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Preface 

 

 

 
Because I have known the torment of thirst,  
I would build a well where others may drink. 

––– Ernest Thompson Seton 

The goal of generations of igneous geochemists is to use mineralogical and 
chemical laws in an attempt to explain the geological processes they are investi-
gating. This scientific approach is both simple and rigorous. Initially it consists of 
highlighting magmatic differentiation trends and determining the possible underly-
ing petrogenetic mechanism(s). Then, the major elements are used to establish the 
nature and the modal composition of the fractionating mineral assemblage respon-
sible for the differentiation trends; its temporal evolution is also addressed. Finally 
all these data are fed into models calculating the behaviour of trace elements (and 
possibly isotopes), in order to account for the chemistry of the investigated igne-
ous rocks and evolution of the parental magma. 

 Such methodology is very powerful; not only because it is consistent with field 
geological data but also it is based on several independent methods. Indeed, major 
elements, trace elements and isotopes are governed by different principles. Thus 
any model predicting the coherent behaviour of these three independent parts of 
the dataset would possess a high internal consistency, making the modelled sce-
nario robust.

Indeed, graphical and numerical methods remain the alpha and omega of mod-
ern igneous geochemistry. The problem is how to implement the necessary dia-
grams or formulae so that the code can be understood and used by an ordinary 

v

Everyone, needing to interpret whole-rock geochemical data from igneous 
rocks, faces the same problem. Regardless of whether he/she has to calculate some 
simple indexes, more complex norms, plot a diagram for a paper or model effects 
of some petrogenetic  will end up using a computer. He would be 
certainly delighted to find that several programs exist designed specifically for 
this purpose. At first glance, most look useful with a plethora of built-in functions, 
but after a second look, he realizes that they are essentially black boxes, in which 
he soon loses track of exactly what is happening with his precious data. Worse 
still, there could be something missing or not quite appropriate to the required task. 
The code is difficult or impossible to alter (many geochemical programs are 
commercial). And even when the required diagram is plotted correctly, it may need 
to be altered extensively before  reaching  publication  quality.  

process, he



geochemist. We strongly believe that this knowledge can be mediated in the form 
of simple numerical recipes in a high-level programming language that includes 
built-in mathematical and statistical functionality, matrix manipulation tools and 
be capable of generating publication-quality graphics. There are currently avail-
able several potentially suitable environments, but only one of them—the R lan-

there already exists an R package GCDkit (www.gcdkit.org)1, containing most of 

Book structure—how to read? 
This textbook gives a detailed overview of modelling approaches to petrogenesis 
of igneous rocks using whole-rock geochemical data. The theoretical chapters are 
followed by their implementation using R/GCDkit, and by numerous exercises, 
mostly based on real-life problems.  

The text is divided into six parts, and three appendices. Part I gives a short but 
comprehensive introduction to R (with, or without GCDkit), the implementation of 
simple geochemical computations, calculation of norms, statistical evaluation of 
complex data sets, and plotting the most common diagrams. In all cases, the geo-

on radiogenic isotope data interpretation is presented. For newbies, the fundamen-
tals and syntax of the R language are explained in Appendix A, and an introduc-
tion to the GCDkit system is given in Appendix B.  

The core of the book (parts II–IV) is dedicated to modelling of the main proc-
esses in igneous petrogenesis using various types of geochemical data. These in-
clude major elements (treated by the concept of mass balance), trace elements 
(modelling based on solid/liquid partitioning or saturation concepts) and radio-

assimilation or giving direct information on the source). The principles of forward 
and reverse numerical techniques are presented and explained, as is the underlying 
mathematical apparatus; the R code necessary for their implementation is also 
given. The specific problem of solving sets of linear  equations is outli-
ned in Appendix C 

logical and geochemical backgrounds are briefly discussed. Moreover, a refresher 

          genic isotopic data (either constraining open-system processes such as mixing and 

the required geochemical  calculation  procedures  and  graphics.  Furthermore , the  
underlying code can be easily viewed, modified or extended. 

 algebraic
. 

In the realm of geochemical modelling,  there  does  not exist  any  prescribed  sce-  
nario. In fact, the modelling strategy not only depends on the geological problem, 
but also on the nature of the available data: hence the approach must be adapted 
and optimized to each individual case. The purpose of this book is to show, using 
many concrete examples, how a researcher can proceed in developing a realistic 
model tailored to his questions. It is in this investigative adventure that the authors 
of this book invite you.  Let’s  embark on  a  scientific  journey  in  the  intimacy  of
petrogenetic modelling! 

guage (www.r-project.org) has the advantage of being freely available for all the 

                                                           
1 Natively for Windows, but can be run on other platforms with a suitable emulator environment. 
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main platforms (MS Windows, Mac OS and various dialects of Linux). Moreover, 
—



Part V provides a practical guide on how to formulate and run a sensible 
petrogenetic model simulating natural systems. It stresses the fundamental signifi-
cance of additional information coming, e.g., from field relations, petrology or 
physics. Above all, the importance of critical thinking is underlined. 

The text is supplemented by numerous solved exercises. It is crowned by two 
worked real-world problems (Part VI) that illustrate the complex approach to 
petrogenetic modelling based on the techniques described in this book. 

On the other hand, intentionally omitted are most of the more sophisticated sta-
tistical methods as these have been dealt with by other, more competent authors. 
This is also the case for detailed mathematical derivations of laws governing geo-
chemical variations in complex petrogenetic scenarios. 

The book is intended for senior undergraduate and postgraduate courses, as 
well as all potential users of R/GCDkit interested in the implementation of graphi-
cal, statistical and numerical methods. The prerequisite is a sound knowledge of 
secondary school maths as well as of basic principles of solid-rock geochemistry. 

Most of the exercises in this book are designed to run in an interactive mode. 
To adopt them for batch use, the contents of any variable should be disp-

print or cat (see Appen
The code supplied, obviously, will run only if the current R directory is that in 

which the data file(s) reside. The best is probably to save all the needed files in a 
directory of your choice and, before starting, set the working directory either from 
the GUI (File|Change dir…), or with a command such as: 
GCDkit->Rbook.dir<-"C:/user/my_name/Documents/Rbook"2 

GCDkit->setwd(Rbook.dir) 

of the R language. Plain R will 

                                                           
2 Backslash is an escape character in R, so it would need to be preceded by another one, i.e.: 
"C:\\user\\my_name\\Documents\\Rbook". 
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dix A, Sect. 3.1). 

              This text is based on version 2.13 of R for Windows, 4.0 of GCDkit. It con-

         layed using the functions 

run on other systems, including Linux and Mac OS, but the current GCDkit will 
require a suitable emulation environment, e.g. Wine on Linux. The code, relying 
on GCDkit functions, will be displayed with the namesake prompt, GCDkit->. 

centrates on MS Windows implementation 

Electronic supplementary material 
Errata, code to the exercises and data sets are available on: 

. It is supplied purely for the sake
terested reader. They are unlikely to

http://book.gcdkit.org
       this book   from

. Moreover, this web site also contains the scripts used to
produce many of the figures. However, in
simple and easy to comprehend by a beginner

 the latter case the code is not always 

of curiosity, and in order to stimulate the in
work without at least some adaptations. If reading an electronic version of this
book, the exercises, dataset icons and relevant figures are clickable. 

http://book.gcdkit.org
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Typographic Conventions 

 

 

 

‘Warning’ 
 

Pointers and additional information opening new prospects (not dealt with in this 
text) are labelled as: 

‘Next step’ 
 

‘GCDkit box’ 
 

The text is supplemented by a large number of solved exercises, graphically intro-
duced like this: 

Exercise 1.2: Fractional crystallization 

exercise by . 

In the main text, R code and its output are set in a non-proportional font, the lat-
ter additionally in italics. Plain R code has a simple prompt, the GCDkit-specific 
one is marked as such: 
> summary(x[,"Sr"]) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  
  278.0   392.5   430.0   443.0   537.5   599.0     2.0 

GCDkit-> loadData("sazava.data") 
GCDkit-> results <- CIPW(WR) 

 
 

Most important are the warning boxes indicating potential pitfalls: 

An associated data file is marked by , and the beginning of a solution to the  

The GCDkit implementation of the given problem is outlined in:  

ix



GCDkit-> plot(WR[,"SiO2"), 
+   pch="*",col="khaki") 

In Part VI and Appendix A, commented chunks of R code, often just outlined and 
displayed as “code boxes”:  

 We create Harker plots (Fig. 25.3) using Plot|Multiple plots…, i.e. the command:  

GCDkit-> multiple("SiO2","Al2O3,Fe2O3,MgO,CaO,Na2O,K2O") 

Names for R objects and file names, occurring in the text, are also set in a non-
proportional font: 
… factor silica from the previous exercise … 

Comments in the code start with the hash mark (“#”): 
# Fig. 4.2.1 

of the ‘Misc’ menu. 

Equations in the text are numbered sequentially, starting with the chapter number: 

 0

(1 )L
CC

D F D
 (5.1) 

The same applies to figures, tables, or exercises. Otherwise, the first number of 
figures or tables is that of the relevant Appendix; the second refers to a se-

sented in full, they are enclosed in brackets: 

 

2 2 2

2 2 2

2 5 2 5 2 5

 

SiO SiO SiO
Pl Opx n
TiO TiO TiO
Pl Opx n

P O P O P O
Pl Opx n

C C C
C C C

C C C

C

Vectors are written in a similar way, but their symbol has a single arrow: 

 

x

Broken, continuing lines of code have a plus sign as a prompt and are indented: 

Typographic Conventions

Names of mathematical variables Menu items are type set in italics, 
e.g. Misc|Stop current computation, indicating an item ‘Stop current computation’ 

quence there in (Fig. A1.2; Table A3.5).  

Matrices are named with a bold italics letter topped by a double bar. When pre-

 and

not complete, are

Pl

Opx

n

m
m

m

m



Equation systems are linked together by a single curly brace to their left: 

 

2 2

2 2

2 5 2 5

1

1

1

( )

( )

( )

n
SiO SiO
S i i

i
n

TiO TiO
S i i

i

n
P O P O
S i i

i

C m C

C m C

C m C
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Variables and Symbols 

 

 

 
This book uses, as much as possible, a consistent set of symbols to represent vari-
ables of geochemical interest both in the text and in the accompanying R code. 
The following is a summary of the main symbols used. Often, a series of similar 
variables exists for a range of elements, minerals or portions of a system: this is 
indicated by subscripts and superscripts. 

General 

Symbol Meaning and definition R symbol 

W Mass (weight) of a whole system, or a portion thereof 
(indicated by subscript, see separate table below) Not used3 

w  (see subscript) Not used 

F Melt fraction: 0LF W W  ff 

FC Degree of crystallization: 01 SCF F W W  fc 

C, C  
(subscript): C w W  

c0, cs, cl… 

ic  mins 

T Temperature, normally in K but some equations use °C tt

  

                                                           
3 Some equations discussed in the text are not implemented in the R code. 

xiii

The mass of an element  in a portion of the system  

Concentration of element in a system or portion thereof 

Concentration of element  in mineral i 



Mineral proportions in various portions of a system (always summing up to 1) 

Symbol Meaning and definition R symbol 

mi … in the whole solid (cumulate or restite) m 

qi … in the peritectic assemblage Not used 
pi … in the reactants (non-modal melting) Not used 
m0,i … in the original solid (non-modal melting) Not used 

Mixing 

Symbol Meaning and definition R symbol

f1, f2…fm Fraction of end-members 1, 2, …m involved in mixing 
f1, f2.. or 
f[1], f[2]… 

a, b, u, v Various elements for which mixing is modelled  
(Sect. 11.3) Not used 

A, B, C, D Parameters of a mixing hyperbola (Sect. 11.3) AA, BB, CC, DD 

Element partitioning 

Symbol Meaning and definition R symbol

: 

/min L min
D

L

cK
C

 

Often just KD in text, when its meaning (element/mineral) 
is clear from the context 

kd, or commonly 
kd[j,i] or 
kd[elt,min] 
assuming elt and 
min have been de-
fined before… 

Bulk distribution (solid/liquid) of element 

/L
i

n
i
D

S

L i

CD m K
C

 

Often just D in text when the meaning is unambiguous

dd 

dd[elt] 

dd[j] 

“Bulk distribution coefficient” for the initial melting as-
semblage (non-modal melting): 

1

/L
0 0

n

i
i

i
DD m K  

 (or just D0 when unambiguous) 

Not used 

“Bulk distribution coefficient” for the reactants (non-
modal melting): 

L

1

i/
P i

i
D

n

D p K  

(or just DP when unambiguous) 

Not used 

xiv Variables and Symbols

Partition coefficient of element between mineral 
(min) i and liquid

/min L
DK

D  

0D  

PD



AFC 

Symbol Meaning and definition R symbol 

AW  Rate of assimilation Not used 

CW  Rate of fractional crystallization Not used 

r Rate of assimilation to fractionation: A

C

Wr
W

 r 

rC Critical value of r for AFC, above which assimilation is 
dominant rc 

z Convenience parameter: 1
1

r Dz
r

z 

S Slope of a mixing array in a diagram 1/c vs. I employed 
in reverse AFC modelling Not used 

C0, I0 Element concentration and isotopic ratio in pristine melt c0, i0 

CA, IA Element concentration and isotopic ratio in assimilant ca, ia 

CL, IL Element concentration and isotopic ratio in liquid Not used 

Radiogenic isotopes 

Symbol Meaning and definition R symbol

Ab Isotopic abundance, e.g. 
87Rb

Ab  Not used 

AW Atomic weight, e.g., RbAW  Not used 

I Ratio of daughter and stable, unradiogenic isotopes of the 
same element (e.g., 87Sr/86Sr, 143Nd/144Nd), measured I 

IX, IY Two such isotopic ratios for two distinct isotopic sys-
tems, e.g., Sr and Nd  Not used 

R Ratio of parental isotope/stable, unradiogenic isotope of
the daughter element (e.g., 87Rb/86Sr, 147Sm/144Nd) R 

 Decay constant lambda 

Ii 

I1, I2, IM 
Initial isotopic ratio 
(subscripts 1, 2, M indicate isotopic ratios in mixing) i1, i2, im 

X, Y Isotopic systems if two involved in plotting e.g., cx1, iy1  

b Slope of an isochron Not used
Parameter controlling the shape of a mixing hyperbola alpha 

q Curvature of a mixing hyperbola q 

x0, y0 Asymptotes of a mixing hyperbola x0, y0 

xvVariables and Symbols



Additional subscripts/superscripts for isotopic ratios 

SA 
DM  
CC 
CHUR 
0 

t 

Sample 
Depleted Mantle 
Average Crust 
Chondritic Uniform Reservoir 
Present-day 
Initial 
At the time t 

Parts of a system (subscript) 

Subscript Meaning Process

0  Source [zero] solid source in the case of melting, primitive 
magma for crystallization 

L Liquid  melt for melting or differentiated liquid for crystalli-
zation 

S Solid restite for melting, cumulate for crystallization 
S.inst Instantaneous solid fractional crystallization 
S.bulk Bulk (aggregated) solid fractional crystallization 
M Mixture  mixing 
P Reactants non-modal melting 
C Crystallized phases AFC 
A Assimilant  AFC 

Q Peritectic assemblage Melting or crystallization (with slightly different 
meanings) 

Additional sub- and superscripts 

Object Symbol Numbering 

Minerals A, B… i = 1 to n 
Chemical elements (components) j = 1 to p 
End-members in a mixing 1, 2… k = 1 to m 
Step of a stepwise process t Not used 

 
It is not always possible to use the same conventions for printed text and R 
variables. For instance, mixed case variables (both upper and lower case) 

are dangerous in R, because it is case sensitive. Therefore, we use lower case in 
(most) R variable names. Furthermore, many single-letter symbols are reserved 
words: for instance c, D and t refer to common R functions (see Appendix ),  

son, the commonly used F (melt fraction) and D (bulk distribution coefficient) are 

the source/parental magma is the number 0, not the letter O! 

xvi Variables and Symbols

… 

represented by ff and dd in our R code. Note also that the suffix used to indicate 

             whereas T and F are shorthand notations for logical TRUE FALSE. For this rea- and 

, 

i 

A

L.inst Instantaneous liquid fractional melting 
L.bulk Bulk (aggregated) liquid  fractional melting 



List of Abbreviations 

 

 

 
AFC Assimilation and Fractional Crystallization 
ASCII American Standard Code for Information Interchange 
BSE Back-Scattered Electrons, Mad Cows Disease 
CBPC Central Bohemian Plutonic Complex 
CHUR Chondritic Uniform Reservoir 
CL Cathodoluminescence 
DM Depleted Mantle 
ESC Essential Structural Component 
FAQ Frequently Asked Questions 
fO2 oxygen fugacity 
Ga 109 years 
GUI  Graphical User Interface 
HFSE High-Field Strength Element(s) 
ICP-MS Inductively Coupled Plasma Mass Spectrometry 
INAA Instrumental Neutron Activation Analysis 
ICP-OES Inductively Coupled Plasma Optical Emission Spectrometry 
ka 103 years 
LA ICP-MS Laser-Ablation Inductively Coupled Plasma Mass Spectrometry 
LILE Large Ion Lithophile Element(s) 
Ma 106 years 
MORB Mid-Ocean Ridge Basalt 
MME Mafic Microgranular Enclave 
NB Nota Bene 
ppm Parts Per Million 
REE Rare Earth Elements; LREE, MREE, HREE:  

light, medium, heavy REE 
SIMS Secondary Ion Mass Spectrometry 
TIMS Thermal Ionization Mass Spectrometry 
TTG  Tonalite–Trondhjemite–Granodiorite association 
XRF X-Ray Fluorescence Spectrometry 
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Abbreviations of Mineral Names 

 

 
 
Symbols for mineral names mostly follow Kretz (1983): 

Ab Albite 
All Allanite 
Amp Amphibole 
An Anorthite 
Ap Apatite 
Bt Biotite 
Cpx Clinopyroxene 
Crd Cordierite 
Di Diopside 
En Enstatite 
Fo Forsterite 
Grt Garnet  
Hbl Hornblende 
Ilm Ilmenite 
Kfs Potassium feldspar 
Mnz Monazite 
Ms Muscovite 
Mt Magnetite 
Ol Olivine 
Opx Orthopyroxene 
Phl Phlogopite 
Pl Plagioclase 
Qtz Quartz 
Rt Rutile 
Sil Sillimanite 
Spl Spinel 
Zrn Zircon 

xix

Reference
Kretz R (1983) Symbols for rock-forming minerals. Amer Miner 68:277-279.
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Chapter 1  
Introduction 

Very soon after the birth of igneous geochemistry, geologists like Alfred Harker 
(Harker 1909) recognized the existence of igneous rock “series”, i.e. rock suites 
sharing common geochemical features and having progressively changing compo-
sitions. Such variation was, and still frequently is, ascribed to evolution by frac-
tional crystallization at depth, in a putative magma chamber. Research over the 
following century, however, has demonstrated that the chemistry of magmatic 
suites may in fact be shaped by many contrasting petrogenetic processes. Geo-
chemistry, especially in combination with petrology, represents a powerful tool for 
deciphering and parameterizing of such processes.  

1.1 Causes of Whole-Rock Chemical Variation in Igneous 
Suites 

Human beings—and geologists in particular—have always been fascinated by 
magmas. Due to the well-known increase of temperature with depth, it was be-
lieved for a long time that there is a planetary-scale reservoir of molten rocks  
beneath the crust (e.g., Kircher 1664; Moro 1740; Cordier 1827). This archaic 
concept has long been abandoned as seismic data demonstrated that, apart from 
the outer core, the interior of the Earth is solid (Oldham 1906; Gutenberg 1914; 
Jeffreys 1926, among others). Suddenly a more complex picture has arisen—that 
of vigorous deep interactions between solid and liquid materials, including at least 
two successive petrogenetic processes: melting and crystallization. Of course, 
these mechanisms are inaccessible to direct observation, which is why their inves-
tigation has been mainly indirect, based on petrological and geochemical methods.  

In the beginning of the 20th century, two distinct and complementary ap-
proaches to the problem emerged. The first one, based on experiments, was devel-
oped by Bowen (1912, 1928) who demonstrated the existence of mineral reaction 
series in magmatic systems. Indeed, during the crystallization of magma, minerals 
do not grow simultaneously but, as the magma cools, the individual mineral 
phases appear in a succession determined by their crystallization temperature. This 
concept showed crystallization as a dynamic process with a certain temporal  

1© Springer-Verlag Berlin Heidelberg 2016 
V. Janoušek et al., Geochemical Modelling of Igneous Processes – Principles  
And Recipes in R Language, Springer Geochemistry,  
DOI 10.1007/978-3-662-46792-3_1



development. Thus, the evolution is not linear, but it can take different directions 
in response to the changes in physico–chemical parameters and, in turn, of mineral 
chemistry of crystallizing assemblages. 

It was about the same time that a second approach, exemplified by Harker 
(1909) was developed based on interpretation of whole-rock compositions. This 
author came up with the concept of a variation diagram, plotting oxides of major 
elements against an “index of differentiation”. Harker’s suggestion to use SiO2 as 
a differentiation index was ground-breaking at the time and marked the dawn of 
modern geochemistry. He showed that when the bulk composition of rocks be-
longing to the same petrographic province, or even a single volcanic (or plutonic) 
complex, are plotted in such variation diagrams, they define more or less continu-
ous evolutionary trends (Fig. 1.1). Harker proposed to interpret these trends in 
terms of magmatic differentiation, directly correlated to the nature of the crystal-
lizing mineral phases. 

Fig. 1.1 An example of early depiction of differentiation trends in binary plots of silica vs. 
major-element oxides, for the volcanic rocks from Lassen Peak (California) (Harker 1909).
These later became known as the Harker plots.

Even though both these approaches have been an important step forward, they 
have for long remained essentially descriptive, or qualitative at best. The first at-
tempts on quantifying and modeling the behaviour of trace elements in magmas 
date back to the late 1960’s (Gast 1968; Shaw 1970). Similarly, even if the chemi-
cal fractionation laws had been long known for gases (Rayleigh 1896), it was only 
at this same period that they were invoked to model the fractionation of crystalliz-
ing magmatic liquids (Neumann et al. 1954; Greenland 1970; Albarède and 
Bottinga 1972). Also the analysis of mineral chemistry was revolutionized by the 
appearance of the first commercially available electron microprobes (Castaing 
1951). Lastly, the prestigious lunar program in the 1960’s required precise and ac-
curate chemical, and then isotopic, analyses of small samples, leading to innova-
tions (Johnson et al. 2013).
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A further boost to geochemical modelling came with the advancement of radio-
genic isotope methods (originally Thermal-Ionization Mass Spectrometry, TIMS, 
and from late 1990’s also Inductively Coupled Mass Spectrometry, ICP-MS). In 
1970’s analytical techniques became available revolutionising whole-rock trace-
element determinations, providing precise and reproducible data needed for petro-
genetic modelling (e.g., X-Ray Fluorescence Spectrometry, XRF; Instrumental 
Neutron Activation Analysis, INAA) later joined by Inductively Coupled Plasma 
Optical Emission Spectrometry, ICP-OES and, in particular, ICP-MS (Potts 1987; 
Sylvester 2001). Obviously related was the development of the theoretical princi-
ples, including new geochemical projections (see Rollinson 1993 and references 
therein) or innovative approaches to numerical description and modelling of 
petrogenetic processes (summarized, above all, in excellent monographs of 
Albarède 1995 and Shaw 2006).

This revolution in whole-rock geochemistry has been joined, especially in the 
last twenty years, by novel and cost-effective methods for in situ determinations of 
mineral composition, most importantly Secondary Ion Mass Spectrometry (SIMS) 
and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA ICP-
MS). This advancement is ongoing, and seems to be accelerating nowadays.  

1.2 Conventional Software for Igneous Geochemistry 

With the modern analytical techniques has inevitably arrived a flood of precise 
geochemical data on major- and trace elements, as well as a seemingly endless 
number of isotope systems. This technical progress goes hand in hand with the in-
creasing accessibility of data over the Internet, in the form of online publications, 
their supplementary datasets, or web-based databases such as EarthChem 
(www.earthchem.org) or GeoRoc (georoc.mpch-mainz.gwdg.de/georoc).

Quick and efficient handling of such large datasets represents a true challenge 
in modern geochemistry. This is routinely achieved by personal computers, also 
enabling the calculation of rather complicated thermodynamic and petrogenetic 
models in the comfort of one’s own office.

1.2.1 Spreadsheets 

The most accessible and generally available are the spreadsheets. They belong to 
basic software preloaded on many computers, thus requiring no extra costs. Even 
though relatively easy to use, they are not very suitable for geochemical calcula-
tions. Dedicated geochemical tools, mostly designed for Microsoft Excel aided by 
VBA macros, are rather scarce, and their functionality rudimentary (Sidder 1994; 
Su et al. 2003; Zhou and Li 2006; Wang et al. 2008) even though some more so-
phisticated tools for petrogenetic modelling are also available (Ersoy 2013; Keskin 
2013). Moreover, spreadsheets endure low efficiency for repeated tasks as well as 
limited protection of the primary data; for more complicated calculations the 
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worksheet becomes too complex and prone to errors. The graphical output is poor 
and requires much tweaking to become truly of publication quality. In our view, 
spreadsheets are useful only for organization of the data (although databases are 
superior for the task) and production of tables for final publication.  

1.2.2 Dedicated Programs (PC Compatibles)1

A number of dedicated software tools have been written in a variety of program-
ming languages that PC users could employ. Some of them were designed for 
DOS or 16-bit versions of Windows and thus became obsolete, such as MinCalc 
(Melín and Kunst 1992), NewPet (Clarke et al. 1994), MinPet (Richard 1995), or 
Norman (Janoušek 2001). Others are more recent and still being continuously de-
veloped, most notably IgPet (Carr 2014; www.rockware.com), PetroGraph 
(Petrelli et al. 2005), accounts.unipg.it/~maurip/SOFTWARE.htm) and WinRock 
(Kanen 2004, www.geologynet.com/winrock.htm).

Unfortunately, it is often difficult to figure out exactly which algorithms have 
been employed by a given program. The documentation is never detailed enough 
and it is not a common practice to make the source code available. Even if it is, 
any modifications or additions to the original program could be tedious, or impos-
sible for legal reasons, or merely because the user may not be a skilled program-
mer. Moreover, many of the programs require complex formatting of the input 
data, and/or fail to produce high-quality graphical output. Of concern to many col-
leagues also is that some of the applications are rather costly and/or have a pecu-
liar user interface. 

1.3 A Revolution? The R Language 

Clearly the best approach to many problems outlined above would be to write our 
own software. But we suggest that it would not be wise to develop it from scratch; 
much better is to employ a comprehensive computing environment such as 
Mathematica or Matlab, with a built-in computational, graphical and input/output 
functionality. However, also these packages are commercial, hindering the distri-
bution of any product to potential users, especially in economically challenged 
countries.

1.3.1 What is R? 

Fortunately, with the appearance of the R language at the turn of millennium, we 
now have a powerful, yet simple and free, open-source toolbox, ideal for devel-
opment of geochemical packages. Put in simple terms, R is an environment for  
efficient data processing, their visualization and statistical analysis as well as a 

                                                          
1 Apart from thermodynamic software, dealt with in one of the Next step boxes in Chap. 22.  
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high-level functional/object-oriented programming language. It was developed 
originally by Ihaka and Gentleman (1996) from the University of Auckland. Sub-
sequently an open group of experts formed the R Development Core Team who 
continue to oversee the development of the project (www.r-project.org)
1.00 was released in 2000; the current one at the time of writing this book is 3.1.2 
(Pumpkin Helmet). 

The syntax of R (see Appendix A) is based on, and largely compatible with, its 
successful predecessor, the S language. The latter was developed in Bell Laborato-
ries in 1975, and followed by The New S Language in late 1980’s (Becker et al. 
1988). The commercial version, S-PLUS, is currently being distributed by TIBCO 
Software (www.tibco.com).  

The chief advantage of R is—apart from a somewhat more efficient implemen-
tation—that it is freely available, with all the source code, for all the main plat-
forms (MS Windows, Unix/Linux and Mac OS). The R language includes arith-
metic and database functions (plus data import in many formats, also via SQL and 
ODBC), functions for matrix manipulation/arithmetic and a large number of statis-
tical tools.  

The graphic output is publication-quality, including mathematical symbols. It 
can be exported into a number of data formats (PostScript, WMF, PDF, TIFF, 
PNG…), for incorporation into DTP programs and word processors or for further 
editing in graphical packages such Corel Draw or Adobe Illustrator. 

R allows interactive as well as batch use (as a true programming language). For 
the latter, it enables writing user-defined functions involving conditions or loops. 
R is easily extensible with user-contributed packages. Apart from this, an over-
whelming majority of programs designed originally for S/S-PLUS work—directly 
or after cosmetic changes—in R. Most of the R system is written in R; for compu-
tationally intensive tasks, C, C++, and FORTRAN code can be linked and called 
at run time.  

1.3.2 Geochemical Data Toolkit (GCDkit) 

The Geochemical Data Toolkit (GCDkit) (Janoušek et al. 2006, 2011) is a free-
ware Windows package for interpretation and graphical presentation of whole-
rock geochemical data from igneous rocks. It not only provides a graphical user 
interface (GUI) to (a fraction) of relevant functions built into R, but also intro-
duces brand new specialized geochemical tools. These include recalculations 
(simple geochemical indexes, norms, interpretation of the Sr–Nd isotopic data…) 
and graphs (e.g., binary and ternary plots, spiderplots, as well as templates for 
classification and geotectonic diagrams). It is designed so that no programming skills 
are needed for ordinary use. At the same time, the possibility of typing  
in R/GCDkit commands is preserved. From R, GCDkit inherits modularity,
expandability and lucidity. An introduction to its basic functionality is given in 
Appendix B, and examples of use are in the forthcoming text.  
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Part I R/GCDkit at Work 

In this section we will demonstrate practical use of the R language to solve com-
mon problems in igneous geochemistry. The text usually starts with a brief discus-
sion of the geological background, followed by a R code (see Appendix A for an 
overview of R syntax) and its equivalent (or more elegant ) solution in GCDkit 
(for introduction to the system or for reference, see Appendix B). 
 
 



Chapter 2  
Data Manipulation and Simple Calculations 

2.1 Loading and Manipulating Data 

When starting a new session in R, with or without GCDkit, the first task is to im-
port data. In plain R, tabular data, common in igneous geochemistry, can be 
loaded most conveniently by the read.table command. The other possibility is 
to access one of the built-in datasets using the data command. In GCDkit the 
analyses are usually read by the loadData function, or copied from any Windows 
application (such as a spreadsheet) via the clipboard. 

Once data are loaded, the most common tasks include display, subsetting (mod-
est database functionality) and simple arithmetics. Below we are going to practice 
such skills on vectors and data frames, the most common data types. 

 
Exercise 2.1: Subsetting a numeric vector, vector operations 

GCDkit contains several built-in datasets, normally needed just for correct system 
functioning. One of these is atomic weights, stored in the named vector mw. We 
will use it to show some simple vector operations. 

a) Display the whole vector. What is the atomic weight of Rb? 
b) What is the average value of the whole vector? 
c) Which atoms have the atomic weight higher than 170? 
d) Display the names of six lightest and six heaviest elements in the dataset. 

© Springer-Verlag Berlin Heidelberg 2016 
V. Janoušek et al., Geochemical Modelling of Igneous Processes – Principles  
And Recipes in R Language, Springer Geochemistry,  
DOI 10.1007/978-3-662-46792-3_2
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Seldom are all the values available for all the samples. There are two types of 

missing data: concentrations below the detection limit and those not determined. 

If statistical evaluation is desired, especially by multivariate methods, information 

that elemental concentration is lower than a certain threshold fundamentally dif-

fers from the situation when it is completely unknown and can attain any value. 

One of the available strategies to deal with the first case (Rock 1988; van den 

Bogaard and Tolosana-Delgado 2013) is to replace the data below the detection 

limit by its half (Reimann et al. 2008). Clearly, thus estimated values should not 

represent a high proportion of the given variable. Regarding the not analyzed data, 

the R language has facilities to handle appropriately any completely missing values 

(denoted NA), e.g. during plotting or mean calculations.



 
a) GCDkit-> mw 
       Ag        Al        As        Au         B        Ba  
107.86820  26.98154  74.92160 196.96650  10.81100 137.33000  
       Be        Bi        Br         C        Ca        Cd  
  9.01218 208.98040  79.90400  12.01100  40.07800 112.41000 … 
 
GCDkit-> mw["Rb"] 
     Rb  
85.4678 
 
b) GCDkit-> mean(mw) 
[1] 107.9206 
 
c) GCDkit-> names(mw)[mw>170] 
 [1] "Au" "Bi" "Hf" "Hg" "Ir" "Lu" "Np" "Os" "Pb" "Pt" "Pu" 
[12] "Re" "Ta" "Th" "Tl" "U"  "W"  "Yb" 
 
d) GCDkit-> sort(mw)[1:6] 
       H       Li       Be        B        C        N  
 1.00797  6.94100  9.01218 10.81100 12.01100 14.00670 
GCDkit-> rev(sort(mw))[1:6] 
      Pu        U       Np       Th       Bi       Pb  
244.0640 238.0290 237.0482 232.0381 208.9804 207.2000 
 
 

Exercise 2.2: Loading files, matrix/data frame manipulations

The file sazava.data contains selected major- and trace-element analyses from 
the ~354 Ma old Sázava suite of the Central Bohemian Plutonic Complex (CBPC; 
Bohemian Massif, Czech Republic) (Janoušek et al. 2000, 2004). 

a) Read analyses stored in the tab-delimited data file into a data frame WR.
b) Find out the names of available variables (= column names).  
c) What is the MgO content of sample Sa-1?
d) Show all available numeric data for samples Po-1 and Po-4.  
e) Calculate the total of the column “Na2O”.
f) Display names of three samples with the lowest and the highest SiO2 contents. 
g) Calculate averages of all variables. 
h) Display a table with three columns: SiO2, MgO and Na2O/K2O.

sazava.data 

a) > sazava <- read.table("sazava.data",sep="\t") 
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GCDkit-> loadData("sazava.data") # Alternative in GCDkit  1

GCDkit-> sazava <- cbind(labels,WR) 
 
b) > colnames(sazava) 
 [1] "Intrusion" "Locality"  "Petrology" "Outcrop"   
 [5] "Symbol"    "Colour"    "SiO2"      "TiO2"      
 [9] "Al2O3"     "FeO"       "Fe2O3"     "MnO"… 
 
c) > sazava["Sa-1","MgO"] 
[1] 3.21 

 
> sazava[c("Po-1","Po-4"),] 
      SiO2 TiO2 Al2O3  FeO Fe2O3  MnO  MgO  CaO Na2O  K2O 
Po-1 62.95 0.28 20.02 1.65  0.67 0.05 0.55 6.61 3.91 1.99 
Po-4 71.09 0.30 15.09 2.12  0.38 0.06 0.52 3.75 3.68 1.87 … 
 
e) > sum(sazava[,"Na2O"]) 
[1] 39.13 
 
f) > silica <- sazava[,"SiO2"] 
> names(silica) <- rownames(sazava) 
> names(sort(silica))[1:5] 
[1] "Gbs-2"  "Gbs-1"  "Sa-4"   "Gbs-20" "SaD-1" 
> names(rev(sort(silica)))[1:5] 
[1] "Po-5" "Po-4" "Po-3" "Po-1" "Sa-1" 
 

st six columns 

        SiO2         TiO2        Al2O3          FeO  
 57.95285714   0.63928571  16.94285714   4.73071429  
       Fe2O3          MnO          MgO          CaO  
  1.74642857   0.13785714   3.57000000   8.16000000 … 
 
h) > x <- cbind(sazava[,"SiO2"],sazava[,"MgO"], 
+  sazava[,"Na2O"]/sazava[,"K2O"]) 
> colnames(x) <- c("SiO2","MgO","Na2O/K2O") 
> rownames(x) <- rownames(sazava) 
> x 
      SiO2  MgO Na2O/K2O 
Sa-1 59.98 3.21 1.008000 
Sa-2 55.17 3.67 1.976471 … 

2.2 Linking Whole-Rock Chemistry with Mineral 
Stoichiometry 

After loading, a common task is to recast the bulk geochemical analyses into sev-
eral indexes, related to the mineralogy of the rocks. This is often followed by 
                                                          
1 Caution, two variables will be created in this case. WR will contain only the numeric values, all 

textual information will be transferred into data frame labels. See Appendix B for details. 
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d) > sazava <- sazava[,-(1:6)]  # Stripping 1

g) > apply(sazava,2,mean,na.rm=TRUE) 



normative recalculations. The aim is to better understand the modal chemistry, 
classification and, together with statistical methods, the distribution of elements 
within the dataset. R, as a statistical language, is well suited to such a task. Fur-
thermore, user-defined functions serve to add new features tailored to our needs.  

2.2.1 Basic Indexes 

The calculations in R can be best demonstrated on an example of simple geo-
chemical indexes. Arguably the most used, and quite powerful, are the recalcula-
tions of Fe as total ferrous or ferric oxides, and two types of Mg numbers : 2

2 30.89981 [ . %]FeOt FeO Fe O wt  (2.1) 

# 100 [ . %]MgOmg mol
FeO MgO

(2.2) 

# 100 [ . %]MgOMg mol
FeOt MgO

(2.3) 

Many major-element based diagrams are constructed using some conversion of 
wt. % oxides into cation numbers; this allows easy comparison with mineral for-
mulae. For instance, the popular alumina saturation index, A/CNK (Shand 1943) 
(sometimes also abbreviated as ASI) mimics the stoichiometry of feldspars: 

2 3

2 2

/ [ . %]Al OA CNK mol
CaO Na O K O

 (2.4) 

A similar index, distinguishing peralkaline rocks (with excess alkalis), is: 

2 3

2 2

/ [ . %]Al OA NK mol
Na O K O

(2.5) 

If A/CNK > 1, there is excess Al over the amount needed to form feldspars. Such 
rocks are termed peraluminous, while those with A/CNK < 1 and A/NK 

<

 1 are 
metaluminous and those with A/CNK ~ 1 subaluminous (Shand 1943). The 
A/CNK value has a direct link to modal mineralogy—presence of Ca- and/or al-
kali-rich phases such as amphiboles and pyroxenes indicates an Al deficit and the 
host rock is metaluminous. Biotite is weakly peraluminous and thus its occurrence 
points to weakly peraluminous nature of the rock (Miller 1985). Strongly peralu-
minous granitoids (sensu Miller 1985) contain additional more peraluminous 
phases like muscovite, or even alumosilicates (kyanite, sillimanite or andalusite), 
cordierite, garnet, tourmaline, topaz or corundum (Clarke 1981). However, the 
                                                          
2 The Fe numbers (Frost et al. 2001; Frost and Frost 2008) are defined analogously. 
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definition of the ASI does differ between authors—sometimes the Ca is corrected 
for apatite , or even the definition is misleading, not reflecting the feldspars 
stoichiometry at all (Frost et al. 2001) .  

3

4

 

 
Exercise 2.3: Calculating simple indexes 

On the Sázava dataset we can demonstrate how to define a function calculating a 
geochemical index. In this way the system can be enriched, quickly and efficiently.  

a) Given the molecular weights below, design a function to calculate mg number. 

FeO MgO Al2O3 CaO Na2O K2O 

71.85 40.31 101.96 56.08 61.98 94.20 

b) Write a function returning Shand’s indexes (A/CNK and A/NK). 
c) Calculate all these values for the Sázava dataset.  
d) Recast the major-element oxides on 100% volatile-free basis. 

sazava.data 

 
> sazava <- read.table("sazava.data",sep="\t") 
> MW <- c(71.85,40.31,101.96,56.08,61.98,94.20) 
> oxides <- c("FeO","MgO","Al2O3","CaO","Na2O","K2O") 
> names(MW) <- oxides 
> # Transpose as the division of a matrix by a vector  
> # proceeds along columns, not rows. 
> mol <- t(sazava[,oxides])/MW[oxides] 

a) > mgno <- function(){ 
> mg <- 100*mol["MgO",]/(mol["FeO",]+mol["MgO",]) 
> return(mg) 
>} 
 
b) > ank <- function(){ 
>  ANK <- mol["Al2O3",]/(mol["Na2O",]+mol["K2O",]) 
>  return(ANK) 
> } 
> acnk <- function(){ 
>  ACNK <- mol["Al2O3",]/(mol["Na2O",]+mol["K2O",]+ 
+   mol["CaO",]) 
>  return(ACNK) 
> } 
 
c) > # Calculate the indexes 
> x <- cbind(mgno(),acnk(),ank()) 
> colnames(x) <- c("mg.no","A/CNK","A/NK") 

                                                           
3 NB that GCDkit does not perform this correction.  
4 See GCDkit help to the function Frost. 
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> x 
          mg.no     A/CNK     A/NK 
Sa-1   51.16987 0.8355806 2.396569 
Sa-2   55.42955 0.7619109 2.307463 
Sa-3   51.92059 0.8079150 2.562820 … 
 
d) > major <- c("SiO2","TiO2","Al2O3","Fe2O3","FeO","MnO", 
+ "MgO","CaO","Na2O","K2O","P2O5") 
> sums <- apply(sazava[,major],1,sum) 
> anh <- sazava[,major]/sums*100 
> anh 
           SiO2      TiO2    Al2O3     Fe2O3      FeO 
Sa-1   60.30565 0.6334205 16.50915 1.3573296 5.489644 
Sa-2   56.25000 0.7238989 17.33279 2.7120718 5.362969 
Sa-3   56.03133 0.7628153 17.89056 2.1663954 5.909276 … 
 

Calculation of molecular weights in GCDkit utilises the function 
molecularWeight. It returns also the number of cations and oxygens 
per formula and thus the result needs to be subset, e.g. as follows:

GCDkit-> molecularWeight("Al2O3")[1] 
      MW  
101.9613

Simple geochemical indexes in GCDkit
Upon loading new data, several useful petrological indexes are calcu-
lated automatically, including FeOt, mg# and Mg#, as well as A/CNK 

and A/NK values that are then available, e.g. for plotting. Moreover, a matrix 
WRanh contains the major-element oxides recast to 100% anhydrous basis.

Therefore, the exercise a–c has a simple GCDkit solution: 
GCDkit-> loadData("sazava.data") 
GCDkit-> WR[,c("mg#","A/CNK","A/NK")] 
GCDkit-> WRanh 

2.2.2 Cationic Parameters 

Niggli (1948) stressed the importance of simple cationic values for petrogenetic 
interpretation of igneous rocks. Several of the Niggli’s cationic values, si, al, fm, c,
alk, k, mg, ti, p, c/fm, and qz are still in use. The concept was further elaborated in 
multicationic parameters of the French authors, based on millications: 

1000Cmilli n
MW

(2.6) 

where MW  is molecular weight and n  number of atoms in the oxide formula (e.g., 
2O, and again 2 for Al2O3). Note that even if the original 
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the later is 1 for CaO, 2 for Na



analyses (wt. % oxides) did sum up to 100, there is no reason for the total millica-
tions to attain a specific value. For some applications (e.g. zircon saturation, Sect. 
13.1.1) it is required to normalize this total to 1. 

For classification purposes, De La Roche et al. (1980) used a projection of two 
parameters, R1 = 4Si – 11(Na + K) – 2(Fe + Ti) and R2 = 6Ca + 2Mg + Al, thus incor-
porating all major-element oxides. Besides that, the R1–R2 plot has petrogenetic 
and geotectonic implications (Batchelor and Bowden 1985).

In the complex classification system of Debon and Le Fort (1983, 1988), ar-
guably the most useful parameters are A = Al – (K + Na + 2Ca) (reflecting peralu-
minosity), B = Fe + Mg + Ti (maficity), P = K – (Na + Ca) (proportion of K-feldspar 
among feldspars) and Q = Si/3 – (K + Na + 2Ca/3) (quartz content). 

Millications and related classification schemes
Upon loading a new data into GCDkit, the analyses are all recalculated to 
millications and stored in a data matrix milli. There are also functions 

calculating millications-based indexes, as well as generating some of the related 
plots (De La Roche et al. 1980; Debon and Le Fort 1983, 1988; Batchelor and 
Bowden 1985; Villaseca et al. 1998). See help for LaRocheCalc, LaRoche,
DebonCalc, Debon, Batchelor and Villaseca to find out more.

2.2.3 Normative Calculations and Classification of Igneous 
Rocks 

Calculating norms in GCDkit
Most of the GCDkit’s normative recalculation schemes have been 
adopted from its predecessor, NORMAN (Janoušek 2001). Available are 

modules for the CIPW norm, including the modification with Bt and Hbl
(Hutchison 1974, 1975), Catanorm (Hutchison 1974 and references therein), and 
Improved Granite Mesonorm (Mielke and Winkler 1979). The curious reader can 
type CIPW (without brackets!) at the GCDkit prompt, and look at the code of the 
function. See help for CIPW, CIPWhb, Catanorm and Mesonorm for details. 

172.2 Linking Whole-Rock Chemistry with Mineral Stoichiometry

The norms, even though introduced early in the history of igneous petrology, are 

not obsolete. For instance, the CIPW norm (designed by Cross et al. 1902) remains 

important part of the TAS classification of volcanic rocks, where it serves for dis-

tinguishing some rock types (Le Bas et al. 1986; Le Maitre 2002). The calculation 

involves a hierarchical list of rules that tend to be often ambiguous and giving, to 

a varied extent, different results (Hutchison 1974, 1975; Verma et al. 2002, 2003). 

Another shortcoming of the CIPW norm is that it does not include hydrous miner-

als and therefore yields phases often not matching modal mineralogy in the studied 

igneous rocks, especially acidic ones.



Dealing with results of GCDkit calculations
The most recent values calculated are always stored in the variable 
results. The results (i.e., the namesake variable) can be copied to the 

clipboard, appended to the data (to the data matrix WR) or saved into a variety of 
formats from a menu that appears after right-clicking the R-Console window.

2.3 Statistics 

Early in the interpretation of a newly acquired geochemical dataset it is handy to 
examine descriptive statistics for selected elements or oxides. R contains a pleth-
ora of statistical tools, either built in, or provided as additional modules (pack-
ages). At this stage, however, simple functions such as mean, median, sd (stan-
dard deviation) and summary (a statistical overview) suffice. Revealing are also 
simple graphical tools such as boxplots (box-and-whiskers plots; function  
boxplot) and histograms (hist). Scatter matrices (pairs) serve to spot poten-
tially significant correlations. See Appendix B for syntax and further details; the 
specific problem of dealing with a more complex data set containing several 
groups of data (using factors) is dedicated to Section 2.4. 

Statistics in GCDkit 

The more sophisticated tools are beyond the scope of the current text and the in-
terested reader is referred to R/S documentation or special publications (e.g., 
Chambers and Hastie 1992; Venables and Ripley 1999; Maindonald and Braun 
2003; Reimann et al. 2008; van den Bogaard and Tolosana-Delgado 2013). 

Exercise 2.4: Simple statistics

a) Compute means for all columns (variables) in the file sazava.data.
b) Display boxplot for strontium, and find out all the main statistical parameters

characterizing its distribution (the range, median, number of observations and 
not determined cases…).

c) Plot all the possible combinations of binary diagrams (a scatterplot matrix) for 
the following oxides: SiO2, MgO, CaO, Na2O, K2O, and P2O5. 
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The command line interface of the standard R environment on the one

                 hand allows much control for experienced users but on the other tends to

discourage many scientists, accustomed to menu-driven software. GCDkit builds 

on the diverse functionality of the R language by providing a graphical user inter-

face (GUI) to at least some of the most commonly used statistical functions, in-

cluding simple descriptive statistics, histograms, boxplots, strip plots, correlation 

diagrams as well as more sophisticated methods of multivariate statistics (such as 

hierarchical clustering and principal components analysis). This interface is ac-

cessible from the menu Calculations|Statistics. Nevertheless the R-Console is still 

available for standard commands.



sazava.data

> sazava <- read.table("sazava.data",sep="\t") 
> sazava <- sazava[,-(1:6)]  
# or sazava[,7:ncol(x)] to get solely the numeric data 
 
a) > result <- apply(sazava,2,mean,na.rm=TRUE) 
> round(result,2) 
     SiO2      TiO2     Al2O3       FeO     Fe2O3       MnO  
    57.95      0.64     16.94      4.73      1.75      0.14 … 
 
b) > boxplot(sazava[,"Sr"],xlab="Sr", ylab="ppm") 
> summary(sazava[,"Sr"]) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  
  278.0   392.5   430.0   443.0   537.5   599.0     2.0 
 
c) > oxides <- c("SiO2","MgO","CaO","Na2O","K2O","P2O5") 
> pairs(sazava[,oxides] 
 

Fig. 2.1 Boxplot of Sr distribution in the Sázava dataset (Exercise 2.4). b Scatterplot ma-
trix for selected major-element oxides, plotted using the function pairs.

2.4 Classification and Grouping—Using Factors 

Imagine that the studied plutonic complex consists of several igneous suites. Then 
whole-rock analysis for each sample can be accompanied by an indication as to 
which suite it belongs. A factor collecting this classification information enables, 
for instance, calculating an average A/CNK value for each of the suites separately. 
We should first demonstrate the definition of factors and then use them for in-
creasingly difficult statistical and classification tasks. 
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2.4.1 Statistical Examination of Complex Data Sets 

Statistical examination of complex geochemical data sets including, for instance, 
analyses for several intrusions, is tedious. Fortunately factors in R, in connection 
with the function tapply, offer a very flexible and elegant solution.  

Exercise 2.5: Using factors to deal with complex datasets I

a) For the Sázava dataset define a factor intrusion based on the specification 
given in the column ‘Intrusion’ that splits the suite into three groups: basic
(quartz diorites to Amp gabbros of numerous smaller bodies), Sazava (Sázava 
intrusion proper: mainly Amp–Bt tonalites to quartz diorites) and Pozary
(Požáry trondhjemite).

b) Display all possible values (levels) of this factor. 
c) Using the factor intrusion, calculate the mean SiO2 contents for each of the 

rock groups in the Sázava dataset. 
d) Analogously, calculate the mean concentrations of Ba. 

sazava.data

> sazava <- read.table("sazava.data",sep="\t") 
 
a) > intrusion <- factor(sazava[,"Intrusion"]) 
> intrusion 
 [1] Sazava Sazava Sazava Sazava Sazava basic  basic  basic  
 [9] basic  basic  Pozary Pozary Pozary Pozary 
Levels: basic Pozary Sazava 
 
b) > levels(intrusion) 
[1] "basic"  "Pozary" "Sazava" 
 
c) > tapply(sazava[,"SiO2"],intrusion,mean) 
 basic Pozary Sazava  
51.778 68.440 55.738 
 
d) > tapply(sazava[,"Ba"],intrusion,mean) 
  basic  Pozary  Sazava  
     NA 1291.25      NA 

In the last command, two of three groups gave NA because there are some missing 
values present: 

> tapply(sazava[,"Ba"],intrusion,is.na) 
$basic 
[1] FALSE FALSE  TRUE FALSE FALSE 
$Pozary 
[1] FALSE FALSE FALSE FALSE 
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$Sazava 
[1] FALSE FALSE  TRUE FALSE FALSE 

If the missing values are to be ignored and the mean for the remaining analyses 
calculated, we can pass the parameter na.rm=TRUE to the function mean: 
> tapply(sazava[,"Ba"],intrusion,mean,na.rm=TRUE) 
  basic  Pozary  Sazava  
 676.25 1291.25  682.25 

The R language provides additional, arguably even more powerful tools. For in-
stance, aggregate applies a given function to each of the variables (i.e., columns) of 
a numeric matrix or data frame x respecting grouping (defined by a factor or list of 
factors). Analogous is the function by, which splits a data frame into several 
smaller ones based on a factor (or list of factors).  

