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Series	Preface
The	Wiley	Series	in	Quality	&	Reliability	Engineering	aims	to	provide	a	solid	educational
foundation	for	researchers	and	practitioners	in	the	field	of	quality	and	reliability	engineering
and	to	expand	the	knowledge	base	by	including	the	latest	developments	in	these	disciplines.

The	importance	of	quality	and	reliability	to	a	system	can	hardly	be	disputed.	Product	failures
in	the	field	inevitably	lead	to	losses	in	the	form	of	repair	cost,	warranty	claims,	customer
dissatisfaction,	product	recalls,	loss	of	sale	and,	in	extreme	cases,	loss	of	life.

Engineering	systems	are	becoming	increasingly	complex	with	added	capabilities,	options	and
functions;	however,	the	reliability	requirements	remain	the	same	or	even	growing	more
stringent.	This	challenge	is	being	faced	by	design	and	manufacturing	improvements	and	to	no
lesser	extent	by	advancements	in	system	reliability	modelling.	Also,	the	recent	developments
of	functional	safety	standards	(IEC	61508,	ISO	26262,	ISO	25119	and	others)	caused	an	uptick
in	interest	to	system	reliability	modelling	and	risk	assessment	as	it	applies	to	product	safety.

This	book	Reliability	and	Risk	Models	is	the	second	and	comprehensively	updated	edition	of
the	work,	which	has	already	gained	a	wide	readership	among	reliability	practitioners	and
analysts.	It	presents	a	foundation	and	advanced	topics	in	reliability	modelling	successfully
merging	statistical-based	approach	with	advanced	engineering	principles.	It	offers	an	excellent
mix	of	theory,	practice,	applications	and	common	sense	engineering,	making	it	a	perfect
addition	to	this	book	series.

The	purpose	of	the	Wiley	book	series	is	also	to	capture	the	latest	trends	and	advancements	in
quality	and	reliability	engineering	and	influence	future	development	in	these	disciplines.	As
quality	and	reliability	science	evolves,	it	reflects	the	trends	and	transformations	of	the
technologies	it	supports.	A	device	utilising	a	new	technology,	whether	it	be	a	solar	power
panel,	a	stealth	aircraft	or	a	state-of-the-art	medical	device,	needs	to	function	properly	and
without	failures	throughout	its	mission	life.	New	technologies	bring	about	new	failure
mechanisms,	new	failure	sites	and	new	failure	modes.	Therefore,	continuous	advancement	of
the	physics	of	failure	combined	with	a	multidisciplinary	approach	is	essential	to	our	ability	to
address	those	challenges	in	the	future.

In	addition	to	the	transformations	associated	with	changes	in	technology,	the	field	of	quality
and	reliability	engineering	has	been	going	through	its	own	evolution	developing	new
techniques	and	methodologies	aimed	at	process	improvement	and	reduction	of	the	number	of
design-	and	manufacturing-related	failures.

Risk	assessment	continues	to	enhance	reliability	analysis	for	an	increasing	number	of
applications,	addressing	not	only	the	probability	of	failure	but	also	the	quantitative
consequences	of	that	failure.	Life	cycle	engineering	concepts	are	expected	to	find	wider
applications	to	reduce	life	cycle	risks	and	minimise	the	combined	cost	of	design,
manufacturing,	quality,	warranty	and	service.



Additionally,	continuous	globalisation	and	outsourcing	affect	most	industries	and	complicate
the	work	of	quality	and	reliability	professionals.	Having	various	engineering	functions
distributed	around	the	globe	adds	a	layer	of	complexity	to	design	coordination	and	logistics.
Also,	moving	design	and	production	into	regions	with	little	knowledge	depth	of	design	and
manufacturing	processes,	with	a	less	robust	quality	system	in	place	and	where	low	cost	is	often
the	primary	driver	of	product	development	affects	company’s	ability	to	produce	reliable	and
defect-free	products.

Despite	its	obvious	importance,	quality	and	reliability	education	is	paradoxically	lacking	in
today’s	engineering	curriculum.	Very	few	engineering	schools	offer	degree	programmes	or
even	a	sufficient	variety	of	courses	in	quality	or	reliability	methods.	Therefore,	the	majority	of
the	quality	and	reliability	practitioners	receive	their	professional	training	from	colleagues,
professional	seminars,	publications	and	technical	books.	The	lack	of	formal	education
opportunities	in	this	field	greatly	emphasises	the	importance	of	technical	publications	for
professional	development.

We	are	confident	that	this	book	as	well	as	this	entire	book	series	will	continue	Wiley’s
tradition	of	excellence	in	technical	publishing	and	provide	a	lasting	and	positive	contribution
to	the	teaching	and	practice	of	reliability	and	quality	engineering.

Dr.	Andre	V.	Kleyner,
Editor	of	the	Wiley	Series	in	Quality	&	Reliability	Engineering



Preface
A	common	tendency	in	many	texts	devoted	to	reliability	is	to	choose	either	a	statistical-based
approach	to	reliability	or	engineering-based	approach.	Reliability	engineering,	however,	is
neither	reliability	statistics	nor	solely	engineering	principles	underlying	reliable	designs.
Rather,	it	is	an	amalgam	of	reliability	statistics,	theoretical	principles	and	techniques	and
engineering	principles	for	developing	reliable	products	and	reducing	technical	risk.
Furthermore,	in	the	reliability	literature,	the	emphasis	is	commonly	placed	on	reliability
prediction	than	reliability	improvement.	Accordingly,	the	intention	of	this	second	edition	is	to
improve	the	balance	between	the	statistical-based	approach	and	the	engineering-based
approach.

To	demonstrate	the	necessity	of	a	balanced	approach	to	reliability	and	engineering	risk,	a	new
chapter	(Chapter	11)	has	been	devoted	exclusively	to	principles	and	techniques	for	improving
reliability	and	reducing	engineering	risk.	The	need	for	unity	between	the	statistical	approach
and	the	engineering	approach	is	demonstrated	by	the	formulated	principles,	some	of	which	are
rooted	in	reliability	statistics,	while	others	rely	on	purely	engineering	concepts.	The	diverse
risk	reduction	principles	prompt	reliability	and	risk	practitioners	not	to	limit	themselves	to
familiar	ways	of	improving	reliability	and	reducing	risk	(such	as	introducing	redundancy)
which	might	lead	to	solutions	which	are	far	from	optimal.

Using	appropriate	combinations	of	statistical	and	physical	principles	brings	a	considerably
larger	effect.	The	outlined	key	principles	for	reducing	the	risk	of	failure	can	be	applied	with
success	not	only	in	engineering	but	in	diverse	areas	of	the	human	activity,	for	example	in
environmental	sciences,	financial	engineering,	economics,	medicine,	etc.

Critical	failures	in	many	industries	(e.g.	in	the	nuclear	or	deep-water	oil	and	gas	industry)	can
have	disastrous	environmental	and	health	consequences.	Such	failures	entail	loss	of	production
for	very	long	periods	of	time	and	extremely	high	costs	of	the	intervention	for	repair.
Consequently,	for	industries	characterised	by	a	high	cost	of	failure,	setting	quantitative
reliability	requirements	must	be	driven	by	the	cost	of	failure.	There	is	a	view	held	even	by
some	risk	experts	that	there	is	no	need	for	setting	reliability	requirements.	The	examples	in
Chapter	16	demonstrate	the	importance	of	reliability	requirements	not	only	for	minimising	the
probability	of	unsatisfied	demand	below	a	maximum	acceptable	level	but	also	for	providing	an
optimal	balance	between	reliability	and	cost.	Furthermore,	many	technical	failures	with
disastrous	consequences	to	the	environment	could	have	been	easily	prevented	by	adopting
cost-of-failure-based	reliability	requirements	for	critical	components.

Common,	as	well	as	little	known	reliability	and	risk	models	and	their	applications	are
discussed.	Thus,	a	powerful	generic	equation	is	introduced	for	determining	the	probability	of
safe/failure	states	dependent	on	the	relative	configuration	of	random	variables,	following	a
homogeneous	Poisson	process	in	a	finite	domain.	Seemingly	intractable	reliability	problems
can	be	solved	easily	using	this	equation	which	reduces	a	complex	reliability	problem	to



simpler	problems.	The	equation	provides	a	basis	for	the	new	reliability	measure	introduced	in
Chapter	16,	which	consists	of	a	combination	of	specified	minimum	separation	distances
between	random	variables	in	a	finite	interval	and	the	probability	with	which	they	must	exist.
The	new	reliability	measure	is	at	the	heart	of	a	technology	for	setting	quantitative	reliability
requirements	based	on	minimum	event-free	operating	periods	or	minimum	failure-free
operating	periods	(MFFOP).	A	number	of	important	applications	of	the	new	reliability
measure	are	also	considered	such	as	limiting	the	probability	of	a	collision	of	demands	from
customers	using	particular	resource	for	a	specified	time	and	the	probability	of	overloading	of
supply	systems	from	consumers	connecting	independently	and	randomly.

It	is	demonstrated	that	even	for	a	small	number	of	random	demands	in	a	finite	time	interval,	the
probability	of	clustering	of	two	or	more	random	demands	within	a	critical	distance	is
surprisingly	high	and	should	always	be	accounted	for	in	risk	assessments.

Substantial	space	in	the	book	has	been	allocated	for	load–strength	(demand–capacity)	models
and	their	applications.	Common	problems	can	easily	be	formulated	and	solved	using	the	load–
strength	interference	concept.	On	the	basis	of	counterexamples,	a	point	has	been	made	that	for
non-Gaussian	distributed	load	and	strength,	the	popular	reliability	measures	‘reliability	index’
and	‘loading	roughness’	can	be	completely	misleading.	In	Chapter	6,	the	load–strength
interference	model	has	been	generalised,	with	the	time	included	as	a	variable.	The	derived
equation	is	in	effect	a	powerful	model	for	determining	reliability	associated	with	an	overstress
failure	mechanism.

A	number	of	new	developments	made	by	the	author	in	the	area	of	reliability	and	risk	models
since	the	publication	of	the	first	edition	in	2005	have	been	reflected	in	the	second	edition.	Such
is,	for	example,	the	revision	of	the	Weibull	distribution	as	a	model	of	the	probability	of	failure
of	materials	controlled	by	defects.	On	the	basis	of	probabilistic	reasoning,	thought	experiments
and	real	experiments,	it	is	demonstrated	in	Chapter	13	that	contrary	to	the	common	belief	for
more	than	60	years,	the	Weibull	distribution	is	a	fundamentally	flawed	model	for	the
probability	of	failure	of	materials.	The	Weibull	distribution,	with	its	strictly	increasing
function,	is	incapable	of	approximating	a	constant	probability	of	failure	over	a	loading	region.
The	present	edition	also	features	an	alternative	of	the	Weibull	model	based	on	an	equation
which	does	not	use	the	notions	‘flaws’	and	‘locally	initiated	failure	by	flaws’.	The	new
equation	is	based	on	the	novel	concept	‘hazard	stress	density’.	A	simple	and	easily	reproduced
experiment	based	on	artificial	flaws	provides	a	strong	and	convincing	experimental	proof	that
the	distribution	of	the	minimum	breaking	strength	associated	with	randomly	distributed	flaws
does	not	follow	a	Weibull	distribution.

Another	important	addition	in	the	second	edition	is	the	comparative	method	for	improving
reliability	introduced	in	Chapter	14.	Calculating	the	absolute	reliability	built	in	a	product	is
often	an	extremely	difficult	task	because	in	many	cases	reliability-critical	data	(failure
frequencies,	strength	distribution	of	the	flaws,	fracture	mechanism,	repair	times)	are	simply
unavailable	for	the	system	components.	Furthermore,	calculating	the	absolute	reliability	may
not	be	possible	because	of	the	complexity	of	the	physical	processes	and	physical	mechanisms
underlying	the	failure	modes,	the	complex	influence	of	the	environment	and	the	operational



loads,	the	variability	associated	with	reliability-critical	design	parameters	and	the	non-
robustness	of	the	prediction	models.	Capturing	and	quantifying	these	types	of	uncertainty,
necessary	for	a	correct	prediction	of	the	reliability	of	the	component,	is	a	formidable	task
which	does	not	need	to	be	addressed	if	a	comparative	reliability	method	is	employed,
especially	if	the	focus	is	on	reliability	improvement.	The	comparative	methods	do	not	rely	on
reliability	data	to	improve	the	reliability	of	components	and	are	especially	suited	for
developing	new	designs,	with	no	failure	history.

In	the	second	edition,	the	coverage	of	physics-of-failure	models	has	been	increased	by
devoting	an	entire	chapter	(Chapter	12)	to	‘fast	fracture’	and	‘fatigue’	–	probably	the	two
failure	modes	accounting	for	most	of	the	mechanical	failures.

The	conditions	for	the	validity	of	common	physics-of-failure	models	have	also	been	presented.
A	good	example	is	the	Palmgren–Miner	rule.	This	is	a	very	popular	model	in	fatigue	life
predictions,	yet	no	comments	are	made	in	the	reliability	literature	regarding	the	cases	for
which	this	rule	is	applicable.	Consequently,	in	Chapter	7,	a	discussion	has	been	provided
about	the	conditions	that	must	be	in	place	so	that	the	empirical	Palmgren–Miner	rule	can	be
applied	for	predicting	fatigue	life.

A	new	chapter	(Chapter	18)	has	been	included	in	the	second	edition	which	shows	that	the
number	of	activities	in	a	risky	prospect	is	a	key	consideration	in	selecting	a	risky	prospect.	In
this	respect,	the	maximum	expected	profit	criterion,	widely	used	for	making	risk	decisions,	is
shown	to	be	fundamentally	flawed,	because	it	does	not	consider	the	impact	of	the	number	of
risk–reward	activities	in	the	risky	prospects.

The	second	edition	also	includes	a	new	chapter	on	optimal	allocation	of	resources	to	achieve	a
maximum	reduction	of	technical	risk	(Chapter	19).	This	is	an	important	problem	facing	almost
all	industrial	companies	and	organisations	in	their	risk	reduction	efforts,	and	the	author	felt	that
this	problem	needs	to	be	addressed.	Chapter	19	shows	that	the	classical	(0–1)	knapsack
dynamic	programming	approach	for	optimal	allocation	of	safety	resources	could	yield	highly
undesirable	solutions,	associated	with	significant	waste	of	resources	and	very	little
improvement	in	the	risk	reduction.	The	main	reason	for	this	problem	is	that	the	standard
knapsack	dynamic	programming	approach	has	been	devised	to	maximise	the	total	value
derived	from	items	filling	space	with	no	intrinsic	value.	The	risk	reduction	budget	however,
does	have	intrinsic	value	and	its	efficient	utilisation	is	just	as	important	as	the	maximisation	of
the	total	removed	risk.	Accordingly,	a	new	formulation	of	the	optimal	resource	allocation
model	has	been	proposed	where	the	weighted	sum	of	the	total	removed	risk	and	the	remaining
budget	is	maximised.

Traditional	approaches	invariably	require	investment	of	resources	to	improve	the	reliability
and	availability	of	complex	systems.	The	last	chapter	however,	introduces	a	method	for
maximising	the	system	reliability	and	availability	at	no	extra	cost,	based	solely	on
permutations	of	interchangeable	components.	The	concept	of	well-ordered	parallel–series
systems	has	been	introduced,	and	a	proof	has	been	provided	that	a	well-ordered	parallel–
series	system	possesses	the	highest	possible	reliability.



The	second	edition	also	includes	a	detailed	introduction	into	building	reliability	networks
(Chapter	1).	It	is	shown	that	the	conventional	reliability	block	diagrams	based	on	undirected
edges	cannot	adequately	represent	the	logic	of	operation	and	failure	of	some	engineering
systems.	To	represent	correctly	the	logic	of	operation	and	failure	of	these	engineering	systems,
it	is	necessary	to	include	a	combination	of	directed	and	undirected	edges,	multiple	terminal
nodes,	edges	referring	to	the	same	component	and	negative-state	edges.

In	Chapter	17,	the	conventional	reliability	analysis	has	been	challenged.	The	conventional
reliability	analysis	is	based	on	the	premise	that	increasing	the	reliability	of	a	system	will
always	decrease	the	losses	from	failures.	It	is	demonstrated	that	this	is	valid	only	if	all
component	failures	are	associated	with	similar	losses.	In	the	case	of	component	failures
associated	with	very	different	losses,	a	system	with	larger	reliability	is	not	necessarily
characterised	by	smaller	losses	from	failures.	This	counter-intuitive	result	shows	that	the	cost-
of-failure	reliability	analysis	requires	a	new	generation	of	reliability	tools,	different	from	the
conventional	tools.

Contrary	to	the	classical	approach	which	always	starts	the	reliability	improvement	with	the
component	with	the	smallest	reliability	in	the	system,	the	risk-based	approach	may	actually
start	with	the	component	with	the	largest	reliability	in	the	system	if	this	component	is
associated	with	big	risk	of	failure.	This	defines	the	principal	difference	between	the	classical
approach	to	reliability	analysis	and	setting	reliability	requirements	and	the	cost-of-failure-
based	approach.

Accordingly,	in	Chapter	17,	a	new	methodology	and	models	are	proposed	for	reliability
analysis	and	setting	reliability	requirements	based	on	the	cost	of	failure.	Models	and
algorithms	are	introduced	for	limiting	the	risk	of	failure	below	a	maximum	acceptable	level
and	for	guaranteeing	a	minimum	availability	level.	Setting	reliability	requirements	at	a	system
level	has	been	reduced	to	determining	the	intersection	of	the	hazard	rate	upper	bounds	which
deliver	the	separate	requirements.

The	assessment	of	the	upper	bound	of	the	variation	from	multiple	sources	has	been	based	upon
a	result	introduced	rigorously	in	Chapter	4	referred	to	as	‘upper	bound	variance	theorem’.	The
exact	upper	bound	of	the	variance	of	properties	from	multiple	sources	is	attained	from
sampling	not	more	than	two	sources.	Various	applications	of	the	theorem	are	presented.	It	is
shown	how	the	upper	bound	variance	theorem	can	be	used	for	developing	robust	six-sigma
products,	processes	and	operations.

Methods	related	to	assessing	the	consistency	of	a	conjectured	model	with	a	data	set	and
estimating	the	model	parameters	are	also	discussed.	In	this	respect,	a	little	known	method	for
producing	unbiased	and	precise	estimates	of	the	parameters	in	the	three-parameter	power	law
has	been	presented	in	Chapter	5.

All	algorithms	are	presented	in	pseudocode	which	can	be	easily	transformed	into	a
programming	code	in	any	programming	language.	A	whole	chapter	has	been	devoted	to	Monte
Carlo	simulation	techniques	and	algorithms	which	are	subsequently	used	for	solving	reliability
and	risk	analysis	problems.



The	second	edition	includes	two	new	chapters	(Chapters	9	and	10)	featuring	various
applications	of	the	Monte	Carlo	simulation:	revealing	reliability	during	shock	loading,	virtual
testing,	optimal	replacement	of	components,	evaluating	the	reliability	of	complex	systems	and
virtual	accelerated	life	testing.	Virtual	testing	is	an	important	application	of	the	Monte	Carlo
simulation	aimed	at	improving	the	reliability	of	common	assemblies.

The	proposed	Monte	Carlo	simulation	approach	to	evaluating	the	reliability	of	complex
systems	avoids	the	drawbacks	of	commonly	accepted	methods	based	on	cut	sets	or	path	sets.	A
method	is	also	proposed	for	virtual	accelerated	testing	of	complex	systems.	The	method
permits	extrapolating	the	life	of	a	complex	system	from	the	accelerated	lives	of	its	components.
This	makes	the	expensive	task	of	building	test	rigs	for	life	testing	of	complex	engineering
systems	unnecessary	and	reduces	drastically	the	amount	of	time	and	resources	needed	for
accelerated	life	testing	of	complex	systems.

The	second	edition	includes	also	a	diverse	set	of	exercises	and	worked	examples	illustrating
the	content	of	the	chapters.	The	intention	was	to	reveal	the	full	range	of	applications	of	the
discussed	models	and	make	the	book	useful	for	test	and	exam	preparation.

By	trying	to	find	the	balanced	mix	between	theory,	physics	and	application,	my	desire	was	to
make	the	book	useful	to	researchers,	consultants,	students	and	practising	engineers.	This	text
assumes	limited	familiarity	with	probability	and	statistics.	Most	of	the	required	probabilistic
concepts	have	been	summarised	in	Appendices	A	and	B.	Other	concepts	have	been	developed
in	the	text,	where	necessary.

In	conclusion,	I	thank	the	editing	and	production	staff	at	John	Wiley	&	Sons,	Ltd	for	their
excellent	work	and	particularly	the	project	editor	Mr	Clive	Lawson	for	his	help	and
cooperation.	I	also	thank	the	production	manager	Shiji	Sreejish	and	her	team	at	Spi	Global	for
the	excellent	copyediting	and	typesetting.	Thanks	also	go	to	many	colleagues	from	universities
and	the	industry	for	their	useful	suggestions	and	comments.

Finally,	I	acknowledge	the	immense	help	and	support	from	my	wife,	Prolet,	during	the
preparation	of	the	second	edition.

Michael	Todinov
Oxford	2015



1
Failure	Modes:	Building	Reliability	Networks

1.1	Failure	Modes
According	to	a	commonly	accepted	definition	(IEC,	1991),	reliability	is	‘the	ability	of	an
entity	to	perform	a	required	function	under	given	conditions	for	a	given	time	interval’.	A
system	or	component	is	said	to	have	a	failure	if	the	service	it	delivers	to	the	user	deviates
from	the	specified	one,	for	example,	if	the	system	stops	production.	System	failures	or
component	failures	usually	require	immediate	corrective	action	(e.g.	intervention	for	repair	or
replacement),	in	order	to	return	the	system	or	component	into	operating	condition.	Each	failure
is	associated	with	losses	due	to	the	cost	of	intervention,	the	cost	of	repair	and	the	cost	of	lost
production.

Failure	mode	is	the	way	a	system	or	a	component	fails	to	function	as	intended.	It	is	the	effect
by	which	failure	is	observed.	The	physical	processes	leading	to	a	particular	failure	mode	will
be	referred	to	as	failure	mechanism.	It	is	important	to	understand	that	the	same	failure	mode
(e.g.	fracture	of	a	component)	can	be	associated	with	different	failure	mechanisms.	Thus,	the
fracture	of	a	component	could	be	the	result	of	a	brittle	fracture	mechanism,	ductile	fracture
mechanism	or	fatigue	failure	mechanism	involving	nucleation	and	slow	propagation	of	a
fatigue	crack.	In	each	particular	case,	the	failure	mechanism	behind	the	failure	mode	‘fracture’
is	different.

Apart	from	fracture,	other	examples	of	failure	modes	are	‘short	circuit’,	‘open	circuit’,
‘overheating	of	an	electrical	or	mechanical	component’,	excessive	noise	and	vibration,	leakage
from	a	seal,	excessive	deformation,	excessive	wear,	misalignment	which	causes	a	loss	of
precision,	contamination,	etc.

Design	for	reliability	is	about	preventing	failure	modes	from	occurring	during	the	specified
lifetime	of	the	product.	Suppose	that	the	space	of	all	design	parameters	is	denoted	by	Ω	(see
Figure	1.1)	and	the	component	is	characterised	by	n	distinct	failure	modes.	Let	A1, A2, …, An
denote	the	domains	of	values	for	the	design	variables	which	prevent	the	first	failure	mode,	the
second	failure	mode	and	the	nth	failure	mode,	respectively.



Figure	1.1	Specifying	the	controllable	design	variables	to	be	from	the	intersection	domain	will
prevent	all	n	failure	modes

The	intersection	 	of	these	domains	will	prevent	all	failure	modes	from
occurring.	An	important	objective	of	the	design	for	reliability	is	to	specify	the	design	variables
so	that	they	all	belong	to	the	intersection	domain.	This	prevents	from	occurring	any	of	the
identified	failure	modes.

In	order	to	reduce	the	risk	of	failure	of	a	product	or	a	process,	it	is	important	to	recognise	their
failure	modes	as	early	as	possible	in	order	to	enable	execution	of	design	modifications	and
specific	actions	reducing	the	risk	of	failure.	The	benefits	from	identifying	and	eliminating
failure	modes	are	improved	reliability	of	the	product/process,	improved	safety,	reduced
warranty	claims	and	other	potential	losses	from	failures.	It	is	vital	that	identifying	the	failure
modes	and	the	required	design	modifications	for	their	elimination	is	made	during	the	early
stages	of	the	design.	Design	modifications	during	the	early	stages	of	the	design	are	much	less
costly	compared	to	design	modifications	executed	during	the	late	stages	of	the	design.

Systematic	procedures	for	identifying	possible	failure	modes	in	a	system	and	evaluating	their
impact	have	already	been	developed.	The	best	known	method	is	the	failure	mode	and	effects
analysis	abbreviated	as	FMEA,	developed	in	1963	by	NASA	(National	Aeronautics	and	Space
Administration)	for	the	Apollo	project.	The	method	has	subsequently	been	applied	in
aerospace	and	aeronautical	engineering,	nuclear	industry,	electronics	industry,	automotive
industry	and	software	development.	Many	literary	resources	concerning	this	method	are	related
to	the	American	Military	Standard	(MIL-STD-1629A,	1977).	The	fundamental	idea	behind
FMEA	is	to	discover	as	many	as	possible	potential	failure	modes,	evaluate	their	impact,



identify	failure	causes	and	outline	controls	and	actions	limiting	the	risks	associated	with	the
identified	failure	modes.	The	extension	of	FMEA	which	includes	criticality	analysis	is	known
as	failure	mode	and	effects	criticality	analysis	(FMECA):

The	inductive	approach	is	an	important	basic	technique	for	identifying	possible	failure
modes	at	a	system	level.	It	consists	of	considering	sequentially	the	failure	modes	of	all
parts	and	components	building	the	system	and	tracking	their	effect	on	the	system’s
performance.

The	deductive	approach	is	another	important	basic	technique	which	helps	to	identify	new
failure	modes.	It	consists	of	considering	an	already	identified	failure	mode	at	a	system
level	and	investigating	what	else	could	cause	this	failure	mode	or	contribute	to	it.

Other	techniques	for	identifying	potential	failure	are:

A	systematic	analysis	of	common	failure	modes	by	using	check	lists.	An	example	of	a
simple	check	list	which	helps	to	identify	a	number	of	potential	failure	modes	in	mechanical
equipment	is	the	following:

Are	components	sensitive	to	variations	of	load?

Are	components	resistant	against	variations	of	temperature?

Are	components	resistant	against	vibrations?

Are	components	resistant	to	corrosion?

Are	systems/assemblies	robust	against	variation	in	their	design	parameters?

Are	parts	sensitive	to	precise	alignment?

Are	parts	prone	to	misassembly?

Are	parts	resistant	to	contamination?

Are	components	resistant	against	stress	relaxation?

Using	past	failures	in	similar	cases.	For	many	industries,	a	big	weight	is	given	to	databases
of	the	type	‘lessons	learned’	which	help	to	avoid	failure	modes	causing	problems	in	the
past.	Lessons	learned	from	past	failures	have	been	useful	to	prevent	failure	modes	in	the
oil	and	gas	industry,	the	aerospace	industry	and	nuclear	industry.

Playing	devil’s	advocate.	Probing	what	could	possibly	go	wrong.	Asking	lots	of	‘what	if’
questions.

Root	cause	analysis.	Reveals	processes	and	conditions	leading	to	failures.	Physics	of
failure	analysis	is	a	very	important	method	for	revealing	the	genesis	of	failure	modes.	The
root	cause	analysis	often	uncovers	a	number	of	unsuspected	failure	modes.

Assumption	analysis.	Consists	of	challenging	and	testing	common	assumptions	about	the
followed	design	procedures,	manufacturing,	usage	of	the	product,	working	conditions	and
environment.



Analysis	of	the	constraints	of	the	systems.	The	analysis	of	the	technical	constraints	of	the
system,	the	work	conditions	and	the	environment	often	helps	to	discover	new	failure
modes.

Asking	not	only	questions	about	what	could	possibly	go	wrong	but	also	questions	how	to
make	the	system	malfunction.	This	is	a	very	useful	technique	for	discovering	rare	and
unexpected	failure	modes.

Using	creativity	methods	and	tools	for	identifying	failure	modes	in	new	products	and
processes	(e.g.	brainstorming,	TRIZ,	lateral	thinking,	etc.)

Before	discovering	failure	modes	is	attempted,	it	is	vital	to	understand	the	basic	processes	in
the	system	and	how	the	system	works.	In	this	respect,	building	a	functional	block	diagram	and
specifying	the	required	functions	of	the	system	are	very	important.

The	functional	diagram	shows	how	the	components	or	process	steps	are	interrelated.

For	example,	the	required	system	function	from	the	generic	lubrication	system	in	Figure	1.2	is
to	supply	constantly	clean	oil	at	a	specified	pressure,	temperature,	debit,	composition	and
viscosity	to	contacting	moving	parts.	This	function	is	required	in	order	to	(i)	reduce	wear,	(ii)
remove	heat	from	friction	zones	and	cool	the	contact	surfaces,	(iii)	clean	the	contact	surfaces
from	abrasion	particles	and	dirt	and	(iv)	protect	from	corrosion	the	lubricated	parts.	Not
fulfilling	any	of	the	required	components	of	the	system	function	constitutes	a	system	failure.



Figure	1.2	Functional	block	diagram	of	a	lubrication	system

The	system	function	is	guaranteed	by	using	components	with	specific	functions.	The	sump	is
used	for	the	storage	of	oil.	The	oil	filter	and	the	strainer	are	used	to	maintain	the	oil
cleanliness.	Maintaining	the	correct	oil	pressure	is	achieved	through	the	pressure	relieve
valve,	and	maintaining	the	correct	oil	temperature	is	achieved	through	the	oil	cooler.	The	oil
pump	is	used	for	maintaining	the	oil	debit,	and	the	oil	galleries	are	used	for	feeding	the	oil	to
the	contacting	moving	parts.

The	inductive	approach	for	discovering	failure	modes	at	a	system	level	starts	from	the	failure
modes	of	the	separate	components	and	tracks	their	impact	on	the	system’s	performance.	Thus,	a
clogged	oil	filter	leads	to	a	drop	of	the	oil	pressure	across	the	oil	filter	and	results	in	low
pressure	of	the	supplied	lubricating	oil.	A	low	pressure	of	the	supplied	lubricating	oil
constitutes	a	system	failure	because	supplying	oil	at	the	correct	pressure	is	a	required	system’s
function.



A	mechanical	damage	of	the	oil	filter	prevents	the	retention	of	suspended	particles	in	the	oil
and	leads	to	a	loss	of	the	required	system	function	‘supply	of	clean	oil	to	the	lubricated
surfaces’.

If	the	pressure	relief	valve	is	stuck	in	open	position,	the	oil	pressure	cannot	build	up	and	the
pressure	of	the	supplied	oil	will	be	low,	which	constitutes	a	system	failure.	If	the	pressure
relief	valve	is	stuck	in	closed	position,	the	oil	pressure	will	steadily	build	up,	and	this	will
lead	to	excessive	pressure	of	the	supplied	oil	which	also	constitutes	a	system	failure.	With	no
pressure	relief	mechanism,	the	high	oil	pressure	could	destroy	the	oil	filter	and	even	blow	out
the	oil	plugs.

A	cooler	lined	up	with	deposited	plaques	or	clogged	with	debris	is	characterised	by	a	reduced
heat	transfer	coefficient	and	leads	to	decreased	cooling	capability	and	a	‘high	temperature	of
the	supplied	oil’	which	constitutes	a	system	failure.	Failure	of	the	cooling	circuit	will	have	a
similar	effect.	Clogging	the	cooler	with	debris	will	simultaneously	lead	to	an	increased
temperature	and	low	pressure	of	the	supplied	oil	due	to	the	decreased	cooling	capability	and
the	pressure	drop	across	the	cooler.

Excessive	wear	of	the	oil	pump	leads	to	low	oil	pressure,	while	a	broken	oil	pump	leads	to	no
oil	pressure.	Failure	of	the	sump	leads	to	no	oil	pressure;	a	blocked	oil	strainer	will	lead	to	a
low	pressure	of	the	supplied	oil.

Blockage	of	the	oil	galleries,	badly	designed	oil	galleries	or	manufacturing	defects	lead	to	loss
of	the	required	system	function	‘delivering	oil	at	a	specified	debit	to	contacting	moving	parts’.

Oil	contamination	due	to	inappropriate	storage,	oil	degradation	caused	by	oxidation	or
depletion	of	additives	and	the	selection	of	inappropriate	oil	lead	to	a	loss	of	the	required
system	function	‘supplying	clean	oil	with	specified	composition	and	viscosity’.

The	deductive	approach	for	discovering	failure	modes	at	a	system	level	starts	with	asking
questions	what	else	could	possibly	cause	a	particular	failure	mode	at	a	system	level	or
contribute	to	it	and	helps	to	discover	contributing	failure	modes	at	a	component	level.

Asking,	for	example,	the	question	what	can	possibly	contribute	to	a	too	low	oil	pressure	helps
to	discover	the	important	failure	mode	‘too	large	clearances	between	lubricated	contact
surfaces	due	to	wear	out’.	It	also	helps	to	discover	the	failure	mode	‘leaks	from	seals	and
gaskets’	and	‘inappropriate	oil	with	high	viscosity	being	used’.

Asking	the	question	what	could	possibly	contribute	to	a	too	high	oil	pressure	leads	to	the	cause
‘incorrect	design	of	the	oil	galleries’.	Asking	the	question	what	could	possibly	contribute	to	a
too	high	oil	temperature	leads	to	the	cause	‘a	small	amount	of	circulating	oil	in	the	system’
which	helps	to	reveal	the	failure	modes	‘too	low	oil	level’	and	‘too	small	size	of	the	sump’.
Undersized	sumps	lead	to	a	high	oil	temperature	which	constitutes	a	failure	mode	at	the	system
level.

A	common	limitation	of	any	known	methodology	for	identifying	failure	modes	is	that	there	is	no
guarantee	that	all	failure	modes	have	been	identified.	A	severe	limitation	of	some	traditional
methodologies	(e.g.	FMEA)	is	that	they	treat	failure	modes	of	components	independently	and



cannot	discover	complex	failure	modes	at	system	level	which	appear	only	if	a	combination	of
several	failure	modes	at	a	component	level	is	present.

Another	severe	limitation	of	some	traditional	approaches	is	that	they	(e.g.	FMEA)	cannot
discover	failure	modes	dependent	on	the	timing	or	clustering	of	conditions	and	causes.	If	a
number	of	production	units	demand	independently	specified	quantity	of	particular	resource
(e.g.	water	steam)	for	a	specified	time,	the	failure	mode	‘insufficient	resource	supply’	depends
exclusively	on	the	clustering	of	random	demands	during	the	time	interval	and	the	capacity	of
the	generator	centrally	supplying	the	resource.

Exercise

Discover	the	failure	modes	of	the	clevis	joint	in	the	figure.	The	clevis	is	subjected	to	a
constant	axial	tensile	loading	force	P	(Figure	1.3).

Solution
Shear	failure	modes:

Shear	failure	of	the	pin	5

Shear	failure	of	the	eye	2

Shear	failure	of	the	clevis	4

Compressive	failure	modes:

Compressive	failure	of	the	pin	5	due	to	excessive	bearing	pressure	of	the	eye	2

Compressive	failure	of	the	pin	5	due	to	excessive	bearing	pressure	of	the	clevis	4

Compressive	failure	of	the	clevis	4	due	to	excessive	bearing	pressure	of	the	pin	5

Compressive	failure	of	the	eye	2	due	to	excessive	bearing	pressure	of	the	pin	5

Tensile	failure	modes:

Tensile	failure	of	the	blade	in	zone	1,	away	from	the	eye	2

Tensile	failure	in	zone	3,	away	from	the	clevis	4

Tensile	failure	of	the	blade	in	the	area	of	the	eye	2

Tensile	failure	in	the	area	of	the	clevis	4

Other	failure	modes:

Bending	of	the	pin	5

Failure	of	the	clip	6



Figure	1.3	A	clevis	joint

Thirteen	failure	modes	have	been	listed	for	this	simple	assembly.	The	analysis	in	Samuel	and
Weir	(1999),	for	example,	reported	only	eight	failure	modes.	Preventing	all	13	failure	modes
means	specifying	the	controllable	design	variables	to	be	from	the	intersection	of	the	domains
which	prevent	each	listed	failure	mode	(Figure	1.1)

1.2	Series	and	Parallel	Arrangement	of	the	Components
in	a	Reliability	Network
The	operation	logic	of	engineering	systems	can	be	modelled	by	reliability	networks,	which	in
turn	can	be	modelled	conveniently	by	graphs.	The	nodes	are	notional	(perfectly	reliable),
whereas	the	edges	correspond	to	the	components	and	are	unreliable.

The	common	system	in	Figure	1.4a	consists	of	a	power	block	(PB),	control	module	(CM)	and
an	electromechanical	device	(EMD).



Figure	1.4	(a)	Reliability	network	of	a	common	system	composed	of	a	power	block	(PB),	a
control	module	(CM)	and	an	electromechanical	device	(EMD).	(b)	Reliability	network	of	a
system	composed	of	two	power	generators	E1	and	E2;	the	system	is	working	if	at	least	one	of
the	power	generators	is	working.	(c)	Reliability	network	of	a	simple	production	system
composed	of	power	block	(PB),	two	control	modules	(CM1	and	CM2)	and	an
electromechanical	device	(EMD)

Because	the	system	fails	whenever	any	of	the	components	fails,	the	components	are	said	to	be
logically	arranged	in	series.	The	next	system	in	Figure	1.4b	is	composed	of	two	power
generators	E1	and	E2	working	simultaneously.	Because	the	system	is	in	working	state	if	at	least
one	of	the	generators	is	working,	the	generators	are	said	to	be	logically	arranged	in	parallel.

The	simple	system	in	Figure	1.4c	fails	if	the	power	block	(PB)	fails	or	if	the	electromechanical
device	(EMD)	fails	or	if	both	control	modules	CM1	and	CM2	fail.

However,	failure	of	control	module	CM1	only	does	not	cause	a	system	failure.	The	redundant
control	module	CM2	will	still	maintain	control	over	the	electromechanical	device	and	the
system	will	be	operational.

The	system	is	operational	if	and	only	if	in	its	reliability	network	a	path	through	working
components	exists	from	the	start	node	s	to	the	terminal	node	t;	(Figure	1.4).

Reliability	networks	with	a	single	start	node	(s)	and	a	single	end	node	(t)	can	also	be
interpreted	as	single-source–single-sink	flow	networks	with	edges	with	integer	capacity.	The
system	is	in	operation	if	and	only	if,	on	demand,	a	unit	flow	can	be	sent	from	the	source	s	to	the
sink	t	(Figure	1.4).	In	this	sense,	reliability	networks	with	a	single	start	node	and	a	single	end
node	can	be	analysed	by	the	algorithms	developed	for	determining	the	reliability	of	the
throughput	flow	of	flow	networks	(Todinov,	2013a).

1.3	Building	Reliability	Networks:	Difference	between	a
Physical	and	Logical	Arrangement
Commonly,	the	reliability	networks	do	not	match	the	functional	block	diagram	of	the	modelled
system.	This	is	why	an	emphasis	will	be	made	on	building	reliability	networks.

The	fact	that	the	components	in	a	particular	system	are	logically	arranged	in	series	does	not
necessarily	mean	that	they	are	logically	arranged	in	series.	Although	the	physical	arrangement
of	the	seals	in	Figure	1.5a	is	in	series,	their	logical	arrangement	with	respect	to	the	failure



mode	‘leakage	in	the	environment’	is	in	parallel	(Figure	1.5b).	Indeed,	leakage	in	the
environment	is	present	only	if	both	seals	fail.

Figure	1.5	Seals	that	are	(a)	physically	arranged	in	series	but	(b)	logically	arranged	in	parallel

Conversely,	components	may	be	physically	arranged	in	parallel,	with	a	logical	arrangement	in
series.	This	is	illustrated	by	the	seals	in	Figure	1.6.	Although	the	physical	arrangement	of	the
seals	is	in	parallel,	their	logical	arrangement	with	respect	to	the	failure	mode	leakage	in	the
environment	is	in	series.	Leakage	in	the	environment	is	present	if	at	least	one	seal	stops
working	(sealing).

Figure	1.6	The	seals	are	(a)	physically	arranged	in	parallel	but	(b)	logically	in	series

Reliability	networks	are	built	by	using	the	top-down	approach.	The	system	is	divided	into
several	large	blocks,	logically	arranged	in	a	particular	manner.	Next,	each	block	is	further
detailed	into	several	smaller	blocks.	These	blocks	are	in	turn	detailed	and	so	on,	until	the
desired	level	of	indenture	is	achieved	for	all	blocks.



This	approach	will	be	illustrated	by	the	system	in	Figure	1.7,	which	represents	toxic	liquid
travelling	along	two	parallel	pipe	sections.	The	O-ring	seals	‘O1’,	and	‘O2’	are	sealing	the
flanges;	the	pairs	of	seals	(A1,	B1)	and	(A2,	B2)	are	sealing	the	sleeves.

Figure	1.7	A	functional	diagram	of	a	system	of	seals	isolating	toxic	liquid	from	the
environment

The	first	step	in	building	the	reliability	network	of	the	system	in	Figure	1.7	is	to	note	that
despite	that	physically,	the	two	groups	of	seals	(O1,	A1,	B1)	and	(O2,	A2,	B2)	are	arranged	in
parallel,	they	are	arranged	logically	in	series	with	respect	to	the	function	‘preventing	a	leak	to
the	environment’	because	both	of	the	two	groups	of	seals	must	prevent	the	toxic	liquid	from
escaping	in	the	environment	(Figure	1.8a).	Failure	to	isolate	the	toxic	liquid	is	considered	at
the	highest	indenture	level	–	the	level	of	the	two	groups	of	seals.



Figure	1.8	(a)	First	stage	and	(b)	second	stage	of	detailing	the	reliability	network	of	the	system
in	Figure	1.7

Within	each	of	the	two	groups	of	seals,	the	O-ring	seal	is	logically	arranged	in	parallel	with
the	pair	of	seals	(A,	B)	on	the	sleeves	(Figure	1.8b).	Indeed,	it	is	sufficient	that	the	O-ring	seal
‘O1’	works	or	the	pair	of	seals	(A1,	B1)	works	to	guarantee	that	the	first	group	of	seals	(O1,	A1,
B1)	will	prevent	a	release	of	toxic	liquid	in	the	environment.

Finally,	within	the	pair	of	seals	(A1,	B1),	both	seals	‘A1’	and	‘B1’	must	work	in	order	to
guarantee	that	the	pair	of	seals	(A1,	B1)	works.	The	seals	A1	and	B1	are	therefore	logically
arranged	in	series.	This	reasoning	can	be	extended	for	the	second	group	of	seals,	and	the
reliability	network	of	the	system	of	seals	is	as	shown	in	Figure	1.9.



Figure	1.9	A	reliability	network	for	the	system	of	seals	in	Figure	1.7

The	next	example	features	two	valves	on	a	pipeline,	physically	arranged	in	series	(Figure
1.10).	Both	valves	are	initially	open.	With	respect	to	stopping	the	production	fluid	in	the
pipeline,	on	demand,	the	valves	are	arranged	in	parallel	(Figure	1.10b).	Now	suppose	that
both	valves	are	initially	closed.	With	respect	to	enabling	the	flow	through	the	pipeline,	on
demand,	the	valves	are	logically	arranged	in	series	(Figure	1.10c).

Figure	1.10	Physical	and	logical	arrangement	of	(a)	two	valves	on	a	pipeline	with	respect	to
the	functions.	(b)	Stopping	the	production	fluid	and	(c)	‘enabling	the	flow	through	the	pipeline’

Indeed,	to	stop	the	flow	through	the	pipeline,	at	least	one	of	the	valves	must	work	on	demand;
therefore,	the	valves	are	logically	arranged	in	parallel	with	respect	to	the	function	‘stopping
the	production	fluid’.	On	the	other	hand,	if	both	valves	are	initially	closed,	to	enable	the	flow
through	the	pipeline,	both	valves	must	open	on	demand;	hence,	in	this	case,	the	logical
arrangement	of	the	valves	is	in	series	(Figure	1.10c).



Example

Figure	1.11	features	the	functional	diagram	of	a	system	of	pipes	with	six	valves,	working
independently	from	one	another,	all	of	which	are	initially	open.	Each	valve	is
characterised	by	a	certain	probability	that	if	a	command	for	closure	is	sent,	the	valve	will
close	and	stop	the	fluid	passing	through	its	section.	Construct	the	reliability	network	of
this	system	with	respect	to	the	function	‘stopping	the	flow	through	the	pipeline’.

Solution

The	reliability	network	related	to	the	function	stopping	the	flow	in	the	pipeline	is	given	in
Figure	1.11.	The	blocks	of	valves	(V1,	V2,	V3)	and	the	block	of	valves	(V4,	V5,	V6)	are
logically	arranged	in	parallel	because	the	flow	through	the	pipeline	is	stopped	if	either
block	stops	the	flow.	The	block	of	valves	(V1,	V2,	V3)	stops	the	flow	if	both	groups	of
valves	(V3)	and	(V1,	V2)	stop	the	flow	in	their	corresponding	sections.	Therefore,	the
groups	(V1,	V2)	and	V3	are	logically	arranged	in	series.	The	group	of	valves	(V1,	V2)
stops	the	flow	if	either	valve	V1	or	V2	stops	the	flow	in	the	common	section.	Therefore,
the	valves	V1	and	V2	are	logically	arranged	in	parallel.

Similar	reasoning	applies	to	the	block	of	valves	V4,	V5	and	V6.	The	reliability	network	of
the	system	in	Figure	1.11	is	given	in	Figure	1.12.

The	operational	logic	of	the	system	has	been	modelled	by	a	set	of	perfectly	reliable	nodes
(the	filled	circles	in	Figure	1.12)	and	unreliable	edges	connected	to	the	nodes.

Interestingly,	for	the	function	stopping	the	fluid	in	the	pipeline,	valves	or	blocks	of	valves
arranged	in	series	in	the	functional	diagram	are	arranged	in	parallel	in	the	reliability
network.	Accordingly,	valves	or	blocks	arranged	in	parallel	in	the	functional	diagram	are
arranged	in	series	in	the	reliability	network.

There	are	also	cases	where	the	physical	arrangement	coincides	with	the	logical
arrangement.	Consider	again	the	system	of	valves	in	Figure	1.11,	with	all	valves	initially
closed.	With	respect	to	the	function	‘letting	flow	(any	amount	of	flow)	through	the
pipeline’	(the	valves	are	initially	closed),	the	reliability	network	in	Figure	1.13	mirrors
the	functional	diagram	in	Figure	1.11.



Figure	1.11	A	functional	diagram	of	a	system	of	valves

Figure	1.12	The	reliability	network	of	the	system	in	Figure	1.9



Figure	1.13	The	reliability	network	of	the	system	in	Figure	1.9,	with	respect	to	the	function
‘letting	flow	through	the	pipeline’

1.4	Complex	Reliability	Networks	Which	Cannot	Be
Presented	as	a	Combination	of	Series	and	Parallel
Arrangements
Many	engineering	systems	have	reliability	networks	that	cannot	be	described	in	terms	of
combinations	of	series–parallel	arrangements.	The	safety-critical	system	in	Figure	1.14a	is
such	a	system.	The	system	compares	signals	from	sensors	reading	the	value	of	a	parameter
(pressure,	concentration,	temperature,	water	level,	etc.)	in	two	different	zones.	If	the	difference
in	the	parameter	levels	characterising	the	two	zones	exceeds	a	particular	critical	value,	a
signal	is	issued	by	a	special	device	(comparator).



Figure	1.14	(a)	A	safety-critical	system	based	on	comparing	measured	quantities	in	two	zones
and	(b)	its	reliability	network

Such	generic	comparators	have	a	number	of	applications.	If,	for	example,	the	measurements
indicate	a	critical	concentration	gradient	between	the	two	zones,	the	signal	may	operate	a
device	which	eliminates	the	gradient.	In	the	case	of	a	critical	differential	pressure,	for
example,	the	signal	may	be	needed	to	open	a	valve	which	will	equalise	the	pressure.	In	the
case	of	a	critical	temperature	gradient	measured	by	thermocouples	in	two	zones	of	the	same
component,	the	signal	may	be	needed	to	interrupt	heating/cooling	in	order	to	limit	the
magnitude	of	the	thermal	stresses	induced	by	the	thermal	gradient.	In	the	case	of	a	critical
potential	difference	measured	in	two	zones	of	a	circuit,	the	signal	may	activate	a	switch
protecting	the	circuit.

The	complex	safety-critical	system	in	Figure	1.14a	compares	the	temperature	(pressure)	in	two
different	zones	(A	and	B)	measured	by	the	sensors	(m1,	m2,	m3	and	m4).	If	the	temperature
(pressure)	difference	is	greater	than	a	critical	value,	the	difference	is	detected	by	one	of	the
comparators	(control	devices)	CD1	or	CD2,	and	a	signal	is	sent	which	activates	an	alarm.	The
two	comparators	and	the	two	pairs	of	sensors	have	been	included	to	increase	the	robustness	of
the	safety-critical	system.	For	the	same	purpose,	the	signal	cables	c1	and	c2	have	been
included,	whose	purpose	is	to	increase	the	connectivity	between	the	sensors	and	the
comparators.	If,	for	example,	sensors	m1,	m2	and	comparator	CD2	have	failed,	the	system	will
still	be	operational.	Because	of	the	existence	of	signal	cables,	the	measured	parameter	levels
by	the	remaining	operational	sensors	m3	and	m4	will	be	fed	to	comparator	CD1	through	the
signal	cables	c1	and	c2	(Figure	1.14a).	If	excessive	difference	in	the	parameter	levels
characterising	the	two	zones	exists,	the	comparator	CD1	will	activate	the	alarm.	If	sensors	m1



and	m4	fail,	comparator	CD1	fails	and	signal	cable	c1	fails,	the	system	is	still	operational
because	the	excessive	difference	in	the	measured	levels	will	be	detected	by	sensors	m3	and	m2
and	through	the	working	signal	cable	c2	will	be	fed	to	comparator	CD2.

The	system	will	be	operational	whenever	an	s–t	path	through	working	components	exists	in	the
reliability	network	in	Figure	1.14b.	The	reliability	network	in	Figure	1.14b	cannot	be	reduced
to	combinations	of	series,	parallel	or	series–parallel	arrangements.	Telecommunication
systems	and	electronic	control	systems	may	have	very	complex	reliability	networks	which
cannot	be	represented	with	series–parallel	arrangements.

1.5	Drawbacks	of	the	Traditional	Representation	of	the
Reliability	Block	Diagrams
1.5.1	Reliability	Networks	Which	Require	More	Than	a	Single
Terminal	Node
Traditionally,	reliability	networks	have	been	presented	as	networks	with	a	single	start	node	s
and	a	single	terminal	node	t	(Andrews	and	Moss,	2002;	Billinton	and	Allan,	1992;	Blischke
and	Murthy,	2000;	Ebeling,	1997;	Hoyland	and	Rausand,	1994;	Ramakumar,	1993).	This
traditional	representation,	however,	is	insufficient	to	model	the	failure	logic	of	many
engineering	systems.	There	are	systems	whose	logic	of	failure	description	requires	more	than	a
single	terminal	node.	Consider,	for	example,	the	safety-critical	system	in	Figure	1.15	that
consists	of	a	power	supply	(PS),	power	cable	(PC),	block	of	four	switches	(S1,	S2,	S3	and	S4)
and	four	electric	motors	(M1,	M2,	M3	and	M4).



Figure	1.15	A	functional	diagram	of	a	power	supply	to	four	electric	motors	(a)	without
redundancy	and	(b)	with	redundancy

In	the	safety-critical	system,	all	electric	motors	must	be	operational	on	demand.	Typical
examples	are	electric	motors	driving	fans	or	pumps	cooling	critical	devices,	pumps	dispensing
water	in	case	of	fire,	life	support	systems,	automatic	shutdown	systems,	control	systems,	etc.
The	reliability	on	demand	of	the	system	in	Figure	1.15a	can	be	improved	significantly	by
making	the	inexpensive	low-reliability	components	redundant	(the	power	cable	and	the
switches)	(Figure	1.15b).	For	the	system	in	Figure	1.15b,	the	electric	motor	M1,	for	example,
will	still	operate	if	the	power	cable	PC	or	the	switch	S1	fails	because	power	supply	will	be

maintained	through	the	alternative	power	cable	PC′	and	the	switch	 .	The	same	applies	for	the
rest	of	the	electric	motors.	The	power	supply	to	an	electric	motor	will	fail	only	if	both	power
supply	channels	fail.	The	reliability	network	of	the	system	in	Figure	1.15b	is	given	in	Figure
1.16.	It	has	one	start	node	s	and	four	terminal	nodes	t1,	t2,	t3	and	t4.	The	system	is	in	working
state	if	a	path	through	working	components	exists	between	the	start	node	s	and	each	of	the
terminal	nodes	t1,	t2,	t3	and	t4.



Figure	1.16	A	reliability	network	of	the	safety-critical	system	from	Figure	1.15b

The	reliability	network	in	Figure	1.16	is	also	an	example	of	a	system	which	cannot	be
presented	as	a	series–parallel	system.	It	is	a	system	with	complex	topology.

1.5.2	Reliability	Networks	Which	Require	the	Use	of	Undirected
Edges	Only,	Directed	Edges	Only	or	a	Mixture	of	Undirected	and
Directed	Edges



Commonly,	in	traditional	reliability	networks,	only	undirected	edges	are	used	(Andrews	and
Moss,	2002;	Billinton	and	Allan,	1992;	Blischke	and	Murthy,	2000;	Ebeling,	1997;	Hoyland
and	Rausand,	1994;	Ramakumar,	1993).	This	traditional	representation	is	often	insufficient	to
model	correctly	the	logic	of	system’s	operation	and	failure.	Often,	introducing	directed	edges
is	necessary	to	emphasise	that	the	edge	can	be	traversed	in	one	direction	but	not	in	the	opposite
direction.	Consider,	for	example,	the	electronic	control	system	in	Figure	1.17a,	which	consists
of	a	control	module	CM,	electronic	control	switches	K1–K4	and	four	controlled	devices	S1–S4.

Figure	1.17	An	example	of	a	control	system	including	control	modules,	switches	and
controlled	devices:	(a)	a	single-control	system	and	(b)	a	dual-control	system

Assume	for	the	sake	of	simplicity	that	the	connecting	cables	are	perfectly	reliable.	As	a	result,
the	reliability	of	the	system	in	Figure	1.17	is	determined	by	the	reliability	of	the	control
module,	the	electronic	control	switches	and	the	controlled	devices.	Suppose	that	a	signal	sent
by	the	control	module	must	reach	all	four	controlled	devices	S1–S4.	The	reliability	of	the
system	is	defined	as	‘the	probability	that	a	control	signal	from	the	control	module	CM	will
reach	every	single	controlled	device	and	all	controlled	devices	will	be	in	working	state’.

Similar	to	the	power	supply	system	from	Figure	1.15,	the	reliability	of	the	control	system	in
Figure	1.17a	can	be	improved	significantly	by	making	some	of	the	components	redundant	(e.g.
the	control	module	and	the	electronic	control	switches)	and	by	providing	dual	control	channels
to	each	controlled	device.	As	a	result,	from	the	system	in	Figure	1.17a,	the	system	in	Figure
1.17b	is	obtained.	For	the	system	in	Figure	1.17b,	for	example,	the	controlled	device	S1	will
still	receive	the	controlling	signal	if	the	control	module	CM1	or	the	switch	K1	fails.	The
control	signal	will	be	received	through	the	alternative	control	module	CM2	and	the	switch	K5.
The	same	applies	to	the	rest	of	the	controlled	devices.	The	control	signal	will	not	be	received
only	if	both	control	channels	fail.



Despite	the	seeming	similarity	between	the	reliability	network	in	Figure	1.18	of	the	control
system	and	the	reliability	network	in	Figure	1.16	of	the	power	supply	system,	there	are
essential	differences.	The	power	supply	system	in	Figure	1.15b,	for	example,	will	be	fully
operational	after	the	failure	of	power	cable	PC′	and	switches	S2,	S3	and	S4	(see	Figure	1.19a).
In	contrast,	after	the	failure	of	control	module	CM2	and	switches	K2,	K3	and	K4,	only	device	S1
will	receive	the	control	signal.	This	is	because	unlike	the	current	in	the	power	supply	system,
the	control	signal	transmitted	to	device	S1	cannot	reach	the	other	controlled	devices	by
travelling	backwards,	through	the	electronic	control	switch	K5.	This	backward	path	has	been
forbidden	by	introducing	directed	edges	in	the	reliability	network.



Figure	1.18	A	reliability	network	of	the	control	system	from	Figure	1.17b



Figure	1.19	An	illustration	of	the	difference	between	the	reliability	networks	in	(a)	Figures
1.16	and	(b)	1.18

A	unique	sequence	of	edges	between	the	start	node	s	of	the	reliability	network	and	any	of	the
terminal	nodes	will	be	referred	to	as	a	path.	Edges	which	point	into	the	direction	of	traversing
the	path	will	be	referred	to	as	forward	edges,	edges	without	direction	will	be	referred	to	as
undirected	edges,	while	edges	pointing	in	the	opposite	direction	of	the	path	traversal	will	be
referred	to	as	backward	edges.	A	valid	path	in	a	reliability	network	connecting	the	start	node
with	any	of	the	terminal	nodes	can	have	forward	edges	or	undirected	edges	or	both,	but	it
cannot	have	backward	edges.

Thus,	in	Figure	1.20a,	edge	(i,	j)	is	a	forward	edge,	while	edge	(j,	k)	is	a	backward	edge,	and
no	transition	can	be	made	from	node	j	to	node	k.	The	sequence	of	edges	between	the	start	node
s	and	the	terminal	node	t	of	Figure	1.20a	is	not	a	valid	connecting	path.	The	sequence	of	edges
in	Figure	1.20b,	however,	is	a	valid	s–t	path	because	it	consists	of	forward	and	undirected
edges	only.



Figure	1.20	The	sequence	of	edges	in	(a)	does	not	constitute	a	valid	connecting	path	because
of	the	backward	edge	(j,	k).	The	sequence	of	edges	in	(b)	constitutes	a	valid	connecting	path

The	next	example	features	a	system	where	both	directed	and	undirected	edges	are	necessary
for	describing	correctly	the	logic	of	system	operation.	The	safety-critical	system	in	Figure	1.21
features	two	power	generators	G1	and	G2	delivering	current	to	two	electric	motors	M1	and	M2.
The	system	is	in	operation	when	at	least	a	single	electric	motor	is	in	operation.	The	identical,
independently	working	power	generators	G1	and	G2	are	controlled	by	four	identical	electronic
control	units	ECU1,	ECU2,	ECU3	and	ECU4	powered	by	two	power	units	PU1	and	PU2	(Figure
1.21).	The	redundant	electronic	control	units	guarantee	that	the	control	over	the	generators	will
be	maintained	even	if	some	of	the	control	units	have	failed.



Figure	1.21	Two	power	generators	G1	and	G2	powering	two	electric	motors	M1	and	M2.	The
power	generators	are	controlled	by	four	electronic	control	units	ECU1–ECU4,	powered	by	the
units	PU1	and	PU2

To	further	reduce	the	risk	of	system	failure,	a	bridge	(power	cable)	c	has	also	been	included.
The	bridging	power	cable	‘c’	guarantees	the	system’s	operation	in	the	case	where	both	the
electric	motor	M1	and	the	power	generator	G2	are	in	failed	state	at	the	end	of	a	specified	time
interval	or	in	the	case	where	both	the	electric	motor	M2	and	the	power	generator	M1	are	in
failed	state.

The	reliability	network	of	the	system	from	Figure	1.21	is	given	in	Figure	1.22.



Figure	1.22	Reliability	network	of	the	system	in	Figure	1.21.	Both	directed	and	undirected
edges	are	necessary	to	correctly	represent	the	logic	of	system’s	operation

As	can	be	verified,	both	directed	and	undirected	edges	are	necessary	to	represent	correctly	the
logic	of	system’s	operation.	The	electronic	control	units,	for	example,	cannot	be	represented	by
undirected	edges.	Otherwise,	this	would	mean	that	a	control	signal	will	exist	for	generator	G1
if	the	power	unit	PU1	and	ECU4	are	in	failed	state	and	the	power	unit	PU2	is	in	working	state
and	the	electronic	control	units	ECU1,	ECU2	and	ECU3	are	in	working	state.	This	is	not
possible	because	the	control	signal	cannot	travel	from	ECU3	to	G1	through	ECU2	and	ECU1.
The	directed	edges	are	necessary	to	forbid	such	redirection.	On	the	other	hand,	the	bridge	‘c’
in	Figure	1.22	cannot	be	represented	by	a	directed	edge,	because	the	current	must	travel	in	both
directions	of	the	bridge,	from	G1	to	M2	and	from	G2	to	M1.	The	edge	representing	the	bridge
‘c’	must	be	undirected	edge.

1.5.3	Reliability	Networks	Which	Require	Different	Edges	Referring
to	the	Same	Component
In	the	traditional	reliability	block	diagrams,	different	edges	always	correspond	to	different
components.	The	next	example,	however,	reveals	that	sometimes,	the	description	of	the	logic	of
operation	and	failure,	even	for	simple	mechanical	systems,	cannot	avoid	using	different	edges
referring	to	the	same	component.

The	mechanical	system	in	Figure	1.23	consists	of	a	plate	connected	through	the	pin	joints	a2,
b2,	c2	and	d2	and	the	struts	A,	B,	C	and	D	to	the	supports	a1,	b1,	c1	and	d1.	For	a	strut	to	support
the	plate,	it	is	necessary	that	the	strut	and	its	pin	joints	to	be	all	in	working	condition.
Therefore,	the	strut	and	its	pin	joints	are	logically	arranged	in	series.	For	the	sake	of
simplicity,	the	strut	and	both	of	its	pin	joints	are	aggregated	and	treated	as	a	single	component
called	‘strut	assembly’.



Figure	1.23	A	simple	mechanical	structure

The	structure	in	Figure	1.23	is	stable	if	all	four	strut	assemblies	are	in	working	state,	if	any
three	of	the	strut	assemblies	are	in	working	state	or	if	strut	assemblies	A	and	B	are	in	working
state.	In	the	rest	of	the	cases,	the	structure	collapses.	For	example,	if	only	strut	assemblies	C
and	D	are	in	working	state,	the	structure	collapses.	The	structure	also	collapses	if	only	strut
assemblies	C	and	B	are	in	working	state	or	if	only	strut	assemblies	D	and	A	are	operational.

The	reliability	block	diagram	of	the	mechanical	structure	is	shown	in	Figure	1.24.	As	can	be
seen,	even	for	this	simple	mechanical	system,	to	represent	correctly	the	logic	of	reliable
operation,	it	is	necessary	that	different	edges	refer	to	the	same	components	A	and	B	in	the
reliability	network.



Figure	1.24	The	reliability	network	of	the	structure	in	Figure	1.23

It	must	be	pointed	out	that	in	the	reliability	network	from	Figure	1.24,	the	edges	marked	by	A
and	B	cannot	be	treated	as	statistically	independent	components	because	whenever	an	edge
labelled	A	is	in	a	failed/working	state,	the	other	edge	also	labelled	A	is	in	a	failed/working
state.	The	same	applies	to	the	edges	labelled	B.	Consequently,	the	reliability	of	this	system
cannot	be	determined	through	the	well-known	analytical	relationships	working	for	systems
with	parallel–series	arrangement.	The	reliability	of	such	systems	however	can	be	determined
easily	by	using	the	Monte	Carlo	simulation	technique	described	in	Chapter	10.

1.5.4	Reliability	Networks	Which	Require	Negative-State
Components
Traditional	reliability	block	diagrams	do	not	deal	with	negative-state	components	–
components	which	provide	connection	between	their	nodes	in	the	reliability	network	only	if
they	are	in	a	failed	state.	An	example	of	a	reliability	network	which	requires	a	negative-state
component	can	be	given	with	the	system	for	transportation	of	toxic	gas	in	Figure	1.25	through
parallel	pipes	with	flanges.	The	system	includes	a	pump	(P)	control	module	(CM)	toxic	gas
sensors	(TS1	and	TS2)	and	seals	(O1,	O2).	To	protect	personnel	in	the	case	of	toxic	gas	release
from	the	seals	O1	and	O2	of	the	flanges,	an	enclosure	sleeve	ES	has	been	added,	sealed	by	the
seals	K1,	K2	and	K3.	If	a	toxic	gas	escapes	in	the	enclosure	sleeve	ES	from	the	flange	seals	O1
or	O2,	it	is	expected	that	sensor	TS1	or	sensor	TS2	will	detect	the	toxic	gas	release	and	through
the	power	cut	off	control	module	CM	will	cut	the	power	to	the	pump	(P)	and	the	supply	of
toxic	gas	will	stop.	Stopping	the	toxic	gas	supply	by	cutting	the	power	to	the	pump	prevents	the
formation	of	dangerous	concentration	of	toxic	gas	in	the	environment.	Only	one	working	sensor
is	needed	for	the	activation	of	the	control	module.	If	the	active	protection	system	based	on
sensors	fails	to	operate,	the	only	remaining	barrier	to	the	formation	of	a	dangerous
concentration	of	toxic	gas	and	the	environment	are	the	seals	K1,	K2	and	K3.



Figure	1.25	A	system	supplying	toxic	fluid

It	is	assumed	that	the	enclosure	sleeve	ES	is	a	perfectly	reliable	component.

In	order	to	isolate	the	toxic	fluid	from	the	environment,	either	both	seals	O1	and	O2	work	(seal)
or	the	toxic	fluid	release	is	sensed	and	the	power	to	the	pump	is	cut	off	or	all	three	seals	K1,
K2	and	K3	work.	The	power	to	the	pump	is	cut	off	if	at	least	one	of	the	sensors	TS1	or	TS2
detects	the	toxic	fluid	release	and	the	control	module	works.	The	state	of	the	pump	does	not
affect	the	reliability	network	of	the	switching	off	branch,	and	this	is	why	the	pump	is	not
present	there.	The	state	of	the	pump	however	does	affect	the	reliability	network	with	respect	to
the	function	“prevention	of	a	toxic	fluid	release	in	the	environment”.	If	the	pump	is	in	a	failed
state,	the	environment	is	automatically	protected	because	toxic	fluid	is	no	longer	supplied.	The
pump	is	therefore	logically	arranged	in	parallel,	as	a	negative-state	component	which	provides
connection	between	the	start	node	s	and	the	terminal	node	t	only	when	the	pump	is	not	working



(Figure	1.26).

Figure	1.26	Reliability	network	of	the	system	from	Figure	1.25

Consider	now	a	modification	of	the	system	in	Figure	1.25.	In	the	case	of	a	leak	of	toxic	gas
from	the	flanges	and	from	the	seals	K1,	K2	or	K3,	the	role	of	the	sensors	S1,	S2	and	S3	is	to
detect	the	toxic	gas	release	and	to	trigger	the	control	module	CM	into	activating	the	alarm	A.
The	sensors	can	detect	a	toxic	gas	release	only	locally,	in	the	immediate	vicinity	of	the	seal
they	are	attached	to	(Figure	1.27).



Figure	1.27	A	system	supplying	toxic	gas	with	three	sensors	and	an	alarm

In	order	to	isolate	the	toxic	gas	from	the	environment,	either	both	seals	O1	and	O2	work	(seal)
or	all	three	seals	K1,	K2	and	K3	work.	Therefore,	the	block	of	O-seals	and	the	block	of	K-seals
are	logically	arranged	in	parallel.	In	the	case	of	failure	of	any	of	the	K-seals,	the	alarm	can	be
activated	if	the	control	module	CM,	the	alarm	and	the	corresponding	sensor	are	in	working
state.	The	correct	logical	arrangement	of	the	components	is	given	in	Figure	1.28.	The
components	 	are	negative-state	components.	They	provide	connection	between
their	corresponding	nodes	only	when	component	K1,	K2	or	K3	is	in	failed	state,	respectively.
When	component	K1,	K2	or	K3	is	in	working	state,	the	negative-state	component	provides	no
connection	between	its	nodes.	Because	of	the	statistical	dependence	of	a	component	and	its
negative-state	counterpart,	Monte	Carlo	simulation	methods	are	needed	for	analyzing
reliability	networks	where	components	and	their	negative-state	counterparts	are	both	present.



Figure	1.28	Reliability	network	of	the	system	from	Figure	1.27



(2.1)

2
Basic	Concepts

2.1	Reliability	(Survival)	Function,	Cumulative
Distribution	and	Probability	Density	Function	of	the
Times	to	Failure
In	the	mathematical	sense,	reliability	is	measured	by	the	probability	that	a	system	or	a
component	will	work	without	failure	during	a	specified	time	interval	(0,	t)	under	specified
operating	conditions	and	environment	(Figure	2.1).

Figure	2.1	Reliability	is	measured	by	the	probability	that	the	time	to	failure	will	be	greater
than	a	specified	time	t

The	probability	 	that	the	time	to	failure	T	will	be	greater	than	a	specified	time	t	is
given	by	the	reliability	function	 ,	also	referred	to	as	survival	function.	The
reliability	function	is	a	monotonic	non-increasing	function,	always	unity	at	the	start	of	life	(

,	 ).	It	is	linked	with	the	cumulative	distribution	function	F(t)	of	the	time	to
failure	by	 :	reliability = 1 −	probability	of	failure.	If	T	is	the	time	to	failure,	F(t)
gives	the	probability	 	that	the	time	to	failure	T	will	be	smaller	than	the	specified	time	t,
or	in	other	words,	the	probability	that	the	system	or	component	will	fail	before	time	t.

The	probability	density	function	of	the	time	to	failure	is	denoted	by	f(t).	It	describes	how	the
failure	probability	is	spread	over	time.	In	the	infinitesimal	interval	 ,	the	probability	of
failure	is	f(t) dt.	The	probability	of	failure	in	any	specified	time	interval	 	is

Basic	properties	of	the	probability	density	of	the	time	to	failure	are	as	follows:	(i)	f(t)	is

always	non-negative	and	(ii)	the	total	area	beneath	f(t)	is	always	equal	to	one:	 .
This	is	because	f(t)	is	a	probability	distribution,	that	is,	the	probabilities	of	all	possible
outcomes	for	the	time	to	failure	must	add	up	to	unity	(the	item	will	certainly	fail).
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The	cumulative	distribution	function	of	the	time	to	failure	is	related	to	the	failure	density
function	by

From	expression	(2.2),	the	probability	that	the	time	to	failure	will	be	smaller	than	a	specified
value	t	is

where	ν	is	a	dummy	integration	variable:	 ,	 .	Because	f(t)	is	non-
negative,	its	integral	F(t)	is	a	monotonic	non-decreasing	function	of	t	(Figure	2.2).	The	value	

	of	the	cumulative	distribution	function	at	time	t*	gives	the	area	beneath	the
probability	density	function	f(t)	until	time	t*	(Figure	2.2).
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Figure	2.2	Reliability	function,	cumulative	distribution	function	of	the	time	to	failure	and
failure	density	function

The	link	between	the	reliability	function	R(t),	cumulative	distribution	function	F(t)	and
probability	density	function	f(t)	is	illustrated	in	Figure	2.2.

	is	the	probability	of	failure	between	times	t1	and	t2:

The	hatched	area	in	Figure	2.3	is	equal	to	the	difference	F(t2) − F(t1)	and	gives	the	probability
that	the	time	to	failure	T	will	be	between	t1	and	t2.
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Figure	2.3	Cumulative	distribution	and	probability	density	function	of	the	time	to	failure

A	comprehensive	discussion	related	to	the	basic	reliability	functions	has	been	provided	by
Grosh	(1989).

2.2	Random	Events	in	Reliability	and	Risk	Modelling
Two	very	common	approaches	in	reliability	and	risk	modelling	are	based	on	random	events
and	random	variables.

2.2.1	Reliability	and	Risk	Modelling	Using	Intersection	of	Statistically
Independent	Random	Events
Statistically	independent	events	are	present	when	the	outcome	of	any	of	the	events	has	no
effect	on	the	outcomes	of	other	events.	In	other	words,	the	events	are	not	related	in	any	way	to
one	another.

The	probability	that	n	statistically	independent	random	events	A1,	A2,	…,	An	will	occur
simultaneously	is	given	by	the	probability	of	their	intersection,	which	is	equal	to	the	product	of
the	individual	probabilities	of	the	events:
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Example

Suppose	that	two	power	generators	(an	old	one	and	a	new	one)	have	been	installed	and
work	independently	from	each	other	as	part	of	a	power	supply	system.	The	reliability	of
the	old	generator	associated	with	a	specified	time	interval	is	0.6.	The	reliability	of	the
new	generator	associated	with	the	same	time	interval	is	0.8.

Suppose	that	it	is	required	to	determine	the	probability	that	there	will	exist	a	full	power
supply	at	the	end	of	the	specified	time	interval.	This	common	problem	can	be	solved	using
random	events.	Let	A	denote	the	event	the	old	power	generator	will	be	working	at	the	end
of	the	time	interval	and	B	denote	the	event	the	new	power	generator	will	be	working	at
the	end	of	the	time	interval.

The	probability	that	there	will	be	a	full	power	supply	at	the	end	of	the	time	interval	is
equal	to	the	probability	of	the	event	 	that	both	generators	will	be	working.	Because
events	A	and	B	are	statistically	independent,	according	to	Equation	2.5,	the	probability	of
their	intersection	 	is

The	probability	that	no	power	supply	will	exist	at	the	end	of	the	specified	time	interval	is
equal	to	the	probability	of	the	compound	event	 :	the	old	generator	will	not	be
working	and	the	new	generator	will	not	be	working:

The	probability	that	at	least	one	of	the	statistically	independent	random	events	A1,	A2,	…,
An	will	occur	is	given	by	the	probability	of	their	union,	which	is	equal	to

Equation	2.8	is	easily	derived	from	the	more	general	expression	2.9	known	as	the
inclusion–exclusion	expansion:

The	rule	for	the	expansion	can	be	summarised	by	the	following	steps:
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1.	 Add	the	probabilities	of	all	single	events.	This	means	that	the	probability	of	the
intersections	of	any	pair	of	events	is	added	twice	and	should	be	subtracted.

2.	 Subtract	the	probabilities	of	all	double	intersections	from	the	previous	result.	Since
the	contribution	of	the	intersection	of	any	three	events	has	been	added	three	times
through	the	single	events	and	subsequently	has	been	subtracted	three	times	from	the
twofold	intersections,	the	probabilities	of	all	threefold	intersections	must	be	added.

3.	 For	higher-order	intersections,	the	terms	with	odd	number	of	intersecting	events	are
added,	while	the	terms	with	even	number	of	intersecting	events	are	subtracted	from	the
sum.

For	three	statistically	independent	events,	Equation	2.8	reduces	to

For	two	statistically	independent	events	A1	and	A2,	the	probability	that	at	least	one	event
will	occur	is	given	by

Suppose	now	that	in	the	previous	example,	it	is	required	to	determine	the	probability	that
there	will	be	a	power	supply	at	the	end	of	the	specified	time	interval.	The	probability	of	a
power	supply	is	equal	to	the	probability	of	the	event	 	that	at	least	one	generator
will	be	working.	According	to	Equation	2.11,	the	probability	of	the	union	 	of	the
statistically	independent	events	A	and	B	is

2.2.2	Reliability	and	Risk	Modelling	Using	a	Union	of	Mutually
Exclusive	Random	Events
The	mutually	exclusive	random	events	cannot	occur	simultaneously,	and	the	probability	of	their
simultaneous	occurrence	is	zero.	If	one	of	them	occurs,	the	other	does	not	occur,	and	vice
versa.	Consequently,	mutually	exclusive	events	are	not	statistically	independent.	The	events	A
‘the	device	will	work	at	the	end	of	the	time	interval	(0,	t)’	and	B	‘the	device	will	not	work	at
the	end	of	the	time	interval	t’	are	mutually	exclusive	events.	They	cannot	occur	simultaneously.

If	n	devices	are	working	independently	during	the	time	interval	(0,	t),	the	events	A0	(no	device
works	at	the	end	of	the	time	interval),	A1	(exactly	one	device	works	at	the	end	of	the	time
interval),	A2	(exactly	two	devices	work	at	the	end	of	the	time	interval),	…,	An	(all	n	devices
work	at	the	end	of	the	time	interval)	are	statistically	independent	events.	Exactly	one	of	these
events	can	occur	at	the	end	of	the	time	interval,	and	if	it	occurs,	the	rest	of	the	events	do	not.

The	probability	that	at	least	one	of	several	mutually	exclusive	events	will	occur	is	equal	to	the
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sum	of	the	probabilities	of	the	separate	events:

A	very	important	special	case	of	mutually	exclusive	events	are	the	complementary	events	A	and
Ā.	The	complementary	events	are	mutually	exclusive,	and	in	addition,	they	are	exhaustive
which	means	that	one	of	them	will	certainly	occur.	A	common	example	are	the	events	A	(the
device	will	work	at	the	end	of	the	time	interval	(0,	t))	and	the	event	Ā	(the	device	will	be	in	a
failed	state	at	the	end	of	the	time	interval	(0,	t)).	Because	the	complementary	events	are
exhaustive	(one	of	them	will	certainly	occur),	their	probabilities	add	up	to	unity:

The	probability	of	an	event	can	therefore	be	determined	by	subtracting	the	probability	of	its
complementary	event	from	unity:

Equation	2.14	has	a	very	important	application.	The	probability	of	the	event	A	that	at	least	one
of	n	independent	generators	will	be	working	can	be	determined	from	the	probability	of	its
complementary	event	Ā	–	none	of	the	n	generators	will	be	working.	If	the	probabilities	of	the
separate	generators	working	are	denoted	by	P(Ai),	i = 1,	…,	n,	the	probability	of	the
complementary	event	Ā	is	given	by

The	probability	of	the	event	that	at	least	one	of	the	n	generators	will	be	working	is	given	by

Note	that	the	same	probability	could	have	been	estimated	by	using	Equation	2.8.	However,	for
even	a	moderately	large	number	of	events	n,	the	application	of	the	inclusion–exclusion
expansion	formula	becomes	intractable	because	it	leads	to	expressions	with	a	very	large
number	of	terms.	Consequently,	for	more	than	two	events,	the	probability	of	a	union	of
independent	events	should	be	calculated	by	using	Equation	2.15.

Suppose	now	that	in	the	previous	example,	it	is	required	to	determine	the	probability	of
insufficient	power	supply.	This	is	equivalent	to	determining	the	probability	of	the	event
exactly	one	generator	will	be	working.	This	event	can	be	presented	as	a	union	

	of	the	following	events:	 	–	the	old	generator	will	be	working	and	the
new	generator	will	not	be	working	and	 	–	the	new	generator	will	be	working	and	the
old	generator	will	not	be	working.	If	one	of	these	events	occurs,	the	other	does	not;	therefore,
they	are	mutually	exclusive	events.

According	to	the	Equation	2.12	related	to	a	probability	of	a	union	of	mutually	exclusive	events,
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which	is	the	probability	of	insufficient	power	supply.

The	next	example	involves	more	than	two	mutually	exclusive	events.

Example

Four	bolts	are	holding	a	flange	(Figure	2.4).	Each	bolt	has	a	probability	p = 0.35	of
containing	a	particular	fault	which	leads	to	a	premature	failure	of	the	bolt.

If	only	a	single	bolt	fails,	the	flange	connection	is	operational.	If	any	pair	of	diametrically
opposite	bolts	(e.g.	bolts	1,3	or	2,4)	fail	but	the	other	two	diametrically	opposite	bolts	are
operational,	the	flange	connection	is	also	operational.	The	flange	connection	fails
prematurely	if	all	bolts	contain	the	fault,	if	exactly	three	bolts	contain	the	fault	or	if	exactly
two	bolts	contain	the	fault,	but	they	are	not	diametrically	opposite	bolts	(e.g.	bolts	1,2	or
3,4	or	2,3	or	1,4).	Determine	the	probability	that	the	flange	will	not	fail	prematurely	due
to	the	presence	of	the	fault	in	some	of	the	bolts.

Solution

If	each	bolt	contains	the	fault	with	probability	p,	it	does	not	contain	the	fault	with
probability	 .	The	flange	connection	will	not	fail	prematurely	due	to	the	fault	being
present	in	some	of	the	bolts	if	any	of	the	following	mutually	exclusive	events	is	present:

a.	 No	bolt	contains	the	fault.	 .

b.	 Exactly	one	bolt	contains	the	fault.	The	probability	of	this	event	is	 ,
which	is	a	sum	of	probabilities	of	four	mutually	exclusive	events:

i.	 Bolt	1	contains	the	fault	and	the	rest	of	the	bolts	do	not	

ii.	 Bolt	2	contains	the	fault	and	the	rest	of	the	bolts	do	not	

iii.	 Bolt	3	contains	the	fault	and	the	rest	of	the	bolts	do	not	

iv.	 Bolt	4	contains	the	fault	and	the	rest	of	the	bolts	do	not	

c.	 Exactly	two	diametrically	opposite	bolts	contain	the	fault,	but	the	other	two	bolts	do
not.	This	event	is	characterised	by	a	probability	 ,	which	is	a	sum	of
the	probabilities	of	two	mutually	exclusive	events:

i.	 Bolts	1	and	3	contain	the	fault	and	bolts	2	and	4	do	not,	the	probability	of	which	is



.

ii.	 Bolts	2	and	4	contain	the	fault	and	bolts	1	and	3	do	not,	the	probability	of	which	is
.

Because	events	A,	B	and	C	are	mutually	exclusive	events,	the	probability	of	their	union	is
equal	to	the	sum	of	their	probabilities:

Substituting	 	gives

for	the	probability	that	the	flange	connection	will	not	fail	prematurely	because	of	the	fault
being	present	in	some	of	the	bolts.



Figure	2.4	A	flange	with	four	bolts,	each	containing	a	particular	fault	with	certain	probability

2.2.3	Reliability	of	a	System	with	Components	Logically	Arranged	in
Series
Another	important	application	of	the	intersection	of	statistically	independent	random	events	is
the	practically	important	case	of	a	system	composed	of	statistically	independent	components,
arranged	logically	in	series	(Figure	2.5).

Figure	2.5	A	system	with	components	logically	arranged	in	series

Let	S	denote	the	event	the	system	will	be	working	and	Ck	denote	the	event	the	kth	component
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will	be	working.	For	the	series	arrangement	in	Figure	2.5,	event	S	is	an	intersection	of	all
events	Ck,	k = 1,	2,	…,	n,	because	the	system	will	be	working	only	if	all	of	the	components
work.	Consequently,

According	to	the	equation	related	to	a	probability	of	an	intersection	of	statistically	independent
events	(Appendix	A),	the	probability	that	the	system	will	be	working	is

equal	to	the	product	of	the	probabilities	that	the	separate	components	will	be	working.	If	
	is	the	reliability	of	the	system	and	 	is	the	reliability	of	the	kth	component,

the	reliability	of	a	system	with	components	logically	arranged	in	series	is	Bazovsky	(1961)

Two	important	conclusions	can	be	made	from	this	expression.	The	larger	the	number	of
components	is,	the	lower	is	the	reliability	of	the	arrangement.

Indeed,	if	an	extra	component	 	with	reliability	 	is	added	as	shown	in	Figure	2.6,	the
reliability	of	the	arrangement	becomes	 ,	and	since	 ,

Figure	2.6	An	extra	component	added	to	a	series	arrangement

Another	important	observation	is	that	the	reliability	of	a	series	arrangement	is	smaller	than	the
reliability	Rk	of	the	least	reliable	component	k:

This	fact	has	important	practical	implications.	It	means	that	the	reliability	of	a	series
arrangement	cannot	be	improved	beyond	the	reliability	of	the	lest	reliable	component,	unless
the	reliability	of	the	least	reliable	component	is	improved.	If	a	reliability	improvement	on	a
system	level	is	to	be	made,	the	reliability	improvement	efforts	should	be	focused	on	improving
the	reliability	of	the	least	reliable	component	first,	not	on	improving	the	reliability	of
components	with	already	high	reliability.

Consider	a	common	practical	example	related	to	two	very	reliable	components	with	high
reliabilities	 ,	connected	through	an	interface	of	relatively	low	reliability	 	(Figure
2.7).
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Figure	2.7	Two	very	reliable	components	with	reliabilities	 ,	connected	through	an
unreliable	interface	with	reliability	r

According	to	Equation	2.19,	the	reliability	of	the	arrangement

is	approximately	equal	to	the	reliability	of	its	weakest	link,	the	interface	r.	In	order	to	improve
substantially	the	reliability	of	the	arrangement,	the	reliability	of	the	interface	must	be
increased.	One	of	the	reasons	why	so	many	failures	occur	at	interfaces	is	the	circumstance	that
often	interfaces	are	not	manufactured	to	match	the	reliability	of	the	corresponding	components.

An	alternative	expression	for	the	reliability	of	n	identical,	statistically	independent
components	arranged	logically	in	series	is

where	p	is	the	probability	of	failure	of	a	single	component.	This	equation	provides	an	insight
into	the	link	between	the	complexity	of	a	system	and	its	reliability.

Indeed,	if	Equation	2.23	is	presented	as	 .	For	small	probabilities	of	failure	
,	 	and	the	reliability	of	the	arrangement	becomes

As	can	be	verified	from	Equation	2.24,	if	the	number	n	of	components	in	the	system	is
increased	by	a	factor	of	k,	in	order	to	maintain	the	reliability	of	the	system,	the	probability	of
failure	p	of	a	single	component	must	be	decreased	by	the	same	factor	k.

It	must	be	pointed	out	that,	for	a	relatively	large	number	of	components	logically	arranged	in
series,	the	error	associated	with	reliability	predictions	based	on	Equation	2.19	can	be
significant.	Indeed,	suppose	that	a	large	number	n	of	identical	components	have	been	logically
arranged	in	series	and	each	component	has	a	reliability	r.	Since	the	reliability	of	the	system	is	

,	a	small	relative	error	Δr/r	in	estimating	the	reliability	r	of	the	individual	components
gives	rise	to	a	large	relative	error	 	in	the	predicted	reliability	of	the	system.
This	point	is	important	and	will	be	illustrated	by	a	simple	numerical	example.

Assume	that	the	reliability	estimate	related	to	an	individual	component	varies	in	the	relatively
small	range	 .	If	 	is	taken	as	a	basis	for	predicting	the	reliability	of	a
system	including	35	components	logically	arranged	in	series,	the	calculated	reliability	is	

.	If	 	is	taken	as	a	basis	for	the	reliability	prediction,	the	calculated
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reliability	is	 ,	more	than	twice	compared	to	the	previous	estimate!

This	example	can	also	be	interpreted	in	the	following	way.	If	35	identical	components	with
reliabilities	0.96	are	logically	arranged	in	series,	a	relatively	small	increase	in	the	reliability
of	a	component	results	in	a	large	system	reliability	increase.	The	application	of	the	formula
related	to	a	series	arrangement	is	not	restricted	to	hardware	components	only.	Assume	that	the
successful	accomplishment	of	a	project	depends	on	the	successful	accomplishment	of	35
identical	and	independent	tasks.	If	a	person	accomplishes	successfully	a	separate	task	with
probability	0.96,	an	investment	in	additional	training	which	increases	this	probability	to	only
0.98	would	make	a	big	impact	on	the	probability	of	accomplishing	the	project.

In	another	example,	suppose	that	a	single	component	can	fail	due	to	n	statistically	independent
failure	modes.	The	event	S:	the	component	will	survive	time	t	can	be	presented	as	an
intersection	of	the	events	Si:	the	component	will	survive	the	ith	failure	mode,	

.

The	probability	P(S)	of	the	event	S	is	the	reliability	R(t)	of	the	component	associated	with	the
time	interval	(0,	t),	and	is	given	by	the	product

where	Ri(t),	i = 1,	2,	…,	n,	is	the	probability	that	the	component	will	survive	the	ith	failure
mode.	Since	the	probabilities	of	failure	before	time	t,	associated	with	the	separate	failure
modes,	are	given	by	 ,	the	probability	of	failure	of	the	component	before	time	t	is

2.2.4	Reliability	of	a	System	with	Components	Logically	Arranged	in
Parallel
For	independently	working	components	logically	arranged	in	parallel	(Figure	2.8),	the	event	S
(the	system	will	be	working)	is	a	union	of	the	events	Ck:	the	kth	component	will	be	working,
k = 1,	2,	…,	n,	because	the	system	will	be	working	if	at	least	one	component	works.
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Figure	2.8	Components	logically	arranged	in	parallel

Consequently,	event	S	can	be	presented	as	the	union	of	events	Ck:

Simpler	expressions	are	obtained	if	the	reasoning	is	in	terms	of	system	failure	( )	rather	than
system	success	(S).	For	a	parallel	logical	arrangement,	the	event	 	(system	failure)	is	an
intersection	of	events	 ,	k = 1,	2,	…,	n,	denoting	non-working	states	for	the	components,
because	the	system	will	fail	only	if	all	of	the	components	fail:

The	probability	of	system	failure	is	 .	Notice	that	while	the
reliability	of	a	series	arrangement	is	a	product	of	the	reliabilities	of	the	components,	the
probability	of	failure	of	a	parallel	arrangement	is	a	product	of	the	probabilities	of	failure	of	the
components.

Since	the	reliability	of	the	system	is	 	and	the	reliabilities	of	the	components	are	Ri,
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i = 1,	2,	…,	n,	the	reliability	of	the	parallel	arrangement	(Bazovsky,	1961)	becomes

Two	important	conclusions	can	be	made	from	this	expression.	The	larger	the	number	of
components	logically	arranged	in	parallel,	the	larger	is	the	reliability	of	the	system.

Indeed,	if	an	extra	component	 	with	reliability	 	is	added	as	shown	in	Figure	2.9,	the
reliability	of	the	arrangement	becomes	 ,	and	since	

,

Figure	2.9	An	extra	component	added	to	a	parallel	arrangement



(2.31)

The	second	conclusion	is	that	the	reliability	of	the	parallel	arrangement	is	larger	than	the
reliability	of	its	most	reliable	component.	In	other	words,	for	a	parallel	arrangement,	the
relationship

holds.	Indeed,	because	the	inequality

is	always	true,	the	inequality	(2.31)	follows	immediately	from	it	after	multiplying	by	1–Ri	and
rearranging.

2.2.5	Reliability	of	a	System	with	Components	Logically	Arranged	in
Series	and	Parallel
A	system	with	components	logically	arranged	in	series	and	parallel	can	be	reduced	in
complexity	in	stages,	as	shown	in	Figure	2.10.	In	the	first	stage,	the	components	in	parallel
with	reliabilities	R1,	R2	and	R3	are	reduced	to	an	equivalent	component	with	reliability	

	(Figure	2.10a).	The	components	in	parallel	with	reliabilities
R4	and	R5	are	reduced	to	an	equivalent	component	with	reliability	 ,	and
the	components	in	series	with	reliabilities	R6,	R7	and	R8	are	reduced	to	an	equivalent
component	with	reliability	 	(Figure	2.10b).	As	a	result,	in	the	second	stage,
the	equivalent	reliability	network	B	is	obtained	(Figure	2.10b).	Next,	the	reliability	network	B
is	further	simplified	by	reducing	equivalent	components	with	reliabilities	R123	and	R45	to	a
single	equivalent	component	with	reliability	 .	The	final	result	is	the	trivial
reliability	network	C,	whose	reliability	is	 .





Figure	2.10	Reducing	the	complexity	of	a	reliability	network	A	by	transforming	it	into
intermediate	networks	B	and	C

For	the	system	of	two	components	logically	arranged	in	series	in	Figure	2.11a,	two	different
ways	of	increasing	the	reliability	can	be	considered:	(i)	by	including	redundancy	at	a	system
level	(Figure	2.11b)	and	(ii)	by	including	redundancies	at	a	component	level	(Figure	2.11c).
The	cost	of	two	extra	components	is	the	same	in	each	of	the	considered	variants.

Figure	2.11	(a)	A	simple	series	arrangement	and	two	ways	(b	and	c)	of	increasing	its
reliability
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The	system	reliabilities	characterising	the	two	variants	can	be	compared.	Arrangement	(b)	is
characterised	by	reliability

while	arrangement	(c)	is	characterised	by	reliability

Because	 ,	the	arrangement	in	Figure	2.11b	has	a	smaller	reliability
than	that	in	Figure	2.11c.	This	example	demonstrates	the	well	known	principle	that	redundancy
at	a	component	level	is	more	effective	than	redundancy	at	a	system	level	(Barlow	and
Proschan,	1965).

Note	that	no	reliability	data	were	necessary	to	identify	the	superior	alternative.	Comparing	the
algebraic	expressions	related	to	the	reliability	of	the	competing	arrangements	can	be	used	for
selecting	the	arrangement	characterised	by	the	highest	reliability.	Further	details	related	to	this
approach	are	given	in	Chapter	14	which	discusses	comparative	methods	for	improving
reliability.

2.2.6	Using	Finite	Sets	to	Infer	Component	Reliability
Often,	reliability	of	components	can	be	inferred	from	basic	operations	over	sets.	This
technique	is	illustrated	by	the	next	example.



(2.34)

Example

For	a	large	batch	of	capacitors,	it	is	known	that	15%	of	the	capacitors	are	out	of
tolerances,	7%	have	a	fault	(a	short	circuit	or	an	open	circuit	fault)	and	3%	are	both	out	of
tolerances	and	with	a	fault.	What	is	the	probability	that	a	selected	capacitor	will	be	within
the	tolerances	and	with	no	fault	present?

Denoting	with	event	A	(out	of	tolerances	capacitor)	and	with	event	B	(faulty	capacitor)	for
the	probability	of	the	union	of	these	events,	we	have

where	 ,	 	and	 .	The	probability	of	the	event	
,	a	capacitor	both	within	the	tolerance	limits	and	with	no	fault	present,	is	given

by

Substituting	the	numbers	gives

2.3	Statistically	Dependent	Events	and	Conditional
Probability	in	Reliability	and	Risk	Modelling
Statistically	dependent	events	are	present	if	the	outcome	of	one	of	the	events	affects	the
outcome	of	other	events.	Statistically	dependent	events	in	reliability	and	risk	modelling	can	be
illustrated	by	the	next	simple	example.

The	probability	of	the	intersection	of	two	statistically	dependent	events	A	and	B	is	given	by	the
product	of	the	probability	P(A)	of	one	of	the	events	and	the	probability	 	of	the	second
event	given	that	the	first	has	occurred:

Alternatively,	 .

If	the	outcome	of	event	A	does	not	affect	the	outcome	of	event	B,	and	vice	versa,	the	events	are
statistically	independent.	In	this	case,	 	and	 	hold,	and	the
probability	of	the	intersection	of	the	two	events	is	given	by	the	formula	
which	is	the	probability	of	intersection	of	statistically	independent	events.
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(2.35)

Example

In	a	batch	of	10	capacitors,	four	are	defective.	Two	capacitors	are	selected	randomly
from	the	batch	and	installed	in	an	electronic	device.	Both	capacitors	must	be	non-
defective	for	the	electronic	device	to	work	properly.	Determine	the	probability	that	two
non-defective	capacitors	will	be	installed	in	the	electronic	device.

The	electronic	device	will	work	properly	only	if	both	capacitors	are	non-defective.	Let	A
denote	the	event	the	first	capacitor	is	non-defective	and	B	denote	the	event	the	second
capacitor	is	non-defective.	Event	Ā	denotes	that	the	fist	selected	capacitor	is	defective.

The	probability	that	both	capacitors	will	be	non-defective	is	given	by	Equation	2.34,
where	the	probability	 	is	the	conditional	probability	of	occurrence	of	event	B,
given	that	event	A	has	occurred.	In	the	example,	 	is	the	probability	of	selecting	a
non-defective	second	capacitor,	given	that	the	first	selected	capacitor	is	non-defective.
Clearly,	the	probability	 	of	selecting	a	non-defective	second	capacitor	depends	on
the	outcome	of	the	first	selection.	If	a	non-defective	first	capacitor	has	been	selected,	the
number	of	remaining	non-defective	capacitors	is	5	and	 .	If	a	defective	first
capacitor	has	been	selected,	the	number	of	remaining	non-defective	capacitors	is	6,	and
the	probability	of	selecting	a	second	non-defective	capacitor	given	that	the	first	selected
capacitor	is	faulty	is	 .	The	dependency	of	the	outcome	of	the	second
selection	on	the	outcome	of	the	first	selection	is	denoted	by	 	or	 .

The	probability	that	two	non-defective	capacitors	will	be	selected	is	given	by	the
conditional	probability	formula:

Since	 	and	 ,

The	probability	that	three	non-defective	capacitors	will	be	selected	is	given	by	the
probability	of	an	intersection	of	three	statistically	dependent	events:

where	 	is	the	probability	that	the	first	selected	capacitor	will	be	non-defective;
	is	the	probability	that	the	second	selected	capacitor	will	be	non-defective

given	that	the	first	selected	capacitor	is	non-defective	and	 	is	the
probability	that	the	third	selected	capacitor	will	be	non-defective	given	that	the	first	two
selected	capacitors	are	non-defective.

As	a	result,	the	probability	that	the	three	selected	capacitors	will	be	non-defective
becomes
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(2.40)

Equation	2.36	is	easily	generalised	by	induction	for	n	statistically	dependent	events.

For	a	component	exhibiting	n	failure	modes	which	are	not	statistically	independent,	the
reliability	is	equal	to	the	product

where	 	is	the	probability	of	surviving	the	kth	failure	mode	given	that	no
failure	has	been	initiated	by	the	first	(S1),	the	second	(S2),	…,	and	the	(k − 1)th	failure
mode	( ).	An	application	of	this	formula	to	determining	the	reliability	for	two
statistically	dependent	failure	modes,	‘failure	initiated	by	individual	flaws’	and	‘failure
caused	by	clustering	of	flaws	within	a	small	critical	distance’,	can	be	found	in	Todinov
(2005).

The	conditional	probability	 	is	determined	by	taking	the	ratio	of	the	probability	of
simultaneous	occurrence	of	events	A	and	B	to	the	probability	of	occurrence	of	the
conditioning	event	B:

Equation	2.38	gives	the	probability	 	of	event	A	given	that	event	B	has	occurred.

This	relationship	follows	from	a	probabilistic	reasoning	based	on	a	large	number	of
sequential	trials	or	observations.	To	calculate	the	conditional	probability	of	event	A,	the
number	 	of	simultaneous	appearance	of	events	A	and	B	must	be	counted	and	divided
to	the	number	NB	of	appearances	of	the	conditioning	event	only:

Equation	2.39	can	also	be	presented	as	 ,	where	N	is	the
total	number	of	trials	or	observations.	This	representation	yields	Equation	2.38.

If	event	A	is	the	conditioning	event,	Equation	2.38	becomes

Equation	2.40	gives	the	probability	 	of	event	B	given	that	event	A	has	occurred.

There	is	an	essential	difference	between	conditional	probability	and	probability	not



conditioned	on	the	outcome	of	a	particular	event.

Let	event	A	denote	the	event	that	a	random	demand	of	a	particular	resource,	at	any	time,
will	be	satisfied	and	P(A)	be	the	probability	of	satisfying	the	demand.	Let	event	B	denote
the	event	that	a	random	demand	will	occur	during	daytime,	in	the	interval	(6.00 am	to
18.00 pm)	( ).	Event	 	denotes	the	event	that	a	random	demand	will	occur
during	night-time,	in	the	interval	(the	period	18.00 pm	to	6.00 am)	( ).

Suppose	that	during	daytime	the	demand	for	the	resource	is	high	and	the	probability	of
obtaining	the	resource	 	is	small.	Conversely,	the	demand	of	the	same	resource
during	night-time	(the	period	18.00 pm	to	6.00 am)	 	is	very	small,	and	the
probability	that	a	random	demand	will	be	satisfied	is	very	high.	Clearly,	in	this	case,	

,	that	is,	the	probability	that	the	demand	will	be	satisfied	irrespective	of
the	time	of	the	day	is	greater	than	the	probability	that	the	demand	will	be	satisfied	given
that	it	occurs	during	daytime.

In	a	number	of	cases,	the	conditional	probability	formula	can	be	applied	to	extract
important	information	such	as	in	the	next	example.



Example

A	detection	method	discovers	a	fault	with	probability	0.6,	given	that	the	fault	is	present	in
the	component.	If	the	component	contains	no	fault,	the	method	cannot	classify	it	as	faulty.

For	a	particular	batch	of	components,	the	inspection	method	indicates	that	20%	of	the
components	are	faulty.

What	is	the	actual	percentage	of	faulty	components	in	the	batch?

Solution
Let	A	be	the	event	‘the	inspection	method	detects	a	faulty	component’	and	B	be	the	event
‘the	component	is	faulty’.

In	20%	of	the	inspections,	a	fault	has	been	present	and	the	inspection	method	detects	a
faulty	component.	Rearranging	the	conditional	probability	formula	2.36

where	P(B)	is	the	probability	of	a	faulty	component,	 	is	the	probability	that
the	component	is	faulty	and	the	inspection	method	detects	it	as	‘faulty’	and	 	is
the	probability	that	the	detection	method	will	indicate	a	faulty	component	given	that	the
component	is	faulty.	Substituting	the	number	yields	that	approximately	33%	of	the
components	in	the	batch	are	faulty:

Conditional	probabilities	can	be	used	in	making	correct	risk	estimates	in	critical
situations,	which	can	be	illustrated	by	the	following	example.



Example

Each	of	the	two	independently	working	sensors	survives	one	week	of	operation	in	high-
temperature	conditions	with	probability	0.7.	The	correct	operation	of	at	least	one	of	the
sensors	is	needed	for	controlling	a	particular	chemical	process.

At	the	end	of	the	week,	a	test	circuit	indicates	that	at	least	one	of	the	sensors	has	failed.
What	is	the	probability	that	the	other	sensor	has	also	failed?

If	A	denotes	the	event	‘the	first	sensor	works’	and	B	denotes	the	event	that	the	second
sensor	works,	the	probability	that	at	least	one	sensor	has	failed	is

The	probability	that	both	sensors	have	failed,	given	that	at	least	one	sensor	has	failed	is

As	can	be	seen,	the	conditional	probability	that	both	sensors	will	be	in	a	failed	state	given
that	at	least	one	sensor	has	failed	is	almost	twice	the	absolute	probability	

	that	both	sensors	will	be	in	a	failed	state	at	the	end	of	the
week.	The	knowledge	that	at	least	one	of	the	sensors	has	failed	increased	significantly	the
likelihood	that	the	other	sensor	has	also	failed.	A	decision	based	on	this	more	pessimistic
probability	estimate,	in	the	light	of	the	indication	given	by	the	test	circuit,	is	of	superior
quality	compared	to	a	decision	based	on	the	optimistic	probability	of	9%.

2.4	Total	Probability	Theorem	in	Reliability	and	Risk
Modelling.	Reliability	of	Systems	with	Complex
Reliability	Networks
The	total	probability	theorem	has	a	fundamental	importance	to	reliability	and	risk	modelling.
Consider	the	following	common	engineering	problem.

Electronic	components	are	delivered	by	n	suppliers	A1,	A2,	…,	and	An.	The	market	shares	of

the	suppliers	are	p1,	p2,	…,	pn,	respectively,	 .	The	probabilities	characterising	the
separate	suppliers,	that	the	life	of	their	electronic	components	will	be	greater	than	a	required
expected	life	of	Y	years,	are	y1,	y2,	…,	yn,	respectively.	What	is	the	probability	that	a
purchased	component	will	have	expected	life	larger	than	Y	years?

This	problem	can	be	solved	easily	using	the	total	probability	theorem.	Let	B	denote	the	event
the	purchased	component	will	have	expected	life	greater	than	Y	years	and	A1,	A2,	…,	An
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denote	the	events	the	component	comes	from	the	first,	the	second,	…,	or	the	nth	supplier,
respectively.	Event	B	occurs	whenever	any	of	the	mutually	exclusive	and	exhaustive	events	Ai
occurs.	Events	Ai	form	a	partition	of	the	sample	space	(Figure	2.12):	 	if	 ,	

,	and	 .

Figure	2.12	Venn	diagram	representing	events	related	to	the	expected	life	of	electronic
components	from	n	suppliers

The	events	 ,	 ,	…,	 	are	also	mutually	exclusive.	Their	union	constitutes
event	B:

Because	B	is	a	union	of	mutually	exclusive	events,	its	probability	is	given	by	the	sum	of	the
probabilities	of	the	mutually	exclusive	events:

Equation	2.41	is	known	as	the	total	probability	formula/theorem.

In	the	considered	specific	example,	the	probabilities	P(Ai)	are	equal	to	the	market	shares	pi	of
the	individual	suppliers:	 ,	i = 1,	2,	…,	n.	Because	the	conditional	probabilities	

,	 ,	…,	and	 	are	known,	according	to	the	total
probability	formula	2.41,	the	probability	that	a	purchased	component	will	have	expected	life
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greater	than	Y	years	is

From	the	total	probability	theorem,	an	important	special	case	can	be	derived	if	the	probability
space	is	partitioned	into	two	complementary	events	only.	Let	events	A	and	Ā	be
complementary:	 ,	 ,	 .	Because	these	events	partition	the
probability	space,	then	either	A	occurs	and	B	occurs	or	A	does	not	occur	and	B	occurs.	The
probability	of	event	B	according	to	the	total	probability	theorem	is

Equation	2.43	forms	the	basis	of	the	decomposition	method	for	solving	reliability	problems
and	will	be	illustrated	by	a	generic	engineering	application.

Example

A	comparator	similar	to	the	one	considered	in	Chapter	1	includes	four	identical	measuring
devices	(thermocouples,	manometers,	voltmeters,	etc.)	which	measure	a	particular
quantity	(temperature,	pressure	and	voltage)	in	two	separate	zones	(A	and	B)	of	a
component	(Figure	2.13).	There	are	also	two	identical	control	devices	which	compare	the
readings	from	the	measuring	devices	and	send	a	signal	when	a	critical	difference	in	the
measured	quantity	is	registered	between	the	two	zones.

Only	one	of	the	control	devices	is	required	to	register	a	critical	difference	in	the	measured
quantity	from	the	two	zones.	Once	a	critical	difference	is	registered,	an	alarm	is	triggered.
A	signal	cable	is	used	to	transfer	data	between	the	control	devices.	The	reliability	on
demand	of	each	measuring	device	is	m,	the	reliability	on	demand	of	the	signal	cable	is	c
and	the	reliability	of	each	control	device	is	d.	The	question	of	interest	is	the	probability
that	a	signal	for	triggering	the	alarm	will	be	sent	in	case	of	a	critical	difference	in	the
measured	quantity	from	zones	A	and	B.

The	logical	arrangement	of	the	components	in	the	generic	comparator	can	be	represented
by	the	reliability	network	in	Figure	2.13b	(see	Chapter	1	for	details	regarding	the
functionality	of	the	comparator	and	building	its	reliability	network).

Clearly,	the	probability	that	there	will	be	a	signal	if	a	critical	difference	in	the	measured
quantity	exists	is	equal	to	the	probability	of	existence	of	a	path	through	working
components	between	the	start	node	s	and	the	terminal	node	t	(Figure	2.13b).	Let	event	S
denote	the	event	the	comparator	is	working	on	demand,	C	be	the	event	the	signal	cable
is	working	on	demand	and	 	be	the	event	the	signal	cable	is	not	working	on	demand.
Depending	on	whether	the	signal	cable	is	working,	the	initial	reliability	network	in	Figure
2.13	decomposes	into	two	reliability	networks	(Figure	2.14).

According	to	the	decomposition	method,	the	probability	P(S)	that	the	comparator	will	be
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working	on	demand	is	equal	to	the	sum	of	the	probabilities	that	the	comparator	will	be
working,	given	that	the	signal	cable	is	working	and	the	probability	that	the	comparator
will	be	working	given	that	the	signal	cable	is	not	working	(Figure	2.15):

Figure	2.14a	and	b	give	the	reliability	networks	corresponding	to	events	C,	the	signal
cable	is	working,	and	 ,	the	signal	cable	is	not	working.

The	reliability	of	the	network	in	Figure	2.14a	is	given	by

while	the	reliability	of	the	network	in	Figure	2.14b	is	given	by

Because	 	and	 ,	the	probability	that	the	comparator	will	be	working	on
demand	becomes

If	any	of	the	product	networks	is	a	non-trivial	network,	by	selecting	another	key
component,	the	decomposition	method	could	be	applied	to	decompose	the	network	into
two	simpler	networks	and	so	on,	until	trivial	networks	are	reached	whose	reliability	can
be	evaluated	easily.

Alternatively,	two	key	components	K1	and	K2	instead	of	one	could	be	selected	for	the
decomposition.	The	probability	that	the	system	will	be	in	working	state	can	be	presented
as	a	sum	of	the	probabilities	of	four	mutually	exclusive	events,	which	correspond	to	the
four	distinct	combinations	of	states,	related	to	the	key	components	(Figure	2.16):

where	K1	and	 	denote	the	working	and	failed	state	of	the	first	key	component	and	K2	and

	denote	the	working	and	failed	state	of	the	second	key	component.

Example

Evaluating	reliability	by	a	decomposition	on	the	state	of	two	selected	key	components



will	be	illustrated	with	the	system	in	Figure	1.17b	whose	reliability	network	is	shown	in
Figure	2.17.
The	system	is	in	operation	whenever	on	demand,	a	directed	path	exists	from	node	s	to
each	of	the	four	terminal	nodes	t1,	t2,	t3	and	t4	(Figure	2.17).

Despite	that	the	system	is	rather	complex,	its	reliability	can	be	revealed	easily	by
conditioning	the	reliability	network	in	Figure	2.17,	on	the	state	of	the	control	modules
CM1	and	CM2.	There	are	four	different,	mutually	exclusive	outcomes:	(i)	control	module
1	working,	control	module	2	working;	(ii)	control	module	1	working,	control	module	2	not
working;	(iii)	control	module	1	not	working,	control	module	2	working	and	(iv)	control
module	1	not	working,	control	module	2	not	working.	Depending	on	these	outcomes,	the
resultant	networks	are	shown	in	Figure	2.18.	The	unreliable	components	have	been
replaced	with	unreliable	edges	whose	reliability	is	equal	to	the	reliability	of	the
corresponding	components.	The	reliability	of	the	identical	switches	has	been	denoted	by	k
while	the	reliability	of	the	controlled	devices	by	d.	The	reliability	of	each	of	the	control
modules	is	c.

The	nodes	are	perfectly	reliable	and	cannot	fail.

The	reliability	network	in	Figure	2.18a	corresponds	to	an	outcome	where	both	control
modules	CM1	and	CM2	are	working.	As	a	series–parallel	network,	the	probability	of

existence	of	directed	paths	to	each	of	the	terminal	nodes	is	 .	The	network
in	Figure	2.18b	corresponds	to	each	of	the	two	outcomes	where	exactly	one	of	the	control
modules	is	working.	The	network	in	Figure	2.18b	is	also	a	series–parallel	network,	for
which	the	probability	of	existence	of	a	path	to	each	terminal	node	is	k4d4.	The	network
corresponding	to	the	state	where	both	control	modules	CM1	and	CM2	are	in	a	failed	state
has	not	been	drawn.	For	this	network,	the	start	node	s	is	isolated,	with	no	path	through
working	components	to	any	of	the	terminal	nodes.

Since	the	probability	that	a	control	module	is	working	is	c	and	the	probability	that	a
control	module	is	not	working	is	 ,	conditioning	on	the	four	distinct	outcomes,	formed
by	the	state	of	the	two	control	modules,	yields

which	can	be	written	as

for	the	probability	that,	on	demand,	there	will	be	directed	paths	from	the	start	node	to	each
of	the	terminal	nodes.

In	many	cases,	the	total	probability	theorem	is	a	useful	device	for	evaluating	the



probabilities	related	to	an	event	which	cannot	occur	simultaneously	in	more	than	one
place	(the	places	of	occurrence	are	mutually	exclusive).	This	application	will	be
illustrated	with	the	following	example.

Example

A	system	contains	three	identical	sections.	The	probability	of	discovering	a	critical	fault
in	any	particular	section	if	the	fault	is	in	the	section	is	0.8.	The	system	has	stopped
operation	due	to	the	occurrence	of	a	critical	fault	in	one	of	the	three	sections.	If	the	fault	is
equally	likely	to	be	in	any	of	the	three	sections,	calculate	the	probability	that	after
inspecting	the	first	section	of	the	system,	the	fault	will	not	be	discovered	there.

Solution
Let	Ai	(i = 1,	2,	3)	denote	the	event	the	fault	is	in	the	ith	section.	Because	the	fault	is
equally	likely	to	be	in	any	of	the	three	sections,	 .

Let	B	be	the	event	‘after	inspecting	the	first	section,	the	fault	will	not	be	discovered
there’.

This	event	is	a	union	of	the	following	three	mutually	exclusive	and	exhaustive	events:	(i)
the	fault	is	in	the	first	section,	and	the	search	in	the	first	section	will	fail	to	discover	it;	(ii)
the	fault	is	in	the	second	section,	and	the	search	in	the	first	section	will	fail	to	discover	it;
and	(iii)	the	fault	is	in	the	third	section,	and	the	search	in	the	first	section	will	fail	to
discover	it.	The	probability	that	the	fault	will	not	be	discovered	in	the	first	section	given
that	it	resides	in	the	first	section	is	 .	The	probability	that	the	fault	will
not	be	discovered	in	the	first	section	given	that	it	resides	in	the	second	section	is	

.	Similarly,	the	probability	that	the	fault	will	not	be	discovered	in	the	first
section	given	that	it	resides	in	the	third	section	is	 .

According	to	the	total	probability	theorem,	the	probability	P(B)	of	event	B	is	equal	to	the
sum	of	probabilities	of	these	three	mutually	exclusive	and	exhaustive	events:

In	some	important	cases	where	the	total	probability	is	known,	the	total	probability
theorem	can	be	used	to	estimate	the	unconditional	probability	of	one	of	the	events.	Here	is
an	example	illustrating	this	application.



Example

A	detection	method	indicates	a	fault	with	probability	0.7,	given	that	the	fault	is	present	in
the	component	and	gives	a	false	indication	of	a	fault	with	probability	0.1,	given	that	the
fault	is	not	present	in	the	component.	For	a	particular	batch	of	components,	the	inspection
method	indicates	that	35%	of	the	components	are	faulty.	What	is	the	actual	percentage	of
faulty	components	in	the	batch?

Solution
Let	B	denote	the	event	the	method	indicates	a	faulty	component	and	A	denote	the	event
the	component	is	faulty.

Because	events	A	and	Ā	are	complementary,	they	partition	the	probability	space,	
	and	 .	According	to	the	total	probability	theorem,

Because	 ,	this	equation	can	also	be	presented	as

The	probabilities	 ,	 	and	 	are	known.	The	unknown
probability	is	P(A).	From	the	last	equation,	the	following	expression	is	obtained	for	the
unknown	probability	P(A):

Substituting	the	known	values	in	this	expression	gives

There	are	approximately	42%	faulty	components	in	the	batch.



Figure	2.13	(a)	A	functional	diagram	and	(b)	reliability	network	of	the	generic	comparator

Figure	2.14	Depending	on	whether	the	signal	cable	is	working,	the	initial	reliability	network
of	the	comparator	decomposes	into	two	reliability	networks	(a)	and	(b)



Figure	2.15	The	event	S	(the	comparator	works	on	demand)	is	the	union	of	two	mutually
exclusive	events:	 	and	



Figure	2.16	The	event	S	(system	is	working	on	demand)	can	be	presented	as	a	union	of	four
mutually	exclusive	events



Figure	2.17	A	dual	control	system	including	control	modules	CM1	and	CM2,	switches	K1–K8
and	operating	devices	S1–S4.	The	event	S	(system	is	working	on	demand)	can	be	presented	as	a
union	of	four	mutually	exclusive	events
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Figure	2.18	Basic	resultant	reliability	networks	as	a	result	of	the	conditioning	of	the	initial
reliability	network	on	the	states	of	the	control	modules	CM1	and	CM2:	(a)	both	control
modules	working	and	(b)	exactly	one	of	the	control	modules	working

2.5	Reliability	and	Risk	Modelling	Using	Bayesian
Transform	and	Bayesian	Updating
2.5.1	Bayesian	Transform
Suppose	now	that	 	are	n	mutually	exclusive	and	exhaustive	events,	where	P(Ai)	are
the	prior	probabilities	of	Ai	before	testing.	B	is	an	observation	characterised	by	a	probability
P(B).	Let	 	denote	the	probability	of	the	observation	B,	given	that	event	Ai	has
occurred.	From	the	definition	of	conditional	probability	(see	also	Appendix	A),

Since	 ,	the	Bayes’	formula	(Bayes’	transform)	is	obtained
(DeGroot,	1989):

The	Bayesian	formula	2.48	is	useful,	because	 	is	easier	to	calculate	than	 .	Its
application	in	reliability	and	risk	modelling	will	be	illustrated	by	two	basic	examples.	The
first	example	is	similar	to	an	example	related	to	diagnostic	tests	discussed	by	Parzen	(1960).
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Example

The	probability	of	a	critical	fault	in	an	electronic	safety	equipment	is	0.01.	It	is	known
that	in	90%	of	the	cases,	if	a	fault	is	present,	an	alarm	will	indicate	the	presence	of	the
fault.	It	is	also	known	that	in	10%	of	the	cases,	where	no	fault	is	present,	there	will	also
be	an	alarm	(a	false	alarm)	indicating	the	presence	of	a	fault.

What	is	the	probability	that	a	fault	will	be	present	given	that	there	has	been	a	fault	alarm?

Solution
Let	B	denote	the	event	there	is	a	fault	alarm	and	A	the	event	a	fault	is	present.

Because	events	A	and	Ā	are	complementary,	they	partition	the	probability	space,	
	and	 .	According	to	the	total	probability	theorem,

From	the	Bayes’	formula,

After	substituting	the	numerical	values,	the	probability

is	obtained.	Note	that	in	only	about	8%	of	the	cases	where	there	has	been	a	fault	alarm	a
fault	is	actually	present.

Exercise

ExerciseIn	a	large	batch	of	seals,	30%	of	the	seals	are	faulty.	Given	that	a	seal	is	fault-
free,	it	passes	a	pressure	test	with	probability	0.9.	If	the	seal	is	faulty,	this	probability	is
only	0.4.	Calculate	the	probability	that	from	two	seals,	each	of	which	has	passed	the
pressure	test,	at	least	one	of	them	will	be	faulty.

2.5.2	Bayesian	Updating
Very	often,	prior	belief	or	statistics	exists	about	the	distribution	of	a	particular	random
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parameter	Θ.	The	possible	values	of	the	parameter	Θ	are	θ1,	θ2,	…,	θn	and	the	probabilities
with	which	these	values	are	accepted	are	P(θ1),	P(θ2),	…,	P(θn).	This	will	be	referred	to	as
‘prior	distribution’	of	the	random	parameter	Θ.

The	likelihoods	 	related	to	a	particular	experimental	outcome	η	given	that	the
parameter	Θ	accepts	a	particular	value	θi	( )	are	also	known.	If	an	outcome	η	of	the
experiment	is	available,	the	prior	distribution	of	the	parameter	Θ	can	be	updated	by	using
Bayesian	updating.

According	to	the	total	probability	theorem,	the	probability	P(η)	of	the	outcome	η	is	given	by

Applying	the	Bayes’	transform	gives	updated	probability	distribution	of	the	parameter	Θ:

Reliability	and	risk	modelling	using	Bayesian	updating	will	be	illustrated	by	an	example.

Example

ExampleA	supplier	produces	a	particular	electrical	power	device	whose	strength	against
lightning	and	switching	surges	is	tested	by	a	high-impulse	voltage	test.	Because	of
uncontrolled	variation	in	the	manufacturing	process,	the	supplier	produces	high-reliability
batches	which	survive	the	high-impulse	voltage	test	with	probability	0.9	and	low-
reliability	batches	which	survive	the	high-impulse	voltage	test	with	probability	0.6.

A	batch	of	electrical	power	devices	has	been	delivered	to	a	customer,	but	it	is	not	known
whether	the	devices	are	from	a	high-reliability	or	a	low-reliability	batch.	What	is	the
probability	that	a	particular	batch	will	be	a	high-reliability	batch,	given	that	the	device
taken	from	the	batch	has	survived	the	test?

Solution
The	random	discrete	parameter	Θ	standing	for	the	reliability	of	the	batch	can	accept
values	θH	or	θL	which	stand	for	(i)	high-reliability	and	(ii)	low-reliability	batch,
correspondingly.

Because,	before	the	test,	it	is	unknown	whether	the	batch	is	a	high-	or	low-reliability
batch,	the	probabilities	of	the	events	θH	and	θL	that	the	device	is	from	a	high-	or	low-

reliability	batch	can	be	assumed	to	be	 	and	 ,	respectively.	Let	η1



denote	the	event	‘the	device	has	survived	the	high-voltage	test’.	After	the	test,	the
probabilities	P(θi)	can	be	modified	(updated)	formally	through	the	Bayes’	theorem,	in	the
light	of	the	outcome	η1	from	the	high-voltage	test.	Since	the	total	probability	of	surviving
the	test	is

The	probability	 	that	the	component	comes	from	a	high-reliability	batch	given
that	it	has	survived	the	test	is

Thus,	as	result	of	the	test,	our	confidence	that	the	batch	is	a	high-reliability	batch
increased	from	 	to	 .	The	new	belief	about	the
probability	distribution	related	to	the	reliability	of	the	batch	Θ	is	now	
and	 .	This	is	the	posterior	distribution	of	the	parameter	Θ,	obtained
after	the	outcome	of	the	experiment	η1.

Suppose	that	a	second	experiment	η2	is	made	and	the	new	tested	device	from	the	same
batch	also	survives	the	high-impulse	voltage	test.	The	posterior	distribution	obtained	after
the	first	test	( ;	 )	can	now	be	used	as	a	new	prior
distribution	for	the	reliability	of	the	batch	Θ	( ;	 ).

The	total	probability	that	a	component	from	the	same	batch	will	survive	the	second	test	is

The	probability	 	that	the	batch	of	components	is	a	high-reliability	batch	given
that	a	second	component	from	the	batch	has	survived	the	test	is

Thus,	as	result	of	the	second	test,	our	confidence	that	the	batch	of	devices	is	a	high-
reliability	batch	increased	from	 	to	 .	The	new	belief	about	the
probability	distribution	related	to	the	reliability	of	the	batch	Θ	after	the	second	test	is	now

	and	 .	This	is	the	posterior	distribution	of	the
reliability	of	the	batch	Θ	obtained	after	the	outcome	from	the	second	test	η2.	This
posterior	distribution	can	now	be	assumed	to	be	the	new	prior	distribution,	and	further
tests	can	be	conducted.



In	this	way,	the	Bayesian	updating	technique	provides	an	important	mechanism	for
revising	prior	knowledge	(belief)	about	the	distribution	of	a	particular	parameter	with	the
outcomes	of	experiments.	The	result	is	new,	more	precise	knowledge	about	the
distribution	of	the	parameter	and	more	precise	assessment	of	reliability	and	risk.



3
Common	Reliability	and	Risk	Models	and	Their
Applications

3.1	General	Framework	for	Reliability	and	Risk	Analysis
Based	on	Controlling	Random	Variables
The	factors	controlling	reliability	are	material	strength,	operating	loads,	dimensional	design
parameters,	voltage,	current,	distributions	of	defects,	residual	stresses,	service	conditions	(e.g.
extremes	in	temperature)	and	environmental	effects	(e.g.	corrosion).	These	factors	are
commonly	associated	with	a	great	deal	of	uncertainty	and	they	are	essentially	random	factors.

Each	random	factor	controlling	reliability	can	be	modelled	by	a	discrete	or	a	continuous
random	variable	which	will	be	referred	to	as	controlling	random	variable.	The	controlling
random	variables	can	in	turn	be	functions	of	other	random	variables.	Strength,	for	example,	is	a
controlling	random	variable	which	is	a	function	of	material	properties,	design	configuration
and	dimensions:

Modelling	based	on	random	variables	is	a	powerful	technique	in	reliability.	Some	of	the
properties	of	random	variables	and	operations	with	random	variables	are	discussed	in
Appendix	B.	The	general	algorithmic	framework	for	reliability	and	risk	analysis,	based	on
random	variables,	can	be	summarised	in	the	following	steps:

Identify	all	basic	random	factors	controlling	reliability	and	risk.

