�
xkC1 � xk

�C f
�
xk
� D 0

or the xkC1 iteration can be expressed as

xkC1 D xk � �Jk
��1

f
�
xk
�

Quadratic convergence means that the number of the correct significant digits is
doubled at each iteration.

8.3 Examples of Limitations of the Standard Approach

8.3.1 Overdetermined Polynomial Systems

Let us consider a simple monomial system (see Sommese and Wampler [470])

f1 D x2 D 0
f2 D xy D 0
f3 D y2 D 0

(8.2)

This system is a “monomial ideal” and trivial for computer algebra. Its Groebner
basis is

G D ˚y2; xy; x2
�

(8.3)

whose solutions are,

S D ffy D 0; y D 0g; fx D 0; y D 0g; fx D 0; x D 0gg: (8.4)

We can see that the origin is an isolated singular root with multiplicity of 3.
Global polynomial solvers using numerical Groebner basis can also solve this
system. However, the standard Newton-Raphson method fails, since the system
is overdetermined, although we can transform the overdetermined system into a
determined one in a least squares sense. The objective function is the sum of the
square of the residium of the equations,

W = x4 C x2y2 C y4: (8.5)
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Fig. 8.1 Slow convergence for the case of multiple roots (i.e., a plot of x versus y solutions starting
with x D 1; y D 1)

Considering the necessary conditions for the minimum, we obtain the following
system,

g1 D 4x3 C 2xy2 D 0
g2 D 2x2yC 4y3 D 0 (8.6)

Then, using the Newton-Raphson method, with initial values (x0 D 1, y0 D 1), the
result is,

x D 1:78642� 10�8; y D 1:78642� 10�8;

The convergence is slow and the accuracy of the solution is poor (even if the initial
guess are changed) because of the existence of multiple roots, see e.g. Chapra and
Canale [117]. Figure 8.1 shows the steps of the iterations on the x � y plane. The
norm of the error of the procedure after 45 iteration steps is 2:52639 � 10�8: Even
global minimization with genetic algorithm will give a bad approximation,

x D 1:82247� 10�8; y D 5:29274� 10�9

The reason for the slow convergence, as well as for the poor accuracy, is the
increasing multiplicity of the roots (x D 0, y D 0) from 3 up to 9, after transforming
the overdetermined system (f1; f2; f3) into a square one (g1; g2).
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8.3.2 Overdetermined Non-polynomial System

A usual test problem for parameter estimation procedures is the Bard [63] problem.
The prototype equation of the system of these nonlinear equations is,

fi =p1 C bi

cip2 C dip3
� ai = 0 (8.7)

where the numerical values of the coefficients are presented in Table 8.1. We have
15 equations and 3 unknown parameters, (p1; p2; p3). The system is overdetermined
and not a polynomial one. In this case, the global polynomial solver, as well as the
Newton-Raphson method, fail. The minimization of the sum of square of errors of
the equations,

W .p1; p2; p3/ D
15X

iD1
f 2i (8.8)

can be done directly via global minimization using, e.g., genetic algorithm leading
to,

p1 D 0:0679969; p2 D 0:889355; p3 D 2:57247:

Table 8.1 Coefficients of the
Bard equations

i ai bi ci di

1 0.14 1 15 1

2 0.18 2 14 2

3 0.22 3 13 3

4 0.25 4 12 4

5 0.29 5 11 5

6 0.32 6 10 6

7 0.35 7 9 7

8 0.39 8 8 8

9 0.37 9 7 7

10 0.5 10 6 6

11 0.73 11 5 5

12 0.96 12 4 4

13 1.34 13 3 3

14 2.1 14 2 2

15 4.39 15 1 1
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Alternatively, the overdetermined problem can be transformed into a determined
one, like in the case of polynomials (see ALESS). The necessary conditions of the
minimum.

gj .p1; p2; p3/ D @W

@pj
D 0; j D 1; 2; 3 (8.9)

To solve this system (g1; g2; g3), the Newton-Raphson method can be successful,
with initial values .p10; p20; p30/ D .1; 1; 1/ leading to,

p1 = 0.0679969, p2 = 0.889355, p3 = 2.57247

However, the method may fail, when the starting values are far from the solution and
the Jacobian becomes singular, which is the case when .p10; p20; p30/ D .�1; 1; 1/.
A global polynomial solver provides a solution, but besides the correct solution,
other real solutions also arise (see Table 8.2).

However, only one positive real solution appears, see last row in Table 8.2. This is
because the determined system has more solutions than the original overdetermined
system. In addition, the computation time will also increase.

Table 8.2 Solution of the square system (g1, g2 , g3)

p1 p2 p3
0:170869 C 0:0606932i �5:99409 C 7:168i 9:59168 � 7:07904i

0:170869 � 0:0606932i �5:99409 � 7:168i 9:59168 C 7:07904i

0:22783 �4:44817 8:44473

0:147587 C 0:0939871i �3:42647 C 2:4683i 6:98725 � 2:33614i

0:147587 � 0:0939871i �3:42647 � 2:4683i 6:98725 C 2:33614i

0:216599 �2:61935 6:70349

0:114883 C 0:112266i �1:99681 C 1:21785i 5:51067 � 1:06593i

0:114883 � 0:112266i �1:99681 � 1:21785i 5:51067 C 1:06593i

0:181359 �1:55169 5:58774

0:077954 C 0:114988i �1:15986 C 0:720556i 4:62469 � 0:570547i

0:077954 � 0:114988i �1:15986 � 0:720556i 4:62469 C 0:570547i

0:120499 �0:852832 4:69769

0:0413009 C 0:102133i �0:621754 C 0:449866i 4:04119 � 0:321571i

0:0413009 � 0:102133i �0:621754 � 0:449866i 4:04119 C 0:321571i

0:0450109 �0:386462 3:96801

0:0119518 C 0:0689036i �0:227926 C 0:275464i 3:61455 � 0:192522i

0:0119518 � 0:0689036i �0:227926 � 0:275464i 3:61455 C 0:192522i

0:0679969 0:889355 2:57247
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8.3.3 Determined Polynomial System

Now let us consider a determined system of polynomial equations, which is a
somewhat modified version of the example of Ojika [391],

f1.x; y/ D x2 C y � 3
f2.x; y/ D xC y2

8
� 1 (8.10)

First, let us try to solve the problem using the Newton-Raphson method, starting
with (x0 D �1, y0 D �1). The result is

x D 1:56598; y D 1:27716

which is not correct (compare with Fig. 8.2). The norm of error is 1.06057. The
situation is the same with (x0 D 1, y0 D �1) which gives

x D 1:27083; y D 1:57379:

Again, this is not a solution. The norm of error is 0.061036, so the Newton-Raphson
method fails.

Fig. 8.2 Real roots of the system of the two polynomials of Eq. 8.10
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8.3.4 Underdetermined Polynomial System

Let us consider the following underdetermined system, see Quoc-Nam Tran [421]

f1 D .x � u/2 C .y � v/2 � 1
f2 D 2v.x � u/C 3u2.y � v/�

3wu2 � 1� .2wv � 1/
(8.11)

It goes without saying that the system has infinite roots. To make the solution
unique, one may consider the solution with the minimal norm. This constraint leads
to the following minimization problem,

W.x; y; u; v;w/ D
p

x2 C y2 C u2 C v2 C w2 ! min W
x;y;u;v;w

(8.12)

under the constrains,

fi D 0; i D 1; 2; 3 (8.13)

It is clear that the Newton-Raphson method can not be used. Employing genetic
algorithm, we get,

x D 0:187018; y D �1:08919�10�6 ; u D 0:81298; v D 0:000124852; w D 0:504332

with a norm of 0.975.

8.4 Extending the Newton-Raphson Approach Using
Pseudoinverse

Now, in order to avoid these difficulties an extension of the Newton-Raphson
method can be introduced, see [421]. This method uses the pseudoinverse of the
Jacobian, instead of its inverse. The computation of the pseudoinverse is based on
the singular value decomposition technique. Every A matrix m � n, m � n can be
decomposed as

A D U†VT (8.14)

where .:/T denotes the transposed matrix, U an m � n matrix, and V an n � n matrix
satisfying

UTU D VTV D VVT D In (8.15)
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and † D< �1; . . . ; �n > a diagonal matrix. These �i’s, �1 � �2 �; . . . ; �n � 0 are
the square root of the non negative eigenvalues ATA and are called the singular
values of matrix A. As it is known from linear algebra e.g. Bernstein [80], singular
value decomposition (SVD) is a technique used to compute the pseudoinverse
for a singular or ill-conditioned matrix of linear systems. In addition, this method
provides a least square solution for overdetermined systems and minimal norm solutions
for the case of undetermined systems.

The pseudoinverse of a matrix A of m � n is a matrix AC of n � m satisfying

AACA D A;ACAAC D AC;
	

ACA



� D ACA;
	

AAC



� D AAC (8.16)

where .:/� denotes the conjugate transpose of the matrix. There always exists a
unique AC which can be computed using SVD: (a) If m � n and A D U†VT then

AC D V†�1UT (8.17)

where˙�1 D< 1=�1 ; . . . ; 1 =�n > : (b) If m< n then compute the
�
AT/

C,
pseudoinverse of AT and then

AC D
	�

AT/
C


T
(8.18)

The idea of using pseudoinverse in order to generalize the Newton-Raphson method
is not new. It means that in the iteration formula (8.19), the pseudoinverse of the
Jacobian matrix will be employed instead,

xiC1 D xi � JC .xi/ f .xi/ (8.19)

The pseudoinverse can be computed in a symbolic as well as a numeric form. For
example, considering the first example, see Sommese and Wampler’s [470] equations
in Sect. 19.2.1, the Jacobi matrix is

J.x; y/ D

0
B@
2x 0

y x
0 2y

1
CA (8.20)

and its pseudoinverse

JC.x; y/ D
 

x3C4xy2

2.x4C4x2y2Cy4/
y3

x4C4x2y2Cy4
� xy2

2.x4C4x2y2Cy4/

� x2y
2.x4C4x2y2Cy4/

x3

x4C4x2y2Cy4
4x2yCy3

2.x4C4x2y2Cy4/

!
(8.21)
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The Jacobian matrix at the point (xi D 1, yi D 1) is,

J.1; 1/ D

0
B@
2 0

1 1

0 2

1
CA (8.22)

and the pseudoinverse is

JC.1; 1/ D
 

5
12

1
6
� 1
12

� 1
12

1
6

5
12

!
(8.23)

The new values (xiC1; yiC1) in the next iteration step are

 
1

1

!
� JC.1; 1/

0
B@

f1.1; 1/
f2.1; 1/

f3.1; 1/

1
CA D

 
1
2
1
2

!
(8.24)

8.5 Applications of the Extended Newton-Raphson Method

Example 8.1 (Overdetermined polynomial system) Let us recall the Sommese and
Wampler’s [470] equations solved in Sect. 8.3.1. Using the Extended Newton-Raphson
method with initial values (x0 D 1, y0 D 1), we get the solution (after 40 iterations) as

x D 1:8189894035458573 � 10�12; y D 1:81899 � 10�12:

The convergence is shown in Fig. 8.3 and the norm of error is 2:5724394843074972 �
10�12. We therefore achieved a considerably more accurate result with approximately
the same number of iteration steps as that of Sect. 8.3.1. This means faster convergency.

Example 8.2 (Overdetermined non-polynomial system) Extended Newton-Raphson
method can solve directly the original overdetermined system of Sect. 8.3.2 with both
initial conditions more quicker than the standard methods (see Chap. 7) when solving
the transformed square one system of equations. In addition, no transformation of the
overdetermined model into a square one is necessary.

Example 8.3 (Determined system with singular Jacobian) The Extended Newton
Raphson method converges from all of the different initial values for the case of
the Ojika [391] problem that we attempted to solve in Sect. 8.3.3 using the standard
Newton-Raphson method (i.e., obtaining the roots of the system of the two polynomials
of Eq. 8.10). Figures 8.4, 8.5 and 8.6 illustrate the fast convergence obtained when
Extended Newton-Raphson is obtained as opposed to the standard Newton-Raphson
(see Fig. 8.2).
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Fig. 8.3 Convergence of the extended Newton-Raphson method (big points) while that of the
standard Newton-Raphson (small points)

Fig. 8.4 Convergence when starting values are (�1, �1)

Fig. 8.5 Convergency when starting values are (1, �1)

Example 8.4 (Underdetermined system) The result produced by the Extended Newton-
Raphson method depends on the initial condition, which is natural in the case of a
local method, but no divergence takes place. In order to get the solution with the
minimal norm, we computed the solutions with 500 initial values generated randomly
in the interval [�0:5, 0.5]. The computation took 1.422 s and the norm of the solution
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Fig. 8.6 Convergency when starting values are (�1, 1)

was 0.977. While using global constrained minimization via genetic algorithm, the
computation needed 2.390 s and the norm of the solution was 0.975.

8.6 Concluding Remarks

The examples demonstrate the efficiency and effectiveness of the suggested method,
especially for cases of overdetermined systems. Although the Extended Newton-
Raphson procedure is a local method, the solution of a square subset of the
overdetermined system can provide a good initial guess for the computation.
As a side effect, the method can also solve determined ill-conditioned problems
frequently arising from geometrically ill-posed configurations e.g. in GPS position-
ing [44] or in solving datum transformation problems, see [547]. In addition, the
implementation of this method is quite easy, since the computation of inverse of
the Jacobian matrix could be simply replaced by the pseudoinverse in any Newton-
Raphson procedure.



Chapter 9
Procrustes Solution

It seems very strange that up to now Procrustes analysis has not
been widely applied in geodetic literature. With this technique
linearization problems of non linear equations system and
iterative procedures of computation could be avoided, in
general, with significant time saving and less analytical
difficulties

F. Crosilla

9.1 Motivation

This chapter presents the minimization approach known as “Procrustes” which falls
within the multidimensional scaling techniques discussed in Sect. 9.2.2. Procrustes
analysis is the technique of matching one configuration into another in-order to
produce a measure of match. In adjustment terms, the partial Procrustes problem
is formulated as the least squares problem of transforming a given matrix A into
another matrix B by an orthogonal transformation matrix T such that the sum
of squares of the residual matrix E D A � BT is minimum. This technique
has been widely applied in shape and factor analysis. It has also been used for
multidimensional rotation and also in scaling of different matrix configurations.
In geodesy and geoinformatics, data analysis often require scaling, rotation and
translation operations of different matrix configurations. Photogrammetrists, for
example, have to determine the orientation of the camera during aerial photogram-
metry and transform photo coordinates into ground coordinates. This is achieved
by employing scaling, translation and rotation operations. These operations are also
applicable to remote sensing and Geographical Information System (GIS) where
map coordinates have to be transformed to those of the digitizing table. In case of
robotics, the orientation of the robotic arm has to be determined, while for machine
and computer visions, the orientation of the Charge-Coupled Device (CCD) cameras
has to be established. In practice, positioning with satellites, particularly the Global
Navigation Satellite Systems (GNSS) such us GPS and GLONASS has been on
rise. The anticipated GALILEO satellites will further increase the use of satellites in
positioning. This has necessitated the transformation of coordinates from the Global
Positioning System (WGS 84) into local geodetic systems and vice versa.

© Springer-Verlag Berlin Heidelberg 2016
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A classical problem in geodesy and geoinformatics that would benefit from this
technique is transformation, and in particular the 7-parameter datum transformation
problem. The traditional approach of solving this problem, for instance, has been
to linearize the nonlinear equations and then apply least squares method iteratively.
With the proposed Procrustes approach, all that is required of the user is to insert the
coordinates of one system (e.g., local coordinate system) in say, the matrix A, and
those of the other system (e.g., GPS in WGS-84) into the matrix B. Using Procrustes
analysis technique presented in this chapter, and later in Chap. 20, the desired scale,
rotation and translation parameters can be obtained directly.

Although long applied in other fields such as; sociology, to map crime versus
cities, and also in medicine as we will see in Sect. 9.2.3, Procrustes method is
relatively new to the fields of geodesy and geoinformatics. Its first entry into
geodesy can be traced back to the work of [139, 140] where the method was
used in the creation of the criterion matrix used for deformation analysis. Further
applications include the works of [19, 210, 211] who applies it to compute the three-
dimension orientation parameters, deflection of the vertical, and 7-parameter datum
transformation.

Recent application of the approach in geoinformatics can be found in the
works of [142] who employs it to solve the photogrammetric block adjustment by
independent models, [72] who applies it for size and shape three-dimensional object
reconstructions, and [73] who uses the technique to update cadastral maps. At the
beginning of the Chapter, we quoted F. Crosilla [141], the father of Procrustes in
geodesy and geoinformatics. He wonders why such an amazing technique has not
been widely applied in geodesy.

Procrustes method is a very effective method for determining the Helmert’s
datum transformation parameters since it requires neither initial starting values nor
iteration. Due to this attractive attribute, the ABC-Procrustes algorithm extended
it to solve the 3D affine transformation problem where scale factors are different
in the three principal directions X;Y;Z. In this study, it is illustrated that such
direct extension is restricted to cases of mild anisotropy in scaling. For strong
anisotropy, however, the procedure fails. The PZ-method is proposed as an extension
of the ABC algorithm in case of strong anisotropy. The procedures are applied
to determine transformation parameters for; (i) transforming Australian Geodetic
Datum (AGD 84) to Geocentric Datum Australia (GDA 94), i.e., mild anisotropy
and (ii) the Hungarian datum (strong anisotropy). The results indicate that the PZ-
algorithm leads to a global minimization as opposed to the ABC-algorithm albeit
with slightly longer computational time. However, the ABC-method is found to
be useful for computing proper initial values for PZ-method thereby increasing its
efficiency.

In this chapter, the partial, also called simple Procrustes algorithm which is suffi-
cient for solving only the rotation elements is presented. It will be demonstrated how
the approach solves the three-dimensional orientation and the vertical deflection
(direction of local gravity vector) problems. In Sect. 9.4, the general Procrustes
algorithm will be presented and used in Chap. 20 to solve the 7-parameter similarity
transformation problem which is often encountered in practice.
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9.2 Procrustes: Origin and Applications

9.2.1 Procrustes and the Magic Bed

The origin of the name, and perhaps the concept is traced back to Greece.
Somewhere in Attica in Greece lived a robber whose name was Procrustes. His
house was so well positioned besides the road such that he was frequented by
visitors who had to spend the night. In his house, Procrustes also known as Damastes
kept a special bed: So special was the bed such that the visitors were required to fit
in it. Unfortunately for Procrustes, neither were all his visitors of the same height
nor length of the magic bed. All the same, the visitors were somehow forced in some
“magic” way to fit into the magic bed. This was not done by adjusting the bed, but
to the contrary its occupants! Procrustes devised ways to fit his quests onto his bed.
Guests who were shorter for the bed were stretched by hammering or racking their
bodies to fit the bed, while those who were longer had their legs chopped off! In
both cases, the victims died. As fate would have it, Procrustes was himself adjusted
to fit his own bed by Theseus, a young Attic hero whose mission was to eliminate
robbers. The Encyclopedia of Greek Mythology writes1:

Procrustes (proh-KRUS-teez). A host who adjusted his guests to their bed. Procrustes,
whose name means “he who stretches”, was arguably the most interesting of Theseus’s
challenges on the way to becoming a hero. He kept a house by the side of the road where he
offered hospitality to passing strangers, who were invited in for a pleasant meal and a night’s
rest in his very special bed (see Fig. 9.11). Procrustes described it as having the unique
property that its length exactly matched whomsoever lay down upon it. What Procrustes
didn’t volunteer was the method by which this “one-size-fits-all” was achieved, namely as
soon as the guest lay down Procrustes went to work upon him, stretching him on the rack
if he was too short for the bed and chopping off his legs if he was too long. Theseus turned
the tables on Procrustes, fatally adjusting him to fit his own bed.

This magic bed of Procrustes has become a saying for arbitrarily – and perhaps
ruthlessly – forcing someone or something to fit into an unnatural scheme or pattern.

9.2.2 Multidimensional Scaling

Multidimensional scaling (MDS) is a method that represents measurements of
similarity (or dissimilarity) among pairs of objects such as distances between points
of low-dimensional multidimensional space. Let us consider for example that data
consists of intelligence tests and that one desires to see the correlation between the
tests. MDS can be used to represent these data in a plane such that the correlation
can be studied. The more closer the points are (i.e., the shorter the distances
between the points), the more correlated they are. MDS thus gives an advantage

1http://www.mythweb.com/encyc/gallery/procrustes_c.html ©Mythweb.com

http://www.mythweb.com/encyc/gallery/procrustes_c.html
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Fig. 9.1 Procrustes and his “magical” bed

of graphical visualization of hidden adherent properties between objects. MDS has
been described by [94] as:

• An approach for representing similarity and dissimilarity data as exemplified
by distances of low dimensional space. This is done in-order to make this data
accessible for visual inspection and exploration.
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• An approach for testing if and how certain criteria by which one distinguishes
among different objects of interest are mirrored in a corresponding empirical
differences of this object (i.e., correlated).

• A data analytic approach that allows one to discover the three-dimensions that
underlie judgements of dissimilarity and similarity.

• A psychological model that explains judgements of dissimilarity in terms of a
rule that mimics a particular type of distance function.

Procrustes approach therefore is a procedure that is applied to realize the goals
of MDS. In other words, it is a tool of MDS concerned with the fitting of one
configuration into another as close as possible.

9.2.3 Applications of Procrustes in Medicine

As a motivational urge to embrace this long overdue powerful tool, this section
presents briefly two areas where Procrustes procedure has found practical applica-
tion. These are:

• Procrustes application software for gene recognition [190].
• Identification of malarial parasites [155].

The technique has also been applied in various fields ranging from biology,
psychology, to structural analysis etc.

9.2.3.1 Gene Recognition

Gene recognition started as a statistical analysis and splicing sites. The statistical
procedures however could not deal with other types of genes such as eukaryotic
(i.e., a single-celled or multicellular organism whose cells contain a distinct
membrane-bound nucleus). To solve this problem, researchers in the field developed
PROCRUSTES software, which uses similarity-based approach to gene recogni-
tion [190]. This was achieved using spliced alignment technique. The software
is reported by Human Genome News2 to be able to identify with remarkable
accuracy human version of genes that are in other forms of life. The human
genes are broken into smaller segments known as exons. Searching for exons is
analogous to following a magazine article that appears in, say, pp. 5, 23, 84, and
93, with almost identical advertisement and other articles appearing between. The
software is applied to construct all these pages that contain the required article and
automatically combine them into a best fitting set. The technique is said to work best
when a “target protein” from the nonhuman sample guides the search, thus ensuring

2July-September 1996; 8:(1).
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Fig. 9.2 The electrophoretic gels from gel A and gel B. Ten invariant spots have been marked by
(+) in white above (©Chapman and Hall Press)

an accuracy that approaches 100 %. In this technique, if a genomic sequence and a
set of candidate exons are given, the algorithm explores all possible exon assemblies
and finds a chain with the best fit to relate target protein. Instead of trying to identify
the correct exons by statistical means (which predicts the correlation between
the predicted and the actual gene to 70 %, with just 40 %–50 % exons predicted
correctly), PROCRUSTES considers all possible chain with the maximum global
similarity to the target protein. The procedure predicts a correlation of about 99 %
between the predicted and the actual gene [190]. The tool is useful in pinpointing
elusive human version of cancer-causing gene!

9.2.3.2 Identification of Malaria Parasites

Dryden [155] applies Procrustes to identify proteins by comparing the elec-
trophoretic gel images (Fig. 9.23). The gels are obtained from strains of parasite
which carry malaria. The procedure uses Procrustes matching and affine shape
registration to match the gels. It applies some biological material to the left corner
of the two images of gels A and B in Fig. 9.2. The material is then separated down
the gel according to molecular weight (with the highest on top) and across the gel
according to isoelectric point (with the highest on the right of the gel). Gel image is
then used to identify strains of parasites using pattern of spots marked by (+). Dark
spots appearing on the gels indicate the composition of protein and are marked
by some expert in both gels A and B. Ten spots are marked in each gel and then
classified as either invariant or variant spots.

The invariant spots are considered to be present for all parasites. The arrangement
of the variant spots is of particular interest as it helps in the identification of

3©Chapman and Hall Press.
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malarial parasite. The field problem sighted by [155] however is that gels are
prone to deformation such as translation, scaling, rotation, affine transformation
and smooth-linear bending. Gel images therefore need to be registered by matching
each image using a set of transformation to alleviate the deformations above [155].
This is achieved through the use of Procrustes analysis.

9.3 Partial Procrustes Solution

9.3.1 Conventional Formulation

Procrustes being a technique of matching one configuration into another and pro-
ducing a measure of match, seeks the isotropic dilatation and the rigid translation,
reflection and rotation needed to best match one configuration to another [134, p.
92]. In this chapter, the term partial shall be used to mean optimal rotation in-
order to avoid confusion since the term is used differently by different authors.
For example, [239, 240] considers a case where the configuration matrix has
several unknown elements in the minimization of the Frobenius norm as the partial
Procrustes problem. Dryden [155] on the other hand uses the term partial Procrustes
to refer to minimization of the Frobenius norm only over the translation and rotation.
The general Procrustes solution is used as the minimization over the full set of
similarity transformation as shall be seen in Chap. 20. In the solution of partial
Procrustes problem, we refer to Table 9.1 for some matrix properties which will
be of use.

The Procrustes problem is concerned with fitting a configuration B into A as close
as possible. The simplest Procrustes case is one in which both configurations have
the same dimensionality and the same number of points, which can be brought into a
1�1 correspondence by substantive considerations [94, p. 339]. Let us consider the
case where both A and B are of the same dimension. The partial Procrustes problem
is then formulated as

A D BT (9.1)

Table 9.1 Matrix properties for procrustes analysis

(a) tr A D nP
iD1

aii Definition of trace function

(b) tr A D tr A0 Invariant under transpose

(c) tr ABC D tr C AB D tr BCA Invariant under ‘cyclic’ permutation

(d) tr A
0

B D tr .A
0

B/
0 D tr B

0

A D tr AB
0

Combining properties (b) and (c)

(e) tr .A C B/ D tr A C trB Summation rule



132 9 Procrustes Solution

The rotation matrix T in (9.1) is then solved by measuring the distances between
corresponding points in both configurations, square these values, and add them to
obtain the sum of squares kA � BTk2 which is then minimized. One proceeds via
Frobenius norm as follows:

min kX � YTk WD
q

tr.X
0 � T

0

Y
0

/.X �YT/

T
0

T D I:
(9.2)

In-order to obtain T in (9.2), the following properties of a matrix in Table 9.1 are
essential.

Using (9.2) and the properties of Table 9.1, one writes

2
666664

kA � BTk2 WD tr.A
0 � T

0

B
0

/.A � BT/
T

0

T D I
D tr.A

0

A � 2A
0

BTC T
0

B
0

BT/
D trA

0

A � 2trA
0

BTC trB
0

B
trT

0

B
0

BT D trTT
0

B
0

B D trB
0

B:

(9.3)

The simplification trT
0

B
0

BT D trB
0

B in (9.3) is obtained by using the property
of invariance of the trace function under cyclic permutation (i.e., property (c) in
Table 9.1). Since tr.A

0

A/ and tr.B
0

B/ are not dependent on T, we note from (9.3)
that

kA � BTk2 D min , tr.A
0

BT/ D max
T

0

T D TT
0 D Ik:

(9.4)

If U†V
0

is the singular value decomposition of A
0

B and C D A
0

B; then we have

2
6666666664

A
0

B D U†V
0

if C D U†V
0

; U;V
0 2 SO.3/

† D Diag.�1; : : : ; �k/then

tr.CT/ �
kP

iD1
�k;

with
k D 3:

(9.5)
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The proof for (9.5) is given by [362, p. 34] as follows: Substituting for C from its
singular value decomposition and with the property (c) in Table 9.1, one writes

2
66666664

tr.CT/ D tr.U†V
0

T/ D tr.†V
0

TU/
taking
R D .ij/1 � i; j � k D V

0

TU orthogonal and jriij � 1
then

tr.†V
0

TU/ D
kP

iD1
�irii �

kP
iD1
�i:

(9.6)

From (9.5) and (9.6), one notes that

tr.A
0

BT/ D max , tr.A
0

BT/ �
kX

iD1
�i; (9.7)

subject to the singular value decomposition

A
0

B D U†V
0

; U;V 2 SO.3/ and orthogonal: (9.8)

Finally, the maximum value is obtained as

max.trA
0

BT/ D
kX

iD1
�i , T D VU

0

: (9.9)

Thus the solution of the rotation matrix by Procrustes method is

T D VU
0

: (9.10)

9.3.2 Partial Derivative Formulation

This approach is attributed to P. H. Schonemann [459] as well as [460]. Proceeding
from the Frobenius norm in (9.2) and using (9.1) leads to

d1 D tr A
0

A � 2tr A
0

BT;CT
0

B
0

BT; (9.11)

while the condition that T
0

T D I leads to

d2 D ƒ.T
0

T � I/: (9.12)
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where ƒ is the m � m unknown matrix of Lagrange multipliers. Equations (9.11)
and (9.12) are added to give

d D d1 C d2: (9.13)

The derivative of (9.13) are obtained with respect to T as

2
6666666666664

@d

@T
D @d1

@T
C @d2

@T

D
@
	

tr A
0

A � 2tr A
0

BT C tr T
0

B
0

BT



@T
C
@
	
ƒ T

0

T �ƒ I



@T

D �2B
0

A C B
0

BT C B
0

BT C Tƒ C Tƒ
0

D
	

B
0

B C B
0

B



T � 2B
0

A C T
	
ƒCƒ

0



:

(9.14)

From (9.14), let

B
0

B D B�; B
0

A D C and
	
ƒCƒ

0



D 2ƒ�: (9.15)

For an extremum value of d, we set
@d

@T
D 0 such that

�
2C D 2B�T C 2Tƒ�
C D B�T C Tƒ�; (9.16)

leading to both B� and ƒ� being symmetric. Hence

ƒ� D T
0

C � T
0

B
0

T: (9.17)

But B� ! symmetric and thus T
0

B�T is also symmetric. T
0

C is therefore
symmetric or

2
666664

T
0

C D C
0

T
from the side condition
T

0

T D TT
0 D I3

we have that
C D TC

0

T:

(9.18)
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From (9.8), we had C D A
0

B D U†V
0

by SVD. In the present case we note that
C D B

0

A, thus C D B
0

A D V†U
0

: From (9.18) we have

2
666664

with U
0

U D UU
0 D V

0

V D V V
0 D I3

C D TC
0

T
V † U

0 D TU†V
0

T
V D T U

or T D VU
0

;

(9.19)

which is identical to (9.10).

9.4 The General Procrustes Solution

In Sect. 9.3, we presented the partial Procrustes algorithm and referred to it as
“partial” because it was applied to solve only the rotation component of the
datum transformation problem. The analysis of the parameterized conformal group
C7.3/ (7-parameter similarity transformation) as presented in Sect. 20.1, however,
requires the estimation of the dilatation unknown (scale factor), unknown vector of
translation and the unknown matrix of rotation. These unknowns are determined
from a given matrix data set of Cartesian coordinates as pseudo-observations.
In addition to the unknown rotation matrix which was determined in Sect. 9.3,
therefore, one has to determine the scale and translation elements. The partial
Procrustes algorithm gives way to the general Procrustes algorithm. The transpose
which was indicated by f0g in Sect. 9.3 will be denoted by f�g in this section. In
Sect. 20.1, the 7-parameter datum transformation problem will be formulated such
that the solution of (20.1) lead to the desired seven parameters.

The unknown parameters for the 7-parameter transformation problem are a
scalar-valued scale factor x1 2 R, a vector-valued translation parameters x2 2
R
3�1 (column vector) and a matrix valued rotation parameters X3 2 OC.3/ WD
fX3 2 R

3�3 j X�
3X3 D I3; j X3 jD C1g, which in total constitute the 7-

dimensional parameter space. x1 represents the dilatation unknown (scale factor),
x2 the translation vector unknown (3 parameters) and X3 the unknown orthonormal
matrix (rotation matrix) which is an element of the special orthogonal group in three
dimension. In other words, the OC.3/ differentiable manifold can be coordinated by
three parameters. In (13.23) on p. 255, relative position vectors are used to form the
two matrices A and B in the same dimensional space. If the actual coordinates are
used instead, the matrix-valued pseudo-observations fY1;Y2g become

2
4 x1 x2 : : : xn

y1 y2 : : : yn

z1 z2 : : : zn

3
5

�

DW Y1; Y2 WD
2
4X1 X2 : : : Xn

Y1 Y2 : : : Yn

Z1 Z2 : : : Zn

3
5

�

; (9.20)
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with fY1 and Y2g replacing fA and Bg. The coordinate matrices of the n points
(n�dimensional simplex) of a left three-dimensional Weitzenböck space as well as
a right three-dimensional Weitzenböck space, namely Y1 2 R

n�3 and Y2 2 R
n�3

constitute the 6n dimensional observation space. Left and right matrices fY1;Y2g
are related by means of the passive 7-parameter conformal group C7.3/ in three
dimensions (similarity transformation, orthogonal Procrustes transformation) by
(cf., 20.1 on p. 461)

Y1
:D F.x1; x2;X3 j Y2/ D Y2X�

3 x1 C 1x�
2 ; 1 2 R

n�1: (9.21)

The nonlinear matrix-valued equation F.x1; x2;X3 j Y2/
:D Y1 is inconsistent since

the image <.F/�
¤

D.Y1/ of F (range space <.F/) is constrained in the domain

D.Y1/ of Y1 2 R
n�3 (domain space D.Y1/). First, as a mapping, F is “not onto,

but into” or “not surjective”. Second, by means of the error matrix E 2 R
n�3

which accounts for errors in the pseudo-observation matrices Y1 as well as Y2,
respectively, we are able to make the nonlinear matrix-valued equation F.x1; x2;X3 j
Y2/

:D Y1 as identity. In this case,

Y1 D F.x1; x2;X3 j Y2/C E D Y2X�
3 x1 C 1x�

2 C E: (9.22)

Furthermore, excluding configuration defect which can be detected a priori we shall
assume @.F/ D f0g; the kernel of F (null space @.F/) to contain only the zero
element (empty null space @.F/). A simplex of minimal dimension which allows
the computation of the seven parameters of the space X is constituted by n D 4

points, namely a tetrahedron which is presented in the next examples.

Example 9.1 (Simplex of minimal dimension, n D 4 points, tetrahedron)

Y1 D
2
4 x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4

3
5

�

2 R
n�3; Y2 D

2
4X1 X2 X3 X4

Y1 Y2 Y3 Y4
Z1 Z2 Z3 Z4

3
5

�

2 R
n�3;

2
664

x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4

3
775 D

2
664

X1 Y1 Z1
X2 Y2 Z2
X3 Y3 Z3
X4 Y4 Z4

3
775X�

3 x1 C 1x�
2 C

2
664

e11 e12 e13
e21 e22 e23
e31 e32 e33
e41 e42 e43

3
775 :

We will now introduce the weight component and solve it the problem using General
Procrustes solution.

Example 9.2 (Weighted LEast Squares’ Solution W-LESS) We depart from the
set up of the pseudo-observation equations given in Example 9.1 (simplex of
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minimal dimension, n D 4 points, tetrahedron). For a diagonal weight W D
Diag .w1; : : : ;w4/ 2 R

4�4 we compute the Frobenius error matrix W-semi-norm

k E k2WWD tr.E�WE/ D

tr

8̂
<̂
ˆ̂:

2
4 e11 e21 e31 e41

e12 e22 e32 e42
e13 e23 e33 e43

3
5
2
664

w1 0 0 0

0 w2 0 0

0 0 w3 0
0 0 0 w4

3
775

2
664

e11 e12 e13
e21 e22 e23
e31 e32 e33
e41 e42 e43

3
775

9>>=
>>;

D tr

8̂
<̂
ˆ̂:

2
4 e11w1 e21w2 e31w3 e41w4

e12w1 e22w2 e32w3 e42w4
e13w1 e23w2 e33w3 e43w4

3
5
2
664

e11 e12 e13
e21 e22 e23
e31 e32 e33
e41 e42 e43

3
775

9>>=
>>;

D
2
4 w1e211 C w2e221 C w3e231 C w4e241
Cw1e212 C w2e222 C w3e232 C w4e242
Cw1e213 C w2e223 C w3e233 C w4e243:

Obviously the coordinate errors .e11; e12; e13/ have the same weight w1,
.e21; e22; e23/ ! w2, .e31; e32; e33/ ! w3 and finally .e41; e42; e43/ ! w4. We may
also say that the error weight is pointwise isotropic, namely weight e11 =weight
e12=weight e13=weight w1 etc. But the error weight is not homogeneous since w1
=weight e11 ¤weight e21 D w2: Of course, an ideal homogeneous and isotropic
weight distribution is guaranteed by the criterion w1 D w2 D w3 D w4 D w:

By means of Solution 9.1 we have summarized the parameter space .x1; x2;X3/ 2
R � R

3 � R
3�3: In contrast, Solution 9.2 reviews the pseudo-observation space

.Y1;Y2/ 2 R
n�3 �R

n�3 equipped with the Frobenius matrix W–semi-norm.

Solution 9.1 (The parameter space X)
x1 2 R dilatation parameter (scale factor)
x2 2 R

3�1 column vector of translation parameters
X3 2 OC.3/ WD fX3 2 R

3�3 j X�
3X3 D I3; j X3 jD C1g

orthonormal matrix,
rotation matrix of three
parameters

Solution 9.2 (The observation space Y)

Y1 D
2
4 x1 x2 : : : xn

y1 y2 : : : yn

z1 z2 : : : zn

3
5

�

2 R
n�3; Y2 D

2
4X1 X2 : : : Xn

Y1 Y2 : : : Yn

Z1 Z2 : : : Zn

3
5

�

2 R
n�3

left three-dimensional coordinate right three-dimensional coordinate
matrix of an n� dimensional matrix of an n� dimensional
simplex simplex
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The immediate problem that one is faced with is how to solve the inconsistent
matrix-valued nonlinear equation (9.22). Essentially, this is the same problem that
we introduced in (20.1) on p. 461. The difference between (20.1) and (9.22) is the
incorporation of the error matrix E in the latter. This takes into consideration the
stochasticity of the systems Y1 and Y2. In what follows W-LESS (i.e., the Weighted
LEast Squares’ Solution) is defined and materialized by the Procrustes algorithm
presented by means of:

• Corollary 9.1 (partial W-LESS for the unknown vector x2l).
• Corollary 9.2 (partial W-LESS for the unknown scalar x1l).
• Corollary 9.3 (partial W-LESS for the unknown matrix X3l).

The partial optimization results are collected in Theorem 9.1 (W-LESS of Y1 D
Y2X�

3 x1 C 1x�
2 C E) and Corollary 9.4 (I-LESS of Y1 D Y2X�

3 x1 C 1x�
2 C E).

Solution 9.3 summarizes the general Procrustes algorithm.

Definition 9.1 (W-LESS) The parameter array fx1l; x2l;X3lg is called W-LESS
(least squares solution with respect to Frobenius matrix W–semi-norm) of the
inconsistent nonlinear matrix-valued system of equations

Y2X�
3 x1 C 1x�

2 C E D Y1; (9.23)

subject to

X�
3X3 D I3; j X3 jD C1; (9.24)

if for the parameter array in comparison to all other parameter arrays fx1l; x2l;X3lg,
the inequality

2
6666666664

k Y1 � Y2X�
3lx1l � 1x�

2l k2W

WD tr..Y1 �Y2X�
3lx1l � 1x�

2l/
�W.Y1 � Y2X�

3lx1l � 1x�
2l/

� tr..Y1 �Y2X�
3 x1 � 1x�

2 /
�W.Y1 �Y2X�

3 x1 � 1x�
2 /

DWk Y1 �Y2X�
3 x1 � 1x�

2 k2W

(9.25)

holds, in particular if El WD Y1 �Y2X�
3lx1l � 1x�

2l has the minimal Frobenius matrix
W–semi-norm such that W 2 R

n�n is positive semi-definite.

Note that k E k2WWD tr.E�WE/ characterizes the method of least squares tuned
to an error matrix E 2 R

n�3 and a positive semi-definite weight matrix W:

Indeed a positive semi-definite weight matrix W of weights is chosen in-order
to have the option to exclude by means of zero weight a particular pseudo-
observation, say a particular coordinate row vector Œxi; yi; zi�; i 2 N arbitrary, but
fixed by wii D wi D 0; which may be an outlier. Example 9.2 illustrates details of
Definition 9.1.
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In order to construct W-LESS of the inconsistent nonlinear matrix-valued system
of equations (9.23) subject to (9.24) we introduce the Procrustes algorithm. The first
algorithmic step is constituted by the forward computation of the transformation
parameters x2l from the unconstraint Lagrangean L.x1; x2;X3/ which is twice the
value of the Frobenius error matrix W–semi-norm. As soon as the translation
parameters x2l are backward substituted we gain a Lagrangean L.x1;X3/ which
is centralized with respect to the observation matrix Y1 � Y2X�

3 x1: In the second
algorithmic step the scale parameter x1l is forward computed from the centralized
Lagrangean L.x1;X3/. Its backward substitution leads to the Lagrangean L.X3/

which is only dependent on the rotation matrix X3: Finally the optimization problem
L.X3/ D min subject to X�

3X3 D I3; j X3 jD C1 generates the third algorithmic
step. This computational step is similar to that of partial Procrustes algorithm of
Sect. 9.3. By means of singular value decomposition SVD the rotation matrix X3l

is forward computed and backward substituted to gain .x1; x2;X3/ at the end. The
results are collected in Corollaries 9.1, 9.2 and 9.3.

Corollary 9.1 (Partial W-LESS for the translation vector x2l) A 3� 1 vector x2l

is partial W-LESS of (9.23) subject to (9.24) if and only if x2l fulfills the system of
normal equations

1�W1x2l D .Y1 �Y2X�
3 x1/

�W1: (9.26)

The translation vector x2l always exist and is represented by

x2l D .1�W1/�1.Y1 �Y2X�
3 x1/

�W1: (9.27)

For the special case W D In, i.e., the weight matrix is unit, the translational
parameter vector x2l is given by

x2l D 1

n
.Y1 � Y2X�

3 x1/
�1:

proof

W-LESS is constructed by unconstraint Lagrangean

2
666666666664

L.x1; x2;X3/ WD 1

2
k E k2WDk Y1 � Y2X�

3 x1 � 1x�
2 k2W

D 1

2
tr.Y1 �Y2X�

3 x1 � 1x�
2 /

�W.Y1 �Y2X�
3 x1 � 1x�

2 / D min;

subject to fx1 � 0; x2 2 R3�1;X�
3X3 D I3g

@L

@x�
2

.x2l/ D .1�W1/x2 � .Y1 �Y2X�
3 x1/

�W1 D 0;

(9.28)



140 9 Procrustes Solution

constitutes the first necessary condition. Basics of vector-valued differentials are as
given in Table 9.1, p. 131. For more details on matrix properties and manipulations,
we refer to [222, pp. 439–451]. As soon as we back-substitute the translation
parameter x2l; we are led to the centralized Lagrangean

2
664

L.x1;X3/ D
1

2
trf�Y1 � .Y2X�

3 x1 C .1�W1/�111�W.Y1 �Y2X�
3 x1//

��
W

� � �Y1 � .Y2X�
3 x1 C .1�W1/�111�W.Y1 � Y2X�

3 x1//
�g

(9.29)

2
66664

L.x1;X3/ D
1

2
trf�.I � .1�W1/�111�/W.Y1 � Y2X�

3 x1/
��

W

� � �.I� .1�W1/�111�/W.Y1 � Y2X�
3 x1/

�g
(9.30)

C WD In � .1�W1/�111�W (9.31)

is a definition of the centering matrix, namely for W D In

C WD In � 1
n

11;� (9.32)

being symmetric, in general. Substituting the centering matrix into the reduced
Lagrangean L.x1;X3/, we gain the centralized Lagrangean

L.x1;X3/ D
1
2
trf�Y1 �Y2X�

3 x1
��

C�WC
�
Y1 �Y2X�

3 x1
�g (9.33)

|
Corollary 9.2 (Partial W-LESS for the scale factor x1l) A scalar x1l is partial
W-LESS of (9.23) subject to (9.24) if and only if

x1l D trY�
1C�WCY2X�

3

trY�
2C�WCY2

(9.34)

holds. For special case W D In the scale parameter vector x1l is given by

x1l D trY�
1C�CY2X�

3

trY�
2C�CY2

(9.35)
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proof

Partial W-LESS is constructed by the unconstraint centralized Lagrangean

2
4 L.x1;X3/ D
D 1

2
trfŒ.Y1 �Y2X�

3 x1/��C�WC
�
Y1 � Y2X�

3 x1
�g D minx1;X3 ;

subject to fx1 � 0;X�
3X3 D I3g:

(9.36)

@L

@x1
.x1l/ D x1ltrX3Y�

2C�WCY2X�
3 � trY�

1C�WCY2X�
3 D 0 (9.37)

constitutes the second necessary condition. Due to (e.g., cyclic property in Table 9.1,
p. 131)

trX3Y�
2C�WCY2X�

3 D trY�
2C�WCY2X�

3X3 D Y�
2C�WCY2;

(9.37) leads to (9.34). While the forward computation of
@L

@x1
.x1l/ D 0 enjoyed a

representation of the optimal scale parameter x1l; its backward substitution into the
Lagrangean L.x1;X3/ amounts to

2
666666664

L.X3/ D

trf
�

Y1 �Y2X�
3

trY�
1C�WCY2X�

3

trY�
2C�WCY2

�
C�WC

� �
�

Y1 � Y2X�
3

trY�
1C�WCY2X�

3

trY�
2C�WCY2

�
g

(9.38)

2
6666666666666664

L.X3/ D

1

2
trf.Y�

1C�WCY1/ � tr.Y�
1C�WCY2X�

3 /
trY�

1C�WCY2X�
3

trY�
2C�WCY2

�tr.X3Y�
2C�WCY1/

trY�
1C�WCY2X�

3

trY�
2C�WCY2

Ctr.X3Y�
2C�WCY2X�

3 /
ŒtrY�

1C�WCY2X�
3 �
2

ŒtrY�
2C�WCY2�2

g

(9.39)
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2
6666666664

L.X3/ D

D 1

2
tr.Y�

1C�WCY1/� ŒtrY�
1C�WCY2X�

3 �
2

ŒtrY�
2C�WCY2�

C1
2

ŒtrY�
1C�WCY2X�

3 �
2

ŒtrY�
2C�WCY2�

(9.40)

2
66666664

L.X3/ D

D 1

2
tr.Y�

1C�WCY1/� 1
2

ŒtrY�
1C�WCY2X�

3 �
2

ŒtrY�
2C�WCY2�

D min;

subject to fX�
3X3 D I3g

(9.41)

|
Corollary 9.3 (Partial W-LESS for the rotation matrix X3l) A 3�3 orthonormal
matrix X3 is partial W-LESS of (9.41) if and only if

X3l D UV� (9.42)

holds, where A WD Y�
1C�WCY2 D U†sV� is a singular value decomposition

with respect to a left orthonormal matrix U;U�U D I3; a right orthonormal
matrix V;VV� D I3; and †s D Diag.�1; �2; �3/ a diagonal matrix of sin-
gular values .�1; �2; �3/: The singular values are the canonical coordinates of
the right eigenspace .A�A � †2

s I/V D 0: The left eigenspace is based upon

U D AV†�1
s :

proof

In (9.41) L.X3/ subject to X�
3X3 D I3 is minimal if

tr.Y�
1C�WCY2X�

3 / D min; subject to fx1 � 0;X�
3X3 D I3g: (9.43)

Let A WD Y�
1C�WCY2 D U†sV� be a singular value decomposition with respect

to a left orthonormal matrix U;U�U D I3; a right orthonormal matrix V;VV� D I3;
and †s D Diag.�1; �2; �3/ a diagonal matrix of singular values .�1; �2; �3/: Then

�
tr.AX�

3 / D tr.U†sV�X�
3 /

D tr.†sV�X�
3U/ DP3

iD1 �irii �P3
iD1 �i;

(9.44)
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holds since R D V�X�
3U D Œrij� 2 R

3�3 is orthonormal with j rii j� 1: The identity

tr.AX�
3 / D

3P
iD1
�i applies if V�X�

3U D I3; that is X�
3 D VU�; X3 D UV�; namely

if tr.AX�
3 / is maximal:

"
tr.AX�

3 / D maxfX�

3 X3DI3g ,
, R D V�X�

3U D I3:
trAX�

3 D
3X

iD1
�:i (9.45)

|
An alternative proof of Corollary 9.3 based on formal differentiation of traces
and determinants has been given in Sect. 9.3.2 of Sect. 9.3. Finally we collect our
sequential results in Theorem 9.1 identifying the stationary point of W-LESS
of (9.23) specialized for W D I, i.e., matrix of unit weight in Corollary 9.4. The
highlight is the General Procrustes algorithm we have developed in Solution 9.3.

Theorem 9.1 (W-LESS of Y1 D Y2X�
3 x1 C 1x�

2 C E)

(i) The parameter array fx1; x2;X3g is W-LESS of (9.23) if

x1l D trY�
1C�WCY2X�

3l

trY�
2C�WCY2

(9.46)

x2l D .1�W1/�1.Y1 � Y2X�
3lx1l/

�W1 (9.47)

X3l D UV�; (9.48)

subject to the singular value decomposition of the general 3 � 3 matrix

Y�
1C�WCY2 D UDiag.�1; �2; �3/V�; (9.49)

namely

"
Œ.Y�

1C�WCY2/
�.Y�

1C�WCY2/� �2i I�vi D 0 8i 2 f1; 2; 3g
V D �v1; v2; v3

�
;VV� D I3

(9.50)

�
U D Y�

1C�WCY2VDiag.��1
1 ; ��1

2 ; ��1
3 /

U�U D I3
(9.51)

and as well as to the centering matrix

C WD In � .1�W1/�111�W: (9.52)
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(ii) The empirical error matrix of type W-LESS accounts for

El D ŒIn � 11�W.1�W1/�1�


Y1 � Y2VU� trY�
1C�WCY2VU�

trY�
2C�WCY2

�
; (9.53)

with the related Frobenius matrix W–semi-norm
2
66666666666664

k E k2WWD tr.E�
l WEl/ D

trf.Y1 � Y2VU� trY�
1C�WCY2VU�

trY�
2C�WCY2

/�:

:ŒIn � 11�W.1�W1/�1��WŒIn � 11�W.1�W1/�1�:

:.Y1 �Y2VU� trY�
1C�WCY2VU�

trY�
2C�WCY2

/g;

(9.54)

and the representative scalar measure of the error of type W-LESS given by

jk El kjWWD
q

tr.E�
l WEl/=3n: (9.55)

Corollary 9.4 (I-LESS of Y1 D Y2X�
3 x1 C 1x�

2 C E )

(i) The parameter array fx1; x2;X3g is I-LESS of (9.23) if

x1l D trY�
1CY2X�

3l

trY�
2CY2

(9.56)

x2l D 1

n
.Y1 � Y2X�

3lx1l/
�1 (9.57)

X3l D UV�; (9.58)

subject to the singular value decomposition of the general 3 � 3 matrix

Y�
1CY2 D UDiag.�1; �2; �3/V�; (9.59)

namely

"
Œ.Y�

1CY2/
�.Y�

1CY2/ � �2i I�vi D 08i 2 f1; 2; 3g
V D �v1; v2; v3

�
;VV� D I3

(9.60)

U D Y�
1CY2VDiag.��1

1 ; ��1
2 ; ��1

3 /

U�U D I3
(9.61)
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and as well as to the centering matrix

C WD In � 1
n

11�: (9.62)

(ii) The empirical error matrix of type I-LESS accounts for

El D ŒIn � 1
n

11��


Y1 � Y2VU� trY�
1CY2VU�

trY�
2CY2

�
; (9.63)

with the related Frobenius matrix W–semi-norm

2
66666666666664

k E k2I WD tr.E�
l El/ D

trf.Y1 � Y2VU� trY�
1CY2VU�

trY�
2CY2

/
�
:

:ŒIn � 1
n 11��:

:.Y1 � Y2VU� trY�
1CY2VU�

trY�
2CY2

/g

(9.64)

and the representative scalar measure of the error of type I-LESS

jk El kjIWD
q

tr.E�
l El/=3n:

In the proof of Corollary 9.4, we only sketch the results that the matrix In� 1
n 11�

is idempotent:

2
666664

.In � 1
n 11�/.In � 1

n 11�/ D

D In � 2
n 11� C 1

n2
.11�/2 D

D In � 2
n 11� C 1

n2
n11� D In � 1

n 11�:

Solution 9.3 (General Procrustes algorithm)
�

�

�

	
Step 1

Read W Y1 D
2
4 x1 y1 z1
: : :

xn yn zn

3
5 and

2
4X1 Y1 Z1
: : :

Xn Yn Zn

3
5 D Y2

�

�

�

	
Step 2
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Compute W Y�
1CY2 subject to C WD In � 1

n 11�
�

�

�

	
Step 3

Compute W SVD Y�
1CY2 D UDiag.�1; �2; �3/V�

3-1 j .Y�
1CY2/

�.Y�
1CY2/� �2i I jD 0) .�1; �2; �3/

3-2
..Y�

1CY2/
�.Y�

1CY2/ � �2i I/vi D 08i 2 f1; 2; 3g
) V D �v1; v2; v3

�
right eigenvectors
.right eigencoloumns/

3-3
U D Y�

1CY2VDiag.
1

�1
;
1

�2
;
1

�3
/ left eigenvectors

.left eigencoloumns/
�

�

�

	
Step 4

Compute W X3l D UV� (rotation)
�

�

�

	
Step 5

Compute W x1l D trY�
1CY2X�

3

trY�
2CY2

(dilatation)

�

�

�

	
Step 6

Compute W x2l D 1
n .Y1 � Y2X�

3 x1/�1 (translation)
�

�

�

	
Step 7

Compute W El D C


Y1 � Y2VU� trY�
1CY2VU�

trY�
2CY2

�
(error matrix)

“optional control”

El WD Y1 � .Y2X�
3lx1l C 1x�

2l/

�

�

�

	
Step 8

Compute W k El kIWD
p

tr.E�
l El/ (error matrix)
�

�

�

	
Step 9

Compute W jk El kjIWD
p

tr.E�
l El/=3n (mean error matrix)
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9.5 Extended General Procrustes Solution

9.5.1 Mild Anisotropy in Scaling

The 3D affine transformation is one possible generalization of the C7(3,3) Helmert
transformation, using three different scale (s1; s2; s3) parameters instead of a single
one. In this case the scale factors can be modeled by a diagonal matrix (S).

0
@ xi

yi

zi

1
A D S � R

0
@Xi

Yi

Zi

1
AC

0
@X0

Y0
Z0

1
A : (9.65)

Recently, an extension of general Procrustes method for solving the 3D affine
9-parameter transformation (i.e., ABC-method) has been developed by Awange
et al. [45] and is summarized as follows:

1. Compute the center of gravity of the two systems

a0 D 1

N
xyz (9.66)

b0 D 1

N
XYZ (9.67)

2. Translate the systems into the center of the coordinate system

xyzC D xyz � 1 � a0 (9.68)

XYZC D XYZ � 1 � b0 (9.69)

3. Compute matrix A

A D XYZCT � xyzC (9.70)

4. Compute the rotation matrix R via SVD decomposition of A, getting the matrices
U, V and diag .�1; �2; �3/, where

A D Udiag.�1; �2; �3/V

and

R D U � VT
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5. First approximation of the scale matrix considers only the diagonal elements of,

S D �RT � XYZCT � XYZC � R
��1 � RT � XYZCT � xyzC (9.71)

i.e.,

S0 D diag.S/ (9.72)

6. Iterate to improve the scale matrix

w D xyz� XYZ � R � S0 � 1 � .a0 � b0 � R � S0/ (9.73)

dS D diag
	�

RT � XYZT � XYZ � R
��1 � RT � XYZT � w



(9.74)

S0 D S0 C dS (9.75)

7. After the iteration the scale matrix is

S D diag .S0/ (9.76)

8. Then the translational vector

XYZ0 D a0 � b0 � R � S: (9.77)

9.5.2 Strong Anisotropy in Scalling

The ABC method is very fast, and the computation effort for iteration to improve
the S scale matrix is negligible. The main problem with ABC method is that after
shifting the two systems into the origin of the coordinate system, the rotation
matrix is computed via SVD. This means that the physical rotation as well as the
deformation (distortion) caused by different scaling in the different directions of
the three different principal axes will be also involved in the computation of the
rotation matrix. This can be approximately allowed only when these scale factors
do not differ from each other considerably. In addition, the necessary condition
for getting optimal scale matrix is not restricted for diagonal matrix, and the off
-diagonal elements are simply deleted in every iteration step, which will not ensure
real global minimum for the trace of the error matrix.

The PZ method (see Paláncz et al. [400]) can cure these problems, but there is a
price for it! This method start with an initially guessed diagonal S scale matrix, and
first using the inverse of this matrix to eliminate the deformation caused by scaling,
and only after the elimination of this “distortion” will be SVD applied to compute
the rotation matrix itself. It goes without saying that in this way, the computation of
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the rotation matrix should be repeated in iterative way in order to decrease the error.
That is why that this method is precise and correct for any ratios of scale parameters,
but takes longer time to achieve the results, than in case of the ABC method.

The algorithm can be summarized as follows:

1. Guess the elements of the diagonal scale matrix of the transformation S

S D
0
@ s1 0 0

0 s2 0
0 0 s3

1
A (9.78)

The steps for computing the error in case of a given scale matrix S are the
following.

2. Using Eqs. (9.66) and (9.67) compute the center of gravity of the two system.
3. Translate the system using (9.68) and (9.69)
4. Eliminate rotation (distortion) caused by scaling with different values in different

directions in the computation of matrix A using

A D XYZCT � xyzC � S�1 (9.79)

5. Compute the rotation matrix using SVD decomposition of A, getting the matrices
U, V and diag .�1; �2; �3/, where

A D Udiag.�1; �2; �3/V

and

R D U � VT

where A D Udiag.: : :/V(see, e.g., 9.59).
6. Compute the translation vector using (9.77).
7. Compute the error matrix

E D xyz �XYZ � RT � S � 1 � XYZT
0 (9.80)

8. Compute the square of the norm of the mean error matrix

jk El kjIWD
q

tr.E�
l WEl/=3n (9.81)

If this error is to high, then modify the scale matrix S, and repeat the computation.
To do that reasonably, this computation is implemented a Newton-algorithm to
carry out local minimization of the Frobenius norm of the error matrix. In order



150 9 Procrustes Solution

to illustrate the proper application area of the two extended Procrustes methods, let
us consider two numerical examples. In the case of the seven parameter similarity
transformation (Helmert) the scale value s can be estimated by dividing the sum of
length in both systems from the centre of gravity, see Albertz and Kreiling [9].

The center of the gravity of the systems are,

a0 D
0
@ xs

ys

zs

1
Aand b0 D

0
@Xs

Ys

Zs

1
A (9.82)

Then the estimated scale parameter according to Albertz and Kreimlig [9] in the
Helmert similarity transformation is

spriori D
PN

iD1
q
.xi � xs/

2 C .yi � ys/
2 C .zi � zs/

2

PN
iD1

q
.Xi � Xs/

2 C .Yi � Ys/
2 C .Zi � Zs/

2

(9.83)

In case of the nine parameter affine transformation where three different scale values
.s1; s2; s3/ are applied according to the three coordinate axes, a good approach for
the scale parameters can be given by modifying the Albertz-Kreiling [9] expression.
Instead of the quotient of the two lengths in the centre of gravity system we can
use the quotients of the sum of the lengths in the corresponding coordinate axes
directions.

The estimated scale parameters according to the modified Albertz-Kreiling [9]
expression for the nine parameter transformation (see also [547]) is

sO1 D
PN

iD1
q
.xi � xs/

2

PN
iD1

q
.Xi � Xs/

2

; sO2 D
PN

iD1
q
.yi � ys/

2

PN
iD1

q
.Yi � Ys/

2

; sO3 D
PN

iD1
q
.zi � zs/

2

PN
iD1

q
.Zi � Zs/

2

;

(9.84)

where .s01; s02; s02/ are the initial elements of S in the iteration.

9.6 Weighted Procrustes Transformation

As already stated in Sect. 20.1.1, other than the problems associated with lin-
earization and iterations, the 7-datum transformation problem (conformal group
C7.3/) is compounded with the problem of incorporating the weights of the systems
involved. This section presents Procrustes algorithm II; a reliable means of solving
the problem. We have already seen that the problem could be solved using Gauss-
Jacobi combinatorial algorithm in Sect. 20.2.3. Procrustes algorithm II presented
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in the preceding section offers therefore an alternative that is not computationally
intensive as the combinatorial method.

To obtain the weight matrix used in Corollaries 9.1, 9.2 and 9.3 in the weighted
Procrustes problem, we proceed via the variance-covariance matrix of Theo-
rem 9.2, whose proof is given in Solution 9.4 where the dispersion matrices of
two sets of coordinates in R

3 are presented in (9.86) and (9.88). They are used
in (9.90) and (9.91) to obtain the dispersion of the error matrix E in (9.92). In-order
to simplify (9.92), we make use of Corollary 9.5 adopted from [222, Appendix A, p.
419] to express vec x1X3Y�

2 as in (9.93) and substitute it in (9.92) to obtain (9.94).
We provide as a summary the following:

Theorem 9.2 (variance-covariance matrix) Let vec E� denote the vector valued
form of the transposed error matrix E WD Y1 �Y2X�

3 x1 � 1x�
2 : Then

"
†vecE� D †vec Y�

1
C .In ˝ x1X3/†vec Y�

2
.In ˝ x1X3/

�

�2†vecY�

1 ;.In˝x1X3/vecY�

2

(9.85)

is the exact representation of the dispersion matrix (variance-covariance matrix)
˙vec E� of vec E� in terms of dispersion matrices (variance-covariance matrices)
†vec Y�

1
and †vec Y�

2
of the two coordinates sets vec Y�

1 and vec Y�
2 as well as of

their covariance matrix

†vecY�

1 ;.In˝x1X3/vecY�:
2

Proof By means of Solution 9.4 we define the dispersion matrices, also called
variance-covariance matrices, of vec Y�

1 and vec Y�
2 of the two sets of coordinates.

Solution 9.4 (Dispersion matrices of two sets of coordinates in R
3 )

†vec Y�

1
D Ef

2
664

x1 � Efx1g
x2 � Efx2g

: : :

xn � Efxng

3
775
�
.x1 � Efx1g/� : : : .xn � Efxng/�

�g (9.86)

Ef.vecY�
1 � EfY�

1 g/.vecY�
1 � EfY�

1 g/�g (9.87)

†vec Y�

2
D Ef

2
664

X1 � EfX1g
X2 � EfX2g

: : :

Xn � EfXng

3
775
�
.X1 � EfX1g/� : : : .Xn � EfXng/�

�g (9.88)

Next from the transposed error matrix

E� WD Y�
1 � .x1X3Y�

2 C x21x�
2 / (9.89)
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we compute the dispersion matrix (variance-covariance matrix) †vec E�

2
666664

†vec E� WD EfŒvec E� � Efvec E�g�Œvec E� � Efvec E�g��g

D E
˚
Œvec Y�

1 � Efvec Y�
1 g � x1.vec X3Y�

2 � Efvec X3Y�
2 g/�

� Œvec Y�
1 � Efvec Y�

1 g � x1.vec X3Y�
2 � Efvec X3Y�

2 g/��gg

(9.90)

2
666664

†vec E� D EfŒvec Y�
1 � Efvec Y�

1 �Œvec Y�
1 � Efvec Y�

1 �
�g

Cx21EfŒvec X3Y�
2 � Efvec X3Y�

2 g�Œvec X3Y�
2 � Efvec X3Y�

2 �
�

�2x1EfŒvec Y�
1 � Efvec Y�

1 �Œvec X3Y�
2 � Efvec X3Y�

2 �
�g

(9.91)

n
†vec E� D †vec Y�

1
C†vec x1X3Y�

2
� 2†vec Y�

1 ;vec x1X3Y�

2
(9.92)

Corollary 9.5

�
vec AB D .Iq ˝ A/vec B for all A 2 R

n�m;B 2 R
m�q

vec X3Y�
2 D .In ˝ x1X3/vec Y�

2 for all X3 2 R
3�3; Y�

2 2 R
3�n (9.93)

As soon as we implement the Kronecker-Zehfu decomposition of the vec AB we
arrive at the general representation of the dispersion matrix †vec E� , namely

"
†vec E� D †vec Y�

1
C .In ˝ x1X3/†vec Y�

2
.In ˝ x1X3/

��
�2†vecY�

1 ;.In˝x1X3/vecY�

2

(9.94)

|
The results of Theorem 9.2 are interpreted in more detail as follows: The

variance-covariance matrix of the vectorized error matrix E� depends on;

(i) the variance-covariance matrix †vec Y�

1
of the local coordinate set .x1; y1; z1,

: : :, xn; yn; zn/,
(ii) the variance-covariance matrix †vec Y�

2
of the global coordinate set .X1;Y1;Z1,

: : :, Xn;Yn;Zn/,
(iii) the covariance matrix between vec Y�

1 and .In ˝ x1X3/vecY�
2 of the global

coordinate set vec Y�
2 as well as

(iv) the nonlinearity of the parameter model on the unknowns x1; X3 of type “scale
factor” and “rotation matrix” coupled to .In ˝ x1X3/:

So as to take advantage of the equivalence theorem between least squares approxi-
mation and best linear uniformly unbiased estimation, e.g., [222, §3, pp. 339–340],
which holds for linear Gauss-Markov model, it is tempting to identify the weight
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matrix W of W-LESS with †�1
vec E�

shrunk to a locally isotropic error situation.
Such a shrinking procedure is outlined in Example 20.3, namely by taking in
account isotropic, but inhomogeneous criterion matrices.

9.7 Concluding Remarks

The partial Procrustes algorithm presented in this chapter provides a powerful tool
for solving rotation and orientation related problems in general. The approach is
straight forward and does not require linearization, which bog down least squares
and other techniques commonly used. In Chap. 20, it shall be demonstrated how
the general Procrustes approach determines scale and translation parameters of
transformation, in addition to the rotation elements.

The 9-parameter Procrustean algorithm considered in this Chapter can thus be
used for

(i) quicker and effective generation of nine transformation parameters given
coordinates in two systems as matrix configuration,

(ii) quick checking of the transformation parameters obtained from other methods
(iii) generating three scale parameters which could be useful in correcting distor-

tions following procedures which first determine the rotation and translation
parameters independent of scale.

For complete exposition of Procrustes approach, we refer to the works of [86, 93,
94, 101, 128, 129, 134, 139, 140, 155, 192, 195, 199, 233, 239, 240, 361, 362, 416,
459, 460, 481, 503].



Chapter 10
EIV Models and Pareto Optimalitity

10.1 Introductory Remarks

In some geospatial parametric modeling, the objectives to be minimized are often
expressed in different forms, resulting in different parametric values for the esti-
mated parameters at non-zero residuals. Sometimes, these objectives may compete
in a Pareto sense, namely a small change in the parameters results in the increase
of one objective and a decrease of the other, as is often the case in multiobjective
problems. Such is often the case with errors-in-all-variables (EIV) models, e.g., in
the geodetic and photogrammetric coordinate transformation problems often solved
using total least squares solution (TLS) as opposed to ordinary least squares solution
(OLS). In this Chapter, the application of Pareto optimality to solving parameter
estimation for linear models with EIV is presented. The method is tested to solve two
well known geodetic problems of linear regression and linear conformal coordinate
transformation. The results are compared to those from OLS, Reduced Major
Axis Regression (TLS solution), and the least geometric mean deviation (GMD)
approach. It is shown that the TLS and GMD solutions applied to the EIV models
are just special cases of the Pareto optimal solution, since both of them belong to
the Pareto-set. The Pareto balanced optimum (PBO) solution as a member of this
Pareto optimal solution set has special features, and is numerically equal to the
GMD solution.

10.2 Estimation of Model Parameters

Parameter estimation for linear problems in geodesy and geoinformatics, as well
as in many other engineering fields, is often undertaken using the linear Gauss-
Markov model or least squares adjustment. Examples of problems that utilize this
model include positioning in surveying, curve settings in engineering surveying,
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and coordinate transformation in geodesy and photogrammetry. This model aims at
estimating a vector of parameters �, from a linear model y D A� C e that includes
an observation vector y, a vector of normally distributed errors e, and a matrix
of variables A [159]. In this model, the underlying assumption is that the design
matrix A is fixed or error-free, which is not often the case as many physical systems
encounter errors in both the observation vector y, as well as the design matrix A
[294]. The total least squares method (see, e.g., Golub and Van Loan [191]) has
been proposed as the possible solution to the inability of the linear Gauss-Markov
model to provide solutions when both the observation vector y as well as the design
matrix A contain errors, i.e., solving the error-in-all-variables (EIV) models.

Total least squares (TLS) is generally defined as a method of fitting that is
appropriate when there are errors in both the .m � 1/ observation vector y and
the design matrix A such that the ‘best’ subspace is fit to the points .aT

i ; yi/; i D
1; : : : ;m, where aT

i is the ith row of A [191]. This relatively new approach has
been applied, e.g., in the works of [152] to atmospheric remote sensing, and [160]
who considers the problem of TLS solution for composite data, i.e., multivariate
data with positive parts that carry only relative information in their components,
using linear models. Zwanzig [554] applied local linear regression methods to
a nonparametric EIV model with normal errors in the variables and uniform
distribution of the variables.

In geodesy as well as photogrammetry, the application of TLS solution to
solve problems with EIV models has been presented, e.g., by [159] who applied
the “Cadzow algorithm” for Structured Total Least-Squares (STLS) adjustment
to solve the similarity transformation problem. It should be mentioned, that this
STLS solution does not minimize the objective of the TLS problem as intended.
Consequently, the proposed STLS procedure does not generate the TLS among all
structured solutions. Schaffrin [447] provided a means by which the constrained
total least squares estimate (CTLSE) could be generated by solving a certain
sequence of eigenvalue problems iteratively, while [15] elaborated a so-called
“generalized” TLS procedure (GTLS) to estimate the transformation parameters
between two coordinate systems. However, this method was never designed to
minimize the sum of weighted squared residuals, and does not yield the solution for
the structured TLS problem (see [389]), a deficiency which had already been pointed
out. An algorithm for a multivariate (but unstructured) EIV model was developed
using the nonlinear Euler-Lagrange conditions by [445, 446], and a weighted
total least-squares solution (WTLSS) for EIV models with fairly general variance-
covariance matrices proposed in [444]. Schaffrin and Snow [442] introduced a
variation of Golub/Hansen/O’Leary’s TLS regularization technique based on the
Hybrid APproximation Solution (HAPS) within a nonlinear Gauss-Helmert Model.
In [443], an algorithm for solving the TLS problems with both linear and quadratic
constraints is presented. Cai and Grafarend [108] applied TLS to analyse coordinate
systems, while [248] presented a space registration algorithm based on constrictive
total least squares. Neitzel [389] showed that the TLS model can be identified as
a special case of the method of least-squares within the nonlinear Gauss-Helmert
model.
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In this Chapter, we present an alternative method, namely the application of
Pareto optimality which has been widely used in economics (see, e.g., [247, 506]) to
estimate the parameters in EIV models and to show that the TLS actually belongs to
the Pareto family. The use of Pareto optimality is necessitated by the fact that many
real-world problems involve simultaneous optimization of several incommensurable
and often competing objectives (i.e., multiobjectives). Often, there is no single
optimal solution, but rather a set of alternative solutions which are optimal in
the wider sense that no other solutions in the search space are superior to them
when all objectives are considered [552]. These solutions, known as Pareto-optimal
solutions, were introduced by the Italian economist and sociologist Vilfredo Pareto
(1848–1923) [390].

Pareto optimality has been associated with multiobjective problems for quite
sometime (see, e.g., [109, 552]). Other traditionally available methods for solving
multiobjective problems include the goal attainment approach [508] and weighted
averaging [110]. Considering the Pareto approach, there occur cases of parametric
modeling, for example, where the objective to be minimized can be expressed in
different forms, resulting in different parametric values for the estimated unknowns
at non-zero residiuals. Sometimes these objectives may compete in Pareto sense,
namely a small change in the parameters result in increase of one objective, while
decreasing the other. The Pareto optimal set represents a set of optimal trade-off
solutions between the conflicting objectives, which helps the user to gain a better
understanding of the problem structure and supports the decision-maker in choosing
the best compromise solution for the considered alternatives. However, for the case
of lack of a such a supervisor, one may select an equilibrium trade-off solution from
the Pareto-set.

Examples of the application of Pareto optimality are documented, e.g., in
Lin [317], who presents a method of proper equality constraints for obtaining the
set of all Pareto-optimal solutions of a general multiple-objective problem and the
set of all performance index vectors attainable by the Pareto-optimal solutions,
[552] who studied the strength of the Pareto approach, and more recently by
[183] who treat the classical linear-quadratic regulator (LQR) design as an online
multi-objective optimization problem where the compromise between the multiple
objective functions is not resolved until run-time, and [453] who uses Pareto
optimality to develop a routing and wavelength assignment algorithm that is robust,
flexible, and computationally feasible for efficient use in multiobjective network
optimization.

In geodesy, [16] made use of Pareto optimality when they applied computational
intelligence (CI) algorithms to tune geodetic models using very long baseline
interferometry (VLBI) in radio astronomy. Werth and Güntner [507] developed an
efficient multiobjective calibration framework to incorporate time series of monthly
measured river discharge and GRACE water storage variations into the parameter
tuning process of the WaterGAP Global Hydrology Model (WGHM) using Pareto
optimality. Shanker and Zebker [452] suggested the use multi-objective functions to
constrain synthetic aperture radar interferometry (InSAR) using external GPS and
levelling measurements.
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This Chapter therefore, adds to the possible applications of Pareto optimality in
geodesy by considering its use in solving linear models with EIV models that are
traditionally solved using TLS.

10.2.1 Modeling Error-in-All Variables

Parameter estimation is a central problem in the development of mathematical
models having broad application in time series modelling, image processing, signal
processing, neural networks and system identification in the fields of engineering,
econometrics, statistics as well as engineering surveying, geodesy, geoinformatics
and photogrammetry.For most users of the technique, the term is taken to refer to the
fitting of a function to data by means of the least squares criterion. Researchers who
probe further into the field will discover that other criteria exist, such minimizing
the sum of the absolute deviations, or minimizing the maximum absolute deviation.
All of these fitting criteria have one thing in common; they assume that there are a
set of independent variables not subject to measurement errors.

The error-in-all variables (EIV) approach differs in that it assumes that there are
measurement errors in all variables. Accounting for EIV has been demonstrated to
lead to unbiased estimates of the parameter values, and thus to more accurate model
e.g., [194].

In this section, we treat the problem mainly from practical computational point
of view, providing techniques to solve EIV problems and illustrating them using
numerical examples.

10.2.2 Total Least Squares Approach

Suppose we wish to fit a line to data, but without basing it solely on the vertical
deviations from the line. A possible alternative fitting criterion that one might
consider is to minimize the sum of the perpendicular distances from the data points
to the regression line, or the squares of such distances. This involves applying
Pythagoras’ theorem to calculate such distances and so involves summing the
squared deviations in each dimension. This is therefore sometimes referred to as
total least squares (TLS), as well as orthogonal regression (Fig. 10.1), while the
traditional approach is frequently called ordinary least squares (OLS).

Perhaps the most general model of this approach is the following; let us consider
the problem of estimating the parameters

	 D �	1; 	2; . . . ; 	q
�T
; (10.1)
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Fig. 10.1 The fitted plane in total least squares sense with the data points projected perpendicu-
larly to the plane

in a model of the general form

f .	; z/ D 0; (10.2)

where f is a vector of p model equations, and z is a vector of dimension of n,
containing all variables of the model (the input as well as the output variables).
When the EIV approach is used, the optimization problem that must be solved has
the form

F D min
	;Qz

mX
iD1

nX
jD1

�Qzi;j � zi;j
�2

�2j
;

subject to

f .	; Qzi/ D 0; i D 1; : : : ;m:
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Here

zi D .zi;1; . . . ; zi;n/
T

represents measurements of all variables from i D 1; : : : ;m experiments and

Qzi D .Qzi;1; . . . ; Qzi;n/
T

represents the unknown “true” values associated with each measurement, and �j

represents the standard deviation associated with the measurement of all variables
j D 1; : : : ; n.

It means, in solving the EIV problem, not only are parameter estimation results
obtained, but also data adjustment (reconciliation) results. However, this comes
at the expense of a substantial increase in the dimensionality of the optimization
problem, which at nm + q is now a function of the number of experiments.
Furthermore, since the optimization is over both 	 and Qzi, this is likely to be a
nonlinear optimization problem even for models that are linear in the parameters.
Thus, in general, the optimization problem is nonlinear and potentially non convex,
indicating the need to be concerned with the possible existence of multiple local
minima.

Example 10.1 Let us formulate the TLS approach in case of fitting a line. Now we
have two parameters

	 D .	1; 	2/T :

The model is linear and there is one model function, p = 1, namely

f .	; z/ D 	1 C 	2z1 � z2 D 0:

Assuming m measurements, the objective function is

F D min
	;Qz

mX
iD1

2X
jD1

�Qzi;j � zi;j
�2

�2j
;

subject to

fi D 	1 C 	2 .zi;1 C�zi;1/ � .zi;2 C�zi;2/ D 0; i D 1; : : : ; m;

where �zi;1 and �zi;2 are the adjustments of the variables z1 and z2 respectively,
namely

Qzi;1 D zi;1 C�zi;1 and Qzi;2 D zi;2 C�zi;2; i D 1; : : : ; m:
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The weights wj D 1

�2j
can be computed from the standard deviation of the measured

variables zj. We have to determine 2 parameters and 2m adjustments, therefore the
unknowns are 2.mC 1/.

10.2.2.1 Solution for Linear System

For a linear system Ax D b, the problem of ordinary least squares consists
of determining the shortest vector Qx that minimizes the Euclidean norm of the
discrepancy between b and Qb D AQx, possibly subject to constraints. In other
words, the ordinary least squares solution Qx 2 C

n solves exactly a related linear
system AQx D Qb with

��Qb � b
��
2

minimum. In contrast, the problem of total least
squares allows for minimal adjustments not only of b but also of A, also possibly
subject to constraints. The problem of total least squares admit several mutually
equivalent mathematical formulations. Their solutions in terms of singular value
decompositions was published by [494].

Geometric Formulations of Total Least Squares

Geometrically, the linear problem of total least squares amounts to fitting a
hyperplane H minimizing the average squared Euclidean distance (measured per-
pendicularly to the fitted hyperplane) to data points c1; : : : ; cm 2 C

nC1. The problem
then reduces to finding a point c0 2 H and a non-zero normal vector x orthogonal to
H that minimize the sum of the squared distances,

D .x; c0/ D
mX

iD1

jhci � c0; xij2
hx; xi :

Introducing a matrix Cc0 with the ith rows ci � c0,

Cc0 D Œc1 � c0; . . . ; cm � c0�
T ;

we obtain that

D .x; c0/ D kCc0xk22
kxk22

:

Now let us consider two lemmas.

Lemma 10.1 The optimal hyperplane must pass through the centroid of the data.
Namely

c0 D 1

m

mX
iD1

ci:
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Lemma 10.2 For every point c0, let v be a singular vector corresponding to the
smallest singular value � of matrix Cc0 , then

D .x; c0/ � D .v; c0/

Consequently the algorithm to find the solution of the linear total least squares
problem is the following, see example below [384].

Example 10.2 Consider the four data points in space,

c1 D
0
@1145
38

1
A ; c2 D

0
@4754
38

1
A ; c3 D

0
@1712
14

1
A ; c4 D

0
@2129
58

1
A

The centroid of the data,

c0 D 1

4

4X
iD1

ci D
0
@2435
37

1
A

Then the matrix Cc0 is,

Cc0 D

0
BB@
�13 10 1

23 19 1

�7 �23 �23
�3 �6 21

1
CCA

The smallest singular value of this matrix is � D �3 D 18 and the corresponding
singular vector is

v D v3 D
0
@

2
3

� 2
3
1
3

1
A

Thus the hyper plain H passes through c0 and perpendicularly to the vector v.
Consequently the hyperplane is

2

3
.x � 24/� 2

3
.y � 35/C 1

3
.z � 37/ D 0

or in explicit form

z D 15� 2xC 2y
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Moreover, the vector

Cc0v D

0
BB@
�13 10 1

23 19 1

�7 �23 �23
�3 �6 21

1
CCA
0
@

2
3

� 2
3
1
3

1
A D

0
BB@
�15
3

3

9

1
CCA

contains the signed distances from the data points to the hyperplane H, which is

kCc0vk2 D

��������

0
BB@
�15
3

3

9

1
CCA

��������
2

D 18 D �3:

The orthogonal projections of the data points on H

QC D

0
BBBBBB@

ec1
:

:

:

ecm

1
CCCCCCA
D

0
BBBBBB@

c1
:

:

:

cm

1
CCCCCCA
�Cc0vv

T D

0
BBB@

11 45 38

47 54 38

17 12 14

21 29 58

1
CCCA�

0
BBB@

�15
3

3

9

1
CCCA
	
2
3 � 23 1

3



D

0
BBB@

21 35 43

45 56 37

15 14 13

15 35 55

1
CCCA

(10.3)

Algebraic Interpretation

Let us consider the explicit form of the linear regression model in 2D,

z D 	0 C 	1xC 	1y:

Considering m measurement data, we can write the linear system as,

0
BBBBB@

1 x1 y1
: : :

1 xi yi

: : :

1 xm ym

1
CCCCCA

0
@ 	0	1
	2

1
A �

0
BBBBB@

z1
:

zi

:

zm

1
CCCCCA
D

0
BBBBB@

r1
:

ri

:

rm

1
CCCCCA
;

where ri is the residual of the ith model equation. In matrix form,

A	 � z D r
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In our case, obtaining the values of A and z from Eq. 10.3 as

A D

0
BB@
1 11 45

1 47 54

1 17 12

1 21 29

1
CCA and z D

0
BB@
38

38

14

58

1
CCA :

The modified A matrix, QA can be constructed from QC in Eq. 10.3 as

QA D

0
BB@
1 21 35

1 45 56

1 15 14

1 15 35

1
CCA ;

similarly

Qz D

0
BB@
43

37

13

55

1
CCA ;

and from the explicit form of the hyperplane

	 D
0
@ 	0	1
	2

1
A D

0
@ 15�2
2

1
A :

Then,

QA	 � Qz D

0
BB@
1 21 35

1 45 56

1 15 14

1 15 35

1
CCA
0
@ 15�2
2

1
A �

0
BB@
43

37

13

55

1
CCA D

0
BB@
0

0

0

0

1
CCA :

Considering

fi D 	0 C 	1 .xi C�xi/C 	2 .yi C�yi/� .zi C�zi/ D 0; i D 1; ..;m;
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the adjustments of the measured data are,

QA � A D

0
BBBBB@

0 Qx1 � x1 Qy1 � y1
: : :

0 Qxi � xi Qyi � yi

: : :

0 Qxm � xm Qym � ym

1
CCCCCA
D

0
BBBBB@

0 �x1 �y1
: : :

0 �xi �yi

: : :

0 �xm �ym

1
CCCCCA
D

0
BB@
1 11 45

1 47 54

1 17 12

1 21 29

1
CCA �

0
BB@
1 21 35

1 45 56

1 15 14

1 15 35

1
CCA

D

0
BB@
0 �10 10
0 2 �2
0 2 �2
0 6 �6

1
CCA

and

Qz � z D

0
BBBBB@

�z1
:

�zi

:

�zm

1
CCCCCA
D

0
BB@
43

37

13

55

1
CCA �

0
BB@
38

38

14

58

1
CCA D

0
BB@
5

�1
�1
�3

1
CCA :

The objective to be minimized

��� QŒAI Qz
i
� ŒAI z�

���
2
D
��� QŒA � AI Qz� z

i���
2
D

��������

0
BB@
0 �10 10 5

0 2 �2 �1
0 2 �2 �1
0 6 �6 �3

1
CCA

��������
2

D 18:

10.2.2.2 Solution for Nonlinear System

In nonlinear case we can solve the optimization problem with constraints directly for
example, using Lagrange-method. We are looking for the minimum of F(x) under
the condition of f .x/ D 0. In case of the Lagrange method, we reduce the problem
to an optimization problem without constraints but with a different objective
function,

G.x; �; �/ D F.�/C �T f .x; �/ D F.�/C
X

i

�ifi.x; �/;

where �i are the Lagrange-multipliers. The price of this method is the larger number
of unknowns, because the Lagrange multipliers should be computed, too. However,
the adjustments of the measured variables can be explicitly expressed (fully or
partially) from the model equations. Let us suppose that Q� are the adjustments which
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can be expressed, namely as

f .x; �/ D 0 ! Q� D g.x/;

then the constraints can be eliminated from the objective function,

G
�
x; �C� D F

�
x; g.x/;�C� ;

where �C are the adjustments, which can not be expressed explicitly from the
model equations. This technique results in less unknown but the complexity of the
objective function may become higher leading to “parasitic” solutions. In both cases
the necessary condition for the minimum is the vanishing partial derivatives and the
satisfactory condition is the requirement that the Hesse-matrix of actual objective
function at the location of the minimum be positive definite. The resulted system
is nonlinear having more solutions corresponding to more different possible local
minimums. Consequently gradient-based method like Newton-method may fail to
find global minimum.