Exercise 2.6: Using factors to deal with complex datasets II

a) Utilizing the function summary, calculate basic statistical parameters for SiO2
distribution in each of the rock groups of the Sázava suite (factor intrusion).

b) What are the means for selected trace elements (Ba, Rb, Sr and Zr) in individ-
ual intrusions?  

c) Using the function by, print basic statistical summaries for major-element ox-
ides in each of the rock groups. 

sazava.data

  
> sazava <- read.table("sazava.data",sep="\t") 
> intrusion <- factor(sazava[,"Intrusion"]) 
 
a) > tapply(sazava[,"SiO2"],intrusion,summary) 
$basic 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  48.84   49.63   51.72   51.78   52.90   55.80  
$Pozary 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  62.95   66.96   69.69   68.44   71.17   71.42  
$Sazava 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  50.72   55.09   55.17   55.74   57.73   59.98 
 
b) > trace <- c("Rb","Sr","Ba","Zr") 
> aggregate(sazava[,trace],list(Rock=intrusion),mean, 
+  na.rm=TRUE) 
    Rock   Rb     Sr      Ba     Zr 
1  basic 34.5 346.25  676.25  65.75 
2 Pozary 59.5 460.75 1291.25 157.25 
3 Sazava 60.5 522.00  682.25  61.00 
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c) > by(sazava[,7:17],list(Rock=intrusion),summary) 
Rock: basic 
      SiO2            TiO2           Al2O3       
 Min.   :48.84   Min.   :0.340   Min.   :13.34   
 1st Qu.:49.63   1st Qu.:0.670   1st Qu.:14.17 … etc. 

Groups in GCDkit

# GCDkit solution 
GCDkit-> loadData("sazava.data") 
GCDkit-> groupsByLabel("Intrusion") 
    Sa-1     Sa-2     Sa-3     Sa-4     Sa-7    SaD-1  
"Sazava" "Sazava" "Sazava" "Sazava" "Sazava"  "basic"…  
Assigned groups: 
 basic Pozary Sazava  
     5      4      5 

Statistics in complex datasets—the GCDkit way
Two functions provide basic statistical parameters for complex datasets 
with several groups, such as igneous suites (and optional plotting of his-

tograms and/or boxplots): summarySingleByGroup (for a single variable) and 
summaryByGroup (several elements/oxides). If only the range of certain vari-
able(s) is desired, use the  function summaryRangesByGroup.

# Continuing from the previous example… (output is omitted) 
GCDkit-> summarySingleByGroup("SiO2") 
 
GCDkit-> trace <- c("Rb","Sr","Ba","Zr") 
GCDkit-> summaryByGroup(trace) 
GCDkit-> summaryRangesByGroup(trace) 
 
GCDkit-> summaryByGroup(major) 

2.4.2 Conversion of Numeric Vectors to Factors  

The function cut splits a numeric vector x into given number of intervals and 
codes its individual items according to the rank they fall into. So this function can 
be used for simple classification purposes. 
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GCDkit allows each of the samples to be assigned to a group and these 

groups are subsequently utilised by statistical and plotting functions. 

Groups can be defined on the basis of a single label, a value of a nu-

merical variable, position in classification diagram (e.g., TAS) or cluster analysis.

In command line mode or a batch file it is simplest to use the GCDkit
. The information regarding current grouping is stored in a vector

function

groupsByLabel
groups; default grouping after loading a new data file or selecting a subset is on 

plotting symbol. 



Exercise 2.7: Classification using factors

Classify samples in the Sázava set according to SiO2 contents (wt. %) in four 
groups, U (< 45), B (45–52), I (52–63) and A (> 63). 

sazava.data

  
> sazava <- read.table("sazava.data",sep="\t") 
> silica <- cut(sazava[,"SiO2"],breaks=c(0,45,52,63,100), 
+  labels=c("U","B","I","A")) 
> silica 
[1] I I I B I I B B B I I A A A 
Levels: U B I A 

Note that the levels that do not occur in the data at all (here the ultrabasic rocks, 
U) are not dropped. If we want to know the classification of individual samples, 
we convert the factor silica to a character vector: 

> acidity <- as.vector(silica) 
> names(acidity) <- rownames(sazava) 
> acidity 
Sa-1   Sa-2   Sa-3   Sa-4   Sa-7  SaD-1  Gbs-1 Gbs-20  
 "I"    "I"    "I"    "B"    "I"    "I"    "B"    "B"  
Gbs-2  Gbs-3  Po-1   Po-3   Po-4   Po-5  
  "B"    "I"   "I"    "A"    "A"    "A" 

Grouping according to a single numeric variable
Similar task, i.e. classification of samples into several groups according 
to values of a numeric variable, is done by GCDkit function cutMy. 

# GCDkit solution 
GCDkit-> loadData("sazava.data") 
GCDkit-> cutMy("SiO2",c(0,45,52,63,100), c("U","B","I","A")) 
        SiO2 Interval 
Sa-1   59.98        I 
Sa-2   55.17        I 
Sa-3   55.09        I 
Sa-4   50.72        B 
Sa-7   57.73        I … 

2.4.3 Frequency (Contingency) Tables 
A nifty application of factors enables the creation of frequency tables.  
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a) Using the factor intrusion, count the number of analyses obtained from each 
of the rock groups in the Sázava dataset. 

b) Analogously, count the number of ultrabasic, basic, intermediate and acid 
rocks (factor silica from the previous exercise). 

c) Set up a frequency table showing the dependence of silica on the rock type. 

sazava.data 

> intrusion <- factor(sazava[,"Intrusion"]) 
a) > table(intrusion) 
intrusion 
 basic Pozary Sazava  
     5      4      5 
 
b) > table(silica) 
silica 
U B I A  
0 4 7 3 
 
c) > table(intrusion,silica) 
         silica 
intrusion U B I A 
   basic  0 3 2 0 
   Pozary 0 0 1 3 
   Sazava 0 1 4 0 
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Exercise 2.8: Frequency tables 

Continuing from the previous exercise, we demonstrate making frequency tables. 
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Chapter 3 
Classical Plots 

In this chapter, R recipes are presented to produce the most common graphs used 
in igneous geochemistry, such as binary plots (simple and multiple, e.g. Harker 
plots), ternary plots, spiderplots, classification and geotectonic diagrams. Espe-
cially for the latter two types, the text does not intend to be exhaustive. A compre-
hensive review can be found in Rollinson (1993) and in documentation/help to the 
GCDkit package (especially the file diagrams.pdf).  

3.1 Binary Plots 

The most common graph used in igneous geochemistry is a binary plot of two 
variables, linear or logarithmic. Often, as x axis serves some fractionation index, 
i.e. a chemical species mimicking the progressive development of the igneous 
suite studied (e.g., SiO2 for felsic, and MgO or mg# for mafic rock associations).  

3.1.1 Plotting Simple Binary Plots 

We shall demonstrate here the use of the basic plotting and annotation capabilities 
of R. Appendix A contains all the necessary details, including the explanation of 
function expression, as well as of abline and curve that can be used for add-
ing simple trends to the graphs. 

 

 
Exercise 3.1: Simple binary plots 

In this exercise we focus on graphical analysis of the Sázava dataset.  

a) Build a binary plot SiO2–CaO. Choose suitable ranges for the axes, label them 
and annotate data points by sample names. Assign the plotting symbols ac-
cording to individual rock types (utilizing the pre-defined column “Symbol”).  

b) Plot a line SiO2/CaO = 10 passing through origin [0,0]. 
c) Plot a diagram log Zr–log Ba and fit the data points, using the least-square lin-

ear regression, by a straight line. 
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sazava.data 
 

> sazava <- read.table("sazava.data",sep="\t") 
> windows(width=10,height=5) # Empty window of correct size 
> par(mfrow=c(1,2)) # Split screen for 2 graphs 
> par(mar=c(4,4,1,1)) # Outer margins for all graphs 
 
a) > plot(sazava[,"SiO2"],sazava[,"CaO"],cex=1.2, 
+ xlab=expression(SiO[2]),ylab="CaO", 
+ pch=sazava[,"Symbol"], xlim=c(49,75),ylim=c(0,15)) 
> text(sazava[,"SiO2"],sazava[,"CaO"],rownames(sazava), 
+  pos=4,cex=0.7) 
 
b) > abline(0,0.1) 
 
c) > plot(sazava[,"Zr"],sazava[,"Ba"],xlab="Zr",ylab="Ba", 
+  pch=15,cex=1.5,log="xy") 
> lq <- lm(log10(sazava[,"Ba"])~log10(sazava[,"Zr"]))  
> # lq is an arbitary variable name 
> # note the logarithms of the base 10 in the formula 
> lq 
Call: 
lm(formula = log10(sazava[, "Ba"]) ~ log10(sazava[, "Zr"])) 
Coefficients: 
      (Intercept)  log10(sazava[, "Zr"])   
           1.1994             0.8847 
> abline(lq,lty=2,lwd=2,col="darkgreen") 
 

 

Fig. 3.1 Binary plots from the Sázava dataset (Exercise 3.1). On the right is displayed the linear 
regression computed using the function lm

We shall provide the GCDkit solution as well: 
GCDkit-> loadData("sazava.data") 
GCDkit-> binary("SiO2","CaO",cex=1.2) 
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 and plotted by the function .

GCDkit-> abline(0,0.1) 

abline
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Plot editing from the command prompt 

1

 

On our Zr–Ba graph we can demonstrate post-processing of a single GCDkit plot: 
GCDkit-> binary("Zr","Ba",log="xy",pch=15,cex=1.5, 
+   col="black",fit=TRUE) 
GCDkit-> figMain("Demonstration") # Add main title 
GCDkit-> figXlab("Zirconium (ppm)") # Modify x axis label 
GCDkit-> figCol("darkred") # Colour of symbols 
GCDkit-> figCex(2) # Size of symbols 
GCDkit-> figCexLab(0.8) # Scaling of axes labels 
GCDkit-> figCexMain(1.5) # Size of main title 
GCDkit-> figXlim(c(10,300)) # Limits of the x axis 
GCDkit-> figUser("pch=\"+\"") # Plotting symbol 
GCDkit-> figUser("main=\"My plot\";las=2;bg=\"khaki\"; 
+  font.main=4;cex.main=2;col.main=\"blue\"") 
GCDkit-> figBw() # Set everything to black and white 

Annotating plots in GCDkit 
GCDkit provides a function annotate “guessing” the correct format-
ting of axis labels or of other text strings. It is called silently by many

functions in the system; see, for instance: 
GCDkit-> binary("K2O/Na2O","Al2O3") 
 

Plotting results of numeric calculations 
So far we have plotted only numeric data stored internally by the GCDkit

able WR. In fact, it is also rather simple to plot the results of calculations 
(such as the output of a normative scheme). This involves three steps: cal-

culation, appending the results to the data (using function addResults) and plot-
ting as usual.  

                                                           
 NB that the argument to 1 figUser is a single text string. Thus any quotation marks therein 

have to be preceded by an escape character, i.e. the backslash.  
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Owing to the fact that most of the single plots in GCDkit are in fact

Figaro templates (see Appendix B), they can be post-processed, i.e. many 

of their properties altered using functions from the menu Plot editing. 

They can also be modified directly from a command line or batch file. Moreover, 

function figUser nables setting several graphical parameters at once (that

“ ” commands are available (see ?par for their meaning). In addi-

For a list of further available functions and more detailed explanation, see

help pages to figEdit, figColours, figScale, figZoom and figUser.

 plotting 

v ari

figSomething
tion, figIdentify

are to be separated by semicolons) , including those for which no separate

e

can be used to (interactively) label the datapoints on the
active graph. Do not forget to click on “Stop” when you are done.



Here is an example of a CIPW-normative Ab–Q–Or ternary plot: 
GCDkit-> loadData("sazava.data") 
GCDkit-> results <- CIPW(WR) 
GCDkit-> addResults() 
GCDkit-> ternary("Ab","Q","Or") 

3.1.2 Constant Sum Effect (Closure) 

Numerous workers have argued that much of correlation observed in binary plots 
involving silica is spurious, due to the constant sum effect (e.g., Chayes 1960; 
Skala 1979; Rock 1988; Rollinson 1992, 1993). This effect arises from the fact 
that major elements sum up to 100 % and thus, if one oxide increases in abun-
dance, all others must decrease. Therefore, everything must be anti-correlated with 
silica. In any binary diagram (especially using SiO2 which is the most abundant 
component), this results in formation of a “Forbidden zone”, into which no analy-
ses could plot (Harker 1909) (Fig. 3.2a).  

One solution to this problem has been proposed by Bonin (1986) who intro-
duced the SiO2 vs. oxide* plots (Fig. 3.2b), where oxide* represents the proportion 
of the relevant oxide in the non-silica portion of the rock (in wt. %): 

*

2

100
100

oxideoxide
SiO

(3.1) 

Fig. 3.2 Derivation of an oxide* diagram for the Sázava dataset. a Alumina plotted in wt. %. 
Note the “Forbidden zone”, approached by the trend as differentiation progresses, meaning that 
Al2O3 becomes an increasingly important part of the “non-silica” portion of the rock. This is un-
derlined by the sharp increase in Al2O3* (b).
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Another possibility is to measure the distance between the analyses and a refer-
ence trend at the same SiO2 contents. Liégeois et al. (1998) invoked sliding nor-
malization against a reference series fitted by a second-order polynomial. Moyen 
et al. (2009) defined a parameter , a distance from a reference line in the Harker 
plot. Another classic numerical remedy is log-ratio transformations (Aitchison 
1986). See Reimann et al. (2008) with van den Bogaard and Tolosana-Delgado 
(2013) for details and van den Boogaart and Tolosana-Delgado (2008) for R im-
plementation.

3.2 Harker Plots and Other Basic Multiple Plots 

One of the most useful, most commonly employed and at the same time most 
questioned graphs in igneous geochemistry are the Harker plots, i.e. binary plots 
of silica versus major-element oxides.  

Exercise 3.2: Harker plots

Using a loop and function par(mfrow), write a short program that would plot 
six binary plots of SiO2 vs. major-element oxides of your choice.  

sazava.data 

  
> sazava <- read.table("sazava.data",sep="\t") 
> windows(width=8,height=6) 
> par(mfrow=c(2,3)) # Split screen for 6 graphs 
> ee <- c("Al2O3","MgO","CaO","Na2O","K2O","P2O5") 
> for(f in ee){ 
>  plot(sazava[,"SiO2"],sazava[,f],xlab="SiO2",ylab=f, 
+   pch=sazava[,"Symbol"],cex=1.5) 
> } 
 

We can prepare a more sophisticated version of this program, using annotations 
provided by expression in conjunction with the function parse. The
then be: 

> lab <- c("Al[2]*O[3]","MgO","CaO","Na[2]*O","K[2]*O", 
+ "P[2]*O[5]") 
> for(f in 1:length(ee)){ 
> plot(sazava[,"SiO2"],sazava[,ee[f]], 
+  xlab=expression(SiO[2]), 
+  ylab=parse(text=as.expression(lab[f])), 
+  pch=sazava[,"Symbol"],cex=1.5) 
> } 
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code would

> par(mfrow=c(2,3))
> windows(width=8,height=6)
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GCDkit-> loadData("sazava.data") 
GCDkit-> multiple("SiO2","Al2O3,MgO,CaO,Na2O,K2O,P2O5") 
 

Fig. 3.3 Selected Harker plots from the Sázava dataset (Exercise 3.2). 

3.3 Ternary Plots 

Ternary plots rank among important and widely used geochemical tools. Setting 
the sides of the triangle to equating a unity, its vertices (bottom-left, top, and bot-
tom-right) have [x,y] coordinates of A[0,0], B[0.5, ] and C[1,0]. The 
ternary coordinates [a,b,c] of a data point X can be transformed to binary ones 
[x,y] (Fig. 3.4) as follows: 
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 GCDkit solution is: And a

3/2



Fig. 3.4 Ternary diagram—plotting ternary [a,b,c] data points in binary [x,y] coordinates.  

We can now use standard R functions for binary plot; the trick is that (binary) axes 
are not shown and triangle outline is drawn using lines. 

Exercise 3.3: Ternary plots

a) Design a function plotting ternary diagrams. 
b) Display a Ba–Rb–Sr ternary plot for the Sázava suite. 

sazava.data 

  
a) > tri <- function(alab,blab,clab){  
>  sums <- apply(sazava[,c(alab,blab,clab)],1,sum) 
>  a <- sazava[,alab]/sums 
> b <- sazava[,blab]/sums 
>  plot(1-a-b/2,sqrt(3)*b/2,xlab="",ylab="",xlim=c(0,1), 
+    ylim=c(0,1),axes=FALSE,asp=1) 
>  # axes=FALSE: no plotting of axes; asp: aspect ratio 
>  x1 <- c(0,1,.5,0) 
>  y1 <- c(0,0,sqrt(3)/2,0) 
>  lines(x1,y1) 
>  text(-0.05,0,alab) 
>  text(1.05,0,clab) 
>  text(0.5,sqrt(3)/2+0.05,blab) 
> } 
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b) > sazava <- read.table("sazava.data",sep="\t") 
> tri("Ba","Rb","Sr")

Fig. 3.5 Ternary diagram Ba–Rb–Sr for analyses of the Sázava suite (Exercise 3.3). 

GCDkit-> loadData("sazava.data") 
GCDkit-> ternary("Ba","Rb","Sr",pch=1) 

3.4 Classification Plots in GCDkit

Classification diagrams play an important role in the life of igneous geochemists. 
The traditional way of their programming would be to define each of the fields as 
a set of Boolean conditions. This is tedious, and for some diagrams with irregular 
boundaries nearly impossible. Moreover, such a code is prone to errors.  

Fortunately GCDkit comes with a revolutionary solution to this problem. The 
Figaro templates defined for classification plots consist of sets of closed polygons. 
Then the general classification algorithm  looks for the name of the polygon into 
which the rock analysis falls according to x–y coordinates, returning its name.  

2

Of course, the templates could not only be binary, but also ternary graphs. They 
are drawn by the function plotDiagram that can be invoked with several parame-
ters, the most important being the first two—the name of the template and a  
logical value controlling whether a sample selection dialogue is to be invoked  
(see ?plotDiagram):  
GCDkit-> loadData("sazava.data") 
GCDkit-> plotDiagram("LarochePlut",FALSE) 

                                                          
 Function2 classify with essentially a GIS-like capability, based on the package sp written 
by Edzer Pebesma, Roger Bivand and others.

Ba Sr

Rb
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Classification on the basis of the current diagram can be requested from menu Plot 
editing|Classify or, if the template name is specified as an argument, by the func-
tion classify: 
GCDkit-> classify("LarochePlut") 
Samples classified by:  R1 - R2 (De la Roche et al. 1980) 
        diorite          gabbro   gabbro-norite  
              4               1               1  
  gabbrodiorite    granodiorite ultramafic rock  
              3               2               1  
   unclassified  
              2  
       LarochePlut       
Sa-1   "diorite"         
Sa-2   "gabbrodiorite"   
Sa-3   "gabbrodiorite"  … etc. 

A vector of resulting rock names is stored in a variable results. The analyses 
falling outside the defined polygons are labelled as ‘unclassified’. 

Needless to say that the classification diagrams are often misused—and it is 
a responsibility of each user to become familiar with the original work and 

use the given scheme as appropriate.

3.5 Geotectonic Diagrams 

Deciphering the tectonic setting of ancient igneous suites is of great scientific and 
practical interest. One of the key tools, geotectonic diagrams, gained popularity 
with improving analytical facilities in 1970–1980’s (e.g., Pearce and Cann 1973; 
Pearce and Norry 1979; Wood 1980; Shervais 1982; Mullen 1983; Pearce et al. 
1984; Meschede 1986 – see Rollinson 1993 for review). Originally the diagrams 
were largely empirical and the discrimination boundaries fitted by eye, but rigor-
ous statistical treatment including (linear or quadratic) discriminant analysis has 
become increasingly popular (Vermeesch 2006).

Geotectonic diagrams tend to work because rocks from similar tectonic settings 
are likely to have formed by the same combination of sources and processes. The 
problem is that several prior assumptions have to be made (often silently): 

the studied suite had a geotectonic position that can be compared with some of
simple settings predicted by the global tectonics paradigm (thus the diagrams are 
not usable for Archaean rocks or suites from complex settings), 

its geochemical signature has not been significantly modified by processes such 
as fractional crystallization, crystal accumulation or magma mixing, 

elemental mobility during alteration/weathering can be neglected, 
analytical determinations are precise enough, often at sub-ppm level. 
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After the initial adoration, geotectonic diagrams became evil for many colleagues, 
while others proposed schemes in which the geochemical rationale vanished to be 
replaced by abstract, and rather mechanical, statistical treatment (Verma and 
Rivera-Gómez 2013; Verma et al. 2013 and references therein).  

In our view, some classic diagrams are useful, especially if the original defini-
tion and scope are strictly adhered to. Fruitful seems the concept of spiderplot-
based geochemical proxies (elemental ratios), advocated by J. Pearce. These may 
constrain, for instance, the depth of melting, the degree of mantle enrichment, or 
of contamination by subduction-related fluids/melts. For example of application to 
back-arcs and ophiolites, see Pearce and Stern (2006) and Pearce (2008, 2014). 

Selected, presumably little mobile elements from basic lavas are the most valu-
able, as the parental magmas come from a primary source (mantle) and do not 
originate by recycling of crustal material (Pearce 1996a). On the other hand, acid 
igneous rocks—especially collisional granitoids—are often generated from several 
times recycled crustal materials and may inherit the signature of the older 
source(s) (Arculus 1987; Förster et al. 1997). Any danger of misinterpretation can 
be minimized if the geology, petrology, age and whole geochemical signature are 
all taken into account (Barbarin 1990; Bonin 1990; Pearce 1996b; Clemens 2012). 

GCDkit comes with many geotectonic diagrams (see diagrams.pdf in 
the help system for their overview). Please note that these templates are 

somewhat restricted in use, e.g. they cannot be employed for classification.

3.6 Spiderplots 
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Geochemists often like to express the compositional differences between the stud-

ied sample and given geochemical reservoir in the form of so-called spiderplots 

(also known as spiderdiagrams/spidergrams or (better) multi-element diagrams). 

Spiderplots allow representing much of the sample’s composition on a single

graph. Technically these are logarithmic plots of elemental concentrations (allow-

ing comparison of concentrations that differ by several orders of magnitude) in

the sample divided (normalized) by those in the selected standard. The order of

the elements along the axis is critical as it can by itself generate artificial anom-

alies (Dupré et al. 1994). Normally, the elements are arranged in a logical se-

quence according to their geochemical behaviour (often based on bulk distribution

coefficients, with the more incompatible ones on the left) (Hofmann 1988)

(see also Sect. 21.2).



3.6 Spiderplots 37

Fig. 3.6 a–b All Solar System material shows a zigzag pattern of elemental abundances (here, 
REE). This so-called Oddo-Harkins effect reflects the processes during nucleosynthesis and the 
overall stability of elements in the Universe. Here are shown the un-normalized patterns (ppm) 
for average chondrite meteorites (Boynton 1984) and the Požáry trondhjemite Po-1 from the 
Sázava dataset. c Normalization to a common reference (chondrites in this case) compensates for 
this effect and allows focusing on differences between individual terrestrial rocks. 
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The added value of spiderplots consists in elimination of the Oddo-Harkins ef-
fect: in the Solar System, the abundances of even-numbered elements are greater 
than those of neighbouring odd-numbered ones. Moreover, abundances generally 
decrease with increasing atomic number. Non-normalized data thus show zigzag, 
slightly sloped patterns (Fig. 3.6a–b). Normalized patterns (spiderplots) smooth 
out such differences (Fig. 3.6c). 

There are many normalization schemes currently in use, differing by elements 
considered, their order and values. Arguably the most common schemes are: 

Chondrites (or “Bulk Silicate Earth”). An all-purpose normalization. Com-
monly found in two versions, REE only or extended (including LILE and HFSE). 

Primitive Mantle (conceptually, before the extraction of continental crust) (Sun 
and McDonough 1989; McDonough and Sun 1995).

Normal Mid-Ocean Ridge Basalts (NMORB). Obviously useful for basalts, and 
specifically for those of ocean-floor or subduction settings (Sun and McDonough 
1989; Pearce 2014). 

Ocean-Island Basalts (for intraplate settings).  
Averages of various crustal reservoirs, such as Continental Crust, Upper Crust 

or Lower Crust (Taylor and McLennan 1985, 1995). 
Ocean Ridge Granites (ORG)—used in studying granites (Pearce et al. 1984). 

The other possibility is to normalize by the most primitive sample of your suite 

teration!). Moreover, there are specialized normalizing schemes for some elemen-
tal groups, such as Platinum Group Elements (PGE) (see Rollinson 1993 and 
references therein for a review of the commonly used schemes).

For plotting the spiderplots in R, the trick consists in using plot with axes = 
FALSE argument, then drawing the custom axes by the separate axis command.  

(a nice way to show the progressive differentiation or elemental mobility during al-

Exercise 3.4: Spiderplots

The arguably most commonly used spiderplots are chondrite-normalized REE 
plots (e.g., Table 3.1).  

Table 3.1 REE contents in C1 chondrites (Boynton 1984) 

La Ce Pr Nd Sm Eu Gd
0.31 0.808 0.122 0.6 0.195 0.0735 0.259

Tb Dy Ho Er Tm Yb Lu
0.0474 0.322 0.0718 0.21 0.0324 0.209 0.0322

boynton.data 
sazava.data 

http://book.gcdkit.org/Part_1/Data/boynton.data
http://book.gcdkit.org/Part_1/Data/sazava.data


a) Write a function that would normalize REE concentrations in the sample by 
chondritic contents (stored in a comma-delimited file boynton.data).

b) Calculate the normalized REE concentrations for analyses of the Sázava suite 
and display—using the functions plot, axis, points and lines—
spiderplots for two Požáry trondhjemites, Po-1 and Po-4.

a) > x <- read.table("boynton.data",sep=",") 
> chondrite <- as.numeric(x) # conversion to numeric vector 
> names(chondrite) <- names(x) 
 
> norm <- function(x,chon){  # normalizing function 
>  z <- t(x[,names(chon)])/chon  
>  return(z) 
> } 
 
b) > sazava <- read.table("sazava.data",sep="\t") 
> y <- norm(sazava,chondrite) # normalized values 
> plot(y[,"Po-1"],type="o",log="y",axes=FALSE,xlab="", 
+ ylab="REE/chondrite",ylim=c(0.1,100),col="darkgreen") 
> axis(1,1:length(chondrite),labels=names(chondrite), 
+ cex.axis=0.75) 
> axis(2,cex.axis=0.75) 
> points(y[,"Po-4"],col="blue") 
> lines(y[,"Po-4"],col="blue") 
> abline(h=(10^(-1:3)),lty="dashed") # grid 
> box() # bounding box 
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Fig. 3.7 Chondrite-normalized REE patterns for two Požáry trondhjemites (Exercise 3.4).
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Plotting spiderplots in GCDkit
The preceding exercise can be reproduced easily, using the mother-of-all 
spiderplot functions in GCDkit, spider. To see normalization schemes 

available in GCDkit, type ?selectNorm. Specialized spiderplots are dealt with in 
Chap. 4.2. You can try some of the examples below (see ?spider for more, in-
cluding a complete list of arguments and different ways to define the norm to use).

http://book.gcdkit.org/Part_1/Exercises/exe_3.4_spider.r


GCDkit-> loadData("sazava.data") 
GCDkit-> spider(WR[c("Po-1","Po-4"),],"Boynton",1,500, 
+  pch=1:2,col=1:2,legend=TRUE) 
GCDkit-> spider(WR,"Boynton",field=TRUE,fill.col=TRUE, 
+   shaded.col="khaki",0.1,1000) 
GCDkit-> spider(WR,"Boynton",0.1,1000,pch=labels$Symbol, 
+  col=labels$Colour) 
GCDkit-> spider(WR,"Boynton",field=TRUE,density=0.02, 
+  angle=45, col="gray",fill.col=FALSE,add=TRUE)  

Fig. 3.8 Example of a chondrite-normalized REE spiderplot as produced by GCDkit. 
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3.7 Multiple Plots by Groups 

GCDkit employs the concept of plates for collections of two or more (originally) 
stand-alone plots in a single plotting window. Typical examples are Harker plots, 
or diagrams using the same template plotted for individual data groups. To menu
Plots|Multiple plots by groups is attached the function figMulti that displays a 
grid of plots, one for each of the groups in the current dataset, based on the most 
recently plotted single diagram template. These may be binary or ternary plots—
including the complex templates of classification or geotectonic plots—or even 
spiderplots.  
GCDkit-> loadData("sazava.data") 
GCDkit-> groupsByLabel("Intrusion") 
GCDkit-> plotDiagram("LarochePlut",FALSE) 
GCDkit-> figRemove() # Less cluttered, no field labels 
GCDkit-> figMulti(nrow=1,ncol=3)  
 # Three plots in a single row 

http://book.gcdkit.org/Part_1/Figs/fig_3.8_spider_example.r


Properties of the whole plate or all its diagrams can be changed simultaneously, 
using the plate…() functions.  For instance: 
GCDkit-> plateCex(2) # symbols size, the whole plate 
GCDkit-> plateCexMain(2) # main title 
GCDkit-> plateCexLab(1.8) # axis labels size 
GCDkit-> plateBW() # set plate to black and white 

Fig. 3.9 Multiple plot for individual rock groups in the Sázava dataset. It is based on the GCDkit 
template for multicationic classification of De La Roche et al. (1980) with textual labels of fields 
intentionally omitted.

In order to retrieve a single diagram from a plate, use the function 
plateExtract(diagram,which=NULL,…), that draws the graph specified by a 
sequence number (which) from the plate diagram. For example: 
GCDkit-> plateExtract("PearceGranite",2) 
# Second plot of Pearce et al. (1984) 
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Chapter 4 
Specialized Plots  

This chapter presents several other types of geochemical plots that are imple-
mented in GCDkit. It does not aim at being systematic and comprehensive; instead 
it focusses on arguably the most useful or interesting among them that could be 
suitable for common applications in igneous geochemistry. 

4.1 Log–log Binary Plots 

Plotting a binary plot in logarithmic coordinates enables examining both the ele-
mental concentrations and their ratios. In this projection the fan of lines passing 
through the origin corresponding to analyses of constant ratio in a standard binary 
plot (Fig. 4.1a) is transformed into a series of parallel lines of identical slope in 
logarithmic coordinates (Fig. 4.1b). In R, log–log diagrams are plotted using the 
function plot, specifying log = "xy". 

 

Fig. 4.1 Using log–log diagrams to depict values and ratios. a A linear scale diagram. Dashed 
lines (going through the origin) correspond to Rb/Sr = 0.1, 0.2, …, 0.9, 1, 2, 3, … to 10. b The 
same diagram on a log–log scale. 
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4.2 Specialized Spiderplots 

Apart from the standard spiderplots with patterns for individual samples or (semi-
transparent) shaded/hatched fields for several of them, GCDkit produces also 
some specialized types of this graph. For instance, the colours of individual pat-
terns can be coded according to an independent conditioning variable, such as 
SiO2 or MgO (function spider.contour, Fig. 4.2a). Or a set of spiderplots, for 
each group one, can be obtained using the function figMulti, such as:  

GCDkit-> loadData("sazava.data") 
GCDkit-> groupsByLabel("Intrusion") 
GCDkit-> spider(WR,"Boynton",1,100,pch=labels$Symbol, 
+  col=labels$Colour,cex=2) 
GCDkit-> figMulti(nrow=1,ncol=3,plot.symb=TRUE) 

Here, the shaded field indicates the overall variation in the whole dataset. 

 Fig. 4.2 Chondrite-normalized (Boynton 1984) REE patterns for dolerites from the Devonian 
Vrbno Group, Silesia (Czech Republic) (Janoušek et al. 2014) colour-coded by MgO contents (a)
and double-normalized  (Sect. 4.2.1) (setting LuN = 1) (b).
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http://book.gcdkit.org/Part_1/Figs/fig_4.2_special_spiders.r
http://book.gcdkit.org/Part_1/Figs/fig_4.2_special_spiders.r


4.2.1 Double-Normalized Spiderplots 

The double-normalized spiderplots strip effects of fractional crystallization from a 
source-related variation produced by partial melting (Thompson et al. 1983; 
Pearce et al. 2005; Pearce and Stern 2006). As a first step, trace-element data are 
normalized by the given reservoir, as for a common spiderplot. Then these nor-
malized concentrations are re-adjusted so that the normalized content of the se-
lected element in each analysis equals to a desired value (typically unity) (Fig. 
4.2b). Double-normalized spiderplots are plotted by the function spider2norm. 

4.2.2 Spider Boxplots, Spider Box and Percentile Plots 

With increasing number of samples plotted, spiderplots soon become cluttered, 
obstructing any significant geochemical patterns present. This led Janoušek et al. 
(2004) to design a diagram useful for comparison of multielement patterns of 
large data sets, especially if containing large proportion of missing data. In these 
‘spider boxplots’, no individual patterns are drawn. Instead, the statistical distribu-
tion of each element is portrayed by a boxplot, and thus the minima, maxima, 
quartiles, median and outliers are immediately seen.  

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

1
1
0

1
0
0

Fig. 4.3 Chondrite-normalized (Boynton 1984) spider box and percentile plot for REE in Vrbno 
Group dolerites (see the previous figure) generated by the function spiderBoxplot. 

By analogy, in ‘spider box and percentile plots’, the statistical distributions of 
normalized elements are plotted in the form of a box and percentile plot (Esty and 
Banfield 2003) (Fig. 4.3). Here, the ‘boxes’ contain the information of a percentile 
plot (i.e. their widths reflect precise distribution of the data). However, there is no 
loss of information due to grouping, as all data are shown. Both subtypes are gen-
erated by the function spiderBoxplot. 
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Frequency distribution of large datasets in diagrams can be portrayed by contours, 
produced by functions addContours (Fig. 4.4a) and filledContourFig (Fig. 
4.4b)—i.e., interfaces to standard R functions, contour and filled.contour. 

Fig. 4.4 a SiO2–K2O plot (Peccerillo and Taylor 1976) of over 3,800 analyses of Andean igneous 
rocks from the GeoRoc database (georoc.mpch-mainz.gwdg.de/georoc). Superimposed are con-
tours showing the values of the probability density function. b Filled contours, based on counting 
over the 20×20 grid shown in the above panel.
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4.3 Contour Plots
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4.4 Anomaly Plots

Most igneous geochemists treat whole-rock geochemical data essentially in the 
same way, looking for general patterns and most typical values. On the other hand, 
economic geologists and exploration companies search for anomalies that can be 
potentially of economic interest.  

Keeping these needs in mind, we have implemented into GCDkit an anomaly 
plot, based on work by Reimann et al. (2002). The function peterplot draws a 
conventional binary diagram in which the type and size of the plotting symbols are 
assigned according to the distribution of a third, conditioning variable (for in-
stance our element of interest). Its distribution is shown as boxplot (Fig. 4.5). The 
values between the 25th and the 75  percentiles  obtain  a  small  dot, the   higher

’. If the given value is an outlier, it is

 

or ‘ ’ and the plotting size is doubled.  
Optionally, the plotting symbols and their sizes can be set permanently, for use 

in other diagrams throughout the GCDkit system. Then it is possible to see, for  
instance, where the samples rich in gold plot in the TAS diagram.  

Fig. 4.5 Anomaly plot for the sandstone analyses from the drill core CYDD0020, Coyote Au de-
posit, Granites–Tanami Orogen (Western Australia) (Bagas et al. 2009). The Au distribution is 
skewed and ranging over several orders of magnitude (therefore the logarithmic scale). The con-
centration of gold into rocks with Fe/Mg of 4–5 is apparent, as is its correlation with Bi. 
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4.5 Stripplots and Strip Boxplots

‘Strip boxplot’ (Fig. 4.6) is a newly designed diagram that is based on strip-
plots. Each of the stripplots portraying the distribution of the selected variable in 
individual groups is underlain by a boxplot. Thus, the median, quartiles and range 
are immediately apparent. Optionally, the data points can be replaced by variously 
sized and coloured circles, depicting distribution of a second variable.  

Plotting of this type of diagrams is done by the function stripBoxplot.

Fig. 4.6 Strip boxplot showing distribution of SiO2 and K2O in individual rock groups of the 
Sázava suite, Central Bohemian Plutonic Complex. The figure was plotted using the command 
stripBoxplot(yaxis="SiO2",zaxis="K2O",pal="terrain.colors").

K2O

0.5  1-

1  1.5-

1.5  2-

2  2.5-

basic Pozary Sazava

5
0

5
5

6
0

6
5

7
0

S
iO

2

50 4 Specialized Plots

Stripplot shows 1D scatter plots for each of the groups, with some artificial noise 

(jitter) added in the x axis direction to make the individual points better visible. 

Stripplots are a good alternative to boxplots when sample sizes are small. For this 

reason, they are implemented mainly in GCDkit’s isotope (SrNd.r) plugin (see 

GCDkit box, Sect. 5.5).

http://book.gcdkit.org/Part_1/Figs/fig_4.6_strip_boxplot.r
http://book.gcdkit.org/Part_1/Figs/fig_4.6_strip_boxplot.r
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Chapter 5 
Radiogenic Isotopes 

In contrast to the light stable isotopes (e.g., O, H, Li, C), the utility of the rela-
tively heavy radiogenic isotopes (e.g., Sr, Nd, Pb, Hf) consists in the fact that they 
should not be fractionated by equilibrium, closed-system processes (so named, as 
no components external to the magmatic system are involved) such as partial melt-
ing, fractional crystallization or crystal accumulation. In these cases the radiogenic 
isotopes enable us to fingerprint the magma sources. Alternatively, these ratios 
may be used to prove the operation of open-system processes, for instance magma 
mixing or crustal assimilation. Subsequently, compositions and proportions of 
end-members involved can often be constrained.  

The aim of this chapter is to explain basic numerical approaches in interpreting 
radiogenic isotope data in igneous geochemistry, with a particular emphasis on 
Sr–Nd–Hf–Os isotopes. The text is concerned with calculation of initial ratios, 
ages,  and  values, single- and two-stage model ages and fitting of isochrons. 
Theoretical background is explained only briefly as detailed accounts are readily 
available in several textbooks (Geyh and Schleicher 1990; Faure and Mensing 
2004; Dickin 2005; Allègre 2008 to name just a few). 

5.1 Recalculation of Elemental to Isotopic Ratios 

Many of the parent–daughter dating methods are based on similar principles. The 
parent (radioactive) isotope (e.g., 87Rb, 147Sm or 176Lu) decays to the daughter (ra-
diogenic) isotope (e.g., 87Sr, 143Nd or 176Hf): 

87 87Rb Sr , 147 143Sm Nd , 176 176Lu Hf , 187 187Re Os        (5.1) 

As the mass spectrometer is only capable of measuring isotopic ratios, the content 
of daughter isotope is expressed as a ratio to a stable, non-radiogenic isotope, 
whose natural abundance does not change with time (for simplicity termed here I; 
e.g., 87Sr/86Sr, 143Nd/144Nd or 176Hf/177Hf). Age calculation also requires the 
amount of the parental isotope to be expressed as a ratio to the same non-
radiogenic stable isotope of the daughter element (R; e.g., 87Rb/86Sr, 147Sm/144Nd 
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or 176Lu/177Hf). Whereas the I ratios are measured directly with the mass spectrome-



ter (TIMS or ICP-MS), R ratios must be calculated from elemental concentrations 
obtained by isotope dilution, ICP-MS, XRF or other analytical methods.  

The concept behind the derivation of the conversion formulae is illustrated here 
using the Rb–Sr system. Combining the relation between atomic weight and molar 
abundance we obtain (Faure 1986): 

87

86

87

86
Rb Rb Sr

Rb Sr Sr

C Ab AWRb
Sr AW C Ab

(5.2) 

where CSr, CRb are concentrations (ppm), Ab = isotopic abundances, AW = atomic 
weights. The problem is that both SrAW and 87Sr

Ab  are a function of the isotopic
composition of the sample, and thus depend on its 87Sr/86Sr ratio. If  the  atomic
weight is expressed as a sum of weights of individual isotopes multiplied by their 
abundances, the right-hand side of Eq. (5.2) can be rewritten as: 

87

87

87 85

86 86

85

Rb
Sr Sr

Sr
Rb

Rb
C Sr Sr RbAW AW
C Sr Sr Rb AW

Rb

(5.3) 

where the sums refer to all non-radiogenic isotopes of Sr (  = 84, 86, 88) and all 
isotopes of Rb (  = 85, 87), respectively. All Sr ratios are expressed relative to 
86Sr; both Rb ratios relative to 85Rb.  The  87Sr/86Sr values (i.e. I), CRb and CSr are 
to be determined; the rest are constants that can be obtained from literature (e.g., 
Audi et al. 2003; Berglund and Wieser 2011 and references therein). The third 
term may be substituted by simpler, yet less precise ratio 87 / RbRb

Ab AW . The literature
data vary slightly; based on those from Faure (1986), we obtain: 

87 87

86 862.6939 0.2832Rb

Sr

CRb Sr
Sr C Sr

(5.4) 

Similarly, for the 147Sm/144Nd isotopic ratio can be derived: 

147 143

144 1440.53151 0.14252Sm

Nd

CSm Nd
Nd C Nd

 (5.5) 

using Nd stable isotopic ratios from Wasserburg et al. (1981), renormalized to 
146Nd/144Nd = 0.7219. For whole-rock samples, especially if the fractionation be-
tween Sm and Nd is small and thus the variability of the 143Nd/144Nd can be ne-
glected (relatively to the precision of concentrations), the term in square brackets 
in Eq. (5.5) collapses to 0.6047. 
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For the Lu–Hf system, the relevant equation is: 

176 176

177 1770.13517 0.02613Lu

Hf

CLu Hf
Hf C Hf

 (5.6) 

If  the 176Hf/177Hf  ratio is close to that of CHUR (‘normal’ whole-rock samples),  
the expression in square brackets collapses to 0.142 (Faure and Mensing 2004).

Lastly, 178Re/188Os can be calculated as follows, provided that the 186Os is not in-
fluenced by the decay of 190Pt: 

187 187
Re

188 188

Re 4.7393 0.6285
Os

C Os
Os C Os

 (5.7) 

5.2 Calculation of Initial Ratios or Ages 

Using our notation, an equation between I, R and age t (in years) can be written as: 

1tI R e (5.8) 

Where  is the relevant decay constant (see Ickert 2013 for discussion): 

Equation (5.8) assumes that initially, t years ago, there was no daughter isotope 
present. This can be (nearly) justified for some minerals, forming so-called (par-
ent-) rich systems (Allègre 2008). As an example may serve a Li-mica that is Rb 
rich and whose Sr will soon become dominated by the radiogenic component. 
However, generally there is always some common Sr, Nd or Hf present. Assuming 
that its composition (initial ratio) is Ii, Eq. (5.8) changes into: 

1t
iI I R e (5.9) 

If the age is known, the isotopic ratios can be easily ‘age-corrected’ (i.e. initial ra-
tios back-calculated) and used in petrogenetic considerations.  

On the other hand, knowing the initial ratio, e.g. by analysis of a (parent-) poor 
system (e.g., Sr in apatite that contains little Rb and thus its 87Sr/86Sr is nearly con-
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87Rb
λ  = 1.42 × 10–11y–1 (Steiger and Jäger 1977)  (old but still widely used value) 

87Rb
λ = 1.3968 × 10–11 y–1 (Rotenberg et al. 2012) (new determination)

147Sm
λ  = 6.54 × 10–12 y–1 (Lugmair and Marti 1978)

176Lu
λ  = 1.867 × 10–11 y–1 (Söderlund et al. 2004)

187Re
λ  = 1.6668 × 10–11 y–1 (Selby et al. 2007)



stant, close to the initial composition), Eq. (5.9) can be developed into a formula 
giving the age: 

1 ln 1iI It
R

(5.10) 

Exercise 5.1: Initial ratios and ages

The Sr–Nd isotopic study of the Central Bohemian Plutonic Complex (CBPC) 
(Janoušek et al. 1995) has proven a diversity of sources and processes involved in 
genesis of individual intrusions and suites. The file contains an excerpt from the 
data for several granitoid types and two country rocks. 

cbpizo.data 

Table 5.1 Selected Sr–Nd isotopic data for the Central Bohemian Plutonic Complex 

ID Rock type Rb
(ppm)

Sr
(ppm)

87Sr/86Sr Sm
(ppm)

Nd
(ppm)

143Nd/144Nd

Sa-1 Sázava 76 555.8 0.70700 4.57 24.2 0.512476
Koz-2 Kozárovice 164.1 486.9 0.71258 5.91 31.7 0.512210
Bl-2 Blatná 185 439.1 0.71434 6.85 43.8 0.512101
Se-9 Sedl any 308.1 307.8 0.72620 8.17 40.2 0.512080
Ri-1 í any 310.7 374.1 0.72154 4.06 24.1 0.512053
CR-1 shale 110 80.4 0.72596 3.3 17.3 0.512061
CR-5 paragneiss 160 86.4 0.74670 9.4 50.6 0.511880

Import the data file into a matrix izo, calculate the 87Rb/86Sr and 147Sm/144Nd 
ratios and attach them to the matrix as the last data columns. 

Design functions yielding Sr and Nd initial ratios; back-calculate these at 350 
and 300 Ma ago; can you program a single function with an argument identifying 
the isotopic system (Sr or Nd)? 

Calculate the age of the sample Koz-2 assuming that its initial ratio is 0.705. 

> izo <- read.table("cbpizo.data",sep="\t",check.names=F) 
> colnames(izo)[c(3,6)] <- c("87Sr/86Sr","143Nd/144Nd") 
> sr <- izo[,1]/izo[,2]*(2.6939+0.2832*izo[,3]) 
> nd <- izo[,4]/izo[,5]*(0.53151+0.14252*izo[,6]) 
> izo <- cbind(izo,sr,nd) 
> colnames(izo)[7:8] <- c("87Rb/86Sr","147Sm/144Nd") 
> print(izo[,7:8]) 
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Sa-1  0.3957418  0.11416466 
Koz-2 0.9759392  0.11270205 
Bl-2  1.2202168  0.09453854 
Se-9  2.9023859  0.12285315 
Ri-1  2.4070655  0.10183487 
CR-1  3.9669665  0.11530714 
CR-5  5.3803064  0.11229157 
 
> initial <- function(data,system="Sr",age){ 
> # data = matrix to be recalculated 
> # system = "Sr" or "Nd", age = age in Ma 
>  lambda <- c(1.42*10^-11,6.54*10^-12) 
>  names(lambda) <- c("Sr","Nd") 
>  R <- cbind(data[,"147Sm/144Nd"],data[,"87Rb/86Sr"]) 
>  colnames(R) <- c("Nd","Sr") 
>  I <- cbind(data[,"143Nd/144Nd"],data[,"87Sr/86Sr"]) 
> colnames(I) <- c("Nd","Sr") 
>  X <- I[,system]-R[,system]*(exp(lambda[system]* 
>  age*10^6)-1) 
>  return(X) 
> } 
> izo <- cbind(izo,initial(izo,"Sr",350), 
> initial(izo,"Sr",300), initial(izo,"Nd",350), 
> initial(izo,"Nd",300)) 
> colnames(izo)[9:12] <- c("87Sr/86Sr.350","87Sr/86Sr.300", 
>  "143Nd/144Nd.350","143Nd/144Nd.300") 
> print(izo[,9:12]) 
      87Sr/86Sr.350 87Sr/86Sr.300 143Nd/144Nd.350 
Sa-1      0.7050283     0.7053105       0.5122144 
Koz-2     0.7077175     0.7084136       0.5119517 
Bl-2      0.7082604     0.7091308       0.5118844 … 
 
> age <- 1/1.42e-11*log((izo["Koz-2","87Sr/86Sr"]-0.705)/ 
> izo["Koz-2","87Rb/86Sr"]+1) 
> print(age/1e6) 
[1] 544.85 

5.3 Epsilon, Delta and Gamma Values 

The initial Nd isotopic ratios usually do not differ much among individual whole-
rock samples. This is due to a relatively long half-life of Sm and a very limited 
fractionation between Sm and Nd caused by their similar ionic radii, identical 
charge and thus also geochemical behaviour.  

The isotopic evolution of Nd in the Earth is described in terms of the so-called 
Chondritic Uniform Reservoir (CHUR: DePaolo 1988). This model mantle is de-
fined to have Sm/Nd and initial 143Nd/144Nd ratios equal to those of chondritic me-
teorites (Jacobsen and Wasserburg 1980). The CHUR is widely used for compari-
son of initial isotopic compositions of studied rocks with that of undifferentiated 
mantle at the time of their generation. This is done through the Nd notation: 
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      87Rb/86Sr 147Sm/144Nd 



143

144
4

143

144

1 10

SA

i i
Nd CHUR

i

Nd
Nd

Nd
Nd

(5.11) 

Where: t = intrusion age, indexes i decipher initial isotopic ratios [Eq.(5.9)], SA =
sample. The present-day composition of the CHUR is 147Sm/144NdCHUR = 0.1967 
and 143Nd/144NdCHUR = 0.512638 (Jacobsen and Wasserburg 1980) or 
147Sm/144NdCHUR = 0.1960 and 143Nd/144NdCHUR = 0.512630 (Bouvier et al. 2008).
For an overview of alternatives, as well as of error propagation, see Ickert (2013).

This notation makes it much easier to compare the initial Nd isotope ratios of 
samples of different ages. In earlier days, it also removed the effects of the differ-
ent fractionation corrections employed during analysis in individual laboratories 
(Faure 1986). Note that all Nd isotopic data and formulae presented in this text are 
based on normalization to 146Nd/144Nd = 0.7219, a common practice nowadays. 

As Nd is more incompatible than Sm, partial melting of a mantle peridotite 
would produce melts with Sm/Nd ratios lower than the source. On the other hand, 
the residue would be enriched in Sm and yield a higher Sm/Nd ratio (Fig. 5.1a). 
Thus old crustal rocks formed originally by CHUR-like mantle melting should 
have present-day 143Nd/144Nd lower than CHUR (  < 0) and mantle domains with 
long-term depletion will, over time, develop higher 143Nd/144Nd (  > 0). 

Comparable geochemical behaviour is shown also by the Hf isotopes, for which 
we can define Hf values by analogy to Eq. (5.11). The present-day composition of 
the CHUR is 176Lu/177HfCHUR = 0.0336 and 176Hf/177HfCHUR = 0.282785 (Bouvier et 
al. 2008). Again, for an overview of alternatives, see Ickert (2013).