Define	controlling	random	variables	corresponding	to	the	basic	factors.

Select	appropriate	statistical	models	for	the	controlling	random	variables.

Update	the	model	parameters	in	the	light	of	new	observations.

Build	a	reliability	and	risk	model	incorporating	the	statistical	models	of	the	controlling
random	variables.

Test	the	quality	of	the	model	(e.g.	by	conducting	sensitivity	analysis).

Solve	the	model	using	analytical	or	numerical	techniques.

Generate	uncertainty	bounds	of	the	results	predicted	from	the	model,	for	example,	by	a
Monte	Carlo	simulation	or	probability	calculus.

3.2	Binomial	Model
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Consider	the	following	common	engineering	example.

Example

A	system	supplying	cooling	fluid	for	a	chemical	reactor	consists	of	five	identical	pumps
connected	in	parallel	as	shown	in	Figure	3.1.	The	pumps	work	and	fail	independently
from	one	another.	The	capacity	of	each	pump	is	10	litres	per	second,	and	the	probability
that	a	pump	will	be	in	working	state	on	demand	is	0.95.	To	control	the	chemical	reaction,
the	pumps	must	supply	at	least	30	litres	per	second.	What	is	the	probability	that	on
demand	there	will	be	at	least	30	litres	per	second	fluid	supply?

Another	similar	example	is	the	following.

Example

Suppose	that	a	system	for	detecting	a	particular	harmful	chemical	substance	is	composed
of	n = 5	identical	sensors,	detecting	a	chemical	release	with	probability	p = 0.8,
independently	of	one	another.	In	order	to	avoid	a	false	alarm,	at	least	m = 2	sensors	must
detect	the	chemical	release	in	order	to	activate	a	shut-down	system	(Figure	3.2).	What	is
the	probability	that	the	shut-down	system	will	be	activated	in	case	of	a	release	of	the
harmful	substance?

A	common	feature	of	these	problems	is:

A	fixed	number	of	identical	trials.

Each	trial	results	either	in	success	(e.g.	the	component	is	working)	or	failure	(e.g.	the
component	is	not	working).

All	trials	are	statistically	independent,	that	is,	the	probability	that	a	component	will	be
working	does	not	depend	on	the	state	(e.g.	working	or	failed)	of	other	components.

The	probability	of	success	in	each	trial	(the	probability	that	a	component	will	be
working)	is	the	same.

These	common	features	define	the	so-called	binomial	experiment.	The	number	of
successful	outcomes	from	a	binomial	experiment	is	given	by	the	binomial	distribution	–	a
probability	distribution	of	fundamental	importance.

In	mathematical	terms,	if	X	is	a	discrete	random	variable	denoting	the	number	of
successes	during	n	trials,	its	distribution	is	given	by
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( ),	where	 	stands	for	the	probability	of	exactly	x	successes	out	of	n
trials.

Suppose	that	there	are	n = 4	statistically	independent	trials	and	the	probability	of	success
in	each	trial	is	p.	Consider	all	sequences	which	lead	to	X = 2	number	of	successes.	There
are	six	mutually	exclusive	sequences	which	lead	to	two	successes	out	of	four	trials.	If	‘1’
denotes	‘success’	and	‘0’	denotes	‘failure’,	the	mutually	exclusive	distinct	sequences	are
0011,	0101,	0110,	1001,	1010	and	1100.	The	number	of	these	sequences	is	equal	to	the
number	of	combinations	of	two	out	of	four,	which	is	equal	to	 .

Because	each	success	occurs	with	probability	p,	the	probability	of	each	distinct	sequence
is	the	same,	equal	to	 ,	because	two	successes	are	combined	with	two	failures.
At	the	end	of	any	particular	set	of	n	trials,	only	one	sequence	can	occur.	Therefore,	the
separate	sequences	are	mutually	exclusive	events.	The	probability	of	two	successes	out	of
n	trials	is	equal	to	the	probability	of	the	union	of	all	events	leading	to	two	successes	out
of	n	trials.	However,	the	separate	events	(sequences)	leading	to	two	successes	out	of	four
trials	are	mutually	exclusive,	and	the	probability	of	their	union	is	equal	to	the	sum	of	their
probabilities.	Consequently,	the	probability	of	two	successes	out	of	four	trials	is	equal	to	

.

This	result	is	easily	generalised	for	x	successes	out	of	n	trials.	Indeed,	the	probability	of
any	particular	sequence	of	x	successes	and	n − x	failures	is	given	by	the	product	

	of	probabilities	characterising	n	statistically	independent	events:	x	successes
each	characterised	by	a	probability	p	and	n − x	failures,	each	characterised	by	a
probability	1 − p.	There	are	 	distinct	sequences	yielding	x	successes	and	n 
− x	failures.	The	realisations	of	the	particular	sequences	are	mutually	exclusive,	that	is,
only	one	particular	sequence	can	occur	at	the	end	of	the	n	trials.	The	sum	of	the
probabilities	characterising	all	mutually	exclusive	sequences	yielding	x	successes	and	n 
− x	failures	is	given	by	 	which	is	Equation	3.1.

In	Figure	3.3,	the	binomial	distribution	has	been	illustrated	by	three	binomial	experiments,
each	of	which	involves	10	sequential,	statistically	independent	trials.	The	binomial
experiments	are	characterised	by	a	constant	probability	of	success	in	each	trial,	equal	to	

	for	the	first	binomial	experiment,	 	for	the	second	binomial	experiment	and	
	for	the	third	binomial	experiment.

The	probability	of	obtaining	a	number	of	successes	greater	than	or	equal	to	a	particular
number	m	is

Equation	3.2	gives	in	fact	the	sum	of	the	probabilities	of	the	following	mutually	exclusive
events:	‘exactly	m	successes	at	the	end	of	the	n	trials’,	whose	probability	is



(3.3)

‘exactly	m + 1	successes	at	the	end	of	the	n	trials’,	whose	probability	is

…	and	‘exactly	n	successes	at	the	end	of	the	n	trials’,	whose	probability	is

(note	that	 ).

The	mean	of	a	random	variable	X	which	follows	a	binomial	distribution	with	a	number	of
trials	n	and	probability	of	success	in	each	trial	p	is	 ,	and	the	variance	is	

	(Miller	and	Miller,	1999).

Going	back	to	the	‘chemical	reactor	example’	stated	that	at	the	beginning	of	this	chapter,
the	probability	that	the	total	amount	of	supplied	cooling	fluid	on	demand	will	be	at	least
30 l/s	is	equal	to	the	probability	that	at	least	three	pumps	will	be	working	at	the	time	of
demand.	Substituting	the	numerical	values	n = 5,	m = 3	and	p = 0.95	in	Equation	3.2	results
in

For	a	binomial	experiment	involving	n	trials,	the	probability	that	the	number	of	successes
will	be	smaller	than	or	equal	to	a	specified	number	 	is	given	by	the	binomial
cumulative	distribution	function

Equation	3.3	is	in	fact	a	sum	of	probabilities	of	the	following	mutually	exclusive	events	at
the	end	of	the	n	trials:	‘zero	successes’,	characterised	by	a	probability

‘exactly	one	success’,	characterised	by	a	probability



…	and	‘exactly	r	successes’,	characterised	by	a	probability

Going	back	to	the	‘chemical	sensors	example’,	the	number	of	sensors	X	detecting	the	toxic
gas	release	can	be	modelled	as	an	outcome	from	a	binomial	experiment	with	parameters	

	and	 .	The	probability	of	at	least	m = 2	sensors	working	is	
.

Since

the	probability	of	detecting	the	gas	leak	is

Figure	3.1	Functional	diagram	of	the	system	supplying	cooling	fluid



Figure	3.2	A	system	which	works	if	at	least	m	components	work





Figure	3.3	Binomial	probability	density	distributions	associated	with	three	binomial
experiments	with	the	same	number	of	trials	n = 10	and	different	probability	of	success	p	in	a
single	trial:	(a)	p = 0.1,	(b)	p = 0.5	and	(c)	p = 0.8

3.2.1	Application:	A	Voting	System
An	important	application	of	the	binomial	distribution	is	in	constructing	and	evaluating	voting
systems.

Suppose	that	a	component	A	receiving	a	particular	input	produces	an	error	with	probability	p
(Figure	3.4).	The	probability	of	an	error	can	be	reduced	by	creating	a	voting	system.	Voting	is
based	on	replicating	the	initial	component	A	to	n	identical	components,	each	of	which	receives
the	same	input	as	the	original	component	(Figure	3.4).

Figure	3.4	A	voting	system	reduces	significantly	the	probability	of	an	error	output

Each	component	operates	independently	from	the	others,	and	with	probability	p,	the	component
produces	an	error	in	its	output.	All	outputs	from	the	separate	components	are	collected	by	a
voter	device	V	(Figure	3.4).	Suppose	that	the	output	of	the	voter	device	is	determined	by	the
majority	vote	of	the	components’	outputs.	In	other	words,	in	order	for	the	voter	to	produce	an
error	output,	more	than	half	of	the	components	must	produce	an	error	output.	For	the	special
case	of	 	identical	components,	at	least	k + 1	outputs	must	be	error	outputs.	The
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distribution	of	the	number	of	error	outputs	X	is	given	by	the	binomial	distribution	3.1.	The
probability	that	the	number	or	error	outputs	will	be	greater	than	or	equal	to	k + 1	is	given	by

For	 	and	 ,	for	example,	the	probability	of	erroneous	output	is

As	a	result,	the	relatively	high	probability	of	an	error	output	of	 	characterising	a	single
component	has	been	decreased	333	times	by	using	a	voting	system.Exercise

Exercise

A	particular	manufacturer	produces	capacitors,	12%	of	which	are	defective.	Five
capacitors	are	purchased	from	this	manufacturer.

What	is	the	probability	that	among	the	purchased	capacitors,	there	will	be	at	least	four
non-defective	capacitors?

What	is	the	minimum	number	of	capacitors	that	need	to	be	purchased	so	that	the
probability	that	there	will	be	at	least	four	non-defective	capacitors	is	at	least	99%?
Exercise

Exercise

The	eight-wheel	vehicle	on	Figure	3.5	is	on	a	mission.	With	a	reasonable	accuracy,	the
failures	of	the	separate	tyres	can	be	considered	to	be	statistically	independent	events.
Each	tyre	has	a	chance	of	20%	to	suffer	failure	during	the	mission.	To	be	capable	of
travelling	without	stopping,	at	least	three	tyres	on	the	left	side	and	at	least	three	tyres	on
the	right	side	of	the	vehicle	must	be	operational.	Calculate	the	probability	that	the	vehicle
will	fulfil	its	mission	without	stopping.



Figure	3.5	An	eight-wheel	vehicle	which	is	operational	if	at	least	three	tyres	on	the	left	side
(L)	and	at	least	three	tyres	on	the	right	side	(R)	are	operational

3.3	Homogeneous	Poisson	Process	and	Poisson
Distribution
A	binomial	experiment	is	considered,	where	the	number	of	trials	n	tends	to	infinity	and	the
probability	of	success	p	in	each	trial	tends	to	zero	in	such	a	way	that	the	mean	np	of	the
binomial	distribution	remains	finitely	large.	Assume	that	the	trials	in	the	binomial	experiment
are	performed	within	n	infinitesimally	small	time	intervals	with	length	Δ.	A	single	experiment
in	each	interval	is	performed,	which	results	in	either	success	or	failure	(Figure	3.6).	The	empty
cells	in	Figure	3.6	correspond	to	‘failure’,	while	the	filled	cells	correspond	to	‘success’.

Figure	3.6	Trials	of	a	binomial	experiment	performed	within	small	time	intervals	with	lengths
Δ

If	the	probability	of	success	is	equal	to	p	and	the	number	of	cells	is	n,	the	expected	number	of
successes	is	np.	If	λ	is	the	number	density	of	the	successes,	alternatively,	the	expected	number
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of	successes	is	also	equal	to	λt,	where	λ	is	the	number	density	of	the	successes	per	unit	time
interval.	Consequently,	the	relationship

holds	on	the	finite	time	interval	(0,	t).	The	probability	density	function	of	the	binomial
distribution	can	be	presented	as

Since	n	tends	to	infinity	and	p	tends	to	zero,	 .
The	number	of	successes	x	is	finitely	large;	therefore,	 .

Since

finally,

is	obtained	for	the	probability	of	exactly	x	successes	in	n	trials.	This	is	the	probability	density
function	of	the	Poisson	distribution	describing	the	distribution	of	the	number	of	occurrences
from	a	homogeneous	Poisson	process.	The	homogeneous	Poisson	process	is	a	limiting	case	of
a	binomial	experiment	with	parameters	n	and	 	when	 .	In	other	words,	a
binomial	experiment	with	a	large	number	of	trials	n	and	a	small	probability	of	success	p	in
each	trial	can	be	approximated	reasonably	well	by	a	homogeneous	Poisson	process	with
intensity	 .

The	homogeneous	Poisson	process	is	an	important	model	for	random	events.	It	exists	whenever
the	following	conditions	are	fulfilled:

The	numbers	of	occurrences	in	non-overlapping	intervals/regions	are	statistically
independent.

The	probability	of	an	occurrence	in	intervals/regions	of	the	same	size	is	the	same	and
depends	only	on	the	size	of	the	interval/region	but	does	not	depend	on	its	location.

The	probability	of	more	than	one	occurrence	in	a	vanishingly	small	interval/region	is
negligible.
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For	a	homogeneous	Poisson	process,	the	intensity	is	constant	( )	and	so	is	the	mean
number	λt	of	occurrences	in	the	interval	0,	t.	Since	the	Poisson	distribution	is	a	limiting	case	of
the	binomial	distribution,	its	mean	 	and	its	variance	 	are	the	same.
Indeed,	because	if	 ,	 	and	 ,	then	 .

If	a	homogeneous	Poisson	process	with	intensity	λ	is	present,	the	distribution	of	the	number	of
successes	(occurrences)	in	the	time	interval	(0,	t)	is	given	by	the	Poisson	distribution	(3.7).
The	probability	of	r	or	fewer	occurrences	in	the	finite	time	interval	(0,	t)	is	given	by	the
cumulative	Poisson	distribution	function:

The	Poisson	process	and	the	Poisson	distribution	are	used	frequently	as	statistical	models
(Thompson,	1988).	The	homogeneous	Poisson	process,	for	example,	can	be	used	as	a	model	of
randomly	distributed	defects	in	a	spatial	domain.	In	this	case,	the	random	occurrences	are
locations	of	defects.	Various	other	applications	of	the	homogeneous	Poisson	process	are	shown
in	Figure	3.7.

Example

ExampleFailures	of	a	repairable	system	are	described	well	by	a	homogeneous	Poisson
process	with	intensity	five	average	number	of	failures	per	year	(365	days).

What	is	the	probability	that	the	system	will	not	fail	in	the	next	24	hours?

Solution

The	failure	density	is	 .	For	the	expected	number	of	failures
during	1	day	of	operation	(24	hours),	 	is	obtained.

According	to	Equation	(3.7),	the	probability	that	the	system	will	not	fail	in	the	next	24
hours	is



Exercise

Exercise	A	system	incorporates	a	number	of	identical	electric	motors	which	suffer	random
failures	following	a	homogeneous	Poisson	process,	with	density	three	failures	per	year,
characterising	all	electrical	motors	in	operation.	If	an	electric	motor	fails	and	a	spare
electric	motor	is	available,	the	downtime	for	replacement	of	the	electric	motor	is	only	1
hour.	If	no	spare	electric	motor	is	available,	the	ordering	of	a	new	electric	motor	and	its
shipping	take	more	than	2	weeks	during	which	time	the	system	is	not	operating.	To	reduce
the	risk	of	delay	in	the	system’s	operation,	one	electric	motor	is	kept	as	a	spare	part.	What
is	the	probability	that	within	6	months	of	operation	of	the	system,	there	will	be	a	delay	by
more	than	2	weeks	to	replace	a	failed	electric	motor?

Solution
The	probability	of	a	downtime	of	more	than	2	weeks	is	equal	to	the	probability	of	two	or
more	than	two	failures	during	6	months	of	operation.	The	probability	 	that	for	a
period	of	6	months	of	operation,	there	will	be	two	or	more	than	two	failures	is	equal	to	1
–	the	probability	 	that	there	will	be	no	more	than	one	failure:	

.

For	6	months	of	operation,	 .

The	probability	 	can	be	calculated	from	the	cumulative	Poisson	distribution:

The	probability	that	there	will	be	more	than	one	failure	within	6	months	of	operation	is

This	is	also	the	probability	of	a	delay	by	more	than	2	weeks.



Exercise

ExerciseFailures	of	identical	valves	in	a	particular	system	follow	a	homogeneous	Poisson
process	with	density	0.8	failures	per	year.	Calculate	the	minimum	number	of	spare	valves
needed	to	guarantee	with	probability	of	at	least	95%	that	there	will	be	a	spare	valve
available	after	each	failure,	during	2.5	years	of	operation.

Figure	3.7	Various	applications	of	the	homogeneous	Poisson	process

3.4	Negative	Exponential	Distribution
Suppose	that	the	occurrences	of	the	random	events	in	any	specified	time	interval	with	length	t
is	a	homogeneous	Poisson	process	with	density	λ.	The	probability	f(x)	of	x	occurrences	in	the
interval	0,	t	is	then	given	by	the	Poisson	distribution:

The	probability	that	there	will	be	no	occurrences	in	the	time	interval	(0,	t)	is	obtained	by
substituting	 	(zero	number	of	occurrences)	in	the	above	equation:
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Consequently,	the	probability	of	at	least	one	occurrence	in	the	time	interval	(0,	t)	is	given	by	
.	This	is	also	the	probability	that	the	time	T	to	the	first	occurrence	will	be	smaller

than	t:

As	result,	the	distribution	of	the	time	to	the	first	occurrence	is	given	by	the	negative
exponential	distribution	(3.9).	If	the	times	between	the	occurrences	follow	the	negative
exponential	distribution,	the	number	of	occurrences	follows	a	homogeneous	Poisson	process
and	vice	versa.

Suppose	that	a	component/system	experiences	random	shocks	which	follow	a	homogeneous
Poisson	process	with	density	λ.	The	time	intervals	between	the	shocks	t1,	 ,	 ,	…	in
the	finite	time	interval	with	length	a	(Figure	3.8)	then	follow	the	negative	exponential
distribution	 .

Figure	3.8	Times	of	successive	failures	in	a	finite	time	interval	with	length	a

Suppose	that	each	shock	exceeds	the	strength	of	the	component/system	and	causes	failure.	The
reliability	R	associated	with	a	finite	time	interval	with	length	t	is	then	equal	to	the	probability	

	that	there	will	be	no	shocks	within	the	specified	time	t.	Consequently,	the	time	to
failure	of	the	component	will	be	given	by	the	negative	exponential	distribution	(3.9).

This	is	an	important	application	of	the	negative	exponential	distribution	for	modelling	the	times
to	failure	of	components	and	systems	which	fail	whenever	a	random	load	exceeds	the	strength
of	the	component/system.

Another	reason	for	the	importance	of	the	negative	exponential	distribution	is	that	it	is	an
approximate	limit	failure	law	for	complex	systems	containing	a	large	number	of	components
which	fail	independently	and	whose	failures	lead	to	a	system	failure	(Drenick,	1960).

The	probability	density	function	of	the	time	to	failure	is	obtained	by	differentiating	the
cumulative	distribution	function	(3.9)	with	respect	to	time	t	( )	(Figure	3.9):



Figure	3.9	Probability	density	function	of	the	negative	exponential	distribution

The	negative	exponential	distribution	applies	whenever	the	probability	of	failure	in	a	small
time	interval	practically	does	not	depend	on	the	age	of	the	component.	It	describes	the
distribution	of	the	time	to	failure	of	a	component/system	characterized	by	a	failure	density	λ.

3.4.1	Memoryless	Property	of	the	Negative	Exponential	Distribution
If	the	time	to	failure	of	a	component	follows	the	negative	exponential	distribution,	the
probability	that	the	component	will	fail	within	a	specified	time	interval	is	the	same,
irrespective	of	whether	the	component	has	been	used	for	some	time	or	has	just	been	put	in	use.
In	other	words,	the	probability	that	the	life	of	the	component	will	be	greater	than	 ,	given
that	the	component	has	survived	time	t,	does	not	depend	on	the	age	t	of	the	component.	The
component	is	as	good	as	new.

Indeed,	let	A	denote	the	event	the	component	will	survive	time	 .	Let	B	denote	the	event
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the	component	has	survived	time	t.	The	probability	 	that	the	component	will	survive
time	 	given	that	it	has	survived	time	t	can	be	determined	from	the	conditional	probability
formula	 :

where	 	is	the	probability	that	the	component	will	survive	time	t.	From	Equation
3.11,	it	follows	that	the	probability	that	the	component	will	survive	a	time	interval	t + Δt	given
that	it	has	survived	time	t	is	always	equal	to	the	probability	that	the	component	will	survive	the
time	interval	Δt,	starting	from	the	start	of	operation	( ).	This	is	the	so-called	memoryless
property	of	the	negative	exponential	distribution.

3.5	Hazard	Rate
Suppose	that	the	probability	of	failure	in	the	elementary	time	interval	 ,	given	that	the
component	has	survived	time	t,	depends	on	the	age	of	the	component	and	is	given	by	h(t)Δt,
where	h(t)	will	be	referred	to	as	hazard	rate.	Again,	let	the	time	interval	t	be	divided	into	a
large	number	n	of	small	intervals	with	lengths	 ,	such	as	shown	in	Figure	3.10.

Figure	3.10	A	time	interval	(0,	t)	divided	into	n	small	intervals	with	lengths	Δt

Consider	the	nth	time	interval.	By	definition,	the	probability	of	failure	in	this	interval,	given
that	all	previous	time	intervals	have	been	survived,	is	hnΔt,	where	hn	approximates	the	hazard
rate	in	the	nth	time	interval.	Consequently,	the	probability	of	surviving	the	nth	interval	given
that	all	previous	time	intervals	have	been	survived	is	 .	Let	A	denote	the	event	‘surviving
all	n − 1	elementary	time	intervals	and	B	denote	the	event	surviving	the	last	(nth)	elementary
time	interval.	According	to	the	formula	 	expressing	the	probability
of	intersection	of	two	dependent	events	A	and	B,	the	absolute	probability	of	surviving	the	last
time	interval	Rn	is	a	product	of	the	probability	 	of	surviving	n − 1	elementary	time
intervals	and	the	conditional	probability	 	of	surviving	the	last	elementary
time	interval,	given	that	all	previous	n − 1	elementary	time	intervals	have	been	survived:

The	same	reasoning	can	be	applied	to	define	 	–	the	probability	of	surviving	the	(n − 1)st
elementary	time	interval
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Finally,

and

are	obtained,	where	 	approximate	the	hazard	rate	function	h(t)	in	the
corresponding	small	time	intervals	with	lengths	Δt.

Substituting	back	Equation	3.15	into	Equation	3.14	and	so	on,	until	a	substitution	into	Equation
3.12	is	finally	made,	gives

for	the	probability	Rn	that	the	component	will	survive	the	time	interval	(0,t).

Equation	3.16	can	also	be	presented	as

For	 ,	 	and	considering	that	for	 ,	 ,
Equation	3.16	becomes

where	ν	is	a	dummy	integration	variable.	The	integral	 	in	Equation	3.17	is	also
referred	to	as	cumulative	hazard	rate.	Using	the	cumulative	hazard	rate,	reliability	can	be
presented	as	(Barlow	and	Proschan,	1975)

Reliability	R(t)	can	be	increased	by	decreasing	the	hazard	rate	h(t),	which	decreases	the	value
of	the	cumulative	hazard	rate	H(t).	Correspondingly,	the	cumulative	distribution	of	the	time	to
failure	becomes

If	the	hazard	rate	h(t)	increases	with	age,	the	cumulative	distribution	of	the	time	to	failure	is
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known	as	an	increasing	failure	rate	(IFR)	distribution.	Alternatively,	if	the	hazard	rate	h(t)	is
a	decreasing	function	of	t,	the	cumulative	distribution	of	the	time	to	failure	is	known	as	a
decreasing	failure	rate	(DFR)	distribution.

If	the	hazard	rate	is	constant,	the	negative	exponential	distribution	is	obtained	from	Equation
3.17.	The	negative	exponential	distribution	is	a	constant	failure	rate	(CFR)	distribution.
Indeed,	for	 ,	the	cumulative	hazard	rate	becomes

and	the	cumulative	distribution	function	of	the	time	to	failure	is	given	by	the	negative
exponential	distribution	(3.9).	Consequently,	the	time	to	failure	of	a	component	is	given	by	the
negative	exponential	distribution	if	the	probability	λΔt	that	a	component/system	will	fail	within
the	elementary	time	interval	 ,	given	that	the	component	has	survived	time	t,	does	not
depend	on	the	age	t	of	the	component.

This	is	a	realistic	assumption	which	holds	for	many	electrical	and	mechanical	components
which	have	passed	an	initial	period	of	work	but	have	not	yet	entered	a	stage	of	wearout	and
degradation.	Failures	of	such	components	are	caused	by	random	factors	(e.g.	random
overstress)	whose	frequency	does	not	depend	on	the	age	of	the	component.

The	hazard	rate	can	also	be	presented	as	a	function	of	the	probability	density	f(t)	of	the	time	to
failure.	Indeed,	the	probability	of	failure	in	the	time	interval	 	is	given	by	f(t)Δt,	which
is	equal	to	the	probability	 	of	the	compound	event	that	the	component	will	survive
time	t	and	after	that	will	fail	in	the	small	time	interval	 	(Figure	3.11).

Figure	3.11	Time	to	failure	in	the	small	time	interval	

Equating	the	two	probabilities	results	in

from	which

Since	 ,	where	R(t)	is	the	reliability	function,	Equation	3.22	can	also	be	presented
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as

Integrating	both	sides	of	Equation	3.23	gives

Applying	the	initial	condition	 	yields	 	for	the	integration	constant	and	expressing
R(t)	from	the	above	equation	yields	Equation	3.17,	which	provides	an	important	link	between
the	reliability	associated	with	the	time	interval	(0,	t)	and	the	hazard	rate	function.

Example

ExampleWhat	is	the	expected	number	of	failures	among	100	electrical	components	during
1000	hours,	if	each	component	has	a	linear	hazard	rate	function	 ?

Solution
According	to	Equation	3.17,

For	 ,	the	reliability	is	 .	Since	the	probability	of
failure	is	 ,	the	expected	number	of	failures	among	the	100
components	is	 .

3.5.1	Difference	between	Failure	Density	and	Hazard	Rate
There	exists	a	fundamental	difference	between	the	failure	density	f(t)	and	the	hazard	rate	h(t).
Consider	an	initial	population	of	N0	items.	The	proportion	Δn/N0	of	items	from	the	initial
number	N0	that	will	fail	within	the	time	interval	 	is	given	by	 .	This	is
also	the	absolute	probability	of	failure	in	the	time	interval	 	of	a	randomly	selected
item	from	the	initial	population	of	N0	items.

Suppose	that	N(t)	gives	the	number	of	items	in	service	at	time	t.	The	proportion	Δn/N(t)	of
items	in	service	that	will	fail	in	the	time	interval	 	is	given	by	 .	This	is
the	probability	of	failure	in	the	time	interval	 	of	a	randomly	selected	item	from	the



(3.24)

(3.25)

population	of	N(t)	items	which	have	survived	time	t.	In	this	sense,	the	probability	of	failure
h(t)Δt	in	the	time	interval	 	is	a	conditional	probability	(conditional	on	surviving	the
time	t).	The	probability	of	failure	of	an	item	is	related	to	the	items	in	service,	not	to	the	initial
population	of	items	and	this	constitutes	the	fundamental	difference	between	the	hazard	rate	and
the	failure	density.

If	age	has	no	effect	on	the	probability	of	failure,	the	hazard	function	h(t)	will	be	constant	(
),	and	the	same	proportion	dn(t)/n(t)	of	items	in	service	is	likely	to	fail	within

the	interval	 .	Because	this	proportion	is	also	equal	to	 ,	the	relationship

holds,	where	dn(t)	and	dt	are	infinitesimal	quantities.	After	integrating	within	limits	(0,	t),	the
equation

is	obtained,	where	n0	is	the	initial	number	of	items.	The	probability	of	survival	of	time	t	is
therefore	given	by	 .	Consequently,	the	probability	of	failure	is
obtained	from	 	which	is	the	negative	exponential	distribution.

3.5.2	Reliability	of	a	Series	Arrangement	Including	Components	with
Constant	Hazard	Rates
The	reliability	of	a	system	with	components	logically	arranged	in	series	is	
where	 ,	…,	 	are	the	reliabilities	of	n	components	with	constant
hazard	rates	λ1,	λ2,	…,	λn.	The	failures	of	the	components	are	statistically	independent.
Substituting	the	component	reliabilities	in	the	system	reliability	formula	results	in

where	 .	As	a	result,	the	hazard	rate	of	the	system	is	a	sum	of	the	hazard	rates	of	the
separate	components.	The	times	to	failure	of	such	a	system	follow	a	homogeneous	Poisson

process	with	intensity	 .	This	additive	property	is	the	theoretical	basis	for	the	widely
used	parts	count	method	for	predicting	system	reliability	(Bazovsky,	1961;	MIL-HDBK-217F,
1991).	The	method	is	suitable	for	systems	including	independently	working	components,
logically	arranged	in	series,	where	failure	of	any	component	causes	a	system	failure.	If	the

components	are	not	logically	arranged	in	series,	the	system	hazard	rate	 	calculated
on	the	basis	of	the	parts	count	method	is	an	upper	bound	of	the	real	system	hazard	rate.	One
downside	of	this	approach	is	that	the	reliability	predictions	are	too	conservative.
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3.6	Mean	Time	to	Failure
An	important	reliability	measure	is	the	mean	time	to	failure	(MTTF),	which	is	the	average
time	to	the	first	failure.	Because	the	absolute	probability	of	failure	in	an	elementary	time
interval	 	is	given	by	f(t)dt,	where	 	is	the	failure	density	function,	the	MTTF	can
be	obtained	from	the	integral

The	integral	from	Equation	3.26	yields	the	following	inequality

where	ν	is	a	dummy	integration	variable.	Considering	that	 	holds,	expression
(3.27)	can	also	be	written	as

For	 ,	 .	In	addition,	 	for	 .	Consequently,	it	can	be
inferred	that	for	 ,	 .

The	integral	in	Equation	3.26	can	now	be	presented	as	 	which,	after	integrating	by	parts,
gives

Considering	that,	for	 ,	 	and,	for	 ,	 ,	the	MTTF	becomes

For	a	constant	hazard	rate	 ,

that	is,	for	a	negative	exponential	time	to	failure	distribution,	the	MTTF	is	the	reciprocal	of	the
hazard	rate.



The	MTTF	from	the	last	equation	is	valid	only	for	failures	characterised	by	a	constant	hazard
rate.	In	this	case,	the	probability	that	a	failure	will	occur	earlier	than	the	MTTF	is
approximately	63%.	Indeed,



Example

ExampleThe	MTTF	of	an	electronic	component	characterised	by	a	constant	hazard	rate	is
MTTF = 50 000	hours.	Calculate	the	probabilities	of	the	following	events:

i.	 The	electronic	component	will	survive	continuous	service	for	1	year.

ii.	 The	electronic	component	will	fail	between	the	fifth	and	the	sixth	year.

iii.	 The	electronic	component	will	fail	within	a	year	given	that	it	has	survived	the	end	of
the	fifth	year.	Compare	this	probability	with	the	probability	that	the	component	will
fail	within	a	year	given	that	it	has	survived	the	end	of	the	10th	year.

Solution

i.	 Since	 ,	the	hazard	rate	of	the	component	is	
.	Reliability	is	determined	from	 ,	and	the	probability

of	surviving	1	year	is

ii.	 The	probability	that	the	component	will	fail	between	the	end	of	the	fifth	and	the	end	of
the	sixth	year	can	be	obtained	from	the	cumulative	distribution	function	of	the	negative
exponential	distribution:

iii.	 Because	of	the	memoryless	property	of	the	negative	exponential	distribution,	the
probability	that	the	electronic	component	will	fail	within	a	year,	given	that	it	has
survived	the	end	of	the	fifth	year,	is	equal	to	the	probability	that	the	component	will
fail	within	a	year	after	having	been	put	in	use:

Similarly,	the	probability	that	the	component	will	fail	within	a	year	given	that	it	has
survived	the	end	of	the	10th	year	is	obtained	from

This	probability	is	equal	to	the	probability	from	the	previous	example	(as	it	should	be)
because	of	the	memoryless	property	of	the	negative	exponential	distribution.

3.7	Gamma	Distribution



Consider	k	components	whose	failures	follow	a	negative	exponential	time	to	failure
distribution	with	constant	hazard	rate	λ	and	a	system	built	with	these	components.	Such	is	the
k-fold	standby	system	in	Figure	3.12	which	consists	of	k	components	with	identical	negative
exponential	time	to	failure	distributions.	Component	ci	is	switched	in	immediately	after	the
failure	of	the	working	component	 .	The	system	fails	when	all	components	fail.	Because	the
time	to	failure	of	the	components	follows	a	negative	exponential	distribution	with	hazard	rate
λ,	the	number	of	component	failures	in	the	interval	(0,t)	follows	a	homogeneous	Poisson
process	with	intensity	λ.

Figure	3.12	A	k-fold	standby	system

The	distribution	of	the	time	to	failure	of	this	system	coincides	with	the	distribution	of	the	time
to	k	component	failures	and	can	be	derived	using	the	following	probabilistic	argument.	The
probability	F(t)	that	there	will	be	a	system	failure	before	time	t	is	equal	to	 ,	where	R(t)
is	the	probability	that	there	will	be	fewer	than	k	component	failures	before	time	t.	The
compound	event	fewer	than	k	failures	before	time	t	is	composed	of	the	following	mutually
exclusive	events:	no	failures	before	time	t,	exactly	one	failure	before	time	t,	…,	exactly	k − 1
failures	before	time	t.	The	probability	R(t)	is	then	a	sum	of	the	probabilities	of	these	mutually
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exclusive	events:

Equation	3.30	gives	the	reliability	of	a	k-fold	standby	system	with	perfect	switching.

The	probability	of	at	least	k	failures	before	time	t	is	given	by	 .	For	unlimited
number	of	standby	components,

Differentiating	F(t)	in	Equation	3.31	with	respect	to	t	gives	the	probability	density	function	of
the	time	to	the	kth	failure:

Denoting	the	MTTF	by	 ,	Equation	3.32	becomes

which	is	the	gamma	density	function	G(α, β),

with	parameters	 	and	 	( !;	Abramowitz	and	Stegun,	1972).

As	a	result,	the	sum	of	k	statistically	independent	random	variables	following	the	negative
exponential	distribution	with	parameter	λ	follows	a	gamma	distribution	G(k, 1/λ)	with
parameters	k	and	1/λ.	The	mean	E(X)	and	the	variance	V(X)	of	a	random	variable	X	following
the	gamma	distribution	 	are	 	and	 ,	respectively.

If	the	time	between	failures	of	a	repairable	device	follows	the	negative	exponential
distribution	with	MTTF	 ,	the	probability	density	of	the	time	to	the	kth	failure	is	given	by
the	gamma	distribution	G(k, θ)	(Eq.	3.33).	Here	is	an	alternative	formulation:	if	k	components
with	identically	distributed	lifetimes	following	a	negative	exponential	distribution	are
characterised	by	a	MTTF	θ,	the	sum	of	the	times	to	failure	of	the	components	

	follows	a	gamma	distribution	G(k, θ)	with	parameters	k	and	θ.

The	negative	exponential	distribution	is	a	special	case	of	a	gamma	distribution	in	which	 .
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Another	important	special	case	of	a	gamma	distribution	with	parameters	k	and	 	is	the	χ2-
distribution	G(k, 2)	with	2k	degrees	of	freedom.

Values	of	the	χ2-statistics	for	different	degrees	of	freedom	can	be	found	in	the	χ2-distribution
table	in	Appendix	D.	In	the	table,	the	area	α	cut	off	to	the	right	of	the	abscissa	(Figure	3.13)	is
given	with	the	relevant	degrees	of	freedom	n.

Figure	3.13	Probability	density	function	of	the	χ2-distribution

Gamma	distributions	have	an	additivity	property:	the	sum	of	two	random	variables	following
gamma	distributions	G(k1, θ)	and	G(k2, θ)	is	a	random	variable	following	a	gamma	distribution

	with	parameters	 	and	θ:

An	important	property	of	the	gamma	distribution	is	that	if	a	random	variable	X	follows	a
gamma	distribution	G(k, θ),	the	product	 	with	a	constant	C	follows	the	gamma	distribution
G(k, Cθ)	(Grosh,	1989).

According	to	this	property,	since	the	sum	of	k	times	to	failure	 	follows	a
gamma	distribution	G(k, θ),	the	distribution	of	the	estimated	MTTF	
follows	the	gamma	distribution	G(k, θ/k).	Therefore,	the	quantity	 	will	follow	a	χ2-
distribution	G(k, 2)	with	n = 2k	degrees	of	freedom.
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An	interesting	application	of	the	gamma	distribution	is	for	modelling	the	distribution	of	the
time	to	failure	of	a	component,	subjected	to	shocks	whose	arrivals	follow	a	homogeneous
Poisson	process	with	intensity	λ.	If	the	component	is	subjected	to	partial	damage	or
degradation	by	each	shock	and	fails	completely	at	the	kth	shock,	the	distribution	of	the	time	to
failure	of	the	component	is	given	by	the	gamma	distribution	G(k, 1/λ).

Another	application	of	the	Gamma	distribution	will	be	discussed	in	the	next	section	related	to
determining	the	uncertainty	associated	with	the	MTTF	determined	from	a	limited	number	of
failure	times.

3.8	Uncertainty	Associated	with	the	MTTF
Suppose	that	components	characterised	by	a	constant	hazard	rate	have	been	tested	for	failures.
After	failure,	the	components	are	not	replaced,	and	the	test	is	truncated	on	the	occurrence	of	the
kth	failure,	at	which	point	T	component	hours	will	have	been	accumulated.	In	other	words,	the
total	accumulated	operational	time	T	includes	the	sum	of	the	times	to	failure	of	all	k
components.	The	MTTF	can	be	estimated	by	dividing	the	total	accumulated	operational	time	T
(the	sum	of	all	operational	times)	to	the	number	of	failures	k:

where	 	is	the	estimator	of	the	unknown	MTTF.

If	θ	denotes	the	true	value	of	the	MTTF,	according	to	the	previous	section,	the	expression	
	follows	a	χ2-distribution	with	2k	degrees	of	freedom,	where	the	end	of	the	observation

time	is	at	the	kth	failure.	Therefore,	the	expression	2T/θ	follows	a	χ2-distribution.	This
property	can	be	used	to	determine	a	lower	limit	for	the	MTTF	which	is	guaranteed	with	a
specified	probability	(confidence	level).	Assume	that	a	bound	is	required	for	which	a
statement	is	to	be	made	that	the	true	MTTF	θ	is	greater	than	the	bound	with	probability	p.	The
required	bound	is	obtained	by	finding	the	value	 	of	the	statistics	χ2	which	cuts	off	an	area
α	from	the	right	tail	of	the	χ2-distribution	(Figure	3.13).	The	required	bound	is	obtained	from	

	where	 	and	 	is	the	value	of	the	χ2-statistics	for	the	selected
confidence	level	 	and	degrees	of	freedom	n = 2k.	The	probability	that	the	MTTF	θ
will	be	greater	than	the	lower	bound	θ*	is	equal	to	the	probability	that	the	χ2-statistics	will	be
smaller	than	 :

Suppose	now	that	 	and	 	correspond	to	two	specified	bounds	θ1	and	θ2	( ).	The
probability	 	that	the	true	MTTF	θ	will	be	between	the	specified	bounds	θ1	and	θ2
is	equal	to	the	probability	that	the	χ2-statistics	will	be	between	 	and	 	(Figure	3.14):



(3.37)

Figure	3.14	The	hatched	area	 	gives	the	probability	that	the	χ2-statistics	will	be
between	 	and	

Another	question	is	related	to	estimating	the	confidence	level	which	applies	to	the	estimate
given	by	Equation	3.35.	In	other	words,	the	probability	with	which	the	true	MTTF	value	θ	will
be	greater	than	the	estimate	 	is	required.	This	probability	can	be	determined	if	a	value
of	the	χ2-statistics	is	calculated	first	from	 .	Next,	for	n = 2k	degrees	of	freedom
from	the	table	in	Appendix	D,	it	is	determined	what	value	of	α	gives	 	equal	to	the
calculated	 .	The	value	 	is	the	confidence	level	with	which	it	can	be	stated	that
the	true	MTTF	is	greater	than	the	estimate	 	(Smith,	1972).

In	cases	where	two	bounds	are	required,	between	which	the	MTTF	lies	with	a	specified
probability	p,	two	values	of	the	χ2-statistics	are	needed.

The	lower	limit	 	of	χ2	(Figure	3.15)	is	used	to	determine	the	upper	confidence	limit	
	of	the	confidence	interval	for	the	MTTF,	while	the	upper	limit	 	(Figure

3.15)	is	used	to	determine	the	lower	bound	 .	The	probability	that	the	true
MTTF	θ	will	be	between	θL	and	θU	is	equal	to	the	probability	that	χ2	will	be	between	

and	 :



Figure	3.15	Two	limits	of	the	χ2-statistics	necessary	to	determine	a	confidence	interval	for	the
MTTF

This	probability	is	equal	to	the	specified	confidence	level

3.9	Mean	Time	between	Failures
The	mean	time	between	failure	(MTBF)	reliability	measure	is	defined	for	repairable	systems.
Assume	that	the	failed	component	is	restored	to	as	good	as	new	condition.	Let	Ui	be	the
duration	of	the	ith	operational	period	(uptime)	and	Di	be	the	repair	time	(downtime)	needed	to
restore	the	system	after	failure	to	as	good	as	new	condition	(Figure	3.16).
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Figure	3.16	Mean	time	between	failures

It	is	assumed	that	all	uptimes	Ui	come	from	a	common	parent	distribution	and	all	downtimes	Di
come	from	another	common	parent	distribution.	It	is	also	assumed	that	the	sums	
are	statistically	independent.	The	MTBF	is	the	expected	(mean)	value	of	the	sum	
(Trivedi,	2002):

where	E(Ui)	and	E(Di)	are	the	expected	values	of	the	uptimes	and	the	downtimes
correspondingly.	Since	 	and	 ,	where	MTTR	is	the	mean	time	to
repair,	the	MTBF	becomes

Equation	3.39	illustrates	the	difference	between	the	MTTF	and	MTBF.

The	MTBF	can	also	be	approximated	by	the	ratio	of	the	length	of	the	operational	time	interval
top	and	the	number	of	failures	Nf	during	the	operational	time:

3.10	Problems	with	the	MTTF	and	MTBF	Reliability
Measures
It	must	be	pointed	out	that	for	failures	characterised	by	a	non-constant	hazard	rate,	the	MTTF
reliability	measure	can	be	very	misleading	because	a	large	MTTF	can	be	obtained	from	failure
data	where	increased	frequency	of	failure	(low	reliability)	at	the	start	of	life	is	followed	by
very	large	periods	of	failure-free	operation	(high	reliability).	This	will	be	illustrated	by	the
following	numerical	example.



Example

Consider	components	of	the	same	type	but	from	two	different	manufacturers.

Manufacturer	1	(times	to	failure,	days)

5,	21,	52,	4131,	8032,	12 170	and	16 209

Manufacturer	2	(times	to	failure,	days)

412,	608,	823,	1105,	1291	and	1477

Suppose	that	reliable	work	is	required	during	the	first	year	(Figure	3.17).	If	the
component	is	selected	solely	on	the	basis	of	its	MTTF,	a	component	from	the	first
manufacturer,	with	 	days	will	be	selected	which	has	a	smaller	reliability	in
the	first	year	(Figure	3.17).

This	argument	is	also	valid	for	the	MTBF	reliability	measure.	The	MTBF	reliability
measure	is	misleading	for	repairable	systems	characterised	by	non-constant	failure	rates.

Figure	3.17	Two	components	of	the	same	type	with	different	MTTFs

3.11	BX%	Life



An	alternative	reliability	measure	which	mitigates	to	some	extent	the	problem	with	the	MTTF
measure	is	the	BX%	life.	This	is	the	time	at	which	X%	of	the	items	put	in	operation	will	have
failed	(Figure	3.18).	This	reliability	measure	is	widespread	in	the	ball	bearing	and	roller
bearing	production	where	the	B10	life	is	used	as	a	reliability	metric.	B10	life	is	the	time	at
which	10%	of	the	population	put	in	operation	will	have	failed.

Figure	3.18	BX%	life	is	defined	as	the	time	at	which	X%	of	the	population	of	products	put	in
operation	will	have	failed

As	can	be	seen,	a	high	failure	frequency	(low	reliability)	at	the	start	of	operation	of	a	product
will	be	indicated	correctly	by	a	shorter	BX%	life.

The	BX%	reliability	measure	incorporates	failures	from	both	the	infant	mortality	region	and
the	useful	life	region	of	the	bathtub	curve.	Unlike	the	MTTF,	for	the	same	specified	level	X %
of	the	probability	of	premature	failure,	a	larger	BX%	life	means	always	a	larger	reliability.

Finally,	the	BX%	life	reliability	measure	is	intuitively	clear	and	more	comprehensible	to
practitioners	not	trained	in	probabilistic	reasoning.

The	problem	with	the	BX%	life	is	its	restricted	definition	based	on	a	population	of	items	put
in	operation.	This	reliability	measure	works	well	for	mass-produced	mechanical	and
electronic	components.	For	unique	complex	systems	(e.g.	production	systems)	which	are	not
replicated,	the	concept	percentage	of	failed	population	has	no	real	meaning.	In	addition,	the
concept	percentage	of	failed	components	has	no	meaning	for	complex	systems	with
redundancy.	For	a	system	with	10	components	logically	arranged	in	parallel,	90%	of	the
components	can	fail	and	the	system	will	still	be	operational.	The	BX%	reliability	measure	is
not	connected	with	the	concept	‘critical	failure’	discussed	in	the	next	section,	and	for	this



reason,	it	is	unsuitable	as	a	system	reliability	measure.

In	the	next	section,	a	reliability	metric	is	introduced	which	is	suitable	for	both	mass-produced
components	and	systems	and	unique	systems	which	are	not	replicated.

3.12	Minimum	Failure-Free	Operation	Period
Reliability	can	be	interpreted	as	the	probability	of	surviving	a	specified	minimum	failure-free
operation	period	(MFFOP)	without	a	‘critical	failure’.	A	critical	failure	is	a	component
failure	which	causes	the	product/system	to	stop	functioning.	Failure	of	the	power	supply	unit	of
electromechanical	equipment	is	a	typical	example	of	a	critical	failure.

A	non-critical	failure	is	a	component	failure	which	does	not	cause	the	system	to	stop
functioning.	A	typical	example	of	non-critical	failure	is	the	failure	of	a	redundant	component	or
the	failure	of	a	minor	non-redundant	component.	In	both	cases,	the	component	failure	does	not
cause	a	system	failure.

Within	the	specified	MFFOP,	there	may	be	only	non-critical	failures	of	redundant	components
which	do	not	cause	a	system	failure	(Figure	3.19).	The	idea	behind	the	MFFOP	is	to	guarantee
with	a	high	probability	absence	of	critical	failures	(causing	system	to	stop	functioning).
Guaranteeing	a	specified	MFFOP	with	high	probability	is	equivalent	to	guaranteeing	a	large
reliability	associated	with	the	specified	MFFOP	time	interval.

Figure	3.19	Guaranteeing	with	a	high	probability	 	an	MFFOPα	of	specified	length,	free
from	critical	failures

Section	3.11	demonstrated	that	for	a	distribution	of	the	time	to	failure	different	from	the
negative	exponential	distribution,	the	MTTF	and	MTBF	reliability	measures	can	be	very
misleading.	The	component/system	with	the	larger	MTTF/MTBF	is	not	necessarily	the
component/system	associated	with	the	larger	probability	of	surviving	the	specified	time
interval.	This	is	because	a	large	MTTF/MTBF	can	result	from	aggregating	times	to	failure
reflecting	increased	failure	frequency	at	the	start	of	life	and	very	low	failure	frequency	later	in
life.

Instead	of	determining	the	probability	of	surviving	a	specified	minimum	failure-free	operation
period,	a	preset	level	α	can	be	specified	( ),	and	the	minimum	failure-free	operation
period	MFFOPα	corresponding	to	this	level	can	be	determined.



MFFOPα	is	an	alternative	reliability	measure.	It	is	the	time	within	which	the	probability	of	a
critical	failure	does	not	exceed	a	preset	level	α.	In	other	words,	MFFOPα	is	guaranteed	with
probability	1 − α	(Figure	3.20).

Figure	3.20	The	MFFOPα	is	the	time	within	which	the	probability	of	a	critical	failure	does	not
exceed	a	preset	level	α

The	MTTF/MTBF	reliability	measures	are	non-misleading	only	for	constant	hazard	rates.	In
other	words,	the	correct	use	of	the	MTTF/MTBF	measures	is	limited	to	the	useful	region	of	the
bathtub	curve	(see	the	discussion	related	to	bathtub	curve)	where	the	underlying	time	to	failure
distribution	is	the	negative	exponential	distribution.

Unlike	the	MTTF	and	MTBF,	the	MFFOP	corresponding	to	a	preset	level	α	is	a	powerful
reliability	measure	which	does	not	depend	on	the	underlying	time	to	failure	distribution.

The	MFFOP	reliability	measure	has	an	advantage	to	the	BX	life	measure	because	it	is	valid	for
both	mass-produced	components	and	unique	systems	which	are	not	replicated.

An	MFFOP	of	1.5	years	at	a	preset	level	of	 	essentially	states	that	with	probability
95%,	the	system/component	will	survive	1.5	years	of	continuous	operation	without	a	critical
failure.	The	larger	the	reliability	of	the	system,	the	larger	the	MFFOP	at	a	preset	level.	If	a
common	preset	level	α	has	been	specified,	the	minimum	failure-free	operation	periods
MFFOPα,i	characterising	different	systems	can	be	compared,	and	the	system	with	the	largest
MFFOPα	selected.
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Example

A	numerical	example	using	the	MFFOP	measure	can	be	given	with	a	component	for	which
the	time	to	failure	follows	the	negative	exponential	distribution

where	time	t	is	measured	in	years.

For	a	preset	level	 ,	solving	the	equation	with	respect	to	the	time	t	yields	an
MFFOP0.05	of	1.54 years	( ).	This	is	the	time	period	within	which	the
probability	of	failure	does	not	exceed	5%.

3.13	Availability
3.13.1	Availability	on	Demand
The	probability	that	the	demand	at	a	specified	point	in	time	will	sample	a	working	state	for	the
component	with	index	i	is	given	by

where	αi	denotes	the	availability	on	demand	of	the	ith	component,	MTTFi	is	the	mean	time	to
failure	of	the	component	and	MTTRi	is	its	mean	time	to	repair.	The	availability	on	demand	for
a	component	stands	for	the	expected	fraction	of	time	the	component	is	in	working	state.

A	system	composed	of	components	in	series	is	in	working	state	if	all	components	are	in
working	state.

The	probability	αi	that,	on	demand,	the	ith	component	will	be	in	working	state	is	given	by
Equation	3.41.	Consequently,	the	availability	on	demand	αser	of	a	system	whose	components
are	logically	arranged	in	series	is

The	availability	on	demand	of	a	system	with	components	logically	arranged	in	series	is
smaller	than	each	of	the	availabilities	αi,	characterising	the	separate	components.	The
availability	of	the	system	is	smaller	than	the	worst	component	availability.

From	Equation	3.41,	it	follows	that	there	are	two	principal	ways	of	increasing	the	availability



(3.43)

(3.44)

(3.45)

(3.46)

on	demand	αi	of	a	component:	(i)	by	improving	its	reliability	which	increases	the	MTTFi	or
(ii)	by	improving	its	maintainability	which	reduces	the	mean	time	to	repair	MTTRi.

The	unavailability	 	of	a	component	on	demand	stands	for	the	expected	fraction	of
time	during	which	the	component	is	not	working.	Suppose	that	the	availabilities	αi	of	the
components	on	demand	are	values	very	close	to	unity.	The	unavailabilities	 	of	the
components	are	then	very	small	values	 .

For	the	unavailability	 	of	a	system	on	demand,	with	components	logically	arranged
in	series,	the	following	expression	is	obtained	from	Equation	3.42:

After	expanding	the	right-hand	side	of	Equation	3.43	and	ignoring	the	second-	and	higher-order
terms	of	the	expansion	( ),	the	unavailability	of	the	system	on	demand	can	be
approximated	by

A	system	with	components	in	parallel	is	available	on	demand	if	at	least	a	single	component	in
the	system	is	in	working	state.	The	complementary	event	is	‘none	of	the	components	are	in
working	state’.	Hence,	the	availability	on	demand	αpar	of	a	system	with	n	components	logically
arranged	in	parallel	is

3.13.2	Production	Availability
An	important	performance	measure	of	production	systems	generating	production	flow	(gas,	oil,
water,	electricity,	data,	manufactured	items,	etc.)	is	the	production	availability.	This	is	the
ratio	ψ	of	the	expected	total	throughput	flow	 	produced	during	a	specified	time	interval	in
the	presence	of	component	failures	to	the	total	throughput	flow	Q0	that	could	be	produced
during	this	time	interval,	in	the	absence	of	failures	(Figure	3.21):
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Figure	3.21	For	a	production	network,	the	expected	total	throughput	flow	 	in	the	presence	of
failures	is	always	smaller	than	the	total	expected	throughput	flow	Q0	in	the	absence	of	failures

Another	related	performance	characteristic	is	the	cumulative	distribution	of	the	production
flow	Qr	during	a	specified	time	interval:

The	cumulative	distribution	Φ(x)	of	the	total	production	flow	reflects	the	variation	of	the
production	flow	caused	by	component	failures;	it	gives	the	probability	 	that	the	total
production	flow	Qr	in	the	presence	of	component	failures,	during	a	specified	time	interval,
will	not	exceed	a	specified	level	x.

The	variation	of	the	total	production	flow	Qr	is	a	function	of	the	times	to	failure	and	times	to
repair	distributions	of	the	components.	To	reveal	the	variation	of	the	total	throughput	flow,	a
large	number	of	failure–repair	histories	during	the	period	of	operation	of	the	production	system
must	be	simulated.	The	expected	production	flow	in	the	presence	of	failures	for	complex
systems	can	be	determined	by	using	special	fast	simulation	algorithms	discussed	in	detail	in
Todinov	(2013a).

3.14	Uniform	Distribution	Model
Often,	the	only	information	available	about	a	parameter	X	is	that	it	varies	between	certain
limits	a	and	b.	In	this	case,	the	uniform	distribution	is	useful	for	modelling	the	uncertainty
associated	with	the	parameter	X.	A	random	variable	X	following	uniform	distribution	in	the
interval	[a,	b]	is	characterised	by	a	probability	density	function:

for	 	and	 ,	elsewhere	(Figure	3.22).
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Figure	3.22	Probability	density	and	cumulative	distribution	function	of	the	uniform	distribution

The	cumulative	distribution	function	of	the	uniform	distribution	is

for	 ,	 	for	 	and	 	for	 	(Figure	3.22).	The	mean	E(X)	of	a
uniformly	distributed	random	variable	X	is

and	the	variance	V(X)	is

A	uniform	distribution	for	the	coordinates	of	a	point	is	often	used	to	guarantee	unbiased
sampling	during	Monte	Carlo	simulations	or	to	select	a	random	location.	For	example,	a
random	position	of	a	rectangle	on	a	plane	can	be	simulated	if	the	coordinates	of	its	centre	and
the	rotation	angle	are	uniformly	distributed.	Sampling	from	the	uniform	distribution	can	also	be
used	to	generate	times	to	repair.

The	homogeneous	Poisson	process	and	the	uniform	distribution	are	closely	related.	An
important	property	of	the	homogeneous	Poisson	process,	well	documented	in	books	on
probabilistic	modelling	(e.g.	Ross,	2000),	states:	Given	that	n	random	variables	following	a
homogeneous	Poisson	process	are	present	in	the	finite	interval	(0,	a),	the	coordinates	of	the
random	variables	are	distributed	uniformly	in	the	interval	(0,	a).	As	a	result,	in	cases	where



the	number	of	failures	following	a	homogeneous	Poisson	process	in	a	finite	time	interval	0,	a
is	known,	the	failures	times	are	uniformly	distributed	along	the	length	of	the	interval	0,	a.

3.15	Normal	(Gaussian)	Distribution	Model
Often,	the	random	variable	of	interest	is	a	sum	of	a	large	number	of	random	variables	none	of
which	dominates	the	distribution	of	the	sum.	For	example,	the	distribution	of	a	geometrical
design	parameter	(e.g.	length)	incorporates	the	additive	effects	of	a	large	number	of	factors:
temperature	variation,	cutting	tool	wear,	variations	related	to	the	parameters	of	the	control
system,	etc.

If	the	number	of	separate	contributions	(additive	terms)	is	relatively	large	and	if	none	of	the
separate	contributions	dominate	the	distribution	of	their	sum,	the	distribution	of	the	sum	(Figure
3.23)	can	be	approximated	by	a	normal	distribution	with	mean	equal	to	the	sum	of	the	means
and	variance	equal	to	the	sum	of	the	variances	of	the	separate	contributions.	The	variation	of	a
quality	parameter	in	manufacturing	often	complies	well	with	the	normal	distribution	because
its	variation	is	usually	a	result	of	the	additive	effects	of	multiple	small	causes,	none	of	which	is
dominant.

Figure	3.23	A	parameter	d	equal	to	the	sum	of	n	parameters	

Formulated	regarding	a	sum	of	statistically	independent	random	variables,	the	central	limit

theorem	states:	The	distribution	of	the	sum	 	of	a	large	number	n	of	statistically
independent	random	variables	X1,	X2,	…,	Xn,	none	of	which	dominates	the	distribution	of
the	sum,	approaches	a	normal	(Gaussian)	distribution	with	increasing	the	number	of
random	variables	(Gnedenko,	1962;	DeGroot,	1989).

The	sum	X	has	a	mean	 	and	variance	 ,	where	μi	and	Vi	are	the	means	and
the	variances	of	the	separate	random	variables.	Even	the	sum	of	a	relatively	small	number	of
statistically	independent	random	variables	can	be	approximated	well	by	the	normal
distribution.	Suppose	that	a	system	of	independent	collinear	forces	is	present,	with	random
magnitudes.	According	to	the	central	limit	theorem,	for	a	sufficiently	large	number	of	forces,	if
none	of	the	forces	dominate	the	distribution	of	the	sum,	the	magnitude	of	the	total	force	is
approximately	normally	distributed,	irrespective	of	the	individual	distributions	of	the
individual	forces.	A	similar	conclusion	can	be	drawn	about	the	random	consumption	of	a
particular	resource	(water,	electricity,	gas,	etc.)	from	a	large	number	of	independent	consumers
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during	a	day.	If	none	of	the	independent	consumptions	of	the	individual	consumers	dominates
the	total	consumption,	the	sum	of	all	individual	consumptions	follows	approximately	the
normal	distribution,	irrespective	of	the	individual	distributions	characterising	the	separate
consumers.

Formulated	with	respect	to	sampling	from	any	particular	distribution,	the	central	limit	theorem
states:	If	the	independent	random	variables	are	identically	distributed	and	have	finite
variances,	the	sum	of	the	random	variables	approaches	normal	distribution	with	increasing
their	number.

This	version	of	the	central	limit	theorem	can	be	illustrated	by	an	example.	Consider	n	(X1,	X2,
…,	Xn)	statistically	independent	uniformly	distributed	random	variables	in	the	interval	(0,	1).
According	to	Equations	3.50	and	3.51,	their	means	are	 	and	their	variances	are	

.	The	sum	of	the	random	variables	 	then	approaches	a	normal	distribution

with	mean	 	and	variance	 .	Even	 	random
variables	are	sufficient	to	provide	a	good	approximation	to	normal	distribution,	and	this	is
used	in	developing	generators	of	random	numbers	following	a	normal	distribution.

In	another	example,	the	average	weight	of	n	items	selected	randomly	from	a	batch	is	recorded.
The	population	of	all	items	is	characterised	by	a	mean	weight	μ	and	standard	deviation	σ.	For
a	large	number	n	of	selected	items,	the	sample	mean	(the	average	weight	of	the	selected	items)
follows	approximately	a	normal	distribution	with	mean	μ	and	standard	deviation	 .

A	random	variable	X,	characterised	by	a	probability	density	function,

where	 	is	said	to	be	normally	(Gaussian)	distributed.	The	normal	distribution	of	a
random	variable	X	is	characterised	by	two	parameters,	the	mean	 	and	the	variance	

.	After	changing	the	variables	by	 ,	the	normal	distribution	transforms
into

which	is	the	probability	density	function	of	the	standard	normal	distribution.	The	new	variable	
	is	normally	distributed,	with	mean

and	variance
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Equation	3.54	gives	the	cumulative	distribution	function	of	the	standard	normal	distribution:

where	u	is	a	dummy	integration	variable.	If	the	probability	that	X	will	be	smaller	than	b	is
required,	it	can	be	determined	from	 	where	 .	The	probability
that	X	will	take	on	values	from	the	interval	[a,	b]	can	be	determined	from	

,	where	 	and	 .

The	probability	density	function	and	the	cumulative	distribution	function	of	the	standard	normal
distribution	are	given	in	Figure	3.24,	where	the	probability	 	has	been
determined	(the	hatched	area	beneath	the	probability	density	function	f(z))	using	the	statistical
table	in	Appendix	C.	Although	the	table	lists	Φ(z)	for	nonnegative	values	 ,	it	can	be	used
for	determining	probabilities	 	associated	with	negative	values	 .	Considering	the
symmetry	of	the	standard	normal	curve,	 .

Example

ExampleThe	electrical	resistance	X	of	an	element	built	in	an	electrical	device	is	normally
distributed,	with	mean	 	and	a	standard	deviation	 :

i.	 Calculate	the	probability	that	the	resistance	X	will	be	smaller	than	65 Ω.

ii.	 Calculate	the	probability	 	that	the	resistance	X	will	be	between	55	and
65 Ω.

Solution

i.	

ii.	

An	important	property	holds	for	a	sum	of	statistically	independent,	normally	distributed



random	variables:	The	distribution	of	the	sum	 	of	n	statistically
independent,	normally	distributed	random	variables	X1,	X2,	…,	Xn	is	a	normally

distributed	random	variable.	The	sum	X	has	mean	 	equal	to	the	sum	of	the

means	μi	of	the	random	variables	and	variance	 	equal	to	the	sum	of	the
variances	σi	of	the	separate	random	variables.

The	difference	 	of	two	normally	distributed	random	variables	with	means	μ1
and	μ2	and	variances	 	and	 	is	a	normally	distributed	random	variable	with	mean	

	and	variance	 .	Indeed,	from	the	properties	of	expectations	and
variances	of	random	variables	(Appendix	B),	for	the	expected	value	of	the	difference	X,
the	expression

holds.	For	the	variance,	the	expression

holds.

For	normally	distributed	and	statistically	independent	collinear	loads	 	(Figure	3.25)
with	different	directions	along	the	y-axis,	the	resultant	load	R	is	always	normally

distributed	with	mean	 	and	variance	 	for	any	number	of	loads
and	any	load	directions.



Exercise

ExerciseThe	shaft	in	Figure	3.26	has	been	produced	by	cutting	the	length	L	from	a
cylindrical	rod	and	subsequently	machining	the	steps	1,	2,	3	and	4	with	lengths	L1,	L2,	L3
and	L4	on	a	lathe.	The	length	L	of	the	cylindrical	rod	has	a	mean	of	650 mm	and	standard
deviation	1.5 mm.

Because	of	imprecision,	associated	with	controlling	the	lengths	of	steps	1,	2	and	3,	the
lengths	L1,	L2	and	L3	vary	by	following	normal	distributions	with	means	 ,	

	and	 	and	standard	deviations	 .	The	shaft
is	considered	faulty,	if	the	length	of	step	L4	does	not	exceed	48 mm.	Calculate	the
percentage	of	faulty	shafts.

Solution

Because	 ,	the	expected	value	(the	mean)	of	the	step	with	length	L4	is	
.	The	lengths	of	the	steps	are

statistically	independent;	therefore,	the	variance	V(L4)	of	the	length	L4	is	

	 ,	and	the	standard

deviation	is	 .	The	probability	that	the	length	L	of	step	L4	will	not
exceed	48 mm	can	then	be	determined	from

Therefore,	the	percentage	of	faulty	shafts	is	approximately	12.4%.

Exercise

ExerciseAn	experiment	has	been	made,	where	a	very	large	number	of	sets	of	samples
have	been	sequentially	generated	from	the	exponential	distribution	 .
Each	set	k	includes	100	sampled	values	tk1,	tk2,	…,	tk100.	What	is	the	distribution

followed	by	the	means	 	of	the	sets	of	sampled	values?	Determine	the
mean	and	standard	deviation	of	this	distribution.



Figure	3.24	Probability	density	function	of	the	standard	normal	distribution



Figure	3.25	A	resultant	load	R	equal	to	the	sum	of	three	normally	distributed	collinear	loads

Figure	3.26	A	shaft	with	steps	machined	on	a	lathe

3.16	Log-Normal	Distribution	Model
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A	random	variable	X	is	log-normally	distributed	if	its	logarithm	ln X	is	normally	distributed.
Suppose	that	the	quantity	X	is	a	product

of	a	large	number	of	statistically	independent	positive	quantities	 ,	none	of	which
dominates	the	distribution	of	the	product.	The	quantities	Yi	are	characterised	by	distinct
individual	distributions.	The	question	of	interest	is	the	distribution	of	X.

Taking	logarithm	from	both	sides	of	Equation	3.55	yields

The	logarithms	in	the	right-hand	side	of	Equation	3.56	can	be	regarded	as	random	variables.
According	to	the	central	limit	theorem,	the	sum	of	a	large	number	n	of	random	variables
follows	a	normal	distribution.	As	a	result,	the	sum	of	the	logarithms	in	the	right-hand	side	of
Equation	3.56	follows	a	normal	distribution.	This	sum,	however,	is	equal	to	ln X.
Consequently,	ln X	follows	a	normal	distribution.	According	to	the	definition	of	the	log-normal
distribution,	if	ln X	is	normally	distributed,	the	random	variable	X	is	log-normally	distributed.

This	proves	the	multiplicative	version	of	the	central	limit	theorem:

The	distribution	of	a	product	of	statistically	independent	random	variables,	none	of
which	dominates	the	product,	approaches	a	log-normal	distribution	with	increasing	the
number	of	random	variables.

A	basic	application	of	the	log-normal	distribution	model	is	the	case	where	(i)	a	multiplicative
effect	of	factors	controlling	reliability	is	present;	(ii)	the	controlling	factors	are	statistically
independent	and	(iii)	the	magnitudes	of	their	effects	are	comparable.

The	log-normal	distribution	model	has	been	used	with	success	for	modelling	the	time	to	failure
controlled	by	degradation	caused	by	corrosion,	wear,	erosion,	crack	growth,	chemical
reactions	and	diffusion.

Suppose	that	failure	occurs	when	the	total	accumulated	damage	D	from	n	time	intervals	of
degradation	reaches	a	critical	level	Dc.	Suppose	that	the	amount	of	new	damage	at	any	stage	is
proportional	to	the	level	of	existing	damage.	The	increase	of	degradation	damage	ΔD1	in	the
first	time	interval	is	proportional	to	the	quantity	of	initial	damage	D0:	 	where	r1	is	a
small	random	quantity	characterising	the	first	time	interval	of	degradation.	As	a	result,	the	total
damage	D1	at	the	end	of	the	first	time	interval	becomes	 .	The	increase	of
degradation	(damage)	ΔD2	in	the	second	time	interval	of	degradation	is	proportional	to	the
quantity	of	damage	D1	at	the	start	of	the	second	time	interval	 ,	where	r2	is	also	a
small	random	quantity	characterising	the	second	time	interval	of	degradation.	As	a	result,	the
total	damage	D2	at	the	end	of	the	second	time	interval	becomes
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Continuing	this	reasoning,	the	total	accumulated	damage	D	from	n	stages	of	degradation	is
given	by

The	multistage	degradation	factor	 ,	which	represents	the	compound	effect	from	many
independent	degradation	stages	characterised	by	random	degradation	factors	 ,	can	be
presented	as

and	follows	a	log-normal	distribution	as	a	product	of	statistically	independent	random
variables	none	of	which	dominates	the	product.

The	log-normal	distribution	model	is	characterised	by	a	probability	density	function	(Figure
3.27)

where	μ	and	σ	are	the	mean	and	the	standard	deviation	of	the	ln x	data.
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Figure	3.27	Probability	density	function	of	the	log-normal	distribution

An	important	property	of	the	log-normal	model	is	its	reproductive	property.	A	product	of	any
number	of	log-normal	random	variables	is	a	log-normal	random	variable.	Indeed,	from	

,	the	logarithm	of	X,	 	is	normally	distributed	because	it	is	a	sum	of
normally	distributed	random	variables.	Because	ln X	is	normally	distributed,	according	to	the
definition	of	the	log-normal	distribution,	X	is	log-normally	distributed.

Often,	the	log-normal	distribution	is	appropriate	for	modelling	material	strength.	The	log-
normal	distribution	can	often	be	used	for	describing	the	length	of	time	to	repair	(Barlow	and
Proschan,	1965).	The	repair	time	distribution	is	usually	skewed,	with	a	long	upper	tail,	which
is	explained	by	some	problem	repairs	taking	a	long	time.

3.17	Weibull	Distribution	Model	of	the	Time	to	Failure
A	popular	model	for	the	distribution	of	the	times	to	failure	is	the	Weibull	distribution	model
(Weibull,	1951):



(3.60)

(3.61)

In	Equation	3.59,	F(t)	is	the	probability	that	failure	will	occur	before	time	t,	t0	is	a	location
parameter	or	minimum	life,	η	is	the	characteristic	lifetime	and	m	is	a	shape	parameter.

In	many	cases,	the	minimum	life	t0	is	assumed	to	be	zero	and	the	three-parameter	Weibull
distribution	transforms	into	a	two-parameter	Weibull	distribution:

Setting	 	in	Equation	3.60	gives	 .	In	other	words,	the	probability	of
failure	before	time	 ,	referred	to	as	characteristic	life,	is	63.2%.	Alternatively,	the
characteristic	life	corresponds	to	a	time	at	which	63.2%	of	the	initial	population	of	items	has
failed.

The	Weibull	model	is	also	popular	for	the	strength	distribution	and	reliability	of	brittle
materials,	but	as	it	will	be	revealed	in	Chapter	13,	as	a	model	of	the	breaking	strength	of
materials	controlled	by	random	defects,	the	Weibull	distribution	is	a	fundamentally	flawed
model.

If	 ,	the	Weibull	distribution	transforms	into	the	negative	exponential	distribution	
	with	parameter	 .	Differentiating	Equation	3.60	with	respect	to	t

gives	the	probability	density	function	of	the	Weibull	distribution:

which	has	been	plotted	in	Figure	3.28	for	different	values	of	the	shape	parameter	m:
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Figure	3.28	Two-parameter	Weibull	probability	density	function	for	different	values	of	the
shape	parameter	m

As	can	be	verified,	the	Weibull	distribution	is	very	flexible.	By	selecting	different	values	of
the	shape	parameter	m	and	by	varying	the	scale	parameter	η,	a	variety	of	shapes	can	be
obtained	to	fit	experimental	data.	Since	the	hazard	rate	is	defined	by	 ,	where

f(t)	is	given	by	equation	(3.61)and	the	reliability	function	is	 ,	the	Weibull
hazard	rate	function	becomes

As	can	be	verified	from	Equation	3.62,	for	 ,	the	hazard	rate	is	decreasing,	and	for	 ,
the	hazard	rate	is	increasing	and	 	corresponds	to	a	constant	hazard	rate.

Weibull	hazard	rate	functions	for	different	values	of	the	Weibull	exponent	m	and	for	 	have
been	plotted	in	Figure	3.29.
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Figure	3.29	Weibull	hazard	rates	for	different	values	of	the	shape	parameter	m

3.18	Extreme	Value	Distribution	Model
Suppose	that	X1,	…,	Xn	are	n	independent	observations	of	a	random	variable	(e.g.	load,
strength,	etc.).	Let	 	denote	the	maximum	value	among	these	observations.
Provided	that	the	right	tail	of	the	random	variable	distribution	decreases	at	least	as	fast	as	that
of	the	negative	exponential	distribution,	the	asymptotic	distribution	of	X	for	large	values	of	n	is
the	type	I	distribution	of	extreme	values	(Gumbel,	1958):

This	condition	is	satisfied	by	most	of	the	reliability	distributions:	the	normal,	the	log-normal
and	the	negative	exponential	distribution.	The	maximum	value	from	sampling	an	extreme	value
distribution	also	follows	an	extreme	value	distribution.



The	maximum	extreme	value	distribution	model	(Figure	3.30)	is	often	appropriate	in	the	usual
case	where	the	maximum	load	controls	the	component	failure.

Figure	3.30	Probability	density	function	of	the	maximum	extreme	value	model

The	type	I	extreme	value	model	has	two	parameters:	a	scale	parameter	θ	and	mode	ξ.	The
mean	of	the	distribution	is	 	and	the	standard	deviation	is	
(Metcalfe,	1994).

Suppose	that	n	statistically	independent	loads	X1,	X2,	…,	Xn	following	the	maximum	extreme
value	distribution	F(x)	have	been	applied	consecutively	to	a	component	with	strength	x.	The
probability	that	the	component	will	survive	all	n	loads	is	given	again	by	the	maximum	extreme
value	distribution.



(3.64)

(3.65)

Proof

The	probability	that	a	component	with	strength	x	will	survive	all	n	independent	load
applications	is

The	expression	 	can	be	presented	as

As	a	result,

and	the	distribution	of	the	maximum	load	becomes

which	is	a	maximum	extreme	value	distribution	with	the	same	scale	parameter	θ	and	a
new	displacement	parameter	(mode)	 .  

Let	X1,	…,	Xn	be	n	independent	observations	of	a	random	variable	(e.g.	load,	strength).	Let	
	denote	the	minimum	value	among	these	observations.	With	increasing

the	number	of	observations	n,	the	asymptotical	distribution	of	the	minimum	value	follows	the
minimum	extreme	value	distribution	(Gumbel,	1958):

The	minimum	extreme	value	distribution	(Figure	3.31)	can,	for	example,	be	used	for	describing
the	distribution	of	the	lowest	temperature	and	the	smallest	strength.	The	Weibull	distribution	is
related	to	the	minimum	extreme	value	distribution	as	the	log-normal	distribution	is	related	to
the	normal	distribution.	If	the	logarithm	of	a	variable	follows	the	minimum	extreme	value
distribution,	the	variable	follows	the	Weibull	distribution.	Indeed,	it	can	be	verified	that	if	the
transformation	 	is	made	in	Equation	3.65,	the	new	variable	z	follows	the	Weibull
distribution.	References	and	discussions	related	to	other	statistical	models	used	in	reliability



and	risk	analysis	can	be	found	in	Bury	(1975)	and	Trivedi	(2002).

Figure	3.31	Probability	density	function	of	the	minimum	extreme	value	distribution

3.19	Reliability	Bathtub	Curve
The	hazard	rate	of	non-repairable	components	and	systems	follows	a	curve	with	bathtub	shape,
characterised	by	three	distinct	regions	(Figure	3.32).	The	first	region	referred	to	as	infant
mortality	region	comprises	the	start	of	life	and	is	characterised	by	an	initially	high	hazard	rate
which	decreases	with	time.	Most	of	the	failures	in	the	infant	mortality	region	are	quality
related	and	result	from	inherent	defects	due	to	poor	design,	manufacturing	and	assembly.	A
substantial	proportion	of	failures	can	also	be	attributed	to	a	human	error	during	installation	and
operation.	Since	most	substandard	components	fail	during	the	infant	mortality	period	and,	with
time,	the	experience	of	the	personnel	operating	the	equipment	increases,	the	initially	high
hazard	rate	gradually	decreases.	The	cumulative	distribution	of	the	time	to	failure	is	a
decreasing	failure	rate	(DFR)	distribution.



Figure	3.32	Reliability	bathtub	curve

The	second	region	of	the	bathtub	curve,	referred	to	as	useful	life	region,	is	characterised	by
approximately	constant	hazard	rate.	This	is	why	the	negative	exponential	distribution,	which	is
a	constant	failure	rate	(CFR)	distribution,	is	the	model	of	the	times	to	failure	in	this	region.
Failures	in	this	region	are	not	due	to	age,	wearout	or	degradation;	they	are	due	to	random
causes.	This	is	why	preventive	maintenance	in	this	region	has	no	effect	on	the	hazard	rate.

The	third	region	referred	to	as	wearout	region	is	characterised	by	an	increasing	with	age
hazard	rate	due	to	accumulated	wear	and	degradation	of	properties	(e.g.	wear,	erosion,
corrosion,	fatigue	and	creep).	The	corresponding	cumulative	distribution	of	the	times	to	failure
is	an	increasing	failure	rate	(IFR)	distribution.

For	a	batch	of	components	experiencing	a	non-constant	hazard	rate	λ(t),	the	integral	

	gives	the	expected	number	of	failures	in	the	finite	time	interval	0,	a.

Reliability	in	the	interval	(0,	a)	is	given	by	 .	Consequently,	reducing	the	hazard
rate	from	curve	‘1’	to	curve	‘2’	(Figure	3.33)	results	in	a	reduction	of	the	expected	number	of
failures	equal	to	the	hatched	area	S.



Figure	3.33	Decreasing	the	hazard	rate	translates	into	reducing	the	expected	number	of	failures
in	the	interval	(0,	a)

In	the	infant	mortality	region,	the	hazard	rate	can	be	decreased	(curve	2	in	Figure	3.33)	and
reliability	increased,	by	better	design,	materials,	manufacturing,	inspection	and	assembly.
Significant	reserves	in	decreasing	the	hazard	rate	at	the	start	of	life	are	provided	by	the	root–
cause	analysis,	decreasing	the	variability	of	material	properties	and	other	design	parameters
and	decreasing	the	uncertainty	associated	with	the	actual	loads	experienced	during	service.
Other	significant	reserves	in	decreasing	the	hazard	rate	are	provided	by	the	generic	principles
for	improving	reliability	and	reducing	risk	discussed	in	Chapter	11.

In	the	wearout	region,	reliability	can	be	increased	significantly	by	preventive	maintenance
consisting	of	replacing	old	components.	This	delays	the	wearout	phase,	and	as	a	result,
reliability	is	increased	(Figure	3.33).

For	a	shape	parameter	m = 1,	the	Weibull	distribution	transforms	into	the	negative	exponential
distribution	and	describes	the	useful	life	region	of	the	bathtub	curve,	where	the	probability	of
failure	within	a	specified	time	interval	practically	does	not	depend	on	age.	For	components,
for	which	early	life	failures	have	been	eliminated	and	a	preventive	maintenance	has	been
conducted	to	replace	worn	parts	before	they	fail,	the	hazard	rate	tends	to	remain	constant.

A	value	of	the	shape	parameter	smaller	than	one	( )	corresponds	to	a	decreasing	hazard
rate	and	indicates	infant	mortality	failures.	A	value	of	the	shape	parameter	greater	than	one	(

)	corresponds	to	increasing	hazard	rate	and	indicates	wearout	failures.	Values	in	the
interval	( )	indicate	early	wearout	failures	caused,	for	example,	by	a	low	cycle
fatigue,	corrosion	or	erosion.	Values	of	the	shape	parameter	greater	than	four	indicate	old	age
wearout	( ).	Most	steep	Weibull	distributions	have	a	safe	period,	within	which	the
probability	of	failure	is	negligible.	The	larger	the	parameter	m	is,	the	smaller	is	the	variation



of	the	time	to	failure.	An	almost	vertical	Weibull	distribution,	with	very	large	m,	implies
perfect	design,	quality,	control	and	production	(Abernethy,	1994).

Unlike	the	bathtub	curve	characterising	hardware,	the	software	bathtub	curve	is	usually
decreasing,	with	no	wearout	region	because	software	does	not	deteriorate	with	age.	Despite
that	the	rate	of	appearance	of	software	errors	is	decreasing	with	time,	after	each	rewriting
(new	release)	of	the	software,	new	faults	(bugs)	are	introduced	which	cause	a	sharp	increase
in	the	rate	of	appearance	of	software	errors	(Figure	3.34)	(Beasley,	1991).

Figure	3.34	Rate	of	appearance	of	software	errors	as	a	function	of	time

Reducing	the	number	of	software	faults	is	a	prerequisite	for	a	reduced	number	of	software
failures.	Unlike	hardware	where	no	two	pieces	of	equipment	are	absolutely	identical	and
therefore	there	exists	a	substantial	variation	in	the	failure	pattern,	all	copies	of	a	piece	of
software	are	identical,	and	there	is	no	variation	in	the	failure	pattern.	If	a	software	fault	exists,
it	is	present	in	all	copies	of	the	software	programme	and	always	causes	failure	if	particular
conditions	or	a	combination	of	input	data	is	present.	Software	is	particularly	prone	to	common
cause	faults	if	the	routines	are	designed	by	the	same	programmer/team.	A	fault	in	one	of	the
software	modules/paths	is	also	likely	to	be	present	in	the	back-up	module.



Human	errors	are	also	a	significant	contributing	factor	for	an	increased	hazard	rate.	They	are
an	inevitable	part	of	each	stage	of	the	product	development	and	operation:	design,
manufacturing,	installation	and	operation.	Following	Dhillon	and	Singh	(1981),	human	errors
can	be	categorised	as	(i)	errors	in	design,	(ii)	operator	errors	(failure	to	follow	the	correct
procedures),	(iii)	errors	during	manufacturing,	(iv)	errors	during	maintenance,	(v)	errors
during	inspection	and	(vi)	errors	during	assembly	and	handling.

Complex	systems,	particularly	electronic	systems,	require	components	with	small	hazard	rates.
The	more	complex	the	system,	the	higher	the	reliability	required	from	the	separate	components
and	the	lower	their	hazard	rates	should	be.	Indeed,	for	the	sake	of	simplicity,	suppose	that	a
complex	electronic	block	is	composed	of	N	identical	capacitors,	arranged	logically	in	series.
This	is	the	logical	arrangement	of	capacitors	physically	arranged	in	parallel	in	a	block,	against
the	failure	mode	‘dielectric	breakdown’.	The	dielectric	in	any	capacitor	from	the	block	is
subjected	to	the	full	potential	to	which	the	block	of	capacitors	is	charged.	The	dielectric
breakdown	is	promoted	by	a	high-temperature,	ageing	and	deterioration	processes	of	the
dielectric.

If	the	required	reliability	of	the	capacitor	block	is	Rs,	the	reliability	of	a	single	capacitor

should	be	 .	Clearly,	with	increasing	the	number	of	capacitors	N	in	the	block,	the
reliability	R0	required	from	the	separate	capacitors	approaches	unity.	In	other	words,	in	order
to	guarantee	the	required	reliability	Rs	of	the	block,	the	individual	capacitors	must	be	highly
reliable.	In	this	respect,	the	six-sigma	quality	philosophy	(Harry	and	Lawson,	1992)	is	an
important	approach,	based	on	a	production	with	very	small	number	of	defective	items	(zero
defect	levels).	Adopting	a	six-sigma	process	guarantees	no	more	than	two	defective
components	out	of	a	billion	manufactured,	and	this	is	an	efficient	approach	to	reducing	hazard
rates.



4	
Reliability	and	Risk	Models	Based	on	Distribution
Mixtures

4.1	Distribution	of	a	Property	from	Multiple	Sources

Suppose	that	items	arrive	from	M	different	sources	in	proportions	p1, p2, …, pM,	 .	A
particular	property	of	the	items	from	each	source	k	is	characterised	by	a	mean	μk	and	variance
Vk.	Often,	of	significant	practical	interest	is	the	variance	V	of	the	property	characterising	the
items	collected	from	all	sources.

In	another	example,	small	samples	are	taken	randomly	from	a	three-component	inhomogeneous
structure	(components	A,	B	and	C,	Figure	4.1).	The	probabilities	p1,	p2	and	p3	of	sampling	the
structural	constituents	A,	B	and	C	are	equal	to	their	volume	fractions	ξA,	ξB	and	ξC	( ;	

;	 ).	Suppose	that	the	three	structural	constituents	A,	B	and	C	have	volume	fractions
;	 	and	 .	The	mean	yield	strengths	of	the	constituents	are	μA = 800 MPa,

μB = 600 MPa	and	μC = 900 MPa,	and	the	standard	deviations	are	σA = 20 MPa,	σB = 25 MPa
and	σC = 10 MPa,	correspondingly.



Figure	4.1	Sampling	of	an	inhomogeneous	microstructure	composed	of	three	structural
constituents	A,	B	and	C

The	question	of	interest	is	the	variance	of	the	strength	from	random	sampling	of	the
inhomogeneous	structure.

It	can	be	demonstrated	that	in	these	cases,	the	property	of	interest	from	the	different	sources
can	be	modelled	by	a	distribution	mixture.

Suppose	that	M	sources	( )	are	sampled	with	probabilities	p1, p2, …, pM,	 .	The
distributions	of	the	property	characterising	the	individual	sources	are	Fi(x),	i = 1,	2,	…,	M,
correspondingly.	Thus,	the	probability	 	of	the	event	B	(Figure	4.2)	that	the
randomly	sampled	property	X	will	not	be	greater	than	a	specified	value	x	can	be	presented
as	a	union	of	the	following	mutually	exclusive	and	exhaustive	events.



(4.1)

Figure	4.2	The	probability	of	event	B	is	a	sum	of	the	probabilities	of	the	mutually	exclusive
events	

	:	the	first	source	is	sampled	(event	A1)	and	the	property	X	is	not	greater	than	x	(the
probability	of	this	compound	event	is	p1F1(x));	 :	the	second	source	is	sampled	(event
A2)	and	the	property	X	is	not	greater	than	x	(the	probability	of	this	compound	event	is
p2F2(x));	 :	the	Mth	source	is	sampled	(event	AM)	and	the	property	X	is	not	greater
than	x	(the	probability	of	this	compound	event	is	pMFM(x)).	According	to	the	total	probability
theorem,	the	probability	that	the	randomly	sampled	property	X	will	not	be	greater	than	a
specified	value	x	is

which	is	the	cumulative	distribution	of	the	property	from	all	sources.	F(x)	is	a	mixture	of	the
probability	distribution	functions	Fk(x)	characterising	the	individual	sources,	scaled	by	the
probabilities	pk,	 	with	which	they	are	sampled.	After	differentiating	Equation	4.1,	a
relationship	between	the	probability	densities	is	obtained:



(4.2)

(4.3)

(4.4)

Multiplying	both	sides	of	Equation	4.2	by	x	and	integrating

gives

for	the	mean	value	μ	of	a	property	from	M	different	sources	characterised	by	means	μk	(Everitt
and	Hand,	1981).

4.2	Variance	of	a	Property	from	Multiple	Sources
The	variance	V	of	the	mixture	distribution	4.1	for	continuous	probability	density	functions	fk(x)
characterising	the	existing	microstructural	constituents	can	be	derived	as	follows:

Because	the	middle	integral	in	the	expansion	is	zero	( ),	the
expression	for	the	variance	becomes	(Todinov,	2002)

where	Vk,	 	are	the	variances	characterising	the	M	individual	distributions.	Although
Equation	4.4	has	a	simple	form,	the	grand	mean	μ	of	the	distribution	mixture	given	by	Equation
4.3	is	a	function	of	the	means	μk	of	the	individual	distributions.	An	expression	for	the	variance
can	also	be	derived	as	a	function	only	of	the	pairwise	distances	between	the	means	μk	of	the
individual	distributions.

Indeed,	substituting	expression	(4.3)	for	the	mean	of	a	distribution	mixture	into	the	term	

	of	Equation	4.4	gives



(4.5)

(4.6)

(4.7)

(4.8)

The	variance	of	the	distribution	mixture	can	now	be	expressed	only	in	terms	of	the	pairwise
differences	between	the	means	of	the	individual	distributions.	Expanding	the	right-hand	part	of
Equation	4.5	results	in

because	 ,	 ,	etc.

Finally,	the	variance	of	the	distribution	mixture	(4.4)	becomes

The	expansion	of	 	has	 	number	of	terms,	equal	to	the	number	of
different	pairs	(combinations)	of	indices	among	M	indices.	For	 	individual	distributions
(sources),	Equation	4.6	becomes

For	three	sources	( ,	Figure	4.3),	Equation	4.6	becomes



(4.9)

Figure	4.3	Distributions	of	properties	from	three	different	sources

Going	back	to	the	problem	at	the	beginning	of	this	chapter,	according	to	Equation	4.3,	the	mean
yield	strength	of	the	samples	from	all	microstructural	zones	is

Considering	that	the	variances	Vk	in	Equation	4.8	are	the	squares	of	the	standard	deviations	σA,
σB	and	σC	characterising	the	yield	strength	of	the	separate	microstructural	zones,	the	standard
deviation	of	the	yield	strength	from	sampling	all	microstructural	zones	becomes

After	substituting	the	numerical	values	in	Equation	4.9,	the	value	σ ≈ 108.8 MPa	is	obtained	for
the	standard	deviation	characterising	sampling	from	all	microstructural	constituents.	As	can	be
verified,	the	value	σ ≈ 108.8 MPa	is	significantly	larger	than	the	standard	deviations	σA = 20 
MPa,	σB = 25 MPa	and	σC = 10 MPa	characterising	sampling	from	the	individual	structural
constituents.

If	Equation	4.6	is	examined	closely,	the	reason	for	the	large	variance	becomes	clear.	In
Equation	4.6,	the	variance	of	the	distribution	mixture	has	been	decomposed	into	two	major

components.	The	first	component	 	including	the	terms	pk  Vk	characterises	only
variation	of	properties	within	the	separate	sources	(individual	distributions).	The	second

component	is	the	sum	 	and	characterises	the	variation	of	properties	between
the	separate	sources	(individual	distributions).	Assuming	that	all	individual	distributions	have

the	same	mean	μ	( ),	the	terms	 	in	Equation	4.6	become	zero	and	the



(4.10)

total	variance	becomes	 .	In	other	words,	the	total	variation	of	the	property	is
entirely	a	within-sources	variation	(Figure	4.4).

Figure	4.4	Distribution	of	properties	from	three	different	sources	with	the	same	mean

From	Equation	4.8,	for	three	sources	with	the	same	mean,	the	variance	becomes

Now,	assume	that	all	sources	(individual	distributions)	are	characterised	by	very	small
variances	 	(Figure	4.5).	In	this	case,	the	within-sources	variance	can	be	neglected:	

	and	the	total	variance	becomes	 .	In	other	words,	the	total
variation	of	the	property	is	a	‘between-sources	variation’.



(4.11)

Figure	4.5	Distribution	of	properties	from	three	different	sources	with	very	small	variances

From	Equation	4.8,	for	the	three	sources	in	Figure	4.5	characterised	by	negligible	variances	(
,	 	and	 ),	the	total	variance	from	sampling	all	sources	becomes

4.3	Variance	Upper	Bound	Theorem
If	the	mixing	proportions	pk	are	unknown,	the	variance	V	in	Equation	4.4	cannot	be	calculated.
Depending	on	the	actual	mixing	proportions	pk,	the	variance	V	may	vary	from	the	smallest
variance	Vk	characterising	one	of	the	sources	up	to	the	largest	possible	variance	obtained	from
sampling	a	particular	combination	of	sources	with	appropriate	probabilities	pi.	A	central
question	is	to	establish	an	exact	upper	bound	for	the	variance	of	properties	from	multiple
sources,	irrespective	of	the	mixing	proportions	pk	with	which	the	sources	are	sampled.	This
upper	bound	can	be	obtained	using	the	simple	numerical	algorithm	in	Appendix	4.2	which	is
based	on	an	important	result	derived	rigorously	in	Appendix	4.1.

Variance	upper	bound	theorem:	(Todinov,	2003)	The	exact	upper	bound	of	the	variance	of
properties	from	sampling	multiple	sources	is	obtained	from	sampling	not	more	than	two
sources.

Mathematically,	the	variance	upper	bound	theorem	can	be	expressed	as



(4.12)

where	k	and	s	are	the	indices	of	the	sources	for	which	the	upper	bound	of	the	variance	is
obtained	and	 	and	 	are	the	probabilities	of	sampling	the	two	sources	(Figure
4.6).	If	 ,	the	maximum	variance	is	obtained	from	sampling	a	single	source	(the	kth
source)	only.

Figure	4.6	Upper	bound	of	the	variance	from	sampling	two	sources	with	indices	k	and	s

For	a	large	M,	determining	the	upper	bound	variance	by	finding	directly	the	global	maximum	of
expression	(4.6)	regarding	the	probabilities	pk	is	a	difficult	task	which	can	be	made	easy	by
using	the	variance	upper	bound	theorem.	The	algorithm	for	finding	the	maximum	variance	of
the	properties	in	Appendix	4.2	is	based	on	the	variance	upper	bound	theorem	and	consists	of
checking	the	variances	of	all	individual	sources	and	the	variances	from	sampling	all	possible
pairs	of	sources.	As	a	result,	finding	the	upper	bound	variance	of	the	properties	from	M
sources	involves	only	 	checks,	which	can	be	done	easily	by	a	computer.

4.3.1	Determining	the	Source	Whose	Removal	Results	in	the	Largest
Decrease	of	the	Variance	Upper	Bound
The	variance	upper	bound	theorem	can	be	applied	to	identify	the	source	whose	removal	yields
the	smallest	value	of	the	variance	upper	bound.	The	algorithm	consists	of	finding	the	source
(pair	of	sources)	yielding	the	largest	variance.	Removing	one	of	these	sources	will	result	in	the



largest	decrease	of	the	variance	upper	bound.	If	sampling	from	a	single	source	yields	the
largest	variance,	removing	this	source	yields	the	largest	decrease	in	the	variance	upper	bound.
The	algorithm	will	be	illustrated	by	the	following	numerical	example.

Suppose	that	properties	of	items	from	five	sources	are	characterised	by	individual
distributions	with	variances	 ,	 ,	 ,	 	and	 	and	means	

,	 ,	 ,	 	and	 ,	correspondingly.

The	question	of	interest	is	removal	of	which	source	yields	the	largest	decrease	in	the	variance
upper	bound.

The	global	maximum	of	the	variance	of	properties	from	these	sources	is	 ,	attained
from	sampling	the	fifth	source	with	probability	 	and	the	first	source	with	probability

.	Removing	the	fifth	source	yields	the	largest	reduction	of	the	variance	upper
bound.	Indeed,	the	calculations	show	that	after	removing	the	fifth	source,	the	variance	upper
bound	 	is	attained	from	sampling	the	fourth	source	with	probability	 	and
the	second	source	with	probability	 .	The	removal	of	the	fifth	source	yields	a
value	of	the	variance	upper	bound	which	cannot	be	improved	(decreased	further)	by	the
removal	of	any	other	source	instead.	This	result	is	particularly	useful	in	cases	where	the
mixing	proportions	from	the	sources	are	unknown	and	a	tight	upper	bound	for	the	variance	is
necessary	for	a	conservative	estimate	of	the	uncertainty	associated	with	the	properties	from	the
sources.

4.4	Applications	of	the	Variance	Upper	Bound	Theorem
4.4.1	Using	the	Variance	Upper	Bound	Theorem	for	Increasing	the
Robustness	of	Products	and	Processes
The	variance	upper	bound	theorem	(VUBT)	can	be	used	as	a	basis	for	a	new	worst-case
design	method	aiming	at	improving	the	robustness	of	processes,	operations	and	products
originating	from	multiple	sources,	for	which	the	worst	performance	is	closely	related	to	the
worst	variation	of	a	property	(Todinov,	2009b).

For	these	processes	or	products,	the	common	mean	is	not	critical	and	can	be	easily	adjusted	to
a	specified	target	value,	but	deviations	from	the	common	mean	lead	to	undesirable
performance.

It	is	a	well-known	fact	that	while	the	mean	value	of	the	output	of	a	process	can	be	easily
adjusted	to	a	target	value,	the	variance	cannot	be	adjusted	so	easily.	Reducing	the	variance	of	a
process	usually	requires	fundamental	technological	changes	which	need	a	substantial
investment.

Robustness	will	be	defined	as	capability	of	a	process	or	a	product	to	cope	with	variability
with	minimal	loss	of	functionality.	This	is	in	line	with	the	Taguchi	on-target	engineering
philosophy	(Fowlkes	and	Creveling,	1995)	and	with	the	fundamental	components	of	quality



defined	by	Juran	and	Gryna	(1988):	(i)	the	product	features	and	(ii)	the	product’s	conformance
to	those	features.	Product	or	process	conformance	to	a	required	target	means	that	quality	is
improved	when	the	maximum	variation	of	the	output	is	minimised.

This	powerful	approach	for	delivering	robust	designs	is	illustrated	in	Figure	4.7.	Product
(process)	B	is	more	robust	and	performs	better	than	product	(process)	A,	because	the	key
output	parameter	characterising	product	B	is	more	often	close	to	the	target	(optimum)	value
than	product	A.	Conformance	to	a	customer-defined	target	also	means	that	quality	improves
when	variation	in	performance	is	minimised	(Fowlkes	and	Creveling,	1995).

Figure	4.7	Delivering	robust	designs	by	decreasing	the	maximum	variance	 	to	 	through
removing	sources	of	variation

The	selected	approach	is	also	in	line	with	the	worst-case	design	philosophy	(Pierre,	1986)	and
the	worst-case	philosophy	of	the	classical	decision	theory	(Wald,	1950).

The	variance	upper	bound	theorem	(VUBT)	can	be	used	for	obtaining	a	conservative	non-
parametric	estimate	of	the	process	capability	index	when	the	mixing	proportions	from	the
separate	sources	are	unknown	(Figure	4.8),	which	is	usually	the	case.



Figure	4.8	Variation	of	properties	from	multiple	sources

The	process	capability	index	is	defined	as	(Montgomery	et	al.,	2001)
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where	USL	and	LSL	are	the	upper	and	the	lower	specification	limits	(Figure	4.9)	and	σ	is	the
standard	deviation	of	the	process.

Figure	4.9	The	mean	of	a	robust	process	can	shift	off-centre	and	the	percentage	of	faulty	items
will	still	remain	very	low

A	large	process	capability	index	means	that	fewer	defective	or	non-conforming	units	will	be
produced.	A	process	with	a	large	capability	index	is	a	robust	process.	This	means	that	the
process	mean	can	shift	off-centre	and	the	percentage	of	faulty	items	can	still	remain	very	low.
If	the	process	is	not	centred	around	the	mean	μ,	the	actual	capability	index	can	be	used
(Montgomery	et	al.,	2001):

A	conservative	estimate	of	the	process	capability	index	for	properties	from	multiple	sources
can	be	obtained	by	using	an	upper	bound	variance	estimate	 	produced	by	the	algorithm
described	in	Appendix	4.2:

For	a	process	which	has	not	been	centred,	a	conservative	estimate	of	the	actual	capability
index	can	be	used:

For	the	conservative	estimates	of	the	capability	index,	the	relationships



are	valid.

Determining	a	non-parametric	and	conservative	estimate	of	the	process	capability	index	helps
to	stabilise	the	variation	of	the	process	within	the	control	limits	and	reduce	the	number	of
faults	in	the	end	product.	The	non-parametric	capability	index	can	serve	as	a	basis	for
comparing,	ranking	and	selecting	competing	manufacturing	processes.

In	the	assembly	from	Figure	4.10a,	component	A	with	a	mean	diameter	d	must	fit	into
component	B	with	mean	diameter	D.	In	order	to	guarantee	precision,	the	clearance	
should	not	deviate	significantly	towards	values	greater	than	its	optimum	value	Δopt	(Figure
4.10b).	On	the	other	hand,	in	order	to	avoid	a	fit	failure	(inability	to	fit	A	into	B)	or	jamming
because	of	insufficient	clearance,	the	difference	 	cannot	deviate	significantly	towards
values	smaller	than	the	optimum	value	Δopt	(Figure	4.10b).	Each	machine	centre	is	associated
with	a	specific	precision	with	which	the	diameters	d	and	D	are	manufactured.	As	a	result,	the
reliability-critical	clearance	 	varies	from	centre	to	centre.



Figure	4.10	Assembly	(a)	which	requires	(b)	an	optimum	value	Δopt	for	the	clearance	

Failures	are	caused	by	unfavourable	tolerance	stacks	due	to	excessive	variation.	Suppose	that
the	ranges	within	which	the	diameters	d	and	D	vary	are	 	and	 .
Jamming,	for	example,	occurs	if,	in	an	assembly,	the	diameter	d	of	part	A	has	deviated	towards
its	upper	limit	dmax	and,	simultaneously,	the	inside	diameter	D	of	part	B	has	deviated	towards
its	lower	limit	Dmin.	Conversely,	imprecise	assembly	occurs	when	the	diameter	d	of	part	A	has
deviated	towards	its	lower	limit	dmin	and	the	inside	diameter	D	has	deviated	towards	its	upper
limit	Dmax.	Decreasing	the	variation	of	the	clearance	 	improves	the	reliability	of	the
assembly.	Usually,	the	variances	of	the	clearance	 	characterising	each	manufacturing
centre	(Figure	4.11)	producing	the	assemblies	are	known.



Figure	4.11	The	maximum	variation	of	properties	of	an	assembly	manufactured	from	multiple
machine	centres	is	obtained	from	sampling	not	more	than	two	machine	centres

Then,	the	pair	of	manufacturing	centres	yielding	the	maximum	variance	of	the	clearance	
	can	be	determined.

If	no	source	of	variation	can	be	removed,	the	pair	of	distributions	yielding	the	worst	possible
variation	of	the	clearance	can	be	identified.	Next,	the	distance	between	the	mean	of	the	worst-
case	distribution	and	the	optimal	target	value	can	be	determined.	The	clearance	from	all
manufacturing	centres	is	then	simultaneously	increased/decreased	by	this	value	in	order	to
adjust	to	the	target	value.	This	can,	for	example,	be	achieved	by	increasing/decreasing	the
inner	diameter	D	of	component	B	or	decreasing/increasing	the	outer	diameter	d	of	component
A.	A	check	is	finally	performed	whether	the	design	can	accommodate	the	worst-case	variation.

The	final	step	involves	a	verification	whether	the	design	can	perform	with	this	worst-case
variation.	If	the	design	cannot	perform	with	the	worst	possible	variation	of	a	particular
parameter,	steps	are	taken	to	reduce	the	worst-possible	variation	of	the	parameter.	If	reducing
the	worst	possible	variation	is	not	possible	or	if	it	is	too	expensive,	a	robust	design	is	sought
for	which	the	worst-case	variation	of	the	parameter	causes	an	acceptable	variation	of	the
output	characteristic.	In	short,	the	process	of	creating	a	more	robust	product	based	on	the
variance	upper	bound	theorem	is	a	process	of	making	the	product	resistant	against	the
worst-case	variation	of	the	design	parameters.	Without	the	variance	upper	bound	theorem,



the	worst	variation	of	the	input	parameters	cannot	be	estimated.	Benign	variations	will	be
assumed	instead,	which	result	in	optimistic	predictions	regarding	the	product’s
performance.

If	sources	of	variation	can	be	removed,	by	removing	the	source	resulting	in	the	most	significant
decrease	of	the	variance	upper	bound,	the	variability	of	the	clearance	 	will	be
reduced	and	the	capability	index	of	the	manufacturing	process	increased.

This	is	a	way	of	achieving	a	robust	manufacturing	process,	whose	variation	is	under	control,
irrespective	of	the	actual	mixing	proportions	from	the	manufacturing	centres.

Increasing	the	Robustness	of	Electronic	Devices

Components	building	electronic	circuits	are	characterised	by	properties	like	resistance,
capacitance,	inductance,	etc.	Because	of	imprecision	during	manufacturing,	the	actual
magnitudes	of	these	properties	deviate	from	the	stated	nominal	values.

Suppose	that	these	components	are	part	of	safety-critical	systems	containing	sensors	measuring
temperature,	pressure,	concentration,	etc.	in	two	different	zones.	A	difference	exceeding	a
particular	threshold	triggers	an	alarm	or	a	shutdown	system.	Large	deviations	in	the	properties
of	the	components	building	the	circuit	are	undesirable,	because	they	lead	to	a	deteriorated
performance	of	the	safety-critical	devices.

The	components	are	manufactured	by	different	centres/suppliers.	Each	centre/supplier	is
characterised	by	its	individual	distribution	of	the	corresponding	property.	Usually,	the
variation	of	the	property	(resistivity,	capacitance,	inductance,	etc.)	associated	with	the
common	pool	of	manufactured	components,	for	given	mixing	proportions	from	the	suppliers,	is
not	the	maximum	possible	variation	that	can	occur.	There	exists	a	particular	combination	of
sources	and	mixing	proportions	that	yields	the	largest	(worst-case)	variation.	The	variance
upper	bound	theorem	makes	it	possible	to	determine	this	worst-case	variation,	and	this	will	be
illustrated	by	a	simple	example.

Suppose	that	resistors	are	delivered	from	four	suppliers.	The	mean	resistances	[Ω]
characterising	the	resistors	from	the	individual	suppliers	are

The	variances	of	the	resistors	characterising	the	individual	suppliers	are

Suppose	that	the	market	shares	of	the	suppliers	are	 ,	where	

.

For	the	variance	of	the	resistance	of	the	supplied	resistors,	Equation	4.4	yields	 .	A
calculation	of	the	maximum	variance	however	by	using	the	algorithm	in	Appendix	4.2	reveals	

,	attained	from	sampling	two	suppliers	only:	the	first	supplier	with	a	mixing



proportion	(market	share)	 	and	the	third	supplier	with	a	mixing	proportion	(market
share)	 .

The	designer	must	make	sure	that	the	electronic	circuit	will	operate	satisfactorily	under	the
worst	possible	combination	of	suppliers,	yielding	the	maximum	possible	variation	of	the
resistance.	If	the	circuit	design	cannot	perform	with	the	worst	possible	variation	of	the
resistance,	steps	are	taken	to	reduce	the	worst-possible	variation	of	the	resistance.	If	this	is	not
possible	or	if	it	is	too	expensive,	a	robust	circuit	design	is	sought	for	which	the	worst-case
variation	of	the	resistance	does	not	cause	unacceptable	performance	of	the	circuit.

Here,	we	need	to	point	out	that	the	distribution	of	properties	from	several	suppliers	is	a
distribution	mixture,	different	from	the	individual	distributions	characterising	the	separate
suppliers	or	any	particular	distribution.	For	the	example	discussed	earlier,	the	resultant	mixture
distribution	is	different	from	Gaussian	distribution	even	if	the	resistance	of	the	components
from	each	individual	supplier	follows	a	Gaussian	distribution.

4.4.2	Using	the	Variance	Upper	Bound	Theorem	for	Developing	Six-
Sigma	Products	and	Processes
The	conservative	estimate	of	the	variation	of	properties	can	be	used	for	developing	robust
designs	and	processes,	where	the	mean	output	can	be	easily	adjusted.	Indeed,	if	the	design	is
capable	to	perform	with	the	worst	variation	of	the	design	parameters,	it	will	be	capable	to
perform	for	any	other	variation	of	the	design	parameters,	produced	by	any	particular
combination	of	mixing	proportions	from	the	sources.	In	other	words,	the	design	can	be	made
resistant	to	the	worst	possible	variation	of	the	design	parameters.

The	algorithm	for	creating	a	six-sigma	process	by	using	the	variance	upper	bound	theorem	can
be	presented	with	the	following	steps:

Algorithm	4.1

1.	 The	maximum	possible	variance	of	the	process	is	determined,	by	calculating	the
variance	upper	bound	 	and	the	mean	μmax	corresponding	to	the	largest	variance
given	by	Equation	4.6.

2.	 The	mean	μmax	of	the	process	(parameter)	is	adjusted	on	the	target	value	by	adding	or
subtracting	a	common	value	(the	difference	Δ	between	the	mean	μmax	of	the	worst-case
distribution	mixture	and	the	target	value).	Adding	or	subtracting	a	common	value	t0	to
a	distribution	alters	only	its	mean	and	does	not	alter	the	variance	(Figure	4.12).
Adding	or	subtracting	a	common	value	to	all	individual	distributions	does	not	alter
their	relative	position;	it	alters	only	the	global	mean	of	the	distribution	mixture	defined
on	these	individual	distributions.

In	fact,	the	first	two	steps	are	about	creating	the	worst	possible	variation	of	the



parameter	around	the	target	value.

3.	 The	new	specification	limits	are	obtained	by	adding	and	subtracting	6σmax	using	the
relationships

4.	 The	process	is	tested	whether	it	is	acceptable	with	variation	within	the	obtained
specification	limits.

5.	 If	(the	process	output	is	acceptable)
   then	{A	six-sigma	process	has	been	obtained;	Stop.}

    else {
       if	(the	variation	of	the	process	can	be	reduced	at	low	
cost)	then

        	{reduce	the	variation	of	the	process;

           repeat	steps	1–5;
        	 }
      	else	{A	six-sigma	process	cannot	be	produced	at	low	cost;	

Stop.}

       }

Figure	4.12	Steps	to	create	a	six-sigma	process/design	by	using	the	variance	upper	bound
theorem

This	is	a	powerful	method	for	delivering	six-sigma	operations	and	processes.

Suppose	that	several	operators	(e.g.	from	different	shifts)	are	setting	the	value	of	a	critical
parameter	(e.g.	length).	The	parameter,	for	example,	could	be	a	critical	distance	that	defines
the	position	of	a	part	in	a	manufacturing	cell	(e.g.	the	position	of	the	glass	in	a	glazing	cell	of	a
car	manufacturing	plant).

Each	operator	sets	the	critical	distance	with	a	particular	mean	and	a	standard	error.	In	order	to
achieve	the	necessary	consistency	of	production	control,	the	production	process	must
accommodate	the	worst	variation	of	the	set	position	from	its	target	value.	The	worst	variation
of	the	set	position	is	given	by	the	upper	bound	of	the	variance	 	by	applying	the	variance
upper	bound	theorem.	After	defining	the	pair	of	operators	associated	with	the	worst-case



(4.A.1)
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variance	 	of	the	set	position,	the	distance	t0	between	the	mean	of	the	worst-case	mixture
and	the	target	value	is	determined	(Figure	4.12).	Creating	a	six-sigma	operation	proceeds
along	the	steps	described	in	Algorithm	4.1.

If	6σmax	operation	is	produced,	the	operation	is	now	resistant	against	this	worst-case	variation.

Appendix	4.1:	Derivation	of	the	Variance	Upper	Bound
Theorem
The	upper	bound	Vmax	of	the	variance	V	of	a	distribution	mixture	is	obtained	by	maximising	the
general	Equation	4.6	with	respect	to	pk,	 :

The	local	extrema	of	expression	(4.A.1)	can	be	determined	using	Lagrange	multipliers,

because	of	the	equality	constraint	 .	The	necessary	condition	for
an	extremum	of	the	variance	given	by	expression	(4.6)	is

where	λ	is	the	Lagrange	multiplier.	These	M	equations,	together	with	the	constraint	

,	form	a	system	of	M + 1	linear	equations	in	the	M + 1	unknowns	p1, …, pM	and
λ:

where	k = 1,	…,	M.	This	linear	system	can	also	be	presented	in	a	vector	form:

where



(4.A.4)

	and	

Matrix	A	is	a	Cayley–Menger	matrix	(Glitzmann	and	Klee,	1994).	The	determinant	of	this
matrix	is	at	the	basis	of	a	method	for	calculating	the	volume	V	of	an	N-simplex	(in	the	N-
dimensional	space).	Suppose	an	N-simplex	has	vertices	 	and	 	is	the	squared
distance	between	vertices	vk	and	vm.	Let	the	matrix	D	be	defined	as

The	equation	 	then	gives	the	volume	V	of	the	N-simplex
(Glitzmann	and	Klee,	1994;	Sommerville,	1958).	From	this	equation,	it	is	clear	that	if	the
Cayley–Menger	determinant	det(D)	is	zero,	the	volume	of	the	simplex	is	also	zero.	The
converse	is	also	true	that	if	the	volume	of	the	simplex	is	zero,	the	Cayley–Menger	determinant
is	necessarily	zero.

As	can	be	verified	from	the	matrix	A	given	by	(4.A.4),	the	means	μi	can	be	considered	as	first-
axis	coordinates	of	the	vertices	of	a	simplex	in	an	M-1-dimensional	space	with	other
coordinates	set	to	zero.	The	‘volume’	of	this	simplex	is	clearly	zero	except	in	the	one-
dimensional	case	( )	where	the	‘volume’	of	the	simplex	is	simply	the	distance	
between	the	two	means	of	the	individual	distributions	(sources).	As	a	consequence,	the
determinant	of	matrix	A	is	always	zero	for	 ,	and	the	linear	system	(4.A.3)	has	no
solution.

We	shall	now	prove	that	no	local	maximum	for	the	variance	exists	if	exactly	 	individual
distributions	(sources)	are	sampled	from	a	mixture	distribution	composed	of	M	components
(individual	distributions).	If	k > 2	individual	distributions	are	sampled,	the	sampling
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probabilities	of	these	distributions	must	all	be	different	from	zero.	Without	loss	of	generality,
let	us	assume	that	only	the	first	k	individual	distributions	are	sampled,	with	probabilities	

,	 ,	…,	 ,	 	( ).	Since	the	k	individual	distributions
also	form	a	mixture	distribution	and	 ,	the	linear	system	(4.A.3)	has	no	solution;	therefore,
no	local	maximum	exists.	This	means	that	the	global	maximum	is	attained	somewhere	on	the
boundary	of	the	domain	 ,	…,	 ,	either	for	some	 	or	for	some	 .	The
case	 ,	however,	means	that	the	rest	of	the	sampling	probabilities	must	be	zero	( 	for	

).	In	both	cases,	at	least	one	of	the	sampling	probabilities	p1,	p2,	…,	pk	must	be	zero.
Without	loss	of	generality,	suppose	that	 .	The	same	reasoning	can	be	applied	to	the
remaining	 	sources.	If	 ,	some	of	the	p1,	p2,	…,	 	must	be	zero,	etc.

If	 	(one-dimensional	simplex),	the	matrix	Equation	4.A.3	becomes

Because	in	this	case,	the	Cayley–Menger	determinant	is	equal	to	 ,	a	solution	of	the
linear	system	(4.A.5)	now	exists	and	a	local	maximum	may	be	present.	The	solution	of	the
linear	system	(4.A.5)	is

These	values	of	p1	and	p2	correspond	to	a	local	maximum	in	the	domain	 ,	 ,

only	if	 .	If	 ,	the	maximum	is	attained	at	the	boundary	of
the	domain,	either	for	 	( )	or	for	 	( ),	whichever	is
greater	( ).	If	 ,	a	local	maximum	of	the	variance	exists	for
p1	and	p2	given	by	the	relationships	(4.A.6)	and	(4.A.7).	The	maximum	value	of	the	variance
corresponding	to	these	values	is

In	short,	the	global	maximum	of	the	right-hand	side	of	Equation	4.6	is	attained	either	from
sampling	a	single	source/individual	distribution,	in	which	case	one	of	the	sampling



probabilities	pi	is	unity	and	the	rest	are	zero	( ),	or	from	sampling	only	two
individual	distributions	k	and	m	among	all	individual	distributions	composing	the	mixture
distribution.	In	this	case,	 	and	 	and	the	rest	of	the	pi	are	zero	( )	for	 	and	

.	If	Vmax,k ,m	denotes	the	local	maximum	of	the	variance	from	sampling	sources	(individual
distributions)	k	and	m	( ),	the	global	maximum	Vmax	of	the	right-hand	side	of	Equation	4.6

can	be	found	from	 	where	 	and	 .	Since
there	exist	 	number	of	terms	Vmax,k ,m,	the	global	maximum	is	determined	after	

	checks.	As	can	be	verified	from	the	algorithm	presented	in
Appendix	4.2,	the	maximum	of	the	variance	is	determined	by	two	nested	loops.	The	control
variable	i	of	the	external	loop	takes	on	values	from	2	to	M	(the	number	of	sources),	while	the
control	variable	j	of	the	internal	loop	takes	on	values	from	1	to	i − 1.

Appendix	4.2:	An	Algorithm	for	Determining	the	Upper
Bound	of	the	Variance	of	Properties	from	Sampling
Multiple	Sources
The	algorithm	is	in	pseudocode,	where	the	statements	in	braces	{op1;	op2;	op3;	…}	are
executed	as	a	single	block.	Detailed	description	of	the	pseudocode	notation	is	given	in	Chapter
8.	The	variable	max	contains	the	largest	variance	at	the	end	of	the	calculations,	and	the	constant
M	is	the	number	of	components	(sources)	composing	the	mixture	distribution.	Variables	k_max
and	m_max	contain	the	indices	of	the	sources	sampling	from	which	yields	the	largest	variance.
If	the	maximum	variance	is	attained	from	sampling	a	single	source,	k_max	and	m_max	will	both
contain	the	index	of	this	source.



Algorithm	4.2

max=V[1];	k_max=1;	m_max=1;

	for	i	from	2	to	M	do

	{

		if	(max<V[i])	then	do	{

																								max=V[i];	k_max=i;	m_max=i;

																								pk_max=1;	pm_max=1;

																								}

	for	j=1	to	i	do

		{

		if	 	then	do	{

				candidate_max	 ;

	if	(max<candidate_max)	then	do				{

				max=candidate_max;	k_max=i;

				m_max=j;

	pk_max	=	 ;

				pm_max=1-pk_max;

			    <![CDATA[}
				  }
		}

	}

Variables	pk_max	and	pm_max	contain	the	probabilities	of	sampling	the	two	sources	which
yield	the	largest	variance.	As	can	be	verified,	the	statements	in	the	internal	loop	are	executed
only	if	the	condition	 	is	fulfilled,	which	indicates	a	local	maximum.



5	
Building	Reliability	and	Risk	Models
Failure	rate	and	failure	mode	data	are	of	vital	importance	for	the	reliability	analysis.	For	the
purposes	of	the	reliability	predictions,	failure	rates	should	be	quoted	for	specific	failure
modes.

A	reliability	data	record	usually	includes	the	following	basic	components	(fields):

Inventory	field:	Gives	information	on	the	particular	component	or	subsystem

Failure	mode	field:	Describes	the	particular	failure	event	including	its	effect	on	the
operational	state	of	the	system

Failure	time	field:	Reflects	the	time	to	failure

Operational	and	environment	conditions

Industry-specific	data	are	related	to	a	particular	industry.	An	example	of	an	industry-specific
data	source	is	the	Offshore	REliability	DAta	(OREDA)	database	(OREDA,	1992)	which
contains	field	data.	Failure	rates	are	listed	for	a	wide	range	of	offshore	hardware	components
–	electromechanical,	mechanical	and	hydraulic	components	–	and	for	various	environmental
applications.

5.1	General	Rules	for	Reliability	Data	Analysis
A	basic	initial	step	in	reliability	data	analysis	is	to	verify	whether	the	data	have	been	collected
correctly	since	the	quality	of	field	data	varies	between	misleading	data	and	useful	data.
Without	good	quality	data,	there	is	no	quality	prediction,	despite	the	amount	of	sophisticated
analysis	involved.	A	proper	data	collection	should	include	data	quality	assurance.	This
involves	auditing	the	source	of	data	and	specifying	the	procedures	to	be	followed	during	data
collection,	recording	and	processing.

After	the	data	collection,	the	exploratory	data	analysis	is	the	next	step.	It	involves	summarising
and	examining	the	data	in	an	exploratory	way	using	plots,	charts	and	histograms.	The	results
from	the	preliminary	data	analysis	are	helpful	for	the	next	step,	where	an	appropriate
reliability	and	risk	model	is	formulated.	An	examination	of	the	data	in	Figure	5.1	for	example,
regarding	life	times,	clearly	indicates	bimodality.	There	is	a	well-defined	distribution	of	the
lives	of	the	weak	sub-population	and	another	distribution,	characterising	the	lives	of	the
normal	population.	As	a	result,	none	of	the	classical	unimodal	distributions	will	be
appropriate	for	this	particular	data	set.



Figure	5.1	Bimodality	in	life	data

Another	example	is	presented	in	Figure	5.2,	where	the	dependence	of	the	Charpy	impact
energy	on	the	percentage	of	ductile	fracture	over	the	fracture	surface	of	a	Charpy	specimen	was
studied	using	a	scatter	plot.	A	strong	positive	correlation	exists	between	the	absorbed	impact
energy	and	the	percentage	of	ductile	fracture	(Todinov	et	al.,	2000).	Indeed,	ductile	fracture	is
associated	with	a	large	amount	of	absorbed	impact	energy	as	opposed	to	brittle	fracture,	which
is	associated	with	a	small	amount	of	absorbed	impact	energy.



Figure	5.2	Scatter	plot	revealing	a	strong	positive	correlation	between	the	Charpy	impact
energy	and	the	percentage	of	ductile	fracture	(Todinov	et	al.,	2000)

Thorough	understanding	of	the	failure	mechanisms	and	factors	which	control	failure	is	required
by	the	next	step	–	formulation	of	a	reliability	(risk)	model.	It	is	particularly	important	to	verify
whether	the	selected	random	variables	indeed	control	reliability	(risk).	If	a	well-established
model	already	exists,	the	model	formulation	may	be	reduced	to	assessing	whether	the	data
conform	to	the	model.	In	some	cases,	the	reliability	and	risk	models	are	obvious:	for	example,
the	homogeneous	Poisson	process	for	random	arrivals,	the	Gaussian	model	for	the	distribution
of	the	diameter	of	a	machined	component,	the	binomial	distribution	for	statistically
independent	tests	characterised	by	a	constant	probability	of	success	in	each	test,	etc.	If	a
suitable	model	is	not	obvious,	data	can	be	presented	in	various	plots	which	often	suggest	a
suitable	model.	Another	approach	is	to	use	a	general	model	that	is	likely	to	include	a	suitable
one	as	a	special	case.	Such	is,	for	example,	the	Weibull	distribution	which	includes	the
negative	exponential	distribution	as	a	special	case.

Once	the	model	has	been	formulated,	it	usually	involves	a	number	of	parameters	which	need	to
be	estimated	from	data.	Figure	5.3	gives	basic	types	of	probability	density	distributions	for	the
estimates	â	of	a	particular	parameter	a.	The	quality	of	the	estimates	varies	widely	from
unbiased	and	efficient,	characterised	by	a	small	error,	to	biased	and	inefficient,	characterised



by	a	large	error	(Figure	5.3).

Figure	5.3	Basic	types	of	parameter	estimates

The	characteristics	of	a	good	reliability	model	match	closely	the	characteristics	of	a	good
statistical	model	(Chatfield,	1998).	The	model	should	be:

Physically	based	–	providing	insight	into	the	underlying	physical	mechanism	of	the
modelled	random	factor.

Parsimonious	–	involving	the	smallest	number	of	parameters	necessary	to	describe	the
data	set.

Robust	–	small	variations	in	the	input	data	and	in	the	estimates	of	the	model	parameters
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should	lead	to	small	variations	in	the	model	predictions.

Capable	of	correct	predictions	outside	the	data	range	and	providing	a	good	fit	within	the
data	range.

Model	building	is	not	about	getting	the	best	fit	to	the	observed	data.	It	is	about	constructing	a
model	which	is	consistent	with	the	underlying	physical	mechanism	of	failure.	The	ability	of	a
model	to	give	a	very	good	fit	to	a	single	data	set	may	indicate	little	because	a	good	fit	can	be
achieved	simply	by	including	more	parameters	in	the	model.	As	a	rule,	over-parameterised
models	have	poor	predictive	capability.

This	point	will	be	illustrated	with	Figure	5.4.	For	a	set	of	n + 1	points	(x0, y0),	…,	(xn, yn)	with
distinct	x-coordinates,	it	is	always	possible	to	construct	a	polynomial	f(x)	of	nth	degree	which
passes	through	every	single	point.

Figure	5.4	As	a	rule,	over-parameterised	models	have	poor	predictive	capability

For	example,	the	polynomial	(known	as	Lagrange’s	interpolation	formula)

where
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is	a	polynomial	of	degree	n,	which	can	be	presented	in	the	form

where	ai	are	coefficients.

The	polynomial	passes	through	every	single	point.	Indeed,	 	for	 	and	
for	 .	Therefore,	 .