However, since many geodetic models have multivariate polynomial form,
therefore our system evaluated from the necessary conditions will be a system of
multivariate polynomials to be solved. Thereafter, the global (all local solutions)
solution of this polynomial system can be computed via numerical Groebner basis.
As an alternative method, the more general, global numerical method, the linear
homotopy can also be employed. In the following example, all these techniques will
be demonstrated.

Example 10.3 Figure 10.2 shows a simplified problem of an object point P(x1,x2),
which is photographed by three terrestrial cameras, see, e.g., [352].

All the three camera stations are assumed to lie on the same line, which is taken to
be the X1 axis of the object coordinate system. The X2 axis is taken to coincide with
the optical axis of the first camera, S1. The camera axes are horizontal and parallel.

Fig. 10.2 Photographing a
point P by means of three
terrestrial cameras in 2D
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Table 10.1 Observed values
and their standard deviations

Observation Value Standard deviation

L1 16:5mm 0:10mm

L2 3:8mm 0:10mm

L3 20:4mm 0:10mm

L4 10:0m 0:05m

L5 8:0m 0:05m

All interior orientation of the cameras are assumed known and without errors with
principal distance p D 100mm (as constant value). The observations Li, i D 1; : : : 5
are those five distances denoted by that symbol in Fig. 10.2. Their absolute values
(as distances and not coordinates) as well as their standard deviations are given
in Table 10.1. All those observations are assumed, for simplicity, to be in the
X1 � X2 plane. We shall assume further that no correlation exists between all the
observations.

We require the least square estimate of the coordinates (x1, x2) of point P, and the
same time the adjustment of the observed values, Li, i D 1; : : : 5. One equation may
be written for each ray from P to a camera station (i.e., a simplified version of the
collinearity condition equation, as it is known in photogrammetry). Thus the model
equations are

LC
1

p
D x1

x2
I LC

2

p
D LC

4 � x1
x2

I LC
3

p
D LC

4 C LC
5 � x1

x2

or

f1 D LC
1 x2 � p x1 D 0

f2 D LC
2 x2 � p.L4C � x1/ D 0

f3 D LC
3 x2 � p .L4C C LC

5 � x1/ D 0,

where LC
i ; i D 1; : : : 5, are the adjusted values, LC

i D LiC�i. The objective function
to be minimized, under the constrains represented by the model equations is,

G.x; �; �/ D
5X

iD1

�2
i

�2i
C

3X
iD1

�ifi:

(a) Employing Lagrange method with numerical Groebner basis.

The partial derivatives resulting into polynomial system ensuring the necessary
condition are

�1 D @G
@x1
D .�2 C �3 � �1/ p D 0

�2 D @G
@x2
DP3

iD1 �i .Li C�i/ D 0
�3 D @G

@�1
D 2�1

�21
C �1x2 D 0

�4 D @G
@�2
D 2�2

�22
C �2x2 D 0
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�5 D @G
@�3
D 2�3

�23
C �3x2 D 0

�6 D @G
@�4
D 2�4

�24
� p .�2 C �3/ D 0

�7 D @G
@�5
D 2�5

�25
� p�3 D 0

�8 D @G
@�1
D .L1 C�1/ x2 � px1 D 0

�9 D @G
@�2
D .L2 C�2/ x2 � p .L4 C�4 � x1/ D 0

�10 D @G
@�3
D .L2 C�2/ x2 � p .L4 C�4 C L5 C�5 � x1/ D 0.

Let us employ the reduced Groebner basis to solve these polynomial equations
with the unknowns x1, x2, �1, �2, �3, �4, �5, �1, �2, �3. To reduce round-off
errors, we operate on the domain of inexact numbers with 100 digits precision. Then,
the reduced Groebner basis for x1 is,

�x1 D90;310:52596� 52;131:20802x1 � 7035:82210x21C 57:70063x31

C 59:97245x41C 6:60719x51C 1:00000x61:

To get the value of x1, we should compute the roots of this polynomial. Eliminating
complex roots, there are two real solutions x1 D 1:455893 and x1 D 8:074902. A
similar computation can be done for the other unknown variables, see Table 10.2.

This result represent the fact that in this actual case, there are two local
minimums. Since x2 should be positive, the second solution (48.80931) is valid.

Remark This result could have been achieved via iteration of the linearized system,
considering the following initial guesses,

x02 D L4p
L1CL2

D 10.m/�100.mm/
20:3.mm/ ' 50.m/

x01 D L1x02
p D 16:5.mm/�50.m/

100.mm/ ' 8.m/

Table 10.2 Real solutions of
the polynomial system

. Solution (1) Solution (2)

x1 1:45589 8:07490

x2 �50:94320 48:80931

�1 �19:35788 0:04378

�2 �1:92413 0:09818

�3 �17:43374 �0:054407
�4 �9:49973 �0:02242
�5 �8:55548 0:027867
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(b) Employing elimination with linear homotopy

As an alternative numerical technique, we can eliminate the constraints from the
objective function. We have three model equations therefore let us solve the model
equations for �1, �2 and �3. Since the system is linear in these adjustments, it can
easily be expressed as,

�1 D px1 � L1x2
x2

�2 D L4p � px1 � L2x2 C p�4

x2

�3 D L4pC L5p � px1 � L3x2 C p�4 C p�5

x2
;

and substituted into the objective function

F.x; �/ D
5X

iD1

�2
i

�2i
D

. px1 � L1x2/
2

x22�
2
1

C .L4p � px1 � L2x2 C p�4/
2

x22�
2
2

C

.L4pC L5p � px1 � L3x2 C p�4 C p�5/
2

x22�
2
3

C �2
4

�24
C �2

5

�25
:

Now, we have only 4 unknowns x1, x2,�4 and�5, consequently we have a system of
4 polynomials from the necessary condition,�i; i D 1; : : : ; 4. Assuming that x2 ¤ 0,
the system �i

� D x22�i, i D 1; : : : ; 4, has the same solution. Therefore we should
solve the following system,

�1
� D x22

@F

@x1
D

2p

�
px1 � L1x2

�21
C �L4pC L2x2 C p .x1 ��4/

�22
�

L4pC L5p � px1 � L3x2 C p�4 C p�5

�23

�
D 0

�2
� D x22

@F

@x2
D

2

 
� . px1 � L1x2/

2

�21
C L1x2 .�px1 C L1x2/

�21
C L2x2 .�L4pC L2x2 C p .x1 ��4//

�22
�
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.L4p � L2x2 C p .�x1 C�4//
2

�22
� L3x2 .L4pC L5p � px1 � L3x2 C p�4 C p�5/

�23
�

.L4pC L5p � px1 � L3x2 C p�4 C p�5/
2

�23

!
D 0

�3
� D x22

@F

@�4

D

2

�
p .L4p � L22x2 C p .�x1 C�4//

�22
C

p .L4pC L5p � px1 � L3x2 C p�4 C p�5/

�23
C x22�4

�24

�
D 0

��
4 D x22

@F

@�5

D

2
�
x22�5�

2
3 � L3px2�25 C p2 .L4 C L5 � x1 C�4 C�5/ �

2
5

�
�23 �

2
5

D 0:

Substituting the numerical data, this system can be solved using linear homotopy
method. The order of the equations is 1, 2, 3 and 4, therefore the maximum number
of the solution is less than 18. However, we have only 7 unique homotopy paths rep-
resenting 4 complex and 3 real solutions, see Table 10.3. This illustrates that elimi-
nating the �1, �2 and �3 reduced the size of the polynomial system, but increased
its complexity, and a new “parasitic” solution (the third solution) appeared.

10.2.2.3 Uniqueness of the Solution

As we have mentioned, although the objective function of the problem is convex,
due to the nonlinear nature of the model equations, the resulting optimization
problem is non convex and may contain many local minima in the area of interest.

Table 10.3 The real
solutions of the reduced
polynomial system using
linear homotopy

. Solution (1) Solution (2) Solution (3)

x1 1:45589 8:07490 0

x2 �50:94320 48:80931 0

�4 �9:49973 �0:02242 �10
�5 �8:55548 0:027867 �8
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Typically, algorithms only build up a local model of the problems. Furthermore,
many such algorithms insist on certain decrease of the objective function, or
decrease of a merit function that is a combination of the objective and constraints,
to ensure convergence of the iterative process. Such algorithms will, if convergent,
only find local optima, and are called local optimization algorithms. Consequently
local optimization methods are not reliable for finding the global minimum of the
problem. Global optimization algorithms, on the other hand, attempt to find the
global optimum, typically by allowing decrease as well as increase of the objec-
tive/merit function. Such algorithms are usually computationally more expensive,
[156].

Global methods can be classified as deterministic and stochastic ones. One
drawback to the deterministic approach, like Nelder-Mead algorithm, is that in
general it may be necessary to perform problem reformulations and develop convex
underestimators specific to each new application. Furthermore these methods
implemented in floating point arithmetic may be vulnerable to rounding error
problems, and thus lose their mathematical guarantees, [118].

An attractive alternative for the reliable solution of nonlinear TLS approach is
the use of stochastic optimization methods such as simulated annealing, differential
evaluation algorithm and random search methods. Even though these methods
provide no formal guarantee for global optimization, they are reliable strategies and
offer a reasonable computation effort in the optimization of multivariate functions,
[409].

In order to improve the efficiency of such procedures a hybrid scheme can be
used to find global optimum. Employing global method we can reach the region
near the optimum relatively quickly, but it can take many function evaluations to
achieve convergence. Therefore we use a point of this region as an initial point for
a local optimization method that is faster and more efficient for a local search.

The following example will illustrate the numerical difficulties caused by the lack
of uniqueness (more local minimums) as well as the shape of the objective function
leading to trap local iterative algorithms and resulting false solution.

Example 10.4 (Greek Stadium Problem) Fitting of a circle based on incomplete
data (which represent only a small part of the curve) arises in physics, biology,
archeology as well as computer vision and photogrammetry. We should like to solve
the well known Greek Stadium problem, but first let us study briefly the uniqueness
of a circle fitting problem.

The total least squares formulation of the problem, given m points (xi,yi) i D
1; : : : ;m, the objective function is defined by

F D
mX

iD1
�x2i C�y2i ;

and the model equations as constraints are

fi D .xi C�xi � a/2 C .yi C�yi � b/2 � r2:



172 10 EIV Models and Pareto Optimalitity

Considering the Euclidean (geometric) distance from the point (xi, yi) to the curve
is, [185],

di D
q
.xi � a/2 C .yi � b/2 � r;

the original constrained optimization problem can be considered as an optimization
without constraints employing the following objective function,

F D
mX

iD1
�x2i C�y2i D

mX
iD1

�q
.xi � a/2 C .yi � b/2 � r

�2
;

leading to the TLS problem as

min F
a;b;r
D min

mX
iD1

d2i :

The existence and uniqueness of the solution was discussed by [121].
One can prove now that the function F defined on circles and lines always attains

its minimum, for any set of m � 1 points, and so the existence of the solution
of the TLS problem is guaranteed. Surprisingly the uniqueness of the solution is
not unique. To demonstrate this fact Chernov and Lesort suggested the following
example: Let four data points (˙ 1, 0) and (0, ˙1) make a square centered at the
origin. We place another k � 4 points identically at the origin (0,0) to have a total of
n D k C 4 points. In our case k D 4. Now let us minimize our objective functions.
We get

a D 0:36799632437596885; b D 0:3679963243759691; and r D 0:7972033161976328

However, because the data configuration is a rotation of the points (1, 0), (0, 1) and
(0, 0) around the origin with s�

2
, s D 1; 2, 3, consequently, we have 4 minimums,

see Fig. 10.3. Here we displayed the negative values of F as function of a and b at
the optimal radius r D 0:7972033161976328. Figure 10.4 shows the data points and
the four “best” fitted cycles.

It should be pointed out that if the data points are generated randomly with a
continuous probability distribution, then the probability that the objective function
F has multiple minima is zero. Although in particular, small random perturbations
of the data points in our example will slightly change the values of F at its minima,
so that one of them will become a global minimum and three others will be
local minima. Generally local minima are undesirable, since they can trap iterative
algorithms and lead to false solutions.

Let us examine the behavior of F with a numerical experiment. In this experiment
m D 20 data points with randomly generated x coordinate with a uniform
distribution in the unit square �1 � xi � 1 computed and then the coordinate y
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Fig. 10.3 Uniqueness of circle fitting – the four minima of the objective function. Here, to have a
better view of the minimums, �F is displayed

determined as yi D
q
1 � x2i . After that Gaussian noise at level � D 0:01 was added

to both coordinates, see Fig. 10.5.
If we denote

ri D
q
.xi � a/2 C .yi � b/2;

then the minimum of F with respect to r is attained at

Qr D 1

m

mX
iD1

ri:

This allows us to eliminate r and express F as a function of a and b by

F.a; b/ D
mX

iD1

.ri � Qr/2 :
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Fig. 10.4 The four best fitted cycles

Fig. 10.5 The simulated data of 200 points
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Fig. 10.6 The objective function for the data set shown in Fig. 10.5

Figure 10.6 shows this function having global minimum around a D b D 0, and
no local minima. Figure 10.7 presents the contour map where the darker colors
correspond to greater values of the objective function.

First, Fig. 10.6 shows that the function F does not grow as a; b ! 1. In fact, it
is bounded, i.e., F.a; b/ � Fmax < 1. The boundedness of F actually explains the
appearance of large nearly flat plateaus and valleys in Fig. 10.6 that stretches out to
infinity in some directions. If an iterative algorithm starts somewhere in the middle
of such a plateau or valley or gets there by chance, it will have hard time moving at
all, since the gradient of F will almost vanish.

Second, there are two particular interesting valleys that stretches roughly along
the line a D 0 on Figs. 10.6 and 10.7. One of them, corresponding to a; b < 0, has
its bottom point at the minimum of F. The function F slowly decreases along that
valley as it approaches the minimum. Hence, any iterative algorithm starting in that
valley or getting there by chance should, ideally, find its way downhill and arrive at
the minimum of F.

The other valley corresponds to b > 0 is separated from the global minimum of
F by a ridge. The function F slowly decreases along this valley as b grows. Hence,
any iterative algorithm starting in this valley or getting there “by accident” will be
forced to move up along the b axis, away from the minimum of F, and escape to
infinity. If an iterative algorithm starts at a randomly chosen point, it may go down
into either valley, and there is a good chance that it descends into the second (wrong)
valley and then diverges. Unfortunately such “escape valleys” are inevitable. This is
the reason why iterative algorithms often fail to fit a circular arc to incomplete data.
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Fig. 10.7 The contour map of the objective function. Darker shades correspond to greater values

Now let us turn to our original problem. The Greek city of Corinth contains a
stadium enclosing several race tracks. In 1980 a curved starting line for one of
the tracks, shown in Fig. 10.8, was excavated by the American School of Classical
Studies at Athens. This starting line, dating from about 500 B.C., appears to lie on
a large circle. By fitting a circle through this starting line, archaeologists were able
to discover that the starting blocks were 1ı apart, strongly suggesting that in 500
B.C. the Greeks used degrees as a unit of angle. The observed data can be seen in
Table 10.4.

Let us solve the problem by employing geometric fitting. To find the solution
2, different global minimization methods have been used: Nelder-Mead and random
search methods. Both methods gave the same result, a D �20:9401, b D 33:6181

and r D 53:9597m. However, the computation time of the random search method is
longer (see, Table 10.5), but its convergence is smoother than those of the Nelder-
Mead method (see, Fig. 10.9).

The fitted section of the circle and the data points as well as the circle with the
segment of data can be seen in Figs. 10.10 and 10.11 respectively.
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Fig. 10.8 The starting line
on a race track at Corinth

10.2.3 Other Approach of the EIV Problem

The TLS solves the EIV problem by fitting the data to the model equations adjusting
all of the measured values from least squares sense. However, one can consider the
EIV problem in a different way. To illustrate this idea, let us try to fit a line. The
measured data can be seen in Table 10.6.

Example 10.5 First we fit a line in the ordinary least squares sense, namely by
minimizing the sum of the squares of output error (OLSy). The measured data
can be seen in Table 10.6. The objective function is

Fy D
10X

iD1
�y2i D

10X
iD1

.yi � .mxi C b//2 : (10.4)
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Table 10.4 Greece’s data Point x [m] y [m]

1 19.88 68.874

2 20.159 68.564

3 20.676 67.954

4 20.919 67.676

5 21.171 67.379

6 21.498 66.978

7 21.735 66.692

8 22.81 65.226

9 23.125 64.758

10 23.375 64.385

11 23.744 63.86

12 24.076 63.359

13 24.361 62.908

14 24.597 62.562

15 24.888 62.074

16 25.375 61.292

17 25.166 61.639

18 25.601 60.923

19 25.979 60.277

20 26.18 59.926

21 26.412 59.524

Table 10.5 Comparing
global optimization methods

Method Nelder-Mead Random search

Number of iterations 202 200

Computation time (s) 0.218 1.547

We obtain the following parameters: my D �0:539577 and by D 5:76119. Similarly,
employing OLSx with

Fx D
10X

iD1
�x2i D

10X
iD1

�
xi � �bC yi

m

�2
; (10.5)

leads to mx D �0:565889 and bx D 5:8617. Figure 10.12 shows the two lines with
the data points. The two regression line crossing at

xc D 1

10

10X
iD1

xi and yc D 1

10

10X
iD1

yi:
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Fig. 10.9 Convergence of the two global optimization methods

Now let us compute the regression line with TLS, employing

Fxy D
10X

iD1
�x2i C�y2i ;

subject to

yi C�yi � m .xi C�xi/� b D 0; i D 1; . . . ; 10:
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Fig. 10.10 The fitted circle line and the data points

Since

�yi D bC mxi � yi C m�xi;

the objective function can be written as

Fxy D
10X

iD1
�x2i C .bC mxi � yi C m�xi/

2 :
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Fig. 10.11 The fitted race track at Corinth with the starting line

Table 10.6 Person’s data xi yi

0.0 5.9

0.9 5.4

1.8 4.4

2.6 4.6

3.3 3.5

4.4 3.7

5.2 2.8

6.1 2.8

6.5 2.4

7.4 1.5
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Fig. 10.12 The regression lines fitted by OLSy and OLSx

The result is mxy D �0:545561, bxy D 5:78404. This regression line again crosses
the two other lines at point (xc, yc) and runs between the OLSy and OLSx lines,
namely

for x < xc

mxxC bx > mxyxC bxy > myxC by;

and vice versa. In addition

mxxc C bx D mxyxc C bxy D myxc C by D yc:

Let us visualize the objectives of these three different LS approaches in Fig. 10.13,
which may suggest that TLS is a compromise between OLSy and OLSx. Therefore,
one may consider another trade-off namely the minimization of the sum of the area
of the triangles in Eq. 10.6.

F� D 1

2

nX
iD1
j�xij j�yij D

1

2

nX
iD1

q
�x2i�y2i : (10.6)

We call this approach the least geometric mean deviation approach (LGMD).
Now let us determine the parameters of the line employing this new objective
function, [488],

F� D 1

2

nX
iD1

q
�x2i�y2i D

10X
iD1

s
.�b � mxi C yi/

2

�
�xi C �bC yi

m

�2
:
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Fig. 10.13 The idea of the
geometric mean deviation
approach

Table 10.7 Results of the different approaches of the EIV line fitting

Approach m b Fx Fy Fx C Fy

OLSy �0.539577 5.76119 2.75006 0.800664 3.55073

OLSx �0.565889 5.86170 2.62220 0.839707 3.4619

TLS �0.545561 5.78404 2.69685 0.802683 3.49953

LGMD �0.552577 5.81084 2.65341 0.810193 3.4636

The result is m� D �0:552577 and b� D 5:81084. This line again runs through the
point (xc, yc) and for x < xc

mxxC bx > m�xC b� > mxyxC bxy > myxC by:

Let us compare these approaches from the point of view of the residual of the
output (Fy) in Eq. 10.4 and the residual of the input (Fx) in Eq. 10.5, see Table 10.7.
Displaying Fx vs. Fy from the different approaches as shown in Fig. 10.14, one may
realize that if Fx increases then Fy decreases and vice versa. This means that the
objective functions Fx (m,b) and Fy (m,b) are competing! Therefore it is reasonable
to apply multiobjective optimization for these two competing objectives.

10.2.4 Multiobjective Optimization and Its Solution

In many real-life problems, objectives under consideration conflict with each other.

Example 10.6 Let us consider the following functions, see Fig. 10.15.

f1.x/ D .2xC 2/2 � 40

f2.x/ D .3x � 1/2 C 5
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Fig. 10.14 The Fx versus Fy in case of the different approaches

Fig. 10.15 Two competing convex objective functions in [�1; 1
3
]

Their minimums are: f1min D f1.�1/ D �40 and f2min D f2. 13 / D 5. Their
minimums are: f1min D f1.�1/ D �40 and f2min D f2.

1
3
/ D 5. In regions where

both objectives increase or decrease simultaneously, the sum of the objectives will
increase or decrease, therefore in such regions, no optimum exists. In our case, we
have (-1, �1) and ( 1

3
,1). Therefore optimum could be sought only between the

two minimums in Œ�1; 1
3
�. However, in this range the two objectives are competing
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or conflicting, which means that a small �x change in x, results in an increase in
one objective, f1, and a decrease in the other, f2,

f1.x/ < f1.xC�x/

f2.x/ > f2.xC�x/

Therefore, an optimum (minimum) can be optimized with respect to a single
objective often resulting in unacceptable results with respect to the other objectives.
Consequently, a perfect multiobjective solution that simultaneously optimizes each
objective function is rarely possible. We shall see how Pareto optimality can resolve
this ambiguity. A reasonable solution to such problems is to investigate a set of
solutions, each of which satisfies the objectives at an acceptable level without being
dominated by any other solution. If all objective functions are for minimization, a
feasible solution x is said to dominate another feasible solution y- the notation is
(x � y) – if and only if,

fi.x/ � fi.y/; i D 1; 2

and

fj.x/ < fj.y/ j j ¤ 1; 2

at least for one objective function j. This situation will become clear later, in case
of non-convex Pareto-front, see Fig. 10.20. A solution is said to be Pareto optimal
if it is not dominated by any other solution in the solution space. This solution can
not be improved with respect to any objective without worsening at least one of the
other objectives. The set of all feasible non-dominated (non-inferior) solutions is
referred to as the Pareto optimal set. Instead of a single optimal solution, we get a
set of optimal solutions. For a given Pareto optimal set, the corresponding objective
function values in the objective space are called the Pareto-front, see Fig. 10.16. In
our example, the decision variable x 2 R1 and its Pareto optimal set x 2 Œ�1; 1

3
� �

R1 can be seen in Fig. 10.17.
The corresponding values of the objective functions can be computed by

substituting the values of the Pareto set into the competing objectives. The values
of f1(x), and f2(x) in these minimums are called Pareto-front, see Fig. 10.18. Any
point of the Pareto-front represents the corresponding objective values belonging to
the Pareto-set, which is the collection of the optimal solutions. Consequently, the
solution of the optimization problem does not have a single optimum, but a set of
optimums. The one chosen as a single optimum depends on the user (supervisor or
decision maker), who should make a trade-off among the potential candidates. Later,
we will suggest an algorithmic decision process, which can resolve this problem, see
selection of Pareto balanced optimum. In order to illustrate the dominating and the
dominated solution, let us consider the next example.
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Fig. 10.16 Mapping from parameter space into the objective function space

Example 10.7

f1.x/ D

0
BB@

if x < 1 then � x
if x � 3 then x � 2
if x � 4 then � x

else x � 4

1
CCA

and

f2.x/ D .x � 5/2:

Now, one of the two competing objectives has a non/convex region, see Fig. 10.19.
The visualization of the Pareto set shows, that now, the Pareto set consists of two
disconnected subsets, see Fig. 10.22. Let us now see the corresponding Pareto front
in Fig. 10.20.

Although the two component functions compete in the range [1, 3] and [4, 5]
(see Fig. 10.19), the true Pareto-front consists of only two disconnected regions
[1, 2] and [4, 5]. This is because the region [2, 3] is dominating (inferior) to
region [1, 2]. Removing these points leads to the true Pareto front (Fig. 10.21),
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Fig. 10.17 Pareto set in one
dimensional decision variable
space

whose corresponding true Pareto optimal set is presented in Fig. 10.23. Indeed, the
disconnected regions are [1, 2] and [4, 5].
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Fig. 10.18 Pareto front in two dimensional objective function space

Fig. 10.19 A convex and a non-convex objective functions are competing in two disconnected
regions [1, 3] and [4, 5]

10.2.5 Computation of the Pareto Optimum

In case of connected Pareto-set (convex Pareto front) we can transform the
multiobjective optimization problem into a monoobjective problem using a simple
linear combination of the different objective functions. Considering our example,
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Fig. 10.20 Non-convex Pareto front

Fig. 10.21 The true Pareto front

the corresponding monobjective is

F.x; �/ D �f1.x/C .1 � �/f2.x/; 0 � � � 1:

Now, the Pareto-set can be computed as the solution of the following parametrized
monoobjective minimization problem

min
x

F.x; �/:
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Fig. 10.22 Disconnected
Pareto optimal set in one
dimensional decision variable
space
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Fig. 10.23 Disconnected
true Pareto optimal set in one
dimensional decision variable
space
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In our case, we can employ the necessary condition of the minimum. The Pareto-set
will be the solution of the equation.

dF.x; �/

dx
D �6C 18xC 14�� 10x� D 0;

then

xP.�/ D �3C 7��9C 5�; 0 � � � 1:

Since xP is a continuous functions of �, the Pareto-set is: ŒxP.0/; xP.1/� D
�
1
3
; 1
�
:

The Pareto front can be computed in parametric form,

f1min.�/ D f1
�
xp.�/

� D �40C
�
2C 2.�3C 7�/

�9C 5�
�2
;

and

f2min.�/ D f2
�
xp.�/

� D 5C
�
�1C 3.�3C 7�/

�9C 5�
�2
:

Figure 10.24 shows the Pareto front. Now, the question is how can one select a single
optimum from the Pareto optimums?

Fig. 10.24 Pareto-front
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10.2.6 Computation of the Pareto Balanced Optimum

It is clear that in ideal case f1min D f2min D 0, therefore we call the element f0, 0g in
the objective function space (see Fig. 10.24 in our case) as the ideal point. It seems
reasonable to state that the closest element of the Pareto front to this ideal point can
be the candidate for the single optimum. The question is what kind of norm should
be employed? Since in our parameter estimation problem f1 and f2 are the sum of the
squares of the errors it is reasonable to employ L1 norm. Namely, we select the point
of the Pareto front which is closest to the ideal point in sense of L1. This means we
should find the very point of the Pareto front which satisfy the following minimum,

min
�
. f1min.�/C f2min.�// :

In this example the solution of the following equation provides this optimal �opt

d . f1min.�/C f2min.�/

d�
D �4608.�1C 2�/

.�9C 5�/3 D 0;

which gives

�opt D 1

2
:

Figure 10.25 shows the selected optimum. The corresponding xopt solution comes
from the Pareto set,

xopt D xp
�
�opt

� D xp

�
1

2

�
D � 1

13
:

This solution has a special feature, namely at this point, a small change �x results
into the same change in both objective functions, but with different signs. It means
the derivatives of the objective functions are equal, but have different signs at this
point,

df1.x/

dx

ˇ̌
ˇ̌
xDxopt

D �df2.x/

dx

ˇ̌
ˇ̌
ˇ
xDxopt

D 96

13
:

Therefore, we call this selected solution as the Pareto balanced solution (PB).
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Fig. 10.25 Pareto-front with the selected optimum

10.2.7 Pareto Balanced Solution for the Line Fitting Problem

Now let us turn back to our line fitting problem. The Pareto front can be seen in
Fig. 10.26. We can realize that the solutions of all methods belong to the Pareto front.
However the Pareto balanced solution is closest to the ideal point, see Table 10.8.

Remark If the relation between the input-output variables of the model is not linear,
i.e.,

y D f .x; p/;

we do not need to express explicitly x as

x D g.y; p/;

since the LGMD as well as the PB approach can be defined using the “TLS
language”, namely

LGMD: Let us minimize

F. p/ D 1

2

mX
iD1

q
�x2i�y2i ;
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Fig. 10.26 Pareto-front with the selected optimum

Table 10.8 The line fitting problem solutions using different approaches

Approach m b Fx Fy Fx C Fy

OLSy �0.539577 5.76119 2.75006 0.800664 3.55073

OLSx �0.565889 5.86170 2.62220 0.839707 3.46191

TLS �0.545561 5.78404 2.69685 0.802683 3.49953

LGMD �0.552577 5.81084 2.65341 0.810193 3.46360

PB �0.559443 5.83707 2.62934 0.822919 3.45226

subject to

yi C�yi � f .xi; p/ D 0 and yi � f .xi C�xi; p/ D 0; i D 1; . . . ;m;

or

F. p/ D 1

2

mX
iD1

q
�x2i .yi � f .xi; p//

2;
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subject to

yi � f .xi C�xi; p/ D 0; i D 1; . . . ;m:

PB: Let us minimize the monoobjective function

F. p/ D 1

2
.F1. p/C F2. p// D

1

2

 
mX

iD1
�y2i C

mX
iD1

�x2i

!
D 1

2

 
mX

iD1
.yi � f .xi; p//

2 C
mX

iD1
�x2i

!
;

subject to

yi � f .xi C�xi; p/ D 0; i D 1; . . . ;m:

10.2.8 Pareto Solution for 2D Similarity Transformation

Example 10.8 Let us consider the Gauss-Helmert model of a weighted 2D similar-
ity transformation problem:

�
X
Y

�
D F.x; y/ D

�
cos.˛/ � sin.˛/
sin.˛/ cos.˛/

��
ˇ 0

0 ˇ

��
x
y

�
C
�
�

ı

�
;

where ˛ is the rotation angle, ˇ is the scale factor and � , ı are the translation param-
eters. Considering (X, Y) and (x, y) as Cartesian coordinates of the transformed and
target systems, respectively, the problem is now concerned with determining the 4
unknown parameters (˛, ˇ, � , ı) from the corresponding measured data pairs f(Xi,
Yi), (xi,yi)g having the weights f(WXi,WYi), (wxi, wyi)g. Frequently, this parameter
optimization problem is solved by introducing new parameters, namely

a D ˇcos.˛/

b D ˇsin.˛/;

leading to

�
X
Y

�
D
�

a �b
b a

��
x
y

�
C
�
�

ı

�
:
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In this way, the problem for parameters a, b, � , ı becomes linear. The scale factor ˇ
and the rotation angle ˛ can be computed respectively as

ˇ D
p

a2 C b2

and

˛ D arctan

�
b

a

�
:

However, we consider here the original nonlinear problem! The following multiob-
jective problem can be considered:

(a) In case of the transformation (x,y)! (X, Y) the sum of squares of the weighted
local residuals as the objective function is given by

f1.˛; ˇ; �; ı/ D
nX

iD1
f1i.˛; ˇ; �; ı/;

where

f1i.˛; ˇ; �; ı/ D
WXi .Xi� .ˇ .cos.˛/xi� sin.˛/yi/C �//2 CWYi .Yi� .ˇ .sin.˛/xi C cos.˛/yi/C ı//2

(b) Similarly, for the inverse transformation (X,Y)! (x, y), the objective function
is

f2.˛; ˇ; �; ı/ D
nX

iD1
f2i.˛; ˇ; �; ı/;

where

f2i.˛; ˇ; �; ı/ D wxi

	
xi � cos.˛/.X��/Csin.˛/.Y�ı/

ˇ


2C
wyi

	
yi � cos.˛/.Y�ı/�sin.˛/.X��/

ˇ


2 :

The multiobjective problem is to find the minimum of the competing objectives
f1 and f2 in the design space – in our case (˛, ˇ, � , ı)2 R4- in sense of Pareto
optimality. For numerical computation the data from [8] are employed, see
Tables 10.9 and 10.10.
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Table 10.9 Corresponding coordinates of the two systems

XŒm�� 10�6 YŒm� xŒm� � 10�6 yŒm�

4.5401342780 382379.89640 4.5401240940 382385.99800

4.5399373890 382629.78720 4.5399272250 382635.86910

4.5399797390 381951.47850 4.5399695670 381957.57050

4.5403264610 381895.00890 4.5403162940 381901.09320

4.5392163870 382184.43520 4.5392062110 382190.52780

Table 10.10 The weights of
the measured coordinates of
the two systems

WX WY wx wy

10.0000 14:28570 5:88240 12:5000

0.89290 1:42860 0:90090 1:72410

7.14290 10:0000 7:69230 16:6667

2.22220 3:22590 4:16670 6:66670

7.69230 11:1111 8:33330 16:66670

The weights are in Table 10.10. The monoobjective of the problem corresponding
to the multiobjective one is to minimize the following objective function,

F.�; ˛; ˇ; �; ı/ D �f1.˛; ˇ; �; ı/C .1 � �/f2.˛; ˇ; �; ı/; � 2 Œ0; 1�:

The computed Pareto set can be seen on Fig. 10.27. Figure 10.28 shows the Pareto
front with the Pareto balanced solution, which is the closest point of the Pareto front
in L1 norm (Table 10.11).

In order to compare this solution with the TLS and the GMD methods we
computed the optimal parameters using these techniques, too. The TLS approach
leads to a constrained minimization problem. The objective function is the sum of
the squares of the weighted adjustments of the measured variables,

F D
nX

iD1
WXi�X2

i CWYi�Y2
i C wxi�x2i C wyi�y2i

under the constrains of the model equations,

g1i .˛; ˇ; �;�Xi; �xi; �yi/ D 0; i D 1; . . . ; n

g2i .˛; ˇ; ı;�Yi; �xi; �yi/ D 0; i D 1; . . . ; n;

where

g1i .˛; ˇ; �;�Xi; �xi; �yi/ D Xi C�Xi � ˇ .cos.˛/ .xi C�xi/� sin.˛/ .yi C�yi//C �

g2i .˛; ˇ; ı;�Yi; �xi; �yi/ D Yi C�Yi � ˇ .sin.˛/ .xi C�xi/C cos.˛/ .yi C�yi/C ı :
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Fig. 10.27 Pareto-set: the
optimal parameters as
function of �
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Fig. 10.28 Pareto-front with the Pareto balanced solution

Table 10.11 Results of the
Pareto optimality
computation

. Pareto balanced optimum

˛ Œrad� �3:9721689359 � 10�6

ˇ 0:9999951683

� [m] 30:593128322

ı [m] 13:785626569

f1
�
m2
�

0:00220002

f2
�
m2
�

0:00233185

It means we have an optimization problem with 4C 4n unknowns subject to 2n
constraints. However, we can eliminate �Xi and �Yi from the objective function
employing the constraints and in this way reducing the number of the unknowns
as well as transforming the constrained optimization problem into an unconstrained
one. The values of the optimal parameters can be seen in Table 10.12.

The LGMD solution minimizing the following objective function,

G.˛; ˇ; �; ı/ D
nX

iD1

q
f1i.˛; ˇ; �; ı/f2i.˛; ˇ; �; ı/;

leading to the values of the optimal parameters in Table 10.13.
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Table 10.12 Iteratively
linearized total least square
solution, Neitzel [389]

. IL-TLS

˛ Œrad� �0:0000042050218
ˇ 0:9999953578895

� Œm� 29:643200000000

ı Œm� 14:769600000000

f1
�
m2
�

0:002173843151907

f2
�
m2
�

0:002401080163677

Table 10.13 Results of the
least geometric mean
deviation approach

. LGMD

˛ Œrad� �4:1015042096715�10�6

ˇ 0:9999952510014

� [m] 30:16798459471

ı Œm� 14:3410785611597

f1
�
m2
�

0:002193074

f2
�
m2
�

0:002339988

Fig. 10.29 Pareto-front with the Pareto balanced solution (i.e., red bullet�), LGMD solution (�)
and the TLS solution (�)

Figure 10.29 shows the result of the three different methods. On one hand, it
can be seen that the LGMD solution is also Pareto optimum solution, although its
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Table 10.14 L1 norm of the
different approaches

Method j f1 C f2j L1norm

OLSx 0:00472315

OLSy 0:00467576

TLS 0:00457490

LGMD 0:00453306

PB 0:00453187

L1 norm is greater than that of the Pareto balanced solution. On the other hand the
figure also reveals that the TLS solution is not Pareto optimum solution in this case.
Table 10.14 shows the L1 norm of the different solutions, their L1 distance from the
ideal point.

This table demonstrates that in sense of the L1 norm (j f1 C f2j) the TLS solution
is better than both of the ordinary least squares solution while PBS and LGMD
solution are very close to each other.

10.3 Concluding Remarks

Basically three different approaches have been introduced to solve EIV problem.
The total least square (TLS) technique employing standard adjustment for all
measured variables. The adjusted variables should satisfy the system equations
and the solution should minimize the adjustments in least square sense. The TLS
approach requires global minimization technique with constraints since there are
more local minimums in general. The number of the variables are high, although
sometimes the constraints can be substituted into the objective function making the
problem unconstrained and reducing the number of variables.

Another approach is the Least Geometric Mean Deviation approach, which
minimizes the sum of the power of the deviations computed from the original and the
inverse system equations. This approach distributes the total error of the measured
data between the input and output variables more uniformly than the TLS method
does. This method needs also global optimization technique but with considerably
less variables than the TLS approach.

The Pareto optimum approach can generalize the methods mentioned above
using multiobjective approach. Since the objectives of the original and the inverse
ordinary least squares problems are competing, a set of optimum can be computed.
The user can decide how to distribute the total error between the input and
output variables. Although a special optimum can be selected, i.e., Pareto balance
optimum, which distributes the error in an optimal way.

Since the solution of the EIV problem requires considerable computational effort,
one should employ it only if the errors of the input and output variables have the
same magnitude. More information on multi-objective problems can be found in
[157, 184, 249, 293, 295].



Chapter 11
Symbolic Regression

11.1 Introductory Remarks

Symbolic regression (SR) is the process of determining the symbolic function,
which describes a data set-effectively developing an analytic model, which summa-
rizes the data and is useful for predicting response behaviors as well as facilitating
human insight and understanding. The symbolic regression approach adopted herein
is based upon genetic programming wherein a population of functions are allowed
to breed and mutate with the genetic propagation into subsequent generations
based upon a survival-of-the-fittest criteria. Amazingly, this works and, although
computationally intensive, summary solutions may be reasonably discovered using
current laptop and desktop computers.

It should be noted that symbolic regression is not a silver bullet and is, in fact,
complementary to its nonlinear analysis brethren of neural networks and statistical
learning theory (support vector machines) as well as classical linear analysis and
data mining tools and techniques. In all cases, an understanding of the problem,
the data variables, the data quality, and definitions of success is a critical aspect
since context free analysis can easily lead to confidently wrong answers, i.e., is very
dangerous.

The symbolic regression capability provides a complete and flexible foundation
for evolving multivariate data-driven models. The decision to develop such a sym-
bolic regression capability within a computer algebraic system (CAS) environment
was validated during the development of this package, as the ability to seamlessly
blend symbolic and numeric computing enabled new features, which would have
been onerous to implement in a strictly procedural and numeric environment.
Additional benefits include facilitating analysis documentation. The remainder of
the chapter is organized as follows. In Sect. 11.2, the basics of the SR method is
presented. In Sect. 11.3 the problem resulting from Kepler’s third law is solved to
demonstrate the capability of the method. Section 11.4 introduces the reader on
how to use the SR package DataModeler integrated in a CAS like Mathematica.

© Springer-Verlag Berlin Heidelberg 2016
J.L. Awange, B. Paláncz, Geospatial Algebraic Computations,
DOI 10.1007/978-3-319-25465-4_11
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In Sect. 11.5, an illustrative example for function approximation is presented while
Sects. 11.5.1 and 11.5.2 give tips on how to select proper starting population of trial
functions in order to improve the effectivity of the method.

11.2 Symbolic Regression (SR) Method

Unlike traditional linear and nonlinear regression methods that fit parameters
to an expression (equation/relation) of a given form, symbolic regression (SR)
simultaneously searches for both the parameters as well as the form of expression.
Although the discipline of SR has matured significantly in the last few years (e.g.,
[146]), its applications to geodesy are very rare, exemplified only in the works of
[528, 529] who employed it for transforming GPS coordinates into two-dimensional
coordinates. In a more recent work, Wu and Su [530] developed a lattice-based
clustering method and integrated it with a genetic programming to build a better
regression model for coordinate transformation. In natural and technical sciences,
and in finance, however, the method has been applied for quite a long time
efficiently, e.g., [54, 55, 182, 292, 318, 438, 439]. In hydrological sciences, for
example, [406] applied it to model the dynamics of evapotranspiration, where their
results performed better than the traditional Penman–Monteith method, and were
comparable to those of artificial neural network (ANN).

The proposed method could be of use to geodesy, where regression analysis and
functional approximation are often handled. For instance, SR could be used for
gravimetric corrections where they have traditionally been carried out using awide
variety of parametric and non-parametric surfaces such as polynomial models, e.g.,
[168], spline interpolation, e.g., [163], least squares collocation (LSC), e.g., [282],
kriging, e.g., [380], combined least squares adjustments, e.g., [167] and thin plate
spline (TPS) surface of solving the problem via finite elements method, e.g., [546].

Applying soft computing technique, [286, 340] employed artificial neural net-
work (ANN) for approximating the GPS/leveling geoidal heights instead of the
corrector surface itself. Zaletnyik et al., [546] also used ANN but with radial bases
activation functions (RBF) and regularization in the training phase. Soltanpour et al.,
[441] used second-generation wavelets to approximate corrector surface directly.
Another soft computing technique represented by the support vector machines
(SVM) was employed by [547].

Some of these models are global types of regression, (e.g., linear parametric
models and ANN), while some are interpolating type of local models, (e.g., thin
plate spline and SVM). Generally speaking, local methods are more precise than
global on the training set, but their complexity is very high since they involve all of
the measured data points in the model structure. In addition, they are less effective
on the validation set since the overlearning affect the training set. The foregoing
discussions support the need for the proposed SR method, particularly in geodesy
where it is of utmost need but rarely used.
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SR can be considered as a broad generalization of the class of generalized linear
models (GLM), which is a linear combination of basic functions ˇi; i D 1; 2; : : : ; n
with a dependent variable y, and an independent variable vector x.

y.x/ D c0 C
nX
i

ciˇi.x/C "; (11.1)

where ci are the coefficients and " the error term.
SR will search for a set of basic functions (building blocks) and coefficients

(weights) to minimize the error in case of given y and x. The standard basic
functions are constant, addition, subtraction, multiplication, division, sine, cosine
tangent, exponential, power, square root, etc. To select the optimal set of basic
functions, Koza [288] suggested employment of genetic programming (GP). GP
is a biologically inspired machine learning method that evolves computer programs
to perform a task. To carry out genetic programming, the individuals (competing
functions) should be represented by a binary tree. In standard GP, the leaves of the
binary tree are called terminal nodes represented by variables and constants, while
the other nodes, the so called non-terminal nodes are represented by functions. Let
us see a simple example. Consider

ˇi.x/ D x1x2 C 1

2
x3: (11.2)

Its binary tree representation can be seen in Fig. 11.1. In this example, there are
three variables .x1; x2; x3/, two constants (1, 2), and three elementary functions
(plus, times, rational). The binary tree of y(x) can be built up from such trees as
subtrees. Mathematically,

y.x/ D c0 C c1tree1C c2tree2C : : : (11.3)

GP randomly generates a population of individuals .yk.x/; k D 1; 2; : : : ; n/
represented by tree structures to find the best performing trees.

Fig. 11.1 The binary tree
representation of a basic
function ˇi in Eq. 11.2
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There are two important features of the function represented by a binary tree;
complexity and fitness. We define complexity as the number of nodes in a binary
tree needed to represent the function, [374]. The fitness qualifies how good a model
.y D y.x// is. Basically, there are two types of measures used in SR; the root mean
squared error (RMSE) and the R-square. The later returns the square of the Pearson
product moment correlation coefficient .R/ describing the correlation between the
predicted values and the target values, (e.g., [164]). Then, the goodness of the model,
the fitness function can be defined as,

f D 1

1C RMSE
or f D R2; (11.4)

where 0 � f � 1. GP tries to minimize this error to improve the fitness of
the population consisting of individuals (competing functions) from generation to
generation by mutation and crossover procedure. Mutation is an eligible random
change in the structure of the binary tree, which is applied to a randomly chosen
sub-tree in the individual. This sub-tree is removed from the individual and replaced
by a new randomly created subtree. This operation leads to a slightly (or even
substantially) different basic function. Let us consider the binary tree on Fig. 11.2a,
where the sub-tree of y2 is replaced by yC x2. Then, the mutated binary tree can be
seen in Fig. 11.2b.

The operation “cross-over” representing sexuality can accelerate the improve-
ment of the fitness of a function more effectively than mutation alone can do.
It is a random combination of two different basic functions (parents), based on
their fitness, to create a new generation of functions, more fitter, than the original
functions. To carry out crossover, crossing points (non-terminal nodes) in tree of
both parents should be randomly selected, as can be seen in Fig. 11.3. Then, subtrees
belonging to these nodes will be exchanged creating offsprings. Let us consider the
parents before the crossover. The first parent .x � y/=3, with its crossing point .x/
is shown in Fig. 11.3a, the second parent 3xC y2=5 with its crossing point (see the

Fig. 11.2 Binary tree representations of the mutation. y2 in (a) is replaced by y C x2 in (b)
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Fig. 11.3 The parents before the crossover

Fig. 11.4 The children produced by the crossover

sub-tree of y2) is presented in Fig. 11.3b. The children produced by the crossover are
given on Fig. 11.4. The first child .y2� y/=3 is shown in Fig. 11.4a while the second
child .16=5/x is shown in Fig. 11.4b.

The generalization of GP was invented by [137] and further developed by [288].
GP is a class of evolutionary algorithms working on executable tree structures (parse
trees). Koza [288] showed that GP is capable of doing symbolic regression (or
function identification) by generating mathematical expressions approximating a
given sample set very closely or in some cases even perfectly. Therefore, GP finds
the entire approximation model and its (numerical) parameters simultaneously. An
important goal in symbolic regression is to get a solution, which is numerically
robust and does not require high levels of complexity to give accurate output values
for given input parameters. Small mean errors may lead to wrong assumptions
about the real quality of the found expressions. To be on the safer side, a worst
case absolute error should be determined. Sometimes, alternating the worst case
absolute error and RMSE or R2 as target to be minimized during GP process is the
best strategy.

Complexity and fitness are conflicting features leading to a multi-objective
problem, e.g., [440]. Useful expression is both predictive and parsimonious. Some
expressions may be more accurate but over fit the data, whereas others may be more
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Fig. 11.5 The Pareto front

parsimonious but oversimplify. The prediction error versus complexity or fitness
versus complexity relation known as Pareto front represents the optimal solutions
as they vary over expression’s complexity and maximum prediction error, e.g.,
[403]. As Fig. 11.5 shows, functions representing the Pareto front have the following
features:

– In case of fixed complexity, there is no such a solution (function), which could
provide less error as the Pareto solution,

– Reversely, in case of fixed error, there is no such a solution (function), which
would have smaller complexity than the Pareto solution.

The Pareto front tends to contain a cliff where predictive ability jumps rapidly
at some minimum complexity. Predictive ability then improves only marginally
with more complex expressions. Since the Pareto front provides the set of optimal
solutions, the user should decide which one is preferable. However, one may select
blindly the very solution on the Pareto front, which is closest to the ideal point (zero
error, zero complexity).

To carry out SR computation requires considerable computation power. Fortu-
nately, the algorithm is suited perfectly for parallel computation. There are many
software implementations of this method, both commercial and non-commercial.
Commercial symbolic regression packages, such as DTREG (http://www.dtreg.
com/) is designed for predictive modeling and forecasting. Besides symbolic
regression, it can also perform other data-mining tasks (e.g., in neural networks,
support vector machines, etc.). DataModeler is another well-documented commer-
cial symbolic regression package available for Mathematica (http://www.evolved-
analytics.com). Non-commercial open source symbolic regression packages such as
Eureqa is available for free download (http://ccsl.mae.cornell.edu/eureqa) as well as
GPLab and GPTIPS toolboxes for Matlab (http://gplab.sourceforge.net/) and (http://
gptips.sourceforge.net), respectively. In this chapter, DataModeler is used, which
has parallel implementation in Mathematica.

http://www.dtreg.com/
http://www.dtreg.com/
http://www.evolved-analytics.com
http://www.evolved-analytics.com
http://ccsl.mae.cornell.edu/eureqa
http://gplab.sourceforge.net/
http://gptips.sourceforge.net
http://gptips.sourceforge.net
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11.3 Didactic Example-Kepler Third Law

The third law of Kepler states that: “The square of the orbital period of a planet is
directly proportional to the cube of the semi-major axis of its orbit (average distance
from the Sun).”

P2 / a3;

where P is the orbital period of the planet and a is the semi-major axis of the orbit.
For example, suppose planet A is 4 times as far from the Sun as planet B. Then
planet A must traverse 4 times the distance of planet B in its orbit, and moreover
it turns out that planet A travels at half the speed of planet B, in order to maintain
equilibrium with the reduced gravitational centripetal force due to being 4 times
further from the Sun. In total it takes 4 � 2 D 8 times as long for planet A to travel
an orbit, in agreement with the law (82 D 43).

The third law currently receives additional attention as it can be used to estimate
the distance from an exoplanet to its central star, and help to decide if this distance
is inside the habitable zone of that star. The exact relation, which is the same for
both elliptical and circular orbits, is given by the equation above. This third law
used to be known as the harmonic law, because Kepler enunciated it in a laborious
attempt to determine what he viewed as the “music of the spheres” according to
precise laws, and expressed it in terms of musical notation. His result based on the
Rudolphine table containing the observations of Tycho Brache 1605 are given in
Table 11.1, where a is give in units of Earth’s semi-major axis.

Let us assume that Kepler could have employed one of the function approxi-
mation techniques like polynomial regression, artificial neural networks, support
vector machine, or thin plate spline. Could he find this simple relation with these
sophisticated methods?

Polynomial regression: Let us employ a fifth order algebraic polynomial. Then
the resulting polynomial is

P D �0:2818C 1:0427aC 0:28950a2 � 0:0094a3C 0:0002a4 � 1:9369�6a5

Table 11.1 Normalized
observation planetary data

Planet Period P (year) Semimajor axis a

Mercury 0:24 0:39

Venus 0:61 0:72

Earth 1:00 1:00

Mars 1:88 1:52

Jupiter 11:86 5:20

Saturn 29:46 9:54

Uranus 84:01 19:19

Neptune 164:79 30:06

Pluto 248:54 39:53
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Neural network: Employing a single-layer feedforward network [287] with two
nodes where sigmoid activation function is implemented, we obtained

P D 3:90522� 1010 � 2:64153� 106aC 7:82099� 1010
1C e0:00269911�0:0001351a

� 90:985

1C e�9:65982C0:281165a

Support vector machine: Employing wavelet-kernel [394] obtained the following
result

Thin plate – spline: Employing polyharmonic interpolation [177] the approximation
is,

where

'i D r2 log.r/

and

r D ka � aik for a ¤ ai

alternatively

r D 0 for a D ai

As we can see, in this way one can hardly find a simple relation, although all of
these methods give quite satisfactory solution for the problem, see Table 11.2.

Now let us see, how one can solve this problem using symbolic regression.
Symbolic regression: Figure 11.6 shows the Pareto – front of the generated

models via DataModeler. The points represent the generated models. The red points
stand for the models belonging to the Pareto-front. In Table 11.3, some of the
models of the Pareto front can be seen (i.e., the red bullets). Symbolic regression
model (fourth model in the Table) is the chosen candidate since it has a small error
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Table 11.2 Errors of the different methods of approximation of the observed planetary data

Model 1� R2 Standard deviation

Polynomial regressiona 0.998317 0.0435092

Neural networkb 0.996354 0.0640442

Support vector machinec 0.976544 0.162443

Thin plate spline interpolationd 1.000000 1.7974 � 10�13

Remarks:
a Fifth order algebraic polynomial
b Feedforward neural network with two nodes and linear tail
c With Gaussian-kernel
d Basis function: x2 Log(jxj)

4
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Complexity
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2

Pareto Front Log Plot
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0.01

1

Fig. 11.6 The Pareto-front (red points) and the evaluated models in case of the Kepler’s problem

and at the same time its complexity is low. In practice, it is useful to carry out
an additional nonlinear regression with the candidate model in order to refine the
value of its parameters. This means, we use symbolic regression to find the best
model structure and then its parameters will be improved via standard nonlinear
regression, in order to avoid a long run of the symbolic regression procedure. Now
let us compute the parameters pi of the candidate model type (i.e., Model 4) using
traditional regression.

P D p0 C p1a
p2
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Table 11.3 Model selection report

Model Complexity 1� R2 Function

1 11 0.022 �12.550 C 6.116 x

2 15 0.012 7.168 C 0.162 x2

3 22 0.004 3.174 C 0.135 (�8.024 � x) x

4 25 4.284 �10�8 �0.006 C 1.000
p

x3

5 55 1.927 �10�8 0.009 C 0.0006 .�x C 157:399 a3=2/

6 60 1.243 �10�8 0.005 C 2.649 �10�4.3768:960 x3=2 C 2 x2/

7 71 1.242 �10�8 0.004 C1:254 � 10�4.7960:560 x3=2 C 2 x2/

8 75 1.236 �10�8 0.004 C1:254 � 10�4.x C 7960:560 x3=2 C 2 x2/

9 80 1.001 �10�8 �0.002 + 0.007 �.px C 140:884 x3=2 C 0:049 x2/

10 113 9.624 �10�9 0:028� 0:002
	
5:674

x C 5 x � 478:651 x3=2 C 1

�9:892C 1
a Ca




11 136 8.632 �10�9 �0:020C 0:009

�
�x C 115:915 x

q
x C

p

x
12C2xCx2

�

Table 11.4 The statistics of the estimated parameters via nonlinear regression

Parameter Estimated value Confidence interval P-value

p0 0.006148943 {�0.0090114, 0.0213093} 0.35930

p1 0.997568758 {0.99584217, 0.99929535} 8.4541 �10�18

p2 1.500658599 {1.50018318, 1.50113402} 3.1795 �10�22

Table 11.5 The statistics of the estimated parameters via nonlinear regression

Parameter Estimated value Confidence interval P-value

p2 1.500550812 {1.50017030, 1.50093133} 4.3082 �10�26

p1 0.9979829191 {0.99663830, 0.99932754} 5.1496 �10�21

Table 11.4 indicates that the estimation of the parameter p0 is unreliable, since its
confidence interval is very wide and the statistic P-Value is high.

For this model, 1 � R2 D 0:999999989. Now let us repeat the regression for the
model

P D p1a
p2

we get the following values of the two parameters, see Table 11.5.
From practical point of view one considers p1 = 1 and a D p2= 1.5. Although the

error of this “simplified” model is somewhat higher, since 1�R2 D 0:999614571 <
0:999999989. Now let us see, how we can compute the symbolic result via
Mathematica.
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Fig. 11.7 The Pareto-front (red points) computed using Mathematica

11.4 Applications in Mathematica

Mathematica itself does not have a built-in function for symbolic regression, how-
ever a third party product DataModeler package developed by Evolved Analytics
(http://www.evolced-analitics.com) can be employed. Let us load the package. First,
we should provide the input – output corresponding data, see Table 11.1. Then, we
compute the Pareto front (Fig. 11.7). The computation is carried out parallel in order
to decrease the running time.

The models represented by the Pareto front are in Table 11.6. Let us consider
model 3 and leave out the small constant. Kepler’s model is then

p
x3!

11.5 Teaching Example

Let us try to approximate the following function on the basis of some discrete points
(Fig. 11.8, left). The function is

z.x; y/ D �x2 � y2
�

sin.0:5x/:

Let the discrete data be the triplets xi, yi , f (xi, yi).
We employ symbolic regression, since we should like to have an explicit

expression for describing the surface. Now we separate the data: the inputs (xi,
yi) and the outputs f (xi, yi). Then we compute the Pareto front, which now is not
convex, see Fig. 11.9. The selected models can be seen in Table 11.7.

http://www.evolced-analitics.com
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Table 11.6 The some good models representing the Pareto-front

Model selection report

Complexity 1� R2 Function

1 22 0.003 1.95 C 0.13 x (11.30 C x)

2 23 3.052 �10�4 �2.21 + 2.64 x + (9.46 �10�2) x2

3 25 4.284 �10�8 �.5:59� 10�3/C 1:00
p

x3

4 33 4.059 �10�8 �.1:14� 10�2/C 5:88�10�3

x C 1:00
p

x3

5 37 1.927 �10�8 8:85� 10�3 � .6:36 � 10�3/x C 1:00 x3=2

6 41 1:240� 10�8 4:65 � 10�3 C 1:00 x3=2 C .2:57 � 10�4/x2

7 48 1:032� 10�8 1:25� 10�3 C 1:00 x3=2 C .4:00� 10�4/x (10 + x)

8 49 7:278� 10�9 �.4:03� 10�2/C .7:08� 10�2/
p

x � .3:01� 10�2/x C 1:00 x3=2

9 63 7:194� 10�9 �15:71C 1:02
p
236:82 � x C .7:61� 10�2/

p
x C 1:00 x3=2

10 66 6:575� 10�9 8:74� 10�2 � .1:68 � 10�2/x C 1:00 x3=2 � 2:47
.4:93Cx/2

11 69 6:299� 10�9 �.1:40� 10�2/� .1:24 � 10�2/x C 1:00 x3=2 C 1:73 x
.7Cx/2

12 73 5:494� 10�9 �.1:66� 10�2/C .2:78 � 10�2/x C 1:00 x3=2 � 1:07 x2

.11:82Cx/2

13 83 5:344� 10�9 �.1:58� 10�2/C .2:62 � 10�2/x C 1:00 x3=2 � 1:06 x2

.11:82Cx/.12:63Cx/

14 87 4:719 � 10�9 �.7:33� 10�3/C .8:68� 10�3/x C 1:00
p

x3 � .6:57�10�2/x5=2

91:97CxCx2

15 103 2:198 � 10�9 3:03� 10�3 � 17:99x � 1:10 x2 C 1:09

q
x2.13:37C .16C p

x C x/2/

Fig. 11.8 Left: The surface to be approximated with the given points; Right: The selected model
and the data points. Compare the left side of both figures

11.5.1 Model Selection

Now we select the model with complexity 262 and error 0.004 (Model 1,
Table 11.7), and see how the data points fit to the surface of the model, see Fig. 11.8,
right. The fitting looks quite good. However, comparing the surfaces of the original
model and the selected one, we can see the differences on the left side. In the data
points, the fitting is good but where there were no points, the fitting is less efficient.
This fact shows that one should not blindly select the model with the smallest error.
This can lead in general to “overlearning”.
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Fig. 11.9 The Pareto front now is not convex

Table 11.7 The eminent models representing the Pareto-front

Model selection report

Complexity 1� R2 Function

1 262 0.004 0:21� 4:73 x1 C 0:65 x13 � .1:55 � 10�2/x14 C .1:41 �
10�3/x16 C .1:75 � 10�3/x17 � .4:26 � 10�6/.�4:27�
x14/2 � .8:29 � 10�4/x15.19:40 C x1 C x12 C p

x1
4/�

0:46x1x22 C .2:65 � 10�2/x13x22 C .8:64 � 10�5/x15x22 �
.2:95 � 10�3/x13

p
x12x22

2 297 8:999 � 10�13 �143:95C 1:74 x1 � .1:59� 10�2/x13 C 2:44x14 � .8:44�
10�4/.7:78 � x1/x14 C 132:85

p
x1
2 � .1:82 �

10�4/x15
p

x12 � 2:35.�4:27 � x12/2 � 0:70x1x12 �
.5:68 � 10�3/x13x22 � .1:97 � 10�5/x15x22 C
0:15x1

p
x12x22 C .3:03 � 10�9/x14.3x1 C 18:15x13/x22

3 302 0.000 17:64C 0:49 x13 C .2:33� 10�2/x14 C .1:32� 10�3/x16 C
.2:16 � 10�3/x17 � 9:02

p
x12 � .4:60� 10�6/.�4:27�

x14/2 � .1:02 � 10�3/x15.16:43 C x1 C x12 C p
x14/C

.9:68 � 10�9/x2 � 0:53x1x22 C .3:45 � 10�2/x13x22 C

.1:60 � 10�4/x15x22 � .5:88 � 10�8/x17x22 � .4:37�
10�3/x13

p
x12x22

11.5.2 Extention of Function Space

The choice of the type of basic functions, which can be employed by the method
as an initial function population has very important influence on the result. To get
better results, this function space can be extended with the family of trigonometric
functions, see Help !DataModeler !SymbolicRegression !FunctionPatterns.
The Pareto-front can be seen in Fig. 11.10. Table 11.8 shows that we have got
back the original model! Now the two surfaces fit perfectly (i.e., Fig. 11.8, left).
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Fig. 11.10 The Pareto front in case of extended function space

Table 11.8 The resulted model after function space extention

Model selection report

Complexity 1� R2 Function

1 52 0.000 1:04� 10�15 � 1:00Sin
� x1
2

�
.�x21 C x22/

In Chap. 20 an application of SR to photogrammetric 2D transformation problem is
considered, see Sect. 20.5. Comparing the results of other type of transformations
like similarity, affine and projective one to that of the SR, the SR method proved to
be the best method.



Chapter 12
Robust Estimation

12.1 Introductory Remarks

In many fields of geosciences such as robotics [413], computer vision [351], dig-
ital photogrammetry [538], surface reconstruction [388], computational geometry
[336], digital building modelling [48], forest planning and operational activities
[386] to list but a few, it is a fundamental task to extract plane features from three-
dimensional (3D) point clouds, – i.e., a vast amount of points reflected from the
surface of objects collected – using the cutting edge remote sensing technology of
laser scanning, e.g., [450]. Due to the physical limitations of the sensors, occlusions,
multiple reflectance, and noise can produce off-surface points, thereby necessitating
robust fitting techniques. Robust fitting means an estimation technique, which is able
to estimate accurate model parameters not only consisting of small error magnitudes
in the data set but occasionally large scale measurement errors (outliers). Outliers
definition is not easy. Perhaps considering the problem from a practical point of
the view, one can say that data points, whose appearance in the data set causes
dramatically change in the result of the estimated parameters can be labeled as
outliers. Basically, there are two different methods to handle outliers;

(i) weighting out outliers
(ii) discarding outliers

Weighting outliers means that certain data points labeled as outlier are not
removed but during the parameter estimation process, they are down-weighted
in the objective function. Such a technique is the good old Danish method. The
other technique will try to identify data points, which cause “trouble” during the
parameter estimation process. Troubles mean that their existence in the data set
change the result of the estimated parameter considerably. One of the representative
of this technique is the RANdom SAmple Consensus (RANSAC) method. The
robust estimation methods are shell algorithms, in a sense that they need parameter
estimation methods embedded, which iteratively compute the parameters of the

© Springer-Verlag Berlin Heidelberg 2016
J.L. Awange, B. Paláncz, Geospatial Algebraic Computations,
DOI 10.1007/978-3-319-25465-4_12
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weighted data set – in case of method (a) or different subsets of the data set in
case of method (b).

In this chapter we shall demonstrate the application of these robust techniques
in case of fitting a plane to a cloud of data contaminated by outliers. Different
techniques for estimating parameters will be presented, and different methods for
the numeric or symbolic solutions of these parameter estimation processes will be
introduced.

12.2 Laser Scanning: A Modern Geospatial Tool

In many cases, laser scanning not only complements traditional surveying tech-
niques, but sometimes replaces them. For example, compared e.g., to the traditional
total stations used in surveying, laser scanning provides information on the entire
object surface instead of discrete points. Such surface-like acquisition enables
detailed surface modelling that provides accurate 3D products.

Point clouds produced by laser scanning [e.g., 148, 149, 165, 196, 337, 512, 518]
however, are limited due to the fact that occlusions, multiple reflectance, and noise
often produce off-surface points (outliers, e.g., [449]). In addition, laser scanned
point clouds suffer from the problem of breakline detection, i.e., finding the edges
and lines in a point cloud. Most processing software circumvent the breakline
detection problem by fitting planes to point clouds, and determining the edges
as intersection of the planes [332]. Using this approach however, the reliability
of the detected edges is highly dependant on the accuracy of the plane fitting
methods employed. Nurunnabi [388] list ordinary least squares (OLS), principal
component analysis (PCA), and RANdom Sample Consensus (RANSAC) as the
three most popular methods for plane fitting. Their applications are exemplified,
e.g., in the work of [252] who employed the Danish robust estimation with total
least squares (TLS) as well as PCA. Other plane fittings methods include TLS
fitting, e.g., [250, 384, 444, 448, 487], algebraic solvers for geometric fitting, e.g.,
[290, 291, 451], and RANSAC and robust fitting, e.g., [124–127, 166, 434, 435, 553].

These plane fitting methods, however, have their own limitations. For example,
Nurunnabi [388] argue that although a robust PCA often gives an accurate represen-
tation of the underlying data, it often does not identify particular outliers that may
be significant, and propose to complement these robust outlier detection methods
by an identification method. Another drawback in the PCA approach is that time
consumption and reliability are of great importance for plane fitting in laser scanned
point clouds in case of mass data processing. Furthermore, when outliers are present,
OLS and PCA methods that are sensitive to outliers fail to fit planes reliably [351].

This chapter proposes a new efficient algebraic plane fitting method based on
computer algebraic systems (CAS) that hopefully is as fast as PCA, non-iterative,
and that is doubtlessly beneficial in case of mass data processing, as is often the
case of laser scanned point clouds. The study aims at (i) testing the proposed
algebraic fitting method on synthetic as well as real scanned dataset, and (ii)
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comparing the performance of the proposed algebraic method to singular value
decomposition (SVD) and PCA methods. Readers interested in other types of
robust based methods are referred to [437] for those methods based on minimum
covariance determinant, [332] for expectation maximization-based methods, [150]
for Bayesian-based techniques, [123] for region growing algorithm, and [97] for
improved 3D Hough Transform.

12.3 Total Least Squares via SVD

In case of Ordinary Least Squares (OLS), the residuals are the vertical distances
between the points and the fitted plane. To overcome the bias brought about by
uni-direction, TLS that minimizes the sum of squares of the orthogonal distances
between the points and the plane is employed, thereby providing a geometrical
approach (see details in Chap. 10).

12.4 Statistical Approach via PCA

Principal component analysis (PCA) is a popular statistical technique that describes
the covariance structure of data reduced by means of a small number of components,
see e.g., [418]. These components are linear combinations of the original variables
that rank the variability in the data through the variances, and produces directions
using the eigenvectors of the covariance matrix. Applying PCA to solve the problem
of Example 10.2 in p. 162, the eigenvector corresponding to the smallest eigenvalue
is exactly the normal of the best-fitted plane.

Example 12.1 The covariance of matrix A is

A D
0
@252 162 36162 342 144

36 144 324

1
A ;

giving eigenvalues of f�1; �2; �3g D f27
	
15Cp29



; 27

	
15 �p29



; 108g, with

the smallest eigenvalue �3 D 108, and the corresponding eigenvector being

0
@ nx

ny

nz

1
A D

0
@ 36

144

324

1
A :

The Hesse model representing the plane via its normal vector is given by

nxxC nyyC nzz � d D 0; (12.1)
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where the normal vector of the plane is (nx,ny,nz). In order to get the parameter d,
let us consider the residual of this model as

R
�
nx; ny; nz; d

� D
NX

iD1

�
nxxi C nyyi C nzzi � d

�2
: (12.2)

Considering that

@R

@d
D 0; (12.3)

we get

nx

NX
iD1

xi C ny

NX
iD1

yi C nz

NX
iD1

zi � dN D 0: (12.4)

Solving Eq. (12.4) yields d = 15. Consequently the surface is

z D �nx

nz
x � ny

nz
yC d

nz
D �2xC 2yC 15; (12.5)

which is the same plane obtained by the other method discussed (see SVD solution).

Unfortunately, both the classical variance (which is being maximized) and the
classical covariance matrix (which is being decomposed) are very sensitive to
anomalous observations. Consequently, the first components are often attracted
toward outlying points, and may not capture the variation of the regular observa-
tions. Therefore, data reduction based on PCA becomes unreliable if outliers are
present in the data, see [351] or [253]. Although there are efforts to improve the
robustness of PCA by adding complementary outlier identification method, see,
e.g., [388], the TLS approach has advantages over PCA since it can describe the
similarity as well as the correlation amongst the features of both data together while
PCA considers only one or the other selectively. All of these are crucial in case of
the robust techniques, where during the estimation process, one may use non-robust
estimation for small subsets of data, see e.g., RANSAC [539]. However, during the
iteration, when the non-robust estimation is applied to nearly the whole dataset,
PCA can work quite well, see Danish method [289].

In order to employ PCA in the Danish algorithm, one should extend the
traditional PCA algorithm to weighted PCA (PCAW), see [518]. First, we compute
the weighted center of gravity by,

c0 D
NX

iD1
Qwi

0
@ xi

yi

zi

1
A =

NX
iD1

ewi: (12.6)
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Let us shift the data of observations to this point through,

Cc0i
D
0
@ xi

yi

zi

1
A � c0; i D 1; 2; . . . N: (12.7)

The symmetric weighted covariance matrix is then computed through,

A D

0
B@
P

i ewi
�
Cc0i

�2
1

P
i ewi

�
Cc0i

�
1

�
Cc0i

�
2

P
i ewi

�
Cc0i

�
1

�
Cc0i

�
3

:
P

i ewi
�
Cc0i

�2
2

P
i ewi

�
Cc0i

�
2

�
Cc0i

�
3

: :
P

i ewi
�
Cc0i

�2
3

1
CA : (12.8)

Considering the Hesse form, the weighted residual to be minimized can be written
as a weighted function of Eq. (12.2) as,

R
�
nx; ny; nz; d

� D
NX

iD1
ewi
�
nxxi C nyyi C nzzi � d

�2
: (12.9)

Remark Remember that in the estimator based on the maximization of the
likelihood function, we apply wi =

pewi. Therefore considering Eq. (12.3), we
get

nx

NX
iD1

ewixi C ny

NX
iD1

ewiyi C nz

NX
iD1

ewizi � d
NX

iD1
ewi D 0: (12.10)

Since the normal plane can be computed as the eigenvectors of the weighted
covariance matrix A, the surface parameter d is determined. Consequently the
surface is

z D �nx

nz
x � ny

nz
yC d

nz
: (12.11)

12.5 Algebraic Plane Fitting Method

The proposed algebraic approach applies the maximum likelihood method to form
the function to be maximized (Sect. 12.5.1). However, to avoid direct maximization
and to get explicit formulae, the function to be maximized is converted into a system
of polynomial equation in Sect. 12.5.2 and solved using Sylvester resultant [25] or
Groebner basis [44, 46] in Sect. 12.5.3, and other methods.
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12.5.1 Application of Maximum Likelihood Estimation

In order to carry out a regression procedure, one needs to have a model M .x; y; z W
			/ D 0, an error definition eMi (xi, yi,zi:			) as well as the probability density function
of the error PDF (eM(x,y, z: 			)). The linear model then becomes

M.x; y; z W 			/ D ˛xC ˇyC � � z; (12.12)

with parameters 			 D .˛; ˇ; �/. The error model – corresponding to the TLS – is the
shortest distance of a point Pi from its perpendicular projection to the plane,

eMi .xi; yi; zi W 			// D zi � xi˛ � yiˇ � �p
1C ˛2 C ˇ2 : (12.13)

The probability density function of the model errors is considered as a Gaussian –
type error distribution of N (0, �)

PDF .eM.x; y; z W 			// D e� .eM/2

2�2p
2��

: (12.14)

Considering a set of f.x1; y1/; .x2; y2/ : : : ; .xN ; yN/g as measurement points, the max-
imum likelihood approach aims at finding the parameter vector 			 that maximizes the
likelihood of the joint error distribution. Assuming that the measurement errors are
independent, one should maximize,

L D
NY

iD1

e� .eMi /
2

2�2p
2��

: (12.15)

In order to use the sum instead of product, one can consider the logarithm of
Eq. (12.15),

LogL D Log

 
NY

iD1
PDF.eM/

!
D �

NX
iD1

Log.PDF.eM//: (12.16)

If the Gaussian – type error distribution is considered, the function to be maximized
becomes

LogL.˛; ˇ; �/ D �NLog
	p

2��


C 1

2�2

NX
iD1

.zi � xi˛ � yiˇ � �/2
1C ˛2 C ˇ2 : (12.17)
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12.5.2 Polynomial Form of the Necessary Conditions

In order to avoid direct maximization of Eq. (12.17) and to get explicit formula
for the estimated parameters, symbolic computation is employed. First, Eq. (12.17)
has to be transformed into a system of polynomial equations using the SuperLog
Mathematica function developed by [436]. This function utilizes pattern-matching
code that enhances Mathematica’s ability to simplify expressions involving the
natural logarithm of a product of algebraic terms, see, e.g., [412]. The log-likelihood
estimator function can now be written as

LogL.˛; ˇ; �/ D � N�2

2 .1C ˛2 C ˇ2/ �2
� 1

2
NLogŒ2�� 1

2
NLogŒ��� NLogŒ��

C
XN

iD1
� ˛�xi

.1C ˛2 C ˇ2/ �2
C
XN

iD1
� ˛2x2i
2 .1C ˛2 C ˇ2/ �2

CXN

iD1
� ˇ�yi

.1C ˛2 C ˇ2/ �2
CXN

iD1
� ˛ˇxiyi

.1C ˛2 C ˇ2/ �2

C
XN

iD1
� ˇ2y2i
2 .1C ˛2 C ˇ2/ �2

C :

XN

iD1

�zi

.1C ˛2 C ˇ2/ �2
CXN

iD1

˛xizi

.1C ˛2 C ˇ2/ �2

C
XN

iD1

ˇyizi

.1C ˛2 C ˇ2/ �2
C
XN

iD1
� z2i
2 .1C ˛2 C ˇ2/ �2

: (12.18)

From the necessary conditions of the optimum, namely

eq1 D
@LogL
@˛

D 0; eq2 D
@LogL
@̌

D 0; eq3 D
@LogL
@�

D 0; (12.19)

one can obtain the following polynomial system,

eq1 D i� b˛ C h˛ � i˛2 � eˇ � 2g˛ˇ C e˛2ˇ C iˇ2�
b˛ˇ2 C d˛ˇ2 � eˇ3 � a� � 2f˛� C a˛2� C 2c˛ˇ� � aˇ2� C N˛�2

eq2 D g � e˛ C g˛2 � e˛3 � dˇ C hˇ � 2i˛ˇ C b˛2ˇ�
d˛2ˇ � gˇ2 C e˛ˇ2 � c� � c˛2� � 2fˇ� C 2a˛ˇ� C cˇ2� C Nˇ�2

eq3 D f � a˛ � cˇ � N�

3
777775
;

(12.20)
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where the constants depending on the measured values, are: a D P
N

iD1 xi; b DP
N

iD1 x2i ; c D P
N

iD1 yi; d D P
N

iD1 y2i ; e D P
N

iD1 xiyi; f D P
N

iD1 zi; g DP
N

iD1 yizi; h DPN

iD1 z2i ; i DPN

iD1 xizi.

12.5.3 Solution Using Symbolic Computation

The solutions of the polynomial system (Eq. 12.20) are the possible optimums of
Eq. (12.18). To get a symbolic solution, we reduce the multivariate polynomial
system to univariate polynomials of higher order [44, 46]. There are several ways to
do so. First, since the last expression of Eq. (12.20) is linear, � can be solved for and
substituted into the other two equations of Eq. (12.20). Secondly, the three equations
can be taken from (12.20) and fed to the Dixon Resultant algorithm, or to built in
routines in the CAS’s Maple and Magma. We will use the first approach here, and
consider the others in the next section.

Continuing, we solve for � in the third equation and substitute into the other two
equations of Eq. (12.20). The system is reduced to two equations with two unknowns
(˛, ˇ), which can be solved using Sylvester resultant [25] to yield

p˛ DP7
iD0 ci˛

i D 0
pˇ DP7

iD0 Qciˇ
i D 0; (12.21)

where ci and Qci are complicated expressions of the constants introduced above, see
Paláncz et al., [411]. If ˛ and ˇ are known, then � can be computed from the
last expression of Eq. (12.20). The triplet f˛, ˇ, �g are considered the solution of
the parameter estimation problem, if they are real and provide the maximum of
Eq. (12.18) compared to the other triplet variations. Now, considering Example 12.1,
the polynomials in normalized form are

p˛ D 1:0 � 1:86396˛ � 0:0224484˛2C 1:53158˛3 � 1:47291˛4 C 2:02529˛5
�0:589345˛6 � 1:0446˛7

and

pˇ D 1:0 � 12:1429ˇC 49:5536ˇ2 � 69:5446ˇ3C 7:81696ˇ4 C 0:877232ˇ5
�27:5938ˇ6C 15:5804ˇ7;

whose real solutions are

˛ D �2; �0:857775; 0:757775
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and

ˇ D 2; �1:35777; 0:257775;

providing ˛ D �2; ˇ D 2 as in previous examples. Considering Eq. (12.18) in
compact form using the constants and substituting � from the last equation of
Eq. (12.20) yields

LogL.˛; ˇ/ D � h

2 .1C ˛2 C ˇ2/ �2 C
i˛

.1C ˛2 C ˇ2/ �2 C
af˛

N .1C ˛2 C ˇ2/ �2

� b˛2

2 .1C ˛2 C ˇ2/ �2 �
3a2˛2

2N .1C ˛2 C ˇ2/ �2 C
gˇ

.1C ˛2 C ˇ2/ �2

� cfˇ

N .1C ˛2 C ˇ2/ �2 �
e˛ˇ

.1C ˛2 C ˇ2/ �2 C
ac˛ˇ

N .1C ˛2 C ˇ2/ �2

� dˇ2

2 .1C ˛2 C ˇ2/ �2 C
c2ˇ2

2N .1C ˛2 C ˇ2/ �2

�1
2
NLogŒ2� � 1

2
NLogŒ�� � NLogŒ��: (12.22)

We select the very combination of the real f˛, ˇg pair, which gives the highest value
for Eq. (12.13). In our case f˛; ˇg D .�2; 2/. Then, from Eq. (12.20) we get � D 15
thus completing the solution of Example 12.1. From practical point of view, the best
way is to carry out the computations using numerical Groebner basis, e.g., [44, 46]
of a CAS such as Mathematica. Since the selection of the proper triplet f˛; ˇ; �g
was automatic employing Mathematica, the real solutions are

f˛ D �0:857775; ˇ D �1:35777; � D 105:109g;
f˛ D �2; ˇ D 2; � D 15g;

f˛ D 0:757775; ˇ D 0:257775; � D 9:79129g;

i.e., the second set of solutions are identical to the previous example. The values of
the log-likelihood function at these solutions are,

LogL.˛; ˇ; �/ D f�829:275;�165:676;�393:077g:

With the second triplet giving the highest values, the second solution thus gives the
location of the global maximum. This result represents the well known fact that a
log-likelihood function may have many local maximums, making direct maximiza-
tion difficult. It can only be successful using global optimization techniques, which
are quite time consuming.
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Table 12.1 Computation
times of the different methods

Method Time (s)

TLS via global minimization 0:250

TLS via SVD 0:031

PCA 0:030

Algebraic via Groebner basis 0:016

Algebraic via numerical Groebner basis 0:047

A summary of the results of the different methods are presented in Table 12.1,
which shows the computation times of the five approaches. Since this is a very
simple example, there are no considerable differences between the methods except
for the direct global optimization, which undoubtedly cannot be taken into con-
sideration in practice. Algebraic solution using Groebner basis is fast, however, it
requires extra effort for pairing the roots properly. Employing SVD for problems of
many measurement points revealed that the complexity of this algorithm is consid-
erably high, see [411]. Consequently, PCA and the algebraic method via numerical
Groebner basis are the remaining two candidates for the robust application. Further,
additional attempt has been made with Groebner basis combined with Sylvester
resultant running on Mathematica 10. First, variable gamma was eliminated via
Groebner basis taking 0.67 s and 51.7 MB of RAM, resulting in seven basis with
length 22, 22, 22, 48, 75, 102 and 120. Then the system has been solved for
alpha and beta via Sylvester resultant using the 1st – 3rd and the 1st – 2nd basis,
respectively. The running times were 0.20 and 0.19 s, with 58.9 and 52.7 MB of
RAM. The result for the variables, alpha and beta were represented by 3232 terms,
both. The machine used for this experiment was HP Z420 Workstation with 16 GB
RAM.