On the other hand, the Rb–Sr system behaves in an opposite way. Rubidium is 
more incompatible than Sr in the course of mantle melting and thus the crust is 
characterized by high Rb/Sr producing, over the time, high 87Sr/86Sr ratios. The  
values, even though seldom used for the Sr isotopes, would be strongly positive. 

The geochemical-reservoir normalized compositions can be also expressed as 
values , as is customary for the Re–Os system: 1

187

188
2

187

188

1 10

SA

i i
Os Mantle

i

Os
Os

Os
Os

(5.12) 

                                                          
1 The  notation, used for stable isotopes, is analogous (just multiply by 103 rather than 102).  
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Nd

Nd

In fact, this forms a logic system, whereby 10n is expressed by (n+1 th)  letter in the Greek alphabet.



The present-day mantle values are 187Re/188Os = 0.422 and 187Os/188Os = 0.1283 
(Walker et al. 2002). 

Fig. 5.1 a Isotopic evolution of Nd in a Chondritic Uniform Reservoir (CHUR), igneous rock 
formed by its partial melting and the residual solid—Depleted Mantle (after Faure 1986);
b Theoretical concept of a single-stage Nd model age as an intersection between the mantle evolu-
tion line (here Depleted Mantle) and that for the given sample. 

Exercise 5.2: Epsilon Nd values

Write a function returning the initial Nd values. 
Calculate these for the CBPC granitoids from the previous exercise at 350 Ma. 
Plot a binary diagram of initial 87Sr/86Sr isotopic ratios versus initial Nd values. 

  
> epsilon <- function(data,age){ 
>  RCHUR <- 0.1967; ICHUR <- 0.512638 # J & Wasserburg 
>  CHUR <- ICHUR-RCHUR*(exp(6.54e-12*age*10^6)-1) 
>  X <- (initial(data,"Nd",age)/CHUR-1)*10^4 
> names(X) <- rownames(data) 
>  return(X) 
> } 
 
> round(epsilon(izo,350),2) 
  Sa-1  Koz-2   Bl-2   Se-9   Ri-1   CR-1   CR-5  
  0.53  -4.60  -5.91  -7.59  -7.18  -7.62 -11.02  
 
> plot(initial(izo,age=350),epsilon(izo,350), 
> xlab=expression(" "^87*Sr/""^86*Sr[i]), 
> ylab=expression(epsilon[Nd]^i),pch=11,cex=1.5, 
> cex.lab=1.5,cex.axis=1.5) 
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Fig. 5.2 Diagram 87Sr/86Sr– Nd for granitoids of the CBPC (age-corrected to 350 Ma).

5.4 Model Ages 

The model ages represent an apparent age of extraction from a model geochemical 
reservoir. These include, for instance, intercepts with various mantle evolution 
models. The principle will be explained here for neodymium but the same ap-
proach can be adopted for some other systems (notably Lu–Hf). 

The relative immobility of LREE in course of the weathering and low-grade 
metamorphism enables calculation of time in the past when the given sample had 
the Nd isotopic composition identical to its presumed model source reservoir 
(most often CHUR or Depleted Mantle, DM – DePaolo 1988). Important prereq-
uisites for such an interpretation are: 1) the sample was generated from the source 
that can be approximated by the given model reservoir, 2) this happened in a sin-
gle or, at most, two steps, 3) there was a significant change in the Sm/Nd ratio 
during the melting and 4) the sample remained a closed system throughout its his-
tory (Arndt and Goldstein 1987). Following McCulloch and Wasserburg (1978),
the Nd model ages have been often interpreted as ‘crust-formation ages’ for the 
given crustal segment. These may be significant especially if obtained from clay-
rich (meta-) sedimentary rocks, averaging large source regions of the crust 
(Michard et al. 1985).

5.4.1 Single-Stage Nd Model Ages 

Single-stage Nd model age can be derived by setting (Fig. 5.1b): 
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where SA denotes the sample and DM the appropriate model reservoir (here  
Depleted Mantle). The equation: 

1 1T T
SA SA DM DMI R e I R e  (5.14) 

is solved for T (the model age) using the present-day Nd isotopic compositions of 
the sample and the model reservoir: 

1 ln 1SA DM

SA DM

I IT
R R

(5.15) 

The present-day composition of the Depleted Mantle is 147Sm/144Nd = 0.222 and 
143Nd/144Nd = 0.513114 (Michard et al. 1985). For an overview of alternatives, 
and error propagation in model age calculations, see Ickert (2013). 

Exercise 5.3: Single-stage Nd model ages

Design a function yielding single-stage Depleted Mantle Nd model ages. 
Calculate these for the granitoids of the CBPC. Use the data from the 
previous exercises or load them from the file. 

cbpizo2.data

> # Needed only when the data are to be newly loaded: 
> izo <- read.table("cbpizo2.data",sep="\t",check.names=F) 
 
> DMAGE <- function(data){ 
>  IDM <- 0.513114 
>  RDM <- 0.222 
>  lambda <- 6.54e-12 
>  R <- data[,"147Sm/144Nd"] 
>  I <- data[,"143Nd/144Nd"] 
>  X <- 1/lambda*log((I-IDM)/(R-RDM)+1)/10^9 
>  names(X) <- rownames(data) 
>  return(X) 
> } 
 
> round(DMAGE(izo),2) 
Sa-1 Koz-2  Bl-2  Se-9  Ri-1  CR-1  CR-5  
0.90  1.26  1.21  1.59  1.34  1.50  1.71 

5.4.2 Two-Stage Nd Model Ages 

In interpreting sources of crustally-derived rocks, such as granites, the single-stage 
Nd model ages are clearly inappropriate. For this purpose the two-stage model has 
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been designed (Liew and Hofmann 1988) which compensates for effects of possi-
ble second Sm/Nd fractionation (first having occurred at mantle melting) in course 
of the intracrustal partial melting. In the following formulae, the indexes DM, CC,
SA denote Depleted Mantle, average continental crust and the sample, respec-
tively. T = two-stage Nd model age, t = crystallization age of the sample, 0 refers 
to the present day (Fig. 5.3): 

0 0 0 0

0 0

11 ln 1
t

SA SA CC DM

CC DM

I e R R I
T

R R
 (5.16) 

0143

144
DM

Nd
Nd

= 0.513151, 

0147

144
DM

Sm
Nd

= 0.219, 

0147

144
CC

Sm
Nd

 = 0.12 

(Liew and Hofmann 1988) 

Fig. 5.3 Theoretical concept of a two-stage Nd model age. An intermediate reservoir with Sm/Nd 
ratio of typical continental crustal rocks (CC) is assumed. 

Exercise 5.4: Two-stage Nd model ages

Design a function returning two-stage Depleted Mantle Nd model ages. 
Calculate these for the granitoids of the CBPC. Use the data from the previous 

exercises or load them from the file (in that case see beginning of Exercise 5.3). 
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cbpizo2.data

> DMLHAGE <- function(data,age){ 
>  R <- data[,"147Sm/144Nd"] 
>  I <- data[,"143Nd/144Nd"] 
>  IDM <- 0.513151 
> RDM <- 0.219 
> RCC <- 0.12 
>  lambda <- 6.54e-12 
>  A <- I-(exp(lambda*age*1e6)-1)*(R-RCC)-IDM 
>  B <- RCC-RDM 
>  X <- 1/lambda*log(A/B+1)/10^9 
>  names(X) <- rownames(data) 
>  return(X) 
> } 
> round(DMLHAGE(izo,350),2) 
 Sa-1 Koz-2  Bl-2  Se-9  Ri-1  CR-1  CR-5 
 1.02  1.42  1.52  1.66  1.62  1.66  1.92 

5.5 Isochron Ages 

An elegant remedy to the problem of unknown initial ratio in the geochronological 
calculations is to use a cogenetic suite of whole-rock or mineral samples. In fact, 
Eq. (5.9) corresponds to a straight line in the isochron diagrams R  e.g.,
87Rb/86Sr vs 87Sr/86Sr: 

y a bx (5.17) 
where a is an intercept (initial isotopic ratio), and b the slope of the isochron: 

1tb tg e (5.18) 

giving a formula for the isochron age: 
1 ln 1t b (5.19) 

The isochrons are usually fitted using dedicated software, most frequently Isoplot 
(Ludwig 2003). The algorithm utilizes weighted linear regression (York 1969).
This means that it takes into account the errors in both coordinates at each indi-
vidual data point (Provost 1990; Kullerud 1991 and references therein). 

Exercise 5.5: Isochrons

The file acari.data contains Rb–Sr isotopic data for granite Serra do Acari 
(Brazil) (Provost 1990 and references therein). On this example, we will demon-
strate the use of simple (i.e. not weighted) linear regression in fitting isochrons.

5.4 Model Ages 63

  I,vs

http://book.gcdkit.org/Part_1/Exercises/exe_5.4_2stg_model_ages.r
http://book.gcdkit.org/Part_1/Data/cbpizo2.data


Table 5.2 Rb–Sr isotopic data for the Serra do Acari granite 

Sample 87Rb/86Sr 1 87Sr/86Sr 1
AT-R-173 5.743 0.062 0.858993 0.000034
AT-R-167 22.290 0.280 1.290200 0.000050
AT-R-157 42.170 0.530 1.760370 0.000069
AT-R-165 61.230 0.980 2.248950 0.000140
AT-R-158 99.000 1.800 3.182530 0.000170
AT-R-169 232.000 3.300 6.548880 0.000470

acari.data 
 

Read the data file and plot an isochron diagram 87Rb/86Sr–87Sr/86Sr  
Fit the data by a straight line, calculate age and initial Sr ratio for the granite 

> acari <- read.table("acari.data",sep="\t") 
> colnames(acari) <- c("87Rb/86Sr","er.x","87Sr/86Sr","er.y") 
> plot(acari[,1],acari[,3], 
>  xlab=expression(""^87*Rb/""^86*Sr), 
>  ylab=expression(""^87*Sr/""^86*Sr),pch=15,cex=1.5) 
 

 

Fig. 5.4 Rb–Sr isochron for granite Serra do Acari (Exercise 5.5). 

> izoch <- lm(acari[,3]~acari[,1])  
> print(izoch) 
Call: 
lm(formula = acari[, 3] ~ acari[, 1]) 
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(Intercept)   acari[, 1]   
    0.71171      0.02513   

Coefficients: 

http://book.gcdkit.org/Part_1/Data/acari.data
http://book.gcdkit.org/Part_1/Exercises/exe_5.5_isochron_acari.r


> abline(izoch,lty="dashed") 
> age <- 1/1.42e-11*log(izoch$coeff[2]+1) 
> print(age/1e6) 
1747.657   

The Sr–Nd plugin in GCDkit
GCDkit comes with a plugin SrNd.r, which takes care of the recalcula-
tion and plotting of Sr–Nd isotopic data. It is loaded automatically, 

whenever columns named “87Sr/86Sr” and/or “143Nd/144Nd” are encountered 
in your datafile. The data can, optionally, contain also a column named “Age”, 

isotopic  data  should  be  recalculated.
wise, the user is prompted to enter this value when the dataset is loaded.  

87Rb/86Sr” or “147Sm/144Nd” are absent, these are cal
and Nd, as well as S

The plugin calculates initial 87Sr/86Sr and/or 143Nd/144Nd ratios, as well as epsi-
lon Nd values and several types of Nd model ages. All recalculated isotopic data 
are stored in numeric matrix init. Moreover, the plugin can draw binary plots in-
volving isotope data, or their combination with any other whole-rock geochemical 
parameters, boxplots and stripplots of isotope-related values, together with Sr and 
Nd growth diagrams and crude isochrons. See ?srnd for details.

Fig. 5.5 An example of a two-stage Nd growth diagram as plotted by GCDkit. Shown is the de-
velopment of metasedimentary and metaigneous rocks from the Coastal Terrane and Congo Cra-
ton (Kaoko Belt, Namibia). See fig. 8 in Konopásek et al. (2014) for data sources. The extra tick 
marks on the ordinate indicate the initial Nd values of the samples, on the abscissa the two-stage 
Depleted Mantle Nd model ages (Liew and Hofmann 1988).
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specifying an age (or ages) in Ma to which the 
Other

columns labelled “If -
culated based upon concentrations of Rb, Sr, Sm 
isotopic composition using Eq. (5.4) and (5.5).

r and Nd
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Part II Modelling Major Elements 

In igneous geochemistry it is customary to discriminate between major (> ca. 1 wt. %) 
and trace (< ca. 0.1 wt. %) elements, with minor elements falling in between. 
However, no exact cut-off values have been codified separating these three 
groups. In the current book, we distinguish majors (occurring in large concentra-
tions and combining to the main rock-forming minerals), dilute traces (that substi-
tute only in very low concentrations in crystal lattice of other phases) and essential 
structural components (with low whole-rock contents but crystallizing own acces-
sory minerals as soon as saturation is reached—see Part III). The main reason for 
such a division is that the approach to modelling of igneous processes does differ 
fundamentally among these three elemental groups. 

This definition can lead to slightly unexpected results, whereby elements such 
as K would be regarded as traces in mafic/ultramafic systems, whereas Cr in ul-
tramafic rocks or Zr or even REE in high-silica alkali magmas are major elements. 
Although somewhat unusual, this approach actually allows for a better description 
of the relevant systems.  



 

Chapter 6 
Direct Models 

The key assumption in geochemical modelling is that the process studied is closed 
in a thermodynamic sense, i.e. the system exchanges heat but no matter with its 
surroundings. Although this  is  often  disputable  (for  instance,  a  fractionating  reservoir
out of which magmas are successively tapped, defining a continuous diffentiation
series, is not
that it allows a mass-balance approach.

Traditionally, models for crystallization, melting and mixing are treated in dif-
ferent ways. It will be shown at the end of this chapter, however, that they are all 
different expressions of the same underlying mass-balance relation. For the sake 
of clarity, crystallization is described in some detail while melting will be pre-
sented much more concisely. 

6.1 Mass Balance During Crystallization 

Fractional crystallization consists in removal, from an initial (primitive) liquid, 
rm a solid cumulate. While cumulate is 

uid evolves, giving rise to a diffe-

As the cumulate forms, the amount of liquid remaining in the system decreases, 
starting at 1 (pure liquid) and decreasing to 0 (pure solid).  
 
The amount of liquid remaining is defined as: 

 
0

 LWF
W

 (6.1) 

Since the system is closed,  WS + WL = W0, and so: 

 
0

1  S
C

WF F
W

 (6.2) 
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of one or several mineral phases that fo
extracted, the composition of the remaining liq
rentiated liquid (Fig. 6.1).  

sometimes referred to as the degree of crystallization. 

a closed system!), it is nevertheless a very useful assumption, in



Fig.6.1 Definition of variables used in the mass-balance equation for crystallization in a
closed system. The subscripts 0, L and S are used for the primitive melt, the differentiated 
melt and the cumulate, respectively. W, with the relevant suffix (W0, WS, etc.) denotes the 
total weight of one portion of the system, while w (with relevant suffix) stands for the 
amount of one component (element ) in a portion of the system.

In a closed system, the total mass w  of any given element ( ) is the same before 
and after crystallization. So, for each element: 

0 L Sw w w (6.3) 

At this stage, it is convenient to use concentrations
rather than absolute masses  system herefore:

0 0  L S SLWC W C C W (6.4) 

Since 
0

LWF W  and 
0

 1SW FW , Eq. (6.4) becomes: 

0 0 0 0 (1 ) L SC W FW C F W C (6.5) 

Equation (6.5) is commonly simplified, and written omitting the  suffix, as the

0 1L SC FC F C (6.6) 

6.1.1 Graphical Solutions 

In an n-dimensional space, Eq. (6.6) implies that the points representing CS, C0
and CL are aligned (Fig. 6.2). This is known as the  “lever rule” by analogy with a 
lever balancing two masses on either side of a fulcrum. The weight on the left-
hand side is proportional to the length of the right-hand side arm, and conversely. 
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. T

wellknown mass-balance equation:  

 wC W  for each part of the



Fig. 6.2 The “lever rule” in a binary diagram (here, SiO2 vs. MgO) is the expression of the mass-
balance equation. The points representing CS, C0 and CL are linearly aligned; the distance be-
tween C0 and CS is proportional to F and the distance between C0 and CL to (1 – F). 

6.1.2 Cumulate Composition 

In the simplest case, the cumulate is made of a single mineral, and therefore its 
composition is equal to the mineral’s (Fig. 6.3a). This is however not a very realis-
tic situation. In the more plausible case of a two-mineral (A and B) cumulate, its 
composition falls on a line connecting them (Fig. 6.3b). If the mass fraction of
the mineral A in the cumulate is mA, the cumulate chemistry can be expressed as:

(1 )S A A B A BAB AC m c m c m c m c (6.7) 

Equation (6.7) can be generalized to a cumulate containing any number of minerals: 

( )
n

S i i
i

C cm (6.8) 

where mi is the mass fraction of mineral i in the cumulate (0 < mi < 1, all summing 
up to 1, i.e. 

n

i im  ) and ic  the concentration of element  in mineral i.
This is actually a mixing equation, as we will see in Sect. 6.5. In a binary plot, the 
cumulate composition falls in the polygon defined by individual minerals (Fig. 6.3c).

M
gO

 w
t.%

SiO2 wt.%

CS

CL

Primitive melt

Diff. melt

Cumulate

MgOCL

SiO2CL

C0
MgO

C0
SiO2

CS
MgO

CS
SiO2

C0 = F CL + (1–F) CS

~ F

~ (1–F)CC00

6.1 Mass Balance During Crystallization 71

=1
=1

=1



Fig. 6.3 Examples showing the relationships between a cumulate formed of one to three minerals 
(CS), the primitive (C0) and the differentiated (CL) liquids. 

6.1.3 Analytical Formulation 

The mass-balance equation can be expressed in a matrix form. This will be re-
quired further on for the reverse model, and does also allow easier programming 
(see Chap. 9). 

For each element , one mass-balance equation [ (6.6) ] can be written. Taking 
= 1 to p), a system with p equations is obtained:  

2 2 2

2 2 2

2 5 2 5 2 5

0

0

0

 1
 1

 1

SiO SiO SiO
L S

TiO TiO TiO
L S

P O P O P O
L S

C FC F C
C FC F C

C FC F C

(6.9) 

Likewise, assuming a cumulate made of n minerals (plagioclase, orthopyrox-
ene…), Eq. (6.8) is expressed as: 

2 2 2 2 2

2 2 2 2 2

2 5 2 5 2 5 2 5 2 5
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 (6.10) 

At this stage, it is convenient to express compositions as vectors (with coordinates 
defined in the compositional space): 
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into account all major elements (



(6.11) 

and make similar formulations for  and .
The compositions of all individual cumulate minerals can, in the same way, be 

recast as a matrix with p elements in rows and n minerals in columns: 

(6.12) 

Further defining a vector  with n mineral mass fractions: 

(6.13) 

Eq. (6.10) can be recast in a more compact (and computer-friendly) form: 

(6.14) 

6.1.4 Generating a Magmatic Series Through Crystallization 
The previous treatment assumes a single-step process, i.e. one during which the 
whole cumulate is formed and separated from the melt at once, without any change

has to be modelled as a series of discrete steps. During each step, the cumulate 
composition can be assumed to be constant, and the differentiated 
becomes the initial liquid of the next one. 

Constant Cumulate Composition 
If the cumulate chemistry remains constant, the compositions of all successive dif-
ferentiated liquids plot along the same, straight line linking them to the cumulate 
(CS) and C0 (Fig. 6.4). Although the process is actually stepwise (with minerals 

6.1 Mass Balance During Crystallization 73

in cumulate composition or its mineral proportions. In reality, crystallization is prog-
ould evolve. Then a continuous process ressive and the chemistry of the cumulate w

fractionating out of the “new” liquid at each stage), lever rule analysis shows that 
this is similar to keeping the same C0 and decreasing the value of F. 
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Fig. 6.4 A liquid line of descent governed by a cumulate of constant composition. (a) and (b)
show two different, but numerically equivalent explanations. In (a), the differentiated liquid of 
step (t – 1) becomes the primitive liquid of step (t); this is the situation closest to the reality. In 
(b), the same process can be described as a succession of evolved liquids formed from the same 
primitive melt, but with decreasing F values. Panel (c) shows the resulting pattern, with samples 
corresponding to a series of differentiated liquids plotting along a straight line extending from 
the cumulate, and the primitive liquid. 

The line that relates the series of liquids generated from the same parental magma 
(C0) by extraction of a mono- or poly-mineral cumulate with a constant composi-
tion, is called a liquid line of descent. Mass balance implies that the cumulate 
composition, CS, falls on the same line (on the side opposite to the liquids). 

Changing Cumulate Composition 
However, a cumulate with a constant composition is rare in natural systems. 
Rather, the cumulate composition often evolves in course of differentiation, pro-
ducing more complex trends. For instance, for two discrete cumulate compositions 
(Fig. 6.5a), the resulting line of descent is inflexed, with each segment pointing 
towards one specific cumulate. In the case of gradual cumulate evolution, the 
trend is a curve that can be regarded as being made of a succession of infinitely 
small linear segments (Fig. 6.5b). At any point, the cumulate plots on the tangent 
of the curved liquid line of descent. The hump that appears on the trend does not 
necessarily imply that some phase appeared or disappeared in the cumulate, and 
may just represent a progressive change in cumulate modal composition. 

Fig. 6.5 The liquid lines of descent controlled by a cumulate of evolving composition: in two dis-
tinct steps (a) and progressively (b), the latter depicted as a series of successive small steps. 
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Incomplete Liquid/Solid Separation 
Especially in felsic systems, where the settling of crystals is extremely slow due to 
the high viscosity of the magma, the separation of the cumulate and residual liq-
uids may often be incomplete. The resulting geochemical trend can be described 
as a combination of two simple processes: 

Fractional crystallization, forming a cumulate and a differentiated melt, and 
Mixing between the cumulate and the differentiated melt.  

This mixing is, of course, superposed on the fractionation trend. The final result 
is fairly similar to the simpler case of pure fractionation, except that the composi-
tions of some rocks now fall on the cumulate–initial liquid join (Fig. 6.6). 

Fig. 6.6 Geochemical patterns generated by crystallization, complicated by partial cumulate ex-
traction. a Conceptual sketch of this situation. b Since mixing is superposed on the liquid line of 
descent, the magma compositions can plot on the cumulate side of the line of descent. 

6.2 Partial Melting 

In terms of mass-balance modelling of major elements, melting resembles crystal-
lization. The primitive liquid is now replaced by the source (the solid rock that is 
melting), the cumulate by the residual solid (restite) and the differentiated liquid 
by the newly-formed melt. The main difference is that F increases during the proc-
ess (melt is now progressively formed, and not consumed). 

Fig. 6.7 Definition of variables used to write the mass-balance equation during partial melting in 
a closed system. Cf. Fig 6.1. 
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Similarly to fractional crystallization, partial melting does also split a homogene-
ous solid source into a melt and a solid residue. Consequently partial melting can 
be described by the same mass-balance equation as fractional crystallization: 

0 1L SC FC F C (6.15) 

Although this equation is written identically to Eq. (6.6), it is worth noting that 
here C0 refers to the solid source (as opposed to the primitive liquid) and CS to the 
restite (rather than the cumulate). 

As previously [see Eq. (6.8)], the restite composition can be expressed as:

( )
n

S i i
i

C m c (6.16) 

Or, in matrix form similar to Eq. (6.14): 

(6.17) 

Practically, a few differences can be noted: 

Partial melting only seldom generates well-defined liquid lines of descent, 

Peritectic minerals (Sect. 6.3) occur often during melting and their role can
hardly be neglected (especially in the genesis of felsic magmas by crustal
anatexis), 
Portions of the restite (either peritectic minerals, or minerals unaffected by the 
melting reaction) are commonly entrained into the partial melts. Incomplete

Consequently, melting with a restite of changing composition (“progressive 
melting”), although a common phenomenon, is hard to constrain based solely 
on the interpretation of the major-element data from a magmatic series (see, 
however, Worked example 2, Part VI). 

6.3 Peritectic Reactions 

A peritectic reaction occurs when a new mineral phase is consumed (or formed) 
together with the melt. For instance the reaction Opx = Melt + Ol is important dur-
ing melting of mantle peridotites or pyroxenites. A reaction Bt + Pl + Qz + Sil = 
Melt + Grt (Clemens and Vielzeuf 1987) is probably one of the main ones in-
volved in crustal melting and granite generation. Peritectic reactions do also take 
place during crystallization; e.g., the reaction Melt + Ol = Opx can occur during
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so common for crystallization,  

liquid/cumulate separation is less common (or less clearly observed) during
crystallization, 

the differentiation of basaltic liquids. 

=1

RSC = C ×m



Slight modifications to the simple mass-balance equation for melting (6.15) al-
low writing a new relation taking into account peritectic minerals (Fig. 6.8a): 

0 (1 )L Q SC FC QC F Q C (6.18) 

with Q and CQ referring to the amount, and the composition, of the peritectic 
phase, respectively.  

This formulation amounts to splitting the solid (the “restite”) into its peritectic, 
and non-peritectic portions, i.e. one assumes that some of the restite minerals were 
unaffected by the melting. Of course, this is oversimplified; melting tends to be a 
multivariant, continuous reaction during which the mineral compositions change. 
Thus it is not necessarily possible or meaningful to make this distinction, and the 
classical equation may be more appropriate. 

In the case of crystallization, different formulations may be written, depending 
on the definition of the system considered. Assuming that it includes the initial 
melt (C0), and the eventually consumed minerals (CQ), the mass balance gives 
(Fig. 6.8b): 

0(1 ) (1 )Q L SQ C QC FC F C (6.19) 

In this case, (1 – F) does not reflect the degree of crystallization anymore. Liquid 
was present in certain amount (1 – Q) before the fractionation event described. 
The proportion of melt consumed (i.e., the degree of crystallization) is therefore: 

1
(1 )

F
Q

(6.20) 

Fig. 6.8 Definition of variables used to write the mass-balance equations including peritectic 
phases during closed-system melting (a) or crystallization (b). For explanation, see text. 
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This illustrates that mass balance, in a general form, is expressed as: 

START ENDn n

START START END END
i i

m c m c (6.21) 

with the mass fractions of each initial, and final phases summing up to 1: 

1
START ENDn n

START END
i i

m m (6.22) 

Clearly, all the mass-balance equations written so far were special cases of this 
general formulation. 

6.4 Mixing 

Mixing is also governed by mass-balance relationships. The composition of a mix-
ture M between two end-members, 1 and 2, is:

1 1 1 2(1 )MC f C f C (6.23) 

Fig. 6.9 Graphical expression of mass balance during mixing. a Mixing between two end-
members, 1 and 2, in a binary diagram involving concentrations of arbitrary two elements (or ox-
ides), here SiO2 and MgO. Note that the pattern is indistinguishable from the one generated by 
crystallization (or melting), cf. Fig. 6.2. b Mixing between three end-members, 1 to 3. The prod-
ucts of the mixing plot in the grey triangle (a polygon, if more end-members are involved). 
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1 is the weight proportion of end-member 1 in the mixture. The graphical 
representation is also familiar (Fig. 6.9a). 

fwhere 



where Ck is the concentration in component k that enters the mixing in proportion 

fk (0 < fk < 1; 
1=

1k

m

k

f ).  

This is nothing else than a weighted average of individual components, and the 
binary mixing Eq. (6.23) is its special case. In a binary diagram, the components 
of the mixing define a polygon (Fig. 6.9b), and the mixture is located therein (spe-
cifically at the center of mass, assuming the weight of each apex is fk). In three-
dimensional diagrams, the mixing region is a polyhedron with m apices (and in a 
p-dimension diagram, a hyper-volume with m apices). 

As discussed in Sect. 6.1.3, this equation can also be written in a matrix form, 
with the concentration of the mixture expressed as a vector  of p (elements) 
length and the mass fractions of each end-member forming a vector  of m

(elements) rows and

(6.25) 

6.5 Crystallization and Partial Melting—Are These Just 
Special Cases of Mixing? 

By now it should be clear that the mass-balance formulations used for crystalliza-
tion, melting and mixing are effectively the same. Indeed, generating a differenti-
ated melt CL from a parental melt C0, with a cumulate made of n minerals is 
equivalent to mixing the cumulate minerals with the differentiated liquid in order 
to recover the composition of the parental liquid. In this case, if F is the melt frac-
tion, and m the mineral proportions in the cumulate, the proportions in the mixing 
are F for the melt and (1 – F) × mi for each mineral i. The mass-balance equation 
can be expressed as: 

0
1

(1 ) ( )
n

L i i
i

cF FC C m (6.26) 

which we can recast in a matrix form: 

(6.27) 
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If m components (m  2) are involved (e.g., Fig. 6.9b), the equation becomes: 

1

( )
m

M k k
k

C f C (6.24) 

(end members) length. Moreover, the compositions of the end-members are recast
of pEC

0C = C × f

f
MC

(6.24) becomes, in matrix form: 
m

=

=

(end members) columns. Equation

EMC = C × f

as a matrix



with: 

(6.28) 

and: 

(6.29) 

Again, this approach will prove to be very useful when solving reverse problems 
(Chap. 7).  
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Planet Sci Lett 86:287–306

80 6 Direct Models

(1 )
(1 )

(1 )

Pl

Opx

n

F m
F m

F m
F

f

2 2 2 2

2 2 2 2

2 5 2 5 2 5 2 5

 

Pl

Pl L

Pl

SiO SiO SiO SiO
Opx n L

TiO TiO TiO TiO
Opx n

P O P O P O P
O L

O
px n

c c c C
c c c C

c c c C

C



 

Chapter 7 
Reverse Models 

Although direct approach can be used to predict the compositions generated by a 
certain well-defined process, and compare them with observations, the real geolo- 

1

7.1 An Under-Determined Problem 

In the case of fractional crystallization, examining Eq. (6.27) reveals that the fol-
lowing parameters remain to be determined (assuming the composition LC  of the 
differentiated lava is known from sampled rocks): 

 composition 0C  of the primitive magma (for the p elements considered), 
 composition SC  of the cumulate, itself a function of: 
– compositions ic  of all n cumulate minerals i, 
– mineral mass fractions mi in the cumulate, 

 degree of fractionation ( 1– F ). 

In a system with p elements and n possible cumulate minerals, there is therefore a 
total of p×n (cumulate mineral compositions) + p (primitive liquid) + n + 1 (min-
eral proportions and F) –1 (because all the mi sum up to 1) variables. On the other 
hand, the matrix equation (6.27) represents a system of only p equations. It is 
therefore clear that some of the variables must be constrained using realistic geo-
logical assumptions, whereas others can be calculated from these hypotheses (Sect. 22.1).

                                                           
1 The following discussion is written for crystallization but the same logic can be applied to melt-

ing. Mixing is slightly different and thus it is addressed separately in Sect. 7.3. 
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gical problems are seldom soluble in this way. Geochemists more generally face a
reverse problem in which only the differentiated liquid compositions are observed
(e.g., as a series of lavas from a volcano or igneous province), while the other para-
meters such as the composition of the primitive melt, or the nature of the cumulate
controlling the liquid line of descent, are not known. 



7.2 Least-Square Solution to Crystallization/Melting 
Problems 

As will be discussed in Part V, a common situation is that it has been possible to 
identify a plausible primitive magma C0 and to decide, or guesstimate, the compo-
sition of the cumulate minerals ci.  

This requires solving system (6.27) for ff . Only in a rare, but fortunate case 
when n = p (C  is a square matrix), the system has a unique solution.  

p = 8 to 10 major elements and n 6
minerals2. The system (6.27) is now over-determined, as it has more equations (p)
than unknowns (n), and has no exact solution (  is not a square matrix and thus 
cannot be inverted). It is nevertheless possible to find an approximate one that best 
fits all constraints (Appendix C). Solving this system means that an estimate of the 
vector  should be chosen so that the computed and real elements of the vector 

0CC  differ from each other as little as possible.  

(7.1) 

Fig. 7.1 Two unknowns and four equations: the system is overdetermined and has no exact solu-
tion. However (a) is an approximated one. It is the best least-square solution (it minimizes the 
distance to all four equations). Even though (b) is not the mathematical “best” solution, it is only 
marginally worse and may be geologically more realistic. 

                                                          
2 It is very unlikely that n > p (in which case the system would be under-determined, and have an 

infinity of solutions). Whereas this could happen from a numerical or geochemical point of 
view, the phase rule actually precludes such a situation. Crystallization is a multivariant process 
(at least the temperature and the composition of the melt phase do change!), so if the variance v 

 2, the phase rule v = p (number of chemical components) + 2 – n (number of phases) implies 
that it is impossible to have n > p. 

X 2

X1

(a)

(b)

eq. 2

eq. 1

eq
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eq. 3
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* *
0C = C f

In fact, one is typically dealing with 

ff

C



This is commonly solved by the least-square approximation:

0

T T
* -1f = (C ×C C ×C×) (7.2) 

The sum of squares of residuals R2 is a useful quantifier for the goodness of fit: 

*
0

2
2

0R *
2

C C (7.3) 

For further details on the least-square method and its implementation in R, see 
Appendix C, Albarède (1995) and Janoušek and Moyen (2014).

7.3 Least-Square Solution to Mixing Problems 
In a mixing problem, geological constraints are different. Typically, the possible 
end-members are known or at least can be assumed. The questions that can be an-
swered by modelling are: 

Can the observed ‘hybrid’ composition be explained as a mixture of the as-
sumed end-members? 
If so, what is the proportion of each of them? 

This amounts to solving Eq. (6.25) for ff . 

A general solution for mixing of an arbitrary number of components3 can be again

T T
* -1

E E MEf = (C ×C ) C ×C× (7.4) 

As previously, R2 gives an estimate of the quality of the model, i.e. whether the 
composition observed can really be explained in terms of mixing. 

A special case of such reverse mixing is that of the modal recalculations. Knowing 
the mineral compositions, it is possible to recast them into the composition of any 
given rock. This approach is used routinely in experimental petrology to obtain the 
likely mode (in wt. %) from run-product analyses. 
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obtained by least-square method (Appendix C):
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Chapter 8  
Forward Modelling in R 

 

 

Exercise 8.1: Fractional crystallization 

 
Table 8.1 gives major-element compositions of a Mauna Kea picrite (Matzen et al. 
2011) and of an ideal olivine (Fo90). 

Table 8.1  

wt. % basalt olivine

SiO2 45.15 40.87 
TiO2 1.4 0.00 
Al2O3 7.51 0.00 
FeO 11.97 9.77 
MgO 25.34 49.35 
CaO 6.68 0.00 
Na2O 1.18 0.00 

 MaunaKea.data 

Assuming that the chemistry of picrite corresponds to that of the parental melt, 
calculate the compositions of fractionated magma after 5, 10, 20 and 35% crystal-
lization of the ideal olivine. 

 
From the mass-balance equation (6.6), one can derive for the fractionated magma 
composition (CL) for each element (j): 

 0

)(1

j j
j Ol c

L
c

C c FC
F

 (8.1) 
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Where: CL = the unknown chemistry of the differentiated melt, C0 = parental 
picritic magma composition, Ol = olivine, FC = degree of fractional crystallization. 
This equation is the core of the following code: 

> x <- read.table("MaunaKea.data",sep="\t") 

> c0 <- x[,1] # composition of parental magma 

> ol <- x[,2] # olivine composition 

> fc <- c(0.05,0.1,0.2,0.35) # degrees of fractionation 

> # Cycle for each of the degrees of fractionation (variable ee) 

> for (ee in fc){  

>  y <- (c0-ol*ee)/(1-ee) # fractionated magma [Eq.(8.1)] 

>  x <- cbind(x,y) 

> } 

> colnames(x) <- c("C0","Ol",fc) 

> print(round(x,2)) 
         C0    Ol  0.05   0.1   0.2  0.35 
SiO2  45.15 40.87 45.38 45.63 46.22 47.45 
TiO2   1.40  0.00  1.47  1.56  1.75  2.15 
Al2O3  7.51  0.00  7.91  8.34  9.39 11.55 
FeO   11.97  9.77 12.09 12.21 12.52 13.15 
MgO   25.34 49.35 24.08 22.67 19.34 12.41 
CaO    6.68  0.00  7.03  7.42  8.35 10.28 
Na2O   1.18  0.00  1.24  1.31  1.47  1.82 

Exercise 8.2: Fractional crystallization

Table 8.2 contains analyses of Sázava tonalite (Janoušek et al. 2004) and some of 
its rock-forming minerals (Janoušek et al. 2000):

Table 8.2  

wt. % Tonalite Pl Bt Amp

SiO2 55.09 53.41 35.32 45.35
TiO2 0.75 0 2.11 1.39
Al2O3 17.59 29.48 15.31 9.47
FeOt 7.73 0.09 23.56 18.57
MgO 3.52 0 9.05 9.82
CaO 8.2 11.27 0.01 11.92
Na2O 2.83 5.05 0.1 1.08
K2O 2.04 0.12 9.81 1.02

sazava_fc.data

Calculate the composition of residual melt after 20% fractional crystallization 
of a cumulate consisting of 50 % Pl, 30 % Bt and 20 % Amp. 
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What is the composition of the cumulate?
 

Again, a slight modification of the mass-balance equation gives: 

 0

)(1

j j
j S c

L
c

C C FC
F

 (8.2) 

> x <- read.table("sazava_fc.data",sep="\t") 

> x <- as.matrix(x) # dataframe needs to be transformed to  

 # a matrix for matrix multiplication 

> c0 <- x[,1] # composition of parental magma 

> mins <- x[,-1] # composition of fractionating phases 

> m <- c(0.5,0.3,0.2) # mineral proportions in cumulate 

> fc <- 0.2  # degree of fractionation 

> ccum <- mins%*%m # cumulate composition [Eq.(6.8)] 

> cl <-(c0-ccum*fc)/(1-fc) # and of residual liquid [Eq. (8.2)] 

> x <- cbind(x,ccum,cl) 

> colnames(x) <- c("tonalite",colnames(mins),"cumulate","dif.magma") 

> print(round(x,2)) 
      tonalite    Pl    Bt   Amp cumulate dif.magma 
SiO2     55.09 53.41 35.32 45.35    46.37     57.27 
TiO2      0.75  0.00  2.11  1.39     0.91      0.71 
Al2O3    17.59 29.48 15.31  9.47    21.23     16.68 
FeOt      7.73  0.09 23.56 18.57    10.83      6.96 
MgO       3.52  0.00  9.05  9.82     4.68      3.23 
CaO       8.20 11.27  0.01 11.92     8.02      8.24 
Na2O      2.83  5.05  0.10  1.08     2.77      2.84 
K2O       2.04  0.12  9.81  1.02     3.21      1.75 

 

Exercise 8.3: Fractional crystallization 

Fractionation of komatiitic magma can be modelled as a three-stage process, with 
successive cumulates forming. Table 8.3 gives the SiO2 and CaO contents in the 
primitive komatiitic liquid, olivine and clinopyroxene. 

Table 8.3  

wt. % SiO2 CaO 

Primitive liquid 48.14 5.99 
Ol 40.6 0 
Cpx 51.2 20.73 

The three successive fractionation stages are: 

(1) 40% fractionation of pure olivine, 
(2) 15% fractionation of 60 % olivine + 40 % clinopyroxene, 

878 Major Elements

Part_2/Code/Exercises/exe_8.2_sazava_fc_mjr.r
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(3) 20 % fractionation of pure clinopyroxene.

Calculate the final composition of the magma. 
What is the total degree of fractionation? 
Plot a SiO2 – CaO diagram showing the evolution of the magma. 

  
> c0 <- c(48.14,5.99) # primitive magma 
> names(c0) <- c("SiO2","CaO") 
> ol <- c(40.6,0) # olivine 
> cpx <- c(51.2,20.73) # clinopyroxene 
 
> # First stage 
> fc1 <- 0.4 # degree of fractionation 
> cl1 <- (c0-ol*fc1)/(1-fc1) # composition of the residual liquid 
 
> # Second stage 
> fc2 <- 0.15 # degree of fractionation 
> m.ol <- 0.6 # proportion of olivine 
> m.cpx <- 0.4 # proportion of clinopyroxene 
> cs <- m.ol*ol+m.cpx*cpx # cumulate composition 
> cl2 <- (cl1-cs*fc2)/(1-fc2) # composition of the residual liquid 
 
> # Third stage 
> fc3 <- 0.2 # degree of fractionation 
> cl3 <- (cl2-cpx*fc3)/(1-fc3) # composition of the residual liquid 
 
> # Results 
> res <- cbind(c0,cl1,cl2,cl3) 
> print(round(res,3)) # print the results, rounded off 
        c0    cl1    cl2    cl3 
SiO2 48.14 53.167 54.636 55.495 
CaO   5.99  9.983 10.282  7.670 
 
> # Degree of fractionation 
> step1 <- fc1 
> step2 <- (1-step1)*fc2 
> step3 <- (1-step1-step2)*fc3 
> cat("Total degree of fractionation is",step1+step2+step3,"\n") 
Total degree of fractionation is 0.592 
 
> # Plot 
> plot(c0[1],c0[2],xlab=expression(SiO[2]),ylab="CaO",xlim=c(45,60), 
+  ylim=c(4,11),pch=16,cex=2) 
> arrows(c0[1],c0[2],cl1[1],cl1[2],col="darkred",lwd=1.5) 
> arrows(cl1[1],cl1[2],cl2[1],cl2[2],col="darkblue",lwd=1.5) 
> arrows(cl2[1],cl2[2],cl3[1],cl3[2],col="darkgreen",lwd=1.5) 
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Fig. 8.1 Sequential fractionation of Ol, Ol + Cpx mixture, and Cpx (Exercise 8.3). Output of the 
code (a) and conceptual model (b). In (b) are also shown the three cumulates, and a gray box de-
noting the field of view of figure (a).  

 

Exercise 8.4: Partial melting 

 
Consider the case of fertile mantle peridotite melting at a mid-oceanic ridge, 
forming basalt. The contents of selected elements in the source mantle and the 

Table 8.4  

wt. % Al2O3 TiO2 

Basalt 15 0.7 
Fertile peridotite (lherzolite) 4 0.17 
Depleted peridotite (harzburgite) 1 0.4 

 Plot the compositions in a Al2O3 – TiO2 diagram. 
 Using the lever rule, determine the composition of the solid component (restite) 

after 10 % melting of the fertile mantle. 
 Graphically indicate the maximum melt amount possible. 
 How much melt can be formed if the source is a depleted peridotite? 

 

Mass balance in this case follows from Eq. (6.15): 
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basalt are as follows (Caron et al. 1992): 
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> # Build matrix with two columns of the input data, fill along rows 

> qq <- matrix(c(15,0.7,4,0.17,1,0.4),ncol=2,byrow=TRUE) 

> colnames(qq) <- c("Al2O3","TiO2") 

> rownames(qq) <- c("basalt","fertile","depleted") 

> # Plot the diagram 

> plot(qq[,"Al2O3"],qq[,"TiO2"],xlim=c(0,16),ylim=c(0,1), 

+ xlab=expression(Al[2]*O[3]),ylab=expression(TiO[2]), 

+ xaxs="i",yaxs="i") # no extra space at axes 

> text(qq[,1],qq[,2]+0.03,rownames(qq),adj=c(0.5,0)) 

> ff <- 0.1 # degree of melting 

> residue <-(qq["fertile",]-ff*qq["basalt",])/(1-ff) # [Eq.(8.3)] 

> points(residue[1],residue[2],pch=8,col="red") 

> print(residue,3) 

Al2O3 TiO2  

2.778 0.111 
 

> # Define the melting trend by slope and intercept 

> b <-(qq["basalt",2]-qq["fertile",2])/(qq["basalt",1]- 

+  qq["fertile",1]) # slope of the melting trend 

> a <- qq["basalt",2]-b*qq["basalt",1] 

> abline(a,b,lty="dashed") # plot a straight line 

Fig. 8.2 Mass balance of fertile mantle peridotite partial meting (Exercise 8.4). The asterisk indi-
cates the residue after 10 % melting. 
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Exercise 8.5: Generalized mixing 

 
Table 8.5 contains compositions of three ideal rock-forming minerals making up a 
model olivine gabbro: 

Table 8.5  

wt. % SiO2 Al2O3 FeOt MgO CaO Na2O 

Pl 50.54 31.70 0.00 0.00 14.36 3.40 
Ol 39.19 0.00 18.75 42.06 0.00 0.00 
Di 55.49 0.00 0.00 18.61 25.90 0.00 

 gabbro_modal.data 

 Calculate whole-rock geochemical composition of gabbro that contains 50 % 
Pl, 30 % Ol and 20 % Di. 

 
  
This is a simple calculation leading to a matrix multiplication of a vector with 
mineral proportions by a matrix of mineral compositions read from the datafile. 

> mins <- read.table("gabbro_modal.data",sep="\t") 

> mins <- as.matrix(mins) # Needed prior to matrix multiplication 

> print(mins) 
    SiO2 Al2O3  FeOt   MgO   CaO Na2O 
Pl 50.54  31.7  0.00  0.00 14.36  3.4 
Ol 39.19   0.0 18.75 42.06  0.00  0.0 
Di 55.49   0.0  0.00 18.61 25.90  0.0 

> m <- c(0.5,0.3,0.2) 

> print(m%*%mins) 
       SiO2 Al2O3  FeOt   MgO   CaO Na2O 
[1,] 48.125 15.85 5.625 16.34 12.36  1.7 

 
Precisely the same task is performed by the GCDkit function WRComp. 
 

GCDkit-> print(WRComp(mins,m)) 
  SiO2  Al2O3   FeOt    MgO    CaO   Na2O 
48.125 15.850  5.625 16.340 12.360  1.700 
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Chapter 9 
Reverse Modelling in R 

 

Exercise 9.1: Fractional crystallization (reversed Ex. 8.2) 

Table 9.1  

wt. % tonalite dif. magma Pl Bt Amp 
SiO2 55.09 57.270 53.41 35.32 45.35 
TiO2 0.75 0.710 0 2.11 1.39 
Al2O3 17.59 16.681 29.48 15.31 9.47 
FeOt 7.73 6.956 0.09 23.56 18.57 
MgO 3.52 3.230 0 9.05 9.82 
CaO 8.2 8.245 11.27 0.01 11.92 
Na2O 2.83 2.845 5.05 0.1 1.08 
K2O 2.04 1.748 0.12 9.81 1.02 

 sazava_fc2.data 

 Given the compositions of the parental magma (tonalite), differentiated melt 
and crystallizing minerals (Table 9.1), estimate (by the least-square method) 
the degree of fractional crystallization and mineral proportions in the cumulate. 

The least-square solution is in R provided by the function lsfit
, so that the model passes through the origin (see Appendix A). 

> x <- read.table("sazava_fc2.data",sep="\t") 

> x <- data.matrix(x) 

> cc <- x[,-1] # matrix, 1st column contains diff. magma, 

> # the remaining the mineral compositions 

> C0 <- x[,1]  # parental magma composition 

> ee <- lsfit(cc,C0,intercept=FALSE)  

> # least-square solution 
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, while setting 
intercept = FALSE
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> fc <- 1-ee$coeff[1] # degree of fractional crystallization 

> f <- ee$coeff[-1]  # if these are normalized to sum up to 1 

> m <- f/sum(f)  # we get the mineral proportions 

> cat(round(100*fc,3),"% fc ","\n") 

19.996 % fc 

> print(m*100,4) 
   Pl    Bt   Amp  
50.00 30.01 19.99  

> cat("\nRsquared: ",sum(ee$residuals^2),"\n") 

Rsquared:  0.0000001728938 

 

Exercise 9.2: Partial melting

Granitic melt is extracted from a metasediment. The melt and sediment composi-
tion, as well as possible restitic minerals, are given in Table 9.2. 

Table 9.2  

wt. % Paragneiss Melt Bt Pl Qtz Sil
SiO2 65.87 73.18 37.03 63.39 100.00 62.07
Al2O3 16.29 15.17 15.37 22.97 0 36.45
Fe2O3 5.59 0.61 25.50 0.00 0 1.48
MgO 2.01 0.47 8.90 0.00 0 0
CaO 1.84 1.80 0 4.13 0 0
Na2O 3.92 3.30 0.10 9.23 0 0
K2O 3.66 4.99 9.89 0.27 0 0
TiO2 0.82 0.49 3.21 0.00 0 0

paragneiss_melting.data

What is the degree of melting and modal composition of the restite?  

In this exercise we will once more use the least-square method. In this case we 
will try to recombine the melt and various minerals in the residue to reproduce the 
(unmelted) source composition.  

> x <- read.table("paragneiss_melting.data",sep="\t") 

> x <- as.matrix(x) # convert for matrix multiplication 

> c0 <- x[,1] # paragneiss composition 

> cc <- x[,-1] # melt and residual minerals matrix 

> ee <- lsfit(cc,c0,intercept=FALSE) 

> ff <- ee$coeff[1] # degree of partial melting 

> z <- ee$coeff[-1]  # if these are normalized to sum up to 1 
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> m <- z/sum(z)  # we get the mineral proportions 

> cat(round(100*ff,3),"% partial melting of:","\n") 
30.015 % partial melting of: 

> print(m*100,4) 
    Bt     Pl    Qtz   Sil  
30.007 45.015 19.991  4.988 
 

Exercise 9.3: “Normative” calculations

Let’s consider further the previous exercise. 

paragneiss_melting.data

Given the compositions of the paragneiss, the residual minerals and of the melt, 
what is the chemical and modal composition of the restite after 40% melting? 

Here we are going to combine direct and reverse approaches. First we calculate 
the bulk composition of the residue using mass-balance equation (analogous to 
Exercise 8.4), and then we recast it to individual minerals using the least-square 
algorithm (“normative calculation”).  

> x <- read.table("paragneiss_melting.data",sep="\t") 

> x <- as.matrix(x) # convert for matrix multiplication 

> c0 <- x[,1] # paragneiss composition 

> cl <- x[,2] # melt chemistry 

> mins <- x[,-c(1,2)] # mineral compositions 

> ff <- 0.40  # degree of partial melting 

> res <- (c0-ff*cl)/(1-ff) # mass balance for residue [Eq. (8.3)] 

> print(round(res,2)) 

  SiO2 Al2O3 Fe2O3  MgO  CaO Na2O  K2O TiO2  
 61.00 17.04  8.91 3.04 1.87 4.33 2.77 1.04 

 

> ee <- lsfit(mins,res,intercept=FALSE) # least-square fit gives 

> m <- ee$coeff # mineral proportions in the residue 

> print(round(m,2)) 

  Bt   Pl  Qtz Sil  
0.34 0.46 0.17 0.04 
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Exercise 9.4: “Normative” calculations (reversed Ex. 8.5)

Table 9.3  

wt. % gabbro Pl   Ol   Di   

SiO2 48.125 50.54 39.19 55.49

Al2O3 15.85 31.7 0 0

FeO 5.625 0 18.75 0

MgO 16.34 0 42.06 18.61

CaO 12.36 14.36 0 25.9

Na2O 1.7 3.4 0 0

gabbro_modal2.data

Given the analyses of a gabbro and its mineral constituents (Table 9.3), esti-
mate the wt. % of individual minerals using the least-square method. 