Although	the	polynomial	of	degree	5	provides	a	perfect	fit	to	all	data	points	in	Figure	5.4,	it	is
a	model	with	poor	predictive	properties	both	within	the	data	range	and	outside	the	data	range.
A	simple	polynomial	g(x)

of	second	degree	may	provide	a	good	fit	and	predictive	properties	despite	that	the	polynomial
may	not	pass	through	any	single	data	point.

A	robust	statistical	model	means	that	the	output	of	the	model	is	relatively	insensitive	to	small
variations	in	the	input	data,	for	example,	system	reliability	insensitive	to	small	variations	in	the
reliabilities	of	the	components.	According	to	a	discussion	presented	in	Chapter	2,	in	case	of	a
series	system	including	a	very	large	number	of	components,	small	errors	in	the	reliability
estimates	of	the	individual	components	gives	rise	to	a	large	error	in	the	system	reliability
estimate.

A	test	on	the	suitability	of	a	selected	model	is	its	approximation	of	the	trivial	extreme	cases.
The	inability	of	a	model	to	approximate	correctly	some	of	the	trivial	extreme	cases	is	a	clear
indication	that	the	selected	model	is	incorrect.

A	basic	final	step	of	model	building	is	the	model	validation.	It	involves	comparing	the
predictions	of	the	model	under	the	range	of	conditions	for	which	it	holds	with	experimental
observations	(field	data).

5.2	Probability	Plotting
Probability	plotting	provides	a	quick	goodness-of-fit	evidence	whether	a	data	set	is	consistent
with	the	conjectured	model.	To	construct	a	probability	plot,	the	observations	are	first	ranked	in
ascending	order	x(1),	x(2),	…,	x(n).	This	can	be	done	by	sorting	the	data	values	x1, x2, …, xn.	If
the	number	n	of	data	values	is	large,	sorting	can	be	performed	by	some	of	the	well-known
methods	(Heapsort,	Quicksort,	Bubble	sort,	Insertion,	Shell,	etc.),	covered	comprehensively	in
literature	dealing	with	computer	algorithms	(Cormen	et	al.,	2001).

Next,	an	approximation	 	of	the	cumulative	distribution	function	F(t)	is	made.	The	plotting



positions	 ,	where	i	are	the	indices	of	the	ordered	observations,	provide	a	good	choice
for	most	applications.	The	empirical	cumulative	distribution	function	 	gives	the
probability	that	the	random	variable	t	will	be	smaller	than	or	equal	to	the	value	x(i)	of	the	ith
observation.

If	the	probability	plot	is	subsequently	used	for	estimating	the	parameters	of	the	conjectured
distribution,	the	best	plotting	positions	will	depend	on	the	assumed	model	(Meeker	and
Escobar,	1998).	A	basic	result	in	the	probability	theory	states	that	the	empirical	cumulative
distribution	function	 	converges	to	the	true	cumulative	distribution	function	F(x),	in	a
probabilistic	sense,	as	n	grows	(DeGroot,	1989).	In	other	words,	for	a	large	sample,	the
empirical	cumulative	distribution	is	close	to	the	true	cumulative	distribution	with	high
probability.

At	each	value	xi,	the	empirical	cumulative	distribution	function	has	a	jump	of	height	1/n,	where
n	is	the	number	of	experimental	observations	(Figure	5.5).	Building	an	empirical	cumulative
distribution	can	be	done	for	the	Charpy	impact	energy	from	the	microstructural	zones
characterising	multi-pass	C–Mn	welds	(Figure	5.6).

Figure	5.5	Building	the	empirical	cumulative	distribution	of	a	random	variable





Figure	5.6	(a)	A	typical	inhomogeneous	microstructure	characterising	C–Mn	multi-run	welds.
(b)	Position	of	the	Charpy	V-notch

The	microstructure	of	the	C–Mn	multi-run	welds	is	markedly	inhomogeneous,	consisting
roughly	of	As-deposited	metal	(the	dark	zones	in	Figure	5.6)	and	reheated	zones	(the	light
zones)	representing	recrystallised	weld	metal.	Each	subsequent	weld	bead	grain	refines
(normalises)	part	of	the	previous	weld	metal	underneath,	and	refinements	in	microstructure
result	in	improved	toughness	compared	to	the	microstructure	not	affected	by	reheating.

The	microstructural	zone	from	which	the	sample	is	taken	(in	which	the	Charpy	V-notch	is	cut
(Figure	5.6b))	has	a	very	strong	influence	on	the	distribution	of	the	impact	energy	in	the
transition	ductile-to-brittle	region	(Todinov	et	al.,	2000).	This	is	illustrated	by	the	separated
distributions	of	the	impact	energy	from	the	microstructural	zones	characterising	the	ductile-to-
brittle	transition	region	of	multi-pass	C–Mn	welds	(Figure	5.7).

Figure	5.7	Cumulative	empirical	distribution	of	the	Charpy	impact	energy	characterising
sampling	from	the	separate	microstructural	zones	of	C–Mn	multi-run	welds	(Todinov	et	al.,
2000)

The	empirical	distributions	in	Figure	5.7	provide	strong	evidence	that	the	separate
microstructural	zones	in	multi-run	C–Mn	weld	are	characterised	by	distinct	distributions	of	the



Charpy	impact	energy.	The	central	zone	is	characterised	by	a	poor	impact	toughness,	the
reheated	zone	is	characterised	by	a	relatively	high	impact	toughness	and	the	intermediate	zone
is	characterised	by	an	intermediate	impact	toughness	(Figure	5.7).

The	cumulative	distribution	function	F(t)	can	be	linearised	by	applying	an	appropriate
transformation	of	the	coordinate	axes	t	and	F(t).	Let	the	linear	transformation	be	defined	by	

,	where	 	and	 	are	functions	of	F(t)	and	t.

If	 	are	now	plotted	against	 ,	the	plotted	points	will	fall	approximately
along	a	straight	line	if	the	data	set	is	consistent	with	the	conjectured	statistical	distribution
F(t).	If	the	plotted	points	deviate	systematically	from	a	straight	line,	the	conjectured
distribution	is	not	consistent	with	the	observations	in	the	data	set.	A	linear	transformation	is
used	because	even	slight	deviations	from	a	straight	line	indicating	a	departure	from	the
conjectured	model	are	easily	identifiable.	Fitting	a	straight	line	to	the	transformed	data	can	be
done	using	linear	regression.

Once	a	candidate	distribution	has	been	identified,	the	next	step	is	to	estimate	its	parameters.
Usually,	the	parameter	estimates	are	obtained	using	the	method	of	maximum	likelihood.
Probability	plots,	however,	can	also	be	used	for	estimating	model	parameters.

5.2.1	Testing	for	Consistency	with	the	Uniform	Distribution	Model
Let	the	ordered	sample	values	x(1),	x(2),	…,	x(n)	are	believed	to	be	realizations	of	a	uniformly
distributed	random	variable	X	with	probability	density	function	defined	by	 	in	the
interval	[a,	b]	and	0	elsewhere.	The	conjectured	cumulative	distribution	function	

	of	the	random	variable	X	can	be	presented	as	 ,	where	 ,
	and	 .

Next,	the	cumulative	distribution	function	has	been	approximated	by	 ,	where	n	is
the	number	of	observations.	The	expression	 	estimates	the	probability	that	the
random	variable	X	will	not	exceed	the	observed	value	x(i).	Next,	the	values	 	are
plotted	against	the	ordered	observations	x(1),	x(2),	…,	x(n).	If	the	ordered	observations	do
indeed	come	from	a	uniform	distribution,	the	points	will	fall	approximately	along	a	straight
line.	Estimates	 	and	 	of	the	true	values	of	the	parameters	a	and	b	can
be	obtained	from	the	slope	k *	and	the	intercept	c *	of	the	best-fit	straight	line.	The	best-fit
straight	line	is	usually	determined	using	the	method	of	least	squares.

5.2.2	Testing	for	Consistency	with	the	Exponential	Model
In	order	to	check	whether	a	set	of	observations	is	consistent	with	the	negative	exponential
distribution	of	a	particular	random	variable	T,	an	exponential	probability	plot	can	be	made
using	an	appropriate	linear	transformation	of	the	axes.	Since	the	conjectured	cumulative
distribution	function	of	the	random	variable	T	is	 ,	by	taking	a	logarithm,	the
negative	exponential	distribution	can	be	transformed	into	an	equation	of	a	straight	line:
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Next,	the	data	points	are	ranked	in	ascending	order,	t(1),	t(2),	…,	t(n),	and	the	plotting	positions

are	obtained	from	 ,	which	estimates	the	probability	that	the	random	variable	T
will	be	smaller	than	the	ith	observed	value	t(i).	If	the	data	set	does	come	from	an	exponential

distribution,	the	values	 	plotted	against	t(i),	i = 1,	2,	…,	n	should	be	close	to	a
straight	line.	The	slope	 	of	the	best-fit	straight	line	is	an	estimate	of	the	unknown	parameter	λ
in	the	negative	exponential	distribution.

5.2.3	Testing	for	Consistency	with	the	Weibull	Distribution
Weibull	analysis	may	be	carried	out	by	using	a	very	small	number	of	observations	(Abernethy,
1994;	Dodson,	1994).	The	Weibull	distribution	 	is	linearised	first,	by
taking	a	double	logarithm:

This	is	an	equation	of	a	straight	line:

where

The	ordered	observations	 ,	are	believed	to	be	realizations	of	a	Weibull-
distributed	random	variable	T.	The	median	rank	approximations	for	the	Weibull	cumulative
distribution	function	are	 	(Abernethy,	1994;	Dodson,	1994),	where	

	are	the	indices	of	the	ordered	observations	and	n	is	the	number	of	observations.	
gives	the	probability	that	the	random	variable	T	does	not	exceed	t(i).	From	the	estimated	

values,	the	values	 	are	determined.	Using	the	method	of	least	squares,	the
slope	 	and	the	intercept	ĉ	of	the	best-fit	straight	line	(Figure	5.8)	are	obtained	(Draper	and
Smith,	1981):
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and

where	 ,	 	and	 .	The	value	 	is	an	estimate	of	the
exponent	m	in	the	Weibull	distribution	and	 	is	an	estimate	of	the	characteristic
life	η.

Figure	5.8	A	probability	plot	for	a	two-parameter	Weibull	distribution

5.2.4	Testing	for	Consistency	with	the	Type	I	Extreme	Value
Distribution
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Suppose	that	the	ordered	observations	are	 .	The	median	rank
approximations	of	the	cumulative	distribution	function	of	the	type	I	extreme	value	distribution
are	 .	If	the	extreme	value	distribution	 	is

approximated	by	 ,	taking	natural	logarithms	twice	gives

After	setting	 ,	the	values	x(i)	are	plotted	against	zi.	If	the	plotted	points	fall
approximately	along	a	straight	line,	the	observed	values	are	consistent	with	the	maximum
extreme	value	model.	In	case	of	a	good	fit,	the	slope	and	the	intercept	of	the	best-fit	line	serve
as	estimates	of	the	unknown	parameters	θ	and	ξ,	respectively.

5.2.5	Testing	for	Consistency	with	the	Normal	Distribution

Let	the	ordered	sample	values	be	 ,	believed	to	be	realizations	of	a	random
variable	X	following	a	normal	distribution.	If	the	sample	x(1),	x(2),	…,	x(n)	comes	from	a

normal	distribution	with	mean	μ	and	standard	deviation	σ,	 	will	follow	the
standard	normal	distribution.	Estimates	of	zi	for	n	observations	can	be	obtained	from	the
standardised	normal	scores,	which	satisfy

where	Φ(•)	is	the	cumulative	distribution	function	of	the	standard	normal	distribution.	Φ(zi)
from	Equation	5.9	is	equal	to	the	probability	 	that	the	random	variable	X	will	not
exceed	the	observed	value	x(i)	( ).	From	this	relationship,	the	normal	scores	zi
corresponding	to	the	n	observed	values	can	be	determined	from	 ,	where	

	is	the	inverse	function	of	Φ(•).	Values	of	 	are	obtained	from	tables	or	by	using
numerical	methods.	The	normal	probability	plot	is	constructed	by	plotting	the	obtained	n
standardised	normal	scores	zi	(i = 1,	2,	…,	n)	against	the	ordered	observations	x(i).

If	the	data	x(i)	do	come	from	a	normal	distribution,	plotting	x(i)	versus	the	standard	normal

scores	 	produces	points	falling	approximately	along	a	straight	line	
	with	slope	σ	and	intercept	μ.	A	good	linear	fit	indicates	that	the	data	are

consistent	with	a	normal	distribution.	In	this	case,	the	slope	 	and	the	intercept	 	of	the	best-fit
straight	line	are	estimates	of	the	standard	deviation	σ	and	mean	μ	of	the	normal	distribution
from	which	the	data	come	from.

In	Figure	5.9,	the	normal	probability	plotting	technique	has	been	illustrated	with	Charpy	impact
energy	data	related	to	the	case	where	the	Charpy	V-notch	(see	Figure	5.6)	has	sampled	from
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different	microstructural	zones	of	a	multi-run	weld	(mixed	sampling).	In	Figure	5.9,	the
systematic	deviations	of	the	plotted	points	from	a	straight	line	indicate	that	the	normal
distribution	is	not	an	appropriate	model	for	the	Charpy	impact	energy	of	inhomogeneous	multi-
run	welds	(Todinov	et	al.,	2000).	Consequently,	for	multi-run	welds,	a	model	of	the	variation
of	the	Charpy	impact	energy	assuming	a	Gaussian	distribution	is	flawed.	The	variation	of	the
Charpy	impact	energy	of	inhomogeneous	welds	in	the	case	where	different	microstructural
zones	are	sampled	does	not	follow	a	Gaussian	distribution.	It	is	a	mixture	of	distributions.	The
distribution	of	the	impact	toughness	from	sampling	all	three	microstructural	zones	can	be
modelled	by	the	distribution	mixture

where	p1,	p2	and	p3	are	the	probabilities	of	sampling	the	(i)	central,	(ii)	intermediate	and	(iii)
reheated	zone	(Figure	5.6)	and	F1(x),	F2(x)	and	F3(x)	are	the	cumulative	distribution	functions
characterising	the	Charpy	impact	energy	of	the	three	microstructural	zones.	The	mean	of	the
Charpy	impact	toughness	is

where	μ1,	μ2	and	μ3	are	the	means	of	the	Charpy	impact	energy	characterising	the	separate
microstructural	zones.	The	variance	of	the	Charpy	impact	energy	from	sampling	all	three
microstructural	zones	is	given	by

where	σ1,	σ2	and	σ3	are	the	standard	deviations	of	the	Charpy	impact	energy	associated	with
the	separate	microstructural	zones.



Figure	5.9	Normal	plots	of	the	Charpy	impact	energy	of	C–Mn	multi-run	welds	at	different	test
temperatures:	(a)	50°C;	(b)	−20°C;	(c)	0°C	and	(d)	−40°C	(Todinov	et	al.,	2000)

This	example	shows	the	dangers	of	assuming	automatically	Gaussian	distribution	for	data
obtained	from	pooling	measurements	from	different	sources	even	if	the	distribution	of
properties	characterising	each	individual	source	is	a	Gaussian	distribution.	This	point	will	be
illustrated	by	the	next	example.
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Example

The	strength	of	components	in	each	of	n	batches,	each	containing	mi	components,	follows
a	normal	distribution	with	mean	μi	and	a	standard	deviation	σi,	i = 1,	…,	n.	All	batches
have	been	pooled	together	in	a	single,	large	batch.	What	is	the	distribution	of	the	strength
of	components	in	the	large	batch?

Give	an	expression	for	the	mean	and	the	standard	deviation	of	the	strength	of	components
in	the	large	batch.

Solution

The	distribution	of	the	strength	of	components	in	the	single	large	batch	is	a	mixture	of	n

normal	distributions,	where	 	is	the	probability	of	sampling	the	ith	batch.
The	distribution	is	not	a	Gaussian	distribution.	The	mean	of	the	distribution	is

The	standard	error	of	the	distribution	is	 ,	where

is	the	expression	for	determining	the	variance	of	a	distribution	mixture.

5.3	Estimating	Model	Parameters	Using	the	Method	of
Maximum	Likelihood
Suppose	that	the	conjectured	model	(statistical	distribution)	f(x, a)	depends	on	a	single

parameter	a.	If	the	likelihood	function	 	has	been	defined,	the
maximum	likelihood	estimate	â	of	the	true	parameter	a	is	the	value	for	which	the	likelihood
function	attains	a	maximum:

Maximising	the	logarithm	of	the	likelihood	function	yields	the	same	maximum	likelihood
estimate	â:
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Setting	the	log-likelihood	derivative	to	zero

and	solving	the	equation	analytically	with	respect	to	a	to	find	a	potential	candidate	for	a	global
maximum,	or	maximising	the	log-likelihood	function	numerically	to	find	a	global	maximum,
yields	the	estimate	â.

The	method	of	maximum	likelihood	will	be	illustrated	by	estimating	the	parameter	λ	of	the
negative	exponential	distribution.	Suppose	that	probability	plotting	has	indicated	that	the	data
sample	(x1, x2, …, xn)	is	compatible	with	the	negative	exponential	distribution	

.	In	order	to	obtain	a	maximum	likelihood	estimate	of	the	only	model
parameter	λ,	the	log-likelihood	function	is	constructed	first:

Differentiating	the	log-likelihood	function	with	respect	to	λ	gives	 .

Setting	the	derivative	to	0	and	solving

with	respect	to	λ	results	in

For	this	value,	the	second	derivative	 	is	negative;	therefore,	
corresponds	to	a	local	maximum	which	is	also	the	global	maximum	because	the	first	derivative
is	positive	and	decreasing	for	all	λ	<	 	and	negative	and	decreasing	for	all	λ	>	 .	The	value	
given	by	Equation	5.14	is	the	maximum	likelihood	estimate	of	the	unknown	parameter	λ.
Estimating	the	parameters	of	the	rest	of	the	models	discussed	earlier	can	also	be	done	using	the
method	of	the	maximum	likelihood.	Usually,	the	log-likelihood	function	cannot	be	maximised
analytically	except	in	cases	involving	a	very	small	number	of	model	parameters.	Numerical
optimisation	methods	are	widely	used	as	an	alternative.
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5.4	Estimating	the	Parameters	of	a	Three-Parameter
Power	Law
From	a	set	of	measurements	yi,	for	the	values	 	of	the	controlled	variable,	we
would	like	to	obtain	unbiased	and	efficient	estimates	of	the	parameters	of	the	power	law

which	appears	in	a	number	of	applications.

A	method	based	on	correlation	has	been	proposed	in	Todinov	(2001b).	An	estimate	of	the
unknown	exponent	m	in	Equation	5.15	is	obtained	by	first	transforming	Equation	5.15	into

Let	us	denote	 .	The	values	of	the	unknown	exponent	m	are	varied	in	the	interval	
,	where	mmax	is	an	appropriately	selected	upper	bound.	Denoting	 ,	the

values	zi	are	plotted	versus	the	observations	xi,	and	for	each	value	of	m,	the	correlation
coefficient

is	determined,	where

and

In	Equations	(5.17)-(5.18),	x-bar	and	z-bar	are	the	mean	values	of	xi	and	zi	(i = 1,	...,	n).

The	value	 ,	for	which	the	maximum	value	of	the	correlation	coefficient	of	zi	versus	xi	is
attained,	is	an	estimate	of	the	unknown	exponent	m.

Next,	the	values	zi	corresponding	to	the	best	estimate	 	are	determined	from	 ,	 ,
where	yi	are	the	measured	values	corresponding	to	xi,	(i = 1,	...,	n).	From	the	plot	zi	versus	xi,
the	slope
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and	the	intercept

of	the	best-fit	straight	line	are	determined.	The	slope	p	is	an	estimate	of	 	in	Equation	5.16,
and	the	intercept	c	is	an	estimate	of	 	in	Equation	5.16:

The	parameters	k	and	x0	in	Equation	5.15	are	therefore	estimated	from

and

It	is	important	to	point	out	that	the	true	value	of	the	location	parameter	x0	does	not	affect
the	estimate	 	of	the	shape	parameter	m.	Indeed,	let	xi	be	presented	as	 	where
Δxi	is	the	distance	between	xi	and	x0.	The	value	Δxi	does	not	depend	on	x0.	The	expressions	

	and	 	entering	in	Equation	5.17	for	the	correlation	coefficient	then
become	 	and	 	( ).

Since	neither	of	these	depends	on	x0,	the	value	of	the	location	parameter	x0	does	not	affect	the
estimate	of	the	unknown	exponent	m.	This	constitutes	the	strength	of	the	proposed	method:
estimating	the	shape	of	the	power	curve	defined	by	Equation	5.15	is	separated	from	the
estimation	of	its	location	along	the	x-axis.	The	method	yields	practically	unbiased	estimates
for	the	parameters	(Todinov,	2001b).

Using	appropriate	transformations,	a	number	of	three-parameter	models	can	be	reduced	to	the
power	law	(5.15)	and	the	unknown	parameters	estimated	using	the	proposed	technique.	Such
is,	for	example,	the	three-parameter	Weibull	model:

which	can	be	reduced	to	the	three-parameter	power	law	(5.15)	by	presenting	it	as	
	and	taking	a	logarithm	from	both	sides.	As	a	result,	Equation	5.15
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is	obtained,	where	 .

5.4.1	Some	Applications	of	the	Three-Parameter	Power	Law
The	three-parameter	power	law	can,	for	example,	be	used	to	describe	the	corrosion	kinetics	of
structural	components.	Thus,	the	model

has	been	adopted	by	Dianqing	et	al.	(2004)	to	describe	a	corrosion	of	ship	structures.	In	this
model,	d	is	the	corroded	thickness,	t	is	the	time,	t0	is	the	coating	life	and	k	and	m	are	constants.
If	N	measurements	di	for	the	thickness	of	the	corroded	plate	have	been	collected	at	N	different
times	ti,	i = 1,	2,	…,	N,	using	the	technique	from	the	previous	section,	the	unknown	parameters
in	Equation	5.25	can	be	estimated.

The	model	(5.15)	has	also	been	used	to	fit	the	systematic	variation	of	the	ductile-to-brittle
transition	temperature	of	steels	(Todinov,	2001b).	The	systematic	variation	E(x)	of	the	Charpy
impact	energy	(Figure	5.10)	was	modelled	by

where	x	denotes	the	temperature,	EL	and	EU	are	the	lower	and	the	upper	shelf	Charpy	impact
energies	(estimated	from	experimental	data	(Todinov	et	al.,	2000))	and	F(x)	is	the	normalised
Charpy	impact	energy	 	modelled	by	Equation	5.24.



Figure	5.10	Systematic	variation	of	the	Charpy	impact	energy	with	temperature

If	x	in	Equation	5.24	denotes	‘time’,	the	equation	can	be	used	for	modelling	the	time	evolution
of	transformed	phase	produced	by	nucleation	and	growth.	For	example,	the	quantity	of
transformed	phase	from	a	phase	transformation	with	constant	nucleation	rate	and	radial	growth
rate	can	be	approximated	by	the	Kolmogorov–Johnson–Mehl–Avrami	(KJMA)	equation
(Christian,	1965),	whose	functional	form	is	Equation	5.24.

If	x	in	Equation	5.24	denotes	‘time’,	the	equation	can	also	be	used	for	modelling	the	time
evolution	of	sticking/jamming	forces	between	sliding	surfaces.	Pilot	experiments	have
indicated	that	Equation	5.26	could	be	used	to	describe	the	time	evolution	of	the	force
necessary	to	separate	by	shear	two	jammed	sliding	surfaces.	In	this	case,	EL	in	Equation	5.26
corresponds	to	the	minimum	level	of	the	jamming	force,	and	EU	corresponds	to	a	100%
jamming	attained	after	a	significant	amount	of	time;	F(x)	is	given	by	Equation	5.24.
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6	
Load–Strength	(Demand-Capacity)	Models

6.1	A	General	Reliability	Model
Reliability	is	often	derived	from	the	probability	of	violating	a	limit	(failure)	state.	A	limited
number	of	random	variables	X1, X2, …, Xn	usually	control	the	reliability	of	the	system.	Such
are,	for	example,	the	critical	design	parameters	material	properties,	dimensions	and	loads.
Particular	examples	of	random	variables	controlling	reliability	are	the	fracture	toughness,	the
number	density	and	the	size	of	the	flaws,	the	stress	and	strain	magnitude,	the	magnitude	of
electrical	power	used	by	a	consumer	and	the	magnitude	of	electrical	power	produced	by	a
generator.	Random	variables	may	not	necessarily	be	statistically	independent.	Any	set	x1, x2, 
…, xn	of	values	for	the	controlling	random	variables	can	be	presented	as	a	point	in	the	n-
dimensional	variable	space.	The	failure	region	F	contains	all	realisations	(combinations	of
values	for	the	controlling	variables)	that	result	in	failure	(failure	states)	as	opposed	to	the	safe
region	S	containing	all	realisations	that	do	not	result	in	failure.

The	surface	 	which	divides	the	variable	space	into	a	failure	and	safe	region
is	referred	to	as	failure	surface.	The	points	on	the	failure	surface	are	failure	states.

Suppose	that	the	controlling	random	variables	are	characterised	by	a	joint	probability	density
function	f(x1, x2, …, xn).	The	reliability	on	demand	is	then	given	by	the	integral

where	integration	is	carried	out	only	over	the	safe	region	S	(Melchers,	1999).	Because	the
integration	of	the	probability	density	function	is	performed	only	at	points	where	no	failure	can
occur,	the	sum	of	the	probabilities	over	the	safe	region	must	necessarily	equal	the	reliability	on
demand.	If	the	controlling	random	variables	are	statistically	independent,	their	joint
probability	density	function	f(x1, x2, …, xn)	can	be	factorised:

and	the	reliability	integral	(6.1)	becomes

where	f(x1),	f(x2),	…,	f(xn)	are	the	marginal	probability	densities	of	the	controlling	random
variables.	Significant	difficulties	arise	in	solving	the	general	reliability	models	(6.1)–(6.2),
some	of	which	can	be	summarised	as	follows:



1.	 Insufficient	amount	of	data	to	define	the	joint	probability	distribution	of	the	controlling
random	variables.

2.	 Difficulties	in	defining	the	integration	domain	(the	safe	region)	S.

3.	 The	multidimensional	numerical	integration	is	extremely	time-consuming.

These	difficulties	no	longer	exist	if	Monte	Carlo	simulation	is	employed	to	evaluate	the
reliability	integral.

6.2	The	Load–Strength	Interference	Model
A	common	framework	for	predicting	structural/mechanical	reliability	at	a	component	level	is
the	load–strength	interference	model	(Freudenthal,	1954)	which	is	related	to	the	interaction	of
the	load	distribution	and	the	strength	distribution.	If	strength	and	load	were	constant	as	shown
in	Figure	6.1,	no	failure	would	occur	(O’Connor,	2003).

Figure	6.1	Constant	values	for	the	load	and	strength

Because	of	the	variability	of	the	load	and	strength	and	the	interference	(overlap)	between	the
load	distribution	and	the	strength	distribution,	the	reliability	on	demand	is	smaller	than	100%.



The	reliability	on	demand	is	determined	by	the	probability	of	a	relative	configuration	of	the
load	and	strength	in	which	load	is	smaller	than	strength	( ).	Reliability	on	demand	is
controlled	by	two	random	variables	load	(L)	and	strength	(S)	characterised	by	distinct
distributions	(Carter,	1986;	Freudenthal,	1954).	A	common	application	of	these	concepts	is	in
mechanical	overstress	failures	which	occur	whenever	mechanical	load	exceeds	mechanical
strength	or	local	stress	exceeds	local	fracture	toughness.	There	are	cases	however	where
failure	occurs	if	the	mechanical	load	cannot	overcome	mechanical	resistance,	for	example,	if	a
force	is	applied	to	open	or	close	a	safety-critical	valve.	In	this	case,	failure	occurs	if	the
applied	force	cannot	exceed	the	jamming	(resisting)	force.

Load	and	strength	are	much	broader	concepts	than	their	mechanical	interpretation.	Any	two
interacting	random	parameters	can	be	interpreted	as	‘load’	and	‘strength’.	Load	and	strength,
for	example,	can	stand	for	demand	and	supply,	rate	of	damage	and	rate	of	recovery,	stress
intensity	and	fracture	toughness,	etc.	(Figure	6.2).	Load	and	strength	can	even	stand	for
identical	in	nature	random	entities.	Such	is,	for	example,	the	case	where	load	stands	for	a
particular	critical	parameter	(temperature,	potential,	pressure,	concentration,	etc.)	at	a
particular	point	A	and	strength	stands	for	the	same	critical	parameter	(temperature,	potential,
pressure,	concentration,	etc.)	at	another	point	B.	In	this	case,	failure	occurs	if	the	value	of	the
parameter	at	point	A	exceeds	that	at	point	B	by	a	particular	quantity.	The	roles	of	load	and
strength	are	reversed,	if	failure	occurs	also	if	the	value	of	the	parameter	at	point	B	exceeds	the
value	of	the	parameter	at	point	A.

Figure	6.2	The	universal	nature	of	the	load–strength	interference
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The	load–strength	interference	model	is	a	special	case	of	the	general	reliability	model,	where
only	two	controlling	random	variables	are	present:	X1	(strength)	and	X2	(load).	In	this	case,
the	failure	surface	is	 .	Suppose	that	the	load–strength	joint	probability
density	function	is	f(x1, x2)	and	the	strength	and	load	are	distributed	in	the	domain	defined	by	

	and	 ,	respectively	(Figure	6.3).	The	values	x1,min	and	x1,max
are	the	lower	and	the	upper	limit	of	strength,	while	the	values	x2,min	and	x2,max	are	the	lower
and	the	upper	limit	of	load.

Figure	6.3	Failure	region,	safe	region	and	failure	surface	in	load–strength	interference

According	to	the	general	reliability	model	(6.1),	reliability	on	demand	is	given	by	the	integral

over	the	safe	region	S	from	the	rectangular	area	in	Figure	6.3	where	 .	If	strength	and
load	are	statistically	independent	random	variables,	the	reliability	integral	becomes
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6.3	Load–Strength	(Demand-Capacity)	Integrals
In	the	derivations	to	follow,	load	and	strength	will	be	denoted	by	indices	L	and	S.	Their
probability	density	functions	will	be	denoted	by	fL(x)	and	fS(x);	the	cumulative	distribution
functions	will	be	denoted	by	FL(x)	and	FS(x),	respectively.

If	a	load–strength	interference	is	present,	the	reliability	on	demand	R	equals	the	probability
that	strength	will	be	greater	than	load.

For	the	lower	and	the	upper	bounds	Smin	and	Smax	of	the	strength,	 	is	fulfilled	for	
	and	 .	If	the	interval	(Smin,	Smax)	is	divided	in	non-intersecting	elementary

intervals	Δi,	the	events	Ai	denoting	that	strength	will	lie	in	the	elementary	interval	Δi	are

mutually	exclusive	( )	and	exhaustive	events.	Indeed,	the	strength	value	cannot
belong	simultaneously	to	two	non-intersecting	intervals	Δi	and	Δj	( ),	and	the	strength	value
certainly	belongs	to	the	interval	[Smin,	Smax].

The	probability	that	the	strength	will	be	in	the	infinitesimal	interval	 	is	fS(x) dx.	The
probability	of	the	compound	event	that	the	strength	will	be	in	the	infinitesimal	interval	
and	the	load	will	not	be	greater	than	x	is	FL(x)fS(x) dx.

The	strength	can	be	in	any	infinitesimally	small	interval	 	between	the	lower	bound	Smin
and	the	upper	bound	Smax	(Figure	6.4a).	According	to	the	total	probability	theorem,	integrating
FL(x)fS(x) dx	gives	the	reliability	on	demand	R:
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Figure	6.4	Possible	safe	configurations	of	the	load	and	strength.	Integration	is	performed
between	(a)	Smin	and	Smax	–	the	lower	and	the	upper	bound	of	the	strength;	(b)	between	Lmin
and	Lmax	–	the	lower	and	the	upper	bound	of	the	load

An	alternative	form	of	the	load–strength	interference	integral	can	be	derived	if	integration	is
performed	between	the	lower	and	the	upper	bound	of	the	load	(Figure	6.4b).

For	the	lower	and	upper	bounds	Lmin	and	Lmax	of	the	load,	 	is	fulfilled	for	 	and
.

If	the	interval	(Lmin,	Lmax)	is	divided	in	non-intersecting	elementary	intervals	Δi,	the	events	Ai
denoting	that	load	will	lie	in	the	elementary	interval	Δi	are	mutually	exclusive	( )
and	exhaustive	events.	Indeed,	the	load	magnitude	cannot	possibly	belong	simultaneously	to
two	non-intersecting	intervals	Δi	and	Δj	( ),	and	the	load	magnitude	certainly	belongs	to	the
interval	(Lmin,	Lmax).

The	probability	that	the	load	will	be	in	the	infinitesimal	interval	 	is	fL(x) dx.	The
probability	of	the	compound	event	that	the	load	will	be	in	the	infinitesimal	interval	
and	the	strength	will	be	greater	than	 	is	 .	Because	the	load	can	be	in
any	infinitesimal	interval	 	between	its	lower	bound	Lmin	and	upper	bound	Lmax,
according	to	the	total	probability	theorem,	integrating	 	gives	the	reliability
on	demand:

Suppose	that	the	component	is	subjected	to	statistically	independent	and	identically	distributed
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loads.	For	n	load	applications,	the	probability	that	the	loads	L1,	L2,	…,	Ln	will	be	smaller	than
a	particular	value	x	of	the	strength	is

where	FL(x)	is	the	cumulative	distribution	of	the	load.	The	probability	of	the	compound	event
that	strength	will	be	in	the	infinitesimal	interval	 	and	the	loads	from	all	load
applications	will	be	smaller	than	x	is	 .	Because	the	strength	can	be	in	any
infinitesimally	small	interval	 	between	Smin	and	Smax,	according	to	the	total	probability

theorem,	integrating	 	gives

for	the	reliability	on	demand	associated	with	n	statistically	independent	load	applications.

Often,	particularly	in	problems	related	to	demand	and	supply,	the	question	of	interest	is	the
probability	that	supply	exceeds	demand	by	a	value	greater	than	a	(Figure	6.5).	In	what	follows,
supply	and	demand	will	be	denoted	by	indices	S	and	D.	Their	probability	density	distributions
will	be	denoted	by	fS(x)	and	fD(x);	their	cumulative	density	distributions	will	be	denoted	by
FS(x)	and	FD(x),	respectively.	The	probability	of	the	compound	event	that	the	supply	will	be	in
the	infinitesimal	interval	 	and	the	demand	will	be	smaller	than	or	equal	to	x − a	is	

.

Figure	6.5	Relative	configurations	of	the	supply	and	demand	which	guarantee	that	supply
exceeds	demand	by	a	quantity	larger	than	a

According	to	the	total	probability	theorem,	integrating	 	yields

for	the	probability	that	supply	will	exceed	demand	by	a	quantity	larger	than	a.	Smin	and	Smax
are	the	lower	and	upper	bounds	of	the	supply,	where	 	for	 	and	 .
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6.4	Evaluating	the	Load–Strength	Integral	Using
Numerical	Methods
The	maximum	extreme	value	distribution	is	often	a	good	model	for	the	maximum	load.	If	the
cumulative	distribution	function	FL(x)	of	the	loading	stress	is	given	by

and	the	probability	density	distribution	fS(x)	of	the	strength	has	been	approximated	by	the
three-parameter	Weibull	distribution

the	reliability	on	demand	can	be	determined	from

This	integral	can	be	solved	numerically	using,	for	example,	the	Simpson’s	method.	This
approach	will	be	illustrated	by	a	numerical	example	related	to	calculating	the	risk	of	failure	of
a	critical	component.Example



Example

A	data	set	is	given,	regarding	the	strength	of	a	component	(yield	strength,	fracture
toughness,	bending	strength,	fatigue	strength,	etc.).	By	using	the	methods	from	Chapter	5,
the	strength	has	been	approximated	by	the	three-parameter	Weibull	distribution	(6.11)
with	parameters:

A	data	set	is	also	given,	regarding	the	maximum	load	over	a	number	of	consecutive	time
intervals	(e.g.	days,	months	or	years).	The	measurements	have	been	transformed	into	a	set
of	calculated	maximum	loading	stress	ranges	over	the	specified	time	intervals.	By	using
the	methods	from	Chapter	5,	the	appropriate	model	for	the	load	was	found	to	be	the
maximum	extreme	value	distribution	(6.10)	with	estimated	parameters:

Find	the	probability	of	failure	of	the	critical	component.

Solution
Using	the	numerical	values	of	the	parameters,	and	a	sufficiently	large	value	Smax = 3000 
MPa	for	the	upper	integration	limit	of	the	strength,	the	value	0.985	is	calculated	for	the
reliability	on	demand:

The	required	probability	of	failure	is	 .	In	Chapter	9,	this	probability	will
be	confirmed	by	a	Monte	Carlo	simulation.

6.5	Normally	Distributed	and	Statistically	Independent
Load	and	Strength
Load	(L)	and	strength	(S)	are	assumed	to	be	statistically	independent,	normally	distributed

random	variables	 	and	 ,	where	μL	and	μS	are	the	means	and	σL	and	σS	are
the	standard	deviations	of	the	load	and	strength	distribution,	respectively.

The	random	variable	 	is	normally	distributed	because	y	is	a	sum	of	normally
distributed	random	variables.	Its	expected	value	is
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Note	that	the	variance	of	a	random	variable	X	multiplied	by	a	constant	c	is	given	by

Consequently,	the	variance	 	becomes

Because	y	is	normally	distributed,	with	mean	μy	and	standard	deviation	σy	(Figure	6.6),	the

probability	of	failure	 	can	be	found	using	the	linear	transformation	 .
This	is	needed	for	calculating	the	probability	 	using	the	standard	normal	distribution:	

.

Figure	6.6	A	normal	probability	density	distribution	of	the	difference	y = S − L

Setting

gives
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for	the	probability	of	failure,	where	Φ(•)	is	the	cumulative	distribution	function	of	the	standard
normal	distribution.

In	Equation	6.15,	the	quantity	β,	also	known	as	the	reliability	index	or	safety	margin,	is	an
important	reliability	parameter	which	measures	the	relative	separation	of	load	and	strength.
Reliability	on	demand	is	determined	from

A	table	containing	the	area	under	the	standard	normal	probability	density	function	is	given	in
Appendix	C.

Here,	it	needs	to	be	pointed	out	immediately	that	the	safety	margin	has	a	meaning	only	for
load	and	strength	following	the	Gaussian	distribution.	Later,	it	will	be	shown	that	in	the
general	case,	a	low	safety	margin	does	not	necessarily	mean	low	reliability	and	vice	versa.

Example

The	strength	of	a	structural	component	is	normally	distributed	with	mean	800 MPa	and
standard	deviation	40 MPa.	The	load	is	also	normally	distributed	with	mean	700 MPa	and
standard	deviation	30 MPa.	Calculate	the	reliability	on	demand	for	the	component	if	the
load	and	strength	are	statistically	independent.

Solution
For	statistically	independent	load	and	strength,	the	reliability	index	is

According	to	Equation	6.16,	the	reliability	on	demand	is

Equation	6.16	can	also	be	applied	to	normally	distributed	supply	and	demand.	Demand
(D)	and	supply	(S)	are	assumed	to	be	statistically	independent,	normally	distributed

random	variables	 	and	 ,	where	μD,	μS	are	their	means	and	σD,	σS	are
their	standard	deviations,	respectively.

The	probability	that	supply	will	exceed	demand	by	an	amount	greater	than	a,	called	the
reserve	(Figure	6.7),	is	equal	to	the	probability	that	 	will	be	fulfilled.
Considering	that	the	random	variable	 	is	also	normally	distributed,	the	load–
strength	interference	formula	can	be	applied.	Using	the	load–strength	interference	formula,



(6.17)

the	probability	that	after	the	demand	there	will	remain	a	quantity	greater	than	or	equal	to	a
( 	or	 )	can	be	calculated.	 	is	also	a	normally	distributed	random
variable	with	mean	 	and	standard	deviation	σD	(the	variance	of	the	constant	a	is
zero).	In	other	words,	by	increasing	the	demand	with	the	required	reserve	a,	the	problem
is	reduced	to	the	familiar	load–strength	interference	problem.	Consequently,	the
probability	that	supply	will	exceed	demand	by	at	least	a	becomes

Figure	6.7	Supply,	demand	and	reserve

Assume	that	the	supply	is	composed	of	contributions	from	M	suppliers	and	the	demand	is
composed	of	the	consumption	from	N	consumers.	All	supplied	and	consumed	quantities
are	assumed	to	be	normally	distributed	or	constants.	A	constant	supply	or	demand	of
magnitude	c	can	formally	be	interpreted	as	‘normally	distributed’,	with	mean	c	and
standard	deviation	zero.	The	total	supply	in	this	case	is	normally	distributed,	with	mean	

	and	variance	 	where	μSi	and	σSi	are	the	mean	and	the	standard
deviation	associated	with	the	ith	supplier.	The	total	demand	is	also	normally	distributed,

with	mean	 	and	variance	 	where	μDi	and	σDi	are	the	mean	and
the	standard	deviation	of	the	ith	consumer.	Substituting	these	in	Equation	6.17	gives



(6.18)

The	next	examples	illustrate	the	wide	application	area	of	the	load–strength	interference
models.

Example

The	magnitude	of	the	temperature	is	measured	continuously	by	two	thermocouples
working	independently	from	each	other	in	two	different	zones	of	a	system,	as	shown	in
Figure	6.8.	The	measured	temperatures	in	the	two	zones	follow	normal	distribution	and
are	compared	by	a	control	device	which	issues	a	signal	for	a	system	shutdown	if	the
absolute	value	of	the	difference	between	the	measured	temperatures	in	the	two	zones
exceeds	25°C.	The	mean	value	of	the	measured	temperature	in	zone	A	is	80°C,	with	a
standard	deviation	16°C.	The	mean	value	of	the	measured	temperature	in	zone	B	is	84°C
with	a	standard	deviation	8°C.	Calculate	the	probability	of	a	shutdown	signal	because	of
excessive	temperature	difference	between	the	two	zones.



Figure	6.8	Two	thermocouples	measuring	temperature	independently	from	each	other	in
two	different	zones	of	a	system

Solution

Let	us	denote	the	two	zones	by	A	and	B.	Let	event	 	be	‘the	temperature
value	a	measured	in	section	A	exceeds	the	temperature	value	b	measured	in	zone	B	by
more	than	25°’.	Let	event	 	be	‘the	temperature	value	b	measured	in	section
B	exceeds	the	temperature	value	a	measured	in	zone	A	by	more	than	25 °C’.

The	probability	P(E1)	of	event	E1	can	be	determined	by	using	the	load–strength
interference	formula,	where	μA,	μB	are	the	means	and	σA,	σB	are	the	standard	deviations	of
the	temperatures	measured	in	zones	A	and	B:

Similarly,	the	probability	P(E2)	of	event	E2	can	be	determined	by	using	the	load–strength
interference	formula,	where	again	μA,	μB	are	the	means	and	σA,	σB	are	the	standard
deviations	of	the	temperatures	measured	in	zones	A	and	B:



The	absolute	value	of	the	temperature	difference	between	the	two	zones	will	be	larger
than	25°C	when	either	event	E1	or	event	E2	occurs.	Because	events	E1	and	E2	are	mutually
exclusive	events,	the	probability	of	their	union	is	a	sum	of	the	probabilities	of	the	separate
events:

The	probability	that	the	absolute	value	of	the	temperature	difference	will	be	larger	than
25°C	is

Example

In	the	assembly	presented	in	Figure	6.9,	a	slider	with	width	b	moves	into	a	groove	with
width	B.	The	width	B	of	the	groove	is	normally	distributed,	with	mean	80 mm	and
standard	deviation	0.5 mm;	the	width	of	the	slider	is	also	normally	distributed,	with	mean
b = 79 mm	and	standard	deviation	0.3 mm.	In	order	to	avoid	jamming,	the	clearance
defined	as	 	must	be	at	least	0.4 mm.	In	order	to	avoid	loss	of	precision,	the
clearance	 	must	not	exceed	1.5 mm.

Figure	6.9	A	slider	assembly	subject	to	two	failure	modes	-	loss	of	precision	and
jamming

Calculate	the	percentage	of	faulty	assemblies	for	which	either	jamming	or	loss	of
precision	is	present.



Solution
The	probability	that	the	clearance	 	will	be	at	least	0.4 mm	is	essentially	the
probability	that	the	width	of	the	groove	B	will	be	larger	than	the	width	of	the	moving	part
(the	slider)	by	at	least	0.4 mm.

According	to	the	load–strength	interference	theory,	the	probability	that	no	jamming	will
occur	is

The	probability	of	jamming	is	therefore

Next,	according	to	the	load–strength	interference	model,	the	probability	of	‘loss	of
precision’	is

Because	‘jamming’	and	‘loss	of	precision’	are	mutually	exclusive	events,	the	probability
of	a	faulty	assembly	(‘jamming’	or	‘loss	of	precision’)	is	equal	to	the	sum	of	the
probabilities	of	the	events	‘jamming’	and	‘loss	of	precision’.

The	probability	of	a	faulty	assembly	is	therefore	0.152 + 0.196 = 0.348.

Consequently,	approximately	35%	of	the	assemblies	will	be	faulty.



Example

Two	key	chemical	ingredients	A	and	B	are	produced	by	two	different	teams	in	a	plant
which	works	continuously,	in	three	shifts.	Both	ingredients	go	into	a	final	product
manufactured	by	the	plant	and	must	be	added	simultaneously	into	the	product.	The	time	of
the	team	producing	ingredient	A	is	normally	distributed,	with	mean	120	minutes	and
standard	deviation	 	minutes.	The	time	of	the	team	producing	ingredient	B	is	also
normally	distributed,	with	mean	120	minutes	and	standard	deviation	 	minutes.

Ingredient	A	deteriorates	if	it	stays	for	more	than	30	minutes	before	being	added	to	the
final	product.	Ingredient	B	deteriorates	if	it	stays	for	more	than	40	minutes	before	being
added	to	the	final	product.

Calculate	the	probability	that	the	plant	will	fail	to	manufacture	the	final	product	because
one	of	the	key	ingredients	will	have	deteriorated	before	the	other	key	ingredient	is
produced.



Example

The	ends	A	and	B	of	a	part	with	length	 	are	fixed	at	the	same	distance	h	from
the	baseline	C	(Figure	6.10)	so	that	the	part	is	parallel	to	the	baseline	C.	Because	of
imprecision	associated	with	fixing	the	ends	of	the	part,	each	of	the	distances	h	varies
independently	of	the	other,	by	following	a	normal	distribution	with	mean	250 mm	and
standard	deviation	1 mm.	As	a	result	of	this	variation,	the	part	is	actually	inclined	at	a
certain	angle	with	respect	to	the	baseline	C.	If	the	acute	angle	which	the	part	subtends
with	the	baseline	C	exceeds	1°	(≈0.01745 rad),	the	part	cannot	perform	its	function.

Figure	6.10	Fixing	a	part	parallel	to	the	baseline	C	is	always	associated	with	inaccuracy.
As	a	result,	the	part	may	not	be	capable	of	performing	its	function

Calculate	the	probability	that	the	part	will	not	be	capable	of	performing	its	function
because	of	excessive	inclination.



Example

The	bolt	connection	between	the	plate	1	and	the	plate	2	in	Figure	6.11	can	only	be	made,
if	the	distance	d	between	the	centres	of	the	matching	holes	on	plate	1	and	plate	2	does	not
exceed	0.3 mm	(Figure	6.11b).	The	bolt	holes	in	plate	1	and	plate	2	are	machined
independently	with	mean	distances	 	mm	between	the	centres	of	the	bolt
holes.	Both	distances	L1	and	L2	are	normally	distributed	and	characterised	by	the	same
standard	deviation	of	0.5 mm.	Calculate	the	percentage	of	defective	assemblies.

Figure	6.11	(a)	Two	plates	with	bolt	holes	of	the	same	diameter	and	at	the	same	distances
L1	and	L2;	(b)	because	of	variations	of	the	distances	L1	and	L2	the	centers	of	the	bolt	holes
do	not	coincide

6.6	Reliability	and	Risk	Analysis	Based	on	the	Load–
Strength	Interference	Approach
6.6.1	Influence	of	Strength	Variability	on	Reliability
Figure	6.12	illustrates	a	case	where	low	reliability	is	a	result	of	large	variability	of	the
strength.	Large	variability	of	strength	is	caused	by	the	presence	of	weak	(substandard)	items
due	to	poor	material	properties,	manufacturing,	assembly	and	quality	control.



Figure	6.12	Low	reliability	caused	by	a	large	variability	of	the	strength

The	large	variability	of	strength	leads	to	a	large	overlap	of	the	lower	tail	of	the	strength
distribution	and	the	upper	tail	of	the	load	distribution.	A	large	overlap	causes	low	reliability
and	can	be	decreased	by	a	high-stress	burn-in	or	proof	testing	which	cause	weak	items	to	fail.
The	resultant	distributions	(Figure	6.13)	are	characterised	by	a	small	or	no	overlap	(Carter,
1986;	O’Connor,	2003).



Figure	6.13	Increased	reliability	after	a	burn-in

Strength	variability	caused	by	variability	of	material	properties	is	one	of	the	major	reasons	for
an	increased	interference	with	the	load	distribution	which	results	in	increased	probability	of
failure	(Figure	6.14).



Figure	6.14	The	importance	of	the	strength	variation	to	the	probability	of	failure

Here,	this	point	is	discussed	in	some	detail.	Assume	for	simplicity	that	the	load	and	strength
follow	Gaussian	distributions.	Since	the	reliability	on	demand	is	

,	decreasing	the	variability	of	the	strength	to	 	(Figure

6.14)	increases	the	reliability	on	demand	to	 .	If,	for
example,	variability	of	strength	is	due	to	sampling	from	multiple	sources,	it	can	be	decreased
by	sampling	from	a	single	source	-	the	source	characterised	by	the	smallest	variance.

It	must	be	pointed	out	that	strength	variability	depends	also	on	the	particular	design	solution.	A
particular	material,	for	example,	may	have	a	low	resistance	to	thermal	fatigue.	If	the	design
solution,	however,	eliminates	operating	regimes	that	lead	to	substantial	temperature	variations,
thermal	fatigue	will	no	longer	be	a	problem.

Low	reliability	due	to	increased	strength	variability	is	often	due	to	ageing	and	the	associated
with	it	material	degradation.	Material	degradation	can	often	be	induced	by	the	environment,	for
example,	due	to	corrosion	and	ageing.	A	typical	feature	of	the	strength	degradation	is	an
increase	of	the	variance	and	a	decrease	of	the	mean	of	the	strength	distribution	(Figure	6.15).



Figure	6.15	Decreased	reliability	due	to	strength	degradation

Low	reliability	is	often	due	to	excessive	variability	of	the	load.	If	variability	of	the	load	is
large	(rough	loading),	the	probability	of	an	overstress	failure	is	significant	(Figure	6.16).
Mechanical	equipment	is	usually	characterised	by	a	rough	loading	as	opposed	to	electronic
equipment	which	is	characterised	by	a	smooth	loading	(Figure	6.17).	A	common	example	of
smooth	loading	is	the	power	supply	of	electronic	equipment	through	an	anti-surge	protector	or
the	use	of	voltage	regulators.



Figure	6.16	Increased	load–strength	interference	due	to	a	large	variability	of	the	load	(rough
loading)



Figure	6.17	High	reliability	achieved	by	smooth	loading

Here	are	some	possible	options	for	increasing	the	reliability	on	demand:

1.	 Decreasing	the	overall	variability	of	strength

2.	 Altering	the	lower	tail	of	the	strength	distribution	(e.g.	by	a	burn-in	operation)

3.	 Increasing	the	mean	strength

4.	 Decreasing	the	mean	load

5.	 Decreasing	the	overall	variability	of	the	load	and	obtaining	a	smooth	loading

6.	 Altering	the	upper	tail	of	the	load	distribution	(e.g.	by	truncating	it	with	stress	limiters)

Altering	the	upper	tail	of	the	load	distribution	by	using	stress	limiters	is	equivalent	to
concentrating	the	probability	mass	beneath	the	upper	tail	of	the	load	distribution	(the	area
marked	U	in	Figure	6.18)	into	the	truncation	point	A.	Typical	examples	of	stress	limiters	are
the	safety	pressure	valves,	fuses	and	switches,	activated	when	pressure	or	current	reaches
critical	values.	The	specially	designed	shoulder	on	the	screw	in	Figure	6.19	is	an	example	of	a
stress	limiter	(Erhard,	2006).	The	shoulder	prevents	over-tightening	the	screw	and	damaging
the	plastic	component.



Figure	6.18	High	reliability	achieved	by	altering	the	upper	tail	of	the	load	distribution	using	a
stress	limiter



Figure	6.19	An	example	of	a	stress	limiter:	eliminating	the	risk	of	damaging	the	plastic	part	by
a	special	design	of	the	screw

Figure	6.20a	shows	a	pair	of	load	and	strength	distributions	yielding	a	very	high	reliability.
Such	a	high	reliability	is	sometimes	justified	by	the	very	high	cost	of	failure	of	the	component,
particularly	in	cases	where	human	fatalities,	damaged	infrastructure	and	pollution	of	the
environment	are	involved.	There	are	a	number	of	cases	however	where	no	such	high-cost
consequences	are	present.	Design	to	a	very	high	reliability	often	means	purchasing	materials
with	controlled	microstructure,	free	from	inclusions	and	other	impurities,	small	tolerances	in
the	dimensions	achieved	through	a	large	number	expensive	machining	operations,	small
tolerances	in	electronic	components	achieved	through	expensive	manufacturing	processes,	etc.
The	excessive	high	strength	achieved	by	expensive	materials	and	operations	will	make	it
difficult	for	the	company	to	keep	its	production	costs	down.	In	cases	where	no	high	cost	of
failure	is	present,	an	inexpensive	design	where	an	acceptable	level	of	probability	of	failure	is
tolerated	is	more	preferable	(Figure	6.20b).



Figure	6.20	Tails	of	the	load	and	strength	distribution	resulting	in	(a)	an	expensive	design	with
very	high	reliability;	(b)	inexpensive	design	tolerating	some	probability	of	failure

6.6.2	Critical	Weaknesses	of	the	Traditional	Reliability	Measures
‘Safety	Margin’	and	‘Loading	Roughness’
For	load	and	strength	that	do	not	follow	the	normal	distribution,	the	traditional	reliability
measures	safety	margin	and	loading	roughness	can	be	misleading.

Consider	the	load	and	strength	distributions	from	Figure	6.21a.	The	figure	shows	a	case	where

a	low	safety	margin	 	exists	( 	is	small	and	 	is	large)	yet
reliability	is	high.	In	Figure	6.21a,	μS	and	μL	are	the	mean	values	of	the	strength	and	load	and
σS	and	σL	are	the	corresponding	standard	deviations.	Now,	consider	Figure	6.21b	which	has
been	obtained	by	reflecting	symmetrically	the	distributions	from	Figure	6.21a	with	respect	to
axes	r1	and	r2,	parallel	to	the	probability	density	axis.	Since	the	reflections	do	not	change	the
variances	of	the	distributions,	the	only	difference	is	the	larger	difference	of	the	means	

	(Figure	6.21b).	Despite	the	larger	new	safety	margin

the	reliability	on	demand	related	to	the	distributions	in	Figure	6.21b	is	smaller	than	that	related
to	the	distributions	on	Figure	6.21a.	Clearly,	the	safety	margin	concept	applied	without
considering	the	shape	of	the	interacting	distribution	tails	can	be	very	misleading.





Figure	6.21	A	counterexample	showing	that	for	(a)	skewed	load	and	strength	distribution,	the
traditional	reliability	measures	(b)	‘reliability	index’	and	(c)	‘loading	roughness’	are	very
misleading

Similar	considerations	are	valid	regarding	the	parameter	loading	roughness	
introduced	by	Carter	(1986,	1997).	If	only	the	load	in	Figure	6.21a	is	reflected	symmetrically
regarding	the	axis	r1,	the	loading	in	Figure	6.21c	is	obtained.	Since	the	standard	deviation	σL
of	the	load	has	not	been	affected	by	the	reflection,	the	loading	roughness	in	Figure	6.21c,

calculated	from	 ,	is	the	same	as	in	Figure	6.21a,	despite	the	much	more	severe
type	of	loading.

6.6.3	Interaction	between	the	Upper	Tail	of	the	Load	Distribution	and
the	Lower	Tail	of	the	Strength	Distribution
The	problems	outlined	in	the	previous	section	do	not	exist	if	for	load	and	strength	which	do	not
follow	a	normal	distribution,	a	numerical	integration,	instead	of	the	reliability	index,	is	used	to
quantify	the	interaction	between	the	lower	tail	of	the	strength	distribution	and	the	upper	tail	of
the	load	distribution.	Furthermore,	only	information	related	to	the	lower	tail	of	the	strength
distribution	and	the	upper	tail	of	the	load	distribution	is	necessary.	The	most	important	aspect
of	the	load–strength	interaction	is	the	interaction	of	the	upper	tail	of	the	load	distribution	and
the	lower	tail	of	the	strength	distribution	(Figure	6.22).

Figure	6.22	Reliability	is	determined	by	the	interaction	of	the	upper	tail	of	the	load
distribution	and	the	lower	tail	of	the	strength	distribution



(6.19)

The	values	from	the	lower	tail	of	the	strength	distribution	and	the	upper	tail	of	the	load
distribution	usually	control	reliability,	not	the	values	covering	the	other	parts	of	the
distributions	(Figure	6.22).

Consequently,	an	adequate	model	of	the	strength	distribution	should	faithfully	represent	its
lower	tail	and	an	adequate	model	of	the	load	distribution	should	adequately	cover	its	upper
tail.	The	normal	distribution,	for	example,	may	not	describe	satisfactorily	the	strength	variation
in	the	distribution	tails,	mainly	because	the	strength	distribution	is	usually	asymmetric,
bounded	on	the	left.	In	some	cases,	the	Weibull	model	and	the	log-normal	model	may	be
suitable	models	for	approximating	the	variation	of	material	properties,	but	in	many	cases,	the
strength	distribution	is	a	mixture	of	several	distributions.

The	interaction	of	the	upper	tail	of	the	load	distribution	and	the	lower	tail	of	the	strength
distribution	can	be	quantified.	Consider	the	load–strength	integral	which	gives	the	probability
of	failure	pf	for	a	single	load	application:

where	FL(x)	is	the	cumulative	distribution	of	the	load	and	fS(x)	is	the	probability	density
distribution	of	the	strength.

Suppose	that	the	Smin	and	Smax	in	Figure	6.23	correspond	to	stress	levels	for	which	 	if	
	or	 .
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Figure	6.23	Deriving	the	reliability	on	demand,	by	integrating	within	the	interval	(Smin,	Lmax)
including	only	the	upper	tail	of	the	load	distribution	and	the	lower	tail	of	the	strength
distribution

The	integral	in	Equation	6.19	can	also	be	presented	as

For	 ,	 	holds	for	the	cumulative	distribution	of	the	load	(Figure	6.23),	and	the

second	integral	in	Equation	6.20	becomes	zero	 .	Consequently,	the
probability	of	failure	becomes

Finally,	for	the	reliability	on	demand,	we	get

The	reliability	integral	(6.22)	which	quantifies	the	interaction	of	the	upper	tail	of	the	load
distribution	and	the	lower	tail	of	the	strength	distribution	has	a	clear	advantage:	To	derive	the



reliability	on	demand,	data	covering	the	lower	tail	of	the	load	distribution	and	the	upper	tail	of
the	strength	distribution	are	no	longer	necessary.



(7.1)

(7.2)

7
Overstress	Reliability	Integral	and	Damage
Factorisation	Law

7.1	Reliability	Associated	with	Overstress	Failure
Mechanisms
According	to	the	discussions	in	Chapter	6,	overstress	failures	occur	if	load	exceeds	strength.	If
load	is	smaller	than	strength,	the	load	has	no	permanent	effect	on	the	component.	In	this	section,
an	integral	will	be	presented	related	to	reliability	associated	with	all	overstress	failure
mechanisms.

Suppose	that	a	random	load	characterised	by	a	cumulative	distribution	function	F(x)	has	been
applied	a	number	of	times	during	a	finite	time	interval	with	length	t,	and	the	times	of	load
applications	follow	a	non-homogeneous	Poisson	process	with	intensity	ρ(t).

If	the	strength	is	described	by	a	probability	density	distribution	fS(x),	the	probability	R	of
surviving	n	load	applications	is	given	by	the	classical	load–strength	interference	model:

where	Smin	and	Smax	are	the	lower	and	the	upper	limit	of	strength.	The	probability	of	no	failure
(reliability)	associated	with	the	finite	time	interval	with	length	t	can	be	calculated	from	the
following	probabilistic	argument.	According	to	the	total	probability	theorem,	the	probability	of
no	failure	is	a	sum	of	the	probabilities	of	the	following	mutually	exclusive	and	exhaustive
events:	the	probability	of	no	failure	if	no	load	has	been	applied	during	the	time	interval	of
length	t,	the	probability	of	no	failure	associated	with	exactly	one,	two,	three,	…,	k	load
applications,	etc.	Because	the	probability	of	k	load	applications	during	the	time	interval	0,	t	is
given	by	the	Poisson	distribution	 ,	where

is	the	mean	number	of	load	applications	in	the	finite	time	interval	with	length	t,	the	probability
Rk(t)	of	no	failure	during	the	time	interval	(0,	t)	for	exactly	k	statistically	independent	load
applications	is
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According	to	the	total	probability	theorem,	the	probability	of	no	failure	associated	with	the
time	interval	(0,	t)	is

Equation	7.3	can	be	presented	as

which	simplifies	to

Finally,

For	the	common	case	of	a	constant	density	of	load	applications	in	the	interval	(0,	t),	

	and	Equation	7.6	becomes	(Todinov,	2004d)

Equations	7.6	and	7.7	are	reliability	integrals,	associated	with	an	overstress	failure	mechanism
(Todinov,	2004d).	The	overstress	reliability	integrals	(7.6)	and	(7.7)	can	be	regarded	as	a
generalisation	of	the	Freudenthal’s	load–strength	interference	integral	(Freudenthal,	1954)	with
the	time	incorporated.	The	integrals	are	valid	for	any	overstress	failure	mechanism	and
provide	a	closed-form	expression	for	the	reliability	during	multiple	load	applications	(e.g.
shock	loading)	as	a	function	of	the	length	of	the	time	interval	and	the	frequency	of	the	load
applications.

The	term	 	in	the	overstress	reliability	integral	(7.7)	gives	the	probability
that	none	of	the	random	load	magnitudes	in	the	time	interval	0,	t	will	exceed	strength	of
magnitude	x,	while	the	term	fS(x) dx	gives	the	probability	that	strength	will	be	in	the
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infinitesimal	interval	 .	The	product	 	gives	the	probability	of
the	compound	event	that	the	strength	will	be	in	the	interval	 ,	and	none	of	the	random
loads	will	exceed	it.	When	this	product	is	integrated	over	all	possible	values	x	of	the	strength
magnitude,	the	reliability	associated	with	time	interval	0,	t	is	obtained.

The	big	advantage	of	the	overstress	reliability	integrals	(7.6)	and	(7.7)	is	that	they	incorporate
the	time,	unlike	the	load–strength	integral	(7.1)	which	only	describes	reliability	on	demand.

Using	Monte	Carlo	simulations	(see	Chapter	9),	the	overstress	reliability	integral	(7.7)	has
been	verified.	Thus,	for	uniformly	distributed	load	and	strength	in	the	interval	(Smin,	Smax),	the
cumulative	distribution	of	the	load	is

and	the	probability	density	of	the	strength	is

Substituting	these	in	the	overstress	reliability	integral	(7.7)	yields	for	the	reliability

which	for	 	months	and	 	months−1	gives	 .

For	the	same	parameters	 	months	and	 	months−1,	Monte	Carlo	simulations	of
uniformly	distributed	load	and	strength	in	the	interval	 ,	 	yield	the	empirical
probability	 .
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Exercise

During	a	finite	time	interval	 	months,	the	tensile	load	applications	on	a	component
follow	a	homogeneous	Poisson	process	with	density	that	is	 	months−1.	The
overloading	tensile	stress	follows	the	maximum	extreme	value	distribution

with	parameters	 ,	 ,	and	the	strength	of	the	component	has	been
approximated	by	the	Weibull	distribution

with	parameters	 ,	 	and	 .

Determine	the	reliability	associated	with	the	time	interval	(0,	100	months).

Solution
Numerical	integration	of	the	right-hand	side	of	Equation	7.7,	within	integration	limits	

	 ,	yields	 	for	the	reliability	associated	with	100
months.	The	Monte	Carlo	simulation	of	the	load–strength	interference	model	with	multiple
load	application	and	the	same	parameters	(see	Algorithm	9.3)	yielded	an	empirical
reliability	 	which	demonstrates	the	validity	of	the	overstress	reliability
integral	(7.7).

Another	advantage	of	the	overstress	reliability	integral	is	that	it	can	be	applied	for	load
and	strength	following	any	distribution.	In	Chapter	6,	it	was	shown	that	for	a	load	and
strength	not	following	a	normal	distribution,	the	standard	reliability	measure	‘reliability
index’	is	misleading.

7.1.1	The	Link	between	the	Negative	Exponential	Distribution	and	the
Overstress	Reliability	Integral
The	term	 	in	the	overstress	reliability	integral	(7.7)	gives	the	probability
that	none	of	the	random	loads	in	the	time	interval	0,	t	will	exceed	strength	with	magnitude	x.	In
the	case	of	a	constant	strength	 ,	the	integral	yields
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for	the	reliability	associated	with	the	time	interval	0,	t,	which	decreases	with	increasing	the
number	density	of	the	load	applications.

Equation	7.11	can	be	presented	as

where	 .	A	load	which	exceeds	the	constant	strength	s	will	be	referred	to	as	a
critical	load.	If	the	number	density	of	all	load	applications	is	ρ,	the	number	density	of	the
critical	loads	is	given	by	ρFc.	As	a	result,	the	number	density	λc	of	the	critical	load
applications	becomes	 ,	and	from	Equation	7.12,	an	expression	for	the	reliability
associated	with	the	time	interval	(0,	t)	can	be	obtained:

As	a	result,	the	negative	exponential	distribution	has	a	fundamental	importance	because	it	can
be	derived	from	the	overstress	reliability	integral	under	very	general	assumptions:	constant
strength	and	statistically	independent	load	applications	following	a	homogeneous	Poisson
process	in	the	time	interval	(0,	t).	In	this	case,	the	hazard	rate	 	characterising	the
component	is	constant,	equal	to	the	product	of	the	number	density	of	the	load	applications	and
the	probability	of	failure	during	a	single	load	application.	Equation	7.12	provides	an
alternative	interpretation	of	the	fundamental	concept	‘hazard	rate’	and	an	opportunity	for
calculating	it	from	the	number	density	of	the	load	applications	and	the	probability	of	failure
associated	with	a	single	load	application.

It	is	interesting	to	investigate	the	effect	on	reliability	of	a	smooth	(Figure	7.1a)	and	rough
loading	(Figure	7.1b).	For	ideally	rough	loading,	there	exists	a	non-zero	probability	that	load
will	be	greater	than	any	possible	value	of	strength.	With	increasing	the	number	density	of	the
load	applications,	reliability	approaches	asymptotically	zero	(Figure	7.1b).
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Figure	7.1	Influence	of	the	number	density	of	load	applications	on	reliability:	(a)	ideally
smooth	loading;	(b)	ideally	rough	loading

In	order	to	guarantee	a	perfectly	smooth	loading	(the	variance	of	the	load	is	zero),	assume	that
the	load	is	constant,	equal	to	L:	The	cumulative	distribution	function	of	the	load	then	becomes	

,	if	 	and	 ,	if	 .	The	overstress	integral	(7.7)	can	then	be	presented	as

This	result	shows	that,	during	ideally	smooth	loading,	with	increasing	the	number	of	load

applications,	reliability	decreases	monotonically,	approaching	the	value	 ,
which	is	the	probability	that	strength	will	be	larger	than	the	load	L	(Figure	7.1a).	In	other
words,	in	case	of	a	very	small	variation	of	the	load,	increasing	the	number	of	load	applications
beyond	a	particular	value	has	no	practical	effect	on	reliability.	Reliability	tends	to	the

probability	 	that	strength	will	be	larger	than	load.	Now,	suppose	that	the
constant	load	is	so	large	that	strength	always	remains	smaller	than	load.	In	this	case,	

	and	 	in	Equation	7.14	and	reliability	becomes

This	is	an	important	reason	for	the	origin	of	the	exponential	distribution	of	the	time	to	failure
and	the	flat	region	of	the	bathtub	curve.	Even	if	all	components	undergo	wear	and	deterioration
during	the	time	interval	0,	t,	the	time	to	failure	is	still	given	by	the	negative	exponential



distribution	if	failure	is	controlled	by	the	random	load	applications	and	if	the	times	of	the	load
applications	follow	a	homogeneous	Poisson	process	with	density	ρ.

7.2	Damage	Factorisation	Law
Suppose	that	damage	due	to	fatigue,	corrosion	or	any	other	type	of	deterioration	is	a	function	of
time	and	a	particular	controlling	factor	p.	During	fatigue,	for	example,	the	controlling	factor
can	be	the	stress	or	strain	amplitude.	Suppose	that	a	particular	component	accumulates	damage
at	M	different	intensity	levels	p1, …, pM	of	the	controlling	factor	p	(Figure	7.2).	At	each
intensity	level	pi,	the	component	is	exposed	to	damage	for	time	Δti.	Suppose	that	ti
corresponding	to	constant	intensity	levels	pi	of	the	controlling	factor	p	denote	the	times	for
attaining	a	critical	level	of	damage	ac,	after	which	the	component	is	considered	to	have	failed
(Figure	7.2).	It	is	also	assumed	that	the	sequence	in	which	the	various	levels	of	the	factor	p	are
imposed	does	not	affect	the	component’s	life.



(7.15)

(7.16)

Figure	7.2	Exposure	for	times	Δti	at	different	intensity	levels	pi	of	the	controlling	factor	p

The	damage	factorisation	law	states	that	if	for	a	constant	level	p	of	the	controlling	factor,	the
rate	of	damage	development	can	be	factorised	as	a	function	of	the	current	damage	‘a’	and	a
function	of	the	factor	level	p,

the	critical	level	of	damage	ac	at	different	levels	of	the	controlling	factor	p	will	be	attained
when	the	sum

becomes	unity	for	some	k:
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The	time	tc	to	attain	the	critical	level	of	damage	ac	is	then	equal	to

Conversely,	if	the	time	for	obtaining	the	critical	level	of	damage	ac	can	be	determined	using	the
additivity	rule	(7.17),	the	factorisation	(7.15)	must	necessarily	hold.	In	other	words,	the
damage	factorisation	law	(7.15)	is	a	necessary	and	sufficient	condition	for	the	additivity
rule	(7.17)	(Todinov,	2001a).	This	means	that	if	the	rate	of	damage	law	cannot	be	factorised,
the	additivity	rule	(7.17)	is	not	valid	and	must	not	be	used.

An	alternative	formulation	of	the	damage	factorisation	law	states	(Todinov,	2001a)	that	if	for	a
constant	level	p	of	the	controlling	factor,	the	time	t	for	attaining	a	particular	level	of	damage
‘a’	can	be	factorised	as	a	function	of	damage	and	the	factor	level	p,

the	time	to	reach	a	critical	level	of	damage	ac	for	different	levels	of	the	controlling	factor	can
be	determined	using	the	additivity	rule	(7.17).

Essentially,	according	to	the	additivity	rule	(7.17),	the	total	time	tc	required	to	attain	a
specified	level	of	damage	ac	is	obtained	by	adding	the	absolute	durations	Δti	(Eq.	7.18)	spent
at	each	intensity	level	i	of	the	factor	p	until	the	sum	of	the	relative	durations	Δti/ti	becomes
unity.	The	fraction	Δti/ti	of	accumulated	damage	at	a	particular	intensity	level	pi	of	the
controlling	factor	p	is	the	ratio	of	the	time	Δti	spent	at	level	pi	and	the	total	time	ti	at	level	pi
needed	to	attain	the	specified	level	ac	of	damage	(from	initial	damage	zero).

An	important	application	of	the	additivity	rule	is	the	case	where	damage	is	caused	by	fatigue.
In	this	case,	the	measure	of	damage	is	the	length	a	of	the	fatigue	crack.	The	additivity	rule
(7.17)	also	known	as	the	Palmgren–Miner	rule	has	been	proposed	as	an	empirical	rule	in	case
of	damage	due	to	fatigue	controlled	by	crack	propagation	(Miner,	1945).	The	rule	states	that	in
a	fatigue	test	at	a	constant	stress	amplitude	Δσi,	damage	could	be	considered	to	accumulate
linearly	with	the	number	of	cycles.	Accordingly,	if	at	a	stress	amplitude	Δσ1,	the	component
has	n1	cycles	of	life,	which	correspond	to	amount	of	damage	ac,	after	Δn1	cycles	at	a	stress
amplitude	Δσ1,	the	amount	of	damage	will	be	(Δn1/n1)ac.	After	Δn2	stress	cycles	spent	at	a
stress	amplitude	Δσ2,	characterised	by	a	total	life	of	n2	cycles,	the	amount	of	damage	will	be
(Δn2/n2)ac	and	so	on.	Failure	occurs	when,	at	a	certain	stress	amplitude	ΔσM,	the	sum	of
partial	amounts	of	damage	attains	the	amount	ac,	that	is,	when
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is	fulfilled.	As	a	result,	the	analytical	expression	of	the	Palmgren–Miner	rule	becomes

where	ni	is	the	number	of	cycles	needed	to	attain	the	specified	amount	of	damage	ac	at	a
constant	stress	amplitude	Δσi.

Palmgren–Miner	rule	is	central	to	reliability	calculations,	yet	no	comments	are	usually	made	as
to	whether	it	is	compatible	with	the	damage	development	laws	characterising	the	different
stages	of	fatigue	crack	growth.	The	necessary	and	sufficient	condition	for	validity	of	the
empirical	Palmgren–Miner	rule	is	the	possibility	to	factorise	the	rate	of	damage	da/dn	as	a
function	of	the	amount	of	accumulated	damage	a	(the	crack	length)	and	the	stress	or	strain
amplitude	(Δp):

The	theoretical	derivation	of	the	Palmgren–Miner	rule	can	be	found	in	(Todinov,	2001a).	A
widely	used	fatigue	crack	growth	model	is	the	Paris	power	law	(Paris	and	Erdogan,	1963;
Paris	et	al.,	1961):

where	 	is	the	stress	intensity	factor	range,	C	and	m	are	material	constants	and	Y
is	a	parameter	which	can	be	presented	as	a	function	of	the	amount	of	damage	a	(see	Chapter
12).	Clearly,	the	Paris–Erdogan	fatigue	crack	growth	law	can	be	factorised	as	in	(7.22),	and
therefore,	it	is	compatible	with	the	Palmgren–Miner	rule.	In	cases	where	this	factorisation	is
impossible,	the	Palmgren–Miner	rule	does	not	hold.	Such	is,	for	example,	the	fatigue	crack
growth	law

discussed	in	Miller	(1993),	which	characterises	physically	small	cracks.	In	Equation	7.24,	B
and	β	are	material	constants,	Δγ	is	the	applied	shear	strain	range,	‘a’	is	the	crack	length	and	D
is	a	threshold	value.
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8	
Solving	Reliability	and	Risk	Models	Using	a	Monte
Carlo	Simulation

8.1	Monte	Carlo	Simulation	Algorithms
8.1.1	Monte	Carlo	Simulation	and	the	Weak	Law	of	Large	Numbers
Monte	Carlo	simulation	is	a	powerful	method	for	determining	empirically	the	probability	of	an
event.	If	the	number	of	independent	trials	leading	to	outcome	A	is	 	and	the	total	number	of
trials	is	n,	the	probability	 	of	the	outcome	A	can	be	approximated	from

for	a	sufficiently	large	number	of	trials	n.

It	can	be	shown	that

for	each	 .	This	fundamental	result,	which	is	the	foundation	of	the	Monte	Carlo	method,	is
known	as	Bernoulli’s	weak	law	of	large	numbers.	It	was	first	proved	by	Jacob	Bernoulli	in	his
work	Ars	Conjectandi	(1713)	(Bernoulli,	1899).

Proof

Let	 	denote	the	outcome	on	the	ith	trial.	If	the	outcome	is	event	A,	then	 ;	otherwise,	
.	Because	the	trials	are	independent,	the	random	variables	 	are	statistically

independent	and	identically	distributed.	The	common	mean	 	of	the	random	variables	 	can
be	determined	from

Because	the	number	of	outcomes	leading	to	event	A	is	given	by	 ,	to	prove
expression	(8.2),	it	can	be	presented	as

for	each	 ,	where	 .



(8.5)

(8.6)

(8.7)

(8.8)

(8.9)

Before	we	prove	(8.4),	the	following	inequality	(known	also	as	Chebyshev’s	inequality)	will
be	proved.	If	X	is	a	discrete	random	variable	with	mean	 	and	finite	variance	 ,
then,	for	each	positive	number	a > 0,

The	inequality	states	that	the	probability	that	a	random	variable	X	will	deviate	by	more	than	a
from	its	mean	 	does	not	exceed	the	ratio	 .	Let	X	accept	its	discrete	values	x,	with

probabilities	 	 .

Indeed,	by	definition,	 .	If	the	summation	is	made	only	over	values	for
which	 	(Figure	8.1,	the	region	marked	with	a	thick	line),	the	following	inequality
holds	because	both	 	and	 :

If	 	is	replaced	by	 ,	then

will	hold.	Considering	inequality	(8.6),	we	get

from	which	inequality	(8.5)	follows	immediately.

Now,	going	back	to	(8.4)	and	applying	the	inequality	(8.5)	to	 	yields

From	the	properties	of	the	variance	of	a	mean:	 ,	where	 	is	the	standard
deviation	of	the	distribution	of	random	variable	X.	Substituting	in	(8.9)	gives

Because	 	and	 	are	finite	quantities,	with	increasing	the	number	of	trials	n,	

.	Considering	that	 	and	 	are	complementary	events,
finally
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which	proves	(8.2).

Figure	8.1	Discrete	distribution	of	the	random	variable	X

8.1.2	Monte	Carlo	Simulation	and	the	Central	Limit	Theorem
Consider	an	experiment	involving	n	independent	trials	to	determine	the	mean	 	of	a	random
variable	characterised	by	a	probability	distribution	 	and	standard	deviation	 .	According
to	the	central	limit	theorem,	with	increasing	the	number	n	of	independent	trials,	the

distribution	of	the	mean	 	approaches	a	normal	distribution	with	mean	 	and

standard	deviation	 .	The	probability	that	 	( )	equals	 	where	
	is	the	cumulative	distribution	function	of	the	standard	normal	distribution.	For	a	fixed	k,

the	equation

holds	(Sobol,	1994).	The	error	 	is	inversely	proportional	to	the	square
root	of	the	number	of	trials	( )	and	approaches	zero	as	n	increases.	From	Equation
8.11,	it	follows	that	reducing	the	error	m	times	requires	increasing	the	number	of	Monte	Carlo
trials	by	a	factor	of	 .	In	order	to	improve	the	efficiency	of	the	Monte	Carlo	simulation	by
reducing	the	variance	of	the	Monte	Carlo	estimates,	a	number	of	techniques	such	as	stratified
sampling	and	importance	sampling	can	be	employed	(see,	e.g.	Ross,	1997;	Rubinstein,	1981).
The	efficiency	of	the	Monte	Carlo	simulations	can	also	be	increased	by	a	better	reproduction
of	the	input	distribution	using	Latin	hypercube	sampling	(Vose,	2000).

8.1.3	Adopted	Conventions	in	Describing	the	Monte	Carlo	Simulation
Algorithms



In	describing	the	basic	Monte	Carlo	simulation	algorithms,	a	number	of	conventions	will	be
used.

Thus,	the	statements	in	braces	{Statement	1;	Statement	2;	Statement	3;	…}	separated	by
semicolons	are	executed	as	a	single	block.	The	construct

for	i	=	1	to	Number_of_trials	do

   {

    ....
   }

is	a	loop	with	a	control	variable	i,	accepting	successive	values	from	one	to	the	number	of
Monte	Carlo	trials	(Number_of_trials).	In	some	cases,	it	is	necessary	that	the	control
variable	i	accepts	successive	decreasing	values	from	Number_of_trials	to	one.	The
corresponding	construct	is

for	i	=	Number_of_trials	downto	1	do

   {

    ....

   }

The	loops	execute	the	block	of	statements	in	the	braces	Number_of_trials	number	of	times.	If
a	statement	break	is	encountered	in	the	body	of	a	loop,	the	execution	continues	with	the	next
statement	immediately	after	the	loop	(Statement	n+1	in	the	next	example)	skipping	all
statements	between	the	statement	break	and	the	end	of	the	loop:

for	i	=	1	to	Number_of_trials	do

    {
    Statement	1;
    .....
    break;
    .....
    Statement	n-1;
    Statement	n;
    }
    Statement	n+1;

The	construct

while	(Condition)	do	{Statement	1;…;Statement	n;}

is	a	loop	which	executes	the	block	of	statements	repeatedly	as	long	as	the	specified	condition
is	true.	If	the	variable	Condition	is	false	before	entering	the	loop,	the	block	of	statements	is
not	executed	at	all.	A	similar	construct	is	the	loop

repeat



  Statement	1;

  ....

  Statement	n;

until	(Condition);

which	repeats	the	execution	of	all	statements	between	repeat	and	until,	until	the	specified
condition	becomes	true.	Unlike	the	while–do	loop,	the	repeat–until	loop	statements	are
executed	at	least	once.

The	next	important	construct	is	the	conditional	statement.	In	the	conditional	statement	below,
the	block	of	statements	in	the	braces	is	executed	only	if	the	specified	condition	is	true:

if	(Condition)	then	{Statement	1;…;Statement	n;}

A	procedure	is	a	self-contained	section	to	perform	a	certain	task.	The	procedure	is	called	by
including	its	name	(‘proc’	in	the	next	example)	in	other	parts	of	the	algorithm:

procedure	proc()

{

 Statement	1;

 …

 Statement	n;

}

A	function	is	also	a	self-contained	section	which	returns	value	and	which	is	called	by
including	its	name	in	other	parts	of	the	algorithm.	Before	returning	to	the	point	of	the	function
call,	a	particular	value	p	is	assigned	to	the	function	name	(‘fn’	in	the	next	example)	with	the
statement	return:

function	fn()

{

 Statement	1;

 …

 Statement	n;

 return	p;

}

Text	in	italic	between	the	symbols	‘/*’	and	‘*/’	is	comments.

8.2	Simulation	of	Random	Variables
8.2.1	Simulation	of	a	Uniformly	Distributed	Random	Variable
A	simple	and	efficient	algorithm	for	generating	uniformly	distributed	pseudorandom	numbers	is
the	congruential	multiplicative	pseudorandom	number	generator	suggested	by	Lehmer	(1951).
If	an	initial	value	 	called	seed	is	specified,	the	random	number	 	in	the	random	sequence
with	seed	 	is	calculated	from	the	previous	value	 	using	the	formula



(8.12)
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where	the	multiplier	A	and	the	modulus	M	are	positive	integers.	 	is	the	remainder	left	when
	is	divided	by	M.	For	a	different	seed	 ,	a	different	random	sequence	is	obtained.	After	at

most	M	generated	values,	the	random	sequence	will	repeat	itself.	Because	 ,	a
uniformly	distributed	pseudorandom	number	in	the	interval	(0,	1)	is	obtained	from

Comprehensive	discussion	on	generating	random	numbers	and	tests	for	statistical
independence	of	the	generated	random	numbers	is	provided	in	Knuth	(1997),	Rubinstein
(1981),	Tuckwell	(1988)	and	L’Ecuyer	(1988).	A	random	sequence	with	very	good	properties
is	obtained	if	A = 16 807	and	M = 2 147 483 647	are	selected	for	the	values	of	the	constants	in
the	recurrence	relation	(8.12)	defining	the	pseudorandom	generator	described	in	(Park	and
Miller,	1988).	The	algorithm	in	pseudocode	for	simulating	a	random	variable	following	a
uniform	distribution	in	the	interval	(0,	1)	can	be	presented	as	follows:

Algorithm	8.1

function	u_random()

{

  t	=	A*Seed;

  Seed	=	mod	(t,	M);

  u	=	Seed/M;		/*	Generating	a	random	number	in	the	interval	(0,1)	*/

 return	u;
}

The	function	mod	returns	the	remainder	from	the	division	of	t	and	M.	Before	the	first	call	of	the
function	u_random(),	the	variable	Seed	is	initialised	with	any	number	in	the	range	1,	M − 1.
Subsequently,	this	value	is	altered	in	the	statement	Seed = mod	(t,	M).	The	value	of	the
variable	‘Seed’	should	be	preserved	between	the	calls	of	the	function	u_random().

Using	the	linear	transformation	 ,	where	 	is	a	random	number	uniformly
distributed	in	the	interval	(0,	1),	a	uniformly	distributed	random	value	 	from	any	specified
interval	(a,	b)	can	be	generated.	Uniformly	distributed	integer	numbers	in	the	range	( )
with	equal	probability	of	generating	any	of	the	numbers	 	can	be	obtained	using	the
expression

where	 	denotes	the	greatest	integer	which	does	not	exceed	 .	Consequently,	the	formula



(8.15)

will	generate	with	equal	probability	the	integer	numbers	 .	On	the	basis	of	Equation
8.15,	a	function	Rand(k)	can	be	constructed	which	selects	with	the	same	probability	1/k	one
object	out	of	k	objects.	The	algorithm	in	pseudocode	is	straightforward:

Algorithm	8.2

function	Rand(k)

	{

 u	=	u_random();	/*	Generates	a	uniformly	distributed	random	value	

                    in	the	interval	0,1	*/

	x	=	Int	(k*u)	+1;	/*Generates	a	uniformly	distributed	integer	value	x	

in	the	

                    interval	1,…,k	*/

return	x;

	}

Function	Int	(k*u)	returns	the	greatest	integer	which	does	not	exceed	the	product	k*u.

8.2.2	Generation	of	a	Random	Subset
In	some	applications,	it	is	important	to	generate	a	random	subset	of	size	k	out	of	n	objects.	The
subset	must	be	generated	in	such	a	way	that	no	object	in	the	subset	appears	twice	and	every
object	has	an	equal	chance	of	being	included	in	the	subset.	Some	of	the	applications	include	(i)
selecting	randomly	a	set	of	k	test	specimens	from	a	batch	of	n	specimens,	(ii)	selecting
randomly	a	group	of	k	people	out	of	n	people,	(iii)	selecting	randomly	k	components	for
inspection	from	a	batch	containing	n	components	and	(iv)	a	random	assignment	of	n	specimens
to	n	treatments.	The	list	can	be	continued.

Let	the	n	objects	be	indexed	by	 	and	stored	in	an	array	a[n]	of	size	n.	Calling	the
function	Rand(n)	will	select	with	equal	probability	1/n	a	random	index	r	( )	of	an	array
a[].	As	a	result,	a	random	selection	of	the	first	object	a[r]	is	made.	Next,	the	selected	object
a[r]	and	the	last	object	a[n]	are	swapped.	This	means	that	the	object	initially	stored	in	the	nth
cell	of	the	array	is	now	stored	in	the	rth	cell	and	the	object	from	the	rth	cell	has	been	moved
into	the	nth	cell.	As	a	result,	all	of	the	objects	which	have	not	been	selected	are	now	in	the	first
n-1	cells	of	the	array.	The	process	of	random	selection	of	the	next	object	continues	with
selecting	a	random	object	from	the	first	n-1	cells	of	the	array	by	calling	Rand(n-1).	A	random
object	from	the	first	n-2	cells	of	the	array	is	selected	by	calling	Rand(n-2)	and	so	on.	The
selection	process	ends	when	exactly	k	objects	have	been	selected.	The	algorithm	in
pseudocode	is	as	follows:



Algorithm	8.3

for	i	=	n	downto	n-k+1

	{

	k	=	Rand(i);

	tmp	=	a[i];	a[i]	=	a[k];	a[k]	=	tmp;	/*	swaps	cells	a[i]	and	a[k]	*/

	}

After	executing	the	procedure,	all	k	selected	objects	are	stored	in	the	last	k	cells	of	the	array
a[n]	(from	a[n − k + 1]	to	a[n]).	If	k	has	been	specified	to	be	equal	to	n,	the	algorithm
generates	a	random	permutation	from	the	elements	of	the	array,	or	in	other	words,	it	scrambles
the	array	in	a	random	fashion.

The	algorithm	is	very	efficient	because	it	uses	exactly	k	random	numbers	to	make	a	random
selection	of	k	out	of	n	objects.	Each	of	the	k	objects	is	selected	with	the	same	probability	1/n.

Proof
Because	the	numbers	generated	by	the	function	Rand()	have	uniform	distribution,	the
probability	of	selecting	the	first	object	is	 .	The	second	object	has	been	selected	in	the
second	round.	Therefore,	no	selection	of	the	second	object	has	been	made	in	the	first	round,	the
probability	of	which	is	 ,	and	a	selection	of	the	object	has	been	made	in	the	second
round,	the	probability	of	which	is	 	(in	the	second	selection,	the	random	number
generator	generates	a	random	number	from	1	to	n − 1).	The	probability	of	selecting	the	second
object	is	therefore

The	third	object	has	been	selected	in	the	third	round.	The	probability	of	selecting	the	third
object	is	therefore	a	product	of	the	probabilities	of	no	selection	in	the	first	round,	in	the	second
round	and	the	probability	of	a	selection	in	the	third	round:

Continuing	this	reasoning,	it	can	be	found	that	the	probability	of	selecting	the	kth	object	is

This	proves	the	correctness	of	the	algorithm.
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8.2.3	Inverse	Transformation	Method	for	Simulation	of	Continuous
Random	Variables
Let	U	be	a	random	variable	following	a	uniform	distribution	in	the	interval	(0,	1)	(Figure	8.2).
For	any	continuous	distribution	function	 ,	if	a	random	variable	X	is	defined	by	 ,
where	 	denotes	the	inverse	function	of	 ,	the	random	variable	X	has	a	cumulative
distribution	function	 .

Figure	8.2	Inverse	transformation	method	for	generating	random	numbers

Indeed,	because	the	cumulative	distribution	function	is	monotonically	increasing	(Figure	8.2),
the	following	chain	of	equalities	holds:

From	the	first	and	the	last	equality,	it	follows	that	 ,	which	means	that	the
random	variable	X	has	a	cumulative	distribution	F(x).
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8.2.4	Simulation	of	a	Random	Variable	following	the	Negative
Exponential	Distribution
The	cumulative	distribution	function	of	the	negative	exponential	distribution	is	

	whose	inverse	is	 .	Replacing	 	with	U,	which	is	a
uniformly	distributed	random	variable	in	the	interval	(0,	1),	gives

which	follows	the	negative	exponential	distribution.	A	small	improvement	of	the	efficiency	of
the	algorithm	can	be	obtained	noticing	that	 	is	also	a	uniformly	distributed	random
variable	in	the	range	(0,	1),	and	therefore,	 	has	the	same	distribution	as	

.	Finally,	generating	a	uniformly	distributed	random	variable	 	in	the	interval
(0,	1)	and	substituting	it	in

result	in	a	random	variable	 	following	the	negative	exponential	distribution.

During	the	simulation,	the	uniformly	distributed	random	values	 	are	obtained	either	from	a
standard	built-in	or	from	a	specifically	designed	pseudorandom	number	generator.

8.2.5	Simulation	of	a	Random	Variable	following	the	Gamma
Distribution
It	is	not	possible	to	give	a	closed-form	expression	for	the	inverse	of	the	gamma	cumulative
distribution	function.	Because	the	gamma	random	variable	 	can	be	presented	as	a	sum
of	n	random	variables	following	the	negative	exponential	distribution	with	parameter	 ,
generating	a	gamma	random	variable	can	be	based	on	this	property.	Each	negative	exponential
random	variable	is	generated	from	 ,	where	 	are	statistically
independent,	uniformly	distributed	random	numbers	in	the	interval	(0,	1).	As	a	result,	the
gamma	random	variable	 	can	be	obtained	from	the	sum

Equation	8.19	can	be	reduced	to

which	is	computationally	more	efficient	due	to	the	single	logarithm.
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8.2.6	Simulation	of	a	Random	Variable	following	a	Homogeneous
Poisson	Process	in	a	Finite	Interval
Random	variables	following	a	homogeneous	Poisson	process	in	a	finite	interval	with	length	a
can	be	generated	in	the	following	way.	Successive,	exponentially	distributed	random	numbers	

	are	generated	according	to	the	inverse	transformation	method,	where	 	are
uniformly	distributed	random	numbers	in	the	interval	(0,	1).	Subsequent	realisations	
following	a	homogeneous	Poisson	process	with	intensity	 	can	be	obtained	from	 ,	

,	…,	 	( ).	The	number	of	variables	n,	following	a	homogeneous
Poisson	process	in	the	finite	time	interval,	equals	the	number	of	generated	values	 	within	the
length	a	of	the	interval.

The	nth	generated	value	 	can	also	be
presented	as	 .	Generating	uniformly	distributed	random	numbers	

	continues	while	 	and	stops	immediately	if	 .	Because
the	condition	 	is	equivalent	to	the	condition

generating	uniformly	distributed	random	numbers	 	continues	while	
	and	stops	immediately	if	 .

The	algorithm	in	pseudocode	for	simulating	a	variable	following	a	homogeneous	Poisson
process	with	density	 	on	the	finite	interval	(0,	a)	is	given	next:

Algorithm	8.4

function	Poisson( )

{

	Limit	=	 ;

	S	=	u_random();	

	k	=	0;

	while	(S	≥	Limit)	do	{	

                        S	=	S*u_random();	
                        k	=	k+1;	
                       }

	return	k;

}

At	the	end,	the	generated	random	variable	following	a	homogeneous	Poisson	process	remains
in	the	variable	k.	Simulating	a	number	of	random	failures	characterised	by	a	constant	hazard
rate	 	in	a	finite	time	interval	with	length	a	can	also	be	done	by	the	described	algorithm.



8.2.7	Simulation	of	a	Discrete	Random	Variable	with	a	Specified
Distribution
A	discrete	random	variable	X	takes	on	only	discrete	values	 ,	with	probabilities	

	and	no	other	value:

X x1 x2	 … xn
P(X = x) f(x1) f(x2)	 	… f(xn)

where	 	is	the	probability	(mass)	function	of	the	random	variable	 .

The	algorithm	for	generating	a	random	variable	with	the	specified	distribution	consists	of	the
following	steps:

Algorithm	8.5

1.	 Construct	the	cumulative	distribution	 	of	the	random
variable.

2.	 Generate	a	uniformly	distributed	random	number	u	in	the	interval	[0,	1].

3.	 If	 ,	the	simulated	random	value	is	 ;	else,	if	 ,	the
simulated	random	value	is	 	(Figure	8.3).

Figure	8.3	Simulating	a	random	variable	with	a	specified	discrete	distribution

A	binomial	experiment	involving	n	statistically	independent	trials	with	probability	of	success
p	in	each	trial	can	be	simulated	by	generating	n	random	numbers	 	uniformly	distributed	in	the
interval	(0,	1).	If	the	number	of	successes	X	is	set	to	be	equal	to	the	number	of	trials	in	which	

,	the	distribution	of	the	number	of	successes	X	follows	a	binomial	distribution	with
parameters	n	and	p.	The	algorithm	in	pseudocode	is	given	next:



Algorithm	8.6

function	Binomial(p,n)

{

  k	=	0;

  for	i	=	1	to	n	do	{	
                    S	=	u_random();	
                    if	(S	≤	p)	then	k	=	k+1;	
                   }

  return	k;

}

8.2.8	Selection	of	a	Point	at	Random	in	the	N-Dimensional	Space
Region
In	order	to	select	a	random	point	from	a	bounded	three-dimensional	region	R	(Figure	8.4),	a
rejection	method	can	be	used.	The	region	R	is	first	surmounted	by	a	rectangular	parallelepiped
with	sides	a,	b	and	c.	A	random	point	with	coordinates	 ,	 	and	 	is	generated	in	the
parallelepiped	using	three	statistically	independent	random	numbers	 ,	 	and	 ,	uniformly
distributed	in	the	interval	(0,	1).	If	the	generated	point	belongs	to	the	region	R,	it	is	accepted.
Otherwise,	the	point	is	rejected	and	a	new	random	point	is	generated	in	the	parallelepiped	and
checked	whether	it	belongs	to	R.	The	first	accepted	point	is	a	point	randomly	selected	in	the
region	R.



Figure	8.4	Selecting	a	random	point	in	the	region	R

This	approach	will	be	illustrated	by	a	procedure	for	picking	a	random	point	on	a	circular	disc
with	radius	r.	The	circular	disc	is	inscribed	in	a	square	with	side	2r,	centred	at	the	origin	of
the	coordinate	system	(Figure	8.5).



Figure	8.5	Picking	a	random	point	from	a	circular	disc	by	the	rejection	method

Random	points	generated	in	the	square	but	outside	the	disc	are	discarded.	If	the	inequality	
	holds,	where	(x,	y)	are	the	coordinates	of	the	generated	random	point,	the	point	is

outside	the	disc.	If	the	converse	is	true	( ),	the	point	is	on	the	disc.	The	first
generated	point,	for	which	 	is	fulfilled,	is	accepted	as	a	point	with	random	location
on	the	circular	disc.	The	corresponding	procedure	is	given	next	in	pseudocode:

Algorithm	8.7

r_sq	=	r*r;

repeat

	x	=	-r	+	2r	*	u_random();

	y	=	-r	+	2r	*	u_random();

until	(x*x	+	y*y	>	r_sq)

print	"The	coordinates	of	the	random	point	are",	x,y;



8.2.9	Simulation	of	Random	Locations	following	a	Homogeneous
Poisson	Process	in	a	Finite	Domain
Random	locations	following	a	homogeneous	Poisson	process	with	constant	intensity	 	in	a
finite	domain	(volume,	area,	interval)	can	be	simulated	in	two	steps.	In	the	first	step,	using
Algorithm	8.4,	a	number	n	of	random	variables	is	generated	following	a	homogeneous	Poisson
process	with	intensity	 .	In	the	second	step,	n	random	locations	are	generated,	uniformly
distributed	in	the	finite	domain.

The	method	will	be	illustrated	by	an	algorithm	for	generating	random	locations	which	follow	a
homogeneous	Poisson	process	with	intensity	 ,	in	a	cylindrical	domain	with	area	of	the	base	S
and	height	H	(Figure	8.6).	First,	the	number	of	locations	k	in	the	cylinder	is	generated
according	to	Algorithm	8.4,	where	 	is	the	volume	of	the	cylinder.	Next,	k	random
locations	are	generated,	uniformly	distributed	in	the	volume	of	the	cylinder.	The	second	step
can	be	accomplished	by	generating	a	uniformly	distributed	point	with	coordinates	(x,	y)	across
the	base	of	the	cylinder,	followed	by	generating	the	z-coordinate	of	the	location,	uniformly
distributed	along	the	height	H.

Figure	8.6	Generating	uniformly	distributed	locations	in	the	cylinder	V

A	uniformly	distributed	point	across	the	base	is	generated	by	using	the	rejection	method	which
consists	of	generating	sequentially	uniformly	distributed	points	in	the	circumscribed	rectangle
containing	the	base.	If	a	random	point	falls	outside	the	area	of	the	base,	it	is	rejected.	The	first
point	generated	inside	the	base	S	is	accepted	(Figure	8.6).

The	process	of	generating	uniformly	distributed	random	locations	in	the	cylindrical	domain
continues	until	the	total	number	of	k	random	locations	has	been	generated.

8.2.10	Simulation	of	a	Random	Direction	in	Space



Suppose	that	a	random	direction	needs	to	be	selected	from	the	origin	of	the	coordinate	system
with	axes	 ,	 	and	 	as	shown	in	Figure	8.7.

Figure	8.7	A	random	direction	 	in	space	defined	by	angles	 	and	

This	problem	is	common	in	the	applications	(see,	e.g.	Sobol,	1994).	Such	a	problem	is	present
in	simulations	of	brittle	fracture	triggered	by	penny-shaped	cracks.	The	orientation	of	the	crack
regarding	the	principal	stresses	 ,	 	and	 	is	specified	by	the	unit	normal	vector	n°	to	the
crack	plane	(Figure	8.7).

A	random	direction	in	space	means	that	the	endpoint	of	the	random	direction	is	uniformly
distributed	on	the	surface	of	the	unit	sphere	in	Figure	8.8.	The	random	direction	is	determined
by	the	two	angles	 	and	 	(Figure	8.8).



Figure	8.8	Unit	sphere	and	a	random	direction	in	space

Let	us	divide	the	surface	of	the	sphere	with	unit	radius,	by	planes	perpendicular	to	one	of	the
axes,	into	infinitesimally	small	surface	elements	 	(Figure	8.8).

Because	the	endpoints	are	uniformly	distributed	on	the	surface	of	the	sphere,	the	probability	of
selection	of	a	particular	element	 	to	which	corresponds	angle	 	should	be	equal	to	the	ratio
of	the	area	of	the	element	 	and	the	area	of	the	sphere:

The	latter	expression	defines	the	probability	density	 	characterising	the	angle	 .
Integrating	this	probability	density	gives	the	cumulative	distribution	of	the	angle

Applying	the	inverse	transformation	method,	value	of	the	cosine	of	the	angle	 	is	generated
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from

where	 	is	a	uniformly	distributed	number	in	the	interval	(0,	1).	Considering	the	axial	symmetry
with	respect	to	the	selected	z-axis,	the	second	angle	 	is	uniformly	distributed	in	the	interval
(0,2π),	and	a	value	for	this	angle	is	generated	from

where	 	is	another	uniformly	distributed	number	in	the	interval	(0,	1),	statistically	independent
from	the	random	number	 	used	for	generating	the	value	for	 .

8.2.11	Generating	Random	Points	on	a	Disc	and	in	a	Sphere
The	described	technique	can	be	used	for	generating	random	points	inside	a	disc	with	radius	R.
Generating	random	points	on	a	disc	is	part	of	various	simulations	involving	random	nucleation
and	growth	in	a	system,	random	locations	of	remote	sensor	devices	on	a	planar	region,	etc.

Because	of	the	symmetry,	the	polar	angles	 	of	the	uniformly	distributed	across	the	area	of	the
disc	random	points	are	obtained	by	generating	random	numbers	 	uniformly	distributed	in	the
interval	(0,	 ):

where	 	are	random	numbers	uniformly	distributed	in	the	interval	(0,	1).

Let	 	be	the	probability	density	distribution	of	the	polar	radius	which	guarantees	a	uniform
distribution	of	a	random	point	across	the	area	of	the	disc.	The	probability	that	the	polar	radius
of	the	random	point	will	be	within	the	interval	( ,	 )	will	then	be	given	by	 .

The	probability	that	the	polar	radius	of	the	random	point	will	be	within	the	interval	( ,	
)	is	also	equal	to	the	probability	that	the	random	point	will	be	located	on	the	elementary	area	
	enclosed	between	two	circles	with	radii	 	and	 	(Figure	8.9).	Because	the	location	of

the	random	point	should	be	uniformly	distributed	across	the	area	of	the	disc,	this	probability
should	be	equal	to	the	ratio	of	the	area	of	the	element	 	and	the	area	of	the	disc:



(8.25)

Figure	8.9	Selecting	a	random	point	on	a	disc	with	radius	R

Equating	the	two	probabilities	 	yields

for	the	probability	density	distribution	of	the	polar	radius	 	of	the	random	point.	Integrating
this	probability	density	gives	the	cumulative	distribution	 	of	the	polar	radius

Applying	the	inverse	transformation	method,	values	of	the	polar	radii	 	of	the	generated
random	points	are	obtained	from

where	 	are	random	numbers	uniformly	distributed	in	the	interval	(0,	1).

This	method	can	be	used	for	generating	random	points	inside	a	sphere	with	radius	R.	Random
locations	inside	a	spherical	region	are	part	of	simulations	of	phase	transformations	involving
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nucleation	and	growth	from	random	centres,	simulation	of	suspended	particles,	simulation	of
defects	in	materials,	etc.

The	random	point	is	characterised	by	a	polar	radius	 	and	angles	 	and	 .	The	coordinates	
and	 	define	a	random	orientation	for	the	selected	point	with	respect	to	the	centre	of	the	sphere
and	can	be	determined	following	the	procedure	described	in	the	previous	section.	The	polar
radius	of	the	random	point	can	be	determined	by	applying	a	technique	very	similar	to	the	one
used	for	generating	random	points	on	a	disc.

Let	 	be	the	probability	density	distribution	of	the	polar	radius	which	guarantees	a	uniform
distribution	of	a	random	point	inside	the	sphere	with	radius	R.	The	probability	that	the	polar
radius	of	the	random	point	will	be	within	the	interval	( ,	 )	is	given	by	 .

This	probability	is	also	equal	to	the	probability	that	the	random	point	will	be	located	within
the	elementary	volume	 	enclosed	between	two	spheres	with	radii	 	and	 .	Because	the
location	of	the	random	point	should	be	uniformly	distributed	across	the	volume	of	the	sphere
with	radius	R,	this	probability	should	be	equal	to	the	ratio	of	the	volume	of	the	element	 	and
the	volume	of	the	sphere:

Equating	the	two	probabilities	 	yields

for	the	probability	density	distribution	of	the	polar	radius	 	of	the	random	point.	Integrating
this	probability	density	gives	the	cumulative	distribution	 	of	the	polar	radius

Applying	the	inverse	transformation	method,	values	of	the	polar	radii	 	are	generated	from

where	 	are	random	numbers	uniformly	distributed	in	the	interval	(0,	1).

8.2.12	Simulation	of	a	Random	Variable	following	the	Three-
Parameter	Weibull	Distribution

Since	the	Weibull	cumulative	distribution	function	is	 ,	the	first
step	is	to	construct	its	inverse	 .	Next,	 	is	replaced	with	U,
which	is	a	uniformly	distributed	random	variable	in	the	interval	(0,	1).	As	a	result,	the
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expression	 	is	obtained.	Generating	uniformly	distributed	random
values	 	in	the	interval	(0,	1)	and	substituting	them	in

yields	random	values	 	following	a	three-parameter	Weibull	distribution.

8.2.13	Simulation	of	a	Random	Variable	following	the	Maximum
Extreme	Value	Distribution
From	the	cumulative	distribution	function	of	the	maximum	extreme	value	distribution	 	the
inverse	 ,	is	determined.	Replacing	 	with	U,	which	is	a	uniformly
distributed	random	variable	in	the	interval	(0,	1),	results	in	 .	Generating
uniformly	distributed	random	variables	 	in	the	interval	(0,	1)	and	substituting	them	in

produces	values	 	following	the	maximum	extreme	value	distribution.

8.2.14	Simulation	of	a	Gaussian	Random	Variable
A	standard	normal	variable	can	be	generated	easily	using	the	central	limit	theorem	applied	to	a
sum	X	of	n	random	variables	 ,	uniformly	distributed	in	the	interval	(0,	1).	According	to	the
central	limit	theorem,	with	increasing	n,	the	sum	 	approaches	a	normal
distribution	with	mean

and	variance

Selecting	 	uniformly	distributed	random	variables	 	gives	a	reasonably	good
approximation	for	many	practical	applications.	Thus,	the	random	variable

is	approximately	normally	distributed	with	mean	 	and	variance	
,	or	in	other	words,	the	random	variable	X	follows	the	standard	normal

distribution	(Rubinstein,	1981).

Another	method	for	generating	a	standard	normal	variable	is	the	Box–Muller	method	(Box	and
Muller,	1958).	A	pair	of	statistically	independent	standard	normal	variables	x	and	y	are
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generated	by	generating	a	pair	 ,	 	of	statistically	independent,	uniformly	distributed	random
numbers	in	the	interval	(0,	1).	Random	variables	following	the	standard	normal	distribution
are	obtained	from

The	derivation	of	these	expressions	is	given	in	Appendix	8.1.

From	the	generated	standard	normal	variable	 	with	mean	zero	and	standard	deviation
unity,	a	normally	distributed	random	variable	 	with	mean	 	and	standard	error	 	can	be
obtained	by	applying	the	linear	transformation

8.2.15	Simulation	of	a	Log-Normal	Random	Variable
A	random	variable	follows	a	log-normal	distribution	if	its	logarithm	follows	a	normal
distribution.	Suppose	that	the	mean	and	the	standard	deviation	of	a	random	variable	X	are	
and	 ,	correspondingly.	A	log-normal	random	variable	can	be	generated	by	first	generating	a
normally	distributed	random	variable	Y	with	mean	 	and	standard	deviation	 	using

where	 	is	a	generated	standard	normal	variable	(see	Eq.	8.29).	A	log-normal	variable	X
is	generated	by	exponentiating	the	normal	random	variable	Y:

It	is	important	to	point	out	that	 	and	 	in	Equation	8.33	are	not	the	mean	and	variance	of	the
simulated	log-normal	variable	X.	The	mean	and	variance	of	the	simulated	log-normal	random
variable	X	are	given	by	 	and	 .
Consequently,	to	generate	a	log-normal	random	variable	with	a	specified	mean	 	and	standard
deviation	 ,	these	equations	need	to	be	solved	with	respect	to	 	and	 	which	results	in
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Next,	the	obtained	values	 	and	 	are	used	in	Equation	8.33	to	generate	a	normally	distributed
random	variable	Y,	which,	after	exponentiation	(Eq.	8.34),	generates	a	log-normal	random
variable	X	with	mean	 	and	standard	deviation	 .

8.2.16	Conditional	Probability	Technique	for	Bivariate	Sampling
This	technique	is	based	on	presenting	the	joint	probability	density	function	 	as	a	product

of	 	–	the	marginal	distribution	of	X	and	 	-	the	conditional	distribution	of	Y,	given
that	 .	Simulating	a	random	number	with	distribution	 	involves	two	steps:	(i)
generating	a	random	number	x	with	distribution	 	and	(ii)	for	the	generated	value	
generating	a	second	random	number	y,	with	a	conditional	probability	density	 .	The
obtained	pairs	(x,	y)	have	a	joint	distribution	 .	A	common	application	of	this	technique	is
the	random	sampling	from	a	bivariate	normal	distribution

where	 ,	 	denote	the	means	and	 ,	 	denote	the	standard	deviation	of	the	 ,	 	random
variables	X	and	Y,	respectively.	The	parameter	 	is	the	linear	correlation	coefficient	between
X	and	Y,	defined	by

An	important	feature	is	that	the	bivariate	normal	distribution	is	a	natural	extension	of	the
normal	distribution	in	the	two-dimensional	space.	If	pairs	(X,	Y)	have	a	bivariate	normal
distribution,	the	variables	W	and	Z	defined	by	 	and	 	have	a
standardised	bivariate	normal	distribution	with	a	probability	density	function

Given	that	 ,	the	conditional	distribution	of	Y,	is	normal,	with	mean	

	and	standard	deviation	 	(Miller	and	Miller,	1999).

A	procedure	for	sampling	from	the	standardised	bivariate	normal	distribution	consists	of
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generating	two	random	numbers	 	and	 	from	the	standard	normal	distribution	 .	The
random	variates	x	and	y	following	a	bivariate	normal	distribution	with	specified	means	 ,	 ,
standard	deviations	 , 	and	a	correlation	coefficient	 	are	obtained	from

8.2.17	Von	Neumann’s	Method	for	Sampling	Continuous	Random
Variables
This	method,	also	known	as	rejection	method,	is	convenient	in	cases	where	the	inverse
function	of	the	cumulative	distribution	function	 	cannot	be	expressed	in	terms	of
elementary	functions	or	in	cases	where	the	probability	density	function	has	been	specified
empirically	(e.g.	by	a	histogram).

Suppose	that	the	random	variable	is	defined	in	the	interval	(a,	b)	and	the	probability	density
function	 	is	bounded:	 	(Figure	8.10).



Figure	8.10	Rejection	method	for	generating	a	continuous	random	variable	with	a	specified
probability	density	function	f(x)

A	value	following	the	specified	probability	density	function	 	can	be	generated	using	the
following	steps:

1.	 A	uniformly	distributed	random	value	 	in	the	interval	(a,	b)	is	generated
first,	where	 	is	a	uniformly	distributed	random	number	in	the	interval	(0,	1).

2.	 A	random	value	 	is	generated,	uniformly	distributed	in	the	interval	(0,	M),	where
U2	is	another	uniformly	distributed	random	number	in	the	interval	(0,	1).

3.	 If	 ,	the	random	value	x	generated	on	step	one	is	accepted.	Otherwise,	the	random
value	is	rejected,	and	the	process	continues	with	steps	(1)	and	(2)	until	a	generated	value	x
is	accepted.

The	algorithm	of	the	rejection	method	in	pseudocode	is	given	next:



(8.43)

Algorithm	8.8

function	rejection_method()

{

	repeat

	x	=	a	+	(b	-	a)*u_random();

	y	=	M*u_random();

	until	( );

	return	x;

}

Indeed,	the	probability	that	a	generated	value	 	will	belong	to	the	interval	 	is	a
product	of	the	probability	 	that	the	random	value	 	will	be	generated	in	the	interval	

	and	the	probability	 	that	it	will	be	accepted.	As	a	result,	the	probability
that	a	generated	value	will	belong	to	the	interval	 	and	will	be	accepted	becomes	

.	According	to	the	total	probability	theorem,	the	probability	of	accepting
a	value	is

because	 .	Finally,	the	conditional	probability	that	a	value	will	belong	to	the
interval	 	given	that	it	has	been	accepted	is

which	means	that	the	accepted	values	do	follow	the	specified	distribution	 .

8.2.18	Sampling	from	a	Mixture	Distribution
Suppose	that	a	sampling	from	the	distribution	mixture

is	required,	where	 	are	the	shares	of	the	separate	individual	distributions	 	in
the	mixture.	Sampling	the	distribution	mixture	(8.43)	involves	two	basic	steps:



1.	 Random	selection	of	an	individual	distribution	to	be	sampled

2.	 Random	sampling	from	the	selected	distribution

Random	selection	of	an	individual	distribution	can	be	done	using	Algorithm	8.5	for	sampling
from	a	discrete	distribution	with	mass	function

X 1 2 M
P(X = x)

Random	sampling	from	the	selected	distribution	can	be	performed	using,	for	example,	the
inverse	transformation	method.

Appendix	8.1

Indeed,	if	we	denote	 	and	 ,	then	 ;	 	and	 	can
be	regarded	as	the	polar	coordinates	of	the	point	(x,	y)	(Figure	8.11).

Figure	8.11	Polar	coordinates	r	and	θ	of	point	(x,	y)

The	polar	angle	 	follows	a	uniform	distribution	with	density	1/2π	in	the	interval	(0,	2π).
According	to	the	algorithm	related	to	generating	a	random	variable	with	a	negative	exponential
distribution	(see	Eq.	8.8),	the	square	 	of	the	polar	radius	follows	an	exponential
distribution	 	with	parameter	 .	Because	 	and	 	are	statistically
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independent,	the	polar	angle	and	the	polar	radius	which	are	functions	of	 	and	 	are	also
statistically	independent:

The	joint	distribution	 	of	 	and	 	is	therefore	a	product	of	the	marginal	density
distributions	of	 	and	 	(Ross,	1997):

The	joint	distribution	 	of	x	and	y	equals	the	joint	distribution	of	 	and	 	multiplied	by	the
absolute	value	of	the	Jacobian	of	the	transformation	(DeGroot,	1989)

where

Finally,	for	the	joint	distribution	of	x	and	y,	we	obtain	
which	can	be	factorised	as

where

are	the	probability	density	functions	of	two	statistically	independent	standard	normal	random
variables	X	and	Y.



9	
Evaluating	Reliability	and	Probability	of	a	Faulty
Assembly	Using	Monte	Carlo	Simulation

9.1	A	General	Algorithm	for	Determining	Reliability
Controlled	by	Statistically	Independent	Random
Variables
Suppose	that	 ,	 ,	…,	 	are	statistically	independent	random	variables	which	control	the

reliability	of	a	component/system,	where	 ,	 ,	…,	 	are	their	marginal
probability	densities.	The	reliability	is	then	given	by	the	integral	(Melchers,	1999)

where	the	integration	is	performed	within	the	safe	domain	S.	The	safe	domain	defines	all
possible	combinations	of	values	for	the	random	variables	for	which	no	failure	occurs.	The
Monte	Carlo	algorithm	for	evaluating	the	above	integral	is	as	follows:



Algorithm	9.1

x[n]:	/*	Global	array	containing	the	current	values	of	the	n	random	

variables	*/

procedure	Generate_random_variable	(j)

	{

			/*	Generates	a	realisation	(value)	of	the	jth	controlling	random	

variable	x[j]	*/

	}

function	Limit_state()

	{

			/*	For	a	particular	combination	of	values	of	the	random	variables	

x[1],…,x[n]	returns	1	or	0	depending	on	whether	failure	state	is	

present	or	not	*/

	}

/*	Main	algorithm	*/

Failure_counter	=	0;

For	i	=	1	to	Number_of_trials	do

	{

			/*	Generate	the	ith	set	of	n	controlling	random	variables	*/

			For	j=1	to	do

					Generate_random_variable(j);

			Failure	=	Limit_state();	/*	Checks	for	a	limit	(failure)	state	using	

the	current	values	of	the	random	variables	in	the	array	x[n]	*/

			If	(Failure=1)	then	Failure_counter	=	Failure_counter	+	1;

	}

Reliability_on_demand	=	(Number_of_trials	-	Failure_counter)	/	

Number_of_trials

In	the	simulation	loop	controlled	by	variable	i,	a	second	nested	loop	has	been	defined,
controlled	by	variable	j,	whose	purpose	is	generating	instances	of	all	statistically	independent
controlling	random	variables.	After	obtaining	a	set	of	values	for	the	random	variables,	the
function	Limit_state()	is	called	to	check	whether	the	set	of	values	for	the	random	variables
defines	a	point	in	the	failure	region.	The	function	returns	‘1’	if	the	values	of	the	random
variables	define	failure,	otherwise,	the	function	returns	zero.

If	the	set	of	values	defines	a	point	in	the	failure	region,	the	failure	counter	is	incremented.	At
the	end	of	the	simulation	trials,	reliability	on	demand	is	obtained	as	a	ratio	of	the	number	of
trials	during	which	no	failure	occurred	and	the	total	number	of	simulation	trials.

9.2	Evaluation	of	the	Reliability	Controlled	by	a	Load–
Strength	Interference



9.2.1	Evaluation	of	the	Reliability	on	Demand,	with	No	Time	Included
Main	components	of	the	load–strength	interference	model	are	(i)	a	model	for	the	strength
distribution	and	(ii)	a	model	for	the	load	distribution.	A	Monte	Carlo	simulation	approach	for
solving	the	load–strength	reliability	integral	will	be	illustrated	by	providing	an	alternative
solution,	by	a	Monte	Carlo	simulation,	of	the	example	from	Chapter	6,	related	to	determining
the	probability	of	failure	of	a	component	by	a	numerical	integration.	For	the	purposes	of
comparison	with	the	numerical	solution	presented	in	the	example	from	Chapter	6,	the
distributions	and	their	parameters	are	the	same.	Accordingly,	the	distribution	of	strength	has
been	approximated	by	the	three-parameter	Weibull	distribution

with	parameters	 ,	 	and	 .	The	load	distribution	has	been
approximated	by	the	maximum	extreme	value	distribution

with	parameters	 	and	 .

An	algorithm	in	pseudocode	which	evaluates	the	reliability	on	demand	using	Monte	Carlo
simulation	is	presented	next:

Algorithm	9.2

function	Weibull_rv()

{/*	Generates	a	Weibull-distributed	random	variable	*/}

function	Max_extreme_value_rv()

{/*	Generates	an	Extreme	value	random	variable	*/}

Failure_counter	=	0;

For	i	=	1	to	Number_of_trials	do

	{

			/*	Generates	the	ith	pair	of	random	load	and	random	strength	*/

			Strength	=	Weibull_rv();

			Load	=	Max_extreme_value_rv();

			If	(Strength	<=	Load)	then	Failure_counter	=	Failure_counter	+	1;

	}

Reliability_on_demand	=	(Number_of_trials	-	Failure_counter)	/	

Number_of_trials;



In	the	Monte	Carlo	simulation	loop	controlled	by	the	variable	i,	instances	of	random	strength
and	random	load	are	generated	in	each	trial.	Their	values	are	subsequently	compared	in	order
to	check	for	a	safe	state.	If	a	failure	state	is	present	(strength	smaller	than	or	equal	to	load),	the
failure	counter	is	incremented.	Similar	to	the	previous	algorithm,	at	the	end	of	the	Monte	Carlo
trials,	reliability	on	demand	is	obtained	as	a	ratio	of	the	number	of	trials	during	which	no
failure	occurred	and	the	total	number	of	Monte	Carlo	trials.

The	algorithms	of	the	functions	returning	random	strength	following	the	Weibull	distribution
and	random	load	following	the	maximum	extreme	value	distribution	have	been	discussed	in
Chapter	8.

For	the	reliability	on	demand,	one	million	Monte	Carlo	simulation	trials	(Number_of_trials 
= 1 000 000)	yielded	0.985,	which	coincides	with	the	result	from	the	example	in	Chapter	6,
obtained	by	a	direct	numerical	integration.	Increasing	the	number	of	simulations	to	10	million
does	not	alter	the	last	significant	digit	of	the	result,	which	shows	that	a	very	good	convergency
of	the	simulation	results	is	already	present	at	the	selected	one	million	trials.

9.2.2	Evaluation	of	the	Reliability	Controlled	by	Random	Shocks	on	a
Time	Interval
In	the	important	case	of	random	shocks	on	a	time	interval,	failure	of	the	component	occurs
when	the	magnitude	of	any	of	the	random	shocks	exceeds	the	random	strength.	Suppose	that	the
load	and	strength	distributions	from	the	previous	example	give	the	magnitude	of	the	random
shocks	in	the	time	interval	and	the	strength	of	the	component.	It	is	assumed	that	the	shocks
follow	a	homogeneous	Poisson	process	with	density	 	on	a	time	interval	with	length	a.	An
algorithm	in	pseudocode	for	Monte	Carlo	evaluation	of	the	reliability	in	the	specified	finite
time	interval	can	be	constructed	as	follows:



Algorithm	9.3

function	Weibull_rv()

			{	/*	Generates	a	random	variable	following	a	Weibull	distribution	

with	

specified	parameters	*/}

function	Max_extreme_value_rv()

			{	/*	Generates	a	random	variable	following	the	Maximum	Extreme	

value	distribution	with	specified	parameters	*/}

function	Generate_number_of_shocks()

			{/*	Generates	a	number	of	random	shocks	following	a	homogeneous

					Poisson	process	with	density	ρ,	in	the	finite	time	interval	0,a	

*/}

Failure_counter	=	0;

for	i	=	1	to	Number_of_trials	do

	{

		/*	Generates	a	random	strength	*/

					Strength	=	Weibull_rv();

		/*	Generates	the	number	of	random	shocks	*/	

					Num_shocks	=	Generate_number_of_shocks();

		/*	Generates	the	random	loads	(shocks)	and	compares	each	random	load	

with	the	random	

strength	*/

		for	k	=	1	to	Num_shocks	do

			{

					Load	=	Extreme_value_rv();

					if	(Strength	<=	Load)	then

										{Failure_counter	=	Failure_counter	+	1;	break;}

			}

		}

Reliability	=	(Number_of_trials	-	Failure_counter)	/	Number_of_trials;

A	characteristic	feature	distinguishing	this	algorithm	from	the	previous	algorithm,	dealing	only
with	reliability	on	demand,	is	the	nested	loop	with	control	variable	k,	accepting	values	from
one	to	Num_shocks	(the	number	of	random	shocks).	A	random	strength	is	generated	before
entering	the	inner	loop	(the	loop	with	control	variable	k)	because	strength	is	the	same	for	all
load	applications	(shocks).	For	each	shock,	a	random	load	is	generated	and	subsequently
compared	with	the	strength.	If	strength	is	smaller	than	or	equal	to	any	of	the	shock	magnitudes,
failure	is	registered	by	incrementing	the	failure	counter	(Failure_counter),	after	which	the
loop	with	control	variable	k	is	exited	immediately	by	the	statement	break.	By	dividing	the
number	of	trials	during	which	no	failure	has	occurred,	to	the	total	number	of	trials,	the
reliability	associated	with	the	time	interval	with	length	a = 100	months	is	obtained.	For	the



reliability	associated	with	the	finite	time	interval	of	100	months	and	density	of	the	shocks	0.5
shocks/month,	a	computer	programme	in	C++	based	on	Algorithm	9.3	and	one	million
simulation	trials	yields	0.597.	This	result	coincides	with	the	result	obtained	from	a	direct
integration	(see	the	overstress	reliability	exercise	from	Chapter	7).	Increasing	the	number	of
simulations	to	10	million	does	not	alter	the	last	significant	digit	of	the	result,	which	shows	that
a	very	good	convergency	of	the	simulation	results	is	already	present	at	the	selected	one	million
trials.