12.5.4 Symbolic Solution Using Dixon Resultants
and Other Methods

The Dixon Resultant method has been described in [330, 334] and [335]. Given a
set of n equations in n variables and some number of parameters, n � 1 variables
are eliminated, producing a resultant in one variable and the parameters. The
resultant appears as a factor of the determinant of a matrix containing multivariate
polynomials. Computing it can be quite a challenge [334], but [330] developed
methods to do so, especially EDF (Early Detection of Factors). The method has
been programmed for the CAS Fermat.

Using Dixon-EDF, for the present system of equations (12.20), the resultant for
either ˛ or ˇ has 3232 terms and is computed in 0.15 s with 50 MB of RAM on a
Mac mini. The resultant for � has 10,918 terms and is computed in 1.2 s with 78 MB



12.6 Robust Estimators 227

of RAM. We attempted to solve the system with the facilities of other CAS. With
Maple we used J. C. Faugere’s Groebner basis algorithm called FGb [158] on Maple
15 (X86 64 Linux) to solve for � . It crashed after 73 min, even after we allocated a
very large amount of RAM. Similarly, it crashed after 101 min trying to solve for ˇ.

Magma V2.21-1 succeeded in finding the resultant for ˇ. It took 162 h and
2.5 GB on a Linux server. For � , we killed the program after 280 h and 6.4 GB were
consumed. For the Fermat code, to run Dixon-EDF see [333]. The only method that
succeeded in producing the resultant for � is Dixon-EDF. For ˛ and ˇ, that method
is more efficient than any other we tried in this fully symbolic approach.

12.6 Robust Estimators

Modern range sensing technologies, e.g., laser scanners enable detailed scanning
of complex objects thus generating point cloud data. The majority of point cloud
data are acquired by various measurement processes using a number of sensors.
The physical limitations of these sensors, such as boundaries between 3D features,
occlusions, multiple reflectance, and noise can produce off-surface points that
contribute to outlying observations. In this Section two widespread but different
robust estimation techniques are used for embedding the algebraic algorithm,
namely the RANSAC and the Danish methods. Robust techniques require repeated
parameter estimation, but fortunately these computations can be carried out in
parallel. However, our built-in parameter estimation method is fast and can improve
the efficiency of the robust method considerably.

12.6.1 RANSAC Method

Let us apply the RANSAC method, given in [539], which has proven to be
successful for detecting outliers. The basic RANSAC algorithm is as follows:

(1) Pick a model type (M)
(2) Input data as

– data – data corrupted with outliers (cardinality (data) = n)
– s – number of data elements required per subset
– N – number of subsets to draw from the data
–  – threshold which defines if data element, di 2 data, agrees with

the model M
Remarks In general s can be the minimal number of the data, which results in
a closed form system for the unknown parameters of the model. The number of
subsets to draw from the data N is chosen high enough to ensure that at least one of
the subsets of the random examples does not include an outlier (with the probability
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p, which is usually set to 0.99). Let u represent the probability that any selected data
point is an inlier and v D 1 � u the probability of observing an outlier. Then the
iterations N can be computed as

N D log.1 � p/

log .1 � .1 � v/s/ : (12.23)

(3) maximalConsensusSet ;
(4) Iterate N times:

(a) ConsensusSet ;
(b) Randomly draw a subset containing s elements and estimate the parameters

of the model M
(c) For each data element, di 2 data:

if (di,M, ) agree, ConsensusSet di

(d) if cardinality (maximalConsensusSet)< cardinality(ConsensusSet),
maximalConsensusSet ConsensusSet

(5) Estimate model parameters using maximal consensus set.

One of the important advantages of this algorithm is that the tasks of step 4 can
be carried out in parallel. In step 4 (b) we may employ SVD, PCA, or our algebraic
solution. The computation time of SVD is heavily dependent on the amount of data
and is usually very high in case of mass data. The PCA is roughly as fast as the
algebraic solution, however, PCA like OLS, is very sensitive to outliers and fails to
reliably fit planes, see e.g., [351]. As an illustration, let us consider a test example
from [388]. For a better understanding, see the flow-diagram of the RANSAC
algorithm (Table 12.2). It is easy to realize that parameter estimation should be
carried out in the outer loop, N times.

Table 12.2 RANSAC algorithm
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Table 12.3 Danish algorithm

12.6.2 Danish Method

The Danish method (Table 12.3) was proposed by Krarup [289] and is purely
heuristic with no rigorous statistical theory. The method works with adaptive
weights, which are altered iteratively. The weight of an observation is computed
according to its error (residual), which is different from 1 if the error of this
observation is greater than the standard deviation of the error distribution, �� ,
namely

wi
.kC1/ D exp

	
�c
�
�i
.k/
�2


if �i
.k/ > ��; (12.24)

where �i
.k/ is the error of the i-th observation computed with weight wi

.k/ in the k-th
iteration step. The error definition is the same as before,

�i D jzi � ˛sxi � ˇsyi � �sjp
1C ˛2 C ˇ2 (12.25)

Otherwise wi
.kC1/= 1. The process is continued until convergence is achieved. Here

c is a suitable constant. For example, let �� D 0:1m, then the weights in case of
different �i can be seen in Fig. 12.1.
Here, c = 1000, which practically means wi  0 for outliers (cf. Fig. 12.1). In
order to integrate the algebraic solution, one needs to use the weighted form of
this solution. Now our error model should have individual weights (cf. Eq. 12.18).
The likelihood function is

L D
NY

iD1

e� .wieMi/
2

2�2p
2��

; (12.26)
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Fig. 12.1 The actual weights of the observations in case of �� D 0:1, with different values of c

leading to a log-likelihood function of

LogL.˛; ˇ; �/ D �1
2
NLogŒ2� � 1

2
NLogŒ�� � NLogŒ��C

XN

iD1 �
�2w2i

2
�
1C ˛2 C ˇ2��2

C
XN

iD1�
˛�w2i xi�

1C ˛2 C ˇ2� �2 C
XN

iD1�
˛2w2i x2i

2
�
1C ˛2 C ˇ2� �2

C
XN

iD1�
ˇ�w2i yi�

1C ˛2 C ˇ2� �2 C
XN

iD1�
˛ˇw2i xiyi�

1C ˛2 C ˇ2��2

C
XN

iD1�
ˇ2w2i y2i

2
�
1C ˛2 C ˇ2� �2 C

XN

iD1
�w2i zi�

1C ˛2 C ˇ2� �2

C
XN

iD1
˛w2i xizi�

1C ˛2 C ˇ2� �2 C
XN

iD1
ˇw2i yizi�

1C ˛2 C ˇ2� �2

C
XN

iD1�
w2i z2i

2
�
1C ˛2 C ˇ2� �2 : (12.27)
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Introducing now the following constants

a DPN

iD1 w2i xi; b DPN

iD1 w2i x2i ; c DPN

iD1 w2i yi; d DPN

iD1 w2i y2i ; e DPN

iD1 w2i xiyi;

f DPN

iD1 w2i zi; g DPN

iD1 w2i yizi; h DPN

iD1 w2i z2i ; i DPN

iD1 w2i xizi; j D
P

N

iD1 w2i ;

(12.28)

the log-likelihood function can be written in compact form as,

LogL.˛; ˇ; �/ D � h
2.1C˛2Cˇ2/�2 C

i˛
.1C˛2Cˇ2/�2 �

b˛2

2.1C˛2Cˇ2/�2C
gˇ

.1C˛2Cˇ2/�2 �
e˛ˇ

.1C˛2Cˇ2/�2 �
dˇ2

2.1C˛2Cˇ2/�2 C
f�

.1C˛2Cˇ2/�2�
a˛�

.1C˛2Cˇ2/�2 �
cˇ�

.1C˛2Cˇ2/�2 �
j�2

2.1C˛2Cˇ2/�2 �
1
2
NLogŒ2� � 1

2
NLogŒ�� �NLogŒ��:

(12.29)

Again, the necessary condition of the optimum leads to the algebraic form,

eq1 D i � b˛ C h˛ � i˛2 � eˇ � 2g˛ˇC e˛2ˇ C iˇ2 � b˛ˇ2 C d˛ˇ2 � eˇ3 � a�
�2f˛� C a˛2� C 2c˛ˇ� � aˇ2� C j˛�2

eq2 D g � e˛ C g˛2 � e˛3 � dˇ C hˇ � 2i˛ˇC
b˛2ˇ � d˛2ˇ � gˇ2 C e˛ˇ2 � c� � c˛2� � 2fˇ� C 2a˛ˇ� C cˇ2� C jˇ�2

eq3 D f � a˛ � cˇ � j�;
(12.30)

which can be solved using resultants or Groebner basis as in Sect. 12.5.3.

12.7 Application to Synthetic Dataset

Example 12.2 A synthetic dataset is generated from a multivariate Gaussian dis-
tribution. Regular 3D points have means of �R D .2; 8; 6/ and variances of
�R D .5; 5; 0:01/. The outliers have means of �O D .15; 15; 10/ and variances
�O D .10; 2; 1/, see [388]. The ideal plane is z D 6. In this example, we generated
20,000 regular and 3000 outlier data points shown in Fig. 12.2. These data points
are known and the task at hand is to determine the parameters of the fitted plane, (˛,
ˇ, � ). In Table 12.4, the results of RANSAC employing the PCA versus algebraic
estimation methods embedded in RANSAC are compared.

The perfect size of the consensus set is 20,000. Although the consensus set
of the PCA is not considerable larger than that of the algebraic solutions, the
identities of the irregular data points (outliers) in it are different, and they have
stronger effect on the estimated parameters. The parallelization of the method could
reduce the running times under 10 s in both cases, see Table 12.5. Now, let us
check our algorithm using the weights provided by the computation done above,
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Fig. 12.2 The plane and the artificial measured points (to left) with outliers (to right)

Table 12.4 Results of RANSAC method embedding the PCA and algebraic techniques

Method Computation time (s) Size of inlier set ˛ ˇ �

PCA 58.51 20,852 0.1336 0.0675 5.246

Algebraic 40.15 20,025 0.0040 0.0019 5.979

Table 12.5 Results of Danish method embedding the algebraic and the PCAW methods

Method Computation time (s) Size of I inliers set ˛ ˇ �

Algebraic 9.27 20,011 7:2 � 10�4 0.0012 5.999

Weighted PCA 9.42 20,011 7:2 � 10�4 0.0012 5.999

see Eq. (12.28). The result of the computation of the Danish method embedding the
algebraic and the PCAW methods are compared in Table 12.5.

It can be seen that the results of the two methods are practically the same.
The reason why the PCA method performed much better when embedded in the
Danish method than in the RANSAC is that in the latter technique, the estimator
should work on small subsystems, where the outliers’ effect is much stronger than
in the total data set. Now let us test our method with a real life laser scanner
data. Table 12.6 show that the PCA algorithm integrated in the RANSAC cannot
provide really good results due to its unreliability in case of ill-conditioned cases that
frequently arise in the RANSAC algorithm. In this case, the algebraic method seems
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Table 12.6 Results of the computation in case of real data

Computation Size of Min of Max of Mean of Standard
time inlier error error error deviation

Method (s) set ˛ ˇ � (cm) (cm) (cm) (cm)

RANSAC
Algebraic

11.64 24,382 0.106 0.503 202.66 �22.4 28.31 0.00 6.4

Danish
Algebraic

29.39 24,576 0.106 0.505 202.66 �22.0 37.0 0.00 7.0

Danish
PCA

70.57 26,089 0.103 0.567 202.54 �46.0 94.6 0 18.6

Fig. 12.3 The test area in Budapest

to be a better candidate than the PCA. However, employing the Danish method as a
robust technique, both algorithms worked outstandingly well.

12.8 Application to Real Laser Scanner Measurements

Example 12.3 Outdoor laser scanning measurements have been carried out in a
hilly park of Budapest shown in Fig. 12.3. The test area is on a steep slope covered
by dense but low vegetation.

The experiment was carried out using a Faro Focus 3D terrestrial laser scanner
(Fig. 12.4). The test also aimed at investigating the tie point detection capabilities of
the scanner’s processing software; different types of spheres were deployed all over
the test area. In case of multiple scanning positions these spheres can be used for
registering the point clouds, see Fig. 12.5. The measurement range of the scanner
is 120 m, the ranging error is ˙2 mm, according to the manufacturer’s technical
specification.
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Fig. 12.4 Faro Focus 3D
scanner

The scanning parameters were set to 1/2 resolution that equals to 3 mm/10 m
point spacing. This measurement resulted in 178.8 million points that were acquired
in 5 and half minutes. The test data set was cropped from the point cloud; moreover,
further resampling was applied in order to reduce the data size. The final data set is
composed of 38,318 points in ASCII format, and only the x, y, z coordinates were
kept (no intensity values), see Fig. 12.6. The results of the computations using the
different methods are presented in Table 12.6.

The fitted plane with the measured points can be seen in Fig. 12.7. Three different
methods were employed to fit a plane to the slope. In order to get acceptable results
with the Danish method, we should extend it using two adjustment parameters c1
and c2 as,

w.kC1/
i D exp

	
�c1

�
�i
.k/
�2


if �i
.k/ > c2��; (12.31)

where 0 < c2 � 1. The adjustment parameters in all of the three cases were properly
tuned to get the best result with the actual method (Table 12.6). The values of the
running time represent parallel evaluation. Undoubtedly, the RANSAC method with
algebraic maximization of the likelihood function provided the best performance,
see Fig. 12.7.
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Fig. 12.5 The scanner at the
top of the measured steep
slope with the different sizes
of white spheres as control
points in the background

Judging the quality of the result of such terrestrial laser scanning and its evaluation
objectively is not easy since the traditional investigation techniques are hindered
by the special morphological character of the area, i.e., the randomly different
size, location, and density of the vegetation. Although, according to Table 12.6,
we can bravely say that all of the methods provide an acceptable solution, and that
they slightly differ statistically. However, the algebraic method proved to be more
universal than the PCA method, since it was successful in both the RANSAC and the
Danish methods, while the PCA algorithm was unreliable in the RANSAC method.
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Fig. 12.6 The test data set extracted from the laser scanner point cloud

Example 12.4 (Microsoft Kinect) This last illustration demonstrates that our alge-
braic method built in RANSAC can solve relatively more complex problems too.
In this example the measurement has been carried out using Microsoft Kinect (see
Fig. 12.8). Microsoft’s Kinect contains a diverse set of sensors, most notably a depth
camera based on PrimeSense’s infrared structured light technology. With a proper
calibration of its color and depth cameras, the Kinect can capture detailed color point
clouds at up to 30 frames per second. This capability uniquely positions the Kinect
for use in fields such as robotics, natural user interfaces, and three-dimensional
mapping, see e.g., [153].

This device provides 2D RGB color image and the RGB data representing the
depth – the distance of the object – in 11 bits (0. . . 2048). This low resolution can
cause discontinuities, which can be even 10 cm above 4 m object distance, and is
about 2 cm in case the object distance is less than 2.5 m. In this example, a desk with
a chair in an office room has been captured by Microsoft Kinect (see Fig. 12.10).
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Fig. 12.7 The fitted plane using RANSAC algebraic technique: points above the plane are outliers,
points on the plane are inliers

Fig. 12.8 Microsoft Kinect XBOX
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Fig. 12.9 Office desk with a
chair and some small objects
on the top of the desk

Fig. 12.10 Point cloud
provided by Microsoft kinect

Our aim is to identify the plane of the top of the desk (e.g., Fig. 12.9). represents
the deteriorated point cloud provided by Microsoft Kinect. We have 38,253 points
consisting of inliers, i.e., the points of the top of desk, as well as outliers. The outliers
above the top of the desk – some reflected points of the wall (right hand side of the
picture), outliers on the top – two small objects, under the top – the sitting part of
the chair and beside the top – the back of the chair. Using SVD, PCA and Algebraic
method without robust technique, we obtained the same – wrong – result (see e.g.,
Fig. 12.11). The uncorrect fitting of the plane can be detected automatically without
inspection, since the double peaks of the histogram of the error distribution shows
clearly the presence of outliers, see Fig.12.12. Applying our algebraic method built-
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Fig. 12.11 Fitted plane without filtering the outliers
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Fig. 12.12 The histogram of the errors

in RANSAC, we obtained only 637 inliers and the rest 37,616 points were outliers.
Using the inlier the plane of the top of desk could be successfully identified, see
Figs. 12.13 and 12.14, even in the case of this deteriorated data set.

12.9 Concluding Remarks

This study has presented an algebraic technique that can be embedded into esti-
mation techniques such as RANSAC and Danish methods to offer robust solutions
that adequately manage outliers. The results of the numerical tests show remarkable
improvement in computational time when the algebraic method is incorporated into
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Fig. 12.13 The edge of the fitted plane (straight line) with the outliers

Fig. 12.14 The fitted plane with outliers

the RANSAC and Denish robust estimation methods compared to that of TLS and
PCA. In addition, the algebraic method proved to have practically zero complexity
concerning the number of measured data points. However, if the application of the
TLS error model is inevitable, and the statistical approach is not advisable, then it
can be good choice for robust estimation since it avoids direct global maximization
of the likelihood function.

In comparison to PCA and SVD, the proposed method can be used not only
in laser scanning directly, but also in computational geometry to identify graphics
primitives, in surface reconstruction for generating patches, in digital building
modeling to recognize roofs, walls and other elementary constructions, in forest
planning and operational activities to estimate terrain slopes and so on. Compared
to the integrated functions of commercial point cloud processing software, the
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proposed method is open, validated by widely used techniques, and therefore its
users have full control on the entire plane fitting operations. Since these robust
estimators are iterative techniques, their running time can be considerably reduced
if the embedded estimation method is efficient.



Part II
Geospatial Applications



Chapter 13
LPS-GNSS Orientations and Vertical Deflections

13.1 Introductory Remarks

Since the advent of the Global Navigation Satellite System (GNSS), in particular
the Global Positioning System (GPS), many fields within geosciences, such as
geodesy, geoinformatics, geophysics, hydrology etc., have undergone tremendous
changes. GPS satellites have in fact revolutionized operations in these fields and
the entire world in ways that its inventors never imagined. The initial goal of GPS
satellites was to provide the capability for the US military to position themselves
accurately from space. This way, they would be able to know the positions of their
submarines without necessarily relying on fixed ground stations that were liable to
enemy attack. Slowly, but surely, the civilian community, led by geodesists, began
to devise methods of exploiting the potential of this system. The initial focus of
research was on the improvement of positioning accuracies since civilians only have
access to the so called coarse acquisition or C/A-code of the GPS signal. This code
is less precise when compared to the P-code used by the US military and its allies.
The other source of error in GPS positioning was the Selective Availability (SA),
i.e., intentional degradation of the GPS signal by the US military that would lead
to a positioning error of ˙100 m. However, in May 2000, the then president of the
United States Bill Clinton, officially discontinued this process.

As research in GPS progressed, so also arose new applications of its use.
For example, previous research focussed on modelling or eliminating atmospheric
effects such as refraction and multipath on the transmitted signals. In the last
decade, however, Melbourne et al. [368] suggested that this negative effect of the
atmosphere on GPS signals could be inverted to remote sense the atmosphere for
vertical profiles of temperature and pressure. This gave birth to the new field of
GPS meteorology, which is currently an active area of research. GPS meteorology
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has enhanced environmental and atmospheric studies by contributing to weather
prediction and forecasting. This new technique is presented in Chap. 18, where the
algebraic computations involved are solved.

One would be forgiven to say that the world will soon be unable to operate
without GPS satellites. This, however, will not be an understatement either. GPS
satellites have influenced our lives such that almost every operation is increasingly
becoming GPS dependent! From the use of mobile phones, fertilizer regulation in
farming, fish tracking in fisheries, vehicle navigation etc., the word is GPS. These
numerous applications of GPS satellites has led the European countries to develop
the so-called GALILEO satellites, which are the equivalent of GPS and are currently
expected to be operational in 2013. The Russian based Globalnaya Navigationnaya
Sputnikovaya Sistema, or GLONASS which were also developed originally for
military uses are still operational with modernized versions expected within the next
decade.

The direct impact of using these satellites is the requirement that operations be
almost entirely three-dimensional. The major challenge posed by this requirement
is that of integrating the results from the GNSS satellite system, which operates
globally, to the traditional techniques that operate locally. In geodesy and geoinfor-
matics for example, integrating global and local observations lead to the problem
of solving for 3d-orientation and the deflection of the vertical, the subject of this
Chapter. These problems have one thing in common: They require the solution of
nonlinear equations that relate the unknowns to the measured values.

In five sections we introduce positioning systems, global and local, and relate
datum problems namely the three-dimensional orientation problem, especially the
procrustes orientation problem and the vertical deflection. In some detail, we use
the example of the test network Stuttgart central.

In short terms, we review the Global Positioning System (GPS: Global Problem
Solver), the bestseller for Applied Geodesy, and the Local Positioning System
(LPS: Local Problem Solver) based on “total stations” (theodolites, electronic
distance meters EDMs, photogrammetric cameras, laser scanners). In some details
in Sects. 13.3 and 13.4 we introduce GPS and LPS. A central topic is the relationship
between global and local level reference frames based on vertical deflections and
the classical orientation unknown. The classical observation equations for LPS
are presented. A modern technique, the Procrustes solution of the orientation
problem, is illustrated. As a byproduct, we describe the determination of the vertical
deflection, the orientation difference between a model orientation and the real
orientation .�; �/. The central part is Sect. 13.6, the example of the test network
“Stuttgart Central”: GPS coordinates, spherical coordinates of the relative position
vector. Unfortunately, the text is very short. An interested reader finds more details
in the given references in Sect. 13.7.
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13.2 Positioning Systems

In daily operations, geodesists and geoinformatists have at their disposal two
operating systems namely:

• Global Positioning Systems; in this system, the practitioner operates at a
global scale with positions referred to the global reference frame (e.g., World
Geodetic System WGS-84). The tools employed comprise mainly satellites with
global positioning capabilities. These satellites include; the US based Global
Positioning System (GPS), Russian based Globalnaya Navigationnaya Sputniko-
vaya Sistema (or simply Global Navigation Satellite System) GLONASS and
the proposed European Union’s proposed Global Navigation Satellite System
GALILEO which is expected to be operational in 2013. Unlike GPS satellites
which were designed for the US military, GALILEO satellites will be civilian
owned. For a brief introduction to GALILEO and other GNSS, we refer to
Awange [46].

• Local Positioning Systems (LPS); which are applicable at national levels. The
main positioning tools include; total stations, theodolites, EDMs, photogram-
metric cameras, laser scanners etc. Positions in these systems are referred to the
local level reference frames. With these systems, for example, engineers have
possibilities of setting horizontal and vertical networks for constructions. Those
in geodynamics use them together with GPS for deformation monitoring.

The present chapter discusses these two systems in detail. In particular, for the
LPS, the issue of local datum choice is addressed. The test network of “Stuttgart
Central” which is applied to test the algorithms of Chaps. 4, 5, 6 and 7 is also
presented.

13.3 Global Positioning System (GPS)

Global Positioning System (GPS) are satellites that were primarily designed for
use of US military in the early 1960s, with a secondary role of civilian navigation.
The oscillators aboard the GPS satellites generate a fundamental frequency f0 of
10.23 MHz. Two carrier signals in the L band denoted L1 and L2 are generated by
integer multiplication of the fundamental frequency f0. These carriers are modulated
by codes to provide satellite clock readings measured by GPS receivers. Two types
of codes; the coarse acquisition C/A and precise acquisition P/A are emitted. C/A
code in the L1 carrier is less precise and is often reserved for civilian use, while the
P/A code is reserved for the use of US military and its allies. It is coded on both L1
and L2 [46, 275]. The design comprises three segments namely; the space segment,
user segment and the control segment. The space segment was designed such that
the constellation consisted of 24 satellites (with a spare of four) orbiting at a height
of about 20,200 km. The orbits are inclined at an angle of 55ı from the equator
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with an orbiting period of about 12 h. The user segment consists of a receiver that
tracks signals from at least four satellites in-order to position (see e.g., discussion on
Chap. 15). The control segment consist five ground stations with the master station
located at the Air Force base in Colorado. The master station measures satellite
signals which are incorporated in the orbital models for each satellite. The models
compute ephemerids and satellite clock correction parameters which are transmitted
to the satellites. The satellites then transmit the orbital data to the receivers.

The results of the three-dimensional positioning using GPS satellites are the
three-dimensional geodetic coordinates f�; �; hg of a receiver station. These coordi-
nates comprise the geodetic longitude �, geodetic latitude � and geodetic height h.
When positioning with GPS, the outcome is the geocentric position for an individual
receiver or the relative positions between co-observing receivers.

The global reference frame F
� upon which the GPS observations are based is

defined by the base vectors F1� ;F2� ;F3� , with the origin being the center of mass.
The fundamental vector is defined by the base vector F3� and coincides with the
mean axis of rotation of the Earth and points to the direction of the Conventional
International Origin (CIO). F1� is oriented such that the plane formed by F1� and
F3� points to the direction of Greenwich in England.F2� completes the right handed
system by being perpendicular to F1� and F3� . The geocentric Cartesian coordinates
of a positional vector X is given by

X D F1�X C F2�Y C F3�Z; (13.1)

where {X;Y;Z} are the components of the vector X in the system fF1� ;F2� ;F3�g jo .

13.4 Local Positioning Systems (LPS)

Grafarend [206] defines a local level system as a three-dimensional reference frame
at the hand of an experimenter in an engineering network. When one is positioning
using a theodolite or a total Station, one first centers the instrument. When the
instrument is properly centered and ready for operation, the vertical axis of the
instrument at this moment coincides with the direction of the local gravity vector
at that particular point, hence the term direction of local gravity vector. The vertical
axis at the theodolite station however points in the direction opposite to that of
the gravity vector (i.e., to the zenith). The instrument can now be used to measure
observations of the type horizontal directions Ti, angles, vertical directions Bi or the
spatial distances Si. The triplet fSi;Ti;Big are measured in the local level reference
frame and are used to form the spherical coordinates of a point. These systems as
opposed to GPS are only used within the local networks and are referred to as the
Local Positioning Systems (LPS). When one is operating in these systems, one is
faced with two datum choices upon which to operate. The next section elaborates
on these datum choices.



13.4 Local Positioning Systems (LPS) 249

13.4.1 Local Datum Choice in an LPS 3-D Network

When measuring directions in the LPS system, one has two options, namely;

• orienting the theodolite to a station whose azimuth is known or,
• orienting the theodolite to an arbitrary station whose azimuth is unknown.

When the first option is adopted, one operates in the local level reference frame of
type E

� discussed in (a) below. Should the second approach be chosen, then one
operates in the local level reference frame of type F� discussed in (b).

(a) Local level reference frame of type E�:
The origin of the E

� system is a point P whose coordinates

X D
2
4X

Y
Z

3
5

P

D
2
4 00
0

3
5 (13.2)

are defined by base vectors E1� , E2� , E3� of type south, east, vertical. E3�

which points to the direction opposite to that of the local gravity vector � at
point P. The north direction is defined such that the reference pole agrees with
the Geodetic Reference System 2000. E1� points south, while E2� completes
the system by pointing east. The datum spherical coordinates of the direction
point Pi in the local level reference frame E� are




�

�



P �! X� D Y� D Z� D 0

PPi �!
2
4X�

Y�
Z�

3
5

E�

D Si

2
4 cos Ai cos Bi

sin Ai cos Bi

sin Bi

3
5 ; (13.3)

with azimuths Ai, vertical directions Bi, and spatial distances Si.
(b) Local level reference frame of type F�:

This system is defined by the base vectors F1� , F2� , F3� , with F1� within the
local horizontal plane spanned by the base vectors E1� and E2� directed from P
to Pi in vacuo. The angle between the base vectors E1� and F1� is the “unknown
orientation parameter” ˙ in the horizontal plane. E1� , E2� , E3� are related to
F1� ,F2� ,F3� by a “Karussel-Transformation” as follows

2
4F1� D E1� cos˙ C E2� sin˙
F2� D �E1� sin˙ C E2� cos˙
F3� D E3� ;

(13.4)

or
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ŒF1� ;F2� ;F3� � D ŒE1� ;E2� ;E3� �

2
4 cos˙ � sin˙ 0

sin˙ cos˙ 0

0 0 1

3
5 : (13.5)

From (13.5), one notes that the local level reference frame of type F� is related
to the local level reference frame of type E

� by

ŒE1� ;E2� ;E3� � D ŒF1� ;F2� ;F3� � RT
3 .˙/: (13.6)

The datum spherical coordinates of point Pi in the local level reference frame
F

� are given as
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�
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4X�

Y�
Z�

3
5

F�

D Si

2
4 cos Ti cos Bi

sin Ti cos Bi

sin Bi

3
5 ; (13.7)

where Ti and Bi are the horizontal and vertical directions respectively, while Si

are the spatial distances.

The local cartesian coordinates of a point whose positional vector is x in the F
�

system is given by

x D F1�xC F2�yC F3�z; (13.8)

where fx; y; zg are the components of the vector x in the system fF1� ;F2� ;F3� jPg :
In the chapters ahead, the local level reference frame of type F� will be adopted.

This system arbitrarily defines the horizontal directions such that the orientation
to the system E

�, i.e., ˙ , is treated as unknown besides the unknown positions.
In case of the three-dimensional orientation problem, it is determined alongside
the direction f�� ;˚� g of the local gravity vector � : For position determination
using three-dimensional resection method, it is determined alongside unknown
coordinates fX;Y;Zg. This will become clear in Chaps. 16 and 20.

13.4.2 Relationship Between Global and Local Level Reference
Frames

In positioning within the LPS framework, one is interested not only in the geomet-
rical position fX;Y;Zg, but also in the physical quantities f�� ;˚� g which define
the direction of the local gravity vector � at the instrument station. This direction
f�� ;˚� g of the local gravity vector � together with the unknown orientation ˙
relate LPS and GPS systems. They are obtained by solving the three-dimensional
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orientation problem. This is achieved by transforming coordinates from the local
level reference frame to the global reference frame (e.g., [11, ITRF2005]). It is
conventionally solved by a means of a 3�3 rotation matrix, which is represented by
a triplet f�� ;˚� ;˙� g of orientation parameters called the astronomical longitude
�� , astronomical latitude˚� , and the “orientation unknown”˙� in the horizontal
plane. With respect to the local gravity vector � ; the triplets f�� ;˚� ; � D k�kg
are its spherical coordinates, in particular f�� ;˚� g its direction parameters. The
three-dimensional orientation problem therefore determines;

(i) the 3 � 3 rotation matrix and,
(ii) the triplet f�� ;˚� ;˙� g of orientation parameters from GPS/LPS measure-

ments.

After the astronomical longitude �� and astronomical latitude ˚� are determined
via (i) and (ii) above- no astronomical observations are needed anymore – the ver-
tical deflections with respect to a well-chosen reference frame, e.g., the ellipsoidal
normal vector field can be obtained as discussed in Sect. 13.5.2. When stating that
no astronomical observations are needed, we are not advocating that other methods
(see Sect. 13.7) should not be used, but rather imply that it is possible to transfer
from a GPS reference system in Cartesian coordinates into coordinates�� and ˚�
of the gravity space.

The three-dimensional orientation problem is formulated by relating the local
level reference frame F

� to the global reference frame F� as follows:

ŒF1� ;F2� ;F3� � D ŒF1� ;F2� ;F3� �RE .�� ;˚� ;˙� / ; (13.9)

where the Euler rotation matrix RE is parameterized by

�

�

�

	
RE .�� ;˚� ;˙� / WD R3 .˙� /R2

�
�
2
� ˚�

�
R3.�� /; (13.10)

i.e., the three-dimensional orientation parameters; astronomical longitude �� ;

astronomical latitude ˚� ; and the orientation unknown ˙ in the horizontal plane.
In terms of;

(a) Cartesian coordinates fx; y; zg of the station point and fxi; yi; zig target points in
the local level reference frame F;� and,

(b) Cartesian coordinates fX;Y;Zg of the station point and target points fXi;Yi;Zig
in the global reference frame F�,

one writes

2
4 xi � x

yi � y
zi � z

3
5

F�

D RE.�� ;˚� ;˙� /

2
4Xi � X

Yi � Y
Zi � Z

3
5

F�;

(13.11)
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with

2
4 xi � x

yi � y
zi � z

3
5

F�

D Si

2
4 cos Ti cos Bi

sin Ti cos Bi

sin Bi

3
5 ;8i 2 f1; 2; : : : ; ng: (13.12)

Equation (13.11) contains the orientation parameters RE.�� ;˚� ;˙� / relating the
local level reference frame F

� to the global reference frame F
�. These orientation

parameters have been solved by:

1. Determining the direction .�� ;˚� / of the local gravity vector � at the origin of
the network and the orientation unknown ˙ in the horizontal plane from stellar
astronomical observations.

2. Solving the three-dimensional resection problem as discussed in Chap. 16. In
the approach proposed by [229], directional measurements are performed to
the neighbouring three points in the global reference frame and used to derive
distances by solving the Grunert’s equations. From these derived distances, a
closed form solution of the six unknowns fX;Y;Z; �� ;˚� ;˙� g by means of
the Hamilton-quaternion procedure is performed.

3. Using the simple Procrustes algorithm as discussed in Chap. 9 to determine the
three-dimensional orientation parameters f�� ;˚� ;˙� g and the deflection of the
vertical for a point whose geometrical positional quantities fX;Y;Zg are known.

4. By first determining the geometrical values fX;Y;Zg of the unknown station
using resection approach as discussed in Chap. 16. Once these geometrical values
have been determined, they are substituted back in (13.11) to obtain the Euler
rotation matrix RE.�� ;˚� ;˙� /. The Euler rotation angles can then be deduced
via an inverse map presented in Lemma 20.1 on p. 464.

13.4.3 Observation Equations

Let us now have a look at the equations that we often encounter when positioning
with a stationary theodolite. Elaborate exposition of three-dimensional observations
is given by [201]. Stationed at the point P0 2 E

3; and with the theodolite properly
centered, one sights the target points Pi 2 E

3; where i = 1,2,3,. . . ..,n. There exist
three types of measurements that will be taken from P0 2 E

3 to Pi 2 E
3 in the LPS

system (i.e., local level reference frame F
�). These are:

• Horizontal directions Ti whose equation is given by

Ti D arctan

�
�yi

�xi

�
F�

�˙� .P0/; (13.13)

where˙� .P0/ is the unknown orientation in the horizontal plane after setting the
zero reading of the theodolite in the direction P! Pi.
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• Vertical directions Bi given by

Bi D arctan

0
B@ �ziq

�x2i C�y2i

1
CA

F�:

(13.14)

• Spatial distances Si, i.e.,

Si D
q
�x2i C�y2i C�z2i j�F; (13.15)

and �xi D .xi � x/; �yi D .yi � y/; �zi D .zi � z/ denote the coordinate
difference in the local level reference frame F�.

The relationship between the local level reference frame F� and the global reference
frame F� is then given by (e.g., 13.11)

2
4�xi

�yi

�zi

3
5

F�

D RE.�� ;˚� ; 0/

2
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�Zi

3
5

F�;

(13.16)

with

RE.�� ;˚� ; 0/ D
2
4 sin˚� cos�� sin˚� sin�� � cos˚�
� sin�� cos�� 0

cos˚� cos�� cos˚� sin�� sin˚�

3
5 : (13.17)

Observations in (13.13), (13.14) and (13.15) are now expressed in the global
reference frame as

Ti D arctan

 � sin���Xi C cos���Yi

sin˚� cos�� �Xi C sin˚� sin�� �Yi � cos˚� �Zi

�
�˙� .P/;

(13.18)

and

Bi D arctan

(
cos˚� cos�� �Xi C cos˚� sin�� �Yi C sin˚��Zip

.sin˚� cos�� �Xi C sin˚� sin�� �Yi � cos˚� �Zi/2 C D2

)
;

(13.19)

where D2 D .cos���Yi � sin���Xi/
2, �Xi D .Xi � X/; �Yi D .Yi � Y/;

�Zi D .Zi � Z/ in the global reference frame F
� and f˙� .P0/;�� .P0/; ˚� .P0/g

are the three unknown orientation parameters at the unknown theodolite station P0.
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13.5 Three-Dimensional Orientation Problem

The transformation of coordinates from the local level reference frame to the
global terrestrial reference frame (e.g., ITRF97) is a key, contemporary problem. In
carrying out coordinate transformations, some of the sought parameters are those of
orientation. Orientations are normally sought for; theodolites, cameras, and CCD
sensors, etc. Procedures for solving explicitly the three-dimensional orientation
problems in geoinformatics are presented in the works of [463, 485, 486, 549].
In geodesy, attempts to find closed form solution to the orientation problem have
been carried out by [19, 210, 229] who proved that the three-dimensional orientation
problem could be solved in a closed form through the integration of GPS and LPS
systems.

The orientation problem is formulated by expressing (13.11) relating the two
configurations, i.e., the local level reference frame and the global reference frame,
with the left-hand-side in terms of spherical coordinates, as

si

2
4 cos Ti cos Bi

sin Ti cos Bi

sin Bi

3
5

F�

D R.�� ;˚� ;˙
i
� /

2
4Xi � X

Yi � Y
Zi � Z

3
5

F�

with

si D
q
.Xi � X/�2 C .Yi � Y/�2 C .Zi � Z/�2:

(13.20)

In (13.20), X;Y;Z;Xi;Yi;Zi 8i 2 N are GPS coordinates in the global reference
frame F

�; while the spherical coordinates Ti;Bi 8i 2 N are used to derive the
left-hand-side of (13.20) in the local level reference frame F

�. The orientation
problem (13.20) is conventionally solved by means of a 3 � 3 rotation matrix R,
which is represented by the triplet f�� ;˚� ;˙� g of orientation parameters called
the astronomical longitude �� , astronomical latitude ˚� , and the “orientation
unknown” ˙� in the horizontal plane. With respect to the local gravity vector � ;

the triplet f�� ;˚� ; � D k�kg are its spherical coordinates, in particular f�� ;˚� g
are its direction parameters. Here we solve the problem of determining;

(a) the 3 � 3 rotation matrix R and,
(b) the triplet f�� ;˚� ;˙� g of orientation parameters from GPS/LPS measure-

ments by means of the partial Procrustes algorithm.

13.5.1 Procrustes Solution of the Orientation Problem

Consider coordinates to be given in two configurations with the same three-
dimensional space in the local level reference frame F

� and global reference frame
F

�. For such a three-dimensional space, where i D 3 (i.e., three target points), the
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relationship in (13.20) between the two systems is expressed as

2
4 x1 � x x2 � x x3 � x

y1 � y y2 � y y3 � y
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Y1 � Y Y2 � Y Y3 � Y
Z1 � Z Z2 � Z Z3 � Z

3
5
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: (13.21)

For n target points, (13.21) becomes
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3 � n 3 � 3 3 � n;
(13.22)

with their respective dimensions given below them. The transpose of (13.22) is
expressed as
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(13.23)

Equation (13.23) contains the relative position vectors of corresponding points
in two reference frames. Let us indicate the matrix on the left-hand-side by A; the
one on the right-hand-side by B; and denote the rotation matrix R

0

by T. The partial
Procrustes problem is now concerned with fitting the configuration of B into A as
close as possible. The problem reduces to that of determination of the rotation matrix
T. The operations involved in the solution of the orientation problem, therefore,
are:

• Solution of T� D VU
0

.
• Obtaining the rotation elements from R D .T�/0

.

The rotation matrix T� is the best possible matrix out of the set of all orthogonal
matrices T which are obtained by imposing the restriction TT

0 D T
0

T D I: The
matrix T could otherwise be any matrix, which means, geometrically, that T is some
linear transformation which in general may not preserve the shape of B. A summary
of the computational procedure for the three-dimensional orientation parameters
based on Example 13.1 is given in Fig. 13.1.

Example 13.1 (Computation of the three-dimensional orientation problem) The
partial Procrustes approach discussed in Sect. 9.2 is applied to the Test network of
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Fig. 13.1 Flow chart for computing three-dimensional orientation parameters
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Table 13.1 GPS coordinates in the global reference frame F
�.X; Y; Z/, .Xi; Yi; Zi/; i D

1; 2; : : : ; 7

�X �X �X

Stationa X.m/ Y.m/ Z.m/ mm mm mm

Dach K1 4,157,066.1116 671,429.6655 4,774,879.3704 1.07 1.06 1.09

1 4,157,246.5346 671,877.0281 4,774,581.6314 0.76 0.76 0.76

2 4,156,749.5977 672,711.4554 4,774,981.5459 1.77 1.59 1.61

3 4,156,748.6829 671,171.9385 4,775,235.5483 1.93 1.84 1.87

4 4,157,066.8851 671,064.9381 4,774,865.8238 1.38 1.29 1.38

5 4,157,266.6181 671,099.1577 4,774,689.8536 1.29 1.28 1.34

6 4,157,307.5147 671,171.7006 4,774,690.5691 0.20 0.10 0.30

7 4,157,244.9515 671,338.5915 4,774,699.9070 2.80 1.50 3.10
a See Table 13.2 for the names of the stations represented here by numbers. This applies also to
Table 13.3

Stuttgart Central presented in Sect. 13.6. Eight GPS stations are used to determine
the three-dimensional orientation parameters f�� ;˚� ;˙� g. From the observations
of Table 13.3 on p. 260, the matrix A in (9.1) is computed in terms of the spherical
coordinates using (13.20). The Matrix B is obtained by subtracting the coordinates
of station K1 from those of other stations in Table 13.1. The rotation matrix
T is then computed using partial Procrustes algorithm, i.e., (9.1), (9.2), (9.3),
(9.4), (9.5), (9.6), (9.7), (9.8), (9.9) and (9.10). For this network, the computed
three-dimensional orientation parameters f�� ; �� ;˙� g gave the values �� D
48ı460

54
00

:3 and �� D 9ı100

30
00

:1, which when compared to �� D 48ı460

54
00

:9

and�� D 9ı100

29
00

:8 in [316, p. 46] deviates by��� D �000

:3 and�˚� D 000

:6.

13.5.2 Determination of Vertical Deflection

As soon as we have determined the astronomical longitude �� and astronomical
latitude ˚� , the deflection of the vertical can be computed with respect to a well
chosen reference frame, e.g., the ellipsoidal normal vector field. Traditionally,
orientation parameters f�� ;˚� g have been obtained from stellar observations
and related to geodetic coordinates f�; �g to obtain the deflection of the vertical.
Through the integration of GPS and LPS systems however, the astronomical
observations of type f�� ;˚� g are obtained from the three-dimensional orientation
solutions as discussed in Sect. 13.5. Such pioneering approach in geodesy can be
traced to the works of [19, 59, 210, 229].

To determine the vertical deflection, the reference direction is parameterized in
terms of “surface normal”; ellipsoidal longitude � and ellipsoidal latitude �: These
are then subtracted from the local vertical parameterized in terms of astronomical
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longitude�� and astronomical latitude ˚� as

�� � �
˚� � �; (13.24)

to access the vertical deflections. In such a procedure, the topographical surface
which is embedded into a three-dimensional Euclidean space R

3 is mapped point-
wise into a reference ellipsoid of revolution through the procedure discussed
in Chap. 10. Indeed as outlined in Solution 14.5 on p. 275 for instance, those
direction parameters f�;˚g are conveniently computed from GPS Cartesian coor-
dinates fX;Y;Zg of the station point with respect to the global reference frame
fF1� ;F2� ;F3�g : The deflection of the vertical is then computed from (13.24) as

ı�� WD �� � �; ı˚� WD ˚� � �
� WD ı�� cos˚; � WD ı˚� : (13.25)

Equation (13.25) are simple representation of the east vertical deflection � and
the north vertical deflection �. The results in Table (3.1) of [210] document the
precise determination of the orientation parameters of type astronomic longitude
�� , astronomic latitude ˚� , horizontal orientation unknown ˙� in the range of
fraction of seconds of arc as well as vertical deflection f�; �g in the same range
exclusively from GPS-LPS observations.

13.6 Example: Test Network Stuttgart Central

13.6.1 Observations and Experiment

The following experiment was performed at the center of Stuttgart on one of the
pillars of Stuttgart University’s building along Kepler Strasse 11 as depicted by
Fig. 13.2. The test network “Stuttgart Central” consisted of 8 GPS points listed in
Table 13.1. A theodolite was stationed at pillar K1 whose astronomical longitude
�� as well as astronomic latitude ˚� were known from previous astrogeodetic
observations made by the Department of Geodesy and Geoinformatics, Stuttgart
University. Since theodolite observations of type horizontal directions Ti as well as
vertical directions Bi from the pillar K1 to the target points i; i D 1; 2; : : : ; 6; 7;

were only partially available, the horizontal and vertical directions were simulated
from the given values of f�� ;˚� g as well as the Cartesian coordinates of the
station point fX;Y;Zg and target points fXi;Yi;Zig using (13.18) and (13.19). The
relationship between the observations of type horizontal directions Ti, vertical
directions Bi, values of f�� ;˚� g and the Cartesian coordinates of the station
point fX;Y;Zg and target points fXi;Yi;Zig enabled generation of the observation
data sets in Table 13.3. Such a procedure had also an advantage in that we had
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Haußmannstr. (1324.238 m)

Schloßplatz (566.864 m)

Dach FH (269.231 m)

Dach LVM (400.584 m)

Liederhalle (430.529 m)

Lindenmuseum (364.980 m)

Eduardpfeiffer

(542.261 m)

K1

Fig. 13.2 Graph of the test network “Stuttgart Central”

full control of the algorithms that will be tested later in the book. In detail, the
directional parameters f�� ;˚� g of the local gravity vector were adopted from the
astrogeodetic observations �� D 48ı460

54
00

:9 and �� D 9ı100

29
00

:8 reported
by [316, p. 46] with a root-mean-square error �� D �˚ D 10

00

. Table 13.1
contains the fX;Y;Zg coordinates obtained from a GPS survey of the test network
Stuttgart Central, in particular with root-mean-square errors .�X ; �Y ; �Z/ neglecting
the covariances .�XY ; �YZ ; �ZX/. The spherical coordinates of the relative position
vector, namely of the coordinate differences fxi � x; yi � y; zi � zg, are called
horizontal directions Ti, vertical directions Bi and spatial distances Si and are
given in Table 13.2. The standard deviations/root-mean-square errors were fixed
to �T D 6

00

; �B D 6
00

. Such root mean square errors can be obtained on the
basis of a proper refraction model. Since the horizontal and vertical directions of
Table 13.2 were simulated, with zero noise level, we used a random generator randn
in Matlab e.g., [256, p. 84, p. 144] to produce additional observational data sets
within the framework of the given root-mean-square errors. For each observable
of type Ti and Bi, 30 randomly simulated data were obtained and the mean taken.
Let us refer to the observational data sets fTi;Big ; i D 1; 2; : : : ; 6; 7; of Table 13.3
which were enriched by the root-mean-square errors of the individual randomly
generated observations as well as by the differences �Ti WD Ti � Ti.generated/;
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Table 13.2 Ideal spherical coordinates of the relative position vector in the local level reference
frame F

�: spatial distances, horizontal directions, vertical directions

Station observed Distances Horizontal Vertical
from K1 (m) directions (gon) directions (gon)

Schlossplatz (1) 566.8635 52.320062 �6.705164

Haussmanstr. (2) 1324.2380 107.160333 0.271038

Eduardpfeiffer (3) 542.2609 224.582723 4.036011

Lindenmuseum (4) 364.9797 293.965493 �8.398004

Liederhalle (5) 430.5286 336.851237 �6.941728

Dach LVM (6) 400.5837 347.702846 �1.921509

Dach FH (7) 269.2309 370.832476 �6.686951

Table 13.3 Randomly generated spherical coordinates of the relative position vector: horizontal
directions Ti and vertical directions Bi; i D 1; 2; : : : ; 6; 7; root-mean-square errors of individual
observations, differences �Ti WD Ti � Ti.generated/; �Bi WD Bi � Bi.generated/ with respect to
.Ti;Bi/ ideal data of Table 13.2

St. H/dir.(gon) V/dir.(gon) �T.gon/ �B.gon/ �T.gon/ �B.gon/

1 0.000000 �6.705138 0.0025794 0.0024898 �0.000228 �0.000039

2 54.840342 0.271005 0.0028756 0.0027171 �0.000298 0.000033

3 172.262141 4.035491 0.0023303 0.0022050 0.000293 0.000520

4 241.644854 �8.398175 0.0025255 0.0024874 0.000350 0.000171

5 284.531189 �6.942558 0.0020781 0.0022399 �0.000024 0.000830

6 295.382909 �1.921008 0.0029555 0.0024234 0.000278 �0.000275

7 318.512158 �6.687226 0.0026747 0.0024193 �0.000352 0.000500

�Bi WD Bi � Bi.generated/. Such differences .�Ti; �Bi/ indicate the difference
between the ideal values of Table 13.2 and those randomly generated.

Observations are thus designed such that by observing the other seven GPS
stations, the orientation of the local level reference frame F� whose origin is station
K1, to the global reference frame F� is obtained. The direction of Schlossplatz was
chosen as the zero direction of the theodolite leading to the determination of the
third component ˙� of the three-dimensional orientation parameters. To each of
the GPS target points i, the observations of type horizontal directions Ti and the
vertical directions Bi are measured. The spatial distances S2i .X;Xi/ D kXi � Xk are
readily obtained from the observation of type horizontal directions Ti and vertical
directions Bi. The following symbols have been used: �X ; �Y ; �Z are the standard
errors of the GPS Cartesian coordinates. Covariances �XY ; �YZ ; �ZX are neglected.
�T ; �B are the standard deviation of horizontal and vertical directions respectively
after an adjustment, �T ; �B are the magnitude of the noise on the horizontal and
vertical directions, respectively.



13.7 Concluding Remarks 261

13.7 Concluding Remarks

What is presented here is just a nutshell of GNSS. For more exposition of its
operations and techniques, we refer to related publications, e.g., [46, 143, 234,
275, 276, 325, 364, 464, 475, 531]. For LPS systems, more insight can be found
in [212, 217] and [429, p. 28]. In particular, for cases where the theodolite moves
from point to point, i.e., moving horizontal triad, [200, 203, 206] presents interesting
materials.

We point out that there are other methods capable of providing vertical deflec-
tions e.g.,GPS and levelling [504], gravimetric geoid models [162] and modern
CCD-Zenith cameras [270–274]. References to non-astronomical methods capable
of determining deflections are presented in Hirt [274]. Further tests are required to
assess the real efforts and the accuracy level related to the application of the GPS
and LPS method for determination of vertical deflections.



Chapter 14
Cartesian to Ellipsoidal Mapping

14.1 Introductory Remarks

In establishing a proper reference frame of geodetic point positioning, namely by
the Global Positioning System (GPS) – the Global Problem Solver – we are in need
to establish a proper model for the Topography of the Earth, the Moon, the Sun
or planets. By the theory of equilibrium figures, we are informed that an ellipsoid,
two-axes or three-axes is an excellent approximation of the Topography. For planets
similar to the Earth the biaxial ellipsoid, also called “ellipsoid-of-revolution” is the
best approximation.

It was C.F. Gauss in his work on “Gauss-Krulger Maps” or “Universal Marcator
Projection” relating to the “ellipsoid-of-revolution” who designed the elegant
method of mapping a reference ellipsoid onto a topographic surface. He used the
orthogonal projection of a topographic point onto the reference ellipsoid. Million
times per day in any GPS receiver the Gauss projection onto the reference ellipsoid
of type formula (14.1), (14.2) is used to compact Cartesian coordinates .X;Y;Z/
from determined (geodetic longitude, geodetic latitude, surface height) and its
inverse.

Here we meet the problem of solving a biquadratic equation in closed form.
Various solutions exist which we present in Table 14.1 in short. Of course there are
many more and other approaches. The minimum distance mapping of a star-shaped
surface onto the reference ellipsoid is given by Solution 14.3. The constrained
minimum distance mapping is analyzed by Lemma 14.1, its solution is presented
by (i) the Grafarend-Lohse mapping and (ii) the Groebner Basis mapping, and (iii)
the Extended Newton-Raphson mapping enriched by numerical examples.

© Springer-Verlag Berlin Heidelberg 2016
J.L. Awange, B. Paláncz, Geospatial Algebraic Computations,
DOI 10.1007/978-3-319-25465-4_14
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Table 14.1 Characteristics of inverse transformation Cartesian coordinates to Gauss ellipsoidal
coordinates

Publication
Author year Characteristic

Awange et al. [42] 2005 Closed (similar to [17])

Bartelme N, Meissl P [65] 1975 Iterative

Benning W [77] 1974 Closed

Benning W [78] 1987 Iterative first point curve

Borkowski KM [95] 1987 Iterative

Borkowski KM [96] 1989 Iterative

Bowring BR [98] 1976 Approximate “closed”

Bowring BR [99] 1985 Approximate

Croceto N [138] 1993 Iterative

Fitzgibbon A et al. [172] 1999 Iterative

Fotiou A [175] 1998 Approximate “closed”

Fröhlich H, Hansen HH [179] 1976 Closed

Fukushima T [181] 1999 “fast” Iterative

Gander W et al. [185] 1994 Iterative

Grafarend EW [208] 2001 Closed

Grafarend EW, Lohse P [214] 1991 Closed form 4th order equation reduced to

3rd order

Grafarend EW et al. [232] 1995 Closed form

Heck B [265] 1987 Iterative

Heikkinen M [266] 1982 Closed

Heiskannen WA, Moritz H [268] 1976 Iterative

Hirvonen R, Moritz H [269] 1963 Iterative

Hofman-Wellenhof B et al. [275] 2001 Identical to Bowring [98]

Lapaine M [321] 1990 Algebraic equations of higher order

Lin KC, Wang J [340] 1995 Iterative

Loskowski P [344] 1991 “simply iterative”

Ozone MI [393] 1985 3rd order equation

Paul MK [405] 1973 Iterative

Penev P [407] 1978 Angular variable 3rd order equation

Pick M [410] 1985 Approximate “closed”

Sjöberg LE [467] 1999 Iterative

Soler T, Hothem LD [468] 1989 Iterative “closed” Jacobi

ellipsoidal coordinates

Sünkel H [479] 1976 Series expansion

Torge W [489] 1991 Iterative

Vaniceck P, Krakiwski E [496] 1982 Higher order algebraic equation

Vincenty T [501] 1978 Iterative

Vincenty T [502] 1980 Approximate “closed”

You RJ [540] 2000 Iterative
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14.2 Mapping Topographical Points onto Reference Ellipsoid

The projection of points from the topographical surface to their equivalent on the
reference ellipsoid remains one of the fundamental tasks undertaken in geodesy
and geoinformatics. This is because the reference ellipsoid of revolution is the
mathematical representation of the geoid. Geoid is the surface that approximates
mean sea level, and provides vertical datum for heights. It is of prime importance
in engineering and geosciences in general. From it, geophysicists can infer on
processes taking place below and above the Earth such as earthquakes and rise in
sea level. Hydrologists need it to infer on water table, while engineers need it for
height determination during roads and structural constructions.

Measurements are normally related to the geoid for computation via its math-
ematical form, the reference ellipsoid of revolution. There exist two ways of
projecting points from a topographical surface onto the reference ellipsoid of
revolution. One approach projects a point P onto the geoid pg and then finally
onto the reference ellipsoid of revolution p. This type of projection is called the
Pizetti’s projection. The other approach directly projects a topographical point P
through the ellipsoidal normal onto a point p on the reference ellipsoid of revolution.
The distance between the topographical point P and the ellipsoidal point p gives
the geometrical height H above the ellipsoid. The topographical position of point
P would therefore be referred by the ellipsoidal height H and the geographical
coordinates L;B. In this case, the geographical coordinate L is the longitude and B
the latitude. The set of coordinates fL;B;Hg defining the point P are called geodetic
or ellipsoidal coordinates. This second projection is called the Helmert’s projection
which will be considered in this chapter. The two projections are discussed in detail
in [268, pp. 178–184].

The forward transformation from ellipsoid to Cartesian coordinates, i.e.,
fL;B;Hg ! fX;Y;Zg, is demonstrated by Solutions 14.1 and 14.2. The challenge
is the inverse transformation which projects topographical points to the ellipsoid.
One way of achieving this projection is by first converting topographical Cartesian
coordinates into ellipsoidal cartesian coordinates. Once this is done, the ellipsoidal
Cartesian coordinates are then converted to their equivalent geodetic coordinates.
The problem is formulated as follows: Given topographical coordinates fX;Y;Zg of
a point P, obtain the geodetic coordinates fL;B;Hg. This problem is a one-to-one
mapping of

� fX;Y;Zg �! fL;B;Hg
Topography Ellipsoid

(14.1)

Table 14.1 outlines the existing methods by other authors to convert Cartesian
coordinates fX;Y;Zg to Gauss ellipsoidal coordinates fL;B;Hg in (14.1). The target
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of this chapter is to invert algebraically fX;Y;Zg ! fL;B;Hg by means of minimum
distance mapping through the map in (14.2) as

� fX;Y;Zg �! fx1; x2; x3g �! fL;B;Hg
Topography Ellipsoid Ellipsoid:

(14.2)

Grafarend [207] already constructed surface normal coordinates with respect
to the international reference ellipsoid. In this chapter, we will be interested
with setting up an algebraic minimum distance mapping to relate a point on the
Earth’s topographical surface uniquely (one-to-one) to a point on the international
reference ellipsoid. The solution to such an optimization problem generates
projective ellipsoidal heights and the standard transformation of the Gauss
ellipsoidal coordinates fL;B;Hg to geocentric Cartesian coordinates fX;Y;Zg.
The inverse transformation of geocentric Cartesian coordinates fX;Y;Zg to
Gauss ellipsoidal coordinates fL;B;Hg is here solved algebraically and examples
presented.

Solution 14.1 (Forward transformation of Gauss ellipsoidal coordinates)

X.L;B;H/ D e1

�
ap

1 � e2 sin2 B
C H.L;B/

�
cos B cos LC

e2

�
ap

1 � e2 sin2 B
C H.L;B/

�
cos B sin LC

e2

�
a.1 � e2/p
1 � e2 sin2 B

C H.L;B/

�
sin B; (14.3)

2
4X

Y
Z

3
5 D

h
ap

1�e2 sin2 B
CH.L;B/

i
cos B cos Lh

ap
1�e2 sin2 B

CH.L;B/
i

cos B sin Lh
a.1�e2/p
1�e2 sin2 B

CH.L;B/
i

sin B

; (14.4)

with f.L.X;Y;Z/;B.X;Y;Z/;H.X;Y;Z/g as unknowns.
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Solution 14.2 (Forward transformation of Gauss complex ellipsoidal coordi-
nates) Consider

X C iY D
�

ap
1 � e2 sin2 B

C H.L;B/

�
cos B.cos LC i sin L/; (14.5)

and

Z D
�

a.1� e2/p
1 � e2 sin2 B

C H.L;B/

�
sin B; (14.6)

then

X D
�

X C iY Z
�Z X � iY

�
2 C

2�2 (14.7)

14.3 Mapping Geometry

In [207], Gauss surface normal coordinates with respect to the international
reference ellipsoid E

2
a;a;b are introduced and called fl; bg. The Gauss surface normal

longitude is represented by l (geodetic longitude) and the Gauss surface normal
latitude by b (geodetic latitude). Such a coordinate system build up the proper
platform for introducing surface normal coordinates fL;B;Hg for mapping the
Earth’s topographical surfaceT2 with respect to the international reference ellipsoid.
In particular, the minimum distance mapping which maps a topographic point
P 2 T

2 onto a nearest point p 2 E
2
a;a;b on the international reference ellipsoid

is implemented. Such mapping, initiated by C. F. Gauss, is isozenithal since fl D
L; b D Bg : The orthogonal projection of P 2 T

2 onto p 2 E
2
a;a;b as the nearest point

is along the surface normal of E2a;a;b. The minimum distance from point p to P, i.e.,
pP is called accordingly ellipsoidal height H (“geodetic height”) complemented by
surface normal longitude l D L and surface normal latitude b D B:

In-order to gain a unique solution of minimum distance mapping, the assumption
that the Earth’s topographical surface is starshaped has to be made. Figure 14.1
illustrates a topographical surface which is starshaped, while Fig. 14.2 illustrates
that which is not. With respect to these figures, the notion of a starshaped compact
(closed and bounded) topographical surface may be obvious.

Definition 14.1 (Starshaped surface) A regionM 2 R
3 is starshaped with respect

to a point P 2 R
3, if the straight line which connects an arbitrary point Q 2M with

P lies in M . We call a surface starshaped, if it forms the boundary of a starshaped
region.
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Fig. 14.1 Minimum distance mapping, starshaped topographic surface (orthogonal projection of
P 2 T

2 onto p 2 S
2
R )

Fig. 14.2 Minimum distance mapping, non-starshaped topographic surface (orthogonal projection
of P 2 T

2 onto p 2 S
2
R )

It is understood that the shape of a star guarantees that the minimum distance
mapping of topographical surfaces in R

3 onto the average sphere S2R (“Bjerhammer
sphere”) is one-to-one. If the minimum distance mapping would not be one-to-one,
it might happen that a point on the average sphere S

2
R has more than one image on

the topographical surface. Here the condition of starshaped has to be relaxed if the
topographic surface T

2 � R
3 is mapped onto the international reference ellipsoid

E
2
a;a;b, an ellipsoid of revolution of semi-major axis a and semi-minor axis b. If

any surface normal to the ellipsoid of revolution E
2
a;a;b intersects the topographical
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surface only once, the topographical surface is ellipsoidal starshaped. Indeed this
condition is not met by any arbitrary topographical surface like the Earth’s. Instead
we shall assume that we have properly regularized the Earth’s topographical surface
to meet our requirement. Otherwise the Gauss ellipsoidal coordinates fL;B;Hg
would break down! Figures 14.3 and 14.4 gives a better insight into the notion of
ellipsoidal starshaped and anti-ellipsoidal starshaped.

Fig. 14.3 Minimum distance mapping, ellipsoidal starshaped topographic surface (orthogonal
projection of P 2 T

2 onto p 2 E
2
a;a;b )

Fig. 14.4 Minimum distance mapping, a topographic surface T
2 which is not ellipsoidal star-

shaped (orthogonal projection of P 2 T
2 onto p 2 E

2
a;a;b )
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14.4 Minimum Distance Mapping

In-order to relate a point P on the Earth’s topographic surface to a point on the
international reference ellipsoid E

2
a;a;b, a bundle of half straight lines so called

projection lines which depart from P and intersect E2a;a;b either not at all or in two
points are used. There is one projection line which is at minimum distance relating
P to p. Figure 14.5 is an illustration of such a minimum distance mapping. Let us
formulate such an optimization problem by means of the Lagrangean £.x1; x2; x3; x4/
in Solution 14.3.

Solution 14.3 (Constraint minimum distance mapping in terms of Cartesian
coordinates)

£.x1; x2; x3; x4/ WD 1

2
kX � xk2 C 1

2
x4
�
b2.x21 C x22/C ax23 � a2b2

�

D 1

2
f.X � x1/

2 C .Y � x2/
2 C .Z � x3/

2

Cx4
�
b2.x21 C x22/C ax23 � a2b2

�g

D min
.x1; x2; x3; x4/

(14.8)

x 2 X WD fx 2 R
3jx

2
1 C x22

a2
C x23

b2
D 1g DW E2a;a;b (14.9)

In the first case, the Euclidean distance between points P and p in terms of Cartesian
coordinates of P.X;Y;Z/ and of p.x1; x2; x3/ is represented. The Cartesian coordi-
nates .x1; x2; x3/ of the projection point P are unknown. The constraint that the point
p is an element of the ellipsoid of revolution

E
2
a;a;b WD fx 2 R

3jb2.x21 C x22/C a2x32 � a2b2 D 0;RC 3 a > b 2 R
Cg

is substituted into the Lagrangean by means of the Lagrange multiplier x4, which
is unknown too. f.x1̂ ; x2̂ ; x3̂ ; x4̂ / D argf£.x1; x2; x3; x4/ D ming is the argument
of the minimum of the constrained Lagrangean £.x1; x2; x3; x4/. The result of the
minimization procedure is presented by Lemma 14.1. Equation (14.10) provides
the necessary conditions to constitute an extremum: The normal equations are of
bilinear type. Products of the unknowns for instance x1x4; x2x4; x3x4 and squares of
the unknowns, for instance x21; x

2
2; x

2
3 appear. Finally the matrix of second derivatives

H3 in (14.12) which is positive definite constitutes the sufficient condition to
obtain a minimum. Fortunately the matrix of second derivatives H3 is diagonal.
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Fig. 14.5 Minimum distance mapping of a point P on the Earth’s topographic surface to a point p
on the international reference ellipsoid E

2
a;a;b

Using (14.11i)–(14.11iv), together with (14.14) leads to (14.15), which are the
eigenvalues of the Hesse matrix H3. These values are �1 D �2 D Xnx1̂ ; �3 D
Znx3̂ and must be positive.

Lemma 14.1 (Constrained minimum distance mapping) The functional
£.x1; x2; x3; x4/ is minimal, if the conditions (14.10) and (14.12) hold.

@£

@xi
..x1̂ ; x2̂ ; x3̂ ; x4̂ // D 0 8 i=1,2,3,4: (14.10)

On taking partial derivatives with respect to xi, we have

2
66666666666666664

.i/
@£

@.x1̂ /
D �.X � x1̂ /C b2x1̂ x4̂ D 0

.ii/
@£

@.x2̂ /
D �.Y � x2̂ /C b2x2̂ x4̂ D 0

.iii/
@£

@.x3̂ /
D �.Z � x3̂ /C a2x3̂ x4̂ D 0

.iv/
@£

@.x4̂ /
D 1

2
Œb2.x^2

1 C x^2
2 /�C a2x^2

3 � a2b2 D 0

(14.11)
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@2£

@xi@xj
.x1̂ ; x2̂ ; x3̂ ; x4̂ // > 0 8 i,j 2 {1,2,3}: (14.12)

H3 WD
�
@2£

@xi@xj
.x^/

�

D
2
4 1C b2x4̂ 0

0 1C b2x4̂ 0

0 0 1C a2x4̂

3
5 2 R

3�3 (14.13)

“eigenvalues”

jH3 ��I3j D 0 ” (14.14)

2
664
�1 D �2 WD 1C b2x4̂ D

X

x1̂
D Y

x2̂

�3 WD 1C a2x4̂ D
Z

x3̂

(14.15)

In Sects. 14.4.1 and 14.4.2, we present algebraic solutions of the normal equa-
tions (14.11).

14.4.1 Grafarend-Lohse’s Mapping of T2 �! E
2
a;a;b

Two approaches are proposed by [214] for mapping T
2 �! E

2
a;a;b. The first

approach which is presented in Solution 14.4 is based on substitution technique.
The second approach is based on degenerate conics and will not be treated in this
book. Instead, we refer the reader to [214]. Let us start with the algorithm that
solves the normal equations (14.11) in a closed form. Solution 14.4 outlines the
first and second forward steps of reduction which lead to a univariate polynomial
equation (14.20) of fourth order (quartic polynomial) in terms of the Lagrangean
multiplier. First, the solution of the quartic polynomial is implemented. One then
continues to determine with the backward step the Cartesian coordinates .x1; x2; x3/
of the point p 2 E

2
a;a;b by means of the minimum distance mapping of the point

P 2 T
2 to p 2 E

2
a;a;b:
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Solution 14.4 (Grafarend-Lohse MDM solution)

First forward step

Solve .i/; .ii/; .iii/ for x1; x2; x3 respectively.

2
6666664

.i/ x1̂ .1C b2x4̂ / D X ) x1̂ D
X

1C b2x4̂
.ii/ x2̂ .1C b2x4̂ / D Y ) x2̂ D

Y

1C b2x4̂
.iii/ x3̂ .1C a2x4̂ / D Z ) x3̂ D

Z

1C a2x4̂
:

(14.16)

Second forward step

Substitute .x1̂ ; x2̂ ; x3̂ ; x4̂ / in (14.11iv)

x^2
1 C x^2

2 D
1

.1C b2x4̂ /
2
.X2 C Y2/ (14.17)

x^2
3 D

1

.1C a2x4̂ /
2

Z2 (14.18)

2
664

b2.x^2
1 C x^2

2 /C a2x^2
3 � a2b2 D 0,

, b2
X2 C Y2

.1C b2x4̂ /
2
C a2

Z2

.1C a2x4̂ /
2
� a2b2 D 0:

(14.19)

Multiply (14.19) by .1C a2x4/2.1C b2x4/2 leads to the quartic polynomial (14.20).

.14.19i/

�
b2.1C a2x4/2.X2 C Y2/C a2.1C b2x4/2Z2

�a2b2.1C a2x4/2.1C b2x4/2 D 0

” .1C 2a2x4 C a4x24/b
2.X2 C Y2/C .1C 2b2x4 C b4x24/a

2Z2

�a2b2.1C 2a2x4 C a4x24/.1C 2b2x4 C b4x24/ D 0

.14.19ii/

2
666664

�x44a
6b6 � 2x34a

4b4.a2 C b2/

Cx24a
2b2Œa2.X2 C Y3/C b2Z2 � 4a2b2 � a4 � b4�C

2x4a2b2.X2 C Y2 C Z2/C b2.X2 C Y2/C a2Z2 � a2b2 D 0
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2
6664

x44 C 2x34
a2 C b2

a2b2
C x24

4a2b2 C a4 C b4 � a2.X2 C Y2/ � b2Z2

a4b4

�2x4
X2 C Y2 C Z2

a4b4
� b2.X2 C Y2/C a2Z2 � a2b2

a6b6
D 0

(14.20)

Backward step

Substitutex4̂ into x1̂ .x4̂ /; x2̂ .x4̂ /; x3̂ .x4̂ /

x1̂ D .1C b2x4̂ /
�1X; x2̂ D .1C b2x4̂ /

�1Y; x3̂ D .1C a2x4̂ /
�1Z (14.21)

Test

�1 D �2 D 1C b2x4̂ > 0; �3 D 1C a2x4̂ > 0 (14.22)

if �1 D �2 > 0 and �3 > 0 then end:

14.4.2 Groebner Basis’ Mapping of T2 �! E
2
a;a;b

Without the various forward and backward reduction steps, we could automati-
cally generate an equivalent algorithm for solving the normal equations (14.11i)–
(14.11iv) in a closed form by means of Groebner basis approach. Let us write the
Ideal of the polynomials in lexicographic order “x1 > x2 > x3 > x00

4 (read: x1 before
x2 before x3 before x4) as

Ideal I WD<

8̂
<̂
ˆ̂:

x1 C b2x1x4 � X;
x2 C b2x2x4 � Y;
x3 C a2x3x4 � Z;

b2x21 C b2x22 � a2x23 � a2b2

9>>=
>>;
> : (14.23)

Expressing the generators of Ideal (14.23) as

2
664

f1 WD x1 C b2x1x4 � X;
f2 WD x2 C b2x2x4 � Y;
f3 WD x3 C a2x3x4 � Z;
f4 WD b2x21 C b2x22 � a2x23 � a2b2;

(14.24)

the Groebner basis of these generators, characteristic for the minimum distance
mapping problem, are computed using (4.37) on p. 50 as

GroebnerBasisŒff1; f2; f3; f4g; fx1; x2; x3; x4g�: (14.25)

Groebner basis computation (14.25) leads to 14 elements presented in Solution 14.5
interpreted as follows: The first expression is a univariate polynomial of order four
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(quartic) in the Lagrange multiplier, i.e.,

2
666666664

�

�

�

	
c4x44 C c3x34 C c2x24 C c1x4 C co D 0

c4 D a6b6

c3 D .2a6b4 C 2a4b6/
c2 D .a6b2 C 4a4b4 C a2b6 � a4b2X2 � a4b2Y2 � a2b4Z2/
c1 D .2a4b2 C 2a2b4 � 2a2b2X2 � 2a2b2Y2 � 2a2b2Z2/
co D .a2b2 � b2X2 � b2Y2 � a2Z2/;

(14.26)

and is identical to (14.19ii). With the admissible values x4 substituted in linear
equations (4),(8),(12) of the computed Groebner basis, i.e.,

2
4 .1C a2x4/x3 � Z
.1C b2x4/x2 � Y
.1C b2x4/x1 � X;

(14.27)

the values .x1; x2; x3/ D .x; y; z/ are finally produced.

Solution 14.5 (Groebner basis MDM solution)

(1)

2
4 a2b2x44 C .2a6b4 C 2a4b6/x34 C .a6b2 C 4a4b4 C a2b6 � a4b2X2 � a4b2Y2�

a2b4Z2/x24 C C.2a4b2 C 2a2b4 � 2a2b2X2 � 2a2b2Y2 � 2a2b2Z2/x4
C.a2b2 � b2X2 � b2Y2 � a2Z2/:

(2)

2
4 .a

4Z � 2a2b2Z C b4Z/x3 � a6b6x34 � .2a6b4 C a4b6/x24
�.a6b2 C 2a4b4 � a4b2X2 � a4b2Y2 � a2b4Z2/x4
�a2b4 C a2b2X2 C a2b2Y2 C 2a2b2Z2 � b4Z2:

(3)

2
4 .2b2Z C b4x4Z � a2Z/x3 C a4b6x34 C .2a4b4 C a2b6/x24

C.a4b2 C 2a2b4 � a2b2X2 � a2b2Y2 � b4Z2/x4
Ca2b2 � b2X2 � b2Y2 � 2b2Z2:

(4) .1C a2x4/x3 � Z

(5)

�
.a4 � 2a2b2 C b4/x23 C .2a2b2Z � 2b4Z/x3
�a4b6x24 � 2a4b4x4 � a4b2 C a2b2X2 C a2b2Y2 C b4Z2/:

(6)

2
4 .2b2 � a2 C b4x4/x23 � a2Zx3 C a4b6x34 C .2a4b4 C 2a2b6/x24

C C .a4b2 C 4a2b4 � a2b2X2 � a2b2Y2 � b4Z2/x4
C2a2b2 � 2b2X � 2bY2 � 2b2Z2:

(7)

�
.X2 C Y2/x2 C a2b4Yx24 C Y.a2b2 � b2x23 � b2Zx3/x4
CYx23 � Y3 � YZx3 � YX2:

(8) .1C b2x4/x2 � Y
(9) a2x3 � b2x3 C b2Z/x2 � a2x3Y

(10) Yx1 � Xx2
(11) Xx1 C a2b4x24 C .a2b2 C b2x23 � b2Zx3/x4 C x23 � Zx3 C Yx2 � X2 � Y2:
(12) .1C b2x4/x1 � X
(13) .a2x3 � b2x3 C b2Z/x1 � a2Xx3
(14) x21 C a2b4x24 C .2a2b2 C b2x23 � b2Zx3/x4 C 2x23 � 2Zx3 C x22 � X2 � Y2:
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14.4.3 Extended Newton-Raphson’s Mapping of T2 �! E
2
a;a;b

Instead of transforming the constrained optimization problem into an unconstrained
one as it is usual, we shall solve it as an underdetermined system via Extended
Newton- Raphson method. Let us introduce new variables,

˛ D X � x; ˇ D Y � y; � D Z � z (14.28)

Now, our constrain is,

�1C .X � ˛/2 C .Y � ˇ/2
a2

C .Z � �/2
b2

D 0 (14.29)

or

�a2b2Cb2X2Cb2Y2Ca2Z2�2b2X˛Cb2˛2�2b2YˇCb2ˇ2�2a2Z�Ca2�2 D 0
(14.30)

Let us consider the input of a topographical point as

X D 3;770;667:9989;Y D 446;076:4896;Z D 5;107;686:2085;

a D 6;378;136:602; bD 6;356;751:860

Then our equation in numerical form after normalization becomes,

1 � 0:0130735˛C 1:7335845788851814� 10�9˛2 � 0:00154662ˇC

C1:7335845788851814 � 10�9ˇ2 � 0:0178286� C 1:745268098124392� 10�9�2 D 0

Now, we have a single equation with three variables (˛, ˇ, � ). This underdetermined
problem has infinite solutions. In order to select the proper solution we are looking
for the solution with minimal norm, but this is what we want, since the distance to be
minimized is just d D ˛2Cˇ2C �2 A good initial guess is (˛, ˇ, � ) = f0, 0, 0g. Let
us employ Extended Newton-Raphson method. Figure 14.6 shows the absolute error
of ˛ as function of the number of iterations. The convergence is fast. The result are

˛ D 26:6174; ˇ D 3:14888; � D 36:2985:

Then the absolute coordinates are,

x D 3;770;641:3815; yD 446;073:3407; zD 5;107;649:9100:



14.4 Minimum Distance Mapping 277

0 1 2 3 4

0

5

10

15

20

25

Number of iterations

E
rr

o
r

o
f

Fig. 14.6 Convergence of the method in case of the ˛D X � x relative coordinates

Once the ellipsoidal Cartesian coordinates fx1; x2; x3g have been computed using
either Solutions 14.4 or 14.5, they are transformed into their equivalent Gauss
ellipsoidal coordinates fL;B;Hg using (14.31), (14.32) and (14.33) in Solution 14.6.

Solution 14.6 (Coordinates transformation from Cartesian to Gauss ellip-
soidal)

fX;Y;Zg 2 T
2 fx1; x2; x3g 2 E

2
a;a;b to fL;B;Hg

“Pythagoras in three dimension”

H WD
p
.X � x1/2 C .Y � x2/2 C .Z � x3/2 (14.31)

“convert fx1; x2; x3g and fX;Y;Zg to fL;Bg”

tanL D Y � x2
X � x1

D Y � y

X � x
(14.32)

tanB D Z � x3p
.X � x1/2 C .Y � x2/2

D Z � x3p
.X � x/2 C .Y � y/2

(14.33)

Example 14.1 (Example from [214]) Given are the geometric parameters of the
ellipsoid of revolution; semi-major axis aD 6,378,137.000m and first numerical
eccentricity e2 D 0.00669437999013 from which the semi-minor axis b is to be
computed. The input data are Cartesian coordinates of 8 points on the surface of the
Earth presented in Table 14.2.
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Table 14.2 Cartesian coordinates of topographic points

Point X.m/ Y.m/ Z.m/

1 3;980;192:960 0 4;967;325:285

2 0 0 6;356;852:314

3 0 0 �6;357;252:314
4 4;423;689:486 529;842:355 4;555;616:169

5 4;157;619:145 664;852:698 4;775;310:888

6 �2;125;699:324 6;012;793:226 �91;773:648
7 5;069;470:828 3;878;707:846 �55;331:828
8 213;750:930 5;641;092:098 2;977;743:624

Table 14.3 Computed ellipsoidal cartesian coordinates and the Lagrange factor

Point x1.m/ x2.m/ x3.m/ x4.m�2/

1 3;980;099:549 0:000 4;967;207:921 5:808116e�019
2 0:000 0:000 6;356;752:314 3:867016e�019
3 0:000 0:000 �6;356;752:314 1:933512e�018
4 4;420;299:446 529;436:317 4;552;101:519 1:897940e�017
5 4;157;391:441 664;816:285 4;775;047:592 1:355437e�018
6 �2;125;695:991 6;012;783:798 �91;773:503 3:880221e�020
7 5;065;341:132 3;875;548:170 �55;286:450 2:017617e�017
8 213;453:298 5;633;237:315 2;973;569:442 3:450687e�017

Using these data, the coefficients of the univariate polynomials (14.26) are
computed and used in Matlab’s roots command, as x D roots .c4; c3; : : : ; c0/. The
obtained roots are then substituted in (14.27) to give the values of fx3; x2; x1g of the
ellipsoidal Cartesian coordinates. The computed results presented in Table 14.3 are
identical to those obtained by [214, Table 4, p. 108]. Once the ellipsoidal Cartesian
coordinates have been derived, the ellipsoidal coordinates (ellipsoidal longitude
L, ellipsoidal latitude B and height H) can be computed using (14.31), (14.32)
and (14.33) in Solution 14.6.