This is analogous to the second part of the previous exercise. 

> x <- read.table("gabbro_modal2.data",sep="\t") 

> x <- as.matrix(x) # convert data frame to numeric matrix 

> rock <- x[,1]  # whole-rock composition of the gabbro 

> mins <- x[,-1]  # mineral compositions 

> m <- lsfit(mins,rock,intercept=FALSE)$coeff 

> print(round(m*100),2) 
    Pl     Ol     Di 
    50     30     20  
 

Such normative calculations by standard (unconstrained) least-squares 
and more sophisticated constrained least-square algorithms (Appendix C)

are obtained in GCDkit from menu Calculations|Norms…|Mode. Unconstrained 
“modal” contents of minerals, both raw and recast to 100 %, are calculated by the 
function Mode; constrained solution is available via the function ModeC. Further 
details can be found on the relevant help page, see ?Mode.  

GCDkit-> Mode(rock,t(mins)) # transpose, oxides should be in columns 
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################################### 
#         Unconstrained LQ        # 
################################### 
Estimated mineral proportions (%): 
 Pl  Ol  Di Sum  
 50  30  20 100  
 
Rsquared:  0  
                Pl    Ol    Di estimated difference 
SiO2  48.125 50.54 39.19 55.49    48.125          0 
Al2O3 15.850 31.70  0.00  0.00    15.850          0 
FeOt   5.625  0.00 18.75  0.00     5.625          0 
MgO   16.340  0.00 42.06 18.61    16.340          0 
CaO   12.360 14.36  0.00 25.90    12.360          0 
Na2O   1.700  3.40  0.00  0.00     1.700          0 

 
################################### 
# Constrained LQ  (Albarede 1995) # 
################################### 
Estimated mineral proportions (%): 
 Pl  Ol  Di Sum  
 50  30  20 100  
 
Rsquared:  0  
                Pl    Ol    Di estimated difference 
SiO2  48.125 50.54 39.19 55.49    48.125          0 
Al2O3 15.850 31.70  0.00  0.00    15.850          0 
FeOt   5.625  0.00 18.75  0.00     5.625          0 
MgO   16.340  0.00 42.06 18.61    16.340          0 
CaO   12.360 14.36  0.00 25.90    12.360          0 
Na2O   1.700  3.40  0.00  0.00     1.700          0 
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GCDkit-> ModeC(rock,t(mins)) # same, but constrained least-squares 
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In this particular case, both calculations give the same results.



Part III Modelling Trace Elements 

Equilibrium (the underlying assumption to most petrological and geochemical 
modelling) is attained when the activities of all components in the geological sys-
tem become equal (Spear 1994). In magma, such equilibrium should govern the 
partitioning of an element between the crystal and surrounding liquid. However, 
the relationships between activities and concentrations are not straightforward, as 
it is difficult, if not impossible, to express them in a rigorous form for all elements 
and minerals present in the system. Hence, geochemical modelling relies on sev-
eral simplifying assumptions. 

For major elements, the mineral chemistry is generally nearly constant during 
melting or crystallization. Thus the easiest approach is to ignore the activities al-
together, and measure, or assume, the mineral chemistries. Note, however, that 
even in this case activities and equilibria can be calculated (Holland and Powell 
1998). 

Trace elements1 pose a different challenge. With a few exceptions (Kelsey and 
Powell 2011), no activity–composition models are available. Also, the trace-
element contents in minerals are highly variable, and usually poorly constrained. It 
is, therefore, generally not possible to use the same mass-balance approach as for 
major elements.  

In the case of trace elements that occur in small amounts in the crystal lattice 
(so are sufficiently ‘dilute’), the activity should be proportional to their concentra-
tion (Henry 1803). The coefficient of proportionality depends on the nature of the 
mineral but not on the concentration of the element. Consequently, activities can 
be again ignored and replaced by the simpler concept of element partitioning be-
tween different phases (in igneous petrology, a liquid and crystal(s)). Whereas the 
major-element modelling relies on the absolute concentrations in the solid phase, 
the key parameter for the trace elements is the ratio of their concentrations in the 
solid phases and the liquid (Chap. 10). 

                                                           
1 In this text the term “trace element” implies low whole-rock content. However, such an element 

can still be the main component of an accessory mineral, as is the case for Zr in zircon 
(ZrSiO4). 



This approach, however, fails when dealing with trace-element-rich phases. 
Some elements, termed essential structural constituents (ESC) (Hanson and 
Langmuir 1978), form a substantial part of the crystal lattice of certain accessory 
minerals. These are e.g., Zr in zircon, P in apatite or P, Th and LREE in monazite. 
Henry’s  Law  is  not  applicable  anymore  and  the  strategy  based  on  partition 
coefficients is inappropriate. Furthermore, activity–composition relationships are 
not perfectly, or not at all, established. The best approach is therefore largely em-
pirical, based on experiments and on the notion of the mineral solubility in a sili-
cate melt (Chap. 13).  
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Chapter 10  
Dilute Trace Elements: Partition Coefficients 

10.1 Crystal Networks and Substitutions 

Minerals can be regarded as piles of O atoms, leaving gaps (“sites”) for cations in 
between. Depending on the size of the site and the global charge balance in the 
crystal, different ions can fit in. For instance in silicates, tetrahedral sites are 
smaller than octahedral ones. Therefore a tetrahedral site can accept Si4+ or Al3+ 
but not Ca2+ or Mg2+ that, in turn, can fit in an octahedral site. In addition, the 
electric charge of ions must be such that the charge balance of the mineral is pre-
served. It is thus possible to replace (“substitute”) an ion by another one with the 
same or similar physical properties (size and charge). The better the match, the 
easier/more extensive the substitution could be. This means that elements can be 
more or less compatible with the crystal lattice.  

10.2 Partition Coefficients 

In igneous petrology, the compatibility of an element in a crystal lattice is ex-
pressed relative to the melt. This property is defined as a partition coefficient of 
element  between a mineral and the liquid : 1

 /min L min
D

L

cK
C

 (10.1) 

that is often written, in short, as KD. If KD > 1, cmin > CL and the element is said to 
be compatible (it concentrates into the mineral rather than in the liquid). Other-
wise, i.e. when CL > cmin, the element is incompatible (remaining in the liquid). 

                                                           
1 Various geochemistry texts use different symbols for the partition coefficients, defined here, 

and the bulk distribution coefficients of the Sect. 10.4. We employ KD for partition coefficients 
(single mineral) and D for the bulk distribution coefficients (several minerals combined). 
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Note that the concept of compatibility/incompatibility is not absolute, but de-
pends on the element, the mineral and the liquid composition . Consider, for in-
stance, Yb in basaltic systems (Fig. 10.1), which is incompatible in most main 
rock-forming minerals but strongly compatible in garnet (KD > 5). The same Yb, 
in a felsic system, becomes compatible in hornblende as well (and in clinopyrox-
ene to a lesser degree). 

2

 Fig. 10.1 Graphical representation of REE partition coefficients in selected rock-forming miner-
als in equilibrium with liquids of different compositions (Arth 1976; Hanson 1980). Although 
this figure resembles classical spidergrams, the values shown are not normalized concentrations, 
but partition coefficients. Note that while the partition coefficients for individual phases may 
change by an order of magnitude as a function of melt composition, the overall shapes of these 
curves tend to be preserved.  

10.3 Controls on the Values of Partition Coefficients 

Partition coefficients for a given mineral/element couple do also vary as a function 
of other system parameters. They are, first of all, very sensitive to the degree of 
polymerization, and thus to the composition, of the melt (Fig. 10.1). For instance, 
Bédard (2005) demonstrated that the KD for Cr in olivine can vary by as much as 
2–3 orders of magnitude when the melt’s MgO content changes from 2 to 20 
wt. %. The presence of volatiles (especially H2O) in the melt also strongly influ-
ences the value of KD.  

                                                          
2 In fact, a partition coefficient can be determined both for major and trace elements, but Henry’s 

Law does not apply for elements whose concentration in the crystals is too high.  
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The KD values are equally sensitive to temperature (Fig. 10.2a). However, both 
temperature and melt compositions are normally tightly correlated. There is also a 
certain influence of pressure, albeit usually minor. 

Finally, the redox state of the system influences the KD values. This behaviour 
is well documented for Eu in plagioclase (Fig. 10.2b), but this is the case for all 
elements that commonly occur in several oxidation states (Ce, V, U...).  

Fig. 10.2 Controls on partition coefficients. a A 104/T vs. ln KD
Pl/L graph for Sr in plagioclase 

(Sun et al. 1974) showing that the partition coefficient is strongly dependent on temperature. 
b KD for REE in plagioclase, as a function of oxygen fugacity (Drake and Weill 1975). The de-
crease in oxygen fugacity (reducing environment) results in an increase of the KD(Eu) value. Re-
gardless of fO2, the KD value for Eu in plagioclase is much higher than for any other REE, which 
is commonly the cause of negative Eu anomalies in many magmatic rocks. 

On the other hand, Henry’s Law implies that the KD value does not depend on the 
concentration of the (dilute) trace element in the system (or in its subcomponents). 
The maximum concentration below which this approximation remains valid is not 
rigorously defined, though. All the models described in Chapters 11–12 implicitly 
assume that KD is independent of concentration. 

10.4 Bulk Distribution Coefficients 

When the cumulate or the residue contains several mineral phases, the situation 
becomes more complex. Each mineral equilibrates with the liquid according to its 
own KD. Thus, the concentrations in each phase are affected not only by the total 
content of this element in the system, but also by the nature and the relative 
abundance of the other fractionating minerals. Imagine a system where a mag-
matic liquid equilibrates with two minerals (in comparable abundances), one with
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high KD, and another with low KD. The high-KD phase would extract from the liq-
uid almost all the element—leaving even less available for the low-KD one. 

This leads to the concept of a “bulk distribution coefficient”, D, that accounts 
for the behaviour of the solid phases as a whole. It can be expressed as the ratio of 
the concentration in the bulk solid (CS) and in the liquid (CL):

  (10.2) 

Contrarily to CL that is a single phase, CS refers to the bulk solid, which is typi-
cally made of several minerals. Consequently, the trace-element content in the 
cumulate (or residue) can be expressed as a mixture of n mineral phases. There-
fore, the mass-balance reads: 

n

S i i
i

C m c   (10.3) 

Combination of previous equations yields: 

(10.4) 

In this way, D is expressed as a function of the partition coefficients for individual 
minerals. In petrogenetic modelling, D is a key parameter, exerting strong influ-
ence on trace-element behaviour.
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Chapter 11  
Direct (Dilute) Trace-Element Models  

Trace-element modelling of crystallization or melting involves a balance between 
solid phases and melt assessed by the partitioning concept. Most geochemists use 
different equations for melting (batch melting) and crystallization (fractional crys-
tallization). We will show, however, that this choice of models—warranted as it 
may be—is not the only option available. Deciding between batch and fractional 
processes can be critical in choosing a correct modelling strategy.  

In batch (closed-system) processes, the direction of evolution (melting or frac-
tionation) is irrelevant, and the numerical expression identical, since they are both 
governed exclusively by the mass balance between the solid and the liquid. On the 
other hand, the formulation is distinct for fractional melting and crystallization, as 
these represent essentially open systems. 

The logic for mixing modelling is rather different. Partitioning between liquid 
and solid phases is not a factor anymore. Mixing is, normally, treated in the same 
way for the whole range of elements although it will be shown that certain ap-
proaches—seldom used for majors—may be more useful for trace elements. 

 Equilibrium, batch, fractional—a matter of terminology 
In the geochemical literature, several terms are deeply ingrained. Melting is 

described as “batch” or “fractional”, whereas crystallization is “equilibrium” 
(rarely) or “fractional” (more commonly, to the point that sometimes “fractiona-
tion” is used as a synonym for “crystallization”). 

The term “equilibrium” is somewhat misleading—as fractional processes also 
involve equilibrium between the melt and crystals, albeit an infinitesimal one (see 
Part V, Sect. 24.2). In addition, “batch” melting and “equilibrium” crystallization 
refer to very similar processes, i.e. those without separation of the liquid from the 
solid before their completion.  

We therefore decided to use “batch” and “fractional” qualifiers for both melt-
ing and crystallization—which in this book results in the absence of the term 
“equilibrium crystallization” and its replacement by the (so far) uncommon ex-
pression “batch crystallization”. 
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11.1 Crystallization 

11.1.1 Batch Crystallization 

During batch crystallization, newly crystallizing phases remain in the system (the 
crystals are not removed from the melt) until the process is complete. Such a situ-
ation resembles that of experimental capsules (closed system). The liquid–
relations can be described in terms of the mass balance: 

0 (1 )L SC FC CF   (11.1) 

and Cs can be deduced from Eq. (10.2): 

S LC DC   (11.2) 

thus giving:  

0

(1 )L
CC

D F D
 (11.3) 

Although known as the “batch melting” equation (Gast 1968; Shaw 1970), it does 
also apply to batch crystallization. 

11.1.2 Fractional Crystallization 

In this scenario, the crystals are immediately removed from the system as they 
form. Therefore, the equilibrium defined by Eq. (10.2) exists only for infinitesimal 
crystal (or melt) amounts. The differential expression linking the liquid composi-
tion with its amount, F, is: 

( 1)  L

L

dCdFD
F C

(11.4) 

In order to get a general expression, Eq. (11.4) must be integrated over the whole 
range of relevant F values. As demonstrated e.g. in Albarède (1995) or Zou 
(2007), for constant D this leads to the equation: 

( 1)

0

DLC F
C

(11.5) 

known as Rayleigh’s fractionation law, initially established for gas fractionation 
(Rayleigh 1896). For strongly incompatible elements (D ~ 0), it changes to: 
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solid

0

1LC
C F

(11.6) 



Fig. 11.1 A graphical representation of the mass-balance during batch crystallization (D = 0.05, 
D = 0.7). At every stage of the process (1–4), the mass-balance holds: CS, C0 and CL are linearly 
aligned (dashed lines). The F progressively decreases: CS approaches C0 (reaching it, when the 
whole system is solid) whereas CL starts at C0 and moves away from it. The trajectories of both 
CS and CL are curved. The distribution coefficient, D, has no simple graphical expression here. 
However, in the logarithmic coordinates (inset), both the horizontal, and the vertical distances 
between CL and CS (and therefore the slope of the dashed connecting line) remain constant at all 
stages. On the other hand, the mass-balance constraint has no simple graphical expression in log 
coordinates, as Eq. (11.1) implies no particular relationships between log(C0), log(CS) and 
log(CL). Batch melting would result in the same pattern, except that CL would move towards, and 
CS away from, C0 with increasing F values. 

The CL above then represents the maximum value that can be attained by 
Rayleigh-type fractionation at a given F.

Two equations (11.5) can be combined for a ratio of two elements,  and :

( )

0

D D

L

C C F
C C

(11.7) 

Clearly, the ratio of two elements with the same D (D ~ D ) remains nearly con-
stant in course of crystallization, still mimicking that of the parental melt.  
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When it forms, the cumulate is in (local) equilibrium with the melt. From 

( 1).

0

DS inst
L

C D DF
C

C   (11.8) 

Each cumulate fragment is immediately removed but still may be accumulated 
elsewhere (e.g., at the bottom or walls of the magma chamber). Therefore, it may 
be more sensible to calculate the bulk (or aggregated) composition of the cumulate 
(i.e., the time-integrated composition of all instantaneous cumulates). From the 
mass-balance relation as well as the liquid composition [Eq. (11.5)] we obtain: 

.

0

1
1

D
S bulkC F
C F

  (11.9) 

that, for strongly compatible elements (D  1), changes into: 

.

0

1
1

S bulkC
C F

  (11.10) 

Fig. 11.2 A graphical representation of the fractional crystallization of an incompatible ( D =
0.3) and a compatible ( D = 2) elements. Mass-balance applies to the whole system, i.e. the 
bulk solid and the liquid. On the other hand, there is no mass-balance link between the instanta-
neous solid, and the liquid (i.e., the composition C0 does not plot on the tie-line between CS.inst
and CL). Inset compares the liquid evolution during the fractional and batch crystallization (the 
same coordinates). The former produces more “extreme” compositions, richer in incompatible
elements ( ) but poorer in compatible ones ( ). As in Fig. 11.1, the partitioning has no simple 
graphical meaning in linear coordinates (but would generate tie-lines of constant slope and length 
between liquid and instantaneous solid in log coordinates). 
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Eq. (10.2) we derive its instantaneous composition (CS.inst):



11.1.3 Comparing Different Models

Liquids 
Unlike batch crystallization, fractional crystallization is a very efficient way of 
quickly removing compatible elements from the melt (Fig. 11.3). For incompatible 
elements, however, the difference between fractional and batch processes is small, 
except at very low F (i.e. extreme crystallization). In both cases, there is an upper 
limit on the concentration that can be reached by crystallization [Eq. (11.6)]: for 
D = 0, both Rayleigh’s and Shaw’s equations collapse to CL/C0 = 1/F. This creates 
a ‘Forbidden domain’ that no liquid can enter in the F vs. CL/C0 diagram (Fig. 
11.3). Very low values of D generate curves that are very close to the border of 
this domain, to the point of being practically undistinguishable.

Solids 
It is important to distinguish between batch solids, on the one hand, and bulk and 
instantaneous solids generated by Rayleigh-type processes, on the other. At F = 0, 
batch and bulk solids (but not Rayleigh instantaneous solids) converge towards 
Cs/C0 = 1 since the system is fully solidified. There is also a ‘Forbidden domain’, 
for very high values of D, defined by Eq. (11.10). Instantaneous solids, however,
do not follow mass-balance constraints; the corresponding curves may enter the
‘Forbidden domain’, and do not converge to 
elements, the differences are minute. On the other hand, Rayleigh instantaneous 
solids are quickly impoverished in compatible elements (as they are in  equilibrium
with strongly depleted liquids), compared to bulk and batch solids. 

Fig. 11.3 Comparison between batch and fractional crystallization models as a function of F.
Colours correspond to different D values, and line stroke to the individual models. Note that the 
horizontal scale is reverted, as the liquid fraction F decreases with progressive crystallization. 
The ‘Forbidden domain’ corresponds to the grey areas.

a – Liquids

1.0 0.8 0.6 0.4 0.2 0.0
F

0.
00
1

0.
01

0.
1

1
10

10
0

1.0 0.8 0.6 0.4 0.2 0.0
F

0.
00
1

0.
01

0.
1

1
10

10
0

Batch crystallization (or melting)Batch crystallization (or melting)Batch crystallization (or melting)
Rayleigh crystallizationRayleigh crystallizationRayleigh crystallization

b – Solids

C
L/

C
0

C
S
/C

0

D = 0.01
D = 0.5
D = 2
D = 5

Forbidden domain
(above D = 0)

Forbidden domain
(above D = 0)

Batch crystallization (or melting)Batch crystallization (or melting)Batch crystallization (or melting)
Rayleigh crystal. – instantaneous solidRayleigh crystal. – instantaneous solidRayleigh crystal. – instantaneous solid
Rayleigh crystallization – bulk solidRayleigh crystallization – bulk solidRayleigh crystallization – bulk solid

D = 0.01
D = 0.5
D = 2
D = 5

11.1 Crystallization 109

CL/C0 = 1. Again, for incompatible
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11.2 Melting 

11.2.1 Batch Melting 

Batch melting can be described by the same equation as the batch crystallization 
[Eq. (11.3)]:

0

(1 )L
CC

D F D
(11.11) 

In the batch melting equation, D corresponds to the bulk distribution coef-
ficient of the solid residue after melting (so not of the original source). Ex-

pressions using the mode of the original source are given in Sect. 11.2.4.

11.2.2 Fractional Melting 

When the melt is progressively extracted, the system behaves symmetrically to the 
fractional crystallization. In this case, the phase leaving is the melt, and that stay-
ing behind the solid residue. Similarly to the Rayleigh-type fractional crystalliza-
tion [Eq. (11.5)], integrating the instantaneous mass-balance equation gives: 

1 1

0

(1 ) DSC F
C

  (11.12) 

Note the symmetry of this formulation with Eq. (11.5), if substituting F by 1 – F
and D by 1/D. Both equations refer to the composition of the non-extracted phase, 
i.e. CL for fractional crystallization, but CS for fractional melting. 

As, at any moment, the instantaneous liquid equilibrates with the solid, the 
combination of equations (10.2) and (11.12) gives the composition of a single melt 
increment at a given melt fraction F: 

(11.13) 

This equation describes the evolution of each (infinitesimally small) drop of melt 
as it forms, just before it is extracted from the source. Actually, each successive 
melt increment is likely to be collected, mixed with the previously formed melt, 
and re-homogenized, but not necessarily at the melting site. The mass-balance re-
lation holds between the source, the aggregated liquid and the solid, allowing 
derivation of the equation for fractional melting with accumulation (also known as 
aggregated melting). Again, note that the form of this equation resembles 

110 11 Direct (Dilute) Trace-Element Models

1 1
.

0

(1 )1 DL instC F
C D

⎛ ⎞−⎜ ⎟⎝ ⎠= −

Eq. (11.9): 



(11.14) 

11.2.3 Comparing Different Models

Fractional melting behaves analogously to fractional crystallization, in that it 
quickly removes incompatible elements from the source. Therefore, the residue is 
more efficiently depleted in incompatible elements compared to batch processes. 
On the other hand, the evolution of compatible elements does not differ much dur-
ing batch and fractional melting, except for high F values (Fig. 11.4). 

The evolution of melts formed by fractional melting is somewhat counter-
intuitive. The fast depletion of the source in incompatible elements does not mean 
that the melts become extremely rich in these. Rather, the composition of instanta-
neous melts changes dramatically as melting progresses, their incompatible-
element contents decreasing fast. Furthermore, when instantaneous melts are ag-
gregated, the chemistry of the resulting liquid is not significantly different from 
that of “batch” melts. Simply any difference created by the fractional nature of the 
process is smoothed out by the subsequent homogenization. 

Fig. 11.4 Comparison of batch and fractional melting. These diagrams are analogous to Fig. 
11.3, except that the melt fraction F increases with progressive melting. The melts (a) converge 
towards CL/C0 = 1 for F = 1, with a notable exception of the instantaneous melt of fractional 
melting, which is not tied by mass-balance constraints, and can also enter the ‘Forbidden do-
main’. The evolution of complementary solids (residues) is shown in (b).

11.2.4 Alternative Formulations of the Melting Equations 

In most (if not all) cases, the modal composition of the residue would differ from 
that of the unmelted source. This is because melting occurs through melting reac-
tions with a given stoichiometry, and it is extremely unlikely that the rock has
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pt of “non-modal” melting. They proposed using two

and another (DP) for the mineral assemblage entering the melt: 

0 0
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/i
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i
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L
DD m K (11.15) 
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P D
i

i L
iD p K (11.16) 

where m0 are the mineral proportions in the (unmelted) source, and p the contribu-
tions of each mineral phase to the melt (Fig. 11.5). 

Fig. 11.5 Definition of the various mineral proportions used in the alternative melting formula-
tions in the case of two minerals A and B. m0 corresponds to the mode of the solid source before 
melting. Only a fraction of the original minerals contributes to the melt, with mineral proportions 
p, that are distinct from m0 (except in the rare case of modal melting). On the right, m correspond 
to the proportions of minerals present in the restite after melting; m0i = Fpi + (1 – F)mi.

Each set of mineral proportions (m, m0, p) sums to 1: 

0
1 1 1

   1
n n n

i i i
i i i

m m p   (11.17) 

This allows recasting the batch melting Eq. (11.11) as: 

0
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(11.18) 

For modal melting (i.e. the unlikely case when the minerals melt in the same pro-
portions as they are present in the source), m0 = p = m and thus DP = D0: 

0

0 0(1 )L
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D F D
(11.19) 

i.e., it reduces back to the common batch melting equation.  
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exactly the same mineral proportions. In order to account for this situation, some
authors invoked the conce
different bulk distribution coefficients, one for the original (unmelted) source
(D0) 



Analogous notation can be used to describe fractional melting: 

(11.20) 

and fractional melting with accumulation: 

(11.21) 

Whether these formulations are more useful than the ones using the D based on 
the solid residue depends on the specific problem. 

In all the models proposed above, D is taken as a constant throughout the 
fractionation/melting history. This is actually highly unlikely, because, in 
natural systems, (1) the proportions of the crystallizing phases may change, 

abruptly or gradually, during fractionation (e.g., amphibole replaces pyroxene dur-
ing the fractional crystallization of a calc-alkaline magma) as  may  the  stoichio-
metry of the melting reactions, and (2) the K D values depend on the composition
of the liquid, as well as P–T conditions. This issue can be tackled by two methods: 

Analytical approach
Equation (11.5) can be adapted to the case of variable D. For instance, when D is

F, D a bF , it becomes (Greenland 1970): 
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which integrates to:
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The original definition of the batch melting equation [Eq. (11.11)] may be 
superior in that it takes into account modal proportions after melting. Thus 

it can be applied universally, for modal as well as non-modal melting. On the 
other hand, it requires knowledge (or assumptions) of the modal composition of 
the restite that may or may not be easier to obtain than the initial modal composi-
tion of the source prior to melting.

a linear function of 



Note that if b = 0, D is constant and the equation collapses to Rayleigh’s law.
It is possible to derive analogous, or even more complex equations (Zou 2007), by 
putting other constraints on the evolution of D during fractionation (or by writing 
similar equations for melting). However, one is limited to cases when it is possible 
to express D evolution using a (reasonably simple) mathematical function1.

Numerical approach
A more empirical approach consists in breaking down the melting (or crystalliza-
tion) process into several successive steps, during each of which D can be as-
sumed to be constant. For each stage t, C0(t) is taken as being the end-product of 
the previous one (CL(t–1)); thus D is calculated using the modal composition of 
the cumulate/residue stable during the specific step. This modal composition can 
be constrained by petrology, experimental data or otherwise [Worked Example 2].

11.3 Mixing 

The mixing equation for individual (major or trace) elements relies on a simple 
mass balance, and consequently, it does not invoke any partitioning at all. There-
fore, Eq. 6.24 established for the major-elements is also applicable for traces, and 
the graphical representation remains the same (cf. Fig. 6.9): 

1

( )
m

M k k
k

C f C (11.24) 

11.3.1 Ratio of Two Elements During Binary Mixing 

When two components (1 and 2) mix in proportions f such that f1 + f2 = 1, the rela-
tion between two elements (  and ) in the mixture can be established as follows:  

1 1 1 2

1 1 1 2

(1 )
(1 )

M
M

M

C f C f CR
C f C f C

  (11.25) 

11.3.2 Mixing Hyperbolae in Ratio–Ratio Plots 

The treatment of binary mixing in a ratio–ratio plot of four trace elements  (a, b, u 
and v) (Fig. 11.6) stems from Vollmer (1976) and Langmuir et al. (1978) with 

2

                                                          
1 Specifically, one that can be integrated symbolically. Of course, it is always possible to inte-

grate any differential equation using numerical methods such as finite differences implemented 
in R, for instance in the package RootSolve. 

2 Ratios between two major elements, or a major and a trace element, would behave in the same 
way but are seldom used. 
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step-by-step derivation of the formulae shown in Zou (2007). Based on Eq. (11.25),
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  (11.26) 

As v = bx, and u = ay, the coordinates are: 
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 (11.27) 

Both Eq. (11.27) can be merged, eliminating f1: 
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 (11.28) 

Fig. 11.6 Schematic drawing of a mixing hyperbola in the x = v/b vs. y = u/a coordinates.  

which can be rearranged as: 

0m m m mAx Bx y Cy D (11.29) 

and thus: m
m

m

Ax
y

x C
D

B
(11.30) 

In a x–y plot, this equation defines a hyperbola whose curvature is controlled by B
(and becomes a straight line if B = 0).
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we can write for each of the ratios: 



The coefficients A, B, C, D for the general mixing hyperbola [Eq. (11.29)] are 
presented in Table 11.1 for two independent trace-element ratios v/b and u/a. This 
table also shows some special cases encountered in igneous geochemistry (such as 
ratio–ratio plots with a common denominator or element–ratio plots) (see also 
Langmuir et al. 1978; Zou 2007). 

Table 11.1 Various cases of the general mixing hyperbola equation [Eq. (11.29)] 
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endothermic process) is provided by the latent heat of crystallization. Already
O’Hara (1977) developed equations describing trace-element (and isotope) behav-
iour during open-system fractionation in a periodically recharged magma chamber 
with assimilation. The forward AFC model was elaborated by Allègre and Minster 
(1978), Taylor (1980) and De Paolo (1981). 

Fig. 11.7 Schematic representation of the AFC process for trace elements (after De Paolo 1981).  

The instantaneous mass balance of the process (Fig. 11.7) is: 

0L C AdW dW dW (11.31) 

with WL, WC and WA referring to the amounts of the given element in the melt, 
crystallized phases and assimilated material, respectively. The evolution of the 
magma chemistry is then controlled by interplay of two key parameters: D, the 
bulk distribution coefficient and r, rate  of  assimilation to fractional crystallization   
(i.e., the mass ratio of material assimilated to that crystallized) (De Paolo 1981): 

A

C

Wr
W

(11.32) 

Defining the fraction of the liquid remaining, F: 

0

0

C AW W WF
W

, (11.33) 
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11.4 Assimilation and Fractional Crystallization (AFC) 

The AFC model describes the compositional evolution of a magma that undergoes 
simultaneous assimilation and fractionation. This is, for instance, the case of a 
mantle-derived magma contaminated by the continental crust through which it as-
cends. The model assumes that the extra heat needed for assimilation (which is an 

r = rate of assimilation to
fractional crystallization

CA = concentration in
the assimilant CL = concentration in

the magma

CS = DCL = concentration in
the crystallizing minerals

C0 = initial concentration in
the magma



Or, 
1 1

1

00

11
1

D D
L Ar rC CrF F

C r D C
 (11.35) 

The formulation for isotopes is treated separately in Sect. 16.2. 
It is worth noting that Eq. (11.35) encompasses, as boundary conditions, both

Rayleigh-type fractional crystallization (r  0 or CA/C0 = 0) and binary mixing 
 and D = 0).  

When D is small, the magma enrichment is more important than during the 
simple fractional crystallization (Fig. 11.8).  

Fig. 11.8 Effects of AFC upon concentration of an element in the melt for various values of bulk 
distribution coefficient (D). The curves were calculated assuming r = 2 and are labelled by the 
ratios CA/C0; CA/C0 = 0 corresponds to pure fractional crystallization.  
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using the definition of D, rearranging the Eq. (11.31) and integrating eventually
leads to a somewhat complex formulation (De Paolo 1981; Zou 2007): 

0 0
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( 1)

z zL AC CrF F
C z r C

, where 
1

1
r Dz

r
 (11.34) 

 (r
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0 0

1 1
( 1)

L AC C r
C F C r

(11.36) 

On the other hand, for strongly compatible elements (D >> 1) we obtain (if r < 1): 

1
A

L
rCC

r D
(11.37) 

The critical value of r representing a divide between fractionation- and assimila-
tion-controlled AFC (i.e. CL/C0 = 1) can be calculated as (Albarède 1995): 
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Dr C
C

(11.38) 

Direct AFC models can be calculated and plotted by Petrograph (Petrelli et 
al. 2005) or special spreadsheets (Ersoy and Helvacı 2010; Keskin 2013).

It is worth noting that the original AFC formulation (De Paolo 1981, 1985) 
deals only with masses and chemical species (elements and isotopes) but 
does not take into account thermodynamic parameters. In natural systems, 
thermodynamic constrains put a limit especially on the r value. Indeed, 

crystallization is an exothermic process, while assimilation is endothermic. Con-
sequently, the rate of assimilation to fractional crystallization (r) is governed by 
the thermal state of the assimilant (Reiners et al. 1995) and is unlikely to exceed 1
(Sect. 24.1.1).

The problem has been tackled by more comprehensive models of Energy-
Constrained Assimilation–Fractional Crystallization (EC-AFC) (Spera and Bohr-
son 2001) or its subsequent modifications with magma recharge and eruption (EC-
E’RA FC) (Spera and Bohrson 2004). They are implemented in a stand-alone 
program (Bohrson and Spera 2007). However, these approaches require tightly 
constrained input parameters as well as a well-known magma plumbing system 
(Fowler et al. 2004).

11.5 Composite Models 

By combining the basic laws described above (mass balance and trace-element 
partitioning), it is possible to derive a range of composite models. 

Fairly complex equations can be found in the literature, describing a range of 
situations (open/closed system, fractionation/batch, crystallization and contamina-
tion, etc.). However, in the light of all uncertainties associated with geochemical 
data (analytical errors, sampling bias, alteration…) and their modelling (partition 
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For strongly incompatible elements (D ~ 0), and as F approaches zero, the
.35) changes into (De Paolo 1981): Eq. (11



coefficients…), it is unclear how much our knowledge is improved by using these 
complex formulations. Typically, a more sophisticated model requires more data 
and thus the uncertainty of the results would rapidly increase. Still, several exam-
ples are given here, as an illustration of how simple equations can be combined.  

11.5.1 Crystallization with Incomplete Crystal Separation (Batch 
Crystallization + Binary Mixing)  3

This scenario has been already discussed for majors, Sect. 6.1.4. Similar equations 
can be derived for trace elements by coupling batch crystallization (the crystals are 
not separated from the residual melt!) and mixing equations. For major elements, 
both equations are expressed in terms of mass balance, and therefore identical, 
which in binary diagrams results in overlapping straight lines.  

However, this does not hold for trace elements (Fig. 11.9). In a binary diagram, 
the liquid and cumulate compositions plot along curves, while mixing results in 
straight lines. So, contrary to major elements, both trends are not superposed. The 
mixtures between crystals and liquid plot in an area delimited by the fractionation 
curves and the mixing lines, resulting in an irregular array centred on C0. The 
composition of the mixture, CM, is given by the mass balance: 

(1 )M SL LLC f C f C   (11.39) 

Combining this equation with that for the batch crystallization (11.3) gives: 

0 0(1 )D
(1 ) (1 )LM L

C CC f f
D F D D F D

  (11.40) 

that may be reorganized as: 

0
(1 )
(1 )M

LD f DC C
D F D

  (11.41) 

                                                          
3 Note that restite unmixing would be treated in the same way.
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Apart from bulk distribution coefficients, this equation depends on two parameters (fL
and F ). Therefore it generates a butterfly-shaped array of compositions (Fig.11.9). 



Fig. 11.9 Trace-element effects of crystallization with incomplete crystal separation, compared 
with the same figure for major elements (inset, and Fig. 6.6).  and  are trace elements,  and 
majors. During differentiation, the liquid and the cumulate evolve along the thick black curves. 
At any given stage, mixing between the liquid CL and the solid CS defines a dashed straight 
line (passing also through C0). The compositions of the mixtures at different stages therefore
evolve in the coloured domains. This highlights the difference in modelling strategies: major ele-
ments are treated assuming a cumulate with constant composition, whereas for traces, the constant 
parameter is the ratio of concentrations (D).

11.5.2 Fluxed Melting (Binary Mixing + Batch Melting) 

This example illustrates how a rather simple combination of two basic laws is able 
to describe the scenario of fusion induced by an influx of fluid (or melt). One may 
treat this case as a combination of mixing (between the source and the fluid/melt) 
with batch melting (of the metasomatized source).  

Using subscripts a (0  a  1) for the contaminant and 0 for the pristine source, the 
compositions of the metasomatized source (Cms) and melt CL are: 

  
0 1ms aC aC a C   (11.42) 
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Composite Models



  

Fig. 11.10 Fluxed melting applied to the mantle contaminated by a felsitic adakitic melt (Moyen 
2009), in a log(Y) vs. log(Sr) diagram. The mixing between the pristine mantle and the contami-
nant yields the curve between C0 and Ca. Various points along this line (for different values of a)
represent the “source” (metasomatized mantle in this case, Cms), that subsequently undergoes 
batch melting (the sub-vertical curves rising from the mixing line). The resulting compositions 
are plotted for various values of F. As F increases during melting, the melt composition moves 
towards the relevant Cms value. 

In this scenario, F/a represents the melt balance (gain/loss) during the interactions, 
and is a key parameter controlling the final liquid composition (Fig. 11.10). 

Often, combined trace-element models do not have to be developed from 
scratch. There is considerable literature addressing the philosophy and 

mathematics underlying these. Most notably, two monographs deal with trace 
elements in magmas (Shaw 2006) and quantitative igneous geochemistry in gen-
eral (Zou 2007). Moreover, Albarède (1976) and Langmuir (1989) provided fun-
damental works on the effects of imperfect crystal–liquid separation during frac-
tional crystallization (including trapped intercumulus melt). Open-system melting 
processes were reviewed by Shaw (2000). Lastly, there is a series of papers by M. 
J. O’Hara and co-workers dealing, for instance, with problems of crystal–liquid 
separation during fractional crystallization/melting (O’Hara 1993, 1995) or even 
defining complex models including development of periodically replenished, peri-
odically tapped, continuously fractionated magma chambers (O’Hara 1977; 
O’Hara and Matthews 1981).
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Chapter 12  
Reverse (Dilute) Trace-Element Models 

In theory, it is possible to apply reverse modelling to trace elements, using a least-
square technique very similar to that presented for major elements (Chap. 7). Prac-
tically however, this is seldom done, as most geochemists prefer forward models, 
with cumulus mineral proportions constrained by major elements. Still, for the 
sake of completeness, the reverse modelling approach is discussed here. 

12.1 Reverse Fractional Crystallization (Using Rayleigh’s Law) 

When CL and C0 have been identified, and values of partition coefficients esti-
mated, it is possible to determine proportions (mi) of each mineral (i = 1 to n)
 in the cumulate as well as the degree of fractional crystallization (1–F). The key 
is to linearize Rayleigh’s Eq. (11.5) for each of the elements (j = 1 to p) (Albarède 
1995): 

 i/L

10

ln 1 ln 1 ln
D j

n
L

j i
ij

C D F K m F
C

  (12.1) 

Similar to major elements (Sect. 7.2), this equation can be written in a matrix 
form. Defining the unknown as a vector of length n: 

  (12.2) 

the matrix D  of partition coefficients (less one) as: 
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  (12.3) 

(n columns for minerals, p rows for elements) and the composition vector [left 
hand side of the Eq. (12.1)] as: 

(12.4) 

Eq. (12.1) can be recast in matrix form as: 

(12.5) 

The Eq. (12.5) can be solved for  by the least-square method (Appendix C). 

Since 1
n

i
i

m , the sum of all its components is: 

(12.6) 

The fraction of melt remaining, F, can be retrieved from :

  (12.7) 

and the mi values are obtained by [Eq. (12.2)]:

  (12.8) 
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12.2 Reverse Batch Partial Melting 

The approach used above for fractional crystallization is feasible because we 
could establish a linear form of the Rayleigh’s law. This is not possible with the 
batch melting equation. However, reverse modelling of batch melting can be per-
formed when distribution coefficients for some elements can be estimated. For in-
stance, during mantle peridotite melting, several elements are likely to be strongly 
incompatible and thus their D close to zero. If D  0, Eq. (11.11) changes to:

0

1LC
C F

  (12.9) 

As soon as the F value is determined, the batch melting equation [Eq. (11.11)] can 
be modified for each of the p elements: 

  (12.10) 

Since F is now known, the equation can be recast in matrix form. Defining the un-
knowns as a vector of length n (for n minerals):

  (12.11) 

the matrix D  of partition coefficients as: 

(12.12) 

(n columns for minerals, p rows for elements) and the composition vector [left 
hand side of the Eq. (12.10)] of length p: 
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  (12.13) 

The Eq. (12.10) can be recast in matrix form as: 

  (12.14) 

and solved for  by the least-square method.  

The mi values can be retrieved by: 

  (12.15) 

Note that numerical methods can be used to solve any system, even when it 
cannot be linearized. In R these algorithms are implemented by several 
functions, such as optim or fsolve (the latter of package pracma).

12.3 Reverse Mixing 

The reverse modelling of binary mixing, i.e. essentially fitting mixing curves 
(which are commonly hyperbolae, Table 11.1) to real trace-element analyses, is 
best done by the least-square method. However, the approach is essentially the 
same, and arguably much more usable, in interpreting the isotope data. For this 
reason, the theoretical treatment of this problem is left to Part IV.  
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Chapter 13 
Trace Elements as Essential Structural 
Constituents of Accessory Minerals:  
the Solubility Concept 

13.1 Solubility Formulae for Common Accessory Minerals 

13.1.1 Zircon, ZrSiO4 

The zircon solubility in felsic silicate melts has attracted special attention because 
of the importance of this mineral in geochronology: 

(1) Based on experimental calibration, the Zr saturation level has been expressed 
as (Watson and Harrison 1983): 
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Accessory minerals such as zircon, monazite or apatite have annoying proper-

ties in terms of geochemical modelling. Some elements that appear only as traces

in a rock can be stoichiometric components of such minerals. As a consequence,

their activity–composition relationships do not obey Henry’s Law, i.e. KD values

 are not independent of the concentration anymore. Neither can be such cases treated

using a mass-balance approach (applied for ‘proper’ major elements) as the whole-

rock abundance is low and we lack information on exact distribution of the given

essential structural constituents (ESC) among all phases in the system.

The preferred modelling approach is based on the solubility of a relevant

accessory phase into the melt. Let’s take zircon and fractional crystallization as an 

example. This mineral crystallizes when the Zr concentration in the melt exceeds 

a certain threshold, called saturation level, which mainly depends on the melt tem-

perature and composition. When the melt is saturated, any excess Zr is incorporated 

in newly formed zircon crystals. Knowing the zircon stoichiometry, it is possible to 

use the saturation level to constrain the amount of zircon in the cumulate. Thus the 

effect of this accessory mineral on the whole trace-element budget can be modelled. 



12900 3.80 0.85( 1)
Zr
Zrn
Zr
L sat

cln M
TC

  (13.1) 

where T is temperature in K, Zr
zirconc  = 497644 ppm (49.7 wt. %) is the 

stoichiometric amount of Zr in an ideal (substitution-free) zircon, and M is a 
whole-rock chemical parameter based on cation fractions : 1

2Na K CaM
Al Si

  (13.2) 

Equation (13.1) was determined for a normal peraluminous granite having 
M 1.3, and applies in the range 0.9 < M < 1.7 (Fig. 13.1). 

Reversing Eq. (13.1), the zircon saturation temperature can be expressed as: 

12900

497644ln 3.80 0.85 1Zr
L sat

T

M
C

 (13.3) 

(2) A revised formulation based on the linear regression of the same experimental 
data has been proposed by Kelsey et al. (2008): 

11 574 0.679 1.7965
Zr
Zrn
Zr
L sat

c FM
TC

 (13.4) 

Where FM is defined, again using cation fractions, as: 

2( )Na K Ca Fe MgFM
Al Si

(13.5) 

                                                          
1 These are cation fractions, i.e. the sum of all major cations, including those not involved in this 

equation (Fe, Mg…) must equal 1. Consequently, these values differ from e.g. millications 
[Sect. 2.2.2] that are not normalized. Practically, this means that M cannot be calculated with-
out knowing the composition of the magmatic liquid for all major elements. 
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Fig. 13.1 Graphical representation of zircon saturation equation [Eq. (13.1), Watson and Harri-
son (1983)]. The Zr saturation value is plotted as a function of the temperature (in °C) and the 
parameter M. The dark red lines show the saturation levels for M values of a typical andesite (2), 
dacite (1.5) and rhyolite (1.3), or their plutonic equivalents. Saturation levels depend slightly on 
M values, and strongly on T (Exercise 14.5). During crystallization, both parameters decrease, 
resulting in a drastic drop of the Zr saturation level. For high M (> 1.7), the surface has been ex-
trapolated (white region), as it is out of scope of the original calibration.  

13.1.2 Monazite, (LREE)PO4  

Monazite is a more complex mineral, which can incorporate all LREE (La, Ce, Pr, 
Nd, Sm), as well as Gd and possibly Th. Two main approaches have been used, ei-
ther modelling the solubility of this accessory (taken as a whole), or looking at the 
partitioning between melt and monazite for individual LREE (s.l.). 

Monazite saturation 
Several models for monazite saturation have been proposed, considering different 
elements and parameters: 

(1) Montel (1993) established an equation for LREE (including Gd) saturation in 
melts in equilibrium with monazite: 

2
133189.50 2.34 0.3879

 e
MontelD HLREE T

L sa

O

t
A   (13.6) 
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where H2O is expressed in wt. % and T in K. In this equation, LREE
LA is the 

sum of the atomic amounts of LREE from La to Gd (excluding Eu): 

jREEGd
LREE L
L sat

j La j

CA   (13.7) 

with j  being the atomic weight of REE j and jREE
LC  the concentration in ppm. 

DMontel is defined as (in cation fractions): 

( 2 ) 1
( )

Montel Na K Li CaD
Al Al Si

  (13.8) 

The monazite saturation temperature can be derived from Eq. (13.6) as: 

2

13318
9.5 2.34 0.3879 lnMontel LREE

L sat

T
O AD H

 (13.9) 

(2) Monazite is however a solid solution that can include Th and U besides LREE. 
Hence, Eq. (13.6) must be multiplied by

4

Mnz
REEPOX ,  which is the molar proportion 

of the REE-bearing monazite: 

4
 

CorrLREE Mnz LREE
L REEPO Lsat sat

A X A   (13.10)

If unknown, a typical value of 
4

Mnz
REEPOX  is 0.83 (Montel 1993). 

This set of equations must not be used for Ca-rich magmas, where allanite is 
likely to be the main LREE-bearing mineral. In addition, the Fe and Mg contents 
of the magma should be low. For granitic compositions, typical DMontel values 
range from 0.9 to 1.1. 

(3) Kelsey et al. (2008) established a different formula, resembling their Eq. (13.4) 
used for zircon: 

The stoichiometric amount of LREE in monazite, (LREE)PO4,
LREE
Mnzc , is 566,794 

ppm and FM is defined by Eq. (13.5). Unlike in Eq. (13.6), the REE are expressed 
here in ppm (i.e. weight units). 

310 1.324 7.5852
L sat

LREE
Mnz
LREE

c FM
TC

  (13.11)
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 (13.12) 

where only the concentrations (in ppm) of the light REE (La to Sm) 
H2O is in wt. %, T temperature in K and P pressure in kbar. 

Partitioning of various LREE in monazite 
Monazite/melt partitioning of each REE (and Th)  can be, for each element, ex-
pressed as (Montel 1993, 1996): 

2

  
2

4

133189.50 2.34 0.3879
e

j Montel
j

D HREE Mnz RT T
L REEPO

W
O

A X e  (13.13) 

where jREE
LA  represents the atomic amount of element REEj in the melt, i.e.:  

j
j

REE

j
L

REE
LCA (13.14) 

and 
4

Mnz
REEPOX  is the proportion of the REE-bearing end-member in the monazite. 

Wj/R is a constant depending on the element (Wj = molar energy in J.mol–1, R =
8.31 J/mol–1K–1):

Element Th La Ce Pr Nd Sm Gd
Wj/R –520 –260 –116 31 177 460 750

Note that Eq. (13.11) is not equivalent to Eq. (13.6), and both models predict 
(slightly) different total REE in the melt (Fig. 13.2): 

jREELREE
L L

Gd

j a
sat

L
A A   (13.15) 

                                                          
2 Thorium is not a REE, but Montel (1996) proposed to treat it in the same way.
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(4) A new calibration accounts for the effects of pressure (Stepanov et al. 2012):  

42
11494ln( ) 16.16 0.23 19.4 lnLREE

m
M

e
nz
REEPOlt

PC H O
T

X
T Σ

Σ = + − − +  

are considered, 

AW

universal gas constant, 



Fig. 13.2 Comparison of different monazite solubility equations. In order to make comparison 
possible, the “total LREE” of Montel’s Eq. (13.6) has been converted to weight units (ppm), as-
suming that the relative proportions of REE are the same as calculated by Eq. (13.11). Stepanov 
et al.’s Eq. (13.12) (at 5 kbar) is based only on five LREE (La to Sm), but the concentrations of 
Gd are generally sufficiently low to make little difference. The distinct sets of curves correspond 
to an average leucogranite (FM = 1.57, DMontel = 1.01), a S-type biotite granite (FM = 2.23, 
DMontel = 1.09) and a granodiorite (FM = 2.40, DMontel = 1.23, probably out of the application field

 of the models because of its significant Ca contents). As pointed out by Stepanov et al. (2012), Kel-
sey’s equation predicts very high saturation values, which would imply that monazite should be 
nearly always dissolved in melts. However, Kelsey at al.’s formulation has a stronger depend-
ency on the melt composition that offsets this effect to a point. The remaining models give mutu-
ally comparable results, their variation not exceeding 10–20 %. 

13.1.3 Apatite, Ca5(PO4)3(F,Cl,OH) 

Based on experimental work, Harrison and Watson (1984) proposed an equation 
for apatite solubility in metaluminous melts (A/CNK < 1): 

 (13.16) 

where 2SiO
LC and 2 5P O

LC  are wt. % in the melt, T is temperature in K and 2 5P O
Apc  is 
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the stoichiometric P2O5 content in pure apatite (42 wt. %). This equation applies to 
melts with 45–75 wt. % SiO2, 0–10 wt. % H2O at a range of crustal pressures. 
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However, peraluminous melts (A/CNK > 1) are able to dissolve much more apa-
tite than predicted by Harrison and Watson’s (1984) equation. This is due to the 
formation of aluminium–phosphate complexes in peraluminous aluminosilicate 
melts, in which P5+ is bonded with Al3+ to form AlPO4 species (Mysen et al. 1999 
and references therein). Three strategies were proposed to tackle the effect of en-
hanced solubility in peraluminous melts (Fig. 13.3): 

(1) Bea et al. (1992)—based on experiments of Holtz and Johannes (1991), they 

proposed correcting the saturation values 2 5

.L s

O

at W

P

H
C of Harrison and Watson 

(1984) as follows: 
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(2) Pichavant et al. (1992) —experimental correction, at 750–1000 °C, 2–5 kbar: 
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(3) Wolf and London (1994) —experimental, at 750 °C and 200 MPa only:  

2 5 3.4 /3.1L sat

P OC A CNK   (13.20) 

Saturnin and solubility models in GCDkit
GCDkit comes with a plugin Saturation.r containing a set of functions to 
calculate the zircon, monazite, and apatite saturation levels/temperatures. 

This plugin is based on a previous standalone R script Saturnin, documented in 
Janoušek (2006).
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The apatite saturation temperature can be expressed from Eq. (13.16) as: 

The GCDkit functions performing the saturation calculations are named 

zrSaturation, mzSaturation apSaturation. See the respective help

pages for references and further details.

and



Fig. 13.3 Comparison of different apatite solubility equations in peraluminous melts (A/CNK > 
1) as a function of temperature and A/CNK. Grey, after Bea et al. (1992); blue, Pichavant et al. 
(1992). Dark brown (H&W): original (very low) solubility after Harrison and Watson (1984). 