9.3	A	Virtual	Testing	Method	for	Determining	the
Probability	of	Faulty	Assembly
The	design	parameters	related	to	any	product	are	associated	with	uncertainty.	This	is	usually
caused	by	variability	associated	with	the	external	loads	acting	on	the	product,	the	environment
where	the	product	operates,	the	technological	processes	used	in	the	production	of	materials,
the	manufacturing	processes	and	the	operation.	Variability	of	the	input	parameters
characterising	a	particular	design	transforms	into	variability	of	the	output	properties	of	the
products.	Because	of	the	natural	variation	of	design	parameters,	particular	combinations	of
parameter	values	are	transformed	into	undesirable	deviations	of	the	output	properties	from
their	optimal	values	which	often	constitute	a	fault.	Faults	lead	to	a	deteriorated	performance
and	failure.

A	typical	example	of	a	fault	caused	by	the	variation	of	input	design	parameters	can	be	given
with	the	interference	fits	(press	or	shrink	fits)	(Vinogradov,	1991)	that	include	a	shaft	and	a
hub	(Figure	9.1).



Figure	9.1	The	press	fit	assembly	must	be	capable	of	carrying	torque	and	axial	force	without
slippage

This	assembly	must	be	capable	of	carrying	torque	and	axial	forces	without	slippage.	All	design
parameters	are	associated	with	a	physical	variation	after	manufacturing	but	the	two	design
parameters	that	affect	most	significantly	the	load-carrying	capability	of	the	assembly	are	the
coefficient	of	friction	 	between	the	hub	and	the	shaft	and	the	interference	 	between	the
diameters	of	the	hub	and	the	shaft	(Booker	et	al.,	2001;	Vinogradov,	1991).	These	parameters
are	important	because	their	variation	affects	most	significantly	the	friction	force	 	per	unit
contact	area,	defined	as	 	where	 	is	the	contact	pressure	on	the	shaft	and	 	is	the
coefficient	of	friction	(Figure	9.1).	The	variations	of	the	coefficient	of	friction	 	affect	the
friction	force	directly	while	the	variations	of	the	interference	 	affect	the	friction	force	through
the	contact	pressure	p.	If	the	temperature	also	varies,	the	interference	is	further	affected
because	of	the	different	coefficient	of	thermal	expansion	of	the	hub	and	the	shaft.	If,	for
example,	the	coefficient	of	linear	expansion	of	the	hub	is	greater	than	the	coefficient	of	thermal
expansion	of	the	shaft,	with	increasing	temperature,	the	interference,	the	contact	pressure	and
the	load-carrying	capability	of	the	assembly	will	decrease.	Suppose	that	the	friction	coefficient
varies	in	the	interval	 ,	the	interference	at	room	temperature	varies	in	the	interval

	and	the	temperature	varies	in	the	interval	 .	Suppose	also	that	with
increasing	temperature,	the	coefficient	of	friction	monotonically	decreases.	If	for	a	particular
interference	(press	fit)	assembly,	an	elevated	temperature	is	combined	with	a	small	coefficient
of	friction	and	a	small	value	of	the	interference	 	at	a	room	temperature,	the	assembly	could
lose	its	capability	to	carry	the	prescribed	torque	and	axial	force.

In	the	cases	where	the	joint	distribution	describing	the	variation	of	the	design	parameters	is
known,	the	link	between	the	uncertainty	in	the	design	parameters	and	the	probability	of	a	faulty



assembly	due	to	unfavourable	combinations	of	parameter	values	can	be	investigated	by	a
Monte	Carlo	simulation.	In	the	press	fit	assembly	example,	the	probability	of	a	faulty	assembly
can	be	found	by	a	process	called	virtual	testing	(Todinov,	2009b).	This	is	essentially	a	Monte
Carlo	simulation	technique	for	transforming	the	uncertainty	associated	with	the	input
parameters	into	uncertainty	associated	with	the	product’s	performance.

The	simulation	involves	sampling	random	values	for	the	friction	coefficient,	the	interference
and	temperature.	After	each	sampling,	a	check	is	performed	whether	an	assembly	characterised
by	the	sampled	reliability-critical	parameters	can	transmit	the	required	loads	without	slippage.
The	ratio	of	the	number	of	simulations	resulting	in	a	faulty	assembly	and	the	total	number	of
simulations	gives	the	likelihood	of	a	faulty	assembly.

The	variation	of	many	design	parameters	may	not	have	an	effect	on	the	reliability	of	a	product.
The	virtual	testing	begins	with	establishing	which	design	parameters	affect	the	reliability	of
the	component/assembly.	These	are	the	reliability-critical	parameters.	In	addition,	the
selected	reliability-critical	parameters	must	be	associated	with	uncertainty.

The	algorithm	of	the	virtual	testing	method	can	be	generalised	for	an	arbitrary	number	of
reliability-critical	parameters	associated	with	uncertainty.	The	description	in	pseudocode	is
given	next:

Algorithm	9.4

x[n]:	

/*	Global	array	containing	the	current	values	of	the	n	reliability-

critical	design	

parameters	*/

Fault_counter	=	0;

For	i	=	1	to	Number_of_trials	do

	{

/*	Generate	the	ith	set	of	n	reliability-critical	parameters	by	

sampling	their	joint	distribution	and	placing	them	in	the	array	x[]	*/

Sample_all_reliability_critical_design_parameters;

/*	Check	whether	the	assembly	is	faulty	by	using	the	current	values	of	

the	reliability-critical	parameters	in	the	array	x[n].	For	a	particular	

combination	x[1],…,x[n]	of	values,	the	function	Is_faulty_assembly()	

returns	1	or	0	depending	on	whether	a	fault	is	present	or	not	*/

			Fault	=	Is_faulty_assembly();

			/*	If	a	faulty	assembly	is	present,	then	increment	the	failure	

counter	*/

			If	(Fault=1)	then	Fault_counter	=	Fault_counter	+	1;

		}

Probability_of_faulty_assembly	=	Fault_counter	/	Number_of_trials;



In	the	simulation	loop	controlled	by	the	variable	i,	the	procedure
Sample_all_reliability_critical_design_parameters()	is	called,	whose	purpose	is
to	generate	realisations	for	all	reliability-critical	design	parameters	by	sampling	their	joint
distribution.	If	the	reliability-critical	parameters	are	statistically	independent,	realisations	are
generated	by	a	sequential	sampling	of	their	individual	distributions.	After	obtaining	a	set	of
values	for	the	parameters	controlling	the	reliability	of	the	assembly,	the	function
Is_faulty_assembly()	is	called	to	perform	design	calculations	and	check	whether	the	set	of
values	for	the	reliability-critical	parameters	defines	a	faulty	assembly.	If	this	is	so,	the	fault
counter	is	incremented.	At	the	end	of	the	simulation	trials,	the	probability	of	a	faulty	assembly
is	obtained	as	a	ratio	of	the	number	of	simulated	faulty	assemblies	and	the	total	number	of
simulated	assemblies.

The	application	of	this	approach	will	be	illustrated	by	assessing	the	probability	that	an
assembly	of	the	type	in	Figure	9.2	will	exhibit	a	fault	during	operation.	The	reliability-critical
design	parameters	associated	with	uncertainty	are	the	diameters	d	and	D	of	components	A	and
B	at	room	temperature	and	the	working	temperature	t.	These	three	parameters	fully	determine
the	magnitude	of	the	diameter	clearance	 ,	whose	excessive	deviation	from	the	optimal	value	

	causes	failure.



Figure	9.2	(a)	Assembly	that	requires	(b)	an	optimal	value	for	the	diameter	clearance	

Suppose	that	the	diameters	 	and	 	at	temperature	 	follow	normal	distributions	with
means	 ,	 	and	standard	deviations	 ,	 .
The	optimal	diameter	clearance	of	the	assembly	is	 .	Suppose	that	if	the	diameter
clearance	falls	below	 ,	jamming	occurs	and	if	the	clearance	exceeds	

,	precision	of	operation	is	lost.	The	coefficient	of	thermal	linear	expansion	of
component	A	is	 	and	 	for	component	B.	The	working
temperature	of	the	assembly	can	be	anywhere	in	the	temperature	interval	 .
Consequently,	the	operating	temperature	t	is	assumed	to	be	uniformly	distributed	in	this
temperature	interval.

Since	the	reliability-critical	design	parameters	associated	with	uncertainty	are	statistically



independent,	sampling	from	their	joint	distribution	is	equivalent	to	a	sequential	sampling	from
their	individual	distributions.	The	outlined	Algorithm	9.4	transforms	into	the	following
algorithm:

Algorithm	9.5

Fault_counter	=	0;

for	i	=	1	to	Number_of_trials	do

	{

								d0	=	Sample_	diameter_comp_A();

								D0	=	Sample_	diameter_comp_B();

								t	=	Sample_temperature();

								 ;

								

								

								if	( 	or	 	)	then	Fault_counter	=	

Fault_counter+1;

	}

Probability_of_faulty_assembly	=	Fault_counter	/	Number_of_trials;

Initially,	instances	 	and	 	of	the	diameters	of	components	A	and	B	at	 	are
calculated,	by	sampling	their	individual	Gaussian	distributions,	according	to	the	methods
presented	in	Chapter	8.	Next,	a	uniformly	distributed	temperature	in	the	interval	(
≤	t	≤	 )	is	generated,	by	using	the	linear	transformation	 ,
where	u	is	a	random	number	uniformly	distributed	in	the	interval	(0,	1).	The	temperature
change	is	determined	from	 .	After	determining	the	thermal	expansions	

	and	 	of	the	diameters	at	temperature	t,	a	check	is	performed
whether	 	or	 .	If	any	of	these	inequalities	is	fulfilled,	the	assembly	is
faulty	and	the	fault	counter	is	incremented.	The	probability	of	a	faulty	assembly	for	the	given
set	of	input	data	has	been	calculated	by	implementing	the	outlined	algorithm.	The	empirical
probability	of	a	faulty	assembly	has	been	determined	to	be	11%,	obtained	on	the	basis	of	100 
000	simulation	trials.

Increasing	the	number	of	simulations	to	10	million	did	not	alter	this	result,	which	shows	that	a
very	good	convergence	of	the	simulation	results	is	present	at	the	selected	100 000	trials.

A	procedure	for	virtual	testing	can	be	incorporated	easily	in	an	optimisation	routine	to
determine	the	optimal	mean	values	of	the	design	parameters	which	yield	a	robust	design	–	a
design	characterised	by	the	least	sensitivity	to	variations	of	the	design	parameters.

Example



The	maximum	contact	pressure	 	in	the	case	of	two	contacting	spheres	with	radii	 	and
,	subjected	to	a	load	F,	is	given	by	the	expression

In	this	expression,	B	is	a	geometry	parameter	dependent	on	the	radii	 	and	 	of	spheres,
which	practically	does	not	vary.	The	material	parameters	are	the	Poisson’s	ratios	 	and	
for	the	two	spheres,	uniformly	distributed	in	the	intervals	 	and	

,	and	the	Young’s	moduli	 	and	 	for	the	two	spheres,	uniformly
distributed	in	the	intervals	 	and	 .	The	magnitude	of	the
load	F	follows	a	normal	distribution	with	mean	 	and	standard	deviation	 .

Describe	in	detail	the	steps	of	a	procedure	for	determining	the	likelihood	that	the
maximum	contact	pressure	 	will	exceed	a	critical	value	 .

Solution
1.	 Initialise	a	fault/failure	counter:	f_counter = 0.

2.	 Sample	the	material	parameters	by	using	uniformly	distributed	random	numbers	 ,	 ,	
	and	 ,	between	0	and	1:

3.	 Sample	the	loading	force	F	by	using	a	random	number	following	a	normal	distribution
with	mean	 	and	standard	deviation	 .

Generate	a	random	number	 	following	the	standard	normal	distribution	(see
Chapter	8	for	details):

Sample	the	loading	force	following	the	normal	distribution:



4.	 Check	by	substituting	the	sampled	parameter	values	in	the	formula,	whether	the
calculated	maximum	pressure	 	is	higher	than	the	critical	value	 ,	and	if	so,
increment	the	failure	counter:

if	 	then	f_counter = f_counter + 1;

5.	 Repeat	steps	2,	3	and	4	a	large	number	of	times	(N)	in	order	to	collect	a	sufficient
amount	of	statistical	information.

6.	 Divide	the	number	of	simulation	trials	where	the	calculated	maximum	contact	pressure
	has	been	larger	than	the	critical	value	 ,	to	the	total	number	of	trials,	in	order	to

estimate	the	probability	 	of	failure:

 

Virtual	testing	can	also	be	used	to	reveal	the	uncertainty	of	properties	and	reliability
of	materials.	Thus,	the	uncertainty	in	the	location	of	the	ductile-to-brittle	transition
region	of	multi-run	welds	is	strongly	dependent	on	the	number	of	test	temperatures,	the
choice	of	the	test	temperatures	and	the	variation	of	the	impact	energy	at	the	test
temperatures.	With	increasing	the	number	of	test	temperatures,	the	uncertainty
associated	with	the	location	of	the	ductile-to-brittle	transition	region	can	be	reduced
significantly.	The	virtual	testing	model	presented	in	(Todinov,	2004e)	has	an	important
application	in	determining	whether	a	shift	in	the	location	of	the	ductile-to-brittle
transition	region	in	steels	indicates	material	degradation	or	is	due	to	a	statistical
variation.

9.4	Optimal	Replacement	to	Minimise	the	Probability	of
a	System	Failure
This	application	features	a	specified	time	interval	(0,	a)	and	a	number	of	components	n	which
undergo	fast	wearout.	It	is	assumed	that	the	components	undergoing	fast	wearout	are	logically
arranged	in	series.	In	other	words,	random	failure	of	each	of	these	components	causes	a	system
failure.	A	single	spare	component	is	kept	for	each	of	the	working	components	undergoing	fast
wearout.	Sudden	system	failures	are	highly	undesirable	because	they	cause	sudden	and
uncontrolled	shutdown	which	is	dangerous	for	the	system,	and	the	recovery	of	the	system	is
associated	with	big	costs.	In	contrast,	controlled	replacement	of	any	of	the	working
components	with	a	spare	component	can	be	done	without	disrupting	the	work	of	the	system	and
any	associated	problems.

The	problem	is	to	find	the	optimal	replacement	times	for	the	components	which	minimise	the
probability	of	a	random	system	failure	within	the	specified	time	interval	(0,	a).



Because	each	components	can	be	replaced	at	any	time	during	the	time	interval	(0,	a),	any
possible	combination	of	replacement	times	for	the	components	can	be	represented	as	a	point	in
a	hypercube	domain	D	with	side	a.	For	n = 2	components,	for	example,	the	hypercube	domain
D	is	a	square	with	side	a	(Figure	9.3).

Figure	9.3	All	possible	combinations	of	replacement	times	for	two	components	can	be
represented	by	the	points	of	the	square	domain	D

For	a	specified	point	T	from	the	domain	D,	which	defines	the	replacement	times	for	the
components,	the	probability	of	sudden	system	failure	can	be	determined	by	using	the	following
observations:

The	replacement	times	are	always	within	the	time	interval	(0,	a).

A	costly	system	failure	occurs	if	the	time	to	failure	of	any	of	the	components	is	within	the



time	interval	0,	a.

A	costly	system	failure	also	occurs	if	after	a	replacement	of	a	component	within	the	time
interval	(0,	a),	the	replacement	component	fails	within	the	interval	(0,	a).

Suppose	that	the	replacement	times	of	all	components	have	been	specified	in	the	array
repl_time[].	The	algorithm	for	determining	the	probability	of	a	costly	system	failure	for	the
specified	replacement	times	is	given	next:

Algorithm	9.6

/*	The	replacement	times	for	all	components	are	specified	in	the	array	

repl_time[]	*/

function	Weibull_failure_time(m,eta)

{	/*	Returns	a	random	time	to	failure	sampled	from	a	Weibull	

distribution

with	parameters	m	(power)	and	eta	(characteristic	life)	*/}

function	prob_failure()

	{

		failure_count=0;

		for	i=1	to	num_trials	do

	{

			for	j=1	to	n	do

					{

						ttf[j]	=	Weibull_failure_time(m[j],	eta[j]);

						if	(	repl_time[j]	>=	ttf[j]	)	then	{	failure_count	=	

failure_count+1;	break;}

			else	{

								new_ttf[j]	=	Weibull_failure_time(m[j],	eta[j]);

								if	(new_ttf[j]	+	repl_time[j]	<	a)

																													then	{

																																		failure_count	=	failure_count+1;	

break;

																																		}

							}

				}

		}

				return	failure_count	/	n;

}

The	variable	‘failure_count’	counts	the	number	of	simulations	for	which	a	system	failure
occurs.	In	the	inner	loop	with	control	variable	‘j’,	for	each	component	‘j’,	a	time	to	failure
ttf[j]	is	generated	by	sampling	the	Weibull	distribution	with	parameters	m[j],	eta[j]	which
correspond	to	the	jth	component.	If	the	generated	time	to	failure	ttf[j]	is	smaller	than	the
selected	replacement	time	repl_time[j]	for	the	jth	component,	a	costly	system	failure	occurs,
the	failure	counter	is	incremented	and	the	j-loop	is	exited	immediately	with	the	statement
‘break’.	If	the	generated	failure	time	ttf[j]	is	larger	than	the	selected	replacement	time	for



the	jth	component,	a	replacement	of	the	failed	component	is	initiated.	To	determine	the	time	to
failure	new_ttf[j]	of	the	new	component	which	is	replacing	the	jth	component,	the	Weibull
distribution	is	sampled	again.	Next,	a	check	is	performed	whether	the	time	to	failure	of	the	new
component	plus	the	time	that	has	elapsed	until	replacement	is	smaller	than	the	length	of	the	time
interval	(0,	a).	If	this	is	so,	the	new	component	replacing	the	jth	component	will	fail	within	the
specified	time	interval	(0,	a).	In	this	case,	a	system	failure	will	occur;	the	failure	counter	is
incremented	and	the	j-loop	is	exited	immediately	with	the	statement	‘break’.

A	standard	method	for	a	global	optimisation	such	as	random	search,	tabu	search,	simulated
annealing,	particle	swarm	optimisation	and	genetic	algorithms	(Schneider	and	Kirkpatrick,
2006)	can	be	used	to	determine	the	replacement	times	repl_time[]	for	the	components,	which
correspond	to	the	smallest	value	for	the	probability	of	system	failure.	Details	about	the
implementation	of	a	standard	algorithm	for	global	optimisation	have	been	omitted.

Example

Given	is	an	operation	interval	with	length	 .	For	a	system	containing	two
components	with	times	to	failure	following	the	Weibull	distributions

and

the	procedure	for	global	optimisation	yielded	an	optimal	replacement	time	of	1.25	years
for	each	component.	The	probability	of	a	system	failure	within	2.5	years,	corresponding	to
these	replacement	times,	is	0.44.

Indeed,	because	of	the	strictly	increasing	hazard	rate	function	h(t)	characterizing	each
component,	it	can	be	shown	by	a	differentiation	that	a	replacement	at	x = a/2	at	half	of	the
operational	interval	minimizes	the	expected	number	of	failures

of	the	component	during	the	time	interval	(0,	a).	Consequently,	x   =   a / 2	maximises	the
probability	exp(–H(x))	of	surviving	the	operational	interval	(0,	a)	for	the	component.	By
induction,	it	can	be	proved	easily	that	if	n	spare	parts	are	available	for	each	component,
characterised	by	a	strictly	increasing	hazard	rate,	the	optimal	replacement	intervals	with	length



a / (n + 1)	maximise	the	probability	of	surviving	the	operational	time	interval	(0,	a)	for	each
components	and	for	the	system.



10	
Evaluating	the	Reliability	of	Complex	Systems	and
Virtual	Accelerated	Life	Testing	Using	Monte	Carlo
Simulation

10.1	Evaluating	the	Reliability	of	Complex	Systems
Reliability	networks	can	be	modelled	conveniently	by	graphs.	The	nodes	are	notional	and
perfectly	reliable,	while	the	components	are	represented	by	the	edges	of	the	graph.	Each
component	is	connected	to	exactly	two	nodes.

A	central	question	posed	for	reliability	networks	is	how	to	calculate	the	probability	of

surviving	a	particular	time	period	of	operation	a,	given	the	time	to	failure	distribution	 	of
each	component	(edge)	(i,	j).	The	answer	to	this	question	is	given	by	the	methods	for	system
reliability	analysis	discussed	in	the	reliability	literature.	There	exist	a	number	of	methods	for
system	reliability	analysis	oriented	mainly	towards	small-size	systems	or	systems	with	simple
topology.	Such	are,	for	example,	the	method	of	network	reduction	and	the	decomposition
method	(Hoyland	and	Rausand,	1994;	Ramakumar,	1993).	These	methods	have	serious
limitations.	For	example,	the	network	reduction	method	is	not	suitable	for	topologically
complex	systems,	while	the	decomposition	method	is	not	suitable	for	large	systems.

Methods	based	on	minimal	path	sets	and	minimal	cut	sets	are	also	very	common	(Billinton	and
Allan,	1992;	Hoyland	and	Rausand,	1994;	Kuo	et	al.,	2001;	Ramakumar,	1993).

A	path	is	a	set	of	components	which,	when	working,	connect	the	start	node	with	the	end	node	in
the	reliability	network	through	working	components,	thereby	guaranteeing	that	the	system	is	in
working	state.

A	minimal	path	is	a	path	from	which	no	component	can	be	removed	without	disconnecting	the
link	it	creates	between	the	start	node	and	the	end	node	in	the	reliability	network.	Consequently,
minimal	paths	are	free	of	loops.	In	other	words,	in	each	minimal	path,	a	particular	node	may
appear	only	once.

The	system	reliability	can	be	determined	as	the	probability	of	the	union	of	all	minimal	paths
through	the	inclusion–exclusion	expansion	expression	(Ebeling,	1997).

A	cut	set	is	a	set	of	components	whose	failures	cause	the	system	to	fail.	A	minimal	cut	set	is	a
cut	set	for	which	no	component	can	be	returned	in	working	state	without	returning	the	system
into	working	state.	The	probability	of	system	failure	is	determined	as	the	probability	of	the
union	of	all	minimal	cut	sets	in	the	system	through	the	inclusion–exclusion	expansion
expression	(Ebeling,	1997).

Both	the	minimal	paths	method	and	the	minimal	cut	set	method	require	all	paths	or	cut	sets	in



the	system	to	be	known	in	advance.

Finding	all	minimal	paths	or	cut	sets,	however,	is	an	NP-hard	problem	(Colbourn,	1987).

Although,	for	small-size	networks,	an	approach	based	on	minimal	paths	or	minimal	cut	sets	is
acceptable,	with	increasing	the	size	of	the	network,	the	number	of	minimal	paths	and	cut	sets
increases	exponentially,	and	this	approach	is	no	longer	feasible.	This	point	can	be	illustrated
immediately	with	the	example	in	Figure	10.1.	The	reliability	network	in	the	figure	has	
minimal	cut	sets	and	 	minimal	paths.	Even	for	the	moderate	 ,	the	storage	and
manipulation	of	the	minimal	paths	and	cut	sets	is	impossible.	As	a	result,	an	algorithm	based
on	determining	all	minimal	paths	or	cut	sets	is	very	inefficient	because	it	will	run	in
exponential	time.

Figure	10.1	An	example	of	a	reliability	network	where	the	number	of	minimal	paths	and
minimal	cut	sets	increases	exponentially	with	increasing	the	size	of	the	network

This	constitutes	the	main	drawback	of	methods	based	on	minimal	paths	and	minimal	cut	sets.
Although	they	work	well	for	small-size	systems,	for	moderately	large	and	large	systems,	they
are	not	feasible.

System	reliability,	however,	can	be	defined	as	a	‘probability	of	existence	of	a	path/connection
through	working	components	from	the	start	node	to	each	of	the	terminal	nodes	of	the	reliability
network,	at	the	end	of	the	specified	time	interval	of	operation’.	The	analysis	of	reliability
networks	can	be	simplified	by	noticing	that	reliability	of	complex	systems	can	simply	be
determined	as	probability	of	existence	of	a	connection	from	the	source	node	to	each	of	the
terminal	nodes	in	the	reliability	network,	at	the	end	of	the	specified	time	interval	(Todinov,
2006c,	2007).

According	to	the	discussions	in	Chapter	1,	a	valid	path	in	a	reliability	network	connecting	the
start	node	with	any	of	the	terminal	nodes	can	either	have	forward	edges	or	undirected	edges,
but	it	cannot	have	backward	edges.

The	probability	of	existence	of	a	valid	path	from	the	start	node	to	each	of	the	terminal	nodes	is
at	the	heart	of	the	Monte	Carlo	simulation	algorithm	for	determining	the	system	reliability.

The	next	algorithm	in	pseudocode	determines	the	reliability	of	a	complex	system	with	k
terminal	nodes:



Algorithm	10.1

function	paths_to_all_terminal_nodes();

function	real_random();

function	system_reliability();

{

  success_cnt=0;

  for	i=1	to	num_trials	do
 {

  for	j=1	to	m	do
     {
     tmp	=	real_random();

     if	(tmp	>	p[j])	then	mark	edge	j	as	failed;

	    }

 paths_exists	=	paths_to_all_terminal_nodes();

  if	(paths_exists=1)	then	success_cnt	=	success_cnt+1;
  Restore	the	failed	edges	in	the	network;
}

  return	success_cnt/num_trials;
}

The	array	p[]	contains	the	reliabilities	of	the	separate	edges,	which	are	equal	to	the
probabilities	that	the	separate	edges	will	be	in	working	state	at	the	end	of	a	specified	time

interval	with	length	a.	If	the	time	to	failure	distribution	of	the	ith	edge	is	given	by	 ,	then	

.

In	a	nested	loop	controlled	by	the	variable	‘j’,	the	state	of	the	separate	edges	(working/failed)
is	determined.	The	state	of	the	jth	edge	is	tested	by	generating	a	uniformly	distributed	random
number	between	0	and	1	from	the	statement	‘tmp = real_random()’	and	comparing	it	with	the
probability	p[j]	that	the	jth	edge	will	be	in	working	state.	The	number	of	edges	is	m.

All	reliabilities	 	(j = 1,	2,	…,	m)	characterising	the	edges	are	pre-calculated	and	stored	in
the	array	p[].	If	the	generated	random	number	‘tmp’,	uniformly	distributed	between	0	and	1,	is
greater	than	 ,	then	the	jth	edge	is	in	a	failed	state	and	is	marked	as	failed.	If	the	converse
is	true,	the	edge	remains	in	working	state.	A	failed	edge	no	longer	provides	connection
between	its	corresponding	nodes	and	is	essentially	excluded	from	the	reliability	network.

After	determining	the	state	of	all	edges,	the	function	paths_to_all_terminal_nodes()
establishes	whether	there	exist	connections	from	the	start	node	to	each	terminal	node.	The	ratio
of	the	number	of	trials	for	which	a	connection	from	the	start	node	to	each	of	the	terminal	nodes
exists	and	the	total	number	of	simulation	trials	is	an	estimate	of	the	reliability	of	the	system.	At
the	end	of	each	simulation	trial,	all	edges	marked	as	‘failed’	are	restored	as	working	edges.	A
failed	edge	which	has	been	restored	resumes	the	connection	between	the	corresponding	nodes



of	the	edge	and	is	essentially	included	in	the	reliability	network.

In	the	case	of	very	small	reliabilities	characterising	the	edges,	the	precision	of	the	presented
Monte	Carlo	crude	sampling	can	be	increased	by	applying	stratified	sampling	without
replacement.

Structures	for	efficient	representation	of	reliability	networks	and	algorithms	with	linear
running	time	for	determining	valid	paths	connecting	the	start	node	with	a	terminal	node	in
networks	have	been	discussed	in	detail	in	Todinov	(2007,	2013a).	The	detailed	algorithms	and
data	structures	related	to	representing	and	finding	paths	in	complex	reliability	networks	are
beyond	the	scope	of	this	book,	which	focuses	on	reliability	and	risk	models,	and	will	not	be
included	here.

10.2	Virtual	Accelerated	Life	Testing	of	Complex
Systems
10.2.1	Acceleration	Stresses	and	Their	Impact	on	the	Time	to	Failure
of	Components
The	environment	has	a	significant	impact	on	the	hazard	rates	and	the	times	to	failure	of
components.	The	impact	of	the	environment	is	manifested	through	the	acceleration	stress,
which	is	anything	that	leads	to	accumulation	of	damage	and	faster	wearout.	Examples	of
acceleration	stresses	are	the	temperature,	humidity,	vibration,	pressure,	voltage,	current,
concentration	of	particular	ions,	etc.	This	list	is	only	a	sample	of	possible	acceleration	stresses
and	can	be	extended	significantly.	Because	acceleration	stresses	lead	to	a	faster	wearout,	they
entail	a	higher	failure	rate	for	groups	of	components.	Components	affected	by	an	acceleration
stress	acting	as	a	common	cause	are	more	likely	to	fail,	which	reduces	the	overall	system
reliability.

A	typical	example	of	this	type	of	common	cause	failures	is	the	high	temperature,	which
increases	the	susceptibility	to	deterioration	of	electronic	components	or	mechanical
components	(e.g.	seals).	By	simultaneously	increasing	the	hazard	rates	of	the	affected
components,	deterioration	due	to	a	high	temperature	increases	the	probability	of	system	failure.
Humidity,	corrosion	or	vibrations	also	affect	all	exposed	components.

A	common	cause	failure	is	usually	due	to	a	single	cause	with	multiple	failure	effects	which	are
not	consequences	from	one	another	(Billinton	and	Allan,	1992).	Acceleration	stresses	acting	as
common	causes	increase	the	joint	probability	of	failure	for	groups	of	components	or	for	all
components	in	a	complex	system.	Even	in	blocks	with	a	high	level	of	built-in	redundancy,	in
case	of	a	common	cause,	all	redundant	components	in	the	block	can	fail	within	a	short	period
of	time,	and	the	advantage	from	the	built-in	redundancy	is	lost.

Failure	to	account	for	the	acceleration	stresses	acting	as	common	causes	usually	leads	to
optimistic	reliability	predictions	–	the	actual	reliability	is	smaller	than	the	predicted.

For	a	number	of	common	engineering	components,	accelerated	life	models	already	exist.	They



(10.1)

(10.2)

(10.3)

have	been	built	by	using	a	well-documented	methodology	(Kececioglu	and	Jacks,	1984;
Nelson,	2004;	Porter,	2004).

Building	an	accelerated	life	model	for	a	component	starts	with	the	time	to	failure	model	for	the
component.	The	time	to	failure	model	gives	the	distribution	of	the	time	to	failure	of	each
component	in	the	system	(Nelson,	2004;	Porter,	2004).	The	most	common	time	to	failure	model
is	the	Weibull	distribution

where	 	is	the	cumulative	distribution	of	the	time	to	failure	and	 	(shape	parameter)	and	
(characteristic	life/scale	parameter)	are	constants	determined	from	experimental	data.	This
model	is	commonly	used	in	the	case	where	the	hazard	rate	depends	on	the	age	of	the
component.

Another	common	time	to	failure	model	is	the	negative	exponential	distribution

where	 	is	the	cumulative	distribution	of	the	time	to	failure	and	MTTF	is	the	mean	time	to
failure.	The	negative	exponential	distribution	can	be	obtained	as	a	special	case	from	the
Weibull	distribution	for	 	and	is	used	in	cases	where	the	hazard	rate	characterising	the
component	does	not	practically	depend	on	its	age.

The	scale	parameter	 	in	the	Weibull	distribution	and	the	MTTF	in	the	negative	exponential
distribution	depend	on	the	acceleration	stresses	through	the	stress–life	relationships
(Kececioglu	and	Jacks,	1984;	Nelson,	2004;	Porter,	2004;	ReliaSoft,	2007).	When	the	stress–
life	dependence	is	substituted	in	Equations	10.1	and	10.2,	the	acceleration	time	to	failure
model	for	the	component	is	obtained.	The	acceleration	time	to	failure	model	gives	the	time	to
failure	model	at	particular	levels	of	the	acceleration	stresses.

10.2.2	Arrhenius	Stress–Life	Relationship	and	Arrhenius-Type
Acceleration	Life	Models
For	this	type	of	accelerated	life	model,	the	relationship	between	the	life	and	the	level	V	of	the
acceleration	stress	is

where	 	is	a	quantifiable	life	measure	and	C	and	B	are	constants	obtained	from
experimental	measurements.	The	Arrhenius	stress–life	relationship	is	appropriate	in	cases
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where	the	acceleration	stress	is	thermal,	for	example,	‘temperature’.	The	temperature	values
must	be	in	absolute	units	[K].

In	the	case	of	a	Weibull	time	to	failure	model,	 ,	where	 	is	the
characteristic	life	(scale	parameter)	calculated	in	years.	Substituting	this	in	the	Weibull	time	to
failure	model	(10.1)	yields	the	Arrhenius–Weibull	time	to	failure	accelerated	life	model:

10.2.3	Inverse	Power	Law	Relationship	and	Inverse	Power	Law-Type
Acceleration	Life	Models
The	relationship	between	the	life	of	the	component	and	the	level	V	of	the	acceleration	stress	is

where	 	is	a	quantifiable	life	measure;	K	and	n	are	constants	obtained	from	experimental
measurements.	The	inverse	power	law	(IPL)	stress–life	relationship	is	appropriate	for	non-
thermal	acceleration	stresses	like	‘load’,	‘pressure’	and	‘contact	stress’.	It	can	also	be	applied
in	cases	where	V	is	a	stress	range	or	even	in	cases	where	V	is	a	temperature	range	(in	case	of
fatigue	caused	by	thermal	cycling).

In	the	case	of	a	Weibull	time	to	failure	model,	the	life	measure	is	assumed	to	be	the
characteristic	life	 ,	where	 	is	the	characteristic	life	(scale	parameter).
Substituting	this	in	the	Weibull	time	to	failure	model	(10.1)	yields	the	IPL-Weibull	accelerated
life	model:

10.2.4	Eyring	Stress–Life	Relationship	and	Eyring-Type	Acceleration
Life	Models
The	relationship	between	the	life	and	the	acceleration	stress	level	V	is

where	 	is	a	quantifiable	life	measure;	A	and	B	are	constants	obtained	from	experimental
measurements.	Similar	to	the	Arrhenius	stress–life	relationship,	the	Eyring	stress–life
relationship	is	appropriate	in	the	case	of	thermal	acceleration	stresses.	However,	it	can	also
be	used	for	non-thermal	acceleration	stresses	such	as	humidity.	In	the	case	of	a	Weibull	time	to



(10.8)

failure	model,	 ,	where	 	is	the	characteristic	life	(scale
parameter,	calculated	in	years).	Substituting	this	in	the	Weibull	time	to	failure	model	(10.1)
yields	the	Eyring–Weibull	accelerated	life	model:

There	exist	also	stress–life	models	involving	simultaneously	two	acceleration	stresses,	for
example,	temperature	and	humidity	(ReliaSoft,	2007).	Such	are	the	temperature–humidity
(TH)	relationship	and	TH-type	acceleration	life	models	and	temperature–non-thermal
relationship	(T-NT)	and	T-NT-type	acceleration	life	models.

The	effect	of	the	acceleration	stresses	on	a	complex	system	can	be	revealed	if	an	accelerated
life	model	for	the	system	is	built	from	the	accelerated	life	models	of	its	components	(Todinov,
2011).	Apart	from	revealing	the	impact	of	the	acceleration	stresses	on	system’s	performance,
building	an	accelerated	life	model	for	a	complex	system	has	another	significant	advantage.
During	life	testing	of	complex	systems,	estimating	the	system	reliability	under	normal	operating
conditions	requires	special	test	rigs	and	a	large	amount	of	time	and	resources	and	can	be	a
very	complex	and	expensive	task.	This	task,	however,	does	not	have	to	be	addressed	if	a
method	is	developed	for	building	an	accelerated	life	model	of	a	complex	system	from	the
accelerated	life	models	of	its	components.	Deriving	the	time	to	failure	distribution	of	the
complex	system	under	normal	operating	conditions	from	the	accelerated	life	models	of	its
components	will	be	referred	to	as	‘virtual	accelerated	life	testing	of	a	complex	system’.	The
significant	advantages	of	the	virtual	accelerated	life	testing	can	be	summarised	as	follows:

The	virtual	accelerated	life	testing	does	not	require	building	test	rigs	for	the	various
engineering	systems,	which	is	an	expensive	and	difficult	task.	In	cases	of	very	large
systems,	building	such	test	rigs	is	impossible.

The	virtual	accelerated	life	testing	reduces	drastically	the	amount	of	time	and	resources
needed	for	accelerated	life	testing	of	complex	engineering	systems.

The	virtual	accelerated	life	testing	permits	testing	a	large	variety	of	systems	built	with
components	whose	accelerated	life	models	are	known.

The	virtual	accelerated	life	testing	offers	big	flexibility	in	specifying	various	levels	for	the
acceleration	stresses.	An	efficient	algorithm	and	software	tool	for	building	an	accelerated	life
model	of	a	complex	system	from	the	accelerated	life	models	of	its	components	has	been
proposed	in	Todinov	(2011).	The	software	tool	has	the	capability	of	extrapolating	the	system’s
life	under	normal	operating	conditions.

The	reliability	network	in	Figure	10.2	corresponds	to	the	dual	power	supply	system	from
Figure	1.15b	from	Chapter	1.	Each	of	the	electromechanical	devices	(marked	by	circles	with
numbers	12–15)	receives	power	from	two	channels,	only	one	of	which	is	sufficient	to	maintain
the	device	working.	A	system	failure	occurs	if	an	electromechanical	device	fails	or	if	both
power	channels	have	been	lost	because	of	failures	of	components	along	the	paths	of	the	power



channels.

Figure	10.2	Reliability	network	of	the	dual	control	system	from	Figure	1.17

The	reliability	network	has	been	modelled	by	a	set	of	nodes	(the	filled	small	circles	in	Figure
10.2	numbered	from	n1	to	n12)	and	components	(1,	2,	3,	…,	15)	connecting	them.	The	system
works	only	if	there	exist	paths	through	working	components	between	the	start	node	‘n1’	and



each	of	the	end	(terminal)	nodes	marked	by	n9,	n10,	n11	and	n12.

As	a	result,	the	reliability	network	in	Figure	10.2	can	be	modelled	conveniently	by	undirected
graph.	The	nodes	are	the	vertices	and	the	components	that	connect	the	nodes	are	the	edges	of
the	graph.	Details	regarding	coding	the	network	topology	and	algorithms	for	determining	valid
paths	from	the	start	node	to	each	of	the	terminal	nodes	can	be	found	in	Todinov	(2011,	2013a).

Non-existence	of	a	path	to	even	a	single	terminal	node	indicates	a	system	failure.	The
reliability	of	the	system,	associated	with	a	specified	time	interval	‘a’	is	calculated	by	counting
in	the	simulation	loop	the	number	of	trials	for	which	the	system	failure	has	not	occurred	during
the	specified	time	interval	(0,	a)	and	dividing	this	number	to	the	total	number	of	simulation
trials.	At	the	end	of	the	simulations,	the	times	to	failure	of	the	system	are	sorted	in	ascending
order.



Example

The	test	example	which	illustrates	the	algorithm	is	based	on	the	dual	power	supply	system
in	Figure	10.2.	Component	1	(Figure	10.2)	is	characterised	by	Arrhenius	stress–life
model	(10.3)	where	the	acceleration	stress	is	temperature,	set	at	a	level	 	(see
Eq.	(10.3)),	and	the	constants	in	the	equation	are	 	and	 .	Components	2	and
3	are	also	characterised	by	Arrhenius	stress–life	models	with	constants	 	and	

,	where	the	acceleration	stress	is	temperature	set	also	at	a	level	 .

Components	4–11	in	Figure	10.2	are	characterised	by	Eyring	stress–life	relationship
(10.7)	with	constants	 	and	 ,	where	the	acceleration	stress	is	temperature,
set	at	a	level	 .	Finally,	components	12–15	in	Figure	10.2	are	characterised	by
inverse	power	law	stress–life	relationship	(10.5)	with	constants	 	and	 ,
where	the	acceleration	stress	is	‘pressure’,	set	at	a	level	 .

All	components	are	characterised	by	negative	exponential	time	to	failure	distribution.	The
duration	of	the	time	interval	for	which	reliability	has	been	calculated	was	 .
The	execution	of	the	programme	yielded	system	reliability	equal	to	0.162.

The	computational	speed	is	very	high;	100 000	simulations	have	been	performed	within
1.03	seconds	on	a	laptop	with	processor	Intel(R)	T7200	@	2.00 GHz.

The	distribution	of	the	times	to	failure	for	the	system	in	Figure	10.2	is	shown	in	Figure
10.3	(the	curve	corresponding	to	elevated	levels	of	the	acceleration	stresses).	Finally,	an
extrapolation	of	the	time	to	failure	of	the	system	under	normal	conditions	has	been	made.
This	constitutes	the	main	advantage	of	the	developed	software	tool:	estimating	the
reliability	of	a	complex	system	working	in	normal	conditions	without	allocating	time
and	resources	for	real	testing.	The	normal	conditions	correspond	to	a	temperature	293 K
(room	temperature)	and	pressure	of	1 MPa.	The	distribution	of	the	times	to	failure	for	the
system	in	Figure	10.2	under	normal	operating	conditions	is	shown	in	Figure	10.3.

The	execution	of	the	programme	yielded	system	reliability	equal	to	0.634.



Example

Here	is	a	simple	example	based	on	the	reliability	network	from	Figure	10.2	revealing	the
effect	of	the	temperature	acting	as	a	common	cause	acceleration	stress.	All	components
with	indices	1–11	have	been	assumed	to	be	identical,	characterised	by	the	Arrhenius–
Weibull	distribution	of	the	time	to	failure	(10.4),	where	 ,	C = 2,	 .	The	time
to	failure	of	components	12–15	has	been	assumed	to	be	the	negative	exponential
distribution,	with	MTTF = 60	years.

System	failure	occurs	when	both	control	channels	to	any	of	the	components	12–15	are	lost
or	when	any	of	components	12–15	fail.	For	an	acceleration	stress	 ,	the
simulation	yielded	 	probability	that	the	system	from	Figure	10.3	will	survive	4
years	of	continuous	operation	without	failure.	If,	however,	the	acceleration	stress	(the
temperature)	is	raised	to	 ,	the	simulation	yields	only	Rs = 0.1	probability	that	the
system	will	survive	4	years	of	continuous	operation	without	failure.

Another	advantage	of	the	developed	approach	consists	of	the	circumstance	that	it	reveals
easily	the	impact	of	acceleration	stresses	acting	as	common	causes	in	the	case	of
topologically	complex	systems	where	no	simple	analytical	solution	for	the	system
reliability	exists.



Figure	10.3	Distribution	of	the	times	to	failure	for	the	system	in	Figure	10.2



11	
Generic	Principles	for	Reducing	Technical	Risk
A	systematic	classification	of	generic	principles	for	reducing	technical	risk	is	crucial	to	safe
operation,	developing	robust	and	reliable	engineering	designs,	reliable	software	and	high
levels	of	safety,	yet	this	topic	has	largely	been	overlooked	in	the	reliability	and	risk	literature.
There	is	even	a	view	among	reliability	practitioners	that	the	principal	ways	of	improving
reliability	of	a	system	are	either	by	improving	the	reliability	of	the	components/systems	or	by
providing	redundancy.	Equally	unbalanced	is	the	belief	that	only	developing	physics	of	failure
models	can	deliver	a	real	reliability	improvement.	This	view	has	been	fuelled	by	the	failure	of
some	statistical	models	to	predict	correctly	the	life	of	components	and	by	the	lack	of	failure
data	to	populate	statistical	models.	Another	widespread	erroneous	view	is	that	the	quality	and
utility	of	reliability	models	depend	strongly	on	availability	of	failure	data.	In	Todinov	(2009a),
it	was	demonstrated	that	this	view	is	incorrect.	Comparative	statistical	models	can	deliver	real
reliability	improvement	even	in	the	absence	of	any	failure	data.	A	limited	and	equally
damaging	is	the	pure	statistical	approach,	which	disregards	the	physical	principles	controlling
the	operation	and	failure	of	engineering	systems	and	components.	As	can	be	seen	from	the
compiled	principles	in	this	chapter,	many	of	the	formulated	principles	are	not	routed	in	the
reliability	theory	and	statistics.	The	statistical	modelling	is	just	one	of	the	possible	approaches
to	reliability	improvement	and	risk	reduction.	These	extreme	views	are	an	example	of
unnecessary	self-imposed	constraints.	Increasing	reliability	can	be	achieved	by	using
principles	which	range	from	pure	statistical	modelling	to	pure	physics	of	failure	modelling
underpinning	reliable	operation	and	failure.

Some	of	the	work	on	improving	the	reliability	of	engineering	systems	has	already	been	done.
By	distilling	already	existing	approaches	to	a	wide	variety	of	reliability	problems	and
formulating	new	approaches,	the	intention	is	to	provide	the	much	needed	support	for	design
engineers	in	their	constant	efforts	for	technical	risk	reduction.

The	struggle	between	the	need	of	increasing	efficiency	and	reducing	the	weight	of	components
and	systems	and	reliability	is	a	constant	source	of	technical	and	physical	contradictions.
Hence,	it	is	no	surprise	that	some	of	the	principles	like	altering	the	shape	of	components	or
separation	sound	similar	to	some	of	the	inventive	principles	for	resolving	technical
contradictions	formulated	by	Altshuller	in	the	development	of	TRIZ	methodology	for	inventive
problem	solving	(Altshuller,	1984,	1996,	1999).	Eliminating	harmful	factors	and	influences	is
the	purpose	of	many	inventions,	and	Altshuller’s	TRIZ	system	identified	a	number	of	useful
design	principles	closely	related	to	eliminating	harm.

Many	of	the	formulated	principles	in	this	chapter	however	are	routed	in	probabilistic
arguments,	reliability	and	risk	theory	and	cannot	be	deduced	from	the	general	inventive
principles	formulated	in	TRIZ,	which	serve	as	a	general	guide	in	developing	inventive
solutions,	as	an	alternative	to	the	trial-and-error	approach.	The	first	principle,	for	example,



stating	that	the	reliability	built-in	system	should	be	proportional	to	its	cost	of	failure	is	routed
in	the	risk	theory	(Todinov,	2006b).	Similarly,	the	principle	‘reliability	and	risk	modelling
and	optimisation’	requires	knowledge	of	reliability	and	risk	theory	in	order	to	apply	it	and
comprehend	why	it	works.	Contrary	to	what	some	authors	stated,	optimisation	is	not
necessarily	about	finding	a	compromise	between	several	parameters	to	maximise	a	particular
system	output.	One	of	the	sections	features	optimisation	reducing	the	transportation	costs	by
removing	parasitic	flow	loops	from	networks.	In	this	case,	optimisation	is	based	on	a	new
phenomenon	and	is	not	done	by	finding	a	compromise	between	several	controlling	parameters
characterising	a	selected	design.

Some	principles	rely	on	very	specific	concepts	like	‘robust	and	fault-tolerant	design’	with
reduced	sensitivity	to	the	variation	of	reliability-critical	design	parameters.	Some	principles
are	rooted	in	the	logic	of	operation	of	devices	and	the	logic	of	execution	of	operations	(‘failure
prevention	interlocks’);	other	principles	rely	on	specific	systematic	methods	for	discovery	and
elimination	of	failure	modes.

The	systematic	formulation	and	classification	of	the	generic	principles	for	technical	risk
reduction	were	started	in	Todinov	(2007).	The	principles	for	reducing	the	risk	of	failure	have
been	broadly	divided	into	(i)	preventive,	reducing	mainly	the	likelihood	of	failure;	(ii)	dual,
oriented	towards	reducing	both	the	likelihood	of	failures	and	the	consequences	from	failure;
and	(iii)	protective,	predominantly	reducing	the	consequences	from	failure.	While	protective
principles	reduce	the	consequences	from	failure,	preventive	principles	exclude	failures
altogether	or	reduce	the	possibility	of	their	occurrence.	The	classification	presented	in	this
chapter	follows	the	broad	classification	from	Todinov	(2007),	but	the	principles	have	been
updated	and	a	significant	number	of	new	principles	have	been	formulated	(Todinov	2015).

The	set	of	principles	for	reducing	technical	risk	aims	to	suggest	efficient	methods	for	reducing
technical	risk.	Prevention	is	certainly	better	than	cure;	hence,	preventive	principles	received	a
significant	emphasis.	The	first	principle,	based	on	the	cost	of	system	failure,	should	be	used
frequently	in	cases	where	the	financial	impact	of	failure	is	big:	in	cases	where	failure	leads	to
human	fatalities,	damage	to	the	infrastructure	and	the	environment	or	huge	financial	losses.
However,	if	failure	is	caused	by	random	factors	completely	beyond	the	control	of	the	designer
or	if	the	source	of	failure	has	not	been	understood,	protective	principles	should	be	preferred,
which	limit	the	extent	of	damage.	Protective	measures	are	to	be	preferred	also	if	the	reliability
of	the	products	is	inherently	low.

The	diverse	list	of	principles	prompts	research	scientists	and	engineers–designers	not	to	limit
themselves	within	few	common	familiar	ways	of	improving	reliability	and	reducing	risk	which
often	lead	to	solutions	which	are	far	from	optimal.	Using	appropriate	combinations	of	diverse
principles	often	brings	a	considerably	larger	effect.	The	listed	principles	are	very	generic,	and
most	of	them	can	be	developed	further,	depending	on	the	specific	application	area.	Thus,	the
principle	of	‘thermal	design’	standing	for	neutralising	the	negative	effects	of	temperature	in
mechanical	and	electrical	devices	can	be	further	developed,	for	example,	in	the	specific	area
of	reducing	the	thermal	stresses.	As	a	result,	a	number	of	more	specific	principles	and
techniques	can	be	developed,	relevant	to	reducing	the	thermal	stresses	only.



The	outlined	key	principles	for	reducing	the	risk	of	failure	can	be	applied	with	success	not
only	in	engineering	but	in	diverse	areas	of	human	activity.

For	example,	the	risk	reduction	principles:

Reducing	the	likelihood	of	unfavourable	combinations	of	risk-critical	random	variables,
Discovering	and	eliminating	a	common	cause,
Reducing	the	time	of	exposure	or	the	space	of	exposure,
Segmentation,
Designing	deliberate	weak	links,
Self-reinforcement,
Failure	prevention	interlocks,

are	universal	principles	for	reducing	technical	risk	which	can	be	borrowed	and	applied	in
diverse	areas	of	the	human	activity,	for	example,	in	environmental	sciences,	financial
engineering,	economics,	medicine,	etc.

11.1	Preventive	Principles:	Reducing	Mainly	the
Likelihood	of	Failure
11.1.1	Building	in	High	Reliability	in	Processes,	Components	and
Systems	with	Large	Failure	Consequences
The	underlying	principle	of	the	risk-based	design	is	that	a	process,	component	or	a	system
whose	failure	is	associated	with	large	losses	should	have	a	proportionally	high	built-in
reliability	(Todinov,	2006c).	Processes,	components	and	systems	should	always	be	designed
considering	the	consequences	of	their	failure.	Failure	of	the	cement	used	for	sealing	an	oil
production	subsea	well	for	example,	causes	catastrophic	pollution	of	the	environment.
Consequently,	the	cement	seal	should	have	a	proportionately	high	built-in	reliability.	Setting
reliability	requirements	to	processes,	components	and	systems	with	large	failure	consequences
is	an	important	mechanism	of	reducing	risk.	Components,	processes	and	operations	used	in
safety-critical	applications	should	be	with	higher	reliability	compared	to	analogous
components	used	in	non-critical	systems.

According	to	this	principle,	no	cost	savings	should	be	made	on	components,	processes	and
systems	without	first	analysing	the	potential	impact	of	these	savings	on	the	reliability	and
safety	of	the	overall	system.	Thus,	a	cost	saving	on	the	material	of	a	particular	component
could	cause	huge	losses	related	to	cleaning	up	polluted	environment,	human	fatalities,	damage
to	health,	damaged	infrastructure	and	financial	losses.

In	manufacturing,	cost	saving	on	quality	materials	has	been	responsible	for	big	losses	related
to	scraped	defective	production	or	expensive	system	failures.	Thus,	ordering	cheap	spring	rods
characterised	by	a	substantial	number	of	oxide	and	sulphide	inclusions	will	save	the	spring
company	substantial	amount	of	funds	on	materials.	At	the	same	time,	this	strategy	will
compromise	the	fatigue	strength	of	the	produced	suspension	springs	and	will	lead	to	a	loss	of



market	share,	loss	of	customers	and	ultimately	to	a	loss	of	business	for	the	company.

This	principle	can	also	be	illustrated	with	production	systems	with	hierarchy	(Figure	11.1).

Figure	11.1	A	production	system	with	hierarchy	based	on	six	production	sources

In	the	production	system	from	Figure	11.1,	there	are	six	sources	of	production	(generators,	oil
and	gas	wells,	pumps,	etc.)	supplying	commodity	(electricity,	oil,	gas	and	water)	to	a



destination	t.	Despite	that	components	C2	and	C3	may	be	identical,	failure	of	component	C3
causes	loss	of	production	from	source	s6	only,	while	the	failure	of	component	C2	causes	loss	of
production	from	five	sources	(s1–s5).	The	reliability	level	of	component	C2	should	be	larger
than	the	reliability	level	of	component	C3.

The	higher	the	component	in	the	hierarchy,	the	more	production	units	will	be	affected	by	its
failure,	the	higher	the	reliability	level	of	the	component	should	be.

11.1.2	Simplifying	at	a	System	and	Component	Level
Simplifying	systems	and	components	can	be	done	in	various	ways:	reducing	the	number	of
components,	simplifying	their	shape,	simplifying	their	function,	reducing	the	number	of
functions	carried	out,	etc.

Reducing	the	number	of	components	is	an	important	way	of	increasing	the	reliability	of	a
system.	The	larger	the	number	of	components	in	a	system,	the	more	possibilities	for	failures
exist,	the	lower	is	the	reliability	of	the	system.	Indeed,	the	reliability	of	a	system	composed	of
n	components	arranged	in	series	is	 .	If	a	number	of	components	are
removed,	the	reliability	of	the	initial	system	can	be	presented	as	 	where	R′	is	the
reliability	of	the	simplified	system	and	Rr	is	the	product	of	reliabilities	of	the	removed
components.	Since	the	product	of	the	reliabilities	of	removed	components	is	a	number	smaller
than	unity,	for	the	reliability	R′	of	the	simplified	system,	 	holds.	In	words,	the
simpler	system	has	a	larger	reliability.

A	powerful	way	of	improving	the	system	reliability	is	by	simplifying	the	system	through
eliminating	components	whose	failure	modes	cause	system	failures.	Often,	the	functions	of	the
eliminated	components	can	be	transferred	(integrated)	into	other	components	without
compromising	their	reliability	and	the	reliability	of	the	system.	Furthermore,	the	available
resources	in	the	environment	or	in	the	system	can	often	be	used	to	substitute	the	functions	of	the
removed	component.

Removing	components	provides	the	added	benefits	of	(i)	reducing	the	weight	of	the	system,	(ii)
reducing	the	cost	of	the	system	and	(iii)	removing	failure	modes	associated	with	the	removed
components.

A	typical	example	of	simplifying	at	a	system	level	is	the	simplification	of	logic	circuits	in
digital	electronic	systems.	The	simplification	reduces	the	number	of	components	in	the	system
and	increases	its	reliability.

Complex	designs	are	often	associated	with	difficult	maintenance	and	small	reliability	due	to
the	large	number	of	interactions	between	components	which	are	a	constant	source	of	faults	and
failures.

A	typical	example	of	simplifying	at	a	component	level	is	the	simplification	of	component’s
geometry	which	results	in	a	larger	load-carrying	capacity	and	enhanced	reliability.	Simplifying
the	shape	of	components	and	interfaces	aids	manufacturing,	creates	fewer	possibilities	for



manufacturing	faults,	reduces	the	number	of	regions	with	stress	intensification	and	improves
the	load-carrying	capacity	of	the	components	by	a	better	distribution	of	the	loading	stresses	in
the	volume	of	the	components.

Often,	physical	phenomena	can	be	used	to	eliminate	the	introduction	of	complex	control
systems.	If	a	ferrite	is	designed	with	a	Curie	temperature	of	0°C,	it	will	be	magnetic	below	the
water	freezing	temperature	and	diamagnetic	above	this.	This	property	can	be	used	for	heating
electrical	distribution	lines	to	prevent	failures	caused	by	the	formation	of	ice	at	sub-zero
temperatures	(Altshuller,	1984).	As	a	result,	reliance	on	the	Curie	transition	temperature
eliminates	the	need	of	introducing	a	complex	control	system,	simplifies	the	design	of	the
heating	system	and	improves	reliability.

Another	way	of	simplifying	components	is	to	simplify	their	functions	which	also	improves
their	reliability.	Reducing	the	number	of	functions	reduces	the	number	of	possible	failure
modes.	The	failure	modes	characterising	a	particular	component	are	logically	arranged	in
series	(activating	any	failure	mode	causes	the	component	to	fail),	and	the	effect	from	reducing
the	number	of	functions	is	similar	to	the	effect	from	reducing	the	number	of	components	in	a
system.

11.1.2.1	Reducing	the	Number	of	Moving	Parts
An	essential	part	of	simplifying	at	a	component	and	system	level	is	the	reduction	of	the	number
of	moving	parts.	Moving	parts	exhibit	more	failures	compared	to	stationary	parts.	This	is
usually	due	to	the	increased	kinetic	energy,	wear,	fatigue,	vibration,	heat	generation	and
erosion	associated	with	moving	parts.	The	increased	kinetics	energy	of	moving	parts	(e.g.
impellers,	fans,	turbines,	etc.)	makes	them	prone	to	overstress	failures	if	their	motion	is
suddenly	restricted	due	to	lodged	foreign	objects.	Moving	parts	are	also	associated	with	large
inertia	forces	which	cause	pulsating	loading	and	increased	fatigue.	If	out-of-balance	forces	are
present	in	the	rotating	parts	and	excitation	frequencies	are	reached,	the	resonance	amplitudes
are	a	frequent	cause	of	failure	(Collins,	2003).

Vibration	is	always	associated	with	moving	parts	and	promotes	fast	wearout	and	fretting
fatigue.	Moving	parts	are	sensitive	to	tolerance	faults	because	they	require	more	precise
alignment.	The	friction	and	heat	generated	by	moving	parts,	require	lubrication	and	cooling
which	make	moving	parts	also	sensitive	to	faults	associated	with	the	lubrication	or	cooling
system.	As	a	result,	reducing	the	number	of	moving	parts	is	an	efficient	way	of	improving	the
reliability	of	a	system.

11.1.3	Root	Cause	Failure	Analysis
The	root	cause	analysis	is	a	solid	basis	for	reducing	the	hazard	rate	and	for	a	substantial
reliability	improvement.	Knowledge	regarding	the	circumstances	and	processes	which
contribute	to	the	failure	events	is	the	starting	point	for	reducing	the	hazard	rate	and	for	a	real
reliability	improvement.	The	main	purpose	of	the	root	cause	analysis	is	to	identify	the	factors
promoting	the	failure	modes	and	determine	whether	related	factors	are	present	in	other	parts	of
the	system.



Identifying	the	root	causes	initiates	a	process	of	preventing	the	failure	mode	from	occurring	by
appropriate	modifications	of	the	design,	the	manufacturing	process	or	the	operating
procedures.

A	typical	example	of	reducing	the	hazard	rate	by	a	root	cause	analysis	can	be	given	with	hot-
coiled	Si–Mn	suspension	springs	suffering	from	premature	fatigue	failure.	Typically,
automotive	suspension	springs	are	manufactured	by	hot	winding.	The	cut-to-length	cold-drawn
spring	rods	are	austenitised,	wound	into	springs,	quenched	and	tempered.	This	is	followed	by
warm	pre-setting,	shot	peening,	cold	pre-setting	and	painting	(Heitmann	et	al.,	1996).

The	initial	step	of	the	analysis	is	conducting	rig	tests	inducing	fatigue	failures	to	a	large	batch
of	suspension	springs	under	various	conditions.	Fracture	surfaces	are	then	preserved,	and
scanning	electron	microscopy	is	used	to	investigate	the	fatigue	crack	initiation	sites.	If	large
size	inclusions	are	discovered	at	the	fatigue	crack	origin,	a	possible	hazard	rate	reduction
measure	would	involve	changing	to	a	supplier	of	cleaner	spring	steel.

Optical	metallography	of	the	failed	springs	must	also	be	made	in	order	to	make	sure	that	there
is	no	excessive	decarburisation.	If	the	depth	of	the	decarburised	layer	is	significant,	its	fatigue
resistance	is	low	and	care	must	be	taken	to	control	the	carbon	potential	of	the	furnace
atmosphere	in	order	to	avoid	excessive	decarburisation.	Alternatively,	the	chemical
composition	of	the	steel	can	be	altered	by	micro-alloying	in	order	to	make	it	less	susceptible	to
decarburisation.	The	grain	size	at	the	surface	of	the	spring	wire	must	also	be	examined	because
microstructures	with	excessively	large	grain	size	are	characterised	by	a	reduced	toughness	and
fatigue	resistance.	Correspondingly,	the	austenitisation	temperature	and	the	duration	of	the
austenitisation	process	must	guarantee	that	the	grain	size	remains	relatively	small.

The	spring	surface	after	quenching	must	also	be	examined	in	order	to	make	sure	that	there	are
no	micro-cracks.	Tempering	must	guarantee	an	optimal	hardness	and	yield	strength	which
maximise	the	fatigue	life.	Finally,	after	shot	peening,	the	residual	stresses	at	the	surface	of	the
spring	wire	should	be	measured	(e.g.	by	an	X-ray	diffractometer	(Cullity,	1978))	to	make	sure
that	they	are	of	sufficient	magnitude	and	uniformly	distributed	over	the	circumference	of	the
spring	wire.	If,	for	example,	the	residual	stresses	are	highly	non-uniform	or	of	small
magnitude,	they	would	offer	little	resistance	against	fatigue	crack	initiation	and	propagation.
Changes	in	the	shot	peening	process	must	be	implemented	in	this	case	to	guarantee	a	sufficient
magnitude	and	uniformity	of	the	residual	stresses.

11.1.4	Identifying	and	Removing	Potential	Failure	Modes
The	risk	of	failure	is	reduced	by	removing	potential	failure	modes,	and	the	design	for
reliability	is	largely	about	preventing	failure	modes	from	occurring	during	the	specified
lifetime	of	the	product.

Techniques	used	for	identifying	potential	failure	modes	have	been	covered	in	detail	in	Chapter
1.	These	ensure	that	as	many	as	possible	potential	failure	modes	have	been	identified	and	their
effect	on	the	system	performance	assessed.	The	objective	is	to	identify	critical	areas	where
design	modifications	can	reduce	the	probability	of	failure	or	the	consequences	of	failure.	In



this	way,	potential	failure	modes	and	weak	spots	which	need	attention	are	highlighted,	and	the
limited	resources	for	reliability	improvement	are	focused	there.

11.1.5	Mitigating	the	Harmful	Effect	of	the	Environment
The	environment	is	a	major	source	of	acceleration	stresses	which	lead	to	accumulation	of
damage,	faster	wearout	and	a	significant	increase	of	the	hazard	rates	of	components.	A	typical
acceleration	stress	is	the	high	temperature	which	increases	the	susceptibility	to	deterioration
and	increases	significantly	the	hazard	rates	of	the	affected	components.	Humidity,	corrosion	or
vibrations	also	increase	the	hazard	rates	of	the	affected	components.	Failure	to	account	for	the
negative	impact	of	the	operating	environment	usually	leads	to	optimistic	reliability	predictions
–	the	actual	reliability	is	smaller	than	the	predicted.

Reducing	the	harmful	effect	of	the	environment	can	be	done	(i)	by	improving	the	resistance
against	the	harmful	effect,	(ii)	by	modifying	the	environment	in	order	to	reduce	its	harmful
effect	and	(iii)	by	replacing	it	with	inert	environment.

Modifying	the	design	is	often	used	to	reduce	the	magnitude	of	a	particular	acceleration	stress
generated	by	the	environment.	The	circuit	boards	in	Figure	11.2a	and	b	contain	identical
components,	yet	the	reliability	of	circuit	board	(b)	is	higher	because	of	the	two	additional
screws	which	reduce	the	amplitude	of	the	vibrations	for	design	(b)	and	the	hazard	rates	of	the
affected	components	(Jais	et	al.,	2013).

Figure	11.2	(a)	Lack	of	mitigation	and	(b)	mitigation	against	the	acceleration	stress
‘vibrations’

Arc	welding	shielded	by	an	inert	gas	atmosphere	such	as	argon	or	carbon	dioxide	is	an
example	of	reducing	the	negative	impact	of	oxygen	and	improving	the	reliability	of	welds.	This
principle	is	used,	for	example,	in	metal	inert	gas	(MIG)	and	tungsten	inert	gas	(TIG)	welding
techniques.	Another	example	is	hermetic	or	plastic	encapsulated	integrated	electronic	circuits
to	protect	them	from	the	harmful	action	of	humidity.

Cavitation	is	generation	of	cavity	bubbles	in	liquids	by	rapid	pressure	changes.	When	the
cavity	bubbles	implode	close	to	a	metal	surface,	they	cause	pitting	erosion.	Typical	spots	of
cavitation	damage	are	suction	pipes	of	pumps	and	impellers,	narrow	flow	spaces	and	sudden
changes	in	the	flow	direction	(bends,	pipe	tees)	which	cause	turbulence.



This	type	of	acceleration	stress	from	the	environment	can	be	avoided	by	designing	the	flow
paths	in	such	a	way	that	sharp	pressure	drops	are	avoided	(especially	below	the	atmospheric
pressure).	This	can	be	achieved	by	designs	guaranteeing	a	multistage	pressure	drop.
Avoidance	of	turbulence	by	streamlining	the	flaw	is	an	important	measure	decreasing
cavitation.

Alternatively,	the	flow	paths	can	be	designed	in	such	a	way	that	the	cavitation	bubbles	implode
in	the	fluid	but	not	next	to	the	metal	surface.	As	a	result,	cavitation	is	still	present	but	the	metal
surfaces	are	not	affected.	The	susceptibility	to	cavitation	damage	can	be	reduced	by	using
cavitation-resistant	materials,	welded	overlay	of	metals,	sprayed	metal	coatings	or	elastomeric
coatings.

Corrosion	is	a	name	for	the	degradation	of	mechanical,	microstructural	and	physical	properties
of	materials	due	to	the	harmful	effect	of	the	environment.	Material	degradation	due	to	corrosion
is	often	the	root	cause	of	failures	entailing	loss	of	life,	damage	to	the	environment	and	huge
financial	losses.	Methods	increasing	the	corrosion	resistance	include	cathodic	protection,
corrosion	allowance,	protective	coatings,	plastic	or	cement	liners	and	use	of	corrosion-
resistant	special	alloys.

The	corrosion	intensity	is	a	function	of	the	environment.	Aggressive	environments	combined
with	low	corrosion	resistance	cause	expensive	early-life	corrosion	failures.

Corrosion	inhibitors	are	compounds	which	modify	the	corrosive	environment	thereby
reducing	the	rate	of	corrosion.	Corrosion	inhibitors	are	often	injected	into	a	pipeline	where
they	mix	with	the	product	to	reduce	corrosion.	Corrosion	retarding	inhibitors	are	added	to	the
corrosive	medium	to	reduce	the	intensity	of	the	anode/cathode	processes.	They	can	also	reduce
the	corrosion	rate	by	forming	barrier	films	separating	the	protected	surface	and	the	corrosive
environment.	There	are	also	inhibitors	which	passivate	the	protected	surface	by	reacting	with
it	and	forming	compounds	which	serve	as	anti-corrosion	barrier.	Inorganic	inhibitors	usually
passivate	the	protected	surface,	while	organic	inhibitors	usually	form	a	protective	film	on	the
surface.

Poor	design	of	the	flow	paths	of	fluids	containing	abrasive	material	promotes	rapid	erosion
which	can	be	minimised	by	a	proper	material	selection	and	design.	Structural	design	features
promoting	rapid	erosion	(Mattson,	1989)	should	be	avoided.	Such	are,	for	example,	bends
with	small	radii	in	pipelines	or	obstacles	promoting	turbulent	flow.	Increasing	the	pipeline
curvature	and	removing	the	obstacles	result	in	less	turbulent	flaw	and	reduced	erosion.	Erosion
is	significantly	reduced	by	appropriate	heat	treatment	increasing	the	surface	hardness.

If	the	possibility	for	increasing	the	curvature	of	the	flow	paths	is	limited,	internal	coatings
resistant	to	erosion	may	be	considered	at	the	vulnerable	spots.

11.1.6	Building	in	Redundancy
Incorporating	redundancy	in	the	design	is	particularly	effective	in	cases	where	random	failures
are	present.	Redundancy	is	a	technique	whereby	one	or	more	components	of	a	system	are
replicated	in	order	to	increase	reliability	(Blischke	and	Murthy,	2000).	Since	a	design	fault



would	usually	be	common	to	all	redundant	components,	design-related	failures	may	not	be
reduced	by	including	redundancy.	For	active	redundancy,	all	redundant	components	are	in
operation	and	share	the	load	with	the	main	unit	from	the	time	the	system	is	put	in	operation.
Full	active	redundancy	is	present	in	cases	where	the	assembly	is	operational	if	at	least	one	of
the	units	is	operational.

Partial	active	redundancy	(k-out-of-n	redundancy)	is	present	if	the	system	works	if	and	only	if
at	least	k	out	of	the	n	components	work.

Active	redundancy	at	a	component	level	(Figure	11.3a),	where	each	component	is	replicated,
yields	higher	reliability	compared	to	active	redundancy	where	the	entire	system	is	replicated
(Figure	11.3b).	A	detailed	analysis	demonstrating	this	feature	can	be	found	in	(Todinov,	2007).

Figure	11.3	Redundant	systems	(a)	with	redundancy	at	a	system	level	and	(b)	with	redundancy
at	a	component	level

While	for	an	active	redundancy	no	switching	is	required	to	make	the	alternative	component
available,	using	passive	(standby)	redundancy	requires	a	switching	operation	to	make
redundant	component	available.	In	cases	of	passive	redundancy,	the	redundant	components	do
not	share	any	load	with	the	operating	component.

The	redundant	components	are	put	in	use	one	at	a	time,	after	failure	of	the	currently	operating
component,	and	the	remaining	components	are	kept	in	reserve	(Figure	11.4).



Figure	11.4	A	passive	(standby)	redundancy

Standby	components	do	not	operate	until	they	are	sequentially	switched	in.	In	contrast	to	an
active	redundant	system	based	on	n	components	operating	in	parallel,	the	components	in	the
standby	system	operate	one	after	another.	This	is	why	a	cold	standby	redundancy	with	perfect
switching	provides	a	higher	reliability	compared	to	an	active	redundancy	(Figure	11.5).

Figure	11.5	Active	redundant	system	(a)	and	a	twofold	standby	system	(b)

If	the	switch	is	perfect	and	the	components	are	identical,	the	time	to	failure	of	the	standby
system	(Figure	11.5b)	is	a	sum	of	the	times	to	failure	of	the	components	( ).	The	time
to	failure	of	the	active	redundant	system	(Figure	11.5a)	is	equal	to	the	maximal	of	the	times	to
failure	of	the	components	( ).	The	cold	standby	system	is	characterised	by	a



higher	reliability	( ).

Theoretically,	by	providing	a	sufficiently	large	number	of	standby	components,	the	reliability
of	a	standby	system	with	perfect	switching	can	be	made	arbitrarily	close	to	1.	Indeed,	for	the
special	case	of	n	cold	standby	components	with	a	constant	hazard	rate	λ,	the	reliability
associated	with	time	t	of	a	standby	system	with	perfect	switching	is	(see	Chapter	3)

As	can	be	verified,	with	increasing	the	number	of	components	n,

and,	as	a	result,	 .	The	number	of	standby	components	is	limited	by	constraints
such	as	size,	weight	and	cost.	Standby	units	may	not	necessarily	be	identical.	An	electrical
device,	for	example,	can	have	a	hydraulic	device	for	backup.

11.1.7	Reliability	and	Risk	Modelling	and	Optimisation

11.1.7.1	Building	and	Analysing	Comparative	Reliability	Models
Building	and	analysing	comparative	reliability	models	is	essential	in	selecting	a	more	reliable
solution.	If	several	alternative	topologies	are	available,	the	selection	of	the	topology	which
delivers	the	lowest	risk	of	failure	can	be	done	by	building	and	running	the	system	reliability
models	of	the	competing	solutions	and	selecting	the	most	reliable	solution.	This	is	a	powerful
strategy	for	technical	risk	reduction	which	can	be	executed	even	in	the	absence	of	any	data
(Todinov,	2009a).	Here	is	an	example	featuring	two	systems	‘1’	and	‘2’	built	of	type-A,	type-B
and	type-C	components.	The	reliability	networks	of	the	systems	are	given	in	Figure	11.6.	If	a
type-A	component	is	more	reliable	than	a	type-B	component	and	a	type-B	component	is	more
reliable	than	a	type-C	component,	comparing	the	reliability	of	the	systems	helps	to	identify	the
more	reliable	system.



Figure	11.6	Comparing	reliabilities	of	competing	systems	(a)	and	(b)

Indeed,	let	a,	b	and	c	denote	the	reliabilities	of	components	A,	B	and	C.	The	reliability	of
system	‘1’	is	 .	The	reliability	of	system	‘2’	is	

The	difference	 .	From	 	and	
	( ),	it	follows	that	 .	Therefore,	the	second	system	is	the	more	reliable

system.

As	a	result,	building	and	comparing	the	reliability	models	of	the	systems	helped	to	identify	the
more	reliable	system	in	the	absence	of	any	reliability	data.

11.1.7.2	Building	and	Analysing	Physics	of	Failure	Models
One	of	the	big	advantages	of	physics	of	failure	models	is	that	they	usually	suggest	ways	of



improving	the	resistance	to	failure	(see	Chapter	12).

The	classical	statistical	models	of	the	time	to	failure	require	the	components	to	be	built	and
tested	before	the	parameters	of	the	time	to	failure	model	can	be	estimated.	In	contrast,	the
physics	of	failure	models	are	based	on	first	principles,	and	once	they	are	established,	they	can
be	applied	to	estimate	the	reliability	of	new	technology	with	no	failure	history.

Suppose	that	one	of	the	important	failure	modes	of	a	component	is	‘material	degradation’,
whose	instantaneous	rate	is	proportional	to	the	diffusion	coefficient	of	a	particular	harmful
element.	The	variation	of	the	diffusion	coefficient	D	with	temperature,	in	solids,	is	given	by	the
Arrhenius’	equation:

where	T	is	the	absolute	temperature	(K),	ED	is	the	activation	energy	for	diffusion	(J/mol),	R	is
the	gas	constant	in	J/(K × mol)	and	D0	is	a	constant.	From	the	analysis	of	this	equation,	it	can
be	inferred	that	the	increase	in	temperature	will	increase	significantly	the	rate	of	material
degradation.	Design	measures	preventing	the	increase	of	temperature	therefore	will	be	of
critical	importance	to	reducing	the	likelihood	of	premature	failure.

In	another	example,	suppose	that	one	of	the	important	failure	modes	is	‘fatigue	failure	initiated
from	a	pre-existing	crack’	subjected	to	a	varying	tensile	stress	with	amplitude	Δσ.

A	popular	model	related	to	the	physics	of	fatigue	failure	growth	from	a	pre-existing	crack	is
the	Paris	equation	(Paris	and	Erdogan,	1963;	Paris	et	al.,	1961):

where	da/dN	is	the	growth	rate	of	the	fatigue	crack;	 	is	the	stress	range	of	the
loading	cycle;	C,	m	are	constants	depending	on	the	material	microstructure,	environment,	test
temperature	and	load	ratio	 ;	Y	is	a	geometry	factor;	a	is	the	crack	size;	and	N	is
the	number	of	loading	cycles.

Suppose	that	the	experimental	analysis	yields	 	for	the	constant	m.	The	rate	of	fatigue
crack	propagation	is	then	proportional	to	(Δσ)4.	According	to	the	Paris	equation,	a	reduction	of
the	amplitude	of	the	internal	tensile	stress	will	result	in	a	significant	increase	of	the	fatigue	life
and	a	reduction	of	the	risk	of	premature	failure.

Suppose	that	a	structure	is	subjected	to	varying	load.	Design	measures	aimed	at	reducing	the
amplitude	of	the	internal	tensile	stress	will	result	in	a	significant	reduction	of	the	risk	of
premature	failure.	This	example	is	developed	and	discussed	in	detail	in	Chapter	12.

11.1.7.3	Minimising	Technical	Risk	through	Optimisation	and	Optimal
Replacement



The	risk	of	failure	can	be	decreased	if	a	compromise	among	the	design	parameters	is	found
which	maximises	the	reliability	of	the	system.	This	is	the	purpose	of	the	optimal	selection	of
risk	reduction	options	within	available	risk	budget	to	achieve	a	maximum	risk	reduction	(see
Chapter	19).	The	risk	of	premature	failure	of	a	complex	system	can	be	reduced	significantly	by
guaranteeing	through	optimal	replacement	of	components,	a	high	probability	of	surviving	a
specified	in	advance	minimum	failure-free	operating	period.

Consider	a	system	where	m	components,	with	monotonically	increasing	hazard	rates,	undergo
intensive	wearout	and	a	single	spare	component	is	available	for	each	of	these	components.	The
time	to	failure	of	each	of	the	m	components	is	random,	given	by	the	Weibull	distribution.	The
system	is	operated	for	a	period	a.	Failure	of	any	of	the	m	components	causes	system	failure.
There	is	an	optimal	choice	of	times	for	replacement	of	the	separate	components	which
minimises	the	probability	of	system	failure	within	the	operational	interval	[0,a].	Minimising
the	probability	of	system	failure	is	an	optimisation	problem	(see	the	example	at	the	end	of
Chapter	9).	If	the	replacements	are	done	too	early,	the	system	will	fail	because	of	a	highly
likely	premature	wearout	of	the	replaced	components;	if	the	replacements	are	done	too	late,	the
system	is	likely	to	fail	before	taking	advantage	of	the	benefits	from	the	replacement.

Optimisation	does	not	necessarily	involve	a	balance	between	risk-critical	factors	within	a
selected	design.	It	can	be	based	on	the	selection	of	an	entirely	new	design.

11.1.7.4	Maximising	System	Reliability	and	Availability	by	Appropriate
Permutations	of	Interchangeable	Components
To	increase	the	reliability	and	availability	of	systems,	the	traditional	approach	invariably
requires	investment	of	resources.	Increased	system	reliability	and	availability	is	commonly
achieved	by	investing	resources	for	purchasing	more	reliable	components,	redundancy	or
building	extra	connectivity.	Another	traditional	method	for	maximising	system	availability	is
through	investment	in	more	efficient	maintenance,	associated	with	shorter	repair	times.	Recent
research	(Todinov,	2014b)	on	production	systems	with	simple	parallel–series	arrangement
revealed	that	the	availability	and	reliability	of	production	systems	can	be	improved
dramatically,	at	no	extra	cost,	solely	by	appropriate	permutations	of	interchangeable
components	between	the	parallel	branches	(see	Chapter	19).

11.1.7.5	Maximising	the	Availability	and	Throughput	Flow	Reliability	by	Altering
the	Network	Topology
Research	published	in	Todinov	(2013a)	demonstrated	that	maximising	the	reliability	and
availability	of	flow	networks	at	no	extra	cost	can	also	be	done	by	altering	the	network
topology.	The	results	indicated	that	seemingly	insignificant	alterations	of	the	topology	result	in
a	dramatic	increase	of	the	system’s	reliability	and	availability.

11.1.8	Reducing	Variability	of	Risk-Critical	Parameters	and
Preventing	them	from	Reaching	Dangerous	Values
Reliability-	and	risk-critical	parameters	vary	(Carter,	1986,	1997;	Haugen,	1980),	and	this



variability	can	be	broadly	divided	in	the	following	categories:	(i)	variability	associated	with
material	and	physical	properties,	manufacturing	and	assembly;	(ii)	variability	caused	by	the
product	deterioration;	(iii)	variability	associated	with	the	loads	the	product	experiences	in
service;	and	(iv)	variability	associated	with	the	operating	environment.

Strength	variability	caused	by	production	variability	and	variability	of	properties	(Bergman,
1985)	is	one	of	the	major	reasons	for	an	increased	interference	of	the	strength	distribution	and
the	load	distribution	which	results	in	overstress	failures.	A	heavy	lower	tail	of	the	distribution
of	properties	usually	yields	a	heavy	lower	tail	of	the	strength	distribution,	thereby	promoting
early-life	failures.	Low	values	of	the	material	properties	exert	stronger	influence	on	reliability
than	do	high	or	intermediate	values.

Variability	of	critical	design	parameters	(e.g.	material	properties	and	dimensions)	caused	by
processing,	manufacturing	and	assembly	is	an	important	factor	promoting	early-life	failures.

An	important	way	of	reducing	the	lower	tail	of	the	material	properties	distribution	is	the	high-
stress	burn-in.	The	result	is	a	substantial	decrease	of	the	strength	variability	and	increased
reliability	on	demand	due	to	a	reduced	interference	of	the	strength	distribution	and	the	load
distribution.

Due	to	the	inherent	variability	of	the	manufacturing	processes,	however,	even	items	produced
by	the	same	manufacturer	can	be	characterised	by	different	properties.	Production	variability
during	manufacturing,	not	guaranteeing	the	specified	tolerances	or	introducing	flaws	in	the
manufactured	product,	leads	to	a	significant	number	of	failures.	Depending	on	the	supplier,	the
same	component	of	the	same	material,	manufactured	to	the	same	specification,	is	usually
characterised	by	different	properties.	Between-suppliers	variation	exists	even	if	the	variation
of	the	property	values	characterising	the	individual	suppliers	are	small	(see	Chapter	4).	The
variability	associated	with	the	lower	tail	of	the	strength	distribution	controls	the	load–stress
interference.	Stress	screening	which	eliminates	substandard	items	is	an	efficient	way	of
reducing	the	variability	in	the	region	of	the	lower	tail	of	the	strength	distribution	and	increasing
reliability	(see	the	discussion	in	Chapter	6).

Low	reliability	is	often	due	to	excessive	variability	of	the	load.	If	the	load	variability	is	large
(rough	loading),	the	probability	of	an	overstress	failure	is	significant.	Altering	the	upper	tail	of
the	load	distribution	is	often	done	by	using	stress	limiters	(see	Chapter	6).	Typical	examples	of
stress	limiters	are	the	safety	pressure	valves,	fuses	and	switches,	activated	when	pressure	or
current	reach	critical	values.	A	common	example	of	a	stress	limiter	preventing	surges	in
voltage	from	reaching	dangerous	levels	is	the	anti-surge	protector	used	in	the	power	supply	of
electronic	equipment.

Tolerances	in	geometrical	reliability-critical	parameters	must	be	controlled	during
manufacturing.	Such	control	translates	into	fewer	problems	and	failures	during	assembly,	less
possibility	for	loss	of	precision,	jamming,	seizure,	poor	lubrication	and	fast	wearout.

Often,	variability	of	geometrical	parameters	causes	fit	failures	resulting	from	interference	of
solid	parts	which	makes	the	assembly	impossible.

Material	quality	is	positively	correlated	with	the	reliability	of	components.	This	correlation	is



particularly	strong	for	highly	stressed	components.	Sources	of	materials	must	be	controlled
strictly	without	relying	on	vendor’s	trade	names	or	past	performance.	Changes	in	the
processing	and	manufacturing	procedures	often	result	in	materials	with	poor	quality.

11.1.9	Altering	the	Component	Geometry
A	typical	example	is	the	case	where	the	component	shape	is	altered	to	eliminate	stress
concentrators.	As	a	result,	the	stress	intensification	zones	in	the	component	are	eliminated,	and
the	risks	of	fast	fracture	and	fatigue	fracture	are	greatly	reduced.

Another	example	is	altering	the	component	shape	to	achieve	thermal	design.	In	order	to
increase	the	heat	dissipation,	the	components’	surface	is	often	increased	by	flattening	or	by
introducing	cooling	ribs	which	increase	the	surface-to-volume	ratio.	Conversely,	in	cases
where	heat	conduction	is	unwanted,	the	shape	is	made	spheroidal	which	decreases	the	surface-
to-volume	ratio.	Thus,	to	reduce	erosion	of	the	cladding	in	blast	furnaces	due	to	interaction
with	molten	metal,	the	cladding	components	are	often	made	spheroidal.	In	structures	spanning
spaces	without	supporting	columns,	arches	have	been	used	through	the	entire	human	history,	to
eliminate	tensile	stresses	and	increase	reliability.	If	an	abrasive	belt	is	made	with	the	shape	of
Moebius	ribbon,	its	working	time	(durability)	can	be	increased	twice	at	the	same	length
(Altshuller,	1996).

Consider	the	pressure	vessel	in	Figure	11.7a	with	diameter	D,	length	L	and	thickness	s	of	the
shell.	The	vessel	contains	fluid	exerting	pressure	p	on	the	inside	of	the	shell	(Figure	11.7a).
Altering	the	shape	to	the	one	in	Figure	11.7b	by	keeping	the	same	volume

reduces	significantly	the	hoop	stress,	which	is	the	largest	principal	tensile	stress	acting	on	an
element	from	the	shell	(see	Chapter	12).	The	axial	principal	tensile	stress	is	also	reduced.

Figure	11.7	(a)	A	pressure	vessel	whose	shape	has	been	modified	(b)	by	keeping	the	same
volume

Thus,	by	modifying	the	shape,	the	hoop	stress	decreases	from	 ,	Figure	11.7a,	to	
,	Figure	11.7b.



11.1.10	Strengthening	or	Eliminating	Weak	Links
Consider	again	a	common	example	of	a	system	with	n	components,	logically	arranged	in	series
with	reliabilities	R1,	R2,	…,	Rn.	The	system	contains	a	weak	link	with	reliability	r,	logically
arranged	in	series	with	the	rest	of	the	components.	In	other	words,	 ,	 ,	…,	 	are
fulfilled,	and	the	reliability	of	the	system	 	is	smaller	than	the
reliability	of	the	weakest	link.	(Indeed,	since	 ,	then	 .)

Interfaces	often	appear	as	weak	links	in	the	chain,	thereby	limiting	the	overall	reliability	of	a
system.	Consider	a	common	practical	example	related	to	two	very	reliable	components	with
high	reliabilities	 	connected	by	an	interface	with	a	relatively	low	reliability	 .	The
reliability	of	the	system	is	smaller	than	the	reliability	r	of	the	interface,	and	in	order	to
improve	the	reliability	of	the	system,	the	reliability	of	the	interface	must	be	increased.	One	of
the	reasons	why	so	many	failures	occur	at	interfaces,	despite	that	the	interfaced	components	are
usually	very	reliable,	is	the	fact	that	often	interfaces	are	not	produced	to	match	the	reliability
of	the	corresponding	components.	Seals	in	mechanical	components	and	connectors	in
electrical	devices,	for	example,	commonly	appear	as	weak	links.

A	weak	link	can	be	strengthened	by	improving	its	reliability	or	including	redundancy.	The
weak	link	should	be	strengthened	sufficiently,	but	not	excessively.	Strengthening	a	weak	link
excessively,	more	than	other	components,	would	add	cost	and	weight	without	increasing	the
overall	reliability	of	the	system.

Strengthening	the	weak	links	to	avoid	failures	and	improve	performance	is	a	truly	universal
concept.	The	human	body,	for	example,	can	also	be	considered	as	a	chain	of	individual
elements.	A	weak	link	in	an	athlete,	for	example,	might	be	faulty	biomechanics	or	lack	of	joint
mobility	or	joint	stability	or	any	physical	limitation	which	could	result	in	injury	or	prevents	the
athlete	from	achieving	peak	performance.	To	prevent	injuries	and	maximise	performance,	weak
links	must	be	identified	by	qualified	professionals	and	strengthened	by	specially	prescribed
corrective	exercises.

11.1.11	Eliminating	Factors	Promoting	Human	Errors
Human	errors	account	for	a	significant	number	of	technical	failures.	They	are	an	inevitable	part
of	each	stage	of	the	product	development	and	operation:	design,	manufacturing,	installation	and
operation.	Following	Dhillon	and	Singh	(1981),	human	errors	can	be	categorised	as	(i)	errors
in	design,	(ii)	operator	errors	(failure	to	follow	the	correct	procedures),	(iii)	errors	during
manufacturing,	(iv)	errors	during	maintenance,	(v)	errors	during	inspection	and	(vi)	errors
during	assembly	and	handling.	A	thorough	analysis	on	the	root	causes,	conditions	and	factors
promoting	human	errors	is	an	important	step	towards	reducing	them.	Some	common	factors
promoting	human	errors	are	listed	below:

Time	pressure	and	stress

Overload	and	fatigue



Distractions	and	high	noise	levels

Poor	work	skills	and	lack	of	experience

Unfamiliarity	with	the	necessary	procedures	and	equipment

Inadequate	information,	specification	and	documentation

Poor	health

Poor	organisation,	time	management	and	discipline

Inattention	and	lack	of	concentration

Making	unwarranted	assumptions	and	building	a	false	picture	of	the	reality

Negative	emotional	states	and	disempowering	beliefs

Low	confidence

Poor	motivation

Poor	communication

Poor	relationships	with	the	other	members	of	the	team

Poor	safety	culture

Instructions	and	procedures	must	be	clearly	written,	easy	to	follow	and	well	justified.	The
procedures	must	also	reflect	and	incorporate	the	input	from	people	who	are	expected	to	follow
them.	It	must	always	be	remembered	that	human	beings	are	prone	to	forgetting,	misjudgement,
lack	of	attention,	creating	false	pictures	of	the	real	situation,	etc.	–	conditions	which	are	rather
difficult	to	manage.	Hardware	systems	and	procedures	are	much	easier	to	manage	and	change
than	human	behaviour.	Therefore,	the	efforts	should	always	concentrate	on	adapting	the
hardware	to	humans	rather	than	humans	adapting	to	the	hardware.

Learning	from	past	failures	and	making	available	the	information	about	past	human	errors
which	have	caused	failures	are	powerful	preventive	tools.	In	this	respect,	compiling	formal
databases	containing	descriptions	of	failures	and	lessons	learned	and	making	them	available	to
designers,	manufacturers	and	operators	are	activities	of	significant	value.

Frequent	reviews,	checks	and	tests	of	designs,	software	codes,	calculations,	written
documents,	operations	or	other	products	heavily	involving	people	are	important	tools	for
preventing	human	errors.	In	this	respect,	double	checking	of	the	validity	of	calculations,
derivations	or	a	software	code	is	invaluable	in	preventing	human	errors.	To	eliminate	common
cause	errors	associated	with	models	and	problem	solutions,	double	checking	based	on	two
conceptually	distinct	approaches	is	particularly	helpful.	Such	is,	for	example,	the	approach
based	on	creating	both	an	analytical	solution	and	Monte	Carlo	simulation	solution	to	a
probabilistic	problem.	Obtaining	very	close	results	provides	a	strong	support	that	both	the
analytical	model	and	the	Monte	Carlo	simulation	programme	are	correct.

A	number	of	human	errors	arise	in	situations	where	a	successful	operation	or	assembly	is
overly	dependent	on	human	judgement.	Human	errors	of	this	type	can	be	avoided	by	using



tools/devices	which	rely	less	on	a	correct	human	judgement.	Poka-Yoke	design	features	and
special	recording	and	marking	techniques	could	be	used	to	prevent	assembling	parts
incorrectly.	Blocking	against	common	cause	maintenance	errors	could	be	achieved	by	avoiding
situations	where	a	single	person	is	responsible	for	all	pieces	of	equipment.

A	thorough	task	analysis	often	reveals	weaknesses	in	the	timing	and	the	sequences	of	the
separate	operations	and	is	a	key	factor	for	improving	their	reliability.	Additional	training	has	a
great	impact	on	the	probability	of	successfully	accomplishing	a	task.	Improving	the	efficiency
in	accomplishing	various	required	tasks	(working	smarter)	improves	the	management	of	the
work	load,	reduces	overload	and	fatigue	and	the	associated	with	them	human	errors.

11.1.12	Reducing	Risk	by	Introducing	Inverse	States

11.1.12.1	Inverse	States	Cancelling	the	Anticipated	State	with	a	Negative	Impact
An	inverse	state	of	anticipated	states	with	negative	impact	can	be	used	to	compensate	the
negative	effect.	The	two	states	superpose	and	the	result	is	an	absence	or	a	significantly
attenuated	negative	effect.

In	acoustics,	this	principle	works	in	noise-cancellation	headphones	for	reducing	the	risk	of
hearing	damage	caused	by	noise.	A	sound	wave	is	emitted	with	the	same	amplitude	but	with
inverted	phase	to	the	noise.	The	result	is	a	significant	attenuation	of	the	harmful	noise	and
reduced	risk	of	hearing	damage.

This	principle	also	underlies	active	methods	of	controlling	vibration.	The	active	vibration
control	involves	suitable	vibration	sensors	(e.g.	accelerometers),	controllers	and	actuators	for
vibration	control.	The	signal	from	the	vibration	sensors	is	fed	to	a	controller,	and	through	an
actuator,	a	spectrum	of	cancellation	vibrations	are	generated	in	response.	The	advances	in	the
sensor,	actuator	and	computer	technology	made	active	methods	of	control	cost-effective	and
affordable.

11.1.12.2	Inverse	States	Buffering	the	Anticipated	State	with	a	Negative	Impact
Introducing	an	inverse	state	as	a	buffer	can	be	done	in	many	cases	where	a	negative	effect	has
been	anticipated	and	the	inverse	state	is	provided	for	buferring	the	impact	of	the	anticipated
negative	effect.

This	underlies	reducing	the	risk	of	failure	of	zones	generating	heat.	Components	working	in
close	contact	(e.g.	piston	cylinder)	and	moving	relative	to	each	other	generate	heat	which,	if
not	dissipated,	causes	intensive	wear,	reduced	strength	and	deformations.	The	risk	of	failure	of
such	an	assembly	is	reduced	significantly	if	one	of	the	parts	(e.g.	the	cylinder)	is	cooled	to
dissipate	the	released	heat	which	reduces	the	friction	and	wear.

The	cold	expansion	used	in	aviation	for	creating	compressive	stresses	at	the	surface	of
fastener	holes	(Figure	11.8)	is	another	example	of	using	buffering	inverse	states.



Figure	11.8	Countering	the	stress	concentration	effect	of	a	hole	by	creating	compressive
stresses	through	cold	expansion

This	is	done	by	passing	a	tapered	mandrel	through	the	hole.	The	inverse	state	created	in	the
vicinity	of	the	hole	(compressive	residual	stress	field)	counters	the	tensile	loading	stresses
during	operation	and	impedes	the	formation	of	fatigue	cracks	at	the	edge	of	the	hole	and	their
propagation	which	reduces	the	risk	of	fatigue	failure.

In	order	to	counter	the	tensile	stresses	from	loading	at	the	surface	and	improve	fatigue
resistance,	shot	peening,	introducing	compressive	stresses	at	the	surface,	has	been	used	as	an
important	element	of	the	manufacturing	technology	(Bird	and	Saynor,	1984;	Niku-Lari,	1981).
As	a	result	of	this	operation,	the	fatigue	life	of	leaf	springs,	for	example,	can	be	increased
many	times.

Buffering	the	negative	effect	by	introducing	an	inverse	state	is	often	used	in	the	construction
industry	where	the	tensile	stresses	from	bending	of	concrete	beams	can	be	reduced	if
preloaded	in	tension	steel	bars	are	inserted	in	the	beam.	After	the	concrete	sets,	the	beam	is
preloaded	in	compression.	The	compressive	stress	from	preloading	is	an	inverse	state	which
compensates	the	tensile	loading	stresses.	Since	the	tensile	stresses	from	bending	superpose
with	the	compressive	residual	stresses,	the	effective	tensile	stress	during	service	is	reduced
significantly.

An	inverse	state	of	compressive	residual	stresses	at	the	surface,	acting	as	a	buffer
compensating	the	tensile	service	stresses	from	loading,	can	also	be	created	by	a	special	heat
and	thermochemical	treatment	such	as	case	hardening,	gas	carburising	and	gas	nitriding.	The
corrosion,	erosion	and	wear	allowances	added	to	the	computed	sections	are	inverse	states
anticipating	the	loss	of	wall	thickness.	They	act	as	buffers	compensating	for	the	loss	of	wall



thickness	and	decrease	the	risk	of	failure.

The	principle	of	introducing	an	inverse	state	as	a	buffer	has	a	wide	application	in	many	other
areas	of	human	activity.	In	project	management,	providing	time	buffers	for	certain	critical	tasks
reduces	the	risk	of	delay	should	particular	risks	materialise.	Similarly,	in	managing	stock	in	the
presence	of	random	demands,	increasing	the	reserve	of	a	particular	critical	stock	(e.g.
particular	life-saving	medicine)	reduces	the	risk	of	running	out	of	stock	in	case	of	clustering	of
random	demands.

Increasing	the	financial	reserves	of	a	bank	or	a	company	makes	it	less	vulnerable	to	depleting
its	reserves	due	to	materialised	credit	and	market	risks.

11.1.12.3	Inverting	the	Relative	Position	of	Objects	and	the	Direction	of	Flows
There	are	cases	where	inverting	the	relative	position	of	objects	eliminates	a	detrimental	effect.
Drilling	vertical	blind	holes	in	components	by	a	robot	on	a	manufacturing	line	is	associated
with	the	need	for	cleaning	the	drilled	holes	from	metal	chips.	If	a	hole	is	drilled	on	the
component	upside-down,	the	need	for	cleaning	the	drilled	holes	from	chips	disappears	because
gravity	now	helps	to	clean	the	holes.

The	next	example	in	the	area	of	logistic	supply	is	an	unexpected	application	of	this	principle.

Figure	11.9a	features	a	logistic	supply	network	where	a	particular	interchangeable	commodity
is	delivered	from	the	three	sources	s1,	s2	and	s3	to	the	destinations	t1,	t2	and	t3.

Figure	11.9	(a)	Closed	parasitic	flow	loop	in	a	logistic	supply	network;	(b)	draining	the
closed	parasitic	flow	loop

As	a	result,	a	closed	parasitic	flow	loop	essentially	appears	between	nodes	3,4,10	and	3
despite	that	the	transported	interchangeable	commodity	does	not	travel	along	a	closed	contour.
Closed	parasitic	flow	loops	essentially	are	cyclic	paths	where	the	flow	travels	in	the	direction
of	traversal	(Figure	11.9a,	the	flow	loop	3,4,10,3).	By	draining	the	parasitic	flow	loop	by



augmenting	the	cyclic	path	3,4,10,3	with	flow	in	opposite	direction,	the	flow	loop	is
eliminated	(Figure	11.9b).	As	a	result,	value	is	derived	from	significantly	reducing	the
transportation	losses	and	risk	of	congestion	without	affecting	the	throughput	flow	from	the
sources	s1,	s2	and	s3	to	the	destinations	t1,	t2	and	t3.

Parasitic	flow	loops	are	associated	with	increased	risk	of	congestion	and	accidents,	big
wastage	of	energy	and	time	and	increased	levels	of	pollution	to	the	environment.	Parasitic	flow
loops	exist	in	real	transportation	networks	with	a	very	high	probability.	Optimising	supply
networks	by	draining	highly	undesirable	dominated	parasitic	flow	loops	derives	significant
value	by	reducing	the	transportation	costs,	the	risk	of	congestion	and	accidents	and	the
environmental	pollution	(Todinov,	2013a,	2013b,	2014a).	The	result	is	billions	of	dollars
saved	to	the	world	economy.

The	existence	of	parasitic	flow	loops	in	networks	remained	unnoticed	by	scientists	for	nearly
60	years.	Ironically,	despite	the	years	of	intensive	research	on	static	flow	networks,	closed
parasitic	flow	loops	appear	even	in	the	‘network	flow	solutions’	from	all	published	algorithms
(including	the	famous	Ford–Fulkerson	algorithm;	Ford	and	Fulkerson,	1956)	for	maximising
the	throughput	flow	in	networks,	since	the	creation	of	the	theory	of	flow	networks	in	1956.

The	parasitic	flow	loops	are	not	necessarily	closed	flow	loops	only.	Dominated	parasitic	flow
loops	for	which	more	than	half	of	the	cyclic	path	contains	flow	along	a	particular	direction	of
traversal	are	also	associated	with	significant	transportation	losses	and	risk	of	congestion.

In	Figure	11.10a,	three	sources	of	interchangeable	commodity	s1,	s2	and	s3	are	supplying	three
destinations	d1,	d2	and	d3.	As	a	result,	a	dominated	parasitic	flow	loop	4,5,6,7,2,3,4	appears.
The	dominated	parasitic	flow	loop	can	be	eliminated	by	augmenting	the	cyclic	path
4,5,6,7,2,3,4	with	flow	in	the	opposite	direction	of	the	direction	of	the	dominating	flow.	As	a
result,	the	dominated	parasitic	flow	loop	disappears	(Figure	11.10b)	without	affecting	the
throughput	flow	from	the	sources	to	the	destinations	(Todinov,	2014a).

Figure	11.10	Draining	a	dominated	parasitic	flow	loop	(2,7,6,5,4,3,2)



11.1.12.4	Inverse	State	as	a	Counterbalancing	Force
A	typical	application	of	an	inverse	state	as	a	counterbalancing	force	are	the	counterweights	in
cranes	which	reduce	the	loading	on	the	lifting	motor	and	improve	the	balance	and	stability	of
the	crane.	Counterweights	are	also	used	on	rotating	shafts	(e.g.	on	crankshafts	in	piston
engines)	to	improve	balance	which	reduces	the	magnitudes	of	the	vibrations	and	the	risk	of
failure.	Systems	of	cables	and	masts	acting	as	counterbalance	are	used	in	architecture	to
relieve	weight	and	improve	the	structural	reliability.	An	interesting	example	of	an	inverse	state
as	a	counterbalancing	force	can	be	found	in	Pahl	et	al.	(2007)	where	the	fast	rotating	turbine
blades	are	attached	to	the	rotor	at	an	angle.	During	rotation,	the	centrifugal	force	acting	on	the
blade	creates	a	bending	moment	which	opposes	the	bending	moment	created	by	the	fluid	on	the
blade.	The	result	is	a	smaller	bending	stress	at	the	zone	of	attachment	of	the	blade	to	the	rotor
and	increased	reliability.

Another	example	of	the	application	of	this	principle	is	the	gate	valve	which	is	maintained	open
by	a	hydraulic	pressure	acting	against	a	counterbalancing	compression	spring.	Upon	failure	of
the	hydraulic	system,	the	counterbalancing	spring	expands	and	returns	the	valve	in	closed
(safe)	position.

11.1.13	Failure	Prevention	Interlocks
Preventing	failure	modes	caused	by	a	wrong	sequence	or	order	of	actions	being	taken	can	be
achieved	by	designing	failure	prevention	interlocks.	These	make	the	occurrence	of	failure
modes	practically	impossible.

Physical	interlocks	are	devices	and	circuits	which	block	against	a	wrong	action	or	a	sequence
of	actions	being	taken.	Typical	physical	interlocks	are	the	safety	contacts	installed	in	machine
guards,	which	prevent	the	machine	from	being	switched	on	before	the	guard	is	in	place.	A
physical	interlock,	for	example,	will	prevent	an	aeroplane	from	taking	off	without	setting
properly	all	flight	controls	or	without	latching	firmly	all	boarding	doors	into	closed	position.
If,	for	example,	starting	a	machine	under	load	will	cause	failure,	a	built-in	interlock	device
could	make	it	impossible	to	start	the	machine	if	it	is	under	load.	Failures	are	often	caused	by
exceeding	the	operational	or	environmental	envelope.	Efficient	failure	prevention	interlocks	of
this	type	are	all	circuits	which	prevent	operation	during	conditions	of	extreme	heat,	cold,
humidity,	vibrations,	etc.	Such	an	interlock	can	be	designed	for	the	common	fan-cooled	device.
If	the	fan	fails,	the	power	supply	is	automatically	disconnected	in	order	to	prevent	an
overheating	failure	of	the	cooled	device.

Poka-Yoke	(mistake-proofing)	is	an	effective	technique	based	on	either	issuing	an	alert	when	a
mistake	is	about	to	be	made	or	preventing	the	operator	from	making	the	mistake.	Poka-Yoke
designs	are	often	used	to	prevent	operating	or	assembling	a	device	in	the	wrong	way.

An	example	of	Poka-Yoke	application	which	prevents	unintended	movement	of	a	car	is	the
interlock	which	requires	the	driver	to	depress	the	clutch	pedal	before	the	engine	could	start.
Another	common	example	of	Poka-Yoke	technique	is	the	sound	signal	if	an	attempt	is	made	to
leave	the	car	while	the	headlights	are	still	on.



Logic	interlocks	eliminate	the	occurrence	of	erroneous	actions.	Preventing	the	hand	of	an
operator	from	being	in	the	cutting	area	of	a	guillotine	can,	for	example,	be	made	if	the	cutting
action	is	activated	only	by	a	simultaneous	pressure	on	two	separate	knobs/handles	which
engages	both	hands	of	the	operator.

Time	interlocks	work	by	separating	tasks	and	processes	in	time	so	that	any	possibility	of
collisions	or	mixing	dangerous	types	of	processes	and	actions	is	excluded.	Suppose	that	a
supply	system	fails	if	two	or	more	demands	follow	within	a	critical	time	interval	needed	for
the	system	to	recover.	If	the	operation	of	the	system	is	resumed	only	after	a	built-in	delay	equal
to	this	minimum	critical	period,	a	time	interlock	will	effectively	be	created	which	excludes	the
possibility	for	overloading	from	sequential	demands.

11.1.14	Reducing	the	Number	of	Latent	Faults
An	efficient	way	of	reliability	improvement	is	the	removal	of	latent	faults	from	products,
systems	and	operations.	A	fault	is	an	incorrect	state,	or	a	defect	resulting	from	errors	during
material	processing,	design,	manufacturing,	assembly	or	operation,	with	the	potential	to	cause
failure	or	accelerate	the	occurrence	of	failure	under	particular	conditions.	A	software	fault	is
synonymous	with	bug	and	is	in	effect	a	defect	in	the	code	that	can	be	the	cause	of	a	software
failure.

Fault	is	not	the	same	as	failure.	The	failure	is	an	‘event’	after	which	the	service	delivered	by
the	system	deviates	from	the	specified	system	function	for	the	specified	operating	conditions.
The	fault	is	a	condition	(a	state).	The	latent	fault	plays	a	necessary	but	not	necessarily	a
sufficient	role	in	initiating	failure.	A	system	with	faults	may	continue	to	provide	its	service,
which	complies	with	the	specifications	until	some	triggering	input	condition	is	encountered
which	could	lead	to	failure.	For	example,	a	software	bug	allowing	the	system	to	read	and	act
on	signals	from	failed	sensors	is	a	latent	fault.	Despite	the	bug,	the	system	will	continue	to
operate	as	long	as	there	is	no	failure	of	the	sensor.	The	fault	will	manifestate	into	a	failure	only
when	the	sensor	fails,	but	the	system	continues	to	read	it	and	act	on	its	false	indications	as	if
the	sensor	was	working	correctly.	In	aviation,	such	a	fault	may	result	in	unexpected	behaviour
of	an	aircraft,	causing	an	accident.

The	presence	of	a	software	fault/bug	does	not	necessarily	result	in	immediate	software	failure.
Failure	will	be	present	only	when	the	logical	branch	containing	the	faulty	piece	of	code	is
executed,	which	happens	only	when	certain	conditions	are	present.

Typical	latent	faults	in	electronic	devices	include	poor	solder	joints,	defective	wire	bonds,
semiconductor	impurities,	semiconductor	defects	and	component	drift.

A	fault	could	lead	to	a	faster	accumulation	of	damage.	Such	is,	for	example,	the	presence	of	a
large	defect	(e.g.	pore)	in	a	stressed	component.	The	component	may	be	operating	for	some
time,	but	the	fatigue	crack	growing	from	the	defect	will	cause	a	premature	fatigue	failure.

A	large	building	can	have	as	a	latent	fault	improper	foundation	support	which	will	only
manifestate	into	a	catastrophic	failure	during	an	earthquake	of	certain	magnitude.



A	deviation	of	a	parameter	from	its	safe	range	is	also	a	latent	fault	which	could	lead	to	failure.
For	example,	deviation	of	a	clearance	from	its	prescribed	value	could	lead	to	jamming	and
failure	if	temperature	rises	beyond	a	certain	critical	level.

Testing	and	thorough	inspection	for	latent	faults	are	key	measures	to	their	removal.	In
developing	software	applications,	a	thorough	debugging	and	operational	testing	are	key	to	the
removal	of	latent	faults.	Proper	quality	management	processes	must	be	in	place	in	order	to
eliminate	or	minimise	the	latent	faults	in	the	released	products.

The	objective	of	environmental	stress	screening	(ESS)	is	to	simulate	expected	worst-case
service	environments.	The	stress	levels	used	for	ESS	are	aimed	at	eliminating	(screening)	the
part	of	the	population	with	faults	causing	a	heavy	lower	tail	of	the	strength	distribution	which
is	the	primary	reason	for	many	early-life	failures.

This	process	is	illustrated	in	Figure	11.11a	where	the	lower	tail	of	the	strength	distribution	has
been	altered	by	stress	screening	which	removes	substandard	items.	In	Figure	11.11b,	the
strength	distribution	is	a	mixture	of	two	distributions:	a	main	distribution	reflecting	the	strength
of	the	strong	population	of	items	and	a	distribution	characterising	the	weak	population	of	items
with	substandard	strength.	ESS	has	improved	the	strength	distribution	by	removing	the	weak
population	(Figure	11.11b).	By	trapping	faults	and	substandard	items	before	they	are	released
to	the	customer,	this	operation	eliminates	early-life	failures	caused	by	items	with	substandard
strength.	ESS	also	helps	to	discover	and	eliminate	sources	of	faults	and	weaknesses	during
design,	manufacturing	and	assembly.

Figure	11.11	Altering	the	lower	tail	of	the	strength	distribution	by	environmental	stress
screening:	(a)	unimodal	distribution	of	the	strength	of	items;	(b)	bimodal	distribution	of	the
strength	of	items

During	environment	stress	screening	(or	burn-in),	it	is	important	to	find	operating	and
environmental	test	conditions	which	permit	efficient	screening	without	consuming	a	substantial
part	of	the	life	of	the	components	which	have	passed	the	screening	test.	Thermal	cycling	of
integrated	circuits,	for	example,	often	reveals	poor	wire	bonds,	improperly	cured	plastic
packages,	poor	die	bonds,	etc.



Particularly	useful	tests,	which	could	reveal	a	large	number	of	failure	modes	and	reduce	the
test	time	from	years	to	days	and	hours,	are	the	highly	accelerated	life	testing	(HALT)	and
highly	accelerated	stress	screens	(HASS).	The	purpose	is	to	expose	(precipitate)	faults	and
weaknesses	in	the	design,	manufacturing	and	assembly	in	order	to	provide	a	basis	for
reliability	improvement.	The	purpose	is	not	to	simulate	the	service	environment.	Precipitation
of	a	fault	changes	its	state	from	latent/undetected	to	a	detected	fault.	A	latent	fault	‘poor	solder
joint’	is	usually	undetectable	unless	it	is	extremely	poor.	Applying	vibration,	thermal	or
electrical	stress	helps	to	precipitate	the	fault,	conduct	failure	analysis	and	perform	appropriate
corrective	action	(Hobbs,	2000).	The	precipitated	faults	and	weaknesses	are	used	as
opportunities	for	improvement	of	the	design	and	manufacturing	in	order	to	avoid	expensive
failures	during	service.	In	this	respect,	HALT	and	HASS	are	particularly	useful.	The	stresses
used	during	HALT	and	HASS	testing	are	extreme	stresses	applied	for	a	brief	period	of	time.
They	include	all-axis	simultaneous	vibration,	high-rate	broad-range	temperature	cycling,
power	cycling,	voltage,	frequency	and	humidity	variation,	etc.	(Hobbs,	2000).	During	HALT
and	HASS,	faults	are	often	exposed	with	a	different	type	of	stress	or	a	stress	level	than	the
ones	that	would	be	used	during	service.	This	is	why	the	focus	is	not	on	the	stress	and	the	test
conditions	which	precipitate	the	faults	but	on	the	faults	themselves.

11.1.15	Increasing	the	Level	of	Balancing
Unbalanced	forces	cause	premature	wearout,	fatigue	degradation	and	failure.	As	a	rule,
improving	the	level	of	balancing	in	a	system	improves	the	uniformity	of	the	load	distribution,
reduces	the	magnitudes	of	the	inertia	forces,	the	loading	stresses	and	increases	the	reliability	of
the	system.	Balancing	eliminates	unwanted	inertia	forces	and	moments	in	rotating	machinery.
Static	balancing	guarantees	that	the	mass	centre	of	the	rotating	parts	is	on	the	rotation	axis	but
does	not	guarantee	absence	of	extra	reaction	forces	in	the	bearings.	Extra	bearing	reaction
forces	can	still	exist	due	to	rotating	couples	if	no	dynamic	balancing	has	been	performed	after
the	static	balancing.	A	rotating	part	can	be	statically	balanced	and	dynamically	unbalanced
(Figure	11.12).

Figure	11.12	A	rotating	part	which	is	statically	balanced	and	dynamically	unbalanced

Improving	the	distribution	of	the	load	across	different	working	parts	reduces	the	stresses	acting
in	the	parts	and	reduces	their	wearout	and	deterioration.

The	designers’	responsibility	is	to	guarantee	that	the	line	joining	the	mass	centres	of	the
rotating	parts	is	a	straight	line	coinciding	with	the	rotation	axis	(Uicker	et	al.,	2003).



Another	example	of	the	application	of	the	balancing	principle	in	mechanical	systems	can	be
found	in	double	helical	gears	(herringbone	gears)	where	self-balancing	of	the	axial	forces	is
present	and	symmetrical	epicyclic	mechanisms	where	self-balancing	of	the	radial	forces	acting
on	the	central	shaft	is	taking	place.

11.1.16	Reducing	the	Negative	Impact	of	Temperature	by	Thermal
Design
Temperature	variations	cause	thermal	deformations	and	stresses,	degradation	of	the	properties
of	mechanical	components	and	change	in	the	parameters	of	electronic	components.	Above
certain	temperature,	the	parameters	of	electronic	components	are	no	longer	guaranteed	to	be
within	specification.

For	mechanical	systems,	common	protection	against	the	development	of	excessive	thermal
stresses	includes:

a.	 Reducing	the	thermal	gradients	and	temperature	changes	in	components

Using	materials	with	large	heat	conduction	coefficients.

 The	use	of	such	materials	does	not	permit	the	development	of	large	thermal
gradients.	Thus,	the	thermal	gradient	developed	in	a	hot	metal	pipe	during	contact	with
cold	environment	(e.g.	rain)	is	significantly	smaller	compared	to	the	thermal	stress
developed	in	hot	glass	pipe	or	ceramic	pipe.

Using	coatings	to	mitigate	thermal	shocks	from	the	environment.

 Such	are	the	design	measures	involving	coating	steel	pipes	transporting	hot	fluids
(Peng	and	Peng,	1998).	Natural	insulation	such	as	burying	pipes	is	also	beneficial	in
reducing	the	thermal	gradients.

Avoiding	start–stop	cycles	which	introduce	thermal	gradients.

During	heat	treatment,	conducting	quenching	in	media	which	guarantees	a	small
heat	transfer	coefficient.

Reducing	the	operating	temperature.

 Reducing	the	operating	temperature	reduces	the	temperature	differences	between
working	components	and	does	not	permit	the	development	of	significant	thermal
stresses.

b.	 Using	materials	with	special	thermal	properties

Using	materials	with	small	thermal	expansion	coefficients.

 Materials	with	small	thermal	expansion	coefficients	do	not	develop	thermal	stresses
with	large	magnitudes	even	for	large	thermal	gradients.	The	reason	is	the
proportionality	of	the	thermal	stress	to	the	thermal	expansion	coefficient	αt	[ ].	For
the	metal	rod	with	both	ends	welded	to	the	fixed	supports	in	Figure	11.13a,	a	change	in



temperature	 	with	respect	to	the	ambient	temperature	t0	causes	tensile	thermal
stress	if	 	(Figure	11.13a)	and	compressive	thermal	stress	if	
(Figure	11.13b).	(See	Chapter	12	for	a	detailed	discussion.)

 No	thermal	stresses	appear	if	a	sliding	support	is	introduced	as	is	shown	in	Figure
11.13c	which	provides	a	compensation	for	the	thermal	expansion/contraction.	This	is
an	example	of	reducing	thermal	stresses	by	a	relaxation	of	constraints.

 Selecting	material	with	a	small	thermal	expansion	coefficient	or	reducing	the	thermal
gradient	(temperature	difference)	reduces	the	thermal	stress.

 Another	way	of	reducing	the	thermal	stresses	is	by	using	materials	with	similar
thermal	expansion	coefficients.

 If	components	with	similar	coefficients	of	thermal	expansion	work	together	(e.g.	bolt
and	nut	made	of	materials	with	similar	thermal	expansion	coefficients),	the	thermal
expansion	of	one	of	the	materials	is	not	severely	restricted	by	the	thermal	expansion	of
the	other	material,	and	the	thermal	stresses	are	with	relatively	small	magnitude.	The
converse	is	true	for	materials	with	very	different	thermal	expansion	coefficients.

 The	total	input	energy	lost	to	heat	in	the	system	must	correspond	to	the	capacity	of
the	components	to	dissipate	heat	energy.	Otherwise,	the	result	is	overheating	of
particular	components	which	leads	to	increased	thermal	stresses,	decreased	stiffness
and	strength	and	decreased	fatigue	resistance.	Consequently,	using	materials	with
large	capacity	to	dissipate	heat	energy	is	an	important	way	of	countering	the	negative
impact	of	heat	generation.

c.	 Altering	the	component	geometry	to	avoid	the	development	of	large	thermal	stresses

Avoiding	stress	concentrators.

 Stress	concentrators	magnify	the	thermal	stresses	which	are	often	sufficient	to	cause
failure	or	permanent	deformation	of	the	components.

Avoiding	connecting	very	thick	to	very	thin	sections.

 Because	of	big	differences	in	volume,	thin	sections	decrease	their	temperature	fast,
which	is	resisted	by	the	thick	sections.	As	a	result,	thermal	stresses	with	large
magnitudes	appear	which	often	exceed	the	material	strength.

Providing	larger	expansion	gaps	towards	the	zones	with	higher	temperature.

 This	method	has	an	application	in	designing	the	shape	of	the	piston	in	high-
performance	internal	combustion	engines.	To	make	allowance	for	the	larger	thermal
expansion	of	the	piston	at	higher	temperatures,	the	clearance	with	the	cylinder	wall	is
larger	towards	the	piston	head.

d.	 Relaxation	of	constraints

Using	thermal	expansion	gaps	and	expansion	offsets.



 Thermal	expansion	gaps,	offsets	and	loops	are	designed	to	absorb	dilatation	and	are
commonly	used	in	railways,	buildings	and	piping	systems.

Using	statically	determinate	structures.

 These	are	free	from	thermal	stresses	because	they	provide	compensation	for	the
thermal	expansions.	A	typical	example	of	structures	free	from	thermal	stresses	is	the
statically	determinate	trusses	(Barron	and	Barron,	2012).

e.	 Using	special	designs	limiting	the	development	of	thermal	stresses

Using	material	with	intermediate	thermal	expansion	coefficient	between	two
materials	with	very	different	thermal	expansion	coefficients.	Details	about	this
technique	can	be	found	in	Ishikawa	et	al.	(2012).

Using	material	with	a	very	small	thermal	expansion	coefficient	between	materials
with	a	big	mismatch	of	the	thermal	expansion	coefficients.	This	technique	has	an
application	in	cases	where	a	bolt	is	clamping	a	part	with	larger	thermal	expansion
coefficient	(e.g.	steel	bolt	clamping	aluminium	plate).	Because	of	the	different	thermal
dillatation	of	the	bolt	and	the	clamped	plate,	with	increasing	temperature,	the	bolt	will
be	subjected	to	a	tensile	thermal	stress.	This	can	be	avoided	if	a	sleeve	made	of
material	with	a	very	small	thermal	expansion	coefficient	is	inserted	between	the	bolt
head	and	the	clamped	part	(Pahl	et	al.,	2007).	As	a	result,	the	thermal	dilatation	of	the
bolt	becomes	comparable	with	the	thermal	dilatation	of	the	clamped	part,	and	the
thermal	stress	is	reduced.

f.	 	Dissipating	heat	from	areas	of	friction	and	other	heat	generation

Using	heat	sinks.	For	electronic	devices,	common	methods	for	providing	thermal
protection	include	heat	sinks	for	components	generating	considerable	amount	of	heat.
Including	thermal	conduction	planes	across	printed	circuit	boards	redistributes	and
dissipates	heat	from	components	with	high	heat	generation	power.

Using	cooling	fluids.	Fans	and	cooling	jackets	are	often	used	in	high-power	devices
and	engines	to	remove	heat	from	zones	where	heat	is	generated.



Figure	11.13	(a	and	b)	Design	associated	with	thermal	stresses	and	(c)	design	free	from
thermal	stresses

11.1.17	Self-Stability
Self-stability	in	design	ensures	that	the	disturbances	of	the	system	output	produce	a	stabilising
action	returning	the	system	in	a	stable	operational	state.	The	self-stabilising	design	can	be
found	in	the	coupling	of	induction	motor	with	torque-speed	characteristic	1	and	a	machine	with
resisting	torque	characteristics	2	(Figure	11.14).



Figure	11.14	Speed-torque	characteristic	of	induction	motors

An	increase	in	the	angular	velocity	 	from	the	point	of	stable	operation	ωst	causes	the
driving	torque	produced	by	the	induction	motor	to	drop	below	the	resisting	torque	Mres	(

)	which	slows	down	the	rotor	and	decreases	the	angular	velocity	towards	ωst.	A
decrease	 	in	the	angular	velocity	causes	the	driving	torque	from	the	induction	motor	to
increase	above	the	resisting	torque	( ).	The	result	is	an	increase	of	the	angular	velocity
towards	ωst.	Operating	at	angular	velocity	ωst	results	in	a	stable	operation.

A	very	different	behaviour	is	exhibited	if	the	system	is	operated	at	an	angular	velocity	ωun.	A
decrease	in	the	angular	velocity	 	causes	the	driving	torque	to	further	decrease	until	the
induction	motor	stops.	An	increase	in	the	angular	velocity	 	causes	the	driving	torque
to	increase	which	results	in	a	further	increase	of	the	angular	velocity.	The	operation	at	angular
velocity	ωun	is	an	unstable	operation.

Another	use	of	this	principle	can	be	found	in	the	negative	feedback	loops	used	in	stabilising	the
output	of	electronic	circuits	and	mechanical	systems.	A	deviation	of	the	system/process	from	a
stable	configuration	produces	a	correcting	action	returning	it	in	a	stable	state.	Commonly,	in
closed-loop	or	feedback	control	systems,	the	output	is	measured	and	fed	back	to	an	error
detector	at	the	input.	A	controller	is	then	correcting	the	parameters	of	the	system/process	so



that	the	deviations	from	the	expected	output	become	as	close	to	zero	as	possible.

Negative	feedback	is	used	in	audio	amplifiers	to	reduce	distortion	and	in	operational	amplifier
circuits	to	obtain	a	predictable	transfer	function.

The	availability	of	low-cost	electrical	devices	and	sensors	makes	it	possible	to	provide	more
flexibility	and	regulate	mechanical	systems	to	a	finer	degree	compared	to	all-mechanical
governors.