Example 14.2 (Case study: Baltic sea level project) Let us adopt the world geodetic
datum 2000 with the semi-major axis aD 6,378,136.602m and semi-minor axis
bD 6,356,751.860m from [209]. Here we take advantage of given Cartesian
coordinates of 21 points of the topographic surface of the Earth presented in
Table 14.4. Using these data, the coefficients of (14.26) are computed and used
to solve for x4. With the admissible values of x4 substituted in (14.27), the values
of the ellipsoidal Cartesian coordinates .x1; x2; x3/ D .x; y; z/ are produced and are
as presented in Table 14.5. They are finally converted by means of Solution 14.6
to .L;B;H/ in Table 14.6. Figure 14.7 depicts the mapping of topographical points
onto the reference ellipsoid.
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Table 14.4 Baltic sea level project: Cartesian coordinates of topographic points

Station X.m/ Y.m/ Z.m/

Borkum (Ger) 3;770;667:9989 446;076:4896 5;107;686:2085

Degerby (Fin) 2;994;064:9360 1;112;559:0570 5;502;241:3760

Furuoegrund (Swe) 2;527;022:8721 981;957:2890 5;753;940:9920

Hamina (Fin) 2;795;471:2067 1;435;427:7930 5;531;682:2031

Hanko (Fin) 2;959;210:9709 1;254;679:1202 5;490;594:4410

Helgoland (Ger) 3;706;044:9443 513;713:2151 5;148;193:4472

Helsinki (Fin) 2;885;137:3909 1;342;710:2301 5;509;039:1190

Kemi (Fin) 2;397;071:5771 1;093;330:3129 5;789;108:4470

Klagshamn (Swe) 3;527;585:7675 807;513:8946 5;234;549:7020

Klaipeda (Lit) 3;353;590:2428 1;302;063:0141 5;249;159:4123

List/Sylt (Ger) 3;625;339:9221 537;853:8704 5;202;539:0255

Molas (Lit) 3;358;793:3811 1;294;907:4149 5;247;584:4010

Mäntyluoto (Fin) 2;831;096:7193 1;113;102:7637 5;587;165:0458

Raahe (Fin) 2;494;035:0244 1;131;370:9936 5;740;955:4096

Ratan (Swe) 2;620;087:6160 1;000;008:2649 5;709;322:5771

Spikarna (Swe) 2;828;573:4638 893;623:7288 5;627;447:0693

Stockholm (Swe) 3;101;008:8620 1;013;021:0372 5;462;373:3830

Ustka (Pol) 3;545;014:3300 1;073;939:7720 5;174;949:9470

Vaasa (Fin) 2;691;307:2541 1;063;691:5238 5;664;806:3799

Visby (Swe) 3;249;304:4375 1;073;624:8912 5;364;363:0732

OElands N. U. (Swe) 3;295;551:5710 1;012;564:9063 5;348;113:6687

Table 14.5 Ellipsoidal Cartesian coordinates .x1; x2; x3/ and Lagrange multiplier x4

Station x1.m/ x2.m/ x3.m/ x4.m�2/

Borkum (Ger) 3;770;641:3815 446;073:3407 5;107;649:9100 1:746947e�019
Degerby (Fin) 2;994;054:5862 1;112;555:2111 5;502;222:2279 8:554612e�020
Furuoegrund (Swe) 2;527;009:7166 981;952:1770 5;753;910:8356 1:288336e�019
Hamina (Fin) 2;795;463:7019 1;435;423:9394 5;531;667:2524 6:643801e�020
Hanko (Fin) 2;959;199:2560 1;254;674:1532 5;490;572:5584 9:797001e�020
Helgoland (Ger) 3;706;019:4100 513;709:6757 5;148;157:7376 1:705084e�019
Helsinki (Fin) 2;885;126:2764 1;342;705:0575 5;509;017:7534 9:533532e�020
Kemi (Fin) 2;397;061:6153 1;093;325:7692 5;789;084:2263 1:028464e�019
Klagshamn (Swe) 3;527;564:6083 807;509:0510 5;234;518:0924 1:484413e�019
Klaipeda (Lit) 3;353;562:2593 1;302;052:1493 5;249;115:3164 2:065021e�019
List/Sylt (Ger) 3;625;314:3442 537;850:0757 5;202;502:0726 1:746017e�019
Molas (Lit) 3;358;777:7367 1;294;901:3835 5;247;559:7944 1:152676e�019
Mäntyluoto (Fin) 2;831;087:1439 1;113;098:9988 5;587;146:0214 8:370165e�020
Raahe (Fin) 2;494;026:5401 1;131;367:1449 5;740;935:7483 8:418639e�020
Ratan (Swe) 2;620;078:1000 1;000;004:6329 5;709;301:7015 8:988111e�020

(continued)
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Table 14.5 (continued)

Station x1.m/ x2.m/ x3.m/ x4.m�2/

Spikarna (Swe) 2;828;561:2473 893;619:8693 5;627;422:6007 1:068837e�019
Stockholm (Swe) 3;100;991:6259 1;013;015:4066 5;462;342:8173 1:375524e�019
Ustka (Pol) 3;544;995:3045 1;073;934:0083 5;174;921:9867 1:328158e�019
Vaasa (Fin) 2;691;299:0138 1;063;688:2670 5;664;788:9183 7:577249e�020
Visby (Swe) 3;249;290:3945 1;073;620:2512 5;364;339:7330 1:069551e�019
OElands N. U. (Swe) 3;295;535:1675 1;012;559:8663 5;348;086:8692 1:231803e�019

Table 14.6 Geodetic computed from ellipsoidal Cartesian coordinates in closed form

Ellipsoidal

Longitude L Latitude B height H

Station ı

0 00

ı

0 00

m

Borkum (Ger) 6 44 48:5914 53 33 27:4808 45.122

Degerby (Fin) 20 23 4:0906 60 1 52:8558 22.103

Furuoegrund (Swe) 21 14 6:9490 64 55 10:2131 33.296

Hamina (Fin) 27 10 47:0690 60 33 52:9819 17.167

Hanko (Fin) 22 58 35:4445 59 49 21:6459 25.313

Helgoland (Ger) 7 53 30:3480 54 10 29:3979 44.042

Helsinki (Fin) 24 57 24:2446 60 9 13:2416 24.633

Kemi (Fin) 24 31 5:6737 65 40 27:7029 26.581

Klagshamn (Swe) 12 53 37:1597 55 31 20:3311 38.345

Klaipeda (Lit) 21 13 9:0156 55 45 16:5952 53.344

List/Sylt (Ger) 8 26 19:7594 55 1 3:0992 45.101

Molas (Lit) 21 4 58:8931 55 43 47:2453 29.776

Mäntyluoto (Fin) 21 27 47:7777 61 35 39:3552 21.628

Raahe (Fin) 24 24 1:8197 64 38 46:8352 21.757

Ratan (Swe) 20 53 25:2392 63 59 29:5936 23.228

Spikarna (Swe) 17 31 57:9060 62 21 48:7645 27.620

Stockholm (Swe) 18 5 27:2528 59 19 20:4054 35.539

Ustka (Pol) 16 51 13:8751 54 35 15:6866 34.307

Vaasa (Fin) 21 33 55:9146 63 5 42:8394 19.581

Visby (Swe) 18 17 3:9292 57 38 21:3487 27.632

OElands N. U. (Swe) 17 4 46:8542 57 22 3:4508 31.823
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Fig. 14.7 Baltic sea level project topographic points mapped on to the international reference
ellipsoid E

2
a;a;b

14.5 Concluding Remarks

The chapter has presented a new and direct algebraic approach to the mapping
problem that has attracted a lot of research as evidenced in Table 14.1. All that is
required is for the user to apply Eqs. (14.26) and (14.27). Probably the best choice
is the Grafarend-Lohse’s method, but the Extended Newton-Raphson can also be
good candidates. These techniques work well out of the Mathematica, too.



Chapter 15
Positioning by Ranging Methods

15.1 Applications of Distances

Throughout history, position determination has been one of the fundamental task
undertaken by man on daily basis. Each day, one has to know where one is, and
where one is going. To mountaineers, pilots, sailors etc., the knowledge of position
is of great importance. The traditional way of locating one’s position has been the
use of maps or campus to determine directions. In modern times, the entry into
the game by Global Navigation Satellite Systems GNSS that comprise the Global
Positioning System (GPS), Russian based GLONASS and the proposed European’s
GALILEO have revolutionized the art of positioning.

In the new field of GPS meteorology for example, as well as geodesy, robotics
and geoinformatics etc., distances (ranges) play a key role in determining unknown
parameters. In the recently developed Spatial Reference System1 designed to check
and control the accuracy of three-dimensional coordinate measuring machines and
tooling equipments, coordinates of the edges of the instrument are computed from
distances of the bars. This signifies that industrial application of distances is fast
gaining momentum just as in geosciences. In GPS meteorology that we will discuss
in Chap. 18 for example, distances traveled by GPS satellites signals through the
atmosphere are measured and related do the would be distances in vacuo (i.e., in
the absence of the atmosphere). Since these signals traverse the atmosphere, they
enable accurate global remote sensing of the atmosphere to retrieve vertical profiles
of temperature, pressure and water vapour.

Apart from distances being used to determine the user’s position and its applica-
tion in GPS meteorology, they find use in quick station search in engineering and
cadastral surveying operations. Ranging, together with resection and intersection
techniques (see e.g., Chaps. 16 and 11) are useful in densifying geodetic networks

1Metronom US., Inc., Ann Arbor: http://www.metronomus.com
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Fig. 15.1 Point densification in forest and inside a tunnel

as illustrated by Fig. 15.1. Densification is vital for extending network control in
areas where GPS receivers fail, e.g., in tunnels and forests (see Fig. 15.1). Distances
are also used in photogrammetry to determine the perspective center coordinates
from measured photo and the ground coordinates. Another area of application is in
robotics.

Measured distances (ranges) are normally related to the desired parameters via
nonlinear systems of equations that require explicit/exact solutions. Approximate
numerical procedures used for solving such nonlinear distance equations are nor-
mally iterative in nature, and often require linearization of the nonlinear equations.
Where closed form solutions exist, they require differencing and substitution steps
which are laborious and time consuming. The desire therefore is to have procedures
that can offer direct solutions without linearization, iterations or substitutional steps.

In this chapter, direct procedures for solving nonlinear systems of equations
for distances without linearization, iteration, forward and backward substitutions
are presented. In particular, the advantages of fast computers with large storage
capacities, and computer algebraic software of Mathematica, Maple and Matlab are
exploited by the algebraic based approaches. These methods which were presented
in Chaps. 4, 5 and 7 directly deliver the position of unknown station from distance
measurements. They do so by eliminating variables appearing in the nonlinear
systems of equations resulting in univariate polynomials that are solvable using
Matlab’s “roots” command.

The improvements made on measuring instruments has led to Electromagnetic
Distance Measuring (EDM) equipments that measure distances to higher accuracies.
By measuring distances from an unknown station to two known stations, two
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nonlinear distance equations, whose geometrical properties have been studied
by [220, 221] are formed. They have to be solved for the planar position of the
unknown station. If distances are measured from an unknown station to three
known stations instead, three nonlinear distance equations have to be solved for
the unknown position. In Chaps. 4 and 7, planar distances were encountered in
Figs. 4.1 and 7.2 respectively, where they were used to illustrate the concepts that
were discussed. The position fx0; y0g of the unknown station P0 was related to the
measured distances by (4.1) and (4.2) on p. 38.

The term ranging is broadly used in this chapter to incorporate the GPS pseudo-
range measurements. For Local Positioning Systems (e.g., using EDMs), distances
can be measured directly. For Global Positioning System (GPS) however, distances
are not directly measured owing to satellites and receivers’ clock uncertainties.

15.2 Ranging by Global Navigation Satellite System (GNSS)

15.2.1 The Pseudo-ranging Four-Points Problem

If one has access to a hand held GPS receiver, a mobile phone or a watch fitted
with a GPS receiver, one needs only to press the button to know the position where
one is standing. Basically, the operations involve distance measurements to GPS
satellites whose properties were discussed in Sect. 13.3. The receiver measures the
travel time of the signal transmitted from the satellites. This distance is calculated
from the relationship

distance D velocity � time;

where velocity is given by the speed of light in vacuum. The distances Si are then
related to the position of the unknown station fX0;Y0;Z0g by

Si D
p
.Xi � X0/2 C .Yi � Y0/2 C .Zi � Z0/2; (15.1)

where fXi;Yi;Zig are the position of the satellite i. Geometrically, the three
unknowns fX0;Y0;Z0g are obtained from the intersection of three spherical cones
given by the pseudo-ranging equations. Distance measurements to only one satellite
puts the user’s position anywhere within the sphere formed by distance S1 in
Fig. 15.2. Measurements to two satellites narrow the position to the intersection of
the two spheres S1 and S2. Figure 15.2. A third satellite is therefore required to
definitely fix the user’s position. This is achieved by the intersection of the third
sphere S3 with the other two.

If direct distance measurements to the satellites were possible, (15.1) would
have sufficed to provide the user’s location. Distance measurements to satellites
as already stated are however not direct owing to the satellites and receivers’
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Fig. 15.2 Pseudo-ranging geometry

clock biases. Satellites’ clock biases can be modelled while the receivers’ clock
biases have to be determined as an unknowns. For GPS positioning therefore, in
addition to position determination from measured distances, the receiver’s clock
bias has to be added in the observation equations as unknown. Since distances to
the satellites in (15.1) are derived from the transmitted signals that are affected
by both satellites and receivers’ clock uncertainties, they are normally referred
to as pseudo-ranges. What one measures therefore are not the actual distances
(ranges) but pseudo-ranges. Pseudo-range measurements lead to GPS pseudo-
ranging four-points problem (“pseudo 4P4”), which is the problem of determining
the four unknowns. The unknowns comprise the three components of receiver
position fX0;Y0;Z0g and the stationary receiver range bias. Minimum observations
required to obtain receiver position and range bias are pseudo-range observations
to four satellites as depicted in Fig. 15.3. Besides pseudo-range observations, phase
measurements are often used where accurate results are desired.

Four pseudo-range equations are formed from (15.1) and expressed alge-
braically as

2
66666666666664

.x1 � a0/2 C .x2 � b0/2 C .x3 � c0/2 � .x4 � d0/2 D 0

.x1 � a1/2 C .x2 � b1/2 C .x3 � c1/2 � .x4 � d1/2 D 0

.x1 � a2/2 C .x2 � b2/2 C .x3 � c2/2 � .x4 � d2/2 D 0

.x1 � a3/2 C .x2 � b3/2 C .x3 � c3/2 � .x4 � d3/2 D 0
where x1; x2; x3; x4 2

.a0; b0; c0/ D .x0; y0; z0/ � P0

.a1; b1; c1/ D .x1; y1; z1/ � P1

.a2; b2; c2/ D .x2; y2; z2/ � P2

.a3; b3; c3/ D .x3; y3; z3/ � P3;

(15.2)
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Fig. 15.3 Point positioning using GPS satellites

where this form of equation is valid only for n D 4. In case n > 4, one should
use Eq. (15.14) in p. 296. In (15.2),

˚
P0;P1;P2;P3

�
are the positions of the four

GPS satellites whose signals are tracked by the receiver at an unknown station
P0. The satellites’ positions are given by the coordinates fxi; yi; ziji D 0; 1; 2; 3g,
where i indicating a particular satellite number. The measured pseudo-ranges to
these satellites from a stationary receiver at P0 are given by fd0; d1; d2; d3g. The
parameters fa0; b0; c0g ; fa1; b1; c1g ; fa2; b2; c2g ; fa3; b3; c3g ; fd0; d1; d2; d3g are
known elements of the spherical cone that intersect at P0 to give the unknown
coordinates fx1; x2; x3g of the receiver and the stationary receiver range bias x4.
Several procedures have been put forward to obtain exact solution of (15.2),
e.g., [60, 223, 301, 302, 338, 466]. In what follows, we present alternative solu-
tions to (15.2) based on algebraic approaches of Groebner bases and polynomial
resultants discussed in Chaps. 4 and 5 respectively. Equation (15.2) is expanded and
arranged in the lexicographic order fx1 > x2 > x3 > x4g as

2
664

x21 � 2a0x1 C x22 � 2b0x2 C x23 � 2c0x3 � x24 C 2d0x4 C a20 C b20 C c20 � d20 D 0
x21 � 2a1x1 C x22 � 2b1x2 C x23 � 2c1x3 � x24 C 2d1x4 C a21 C b21 C c21 � d21 D 0
x21 � 2a2x1 C x22 � 2b2x2 C x23 � 2c2x3 � x24 C 2d2x4 C a22 C b22 C c22 � d22 D 0
x21 � 2a3x1 C x22 � 2b3x2 C x23 � 2c3x3 � x24 C 2d3x4 C a23 C b23 C c23 � d23 D 0;

(15.3)

where the unknown variables to be determined are fx1; x2; x3; x4g. The other terms
are known constants. Equation (15.3) is written with the linear terms on the
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right-hand-side and the nonlinear terms on the left-hand-side as

2
664

x21 C x22 C x23 � x24 D 2a0x1 C 2b0x2 C 2c0x3 � 2d0x4 C d20 � a20 � b20 � c20
x21 C x22 C x23 � x24 D 2a1x1 C 2b1x2 C 2c1x3 � 2d1x4 C d21 � a21 � b21 � c21
x21 C x22 C x23 � x24 D 2a2x1 C 2b2x2 C 2c2x3 � 2d2x4 C d22 � a22 � b22 � c22
x21 C x22 C x23 � x24 D 2a3x1 C 2b3x2 C 2c3x3 � 2d3x4 C d23 � a23 � b23 � c23:

(15.4)

Subtracting the last expression (15.4iv) from the first three expressions
(15.4i), (15.4ii), and (15.4iii) leads to

2
4 a03x1 C b03x2 C c03x3 C d30x4 C e03 D 0

a13x1 C b13x2 C c13x3 C d31x4 C e13 D 0
a23x1 C b23x2 C c3x3 C d32x4 C e23 D 0;

(15.5)

where
2
66666664

a03 D 2.a0 � a3/; b03 D 2.b0 � b3/; c03 D 2.c0 � c3/; d30 D 2.d3 � d0/;
a13 D 2.a1 � a3/; b13 D 2.b1 � b3/; c13 D 2.c1 � c3/; d31 D 2.d3 � d1/;
a23 D 2.a2 � a3/; b23 D 2.b2 � b3/; c23 D 2.c2 � c3/; d32 D 2.d3 � d2/;
e03 D .d20 � a20 � b20 � c20/ � .d23 � a23 � b23 � c23/;
e13 D .d21 � a21 � b21 � c21/ � .d23 � a23 � b23 � c23/;
e23 D .d22 � a22 � b22 � c22/ � .d23 � a23 � b23 � c23/:

We note immediately that (15.5) comprises three equations which are linear
with four unknowns leading to an underdetermined system of equations. This is
circumvented by treating one variable, say x4, as a constant thereby leading to
a system of three equations in three unknowns. We then apply either Groebner
basis or polynomial resultants techniques to solve the linear system of equation for
x1 D g.x4/; x2 D g.x4/; x3 D g.x4/, where g.x4/ is a linear function.

15.2.1.1 Sturmfels’ Approach

The Sturmfels’ [478] approach discussed in Sect. 5.3.2 is applied to solve (15.5).
Depending on which variable one wants, (15.5) is rewritten such that this particular
variable is hidden (i.e., is treated as a constant). If our interest is to solve x1 D g.x4/
for instance, (15.5) is first homogenized using x5 (see Definition 5.1 on p. 54) and
then written by hiding x1 as

2
4 f1 WD .a03x1 C d30x4 C e03/x5 C b03x2 C c03x3

f2 WD .a13x1 C d31x4 C e13/x5 C b13x2 C c13x3
f3 WD .a23x1 C d32x4 C e13/x5 C b23x2 C c23x3:

(15.6)
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The Jacobian determinant of (15.6) then becomes

Jx1 D det

2
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@f1
@x2

@f1
@x3

@f1
@x5

@f2
@x2

@f2
@x3

@f2
@x5

@f3
@x2

@f3
@x3

@f3
@x5

3
7777777775
D det

2
4 b03 c03 .a03x1 C d30x4 C e03/

b13 c13 .a13x1 C d31x4 C e13/
b23 c23 .a23x1 C d32x4 C e23/

3
5 : (15.7)

The determinant obtained in (15.7) gives the expression for x1 D g.x4/ as

�

�

�

�

x1 D �.e03b13c23 C d32x4b03c13 C d30x4b13c23 � d30x4c13b23 �
d31x4b03c23�e03c13b23�e13b03c23Ce13c03b23Ce23b03c13Cd31x4c03b23�
d32x4c03b13�e23c03b13/=.a23c13b03Ca13b23c03�a13c23b03�a23b13c03�
a03c13b23 C a03c23b13/:

For x2 D g.x4/, we have

2
4 f4 WD .b03x2 C d30x4 C e03/x5 C a03x1 C c03x3

f5 WD .b13x2 C d31x4 C e13/x5 C a13x1 C c13x3
f6 WD .b23x2 C d32x4 C e23/x5 C a23x1 C c23x3;

(15.8)

whose Jacobian determinant is given by

Jx2 D det

2
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@f4
@x1

@f4
@x3

@f4
@x5

@f5
@x1

@f5
@x3

@f5
@x5

@f6
@x1

@f6
@x3

@f6
@x5

3
7777777775
D det

2
4 a03 c03 .b03x2 C d30x4 C e03/

a13 c13 .b13x2 C d31x4 C e13/
a23 c23 .b23x2 C d32x4 C e23/

3
5: (15.9)

The determinant obtained in (15.9) gives the expression for x2 D g.x4/ as

�

�

�

�

x2 D �.a23c13d30x4 C a03c23d31x4 C a03c23e13 � a23c03d31x4 �
a03c13d32x4 � a03c13e23 C a13c03d32x4 � a13c23d30x4 � a13c23e03 �
a23c03e13C a23c13e03C a13c03e23/=.a23c13b03C a13b23c03� a13c23b03�
a23b13c03 � a03c13b23 C a03c23b13/:
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Finally x3 D g.x4/ leads to

2
4 f7 WD .c03x3 C d30x4 C e03/x5 C a03x1 C b03x2

f8 WD .c13x3 C d31x4 C e13/x5 C a13x1 C b13x2
f9 WD .c23x3 C d32x4 C e23/x5 C a23x1 C b23x2;

(15.10)

whose Jacobian determinant is given by

Jx3 D det

2
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@f7
@x1
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@x2
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@x5
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@x1

@f8
@x2

@f8
@x5

@f9
@x1

@f9
@x2

@f9
@x5

3
7777777775
D det

2
4 a03 b03 .c03x3 C d30x4 C e03/

a13 b13 .c13x3 C d31x4 C e13/
a23 b23 .c23x3 C d32x4 C e23/

3
5: (15.11)

The determinant obtained in (15.7) gives the expression for x3 D g.x4/ as




�

�



x3 D �.a23b03d31x4 C a03b13d32x4 C a03b13e23 � a23b13d30x4 �
a03b23d31x4 � a03b23e13 C a13b23d30x4 � a13b03d32x4 � a13b03e23 �
a23b13e03C a23b03e13C a13b23e03/=.a23b03c13C a13b23c03� a13b03c23�
a23b13c03 � a03b23c13 C a03b13c23/:

On substituting the obtained expressions of x1 D g.x4/; x2 D g.x4/ and x3 D g.x4/
in (15.3i), we obtain a quadratic function in x4. The structure of the quadratic
equation is given in [17, Box 3-12, p. 54].

15.2.1.2 Groebner Basis Approach

Using (4.37) on p. 50, the Groebner basis of (15.5) is computed as

GroebnerBasis

2
4 fa03x1 C b03x2 C c03x3 C d30x4 C e03;

a13x1 C b13x2 C c13x3 C d31x4 C e13;
a23x1 C b23x2 C c3x3 C d32x4 C e23g; fx1; x2; x3; x4g

3
5 ; (15.12)

leading to Solution 15.1.

Solution 15.1 (Computed Groebner basis for GPS pseudo-ranging equations)
g1 WD .�a23/b13e03 C a13b23e03 C a23b03e13 � a03b23e13 � a13b03e23 C a03b13e23 �
a23b13c03x3Ca13b23c03x3Ca23b03c13x3�a03b23c13x3�a13b03c23x3Ca03b13c23x3�
a23b13d30x4C a13b23d30x4C a23b03d31x4� a03b23d31x4� a13b03d32x4C a03b13d32x4.
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g2 WD .�a23/e13C a13e23 � a23b13x2C a13b23x2� a23c13x3C a13c23x3 � a23d31x4C
a13d32x4.
g3 WD .�a23/e03C a03e23 � a23b03x2C a03b23x2� a23c03x3C a03c23x3 � a23d30x4C
a03d32x4.
g4 WD .�a13/e03C a03e13 � a13b03x2C a03b13x2� a13c03x3C a03c13x3 � a13d30x4C
a03d31x4.
g5 WD e23 C a23x1 C b23x2 C c23x3 C d32x4.
g6 WD e13 C a13x1 C b13x2 C c13x3 C d31x4.
g7 WD e03 C a03x1 C b03x2 C c03x3 C d30x4:

From Solution 15.1, one notes that g1 is a polynomial in the variables x3 and x4.
With g1 expressed as x3 D g.x4/, it is substituted in g2 to obtain x2 D g.x4/; which
together with x3 D g.x4/ are substituted in g5 to give x1 D g.x4/. On substituting
the obtained expressions of x1 D g.x4/; x2 D g.x4/ and x3 D g.x4/ in (15.3i), a
quadratic equation in x4 (i.e., h2x24Ch1x4Ch0 D 0) is obtained. The coefficients are
as given in [17, Box 3-14, p. 55]. The desired variables x1 D g.x4/, x2 D g.x4/ and
x3 D g.x4/ could also be obtained directly using the reduced Groebner basis (4.39)
on p. 51. If one desired x3 D g.x4/ for example, (15.12) could be formulated as

GroebnerBasis

2
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fa03x1 C b03x2 C c03x3 C d30x4 C e03;
a13x1 C b13x2 C c13x3 C d31x4 C e13;

a23x1 C b23x2 C c3x3 C d32x4 C e23g; fx1; x2; x3; x4g;
fx1; x2; x4g

3
775 ; (15.13)

giving only the value of g1 in Solution 15.1. This is repeated for x1 D g.x4/ and
x2 D g.x4/. The algorithms for solving the unknown value x4 of the receiver range
bias from the quadratic equation fh2x24Ch1x4Ch0 D 0g and the respective stationary
receiver coordinates are;

• Awange-Grafarend Groebner basis algorithm and,
• Awange-Grafarend Multipolynomial resultants algorithm.

They can be accessed in the GPS toolbox2 and are discussed in detail in [27]. The
distinction between the polynomial resultants method and the approach proposed
by [223] is that the former does not have to invert the coefficient matrix. It instead
uses the necessary and sufficient conditions requiring the determinant to vanish if
the four equations have a nontrivial solution. With the coefficients h1; h2 and h3, the
value of x4 could also be solved from (3.8) or (3.9) on p. 25. Let us consider the
example in [223, 301].

Example 15.1 (Ranging to four satellites) From the coordinates of four GPS
satellites given in Table 15.1, we apply the Awange-Grafarend algorithms listed

2http://www.ngs.noaa.gov/gps-toolbox/awange.htm

http://www.ngs.noaa.gov/gps-toolbox/awange.htm
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Table 15.1 Geocentric coordinates of four GPS satellites and the pseudo-range observations

i xi D ai yi D bi zi D ci di

0 1:483230866e C 7 �2:046671589e C 7 �7:42863475e C 6 2:4310764064e C 7

1 �1:579985405e C 7 �1:330112917e C 7 1:713383824e C 7 2:2914600784e C 7

2 1:98481891e C 6 �1:186767296e C 7 2:371692013e C 7 2:0628809405e C 7

3 �1:248027319e C 7 �2:338256053e C 7 3:27847268e C 6 2:3422377972e C 7

above to compute coordinates of a stationary GPS receiver and the receiver range
bias term. The computed coefficients using either of the algorithms are:

2
4 h2 D �9:104704113943708e� 1

h1 D 5:233385578536521e7
h0 D �5:233405293375e9:

Once these coefficients have been computed, the algorithms proceed to solve
the roots x4 of the quadratic equation fh2x24 C h1x4 C h0 D 0g giving the
stationary receiver range bias term. The admissible value of the stationary
receiver range bias term is then substituted in the expressions x1 D g.x4/; x2 D
g.x4/; x3 D g.x4/ in Solution 15.1 to give the values of stationary receiver
coordinates fx1 D X; x2 D Y; x3 D Zg respectively. With x�

4 D�57,479,918.164m
or xC

4 D�100.0006 m, the complete pair of solutions with units in meters are

�

�

�

�

X D �2;892;123:412;Y D 7;568;784:349;Z D �7;209;505:102 ˇ̌x�
4

or X D 1;111;590:460;Y D �4;348;258:631;Z D 4;527;351:820 ˇ̌xC
4

The results indicate that the solution space is non unique. In-order to decide on the
admissible solution from the pair above, we compute the norm (radial distance from
the center of the Earth) of the positional vector fX;Y;Zg ˇ̌x�

4 and fX;Y;Zg ˇ̌xC
4 using

norm D
p
.X2 C Y2 C Z2/:

If the receiver coordinates are in the global reference frame (see Sect. 13.3), the
norm of the positional vector of the receiver station will approximate the value of the
Earth’s radius. The norm of the other solution pair will be in space. The computed
norms are

� fX;Y;Zg ˇ̌x�
4 D 10;845;636:826m

fX;Y;Zg ˇ̌xC
4 D 6;374;943:214m;

thus clearly giving the second solution fX;Y;Zg ˇ̌xC
4 as the admissible solution of

the receiver position.
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15.2.2 Ranging to More than Four GPS Satellites

In Sect. 15.2.1, we have looked at the case where ranging can be performed to only
four satellites (minimum case). In this section, we will extend the concept to the
case where more than four GPS satellites are in view as is usually the case in
practice. Using Gauss-Jacobi combinatorial, homotopy and ALESS approaches, it
is demonstrated how one can obtain the stationary receiver position and range bias
without reverting to iterative and linearization procedures such as Newton’s or least
squares approach.

The common features with the non-algebraic approaches in solving nonlinear
problems are that they all have to do with some starting values, linearization of
the observation equations and iterations as we have pointed out before. Although
the issue of approximate starting values has been addressed in the works of [535,
536], the algebraic approach of Gauss-Jacobi combinatorial enjoys the advantage
that all the requirements of non-algebraic approaches listed above are immaterial.
The nonlinear problem is solved in an exact form with linearization permitted only
during the formation of the variance-covariance matrix to generate the weight matrix
of the pseudo-observations (see also [28]). The fact to note is that one has to be able
to solve in a closed (exact) form nonlinear systems of equations, a condition already
presented in Sect. 15.2.

Let us consider next the example of [475]. The algorithm is used to solve without
linearization or iteration the overdetermined pseudo-range problem. The results are
then compared to those of linearized least squares solutions.

Example 15.2 (Ranging to more than four satellites) Pseudo-ranges di are mea-
sured to six satellites whose coordinates fxi; yi; zig are given in Table 15.2. From
the data in Table 15.2 and using (7.34) on p. 105, 15 possible combinations listed in
Table 15.3 are obtained. The Position Dilution of Precision (PDOP) are computed
as suggested in [275] and presented in Table 15.3. From the computed PDOP, it is
noticed that the 10th combination had a poor geometry, a fact validated by the plot
of the PDOP values versus the combination numbers in Fig. 15.4. Using Gauss-
Jacobi combinatorial algorithm, this weaker geometry is accounted for during
the adjustment process. Variance-covariance matrix computed through nonlinear

Table 15.2 Geocentric coordinates of six GPS satellites and pseudo-range observations

PRN xi D ai yi D bi zi D ci di

23 14,177,553.47 �18,814,768.09 12,243,866.38 21,119,278.32

9 15,097,199.81 �4,636,088.67 21,326,706.55 22,527,064.18

5 23,460,342.33 �9,433,518.58 8,174,941.25 23,674,159.88

1 �8,206,488.95 �18,217,989.14 17,605,231.99 20,951,647.38

21 1,399,988.07 �17,563,734.90 19,705,591.18 20,155,401.42

17 6,995,655.48 �23,537,808.26 �9,927,906.48 24,222,110.91
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Table 15.3 Possible
combinations and the
computed PDOP

Combination number Combination Computed PDOP

1 23-9-5-1 4:8

2 23-9-5-21 8:6

3 23-9-5-17 4:0

4 23-9-1-21 6:5

5 23-9-1-17 3:3

6 23-9-21-17 3:6

7 23-5-1-21 6:6

8 23-5-1-17 6:6

9 23-5-21-17 4:8

10 23-1-21-17 137:8

11 9-5-1-21 5:6

12 9-5-1-17 14:0

13 9-5-21-17 6:6

14 9-1-21-17 5:2

15 5-1-21-17 6:6
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Fig. 15.4 A plot of PDOP for respective combinations

error propagation for that respective set is used. Groebner basis or polynomial
resultants are used as computing engine (see Fig. 7.5 on p. 110) to compute the
minimal combinatorial set as discussed in Sect. 7.3.3.1. The computed coefficients
are presented in Table 15.4.
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From the computed coefficients in Table 15.4, the 10th combination is once
again identified as having significantly different values from the rest. This fact
highlights the power of the Gauss-Jacobi combinatorial algorithm in identifying
poor geometry. Using the coefficients of Table 15.4, the solution of receiver position
fX;Y;Zg and the range bias fcdtg for each minimal combinatorial set is carried out
as discussed in Sect. 15.2. The results are presented in Table 15.5. The final adjusted
position is obtained using linear Gauss-Markov model (7.18) on p. 98. The random

Table 15.4 Computed coefficients of the combinations

C/No. c2 c1 c0
1 �0.914220949236445 52,374,122.9848733 49,022,682.3125

2 �0.nn403102736 50,396,827.4998945 7,915,541,824.84375

3 �0.9211306n3 51,741,826.0147786 343,282,824.25

4 �0.n99130107 54,950,460.2842167 �10,201,105,114.5

5 �0.922335616484969 51,877,166.0451888 280,298,481.625

6 �0.919296962706157 51,562,232.9601199 1,354,267,366.4375

7 �0.894980063579044 53,302,005.6927825 �3,642,644,147.5625

8 �0.917233949644576 52,194,946.1124139 132,408,747.46875

9 �0.925853049262193 51,140,847.6331213 3,726,719,112.1875

10 3369.83293928593 �1,792,713,339.80277 6,251,615,074,927.06

11 �0.877892756651551 54,023,883.5656926 �6,514,735,288.13762

12 �0.942581538318523 50,793,361.5303674 784,684,294.241371

13 �0.908215141659006 52,246,642.0794924 �2,499,054,749.05572

14 �0.883364070549387 53,566,554.3869961 �5,481,411,035.37882

15 �0.866750765656126 54,380,648.2092251 �7,320,871,488.80859

Table 15.5 Computed combinatorial solution points in a polyhedron

C/No. X.m/ Y.m/ Z.m/ cdt.m/

1 596,925.3485 �4;847;817:3618 4,088,206.7822 �0:9360
2 596,790.3124 �4;847;765:7637 4,088,115.7092 �157:0638
3 596,920.4198 �4;847;815:4785 4,088,203.4581 �6:6345
4 596,972.8261 �4;847;933:4365 4,088,412.0909 185:6424

5 596,924.2118 �4;847;814:5827 4,088,201.8667 �5:4031
6 596,859.9715 �4;847;829:7585 4,088,228.8277 �26:2647
7 596,973.5779 �4;847;762:4719 4,088,399.8670 68:3398

8 596,924.2341 �4;847;818:6302 4,088,202.3205 �2:5368
9 596,858.7650 �4;847;764:5341 4,088,221.8468 �72:8716
10 596,951.5275 �4;852;779:5675 4,088,758.6420 3510:4002

11 597,004.7562 �4;847;965:2225 4,088,300.6135 120:5901

12 596,915.8657 �4;847;799:7045 4,088,195.5770 �15:4486
13 596,948.5619 �4;847;912:9549 4,088,252.1599 47:8319

14 597,013.7194 �4;847;974:1452 4,088,269.3206 102:3292

15 597,013.1300 �4;848;019:6766 4,088,273.9565 134:6230
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pseudo-observation values of Table 15.5 are placed in the vector of observation y
and the dispersion matrix † obtained by nonlinear error propagation using (7.39)
on p. 106. The coefficients of the unknowns fX;Y;Z; cdtg form the design matrix
A. The dispersion of the estimated parameters are then obtained from (7.19).

Figure 15.5 gives the plot of the scatter of the 15 combinatorial solutions
(shown by points) around the adjusted value (indicated by a star). Figure 15.6 is
a magnification of Fig. 15.5 for the scatter of 14 solutions (shown by points) that are
very close to the adjusted value (indicated by a star). The outlying point in Fig. 15.5
is ignored.

15.2.2.1 Extended Newton-Raphson Solution

The distance of the receiver from the i-th satellite, the pseudo- range observation,
di is related to the unknown position of the receiver, fx1, x2, x3g,

di D
q
.x1 � ai/

2 C .x2 � bi/
2 C .x3 � ci/

2 C x4 (15.14)

where fai; bi; cig; i D 1; : : : ;m are the coordinates of the i-th satellite. The distance
is influenced also by the satellite and receiver’ clock biases. The satellite clock
biases can be modelled while the receiver’ clock biases have to be considered as an
unknown variable, x4. This means, we have four unknowns, consequently we need
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Fig. 15.5 Scatter of the 15 combinatorial solutions (�) around the adjusted value (?)
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four satellite signals as minimum observation. The general form of the equation for
the i-th satellite is

fi D .x1 � ai/
2 C .x2 � bi/

2 C .x3 � ci/
2 � .x4 � di/

2 (15.15)

The residual of this type of equation represents the error implicitly. However in
geodesy the explicit distance error definition is usual, namely,

gi D di �
q
.x1 � ai/

2 C .x2 � bi/
2 C .x3 � ci/

2 � x4 (15.16)

The relation between the two expressions,

gi D di �
q

f i C .x4 � di/
2 � x4 (15.17)

which implies that if f i = 0 then giD 0 and vice versa. Therefore, in case of four
observations, determined system, we employ the first expression, which is easy to
handle as a polynomial. In case of m > 4 satellites, the two representations the
pseudo- range observation models will be not equivalent in least square sense,
namely

min
x1;x2;x3;x4

mX
iD1

fi ¤ min
x1;x2;x3;x4

mX
iD1

g2i (15.18)
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Let us consider m D 6 satellites of Table 15.2. The numerical equations of the
overdetermined system is given by

g0= 2:11193 � 107�q��1:41776 � 107 C x1
�2 C �1:88148 � 107 C x2

�2 C ��1:22439 � 107 C x3
�2 � x4 = 0

g1= 2:25271 � 107�q��1:50972 � 107 C x1
�2 C �4:63609 � 106 C x2

�2 C ��2:13267 � 107 C x3
�2 � x4 = 0

g2= 2:36742 � 107�q��2:34603 � 107 C x1
�2 C �9:43352 � 106 C x2

�2 C ��8:17494 � 106 C x3
�2 � x4= 0

g3 D 2:09516 � 107�q�
8:20649 � 106 C x1

�2 C �1:8218 � 107 C x2
�2 C ��1:76052 � 107 C x3

�2 � x4 = 0

g4= 2:01554 � 107�q��1:39999 � 106 C x1
�2 C �1:75637 � 107 C x2

�2 C ��1:97056 � 107 C x3
�2 � x4= 0

g5 D 2:42221 � 107�q��6:99566 � 106 C x1
�2 C �2:35378 � 107 C x2

�2 C �9:92791 � 106 C x3
�2 � x4 = 0

(15.19)

Now, we solve the original system employing one of the solutions of the Gauss-
Jacobi subset solution as initial guess. Let us use the worst one, the 10th solution in
Table 15.5, i.e.,

x1 D 596;951:52753;
x2 D �4:8527795710� 106;
x3 D 4:08875864269� 106;
x4 D 3510:4002370:

(15.20)

Employing Extended Newton-Raphson method, the convergence is very fast.
Figure 15.7 shows the absolute error of x1 in meter as function of the number
of iterations.

The solution is

x1 D 596;929:65349;
x2 D �4:8478515526� 106;
x3 D 4:0882267957� 106;
x4 D 15:518050625:
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Fig. 15.7 Convergence of the method in case of the x1 coordinate

15.2.2.2 Homotopy Solution of GPS N-Point Problem

In GPS positioning pseudoranges (d) are measured, so we should minimize the error
(g) of these measurements (see Eq. (15.16)). Considering the least squares method,
we should minimize the following objective function

W .x1; x2; x3; x4/ D
nX

iD1
g2i : (15.21)

This minimization problem can be transformed into a square (determined) set of
nonlinear equations

Fi D @W

@xi
(15.22)

namely

F1 D
nX

iD1

2 .x1 � ai/

�
x4 C

q
.x1 � ai/

2 C .x2 � bi/
2 C .x3 � ci/

2 � di

�
q
.x1 � ai/

2 C .x2 � bi/
2 C .x3 � ci/

2

(15.23)

F2 D
nX

iD1

2 .x2 � bi/

�
x4 C

q
.x1 � ai/

2 C .x2 � bi/
2 C .x3 � ci/

2 � di

�
q
.x1 � ai/

2 C .x2 � bi/
2 C .x3 � ci/

2
(15.24)
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Table 15.6 Solution of GPS
four point problem computed
by symbolic-numeric method

Qx1 D 596;951:528

Qx2 D �4;852;779:568
Qx3 D 4;088;758:642

Qx4 D 3;510:400

F3 D
nX

iD1

2 .x3 � ci/

�
x4 C

q
.x1 � ai/

2 C .x2 � bi/
2 C .x3 � ci/

2 � di

�
q
.x1 � ai/

2 C .x2 � bi/
2 C .x3 � ci/

2
(15.25)

F4 D
nX

iD1
2

�
x4 C

q
.x1 � ai/

2 C .x2 � bi/
2 C .x3 � ci/

2 � di

�
(15.26)

For numerical illustration, GPS satellites positions and pseudo-range observations
to six satellites in Table 15.2 are used [44]. To solve this nonlinear system with a
local method, we need proper initial values. Let us consider the four point solution of
satellites (23-1-21-17), computed with symbolic-numeric method, as initial values,
(i.e., the 10th solution in Table 15.5) in Table 15.6.

These four satellites have a very poor geometry with a Position Dilution of
Precision (PDOP) value of 137.8 (a good geometry is indicated by a PDOP value
of less than 6). Unfortunately standard Newton-Raphson did not work with these
initial values, the line search decreased the specified step size and was unable to
find a sufficient decrease in the merit function thereby failing to converge.

In order to ensure convergency for this initial values, we can employ fixed point
homotopy, see Sect. 6.4.2.1. Now the start system is

G D

0
BB@

x1
x2
x3
x4

1
CCA �

0
BB@
Qx1
Qx2
Qx3
Qx4

1
CCA (15.27)

Then to avoid singularity of the homotopy function, (see [397]), let

� D if1; 1; 1; 1gI (15.28)

The homotopy function is the linear combination of the target system,
Eqs. (15.23), (15.24), (15.25), and (15.26) and the start system, Eq.(15.27),

H.x1; x2; x3; x4; �/ D �.1 � �/

0
BB@

G1

G2

G3

G4

1
CCAC �

0
BB@

F1
F2
F3
F4

1
CCA (15.29)
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Table 15.7 Solution of the
GPS N-point problem

x1 D 596;929:653

x2 D �4;847;851:552
x3 D 4;088;226:795

x4 D 15:518

and the corresponding system of the differential equations

d

d�

0
BB@

x1.�/
x2.�/
x3.�/
x4.�/

1
CCA D �Hx

�1H� (15.30)

where the Jacobian

.Hx/i;j D �.1� �/
�
@Gi

@xj

�
i;j

C �
�
@Fi

@xj

�
i;j

j i; j D 1 : : : 4 (15.31)

and

.H�/i D Fi .x1; x2; x3; x4/� �Gi .x1; x2; x3; x4/ j i D 1 : : : 4 (15.32)

Now employing path tracing by integration with computing inverse, we get three
solutions, but only one of them is the physically acceptable solution, see [44, 395].
Table 15.7 shows the values of this solution.

The trajectories belonging to this solution can be seen in Fig. 15.8.

15.2.2.3 Least Squares Versus Gauss-Jacobi Combinatorial

Let us now compare the least squares solution and the Gauss-Jacobi combinatorial
approach. Using the combinatorial approach, the stationary receiver position and
range bias are computed as discussed in Sect. 15.2.2. For the least squares approach,
the nonlinear observation equations (15.2) are first linearized using Taylor series
expansion for the six satellites in Table 15.2. This linearization process generates
the Jacobi matrix required by the approach. After linearization, the desired values
are estimated iteratively using linear models. As approximate starting values for the
iterations, let us assign the stationary receiver position and the stationary receiver
range bias zero values. Let us also set a convergence limit of 1� 10�8, as the differ-
ence between values of two successive iterations. With these settings, six iterations
are required for the threshold condition above to be achieved. In the second case,
the values of the combinatorial algorithm are used as approximate starting values
for least squares solution. This time round, only two iterations were required to
achieve convergence. For users who prefer least squares approach, Gauss-Jacobi
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Fig. 15.8 Homotopy
solution paths of the GPS
positioning problem
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combinatorial algorithm can therefore be used to offer quick approximate starting
values that lead to faster convergence.

From Eq. (15.14) in p. 296, and the results of both procedures, residuals are
computed, squared and used to compute the error norm from

norm D
vuut
(

6X
iD1

�
di � Œ

q
. OX � ai/2 C . OY � bi/2 C . OZ � ci/2 � Ox4�

�2)
:

(15.33)

In (15.33), f OX; OY; OZ; Ox4g are the computed values of the stationary receiver position
and range bias. The entities fai; bi; cig j 8i D f1; : : :; 6g are the coordinates of the
six satellites in Table 15.2 and fdig j 8i D f1; : : :; 6g the measured pseudo-ranges.

Table 15.8 compares the results from the Gauss-Jacobi combinatorial algorithm
and those obtained from least squares approach. Table 15.9 presents the root-mean-
square-errors. In Table 15.10, we present the computed residuals, their sum of
squares and the computed error norm from (15.33). The computed error norm
are identical for both procedures. Further comparison of the two procedures will
be given in Chap. 20 where they are used to compute the 7-parameter datum
transformation problem.

Table 15.8 Computed stationary receiver position and range bias

X .m/ Y .m/ Z .m/ cdt.m/

Combinatorial approach 596;929:6542 �4;847;851:5021 4;088;226:7858 �15:5098
Least squares 596;929:6535 �4;847;851:5526 4;088;226:7957 �15:5181
Difference 0:0007 0:0505 �0:0098 0:0083

Table 15.9 Computed root-mean-square errors

�X .m/ �Y .m/ �Z .m/ �cdt .m/

Combinatorial approach 6:4968 11:0141 5:4789 8:8071

Least squares 34:3769 58:2787 28:9909 46:6018

Table 15.10 Computed residuals, squares of residuals and error norm

PRN Combinatorial approach (m) Least squares (m)

23 �16:6260 �16:6545
9 �1:3122 �1:3106
5 2:2215 2:2189

1 �16:4369 �16:4675
21 26:8623 26:8311

17 5:4074 5:3825

Sum of squares 1304:0713 1304:0680

Error norm 36:1119 36:1119
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15.3 Ranging by Local Positioning Systems (LPS)

As opposed to GPS ranging where the targets being observed are satellites in
space and in motion, Local Positioning Systems’ targets are fixed on the surface
of the Earth as illustrated in Fig. 15.1 on p. 284. We present both planar and three-
dimensional ranging within the LPS system. Planar ranging can be used for quick
point search during engineering and cadastral surveying.

15.3.1 Planar Ranging

15.3.1.1 Conventional Approach

Consider two distances fS1; S2g measured from an unknown station P0 2 E
2 to

two known stations P1 2 E
2 and P2 2 E

2 as shown in Fig. 4.1 in p.38. The
two dimensional distance ranging problem involves the determination of the planar
coordinates fX0;Y0gp0 of the unknown station P0 2 E

2 given;

• the observed distances fS1; S2g,
• the planar coordinates fX1;Y1gP1 of station P1 2 E

2 and fX2;Y2gP2 of stations
P2 2 E

2.

The nonlinear distance equations relating the given values above with the coordi-
nates of unknown station are expressed (see e.g., (4.1) and (4.2) on p. 38) as

�
.X1 � X0/2 C .Y1 � Y0/2 D S21
.X2 � X0/2 C .Y2 � Y0/2 D S22;

(15.34)

which on expanding leads to

2
4 X21 C Y21 � 2X1X0 � 2Y1Y0 C X20 C Y20 D S21

X22 C Y22 � 2X2X0 � 2Y2Y0 C X20 C Y20 D S22:
(15.35)

The conventional analytic approach solves (15.35) by subtracting the first expres-
sion, i.e., (15.35i) from the second one, and expressing one unknown in terms of the
other. This leads to

Y0 D �


X1 � X2
Y1 � Y2

�
X0 C S22 � S21 C X21 � X22 C Y21 � Y22

2.Y1 � Y2/
; (15.36)
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which is substituted for Y0 in the first expression of (15.35) to give

2
66664

X21 C Y21 � 2X1X0 � 2Y1


�


X1 � X2
Y1 � Y2

�
X0 C S22 � S21 C X21 � X22 C Y21 � Y22

2.Y1 � Y2/

�

CX20 C

�


X1 � X2
Y1 � Y2

�
X0 C S22 � S21 C X21 � X22 C Y21 � Y22

2.Y1 � Y2/

� 2
� S21 D 0:

(15.37)

On expanding and factorizing (15.37) leads to

2
6666666666666666664

.1C a2/X20 C .2ab� 2X1 � 2Y1a/X0 C b2 � 2Y1bC X21 C Y21 � S21 D 0;

with

a D �


X1 � X2
Y1 � Y2

�

and

b D S22 � S21 C X21 � X22 C Y21 � Y22
2.Y1 � Y2/

:

(15.38)

The quadratic equation (15.38) is solved for X0 using the quadratic formulae (3.8)
or (3.9) on p. 25 and substituted back in (15.36) to give the values of Y0:

15.3.1.2 Sylvester Resultants Approach

Whereas the conventional analytical approach presented above involves differenc-
ing, e.g., (15.36), and substitution as in (15.37), the Sylvester resultants technique
discussed in Sect. 5.2 solves (15.35) directly. In-order to achieve this, (15.35) is first
expressed in algebraic form as

2
4 g1 WD X21 C Y21 � 2X1X0 � 2Y1Y0 C X20 C Y20 � S21 D 0

g2 WD X22 C Y22 � 2X2X0 � 2Y2Y0 C X20 C Y20 � S22 D 0:
(15.39)

Next, the hide variable technique is applied. By hiding the variable Y0 (i.e.,
considering it as a constant), the coefficient matrix of the variable X0 is formed
as shown in Example 5.2 on p. 55. In (15.39), we note that the polynomials g1 and
g2 are both of degree 2 and thus both i and j (e.g., (5.1) on p. 54) are equal to 2
resulting into a .4 � 4/ matrix. The coefficient matrix of the variable X0 formed
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by hiding the variable Y0 (i.e., considering the coefficients of X0 to be polynomials
in Y0 ) is

AX D

2
666666666664

1 �2X1 .Y
2
0 � 2Y1Y0 C X21 C Y21 � S21/ 0

0 1 �2X1 .Y20 � 2Y1Y0 C X21 C Y21 � S21/

1 �2X2 .Y20 � 2Y2Y0 C X22 C Y22 � S22/ 0

0 1 �2X2 .Y20 � 2Y2Y0 C X22 C Y22 � S22/

3
777777777775

; (15.40)

while that of the variable Y0 formed by hiding X0 (i.e., considering the coefficients
of Y0 to be polynomials in X0 ) is

AY D

2
666666666664

1 �2Y1 .X
2
0 � 2X1X0 C X21 C Y21 � S21/ 0

0 1 �2Y1 .X20 � 2X1X0 C X21 C Y21 � S21/

1 �2Y2 .X20 � 2X2X0 C X22 C Y22 � S22/ 0

0 1 �2Y2 .X20 � 2X2X0 C X22 C Y22 � S22/

3
777777777775

: (15.41)

Sylvester resultants are now obtained from the determinants of the coefficient
matrices (15.40) and (15.41) respectively as

2
4 Res.g1; g2;X0/ D det.AX/

Res.g1; g2;Y0/ D det.AY/;

(15.42)

where Res.g1; g2;X0/ and Res.g1; g2;Y0/ are the Sylvester resultants of algebraic
equations in (15.39), with respect to the variables X0 and Y0 as in (15.40) and (15.41)
respectively. From (15.42) we obtain two quadratic equations (15.43) for solving the
variables X0 and Y0 which are the planar coordinates of the unknown station P0. The
coefficients of the quadratic equations are given in Solution 15.2.

Solution 15.2 (Sylvester resultants solution of planar coordinates fX0;Y0g)
�

�

�

�

a2Y20 C a1Y0 C a0 D 0

b2X20 C b1X0 C b0 D 0
(15.43)
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with the coefficients:

a2 D .4Y22 C 4X21 � 8Y1Y2 C 4X22 C 4Y21 � 8X2X1/.
a1 D .�4X22Y1�4S21Y2�4X21Y2C8X1X2Y1C4Y1S21C4Y1Y22C8X2X1Y2�4Y32C
4Y21Y2 � 4Y2X22 � 4Y1S22 � 4Y31 � 4Y1X21 C 4Y2S22/.
a0 D .X42 C Y42 C S42 � 4X2X1Y22 C 4X2X1S22 � 4X1X2Y21 C 4X1X2S21 C 2X22Y22 �
2X22S22�2Y22S22�4X1X32C6X22X

2
1C2X22Y

2
1 �2X22S

2
1C2X21Y

2
2 �2X21S

2
2�2Y21Y22 C

2Y21S22 C 2S21Y
2
2 � 2S21S

2
2 � 4X2X31 C 2X21Y

2
1 � 2X21S

2
1 � 2Y21S21 C X41 C Y41 C S41/.

b2 D .�8Y1Y2 C 4X21 C 4Y22 � 8X2X1 C 4X22 C 4Y21 /.
b1 D .�4X31 C 4X2S22C 8Y2Y1X2� 4X2Y22 � 4X1Y22 � 4X1S22C 4X1X22 � 4X2S21C
8Y1Y2X1 � 4X2Y21 C 4X2X21 � 4X1Y21 C 4X1S21 � 4X32/.
b0 D .4Y2Y1S22 � 4Y2X22Y1 � 2Y21S21 C X42 C Y42 C S42C X41 C Y41 C S41 � 4Y1Y32 C
4Y1S21Y2 � 4Y1X21Y2 C 2X22Y

2
2 � 2X22S

2
2 � 2Y22S22 � 2X22X

2
1 C 2X22Y

2
1 C 2X22S

2
1 C

2X21Y22 C 2X21S
2
2C 6Y21Y22 � 2Y21S22 � 2S21Y

2
2 � 2S21S

2
2C 2X21Y

2
1 � 2X21S

2
1 � 4Y31Y2/.

15.3.1.3 Reduced Groebner Basis Approach

Reduced Groebner basis (4.39) on p. 51 solves (15.39) directly through

�
GroebnerBasisŒfg1; g2g; fX0;Y0g; fX0g�
GroebnerBasisŒfg1; g2g; fX0;Y0g; fY0g�: (15.44)

The first expression of (15.44) ensures that one gets a quadratic equation only in Y0
with X0 eliminated, while the second expression ensures a quadratic equation only
in X0 with Y0 eliminated. Solution 15.3 presents the results of (15.44).

Solution 15.3 (reduced Groebner basis solution of planar coordinates fX0;Y0g)
�

�

�

�

e2Y20 C e1Y0 C e0 D 0

f2X20 C f1X0 C f0 D 0
(15.45)

with the coefficients:

e2 D .4X21 � 8X1X2 � 8Y1Y2 C 4X22 C 4Y22 C 4Y21 /.
e1 D .�4X21Y1 C 4S21Y1 � 4Y31 � 4X22Y2 � 4X21Y2 C 4Y21Y2 C 4Y1Y22 � 4Y32 C
4S22Y2 � 4S22Y1 � 4S21Y2 � 4X22Y1 C 8X1X2Y1 C 8X1X2Y2/.
e0 D .S42C2X21Y

2
2 C4S21X1X2C4S22X1X2�2S22X

2
2 �2Y21Y22 CS41�2S21X

2
1CX42C

2S21Y
2
2 � 2S21S

2
2 C X41 C Y41 C 2X22Y

2
1 � 4X1X2Y22 C 6X21X

2
2 � 2S22X

2
1 � 2S22Y

2
2 C

2X21Y21 � 2S21X
2
2 C 2S22Y

2
1 � 2S21Y

2
1 C 2X22Y

2
2 � 4X1X32 � 4X1X2Y21 C Y42 � 4X31X2/.

f2 D .4X21 � 8X1X2 � 8Y1Y2 C 4X22 C 4Y22 C 4Y21 /.
f1 D .�4X2Y21 � 4X1Y21 C 4X21X2 � 4S22X1 � 4X2Y22 � 4X31 C 8X1Y1Y2C 4S21X1C
8X2Y1Y2 C 4X1X22 � 4X32 � 4X1Y22 C 4S22X2 � 4S21X2/.
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f0 D .S42 C 2X21Y
2
2 � 4X22Y1Y2 � 2S22X

2
2 C 6Y21Y22 C 4S21Y1Y2 C S41 � 4X21Y1Y2 �

2S21X
2
1C: : :X42�2S21Y

2
2�2S21S

2
2C4S22Y1Y2CX41CY41C2X22Y

2
1�2X21X

2
2C2S22X

2
1�

4Y31Y2 � 2S22Y
2
2 C 2X21Y

2
1 C 2S21X

2
2 � 2S22Y

2
1 � 2S21Y

2
1 C 2X22Y

2
2 � 4Y1Y32 C Y42 /.

With the given values of known stations and measured distances as listed on
p. 304, all that is required of the practitioner, therefore, is to compute the
coefficients fa2; a1; a0; b2; b1; b0g using the Sylvester resultants Solution 15.2 or
fe2; e1; e0; f2; f1; f0g using the reduced Groebner basis Solution 15.3. Once the
coefficients have been computed, the Matlab, Maple, or Mathematica’s roots
command can be applied to solve the univariate polynomials (15.43) or (15.45) for
the position of the unknown station. The admissible position from the computed
pair of solution is chosen with the help of prior information e.g., from existing
maps. Although the elimination procedure discussed above work, it is also possible
to solve the problem with other direct elimination methods, e.g., Groebner basis
incorporated into “NSolve” or the “solve” command in Matlab’s symbolic package.
Among advantages of using direct elimination in-built functions such as NSolve are;
they remove the issue of figuring out which univariate solutions in x correspond to
which in y (in higher dimensions, or when degree is large, removing this problem
saves considerable work), and they also removes room for mistakes (Lichtblau, Priv.
Comm.). We therefore recommend that where possible, users should directly apply
these functions depending on their operating platforms (Mathematica, Maple or
Matlab).

Example 15.3 (Ranging to two known planar stations) Consider the Example
of [296, p. 240] where two distances fS1 D 294:330m, S2 D 506:420mg have
been measured from an unknown station P0 2 E

2 to two known stations P1 2 E
2

and P2 2 E
2 (e.g., Fig. 4.1 in p.38). The Cartesian planar coordinates of the two

known stations P1 and P2 are given as fX1 D 328:760m; Y1 D 1207:850mgP1 and
fX2 D 925:040m; Y2 D 954:330mgP2 respectively. The planar ranging problem
now involves determining the planar coordinates fX0;Y0gp0 of the unknown station
P0 2 E

2. Using the given values of known stations and measured distances in
either Solution 15.2 or 15.3, the coefficients fa2; a1; a0; b2; b1; b0g of the quadratic
equation (15.43) or fe2; e1; e0; f2; f1; f0g of (15.45) are computed. Using these
coefficients and applying Matlab’s roots command leads to

X0 D f1336:940; 927:797gm
Y0 D f593:271; 419:316gm

In a four step procedure, [296, p. 240] obtained the values fX0.m/ D 927:90g and
fY0.m/ D 419:42g. The algebraic approaches are however direct and fast (i.e.,
avoids forward and backwards substitutions).

Geometrically, the algebraic curves given by (15.34) would result in a conic
intersection of two circles with the centers fX1;Y1g and fX2;Y2g and radiuses S1 and
S2 respectively. The applied polynomial approaches decompose these complicated
geometries to those of Figs. 15.9 and 15.10 which represent univariate polynomials
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Fig. 15.9 Solution of the Y coordinates

and are simpler to solve. Figures 15.9 and 15.10 indicate the solutions of (15.45) for
the Example presented above. The intersection of the quadratic curves with the zero
line are the solution points. In Solution 15.4, we present the critical configuration of
the planar ranging problem. The computed determinants, (15.51) and (15.4) indicate
the critical configuration (where solution ceases to exist) to be cases when points

P0.X;Y/; P1.X1;Y1/ and P2.X2;Y2/ all lie on a straight line with gradient � c

b
and

intercept �a

b
.

Solution 15.4 (Critical configuration of the planar ranging problem)

�
f1.X;YIX1;Y1; S1/ D .X1 � X/2 C .Y1 � Y/2 � S21
f2.X;YIX2;Y2; S2/ D .X2 � X/2 C .Y2 � Y/2 � S22

(15.46)

2
6664

@f1
@X
D �2.X1 � X/;

@f2
@X
D �2.X2 � X/

@f1
@Y
D �2.Y1 � Y/;

@f2
@Y
D �2.Y2 � Y/;

(15.47)
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Fig. 15.10 Solution of the X coordinates

2
666664

D D
ˇ̌
ˇ̌ @fi
@Xj

ˇ̌
ˇ̌ D 4

ˇ̌
ˇ̌X1 � X X2 � X

Y1 � Y Y2 � Y

ˇ̌
ˇ̌

D,
ˇ̌
ˇ̌X1 � X X2 � X

Y1 � Y Y2 � Y

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌

X Y 1

X1 Y1 1
X2 Y2 1

ˇ̌
ˇ̌
ˇ̌ D 0;

(15.48)

2
4

1
4
D D .X1 � X/.Y2 � Y/ � .X2 � X/.Y1 � Y/

D X1Y2 � X1Y � XY2 C XY � X2Y1 C X2Y C XY1 � XY
D X.Y1 � Y2/C Y.X2 � X1/C X1Y2 � X2Y1;

(15.49)

thus
ˇ̌
ˇ̌
ˇ̌

X Y 1

X1 Y1 1
X2 Y2 1

ˇ̌
ˇ̌
ˇ̌ D 2 �Area of triangle P.X;Y/;P1.X1;Y1/; and P2.X2;Y2/ (15.50)

D D
ˇ̌
ˇ̌
ˇ̌

X Y 1

X1 Y1 1
X2 Y2 1

ˇ̌
ˇ̌
ˇ̌
2
4 a

b
c

3
5 D 0; (15.51)
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results in a system of homogeneous equations (15.52)
2
4 aX C bY C c D 0

aX1 C bY1 C c D 0
aX2 C bY2 C c D 0:

15.3.1.4 Planar Ranging to More than Two Known Stations

In-order to solve the overdetermined two-dimensional ranging problem, the combi-
natorial algorithm is applied. In the first step, combinatorials are formed using (7.34)
on p. 105 and solved in a closed form using either (15.43) or (15.45). In the second
step, the dispersion matrix † is obtained from (7.39) on p. 106. Finally the pseudo-
observations are adjusted using linear Gauss-Markov model (see e.g., Definition 7.1
on p. 98) in the third step, with the unknown parameters estimated via Best Linear
Uniformly Unbiased Estimator BLUUE (7.18). The dispersion of the estimated
parameters are then obtained using (7.19) on p. 99.

Example 15.4 (Planar ranging to more than two known stations) Let us consider
the example of [296, pp. 240–241] which is also solved in [35]. In this example,
the coordinates of station N are to be determined from distance observations to four
stations P1;P2;P3 and P4 [296, Fig. 6.4.4, p. 229]. In preparation for adjustment,
the distances are corrected and reduced geometrically to Gauss-Krueger projection
and are as given in Table 15.11. Using Gauss-Jacobi combinatorial algorithm, the
coordinates of station N are computed and compared to those of least squares
in [296, p. 242]. From (7.34), six combinations in the minimal sense are formed
and solved for fx; ygN for position of station N using either (15.43) or (15.45). The
combinatorial solutions are presented in Table 15.12.

Table 15.11 Distance
observations to unknown
station N

Pt. Easting Northing si

No. xŒm� yŒm� Œm�

1 48,177.62 6531:28 611:023

2 49,600.15 7185:19 1529:482

3 49,830.93 5670:69 1323:884

4 47,863.91 5077:24 1206:524

Table 15.12 Position of
station N computed for
various combinatorials

Combinatorial combinatorial x y
No. points Œm� Œm�

1 1–2 48,565.2783 6058:9770

2 1–3 48,565.2636 6058:9649

3 1–4 48,565.2701 6058:9702

4 2–3 48,565.2697 6058:9849

5 2–4 48,565.3402 6058:9201

6 2–5 48,565.2661 6058:9731
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The adjusted position of the unknown station N is now obtained either by;

(a) simply taking the arithmetic mean of the combinatorial solutions in columns
3 and 4 of Table 15.12 (an approach which does not take into account full
information in terms of the variance-covariance matrix) or,

(b) using special linear Gauss-Markov model through the estimation by the Best
Linear Uniformly Unbiased Estimator BLUUE in (7.18). The dispersion of the
estimated parameters are subsequently obtained using (7.19).

The results are presented in Table 15.13 and plotted in Fig. 15.11. In Table 15.13, we
present the coordinates {x; y} of station N obtained using the least squares approach
in [296], Gauss-Jacobi combinatorial (BLUUE) and the Gauss-Jacobi combinatorial
(arithmetic mean) in columns 2 and 3, with their respective standard deviations
{�x; �y} in columns 4 and 5. In columns 6 and 7, the deviations {�x; �y} of the
computed coordinates of station N using Gauss-Jacobi combinatorial from the least
squares’ values of [296] are presented. The deviations of the exact solutions of each
combination (columns 3 and 4 of Table 15.12) from the adjusted values of Best

Table 15.13 Position of station N after adjustments

Approach x.m/ y.m/ �x.m/ �y.m/ �x.m/ �y.m/

Least squares 48,565.2700 6058:9750 0:006 0:006 – –

Gauss-Jacobi (BLUUE) 48,565.2709 6058:9750 0:0032 0:0034 �0:0009 0:0000

Gauss-Jacobi (Mean) 48,565.2813 6058:9650 – – �0:01133 0:0100
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Fig. 15.11 Plot of the position of N from various approaches
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Fig. 15.12 Deviations of the combinatorial scatter from the BLUUE adjusted position of N

Linear Uniformly Unbiased Estimator BLUUE (i.e., second and third columns of
Table 15.13) are plotted in Fig. 15.12.

From the results in Table 15.13 and Fig. 15.11, we note that when full infor-
mation of the observations is taken into account via the nonlinear error/variance-
covariance propagation, the results of Gauss-Jacobi combinatorial algorithm and
least squares from [296] are in the same range. In addition to giving the adjusted
position, Gauss-Jacobi algorithm can accurately pinpoint a poor combinatorial
geometry (e.g., combination 5). This is taken care of through weighting. Fig-
ure 15.11 shows the combinatorial scatter denoted by fıg and the Gauss-Jacobi
combinatorial adjusted value by f�g. Least squares estimation from [296] is denoted
by f�g and the arithmetic mean by {C}. One notes that the estimates from Gauss-
Jacobi’s BLUUE {�} and least squares solution almost coincide. In the Figure,
both estimates are enclosed by {�} for clarity purpose. Figure 15.12 indicates the
deviations of the combinatorial scatter from the BLUUE adjusted position of N.
These results indicate the capability of the Gauss-Jacobi combinatorial algorithm to
solve in a closed form the overdetermined planar ranging problems.

15.3.1.5 ALESS Solution of Overdetermined Planar Ranging Problem

Another possibility to solve the overdetermined planar ranging problem is the
ALESS method (see Sect. 7.2), defining the objective function as the sum of the
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square residuals of the equations, and considering the necessary condition for the
minimum. The equation for a single measured distance is given by

ei D .Xi � X0/
2 C .Yi � Y0/

2 � S2i ;

where X0;Y0 are the coordinates of the unknown station, and Xi;Yi the coordinates
of the known station and Si the measured distance.

The objective function in case of n measured distance is defined as the sum of
the square residuals

� D
nX

iD1
e2i D

nX
iD1

h
.Xi � X0/

2 C .Yi � Y0/
2 � S2i

i2
:

The determined square system can easily be created symbolically with Computer
Algebra Systems, according to the necessary condition of the minimum,

f1 D @�

@X0
DJ0 C J1X0 C J2X

2
0 C J3X

3
0 C J4Y0 C J5X0Y0 C J6Y

2
0 C J7X0Y

2
0 D 0

f2 D @�

@Y0
DK0CK1X0CK2X

2
0 CK3Y0CK4X0Y0CK5X

2
0Y0CK6Y

2
0 CK7Y

3
0 D 0

where

J0 ! 4

nX
iD1

�
S2i Xi � X3i � XiY

2
i

�
; J1 ! 4

nX
iD1

��S2i C 3X2i C Y2i
�
;

J2 ! �12
nX

iD1
Xi; J3 ! 4n; J4! 8

nX
iD1

XiYi; J5 ! �8
nX

iD1
Yi;

J6 ! �4
nX

iD1
Xi; J7 ! 4n

K0 ! 4

nX
iD1

�
S2i Yi � X2i Yi � Y3i

�
;K1 ! 8

nX
iD1

XiYi;

K2 ! �4
nX

iD1
Yi;K3 ! 4

nX
iD1

��S2i C X2i C 3Y2i
�
;K4 ! �8

nX
iD1

Xi;

K5 ! 4n;K6! �12
nX

iD1
Yi;K7 ! 4n

Now we should solve this third order polynomial square system. The complexity
of the system is not dependent on the number of redundant data. Only the
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coefficients change if we have more measured distances. Let use the same data in
Table 15.11, but in order to increase the precision of the computation the values of
the coordinates and the distances are rationalized,

X1 ! 2;408;881

50
;Y1 ! 163;282

25
; S1 ! 611;023

1000
;

X2 ! 992;003

20
;Y2 ! 718;519

100
; S2 ! 764;741

500
;

X3 ! 4;983;093

100
;Y3 ! 567;069

100
; S3 ! 330;971

250
;

X4 ! 4;786;391

100
;Y4 ! 126;931

25
; S4 ! 301;631

250

Now our system to solve is the following:

f1 D � 237;200

12;500;000
C 576;246

50;000
X0 � 586;418

25
X20 C 16X30 C

598;320

625
Y0 �

978;576

5
X0Y0 � 195;473

25
Y20 C 16X0Y

2
0

f2 D � 148;689

6;250;000
C 598;321

625
X0 � 489;288

5
X20 C

200;121

50;000
Y0 �

390;945

25
X0Y0 C 16X20Y0 �

1;467;864

5
Y20 C 16Y30

This system can be solved with Groebner basis using Mathematica:

GroebnerBasisŒff1; f2g; fX0;Y0g�I
which leads to a univariate and a two-variate polynomials

g1 D L0 C L1Y0 C L2Y
2
0 C L3Y

3
0 C L4Y

4
0 C L5Y

5
0

g2 D M0 CM1X0 CM2Y0 CM3Y
2
0 CM4Y

3
0 CM5Y

4
0

where

L0 !� 3:93690 � 1055;
L1 !3:25850 � 1052;
L2 !� 1:08236 � 1049;
L3 !1:80350 � 1045;
L4 !� 1:50752 � 1041;
L5 !5:05731 � 1036
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M0 !4:22105 � 1085;
M1 !1:31676� 1079;
M2 !� 2:96087 � 1082;
M3 !7:67600� 1078;
M4 !� 8:85305� 1074;
M5 !3:83418� 1070

Let us compute the roots of g1 univariate polynomial (Y0),

Y0 ! 6058:9782;

Y0 ! 5747:6051� 710:6398{;
Y0 ! 5747:6051C 710:6398{;
Y0 ! 6127:2461� 873:7323{;
Y0 ! 6127:2461C 873:7323{

There is only one real solution, the first. Knowing Y0, X0 can be calculated from
the second equation (g2) which is linear in X0. Then the solution is,

X0 D 48;565:2699 Y0 D 6058:9782:

The result of ALESS is almost the same as Gauss-Jacobi’s BLUUE and
traditional least squares solution (see Table 15.13) (the difference between them
is about 3 mm).

15.3.2 Three-Dimensional Ranging

15.3.2.1 Closed Form Three-Dimensional Ranging

Three-dimensional ranging problem differs from the planar ranging in terms of
the number of unknowns to be determined. In the planar case, the interest is
to obtain from the measured distances the two-dimensional coordinates fx0; y0g
of the unknown station P. For the three-dimensional ranging, the coordinates
fX;Y;Zg have to be derived from the measured distances. Since three coordinates
are involved, distances must be measured to at least three known stations for the
solution to be determined. If the stations observed are more than three, the case
is an overdetermined one. The main task involved is the determination of the
unknown position of a station given distance measurements from unknown station
P 2 E

3, to three known stations Pi 2 E
3 j i D 1; 2; 3. In general, the three-
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Fig. 15.13 Tetrahedron: three-dimensional distance and space angle observations

dimensional closed form ranging problem can be formulated as follows: Given
distance measurements from an unknown station P 2 E

3 to a minimum of three
known stations Pi 2 E

3 j i D 1; 2; 3, determine the position fX;Y;Zg of the
unknown station P 2 E

3 (see e.g., Fig. 16.4). From the three nonlinear Pythagoras
distance observation equations (15.53) in Solution 15.5, two equations with three
unknowns are derived. Equation (15.53) is expanded in the form given by (15.54)
and differenced to give (15.55) with the quadratic terms

˚
X2;Y2;Z2

�
eliminated.

Collecting all the known terms of (15.55) to the right-hand-side and those relating
to the unknowns (i.e., a and b) on the left-hand-side leads to (15.57). The solution of
the unknown terms fX;Y;Zg now involves solving (15.56), which has two equations
with three unknowns. Equation (15.56) is similar to (15.4) on p. 288 which was
considered in the case of GPS pseudo-range. Four approaches are considered for
solving (15.56), where more unknowns than equations are solved. Similar to the case
of GPS pseudo-ranging that we considered, the underdetermined system (15.56) is
overcome by determining two of the unknowns in terms of the third unknown (e.g.,
X D g.Z/;Y D g.Z/) (Fig. 15.13).

Solution 15.5 (Differencing of the nonlinear distance equations)

2
4S21 D .X1 � X/2 C .Y1 � Y/2 C .Z1 � Z/2

S22 D .X2 � X/2 C .Y2 � Y/2 C .Z2 � Z/2

S23 D .X3 � X/2 C .Y3 � Y/2 C .Z3 � Z/2
(15.53)

2
4 S21 D X21 C Y21 C Z21 C X2 C Y2 C Z2 � 2X1X � 2Y1Y � 2Z1Z

S22 D X22 C Y22 C Z22 C X2 C Y2 C Z2 � 2X2X � 2Y2Y � 2Z2Z
S23 D X23 C Y23 C Z23 C X2 C Y2 C Z2 � 2X3X � 2Y3Y � 2Z3Z

(15.54)

differencing above
�

S21 � S22 D X21 � X22 C Y21 � Y22 C Z21 � Z22 C a
S22 � S23 D X22 � X23 C Y22 � Y23 C Z22 � Z23 C b;

(15.55)
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where
�

a D 2X.X2 � X1/C 2Y.Y2 � Y1/C 2Z.Z2 � Z1/
b D 2X.X3 � X2/C 2Y.Y3 � Y2/C 2Z.Z3 � Z2/:

(15.56)

Making a and b the subject of the formula in (15.55) leads to
�

a D S21 � S22 � X21 C X22 � Y21 C Y22 � Z21 C Z22
b D S22 � S23 � X22 C X23 � Y22 C Y23 � Z22 C Z23 :

(15.57)

15.3.2.2 Conventional Approaches

Solution by Elimination Approach-1

In the elimination approach presented in Solution 15.6, (15.56) is expressed in
the form (15.58); with two equations and two unknowns fX;Yg. In this equation,
Z is treated as a constant. By first eliminating Y; X is obtained in terms of Z
and substituted in either of the two expressions of (15.58) to give the value of Y.
The values of fX;Yg are depicted in (15.59) with the coefficients fc; d; e; f g given
by (15.60). The values of fX;Yg in (15.59) are substituted in the first expression
of (15.53) to give the quadratic equation (15.61) in terms of Z as the unknown.
The quadratic formula (3.8) on p. 25 is then applied to obtain the two solutions of Z
(see the second expression of (15.61)). The coefficients fg; h; ig are given in (15.62).
Once we solve (15.61) for Z; we substitute in (15.59) to obtain the corresponding
pair of solutions for fX;Yg.
Solution 15.6 (Solution by elimination)

�
2X.X2 � X1/C 2Y.Y2 � Y1/ D a � 2Z.Z2 � Z1/
2X.X3 � X2/C 2Y.Y3 � Y2/ D b � 2Z.Z3 � Z2/

(15.58)

�
X D c � dZ
Y D e � fZ

(15.59)

2
66666666666666664

c D a.Y3 � Y2/� b.Y2 � Y1/

2 f.X2 � X1/.Y3 � Y2/ � .X3 � X2/.Y2 � Y1/g

d D f.Z2 � Z1/.Y3 � Y2/� .Z3 � Z2/.Y2 � Y1/gZ
f.X2 � X1/.Y3 � Y2/� .X3 � X2/.Y2 � Y1/g

e D a.X3 � X2/� b.X2 � X1/

2 f.Y2 � Y1/.X3 � X2/ � .Y3 � Y2/.X2 � X1/g

f D f.Z2 � Z1/.X3 � X2/ � .Z3 � Z2/.X2 � X1/gZ
f.Y2 � Y1/.X3 � X2/ � .Y3 � Y2/.X2 � X1/g

(15.60)
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substituting (15.59) in (15.53i/
2
664

gZ2 C hZ C i D 0

Z1;2 D �h˙ph2 � 4gi

2g
;

(15.61)

where
2
4 g D d2 C f 2 C 1

h D 2.dX1 C fY1 � Z1 � cd � ef /
i D X21 C Y21 C Z21 � 2X1c � 2Y1e � S21 C c2 C e2:

(15.62)

15.3.2.3 Solution by Elimination Approach-2

The second approach presented in Solution 15.7 involves first expressing (15.56) in
the form (15.63) which can also be expressed in matrix form as in (15.64). We
now seek the matrix solution of fY;Zg in terms of the unknown element X as
expressed by (15.65), which is written in a simpler form in (15.7). The elements
of (15.7) are as given by (15.67). The solution of (15.65) for fY;Zg in terms of
X is given by (15.68), (15.69) and (15.70). The coefficients of (15.70) are given
by (15.71). Substituting the obtained values of fY;Zg in terms of X in the first
expression of (15.53) leads to quadratic equation (15.72) in terms of X as an
unknown. Applying the quadratic formula (3.8) on p. 25, two solutions for X are
obtained as in the second expression of (15.72). These are then substituted back
in (15.70) to obtain the values of fY;Zg. The coefficients fl;m; ng in (15.72) are
given by (15.73).

A pair of solutions fX1;Y1;Z1g and fX2;Y2;Z2g are obtained. For GPS pseudo-
ranging in Sect. 15.2, we saw that the admissible solution could easily be chosen
from the pair of solutions. The desired solution was easily chosen as one set of
solution was in space while the other set was on the Earth’s surface. The solution
could therefore be distinguished by computing the radial distances (positional
norms). The admissible solution from the pair of the three-dimensional LPS ranging
techniques is however difficult to isolate and must be obtained with the help of prior
information, e.g., from an existing map.

Solution 15.7 (Solution by matrix approach)

�
2Y.Y2 � Y1/C 2Z.Z2 � Z1/ D a � 2X.X2 � X1/
2Y.Y3 � Y2/C 2Z.Z3 � Z2/ D b � 2X.X3 � X2/

(15.63)

�
Y2 � Y1 Z2 � Z1
Y3 � Y2 Z3 � Z2

� �
Y
Z

�
D 1

2

�
a
b

�
� 2

�
X2 � X1
X3 � X2

�
X

�
(15.64)
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�
Y
Z

�
D 1

2
d

�
Z3 � Z2 �.Z2 � Z1/
�.Y3 � Y2/ .Y2 � Y1/

� �
a
b

�
� 2

�
X2 � X1
X3 � X2

�
X;

�
(15.65)

with

d D f.Y2 � Y1/.Z3 � Z2/ � .Y3 � Y2/.Z2 � Z1/g�1 : (15.66)
�

Y
Z

�
D fa11a22 � a12a21g�1

�
a22 �a12
�a21 a11

� �
b1
b2

�
C
�

c1
c2

�
X;

�

where
�

a11 D Y2 � Y1; a12 D Z2 � Z1; a21 D Y3 � Y2; a22 D Z3 � Z2
c1 D �.X2 � X1/; c2 D �.X3 � X2/ ; b1 D 1

2
a; b2 D 1

2
b:

(15.67)

�
Y D fa11a22 � a12a21g�1 fa22.b1 C c1X/� a12.b2 C c2X/g
Z D fa11a22 � a12a21g�1 fa11.b2 C c2X/� a21.b1 C c1X/g (15.68)

�
Y D e Œfa22b1 � a12b2g C fa22c1 � a12c2gX�
Z D e Œfa11b2 � a21b1g C fa11c2 � a21c1gX� (15.69)

�
Y D e.f C gX/
Z D e.hC iX/

(15.70)

�
e D .a11a22 � a12a21/�1; f D a22b1 � a12b2; g D a22c1 � a12c2
h D a11b2 � a21b1; i D a11c2 � a21c1; k D X21 C Y21 C Z21 :

(15.71)

substituting (15.70) in (15.53i)
2
664

lX2 C mX C n D 0

X1;2 D �m˙pm2 � 4ln

2l
;

(15.72)

where
2
4 l D e2i2 C e2g2 C 1

m D 2.e2fgC e2hi� X1 � egY1 � eiZ1/
n D k � S2

1
� 2Y1ef C e2f 2 � 2Z1ehC e2h2:

(15.73)

15.3.2.4 Groebner Basis Approach

Equation (15.56) is expressed in algebraic form (15.74) in Solution 15.8 with the
coefficients as in (15.75). Groebner basis of (15.74) is then obtained in (15.76)
using (4.37) on p. 50. The obtain Groebner basis solution of the three-dimensional
ranging problem is presented in (15.77). The first expression of (15.77) is solved
for Y D g1.Z/, and the output presented in (15.78). This value is substituted in the
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second expression of (15.77) to give X D g2.Z/ in (15.79). The obtained values
of Y and X are substituted in the first expression of (15.53) to give a quadratic
equation in Z. Once this quadratic equation has been solved for Z using (3.8) on
p. 25, the values Y and X are obtained from (15.78) and (15.79) respectively. Instead
of solving for Y D g1.Z/ and substituting in the second expression of (15.77) to give
X D g2.Z/, direct solution of X D g.Z/ in (15.80) could be obtained by computing
the reduced Groebner basis (4.39) on p. 51. Similarly we could obtain Y D g.Z/
alone by replacing Y with X in the option part of the reduced Groebner basis.

Solution 15.8 (Groebner basis solution)

a02X C b02Y C c02Z C f02 D 0
a12X C b12Y C c12Z C f12 D 0 (15.74)

2
6666666664

a02 D 2.X1 � X2/; b02 D 2.Y1 � Y2/; c02 D 2.Z1 � Z2/

a12 D 2.X2 � X3/; b12 D 2.Y2 � Y3/; c12 D 2.Z2 � Z3/

f02 D .S21 � X21 � Y21 � Z21/� .S22 � X22 � Y22 � Z22/

f12 D .S22 � X22 � Y22 � Z22/� .S23 � X23 � Y23 � Z23/:

(15.75)

GroebnerBasisŒfa02X C b02Y C c02Z C f02; a12X C b12Y C c12Z C f12g; fX;Yg�
(15.76)

2
666664

g1 D a02b12Y � a12b02Y � a12c02Z C a02c12Z C a02f12 � a12f02

g2 D a12X C b12Y C c12Z C f12

g3 D a02X C b02Y C c02Z C f02:

(15.77)

Y D f.a12c02 � a02c12/Z C a12f02 � a02f12g
.a02b12 � a12b02/

(15.78)

X D �.b12Y C c12Z C f12/

a12
; (15.79)

or

X D f.b02c12 � b12c02/Z C b02f12 � b12f02g
.a02b12 � a12b02/

: (15.80)
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15.3.2.5 Polynomial Resultants Approach

The problem is solved in four steps as illustrated in Solution 15.9. In the first
step, we solve for the first variable X in (15.74) by hiding it as a constant and
homogenizing the equation using a variable W as in (15.81). In the second step, the
Sylvester resultants discussed in Sect. 5.2 on p. 53 or the Jacobian determinant is
obtained as in (15.82). The resulting determinant (15.83) is solved for X D g.Z/ and
presented in (15.84). The procedure is repeated in steps three and four from (15.85)
to (15.88) to solve for Y D g.Z/. The obtained values of X D g.Z/ and Y D g.Z/
are substituted in the first expression of (15.53) to give a quadratic equation in Z.
Once this quadratic has been solved for Z, the values of X and Y are then obtained
from (15.84) and (15.88) respectively.