(LREE,Ca,Y)2(Al,Fe+3)3(SiO4)3(OH) (Klimm et al. 2008) or, in peralu-
minous melts, xenotime (Y,HREE)PO4 (Tropper et al. 2013) have a sig-

nificant effect on REE behaviour.

on solubility of rutile (TiO2) (Ryerson and Watson 1987; Hayden and Watson 
2007; Kularatne and Audétat 2014), and even rarer phases, such as columbite 
(Fe2+Nb2O6) (Fiege et al. 2011).

13.2 Evolution Through Saturation 

The saturation value of the given ESC controlled by accessory minerals is strongly 
dependent on composition and temperature. For instance, mafic/hot magmas can 
dissolve large amounts of Zr, much more than any of them typically contains. 
Magmas at such conditions are undersaturated (with respect to zircon) and Zr will 
behave as a typical incompatible element, following common fractionation (or 
melting) paths. In contrast, felsic, cooler magmas can dissolve less Zr: their Zr 
contents are typically buffered by solubility. 
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The solubility equations for other accessory minerals are not so well

established. This is unfortunate as, in calc-alkaline magmas, allanite

Titanite (CaTiSiO5) stability may also be approached in terms of solubility (al-

though recent progress in activity–composition laws rather allows to treat it in terms 

of thermodynamic equilibria: White et al. 2000). Moreover, there are also some data

http://book.gcdkit.org/Part_3/Figs/fig_13.3_Ap_saturation_surface_3D_(RGL).r


The resulting evolution is thus complex. Considering a fairly basic magma se-
ries that evolves by fractional crystallization, the concentration of the given ESC 
in the magma would initially increase, until it reaches the saturation level. From 
this saturation point, the ESC concentration would drop, following the saturation 
curve. The resulting inflexed pattern resembles the broken-line evolution de-
scribed for major elements (in Sect. 6.1.4). Indeed, it also corresponds to a change 
in cumulate modal composition—onset of the relevant accessory phase crystalliza-
tion. In Fig. 13.4, the saturation is reached at ca. 900 °C, for M  1.7. From this 
point on, zircon crystallizes and Zr concentration decreases. For a saturated rock

 series, it is possible to read a value of T for each sample: here T evolves from
 900 °C at M = 1.7 to about 700 °C at M = 1.2. 

The position of the saturation point depends on several parameters. During 
crystallization, these are C0, D (at the undersaturated stage) and the shape of the 
saturation curve (a function of T and the magma composition). At higher C0 and/or 
lower D, saturation is reached sooner (Fig. 13.5). It is worth noting that many acid 
igneous suites are saturated throughout their whole history, thus lacking the undersatu-
rated segment completely. Thus the evolutionary path during fractionation is

 predetermined by the nature of the source and conditions of partial melting. 

Fig. 13.4 Comparing Zr saturation levels with Zr contents in a hypothetical magmatic series (as-
terisks). The coloured isotherms are a graphical representation of Watson and Harrison’s (1983) 
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zircon solubility equation [Eq. (13.1)]. This corresponds to a projection of Fig. 13.1 on the M–
plane, with the horizontal scale reversed, so that differentiation proceeds to the right.

Zr

http://book.gcdkit.org/Part_3/Figs/fig_13.4_Zr_saturation_iso-temp.r


Watson and Harrison (1984) presented two partial melting scenarios related to 
the concentration of the ESC in the source (C0) compared to the saturation level 
(Csat) (e.g., Fig. 13.6 for Zr). If C0 > Csat, the melt is saturated throughout the melt-
ing event and its ESC content buffered at a constant level, independent of the de-
gree of melting. In such a scenario, typical of low-T crustal anatexis, undissolved 
zircon cores (inheritance) are likely to be preserved (Miller et al. 2003). The ESC 
content of the residue rises in course of progressive melting. On the other hand, 
when C0 < Csat, the melt remains saturated in ESC only until the source is ex-
hausted. From this point on, melt batches would be progressively depleted in the 
ESC. Zircon is not stable in such an undersaturated melt and any grain that comes
in contact with it would eventually dissolve. 

Fig. 13.5 a Behaviour of an ESC-type trace element in a magma evolving by fractional crystalli-
zation (Montel 1996). Below are shown panels demonstrating effects of C0  (b), D (c) and the 
cooling path (T) of the magma (d) on the position of the saturation point.
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Fig. 13.6 Binary plot of F vs. Zr (ppm), showing the compositional evolution of the melt (red ar-
row) as well as of the corresponding residue (grey arrow), during partial melting. In the first case 
(a) the concentration of the ESC in the source is higher and in the second (b) lower than the satu-
ration threshold (= concentration in the melt). After Watson and Harrison (1984).
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Chapter 14 

Forward Modelling in R 

Exercise 14.1: Equilibrium/fractional crystallization 

 Plot a graph illustrating the evolution of normalized trace-element concentra-
tions log(CL/C0) as a function of the melt fraction F, for both batch [Eq. (11.3)] 
and fractional [Eq. (11.5)] crystallization processes. Computation should be 
done for different values of the bulk distribution coefficient (D = 0.01, 0.1, 0.5, 
2, 5). 

> # Create an empty plot (type="n"),with the correct range 

> plot(1,type="n",xlim=c(0,1),ylim=c(0.001,100),log="y", 

+ xlab="F",ylab=expression(C[L]/C[0])) 

> dd <- c(0.01,0.1,0.5,2,5) # Bulk distribution coefficients 

> for (i in 1:length(dd)){ 

> # Calculate and plot the fractional crystallization model 

>  curve(x^(dd[i]-1),from=0,to=1,lty="solid",lwd=2,col=i, 

+   add=TRUE) 

> # Calculate and plot the batch crystallization model 

>  curve(1/(x+dd[i]*(1-x)),from=0,to=1,lty="dashed",col=i, 

+   add=TRUE) 

> } 

> # Add a horizontal grid and legend 

> abline(h=10^(-3:2),col="gray") 

> legend("topright",pch=16,col=1:length(dd),legend=dd,title="D", 

+ bg="white") 
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Fig. 14.1 Curves showing the evolution of the residual liquid composition during fractional 
(solid) and batch (dashed) crystallization for various values of bulk distribution coefficient D
(Exercise 14.1). Compare with Fig. 11.3. 

Exercise 14.2: Fractional crystallization

Table 14.1 shows the REE concentrations in a tonalitic magma (ppm), as well 
as the partition coefficients for crystallizing mineral phases. 

Table 14.1  

Concentration Partition coefficients
Source H34 Pl Amp Ilm All

La 32.04 0.4 0.74 0.005 960
Ce 61.9 0.27 1.52 0.006 940
Nd 25.75 0.21 4.26 0.0075 750
Sm 3.97 0.13 7.77 0.01 620
Eu 0.966 2.15 5.14 0.007 56
Gd 2.3 0.097 10 0.017 440
Dy 1.16 0.064 13 0.028 200
Er 0.46 0.055 12 0.035 100
Yb 0.37 0.049 8.4 0.075 54
Lu 0.057 0.046 6 0.1 41
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> x <- read.table("ttg.data",sep="\t") 

> x <- as.matrix(x) # transform dataframe to matrix 

> c0 <- x[,1] # parental magma composition 

> kd <- x[,-1] # table of partition coefficients 

> fc <- 0.3 # degree of fractionation 

> ff <- 1-fc # fraction of the melt left  

> m1 <- c(0.49,0.49,0.02,0) # mineral props in cumulate (1) 

> dd1 <- kd%*%m1 # bulk distrib. coeff. [Eq.(10.4)] 

> names(m1) <- colnames(dd1) 

> cl1 <- c0*ff^(dd1-1) # melt composition 

> cs1 <- dd1*cl1 # instantaneous solid 

> csavg1 <- c0*(1-ff^dd1)/(1-ff) # average solid 

> m2 <- c(0.485,0.485,0.02,0.01) # mineral props in cumulate (2) 

> dd2 <- kd%*%m2 # bulk distrib. coeff. [Eq. (10.4)] 

> names(m2) <- colnames(dd2) 

> cl2 <- c0*ff^(dd2-1) # melt composition 

> cs2 <- dd2*cl2 # instantaneous solid 

> csavg2 <- c0*(1-ff^dd2)/(1-ff) # average solid 

> result <- cbind(c0,dd1,dd2,cs1,csavg1,cl1,cs2,csavg2,cl2) 

> colnames(result) <- c("C0","D1","D2","CS1","CSavg1","CL1","CS2", 

+ "CSavg2","CL2") 

> print(round(result,2)) 

      C0   D1    D2   CS1 CSavg1   CL1   CS2 cSavg2  CL2 
La 32.04 0.56 10.15 20.95  19.30 37.50 12.43 103.94 1.22 
Ce 61.90 0.88 10.27 56.73  55.43 64.67 23.31 201.04 2.27 
Nd 25.75 2.19  9.67 36.89  46.54 16.84 11.31  83.10 1.17 
Sm  3.97 3.87 10.03  5.52   9.91  1.43  1.59  12.86 0.16 
Eu  0.97 3.57  4.10  1.38   2.32  0.39  1.31   2.47 0.32 
Gd  2.30 4.95  9.30  2.78   6.35  0.56  1.11   7.39 0.12 
Dy  1.16 6.40  8.34  1.08   3.47  0.17  0.71   3.67 0.08

                                                          
1 For a pure R method to plot spider diagrams, see Exercise 3.4

14314 Trace Elements 

A differentiated magma is generated by 30 % fractional crystallization of a paren-
tal magma (H34); the cumulate consists of plagioclase, hornblende and ilmenite. 

Calculate the differentiated magma composition for a cumulate made up of 
49 % plagioclase, 49 % hornblende, and 2 % ilmenite. 
Same question if the cumulate is 48.5 % plagioclase, 48.5 % hornblende, 2 % 
ilmenite and 1 % allanite. 
By means of the GCDkit function spider, plot chondrite-normalized REE pat-
terns  (using normalization values after Boynton 1984). 1

...

http://book.gcdkit.org/Part_3/Exercises/exe_14.2_ttg_fc_trc.r


GCDkit-> data <- t(result[,c("C0","CL1","CL2")]) 

GCDkit-> spider(data,"Boynton",0.1,1000,pch=c(15,1,16),col=c("black", 

+ "red","blue")) 

In the example we have just set up the minimum and maximum of the y 
axis, and assigned plotting symbols with colours. For explanation of fur-

ther options, see ?spider.

Fig. 14.2 Chondrite-normalized REE patterns, illustrating the differentiation of a parental to-
nalitic magma (black squares) in case of allanite-free (red circles) and allanite-bearing (blue cir-
cles) cumulates (Exercise 14.2). 

Exercise 14.3: Partial melting

Two types of mantle, primitive (PRIMA) and depleted (DM), undergo partial melt-
ing at two different pressures: 5 and 15 kbar, i.e. in the spinel and garnet stability 
fields. The Table 14.2 contains the average compositions of the two mantle 
sources, as well as KD values for their main mineral constituents. The following 
table (Table 14.3) shows the modal compositions of the two peridotite types after 
melt extraction.  
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Table 14.2  

La Ce Nd Sm Eu Gd Er Yb Lu 

DM 0.08 0.54 0.74 0.3 0.12 0.43 0.38 0.39 0.06 

PRIMA 0.62 1.64 1.23 0.38 0.15 0.53 0.43 0.44 0.07 

Ol 0.007 0.006 0.006 0.007 0.007 0.013 0.026 0.049 0.045 

Opx 0.03 0.02 0.03 0.05 0.05 0.15 0.23 0.34 0.42 

Cpx 0.056 0.092 0.23 0.445 0.474 0.582 0.583 0.542 0.506 

Spl 2 1.9 1.8 1.6 1.7 1.55 1.5 1.4 1.3 

Grt 0.001 0.007 0.026 0.102 0.7 1.94 4.4 6.167 6.95 

 

mantle_melting.data 

Table 14.3  

kbar Ol Opx Cpx Spl Grt 

5 0.6716 0.1640 0.0853 0.0791 0.0000 
15 0.6079 0.2388 0.1037 0.0000 0.0496 

mantle_melting_modal.data 
 
 Given the mineral proportions in spinel and garnet lherzolite residues, calculate 

the D values at both pressures. 
 For each of the selected F values (0.01, 0.02, 0.05, 0.1 and 0.2), calculate the 

REE compositions of the melt in the four cases (two peridotite types, PRIMA 
and DM, at two pressures). 

 Plot the corresponding REE patterns. 

> x <- read.table("mantle_melting.data",sep="\t") 

> x <- as.matrix(x);REE<-colnames(x) 

> prima <- x["PRIMA",] # PRIMA composition 

> dm <- x["DM",] # DM composition 

> kd <- x[c(-1,-2),] # table of partition coefficients 

> m <- read.table("mantle_melting_modal.data",sep="\t") 

> m <- as.matrix(m) # table of mineral props after melting 

> dd <- m%*%kd # bulk distrib. coeff. [Eq.(10.4)] 

> print(round(dd,3)) 

      La    Ce    Nd    Sm    Eu    Gd    Er    Yb    Lu 
5  0.173 0.165 0.171 0.177 0.188 0.206 0.224 0.246 0.245 
15 0.017 0.018 0.036 0.067 0.100 0.200 0.349 0.473 0.525 
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> ff <- c(0.01,0.02,0.05,0.1,0.2) # degrees of melting 

> # function calculating batch melt composition [Eq. (11.11)] 

> batch <- function(c0,ff,dd){ 

>      out <- sapply(ff,function(i){ 

>        z <- c0/(dd+i*(1-dd)) 

>        return(z) 

>      }) 

>      out <- t(out) 

>      rownames(out) <- ff 

>      return(out) 

> # Shallow melting, calculation  

> shallow1 <- batch(prima,ff,dd["5",]) # PRIMA 

> print(shallow1,3) 

       La   Ce   Nd   Sm    Eu   Gd   Er   Yb    Lu 
0.01 3.43 9.44 6.86 2.05 0.766 2.48 1.86 1.74 0.277 … 
 
> shallow2 <- batch(dm,ff,dd["5",]) # DM 

> print(shallow2,3) 

        La   Ce   Nd    Sm    Eu   Gd   Er    Yb    Lu 
0.01 0.442 3.11 4.13 1.616 0.612 2.01 1.64 1.540 0.237 … 
 
> # Shallow melting, plotting - PRIMA is blue, DM green  

GCDkit-> mantle1 <- rbind(prima,dm) # Two mantle sources 

GCDkit-> col0 <- c("darkblue","darkgreen") 

GCDkit-> spider(mantle1,"Boynton",0.1,100,pch=16,cex=1.5,lwd=1.5, 

+  col=col0,main="Shallow melting (5 kbar)") 

GCDkit contains a useful auxiliary function selectPalette. It takes 
two parameters, one being the number of the colours to be extracted, the 

second a palette name. Legal names of palettes are: "grays", "reds", "blues",
"greens", "cyans", "violets", "yellows", "rainbow", "topo.colors",
"heat.colors", "terrain.colors", "cm.colors" and "jet.colors".  

GCDkit-> col1 <- selectPalette(nrow(shallow1),"blues") 

GCDkit-> col2 <- selectPalette(nrow(shallow2),"greens") 

GCDkit-> shallow <- rbind(shallow1,shallow2) 

GCDkit-> col <- c(col1,col2) 

GCDkit-> spider(shallow,"Boynton",pch="",col=col,add=TRUE) 

GCDkit-> legend("bottomright",legend=rep(ff,2),pch=15,col=col, 

+  bg="white",ncol=2,title="PRIMA/DM") 
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> } 



Fig. 14.3 Chondrite-normalized REE patterns for various degrees of a shallow (spinel stability 
field) batch melting of Primitive Mantle (PRIMA, blue circles) and Depleted Mantle (DM, green 
circles) (Exercise 14.3). Note how these patterns resemble E-MORB and N-MORB, respectively. 

> # Deep melting, calculation 

> deep1<-batch(prima,ff,dd["15",]) # PRIMA 

> print(deep1,3) 

        La    Ce    Nd   Sm    Eu   Gd    Er    Yb    Lu 
0.01 22.88 58.32 26.99 4.96 1.376 2.55 1.208 0.920 0.132 … 

> deep2<-batch(dm,ff,dd["15",]) # DM 

> print(deep2,3) 

        La    Ce    Nd   Sm    Eu   Gd    Er    Yb     Lu 
0.01 2.952 19.20 16.24 3.91 1.101 2.06 1.068 0.815 0.1133 … 
 
> # Deep melting, plotting - PRIMA is blue, DM green 

GCDkit->  mantle2 <- rbind(prima,dm)  # Two mantle sources 

GCDkit->  col <- c("darkblue","darkgreen") 

GCDkit->  spider(mantle2,"Boynton",0.1,100,pch=16,cex=1.5,lwd=1.5, 

+  col=col,main="Deep melting (15 kbar)") 

GCDkit->  col1 <- selectPalette(nrow(deep1),"blues") 

GCDkit->  col2 <- selectPalette(nrow(deep2),"greens") 

GCDkit->  deep <- rbind(deep1,deep2) 

GCDkit->  col <- c(col1,col2) 

GCDkit->  spider(deep,"Boynton",pch="",col=col,add=TRUE) 
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GCDkit->  legend("bottomright",legend=rep(ff,2),pch=15,col=col, 

+ bg="white",ncol=2,title="PRIMA/DM") 

Fig. 14.4 Chondrite-normalized REE patterns for various degrees of a deep (garnet stability 
field) batch melting of Primitive Mantle (PRIMA, blue circles) and Depleted Mantle (DM, green 
circles). Magmas resembling OIB are generated from the PRIMA source, but the DM/deep melts 
resemble no common type of basalts (Exercise 14.3). 

Exercise 14.4: Binary mixing

Table 14.4 contains selected trace-element contents in an average Mid-Ocean 
Ridge Basalt (NMORB, Sun and McDonough 1989) and an Upper Continental 
Crust (UCC, Taylor and McLennan 1995).  

Table 14.4  

Rb Zr Nb
NMORB 0.56 74 2.33
UCC 112 190 25

Draw a mixing hyperbola between the two end members in a Rb vs. Zr/Nb plot. 
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> elems <- c("Rb","Zr","Nb") 

> ucc <- c(112,190,25); names(ucc) <- elems 

> morb <- c(0.56,74,2.33); names(morb) <- elems 

> plot(1,1,xlim=c(0,120),ylim=c(0,35),xlab="Rb (ppm)",ylab="Zr/Nb", 

+   type="n") # Only axes are set up 

> # Parameters of the mixing hyperbola (Table 11.1) 

> AA <- ucc["Zr"]-morb["Zr"] 

> BB <- morb["Nb"]-ucc["Nb"] 

> CC <- ucc["Nb"]*morb["Rb"]-morb["Nb"]*ucc["Rb"] 

> DD <- ucc["Rb"]*morb["Zr"]-morb["Rb"]*ucc["Zr"] 

> curve((-AA*x-DD)/(BB*x+CC),from=morb["Rb"],to=ucc["Rb"],add=TRUE, 

+ col="darkred") # Eq. (11.29) 

> points(morb["Rb"],morb["Zr"]/morb["Nb"],pch=19) 

> text(morb["Rb"],morb["Zr"]/morb["Nb"],pos=3,"MORB") 

> points(ucc["Rb"],ucc["Zr"]/ucc["Nb"],pch=19) 

> text(ucc["Rb"],ucc["Zr"]/ucc["Nb"],pos=3,"UCC") 

> x <- seq(morb["Rb"],ucc["Rb"],length=11) 

> y <- (-AA*x-DD)/(BB*x+CC)  # Eq. (11.30) 

> points(x,y,pch=1) 

Fig. 14.5 Binary plot Rb vs. Zr/Nb showing effects of a basalt contamination by an average up-
per continental crust (Exercise 14.4). Note that this is largely a mathematical exercise, as high 
degrees of crustal contamination are precluded by thermal constraints (endothermic process trig-
gering crystallization—see AFC, Sect. 11.4, 24.1.1).  
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Exercise 14.5: Saturation models for accessory minerals

The file contains major-element and Zr contents in Boggy Plain Suite of the Lach-
lan Fold Belt (New South Wales, Australia) from Ph.D. thesis of D. Wyborn 
(1983) imported from the OzChem compilation by Geoscience Australia, 
http://www.ga.gov.au (Budd et al. 2000).  

boggy_plain.data 

Based on the Watson and Harrison’s (1983) zircon saturation model, in GCDkit: 

Plot a binary graph of temperature (ºC) vs. Zr saturation levels (ppm) contoured 
for variable values of the M parameter [Eq. (13.1)].
Plot a binary graph of M vs. Zr (ppm) for the Boggy Plain Suite with superim-
posed isotherms of zircon saturation temperatures in ºC [Eq. (13.3)].
Examine how zircon saturation temperatures depend on the whole-rock SiO2.

In order to be able to use the Saturation plugin (see GCDkit Box in Sect. 13.2), we 
have to load data into GCDkit, either from the menu, or using the function
loadData. Note that it closes all graphical windows already open. 
GCDkit-> loadData("boggy_plain.data") 

GCDkit-> windows(width=10,height=6) # Open an empty window 

GCDkit-> par(mfrow=c(1,2))  # Split it into two 

 

GCDkit-> # Plot 1 

GCDkit-> # Create an empty plot (type="n") with an appropriate range 

GCDkit-> plot(1,1,xlim=c(650,950),ylim=c(0,650),xlab= 

+ expression(T*degree*C),ylab="Zr (ppm)",type="n") 

GCDkit-> M <- seq(0.9,2.0,by=0.1) # Setup the M values 

GCDkit-> col <- selectPalette(length(M),"blues") # The colours 

GCDkit-> for (i in 1:length(M)){ 

GCDkit-> curve(497644/exp(-3.8-0.85*(M[i]-1)+12900/(x+273.15)), 

+    lty="solid",lwd=2,col=col[i],add=TRUE) 

GCDkit-> } 

GCDkit-> # Legend colour-coded for individual M values 

GCDkit-> legend("bottomright",text.col=col,legend=M,title="M", 

+ bg="white",ncol=2) 

 

GCDkit-> # Plot 2 

GCDkit-> # Call plugin with arbitrary T, we do not use Zr sat values 

GCDkit-> sat.data <- zrSaturation(T=800)  

GCDkit-> # Create a plot with Boggy Plain data of appropriate range 
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+     ylim=c(0,250),xlab="M",ylab="Zr (ppm)",pch=19) 

GCDkit-> tt <- seq(650,950,by=50) # Setup the temperatures 

GCDkit-> col <- selectPalette(length(tt),"reds") # The colours 

GCDkit-> for (i in 1:length(tt)){ 

GCDkit->  curve(497644/exp(-3.8-0.85*(x-1)+12900/(tt[i]+273.15)), 

+ lty="solid",lwd=2,col=col[i],add=TRUE) 

GCDkit-> # Prepare textual labels 

GCDkit-> lab <- eval(substitute(expression(x*degree*C), 

+ list(x=tt[i]))) 

GCDkit-> M <- 0.9 

GCDkit-> text(M,497644/exp(-3.8-0.85*(M-1)+12900/ 

+ (tt[i]+273.15))-5,lab,adj=0,col=col[i]) 

GCDkit-> } 

Fig. 14.6 Zircon saturation calculations (Watson and Harrison 1983) for Boggy Plain Suite, Aus-
tralia (Wyborn 1983). a Binary plot of  temperature (ºC) vs. the Zr saturation level.  b Binary 
plot of M parameter vs. Zr (ppm) with superimposed isotherms based on zircon saturation model
(Exercise 14.5). 

GCDkit-> # Before plotting, we need to append results to data (WR) 

GCDkit-> addResults("sat.data") 

GCDkit-> binary("SiO2","TZr.sat.C",pch=15) 
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GCDkit-> plot(sat.data[,"M"],WR[,"Zr"],xlim=c(0.9,2.5), 

650 700 750 800 850 900 950

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

T�C

Z
r 

(p
p

m
)

M

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

1.0 1.5 2.0 2.5

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

M

Z
r 

(p
p

m
)

650�C

700�C

750�C

800�C

850�C

ba

Trace Elements



Fig. 14.7 Binary plot of whole-rock silica contents (wt. %) vs. zircon saturation temperatures 
(Watson and Harrison 1983) for Boggy Plain Suite, Australia (Wyborn 1983) (Exercise 14.5). 
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Chapter 15 
Reverse Modelling in R 

Exercise 15.1: Fractional crystallization (reversed Ex. 14.2) 

 
Table 15.1 contains trace-element compositions of two tonalites, a primitive WR1 
and a differentiated WR2, together with corresponding partition coefficients for 
the relevant rock-forming minerals. 

Table 15.1  

WR1 WR2 Pl Amp Ilm All 

La                 32.04 1.224 0.4 0.74 0.005 960 

Ce                 61.9 2.270 0.27 1.52 0.006 940 

Nd                 25.75 1.170 0.21 4.26 0.0075 750 

Sm                 3.97 0.158 0.13 7.77 0.01 620 

Eu                 0.966 0.320 2.15 5.14 0.007 56 

Gd                 2.3 0.119 0.097 10 0.017 440 

Dy                 1.16 0.085 0.064 13 0.028 200 

Er                 0.46 0.057 0.055 12 0.035 100 

Yb                 0.37 0.101 0.049 8.4 0.075 54 

Lu                 0.057 0.025 0.046 6 0.1 41 
 

ttg2.data 
 
Let’s assume that WR1 and WR2 represent pure compositions of a tonalitic melt dif-
ferentiating by Rayleigh-type fractional crystallization.  

 Using the least-square method, estimate the modal composition of the cumulate 
and the degree of fractional crystallization. 
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> x <- read.table("ttg2.data",sep="\t") 
> x <- data.matrix(x) 
> dmat <- x[,-(1:2)]-1    # partition coeffs - 1 [Eq. (12.3)] 
> # Log ratios of differentiated/primitive magma comp. [Eq. (12.4)] 
> cv <- log(x[,2]/x[,1]) 
> ee <- lsfit(dmat,cv,intercept=FALSE) 
> mm <- ee$coeff 
> ff <- exp(sum(mm))  # fraction of melt remaining [Eq.(12.7)] 
> cat(round((1-ff)*100,1),"% fractional crystallization ","\n") 
30 % fractional crystallization 
 
> m <- mm/log(ff)*100    # mineral proportions [Eq. (12.8)] 
> print(round(m,1)) 
  Pl  Amp  Ilm  All  
48.5 48.5  2.0  1.0 

Exercise 15.2: Partial melting

Tables below give selected trace-element contents in a garnet lherzolite and a
partition coefficients for residual mantle 

minerals (Table 15.3). 
Table 15.2

Grt_Lherzolite Magma_A

Rb 4.12
Sr 18.00 93.67
Ni 2000.00 148.68
Nb 0.40 1.62
La 0.25 2.05
Yb 0.40 0.84

mantle_conc.data 

Table 15.3

Ol Opx Cpx Grt

Rb 0.0001 0.0002 0.0003 0.009
Sr 0.002 0.003 0.7 0.2
Ni 24 5.2 3.4 1
Nb 0.0001 0.34 0.3 0.2
La 0.0004 0.002 0.008 0.008
Yb 0.0015 0.002 0.02 8

mantle_kd.data
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basaltic magma (Table 15.2) as well as 
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Magma A is formed by batch melting of a garnet lherzolite. Calculate: 

 The degree of melting required to form the basaltic magma A. 
 The Rb content in the lherzolite prior to melting. 
 The mode of the residue after melting. 

> x <- read.table("mantle_conc.data",sep="\t") # Read rock comp. 

> kd <- read.table("mantle_kd.data",sep="\t") # Partition coeffs 

> c0 <- x[,1] # Lherzolite 

> names(c0) <- rownames(x) 

> cl <- x[,2] # Basalt 

> names(cl) <- rownames(x) 

We should look now for a strongly incompatible element. If successful, the high-
est CL/C0 value would constrain the degree of partial melting through Eq. (12.9). 
> ratio <- cl/c0 

> print(sort(ratio),3) 

    Ni     Yb     Nb     Sr      La  
0.0743 2.1000 4.0500 5.2039 8.2000 
 
> ff <- 1/ratio["La"] 

> cat("The degree of melting is", round(ff*100,1),"%.","\n") 

The degree of melting is 12.2 %. 

Also Rb is also strongly incompatible; from Eq. (11.11) follows that if D ~ 0,  
C0 = CLF: 

> Rb<-cl["Rb"]*ff 

> c0["Rb"]<-Rb 

> cat("Rb in the lherzolite is", round(Rb,2),"ppm","\n") 

Rb in the lherzolite is 0.5 ppm. 

Least-square solution yields mineral proportions in the residue: 

> cv <- c0/cl-ff 

> m <- lsfit(kd,cv,intercept=0)$coeff 

> m <- m/(1-ff)  # Eq. (12.15) 

> print(m,2) 

   Ol   Opx   Cpx   Grt  
0.551 0.303 0.097 0.050 
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Part IV Radiogenic Isotopes 

As shown in the preceding text, a suite of magmas affected by an open-system 
process, i.e. interaction with a compositionally dissimilar external component 
(magma mixing, AFC, hydrothermal alteration, metasomatism…), will generally 
display regular geochemical patterns. However, such trace-element evidence is of-
ten, and major-element variation always, equivocal. The best proofs for operation 
of open-system processes remain radiogenic isotope ratios which are generally not 
fractionated during closed-system processes such as melting or crystallization. The 
magmas formed should preserve the isotopic characteristics of their source. In 
other words, the radiogenic isotope data are totally transparent to mechanisms of 

 
  

closed-system magmatic differentiation but are very sensitive to mixing 
tamination.

or con-



 

Chapter 16  
Direct Models 

16.1 Binary Mixing 

16.1.1 Single Isotopic Ratio 

The mixing equation for two end-members, 1 and 2, can be seen as a mean of iso-
topic ratios (I1 and I2), weighted by their respective mass-fraction in the mixture. 
Marking the mass fraction of the end-member 1 as  f1, (with f1 + f2 = 1) and re-
spective concentrations C1, C2 and  CM  (Faure 1986): 

1 2
1 1 2 1(1 )M

M M

C CI I f I f
C C

 (16.1) 

Given (Sect. 6.4): 1 1 1 2(1 )MC f C f C  (16.2) 

1 1 1 2 2 1

1 1 2 1

(1 )
(1 )M

I C f I C fI
C f C f

 (16.3) 

1 2 2 1 1 1 2 2

1 2 1 2
M

M

C C I I C I C II
C C C C C

 (16.4) 
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which is an equation of a rectangular hyperbola in CM vs. IM (e.g. Sr vs. 87Sr/86Sr)
diagram (Fig. 16.1a).

Eq. (16.3) describes the isotopic ratio as a function of mixing proportion  f1.
However ever, it appears useful to visualize the relationship between elemental
concentration (CM) and isotope ratio (IM) during mixing, which can be achieved by
eliminating f1. Equations (16.1) and (16.2) yield: 



Fig. 16.1 Conversion of a rectangular hyperbola (a) to a straight line (b) by plotting of reciprocal 
values on the x axis.  

In isotope-based modelling of binary mixing, plots such as 1/Sr vs. 87Sr/86Sr are 
frequently used, where the mixing hyperbolae change into straight lines  
(Fig. 16.1b). For a suite of cogenetic igneous rocks, when the slope of this line dif-
fers from zero, it indicates the involvement of an open-system process, such as 
magma mixing or wall-rock assimilation (Briqueu and Lancelot 1979) (Fig. 16.2). 
On the other hand, samples that originated from the same source by various de-
grees of closed-system fractionation preserve identical initial isotopic ratios, 
which in the 1/Sr vs. 87Sr/86Sr diagram results in a horizontal trend.

The parameter f1 from Eq. (16.3) can be calculated if the isotopic compositions 
and elemental concentrations for both end-members as well as the isotopic com-
position of the presumed hybrid are known: 
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If desired, error propagation in mixing problems can be done using the 
formulae proposed by Verma (2000).

http://book.gcdkit.org/Part_4/Figs/Fig_16.1_Mixing_hyperbola.r


Fig. 16.2 Development of 87Sr/86Sr composition in a fractionating mantle-derived igneous suite. 
a Closed-system fractional crystallization of a parental magma, b Contamination of the pristine 
melt, followed by closed-system fractionation (after Briqueu and Lancelot 1979).

16.1.2 Pair of Isotopic Ratios 

The combination of two isotopic ratios (these may, besides radiogenic, include 
also stable isotope data, such as 18O values) into a single binary plot is robust in 
respect to the possible later modification by fractional crystallization or crystal ac-
cumulation. It thus provides an insight into the original, open-system generated 
variation.

In order to perform modelling, one can consider two elements X and Y as well 
as their isotopic ratios IX and IY that can be obtained from Eq. (16.3). In case of 
mixing of two end-members, 1 and 2, the exact analytical solution is obtained 
combining two Eq. (16.5), eliminating f1 (Vollmer 1976; Langmuir et al. 1978).

0X X Y Y
M M M MAI BI I CI D (16.6) 

When X = Sr and Y = Nd, IX = 87Sr/86Sr and IY = 143Nd/144Nd, we arrive at:
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2 1 1 286 86
1 2

Sr SrC Nd Sr Nd Sr
Sr Sr

, 

143 87 143 87

1 2 2 1144 86 144 86
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Nd Sr Nd SrD Nd Sr Nd Sr
Nd Sr Nd Sr

. 

This equation is that of a hyperbola, unless B is zero, in which case a straight line 
is obtained. The coefficient B can be further rearranged, defining: 

2

1

( / )
( / )
Sr Nd
Sr Nd

(16.8) 

the special case of a straight line corresponds to  =  1 (DePaolo and Wasserburg 
1979) (Fig. 16.3), i.e. when the Sr/Nd proportions are equal in both end-members

plot of isotopic pairs of the same element, such as 206Pb/204Pb vs. 207Pb/204Pb, will 
produce a linear correlation as  = 1.

Fig. 16.3  Diagram 87Sr/86Sr  vs. 143Nd/144Nd showing that binary mixing hyperbolae depend on 
the parameter [Eq. (16.8)]. Dots show 10 % increments of the end-members, 1 and 2, in the 
mixture (after DePaolo and Wasserburg 1979).

The general equation of a rectangular hyperbola in [x, y] space with asymptotes x0,
y0 and curvature q is: 

0 0( )( )x x y y q (16.9) 
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and the mix is not enriched preferentially with one element. Note that also a binary 

http://book.gcdkit.org/Part_4/Figs/Fig_16.3_Mixing_hyperbola_alpha.r


or 0
0( )

qy y
x x

(16.10) 

After rearranging Eq. (16.10), the meaning of the coefficients A, B, C, D in Eq. 
(16.6) becomes apparent: 

0 0 0 0 0y x xy x y q x y (16.11) 

0
Cx
B

, 0
Ay
B

(16.12) 

0 0
Dq x y
B

(16.13) 

Back to the example of a 87Sr/86Sr–143Nd/144Nd plot [Eq. (16.7)], the asymptotes 
and curvature of the mixing hyperbola are defined as (Albar de 1995) (  1): 

87 87

86 86
1 2

0 1

Sr Sr
Sr Sr

x ,

143 143

144 144
2 1

0 1

Nd Nd
Nd Nd

y (16.14) 

87 143 87 143

86 144 86 144
2 1 1 2

0 0 1

Sr Nd Sr Nd
Sr Nd Sr Nd

q x y  (16.15) 

16.2 AFC Formulation for Isotopes 

The model describing the evolution of a trace-element concentration in course of 
AFC (Sect. 11.4, Fig. 11.7) can be modified for radiogenic isotopes (Fig. 16.4).

16316.1 Binary Mixing

è



Fig. 16.4 Schematic representation of the AFC process including isotopes (after De Paolo 1981).  

Fig. 16.5 Binary plot 87Sr/86Sr vs.143Nd/144Nd  showing the effects of two AFC processes (solid 
lines: DNd = 2 and DSr = 0.01 and dotted lines:  DNd = 0.01 and DSr = 2) , for variable r values 
(after DePaolo 1981). Note that, due to the endothermic character of assimilation and contamina-
tion, r values exceeding unity are very unlikely (Sect. 24.1).

Keeping in mind that the heavy radiogenic isotopes are not fractionated during

0
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(16.16) 
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closed-system crystallization (DePaolo 1981; Albar de 1995):è

r = rate of assimilation to
fractional crystallization

CA = concentration in
the assimilant CL = concentration in

the magma

CS = DCL = concentration in
the crystallizing minerals

IL = isotopic ratio in the magma

C0 = initial concentration in
the magma

I0 = initial isotopic ratio of
the magma

IA = isotopic ratio of
the assimilant

http://book.gcdkit.org/Part_4/Figs/Fig_16.5_AFC3.r


Where IL, I0 and IA are the isotopic ratios (e.g., 87Sr/86Sr) in the differentiated and 
primitive melt and in the assimilant, and  1

1
r Dz r . 

In general, AFC processes with constant r and D produce a straight line in the 
1/C (or C0/C) vs. I plot. Otherwise, the trends are distinctly curved (Powell 1984; 
Janoušek et al. 2000) as are, in general, the AFC trends in binary plots involving 
two isotopic ratios (Fig. 16.5). 

Fig. 16.6 Compositional changes in Sr vs. 87Sr/86Sr diagrams during AFC with various rate of as-
similation to fractional crystallization (r = 0.2, 0.5, 0.8 and 1.5). The curves are labelled by the 
bulk distribution coefficient D  D =  1 corresponds to simple binary mixing and thus the mod-
elled curve connects both end members, which is otherwise  not the case (after DePaolo 1981).
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It is worth noting that even a massive assimilation may lead to very limited 
changes in the isotopic composition of an incompatible element in the melt. In 
contrast, compatible elements may record large isotopic shifts already at modest 
assimilation rates (Fig. 16.6). A characteristic feature of AFC is that the composi-
tion of the resulting magma does not generally plot onto a tie line between both

166 16 Direct Models

end members, unlike in the case of binary mixing. 
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Chapter 17 
Reverse Models 

17.1 Binary Mixing 

Assuming a binary x–y plot of two isotopic ratios (e.g. 87Sr/86Sr–143Nd/144Nd), the 
Eq. (16.11) for the mixing hyperbola can be rearranged to: 

 0 0 0 0xy x y y x q x y  (1 .1) 

The mass-balance equation can be written in a matrix form (for p elements): 

 

1 1 1 1
0 0

2 2 2 2
0

0

1, ,
1, ,

... ...
1, ,p p p p

x y y x
q x y

x y y x
x
y

x y y x

 (17.2) 

and solved for the vector [q– x0 y0, x0, y0 ] by least-square method (Appendix C). 

 The detailed treatment of ternary mixing problems can be found, for in-
stance, in Sohn (2013), including the reverse modelling.  

 

17.2 AFC 

Reverse solution of the AFC was described by Powell (1984), Mantovani and 
Hawkesworth (1990) and Aitcheson and Forrest (1994). It is straightforward to 
use the slope S of the mixing line in the 1/C vs. I diagram (Powell 1984): 
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(17.3) 



This can be solved for r: 

0
0

1

A A

S D
r

SS I I C
C

(17.4) 

For reverse AFC modelling there is a specialized R package AFC3D using 
an innovative graphical approach (Guzmán et al. 2014).
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Chapter 18  
Forward Modelling in R 

18.1 Binary Mixing 

 
Exercise 18.1: Single isotopic ratio 

  
During its ascent, a basaltic magma is contaminated by a host-rock schist. 

Table 18.1 

 A: schist B: basalt 
Sr 150 ppm 600 ppm 
87Sr/86Sr 0.715 0.703 

 Plot a  theoretical  mixing  hyperbola  between  basalt  and  schist  in  the Sr–87Sr/86Sr
and 1/Sr–87Sr/86Sr diagrams for 5 % mixing increments. 

 Calculate the 87Sr/86Sr ratio in a mixture containing 20 % of the schist. 
 Determine the proportion of schist in the mixture that has 87Sr/86Sr = 0.710. 

> c1<- 150 

> i1 <- 0.715 #schist composition 

> c2 <- 600 

> i2 <- 0.703 #basalt composition 

> # Plot mixing 

> windows(width=10,height=6) 

> par(mfrow=c(1,2)) #prepare a two-graph layout 

> f1 <- seq(0,1,by=0.05) #prop. of schist in mixture 

> cm <- c1*f1+(1-f1)*c2 

> names(cm) <- f1  #conc. in mix [Eq.(16.2)] 

> im <- i1*c1*f1/cm+i2*c2*(1-f1)/cm #87Sr/86Sr in mix [Eq. (16.1)] 

> srlab <- expression(""^87*Sr/""^86*Sr) 

© Springer-Verlag Berlin Heidelberg 2016 
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> plot(cm,im,xlab="Sr (ppm)",ylab=srlab,type="b",pch=19) 

> plot(1/cm,im,xlab="1/Sr (ppm)",ylab=srlab,type="b",pch=19) 

 

> # Calculate 20% mixing 

> f1 <- 0.2 #mixing proportion 

> im <- (i1*c1*f1+i2*c2*(1-f1))/(c1*f1+c2*(1-f1))  

> # 87Sr/86Sr [Eq.(16.3)] 

> print(im) 

[1] 0.7037059 

> # Calculate mixing proportion (reverse task) 

> im <- 0.710 #87Sr/86Sr of the mixture 

> f1 <- c2*(i2-im)/(im*(c1-c2)-i1*c1+i2*c2) #calc. f1 [Eq. (16.5)] 

> print(f1) 

[1] 0.8484848 

Fig. 18.1 Theoretical mixing hyperbola resulting from contamination of basalt by the surround-
ing schist (Exercise 18.1).
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Table 18.2

A: schist B: basalt
Sr 150 ppm 600 ppm
87Sr/86Sr 0.715 0.703
Nd 20 ppm 2 ppm
143Nd/144Nd 0.511 0.513

Calculate the Sr (ppm), 87Sr/86Sr, Nd (ppm) and 143Nd/144Nd of mixtures con-
taining 0, 5, 10, … 100 % of the schist; print the result in a table. 
Plot a theoretical mixing hyperbola in the 87Sr/86Sr – 143Nd/144Nd space. 
Calculate and plot the asymptotes. 

18   Radiogenic Isotopes 171

Exercise 18.2: Pair of isotopic ratios

  
The same basaltic magma as in Exercise 18.1 is contaminated by schist. However, 
here, both Sr and Nd isotopic data are available. 

 

> windows() 

> cx1 <- 150; cx2 <- 600 # Sr, schist and basalt 

> ix1 <- 0.715; ix2 <- 0.703 # 87Sr/86Sr, schist and basalt 

> f1 <- seq(0,1,by=0.05) # prop. of schist in mixture 

> cmx <- cx1*f1+(1-f1)*cx2 #Sr conc. mix [Eq. (16.2)] 

> imx <- ix1*cx1*f1/cmx+ix2*cx2*(1-f1)/cmx 

> # 87Sr/86Sr mix [Eq. (16.1)] 

> cy1 <- 20; cy2 <- 2 # Nd in schist and basalt 

> iy1 <- 0.511; iy2 <- 0.513 # 143Nd/144Nd, schist/basalt 

> cmy <- cy1*f1+(1-f1)*cy2 # Nd conc., mix [Eq. (16.2)] 

> imy <- iy1*cy1*f1/cmy+iy2*cy2*(1-f1)/cmy 

> # 143Nd/144Nd mix [Eq. (16.1)] 

> # Prepare results table 

> res <- cbind(cmx,imx,cmy,imy) 

> rownames(res) <- f1 

> colnames(res) <- c("Sr","87Sr/86Sr","Nd","143Nd/144Nd") 

> print(res) 

        Sr 87Sr/86Sr  Nd 143Nd/144Nd 
0    600.0 0.7030000 2.0   0.5130000 
0.05 577.5 0.7031558 2.9   0.5123103 
0.1  555.0 0.7033243 3.8   0.5119474… 
 

http://book.gcdkit.org/Part_4/Exercises/exe_18.2_Mixing_hyperbola2.r


Fig. 18.2 Theoretical mixing hyperbola between basalt and schist. Asymptotes are shown by 
dashed lines (Exercise 18.2).
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> # Plot the mixing hyperbola 

> plot(imx,imy,xlab=expression(""^87*Sr/""^86*Sr), 

+  ylab=expression(""^143*Nd/" "^144*Nd),type="b", 

+  xlim=c(0.7023,0.7152),ylim=c(0.5109,0.5131),pch=19) 

 

> # Calculate and plot asymptotes 

> alpha <- (cx2/cy2)/(cx1/cy1)    # calc. alpha [Eq. (16.8)] 

> x0 <- (ix1-alpha*ix2)/(1-alpha)  # calc. asymptotes [Eq. (16.14)] 

> y0 <- (iy2-alpha*iy1)/(1-alpha)  

> print(x0) 

[1] 0.7026923 

> print(y0) 

[1] 0.5109487 

> abline(v=x0,lty="dashed") # draw asymptotes 

> abline(h=y0,lty="dashed") 

 



> i0 <- 0.704; c0 <- 150 # the initial magma 

> ia <- 0.713; ca <- 500 # the assimilant 

> dd <- 3.5  # bulk distribution coefficient for Sr 

> srlab <- expression(""^87*Sr/""^86*Sr) 

> plot(1/c0,i0,xlim=c(0,0.07),ylim=c(0.7035,0.7135), 

+  xlab="1/Sr (ppm)",ylab=srlab,type="n")#draw empty plot 

> ee <- c(0,0.05,0.1,0.2,0.5) #vector of r parameters 

> for (r in ee){ #repeat for all r 

>  z <- (r+dd-1)/(r-1) 

>  ff <- seq(0.4,1,by=0.1) 

>  x <- c0*ff^-z+r/(z*(r-1))*ca*(1-ff^-z) #Sr [Eq.(11.34)] 

>  y <- i0+(ia-i0)*(1-c0/x*ff^-z) #87Sr/86Sr[Eq.(16.16))] 

>  points(1/x,y,type="b",pch=19) #plot as a curve 

>  text(1/x[1],y[1],pos=3,paste("r =",r),cex=0.8) 

> } 

 

> # Plot end members 

> points(1/ca,ia,pch=19,cex=1.5,col="darkred") #Contaminant 

> text(1/ca,ia,pos=2,"Contaminant",cex=0.8,srt=90) 

> text(1/ca,ia,pos=3,expression(r==+infinity),cex=0.8) 

 

> points(1/c0,i0,pch=19,cex=1.5,col="darkblue") #Initial magma 

> text(1/c0,i0,pos=1,"Initial magma",cex=0.8) 

> lines(c(1/c0,1/ca),c(i0,ia),lty="dashed",lwd=2,col="blue") 
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18.2 AFC 

Exercise 18.3: AFC

  
Let’s assume an AFC process with the following parameters: the parental magma 
has a 87Sr/86Sr = 0.7045 and contains 150 ppm of Sr; DSr = 3.5.  The contaminant 
contains 500 ppm of Sr and has a 87Sr/86Sr ratio of 0.713. 

In the 1/Sr vs. 87Sr/86Sr diagram, show the effects of up to 60 % crystallization 
accompanied by assimilation. Plot curves for variable values of the r parameter 
(0, 0.05, 0.1, 0.2 and 0.5) at 10 % increments of F.

18   Radiogenic Isotopes
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Fig. 18.3 A 1/Sr vs. 87Sr/86Sr diagram showing effects of up to 60% crystallization of a basaltic 
magma accompanied by different rates (r) of crustal contamination. A tie line connecting the Ini-
tial magma with Contaminant would correspond to binary mixing (r = ) (Exercise 18.3).
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Chapter 19  
Reverse Modelling in R 

 
Exercise 19.1: Binary mixing 

  
Pb–Hf isotopic compositions of old and intermediate arc lavas from La Martinique
Island in Lesser Antilles reflect binary mixing between depleted-mantle and 
enriched, plume-derived components (Table 19.1)  (Labanieh et al. 2010). 

Table 19.1 

Sample 206Pb/204Pb 176Hf/177Hf 
06MT68 18.9866 0.283163 
06MT53 19.1900 0.283137 
06MT54 19.1876 0.283137 
06MT73 19.2678 0.283131 
06MT69 19.6896 0.28307 
06MT71 19.7037 0.283064 
06MT60 19.8770 0.282856 
06MT72 19.9352 0.282554 
06MT68 18.9866 0.283163 

Martinique.data 

 Using the least-square method, fit the data by a mixing hyperbola. 
 Determine both the asymptotes and the curvature. 
 Plot the data together with the hyperbola and its asymptotes. 

 

> z <- read.table("Martinique.data",sep="\t") 

> # Fitting the mixing hyperbola 

> A <- cbind(1,z[,2],z[,1]) # data matrix [Eq. (17.2)] 

> y <- z[,1]*z[,2] # left-hand vector [Eq. (17.2)] 
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> xa <- lsfit(A,y,intercept=FALSE) # least-square calculation 

> xa <- xa$coeff 

> names(xa) <- NULL # process the resulting list 

 

> # Determining asymptotes and curvature 

> x0 <- xa[2]; y0 <- xa[3] # asymptotes [Eq. (17.2)] 

> q <- xa[1]+x0*y0  # curvature [Eq. (17.2)] 

> print(x0) 

19.99885  

> print(y0) 

0.2831934 

> print(q) 

0.00004075364 

 

> # Calculate coordinates of the hyperbola  

> xx <- seq(min(z[,1]),max(z[,1]),((max(z[,1])-min(z[,1]))/100))  

> yy <- y0+q/(xx-x0)  #[Eq. (16.10)] 

 

> # Plotting the mixing hyperbola 

> plot(xx,yy,type="l",xlab=expression(""^206*Pb/""^204*Pb), 

>  ylab=expression(""^176*Hf/""^177*Hf), 

> xlim=c(min(z[,1])-0.01,x0+0.01), 

> ylim=c(min(z[,2])-0.00001,y0-0.00001)) 

> points(z[,1],z[,2],cex=1.5,pch=19) # add data points 

> abline(v=x0,lty="dashed") # add asymptotes 

> abline(h=y0,lty="dashed") 
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Fig. 19.1 Least-square reverse modelling of binary mixing between depleted-mantle and en-
riched, plume-derived component using the Pb–Hf isotopic data from La Martinique (Exercise 
19.1).
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Part V Practical Modelling 

In previous chapters, we have seen numerous formulae describing the composi-
tional evolution of a magma undergoing different petrogenetic processes. From a 
purely mathematical point of view, these equations are relatively simple. How-
ever, in any igneous system, there are many unknowns, and several of them must 
be set or estimated using geological constraints before attempting to (numerically) 
solve the modelling equations. 

It is important to bear in mind that a geochemical model can only test specific 
hypotheses—i.e., the geologist has to decide on the question to ask, while being 
aware that the only answer that the model can provide is “yes” (from a geochemi-
cal point of view, this mechanism can account for the observed data) or “no” (it is 
unable to reproduce the dataset). Modelling does not provide answers to “open” 
questions; thus we can ask, for instance: 

 Is it possible to generate this dacite from that basalt, by fractional crystalliza-
tion of a cumulate made up of amphibole and plagioclase? If so, what is the 
modal composition of that cumulate?  

 Could this granite be derived by partial melting of that sediment? What was the 
maximum degree of melting allowed by such a source?  