11.1.18	Maintaining	the	Continuity	of	a	Working	State
Interrupting	the	continuity	of	a	working	state	introduces	transient	processes	and	forces
associated	with	failure	modes.	Maintaining	the	continuity	of	a	working	state	avoids	high-
resistance	forces	and	dynamic	transient	stresses	from	start–stop	regimes.	Thus,	the	resistance
of	pressure	vessels	to	thermal	fatigue	can	be	enhanced	significantly	by	avoiding	start–stop
regimes	which	induce	high	thermal	stresses.	The	resistance	to	jamming	of	sliding	surfaces	(e.g.
stems	in	valves)	can	be	enhanced	by	maintaining	continuity	of	motion	which	prevents	the
formation	of	build-ups	of	corrosion	products.	Avoiding	start–stop	regimes	of	rotating	shafts
maintains	the	hydrodynamic	lubrication	layer	in	journal	bearings,	reduces	wearout	and
improves	reliability.	Avoiding	start–stop	regimes	of	electro-motors	avoids	the	high	initial
currents	characterising	the	start	regimes.	Avoiding	the	variation	of	the	speed	of	rotating	shafts
avoids	operation	close	to	natural	excitation	frequencies	which	is	associated	with	excessive
stress	amplitudes	and	premature	failure.

11.1.19	Substituting	Mechanical	Assemblies	with	Electrical,	Optical
or	Acoustic	Assemblies	and	Software
As	a	rule,	replacement	of	mechanical	devices	reduces	significantly	the	overstress,	wear,
fatigue	corrosion	and	material	degradation,	which	are	major	factors	leading	to	failures	of
mechanical	equipment.	The	replacement	of	complex	mechanical	assemblies	with	electrical,
optical	or	acoustic	devices	reduces	the	complexity	of	design,	the	number	of	moving	parts,	wear
and	increases	precision.	During	the	design	of	electromechanical	components,	where	possible,
the	complexity	should	be	transferred	to	the	software.	Design	should	be	oriented	towards
simpler	but	more	refined	mechanical	components	combined	with	powerful	software	to
guarantee	both	performance	and	flexibility	(French,	1999).

11.1.20	Improving	the	Load	Distribution
Improving	the	load	distribution	decreases	the	loading	stresses	and	improves	reliability.

Providing	a	surface	contact	instead	of	line	contact	and	line	contact	instead	of	a	point	contact
results	in	improved	load	distribution,	decreases	contact	stresses	and	results	in	higher
reliability.	Using	conforming	contact	surfaces	increases	the	contact	area	and	also	significantly
reduces	the	contact	stresses	and	wear.	Using	ribs	to	distribute	loads	to	supporting	walls	is
another	example	of	improving	reliability	by	an	improved	load	distribution.

A	common	example	of	this	principle	is	the	use	of	washers	under	bolt	heads	and	nuts,	which



leads	to	a	more	uniform	load	distribution.	A	similar	example	is	the	special	design	of	nuts
resulting	in	a	more	uniform	distribution	of	the	load	across	the	threaded	interface	(Collins,
2003).

Using	more	bolts	in	assemblies	increases	the	load	distribution,	decreases	vulnerability	to	bolt
failures	and	increases	reliability.	A	balance	should	be	sought	however	because	increasing	the
number	of	bolts	affects	adversely	maintainability	(Thompson,	1999).

11.1.21	Reducing	the	Sensitivity	of	Designs	to	the	Variation	of
Design	Parameters
Robustness	is	an	important	property	of	components	and	systems.	Robust	designs	show	small
sensitivity	of	the	performance	characteristics	to	variations	of	the	manufacturing	quality,	drifts
in	parameter	values,	operating	and	maintenance	conditions,	environmental	loads	and
deterioration	with	age	(Lewis,	1996).	Achieving	high	reliability	levels	by	reducing	the
variation	of	geometrical	parameters	through	more	precise	finishing	operations	(e.g.	grinding,
honing	and	polishing)	is	not	always	economically	feasible	because	it	leads	to	escalating	costs.
Making	the	design	insensitive	to	the	variations	of	geometrical	parameters	often	achieves	a	high
reliability	without	excessive	costs.	A	typical	example	of	design,	insensitive	to	variations	of
geometrical	parameters	is	the	involute	gear	system,	where	the	profiles	of	the	teeth	are	involutes
of	a	circle.	The	angular	velocity	ratio	ω1/ω2	is	insensitive	to	variations	of	the	distance
between	the	gear	axes.	It	remains	constant.	Another	typical	example	is	the	designs	of	self-
adjusting	bearing	assemblies	and	couplings	which	can	accommodate	geometrical	imprecision
and	misalignment.	Gear	couplings,	for	example,	can	compensate	simultaneously	radial,
angular	and	axial	misalignment.	In	this	respect,	avoiding	a	double	fit	is	important,	where	a
component	is	guided	at	the	same	time	by	two	surfaces	(machined	separately).	Because	of	the
inevitable	variation	of	tolerances,	such	components	are	a	source	of	problems	during	assembly.
They	are	also	a	source	of	problems	during	operation	because	of	the	assembly	stresses	and	the
uncertainty	regarding	the	distribution	and	magnitude	of	the	loading	stresses	during	operation.

In	many	cases,	the	reliable	work	of	components	and	systems	occurs	under	too	narrowly
specified	conditions.	Slight	variations	in	the	material	properties,	the	quality	of	manufacturing,
the	external	load	or	the	values	of	the	design	parameters	are	sufficient	to	induce	failures	or
unacceptable	deviations	from	the	expected	function/service.

Design	solutions	requiring	fewer	parts	with	simple	geometry	reduce	the	susceptibility	to
manufacturing	variability.	Designs	incorporating	appropriate	geometry,	static	determinacy,
tolerances	and	materials	with	high	conductivity	reduce	the	susceptibility	to	temperature
variations	and	large	thermal	stresses	which	are	a	common	cause	of	failure.	For	example,
making	truss	structures	statically	determinate	makes	them	insensitive	to	temperature	variations.

Thus,	the	statically	indeterminate	structure	in	Figure	11.15a	is	subjected	to	thermal	stresses	or
assembly-induced	stresses	if	the	struts	are	characterised	by	different	coefficients	of	thermal
expansion,	are	at	different	temperatures	or	are	characterised	by	differences	in	their	lengths.
None	of	these	problems	exist	for	the	statically	determinate	structure	in	Figure	11.15b.



Figure	11.15	(a)	Statically	indeterminate	and	(b)	statically	determinate	structure

Further	examples	of	robust	designs	are	the	sensors	for	measuring	a	particular	property	which
are	insensitive	to	variations	of	other	parameters,	for	example,	gas	sensors	insensitive	to	the
variations	of	temperature	and	humidity.

Often,	the	mean	values	of	reliability-critical	parameters	are	sought	which	minimise	the
sensitivity	of	the	performance	characteristic	to	variations	of	the	input	parameters.

This	approach	has	been	illustrated	by	the	mechanical	spring	assembly	in	Figure	11.16a
required	to	provide	a	constant	clamping	force	of	specified	magnitude	P.	The	same	clamping
force	can	be	provided	by	a	stiff	spring,	with	a	large	spring	constant	k1	and	a	particular	initial
deflection	x1	( )	or	a	softer	spring,	with	spring	constant	 	and	larger	initial
deflection	 	(Figure	11.16b).	The	initial	spring	deflection	is	always	associated	with
errors	(errors	in	cutting	the	spring	to	exact	length,	imperfections	associated	with	machining	the
ends	of	the	spring	coil,	sagging	of	the	spring	with	time	due	to	stress	relaxation,	variations	in	the
length	of	the	spring	associated	with	the	pre-setting	operation,	etc.).



Figure	11.16	(a)	Clamping	force	from	a	spring;	(b)	Clamping	force	variation	for	a	stiff	and	soft
spring

As	it	can	be	verified	from	Figure	11.16b,	for	the	softer	spring	(with	a	spring	constant	k2),
variations	of	magnitude	Δx	in	the	spring	deflection	cause	much	smaller	variations	ΔP2	in	the
clamping	force	compared	to	the	variations	ΔP1	in	the	clamping	force	for	the	stiffer	spring,
caused	by	variations	of	the	same	magnitude	Δx	of	the	spring	deflection.	Selecting	a	softer
spring	results	in	a	more	robust	design,	for	which	the	clamping	force	P	is	less	sensitive	to
variations	in	the	spring	deflection.	For	the	same	amount	of	stored	potential	energy	E = 
(1/2)kΔx2,	for	a	soft	spring	with	small	constant	k	and	large	deflection	Δx,	the	variation	of	the
spring	constant	k	causes	a	smaller	variation	in	the	amount	of	stored	energy	E,	compared	to	a
stiff	spring	with	large	constant	k	and	a	small	deflection	Δx.	Due	to	variation	of	the	shear
modulus	of	the	spring	material	and	the	diameter	of	the	spring	wire,	the	spring	constant	k	does
vary	substantially.

In	the	general	case,	determining	the	mean	values	of	the	control	parameters	which	minimise	the
variation	of	the	performance	characteristic	requires	efficient	algorithms	for	constrained	non-
linear	optimisation.	For	these	optimal	values	of	the	design	parameters,	the	output	performance
characteristics	will	be	least	sensitive	to	variations	in	the	design	parameters.	Such	are	for
example	the	flat	regions	of	the	output	performance	characteristic,	where	the	partial
derivatives	with	respect	to	the	separate	parameters	are	small	or	zero.	In	many	cases,	the
relationship	between	the	performance	characteristic	and	the	reliability-critical	variables
cannot	be	presented	in	a	closed	form,	or	if	it	exists,	it	is	too	complex.	Furthermore,	the
reliability-critical	parameters	may	be	interdependent,	subjected	to	complex	constraints.	In
these	cases,	the	simulation-based	optimisation	is	a	powerful	alternative	to	other	methods.	It	is



universal,	handles	complex	constraints	and	interdependencies	between	reliability-critical
variables	and	does	not	require	a	closed	form	function	related	to	the	performance
characteristics.	Furthermore,	its	algorithm	and	implementation	are	relatively	simple	and
straightforward.

Large	variations	of	the	internal	stresses	in	components	and	structures	caused	by	variation	of	the
loading	forces	are	a	frequent	cause	of	fatigue	failures.	Fatigue	life	is	very	sensitive	to	the
amplitude	of	the	internal	stresses.	As	a	consequence,	in	regions	with	large	internal	stress
ranges,	the	fatigue	crack	growth	rate	is	significantly	increased,	and	the	life	of	the	affected
components	is	short.	Design	solutions	restricting	the	variations	of	the	internal	stresses	include
but	are	not	limited	to	stress	limiters,	appropriate	modifications	of	the	component	geometry,
appropriate	modifications	in	the	loading	geometry,	appropriate	stress	relieve	notches,	stress
relieve	grooves,	etc.

For	a	bolted	joint	of	a	lid	covering	a	container	where	the	pressure	fluctuates,	the	force-
deformation	diagram	for	the	bolt	and	the	flange	is	shown	in	Figure	11.17a.	The	elastic
constants	of	the	bolt	and	the	flange	are	 	and	 ,	correspondingly.	The
bolted	joint	is	subjected	to	a	preload	force	of	magnitude	P.	Because	of	the	pressure	in	the
container,	the	bolted	joint	is	subjected	to	a	pulsating	external	force	with	magnitude	F,	which
causes	pulsating	force	of	magnitude	Fb	in	the	bolt	(Figure	11.17a).



Figure	11.17	(a)	Forces	acting	on	a	preloaded	bolted	joint;	(b)	with	a	reduced	elastic	constant
of	the	flange;	(c)	with	a	reduced	elastic	constant	of	the	bolt.

With	reducing	the	elastic	constant	of	the	flange,	the	pulsating	force	Fb	in	the	bolt	increases
(Figure	11.17b).	Increasing	the	elastic	constant	of	the	flange	has	the	opposite	effect.	With
reducing	the	elastic	constant	of	the	bolt,	the	amplitude	Fb	of	the	pulsating	force	in	the	bolt	is
reduced	(Figure	11.17c).	Increasing	the	elastic	constant	of	the	bolt	has	the	opposite	effect.	To
reduce	the	amplitude	of	the	pulsating	force	in	the	bolt	and	increase	its	fatigue	life,	the
appropriate	selection	is	elastic	bolt	and	a	stiff	flange.	This	effect	can	be	quantified	by	the
amplitude	of	the	force	Fb	by	expressing	the	length	LAB	of	the	segment	AB	in	two	different	ways
(Figure	11.17a):



Considering	that	 	and	 ,	the	above	relationship	gives

The	first	derivative	with	respect	to	kb	is	positive	everywhere	which	shows	that	reducing	the
elastic	constant	kb	of	the	bolt,	reduces	the	magnitude	of	the	pulsating	force	Fb	in	the	bolt	and
increases	its	fatigue	life.	The	elastic	constant	of	the	bolt	is	given	by	 ,	where	L	is	the
length	of	the	bolt,	F	is	the	cross-sectional	area	and	E	is	the	Young	modulus	of	the	material.
Reducing	the	elastic	constant	of	the	bolt	can	be	done	by	selecting	a	bolt	with	a	larger	length	L
or	reducing	the	cross-sectional	area	F	by	thinning	down	the	shank	diameter	of	the	bolt	as
shown	in	Figure	11.18.

Figure	11.18	(a)	A	bolt	whose	elastic	constant	has	been	reduced	by	(b)	increasing	the	length	of
the	bolt	and	thinning	down	the	shank	diameter

Other	methods	for	reducing	the	amplitude	of	the	stresses	in	components	are	discussed	in	detail
in	Chapter	12.

11.1.22	Vibration	Control
Vibrations	have	been	studied	extensively	because	of	their	negative	effect	on	the	performance	of
technical	systems.	Vibrations	induce	various	failure	modes	ranging	from	machine	tool



instability	and	deterioration	of	the	quality	of	machined	components	to	fatigue	failures	and	fast
wear.

The	main	groups	of	solutions	developed	for	reducing	the	amplitude	of	vibrations	are	listed
next:

Methods	for	passive	vibration	control:

1.	 Methods	based	on	eliminating	vibrations:

Better	balancing	of	inertia	forces.

Better	lubrication.

Reduced	tolerances	and	surface	roughness.

Improved	fluid	flow	and	reduced	vortex	shedding	for	flow-induced	vibrations.	A
vortex	shedding	frequency	close	to	the	natural	frequency	of	the	component	may
result	in	vibrations	with	very	large	amplitudes.

Reducing	parameter	variation	to	reduce	the	possibility	of	parametric	excitation.

2.	 Methods	based	on	modifying	the	stiffness,	damping	and	inertia	of	the	different	parts	of
the	system	so	that	the	response	to	particular	excitation	frequencies	is	reduced.	Damping
provides	efficient	protection	against	resonance	and	is	used	whenever	a	system	is
operated	near	a	natural	frequency.

3.	 Methods	aimed	at	isolating	the	sources	of	vibrations	from	the	protected	system.	Rubber
and	plastic	materials	are	often	used	as	vibration	isolators	diminishing	the	propagation
of	vibrations	from	various	sources.

Active	methods	of	controlling	vibration.

The	active	vibration	control	involves	suitable	vibration	sensors	(e.g.	accelerometers),
controllers	and	actuators	for	vibration	control.	The	signal	from	the	vibration	sensors	is	fed
to	a	controller,	and	through	an	actuator,	a	spectrum	of	cancellation	vibrations	are	generated
in	response.	The	advances	in	the	sensor,	actuator	and	computer	technology	made	active
methods	of	control	cost-effective	and	affordable.

Semi-active	methods	of	controlling	vibration.

These	methods	are	also	known	as	adaptive-passive	methods	of	control	where	the	passive
element	tunes	to	the	vibration	system	by	changing	parameters	such	as	‘stiffness’	and
‘damping	coefficient’	so	that	a	maximal	attenuation	of	the	vibration	is	achieved.	The	semi-
active	methods	gained	popularity	because	they	are	cheaper	than	active	systems	of	control
and	offer	more	flexibility	than	the	passive	systems.

11.1.23	Built-In	Prevention
This	principle	in	action	can	be	found	in	the	construction	industry	where	reinforcing	steel	bars
in	concrete	structures	are	placed	in	the	regions	of	high	tensile	stresses.	Steel	bars	have	a	very



good	tensile	strength	and	compensate	the	lack	of	tensile	strength	in	concrete.	The	result	is	a
significant	reduction	of	the	probability	of	overstress	failure.	This	principle	is	also	used	in	the
design	of	components	from	fibre-reinforced	composite	materials.	The	composite	material	is
oriented	so	that	the	direction	of	its	fibres	is	parallel	to	the	direction	of	the	tensile	stresses.
Because	the	composite	has	a	much	higher	tensile	strength	along	the	direction	of	its	reinforcing
fibres	compared	to	the	tensile	strength	in	lateral	direction,	this	layout	increases	the	load-
carrying	capacity	of	components	and	reduces	the	risk	of	overstress	failure.

An	example	where	the	risk	of	failure	is	reduced	by	building	in	prevention	compensating
negative	effects	during	service	is	the	allowance	for	lost	wall	thickness.	The	corrosion,	erosion
and	wear	allowances	added	to	the	computed	sections	compensate	for	the	loss	of	wall	thickness
and	decrease	the	risk	of	failure.

Components	working	in	close	contact	(e.g.	piston	cylinder)	and	moving	relative	to	each	other
generate	heat	which,	if	not	dissipated,	causes	intensive	wear,	reduced	strength	and
deformations.	The	risk	of	failure	of	such	an	assembly	can	be	reduced	significantly	if	one	of	the
parts	(e.g.	the	cylinder)	is	cooled	to	dissipate	the	released	heat	which	reduces	friction	and
wear.

Preloading	with	the	same	sign	with	the	loading	stresses	is	often	used	as	a	built-in	prevention	to
counter	effects	increasing	the	risk	of	failure.	It	is	frequently	applied	to	bolted	joints	and	flange-
and-gasket	assemblies.	Tensile	preloading	increases	the	fatigue	life	of	a	part	subjected	to	a
completely	reversed	zero-mean	alternating	stresses.	The	mean	stress	is	increased,	but	the
equivalent	completely	reversed	cyclic	stress	is	reduced	significantly,	and	as	a	result,	the
fatigue	life	is	increased	substantially	(Collins,	2003).

Built-in	prevention	can	also	be	based	on	using	available	sources	in	the	environment.	A	good
example	is	the	design	of	the	cat’s	eyes	on	the	roads	of	the	United	Kingdom.	A	rubber	wiper
cleans	the	reflectors	from	dirt	as	they	are	pushed	below	the	road	surface	by	passing	traffic.	The
rain	water	collected	at	the	base	of	the	cat’s	eye	also	helps	this	process	and	makes	it	more
efficient.

11.2	Dual	Principles:	Reduce	Both	the	Likelihood	of
Failure	and	the	Magnitude	of	Consequences
11.2.1	Separating	Critical	Properties,	Functions	and	Factors
In	general,	it	is	difficult	to	optimise	a	single	component	carrying	many	functions	with	regard	to
every	single	function.	Separating	critical	functions	and	properties	is	often	the	key	to	improving
reliability	and	reducing	technical	risk.	The	separation	principle	can	be	discovered	in	the
design	of	flexible	pipes	carrying	hydrocarbons.	The	different	layers	in	the	flexible	pipe	are
designed	for	different	functions:	to	protect	against	external	corrosion,	to	resist	tensile	loads,	to
resist	radial	loads	resulting	from	internal	pressure,	to	make	the	pipe	leak	proof	and	to	prevent
collapse	due	to	external	pressure.	It	is	difficult	to	optimise	a	homogeneous	pipe	with	respect	to
each	of	these	functions.	The	separate	layers	building	the	flexible	pipe	however	can	be



optimised	with	respect	to	the	function	they	carry.	The	result	is	increased	reliability	of	the	pipe.
Separating	functions	to	different	components	relieves	the	load	on	components	and	reduces	the
risk	of	failure.

This	principle	is	very	useful	in	cases	where	reliability	is	balanced	against	weight	and	cost.
Improving	reliability	only	locally,	where	it	matters,	saves	resources	and	results	in	lightweight
designs.

Separating	critical	properties	is	often	present	in	the	design	of	complex	alloys	where	some	of
the	microstructural	components	provide	resistance	to	wearout,	while	other	components
provide	toughness	(resistance	to	crack	propagation).

Often,	the	necessity	of	reducing	the	risk	of	failure	requires	different	properties	from	the
different	parts	of	the	component.	Guaranteeing	different	properties	to	different	parts	of	the
components	is	the	underlying	principle	behind	coatings	improving	the	wear	resistance	and
corrosion	resistance.	The	case	hardening	of	components,	which	consists	of	a	local	induction
heating	of	the	surface	layers	followed	by	quenching,	improves	the	surface	resistance	to	large
contact	stresses	and	wear	while	leaving	the	core	tough	which	is	necessary	to	withstand	impact
loads.

This	principle	is	often	used	in	composite	materials	combining	structural	constituents	with
different	properties	in	different	directions.	Concrete	used	in	the	construction	industry	is	a
material	with	good	compressive	strength	but	small	tensile	strength.	The	steel	bars	in	reinforced
concrete	are	placed	in	areas	loaded	in	tension	where	the	concrete	cannot	resist	tensile	stresses.

The	separation	principle	can	also	be	used	for	mitigating	the	consequences	from	failure	because
an	increased	local	reliability	delays	the	propagation	of	damage	to	the	rest	of	the
component/structure.	Thus,	increasing	the	reliability	of	a	fire	door	by	additional	fireproof
coating	delays	the	fire	escalation	and	limits	the	fire	damage.

The	separation	principle	has	a	wide	application.	Reliable	operation	often	depends	on	critical
properties,	events	or	factors	not	being	present	at	the	same	time	or	in	the	same	space	region.
Separating	people	from	hazards	is	an	important	measure	for	reducing	risk.	A	typical	example
of	time	separation	of	risk-critical	factors	is	the	traffic	lights,	preventing	collision	between
intersecting	flows	of	traffic	and	flows	of	pedestrians.	Two	incompatible	risk-critical	factors
can	be	introduced	simultaneously	by	transforming	their	action	from	continuous	to	periodic	and
inserting	the	action	of	one	of	the	factors	in	the	pauses	of	the	other	factor.

A	typical	example	of	space	separation	of	risk-critical	factors	is	the	separation	of	intersecting
flows	of	traffic	and	flows	of	pedestrians	at	different	levels	which	eliminates	the	risk	of
collisions	and	accidents.

Limiting	the	spread	of	infection	by	urgent	quarantine	measures	isolating	infected	individuals	is
another	example	of	space	separation	used	for	risk	reduction.

11.2.2	Reducing	the	Likelihood	of	Unfavourable	Combinations	of
Risk-Critical	Random	Variables



Reliable	and	smooth	operation	and	consequences	of	failure	often	depend	on	not	having	a
particular	critical	combination	of	values	of	the	random	variables	which	control	the
performance	of	components	and	systems.

Monte	Carlo	simulation	is	a	very	good	technique	for	revealing	the	probability	of	critical
combinations	of	random	variables.	Some	of	the	applications	of	the	Monte	Carlo	simulation
have	been	demonstrated	in	Chapter	9.	If,	for	example,	a	low	value	of	the	diameter	of	the	shaft,
a	high	value	for	the	diameter	of	the	hub	and	a	low	value	for	the	coefficient	of	friction	are
combined,	a	press-fit	assembly	could	lose	its	capability	to	transmit	torque.	Design	should	aim
to	minimise	the	probability	of	unfavourable	combinations	of	risk-critical	random	variables.

In	some	applications,	it	is	possible	that	several	redundant	components	will	wear	out	and	fail
almost	simultaneously	which	will	also	lead	to	a	catastrophic	failure.

This	problem	can	be	avoided	by	designing	the	redundant	components	in	such	a	way	that	a
simultaneous	failure	of	all	of	them	is	very	unlikely.

Consider	a	finite	time	interval	during	which	a	number	of	large	consumers	connect	to	a	supply
system	independently	and	randomly.	Suppose	that	the	supply	system	needs	a	minimum	time
interval	to	recover	and	stabilise	after	a	demand	from	a	consumer.	The	supply	system	is
overloaded	if	two	or	more	demands	follow	(cluster)	within	the	critical	time	interval.

Here	are	some	other	common	examples	where	reliability	depends	on	the	existence	of	minimum
critical	distances	between	the	occurrences	of	random	events:

Users	demanding	the	same	resource	(e.g.	piece	of	equipment)	for	a	fixed	time	s.
Collisions	between	user	demands	occur	if	two	or	more	users	arrive	within	the	time	interval
s	allocated	per	each	user.

A	single	repairer	servicing	a	number	of	devices	upon	failure.	If	the	repair	time	is	s,
clustering	of	two	or	more	failures	within	a	time	interval	s	will	cause	delay	in	some	of	the
repairs.

Decreasing	the	expected	number	density	of	events	in	the	time	interval	is	an	efficient	way	of
decreasing	the	probability	of	time	clustering	of	reliability-critical	events.	Thus,	reducing	the
expected	number	of	events	from	10	events	per	year	to	5	events	per	year	reduces	the	probability
of	time	clustering	within	a	week	from	77.5	to	34%.	The	alternative	way	of	decreasing	the
probability	of	time	clustering,	which	consists	of	increasing	the	length	of	the	time	interval,	is	not
as	efficient.	Doubling	the	time	interval	to	2	years	by	keeping	the	expected	number	of	demands
the	same	(10	expected	number	of	events	per	2	years)	results	in	a	probability	of	time	clustering
56.7%	within	2	years,	which	is	still	very	large.

Space	clustering	of	random	risk-critical	factors	may	also	occur.	Clustering	of	two	or	more
random	flaws	over	a	small	critical	distance	decreases	dangerously	the	load-carrying	capacity
of	thin	fibres	and	wires.	As	a	result,	a	configuration	of	two	or	more	flaws	within	a	critical
distance	could	cause	failure	during	loading.

11.2.3	Condition	Monitoring



Condition	monitoring	is	used	for	detecting	changes	or	trends	in	controlling	parameters	or	in	the
normal	operating	conditions	which	indicate	the	onset	of	failure.	By	providing	an	early	problem
diagnosis,	the	underlying	idea	is	to	organise	in	advance	the	intervention	for	replacement	of
components	whose	failure	is	imminent	thereby	avoiding	heavy	consequences.	Condition
monitoring	is	particularly	important	in	cases	where	the	time	for	mobilisation	of	repair
resources	is	significant.	The	early	problem	diagnosis	helps	to	reduce	significantly	the
downtimes	due	to	unplanned	intervention	for	repair.	A	planned	or	opportune	intervention	is
considerably	less	expensive	than	unplanned	intervention	initiated	when	a	critical	failure
occurs.

Early	identification	and	action	upon	detection	of	an	incipient	failure	reduces	significantly	the
risk	of	environmental	pollution,	the	number	of	fatalities,	the	loss	of	production	assets	and	the
losses	caused	by	dependent	failures	associated	with	damage	to	other	components	and	systems.
The	earlier	the	warning,	the	shorter	is	the	response	time,	the	more	efficient	is	the	loss
prevention,	the	more	valuable	is	the	condition	monitoring	technique.

11.2.4	Reducing	the	Time	of	Exposure	or	the	Space	of	Exposure

11.2.4.1	Time	of	Exposure
A	typical	example	of	limiting	the	risk	of	failure	by	reducing	the	time	of	exposure	is	reducing
the	length	of	operation	in	order	to	reduce	the	probability	of	encountering	an	overstress	load.
Indeed,	if	the	critical	overstress	load	follows	a	homogeneous	Poisson	process	with	density	ρc
and	the	length	of	the	time	interval	is	a,	the	probability	of	encountering	an	overstress	load

during	the	time	interval	(0,	a)	is	 .	This	probability	can	be	reduced
significantly	by	reducing	the	length	of	the	time	interval	a.	If	the	process	or	action	is	conducted
within	a	very	small	time	interval	 ,	the	probability	of	failure	tends	to	zero.	There	is	simply
no	time	for	the	hazards	to	materialise:

For	road	accidents	following	a	homogeneous	Poisson	process	with	density	ρ,	along	a	road
with	length	L1,	the	probability	of	no	road	accident	associated	with	the	length	L1	is	

.	If	the	road	length	is	increased	by	a	factor	of	m	( ),	the	probability	of

no	accident	will	be	 .	Taking	the	ratio	of	the	logarithms	of	these	probabilities
gives

from	which	 .	From	the	last	expression,	if,	for	example,	the	probability	of	no	road
accident	associated	with	the	road	length	L1	is	 ,	increasing	the	length	of	the	road	four



times	decreases	the	probability	of	no	road	accident	to	 .	Unlike	short	journeys,	long
journeys	are	likely	to	be	affected	by	delays	caused	by	road	accidents.	Consequently,	for	long
journeys,	a	delay	reflecting	potential	accidents	should	be	calculated	in	the	estimated	overall
time	of	the	journey.

Suppose	that	a	random	load,	characterised	by	a	cumulative	distribution	function	FL(x),	is
applied	a	number	of	times	during	a	finite	time	interval	with	length	t	and	the	times	of	load
application	follow	a	homogeneous	Poisson	process	with	intensity	ρ.	Suppose	that	the	strength
is	characterised	by	a	probability	density	distribution	fS(x).	It	is	also	assumed	that	the	load	and
strength	are	statistically	independent	random	variables.	The	probability	of	no	failure	(the
reliability)	associated	with	the	finite	time	interval	(0,	t)	can	be	calculated	from	the	overstress
reliability	integral	derived	in	Chapter	7:

The	term	 	in	the	overstress	reliability	integral	gives	the	probability	that
none	of	the	random	loads	in	the	time	interval	(0,	t)	will	exceed	strength	with	magnitude	x.	With

reducing	the	time	of	exposure	t,	the	probability	 	that	the	load	will	exceed
strength	(the	probability	of	failure)	decreases	significantly	which	leads	to	a	significant
increase	in	the	reliability	R(t).

Another	example	of	limiting	the	risk	by	reducing	the	time	of	exposure	is	in	cases	where	the
accumulated	damage	is	proportional	to	the	time	of	exposure.	In	this	case,	reducing	the	time	of
exposure	prevents	damage	from	reaching	a	critical	level.	Thus,	reducing	the	amount	of	time
spent	in	a	hazardous	area	is	an	important	measure	limiting	the	damage	to	health.	In	some	cases,
the	extent	of	the	damage	(e.g.	in	case	of	carbon	monoxide	poisoning	or	radiation	damage)	is
strongly	correlated	with	the	amount	of	time	spent	in	the	hazardous	area.

Often,	reducing	the	time	of	exposure	does	not	permit	the	negative	effect	to	develop.	A	typical
example	is	increasing	the	speed	by	which	a	rotating	shaft	goes	through	its	natural	frequencies
which	does	not	allow	developing	large	resonance	amplitudes.	Another	example	is	reducing	the
time	of	cutting	plastic	materials	by	increasing	the	speed	of	cutting	faster	than	the	speed	with
which	plastic	deformation	can	spread,	eliminates	the	deformation	of	the	processed	plastic
material.

11.2.4.2	Length	of	Exposure	and	Space	of	Exposure
A	typical	example	of	limiting	the	risk	of	failure	by	reducing	the	length	of	exposure	is	reducing
the	length	of	a	piece	of	wire	in	order	to	reduce	the	probability	that	a	critical	defect	will	be
present.	Indeed,	if	the	critical	flaws	in	the	wire	follow	a	homogeneous	Poisson	process	with
density	λc	and	the	length	of	the	wire	is	L,	the	probability	of	encountering	a	critical	flaw	along	a

length	(0,	L)	is	 .	This	probability	can	be	reduced	significantly	by	reducing



the	length	L	of	the	wire.

If	the	piece	of	wire	is	with	a	very	small	length	 ,	the	probability	of	having	a	critical	flaw
on	the	length	L	tends	to	zero:

Another	example	is	limiting	the	risk	of	an	error	in	a	long	chain	of	the	same	type	of	calculations.
Assuming	that	the	errors	follow	a	Poisson	distribution,	if	λ	is	the	number	of	errors	per	unit
number	of	calculations,	the	probability	of	an	error	associated	with	the	total	number	of
calculations	N	is	given	by	 .	Reducing	the	number	of	calculations	N
dramatically	reduces	the	probability	of	a	calculation	error	pf.

11.2.5	Discovering	and	Eliminating	a	Common	Cause:	Diversity	in
Design
A	common	cause	reduces	the	reliability	of	a	number	of	components	simultaneously.	The
affected	components	are	then	more	likely	to	fail,	which	reduces	the	overall	system	reliability.

Typical	conditions	promoting	common	cause	failures	are	common	design	faults,	common
manufacturing	faults,	common	installation	and	assembly	faults,	common	maintenance	faults	and
shared	environmental	stresses	by	several	components,	for	example,	high	temperature,	pressure,
humidity,	erosion,	corrosion,	vibration,	radiation,	dust,	electromagnetic	radiation,	impacts	and
shocks.	Common	cause	may	also	be	due	to	common	power	supply,	common	communication
channels,	common	piece	of	software,	etc.	Thus,	two	programmable	devices	produced	by
different	manufacturers	and	assembled	and	installed	by	different	people	can	still	suffer	a
common	cause	if	the	same	faulty	piece	of	software	code	has	been	recorded	in	the	devices.

Maintenance	and	operating	actions	common	to	different	components	are	major	sources	of
common	cause	failures.	Software	routines	written	by	the	same	person/team	also	may	exhibit
common	faults	and	failures.

Acceleration	stresses	leading	to	accumulation	of	damage	and	faster	wearout	are	typical
examples	of	common	causes.	Examples	of	acceleration	stresses	are	the	temperature,	humidity,
cycling,	vibration,	speed,	pressure,	voltage,	current,	concentration	of	particular	ions,	etc.	This
list	is	only	a	sample	of	possible	acceleration	stresses	and	can	be	extended	significantly.
Because	acceleration	stresses	lead	to	a	faster	wearout,	they	entail	a	higher	propensity	to	failure
for	groups	of	components	which	reduces	the	overall	system	reliability.

A	typical	example	of	this	type	of	common	cause	failures	is	the	high	temperature	which
increases	the	susceptibility	to	deterioration	of	a	group	of	electronic	components.	By
simultaneously	increasing	the	hazard	rates	of	the	affected	components,	the	probability	of
system	failure	is	increased.	Humidity,	corrosion	or	vibrations	increase	the	joint	probability	of
failure	of	the	affected	components	and	shorten	the	system’s	life.	Even	in	blocks	with	a	high
level	of	built-in	redundancy,	in	case	of	a	common	cause,	all	redundant	components	in	the	block
may	fail	within	a	short	period	of	time,	and	the	advantage	from	the	built-in	redundancy	is	lost.



Failure	to	account	for	the	acceleration	stresses	acting	as	common	causes	usually	leads	to
optimistic	reliability	predictions	–	the	actual	reliability	is	smaller	than	the	predicted.

Designing	against	common	causes	of	failure	in	order	to	reduce	the	risk	of	failure	can	be	done
by	(i)	identifying	and	eliminating	sources	of	common	faults	and	common	cause	failures,	(ii)
decreasing	the	likelihood	of	the	common	causes	and	(iii)	reducing	the	consequences	from
common	cause	failures.

Common	cause	failures	are	difficult	to	identify	and	are	frequently	overlooked	if	little	attention
is	paid	to	the	working	environment	and	the	possibility	of	latent	faults.	Designing	out	common
causes	is	not	always	possible,	but	it	should	be	done	if	opportunity	arises.	Simultaneous
corrosion	of	various	components	in	a	cooling	circuit	or	a	hydraulic	circuit,	for	example,	can	be
eliminated	by	selecting	non-corrosive	working	fluids.	Erosion	of	various	components	caused
by	a	production	fluid	can	be	reduced	if	a	filter	eliminating	the	abrasive	particles	is	installed.
Destruction	of	all	communication	lines	due	to	fire,	accident	or	vandalism	can	be	avoided	by
avoiding	placing	all	of	the	communication	lines	in	a	common	conduit.

A	typical	example	of	reducing	the	impact	of	a	common	cause	is	the	use	of	corrosion	inhibitors
which,	when	mixed	with	the	cooling	agent,	reduce	significantly	the	corrosion	rate.	The	impact
of	a	common	cause	can	also	be	reduced	by	strengthening	the	components	against	it.	Such	is,	for
example,	the	intention	behind	all	corrosion	protection	coatings.	Other	examples	are	the	water-
tight	designs	and	couplings	in	underwater	installations	which	reduce	the	possibility	of
contamination	due	to	seawater	ingress.

Common	case	failures	can	also	be	reduced	by	decreasing	the	likelihood	of	occurrence	of
common	cause	events,	for	example,	common	design,	manufacturing	and	assembly	faults,	fire
and	faulty	maintenance.	Frequent	design	reviews	and	strict	control	of	the	manufacturing	and
assembly	reduce	the	likelihood	of	latent	faults	which	could	be	a	common	cause	for	expensive
failures.	A	strict	control	of	the	maintenance	operations	reduces	the	maintenance	faults	which
often	initiate	common	failures.	Furthermore,	providing	maintenance	of	components	by	two
different	operators	reduces	the	likelihood	of	a	common	cause	failure	due	to	faulty	maintenance.

Providing	diversity	in	design	is	a	very	efficient	way	of	blocking	out	a	common	cause	and
reducing	common	cause	failures.	The	idea	is	to	prevent	several	components	from	being
affected	by	the	same	common	cause.	A	common	cause	failure	due	to	a	software	bug,	for
example,	can	be	avoided	if	an	alternative	algorithm	and	implementation	is	provided	for	the
same	task	or	if	a	different	team	is	involved	in	developing	the	same	piece	of	software,
independently.	If	two	cooling	pumps	(a	main	pump	and	an	emergency	pump)	participate	in
cooling	down	a	chemical	reactor,	failure	of	both	pumps	creates	an	emergency	situation.	If	the
two	cooling	devices	are	from	different	manufactures	or	operate	on	different	principles,
common	cause	faults	will	be	blocked	out.	For	redundant	cooling	devices,	if	one	of	them	is
powered	by	electricity	and	the	other	uses	natural	gravitation	to	operate,	the	common	cause
‘absence	of	power	supply’	will	be	eliminated.	If	in	addition,	the	two	cooling	devices	are
serviced/maintained	by	different	operators,	the	common	cause	‘faulty	maintenance’	will	also
be	blocked	out.	Similarly,	a	common	cause	due	to	an	incorrect	calibration	of	measuring
instruments	due	to	a	human	error	can	be	avoided	if	the	calibration	is	done	by	different



operators.	If	finally,	the	cooling	devices	are	separated	in	different	rooms,	the	common	cause
failure	due	to	fire	will	also	be	blocked	out.

Separating	the	components	at	distances	greater	than	the	radius	of	influence	of	the	common
cause	is	an	efficient	way	of	reducing	the	risks	from	a	common	cause	failure.

Thus,	separating	large	fuel	containers	at	safe	distances	from	one	another	limits	the	extent	of
damage	from	accidental	fire.	Separating	two	or	more	communication	centres	at	distances
greater	than	the	radius	of	destruction	of	a	missile	increases	the	probability	of	survival	of	at
least	one	of	the	centres.	Multiple	backups	of	the	same	vital	piece	of	information	kept	in
different	places	protect	against	the	loss	of	information	in	case	of	fire,	theft	or	sabotage.

Another	implementation	of	this	principle	is	the	separation	of	vital	control	components	from	a
component	whose	failure	could	inflict	damage.	A	typical	example	is	separating	the	control
lines	at	safe	distances	from	the	aeroplane	jet	engines.	In	case	of	engine	explosion,	the	flight
controls	will	not	be	lost.

Insulating	some	of	the	redundant	components	from	contact	with	environment	characterised	by
excessive	dust,	humidity,	heat	or	vibrations.

Avoiding	common	links	which	can	be	affected	by	a	common	cause	is	an	efficient	way	of
blocking	out	common	causes.	Such	are,	for	example,	the	common	conduits	for	cables	and
common	location	for	components	and	devices	with	vital	functions.

Investing	in	many	unrelated	sectors	protects	against	a	common	cause	reducing	simultaneously
the	return	from	a	number	of	sectors	(e.g.	agricultural	sectors	simultaneously	affected	by	bad
weather	or	disease,	consumer	sectors	simultaneously	affected	by	a	health	scare,	investments	in
a	country	affected	by	a	political	crisis,	financial	crisis	or	social	unrest,	etc.)

Sundararajan	(1991)	suggests	preliminary	common	cause	analysis	which	consists	of	identifying
all	possible	common	causes	to	which	the	system	is	exposed	and	their	potential	effects.	The
purpose	is	to	alert	design	engineers	to	potential	problems	at	the	early	stages	of	the	designs.

11.2.6	Eliminating	Vulnerabilities
A	design	vulnerability	is	often	present	where	a	single	failure	of	a	component	leads	to	a
catastrophic	failure	escalation	with	serious	consequences.	Particularly	sensitive	to	a	single
failure	are	systems	possessing	a	large	amount	of	energy,	whose	safe	containment	depends	on
the	safe	operation	of	one	or	several	components	or	on	a	safe	sequence	of	operations.	Such
systems	can	be	compared	to	loaded	springs	accumulating	a	large	amount	of	potential	energy
controlled	by	a	single	lock.	Failure	of	the	lock	will	release	a	large	amount	of	stored	energy
with	large	destructive	power.

Consider	a	dam	built	from	non-compacted	material	whose	strength	depends	on	the	reliable
operation	of	the	draining	system.	Such	a	dam	is	vulnerable	because	if	the	draining	system	fails
(which	can	happen	if	the	draining	pipes	are	blocked	by	silt	or	debris),	the	strength	of	the	dam
can	be	eroded	quickly	which	leads	to	triggering	of	a	catastrophic	failure.

Another	example	of	a	vulnerable	design	is	the	case	where	preventing	the	release	of	toxic



substances	in	the	environment	depends	on	the	reliable	operation	of	a	single	control	sensor.	An
accidental	damage	of	the	sensor	entails	grave	consequences.

Yet	another	example	of	sensitivity	to	single	failures	is	a	system	whose	safe	operation	overly
depends	on	the	absence	of	human	error.	In	this	case,	a	human	error	during	a	critical	operation
may	trigger	a	major	failure	associated	with	grave	consequences.	One	way	of	counteracting	this
type	of	sensitivity	is	to	build	in	fail-safe	devices	or	failure	prevention	systems	that	make	the
dangerous	operation	impossible.	Such	are	the	various	failure	prevention	interlocks	which	do
not	permit	conducting	an	operation	until	particular	safety	conditions	are	in	place.

In	computer	security,	vulnerability	is	a	weakness	which	allows	an	attacker	to	acquire	access	to
a	valuable	service	or	data.	Failure	to	include	checks	for	a	stack	overflow	or	division	by	zero,
for	example,	leaves	serious	vulnerabilities	which	could	be	exploited	by	attackers	to	execute
malicious	code.

Monte	Carlo	simulation	is	an	important	method	for	identifying	and	assessing	the	likelihood	of
vulnerabilities	caused	by	an	unfavourable	stack	up	of	values	of	risk-critical	parameters.

11.2.7	Self-Reinforcement
Typical	applications	of	the	self-reinforcement	principle	are	the	self-locking	screws	and	the
self-locking	wedges.	The	self-reinforcement	principle	is	also	the	basis	of	the	design	of	other
self-locking	devices:	(i)	self-locking	grips	in	tensile	testing	machines,	(ii)	self-locking	plate
clamps,	(iii)	self-locking	hooks,	(iv)	self-locking	climbing	equipment,	(v)	self-locking	marine
cleats,	etc.

Another	application	of	this	principle	can	be	used	in	the	design	of	covers	for	containers	under
pressure	(Figure	11.19).

Figure	11.19	Design	of	a	cover	for	a	container	under	pressure	(a)	without	self-reinforcement
(b)	with	self-reinforcement



For	the	design	in	Figure	11.19a,	the	loading	stresses	in	the	screws	can	be	reduced,	and	the
reliability	of	the	seal	can	be	increased	by	selecting	the	self-reinforcement	version	in	Figure
11.19b.	In	the	design	from	Figure	11.19b,	the	pressure	helps	to	form	the	seal	and	prevent
leakage.

This	principle	can	be	also	used	to	limit	the	consequences	in	the	case	of	failure.	Considering	the
example	in	Figure	11.19b,	if	loss	of	containment	occurs,	the	leak	can	be	reduced	if	a	flexible
screen	is	inserted	in	such	a	way	that	the	pressure	causing	the	leak	is	now	used	to	seal	the	leak.

11.2.8	Using	Available	Local	Resources
The	essence	of	this	principle	is	the	use	of	available	resources	from	the	environment	or
products	of	the	system’s	own	operation	to	achieve	a	risk	reduction.

A	typical	example	is	the	use	of	protective	earthing.	Keeping	the	exposed	conductive	surface	of
electrical	devices	at	earth	potential	reduces	the	risk	of	electrical	shock.	Earthing	is	also
commonly	used	for	protecting	structures	from	lightning	strike.

Another	example	of	this	principle	is	the	use	of	gravity	to	provide	cooling	in	the	case	of	a
power	failure.	Freezing	locally	the	water	in	a	pipe	to	provide	a	temporary	plug	in	order	to
repair	a	damaged	pipe	section	is	an	example	of	the	use	of	local	resources	to	reduce	the
consequences	of	failure.	Yet	another	example	is	using	the	marine	water	as	electrolyte	in	a
circuit	for	cathodic	protection,	designed	to	reduce	the	corrosion	of	a	pipeline.

11.2.9	Derating
Derating	is	one	of	the	most	powerful	tools	available	to	the	designer	for	reducing	the
likelihood	of	failures.	It	is	commonly	done	by	reducing	the	operating	stresses	below	their	rated
levels.	The	life	of	many	components	and	systems	increases	dramatically	if	the	stress	levels	are
decreased.	This	makes	the	components	and	systems	robust	against	the	inevitable	variations	of
the	load	and	strength.	The	intensity	of	the	wearout	and	damage	accumulation	also	decreases
significantly	with	reducing	the	stress	magnitude.

The	degree	of	wearout	and	deterioration	is	a	function	of	the	time	and	a	particular	controlling
(wearout)	factor	p	(Figure	11.20).	As	can	be	seen	from	Figure	11.20,	reducing	the	intensity
level	of	the	wearout	factor	from	p1	to	p2	enhances	the	component’s	life	because	of	the
increased	time	for	attaining	a	critical	level	of	damage,	after	which	the	component	is	considered
to	have	failed.	A	typical	application	of	this	method	is	the	reduction	of	the	stress	amplitude,
which	results	in	a	significant	increase	of	the	fatigue	life	of	components.



Figure	11.20	Time	to	failure	for	different	intensity	levels	of	the	wearout	factor

Derating	essentially	‘overdesigns’	components	by	separating	the	strength	distribution	from	the
load	distribution	thereby	reducing	the	interaction	between	the	distribution	tails.	The	smaller	the
interaction	of	the	distribution	tails,	the	smaller	the	probability	that	the	load	will	exceed
strength	and	the	smaller	the	probability	of	failure.	Derating	however	is	associated	with
inefficient	use	of	the	strength	capacity	of	components.

In	general,	the	greater	the	derating,	the	longer	the	life	of	the	component.	Voltage	and
temperature	are	common	derating	stresses	for	electrical	and	electronic	components.	The	life	of
a	light	bulb	designed	for	220 V,	for	example,	can	be	enhanced	enormously,	simply	by	operating
it	at	a	voltage	below	the	rated	level	(e.g.	at	110 V).	For	mechanical	components,	common
derating	stresses	are	the	operating	speed,	stress	amplitude,	temperature,	pressure,	etc.

Derating	also	limits	the	consequences	from	failure.	Thus,	decreasing	the	operating	temperature
of	a	gaseous	substance	not	only	reduces	the	likelihood	of	failure	but	also	limits	the



consequences	given	that	failure	occurs.

11.2.10	Selecting	Appropriate	Materials	and	Microstructures
Material	selection	is	central	to	design	and	guarantees	the	combination	of	properties	which	are
needed	for	the	required	function.	Material	selection	and	selection	of	appropriate
microstructures	play	a	very	important	role	in	reducing	technical	risk.	Each	particular
application	requires	appropriate	combinations	of	material	properties:	density,	conductivity,
Young	modulus,	shear	modulus,	toughness,	strength,	corrosion	resistance,	thermal	resistance,
etc.	(Ashby,	2005;	Ashby	and	Jones,	2000).	Materials	which	do	not	comply	with	these
requirements	cannot	deliver	the	expected	functions	and	exhibit	failure	modes.

Consider	the	common	case	of	tubes	transferring	corrosive	production	fluids	or	tubes	working
in	corrosive	environment.	Selecting	steel	instead	of	appropriate	corrosion-resistant	polymer	or
composite	will	result	in	costly	failures	due	to	corrosion.	In	turn,	selecting	polymer	instead	of
metal	or	composite	for	components	subjected	to	intensive	cyclic	loading	result	in	a	short
fatigue	life.	In	high-temperature	aggressive	environment,	selecting	metals	instead	of	ceramics
often	leads	to	premature	failure.

Composite	materials	are	widely	used	because	they	can	be	tailored	to	meet	specific	design
requirements	and	combine	various	properties.	Fibre-reinforced	composites	combine	a	very
high	strength	to	weight	ratio,	high	fatigue	resistance,	corrosion	resistance,	damage	tolerance
and	lightweight	and	are	increasingly	replacing	plastics	and	metals	in	many	applications.

Controlling	the	structure	of	materials	brings	unique	properties	which	limit	the	risk	of	failure	in
safety-critical	applications.	Altering	the	microstructure	of	steel,	for	example,	by	an	appropriate
heat	treatment,	can	result	in	changing	the	failure	mode	from	brittle	to	ductile.	The	brittle	failure
mode	is	sudden	and	proceeds	at	a	high	speed,	with	no	additional	energy	required,	and	the
consequences	are	much	more	severe	compared	to	the	ductile	failure	mode.

Selecting	appropriate	materials	also	limits	the	consequences	given	that	failure	has	occurred.
Such	are,	for	example,	the	materials	and	structures	used	for	crumpling	zones	in	road	vehicles
and	racing	cars.	These	materials	have	a	pronounced	capability	to	absorb	and	steadily	dissipate
impact	energy,	which	reduces	the	impact	load	on	passengers	in	the	case	of	collision.

11.2.11	Segmentation
Segmentation	reduces	risk	by	(i)	improving	the	load	distribution,	(ii)	reducing	the	vulnerability
to	a	single	failure,	(iii)	reducing	the	damage	escalation	and	(iv)	limiting	the	hazard	potential.

11.2.11.1	Segmentation	Improves	the	Load	Distribution
Consider	a	flange	with	very	few	fasteners.	A	flange	connection	with	a	very	small	number	of
fasteners	leads	to	excessive	stresses	in	some	of	the	fasteners.	Segmentation	involving	an
increased	number	of	fasteners	improves	the	load	distribution	and	reliability.

A	significant	reliability	increase	can	be	achieved	if	the	load	is	distributed	upon	many	load-
carrying	units.	Thus,	the	load	capacity	of	a	V-belt	cannot	be	increased	by	increasing	its



thickness	because	of	increased	bending	stresses	and	big	hysteresis	losses	overheating	the	belt.
The	load-carrying	capacity	and	reliability	however	can	be	increased	significantly	by	multiple
parallel	V-belts.

11.2.11.2	Segmentation	Reduces	the	Vulnerability	to	a	Single	Failure
Segmentation	also	decreases	vulnerability	to	a	single	failure.	Consider	again	a	flange	with
very	few	fasteners.	Failure	of	a	single	fastener	is	very	likely	to	cause	a	loss	of	containment.	A
flange	with	a	larger	number	of	fasteners	will	not	be	vulnerable	to	a	single	failure	or	even	to
several	failures.

Failure	of	one	of	the	multiple	parallel	V-belts	will	not	cause	failure	of	the	transmission	system.
Similarly,	failure	of	a	single	wire	in	a	rope	built	by	twisting	many	wire	strands	will	not
normally	cause	failure	of	the	rope.

11.2.11.3	Segmentation	Reduces	the	Damage	Escalation
Segmentation	also	helps	to	reduce	the	damage	escalation	and	the	consequences	given	that
failure	has	occurred.	Segmenting	a	pipe	into	many	separate	sealed	segments	helps	to	limit	the
damage	from	a	propagating	crack	within	a	single	segment	only,	which	reduces	significantly	the
consequences	from	failure	(see	Figure	12.11b	from	the	next	chapter).

Crack	arrestors	can	be	strips	or	rings	made	of	tougher	material	(Figure	12.11a).	The
mechanism	of	crack	arrest	consists	of	reducing	the	strain	energy	flow	to	the	crack	tip	upon
encountering	a	tougher	material	strip.	The	crack	can	also	be	arrested	at	the	edge	of	the	pipeline
section	(Figure	12.11b	from	the	next	chapter).	Segmentation,	in	this	case,	does	not	prevent
cracks	from	becoming	unstable;	it	only	limits	the	extent	of	damage	once	the	damage	has	started
escalating.	In	this	case,	segmentation	reduces	risk	by	limiting	the	consequences	of	failure.

Another	application	example	of	the	segmentation	principle	can	be	given	with	buckling	of	a
pipeline	subjected	to	a	high	external	hydrostatic	pressure.	Buckling	could	be	eliminated	by
increasing	the	thickness	of	the	pipeline,	but	this	option	is	associated	with	significant	costs.
Control	of	buckling	propagation	achieved	by	using	buckle	arrestors	is	a	cheaper	and	more
preferable	option.	Buckle	arrestors	are	thick	steel	rings	welded	to	or	attached	at	regular
intervals	to	the	pipeline	in	order	to	halt	the	propagating	buckle	and	confine	damage	to	a
relatively	small	section	(see	Figure	12.11a	from	the	next	chapter).	In	this	way,	the	losses	from
buckling	are	limited	to	the	length	of	the	section	between	two	buckle	arrestors.	In	case	of
failure,	only	the	buckled	section	will	be	cut	and	replaced.	The	spacing	between	buckle
arrestors	can	be	optimised	on	the	basis	of	a	cost–benefit	balance	between	the	cost	of
installation	of	the	arrestors	and	the	expected	cost	of	intervention	and	repair.

The	segmentation	principle	can	be	used	for	reducing	risk	in	a	wide	range	of	applications.

Segmentation	is	used	to	increase	the	resistance	of	a	ship	to	flooding.	The	volume	of	the	hull	is
divided	into	watertight	compartments.	If	the	flooding	is	localised,	only	one	or	very	few
compartments	are	affected	which	allows	the	ship	to	retain	buoyancy.	Segmentation	of	the
corridors	in	a	building,	with	fireproof	doors,	protects	against	the	fast	escalation	of	fire.



Segmentation	can	be	used	to	prevent	the	spread	of	infectious	diseases.	Such	is	the	purpose	of
preventing	formations	of	large	gatherings	of	people	in	case	of	infectious	disease.

11.2.11.4	Segmentation	Limits	the	Hazard	Potential
Segmentation	can	be	applied	with	success	to	limit	the	amount	of	energy	possessed	by	hazards
which	limits	their	potential	to	cause	harm.	Thus,	processing	small	(segmented)	volumes	of
toxic	substances	at	a	time,	reduces	the	hazard	potential	of	the	substance	and	the	risk	of
poisoning	in	case	of	accidental	spillage.	Preventing	the	formation	of	large	build-ups	of	snow,
water,	overheated	water	vapour,	etc.,	reduces	both	the	likelihood	of	an	accident	and	its
destructive	power	should	it	occur.

11.2.12	Reducing	the	Vulnerability	of	Targets
Vulnerability	of	humans	is	reduced	by	various	barriers,	guards,	rails	and	by	using	personal
protective	equipment.	Examples	of	personal	protective	equipment	are	protective	clothing,
harnesses,	breathing	devices,	hats,	goggles,	boots,	gloves,	masks,	radiation	indicators,	toxic
gas	release	detectors,	lifting	and	handling	equipment,	vaccines,	etc.	Vulnerability	of	the
equipment	and	systems	is	decreased	by	using	protection	barriers,	housing,	encapsulation,	anti-
corrosion	and	anti-erosion	coatings,	use	of	CCTV	surveillance,	metal	shutters,	exclusion
zones,	security	systems	for	access,	etc.

Vulnerability	of	data	is	reduced	by	using	security	systems	and	limiting	the	access	to	personal
records	and	confidential	data.

11.2.13	Making	Zones	Experiencing	High	Damage/Failure	Rates
Replaceable
The	life	of	a	system	can	be	extended	by	making	blocks	of	components	experiencing	intensive
failure	rates	modular.	The	failed	blocks	can	then	be	replaced	without	replacing	the	entire
system.	This	principle	has	been	used	widely	in	electronic	systems	and	mechanical	systems.

Often,	even	the	life	of	components	can	be	increased	by	identifying	zones	subjected	to	intensive
failure	rates	and	making	them	replaceable.	This	avoids	replacing	the	entire	component	after	the
failure	of	such	a	zone.	Thus,	the	life	of	a	conveyer	belt	can	be	increased	significantly	if	the
surface	zones	in	contact	with	the	abrasive	material	are	designed	as	replaceable	plates.	This
principle	has	been	used	for	a	long	time	in	the	design	of	journal	bearings	and	brakes.

11.2.14	Reducing	the	Hazard	Potential
The	purpose	is	to	limit	the	amount	of	energy	possessed	by	hazards	which	limits	their	potential
to	cause	damage.	Thus,	preventing	the	formation	of	large	build-ups	of	snow	reduces	both	the
likelihood	of	an	avalanche	and	its	destructive	power	should	it	occur.	This	is	an	example	of
reducing	the	hazard	potential	by	reducing	the	amount	of	stored	potential	energy.

Another	related	example	is	reducing	the	voltage	in	electrical	devices	to	reduce	the
consequences	from	an	electric	shock.



Instead	of	investing	in	safety	devices	and	passive	barriers,	often,	it	is	much	more	cost	efficient
to	passivate	hazardous	wastes	or	spilled	hazardous	substances.	This	eliminates	or	reduces
significantly	their	hazard	potential	and	with	it,	the	associated	risk.	There	are	various	methods
by	which	this	could	be	achieved:

Treatment	with	chemicals	which	reduce	the	chemical	activity	and	toxicity	of	the	hazardous
substances.

Reducing	the	inherent	tendency	to	ignite	or	burn	(e.g.	chemicals	which	cover	spilled	fuel
and	prevent	it	from	catching	fire).

Reducing	the	capability	to	evaporate.

Reducing	the	possibility	of	auto-ignition	(e.g.	by	avoiding	piles	of	flammable	materials).

Changing	the	aggregate	state.	Solidifying	liquid	toxic	waste,	for	example,	reduces
significantly	its	potential	to	penetrate	through	the	soil	and	contaminate	underground	water.

Dilution.

11.2.15	Integrated	Risk	Management
The	goal	of	integrated	risk	management	is	to	ensure	that	all	major	technical	risks	are	identified,
assessed,	prioritised,	aggregated	and	mitigated	where	possible.

Prioritisation	is	an	important	part	of	risk	management.	It	may	be	unnecessary	to	allocate
resources	for	risks	whose	impacts	are	very	small.

Consequently,	the	process	of	managing	technical	risk	can	be	summarised	by	the	stages	in
Figure	11.21.



Figure	11.21	A	block	diagram	of	integrated	risk	management	through	risk	reduction

A	basic	step	of	the	risk	management	is	the	identification	of	as	many	failure	scenarios	as



possible	and	assessing	their	likelihood	and	impacts.	After	the	aggregated	(total)	risk
associated	with	the	identified	failure	scenarios	has	been	estimated,	the	focus	is	on	making	a
decision.	If	the	aggregated	risk	is	low,	the	risk	is	accepted	and	no	further	action	is	taken.
Otherwise,	the	risk	must	be	transferred,	spread	or	reduced.

If	the	risk	can	be	managed	easily	by	a	risk	reduction,	a	large	aggregated	risk	would	require
selecting	and	implementing	appropriate	risk	reduction	measures.

After	assessing	the	risks	corresponding	to	the	separate	failure	scenarios,	the	associated	risks
are	ranked	in	order	of	magnitude.	A	Pareto	chart	can	then	be	built	on	the	basis	of	this	ranking,
and	from	the	chart,	the	failure	scenarios	accountable	for	most	of	the	total	risk	during	the
specified	time	interval	are	identified.	Risk	reduction	efforts	are	then	concentrated	on	the	few
critical	failure	scenarios	accountable	for	most	of	the	aggregated	risk.

Appropriate	risk	reduction	measures	are	also	identified	which	will	reduce	major	risks
associated	with	the	critical	failure	scenarios.	Next,	new	possible	failure	scenarios	are
identified,	and	the	aggregated	risk	is	estimated	and	assessed	again.	This	iterative	process
continues	until	the	risk	assessment	procedure	indicates	that	the	aggregated	risk	is	acceptable.

Deciding	upon	and	selecting	particular	risk	reduction	measures	may	not	necessarily	reduce	the
aggregated	(total)	risk.	Indeed,	a	common	situation	during	the	design	of	complex	systems	is
present	when	design	modifications	to	eliminate	a	particular	failure	mode	create	other	failure
modes.	In	order	to	reduce	the	possibility	of	introducing	new	failure	modes,	each	time	after
deciding	upon	and	selecting	appropriate	risk	reduction	measures	(e.g.	design	modifications),
possible	new	failure	scenarios	are	identified	and	assessed	again.	Furthermore,	risks	are	often
interrelated.	Decreasing	the	risk	of	a	particular	failure	scenario	may	increase	the	risk	of	other
failure	scenarios.	Thus,	building	a	tourist	attraction	on	a	remote	place	with	sunny	weather
reduces	the	risk	of	reduced	number	of	tourists	due	to	a	bad	weather	but	simultaneously
increases	the	risk	of	reduced	number	of	tourists	due	to	higher	transportation	expenses
(Pickford,	2001).	An	effective	protection	against	interrelated	risks	is	integrated	risk
management	which	includes	assessment	of	all	individual	risks	and	the	total	risk	after	deciding
upon	each	risk	reduction	measure.

Alongside	risk,	the	integrated	risk	management	also	incorporates	the	expected	reward
(Chapman	and	Ward,	2003).	A	particularly	important	issue	for	a	company	is	striking	the	right
balance	between	risk	and	profitability.	Thus,	borrowing	from	banks	and	investing	in	projects
provide	leverage	and	increase	profitability	but	also	increase	the	risk.	Conversely,	an	increase
in	the	cash	position	reduces	risk	but	also	reduces	profitability	because	of	the	reduced	rate	of
return.

11.3	Protective	Principles:	Minimise	the	Consequences
of	Failure
11.3.1	Fault-Tolerant	System	Design



A	fault	may	not	cause	failure	if	the	component/system	is	fault	tolerant.	Differentiation	between
failures	and	faults	is	essential	for	fault-tolerant	systems.	An	example	of	a	fault-tolerant
component	is	a	component	made	out	of	composite	material	resistant	to	cracks,	defects	and
other	imperfections.	At	the	other	extreme	is	a	component	made	of	material	with	low	toughness
(e.g.	hardened	high-strength	steel)	sensitive	to	different	type	of	inclusions	and	mechanical
flaws.	At	a	system	level,	a	system	with	built-in	redundancy	is	fault	tolerant	as	opposed	to	a
system	with	no	redundancy.

A	digital	circuit	implementing	triple	modular	redundancy	is	a	typical	example	of	a	fault-
tolerant	design	in	digital	electronics.

The	k-out-of-n	redundancy	discussed	in	Chapter	3	is	a	popular	type	of	redundancy	because	it
makes	the	system	fault	tolerant.	Such	is,	for	example,	a	system	of	power	supply	based	on	six
energy	sources	where	only	three	working	sources	at	any	time	are	sufficient	to	guarantee
uninterrupted	supply.	Such	a	system	will	be	resistant	to	faults	and	failures	associated	with	the
separate	power	supply	sources.

A	power	distribution	system	with	radial,	tree-like	structure	is	simple	but	also	highly	unreliable
–	a	fault	along	any	branch	cuts	off	the	power	supply	to	the	entire	downstream	part.	An
interconnected	power	grid	with	mesh-like	topology	is	significantly	more	fault	tolerant,	because
congestion	and	faults	can	be	isolated	without	affecting	the	other	sections	of	the	grid.

Software	including	internal	tests	and	exception	handling	routines	which	set	up	safe	conditions
in	case	of	errors	is	an	example	of	fault-tolerant	software.

11.3.2	Preventing	Damage	Escalation	and	Reducing	the	Rate	of
Deterioration
Implementing	appropriate	protective	barriers	can	prevent	damage	from	escalating.	Protective
barriers	control	an	accident	by	limiting	its	extent	and	duration.	They	can	also	arrest	the
evolution	of	the	accident	so	that	subsequent	events	in	the	chain	never	occur.	Protective	barriers
can	also	prevent	particular	event	sequences	and	processes	which	cause	damage	by	blocking
the	pathways	through	which	damage	propagates.	The	defence	against	a	release	of	toxic
substance,	for	example,	combines:

Passive	physical	barriers	(machine	guards,	fences,	protection	equipment,	clothing,	gloves
and	respiratory	masks)

Active	physical	barriers	(ventilation	triggered	by	a	detector)

Immaterial	barriers	(handling	rules	minimising	the	released	quantity	in	case	of	an	accident
(e.g.	handling	a	single	container	with	toxic	material	at	a	time))

Human	actions	barrier	and	organisational	barrier	(evacuation)

Recovery	barriers	(first	aid	and	medical	treatment)

A	number	of	different	types	of	protective	barriers	reducing	the	consequences	from	accidents	or
failures	have	been	discussed	in	Todinov	(2007).



A	common	way	of	preventing	damage	from	escalating	is	by	using	damage	arrestors.

Various	examples	of	damage	arrestors	have	been	discussed	in	Section	12.2	(Chapter	12).

The	damage	escalation	can	also	be	avoided	by	avoiding	concentration	of	vulnerable	targets
in	close	proximity.

An	example	of	this	principle	is	the	practice	of	avoiding	building	large	containers	for	fuel
storage	in	close	proximity	and	leaving	safe	exclusion	zones	separating	the	containers.	This
measure	makes	the	storage	containers	invulnerable	to	domino-type	failures	and	damage
escalation	and	prevents	an	accidental	explosion	of	a	storage	container	initiating	other
explosions.

An	efficient	method	of	limiting	the	consequences	from	an	accident	or	failure	is	blocking	the
pathways	through	which	the	damage	escalates.	This	is	done	by	studying	the	pathways	through
which	the	consequences	propagate	and	where	possible,	automatically	sealing	them	off	in	case
of	an	accident.	A	good	example	is	the	urgent	quarantine	measure	of	tracking	and	isolating
infected	individuals	to	prevent	the	spread	of	infectious	disease.	Active	protection	systems
limit	the	consequences	by	blocking	automatically	the	pathways	through	which	the	consequences
propagate.	Such	are,	for	example,	the	shutdown	systems	and	fail-safe	devices	which
automatically	close	key	valves	in	case	of	a	critical	failure,	thereby	isolating	toxic	or
flammable	production	fluids	and	reducing	the	consequences	from	failures.	Various	stop	buttons
halting	the	production	cycle	in	case	of	failure	along	a	production	line	are	also	part	of	the	active
protection	systems.	Other	examples	of	protection	devices	are	the	cut-off	switches	or	fuses
which	disconnect	a	circuit	if	the	current	exceeds	a	maximum	acceptable	value.

An	example	of	delaying	the	rate	of	deterioration	in	case	of	failure	are	the	fireproof	coatings
of	steel	supporting	structures,	limiting	the	consequences	should	fire	breaks	out.	Without	the
fireproof	protection,	in	case	of	fire,	the	steel	loses	quickly	its	strength	and	may	cause	the	entire
structure	to	yield	and	collapse.

11.3.3	Using	Fail-Safe	Designs
The	idea	behind	the	fail-safe	principle	is	to	establish	safe	operating	conditions	for	the	system
after	the	failure	occurrence.

Hardware	fail-safe	devices	are	often	an	integral	part	of	protection	systems.	A	fail-safe	gate
valve,	for	example,	uses	the	accumulated	elastic	energy	of	a	spring	to	return	the	valve	in	safe
‘closed’	position	should	the	hydraulic	pressure	keeping	the	valve	open	suddenly	drop.

The	fail-safe	electrical	contacts,	part	of	machine	guards,	are	designed	to	prevent	failure
causing	a	dangerous	state	of	contacts	sticking	together.	Without	a	fail-safe	design,	a	failure
resulting	in	electrical	contacts	sticking	together	permits	the	machine	to	be	switched	on	in	the
absence	of	a	machine	guard.

The	leak-before-break	concept	(see	Section	12.1.3)	in	designing	pressure	vessels	is	an
application	of	the	fail-safe	principle	–	the	pressure	vessel	must	be	able	to	tolerate	without	fast
fracture	a	through	crack	of	length	twice	the	thickness	of	the	vessel.



Software	fail-safe	devices	work	by	using	internal	programme	tests	and	exception	handling
routines	which	set	up	safe	conditions	in	case	of	errors.	In	another	example,	a	control	can	be	set
up	in	‘safe’	position	and	error	indicated	if	an	important	component	or	a	sensor	has	failed.

Using	devices	which	permit	operation	in	severely	degraded	conditions	also	belongs	to	this
category.	A	rigid	metal	disc	in	a	car	tyre	or	a	substance	which	automatically	seals	the	tyre
puncture	allows	the	driver	to	maintain	steering	control	and	avoid	accidents.

11.3.4	Deliberately	Designed	Weak	Links
The	consequences	from	failure	can	be	decreased	if	potential	failures	are	channelled	into
deliberately	designed	weak	links.	Should	the	unfavourable	conditions	occur,	the	weak	links	are
the	ones	to	fail	and	protect	the	expensive	components	or	the	system.	Impact	attenuators,
including	crumpling	zones	in	road	cars	and	crash	cones	in	racing	cars	are	typical	examples	of
deliberately	designed	weak	links	which	absorb	the	energy	of	impact	and	protect	the	driver	and
passengers.	In	this	respect,	the	honeycomb	sandwich	panels	with	carbon	fibre	skins	have	found
application	in	motor	racing	to	minimise	the	consequences	from	an	impact.

Shear	pins	are	mechanical	sacrificial	parts,	analogous	to	an	electrical	fuse.	They	are
frequently	used	in	couplings	connecting	expensive	mechanical	equipment	with	driving	shafts.
Should	sudden	overload	occur,	the	shear	pin	shears	at	a	specified	torque	to	prevent	damage	to
the	driveshaft	or	other	components.

Shear	pins	are	also	used	in	airplanes	to	release	the	engines	and	prevent	fire	upon	emergency
landing.

Rupture	discs	are	another	example	of	deliberate	weak	links.	They	are	sacrificial	membranes
which	protect	equipment	from	over-pressurisation	or	from	potentially	damaging	vacuum.

Wire	rope	fuse	provides	a	warning	that	the	tensile	load	on	the	rope	has	exceeded	the	safe	load.

Blowout	panels	are	intentionally	wakened	areas	which	fail	in	predictable	manner	and	are	used
in	situations	where	sudden	overpressure	can	occur.	The	pressure	wave	is	channelled	through
the	weakened	area,	thereby	protecting	the	rest	of	the	structure	and	the	neighbouring	structures
from	catastrophic	damage.	An	example	of	a	blowout	panel	is	the	deliberately	weakened	wall
in	a	room	used	to	store	compressed	gas	cylinders	and	the	deliberately	weakened	roof	of	a
bunker	for	ammunition	storage.

Sacrificial	galvanic	anodes	are	another	example	of	a	deliberate	weak	link,	designed	to	protect
buried	metal	structures	(e.g.	pipes)	or	hulls	of	ships	from	corrosion.	All	electrical	fuses	are
examples	of	deliberate	weak	links,	whose	failure	protects	expensive	electrical	equipment.

11.3.5	Built-In	Protection
This	method	is	often	used	for	components	and	systems	whose	likelihood	of	failure	is	large	or
the	consequences	of	failure	are	significant.

Typical	examples	are	the	crumple	zones	and	airbags	in	cars,	the	security	marking	of	valuable
items,	the	safety	devices	transmitting	signals	for	easy	identification	of	the	location	of	tourists	in



mountains,	etc.

This	principle	is	the	reason	behind	the	safety	practice	of	building	residential	areas	beyond	the
radius	of	harmful	influence	of	toxic	substances	from	chemical	plants,	compost	production,	fuel
depots,	etc.

Passive	protective	barriers	physically	separate	the	hazards	(the	energy	sources)	from	targets.
Physical	barriers	isolate	and	contain	the	consequences	and	prevent	the	escalation	of	accidents.
They	provide	a	passive	protection	against	the	spread	of	fire,	radiation,	toxic	substances	or
dangerous	operating	conditions.	A	blast	wall,	for	example,	guards	against	a	blast	wave.
Increasing	the	distance	between	sources	of	hazards	and	targets	minimises	the	damage	in	case	of
an	accident.

Examples	of	built-in	protective	barriers	are	the	safeguards	protecting	workers	from	flying
fragments	caused	by	a	disintegration	of	parts	rotating	at	a	high	speed,	the	protective	shields
around	nuclear	reactors	or	containers	with	radioactive	waste,	the	fireproof	partitioning,	the
double	hulls	in	tankers	limiting	oil	spillage	if	the	integrity	of	the	outer	hull	is	compromised,
etc.

Using	active	protective	barriers.

 The	consequences	from	an	accident	or	failure	can	be	mitigated	significantly	by	activating
built-in	protective	systems.	Typical	examples	of	active	barriers	designed	to	mitigate	the
consequences	from	accidents	are:

The	safety	devices	activating	sprinklers	for	limiting	the	spread	of	fire,	extraction	fans
limiting	the	concentration	of	toxic	gases,	surge	barriers	limiting	the	consequences	from
floods,	automatic	brakes	in	case	of	a	critical	failure,	automatic	circuit	breakers	in	case
of	a	short	cut,	etc.

11.3.6	Troubleshooting	Procedures	and	Systems
Computer-based	expert	troubleshooting	systems	are	a	powerful	tool	for	reducing	the
downtimes	in	case	of	failure.	Expert	systems	capture	and	distribute	human	expertise	related	to
solving	common	problems	and	the	appropriate	course	of	action	in	particular	situations.	Unlike
people,	these	systems	fully	retain	the	knowledge	about	vast	number	of	situations	and	problems
and	the	appropriate	operating	procedures.	Furthermore,	the	troubleshooting	prescriptions	are
objective	and	not	coloured	by	emotions.	Troubleshooting	systems	can	help	in	training	the	staff
to	handle	various	problems	or	accidents.	They	also	help	counteract	the	constant	loss	of
expertise	as	specialists	leave	or	retire	(Sutton,	1992).

11.3.7	Simulation	of	the	Consequences	from	Failure
Given	that	an	accident/failure	has	occurred,	for	each	identified	set	of	initiating	events,	an
assessment	of	the	possible	damage	is	made.	In	case	of	loss	of	containment,	for	example,
depending	on	the	release	rate	and	the	dispersion	rate,	the	consequences	can	vary	significantly.
In	case	of	a	leak	to	the	environment,	the	consequences	are	a	function	of	the	magnitude	of	the



leak	and	the	dispersion	rate.	For	a	leak	with	large	magnitude	and	substantial	dispersion	rate,	a
large	amount	of	toxic	substance	is	released	for	a	short	period	of	time	before	the	failure	is
isolated.	Where	possible,	a	distribution	of	the	conditional	losses	(consequences	given	failure)
should	be	produced.	This	distribution	gives	the	likelihood	that	the	consequences	given	failure
will	exceed	a	specified	critical	threshold.
Suppose	that	a	leak	caused	by	a	dropped	object	penetrating	a	vessel	containing	fluid	under
pressure	is	initiated	and	the	size	of	the	hole	made	by	the	dropped	object	can	vary	anywhere
within	a	certain	range.	The	time	to	discover	and	repair	the	leak	and	the	pressure	inside	the
vessel	are	also	random	variables,	characterised	by	particular	distributions.

Using	a	simulation,	the	distributions	of	the	size	of	the	hole,	the	pressure	inside	the	vessel	and
the	time	to	repair	the	leak	can	be	sampled	and	subsequently,	for	each	combination	of	sampled
parameters,	the	amount	of	released	toxic	substance	can	be	calculated.	Repeating	this	process	a
large	number	of	times	will	produce	a	distribution	of	the	amount	of	released	substance,	from
which	the	probability	that	the	released	amount	will	be	greater	than	a	critical	limit	can	be
estimated	easily.

The	full	spectrum	of	possible	failure	scenarios	should	be	analysed.	Event	trees	are	often
employed	to	map	all	possible	failure	scenarios.

In	case	of	a	release	of	toxic	chemical	or	contaminant	in	a	confined	space,	for	example,
depending	on	the	volume	released,	the	concentration	in	the	environment	will	vary,	and	the
consequences	due	to	exposure	will	also	vary.	The	number	of	people	exposed	to	the	toxic
substance	depends	on	the	actual	occupancy	of	the	space	which	varies	during	the	year.	Suppose
also	that	given	that	a	person	has	been	exposed	to	the	toxic	substance,	the	probability	of
developing	a	particular	condition	is	a	function	of	the	concentration	of	the	substance	(the
released	volume)	and	the	duration	of	the	exposure.	The	distribution	of	the	consequences	from
the	release,	in	other	words,	the	distribution	of	the	number	of	fatalities,	can	then	be	determined
by	a	simulation.	This	involves	sampling	from	the	distributions	related	to	the	released	amount,
the	occupancy	of	the	space	and	the	percentage	of	people	developing	the	condition.	Repeating
this	calculation	over	a	large	number	of	simulation	trials	yields	the	distribution	of	the	number	of
fatalities.	In	this	way,	the	conditional	losses	can	be	determined	as	well	as	the	associated
uncertainty.

Usually,	in	case	of	a	large	number	of	different	failure	scenarios	and	complex	interrelationships
between	them,	Monte	Carlo	simulation	software	is	needed	to	determine	the	distribution	of	the
conditional	losses.	Consequence	modelling	tools	help	to	evaluate	the	consequences	from
dispersion	of	toxic	gases,	smoke,	fires,	explosions,	etc.

From	the	simulation	study,	key	risk	factors	will	be	identified	whose	alteration	reduces	the
consequences	significantly.	Subsequently,	this	knowledge	is	used	for	devising	an	efficient	risk
mitigation	strategy.

11.3.8	Risk	Planning	and	Training
The	purpose	of	risk	planning	is	to	specify	the	most	appropriate	response	should	failure



scenario	occur.	Risk	planning	guarantees	that	the	optimal	course	of	action	will	be	taken	for
dealing	with	the	consequences	from	failure.	Usually,	in	the	absence	of	planning,	the	quickest
and	the	most	obvious	actions	are	taken	which	are	rarely	the	optimal	ones.

Risk	planning	prepares	for	the	unexpected.	It	yields	contingency	plans	for	the	course	of	action
in	the	case	of	failure	or	accident.	Planning	guarantees	proactive	rather	than	reactive	attitude	to
risk	and	provides	more	time	to	react.	It	is	closely	linked	with	the	research	preparation
involving	a	careful	study	of	the	system	or	process,	identifying	possible	sources	of	risk	and
training	for	providing	emergency	response	given	that	the	risks	materialise.	The	time	invested	in
risk	planning	and	training	pays	off	because	the	response	time,	the	chances	of	taking	the	wrong
course	of	action	and	the	chances	of	providing	inadequate	response	to	the	materialised	risks	are
reduced	significantly.	Risk	planning	and	training	help	avoid	panic	and	hasty	actions	which
could	otherwise	promote	errors	aggravating	the	consequences	from	failure.

Planning	also	provides	an	answer	to	the	important	question	‘how	much	resource	to	allocate
now,	given	the	possibility	of	failure	scenarios	in	the	future,	in	order	to	minimise	the	total	cost’.
In	this	sense,	quantifying	the	risks	associated	with	the	different	scenarios	and	deciding	on	a
mitigating	strategy	are	at	the	heart	of	risk	planning.

A	good	accidents	response	management	based	on	well-established	rules	and	training	is	a	major
factor	mitigating	the	consequences	from	accidents.	Evacuation	procedures,	fast	rescue
operations,	fast	response	to	extreme	emergency	and	fast	response	to	crime	reduce	significantly
the	consequences	from	accidents.	Various	types	of	emergency	training	help	reduce	casualties
and	losses	should	accidents	occur.	Adequate	first-aid	training,	security	training	and	crime
combat	training	are	important	factors	mitigating	the	consequences	should	risks	materialise.



12
Physics	of	Failure	Models
Following	Dasgupta	and	Pecht	(1991),	the	mechanisms	of	failure	can	be	divided	broadly	into
two	categories:

1.	 Overstress	failures:	(i)	brittle	fracture,	(ii)	ductile	fracture,	(iii)	yield,	(iv)	buckling,	etc.

2.	 Wearout	failures:	(i)	fatigue,	(ii)	corrosion,	(iii)	stress-corrosion	cracking,	(iv)	wear,	(v)
creep,	etc.

Overstress	failures	occur	when	load	exceeds	strength.	If	load	is	smaller	than	strength,	the	load
has	no	permanent	effect	on	the	component.	Conversely,	wearout	failures	are	characterised	by	a
damage	which	accumulates	irreversibly	and	does	not	disappear	when	the	load	is	removed.
Once	the	damage	tolerance	limit	is	reached,	the	component	fails	(Blischke	and	Murthy,	2000).
One	of	the	most	important	examples	of	the	overstress	and	wearout	failures	is	the	fast	fracture
and	fatigue	failure,	and	they	will	be	considered	in	greater	detail.

12.1	Fast	Fracture
12.1.1	Fast	Fracture:	Driving	Forces	behind	Fast	Fracture
Unlike	ductile	fracture,	fast	fracture	occurs	suddenly	and	proceeds	at	a	high	speed,	and	in
order	to	progress,	there	is	no	need	for	the	loading	stress	to	increase	(Anderson,	2005;	Ewalds
and	Wanhill,	1984;	Hertzberg,	1996).	Fast	fracture	also	requires	a	relatively	small	amount	of
accumulated	strain	energy.	These	features	make	fast	fracture	a	dangerous	failure	mode	and
require	a	conservative	approach	to	the	design	of	safety-critical	brittle	components	which	are
prone	to	fast	fracture.	The	need	for	control	of	fast	fracture	increases:

1.	 As	the	magnitude	of	the	loading	increases

2.	 As	factors	of	safety	decrease	because	of	more	precise	computer	designs

3.	 As	the	use	of	lightweight	designs	increases

4.	 As	the	use	of	high-strength	welded	steels	becomes	more	common	compared	to	lower-
strength	riveted	or	bolted	steels

5.	 As	the	need	to	make	savings	by	prolonging	the	service	life	of	components	and	structures
increases

Designers	often	avoid	yielding	by	using	high-strength	materials,	but	these	materials	also	have	a
low	fracture	toughness	and	are	prone	to	fast	fracture.

Fast	fracture	is	associated	with	initiation	of	an	unstable	crack,	usually	triggered	by	cracking	or
decohesion	of	particles.	Some	of	these	are	inclusions,	but	in	other	cases,	they	may	be	an



(12.1)

integral	part	of	the	microstructure.	Under	overstress,	a	high	stress	concentration	can	occur	at
these	microflaws	which	results	in	a	nucleation	and	propagation	of	cracks.	Cleavage	fracture	is
the	most	common	type	of	fast	fracture.	It	is	associated	with	a	relatively	small	plastic	zone
ahead	of	the	crack	tip	and	consequently,	with	a	relatively	small	amount	of	energy	needed	for
crack	propagation.	The	very	small	amount	of	plastic	deformation	is	indicated	by	the
featureless,	flat	fracture	surface.	Due	to	the	lack	of	plastic	deformation,	no	blunting	of	the	sharp
cracks	occurs,	and	the	local	stress	ahead	of	the	crack	tip	can	reach	very	high	values	which	are
sufficient	to	break	apart	the	interatomic	bonds.	As	a	result,	the	crack	spreads	between	adjacent
atomic	planes	yielding	a	flat	cleavage	surface.

The	severity	of	the	stress	field	around	the	crack	tip	is	governed	by	the	stress	intensity	factor.
For	a	tensile	mode	of	loading	(mode	I),	of	a	surface	crack,	where	the	crack	flanks	are	pulled
directly	apart,	the	stress	intensity	factor	is	(Anderson,	2005;	Dowling,	1999)

where	σ	is	the	remote	stress	applied	to	component	(not	to	be	confused	with	the	local	stresses)
and	Y	is	the	geometry	factor	(correction	factor,	shape	factor,	calibration	factor)	which	is	a
function	of	the	crack	size	a,	width	of	specimen,	etc.	Thus,	for	a	through	crack	in	an	infinite
plate	(Figure	12.1a),	 ,	while	for	an	edge	crack	on	an	infinite	plate	(Figure	12.1b),	
.

The	stress	intensity	factor	K	relates	several	design	variables:	the	nominal	applied	stress	σ
(calculated	assuming	that	no	crack	is	present),	the	crack	size	a	(Figure	12.1a,b)	and	the
geometry	factor	Y.
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Figure	12.1	Definition	of	crack	size	a	for	(a)	central	cracks	and	(b)	edge	cracks

The	critical	value	KIc	of	the	stress	intensity	factor	that	would	cause	fast	fracture	is	the	fracture
toughness	of	the	material.	Fracture	toughness	is	a	measure	of	the	material’s	resistance	to	crack
extension.	It	is	a	material	property	independent	of	the	size	and	geometry	of	the	cracked	body
and	is	determined	from	laboratory	experiments.	To	provide	conservatism	in	the	calculations,
the	plane-strain	fracture	toughness	KIc	is	commonly	quoted	in	reference	books.

The	fundamental	design	approach	to	preventing	fast	fracture	in	structural	materials	is	to	keep
the	stress	intensity	factor	 	(the	driving	force)	below	the	critical	stress	intensity
factor	KIc	(the	resistance):

For	a	specified	fracture	toughness	KIc	of	the	material	and	shape	of	the	component,	the	domain
preventing	fast	fracture	is	given	by	all	combinations	of	loading	stress	and	crack	size	for	which
inequality	12.2	is	fulfilled.

Each	of	these	factors	can	be	changed	in	the	designed	component	to	improve	the	reliability	of
the	design.	For	example,	the	welding	process	can	be	improved	to	reduce	the	number	of	cracks
and	their	sizes,	the	component	could	be	redesigned	to	reduce	the	stress	intensification	due	to
stress	raisers,	or	the	material	could	be	selected	to	have	a	high	fracture	toughness.

In	reality,	both	the	stress	intensity	factor	and	the	fracture	toughness	vary.	An	overlap	between
the	upper	tail	of	the	distribution	of	the	stress	intensity	factor	and	the	lower	tail	of	the



distribution	of	the	fracture	toughness	is	associated	with	a	non-zero	probability	of	fast	fracture
(Figure	12.2).

Figure	12.2	In	order	to	avoid	fast	fracture,	the	driving	force	(the	stress	intensity	factor)	must
be	smaller	than	the	resistance	(the	fracture	toughness)

A	combination	of	a	high-magnitude	normal	stress	and	a	high-magnitude	shear	stress	is	often
present	for	certain	orientations	of	the	crack	and	both,	the	stress	intensity	factor	KI
characterising	the	tensile	crack	opening	mode	(Figure	12.3a)	and	the	stress	intensity	factor	KII
characterising	the	sliding	crack	opening	mode	(Figure	12.3b)	make	a	significant	contribution
towards	the	fast	fracture	initiation.



Figure	12.3	(a)	The	tensile	opening	mode	and	(b)	the	sliding	opening	mode

In	opening	mode	I	or	tensile	opening	mode,	the	crack	faces	are	pulled	apart	(Figure	12.3a),
while	in	opening	mode	II	(sliding	opening	mode	or	in-plane	shear	mode),	the	crack	faces	slide
over	each	other	(Figure	12.3b).

However,	the	capability	of	existing	design	methods	to	detect	vulnerability	to	brittle	failure
initiated	by	flaws	is	limited.	The	standard	design	approach	is	to	place	a	sharp	crack	with	size
equal	to	the	threshold	detection	limit	of	the	non-destructive	inspection	technique,	in	the	most
dangerous	position	and	in	the	most	dangerous	orientation	(where	the	stress	takes	its	maximum
value)	and	to	test	by	using	a	fracture	criterion	whether	the	crack	will	be	unstable.	This
approach	however,	works	only	in	cases	of	components	with	a	simple	shape	and	loading
characterised	by	a	one-dimensional	or	two-dimensional	stress	state.	In	these	cases,	it	is
relatively	easy	to	identify	the	most	dangerous	orientation	of	the	crack.	In	cases	of	components
with	complex	shape,	loaded	in	complex	fashion,	as	a	rule,	the	stress	state	is	three-dimensional,
and	it	is	near	to	impossible	for	researchers	and	design–engineers	to	identify	the	most
unfavourable	orientation	of	the	crack	associated	with	the	highest	driving	force	for	crack
extension.	The	space	of	possible	orientations	of	the	crack	with	respect	to	a	three-dimensional
stress	tensor	is	very	big,	which	makes	it	practically	impossible	to	identify	the	most
unfavourable	orientation,	even	after	a	substantial	number	of	empirical	trials.
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This	predicament	can	be	resolved	with	a	conservative	mixed-mode	fast	fracture	criterion,
incorporating	the	most	unfavourable	orientation	of	the	crack.	According	to	the	adopted
conservative	mixed-mode	criterion,	fracture	occurs	if	C	in	(12.3)	exceeds	unity	for	a	certain
crack	orientation:

In	(12.3),	KIc,	KIIc	is	the	fracture	toughness	of	the	material	characterising	mode	I	and	mode	II
crack	opening,	correspondingly.	KI	and	KII	are	the	stress	intensity	factors	characterising	mode	I
and	mode	II	crack	opening.	The	criterion	for	fast	fracture	is	given	by	the	condition	 .

It	has	been	shown	in	(Todinov	and	Same,	2014)	that	the	critical	combinations	 ,	 	of	the
stress	intensity	factors	leading	to	fast	fracture,	exhibit	a	significant	scatter.	Because	of	this
scatter,	mixed-mode	criteria	of	the	type	 	(where	 ,	 	are
constants	specific	to	the	material)	could	lead	to	fracture	occurring	in	the	defined	by	the	fracture
criterion	safe	zone.	The	locus	of	stress	intensity	factors	 ,	 	determining	fast	fracture	states
is	associated	with	large	uncertainty	and,	consequently,	the	deterministic	concept	‘fracture
criterion’	specified	by	a	particular	function	cannot	guarantee	the	safety	of	the	designed
components.	To	guarantee	a	low	risk	of	failure	for	safety-critical	components,	it	is	necessary	to
specify	a	conservative	safety	zone,	away	from	the	scatter	associated	with	the	locus	of	stress
intensity	factors	 ,	 	defining	fracture	states.

The	fracture	criterion	(12.3)	defines	such	a	conservative	safe	zone,	well	separated	from	the
scatter	of	the	fast	fracture	states	and	is	strongly	recommended	for	safety-critical	calculations.

The	most	unfavourable	orientation	of	the	crack	maximises	C	in	Equation	(12.3).	It	can	be
proved	rigorously	(Todinov	and	Same,	2014)	that	the	maximum	of	C	in	(12.3)	is	given	by

where	σ1,	σ2	and	σ3	are	the	principal	stresses	and	θ	and	γ	are	material	constants	given	by

and

depending	on	the	size	a	of	the	crack,	the	fracture	toughness	of	the	material	characterising	mode
I	and	mode	II	crack	opening	(KIc,	KIIc)	and	the	geometry	factors	(YI,	YII)	characterising	mode	I
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and	mode	II	crack	opening.

Fast	fracture	occurs	if	the	inequality

is	fulfilled	for	certain	tested	location,	characterised	by	a	maximum	and	minimum	principal
stresses	σ1	and	σ3.

The	analytical	criterion	(12.6)	for	crack	initiation	should	be	applied	in	a	traditional
deterministic	design	to	determine	for	a	flaw	of	given	size,	whether	an	unstable	crack	will	be
initiated.	A	criterion	based	on	the	maximum	principal	tensile	stress	may	lead	to	a	non-
conservative	design.	Given	the	stress	tensor	components	(σx, σy, σz, τxy, τyz, τzx)	at	the	tested
location,	the	procedure	for	applying	the	mixed-mode	fast	fracture	criterion	involves	the
following	steps.

The	directions	x	of	the	principal	stresses	at	the	inspected	location	(the	eigenvectors)	are
determined	by	solving	the	matrix	equation

and	determining	its	non-trivial	solutions	x≠0,	where

is	a	3 × 3	symmetric	matrix	known	as	stress	tensor,	and	x = [x1,	x2,	x3]T	is	a	3 × 1	column
vector.	The	values	of	λ	for	which	such	non-trivial	solutions	of	the	matrix	equation	exist	are
called	principal	stresses	(eigenvalues).

The	matrix	equation	can	also	be	presented	as

The	matrix	Equation	12.7	represents	a	system	of	homogeneous	linear	equations	which	has	a
non-trivial	solution	if	and	only	if	the	determinant	 	is	equal	to	zero,	which	is	equivalent
to



1.	 The	expansion	of	the	determinant	12.8	yields	a	polynomial	of	third	degree	with	respect	to
λ.	The	roots	λ1,	λ2,	λ3	of	the	polynomial	(for	which	Eq.	12.8	is	fulfilled)	are	the
eigenvalues	of	the	stress	tensor	S	describing	the	stress	state	of	the	location.	These
eigenvalues	coincide	with	the	magnitudes	of	the	principal	stresses	σ1,	σ2,	σ3	at	the	selected
location.	Because	the	stress	tensor	is	symmetric,	it	is	guaranteed	that	the	eigenvalues	(the
principal	stresses	σ1,	σ2,	σ3)	will	be	real	numbers.

 The	easiest	way	to	determine	the	eigenvalues	is	to	use	the	corresponding	eigenvalue
function	in	a	mathematical	software	package.

2.	 The	second	step	involves	arranging	the	obtained	eigenvalues	in	descending	order.	The
largest	eigenvalue	is	the	principal	stress	σ1,	( ),	the	smallest	eigenvalue
is	the	principal	stress	σ3	( )	and	the	intermediate	eigenvalue	is	the
principal	stress	σ2.

3.	 The	third	step	involves	evaluating	(12.6).	A	sharp	crack	is	assumed,	with	size	equal	to	the
threshold	value	of	the	non-destructive	detection	technique.	If	inequality	(12.6)	is	fulfilled,
the	crack	is	unstable	and	will	initiate	failure.

Example

The	stresses	in	MPa	at	a	particular	location	in	a	loaded	component	are	 ,	
,	 ,	 ,	 ,	and	 .	The	ultrasonic	inspection	technique

used	cannot	detect	a	crack	smaller	than	2 mm.	If	the	fracture	toughness	of	the	material	is	
,	determine	whether	an	undetected	crack	at	this	particular	location

will	cause	fast	fracture.	Assume	 .

Solution
The	principal	stresses	are	determined	as	the	eigenvalues	of	the	stress	tensor

This	stress	tensor	has	eigenvalues	(−290.7,	198.9,	534.7).	The	principal	stresses	are

The	constants	θ	and	γ	are	calculated	next:



Substituting	in	the	mixed-mode	criterion

for	unstable	crack	gives

Consequently,	the	crack	will	be	unstable	and	there	will	be	fast	fracture.

If	the	single-mode	(tensile	mode)	criterion	12.1	was	used	to	test	for	fast	fracture,	the
obtained	stress	intensity	factor

is	smaller	than	the	fracture	toughness	 	of	the	material	which	leads	to	the
incorrect	conclusion	that	there	would	be	no	fast	fracture.	The	mixed-mode	criterion
provides	the	basis	for	conservative	calculations	regarding	the	occurrence	of	fast
fracture,	which	makes	the	design	safer.

The	fracture	criterion	(12.6)	for	a	mixed-mode	fast	facture	can	be	applied	to	check	the	safety
of	loaded	brittle	components	with	complex	shape,	where	fracture	is	locally	initiated	by	flaws.
Ceramics,	high-strength	steels,	glasses,	stone,	etc.	are	examples	of	materials	with	such	failure
mechanism.	The	described	model	is	also	valid	for	components	from	low-carbon	steels
undergoing	cleavage	fracture	at	low	temperature.	Cleavage	in	steels	usually	propagates	from
cracked	inclusions	(McMahon	and	Cohen,	1965;	Rosenfield,	1997).	It	usually	involves	a	small
amount	of	local	plastic	deformation	to	produce	dislocation	pile-ups	and	crack	initiation	from	a
particle	which	has	cracked	during	the	plastic	deformation.

A	postprocessor	based	on	the	fracture	criterion	(12.6)	can	be	easily	developed	for	testing
loaded	safety-critical	components	with	complex	shape.	For	each	finite	element,	only	a	single
computation	of	the	fracture	criterion	is	made.	This	guarantees	a	very	high	computational	speed,
which	makes	the	postprocessor	particularly	suitable	for	testing	numerous	design	variants	in	an
optimisation	loop.

Here	are	the	steps	of	the	algorithm:



Algorithm	12.1

1.	 Determine	the	stress	state	in	the	loaded	component	by	FE	software.

2.	 By	using	a	post-processor,	extract	from	the	FE	solution	the	maximum	and
minimum	principal	stresses	characterising	each	finite	element.

3.	 Failure_flag	=	0;	//	Initialises	a	failure	flag

4.	 For	(each	finite	element	of	the	stressed	component)	do
   	{

     Extract	the	largest	(σ1)	and	the	smallest	(σ3)	principal	

stress	characterising	the	current	finite	element;

      ;	//	Calculates	the	fast	

fracture	mixed-mode	criterion     
     If	(m	>	1)	then	{Failure_flag	=	1;	break;	}

  	}

If	(Failure_flag	=	1)	then	Print	(“Unsafe	design”)

              	else	Print	(“Safe	design”).

The	proposed	fracture	condition	is	particularly	suitable	for	optimising	the	shape	of	brittle
components	(e.g.	the	cross	section	of	ceramic	beams)	in	order	to	increase	their	resistance	to
failure	locally	initiated	by	flaws.

12.1.2	Reducing	the	Likelihood	of	Fast	Fracture
Fast	fracture	is	an	event	associated	with	a	negative	impact,	characterised	by	a	likelihood
and	consequences.	The	risk	of	fast	fracture	can	be	reduced	by	reducing	the	likelihood	of	fast
fracture.

One	of	the	big	advantages	of	physics	of	failure	models	is	that	they	suggest	ways	of	reducing	the
likelihood	of	a	particular	failure	mode.	In	the	case	of	fast	fracture,	the	physics	of	failure	model
(12.2)	suggests	several	ways	of	reducing	the	likelihood	of	fast	fracture	by	modifying	the
fracture	toughness	of	the	material,	crack	length,	loading	stress	and	geometry	factor.

12.1.2.1	Basic	Ways	of	Reducing	the	Likelihood	of	Fast	Fracture
The	physics-of-failure	relationship	(12.2)	reveals	the	roles	of	the	design	stress	σ	and	the
geometry	factor	Y,	the	material	processing	characterised	by	the	size	a	of	the	flaw	and	the
material	properties	characterised	by	the	fracture	toughness	KIc.	From	this	relationship,	several
generic	ways	of	reducing	the	likelihood	of	fast	fracture	can	be	inferred	immediately:

Increasing	the	fracture	toughness	of	the	material	KIc
Reducing	the	maximum	size	of	the	flaws	a



Reducing	the	design	stress	σ

Reducing	the	value	of	the	geometry	factor	Y

A	combination	of	several	of	the	listed	basic	ways

Fracture	toughness	of	the	material	can,	for	example,	be	increased	by:

Control	over	the	microstructure	(e.g.	grain	size	control)

Heat	treatment	(e.g.	quenching,	tempering,	ageing,	recrystallisation)

Reinforcing	with	particles	and	fibres

Alloying

Eliminating	anisotropy

Eliminating	harmful	inclusions

Transformation	toughening

The	size	of	the	flaws	can	be	controlled	by	design	changes,	fabrication	and	inspection.	A	crack
with	size	a	becomes	unstable	at	the	critical	applied	stress	σc,	for	which	the	stress	intensity

factor	 	in	inequality	12.2	becomes	equal	to	or	exceeds	the	fracture	toughness	KIc.
Relationship	(12.2)	illustrates	the	available	design	trade-offs.

Given	that	a	surface	crack	with	maximum	size	amax	is	present	in	a	particular	material,	in	order
to	prevent	fast	fracture,	the	design	stress	σd	must	be	smaller	than	the	critical	stress	

.

This	is	indeed	the	case	where	high	strength	and	light	weight	are	required,	and	KIc	is	usually
fixed	because	of	limited	number	of	available	materials	combining	high	strength	and	light
weight.	The	applied	stress	can	be	altered	by	design	changes,	through	the	loading	scheme	or	by
using	stress	limiters.

If	the	loading	stress	must	be	kept	to	a	minimum	level	σmin,	because	of	the	need	to	fully	utilise
the	material,	for	the	maximum	flaw	size	in	the	material	amax,	the	relationship

must	be	fulfilled.	In	the	above	expression,	ac	is	the	critical	flaw	size	which	becomes	unstable
at	a	stress	magnitude	σmin	and	causes	fast	fracture.	A	material,	manufacturing	method	and	heat
treatment	must	be	selected	in	such	a	way	that	the	maximum	size	of	the	flaw	amax	is	smaller	than
the	critical	flaw	size	ac.

Here,	one	must	be	careful	that	the	critical	flaw	size	ac	is	large	enough	to	be	detected	by	the



non-destructive	inspection.	Otherwise,	fast	failure	may	occur	suddenly.

Thus,	for	an	initial	crack	with	initial	size	a0	subjected	to	loading	by	a	stress	with	magnitude	σ,

the	relationship	 	may	be	fulfilled.	In	this	case,	the	crack	is	stable	and	will	not
cause	fast	fracture.	Due	to	cycling	of	the	loading	stress	σ	however	or	due	to	a	stress	corrosion
at	a	constant	stress	σ,	the	crack	may	grow	and	reach	critical	size	 ,	at	which	fast	fracture
is	triggered	because	 .

To	prevent	fast	fracture,	the	inspection	technique	must	be	capable	of	detecting	a	crack	of	size
ac.	Despite	that	the	combination	of	a	nominal	stress	σ	and	initial	crack	size	a0	lies	in	the	safe
domain	preventing	both	plastic	collapse	and	fast	fracture,	the	crack	may	propagate	by	a	fatigue
growth	or	through	a	stress-corrosion	mechanism,	leave	the	safe	domain	and	cause	fast	fracture.

The	design	parameters	must	be	selected	in	such	a	way	that	a	crack	size	that	causes	fast
fracture	is	detectable	by	the	inspection	technique.

In	cases	where	different	materials	can	be	selected,	selecting	a	material	with	higher	fracture
toughness	KIc	will	increase	the	critical	stress	σc	of	triggering	fast	fracture	and	will	increase	the
fast	fracture	resistance.	The	geometry	factor	can	be	reduced	by	modifying	the	shape	of	the
component.

A	heat	treatment	or	replacement	of	an	existing	low-strength	steel	grade	with	a	high-strength
grade	is	generally	accompanied	with	a	reduction	of	the	fracture	toughness	(Dowling,	1999).

As	can	be	verified	from	the	equation,	 ,	with	reducing	the	fracture
toughness	KIc,	the	critical	size	of	the	crack	ac	may	decrease	below	the	threshold	limit	of	the
available	non-destrictive	testing	(NDT)	technique	which	makes	the	high-strength	steel	unsafe
to	use.	This	point	can	be	illustrated	by	an	example.Example



Example

To	reduce	weight,	a	reduction	of	the	load-carrying	cross	section	of	a	loaded	in	tension
steel	bar	is	proposed.	To	withstand	the	minimum	design	stress	of	 ,	it	is
proposed	that	the	existing	steel	grade	with	yield	strength	of	1400 MPa	and	fracture
toughness	of	 	should	be	heat	treated	to	a	strength	2000 MPa	and	fracture
toughness	of	 .	The	detection	threshold	of	the	existing	NDT	technique	is	a	1 mm
long	crack.	Should	this	design	modification	be	supported?

Solution
The	worst-case	scenario	of	an	edge	crack	with	geometry	factor	Y = 1.12	is	assumed,	in
order	to	assure	a	conservative	estimate	of	the	crack	size	which	causes	fast	fracture.

The	critical	flaw	size	for	the	two	steels	is	determined	from	 :

The	critical	flaw	size	for	the	steel	with	lower	yield	strength	is	 	which	will	be
detected	by	the	existing	NDT;	therefore,	this	steel	is	safe	to	use.	The	critical	crack	size	for
the	high-strength	steel	however	is	 .	A	critical	crack	of	this	size	cannot	be
detected	by	the	existing	NDT	and	therefore,	the	high-strength	steel	is	unsafe	to	use.	The
proposed	design	modification	must	not	be	supported.

12.1.2.2	Avoidance	of	Stress	Raisers	or	Mitigating	Their	Harmful	Effect
Zones	in	components,	characterised	by	large	stress	gradients	within	a	small	volume,	are
referred	to	as	stress	concentration	zones.	Features	such	as	notches,	fillets,	holes,	threads,
steps,	grooves,	keyways,	rough	surface	finishes,	quenching	cracks	and	inclusions,	causing
stress	concentration	zones,	are	referred	to	as	stress	raisers.	Notches,	for	example,	are
associated	with	stress	intensification,	triaxial	tensile	stress	and	geometrical	constraint,	and	as
a	result,	they	increase	the	tendency	towards	fast	fracture.

The	stress	raisers	are	reliability-critical	design	features	because	they	make	it	easy	for	a	crack
to	initiate	and	become	unstable.

The	stress	intensification	around	a	fillet	with	a	small	radius	and	around	a	hole	is	shown	in



Figures	12.4a	and	12.5a.

Figure	12.4	(a)	Stress	intensification	around	a	step	with	a	very	small	radius.	(b)	Reducing	the
stress	concentration	by	introducing	a	fillet	with	radius	r



Figure	12.5	(a)	Stress	intensification	around	a	hole.	(b)	Reducing	the	maximum	stress	in	the
vicinity	of	the	hole	could	be	achieved	by	appropriate	design	(Orlov,	1988)

The	maximum	tensile	stress	σmax	associated	with	a	stress	raiser	is	determined	from	the
equation

in	terms	of	the	stress	concentration	factor	Kt	and	the	nominal	tensile	stress	σnom	(away	from	the
stress	raiser).

A	common	numerical	method	for	determining	the	stress	concentration	factors	is	the	finite
element	method	(FEM).	Obtaining	precise	results	however	requires	the	use	of	a	very	fine
mesh	in	the	stress	intensification	zone.	Common	experimental	methods	for	detecting	the	stress
concentration	factors	are	precision	strain	gauges	and	photoelasticity.	The	results	are	often
presented	in	stress	concentration	charts	(e.g.	Peterson,	1974).

As	a	result	of	the	stress	intensification	due	to	the	presence	of	a	stress	raiser,	the	stress	σ	in
inequality	12.2	is	increased	and	becomes	 .	The	result	is	increased	stress	intensity
factor	 	and	increased	driving	force	behind	the	crack	extension.	Reducing	the
risk	of	fast	fracture	therefore	can	be	done	by	avoiding	stress	raisers	( )	or	by	reducing	the
stress	concentration	factors	through	appropriate	design.	Such	is,	for	example,	the	design	of
fillets	with	increased	radii	(Figure	12.4b)	or	other	design	measures	(Figure	12.5b).



Other	ways	of	reducing	the	stress	concentration	factors	and	the	likelihood	of	fast	fracture	are:

Reducing	the	stress	concentration	by	using	stress-relief	notches	and	stress-relief	holes
(Budynas,	1999)

Designing	simple	shapes

Specifying	clean	material	without	microstructural	defects	acting	as	stress	raisers	(e.g.
inclusions,	pores,	seams,	etc.)

Avoiding	shapes	and	loading	resulting	in	a	triaxial	tensile	stress	state

Avoiding	holes	too	close	to	walls

Smoothing	edges	and	avoiding	sharp	corners.	Smoothing	sharp	corners	at	the	bottom	of
deep	grooves

Avoiding	sharp	transitions	between	thin	and	thick	sections

Avoiding	excessive	surface	roughness	and	surface	discontinuities

12.1.2.3	Selecting	Materials	Which	Fail	in	a	Ductile	Fashion
Ductile	fracture	is	accompanied	with	a	considerable	amount	of	plastic	deformation.	The	crack
will	not	normally	extend	unless	an	increased	stress	is	applied.	Ductile	fracture	is	associated
with	a	substantial	amount	of	absorbed	energy.	This	is	indicated	by	the	large	area	A	beneath	the
load–displacement	curve	which	is	numerically	equal	to	the	work	done	to	break	the	component.
Indeed,	the	elementary	work	dA	to	extend	the	component	from	l	to	 	is	given	by	 ,
where	F	is	the	magnitude	of	the	loading	force.	The	total	work	to	fail	a	component	with	initial

length	l0	to	a	length	lf	at	failure	is	then	given	by	 ,	where	A	is	the	area	beneath	the
load–displacement	curve	(Figure	12.6a).





Figure	12.6	(a)	Ductile	and	(b)	brittle	fracture

Brittle	failure	is	accompanied	with	little	or	no	plastic	deformation.	Once	initiated,	the	crack
extends	at	a	high	speed	without	a	need	for	increasing	the	loading	stress.	The	component
fails	quickly,	without	warning.	Brittle	fracture	is	associated	with	a	small	amount	of	energy	to
break	the	component	which	is	indicated	by	the	small	area	A	beneath	the	load–displacement
curve	(Figure	12.6b).	In	contrast,	ductile	fracture	is	preceded	by	a	large	amount	of	plastic
deformation	(Figure	12.6a),	redistribution	and	relaxation	of	the	high	stresses	in	the	zones	of
stress	concentration.	The	component	deforms	before	fracture	which	gives	early	warning	and
sufficient	time	for	intervention	and	repair.	In	addition,	ductile	fracture	requires	more	strain
energy	in	order	to	develop,	and	in	the	process	of	plastic	deformation,	the	strength	of	the
material	is	enhanced	through	strain	hardening	(Figure	12.6a).

Consequently,	in	engineering	applications,	where	safety	concerns	are	involved,	the	materials
with	ductile	behaviour	are	the	obvious	choice.

There	are	various	other	ways	of	reducing	the	likelihood	of	brittle	fracture.

Avoidance	of	low-temperature	environment.	High	temperature	promotes	a	ductile	fracture
while	low	temperature	promotes	brittle	fracture.	This	trend	is	particularly	pronounced	for
metals	with	body-centred	cubic	crystal	lattice	(e.g.	steels).

Under	impact	loading,	the	impact	toughness	of	low-carbon	steels	(measured	by	the	energy
absorbed	to	break	the	specimen)	is	reduced	markedly	with	reducing	temperatures	(see
Figure	12.7).	The	result	is	a	well-defined	ductile-to-brittle	transition	region.	In	the	upper
shelf	region,	the	microscopic	fracture	mechanism	is	void	nucleation,	growth	and
coalescence,	associated	with	a	large	amount	of	absorbed	impact	energy.	With	decreasing
test	temperature,	zones	fracturing	by	a	distinct	cleavage	mechanism	appear.	The	latter	is
associated	with	brittle	fracture	which	absorbs	a	relatively	small	amount	of	impact	energy.

The	effect	of	temperature	is	assessed	by	using	the	Charpy	or	Izod	test,	consisting	of	a
weight	that	moves	with	a	pendulum	action.	The	weight	is	lifted	to	a	starting	position	then
released	so	that	it	hits	the	specimen	with	a	known	energy.	The	weight	continues	to	move
after	it	has	broken	the	specimen,	and	the	height	that	the	weight	attains	is	a	measure	of	how
much	energy	the	specimen	has	absorbed	in	fracture	(Dowling,	1999).

Avoidance	of	unfavourable	stress	states.	As	a	rule,	plane	stress	promotes	ductile
behaviour	while	plane	strain	promotes	brittle	behaviour	and	fast	fracture.	Triaxial	tension
promotes	fast	fracture	while	hydrostatic	compression	promotes	ductile	behaviour.
Normally,	brittle	materials	may	exhibit	considerable	ductility	if	the	hydrostatic	component
of	the	stress	tensor	is	compressive,	with	a	large	magnitude.	This	behaviour	is	used	to
process	brittle	materials	(e.g.	limestone)	in	pressurised	chambers.	Fracture	and	yielding
are	relative	and	depend	strongly	on	the	stress	state.

Geometrical	features	(e.g.	notches)	and	loading	resulting	in	triaxial	tensile	stresses
promote	brittle	behaviour	and	should	be	avoided.



Avoidance	of	a	high	rate	of	loading.	Brittle	behaviour	and	fast	fracture	are	likely	when	the
plastic	flow	is	restricted.	High	strain	rates	and	impact	loads	promote	brittle	fracture.	Low
rates	of	loading	allow	time	for	the	shear	to	occur	and	promote	ductile	behaviour.

Avoidance	of	a	corrosive	environment.	Corrosive	environments	promote	brittle	fracture,
particularly	intergranular	fast	fracture.	For	example,	the	material	of	a	tank	holding
ammonia	often	exhibits	intergranular	fracture.

Figure	12.7	Systematic	and	random	component	of	the	Charpy	impact	energy	in	the	ductile-to-
brittle	transition	region	(Todinov	et	al.,	2000)

Finally,	it	needs	to	be	pointed	out	that	materials	with	a	low	yield	strength	tend	to	exhibit
ductile	behaviour	as	opposed	to	materials	with	a	high	yield	strength	which	are	more	prone	to
fast	fracture.

12.1.3	Reducing	the	Consequences	of	Fast	Fracture

12.1.3.1	By	Using	Fail-Safe	Designs
An	important	way	of	reducing	the	risks	associated	with	fast	fracture	is	the	implementation	of
fail-safe	design.	Fail-safe	designs	reduce	the	consequences,	given	that	fast	fracture	has



occurred.	Such	is	the	fail-safe	design	based	on	the	‘leak-before-break’	concept.	Pressure
vessels	often	carry	harmful	substances	at	a	high	pressure.	If	cracks	go	undetected,	the
associated	stress	intensity	factor	may	reach	the	fracture	toughness	of	the	material	and	initiate
fast	fracture	that	would	cause	the	pressure	vessel	to	explode.	One	way	of	avoiding	this	is	to
implement	the	design	concept	leak-before-break	(Figure	12.8)

Figure	12.8	Leak-before-break	design	concept

Leak	occurs	when	the	critical	crack	depth	ac	is	equal	to	the	thickness	of	the	pressure	vessel	t.
For	a	leak-before-break	design,	the	pressure	vessel	must	be	able	to	tolerate	without	fast
fracture	a	through	crack	of	length	twice	the	thickness	of	the	vessel.

Note	that	the	requirement	for	tolerating	a	through	crack	(Figure	12.8)	is	essential	because	it
provides	conservatism	in	the	design	calculations.

If	there	is	a	through	crack	and	a	leak	of	the	substance	under	pressure,	this	will	be	detected	by
the	pressure	reduction,	the	smell,	noise,	etc.	The	leak	is	therefore	detectable	and	repair	of	the
pressure	vessel	can	be	initiated	without	any	catastrophic	consequences.	As	a	result,	the
designer	should	select	material,	wall	thickness,	vessel	diameter	and	pressure	that	ensure	that	a
through	crack	of	size	twice	the	thickness	of	the	pressure	vessel	will	be	stable	(non-
propagating).

Consider	the	thin-walled	pressure	vessel	in	the	Figure	12.9	with	internal	diameter	d	and
thickness	of	the	shell	t.	The	vessel	contains	fluid	exerting	pressure	p	on	the	inside	of	the	shell.
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Figure	12.9	Hoop	tensile	stress	σH	and	axial	tensile	stress	σL	acting	in	the	shell	of	a	vessel
under	pressure	with	magnitude	p

The	largest	tensile	stress	acting	in	the	pressure	vessel	wall	is	the	hoop	stress	determined	from

This	expression	can	be	easily	derived	from	the	equilibrium	of	the	elementary	forces	along	the
y-axis	in	Figure	12.10a.	A	slice	with	length	L	has	been	taken	from	the	cylinder	(Figure	12.10a).
The	z-axis	is	perpendicular	to	the	x	and	y	axes.



Figure	12.10	Pressure	with	magnitude	p	acting	on:	(a)	the	cylindrical	shell	of	the	pressure
vessel	and	(b)	the	semi-spherical	cap	of	the	vessel

The	pressure	is	always	perpendicular	to	the	wall	of	the	cylinder.	The	elementary	force	created
by	the	pressure	p	on	an	elementary	surface	area	ds	on	the	inside	wall	of	the	cylinder	is	equal	to
pds.	The	component	of	this	elementary	force	along	the	y-axis	is	 	where	α	is	the
angle	which	the	normal	to	the	elementary	surface	element	subtends	with	the	y-axis	(Figure
12.10a).	Note	that	the	projection	of	the	elementary	force	can	be	written	as	a	product	of	the
pressure	p	and	the	projection	of	the	elementary	area	ds	×	cos α	on	the	x,	z	plane.	The	sum	of
the	components	of	all	elementary	forces	along	the	y-axis,	due	to	the	internal	pressure	p,	is
therefore	given	by	the	product	of	the	pressure	and	the	total	projected	area	 	of	the	inner
surface	of	the	cylindrical	slice	on	the	x,	z	plane,	where	 .	This	resultant	force	must	be
counterbalanced	by	the	sum	of	the	two	forces	tLσH	created	by	the	hoop	stress	σH	acting	in	the
cylinder	wall	(Figure	12.10a).	From	the	equilibrium	equation

Equation	12.9	is	obtained	immediately.	It	is	important	to	emphasise	that	the	hoop	stress	σH	is
larger	than	the	axial	stress	σL	acting	in	the	cylinder	wall,	along	the	length	of	the	cylinder	(along
the	z-axis)	(Figure	12.9)	and	perpendicular	to	the	hoop	stress	σH.	Indeed,	using	a	very	similar
reasoning,	it	follows	that	the	sum	of	the	projections	along	the	z-axis	of	all	elementary	forces
created	by	the	pressure	p	acting	perpendicular	to	the	inside	surface	of	the	semi-spherical	cap
(Figure	12.10b)	is	equal	to	the	product	of	the	pressure	p	and	the	projected	area	πd2/4	of	all
elementary	surface	elements	ds	on	the	x,	y	plane	( ).	This	resultant	force	must	be



(12.10)

counterbalanced	by	the	sum	of	the	forces	πdtσL	created	by	the	axial	stress	σL	acting
perpendicular	to	the	area	of	the	cross-sectional	ring	(t	is	the	thickness	of	the	spherical	cap).
From	the	equilibrium	equation

the	expression

is	obtained.

The	magnitude	of	the	axial	stress	σL	is	half	the	magnitude	of	the	hoop	stress	σH	from	Equation
12.9.

For	a	through	crack,	the	geometry	factor	is	 	and	the	stress	intensity	condition	for	the	leak-
before-break	design	becomes

The	leak-before-break	design	concept	will	be	illustrated	by	the	next	example.Example



Example

An	aluminium	alloy	with	fracture	toughness	of	 	and	yield	stress	480	MPa
has	been	used	for	a	hydraulic	actuator	whose	cylindrical	housing	has	60 mm	internal
diameter	and	a	wall	thickness	of	12 mm.	If	the	internal	pressure	is	100 MPa,	will	there	be
a	leak-before	break	event?

Solution

The	hoop	stress	in	the	wall	of	the	hydraulic	actuator	is	given	by	 ,	where	p
is	the	pressure	magnitude	and	d	is	the	internal	diameter	of	the	actuator.	The	hoop	stress
has	a	magnitude	 ,	which
is	well	below	the	yield	stress	of	the	material.

For	a	through	crack	with	half-length	a = t	oriented	in	the	worst	possible	way
(perpendicular	to	the	hoop	stress),	the	stress	intensity	factor	is	 :

Since	 ,	there	will	be	no	leak-before-break	event.
The	actuator	will	fail	without	warning.

12.1.3.2	By	Using	Crack	Arrestors
Crack	arrestors	can	be	strips	or	rings	made	of	tougher	material	(Figure	12.11a).	The
mechanism	of	crack	arrest	consists	of	reducing	the	strain	energy	flow	to	the	crack	tip	upon
encountering	a	tougher	material	strip.	Crack	arrestors	do	not	prevent	cracks	from	becoming
unstable,	they	only	stop	them	after	they	have	reached	a	certain	size.	Crack	arrestors	therefore
are	a	protective	measure,	not	a	preventive	measure.	They	limit	the	extent	of	damage	once	the
damage	has	started	to	escalate.



Figure	12.11	A	pipeline	with	crack	arresters	of	types	(a)	stiffened	welded	rings	and	(b)	edges
of	the	pipeline	sections

In	Figure	12.11b,	the	crack	is	arrested	at	the	edge	of	the	pipeline	section.

Arresting	the	propagation	of	an	existing	crack	can	also	be	achieved	by	drilling	holes	at	the
crack	tips	(Figure	12.12a).	This	reduces	significantly	the	stress	magnitude	at	the	crack	tip.

The	relatively	low	toughness	of	materials	like	resins	can	be	increased	by	reinforcing	them	with
carbon	or	glass	fibres.	In	this	case,	the	fibres	act	as	crack	deflectors	(Figure	12.12b).	This
explains	why	the	presence	of	brittle	fibres	(graphite,	glass)	into	an	equally	brittle	matrix,
increases	the	fracture	toughness	of	the	composite.



Figure	12.12	Arresting	the	propagation	of	an	existing	crack	(a)	by	drilling	holes	at	the	crack
tips	and	(b)	by	reinforcing	with	fibres	acting	as	crack	deflectors

12.2	Fatigue	Fracture
Fatigue	failures	are	wearout	failures	associated	with	components	experiencing	cyclic	stresses
or	strains	which	produce	permanent	damage.	Such	is,	for	example,	the	loading	of	a	railcar	axel
which	is	essentially	a	round	beam	subjected	to	bending.	As	the	axle	rotates,	the	stresses	at	the
surface	of	the	axle	alternate	between	tensile	and	compressive.	The	damage	accumulates	until	it
develops	into	a	crack	which	propagates	and	causes	fracture	(fast	fracture	or	ductile	fracture).

A	comprehensive	discussion	regarding	the	different	factors	affecting	the	fatigue	life	of
components	can	be	found	in	Hertzberg	(1996).

Usually,	the	fatigue	life	of	machine	components	is	a	sum	of	a	fatigue	crack	initiation	life	and
life	for	fatigue	crack	propagation.	Fatigue	life	is	associated	with	big	scatter.	It	has	been
reported	(Ting	and	Lawrence,	1993)	that	in	some	alloys,	for	example,	cast	aluminium	alloys,
the	dominant	fatigue	cracks	(the	cracks	which	caused	fatigue	failure)	initiated	from	near-
surface	casting	pores	in	polished	specimens	or	from	cast-surface	texture	discontinuities	in	as-
cast	specimens.	For	fatigue	cracks	emanating	from	casting	pores,	the	nucleation	life	was	almost
non-existent	(Ting	and	Lawrence,	1993).

A	popular	model	related	to	the	physics	of	fatigue	failure	initiated	on	a	pre-existing	crack	leads
to	the	Paris	equation	about	the	rate	of	crack	propagation	(Paris	and	Erdogan,	1963;	Paris	et	al.,
1961):
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where	da/dN	is	the	growth	rate	of	the	fatigue	crack;	 	is	the	stress	range	of	the
loading	cycle;	C,	m	are	constants	depending	on	the	material	microstructure,	environment,	test
temperature	and	load	ratio	 ;	Y	is	a	geometry	factor;	a	is	the	crack	size	and	N	is	the
number	of	cycles.

Consequently,	the	fatigue	life	is	strongly	impacted	by	the	rate	of	fatigue	crack	growth.	The
crack	growth	rate	da/dN	is	commonly	estimated	from	the	Paris	power	law	(Paris	and	Erdogan,
1963;	Paris	et	al.,	1961):

where	a	is	the	crack	length;	N	is	the	number	of	load	cycles	and	 	is	the	range	of
the	stress	intensity	factor.	 	and	 	are	the	stress	intensity
factors	which	correspond	to	the	maximum	(σmax)	and	minimum	(σmin)	value	of	the	uniform
tensile	stress	perpendicular	to	the	crack	plane.	Consequently,	 ,	where	

	is	the	stress	range.	In	some	cases,	 	and	 .	Because	fatigue	cracks
do	not	propagate	if	the	loading	stress	is	compressive,	in	this	case,	in	calculating	the	stress
range,	the	minimum	stress	should	be	set	to	zero	( )	and	the	stress	range	becomes	

.	Y	is	a	dimensionless	factor	that	depends	on	the	geometry	of	the	loaded	crack.