Solution 15.9 (Polynomial resultants solution)

Step 1 : Solve for X in terms of Z

f1 WD .a02X C c02Z C f02/W C b02Y
f2 WD .a12X C c12Z C f12/W C b12Y

(15.81)

Step 2 : Obtain the Sylvester resultant

JX D det

2
6664

@f1
@Y

@f1
@W

@f2
@Y

@f2
@W

3
7775 D det

�
b02 .a02X C c02Z C f02/
b12 .a12X C c12Z C f12/

�
(15.82)

JX D b02a12X C b02c12Z C b02f12 � b12a02X � b12c02Z � b12f02 (15.83)

from (15.83)

X D f.b12c02 � b02c12/Z C b12f02 � b02f12g
.b02a12 � b12a02/

(15.84)

Step 3 : Solve for Y in terms of Z

f3 WD .b02Y C c02Z C f02/W C b02X
f4 WD .b12Y C c12Z C f12/W C a12X

(15.85)
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Step 4 : Obtain the Sylvester resultant

JY D det

2
6664

@f3
@X

@f3
@W

@f4
@X

@f4
@W

3
7775 D det

�
a02 .b02Y C c02Z C f02/
a12 .b12Y C c12Z C f12/

�
(15.86)

JY D a02b12Y C a02c12Z C a02f12 � a12b02Y � a12c02Z � a12f02 (15.87)

from (15.87)

Y D f.a12c02 � a02c12/Z C a12f02 � a02f12g
.a02b12 � a12b02/

(15.88)

Example 15.5 (Three-dimensional ranging to three known stations) Consider dis-
tance measurements of Fig. 16.4 as S1 D 1324:2380m, S2 D 542:2609m and
S3 D 430:5286m, the position of P is obtained using either of the procedures
above as X D 4;157;066:1116m, Y D 671;429:6655m and D 4;774;879:3704m.
Figures 15.14, 15.15 and 15.16 indicate the solutions of fX;Y;Zg respectively.
The stars (intersection of the quadratic curves with the zero line) are the solution
points. The critical configuration of the three-dimensional ranging problem is

4.157 4.157 4.157 4.157 4.157 4.1571 4.1571 4.1571 4.1571
x 106
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−200

−100

0

100

200

300
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500

600
Solution of X from Quadratic Equation g2X2+g1X+g0=0

X(m)

f(X
)

Fig. 15.14 Solution of the X coordinates
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0

100

200
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400

500

600
Solution of Y from Quadratic Equation f2Y2+f1Y+f0=0
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)

Fig. 15.15 Solution of the Y coordinates

4.7748 4.7749 4.7749 4.7749 4.7749 4.7749 4.7749 4.7749 4.7749
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−300

−200

−100

0

100

200
Solution of Z from Quadratic Equation e2Z2+e1Z+e0=0

Z(m)

f(Z
)

Fig. 15.16 Solution of the Z coordinates
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presented in Solution 15.10. Equations (15.94) and (15.95) indicate the critical
configuration to be the case where points P.X;Y;Z/, P1.X1;Y1;Z1/, P2.X2;Y2;Z2/,
and P3.X3;Y3;Z3/ all lie on a plane.

Solution 15.10 (Critical configuration of three-dimensional ranging)

2
4 f1.X;Y;ZIX1;Y1;Z1; S1/ D .X1 � X/2 C .Y1 � Y/2 C .Z1 � Z/2 � S21

f2.X;Y;ZIX2;Y2;Z2; S2/ D .X2 � X/2 C .Y2 � Y/2 C .Z2 � Z/2 � S22
f3.X;Y;ZIX3;Y3;Z3; S3/ D .X3 � X/2 C .Y3 � Y/2 C .Z3 � Z/2 � S23:

(15.89)2
6666666664

@f1
@X
D �2.X1 � X/;

@f2
@X
D �2.X2 � X/;

@f3
@X
D �2.X3 � X/

@f1
@Y
D �2.Y1 � Y/;

@f2
@Y
D �2.Y2 � Y/;

@f3
@Y
D �2.Y3 � Y/

@f1
@Z
D �2.Z1 � Z/;

@f2
@Z
D �2.Z2 � Z/;

@f3
@Zv
D �2.Z3 � Z/:

(15.90)

2
6666666664

D D
ˇ̌
ˇ̌ @fi
@Xj

ˇ̌
ˇ̌ D �8

ˇ̌
ˇ̌
ˇ̌
X1 � X Y1 � Y Z1 � Z
X2 � X Y2 � Y Z1 � Z
X3 � X Y3 � Y Z1 � Z

ˇ̌
ˇ̌
ˇ̌

D,
ˇ̌
ˇ̌
ˇ̌
X1 � X Y1 � Y Z1 � Z
X2 � X Y2 � Y Z1 � Z
X3 � X Y3 � Y Z1 � Z

ˇ̌
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

X Y Z 1

X1 Y1 Z1 1
X2 Y2 Z2 1
X3 Y3 Z3 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌ D 0:

(15.91)

2
6666666664

� 1
8
D D f�Z1Y3 C Y1Z3 � Y2Z3 C Y3Z2 � Y1Z2 C Y2Z1gX

Cf�Z1X2 � X1Z3 C Z1X3 C X1Z2 � X3Z2 C X2Z3g Y

CfY1X2 � Y1X3 C Y3X1 � X2Y3 � X1Y2 C Y2X3gZ

CX1Y2Z3 � X1Y3Z2 � X3Y2Z1 C X2Y3Z1 � X2Y1Z3 C X3Y1Z2;

(15.92)

thus
ˇ̌
ˇ̌
ˇ̌
ˇ̌

X Y Z 1

X1 Y1 Z1 1
X2 Y2 Z2 1
X3 Y3 Z3 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌ ; (15.93)
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describes six times volume of the tetrahedron formed by the points P.X;Y;Z/;
P1.X1;Y1;Z1/; P2.X2;Y2;Z2/; and P3.X3;Y3;Z3/ . Therefore

D D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

X Y Z 1

X1 Y1 Z1 1
X2 Y2 Z2 1
X3 Y3 Z3 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

2
664

a
b
c
d

3
775 D 0; (15.94)

results in a system of homogeneous equations
2
664

aX C bY C cZ C d D 0
aX1 C bY1 C cY1 C d D 0
aX2 C bY2 C cZ2 C d D 0
aX3 C bY3 C cZ3 C d D 0:

(15.95)

15.3.2.6 N-Point Three-Dimensional Ranging

The Gauss-Jacobi combinatorial algorithm is here applied to solve the overdeter-
mined three-dimensional ranging problem. An example based on the test network
Stuttgart Central in Fig. 13.2 is considered.

Example 15.6 (Three-dimensional ranging to more than three known stations)
From the test network Stuttgart Central in Fig. 13.2 of Sect. 13.6, the three-
dimensional coordinates fX;Y;Zg of the unknown station K1 are desired. One
proceeds in three steps as follows:

Step 1 (combinatorial solution):
From Fig. 13.2 on p. 259 and using (7.34) on p. 105, 35 combinatorial subsets are
formed whose systems of nonlinear distance equations are solved for the position
fX;Y;Zg of the unknown station K1 in closed form. Use is made of either
Groebner basis derived equations (15.78) and (15.79) or polynomial resultants
derived (15.84) and (15.88). Thirty-five different positions X;Y;ZjK1 of the same
station K1, totalling to 105 (35 � 3) values of X;Y;Z are obtained and treated as
pseudo-observations.

Step 2 (determination of the dispersion matrix †):
The variance-covariance matrix is computed for each of the combinatorial set
j D 1; : : : ; 35 using error propagation. The closed form observational equations
are written algebraically as

2
4 f1 WD .X1 � X/2 C .Y1 � Y/2 C .Z1 � Z/2 � S21

f2 WD .X2 � X/2 C .Y2 � Y/2 C .Z2 � Z/2 � S22
f3 WD .X3 � X/2 C .Y3 � Y/2 C .Z3 � Z/2 � S23;

(15.96)

where Sj
i ji 2 f1; 2; 3g j j D 1 are the distances between known GPS stations Pi 2

E
3 ji 2 f1; 2; 3g and the unknown station K1 2 E

3 for first combination set j D 1.
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Table 15.14 Position of station K1 computed by Gauss-Jacobi combinatorial algorithm

X.m/ Y.m/ Z.m/ �X �Y �Z

4,157,066.1121 671,429.6694 4,774,879.3697 0.00005 0.00001 0.00005

Table 15.15 Deviation of the computed position of K1 in Table (15.14) from the real measured
GPS values

�X.m/ �Y.m/ �Z.m/

�0.0005 �0.0039 0.0007

Equation (15.96) is used to obtain the dispersion matrix † in (7.39) as discussed
in Example 7.4 on p. 107.

Step 3 (rigorous adjustment of the combinatorial solution points in a polyhedron):
For each of the 35 computed coordinates of point K1 in step 2, we write the
observation equations as

2
64

Xj D X C "j
X j; j 2 f1; 2; 3; 4; 5; 6; 7; : : : ; 35g

Yj D Y C "j
Y jj 2 f1; 2; 3; 4; 5; 6; 7; : : : ; 35g

Zj D Z C "j
Z j; j 2 f1; 2; 3; 4; 5; 6; 7; : : : ; 35g:

(15.97)

The values fXj;Yj;Zjg are treated as pseudo-observation and placed in the vector
of observation y, while the coefficients of the unknown positions fX;Y;Zg are
placed in the design matrix A. The vector � comprise the unknowns fX;Y;Zg.
The solutions are obtained via (7.18) and the root-mean-square errors of the
estimated parameters through (7.19). In the experiment above, the computed
position of station K1 is given in Table 15.14. The deviations of the combina-
torial solutions from the true (measured) GPS value are given in Table 15.15.
Figure 15.17 indicates the plot of the combinatorial scatter {�} around the
adjusted values {�}.

15.3.2.7 ALESS Solution

Another possibility to solve the overdetermined three-dimensional ranging problem
is the ALESS method (see Sect. 7.2), defining the objective function as the sum of
the square residuals of the equations, and considering the necessary condition for
the minimum.

A single equation for distance is given by

ei D .Xi � X0/
2 C .Yi � Y0/

2 C .Zi � Z0/
2 � S2i ;

where X0;Y0;Z0 are the coordinates of the unknown station, Xi;Yi;Zi the coordinates
of the known station, and Si the measured distances. The objective function in case
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Fig. 15.17 Scatter of combinatorial solutions

of n measured distances is defined as the sum of the square residuals

� D
nX

iD1
e2i D

nX
iD1

h
.Xi � X0/

2 C .Yi � Y0/
2 C .Zi � Z0/

2 � S2i
i2
:

The determined square system can be created symbolically easily with Computer
Algebra Systems, according to the necessary condition of the minimum,

f1 D @�

@X0
DJ0 C J1X0 C J2X

2
0 C J3X

3
0 C J4Y0 C J5X0Y0 C J6Y

2
0 C J7X0Y

2
0

C J8Z0 C J9X0Z0 C J10Z
2
0 C J11X0Z

2
0 D 0

f2 D @�

@Y0
DK0 C K1X0 C K2X

2
0 C K3Y0 C K4X0Y0 C K5X

2
0Y0 C K6Y

2
0

C K7Y
3
0 C K8Z0 C K9Y0Z0 C K D10 Z20 C K11Y0Z

2
00

f3 D @�

@Z0
DL0 C L1X0 C L2X

2
0 C L3Y0 C L4Y

2
0 C L5Z0 C L6X0Z0 C L7X

2
0Z0

C L8Y0Z0 C L9Y
2
0Z0 C L10Z

2
0 C L11Z

3
0 D 0
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where

J0 !
nX

iD1

�
4S2i Xi � 4X3i � 4XiY

2
i � 4XiZ

2
i

�
;

J1 !
nX

iD1

��4S2i C 12X2i C 4Y2i C 4Z2i
�
;

J2 !
nX

iD1
�12Xi; J3 ! 4n; J4!

nX
iD1

8XiYi; J5 !
nX

iD1
�8Yi;

J6 !
nX

iD1
�4Xi; J7 ! 4n;

J8 !
nX

iD1
8XiZi; J9 !

nX
iD1
�8Zi; J10 !

nX
iD1
�4Xi; J11 ! 4n

K0 !
nX

iD1

�
4S2i Yi � 4X2i Yi � 4Y3i � 4YiZ

2
i

�
;K1 !

nX
iD1

8XiYi;K2 !
nX

iD1

�4Yi;

K3 !
nX

iD1

��4S2i C 4X2i C 12Y2i C 4Z2i
�
;K4 !

nX
iD1

�8Xi;K5 ! 4n;K6 !
nX

iD1

�12Yi;

K7 ! 4n;K8 !
nX

iD1

8YiZi;K9 !
nX

iD1

�8Zi;K10 !
nX

iD1

�4Yi;K11 ! 4n

L0 !
nX

iD1

�
4S2i Zi � 4X2i Zi � 4Y2i Zi � 4Z3i

�
;L1 !

nX
iD1

8XiZi;L2 !
nX

iD1
�4Zi;

L3 !
nX

iD1
8YiZi;L4 !

nX
iD1
�4Zi;L5 !

nX
iD1

��4S2i C 4X2i C 4Y2i C 12Z2i
�
;

L6 !
nX

iD1
�8Xi;L7 ! 4n;L8 !

nX
iD1
�8Yi;L9 ! 4n;L10 !

nX
iD1
�12Zi;L11 ! 4n

Now this third order polynomial square system is to be solved. The complexity
of this system is independent of the number of redundant data. Only the coefficients
will change if more measured distances are available. To demonstrate the method,
let us revisit the test network Stuttgart Central (see data on Tables 13.1 and 13.2)
with seven distances to seven known stations. Substituting these data for f1; f2; f3
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leads to the following system for solving the unknown station K1:

f1 D �4:71777 � 1021 C 2:10263� 1015X0 � 3:49196� 108X20 C 28X30

C1:56321 � 1014Y0 � 3:76035� 107X0Y0 � 1:16399� 108Y20 C 28X0Y
2
0

C1:11156 � 1015Z0 � 2:6739 � 108X0Z0 � 1:16399� 108Z20 C 28X0Z
2
0

f2 D �7:62057� 1020 C 1:56321� 1014X0 � 1:88017� 107X20
C1:16012 � 1015Y0 � 2:32797� 108X0Y0 C 28X20Y0 � 5:64052� 107Y20
C28Y30 C 1:7955� 1014Z0 � 2:6739 � 108Y0Z0 � 1:88017� 107Z20 C 28Y0Z

2
0

f3 D �5:41882� 1021 C 1:11156� 1015X0 � 1:33695� 108X20 C 1:7955� 1014Y0
�1:33695� 108Y20 C 2:41161 � 1015Z0 � 2:32797 � 108X0Z0 C 28X20Z0

�3:76035� 107Y0Z0 C 28Y20Z0 � 4:01085� 108Z20 C 28Z30

Groebner Basis methods is then applied to solve this system of equation. Let us use
high precision data in Mathematica:

F D SetPrecisionŒff1; f2; f3g; 300�I

To solve this system with reduced Groenber basis for variable X0 in Mathematica,
one writes:

gbX0 D GroebnerBasisŒF; fX0g; fY0;Z0g�I

where F is the system of polynomials ff1; f2; f3g using high precision data, fY0;Z0g
are the variables to be eliminated from the system and fX0g the remaining variable.
The result is a univariate polynomial of order seven for X0. Its roots are,

fX0! 4:1570478280643144805� 106 � 17:7824555537030ig;
fX0! 4:1570478280643144805� 106 C 17:7824555537030ig;
fX0! 4:nnn23158� 106g;
fX0! 4:1571001585939538923� 106 � 169:0166013474395ig;
fX0! 4:1571001585939538923� 106 C 169:0166013474395ig;
fX0! 4:1571279473843755008� 106 � 270:2601421331170ig;
fX0! :1571279473843755008� 106 C 270:2601421331170ig;
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Table 15.16 Position of station K1 computed by ALESS method

X.m/ Y.m/ Z.m/ �X.m/ �Y.m/ �Z.m/

4;157;066:1115 671;429:6655 4;774;879:3703 0.0001 0.0000 0.0001

where the only real root is X0 D 4;157;066:1115. Similarly, the variables Y0 and Z0
can be calculated by

gbY0 D GroebnerBasisŒF; fY0g; fX0;Z0g�I
gbZ0 D GroebnerBasisŒF; fZ0g; fX0;Y0g�:

For both variables we get a seven order univariate polynomial using reduced
Groebner basis, which has only one real root. The computed position of station K1
and the deviations of the ALESS solution from the true (measured) GPS value are
given in Table 15.16. The result of the ALESS method coincides with the measured
GPS coordinates.

15.3.2.8 Extended Newton-Raphson’s Solution

With more than three known stations with the corresponding distances, our system
is overdetermined, m > n, where n D 3 and m D 7 The prototype of the equations,

.xi � x0/
2 C .yi � y0/

2 C .zi � z0/
2 � s2i D 0; i D 1..7; (15.98)

where (xi , yi , zi) are the known coordinates of the ith station, si the known distance
of the ith station, and (x0 , y0 , z0) the unknown coordinates of the K1 station, see
Fig. 13.2 in p.259 for the Stuttgart Central Test Network.

Using the GPS coordinates in Table 13.1 and the distances indicated in Fig. 13.2,
and consider the initial value as the results of the 3-point problems solved via
computer algebra (see Awange-Grafarend [44]), one can employ the Extended
Newton-Raphson method. Let us consider the solution of the f1 – 2 – 7) combi-
nation,

x0= 4:15707550749� 106; y0 D 671431:405189; z0 D 4:7748874158� 106
(15.99)

Employing Extended Newton-Raphson method, the convergence is fast.
Figure 15.18 shows the absolute error of x0 in meter as function of the number
of iterations where n D 3 and m D 7. The solution is

x0 D 4:15706611153� 106; y0 D 671429:665479; z0 D 4:77487937031� 106
(15.100)
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Fig. 15.18 Convergence of the method in case of Stuttgart central test network

15.4 Concluding Remarks

In cases where positions are required from distance measurements such as point
location in engineering and cadastral surveying, the algorithms presented in this
chapter are handy. Users need only to insert measured distances and the coordinates
of known stations in these algorithms to obtain their positions. In essence, one
does not need to re-invent the wheel by going back to the Mathematica software!
Additional literature on the topic are [1, 61, 116, 246, 312, 430]. In the electronic
supplement, it is shown how these computations can actually be carried out in
Mathematica. The user can change the input data and recompute the examples.



Chapter 16
Positioning by Resection Methods

16.1 Resection Problem and Its Importance

In Chap. 15, ranging method for positioning was presented where distances were
measured to known targets. In this chapter, an alternative positioning technique
which uses direction measurements as opposed to distances is presented. This
positioning approach is known as the resection. Unlike in ranging where measured
distances are affected by atmospheric refraction, resection methods have the
advantage that the measurements are angles or directions which are not affected
by refraction.

Resection methods find use in densification of GPS networks. In Fig. 15.1
for example, if the station inside the tunnel or forest is a GPS station, a GPS
receiver can not be used due to signal blockage. In such a case, horizontal and
vertical directions are measured to three known GPS stations using a theodolite
or total station operating in the local positioning systems (LPS). These angular
measurements are converted into global reference frame’s equivalent using (13.18)
and (13.19). The coordinates of the unknown tunnel or forest station is finally
computed using resection techniques that we will discuss later in the chapter. A
more recent application of resection is demonstrated by [196] who applies it to
find the position and orientation of scanner head in object space (Fig. 16.11). The
scanner is then used to monitor deformation of a steep hillside in Fig. 16.21 which
was inaccessible. The only permissible deformation monitoring method was through
remote sensing scanning technique.

To understand the resection problem, consider Fig. 16.3. The planar (two-
dimensional) resection problem is formulated as follows: Given horizontal direction
measurements Ti from unknown station P0 2 E

2 to three known stations Piji D
1; 2; 3 2 E

2 in Fig. 16.3, determine the position fx0; y0g and orientation f�g of

1Courtesy of Survey Review: Gordon and Lichti [196].
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Fig. 16.1 Position and orientation of scanner head (©Survey Review: Gordon and Lichti [196])

Fig. 16.2 Slope and Lower Walkway at Kings Park (©Survey Review: Gordon and Lichti [196])

P0. For the three-dimensional resection, the unknown position fX0;Y0;Z0g of point
P0 2 E

3 and the orientation unknown † have to be determined. In this case
therefore, in addition to horizontal directions Ti, vertical directions Bi have to
be measured. In photogrammetry, image coordinates on the photographs are used
instead of direction measurements.

Equations relating unknowns and the measurements are nonlinear and the
solution has been by linearized numerical iterative techniques. This has been mainly
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Fig. 16.3 Planar distance
observations PP2

P1

P0

P3

due to the difficulty of solving in closed form the underlying nonlinear systems of
equations. Procedures for solving planar nonlinear resection are reported by [92]
to exceed 500! Several procedures put forward as early as 1900 concentrated on
the solution of the overdetermined version as evidenced in the works of [255,
433, 517, 519, 520]. Most of these works were based on the graphical approaches.
Procedures to solve closed form planar resection were put forward by [100] and
later by [18, 38, 85, 229, 296].

The search towards the solution of the three-dimensional resection problem
traces its origin to the work of a German mathematician J. A. Grunert [236] whose
publication appeared in the year 1841. Grunert [236] solved the three-dimensional
resection problem – what was then known as the “Pothenot’s” problem – in a
closed form by solving an algebraic equation of degree four. The problem had
hitherto been solved by iterative means mainly in photogrammetry and computer
vision. Procedures developed later for solving the three-dimensional resection
problem revolved around improvements of the approach of [236] with the aim
of searching for optimal means of distances determination. Whereas [236] solved
the problem by substitution approach in three steps, more recent desire has been
to solve the distance equations in less steps as exemplified in the works of [169,
171, 229, 341, 342, 369]. In [259, 260, 377], extensive review of these procedures
are presented. Other solutions of three-dimensional resection include the works
of [17, 30, 31, 196] among others. The closed form solution of overdetermined three-
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dimensional resection is presented in [32] and elaborate literature on the subject
presented in [17].

In this chapter, Grunert’s distance equations for three-dimensional resection
problem are solved using the algebraic techniques of Groebner basis and polynomial
resultants. The resulting quartic polynomial is solved for the unknown distances
and the admissible solution substituted in any equation of the original system of
polynomial equations to determine the remaining two distances. Once distances
have been obtained, the position fX0;Y0;Z0g are computed using the ranging
techniques discussed in Chap. 15. The three-dimensional orientation unknown †

is thereafter solved using partial Procrustes algorithm of Chap. 9.

16.2 Geodetic Resection

16.2.1 Planar Resection

For planar resection, if the horizontal directions are oriented arbitrarily, the unknown
orientation in the horizontal plane � has to be determined in addition to position
fx; yg of the observing unknown station. The coordinates Xi;Yi j i 2 f1; 2; 3g of
the known target stations Pi 2 E

2 j i 2 f1; 2; 3g are given in a particular reference
frame. Horizontal directions Ti j i 2 f1; 2; 3g are observed from an unknown station
to the three known target stations. The task at hand as already stated in Sect. 16.1 is
to determine the unknowns fx; y; �g. The observation equation is formulated as

tan.Ti C �/ D yi � y

xi � x
j 8i D 1; 2; 3: (16.1)

Next, we present three approaches which can be used to solve (16.1) namely;
conventional analytical solution, Groebner basis and Sylvester resultants methods.

16.2.1.1 Conventional Analytical Solution

Using trigonometric additions theorem as suggested by [100], (16.1) is expressed as

tan Ti C tan �

1 � tan Ti tan �
D yi � y

xi � x
j 8i D 1; 2; 3; (16.2)

leading to

.tan Ti C tan �/.xi � x/ D .1� tan Ti tan �/.yi � y/: (16.3)
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Expanding (16.3) gives

y.tan Ti tan �/� yi.tan Ti tan �/� yC yi D xitan TiC xitan � � xtan Ti� xtan �: (16.4)

Equation (16.4) leads to a nonlinear system of equations in the unknowns fx; y; �g
as
2
64

y.tanT1tan �/� y1.tanT1tan �/� yC y1 D x1tanT1 C x1tan � � xtanT1 � xtan �

y.tanT2tan �/� y2.tanT2tan �/� yC y2 D x2tanT2 C x2tan � � xtanT2 � xtan �

y.tanT3tan �/� y3.tanT3tan �/� yC y3 D x3tanT3 C x3tan � � xtanT3 � xtan �;

(16.5)

which is solved in three steps for � and then substituted in the first two equations
of (16.5) to obtain the unknowns fx; yg: The procedure is performed stepwise as
follows:

Step 1 (elimination): In this step, the variable y and the term xtan � are eliminated
from the three equations by subtracting the second and third expressions of (16.5)
from the first. This results in
2
666664

ytan�.tanT1 � tanT2/ D .tanT2 � tanT1/xC .x1 � x2 C y1tanT1
�y2tanT2/tan� C x1tanT1 � x2tanT2 � y1 C y2

ytan�.tanT1 � tanT3/ D .tanT3 � tanT1/xC .x1 � x3 C y1tanT1
�y3tanT3/tan� C x1tanT1 � x3tanT3 � y1 C y3:

(16.6)

Step 2 (division): The first expression of (16.6) is divided by .tanT1� tanT2/ and
the second expression by .tanT1 � tanT3/. This is done in-order to make ytan �
appearing on the left-hand-side of both equations the subject of the formula. The
net results are:

2
6666666666666664

ytan� D �xC x1 � x2 C y1tanT1 � y2tanT2
tanT1 � tanT2

tan�

Cx1tanT1 � x2tanT2 � y1 C y2
tanT1 � tanT2

ytan� D �xC x1 � x3 C y1tanT1 � y3tanT3
tanT1 � tanT3

tan�

Cx1tanT1 � x3tanT3 � y1 C y3
tanT1 � tanT3

:

(16.7)

Step 3 (elimination): In (16.7), we note that ytan � and x appear in both expres-
sions. They are eliminated by subtracting the second expression from the first.
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On re-arranging the resulting expression leads to tan� on the left-hand-side as

2
6666666664

tan � D N

D

N D x1tanT1 � x2tanT2 � y1 C y2
tanT1 � tanT2

C x3tanT3 � x1tanT1 � y3 C y1
tanT1 � tanT3

D D x1 � x3 C y1tanT1 � y3tanT3
tanT1 � tanT3

C x2 � x1 C y2tanT2 � y1tanT1
tanT1 � tanT2

(16.8)

Step 4 (solution of fx; yg): Once we have solved for � in (16.8), the first and the
second expressions of (16.5) are re-written in the final step with x; y on the left-
hand-side as

�
a11yC a12x D b11
a21yC a22x D b22;

(16.9)

where;

2
66666664

a11 D .tanT1tan� � 1/;
a12 D .tanT1 C tan�/;
a21 D .tanT2tan� � 1/;
a22 D .tanT2 C tan�/;
b11 D y1tanT1tan� � y1 C x1tanT1 C x1tan�;
b22 D y2tanT2tan� � y2 C x2tan� C x2tanT2:

In matrix form, (16.9) is expressed as

�
a11 a12
a21 a22

� �
y
x

�
D
�

b11
b22

�
; (16.10)

giving the solutions as

�
y
x

�
D .a11a22 � a21a12/

�1
�

a22 �a12
�a21 a11

� �
b11
b22

�
(16.11)

or
�

�

�

�

y D .a11a22 � a21a12/�1.a22b11 � b22a12/
x D .a11a22 � a21a12/�1.a11b22 � b11a21/

; (16.12)

which completes the conventional analytic solution.
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16.2.1.2 Groebner Basis Approach

Denoting a D tan T1; b D tan T2; c D tan T3; and d D tan �; (16.5) is simplified
in lexicographic order y > x > d as

2
4 f1 WD �yC adyC axC xd � y1ad � x1d � x1aC y1 D 0

f2 WD �yC bdyC bxC xd � y2bd � x2d � x2bC y2 D 0
f3 WD �yC cdyC cxC xd � y3cd � x3d � x3cC y3 D 0:

(16.13)

The reduced Groebner basis (4.39) on p. 51 is then computed as

2
4GroebnerBasis Œf f1; f2; f3g; fx; y; dg; fx; yg�

GroebnerBasis Œf f1; f2; f3g; fx; y; dg; fyg�
GroebnerBasis Œf f1; f2; f3g; fx; y; dg; fxg�:

(16.14)

The first expression of (16.14) gives a linear equation in the variable d allowing
the computation of the unknown orientation parameter � . The second and the third
expressions respectively give linear equations in x and y in the variable d: The
computed reduced Groebner basis re-arranged with the unknown terms on the left-
hand-side are presented in Solution 16.1.

Solution 16.1 (reduced Groebner basis computation of planar resection)

2
6666666664

d D N1

D1

x D � N2

.�cd2 C a � cC ad2/

y D � N3

.b � cC bd2 � cd2/
;

(16.15)

where
2
666664

N1 D �.abX1 � acX1 C aY2 � abX2 C bcX2 � aY3 C acX3
�bcX3 � bY1 C cY1 � cY2 C bY3/

D1 D .bX1 � aX2 C aX3 � bX3 C abY1 � acY1 � cX1 � abY2
CbcY2 C cX2 C acY3 � bcY3/;

N2 D
�
.�adY1 � cdY1 C acd2Y1 � Y3 � aX1 � dX1 C acdX1 C cd2X1
CcX3 C dX3 � acdX3 � ad2X3 C Y1 C adY3 C cdY3 � acd2Y3/
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and

N3 D
�
.�bcX2 � bdX2 � cdX2 � d2X2 C bcX3 C bdX3 C cdX3 C d2X3
CcY2 C dY2 � bcdY2 � bd2Y2 � bY3 � dY3 C bcdY3 C cd2Y3/:

Once d has been computed from the first expression of (16.15), it is inserted into
the second and third expressions to solve the unknowns fx; yg respectively. The
unknown orientation in the horizontal plane is then computed via � D tan�1d:

16.2.1.3 Sturmfels’ Resultant Approach

Let z be a homogenizing variable for (16.13). In-order to solve for the variable d
in (16.13), we hide d by making it a polynomial of degree zero (i.e., treating it as a
constant) as

2
4 g1 WD �yC adyC axC dxC .�y1ad � x1d � x1aC y1/zD 0

g2 WD �yC bdyC bxC dxC .�y2bd � x2d � x2bC y2/zD 0
g3 WD �yC cdyC cxC dxC .�y3cd � x3d � x3cC y3/zD 0;

(16.16)

which is expressed in the form (5.13) as

Jd D det

2
66666666664

@g1
@x

@g1
@y

@g1
@z

@g2
@x

@g2
@y

@g2
@z

@g3
@x

@g3
@y

@g3
@z

3
77777777775

D det

2
4 .aC d/ .ad � 1/ .y1 � y1ad � x1d � x1a/
.bC d/ .bd � 1/ .y2 � y2bd � x2d � x2b/
.cC d/ .cd � 1/ .y3 � y3cd � x3d � x3c/

3
5 :

(16.17)

Equation (16.17) leads to

�

�

�

	
e3d3 C e2d2 C e1dC e0 D 0 ;

with

e3 D ax3 � bx3 � ay2b � ax2 C cx2 � cx1 C cy2bC ay3c � cy1aC bx1 C by1a � by3c

e2 D cy1 � ax2bC ay2 C ax3c � by1 � ay3 C bx1aC by3 C cx2b � cy2 � cx1a � bx3c

e1 D ax3 � bx3 � ay2b � ax2 C cx2 � cx1 C cy2bC ay3c � cy1aC bx1 C by1a � by3c

e0 D cy1 � ax2bC ay2 C ax3c � by1 � ay3 C bx1aC by3 C cx2b � cy2 � cx1a � bx3c:

(16.18)
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The value of d is then solved from (16.18). Comparing the expressions for d
in (16.15) and (16.18), we note that the reduced Groebner basis in Solution 16.1
gave a linear function while the Sturmfels’ approach results in a cubic polynomial.
Both expressions however lead to the same numerical results. The advantage of
reduced Groebner basis over the Sturmfels’ approach, however, is that the solution
is uniquely determined. Sturmfels’ approach requires prior information to choose
the admissible value of d from the three solutions. Once this value has been selected,
the coordinates fx; yg are then solved in terms of d as follows:

1. Hiding x and solving in terms of d from . f1; f2/ of (16.13) gives

�
h1 WD .ad � 1/yC .axC dx � y1ad � x1d � x1aC y1/zD 0
h2 WD .bd � 1/yC .bxC dx � y2bd � x2d � x2bC y2/zD 0:

(16.19)

Applying (5.13) leads to

Jx D det

2
66664

@h1
@y

@h1
@z

@h2
@y

@h2
@z

3
77775 D det

�
.ad � 1/ .axC dx � y1ad � x1d � x1aC y1/
.bd � 1/ .bxC dx � y2bd � x2d � x2bC y2/

�
:

(16.20)

The Jacobian determinant of (16.20) is

�
x D �.y1 C ady2 � ad2y2b � ad2x2 � adx2bC x1abd � y2 C y2bdC x2d
Cx2bC y1ad2b � y1ad � y1bd � x1d � x1aC x1d2b/=.aC ad2 � b � d2b/:

(16.21)

2. Hiding y and solving in terms of d from . f2; f3/ of (16.13) gives

�
k1 WD .bC d/xC .bdy� y � y2bd � x2d � x2bC y2/zD 0
k2 WD .cC d/xC .cdy � y � y3cd � x3d � x3cC y3/zD 0;

(16.22)

whose Jacobian determinant

Jy D det

2
6664

@k1
@x

@k1
@z

@k2
@x

@k2
@z

3
7775 D det

�
.bC d/ .bdy� y � y2bd � x2d � x2bC y2/
.cC d/ .cdy� y � y3cd � x3d � x3cC y3/

�
:

(16.23)
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leads to

�
y D �.�y2d C by3 � by3cd � bx3d � bx3cC x2bcC dy3 � y3cd2 � x3d2

�dx3cC y2bdcC y2bd2 � y2cC x2d2 C x2bdC x2dc/=.�bd2 � bC cd2 C c/

(16.24)

Once d has been computed from (16.18), it is used in (16.21) and (16.24) to obtain
x and y respectively. The unknown orientation in the horizontal plane can now be
computed via � D tan�1d.

Example 16.1 Let us consider the Example given by [296, p. 234] with our axis
defined such that the Easting refer to the Y�axis and the Northing refer to the
X�axis. The input data are given in Table 16.1 for the coordinates of three known
stations A; B and M which are denoted by P1; P2 and P3 respectively in Fig. 16.3.
Table 16.2 gives directional observations Ti j i 2 f1; 2; 3g from the observing
unknown station P 2 E

2 (whose unknown x; y coordinates and orientation parameter
� are sought) to three known stations Pi 2 E

2 j i 2 f1; 2; 3g whose coordinates
Xi;Yi j i 2 f1; 2; 3g are given in Table 16.1. The obtained results from either
reduced Groebner basis or Sturmfels’ resultant algebraic approaches are presented
in Table 16.3. They are identical to those of [296, p. 234] once we interchange the
axes. If Sturmfels’ solution is adopted in (16.18), two complex and one real values
of d are obtained. The real value, which is identical to that obtained from reduced
Groebner basis solution (16.15) is used to solve for � from � D tan�1d.

Table 16.1 Coordinates of
known stations
Pi 2 E

2 j i 2 f1; 2; 3g
Easting Northing

Station Y.m/ X.m/

P1 46;867:94 5537:00

P2 51;293:86 6365:89

P3 49;666:56 4448:58

Table 16.2 Directions
measured from unknown
station P 2 E

2 to known
stations
Pi 2 E

2 j i 2 f1; 2; 3g

Horizontal directions
Station ı ’ ”

P1 60 07 50

P2 265 18 22

P3 326 33 59

Table 16.3 Position and
orientation of station P 2 E

2.
Easting Northing Orientation unknown

Station Y.m/ X.m/ ı ’ ”

P 48;613:3384 6361:1690

� 4 35 34:7
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16.2.2 Three-Dimensional Resection

16.2.2.1 Exact Solution

Closed form solution of three-dimensional resection problem concerns itself with
the determination of position and orientation of a point P connected by angular
observations of type horizontal directions Ti and vertical directions Bi to three
known stations P1;P2;P3 (see e.g., Fig. 16.4 on p. 343). From these angular
measurements, distances are derived by solving equations known as Grunert’s
equations. Once the distances have been established, the unknown position P is
determined using ranging techniques that we discussed in Sect. 15.3.2. The closed
form solution of the three-dimensional resection problem is completed by solving
the unknown orientation parameters that relate the global reference frame F

� to
the local level reference frame of type F

�. As we have already pointed out in
Sect. 16.1, several procedures have been suggested for solving Grunert’s equations.
This section presents three alternative algebraic methods for solving explicitly the
three-dimensional resection problem namely; Groebner basis, polynomial resultants
and Grafarend-Lohse-Schaffrin methods.

16.2.2.2 Solution of Grunert’s Distance Equations

We begin in Solution 16.2 by deriving Grunert’s distance equations. These equa-
tions relate;

(i) known distances Sij; i; j D 1; 2; 3 ji ¤ j computed from known stations,
(ii) unknown distances Si; i D 1; 2; 3 between the unknown station P 2 E

3, and
three known stations Pi 2 E

3 j i 2 f1; 2; 3g and
(iii) the spatial angles  ij; i; j D 1; 2; 3 ji ¤ j derived from measured horizontal

directions Ti and vertical directions Bi in the local level reference frame F:�

In Solution 16.2, multiplying (13.11) on p. 251 by (16.25) leads to (16.26). After
manipulations of (16.27),(16.28) and (16.29), space angles  ij can be written in

P2

S3

P

S2

S31

ψ12 ψ23

P1

S1

S12
S23

P3

Fig. 16.4 Geometrical interpretation of the 3D resection
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terms of spherical coordinates fTi;Big ;
˚
Tj;Bj

�
of points Pi and Pj with respect to a

theodolite orthogonal Euclidean frame F� as in (16.30). The Grunert’s equations for
the three unknown distances S1; S2; S3 are then written in terms of known distances
S12; S23; S31 and space angles  12;  23;  31 (illustrated in Fig. 15.13) as in (16.32).
Solution of (16.32) was first proposed by J. A. Grunert [236]. Procedures that were
later developed sought to optimize the solution of (16.32) in terms of computational
steps. In particular, the interest was to reduce the order of the univariate polynomial
that resulted following the solution of (16.32). Such procedures were encountered
in Sect. 16.1. In what follows, we present algebraic solution of (16.32).

Solution 16.2 (Derivation of Grunert’s distance equations)

.�2/
�
cos Tj cos Bj; sin Tj cos Bj; sin Bj

�
Sj (16.25)

2
6666666664

.�2/ŒcosTjcosBj; sinTjcosBj; sinBj�SiSj

2
4 cosTicosBi

sinTicosBi

sinBi

3
5 D

.�2/Œ.Xj � X/; .Yj � Y/; .Zj � Z/�

2
4Xi � X

Yi � Y
Zi � Z

3
5

(16.26)

.Xj � X/.Xi � X/ D XjXi � XjX � XiX C X2

.Xi � Xj/.Xi � Xj/ D X2i � 2XiXj C X2j
.Xi � X/.Xi � X/ D X2i � 2XiX C X2

.Xj � X/.Xj � X/ D X2j � 2XjX C X2

3
7775)

) .Xi � Xj/
2 � .Xi � X/2 � .Xj � X/2 D �2.Xj � X/.Xi � X/

(16.27)

2
6666666664

.�2/ŒcosTjcosBj; sinTjcosBj; sinBj�SiSj

2
4 cosTicosBi

sinTicosBi

sinBi

3
5 D

8<
:
.Xi � Xj/

2 C .Yi � Yj/
2 C .Zi � Zj/

2�
�.Xi � X/2 � .Yi � Y/2 � .Zi � Z/2�
�.Xj � X/2 � .Yj � Y/2 � .Zj � Z/2

9=
;

(16.28)

2
66664

�2 ˚sin Bj sin Bi C cos Bj cos Bi cos.Tj � Ti/
�

SiSj D

D

8̂
<
:̂

�
Xi � Xj

�2 C �Yi � Yj
�2 C �Zi � Zj

�2�
� .Xi � X/2 � .Yi � Y/2 � .Zi � Z/2�
� �Xj � X

�2 � �Yj � Y
�2 � �Zj � Z

�2

9>=
>;

(16.29)

cos ij D cos Bi cos Bj cos.Tj � Ti/C sin Bi sin Bj (16.30)



16.2 Geodetic Resection 345

"
�2 cos ijSiSj D S2ij � S2i � S2j
S2ij D S2i C S2j � 2SiSj cos ij

(16.31)

2
64

S212 D S21 C S22 � 2S1S2 cos 12

S223 D S22 C S23 � 2S2S3 cos 23

S231 D S23 C S21 � 2S3S1 cos 31

(16.32)

16.2.2.3 Groebner Basis Solution of Grunert’s Equations

In-order to quicken our understanding of the application of Groebner basis to solve
Grunert’s distance equations (16.32), let us consider a simple case of a regular
tetrahedron. A regular tetrahedron presents a unique case where all the distances and
spatial angles of Fig. 16.4 are equal. Instead of computing Groebner basis using 4.37
on p. 50, we will demonstrate by a hand computation how Groebner basis can be
computed. Later, we will apply (4.37) to solve the general case of (16.32). We begin
by expressing (16.32) in algebraic form

2
64

x21 � 2a12x1x2 C x22 � a0 D 0
x22 � 2b23x2x3 C x23 � b0 D 0
x21 � 2c31x1x3 C x23 � c0 D 0;

(16.33)

where the unknown distances fS1; S2; S3g that appear in (16.32) are denoted by
fx1; x2; x3g. The distances between known stations fS12; S23, S31g are denoted by
fao; bo; cog, while the constants fa12; b23; c31g represent fcos 12; cos 23; cos 31g
respectively. Equation (16.33) therefore has only the distances fx1; x2; x3g as
unknowns. These are the distances relating the unknown station P0 to the known
stations PijfiD1;2;3g. Grafarend [229] demonstrated that for each of the quadratic
equation in (16.33), there exists an elliptical cylinder in the planes fx1; x2g ; fx2; x3g
and fx3; x1g for the first, second and third equations respectively. These cylinders are
constrained to their first quadrant since the distances are positive thus

˚
x1 2 R

C� ;˚
x2 2 R

C� and
˚
x3 2 R

C�. For a regular tetrahedron, the distances x1 D x2 D x3
joining the unknown station P 2 E

3 to three known stations Pi 2 E
3jfiD1;2;3g

are all equal to the distances S12 D S23 D S31 between the known stations.
Let us give these distances a value Cpd. The spatial angles are also equal (i.e.,
 12 D  23 D  31 D 60ı). In Solution 16.3, a hand computation of Groebner
basis of (16.33) is carried out and used to find the Grunert’s distances for the
regular tetrahedron (i.e., show that the desired solutions for fx1; x2; x3g 2 R

C are
x1 D x2 D x3 D C

p
d:/
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Solution 16.3 (Hand computation of Groebner basis for a regular tetrahedron)
For a regular tetrahedron, where  ij D 60ı; and a0 D b0 D c0 D d, (16.33) is re-
written in lexicographic order x1 > x2 > x3 as

2
64

x21 � x1x2 C x22 � d D 0
x22 � x2x3 C x23 � d D 0
x21 � x1x3 C x23 � d D 0;

(16.34)

giving rise to the Ideal I (e.g., 4.15 on p. 42) as

I D ˝x21 � x1x2 C x22 � d; x22 � x2x3 C x23 � d; x21 � x1x3 C x23 � d
˛

� R Œx1; x2; x3� ;
(16.35)

whose generators G are

2
64

g1 D x21 � x1x2 C x22 � d

g2 D x21 � x1x3 C x23 � d

g3 D x22 � x2x3 C x23 � d:

(16.36)

Desired now are the Groebner basis (simplified structure) of the generators (16.36)
of the Ideal I in (16.35). Using (4.24) on p. 46, the S pair polynomials
.g1; g2/; .g1; g3/; .g2; g3/ are computed from the generators (16.36). From B.
Buchberger’s third criterion explained in Chap. 4, we notice that LM.g2/ D x21
divides the LCM.g1; g3/ D x21x

2
2: One therefore suppresses .g1; g3/ and considers

only .g1; g2/; .g2; g3/ instead. S.g1; g2/ gives

S.g1; g2/ D �x1x2 C x1x3 C x22 � x23; (16.37)

which is reduced with respect to G by subtracting g3 to obtain

� x1x2 C x1x3 � 2x23 C x2x3 C d: (16.38)

Equation (16.38) does not reduce to zero and is added to the original list G of the
generating set of the Ideal I as g4. The S–polynomial pairs to be considered next
are S.g2; g3/; S.g2; g4/ and S.g3; g4/ from the new generating set G D fg2; g3; g4g.
Since LM.g2/ and LM.g3/ are relatively prime, S.g2; g3/ reduces to zero modulo G
(S.g2; g3/ !G 0). The S pair polynomials remaining for consideration are .g2; g4/
and .g3; g4/. S.g2; g4/ gives

S.g2; g4/ D x21x3 C x1d � 2x1x
2
3 C x2x

2
3
� x2d; (16.39)

which is reduced with respect to G by subtracting x3g2 to give

x1d � x1x
2
3 C x2x

2
3 � x2d � x33 C x3d; (16.40)
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Equation (16.40) does not reduce to zero and is added to the list G of the generating
set of the Ideal I as g5. The S–polynomial pair to be considered next is S.g3; g4/
from the new generating set G D fg2; g3; g4; g5g . S.g3; g4/ gives

S.g3; g4/ D �x1x
2
3 C x1dC 2x2x

2
3 � x22x3 � x2d; (16.41)

which is reduced with respect to G by subtracting g5 and adding x3g3 to give

2x33 � 2x3d: (16.42)

Equation (16.42) is a univariate polynomial and completes the solution of the set G
of Groebner basis summarized as

G WD

2
66666664

g2 D x21 � x1x3 C x23 � d

g3 D x22 � x2x3 C x23 � d

g4 D �x1x2 C x1x3 � 2x23 C x2x3 C d

g5 D x1d � x1x23 C x2x23 � x2d � x33 C x3d

g6 D 2x33 � 2x3d:

(16.43)

From the computed Groebner basis in (16.43), one notes that the element g6 D 2x33�
2x3d is a cubic polynomial in x3 and readily gives the values of x3 D

n
0 ;˙pd

o
.

The solutions to the Grunert’s distance equations (16.33) for a regular tetrahedron
are then deduced as follows: Since S3 D x3 2 R

C; the value of S3 D C
p

d. This is
substituted back in g3 D x22 � x2x3 C x23 � d and g2 D x21 � x1x3 C x23 � d to give

x2 D
n
0 ;Cpd

o
and x1 D

n
0 ;Cpd

o
respectively. This completes the solution of

Grunert’s distance equations (16.33) for the unknown distances x1 D x2 D x3 D
Cpd as we had initially assumed.

Having demonstrated a hand computation of Groebner basis of the Grunert’s
distance equations (16.32) for a regular tetrahedron, let us consider next the general
case. The geometry of the three-dimensional resection problem in practice is hardly
a regular tetrahedron. Beginning by expressing (16.32) algebraically as

2
64

g1 WD x21 C x22 C a12x1x2 C a0 D 0
g2 WD x22 C x23 C b23x2x3 C b0 D 0
g3 WD x23 C x21 C c31x3x1 C c0 D 0;

(16.44)

where

2
4 S1 D x1 2 R

C; S2 D x2 2 R
C; S3 D x3 2 R

C;
�2 cos 12 D a12;�2 cos 23 D b23;�2 cos 31 D c31;
�S212 D a0;�S223 D b0;�S231 D c0;

(16.45)
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one forms the Ideal

I D< x21 C x22 C a12x1x2 C a0; x
2
2 C x23 C b23x2x3 C b0; x

2
3 C x21 C c31x3x1 C c0 > :

(16.46)

We then seek the Groebner basis of the generators of the Ideal (16.46). Following
lexicographic ordering fx1 > x2 > x3g, (4.37) on p. 50 is applied as

GroebnerBasisŒfg1; g2; g3g; fx1; x2; x3g�; (16.47)

giving the Groebner basis of the Ideal (16.46) expressed in [30, Boxes 3-3a and
3-3b]. Distances can also be derived from (16.44) using reduced Groebner basis.
We leave it as an exercise for the reader to try and solve the unknown distances
fx1; x2; x3g in (16.44) using reduced Groebner basis (4.39) on p. 51.

16.2.2.4 Polynomial Resultants’ Solution of Grunert’s Distance Equations

Besides the use of Groebner bases approach demonstrated above, polynomial
resultants techniques can also be used to solve Grunert’s equations for distances.
We illustrate the solution of the problem using F. Macaulay formulation of
Sect. 5.3.1 and B. Sturmfels’ formulation presented in Sect. 5.3.2. We start by
expressing (16.44) as

2
64

R1 WD x21 C x22 C a12x1x2 C a0 D 0

R2 WD x22 C x23 C b23x2x3 C b0 D 0

R3 WD x21 C x23 C c31x1x3 C c0 D 0:

(16.48)

Clearly, (16.48) is not homogeneous (see Definition 5.1 on p. 54). It is therefore
homogenized by introducing the fourth variable x4 and treating the variable which
is to be solved, say x1; as a constant (i.e., hiding it by giving it degree zero). The
resulting homogenized polynomial is

2
64

R11 WD x22 C a12x1x2x4 C .a0 C x21/x
2
4 D 0

R21 WD x22 C x23 C b23x2x3 C b0x24 D 0
R31 WD x23 C c31x1x3x4 C .x21 C c0/x24 D 0;

(16.49)

which is simplified as

2
64

R11 WD x22 C a1x2x4 C a2x24 D 0
R21 WD x22 C x23 C b1x2x3 C b2x24 D 0
R31 WD x23 C c1x3x4 C c2x24 D 0;

(16.50)
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with the coefficients denoted as a1 D a12x1; a2 D .a0 C x21/; b1 D b23; b2 D
b0; c1 D c31x1; c2 D .c0 C x21/.

Approach 1 (F. Macaulay Formulation):

The first step involves the determination of the total degree of (16.50) using (5.8)
on p. 57 which gives d D 4. In the second step, one formulates the general
set comprising the monomials of degree 4 in three variables by multiplying the
monomials of (16.50) by each other. These monomials form the elements of the set
Xd (e.g., 5.9 on p. 57) as

Xd D
8<
:

x42; x32x4; x22x
2
3; x32x3; x22x

2
4; x22x3x4; x2x33

x2x34; x2x23x4; x2x3x24; x23x
2
4; x3x34; x44; x43; x33x4

9=
; ; (16.51)

which is now partitioned in step 3 according to (5.10) on p. 57 as

2
6666666664

Xd
i D fx˛ j ˛i � di and ˛j < dj;8j < ig

X42 D fx42; x32x4; x22x
2
3; x32x3; x22x

2
4; x22x3x4g

X43 D fx2x23x4; x23x
2
4; x2x33; x43; x33x4g

X44 D fx2x34; x2x3x24; x3x34; x44g:

(16.52)

In the fourth step, the polynomials Fi are formed using the sets in (16.52) according
to (5.11) on p. 57 giving rise to

2
666666666664

F1 WD X42
x22

f1 D fx22f1; x2x4f1; x23f1; x2x3f1; x24f1; x3x4f1g

F2 WD X43
x23

f2 D fx2x4f2; x24f2; x2x3f2; x23f2; x3x4f2g

F3 WD X44
x24

f3 D fx2x4f3; x2x3f3; x3x4f3; x24f3g:

(16.53)

Finally, the matrix A of dimension (15 � 15) is formed as discussed on p. 57. Its
rows are the coefficients of the fi in (16.53) and the columns are the monomials
fc1 D x42, c2 D x32x3, c3 D x32x4, c4 D x22x

2
3, c5 D x22x3x4, c6 D x22x

2
4, c7 D x2x33 ,

c8 D x2x23x4, c9 D x2x3x24, c10 D x2x34, c11 D x43, c12 D x33x4, c13 D x23x
2
4, c14 D x3x34

and c15 D x44g,
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elements of the sets formed in (16.52). The matrix A is

A D

2
66666666666666666666666666664

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15
x22f1 1 0 a1 0 0 a2 0 0 0 0 0 0 0 0 0

x23f1 0 0 0 1 0 0 0 a1 0 0 0 0 a2 0 0

x2x3f1 0 1 0 0 a1 0 0 0 a2 0 0 0 0 0 0

x24f1 0 0 0 0 0 1 0 0 0 a1 0 0 0 0 a2
x3x4f1 0 0 0 0 1 0 0 0 a1 0 0 0 0 a2 0

x2x4f1 0 0 1 0 0 a1 0 0 0 a2 0 0 0 0 0

x2x4f2 0 0 1 0 b1 0 0 1 0 b2 0 0 0 0 0

x24f2 0 0 0 0 0 1 0 0 b1 0 0 0 1 0 b2
x23f2 0 0 0 1 0 0 b1 0 0 0 1 0 b2 0 0

x3x4f2 0 0 0 0 1 0 0 b1 0 0 0 1 0 b2 0

x2x3f2 0 1 0 b1 0 0 1 0 b2 0 0 0 0 0 0

x2x3f3 0 0 0 0 0 0 1 c1 c2 0 0 0 0 0 0

x3x4f3 0 0 0 0 0 0 0 0 0 0 0 1 c1 c2 0

x24f3 0 0 0 0 0 0 0 0 0 0 0 0 1 c1 c2
x2x4f3 0 0 0 0 0 0 0 1 c1 c2 0 0 0 0 0

3
77777777777777777777777777775

:

The determinant of this matrix is a univariate polynomial of degree 8 in the variable
x1 given in [31, Box 3-1]. Its roots can be obtained using Matlab’s roots command.
Once these roots have been obtained, the admissible solution is substituted in the
third expression of (16.48) on p. 348 to obtain the value of x3 2 R:C The obtained
value of x3 2 R

C is in turn substituted in the second expression of (16.48) to obtain
the last variable x2 2 R:C The admissible values of distances are deduced with the
help of prior information.

Approach 2 (B. Sturmfels’ Formulation):

From (16.50) on p. 348, the determinant of the Jacobi matrix is computed as

J D det

2
6666666664

@R11
@x2

@R11
@x3

@R11
@x4

@R21
@x2

@R21
@x3

@R21
@x4

@R31
@x2

@R31
@x3

@R31
@x4

3
7777777775
; (16.54)

respectively

J D det

2
4 2x2 C a1x4 0 2a2x4 C a1x2
2x2 C b1x3 2x3 C b1x2 2b2x4

0 2x3 C c1x4 2c2x4 C c1x3

3
5 ; (16.55)
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which gives a cubic polynomial in x2; x3; x4 as

J D 8x2x3c2x4 C 4x2c1x
2
3 C 4b1x

2
2c2x4 C 2b1x

2
2c1x3 � 8x2b2x4x3 � 4x2b2x24c1

C 4a1x
2
4x3c2 C 2a1x4c1x

2
3 C 2a1x

2
4b1x2c2 C 2a1x4b1x2c1x3 � 4a1x

2
4b2x3

� 2a1x
3
4b2c1 C 8x2a2x4x3 C 4x2a2x

2
4c1 C 4a1x

2
2x3 C 2a1x

2
2c1x4 C 4b1x

2
3a2x4

C 2b1x3a2x
2
4c1 C 2b1x

2
3a1x2;

whose partial derivatives with respect to x2; x3; x4 can be written in the form (5.15)
on p. 59. The coefficients bij and aij are given as in [31]. The computation of the
resultant of the matrix using (5.16) on p. 59 leads to a univariate polynomial in x1
of degree eight, e.g., [31, Box 3-2].

Fischler and Bolles [171, pp. 386–387, Fig. 5] have demonstrated that because
every term in (16.32) is either a constant or of degree 2, for every real positive
solution, there exist a geometrically isomorphic negative solution. Thus there are at
most four positive solutions to (16.32). This is because (16.32) has eight solutions
according to [130, p. 415] who states that for n independent polynomial equations
in n unknowns, there can be no more solution than the product of their respective
degrees. Since each equation of (16.32) is of degree 2 there can only be up to eight
solutions.

Finally, in comparing the polynomial resultants approach to Groebner basis
method, the latter in most cases is slow and there is always a risk of the com-
puter breaking down during computations. Besides, the Groebner basis approach
computes unwanted intermediary elements which occupy more space and thus lead
to storage problems. The overall speed of computation is said to be proportional
to twice exponential the number of variables [354–356, 358]. This has led to
various studies advocating for the use of the alternate method; the resultant and
specifically multipolynomial resultant approach. Groebner bases can be made faster
by computing the reduced Groebner bases as explained in Chap. 4. For the special
cases used throughout this book, however, this bound is not so tight since the size
of the solution sets are finite. In such cases, there exist single exponential bounds.

Polynomial resultants on the other hand involve computing with larger matrices
which may require a lot of work. For linear systems and ternary quadrics, Sturmfels’
approach offers a remedy through the application of the Jacobi determinants. Once
the distances have been computed, they are subjected to the ranging techniques
(Chap. 15) to compute positions. Finally, the three-dimensional orientation parame-
ters are computed from (9.10) on p. 133.

16.2.2.5 Linear Homotopy Solution

Example 16.2 (3D resection problem) Let us express the Grunert’s equa-
tions (16.32) in the following form,

x21 � 2f12x1x2 C x22 � d12 D 0 (16.56)
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Table 16.4 Data for 3D resection problem

'1;2 '2;3 '3;1 S1;2 S2;3 S3;1
1.843620 1.768989 2.664537 1560.3302 755.8681 1718.1090

Table 16.5 Solutions of the start system

i x1i x2i x3i

1 �0:898097 C 0:439797i 0:551935C 0:833887i 0:433001� 0:901393i
2 �0:898097 C 0:439797i 0:551935C 0:833887i �0:433001 C 0:901393i
3 �0:898097 C 0:439797i �0:551935 � 0:833887i 0:433001� 0:901393i
4 �0:898097 C 0:439797i �0:551935 � 0:833887i �0:433001 C 0:901393i
5 0:898097� 0:439797i 0:551935C 0:833887i 0:433001� 0:901393i
6 0:898097� 0:439797i 0:551935C 0:833887i �0:433001 C 0:901393i
7 0:898097� 0:439797i �0:551935 � 0:833887i 0:433001� 0:901393i
8 0:898097� 0:439797i �0:551935 � 0:833887i �0:433001 C 0:901393i

x22 � 2f23x2x3 C x23 � d23 D 0 (16.57)

x23 � 2f31x1x3 C x21 � d31 D 0: (16.58)

Numerical data from Awange-Grafarend [44] are used in the following, see
Table 16.4.

Employing the homotopy solution we need to search 8 paths, because the Bezout
bound in Eqs. (16.56), (16.57), and (16.58) is d D 23 D 8 (d1 D 2; d2 D
2 and d3 D 2). Now we have three start equations in our start system generated
randomly, using Eqs. (6.29)–(6.30),

g1 D .0:988262C 0:152767i/
��0:613157C 0:789961iC x21

�
(16.59)

g2 D .0:367759� 0:929921i/
�
0:390737� 0:920503iC x22

�
(16.60)

g3 D .�0:530598C 0:847624i/
�
0:62502C 0:780609iC x23

�
: (16.61)

Table 16.5. shows the solutions of this start system. These values will be the initial
values of the 8 paths of the homotopy function in Eq. (16.62).

The homotopy function is the linear combination of the target system,
Eqs. (16.56), (16.57), and (16.58) and the start system, Eqs. (16.59), (16.60), and
(16.61),

H .x1; x2; x3; �/ D .1 � �/
0
@g1 .x1; x2; x3/

g2 .x1; x2; x3/
g3 .x1; x2; x3/

1
AC �

0
@ f1 .x1; x2; x3/

f2 .x1; x2; x3/
f3 .x1; x2; x3/

1
A (16.62)
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Table 16.6 End points of the 8 homotopy paths

i x1i x2i x3i

1 �22456:5� 1735:3i 4375:48 C 22;037:5i 20;757:3� 8626:43i
2 �1580:11 770:958 �153:711
3 �22;456:5C 1735:3i 4375:48 � 22;037:5i 20;757:3C 8626:43i
4 �1324:24 �542:261 �430:529
5 1324:24 542:261 430:529

6 22;456:5� 1735:3i �4375:48 C 22;037:5i �20;757:3� 8626:43i
7 1580:11 �770:958 153:711

8 22;456:5C 1735:3i �4375:48 � 22;037:5i �20;757:3C 8626:43i

Table 16.7 Solution of the
3D resection problem

x1 D 1324:240

x2 D 542:261

x3 D 430:529

The homotopy paths will be the solution of the following differential equation
system (see Eq. (6.15)),

d

d�

0
@ x1.�/

x2.�/
x3.�/

1
A D �H�1

x H� (16.63)

where the Jacobian

.Hx/i;j D .1 � �/
�
@gi

@xj

�
i;j

C �
�
@fi
@xj

�
i;j

(16.64)

and

.H�/i D fi .x1; x2; x3/� gi .x1; x2; x3/ : (16.65)

The end points of these 8 homotopy paths belonging to the eight initial values in
Table 16.5 will give us the eight solutions of the target system Eqs. (16.56), (16.57),
and (16.58), provided in Table 16.6.

The corresponding solutions for distances in this example should be all positive
real numbers, consequently only the fifth solution is acceptable, see Table 16.7.

The paths corresponding to this single solution are illustrated in Fig. 16.5.
The computation of the 8 paths takes 0.172 s with Mathematica. The same

solution was achieved using the reduced Groebner basis, eliminating x2 and x3,
resulted in a univariate polynomial of order 8 for x1 taking 6.297 s also in
Mathematica. However, if NSolve employing numerical Groebner basis is used,
the computation time is 0.078 s. Dixon resultant method improved by [298] and
implemented into Mathematica by Nakos and Williams [378] cannot solve the
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Fig. 16.5 Trajectories of the homotopy path providing positive, real solutions for the 3D resection
problem
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problem in practicable time (less than 500 s). However, Dixon method implemented
in the computer algebra system Fermat by [328, 330] can solve the problem in about
0.02 s!

16.2.2.6 Grafarend-Lohse-Schaffrin Approach

In this approach, [229] begin by first setting up rigorous projective equations of
resection problem in three-dimensional Euclidean space. They classify the equations
as six dimensional algebraic system of nonlinear equations of cubic type. In the
second part, a three step procedure is adopted for solving the Grunert’s distance
equations. The nonlinear system of distance equations are projected into linear
equations by means of the technique of degenerate quadrics called the stencil
method. The stencil method gives the solution of Grunert’s equation (16.44) as

2
6666666664

x21 D S21 D �
a00

1C 2a12pC p2

x22 D S22 D �
b00p2

p2 C 2b23pqC q2

x23 D S23 D �
c00

1C 2c31qC q2
:

(16.66)

The solution for p and q are as discussed in [229]. Once the distances have been
solved from (16.66), the three orientation parameters and the cartesian coordinates
of the unknown stations are solved from a 6�6 system of linear equations. The linear
system of equations are formed using the normalized Hamilton-quaternion (see e.g.,
p. 12). For a complete discussion on the approach and a numerical example, we refer
to papers by [229]. Lohse [342] extends the approach by proposing an alternative
solution of the Grunert’s distance equations.

Example 16.3 (Three-dimensional resection given three known stations) In-order
to position station K1 (see Fig. 13.2 on p. 259) by resection method, horizontal
directions Ti and vertical directions Bi are measured to three known stations
Haussmanstr., Eduardpfeiffer, and Liederhalle. The computation is performed in
three steps as follows:

• In the first step, the spatial distances are computed. This involves solving the
Grunert’s distance equations.

• The second step is the computation of the GPS Cartesian coordinates fX;Y;Zg
of the unknown station K1 2 E

3 in the global reference frame using the algebraic
ranging techniques of Chap. 15.

• The three-dimensional orientation parameters are computed in the final step
using the partial Procrustes approach (see Chap. 9).
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Using the computed univariate polynomials in [30, Boxes 3-3a and 3-3b] or [31,
Box 3-2], and the observations in Tables 13.1 and 13.3 on p. 257, the distances
Si D xi 2 R;C i D f1; 2; 3g 2 Z

3C between the unknown station K1 2 E
3

and the known stations Pi 2 E
3 are determined. For control purposes, these

distances are as expressed in Fig. 13.2. The unknown station K1 is located on
top of one of the University’s building at Kepler Strasse 11. Points fP1;P2;P3g
of the tetrahedron fPP1P2P3g in Fig. 15.13 correspond to the chosen known GPS
stations Haussmannstr., Eduardpfeiffer, and Liederhalle. The distance from K1 to
Haussmannstr. is designated S1 D x1 2 R;C K1 to Eduardpfeiffer S2 D x2 2 R;C
while that of K1 to Liederhalle is designated S3 D x3 2 R:C The distances between
the known stations fS12; S23; S31g 2 R

C are computed from their respective
GPS coordinates as indicated in Solution 16.4. Their corresponding space angles
 12;  23;  31 are computed from (16.30) on p. 344.

In-order to control the computations, the Cartesian GPS coordinates of station
K1 are also known. Solution 16.4 gives the unknowns distances fx1; x2; x3g 2 R

C
computed using Groebner basis. The univariate polynomial in x3 has eight roots,
four of which are complex and four real. Of the four real roots two are positive
and two are negative. The desired distance x3 2 R

C is thus chosen amongst the
two positive roots with the help of prior information and substituted in [30, g11
in Box 3-3b] to give two solutions of x1, one of which is positive. Finally the
obtained values of fx1; x3g 2 R

C are substituted in [30, g5 in Box 3-3b] to obtain
the remaining indeterminate x2. Using this procedure, we have in Solution 16.4
that S3 D f430:5286; 153:7112g. Since S3 D x3 2 R;C from prior information
(e.g., Fig. 13.2), we choose S3 D 430:5286, leading to S1 D 1324:2381, and
S2 D 542:2608. These values compare well with their real values depicted in
Fig. 13.2 on p. 259.

Solution 16.4 (Computation of distances for test network Stuttgart Central)
Using the entries of Table 13.1 on p. 257, inter-station distances are computed
by Pythagoras Sij D

p
.Xj � Xi/2 C .Yj � Yi/2 C .Zj � Zi/2, and spatial angles

obtained from (16.30). The values are
2
4 S12 D 1560:3302m

S23 D 755:8681m
S31 D 1718:1090m

and

2
4 12 D 1:843620 23 D 1:768989
 31 D 2:664537

and are substituted in (16.45) on p. 347 to compute the terms a12; b23, c31; a0; b0; c0
which are needed to determine the coefficients of the Groebner basis element g1
in [30, Box 3-3a]. Expressing the univariate polynomial g1 as A8x83CA6x63CA4x43C
A2x23 C A0 D 0; the computed coefficients are:

2
666664

A0 D 4:833922266706213eC 023
A2 D �2:306847176510587eC 019
A4 D 1:104429253262719eC 014
A6 D �3:083017244255380eC 005
A8 D 4:323368172460818e� 004:
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The solutions to the univariate polynomial equation are then obtained using Matlab’s
roots command as

�
c D ŒA8 A7 A6 A5 A4 A3 A2 A1 A0�
x3 D roots.c/;

where A7;A5;A3;A1 are all zero. The obtained values of x3 are:

x3 D

2
666666666664

�20;757:2530734872C 8626:43262759353i
�20;757:2530734872� 8626:43262759353i
20;757:2530734872C 8626:4326275935i
20;757:2530734872� 8626:4326275935i
430:528578109464
�430:528578109464
153:711222705295
�153:711222705295:

Alternatively, the polynomial resultants techniques can be used to solve the
Grunert’s distance equations. They proceed as follows:

(a) The F. Macaulay formulation discussed in Sect. 5.3.1 solves for the determinant
of the matrix A leading to a univariate polynomial in x1. The solution of the
obtained univariate polynomial equation expressed in [31, Box 3-1] leads to
similar results as those of Groebner basis, i.e.,

2
666666666666666666666666664

det.A/ D A8x81 C A6x61 C A4x41 C A2x21 C A0
A0 D �4:8715498798062226; A2 D 4:7481554715870820

A4 D �113109755605017
A8 D �0:000432336817247789; A6 D 435;283:472057364

x1 D �22;456:4891074245C 1735:29702574406i
�22;456:4891074245� 1735:29702574406i
22;456:4891074245C 1735:29702574406i
22;456:4891074245� 1735:29702574406i
1580:10924379877

�1580:10924379877
1324:23808451944

�1324:23808451944
x3 D 430:528578109536;�2783:30427366986
x2 D 542:260767703823; �711:800947103387:
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(b) The B. Sturmfels formulation discussed in Sect. 5.3.2 solves the determinant
of a 6 � 6 matrix leading to a univariate polynomial in x1. The solution of
the obtained univariate polynomial equation expressed in [31, Box 3-2] gives
identical results as those of Groebner basis, i.e.,

2
666666666666666666666666664

det.A/ D A8x81 C A6x61 C A4x41 C A2x21 C A0
A0 D �1:9486199519224927; A2 D 1:8992621886348321

A4 D �452439022420067
A8 D �0:00172934726897456; A6 D 1;741;133:88822977

x1 D �22;456:4891075064C 1735:29702538544i
�22;456:4891075064� 1735:29702538544i
22;456:4891075064C 1735:29702538544i
22;456:4891075064� 1735:29702538544i
1580:10924379877

�1580:10924379877
1324:23808451944

�1324:23808451944
x3 D 430:528578109535;�2783:30427366986
x2 D 542:260767703824; �711:800947103388:

The computed distances from F. Macaulay and B. Sturmfels’ approaches above tally.
The required solutions fx1; x2; x3g obtained from Groebner basis computation and
those of multipolynomial resultants are the same {i.e, 1324.2381 m, 542.2608 m,
430.5286 m} respectively. The computed distances are then used to determine the
position of K1 using ranging techniques discussed in Sect. 15.3.2. The unknown
orientation elements are computed from (9.10) on p. 133.

16.2.2.7 3D-Resection to More Than Three Known Stations

In the preceding section, only three known stations were required to solve in a
closed form the three-dimension resection problem for the position and orientation
of the unknown station K1. If superfluous observations are available, due to the
availability of several known stations, as in the case of the test network Stuttgart
Central, closed form three-dimensional resection procedures give way to Gauss-
Jacobi combinatorial approach. We illustrate this by means of Example 16.4.

Example 16.4 (Three-dimensional resection given more than three known stations)
From the test network Stuttgart Central in Fig. 13.2 of Sect. 13.6, the three-
dimensional coordinates fX;Y;Zg of the unknown station K1 are sought. Using



16.2 Geodetic Resection 359

observations in Tables 13.2 and 13.3 on p. 260, the algorithm is applied in four
steps as follows:

Step 1 (combinatorial solution):
From Fig. 13.2, 35 minimal combinatorials are formed using (7.34) on p. 105.
The systems of nonlinear Grunert’s distance equations (16.32) for each of the
35 combinatorials is solved in a closed form to give the distances linking the
unknown station K1 to the 7 known stations. Use is made of either Groebner
basis or polynomial resultants approaches as already discussed in Sect. 16.2.2.
Each combinatorial minimal subset results in 3 distances, thus giving rise to a
total of 105 .3 � 35/ which are used in the next steps as pseudo-observations.

Step 2 (error propagation to determine the dispersion matrix †):
The variance-covariance matrix is computed for each of the combinatorial set
j D 1; : : : ; 35 using error propagation. Equation (16.32) on p. 345 is applied
to obtain the dispersion matrix † using (7.39) as discussed in Example 7.4 on
p. 107.

Step 3 (rigorous adjustment of the combinatorial solution points):
The 105 combinatorial distances from step 1 are finally adjusted using the linear
Gauss-Markov model (7.15) on p. 98. Each of the 105 pseudo-observations is
expressed as

Sj
i D Si C "j

i ji 2 f1; 2; 3; 4; 5; 6; 7g; j 2 f1; 2; 3; 4; 5; 6; 7; : : : ; 35g;

and placed in the vector of observation y. The coefficients of the unknown
distances Si are placed in the design matrix A. The vector � comprises the
unknowns Si. The solutions are obtained via (7.18) and the root-mean-square
errors of the estimated parameters through (7.19) on p. 99. The results of
the adjusted distances, root-mean-square-errors and the deviations in distances
are presented in Table 16.8. These deviations are obtained by subtracting the
combinatorial derived distance Si from its ideal value S in Table 13.2 on
p. 260. The adjusted distances in Table 16.8 were: K1-Haussmanstr..S1/, K1-
Eduardpfeiffer .S2/, K1-Lindenmuseum .S3/, K1-Liederhalle .S4/, K1-Dach
LVM .S5/, K1-Dach FH .S6/ and K1-Haussmanstr .S7/.

Table 16.8 Gauss-Jacobi
combinatorial derived
distances

Value Root mean square Deviation
Distance .m/ .m/ �.m/

S1 1324:2337 0:0006 0:0042

S2 542:2598 0:0006 0:0011

S3 364:9832 0:0006 �0:0035
S4 430:5350 0:0008 �0:0063
S5 400:5904 0:0007 �0:0067
S6 269:2346 0:0010 �0:0037
S7 566:8608 0:0005 0:0027
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Step 4 (determination of position by ranging method):
The derived distances in Table 16.8 are then used as in Example 15.6 on p. 326
to determine the position of K1.

Example 16.5 (Comparison between exact and overdetermined 3d-resection solu-
tions)

In this example, we are interested in comparing the solutions of the position of
station K1 obtained from;

• closed form procedures of either Groebner basis or polynomial resultants,
• closed form solution of Gauss-Jacobi combinatorial for the overdetermined 3d-

resection to the 7-stations.

To achieve this, 11 sets of experiments were carried out. For each experiment,
the position of K1 was determined using Groebner basis and the obtained values
subtracted from the known position in Table 13.1 on p. 257. The experiments
were then repeated for the Gauss-Jacobi combinatorial approach. In Table 16.9,
the deviation of the positions computed using Gauss-Jacobi combinatorial approach
from the real values, for the 11 sets of experiments are presented. In Figs. 16.6, 16.7
and 16.8, the plot of the deviations of the X;Y;Z coordinates respectively are
presented.

From the plots of Figs. 16.6, 16.7 and 16.8, it is clearly seen that closed form
solutions with more than three known stations yield better results. For less accurate
results such as that of locating a station in cadastral and engineering surveys,
Groebner basis and polynomial resultants are useful. For more accurate results,
resecting to more than three known stations would be desirable. In this case, one
could apply the Gauss-Jacobi combinatorial algorithm. The problem can also be
solved successfully by Extended-Newton method.

Table 16.9 Deviation of
position of station K1 from
the real value in Table 13.1

Set No. �X.m/ �Y.m/ �Z.m/

1 �0:0026 0:0013 �0:0001
2 �0:0034 �0:0001 0:0009

3 0:0016 0:0005 0:0028

4 0:0076 0:0007 0:0016

5 0:0027 0:0020 0:0005

6 �0:0011 0:0004 0:0020

7 0:0027 �0:0000 0:0005

8 0:0014 0:0012 �0:0016
9 0:0010 0:0006 0:0005

10 �0:0005 �0:0039 0:0007

11 0:0016 0:0001 �0:0001
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Fig. 16.8 Deviations of Z � Coordinates

16.3 Photogrammetric Resection

Similar to the case of the scanner resection in Fig. 16.1 on p. 334, photogrammetric
resection concerns itself with the determination of the position and orientation of
the aerial camera during photography (see e.g., Fig. 16.9). At least three scene
objects are required to achieve three-dimensional resection. The coordinates of the
perspective center of the camera and the orientation which comprises the elements
of exterior orientation are solved by three-dimensional photogrammetric resection.
Once the coordinates and the orientation of the camera have been established,
they are used in the intersection step (see Sect. 17.3) to compute coordinates of
the pass points. Besides, they also find use in transformation procedures where
coordinates in the photo plane are transformed to ground system and vice versa. The
three-dimensional photogrammetric resection is formulated as follows: Given image
coordinates of at least three points fpi; pjg, respectively, i ¤ j (e.g., in Fig. 16.9),
determine the position fX0;Y0;Z0g and orientation f!; �; �g of the perspective
center p.

In practice, using stereoplotters etc., the bundle of rays projected from the
perspective center to the ground are normally translated and rotated until there
exist a match between points on the photograph and their corresponding points
on the ground. The mathematical relationship between the points f�i; �i; f g on the
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Fig. 16.9 Photogrammetric three-dimensional resection. Orientation of the photo space with
respect to the object space. {�O; �O; c} define elements of interior orientation while {XO; YO; ZO}
are part of the exterior orientation elements besides the rotation elements

photographs and their corresponding ground points fXi;Yi;Zig are related by

2
66664

�i D �0 � f
r11.Xi � X0/C r21.Yi � Y0/C r31.Zi � Z0/

r13.Xi � X0/C r23.Yi � Y0/C r33.Zi � Z0/

�i D �0 � f
r12.Xi � X0/C r22.Yi � Y0/C r32.Zi � Z0/

r13.Xi � X0/C r23.Yi � Y0/C r33.Zi � Z0/
;

(16.67)

where f is the focal length, f�0; �0g the perspective center coordinates on the photo
plane and rij the elements of the rotation matrix (see Sect. 20.2.1 p. 462 for details)

R D
2
4 r11 r12 r13

r21 r22 r23
r31 r32 r33

3
5 j!;�;� : (16.68)

The solution of (16.67) for the unknown position fX0;Y0;Z0g and orientation
f!; �; �g is often achieved by;
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• first linearizing about approximate values of the unknowns,
• application of least squares approach to the linearized observations,
• iterating to convergence.

In what follows, we present algebraic solutions of (16.67) based on the Grafarend-
Shan Möbius and Groebner basis/polynomial resultant approaches.

16.3.1 Grafarend-Shan Möbius Photogrammetric Resection

In this approach of [225], the measured image coordinates fxi; yi; f g of point pi and
fxj; yj; f g of point pj are converted into space angles by

cos ij D xixj C yiyj C f 2q
x2i C y2i C f 2

q
x2j C y2j C f 2

: (16.69)

Equation (16.69) is the photogrammetric equivalent of (16.30) on p. 344 for geodetic
resection. The Grafarend-Shan algorithm operates in five steps as follows:

Step 1: The space angles  ij relating angles to image coordinates of at least four
known stations are computed from (16.69).

Step 2: The distances xi�xj from the given cartesian coordinates of points pi and
pj are computed using

sij D
q
..xi � xj/2 C .yi � yj/2 C .zi � zj/2/jfi ¤ jg: (16.70)

Step 3: Using the distances from (16.70) and the space angles from (16.69) in step
1, Grunert’s distance equations (16.32) are solved using the Grafarend-Lohse-
Schaffrin procedure discussed in Sect. 16.2.2.6.

Step 4: Once the distances have been obtained in step 3, they are used to compute
the perspective center coordinates using the Ansermet’s algorithm [12].

Step 5: The orientation is computed by solving (20.3) on p. 462.

16.3.2 Algebraic Photogrammetric Resection

The algebraic algorithms of Groebner basis or polynomial resultants operate in five
steps as follows:

Step 1: The space angles  ij relating the angles to the image coordinates of at
least four known stations are computed from (16.69).

Step 2: The distances xi�xj from the given cartesian coordinates of points pi and
pj are computed from (16.70).
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Table 16.10 Image
coordinates in Photo 1010:
f D 153;000:000Œ�m�

Point No. x.�m/ y.�m/

100201 1 18;996:171 �64;147:679
100301 2 113;471:749 �73;694:266
200201 3 16;504:609 16;331:646

200301 4 128;830:826 21;085:172

300201 5 13;716:588 106;386:802

300301 6 120;577:473 128;214:823

Table 16.11 Image
coordinates in Photo 1020:
f D 153;000:000Œ�m�

Point No. x.�m/ y.�m/

100201 1 �74;705:936 �71;895:580
100301 2 5436:953 �78;524:687
200201 3 �87;764:035 7895:436

200301 4 3212:790 10;311:144

300201 5 �84;849:923 94;110:338

300301 6 802:388 106;585:613

Step 3: Using the distances from step 2 and the space angles from step
1, Grunert’s distance equations in (16.32) are solved using procedures of
Sect. 16.2.2.4.

Step 4: Once distances have been solved in step 3, they are used to compute the
perspective center coordinates using ranging techniques of Chap. 15.

Step 5: The three-dimensional orientation parameters are computed from (9.10)
on p. 133.

Example 16.6 (Three-dimensional photogrammetric resection) In this example, we
will use data of two photographs adopted from [523]. From these data, we are
interested in computing algebraically the perspective center coordinates of the two
photographs. The image coordinates of photographs 1010 and 1020 are given in
Tables 16.10 and 16.11 respectively. The corresponding ground coordinates are as
given in Table 16.12. Table 16.14 gives for control purposes the known coordinates
of the projection center adopted from [523]. We use four image coordinates (No.
1,2,3,5) to compute algebraically the perspective center coordinates. From these
image coordinates, combinatorials are formed using (7.34) on p. 105 and are as
given in Table 16.13. For each combination, distances are solved using reduced
Groebner basis (4.39) on p. 51. Once the distances have been computed for each
combination, the perspective center coordinates are computed using the ranging
techniques of Chap. 15. The mean values are then obtained. The results are summa-
rized in Table 16.13. A comparison between the Groebner basis derived results and
those of Table 16.14 is presented in Table 16.15. Instead of the mean value which
does not take weights into consideration, the Gauss-Jacobi combinatorial techniques
that we have studied can be used to obtain refined solutions. For photo 1020, the first
combination 1-2-3 gave complex values for the distances S2 and S3. For computation
of the perspective center in this example, the real part was adopted.
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Table 16.12 Ground
coordinates

Point X(m) Y(m) Z(m)

100201 �460:000 �920:000 �153:000
100301 460:000 �920:000 0:000

200201 �460:000 0:000 0:000

200301 460:000 0:000 153:000

300201 �460:000 920:000 �153:000
300301 460:000 920:000 0:000

Table 16.13 Algebraic computed perspective center coordinates

Photo 1010

Combination S1.m/ S2.m/ S3.m/ X.m/ Y.m/ Z.m/

1-2-3 1918:043 2008:407 1530:000 �459:999 0:000 1530:000

1-2-5 1918:043 2008:407 1918:043 �459:999 0:000 1530:000

1-3-5 1918:043 1530:000 1918:043 �459:292 0:000 1530:000

2-3-5 2008:407 1530:000 1918:043 �459:999 0:000 1530:000

Mean �459:822 0:000 1530:000

Photo 1020

Combination S1.m/ S2.m/ S3.m/ X.m/ Y.m/ Z.m/

1-2-3 2127:273 1785:301 1785:301i 460:001 0:001 1529:999

1-2-5 2127:273 1785:301 2127:273 460:001 0:000 1530:000

1-3-5 2127:273 1785:301 2127:272 460:036 0:002 1529:978

2-3-5 1785:301 1785:301 2127:273 459:999 0:000 1530:000

Mean 460:009 0:000 1529:994

Table 16.14 Ground
coordinates of the projection
centers

Photo X(m) Y(m) Z(m)

1010 �460:000 0:000 1530:000

1020 460:000 0:000 1530:000

Table 16.15 Deviation of
the computed mean from the
real value

Photo �X(m) �Y(m) �Z(m)

1010 �0:178 0:000 0:000

1020 �0:009 0:000 0:006

16.4 Application Pareto Approach to Photogrammetry

In computer vision and model-based vision, resection-intersection technique [561,
576, 585] is often used to perform adjustment that plays an essential role in
obtaining accurate structure and motion estimates (see, e.g., [559, 580]), while in
photogrammetry, it is used to perform bundle adjustment to obtain a 3-dimensional
(3D) terrain models from images taken from photographs. Indeed, in recent years,
the demand for realistic reconstruction and modeling of objects and human bodies
is increasing both for animation and medical applications (e.g., [582]). For example,
the significant role played by resection and intersection is discussed e.g., in
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Börlin [560], where resection methods is applied in radiostereometric analysis
(RSA) to reconstruct the projection geometries, while the intersection technique
is used to reconstruct the 3D-coordinates of the patient markers. Radiostereometric
analysis has been widely used in orthopaedics for studying, e.g., prosthetic implant
migration and wear, joint stability and kinematics, bone growth, and fracture healing
[560]. These applications of resection-intersection method, just to list but a few,
underscores the need for further improvements and refinements of the existing
techniques, and also testing others that could offer more flexibility and optimum
results.