 Could assimilation of lower continental crust by ascending basalt yield an an-
desitic magma of the given composition? 

 Could the compositional range observed in this igneous suite be the result of 
fractionation from a common parent?  

Often, a negative answer is actually more useful, as it definitely rules out an 
assumption. In contrast, a positive answer just indicates that the proposed 

process is not impossible—it does not demonstrate that it actually happened! 

Although there is no universal recipe, a set of tricks can be used. Frequently, 
there is no pure mathematical solution, and assumptions have to be made. These 
typically relate to the composition of the primitive magma, or the fractionating 
mineral phases. Often, a composite approach combining calculations and educated 



  

that would help in determining what processes were possible or not, and so 
start constraining them. 

 Build a full model, which in turn implies: 

– Choose the process to be modelled: mixing, melting, crystallization… 
– Decide on key variants thereof: modal or non-modal, fractional or batch… 
– Set the key input parameters: composition of the primitive liquid, fraction-

ating phases and their chemistry, partition coefficients… 
– Perform the actual calculations. 

 Test the model, i.e. compare the computed result with real data (including all 
the other available information, such as that coming from geology and petrol-
ogy). Most often, this leads to refining the existing model. 

 Reiterate until the model fits the data satisfactorily. 

As a word of caution, one cannot stress strongly enough that it is unsafe to 
rely on the purely mathematical “best fit”. It is indeed possible that it does 

not make geological sense, whereas a slightly worse fit (from a numerical perspec-
tive) may be more realistic. For instance, modelling can predict the crystallization 
of an Ol + Qtz cumulate. Such a result is geologically meaningless. On the other 
hand, an Opx-bearing one is more plausible, even if the numerical fit is worse. 

 

guesses must be employed. In general, the following steps will be implemented:  

 After having demonstrated the existence of a differentiation series (e.g. plotting
trends in binary plots), identify and further constrain the process(es) that could 
have shaped the composition of the suite. This can be done on the basis of:  

– Previous knowledge (literature), analogy with similar occurrences else-
where, relevant experiments or personal experience. 

– Geological evidence in general, e.g. field relations or petrology. 
– Geochemical evidence, such as interpretation of variation diagrams or iso-

topic constraints. At this point, one may also apply semi-quantitative tests 
(e.g. mixing test, determination of compatibility of elements—Chap. 21) 
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Chapter 20  
Choosing an Appropriate Model 

Geochemical modelling described in this book is primarily concerned with the in-
terpretation of natural igneous suites. Therefore, any geochemical study must rest 
upon a sound understanding of their field 

ribe all the relevant tools, but

20.1 Evidence for Crystallization 

20.1.1 Final Solidification During Emplacement 

In lava sequences, final solidification after eruption is typically fast and does not 
affect the chemistry of the suite. However, in low-viscosity magmas such as ko-
matiites, there are well-documented examples of intra-flow differentiation (Arndt 
1994) driven by gravity settling of crystals at the bottom of the lava flow  
(Fig. 20.1a). This process could be adequately modelled using the incomplete 
crystal separation scenario of Sect. 6.1.4 and 11.5.1.  

In plutonic complexes, cooling is slower and may be accompanied by segrega-
tion of the fractionated liquids from the mush of already formed crystals  
(Fig. 20.1b), a process that can be enhanced by syn-magmatic deformation (“filter-
pressing”, e.g. Sisson and Bacon 1999). One may describe the slow solidification 
of a pluton in terms of batch crystallization (preserving the mass balance, but with 
changing phase compositions), or of incomplete crystal separation. 
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relations and petrological features. As this
text is not a manual of petrology, we will not desc
rather point out a few features that may help in deciding on the process to be
modelled, even constraining it to some point. 



Fig. 20.1 Field evidence for in situ and fractional crystallization. a Olivine accumulation at the 
base of a komatiite flow (Sivikkovaara, Finland) (lens cap for scale). b Evidence for late-stage 
separation of liquids in a crystallizing pluton (Guernsey gabbroic intrusion, Channel Islands, 
U.K.) (coin for scale). Late felsic melts are extracted from the crystals–liquid mixture (“mush”) 
below and accumulate against, and even cut through, an overlying layer of already essentially 
solid material. c Cumulate layers of anorthosite and chromitite in the Dwars River locality of the 
Bushveld Complex (South Africa). d A back-scattered electron (BSE) view of oscillatory zoning 
in a plagioclase from Parinacota Volcano, Chile (Ginibre et al. 2002). Although plagioclases 
commonly show complex zoning patterns that probably reflect stories more complicated than 
plain crystallization, as a first approximation the composition of this plagioclase becomes more 
sodic towards the rim, consistent with a crystallization in a magma (Photo G. Wörner).

20.1.2 Fractional Crystallization at Depth 

Already at the dawn of geochemistry, geologists recognized the existence of 
magmatic series, sharing common compositional features (Harker 1909). In these 
series, the rock compositions change progressively, which is commonly ascribed 
to evolution by fractional crystallization at depth, in a putative magma chamber.  

However, direct evidence for this process is rare, and it is difficult to constrain 
from geological data. Cumulate layers (such as those observed in layered mafic in-
trusions; Fig. 20.1c) are an obvious proof for growth and removal of crystals from 
fractionating parts of the magma chamber. However, whenever cumulate se-
quences are observed, rocks formed from matching liquids are unlikely to be seen, 
as melts tend to rise to higher crustal levels, now eroded away. Conversely, when 
sequences of magmatic rocks crystallized from evolving liquids are preserved, the 
underlying cumulates are unlikely to be cropping out. In rare, favourable cases it 
may be possible to observe cumulate enclaves snatched from depth and carried up 
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by the ascending differentiated magma. Phenocrysts in lava are generally taken as 
evidence for early fractionation.  In particular, their oscillatory or  simple  continuous 
zoning patterns (Fig. 20.1d) are an indication for fractional crystallization from a
gradually evolving magma. 

20.2 Evidence for Melting 

The mere presence of igneous rock that had to crystallize from magma is evidence 
for melting. In that sense every geochemical model should include a stage of par-
tial melting. However, melting processes generally take place at great depth, much 
deeper than the place where magmas crystallize. Consequently, melting sites can 
be poorly (if at all) documented at the current exposure level. Therefore, decipher-
ing melting is often tricky and indirect. 

20.2.1 Crustal Anatexis 

Partially molten upper crustal rocks (migmatites) are frequently observed  
(Fig. 20.2a–c), and there is ample literature describing and interpreting these rocks 
in terms of field relations, rheology or petrology: see for instance Mehnert (1968) 
or the reviews in Brown (2007) or Sawyer (2008). A batch melting model may 
seem adequate, and direct observation of the restitic assemblage should make 
modelling relatively easy.  

However, geochemical modelling of migmatites has many pitfalls. One of the 
critical issues is that the leucosomes seldom have pure melt compositions. Several 
explanations have been proposed, including reequilibration by diffusion (Fourcade 
et al. 1992) or “back-reactions” with the melanosome (Kriegsman and Hensen 
1998). Alternatively, the leucosomes may be interpreted as early cumulate layers 
left behind after melt removal (Taylor et al. 2014) or even injected foreign melts 
(Hasalová et al. 2008). All these processes can be modelled—at the cost of in-
creased complexity. 

In addition, the mere existence of felsic intrusions demonstrates that melt has been 
extracted from migmatites (Brown 2004; Yakymchuk and Brown 2014). There-
fore, it is likely that many of them are melt-depleted and thus poorly represent the 
state of the source during anatexis.  

Yet, the presence of migmatites in the right place at the right time does indeed 
provide crucial evidence for crustal melting processes that could have been poten-
tially involved in the generation of nearby, contemporaneous felsic suites. 
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Fig. 20.2 Field evidence for partial melting. a Migmatites from the Caicó Block (Rio Grande do 
Norte, Brazil). A leucosome (L) and matching melanosome (Ml, thin black border) are hosted in 
a mesosome (Me). The mesosome represents a portion of the source not affected by melting, 
while the leucosome may correspond to the liquid and the melanosome to the restite. Here the 
melanosome is dominated by biotite, suggesting that the melting reaction was either fluid-present 
or muscovite breakdown (Stevens et al. 1997). b Migmatites from the Southern Marginal Zone 
of the Limpopo Belt, South Africa. A diffuse network of leucosomes is associated with large 
crystals of garnet, formed by the biotite-breakdown melting reaction (Bt + Pl + Qtz + Sil = L + 
Grt) (Stevens and van Reenen 1992). c Migmatites from Kivijärvi, Finland. An oblique felsic 
vein is connected to the leucosome, and cuts the foliation, thus demonstrating that melt was be-
ing extracted from the migmatite. d Thin leucocratic (plagioclase-rich) veins in a lherzolite from 
the Monte Maggiore ophiolite, Corsica. Small white patches (either interconnected, as in the 
large vein near the top of the photo, or trapped in the intergranular space, as in the middle) repre-
sent small volumes of liquid generated by melting of the surrounding peridotite, which may be 
regarded as a source for the associated gabbros and basalts from the same ophiolite. As for the 
lower crustal migmatites, one may ask whether the leucosomes represent trapped in-situ melts or 
remnants of melt having percolated the peridotite (Photo C. Nicollet). 

20.2.2 Melting of the Mantle 

Direct evidence for mantle melting is almost never observed (except, perhaps, rare 
massive peridotites or ophiolite sequences—Fig. 20.2d). Sometimes a suite of mantle 
xenoliths is found, some of which could represent melt-depleted portions of the 
source. However, xenolith studies reveal that they mostly come from the mantle 
above the magma source, being broken apart and carried to the surface by ascending 
magma (Pearson et al. 2003). As the extraction of low-volume melts from the mantle 
appears to be an efficient process (Walter 2003), fractional melting is often seen as 
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the most appropriate model, in particular for alkaline sequences. However, for greater 
degrees of melting (tholeiites), the differences from batch melting become negligible. 

20.3 Magma Mixing and Assimilation 

20.3.1 Mixing and Mingling of Magmas 

Field evidence may prove the coexistence of two contrasting magmas: the pres-
ence of mafic microgranular enclaves (MME), chilled margins in a mafic magma 
at its contact with a felsic one, round and lobate liquid–liquid contacts, net veining 
with a relatively mobile felsic magma invading a nearly solidified mafic one (Fig. 
20.1b) or late syn-plutonic dykes often disrupted into enclave swarms (Didier and 
Barbarin 1991; Hallot et al. 1996; Wiebe and Collins 1998). The mechanism and 
degree of interaction between two dissimilar magmas would depend, among other 
factors, on a) thermal energy, reflecting the depth of intrusion and proportion of 
the hot mafic melt (if small, the system will effectively freeze) and b) relative tim-
ing of the mafic melt injection into the felsic magma chamber, related to the de-
gree of crystallinity of the latter (Fig. 20.3). 

Hybridization between two magmas is further revealed by microtextural evi-
dence for multistage crystallization (e.g., dendritic plagioclase, acicular apatite, 
blade-shaped biotite, and quartz/K-feldspar oikocrysts enclosing small quenched 
crystals), or for exchange of xenocrysts/chemical disequilibria (e.g., amphibole- or 
pyroxene-rimmed quartz ocelli: Fig. 20.4a, rapakivi and antirapakivi feldspars: 
Fig. 20.4b, plagioclase with complex resorption history and discontinuous zoning: 
Fig. 20.4c) (Hibbard 1991; Vernon 1991; Hibbard 1995; Janoušek et al. 2000).
Besides standard petrography, optical cathodoluminescence (CL), Nomarski mi-
croscopy, or back-scattered electron imagery (BSE) are efficient tools (Marshall 
1988; Castro and De la Rosa 1994; Pagel et al. 2000; Janoušek et al. 2004). Com-
positional mapping can also disclose complex zoning patterns with several epi-
sodes of crystallization and resorption (Fig. 20.4d).

All these features demonstrate hybridization between two magmas. However, 
the strikingly different physical properties of basic and acid liquids (e.g. their great 
viscosity contrast) tend to make single-stage chemical mixing difficult. The fact 
that the identity of the two contrasting magmas is preserved does demonstrate that 
they did not mix at the present exposure level, where merely mechanical mingling 
and exchange of earlier formed crystals occurred (Bateman 1995). This may sug-
gest that the scope of mixing was limited. On the other hand, this does not rule out 
mixing as a significant process at deeper crustal levels with more favourable 
physical conditions. Alternatively, coexistence of well-mixed regions with poorly 
homogenized ones (in the form of MME or schlieren) may be due to the chaotic 
nature of the mixing process (Perugini and Poli 2000). This has been successfully 
reproduced experimentally on natural materials (e.g. Morgavi et al. 2013). 
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Fig. 20.3 Variable textures in hybrid rocks resulting from injection of mafic magma at different 
stages of the felsic magma chamber crystallization (Barbarin 2005). Photos are from the Dinkey 
Creek Pluton, Sierra Nevada, USA. © Elsevier

Mixing and mingling can both be modelled by binary mixing equations. How-
ever, the scale of the processes does differ. Mixing is primarily diffusion-

ace area of the interfaces between dissimilar
liquids. The process should affect large volumes of magma, so the observed rocks
may all represent hybrids, and any pure end-members could be totally missing.
Mingling, on the other hand, would affect only small  volumes (equilibration domains,
see Sect. 24.2) of the magmas, and the rocks with end-member compositions are
more likely to be preserved. 

4. FILLING OF FRACTURES
    → Mafic dykes

3. FILLING OF EARLY FRACTURES
    → Composite dykes

2. MINGLING
    → Mafic magmatic enclaves
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    → Calc-alkaline granitoids
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20.3.2 Assimilation 

Striking examples of host-rock xenoliths disaggregating into intrusions are con-
vincing evidence for assimilation of country rocks into a pluton (Pitcher and 
Berger 1972; Clarke et al. 1998; Lackey et al. 2006; Clarke et al. 2007). Assimila-
tion, from a geochemical point of view, is plain mixing, but should be coupled 
with fractional crystallization into AFC processes. Yet, the scale of such interac-
tions is debatable: do they affect more than the zone located in the immediate vi-
cinity of the xenoliths? Current thinking is that the energy cost of assimilation is 
so high that a near-solidus pluton cannot provide sufficient heat to assimilate size-
able amounts of rocks at emplacement level (Glazner 2007). However, at depth, in 
the hot lower crust or in the mantle, the thermal budget is less of an issue and as-
similation is more feasible. In the deep crust, such a process has been described as 
“MASH” (Melting, Assimilation, Storage and Homogenization) (Hildreth and 
Moorbath 1988; Vernon 2007), modelling of which requires combining several 
simple mechanisms (Sect. 11.5).  
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driven and thus controlled by the surf



 

Fig. 20.4 Petrographic evidence for mixing and assimilation processes. a Clinopyroxene-rimmed 
quartz ocelli in the Ploumanac’h granite (France). b Rapakivi texture in the Karkonosze granite 
(Poland); a core of alkali feldspar is rimmed by plagioclase. c Zoned plagioclase from hybrid 
quartz microdiorite, Teletín (Central Bohemian Plutonic Complex), in optical CL. d Electron mi-
croprobe map of Na distribution in the same crystal; profile A–B is shown in inset (Janoušek et 
al. 2004). 
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Chapter 21 
Semi-Quantitative Geochemical Approach 

Even without embarking on developing a proper geochemical model, it is possible 
to devise several geochemical tests that can help in selecting a model, or in con-
straining some of its parameters. 

21.1 Assessing Trace-Element Compatibility  

As noted already in Sect. 10.2, the concept of compatibility and incompatibility of 
a trace element is a relative one. For instance, let’s consider the behaviour of Yb. 
During peridotite melting, leaving a residue made of olivine ( /

Yb

Ol L
DK = 0.00151 ), 

orthopyroxene ( /
Yb

Opx L
DK = 0.05) and clinopyroxene ( /

Yb

Cpx L
DK = 0.28), DYb << 1 and Yb

would show a strongly incompatible behaviour. In contrast, for eclogite melting
the residue consists of clinopyroxene ( /

Yb

Cpx L
DK = ~1.0) and garnet ( /

Yb

Grt L
DK = 21); con- 

sequently, DYb >> 1 and Yb would be strongly compatible as soon as more than 5% 
garnet is present. 

In silica-rich magmas, most elements tend to become compatible due to the 
complex main rock-forming and accessory mineral assemblages involved. Even 
elements such as REE (strongly incompatible in basic magmas) are hosted by ac-
cessory minerals (allanite, monazite, xenotime, etc.). Of course, this effect is taken 
to the extreme in highly differentiated systems, such as pegmatites. 

The first step in any study is, therefore, to assess the behaviour of each element 
in the system. The simplest approach is to plot binary diagrams of a differentiation 
index vs. the investigated elements. A positive correlation characterizes incom-
patible, and a negative one compatible elements. In basic suites, commonly used 
differentiation indexes are MgO, Cr, Ni or mg#, while in intermediate to acid as-
sociations, SiO2 is preferred. Still, it must be kept in mind that diagrams involving 
major elements, especially SiO2, suffer from the constant sum effect (Sect. 3.1.2). 

                                                           
 

1 KD values are from Rollinson (1993). 
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21.2 Order of (In)Compatibility 

Regardless of the process involved, the largest changes in elemental concentra-
tions are observed for D values very different from 1. This idea was developed for 
incompatible elements by Schiano et al. (1993). In a suite of rocks related by a 
single petrogenetic process (such as fractional crystallization or partial melting), 
there is a correlation between D and the variability of the dataset, defined as: 

( )  V (21.1) 

with ( ) and  referring respectively to the standard deviation, and the mean of 
the concentrations, of the element . 

For incompatible elements, the order of increasing variability then mimics the 
increasing incompatibility of individual elements (i.e. the smaller D, the higher the 
variability). Likewise for compatible elements, variability correlates with com-
patibility (large D results in high variabilities): elements with D very different 
from 1 (very compatible or very incompatible) have highest variabilities2. Several 
applications of this approach can be found in Schiano et al. (1993). For instance, 
one may plot the variability of a dataset against that in a reference rock suite (typi-
cally MORBs). Elements plotting away from the 1:1 line have D values different 
in the two sets (often because other minerals were involved, in the melting source 

plotting a spidergram normalized to the 
likely source, if all the elements are arranged in the order of compatibility estab-
lished from the dataset, any anomalies reveal deviation of the source composition 
from the normalization values.  

Exercise 21.1: Order of (in)compatibility

chpuy.data 
hofmann.data 

 

                                                          

2 Thus, this approach originally developed for incompatible elements will also work for compati-
ble ones, but the two groups must be treated independently.
3 Major elements were corrected for reequilibration with the host olivine. 
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crystallizing assemblage). Similarly, when 

File chpuy.data contains analyses3 for melt inclusions in olivine crystals from 
the Chaîne des Puys Quaternary volcanoes of central France (Jannot 2005). We 
shall investigate the genesis of these magmas from their mantle source; we focus 
on the set of elements present in Hofmann’s (1988) Primitive Mantle composition, 
for which the variability in MORBs was calculated by Schiano et al. (1993). 

http://book.gcdkit.org/Part_5/Data/chpuy.data
http://book.gcdkit.org/Part_5/Data/hofmann.data


Calculate the variability V for all elements [Eq. (21.1)] and print in descending 
order. 
Plot a diagram comparing the variability in this dataset with that in MORBs 
(Schiano et al. 1993). 
Display a spiderplot normalized to the Primitive Mantle, but with elements ar-
ranged in the order of increasing compatibility (= variability) in the inclusions. 

> chpuy <- read.table("chpuy.data",sep="\t") 

> s <- apply(chpuy,2,sd,na.rm=T) # calculate even for missing values 

> m <- apply(chpuy,2,mean,na.rm=T) 

> variability <- s/m  # Eq. (21.1) 

> print(rev(sort(variability)),2) 

   Cr    Th    Ba    Rb    La    Ce  P2O5    Sm    Nd    Eu    Nb     

0.706 0.292 0.262 0.245 0.235 0.198 0.194 0.190 0.187 0.174 0.165 … 
 

> hofmann <- read.table("hofmann.data",sep="\t") 

> hofmann <- as.matrix(hofmann)  

> # Select elements for which we do have the MORB variability data 

> v.el <- colnames(hofmann)[!is.na(hofmann["V.MORB",])] 

> x.data <- hofmann["V.MORB",v.el] 

> plot(x.data,variability[v.el],xlim=c(0,0.5),ylim=c(0,0.5),pch=15, 

+  xlab="Variability, MORB",ylab="Variability, Ch. Des Puys") 

Fig. 21.1 A plot comparing the variability in MORBs with that in the studied dataset (Exercise 
21.1). Some elements (notably Ba and K2O) have very different variabilities in MORBs and in 
the investigated suite, demonstrating their distinct behaviour in the two datasets. This is an effect 
of phlogopite and/or amphibole that was presumably present in the mantle source of the Chaîne 
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> text(x.data,variability[v.el],v.el,pos=4,offset=0.5) 

> abline(0,1) 

> # Order the elements in decreasing incompatibility 

> v.ordered <- rev(sort(variability [colnames(hofmann)]))  

> # Select the data and normalization values 

> data <- chpuy[,names(v.ordered)] 

> norm <- hofmann["PM",names(v.ordered)]  

Fig. 21.2 Spiderplot for Chaîne des Puys melt inclusions, normalized to Primitive Mantle

ogopite).

The plotting is best done using GCDkit (for a plain R approach, see Exercise 3.4). 
 
GCDkit-> norm <- t(as.matrix(norm)) 

GCDkit-> rownames(norm) <- "Prim. mantle (Hofmann 1988)[CP order]" 

GCDkit-> spider(data,norm,pch=15,ymin=1,ymax=200) 

GCDkit-> print(results) 

                ThN      BaN      RbN      LaN      CeN 

Chaumont11 70.11070 60.17524 56.04334 73.30184 54.96221 

Chaumont2  51.66052 50.25624 39.23034 57.01254 45.59365… 

Th Ba Rb La Ce Sm Nd Eu Nb Sr Dy Gd Zr TiO2 Er K2O Y Yb

1
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Spider plot −  Prim. mantle (Hofmann 1988) [CP order]
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(Hafmann 1988) but with elements arranged in order of compatibility determined for the inclu-

the Primitive Mantle (the former most likely contained amphibole and/or phl
2O show that the source of lavas differed fromsions data. Prominent anomalies for Nb, Sr, Zr and K



21.3 Process Identification 

For major elements, the three main petrogenetic processes (melting, crystallization 
and mixing) are governed by mass-balance relationships (Sect. 6.5). This results in 
a linear trend in any binary plot of major-element compositions.  

A linear trend in a binary plot of two major elements, or their oxides (in-
cluding Harker plots), indicates no specific petrogenetic process! This can 

be generalized, in p-dimensional space, for p major elements.

For trace elements, melting is commonly regarded as a batch process and crystal-
lization as fractional. Mixing, on the other hand, still follows linear laws. As 
shown in Part III, these three processes are described by contrasting equations: 

0 
(1 )L

CC
D F D

, ( 1)

0

DLC F
C

 and 1 1 1 21LC f C f C . 

In a binary plot of two trace elements, the resulting curves have different shapes4.

21.3.1 Mixing vs. Crystallization/Melting

Recognition of mixing is, theoretically, straightforward. Mixing is controlled by 
mass balance and yields linear trends in any element vs. element diagram (and hy-
perbolae in plots involving at least one ratio, see Table 11.1), whereas the two 
other processes generate curved trends (except  in  a  major major  plot) . A  straight

                                                          

4 But see Sect. 24.3.1 for a discussion on the feasibility of distinguishing between processes. 

21.3 Process Identification 195

no indicator of fractiona-
D e fractio-

0  L
CC F , i.e. a straight line). 

Obviously, isotopes are the tool of choice to spot mixing—at least between two 
isotopically contrasting compositions. However, open-system processes such as 
magma mixing or assimilation are frequently accompanied with, or followed by, 
fractional crystallization/accumulation that modifies the binary mixing-related 
elemental distribution, often beyond recognition. Even in such cases, the isotope 
ratios should escape unaffected, still ‘seeing through’ such modifications (Part IV).

21.3.2 Crystallization vs. Melting in a Log–Log Diagram 

In Chap. 11, it has been shown that the behaviour of incompatible elements during 
both crystallization and melting is roughly similar. Indeed, they are all expressed 

line in a trace-trace (or major-trace) diagram is therefore 
tion, but rather points to mixing (unless  is close to 0, in which case th
nation/batch curves both collapse to 

–



by equations such that when D  0, then CL  C0/F. On the other hand, fractional 
crystallization is extremely efficient at depleting compatible elements in a magma, 
whereas partial melting has little effect on these. 

This relation is usually described in a log( ) vs. log( ) diagram, where  is in-
compatible and  compatible. From Rayleigh’s Law we derive for each element: 

  (21.2) 

  (21.3) 

Combining two Eq. (21.3), for and , gives: 

  (21.4) 

(21.5) 

Since D  ~ 0 and D  1, the slope is steep negative5, close to –D . 

Likewise, the fractional melting equation (instantaneous liquids, Eq. 11.13) can be 
expressed for elements and , transformed in log coordinates and combined into: 

 (21.6) 

The result is again a straight line, whose slope is: 

1
1

D D
D D

  (21.7) 

                                                          

5 Note that
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Since D  ~ 0 and D 1, the slope is shallow negative, close to: 

    
D D

D
D

. (21.8) 

The batch melting equation is not exponential, and therefore cannot be ex-
pressed by linear relations in log coordinates. Nevertheless, the equation generates 
a curve, again with a shallow slope. 

As a result, in a log(  = incompatible) vs. log(  = compatible) plot, fractional 
crystallization generates an almost vertical trend while partial melting (both frac-
tional and batch) would result in a nearly horizontal one (Fig. 21.3).

Fig 21.3 a In a log(  = incompatible) vs. log(  = compatible) diagram, fractional crystallization 
produces an almost vertical trend whereas partial melting results in a nearly horizontal one. 
b Plot log(Sr) vs. log(Ni) showing that the Archaean TTG from eastern Finland (red circles) 
evolved by fractional crystallization (FC) and not by partial melting (PM) (adapted from Martin 
1987). 

These diagrams are generally used to determine the main (or the latest) mecha-
nism that shaped the geochemical characteristics of a rock suite. However, they 
can also help in proposing more complex scenarios (Fig. 21.4). In this case, each 
successive melt batch from the same source fractionated independently.
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Fig. 21.4 a–d Log(incompatible = Rb) vs. log(compatible = Ni) plots for Cadomian and Her-
cynian granites from Brittany. Six individual granitic suites (four of which are plotted here) de-
fine fractional crystallization (FC) trends, specific to each pluton. e The parental melts of each 
pluton (darker, bigger symbols), however, plot along a batch melting trend (PM), the source be-
ing local metasediments (Georget 1986). 

21.3.3 Crystallization vs. Melting Using Incompatible Elements 

Minster and Allègre (1978) proposed an alternative treatment, based only on in-
compatible elements and specifically focusing on low-degrees of mantle melting 
(i.e. basalts). Element , as previously, is strongly incompatible, and thus

r  and  yields: 

0

0

 D DL

L

CC F
C C

  (21.9) 

Since D  and D  are small, Eq. (21.9) becomes: 

0

0

  L

L

CC
C C

(21.10) 

The ratio of two incompatible elements is not affected by fractional crystallization. 
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For batch partial melting, the resulting equation is not so simple: 

0

0 0

1
(1 ) 1

L
L

L

D CC C
C C

D
C D

D
D

(21.11) 

Nevertheless, since we are dealing with two elements with different degrees of in-
compatibility, , Eq. (21.11) becomes: 

0

0 0

  1L
L

L

D CC C D
C C C

(21.12) 

which in a LC  vs.  /L LC C  plot represents a straight line with a slope of 0/D C . 

Fig. 21.5 A diagram La vs. La/Yb for compositions of whole rocks and melt inclusions in oli-
vines from the Quaternary Chaîne des Puys volcanoes (Central France) (same dataset as Exercise 
21.1). Two distinct trends are clearly apparent. The steeper line, defined by melt inclusions and 
the most primitive lavas, reflects mantle melting (PM). Its intercept at La0/Yb0 is very low (as 

Therefore, in such a diagram, partial melting and fractional crystallization produce 
contrasting trends (Fig. 21.5). In addition, for elements with similar C0, the slope 
of the melting line depends on the D value, thus allowing a qualitative assessment 
of their relative degree of incompatibility. 

21.4 Mixing Test 

In binary plots of major-element oxides, it is tempting to interpret any linear data 
array in terms of binary mixing (Wall et al. 1987). However, during this process, 
all the elements should be affected by exactly the same degree of mixing f1. 
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typical of a mantle source). The horizontal line, formed by the more differentiated lavas, represents 
fractional crystallization (FC) of the primary melt (redrawn after Jannot 2005). 



the “mixing test” (Fourcade 
and Allègre 1981). Equation (6.23) can be rearranged as: 

2 1 1 2( ) ( )MC C f C C   (21.13) 

Thus, in a C1 – C2 vs. CM  – C2 diagram, the points corresponding to each individ-
ual element should plot along a straight line of slope f1, passing through the origin 
(see Fig. 21.6 for an example). This equation is yet another expression of mass 
balance, and therefore, for major elements, a similar geometry is observed also as 
a result of fractional crystallization or partial melting. However, when dealing 
with trace elements, crystallization and  melting  produce  curved  trends . As  they  
may pass through the origin, caution is required especially if all the plotted ele-
ments have D ~ 1, in which case both partial melting and fractional crystallization 
reduce to simple mass balance.  

cannot be used when the compo-

Exercise 21.2: Major-elements based mixing test

kozamix.data 

Table 21.1 Compositions of typical rock types in the Kozárovice Pluton (CBPC) 

1: granodiorite M: quartz monzonite 2: monzogabbro

SiO2 64.60 59.58 49.21
TiO2 0.57 0.72 1.02
Al2O3 14.99 14.8 13.69
Fe2O3 1.27 1.69 2.47
FeO 2.79 4.08 6.96
MnO 0.08 0.14 0.15
MgO 2.37 4.11 8.53
CaO 3.44 5.33 9.74
Na2O 3.12 2.84 1.89
K2O 4.34 4.19 3.61
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This can be checked by a simple graph, also known as 

With these limitations, the mixing test provides a powerful check to determine 
whether a given rock composition can be explained as a mixture between two 
known endmembers. The test on the other hand 
sitions were modified by subsequent processes, such as fractional crystallization. 

In the Central Bohemian Plutonic Complex (CBPC), Amp and Cpx-bearing mon-
zonites and monzogabbros are associated with the Kozárovice granodiorite 
(Janoušek et al. 2000). In addition, the granodiorite contains small net-veined 
bodies and enclaves of Bt–Amp quartz monzonite. Table 21.1 gives representative 
compositions of all three main rock types. 

http://book.gcdkit.org/Part_5/Data/kozamix.data


 Using major elements, test whether the quartz monzonite (M) could correspond 
to a hybrid between granodiorite (1) and monzogabbro (2). 

 If so, determine the proportion of granodiorite in the mixture. 

> x <- read.table("kozamix.data",sep="\t") 

> mix1 <- x[,1]-x[,3] # C1-C2, x-coordinate 

> mix2 <- x[,2]-x[,3] # CM-C2, y-coordinate 

> plot(mix1,mix2,xlim=c(-10,16),ylim=c(-10,16),pch=16,cex.lab=1.3, 

+ xlab=expression(C[1]-C[2]),ylab=expression(C[M]-C[2])) 

> abline(h=0) # horizontal line through 0 

> abline(v=0) # vertical line 

> text(mix1,mix2,rownames(x),adj=c(1,0),pos=3) # label by oxide names  

> lq <- lsfit(mix1,mix2,intercept=FALSE) # calculate least squares 

> abline(lq,lty="dashed") # plot the best fit line 

> print(lq$coeff) # slope = f1 [Eq.(21.13)] 

        X  

0.6841038  

 
 

Fig. 21.6 Major-element based mixing test for the Kozárovice quartz monzonite (Exercise 21.2); 
C1, C2 and CM correspond to wt. % oxide in the acid end-member (granodiorite), basic end-
member (monzogabbro), and suspected hybrid (quartz monzonite); the slope of the regression 
line gives the estimated proportion of the acid component f1 (68.4 %). 
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21.5 Identifying Fractionating Minerals Using Log–Log Plots 

For Rayleigh-type fractionation, one may identify controlling phases using log–
log plots of whole-rock trace-element concentrations, in which the originally ex-
ponential trends are converted to linear ones [Eq. (21.2)]. This enables plotting 
fractionation vectors, either for pure mineral phases, or any combination thereof.  

A clever choice consists in using compatible elements, whose content sharply 
decreases during fractional crystallization. Of course, such an approach requires 
the prior determination, for the investigated system, of the compati-
ble/incompatible character of all elements (see Sect. 21.1).  

Exercise 21.3: Fractionation vectors

Table 21.2 Partition coefficients for selected minerals in dacitic to rhyolitic melts (Hanson 1978) 

Mineral Sr Ba
Amp 0.22 0.044
Bt 0.12 6.36
Kfs 3.87 6.12
Pl 4.4 0.31

blatna.data 
hanson.data 

Plot the analyses in a binary graph of Ba vs. Sr (with logarithmic coordinates). 

rock-forming mineral.  

  
> WR <- read.table("blatna.data",sep="\t") # Read whole-rock data 

> kd <- read.table("hanson.data",sep="\t") # Partition coefficients 

> # Binary plot (plain R) 

> plot(WR[,"Ba"],WR[,"Sr"],xlab="Ba",ylab="Sr",log="xy",pch=15, 

+  ylim=c(250,550)) 
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The file blatna.data contains Ba and Sr concentrations (ppm) from granodioritic 
rocks of the Blatná suite, Central Bohemian Plutonic Complex (Janoušek et al. 
2010). Table 21.2 summarizes partition coefficients between amphibole, biotite, 
K-feldspar and plagioclase and dacitic to rhyolitic melts (Hanson 1978). 

Superimpose vectors portraying 10 % fractional crystallization of each individual

http://book.gcdkit.org/Part_5/Exercises/exe_21.3_fc_vectors.r
http://book.gcdkit.org/Part_5/Data/blatna.data
http://book.gcdkit.org/Part_5/Data/hanson.data


Fig. 21.7 Trace-element modelling of fractional crystallization in the Blatná suite. The arrows 
portray the effects of 10 % fractionation  of  the minerals indicated (Exercise 21.3). The observed 
trend can be accounted for by up to ca. 15 % fractionation of an assemblage dominated by K-
feldspar, or by a plagioclase–biotite mix in the right proportions. Geological constraints or other 
diagrams must be used to decide between these two possibilities. 

> Ba0 <- 1500 

> Sr0 <- 500 

> Ba <- Ba0*0.9^(kd[,"Ba"]-1) 

> Sr <- Sr0*0.9^(kd[,"Sr"]-1) 

20321.5 Identifying Fractionating Minerals Using Log-Log Plots
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Chapter 22  
Constraining a Model 

After completing the previous tasks, enough information should have been gath-
ered to decide on the likely processes shaping the composition of the suite. This 
chapter will discuss setting different parameters for subsequent calculations. 

22.1 Choosing an Appropriate Strategy 

First of all, one has to decide on “variants” of the model, e.g., batch vs. fractional 
processes. The choice between these will be based on a balance between added 
complexity (related to the number of free parameters that will have to be set), and 
geological realism. Quite possibly, the best strategy is to test several variants of 
the models, and see (i) whether they produce results that are significantly differ-
ent, and (ii) which one provides a better match with the data. 

After that, a correct treatment has to be chosen for each element. Is it a major 
(mass balance only), a dilute trace (partition coefficient) or an ESC-type (solubil-
ity-controlled) element? Again, the choice will be guided primarily by petrology, 
especially by the nature of the minerals present. For instance, when a system only 

amounts of K2O, e.g. during a partial melting of a phlogopite-bearing 
2O behaves as a major element since it is a

stoichiometric component in phlogopite. However, this would imply knowing the 
phlogopite composition, which may be difficult to constrain. On the other hand, 
K2O can be treated as a trace element, by assuming that 

2

/
K O

Phl L
DK  is constant. This 

scenario leads to fewer assumptions and simplifies the computing procedure (for 
instance by ignoring major elements and focussing on traces). We shall return to 
this question in Exercise 22.1 and compare the results of different equations when 
dealing with accessory minerals. 

Finally, one must decide on the use of a forward or reverse approach. The un-
derlying logic is not the same. A forward model will be handy to test a hypothesis 
(“can this cumulate account for the liquid line of descent as observed in the host 
lavas?”). Reverse models would rather help in constraining an otherwise poorly 
known process (“which cumulate modal composition may generate such trends?”). 

© Springer-Verlag Berlin Heidelberg 2016 
V. Janoušek et al., Geochemical Modelling of Igneous Processes – Principles  
And Recipes in R Language, Springer Geochemistry,  
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22.2 Constraining a Fractionation or Melting Model 

All the equations established in parts II and III relate CL, C0, F and D; D itself is a 
function of the mineral proportions in the solid (restite or cumulate) and of the 
partition coefficients for each of the mineral phases. Some of these parameters can 
be set from geological or geochemical constraints; the others can be calculated by 
various modelling techniques. 

22.2.1 The Differentiated Liquid(s)/Melt: CL

Determining the value of CL is generally straightforward: in most cases, it is given 
by input data as the chemistry of the rock studied.  The aim of our model is to ex-
plain its composition as a product of crystallization or melting.  

However, it is commonplace to sample and analyse many rocks (e.g. a full dif-
ferentiation series in a volcanic province). In this case, as it would be tedious and 
impractical to model the chemistry of every single rock, one has to carefully select
which composition(s) will be investigated. This can be done on geological grounds 
(the most typical lithology) or using geochemical arguments (the “
sition or, in case of a multi-stage process, that corresponding to an inflexion of the 
differentiation trend). The logic is then that any rock falling between 
selected CL, is assumed to have formed by the same process, al

-

value of F. 
Most of the modelling approaches developed in this book aim at predicting the 

composition of melts. Consequently, it is necessary to be sure that the investigated 
rocks do represent pure liquids. This is for instance not the case for leucosomes in 
migmatites (whose compositions seldom match that of any realistic anatectic melt) 
and maybe even granites (that commonly appear to represent mixtures of liquid 
and solid material) as well as phenocryst-rich lavas (obviously a blend between 
melt and crystals). Treating such rocks as pure melts is therefore not a rigorous 
approach: their modelling requires additional components (such as mixing with 
cumulates or portions thereof). However, a “pure melt” approach may (or may 
not) be appropriate as a first-order approximation. 

22.2.2 The Primitive Liquid/Source: C0

C0 is the concentration of the given element in the source (melting problem), or in 
the primitive magma (crystallization). Unfortunately, C0 is only rarely accessible. 
For instance, in the case of melting, the source normally remains at depth, such 
that it cannot be sampled (except perhaps in tilted or strongly faulted crustal sec-
tions). Moreover, in most cases, the source (or the primitive liquid) has disap-
peared, as by definition it has been modified by the melting (or fractionation) 
process. Its chemistry can still be constrained, though. 
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Empirical/geological constraints 
In a magmatic suite that evolved by fractional crystallization, the least differenti-
ated magma is commonly regarded as being the parental liquid. Whether this 
composition is the primitive magma in a petrological sense, is open to discussion 
(but frequently tends to be a reasonable approximation). 

For melting, it is often possible to find equivalents of the likely source else-
where (low-grade equivalents along strike, mantle xenoliths…). On the other 
hand, one of the modelling targets is to determine which (if any), among these po-
tential sources is the most plausible. One must think twice about facts that could 
be considered as obvious. For instance, using unmelted (mesosome) enclaves in 
migmatites is not advisable: if a rock escaped melting, it probably reflects a pecu-
liar, more refractory composition, and not at all that of the likely source.  

Numerical/graphical constraints 
Rarely, it is conceivable that the same source gave rise to several independent 
magma batches that subsequently evolved following different fractionation paths. 
For instance, this is the case of subduction-zone magmas primarily generated by 
metasomatized mantle melting, and that, depending on their depth of emplace-
ment, the water content, etc., differentiate following distinct crystallization paths. 
Then the trends defined by each suite would intersect in a single point, corre-
sponding to the common parental liquid (Fig. 22.1). 

In a completely closed system (a small magma chamber for instance, such as a 
small layered mafic complex), if one assumes that no magma has been lost during 
crystallization, the primitive liquid is the sum of the compositions of all the rocks 
present in the complex weighted by their relative abundances (McBirney and Noyes 

Fig. 22.1 a Theoretical diagram showing three magmatic series differentiated from the same pa-
rental liquid C0, but with cumulates of different modal composition. In this case all differentia-
tion trends intersect at the C0 composition. b Example of four suites of Archaean TTG from 
Eastern Finland, whose differentiation trends converge at about 67.5 wt. % SiO2, the composition 
considered as being that of the parental magma. After Martin (1985, 1987). 
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22.2.3 Composition of the Solid Phases (Cumulate/Restite) 

The nature of the solid phases involved in melting or crystallization is critical. 
However, these may be the most difficult parameters to determine: the number of 
possible minerals and the range of their compositions are vast. 

Geological constraints 
Often, geological information can be incorporated into the model: 

In the most favourable case, remnants of the solid (i.e., cumulate enclaves or 
fragments of the restite) can be found, and their compositions (and maybe min-
eral chemistries and proportions) directly measured. 
In lavas, the compositions of phenocrysts in the less differentiated members of 
the fractionation series are commonly regarded as a good approximation of the 
chemistries of the crystallizing phases. 
Sometimes, ideal minerals, or minerals with an arbitrary composition from the 
literature, can be used. This applies mostly to simple phases: e.g., the composi-
tion of plagioclase will be similar in all andesitic magmas. 
Experimental data on systems of relevant composition may constrain the 
chemical/modal compositions of the solid phases in equilibrium with the melt. 
Phase-equilibrium modelling predicts the composition of all the phases stable 
in the system (melt and solid). Of course, this approach solves the whole prob-
lem (if P, T and the system’s chemistry are fixed, the proportions and composi-
tions of all phases are calculated). Then there is no need for further mass-
balance modelling of major elements (see Next step box below). 

Crystallization and melting result from changing intensive parameters, es-
pecially temperature. Recent thermodynamic models are able to predict the 
amount and composition of all phases, including melt, in a system of given 
bulk composition and P–T conditions. Thus, instead of guessing or geo-

chemically constraining the composition of solid phases, it is possible to use more 
realistic models, assessing more precisely the nature, chemistry and amount of 
solid phases. Gone also is the assumption of a constant composition (mode and 
mineral chemistry) of the cumulate (respectively restite) during fractionation or 
melting—an unlikely, if not impossible proposition in a multivariant system, in 
which by definition a change in e.g. T is accompanied by changes in composition.
Technically, the most commonly used thermodynamic databases are:

MELTS (Ghiorso and Sack 1995) and pMELTS (Ghiorso and Sack 1995; 
Ghiorso et al. 2002) are able to deal with mafic liquids (komatiites to basalts), 
at mantle conditions. They do not predict realistic compositions for water-
present systems, shallow depths (crustal) or felsic liquids. Rhyolite-MELTS 
(Gualda et al. 2013) is identical to MELTS, but has been adjusted to model K-
feldspar and quartz. However, it is not able to assess equilibria involving large 
amounts of hydrous phases (e.g. biotite or amphibole) and should therefore be 
used primarily for differentiation of rhyolites or dry basalts (MORBs).
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THERMOCALC (Holland and Powell 1998, 2011), initially developed for
(high-T) metamorphic equilibria in the continental crust; a melt model (White et
al. 2001, 2007) has been added, which provides modest, but improving, provides
modest, but improving, abilities to deal with crustal melting and granitic liquids.
itic liquids.

Several programs are available to perform such calculations. They differ in terms 
of their minimization strategies, the databases and mineral models they incorpo-
rate, and the output format. The most commonly used software includes:

MELTS, bundled with its own database. This programme is effective for pre-
dicting the evolution of a liquid composition along a given P–T path, including 
options for fractionation, etc. (melts.ofm-research.org).
THERMOCALC also relies on its own database. It is designed to draw 
pseudo-sections and phase diagrams, but retrieving the phase compositions is a 
bit more difficult (www.metamorph.geo.uni-mainz.de/thermocalc).
PERPLE_X (Connolly and Petrini 2002) can use any mineral model, and many 
of them are bundled in the default distribution (e.g. Berman 1990; Taj manová 
et al. 2009), including THERMOCALC models. PERPLE_X is very good at 
generating gridded output mapping the system properties (phase proportions, 
phase compositions…) in P–T space. On the other hand, modelling fractiona-
tion along a P–T path is more involved (www.perplex.ethz.ch).
Theriak/Domino (de Capitani and Petrakakis 2010) is similar to PERPLE_X
albeit with slightly less accessible output (phase compositions) and fewer 
calculation options. It can also use all sorts of models but the set coded in the 
existing data files is restricted to a handful of databases. Preparing new 
models is fairly difficult (titan.minpet.unibas.ch/minpet/theriak/theruser.html).

In fractional crystallization (respectively melting), the geometric relations im-
posed by the lever rule imply that the cumulate (respectively restite), the initial 
liquid (respectively source) and the fractionated liquids (respectively melt) must 
be linearly aligned in any n-dimensional space (2  n  number of major ele-
ments). Therefore, we know in which portion of the diagram(s) the solid composi-
tion lies. In the common situation when CL is known and C0 inferred, C0, CS and 
CL are aligned on the linear trend, and CS plots on the opposite side from CL. 

This approach can be used to rule out one phase. In Fig. 22.2, the fractionation 
trend points towards hornblende, whereas biotite plots far away. Therefore, it is 
very unlikely that biotite played any significant role in shaping this trend.  

A more elaborate analysis is illustrated in Fig. 22.3, where the composition of 
the primitive and most differentiated liquids are assessed graphically. We can con-
strain the position of the cumulate as being on the left-hand side of the best-fit 
trends, between the most basic composition and the intersection with the horizon-
tal axes. The strongest constraint is provided by the SiO2–K2O diagram; there the 
intersection with the x-axis occurs at SiO2 = 50 %, further restricting the range of 
permissible cumulate compositions. As the lavas are basalts to basaltic andesites, 
the fractionating phases were probably plagioclase, amphibole and/or pyroxene(s)
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Fig. 22.2 Evolution of a suite of cogenetic liquids. It cannot result from biotite fractionation (its 
projection does not align with the trend) but can be driven by hornblende crystallization. 

with iron oxides. None of these contains K2O (as also suggested by the steep posi-
tive trend in the SiO2–K2O plot), so we can additionally assume 2 0K O

SC . 
Taken together, we can constrain the cumulate composition on the dashed line 

at K2O = 0, which yields SiO2 ~ 50 wt. % (red circle labelled CS). Knowing this 
silica value and using the other diagrams, the composition of the cumulate for all 
elements can be inferred.

Fig. 22.3 Harker plots showing a series of calc-alkaline lavas (black asterisks), and a possible 
graphical interpretation (red circles and the thick line). For explanation see text.  
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22.2.4 Partition Coefficients 

Measuring partition coefficients involves analysing mineral/melt pairs in chemical 
equilibrium, which is not a straightforward task. Some 25 years ago, most KD
measurements were done on phenocrysts in natural lavas, although it is not guar-
anteed that the crystals grew in equilibrium with the surrounding matrix. In addi-
tion, it is difficult to ensure that the matrix composition is representative of that of 
the melt. The only way to proceed consisted in analysing mineral and matrix sepa-
rated from the same rock. This was not only a tedious process, but also it was im-
possible to take into account problems such as phenocrysts zoning, or presence of 
inclusions (especially of accessory minerals). It is thus not surprising that most de-
terminations from that era gave extremely scattered and often inconsistent results 
(Rollinson 1993; Shaw 2006). More modern (roughly since the 1990s), in-situ 
analyses by ion probe or LA ICP-MS suffer less from these adverse effects. In ad-
dition they permit one to study experimental charges, for which the system pa-
rameters are better known (by definition).  

Reliable and exhaustive databases of KD values are found, for instance in 
Rollinson (1993) and on the GERM website (earthref.org/KDD). 

The lattice strain model as a tool to calculate KD values
Fitting a foreign atom in a crystal network involves deforming (straining) 
the lattice to accommodate the oversized/undersized cation. Therefore, the 

degree of compatibility depends primarily on the size of the ion relative to the site.
Blundy and Wood (1994 and subsequent work) tried to model the partition co-

efficients using the concept of “lattice strain”. In their formulation, the partition 
coefficient 

iDK of an ion of radius ri, in a site of size r0, can be expressed as: 

where E is the site’s Young modulus (empirically determined, as is r0), is the 
Avogadro number, R the gas constant and T the temperature (in K).

So far this approach has been used for several simple minerals (clinopyroxene 
and garnet, primarily). Smith and Asimow (2005) attempted to derive an internally 
consistent set for all minerals involved in mantle melting.
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Fig 22.4 The lattice strain model applied to zircon–melt partition coefficients in a peralkaline 
rhyolite at 700 °C. The fit is excellent for trivalent lanthanides, except Ce3+, which is due to the 
presence of both Ce3+ and Ce4+ in the melt (Blundy and Wood 2003)

22.3 Dealing with Accessory Minerals 

As shown in Chap. 13, modelling the behaviour of accessory minerals poses a 
special challenge. They contain large amounts of elements that only appear in 
traces in the whole rock; yet, a mass-balance based model is not adequate, because 
of their low modal abundances. The common approach, based on saturation equa-
tions, is not easy to implement. This section presents several alternatives. 

22.3.1 Assessing the Role of Accessory Minerals 

The possible role of accessory minerals (e.g. in fractionation) is documented by: 

Presence of accessories in thin section (optical microscope, CL, BSE), espe-
cially if clearly magmatic (euhedral, magmatically zoned…) (Fig. 22.5).
Models fitting analytical data for all elements, but inconsistent for the ones 
most likely to be controlled by accessories (Zr…).
Negative correlations between a differentiation index (SiO2, mg#…) and 
whole-rock contents of elements such as Zr, LREE, etc. (Fig. 22.6). 
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Fig. 22.5 Petrological identification of accessory minerals. a Optical microscope (cross-polarized 
light) image of a zoned allanite, rimmed by pistacite, in Karkonosze granite, Poland (Photo E. 
S aby). b Optical CL image of the Kozárovice granodiorite, Central Bohemian Plutonic Complex 
(Janoušek et al. 2000). Apart from plagioclase (ochre/dull yellow) and K-feldspar (blue), the 
technique reveals tiny bright yellow apatites concentrated mainly in hornblende (euhedral–
subhedral, non-luminescent mineral).