Although	the	Paris	law	is	empirical,	it	remains	one	of	the	most	useful	expressions	for	making
conservative	estimates	of	the	life	of	components	and	structures.	This	equation	is	valid	beyond
a	specific	threshold	value	ΔKth	of	the	stress	intensity	factor	which	defines	a	fatigue	crack
which	is	capable	of	propagating	in	the	material.	For	relatively	short	propagating	cracks,	it	can
be	assumed	that	the	geometry	factor	Y	is	independent	of	the	crack	length	a	and	the	differential
equation

can	be	solved	by	separation	of	variables,	where	 	is	the	range	of	the	uniform
tensile	stress	perpendicular	to	the	crack	plane.

Rearranging	the	Paris	law	results	in

Integrating	the	above	equation	between	the	initial	crack	size	a0	and	the	final	crack	size	af



(12.13)

(12.14)

yields	the	fatigue	life	in	number	of	cycles	Nf	until	failure

and

If	the	shape	factor	Y	is	a	function	of	the	crack	size	a,	the	integration	can	be	performed
numerically.

In	the	usual	case	where	m	≠	2,	the	equation	related	to	the	number	of	load	cycles	to	failure	Nf	is

where	A	is	a	constant	(see	Equation	12.13).

Similar	to	the	case	of	fast	fracture,	the	analysis	of	the	physics	of	failure	model	(12.13)	reveals
the	effect	of	the	parameters	controlling	the	fatigue	life	and	provides	an	insight	into	how	to
improve	the	fatigue	life.

The	sensitivity	of	the	fatigue	life	to	the	initial	or	final	crack	size	a0	can	be	determined	by
differentiating	expression	(12.13)	with	respect	to	a0.	Indeed,	

	and	 .	Since	for	

,	 	 .

In	words,	the	fatigue	life	is	much	more	sensitive	to	the	initial	crack	size	a0	compared	to	the
final	crack	size	af.	Most	of	the	loading	cycles	are	expended	on	the	early	stages	of	crack
extension	when	the	crack	length	is	small.	During	the	late	stages	of	fatigue	crack	propagation,	a
relatively	small	number	of	cycles	is	sufficient	to	extend	the	crack	to	its	final	size	triggering
fracture.

As	a	result,	fatigue	life	predictions	depend	strongly	on	the	correct	estimation	of	the	initial	size
of	the	flaws	in	the	material.	Small	relative	errors	in	the	estimated	initial	flaw	size	a0	could
lead	to	very	large	errors	in	the	estimated	fatigue	life.

Suppose	that	an	edge	crack	is	loaded	in	tensile	opening	mode	(mode	I)	by	a	pulsating	force	P
as	shown	in	Figure	12.3a.	The	final	crack	size	at	which	fast	fracture	is	initiated	can	be
determined	from	the	final	crack	size	triggering	fast	fracture	or	from	the	final	crack	size
triggering	ductile	fracture,	whichever	is	smaller.



(12.15)

(12.16)

The	final	crack	size	triggering	fast	fracture	is	determined	from	the	condition	of	fast	fracture

from	which

where	σmax	is	the	maximum	stress	from	the	stress	cycle.

The	final	crack	size	triggering	ductile	fracture	can	be	determined	from	the	condition	of	ductile
fracture	 :

where	σl	is	the	maximum	tensile	stress	acting	on	the	crack	ligament	with	area	 	(Figure
12.3a)	and	σS	is	the	yield	stress	of	the	material.	From	the	condition	 ,	the	expression

is	obtained	for	the	final	crack	length	afd	causing	plastic	yielding.

The	smaller	of	the	two	values	 	indicates	the	failure	mode	of	the	final	fracture
and	is	substituted	as	the	upper	limit	af	of	the	integral	12.12	related	to	the	number	of	fatigue
cycles	Nf	until	failure.

During	fatigue	life	predictions,	the	distribution	of	the	initial	lengths	of	the	fatigue	cracks	is
commonly	assumed	to	be	the	size	distribution	of	the	surface	(subsurface)	discontinuities	and
pores.	It	is	implicitly	assumed	that	the	probability	of	fatigue	crack	initiation	on	a	particular
defect	is	equal	to	the	probability	of	its	existence	in	the	stressed	volume.	This	assumption
however	is	too	conservative	because	it	does	not	account	for	the	circumstance	that	the
probability	of	fatigue	crack	initiation	on	a	particular	defect	depends	not	only	on	its	size	but
also	on	its	type.	A	more	refined	approach	should	include	an	assessment	of	the	probability	with
which	the	defects	in	the	material	initiate	fatigue	cracks	(Todinov,	2001c).

A	powerful	application	of	the	fracture	mechanics	approach	is	in	deciding	whether	to	remove
components	from	service	or	leave	them	in	service,	based	on	evidence	provided	by	a	current
inspection.

If	there	is	evidence	from	inspection	that	a	flaw	of	given	size	is	present	in	the	stressed
component,	a	decision	is	made	whether	the	component	can	wait	until	the	next	inspection	period
or	the	component	should	be	replaced	immediately.	In	this	way,	components	which	would



normally	be	removed	from	service	after	a	certain	operating	period	would	be	allowed	to
continue	service	if	the	inspection	and	the	fracture	mechanics	calculations	confirm	safe	service
(no	failure)	until	the	next	inspection.	Allowing	components	to	continue	their	service	results	in
considerable	savings	to	the	world	economy.

If	the	inspection	has	not	indicated	a	presence	of	a	flaw	in	the	component,	in	the	calculations,	a
flaw	with	size	equal	to	the	threshold	flaw	size	of	the	non-destructive	flaw	detection	method
should	be	assumed.	The	life	of	the	component	is	then	estimated	by	also	assuming	that	the	flaw
of	threshold	size	is	located	in	the	region	with	the	highest	loading	stresses	and	the	flaw	is	with
the	most	unfavourable	orientation.

This	approach	will	be	illustrated	by	the	next	example.

Example

ExampleAn	NDT	examination	of	a	metal	plate	with	width	w = 500 mm	and	thickness	t = 6 
mm	loaded	in	tension	revealed	a	central	through	crack	of	size	2a = 12 mm	(Assume
constant	Y ≈ 1),	which	developed	from	a	corrosion	pit	in	the	plate	(Figure	12.13).	Every	3
hours,	the	plate	is	subjected	to	a	repeated	load	F	varying	between	0	and	900 kN.	The
fracture	toughness	of	the	material	is	66 MPa × m1/2,	and	the	yield	strength	is	980 MPa.
Based	on	experimental	test	results,	the	Paris	exponent	was	estimated	to	be	m = 3.0,	and
the	Paris	parameter	C	is	C = 2.7 × 10−11.	Should	the	plate	be	replaced	now	or	it	can	wait
for	the	inspection	next	year?

Figure	12.13	A	plate	with	thickness	t	and	width	w,	with	a	central	through	crack	of	size	2a

Solution
The	crack	length	triggering	a	fully	plastic	yielding	can	be	estimated	from



where	2afd	is	the	critical	final	crack	length	at	which	yielding	starts:

The	crack	half-length	at	fast	fracture	is	estimated	from

	;	therefore,	the	fracture	failure	mode	will	be	fast
fracture	and	the	final	half-crack	length	is	 .	The	number	of	cycles	until	failure
is	estimated	from	integrating	the	Paris	law	 :

This	number	of	cycles	is	equivalent	to	2425	×	3	=	7275	hours	of	service	until	failure.

The	time	to	failure	of	the	plate	in	years	will	be	7275/24 ≈ 303	days.



The	service	life	is	smaller	than	the	time	for	the	new	inspection;	therefore,	the	plate	should
be	replaced	now.

Fatigue	life	calculations	can	also	be	used	to	determine	the	maximum	permissible	flaw	size	or
stress	range	which	guarantees	a	specified	minimum	operation	period	MFFOP	free	of	fatigue
failures	(a	minimum	failure-free	operation	period	(MFFOP)).	In	this	case,	the	specified
MFFOP	is	used	to	determine	the	maximum	permitted	stress	range	necessary	to	guarantee	the
specified	MFFOP.	Suppose	that	the	minimum	stress	σmin	is	zero.	In	this	case,	Equation	12.13
for	the	fatigue	life	should	be	solved	with	respect	to	the	maximum	stress	σmax	in	order	to	obtain
the	maximum	permissible	stress	range.

The	final	crack	length	which	triggers	fast	fracture	is	estimated	from

which	itself	is	a	function	of	the	maximum	permitted	stress	σmax.	As	a	result,	the	fatigue	life
given	by	Equations	12.13	or	12.14	becomes	a	complex	function	of	the	maximum	stress	σmax.
The	maximum	value	of	the	loading	stress	which	still	guarantees	the	specified	MFFOP	can	be
found	easily	by	using	a	repeated	bisection.	The	σmax	(in	MPa)	is	varied	between	the	limits
‘low’	and	‘high’.	For	 ,	the	fatigue	life	is	larger	than	the	specified	MFFOP	(Figure
12.14).	For	 ,	the	fatigue	life	is	smaller	than	the	specified	MFFOP.	Because	the
MFFOP	is	a	continuous	function	of	σmax,	according	to	the	intermediate	value	theorem,	there
exists	σmax	for	which	the	fatigue	life	is	exactly	equal	to	the	specified	MFFOP.	The	fatigue	life
is	first	calculated	at	the	middle	of	the	interval	mid	=	(low	+	high)/2.	If	the	calculated
fatigue	life	is	smaller	than	the	specified	MFFOP,	the	point	mid	becomes	the	new	high	limit.	If
the	converse	is	true,	the	point	mid	becomes	the	new	low	limit.	In	this	way,	the	optimal	solution
(the	intersection	of	the	fatigue	life	dependence	with	the	horizontal	line	representing	the	MFFOP
in	Figure	12.14)	has	been	bracketed	in	an	interval	with	size	half	of	the	size	of	the	initial
interval	[low,	high].	Continuing	the	repeated	bisection,	the	optimal	solution	will	be	bracketed
within	a	very	small	interval	defined	by	the	selected	precision.



Figure	12.14	Optimisation	method	for	determining	the	maximum	loading	stress	which	still
guarantees	a	minimum	failure-free	operation	period	of	specified	length

Suppose	that	the	procedure	fatigue_life(value)	returns	the	fatigue	life	as	a	function	of	the
maximum	loading	stress	value.	The	next	algorithm	determines	the	maximum	value	of	the
loading	stress	which	still	guarantees	the	specified	MFFOP.	The	constant	‘eps’	contains	the
specified	precision	(in	MPa)	with	which	the	optimal	solution	is	obtained:



Algorithm	12.2

		left	=	low;

		right	=	high;

		while	(right-left>eps)	do

		{

		mid	=	(left+right)/2;

				fl_mid	=	fatigue_life(mid);

					if	(fl_mid<MFFOP)	then	right=mid;

							else	left=mid;

		}

		return	mid;

The	application	of	this	approach	to	guaranteeing	a	specified	MFFOP	has	been	illustrated	by	the
next	application.

Example

ExampleEvery	hour,	a	round	bar	made	of	a	high-strength	steel	with	fracture	toughness	65 
MPa × m1/2	is	loaded	in	tension	with	stress	varying	from	 	to	σmax.	The	designed
MFFOP	of	the	bar	is	5	years.	The	failure	mechanism	of	the	bar	is	a	fatigue	crack	growth
followed	by	a	fast	fracture.	Based	on	experimental	test	results,	the	Paris	exponent	was
estimated	to	be	m = 3.1,	and	the	Paris	parameter	C	is	C = 2.1 × 10−12.	If	the	threshold	of
the	non-destructive	technique	is	1 mm,	what	is	the	maximum	permitted	stress	σmax.

Solution
The	worst	case	of	an	edge	crack	oriented	perpendicular	to	the	tensile	stress	is	assumed	(Y 
= 1.12).	Running	Algorithm	12.2	with	the	specified	numerical	data	yielded	

	for	the	maximum	loading	stress	still	guaranteeing	5	years	of	failure-free
operation.	A	loading	stress	σ	for	which	 	is	fulfilled	guarantees	that	the	fatigue	life
of	the	bar	will	be	at	least	5	years.

12.2.1	Reducing	the	Risk	of	Fatigue	Fracture
The	physics	of	failure	model	(12.11)	gives	not	only	an	estimate	of	the	time	to	failure	of	a
cracked	component	but	reveals	also	ways	by	which	fatigue	life	can	be	increased.

12.2.1.1	Reducing	the	Size	of	the	Flaws



The	analysis	shows	that	fatigue	life	is	very	sensitive	to	the	initial	crack	size	ai	and	reducing	the
size	of	the	flaws,	which	serve	as	places	for	fatigue	crack	initiation,	increases	significantly
fatigue	life.	Most	of	the	loading	cycles	are	expended	on	the	early	stage	of	crack	propagation
when	the	crack	is	small.	During	the	late	stages	of	fatigue	crack	propagation,	a	relatively	small
number	of	cycles	is	sufficient	to	extend	the	crack	until	failure.

The	flaw	size	can	be	decreased	by	using	cleaner	material,	better	material	processing	and	better
inspection	for	flaws.

12.2.1.2	Increasing	the	Final	Fatigue	Crack	Length	by	Selecting	Material	with	a
Higher	Fracture	Toughness
The	fatigue	life	is	more	sensitive	to	the	initial	size	of	the	crack	than	the	final	crack	size.
Consequently,	a	reduction	in	the	initial	size	of	the	flaws	results	in	a	significant	improvement	of
the	fatigue	life,	while	the	improvement	in	the	fracture	toughness	which	results	in	a	smaller	final
size	of	the	fatigue	crack	has	a	smaller	impact.

12.2.1.3	Reducing	the	Stress	Range	by	Appropriate	Design
Decreasing	the	stress	range	has	a	big	impact	on	the	fatigue	life.	Reducing	the	stress	range	can
be	done	by	design	modifications	that	transform	large	variations	of	the	loads	acting	on	the
component	into	smaller	stress	amplitudes.	An	example	of	such	design	modification	is	given	in
Figure	12.15	(Todinov,	2007).

Figure	12.15	Design	A	can	be	made	more	fatigue	resistant	by	reducing	angle	α	to	α′	(B)

The	two	designs	(Figure	12.15)	are	characterised	by	the	same	loading	force	F	and	different
design	angles	α	( 	for	design	A	and	 	for	design	B).	For	a	loading	force	with
magnitude	F,	the	force	acting	in	the	two	struts	‘1’	and	‘2’	is	F/(2 cos α).	Its	values,	at	different
values	of	the	loading	force	F,	have	been	plotted	in	Figure	12.16.



Figure	12.16	Variation	of	the	force	acting	in	struts	‘1’	and	‘2’	as	a	function	of	the	variation	of
the	loading	force	F

As	can	be	verified,	for	design	A,	characterised	by	an	angle	 ,	a	variation	of	the	loading
force	F	within	the	range	0,	10 000 N	results	in	a	variation	of	the	strut	forces	in	the	range	0,	57 
369 N.

For	design	B,	however,	characterised	by	an	angle	 ,	the	same	variation	of	the	loading
force	F	results	in	more	than	ten	times	smaller	range	(0,	5321 N)	of	the	strut	forces.	Given	that
the	cross	sections	of	the	struts	are	not	altered	during	the	modification	of	angle	α,	the	stress
range	characterising	design	B	is	also	more	than	10	times	smaller.

Compared	to	design	A,	design	B	is	characterised	by	a	larger	fatigue	life.	Because	of	the	much
smaller	stress	range,	the	fatigue	crack	growth	rate	for	design	B	is	much	smaller	compared	to
design	A.

12.2.1.4	Reducing	the	Stress	Range	by	Restricting	the	Springback	of	Elastic
Components
Suppose	that	for	two	competing	designs,	the	maximum	stress	σmax	from	the	fatigue	loading
(Figure	12.17),	the	material	and	the	initial	crack	size	αi	are	the	same.	Because	the	maximum



(12.17)

stress	σmax	is	the	same	for	the	competing	designs,	the	final	crack	size	αf	is	also	the	same.

Figure	12.17	(a)	The	stress	range	from	loading,	decreased	by	(b)	increasing	the	minimum
loading	stress

The	only	difference	is	the	minimum	stress	σmin,1	and	σmin,2	from	the	fatigue	loading	which
yields	different	stress	ranges	 	and	 	(Figure	12.17).

The	different	stress	ranges	characterising	the	designs	will	result	in	different	fatigue	life.
Assume	that	 .	According	to	Equation	12.13,	the	ratio	of	the	fatigue	lives	of	the	two
designs	is

Let	the	stress	range	characterising	the	second	design	be	twice	as	small	as	the	stress	range
characterising	the	first	design	( ).	From	Equation	12.17,	the	fatigue	life
characterising	the	second	design	becomes

As	a	result	of	the	reduction	of	the	stress	range	by	increasing	the	minimum	stress,	the	fatigue
crack	propagation	life	has	been	increased	eight	times.

This	analysis	can	be	used	for	increasing	the	fatigue	life	of	elastic	components	(Figure	12.18a)
by	increasing	the	minimum	stress	σmin	through	restricting	the	springback	(Figure	12.18b).



Figure	12.18	(a)	Elastic	components	whose	fatigue	life	has	been	increased	by	(b)	increasing
the	minimum	stress	σmin	through	mechanical	restrictors	of	the	springback

12.2.1.5	Reducing	the	Stress	Range	by	Reducing	the	Magnitude	of	Thermal
Stresses
The	stress	range	Δσ	can	be	decreased	and	fatigue	life	increased	by	measures	aimed	at	reducing
the	amplitude	of	the	thermal	stresses.	Reducing	the	amplitude	of	thermal	stresses	can	be
achieved	by:

Using	materials	with	low	coefficient	of	thermal	expansion.

Using	components	in	assemblies	made	of	materials	with	similar	coefficients	of	thermal
expansion.	For	example,	if	a	steel	bolt	works	with	bronze	nut,	because	of	the	different
coefficients	of	thermal	expansions,	thermal	stresses	of	varying	amplitude	will	develop	as	a
result	of	the	temperature	variations.

Using	materials	with	high	thermal	conductivity.	Using	materials	with	high	conductivity
does	not	allow	the	formation	of	significant	thermal	gradients	and	the	associated	with	them
large	thermal	stress	amplitudes.

Using	expansion	offsets	which	accommodate	thermal	expansion.

Using	thermal	insulation	to	reduce	the	amplitude	of	the	temperature	variation	and	with	it	the
amplitude	of	the	thermal	stresses.



Using	statically	determinate	structures	instead	of	statically	indeterminate	structures
(statically	determinate	structures	are	free	of	thermal	stresses).

Avoiding	start–stop	regimes	which	induce	cyclic	thermal	stresses	and	thermal	fatigue.

The	last	point	will	be	illustrated	with	the	statically	indeterminate	section	of	the	pipe	in	Figure
12.19.

Figure	12.19	Reactions	in	the	support	of	a	statically	indeterminate	structure	at	(a)	high
temperature	and	(b)	low	temperature.	(c)	Determining	the	thermal	stresses	in	indeterminate
structures	by	eliminating	one	of	the	supports

Suppose	that	the	pipe	section	with	length	L	and	cross-sectional	area	F	has	been	fixed	at	the



(12.18)

(12.19)

walls	at	room	temperature	t0.	The	standard	approach	to	determining	the	thermal	stresses	in
indeterminate	structures	is	to	eliminate	one	of	the	supports	and	replace	it	with	the	reaction
force	(Figure	12.19c).

With	increasing	the	temperature	beyond	temperature	t0	during	a	start	regime,	the	section	B	at
the	right	end	of	the	pipe	undergoes	two	deformations	–	a	temperature	deformation	and	an
elastic	deformation.	The	temperature	deformation	is	given	by	 ,	where	αt	is	the
linear	coefficient	of	thermal	expansion,	and	the	elastic	deformation	is	given	by	 ,
where	E	is	the	Young	modulus,	F	is	the	area	of	the	cross	section	and	RB	is	the	axial	force
acting	on	the	pipe.	The	resultant	axial	deformation	of	the	pipe	is	zero	because	the	supports	are
fixed;	 ,	which	means	that

holds,	from	which

Because	 ,	 ,	with	increasing	temperature,	the	pipe	experiences	a	compressive
stress	of	magnitude	 .	Conversely,	with	decreasing	temperature	below	t0,	the	pipe

experiences	tensile	stress	with	magnitude	 ,	because	 	in	Equation	12.19	will
now	be	negative	( ).	For	a	steel	pipe	with	E = 1.96 × 1011 MPa,	 	and	

,	the	increase	of	the	temperature	to	 	will	generate	thermal	stress	with
magnitude	235.2 MPa.	Frequent	start–stop	regimes	inducing	variation	of	the	temperature
between	 	and	 	will	generate	cyclic	thermal	stresses	with	range	(0,	235.2 
MPa)	which	often	leads	to	thermal	fatigue.

12.2.1.6	Reducing	the	Stress	Range	by	Introducing	Compressive	Residual
Stresses	at	the	Surface
Introducing	compressive	residual	stresses	at	the	surface	delays	the	fatigue	crack	initiation	by
causing	crack	closure.	Furthermore,	compressive	residual	stresses	also	decrease	the	rate	of
crack	propagation.	The	compressive	residual	stresses	subtract	from	the	loading	stresses	which
results	in	a	smaller	effective	stress	range.	This,	according	to	the	Paris	law,	results	in	a
smaller	fatigue	crack	growth	rate	and	a	longer	fatigue	life.	According	to	the	Paris	model	12.13,
the	fatigue	life	is	inversely	proportional	to	the	mth	power	of	the	stress	range.	This	is	in	line
with	experimental	observations	that	shot	peening	increases	significantly	the	life	of	leaf
suspension	springs.

In	order	to	compensate	the	tensile	stresses	from	loading	at	the	surface,	and	improve	fatigue
resistance,	shot	peening	has	been	used	as	an	important	element	of	the	manufacturing	technology.



Figure	12.20	shows	the	net	stress	distribution	σr(x)	near	the	surface	of	a	loaded,	shot-peened
helical	spring,	obtained	from	the	superposition	of	the	load-imposed	principal	tensile	stress
σt(x)	and	the	residual	stress	σrs(x)	from	shot	peening.	Shot	peening	decreases	the	effective	net

stress	range	 	at	the	surface.	During	service,	the	compressive	residual	stress	from	shot
peening	delays	the	fatigue	crack	initiation	and	impedes	the	fatigue	crack	propagation.

Figure	12.20	Net	stress	distribution	near	the	surface	of	a	loaded,	shot-peened	compression
spring	(Todinov,	2007)



Figure	12.21	depicts	the	residual	stress	variation	measured	in	a	shot-peened	Si–Mn	steel
spring	with	spring	wire	diameter	12 mm.

Figure	12.21	Residual	stress	variation	in	a	shot-peened	Si–Mn	spring	wire	with	diameter	12 
mm	(Todinov,	2007)

The	stress	distribution	with	depth	was	produced	by	X-ray	measurements	followed	by
dissolving	the	surface	layers	(Todinov,	2000b).

Compressive	residual	stresses	at	the	surface,	decreasing	the	effective	stress	range	during
fatigue	loading,	can	also	be	created	by	a	special	heat	and	thermochemical	treatment	such	as
case	hardening,	gas	carburising	and	gas	nitriding.

Residual	stresses	may	also	occur	in	the	absence	of	thermal	processing.	During	cold	rolling	of



metals,	for	example,	the	surface	fibres	are	stretched	more	than	the	inner	material.	After	the
cold	rolling	of	a	section,	the	requirement	for	compatibility	of	the	deformations	results	in
surface	layers	loaded	in	compression	and	core	loaded	in	tension.

Cold	expansion,	discussed	in	Chapter	11	(Section	11.1.12),	is	also	an	efficient	method	for
reducing	the	stress	range	and	improving	the	fatigue	life	of	components.

12.2.1.7	Reducing	the	Stress	Range	by	Avoiding	Excessive	Bending
Excessive	bending	of	flexible	pipes	in	dynamic	applications	can	also	be	associated	with
excessive	stress	and	strain	ranges.	Bend	restrictors	and	bend	stiffeners	(a	bend	stiffener	is
shown	in	Figure	12.22)	are	common	design	measures	which	allow	a	certain	degree	of	bending
and	restrict	at	the	same	time	excessive	bending.	Bend	restrictors	consist	of	interlocking	rings
around	the	pipe	which	do	not	restrict	decreasing	the	curvature	until	a	particular	critical	value
is	reached.	Bending	beyond	this	critical	value	causes	the	rings	to	lock,	and	no	further	decrease
of	the	curvature	is	possible.

Figure	12.22	Bend	stiffener

12.2.1.8	Reducing	the	Stress	Range	by	Avoiding	Stress	Concentrators
Sharp	notches	in	components	result	in	a	high	stress	concentration	which	reduces	the	fatigue



life	and	promotes	early	fatigue	failures.	Such	are	the	sharp	corners,	keyways,	holes,	abrupt
changes	in	cross	sections,	etc.	Fatigue	cracks	on	rotating	shafts	often	originate	on	badly
machined	fillet	radii	which	act	as	stress	intensifiers.	Because	of	this,	they	are	reliability-
critical	elements	and	their	appropriate	design	and	manufacturing	quality	should	be	guaranteed.
Reducing	the	stress	magnitude	in	the	vicinity	of	a	fillet	can	be	achieved	by	increasing	its
radius.	In	the	vicinity	of	a	notch,	the	stress	is	characterised	by	a	sharp	gradient.	The	smaller	the
curvature	of	the	notch,	the	larger	the	stress	magnitude	and	the	lower	the	resistance	to	fatigue
failures.

Fatigue	crack	initiation	is	also	promoted	at	the	grooves	and	the	micro-crevices	of	rough
surfaces.	These	can	be	removed	if	appropriate	treatment	(grinding,	honing	and	polishing)	is
prescribed	(Ohring,	1995).

12.2.1.9	Improving	the	Condition	of	the	Surface	and	Eliminating	Low-Strength
Surfaces
The	fatigue	life	of	components	depends	strongly	on	the	condition	of	the	surface.	Numerous
observations	confirmed	that	the	fatigue	failure	usually	starts	from	a	surface	imperfection.	The
major	reason	for	this	is	the	unfavourable	combination	of	three	circumstances:

1.	 The	surface	layers	usually	carry	the	largest	stresses.

2.	 The	surface	layers	are	usually	saturated	with	various	discontinuities	and	defects.

3.	 The	surface	is	exposed	directly	to	the	negative	influence	of	the	processing	and	working
environment.

High-strength	steels	and	alloys	are	particularly	sensitive	to	surface	defects.	Some	of	the
surface	imperfections	are	a	direct	result	from	the	manufacturing	process.	The	surface
roughness,	for	example,	is	a	function	of	many	parameters:	the	geometry	of	the	cutting	tool,	the
type	of	machined	material,	the	homogeneity	of	its	micro-structure,	the	cutting	speed	and	feed,
the	rigidity	of	the	fixtures,	the	vibration	resistance	of	the	cutting	machine,	the	degree	of	wear	of
the	cutting	blade,	the	presence	of	lubricants	and	coolants,	etc.	The	machined	surface	contains	a
large	number	of	grooves	of	different	depth	and	sharpness,	causing	local	stress	concentrations
and	reduced	fatigue	strength.	The	greater	the	material	strength,	the	more	detrimental	is	the
effect	of	these	stress	concentrators.	Surface	roughness	is	decreased	and	fatigue	life	is
improved	if	the	machined	materials	have	a	homogeneous	microstructure,	characterised	by	a
small	grain	size.	Surface	roughness	is	decreased	by	using	sharp	cutting	blades,	increasing	the
cutting	speed,	applying	lubricants	and	coolants,	eliminating	vibrations	by	using	damping
devices	and	fixtures	of	high	rigidity.	The	size	of	surface	irregularities	and	their	direction	has	a
profound	effect	on	fatigue.	Consequently,	surface	roughness	from	machining	can	be	reduced
significantly	and	fatigue	life	further	increased	by	grinding,	polishing,	honing	and
superfinishing.

Strain-hardening	operations	such	as	burnishing,	rolling	and	shot	peening	increase	fatigue	life
because	the	strain-hardened	surface	layers	resist	the	formation	and	propagation	of	fatigue
cracks.	As	a	consequence,	in	strain-hardened	components,	the	initiation	of	fatigue	cracks



occurs	at	higher	stresses	and	after	a	greater	number	of	loading	cycles	compared	to	components
which	have	not	been	strain	hardened.	During	burnishing,	for	example,	the	surface	roughness	is
decreased,	surface	layers	are	strain	hardened,	and	residual	compressive	stresses	are
generated.	Burnishing	also	raises	the	fatigue	limit	at	high	temperatures.	As	a	result,	burnishing
applied	as	a	finishing	operation	to	shafts,	bars,	pistons	and	cylinders	ensures	high	reliability.

Even	insignificant	decarburisation	of	steels	with	martensitic	structure	causes	a	significant
reduction	of	their	fatigue	strength.	Decarburisation	diminishes	the	fatigue	resistance	of	steel
components	by:

1.	 Diminishing	the	local	fatigue	strength	due	to	the	decreased	density	of	the	surface	layer

2.	 Increased	grain	size	and	diminished	fracture	toughness	and	yield	strength

3.	 Creating	low-cycle	fatigue	conditions	for	the	surface

These	factors	promote	early	fatigue	crack	initiation	and	premature	fatigue	failure.
Consequently,	in	order	to	delay	the	onset	of	fatigue	failure,	during	the	austenitisation	of	steel
components,	decarburisation	and	excessive	grain	growth	should	be	avoided.

Eliminating	low-strength	surfaces	can	be	achieved	by:

Eliminating	soft	decarburised	surface	after	austenitisation	by	machining	or	carburizing	in
atmosphere	with	strictly	controlled	carbon	potential.

Eliminating	surface	discontinuities,	folds	and	pores	by	machining	and	polishing.

Eliminating	coarse	microstructure	at	the	surface	by	a	controlled	heat	treatment.

Strengthening	the	surface	layers	by	surface	hardening,	carburising,	nitriding	and	deposition
of	hard	coatings	(Budinski,	1996).	For	example,	TiC,	TiN	and	Al2O3	coatings	increase
significantly	the	fatigue	resistance.	Early-life	failures	due	to	rapid	wear	can	substantially
be	reduced	by	specifying	appropriate	lubricants.	These	create	interfacial	incompressible
films	that	keep	the	surfaces	from	contacting.

12.2.1.10	Increasing	the	Fatigue	Life	of	Automotive	Suspension	Springs
Delaying	the	onset	of	fatigue	failure	for	hot-coiled	automotive	suspension	springs,	for	example,
requires	(Todinov,	2007):

1.	 A	spring	steel	with	a	small	susceptibility	to	surface	decarburisation	(Gildersleeve,	1991).

2.	 A	controlled	austenitisation	of	the	spring	wire.	The	austenitisation	time	and	temperature
must	be	carefully	selected	in	order	to	guarantee	homogeneous	microstructure	and	at	the
same	time	to	prevent	excessive	grain	growth.

3.	 Improved	quenching	of	the	hot-coiled	spring,	resulting	in	compressive	residual	stresses	at
the	surface.

4.	 An	optimal	tempering	to	achieve	a	microstructure	with	optimal	hardness,	corresponding	to
a	maximum	fatigue	resistance.



5.	 A	carefully	controlled	shot	peening	(Todinov	2000b):

The	shot	peening	must	have	a	sufficient	intensity	in	order	to	introduce	residual	stresses
with	a	large	magnitude.

The	shot	peening	must	be	carefully	conducted	in	order	to	guarantee	a	uniform
compressive	residual	stresses	at	the	surface	of	the	spring	coil.

6.	 Controlling	the	cleanliness	of	the	spring	steel:

The	spring	steel	must	have	a	small	number	density	of	oxide	inclusions	which	serve	as
ready	fatigue	crack	initiation	sites.

The	spring	steel	must	have	a	small	number	density	of	sulphide	inclusions,	which
promote	anisotropy	and	reduce	the	toughness	of	the	spring	wire.

7.	 Painting	to	provide	a	durable	film	preventing	corrosion	damage.

These	measures	increase	the	number	of	cycles	needed	for	fatigue	crack	initiation,	slow	down
the	rate	of	fatigue	crack	propagation	and	delay	significantly	the	onset	of	fatigue	failure.

12.3	Early-Life	Failures
Early-life	failures	occur	within	a	very	short	period	from	the	start	of	the	design	life	of	the
installed	equipment.	Because	they	usually	occur	during	the	payback	period	of	the	installed
equipment	and	are	also	associated	with	substantial	losses	due	to	warranty	payments,	they	have
a	strong	negative	impact	on	the	financial	revenue.	Early-life	failures	result	in	loss	of	reputation
and	market	share	and	are	usually	caused	by:

Poor	design

Defects	in	the	material	from	processing

Defects	from	manufacturing

Inadequate	material

Poor	inspection	and	quality	control

Misassembly,	poor	workmanship	and	mishandling

Human	errors

Most	of	the	early-life	failures	are	overstress	failures	which	occur	during	the	infant	mortality
region	of	the	bathtub	curve.	They	are	often	caused	by	inherent	defects	in	the	system,	due	to
poor	design,	manufacturing	and	assembly.	Human	errors	during	design,	manufacturing,
installation	and	operation	also	account	for	a	significant	number	of	early-life	failures.	Some	of
the	causes	for	these	errors	are	listed	in	Section	11.1.11.

12.3.1	Influence	of	the	Design	on	Early-Life	Failures
Inadequate	design	is	one	of	the	most	common	reasons	for	early-life	failures.	A	common	design



error	is	the	underestimation	of	the	actual	load/stress	magnitude	the	equipment	is	likely	to
experience	in	service.	For	example,	underestimating	the	working	pressure	and	temperature	may
cause	an	early-life	failure	of	a	seal	and	a	release	of	harmful	chemicals	into	the	environment.
An	early-life	failure	of	a	critical	component	may	also	be	caused	by	unanticipated	eccentric
loads	due	to	weight	of	additional	components	or	by	high-amplitude	thermal	stresses	during
start-up	regimes.	Early-life	failures	are	also	promoted	by	failure	to	account	for	the	extra	loads
during	assembly.	Installation	loads	are	often	the	largest	loads	a	component	is	ever	likely	to
experience.	Misalignment	of	components	creates	extra	loads,	susceptibility	to	vibrations,
excessive	centrifugal	forces	on	rotating	shafts	and	large	stress	amplitudes	leading	to	early
fatigue.	Misassembly	and	mishandling	often	causes	excessive	yield	and	deformation	or
damaged	protective	coatings,	which	promotes	rapid	corrosion.

Operation	outside	the	design	specifications	is	also	a	major	contributor	to	early-life	failures.
Early-life	failures	caused	by	inadequate	operating	procedures	can	be	reduced	significantly	by
implementing	mistake	proofing	(Poka-Yoke)	devices	into	the	systems,	which	eliminate	the
possibility	of	violating	the	correct	procedures,	especially	during	assembly.

A	special	design	(referred	to	also	as	robust	design)	can	reduce	significantly	the	variability	of
performance	as	a	function	of	the	inevitable	variability	of	design	parameters.	Robust	designs
are	characterised	by	a	small	sensitivity	to	variations	of	design	parameters	and	are	an	important
instrument	in	decreasing	early-life	failures	of	systems	and	assemblies.	More	information	on
robust	designs	is	provided	in	Section	11.1.21.

Finally,	designs	can	be	strengthened	and	early-life	failures	reduced	significantly	by	applying
highly	accelerated	stress	screens	(HASS)	which	identify	weak	spots	in	the	designs	(Hobbs,
2000).

12.3.2	Influence	of	the	Variability	of	Critical	Design	Parameters	on
Early-Life	Failures
An	important	factor	promoting	early-life	failures	is	the	variability	associated	with	critical
design	parameters	(e.g.	material	properties	and	dimensions)	which	leads	to	deviations	from	the
expected	functions	and	performance.	Material	properties	such	as	(i)	yield	stress,	(ii)	static
fracture	toughness,	(iii)	fatigue	resistance,	(iv)	modulus	of	elasticity	and	elastic	limit,	(v)	shear
modulus,	(vi)	percentage	elongation	and	(vii)	density	are	often	critical	design	parameters
determining	the	expected	functions	and	performance.	Which	of	the	material	properties	are
relevant,	depends	on	the	required	functions.	Material	properties	depend	on	the	materials
processing	and	manufacturing	and	are	characterised	by	a	large	variability.	Often,	defects	and
unwanted	inhomogeneity	are	the	source	of	variability.	Residual	stress	magnitudes	are	also
characterised	by	a	large	variation.	Strength	variability	caused	by	production	variability	and
variability	of	material	properties	is	one	of	the	major	reasons	for	an	increased	interference	of
the	strength	distribution	and	the	load	distribution	which	promotes	early-life	failures.	A	heavy
lower	tail	of	the	mechanical	property	distributions	usually	results	in	a	heavy	lower	tail	of	the
strength	distribution.	Low	values	of	the	material	properties	exert	stronger	influence	on
reliability	than	do	high	or	intermediate	values.	Interestingly,	deviations	towards	higher	values



can	also	be	a	cause	for	failures.	For	example,	due	to	a	deviation	of	the	shear	strength	of	a	shear
pin	towards	high	values,	the	pin	may	fail	to	disconnect	the	driven	shaft	upon	reaching	a	critical
torque.	The	result	is	a	failure	of	expensive	equipment.

An	important	way	of	reducing	the	lower	tail	of	the	material	properties	distribution	is	the	high-
stress	burn-in.	The	result	is	a	substantial	decrease	of	the	strength	variability	and	increased
reliability	on	demand	due	to	a	smaller	interference	of	the	strength	distribution	and	the	load
distribution.	Most	of	the	failures	occurring	early	in	life	are	quality	failures	due	to	the	presence
of	substandard	items	which	find	their	way	into	the	final	products	because	of	deficient	quality
assurance	procedures.	Poor	interfaces	are	a	frequent	cause	for	early-life	failures.	Interfaces
are	rarely	manufactured	to	the	same	standards	as	the	components	involved.	As	a	result,
interfaces	often	appear	as	weak	links	in	the	chain,	and	their	reliability	limits	the	overall
reliability	of	the	assembly.

In	this	respect,	inspection	and	quality	control	techniques	are	important	means	of	weeding	out
substandard	components	and	interfaces	before	they	can	initiate	an	early-life	failure.	Examples
of	inspection	and	quality	control	activities	which	help	reduce	early-life	failures	are:

Checking	for	the	integrity	of	protective	coatings	and	assuring	that	the	corrosion	protection
provided	by	the	cathodic	potential	is	adequate

Using	non-destructive	inspection	techniques	such	as	ultrasonic	inspection	technique	for
testing	components	and	welds	for	the	presence	of	cracks	and	other	flaws

Inspection	for	water	ingress	in	underwater	installations

Inspection	for	excessive	elastic	and	plastic	deformation

Defects	like	shrinkage	pores,	sand	particles	and	entrained	oxides	from	casting,	micro-cracks
from	heat	treatment	and	oxide	inclusions	from	material	processing	are	preferred	sites	for	early
fatigue	crack	initiation	and	often	cause	early	fatigue	failure.	These	flaws	are	also	preferred
sites	for	initiating	fracture	during	an	overstress	loading.	Segregation	of	impurities	along	the
grain	boundaries	significantly	reduces	the	local	fracture	toughness	and	promotes	intergranular
brittle	fracture.	Impurities	like	sulphide	stringers,	for	example,	cause	a	reduced	corrosion
resistance	and	anisotropy.	Early-life	failures	caused	by	lamellar	tearing	beneath	welds,
longitudinal	splitting	of	wire	and	increased	susceptibility	to	pitting	corrosion	can	all	be
attributed	to	anisotropy.

Production	variabilities	during	manufacturing,	not	guaranteeing	the	specified	tolerances	or
introducing	flaws	in	the	manufactured	product,	often	lead	to	early-life	failures.	Depending	on
the	supplier,	the	same	component	of	the	same	material	manufactured	to	the	same	specification
is	usually	characterised	by	different	properties.	Between	suppliers,	variation	exists	even	if	the
variations	of	property	values	characterising	the	individual	suppliers	are	small	(see	Chapter	4).
A	possible	way	of	reducing	the	‘between-suppliers	variation’	is	to	use	only	the	supplier
producing	items	with	the	smallest	variation	of	properties.

Furthermore,	due	to	the	inherent	variability	of	the	manufacturing	process,	even	items	produced
by	the	same	manufacturer	can	be	characterised	by	different	properties.	The	‘within-supplier



variation’	can	be	reduced	significantly	by	a	better	control	of	the	manufacturing	process,	more
precise	tools,	production	and	control	equipment,	specifications,	instructions,	inspection	and
quality	control	procedures.	The	manufacturing	process,	if	not	tightly	controlled,	can	be	the
largest	contributor	to	early-life	failures.	Because	of	the	natural	variation	of	critical	design
parameters,	early-life	failures	are	often	due	to	unfavourable	combinations	of	values	(e.g.
worst-case	tolerance	stacks)	rather	than	due	to	particular	production	defects.	Since	variability
is	a	source	of	unreliability	(Carter,	1997),	a	particularly	important	factor	reducing	significantly
early-life	failures	is	the	manufacturing	process	control.	Process	control	based	on	computerised
manufacturing	processes	reduces	the	variation	of	properties.	Process	control	charts	monitoring
the	variations	of	the	output	parameters,	statistical	quality	control	and	statistical	techniques	are
important	tools	for	reducing	the	variation	of	properties	(Montgomery	et	al.,	2001).

Another	important	way	of	decreasing	early-life	failures	is	adopting	the	six-sigma	quality
philosophy	(Harry	and	Lawson,	1992)	based	on	production	with	very	small	number	of
defective	items	(zero	defect	levels).	Modern	electronic	systems,	in	particular,	include	a	large
number	of	components.	For	the	sake	of	simplicity,	suppose	that	a	complex	system	is	composed
of	N	identical	components,	arranged	logically	in	series.	If	the	required	system	reliability	is	

,	the	reliability	of	a	single	component	should	be	 .	Clearly,	with	increasing	the
number	of	components	N,	the	reliability	R0	required	from	the	separate	components	to	guarantee
the	specified	reliability	Rs	for	the	system	approaches	unity.	In	other	words,	in	order	to
guarantee	the	required	system	reliability	Rs,	the	number	of	defective	components	must	be	very
small.	Adopting	a	six-sigma	process	guarantees	no	more	than	two	defective	components	out	of
a	billion	manufactured,	and	this	is	important	strategy	for	eliminating	early-life	failures	in
complex	systems.
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13	
Probability	of	Failure	Initiated	by	Flaws

13.1	Distribution	of	the	Minimum	Fracture	Stress	and	a
Mathematical	Formulation	of	the	Weakest-Link	Concept
Early-life	failures	are	often	the	result	of	poor	manufacturing	and	inadequate	design.	A
substantial	proportion	of	early-life	failures	is	also	due	to	the	presence	of	flaws	in	the	material.

Consider	a	bar	made	of	brittle	material	containing	random	flaws,	loaded	in	tension	(Figure
13.1).	Since	the	loading	stress	σ	is	below	the	minimum	fracture	stress	σM	of	the	homogeneous
matrix,	failure	can	only	be	initiated	by	a	flaw	residing	in	the	stressed	volume.	A	flaw	that	will
initiate	failure	with	certainty	if	it	is	present	in	the	volume	of	the	loaded	bar	will	be	referred	to
as	critical	flaw	(Batdorf	and	Crose,	1974).	For	example,	a	critical	flaw	could	be	a	flaw
whose	size	exceeds	a	particular	limit	that	depends	on	the	loading	stress.	Assume	a	population
of	fracture-initiating	flaws	with	finite	number	density	λ,	whose	locations	in	the	stressed	volume
of	the	bar	follow	a	homogeneous	Poisson	process.	The	critical	flaws	whose	number	density	at
a	loading	stress	σ	will	be	denoted	by	λc(σ),	also	follow	a	homogeneous	Poisson	process	in	the
volume	of	the	loaded	bar	(the	filled	circles	in	Figure	13.1).	For	a	long	time,	the	Weibull	model
(Weibull,	1951)

has	been	used	to	model	the	probability	of	failure	pf(σ)	of	brittle	components	loaded	in	tension.

Figure	13.1	Stressed	bar	with	volume	V	containing	flaws	with	finite	number	density	λ

In	Equation	13.1,	σ	is	the	loading	tensile	stress,	σl	is	a	location	parameter	or	a	threshold	stress
below	which	the	probability	of	failure	is	zero,	V	is	the	stressed	volume,	and	σ0	and	m	are
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material	constants.	The	utility	of	the	Weibull	distribution	has	been	traditionally	justified	with
its	ability	to	fit	well	a	wide	range	of	data.	The	theoretical	justification	of	the	Weibull
distribution	is	the	extreme	value	theory	(Gumbel,	1958;	Trustrum	and	Jayatilaka,	1983).	The
Weibull	model	assumes	no	interaction	between	the	flaws	and	no	crack	growth	resistance.	In
other	words,	once	a	crack	is	initiated	from	a	flaw,	it	leads	to	failure.

In	most	publications	related	to	the	Weibull	distribution,	the	utility	of	the	Weibull	distribution
has	also	been	justified	with	the	belief	that	it	is	the	mathematical	formulation	of	the	weakest-
link	concept.	In	other	words,	if	a	number	of	random	flaws	are	present	in	a	stressed	volume,	it
is	believed	(e.g.	Freudenthal,	1968)	that	the	Weibull	distribution	is	the	distribution	of	the
minimum	failure	stress	characterising	these	flaws.	This	common	belief	has	been	challenged	in
Todinov	(2009c,	2010)	and	proven	false.

If	the	minimum	failure	stress	σmin,f	characterising	the	flaws	in	a	stressed	volume	is	greater	than
the	loading	stress	σ	 ,	then	no	critical	flaws	are	present	in	the	stressed	volume	V.	On
the	other	hand,	if	no	critical	flaws	reside	in	the	stressed	volume,	the	minimum	failure	stress
σmin,f	characterising	the	flaws	in	the	stressed	volume	will	certainly	be	greater	than	the	loading
stress	σ.

The	expected	number	of	flaws	in	the	stressed	volume	is	λV,	and	if	the	probability	that	a	flaw
will	be	critical	at	a	stress	level	σ	is	denoted	by	Fc(σ),	the	expected	number	of	critical	flaws	in
the	stressed	volume	V	will	be	λVFc(σ).	Because	the	locations	of	the	flaws	follow	a
homogeneous	Poisson	process	in	the	stressed	volume	V,	for	the	probability	that	the	minimum
failure	stress	will	be	greater	than	the	loading	stress	σ,	 	holds.
This	is	the	probability	that	no	critical	flaw	will	be	present	in	the	stressed	volume	V.	The
probability	distribution	function	of	the	minimum	failure	stress	characterising	the	flaws	in	the
stressed	volume	is	therefore	given	by

Suppose	that	there	are	M	different	types	of	flaws	in	the	stressed	volume	V,	each	characterised
by	a	number	density	λi	and	probability	Fci(σ)	that	a	flaw	from	the	ith	type	will	be	critical.
Equation	13.2	can	then	be	easily	generalised	for	M	types	of	flaws:

The	comparison	of	Equation	13.2	with	the	strictly	increasing	Weibull	distribution	function
(13.1)	reveals	that	the	dependence	Fc(σ)	must	necessarily	be	a	strictly	increasing	function	of
the	applied	stress	σ.	The	probability	Fc(σ)	that	a	flaw	will	be	critical	however	is	not
necessarily	a	strictly	increasing	function	of	the	applied	stress	σ.

This	point	will	be	illustrated	immediately	by	a	thought	experiment.	Suppose	that	the	brittle	bar



in	Figure	13.2	contains	a	single	type	of	surface	flaws	(e.g.	random	scratches).	The	number	of
scratches	along	the	stressed	length	L	follows	a	homogeneous	Poisson	process	with	lineal
intensity	λ	(number	of	flaws/m).

Figure	13.2	A	brittle	bar	with	random	scratches,	loaded	in	tension

The	bar	is	subjected	to	a	tensile	loading	in	the	range	 	which	is	below	the	minimum
fracture	stress	σM	of	the	bar	(with	no	flaws	on	it,	Figure	13.3).

Figure	13.3	Variation	of	the	probability	of	failure	initiated	by	a	flaw



(13.4)
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Suppose	that	the	threshold	stress	level	σ1	is	such	that	any	flaw	from	the	considered	type	(e.g.
the	scratches),	will	cause	failure	if	present	in	the	stressed	bar.	In	other	words,	beyond	the
stress	level	σ1,	all	flaws	(scratches)	are	critical	( ;	Figure	13.3).	Note	that	the
stress	level	σ2	is	not	capable	of	initiating	failure	if	no	scratches	are	present.	Hence,	failure	in
the	stress	interval	0,	σ2	can	only	be	initiated	by	a	scratch	on	the	surface	of	the	bar.

Clearly,	the	probability	of	failure	in	the	stress	region	(σ1,	σ2)	is	equal	to	the	probability	of
existence	of	a	flaw	(scratch)	on	the	surface	of	the	stressed	bar.	The	probability	of	exactly	x
scratches	in	the	stressed	length	L	is	given	by	the	Poisson	distribution

Hence,	the	probability	of	no	scratches	in	the	stressed	length	L	is	given	by

The	probability	of	at	least	a	single	flaw	in	the	stressed	length	L	is	equal	to	the	probability	of
failure	in	the	stress	region	(σ1,	σ2)	and	is	given	by

Note	that	the	probability	of	failure	initiated	by	a	flaw	is	constant	in	the	stress	region	(σ1,	σ2).

However,	according	to	the	Weibull	distribution	(13.1),	within	the	stress	range	(σ1,	σ2),	as	σ
varies	within	the	range	σ1,	σ2,	the	probability	of	failure	always	increases	 ;
Figure	13.4.	In	fact,	the	probability	of	failure	in	the	stress	region	(σ1,	σ2)	remains	constant
because	the	expected	number	of	random	scratches	on	the	stressed	length	has	not	been
increased	from	loading	in	the	stress	region	σ1,	σ2.



Figure	13.4	According	to	the	Weibull	model,	the	probability	of	failure	is	a	strictly	increasing
function	of	the	applied	stress

This	example	is	applicable	to	a	number	of	real	cases	involving	flaw	populations	where	the
flaws	from	a	particular	type	become	unstable	at	a	smaller	stress	than	the	rest	of	the	flaws.	In
this	case,	there	will	be	a	stress	region	within	which	most	of	the	flaws	from	a	particular	type
will	be	critical,	while	the	stress	level	will	be	insufficient	to	make	the	flaws	from	the	other
types	critical.	In	this	stress	region,	increasing	the	loading	stress	will	result	in	a	kink	on	the
probability	of	failure	curve	or	even	a	plateau.	In	both	cases,	the	strictly	increasing	Weibull
distribution	function	will	not	be	able	to	describe	correctly	the	variation	of	the	probability	of
failure	with	increasing	load.

To	demonstrate	experimentally	that	in	general,	the	Weibull	distribution	cannot	model	correctly
the	probability	of	failure	controlled	by	flaws,	an	easy-to-reproduce	experiment	has	been
proposed	in	Todinov	(2010),	involving	18	mm	wide	paper	strips	(Figure	13.5).	On	the	loaded
length	of	L	=	250	mm,	random	cuts	of	10	and	3	mm	length	were	made,	acting	as	flaws.



Figure	13.5	The	paper	strip	experiment	demonstrating	that	the	Weibull	distribution	cannot
model	the	probability	of	failure	controlled	by	flaws

In	order	to	make	the	axial	loading	more	uniform,	the	paper	strips	were	loaded	through
triangular	frames,	free	to	rotate	along	the	perpendicular	axes	x,	y	and	z	(Figure	13.5).	The
locations	of	the	cuts	from	each	type	follow	a	homogeneous	Poisson	process	with	number
densities	 	and	 .	The	number	of	cuts	from	each	size	was	generated	by	a
specially	designed	generator	of	random	numbers	following	a	homogeneous	Poisson	process,
according	to	the	algorithm	described	in	Chapter	8.	Once	the	random	number	of	cuts	k	from	a
particular	type	was	obtained	from	sampling	the	Poisson	distribution,	the	locations	of	the	cuts	xi
along	the	paper	strip	were	found	by	distributing	them	uniformly	along	the	length	L	according	to

the	relationship	 ,	 	where	ui	is	a	uniformly	distributed	random	number	in	the
interval	(0,	1).	To	minimise	the	interference	of	the	stress	fields	around	the	cuts,	adjacent	cuts
were	alternatively	placed	on	both	sides	of	the	strip,	as	shown	in	Figure	13.5.

The	paper	strip	was	then	loaded	gradually	and	the	breaking	load	recorded.	The	results	from	n
=	105	experiments	are	shown	in	Figure	13.6.	An	empirical	cumulative	distribution	of	the
probability	of	failure	has	been	produced	by	ordering	the	breaking	strength	in	ascending	order
and	plotting	the	load	versus	the	rank	estimate	 ,	where	i	=	1,	2,	…,	105	is	the	index
of	the	ordered	measurements.



Figure	13.6	Empirical	cumulative	distribution	of	the	probability	of	failure	of	paper	strips	with
random	cuts

Only	the	lower	part	of	the	curve	has	been	reproduced,	corresponding	to	the	loading	range
where	at	least	one	random	cut	was	present	on	the	strip.

The	paper	strip	fails	at	the	cut	with	the	smallest	strength.	As	can	be	seen	from	the	experimental
cumulative	distribution	of	the	probability	of	failure,	the	distribution	of	the	minimum	failure
load	does	not	follow	the	Weibull	distribution.	Note	that	the	reason	is	certainly	not	that	the
strength	distribution	of	the	cuts	is	a	two-point	distribution,	containing	only	two	possible	values
for	the	strength.	As	can	be	seen	from	the	graph	in	Figure	13.6,	the	cuts	from	each	size	cannot	be
made	identical.	Both	the	large	cuts	and	the	small	cuts	are	characterised	by	their	own	unique
strength	distributions.	The	Weibull	model	fails	to	capture	the	variation	of	the	probability	of
failure	because	the	Weibull	model	is	characterised	by	a	strictly	increasing	function	of	the
probability	of	failure	with	the	applied	stress.	A	strictly	increasing	function	cannot
approximate	a	probability	of	failure	which	does	not	increase	over	a	particular	loading
range.	The	beginning	of	the	loading	range	where	the	probability	of	failure	is	constant	is
marked	by	a	load	for	which	all	big	cuts	are	critical	(will	cause	failure	if	present	on	the	strip).
The	end	of	the	loading	range	is	marked	by	a	load	for	which	none	of	the	small	cuts	are	critical
(Figure	13.6).



The	empirical	probability	of	failure	obtained	from	the	paper	strip	experiment	is	in	agreement
with	the	predictions	from	Equation	13.3.	Indeed,	according	to	Equation	13.3	in	the	loading
region	between	20	and	30	N	where	all	large	cuts	are	critical	but	none	of	the	small	cuts	is
critical,	 ,	 	and	substituting	in	Equation	13.3	where	M	=	2	gives

In	the	loading	region	beyond	46	N	where	all	cuts	are	critical,	 	and	 .
Substituting	in	Equation	13.3	where	M	=	2	gives

Both	results	agree	with	the	experimental	observations.

According	to	the	Weibull	model

the	probability	of	failure	is	a	strictly	increasing	function	of	the	applied	stress	
(Figure	13.4).

The	Weibull	model	yields	incorrect	probability	of	failure	in	the	flat	region	of	the	empirical
cumulative	distribution.	The	probability	of	failure	should	remain	the	same:	
because	the	expected	number	of	flaws	has	not	been	altered	in	the	stress	interval	(σ1,	σ2)
belonging	to	the	flat	region	of	the	dependence	in	Figure	13.6.	The	conclusion	from	the	simple
paper	strip	experiment	is	that	the	classical	Weibull	model,	with	its	strictly	increasing
function,	is	incapable	of	approximating	a	constant	probability	of	failure	over	a	loading
region.	Such	regions	exist	whenever	the	largest	flaws	are	all	critical,	but	the	loading
magnitude	is	insufficient	to	make	the	smaller	flaws	unstable.	If	no	new	flaws	are	created	in	a
particular	loading	region,	there	is	no	reason	for	the	probability	of	failure	to	increase.

Note	that	inventing	separate	Weibull	functions	to	approximate	the	strength	distributions	of	each
flaw	type	(as	it	is	commonly	done	by	many	researchers)	does	not	resolve	the	fundamental
problem	with	the	Weibull	model.	The	probability	of	failure	within	the	flat	regions	of	the
probability	distribution	function	cannot	be	approximated	by	any	strictly	increasing	Weibull
functions.	A	kink	on	the	probability	of	failure	curve	also	cannot	be	approximated	by	a	single
Weibull	function.

Here	are	some	of	the	reasons	why	the	fundamental	flaw	in	the	Weibull	model	has	evaded	the
attention	of	researchers	for	such	a	long	time:

Lack	of	a	rigorous	theoretical	analysis	of	the	Weibull	model.
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Small	data	sets	were	fitted.	Because	of	the	flexibility	of	the	Weibull	model,	a	small	sample
appears	to	follow	the	Weibull	distribution	in	almost	any	case.

The	confirmation	bias	of	researchers	(selecting	data	sets	complying	with	the	Weibull
distribution	and	ignoring	data	sets	contradicting	it).

Because	of	its	popularity,	a	single	Weibull	distribution	was	frequently	imposed	even	on
data	sets	whose	empirical	cumulative	distribution	indicated	that	the	data	do	not	come	from
a	single	Weibull	population.

The	Weibull	distribution	is	the	correct	model	in	the	important	special	case	where	fracture
is	controlled	by	the	size	of	a	single	type	of	flaws	(e.g.	voids	or	inclusions)	and	the	flaw
size	can	be	approximated	well	by	an	inverse	power	law	distribution.

For	relatively	small	stress	magnitudes,	the	lower	tail	of	the	probability	that	a	flaw	will	be
critical	can	often	be	approximated	reasonably	well	by	a	power	law	dependence,	and	in	this
case,	the	Weibull	distribution	approximates	well	the	probability	of	failure.

The	outlined	limitations	associated	with	the	traditional	Weibull	model	means	also	that	the
software	tools	based	on	this	model	are	not	capable	of	predicting	correctly	the	probability	of
failure	initiated	by	flaws.

13.2	The	Stress	Hazard	Density	as	an	Alternative	of	the
Weibull	Distribution
Here,	a	general	equation	will	be	derived	regarding	the	probability	of	failure	of	uniformly
stressed	component	with	volume	V	(Figure	13.1),	irrespective	of	whether	failure	is	initiated	by
flaws	or	not.	This	can	be	done	by	expressing	the	probability	of	failure	using	the	concept	stress
hazard	density	h(σ).

The	stress	hazard	density	stands	for	the	quantity

where	 	is	the	failure	probability	density	function	and	 	is	the
probability	of	surviving	a	loading	stress	σ.	The	conditional	probability	of	failure	in	the
infinitesimally	small	stress	interval	 	given	that	the	component	has	survived	a
loading	stress	σ	is

Using	the	concept	stress	hazard	density,	the	conditional	probability	of	failure	in	the
infinitesimally	small	stress	interval	 	can	be	presented	as	Vh(σ)dσ.



(13.8)

(13.9)

(13.10)

(13.11)

Equation	13.6	can	also	be	presented	as

which	is	a	separable	differential	equation	with	initial	condition	 .	Presenting
Equation	13.8	as

and	integrating	both	sides	from	0	to	σ	give

From	the	initial	condition	 ,	we	get	 .	Finally,	the	probability	of	failure	of	the
component	can	be	presented	as

	will	be	referred	to	as	cumulative	stress	hazard	density	(Todinov,	2010).
Hence,	the	probability	of	failure	can	be	expressed	as	a	function	of	the	cumulative	stress	hazard
density

As	can	be	seen,	Equation	13.9	is	very	general.	During	its	derivation,	the	notions	‘flaws’,
‘strength	of	flaws’,	‘critical	flaws’	or	‘locally	initiated	failure	by	flaws’	have	not	been	used.
As	a	result,	Equation	13.9	is	a	general	model,	with	wide	validity.

The	cumulative	stress	hazard	density	is	a	material	property	and	reflects	the	properties	of	the
matrix,	the	flaws,	their	location	and	orientation,	etc.,	at	different	levels	of	the	loading	stress.
For	the	same	level	of	the	loading	stress,	the	cumulative	stress	hazard	density	is	the	same	for
different	size	of	the	uniformly	stressed	volume/gauge	length.	In	the	case	of	a	fibre	with	gauge
length	L,	the	analogue	of	Equation	13.10	is	the	equation



13.3	General	Equation	Related	to	the	Probability	of
Failure	of	a	Stressed	Component	with	Complex	Shape
Suppose	that	a	component	with	complex	shape	is	loaded	in	an	arbitrary	fashion	and	contains
non-interacting	flaws.	It	is	assumed	that	the	flaw	locations	in	the	volume	V	follow	a	non-
homogeneous	Poisson	process.	The	variation	of	the	flaw	number	density	in	the	volume	of	the
component	is	described	by	the	function	λ(x,	y,	z).	It	gives	the	flaw	number	density	in	the
infinitesimal	volume	dv,	at	a	location	with	coordinates	x,	y,	z	(Figure	13.7).

Figure	13.7	A	component	with	complex	shape,	loaded	with	arbitrary	forces	Pi

Suppose	that	a	single	flaw	is	characterised	by	a	conditional	individual	probability	Fc	of
initiating	failure	given	that	the	flaw	is	present	in	the	stressed	component.	The	index	c	means
that	the	individual	probability	of	initiating	failure	has	been	conditioned	on	the	existence	of	a
flaw	in	the	component.	This	probability	is	different	from	the	probability	pf	of	failure	of	the
component	associated	with	a	population	of	flaws.	The	probability	pf	is	related	to	the	whole
population	of	flaws	and	is	not	conditioned	on	the	existence	of	flaws	in	the	component.	In	other
words,	pf	is	still	meaningful	even	if	no	flaws	are	present	in	the	component.

The	probability	pf	(unconditional)	of	failure	associated	with	a	population	of	flaws	can	be
determined	by	subtracting	from	unity	the	probability	p0	of	the	complementary	event:	‘none	of
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the	flaws	will	initiate	failure’.	The	probability	 	of	the	compound	event	exactly	r	flaws	exist
in	the	volume	V	of	the	component	and	none	of	them	will	initiate	failure	is	a	product

of	the	probabilities	of	two	statistically	independent	events:	(i)	‘exactly	r	flaws	reside	in	the
volume	V’,	the	probability	of	which	is	given	by	the	non-homogeneous	Poisson	distribution

and	(ii)	‘none	of	the	r	flaws	will	initiate	failure’,	the	probability	of	which	is	 .	The
event	no	failure	will	be	initiated	in	the	volume	V	is	the	union	of	disjoint	events	characterised
by	probabilities	 ,	(r	=	0,1,	2,...)	and	its	probability	p0,	according	to	the	total	probability
theorem,	is

Since

Equation	13.13	can	be	simplified	to

The	probability	pf	of	failure	for	the	component	with	volume	V	becomes
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Equation	13.14	also	holds	for	the	two-	and	one-dimensional	case	if	the	volume	V	is	replaced
by	the	area	S	or	the	length	L	of	the	component.	Correspondingly,	the	flaw	number	density	will
be	a	number	of	flaws	per	unit	area	or	unit	length.

Since	 	is	the	expected	(average)	number	density	of	flaws	in	the	volume
V,	Equation	13.14	can	also	be	presented	as

Equation	13.15	is	valid	for	a	component	with	any	shape,	subjected	to	any	type	of	loading
(Todinov	2005,	2006a).

A	very	important	special	case	is	obtained	when	the	flaws	follow	a	homogeneous	Poisson
process	in	the	volume	V	of	the	specimen.	In	this	case,	the	flaw	locations	are	uniformly
distributed	in	the	bulk	of	the	component.	The	defect	number	density	is	constant	

,	and	the	probability	of	failure	in	Equation	13.15	becomes

The	parameter	λ	in	Equation	13.16	is	the	number	density	of	all	flaws	in	the	stressed	volume	V
and	is	a	measurable	quantity.

In	order	to	distinguish	between	a	complex	stress	state	and	a	uniaxial	stress	state,	for	a	volume
V	subjected	to	a	uniaxial	stress	σ,	the	probability	Fc	in	Equation	13.16	will	be	denoted	by
Fc(σ).	As	a	result,	for	a	uniform	tensile	stress	of	magnitude	σ,	Equation	13.16	becomes

where	λ(σ)	is	the	number	density	of	all	flaws	at	a	loading	stress	σ.	Equation	13.17	coincides
with	Equation	13.2,	derived	for	the	distribution	of	the	minimum	failure	stress.

An	upper	bound	of	the	probability	of	failure	pf	can	be	produced	if	weak	flaws	 	are
assumed.	This	is	a	very	conservative	assumption,	suitable	in	cases	where	the	upper	bound	of
the	probability	of	failure	is	required.

Equation	13.15	can	be	generalised	for	multiple	type	of	flaws.	Thus,	if	M	types	of	flaws	are
present,	the	probability	that	no	failure	will	be	initiated	is

where	 	and	Fic	are	the	average	flaw	number	density	and	the	conditional	individual
probability	of	initiating	failure	characterising	the	ith	type	of	flaws.	This	equation	expresses	the
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probability	that	no	failure	will	be	initiated	by	the	first,	the	second,	…	and	the	Mth	type	of
flaws.	The	probability	of	failure	then	becomes

13.4	Link	between	the	Stress	Hazard	Density	and	the
Conditional	Individual	Probability	of	Initiating	Failure
Comparing	Equations	13.17	and	13.10	yields	the	important	link

In	the	case	of	failure	controlled	by	flaws,	the	cumulative	hazard	stress	density	in	fact	measures
the	detrimental	effect	of	the	flaws.	Indeed,	since	 ,	the	detrimental	effect
(virulence)	increases	proportionally	with	increasing	the	number	density	of	the	flaws	and	their

probability	of	initiating	failure.	For	multiple	types	of	flaws	 ;	the	most
detrimental	type	of	flaws	is	the	one	with	the	largest	λi(σ)Fci(σ).	The	detrimental	factor
λi(σ)Fci(σ)	is	an	important	parameter	characterising	the	separate	types	of	flaws	(Todinov,
2000a).	Consider,	for	example,	two	components	with	identical	material	and	geometry.	One	of
the	components	is	characterised	by	flaws	with	a	high	number	density	λ1	which	initiate	failure
with	small	probability	Fc1,	and	the	other	component	is	characterised	by	flaws	with	a	low
number	density	λ2	which	initiate	failure	with	large	probability	Fc2.	If	both	components	are
characterised	by	the	same	detrimental	factors	 ,	the	probabilities	of	failure
initiated	by	flaws	for	both	components	will	be	the	same.	The	most	dangerous	type	of	flaws	is
the	one	characterised	by	the	largest	detrimental	factor	 .	Consequently,	the	efforts	towards
eliminating	flaws	from	the	material	should	concentrate	on	types	of	flaws	with	large	detrimental
factors.

The	cumulative	stress	hazard	density	 	for	a	small	volume	ΔV	can	be
estimated	from	experimental	measurements	of	the	failure	stress.	In	this	way,	there	is	no	need	to
assume	a	power	law	stress	dependence	which	is	implied	if	the	Weibull	model	is	used.	In	other
words,	material	is	left	‘to	speak’	for	itself	and	not	forced	to	obey	the	power	law	by	fitting	its
properties	with	the	Weibull	function.

Suppose	now	that	the	graph	of	the	cumulative	hazard	stress	dependence	
is	known	for	a	material	with	multiple	types	of	flaws	i	(i	=	1,	2,	…,	M).	Suppose	that	the	stress
regions	within	which	the	flaws	from	the	different	types	become	critical	are	well	separated.
Since	the	number	density	of	the	flaws	from	any	particular	type	does	not	vary	with	increasing
stress	(only	the	probability	Fci(σ)	varies),	a	plateau	on	the	cumulative	stress	hazard



dependence	at	a	stress	σx	means	that	for	all	flaw	types	i	(i	=	1,	2,	…,	k),	for	which	the	flaws
become	critical	at	a	stress	below	σx,	the	relationship

holds.	The	plateau	on	the	curve	giving	the	probability	of	failure	then	corresponds	to	the
combined	number	density	 	of	the	flaws	which	all	become	critical
below	the	stress	 .

Accordingly,	the	first	plateau	on	the	cumulative	stress	hazard	dependence	corresponds	to	the
number	density	of	the	largest	(most	virulent)	critical	flaws.

The	cumulative	stress	hazard	density	is	an	important	characteristic,	which	permits
extrapolating	the	behaviour	of	the	material	under	loading.	It	is	a	key	to	determining	the
probability	of	failure	of	components	under	load.

The	cumulative	hazard	stress	density	can	be	built	for	an	important	range	of	materials	(e.g.
glass,	ceramics	and	composites)	whose	failure	is	locally	initiated	by	flaws.

13.5	Probability	of	Failure	Initiated	by	Defects	in
Components	with	Complex	Shape
For	the	important	special	case	where	the	flaw	number	density	is	constant	throughout	the
volume	 ,	the	generated	random	locations	are	uniformly	distributed	in	the	volume	V.
For	each	random	location,	a	random	flaw	size	can	be	generated	by	sampling	the	size
distribution	of	the	flaws.	Given	the	specified	location	and	size	of	the	flaw,	a	failure	criterion	is
applied	to	check	whether	the	flaw	will	be	unstable	(will	initiate	failure).

Equation	13.15	is	very	flexible	and	general	because	it	permits	the	conditional	individual
probability	Fc	of	initiating	failure	to	be	estimated	using	different	methods.	Indeed,	the	failure
criterion	is	not	restricted	to	fracture	mechanics	criteria	only.	It	can	also	be	based	on	other
models	related	to	the	micromechanics	of	initiating	failure.	For	the	special	case	of	brittle
fracture	and	flaws	whose	shape	can	be	approximated	well	by	penny-shaped	cracks,	for
example,	a	mixed-mode	criterion	can	be	adopted	(Todinov	and	Same,	2014).

The	conditional	individual	probability	Fc	of	initiating	failure	characterising	a	single	flaw	is
estimated	by	using	the	algorithm	presented	in	Chapter	14.	Finally,	substituting	the	estimate	Fc
in	Equation	13.15	yields	the	probability	of	failure	of	the	stressed	component,	irrespective	of
its	geometry,	type	of	loading	and	flaw	number	density.

Equation	13.15	is	valid	for	an	arbitrarily	loaded	component,	with	complex	shape.	The	power
of	the	equation	is	in	relating	in	a	simple	fashion	the	individual	probability	of	failure	Fc
characterising	a	single	flaw	(with	locations	following	the	specified	non-homogeneous	flaw
number	density	λ(x,	y,	z))	to	the	probability	of	failure	pf	characterising	the	entire	population	of
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flaws.

Suppose	that	a	direct	Monte	Carlo	simulation	was	used	to	determine	the	probability	of	failure
of	the	component.	In	this	case,	at	each	simulation	trial,	a	large	number	of	flaws	need	to	be
generated,	and	for	each	flaw,	a	check	needs	to	be	performed	to	determine	whether	there	will	be
at	least	a	single	unstable	flaw	which	initiates	failure.	In	addition,	there	is	no	guarantee	that
small	stress	intensification	zones	will	be	sampled.	If	Equation	13.15	is	used	to	determine	the
probability	of	failure	of	the	component,	only	a	single	run	through	the	finite	elements	composing
the	component	would	be	necessary.	The	purpose	is	to	collect	information	from	all	parts	of	the
volume	stressed	in	different	ways,	necessary	to	estimate	the	conditional	individual	probability
Fc.

It	is	important	to	point	out	that	Fc	incorporates	the	influence	of	the	particular	loading	(stress)
state	throughout	the	entire	volume	of	the	component.	If	the	stress	state	in	the	loaded	component
is	altered,	Fc	will	be	altered	too.

Equation	13.15	avoids	overly	conservative	estimates	for	the	probability	of	failure,	which
results	from	equating	the	probability	that	a	flaw	will	initiate	failure	in	a	stressed	region	with
the	probability	that	the	flaw	will	reside	in	the	region.	The	new	concept	‘conditional	individual
probability	of	initiating	failure’	characterising	a	single	flaw,	acknowledges	the	fact	that	not	all
flaws	present	in	the	material	will	initiate	failure.	In	other	words,	flaws	initiate	failure	with
certain	probability.

Important	application	areas	of	the	derived	equation	are	(i)	determining	the	lower	tail	of	the
strength	distribution	for	components	containing	flaws	and	(ii)	assessing	the	vulnerability	of
designs	to	failure	initiated	by	flaws.

13.6	Limiting	the	Vulnerability	of	Designs	to	Failure
Caused	by	Flaws
Equation	13.15	can	also	be	used	for	setting	reliability	requirements	–	setting	the	upper	bound
of	the	flaw	number	density	λ	which	limits	the	probability	of	failure	below	a	maximum
acceptable	level	pf	max.

By	solving	Equation	13.15	numerically	with	respect	to	 	(given	a	specified	maximum

acceptable	probability	of	failure	pfmax),	an	upper	bound	 	of	the	average	flaw	number	density
can	be	determined:

This	upper	bound	guarantees	that	whenever	the	average	flaw	number	density	 	satisfies	
,	the	probability	of	failure	of	the	component	will	be	smaller	than	pfmax.



Figure	13.8	gives	the	dependence	between	the	flaw	number	density	upper	bound	λu	and	pfmax,
for	different	values	of	the	stressed	volume	V,	in	case	of	very	weak	flaws	 .

Figure	13.8	A	flaw	number	density	upper	bound,	as	a	function	of	the	maximum	acceptable
probability	of	failure,	for	different	values	of	the	stressed	volume

Consider	now	a	component	with	volume	V,	which	has	been	cut	from	material	with	flaw	number
density	λ	and	subjected	to	a	uniaxial	stress	σ.	It	is	assumed	that	the	flaws,	whose	locations
follow	a	homogeneous	Poisson	process,	are	from	a	single	type.	Suppose	that	failure	is
controlled	solely	by	the	size	of	the	flaws	in	the	material	and	does	not	depend	on	their
orientation	and	shape.	The	size	distribution	G(d)	of	the	flaws	is	the	probability	

	that	the	size	D	of	a	flaw	will	not	be	greater	than	a	specified	value	d.	Let	dσ
denote	the	critical	flaw	size	for	the	stress	level	σ.	In	other	words,	a	flaw	with	size	greater	than
the	critical	size	dσ	will	initiate	failure	at	a	stress	level	σ.

Given	the	size	distribution	of	the	flaws,	the	maximum	acceptable	value	V	of	the	stressed
volume	that	limits	the	probability	of	failure	below	a	maximum	acceptable	level	can	be
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determined.

In	case	of	failure	controlled	solely	by	the	size	of	the	flaws,	Fc(σ)	in	Equation	13.21	becomes	
	which	is	the	probability	that	a	flaw	will	initiate	failure	at	the	stress	level	σ.

Substituting	 	in	Equation	13.21	gives

for	the	probability	pf	of	initiating	failure	at	a	stress	level	σ.

Equation	13.21	can	be	used	for	calculating	the	probabilities	of	failure	from	the	lower	tail	of
the	strength	distribution	in	case	of	failure	controlled	by	the	size	of	the	flaws.	Limiting	the	size
of	the	stressed	volume	limits	the	probability	of	failure	initiated	by	flaws,	which	is	of
significant	importance	to	the	design	for	reliability.	By	solving	Equation	13.21	with	respect	to	V
(given	a	specified	maximum	acceptable	probability	of	failure	pσ	max	at	a	stress	level	σ),	an
upper	bound	V*	for	the	stressed	volume	can	be	determined:

The	upper	bound	V*	guarantees	that	if	for	the	stressed	volume,	 	is	satisfied,	the
probability	of	failure	pf	will	be	smaller	than	the	maximum	acceptable	level	pf	max.



Example

ExampleA	piece	of	steel	wire	with	diameter	2	mm	may	be	subjected	to	tensile
overloading.	During	the	overloading,	oxide	inclusions	with	size	greater	than	200	µm	will
cause	failure	if	present	in	the	stressed	section	of	the	wire.	In	the	steel,	the	number	density
of	the	oxide	inclusions	is	0.001	mm−3.	From	quantitative	microscopy	studies,	it	is	known
that	20%	of	these	inclusions	have	size	greater	than	200	µm.

What	is	the	maximum	length	of	the	stressed	section	of	the	wire	so	that	the	probability	of
failure	during	overloading,	caused	by	inclusions,	does	not	exceed	the	maximum
acceptable	value	of	0.05?

Solution
The	probability	of	failure	initiated	by	the	inclusions	is	determined	from	Equation	13.17:

where	 	is	the	number	density	of	all	inclusions,	V	is	the	volume	of	the	stressed
wire	and	 	is	the	probability	that	an	inclusion	will	be	critical.	Solving	the
equation	with	respect	to	V	yields

Substituting	in	the	equation	 	and	 	yields

The	length	of	the	wire	is	determined	from	



14	
A	Comparative	Method	for	Improving	the	Reliability	and
Availability	of	Components	and	Systems

14.1	Advantages	of	the	Comparative	Method	to
Traditional	Methods
Often,	the	absolute	reliability	of	a	product	cannot	be	revealed.	Here	are	some	of	the	reasons:

In	many	cases,	reliability–critical	data	(failure	frequencies,	strength	distribution	of	the
flaws,	fracture	mechanism,	repair	times)	are	simply	not	available	for	the	components.

The	physical	processes	and	physical	mechanisms	underlying	the	failure	modes,	remain
unknown	or	are	associated	with	large	uncertainties.

The	complex	influence	and	uncertainty	associated	with	the	environment,	the	operational
loads	and	the	duty	cycles.

The	variability	associated	with	reliability–critical	design	parameters	(e.g.	the	state	of
manufactured	surfaces,	components	tolerances,	unbalanced	forces,	internal	environment,
duty	cycles,	etc.).

The	non-robustness	of	the	reliability	prediction	models.

Key	reliability-controlling	parameters	are	associated	with	uncertainty	which	does	not	allow	to
reveal	the	absolute	reliability	level.	Major	sources	of	uncertainty	are	associated	with	the
natural	variation	of	the	material	properties	and	the	uncertainty	associated	with	their
measurement,	the	uncertainty	in	determining	the	times	to	failure,	estimating	load	magnitudes,
etc.	Furthermore,	even	if	this	information	were	available,	for	common,	widely	used	reliability
models,	even	relatively	small	errors	in	the	reliability	parameters	lead	to	large	errors	in	the
model	predictions	which	renders	such	predictions	of	questionable	value.

Here	are	some	examples	illustrating	the	problem.	Reliability	predictions	during	multiple
loading	are	often	based	on	the	load–strength	interference	(Carter,	1986;	Freudenthal,	1954)
model	which	involves	two	basic	random	variables,	‘load’	and	‘strength’,	characterised	by
distinct	distributions.	The	reliability	in	this	case	is	determined	by	the	probability	of	a	relative
configuration	in	which	the	load	is	smaller	than	the	strength.

Suppose	that	a	load	with	cumulative	distribution	function	F(x)	has	been	applied	n	times.	The
probability	density	function	of	the	strength	is	given	by	s(x).	The	reliability	R	(probability	of	no
failure)	during	multiple	loading	is	then	given	by	the	integral	(Carter,	1986)
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where	smin	and	smax	are	the	lower	and	the	upper	limit	of	the	strength.	The	application	of
expression	(14.1)	for	reliability	predictions	however	is	associated	with	large	errors	if	n	is
relatively	large.	For	a	large	‘n’,	F n(x)	is	very	sensitive	to	variations	ΔF	in	the	load
distribution	F(x).	Small	inaccuracies	in	the	parameters	of	F(x)	will	cause	large	variations	of
F n(x).	Indeed,	if,	for	the	sake	of	simplicity,	the	strength	has	been	taken	to	be	constant	s = c	(the
variance	of	s(x)	is	zero),	the	integral	(14.1)	becomes	 	or	simply	 .	An	error	in
the	parameters	of	the	load	distribution	F(x)	for	x = c	leads	to	an	error	in	the	reliability	R.	The
differential	of	R	is	 	which	can	also	be	presented	as

Consequently,	a	small	relative	error	ΔF/F	will	result	in	a	large	relative	error	ΔR/R	of	the
estimated	reliability	R,	magnified	n	times.	In	other	words,	the	model	(14.1)	is	not	robust	for
large	n	and	predicts	the	reliability	R	with	large	errors.	Inevitable	errors	in	the	parameters	of
the	load	and	strength	distributions	will	cause	very	large	errors	in	the	calculated	reliability
value.	Since	load	distributions	are	always	associated	with	uncertainty	in	their	parameters,
using	Equation	(14.1)	to	make	reliability	predictions	for	a	large	number	n	of	load	applications
is	of	a	questionable	value.

Very	similar	is	the	case	where	reliability	of	a	system	with	a	large	number	of	components
logically	arranged	in	series	is	considered.	With	the	continual	increase	in	the	complexity	of	the
existing	engineering	equipment,	such	complex	systems	are	now	very	common.	The	reliability
of	a	system	with	components	logically	arranged	in	series,	working	independently	from	one
another,	is	estimated	from

For	the	special	case	where	the	system	is	built	on	M	identical	components,	each	with	reliability
R,	the	reliability	of	the	system	becomes	 .	Estimating	the	reliability	R	of	the	component
however	is	always	associated	with	uncertainty.	Indeed,	let	us	assume	that	the	reliability	of	the
component	has	been	estimated	from	testing	n	components	of	the	same	type.	At	the	beginning,
the	reliability	is	unknown	and	the	initial	distribution	(prior)	is	uniform	in	the	interval	0,	1:

If	x	denotes	the	number	of	components	(out	of	n	components)	which	survived	a	single	test,	the
conditional	probability	P(x | R)	is	given	by
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Note	that	 	is	not	present	as	a	factor	because	the	surviving	sequence	is
given.	The	prior	distribution	f(R)	regarding	the	unknown	reliability	R	can	then	be	revised	by
using	the	Bayes’	theorem	(Ang	and	Tang,	1975):

and	 ,	otherwise.	The	posterior	distribution	 	is	the	beta	probability
distribution.

Increasing	the	number	of	tests	n	will	reduce	the	uncertainty	associated	with	the	unknown
reliability	R	but	will	never	eliminate	it.	In	other	words,	uncertainty	and	errors	associated
with	the	reliability	parameters	in	the	reliability	models	are	inherent	and	cannot	be
eliminated.	An	error	ΔR	in	the	reliability	of	a	single	component	could	lead	to	a	large	error	

	in	the	predicted	reliability	for	the	system.

Predicting	the	probability	of	failure	locally	initiated	by	flaws	is	also	associated	with
uncertainty	related	to	the	type	of	existing	flaws	initiating	fracture,	the	size	distributions	of	the
flaws,	the	locations	and	the	orientations	of	the	flaws	and	the	microstructure	around	the	flaws
(crystallographic	orientation,	chemical	and	structural	inhomogeneity,	local	fracture	toughness,
etc.).	Some	of	these	random	variables	are	not	statistically	independent.	Capturing	the
uncertainty	necessary	for	a	correct	prediction	of	the	reliability	of	components	is	a	formidable
task.

An	efficient	way	of	resolving	this	predicament,	when	the	focus	is	on	improving	the	reliability
of	designs,	is	not	to	attempt	prediction	of	the	absolute	reliability.	Competing	designs	are
simply	compared	on	the	basis	of	their	reliability,	which	is	calculated	with	the	same	predefined
set	of	reliability	parameters.	Despite	that	the	absolute	reliability	level	remains	unknown,	the
relative	reliability	level	can	be	increased	irrespective	of	the	absolute	reliability	level.

14.2	A	Comparative	Method	for	Improving	the
Reliability	of	Components	Whose	Failure	is	Initiated	by
Flaws
In	order	to	isolate	and	assess	the	impact	of	the	design	shape	or	type	of	loading	on	the
probability	of	failure	of	brittle	components,	the	same	notional	material	properties,	number
density	of	flaws,	fracture	criterion	and	distribution	of	the	flaw	size	can	be	assumed	for	the
competing	designs.	Given	these	common	assumed	properties,	the	probabilities	of	overstress
failure	characterising	the	competing	designs	are	compared,	and	the	design	characterised	by	the
smallest	probability	of	overstress	failure	is	selected.
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In	order	to	estimate	the	probability	of	failure	of	a	component	with	complex	shape	locally
initiated	by	flaws,	Equation	14.6	derived	in	Todinov	(2005,	2006a)	will	be	applied,

where	λ	is	the	number	density	of	the	existing	flaws	and	V	is	the	volume	of	the	component.

Equation	14.6	is	part	of	a	methodology	proposed	in	(Todinov,	2006a)	for	determining	the
probability	of	failure	of	components	with	complex	shape	initiated	by	flaws,	where	Fc	is	the
probability	that	a	flaw	will	be	critical	(will	cause	failure)	given	that	it	resides	with	certainty	in
the	component/structure.	The	methodology	for	determining	the	probability	Fc	however,	was
based	on	a	Monte	Carlo	simulation.	For	large	components	and	structures,	characterised	by
small	zones	of	stress	intensification,	the	Monte	Carlo	simulation	does	not	guarantee	that
representative	statistical	information	will	be	collected	from	the	small	yet	reliability–critical
zones	of	stress	intensification.	Increasing	the	number	of	simulation	trials	n	improves	the
chances	of	sampling	the	small	stress	concentration	zones	and	decreases	the	error	by	a	factor	

,	but	the	price	is	increased	computation	time.

Consequently,	a	new	algorithm	was	proposed	in	Todinov	(2009a)	which	does	not	rely	on
Monte	Carlo	simulation	to	determine	the	probability	Fc	in	Equation	14.6	that	a	flaw	will	be
critical.	The	purpose	is	to	guarantee	that	the	computation	will	not	be	slowed	down	and,	at	the
same	time,	representative	statistical	information	will	be	collected	from	all	stress	concentration
zones.

By	using	this	algorithm,	the	resistance	of	design	shapes	to	overstress	failure	initiated	by	flaws
can	be	compared,	and	the	design	with	the	highest	resistance	selected.	Essential	part	of	the
method	is	a	block	for	reading	the	output	data	file	from	the	ABAQUS	software	package
(ABAQUS,	2007)	for	finite	element	analysis.	For	each	finite	element,	the	block	extracts	the
principal	stresses	characterising	the	centroid	of	each	finite	element	and	its	volume.

Weak	spherical	inclusions	are	assumed	for	the	purpose	of	comparing	the	performance	of
competing	designs.	During	loading,	the	weak	spherical	inclusions	produce	penny-shaped
cracks	perpendicular	to	the	direction	of	the	maximum	principal	tensile	stress	acting	on	the
inclusions.	The	size	of	the	crack	is	equal	to	the	maximum	diameter	of	the	inclusion.	For	failure
controlled	by	the	size	of	the	inclusions,	the	probability	Fc	can	be	determined	by	scanning	all
finite	elements.	Each	finite	element	i	is	characterised	by	a	volume	ΔVi	and	the	principal
stresses	acting	in	it.	For	a	particular	inclusion,	the	remote	stress	is	approximated	with	the
stress	tensor	characterising	the	centre	of	the	inclusion.

The	critical	flaw	radius	ac,i	beyond	which	a	fast	fracture	is	triggered,	can	be	calculated	for
each	finite	element	i.	In	this	way,	information	about	the	failure	resistance	is	obtained	from	all
parts	of	the	stressed	volume	without	missing	even	the	smallest	zone	of	stress	concentration.	It
is	assumed	that	brittle	fracture	is	caused	by	the	maximum	principal	tensile	stress	σt	opening	the
penny-shaped	cracks	initiated	by	the	inclusions.	The	penny-shaped	cracks	are	oriented	in	the
worst	possible	direction,	perpendicular	to	the	direction	of	the	maximum	tensile	stress	σt.
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Consequently,	the	fracture	criterion

can	be	adopted.	In	the	fracture	criterion	(14.7),	KIc	is	the	fracture	toughness	of	the	material,	a
is	the	radius	of	the	flaw,	and	 	is	the	geometry	factor.	The	failure	criterion	(14.7)
follows	the	stress	intensity	approach	(see	Chapter	12).	Fracture	occurs	if	the	stress	intensity
factor	becomes	equal	to	or	greater	than	the	fracture	toughness	of	the	material.	From	Equation
(14.7),	the	critical	size	of	the	flaw	which	causes	brittle	fracture	can	be	obtained:

Given	that	a	spherical	flaw	with	a	random	location	resides	in	the	component,	the	conditional
probability	that	the	centre	of	the	flaw	will	be	in	the	ith	finite	element	is	ΔVi/V	where	ΔVi	is	the

volume	of	the	ith	finite	element	and	V	is	the	total	volume	of	the	component	( ).	The
conditional	probability	that	the	flaw	will	reside	in	the	ith	finite	element	and	will	cause	failure,
given	that	the	flaw	is	inside	the	component,	is

where	 	is	the	probability	that	the	flaw	size	a	will	be	greater	than	the	critical	flaw	size
ac,i	characterising	the	ith	finite	element.	Since,	 	where	F(a)	is	the	size
distribution	of	the	flaws,	the	conditional	probability	pf,i	becomes

Noticing	that	the	events	‘the	centre	of	the	flaw	resides	in	the	ith	finite	element’	are	mutually
exclusive,	the	probability	that	a	flaw	will	be	critical,	given	that	it	resides	in	the	component,	is
determined	from

The	calculated	value	for	Fc	is	substituted	in	Equation	14.6.	As	a	result,	the	probability	of
failure	of	components	with	complex	shape	containing	flaws	with	number	density	λ	becomes

where	n	is	the	number	of	finite	elements	into	which	the	volume	V	of	the	component	has	been



divided.	For	equal	finite	element	volumes	ΔVi	=	ΔV,	considering	that	n	×	ΔV	=	V,	equation
(14.12)	can	be	simplified	further.	The	comparative	method	for	assessing	the	resistance	of
components	to	failure	initiated	by	flaws	can	therefore	be	summarised	by	the	following
algorithm:

Algorithm	14.1

Assume	common	material	properties,	common	spherical	flaws,	flaw	number	densities
and	flaw	size	distribution	for	the	competing	design	alternatives.

Determine	the	variation	of	stresses	in	the	component	by	a	standard	finite	elements
package.

By	applying	a	failure	criterion,	for	each	finite	element	i(i	=	1,...,n),	determine	the
probability	pfi	that	a	flaw	‘will	initiate’	failure	given	that	its	centre	lies	in	the	ith	finite
element.

Estimate	the	probability	that	a	flaw	will	be	critical	from

Estimate	the	probability	of	failure	of	the	component	from	Equation	14.6.

Apart	from	being	more	precise,	this	algorithm	is	much	more	efficient,	because	it	does	not	rely
on	Monte	Carlo	simulation.	The	probability	of	failure	of	the	component	is	obtained	after	n
steps,	equal	to	the	number	of	finite	elements.	In	other	words,	the	algorithm	is	of	linear	time
complexity	O(n).

The	described	method	can	be	applied	to	any	material	where	failure	is	locally	initiated	by
single,	non-interacting	flaws.	Once	a	flaw	becomes	unstable,	a	crack	is	formed	that	propagates
without	a	growth	resistance	until	failure.	Components	with	such	a	failure	mechanism	are
usually	manufactured	from	brittle	materials	like	ceramics,	high-strength	steels,	glasses,	stone,
concrete,	etc.	The	described	model	is	also	valid	for	components	from	low	carbon	steels
undergoing	cleavage	fracture	at	low	temperature.	Cleavage	in	steels	usually	propagates	from
cracked	inclusions	(Rosenfield,	1997).	It	usually	involves	a	small	amount	of	local	plastic
deformation	to	produce	dislocation	pile-ups	and	crack	initiation	from	a	particle	which	has
cracked	during	the	plastic	deformation.	The	method	is	particularly	suitable	for	optimising	the
shape	of	brittle	components	(e.g.	the	cross	section	of	ceramic	beams),	in	order	to	increase	the
resistance	to	failure	locally	initiated	by	flaws.

Here	is	a	numerical	example.	Consider	three	design	alternatives	of	a	bracket	shown	in	Figure
14.1.	In	order	to	compare	the	resistance	to	failure	locally	initiated	by	flaws	of	the	competing
design	alternatives	A,	B	and	C,	spherical	flaws	with	the	same	number	density	of	

	has	been	assumed	for	all	brackets.	The	same	flaw	size	distribution



(14.13)

(14.14)

has	also	been	assumed	for	all	brackets,	where	a	is	the	radius	of	the	flaws	and	 	is
the	mean	radius.	Failure	is	assumed	to	occur	if	the	stress	intensity	factor	associated	with	a
tensile	crack	tip	opening	mode	of	a	penny-shaped	crack	emanating	from	a	spherical	flaw
exceeds	the	critical	stress	intensity	factor	of	the	material:

Figure	14.1	Comparing	the	resistance	to	failure	locally	initiated	by	flaws	of	three	design
alternatives	A,	B	and	C

Brittle	material	characterised	by	a	fracture	toughness	 	has	been	assumed	for	the
material	of	the	brackets.	It	is	assumed	that	no	failure	initiated	by	flaws	can	occur	in	a	zone
where	the	maximum	principal	stress	is	compressive.	The	volumes	of	the	brackets	are	

,	 	and	 ,	correspondingly.

The	calculated	probability	of	overstress	failure	for	design	A	is



for	design	B:

and	for	design	C:

Compared	to	design	A,	designs	B	and	C	are	more	resistant	to	failure	locally	initiated	by	flaws,
and	design	C	is	a	lightweight	design.	Despite	the	hole	in	bracket	C,	the	probability	of	failure
initiated	by	flaws	did	not	decrease	noticeably	because	material	has	been	removed	from	the
zone	where	the	maximum	principal	stress	is	mostly	compressive.

As	can	be	seen,	no	real	reliability–critical	data	were	necessary	to	compare	the	resistance	of
the	brackets	to	fast	fracture.

14.3	A	Comparative	Method	for	Improving	System
Reliability
Calculating	the	absolute	reliability	built	in	a	product	is	often	an	extremely	difficult	task
because	in	many	cases	reliability–critical	data	(e.g.	failure	frequencies)	are	simply	not
available	for	the	system	components.	Often,	the	only	available	information	is	the	ranking	of	the
components	in	terms	of	their	reliability,	without	being	possible	to	attach	any	value	to	their
failure	frequencies.	Such	is	the	case	where	old	and	new	components	of	the	same	type	are	used
in	the	same	system.	Because	of	inevitable	component	wearout	and	deterioration,	it	is	usually
sensible	to	assume	that	the	new	components	are	more	reliable	than	the	old	components.

Consider	the	functional	diagrams	of	two	systems	built	with	pipes	and	valves	of	the	same	type:
old	valves	A	and	new	valves	B	(Figure	14.2).	With	respect	to	the	function	‘valve	closure	on
demand’,	an	old	valve	A	is	less	reliable	than	a	new	valve	B.	The	valves	are	working
independently	from	one	another	and	all	of	them	are	initially	open.	The	question	of	interest	is
which	system	is	more	reliable	with	respect	to	stopping	the	fluid	in	the	pipeline.



Figure	14.2	Functional	diagrams	of	two	different	systems	built	with	old	valves	A	and	new
valves	B

The	reliability	block	diagrams	of	the	systems,	with	respect	to	the	function	‘stopping	the	fluid	in
the	pipeline’,	are	given	in	the	next	figure	(Figure	14.3).

Figure	14.3	Reliability	networks	of	the	systems	in	Figure	14.2

System	‘1’	is	more	reliable	than	system	‘2’.	Let	a	denote	the	reliability	of	an	old	valve	A	and	b
denote	the	reliability	of	a	new	valve	B,	(a < b).	Then

is	the	reliability	of	the	first	system	and

is	the	reliability	of	the	second	system.	Because	 ,	the	first	system	is
more	reliable.

14.4	A	Comparative	Method	for	Improving	the
Availability	of	Flow	Networks
An	important	application	of	the	proposed	approach	is	in	comparing	quickly	the	performance	of



competing	network	topologies	and	selecting	the	topology	with	the	best	performance.	The
comparative	method	for	assessing	the	performance	of	competing	network	topologies	can	be
summarised	by	the	following	steps:

Assume	common	flow	capacities,	failure	frequencies	and	repair	times	for	the
corresponding	components/edges	of	the	compared	networks.

Determine	the	performance	of	the	networks	by	using	an	appropriate	software	tool.

Select	the	topology	or	variant	with	superior	performance.

Production	availability	is	an	important	indicator	of	the	performance	of	repairable	production
systems	(Ebeling,	1997).	It	is	defined	as	the	ratio	of	the	total	amount	of	production	fluid
delivered	by	the	system	for	1	year	in	the	presence	of	failures	of	the	pipeline	sections	to	the
total	amount	of	production	fluid	which	can	be	potentially	delivered	in	the	absence	of	failures
(Todinov	2007;	2013a).	Even	a	very	small	percentage	decrease	in	the	production	availability
(1–2%)	translates	into	big	financial	losses	over	the	entire	period	of	operation.	Maximising	the
production	availability	is	already	an	essential	part	of	the	design	of	new	production	systems	and
telecommunication	networks.	The	production	availability	of	an	oil	and	gas	production	network,
for	example,	is	its	most	important	characteristic	which	determines	the	profitability	of	the
installation.	The	availability	of	electrical	distribution	networks	determines	the	quality	of
electricity	supply	to	customers.

Consider,	for	example,	the	competing	production	networks	in	Figure	14.4a	and	b,	where,	for
the	sake	of	simplicity,	all	edges	have	the	same	flow	rate	capacity	of	40	flow	units	per	day,
hazard	rate	of	4	expected	failures	per	year	and	downtime	for	repair	10	days.	Edges	(3,	8)	and
(4,	9)	from	network	14.4a	and	edges	(2,	8)	and	(4,	10)	from	network	14.4b	are	redundant.
Without	a	supporting	comparative	model,	it	is	very	difficult	to	infer	which	network	topology	is
superior.	Applying	the	software	tool	for	determining	production	availability	developed	in
Todinov	(2013a)	yields	production	availability	of	 	for	the	network	in	Figure	14.4a
and	 	for	the	network	topology	in	Figure	14.4b.	As	can	be	verified,	despite	the
seemingly	insignificant	differences	in	the	competing	topologies,	the	impact	on	the	production
availability	is	significant.	No	real	reliability	data	are	necessary	to	deduce	which	system
topology	possesses	superior	production	availability.

Figure	14.4	(a,	b)	Two	competing	networks	with	different	types	of	redundancy	topology

Comparative	methods	for	maximising	the	production	availability	can	also	be	applied	for



selecting	the	best	variant	of	the	same	system	from	possible	variants	produced	by	permutations
of	its	interchangeable	components.	Consider	the	competing	variants	of	the	systems	in	Figure
14.5	which	includes	three	sources	of	flow	s1,	s2	and	s3,	three	old	pipeline	sections	(O),	three
new	sections	(N)	and	three	medium-age	sections	(M).	Because	of	the	inevitable	deterioration
which	the	sections	undergo	due	to	wearout,	the	new	sections	(N)	are	more	reliable	than	the
medium-age	sections	which	in	turn	are	more	reliable	than	the	old	sections.

Figure	14.5	(a–d)	Competing	arrangements	of	the	components	in	a	gas	production	system
consisting	of	three	parallel	branches	and	different	state	of	deterioration	of	the	pipeline	sections

To	compare	the	performance	of	the	competing	variants	of	the	production	system	and	decide
which	variant	is	most	beneficial,	some	exemplary	reliability	data	are	assumed,	consistent	with
the	ranking	of	the	reliabilities	of	the	new	sections,	medium-age	sections	and	old	sections.

The	capacity	of	each	pipeline	section	was	chosen	to	be	100	thousand	cubic	metres	of	fluid	per
day.	A	repair	time	of	20	days	is	assumed	for	each	failed	section	(new,	medium-age	and	old
section).	During	the	repair	of	a	failed	pipeline	section,	the	corresponding	parallel	branch	is	not
delivering	any	fluid.	The	failure	frequency	(expected	number	of	failures	per	year)	of	the	old
sections	is	assumed	to	be	8	year−1;	the	failure	frequency	of	the	new	sections	(N)	is	0.1	year−1,
while	the	failure	frequency	of	the	medium-age	sections	(M)	is	2	year−1.

The	production	availability,	for	1	year	of	operation,	of	the	different	variants	in	Figure	14.5	was
assessed	by	using	the	discrete-event	simulator	for	the	production	availability	of	repairable
flow	networks	described	in	Todinov	(2013a).	The	production	availabilities	characterising	the
different	variants	were	as	follows:	system	‘a’,	62.3%;	system	‘b’,	64.3%;	system	‘c’,	64.6%;



and	system	‘d’,	68.4%.	The	largest	production	availability	is	demonstrated	by	system	‘d’.

The	largest	removed	risk	of	lost	production	due	to	failures	was	achieved	for	variant	‘d’,	which
showed	a	significant	(more	than	6%)	increase	in	production	availability	compared	to	the	worst
variant	‘a’.

The	variant	presented	in	Figure	14.5d	is	an	example	of	a	well-ordered	parallel-series	system.
A	well-ordered	parallel-series	arrangement	is	obtained	if	the	available	components	are	used	to
build	the	branch	with	the	highest	possible	reliability/availability,	the	remaining	components
are	used	to	build	the	next	branch	with	the	highest	possible	reliability/availability	and	so	on
until	the	entire	parallel-series	arrangement	is	built.	A	detailed	discussion	of	well-ordered
parallel-series	systems	has	been	presented	in	Chapter	19.



15	
Reliability	Governed	by	the	Relative	Locations	of
Random	Variables	in	a	Finite	Domain

15.1	Reliability	Dependent	on	the	Relative
Configurations	of	Random	Variables
There	exist	numerous	examples	of	reliability	governed	by	the	relative	locations	of	a	number	of
random	variables,	uniformly	distributed	in	a	finite	domain.	A	commonly	encountered	problem
is	presented	in	Figure	15.1a.

Figure	15.1	(a)	Overloading	a	supply	system	due	to	clustering	of	a	fixed	number	of	random
demands.	(b)	Safe	and	failure	configurations	of	centrifugal	forces

During	a	finite	time	interval	of	length	a,	exactly	n	consumers	connect	to	a	supply	system
independently	and	randomly.	Each	connection	is	associated	with	a	shock	(increased	demand)



to	the	supply	system	which	needs	a	minimum	time	interval	s	to	recover	and	stabilise	after	a
connection	(demand).	The	supply	system	is	overloaded	if	two	or	more	successive	demands
follow	within	a	critical	time	interval	s	(Figure	15.1a).	The	probability	of	overloading	is	equal
to	the	probability	that	two	or	more	random	demands	will	cluster	within	the	critical	interval
with	length	s.

Another	common	case	is	present	when	n	users	arrive	randomly	during	a	finite	time	interval	of
length	a	and	use	a	particular	piece	of	equipment	for	a	fixed	time	s.	The	problem	is	to	calculate
the	probability	of	a	collision	of	demands,	which	occurs	if	two	or	more	users	arrive	within	a
time	interval	s	(Figure	15.1a).

A	mechanical	problem	of	a	similar	nature	is	presented	in	Figure	15.1b.	A	number	of
discs/wheels	are	attached	to	a	common	shaft,	independently	from	one	another.	Each	disc	is
associated	with	an	eccentricity	which	creates	a	centrifugal	force	Fi,	i = 1,	2,	3,	on	the	shaft
rotating	at	a	high	speed,	as	shown	in	Figure	15.1b.	If	the	forces	cluster	within	a	critically	small
angle	s,	the	shaft	will	suffer	excessive	deformation	during	rotation	at	a	high	speed.	The
problem	is	to	calculate	the	probability	of	clustering	the	centrifugal	forces	within	a	critical
angle	s.

15.2	A	Generic	Equation	Related	to	Reliability
Dependent	on	the	Relative	Locations	of	a	Fixed	Number
of	Random	Variables
Only	configurations	of	uniformly	distributed	random	variables	in	a	common	domain	are
considered	where	the	safe/failure	state	depends	only	on	the	relative	locations	of	the	random
variables	and	not	on	their	absolute	locations.	The	location	of	each	random	variable	can	be
represented	as	a	point	in	the	common	domain,	and	each	point	in	the	common	domain
corresponds	to	a	possible	location	of	a	random	variable	(see	Figure	15.2a).



Figure	15.2	(a)	The	probability	of	a	safe/failure	configuration	of	uniformly	distributed	random
variables	in	a	common	domain	is	given	by	the	generic	Equation	15.1.	(b)	Two	uniformly
distributed	random	demands	of	different	length.	(c)	Total	clustering	of	random	forces	acting	on
a	structural	member.	(d)	Specified	distances	between	random	variables,	whose	total	number	is
known



(15.1)

(15.2)

The	random	variables	are	not	necessarily	identical;	only	their	distribution	in	the	finite	domain
is	uniform.	Suppose	that	a	domain	with	measure	v	has	been	defined	as	in	Figure	15.2a,	where	n
uniformly	distributed	random	variables	form	a	safe/failure	configuration	with	probability	p.
We	assume	the	probability	that	two	or	more	random	variables	will	reside	simultaneously	into	a
very	small	domain	increment	Δv	is	negligible.	If	 	is	the	probability	of	a	safe/failure
configuration	when	the	ith	random	variable	is	located	at	the	boundary	of	the	common	domain,
the	link	between	the	probability	p	and	the	probabilities	 	is	given	by

where	C	is	an	integration	constant	determined	from	the	boundary	conditions	(Todinov,	2004a).
In	the	case	where	all	of	the	random	variables	are	identical,	all	probabilities	 	are	equal	

,	and	Equation	15.1	transforms	into

The	derivation	of	Equation	15.1	has	been	presented	in	Appendix	15.1.

In	the	case	of	distinct	(non-identical)	random	variables,	the	probabilities	 	in	Equation	15.1
are	different	in	general,	and	determining	the	integration	constant	C	is	more	complicated.	Thus,
in	a	finite	time	domain	a,	depending	on	which	random	variable	(event)	appears	first,	different
boundary	conditions	may	be	present.

Example

Consider	a	problem	present	in	many	manufacturing	processes	where	a	number	of	machine
centres	demand	particular	resource	(expensive	measuring	equipment,	control	equipment,
production	equipment	or	an	operator),	at	a	random	time	during	the	production	process.
Because	the	control	equipment	is	expensive	and	unique,	it	is	not	feasible	to	equip	each
machine	centre	with	a	separate	piece	of	equipment.	The	demand	can	be	for	a	particular
resource	(e.g.	water	vapour),	and	there	is	only	a	single	source	available	which	is	capable
of	supplying	only	one	machine	centre	at	a	time.	The	demands	for	the	resource	may	occur	at
random	times	during	a	shift	with	duration	a.

Consider	a	simplified	version	of	this	problem	where	the	services	of	the	source	are
demanded	by	two	machine	centres	A	and	B	each	placing	a	single	demand	randomly	during
the	time	interval	a	(Figure	15.2b).	Suppose	that	machine	centre	A	demands	the	resources
for	a	duration	s1,	while	machine	centre	B	demands	the	resource	for	a	duration	s2.	The
probability	p	of	no	overlapped	demands	(smooth	operation)	can	be	presented	as	a	sum	of
the	probabilities	p1	and	p2	of	smooth	operation	associated	with	the	mutually	exclusive	and
exhaustive	events	where	either	the	demand	from	machine	centre	A	or	the	demand	from



(15.3)

(15.4)

(15.5)

(15.6)

(15.7)

machine	centre	B	arrives	first.	Because	Equation	15.1	can	also	be	applied	to	the	case
where	one	of	the	demands	(e.g.	the	demand	A)	always	appears	first,	the	probability	p1	of
smooth	operation	in	this	case	can	be	calculated	from

where	a	is	the	length	of	the	time	interval	and	n	=	2	is	the	number	of	the	random	demands.
If	the	demand	from	machine	centre	A	is	fixed	at	the	beginning	‘0’	of	the	finite	time	interval,
the	probability	of	a	safe	configuration	is	 .	The	term	 	is	missing	because
only	configurations	where	the	demand	from	machine	centre	A	arrives	first	are	considered.
Similarly,	if	a	demand	from	machine	centre	B	arrives	first,	Equation	15.1	gives

for	the	probability	p2	of	a	‘safe’	configuration.	If	the	demand	B	is	fixed	at	the	beginning

‘0’	of	the	time	interval,	the	probability	of	a	safe	configuration	is	 .	The
integration	constants	C1	and	C2	and	the	probabilities	p1	and	p2	in	Equations	15.3	and	15.4
are	associated	with	the	cases	where	either	the	demand	A	or	the	demand	B	arrives	first.
Integrating	Equations	15.3	and	15.4	over	the	finite	time	interval	a	gives

From	the	boundary	conditions:	 	if	 ,	and	 	if	 	–	the	integration
constants	 	and	 	are	determined.	Adding	the	probabilities	p1	and	p2	as
probabilities	of	mutually	exclusive	events	and	dividing	by	a2	result	in

for	the	probability	 	of	no	collision	of	demands	irrespective	of	which	demand
arrives	first.	Equation	15.7	has	been	verified	by	a	Monte	Carlo	simulation.	Thus,	for	
,	 	and	 ,	the	equation	yields	probability	 ,	which	is	close	to	the
experimental	probability	 	obtained	from	the	simulation.



(15.8)

(15.9)

(15.10)

Example

The	application	of	Equation	15.1	can	be	illustrated	by	another	simplified	problem	from
determining	the	probability	of	overloading	a	structural	component	with	length	a	from	n
loads	randomly	distributed	during	a	time	interval	(0,	a).	Overloading	of	the	structural
member	occurs	if	all	n	loads	are	concentrated	(cluster)	within	a	small	length	s	anywhere
within	the	length	a	(Figure	15.2c).	In	this	case,	the	critical	configuration	of	the	random
variables	is	a	‘total	clustering’	within	a	distance	s.	Indeed,	because	
and	 ,	if	one	of	the	loads	is	fixed	at	the	beginning	of	the	length	a	(point	‘0’	in
Figure	15.2c),	according	to	Equation	15.2,	the	probability	of	total	clustering	is

For	 ,	the	probability	of	total	clustering	becomes	 .	Substituting	 	in	Equation
15.8	yields	 ,	from	which	 .	Finally,	the	probability	of	overloading
the	structural	component	becomes

15.3	A	Given	Number	of	Uniformly	Distributed	Random
Variables	in	a	Finite	Interval	(Conditional	Case)
If	the	probabilities	 	in	Equation	15.1	cannot	be	calculated	easily,	the	problem	can	be	solved
by	reducing	its	complexity	and	solving	a	series	of	problems	involving	a	smaller	number	of
random	variables.	This	method	will	be	illustrated	by	finding	the	probability	that	the	actual
distances	 	between	the	locations	of	a	given	number	n	of	uniformly	distributed
random	variables	in	a	finite	interval	a	will	be	greater	than	the	corresponding	specified

minimum	distances	 	,	where	 	is	the	specified	minimum
distance	between	adjacent	random	variables	with	indices	i	and	 	(Figure	15.2d).

Suppose	that	pn	is	the	probability	of	existence	of	the	specified	minimum	distances	between	the
n	random	variables.	Then,	from	Equation	15.2,	it	follows	that



(15.11)

(15.12)

In	this	way,	the	probability	pn	that	the	actual	distances	 	between	the	random
variables	will	be	greater	than	the	specified	minimum	distances	 	has	been
expressed	by	the	probability	 	related	to	n − 1	variables.	This	is	the	probability	that	the
actual	distances	between	n − 1	adjacent	random	variables	over	the	shorter	time	interval	a − s12
will	be	greater	than	the	specified	minimum	distances	 ,	if	one	of	the	random
variables	is	‘fixed’	at	the	beginning	of	the	finite	interval	a − s12.	The	complexity	of	the	initial
problem	has	been	reduced.	The	complexity	of	the	simpler	problem	can	also	be	reduced	in	a
similar	fashion,	and	finally,	a	problem	with	a	trivial	solution	will	be	obtained.	Starting	from
the	trivial	solution,	all	necessary	intermediate	solutions	can	be	produced	as	well	as	the
solution	of	the	initial	complex	problem.

Indeed,	following	Equation	15.10:

where	 	is	the	probability	of	existence	of	a	specified	minimum	distance	s12	for

two	random	variables	only.	Because	 	and	because	for	 ,	 	and	
,	from	Equation	15.11,	it	follows	that	 .	Similarly,	for	three	random	variables,
the	probability	 	of	existence	of	intervals	greater	than	s12	and	s23	is

from	which	 ,	because	for	 ,	 	and	 .	In	a	similar
fashion,

is	obtained	for	the	probability	of	existence	of	the	specified	minimum	distances.

Next,	an	equation	can	be	derived	giving	the	probability	p	that	the	actual	distances	between	n
adjacent	random	variables	will	be	at	least	 	and	the	actual	distance	S01	of	the	first

random	variable	location	from	the	start	of	the	interval	a	will	be	at	least	s01	 .	The

probability	p	is	a	product	of	the	probability	 	that	all	random	variable	locations
will	be	at	a	distance	larger	than	s01	from	the	beginning	of	the	finite	interval	a	and	the
probability	that	the	distances	between	the	random	variables	will	be	greater	than	the	specified
distances	(see	Eq.	15.12).	As	a	result,
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is	obtained	which,	after	simplifying,	becomes

where	 .

For	the	probability	that	some	of	the	distances	related	to	six	random	variable	locations	in	an
interval	with	length	 	units	will	be	at	least	 ,	 	and	 	(Figure	15.2d),
the	Monte	Carlo	simulation	yields	the	empirical	probability	of	0.038.	This	result	is	confirmed
by	the	theoretical	probability	calculated	from	Equation	15.13:	

.	By	setting	 	and	 	in	Equation
15.13,	the	probability

of	a	cluster	of	two	or	more	random	variables	within	a	distance	s	is	obtained.

15.4	Probability	of	Clustering	of	a	Fixed	Number
Uniformly	Distributed	Random	Events
Now,	let	us	return	to	the	problem	related	to	a	given	number	of	users	arriving	randomly	within	a
finite	time	interval	with	length	a	and	using	the	same	piece	of	equipment	for	a	fixed	time	s.

The	graphs	of	Equation	15.3	in	Figure	15.3	give	the	probability	of	existence	of	a	cluster	of	two
or	more	demands	for	three	different	fixed	demand	times	 	hour.	The	length
of	the	finite	time	interval	was	assumed	to	be	 	hours.	Clearly,	the	probability	of	collision
of	two	or	more	demands	within	the	user	time	s = 0.05	hour	(the	middle	curve)	increases
rapidly	with	increasing	the	number	of	users.	For	 	users,	the	probability	of	collision	is
approximately	0.80,	as	shown	in	Figure	15.3.	In	this	sense,	the	problem	can	be	regarded	as	a
continuous	analogue	of	the	birthday	problem	(DeGroot,	1989).



Figure	15.3	Probability	of	clustering	uniformly	distributed	random	demands	from	a	given
number	of	users

For	a	time	interval	of	3	hours,	containing	20	users,	and	for	user	demand	time	 	hour,	the
probability	of	collision	is	practically	unity	(Figure	15.4).



Figure	15.4	Probability	of	clustering	of	random	demands	from	different	number	of	users

This	probability	decreases	significantly	if	the	number	of	users	decreases,	as	is	shown	in	Figure
15.4.	If	the	finite	time	interval	is	increased,	as	shown	in	Figure	15.5,	the	probability	of
collision	also	decreases.



(15.15)

Figure	15.5	Variation	of	the	probability	of	collision	of	random	demands	with	increasing	the
length	of	the	finite	time	interval

Decreasing	the	number	of	users	while	keeping	the	finite	time	interval	constant,	as	shown	in
Figure	15.4,	leads	to	a	much	faster	decrease	of	the	probability	of	collision	compared	to
increasing	the	time	interval	a	while	keeping	the	number	of	users	constant,	as	shown	in	Figure
15.5.	A	simple	calculation	using	Equation	15.14	shows	that	for	 	hours,	the	probability
of	collision	is	approximately	2%.	Even	after	increasing	the	time	interval	to	 	hours,
there	still	exists	a	0.2%	chance	of	collision.

According	to	Equation	15.13,	the	probability	that	before	each	random	variable	location	there
will	be	a	distance	greater	than	s	is

Now,	the	solution	of	the	problem	related	to	the	clustering	of	centrifugal	forces	due	to
eccentricity	from	a	given	number	of	discs	on	a	rotating	shaft	(Figure	15.1b)	follows	from
Equations	15.9	and	15.12.	Let	us	present	the	full	360°	angle	as	a	segment	with	length	 .
The	probability	that	all	n	centrifugal	forces	will	be	within	a	critical	angle	s	 	is
the	sum	of	the	probabilities	of	two	mutually	exclusive	events:	the	probability	p1	that	the
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clustering	angle	s	will	be	smaller	than	s,	given	that	it	does	not	include	the	point	0	(2π)	and	the
probability	p2	that	the	clustering	angle	will	be	smaller	than	s	given	that	it	includes	the	point	0
(2π).	The	first	probability	is	given	by	Equation	15.9:

and	this	is	in	fact	the	probability	that	the	smallest	angle	bounding	all	centrifugal	forces	will	be
smaller	than	the	critical	angle	s.	The	probability	that	clustering	within	angle	s	will	include	the
point	0	(2π)	is	equal	to	the	probability	of	existence	of	a	gap	of	length	greater	than	
between	two	adjacent	centrifugal	forces	(without	specifying	between	which	two)	on	the
segment	with	length	2π.	Because	only	a	single	gap	of	length	 	can	be	accommodated
between	the	centrifugal	forces,	 	and	 ,	the	gap	can	only	be	in	n − 1	possible
positions	relative	to	the	n	forces.	Using	Equation	15.15	and	the	formula	for	a	sum	of
probabilities	of	mutually	exclusive	events,	the	probability	of	a	gap	of	length	at	least	a − s
between	two	adjacent	centrifugal	forces	(without	specifying	between	which	two)	is

Finally,	the	probability	that	all	n	forces	will	cluster	within	the	critical	angle	s	becomes

For	the	probability	that	all	five	centrifugal	forces	will	be	concentrated	within	a	critical	angle	
	(Figure	15.1b),	Equation	15.16	yields	 .	This	result	is	in	agreement

with	the	empirical	probability	0.04	obtained	from	a	Monte	Carlo	simulation.

According	to	Equation	15.13,	for	a	given	number	of	random	variables	in	a	finite	time	interval,
the	probability	that	at	least	one	of	the	specified	minimum	gaps	will	be	violated	is

where	 ,	 ,	…,	 	(Todinov,	2004b).	If	in	this	equation	n − 1	specified
minimum	intervals	are	set	to	zero,	the	cumulative	distribution	F(s)	of	the	gap	s	between	the
locations	of	any	two	adjacent	random	variables	is	obtained:



Equation	15.1	is	generic	and	gives	the	probability	of	a	safe/failure	configuration	governed	by
the	relative	configuration	of	a	given	number	of	random	variables	uniformly	distributed	in	a
finite	domain.	Many	intractable	reliability	problems	can	be	solved	easily	using	Equation	15.1
by	reducing	them	to	problems	with	trivial	solutions.

Indeed,	Equation	15.1	links	the	probability	of	a	safe/failure	configuration	for	arbitrary
locations	of	the	random	variables	in	their	domain	with	the	probability	of	a	safe/failure
configuration,	where	one	of	the	random	variables	is	‘fixed’	at	the	boundary	of	the	domain.	As	a
result,	the	initial	complex	problem	is	reduced	to	a	simpler	problem,	which	is	in	turn	can	be
simplified	until	problems	with	trivial	solutions	are	obtained.

The	significance	of	Equation	15.1	stems	also	from	the	fact	that	potential	problems	are	not
restricted	to	one-dimensional	problems	only	or	to	a	simple	function	of	the	relative	distances	dij
between	the	locations	of	random	variables.	The	probability	of	a	safe/failure	configuration	may
also	depend	on	more	complicated	functions	 	of	the	relative	distances	between
locations	uniformly	distributed	in	a	finite	domain.	As	long	as	the	function	y	depends	only	on	the
relative	configuration	of	the	random	variables,	not	on	their	absolute	locations,	Equation	15.1
can	be	applied.

Equation	15.12	gives	the	probability	of	gaps	of	specified	minimum	lengths,	between	a	given
number	of	uniformly	distributed	random	variables	in	a	finite	interval	(conditional	case).

Interestingly,	according	to	Equation	15.12,	the	probability	of	existence	of	any	specified	set	of
free	intervals	between	any	selected	pairs	of	adjacent	random	variables	is	the	same,	as	long	as
the	sum	of	the	intervals	is	the	same.	It	must	be	pointed	out	that	Equations	15.12	and	15.13	can
only	be	applied	in	cases	where	the	number	of	random	variables	in	the	finite	time	interval	is
known	and	guaranteed	to	exist.	In	this	context,	Equation	15.13	appears	also	to	be	useful	for
making	inferences	in	cases	where	only	the	number	of	random	failures	following	a
homogeneous	Poisson	process	is	known,	but	not	the	actual	failure	times.	This	is	the	case	where
an	inspection	at	time	a	has	identified	a	certain	number	of	failures,	whose	actual	times	had	not
been	recorded.	Suppose	that	n	random	failures	following	a	homogeneous	Poisson	process	have
been	registered	by	an	inspection	at	time	a.	Equation	15.13	can	then	be	used	to	calculate:

i.	 The	probability	 	that	the	first	failure	has	occurred	before	time	s

ii.	 The	probability	 	of	existence	of	a	continuous	failure-free	operation	interval
with	length	at	least	s	until	the	first	failure

iii.	 The	probability	 	that	the	first	failure	had	occurred	after	a	time	s0	and
the	last	failure	had	occurred	before	time	sn

15.5	Probability	of	Unsatisfied	Demand	in	the	Case	of
One	Available	Source	and	Many	Consumers
Consider	the	important	common	case	where	a	single	source	is	satisfying	demands	from	n
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consumers.	It	is	assumed	that	a	source	can	service	only	one	consumer	at	a	time.

Suppose	that	n	consumers	initiate	their	demands	at	random	times	s1, s2, …, sn,	for	durations	d1, 
…, dn,	during	a	time	interval	(0,	L)	 	(Figure	15.6).	Suppose	that	the	times
of	the	start	of	random	demands	are	uniformly	distributed	along	the	length	of	the	time	interval
(0,	L).	Let	A1, A2, …, An	denote	the	events	‘the	last	demand	has	a	duration	d1, d2, …, dn’,
correspondingly.	The	probability	of	the	event	B	that	there	will	be	no	unsatisfied	demand	can	be
determined	by	the	following	probabilistic	argument.

Figure	15.6	Random	demands	in	a	finite	time	interval	(0,	L)

Initially,	the	conditional	probability	 	will	be	determined	–	the	probability	that	there
will	be	no	unsatisfied	demand,	given	that	the	last	demand	has	a	duration	dn.	Because	every
consumer	has	an	equal	chance	to	be	the	last	consumer,	the	probabilities	p(Ai)	of	events	Ai	are
all	equal	to	1/n	 .

According	to	Equation	15.12,	the	conditional	probability	that	there	will	be	no	unsatisfied
demand,	given	that	the	last	demand	has	a	length	dn,	is

The	absence	of	unsatisfied	demand	however	can	occur	in	n	different	ways.	The	absence	of
unsatisfied	demand	can	occur	given	that	the	demand	of	length	dn	is	the	last	demand,	given	that
the	demand	of	length	 	is	the	last	demand	and	so	on.

According	to	the	total	probability	theorem,

The	probabilities	 	are	determined	in	a	similar	fashion.	As	a	result,	the
expression 

is	obtained	for	the	probability	that	there	will	be	no	unsatisfied	random	demand.	If	
denotes	the	sum	of	durations	of	all	demands,	the	probability	of	unsatisfied	demand	
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	can	be	obtained	as	a	probability	of	a	complementary	event:

This	equation	has	been	confirmed	by	the	results	from	a	simulation	algorithm.	Thus,	for	four
consumers	demanding	a	particular	resource	for	 ,	 ,	

	and	 ,	respectively,	during	a	time	interval	of	10	hours,	the
probability	of	unsatisfied	demand	calculated	from	Equation	15.21	is	0.3.	This	probability	has
been	confirmed	by	the	probability	of	0.3	calculated	from	the	simulation.