Generally, in order to determine the 3D position .X;Y;Z/ of a point in space (e.g.,
the 3-dimensional (3D) coordinates of the patient markers) through intersection, at
least two photo images of the point are required with coordinates .x; y/ on each
of the photo planes. In addition to these coordinates, carrying out intersection
requires one to know the orientation parameters of the two cameras, which is
often solved through resection. For resection, the internal and external orientation
parameters of a camera model are determined based on the collinearity equations
(see, e.g., [370, 557, 565]). In computer vision, the problem of the determination of
the exterior orientation parameters is known as the pose estimation problem (see,
e.g., [570]). Grussenmeyer and Al Khalil [570] present a survey of methods for the
determination of the exterior parameters in photogrammetry and classify them into
three groups; approximate methods, the standard point-based methods derived from
collinearity, coplanarity or co-angularity conditions, and the orientation methods
based on constraints and projective geometry concepts (e.g., [567, 568]).

There exists several methods for solving the combined resection-intersection
problem, e.g., Grafarend and Shan [569] who present an algorithmic based on
Möbius barycentric coordinates and Bartoli [559] who adapt a quasi-linear opti-
mizations that uses the original cost function of bundle adjustment, which preserves
optimality, and handle a great variety of camera models in a unified manner. Most
frequently used methods to solve resection problem, however, are the different
variants of the direct linear transformation (DLT), see e.g. Young-Hoo Kwon [587]
and Hartley and Zisserman [572]. In certain simplified cases, even symbolic or semi-
symbolic solutions can be given, (see, e.g., [33, 555, 558]).

However, all of these DLT methods have three common features (see, e.g., [556]),
namely (i) the orientation parameters of each camera are estimated independently
through resection but the positions determination using intersection uses all of
the orientation and image coordinates simultaneously, (ii) the equations used for
parameter estimation contain the measured coordinates implicitly, which means
that the resulting residuals have no physical interpretation, and (iii) because of this
implicit formulation, neither the reference nor the measured image coordinates can
be weighted, and errors in the image as well as the reference coordinates cannot be
taken into consideration.

The three features discussed above put a bottleneck to the nonlinear least squares
estimation model used in obtaining accurate structure and motion. The nonlinear
least squares model aims at estimating a vector of parameters �, from a linearized
model y D A� C e that includes an observation vector y, a vector of normally
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distributed errors e, and a matrix of variables A [159]. In this model, the underlying
assumption is that the design matrix A is fixed or error-free, which is not often the
case in computer vision or photogrammetry since both the image and the reference
coordinates may encounter errors. When both the observation vector y as well as
the design matrix A contain errors, the problem is known as error-in-all-variables
(EIV). Among the methods put forward to solve an EIV problem is the total least
squares (TLS) method (see, e.g., [33, 159, 191, 389, 554]).

In a recent study, however, Paláncz and Awange [581] showed that for EIV
models, when multiple conflicting objectives exist, or for ill-posed problems (see,
e.g., [584]), the TLS lead to larger global and local residuals and suggested the use
of Pareto optimality approach, which has been widely used in economics (see, e.g.,
[247, 506]) to estimate the parameters in EIV models. The use of Pareto optimality
is necessitated by the fact that many real-world problems involve simultaneous
optimization of several incommensurable and often competing objectives (i.e.,
multi-objectives). Always, there is no single optimal solution, but rather a set of
alternative solutions, which are optimal in the wider sense that no other solutions
in the search space are superior to them when all objectives are considered [588].
These solutions, known as Pareto-optimal solutions, were introduced by the Italian
economist and sociologist Vilfredo Pareto (1848–1923) [390].

Pareto optimality has been associated with multi-objective problems for quite
sometime (see, e.g., [109, 552]). Other traditionally available methods for solving
multi-objective problems include the goal attainment approach [508] and weighted
averaging [562]. Considering the Pareto approach, there occur cases, for example,
where the objective to be minimized can be expressed in different forms, resulting
in different parametric values for the estimated unknowns at non-zero residiuals.
Sometimes these objectives may compete in Pareto sense, namely a small change
in the parameters result in an increase of one objective, while decreasing the other.
The Pareto optimal set represents a set of optimal solutions between the conflicting
objectives, which helps the user to gain a better understanding of the problem
structure and supports the decision-maker in choosing the best compromise solution
for the considered alternatives. However, in case of lack of such a supervisor, one
may select an equilibrium solution from the Pareto-set. More details on Pareto
optimality are presented in Chap. 10.

Examples of the application of Pareto optimality are documented, e.g., by Mirza
and Almir [575] who investigated the application of a multi-objective genetic
algorithm based on the Pareto approach as a tool for decision making support in
geospatial analysis, and Pressl et al. [390] who employs Pareto optimality to develop
a prototype for a web-based route planning service for people with disabilities
who have special requirements on their mobility. Other applications are presented
in the works of Lin [317], Zitler and Thiele [588], Geisler and Trächtler [183],
Saadatseresht et al. [583], and Sonnier [453]. In computer vision, the application
of pareto optimality is reported, e.g., in the works of Dunn et al. [563] and more
recently in Olague and Trujillo [578, 579].



16.5 Resection-Intersection and the Multi-objective Problem 369

To help address the bottleneck faced by nonlinear least squares and its improve-
ment, the TLS, the present work proposes the use of Pareto optimality in photogram-
metry as a possible solution to the resection-intersection models with EIV.

16.5 Resection-Intersection and the Multi-objective Problem

16.5.1 Resection-Intersection Problem

The fundamental photogrammetric problem amounts to the determination of the
interior and exterior orientation parameters of the camera and to obtain the
coordinates of the object space of the corresponding points measured on the
photos [570, 574]. Photogrammetric resection is the problem of determining the
interior and exterior orientation parameters of a camera based on known ground
points (Xj;Yj;Zj) and their corresponding photo plane coordinates (xj, yj). The
determination of the orientation parameters is achieved through the geometrical
collinearity model equations (e.g., [557])

xj D �0 � f
r11
�
Xj � X0

�C r12
�
Yj � Y0

�C r13
�
Zj � Z0

�
r31
�
Xj � X0

�C r32
�
Yj � Y0

�C r33
�
Zj � Z0

� ; (16.71)

and,

yj D �0 � f
r21
�
Xj � X0

�C r22
�
Yj � Y0

�C r23
�
Zj � Z0

�
r31
�
Xj � X0

�C r32
�
Yj � Y0

�C r33
�
Zj � Z0

� ; (16.72)

where �0, �0 are the coordinates of the perspective center on the photo plane, f is
the focal length, ri;j are the elements of the rotation matrix RRR, and X0;Y0;Z0 are
the corresponding coordinates of the perspective center in the ground system. The
parameters �0; �0 and f are the interior orientation parameters, while the elements
of RRR and X0;Y0;Z0 comprise elements of the exterior orientation parameters (e.g.,
Fig. 16.9).

The representation of the mathematical relationship between a point on the photo
plane (xj; yj) and its corresponding point (Xj;Yj;Zj) in the object space can be given
without the scaling factor through the collinearity equations (16.71 and 16.72).
Here, the elements of the rotation matrix are expressed by the elements of the skew
matrix SSS as [558]

SSS D
0
@ 0 �c b

c 0 �a
�b a 0

1
A :

The rotation matrix then becomes (e.g.,[558])
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RRR D .III3 � SSS/�1 .III3 C SSS/ ; (16.73)

where III3 is a 3 � 3 identity matrix. This leads to

RRR D

0
BB@

1Ca2�b2�c2

1Ca2Cb2Cc2
2ab�2c

1Ca2Cb2Cc2
2.bCac/

1Ca2Cb2Cc2

2.abCc/
1Ca2Cb2Cc2

1�a2Cb2�c2

1Ca2Cb2Cc2
� 2.a�bc/
1Ca2Cb2Cc2

2.�bCac/
1Ca2Cb2Cc2

2.aCbc/
1Ca2Cb2Cc2

1�a2�b2Cc2

1Ca2Cb2Cc2

1
CCA:

In a general case, there are 9 parameters to be computed, namely, the interior
orientation parameters .�0; �0 and f /, as well as the exterior orientation parameters
(a, b, c and X0;Y0;Z0). Every corresponding point-pair provides 2 collinearity
equations, therefore to compute the 3 internal and the 6 external parameters, one
needs a minimum 5 corresponding point-pairs. Consequently, even in the minimum
case, we have an overdetermined system (5 � 2 D 10 equations and 9 unknowns).
In practice, there are more measured points than the minimum leading to an
overdetermined system of equations, which can be solved for the parameters in a
least squares sense (i.e., resection).

In its implicit form, the collinearity equations (16.71 and 16.72) can be written
as

�xj D
�
xj � �0

� �
r31
�
Xj � X0

�C r32
�
Yj � Y0

�C r33
�
Zj � Z0

��C
fr11

�
Xj � X0

�C r12
�
Yj � Y0

�C r13
�
Zj � Z0

� D 0: (16.74)

and

�yj D
�
yj � �0

� �
r31
�
Xj � X0

�C r32
�
Yj � Y0

�C r33
�
Zj � Z0

��C
fr21

�
Xj � X0

�C r22
�
Yj � Y0

�C r23
�
Zj � Z0

� D 0; (16.75)

where the elements ri;j’s of the rotation matrix RRR depend on the elements (a; b; c) of
the skew matrix SSS. Considering n points on a photo-plane, one has 2n equations to
estimate the parameter � = (a, b, c, X0, Y0,Z0, �0, �0, f ) belonging to this image.

In real situation, when the initial values for the parameters above are not
known, the global solution of the overdetermined polynomial equations (16.74)
and (16.75) is not trivial. One possibility is to solve a determined subsystem
with numerical Groebner basis or alternatively with linear homotopy method, then
employ the results as initial values for the extended Newton method for solving
the overdetermined system (see e.g., [558]). Undoubtedly, the most effective global
method is the global minimization methods. Here we use random – search method to
minimize the residual of the equations in a least square sense. The objective function
based on the implicit equations (16.74 and 16.75) is

GI.�/ D
nX

jD1

	
�2xj
C �2yj



: (16.76)



16.5 Resection-Intersection and the Multi-objective Problem 371

x,y

u,v

 X,Y,Z

Fig. 16.10 Photogrammetric 3D intersection. x; y are the image coordinates of the left photo while
u; v are the corresponding coordinates of the same image on the right photo. X; Y; Z provides the
corresponding coordinates in the object space

More often, the same camera is used to aquire the two photo-planes. Therefore, the
determined internal orientation parameters . f ; �0; �0/ computed from the data of
the two photo-planes should be the same. However the simultaneously estimated
parameters from both photo-planes requires the solution of an ill-conditioned
problem, where the parameters are mostly estimated independently for the two
photo-planes accepting that f .1/  f .2/, �.1/0  �.2/0 , and �.1/0  �.2/0 . Once the interior
and exterior orientation parameters of the two cameras have been determined
through resection, the next step entails the determination of the position .X;Y;Z/
of a point in 3D space from at least 2 photo image coordinates (x; y) and (u; v)
registered on (at least) two photo planes (e.g., Fig. 16.10) through the procedure
known as intersection.

To determine each ground coordinate (Xj;Yj;Zj), the corresponding coordinates
on the two photo planes .xj; yj/, and .uj; vj/ are needed. It means that to compute the
space (ground) coordinates of a point, we have 4 collinearity equations (2 equations
belonging to each photo-plane) being linear in the 3 unknowns (X;Y;Z). Therefore,
theoretically, any 3 equations could be considered although it is more reasonable to
carry out the computation simultaneously as a linear regression problem.

The two collinearity equations for the first photo plane are

f .1/ ..X � X01/ r1;1 C .Y � Y01/ r1;2 C .Z � Z01/ r1;3/C
.x � �01/ ..X � X01/ r3;1 C .Y � Y01/ r3;2 C .Z � Z01/ r3;3/ D 0; (16.77)
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and,

f .1/ ..X � X01/ r2;1 C .Y � Y01/ r2;2 C .Z � Z01/ r2;3/
C .y � �01/ ..X � X01/ r3;1 C .Y � Y01/ r3;2 C .Z � Z01/ r3;3/ D 0: (16.78)

Similarly the equations for the second photo plane are

f .2/ ..X � X02/R1;1 C .Y � Y02/R1;2 C .Z � Z02/R1;3/
C .u � �02/ ..X � X02/R3;1 C .Y � Y02/R3;2 C .Z � Z02/R3;3/ D 0; (16.79)

and,

f .2/ ..X � X02/R2;1 C .Y � Y02/R2;2 C .Z � Z02/R2;3/
C .v � �02/ ..X � X02/R3;1 C .Y � Y02/R3;2 C .Z � Z02/R3;3/ D 0: (16.80)

16.5.2 Resection-Intersection Objectives

Traditionally, the system of the collinearity equations employed to estimate the
parameters of the i-th camera (�i) can be written in implicit form,

Pj
�
�i;Xj;Yj;Zj; xj; yj

� D 0; j D 1; : : : ; n � 5; (16.81)

where(Xj;Yj;Zj) and (xj; yj) are the measured coordinates corresponding to the
ground and photo plane systems, respectively. Having a minimum of two cameras
with known parameters, the coordinates of an optional object point X;Y;Z can be
computed from the coordinates of two projected points in two separate images .x; y/
and .u; v/ employing 4 collinearity equations

x D px .�1;X;Y;Z/
y D py .�1;X;Y;Z/
u D pu .�2;X;Y;Z/
v D pv .�2;X;Y;Z/ ;

(16.82)

or in implicit form,

Px .�1;X;Y;Z; x; y/ D 0
Py .�1;X;Y;Z; x; y/ D 0
Pu .�2;X;Y;Z; u; v/ D 0
Pv .�2;X;Y;Z; u; v/ D 0:

(16.83)

The problem is overdetermined with 4 equations and 3 unknowns, and the least
squares method can be used again (one-point intersection in Fig. 19.2). In order to
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formulate an explicit multi-objective EIV-model, the one-point intersection problem
in Eq. (16.82) is expressed in a least squares sense employing symbolic pseudo-
inverse. The coordinates of an object point .X;Y;Z/ is expressed explicitly as the
functions of the corresponding photo plane coordinates (x; y) and (u; v) as

X D pX .�1; �2; x; y; u; v/
Y D pY .�1; �2; x; y; u; v/
Z D pZ .�1; �2; x; y; u; v/ ;

(16.84)

from which the unknown camera parameters (�1; �2) are determined from the
explicit objective function

GXYZ .�1; �2/ D
nX

jD1
WXj

�
Xj � pX

�
�1; �2; xj; yj; uj; vj

��2C
WYj

�
Yj � pY

�
�1; �2; xj; yj; uj; vj

��2C
WZj

�
Zj � pZ

�
�1; �2; xj; yj; uj; vj

��2
;

(16.85)

which is constructed using every weighted jth ground point (Xj;Yj;Zj) and their
corresponding photo planes coordinates (xj; yj) and (uj; vj), j D 1; : : : ; n. Now
this objective function has a clear physical interpretation, namely, it is the sum
of the square of the differences between the measured and the computed ground
coordinates. Its minimization results into the orientation parameters of both cameras
simultaneously (i.e., resection). In order to estimate the parameters �1; �2, a
different objective function can be determined on the basis of the weighted measured
and computed coordinates of the photo plane points as

Gxyuv .�1; �2/ D
nX

jD1
wxj

�
xj � px

�
�1;Xj;Yj;Zj

��2C
wyj

�
yj � py

�
�1;Xj;Yj;Zj

��2C
wuj

�
uj � pu

�
�2;Xj;Yj;Zj

��2C
wvj

�
vj � pv

�
�2;Xj;Yj;Zj

��2
:

(16.86)

Since there exists two competing objectives (Eqs. 16.85 and 16.86), probably the
best strategy is to find a trade-off between them, namely, to consider their linear
combinations resulting from a mono-objective function

G .�1; �2; �/ D �GXYZ .�1; �2/C .1 � �/Gxyuv .�1; �2/ ; (16.87)

where � are the weighting parameters. This is a classical multi-objective opti-
mization (MO) problem, where the objectives GXYZ and Gxyuv are competing
with no unique solution. Instead, the concept of non-inferiority (also called Pareto
optimality) must be used to characterize the objectives [109]. The solution of a MO
problem is not a particular value, but a set of values of the decision variables (called
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Perato-set). For each element in this set, none of the objective functions can be
increased without a decrease of some of the remaining objective functions. Every
such a decision-value is referred to as Pareto-optimal.

Since the dimensions of the different objectives are different, in our case, the
ground coordinates are in m-units and the image coordinates in pixel, it is reasonable
to introduce normalized, dimensionless multi-objective functions, for example,
Eqs. (16.85) and (16.86) can be written as

QGXYZ .�1; �2/ D GXYZ .�1; �2/ �GXYZmin

GXYZmax � GXYZmin
;

and

QGxyuv D Gxyuv � Gxyuvmin

Gxyuvmax � Gxyuvmin
:

The dimensionless form of the mono-objective function then becomes

QG .�1; �2; �1; �2/ D � QGXYZ .�1; �2/C .1� �/ QGxyuv .�1; �2/ : (16.88)

16.5.3 An Alternative Development of the Multi-objective
Problem

The symbolic form of the explicit expression of the collinearity equations for the
space coordinates (X, Y, Z) with one-point intersection is possible if there are only
two photo-planes. In that case, Eq. (16.82) or Eq. (16.83) can be solved for space
coordinates as an overdetermined linear system using symbolic pseudoinverse. To
get an alternative form of Eq. (16.85) for three or more photo-planes, which does not
require the explicit form Eq. (16.84), let us introduce the adjustments of the space
coordinates �Xj, �Yj, �Zj. Then, Eq. (16.83) can be written for the i-th camera
(photo-plane) as

PX
�
�i;Xj C�Xj;Yj C�Yj;Zj C�Zj; xj

.i/; yj
.i/
� D 0; j D 1; : : : ; n

PY
�
�i;Xj C�Xj;Yj C�Yj;Zj C�Zj; xj

.i/; yj
.i/
� D 0; j D 1; : : : ; n; (16.89)

where i D 1; 2; : : : ;m is the number of the photo-planes. Now the objective function
GXYZ (�1,�2,. . .�n) can be written as

GXYZ .�1; �2; : : : ; �m/ D
nX

jD1
WXj�Xj

2 CWYj�Yj
2 CWZj�Zj

2; (16.90)
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with Eq. (16.89) as a constraint. The payment for avoiding the explicit expression
of the space coordinates is relatively high. Using the explicit form of .X;Y;Z/, we
need to compute 9m unknown parameters. However, the number of the unknowns
parameters will be 9mC3n in case Eq. (16.90) is used. In addition, one should solve
an optimization problem under constrains. For example, in case of two photo-planes
(m = 2) with n = 5 points on each, there are 9 � 2 D 18 unknown parameters versus
18C 3 � 5 D 33.

16.5.4 Summary of the Steps of the Algorithm

16.5.4.1 Read Input Data

The coordinates of the points on the photo – planes :
xj
.i/; yj

.i/; j D 1; 2; . . . n; i D 1; 2; . . . m
The space coordinates :
Xj;Yj;Zj; j D 1; 2; . . . n;
where n is the number of points on a photo – plane, and m is the number of the

photo-planes.

16.5.4.2 Defining the Objective Functions

(a) for the photo – planes:

Gxy .�1; �2; . . .�m/ D
mX

iD1

nX
jD1

wxj

�
xj
.i/ � px

�
�i;Xj;Yj;Zj

��
2

Cwyj

�
yj
.i/ � py

�
�i;Xj;Yj;Zj

��
2

(b) for the space coordinates
1.
– use one – point intersection to express the space coordinates explicitely, see

Eq. 16.85:

GXYZ .�1; �2; . . .�m/ D
nX

jD1
WXj

�
Xj
.i/ � pX

�
�1; �2; . . .�m; xj

.i/; yj
.i/
��
2

CWYj

�
Yj
.i/ � pY

�
�1; �2; . . .�m; xj

.i/; yj
.i/
��
2

CWZj

�
Zj
.i/ � pZ

�
�1; �2; . . .�m; xj

.i/; yj
.i/
��
2

– alternatively use implicit expression of the space coordinates as constraint
while minimizing the adjustments of the space coordinates, see Eq. 16.90.
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GXYZ .�1; �2; . . .�m/ D
nX

jD1
WXj�Xj

2 CWYj�Yj
2 CWZj�Zj

2;

with the constraints

PX
�
�i;Xj C�Xj;Yj C�Yj;Zj C�Zj; xj

.i/; yj
.i/
� D 0; j D 1..n

PY
�
�i;Xj C�Xj;Yj C�Yj;Zj C�Zj; xj

.i/; yj
.i/
� D 0; j D 1..n:

16.5.4.3 Computing the Dimensionless Form of the Conflicting Objective
Functions

(a) Minimize Gxy to get�1.xy/; �2
.xy/; . . .�m

.xy/

(b) Minimize GXYZ to get�1.XYZ/; �2
.XYZ/; . . .�m

.XYZ/

(c) The maximum values of the objective functions

Gxymax D Gxy
�
�1

.XYZ/; �2
.XYZ/; . . .�m

.XYZ/
�

GXYZmax D GXYZ
�
�1

.xy/; �2
.xy/; . . .�m

.xy/
�

(d) Compute the dimensionless forms

QGxy .�1; �2; . . .�m/ D Gxy .�1; �2; . . .�m/ �Gxymin

Gxymax �Gxymin

and

QGXYZ .�1; �2; . . .�m/ D GXYZ .�1; �2; . . .�m/� GXYZmin

GXYZmax � GXYZmin

16.5.4.4 Computing the Pareto Set

(a) Set discrete values �k2[0, 1], k =1,2, . . . N
(b) Minimize the mono-objective function for all �k

QG .�1; �2; . . .�m; �k/ D �k QGXYZ .�1; �2; . . .�m/C .1 � �k/ QGxy .�1; �2; . . .�m/

to get the Pareto-set of (�k, �1.k/; �2.k/; . . .�m
.k/) , k =1,2, . . . N

16.5.4.5 Computing the Pareto Front

(a) Set the interpolation functions: �1(�), �2(�). . .�m(�) from the discrete values
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(b) Substitute these functions into the objective functions,

QGxy.�/ D QGxy .�1.�/; �2.�/; . . .�m.�//

and

QGXYZ.�/ D QGXYZ .�1.�/; �2.�/; . . .�m.�//

Then we get the Pareto-front represented in parametric form: QGxy.�/ – QGXYZ.�/

16.5.4.6 Selecting a Single Solution

(a) � = 0
we get QGmin D QGxymin therefore the point of the Pareto-front for � D

0is
� QGXYZmax; QGxymin

�
:

(b) � = 1
we get QGmin D QGXYZmin therefore the point of the Pareto-front for � D

1is
� QGXYZmin; QGxymax

�
:

Consequently to minimize the error of the coordinates of the photo-planes
we should select a point of the Pareto-front represented by the parameter ��
	 1, and vica versa to minimize the error of the space coordinates one should
select a point of the Pareto-front with ��� 0.

This is therefore a trade-off job for the decision maker.
(c) compute the camera parameters �i

� employing the selected �� as �i
�(��) for

i = 1,2,. . . m.

16.5.4.7 Selecting the Pareto-Balanced Solution

This solution can minimize the overall errors of the coordinates of photo-planes as
well as the space coordinates. The point of the Pareto-front representing this solution
is the closest point to the ideal point (0, 0), which represents zero error for QGxy as
well as for QGXYZ.

(a) use L1 norm

min
�

QGxy.�/C QGXYZ.�/ �! �*

(b) alternatively use L2 norm

min
�

r	 Q.Gxy.�//


2 C � QGXYZ.�/

�
2 �! �*
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In order to determine the normalized dimensionless objective in Eq. (16.88),
the individual minimum and maximum values of the explicit objectives
in Eqs. (16.85) and (16.86) are computed via a local method (Levenberg-
Marquardt) with the results of the traditional solutions as initial guess values.
The maximum values are then computed by substituting the individual
minimums into the counterpart objectives. The multi-objective problem is
then converted into a mono-objective problem by introduction the normalized,
dimensionless objective function (e.g., Eq. (16.88)).

16.6 Photogrammetric Examples

The traditional methods mostly based on implicit equations prefer to minimize the
residual of these equations and result in much better fitting in the image coordinates
than in the space coordinates (see the Manhattan example in Sect. 16.6.2). However,
one may need a balance between these two types of errors (camera calibration) or
may prefer to minimize the error in the space coordinates (see the architectural
reconstruction example in Sect. 16.6.3). The suggested method based on Pareto
optimum can provide a flexible technique to achieve the minimization of the selected
objective of the user in a properly controlled way.

To demonstrate the capability of the suggested method, three examples are
presented. The first example in Sect. 16.6.1 is adopted from the literature, which is a
real outdoor experiment estimating the orientation parameters of a camera from two
close range images acquired by a nonmetric digital camera. We used this example
to compare the results of our algorithm with those computed using the traditional
approach, as well as to check the robustness of our algorithm in estimating all
camera parameters simultaneously. The second example in Sect. 16.6.2 is a camera
calibration problem, where the interior and exterior orientation parameters are
estimated on the basis of the collinearity equations, employing the data of a
Manhattan-type test field. In this example, the reduction of the transformation errors
on the image, as well as on the space coordinates are equally important. The third
example in Sect. 16.6.3 considers an architectural reconstruction problem, where
real field data of a Merton college court in Oxford (UK) is applied to estimate the
camera matrices. In this case, in order to reconstruct the building space coordinates
from the image coordinates, one has to reduce the errors in the space coordinates.

First, the traditional parameter estimation is presented, using implicit form of the
corresponding equations. Then, employing numerical intersection via linear least
squares (LLS), the quality of the traditional approach is evaluated on the basis of
the corresponding measured values of the ground and the image coordinates.

Next, the one-point intersection problem is solved in a symbolic form by
computing the symbolic pseudo-inverse of the linear overdetermined system to give
explicit expressions for the space coordinates (e.g., Eq. 16.84). To determine the
unknown parameters, the two competing objective functions for sum of squares of
the coordinate errors (e.g., Eqs. 16.85 and 16.86) are formulated. As a last step, the
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Pareto-front is computed and a single element of the Pareto-front selected as the
Pareto optimal solution, which provides the smallest global error for the image as
well as for the space coordinates, separately. In addition the quality of the suggested
method is assessed by considering both the global and local errors, and comparing
them to those of the traditional method.

16.6.1 Han’s Example

This example is based on the problem adopted from Han et al. [571]. During this
outdoor experiment, close-range images from two exposure stations were acquired
using a Nikon D-80 nonmetric digital single-lense reflex (DSLR) camera, see
Fig. 16.11.

The image resolution was 2896�1944 pixels, with pixel size of about 0.8 cm for
a target that is 20 m away from the camera. The same test was also performed using
distorted camera positions by manually adding 30 cm errors to its accurate positions.
The coordinates for the check and control points as well as the two camera stations
were surveyed and precisely determined by a total station. They used pre-computed
parameters f ; �0; �0; a; b; c;X0;Y0;Z0 for both images and estimated the elements
of the rotation matrix (the rotation angles) from the measurements for both images
separately.

In our computation all of the interior and exterior parameters were computed
simultaneously for both images from the measurements, where the interior orienta-

Fig. 16.11 The control and check points of images acquired at the two camera stations (figure
adopted from [571])
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Table 16.16 The extreme and the Pareto optimum solutions

RSME

Gxyuv RSME Gxyuv

� GXYZ 10�8 GXYZ 10�5 QG
0 0:01382 1:22089 0:0326025 3:06455 0 + 1 = 1

1 0:00705 48:7398 0:0232875 19:3629 1 + 0 = 1

0.34 0:00723 1:92424 0:0235795 3:84732 0.0263 + 0.0148 = 0.0411

Table 16.17 Camera parameters corresponding to the selected single Pareto optimum solution
and the results of Han et al. [571] for both images

image 1 image 2

. Han et al. (2011) Han et al. (2011) image 1 image 2

f 0.188843 0.188843 0.019101 0.019443

�0 0.011899 0.011899 0.012430 0.012703

�0 0.008080 0.008080 0.008148 0.007342

X0 305,206.651 305,206.651 305,207.000 305,213.000

Y0 2,767,915.18 2,767,915.18 2,767,915.44 2,767,927.92

Z0 31.345 31.345 30.786 30.831

! �2.8592 �2.0151 �2.8836 �2.0603

' �1.2802 �0.7971 �1.2256 �0.7529

� �2.8419 �1.9666 �2.8645 �2.0005

tion parameters were allowed to take different values for different images. In this
way, we could check the consistency of the result of our parameter estimation.
Employing our algorithm (summarised in Sect. 16.5.4), the Pareto-set and the
Pareto-front were computed for these parameters, and the Pareto balanced solution
– the solution representing the very point of the Pareto front, which is closest to the
ideal point in L1 norm – was selected. Table 16.16 shows the values of the conflicting
objective functions in case of the two extreme solutions (� D 0 and � D 1), as well
as in case of the Pareto optimal solution (� D 0:34) where the QG has its minimum.

Table 16.16 represents the camera parameters corresponding to the Pareto
optimum solution as well as the results of Han et al. [571] for both images. It
can be seen, that although we compute all parameters from the measured data
simultaneously – which is a difficult computation since the problem is an ill
conditioned one – we got close results to those of Han et al. [571] who estimated
the interior and exterior parameters separately. This indicates the robustness of the
suggested Pareto algorithm. In addition the RMSE of the space coordinates in our
case was 0.024 m while Han et al. [571] reported a value of 0.028 m. This example
illustrates that employing Pareto-optimality, one can decide which error is important
to reduce the RMSE of GXYZ (space coordinate side) or the RMSE of Gxyuv(photo
plane coordinate side) when estimating the parameters (Table 16.17).
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16.6.2 The Manhattan-Type Example

First, the traditional solution of the resection problem is applied to the data in
Table 16.18 from the Manhattan-type test [564]. Let us consider the first 9 points
as training and the last 6 points as validation points. The parameter estimation is
then carried out for the training points via solving nonlinear least squares problem
represented by 9 � 4 implicit collinearity equations. The validation points serves
as a check for the quality of the proposed procedure. The points were labeled in
a way that the region of training points covered the validation points. Figure 16.12
shows the Voronoi-cells of the training and the validation points. The training points
are numbered as 1–9, and the validation points are numbered 10–15 for both photo
planes.

The results of the computation are presented in Table 16.19. The corresponding
rotation matrices are presented in Table 16.19.

Substituting these parameters into the collinearity equations, the errors in the
image coordinates (�x,�y) as the difference of the measured and computed values
are determined. Table 16.20 shows these errors as well as those of the L2-norm
of the error vectors, .�xi; �yi/

T for both photo-planes. Since there are 15 points
on each photo plane, our linear system consists of 60 linear equations containing
45 unknowns. Substituting the parameters computed from the resection into the
collinearity equations and solving the linear least squares intersection problem,

Table 16.18 Ground coordinates and the corresponding image coordinates on the two photo
planes where the ground coordinates are (Xi, Yi, Zi) and the coordinates of the corresponding points
on the images are (xi, yi) and (ui, vi), respectively. These data were divided into a training set (1–9)
and a validation set (10–15) (Source: Fekete and Schrott [564])

X Y Z x y u v

Point Œcm� Œcm� Œcm� Œpixel� Œpixel� Œpixel� Œpixel�

111 37:0928 270:932 60:5645 �1904:98 1075:32 �1481:2 1180:57
222 155:314 270:415 70:7968 �944:874 1182:3 �413:785 1190:5
333 186:293 270:774 29:55 �513:899 1002:2 �160:768 926:867
444 37:2884 211:556 20:3706 �1702:67 448:357 �1451:84 527:715
555 216:672 271:041 10:598 �210:173 935:471 57:3334 818:785
666 276:377 271:479 40:1353 305:651 1082:49 556:102 940:561
777 276:824 241:776 50:2347 303:859 852:757 614:891 803:118
888 336:705 211:719 30:7482 902:528 492:02 1052:18 475:928
999 96:9378 122:618 56:9734 �1550:04 �316:229 �1107:88 �104:459
10 96:6709 271:279 19:8864 �1204:64 934:683 �876:831 913:651

11 126:527 270:967 31:904 �1023:43 989:818 �645:626 965:759

12 66:573 241:361 25:873 �1489:44 707:986 �1168:83 759:207

13 186:946 240:736 15:5808 �489:126 698:11 �163:128 663:198

14 156:746 211:534 18:9318 �772:346 455:653 �414:46 487:708

15 97:5291 182:007 34:018 �1350:6 227:194 �978:389 345:786
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Fig. 16.12 The Voronoi-cells of the training (1–9) and the validation points (10–15) on two photo
planes

Table 16.19 Results of the
rotation matrices

RRR1 D
0
B@

0:98586 �0:0174065 0:166662

0:0403779 0:98996 �0:135455
�0:162631 0:140269 0:976666

1
CA ;

and

RRR2 D
0
B@

0:995006 �0:0257385 �0:0964346
�0:0140006 0:920634 �0:390176
0:0988235 0:389577 0:915676

1
CA :

Table 16.20 The errors of the image coordinates (measured-computed)

Mean Variance L2 � norm
. Œpixel�

�
pixel2

�
Œpixel�

Training set �x �y �x �y Mean Variance

photo-plane 1 2:4733 3:6567 4:9693 1:2772 4:7363 2:9347
photo-plane 2 2:38101 3:4946 3:8441 3:8482 4:6224 3:7715
Validation set . . .

photo-plane 1 5:1082 2:0776 7:5663 2:5446 5:7148 7:4121
photo-plane 2 5:6771 1:8655 8:0390 1:3439 6:3514 3:8269

the space coordinates are obtained. The differences between the measured and
computed values (�X, �Y, �Z), as well as the L2-norm of the error vectors (�Xi,
�Yi; �Zi/

T are presented in Table 16.21.
In order to improve this algorithm, two features can be considered (i) the interior

and exterior parameters are estimated simultaneously for both photo planes using
resection (bundle adjustment), or (ii) the parameters are determined by solving the
multi-objective optimization problem using Pareto optimality with the objectives
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Table 16.21 Error in the space coordinates (measured-computed)

Mean Variance L2 � norm
. Œcm�

�
cm2

�
Œcm�

. �X �Y �Z �X �Y �Z Mean Variance

Training set 0.3107 0.2745 0.3166 0.0548 0.0162 0.0338 0.5765 0.0370
Validation set 0.7403 0.3204 0.7035 0.1132 0.0556 0.0672 1.1133 0.1235

Fig. 16.13 The parameter (a) of the skew matrix SSS as function of �

Gxyuv and GXYZ constructed from the explicit expressions of the images as well as
from the ground coordinates (e.g., Eqs. 16.85 and 16.86). This last feature represents
the real novelty of our contribution.

In order to get this explicit expression for the space coordinates in GXYZ,
the one-point intersection problem is solved using Mathematica computer algebra
system. After the computation of the dimensionless form of the conflicting objective
functions, the mono-objective function QG in Eq. (16.88) will be minimized with the
parameters � 2[0, 1] leading to the Pareto-set. As an illustration, Fig. 16.13 shows
the parameter a, one of the element of the skew matrix S as function of �. Using
Levenberg-Marquardt method in parallel way on i7 Intel Nehalem processor with 4
cores (8 threads), the computational speed-up was 1.89 s (i.e., about 2 times faster
than a single core machine) in the case of the two photo-planes.

The Pareto-front, i.e., the corresponding values of the dimensionless objective
functions to the Pareto-set, together with the Pareto balanced solution belonging to
� = 0.5 as well as the result of the traditional solution based on the implicit equations
are shown in Fig. 16.14.
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Fig. 16.14 The Pareto-front with the Pareto balanced optimum (green). The results of the
traditional method is shown in blue

Figure (16.14) shows that the traditional solution using implicit form of the
collinearity equations is not Pareto optimal, since it does not belong to the Pareto-
front. It is remarkable that the left-hand side of the Pareto-front in the figure is
very steep, where the minimum of residual of the photo-plane coordinates QGxyuv is
changing rapidly, while there is practically no change in the minimum of the residual
of the ground coordinates, QGXYZ on the right-hand side of the figure.

Although the Pareto balanced optimum belonging to � = 0.5 provides a minimum
for the normalized total objective (mono-objective), QGXYZ C QGxyuv = 0.0579521
in Eq. (16.88), which is considerably smaller than that of the traditional solution
(1.21389), namely it has considerably smaller residual for the ground coordinates
QGXYZ= 0.0178549 than the traditional solution (1.21375), its residual for the photo-
plane coordinates however is greater QGxyuv = 0.0400972 than that of the traditional
solution (0.00014471). Fortunately, there exists a portion of the Pareto-front, under
the horizontal line, where the optimums represent a superior region over the
traditional solution, i.e., where both normalized objectives are smaller than those
of the traditional solutions (see Fig. 16.15).

This section belongs to the parameter values of � � 0:00137153. Let us
select from this section the optimal solution, which belongs to � D 0:00137. The
corresponding Pareto optimal transformations parameters are shown in Table 16.22.
Now, this selected single solution provides smaller residuals (global errors) for
both objectives than the traditional solution as indicated in Table 16.23. The mean
and variance of the local error vectors are presented in case of the traditional
and the Pareto optimum solution in Table 16.24. As is expected, according to
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Fig. 16.15 The optimum solution of the Pareto-front (red), which provides smaller residual for
both objectives than those of the traditional solution (the points of part of the Pareto front under
the blue line)

Table 16.22 The parameter
values of the optimal Pareto
solution (� D 0:00137) . Photo-plane1 Photo-plane2

a 0:0694594 a 0:206368

b 0:0829882 b �0:0519138
c 0:0147064 c 0:00269866

X01 283:46 X02 168:859

Y01 131:854 Y02 41:6848

Z01 301:617 Z02 300:968

�01 �98:2993 �02 �54:5653
�01 88:39 �02 112:255

f1 2696:62 f2 2678:54

the global result, the selected single optimum solution has reduced the error in
the space coordinates considerably, without practical error increasing in the image
coordinates. The reason for this is due to the fact that the traditional solution has a
strong preference to minimize the image coordinates instead of errors of the space
coordinates.



386 16 Positioning by Resection Methods

Table 16.23 Comparison of the global results of the different solutions

GXYZ Gxyuv

Solution
�
cm2

� �
pixel2

� QGXYZ QGxyuv QG
Traditional solution 3.29327 447.842 1.21375 0.00014471 1.21389

Pareto balanced 1.79202 1570.96 0.0178549 0.0400972 0.0579521

Selected single optimum 2.44152 447.817 0.535245 0.000143808 0.535389
Ideal minimum 1.76961 443.774 0 0 1

Ideal maximum 3.02495 28,555.1 1 1 1

Table 16.24 Statistics of L2-norm of the local error vectors

Selected single
Traditional solution Pareto optimum

. Mean Variance Mean Variance

Training set . .

Photo-plane 1 4.7363 2.9347 4.7700 2.6275

Photo-plane 2 4.6224 3.7715 4.5871 4.0813

Space coordinates 0.5765 0.0370 0.4982 0.0260
Validation set . .

Photo-plane 1 5.7148 7.4121 6.0545 6.9435

Photo-plane 2 6.3514 3.8269 5.9766 2.9984

Space coordinates 1.1133 0.1236 0.9871 0.0552

16.6.3 Architectural Reconstruction Example

There has been intensive effort in Photogrammetry and Computer Vision research
on reconstruction of architecture from photographs. In the following example, the
Pareto optimality approach is employed for reconstruction of a Merton College
court in Oxford. The data is adopted from Werner et al. [586] and are presented
in Fig. 16.16 as well as in Table 16.25. The points in 3D can be seen in Fig. 16.17.

Most frequently, in such photogrammetric applications, instead of collinearity
equations, the relation between the coordinates of points in 3D space and the
corresponding coordinates on an image can be represented by the camera matrix
CCC given as

0
@ xi

yi

1

1
A D

0
@ c11 : : c14
: : : :

c31 : : c11

1
A
0
BB@

Xi

Yi

Zi

1

1
CCA ; (16.91)

also known as the projection matrix [586]. Since the overriding goal is to compute
the 3D space coordinates of an architectural object as precisely as possible, one
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Fig. 16.16 Left: The first photo-plane of Merton College, Oxford, with the data points in red.
Right: the second photo-plane of Merton College, Oxford, with the data points in blue

Table 16.25 Image and space coordinates of the points appearing in Figs. 16.16 and 16.17
(Source: Werner et al. [586])

Point xŒpixel� yŒpixel� uŒpixel� vŒpixel� XŒm� YŒm� ZŒm�

1 705:999 98:9828 745:015 107:986 6:66074 �0:60789 4:15341

2 537:06 243:164 565:024 278:734 4:57591 �0:314284 0:381324

3 886:637 352:008 938:827 416:001 2:10037 �0:205085 7:35645

4 274:06 55:0357 255:239 80:2127 7:28601 5:14973 �0:395317
5 1020:15 146:064 1020:12 170:596 4:71216 0:165413 9:40504

6 351:763 332:001 337:832 366:963 2:87013 3:88323 0:0713809

7 595:754 127:136 631:718 143:193 6:69286 �0:693863 1:67512

8 427:277 175:001 447:456 203:001 5:86426 1:40346 �0:735147
9 240:998 377:619 203:998 434:228 1:81334 6:00578 0:0141997

10 691:011 347:1 722:031 401:938 2:33644 �0:150519 4:07266

11 296:71 92:038 283:676 117:139 6:75543 4:66651 �0:419889
12 168:112 214:997 119:784 252:987 4:30466 7:29488 �0:0117434
13 698:692 155: 740:268 174: 5:80751 �0:925267 3:76603

14 765:159 445:002 801:956 521:002 0:732124 �0:382526 5:24415

15 694:685 119: 736:68 132:002 6:47018 �0:910284 3:70673

16 2:98298 128:5 2:96668 181:091 5:03421 9:90634 0:316602

17 830:993 128:003 884:692 138:002 5:77407 �0:855155 6:26391

18 604:007 238:555 635:01 273:123 4:45486 �0:350295 2:11096

19 735:994 305:993 769:558 354:002 2:97984 �0:156468 4:9221

20 842:392 63:6569 898:512 63:4244 6:53113 �0:553974 6:72735

21 737:164 359:996 770:001 419:999 2:08665 �0:150263 4:91769

22 590:272 178:001 630:331 203: 5:8271 �1:02223 1:2605

23 899:698 434:012 955:923 520:004 0:883655 �0:387393 7:42723

24 110:061 281:037 45:0181 330:655 3:15523 8:21419 0:0342828

25 713:818 285:001 748:573 328:005 3:37495 �0:375693 4:36912
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Fig. 16.17 The Merton College’s data points in 3D with the cloud-point model as background

has to estimate the elements of the camera matrix in such a way that the space
coordinates errors are minimized as much as possible.

In order to do that, first, using these data, the estimation of the elements of the
two camera matrices will be carried out employing implicit equations derived from
these matrices. The explicit equations for the image coordinates are,

xi � .c11; c12; c13; c14/ : .Xi;Yi;Zi; 1/
T

.c31; c32; c33; c34/ : .Xi;Yi;Zi; 1/ T
D 0

and

yi � .c21; c22; c23; c24/ : .Xi;Yi;Zi; 1/
T

.c31; c32; c33; c34/ : .Xi;Yi;Zi; 1/ T
D 0;

with their implicit forms given as

�c14 C c34xi � c11Xi C xiXi � c12Yi C c32xiYi � c13Zi C c33xiZi D 0

and

�c24 � c21Xi C c34yi C Xiyi � c22Yi C c32yiYi � c23Zi C c33yiZi D 0:



16.6 Photogrammetric Examples 389

We have 25 points, therefore to compute the elements of the two camera matrices,
there are 50 equations for each camera. This is a linear regression problem. The
resulting camera matrices are

C1 D
0
@ 549:624 �4237:12 1778:75 39;094:4

�3970:36 �1084:98 �1206:85 38;254:2
1 �2:60846 �2:64161 77:6154

1
A ;

and

C2 D
0
@ 640:323 �1684:9 789:539 13121:

�1595:68 �285:016 �481:946 15709:3
1 �0:390185 �0:809379 25:7232

1
A :

Now, let us employ the Pareto optimum solution. As its first step, we should solve
the one-point intersection problem. In this case, the four equations are

�c14 C c34x � c11X C xX � c12Y C c32xY � c13Z C c33xZi D 0
�c24 � c21X C c34yC Xy � c22Y C c32yY � c23Z C c33yZ D 0

for the first image and

�Xc11 � Yc12 � Zc13 � c14 C XuC Yc32uC Zc33uC c34u

�Xc21 � Yc22 � Zc23 � c24 C Xv C Yc32v C Zc33v C c34v;

for the second image. The symbolic solution of this overdetermined system for
X;Y;Z is then computed using Mathematica computer algebra system. For X for
example, we have

pX
�
�1; �2; xj; yj; uj; vj

� D X;

where the parameters are the elements of the camera matrices, namely

�1 D .c11; c12; c13; c14; c21; c22; c23; c24; c32; c33/ ;

and

�2 D .c11; c12; c13; c14; c21; c22; c23; c24; c32; c33/ :
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Now, the competing objective functions based on the explicit equations can be
defined for the image coordinates as

Gxy .�1/ D
nX

iD1

2
4
 

xi � .c11; c12; c13; c14/ : .Xi;Yi;Zi; 1/
T

.c31; c32; c33; c34/ : .Xi;Yi;Zi; 1/
T

!2

C
 

yi � .c21; c22; c23; c24/ : .Xi;Yi;Zi; 1/
T

.c32; c32; c33; c34/ : .Xi;Yi;Zi; 1/
T

!23
5 ;

and

Guv .�2/ D
nX

iD1

2
4
 

ui � .c11; c12; c13; c14/ : .Xi;Yi;Zi; 1/
T

.c31; c32; c33; c34/ : .Xi;Yi;Zi; 1/
T

!2

C
 
vi � .c21; c22; c23; c24/ : .Xi;Yi;Zi; 1/

T

.c31; c32; c33; c34/ : .Xi;Yi;Zi; 1/
T

!23
5 ;

then

Gxyuv .�1; �2/ D Gxy .�1/C Guv .�2/ :

For the space coordinates,

GXYZ .�1; �2/ D
nX

iDj

h�
Xj � pX

�
�1; �2; xj; yj; uj; vj

��2

C �Yj � pY
�
�1; �2; xj; yj; uj; vj

��2i

C
h�

Zj � pZ
�
�1; �2; xj; yj; uj; vj

��2i
:

The corresponding mono-objective problem leads to Eq. (16.88). The Pareto-set is
computed as before, and the corresponding Pareto-front with the Pareto balanced
solution presented in Fig. 16.18. Since our aim is a 3D reconstruction, we prefer
to reduce the objective GXYZ, i.e., the errors in the space coordinates. The selected
optimum should be on the Pareto-front, where considerable reduction only in GXYZ

is not possible since this would increase Gxyuv. Therefore the optimum was selected
at � D 0:1 as shown by the green point in Fig. 16.18.

Table 16.26 shows the global errors of the different solutions. It can be seen
that in our case, the implicit solution reduces the error of the images coordinates
efficiently, but results in a bigger error in the space coordinates. The corresponding
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Fig. 16.18 The Pareto-front with the Pareto balanced solution (blue point) and Pareto optimum
solution (green point) for the architectural reconstruction

Table 16.26 Comparison of the global results of the different solutions

Solution GXYZ

�
m2
�

Gxyuv

�
pixel2

� QGXYZ QGxyuv QG
Implicit solution 52:787 7671.0 1:24279 0:002040 1:24483

Pareto balanced 2:26596 42098.5 0:024685 0:0167475 0:0414325
Pareto optimum

� D 0:1 1:79308 113010. 0:01328 0:047041 0:060321
Minimum 1:2421 2895.62 0 0 –

Maximum 42:717 2:34372 � 106 1 1 –

camera matrices are

C1 D
0
@ 215:792 �16;133:623 4996:427 156;824:915

�15;154:350 �4002:361 �4629:336 144;267:485
1 �9:9157 11:611 304:012

1
A ;

and

C2 D
0
@ 720:2154 �2097:8694 652:181 14;288:789

�2042:393 �255:0849 �1199:115 20;866:450
1 0:158828 �1:34154 30:01594

1
A :
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Table 16.27 Comparison of the statistics of the local results of the different solutions, where �=
.�X; �Y; �Z/T is the error vector of the space coordinates

Selected single

Pareto optimal

Solution Implicit Pareto balanced � D 0:1

M.�X/; Œm� 0:030154 0:0039071 0:0000549849
M.�Y/; Œm� �0:0138212 �0:011871 �0:00231642
M.�Z/; Œm� �0:0671351 0:00351096 �0:000160302
�2.�X/; Œm2

�
0:0609208 0:00923592 0:00706027

�2.�Y/; Œm2
�

0:739865 0:0473309 0:0411554
�2.�Z/; Œm2

�
1:39283 0:0376726 0:0264903

M .L2 � norm.�// ; Œm� 0:93245 0:259098 0:235654
�2 .L2 � norm.�// ; Œm2

�
1:29377 0:0244858 0:0168648

Table 16.27 shows that the mean values of the space coordinates errors as well as
their variances are smaller in case of the Pareto solutions than in case of the implicit
method. In addition it is also true for the error vectors Œ�X; �Y; �Z�T .

16.7 Concluding Remarks

We suggested a new method to solve photogrammetric resection-intersection
problem. This method based on the explicit formulations of the error of the space
as well as the image coordinates leads to a multi-objective optimization problem
with competitive objectives. The Pareto solution of this optimization problem
provides the user full control to decide which error should be considered to be
more important to decrease. In the absence of a decision maker, our method can
result in an optimal solution where the residuals for both objectives are smaller
than the case of the traditional implicit solution. The illustrative examples indicated
that not only the global errors, but also the local errors and their variance can
be reduced considerably. Although solving a multi-objective optimization problem
requires more computation effort than the single objective problem, employing
Levenberg-Marquardt algorithm in parallel way on a multicore processor minimizes
this handicap. It should also be mentioned that in contrast to the TLS (total least
square) method, this approach allows for the incorporation of both measuring and
modelling errors.

Reconstruction of architectural structures from photographs has recently experi-
enced intensive efforts in computer vision research. This is achieved through the
solution of nonlinear least squares (NLS) problems to obtain accurate structure
and motion estimates. In Photogrammetry, NLS contribute to the determination of
the 3-dimensional (3D) terrain models from the images taken from photographs.
The traditional NLS approach for solving the resection-intersection problem based
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on implicit formulation on the one hand suffers from the lack of provision by
which the involved variables can be weighted. On the other hand, incorporation
of explicit formulation expresses the objectives to be minimized in different forms,
thus resulting in different parametric values for the estimated parameters at non-
zero residuals. Sometimes, these objectives may conflict in a Pareto sense, namely, a
small change in the parameters results in the increase of one objective and a decrease
of the other, as is often the case in multi-objective problems. Such is often the case
with error-in-all-variable (EIV) models, e.g., in the resection-intersection problem
where such change in the parameters could be caused by errors in both image and
reference coordinates.

This chapter showcased the Pareto optimal approach as a possible improvement
to the solution of the resection-intersection problem, where it provides simultaneous
estimation of the coordinates and orientation parameters of the cameras in a two or
multi-station camera system on the basis of a properly weighted multi-objective
function. This objective represents the weighted sum of the square of the direct
explicit differences of the measured and computed ground as well as the image
coordinates. The effectiveness of the proposed method is demonstrated by two
camera calibration problems, where the internal and external orientation parameters
are estimated on the basis of the collinearity equations, employing the data of a
Manhattan-type test field as well as the data of an outdoor, real case experiment.
In addition, an architectural structural reconstruction of the Merton college court in
Oxford (UK) via estimation of camera matrices is also presented. Although these
two problems are different, where the first case considers the error reduction of the
image and spatial coordinates, while the second case considers the precision of the
space coordinates, the Pareto optimality can handle both problems in a general and
flexible way. Further references are [12, 32, 38, 69, 92, 100, 169, 197, 198, 204, 213,
236, 255, 259, 260, 277, 299, 341, 342, 377, 433, 495, 517, 520, 523].



Chapter 17
Positioning by Intersection Methods

17.1 Intersection Problem and Its Importance

The similarity between resection methods presented in the previous chapter and
intersection methods discussed herein is their application of angular observations.
The distinction between the two however, is that for resection, the unknown station
is occupied while for intersection, the unknown station is observed. Resection uses
measuring devices (e.g., theodolite, total station, camera etc.) which occupy the
unknown station. Angular (direction) observations are then measured to three or
more known stations as we saw in the preceding chapter. Intersection approach on
the contrary measures angular (direction) observations to the unknown station; with
the measuring device occupying each of the three or more known stations. It has the
advantage of being able to position an unknown station which can not be physically
occupied. Such cases are encountered for instance during engineering constructions
or cadastral surveying. During civil engineering construction for example, it may
occur that a station can not be occupied because of swampiness or risk of sinking
ground. In such a case, intersection approach can be used. The method is also widely
applicable in photogrammetry. In aero-triangulation process, simultaneous resection
and intersection are carried out where common rays from two or more overlapping
photographs intersect at a common ground point (see e.g., Fig. 15.1).

The applicability of the method has further been enhanced by the Global
Positioning System (GPS), which the authors also refer to as GPS: Global Problem
Solver. With the entry of GPS system, classical geodetic and photogrammetric
positioning techniques have reached a new horizon. Geodetic and photogrammetric
directional observations (machine vision, total stations) have to be analyzed in a
three-dimensional Euclidean space. The challenge has forced positioning techniques
such as resection and intersection to operate three-dimensionally. As already pointed
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out in Chap. 16, closed form solutions of the three-dimensional resection problem
exist in a great number. On the contrary, closed form solutions of three-dimensional
intersection problem are very rare. For instance [224, 225] solved the two P4P or
the combined three-dimensional resection-intersection problem in terms of Möbius
barycentric coordinates in a closed form. One reason for the rare existence of
the closed form solutions of the three-dimensional intersection problem is the
nonlinearity of directional observation equations, partially caused by the external
orientation parameters. One target of this chapter, therefore, is to address the
problem of orientation parameters.

The key to overcome the problem of nonlinearity caused by orientation
parameters is taken from the Baarda Doctrine. Baarda [49, 53] proposed to use
dimensionless quantities in geodetic and photogrammetric networks: Angles in
a three-dimensional Weitzenböck space, shortly called space angles as well as
distance ratios are the dimensionless structure elements which are equivalent
under the action of the seven parameter conformal group, also called similarity
transformation.

17.2 Geodetic Intersection

17.2.1 Planar Intersection

The planar intersection problem is formulated as follows: Given directions or
angular measurements from two known stations P1 and P2 to an unknown station
P0, determine the position fX0;Y0g. The solution to the problem depends on whether
angles or directions are used as discussed in the next section.

17.2.1.1 Conventional Solution

Closed form solution of planar intersection in terms of angles has a long tradition.
Let us consult Fig. 17.1 on p. 396 where we introduce the angles  12 and  21 in

Fig. 17.1 3d-intersection
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the planar triangle � W P0P1P2, with P0;P1;P2 being the nodes. The Cartesian
coordinates fX1;Y1g and fX2;Y2g of the points P1 and P2 are given while fX0;Y0g
of the point P0 are unknown. The angles  12 D ˛ and  21 D ˇ are derived from
direction observations by differencing horizontal directions.  12 D T10 � T12 or
 21 D T20 � T21 are examples of observed horizontal directions T10 and T12 from
P1 to P0 and P1 to P2 or T21 and T20 from P2 to P1 and P2 to P0 respectively. By
means of taking differences we map direction observations to angles and eliminate
orientation unknowns. The solution of the two-dimensional intersection problem in
terms of angles, a classical procedure in analytical surveying, is given by (17.1)
and (17.2) as

X0 D s12
cos˛ sinˇ

sin.˛ C ˇ/ (17.1)

Y0 D s12
sin ˛ sinˇ

sin.˛ C ˇ/ : (17.2)

Note: The Euclidean distance between the nodal points is given by

s12 D
p
.X2 � X1/2 C .Y2 � Y1/2:

In deriving (17.1) and (17.2), use was made of angular observations. In case
directions are adopted, measured values from known stations P1 and P2 to unknown
station P0 are designated T10 and T20 respectively. If the theodolite horizontal circle
reading from point P1 to P0 is set to zero, then the measured angle ˛ is equal to the
directional measurement T12 from point P1 to P2. Likewise if the direction from P2
to P1 is set to zero, the measured angle ˇ is equal to the directional measurement T20
from point P2 to P0. In this way, we make use of both the angles and directions thus
introducing two more unknowns, i.e., the unknown orientation �1 and �2 in addition
to the unknown coordinates fX0;Y0g of point P0. This leads to four observation
equations in four unknowns, written as:

2
66666666666666664

tan.T12 C �1/ D


Y2 � Y1
X2 � X1

�

tan.T10 C �1/ D


Y0 � Y1
X0 � X1

�

tan.T21 C �2/ D


Y1 � Y2
X1 � X2

�

tan.T20 C �2/ D


Y0 � Y2
X0 � X2

�
;

(17.3)
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where fX1;Y1;X2;Y2g are coordinates of the two known stations fP1;P2g, while
fT12;T10;T21;T20g are the measured horizontal directions and fX0;Y0; �1; �2g are
the desired position and orientation of the unknown station P0. In (17.3), the first
and the third expressions contain the orientation elements �1 and �2 as the only
unknowns. They are solved by obtaining the inverse of the tangents as

2
664
�1 D tan�1


Y2 � Y1
X2 � X1

�
� T12

�2 D tan�1


Y1 � Y2
X1 � X2

�
� T21:

(17.4)

Once the unknown orientation elements have been solved in (17.4), they are
substituted in the second and fourth expressions of (17.3) to form simultaneous
equation whose solution give the values fX0;Y0g. Next, let us see how (17.3) can be
solved using reduced Groebner basis (4.39) on p. 51.

17.2.1.2 Reduced Groebner Basis Solution

The left-hand-sides of (17.3) are expanded using additions theorem

tan.˛C ˇ/ D tan ˛C tanˇ

1 � tan ˛ tanˇ
; (17.5)

to give:

2
66666666666666664

tan T12 C tan �1
1 � tan T12tan �1

D


Y2 � Y1
X2 � X1

�

tan T10 C tan �1
1 � tan T10 tan �1

D


Y0 � Y1
X0 � X1

�

tan T21 C tan �2
1 � tan T21 tan �2

D


Y1 � Y2
X1 � X2

�

tan T20 C tan �2
1 � tan T20 tan �2

D


Y0 � Y2
X0 � X2

�
:

(17.6)
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Expanding (17.6) and re-arranging gives trigonometric algebraic expressions

2
66666664

.X2 � X1 C Y2tanT12 � Y1tanT12/tan �1 C X2tanT12 � X1tanT12 C Y1 � Y2 D 0
X0tanT10 C X0tan �1 C Y0tanT10tan �1 � Y0 � X1tan �1 � Y1tanT10tan�1
�X1tanT10 C Y1 D 0
.X1 � X2 C Y1tanT21 � Y2tanT21/tan �2 C X1tanT21 � X2tanT21 C Y2 � Y1 D 0
X0tanT20 C X0tan �2 C Y0tanT20tan �2 � Y0 � X2tan �2 � Y2tanT20tan �2
�X2tanT20 C Y2 D 0:

(17.7)
Denoting

2
664

a1 D tanT12; a2 D tanT21
b D tanT10
c D tanT20
d1 D tan�1; d2 D tan�2;

(17.8)

and substituting in (17.7) leads to four algebraic equations which are arranged in the
lexicographic order fX0 > Y0 > d2 > d1g as

2
6664

f1 D d1X2 � d1X1 C d1Y2a1 � d1Y1a1 C X2a1 � X1a1 C Y1 � Y2 D 0
f2 D X0bC X0d1 � Y0 C Y0bd1 � X1d1 � Y1bd1 � X1bC Y1 D 0
f3 D d2X1 � d2X2 C d2Y1a2 � d2Y2a2 C X1a2 � X2a2 C Y2 � Y1 D 0
f4 D X0cC X0d2 � Y0 C Y0cd2 � X2d2 � Y2cd2 � X2cC Y2 D 0:

(17.9)

Using reduced Groebner basis (4.39) on p. 51, (17.9) is solved as

2
664

GroebnerBasis Œf f1; f2; f3; f4g ; fX0;Y0; d2; d1g ; fX0;Y0; d2g�
GroebnerBasis Œf f1; f2; f3; f4g ; fX0;Y0; d1; d2g ; fX0;Y0; d1g�
GroebnerBasis Œf f1; f2; f3; f4g ; fd2; d1;Y0;X0g ; fY0; d2; d1g�
GroebnerBasis Œf f1; f2; f3; f4g ; fd2; d1;X0;Y0g ; fX0; d2; d1g� :

(17.10)

The first and second expressions of (17.10) give linear equations relating the
tangents d1 and d2 of the unknown orientations �1 and �2 and the coordinates
fX1;Y1;X2;Y2g of the known stations P1 and P2. The third and fourth expressions
give linear equations relating the coordinates X0 and Y0 of unknown station P0;
coordinates fX1;Y1;X2;Y2g of known stations P1 and P2; and the orientation terms



400 17 Positioning by Intersection Methods

d1 and d2. The computed reduced Groebner basis (linear functions) are

2
6666666666666666666666666664

d1 D .�a1X1 C a1X2 C Y1 � Y2/

.X1 � X2 C a1Y1 � a1Y2/

d2 D .�a2X1 C a2X2 C Y1 � Y2/

.X1 � X2 C a2Y1 � a2Y2/

X0 D

8̂
<̂
ˆ̂:

�.Y1 � Y2 � d1X1 C d2X2 � bX1 C cX2 � bd1Y1 C bcY1 � cd2Y1
Cbd1Y2 � bcY2 C cd2Y2 � cd1Y2 C cd1Y1 C a2cd1d2Y2 C a2cd1X2�
a2cd1X1 C cd1d2X2 � bd1d2X2 C bcd2X2 C a2bcX2 � a2cd1d2Y1�
bcd1X2 � a2bcX1 � bcd1d2Y2 C bcd1d2Y1 C a2bcd2Y2 � a2bcd2Y1/

9>>=
>>;

d1 C bcd1 � d2 � bcd2 C bd1d2 C b � c � cd1d2

Y0 D

8<
:
�.a2bX1 � a2bd2Y2 C cd1X2 � a2d1X2 C bcX2 � a2bX2 � cd1X1C
a2d1X1 � bcd1Y1 � bcX1 � a2d1d2Y2 � bY1 � bd1d2Y1 C bcd2Y2C
cd1d2Y2 C a2d1d2Y1 C d2Y1 C cY1 C a2bd2Y1 � d1Y1/

9=
;

d1 C bcd1 � d2 � bcd2 C bd1d2 C b � c � cd1d2
(17.11)

Example 17.1 (Planar intersection problem) Consider the example of [296,
p. 292]. In this example, planar Cartesian coordinates of two known stations
F WD P1 and E WD P2 are given as

fX1 D 2490:50m; Y1 D 2480:79mgP1
fX2 D 780:67m; Y2 D 7394:05mgP2 :

The adjusted angles from points F WD P1 and E WD P2 to the unknown station G WD
P0 2 E

2 are 117ı 110

20:7
00

and 27ı 350

47:9
00

respectively. Using these angles
and Fig. 17.1 on p. 396 one writes the directions as: T10 D 0ı 000

00:0
00

, T12 D
117ı 110

20:7
00

, T21 D 0ı 000

00:0
00

and T20 D 27ı 350

47:9
00

. These directions are
used in (17.8) to compute the constants fa1; a2; b; cg which are then inserted in the
first two expressions of (17.11) to give the values of d1 and d2;which are used in the
fourth expression of (17.8). This leads to the two unknown orientation parameters �1
and �2 as; 351ı 590

56:3
00

and 289ı 110

17:0
00

respectively. The planar coordinates
fX0;Y0g p0 of the unknown station G WD P0 2 E

2 are then computed from the third
and fourth expressions of (17.11) as; fX0 D 6629:0952m; Y0 D 1899:0728mgP1 ;
which compare well with those of [296, p. 292].

Example 17.2 (Planar intersection problem) Let us consider another example
of [296, p. 292] where the planar Cartesian coordinates of two known stations
E WD P1 and D WD P2 are given as

fX1 D 780:67m; Y1 D 7394:05mgP1
fX2 D 5044:25m; Y2 D 7752:70mgP2 :
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The adjusted angles from points E WD P1 and D WD P2 to the unknown station
G WD P0 2 E

2 are 48ı 010

25:3
00

and 100ı 200

27:8
00

respectively. Using these
angles and Fig. 17.1 as in the previous example, one writes the directions as:
T10 D 0ı 000

00:0
00

, T12 D 48ı 010

25:3
00

, T21 D 0ı 000

00:0
00

and T20 D
100ı 200

27:8
00

. These directions are used in (17.8) to compute fa1; a2; b; cg; which
are inserted in the first two expressions of (17.11) to give the values of d1 and
d2. These values of d1 and d2 are inserted in the fourth expression of (17.8) to
give the two unknown orientation parameters �1 and �2 as 316ı 470

04:8
00

and
04ı 480

30:1
00

respectively. The planar coordinates fX0;Y0g p0 of the unknown
station G WD P0 2 E

2 are then computed from the third and fourth expressions
of (17.11) as; fX0 D 6629:1007m; Y0 D 1899:0635mgP1 ; which compare well
with those of [296, p. 292].

17.2.2 Three-Dimensional Intersection

17.2.2.1 Closed Form Solution

In the case of three-dimensional intersection problem, the triple of three points
fP1;P2;P3g in Fig. 17.1 are given by their three-dimensional Cartesian coordinates
fX1;Y1;Z1g, fX2;Y2;Z2g, fX3;Y3;Z3g, but the coordinates fX0;Y0;Z0g of point
P0 are unknown. The dimensionless quantities f 12;  23;  31g are space angles;
 12 D †P0P1P2,  23 D †P0P2P3,  31 D †P1P3P0. This problem is formulated
as follows; Given horizontal directions Ti and vertical directions Bi measured
from three known stations to an unknown station, determine the position of the
unknown station P0. These directional measurements are transformed into space
angles f 12;  23;  31g using (16.30) on p. 344 (see e.g., Fig. 17.1). Equation (16.30)
is the analytic version of a map of directions to space coordinates. Indeed, the map
eliminates the external orientation parameters. The space angles are then used to
obtain the unknown distances {x1 D Si; x2 D S2; x3 D S3}. These distances relate
the unknown station P0 2 E

3 to three known stations Pi 2 E
3 j i D f1; 2; 3g

in the first step. The nonlinear system of equations relating the unknown distances
{x1 D Si; x2 D S2; x3 D S3} to the space angles f 12;  23;  31g are given as

2
4 x22 D x21 C S212 � 2S12 cos. 12/x1

x23 D x22 C S223 � 2S23 cos. 23/x2
x21 D x23 C S231 � 2S31 cos. 31/x3:

(17.12)

In the second step, the computed distances from step 1 are used in the three-
dimensional ranging techniques of Chap. 15 to solve for the unknown position
P0 2 E

3.
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17.2.2.2 Conventional Solution

Equation (17.12) is solved by first adding (17.12)i, (17.12)ii and (17.12)iii to
eliminate the squared terms. The resulting expression

S212CS223CS231�2x1S12 cos. 12/�2x2S23 cos. 23/�2x3S31 cos. 31/ D 0 (17.13)

is linear in x1, x2 and x3. The variable x1 in (17.13) is then expressed in terms of x2
and x3 as

x1 D S212 C S223 C S231 � 2x2S23 cos. 23/ � 2x3S31 cos. 31/

2S12 cos. 12/
; (17.14)

and substituted in (17.12)i to give an expression in x2 and x3 only. The resulting
expression in x2 and x3 is solved simultaneously with (17.12)ii to give values of x2
and x3. On the other hand, if (17.13) is now written such that x3 is expressed in terms
of x2 and x1 and substituted in (17.12)iii, an expression in x2 and x1 will be given
which together with (17.12)i can be solved for the values of x2 and x1.

The setback with this approach is that one variable, in this case x2, is determined
twice with different values being given; which clearly is undesirable. A direct
solution to the problem based on algebraic approaches of either Groebner basis or
polynomial resultants alleviates the problem.

17.2.2.3 Reduced Groebner Basis Solution

Reduced Groebner basis (4.39) on p. 51 is performed in two steps as follows:

• Step 1 (derivation of distances):
Equation (17.12) is re-written algebraically as

2
4 f1 WD x21 C b1x1 � x22 C a0 D 0

f2 WD x22 C b2x2 � x23 C b0 D 0
f3 WD x23 C b3x3 � x21 C c0 D 0;

(17.15)

with b1 D �2S12 cos. 12/; b2 D �2S23 cos. 23/; b3 D �2S31 cos. 31/ and a0 D
S212; b0 D S223; c0 D S231. The reduced Groebner basis of (17.15) is then computed
as

2
4GroebnerBasisŒf f1; f2; f3g; fx1; x2; x3g; fx2; x3g�

GroebnerBasisŒf f1; f2; f3g; fx1; x2; x3g; fx1; x3g�
GroebnerBasisŒf f1; f2; f3g; fx1; x2; x3g; fx2; x3g�;

(17.16)
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which leads to three quartic polynomials for determining the unknown distances
{x1 D Si; x2 D S2; x3 D S3};

2
4 x1 WD d4x41 C d3x31 C d2x21 C d1x1 C d0 D 0

x2 WD e4x42 C e3x32 C e2x22 C e1x2 C e0 D 0
x3 WD f4x43 C f3x33 C f2x23 C f1x3 C f0 D 0:

(17.17)

The coefficients of (17.17) are as given in [36, Appendix].
• Step 2 (position determination):

In this step, the computed distances from (17.17) are used to determine the
unknown position P0 2 E

3 as discussed in Sect. 15.3.2.

17.2.2.4 Sturmfels’ Resultants Solution

Algorithm presented in Sect. 5.3.2 proceeds in two steps as follows:

• Step 1 (derivation of distances):
Following (5.13) on p. 58, (17.15) is homogenized using the variable x4 and

re-written for the solutions of x1, x2 and x3 in (17.18), (17.19) and (17.20)
respectively as

– Solving for x1 by treating it as a constant (polynomial of degree zero)

2
4 g1 WD .x21 C b1x1 C a0/x24 � x22 D 0

g2 WD x22 C b2x2x4 � x23 C b0x24 D 0
g3 WD x23 C b3x3x4 C .c0 � x21/x

2
4 D 0:

(17.18)

– Solving for x2 by treating it as a constant (polynomial of degree zero)

2
4 h1 WD x21 C b1x1x4 C .a0 � x22/x

2
4 D 0

h2 WD .x22 C b2x2 C b0/x24 � x23 D 0
h3 WD x23 C b3x3x4 � x21 C c0x24 D 0:

(17.19)

– Solving for x3 by treating it as a constant (polynomial of degree zero)

2
4 k1 WD x21 C b1x1x4 � x22 C a0x24 D 0

k2 WD x22 C b2x2x4 C .b0 � x23/x
2
4 D 0

k3 WD .x23 C b3x3 C c0/x24 � x21 D 0:
(17.20)

From (17.18), (17.19) and (17.20), expressing a1 D .x21 C b1x1 C a0/ and a2 D
.c0 � x21/ in (17.18), a3 D .x22 C b2x2 C b0/ and c2 D .a0 � x22/ in (17.19), and
finally c3 D .b0�x23/ and c1 D .x23Cb3x3Cc0/ in (17.20), one forms the Jacobian
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determinant matrices with (5.14) on p. 59 respectively as

Jx1 D det

2
6666666664

@g1
@x2

@g1
@x3

@g1
@x4

@g2
@x2

@g2
@x3

@g2
@x4

@g3
@x2

@g3
@x3

@g3
@x4

3
7777777775
D det

2
666664

�2x2 0 2a1x4

2x2 C b2x4 �2x3 b2x2 C 2b0x4

0 2x3 C b3x4 b3x3 C 2a2x4

3
777775
;

(17.21)

Jx2 D det

2
6666666664

@h1
@x1

@h1
@x3

@h1
@x4

@h2
@x1

@h2
@x3

@h2
@x4

@h3
@x1

@h3
@x3

@h3
@x4

3
7777777775
D det

2
666664

2x1 C b1x4 0 b1x1 C 2c2x4

0 �2x3 2a3x4

�2x1 2x3 C b3x4 b3x3 C 2c0x4

3
777775
;

(17.22)

and

Jx3 D det

2
6666666664

@k1
@x1

@k1
@x2

@k1
@x4

@k2
@x1

@k2
@x2

@k2
@x4

@k3
@x1

@k3
@x2

@k3
@x4

3
7777777775
D det

2
666664

2x1 C b1x4 �2x2 b1x1 C 2a0x4

0 2x2 C b2x4 b2x2 C 2c3x4

�2x1 0 2c1x4

3
777775
:

(17.23)

The resulting determinants are cubic polynomials:

Jx1 D 4x2b3x23C8x2x3a2x4C4b2x22x3C2b2x22b3x4C8x2b0x4x3C4x2b0x24b3C
8a1x4x2x3 C 4a1x24x2b3 C 4a1x24b2x3 C 2a1x34b2b3.

Jx2 D �4x1b3x23�8x1x3c0x4�8x1a3x4x3�4x1a3x24b3�2b1x4b3x23�4b1x24x3c0�
4b1x24a3x3 � 2b1x34a3b3 � 4x21x3b1 � 8x1x3c2x4.

Jx3 D 8c1x4x1x2C4c1x24x1b2C4c1x24b1x2C2c1x34b1b2C4x1b2x22C8x1x2c3x4C
4b1x21x2 C 2b1x21b2x4 C 8x1a0x4x2 C 4x1a0x24b2.
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Making use of (5.15) and (5.16) on p. 59 lead to

2
4 x1 WD d4x41 C d3x31 C d2x21 C d1x1 C d0 D 0

x2 WD e4x42 C e3x32 C e2x22 C e1x2 C e0 D 0
x3 WD f4x43 C f3x33 C f2x23 C f1x3 C f0 D 0:

(17.24)

The coefficients of (17.24) are given in [37, Appendix].
• Step 2 (position determination):

In this step, the computed distances from (17.24) are used to determine the
unknown position P0 2 E

3 as discussed in Sect. 15.3.2.

Example 17.3 (3d-intersection from three known stations) Using the computed
quartic polynomials (17.17) or (17.24), the distances Si D xi 2 R;C i D f1; 2; 3g 2
Z
3C between an unknown station K1 2 E

3 and known stations Pi 2 E
3 for

the test network Stuttgart Central in Fig. 13.2 on p. 259 are determined. Points
P1;P2;P3 of the tetrahedron fP0P1P2P3g in Fig. 17.1 correspond to the chosen
known GPS stations Schlossplatz, Liederhalle, and Eduardpfeiffer (see Fig. 13.2).
The distance from K1 to Schlossplatz. is designated S1 D x1 2 R;C K1 to
Liederhalle S2 D x2 2 R;C while that of K1 to Eduardpfeiffer is designated
S3 D x3 2 R:C The distances between the known stations fS12; S23; S31g 2 R

C
are computed from their respective GPS coordinates in Table 13.1 on p. 257. Using
the horizontal directions Ti and vertical directions Bi from Table 13.3 on p. 260,
space angles f 12;  23;  31g are computed using (16.30) on p. 344 and presented in
Table 17.1.1 From (17.17), we see that S1 D x1, S2 D x2 and S3 D x3 each has four
roots. The solutions are real as depicted in Figs. 17.2, 17.3 and 17.4. The desired
distances are selected with the help of prior information (e.g., from Fig. 13.2) as
S1 D 566:8635, S2 D 430:5286, and S3 D 542:2609. These values compare

Table 17.1 Space angles Space angle

Observation from (gon)

K1-Schlossplatz-Liederhalle  12 35.84592

K1-Liederhalle-Eduardpfeiffer  23 49.66335

K1-Eduardpfeiffer-Schlossplatz  31 14.19472

1Remark: In computing space angles, one should take into consideration the fact that the units of
the angles in this example are in gons, i.e., 360ı D 400 gons. To obtain the values in radians, one
needs to multiply the given gon value by � and divide by 200. In addition, when using Eq. 16.30
to get cos. ij/, consider Fig. 17.1.
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Fig. 17.2 Solution for distance S1

well with their real values in Fig. 13.2. Once the distances have been established,
they are used to determine the coordinates of the unknown station K1 in step 2 via
ranging techniques. In this example, the computed Cartesian coordinates of K1 are
X D 4;157;066:1116m, Y D 671;429:6655m and Z D 4;774;879:3704m; which
tallies with the GPS coordinates in Table 13.1.

17.2.2.5 Intersection to More Than Three Known Stations

The formulation of the overdetermined three-dimension intersection problem
is as follows; given space angles from more than three known stations, i.e.,
P1;P2;P3; : : : ;Pn, determine the unknown position P0 2 E

3. In this case, the
observations will comprise horizontal directions Ti and vertical directions Bi from
P1 to P0, P2 to P0, P3 to P0,. . . ,Pn to P0, with the unknowns being fX;Y;Zg.
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Fig. 17.3 Solution for distance S2

Example 17.4 (Three-dimensional intersection from more than three known sta-
tions) For the test network Stuttgart Central in Fig. 13.2, the three-dimensional
coordinates fX;Y;Zg of the unknown station K1 are desired. Using all the obser-
vation data of Table 13.2 on p. 260, one proceeds to compute the position of K1 in
four steps as follows:

Step 1 (combinatorial solution):
From Fig. (13.2) on p. 259, and using (7.34) on p. 105, 35 minimal combi-
natorials are formed whose nonlinear systems of equations (17.12) are solved
for the distances fSiji D 1; 2; 3g to the unknown station K1 in closed form
using either (17.17) or (17.24). Each combinatorial minimal subset results in
3 distances thus giving rise to a total of .3�35/ 105 distances which we consider
in the subsequent steps as pseudo-observations.
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Fig. 17.4 Solution for distance S3

Step 2 (error propagation to determine the dispersion matrix †):
The variance-covariance matrix is computed for each of the combinatorial set
j D 1; : : : ; 35 using error propagation. Equation (17.12) is used to obtain the
dispersion matrix † in (7.39) as discussed in Example 7.4 on p. 107.

Step 3 (rigorous adjustment of the combinatorial solution points in a polyhedron):
Once the 105 combinatorial solution points in a polyhedron have been obtained
in step 1, they are finally adjusted using the linear Gauss-Markov model (7.15) on
p. 98 with the dispersion matrix † obtained via the nonlinear error propagation
law in step 2.

Step 4 (position determination by ranging):
The position is then determined from values of steps 1 to 3 as in Example 15.6
on p. 326.

Using the data of Table 13.2, space angles for the network are computed and
used to determine the position of the unknown station K1. Figure 17.5 presents
the deviation of the computed scatter of the distance Haussmanstr.-K1 around its
adjusted value. The plot of deviations of the adjusted distances from those derived
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Fig. 17.5 Deviation of the scatter solutions of the distance Haussmanstr.-K1 from the adjusted
value

from GPS coordinates are presented in Fig. 17.6. The numbers in the X-axis of
Fig. 17.6 represent distances as follows; Haussmanstr.-K1 (1), Schlossplatz-K1 (2),
Dach FH-K1 (3), Dach LVM-K1 (4), Liederhalle-K1 (5), Lindenmuseum-K1 (6)
and Eduardpfeiffer-K1 (7).

17.3 Photogrammetric Intersection

In Chap. 16, the exterior elements of orientation were determined as discussed in
Sect. 16.3. Using these exterior elements, we demonstrate in this section how they
are applied to determine algebraically the ground coordinates of unknown station.
The problem of photogrammetric intersection is formulated as follows: Given the
position and orientation of two or more photographs, let the conjugate image
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rays from the photographs intersect at a common ground point (e.g., Fig. 17.7).
Determine the ground coordinates of the unknown station P. Let us examine two
possible ways of solving this problem algebraically.

17.3.1 Grafarend-Shan Möbius Approach

Let us assume that the Cartesian coordinates fXl;Yl;Zlg and fXr;Yr;Zrg, respec-
tively, for the left perspective center Pl and the right perspective center Pr in
Fig. 17.7 have been obtained from the photogrammetric resection approach in
Sect. 16.3. The perspective center equations are

2
4X � Xl

Y � Yl

Z � Zl

3
5 D slRl

2
4 xl

yl

�fl

3
5 ; (17.25)
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Fig. 17.7 Photogrammetric intersection

and

2
4X � Xr

Y � Yr

Z � Zr

3
5 D srRr

2
4 xr

yr

�fr

3
5 : (17.26)

In (17.25) and (17.26), fl and fr are the left and right focal lengths and R the rotation
matrix. The distance ratios sl and sr are given respectively by

sl WD k
�!
PPlk
k�!pplk

D
p
.X � Xl/2 C .Y � Yl/2 C .Z � Zl/2q

x2l C y2l C z2l

; (17.27)
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and

sr WD k
��!
PPrk
k�!pprk

D
p
.X � Xr/2 C .Y � Yr/2 C .Z � Zr/2p

x2r C y2r C z2r
: (17.28)

Equations (17.25) and (17.26) could be expanded into the 7-parameter similarity
transformation equation

2
4X

Y
Z

3
5 D slRl

2
4 xl

yl

�fl

3
5C

2
4Xl

Yl

Zl

3
5

D srRr

2
4 xr

yr

�fr

3
5C

2
4Xr

Yr

Zr

3
5 :

(17.29)

Grafarend and Shan [225] propose a three-step solution approach based on Möbius
coordinates as follows:

• In the first step, the ratio of distances fsl; srg between the perspective centers and
the unknown intersected point are determined from a linear system of equations.
The area elements of the left and right images are employed to form the linear
system of equations.