Fig. 22.6 Identifying the role of accessory minerals fractionation. a–b In the Sete Voltas Ar-
chaean plutonic suites (Brazil) (Martin et al. 1997), young grey gneisses show no correlation be-
tween SiO2 and Zr (a), whereas a strong negative correlation is observed in the porphyritic 
granodiorites (b), implying zircon fractionation. c P2O5 vs. CaO diagram discloses the role played 
by apatite during the differentiation of the Mazury granitoid Complex (Poland) (Duchesne et al. 
2010). For P2O5 > 0.7 wt. %, data plot on a trend pointing towards the apatite composition. 
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22.3.2 Modelling with Accessories 

The modelling approaches described so far have aimed at establishing equations 
linking the compositions of the melt with those of the solid phases. Integrating ac-
cessory minerals in such models is not straightforward, because the solubility laws 
are expressed in a different form. Nevertheless, the mass-balance equation can be 
written to include the behaviour of an accessory mineral: 

0 L L S S AcAcc cC f C f C f C   (22.1) 

With fAcc denoting its mass fraction and CAcc the content of the element under con-
sideration. If fS and fL refer to the mass fractions of the solid (other than the acces-
sory phase) and liquid, respectively: 

1L S Accf f f   (22.2) 

Since, by definition, accessory minerals occur in very small amounts, fAcc is negli-
gible compared to the other proportions. Then 1L Sf f and the notation can be 
simplified to the familiar form: 

0 (1 )
(1 )

L S AccAcc

L L Acc Acc

C FC F C f C
FC F DC f C

  (22.3) 

with D being the bulk distribution coefficient for all the mineral phases other than 
the accessory mineral. This equation can be used in two alternative ways: 

It is possible to express CAcc as a function of CL, writing /  /Acc L
D Acc LK C C

partition coefficient can be approximated as a constant or parameterized as a 
function of P, T, F…
the accessory mineral as any other cumulate (or residual) phase.  
One may assume that the composition of the melt (CL) is given by the solubility 
law, and it is therefore known. In this case, the equation has two unknowns, F
and fAcc. The system reacts to any change in F (melt fraction) by crystaliz-
ing/dissolving the accessory mineral, keeping CL buffered. Thus the CL is mod-
elled independently for the accessory-controlled ESC, and remaining elements.  

Using KD

It is possible to define empirical values of / Acc L
DK for various accessory minerals. 

Stoichiometric zircon, for example, has 497,644 ppm Zr. In a felsic melt, capable 
of crystallizing this mineral, Zr contents typically range from 100 to 1000 ppm. 
Consequently, /

Zr

Zrn L
DK can be set between 500 and 5000 (Fig. 22.7). This value can 

only be an approximation since, as we discussed (Sect.1 3.1) partition coefficients 
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 (see Next step box, Sect. 11.2.4). This amounts to treating

. This 



for minerals controlled by solubility are not constant, but a function of 
(see Exercise 22.1). 

Owing to their large KD values, such accessory phases have a disproportionate 
effect on the final value of D. Not all elements are equally affected, though. The 
situation can be rather bad for Zr, Hf, and some of the REE depending on the sta-
bility of monazite, allanite or (less commonly) xenotime. 

Fig. 22.7 Empirical partition coefficients for REE in typical accessory minerals of felsic igneous 
rocks. Strictly speaking, it is not possible to draw such a diagram for e.g. LREE in monazite or 
allanite, as they are not dilute components in these minerals and KD is a function of concentra-
tion. However, these diagrams use a log scale, such that the variations of KD (suggested by the 
grey fields) are reasonably small. Data sources: apatite and zircon: Nagazawa (1970); titanite: 
Simmons and Hedge (1978); allanite: Mahood and Hildreth (1983); monazite: Fleischer and

For instance, in a dacitic magma, all main rock-forming minerals have partition 
coefficients for LREE (i.e. La) less than unity (Mahood and Hildreth 1983; Nash

/ 1000All L
DK ,

/ 1All L
All Dm K  and La

A related trick is to take advantage of the fact that many accessories occur as 
inclusions in rock-forming minerals (zircon in biotite for instance). Thus they will 
fractionate (or melt) only when their host is involved. Instead of explicit model-
ling, one may simply adjust the KD value of the host phase. This would be a sum 
of the KD values for the host and the accessory, weighted by their mass fractions: 

  (22.4) 

Using saturation equations 
By definition, as long as buffered by the presence of an accessory mineral, the 
melt composition obeys the saturation law. The strongest control on saturation is 
typically exerted by the temperature. For modelling, it is thus necessary to know 
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and Crecraft 1985; Bacon and Druitt 1988; Sisson and Bacon 1992). However, if
only 0.1 wt. % of allanite crystallizes, since
becomes compatible, irrespective of the nature of the other 99.9 % of minerals.  
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Altschuler (1969); xenotime: Åmli (1975). 



how T varies as a function of F, or conversely. This is where coupling thermody-
namic and geochemical models (Next step box, Sect. 22.2.3) is of particular use.  

Alternatively, one can assume that the liquid was saturated throughout its evo-
lution (or a relevant portion thereof) (Evans and Hanson 1993; Hoskin et al. 
2000). Then, the saturation temperature of individual samples can be calculated, 
and curves of T vs. chemical parameters established. 

Effects on other elements 
Another issue with accessory minerals such as zircon is that the KD values are high 
not only for their stoichiometric components, but also for a range of other ele-
ments. For instance, zircon (ZrSiO4) can form solid solution with hafnon 
(HfSiO4), thorite (ThSiO4), coffinite (USiO4), but it is also able to contain up to 
4.4 wt. % REE2O3 or 10 wt. % Y2O3 (Hoskin and Schaltegger 2003). This trans-
lates to a very high KD (although Henry’s law is not applicable in this situation): 
ca. 1000 for Hf, and exceeding 100 for HREE (Fig. 22.7), higher than in most rock-
forming minerals (even garnet has KD for HREE lower than 50). This effect must 
also be taken into account, by adding to the cumulate (or restite) the relevant 
amount of accessory minerals for further trace-element based calculations. 

For zircon, knowing the whole-rock concentration 0
ZrC  and the saturation value 

Zr
L sat

C , the mass-balance relationship holds between C0, CL and the zircon crystals.
con crystals. The excess Zr, available to form zircon grains, is 0

Zr
L sat

C C . The
mass proportion of zircon crystallizing is then: 

0
Zr Zr

L sat
Zrn Zr

Zrn

C C
m

c
(22.5) 

with 
Zr
Zrnc  = 497,644 ppm in stoichiometric zircon. The resulting mZrn value (typi-

cally small) should be integrated into the calculation of D for other elements. 

The situation is more complex when several accessory minerals play a role 
(e.g., monazite and zircon) as they will “compete” for the trace elements 
available! The solubility equations must then be solved simultaneously.

Exercise 22.1: Modelling with accessory minerals

We shall develop a (forward) model accounting for the evolution of a rock suite 
undergoing fractional crystallization. The concentration of Zr (and potentially any 
other trace element hosted by zircon) will be modelled using several approaches 
(solubility or ad-hoc values of KD), that will be compared. 
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The dataset used here is synthetic, calculated by adding random noise to a 
Rayleigh fractional crystallization curve (see details in Sect. 24.3). Therefore we 
“know” that we can model the evolution of these rocks by fractionating up to 
(F = 0.42) of a cumulate specified in Table 22.1 (in real life, we would need to first 
establish this, see Exercise 9.1 or Worked example 1, Chap. 25): 

Table 22.1 Mineral proportions and mineral–liquid partition coefficients used in Exercise 22.1 

  Amp Pl  Ilm Zrn 

Prop. in cumulate 0.5 0.45 0.05  

KD 
Zr  0.02 0.01 10-5 3100 
Y 5 0.05 10-5 200 

noisy.data 
mincomp.data 

kd.data 

As already seen, the zircon saturation equation [Eq. (13.1)] is temperature depend-
ent. Based on experimental data on fractionation of andesites (e.g. Almeev et al. 
2013; Blatter et al. 2013; Nandedkar et al. 2014), we will use the following (to-
tally empirical!) equation to link composition and chemistry: 

 2 56( C) 1020 300
16

SiOT  (22.6) 

 Plot a binary diagram SiO2 – Zr. 
 Add the curve corresponding to the zircon saturation. 
 Assuming zircon KD values given in Table 22.1, draw a curve for zircon mass 

proportion of 0.002 (i.e. 0.2 wt. %). 

Clearly, it is not possible to calculate Zr saturation independently from the rest of 
the bulk composition, so we need to build a full forward model (see exercises 8.1 
to 8.3, 14.2). The code, taking advantage of GCDkit functions, also demonstrates 
how to incorporate different laws (mass balance, partition coefficients and satura-
tion-based) in a single model. As the primitive magma C0 we use sample a13 that 
has the lowest SiO2 content of 55.9 %.  
GCDkit-> loadData("noisy.data",sep="\t") # Read whole-rock data 

GCDkit-> mjrs <- c("SiO2","Al2O3","FeOt","MgO","MnO","CaO","Na2O", 

+   "K2O","TiO2") 

GCDkit-> trc <- c("Zr","Rb","Y") 

GCDkit-> c0.1 <- WR["a13",c(mjrs,trc)] 

GCDkit-> mincomp <- read.table("mincomp.data",sep="\t")# Mineral data 
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GCDkit-> mincomp <- as.matrix(mincomp) 

GCDkit-> minprop1 <- c(0.45,0.5,0.05,0) 

GCDkit-> names(minprop1) <- c("Pl","Amp","Mt","Zrn") 

GCDkit-> cs.1 <- as.vector(minprop1%*%mincomp) 

GCDkit-> names(cs.1) <- colnames(mincomp) 

GCDkit-> kd <- read.table("kd.data",sep="\t") # Kd data 

GCDkit-> kd <- as.matrix(kd) 

We need to link temperature and chemistry for saturation calculations, so we have 
an auxiliary function calculating T as a function of SiO2: 
GCDkit-> t.c <- function(si){ 

GCDkit->  z <- 1020-(si-56)/16*300  # Eq. (22.6) 

GCDkit->  return(z) 

GCDkit-> } 

The core of the model is the following function that returns the composition of the 
evolved liquid (CL) for a given value of F, with and without accounting for zircon 
saturation. The function calculates: 

Mass balance for major elements; 
Ordinary (Rayleigh-type) partitioning of trace elements, without saturation; 
Zr saturation values (using the Saturation plugin of GCDkit). If the Zr concen-
tration estimated by partitioning is lower, the system is not saturated. Other-
wise, the excess Zr should form zircon: we set the Zr concentration of the melt 
to the saturation value, and recalculate the D and CL for remaining elements .1

GCDkit-> cl.f <- function(ff,c0,cs,minprop){ 

GCDkit->  # Major elements 

GCDkit->  maj <- (c0[mjrs]-(1-ff)*cs[mjrs])/ff  

GCDkit->  # Trace elements (omitting solubility) 

GCDkit->  D <- minprop%*%kd # D values, not accounting for Zrn sat! 

GCDkit->  tr <- c0[trc]*ff^(D[1,trc]-1) 

GCDkit->  # Saturation values 

GCDkit->  milcats <- millications(maj[mjrs]) 

GCDkit->  sat.data <- zrSaturation(milcats,T=t.c(maj["SiO2"]), 

+   Zr=WR["a13","Zr"])  # call Saturation plugin 

GCDkit->  Zr.sat <- sat.data["Zr.sat"] 

                                                          

1 This is actually a slight approximation, as the trace-element content for each step is calculated 
relative to C0. A more precise approach would be an iterative calculation, whereby the concen-
tration for each step is obtained based on that from the previous step. The resulting model, 
however, is not very different, such that this more complex approach is not justified by the 
improvement in accuracy. 
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GCDkit->  M <- sat.data["M"] 

GCDkit->  # Correction for Zrn 

GCDkit->  if(tr["Zr"]<=Zr.sat){ 

GCDkit->   tr.c <- tr 

GCDkit->   zrc.prop <- 0 

GCDkit->  }else{ 

GCDkit->   zr.excess <- tr["Zr"]-Zr.sat 

GCDkit->   zrc.prop <- zr.excess/497644 

GCDkit->   m.pr <- minprop 

GCDkit->   m.pr["Zrn"] <- zrc.prop 

GCDkit->   m.pr <- m.pr/sum(m.pr) 

GCDkit->   D.c <- m.pr%*%kd 

GCDkit->   tr.c <- c0[trc]*ff^(D.c[1,trc]-1) 

GCDkit->   tr.c["Zr"] <- Zr.sat 

GCDkit->  } 

GCDkit-> z <- c(maj,M,Zr.sat,zrc.prop,tr,tr.c) 

GCDkit-> names(z) <- c(mjrs,"M","Zr.sat","Zrn.prop", 

+  paste(trc,"nosat",sep="_"),trc) 

GCDkit->  return(z) 

GCDkit-> } 

The rest is simple; we define a range of F values and sapply the above function to 
them. A nice feature of this approach is that we model CL compositions for all 
elements (major and traces) simultaneously, based on the same assumptions. Thus 
the model is internally consistent and can be plotted on any diagram. 
GCDkit-> f.1 <- seq(1,0.42,by=-0.01) 

GCDkit-> qq <- sapply(f.1,cl.f,c0=c0.1,cs=cs.1,minprop=minprop1) 

GCDkit-> fwd.mod <- t(qq) 

For instance, let’s investigate the effect of zircon saturation:
GCDkit-> binary("SiO2","Zr",pch=15,ymax=300)  

GCDkit-> lines(fwd.mod[,"SiO2"],fwd.mod[,"Zr_nosat"],lty="dashed", 

+  col=2) 

GCDkit-> lines(fwd.mod[,"SiO2"],fwd.mod[,"Zr"],col=2) 

We can also look at the (apparent) :
GCDkit-> print(497644/fwd.mod[,"Zr"]) 

As expected, its value changes during fractionation; the average of ca. 3080 justi-
fies our choice of 3100 for the simplified calculation. 

Now, for comparison, we will calculate a fractionation curve (for the portion of 
the diagram above zircon saturation level—i.e. above ca. 66 % SiO2). First, we find 
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the saturation point, i.e. the last step for which the Zr content is the highest . This 
becomes the new C0, which is plotted. 

2

GCDkit-> j <- which.max(fwd.mod[,"Zr"]) 

GCDkit-> c0.2 <- fwd.mod[j,] 

GCDkit-> points(c0.2["SiO2"],c0.2["Zr"],cex=2,pch=8,col="purple") 

The range of F values must also be redefined, relative to the new source. Since 
this composition was obtained for f.1[j] = 0.54, we have Fnew = Fold/0.54 and 
the new range of F values will be from 0.54/0.54 = 1 to 0.42/0.54 = 0.78. We can 
use the previous function, cl.f: it will give extra information, so we will keep 
only what is needed. Before invoking it, we must modify the mineral proportions 
by adding the required amount of zircon. Finally, we plot the curve on top of the 
previous diagram. 
GCDkit-> zrc.amount <- 0.002 

GCDkit-> f.2 <- f.1[j:length(f.1)]/f.1[j] 

GCDkit-> minprop2 <- minprop1 

GCDkit-> minprop2["Zrn"] <- zrc.amount 

GCDkit-> minprop2 <- minprop2/sum(minprop2) 

GCDkit-> qq <- sapply(f.2,cl.f,c0=c0.2,cs=cs.1,minprop=minprop2) 

GCDkit-> fwd.mod2 <- t(qq) 

GCDkit-> lines(fwd.mod2[,"SiO2"],fwd.mod2[,"Zr_nosat"],col="purple") 

By invoking the previous code repeatedly (changing the value for zrc.amount) or, 
even better, wrapping it in a function taking zrc.amount as a parameter, we gen-
erate Fig. 22.8a. The same code (replacing “Zr” by “Y”) provides Fig. 22.8b.

The best fit is obtained for a zircon mass fraction of 0.25 % (2.5 × 10–3) (solid 
curve). Using a saturation model, the amount of zircon varies from 10–5 to 5 ×10–4,
i.e. is orders of magnitude lower. Therefore, the effect of this approach is more pro-
nounced on other elements. The effect of zircon on Y is visible, but tiny, and 
likely to be drowned in analytical uncertainties.  

This exercise demonstrates several points, some of which will be addressed latter: 

The need to model simultaneously major and trace elements (obvious in the 
case of Zr solubility!), as opposed to simply drawing curves on a diagram; 
The fact that elaborate models (here, based on solubility) do not necessarily 
provide a better match to the data than simple ones (here, a Rayleigh law); es-
pecially if the data, like all natural datasets, are noisy; 
The effect of accessory phases on other elements is noticeable, but normally 

KD). This is a result of their low modal abundance. 

                                                          

 We could also look for the last step with a predicted amount of zircon equal to 0. 2
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Fig. 22.8 a Comparing models based on zircon solubility (red), with those using a KD approach 
(here with  = 3100, purple). Various mass proportions of zircon (1, 0.5, 0.2 and 0.1 wt. %) 
are labelled on the curves. The C0 for these models is the purple star. The dashed red curve por-
trays the evolution with no zircon at all (beyond the saturation point). Squares correspond to the 
actual dataset ( ). b Effects of the same models on Y concentration.  

22.4 Constraining the End-Members of a Mixing Model 

Whenever a rock, or a suite of rocks, is suspected to have been generated by mix-
ing, the challenge consists in identifying two (or more) suitable end-members. The 
most obvious strategy is to use the compositions of the extreme (the most/least 
silicic) rock types found in the studied series. This can, however, be misleading. It 
may well be that even these extreme compositions are hybrid already. Likewise, it 
is possible that the most basic rock represents, for instance, a mixture between 
cumulate and mafic liquid. Alternatively, the most acid composition may corre-
spond to fluid-rich igneous rocks, or melts of the country rock, having nothing to 
do with processes occurring at deeper crustal levels. Special attention must be paid 
to mafic microgranular enclaves (MME). Many geologists consider them as possi-
ble end-member for mixing in granites. However, MME may undergo chemical 
and isotopic exchange with the remaining host magma or late-magmatic fluids. 
This affects especially the mobile elements and, among the radiogenic isotopes, 
Sr. Thus, the utility of the MME in petrogenetic studies may be limited (Pin et al. 
1990; Elburg 1996). 

For these reasons, it is not uncommon to invoke hypothetical end-members, 
such as a theoretical mantle melt (even if no basalt is preserved). Such a composi-
tion can be deduced from experimental petrology, or calculated using direct mod-
elling approaches. 

When using isotopes, recognition and quantification of open-system processes 
requires the existence of an isotopic contrast between the end-members. Some iso-
topic systems in a particular case are more prone to contamination, others not. If 
the concentration of the given element in the magma, compared to the assimilant, 
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is high, the isotopic composition will be essentially buffered until high degrees of 
contamination. For example, Bohemian Variscan lamprophyres and ultrapotassic 
intrusions have high Sr and Nd contents that rendered them resistant to crustal as-
similation during intrusion. For this reason, their crust-like Sr–Nd isotopic signa-
ture must reflect enriched mantle source or its contamination by a deeply sub-
ducted felsic crust (Janoušek et al. 2010). 
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Chapter 23  
Numerical Tips and Tricks 

Geochemical modelling is an art as much as a science. In many cases, in addition 
to the geological constraints discussed above, some numerical tricks—mostly re-
lated to the behaviour of the compositional space—may provide substantial help. 

23.1 The Size of the Geochemical Space 
It is vital to remember that a 2D graphical representation (such as a binary diagram) 
is a projection of the p-dimensional space onto a plane. An important skill for 
geochemists is to find the right viewing angle (projection) that best emphasizes the
features of interest. 

As an illustration, let’s consider a binary diagram, where the geochemical data 
define a straight or a curved trend. Without further examination of the data (in the 
full p-dimensional space), it is not possible to decide whether this corresponds to 
an actual evolution (Fig. 23.1a), or to an artefact resulting from the projection of a 
more or less flat cloud of data onto the X–Y plane (Fig. 23.1b). By the same logic 
we can interpret a triangular data array on the X–Y plane. If, in 2D, data points 
fall in a small section of a plane (a triangle) defined by three end-members, it may 
correspond to a legitimate ternary mixing (Fig. 23.1c). Or it reflects a meaning-
less, essentially random 3D distribution (Fig. 23.1d). 

Clearly, there are better viewing angles. In Fig. 23.1b for instance, projecting 
the data in an X–Z or Y–Z plane, or even better, from a direction perpendicular to 
the data plane, would reveal the whole compositional range. On the other hand, 
looking at the same data “from the top” (projected on the X–Y plane) makes them 
appear as a line. This notion underlies the concept of Principal Component Analy-
sis (PCA), which is essentially a numerical technique that defines the directions in 
the geochemical space in which the dataset has the highest variance. These direc-
tions are called the first, second etc. principal components, and each of them is asso- 

 
Principal component analysis (PCA) in R/GCDkit 
GCDkit can calculate and plot PCA for the current dataset, from the 
menu Calculations|Statistics|Principal components. Several other op-

tions for statistical treatment of the dataset are present in the same menu; the un-
derlying R functions are described in Reimann et al. (2008). 
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ciated with a proportion of the total variance of the data. 



Fig. 23.1 A straight line in a X vs. Y binary diagram may (a) or may not (b) correspond to a true 
binary mixing array in the underlying p-dimensional space (here, p = 3). In the same way, a tri-
angle may (c) or may not (d) reflect a mixing between three end members in the full 
p-dimensional space (p = 3).

When PCA is applied to geochemical datasets from igneous rocks, the first com-
ponent often reflects differentiation (it is positively correlated to SiO2, and nega-
tively to MgO and FeO). Experimenting with your own datasets will reveal that 
the first three or four principal components generally carry up nearly all of the to-
tal variance of the dataset. Practically, this 
pher more than three or four components of the geochemical signal, for instance 
end members in mixing. 

Projections and compositional space
More detailed analysis of the geometric properties of the p-dimensional 
compositional space is frequently used in metamorphic petrology. Even 

though it has been successfully applied e.g. to isotopic systematics of oceanic ba-
salts (Allègre et al. 1987; Iwamori and Nakamura 2012), such an approach is not 
so common in igneous petrology. Good presentation of this topic including the 
meaning and use of various projections, the interpretation of compositions as vec-
tors and the application of linear algebra to rock compositions, can be found for 
instance in chapter 6 of Spear (1994), or in the program C-space (Torres-Roldan 
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indicates that it is not possible to deci-

et al. 2000) and accompanying documentation.



 

23.2 Reducing the System 

Whenever a mineral is the only, or main, host for a specific element (e.g. Ti in

termined independently. Moreover, its chemical inventory can be subtracted and 
the “remaining” bulk composition adjusted accordingly. From a mathematical 
point of view, this amounts to removing one equation (for the element used), and 
one unknown (the given mineral mass fraction) from the system. 

Likewise, if a mineral is a simple oxide (quartz, rutile), the relevant element 
can be adjusted independently from the others. This is equivalent to reducing n 
(number of minerals) by 1. 

23.3 Colinearity 

It is common for several mineral assemblages to share the same bulk composition. 
For instance, a mixture of 1 Fo + 1 Qtz is chemically equivalent to 2 En: 

 2 4 2 32
QtzFo En

SiOMg SiO MgSiO   (23.1) 

Therefore, if a solution is reached using En, (numerically) an equally valid one 
can be obtained with Fo + Qtz (Fig. 23.2). Of course, this example is rather silly 
from a petrological point of view, since forsterite and quartz do not coexist. More 
realistically, the chemical composition of an amphibole is equivalent to that of an 
assemblage of plagioclase + pyroxene + water. Consequently, when a model fits 
data for a plagioclase + pyroxene cumulate,
plagioclase) would yield a comparably good solution. Which one is the more real-
istic depends on petrological, not numerical, considerations (see Chap. 25 for an 
example of practical application of this). 

 
Fig. 23.2 Olivine, orthopyroxene and quartz are linearly aligned. Here, a fractionation trend is 
controlled by a cumulate with composition of CS, falling on the line between quartz and olivine. 
CS can be expressed equally well as a mixture of olivine + orthopyroxene, or olivine + quartz, 
but the second option is petrologically unlikely as these two minerals do normally not coexist. 
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 amphibole (± a smaller amount of 

ilmenite), the amount of this phase in the fractionating solid assemblage can be de-



23.4 Breaking Minerals into End Members 

When modelling major-element behaviour, a common trick involves breaking 
down minerals into their end-members. For instance plagioclase is treated as two 
phases (pure Ab and An); similarly titanomagnetite is considered as a mixture of 
pure magnetite and rutile. This approach removes the need to make an assumption 
on the composition of the solid solution as this will come out as a result of the 
model (see Chap. 25 for an application). An additional benefit pertains to overde-
termined systems, i.e. when there are more equations (p) than unknowns (n)

n = p for which there is an exact solution . However, this app-1

23.5 Coupling Majors and Traces 

A common issue related to geochemical modelling as presented in many papers, is 
that they are based on a restricted number of elements. Most often the computed 
model really boils down to a curve on a diagram. In this case, the model satisfac-
torily predicts the behaviour of the elements or isotopic systems taken into ac-
count, but does not provide any information on the remaining ones. Thus it is im-
possible to assess the internal consistency of the proposed scenario. 

For instance, modelling based solely on isotopes could lead to a conclusion that 
a basalt has been contaminated by ~50 % of continental crust, but this is unrealis-
tic because such a magma would not be basaltic anymore. Another classical ex-
ample is that of trace-element modelling indicating that a parental magma differ-
entiated by e.g. 50% fractional crystallization of amphibole. However, parental 
magma containing 5 % MgO cannot crystallize 50 % amphibole containing 15 % 
MgO (the computed value for MgO

LC  would be negative, here –5 %). In other words, 
the system does not contain enough MgO to precipitate 50 % of amphibole. This
issue is not obvious from trace elements alone (as the laws are multiplicative), but 
becomes clear from major elements (that use subtractive equations). 

On the other hand, we have also discussed the fact that major and trace ele-
ments carry different information. Most importantly, processes cannot be distin-
guished using majors only (Sect. 21.3). Therefore, it is vital to build internally-
consistent models accounting for the largest possible range of elements (and iso-
tope ratios). Major and trace elements should be coupled. For instance, a forward 
model should calculate simultaneously the composition in major (via mass bal-
ance) and trace elements, using the same mineral proportions in both cases.  

                                                          

1 Note that the phase rule is not violated, as the increase in number of components is a pure nu-
merical exercise—physically, the phases were solid solutions.
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(Sec. 7.2). This trick artificially increases the number of unknowns, bringing the
system closer to 
roach is limited by the fact that if the number of unknowns exceeds that of

), the system becomes underdetermined and cannot be solvedn > pequations (
(Appendix C).



A common strategy involves a mixed approach, solving the reverse problem for 
major elements (least-square method), and using the mineral proportions as the in-
put into a forward model for traces (see Martin 1987 for an example of this 
approach, or the Part VI). 

This Space Left Blank for Your Own Tricks 
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Chapter 24  
Common Sense in Action 

One of the most commonly heard complaints about geochemical modelling—and 
indeed, one of the worst problems of this approach—is that it is very easy to get 
bogged down in numerical subtleties and lose touch with the underlying geologi-
cal reality. Most importantly, a geochemical model is developed in order to under-
stand and quantify a geological process. Thus any sound model must rest on a 
solid geological understanding of the problems involved. In here, we disuss some
of the limitations of geochemical modelling applied to geological problems.

24.1 Physical Constraints 

Modelling based on mass balance describes the evolution of igneous rocks in 
purely chemical terms—i.e. focussing on conservation of mass. Equally important, 
however, is the conservation of energy, in other words, physical constraints. Cur-
rently, comprehensive models coupling chemical and physical models are not rou-
tinely used; yet one should, at least, make sure that a proposed geochemical model 
is not grossly inconsistent with physics. 

24.1.1 Thermodynamic Constraints 

Thermodynamic constraints are probably some of the most often ignored physical 
controls in geochemical modelling.  

Melting, for instance, is a strongly endothermic process, such that its magnitude 
(F) is strongly controlled by the available heat supply (Thompson and Connolly 
1995; Henk et al. 2000; Annen et al. 2006; Sawyer et al. 2011; Bea 2012).  

Assimilation involves physical disruption of the assimilated rock, and its subse-
quent melting. Both are very expensive processes in terms of energy. The sophis-
ticated AFC equations with many parameters can be easily tweaked to yield solu-
tions nicely reproducing the observed variation. Still, they may be geologically 

sically permissible parameters during 
e Next step boxes). The rate of assimilation 
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unrealistic (Roberts and Clemens 1995), as they ignore the constraints imposed by
conservation of energy. In fact, the range of phy
AFC is restricted (see Sect. 11.4, including th



to fractional crystallization (r) is governed by the thermal state of the assimilant 
(Reiners et al. 1995); it tends to be low for cold upper crustal rocks and higher for 
hotter deeper ones. Nevertheless, r is unlikely to be higher than about 1, as the 
amount of heat required in order to melt a mass of country rock roughly equals the

24.1.2 Mechanical (Rheological) Constraints  

There are also several mechanical issues related to the rheology of partially molten 
system (Arzi 1978; Rosenberg 2001). Depending on the interplay between the 
many parameters such as viscosity, temperature, strain rate and melt fraction, 
solid–liquid segregation may be more or less efficient. Note also that most of these 
parameters are not independent of each other, but are somehow related to the chemi-
cal properties we are trying to model! This has important implications for the fea-
sibility of generating differentiated magmas (Vigneresse and Burg 2004). 

Crystallization  
In a liquid-dominated system (Newtonian viscous medium), the speed of gravita-
tional settling of particles (crystals) is expressed by Stokes’ (1901) law: 

22
9

p
s

r
v

g
  (24.1) 

where vs is the sinking velocity, rp the particle’s radius, g gravitational constant, 
 the density difference between the particle and the melt, and  the viscosity.  
In a non-Newtonian fluid, the critical radius below which a crystal would not 

sink solely under the effect of gravity is (McBirney and Noyes 1979): 

3 y
critr

g
  (24.2) 

where y is the yield strength of the fluid. In a typical felsic magma,  = 105 Pa.s, y

= 10 Pa and magma = 2300 kg.m–3 (Turcotte and Schubert 1982). The critical radius 
for a zircon (   = 4650 kg.m–3: Anthony et al. 2014) is ca. 1.3 mm: it is unlikely that it 
would reach this size. Therefore, gravitational settling is unable to extract this mineral 
out of the magma from which it crystallized. A biotite has a lower density (   = 3000 
kg.m–3; Anthony et al. 2014), but typically a larger size; its critical radius is 4.4 mm, a 
perfectly feasible size for a biotite in a felsic magma. The sinking velocity of a 5 mm 
biotite is, from Eq. (24.1), 3.8 × 10–7 m.s–1 (ca. 12 m/yr). Crystal/liquid segregation 

A mafic or ultramafic melt has a much lower viscosity: ca. 1 Pa.s in komatiites, 
50–100 Pa.s in basalts (Spera 2000). Under these conditions, a 1 mm olivine  
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heat released by crystallization of the same mass of magma (De Paolo 1981; Taylor
and Sheppard 1986). 

would be possible but sluggish. 



( = 3400 kg.m–3; Anthony et al. 2014) may reach a sinking velocity of 1–2 mm/s 
in a komatiitic magma. 

Pure gravitational settling is appropriate for magma chambers subject to no ex-
ternal stress: a situation possible for e.g. mafic layered intrusions (McBirney and 
Noyes 1979), but very unlikely for large felsic bodies (Bouchez 1997). In the lat-
ter case crystal–liquid segregation may be assisted by processes such as filter-
pressing or magma flow (Bachmann and Bergantz 2004, 2008). 

Melting 
The key issue that governs melt extraction from the partially molten source is the 
connectivity of the melt network. This is controlled by the wetting angle of the 
melt phase in its solid matrix (Laporte 1994). A wetting angle below 60° would 
result in an interconnected melt network even for low melt fractions (Fig. 24.1a); 
whereas higher wetting angles would yield melt in small, isolated pockets at grain 
boundaries (Fig. 24.1b). Experimental data show that the wetting angles tend to be 
low for minerals such as olivine, but higher for quartz and feldspars (Laporte 
1994). Therefore in mafic systems, the melt is easily segregated from its residue; 
in felsic rocks, melt segregation is much more difficult to achieve. 

Fig. 24.1 Wetting angle and melt network connectivity. a With a wetting angle < 60°, melt forms 
an interconnected network along grain boundaries. b When the wetting angle is > 60°, melt con-
centrates in isolated pockets at the grain corners (Laporte 1994). © Springer

Again, melt segregation could be assisted by deformation (Vigneresse and Burg 
2004). Felsic systems are therefore likely to behave in a dual way: at low melt 
fractions, melt is not extracted; at higher melt fractions, the melt pockets become 
interconnected, the system switches to a liquid-like behaviour and the resulting

t still not efficiently segregating solids from 
liquids. 

ba
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In summary, for mafic systems it is very easy to achieve melt/crystal separa-
tion, be it during crystallization or melting. Fractional processes are perfectly fea-
sible, and low-melt fraction (F) liquids may exist. In felsic systems, liquid/solid 
segregation is more difficult, and may only exist if assisted by deformation. Low-
F liquids are less likely to be observed, and batch processes are more feasible. 

24.2 Scale and Speed of Processes—Approach to Equilibrium 

Chemical equilibrium is attained when the reactants and products of a reaction are 
present in concentrations that do not change with time. Thermal equilibrium oc-
curs when there are no temperature changes in the system. In both cases, this does 
not preclude a dynamic balance of heat or material fluxes between components of 
the system. 

Perfect equilibrium is never achieved in nature. It is however possible to break 
down a continuous process into a succession of infinitesimal equilibrium states, 
between which parameters (temperature, concentration…) vary 
For each step, the system can be treated as in equilibrium, which implicitly as-
sumes that it reacts sufficiently fast to the changes.  

In geochemical modelling, the term “equilibrium” is used to imply such a situa-
tion, i.e. a system reacts to (temperature-induced mostly) changes more quickly
than is the rate of heating or cooling. This tends to be a sound assumption, because 
heat diffusion  is sluggish in natural materials (e.g. Turcotte and Schubert 1982),
whereas the kinetics of mineral reactions is strongly temperature-dependent, and 
therefore reasonably fast at igneous temperatures (Spear 1994). However, there 
may be situations where this assumption fails—in particular when the anatexis 
was short-lived, the system dry or cold, the source infertile and/or some of its 
components incapable of equilibrating with the melt. Some minerals are refractory 
and difficult to re-equilibrate; others may have failed to communicate with the 
melt, having been shielded by such refractory, or newly grown peritectic, phases 
(Watson and Harrison 1984). Also the solubility of accessories, often hosting a 
significant proportion of trace elements and radiogenic isotopes, is limited  
(Chap. 13). This is shown e.g., by the common occurrence of inherited zircon in 
low-T, anatectic granites (Miller et al. 2003). 

1

In all these scenarios, equilibrium is not attained, primarily because the chemi-
cal process is slower than the rate of temperature change. However, one may note 
that this definition largely relies on equilibration time, itself a function of the sys-
tem size. From this observation is derived the concept of “equilibration volume”, 
i.e. the portion of a system that is small enough to allow equilibrium. This notion, 
although not new (Blackburn 1968) is increasingly used as a tool to decipher 
complex metamorphic textures, such as partially reacted assemblages or 

                                                          

1 Of course, if heat advection or convection are significant, disequilibrium, in the sense discussed 
here, is much more likely. 
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only slightly.



phenocrysts preserved from igneous protolith (e.g. Tinkham and Ghent 2005
amongst others). In effect, a very similar approach is used for igneous rocks. In a 
“non-modal” melting model, one assumes that only a part of the system (although 
its spatial extent is not explicitly specified) was involved in melting. “Disequilib-
rium”  approaches (i.e. models based on melting or crystallization affecting only 
a portion of a rock) have been successfully used to account for trace-element 
(Barbero et al. 1995; Villaros et al. 2009) or isotopic (Knesel and Davidson 1996; 
Farina and Stevens 2011; McLeod et al. 2012) characteristics of melts, primarily 
during (relatively low-T) crustal melting.  

2

From this it is clear that the notion of equilibrium (from an igneous perspective) 
is very strongly dependent on the scale of observation. Pushing the reasoning to 
the absurd, it is clear that equilibrium is not attained at the scale of the whole man-
tle (melts generated there are not in equilibrium with a bulk mantle composition). 
As one looks at smaller volumes, equilibrium becomes more likely. On the other 
hand, there is in general little point in considering equilibrium volumes that are 
too small (a few grains). The resulting melts are likely to be eventually mixed and 
homogenised, and any such subtle chemical variations erased. 

The size of the equilibration volume to consider for geochemical modelling of 
magmatic rocks has to be decided on a case-by-case basis. Depending on the tem-
perature of the processes studied, duration, presence of fluids etc., it may range 
from a few mm3 (similar to equilibration domains in metamorphic petrology), 
through a hand-specimen, to that of a rock unit. 

24.3 Is Your Model Worth Your Efforts? 

In general, the more complex the model, the longer it will take to develop. It is, 
therefore, important to think beforehand whether it is worth the added complexity, 
and how precise or detailed an answer is needed. In addition, complex models 
tend to require more input data: fewer parameters of a simple scenario are likely to 
be much better constrained that many of a complex one. Finally, a model is not 
built for its own sake, but for comparison with real data. If they are of poor quality 
(be it for analytical problems, or limited understanding of the geology involved), 
modelling will fail to discriminate between possible solutions. 

                                                          

2 Depending on the context, the opposite to “equilibrium” can be either “disequilibrium” or
“fractional”, which is why the term “equilibrium” is not used in this book to describe a class of 
models (see Warning box at beginning of Chap. 11). Fractional melting (or crystallization) is 
not a disequilibrium process, as the system still reacts sufficiently fast to the changes to be re-
garded as in equilibrium at any point in time! 
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24.3.1 How Well Can We Discriminate Between Models? 

In the preceding text, different equations were written in order to describe various 
situations that are encountered during melting, crystallization or mixing. In theory, 
individual processes do produce distinct trends in geochemical plots. However, in 
many cases the difference is less than the scatter in the dataset. All natural datasets 
are intrinsically noisy due to: a) analytical errors, b) variable alteration of individual
samples, that is hard to totally avoid, c) limited sample size vs. that of possible 

and/or d) multistage, complex genesis. The latter may reflect superposition of
several processes, such as melting of different portions of a source, crystallization, 
variable contamination, crystal accumulation or metasomatic redistribution of
elements by fluids.  

In general, geochemists try to model only the dominant process(es), thus sim-
plifying the problem by ignoring the other mechanisms. However, all of them af-
fect to varying degrees the whole-rock compositions, and introduce some addi-
tional variability in the dataset. When these variations are large, they are easily 
recognizable and we try to incorporate them in a more complex model. When they 

In order to discuss whether it is practicable to distinguish between different 
models, we have built a synthetic dataset (the same as used for Exercise 22.1) .
The advantage is that, unlike for natural data, the true evolution line is known, and 
it is possible to compare models against it. This dataset has been generated by cal-
culating the theoretical evolution of a calc-alkaline basaltic magma, crystallizing 
Pl + Amp + Mt, with Zrn added using the saturation concept. “Sample” composi-
tions were obtained by randomly modifying the ideal composition based on a 
normal distribution (2  = 5 % for majors and 10 % for traces). These computed 
values scatter around the actual model curve like natural datasets do.  

3

Figure 24.2 compares the difference between three principal petrogenetic mod-
els (fractional crystallization, melting and mixing), with the noise of our synthetic 
dataset. Clearly, processes are efficiently distinguished only when considering 
elements with contrasting behaviour and with D values very different from 1 (if D
= 1, all equations collapse to linear). Even so, the fit between the true model 
(Rayleigh fractionation) and the data is satisfactory, but not great—there is sig-
nificant scatter around the curve. The use of a log scale does not make a differ-
ence: Rayleigh curves are linearized (cf. Fig. 24.2c and f), but when the D values 
are too similar or too close to 1 (cf. Fig. 24.2a–b with d–e), this does not help. 

In the light of this, one may question the use of elaborate models such as AFC 
or fractional melting. While they may be intellectually satisfying, in that they ar-
guably incorporate geologically more realistic processes, they may not be distin-
guishable on geochemical grounds, and may actually bring no further insight! 
Likewise, the use of complex solubility equations (Sect. 22.3) may, or may not 
                                                          

3 The code generating this dataset is given in full on the Web site.
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heterogeneities (accumulated crystals, incompletely mixed magma batches, etc.), 

are small, they are easily considered as natural noise and overlooked. 

http://book.gcdkit.org/Part_5/Figs/partV_generate_synthetic_data.r


generate a better model than simpler approaches. Therefore, it is wise to start with 
using basic equations, and resort to more complex models only when needed. 

Fig. 24.2 Effects of analytical noise and projection used to represent the data. The dataset plotted 
(noisy.data, black squares) was calculated by adding random noise to a Rayleigh fractiona-
tion evolution (thick red curve, i.e. the “true” model). The blue and green curves correspond to 
mixing and batch melting models. In many cases, a poor choice of axes leads to diagrams where 
distinct models are not distinguishable. The dashed line in (i) is a linear fit to the dataset.  

24.3.2 Dangerous Projections 

Sometimes, the graphical representation used to show modelling results is mis-
leading. Consider, for instance, popular ratio diagrams such as the ones on
Fig. 24.2g–i . In theory, of course, such a projection is appropriate to distinguish 
between a mixing trend (a straight line), and a crystallization or melting curve. 
However, the use of a ratio-based projections (and even worse, the fact that both 

4

                                                          

4 Such a diagram was recently spotted by one of the authors in a presentation that shall re-
main anonymous.
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axes have a common denominator) creates an apparent linear correlation (Chayes 
1971; Le Maître 1982; Rock 1988; Rollinson 1993). In Fig. 24.2g, fitting a 
straight line to the data gives an excel
the obviously poorer fit of Fig. 24.2i 
geochemists would confidently assume 
relationship, and hence favour a mix
generated by fractional crystallization. 

24.3.3 KD vs. C0—What Should You Improve First? 

During fractional crystallization modelling, the importance of accurate KD should 
not be overestimated. In Fig. 24.3, we compare the effects of inaccuracy on the 
value of D (a), and of C0 (b), again using the noisy dataset as in Fig. 24.2. Both 
panels show the real value for C0 and the real fractionation curve, as well as the 
dataset that we are trying to reproduce. 

Fig. 24.3 Simulation of the effects imposed on Rayleigh-type fractionation curves by uncertain-
ties in D (a) and C0 (b). In both plots, the thick red curve is calculated using the “real” value for 
C0 (Rb = 30 ppm and Ni = 50 ppm; red star) and D (DRb = 0.025 and DNi = 6.6). The black 
squares represent the “noisy” dataset. For explanation, see text.

Figure 24.3a investigates the effect of errors on D. Fifty dark red curves were gen-
erated by randomly choosing DNi and DRb within 20 % of the true value, i.e. 
1.2×Dreal > D > Dreal/1.2. The resulting scatter is noticeable, but not higher than 
the typical dispersion of whole-rock analyses from magmatic series. An error of 
this magnitude will most likely be drowned by other uncertainties (sampling, ana-
lytical, etc.). Two hundred pink curves were calculated by choosing D values such 
that 2×Dreal > D > Dreal/2. Here the scatter is worse, although the overall shape of 
the fractionation curve is preserved. This suggests that there is little to gain in re-
fining D beyond a certain point. 

In Fig. 24.3b we investigate the effect of uncertainties of the same magnitude 
on C0. Quite clearly, an error of 20 % still gives acceptable results, although much 
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lent result, with an R2 value of 0.99. Even
(dashed line) still has a R2 of 0.74. Most
such values to be hard evidence for a linear

ing model; whereas the data were actually

http://book.gcdkit.org/Part_5/Figs/Fig_24.3_varying_D_C0.r


worse than in Fig. 24.3a. On the other hand, curves generated by an error of a fac-
tor of two cover the whole diagram. 

In general, it must be kept in mind that the composition of a melt is also a func-
tion of the source (or primitive liquid) composition (C0) and F—parameters for 
which there are considerable uncertainties. Even though KD is a source of error, it 
is perhaps not the worst offender in most models. It seems more important to en-
sure that the ratios between individual KD are right, as this would eventually con-
trol the ratio in the melt. Indeed, many geochemists would rely more on ratios 
(such as Zr/Nb, Nb/Ta, etc.) than on absolute values. On the other hand, a good 
determination of C0 is more crucial, as it can easily lead to meaningless results. 
This is perhaps more important during partial melting, as modelling relies on a se-
lection of a possible, although rarely 
of a fractionating series is generally observed. In other words, the most important
aspect of modelling is to get the geology right, and to understand what is actually
melting (or fractionating)! 

24.4 Back to the Field! 

In a sense, the most critical input parameter in any model remains the geological 
understanding. There is, for instance, little point in trying to build a model for a 
dataset that includes rock units of distinct ages. Therefore, modelling should be 
endured on a well-designed dataset, including only relevant data. This may in-
volve heart-breaking decisions, such as discarding some of your precious analyses. 
In any case, such a judgement can only be made on the basis of geological under-
standing of the studied region. 

Finally, one cannot stress strongly enough that the ultimate test for a model is 
its geological consistency. Therefore, models that invoke sources absent from the 
studied area; that predict volumes of rocks not matching the observed distribution; 
that require thermal regimes totally at odds with the local record, or impossibly 
high melt amounts are of no use. Although such models may pass the geochemical 
tests, reproduce observed compositions and otherwise seem satisfactory at first 
glance, one must keep in mind that geological data in the broadest sense are just as 
valuable as geochemical ones. Indeed, the ultimate goal of modelling is to provide 
an explanation for all the observations, regardless of their origin, and shed some 
light onto the evolution of existing rocks in their geological context. 

And so, as a final word of caution, perhaps unexpected in a text on geochemical 
modelling, we would like to encourage you to return again and again to the obser-
vation of field relationships, geological maps, samples and thin sections…

If you don’t understand it—map it! 
––– An anonymous geologist 
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known, source; whereas the primitive liquid
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Part VI Worked Examples 

  

Geochemical modelling is never conducted in isolation, but with the goal of un-
derstanding the geological evolution of a specific rock unit. Therefore, it is 
strongly dependent on regional geology and petrological descriptions and can be 
endeavoured only after such a complex study. In this part, although space does not 
allow presenting a full geological description, we nevertheless try to demonstrate 
how a model is grounded on such observations.  

Different rock units pose different challenges in terms of modelling. The ob-
servables and the unknowns for instance are not the same. The processes may dif-
fer, and contrasting physical properties of mafic and felsic systems, lavas and in-
trusive units, call for different strategies. Here we illustrate two different 
approaches, on intermediate lavas on the one hand, and felsic (anatectic) melts on 
the other. 

Chapter 25 deals with the evolution of a calc-alkaline differentiation series, 
from recent Andean volcanoes in Ecuador. We show that fractional crystallization 
was the dominant process, and that all the lavas in the volcano are related by frac-
tionation from a common parent. The differentiation story is modelled here as a 
two-step process, with distinct cumulate compositions. We also explore some un-
certainties of the modelling exercise and discuss the range of possible solutions 
permissible by geochemistry. 

Chapter 26 presents a different challenge, modelling of crustal partial melting 
to form a migmatitic complex. In this environment, the melts are not well ex-
tracted from their solid residue. They are poorly homogenised and their composi-
tion largely reflects the variability of the available sources. On the other hand, 
field relations allow to directly constrain the local melt amount. Finally, increasing 
melt fractions correspond to successive melting reactions, and thus a residue with 
an evolving composition. We propose, therefore, a strategy based on describing 
the evolution of melt’s composition for a given source as a function of the melt 
amount (and therefore of the nature of the residue), and of the source’s composi-
tion. We bracket the possible range of melts between the compositions derived 
from two end-member sources. 



Chapter 25  
Differentiation of a Calc-Alkaline Series: 
Example of the Atacazo-Ninahuilca 
volcanoes, Ecuador1 

25.1 Geological Setting 

In Ecuador, South America, the Nazca Plate is being subducted under the South 
American Plate (Fig. 25.1). It also carries an oceanic plateau (the Carnegie Ridge), 
generated by the magmatic activity of the Galapagos hot spot, into the subduction 
zone. The Ecuador volcanic arc, known as the Northern Volcanic Zone of the

Fig. 25.1 a Simplified geodynamic setting of the Northern Volcanic Zone of the Andes. Black 
circles represent volcanic edifices while the dark grey fields are for oceanic plateaux (adapted 
from Gutscher et al. 1999). b Geographical position of the fifty-five Quaternary volcanoes in the 
Ecuador volcanic arc, with the position of the Atacazo-Ninahuilca Complex also marked. 

One of these is the Atacazo-Ninahuilca Complex that consists of two main units:  

                                                           
1 Based on the work by S. Hidalgo (Hidalgo 2006; Hidalgo et al. 2012). 
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Andes, is made up of over 50 Quaternary volcanoes. 



The Atacazo, made of lava flows and domes emplaced between 220 and 71 ka. 
Their composition ranges from andesites to dacites, which generally contain 
30–50 vol. % phenocrysts of plagioclase, clinopyroxene, orthopyroxene, horn-
blende and Fe–Ti oxide (Fig. 25.2). 
The younger Ninahuilca erupted from 71 to 2.32 ka. The volcanic activity con-
sisted mainly of dome emplacement and pumice eruptions. The lavas are 
dacites containing 20–40 % phenocrysts of plagioclase, hornblende, orthopy-
roxene, biotite and Fe–Ti oxide. 

Fig. 25.2 Lavas from Atacazo volcano. A dark grey groundmass contains common plagioclase 
phenocrysts (white), as well as less abundant phenocrysts of pyroxene, amphibole and

Photo S. Hidalgo).

25.2 Data Exploration and Implications 

25.2.1 Isotopic Data 

 atacazo.data 

First we navigate to the right directory and import the data file atacazo.data into GCDkit:
GCDkit-> loadData("atacazo.data") 

As it contains columns 87Sr/86Sr and 143Nd/144Nd, the isotope plugin will start, 
and ask about the age of emplacement (here 0.1 Ma, close enough to zero to make 
no difference). Selecting Append Sr-Nd isotopic data from the Sr–Nd plugin 
menu, or running the corresponding command, allows subsequent plotting of 
87Sr/86Sri and Nd

i  like any other variable from WR: 
GCDkit-> addResultsIso() 

GCDkit-> multiple("SiO2",c("87Sr/86Sri","EpsNdi")) 

GCDkit-> plateLabelSlots(pos="topleft",style="") #labels a, b 

1 cm
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Fig. 25.3 SiO2 vs. 87Sr/86Sr0 (a) and 0
Nd  (b) plots showing that both Atacazo (filled green cir-

cles) and Ninahuilca (open red circles) Sr and Nd isotopic ratios are homogeneous and mutually 
comparable; they vary over a very small range and are not correlated with SiO2. 

The Sr and Nd isotopic ratios vary in the same range in both Atacazo and Nina-
huilca lavas (Fig. 25.3) and, as demonstrated by Hidalgo (2006), they are not cor-
related with SiO2. Thus it can be concluded that the late crustal contamination 
played a limited, if any, role during magmatic differentiation. If contamination oc-
curred, it was in the source, earlier on. Also recent O isotopic investigations con-
firmed negligible crustal contamination (Hidalgo et al. 2012). 

25.2.2 Major Elements 

Fifty-five samples from Atacazo and 54 from Ninahuilca were analyzed for major 
and trace elements. All iron was determined as Fe2O3. 