An	important	special	case	is	obtained	if	the	durations	of	all	random	demands	are	equal.
Substituting	 	in	Equation	15.21	then	yields

which	is	equivalent	to	Equation	15.14.

The	analysis	of	Equation	15.22	reveals	a	useful	result.	Suppose	that	the	total	length	of	demand	
	is	kept	constant	and	only	the	number	of	customers	n	and	the	durations	of	their

demands	d	are	varied	in	such	a	way	that	 	does	not	change.	In	other	words,	 .

Equation	15.22	then	becomes

With	increasing	n,	 	tends	to	unity.	For	 	total	demand	and	a	time	interval	L 
= 600	minutes,	the	dependence	presented	by	Equation	15.23	has	been	given	in	Figure	15.7.



Figure	15.7	Probability	of	unsatisfied	demand	as	a	function	of	the	number	of	consumers.	The
total	duration	of	the	demand	from	all	consumers	is	the	same	–	50	minutes

As	can	be	seen	from	the	graph	in	Figure	15.7,	if	the	supplied	resource	is	finite	and	sufficient
for	a	total	duration	of	supply	of	D	hours	(e.g.	compressed	gas	in	bottles,	chemicals,	etc.),	a
strategy	involving	splitting	the	resource	among	a	fewer	number	of	consumers	is	better	than	a
strategy	based	on	splitting	the	resource	among	a	larger	number	of	consumers.	The	first	strategy
is	characterised	by	a	significantly	smaller	probability	of	unsatisfied	demand.

15.6	Reliability	Governed	by	the	Relative	Locations	of
Random	Variables	following	a	Homogeneous	Poisson
Process	in	a	Finite	Domain
An	important,	commonly	encountered	case	is	where	the	random	variables	follow	a
homogeneous	Poisson	process	in	a	finite	interval.	The	homogeneous	Poisson	process	and	the
uniform	distribution	are	closely	related.	A	basic	property	of	the	homogeneous	Poisson	process,
well	documented	in	texts	on	probabilistic	modelling	(Gross	and	Harris,	1985;	Ross,	2000),
states:	given	n	random	variables	following	a	homogeneous	Poisson	process	in	the	finite	time
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interval	0,a,	the	coordinates	of	the	random	variables	are	distributed	uniformly	over	the	interval
0,a.	For	example,	when	a	calibration	length	a	is	cut	from	wire	containing	flaws	following	a
homogeneous	Poisson	process	and	the	number	of	flaws	n	is	known	(given)	in	the	length	a,	the
successive	coordinates	of	the	n	flaws	are	jointly	distributed	along	the	length	a	as	the	order
statistics	in	a	sample	of	size	n	from	the	uniform	distribution.

Assume	that	the	random	variables	(not	necessarily	identical)	follow	a	homogeneous	Poisson
process	in	the	finite	domain	with	measure	ν	(volume,	area	or	length).	Then,	the	probability	of	k
random	variables	in	the	domain	ν	is	given	by	the	Poisson	distribution	 !,	
,	where	λν	is	the	mean	number	of	random	variables	in	the	finite	domain	ν	and	λ	is	the	number
density	of	the	random	variables.	The	safe/failure	states	depend	only	on	the	relative
configurations	of	the	random	variables	in	the	common	domain	and	not	on	their	absolute
locations.	According	to	the	total	probability	theorem,	the	probability	of	a	safe/failure
configuration	is	a	sum	of	the	probabilities	of	the	mutually	exclusive	events	involving	all
possible	numbers	of	random	variables	in	the	finite	domain	ν.	These	mutually	exclusive	events
are	as	follows:	k	random	variables	reside	in	the	finite	domain	with	measure	ν,	and	the
variables	form	a	safe/failure	configuration	where	 .

The	probability	p(S)	of	a	safe/failure	configuration	is	then	given	by

where	 	is	the	conditional	probability	of	a	safe/failure	configuration,	given	that	k	random
variables	reside	in	the	domain	with	measure	ν.	 	can	be	determined	considering	that	if
the	homogeneous	Poisson	process	is	conditioned	on	the	number	of	random	variables,	the
random	variables	will	be	uniformly	distributed	in	the	domain.	In	case	of	reliability	dependent
only	on	the	relative	configuration	of	the	random	variables,	according	to	Equation	15.1,

where	the	Ck	are	integration	constants	determined	from	the	boundary	conditions.	If	all	of	the

random	variables	are	identical,	all	probabilities	 	are	equal	 ,	and	Equation
15.25	transforms	into

Equation	15.24	is	generic	and	can	be	applied	to	calculate	the	probability	of	a	safe/failure
configuration	governed	by	the	relative	configuration	of	random	variables	following	a	Poisson
process	in	a	finite	domain.	In	this	case,	the	number	of	random	variables	in	the	finite	domain	is
a	random	variable.
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Appendix	15.1
Suppose	that	the	common	domain	v	is	incremented	by	a	very	small	value	Δv.	Then,	the	random
variables	may	all	reside	in	v	(event	A0)	and	form	the	safe/failure	configuration	with	probability
p.	Alternatively,	the	ith	random	variable	may	reside	in	Δv	and	the	rest	of	the	random	variables
in	v	(this	will	be	referred	to	as	event	Ai,	 )	forming	safe/failure	configurations	with

probabilities	 ,	depending	on	which	random	variable	(i)	is	in	the	small	domain	increment	Δv.
As	a	result,	events	Ai,	 ,	form	a	set	of	mutually	exclusive	and	exhaustive	events

partitioning	the	probability	space:	 ,	if	 	and	 .

Let	B	denote	the	event	a	safe/failure	configuration	of	the	random	variables.	Because	event	B
may	occur	with	any	of	the	events	Ai,	according	to	the	total	probability	theorem,	the	probability
of	event	B	is

where	 	denotes	the	probability	of	B	given	Ai.	Denoting	 ,	for	a	zero
domain	increment	 ,	 ,	because	in	this	case	 	and	

.

Next,	a	small	increment	Δv	of	the	domain	v	will	cause	a	small	increment	Δp	of	the	probability
P(B):	 .	If	a	small	domain	increment	Δv	is	present,	 	(this	is
the	probability	that	all	n	random	variables	reside	in	v	only).	 ,	 ,	are	the
probabilities	that	the	ith	random	variable	will	reside	in	the	small	domain	increment	Δv,	and	

	are	the	probabilities	of	a	safe/failure	configuration	provided	that	the	ith	random
variable	resides	in	Δν.	Substituting	these	values	in	Equation	15.A.1	gives

For	a	small	Δv,	 ,	and	Equation	15.A.2	becomes

For	an	infinitesimal	domain	increment	 ,	from	Equation	15.A.3,	the	linear	differential
equation
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is	obtained.	The	 	are	easier	to	calculate,	because	they	correspond	to	calculating	the
probability	of	a	safe/failure	configuration	when	one	of	the	random	variables	is	fixed	at	the

domain	boundary.	Generally,	the	 	are	functions	of	the	measure	v	of	the	finite	domain:	pi*	=

pi*(v).	The	integrating	factor	of	Equation	15.A.4	is	 ,	and	the	general
solution	of	differential	Equation	15.A.4	is	given	by



16	
Reliability	and	Risk	Dependent	on	the	Existence	of
Minimum	Separation	Intervals	between	the	Locations	of
Random	Variables	on	a	Finite	Interval

16.1	Applications	Requiring	Minimum	Separation
Intervals	and	Minimum	Failure-Free	Operating	Periods
Reliability	often	depends	on	the	existence	of	minimum	separation	intervals	between	or	before
the	locations	of	random	variables.	Commonly	encountered	examples	where	reliability	depends
on	the	existence	of	minimum	separation	intervals	between	the	locations	of	adjacent	random
variables	are	presented	in	Figure	16.1:

A	source	servicing	a	number	of	randomly	arriving	demands,	where	the	source	can	only
service	one	request	at	a	time.	Unsatisfied	demand	occurs	if	two	or	more	demands	cluster
within	a	critical	time	interval	s	(Figure	16.1a).

Emergency	calls	for	a	nurse	from	critically	ill	patients	in	a	hospital.	The	nurse	can	service
only	a	single	patient	at	a	time.	There	will	be	no	unsatisfied	demands	if	the	times	between
the	emergency	calls	are	greater	than	the	maximum	time	s	needed	for	servicing	a	call
(Figure	16.1b).

Stored	spare	equipment	servicing	the	needs	of	customers	arriving	randomly	during	a
specified	time	interval.	After	a	demand	from	a	customer,	the	warehouse	needs	a	minimum
time	to	replenish	the	dispatched	equipment	before	the	next	demand	can	be	serviced.	In	this
case,	the	probability	of	unsatisfied	demand	equals	the	probability	of	clustering	two	or	more
customer	arrivals	within	the	critical	period	needed	for	making	the	equipment	available	for
the	next	customer	(Figure	16.1a).

Supply	systems	which	accumulate	the	supplied	resource	before	it	is	dispatched	for
consumption	(e.g.	compressed	gaseous	substances).	Suppose	that	after	a	demand	for	the
resource,	the	system	needs	a	minimum	period	of	specified	length	to	restore	the	amount	of
supplied	resource	to	the	level	existing	before	the	demand.	In	this	case,	the	probability	of
unsatisfied	demand	equals	the	probability	of	clustering	two	or	more	demands	within	the
critical	recovery	period	s	(Figure	16.1a).

Forces	acting	on	a	loaded	component	which	fails	if	two	or	more	forces	cluster	within	a
critical	time	interval	s.

Clustering	of	two	or	more	random	flaws	over	a	small	critical	distance	s	(Figure	16.1d)
dangerously	decreases	the	load-carrying	capacity	of	thin	fibres	and	wires.	As	a	result,	a
configuration	where	two	or	more	flaws	are	closer	than	a	critical	distance	cannot	be



tolerated	during	loading.	Reliability	in	this	case	is	governed	by	the	probability	of
clustering	of	the	random	flaws.

Failures	associated	with	pollution	to	the	environment	(e.g.	a	leakage	of	chemicals)	(Figure
16.1c).	If	such	a	failure	is	followed	by	another	failure	associated	with	leakage	of
chemicals,	before	a	critical	time	interval	has	elapsed	needed	for	recovery	from	pollution,
irreparable	damage	to	the	environment	could	be	done.	For	example,	clustering	of	failures
associated	with	a	release	of	chemicals	in	the	seawater	could	result	in	a	dangerously	high
acidity	which	will	destroy	marine	life.

Figure	16.1	(a–d)	Common	examples	where	reliability	depends	on	the	existence	of	minimum
separation	intervals	between	the	locations	of	random	variables

Often,	it	is	essential	that	before	the	first	random	failure	and	before	each	subsequent	failure
throughout	the	design	life	of	a	system,	a	minimum	operating	interval	(Figure	16.2a)	of	length	s
exists,	with	high	probability.	Here	are	some	examples:

Specified	rolling	warranty	periods	are	required	before	each	failure	followed	by	repair



(Figure	16.2a)	or	before	specified	failures	(Figure	16.2b)	in	a	finite	time	interval.	The
violation	of	any	of	the	specified	rolling	warranty	periods	is	associated	with	a	warranty
payment.

Systems	for	which	a	failure	within	a	critical	start-up	period	(of	length	s)	is	associated	with
severe	consequences	(Figure	16.2a).

In	cases	where	life	of	length	at	least	s	is	expected	immediately	after	each	failure	and
replacement	(Figure	16.2a)	during	a	time	interval	a.	Suppose	that	after	a	failure	and
replacement,	the	component	is	put	on	a	mission	of	length	s.	Commonly,	premature	failure	of
the	component	during	the	mission	with	length	s	is	associated	with	grave	consequences	and
is	highly	undesirable.

In	this	case,	it	is	important	to	guarantee	with	a	large	probability	failure-free	operating
period	of	length	s	before	each	failure	and	replacement.	Guaranteeing	with	a	large
probability	a	failure-free	operating	period	with	length	s	before	the	first	failure	does	not
guarantee	that	a	failure-free	operating	period	with	length	s	will	exist	with	the	same	large
probability,	before	each	subsequent	failure.



Figure	16.2	(a–d)	Common	examples	where	reliability	depends	on	the	existence	of	minimum
separation	intervals	before	the	locations	of	random	variables



16.2	Minimum	Separation	Intervals	and	Rolling	MFFOP
Reliability	Measures
All	of	the	cases	discussed	in	the	previous	section	require	a	new	reliability	measure	which	can
broadly	be	defined	as	minimum	separation	intervals	(MSI)	between	or	before	random
variables	in	a	finite	time	interval,	whose	existence	is	guaranteed	with	a	minimum

probability	 	(Figure	16.2b)	(Todinov,	2004c).	The	translation	of	the	MSI
reliability	measure	to	random	failures	in	a	finite	time	interval	is	as	follows:	specified
minimum	failure-free	operating	periods	(MFFOPs)	 	before	or	between	random	failures	in
a	finite	time	interval	(Figure	16.2b)	whose	existence	is	guaranteed	with	minimum
probability	 .

Equivalently,	the	MFFOP	reliability	measure	can	be	formulated	as	specified	MFFOPs	
before	or	between	random	failures	in	a	finite	time	interval	and	a	maximum	acceptable

probability	 	of	violating	at	least	one	of	them	

.	A	violation	of	an	MFFOP	interval	is	present	when	the	actual	interval	
before	failure	is	smaller	than	the	corresponding	specified	MFFOP	 	(Figure	16.2b).	The
MFFOP	measure	can	be	interpreted	in	a	broader	sense	as	minimum	event-free	operating	period
measure.	If	the	events	are	random	demands	to	a	single	source,	and	each	demand	has	a	specified
duration,	an	MFFOP	guaranteed	with	large	probability	in	fact	guarantees	with	large
probability	that	there	will	be	no	collision	of	random	demands.

Note	that	for	a	single	specified	MFFOP	interval,	the	definition	of	the	MFFOP	reliability
measure	coincides	with	the	definition	of	reliability	associated	with	this	interval	(Figure
16.2d):	‘the	probability	of	surviving	a	specified	minimum	time	interval	of	length	s’.	While	for
a	non-constant	hazard	rate	the	classical	reliability	measure	mean	time	to	failure	(MTTF)	can
be	misleading	(see	Chapter	3),	the	MFFOP	reliability	measure	is	sound.	Yet	another	reason	for
the	importance	of	the	MFFOP	reliability	measure	is	the	possibility	to	link	naturally	reliability
with	the	cost	of	failure	(see	Chapter	17).

The	homogeneous	Poisson	process	is	an	important	model	for	component/system	failures
because	the	useful	life	of	components	and	systems	(the	flat	region	of	the	bathtub	curve)	can	be
approximated	well	by	a	constant	hazard	rate.

16.3	General	Equations	Related	to	Random	Variables
following	a	Homogeneous	Poisson	Process	in	a	Finite
Interval
Random	failures	following	a	homogeneous	Poisson	process	in	a	finite	time	interval	with	length
a	are	considered.	The	number	of	failures	in	the	finite	time	interval	a	is	a	random	variable.	It	is
assumed	that	after	each	failure,	the	component/system	is	brought	by	a	replacement	to	as-new
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condition.	Failure	is	understood	to	be	a	critical	event	leading	to	a	system	halt	or	degeneration
of	the	required	function	below	an	acceptable	level.	In	this	sense,	failure	requires	immediate
intervention.

Specifying	multiple	MFFOPs	is	important	in	cases	where	before	each	random	failure	in	a	finite
time	interval,	there	should	be	a	minimum	period	s	of	failure-free	operation	(free	from
intervention	for	unscheduled	maintenance),	guaranteed	with	large	probability.	If	a	rolling
warranty	period	of	length	at	least	s	is	required	before	each	failure	during	a	finite	time	period
with	length	a	(Figure	16.2a),	the	MFFOP	reliability	measure	consists	of	an	MFFOP	interval
with	length	s	and	a	minimum	probability	 	with	which	this	interval	is	guaranteed.

The	maximum	number	of	failure-free	gaps	of	length	s	which	can	fit	into	the	finite	time	interval
with	length	a	is	 ,	where	 	denotes	the	greatest	integer	part	of	the	ratio	 	which
does	not	exceed	it.	The	probability	that	before	k	random	failures	in	a	finite	interval	with	length
a,	there	will	be	distances	greater	than	a	specified	minimum	distance	s	is	given	by	Equation
15.15.	According	to	Equation	15.18,	the	probability	of	existence	of	a	minimum	gap	of	length	at
least	s	before	each	random	failure	is

In	Equation	16.1,	 !	is	the	probability	of	exactly	k	failures	in	the	finite	time

interval	a.	According	to	Equation	15.15,	 	is	the	conditional	probability
that	given	k	random	failures	on	the	time	interval	with	length	a,	before	each	failure,	there	will
be	a	failure-free	gap	of	length	at	least	s.

Expanding	the	sum	in	Equation	16.1	results	in

for	the	probability	 	that	before	each	random	failure	in	the	finite	interval	a,	there	will	be	a
failure-free	interval	greater	than	s.

Consider	now	the	important	practical	problem	of	requests	arriving	randomly	in	time	to	a
source	which	can	service	only	a	single	request	at	a	time.	Assume	for	the	sake	of	simplicity	that
time	s	is	needed	to	service	each	random	request.	The	random	requests	could	be	for	using
unique	equipment	(e.g.	X-ray	equipment)	or	for	a	particular	resource	(e.g.	water	vapour,
electrical	power,	compressed	air,	etc.).	The	list	can	be	continued.

Now	only	minimum	separation	intervals	(MSI)	between	adjacent	random	requests	are
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considered,	without	specifying	a	MSI	 	from	the	beginning	of	the	finite	interval	 .	As	a
result,	the	equation

is	obtained	from	the	general	Equation	15.18,	where	 .

In	Equation	16.3,	 !	is	the	probability	of	exactly	k	random	requests	in	the	finite

time	interval.	According	to	Equation	15.12,	 	is	the	conditional
probability	that	between	any	two	adjacent	random	requests,	there	will	be	a	gap	of	length	at
least	s.	Expanding	the	sum	in	Equation	16.3	results	in

for	the	probability	 	that	the	distance	between	any	two	adjacent	random	demands	will	be
greater	than	the	specified	critical	time	s	for	satisfying	a	random	demand.	The	probability	
that	two	or	more	random	demands	will	cluster	within	the	critical	time	s	needed	for	servicing	a
single	demand	is

This	is	also	the	probability	that	there	will	be	unsatisfied	random	demand.

Equations	16.2	and	16.4	can	be	used	for	setting	reliability	and	risk	requirements	in	cases
where	the	random	events	follow	a	homogeneous	Poisson	process.	For	any	specified	MFFOP
interval	and	a	minimum	probability	 	with	which	it	must	exist,	solving	the	equations	with
respect	to	 	yields	an	upper	bound	(an	envelope)	for	the	number	density	of	the	random	events.
The	number	density	envelope	guarantees	that	if	the	actual	number	density	of	the	events	lies	in
it,	the	specified	MFFOP	will	exist	with	probability	at	least	equal	to	the	specified	minimum
probability	 .

It	is	important	to	point	out	that	solving	the	exponential	equation	 	to	specify
the	hazard	rate	guaranteeing	an	MFFOP	of	length	at	least	s	until	the	first	failure	does	not	mean
that	this	period	will	exist	before	each	subsequent	random	failure	in	the	finite	time	interval.

Given	a	maximum	acceptable	probability	of	unsatisfied	demand	 ,	by	solving	Equation	16.5



numerically	with	respect	to	 ,	an	upper	bound	 	for	the	number	density	envelope	of	the
random	demands	can	be	determined.	This	guarantees	that	whenever	for	the	number	density	 ,	

	is	fulfilled,	the	specified	minimum	separation	interval	(MSI)	of	length	at	least	s	will
exist	between	random	demands,	with	minimum	probability	 .	In	other	words,	the
probability	of	unsatisfied	demand	will	be	smaller	than	 .

16.4	Application	Examples
16.4.1	Setting	Reliability	Requirements	to	Guarantee	a	Specified
MFFOP
Equation	16.2	has	been	used	for	setting	MFFOP	reliability	requirements	to	guarantee	a
specified	minimum	failure-free	operating	interval	of	length	at	least	 	months	before	each
random	failure	in	a	finite	time	interval	of	length	 	months.	The	value	 	has
been	specified	as	a	maximum	acceptable	probability	of	violating	at	last	one	MFFOP	interval.
Equation	16.2	was	solved	numerically	with	respect	to	 	where	 .	The
numerical	routine	yielded	a	value	 	month−1	for	the	upper	bound	of	the	hazard	rate
which	guarantees	an	MFFOP	of	length	at	least	s = 30	months	before	each	random	failure,	with
probability	equal	to	or	greater	than	 .	This	result	has	been	verified	by	a	Monte
Carlo	simulation.	Given	a	hazard	rate	 	month−1,	the	Monte	Carlo	simulation
yielded	 	for	the	probability	that	before	each	random	failure,	there	will	be	a
failure-free	interval	at	least	 	months.

If	the	negative	exponential	distribution	 	was	used	to	calculate	the	probability
of	a	failure-free	interval	of	length	at	least	s = 30	months	before	each	random	failure,	it	would
have	yielded	the	incorrect	value:

The	value	 	obtained	from	the	negative	exponential	distribution	guarantees	a	single
MFFOP	interval	only,	until	the	first	failure.	Larger	discrepancies	are	obtained	if	the	length	of
the	specified	MFFOP	interval	before	each	failure	is	reduced.	Thus,	the	maximum	hazard	rate
which	guarantees	with	minimum	probability	 	an	MFFOP	of	length	at	least	s = 2
months	before	each	random	failure	is	 	month−1.	The	value	 	month−1

obtained	from	solving	the	exponential	equation	 	guarantees	with	minimal
probability	 	a	single	MFFOP	interval	only,	until	the	first	failure.	In	order	to
guarantee	a	failure-free	interval	of	s = 2	months	before	each	failure,	the	hazard	rate	needs	to	be
decreased	to	the	value	 	month−1.	These	examples	show	that	if	a	specified	MFFOP
interval	(a	rolling	warranty	period)	is	required	before	each	random	failure	following	a
homogeneous	Poisson	process	in	a	finite	interval,	Equation	16.2	must	be	used	to	calculate	the
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necessary	hazard	rate,	not	the	negative	exponential	distribution.

16.4.2	Reliability	Assurance	That	a	Specified	MFFOP	Has	Been	Met
Suppose	that	a	number	of	tests	have	been	performed	from	which	a	constant	hazard	rate	has
been	estimated	in	the	way	discussed	in	Chapter	3.	On	the	basis	of	this	estimate,	a	reliability
assurance	is	required	about	the	existence	of	an	MFFOP	before	each	random	failure	in	a	finite
time	interval	with	length	a.

According	to	the	discussion	in	Chapter	3,	the	MTTF	estimated	from	data	follows	a	 -

distribution.	The	probability	 	that	the	true	MTTF	 	will	lie	between	two
specified	bounds	 	and	 	is	given	by	Equation	3.37.

Since	the	probability	distribution	of	the	MTTF	can	always	be	determined	given	the	total
operational	time	T	and	the	number	of	failures	k,	assume	for	the	sake	of	simplicity	that	 	is
the	probability	distribution	of	the	true	MTTF	for	a	given	number	of	failures	and	a	total
operational	time	T.

Given	that	the	MTTF	is	in	the	interval	 ,	 ,	the	probability	that	the	actual	failure-free
operating	intervals	 	(i = 0,	1,	…)	before	all	random	failures	will	be	larger	than	the
specified	minimum	failure-free	operating	interval	s	is

where	 	is	the	greatest	integer	part	of	the	ratio	a/s	which	does	not	exceed	it.	The
probability	of	the	compound	event	that	the	MTTF	will	be	in	the	interval	 ,	 	and	the
actual	failure-free	operating	intervals	before	the	random	failures	will	be	greater	than	the

specified	MFFOP	with	length	s	is	equal	to	 .	According	to	the	total
probability	theorem,	the	probability	that	all	of	the	actual	failure-free	operating	intervals	before
failures	will	be	larger	than	the	specified	MFFOP	with	length	s	becomes

or,	after	the	substitution,

where	 	and	 	are	the	lower	and	the	upper	bounds	for	 ,	for	which	 	if	 	or	
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.	For	a	single	specified	MFFOP	of	length	s	before	the	first	random	failure	only,	the
conditional	probability	of	an	MFFOP	with	length	at	least	s	is	obtained	on	the	basis	of	the
negative	exponential	distribution:

The	probability	 	that	the	actual	failure-free	operating	interval	will	be	larger	than	the
specified	MFFOP	with	length	s	is

Equations	16.7	and	16.9	can	be	used	to	provide	reliability	assurance	that	the	specified	MFFOP
interval	with	length	s	has	been	met.

Increasing	the	number	of	tests	alters	the	distribution	 	of	the	MTTF	and	also	the	probability

.	In	order	to	minimise	the	number	of	tests	needed	to	provide	reliability
assurance	that	the	specified	MFFOP	is	guaranteed	with	minimum	probability	 ,	the
following	steps	can	be	repeated	until	the	target	probability	 	has	been	attained:

i.	 Increment	the	number	of	tests	by	one

ii.	 Update	the	distribution	 	of	the	true	MTTF

iii.	 Calculate	the	probability	 	from	Equation	16.7	or	16.9

16.4.3	Specifying	a	Number	Density	Envelope	to	Guarantee
Probability	of	Unsatisfied	Random	Demand	below	a	Maximum
Acceptable	Level
In	an	illustrative	example,	the	number	density	envelope	of	random	demands	will	be	determined
which	guarantees	that	the	probability	of	unsatisfied	demand	will	be	below	a	specified	level.	A
single	source	servicing	random	requests	is	available,	and	each	random	request	requires	a
minimum	time	interval	of	0.5	hour	to	be	serviced.	Demands	follow	a	homogeneous	Poisson
process	in	a	finite	time	interval	of	100	hours,	and	if	two	or	more	demands	follow	within	the
critical	service	time	interval	of	0.5	hour,	there	will	be	unsatisfied	demand.	The	maximum
acceptable	probability	of	unsatisfied	demand	has	been	specified	to	be	 .	An	upper
bound	 	hour−1	of	the	number	density	of	the	demands	was	obtained	by	solving
Equation	16.4	with	respect	to	 	where	 .	Whenever	for	the	number	density	
of	demands	 	hour−1	is	fulfilled,	the	probability	of	unsatisfied	demand	is	smaller
than	0.1.	Monte	Carlo	simulations	(one	million	trials)	of	a	homogeneous	Poisson	process	with



density	 	yielded	0.1	for	the	probability	of	clustering	of	two	or	more	demands
within	the	critical	interval	of	0.5	hours,	which	confirms	the	result	from	solving	Equation	16.4.
Thus,	for	an	expected	number	of	five	random	demands	in	100	hours,	the	probability	of
unsatisfied	demand	is	substantial	(≈0.1).	Even	for	the	mean	number	density	of	two	random
demands	in	100	hours,	the	calculation	from	Equation	16.4	shows	that	there	is	still
approximately	2%	chance	of	unsatisfied	demand.

Figure	16.3	gives	the	dependence	of	the	probability	of	unsatisfied	demand	for	a	single	source
and	time	of	 	hour	for	servicing	a	single	random	demand.	The	operating	time	interval	is	

	hours.	The	probability	of	unsatisfied	demand	has	been	plotted	for	different	values	of
the	number	density	of	the	demands.

Figure	16.3	Probability	of	unsatisfied	demand	on	a	finite	operational	time	interval	of	100
hours.	The	random	demands	follow	a	homogeneous	Poisson	process,	and	each	random	demand
requires	1	hour	service	time

For	a	mean	number	of	14	demands	per	100	hours,	there	is	already	80%	probability	of
unsatisfied	demand.	Clearly,	the	probability	of	unsatisfied	demand	is	substantial	and	should
always	be	taken	into	consideration	in	risk	assessments.
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Plots	similar	to	the	one	in	Figure	16.3	can	be	used	for	setting	reliability	requirements.	For	a
specified	maximum	acceptable	probability	of	unsatisfied	demand,	for	example,	14%,	the
number	density	envelope	of	 	hour−1	can	be	determined	(see	the	arrows	in	Figure
16.3).	This	envelope	guarantees	that	whenever	the	number	density	of	the	demands	does	not
exceed	 ,	the	probability	of	unsatisfied	demand	will	not	exceed	the	critical
level	of	14%.

Equation	16.5	can	also	be	used	to	determine	the	probability	of	collision	of	demands	from	users
of	the	same	particular	resource.	Unlike	the	problem	solved	in	Chapter	15,	where	the	number	of
users	was	fixed,	here	the	number	of	users	is	a	random	variable	following	a	Poisson
distribution.

This	example	demonstrates	the	importance	of	setting	reliability	requirements	not	only	to
minimise	the	probability	of	unsatisfied	demand	below	a	maximum	acceptable	level	but	also
to	provide	an	optimal	balance	between	risk	and	cost.

This	problem	appears	frequently	in	critical	situations.	For	example,	if	the	demands	are
emergency	calls	for	a	nurse	arriving	from	critically	ill	patients	in	a	hospital,	the	obtained
hazard	rate	envelope	can	be	used	to	determine	the	maximum	number	of	such	patients	that	could
be	looked	after	by	a	single	nurse	so	that	the	probability	of	unattended	call	remains	below	a
maximum	acceptable	level.	The	consequences	of	an	unattended	patient’s	call	are	grave	(an
unattended	call	from	a	critically	ill	patient	could	result	in	death	or	serious	damage	to	health),
and	to	keep	the	risk	low,	the	tolerable	probability	of	unsatisfied	demand	should	be	very	low.

If	the	average	number	density	of	the	calls	characterising	a	single	critically	ill	patient	is	 ,	the
total	number	density	of	the	calls	characterising	all	n	critically	ill	patients	is	 .
Determining	the	maximum	acceptable	call	rate	 	which	guarantees	with	a	specified
probability	that	there	will	be	no	patients’	calls	while	the	nurse	is	servicing	another	patient	can
be	determined	using	a	method	similar	to	the	method	illustrated	in	Figure	16.3.	Dividing	the
maximum	acceptable	call	rate	 	to	 	yields	the	maximum	acceptable	number	 	of	patients
that	can	be	looked	after	by	a	single	nurse:

Equations	16.2,	16.3,	16.4	and	16.5	are	relevant	to	a	wide	class	of	reliability	problems.
Equation	16.4	can	also	be	used	to	establish	whether	clustering	of	random	events	is	a	‘random
fluctuation’	or	not.	In	addition,	Equation	16.5	can	also	be	used	to	determine	the	probability	of
clustering	of	two	or	more	flaws	in	fibres	or	wires,	within	a	critical	distance	s,	given	that	the
flaw	number	density	is	 .	It	is	assumed	that	the	locations	of	the	flaws	follow	a	homogeneous
Poisson	process	in	the	finite	length	a.	Solving	Equation	16.5	with	respect	to	the	flaw	number
density	 	defines	an	upper	bound	for	the	flaw	number	density	which	guarantees	with	a
specified	minimum	probability	no	clustering	of	flaws	within	a	small	critical	distance.	This	is
important	in	cases	where	the	probability	of	failure	during	loading	is	strongly	correlated	with



the	probability	of	clustering	of	flaws.	Solving	Equation	16.4	with	respect	to	the	flaw	number
density	 	in	fact	specifies	requirements	regarding	the	maximum	acceptable	flaw	content	in	the
material	in	order	to	reduce	the	probability	of	early-life	failures	caused	by	clustering	of	flaws.

The	proposed	models	and	algorithms	form	the	core	of	a	methodology	for	reliability	analysis
and	setting	reliability	requirements	based	on	minimum	separation	intervals	(MSI)	between
random	events	in	a	finite	time	interval.

16.4.4	Insensitivity	of	the	Probability	of	Unsatisfied	Demand	to	the
Variance	of	the	Demand	Time
Simulation	experiments	have	been	conducted	involving	constant	(fixed)	number	of	random
demands	on	a	specified	time	interval.	Each	consumer	places	exactly	one	demand	randomly
located	in	the	specified	time	interval	(Figure	16.4).

Figure	16.4	A	fixed	number	(n)	of	random	demands	in	a	time	interval	(0,	L).	The	duration	of
the	demands	is	a	random	variable

Increasing	the	standard	deviation	of	the	duration	of	random	demands	reveals	a	rather
unexpected	trend	(Figure	16.5).	The	simulation	results	clearly	show	that	the	probability	of
unsatisfied	demand	practically	does	not	vary	with	varying	the	standard	deviation	of	the
demand	time.	In	the	experiments	presented	in	Figure	16.5,	the	demand	times	follow	a	normal
distribution	with	a	specified	mean	(80,	60,	50	and	40	minutes)	and	a	standard	deviation
varying	in	the	interval	0–9	minutes.	The	results	in	Figure	16.5	feature	a	single	source	and	four
consumers.



Figure	16.5	Dependence	of	the	probability	of	unsatisfied	demand	on	the	standard	deviation	of
the	demand	time	for	a	single	available	source	capable	of	servicing	a	single	consumer	at	a	time.
The	demand	times	follow	a	normal	distribution	with	a	specified	mean,	which	is	kept	constant

To	check	whether	these	results	are	caused	by	the	symmetry	of	the	Gaussian	distribution,	the
simulation	experiments	were	repeated	with	an	asymmetrical	log-normal	distribution	of	the
demand	times,	with	mean	 	minutes,	a	standard	deviation	varying	in	the	range	(0,	36
minutes)	and	duration	of	the	operation	time	interval	of	300	hours.	All	15	consumers	were
characterised	by	the	same	mean	demand	time	of	180	minutes	(which	was	kept	constant)	and	the
same	standard	deviation.	The	common	standard	deviation	characterizing	the	demand	time	of
each	consumer	was	varied	in	the	interval	0,36.	The	trend	was	the	same	–	the	probability	of
unsatisfied	demand	practically	did	not	vary	with	varying	the	standard	variation	of	the
consumers’	demand	time	(Figure	16.6).



Figure	16.6	Dependence	of	the	probability	of	unsatisfied	demand	on	the	standard	deviation	of
the	demand	time	for	a	duration	of	random	demand	following	the	log-normal	distribution

These	results	can	be	rationalised	by	referring	to	the	analytical	expression	(Equation	15.12
from	Chapter	15)	regarding	the	probability	that	there	will	be	no	unsatisfied	demand	from	n
random	consumers	on	a	time	interval	(0,	L),	given	by

where	 	(i = 1,	n − 1)	are	the	durations	of	the	random	demands	from	the	consumers.	The
demand	 	from	the	last	consumer	has	been	discarded,	because	it	cannot	possibly	contribute	to
the	probability	of	unsatisfied	demand.

If	the	durations	 	of	the	random	demands	are	now	realisations	of	a	random	variable
X	following	a	statistical	distribution	with	mean	 	and	standard	deviation	 ,	even	for	a

relatively	small	number	of	consumers,	the	sum	of	the	durations	 	in	the	above	equation

can	be	approximated	reasonably	well	with	 	and,	as	a	result,	the	probability	



	that	there	will	be	no	unsatisfied	demand	will	be	insensitive	to	the	variance	of	the	random
variable	X	standing	for	the	durations	of	the	demand	times.	The	probability	 	will	depend	only
on	the	expected	value	 	of	the	demand	times.	Because	the	probability	of	unsatisfied
demand	 	is	given	by	 ,	the	probability	of	unsatisfied	demand	will	be	insensitive	to
the	variance	(standard	deviation	 )	of	the	random	demand	times	X.

These	results	clearly	show	that	reducing	the	variances	of	the	demand	times	practically	has	no
impact	on	the	probability	of	unsatisfied	demand.	This	rather	unexpected	result	provides	the
valuable	opportunity	to	work	with	random	demand	times	characterised	by	their	means	only
and	not	requiring	information	related	to	the	variance	of	the	demand	times.

16.5	Setting	Reliability	Requirements	to	Guarantee	a
Rolling	MFFOP	Followed	by	a	Downtime
Random	failures	are	usually	followed	by	downtimes	which,	in	some	cases,	can	be	significant.
For	subsea	oil	and	gas	production,	for	example,	the	downtimes	include	the	time	for	locating	the
failure,	the	time	for	mobilisation	of	resources	and	the	time	needed	for	intervention	and
repair/replacement.	Downtimes	can	vary	from	several	days	to	several	months.

Suppose	that	the	distribution	of	downtimes	is	known	and	a	minimum	probability	 	has
been	specified,	with	which	an	MFFOP	of	length	s	before	each	random	failure	is	guaranteed.	A
hazard	rate	envelope	can	then	be	determined	which	guarantees	that	if	the	system	hazard	rate	is
in	the	envelope,	the	probability	of	existence	of	the	minimum	failure-free	operating	interval	will
be	greater	than	the	specified	 .

In	the	Monte	Carlo	simulation	model	of	random	failures	with	downtimes	presented	here,	it	is
assumed	that	the	random	failures	are	characterised	by	a	constant	hazard	rate;	hence,	failure
times	are	produced	by	sampling	from	the	negative	exponential	distribution.	The	downtimes	are
simulated	by	sampling	from	the	distribution	representing	them	(an	empirical,	uniform,	negative
exponential,	log-normal	distribution,	etc.).

The	algorithm	consists	of	bracketing	the	hazard	rate	and	subsequent	checking	the	length	of	the
failure-free	distances	before	random	failures	until	the	target	probability	 	is	attained.	The
initial	interval	for	the	hazard	rate	is	a = 0,	 .	The	value	b = λmax	is	selected	to	guarantee
that	the	probability	p	of	the	specified	MFFOP	associated	with	hazard	rate	b	is	smaller	than	the
specified	target	pMFFOP.	For	a	hazard	rate	a = 0	the	probability	of	the	specified	MFFOP	is
larger	than	the	specified	target	pMFFOP.	Considering	also	that	the	probability	of	the	specified
MFFOP	is	a	continuos	function	of	the	hazard	rate,	according	to	the	intermediate	value	theorem
(Ellis	and	Gulick,	1991),	there	exists	a	hazard	rate	from	the	closed	interval	[a,b]	for	which	the
probability	of	the	specified	MFFOP	is	exactly	equal	to	the	specified	target	pMFFOP.	The

probability	 	of	the	specified	MFFOP	interval	associated	with	hazard	rate	 	is
calculated	next.	If	the	calculated	probability	 	associated	with	hazard	rate	 	is	smaller	than



the	specified	target	 ,	the	initial	hazard	rate	interval	(a,	b)	is	truncated	to	the
interval	(a,	 )	whose	length	is	twice	as	small.	A	new	probability	p	of	existence	of	the

specified	MFFOP	is	then	calculated	for	the	hazard	rate	 ,	which	is	in	the	middle
of	the	truncated	interval	(Figure	16.7).

Figure	16.7	An	illustration	of	the	bracketing	algorithm	for	guaranteeing	with	a	minimum
probability	 	an	MFFOP	of	specified	length

If	the	probability	p	associated	with	the	value	 	is	greater	than	the	specified	target	

,	the	initial	interval	for	the	hazard	rate	(a,	b)	is	truncated	to	( ,	b).	A	new

probability	p	is	then	calculated	for	the	hazard	rate	 	in	the	middle	of	the
truncated	interval	(Figure	16.7).	Truncating	intervals	and	calculating	the	new	probability	p	for
the	hazard	rate	in	the	middle	of	each	interval	continue	until	the	length	of	the	last	truncated
interval	becomes	smaller	than	the	required	precision	 .	Since	at	each	step	of	the	calculation,
the	current	interval	for	the	hazard	rate	is	halved,	the	total	number	of	calculations	is	

.	The	algorithm	in	pseudocode	is	as	follows:

Algorithm	16.1

		function		Calc_Pmffop	( )

		{/*	returns	the	probability	with	which	the	specified	MFFOP	of	length	

s	exists	for	a	hazard	rate	 	and	the	specified	distribution	of	

downtimes	*/}

		left	=	 min;

		right	=	 max;

		while	(|right	-	left|	>	eps)	do

		{

			mid	=	(left	+	right)/2;

			p_mid	=	Calc_Pmffop(mid);

			if	(p_mid	<	 )	then	right	=	mid;

			else	left	=	mid;

		}



The	variable	eps	specifies	the	desired	precision.	At	the	end	of	the	calculations,	the	hazard	rate
which	guarantees	the	specified	MFFOP	of	length	s	with	minimum	probability	 	remains	in
the	variable	mid.	The	function	Calc_Pmffop	 	returns	the	probability	with	which	the
specified	MFFOP	with	length	s	exists	before	each	random	failure,	given	the	specified	hazard
rate	 	and	the	distribution	of	downtimes.	Its	algorithm	is	given	in	the	next	section:



Algorithm	16.2

The	algorithm	of	the	routine	Calc_Pmffop	( )	in	pseudocode	is	as	follows:

function	Calc_Pmffop( )

{

	function	Lognormal_down_time()

		{/*	Generates	a	log-normally	distributed	downtime	with	specified

parameters	*/}

	function	Exponential_uptime()

		{	/*	Generates	an	exponentially	distributed	uptime	with	the	specified	

hazard	rate	*/}

violations	=	0;	/*	Initialising	the	'violations	counter'	(the	number	of	

trials	in	which	

an	MFFOP	with	length	s	has	been	violated)	*/

for	i	=	1	to	Number_of_trials	do

	{

		t_cumul	=	0;	/*	where	the	subsequent	uptimes	and	downtimes	are	

accumulated	*/

	repeat

		/*	Generate	an	exponential	uptime	*/

			exp_time	=	Exponential_uptime();

			t_cumul	=	t_cumul	+	exp_time;

			if	(t_cumul	>	a)	then	break;

			else	if	(exp_time	<	s)	then	{	violations	=	violations	+	1;	break;	}

			/*	Generate	a	lognormal	downtime	*/

			Cur_downtime	=	Lognormal_down_time();

			t_cumul	=	t_cumul	+	Cur_downtime;

			if	(t_cumul	>	a)	then	break;

	until	'break'	is	executed	anywhere	in	the	loop;

}

		/*	Calculates	the	probability	of	existence	of	

			the	MFFOP	with	length	s	before	each	failure	*/

Pmffop	=	1	-	violations	/	Num_of_trials;

return	Pmffop;

}

Central	to	the	routine	is	the	statement

else	if	(exp_time	<	s)	then	{	violations	=	violations	+	1;	break;}

where	a	check	is	performed	whether	the	currently	generated	time	to	the	next	failure	is	smaller
than	the	MFFOP	of	length	s.	If	a	violation	of	the	specified	MFFOP	is	present,	the	variable



counting	the	violations	is	incremented	and	the	repeat-until	loop	is	exited	immediately,
continuing	with	the	next	Monte	Carlo	simulation	trial.
The	probability	of	violating	the	specified	MFFOP	interval	of	length	s	is	calculated	by	dividing
the	content	of	the	violations	counter	to	the	total	number	of	Monte	Carlo	trials.	Subtracting	this
ratio	from	unity	gives	the	probability	Pmffop	of	existence	of	the	specified	MFFOP	interval
before	each	random	failure.

Example

This	example	involves	log-normally	distributed	downtimes.	It	is	assumed	that	the	natural
logarithms	of	the	downtimes	(in	days)	follow	a	normal	distribution	with	mean	3.5	and	a
standard	deviation	0.5.	For	the	length	of	the	specified	time	interval	and	for	the	length	of
the	specified	MFFOP,	a = 60	months	and	s = 6	months	have	been	assumed,	respectively.	A
minimum	probability	 	of	existence	of	the	MFFOP = 6	months	was	also
specified.	Using	Algorithm	16.1,	the	hazard	rate	envelope	which	guarantees	this
probability	was	determined	to	be	 	months−1.	In	other	words,	whenever	the
system	hazard	rate	 	is	smaller	than	 ,	the	failure-free	interval	before	each
random	failure	will	be	greater	than	the	specified	MFFOP	s = 6	months	(Figure	16.2a)	with
probability	greater	than	or	equal	to	 .

16.6	Setting	Reliability	Requirements	to	Guarantee	an
Availability	Target
The	current	practice	for	setting	reliability	requirements	for	production	systems	is	based	solely
on	specifying	a	high	availability	target	because	it	provides	a	direct	link	with	cash	flow.	Given
a	particular	distribution	of	downtimes	and	a	specified	minimum	availability,	reliability
requirements	can	be	set	to	guarantee	that	the	availability	will	be	greater	than	the	specified
target.	Again,	the	algorithm	is	based	on	bracketing	the	hazard	rate	and	subsequent	calculation
of	the	availability	until	the	target	availability	is	attained	with	the	desired	precision.	It	is
assumed	that	failures	follow	a	homogeneous	Poisson	process	and	after	each	failure,	the	system
is	brought	by	repair/replacement	to	‘as	good	as	new’	condition.	The	initial	interval	for	the
hazard	rate	is	a = 0,	 .	The	right	limit	b = λmax	is	selected	to	guarantee	that	the
calculated	availability	for	hazard	rate	b	is	smaller	than	the	required	availability	target	AT.	For
a	hazard	rate	a = 0	the	calculated	availability	is	larger	than	the	specified	target	AT.
Considering	also	that	the	availability	is	a	continuos	function	of	the	hazard	rate,	according	to	the
intermediate	value	theorem	(Ellis	and	Gulick,	1991)	there	exists	a	hazard	rate	from	the	closed
interval	[a,b]	for	which	the	calculated	availability	is	exactly	equal	to	the	specified	target	AT.

Next,	the	availability	associated	with	the	middle	of	the	interval	 	is	calculated.	If



the	availability	A	associated	with	the	value	 	is	smaller	than	the	specified	target	 ,

the	hazard	rate	interval	is	truncated	to	 	and	a	new	availability	value	is	calculated	at	
	(Figure	16.8).

Figure	16.8	An	illustration	of	the	algorithm	for	guaranteeing	a	minimum	availability	

If	the	availability	associated	with	value	 	is	greater	than	the	specified	target	 ,	the

hazard	rate	interval	is	truncated	to	 	and	the	new	availability	value	is	calculated	at	
	(Figure	16.8).	The	calculations,	which	are	very	similar	to	the	calculations

described	in	the	previous	section,	continue	until	the	final	truncated	interval	containing	the	last
calculated	approximation	 	of	the	hazard	rate	becomes	smaller	than	the	desired	precision	 .	If	

	denotes	the	integer	part	of	the	ratio	 ,	after	 	calculations,	the	desired
precision	will	be	attained.	This	algorithm	is	very	efficient	because,	for	example,	even	for	

,	the	solution	is	attained	after	only	100	calculations.	The	algorithm	in
pseudocode	is	as	follows:

Algorithm	16.3

			function	Simulate_availability	( )

			{/*	returns	the	availability	associated	with	hazard	rate	 	*/}

			left	=	 min;

			right	=	 max;

			while	(|right	-	left|	>	eps)	do

			{

				mid	=	(left	+	right)/2;	a_mid	=	Simulate_availability(mid);

				if	(a_mid	<	 )	then	right	=	mid;

				else	left	=	mid;

				}

The	variable	eps	contains	the	desired	precision.	At	the	end	of	the	calculations,	the	hazard	rate



which	guarantees	the	specified	availability	target	 	remains	in	the	variable	‘mid’.	The
function	Simulate_availability	( ),	whose	algorithm	is	presented	next,	returns	the	average
availability	during	the	finite	time	interval	for	the	specified	downtime	distribution	and	hazard
rate	 .	The	failure	times	are	produced	by	sampling	from	the	exponential	distribution,	while	the
downtimes	are	produced	by	sampling	the	distribution	representing	the	downtimes	(empirical,
uniform,	log-normal,	etc.).

Here	is	the	computer	simulation	algorithm	in	pseudocode	for	determining	the	mean	availability
on	a	finite	time	interval:

Algorithm	16.4

Availability	[Number_of_trials];	/*	Array	containing	the	availability	

values	

calculated	from	each	Monte	Carlo	trial	*/

function	Lognormal_down_time()

		{/*	Generates	a	log-normally	distributed	downtime	with	specified	

parameters	*/}

function	Exponential_uptime()

		{/*	Generates	an	exponentially	distributed	time	to	failure	with	a	

specified	

hazard	rate	*/}

function	Simulate_availability( )

{

	for	i	=	1	to	Number_of_trials	do

	{

			a_remaining	=	a;	Total_uptime	=	0;

		repeat

			/*	Generate	a	time	to	failure	following	the	negative	exponential	

distribution	*/

			Cur_uptime	=	Exponential_uptime();

			If	(Cur_uptime	>	a_remaining)	then

		{Total_uptime	=	Total_uptime	+	a_remaining;	break;}

			Total_uptime	=	Total_uptime	+	Cur_uptime;

			a_remaining	=	a_remaining	-	Cur_uptime;

			/*	Generate	a	lognormal	downtime	*/

Cur_downtime	=	Lognormal_down_time	();

			If	(Cur_downtime	>	a_remaining)	then	break;



			a_remaining	=	a_remaining	-	Cur_downtime;

		until	'break'	is	executed	anywhere	in	the	loop;

	Availability	[i]	=	Total_uptime	/	a;

	Sum	=	Sum	+	Availability[i];

	}

Mean_availability	=	Sum	/	Number_of_trials;

return	Mean_availability;

}

The	algorithm	consists	of	generating	alternatively	an	uptime	(operational	time)	from	sampling
the	negative	exponential	distribution,	followed	by	a	downtime	(repair	time)	obtained	from
sampling	the	log-normal	distribution	describing	the	distribution	of	the	repair	time.	This
process	continues	until	the	finite	time	interval	with	length	a	is	exceeded.	In	the	variable
‘Total_uptime’,	the	total	time	during	which	the	system	is	operational	is	accumulated.	In	the
indexed	variable	Availability[i],	the	availability	characterising	the	ith	Monte	Carlo
simulation	trial	is	obtained	by	dividing	the	total	uptime	to	the	length	of	the	finite	time	interval
a.	The	sorted	values	stored	in	the	Availability	array	can	subsequently	be	used	to	plot	the
empirical	distribution	of	the	availability.	Averaging	the	values	stored	in	the	Availability
array	gives	the	mean	availability	associated	with	the	finite	time	interval	a.

Example

This	numerical	example	is	also	based	on	log-normally	distributed	downtimes.	Similar	to
the	previous	example,	it	is	assumed	that	the	natural	logarithms	of	the	downtimes	(in	days)
are	normally	distributed	with	mean	3.5	and	a	standard	deviation	0.5.	The	length	of	the
specified	time	interval	was	assumed	to	be	a = 60	months.	An	average	availability	

	has	been	specified.	By	using	the	described	algorithm	implemented	in	C++,	a
hazard	rate	 	months−1,	which	guarantees	the	availability	target	 ,
was	determined.	In	other	words,	whenever	the	system	hazard	rate	 	is	smaller	than	 ,
the	average	system	availability	A	is	greater	than	the	target	value	 .	Surprisingly,
the	probability	of	premature	failure	before	time	a = 60	months,	for	a	constant	hazard	rate	

	month−1,	is	 .	This	result	shows	that	even
for	a	relatively	high	availability	target,	it	is	highly	likely	that	there	will	be	a	premature
failure.	Consequently,	setting	a	high	availability	target	does	not	exclude	a	substantial
probability	of	premature	failure.	In	subsea	deep-water	production,	for	example,	the	cost
of	intervention	to	fix	failures	is	high;	therefore,	the	risk	(the	expected	losses)	associated
with	failure	is	also	high	even	for	a	large	specified	availability.



16.7	Closed-Form	Expression	for	the	Expected	Fraction
of	the	Time	of	Unsatisfied	Demand
This	section	treats	the	important	practical	problem	where	n	consumers	demand	a	particular
resource	at	random	times,	for	specified	durations,	during	a	specified	time	interval	(0,	L).	Each
source	of	the	supplied	resource	can	only	service	a	single	consumer	at	a	time.

This	problem	is	present	in	many	manufacturing	processes	where	a	number	of	machine	centres
demand	expensive	measuring	equipment,	control	equipment,	production	equipment	or	an
operator,	at	a	random	time	during	the	production	process.	Because	the	control	equipment	is
expensive	and	unique,	it	is	not	feasible	to	equip	each	machine	centre	with	a	separate	piece	of
equipment.	The	demands	for	the	resource	may	occur	at	random	times	during	a	shift.	After	the
duration	of	the	demand,	the	control	equipment	is	released	and	made	available	for	future
demands.

If	m	sources	(pieces	of	control	equipment)	are	available,	a	simultaneous	demand	from	not
more	than	m	consumers	can	be	satisfied,	but	not	a	simultaneous	demand	from	m + 1	or	more
consumers.	As	a	result,	the	problem	of	unsatisfied	demand	can	be	reduced	to	a	problem	of
geometrical	probability	where	a	segment	of	specified	length	L	is	covered	by	randomly	located
smaller	segments	with	different	lengths.	The	probability	of	unsatisfied	demand	if	m	sources	are
present	can	then	be	estimated	by	the	probability	of	an	overlap	by	more	than	m	segments.	The
expected	time	of	unsatisfied	demand,	given	that	m	sources	are	available,	is	numerically	equal
to	the	expected	fraction	of	area	covered	simultaneously	by	more	than	m	segments.

For	the	sake	of	simplicity,	consider	a	case	where	the	duration	of	the	demand	from	the	ith
consumer	is	equal	to	 ,	during	the	operation	period	with	length	L.	The	ratio	of	the	duration	of
the	demand	and	the	time	interval	‘L’	will	be	denoted	by	 .

Before	determining	the	expected	time	fraction	of	unsatisfied	demand,	the	following	theorem
related	to	a	coverage	of	space	with	volume	V	by	n	3-D	interpenetrating	objects	with	volumes	

,	randomly	placed	in	the	volume	V,	will	be	stated	and	proved.	The	volume
fractions	of	the	separate	objects	will	be	denoted	by	 .	The	coverage	of	a	point	from
the	volume	V	is	a	‘coverage	of	order	k	if	exactly	k	objects	cover	the	point.	The	following
theorem	then	holds.

Theorem	16.1

The	expected	covered	fraction	of	order	k	(k = 0,	1,	…,	n)	from	the	volume	V,	by	n
interpenetrating	objects	with	volume	fractions	 ,	is	given	by	the	k + 1st	term	of	the

expansion	 .



(16.11)

(16.12)

Proof

ProofThe	volume	fraction	covered	by	exactly	m	objects	can	be	determined	from	the
probability	that	a	randomly	selected	point	in	the	volume	V	will	sample	simultaneously	m
overlapping	(interpenetrating)	random	objects.	The	probability	that	a	randomly	selected
point	in	the	volume	V	will	sample	simultaneously	m	overlapping	objects	is	equal	to	the
probability	that	a	fixed	point	from	the	volume	V	will	be	covered	exactly	m	times	by
randomly	placed	objects	in	the	volume	V.

Let	 	denote	the	probability	that	the	fixed	point	will	not	be	covered,	 	denote	the
probability	that	the	fixed	point	will	be	covered	by	exactly	one	random	object,	…,	and	
denote	the	probability	that	the	fixed	point	will	be	covered	by	all	n	random	objects.

Because	the	locations	of	the	random	objects	are	statistically	independent	events,	the
probability	of	the	event	 	that	a	fixed	point	in	the	volume	will	not	be	covered	by	any	of
the	random	objects	is	given	by

which	is	the	probability	that	the	fixed	point	will	not	be	covered	by	the	first,	the	second,
…,	the	nth	object.

The	probability	of	the	event	 	that	exactly	one	random	object	will	cover	the	fixed	point	is
a	sum	of	the	probabilities	of	the	following	mutually	exclusive	events:	the	first	object
covers	the	fixed	point	and	the	rest	of	the	random	objects	do	not,	the	second	object	covers
the	fixed	point	and	the	rest	of	the	random	objects	do	not	and	so	on.	As	a	result,	the
probability	 	that	the	fixed	point	will	be	covered	by	exactly	one	random	object	is
given	by

The	probability	that	exactly	two	random	objects	will	cover	the	fixed	point	is	a	sum	of	the
probabilities	of	the	following	mutually	exclusive	events:	the	first	and	the	second	random
object	cover	the	fixed	point	and	the	rest	of	the	objects	do	not,	the	first	and	the	third
random	object	cover	the	fixed	point	and	the	rest	of	the	random	objects	do	not	and	so	on,
until	all	possible	combination	of	two	objects	out	of	n	are	exhausted.	As	a	result,	the
probability	that	the	fixed	point	will	be	covered	by	exactly	two	random	objects	is	given	by
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where	 	denotes	the	sum	over	all	possible	combinations	of	two	indices	i1	and	i2	out

of	n.	The	number	of	these	combinations	is	 .

Continuing	this	reasoning	through	the	cases	3,	4,	…,	n,	the	probability	 	that	the	fixed
point	will	be	covered	by	exactly	m	random	objects	is	given	by

where	 	denotes	the	sum	over	all	distinct	combinations	of	m	indices	i1,	i2,	…,	im

out	of	n.	The	number	of	these	combinations	is	 .

The	fixed	point	can	either	remain	uncovered	or	covered	by	exactly	one,	two,	…,	n
objects,	and	there	are	no	other	alternatives.	Therefore,	the	events	 	constitute	a
set	of	mutually	exclusive	and	exhaustive	events.	According	to	the	third	axiom	of	the
probability	theory,	their	probabilities	add	up	to	one:

Equation	16.16	can	also	be	presented	as	an	expansion	of	the	expression	

.

The	theorem	has	been	proved.

Because	the	proof	does	not	make	a	reference	to	the	shape	of	the	random	objects,	the	theorem	is
valid	for	interpenetrating	random	objects	of	any	shape.	It	is	also	valid	in	the	two-dimensional
(2-D)	and	one-dimensional	(1-D)	case	of	area	or	a	segment	covered	by	2-D	or	1-D	objects,
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correspondingly.

An	immediate	corollary	of	the	theorem	is	related	to	objects	with	the	same	volume	fraction	
.	In	this	case,	the	expected	fractions	from	the	volume	V	covered	by	the	separate

random	objects	with	volumes	 	are	given	by	the	terms	of	the	binomial	expansion	of	

:

The	expected	fraction	of	the	volume	covered	by	exactly	m	random	objects	is	given	by

Now	consider	a	case	where	n	consumers	demand	a	particular	resource,	during	an	operation
period	with	length	L.	The	durations	of	the	demands	from	the	consumers	are	di	(i = 1,	…,	n).
The	ratios	of	the	durations	of	the	demands	from	the	separate	consumers	are	given	by	 .
The	maximum	number	of	consumers	whose	demand	can	be	simultaneously	satisfied	by	the
sources	is	m.

Theorem	16.2

The	expected	fraction	of	time	of	unsatisfied	demand	from	m	sources	and	n	consumers	is
given	by	the	expression
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Proof

ProofUnsatisfied	demand	for	m	sources	and	n	consumers	(n > m)	is	present	in	the	case
where	more	than	m	consumers	require	the	supplied	resource.	Let	 	denote	the	probability
that	a	fixed	point	in	the	interval	(0,	L)	will	not	sample	any	demand,	 	denote	the
probability	that	the	fixed	point	will	sample	exactly	one	random	demand,	…,	and	 	denote
the	probability	that	the	fixed	point	will	sample	exactly	m	random	demands.

The	probability	 	that	the	fixed	point	will	sample	more	than	m	random	demands,
randomly	placed	in	the	time	interval	(0,	L),	is	then	given	by

According	to	Theorem	16.1,	the	sum	of	the	probabilities	 	is	given	by

Hence,	the	theorem	has	been	proved.

If	all	random	demands	are	characterised	by	the	same	duration	d,	 ,	the	time	fraction	of
unsatisfied	demand	is	given	by

Note	that	the	sum	in	the	right-hand	side	of	Equation	16.21	is	part	of	the	binomial	expansion	of

the	expression	 ,	which	is	identically	equal	to	unity:

All	equations	in	this	section	have	been	verified	by	a	Monte	Carlo	simulation,	by	measuring	and
accumulating	directly	the	multiple	intersections.



17
Reliability	Analysis	and	Setting	Reliability
Requirements	Based	on	the	Cost	of	Failure

17.1	The	Need	for	a	Cost-of-Failure-Based	Approach
Critical	failures	in	many	industries	(e.g.	in	the	nuclear	or	deep-water	oil	and	gas	industry)	can
have	disastrous	environmental	and	health	consequences.	Such	failures	entail	loss	of	production
for	very	long	periods	of	time	and	extremely	high	costs	of	the	intervention	for	repair.
Consequently,	for	industries	characterised	by	a	high	cost	of	failure,	setting	quantitative
reliability	requirements	must	be	driven	by	the	cost	of	failure.	The	author	strongly	disagrees
with	some	risk	experts	who	advocated	that	setting	reliability	requirements	is	unnecessary.
Many	technical	failures,	with	disastrous	consequences	to	the	environment,	could	have	been
prevented	easily	by	using	the	cost-of-failure-based	approach	to	set	correct	reliability
requirements	for	critical	components.

Higher	reliability	does	not	necessarily	mean	low	cost	of	failure.	To	demonstrate	that	selecting
the	more	reliable	system	does	not	necessarily	mean	selecting	the	system	with	the	smaller
losses	from	failures,	consider	two	very	simple	systems	consisting	of	two	components,
logically	arranged	in	series	(Figure	17.1).



Figure	17.1	Systems	composed	of	two	components,	demonstrating	that	the	more	reliable
system	(b)	is	associated	with	larger	losses	from	failures	compared	to	the	less	reliable	system
(a)

Both	systems	consist	of	an	electronic	control	module	(EC)	and	mechanical	device	(M).	The
components	are	logically	arranged	in	series,	and	each	system	fails	whenever	the	electronic
control	module	fails	or	the	mechanical	device	fails.

For	the	first	system	(Figure	17.1a),	suppose	that	the	hazard	rate	of	the	electronic	control
module	EC1	is	 	year−1	and	its	replacement	after	failure	costs	 ,	while	the
hazard	rate	of	the	mechanical	device	M1	is	 	year−1	and	its	failure	is	associated	with	

	cost	for	replacement.	Suppose	now	that	for	an	alternative	system	consisting	of
the	same	type	of	electronic	control	module	and	mechanical	device	(Figure	17.1b),	the	losses
associated	with	failure	of	the	separate	components	are	the	same,	but	the	hazard	rates	are
different.	The	electronic	control	module	EC2	is	now	characterised	by	a	hazard	rate	
year−1	and	the	mechanical	device	by	a	hazard	rate	 	year−1.	Clearly,	the	second	system
(b)	is	more	reliable	than	the	first	system	(a)	because	it	is	characterised	by	a	hazard	rate	

	year−1,	whereas	the	first	system	is	characterised	by	a	hazard	rate	
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	year−1.	Because	the	first	system	fails	whenever	either	component	EC1	or
component	M1	fails,	the	expected	(average)	losses	from	failures	for	the	system,	during	1	year
of	operation,	are

For	the	second	system,	the	expected	losses	from	failures	during	1	year	of	operation	are

As	can	be	verified,	the	more	reliable	system	(the	second	system)	is	associated	with	the	larger
losses	from	failures.

This	simple	example	shows	that	a	selection	of	a	system	solely	based	on	its	reliability	can	be
misleading.	In	case	of	component	failures	associated	with	similar	cost,	a	system	with	larger
reliability	does	mean	a	system	with	smaller	losses	from	failures.	In	the	common	case	of
component	failures	associated	with	very	different	costs	however,	the	system	with	the	largest
reliability	is	not	necessarily	the	system	with	the	smallest	losses	from	failures.

17.2	Risk	of	Failure
The	purpose	of	risk	analysis	is	to	provide	support	in	making	correct	management	decisions.	By
evaluating	the	risk	associated	with	a	set	of	decision	alternatives,	the	risk	analysis	helps	to
identify	the	alternative	which	maximises	the	expected	utility	for	the	stakeholders	while
complying	with	a	set	of	specified	criteria	and	constraints.	According	to	a	classical	definition
(Henley	and	Kumamoto,	1981;	Vose,	2000),	the	risk	of	failure	is	a	product	of	the	probability	of
failure	and	the	cost	given	failure:

where	pf	is	the	probability	of	failure	and	C	is	the	cost	given	failure.	To	an	operator	of
production	equipment,	for	example,	the	cost	given	failure	C	may	include	several	components:
cost	of	lost	production,	cost	of	cleaning	up	polluted	environment,	medical	costs,	insurance
costs,	legal	costs,	costs	of	mobilisation	of	emergency	resources,	loss	of	business	due	to	loss	of
reputation	and	low	customer	confidence,	etc.	The	cost	of	failure	to	the	manufacturer	of
production	equipment	may	include	warranty	payment	if	the	equipment	fails	before	the	agreed
warranty	time,	loss	of	sales,	penalty	payments,	compensation	and	legal	costs.	Most	of	the
losses	from	technical	failures	can	be	classified	in	several	major	categories:

Loss	of	life	or	damage	to	health

Losses	associated	with	damage	to	the	environment	and	the	community	infrastructure

Financial	losses	including	warranty	costs,	loss	of	production,	loss	of	capital	assets,	cost
of	intervention	and	repair,	compensation	payments,	penalty	payments	and	legal	costs

Loss	of	reputation	including	loss	of	market	share,	loss	of	customers,	loss	of	contracts,



impact	on	share	value,	loss	of	confidence	in	the	business,	etc.

Depending	on	the	category,	the	losses	can	be	expressed	in	monetary	units,	number	of	fatalities,
lost	time,	volume	of	lost	production,	volume	of	pollutants	released	into	the	environment,
number	of	lost	customers,	amount	of	lost	sales,	etc.	Often,	losses	from	failures	are	expressed	in
monetary	units	and	are	frequently	referred	to	as	cost	of	failure.

The	theoretical	justification	of	Equation	17.3	can	be	made	on	the	basis	of	the	following	thought
experiment.	Suppose	that	a	non-repairable	equipment	is	put	in	operation	for	a	length	of	time	a
which	can	be	the	warranty	period	for	the	equipment.	If	the	equipment	fails	before	the	specified
warranty	time	a,	its	failure	is	associated	with	a	constant	loss	C	due	to	warranty	replacement.
Suppose	that	the	experiment	involves	N	identical	pieces	of	equipment,	of	which	Nf	fail	before
time	a.	Since	only	a	failure	before	time	a	is	associated	with	losses,	the	total	loss	generated	by
failures	among	N	pieces	of	equipment	is	 .	The	average	(expected)	loss	K	is	then	

.	This	expression	can	be	rearranged	as

If	the	number	of	pieces	of	equipment	N	is	sufficiently	large,	 	gives	an	estimate	of	the
probability	of	failure	of	the	equipment	before	time	a	and	the	expression	(17.3)	is	obtained.

Usually,	a	relatively	small	number	N	gives	already	a	sufficiently	accurate	estimate	of	the	true
probability	of	failure.	As	a	result,	Equation	17.3	describes	the	average	(expected)	warranty
loss	per	single	piece	of	equipment.	This	is	one	of	the	reasons	why,	in	the	engineering	context,
the	risk	is	often	treated	as	expected	loss	from	failure.

The	traditional	approach	to	the	reliability	analysis	of	engineering	systems	however	does	not
allow	setting	reliability	requirements	which	limit	the	risk	of	failure	below	a	maximum
acceptable	level	because	it	does	not	take	into	consideration	the	cost	of	failure.	Incorporating
the	cost	of	failures	is	vital	in	bridging	the	gap	between	the	traditional	engineering	approach	to
risk	and	the	society’s	perception	of	risk.

Let	us	consider	a	typical	problem	facing	the	mechanical	engineer–designer.

Exercise

Suppose	that	a	failure-free	service	for	a	time	interval	of	length	at	least	a	is	required	from
an	electrical	connector.	A	premature	failure	of	the	connector	(before	time	a)	entails	a	loss
of	expensive	processing	unit,	and	the	warranty	costs	C	are	significant.	Because	the	cost	of
failure	C	is	significant,	the	designer	wants	to	limit	the	expected	losses	from	warranty
payments	within	the	warranty	budget	of	Kmax	per	electrical	connector.	What	should	be	the
MTTF	characterising	the	designed	connectors	so	that	the	expected	losses	from	premature
failure	remain	within	the	warranty	budget?
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In	the	next	sections,	a	new	generation	of	models	will	be	presented	which	form	the	basis	of	the
cost-of-failure-based	setting	of	reliability	requirements.

Two	main	concepts	related	to	the	expected	losses	will	be	used:	(i)	a	risk	of	premature	failure
before	a	specified	time	and	(ii)	expected	losses	from	multiple	failures	on	a	specified	time
interval.	The	concept	‘risk	of	premature	failure’	applies	to	both	non-repairable	and	repairable
systems,	while	the	concept	‘expected	losses	from	failures’	applies	only	to	repairable	systems.

17.3	Setting	Reliability	Requirements	Based	on	a
Constant	Cost	of	Failure
Assume	that	 	in	Equation	17.3	is	the	maximum	acceptable	risk	of	failure,	where
pf max	is	the	maximum	acceptable	probability	of	failure.	This	equation	can	also	be	presented	as

Limiting	the	risk	of	failure	K	below	Kmax	is	then	equivalent	to	limiting	the	probability	of
failure	pf	below	the	maximum	acceptable	level	pf max	( ).	This	leads	to	the	cost-of-
failure	concept	for	setting	reliability	requirements	limiting	the	risk	of	premature	failure
(Todinov,	2003,	2004b):

As	a	result,	whenever	 ,	the	relationship	 	is	fulfilled.

The	maximum	acceptable	risk	of	premature	failure	Kmax	can	conveniently	be	assumed	to	be	the
maximum	budget	for	warranty	payments	per	piece	of	equipment.

An	important	application	of	relationship	(17.5)	can	be	obtained	immediately	for	a	system
characterised	by	a	constant	hazard	rate	λ.	Such	is,	for	example,	the	system	including
components	arranged	logically	in	series	and	characterised	by	constant	hazard	rates	λ1, λ2, …, 
λn.	Because	the	system	fails	whenever	any	of	the	components	fail,	its	hazard	rate	λ	is	

.	For	a	maximum	acceptable	risk	Kmax	of	premature	failure	(related	to	a
finite	time	interval	with	length	a)	and	a	constant	hazard	rate	λ,	inequality	(17.5)	becomes	

,	from	which

is	obtained	for	the	system	hazard	rate	envelope	λ*	which	limits	the	risk	of	failure	below	Kmax
(Todinov,	2003,	2004b).	In	other	words,	whenever	the	system	hazard	rate	λ	lies	within	the	as-
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determined	envelope	 ,	the	risk	of	failure	(expected	loss	per	unit	equipment)	remains
below	the	maximum	acceptable	level	Kmax	 .	Equation	17.6	provides	a	solution	to	the
exercise	at	the	end	of	the	previous	section.	An	electrical	connector	with	MTTF	greater	than	or
equal	to	 	guarantees	that	the	expected	loss	per	connector	from	warranty	payment
remains	below	Kmax.

Substituting,	for	example,	 	years	and	 ,	 	yields	a	hazard	rate	envelope	
	year−1.	An	electrical	connector	with	a	hazard	rate	smaller	than	0.052	year−1	limits

the	risk	of	failure	(expected	loss)	below	$10	per	connector.

It	is	important	to	point	out	that	even	in	the	absence	of	a	specified	maximum	acceptable	risk
Kmax,	reliability	requirements	limiting	the	risk	of	failure	can	still	be	set	by	using	the	principle
of	the	risk-based	design	(see	Chapter	11).	Suppose	that	a	system	consists	for	М	components
characterised	by	different	costs	of	failure	C1, …, CM.	Without	loss	of	generality,	assume	that
the	first	components	is	characterised	by	the	largest	risk	of	failure	 .	Without	loss	of
generality,	suppose	that	the	component	with	the	second	largest	risk	of	failure	is	the	second
component:	 .	If	the	risk	of	failure	of	the	first	component	is	much	larger	than	the	risk
of	failure	of	the	second	component	( ),	there	is	no	point	in	investing	resources	for
reducing	the	risks	associated	with	the	component	failures	before	the	risk	of	failure	K1	of	the
first	component	has	been	reduced	to	at	least	the	second	largest	risk	K2.	Suppose	that	no	control
over	the	cost	of	failure	C1	is	available	but	controls	over	the	probability	of	failure	p1	do	exist
(e.g.	by	implementing	preventive	risk	reduction	measures,	see	Chapter	11).	As	a	result,	for	the
new	probability	of	failure	 ,	which	reduces	the	risk	from	K1	to	K2,	a	setting

can	be	made.

From	Equation	17.7,	the	equation

can	be	obtained	which	captures	the	essence	of	the	risk-based	design	principle:	The	probability
of	failure	of	the	component	should	be	inversely	proportional	to	its	cost	of	failure.

Because	 ,	 	is	always	fulfilled,	and	because	 ,	it	is	always
guaranteed	that	 .

It	is	important	to	emphasise	that	to	maintain	the	same	risk	level,	even	identical	type	of
components,	whose	failure	is	associated	with	very	different	costs,	C1	and	C2	must	have
different	probabilities	of	failure.	Indeed,	from	Equation	17.7,	it	follows	that	the	ratio	of	the
probabilities	of	premature	failure	is	 .



(17.9)

For	components	with	constant	hazard	rates,	Equation	17.8	becomes

where	 	is	the	hazard	rate	of	the	component	associated	with	higher	risk	of	failure	and	λ2	is	the
hazard	rate	of	the	component	associated	with	the	lower	risk	of	failure.

After	some	algebra,	the	above	equation	is	reduced	to

which	expresses	the	hazard	rate	of	the	first	component,	necessary	to	bring	the	risk	of	failure	of
the	component	down	to	the	next	largest	risk	of	component	failure.

Contrary	to	the	classical	approach	which	always	starts	the	reliability	improvement	with	the
component	with	the	smallest	reliability	in	the	system,	the	risk-based	approach	may	actually
start	with	the	most	reliable	component	in	the	system	if	it	is	associated	with	the	largest	risk	of
failure.	This	defines	a	principal	difference	between	the	classical	approach	to	reliability
analysis	and	setting	reliability	requirements	and	the	cost-of-failure-based	approach.

The	cost-of-failure-based	approach	to	setting	reliability	requirements	will	be	illustrated	by	the
next	example.



Example

A	system	combines	six	clevis	joints	supporting	various	structural	components.	The	first
clevis	joint,	with	a	hazard	rate	0.1	year−1,	is	operated	for	a	period	of	a = 1	year	and	its
failure	causes	a	loss	of	equipment	worth	$1	million.	Each	of	the	remaining	clevis	joints
has	a	hazard	rate	0.2	year−1	and	is	operated	for	a	period	of	a = 1	year.	Failure	of	any	of
these	clevis	joints	causes	a	loss	of	equipment	worth	$20 000.

Reduce	the	risk	associated	with	this	system.

Solution

The	risk	associated	with	the	first	clevis	joint	is	 ,	while	the
risk	associated	with	each	of	the	remaining	clevis	joints	is	 .

Contrary	to	the	conventional	wisdom,	to	reduce	the	risk	in	this	case,	the	reliability
improvement	should	start	not	with	the	least	reliable	component	but	with	the	most	reliable
component	in	the	system	because	its	failure	is	associated	with	the	largest	risk.	This	is	the
first	clevis	joint.	To	reduce	the	risk	of	failure	of	the	first	clevis	joint	to	a	level
comparable	with	the	next	largest	risk,	from	Equation	17.9,	the	new	hazard	rate	λ1	should
become

where	 	year−1,	 	year−1,	 	and	 .

Substituting	these	values	in	the	above	equation	yields

As	a	result,	the	reliability	of	the	most	reliable	clevis	joint	should	be	increased	further	by
reducing	its	hazard	rate	from	 	year−1	to	 	year−1.

17.4	Drawbacks	of	the	Expected	Loss	as	a	Measure	of
the	Potential	Loss	from	Failure
The	risk	Equation	17.4	only	estimates	the	average	value	of	the	potential	loss	from	failure.	A
decision	criterion	based	on	the	expected	loss	would	prefer	the	design	solution	characterised	by
the	smallest	expected	potential	losses.	What	is	often	of	primary	importance	however	is	not	the



expected	(average)	loss,	but	the	deviation	from	the	expected	loss	(the	unexpected	loss).	This
is,	for	example,	the	case	where	a	company	estimates	the	probability	that	its	potential	loss	will
exceed	a	particular	critical	value	after	which	the	company	will	essentially	be	insolvent.
Despite	that	the	expected	loss	gives	the	long-term	average	of	the	loss,	there	is	no	guarantee
that	loss	will	revert	quickly	to	such	average	(Bessis,	2002).	This	is	particularly	true	for	short
time	intervals	where	the	variation	of	the	number	of	failures	is	significant.

Let	us	consider	a	real-life	example	where	a	selection	needs	to	be	made	between	two
competing	identical	systems	which	differ	only	by	the	time	to	repair.	A	critical	failure	of	the
first	system	is	associated	with	a	time	for	repair	which	follows	a	normal	distribution.	As	a
consequence,	the	lost	production	due	to	the	critical	failure	also	follows	a	normal	distribution.
Suppose	that	this	distribution	is	characterised	by	mean	 	and	variance	 .	The	second	system
is	associated	with	a	constant	time	for	repair	and	constant	cost	of	lost	production	 .	The
two	systems	are	characterised	by	the	same	probability	of	failure	 .	Equation	17.3
yields	 	for	the	risk	of	failure	characterising	the	first	system	and	 	for	the	risk
of	failure	characterising	the	second	system.	Clearly,	 	because	 .	However,	as	can
be	verified	from	Figure	17.2,	the	probability	that	the	loss	given	failure	will	exceed	a	critical
maximum	acceptable	value	xmax	is	zero	for	the	system	characterised	by	the	larger	risk	and	non-
zero	for	the	system	characterised	by	the	smaller	risk.

Figure	17.2	Distributions	of	the	loss	given	failure	for	two	systems

In	other	words,	smaller	expected	loss	does	not	necessarily	mean	smaller	probability	that	the
loss	will	exceed	a	particular	limit.

If	the	expected	value	of	the	loss	given	failure	was	selected	as	a	utility	function	of	the
consequences	from	failure,	the	first	system	would	be	selected	by	a	decision	criterion	based	on
minimising	the	expected	loss.

Suppose	that	xmax	is	the	maximum	amount	of	reserves	available	for	covering	the	loss	from



critical	failure.	No	recovery	can	be	made	from	a	loss	exceeding	the	amount	of	xmax,	and
production	cannot	be	resumed.	With	respect	to	whether	a	recovery	from	a	critical	failure	can
be	made,	the	first	system	is	associated	with	risk,	while	the	second	system	is	not.

In	order	to	make	a	correct	selection	of	a	system	minimising	the	risk	of	exceeding	a	maximum
acceptable	limit,	the	utility	function	should	reflect	whether	the	loss	exceeds	the	critical	limit
xmax	or	not.

Increasing	the	variance	of	the	loss	given	failure	increases	the	risk	that	the	loss	will	exceed	a
specified	maximum	tolerable	level.	This	is	illustrated	in	Figure	17.3	by	the	probability	density
distributions	of	the	loss	given	failure	 	and	 	of	two	systems	characterised	by
different	variances	( )	of	the	loss.

Figure	17.3	The	variance	of	the	loss	given	failure	is	strongly	correlated	with	the	probability
that	the	loss	will	exceed	a	specified	quantity

A	new	measure	of	the	loss	from	failure	which	avoids	the	limitations	of	the	traditional	risk
measure	(Eq.	17.3)	is	the	cumulative	distribution	of	the	potential	loss.

17.5	Potential	Loss,	Conditional	Loss	and	Risk	of
Failure
The	concepts	potential	loss	and	conditional	loss	apply	to	both	non-repairable	and	repairable



systems.	The	quantity	loss	given	failure	is	a	conditional	quantity	because	it	is	defined	given
that	failure	has	occurred.	This	is	in	sharp	contrast	with	the	potential	loss	which	is
unconditional	quantity	and	is	defined	before	failure	occurs.	While	the	conditional
distribution	of	the	loss	given	failure	can	be	used	to	determine	the	probability	that	given	failure,
the	loss	will	be	larger	than	a	specified	limit,	the	distribution	of	the	potential	loss	combines	the
probability	that	there	will	be	failure	and	the	probability	that	the	loss	associated	with	it	will	be
larger	than	a	specified	limit.	In	other	words,	the	measure	‘potential	loss’	incorporates	the
uncertainty	associated	with	the	exposure	to	losses	and	the	uncertainty	associated	with	the
consequences	given	that	exposure.

Historical	data	related	to	the	losses	from	failures	can	only	be	used	to	determine	the	distribution
of	the	conditional	loss.	Building	the	distribution	of	the	potential	losses,	however,	requires	also
an	estimate	of	the	probability	of	failure.

Both	the	conditional	loss	and	the	potential	loss	are	random	variables.	Thus,	in	the	failure	event
leading	to	a	loss	of	containment	of	a	reservoir	or	a	pipeline	transporting	fluids,	the	conditional
loss	depends	on	how	severe	is	the	damage	of	the	container.

Since	the	potential	loss	is	a	random	variable,	it	is	characterised	by	a	cumulative	distribution
function	C(x)	and	a	probability	density	function	c(x).	The	probability	density	function	c(x)
gives	the	probability	c(x) dx	(before	the	failure	occurs)	that	the	potential	loss	X	will	be	in	the
infinitesimal	interval	(x,	 ):	 .

Accordingly,	the	conditional	loss	(the	loss	given	failure)	is	characterised	by	a	cumulative
distribution	function	 	and	probability	density	function	 .	The	conditional
probability	density	function	 	gives	the	probability	 	that	the	loss	X	will	be	in	the
infinitesimal	interval	(x,	 ),	given	that	the	failure	has	occurred:	

.

Let	S	be	a	non-repairable	system	composed	of	M	components,	logically	arranged	in	series,
which	fails	whenever	any	of	the	components	fails.	It	is	assumed	that	the	components’	failures
are	mutually	exclusive;	that	is,	no	two	components	can	fail	at	the	same	time.	The	reasoning
below	and	the	derived	equations	are	also	valid	if	instead	of	a	set	of	components,	a	set	of	M
mutually	exclusive	system	failure	modes	are	considered;	that	is,	no	two	failure	modes	can
initiate	failure	at	the	same	time.	Essentially,	the	set	of	mutually	exclusive	failure	modes	can	be
modelled	as	‘components’	logically	arranged	in	series.	Because	the	system	is	non-repairable,
the	losses	are	associated	with	the	first	and	only	failure	of	the	system.	The	reasoning	in	the
following	text,	however,	is	also	valid	for	a	repairable	system	if	the	focus	is	on	the	loss	from
the	first	failure	only.

The	cumulative	distribution	function	 	of	the	potential	loss	gives	the	probability
that	the	potential	loss	X	will	not	be	greater	than	a	specified	value	x.	A	loss	is	present	only	if
failure	is	present.	Consequently,	the	unconditional	probability	 	that	the
potential	loss	X	will	not	be	greater	than	a	specified	value	x	is	equal	to	the	sum	of	the
probabilities	of	two	mutually	exclusive	events:	(i)	failure	will	not	occur	and	the	loss	will	be
not	be	greater	than	x,	and	(ii)	failure	will	occur	and	the	loss	will	not	be	greater	than	x.	The
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probability	of	the	first	compound	event	is	 ,	where	pf	is	the	probability	of	failure
and	H(x)	is	the	conditional	probability	that	the	loss	will	not	be	greater	than	x	given	that	no
failure	has	occurred.	This	conditional	probability	can	be	presented	by	the	Heaviside	unit	step

function	(Abramowitz	and	Stegun,	1972)	 .	The	probability	of	the	second
compound	event	is	 	where	 	is	the	conditional	probability	that	given	failure,
the	loss	will	not	be	greater	than	x.	Consequently,	the	probability	C(x)	that	the	potential	loss	X
will	not	be	greater	than	x	is	given	by	the	distribution	mixture	(Todinov,	2006b):

The	difference	between	a	potential	and	conditional	loss	is	well	illustrated	by	their
distributions	in	Figure	17.4.	A	characteristic	feature	of	the	cumulative	distribution	of	the
potential	loss	is	the	concentration	of	probability	mass	with	magnitude	 	at	the	origin
(Figure	17.4b)	because	with	probability	 ,	failure	will	not	occur	and	the	potential	loss	will
be	zero.

Figure	17.4	(a)	A	conditional	loss	(a	loss	given	failure).	(b)	A	potential	loss	and	maximum
potential	loss	xα	at	a	preset	level	α

If	a	level	α	for	the	probability	of	obtaining	as	extreme	or	more	extreme	loss	is	specified,	a
maximum	potential	loss	xa	can	be	determined	which	corresponds	to	the	specified	level;	α	is
the	probability	that	the	potential	loss	will	exceed	the	maximum	specified	loss	xα	(

,	Figure	17.4b.	Then,	the	maximum	potential	losses	xα,i	characterising	different
design	solutions	can	be	compared.

The	maximum	potential	loss	at	a	preset	level	is	the	limit,	whose	probability	of	exceeding	is
not	greater	than	the	preset	level.

The	maximum	potential	loss	at	a	preset	level	determines	the	risk-based	capital	required	to
absorb	the	loss	associated	with	failure.	If	xα	is	the	available	resource	of	capital,	the	preset
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level	α	is	the	probability	that	the	actual	loss	will	exceed	it,	thereby	triggering	insolvency.	The
expected	loss	cannot	be	used	to	define	the	necessary	resource	of	capital	because	the	actual	loss
varies	randomly	around	it.

Let	Ck(x)	be	the	conditional	cumulative	distribution	of	the	loss	(the	loss	given	failure)
characterising	the	kth	individual	component/failure	mode,	and	 	be	the	conditional
probability	that	given	failure,	the	kth	component/failure	mode	has	initiated	it	first	

.	The	conditional	probability	distribution	 	that	the	loss	X
given	that	failure	has	occurred	will	not	be	greater	than	a	specified	value	x	can	be	presented	by
the	union	of	the	following	mutually	exclusive	and	exhaustive	events:	(i)	given	that	failure	has
occurred,	it	is	the	first	failure	mode	that	has	initiated	it,	and	the	loss	X	is	not	greater	than	x	(the
probability	of	which	is	 );	(ii)	given	that	failure	has	occurred,	it	is	the	second	failure
mode	that	has	initiated	it,	and	the	loss	X	is	not	greater	than	x	(the	probability	of	which	is	

)	and	so	on.	The	final	event	is:	given	that	failure	has	occurred,	it	is	the	Mth	failure
mode	that	has	initiated	it,	and	the	loss	X	is	not	greater	than	x	(the	probability	of	which	is	

).	The	probability	of	a	union	of	mutually	exclusive	events	equals	the	sum	of	the
probabilities	of	the	separate	events.	As	a	result,	the	conditional	distribution	of	the	loss	given
that	failure	has	occurred	is	the	mixture	distribution:

The	conditional	probability	distribution	 	is	a	mixture	of	the	conditional	distributions	
	characterising	the	individual	failure	modes,	scaled	by	the	conditional	probabilities	

	that	the	failure	has	been	initiated	by	the	kth	failure	mode,	given	that	failure	has	occurred	

.	Finally,	Equation	17.10	regarding	the	cumulative	distribution	of	the	potential
loss	becomes

The	product	of	the	probability	of	failure	pf	and	the	probability	 	that	given	failure,	it	is	the
kth	failure	mode	that	has	initiated	it,	is	simply	equal	to	the	probability	pk	that	the	kth
component/failure	mode	will	initiate	failure	first	( ).	Considering	this	and	also	the

relationship	 ,	the	above	equation	can	also	be	presented	as

Equation	17.13	is	fundamental	and	gives	the	cumulative	distribution	of	the	potential	loss	from
failure	associated	with	mutually	exclusive	failure	modes.	Differentiating	Equation	17.13	with
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respect	to	x	results	in

where	 	is	the	probability	density	distribution	of	the	potential	loss	from	failure
and	 	are	the	conditional	probability	density	distributions	of	the	losses
associated	with	the	separate	failure	modes	(Todinov,	2006b).

In	Equation	17.14,	δ(x)	is	the	Dirac’s	delta	function	which	is	the	derivative	of	the	Heaviside
function	dH(x)/dx	(Abramowitz	and	Stegun,	1972).	The	expected	value	of	the	potential	loss
from	failure	 	is	obtained	by	multiplying	Equation	17.14	by	x	and	integrating	it	(
):

where	 	is	the	expected	value	of	the	loss	given	that	failure	has	occurred,
characterising	the	kth	failure	mode.

For	a	single	failure	mode,	Equation	17.15	transforms	into

which	is	equivalent	to	the	risk	Equation	17.3.	Clearly,	the	risk	of	failure	K	in	Equation	17.3
can	be	defined	as	the	expected	value	of	the	potential	loss.

Equation	17.13	can	be	used	for	determining	the	probability	that	the	potential	loss	will	exceed	a
specified	critical	value	x.	This	probability	is

which,	for	 ,	becomes

The	probability	that	the	potential	loss	will	exceed	a	specified	quantity	is	always	smaller	than
the	probability	that	the	conditional	loss	will	exceed	the	specified	quantity.

17.6	Risk	Associated	with	Multiple	Failure	Modes
Suppose	now	that	the	times	to	failure	characterising	M	statistically	independent	failure	modes
are	given	by	the	cumulative	distribution	functions	Fk(t),	 	with	corresponding
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probability	density	functions	 .	The	probability	that	the	first	failure	mode	will
initiate	failure	can	then	be	determined	using	the	following	probabilistic	argument.

Consider	the	probability	that	the	first	component/failure	mode	will	initiate	failure	in	the
infinitesimal	time	interval	 .	This	probability	can	be	expressed	as	a	product	

	of	the	probabilities	of	the	following	statistically	independent
events:	(i)	the	first	failure	mode	will	initiate	failure	in	the	time	interval	 ,	the	probability
of	which	is	f1(t)dt,	and	(ii)	the	other	failure	modes	will	not	initiate	failure	before	time	t,	the
probability	of	which	is	given	by	 .	According	to	the	total	probability
theorem,	the	total	probability	that	the	first	component/failure	mode	will	initiate	failure	in	the
time	interval	(0,	a)	is

Similarly,	for	the	kth	failure	mode,	this	probability	is

Substituting	these	probabilities	in	Equation	17.17	yields	the	probability	that	the	potential	loss
from	multiple	failure	modes	with	known	distributions	of	the	time	to	failure	will	exceed	a
critical	value	x.

17.6.1	An	Important	Special	Case
For	failure	modes	characterised	by	constant	hazard	rates	λk,	 	and	

.	Substituting	these	in	Equation	17.19	and	integrating	yields

Thus,	for	a	system	with	failure	modes	characterised	by	constant	hazard	rates	λ1,	λ2,	…,	λM,
where	M	is	the	number	of	failure	modes,	the	probability	that	the	potential	loss	will	exceed	a
specified	value	x	in	a	specified	time	interval	(0,	a),	is	given	by	Equation	17.17	where	the
probabilities	pk,	k = 1,	2,	…,	M	are	given	by	Equation	17.20.	For	components/failure	modes
characterised	by	constant	hazard	rates	λk,	the	probability	of	failure	before	time	a	is	

,	and	from	 ,	the	relationship
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is	obtained.

Following	Equation	17.15,	regarding	the	expected	loss	given	failure,	the	expected	value	of	the
potential	loss	(the	risk)	becomes	(Todinov,	2004d)

where	the	sum

can	be	interpreted	as	the	expected	conditional	loss	given	that	failure	has	occurred	before	time
a.

Considering	that	for	a	non-repairable	system,	the	probability	of	failure	before	time	a	is	

,	where	λ(t)	is	the	hazard	rate	of	the	system,	the	expected	value	of	the
potential	loss	(the	risk)	from	failure	before	time	a	becomes
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Example

Suppose	that	a	system	contains	a	number	of	critical	components.	If	failure	of	any	of	these
critical	components	leads	to	a	system	failure,	the	risk	of	premature	failure	can	be
modelled	by	Equation	17.21.	The	equation	is	the	basis	of	a	new	technology	for	a	cost-of-
failure	reliability	analysis	and	setting	reliability	requirements.	The	use	of	Equation	17.21
can	be	illustrated	by	a	numerical	example	involving	a	device	(Figure	17.5)	composed	of
(i)	a	power	block	(PB)	characterised	by	a	hazard	rate	 	months−1	and	cost	of
replacement	 ,	(ii)	an	electronic	control	module	(ECM)	characterised	by	a	hazard
rate	 	months−1	and	cost	of	replacement	 ,	and	(iii)	a	mechanical	device
(MD)	characterised	by	a	hazard	rate	 	months−1	and	cost	of	replacement	

.	The	logical	arrangement	in	series	(Figure	17.5)	means	that	failure	of	any	block
causes	a	system	failure.	For	a	warranty	period	of	a = 12	months,	substituting	the	numerical
values	in	Equation	17.21	yields

for	the	risk	(expected	loss	per	device)	of	warranty	payments	due	to	premature	failure.

In	order	to	limit	the	risk	of	premature	failure	below	a	maximum	acceptable	level	Kmax,	the
hazard	rates	of	the	components	must	satisfy

Unlike	the	case	of	a	single	component/failure	mode	for	which	the	equation	 	has	a
unique	solution	given	by	Equation	17.6,	for	more	than	one	component/failure	mode,	the
equality	 	in	Equation	17.24	is	satisfied	for	an	infinite	number	of	values	λ1, …, λM
for	the	hazard	rates.	To	prevent	excessive	costs	associated	with	improving	the	reliability
of	the	components,	the	hazard	rates	λi	can	be	selected	such	that	equality	is	attained	in
expression	17.24.
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Figure	17.5	A	device	composed	of	a	power	block	(PB),	electronic	control	module	(ECM)	and
mechanical	device	(MD),	logically	arranged	in	series

17.7	Expected	Potential	Loss	Associated	with
Repairable	Systems	Whose	Component	Failures	Follow
a	Homogeneous	Poisson	Process
Consider	the	case	where	the	individual	components	are	logically	arranged	in	series	and
characterised	by	constant	hazard	rates	λi.	Since	after	each	failure	of	a	component,	it	is	replaced
by	an	identical	component,	the	system	failures	are	a	superposition	of	the	components’	failures.
The	sequential	failures	of	component	i	is	a	homogeneous	Poisson	process	with	density
numerically	equal	to	the	hazard	rate	λi	of	the	component.	Since	a	superposition	of	several
homogeneous	Poisson	processes	with	densities	λi	is	a	homogeneous	Poisson	process	with
density

Equation	17.25	also	holds	for	the	rate	of	occurrence	of	failures	λ	of	a	system	with	M
components	logically	arranged	in	series.	Combining	Equation	17.22	related	to	the	expected
losses	given	failure	and	Equation	17.25	results	in

for	the	expected	losses	from	failures	 	in	the	finite	time	interval	(0,	a),	 .
Considering	(17.25),	Equation	17.26	becomes

If	Lmax	are	the	maximum	acceptable	expected	losses	and	the	losses	given	failure	 	associated

with	each	component	are	the	same	( ),	Equation	17.27	gives
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for	the	upper	bound	of	the	rate	of	occurrence	of	failures	which	guarantees	that	if	for	the
system’s	rate	of	occurrence	of	failures	 	is	fulfilled,	the	expected	losses	from	failures	
will	be	within	the	maximum	acceptable	level	Lmax.	This	is,	in	effect,	setting	reliability
requirements	to	limit	the	expected	losses	from	failures	of	a	repairable	system	below	a
maximum	acceptable	limit.	The	acceptable	limit	Lmax	is	often	the	budget	allocated	for

unscheduled	maintenance.	In	cases	where	the	expected	losses	 	associated	with	the	different
failure	modes/components	are	different,	the	hazard	rates	λi	which	satisfy	the	inequality

limit	the	expected	losses	from	failures	below	the	maximum	acceptable	level	Lmax.
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Example

Setting	reliability	requirements	from	the	type	given	by	Equation	17.28	can	be	illustrated
by	the	following	example.	Suppose	that	for	a	particular	unit,	the	losses	from	system
failures	caused	by	component	failures	are	approximately	the	same.	This	is	common	in
cases	where	upon	a	component	failure	the	whole	unit	has	to	be	replaced.	In	this	case,
despite	variations	in	the	costs	of	the	separate	components	belonging	to	the	unit,	the	losses
from	failures	are	dominated	by	the	cost	of	replacement	of	the	whole	unit.	Suppose	that	the
cost	of	replacement	of	the	unit	is	approximately	$100 000.	If	the	maximum	budget
covering	unscheduled	maintenance	within	15	years	is	$600 000,	the	hazard	rate	λ	of	the
unit	cannot	exceed	the	value	0.4	years−1.

This	is,	in	effect,	setting	reliability	requirements	to	limit	the	expected	losses	from	failures
below	a	specified	limit.

If	the	actual	losses	from	failures	are	of	importance,	and	not	the	expected	losses,	the
approach	to	setting	reliability	requirements	is	different.	For	a	system	whose	failures
follow	a	homogeneous	Poisson	process	with	density	λ	and	the	cost	given	failure	is
constant	 	(irrespective	of	which	component	has	failed),	the	probability	that	the	losses
from	failures	X	will	be	smaller	than	a	maximum	acceptable	value	Lmax	is

where	 	and	the	right-hand	side	of	Equation	17.30	is	the	cumulative	Poisson
distribution.	Lmax	could	be,	for	example,	the	maximum	tolerable	losses	from	failures	(e.g.
the	budget	allocated	for	unscheduled	maintenance).

Equation	17.30	can	be	used	to	verify	that	the	potential	losses	from	failures	will	not	exceed
a	critical	limit	and	will	be	illustrated	by	a	simple	example.

ExampleSuppose	that	the	available	amount	of	repair	resources	for	the	first	6	months	(
months)	of	operating	a	system	is	$2000.	Each	system	failure	requires	$1000	of	resources	for
intervention	and	repair.	Suppose	also	that	the	system	failures	follow	a	homogeneous	Poisson
process	with	intensity	 	months−1.	The	probability	that	within	the	first	6	months	of
operation	the	potential	losses	X	will	exceed	the	critical	limit	of	$2000	can	be	calculated	by
subtracting	from	unity	the	probability	of	the	complementary	event:	‘the	potential	losses	within
the	first	6	months	will	not	exceed	$2000’:
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Since	 ,	applying	Equation	17.30	results	in

for	the	probability	that	the	potential	losses	will	not	exceed	the	critical	value.	Hence,	the
probability	that	the	potential	losses	will	exceed	the	critical	value	of	2000	units	is

If	an	upper	bound	of	the	system	failure	density	is	required,	which	guarantees	with	confidence
q%	that	the	potential	losses	in	the	interval	(0,	a)	will	not	exceed	the	maximum	acceptable	limit
Lmax,	the	equation

where	 	must	be	solved	numerically	with	respect	to	λ.

The	solution	λL	gives	the	upper	bound	of	the	rate	of	occurrence	of	failures	which	guarantees
that	if	for	the	system	rate	of	occurrence	of	failures	 	is	fulfilled,	the	potential	losses	L	will
be	within	the	available	resources	Lmax	 	allocated	for	unscheduled	maintenance.

17.8	A	Counterexample	Related	to	Repairable	Systems
The	fact	that	a	larger	reliability	of	a	repairable	system	does	not	necessarily	mean	smaller
expected	losses	from	failures	can	be	demonstrated	on	the	simple	system	in	Figure	17.5
composed	of	a	power	block	(PB),	an	electronic	control	module	(ECM)	and	a	mechanical
device	(MD).	Two	systems	of	this	type	are	compared;	their	components’	hazard	rates	and
losses	from	failure	are	listed	in	Table	17.1.



Table	17.1	Reliability	parameters	of	two	repairable	systems	with	components	arranged	in
series	(Figure	17.5)

	 Hazard	rate	(year−1) 	
Component First	system Second	system Losses	from	failures

PB C1 =   = $2500

ECM C2 =   = $1500

MD C3 =   = $230 000

The	reliability	of	the	first	system	for	 	years	is

while	the	expected	losses	from	failures	during	t = 2	years	of	operation	are	given	by	Equation
17.27:

Correspondingly,	the	reliability	of	the	second	system	associated	with	a	time	interval	of	t = 2
years	is

while	the	expected	losses	from	failures	during	t = 2	years	of	operation	are

As	can	be	verified,	although	the	second	system	has	a	superior	reliability,	it	is	also	associated
with	larger	expected	losses.	This	counterexample	shows	that	for	a	system	which	consists	of
components	associated	with	different	losses	from	failure,	a	larger	system	reliability	does	not
necessarily	mean	smaller	losses	from	failures.

Now,	let	us	assume	that	the	losses	given	failure	characterising	all	components	in	the	system	are
the	same:	 .	In	this	case,	the	expected	losses	become

for	the	first	system	and



for	the	second	system.	Clearly,	in	this	case,	the	smaller	the	system	hazard	rate	 ,	the
larger	the	reliability	of	the	system	and	the	smaller	the	expected	losses.	This	example	shows
that	for	a	system	which	consists	of	components	associated	with	the	same	cost	of	system	failure,
a	higher	system	reliability	always	means	smaller	losses	from	failures.	Further	detailed
discussion	related	to	cost-of-failure-based	reliability	analysis	and	cost-of-failure-based	setting
of	reliability	requirements	can	be	found	in	Todinov	(2007).

17.9	Guaranteeing	Multiple	Reliability	Requirements	for
Systems	with	Components	Logically	Arranged	in	Series
The	hazard	rate	envelope	which	guarantees	more	than	a	single	reliability	requirement	can	be
found	as	an	intersection	of	the	hazard	rate	envelopes	guaranteeing	the	separate	reliability
requirements.	Suppose	that	a	hazard	rate	envelope	is	required	to	guarantee	expected	losses
from	failures	of	a	repairable	system	below	the	maximum	acceptable	limit	Kmax.	The	hazard

rate	envelope	 	guaranteeing	that	the	expected	losses	from	failures	will	be	below	the	limit
Lmax	is	obtained	from	Equation	17.28.	If	a	minimum	availability	target	and	an	MFFOP	have
been	specified	(i.e.	availability	at	least	AT	and	an	MFFOP	of	length	at	least	s	before	the	first

failure),	corresponding	hazard	rate	envelopes	 	and	 	can	be	determined.	These	hazard	rate
envelopes	guarantee	that	whenever	 	is	fulfilled	for	the	rate	of	occurrence	of	system
failures,	the	availability	will	be	greater	than	the	specified	minimum	target	value	AT,	and

whenever	 	is	fulfilled,	an	MFFOP	with	length	at	least	s	will	exist	before	the	first	failure,
with	a	specified	minimum	probability	pMFFOP.

The	intersection	of	all	hazard	rate	envelopes	is	a	hazard	rate	envelope	
which	guarantees	that	all	reliability	requirements	will	be	met	if	for	the	system	hazard	rate,	the
relationship	 	is	fulfilled	(Figure	17.6a).



Figure	17.6	Setting	reliability	requirements	as	an	intersection	of	hazard	rate	envelopes	(a)	for
a	repairable	system	and	(b)	for	a	non-repairable	system

A	significant	drawback	of	the	current	practice	for	setting	quantitative	reliability	requirements
in	certain	industries,	is	that	they	are	based	solely	on	specifying	a	minimum	availability	target.
As	it	was	shown	in	Chapter	16,	specifying	a	high	availability	target	does	not	necessarily
guarantee	a	low	risk	of	premature	failure.	It	must	also	be	pointed	out	that	an	availability	target
does	not	necessarily	account	for	the	cost	of	failure.	Although	availability	does	account	for	the
cost	of	lost	production	which	is	proportional	to	the	downtime,	it	does	not	account	for	the	cost
of	resources	for	cleaning	up	polluted	environment,	the	cost	of	repair	and	the	cost	of
intervention	for	repair.	Setting	reliability	requirements	should	be	made	by	finding	the
intersection	of	the	hazard	rate	envelopes	which	limit	the	losses	from	failure	below	a	specified
value,	guarantee	an	MFFOP	and	production	availability	larger	than	specified	target	values.

Figure	17.6b,	illustrates	the	process	of	setting	reliability	requirement	for	a	non-repairable
system.	In	this	case,	the	reliability	requirements	are	determined	from	the	intersection	of	the
hazard	rate	which	delivers	a	specified	MFFOP	of	a	particular	length	and	risk	below	a
maximum	acceptable	level.

Equations	17.6	and	17.9,	for	example,	can	be	applied	to	determine	the	maximum	hazard	rate
that	guarantees	that	the	risk	of	failure	within	a	time	interval	0,	a	does	not	exceed	a	particular
level.	It	must	be	pointed	out	that	the	cost-of-failure-driven	reliability	requirements	do	not
necessarily	entail	unrealistic	hazard	rates,	which	are	difficult	to	achieve	by	suppliers.	Indeed,
according	to	Equation	17.6,	the	hazard	rate	envelope	λ*	is	small	when	the	maximum	acceptable
risk	Kmax	is	small	and	can	be	very	large	if	the	maximum	acceptable	risk	Kmax	is	close	to	the
cost	of	failure	C.

Ignoring	the	cost	of	failure	and	not	setting	reliability	requirements	linked	to	the	cost	of	failure
has	lead	and	still	leads	to	failures	with	grave	consequences	to	the	environment.	Many	high-
consequence	failures	in	deep-water	oil	and	gas	production,	for	example,	could	have	been
avoided	if	cost-of-failure-based	reliability	requirements	had	been	used	in	the	design	of



components	associated	with	high	risk	of	failure.

A	set	of	quantitative	reliability	requirements	in	deep-water	oil	and	gas	production,	for
example,	should	include	several	basic	components:	(i)	a	specified	maximum	acceptable	level
of	the	expected	potential	loss	due	to	failures	(asking	for	minimum	risk),	(ii)	a	specified
minimum	availability	target	(asking	for	availability)	and	(iii)	a	requirement	for	a	minimum
failure-free	operating	period	before	the	first	failure	(asking	for	reliability).	The	intersection	of
the	hazard	rate	envelopes	guaranteeing	the	individual	requirements	is	a	hazard	rate	envelope
which	guarantees	all	of	the	requirements.

The	input	data	for	setting	basic	reliability	requirements	at	a	system	level	which	limit	the	risk	of
premature	failure	and	deliver	a	required	minimum	availability	target	are	the	downtimes	due	to
a	critical	failure,	the	average	cost	of	the	lost	production	per	unit	downtime	and	the	cost	of
intervention	for	repair	(includes	the	cost	of	locating	the	failure,	the	cost	of	mobilisation	of
resources,	the	cost	of	intervention	and	the	cost	of	repair/replacement).	Another	component	of
the	input	data	is	the	required	minimum	availability.	Detailed	discussions	related	to	determining
the	risk	of	failure	for	a	time-dependent	cost	of	failure	and	complex	systems	with	complex
topology	can	be	found	in	Todinov	(2007).



18	
Potential	Loss,	Potential	Profit	and	Risk

18.1	Deficiencies	of	the	Maximum	Expected	Profit
Criterion	in	Selecting	a	Risky	Prospect
The	optimal	choice	from	a	number	of	risky	prospects,	each	containing	a	set	of	risk–reward
activities,	is	part	of	an	important	class	of	risk	decisions	made	in	business,	economics,
technology,	medicine,	etc.	Currently,	the	maximum	expected	profit	criterion	is	used	for	making
an	optimal	choice	among	risky	prospects	(Denardo,	2002;	Moore,	1983).	According	to	this
criterion,	a	rational	decision	maker	compares	the	expected	profits	from	a	number	of	risky
prospects	and	selects	the	prospect	with	the	largest	expected	profit.	An	expected	profit	from	a
risky	prospect	is	obtained	by	adding	the	monetary	outcomes	characterising	the	prospect
multiplied	by	their	probabilities.	In	this	chapter,	we	demonstrate	that	a	choice	based	on
maximising	the	expected	profit	is	deeply	flawed	if	a	small	number	of	risk–reward	bets	are
present	in	the	risky	prospects.

In	the	past,	the	expected	profit	from	an	infinite	number	of	statistically	independent	repeated
bets	led	to	the	Petersburg	paradox.	Its	avoidance	was	one	of	the	reasons	for	proposing	the
expected	utility	theory	by	Bernoulli	(1738),	later	developed	by	von	Neumann	and	Morgenstern
(1944).	The	effort	towards	understanding	statistically	independent	repeated	bets	did	not	stop
with	the	work	of	D.	Bernoulli.	Statistically	independent	repeated	bets,	for	example,	have	been
at	the	focus	of	a	paper	from	Samuelson	(1963).	In	this	paper,	the	author	brings	the	following
argument,	through	a	story	in	which	he	offered	to	his	colleague	a	good	bet	(with	a	positive
expected	value):	50–50	chance	of	winning	200	or	losing	100.	The	colleague	refused	by	saying
that	he	would	feel	the	100	loss	more	than	the	200	gain.	He	said	that	he	would	agree	to
participate	if	he	was	offered	to	make	100	such	bets.	Samuelson	criticised	the	reasoning	of	his
colleague	and	went	on	to	propose	and	prove	a	‘theorem’	which	stated	that	if	a	single	good	bet
is	unacceptable,	then	any	finite	sequence	of	such	bets	is	unacceptable	too.	Samuelson	claimed
that	increasing	the	number	of	unacceptable	bets	does	not	reduce	the	risk	of	a	net	loss	and
termed	accepting	a	sequence	of	individually	unacceptable	bets	‘a	fallacy	of	large	numbers’.
Samuelson’s	‘theorem’	has	been	reproduced	in	several	related	papers	(Ross,	1999).	This
‘theorem’	spawned	several	related	papers	where	researchers	have	extended	Samuelson’s
condition	to	assure	that	they	would	not	allow	the	‘fallacy	of	large	numbers’.	In	this	chapter,	it
is	shown	that	contrary	to	Samuelson’s	theory,	increasing	the	number	of	unacceptable	bets	does
reduce	the	risk	of	a	net	loss,	and	this	is	demonstrated	by	using	Samuelson’s	own	example.

A	frequently	pointed	out	weakness	of	the	expected	profit	criterion	is	that	it	assumes	too	much
knowledge	necessary	to	make	a	decision.	The	information	regarding	the	likelihood	of	an	event
and	the	consequences	associated	with	the	event	is	rarely	available.	In	Todinov	(2013c),	it	was
shown	that	for	a	limited	number	of	risk–reward	activities	in	the	risky	prospects,	the	maximum



expected	profit	criterion	could	lead	to	accepting	a	decision	associated	with	a	large	risk	of	a
net	loss.	This	is	true	even	with	a	full	knowledge	related	to	the	likelihood	of	an	event	and	its
consequences	and	without	the	existence	of	a	subjective	bias	while	making	a	decision.

The	case	considered	in	the	developments	to	follow	is	where	the	results	from	the	different
outcomes	can	be	adequately	measured	in	monetary	terms	and	the	analysis	is	confined	to	linear
utility	functions.	For	the	sake	of	simplicity,	the	inadequacy	of	the	maximum	expected	profit
criterion	is	demonstrated	for	the	simplest	case,	involving	statistically	independent	risk–
reward	bets	in	the	risky	prospects.

The	maximum	expected	profit	criterion	does	not	account	for	the	significant	impact	of	the	actual
number	of	risk–reward	events/bets	in	a	risky	prospect.	The	choice	under	risk	by	using	the
maximum	expected	profit	criterion	is	made	as	if	each	compared	risky	prospect	contains	a	very
large	number	of	risk–reward	events/bets.	The	critical	dependence	of	the	choice	on	the	number
of	risk–reward	bets	in	the	risky	prospects	has	not	been	discussed	in	studies	related	to	ranking
risky	alternatives	(Hador	and	Russel,	1969;	Hansch	and	Leuy,	1969;	Pflug,	2000;	Roberts,
1979;	Tobin,	1958).	This	is	also	true	for	more	recent	models	related	to	ranking	risky
alternatives	(Nielsen	and	Jaffray,	2006;	Richardson	and	Outlaw,	2008;	Rockafellar	and
Uryasev,	2002;	Starmer,	2000).	Even	in	a	recent	and	probably	the	most	comprehensive	treatise
of	the	theory	of	betting	(Epstein,	2009),	no	discussion	has	been	provided	on	the	impact	of	the
limited	number	of	risk–reward	bets	on	the	choice	of	a	risky	prospect.	The	number	of	risk–
reward	events/bets	in	a	risky	prospect,	however,	has	a	crucial	impact	on	the	choice	of	the	risky
prospect	and	cannot	be	ignored.

18.2	Risk	of	a	Net	Loss	and	Expected	Potential	Reward
Associated	with	a	Limited	Number	of	Statistically
Independent	Risk–Reward	Bets	in	a	Risky	Prospect
Companies	and	entrepreneurs	often	make	decisions	under	risk.	Investing	in	an	activity	whose
outcome	is	uncertain	is	a	commonly	made	decision.	Such	is,	for	example,	the	drilling	for	oil
and	the	advertising	campaign	for	particular	products	on	particular	markets.	The	commonly
used	method	for	selection	among	risky	prospects	is	the	maximum	expected	profit	criterion.
According	to	the	maximum	expected	profit	criterion,	the	activity	characterised	by	the	largest
expected	profit	is	selected.	Often,	the	opportunities	for	sequential	bets	are	limited.	A	common
cause	for	the	bankruptcy	of	small	companies	is	their	inability	to	sustain	financially	the	losses
from	several	unsuccessful	investments,	despite	that	each	investment	may	be	characterised	by	a
positive	expected	gain.	Drilling	for	oil,	for	example,	or	running	a	large	advertising	campaign
may	be	associated	with	a	large	expected	profit/pay-off	and	a	large	probability	of	success,	but
if	unsuccessful,	they	can	also	sink	significant	financial	resources	and	bankrupt	a	small
company.	In	contrast,	large	companies	can	sustain	losses	from	a	number	of	unsuccessful	oil
drillings	or	advertising	campaigns	and	still	be	profitable	in	the	long	run.	In	short,	small
companies,	because	of	their	limited	resources,	are	more	likely	to	be	affected	by	the	large	risk
associated	with	a	small	number	of	sequential	bets.	This	is	an	example	where	the	blind
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adherence	to	the	maximum	expected	profit	criterion	has	been	and	has	remained	a	source	of
heavy	losses.

The	inadequacy	of	the	maximum	expected	profit	criterion	as	a	basis	for	making	a	choice
between	risky	prospects	containing	a	limited	number	of	risk–reward	events/bets	activities	will
be	demonstrated	in	the	simplest	case,	where	the	risk–reward	bets	in	the	risky	prospects	are
statistically	independent.

Risk–reward	events/bets	can	materialise	as	benefit	or	loss.	An	investment	in	a	particular
enterprise	is	a	typical	example	of	a	risk–reward	bet.	A	successful	investment	is	associated
with	returns	(benefits),	while	an	unsuccessful	investment	is	associated	with	losses.	Usually,	for
risk–reward	bets,	the	larger	the	magnitude	of	the	potential	loss,	the	larger	is	the	magnitude	of
the	potential	benefit.

An	example	of	existing	framework	for	dealing	with	opportunity	and	failure	events	is	the	double
probability–impact	matrix	for	opportunities	and	threats	proposed	by	Hillson	(2002).
Accordingly,	expected	potential	reward	R	can	be	defined	as	a	product	of	the	probability	 	that
a	risk–reward	event	will	materialise	as	‘success’	and	the	benefit	 	given	success:

In	our	opinion,	it	is	not	beneficial	to	treat	the	potential	benefits	as	risk.	Reserving	the	term	risk
for	the	potential	loss	only	provides	a	better	analysis	structure	for	risk	reduction	and	profit
increase.	Separating	potential	benefit	from	potential	loss	focuses	attention	on	eliminating
hazards	and	creating	opportunity	events	as	a	way	of	increasing	the	potential	profit.

Suppose	that	 is	the	probability	that	the	risk–reward	event/bet	will	be	a	‘success’	and
will	bring	benefits	characterised	by	the	conditional	cumulative	distribution	 	(given	that
the	risk–reward	event	has	materialised	as	success).	Correspondingly,	 	is	the
probability	that	the	risk–reward	event/bet	will	generate	a	loss,	associated	with	a	conditional
cumulative	distribution	function	 	(given	that	the	risk–reward	event	has	materialised	as	a
loss).

The	expected	values	of	the	benefit	and	the	loss	given	that	the	risk–reward	event	has
materialised	are	denoted	by	 	and	 ,	respectively.

The	expected	profit	 	from	a	risk–reward	event/bet	is	given	by

where	 	is	the	probability	of	a	beneficial	outcome	with	magnitude	 	of	the	expected	benefits
and	 	is	the	probability	of	a	loss	with	expected	magnitude	 	(the	loss	 	is	taken	with
a	negative	sign).

An	example	of	such	a	risk–reward	event/bet	has	already	been	given	with	drilling	for	oil	at	a
particular	spot.	Suppose	that	the	geological	analysis	suggests	that	the	probability	of	recovering
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oil	by	drilling	at	a	particular	spot	is	 .	If	oil	is	recovered,	the	benefit	(after	covering	the	cost
of	drilling)	will	be	 .	With	probability	 	however,	oil	will	not	be	recovered	and	a
loss	of	magnitude	 	(the	cost	of	drilling)	will	be	incurred.	Drilling	an	oil	well	is	essentially	a
risk–reward	bet.

A	risky	prospect	may	contain	a	number	of	risk–reward	bets.	The	expected	profit	 	from	a
risky	prospect	A	containing	M	risk–reward	bets	is	given	by

where	 	is	the	expected	profit	characterising	the	ith	risk–reward	bet	in	the	risky	prospect.
Risk–reward	bets	with	a	positive	expected	potential	profit	( )	will	be	referred	to	as	risk–
reward	opportunities	or	opportunity	bets,	while	risk–reward	bets	with	a	negative	potential
expected	profit	( )	will	be	referred	to	as	risk–reward	gambles.	Note	that	the	concept
‘opportunity	bet’	is	the	same	as	the	concept	‘good	bet’	used	in	Samuelson	(1963).

Consider	initially	risk–reward	opportunities	only.	The	decision	to	be	made	is	whether	to	invest
in	a	risk–reward	opportunity	or	not	and	which	risk–reward	opportunity	should	be	preferred.
The	potential	profit	G	from	an	investment	is	a	random	variable	following	a	Bernoulli
distribution	with	parameter	 .	For	constant	values	of	the	benefit	given	success	 	and	the	loss

given	failure	 ,	the	probability	distribution	of	the	potential	profit	G	is	given	by	

and	 .	The	probability	distribution	of	the	potential	profit	G	can	be	considered	to
be	a	distribution	mixture	including	two	distributions	with	means	 	and	 	and
variances	 	and	 ,	sampled	with	probabilities	 	and	 .	According	to
Equation	4.7,	for	the	variance	Var(G)	of	the	potential	profit,	we	get

For	a	large	number	of	risk–reward	bets,	the	expected	profit	is	approximated	well	by	Equation
18.2.	In	short,	for	risky	prospects	each	containing	a	large	number	of	statistically	independent
risk–reward	bets,	choosing	the	prospect	characterised	by	the	maximum	expected	profit	is	a
sound	decision-making	criterion.	For	a	risky	prospect	containing	a	limited	number	of	risk–
reward	bets	however,	despite	the	existence	of	a	large	expected	profit,	the	risk	of	a	net	loss	can
be	significant.

The	next	example	involves	two	risky	prospects	containing	a	different	number	of	risk–reward
bets.	The	first	risky	prospect	contains	a	single	risk–reward	bet	with	parameters	 ,	

,	 	and	 ,	and	its	expected	profit	is	 .	The
probability	of	a	net	loss	from	this	risky	prospect	is	70%.	The	risk	of	a	net	loss	is	

.



The	second	risky	prospect	contains	three	risk–reward	bets	with	the	same	probability	of
success	and	failure	but	with	three	times	smaller	magnitudes	for	the	benefit	given	success	and
the	loss	given	failure:	 ,	 ,	 	and	 .	The
expected	profit	from	the	risky	prospect	containing	the	three	split	bets	is	

.	Because	a	net	loss	from	the	second	risky	prospect	can
be	generated	only	if	a	loss	is	generated	from	every	single	bet,	the	probability	of	a	net	loss	from
the	second	risky	prospect	is	 .	The	risk	of	a	net	loss	is	 .

Clearly,	the	maximum	expected	profit	criterion	cannot	distinguish	between	these	two	risky
prospects,	characterised	by	the	same	expected	profit.	This	is	despite	that	the	probability	of	a
net	loss	and	the	risk	of	a	net	loss	from	the	second	risky	prospect	are	much	smaller	compared	to
the	probability	of	a	net	loss	and	the	risk	of	a	net	loss	from	the	first	risky	prospect.	As	a	result,
the	second	risky	prospect	is	to	be	preferred	to	the	first	risky	prospect.	The	serious	problem
from	applying	the	maximum	expected	profit	criterion	becomes	apparent	if	the	three	opportunity
bets	from	the	second	risky	prospect	are	characterised	by	a	smaller	benefit	given	success	

.	In	this	case,	the	expected	profit	characterising	the	second	risky	prospect
will	be	smaller

than	the	expected	profit	from	the	first	risky	prospect.	The	probability	of	a	net	loss	
	for	the	second	risky	prospect	remains	the	same.	Adherence	to	the	maximum

expected	profit	criterion	will	favour	the	selection	of	the	first	risky	prospect,	characterised	by
the	larger	expected	profit	of	27,	the	significantly	larger	probability	of	a	net	loss	of	70%	and
more	than	twice	magnitude	−63	of	the	risk!

The	significant	hidden	risk	of	a	net	loss	associated	with	one	of	the	risky	prospects	has	not	been
revealed	by	the	maximum	expected	profit	criterion.

18.3	Probability	and	Risk	of	a	Net	Loss	Associated	with
a	Small	Number	of	Opportunity	Bets
The	last	example	shows	how	the	risk	associated	with	a	risk–reward	bet	can	be	reduced
significantly	if	the	risk–reward	bet	is	split	into	several	risk–reward	bets	characterised	by	the
same	probability	of	success	and	failure	as	the	original	bet	but	with	proportionally	smaller
benefit	and	loss.	Indeed,	consider	a	risky	prospect	containing	a	single	risk–reward	bet,
characterised	by	a	probability	of	success	 ,	benefit	given	success	 ,	probability	of	failure	
and	loss	given	failure	 .	This	risk–reward	bet	can	be	split	into	m	risk–reward	sub-bets,	each
characterised	with	the	same	probability	of	success	and	failure	 	and	 	and	with	m	times
smaller	expected	benefit	and	loss	 	and	 .	The	expected	profit	from	the	risk–reward
bets:



(18.5)

(18.6)

(18.7)

is	equal	to	the	expected	profit	from	the	original	bet.	Considering	Equation	18.4,	the	variance

of	the	profit	from	the	risky	prospect	with	m	risk–reward	bets	is	m	times	smaller	than	the

variance	 	of	the	profit	characterising	the	initial	risk–reward	bet.

In	summary,	the	maximum	expected	profit	criterion	is	a	fundamentally	flawed	criterion,
because	it	does	not	reflect	the	impact	of	the	number	of	risk–reward	activities	in	the	risky
prospects.	The	number	of	the	risk–reward	activities	should	be	a	key	consideration	in
selecting	a	risky	prospect	(Todinov,	2013c).

Suppose	that	a	finite	number	n	of	risk–reward	opportunities	of	the	same	type	are	present.	A
series	of	n	statistically	independent	risk–reward	bets,	characterised	by	the	same	probability	of
success	in	each	trial,	is	a	binomial	experiment,	where	the	number	of	successful	outcomes	is
modelled	by	the	binomial	distribution.

The	risk	of	a	net	loss	from	n	risk–reward	bets	can	be	derived	by	the	following	probabilistic
argument.

Let	x	denote	the	number	of	bets	which	materialise	as	‘benefit’	among	n	bets,	x = 0,	1,	…,	n.
Correspondingly,	n − x	will	be	the	number	of	bets	which	materialise	as	losses.	The	probability
of	a	net	loss	equals	the	probability	that	the	sum	of	the	benefits	from	x	benefit-generating	bets
will	be	smaller	than	the	sum	of	the	losses	from	n − x	loss-generating	bets.