• In the second step, the computed distance ratios are used to compute the Möbius
coordinates.

• These coordinates are converted to the three-dimensional cartesian coordinates
fX;Y;Zg in the third step.

17.3.2 Commutative Algebraic Approaches

Whereas the Grafarend-Shan approach discussed in Sect. 17.3.2 solves the intersec-
tion of rays from two photographs, the algebraic approaches solves the intersection
of rays from three photographs. Consider the case in Fig. 15.1, the unknown station
is intersected from three photographs. The distances fS1; S2; S3g to the unknown
stations are determined using either using (17.17) or (17.24). The coordinates of the
unknown stations are determined from procedures of Sect. 15.3.2.6.



17.4 Concluding Remarks 413

17.4 Concluding Remarks

The techniques presented in this chapter could provide direct approaches for
obtaining positions from direction (angular) measurements to stations that can
not be physically occupied. Intersection techniques discussed could be useful in
structural deformation monitoring in industries. For surfaces or structures that are
harmful when physical contact is made, intersection techniques come in handy.
the methods can also be used for quick station search during cadastral and
engineering surveying operations. These methods can be augmented with resection
and ranging techniques to offer a wide range of possibilities. Further reference
are [20, 33, 43, 204, 205, 215, 225, 251, 370].



Chapter 18
GNSS Environmental Monitoring

18.1 Satellite Environmental Monitoring

In 1997, the Kyoto protocol to the United Nation’s framework convention on
climate change spelt out measures that were to be taken to reduce the greenhouse
gas emission that has contributed to global warming. Global warming is just but
one of the many challenges facing our environment today. The rapid increase in
desertification on one hand and flooding on the other hand are environmental issues
that are increasingly becoming of concern. For instance, the torrential rains that
caused havoc and destroyed properties in USA in 1993 is estimated to have totalled
to $15 billion, 50 people died and thousands of people were evacuated, some for
months [322]. Today, the threat from torrential rains and flooding still remains real
as was seen in 1997 El’nino rains that swept roads and bridges in Kenya, the 2000
Mozambique flood disaster, 2002 Germany flood disaster or the Hurricane Isabel
in the US coast.1 The melting of polar ice thus raising the sea level is creating fear
of submersion of beaches and cities surrounded by the oceans and those already
below sea level. In-order to be able to predict and model these occurrences so as
to minimize damages such as those indicated by [322], atmospheric studies have
to be undertaken with the aim of improving on mechanism for providing reliable,
accurate and timely data. These data are useful in Numerical Weather Prediction
(NWP) models for weather forecasting and climatic models for monitoring climatic
changes. Besides, accurate and reliable information on weather is essential for other
applications such as agriculture, flight navigation, etc.

Data for NWP and climatic models are normally collected using balloon filled
radiosondes, satellites (polar and geostationary) and other sources e.g., flight data
from aeroplanes. Whereas [349, p. 94] points out that about 9500 surface based
stations and 7000 merchant ships exist that send up weather balloons, [522]

1BBC 19th Sept. 2003 online report: http://news.bbc.co.uk/
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noted that most of these data cover the northern hemisphere, with the southern
hemisphere (mainly Africa and South America) lacking adequate data due to
financial constraints. Lack of radiosonde data is also noted in the oceanic areas
hence leading to shortage of adequate data for NWP and climatic models. These
models require precise and accurate data for estimating initial starting values
in-order to give accurate and reliable weather forecast, and to be of use for
climate monitoring. The shortage of radiosonde data is complemented with the
polar and geostationary satellite data. Polar satellites include for instance the US
owned National Ocean and Atmospheric Administration NOAA-14 and NOAA-
15, while the geostationary satellites include US based Geostationary Operational
Environmental Satellite (GEOS) and Europe owned METEOrological SATellite
(METEOSAT).

Polar and geostationary satellites (e.g., NOAA, GOES and METEOSAT) used
for temperature and water vapour profile measurements have their own limitations
however. In high altitude winter conditions for instance, use of passive Infra Red
(IR) is difficult due to very cold temperatures, common near surface thermal
inversion, and high percentage of ice cloud that play a role in limiting the IR
sounding [368]. In volcanic areas, low flying remote sensing satellites are also
affected by the presence of dust and aerosol. Large-scale volcanic eruption normally
injects large amount of aerosols into the lower stratosphere and thus limiting the IR
observation of the stratosphere and lower regions. In-order therefore to enhance
global weather and climatic prediction, current systems have to be complemented
by a system that will provide global coverage and whose signals will be able to
penetrate clouds and dust to remote sense the atmosphere. Such system, already
proposed as early as 1965 by Fischbach [170], and which is currently an active
area of research, is the new field of GPS-Meteorology. It involves the use of
GPS satellites to obtain atmospheric profiles of temperature, pressure and water
vapour/humidity.

As we saw in Chap. 13, Global Positioning System (GPS) satellites were
primarily designed to be used by the US military. their main task was to obtain the
position of any point on Earth from space. The signals emitted by GPS satellites
traverse the ionosphere and neutral atmosphere to be received by ground based
GPS receivers. One of the major obstacles to positioning or navigating with GPS is
the signal delay caused by atmospheric refraction. Over the years, research efforts
have been dedicated to modelling atmospheric refraction in-order to improve on
positioning accuracy. In the last decade however, [368] suggested that this negative
effect of the atmosphere on GPS signals could be inverted to remote sense the
atmosphere using space borne techniques. Melbourne [368], proposed that Low
Earth Orbiting Satellites LEO be fitted with GPS receivers and be used to track
the signals of rising or setting GPS satellites (occulting satellites). The signal delay
could then be measured and used to infer on the atmospheric profiles of temperature,
pressure, water vapour and geopotential heights.
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This new technology of GPS atmospheric remote sensing has the advan-
tages of;

(a) being global,
(b) stable owing to the stable GPS oscillators and
(c) having radio frequencies that can penetrate clouds and dusts.

The new technology therefore plays a major role in complementing the existing
techniques, e.g., radiosondes. Atmospheric profiles from GPS remote sensing have
been tested in NWP models and preliminary results so far are promising [264].
Indeed, [309] have already demonstrated using the data of the pilot project
GPS/MET that the accuracy of global and regional analysis of weather prediction
can significantly be improved. Also motivating are the results of [473] who showed
that high accuracy of measurements and vertical resolution around the tropopause
would be relevant to monitor climatic changes in the next decades. Several atmo-
spheric sounding missions have been launched, e.g., the CHAllenging Minisatellite
Payload mission (CHAMP), Gravity Recovery And Climate Experiment (GRACE)
and SAC-C. Constellation Observing System for Meteorology, Ionosphere and
Climate (COSMIC) mission that was launched on 15th of April 2006 by University
Corporation of Atmospheric Research UCAR is already recording more than
2500 daily measurements, see e.g., [521]. Its optimum operation is expected to
provide up to 3000 occultation data daily [13]. EQUatorial Atmosphere Research
Satellite Currently, studies are being undertaken at Jet Propulsion Laboratory (JPL)
on possibilities of having future atmospheric sounding missions that will have
satellites of the sizes of a laptop with GPS receivers of the sizes of a credit
card [542]. The European owned EUropean organization for the exploitation of
METeorological SATellites (EUMETSAT) recently installed a GPS occultation
receiver GRAS (GNSS Receiver for Atmospheric Sounding). The planned satellite
missions, together with the proposed GALILEO satellites anticipated around 2013,
the Russian GLONASS and the Chinese Compass [276] promises a brighter future
for environmental monitoring. Indeed, that these atmospheric sounding missions
promise to provide daily global coverage of thousands of remotely sensed data
which will be vital for weather, climatic and atmospheric sciences studies will be a
revolution in the history of environmental studies.

Space borne GPS meteorology which we discuss in detail in Sect. 18.2.1 is just
but one part of this new technique. The other component is the ground based GPS
meteorology which will be discussed in detail in Sect. 18.2.2. Collection of articles
on this new technique has been presented for instance in [14]. In ground based
GPS meteorology, a dense GPS network is used to measure precisely GPS path
delays caused by the ionosphere and the neutral troposphere traversed by the GPS
signals. These path delays are then converted into Total Electronic Contents (TEC)
and Integrated Precipitate Water Vapour IPWV. Conversion to IPWV requires prior
information of surface pressure or estimates along the GPS ray path. These create a
continuous, accurate, all weather, real time lower and upper atmospheric data with
a variety of opportunities for atmospheric research [516].
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Clearly, GPS meteorology promises to be a real boost to atmospheric studies with
expected improvements on weather forecasting and climatic change monitoring,
which directly impact on our day to day lives. In [24], the possible use of IPWV for
flood prediction is proposed, while [57] have outlined the potential of water vapour
for meteorological forecasting. For environmental monitoring, GPS meteorology
will further play the following roles:

1. Precisely derive vertical temperature and pressure profiles: These will be useful
in the following ways [368]:

(a) By combining them with other observations of ozone densities and dynamic
models, our understanding of conditions which lead to the formation of polar
stratosphere clouds will be improved. We will also be able to understand how
particles in which heterogeneous chemical reactions lead to ozone loss are
believed to occur.

(b) The precise measured temperature will enable the monitoring of global
warming and the effect of greenhouse gases. This is made possible as the
change in surface temperatures caused by an increase in the greenhouse gas
densities is generally predicted to be the largest and therefore most apparent
at high latitudes. Precise temperature can be used to map the structure of the
stratosphere, particularly in the polar region where temperature is believed
to be an important factor in the minimum levels of ozone observed in spring.

(c) Accurate high vertical resolution temperature reconstruction in the upper
troposphere will increase our understanding on the conditions which cirrus
clouds form. The cirrus clouds will generate for instance a positive feed back
effect if global warming displaces a given cloud layer to a higher and colder
region. The colder cloud will then emit less radiation forcing the troposphere
to warm in-order to compensate for the decrease.

(d) Accurate temperature retrievals from GPS meteorological measurements
combined with high horizontal resolution temperatures derived from the
nadir-viewing microwave radiometers will provide a powerful data set for
climate studies of the Earth’s lower atmosphere. This can be achieved by
using the derived profiles to monitor trends in the upper troposphere and
lower stratosphere where the GPS meteorological techniques yield its most
accurate results.

(e) The measured pressure is expected to contribute to the monitoring of global
warming. This is because pressure versus geometrical height is potentially
an interesting diagnostic of troposphere’s climatic change since the height of
any pressure surface is a function of the integrated temperature below.

(f) The temperature in the upper troposphere/tropopause influences the amount
of energy radiated to space. Accurate measurements of temperature in this
region over a long period of time will provide data for global warming and
climatologic studies.

2. Derive water vapour: Precise analysis of the water vapour will contribute to the
data required by hydrologists to enhance the prediction of local torrential rain
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that normally cause damage and havoc (see e.g., [24]). Besides, the knowledge
of water vapour density in the lower troposphere will be useful in;

• providing data that will be directly assimilated into meteorological models to
enhance predictability and forecasting of weather,

• applicable for creation of distribution of water vapour via tomographic
techniques (e.g., [174]),

• applied to correct the wet delay component in both Synthetic Aperture Radar
(SAR) and GPS positioning thus benefiting applications requiring precise
positioning such as deformation monitoring,

• beneficial to low altitude aircraft navigation, since limitation in the mitigation
of tropospheric delay is a major source of positioning error,

• global warming monitoring by determining the latent heat suspended in the
atmosphere where water vapour comprise one of the greenhouse gases,

• the radiative forcing due to vapour and cloud inferred from humidity,
• improved inputs for weather forecasting, climate and hydrology. Water vapour

will be essential for short term (0–24 h) forecasting of precipitation. Currently,
lack of atmospheric water vapour is the major source of error in short term
weather forecasting [258].

3. Contribute towards climatic studies: By comparing the observed temperatures
against the predicted model values, a method for detecting and characterizing
stratospheric climatic variations as well as a means for evaluating the perfor-
mance of model behaviour at stratospheric altitudes will be developed and the
existing ones tested.

4. Enhance geodynamic studies: The study of the gravitation effects of the atmo-
spheric pressure, water vapour and other phenomenons will contribute towards
the determination of high-resolution local geoid, which is vital for monitoring
crustal deformation. The transient drift that occurs per week in estimate of crustal
deformation from GPS measurement will be corrected.

5. Enhance disaster mitigation measures: Its information will contribute to the
much-needed information required to improve forecasting of catastrophic
weather around the world.

6. With abundance of GPS remote sensing data, accuracy better than 1 -2K in
temperature given by GPS meteorological missions (e.g., CHAMP, GRACE etc.)
will be realized.

In-order to fully realize the potential of the GPS atmospheric remote sensing
listed above, estimated profiles have to be of high quality. Already, comparative
results with the existing models such as European Centre for Medium Weather
Forecast (ECMWF) and National Centre for Environmental Prediction (NCEP) are
promising as seen from the works of [432, 522] with respect to GPS/MET and
CHAMP missions, respectively. Detailed exposition of the application of GNSS
remote sensing to environment is presented in Awange [46].
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18.2 GNSS Remote Sensing

18.2.1 Space Borne GNSS Meteorology

Radio occultation with GPS takes place when a transmitting GPS satellite, setting
or rising behind the Earth’s limb, is viewed by a LEO satellite as illustrated in
Fig. 18.1.2 GPS satellites send navigation signals, which passes through succes-
sively deeper layer of the Earth’s atmosphere and are received by LEO satellites.
These signals are bent and retarded causing a delay in the arrival at the Leo (see
Fig. 18.12). Figure 18.3 indicates the occultation geometry where the signal is sent
from GPS to the LEO satellite passing through dispersive layers of the ionosphere
and atmosphere remote sensing them. As the signal is bent, the total bending angle
˛, an impact parameter a and a tangent radius rt define the ray passing through
the atmosphere. Refraction angle is accurately measured and related to atmospheric
parameters of temperature, pressure and water vapour via the refractive index. Use
is made of radio waves where the LEO receiver measures, at the required sampling
rate, the dual band carrier phase, the C/A and P-code group delay and the signal
strength made by the flight receiver [368]. The data is then processed to remove
errors arising from short time oscillator and instabilities in; satellites and receivers.
This is achieved by using at least one ground station and one satellite that is not
being occulted. Once the observations have been corrected for possible sources of
errors, the resulting Doppler shift is used to determine the refraction angle ˛ (see
Fig. 18.3).

The variation of ˛ with a during an occultation depends primarily on the vertical
profile of atmospheric refractive index, which is determined globally by Fermat’s
principle of least time and locally by Snell’s law

nsin� D constant; (18.1)

Fig. 18.1 GPS Radio occultation (Source: GfZ [522])

2Source: http://geodaf.mt.asi.it/html/GPSAtmo/space.html

http://geodaf.mt.asi.it/html/GPSAtmo/space.html
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where � denotes the angle between the gradient of refraction and the ray path.
Doppler shift is determined by projecting spacecraft velocities onto the ray paths at
the transmitter and receiver, so that atmospheric bending contributes to its measured
value. Data from several GPS transmitters and post-processing ground stations
are used to establish the precise positions and velocities of the GPS transmitters
and LEO satellites. These derived positions and velocities are used to calculate
the Doppler shift expected in the absence of atmospheric bending (i.e., were the
signal to travel in vacuo). By subtracting the expected shift from the measured shift,
one obtains the excess Doppler shift. Assuming local symmetry and with Snell’s
law, the excess Doppler shift together with satellites’ positions and velocities are
used to compute the values of the bending angles ˛ with respect to the impact
parameters a. In Sect. 18.3, we will present an algebraic approach for computing
bending angles and impact parameters. Once computed, these bending (refraction)
angles are related to the refractive index by

˛.a/ D 2a
Z rD1

rDr0

1p
n2r2 � a2

dIn.n/

dr
dr; (18.2)

which is inverted using Abel’s transformation to give the desired refractive index

n.r0/ D exp

2
64 1
�

Z aD1

aDa0

˛.a/q
a2 � a20

da

3
75 : (18.3)

Rather than the refractive index in (18.3), refractivity is used as

N D .n � 1/106 D 77:6P

T
C 3:73 � 105Pw

T2
� 40:3 � 106 ne

f 2
C 1:4w: (18.4)

In (18.4), P denotes the atmospheric pressure in {mbar}, T the atmospheric
temperature in K, Pw the water vapour in {mbar}, ne the electron number density
per cubic meter {number of electron/m3}, f the transmitter frequency in Hz and w
the liquid water content in g/m3. Three main contributors to refractivity are:

• The dry neutral atmosphere (called the dry component, i.e., the first component
on the right-hand-side of (18.4)).

• Water vapour (also called the wet or moist components, i.e., the second compo-
nent on the right-hand-side of (18.4))

• The free electrons in the ionosphere (i.e., the third component on the right-hand-
side of (18.4)).

If the atmospheric temperature T and pressure P are provided from external source,
e.g., from models and synoptic meteorological data over tropical oceanic regions,
then the vertical water vapour density may be recovered from satellite remote
sensing data [368]. The refraction effects on the signals in the ionosphere must be
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corrected using signals at two frequencies at which these effects are substantially
different.

18.2.2 Ground Based GPS Meteorology

Whereas GPS receivers are onboard low flying (LEO) satellites (e.g., CHAMP,
GRACE etc.) in space borne GPS remote sensing, they are fixed on ground stations
in the case of ground-based GPS meteorology. These receivers track the transmitted
signals which have traversed the atmosphere as indicated in Fig. 18.2.3 As the
signals travel through the atmosphere from the satellites to the ground based
receivers, they are delayed by the troposphere. The tropospheric delay comprise
the hydrostatic and the wet parts as seen in (18.4). The contribution of hydrostatic
part which can be modeled and eliminated very accurately using surface pressure
data or three-dimensional numerical models is about 90 % [119, 145]. The wet
delay however is highly variable with little correlation to surface meteorological

Fig. 18.2 Ground based GPS meteorology

3Source: http://apollo.lsc.vsc.edu/classes/remote/lecture_notes/gps/theory/theoryhtml.htm

http://apollo.lsc.vsc.edu/classes/remote/lecture_notes/gps/theory/ theoryhtml.htm
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measurements. Assuming that the wet delay can be accurately derived from GPS
data, and that reliable surface temperature data are available, the wet delay can be
converted into the estimation of the total atmospheric water vapour Pw present along
the GPS ray path as already suggested by [74]. This atmospheric water vapour Pw

is termed precipitable water in GPS meteorology.
The precipitable water as opposed to the vertical profile is estimated with a

correction made for the fact that the radio beams normally are slanted from the
zenith. The phase delay along the zenith direction is called the “zenith delay” and is
related to the atmospheric refractivity by:

zenith Delay D 106
1Z

antenna

N.z/dz; (18.5)

where the integral is in the zenith direction. Substituting (18.4) in (18.5) leads to
the calculation of the zenith wet delay which is related to the total amount of water
vapour along the zenith direction. The zenith delay is considered to be constant
over a certain time interval. It is the average of the individual slant ray path delays
that are projected to the zenith using the mapping functions (e.g., [383]) which are
dependent on the receiver to satellite elevation angle, altitude and time of the year.

The significant application of GPS satellites in ground based GPS meteorology is
the determination of the slant water. If one could condense all the water vapour along
the ray path of a GPS signal (i.e., from the GPS satellite to the ground receiver), the
column of the liquid water after condensation is termed slant water. By converting
the GPS derived tropospheric delay during data processing, slant water is obtained.
By using several receivers to track several satellites (e.g., Fig. 18.23), a three-
dimensional distribution of water vapour and its time variation can be quantified. In
Japan, there exist (by 2004) more than 1200 GPS receivers within the framework of
GPS Earth Observing NETwork (GEONET) with a spatial resolution of 12–25 km
dedicated to GPS meteorology (see e.g., [14, 492]). These dense network of GPS
receivers are capable of delivering information on water vapour that are useful as
already stated in Sect. 18.1.

18.3 Refraction (Bending) Angles

In space borne GPS meteorology, the measured quantities are normally the excess
path delay of the signal. It is obtained by measuring the excess phase of the signal
owing to atmospheric refraction during the traveling period. The determination
of the refraction angle ˛ from the measured excess phase therefore marks the
beginning of the computational process to retrieve the atmospheric profiles of tem-
perature, pressure, water vapour and geopotential heights. The unknown refraction
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angle ˛ is related to the measured excess phase by a system of two nonlinear
trigonometric equations;

1. an equation relating the doppler shift at the Low Earth Orbiting (LEO) satellite
(e.g., CHAMP, GRACE etc.) expressed as the difference in the projected
velocities of the two moving satellites on the ray path tangent on one hand, and
the doppler shift expressed as the sum of the atmosphere free propagation term
and a term due to atmosphere on the other hand,

2. an equation that makes use of Snell’s law in a spherically layered medium [472,
p. 59].

Equations formed from (1) and (2) are nonlinear e.g., (18.6) and have been solved
using iterative numerical methods such as Newton’s (see e.g., [245, 315, 472, 522]).
In-order to solve the trigonometric nonlinear system of equations (18.6), Newton’s
approach assumes the refractive angles to be small enough such that the relationship
between the doppler shift and the bending angles formed from (1) and (2) are linear.
The linearity assumption of the relationship between the doppler shift and refraction
angles introduces some small nonlinearity errors. Vorob’ev and Krasil’nikova [505]
have pointed out that neglecting the nonlinearity in (18.6) causes an error of 2 %
when the beam perigee is close to the Earth’s ground and decrease with the altitude
of the perigee. The extent of these errors in the dry part of the atmosphere, i.e.,
the upper troposphere and lower stratosphere, particularly the height 5–30 km,
whose bending angle data are directly used to compute the atmospheric profiles or
directly assimilated in Numerical Weather Prediction Models (NWPM) (e.g., [264])
is however not precisely stated. The effects of nonlinearity error on the impact
parameters to which the refraction bending angles are related is also not known.

In an attempt to circumvent the nonlinearity of (18.6), [505] expand it into
series of V=c, where V is the velocity of the artificial satellite and c the velocity
of light in vacuum. This corrects for relativistic effects and introduce the concept of
perturbation. The angle between the relative position vectors of the two satellites
and the tangent velocity vector at GPS is expressed in quadratic terms of the
corresponding angle at LEO (also expanded to the second order). The refraction
angle is then obtained by making use of its infinitesimal values that are less than
10�2. Though the approach attempts to provide an analytic (direct) solution to
nonlinear system of equations for bending angles, it is still nevertheless “quasi-
nonlinear” and as such does not offer a complete, exact solution to the problem. The
fact that there existed no direct (exact) solution to the nonlinear system of bending
angle’s equations of space borne GPS meteorology had already been pointed out
by [522].

Motivated by Wickert’s [522] observation, we will demonstrate in the next
sections how the algebraic techniques of Sylvester resultant and reduced Groebner
basis offer direct solution to bending angles’ nonlinear system of equations (18.6).
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18.3.1 Transformation of Trigonometric Equations
to Algebraic

The system of nonlinear trigonometric equations for determining the refraction
angles comprises of two equations given as

2
4 vLcos.ˇL � �L/� vGcos.�G C ˇG/ D dLi

dt
C vLcos.ˇL �  L/ � vGcos. G C ˇG/

rGsin�G D rLsin�L;

(18.6)

where vL; vG are the projected LEO and GPS satellite velocities in the occultation

plane, rL; rG the radius of tangent points at LEO and GPS respectively, and
dLi

dt
, the

doppler shift. The angles in (18.6) are as shown in Fig. 18.3.
Let us denote

�
x D sin�G; y D sin�L; a1 D vLcosˇL; a2 D vLsinˇL

a3 D �vGcosˇG; a4 D vGsinˇG; a5 D rG; a6 D �rL;
(18.7)

where the signs of the velocities change depending on the directions of the satellites.
Using;

• Theorem 3.1 on p. 20,
• the trigonometric addition formulae,
• and (18.7),

(18.6) simplifies to

�
a1cos�L C a2yC a3cos�G C a4x D a
a5xC a6y D 0: (18.8)

Fig. 18.3 Geometry of space borne GPS meteorology
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In (18.8), the right-hand-side of the first expression of (18.6) has been substituted
with a. In-order to eliminate the trigonometric terms cos�L and cos�G appearing
in (18.8), they are taken to the right-hand-side and the resulting expression
squared as

.a2yC a4x � a/2 D .�a1cos�L � a3cos�G/
2: (18.9)

The squared trigonometric values cos2�G and cos2�L from (18.9) are then replaced
by variables fx; yg from (18.7). This is done following the application of trigono-
metric Pythagorean theorem of a unit circle fcos2�G C sin2�G D 1g and fcos2�L C
sin2�L D 1g which convert the cosine terms into sines. The resulting expression
has only trigonometric product f2a1a3cos�Lcos�Gg on the right-hand-side. Squaring
both sides of the resulting expression and replacing the squared trigonometric values
cos2�G and cos2�L, with fx; yg from (18.7) completes the conversion of (18.6) into
algebraic

"
d1x4 C d2x3 C d3x3yC d4x2 C d5x2y2 C d6x2yC d7xC d8xy3 C d9xy2 C d00 D 0

a5xC a6y D 0;

(18.10)

where d00 D d10xyCd11y4Cd12y3Cd13y2Cd14yCd15. The coefficients d1; : : : ; d15
are:

d1 D b24 d9 D 2b1b5 C 2b2b3
d2 D 2b4b5 d10 D 2b3b6 C 2b5b2
d3 D 2b4b3 d11 D b21
d4 D 2b6b4 C b25 C b27 d12 D 2b1b2
d5 D 2b1b4 C b23 � b27 d13 D 2b1b6 C b22 C b27
d6 D 2b3b5 C 2b2b4 d14 D 2b2b6
d7 D 2b6b5 d15 D b26 � b27;
d8 D 2b1b3

with

b1 D a21 C a22
b2 D �2aa2
b3 D 2a2a4
b4 D .a23 C a24/
b5 D �2aa4
b6 D a2 � a21 � a23
b7 D 2a1a3:
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Fig. 18.4 Algebraic curves for the solution of nonlinear system of bending angle equations

The algebraic equation (18.10) indicates that the solution of the nonlinear bending
angle equation (18.6) is given by the intersection of a quartic polynomial (e.g., p.
28) and a straight line (see e.g., Fig. 18.4).

18.3.2 Algebraic Determination of Bending Angles

18.3.2.1 Application of Groebner Basis

Denoting the nonlinear system of algebraic (polynomial) equations (18.10) by

"
f1 WD d1x4 C d2x3 C d3x3yC d4x2 C d5x2y2 C d6x2yC d7xC d8xy3 C d9xy2 C d00
f2 WD a5xC a6y;

(18.11)

reduced Groebner basis (4.39) on p. 51 is computed for x and y as

GroebnerBasisŒff1; f2g; fx; yg; fyg�
GroebnerBasisŒff1; f2g; fx; yg; fxg�: (18.12)
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The terms ff1; f2g in (18.12) indicate the polynomials in (18.11), fx; yg the variables
with lexicographic ordering x comes before y, and fyg, fxg the variables to be
eliminated. The first expression of (18.12), i.e., GroebnerBasisŒff1; f2g; fx; yg; fyg�
gives a quartic polynomial in x (the first expression of 18.13), while the second
expression gives a quartic polynomial in y (the second expression of 18.13). The
results of (18.12) are:

�
h4x4 C h3x3 C h2x2 C h1xC h0 D 0
g4y4 C g3y3 C g2y2 C g1yC g0 D 0; (18.13)

with the coefficients as

h4 D .a46d1 C a45d11 � a5a36d3 C a25a
2
6d5 � a35a6d8/

h3 D .�a35a6d12 C a46d2 � a5a36d6 C a25a
2
6d9/

h2 D .�a5a36d10 C a25a
2
6d13 C a46d4/

h1 D .�a5a36d14 C a46d7/
h0 D a46d15;

and

g4 D .a46d1 C a45d11 � a5a36d3 C a25a
2
6d5 � a35a6d8/

g3 D .a45d12 � a5a36d2 C a25a
2
6d6 � a35a6d9/

g2 D .�a35a6d10 C a45d13 C a25a
2
6d4/

g1 D .a45d14 � a35a6d7/
g0 D a45d15:

Four solutions are obtained from (18.13) for both x and y using Matlab’s roots
command as x D roots.Œh4 h3 h2 h1 h0 �/ and y D roots.Œg4 g3 g2 g1 g0 �/.
From (18.7) and the roots of (18.13), the required solutions can now be obtained
from

�
�G D sin�1x;
�L D sin�1y: (18.14)

The desired bending angle ˛ in Fig. 18.3 is then obtained by first computing ıG and
ıL as

�
ıG D �G �  G

ıL D �L �  L;
(18.15)

leading to
�
˛ D ıG C ıL

p D 1
2
.rLsin�L C rGsin�G/;

(18.16)

where ˛.p/ is the bending angle and p the impact parameter.
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18.3.2.2 Sylvester Resultants Solution

The quartic polynomials (18.13) can also be obtained using Sylvester resultants
technique as follows:

• Step 1: From the nonlinear system of equations (18.10), hide y by treating it as
a constant (i.e., polynomial of degree zero). Using (5.1) and (5.2) on p. 54, one
computes the resultant of a 5 � 5 matrix

Res .f1; f2; y/ D det

2
666664

a5 a6y 0 0 0

0 a5 a6y 0 0

0 0 a5 a6y 0

0 0 0 a5 a6y
d1 d2 C d3y b53 b54 b55

3
777775
; (18.17)

with b53 D d4 C d5y2 C d6y, b54 D d7 C d8y3 C d9y2 C d10y and b55 D d00. The
solution of (18.17) leads to the first expression of (18.13).

• Step 2: Now hide x by treating it as a constant (i.e., polynomial of degree zero)
and compute the resultant of a 5 � 5 matrix as

Res .f1; f2; x/ D det

2
666664

a6 a5x 0 0 0

0 a6 a5x 0 0

0 0 a6 a5x 0

0 0 0 a6 a5x
d11 d12 C d8x c53 c54 c55

3
777775
; (18.18)

with c53 D d13 C d5x2 C d9x, c54 D d14 C d3x3 C d6x2 C d10x and
c55 D d15Cd1x4Cd2x3Cd4x2Cd7x. The solution of (18.18) leads to the second
expression of (18.13) from which the bending angles and the impact parameters
can be solved as already discussed.

In summary, the algebraic solution of refraction angles in space borne GPS
meteorology proceeds in five steps as follows:

Step 1 (coefficients computation):
Using (18.7), compute the coefficients fh4 h3 h2 h1 h0g and

fg4 g3 g2 g1 g0g of the quartic polynomials in (18.13).
Step 2 (solution of variables fx; yg/:

Using the coefficients fhi; gigji D 1; 2; 3; 4 computed from step 1, obtain the
roots of the univariate polynomials in (18.13) for fx; yg.

Step 3 (determine the angles f�G; �Lg):
With the admissible values of fx; yg from step 2, compute the angles f�G; �Lg
using (18.14).

Step 4 (obtain the angles fıG; ıLg/:
Using the values of f�G; �Lg from step 3, compute the angles fıG; ıLg
using (18.15).
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Step 5 (determine the angle ˛ and the impact parameter p):
Finally, the bending angle ˛ and the impact parameter p are computed using the
values of f�G; �Lg from step 4 in (18.16).

18.4 Algebraic Analysis of Some CHAMP Data

Let us now apply the algebraic algorithm outlined in steps 1 to 5 to assess the
effect of neglecting nonlinearity (i.e., nonlinearity error) in using Newton’s iterative
approach, which assumes (18.6) to be linear. In-order carry out the analysis, bending
angles from CHAMP satellite level 2 data for two satellite occultations were com-
puted and compared to those obtained from iterative approach in [472]. The occul-
tations were chosen at different times of the day and years. Occultation number 133
of 3rd May 2002 occurred past mid-day at 13:48:36. For this period of the day, the
solar radiation is maximum and so is the ionospheric noise. In contrast, occultation
number 3 of 14th May 2001 occurred past mid-night at 00:39:58.00. For this period,
the solar radiation is minimum and the effect of ionospheric noise is also minimum.

The excess phase length data are smoothed using polyfit function of Matlab
software and the resulting doppler shift values for L1 and L2 used together
with (18.7), (18.13) and (18.14) to obtain the angles �G and �L. These angles were
then used in (18.16) to compute the refraction angle ˛ and the impact parameter
p (also denoted in this analysis as a). Let us examine in detail the computation
of occultation number 133 of 3rd May 2002 which occurred during the maximum
solar radiation period. The results of occultation number 3 of 14th May 2001 will
thereafter be briefly presented. For occultation number 133 of 3rd May 2002, which
occurred from the time 13:48:36 to 13:49:51.98, the bending angles were computed
using both algebraic and the classical Newton’s (e.g., [472]) algorithms. Since the
algebraic procedure leads to four solutions of (18.13), a criteria for choosing the
admissible solution had to be developed. This was done by using the bending
angles from the classical Newton’s approach as prior information. Time t D 24:66 s
was randomly chosen and its solutions from both algebraic and classical Newton’s
methods for the L1 signal compared. Figures 18.5 and 18.6 show the plot of the
four solutions for x and y computed from (18.13) respectively. These solutions are
converted into angular values fıG, ıLg using (18.14) and (18.15) respectively and
plotted in Figs. 18.7 and 18.8. From the values of Figs. 18.7 and 18.8, the smallest
values (encircled) were found to be close to those of the classical Newton’s solution.
The algebraic algorithm was then set to select the smallest value amongst the four
solutions. Though Newton’s approach converged after three iterations, a fixed value
of 20 was set for this analysis. The threshold was set such that the difference between
two consecutive solutions were smaller than 1 � 10�6.

For the entire occultation, the bending angles f˛ D ıG C ıLg for both L1 and
L2 signals were computed using algebraic algorithm and are plotted in Fig. 18.9. A
magnifications of Fig. 18.9 above the height 30 km is plotted in Figs. 18.10 to show
the effect of the residual ionospheric errors on bending angles.
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Fig. 18.9 Bending angles for L1 and L2 signals from algebraic algorithm
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Fig. 18.10 Magnification of the bending angles in Fig. 18.9 above 6380 km
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Since bending angle’s data above 40 km are augmented with model values and
those below 5 km are highly influenced by the presence of water vapour (see e.g.,
Figs. 18.9 and 18.10), we will restricted our analysis to the region between 5–
40 km. Data in this region are normally used directly to derive the atmospheric
profiles required for Numerical Weather Prediction (NWP) models . In-order to
assess the effect of nonlinearity assumptions, we subtract the results of the classical
Newton’s approach from those of algebraic approach. This is performed for both
the bending angles ˛ and the impact parameter p. The computations were carried
out separately for both L1 and L2 signals. In-order to compare the results, the
computed differences are plotted in Figs. 18.11, 18.12, 18.13 and 18.14. In these
Figures, the vertical axes are fixed while the horizontal axes indicate the range of the
computed differences. In Figs. 18.11 and 18.12, the computed differences in bending
angles due to nonlinearity assumption for L1 are in the range ˙6 � 10�5(degrees)
with the maximum absolute value of 5:14 � 10�5(degree). For L2, they are in the
range˙5�10�5(degrees), with the maximum absolute value of 4:85�10�5(degree).
The effects of nonlinearity error on the impact parameters for L1 are in the range
˙1:5m with the maximum absolute value of 1:444m, while those of L2 are in the
range ˙2m with the maximum absolute value of 1:534m. The large differences
in the impact parameters are due to the large distances of the GPS satellites
(rG > 20;000 km). They are used in the second equation of (18.16) to compute the
impact parameters to which the bending angles are related. Any small difference in
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Fig. 18.11 Differences in bending angles from L1 due to nonlinearity for occultation 133 of 3rd
May 2002
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Fig. 18.12 Differences in bending angles from L2 due to nonlinearity for occultation 133 of 3rd
May 2002
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Fig. 18.13 Differences in impact parameters from L1 due to nonlinearity for occultation 133 of
3rd May 2002
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Fig. 18.14 Differences in impact parameters from L2 due to nonlinearity for occultation 133 of
3rd May 2002

the computed bending angles due to nonlinearity therefore contributes significantly
to the large differences in the impact parameters. For this particular occultation
therefore, the bending angles of L1 and L2 signals could probably be related to
impact parameters that are off by up to˙2m.

In-order to assess the overall effect of nonlinearity on the bending angles, both
bending angles from algebraic and Newton’s procedures have to be related to the
same impact parameters. In this analysis, the bending angles of L2 from algebraic
approach and those of L1 and L2 from Newton’s approach are all matched through
interpolation to the impact parameters P1 of L1 from algebraic approach. The
resulting total bending angles from both algebraic and iterative procedures are then
obtained by the linear correction method of [505] as

˛.a/ D f 21 ˛1.a/� f 22 ˛2.a/

f 21 � f 22
; (18.19)

where f1; f2 are the frequencies of L1 and L2 signals respectively and, ˛1.a/ and
˛2.a/ the bending angles from L1 and L2 signals respectively. The resulting bending
angles ˛.a/i from the Newton’s approach and ˛.a/a from algebraic approach
using (18.19) are plotted in Fig. 18.15. The deviation 5˛ D ˛.a/a � ˛.a/i
obtained are plotted in Fig. 18.16 which indicates the nonlinearity error to increase
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Fig. 18.15 Bending angles from iterative and algebraic algorithms matched to the same impact
parameters for occultation 133 of 3rd May 2002
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Fig. 18.16 Differences of computed bending angles due to nonlinearity for occultation 133 of 3rd
May 2002
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with decreasing atmospheric height. From 40 km to 15 km, the deviation is within
˙2�10�4(degrees) but increases to˙7�10�4(degrees) for the region below 15 km
with the maximum absolute deviation of 0:00069ı for this particular occultation.
This maximum absolute error is less than 1%. Vorob’ev and Krasil’nikova [505]
pointed out that the error due to nonlinearity increases downwards to a maximum of
about 2% when the beam perigee is close to the Earth’s ground. The large difference
in computed bending angles with decrease in height is expected as the region below
5 km is affected by the presence of water vapour, and as seen from Fig. 18.9, the
bending angles due to L2 signals are highly nonlinear.

The algebraic approach was next used to compute the bending angles of occulta-
tion number 3 of 14th May 2001 which occurred past mid-night at 00:39:58.00.
For this period, as stated earlier, the solar radiation is minimum and the effect
of ionospheric noise is also minimum. The results from this occultation show
the differences in bending angles from the algebraic and Newton’s methods to
be smaller (see Fig. 18.17) compared to those of solar maximum period. The
maximum absolute difference value for bending angles was 0:00001ı. For the
computed impact parameters, the differences were in the range˙5 cm for L1 signal
(Fig. 18.18) and ˙6 cm for L2 (Fig. 18.19). The maximum absolute values were
4 cm and 5 cm respectively. In comparison to the results of occultation 133 of
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Fig. 18.17 Differences in bending angles due to nonlinearity for occultation number 3 of 14th
May 2001
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Fig. 18.18 Differences in impact parameters from L1 due to nonlinearity for occultation number
3 of 14th May 2001
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Fig. 18.19 Differences in impact parameters from L2 due to nonlinearity for occultation number
3 of 14th May 2001



440 18 GNSS Environmental Monitoring

3rd May 2002, the results of occultation 3 of 14th May 2001 indicate the effect
of ionospheric noise during low solar radiation period to be less. The ionospheric
noise could therefore increase the errors due to nonlinearity. In [39], further analysis
of nonlinear bending angles have shown that there could exist other factors that
influence the nonlinearity error other than the ionospheric noise.

18.5 Concluding Remarks

The new concept of GPS meteorology and its application to environmental monitor-
ing is still new and an active area of research. The data that has been collected
so far have unearthed several atmospheric properties that were hitherto difficult
to fathom. The new technique clearly promises to contribute significantly and
enormously to environmental and atmospheric studies. When the life span of the
various missions (e.g., CHAMP, GRACE) will have reached, thousands of data will
have been collected which will help unravel some of the hidden and complicated
atmospheric and environmental phenomenon. Satellite missions such as EQUARS
will contribute valuable equatorial data that have long been elusive due to poor
radiosonde coverage. From the analysis of water vapour trapped in the atmosphere
and the tropopause temperature, global warming studies will be enhanced a great
deal.

We have also successfully presented an independent algebraic algorithm for
solving the system of nonlinear bending angles for space borne GPS meteorology
and shown that nonlinearity correction should be taken into account if the accuracy
of the desired profiles are to be achieved to 1 %. In particular, it has been highlighted
how the nonlinearity errors in bending angles contribute to errors in the impact
parameters to which the bending angles are related. Occultation number 133 of
3rd May 2002 which occurred past noon and occultation number 3 of 14th May
2001 which occurred past mid-night indicated the significance of ionospheric
noise on nonlinearity error. When ionospheric noise is minimum, e.g., during mid-
night, the computed differences in bending angles between the two procedures are
almost negligible. During maximum solar radiation in the afternoons with increased
ionospheric noise, the computed differences in bending angles between algebraic
and classical Newton’s methods increases.

The proposed algebraic method could therefore be used to control the results of
the classical Newton’s method especially when the ionospheric noise is suspected to
be great, e.g., for occultations that occur during maximum solar radiation periods.
The hurdle that must be overcome however is to concretely identify the criteria
for selecting the admissible solution amongst the four algebraic solutions. In this
analysis, the smallest values amongst the four algebraic solutions turned out to
be the admissible in comparison with values of the classical Newton’s approach.
Whether this applies in general is still subject to investigation. In terms of computing
time, the algebraic approach would probably have an advantage over the classical
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Newton’s iterative procedure in cases where thousands of occultations are to
be processed. For single occultations however, the classical Newton’ s approach
generally converges after few iterations and as such, the advantage of the algebraic
approach in light of modern computers may not be so significant. For further
literature on GPS meteorology, we refer to [14, 427, 493].



Chapter 19
Algebraic Diagnosis of Outliers

19.1 Outliers in Observation Samples

In Chap. 7, we introduced parameter estimation from observational data sample
and defined the models applicable to linear and nonlinear cases. In-order for the
estimates to be meaningful however;

(a) proper field observations must be carried out to minimize chances of gross
errors,

(b) the observed data sample must be processed to minimize or eliminate the effects
of systematic errors,

(c) appropriate estimation procedures that account for random errors have to be
applied.

Despite the care taken during observation period and the improved models used to
correct systematic errors, observations may still be contaminated with outliers or
gross errors. Outliers are those observations that are inconsistent with the rest of
the observation sample. They often degrade the quality of the estimated parameters
and render them unreliable for any meaningful inferences (deductions). Outliers find
their way into observational data sample through:

• Miscopying during data entry, i.e., a wrong value can be entered during data input
into the computer or other processing machines.

• Misreading during observation period, e.g., number 6 can erroneously be read as
9.

• Instrumental errors (e.g., problems with centering, vertical and horizontal circles,
unstable tripod stands etc.)

• Rounding and truncation errors (e.g., during data processing)
• Poor models applied to correct systematic errors and estimate parameters (e.g., a

linear model may be assumed where a nonlinear model could be suitable). This

© Springer-Verlag Berlin Heidelberg 2016
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error is also common during data smoothing where a linear fit is used where
actually a cubic fit could have been most suitable etc.

• Key punch errors during data input etc.

A special problem faced by users while dealing with outliers is the basis on which
to discard observations from a set of data on the grounds that they are contaminated
with outliers.

The least squares method used to estimate parameters assume the observational
errors to be independent and normally distributed. In the presence of gross errors
in the observational data sample, these assumptions are violated and hence render
the estimators, such as least squares, ineffective. Earlier attempts to circumvent the
problem of outlier involved procedures that would first detect and isolate the outliers
before adjusting the remaining data sample. Such procedures were both statistical
as seen in the works of [50–52, 373, 532–534], and non statistical e.g., [267]. Other
outlier detection procedures have been presented by [4, 7].

The detection and isolation approach to the outlier problem comes with its
own shortcoming. On one hand, there exists the danger of false deletion and false
retention of the assumed outliers. On the other hand, there exists the problem that
the detection techniques are based on the residuals computed initially using the
least squares method which has the tendency of masking the outliers by pulling
their residuals closer to the regression fit. This makes the detection of outliers
difficult. These setbacks had been recognized by the father of robust statistics P. J.
Huber [280], [281, p. 5] and also [254, pp. 30–31] who suggested that the best option
to deal with the outlier problem was to use robust estimation procedures. Such
procedures would proceed safely despite the presence of outliers, isolate them and
give admissible estimates that could have been achieved in the absence of outliers
(i.e., if underlying distribution was normal). Following the fundamental paper by
P. J. Huber in 1964 [279] and [281], several robust estimation procedures have
been put forward that revolve around the robust M-estimators, L-estimators and
R-estimators. In geodesy and geoinformatics, use of robust estimation techniques to
estimate parameters has been presented e.g., in [5, 22, 23, 120, 238, 303, 305, 306,
376, 455, 534, 537, 538, 541] among others.

In this chapter, we present a non-statistical algebraic approach to outlier diagno-
sis that uses the Gauss-Jacobi combinatorial algorithm presented in Chap. 7. The
combinatorial solutions are analyzed and those containing falsified observations
identified. In-order to test the capability of the algorithm to diagnose outliers, we
inject outliers of different magnitudes and signs on planar ranging and GPS pseudo-
ranging problems. The algebraic approach is then employed to diagnose the outlying
observations.

For GPS pseudo-range observations, the case of multipath effect is considered.
Multipath is the error that occurs when the GPS signal is reflected (mostly by
reflecting surfaces in built up areas) towards GPS receivers, rather than travelling
directly to the receiver. This error still remains a menace which hinders full
exploitation of the GPS system. Whereas other GPS observational errors such as
ionospheric and atmospheric refractions can be modelled, the error due to multipath
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still poses some difficulties in being contained thus necessitating a search for
procedures that can deal with it. In proposing procedures that can deal with the error
due to multipath, [525] have suggested the use of robust estimation approach that
is based on iteratively weighted least squares (e.g., a generalization of the Danish
method to heterogeneous and correlated observations). Awange [21] proposed the
use of algebraic deterministic approach to diagnose outliers of type multipath.

19.2 Algebraic Diagnosis of Outliers

Let us illustrate by means of a simple linear example how the algebraic algorithm
diagnoses outliers.

Example 19.1 (Outlier diagnosis using Gauss-Jacobi combinatorial algorithm)
Consider a case where three linear equations have been given for the purpose
of solving the two unknowns.x; y/ in Fig. 19.1. Three possible combinations,
each containing two equations necessary for solving the two unknowns, can be
formed as shown in the box labelled “combination”. Each of these systems of two
linear equations is either solved by substitution, graphically or matrix inversion
to give three pairs of solutions fx1;2; y1;2g; fx2;3; y2;3g and fx1;3; y1;3g. The final
step involves adjusting these pseudo-observations fx1;2; y1;2; x2;3; y2;3; x1;3, y1;3g as
indicated in the box labelled “adjustment of the combinatorial subsets solutions”.
The weight matrix † or the weight elements f�1;2; �2;3, �1;3g are obtained via

Fig. 19.1 Algebraic outlier diagnosis steps
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nonlinear error/variance-covariance propagation. Assuming now that observation y1
is contaminated by gross error @y, then the first two combinatorial sets of the system
of equations containing observation y1 will have their results fx1;2; y1;2g; fx1;3; y1;3g
changed to fx�

1;2; y
�
1;2g; fx�

1;3; y
�
1;3g respectively because of the change of observation

y1 to .y1 C @y/. The third combination set fx2;3; y2;3g without observation .y1 C @y/
remains unchanged. If one computes the combinatorial positional norms

2
6664

p1 D
q
.x�2
1;2 C y�2

1;2/

p2 D
q
.x�2
1;3 C y�2

1;3/

p3 D
q
.x22;3 C y22;3/;

and subtract them from the norms of the adjusted positional values, median or a
priori values (say from maps), one can analyze the deviations to obtain the falsified
observation y1 which is common in the first two sets. It will be noticed that the
deviation of the first two sets containing the contaminated value is larger than the
uncontaminated set. The median is here used as opposed to the mean as it is less
sensitive to extreme scores.

The program operates in the following steps:

Step 1: Given an overdetermined system with n observations in m unknowns, k
combinations are formed using (7.34) on p. 105.

Step 2: Each of the minimal combination is solved in closed form using either
Groebner basis or polynomial resultant algebraic technique of Chaps. 4 or 5.
From the combinatorial solutions, compute the positional norm.

Step 3: Perform the nonlinear error/variance-covariancepropagation to obtain the
weight matrix of the pseudo-observations resulting from step 2.

Step 4: Using these pseudo-observations and the weight matrix from step 3,
perform an adjustment using linear Gauss-Markov model (7.18) on p. 98.

Step 5: Compute the adjusted barycentric coordinate values together with its
positional norm and the median positional norm from step 2. Subtract these
positional norms from those of the combinatorial solutions to diagnose outliers
from the deviations.

19.2.1 Outlier Diagnosis in Planar Ranging

In Sect. 15.3 of Chap. 15, we discussed the planar ranging problem and presented the
solution to the overdetermined case. We demonstrated by means of Example 15.4
on p. 311 how the position of unknown station could be obtained from distance
measurements to more than two stations. In this section, we use the same example
to demonstrate how the algebraic combinatorial algorithm can be used to diagnose
outliers. From observational data of the overdetermined planar ranging problem
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of [296] given in Table 15.11 on p. 311, the position of the unknown station is
determined. The algorithm is then applied to diagnose outlying observations. Let
us consider three cases as follows; first, the algorithm is subjected to outlier free
observations and used to compute the positional norms. Next, an outlier of 0.95 m
is injected to the distance observation to station 2 and the algorithm applied to diag-
nose that particular observation. Finally, the distance observed to station 4 is con-
sidered to have been miss-booked with 6 typed as 9, thus leading to an error of 3 m.

Example 19.2 (Outlier free observations) From the values of Table 15.11 and
using (7.34) on p. 105, 6 combinations, each consisting of two observation equations
are formed. The aim is to obtain the unknown position from the nonlinear ranging
observations equations. From the computed positions in step 2, the positional norms
are given by

Pi D
q

X2i C Y2i jiD1; : : : ;6; (19.1)

where .Xi;Yi/ jiD1; : : : ;6 are the two-dimensional geocentric coordinates of the
unknown station computed from each combinatorial pair. Table 19.1 indicates the
combinations, their computed positional norms, and deviations from the norm of
the adjusted value (48,941.769m) from step 4. The results are for the case of outlier
free observations. These deviations are plotted against combinatorial numbers in
Fig. 19.2.

Example 19.3 (Outlier of 0.950 m in observation to station 2) Let us now consider
a case where the distance observation to station 2 in Table 15.11 has an outlier
of 0.950 m. For this case, the distance is falsified such that the observed value is
recorded as 1530.432 m instead of the correct value appearing in Table 15.11. The
computed deviations of the combinatorial positional norms from the adjusted value
(48,941.456m) and the median value of (48,941.549m) are presented in Table 19.2
and plotted in Fig. 19.3.

Given that there exists an outlier in the distance observation to station 2, which
appears in combinations (1–2), (2–3) and (2–5), i.e., the first, fourth, and fifth
combinations respectively, one expects the deviations in positional norms in these

Table 19.1 Combinatorial positional norms and their deviations from that of the adjusted value
(outlier free observations)

Combination Positional norm (m) Deviation from adjusted value (m)

1–2 48,941.776 0:007

1–3 48,941.760 �0:009
1–4 48,941.767 �0:002
2–3 48,941.769 0:000

2–4 48,941.831 0:062

3–4 48,941.764 �0:005
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Fig. 19.2 Deviations of the combinatorial positional norms from that of the adjusted value (outlier
free observation)

Table 19.2 Combinatorial positional norms and their deviations from that of the adjusted value
and median (error of 0.950 m in observation to station 2)

Positional Deviation from Deviation from

Combination norm-.m/ adjusted value (m) median value (m)

1–2 48,940.964 �0:492 �0:585
1–3 48,941.760 0:304 0:211

1–4 48,941.767 0:311 0:218

2–3 48,941.338 �0:118 �0:211
2–4 48,936.350 �5:106 �5:199
3–4 48,941.764 0:308 0:215

combinations to be larger than those combinations without station 2. Values of
Table 19.2 columns three and four indicate that whereas combinations (1–3), (1–4)
and (3–4), i.e., the second, third, and sixth combinations respectively have deviations
in the same range (c.a. 0.3 and 0.2 m in columns three and four respectively),
the other combinations with outliers are clearly seen to have varying deviations.
Figure 19.3 clearly indicates the first, fourth, and fifth combinations respectively
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Fig. 19.3 Deviations of the combinatorial positional norms from that of the adjusted value (error
of 0.950 m in observation to station 2)

with outlying observation to have larger deviations as compared to the rest. This is
attributed to observation to station 2 containing gross error.

Example 19.4 (Outlier of 3 m in observation to station 4) Next, we consider a
case where observation to station 4 in Table 15.11 has an outlier of 3 m, which
erroneously resulted from miss-booking of the number 6 as 9. This falsified the dis-
tance such that the recorded value was 1209.524 m. The computed deviations of the
combinatorial positional norms from the norm of the adjusted value (48,942.620m)
and the median value (48,941.772m) are given as in Table 19.3 and plotted in
Fig. 19.4. Given that there exists an outlier in the distance observation to station 4,
which appears in combinations (1–4), (2–4) and (3–4) i.e., the third, fifth, and sixth
combinations, Table 19.3 columns three and four together with Fig. 19.4 clearly
indicates the deviations from these combinations to be larger than those of the
combinations without observation 4, thus attributing it to observation to station 4
containing gross error.
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Table 19.3 Combinatorial positional norms and deviations from the norms of adjusted value and
median (error of 3 m in observation to station 4)

Positional Deviation from Deviation from

Combination norm-.m/ adjusted value (m) median value (m)

1–2 48,941.776 �0.844 0.004

1–3 48,941.760 �0.860 �0.012

1–4 48,944.388 1.768 2.616

2–3 48,941.769 �0.851 �0.003

2–4 48,927.912 �14.708 �13.860

3–4 48,943.061 0.441 1.289
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Fig. 19.4 Deviations of the combinatorial positional norms from that of the median value (error
of 3 m in observation to station 4)

19.2.2 Diagnosis of Multipath Error in GNSS Positioning

For GPS pseudo-ranging, consider that a satellite signal meant to travel straight to
the receiver was reflected by a surface as shown in Fig. 19.5. The measured pseudo-
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Fig. 19.5 Multipath effect

range reaching the receiver ends up being longer than the actual pseudo-range, had
the signal travelled directly. In-order to demonstrate how the algorithm can be used
to detect outlier of type multipath, let us make us of Example 15.2 on p. 293. Using
the six satellites, 15 combinations are formed whose positional norms are computed
using

Pi D
q

X2i C Y2i C Z2i jiD1; : : : ;15; (19.2)

where .Xi;Yi;Zi/ jiD1; : : : ;15 are the three-dimensional geocentric coordinates of the
unknown station computed from each combinatorial set. The computed positional
norm are then used to diagnose outliers. Three cases are presented as follows: In
case A, outlier free observations are considered while for cases B and C, outliers of
500 and 200 m are injected in pseudo-range measurements from satellites 23 and 9
respectively.

Example 19.5 (Case A: Multipath free pseudo-ranges) From the values of
Table 15.2 and using (7.34) on p. 105, 15 combinations, each consisting of four
satellites, are formed with the aim of solving for the unknown position. For each
combination, the position of the receiver is computed as discussed in Example 15.2
on p. 293. Table 19.4 indicates the combinations, the computed combinatorial
positional norms from (19.2) and the deviations from the norms of the adjusted
value of 6369.582 m and the median from step 4, for outlier free case. The
combinatorial algorithm diagnoses the poor geometry of the 10th combination.
Figure 19.6 indicates the plotted deviations versus combinatorials.
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Table 19.4 Positional norms and deviations from the norms of adjusted value and median
(multipath free)

Deviation from the The norm of

Combination Positional norm of the Deviation from

number Combination norm (km) adjusted value (m) the median (m)

1 23-9-5-1 6369.544 �39:227 �17:458
2 23-9-5-21 6369.433 �149:605 �127:837
3 23-9-5-17 6369.540 �43:255 �21:487
4 23-9-1-21 6369.768 185:342 207:110

5 23-9-1-17 6369.538 �44:603 �22:835
6 23-9-21-17 6369.561 �21:768 0:000

7 23-5-1-21 6369.630 47:449 69:217

8 23-5-1-17 6369.542 �41:229 �19:461
9 23-5-21-17 6369.507 �76:004 �54:235
10 23-1-21-17 6373.678 4094:748 4116:516

11 9-5-1-21 6369.724 140:976 162:744

12 9-5-1-17 6369.522 �60:746 �38:978
13 9-5-21-17 6369.648 64:830 86:598

14 9-1-21-17 6369.712 128:522 150:2908

15 5-1-21-17 6369.749 166:096 187:865

Example 19.6 (Case B: Multipath error of 500 m in pseudo-range measurements
from satellite 23) Let us assume that satellite number 23 had its pseudo-range
longer by 500 m owing to multipath effect. Once the positions have been computed
for the various combinations in Table 15.2, the positional norms for the 15
combinatorials are then computed via (19.2). The computed deviations of the
positional norms from the norm of the adjusted value 6368.785 m, norm of the
median value of 6368.638 m and a priori norm from case A are presented in
Table 19.5. The deviations from a priori norm in case A are plotted in Fig. 19.7.

Given that there exists an outlier in the pseudo-range measurements from satellite
23, which appears in combinations 1 to 10, one expects the deviation in positional
norms in these combinations to contain higher fluctuations than the combinations
without satellite 23. Values of Table 15.2 columns four, five and six indicate that
whereas combinations 11, 12, 13, 14 and 15 without satellite number 23 have values
with less fluctuation of positional norms, the variation of the first 10 combinations
containing satellite 23 were having larger fluctuations. The case is better illustrated
by Fig. 19.7, where prior information is available on the desired position (e.g.,
from the norm of outlier free observations in Example 19.5). In such case, it
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Fig. 19.6 Deviations of the combinatorial positional norms from that of the adjusted value (outlier
free observation)

becomes clearer which combinations are contaminated. From the figure, the first
10 combinations have larger deviations as opposed to the last 5, thus diagnosing
satellite 23 as the outlying satellite. In practice, such prior information can be
obtained from existing maps.

Example 19.7 (Case C: Multipath error of 200 m in satellite 9) Let us now suppose
that satellite number 9 appearing in the last 5 combinations in case B (i.e.,
combinations 11, 12, 13, 14 and 15) has outlier of 200 m. The positional norms
for the 15 combinatorials are then computed from (19.2). The computed deviations
of the positional norms from the norm of the adjusted value 6369.781 m, norm
of the median value 6369.804 m and a priori norm from case A are presented
in Table 19.6 and plotted in Fig. 19.8. Satellite 9 appears in combinations 1, 2,
3, 4, 5, 6, 11, 12, 13, 14 and 15, with larger deviations in positional norms as
depicted in Table 19.6 columns four, five and six and plotted in Fig. 19.8. Whereas
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Table 19.5 Positional norms and deviations from the norms of adjusted value, median norm and
the norm of case A (Multipath error of 500 m in satellite 23)

Deviation from Norm of Deviation from

Comb. Positional norm of Deviation from a priori norm

No. Combination norm .km/ adjusted value .m/ the median .m/ .m/

1 23-9-5-1 6368.126 �658:763 �512:013 �1456:925
2 23-9-5-21 6367.147 �1637:513 �1490:763 �2435:675
3 23-9-5-17 6368.387 �397:366 �250:616 �1195:528
4 23-9-1-21 6370.117 1332:597 1479:347 534:435

5 23-9-1-17 6368.475 �309:906 �163:155 �1108:068
6 23-9-21-17 6368.638 �146:750 0:000 �944:912
7 23-5-1-21 6368.895 110:069 256:820 �688:093
8 23-5-1-17 6368.256 �528:806 �382:055 �1326:967
9 23-5-21-17 6368.006 �779:197 �632:447 �1577:359
10 23-1-21-17 6368.068 �716:569 �569:818 �1514:730
11 9-5-1-21 6369.724 939:136 1085:888 140:976

12 9-5-1-17 6369.522 737:416 884:166 �60:746
13 9-5-21-17 6369.648 862:991 1009:742 64:829

14 9-1-21-17 6369.712 926:684 1073:434 128:522

15 5-1-21-17 6369.749 964:258 1111:008 166:096

combinations 7, 8, 9 and 10 without satellite number 9 have values with less
deviations of positional norms, the deviations of the first 6 combinations and those
of combinations 11–15 containing satellite 9 were larger. With prior information as
shown in Fig. 19.8, satellite 9 can then be isolated to be the satellite with outlier.
The value of combinatorial 10 is due to poor geometry as opposed to outlier since
this particular combination does not contain satellite 9. This can be confirmed by
inspecting the coefficients of the quadratic equations used to solve the unknown
pseudo-range equations as already discussed in Example 15.2 on p. 293.

The diagnosed outliers in planar ranging observations as well as the pseudo-ranges
of satellites 23 and 9 could therefore either;

• be eliminated from the various combinations and the remaining observations
used to estimate the desired parameters or,

• the effect of the outlier could be managed using robust estimation techniques
such as those discussed in [22, 23, 525], but with the knowledge of the
contaminated observations.
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Fig. 19.7 Deviations of combinatorial positional norms from the norm of the a priori value in case
A (error of 500 m in pseudo-range of satellite 23)
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Fig. 19.8 Deviations of combinatorial positional norms from the norm of the a priori value (error
of 200 m in pseudo-range of satellite 9)

19.3 Concluding Remarks

The success of the algebraic Gauss-Jacobi combinatorial algorithm to diagnose
outliers in the cases considered is attributed to its computing engine. The capability
of the powerful algebraic tools of Groebner basis and polynomial resultants to solve
in a close form the nonlinear systems of equations is the key to the success of the
algorithm. With prior information from e.g., existing maps, the method can further
be enhanced. For the 7-parameter datum transformation problem discussed in the
next chapter, Procrustes algorithm II could be used as the computing engine instead
of Groebner basis or polynomial resultants. The algebraic approach presented could
be developed to further enhance the statistical approaches for detecting outliers.



Chapter 20
Datum Transformation Problems

20.1 The 7-Parameter Datum Transformation
and Its Importance

The 7-parameter datum transformation C7.3/ problem involves the determination
of seven parameters required to transform coordinates from one system to another.
The transformation of coordinates is a computational procedure that maps one set of
coordinates in a given system onto another. This is achieved by translating the given
system so as to cater for its origin with respect to the final system, and rotating the
system about its own axes so as to orient it to the final system. In addition to the
translation and rotation, scaling is performed in order to match the corresponding
baseline lengths in the two systems. The three translation parameters, three rotation
parameters and the scale element comprise the seven parameters of the datum
transformation C7.3/ problem, where one understands C7.3/ to be the notion of
the seven parameter conformal group in R

3, leaving “space angles” and “distance
ratios” equivariant (invariant). A mathematical introduction to conformal field
theory is given by [178, 461], while a systematic approach of geodetic datum
transformation, including geometrical and physical terms, is presented by [230].
For a given network, it suffices to compute the transformation parameters using
three or more coordinates in both systems. These parameters are then later used for
subsequent conversions.

In geodesy and geoinformatics, the 7-parameter datum transformation problem
has gained significance following the advent of Global Navigation Satellites
Systems (GNSS), and particularly GPS. Since satellite positioning operates on a
global reference frame (see e.g., Chap. 13), there often exists the need to transform
coordinates from local systems onto GPS’s World Geodetic System 84 (WGS-84).

© Springer-Verlag Berlin Heidelberg 2016
J.L. Awange, B. Paláncz, Geospatial Algebraic Computations,
DOI 10.1007/978-3-319-25465-4_20
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Specifically, coordinates can be transformed;

• from map systems to digitizing tables (e.g., in Geographical Information System
GIS),

• from photo systems (e.g., photo coordinates) to ground systems (e.g., WGS-84),
• from local (national) systems to global reference systems (e.g., WGS-84) as

in (17.29) on p. 412,
• from regional (e.g., European Reference Frame EUREF system) to global

reference systems (e.g., WGS-84),
• from local (national) systems to regional reference systems, and
• from one local system onto another local system. In some countries, there exist

different systems depending on political boundaries.

This problem, also known as 7-parameter similarity transformation, has its 7
unknown transformation parameters related to the known coordinates in the two
systems by nonlinear equations. These equations are often solved using numerical
methods which, as already pointed out in the preceding chapters, rely on lineariza-
tion, approximate starting values and iterations. In this chapter, we solve the problem
algebraically using;

(a) Procrustes method,
(b) Groebner basis,
(c) Gauss-Jacobi combinatorial algorithms, and
(d) Dixon’s resultant.

Before we present the usage of these algebraic algorithms, let us see how the 7-
parameter datum transformation problem is formulated.

20.1.1 Formulation of the Problem

Consider a case where coordinates have been given in two systems, A and B. For
clarity purposes, let us assume the two coordinate systems to be e.g., photo image
coordinates in system A and ground coordinates in system B (see e.g., Fig. 17.7
on p. 411). The ground coordinates fXi;Yi;Ziji; : : : ; ng of the objects are obtained
from, say, GPS measurements. Given the photo coordinates fxi; yi;�f ji; : : : ; ng
and their equivalent ground coordinates fXi;Yi;Ziji; : : : ; ng, the 7-parameter datum
transformation problem concerns itself with determining;

(1) the scale parameter x1 2 R,
(2) three translation parameters x2 2 R

3, and
(3) the rotation matrix X3 2 R

3�3 comprising three rotation elements.

Once the listed unknowns have been determined, coordinates can subsequently be
transformed from one system onto another. The nonlinear equations relating these
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unknowns and coordinates from both systems are given by (cf., Eq. 17.29 on p. 412)

2
4 ai

bi

ci

3
5 D x1X3

2
4Xi

Yi

Zi

3
5C x2 j i D 1; 2; 3; : : : ; n; (20.1)

subject to
�

�

�

	
X

0

3X3 D I3 : (20.2)

In (20.1), fai; bi; cig and fXi;Yi;Zig are the coordinates of the same points, e.g., in
both photo (fxi; yi;�f ) and ground coordinate systems respectively. The determina-
tion of the unknowns x1 2 R, x2 2 R

3, X3 2 R
3�3 require a minimum of three

points in both systems whose coordinates are known. Owing to the nonlinearity
of (20.1), the solutions have always been obtained using a least squares approach
iteratively. With this approach, (20.1) is first linearized and some initial approximate
starting values of the unknown parameters used. The procedure then iterates, each
time improving on the solutions of the preceding iteration step. This is done until a
convergence criteria is achieved.

Where the rotation angles are small e.g., in photogrammetry, the starting values
of zeros are normally used. In other fields such as geodesy, the rotation angles
are unfortunately not small enough to be initialized by zeros, thereby making the
solution process somewhat difficult and cumbersome. Bad choices of initial starting
values often lead to many iterations being required before the convergence criteria
is achieved. In some cases, where the initial starting values are far from those
of the unknown parameters, iteration processes may fail to converge. With these
uncertainties in the initial starting values, the cumbersomeness of the linearization
and iterations, procedures that would offer an exact solution to the 7-parameter
datum transformation problem would be desirable. To answer this challenge, we
propose algebraic approaches whose advantages over the approximate numerical
methods have already been mentioned.

Apart from the computational difficulties associated with numerical procedures,
the 7-parameter datum transformation problem poses another challenge to existing
algorithms. This is, the incorporation of the variance-covariance (weight) matrices
of the two systems involved. Communications between [304, 327, 428] on the
subject, following the work of [326], provides an insight to this problem. In practice,
users have been forced to rely on iterative procedures and linearized least squares
solutions which are incapable of incorporating the variance-covariance matrices of
both systems in play. We will attempt to address this challenge algebraically in this
chapter.
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20.2 Algebraic Solution of the 7-Parameter Transformation
Problem

20.2.1 Groebner Basis Transformation

By making use of the skew-symmetric matrix S, the rotation matrix X3 2 R
3�3

in (20.1) is expressed as

X3 D .I3 � S/�1.I3 C S/; (20.3)

where I3 is the identity matrix and the skew-symmetric matrix S given by

S D
2
4 0 �c b

c 0 �a
�b a 0

3
5 : (20.4)

The rotation matrix X3 2 R
3�3 is parameterized using Euler or Cardan angles. With

Cardan angles, we have:

Solution 20.1 (Parametrization of the rotation matrix by Cardan angles)

X3 D R1.˛/R2.ˇ/R3.�/ (20.5)

with

R1 D
2
4 1 0 0

0 cos˛ sin˛
0 �sin˛ cos˛

3
5 ; R2 D

2
4 cosˇ 0 �sinˇ

0 1 0

sinˇ 0 cosˇ

3
5 ; R3 D

2
4 cos� sin� 0

�sin� cos� 0
0 0 1

3
5 ;

leading to

R1.˛/R2.ˇ/R3.�/ D2
4 cosˇcos� cosˇsin� �sinˇ

sin˛sinˇcos� � cos˛sin� sin˛sinˇsin� C cos˛cos� sin˛cosˇ
cos˛sinˇcos� C sin˛sin� cos˛sinˇsin� � sin˛cos� cos˛cosˇ

3
5 : (20.6)

The Cardan angles are then obtained from the rotation matrix X3 2 R
3�3 through:

2
66666666666664

˛ D tan


r23
r33

�

� D tan


r12
r11

�

ˇ D tan

8̂
<
:̂

�r31q
r211 C r212

9>=
>; D tan

8̂
<
:̂

�r31q
r223 C r233

9>=
>;:

(20.7)
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For parametrization using Euler angles, we have:

Solution 20.2 (Parametrization of the rotation matrix by Euler angles
�� ;˚� ;˙� )

RE.�� ;˚� ;˙� / WD R3.˙� /R2.
�

2
� ˚� /R3.�� / (20.8)

R1 WD
"
1 0 0

0 cos 1 sin 1
0 � sin 1 cos 1

#
; R2 WD

"
cos 2 0 � sin 2
0 1 0

sin 2 0 cos 2

#
; R3 WD

"
cos 3 sin 3 0

� sin 3 cos 3 0
0 0 1

#

(20.9)

R3.�� / D
"

cos�� sin�� 0

� sin�� cos�� 0

0 0 1

#
; R2.

�

2
� ˚� / D

"
sin˚� 0 � cos˚�
0 1 0

cos˚� 0 sin˚�

#

(20.10)

R2.
�

2
�˚� /R3.�� / D

2
4 sin˚� cos�� sin˚� sin�� � cos˚�
� sin�� cos�� 0

cos˚� cos�� cos˚� sin�� sin˚�

3
5 (20.11)

R WD R3.˙� /R2.
�
2

�˚� /R3.�� / D
2
6666666664

cos˙� sin˚� cos��

� sin˙� sin��

cos˙� sin˚� sin��

C sin˙� cos�� � cos˙� cos˚�

� sin˙� sin˚� cos��

� cos˙� sin��

� sin˙� sin˚� sin��

C cos˙� cos�� sin˙� cos˚�

cos˚� cos�� cos˚� sin�� sin˚�

3
7777777775

0 � �� < 2�;� �
2
< ˚� < C �

2
; 0 � ˙� < 2�

(20.12)

The inverse map of

R D Œrkl� ; k; l 2 f1; 2; 3g ;

to

.�� ;˚� ;˙� /

is given by Lemma 20.1.
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Lemma 20.1 (Inverse map R 7! �� ;˚� ;˙� ) Let the direct Euler map of the
rotation matrix be given by (20.12), namely

R WD R3.˙� /R2.
�

2
� ˚� /R3.�� /;

.�� ;˚� ;˙� / 2
n
R3
ˇ̌
ˇ0 � ƒ� < 2�;��

2
< ˆ� < C�

2
; 0 � †� < 2�

o
:

The inverse Euler map is parameterized by

2
6666666664

tan�� D r32
r31
) �� D arctan

r32
r31

tan˚� D r33q
r231 C r232

) ˚� D arctan
r33q

r231 C r232

tan˙� D � r23
r13
) ˙� D arctan� r23

r13
:

(20.13)

The properties of the rotation matrix X3 2 R
3�3 expressed in (20.3) have

been examined by [549] and shown to fulfill (20.2). Only a minimum of three
corresponding points in both systems are required for the transformation parameters
to be obtained. For these points, (20.1) is now written for i D 1; 2; 3 using (20.3) as

2
4 1 c �b
�c 1 a
b �a 1

3
5
2
4 ai

bi

ci

3
5 D x1

2
4 1 �c b

c 1 �a
�b a 1

3
5
2
4Xi

Yi

Zi

3
5C

2
4 1 c �b
�c 1 a
b �a 1

3
5
2
4X0

Y0
Z0

3
5 ;

(20.14)

with fX0;Y0;Z0g 2 x2 being the translation parameters. For these three corre-
sponding points in both systems, the observation equations for solving the seven
transformation parameters are expressed from (20.14) as:

2
66666666666664

f1 WD x1X1 � x1cY1 C x1bZ1 C X0 C cY0 � bZ0 � a1 � cb1 C bc1 D 0
f2 WD x1cX1 C x1Y1 � x1aZ1 � cX0 C Y0 C aZ0 C ca1 � b1 � ac1 D 0
f3 WD �x1bX1 C x1aY1 C x1Z1 C bX0 � aY0 C Z0 � ba1 C ab1 � c1 D 0
f4 WD x1X2 � x1cY2 C x1bZ2 C X0 C cY0 � bZ0 � a2 � cb2 C bc2 D 0
f5 WD x1cX2 C x1Y2 � x1aZ2 � cX0 C Y0 C aZ0 C ca2 � b2 � ac2 D 0
f6 WD �x1bX2 C x1aY2 C x1Z2 C bX0 � aY0 C Z0 � ba2 C ab2 � c2 D 0
f7 WD x1X3 � x1cY3 C x1bZ3 C X0 C cY0 � bZ0 � a3 � cb3 C bc3 D 0
f8 WD x1cX3 C x1Y3 � x1aZ3 � cX0 C Y0 C aZ0 C ca3 � b3 � ac3 D 0
f9 WD �x1bX3 C x1aY3 C x1Z3 C bX0 � aY0 C Z0 � ba3 C ab3 � c3 D 0;

(20.15)
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where fai; bi; cig j i 2 f1; 2; 3g are coordinates of the three points in one of
the systems (e.g., local system), fXi;Yi;Zig j i 2 f1; 2; 3g are the corresponding
coordinates in the other system (e.g., global system) and fa; b; cg are the elements of
the S matrix in Eq. 20.4. In (20.15), f f1; f2; f3g are algebraic expressions formed from
the first point with coordinates in both systems, f f4; f5; f6g from the second point
and f f7; f8; f9g from the third point. From (20.15), considering the unknowns (see
Eq. 20.14) as x1; a; b; c;X0;Y0;Z0, one requires only seven equations for a closed
form solution of the 7-parameter transformation problem.

Let us consider the system of nonlinear equations extracted from (20.15) to
be formed by the 7 polynomials f f1; f2; f3; f4; f5; f6; f9g. Our target now is to solve
algebraically this nonlinear system of equations using Groebner basis approach to
provide symbolic solutions. We proceed as follows: First, the translation parameters
fX0;Y0;Z0g are eliminated by differencing

2
664

f14 WD f1 � f4 D x1X12 � x1cY12 C x1bZ12 � a12 � cb12 C bc12
f25 WD f2 � f5 D x1cX12 C x1Y12 � x1aZ12 C ca12 � b12 � ac12
f39 WD f3 � f9 D �x1bX13 C x1aY13 C x1Z13 � ba13 C ab13 � c13
f69 WD f6 � f9 D �x1bX23 C x1aY23 C x1Z23 � ba23 C ab23 � c23;

(20.16)

where

Xij D Xi � Xj; Yij D Yi � Yj; Zij D Zi � Zj

aij D ai � aj; bij D bi � bj; cij D ci � cj

3
5 j i; j 2 f1; 2; 3g; i ¤ j:

The reduced Groebner basis of (20.16) is then obtained for the scale parameter x1
using (4.39) on p. 51 by

GroebnerBasisŒf f14; f25; f37; f67g; fx1; a; b; cg; fa; b; cg�:

This gives only the elements of the Groebner basis in which the variables fa; b; cg
have been eliminated and only the scale factor x1 is left. The scale parameter is then
given by the following quartic polynomial:

a4x
4
1 C a3x

3
1 C a2x

2
1 C a1x1 C a0 D 0; (20.17)

with the coefficients as in [26, Boxes 2-2] or [40, Appendix A]. Once the admissible
value of scale parameter x1 2 R

C has been chosen from the four roots in (20.17),
the elements of the skew-symmetric matrix S in (20.4) can then be obtained via
the linear functions in [26, Boxes 2-3] or [40, Appendix B]. Substituting the skew-
symmetric matrix S in (20.1) gives the rotation matrix X3; from which the Cardan
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Table 20.1 Coordinates for
system A (local system)

Station name X(m) Y(m) Z(m)

Solitude 4,157,222.543 664,789.307 4,774,952.099

Buoch Zeil 4,149,043.336 688,836.443 4,778,632.188

Hohenneuffen 4,172,803.511 690,340.078 4,758,129.701

Kuehlenberg 4,177,148.376 642,997.635 4,760,764.800

Ex Mergelaec 4,137,012.190 671,808.029 4,791,128.215

Ex Hof Asperg 4,146,292.729 666,952.887 4,783,859.856

Ex Kaisersbach 4,138,759.902 702,670.738 4,785,552.196

Table 20.2 Coordinates for
system B (WGS-84)

Station name X(m) Y(m) Z(m)

Solitude 4,157,870.237 664,818.678 4,775,416.524

Buoch Zeil 4,149,691.049 688,865.785 4,779,096.588

Hohenneuffen 4,173,451.354 690,369.375 4,758,594.075

Kuehlenberg 4,177,796.064 643,026.700 4,761,228.899

Ex Mergelaec 4,137,659.549 671,837.337 4,791,592.531

Ex Hof Asperg 4,146,940.228 666,982.151 4,784,324.099

Ex Kaisersbach 4,139,407.506 702,700.227 4,786,016.645

Table 20.3 Groebner basis’
7-transformation parameters

Transformation parameter Value Unit

Scale k � 1 �1.4343 [ppm]

Rotation X1.a/ 0.32575149 [“]

Rotation X2.b/ �0.46037399 [“]

Rotation X3.c/ �0.00810606 [“]

Translation �X 643.0953 [m]

Translation �Y 22.6163 [m]

Translation �Z 481.6023 [m]

rotation angles are deduced using (20.7). The translation elements x2 can then be
computed by substituting the scale parameter x1 and the rotation matrix X3 in (20.1).
Three sets of translation parameters are then obtained, from which their mean is
taken.

Example 20.1 (Computation of transformation parameters using Groebner basis
algorithm) Cartesian coordinates of seven stations in Stuttgart Germany are given
in the local and global system (WGS-84) in Tables 20.1 and 20.2 respectively.
Desired are the seven parameters of datum transformation. Using explicit solutions
in [26, Boxes 2-2 and 2-3] or [40, Appendices A and B], the 7 transformation
parameters are computed and presented in Table 20.3. These parameters are then
used to transform the three points involved in the computations from the local
reference system in Table 20.1 to the WGS-84, as shown in Table 20.4.
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Table 20.4 Transformed Cartesian coordinates of System A (Table 20.1) into System B
(Table 20.2) using the parameters in Table 20.3

Site X.m/ Y.m/ Z.m/

System A: Solitude 4,157,222.5430 664,789.3070 4,774,952.0990

System B 4,157,870.2370 664,818.6780 4,775,416.5240

Transformed value 4,157,870.3070 664,818.6742 4,775,416.5240

Residual � 0.0700 0.0038 0.0000

System A: Buoch Zeil 4,149,043.3360 688,836.4430 4,778,632.1880

System B 4,149,691.0490 688,865.7850 4,779,096.5880

Transformed value 4,149,691.1190 688,865.7812 4,779,096.5880

Residual � 0.0700 0.0038 0.0000

System A: Hohenneuffen 4,172,803.5110 690,340.0780 4,758,129.7010

System B 4,173,451.3540 690,369.3750 4,758,594.0750

Transformed value 4,173,451.2141 690,369.3826 4,758,594.0750

Residual 0.1399 �0.0076 0.0000

20.2.2 Dixon Resultant Solution

In this section we solve the C7(3) Helmert transformation with the Dixon resultant
using the Kapur-Saxena-Yang (KSY) method (see Kapur et al. [298]), in the
Computer Algebra System of Mathematica. This method was implemented into
Mathematica by Nakos and Williams [378, 379]. In order to evaluate the perfor-
mance of the Dixon resultant, we compared its performance with that of Groebner
basis solution (see the previous section and Závoti and Jancso [548]).

As we have seen in the previous section, in order to solve the 7-parameter datum
transformation problem, a minimum of three corresponding points in both systems
are required. For these three points, nine equations ( f1; f2; : : : ; f9) can be written
(see 20.15). In order to obtain a solvable system of equations, seven equations
should be chosen. In the previous section, a combination was chosen arbitrarily
as { f1; f2; f3; f4; f5; f6; f9}. However, there exists

�
9

7

� D 36 possible combinations
of selecting seven equations from the nine original equations in (20.15). From
the selected seven equations, the translation parameters fx2 D X0;Y0;Z0g are
eliminated in a differential mode (see 20.16) reducing the seven equations to a
system of four equations with four unknown parameters (i.e., scale x1 and rotation
elements a; b; c). After selecting a combination, the possible configurations to
eliminate the translation parameters are:

X0 Y0 Z0
f1 � f4 f2 � f5 f3 � f6
f1 � f7 f2 � f8 f3 � f9
f4 � f7 f5 � f8 f6 � f9

(20.18)
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Considering now a different combination than used in the previous section, e.g.,
( f2; f3; f4; f5; f6; f8; f9), the eliminations . fi�fj/whose indices .i; j/ cover the sequence
(2; 3; 4; 5; 6; 8; 9) are

r1 D f2 � f8I
r2 D f2 � f5I
r3 D f3 � f9I
r4 D f6 � f9I

(20.19)

leading to

r1 D �ca1 C ca3 � cx1X1 C cx1X3 C b1 � b3 � x1Y1 C x1Y3 C ac1 � ac3

Cax1Z1 � ax1Z3I
r2 D �ca1 C ca2 � cx1X1 C cx1X2 C b1 � b2 � x1Y1 C x1Y2 C ac1 � ac2

Cax1Z1 � ax1Z2I
r3 D ba1 � ba3 C bx1X1 � bx1X3 � ab1 C ab3 � ax1Y1 C ax1Y3 C c1 � c3

�x1Z1 C x1Z3I
r4 D ba2 � ba3 C bx1X2 � bx1X3 � ab2 C ab3 � ax1Y2 C ax1Y3 C c2 � c3

�x1Z2 C x1Z3I (20.20)

This system can be simplified using the same new variables as in the previous
section, instead of the original coordinate differences. The simplified system, with
these new variables which we call relative coordinates is

r1 D �ca13 � cx1X13 C b13 � x1Y13 C ac13 C ax1Z13I
r2 D �ca12 � cx1X12 C b12 � x1Y12 C ac12 C ax1Z12I
r3 D ba13 C bx1X13 � ab13 � ax1Y13 C c13 � x1Z13I
r4 D ba23 C bx1X23 � ab23 � ax1Y23 C c23 � x1Z23I

(20.21)

Equation (20.21) can now be solved by eliminating the variables a; b and c to obtain
a polynomial for the scale parameter (x1) via the Dixon resultant or Groebner basis
in Mathematica.1

First, the Dixon prompt should be called by typing,

<< Resultant ‘Dixon‘

1Remark: With the Dixon resultant the system of Eq. (20.20), without using the relative coor-
dinates, also provided a solution, which was un-achievable with Groebner basis (see Paláncz
et al. [396]).
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then we can compute the Dixon resultant by

DixonResultantŒfr1; r2; r3; r4g; fa; b; cg; f�1; �2; �3g�

where f�1; �2; �3g are the auxiliary variables of the Dixon polynomial, rifi D
1; : : : ; 4g the equations, and fa; b; cg the variables to be eliminated from the equation
system. This results in a quartic polynomial for the scale factor (x1), similar to the
Groebner basis solution (see 20.17). The Dixon resultant takes 0.016 s to solve this
system of equations on a HP xw 4100 workstation with Windows XP operation
system, 3 GHz P4 Intel processor and 1 GB RAM. Let us compare the results now
with those of the Groebner basis solution. The same result can be achieved by typing
in Mathematica,

GroebnerBasisŒfr1; r2; r3; r4g; fx1; a; b; cg; fa; b; cg�

where rifi D 1; : : : ; 4g are the equations, fx1; a; b; cg the variables in the system,
and fa; b; cg the variables to be eliminated from the equation system, where the
order means the elimination order of the variables. However, using the Groebner
basis method requires 3017.69 s!

We have chosen different 7-equation combinations from the original nine equa-
tions and we changed also the monomial order during the processing (see Table 20.5
for a few chosen sequences). The Dixon resultant solution was indifferent to these
changes, the running time always being ca. 0.016 s. However, the running time
for the reduced Groebner basis solution was dependent on the chosen 7-equation
combination and changes also with the order of variables to be eliminated (see
Table 20.5). In case of four chosen sequences (from the 36 possible choices), one
notices considerable change in the required computational time, see for example the
last column in Table 20.5. For example, for the combination of ( f2; f3; f4; f5; f6; f8; f9),
the computation time was 50 min using the monomial order fa; b; cg and only 0.484 s
if we changed the monomial order to fb; c; ag! With Dixon resultant, the running

Table 20.5 Running times (seconds) for cases of different sequences and order of the variables to
be eliminated using reduced Groebner basis with relative coordinates

Sequence f1; f2; f3; f4; f1; f2; f3; f4; f1; f2; f3; f4; f2; f3; f4; f5;
order of variables f6; f7; f8 f5; f8; f9 f5; f7; f9 f6; f8; f9
a,b,c 0:219 0:688 0:985 3017:69

a,c,b 0:36 35:921 0:672 2601:75

b,a,c 0:25 0:922 0:765 3172:48

b,c,a 163:765 0:547 33:985 0:484

c,a,b 0:719 52:328 0:562 1831:42

c,b,a 174:547 0:75 47:797 0:532
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Table 20.6 Hungarian points in the ETRS89 and HD72 datums

Point x(m) y(m) z(m) X(m) Y(m) Z(m)

1 4,171,409.677 1,470,823.777 4,580,140.907 4,171,352.311 1,470,893.887 4,580,150.178

2 4,146,957.889 1,277,033.850 4,659,439.264 4,146,901.301 1,277,104.509 4,659,448.287

3 3,955,632.880 1,611,863.197 4,720,991.316 3,955,575.649 1,611,933.124 4,721,000.952

time was only 0.016 s, independent from the order of variables. The Groebner basis
approach is clearly affected by both

(a) the combinatorial sequence and
(b) the monomial order.

These two factors are undesirable since users are not often privy to the optimal
sequence and order during data processing. However, there is a third important
factor having strong influence on the performance of the Groebner basis com-
putation: this is the elimination order. In general, using MonomialOrder � >

EliminationOrder can ensure the best behavior, (Lichtblau, Priv. Comm.).
The Dixon resultant therefore proved to be faster in this case, and very robust in

that it is insensitive to the order of variables, unlike the Groebner basis. This feature
can be very important from a practical point of view, because in the case of Groebner
basis, the user should find the proper combinatorial sequence and monomial order
via a trial-error method. For the sequence . f2; f3; f4; f5; f6; f8; f9/ in Table (20.5, last
column) for example, only two orders can provide a solution in a reasonable time
from the six possible orders of the variables.

As a test, three Hungarian points in the ETRS89 system .x1; y1; z1; : : : ; z3/ and
in the local Hungarian system HD72 (see Ref. [543]). .X1;Y1;Z1; : : : ;Z3/ listed
in Table 20.6 were used. Both Dixon and Groebner basis yielded identical results.
These examples are available on Mathematica in notebook format.2

20.2.3 Gauss-Jacobi Combinatorial Transformation

When more than three points in both systems are given and the transformation
parameters desired, the Gauss-Jacobi combinatorial algorithm is applied. In such
a case, the dispersion matrix has to be obtained via the nonlinear error prop-
agation law/variance-covariance propagation law. From the algebraic system of

2http://library.wolfram.com/infocenter/MathSource/6654/

http://library.wolfram.com/infocenter/MathSource/6654/
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equations (20.15), the Jacobi matrices are given (using e.g., (7.36) and (7.37)
on p. 105) as

Jx D
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and
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where the elements of Jy represent the partial derivatives of (20.15) with respect to

fa1; b1; c1; a2; b2; c2; a3; b3; c3;X1;Y1;Z1;X2;Y2;Z2;X3;Y3;Z3g:

From the dispersion †y of the vector of observations y and with (20.22) and (20.23)
forming J D J�1

x Jy, the dispersion matrix †x is then obtained using (7.37).
Finally, we obtained the dispersion matrix † from (7.39) on p. 106. The solution
is performed stepwise as discussed on p. 407. There exist two possibilities of using
the combinatorial algorithm. These are:

(1) Forming combinations of the given coordinates, each minimal set comprising
three points. Given n number of points in both systems, combinations can be
formed from (7.34) on p. 105, each set containing m D 3 points. For each
combination, the desired transformation parameters are computed using the
explicit formulae in [26, Boxes 2-2 and 2-3] or [40, Appendices A and B].
The resulting combinatorial solutions are then adjusted using the special linear
Gauss-Markov model.

(2) Alternatively, instead of forming combinations from points alone and solving
as in (1) above, combinations are formed both for the points and also from the
nine equations in (20.15). In this case, each minimal combinatorial in points will
have three stations from which a further combinatorial in terms of equations are
formed. From the nine equations in (20.15), combinations are formed with a
minimum of seven equations per set. The solution of the seven equations of
each combinatorial set delivers equations of the form in [26, Boxes 2-2 and 2-
3]. Once the solution is completed for a minimum combinatorial set for three
points, the procedure is repeated for other points until all the combinations
have been solved. The resulting combinatorial solutions are then adjusted using
the special linear Gauss-Markov model as already explained. This approach is
labour intensive, but may offer improved accuracy as compared to the approach
in (1) as all the available information is exploited. We leave it as an exercise for
an interested reader.

(3) A much more simple alternative algorithm is the following:

– Compute the Gauss-Jacobi without weighting employing the 3-point solu-

tion

�
7

3

�
.

– Compute the average (algebraic) of the parameters. This provides a good
initial guess vector to solve the overdetermined system using the Extended-
Newton method or local minimization.

Example 20.2 (Computation of transformation parameters using Gauss-Jacobi
combinatorial algorithm) We repeat Example 20.1 by computing the 7
transformation parameters for the overdetermined case using the combinatorial
algorithm. All seven points of Tables 20.1 and 20.2 are used, unlike in Example 20.1
where only three points were used (e.g., the minimal case). The computed
transformation parameters are presented in Table 20.7. In order to check the
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Table 20.7 Gauss-Jacobi combinatorial’s seven transformation parameters

Transformation parameter Value Root-mean-square Unit

Scale k � 1 4:92377597 0.350619414 [ppm]

Rotation X1.a/ �0:98105498” 0.040968549 [“]

Rotation X2.b/ 0:68869774” 0.047458707 [“]

Rotation X3.c/ 0:96671738” 0.044697434 [“]

Translation �X 639:9785 2.4280 [m]

Translation �Y 68:1548 3.0123 [m]

Translation �Z 423:7320 2.7923 [m]

Table 20.8 Residuals of the
transformed Cartesian
coordinates of System A
(Table 20.1) into System B
using the parameters in
Table 20.7

Site X.m/ Y.m/ Z.m/

Solitude 0.0739 0.1381 0.1397

Buoch Zeil 0.0328 �0.0301 0.0095

Hohenneuffen �0.0297 �0.0687 �0.0020

Kuelenberg 0.0246 �0.0347 �0.0793

Ex Mergelaec �0.1405 0.0228 �0.0148

Ex Hof Asperg �0.0477 0.0116 �0.0599

Ex Keisersbach �0.0673 0.0335 �0.0070

Table 20.9 Residuals of the
transformed Cartesian
coordinates of System A
(Table 20.1) into System B
using the parameters
computed by a least squares
method

Site X.m/ Y.m/ Z.m/

Solitude 0.0940 0.1351 0.1402

Buoch Zeil 0.0588 �0.0497 0.0137

Hohenneuffen �0.0399 �0.0879 �0.0081

Kuelenberg 0.0202 �0.0220 �0.0874

Ex Mergelaec �0.0919 0.0139 �0.0055

Ex Hof Asperg �0.0118 0.0065 �0.0546

Ex Keisersbach �0.0294 0.0041 �0.0017

Table 20.10 Computed
residual norms

Method X.m/ Y.m/ Z.m/

Linearized least squares solution 0.1541 0.1708 0.1748

Gauss-Jacobi combinatorial 0.1859 0.1664 0.1725

accuracy of these parameters, they are used to transform the Cartesian coordinates
from the local reference system in Table 20.1 to WGS-84. Table 20.8 gives the
residuals computed by subtracting the transformed values from the actual GPS
coordinates of Table 20.2. Table 20.9 gives for comparison purposes the residuals
obtained using least squares method. The residuals from both procedures are of the
same magnitude. We also compute the residual norm (square root of the sum of
squares of residuals) and present them in Table 20.10. The computed norms from
the combinatorial solutions are somewhat better than those of the linearized least
squares solutions. Figure 20.1 presents the scatter of the computed 36 minimal
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Fig. 20.1 Scatter of the computed 36 minimal combinatorial values of scale around the adjusted
value

combinatorial solutions of scale indicated by doted points (�) around the adjusted
value indicated by a line (�). Figures 20.2 and 20.3 plot the scatter of the computed
36 minimal combinatorial solutions of the translation and rotation parameters
indicated by doted points (�) around the adjusted values indicated by stars (?).

20.3 The 9-Parameter (Affine) Datum Transformation

Due to the distortions between the traditional terrestrial and GPS derived networks,
the 7-parameter similarity transformations in some cases may not offer satisfactory
precision. For example, transforming GPS global coordinates to the local Hungarian
system with similarity transformation gives 0.5 m maximal residuals, see, e.g., Papp
and Szűcs [404]. To reduce the remaining residuals, other transformation models
with more parameters can be used.
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Fig. 20.2 Scatter of the 36 computed translations around the adjusted values

The 9-parameter affine transformation is not only a logical extension but even
a generalization of the 7-parameter similarity model. This transformation is the
modification of the Helmert C7(3,3) transformation, where three different scales
are used in the corresponding coordinate axes instead of one scale factor. In the case
of the three scale parameters being equal, the model reverts back to the similarity
transformation.

The solution of the 9-parameter model was achieved by Späth [471] using the
numerical minimization technique of the residuum vector, as well as by Papp and
Szűcs [404] who used the linearized least squares method. Watson [511] pointed
out that the Gauss-Newton method or its variants can be easily implemented for
the 9-parameter problem using separation of variables and iteration with respect
to the rotation parameters alone, while other parameters can be calculated via a
simple linear least squares solution. The Watson [511] method is analogous to other
methods for separated least square problems, which goes back at least to Golub and
Pereyra [193].

The 9-parameter affine transformation is also included in some coordinate-
transformation software developed following requests from GPS users (see
e.g. [180, 363]). To determine the nine parameters of the 3D affine transformation,
a minimum of three points with known coordinates .xi; yi; zi;Xi;Yi;Zi/ in both
systems is required. This is the so-called 3-point problem. However, in geodesy and
geoinformatics, N > 3 known points are usually available.
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The N-point problem is basically an overdetermined problem and because of
the size of real world problems, the Gauss-Jacobi combinatorial solution becomes
inadequate. In what follows, an alternative ALESS method is applied to solve for
the nine parameters of the overdetermined affine model.

20.3.1 Definition of the Problem

The 3D affine transformation is the generalization of the C7(3,3) Helmert transfor-
mation, using three different scale (s1; s2; s3) parameters instead of a single one.
Consider (20.24)

0
@ xi

yi

zi

1
A DWR

0
@Xi

Yi

Zi

1
AC

0
@X0

Y0
Z0

1
A ; (20.24)

where W is the scale matrix, X0, Y0, Z0 the translation parameters, R the rotation
matrix, and xi; yi; zi and Xi;Yi;Zi are the coordinates of the points in the two
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coordinate systems. For such a case (cf x1 in Eq. 20.1), the scale factors can be
modeled by a diagonal matrix

W D
0
@ s1 0 0

0 s2 0
0 0 s3

1
A : (20.25)

Instead of using the traditionally simplified Cardan angles representation of R
(see, e.g., Papp and Szűcs [404]), we will use the same rotation matrix as in the
case of the 7-parameter transformation, expressed by a skew-symmetric matrix,
facilitating the symbolic-numeric solution of the problem without simplifications.
The rotation matrix

R D .I3 � S/�1.I3 C S/; (20.26)

where S is the skew-symmetric matrix was given in (20.4) and parameterized using
a; b and c as

R D

0
BBBBB@

1Ca2�b2�c2

1Ca2Cb2Cc2
2.ab�c/

1Ca2Cb2Cc2
2.bCac/

1Ca2Cb2Cc2

2.abCc/
1Ca2Cb2Cc2

1�a2Cb2�c2

1Ca2Cb2Cc2
� 2.a�bc/
1Ca2Cb2Cc2

2.�bCac/
1Ca2Cb2Cc2

2.aCbc/
1Ca2Cb2Cc2

1�a2�b2Cc2

1Ca2Cb2Cc2

1
CCCCCA
; (20.27)

for which the orthogonality relation holds such that RRT is an identity matrix. The
axial rotation angles (Cardan angles) can be calculated also from the rotation matrix
R in (20.7). Furthermore, instead of the scale parameters .s1; s2; s3/, the inverse
values of the scale parameters .�1; �2; �3/ can be used to obtain simplified equations.

Let us call �i D 1=si and introduce � DW�1

� D
0
@�1 0 0

0 �2 0

0 0 �3

1
A : (20.28)

Expressing the rotation matrix with the skew-symmetric matrix and using the
inverse of the scale matrix (�), Eq. (20.24) can be written in the form,

0
@ xi

yi

zi

1
A D ��1.I3 � S/�1.I3 C S/

0
@Xi

Yi

Zi

1
AC

0
@X0

Y0
Z0

1
A : (20.29)
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Multiplying both sides by .I3 � S/� and rearranging the equation leads to

0
@00
0

1
A D .I3 � S/�

0
@ xi
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1
A � .I3 C S/

0
@Xi

Yi

Zi

1
A � .I3 � S/�

0
@X0

Y0
Z0

1
A : (20.30)

Finally, substituting � and S in to Eq. (20.30) gives,
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1
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1
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1
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1
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1
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0
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1
A
0
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0 �2 0

0 0 �3

1
A
0
@X0

Y0
Z0

1
A ;

(20.31)

where the unknown parameters are the three rotation parameters (a; b; c), the
three translation parameters (X0;Y0;Z0) and the three inverse scale parameters
.�1; �2; �3/.

20.4 Algebraic Solution of the 9-Parameter Transformation

20.4.1 The 3-Point Affine Transformation Problem

For the determination of the nine parameters (a, b, c, X0, Y0, Z0, s1, s2, s3) of the
3D affine transformation, we need nine equations. According to Eq. (20.31), for
one point with known coordinates in both coordinate systems, we can write three
equations. For the determination of all parameters therefore, three non-collinear
points with known coordinates are needed. In this case the nine equations, which
give a nonlinear system ( fi D 0) (see Eq. (20.32)) are written as

f1 D �X1 C cY1 � bZ1 C x1�1 � X0�1 C cy1�2 � cY0�2 � bz1�3 C bZ0�3

f2 D �cX1 � Y1 C aZ1 � cx1�1 C cX0�1 C y1�2 � Y0�2 C az1�3 � aZ0�3

f3 D bX1 � aY1 � Z1 C bx1�1 � bX0�1 � ay1�2 C aY0�2 C z1�3 � Z0�3

f4 D �X2 C cY2 � bZ2 C x2�1 � X0�1 C cy2�2 � cY0�2 � bz2�3 C bZ0�3

f5 D �cX2 � Y2 C aZ2 � cx2�1 C cX0�1 C y2�2 � Y0�2 C az2�3 � aZ0�3

f6 D bX2 � aY2 � Z2 C bx2�1 � bX0�1 � ay2�2 C aY0�2 C z2�3 � Z0�3
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f7 D �X3 C cY3 � bZ3 C x3�1 � X0�1 C cy3�2 � cY0�2 � bz3�3 C bZ0�3

f8 D �cX3 � Y3 C aZ3 � cx3�1 C cX0�1 C y3�2 � Y0�2 C az3�3 � aZ0�3

f9 D bX3 � aY3 � Z3 C bx3�1 � bX0�1 � ay3�2 C aY0�2 C z3�3 � Z0�3 :
(20.32)

To solve this system of equations, different symbolical and numerical methods
can be used. In what follows, symbolic solution of this problem using the Dixon
resultant and Groebner basis are presented, as was done previously for the 7-
parameter problem.

20.4.1.1 Simplifications for the Symbolic Solution

Similar to the C7.3; 3/ problem, we can reduce the system of equation (20.32)
by differencing the equations. In this way, the translation parameters (X0, Y0, Z0)
can be eliminated. The elimination of the translation parameters can be done by
subtractions

g1 D f1 � f7 D� X1 C X3 C .x1 � x3/�1 C c.Y1 � Y3 C .y1 � y3/�2/

� b.Z1 � Z3 C .z1 � z3/�3/

g2 D f4 � f7 D� X2 C X3 C .x2 � x3/�1 C c.Y2 � Y3 C .y2 � y3/�2/

� b.Z2 � Z3 C .z2 � z3/�3/

g3 D f2 � f8 D� Y1 C Y3 � c.X1 � X3 C .x1 � x3/�1/C .y1 � y3/�2

C a.Z1 � Z3 C .z1 � z3/�3/

g4 D f5 � f8 D� Y2 C Y3 � c.X2 � X3 C .x2 � x3/�1/C .y2 � y3/�2

C a.Z2 � Z3 C .z2 � z3/�3/

g5 D f3 � f9 D� Z1 C Z3 C b.X1 � X3 C .x1 � x3/�1/� a.Y1 � Y3

C .y1 � y3/�2/C .z1 � z3/�3

g6 D f6 � f9 D� Z2 � Z3 C b.X2 � X3 C .x2 � x3/�1/� a.Y2 � Y3

C .y2 � y3/�2/C .z2 � z3/�3:

(20.33)

In the remaining six equations .gi D 0/ there are only six unknown parameters
(a, b, c, �1, �2, �3). This system can be simplified by the introduction of the relative
coordinates as was the case for the 7-parameter transformation.

xij D xi � xj; yij D yi � yj; zij D zi � zj

Xij D Xi � Xj;Yij D Yi � Yj;Zij D Zi � Zj:

�
! i; j 2 f1; 2; 3g; i ¤ j (20.34)
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Then our equation system becomes

g1 D �X13 C cY13 � bZ13 C x13�1 C cy13�2 � bz13�3

g2 D �X23 C cY23 � bZ23 C x23�1 C cy23�2 � bz23�3

g3 D �cX13 � Y13 C aZ13 � cx13�1 C y13�2 C az13�3

g4 D �cX23 � Y23 C aZ23 � cx23�1 C y23�2 C az23�3

g5 D CbX13 � aY13 � Z13 C bx13�1 � ay13�2 C z13�3

g6 D CbX23 � aY23 � Z23 C bx23�1 � ay23�2 C z23�3:

(20.35)

20.4.1.2 Symbolic Solution with Dixon Resultant

Symbolic solution of the system gi means the reduction of the multivariate polyno-
mial system via computer algebra to a single univariate polynomial and computing
its roots. Then the other unknowns can be computed backwards, as done in the
Gauss elimination method for solving linear systems of equations. In the case of
the affine transformation, the system can be reduced with different methods to a
univariate polynomial containing only one scale parameter �i. This can be done
by Dixon resultant with Kapur-Saxena-Yang (KSY) and with the Early Discovery
Factors (EDF) method also, see Paláncz et al. [402] and Zaletnyik and Paláncz [544].
Employing the Kapur-Saxena-Yang method, using pairwise-elimination step by
step, a univariate polynomial of degree 29 for �1 is obtained, see. e.g., [545, 547].
To find the proper solution of this polynomial of degree 29, a good initial value is
needed.

The univariate polynomial for �1 can also be computed by employing the
accelerated Dixon resultant by the EDF algorithm, which was suggested and
implemented in the computer algebra system Fermat by Lewis [328, 330]. Using
this method one can get the results in the following form

5Y
iD1
'i .�1/

Ki (20.36)

where 'i .�1/ are irreducible polynomials with low degrees, but their powers, Ki

are very large positive integer numbers. Expanding this expression would result in
millions of terms. Consequently, we shall consider Ki D 1, for i D 1; : : : ; 5, namely

5Y
iD1
'i .�1/ (20.37)
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as the Dixon resultant. These polynomials are as follows

'1 Dy13 z23 � y23 z13I
'2 Dx213 y23 z23 �

2
1 � x13 x23 y13 z23 �

2
1 � x13 x23 y23 z13 �

2
1 C x223 y13 z13 �

2
1

� Z213 y23 z23 � Y213 y23 z23 � X213 y23 z23 C Z13 Z23 y13 z23

C Y13 Y23 y13 z23 C X13 X23 y13 z23 C Z13 Z23 y23 z13 C Y13 Y23 y23 z13

C X13 X23 y23 z13 � Z223 y13 z13 � Y223 y13 z13 � X223 y13 z13I
'3 Dx13 y23 �1 � x23 y13 �1 C X13 y23 � X23 y13I
'4 DZ13 x13 x23 z23 �

2
1 � Z23 x213 z23 �

2
1 � Z13 x223 z13 �

2
1 C Z23 x13 x23 z13 �

2
1

C X13 Z13 x23 z23 �1 � 2 X13 Z23 x13 z23 �1 C X23 Z13 x13 z23 �1

C X13 Z23 x23 z13 �1 � 2 X23 Z13 x23 z13 �1 C X23 Z23 x13 z13 �1

� X213 Z23 z23 C X13 X23 Z13 z23 C X13 X23 Z23 z13 � X223 Z13 z13I
'5 DZ13 z23 � Z23 z13I

(20.38)

From these factor polynomials, one which provides the good (positive and real)
solution is selected. In the case of more than one real, positive solution, an initial
value can help in deciding the correct polynomial.

Fortunately for the value of �1, a very good estimation can be given as �1 D
1 =s1 , where s1 (the first scale parameter) can be estimated by dividing the sum
of distances from the center of gravity in both systems, see e.g., Albertz and
Kreiling [9].

The factor polynomial providing the proper root ('4), has degree 2, therefore its
solution can be expressed in an analytical form (only one of the roots is correct, the
positive �1). Similarly, we can also get simple explicit forms for �2 and �3.

The results of the Dixon-EDF method is not only faster and more elegant, but
also more precise than that of the Dixon-KSY method. However, one should still
check the solutions of all polynomials with degrees 1 and 2 in order to choose the
proper results.

20.4.1.3 Symbolic Solution with Reduced Groebner Basis

The same results for �i; i D 1; 2; 3 can be achieved by using the reduced Groebner
basis built in to Mathematica, where the monomial order should be defined as the
elimination order (Lichtblau,3 Private Communication). With Groebner basis, the

3Researcher of Wolfram Research.
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solutions of �1, �2 and �3 as a second order univariate polynomial can be obtained
in one step.

To get the Groebner basis for �1 for instance, one writes in Mathematica:

GroebnerBasisŒfg1; g2; g3; g4; g5; g6g; �1; fa; b; c; �2; �3g;
MonomialOrder! EliminationOrder�

Solving the problem with Groebner basis has the advantage that the solution for �i

can be obtained in one step without the need to select the proper solution using good
initial values. For all �i, the resulting univariate polynomials are of degree 2 where
only one solution is positive. Its solution can therefore be expressed in analytical
form as expressed by Eqs. (20.39), (20.40), and (20.41), i.e.,

�1 D
�
X223y13z13 C y13Y

2
23z13 C X213y23z23 C Y213y23z23 C y23Z

2
13z23

� X13X23.y23z13 C y13z23/ � Y13Y23.y23z13 C y13z23/� y23z13Z13Z23�
y13Z13z23Z23 C y13z13Z

2
23

�1=2
= Œ.x23y13 � x13y23/.x23z13 � x13z23/�

1=2

(20.39)
�2 D

��X213x23z23 C X13X23.x23z13 C x13z23/

C x23
�
Y13Y23z13 � Y213z23 � Z213z23 C z13Z13Z23

�

� x13
�
X223z13 C Y223z13 � Y13Y23z23 � Z13z23Z23 C z13Z

2
23

��1=2
= Œ.x13y23 � x23y13/.y13z23 � y23z13/�

1=2

(20.40)

and

�3 D
�
X213x23y23 � X13X23.x23y13 C x13y23/

C x23
�
Y213y23 � y13Y13Y23 C y23Z

2
13 � y13Z13Z23

�

C x13
�
X223y13 � Y13y23Y23 C y13Y

2
23 � y23Z13Z23 C y13Z

2
23

��1=2
= Œ.x23z13 � x13z23/.y23z13 � y13z23/�

1=2

(20.41)

Knowing �1; �2; �3 the equation system gi (Eq. (20.35)) will be linear and a; b; c
can be expressed easily analytically by

a D� Œ�X23Y13 C X13Y23 C .X23y13 � X13y23/�2

C �1.�x23Y13 C x13Y23 C .x23y13 � x13y23/�2/�=

ŒX23Z13 � X13Z23 C .X23z13 � X13z23/�3

C �1.x23Z13 � x13Z23 C .x23z13 � x13z23/�3/�

; (20.42)
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b D� Œ�Y23Z13 C Y13Z23 C .Y23z13 � Y13z23/�3

C �2.�y23Z13 C y13Z23 C .y23z13 � y13z23/�3/�=

Œ�X23Y13 C X13Y23 C .�X23y13 C X13y23/�2

C �1.�x23Y13 C x13Y23 C .�x23y13 C x13y23/�2/�

; (20.43)

and

c D� ŒX23Z13 � X13Z23 C .X23z13 � X13z23/�3

C �1.�x23Z13 C x13Z23 C .�x23z13 C x13z23/�3/�=

Œ�Y23Z13 C Y13Z23 C .�Y23z13 C Y13z23/�3

C �2.�y23Z13 C y13Z23 C .�y23z13 C y13z23/�3/�

: (20.44)

Substituting (a, b, c, �1, �2, �3) in to the original equation (Eq. (20.24)), the
translation parameters (X0, Y0, Z0) can be calculated using

0
@X0

Y0
Z0

1
A D

0
@ x1

y1
z1

1
A� WR

0
@X1

Y1
Z1

1
A D

0
@ x1

y1
z1

1
A� ��1R

0
@X1

Y1
Z1

1
A

D
0
@ x1

y1
z1

1
A�

0
@ 1=�1 0 0

0 1=�2 0

0 0 1=�3

1
A 1

1C a2 C b2 C c2
�

0
@ 1C a2 � b2 � c2 2.ab � c/ 2.b C ac/

2.ab C c/ 1� a2 C b2 � c2 2.�a C bc/
2.�b C ac/ 2.a C bc/ 1� a2 � b2 C c2

1
A
0
@X1

Y1
Z1

1
A

(20.45)

As we have seen in this section, the Dixon-KSY method as well as the Dixon-EDF
method required the estimation of the initial values to select the proper solution
from different solutions. With reduced Groebner basis, we get the same solution in
one step as the proper solution of the Dixon-EDF method. With this method, a fully
analytic solution requiring neither initial conditions nor iterations can be given.

The computer algebra method, namely the accelerated Dixon resultant with
the technique of Early Discovery Factors as well as the reduced Groebner basis,
provides a very simple, elegant symbolic solution for the 3-points problem. The
main advantages of the symbolic solutions originate from its iteration-free feature,
very short- practically zero-computation time, and the independence of the value of
the actual numerical data.

The symbolic solution of the 3-points problem can be used for the N-points
problem also. One possibility is to use the solutions of the 3-points problem as initial
guess value for solving the N-points problem with some local numerical method.
Another possibility is just to use the solutions of the different triplets in the Gauss-
Jacobi combinatorial method.



484 20 Datum Transformation Problems

20.4.2 The N-Points Problem

For local numerical methods the initial values can be computed from the 3-points
model, but one need to be cautious and not to compute it blindly. In this section,
we shall discuss how one can properly select 3-points from the N ones, in order to
compute good initial values ensuring fast convergence of the Newton-type methods
employed for the solution of the N-points problem.

We will examine a numerical example with 81 first order Hungarian stations,
with coordinates in both the global system of ETRS89 and the local Hungarian
system HD72 (Hungarian Datum 1972). Let us choose two different sets each
containing three points from the local datum data set (see Fig. 20.4) and calculate
using symbolic solution the parameters of the coordinate transformation between
the global WGS84 and the local Hungarian system. The results for the two triplets
are quite different, as shown in Table 20.11.

Using the parameters of the 1st set of Table (20.11) as initial values for the
Newton-Raphson method to solve the N-points problem (here, all the N=81 points
of Hungary), the method converges rapidly after 4 iteration steps. On replacing the
values of the 1st set with those of the 2nd set, the method does not converge even
after 100 iteration steps (see Paláncz et al. [402]). This signifies the importance of
properly selecting the three points from the N-points to calculate symbolically the
initial guess values for the N-points problem.

There exists a correlation between the geometry of the chosen triplet and the
goodness of the calculated initial values. According to our numerical example, we
get the best initial values when the geometry of the triplet is similar to an equilateral

100000

200000

300000

400000

400000 500000 600000 700000 800000 900000

Control points

Triplet leading to
a bad geometry

Triplet leading to
a good geometry

Fig. 20.4 Map of Hungary showing the 81 points in the local coordinate system together with the
chosen triplets
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Table 20.11 Calculated
coordinate transformation
parameters from two different
sets for the case of Hungarian
Datum (81 points) to ETRS89
coordinate system

1st set 2nd set

X0 �77.523 �496.192

Y0 +90.366 +124.797

Z0 +25.151 +543.061

a C1:520 � 10�6 C5:470 � 10�6

b C1:526 � 10�6 C27:692 � 10�6

c �0:543 � 10�6 �2:415 � 10�6

�1 0.999998865 0.999957317

�2 1.000001182 0.999989413

�3 1.000001642 1.000069623

triangle, and the worst case when the geometry of the three points is nearly on a line.
A geometrical index can be introduced to represent the geometry of the selected
three points to avoid the solutions which provide disadvantageous starting values.
This geometrical index is the sine of the minimum angle in the triangle, it’s maximal

value is
p
3
2

when the triangle is an equilateral triangle, and around zero when the
three points are nearly collinear. In the earlier examples, the geometrical index in
the first case (Fig. 20.4, good geometry), which gave good initial values, was 0.529
and in the second case (Fig. 20.4, bad geometry) was 0.002.

To check the correlation between the geometry and the goodness of the initial
values, we calculated the transformation parameters for all 3-point combinations
from the 81 points, giving a total of 85,320 combinations. We then examined all the
resulting Z0 values for combinations. The real Z0 value calculated using the Newton-
Raphson method from the 81 points was 50.342 m, but the values calculated from
the different triplets can be very different from this, for example the maximum value
for Z0 was 24,679,629m! The geometrical index of this extreme triplet was 0.003,
meaning that these three points were almost collinear.

In Fig. 20.5, the calculated Z0 values are presented as a function of the geometri-
cal index for all 85,320 combinations (for a better representation, jZ0j > 1000 values
are not represented since they are too large, e.g., the minimum Z0 is �1;798;501 and
the maximum is 24,679,629). The true value of Z0 based on the 81 data points is also
represented by a line.

The triplets that give extremely different solutions from the adjusted values all
have geometrical indices less then 0.1. However, in case of indices greater than 0.5,
the difference are nearly the same. In this range, the round-off error is dominating.
For higher values of this index, the improper fitting of the measurement data to the
nine parameter model causes the deviations in value of Z0. In general, the more
similar the geometry of the selected three points is to an equilateral triangle, the
better is the initial value for of the N-points problem. It is therefore shown by this
example that it is very important to examine the geometry of the selected three
points for calculating the initial values, and to avoid nearly collinear triplets (see
Zaletnyik [547]).
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Fig. 20.5 Values of Z0 as function of the geometrical index for all combinations of triplets from
the 81 point Hungarian data set (see Fig. 20.4)

20.4.2.1 ALESS Approach to Overdetermined Cases

In the cases where more than 3-points with known coordinates in both coordinate
systems are known, as is usually the case, there are more independent equations than
unknown variables leading to an overdetermined system. These equations generally
are inconsistent due to inevitable stochastic observation and model errors. In such a
situation, the three nonlinear equations can be written for a single point (according
to Eq. (20.31) as:

vxi D � Xi C cYi � bZi C xi�1 � X0�1 C cyi�2 � cY0�2 � bzi�3 C bZ0�3

vyi D � cXi � Yi C aZi � cxi�1 C cX0�1 C yi�2 � Y0�2 C azi�3 � aZ0�3

vzi DbXi � aYi � Zi C bxi�1 � bX0�1 � ayi�2 C aY0�2 C zi�3 � Z0�3;

(20.46)

where vxi; vyi and vzi are 0 when we have the minimally required three homologous
points to determine the nine unknown parameters. However, when we have to solve
an overdetermined system, vxi; vyi and vzi are not zero, because of the inevitable
observation and model errors.

For N > 3 homologous points, the nonlinear system to be solved leads to a
system of 3N polynomial equations, minimizing

P
v2i where v2i D .vx2i C vy2i C

vz2i /. In our numerical example, we will use 1138 points from the Hungarian
OGPSH database, with coordinates in the global system of ETRS89 and in the local
Hungarian system HD72 (Hungarian Datum 1972) (using the ellipsoidal coordinates
without height parameter). For example, we have N D 1138 points which means we
have 3414 equations and nine unknown parameters, leading to an overdetermined
multivariate polynomial system.
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This overdetermined model can be transformed into a determined one by
employing symbolic evaluation of the objective function (� D PN

iD1 v2i ), and
its symbolic derivation, providing the necessary condition of its minimum (see
Sect. 7.2). The objective function

�.a; b; c;X0;Y0;Z0; �1; �2; �3/ D
NX

iD1
v2i D

NX
iD1
.vx2i C vy2i C vz2i /: (20.47)

can be created easily with Computer Algebra Systems as

� DX�
X2i C b2X2i C c2X2i � 2abXiYi C Y2i C a2Y2i C c2Y2i � 2acXiZi�

2bcYiZi C Z2i C a2Z2i C b2Z2i � 2xiXi�1 C 2b2xiXi�1 C 2c2xiXi�1C
2X0Xi�1 � 2b2X0Xi�1 � 2c2X0Xi�1 � 2abxiYi�1 C 4cxiYi�1C
2abX0Yi�1 � 4cX0Yi�1 � 4bxiZi�1 � 2acxiZi�1 C 4bX0Zi�1C
2acX0Zi�1 C x2i �

2
1 C b2x2i �

2
1 C c2x2i �

2
1 � 2xiX0�

2
1 � 2b2xiX0�

2
1�

2c2xiX0�
2
1 C X20�

2
1 C b2X20�

2
1 C c2X20�

2
1 � 2abXiyi�2�

4cXiyi�2 C 2abXiY0�2 C 4cXiY0�2 � 2yiYi�2 C 2a2yiYi�2C
2c2yiYi�2 C 2Y0Yi�2 � 2a2Y0Yi�2 � 2c2Y0Yi�2 C 4ayiZi�2�
2bcyiZi�2 � 4aY0Zi�2 C 2bcY0Zi�2 � 2abxiyi�1�2C
2abX0yi�1�2 C 2abxiY0�1�2 � 2abX0Y0�1�2 C y2i �

2
2C

a2y2i �
2
2 C c2y2i �

2
2 � 2yiY0�

2
2 � 2a2yiY0�

2
2 � 2c2yiY0�

2
2C

Y20 �
2
2 C a2Y20 �

2
2 C c2Y20 �

2
2 C 4bXizi�3 � 2acXizi�3 � 4aYizi�3�

2bcYizi�3 � 4bXiZ0�3 C 2acXiZ0�3 C 4aYiZ0�3 C 2bcYiZ0�3�
2ziZi�3 C 2a2ziZi�3 C 2b2ziZi�3 C 2Z0Zi�3 � 2a2Z0Zi�3�
2b2Z0Zi�3 � 2acxizi�1�3 C 2acX0zi�1�3 C 2acxiZ0�1�3�
2acX0Z0�1�3 � 2bcyizi�2�3 C 2bcY0zi�2�3 C 2bcyiZ0�2�3�
2bcY0Z0�2�3 C z2i �

2
3 C a2z2i �

2
3 C b2z2i �

2
3 � 2ziZ0�

2
3�

2a2ziZ0�
2
3 � 2b2ziZ0�

2
3 C Z20 �

2
3 C a2Z20�

2
3 C b2Z20�

2
3

�

: (20.48)

The necessary conditions of the minimum for the objective function are

@�

@a
D 0; @�

@b
D 0; @�

@c
D 0; @�

@X0
D 0; @�

@Y0
D 0; @�

@Z0
D 0;

@�

@�1
D 0; @�

@�2
D 0; @�

@�3
D 0:

(20.49)

Considering the necessary conditions for the minimum, we have nine equations
and nine variables. However, in this case the determined system are of a higher order
and more complex polynomial system than the original overdetermined one, leading
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to most of these equations having many thousands of terms. It is therefore useful
to collect terms corresponding to the same multivariate expression via computer
algebra, see Zaletnyik [547]. Here, just as an illustration, let us see the first equation
resulting from the derivation of the objective function with respect to the variable a
(the whole system .Fa;Fb; : : : ;F�3/ can be found in Appendix A-4),

Fa .a; b; c; �1; �2; �3;X0;Y0;Z0/ D @�

@a
D

� bNX0Y0�1�2 C aNY20�
2
2 � cNX0Z0�1�3 C aNZ20�

2
3 C bY0�1�2

NX
iD1

xi

C cZ0�1�3

NX
iD1

xi C bY0�2

NX
iD1

Xi C cZ0�3

NX
iD1

Xi C aY0�
2
2

NX
iD1
.�2yi/

C bX0�1�2

NX
iD1

yi C b�1�2

NX
iD1
.�xiyi/C b�2

NX
iD1
.�Xiyi/C a�22

NX
iD1

y2i

C aY0�2

NX
iD1
.�2Yi/C bX0�1

NX
iD1

Yi C Z0�3

NX
iD1

2Yi C b�1

NX
iD1
.�xiYi/

C b
NX

iD1
.�XiYi/C a�2

NX
iD1

2yiYi C aZ0�
2
3

NX
iD1
.�2zi/C cX0�1�3

NX
iD1

zi

C c�1�3

NX
iD1
.�xizi/C c�3

NX
iD1
.�Xizi/C �3

NX
iD1
.�2Yizi/C a�23

NX
iD1

z2i

C Y0�2

NX
iD1
.�2Zi/C aZ0�3

NX
iD1
.�2Zi/C cX0�1

NX
iD1

Zi C c�1

NX
iD1
.�xiZi/

C c
NX

iD1
.�XiZi/C �2

NX
iD1

2yiZi C a�3

NX
iD1

2ziZi C a
NX

iD1

�
Y2i C Z2i

� D 0:
(20.50)

In this way we get 9 polynomial equations (see also [399, 547]) with the nine
unknown parameters .a; b; c;X0;Y0;Z0; �1; �2; �3/.

20.4.2.2 Homotopy Solution of the ALESS-Determined Model

Different possibilities exist for solving the determined system created using ALESS
method. One can use global methods to find all of the solutions of the determined
system, and then select only the good solution which provides the least value of the
objective function of ALESS. Another approach is to use local methods, like the
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extended Newton-Raphson method or Newton type homotopy, in the case of good
initial values (see Chap. 6).

To solve such a complicated system as the 9-equation system created by ALESS
in symbolic form is a difficult problem which, until now, has had no solution.
The global homotopy solution, calculating automatically the start systems is also
problematic. The highest order term in every equation is 5, therefore the degree of
every equation is di D 5; i D 1; : : : ; 9. This implies that the upper bound of the
number of the solutions of this system is 59 D 1;953;125, which means that to use
the homotopy solution with the automatically calculated start system for polynomial
systems, we would need to track nearly 2 millions paths.4

We have seen in Sect. 6.4.2, that one of the most simple ways to define a start
system is by employing Newton-type homotopy. This type of homotopy requires
a guess value for the solution of the original (target) system. Now seemingly, we
have arrived back to our original problem of the missing proper initial value for
local methods like Newton-Raphson. However, the situation is not so bad. On the
one hand, we do not need a proper initial value, because homotopy is much more
robust than local methods, and enlarges the domain of convergence. On the other
hand, there are natural ways to compute the initial value, which is good enough for
homotopy.

One possibility is to use the result of the symbolic solution of the 3-point prob-
lem. As we have seen in the previous section, the values calculated from the different
triplets can differ significantly, depending on their geometrical configurations. A
solution for one of the geometrically ill-posed triplets is illustrated in Table 20.12.
In this Table, we represent the calculated parameters in their traditional geodetic
forms, i.e., representing the rotation matrix with the three rotation angles (˛; ˇ; � )
in seconds, instead of a; b; c, and the deviations of the scale parameters from one
(ki D si � 1 D 1=�i � 1), in ppm (part per million)), instead of the inverse scale
parameters (�1; �2; �3).

Table 20.12 The start values
computed from a symbolical
3-points solution

Variables Start values In geodetic form

Qa �0.00002 Q̨ D C8:2508"
Qb 0.00002 Q̌ D �8:2504"

Qc 0.00002 Q� D �8:2508"
QX0 �243 QX0 D �243m
QY0 �227 QY0 D �227m
QZ0 337 QZ0 D C337m

Q�1 1 Qk1 D 0 ppm

Q�2 1 Qk2 D 0 ppm

Q�3 1 Qk3 D 0 ppm

4Remark: Tracking millions of paths is not unrealistic on supercomputers, clusters of workstations
or even modern multiprocessor, multi-core desktop computers in parallel, see Blum et al. [91].
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Another way to calculate a guess value is to delete the nonlinear terms from the
original overdetermined system, e.g., from Eqs. (20.46).

Lvxi D �Xi C cYi � bZi C xi�1

Lvyi D �cXi � Yi C aZi C yi�2

Lvzi D bXi � aYi � Zi C zi�3

(20.51)

The least square solution of this linear system i D 1; : : : ; 1138 can be computed
via pseudoinverse with 1138 Hungarian data points. The result is presented in
Table 20.13 which indicates that the two different methods gave fairly different
values and both are far from the desired solution, see e.g., Table 20.14.

Employing Newton homotopy, the start system is,

G.�/ D F.�/� F .�0/ (20.52)

with F D .Fa.�/;Fb.�/;Fc.�/;FX0 .�/;FY0 .�/;FZ0 .�/;F�1 .�/;F�2.�/;F�3.�// as
the target system, � D .a; b; c;X0;Y0;Z0; �1; �2; �3/ as the unknown variables and

Table 20.13 The start values computed from Eqs.(20.51) via pseudoinverse

Variables Start values In geodetic form

Qa �5:14934436480436 � 10�6 Q̨ D C2:1244"
Qb 9:147743927965785 � 10�6 Q̌ D �3:7736"

Qc 0:0000472128892111371 Q� D �19:4767"
QX0 3:78794980367417 � 10�17 QX0 D 0:000m
QY0 0 QY0 D 0:000m
QZ0 0 QZ0 D 0:000m

Q�1 1:0000011141420198 Qk1 D �1:114 ppm

Q�2 1:0001180993441208 Qk2 D �118:085 ppm

Q�3 0:9999810252524541 Qk3 D C18:975 ppm

Table 20.14 Homotopy solution for the 1138 Hungarian points

Variables Homotopy solutions In geodetic form

a �8:389143102087336 � 10�6 ˛ D C3:4591"

b 0.00011415902600771965 ˇ D �47:094"

c �0:00003482245241765358 � D C14:3649"

X0 �2298:5887892237693 X0 D �2298:589m

Y0 526.5088259777841 Y0 D C526:509m

Z0 2143.7159886648537 Z0 D C2143:716m

�1 0.9997302444546577 k1 D C269:828 ppm

�2 1.000188709705781 k2 D �188:674 ppm

�3 1.000245242648286 k3 D �245:183 ppm
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Fig. 20.6 Paths of the homotopy solution in the complex plain for the parameter a, with two
different initial values

�0 D .Qa; Qb; Qc; QX0; QY0; QZ0; Q�1; Q�2; Q�3/ as the start (initial) values for the homotopy
function. The homotopy function is then given by (see, e.g., Eq. (6.28).

H.�; �/ D F.�/� .1 � �/F .�0/ : (20.53)

The solution for all parameters are presented in Table 20.14. The Newton homotopy
solution was successful with both initial values. As an illustration, Fig. 20.6 shows



492 20 Datum Transformation Problems

Table 20.15 Comparing different methods for the case of 1138 Hungarian points for 3D affine
transformation

Computation time [s]
with initial values in

Method Table 20.12 Table 20.13

Newton-Raphson Fails to converge Converging to a wrong solution

Newton-Krylov Singularity 3.5

Newton-Homotopy 0.72 0.73

the paths of the homotopy solution in the complex plain for the parameter a using
the two different initial values.

Table 20.15 shows the results of the different methods in case of the different
initial guess values. It can be seen that the traditional Newton-Raphson method
failed in both cases, while its modification, the Newton-Krylov method, had a
singularity in the first case, and was slowed down by the increasing number of
iterations required to ensure acceptable precision in the second case. In this example,
homotopy solution seemed to be more robust as well as faster than the traditional
Newton’s type methods. Figure 20.6 demonstrates clearly how large the domain of
convergency of the homotopy method is.

20.4.3 Procrustes Solution

Example 20.3 (Computation of 7-parameter transformation incorporating weights)
We consider Cartesian coordinates of seven stations given in the local and global
system (WGS-84) as in Tables 20.1 and 20.2 on pp. 466. Desired are the 7-
datum transformation parameters; scale x1, the translation vector x2 2 R

3�1 and
the rotation matrix R 2 R

3�3. In addition to these seven datum transformation
parameters, we compute for control purposes the residual (error matrix) E upon
which the mean error norm (9.55) is determined as a scalar measure of error of
types W-LESS. A two step procedure is carried out as follows:

In the first step, we computed the seven transformation parameters using I-LESS
(with weight matrix as identity) from Corollary 9.4 on p. 144. The computed values
of scale x1 and the rotation matrix R 2 R

3�3 are used in (9.94) to obtain the
dispersion of the error matrix E. In-order to obtain the dispersions †vecY�

1
and

†vecY�

1
of the pseudo-observations in the local and global systems respectively, we

make use of “positional error sphere” for each point (position) in both systems.
Here, the positional error sphere refers to the average of the variances (�2i Dq
.�2x C �2y C �2z /=3) for the i D 7 points involved so as to achieve the isotropic

condition.
The identity matrices are multiplied by these positional error spheres so as

to obtain the dispersion matrices †vecY�

1
and †vecY�

2
which fulfill the isotropic
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condition. One obtains therefore the dispersion matrices †vecY�

1
and †vecY�

2
as being

diagonal block matrices with each block corresponding to the variance-covariance
matrices of the respective position. For points 1 and 2 in the local system for
instance, assuming no correlation between the two points, one obtains

†vecY�

1
D

2
66666664

�21
�21
�21
�22
�22
�22

3
77777775
; (20.54)

where f�21 ; �22 g are positional error spheres for points 1 and 2, respectively. This
is also performed for ˚vecY�

2
and the resulting dispersion matrices used in (9.94) to

obtain the dispersion matrix of the error matrix E.
Since the obtained block diagonal error matrix E is a 3n � 3n matrix, the n � n

matrix is extracted by taking the trace of the block diagonal matrices of E. Adopting
such a matrix from [211, Table 7] as

W D

2
6666666664

1:8110817 0 0 0 0 0 0

0 2:1843373 0 0 0 0 0

0 0 2:1145291 0 0 0 0

0 0 0 1:9918578 0 0 0

0 0 0 0 2:6288452 0 0

0 0 0 0 0 2:1642460 0

0 0 0 0 0 0 2:359370

3
7777777775
:

(20.55)

One proceeds via the general Procrustes algorithm on Solution 9.3 in p. 145
to compute the transformation parameters which are presented in Tables 20.16
and 20.17. In these tables, the results of the I-LESS (step 1) and W-LESS (step
2) Procrustes transformations are presented, namely the 7-datum transformation
parameters; the scale, rotation matrix and the translation parameters. We also present
the residual (error) matrix and the norms of the error matrices. The computed
residuals can be compared with those of linearized least squares procedure in
Table 20.9 on p. 473.

Example 20.4 (Computation of 9-parameter transformation for 82-common known
stations in both Australian Geodetic Datum (AGD 84) and Geocentric Datum
Australia (GDA 94) using the ABC algorithm (see Sect. 9.5.1 on p. 9.5.1) ) Awange
et al. [45] computed 9-parameter transformation for Western Australia based on 82
stations common in both AGD 84 and GDA 94 (Fig. 20.7) using the ABC algorithm
presented in Sect. 9.5.1. The AGD is defined by the ellipsoid with a semimajor
axis of 6,378,160 m and a flattening of 0.00335289, while the GDA is defined by
an ellipsoid of semi-major axis 6,378,137 m and a flattening of 0.00335281 (see,
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Table 20.16 Results of the I-LESS Procrustes transformation

Values

Rotation Matrix 1:00000 �4:33276e�6 4:81463e�6
X3 2 R

3�3 �4:81465e�6 1:00000 �4:84085e�6
4:33274e�6 4:84087e�6 1:00000

Translation 641:8804

x2 2 R
3�1.m/ 68:6553

416:3982

Scale x1 2 R 1:00000558251985

Residual matrix E.m/ Site X.m/ Y.m/ Z.m/

Solitude 0:0940 0:1351 0:1402

Buoch Zeil 0:0588 �0:0497 0:0137

Hohenneuffen �0:0399 �0:0879 �0:0081
Kuelenberg 0:0202 �0:0220 �0:0874
Ex Mergelaec �0:0919 0:0139 �0:0055
Ex Hof Asperg �0:0118 0:0065 �0:0546
Ex Keisersbach �0:0294 0:0041 0:0017

Error matrix norm (m)

jk El kjWWD p
tr.E�

l El/ 0:2890

Mean error matrix norm (m)

jk El kjWWD p
tr.E�

l El/=3n 0:0631

Table 20.17 Results of the W-LESS Procrustes transformation

Values

Rotation Matrix 1:00000 4:77976e�6 �4:34410e�6
X3 2 R

3�3 �4:77978e�6 1:00000 �4:83730e�6
4:34408e�6 4:83731e�6 1:00000

Translation 641:8377

x2 2 R
3�1.m/ 68:4743

416:2159

Scale x1 2 R 1:00000561120732

Residual matrix E.m/ Site X.m/ Y.m/ Z.m/

Solitude 0:0948 0:1352 0:1407

Buoch Zeil 0:0608 �0:0500 0:0143

Hohenneuffen �0:0388 �0:0891 �0:0072
Kuelenberg 0:0195 �0:0219 �0:0868
Ex Mergelaec �0:0900 0:0144 �0:0052
Ex Hof Asperg �0:0105 0:0067 �0:0542
Ex Keisersbach �0:0266 0:0036 0:0022

Error matrix norm (m)

jk El kjWWD p
tr.E�

l WEl/ 0.4268

Mean error matrix norm (m)

jk El kjWWD p
tr.E�

l WEl/=3n 0.0930



20.4 Algebraic Solution of the 9-Parameter Transformation 495

–10

–15

–20

–25

–30

–35

–40
110 115 120 125 130 135 140 145 150 155

Longitude

La
tit

ud
e

Fig. 20.7 Locations of the 82 stations in WA, Australia (AGD84 and GDA94) (Source: Awange
et al. [45])

Table 20.18 Results of the different methods in case of network with mild anisotropy

Time Error Scale Translation
Method (sec) (m) s1; s2; s3 (m)

Procrustes 0.062 6.867 1.00000368981
�115:838
�48:373
144:760

ABC 0.282 6.788
1:00000396085

1:00000354605

1:00000345982

�115:062
�47:676
144:096

PZ Method 0.687 6.642
1:00000416838

1:00000310067

1:00000346938

�112:169
�44:047
144:311

GM 3.562 6.642
1:00000416842

1:00000310066

1:00000346943

�112:169
�44:046
144:312

e.g., Kinneen and Featherstone [161, 300]). The results of the 9-parameter solution
were found to give a marginal 1.4 % improvement when compared to the results
obtained by the 7-parameter transformation. The results of the transformation
parameters are given in Table 20.18.
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Example 20.5 (Computation of 9-parameter transformation for a network with
mild anisotropy using the PZ algorith (see Sect. 9.5.2, p. 148)) As pointed out in
Sect. 9.5.2, the ABC algorithm used in the example above worlks well only when
these scale factors do not differ from each other considerably. In this example
and the next, we apply the PZ-algorthm to cure this problem. Considering the
transformation problem of the AGD 84 to GDA 94 in Example 20.4, in addition
to the ABC-algorithm, the problem is solved using (see results in Table 20.18):

1. Direct numerical solution via Global Minimization (GM). This approach solves
a system of 246 equations for the unknown parameters a, b, c, s, X0, Y0,
Z0. The objective function can be constructed by considering the least square
residuals as objective function (see, e.g., Paláncz et al. [396]). To carry out
global minimization via genetic algorithm, the built -in function NMinimize in
Mathematica is employed.

2. Application of the Helmert transformation (i.e., 7-parameter transformation)
with original Procrustes approach.

3. Application of PZ method.

Example 20.6 (Computation of 9-parameter transformation for a network with
strong anisotropy) For this test an artificial network is generated from Hungarian
Datum points. The angles of rotations are not small values and the values of the
three scale parameters are considerably different from each other. We have N D 81
points in both systems. Using the four approaches above leads to the results of
Table 20.19.

Table 20.19 Results of the different methods in case of network with strong anisotropy

Time Error Scale Translation
Method (sec) (m) s1; s2; s3 (m)

Procrustes 0.047 117,285.16 1.2335164851
�4:826 � 106
253;120:162

6:356 � 106

ABC 0.281 93,431.630
1:099389091087

1:287089145364

1:136301910900

�4:074 � 106
219;870:673

6:642 � 106

PZ Method 0.906 1.3581
0:6200004792118

1:3000001184524

1:86999586512189

1339:036

�236:061
152:711

GM 4.625 1.23799
0:62000047769

1:30000011779

1:86999590054

1339:072

�236:047
152:461
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Table 20.20 Running time of PZ method with initial values .s1; s2; s3/ estimated with different
methods in case of network with strong anisotropy

Time (sec) s1 s2 s3 Method

0:86 0:508673877 0:711886073089 2:1502674697508 PZ Method

0:70 0:538035777 1:290521383334 1:6274715796179 ABC without iteration

1:00 1:099389091 1:287089145364 1:1363019109003 ABC solution

Example 20.7 (Testing different initial values for the PZ algorithm) In this exam-
ple, we are interested in testing the starting values of the proposed PZ-Method.
We consider four scenarios: (i) Using identity matrix I3 as starting values in which
case .sO1 D 1; sO2 D 1; sO2 D 1/; (ii) the PZ Approximation (9.84); (iii) the ABC-
method without iteration (i.e., the results of the first run); and (iv) The ABC- method
with the solutions after iterations. The results are presented in Table 20.20.

20.5 Symbolic Regression Application

20.5.1 Geometric Transformation

Example 20.8 (Application of symbolic regression) Problem definition: Transfor-
mation of coordinates is important in computer vision, photogrammetry as well
as in geodesy. In this example we consider some standard 2D transformations
(similarity, affine and projective) between 16 coordinates of the fiducial marks on
the comparator plate .x; y/ and those of the corresponding points on the reseau plate
.X;Y/. Per definition, neither the model nor the parameters of the model are known.
Figure 20.8 shows the Pareto front from which the fourth model was selected. Our
model then is

x D �2:43296C 1:0007XC 0:0113571Y � 9:513575508385095� 10�7XY:

Similarly, for the relation y D y.X;Y/, we get

y D 1:42065 �0:0115116XC1:00071Y�1:78795�10�7XY �5:60054�10�7Y2:

Comparison of the different transformation models: It is not surprising that
transformation models having more parameters and nonlinear form can provide less
error than others. Let us summarize some statistic values of the different methods
in Table 20.21. The nonlinear transformation obtained by the symbolic regression
gives the best fitting, to compute the inverse of the transformation is not an easy
task. However this problem can be solved via Groebner basis.
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Fig. 20.8 The Pareto front (red points) with the selected model

Table 20.21 Some statistical values of the different transformation models

Max of Standard deviation
absolute errors of the absolute errors Average of the

Transformation model [mm] [mm] residual errors [mm]

Similarity 0:0268663 0:0088264 0:0106

Affine 0:0180314 0:00518175 0:0089

Projective 0:0128281 0:00342605 0:0066

Symbolic Regression 0:007872 0:00197883 0:0028

20.6 Concluding Remarks

This chapter has illustrated how the algebraic technique of Groebner basis explicitly
solves the nonlinear 7-parameter datum transformation equations once they have
been converted into algebraic (polynomial) form. In particular, the algebraic tool of
Groebner basis provides symbolic solutions; showing the scale parameter to fulfill a
quartic polynomial and the rotation parameters are given by linear functions in scale.
It has also been demonstrated how overdetermined versions of the problem can be
solved using the Gauss-Jacobi combinatorial algorithm and the general Procrustes
algorithm. Both approaches incorporate the stochasticity of both systems involved
in the transformation problem.

Although computationally intensive, the Gauss-Jacobi combinatorial algorithm
solves the weighted transformation problem without any assumptions. The general
Procrustes algorithm functions well with the isotropic assumptions, i.e., all three
coordinates fXi;Yi;Zig of a point i are given the same weight. The weights are
further assumed to be inhomogeneous, i.e., the weights of a point i differ from those
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of point j. Both of these assumptions are ideal and may not necessarily hold in
practice.

The chapter further gave a symbolic-numeric solution to compute the parameters
of a 3D affine transformation model. In the case of the 3-point problem, a fully
symbolic solution was given to solve the 3D affine datum transformation problem.
We demonstrated that elimination techniques, namely the enhanced and classical
Dixon resultant and the reduced Groebner bases, can be used in the elimination
process to determine the parameters. The symbolic reduction can be carried out
off line, therefore it does not influence the computing time. This feature can be
very useful, when one solves the three points problem many times, for example in
the case of the Gauss-Jacobi solution of N-points problem. However, Gauss-Jacobi
combinatorial solutions can be used only for cases where the number of known
points is small. The symbolically calculated parameters for the 3-points problem
can also be used in the case of the N-points problem, as initial values. Criteria for
selecting an appropriate triplet from data points for initial values are also given.

The N-points problem is solved by a symbolic-numeric algorithm. First the
overdetermined system is transformed into a determined system using the ALESS
method symbolically via computer algebra, then the solution of the determined
system is solved by Newton-type homotopy using different initial values. This
method is fast, robust and has a very low complexity, according to its independence
from the number of equations in the original overdetermined system. The homotopy
solution can enlarge the convergence region and provide solution regardless of initial
values, when local methods like standard Newton-Raphson fail.

For the 9-parameter Procrustes solution, in case of mild anisotropy of the
network, the ABC method gives better approximation than the general Procrustes
method employing Helmert transformation model, while, the PZ method provides
precise, geometrically correct solution. The ABC method is about 2 times faster than
the PZ method, and the later is roughly 5 times faster than the global optimization
method applying to 3D affine model as we saw in Table 20.18. In case of strong
anisotropy, use of the ABC method to solve 3D affine transformation completely
fails, while PZ method provides correct solutions. However, even in that case, ABC
method is still useful for computing proper initial values for PZ method in order to
increase its efficiency as demonstrated in Table 20.20.

Furthermore, this chapter considered the application of symbolic regression (SR)
to 2D transform. Comparing the method with the other type of transformation tech-
niques such as similarity, affine and projective transformation, symbolic regression
can provide better results (see Table 20.21).

The subject of transformation in general is still an active area of research as
evident in the works of [2, 3, 6, 17, 19, 26, 29, 40, 41, 58, 64, 67, 79, 89, 163, 210,
211, 216, 226–228, 231, 232, 244, 261, 297, 307, 310, 382, 385, 392, 483, 497, 515,
526, 538, 543].
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A.1 Definitions

To enhance the understanding of the theory of Groebner bases presented in Chap. 4,
the following definitions supplemented with examples are presented.

Three commonly used monomial ordering systems are; lexicographic ordering,
graded lexicographic ordering and graded reverse lexicographic ordering. First we
define the monomial ordering before considering the three types.

Definition A.1 (Monomial ordering) A monomial ordering on
k Œx1; : : : ; xn� is any relation > on Z

n�0 or equivalently any relation on the set x˛;
˛ 2 Z

n�0 satisfying the following conditions:

(a) is total (or linear) ordering on Z
n�0

(b) If ˛ > ˇ and � 2 Z
n�0, then ˛ C � > ˇ C �

(c) < is a well ordering on Z
n�0.

This condition is satisfied if and only if every strictly decreasing sequence in Z
n�0

eventually terminates.

Definition A.2 (Lexicographic ordering) This is akin to the ordering of words
used in dictionaries. If we define a polynomial in three variables as P D kŒx; y; z� and
specify an ordering x > y > z, i.e., x comes before y and y comes before z, then any
term with x will supersede that of y which in tern supersedes that of z: If the powers
of the variables for respective monomials are given as ˛ D .˛1; : : : ; ˛n/ and ˇ D
.ˇ1; : : : ; ˇn/; ˛; ˇ 2 Z

n�0; then ˛ >lex ˇ if in the vector difference ˛ � ˇ 2 Z
n; the

most left non-zero entry is positive. For the same variable (e.g., x) this subsequently
means x˛ >lex xˇ:

Example A.9 x > y5z9 is an example of lexicographic ordering. As a second
example, consider the polynomial f D 2x2y8 � 3x5yz4 C xyz3 � xy4, we have the
lexicographic order; f D �3x5yz4 C 2x2y8 � xy4 C xyz3 jx > y > z .
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Definition A.3 (Graded lexicographic ordering) In this case, the total degree
of the monomials is taken into account. First, one considers which monomial has
the highest total degree before looking at the lexicographic ordering. This ordering
looks at the left most (or largest) variable of a monomial and favours the largest

power. Let ˛; ˇ 2 Z
n�0; then ˛ >grlex ˇ if j˛j D

nP
iD1
˛i > jˇj D

nP
iD1
ˇi or j˛j D jˇj,

and ˛ >lex ˇ; in ˛ � ˇ 2 Z
n; the most left non zero entry is positive.

Example A.10 x8y3z2 >grlex x6y2z3 j.8; 3; 2/ >grlex .6; 2; 3/, since j.8; 3; 2/j D
13 > j.6; 2; 3/j D 11 and˛ � ˇ D .2; 1;�1/. Since the left most term of the
difference (2) is positive, the ordering is graded lexicographic. As a second example,
consider the polynomial f D 2x2y8 � 3x5yz4 C xyz3 � xy4; we have the graded
lexicographic order; f D �3x5yz4 C 2x2y8 � xy4 C xyz3 jx > y > z:

Definition A.4 (Graded reverse lexicographic ordering) In this case, the total
degree of the monomials is taken into account as in the case of graded lexicographic
ordering. First, one considers which monomial has the highest total degree before
looking at the lexicographic ordering. In contrast to the graded lexicographic
ordering, one looks at the right most (or largest) variable of a monomial and favours

the smallest power. Let ˛; ˇ 2 Z
n�0; then ˛ >grevlex ˇ if j˛j D

nP
iD1
˛i > jˇj D

nP
iD1
ˇi or j˛j D jˇj, and ˛ >grevlex ˇ, and in ˛ � ˇ 2 Z

n the right most non zero

entry is negative.

Example A.11 x8y3z2 >grevlex x6y2z3 j.8; 3; 2/ >grevlex .6; 2; 3/ since j.8; 3; 2/j D
13 > j.6; 2; 3/j D 11 and˛ � ˇ D .2; 1;�1/. Since the right most term of the
difference (�1) is negative, the ordering is graded reverse lexicographic. As a
second example, consider the polynomial f D 2x2y8� 3x5yz4C xyz3� xy4, we have
the graded reverse lexicographic order: f D 2x2y8�3x5yz4�xy4Cxyz3 jx > y > z .

If we consider a non-zero polynomial f D P
˛ a˛x˛ in k Œx1; : : : ; xn� and fix the

monomial order, the following additional terms can be defined:

Definition A.5 Multidegree of f : Multideg ( f ) = max.˛ 2 Z
n�0 ja˛ ¤ 0/

Leading Coefficient of f : LC ( f ) = amultideg.f / 2 k
Leading Monomial of f : LM ( f ) = xmultideg.f / (with coefficient 1)
Leading Term of f : LT ( f ) = LC ( f ) LM ( f )

Example A.12 Consider the polynomial f D 2x2y8�3x5yz4Cxyz3�xy4 with respect
to lexicographic order fx > y > zg , we have
Multideg ( f ) = (5,1,4)
LC ( f ) =�3
LM ( f ) = x5yz4

LT ( f ) =�3x5yz4

The definitions of polynomial ordering above have been adopted from [135,
pp. 52–58].
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A.3 Linear Homotopy

In Mathematica one can solve the system in the following way:

1. Preprocessing:

the equations:
f1Œx_; y_� D x2 C y2 � 1

f2Œx_; y_� D x3 C y3 � 1

the system
F D ff1Œx; y�; f2Œx; y�g
the variables: X=fx,yg;
computing start system and its solutions:
start=StartingSystem[F, X];
the start system:
G=start[[1]]=

˚
.0:673116 C 0:739537i/

�
.�0:933825 C 0:35773i/ C x2

�
,

.�0:821746 � 0:569853i/
�
.�0:957532 � 0:288325i/ C y3

��

the solutions of the start system:
X0 = start[[2]] = ff0.983317� 0.1819 i, �0.413328� 0.910582 ig,
f 0.983317� 0.1819 i, 0.995251 + 0.0973382 ig,
f0.983317� 0.1819 i, �0.581923 + 0.813244 ig,
f �0.983317 + 0.1819 i, �0.413328 � 0.910582 ig,
f �0.983317 + 0.1819 i, 0.995251 + 0.0973382 ig,
f �0.983317 + 0.1819 i, �0.581923 + 0.813244 igg
2. Processing:

computing homotopy path by solving the corresponding differential equation system
Eq. (6.50) with initial values X0
	 = f1,1g;
in case the start system is not complex, it contains n random complex numbers
P = 0;
in case of computation with very high precision (20 digits or more)
P = 1
computing homotopy paths:
hpath = LinearHomotopyNDS01[X,F,G,X0,	 , P]
the solution of the target system:
Sol = hpath[[1]] = ff0,1g,f0,1g,f1,0g,f1,0g, f �1 � 0.707107 i ,�1 � 0.707107 ig,
f �1 + 0.707107 i, �1 + 0.707107 igg
the interpolation functions of the paths, the trajectories of the solutions:
Traject = hpath[[2]]=
=fx[
]! InterpolatingFunction[][
], y[
]! InterpolatingFunction[][
]g
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3. Postprocessing:

these paths can be visualized by function: Path[X,Traject,X0], see Fig. 16.18.
More details of the computation and functions applied here can be found in
Palancz [397].

A.4 Determined System of the 9-Parameter Transformation
N Point Problem

Fa .a; b; c; �1; �2; �3;X0;Y0;Z0/ D @�

@a
D

�bNX0Y0�1�2 C aNY20�
2
2 � cNX0Z0�1�3 C aNZ20�

2
3 C bY0�1�2

NX
iD1

xi

CcZ0�1�3

NX
iD1

xi C bY0�2

NX
iD1

Xi C cZ0�3

NX
iD1

Xi C aY0�
2
2

NX
iD1
.�2yi/

CbX0�1�2

NX
iD1

yi C b�1�2

NX
iD1
.�xiyi/C b�2

NX
iD1
.�Xiyi/C a�22

NX
iD1

y2i

CaY0�2

NX
iD1
.�2Yi/C bX0�1

NX
iD1

Yi C Z0�3

NX
iD1

2Yi C b�1

NX
iD1
.�xiYi/

Cb
NX

iD1
.�XiYi/C a�2

NX
iD1

2yiYi C aZ0�
2
3

NX
iD1
.�2zi/C cX0�1�3

NX
iD1

zi

Cc�1�3

NX
iD1
.�xizi/C c�3

NX
iD1
.�Xizi/C �3

NX
iD1
.�2Yizi/C a�23

NX
iD1

z2i

CY0�2

NX
iD1
.�2Zi/C aZ0�3

NX
iD1
.�2Zi/C cX0�1

NX
iD1

Zi C c�1

NX
iD1
.�xiZi/

Cc
NX

iD1
.�XiZi/C �2

NX
iD1

2yiZi C a�3

NX
iD1

2ziZi C a
NX

iD1

�
Y2i C Z2i

� D 0:
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Fb .a; b; c; �1; �2; �3;X0;Y0;Z0/ D @�

@b
D

bnX20�
2
1 � anX0Y0�1�2 � cnY0Z0�2�3 C bnZ20�

2
3 C bX0�

2
1

nX
iD1
�2xi C

aY0�1�2

nX
iD1

xi C b�21

nX
iD1

x2i C bX0�1

nX
iD1
�2Xi C Z0�3

nX
iD1
�2Xi C

aY0�2

nX
iD1

Xi C b�1

nX
iD1

2xiXi C aX0�1�2

nX
iD1

yi C cZ0�2�3

nX
iD1

yi C

a�1�2

nX
iD1
�xiyi C a�2

nX
iD1
�Xiyi C aX0�1

nX
iD1

Yi C cZ0�3

nX
iD1

Yi C

a�1

nX
iD1
�xiYi C a

nX
iD1
�XiYi C bZ0�

2
3

nX
iD1
�2zi C cY0�2�3

nX
iD1

zi C

�3

nX
iD1

2Xizi C c�2�3

nX
iD1
�yizi C c�3

nX
iD1
�Yizi C b�23

nX
iD1

z2i C

bZ0�3

nX
iD1
�2Zi C cY0�2

nX
iD1

Zi C X0�1

nX
iD1

2Zi C �1
nX

iD1
�2xiZi C

c�2

nX
iD1
�yiZi C c

nX
iD1
�YiZi C b�3

nX
iD1

2ziZi C b
nX

iD1

�
X2i C Z2i

� D 0

Fc .a; b; c; �1; �2; �3;X0;Y0;Z0/ D @�

@c
D

cnX20�
2
1 C cnY20�

2
2 � anX0Z0�1�3 � bnY0Z0�2�3 C cX0�

2
1

nX
iD1
�2xi C

aZ0�1�3

nX
iD1

xi C c�21

nX
iD1

x2i C cX0�1

nX
iD1
�2Xi C aZ0�3

nX
iD1

Xi C

Y0�2

nX
iD1

2Xi C c�1

nX
iD1

2xiXi C cY0�
2
2

nX
iD1
�2yi C bZ0�2�3

nX
iD1

yi C

�2

nX
iD1
�2Xiyi C c�22

nX
iD1

y2i C X0�1

nX
iD1
�2Yi C cY0�2

nX
iD1
�2Yi C

bZ0�3

nX
iD1

Yi C �1
nX

iD1
2xiYi C c�2

nX
iD1

2yiYi C c
nX

iD1

�
X2i C Y2i

�C
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aX0�1�3

nX
iD1

zi C bY0�2�3

nX
iD1

zi C a�1�3

nX
iD1
�xizi C a�3

nX
iD1
�Xizi C

b�2�3

nX
iD1
�yizi C b�3

nX
iD1
�Yizi C aX0�1

nX
iD1

Zi C bY0�2

nX
iD1

Zi C

a�1

nX
iD1
�xiZi C a

nX
iD1
�XiZi C b�2

nX
iD1
�yiZi C b

nX
iD1
�YiZi D 0

FX0 .a; b; c; �1; �2; �3;X0;Y0;Z0/ D
@�

@X0
D

nX0�
2
1 C b2nX0�

2
1 C c2nX0�

2
1 � abnY0�1�2 � acnZ0�1�3 C

�21

nX
iD1
�xi C b2�21

nX
iD1
�xi C c2�21

nX
iD1
�xi C b2�1

nX
iD1
�Xi C c2�1

nX
iD1
�Xi C

�1

nX
iD1

Xi C ab�1�2

nX
iD1

yi C c�1

nX
iD1
�2Yi C ab�1

nX
iD1

Yi C ac�1�3

nX
iD1

zi C

ac�1

nX
iD1

Zi C b�1

nX
iD1

2Zi D 0

FY0 .a; b; c; �1; �2; �3;X0;Y0;Z0/ D
@�

@Y0
D

�abnX0�1�2 C nY0�
2
2 C a2nY0�

2
2 C c2nY0�

2
2 � bcnZ0�2�3 C

ab�1�2

nX
iD1

xi C ab�2

nX
iD1

Xi C c�2

nX
iD1

2Xi C �22
nX

iD1
�yi C a2�22

nX
iD1
�yi C

c2�22

nX
iD1
�yi C a2�2

nX
iD1
�Yi C c2�2

nX
iD1
�Yi C �2

nX
iD1

Yi C bc�2�3

nX
iD1

zi C

a�2

nX
iD1
�2Zi C bc�2

nX
iD1

Zi D 0

FZ0 .a; b; c; �1; �2; �3;X0;Y0;Z0/ D
@�

@Z0
D

�acnX0�1�3 � bcnY0�2�3 C nZ0�
2
3 C a2nZ0�

2
3 C b2nZ0�

2
3 C

ac�1�3

nX
iD1

xi C b�3

nX
iD1
�2Xi C ac�3

nX
iD1

Xi C bc�2�3

nX
iD1

yi C bc�3

nX
iD1

Yi C
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a�3

nX
iD1

2Yi C �23
nX

iD1
�zi C a2�23

nX
iD1
�zi C b2�23

nX
iD1
�zi C a2�3

nX
iD1
�Zi C

b2�3

nX
iD1
�Zi C �3

nX
iD1

Zi D 0

F�1 .a; b; c; �1; �2; �3;X0;Y0;Z0/ D
@�

@�1
D

nX20�1 C b2nX20�1 C c2nX20�1 � abnX0Y0�2 � acnX0Z0�3 C

X0�1

nX
iD1
�2xi C b2X0�1

nX
iD1
�2xi C c2X0�1

nX
iD1
�2xi C abY0�2

nX
iD1

xi C

acZ0�3

nX
iD1

xi C �1
nX

iD1
x2i C b2�1

nX
iD1

x2i C c2�1

nX
iD1

x2i C b2X0

nX
iD1
�Xi C

c2X0

nX
iD1
�Xi C X0

nX
iD1

Xi C
nX

iD1
�xiXi C b2

nX
iD1

xiXi C c2
nX

iD1
xiXi C

abX0�2

nX
iD1

yi C ab�2

nX
iD1
�xiyi C cX0

nX
iD1
�2Yi C abX0

nX
iD1

Yi C

n
iD1 � 2Yi C abX0

nX
iD1

Yi C

ab
nX

iD1
�xiYi C c

nX
iD1

2xiYi C acX0�3

nX
iD1

zi C ac�3

nX
iD1
�xizi C acX0

nX
iD1

Zi C

bX0

nX
iD1

2Zi C b
nX

iD1
�2xiZi C ac

nX
iD1
�xiZi D 0

F�2 .a; b; c; �1; �2; �3;X0;Y0;Z0/ D
@�

@�2
D

�abnX0Y0�1 C nY20�2 C a2nY20�2 C c2nY20�2 � bcnY0Z0�3 C

abY0�1

nX
iD1

xi C abY0

nX
iD1

Xi C cY0

nX
iD1

2Xi C Y0�2

nX
iD1
�2yi C

a2Y0�2

nX
iD1
�2yi C c2Y0�2

nX
iD1
�2yi C abX0�1

nX
iD1

yi C bcZ0�3

nX
iD1

yi C

ab�1

nX
iD1
�xiyi C c

nX
iD1
�2Xiyi C ab

nX
iD1
�Xiyi C �2

nX
iD1

y2i C a2�2

nX
iD1

y2i C
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c2�2

nX
iD1

y2i C a2Y0

nX
iD1
�Yi C c2Y0

nX
iD1
�Yi C Y0

nX
iD1

Yi C
nX

iD1
�yiYi C

a2
nX

iD1
yiYi C c2

nX
iD1

yiYi C bcY0�3

nX
iD1

zi C bc�3

nX
iD1
�yizi C aY0

nX
iD1
�2Zi C

bcY0

nX
iD1

Zi C bc
nX

iD1
�yiZi C a

nX
iD1

2yiZi D 0

F�3 .a; b; c; �1; �2; �3;X0;Y0;Z0/ D
@�

@�3
D

�acnX0Z0�1 � bcnY0Z0�2 C nZ20�3 C a2nZ20�3 C b2nZ20�3 C

acZ0�1

nX
iD1

xi C bZ0

nX
iD1
�2Xi C acZ0

nX
iD1

Xi C bcZ0�2

nX
iD1

yiC bcZ0

nX
iD1

Yi C

aZ0

nX
iD1

2Yi C Z0�3

nX
iD1
�2zi C a2Z0�3

nX
iD1
�2zi C b2Z0�3

nX
iD1
�2zi C

acX0�1

nX
iD1

zi C bcY0�2

nX
iD1

zi C ac�1

nX
iD1
�xizi C ac

nX
iD1
�Xizi C

�xizi C ac
nX

iD1
�Xizi C

b
nX

iD1
2Xizi C bc�2

nX
iD1
�yizi C a

nX
iD1
�2Yizi C bc

nX
iD1
�Yizi C �3

nX
iD1

z2i C

a2�3

nX
iD1

z2i C b2�3

nX
iD1

z2i C a2Z0

nX
iD1
�Zi C b2Z0

nX
iD1
�Zi C Z0

nX
iD1

Zi C

nX
iD1
�ziZi C a2

nX
iD1

ziZi C b2
nX

iD1
ziZi D 0
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Grafarend et al. approach, 355
Groebner basis solution, 345
Grunert’s equations, 343
overdetermined, 358
photogrammetric, 362
resultant solution, 348

Residuals, 113, 303, 444
Rings, 9

commutative, 19
congruence, 14
definition, 16
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with identity, 16
fruit, 14
modular arithmetic, 14, 18
numbers, 9, 13, 18
polynomial, 9, 14, 16, 19

Robotics, 1
Robust estimation, 5, 444
Rodrigues, 12
Root-mean-square-errors, 303
Roots, 26
Rotation, 131, 146, 459
Rotation matrix, 132, 135, 257, 411, 493
Runge-Kutta method, 77

Satellites
CHAMP, 417
clock bias, 285
COSMIC, 417
ephemerids, 248
GALILEO, 125, 246, 247, 283, 417
geostationary, 416
GLONASS, 125, 246, 247, 283, 417
GNSS, 245, 283
GPS, 125, 245, 247, 283, 416
GRACE, 417
LEO, 420
occultations, 2, 430
polar, 416
receiver range bias, 286
remote sensing, 416
SAC-C, 417
velocities, 421, 425

Scale factor, 135, 459, 493
Second moments, 106
Semi-group, 16
Semi-major axis, 268, 277
Semi-minor axis, 268, 277
Semi-norm, 144, 145
Set, 10, 11
Shape analysis, 125
Singular value decomposition (SVD), 133,

135, 139, 142, 144
Singularity, 114
Singular values, 121
Skew-symmetric matrix, 462, 465
Slant water, 423
Smooth-linear bending, 131
Snell’s law, 420
Solutions

analytic, 3
closed form, 4
exact, 2
least squares, 20, 100

numerical, 4
Space angles, 343, 396, 401, 459
Spatial reference system, 283
Spherical harmonics, 1
Square matrix, 57
Square root, 11
Standard basis, 37
Standard deviation, 260
Standard errors, 260
Starshaped surface, 267
Stencil method, 355
Stochastic, 486
Stochastic optimization methods, 171
Stochasticity, 4, 109
Stratosphere, 416, 418
Sufficient condition, 58, 270, 291
Surface normal, 267
Surjective mapping, 136
Sylvester resultants, 53, 54, 322
Symbolic solution, 480
Synthetic aperture radar (SAR), 419

Taylor points, 106
Taylor series, 114
Taylor series expansion, 301
TEC, 417
Temperature, 245, 283, 416, 420, 423, 440
Theseus, 127
3d-orientation, 246
Topographical surface, 267
Topography, 263
Total degree, 54, 58, 349, 502
Transformations

affine, 131
Cartesian to ellipsoidal, 265, 266, 277
Gauss-Jacobi solution, 470
Groebner solution, 462
Karussel, 249
orthogonal, 125
orthogonal Procrustes, 136
7-parameter, 4, 126
similarity, 136, 396, 412

Translation, 131, 135, 146, 459, 493
Trigonometric addition formulae, 425
Tropopause, 418, 440
Troposphere, 418

UCAR, 417
Univariate polynomial, 480
Unknown orientation, 249, 254, 336, 339, 340,
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Variance-covariance, 293, 326, 493
matrix, 106
propagation, 104, 105, 107, 446, 470

Vectors, 14
Vertical deflections, 126, 246

Water vapour, 283, 416, 420, 423, 440
Weather, 246, 415

Weighted arithmetic mean, 100
Weight matrix, 109, 445
Weitzenböck space, 136, 396
W-semi-norm, 137
World Geodetic System WGS-84, 247
WU, W., 68

Zenith delay, 423
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