Let	 	be	the	expected	value	of	the	benefit	given	a	successful	bet	and	 	be	the	expected	value
of	the	loss	given	a	loss-generating	bet.	The	probability	that	the	sum	of	the	benefits	from	x
benefit-generating	bets	will	be	smaller	than	the	sum	of	the	losses	from	n − k	loss-generating
bets	is	equal	to	the	probability	that	the	number	of	benefit-generating	bets	x	does	not	exceed	 ,
the	largest	integer	satisfying	the	inequality

Condition	(18.7)	is	equivalent	to	 ,	if	 	is	an	integer

number.	Otherwise,	condition	(18.7)	is	equivalent	to	 	where	

	is	the	largest	integer	not	exceeding	the	ratio	 .	The
probability	that	there	will	be	a	net	loss	then	becomes



(18.8)

(18.9)

(18.10)

(18.11)

The	risk	of	a	net	loss	is	equal	to	the	expected	value	of	the	potential	loss.	This	can	be

determined	by	adding	the	probability	of	zero	benefit-generating	bets	times	the	losses	 	from
n	loss-generating	bets	plus	the	probability	of	a	single	benefit-generating	bet	and	n − 1	loss-
generating	bets	times	the	net	loss	 	and	so	on,	plus	the	probability	of	k	benefit-
generating	bets	and	n − k	loss-generating	bets	times	the	net	loss	 	from	n − k	loss-
generating	bets	and	k	benefit-generating	bets.	As	a	result,	the	risk	of	a	net	loss	K	becomes

The	expected	potential	reward	can	be	determined	by	adding	the	probability	of	k + 1	benefit-
generating	bets	times	the	net	benefit	 	from	k + 1	benefit-generating	bets
and	(n − k − 1)	loss-generating	bets	plus	and	so	on,	plus	the	probability	of	n	benefit-generating
bets	times	the	net	benefit	 	from	them.	As	a	result,	the	expected	potential	reward	from	n	risk–
reward	bets	becomes

Equations	18.8,	18.9	and	18.10	(Todinov,	2013c)	have	also	been	verified	by	a	Monte	Carlo
simulation.	Thus,	for	 ,	 ,	 ,	 	and	12	opportunity	bets,	Equation
18.8	gives	0.49	for	the	probability	of	a	net	loss,	Equation	18.9	gives	 	for	the	risk	of	a
net	loss,	and	Equation	18.10	gives	 	for	the	expected	potential	reward.	These	results
have	been	confirmed	by	the	empirical	values	( ,	 	and	 )
obtained	on	the	basis	of	one	million	simulation	trials.

The	expected	profit	from	n	bets	can	be	obtained	by	using	a	standard	result	from	the	theory	of
probability	stating	that	the	expected	value	of	a	sum	of	random	variables	is	the	sum	of	the
expected	values	of	the	random	variables.	Since	the	expected	profit	from	a	single	bet	is	

,	the	expected	profit	from	a	sequence	of	n	bets	is

In	other	words,	with	increasing	the	number	of	opportunity	bets,	the	expected	profit	increases
proportionally	to	the	number	of	bets	in	the	sequence.	For	statistically	independent	random
variables,	the	variance	of	their	sum	is	equal	to	the	sum	of	the	variances	of	the	random
variables	(DeGroot,	1989):



(18.12)

(18.13)

(18.14)

(18.15)

(18.16)

(18.17)

Because	the	variance	of	the	profit	from	a	single	bet	is	given	by	Equation	18.6,	the	variance	of
the	profit	from	n	statistically	independent	bets	is	given	by

In	other	words,	the	variance	of	the	profit	from	a	sequence	of	a	number	of	statistically
independent	bets	increases	proportionally	to	the	number	of	bets	in	the	sequence.

In	the	case	of	a	very	large	number	n	of	bets,	the	conditions	for	the	validity	of	the	central	limit
theorem	are	fulfilled,	and	a	Gaussian	distribution	with	mean

and	standard	deviation

can	be	used	for	approximating	the	distribution	of	the	potential	profit.	The	probability	of	a	net
loss	will	be

where	 	is	the	cumulative	distribution	of	the	standard	normal	distribution	with	mean	‘0’	and
standard	deviation	‘1’.	Correspondingly,	the	probability	of	a	net	profit	is

From	the	distribution,	the	probability	that	the	net	loss	will	exceed	any	specified	quantity	can	be
determined.	It	is	necessary	to	point	out,	however,	that	approximations	(18.16)	and	(18.17)	are
valid	only	for	a	large	number	of	bets	in	the	risky	prospect	and	do	not	hold	for	a	limited
number	of	bets.	In	the	case	of	a	limited	number	of	bets	in	the	risky	prospect,	Equations	18.8,
18.9	and	18.10	should	be	used.

18.4	Samuelson’s	Sequence	of	Good	Bets	Revisited
Following	Samuelson’s	paper	(Samuelson,	1963),	the	same	proposed	‘good	bet’	will	be	used:
probability	 	of	winning	200	( )	and	probability	 	of	losing	100	(
).	Table	18.1	lists	the	results	from	the	calculations	using	Equations	18.8,	18.9	and	18.15.	These
calculations	have	also	been	confirmed	by	a	Monte	Carlo	simulation.



Table	18.1	Expected	profit	and	risk	of	a	net	loss	with	increasing	the	number	of	good	bets

Number	of	good
bets

Expected
profit

Standard
deviation

Risk	of	a	net
loss

Probability	of	a	net
loss

  1 50 150 −50 0.5
 10 500 474.3 −37.1 0.17
 20 1000 670.8 −20 0.057
 30 1500 821.6 −9.9 0.049
 50 2500 1060.7 −3.1 0.0077
 80 4000 1341.6 −0.5 0.0012
 90 4500 1423 −0.26 0.0010
100 5000 1500 −0.15 0.00044
130 6500 1710.3 −0.025 0.00007
150 7500 1837 −0.007 0.00003

As	can	be	verified	from	the	table,	despite	that	with	increasing	the	number	of	good	bets	the
variance	of	the	net	profit	increases,	the	risk	of	a	net	loss	has	decreased	significantly.	In	other
words,	despite	that	selecting	an	individual	bet	is	not	acceptable	because	of	the	high	probability
of	a	loss,	selecting	repeated	bets	is	beneficial,	because	a	longer	sequence	of	repeated	bets	is
characterised	by	an	increased	expected	profit,	a	small	probability	of	a	net	loss	and	a	small	risk
of	a	net	loss.	Contrary	to	the	view	expressed	by	Samuelson,	which	has	also	been	adopted	in
several	related	papers	(e.g.	Ross,	1999),	repeating	the	unacceptable	bet	reduced	significantly
the	risk	of	a	net	loss.

With	increasing	the	number	of	opportunity	bets,	the	variance	of	the	profit	increases
significantly	(see	Table	18.1).	This	has	led	some	researchers	to	conclude	incorrectly	that
because	of	the	increased	variance	of	the	profit,	the	risk	will	also	increase.	The	careful	analysis
shows	that	the	variance	of	the	profit	can	increase	with	a	simultaneous	decrease	of	the	risk	of	a
net	loss.	In	this	case,	the	commonly	accepted	rule	that	a	larger	variance	means	a	larger	risk
does	not	hold.	In	this	case,	a	larger	variance	actually	coexists	with	a	smaller	risk,	and	the
variance	of	the	profit	cannot	serve	as	a	risk	measure.

In	summary,	the	popular	view	started	with	the	Samuelson’s	paper	(1963)	that	if	a	single	bet
is	unacceptable,	then	a	sequence	of	such	bets	is	also	unacceptable	is	incorrect.

18.5	Variation	of	the	Risk	of	a	Net	Loss	Associated	with
a	Small	Number	of	Opportunity	Bets
For	a	large	number	n	of	opportunity	bets,	the	expected	value	of	the	net	profit	is	approximated

well	by	 .	According	to	the	definition	of	an	opportunity	bet,	 ,
and	consequently,	with	increasing	the	number	of	opportunity	bets,	the	probability	of	a	negative



net	profit	(net	loss)	approaches	zero.

It	seems	that	with	increasing	the	number	of	opportunity	bets,	the	probability	of	a	net	loss
always	decreases.	There	is	a	common	belief	that	increasing	the	number	of	opportunity	bets	is
always	beneficial	because	this	increases	the	exposure	to	successful	outcomes.	Interestingly,
this	conventional	belief	is	not	necessarily	correct.	Here,	we	show	that	multiple	opportunity
bets	(characterised	with	a	positive	expected	gain)	can	in	fact	be	associated	with	a	larger	risk
of	a	net	loss	than	a	single	opportunity	bet.

This	is	shown	in	Figure	18.1	(Todinov,	2013c),	where	the	parameters	characterising	the	risk–
reward	bets	are	 ,	 	and	 .	Different	values	 	of	the	expected	profit
were	obtained	by	varying	the	expected	benefit	 .	Thus,	for	 ,	 ;	for	
,	 ;	and	for	 ,	 .	These	correspond	to	the	three	curves	in	Figure
18.1.	Increasing	the	number	of	opportunity	bets	is	associated	with	a	decrease	of	the	absolute
value	of	the	risk	of	a	net	loss.	The	decrease,	however,	does	not	occur	monotonically	as
indicated	by	all	three	graphs.	The	analysis	shows	that	the	third	curve,	corresponding	to	

,	also	tends	to	zero	absolute	value	of	the	risk	of	a	net	loss	but	after	thousands	of
opportunity	bets.



Figure	18.1	Increasing	the	number	of	opportunity	bets	may	not	necessarily	result	in	a
monotonic	reduction	of	the	risk	of	a	net	loss.

While	for	a	large	value	of	the	expected	gain,	the	absolute	value	of	the	risk	of	a	net	loss	is
quickly	reduced	to	zero,	for	small	values	of	the	expected	gain,	the	risk	of	a	net	loss	may
actually	increase	with	increasing	the	number	of	opportunity	bets	as	indicated	by	the	graph	

	and	 	in	Figure	18.1.	As	a	result,	increasing	the	number	of	opportunity
bets	characterised	by	a	small	expected	gain	may	have	the	opposite	effect	on	the	risk	of	a	net
loss!	A	simulation	is	necessary	in	each	particular	case	to	reveal	the	hidden	risk.

18.6	Distribution	of	the	Potential	Profit	from	a	Limited
Number	of	Risk–Reward	Activities
For	a	risky	prospect	containing	multiple	risk–reward	events,	if	no	analytical	solution	exists,
building	the	distribution	of	the	potential	profit	and	evaluating	the	risk	of	a	net	loss	and	the
expected	potential	reward	can	be	made	by	a	Monte	Carlo	simulation,	whose	algorithm	in
pseudocode	is	described	in	Algorithm	18.1	(Todinov,	2013c).

In	Figure	18.2,	the	cumulative	distribution	of	the	potential	profit	has	been	built	for	risk–reward



events	following	a	homogeneous	Poisson	process	with	density	0.8	year−1	in	the	interval	(0,	2)
years.	The	benefit	given	success	follows	a	uniform	distribution	in	the	interval	(0,	320),	

,	and	the	loss	given	failure	follows	a	uniform	distribution	in	the	interval
(−50,	0),	 .	The	empirical	risk	of	a	net	loss	is	−23.9,	the	expected	potential
reward	is	47.9,	and	the	expected	potential	profit	is	19.3.	It	is	interesting	to	note	the	jump	of	the
net	profit	dependence	at	zero.	This	is	caused	by	all	outcomes	for	which	no	risk–reward	events
occurred	in	the	specified	finite	time	interval.	The	expected	profit	in	this	case	is	zero.

Figure	18.2	Distribution	of	the	potential	profit	from	risk–reward	events	following	a
homogeneous	Poisson	process	in	a	specified	time	interval	(a = 2	years)

Figure	18.3	gives	the	distribution	of	the	potential	profit	from	five	opportunity	bets	with
parameters	 ,	 ,	 	and	 .	The	empirical	risk	of	a	net	loss	is	−140;
the	empirical	expected	potential	reward	is	499.6.



Figure	18.3	Distribution	of	the	potential	profit	from	five	opportunity	bets

Figure	18.4	gives	the	distribution	of	the	potential	profit	if	the	number	of	opportunity	bets	is
increased	to	30.	The	risk	of	a	net	loss	has	decreased	to	−75.3,	while	the	expected	potential
benefit	has	increased	to	2237.2.



(18.18)

(18.19)

Figure	18.4	Distribution	of	the	potential	profit	from	30	opportunity	bets

In	each	particular	case,	a	simulation	is	required	to	reveal	the	risk	of	a	net	loss.	Simulation	is
also	necessary	for	risk–reward	bets	characterised	by	different	probabilities	of	success	or	by	a
complex	distribution	of	the	loss	given	failure	or	the	benefit	given	success.

The	results	from	the	simulation	have	been	confirmed	by	an	alternative	method	for	calculating
the	expected	value	of	the	total	profit	based	on	analytical	reasoning.	The	expected	value	of	the
total	profit	can	be	calculated	as	a	sum	of	the	expected	value	of	the	total	benefit	from	risk–
reward	bets	which	materialise	as	success	and	the	expected	value	of	the	total	loss	from	risk–
reward	bets	which	materialise	as	a	loss.

The	total	benefit	 	from	 	risk–reward	bets	which	materialise	as	‘success’	is	 .
Correspondingly,	the	total	loss	 	from	Nf	bets	which	materialise	as	‘loss’	is	 .	The
total	profit	 	is	therefore	given	by

Taking	expected	values	from	both	sides	of	Equation	18.18	results	in



(18.20)

(18.21)

(18.22)

for	the	expected	value	of	the	total	profit.	The	expected	number	of	the	risk–reward	bets	
which	materialise	as	success	is

where	 	is	the	density	of	the	homogeneous	Poisson	process	modelling	the	occurrence	of	the
risk–reward	bets,	a	is	the	length	of	the	time	interval,	and	 	is	the	probability	that	a	given	risk–
reward	bet	will	materialise	as	‘success’.	Similarly,	the	expected	number	of	the	risk–reward
bets	which	materialise	as	a	loss	is

Substituting	Equations	18.20	and	18.21	in	Equation	18.19	results	in

In	the	first	example,	 	and	 .	Therefore,	 	and	
.	Substituting	these	values	and	also	the	values	 ,	 	years,	 	and	
	in	Equation	18.22	results	in	 	which	confirms	the	empirical	result	of	19.3

obtained	by	the	simulation	algorithm.



Algorithm	18.1

function	Benefit_given_success(k);	//Samples	the	conditional	

distribution	of	the	benefits	given	success	of	the	k-th	risk-reward	bet	

and	returns	a	random	value

function	Loss_given_failure(k);	//Samples	the	conditional	distribution	

of	the	loss	given	failure	of	the	k-th	risk-reward	bet	and	returns	a	

random	value

ps[Number_of_bets];			//Contains	the	probabilities	of	success

																								characterizing	the

																								risk-reward	bets	in	the	risky	prospect;

Net_revenue	=	0;//where	the	net	revenue	will	be	accumulated

Sum_net_Benefit	=	0;			//where	only	the	net	benefit	will	be	accumulated

Sum_net_Loss	=	0;			//where	only	the	net	loss	will	be	accumulated

	for	i=1	to	Number_of_trials	do

{

	for	j=1	to	Number_of_bets	do

		{

			t	=	generate_random_number();	//	Generates	a	random	number

																		uniformly	distributed	in	the	interval	(0,1)

		if	(t	<	ps[j])	then

							Net_revenue	=	Net_Revenue	+	Benefit_given_success(j);

								else	Net_revenue	=	Net_Revenue	+	Loss_given_failure(j);

		}

			distr_pot_profit[i]	=	Net_revenue;

			if	(Net_revenue	>	0)	then

												Sum_net_Benefit	=	Sum_net_Benefit+Net_revenue;

												else	Sum_net_Loss	=	Sum_net_Loss+Net_Revenue;

	}

	Risk_of_net_loss	=	Sum_net_Loss	/	Number_of_trials;

	Potential_expected_reward	=	Sum_net_Benefit	/	Number_of_trials;

	Sort	the	array	distr_pot_profit[]	in	ascending	order.

For	a	number	of	risk–reward	bets	‘Number_of_bets’	in	a	risky	prospect,	each	characterised	by
different	probabilities	of	success	and	failure,	determining	the	risk	of	a	net	loss	consists	of	the
following	steps.	A	simulation	loop	with	control	variable	i	is	entered	first,	within	which	a
nested	loop	with	control	variable	j	is	entered,	scanning	through	all	risk–reward	bets	in	the
risky	prospect.	In	the	nested	loop,	a	random	variable	t	following	Bernoulli	distribution	is
simulated	by	generating	a	uniformly	distributed	random	number	in	the	interval	(0,	1)	and
comparing	it	with	the	probability	of	success	ps[j]	of	the	scanned	risk–reward	bet.	This	random
variable	simulates	success	or	failure	outcome	from	the	separate	risk–reward	bets.	If	success	is
simulated	(t ≤ ps[j]),	the	distribution	of	the	benefits	given	success	is	sampled	by	calling	the
function	Benefits_given_success(j);	if	failure	is	simulated	(t > ps[j]),	the	distribution	of
the	loss	given	failure	is	sampled	by	calling	the	function	Loss_given_failure(j).	For	all
bets/events	in	the	risky	prospect,	the	sampled	quantity	is	accumulated	in	the	variable



‘Net_revenue’	which	contains	the	net	revenue	(profit)	from	the	risk–reward	bets	in	the	current
simulation	trial.	The	magnitude	of	the	profit	characterising	the	current	simulation	trial	is	also
stored	in	the	array	‘distr_pot_profit[]’.	At	the	end	of	the	simulation,	the	elements	of	the	array
‘distr_pot_profit[]’	are	sorted	in	ascending	order	by	using	the	Quicksort	algorithm	(Cormen	et
al.,	2001).	The	empirical	cumulative	distribution	of	the	potential	profit	is	built	by	plotting	the
sorted	values	of	the	cumulative	array	versus	the	probability	rank	estimates,	i = 1,	2,	…,
Number_of_trials.
During	each	simulation	trial,	after	obtaining	the	net	revenue	(profit)	in	the	variable
‘Net_revenue’,	its	sign	is	checked.	If	the	sign	is	negative,	the	net	revenue	is	accumulated	in	the
variable	‘Sum_net_Loss’.	Correspondingly,	if	the	sign	of	the	net	profit	in	‘Net_revenue’	is
positive,	the	net	benefit	is	accumulated	in	the	variable	‘Sum_net_Benefit’.	The	risk	of	a	net
loss	and	the	potential	expected	reward	are	obtained	at	the	end	of	the	simulation	trials	by
dividing	the	variables	‘Sum_net_Loss’	and	‘Sum_net_Benefit’	to	the	number	of	simulation
trials.



19
Optimal	Allocation	of	Limited	Resources	among
Discrete	Risk	Reduction	Options

19.1	Statement	of	the	Problem
The	problem	of	optimal	allocation	of	limited	safety	resources	to	attain	a	maximum	risk
reduction	is	an	important	problem,	which	appears	frequently	in	the	budget	planning	of
companies	and	enterprises	and	during	the	design	of	complex	safety-critical	systems.	For	a
company	or	an	enterprise,	for	example,	it	is	important	to	determine	how	to	allocate	its	budget
in	order	to	mitigate	a	number	of	sources	of	risk.	In	the	railway	industry	in	particular,	the	central
question	is	how	to	allocate	a	fixed	safety	budget	among	a	number	of	available	risk	reduction
options,	to	prevent	the	maximum	possible	number	of	fatalities	and	injuries	resulting	from
railway	accidents.

Huge	amount	of	invested	resources	are	often	wasted	because	the	resource	allocation	is	usually
far	from	optimal	and	does	not	guarantee	efficient	risk	reduction.

A	fixed	budget	constraint	is	always	present	in	cases	where	the	total	cost	of	the	available	risk-
reduction	options	is	greater	than	the	amount	of	available	resources.	A	common	example	of	a
fixed	budget	constraint	is	the	reduction	of	the	risk	of	infectious	diseases	(Richter	et	al.,	1999).

Dynamic	programming	techniques	(Bellman,	1957;	Dasgupta	et	al.,	2008;	Horowitz	and
Sahni,	1997)	can	be	used	with	success	for	solving	the	problem	related	to	optimal	allocation	of
safety	resources	to	achieve	a	maximum	risk	reduction.	Dynamic	programming	has	been	around
for	a	long	time,	yet	very	few	attempts	(Pigman	et	al.,	1974;	Reniers	and	Sorensen,	2013;
Todinov	and	Weli,	2013)	have	been	made	to	use	it	for	optimal	allocation	of	risk	reduction
resources.

The	risk	is	often	reduced	by	well-defined	discrete	options:	purchasing	new,	more	reliable	and
safer	equipment,	investing	in	personnel	training,	investing	in	improved	security	and	control,
investing	in	new	systems,	etc.	Each	risk	reduction	option	can	either	be	accepted	(included)	in
the	optimal	set	of	options	or	not.	For	each	specified	risk	reduction	option,	it	is	usually	known
from	statistical	data	and	experience	how	much	risk	reduction	effect	is	achieved	from
implementing	it.	For	example,	in	the	railway	industry,	the	risk	reduction	effect	is	commonly
measured	by	estimating	the	number	of	prevented	fatalities	and	injuries	from	implementing	a
particular	option	(Weli	and	Todinov,	2013).

In	the	case	of	discrete	risk	reduction	options,	cost–benefit	analysis	has	been	adopted	by	many
industries	and,	in	particular,	by	the	railway	industry	as	a	tool	for	optimal	allocation	of	safety
resources.	In	the	railway	industry,	for	example,	the	safety	budget	allocation	starts	with
assigning	risk	reduction	options	to	the	different	risk	contributors	or	risk	scenarios	resulting	in	a
major	railway	accident.	Each	risk	reduction	option	is	assessed	in	terms	of	the	benefit	it	brings
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and	its	cost	of	implementation.	The	risk	reduction	options	are	ranked	according	to	their
benefit–cost	ratio.	By	starting	with	the	risk	reduction	option	with	the	largest	benefit–cost	ratio,
the	options	are	sequentially	included	in	the	optimal	set,	and	a	check	is	performed	whether	the
aggregated	cost	of	the	selected	risk	reduction	options	has	exceeded	the	allocated	budget.	The
risk	reduction	options	whose	aggregated	cost	is	within	the	allocated	budget	are	included	in	the
optimal	set.	Consequently,	the	algorithm	of	the	cost–benefit	approach	can	be	described	by	the
following	basic	steps	(Weli	and	Todinov,	2013):

1.	 Rank	the	risk	reduction	options	in	descending	order,	according	to	their	benefit–cost	ratio.

2.	 Choose	the	feasible	risk	reduction	option	with	the	highest	benefit–cost	ratio.

3.	 Update	the	total	cumulative	cost	of	all	selected	risk	reduction	options.

4.	 Repeat	steps	2	and	3	until	no	other	feasible	risk	reduction	option	can	be	included	in	the
optimal	set.

A	feasible	risk	reduction	option	means	an	option	that	has	not	been	selected	and	whose	cost	can
be	covered	by	the	remaining	budget.	Each	option	can	be	selected	only	once.

For	n	risk	reduction	options,	the	ranking	in	descending	order,	according	to	the	benefit–cost
ratio,	can	be	done	in	 	time.	As	a	result,	the	selection	of	risk	reduction	options	by
following	the	cost–benefit	method	can	always	be	made	in	 	time.

In	the	case	of	discrete	and	independent	alternatives,	the	(0-1)	knapsack	dynamic	programming
approach	has	been	used	for	a	long	time	for	optimal	allocation	of	resources	and,	in	particular,
as	a	resource	allocation	method	among	competing	projects.

Central	to	the	optimal	budget	allocation	problem	considered	in	Todinov	and	Weli	(2013)	was
the	concept	‘amount	of	removed	risk’	characterising	the	individual	risk	reduction	options	and
measuring	the	benefit	from	their	application.	The	removed	risk	can	be	expressed	in	monetary
terms	–	the	cost	of	prevented	accidents,	fatalities,	injuries	and	delays.

All	available	risk	reduction	options	i = 1,	2,	…,	n	are	initially	placed	in	a	set	Ω.	The
individual	risk	reduction	options	i	(i = 1,	2,	…,	n)	are	characterised	by	the	amount	of	removed
risk	 	and	by	the	cost	of	their	implementation	 .	Risk	reduction	options	can	be	selected	only
once;	hence,	each	risk	reduction	option	can	either	be	accepted	or	rejected.

By	following	the	classical	(0-1)	knapsack	budget	allocation	approach,	to	achieve	a	maximum
risk	reduction,	the	task	should	be	reduced	to	determining	the	optimal	subset	 	of	risk

reduction	options	associated	with	the	maximum	possible	removed	risk	 .	The	imposed
constraint	is	the	specified	limited	budget	–	the	maximal	total	cost	must	not	exceed	the	available
risk	reduction	budget	B:

subject	to	the	constraint
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where	 	are	decision	variables;	 	if	the	risk	reduction	option	is	accepted	and	 ,
otherwise.

A	recent	study,	however,	revealed	an	unexpected	result	(Todinov,	2014b):	in	many	cases,	the
exact	(0-1)	knapsack	approach	could	actually	lead	to	solutions	inferior	to	the	solutions
produced	by	the	cost–benefit	approach.

In	addition,	recent	studies	also	revealed	that	in	order	to	apply	the	knapsack	(0-1)	method,	the
magnitude	of	the	removed	system	risk	should	depend	only	on	the	sum	of	the	removed	risks
from	the	selected	individual	options	and	should	not	depend	on	the	particular	selected	subset
of	risk	reduction	options.

After	initial	analysis	demonstrating	these	weaknesses,	relevant	conditions	will	be	proposed
and	a	new	model	will	be	presented	which	avoids	these	weaknesses.

19.2	Weaknesses	of	the	Standard	(0-1)	Knapsack
Dynamic	Programming	Approach
19.2.1	A	Counterexample
From	the	analyses	published	in	the	literature	so	far,	it	seems	that	the	standard	(0-1)	knapsack
dynamic	programming	approach	is	a	real	alternative	to	the	cost–benefit	approach.	This
perception	however	is	rather	deceptive	as	the	next	counterexample	reveals	(Todinov,	2014b).
Suppose	that	the	benefits	and	the	costs	of	four	risk	reduction	options	are	according	to	Table
19.1.	The	available	safety	budget	is	30	million.

Table	19.1	Four	risk	reduction	options	each	characterised	with	cost	of	implementation	and
magnitude	of	the	removed	risk.	The	total	safety	budget	is	30	million

Risk	reduction
option

Removed	risk	(in
millions	$)

Cost	of	implementation	(in
millions	$)

Benefit–cost
ratio

A 33 10 3.3
B 20.9  7 2.98
C 26 14 1.86
D 28 16 1.75

All	risk	reduction	options	are	characterised	by	a	benefit–cost	ratio	greater	than	one.	The
standard	(0-1)	knapsack	algorithm	selects	risk	reduction	options	C	and	D,	which,	within	the
fixed	budget	of	30	million,	yield	the	largest	risk	reduction	(54	million).	Clearly,	this	is	a
flawed	solution	because	if	risk	reduction	options	A	and	B	had	been	selected,	the	risk	reduction
would	be	marginally	smaller	(53.9	million),	but	13	million	unnecessary	expenses	(43%	of	the
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budget)	would	have	been	saved.	In	fact,	the	standard	(0-1)	knapsack	algorithm	‘chooses’	to
spend	13	million	towards	a	risk	reduction	of	only	0.1	million,	which	effectively	has	a	benefit–
cost	ratio	 .	This	is	an	indication	of	an	extremely	wasteful	use	of	valuable
resources!

It	needs	to	be	pointed	out	that	in	this	counterexample,	the	cost–benefit	approach	selects
correctly	the	risk	reduction	options	A	and	B	and	avoids	the	problem	associated	with	the
standard	(0-1)	knapsack	approach.

Suppose	that	 	and	 	denote	the	total	removed	risk	and	the	total	cost	of	the	risk
reduction	options	characterising	the	(0-1)	standard	knapsack	dynamic	programming	solution,
respectively.	Similarly,	 	and	 	denote	the	total	removed	risk	and	the	total	cost	of	the
risk	reduction	options	characterising	the	cost–benefit	solution.	The	comparative	risk	reduction
effectiveness	ratio	 	can	then	be	calculated	from

This	ratio	measures	the	effectiveness	of	the	extra	budget	used	by	the	standard	(0-1)	knapsack
algorithm	in	reducing	risk,	compared	to	the	cost–benefit	solution.

If	the	risk	reduction	ratio	 	is	too	small,	the	standard	(0-1)	dynamic	programming	solution
achieves	only	a	marginal	risk	reduction,	at	a	very	large	cost,	and	should	be	discarded	in	favour
of	the	cost–benefit	analysis	solution.	If	the	risk	reduction	ratio	 	indicates	that	a	substantial
risk	reduction	has	been	achieved,	the	(0-1)	knapsack	solution	results	in	a	cost-effective	risk
reduction	and	should	be	accepted	as	an	alternative	of	the	cost–benefit	solution.

From	Table	19.1,	 ,	 ,	 	and	
.	The	comparative	ratio	given	by	Equation	19.3	then	becomes

which	is	only	0.7%.	This	ratio	indicates	a	very	inefficient	use	of	safety	resources,	and	the
standard	(0-1)	knapsack	solution	is	worse	than	the	cost–benefit	solution.

The	main	reason	for	this	problem	is	that	the	standard	(0-1)	knapsack	approach	has	actually
been	devised	to	maximise	the	total	value	derived	from	items	filling	space	with	no	intrinsic
value.	The	budget,	however,	does	have	intrinsic	value,	and	its	utilisation	is	also	important,	as
well	as	the	maximisation	of	the	risk	reduction.	It	needs	to	be	pointed	out	that	if	the	budget	had
no	intrinsic	value	or	if	spending	the	budget	was	analogous	to	filling	empty	space	with	no	value,
the	(0-1)	dynamic	programming	approach	would	always	yield	an	optimal	solution.
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19.2.2	The	New	Formulation	of	the	Optimal	Safety	Budget	Allocation
Problem
The	counterexample	from	Table	19.1	exposes	the	dangers	behind	the	standard	(0-1)	knapsack
dynamic	programming	solution	for	optimising	the	allocation	of	risk	reduction	resources	as	a
substitute	of	the	cost–benefit	approach.	Despite	that	the	standard	(0-1)	knapsack	dynamic
programming	algorithm	always	yields	the	exact	solution	in	maximising	the	risk	reduction
within	a	fixed	budget,	it	could	still	generate	‘solutions’	wasting	valuable	resources	with	very
small	return	in	extra	benefit.

The	counterexample	from	Table	19.1	shows	that	there	is	clearly	a	need	for	an	approach
incorporating	the	value	of	the	remaining	safety	budget.	Consequently,	the	requirement	the	total

removed	risk	 	to	be	maximal	should	be	abandoned,	because	it	leads	to	a	wasteful	use
of	safety	resources.

This	problem	can	be	resolved	by	introducing	weights	( ;	 )	assigned	to	both	the
amount	of	removed	risk	and	the	remaining	budget,	to	reflect	the	value	associated	with	the
remaining	budget.	For	risk	reduction	options,	each	characterised	by	benefit–cost	ratio	greater

than	unity,	what	needs	to	be	maximised	is	not	the	total	amount	of	removed	risk	 	but	the

weighted	sum	of	the	total	removed	risk	 	and	the	weighted	remaining	budget	

.	This	formulation	prevents	using	up	most	of	the	remaining	budget	for	a
marginal	risk	reduction.

In	the	light	of	the	presented	discussion,	the	appropriate	model	of	the	optimal	budget	allocation
among	discrete	independent	risk	reduction	options	is	given	next	(Todinov,	2014b):

Considering	the	constraint

Maximise	the	sum

where	 	are	decision	variables;	 ,	if	the	risk	reduction	option	is	selected	and	
,	otherwise.	Because	the	available	budget	B	is	a	constant,	maximising	the	sum	X	in	Equation

19.6	is	equivalent	to	maximising	 .	The	two	summations	can
be	combined,	and	as	a	result,	what	should	be	maximised	is	the	expression



(19.7)

(19.8)

(19.9)

The	weights	can	be	conveniently	altered	to	reflect	correctly	the	value	of	unit	removed	risk	and
the	value	of	unit	remaining	budget.	Usually,	both	the	removed	risk	and	the	available	budget	are
measured	in	the	same	monetary	units,	and	 	is	the	weighting	factor	reflecting	that	the
value	of	unit	risk	is	the	same	as	the	value	of	unit	budget.

Thus,	for	( ),	Equation	19.7	becomes

which	is	equivalent	to	maximising

19.2.3	Dependence	of	the	Removed	System	Risk	on	the	Appropriate
Selection	of	Combinations	of	Risk	Reduction	Options
The	application	of	the	(0-1)	knapsack	allocation	method	assumes	that	(i)	the	risk	removed	by
any	risk	reduction	option	does	not	depend	on	the	presence/absence	of	other	options	and	(ii)	the
application	of	any	risk	reduction	option	does	not	require	the	application	of	other	options.

The	next	example	shows	that	even	for	identical	risk	reduction	options,	removing	individually
the	same	amount	of	system	risk,	for	which	the	previous	conditions	are	fulfilled,	the	total
amount	of	removed	system	risk	depends	on	the	selection	of	the	particular	combination	of	risk
reduction	options.

Consider	the	system	in	Figure	19.1	which	transports	cooling	liquid	from	three	sources	s1,	s2
and	s3	to	the	chemical	reactor	t.



Figure	19.1	(a–c)	A	safety-critical	cooling	system	consisting	of	three	parallel	branches

The	cooling	system	consists	of	identical	pipeline	sections	(the	arrows	in	Figure	19.1).	Each
pipeline	section	is	coupled	with	a	pump	for	transporting	the	cooling	fluid	through	the	section.
Suppose	that	the	pipeline	sections	and	the	pumps	are	old	and	prone	to	failure	due	to	corrosion,
fatigue,	wear,	deteriorated	seals,	etc.	The	cooling	system	fulfils	its	mission,	if	at	least	one
cooling	line	delivers	cooling	fluid	to	the	chemical	reactor.	Suppose	for	the	sake	of	simplicity
that	all	pipeline	sections	are	in	the	same	state	of	deterioration	and	each	section	is	characterised
with	the	same	reliability	 ,	associated	with	1	year	of	operation.	Because	of	the	deteriorated
sections,	the	cooling	system	will	benefit	from	risk	reduction	options	consisting	of	purchasing
and	replacing	deteriorated	pipeline	sections	with	new	sections.	Consequently,	the	replacement
of	any	of	the	nine	pipeline	sections	is	a	possible	risk	reduction	option.	Now,	suppose	that	the
available	budget	is	sufficient	for	implementing	exactly	three	options	(for	purchasing	and
replacing	exactly	three	pipeline	sections).	Each	new	pipeline	section	is	characterised	by	a
reliability	0.9	for	1	year	of	operation.

Because	of	the	symmetry	of	the	system	in	Figure	19.1a,	the	replacement	of	any	pipeline	section
is	associated	with	the	removal	of	the	same	amount	of	system	risk.	The	pipeline	sections	work
independently	from	one	another,	and	because	all	of	them	are	identical,	it	seems	that	any	three
risk	reduction	options	can	be	selected	(any	three	pipeline	sections	can	be	replaced	with	new
ones;	Figure	19.1b).

This	impression	however	is	incorrect.	The	removed	risk	of	system	failure	is	highest	if	the
available	budget	is	spent	preferentially	on	replacing	pipeline	sections	forming	an	entire
cooling	branch	(Figure	19.1c),	as	opposed	to	replacing	randomly	selected	sections	inside	the
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system	(Figure	19.1b)	(Todinov,	2014b).

Indeed,	the	reliability	of	the	parallel-series	arrangement	in	Figure	19.1b	is

while	the	reliability	of	the	parallel-series	arrangement	in	Figure	19.1c	is	significantly	higher:

The	variant	presented	in	Figure	19.1c	is	an	example	of	a	well-ordered	parallel-series	system.
A	well-ordered	parallel-series	arrangement	is	obtained	if	the	available	components	are	used	to
build	the	branch	with	the	highest	possible	reliability/availability,	the	remaining	components
are	used	to	build	the	next	branch	with	the	highest	possible	reliability/availability	and	so	on,
until	the	entire	parallel-series	arrangement	is	built.

Another	example	of	a	well-ordered	parallel-series	system	is	the	system	in	Figure	19.2,	where
in	the	parallel	branches	there	are	three	pre-existing	components	with	reliabilities	 ,	

	and	 .	These	components	are	always	attached	to	the	corresponding	branches.
There	are	also	empty	sockets	which	can	accommodate	type-A	components	and	type-B
components.	The	type-A	components	are	of	two	varieties:	there	is	one	old	component	with
reliability	0.57	and	one	medium-age	component	with	reliability	0.67.	The	type-B	components
are	also	of	two	varieties:	three	old	components	with	reliability	0.7	and	two	medium-age
components	with	reliability	0.8.	The	system	with	the	highest	possible	reliability	(removed	risk
of	system	failure)	is	the	system	shown	in	Figure	19.2.	In	this	system,	the	reliability	of	the
second	branch	cannot	be	improved	by	interchanging	components	with	other	branches.	The
reliability	of	the	third	branch	cannot	be	improved	by	interchanging	components	with	the	less
reliable	first	branch.



Figure	19.2	A	parallel-series	logical	arrangement	with	three	pre-existing	components	with
specified	reliabilities	and	eight	interchangeable	components

Parallel-series	arrangements	are	very	common.	Consider	a	safety-critical	system	for	detecting
the	release	of	toxic	gas,	based	on	n	detectors	working	in	parallel.	Upon	a	toxic	gas	release,	the
system	detects	the	release	if	at	least	one	of	the	detectors	working	in	parallel	detects	the	toxic
gas	release.	This	system	is	a	parallel-series	system	if	the	parts	building	the	separate	detectors
are	logically	arranged	in	series.

Consider	an	example	where	there	are	three	types	of	components	with	different	age	–	new,
medium	and	old	components	(Figure	19.3).	The	maximum	reliability	is	achieved	if	all	new
components	are	arranged	in	a	single	branch,	the	medium-age	components	are	arranged	in
another	branch	and	all	old-age	components	are	grouped	in	a	separate	branch	(Figure	19.3).

Figure	19.3	Minimising	the	risk	of	failure	of	a	parallel-series	system

These	results,	for	a	number	of	well-ordered	parallel-series	systems,	have	been	verified	by	a
computer	simulation.	The	computer	simulation	consisted	of	specifying	the	reliabilities	of	the
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interchangeable	components	in	the	branches	and	calculating	the	reliability/availability	of	the
well-ordered	system.	The	second	phase	of	the	procedure	is	a	‘random	scrambling’	of	the
interchangeable	components	in	the	branches,	by	generating	random	indices	of	interchangeable
components	from	different	branches	and	swapping	their	reliability	values.	The	swapping
guarantees	that	any	resultant	system	includes	exactly	the	same	set	of	interchangeable
components	on	a	specified	branch	as	the	initial	system.	After	the	‘random	scrambling’,	the
reliability/availability	of	the	scrambled	system	was	calculated	and	compared	with	the
reliability/availability	of	the	well-ordered	system.	If	the	reliability/availability	of	the	well-
ordered	system	was	greater	than	or	equal	to	the	reliability/availability	of	the	scrambled
system,	the	content	of	a	counter	was	increased.	At	the	end,	the	probability	that	the	well-ordered
system	has	reliability/availability	not	smaller	than	the	reliability/availability	of	the	scrambled
system	was	calculated.	In	all	of	the	conducted	simulations,	this	probability	was	always	equal
to	one,	which	confirms	that	the	well-ordered	systems	are	indeed	characterised	by	the	largest
reliability/availability.

These	results	can	be	summarised	by	stating	a	general	result	(Todinov,	2014b):

Theorem

The	well-ordered	parallel-series	system	possesses	the	highest	possible	reliability.

Proof

This	theorem	will	be	proved	by	contradiction	and	the	extreme	principle.	Suppose	that
there	is	a	system	which	is	not	well	ordered	and	which	possesses	the	highest	possible
reliability.	Without	loss	of	generality,	suppose	that	the	branches	in	this	system	have	been
rearranged	in	such	a	way	that	for	any	two	branches	i,	j	for	which	 ,	the	branch	with
index	‘i’	is	not	less	reliable	than	branch	‘j’	( ).	If	the	system	is	not	a	well-ordered
system,	then	there	will	be	two	branches	a	and	b	with	reliabilities	 ,	where	there
will	be	at	least	one	component	in	branch	b	with	larger	reliability	than	the	reliability	of	the
analogous	interchangeable	component	in	branch	a.	Suppose	that	 	and	

	are	the	reliabilities	of	branches	a	and	b	and	 ,	 	are	the	number	of
components	in	branches	a	and	b,	correspondingly.	Without	loss	of	generality,	suppose	that
the	two	analogous	interchangeable	components	mentioned	earlier,	are	the	last	components
in	the	branches	a	and	b	( ).

The	reliability	of	the	initial	system	can	be	presented	as

where	 	is	the	reliability	of	the	rest	of	the	parallel-series	arrangement.
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After	swapping	components	 	and	 ,	the	reliability	of	the	resultant	system	becomes

Subtracting	(19.13)	from	(19.12)	yields

Because	 	by	the	way	the	branches	have	been
arranged	in	descending	order	according	to	their	reliability	( ),	and	because	
by	assumption,	the	inequality

holds,	which	means	that	in	Equation	19.14,	 .

Since	 ,	the	right-hand	side	of	Equation	19.14	is	negative,	which	means	that	the
resultant	system	(after	the	swap	of	components)	has	a	higher	reliability.	This	contradicts
the	assumption	that	the	initial	system	(before	the	swap)	was	the	system	with	the	highest
possible	reliability.	Therefore,	the	reliability	of	a	system	which	is	not	well	ordered	can
be	improved	by	swapping	components	between	parallel	branches	until	a	well-ordered
system	is	finally	obtained.	A	well-ordered	system	is	unique,	and	there	can	be	no	two
different	well-ordered	systems.	Because	a	parallel-series	system	can	either	be	a	well-
ordered	or	not	well-ordered	system,	the	well-ordered	system	has	a	higher	reliability
compared	to	any	other	arrangement.	The	theorem	has	been	proved.

This	result	also	provides	the	valuable	opportunity	to	improve	the	reliability/availability	of
common	engineering	systems	with	parallel-series	logical	arrangement	of	their	components
without	the	knowledge	of	their	reliabilities	and	without	any	investment.	Unlike	all	traditional
approaches,	which	invariably	require	resources	to	achieve	reliability	improvement	and	system
risk	reduction,	a	system	risk	reduction	can	also	be	achieved	by	an	appropriate	permutation	of
the	available	interchangeable	components	in	the	parallel	branches.

Components	of	similar	level	of	deterioration	(reliability	levels)	should	be	placed	in	the	same
parallel	branch.

The	example	in	Figure	19.1	clearly	shows	that	the	amount	of	removed	system	risk	depends	on
the	selected	set	of	options	despite	that	the	individual	options	are	identical	and	remove	the	same
amount	of	system	risk.

Going	back	to	the	limitations	of	the	classical	(0-1)	dynamic	programming	approach,	even	if	the
two	sets	of	risk	reduction	options	yield	the	same	sum	of	the	individually	removed	risks,	one	of
the	sets	removed	larger	amount	of	system	risk.	The	classical	(0-1)	knapsack	dynamic
programming	approach	does	not	account	for	this	situation.



This	section	establishes	an	important	requirement	for	the	application	of	the	(0-1)	dynamic
programming	method:	The	total	amount	of	removed	system	risk	should	depend	only	on	the
sum	of	the	removed	system	risks	from	the	individual	options	and	should	not	depend	on	the
selection	of	the	risk	reduction	options	or	their	number.

Any	two	sets	of	risk	reduction	options	with	the	same	combined	removed	risk	should	result	in
the	same	amount	of	removed	system	risk.	In	what	follows,	only	risk	reduction	options
possessing	this	property	will	be	considered.	Many	risk	reduction	options	preventing	fatalities
in	the	railway	industry,	for	example,	possess	this	property.	These	will	be	considered	in	detail
in	the	next	section.

19.2.4	A	Dynamic	Algorithm	for	Solving	the	Optimal	Safety	Budget
Allocation	Problem
Considering	the	magnitude	of	the	implementation	costs	for	the	risk	reduction	options	in	the
industry	and	the	magnitude	of	removed	risks,	it	can	be	assumed	that	the	costs	and	the	amount	of
removed	risk	can	always	be	expressed	as	integer	numbers.	These	express	the	removed	risk	and
the	cost	of	implementation	of	the	options	in	thousands,	tens	of	thousands	or	hundreds	of
thousands	of	dollars.	It	is	also	assumed	that	the	available	budget	can	also	be	specified	by	an
integer	number.

As	a	result,	the	problem	of	optimal	allocation	of	a	risk	reduction	budget	is	reduced	to	a
combinatorial	optimisation	problem,	involving	integers	only.

Dynamic	programming	will	be	used	for	solving	the	problem	formulated	by	the	inequality	19.5
and	Equation	19.9.	The	advantage	of	the	dynamic	programming	consists	of	the	fact	that	it	finds
solutions	to	sub-problems	increasing	in	size,	stores	them	in	the	memory	and	describes	the
solution	of	each	sub-problem	in	terms	of	already	solved	and	previously	stored	solutions	of
smaller	sub-problems.	As	a	result,	sub-problems	are	solved	only	once,	which	makes	the
dynamic	programming	significantly	more	efficient	than	a	brute-force	method	based	on	the
enumeration	of	all	possible	subsets	in	the	set	of	available	risk	reduction	options	S.	The	number
of	possible	subsets	in	the	set	S	is	 ,	and	the	computational	time	of	a	brute-force	method	based
on	scanning	all	possible	subsets	increases	dramatically	with	increasing	the	number	n	of	risk
reduction	options.

The	description	of	the	algorithm	in	pseudocode	is	presented	next.



Algorithm	19.1:	Building	the	dynamic	risk	reduction
table
Initialising	array	x[][]	with	zeroes	in	the	first	row	and	in	the	first	

column.

		for	i=1	to	n	do

		for	j=1	to	B	do

	{

		cur_budget	=	j;

		if(c[i]>cur_budget)	then	{	

																													x[i][j]=x[i-1][j];	

																													trac[i][j]=0;	

																											}

																						else

																						{

									rem	=	cur_budget-c[i];

									tmp	=	rr[i]	-	c[i]+x[i-1][rem];

									if(x[i-1][cur_budget]	>	tmp)	then	{

									x[i][j]	=	x[i-1][j];

									trac[i][j]=0;

																																												}

									else	{

																x[i][j]=tmp;	

																trac[i][j]=1;

														}

									}

		}

The	algorithm	works	as	follows.	The	solutions	of	the	sub-problems	are	kept	in	the	array	x[][].
The	information	necessary	to	restore	the	optimal	solution	is	kept	in	the	array	trac[][].	The	size
of	the	x[][]	array	is	(n+1)	×	B	elements.	The	first	row	of	the	array	x[][]	corresponds	to	zero
number	of	selected	options	in	the	optimal	set	P;	the	first	column	of	array	x[][]	corresponds	to
zero	budget.

The	sub-problems	are	defined	by	the	size	of	the	current	budget	which	varies	from	1	to	B	units.
The	cost	of	the	ith	risk	reduction	option	is	compared	with	the	value	of	the	current	budget,	and	if
it	is	greater	than	the	current	budget,	the	ith	risk	reduction	option	is	not	included	in	the	optimal
set,	which	is	reflected	by	the	zero	value	in	the	trac	array	(trac[i][j]=0).	In	the	case	where	the
current	budget	is	greater	than	the	cost	of	the	ith	risk	reduction	option,	a	decision	is	taken
whether	to	include	the	ith	risk	reduction	option	or	not.

Initially,	the	statement	‘rem=cur_budget	-	c[i];’	determines	the	amount	of	remaining	budget	if
the	ith	risk	reduction	option	is	included.	The	sub-problem	marked	by	x[i-1][rem]	however	has
already	been	solved,	and	its	solution	has	been	recorded	in	the	x[][]	array.	The	entry	x[i-1]
[rem]	gives	the	sum	X	in	Equation	19.9	for	available	risk	reduction	options	from	1	to	i-1.
Consequently,	the	solution	of	the	sub-problem	does	not	need	to	be	determined	again;	it	can



simply	be	read	out	from	the	x[][]	array.	The	amount	of	risk	removed	by	the	ith	risk	reduction
option	is	rr[i]	and	the	cost	of	the	ith	risk	reduction	option	is	c[i].	Consequently,	the	sum	X,	for
budget	cur_budget=j,	if	the	ith	risk	reduction	option	is	included,	is	given	by	‘tmp	=	rr[i]-
c[i]+x[i-1][rem];’.	If	the	ith	option	is	not	included	in	the	optimal	set	P,	the	sum	X	of	the	total
amount	of	removed	risk	and	remaining	budget,	within	the	budget	cur_budget,	is	given	by	x[i-1]
[cur_budget],	(cur_budget=j).	Consequently,	the	decision	whether	to	include	the	ith	risk
reduction	option	in	the	optimal	set	or	not	depends	on	the	outcome	of	the	comparison	made	in
the	statement	‘if(x[i-1][cur_budget]	>	tmp)’	where	tmp	=	rr[i]-c[i]+x[i-1][rem].

If	‘x[i-1][cur_budget]	>	tmp’,	not	including	the	ith	risk	reduction	option	yields	a	greater	sum	X
and	the	entry	‘trac[i][j]=0’	in	the	track[][]	array	is	set	to	zero,	which	indicates	that	the	ith	risk
reduction	option	has	not	been	included	in	the	optimum	set	of	options	P.	The	maximum	of	the
sum	X	is	equal	to	the	maximum	sum	X	within	the	current	budget	‘j’,	for	i-1	total	number	of
available	options.	This	maximum	however	has	already	been	computed	and	is	in	the	array	x[][];
this	is	the	entry	x[i-1][j].

If	‘x[i-1][cur_budget]	<	tmp’,	including	the	ith	risk	reduction	option	yields	a	greater	sum	X,
and	the	entry	in	the	trac	array	is	set	to	one	(trac[i][j]=1;),	which	indicates	that	the	ith	risk
reduction	option	has	been	included	in	the	optimal	set	P.	The	maximum	sum	X	is	equal	to	x[i][j]
=	rr[i]-c[i]+x[i-1][rem].

The	optimal	set	of	options	is	restored	by	the	next	algorithm	in	pseudocode.

Algorithm	19.2:	Restoring	the	optimal	set	of	risk
reduction	options	from	the	dynamic	tables
	//Initialise	all	entries	of	the	‘solution[]’	array	with	zeroes.

	cur_bud=B;

	cur_opt=n;	

	tmp=trac[cur_opt][cur_bud];

	while	(cur_opt	>	=1	)	do

																			{

						if	(trac[cur_opt][cur_bud]=1)	then	{

																																										solution[cur_opt]	=	1;

																																										cur_bud=cur_bud

																																										-	c[cur_opt];

																																										cur_opt=cur_opt	-	1;

																																										}

																			else	cur_opt=cur_opt-1;

						}

The	algorithm	starts	with	the	entry	trac[n][B]	of	the	track[][]	array,	which	corresponds	to	a	full
budget	B	and	all	n	available	risk	reduction	options.	If	the	nth	option	has	been	included	in	the
optimal	set,	this	will	be	indicated	by	a	non-zero	entry	in	the	trac	array	(trac[n][B]=1).	In	this



case,	the	solution	array	marks	the	nth	option	as	‘included’	in	the	optimal	set	P,	by	the	statement
‘solution[n]=1’.	The	current	budget	is	then	reduced	by	the	statement	‘cur_bud	=	cur_bud	-
c[cur_opt]’	with	the	cost	of	the	current	(nth)	option.	The	current	option	to	be	considered	should
now	be	the	n-1st	option.	This	is	ensured	by	the	statement	‘cur_opt	=	cur_opt	-	1’.

If	the	nth	option	has	not	been	included	in	the	optimal	set,	this	will	be	indicated	by	a	zero	entry
in	the	trac	array	(trac[n][B]=0).	In	this	case,	the	current	budget	is	not	altered	because	the	nth
risk	reduction	option	has	not	been	implemented.

The	process	of	considering	the	options	in	reverse	order	continues	until	the	first	option	is
reached.	At	this	point,	the	entries	of	the	solution	array	will	contain	‘1’	for	the	options,	which
have	been	included	in	the	optimal	set	P.

The	running	time	of	Algorithm	19.1	for	building	the	dynamic	tables	is	determined	by	the	two
nested	loops:	for	i=1	to	n	do	{for	j=1	to	B	do},	which	contain	a	set	of	operations	that
are	executed	in	constant	time.	The	maximum	number	of	steps	after	which	Algorithm	19.1	will
terminate	is	 .	The	maximum	number	of	steps	for	Algorithm	19.2	is	n	because	after	each
iteration	of	the	while-do	loop,	the	number	of	options	is	reduced	by	1.	As	a	result,	after	at	most
n	steps,	Algorithm	19.2	will	terminate.	The	total	number	of	steps	is	therefore	

.	The	worst-case	running	time	of	the	algorithm	for	optimal	allocation	of	a
safety	budget	is	therefore	 .

This	algorithm,	applied	to	the	counterexample	from	Table	19.1,	yields	the	correct	solution.
Options	A	and	B	are	selected	as	optimal	options	and	not	options	C	and	D.	The	proposed	model
produced	a	superior	solution	compared	to	the	standard	(0-1)	dynamic	programming	algorithm.

The	proposed	model	also	yields	a	solution	superior	to	a	cost–benefit	solution.	This	point	will
be	illustrated	by	the	next	example	from	the	railway	industry.	A	similar	example	has	been
considered	in	(Weli	and	Todinov,	2013).	Table	19.2	lists	five	risk	reduction	measures	(A,	B,	C,
D	and	E)	associated	with	different	amount	of	removed	risk	and	different	costs.

Table	19.2	Risk	reduction	measures	with	the	associated	costs	and	magnitudes	of	the	removed
risk.	The	total	budget	is	2.6	million

Risk	reduction
option

Removed	risk	(in
millions	$)

Cost	of	implementation	(in
millions	$)

Benefit–cost
ratio

A 2.4 1.2 2.0
B 1.3 0.7 1.857
C 2.3 1.1 2.09
D 1.5 0.8 1.875
E 1.6 0.9 1.777

Suppose	that	a	total	budget	B = 2.6	million	has	been	allocated	for	the	reduction	of	platform
train	accidents	with	passengers.	This	is	a	major	risk	which	is	located	in	the	high-risk	region	of
the	risk	matrix.	The	first	risk	reduction	option	A	requires	the	train	driver	to	operate	a	CCTV
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monitoring	of	the	platform.	The	train	will	not	be	started	if	there	are	passengers	stuck	at	the
door,	fallen	onto	the	track	or	fallen	between	train	and	platform.	Option	B	requires	introducing
stop	plungers	–	wall-mounted	alarm	devices	at	specified	locations/intervals	within	the
platform	area	which	can	be	operated	by	platform	staff	or	passengers.	Trains	in	the	platform
area	will	be	brought	to	a	halt	by	operating	any	of	these	plungers.	Option	C	includes	equipping
the	train	doors	with	sensors	to	reduce	the	possibility	of	trapping	and	dragging	passengers.
Option	D	consists	of	gap	fillers	between	train	and	platform	to	reduce	accidents	where
passengers	fall	between	train	and	platform	while	boarding	the	train.	Option	E	includes	a
system	preventing	opening	the	train	doors	on	the	wrong	side	of	the	platform.

The	five	key	risk	reduction	options,	A,	B,	C,	D	and	E,	have	been	evaluated,	and	the
corresponding	magnitudes	of	removed	risk	and	costs	are	according	to	Table	19.2.

Following	the	cost–benefit	approach,	the	risk	reduction	measures	C	and	A,	with	the	largest
benefit–cost	ratio	will	be	selected.	The	combined	cost	of	the	selected	risk	reduction	measures
is	2.3	million	–	well	within	the	fixed	budget	of	2.6	million.	The	removed	risk	is	4.7	million.

The	proposed	algorithm	yields	an	optimal	set	including	risk	reduction	options	B,	C	and	D	with
a	combined	cost	exactly	2.6	million	(equal	to	the	available	budget)	and	removed	risk	equal	to
5.1	million.

The	risk	reduction	ratio

equals	133%,	which	indicates	that	the	solution	produces	a	substantial	return	on	the	extra	budget
resources.	The	proposed	model	in	Section	19.2.2	yields	a	solution	superior	to	the	cost–benefit
solution.

Table	19.3	lists	seven	risk	reduction	options	(A,	B,	C,	D,	E,	F	and	G)	with	removed	risks	and
costs,	according	to	the	table.	The	total	budget	is	B = 170	thousand.	Following	the	cost–benefit
approach,	risk	reduction	options	A,	B	and	C,	associated	with	the	largest	benefit–cost	ratio,	will
be	selected.	The	combined	cost	of	these	risk	reduction	options	is	 	thousand,	well
within	the	fixed	budget	of	170	thousand.	The	removed	risk	is	 	thousand.
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Table	19.3	Risk	reduction	options	with	the	associated	costs	and	magnitude	of	the	removed
risk.	The	available	budget	is	B = 170	thousand

Risk	reduction
option

Removed	risk	(in
thousand	$)

Cost	of	implementation	(in
thousand	$)

Benefit–cost
ratio

A 442 41 10.78
B 525 50 10.5
C 511 49 10.4
D 593 59 10.05
E 546 55 9.927
F 564 57 9.89
G 617 60 10.28

Applying	the	algorithm	discussed	earlier,	yields	an	optimal	set	including	risk	reduction	options
B,	D	and	G.	The	combined	cost	of	these	options	is	 	thousand	(within	the	fixed	budget
of	170	thousand)	with	a	total	removed	risk	 	thousand.	The	comparative	ratio	is

As	can	be	verified,	despite	that	the	comparative	ratio	is	smaller	than	the	benefit–cost	ratio	of
each	risk	reduction	option,	the	extra	risk	reduction	is	substantial	(257	thousand)	which
provides	a	very	good	return	on	the	invested	extra	budget	of	29	thousand.	Clearly,	the	solution
from	the	proposed	algorithm	should	be	preferred	to	the	cost–benefit	solution.

Computationally,	the	proposed	in	Section	19.2.3	dynamic	algorithm	is	very	efficient.	This	is
illustrated	with	the	example	from	Table	19.4,	listing	24	different	risk	reduction	options	and
available	budget	B = £6 404 180.



Table	19.4	Risk	reduction	options	with	the	associated	costs	and	magnitude	of	the	removed
risk.	The	total	budget	is	£6 404 180

Risk	reduction
option

Removed	risk,
$

Cost	of
implement,	$

Benefit–cost
ratio

Selection
indicator

 1 825 594 382 745 2.1570 1
 2 1 677 009 799 601 2.0973 1
 3 1 676 628 909 247 1.8440 0
 4 1 523 970 729 069 2.0903 1
 5 943 972 467 902 2.0175 1
 6 97 426 44 328 2.1978 1
 7 69 666 34 610 2.0129 0
 8 1 296 457 698 150 1.8570 0
 9 1 679 693 823 460 2.0398 0
10 1 902 996 903 959 2.1052 1
11 1 844 992 853 665 2.1613 1
12 1 049 289 551 830 1.9015 0
13 1 252 836 610 856 2.0510 1
14 1 319 836 670 702 1.9678 0
15 953 277 488 960 1.9496 0
16 2 067 538 951 111 2.1738 1
17 675 367 323 046 2.0906 0
18 853 655 446 298 1.9127 0
19 1 826 027 931 161 1.9610 0
20 65 731 31 385 2.0943 0
21 901 489 496 951 1.8140 0
22 577 243 264 724 2.1805 1
23 466 257 224 916 2.0730 1
24 369 261 169 684 2.1762 1

The	options	selected	in	the	optimal	set	by	the	proposed	algorithm	are	shown	in	the	last	column
of	the	table.

19.3	Validation	of	the	Model	by	a	Recursive
Backtracking



For	a	small	number	of	risk	reduction	options	(up	to	12),	the	proposed	algorithm	has	been
validated	by	using	a	recursive	backtracking	algorithm	by	which	all	possible	combinations	of
risk	reduction	options	are	generated,	evaluated	and	compared,	after	which	the	best

combination,	associated	with	the	largest	sum	 ,	is	selected.	Recursive
backtracking	has	been	used	for	a	long	time	to	solve	combinatorial	problems	(Wirth,	1976)	and
guarantees	that	(i)	all	possible	potential	combinations	of	risk	reduction	options	are	generated
and	(ii)	no	possible	combination	of	risk	reduction	measures	has	been	missed.

The	algorithm	in	pseudocode	for	generating	and	evaluating	the	possible	valid	combinations	of
risk	reduction	options	is	as	follows:

procedure	evaluate_solution(num_opt)

{

	X=0;	

	for	j=1	to	num_opt	do		{

																								tmp=current_sol[j];

																								S=S+rrem[tmp]-cost[tmp];

																		}

	if	(global_max	<	X)	then	{

																										global_max	=	X;

																										save	the	current	optimal	solution;

																			}

}

procedure	extend_solution(k,	rem_B)

{

	flag=0;

	k=k+1;

	

	for	(each	risk	reduction	option	i)	do

			{

				if	(opt_assigned[i]=0	and	cost[i]<rem_B)	then

												{

														flag=1;

														current_sol[k]=i;

														opt_assigned[i]=1;

														rem_B=rem_B-cost[i];

														extend_solution(k,rem_B);	//try	to	extend	the	solution

														opt_assigned[i]=0;								//	undo	the	option	to	allow	further

exploration	

														rem_B=rem_B+cost[i];						//	restore	the	remaining	budget

														}

	}

	if	(flag=0)	then	evaluate_solution(k-1);

}			

for	each	risk-reduction	option	i	do	opt_assigned[i]=0;

extend_solution(0,B).



The	recursive	backtracking	procedure	extend_solution(k,	rem_B)	has	two	parameters	–
‘k’,	the	number	of	selected	options	in	the	partial	solution,	and	‘rem_B’,	the	size	of	the
remaining	budget.	Initially,	the	backtracking	procedure	is	called	with	parameters	0,	B.	For	each
risk	reduction	option	i	(from	1	to	m),	a	check	is	performed	whether	the	risk	reduction	option
has	not	been	assigned.	If	the	option	i	has	been	assigned,	this	will	be	indicated	by	the	value	‘1’
in	the	array	‘opt_assigned[]’.	Initially,	all	entries	of	this	array	are	set	to	‘0’.	The	removed	risks
by	the	individual	risk	reduction	options	are	kept	in	the	array	‘rrem[]’,	while	the	costs	of	the
individual	risk	reduction	options	are	kept	in	the	array	cost[].

If	the	risk	reduction	option	has	not	been	assigned	and	if	it	fits	in	the	remaining	budget	‘rem_B’,
a	flag	is	set	to	one	after	which	the	risk	reduction	option	is	assigned	and	the	remaining	budget	is
reduced	by	the	cost	of	the	risk	reduction	option.	Subsequently,	an	attempt	is	made	to	extend	the
partial	solution	by	calling	the	procedure	extend_solution()	recursively.	If	there	is	no
unassigned	risk	reduction	option	or	if	the	available	unassigned	risk	reduction	options	do	not	fit
in	the	remaining	budget,	the	flag	remains	equal	to	zero,	and	the	attained	partial	solution	is
evaluated.

The	evaluation	of	the	partial	solution	is	reduced	to	calculating	the	sum	 	of
the	assigned	number	of	options	‘num_opt’	and	comparing	it	with	the	current	global	maximum
‘global_max’.	If	X	is	greater	than	the	current	global	maximum,	then	X	replaces	the	current
global	maximum,	and	the	currently	selected	risk	reduction	options	are	saved.

After	a	return	from	a	recursive	call,	it	is	very	important	to	undo	the	risk	option	selection	in
order	to	allow	the	exploration	of	the	other	branches	of	the	recursion	tree.	This	is	done	by	the
two	statements:

	opt_assigned[i]=0;

	rem_B=rem_B+cost[i];

which	unmark	the	ith	risk	reduction	option	as	‘unassigned’	and	increase	the	remaining	budget
by	the	cost	of	the	option.	This	permits	visiting	all	leaves	of	the	recursion	tree,	to	each	of	which
corresponds	a	valid	distinct	permutation	of	risk	reduction	options	fitting	in	the	limited	budget
B.

A	validation	test	has	been	conducted	including	12	risk	reduction	options,	with	removed	risks
and	costs	according	to	Table	19.5.	The	optimal	selection	produced	by	the	dynamic	algorithm	is
given	in	the	last	column	of	Table	19.5.	The	execution	of	the	recursive	backtracking	algorithm
selected	options	2,	3,	4,	6,	9,	10	and	11	as	optimal	options,	with	total	cost	1577.	This	result
matched	exactly	the	result	from	the	proposed	in	Section	19.2.3	algorithm.



Table	19.5	A	validation	test	example	with	12	risk	reduction	options,	the	associated	and	the
magnitude	of	the	removed	risk.	The	total	budget	is	£1600

Risk	reduction
option

Removed
risk

Cost	of	option,
£

Benefit–cost
ratio

Selection
indicator

1 245 182 1.35 0
2 311 166 1.87 1
3 412 240 1.72 1
4 567 378 1.5 1
5 188 112 1.68 0
6 443 277 1.6 1
7 116  79 1.47 0
8  89  45 1.98 0
9 398 217 1.83 1
10 178  98 1.82 1
11 477 201 2.37 1
12 289 245 1.18 0

A	number	of	additional	tests	have	also	been	conducted,	with	different	number	of	risk	reduction
options.	Invariably,	the	results	from	the	recursive	backtracking	procedure	matched	exactly	the
results	from	the	proposed	dynamic	programming	algorithm.	All	tests	have	been	done	on	small
sets	(up	to	12)	of	risk	reduction	options	because	the	running	time	of	the	recursive	backtracking
procedure	increases	exponentially	with	increasing	the	size	of	the	tested	set.	In	contrast,	the
worst-case	running	time	of	the	(0-1)	dynamic	programming	algorithm	for	optimal	allocation	of
a	safety	budget	is	 ,	where	n	is	the	number	of	available	options	and	B	is	the	size	of	the
budget	as	an	integer	number.	Expressing	the	available	budget	B	as	an	integer	number	(e.g.	to
the	nearest	thousand)	and	following	this	for	the	removed	risk	and	the	cost	of	implementation,
make	the	(0-1)	dynamic	programming	algorithm	very	fast,	which	is	indicated	by	the	results	for
the	set	of	options	in	Table	19.4.	Despite	the	large	budget	and	the	presence	of	risk	reduction
options	with	very	different	costs,	the	solution	was	reached	by	the	(0-1)	knapsack	algorithm
after	1.75 s,	on	a	computer	with	a	processor	Intel	(R)	Core	(TM)	2	Duo	CPU	T9900	@	3.06 
GHz.



Appendix	A

A.1	Random	Events
Sample	space	Ω

The	union	of	all	outcomes	in	an	experiment.



Example

If	the	experiment	is	a	toss	of	two	independently	rolled	dice,	the	sample	space	has	36
equally	likely	outcomes	(elements),	each	of	probability	1/36:

The	sample	space	from	the	toss	of	three	coins	has	 	equally	likely	outcomes
(H(eads)	or	T(ails)):

Ω:	HHH,	HHT,	HTH,	THH,	HTT,	THT,	TTH,	TTT

The	sample	space	of	the	states	of	a	system	containing	three	components	A,	B	and	C	each	of
which	can	be	in	‘working’	(e.g.	A)	or	‘failed’	state	(e.g.	Ā):

Ω:	ABC,	 ,	 ,	 ,	 ,	 ,	

Generally,	a	system	containing	n	components	each	characterised	by	two	distinct	states
contains	a	total	of	2n	different	states.

Event

A	subset	of	the	sample	space	Ω	(of	all	outcomes)	(the	event	A	in	the	Venn	diagram,	 ).

Venn	Diagram

Pictorial	representation	of	subsets	in	the	sample	space.



	(A	is	a	subset	of	the	sample	space)

Certain	Event

The	sample	space	Ω.	Contains	all	possible	outcomes.

Impossible	Event	(Null	Event)

	Does	not	contain	any	outcomes.	An	empty	set.

An	Elementary	Event

Consists	of	a	single	element	(outcome).

Disjoint	(Mutually	Exclusive)	Events

Cannot	occur	simultaneously	(e.g.	the	events	denoting	the	two	possible	states	of	a	system	or
component:	working	or	failed).



Complementary	Events

Whenever	one	does	not	occur,	the	other	does.	The	complement	of	event	A	is	denoted	by	Ā.	Ā
includes	all	outcomes	(elementary	events)	x	which	do	not	belong	to	A:

Note:	The	notation	 	means	all	outcomes	x	with	property	P;	 	means	all	x
with	the	property	 .



The	Null	event	and	the	certain	event	are	complementary	events:	 ;	 .

Two	events	are	equivalent	and	we	write	 	if	A	and	B	have	the	same	outcomes	x.	 	is
fulfilled	whenever	for	 	then	 	and	whenever	 	then	 .

Suppose	that	A	and	B	are	events.	If	every	outcome	of	B	is	an	outcome	of	A,	we	say	that	the
outcomes	of	B	are	a	subset	of	the	outcomes	of	A.	In	other	words,	whenever	there	is	a
realisation	of	the	event	B,	there	is	automatically	a	realisation	of	the	event	A.

	(B	is	a	subset	of	A)

	(from	 ,	it	follows	( )	that	 )

A.2	Union	of	Events



The	union	 	of	two	events	A	and	B	is	the	event	consisting	of	outcomes	x	belonging	to	A	or
B	or	both.

The	union	 	of	n	events	is	the	event	which	contains	all	outcomes	x
belonging	to	at	least	one	of	the	events	Ai.





A.3	Intersection	of	Events
The	intersection	 	of	two	events	A	and	B	is	the	event	consisting	of	outcomes	x	common	to
both	A	and	B:

The	intersection	 	of	n	events	is	the	event	consisting	of	outcomes	x
common	to	all	events	Ai.



Example

Sample	space:	the	outcomes	from	a	toss	of	a	die

Event	A:	the	result	is	a	number	greater	than	3;	

Event	B:	the	result	is	an	odd	number;	

Let	Ω	be	the	sample	space	and	let	A,	B	and	C	be	events	(subsets)	in	Ω.

The	following	laws	hold:

Associative	Laws

Commutative	Laws

Distributive	Laws

Identity	Laws

Complement	Laws

Idempotent	Laws



Bound	Laws

Absorption	Laws

Involution	Law

0/1	Laws

De	Morgan’s	Laws	for	Sets

Principle	of	Duality

If	any	statement	involving	‘ ’,	‘ ’	and	‘ ’	is	true	for	all	sets,	then	the	dual	statement
obtained	by	replacing	‘ ’	by	‘ ’,	‘ ’	by	‘ ’,	 	by	Ω	and	Ω	by	 	is	also	true	for	all
sets.

Partition	of	the	Sample	Space	Ω

A	collection	of	events	{Ai}	is	said	to	be	a	partition	of	the	sample	space	if	every
element	k	of	Ω	belongs	to	exactly	one	event	Ak.	In	other	words,	a	partition	of	Ω
divides	Ω	into	non-overlapping	subsets.	Ai	are	pairwise	disjoint	and	their	union	is	the
sample	space	Ω.



A.4	Probability
Classical	Approach	to	Defining	Probability

The	ratio	of	the	number	of	favourable	outcomes	to	the	total	number	of	outcomes.

This	approach	can	only	be	used	when	symmetry	is	present,	that	is,	if	all	outcomes	are	equally
likely	(the	outcomes	are	interchangeable).Example



Example

What	is	the	probability	P(A)	of	the	event	A	that	the	sum	of	the	faces	of	two	independently
thrown	dice	will	be	equal	to	5?

Since	there	exist	only	four	favourable	(successful)	outcomes	leading	to	event

A:	(1 + 4,	2 + 3,	3 + 2,	4 + 1)	in	the	total	sample	space	of	6 × 6 = 36	possible	symmetrical
(equally	likely)	outcomes,	the	probability	of	event	A	is

Empirical	Definition	of	Probability

Suppose	that	an	experiment	is	performed	in	which	a	large	number	of	components	are	tested
under	the	same	conditions.	Thus,	if	N	is	the	number	of	components	tested	and	n	is	the	number
of	failures,	the	probability	of	failure	(event	A)	can	be	defined	formally	as

According	to	the	empirical	definition,	probability	is	defined	as	a	limit	of	the	ratio	of
occurrences	from	a	large	number	of	trials.

Usually,	a	relatively	small	number	of	trials	N	gives	a	sufficiently	accurate	estimate	of	the	true
probability	 .

Axiomatic	Approach

Probability	can	also	be	defined	using	Kolmogorov’s	axioms:

Axiom	1:	 .

Axiom	2:	 .

Axiom	3:	This	axiom	is	related	to	an	infinite	number	of	mutually	exclusive	events:

The	probability	of	the	certain	event	is	unity	(Axiom	2):	 .

The	probability	of	the	null	event	is	zero:	 .	According	to	the	first	axiom,	the
probability	of	events	is	measured	on	a	scale	from	0	to	1,	with	‘0’	being	impossibility	and	‘1’
being	certainty.



A.5	Probability	of	a	Union	and	Intersection	of	Mutually
Exclusive	Events
From	the	third	Kolmogorov’s	axiom,	it	follows	that

if	A	and	B	are	mutually	exclusive	(disjoint)	events	( ),	then

Example

Event	A:	‘The	number	of	points	from	rolling	a	die	is	5’.

Event	B:	‘The	number	of	points	from	rolling	a	die	is	4’.

The	probability	of	obtaining	5	or	4	points	is

Probability	of	Complementary	Events

Indeed,



An	Important	Application

The	probability	that	a	measuring	device	will	fail	during	operation	is	p.	If	three	devices	are
present,	the	probability	that	at	least	one	device	(one	or	two	or	three)	will	fail	can	be	found
using	probability	of	complementary	events.	The	probability	of	the	event	at	least	one	of	the
devices	will	fail	is	equal	to	one	minus	the	probability	of	the	event	none	of	the	devices	will	fail
because	the	two	events	are	complementary:

Example

For	an	arrangement	of	five	sensors,	the	probability	that	at	least	three	sensors	will	work
can	be	expressed	as	follows:

A.6	Conditional	Probability
Probability	of	Intersection	of	Events

The	number	of	ways	A	and	B	can	occur	equals	the	number	of	ways	B	can	occur	given	that	A	has
occurred:



The	last	expression	can	also	be	presented	as

Dividing	the	two	sides	by	the	total	number	of	trials	N	results	in

Since	according	to	the	classical	definition	of	probability

finally,	 ,	where	 	is	the	probability	of	B	given	that	A	has
occurred	(conditional	probability).

Alternatively,	the	number	of	ways	A	and	B	can	occur	equals	the	number	of	ways	A	can	occur
given	that	B	has	occurred.	Therefore,	the	corresponding	probability	expression	becomes

where	 	is	the	probability	of	A	given	that	B	has	occurred	(conditional	probability).



Example

A	fault	has	occurred	in	one	of	the	three	sections	of	a	communication	line.	The	probability
of	finding	the	fault	after	inspecting	any	of	the	three	sections	is	1/3.	The	sections	are
searched	sequentially,	starting	with	the	first	section.	Let	event	A	be	the	fault	will	not	be
found	after	searching	the	first	section	and	event	B	stand	for	the	fault	will	not	be	found
after	searching	the	second	section.

The	probability	of	event	B	depends	on	the	outcome	of	event	A:

As	a	result,

Since	 	and	 ,

The	same	result	could	have	been	obtained	by	figuring	out	that	the	probability	that	the	fault
will	not	be	found	by	searching	the	first	and	the	second	section	is	equal	to	the	probability
that	the	fault	will	be	located	in	the	third	section	which	is	equal	to	1/3.

Probability	of	Intersection	of	Three	Events



	.

Example

A	component	is	put	into	service.	The	probability	that	the	component	will	be	defective	is
0.03.	If	the	component	is	defective,	with	probability	0.4,	the	defect	promotes	an	increased
corrosion	rate	for	the	component.	The	increased	corrosion	rate	causes	13%	of	the
defective	components	to	fail	shortly	after	being	put	into	service,	as	opposed	to	non-
defective	components	which	do	not	fail	in	such	a	short	time.

Find	the	probability	that	a	particular	component	will	fail	shortly	after	being	put	into
service	due	to	intensive	corrosion	promoted	by	the	defect.

Let	A	denote	the	event	the	component	is	defective,	B	denote	the	event	the	defect	has
promoted	increased	corrosion	rate	and	C	denote	the	event	the	component	will	fail
shortly	after	being	put	into	service.

Then

Since	 ,	 	and	 ,

Probability	of	Intersection	of	n	Events



The	formula	related	to	probability	of	intersection	of	three	events	can	be	generalised	for	n
events.	The	probability	of	intersection	of	n	events	Ai,	 	is

The	probabilities	 	of	the	event	A	given	that	B	has	occurred	and	of	the	event	B	given
that	A	has	occurred	can	be	determined	as	follows:

From	the	last	two	equations,	it	follows



Example

It	has	been	observed	that	3%	of	the	components	arriving	on	an	assembly	line	are	both
defective	and	from	supplier	X.	If	30%	of	the	components	come	from	supplier	X,	find	the
probability	that	a	purchased	component	will	be	defective	given	that	it	comes	from
supplier	X.

Let	A	denote	the	event	the	component	comes	from	supplier	X	and	B	denote	the	event	the
component	is	defective.

Then	 .

Thus,	10%	of	the	components	from	supplier	X	are	likely	to	be	defective.

A.7	Probability	of	a	Union	of	Non-disjoint	Events
Non-disjoint	events:	

Indeed,



Similarly,	the	probability	of	a	union	of	three	non-disjoint	events	can	be	calculated:

The	expression	regarding	the	probability	of	a	union	of	non-disjoint	events	can	easily	be
generalised	for	n	events:



This	expression	is	also	known	as	the	inclusion–exclusion	expansion.	The	rule	for	the
expansion	can	be	summarised	by	the	following	steps:

1.	 Add	the	probabilities	of	all	single	events.	This	means	that	the	probability	of	the
intersections	of	any	pair	of	events	has	been	added	twice	and	should	be	subtracted.

2.	 Subtract	the	probabilities	of	all	intersections	of	two	events	from	the	previous	result.
Since	the	contribution	of	the	intersection	of	any	three	events	has	been	added	three	times
through	the	single	events	and	subsequently	has	been	subtracted	three	times	from	the	twofold
intersections,	the	probabilities	of	all	threefold	intersections	must	be	added.

3.	 For	higher-order	intersections,	terms	with	odd	number	of	events	are	added,	while	terms
with	even	number	of	events	are	subtracted	from	the	sum.

A.8	Statistically	Dependent	Events
Two	events	are	statistically	dependent	if	the	outcome	of	one	of	the	events	affects	the
probability	of	occurrence	of	the	other	event.



Example

An	electronic	component	is	cooled	by	a	fan.	If	the	cooling	fan	does	not	fail	during	the
operating	period	of	the	component,	the	cooled	component	survives	the	operating	period
without	failure	with	probability	0.99.	If	the	cooling	fan	fails	during	the	operating	period	of
the	component,	the	cooled	component	fails	immediately.

Denote	with	A	the	event	the	cooled	component	survives	the	operating	period	without
failure	and	with	B	the	event	the	fan	survives	the	operating	period	without	failure.

The	probability	that	the	cooled	component	will	survive	the	operating	period,	given	that
the	fan	has	survived	the	operating	period,	is

The	probability	that	the	cooled	component	will	survive	the	operating	period	given	that	the
fan	has	failed	is

As	a	result,	the	probability	of	event	A	depends	on	the	outcome	of	event	B.

A.9	Statistically	Independent	Events
Two	events	are	statistically	independent	if	the	probability	of	occurrence	of	one	of	the	events
is	not	influenced	by	the	outcome	of	the	other	event.

Example

In	an	experiment	of	flipping	two	different	coins,	the	events	head	on	the	first	coin	and	tail
on	the	second	coin	are	statistically	independent.



Example

For	two	components	coming	from	separate	suppliers,	event	A:	the	first	component	is	non-
defective	and	event	B:	the	second	component	is	non-defective	are	statistically
independent.

In	this	case,

and

For	statistically	independent	events,	the	probability	that	they	will	both	occur
simultaneously	is

Indeed,	this	follows	immediately	from	 	and	 .	If
there	are	n	independent	events,	the	probability	of	all	of	them	occurring	simultaneously	is

A.10	Probability	of	a	Union	of	Independent	Events
For	two	statistically	independent	events	A	and	B,	the	probability	that	at	least	one	will	occur
is

Indeed,	the	above	follows	from

and	 ,	which	is	valid	for	statistically	independent	events.

A.11	Boolean	Variables	and	Boolean	Algebra
Boolean	variables	are	indicator	variables	for	the	events.	Boolean	variables	represent	the	two
states	of	an	event	–	occurrence	and	non-occurrence	–	and	this	defines	the	link	between	events
and	Boolean	variables.	Thus,	a	Boolean	indicator	variable	can	only	take	values	‘0’	or	‘1’	and



is	defined	in	the	following	way:

Boolean	variables	are	often	used	in	risk	analysis	to	represent	two	states	of	a	system	or
component	(let	A	be	the	event	the	system	works).	Then	 	corresponds	to	the	event	A,	the
system	works,	and	 	corresponds	to	the	event	Ā,	the	system	is	in	a	failed	state.	For
example,	the	state	of	components	arranged	in	series	or	parallel	can	be	presented	with	Boolean
variables:

The	series	arrangement	fails	if	and	only	if	at	least	one	component	fails:

	( 	if	any	 )

The	system	logically	arranged	in	series	works	if	and	only	if	all	of	the	components	work:

	( 	if	all	 )

The	system	logically	arranged	in	parallel	fails	if	and	only	if	all	of	the	components	fail:

	( 	if	all	 )

The	system	logically	arranged	in	parallel	works	if	and	only	if	at	least	one	of	the
components	works:

	( 	if	at	least	one	 )

Boolean	algebra	defines	the	operations	with	Boolean	variables	and	is	used	in	risk	analysis	to
translate	the	state	of	a	system	into	Boolean	expressions.	Boolean	expressions	represent	the
structure	function	of	the	system.	It	can	be	shown	that	the	expected	value	of	the	structure	function
is	the	reliability	of	the	system	(Barlow	and	Proschan,	1975).	Boolean	expressions	are	also	a
useful	tool	for	representing	the	structure	of	fault	trees	and	reliability	block	diagrams	(Hoyland
and	Rausand,	1994).	The	basic	gate	types	used	in	a	fault	tree	(AND,	OR	and	NOT	gate)
correspond	one-to-one	to	the	basic	Boolean	operations.

Boolean	Operations

Boolean	algebra	consists	of	Boolean	variables	and	logical	operations	defined	over	them.	The
operations	AND,	OR	and	NOT	in	Boolean	algebra	are	analogous	to	the	operations
intersection,	union	and	complementation	in	set	theory.

The	Boolean	operations	will	be	illustrated	by	the	event	fluid	supply	in	case	where	the	fluid	is
delivered	by	two	pumps	A	and	B	working	independently.	Values	 	( )	correspond	to	the
events	pump	A	(B)	in	working	state,	whereas	values	 	( )	correspond	to	the	events
pump	A	(B)	in	failed	state.

1.	Logical	AND,	‘.’

Truth	table:



a b a b
1 1 1
1 0 0
0 1 0
0 0 0

Example

;	Full	capacity	fluid	supply	is	present	(both	pumps	A	and	B	work).

A	schematic	presentation	of	an	AND	gate	is	given	below.	It	is	a	basic	building	block	of
fault	trees.	The	output	event	of	AND	gates	occurs	if	all	input	events	occur	simultaneously.

2.	Logical	OR,	‘+’

a b
1 1 1
1 0 1
0 1 1
0 0 0



Example

	:	Fluid	supply	is	present	(at	least	one	pump	A	or	B	is	working).

A	schematic	presentation	of	an	OR	gate	is	given	below.	It	is	a	basic	building	block	of	fault
trees.	The	output	event	of	an	OR	gate	occurs	if	any	of	the	input	events	occurs	or	both
events	occur.

3.	Logical	NOT,	‘-’

Associated	with	the	complementary	event	of	A.	A	value	 	corresponds	to	the	event	the
pump	works;	 	corresponds	to	the	event	the	pump	does	not	work:

a ā
1 0
0 1

Laws	of	Boolean	Algebra

In	the	Boolean	expressions,	OR	is	symbolised	by	‘+’,	but	note	that	the	sign	‘+’	does	not	imply
algebraic	addition.	The	sign	for	AND	is	omitted.

1.	 Associative	Laws

2.	 Commutative	Laws

3.	 Distributive	Laws



(Note	that	the	last	rule	is	not	analogous	to	the	distributive	law	in	ordinary	algebra.)

4.	 Identity	Laws

5.	 Complementary	Laws

6.	 Idempotent	Laws

7.	 Bound	Laws

8.	 Absorption	Laws

9.	 Involution	Law

10.	 0/1	Laws

11.	 De	Morgan’s	Laws

The	following	relationships	help	remove	redundancies	in	Boolean	expressions:



All	laws	can	be	proved	using	truth	tables.

Proof	of	the	distributive	law	 :

a b c a+bc (a+b)(a+c)
1 1 1 1 1
1 1 0 1 1
1 0 1 1 1
1 0 0 1 1
0 1 1 1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

which	shows	that	the	two	Boolean	expressions	 	and	 	are	logically
equivalent.

Proof	of	the	De	Morgan’s	law	 :

a ā b ab
1 0 1 0 1 0 0
1 0 0 1 0 1 1
0 1 1 0 0 1 1
0 1 0 1 0 1 1

Clearly,	some	of	the	Boolean	operations	resemble	the	operations	in	ordinary	(numerical)
algebra.	However,	in	ordinary	algebra,	there	is	no	unary	operation	equivalent	to
complementation,	and	idempotency	laws	do	not	hold.	Furthermore,	although	the	union	is
distributive	over	intersection	 ,	addition	in	ordinary	algebra	is
not	distributive	over	multiplication	 .

Proof	of	the	relationship	 :

Simplifying	Boolean	Expressions

Reducing	Boolean	Expressions	to	a	Sum-of-Products	Form



Boolean	algebra	rules	are	mainly	used	to	rewrite	complex	Boolean	expressions	to	their
simplest	sum-of-products	form.

Example

Example



Appendix	B

B.1	Random	Variables:	Basic	Properties
Random	variables	can	be	discrete	and	continuous.	A	discrete	random	variable	X	takes	only
discrete	values	 	with	probabilities	f(x1), f(x2), …, f(xn)	and	no	other	value:

X x1 x2 … xn
P(X = x) f(x1) f(x2) … f(xn)

where	 	is	the	probability	(mass)	function	of	the	random	variable

Example

The	probability	distribution	of	the	score	X	from	throwing	a	perfect	die:

x 1 2 3 4 5 6
P(X	=	x) 1/6 1/6 1/6 1/6 1/6 1/6

Distribution	(Cumulative	Distribution)	Function	of	Discrete	Random	Variables

Expected	Value	(Mean)

Variance

Examples	(discrete	random	variables):

The	state	of	the	system	(working	or	failed)	at	a	particular	time

The	number	of	failures	of	a	repairable	component	(system)	in	a	finite	time	interval



The	number	of	failed	structural	elements	during	a	test

The	number	of	defects	in	a	structural	element	after	manufacturing

B.2	Boolean	Random	Variables
An	important	class	of	discrete	random	variables	are	the	Boolean	random	variables.	The
random	variable	X	takes	on	only	two	values:	‘X = 1’	(true)	and	‘X = 0’	(false)	with	specified
probabilities.	For	example,	X	can	take	on:	‘1’	(occurrence);	‘0’	(non-occurrence)	or	represent
the	state	of	a	component	or	a	system:	‘1’	(working)	and	‘0’	(failed).

The	state	of	a	system	can	be	defined	by	the	discrete	distribution	of	the	Boolean	variable	X
where	‘p’	is	the	probability	that	the	system	will	be	working.

State Working Failed
X 1 0
f(x) p 1 − p

B.3	Continuous	Random	Variables
Continuous	random	variables	take	on	continuous	values	from	a	specified	interval.	The
probability	that	the	continuous	random	variable	X	will	take	on	values	from	the	interval	[a,	b]	is

where	f(x)	is	the	probability	density	function	(p.d.f.)	of	X.	 	for	all	x	and	 .

Examples

The	value	of	a	design	parameter	(e.g.	length,	yield	strength)

The	operating	load	acting	on	a	structural	component

Time	to	failure,	time	between	failures

The	magnitude	of	the	residual	stress	at	the	surface	of	a	component

B.4	Probability	Density	Function
The	distribution	of	the	random	variable	X	is	specified	by	its	probability	density	function
(p.d.f.)	f(x).	The	p.d.f.	describes	how	the	probability	of	obtaining	particular	values	of	the
random	variable	is	spread	over	the	range	of	all	possible	values.	It	is	important	to	understand
that	the	function	f(x)	is	not	itself	probability	but	a	probability	density	(probability	per	unit
value).	Thus,	the	probability	of	a	value	in	the	infinitesimal	interval	x,	x + dx	is	f(x) dx.	The



probability	of	obtaining	a	value	in	any	specified	interval	 	is

Basic	Property	of	the	p.d.f.

The	total	area	beneath	the	p.d.f.	f(x)	must	always	equal	1:

The	integral	represents	the	fact	that	f(x)	is	a	probability	distribution,	that	is,	the	probabilities	of
all	outcomes	must	add	up	to	unity	(the	random	variable	X	will	certainly	accept	some	value
from	its	domain).

B.5	Cumulative	Distribution	Function
Let	F(x)	denote	the	(cumulative)	distribution	function	(c.d.f.)	of	the	random	variable	X.	F(x)
gives	the	probability	 	that	the	random	variable	X	will	be	smaller	than	or	equal	to	a
specified	value	x:



where	f(x)	is	the	p.d.f.	Accordingly,	F(x)	gives	the	area	beneath	the	p.d.f.	f(x)	until	value	x.
The	cumulative	distribution	function	is	related	to	the	p.d.f.	by	 ;	F(x)	is	a
monotone,	non-decreasing	function	of	x.	The	probability	that	the	random	variable	will	accept
values	from	the	interval	(x1,	x2)	is

B.6	Joint	Distribution	of	Continuous	Random	Variables
Joint	probability	density	function

f(x, y)	is	a	joint	probability	density	function	of	two	random	variables	X	and	Y	if

and

Joint	Distribution	Function

Marginal	probability	density	functions

Marginal	Distribution	Functions



B.7	Correlated	Random	Variables
Suppose	that	X1	and	X2	are	random	variables	with	expected	(mean)	values	 ,	

	and	variances	 	and	 .

The	covariance	of	X1	and	X2	is	defined	as

The	correlation	coefficient	ρ1,2	characterising	X1	and	X2	defined	as

measures	the	degree	of	linear	association	between	X1	and	X2.	The	random	variables	are	not
correlated	if	 .

Properties	of	the	Covariance

Covariance	Matrix

If	the	random	variables	are	statistically	independent,	 	for	all	 .	Any	pair	of
statistically	independent	random	variables	Xi,	Xj	are	not	correlated	( ),	but	the
converse	is	not	necessarily	true.	The	random	variables	may	not	be	correlated	and	still	be
statistically	dependent.	For	statistically	independent	random	variables,



Examples

Correlated	random	variables	related	to	steels:	X1	(fatigue	strength),	X2	(yield	strength)	and
X3	(hardness)

Strongly	correlated	random	variables:	X1	(fatigue	strength)	and	X2	(residual	stress	at	the
surface)

Non-correlated	random	variables:	X1	(service	stress)	and	X2	(fracture	toughness	of	the
material)

B.8	Statistically	Independent	Random	Variables
1.	 Random	variables	X	and	Y	are	statistically	independent	if	the	values	accepted	by	X	do	not

depend	on	the	values	accepted	by	Y	and	vice	versa.

Let	us	define	events	A	and	B	as	follows:	 	and	 .

Random	variables	X	and	Y	are	statistically	independent	if	and	only	if	A	and	B	are
independent	events	( )	for	any	choice	of	real	numbers	a,	b,	c	and	d.

2.	 Two	random	variables	X	and	Y	are	statistically	independent	if	and	only	if	the	factorisation

or	 	is	satisfied	for	all	values	x	and	y,	where	F(x, y)	is	the	joint
distribution	function	(d.f.)	of	X	and	Y.	F1(x)	is	the	marginal	d.f.	of	X	and	F2(y)	is	the
marginal	d.f.	of	Y.

3.	 Two	random	variables	X	and	Y	are	statistically	independent	if	and	only	if	the	factorisation	
	is	possible,	where	f(x, y)	is	the	joint	p.d.f.	of	X	and	Y,	f1(x)	is	the

marginal	p.d.f.	of	X	and	f2(y)	is	the	marginal	p.d.f.	of	Y.

4.	 Two	random	variables	X	and	Y	are	statistically	independent	if	and	only	if	
,	where	g(x)	and	h(y)	are	non-negative	functions	of	x	and	y;	 	in	

	and	 	and	 ,	elsewhere.

If	the	random	variables	X	and	Y	are	statistically	independent,	then	any	two	functions	h(X)
and	g(Y)	are	also	statistically	independent.

Examples	of	Statistically	Independent	Random	Variables

X1	(service	load)	and	X2	(strength),	in	cases	where	the	service	load	does	not	cause	any
strength	degradation



X1	(material	property)	and	X2	(dimensions)

Question

Is	the	strength	of	a	load-carrying	metal	wire	statistically	independent	from	its	length?

B.9	Properties	of	the	Expectations	and	Variances	of
Random	Variables
Suppose	that	X	is	a	random	variable	with	p.d.f.	f(x).	The	expected	value	of	a	function	g(X)	of
the	random	variable	is

Expected	Value	of	a	Linear	Function

Expected	Value	of	a	Sum	of	Random	Variables

This	formula	is	valid	irrespective	of	whether	the	random	variables	are	statistically
independent	or	not.



Example

The	mean	load	from	several	collinear	loads	is	a	sum	of	the	means	of	the	separate	loads
irrespective	of	whether	the	loads	are	statistically	independent	or	not.

Alternative	formula	for	the	variance	of	a	random	variable:

Variance	of	a	random	variable	added	to	a	constant:

Variance	of	a	random	variable	multiplied	by	a	constant:

Expected	value	of	a	product	of	statistically	independent	random	variables:

Important	Property

The	variance	of	a	sum	of	statistically	independent	random	variables	is	equal	to	the	sum	of	the
variances	of	the	random	variables:

Example

Calculate	the	standard	deviation	σd	of	the	design	parameter	d	from	the	machine	part	in	the
figure	if	the	standard	deviations	of	the	lengths	dA,	dB	and	dC	of	parts	A,	B	and	C	are	σA,	σB
and	σC,	correspondingly.	The	edges	of	parts	A	and	B	are	aligned	with	the	edges	of	part	C.

Solution



B.10	Important	Theoretical	Results	Regarding	the
Sample	Mean
The	mean	of	a	sum	of	identically	distributed	and	statistically	independent	random	variables
will,	with	probability	one,	converge	to	the	mean	of	the	distribution	characterising	the	random



variables	when	the	number	of	random	variables	approaches	infinity.

Let	X1,	X2,	…,	Xn	be	n	statistically	independent	and	identically	distributed	random	variables,
where	 	is	the	mean	of	the	common	distribution.	Then,	with	probability	one,

as	 .

Expected	Value	and	Variance	of	a	Sample	Mean

Random	samples	x1, x2, …, xn	of	size	n	are	taken	from	a	statistical	distribution	with	mean	μ	and

variance	σ2:	 ;	 .

If	 	is	the	sample	mean,	then

and

The	variance	σ2/n	of	the	sample	mean	of	n	measurements	is	always	smaller	than	the	variance
σ2	of	a	single	measurement.



Appendix	C:	Cumulative	Distribution	Function	of	the
Standard	Normal	Distribution

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7793 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8906 0.8925 0.8943 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9648 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9894 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9924 0.9927 0.9929 0.9930 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974



2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9986 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999



Appendix	D:	χ2-Distribution

n
α 0.9995 0.999 0.995 0.990 0.975 0.95 0.90 0.80 0.70 0.60
1 0.06393 0.05157 0.04393 0.03157 0.03982 0.02393 0.0158 0.0642 0.148 0.275
2 0.02100 0.02200 0.0100 0.0201 0.0506 0.103 0.211 0.446 0.713 0.02
3 0.0153 0.0243 0.0717 0.115 0.216 0.352 0.584 1.00 1.42 1.87
4 0.0639 0.0908 0.207 0.297 0.484 0.711 1.06 1.65 2.19 2.75
5 0.158 0.210 0.412 0.554 0.831 1.15 1.61 2.34 3.00 3.66
6 0.299 0.381 0.676 0.872 1.24 1.64 2.20 3.07 3.83 4.57
7 0.485 0.598 0.989 1.24 1.69 2.17 2.83 3.82 4.67 5.49
8 0.710 0.857 1.34 1.65 2.18 2.73 3.49 4.59 5.53 6.42
9 0.972 1.15 1.73 2.09 2.70 3.33 4.17 5.38 6.39 7.36
10 1.26 1.48 2.16 2.56 3.25 3.94 4.87 6.18 7.27 8.30
11 1.59 1.83 2.60 3.05 3.82 4.57 5.58 6.99 8.15 9.24
12 1.93 2.21 3.07 3.57 4.40 5.23 6.30 7.81 9.03 10.2
13 2.31 2.62 3.57 4.11 5.01 5.89 7.04 8.63 9.93 11.1
14 2.70 3.04 4.07 4.66 5.63 6.57 7.79 9.47 10.8 12.1
15 3.11 3.48 4.60 5.23 6.26 7.26 8.55 10.3 11.7 13.0
16 3.54 3.94 5.14 5.81 6.91 7.96 9.31 11.2 12.6 14.0
17 3.98 4.42 5.70 6.41 7.56 8.67 10.1 12.0 13.5 14.9
18 4.44 4.90 6.26 7.01 8.23 9.39 10.9 12.9 14.4 15.9
19 4.91 5.41 6.84 7.63 8.91 10.0 11.7 13.7 15.4 16.9
20 5.40 5.92 7.43 8.26 9.59 10.9 12.4 14.6 16.3 17.8
21 5.90 6.45 8.03 8.90 10.3 11.6 13.2 15.4 17.2 18.8
22 6.40 6.98 8.64 9.54 11.0 12.3 14.0 16.3 18.1 19.7
23 6.92 7.53 9.26 10.2 11.7 13.1 14.8 17.2 19.0 20.7
24 7.45 8.08 9.98 10.9 12.4 13.8 15.7 18.1 19.9 21.7
25 7.99 8.65 10.5 11.5 13.1 14.6 16.5 18.9 20.9 22.6
26 8.54 9.22 11.2 12.2 13.8 15.4 17.3 19.8 21.8 23.6
27 9.09 9.80 11.8 12.9 14.6 16.2 18.1 20.7 22.7 24.5



28 9.66 10.4 12.5 13.6 15.3 16.9 18.9 21.6 23.6 25.5
29 10.2 11.0 13.1 14.3 16.0 17.7 19.8 22.5 24.6 26.5
30 10.8 11.6 13.8 15.0 16.8 18.5 20.6 23.4 25.5 27.4
31 11.4 12.2 14.5 15.7 17.5 19.3 21.4 24.3 26.4 28.4
32 12.0 12.8 15.1 16.4 18.3 20.1 22.3 25.1 27.4 29.4
33 12.6 13.4 15.8 17.1 19.0 20.9 23.1 26.0 28.3 30.3
34 13.2 14.1 16.5 17.8 19.8 21.7 24.0 26.9 29.2 31.3
35 13.8 14.7 17.2 18.5 20.6 22.5 24.8 27.8 30.2 32.3
36 14.4 15.3 17.9 19.2 21.3 23.3 25.6 28.7 31.1 33.3
37 15.0 16.0 18.6 20.0 22.1 24.1 26.5 29.6 32.1 34.2
38 15.6 16.6 19.3 20.7 22.9 24.9 27.3 30.5 33.0 35.2
39 16.3 17.3 20.0 21.4 23.7 25.7 28.2 31.4 33.9 36.2
40 16.9 17.9 20.7 22.2 24.4 26.5 29.1 32.3 34.9 37.1
41 17.5 18.6 21.4 22.9 25.2 27.3 29.9 33.3 35.8 38.1
42 18.2 19.2 22.1 23.7 26.0 28.1 30.8 34.2 36.8 39.1
43 18.8 19.9 22.9 24.4 26.8 29.0 31.6 35.1 37.7 40.0
44 19.5 20.6 23.6 25.1 27.6 29.8 32.5 36.0 38.6 41.0
45 20.1 21.3 24.3 25.9 28.4 30.6 33.4 36.9 39.6 42.0
46 20.8 21.9 25.0 26.7 29.1 31.4 34.2 37.8 40.5 43.0
47 21.5 22.6 25.8 27.4 30.0 32.3 35.1 38.7 41.5 43.9
48 22.1 23.3 26.5 28.2 30.8 33.1 35.9 39.6 42.4 44.9
49 22.8 24.0 27.2 28.9 31.6 33.9 36.8 40.5 43.4 45.9
50 23.5 24.7 28.0 29.7 32.4 34.8 37.7 41.4 44.3 46.9
51 24.1 25.4 28.7 30.5 33.2 35.6 38.6 42.4 45.3 47.8
52 24.8 26.1 29.5 31.2 34.0 36.4 39.4 43.3 46.2 48.8
53 25.5 26.8 30.2 32.0 34.8 37.3 40.3 44.2 47.2 49.8
54 26.2 27.5 31.0 32.8 35.6 38.1 41.2 45.1 48.1 50.8
55 26.9 28.2 31.7 33.6 36.4 39.0 42.1 46.0 49.1 51.7
56 27.6 28.9 32.5 34.3 37.2 39.8 42.9 47.0 50.0 52.7
57 28.2 29.6 33.2 35.1 38.0 40.6 43.8 47.9 51.0 53.7
58 28.9 30.3 34.0 35.9 38.8 41.5 44.7 48.8 51.9 54.7
59 29.6 31.0 34.8 36.7 39.7 42.3 45.6 49.7 52.9 55.6
60 30.3 31.7 35.5 37.5 40.5 43.2 46.5 50.6 53.8 56.6



61 31.0 32.5 36.3 38.3 41.3 44.0 47.3 51.6 54.8 57.6
62 31.7 33.2 37.1 39.1 42.1 44.9 48.2 52.5 55.7 58.6
63 32.5 33.9 37.8 39.9 43.0 45.7 49.1 53.5 56.7 59.6
64 33.2 34.6 38.6 40.6 43.8 46.6 50.0 54.3 57.6 60.5
65 33.9 35.4 39.4 41.4 44.6 47.4 50.9 55.3 58.6 61.5
66 34.6 36.1 40.2 42.2 45.4 48.3 51.8 56.2 59.5 62.5
67 35.3 36.8 40.9 43.0 46.3 49.2 52.7 57.1 60.5 63.5
68 36.0 37.6 41.7 43.8 47.1 50.0 53.5 58.0 61.4 64.4
69 36.7 38.3 42.5 44.6 47.9 50.9 54.4 59.0 62.4 65.4
70 37.5 39.0 43.3 54.4 48.8 51.7 55.3 59.9 63.3 66.4
71 38.2 39.8 44.1 46.2 49.6 52.6 56.2 60.8 64.3 67.4
72 38.9 40.5 44.8 47.1 50.4 53.5 57.1 61.8 65.3 68.4
73 39.6 41.3 45.6 47.9 51.3 54.3 58.0 62.7 66.2 69.3
74 40.4 42.0 40.4 48.7 52.1 55.2 58.9 63.6 67.2 70.3
75 41.1 42.8 47.2 49.5 52.9 56.1 59.8 64.5 68.1 71.3
76 41.8 43.5 48.0 50.3 53.8 56.9 60.7 65.5 69.1 72.3
77 42.6 44.3 48.8 51.1 54.6 57.8 61.6 66.4 70.0 73.2
78 43.3 45.0 48.8 51.9 55.5 58.7 62.5 67.3 71.0 74.2
79 44.1 45.8 50.4 52.7 56.3 59.5 63.4 68.3 72.0 75.2
80 44.8 46.5 51.2 53.5 57.2 60.4 64.3 69.2 72.9 76.2
81 45.5 47.3 52.0 54.4 58.0 61.3 65.2 70.1 73.9 77.2
82 46.3 48.0 52.8 55.2 58.8 62.1 66.1 71.1 74.8 78.1
83 47.0 48.8 53.6 56.0 59.7 63.0 67.0 72.0 75.8 79.1
84 47.8 49.6 54.4 56.8 60.5 63.9 67.9 72.9 76.8 80.1
85 48.5 50.3 55.2 57.6 61.4 64.7 68.8 73.9 77.7 81.1
86 49.3 51.1 56.0 58.5 62.2 65.6 69.7 74.8 78.7 82.1
87 50.0 51.9 56.8 59.3 63.1 66.5 70.6 75.7 79.6 83.0
88 50.8 52.6 57.6 60.1 63.9 67.4 71.5 76.7 80.6 84.0
89 51.5 53.4 58.4 60.9 64.8 68.2 72.4 77.6 81.6 85.0
90 52.3 54.2 59.2 61.8 65.6 69.1 73.3 78.6 82.5 86.0
91 53.0 54.9 60.0 62.6 66.5 70.0 74.2 79.5 83.5 87.0
92 53.8 55.7 60.8 63.4 67.4 70.9 75.1 80.4 84.4 88.0
93 54.5 56.5 61.6 64.2 68.2 71.8 76.0 81.4 85.5 88.9



94 53.5 57.2 62.4 65.1 69.1 72.6 76.9 82.3 86.4 89.9
95 56.1 58.0 63.2 65.9 69.9 73.5 77.8 83.2 87.3 90.9

96 56.8 58.8 64.1 66.7 70.8 74.4 78.7 84.2 88.3 91.9
97 57.6 59.6 64.9 67.6 71.6 75.3 79.6 85.1 89.2 92.9
98 58.4 60.4 65.7 68.4 72.5 76.2 80.5 86.1 90.2 93.8
99 59.1 61.1 66.5 69.2 73.4 77.0 81.4 87.0 91.2 94.8
100 59.9 61.9 67.3 70.1 74.2 77.9 82.4 87.9 92.1 95.8
	
n
α 0.50 0.40 0.30 0.20 0.10 0.05 0.025 0.01 0.005 0.001
1 0.455 0.708 1.07 1.64 2.71 3.84 5.02 6.63 7.88 10.8
2 1.39 1.83 2.41 3.22 4.61 5.99 7.38 9.21 10.6 13.8
3 2.37 2.95 3.67 4.64 6.25 7.81 9.35 11.3 12.8 16.3
4 3.36 4.04 4.88 5.99 7.78 9.49 11.1 13.3 14.9 18.5
5 4.35 5.13 6.06 7.29 9.24 11.1 12.8 15.1 16.7 20.5
6 5.35 6.21 7.23 8.56 10.6 12.6 14.4 16.8 18.5 22.5
7 6.35 7.28 8.38 9.80 12.0 14.1 16.0 18.5 20.3 24.3
8 7.34 8.35 9.52 11.0 13.4 15.5 17.5 20.1 22.0 26.1
9 8.34 9.41 10.7 12.2 14.7 16.9 19.0 21.7 23.6 27.9
10 9.34 10.5 11.4 13.4 16.0 18.3 20.5 23.2 25.2 29.6
11 10.3 11.5 12.9 14.6 17.3 19.7 21.9 24.7 26.8 31.3
12 11.3 12.6 14.0 15.8 18.5 21.0 23.3 26.2 28.3 32.9
13 12.3 13.6 15.1 17.0 19.8 22.4 24.7 27.7 29.8 34.5
14 13.3 14.7 16.2 18.2 21.1 23.7 26.1 29.1 31.3 36.1
15 14.3 15.7 17.3 19.3 22.3 25.0 27.5 30.6 32.8 37.7
16 15.3 16.8 18.4 20.5 23.5 26.3 28.8 32.0 34.3 39.3
17 16.3 17.8 19.5 21.6 24.8 27.6 30.2 33.4 35.7 40.8
18 17.3 18.9 20.6 22.8 26.0 28.9 31.5 34.8 37.2 42.3
19 18.3 19.9 21.7 23.9 27.2 30.1 32.9 36.2 38.6 43.8
20 19.3 21.0 22.8 25.0 28.4 31.4 34.2 37.6 40.0 45.3
21 20.3 22.0 23.9 26.2 29.6 32.7 35.5 38.9 41.4 46.8
22 21.3 23.0 24.9 27.3 30.8 33.9 36.8 40.3 42.8 48.3
23 22.3 24.1 26.0 28.4 32.0 35.2 38.1 41.6 44.2 49.7



24 23.3 25.1 27.1 29.6 33.2 36.4 39.4 43.0 45.6 51.2

25 24.3 26.1 28.2 30.7 34.4 37.7 40.6 44.3 46.9 52.6
26 25.3 27.2 29.2 31.8 35.6 38.9 41.9 45.6 48.3 54.1
27 26.3 28.2 30.3 32.9 36.7 40.1 43.2 47.0 49.6 55.5
28 27.3 29.2 31.4 34.0 37.9 41.3 44.5 48.3 51.0 56.9
29 28.3 30.3 32.5 35.1 39.1 42.6 45.7 49.6 52.3 58.3
30 29.3 31.3 33.5 36.3 40.3 43.8 47.0 50.9 53.7 59.7
31 30.3 32.3 34.6 37.4 41.4 45.0 48.2 52.2 55.0 61.1
32 31.3 33.4 35.7 38.5 42.6 46.2 49.5 53.5 56.3 62.5
33 32.2 34.4 36.7 39.6 43.7 47.4 50.7 54.8 57.6 63.9
34 33.3 35.4 37.8 40.7 44.9 48.6 52.0 56.1 59.0 65.2
35 34.3 36.5 38.9 41.8 46.1 49.8 53.2 57.3 60.3 66.6
36 35.3 37.5 39.9 42.9 47.2 51.0 54.4 58.6 61.6 68.0
37 36.3 38.5 41.0 44.0 48.4 52.2 55.7 59.9 62.9 69.3
38 37.3 39.6 42.0 45.1 49.5 53.4 56.9 61.2 64.2 70.7
39 38.3 40.6 43.1 46.2 50.7 54.6 58.1 62.4 65.5 72.1
40 39.3 41.6 44.2 47.3 51.8 55.8 59.3 63.7 66.8 73.4
41 40.3 42.7 45.2 48.4 52.9 56.9 60.6 65.0 68.1 74.7
42 41.3 43.7 46.3 49.5 54.1 58.1 61.8 66.2 69.3 76.1
43 42.3 44.7 47.3 50.5 55.2 59.3 63.0 67.5 70.6 77.4
44 43.3 45.7 48.4 51.6 56.4 60.5 64.2 68.7 71.9 78.7
45 44.3 46.8 49.5 52.7 57.7 61.7 65.4 70.0 73.2 80.1
46 45.3 47.8 50.5 53.8 58.6 62.8 66.6 71.2 74.4 81.4
47 46.3 48.8 51.6 54.9 59.8 64.0 67.8 72.4 75.7 82.7
48 47.3 49.8 52.6 56.0 60.9 65.2 69.0 73.7 77.0 84.0
49 48.3 50.9 53.7 57.1 62.0 66.3 70.2 74.9 78.2 85.4
50 49.3 51.9 54.7 58.2 63.2 67.5 71.4 76.2 79.5 86.7
51 50.3 52.9 55.8 59.2 64.3 68.7 72.6 77.4 80.7 88.0
52 51.3 53.9 56.8 60.3 65.4 69.8 73.8 78.6 82.0 89.3
53 52.3 55.0 57.9 61.4 66.5 71.0 75.0 79.8 83.3 90.6
54 53.3 56.0 58.9 62.5 67.7 72.2 76.2 81.1 84.5 91.9
55 54.3 57.0 60.0 63.6 68.8 73.3 77.4 82.3 85.7 93.2
56 55.3 58.0 61.0 64.7 69.9 74.5 78.6 83.5 87.0 94.5



56 55.3 58.0 61.0 64.7 69.9 74.5 78.6 83.5 87.0 94.5
57 56.3 59.1 62.1 65.7 71.0 75.6 79.8 84.7 88.2 95.8

58 57.3 60.1 63.1 66.8 72.2 76.8 80.9 86.0 89.5 97.0
59 58.3 61.1 64.1 67.9 73.3 77.9 82.1 87.2 90.7 98.3
60 59.3 62.1 65.2 69.0 74.4 79.1 83.3 88.4 92.0 99.6
61 60.3 63.2 66.3 70.0 75.5 80.2 84.5 89.6 93.2 100.9
62 61.3 64.2 67.3 71.1 76.6 81.4 85.7 90.8 94.4 102.2
63 62.3 65.2 68.4 72.2 77.7 82.5 86.8 92.0 95.6 103.4
64 63.3 66.2 69.4 73.3 78.9 83.7 88.0 93.2 96.9 104.9
65 64.3 67.2 70.5 74.4 80.0 84.8 89.2 94.4 98.1 106.0
66 65.3 68.3 71.5 75.4 81.1 86.0 90.3 95.6 99.3 107.3
67 66.3 69.3 72.6 76.5 82.2 87.1 91.5 96.8 100.6 108.5
68 67.3 70.3 73.6 77.6 83.3 88.3 92.7 98.0 101.8 109.8
69 68.3 71.3 74.6 78.6 84.4 89.4 93.9 99.2 103.0 111.1
70 69.3 72.4 75.7 79.7 85.5 90.5 95.0 100.4 104.2 112.3
71 70.3 73.4 76.7 80.8 86.6 91.7 96.2 101.6 105.4 113.6
72 71.3 74.4 77.8 81.9 87.7 92.8 97.4 102.8 106.6 114.8
73 72.3 75.4 78.8 82.9 88.8 93.9 98.5 104.0 107.9 116.1
74 73.3 76.4 79.9 84.0 90.0 95.1 99.7 105.2 109.1 117.3
75 74.3 77.5 80.9 85.1 91.1 96.2 100.8 106.4 110.3 118.6
76 75.3 78.5 82.0 86.1 92.2 97.4 102.0 107.6 111.5 119.9
77 76.3 79.5 83.0 87.2 93.3 98.5 103.2 108.8 112.7 121.1
78 77.3 80.5 84.0 88.3 94.4 99.6 104.3 110.0 113.9 122.3
79 78.3 81.5 85.1 89.3 95.5 100.7 105.5 111.1 115.1 123.6
80 79.3 82.6 86.1 90.4 96.6 101.9 106.6 112.3 116.3 124.3
81 80.3 83.6 87.2 91.5 97.7 103.0 107.8 113.5 117.5 126.1
82 81.3 84.6 88.2 92.5 98.8 104.1 108.9 114.7 118.7 127.3
83 82.3 85.6 89.2 93.6 99.9 105.3 110.1 115.9 119.9 128.6
84 83.3 86.6 90.3 94.7 101.0 106.4 111.2 117.1 121.1 129.8
85 84.3 87.7 91.3 95.7 102.1 107.5 112.4 118.2 122.3 131.0
86 85.3 88.7 92.4 96.8 103.2 108.6 113.5 119.4 123.5 132.3
87 86.3 89.7 93.4 97.9 104.3 109.8 114.7 120.6 124.7 133.5
88 87.3 90.7 94.4 98.9 105.4 110.9 115.8 121.8 125.9 134.7
89 88.3 91.7 95.5 100.0 106.5 112.0 117.0 122.9 127.1 136.0



89 88.3 91.7 95.5 100.0 106.5 112.0 117.0 122.9 127.1 136.0
90 89.3 92.8 96.5 101.1 107.6 113.1 118.1 124.1 128.3 137.2

91 90.3 93.8 97.6 102.1 108.7 114.3 119.3 125.3 129.5 138.4
92 91.3 94.8 98.6 103.2 109.8 115.4 120.4 126.5 130.7 139.7

93 92.3 95.8 99.6 104.2 110.9 116.5 121.6 127.6 131.9 140.9
94 93.3 96.8 100.7 105.3 111.9 117.6 122.7 128.8 133.1 142.1
95 94.3 97.9 101.7 106.4 113.0 118.8 123.9 130.0 134.2 143.3
96 95.3 98.9 102.8 107.4 114.1 119.9 125.0 131.1 135.4 144.6
97 96.3 99.9 103.8 108.5 115.2 121.0 126.1 132.3 136.6 145.8
98 97.3 100.9 104.8 109.5 116.3 122.1 127.3 133.5 137.8 147.0
99 98.3 101.9 105.9 110.6 117.4 123.2 128.4 134.6 139.0 148.2
100 99.3 102.9 106.9 111.7 118.5 124.3 129.6 135.8 140.2 149.4
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distribution

Gaussian

(normal)	model

random	variable,	simulation

generic	comparator

general	framework	for	reliability	and	risk	analysis

generic	principles	for	reducing	technical	risk

hazard	potential

hazard	rate

and	failure	density

function

highly	accelerated	life	testing

highly	accelerated	stress	screens	(HASS)

homogeneous	Poisson	process

random	arrivals

random	demands	following

random	failures	following

random	variable	following

human	errors



impossible	event

increasing	failure	rate	(IFR)

industry-specific	data

infant	mortality	region

interlocks

failure	prevention

logic

physical

time

intersection	of	events

probability	of

inverse	states

inverse	transformation	method

joint	distribution

k-fold	standby	system

knapsack	dynamic	programming

algorithm

weaknesses

Kolmogorov’s	axioms

Lagrange

interpolation	formula

multipliers

latent	faults

leak-before-break

likelihood	function

load



load–strength	interference

applications

evaluating	reliability

Monte	Carlo	simulation

reliability	and	risk	analysis	based	on

load–strength	reliability	integral

loading	roughness

critical	weakness

log-likelihood	function

log-normal

distribution

model

probability	density	function

reproductive	property

log-normal	random	variable

simulation

logical	AND

logical	arrangement	of	components

logically	arranged

in	parallel

in	series

logical	NOT

logical	OR

marginal	distribution	functions

marginal	probability	density	functions

materials

maximum	acceptable	risk	of	premature	failure

maximum	extreme	value	distribution

mean

mean	time	between	failures	see	MTBF



mean	time	to	failure	see	MTTF

memoryless	property	of	negative	exponential	distribution

method	of	maximum	likelihood

Monte	Carlo	simulation

algorithms

and	the	central	limit	theorem

and	the	weak	law	of	large	numbers

minimal	path

minimum	critical	distances

before	locations	of	random	variables

between	locations	of	random	variables

minimum	extreme	value	distribution

minimum	failure-free	operating	periods	see	MFFOP

minimum	separation	intervals	(MSI)

between	adjacent	random	variables

reliability	measures	based	on

mixed-mode	fracture	criterion

mixture	distributions

random	sampling	from

model

overparameterised

robustness

statistical

MFFOP

MTBF

MTTF

confidence	interval

problems	with	MTTF	and	MTBF

uncertainty	associated	with

multi-run	welds



multiple	sources

property	distribution	from

variance	of	property	from

mutually	exclusive	events

probability	of	a	union	and	intersection	of

negative	exponential	distribution

memoryless	property	of

and	Poisson	distribution

probability	density	function

negative-state	components

non-disjoint	events

non-homogeneous	Poisson	process

normal	distribution

standard

testing	for	consistency

null	event	(impossible	event)

number	density	upper	bound

optimal

allocation	of	resources

replacement

safety	budget	allocation

optimization

OR-gate

overstress	failures

mechanisms

overstress	reliability	integral

Palmgren–Miner	rule

parallel	arrangement

parallel-series,	arrangement



parameter	estimation

three-parameter	power	law

parasitic	flow	loops

Paris–Erdogan	power	law

parts	count	method

permutations	of	interchangeable	components

physical	arrangement	of	components

physics-of-failure	models

plastic	deformation

Poisson	distribution

Poisson	process;	non-homogeneous,	see	also	homogeneous	Poisson	process

Poka–Yoke

potential

loss

profit

Power	law

applications

parameter	estimation

preventive	principles

probability

axiomatic	approach

classical	approach	to	defining

complementary	events

density	function	of	the	times	to	failure

empirical	definition

failure	see	failure	probability

fracture

plotting

safe/failure	configuration



probability	density

cost	of	failure

time	to	failure

probability	distribution

cost	of	failure

load

of	property	from	multiple	sources

strength

time	to	failure

probability	plotting

protective	principles

quality	control	to	prevent	early-life	failures

random

direction	in	space

locations	following	homogeneous	Poisson	process

point	selection	in	n-dimensional	space	region

points	on	a	disc	and	in	a	sphere

sampling	from	mixture	distribution

subset

random	demands

probability	of	clustering

probability	of	unsatisfied

random	events

probability	of	clustering

random	shocks

evaluation	of	reliability	associated	with

generation



random	variables

basic	properties

configurations	of

continuous

controlling

correlated

discrete

probability	of	safe/failure	configuration	of

properties	of	expectations	and	variances

relative	locations

reliability	governed	by	relative	locations	of

risk-critical

statistically	independent

unfavourable	combinations

recursive	backtracking

redundancy

active

k-out-of-n

standby

rejection	method



reliability

assurance

basic	concepts

bathtub	curve

block	diagram

complex	systems

data	analysis	see	data	analysis

data	record,	basic	components

dependent	on	minimum	critical	distances

governed	by	relative	locations	of	random	variables

index

index	critical	weaknesses

series	arrangement

series	and	parallel

parallel	arrangement

reliability	analysis	based	on	cost	of	failure

reliability	function

reliability	measures,	based	on	minimum	separation	intervals	(MSI)	and	minimum	failure-free
operating	periods	(MFFOP)

reliability	network

reliability	requirements

based	on	cost	of	failure

multiple

to	guarantee	availability	target

to	guarantee	minimum	failure-free	operating	period	before	failures	followed	by	downtime

residual	stress

from	cold	expansion

from	shot	peening

measurement



risk

associated	with	multiple	failure	modes

of	failure

fast	fracture

fatigue	fracture

management

models

of	a	net	loss

of	premature	failure

reduction

reduction	options

of	system	failure

risk-based	design

risk	reduction	principles

risk-reward	bet

risk-reward	gamble

risk-reward	opportunity

robust	design

rolling	warranty	periods

root	cause	analysis

safe

region

zone

safety	margin

critical	weaknesses

sample	mean

expected	value	and	variance

theoretical	results

sample	space

partition	of



scatter	plot

segmentation

self-reinforcement

self-stability

sensitivity	to	variation	of	design	parameters

separation

series	and	parallel	arrangement

shot	peening

residual	stress	distributions	after

simulation	of	random	variable	following

a	continuous	distribution

a	discrete	distribution

the	Gamma	distribution

a	homogeneous	Poisson	process

a	log-normal	distribution

a	normal	distribution

a	three-parameter	Weibull	distribution

a	uniform	distribution

the	maximum	extreme	value	distribution

the	negative	exponential	distribution

six-sigma

products	and	processes

quality	philosophy

software	errors

space	of	exposure

spring	wire

standard	deviation

standard	normal	distribution

cumulative	distribution	function

simulating



statistical	models

robustness

statistically	dependent	events

statistically	independent	events

statistically	independent	random	variables

strength

degradation

normally	distributed	and	statistically	independent

stress	intensity	factor

stress	intensity	factor	range

stress–life	relationship

Arrhenius

inverse	power	law

Eyring

stress	hazard	density

stress	limiter

stress	raiser

stress	range

supply-demand	formulae

survival	function

system	reliability

thermal

design

expansion	coefficient

stresses

three-parameter	power	law

applications

parameter	estimation

time	of	exposure

time	to	failure	distribution



total	probability	theorem

applications

triaxial	tensile	stress

truth	table

type	I	extreme	value	model

testing	for	consistency

ultrasonic	inspection	technique

unavailability

uncertainty	associated	with

conditional	losses

design	parameters

the	ductile-to-brittle	transition	region

exposure	to	losses

locus	of	stress	intensity	factors	determining	fracture

MTTF

parameters

parameters	of	load	distributions

reliability,	reliability	parameters

undirected	edges

uniaxial	stress

uniform	distribution	model

cumulative	distribution	function

probability	density

simulation	of	random	variable	following

testing	for	consistency

union	of	events

probability

unreliability	and	variability



unsatisfied	demand

expected	fraction

probability	of

upper	bound	of	variance	of	distribution	mixture

of	properties	from	sampling	from	multiple	sources

useful	life	region

variability

strength.

variance

distribution	mixture

property	of

of	a	random	variable

variance	upper	bound

algorithm

applications

theorem

Venn	diagram

vibration	control

virtual	accelerated	life	testing

virtual	testing

Von	Neumann’s	rejection	method

voting	system

vulnerability

weak	links

weakest-link	concept

mathematical	formulation

wear-out	failures

wear-out	region

Weibull	analysis



Weibull	distribution

testing	for	consistency

Weibull	hazard	rate	function

Weibull	model

Weibull	probability	density	function

well-ordered	parallel	series	system

yield	strength

yielding

plastic
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