We create Harker plots (Fig. 25.4) using Plot|Multiple plots…, i.e. the command:  

GCDkit-> multiple("SiO2","Al2O3,Fe2O3,MgO,CaO,Na2O,K2O")

In Harker diagrams, all oxides show nice correlations with SiO2 (Fig. 25.4). They 
are negative (CaO, Fe2O3 and MgO) or positive (Na2O and K2O). For Al2O 3, the 
trend starts with a (poorly defined) positive slope and bends to a negative one at 
ca. 64 wt. % SiO2. For most elements, Ninahuilca and Atacazo lavas plot on the 
same trends. However, for Al2O3 and MgO (Fe2O3 to a lesser degree), an inflec-
tion occurs between the compositions from both volcanoes. Such a pattern cannot 
be achieved by binary mixing; the differentiation mechanisms were either partial 
melting or fractional crystallization (with a changing cumulate composition).  
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Fig. 25.4 Harker plots for the Atacazo (green, solid) and Ninahuilca (red, open) lavas. 

25.2.3 Trace Elements 

In Fig. 25.5, TiO2 and selected trace elements are plotted against SiO2 (as a  
differentiation index). This has been done using the following code: 
GCDkit-> multiple("SiO2","TiO2,Rb,Ba,La,Yb,Th,Cr,Ni,V") 

GCDkit-> plate0YLim() # to set zeroes as minima to all y axes

Most often, Atacazo and Ninahuilca data do not fall on a single straight trend 
in SiO2 vs. trace-element diagrams. Rather, they tend to form inflexed lines.
This again rules out binary mixing. In addition, the content of some elements 
(Rb, Ba, La and Th) increases in the course of differentiation: they are incom-
patible during this process. In contrast, Yb, Cr, Ni and V are anti-correlated 
with SiO2, thus pointing to their compatible behaviour. 
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Fig. 25.5 Titanium oxide (wt. %) and selected trace-element contents (ppm) plotted against SiO2 

(same symbols as in Fig. 25.3) 

Figure 25.6 is a plate filled by three binary plots (Plot|Plate of several plots, or 
equivalent command). For instance, for the second plot, the GCDkit code is 
(note the choice of plotting limits to ensure the same scale on the x and y axes): 
GCDkit-> multiplePerPage(3,nrow=1,ncol=3,title=NULL) 
GCDkit-> Plate(2) # Selects the second slot 
GCDkit->  binary("Ba","Cr",log="xy",xmin=5,ymin=5,xmax=1100,ymax=1100, 

 +        new=F)… 
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Fig. 25.6 Log(incompatible) [Rb, Ba, La] vs. log(compatible) [Ni, Cr, Yb] diagrams. The

In log(incompatible) vs. log(compatible) diagrams (Fig. 25.6), the trends de-
fined by the Atacazo-Ninahuilca magmas are always almost vertical, which is 
typical of fractional crystallization (see Sect. 21.3).  

25.3 Geochemical Modelling 

Some of the binary plots of SiO2 vs. major or trace elements are inflexed (Figs 
25.4 and 25.5). Consequently, we will model differentiation as a two-step process. 
During each of them, the cumulate composition remains constant, but it changes in 
between. For each step, the composition of the parental magma (C0) is approxi-
mated by the least differentiated lava, while the most differentiated one represents 
the evolved liquid (CL). During the first step, we model fractionation of ATAC-4
to ATAC-58, and in the second of ATAC-58 to NINA-54.  

 The mineral compositions in the datafile are taken from phenocrysts in the 
more primitive lavas (Hidalgo 2006). However, the plagioclase can be very vari-
able and prone to reequilibration: therefore, we use two pure end-members (Ab 
and An) instead, to be subsequently recombined. The same holds for the Fe–Ti ox-
ide that we treat as a ‘solid solution’ of magnetite with rutile, irrespective of the 
actual mineral present (Ti-magnetite).  

Partition coefficients are compiled from the literature (mostly Rollinson 1993).
Two sets of values are present for amphibole, as its KD does vary significantly be-
tween mafic and intermediate liquids. 

 

 atacazo.data 

atacazo_mins.data 

atacazo_kd.data

The data (and other useful definitions) are loaded as follows: 

GCDkit-> loadData("atacazo.data") 
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Atacazo-Ninahuilca magmas plot along almost vertical trends, indicating that the differentiation
was probably driven by fractional crystallization (same symbols as Fig. 25.3).
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GCDkit-> min.tab <- read.table("atacazo_mins.data",sep="\t") 

GCDkit-> kd.tab <- read.table("atacazo_kd.data",sep="\t") 

GCDkit-> mjrs <- c("SiO2","Al2O3","Fe2O3","MgO","CaO","Na2O","K2O", 

+  "TiO2") 

GCDkit-> trc <- c("La","Ce","Nd","Sm","Eu","Gd","Dy","Er","Yb","Rb", 

+  "Ba","Th","Nb","Sr","Zr","Y","V","Cr","Ni") 

The full code supplied on the Web page defines four functions. The first: 

rev.maj <- function(c0.lab,cL.lab,min.set,norm=F){… 

calculates reverse models based on majors; since this is pure mass balance, 
it would also work for melting (see exercises 9.1 and 9.2). The function:

rev.tr.fc <- function(c0.lab,cL.lab,min.set){… 

computes reverse fractional crystallization models based on trace elements 
(see Exercise 15.1). These two functions return a list with components ff
(melt fraction), cS (cumulate composition) or dd (bulk distribution coeffi-
cient), r.sq (the sum of squared residuals, R2), and m (mineral proportions). 
The function: 

fwd.mod <- function(c0.lab,m,ff,norm=F,eqn="FC"){… 

is designed for forward modelling of major and trace elements, in the course 
of either melting or fractional crystallization. This is similar to, although more 
complete than, the exercises 8.1–3, 14.2, 14.3, 22.1. The function returns a list 
with cS, cL (fractionated liquid composition) and dd. 
The following arguments are required by these functions: 

c0.lab, cL.lab: names of the existing samples with C0 and CL composi-
tions, 
min.set: a character vector containing the names of the minerals to be 
considered, they must match those from the KD and mineral composition 
files, 
m: a named vector containing the mineral proportions (0–1), the names 
must match those from the KD and mineral composition files, 
ff: the value of F (melt amount; 0 1), 
norm: logical, indicating whether all the major-element data should be 
normalized to 100 % before calculation, 
eqn: "FC" or "PM", the model type to be used for forward calculations. 

In addition, the following variables are required in the system: 
WR: the (GCDkit) numeric matrix of whole-rock compositions, 
min.tab: a data frame/matrix with mineral compositions, 
kd.tab: a data frame/matrix with partition coefficients. 
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Finally, we define an auxiliary function to recombine the two plagioclase end-
members into a plagioclase solid solution: 

GCDkit-> plagio <- function(an,ab){ 

GCDkit->   mw.an <- mw["Ca"]+2*mw["Al"]+2*mw["Si"]+8*mw["O"] 

GCDkit->   mw.ab <- mw["Na"]+mw["Al"]+3*mw["Si"]+8*mw["O"] 

GCDkit->   total.plag <- ab+an 

GCDkit->   an_pct <- an/mw.an/(an/mw.an+ab/mw.ab)*100 

GCDkit->   res <- c(total.plag,an_pct) 

GCDkit->   names(res) <- c("total.plag","an_pct") 

GCDkit->   return(res) 

GCDkit-> } 

25.3.1 First Step: Atacazo 
The phenocryst assemblage in Atacazo samples includes two pyroxenes, as well as 
amphibole. However, from a major-element point of view Opx + Cpx + Pl = Amp 
(colinearity, see Sect. 23.3). It is therefore very likely that Cpx- and Amp- 
bearing solutions would both yield a satisfactory fit for major elements. The  
difference is however important in petrological terms (as it will reflect evolution 
under different H2O contents or redox conditions). Fortunately, the KD for  
pyroxene and amphibole are markedly different (in particular for HREE: 

/ / /0.88  0.90  4.2
Yb Yb Yb

Opx L Cpx L Amp L
D D DK K K ) , and thus the trace elements should 

provide further vital clues. 

Model Atacazo—1cpx 

For calculation we use the previously defined functions: 

GCDkit-> c0.lab <- "ATAC-4" 

GCDkit-> cL.lab <- "ATAC-58" 

GCDkit-> min.set.1cpx <- c("Cpx","Opx","Ab","An","Rt","Mt") 

GCDkit-> mod1cpx <- rev.maj(c0.lab,cL.lab,min.set.1cpx,norm=T) 

GCDkit-> print(mod1cpx,3) 
$ff 
    F 
0.531… 

Ab and An can be recombined into ca. 53 wt. % of ~An54 plagioclase: 
GCDkit-> print(plagio(mod1cpx$m["An"],mod1cpx$m["Ab"]),2) 
total.plag     an_pct  
      0.53      54.45

The trace-element model is computed, including the associated R2: 

GCDkit-> cL1cpx <- fwd.mod(c0.lab,mod1cpx$m,mod1cpx$ff)$cL[trc] 

GCDkit-> print(sum(((WR[cL.lab,trc]-
[1] 15.27383
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cL1cpx[trc])/WR[cL.lab,trc])^2)) 
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Table 25.1 Summary of various models calculated for Step 1 

Type of 
model

Minerals
present

Mineral proportions (wt. %), F
(majors) (traces)

Reverse 
majors + 
forward 
traces

Cpx Cpx: 14.7, Opx: 25.8, Pl(An54): 52.7, Mt: 6.8;
F = 0.531 0.08 15.27

Cpx + Amp Cpx < 0, Opx < 0, Amp > 100 (0.44)a (13.9)

Amp Opx: 18.4, Pl(An52): 45.9, Mt: 2.4, Amp: 33.3; 
F = 0.483 0.07 0.44

Amp + Zrn Opx: 18.4, Pl: 45.9, Mt: 2.4, Amp: 33.3, 
Zrn: 0.008; F = 0.483 0.07 0.35

Reverse 
traces

Cpx Pl < 0 (1.86)
Cpx + Zrn Pl < 0 (1.84)

Cpx + Amp Opx: 14.9, Pl: 38.7, Mt: 2.6, Cpx: 4.2, 
Amp: 39.7; F = 0.544 0.14

Cpx + Amp +
Zrn

Opx: 14.8, Pl: 40.0, Mt: 2.4, Cpx: 4.0, 
Amp: 38.8, Zrn:  0.65; F = 0.533 0.11

Amp Opx: 14.4, Pl: 41.1, Mt: 3.3, Amp: 41.2; 
F = 0.535 0.14

Amp + Zrn Opx: 14.4, Pl: 42.3, Mt: 3.1, Amp: 40.2, 
Zrn: 0.64; F = 0.523 0.12

a Whenever there is a numerical solution, it is accompanied by a  value. However, when the 
solution makes no geological sense,  brings no information. In such a case it is in brackets. 
The full code for the exercise is supplied on the Web page. 

Modelling the first stage (Atacazo), with a Cpx-bearing cumulate yields excellent 
fit ( R2 = 0.08) for major elements. The cumulate consists of an assemblage Cpx 
+ Opx + Pl (An54) + Ti-Mt. The model requires 46.9 wt. % of cumulate (F = 
0.531) to be removed from the melt (Table 25.1).

The trace-element model is plotted (Fig. 25.7):
GCDkit-> foo <- rbind(WR[c0.lab,trc],WR[cL.lab,trc],cL1cpx[trc]) 

GCDkit-> spider(foo,"Boynton",ymin=1,ymax=100,col=c("red", 

+       "darkblue","blue"),pch=c(15,16,1),new=F)  

GCDkit-> spider(foo,"^Primitive Mantle..McDonough 1995",ymin=1,ymax= 

+        500,col=c("red","darkblue","blue"),pch=c(15,16,1),new=F) 

Unfortunately, this model is unable to predict correctly the REE behaviour  
(Fig. 25.7). In particular, the HREE segment for CL is significantly different from 
that observed. In fact, the model foresees that HREE should be incompatible dur-
ing differentiation (e.g., DYb = 0.53), whereas the qualitative analysis demonstrated 
that Yb is compatible. The model fails, because a phase with high KD for HREE 
should have been included (in this case, amphibole is the most likely candidate2).
                                                          
2 Adding zircon does not help here, unless unrealistically high amounts of this mineral are in-

voked. The calculation is skipped to save space, see Exercise 22.1 for a very similar case. 
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Fig. 25.7 Chondrite-normalized REE patterns (a: Boynton 1984) and Primitive Mantle-normalized 
multi-element diagram (b: McDonough and Sun 1995), showing that a clinopyroxene-bearing cumu-
late cannot account for the trace-element variation in the Atacazo lavas. 

Robustness and unicity of models
Assessing whether a model is robust to small changes in input parameters 
is not easy. Likewise, it is important to decide whether the solution 

generated is mathematically unique. This can be investigated using the Monte 
Carlo method, i.e. calculating many models by tweaking the input parameters, and 
examining the model’s response. As an illustration, we examine the effects of 
changing mineral proportions on R2: is our best-fit model significantly better 
than any other combinations of minerals? We generated 1,000 models by ran-
domly setting cumulate mineral proportions and calculating the R2 value (Fig. 
25.8).
It can be seen that R2 decreases towards the “true” value (that determined previ-
ously by least-squares). The resulting data cloud has only one minimum, suggest-

Fig. 25.8 Dependency of R2 on several parameters. One thousand models were calculated by 
randomly selecting a set of parameters (  ). Three of these parameters 
(melt fraction F, anorthite and magnetite proportions) are plotted against R2. In each panel, the 
grey lines and big squares show the best-fit values.
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Model Atacazo—1amp
As previously, we invoke our script with: 

GCDkit-> min.set.1amp <- c("Opx","Ab","An","Rt","Mt","Amp") 

GCDkit-> mod1amp <- rev.maj(c0.lab,cL.lab,min.set.1amp,norm=T) 

GCDkit-> print(mod1amp,3) 
$ff 
    F  
0.483… 
The plagioclase can be recombined to 45.9 % of labradorite (An52).
We then calculate the trace-element contents, with and without zircon: 

GCDkit-> cL1amp <- fwd.mod(c0.lab,mod1amp$m,mod1amp$ff)$cL[trc] 

GCDkit-> zr.added <- 0.008/100  

GCDkit-> ee <- c(mod1amp$m,zr.added) 

GCDkit-> min.prop.1ampzrc <- ee/sum(ee) 

GCDkit-> names(min.prop.1ampzrc) <-  c(min.set.1amp,"Zrn") 

GCDkit-> cL1ampzrc <- fwd.mod(c0.lab,min.prop.1ampzrc, 

+        mod1amp$ff)$cL[trc]

Finally, we plot the model (Fig. 25.9):
GCDkit-> foo <- rbind(WR[c0.lab,trc],WR[cL.lab,trc],cL1amp[trc], 

+        cL1ampzrc[trc]) 

GCDkit-> spider(foo,"Boynton",ymin=1,ymax=100,col=c("red", 

+        "darkblue","blue","royalblue"),pch=c(15,16,1,6),new=F) 

GCDkit-> spider(foo,"^Primitive Mantle..McDonough 1995",ymin=1, 

+        ymax=500,col=c("red","darkblue","blue","royalblue"), 

+        pch=c(15,16,1,6),new=F) 

When clinopyroxene is replaced by amphibole, modelling also provides good re-
sults for major elements ( R2 = 0.07; Table 25.1). The cumulate consists of Amp 
+ Opx + Pl (An52) + Ti-Mt. On the other hand, attempting to calculate a model 
with both Amp and Cpx gives a meaningless result (negative values for m

The fit for trace elements (Fig. 25.9) is better than that obtained using a Cpx-
bearing cumulate. Still, the modelled Zr content of the differentiated liquid (122 
ppm) is significantly higher than in the sample ATAC-58 (88 ppm). This gives a 
vital clue: our calculation does not take into account the role of zircon fractiona-
tion. By trial and error, the amount of zircon extracted to adjust Zr contents3 can 
be determined as 0.008 wt. %. This amount is very low, and does not influence 
major-element behaviour; the other trace elements are affected only marginally.  

                                                          
3 The Zr content is calculated here by using a / ( )Zrn L

D ZrK of 3750 (see Exercise 22.1).
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correspond to realistic peritectic reactions). 
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Fig. 25.9 Chondrite-normalized REE patterns (a: Boynton 1984) and Primitive Mantle normal-
ized multi-element diagram (b: McDonough and Sun 1995), showing the results of modelling the 
differentiation of Atacazo lavas with an amphibole-bearing cumulate, with or without zircon. 

It is worth realizing that the major-element model(s) are not very discriminant. 
Both models calculated have given good to excellent numerical results. It is even 
possible to generate a range of other models, numerically slightly worse but still 
with R2 < 0.1, i.e. very acceptable (Fig. 25.8). This is partly a result of our strat-
egy—by breaking down both plagioclase and Fe–Ti oxide into end-members, we 
are actually significantly loosening the constraints on the model. Still, all of the 
models are broadly similar in petrological terms (the cumulate includes about 50 
% of a fairly calcic Pl, some 5 % of Fe–Ti oxides, and either two pyroxenes or 
Opx + Amp). The discrimination between the two contrasting scenarios (Amp vs. 
Cpx) is possible only by using trace elements. 

Of course, a reverse approach4 can also be used for trace elements (Sect. 12.1 
and Exercise 15.1). It leads to the same conclusion (Table 25.1): an Amp-free cu-
mulate cannot account for the observed trace-element compositions. The “best” 
models derived from majors and traces yield essentially similar proportions of 
cumulus minerals: c. 15–20 % Opx, 40–45 % Pl, 30–40 % Amp and 2–3 % Ti-Mt. 
Up to 4 % Cpx has no major effect on the fit. Realistically, the subtle differences 
between the models have no geological significance! 

25.3.2 Second Step: Ninahuilca 

Ninahuilca magmatic evolution is modelled by differentiating the most evolved 
Atacazo magma. In this case we choose to use the actual chemistry of ATAC-58, 

                                                          
4 NB the KD values used here are similar for different ‘minerals’ of the KD table (e.g., Ab and 

An). This is fine for the forward models but causes the reverse code (function rev.tr.fc) to 
behave erratically. The KD table must be adjusted to remove these duplicates. Of course, the re-
verse model is then unable to break down the plagioclase into the two end-members. 
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rather than the modelled composition of the differentiated liquid of Step 1. The fi-
nal liquid of Step 2 is taken as NINA-54. The main difference from the previous 
model is that orthopyroxene does not crystallize anymore, but small amounts of 
biotite enter the cumulate. The fractionating assemblage is thus: Amp + Bt + Pl 
(An66) + Ti-Mt (Table 25.2).

The function calls are very similar to those made previously (note the use of 
“amp2” instead of “amphibole”, to invoke the second set of KD values):

GCDkit-> c0.lab <- "ATAC-58"; cL.lab <- "NINA-54" 

GCDkit-> min.set.2 <- c("Ab","An","Rt","Mt","amp2","Bt") 

GCDkit-> mod2 <- rev.maj(c0.lab,cL.lab,min.set.2,norm=T) 

GCDkit-> print(mod2,3) 
$ff 
    F  
0.868… 
GCDkit-> cL2 <- fwd.mod(c0.lab,mod2$m,mod2$ff)$cL[trc] 

GCDkit-> zr.added <- 0.12/100 

GCDkit-> ee <- c(mod2$m,zr.added) 

GCDkit-> min.prop.2zrc <- ee/sum(ee) 

GCDkit-> names(min.prop.2zrc) <- c(min.set.2,"Zrn") 

GCDkit-> cL2zrc <- fwd.mod(c0.lab,min.prop.2zrc,mod2$ff)$cL[trc] 

GCDkit-> foo <- rbind(WR[c0.lab,trc],WR[cL.lab,trc],cL2[trc], 

+        cL2zrc[trc]) 

GCDkit-> spider(foo,"Boynton",ymin=1,ymax=100,col=c("darkblue", 

+       "darkgreen","green","chartreuse2"),pch=c(15,16,1,6), 
+        new=F) 
GCDkit-> spider(foo,"^Primitive Mantle..McDonough 1995",ymin=1, 

+        ymax=500,col=c("darkblue","darkgreen","green", 

+        "chartreuse2"),pch=c(15,16,1,6),new=F) 

Table 25.2 The two models calculated for Step 2 

Type of 
model

Zircon
present?

Mineral proportions (wt. %), F R2

(majors)
R2

(traces)

Reverse 
majors + 
forward 
traces

No Pl(An66): 63.9, Amp: 19.0, Bt: 8.0, Mt: 9.1; 
F = 0.868 0.02 0.91

Yes Pl(An66): 63.9, Amp: 19.0, Bt: 8.0, Mt: 9.1, 
Zrn: 0.12; F = 0.868 0.02 0.23

Again, fractionation of zircon allows a better adjustment of Zr values (Fig. 25.10); 
however, compared with previous models, its amount increases to 0.12 wt. %. As 
this model predicts a low degree of crystallization (13.2 %), the compositional 
changes of the residual magma are very limited. In this case the uncertainties in
partition coefficients are probably of the same order of magnitude as the observed 
changes. Also, the predicted plagioclase is probably too calcic (An66) for such  
silica content (dacites). Consequently, the limit of reliable modelling is reached. 
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Fig. 25.10 Chondrite-normalized REE patterns (a: Boynton 1984) and Primitive Mantle normal-
ized multi-element diagram (b: McDonough and Sun 1995), showing the results of modelling the 
differentiation of sample ATAC-58. 

Rb Ba Th Nd La Ce Sr Nd Zr Sm Eu Dy Y Yb

1
10

10
0

S
am

pl
e/

 P
rim

iti
ve

 m
an

tle
 

La Ce Nd SmEuGd Dy Er Yb

1
10

10
0

S
am

pl
e/

 R
E

E
 c

ho
nd

rit
e 

Modelled CL
Modelled CL (with zircon)
CL (NINA-54)
C0 (ATAC-58)

a b

258 25 Differentiation of a Calc-Alkaline Series …

Fig. 25.11 Harker diagrams (wt. %), summarizing the results of the two-step model for major 
elements. In addition to the sample compositions (same symbols as in Fig. 25.3), the first step 
(ATAC-4 to ATAC-58, Amp + Zrn version) is plotted in dark green and the second (ATAC-58 
to NINA-54, with Zrn) in dark red. Squares are C0 (ATAC-4 and ATAC-58 respectively); trian-
gles are the cumulates, CS; large circles are calculated compositions of the differentiated liquids, 
CL. The CS to C0 segments of the models are dashed, the C0 to CL segments solid. 
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Fig. 25.12 Binary plots of silica (wt. %) vs. selected trace elements (ppm), summarizing the re-
sults of the two-step model for trace elements. Same caption as Fig. 25.11. Top left slot is inten-
tionally left empty, to facilitate comparison with Fig. 25.5.
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25.4 Summary 

The preferred model is summarized in Figs. 25.11 and 25.12. Examining these  
diagrams reveals that our model is perhaps not ideal. There are many ways to im-
prove it. One could for instance try different mineral compositions (if the 
phenocrysts are indeed compositionally variable), or change partition coefficients 
(within the range of permissible values). One may settle for different mineral pro-
portions, estimated with other approaches (e.g., using the reverse modelling of 
traces). One may also question the choice of C0 for each step: for example, 

http://book.gcdkit.org/Part_6/Figs/fig_25.12_atacazo_final_trc.r
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ATAC-4 has the lowest SiO2, but is out of the main trend for Zr and Yb. Finally, 
one could also build the model for the second stage using as a primitive magma, 
C0(2), the outcome of the first step (CL(1)) rather than an existing composition. 
The tools provided here will allow the critical readers to investigate these options, 
and many more, for themselves! 



Chapter 26  
Progressive Melting of a Metasedimentary 
Sequence: the Saint-Malo Migmatitic Complex, 
France  1

26.1 Geological Setting 

The Saint-Malo Massif belongs to the high-T belt of the Cadomian Orogen (Brun 
and Balé 1990). Figure 26.1 shows that it consists of three main lithological and 
metamorphic units (Brun and Martin 1977), which are, from S to N, 
(i) greenschist-facies micaschists and gneisses, (ii) amphibolite-facies gneisses, 
and (iii) migmatites. The metamorphic event, culminating in anatexis, has been 
dated at ca. 540 Ma (Peucat and Martin 1985; Peucat 1986). 

 

Fig. 26.1 Simplified geological map of the Saint-Malo Massif showing the geographical distribu-
tion of the main lithologies; the degree of metamorphism increases northwards, i.e. towards the 
core of the dome (redrawn after geological map of France and Martin 1980). Inset: sketch map of 
France for orientation; arrow shows the location of the Saint-Malo Massif. 
                                                           
 Adapted from Brown (1 1979), Martin (1977, 1979, 1980) and Weber et al. (1985). 
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The micaschists and gneisses correspond to metamorphosed immature sedimen-
tary rocks whose compositions vary widely, from pelitic schists to graywackes 
(Martin 1979). All the stages of their progressive migmatization can be followed 
across the metamorphic zones into the migmatitic core. Similarly, in the migmatite 
zone, all the stages of partial melting can be observed in the field, from metatex-
ites, through banded diatexites and nebulitic diatexites to anatectic granites  
(Fig. 26.2). The melting pressures were estimated at ~3–4 kbar, with temperature 
increasing from ca. 650 to nearly 750 °C (Martin 1979). 

Fig. 26.2 Field photos of Saint-Malo migmatites, showing different stages of partial melting: 
a metatexites (F 29 %) ; b banded diatexites (F 47 %); c nebulitic diatexites (F 76 %);
d anatectic granite (F 96 %). 

26.2 Major and Trace Elements 

Two samples of unmelted gneisses were analyzed, corresponding to end-members of 
the rock types around the migmatitic dome: QFG (quartzo–feldspathic gneiss) and 
MRG (mica-rich gneiss). Amongst the migmatites, 17 samples were taken and their 
leucosomes extracted. Two main assumptions were made: (i) the leucosomes repre-
sent chilled melts, and therefore can be modelled as such, and (ii) no melt escaped the 
system, and thus the proportion of leucosome on a given outcrop (estimated by image 
analysis) corresponds to F. Both assumptions are questionable. First, leucosomes 
commonly do not represent true melt compositions (Sect. 20.2). Second, melt does
commonly escape migmatites, and thus the proportion of leucosomes is unlikely to 
reflect the melt fraction during melting. However, we use these hypotheses as a first 

a b

c d

2 cm 2 cm

5 cm 0.5 cm
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approximation, if only as a reference point for further, more advanced models. It 
turns out in this specific example that such an approach may lead to very reasonable 
results—the real point of geochemical modelling. 

 stmalo.data 

After loading the data file, we colour the data points according to the degree of 
melting, as one of the main features that we will model. The two samples of un-
melted gneisses, having a value of 0 for Melt_frac, remain grey.
GCDkit-> loadData("stmalo.data") 

GCDkit-> assignColVar("Melt_frac","reds") 

As previously (Chap. 25), binary plots of silica vs. major-element oxides and trace 
elements are plotted using:  

GCDkit-> multiple("SiO2","Al2O3,Fe2O3,MgO,CaO,Na2O,K2O") # Fig. 26.3 

GCDkit-> multiple("SiO2","Rb,Sr,Zr,Ni,Cr,V")# Fig. 26.4 

GCDkit-> plate0YLim() # to set zeroes as minima to all y axes 

Fig. 26.3 Harker diagrams; many show considerable scatter (CaO, Na2O, K2O) while in others, 
the data define a crude general trend. Unmelted samples = grey squares; leucosomes = circles, 
colour-coded by the melt fraction (the brighter red, the higher). 

When plotted in binary plots where SiO2 has been selected as the index of differ-
entiation, both major (Fig. 26.3) and trace (Fig. 26.4) elements generally scatter 
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around a very rough trend. In the worst cases (e.g. CaO, Sr), it is hard to honestly 
define it. This poses a challenge to modelling and calls for adequate strategies. 

Fig. 26.4 Trace elements plotted against SiO2. These diagrams mostly do not define real trends 
but scatter widely.  

26.3 Geochemical Modelling 

Unlike in Chap. 25, the nature of the petrogenetic process operating is not in doubt 
here: partial melting was responsible for the observed variations. However, the 
large data scatter precludes any reliable attempt at classical petrogenetic model-
ling, using an evolution from a single source. Very probably it reflects the fact that 
the source of melts was a  heterogeneous metamorphosed sedimentary pile, 
whose composition varied widely. Each stratum had its own mineralogical and 
chemical composition, and the system behaved as if several different sources 
melted together. 

Consequently, we propose a different modelling approach. We use a pure forward 
approach, and model melting of two gneisses having very contrasted compositions 
(biotite-rich and quartzo–feldspathic). They may be regarded as end-member compo-
sitions involved in melting: the resulting liquids will thus delineate the range of pos-
sible melts. In addition, during prograde metamorphism each of the gneisses would 
encounter a series of melting reactions (Clemens and Vielzeuf 1987; Stevens and 
Clemens 1993), each with different reactants and products. Thus the modal composi-
tion of the restite would change during melting, affecting the behaviour of all  
elements. 
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26.3.1 Mode Evolution During melting 

The first reaction on the prograde path is the relatively low-T (~650 °C) water-
present melting: 

2Qtz Kfs P Ol LH   (26.1) 

During fluid-present melting of rocks with excess plagioclase, this mineral can be 
consumed by melting on the plagioclase–quartz cotectic: 

2Qtz Pl LH O   (26.2) 

In the modelled compositions, white mica is rare. Thus, the next significant melt-
ing reaction is incongruent melting of biotite, at relatively low T (~720–750 °C): 

Bt Pl Qtz L Crd   (26.3) 

Based on experimental data, it is possible to constrain the stoichiometry of each of 
the successive melting reactions for both rock types (Table 26.1) (Martin 1980;
Weber et al. 1985). Consequently we can describe the evolution of the mode of the 
rock during melting. Starting from the initial mode of a rock, we subtract for each 
1% melt increment minerals in proportions defined by the stoichiometry of the 
successive melting reactions, given in Table 26.1. Figure 26.5 represents mineral 
proportions as a function of F; mineral proportions may be expressed relative to 
the full system (Fig. 26.5a–b), or to the restite (m; Fig. 26.5c–d). We are using the 
same trick as in Chap. 25, breaking down the plagioclase to its end-members to 
account for compositional changes of this phase during (multi-variant) melting. 

Table 26.1 Stoichiometry of the successive melting reactions. Note that the sum of all reactants 
is equal to the sum of the products (closed-system behaviour)

From To Reactants Products

Mica-rich gneiss (MRG)
Stage 1 F = 0 F = 0.25 0.32 Qtz + 0.42 Kfs + 0.26 Pl(An25) (+ H2O) 1 Melt
Stage 2 F = 0.26 F = 0.30 0.5625 Qtz + 0.125 Pl(An25) + 0.125 Bt + 0.375 Sil 1 Melt + 

0.1875 Crd
Stage 3 F = 0.31 F = 0.75 0.333 Qtz + 0.333 Pl(An25) + 0.333 Bt 1 Melt
Stage 4 F = 0.76 F = 1 0.17 Pl(An25) + 0.79 Bt + 0.04 Crd 1 Melt
Quartzo–feldspathic gneiss (QFG)
Stage 1 F = 0 F = 0.37 0.34 Qtz + 0.30 Kfs + 0.36 Pl(An11) (+ H2O) 1 Melt
Stage 2 F = 0.38 F = 0.68 0.49 Qtz + 0.51 Pl (An11) (+ H2O) 1 Melt
Stage 3 F = 0.69 F = 1 0.53 Pl(An11) + 0.47 Bt 1 Melt
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Fig. 26.5 Mineral proportions as a function of the degree of melting, for MRG (a and c) and 
QFG (b and d) compositions. Panels a and b show the proportions relative to the whole system 
(including melt): as F increases, the proportions of all reactant decrease, but the proportion of 
peritectic minerals (cordierite) rises. Panels c and d show the proportions in the restite (m), used 
for further calculations. Although the proportions of e.g. feldspars do decrease in absolute terms, 
as they are incorporated into the melt, for F values above ca. 80 % other minerals (biotite) get 
into the melt at a faster rate such that the relative amount of feldspar in the restite does increase. 

For convenience, the stoichiometry of the melting reactions is defined in a data-
file. The first line contains the original (pre-melting) mode, and each subsequent 
one corresponds to one melting stage with its stoichiometric coefficients (negative 
for reactants and positive for products), normalized to 100 units of melt. Column 
Fmax represents the maximum value of F for the given stage.

 stmalo_stc_mrg.data 
stmalo_stc_qfg.data 
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We define a function that would calculate the mode of the system for each melt 
increment, as a function of the initial mode, the stoichiometry of the reaction and 
the degree of melting (F). As long as the stoichiometric coefficients remain con-
stant, this can be calculated relative to the original mode m0. For this calculation 
we treat the melt fraction as a “mineral” phase:

GCDkit-> mins <- c("Qtz","Kfs","Ab","An","Bt","Sil","Crd") 

GCDkit-> mm <- c(mins,"Melt") 

GCDkit-> melt.mode <- function(m0,stc,ff){ 

GCDkit->  m <- m0[mm]+ff/100*stc[mm] 

GCDkit->  return(m) 

GCDkit-> } 

For the mica-rich gneiss (MRG) for instance, we load the file and prepare the data: 
GCDkit-> stc.tab <- read.table("stmalo_stc_mrg.data",sep="\t") 

GCDkit-> stc.tab <- as.matrix(stc.tab) 

Next, we are looking for the mode of the residue for each 1% melt increment; this 
corresponds to several successive stages of melting with different melting reac-
tions. We must, therefore, cycle first through each stage (this will be done using a 
for loop) and then for each melting increment (for this purpose we shall use the 
function sapply, as we have done in Chap. 25). Each stage corresponds to one line 
of stc.tab (2 to 5, in the case of composition MRG). The number of melt incre-
ments within a stage is given by the difference between Fmax for this stage, and 
Fmax at the end of the previous stage; for this purpose we generate a vector f.r
with values ranging from 1 to the required number of elements (melt increments).

We first initialize a matrix res (to the pre-melting mode). We need drop=F be-
cause res must be a one-row matrix and not a vector, otherwise we cannot extract 
the subset res[nrow(res),mm] below.

GCDkit-> res <- stc.tab["m0",mm,drop=F] # initialize res 

Then we loop through each stage, updating res before moving on:

GCDkit-> for(i in 2:5){ # corresponding to lines of stc.tab 

GCDkit->  f.r <- seq(1,stc.tab[i,"Fmax"]-stc.tab[i-1,"Fmax"],1) 

GCDkit->  stc <- stc.tab[i,mm] 

GCDkit->  m0 <- res[nrow(res),mm] # The last line of prev stage 

GCDkit->  ee <- t(sapply(f.r,FUN=function(z){ 

GCDkit-> melt.mode(m0,stc,z) 

GCDkit->  })) 

GCDkit->  res <- rbind(res,ee) # update res before the next step 

GCDkit-> } 

It is convenient to also have the values of the total Pl amount stored in res:

GCDkit-> Pl <- res[,"Ab"]+res[,"An"] 

GCDkit-> mode.mrg <- cbind(res,Pl) 
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In the same way, we generate mode.qfg for the QFG composition. The full code is 
supplied on the Web page.

Plotting is done by first creating an empty graph; and then adding lines to it, e.g.: 
GCDkit-> plot(1,1,ylim=c(0,40),xlim=c(0,100),pch="",xlab="F", 

+        ylab="min. prop. in full system") 

GCDkit-> lines(mode.mrg[,"Melt"],mode.mrg[,"Qtz"],lwd=1.5,col="grey") 

GCDkit-> lines(mode.mrg[,"Melt"],mode.mrg[,"Kfs"],lwd=1.5,col="blue") 

Etc. # Fig. 26.5a 

In the case of the plots showing proportions in the residue, we must normalize to 
the bulk rock (i.e. divide by 1–F):
GCDkit-> plot(1,1,ylim=c(0,60),xlim=c(0,100),pch="",xlab="F", 

+        ylab="min. prop. in residue (m)") 

GCDkit-> lines(mode.mrg[,"Melt"],mode.mrg[,"Qtz"]/ 

+       (100-mode.mrg[,"Melt"])*100,lwd=1.5,col="grey") 
Etc. # Fig. 26.5c 

26.3.2 Major and Trace Elements

Given the composition of the source (C0), the mode of the restite (m), the melt 
fraction (F) and mineral compositions for relevant solid phases, it is possible to 
calculate the major-element composition of the melt using mass-balance. The ad-
ditional knowledge of partition coefficients allows calculating its trace-element 
composition as well. 

Partition coefficients varying as a function of plagioclase composition
Separating plagioclase into albite and anorthite may allow using different 
partition coefficients for each end-member: by changing the relative pro-

portions of these components, we could obtain KD varying as a function of the 
plagioclase composition.

 stmalo_mins.data 
stmalo_kd.data 

For this purpose, we will use the function fwd.mod defined in Chap. 25 as: 

fwd.mod <- function(c0.lab,m,ff,norm=F,eqn="FC"){… 
Thus demonstrating the versatility of our function and the way we can re-use our 
previous work! We first prepare the required data: 
GCDkit-> min.tab <- read.table("stmalo_mins.data",sep="\t") 

GCDkit-> kd.tab <- read.table("stmalo_kd.data",sep="\t") 

GCDkit-> mjrs <- c("SiO2","Al2O3","Fe2O3","MgO","CaO","Na2O","K2O", 

+ "TiO2") 
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GCDkit-> trc <- c("Rb","Sr","Zr","Ni","Cr","V") 

http://book.gcdkit.org/Part_6/Data/stmalo_mins.data
http://book.gcdkit.org/Part_6/Data/stmalo_kd.data
http://book.gcdkit.org/Part_6/Figs/fig_26.5_stmalo_min_prop.r
http://book.gcdkit.org/Part_6/Figs/fig_26.6_stmalo_model.r
http://book.gcdkit.org/Part_6/Complete_code/chap_26.r


We will then apply the function fwd.mod to each line of the matrix mode.mrg
containing the modal proportions:

GCDkit-> c0.lab <- "MRG" 

GCDkit-> melts.mrg <- t(apply(mode.mrg,1,function(z){ 

GCDkit-> m <- z[mins]/(100-z["Melt"]) 

GCDkit-> ff <- z["Melt"]/100 

GCDkit-> ee <- fwd.mod(c0.lab,m,ff,eqn="PM")$cL 

GCDkit-> return(ee) 

GCDkit-> }))

We do the same for QFG, and plot our model on top of the data (Fig. 26.6). The 
full code is supplied on the Web page. 

Figure 26.6 shows that, both for major and trace elements (except Zr), the compo-
sitions of the leucosomes evolve in a restricted band, limited by the models calcu-
lated by the end-member compositions MRG and QFG. Such behaviour leads to 
the conclusion that the scatter in leucosome compositions reflects the source  
heterogeneity and that partial melting of the Saint-Malo gneisses perfectly  
accounts for the leucosome compositions. 

In this case, the main process shaping the chemistry is the evolution of the res-
tite mode during melting. It is constrained by experimental data, with the numbers 
tweaked to get a consistent evolution (i.e. such that the mode of each phase ends 
up at 0 for F = 1). This is the most critical parameter and time-consuming part of 
the modelling exercise. The interested reader may investigate (by editing the files 
stmalo_stc_qfg.data and stmalo_stc_mrg.data) the effects of various melting 
models on the composition of the liquids. It turns out that it is fairly difficult to 
propose a series of stoichiometric coefficients that (i) are realistic with regard to 
what we know about melting reactions, (ii) are internally consistent, and (iii) lead 
to a decent fit between the model and the observations.  

A model is set to answer a specific question. In this case it has been “can 
progressive melting of QFG and MRG lithologies (with coefficients defined in 
Table 26.1) account for the observed leucosome compositions?”. The answer is 
“yes”.
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Fig. 26.6 Results of numerical modelling for both major and trace elements. The green curve 
corresponds to MRG source and the blue one to QFG. The squares show the C0 values of these 
two sources. 
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26.3.3 Zircon 

Again, Zr is the only element for which our model does not fit observations: we 
modelled it as an incompatible element, whereas it shows a compatible behaviour 
(Fig. 26.4). As shown in Exercise 22.1, several alternatives are available to deal 
with this problem. Whereas a saturation-based approach would be more rigorous, 
we add here, for simplicity, a small proportion of zircon to the restite with a set KD
of 3800.

The only difference from Chap. 25 is that in here, mode.mrg and mode.qfg do not 
store the mineral proportions in the cumulate (m), but in the whole system. There-
fore we must recalculate the whole-system value corresponding to the desired m,
by multiplying by 1–F. We can then re-run the function fwd.mod to get the new 
CL. All of this occurs in a function melts.with.zrn that requires arguments 
c0.lab (name of the composition to use for C0), litho.mode (the matrix that con-
tains the successive modes during melting) and m.zrn (the amount of zircon 
added, in wt. %). We must first change the list of minerals in the system (mins2), 
before defining the function:
GCDkit-> mins2 <- c(mins,"Zrn") 

GCDkit-> melts.with.zrn <- function(c0.lab,litho.mode,m.zrn){ 

GCDkit->  Zrn <- m.zrn*(100-litho.mode[,"Melt"])/100 

GCDkit->  corrected.mode <- cbind(litho.mode,Zrn) 

GCDkit->  corrected.melt <- apply(corrected.mode,1,function(z){ 

GCDkit->  m <- z[mins2]/(100-z["Melt"]) 

GCDkit->  ff <- z["Melt"]/100 

GCDkit->  ee <- fwd.mod(c0.lab,m,ff,eqn="PM")$cL 

GCDkit->  return(ee) 

GCDkit->  }) 

GCDkit->  corrected.melt <- t(corrected.melt) 

GCDkit-> return(corrected.melt) 

GCDkit-> } 

To further refine our model, we compare the evolution for several zircon amounts: 

GCDkit-> zr.props <- c(0.01,0.02,0.05,0.1,0.5,1) 

And for each of those, we apply the function we just defined; for instance for 
composition MRG we calculate a matrix zr.mrg that contains the Zr contents of 
the melts as a function of F and the amount of zircon: 

GCDkit-> zr.mrg<-sapply(zr.props,function(i){ 

GCDkit->  z <- melts.with.zrn("MRG",mode.mrg,i) 

GCDkit->  return(z[,"Zr"]) 

GCDkit-> }) 

GCDkit-> colnames(zr.mrg) <- zr.props 
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We do the same for QFG, calculating the matrix zr.qfg.

The plotting routine that generates the plate shown in Fig. 26.7 is: 

GCDkit-> multiplePerPage(6,nrow=2,ncol=3,title=NULL) 

GCDkit-> for(i in 1:6){ 

GCDkit-> zr.added <- zr.props[i] 

GCDkit->  screen(i) 

GCDkit->  binary("Melt_frac*100","Zr",xmin=0,xmax=100,ymax=400,ymin=0, 

+ xlab="F",main=paste("Zrn prop. =",zr.added, 

+  "wt. %"),new=F) 

GCDkit->  points(100,WR["MRG","Zr"],pch=15,cex=2,col="darkgreen") 

GCDkit->  points(100,WR["QFG","Zr"],pch=15,cex=2,col="darkblue") 

GCDkit->  lines(mode.mrg[,"Melt"],zr.mrg[,i],lwd=1.5,col="green") 

GCDkit->  lines(mode.qfg[,"Melt"],zr.qfg[,i],lwd=1.5,col="blue") 

GCDkit-> } 

Fig. 26.7 Evolution of Zr concentrations in the melt, taking into account the role of zircon, for 
various values of mZrn. Values of about 0.05 to 0.1 wt. % give the best fits. 

As expected, Fig. 26.7 shows that the simple expedient of adding a small amount 
of zircon (0.05 to 0.1 wt. %) to the restite is sufficient to alter the model so that it 
does fit the observed compositions.   
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An alternative approach using phase equilibria (pseudosections) 
This example is amenable to a treatment using phase-equilibrium model-
ling, since we are dealing with melting of metasediments for which good 

thermodynamic models are available. Using the program PERPLE_X 
( www.perplex.ethz.ch)  with mineral models mostly from

Powell 2011) , we calculated P–T and T–X (X representing the H2O content in the 
rock) pseudosections at 3.5 kbar for MRG and QFG compositions. The output 
gives the proportions and the composition of each phase, including melt. Phase 
proportions are plotted as a function of F in Fig. 26.8, for different scenarios re-
garding water availability. The melt compositions (for major elements) predicted 
by the model are presented in Fig. 26.9. Finally, trace-element compositions can 
be calculated in each case, using a batch melting equation, since we know C0 (the 
trace-element composition of the source, MRG or QFG); F (the melt amount, cal-
culated by PERPLE_X) and D, itself a function of the KD and the mineral propor-
tions m (from PERPLE_X). They are plotted also in Fig. 26.9. Figures 26.8–9

–6. 

2

 
Fig. 26.8 Evolution of phase proportions for MRG (a–c) and QFG (e–f) compositions. The em-
pirical model proposed here is the thick brown line, whereas the thinner lines are derived from 
phase-equilibrium modelling for various water contents (fully dry to 10 wt. % H2O). Our empiri-
cal model resembles the water-saturated systems. Note however that the empirical model gener-
ally predicts more biotite, but less cordierite than phase equilibria; in the latter case, orthopyrox-
ene (not shown) is also predicted as a peritectic mineral. 

                                                           
 Specifically the mineral models used are Bio(TCC), Opx(HP), Mica(CHA1), hCrd, feldspar, 
Gt(WPH), Ilm(WPH) and melt(HP) using PERPLE_X 6.6.8 and June 2013 datafiles. 

2
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 Connolly 2005;

can be compared to Figs 26.5

Thermocalc (Powell and Holland 1988; White et al. 2001, 2007; Holland and 



Fig. 26.9 Comparison of the chemical evolution in melt for empirical model (solid line) and as 
derived from phase-equilibrium modelling at water-saturated conditions (dashed and dotted lines,
5 and 10 wt. % H2O respectively). Green are MRG and blue QFG compositions. The two ap-
proaches give comparable results, both providing a reasonable fit to the major-element data. The 
only significant difference is for CaO, where the phase equilibria predict contents much lower 
than the empirical approach. Possible explanations include that (i) the melt model used for phase-
equilibria modelling is unable to deal properly with CaO or (ii) the leucosomes are enriched in 
CaO compared to actual melts (Nicoli et al. 2013; Taylor et al. 2014). For traces, the consistency 
between the two approaches is even better. The main difference appears for Rb, as a result of the 
increased biotite stability in the empirical compared to phase-equilibria modelling (cf. Fig. 26.8).
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Appendix A 

 
 

Here we give an overview of the syntax and basic usage of the R language. We 
describe how to start and stop an R session, obtain help and find documentation. 
An account of the main object types and their manipulation in direct (i.e. com-
mand line) mode is followed by text on arguably the strongest point—graphics. 
The Appendix is closed by a section on writing true R programs (batch mode). 
The text is partly based on the pdf file ‘An Introduction to R’, available from the 
Help menu. 

This text does not intend to be a replacement for a proper R course. Apart from 
the help system and pdf manuals included with the R distribution, the reader can 
find additional information in an increasing number of books and web sites.  

Importantly, information concerning the current state of the R project, binaries, 
source codes and documentation are obtainable from the dedicated website 
(www.r-project.org) and the Comprehensive R Archive Network (CRAN, cran.r-
project.org). CRAN, which is mirrored at many servers worldwide, also provides 
a distribution channel for user-contributed packages that add new functionality to 
the core of the R system. 

 

Chapter 1 
Direct Mode 

1.1 Basic Operations 

1.1.1 Starting and Terminating the R Session 
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R Syntax in a Nutshell 

In Windows, double clicking the file RGUI.EXE or the associated shortcut opens 

the , a text window for the entry of commands and display of textual 

output (Fig. A1.1). The system prints a number of messages, the most important of 

which is the last line with a prompt, showing that the R environment is awaiting 

commands. Apart from the R Console, one or more windows for graphical output 

and help pages may be displayed.

“R Console”

http://cran.r-project.org/
http://cran.r-project.org/


To end an R session,  one can invoke the menu item File|Exit or type q(). Al-
ternatively, one can terminate the session by closing the R Console window.1 

 

 
Fig. A1.1 Screenshot of a typical R session. 

1.1.2 Seeking Help and Documentation 

The R environment provides help in several forms—including plain text (displayed 
in the Console) or HTML (viewed using a web browser).  
> help(plot)  # text help on a function called plot  
> ?plot # equivalent, a shortcut 
 
Commands related to ‘plot’: 
> apropos(plot) 
 
Examples of correct usage of ‘plot’: 
> example(plot) 
 
An HTML browsable help window can be obtained from the menu option elp|R 
language (html) or by: 
> help.start() 
 

                                                           
1Note that the system may ask you, upon closing, whether you want to save the current work-
space (i.e., memory image with all the variables). For beginners probably the best option is ‘No’, 
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‘ ’

ensuring that the R environment starts afresh the next time.  



R is distributed together with PDF documents, which can be invoked from the 
menu item Help|Manuals. There are several documents available, including ‘Writ-
ing R Extensions’, ‘R Data Import/Export’, ‘The R Language Definition’ and ‘R 
Installation and Administration’. At this stage the most appropriate will be ‘An In-
troduction to R’ which outlines the basics of the R language.  

Other good sources of information are the many books about R (e.g., 
Maindonald and Braun 2003; Murrell 2005; Crawley 2007; Chambers 2009; Adler 
2012; van den Bogaard and Tolosana-Delgado 2013), or the related S language 
(Becker et al. 1988; Chambers and Hastie 1992; Chambers 1998) as the two lan-
guages share most of their syntax. CRAN contains a list of published monographs 
(www.r-project.org/doc/bib/R-books.html) as well as links to numerous contrib-
uted documents or manuals, both general and specific. The R Journal, an open-ac-
cess refereed journal, features short to medium length articles on various R appli-
cations, R programming and add-on packages. The community meets at annual 
useR! conferences. Moreover, there exist e-mail discussion groups dedicated to 
help users (R-help), to announce new versions and further progress in the R pro-
ject (R-announce, R-packages) and to facilitate communication among developers 
(R-devel). Further information, including the archive of the e-mail discussion 
groups, is available on CRAN. 

Lastly, there exist numerous blogs dedicated to the R project, most of them ac-
cessible from the R-bloggers web page, www.r-bloggers.com.  A useful starting 
point to search for a topic is RSeek, www.rseek.org. 

1.2 Fundamental Objects of the R Language 

1.2.1 Commands 

The R environment can be utilized in direct mode, typing commands straight into 
the Console and getting an immediate response. Alternatively, the whole R code 
can be prepared in advance as a plain text file and run at once in batch mode. The 
commands (functions) in R are entered either individually, each on a single line, 

  
lines of code are enclosed in braces {}. Each command is followed by brackets 
with parameters (or empty, if none are required or default values are desired). 
Typing just the command name returns a listing of the function’s definition. 

 
 

It is also important to note that several words are reserved by the system and 
cannot be used as variable names. For details, see ?Reserved. 
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The R language is case sensitive. Commands are typed in lowercase and 

        the environment distinguishes between lower and upper case letters in

variable names. The latter cannot start with a digit and may contain any symbols 

stance, accented characters.

or are separated by a semicolon (;). More complex statements consisting of several 

apart from the hash mark (“#”). Note however that it is not wise to use, for in-



Direct Mode 

In the simplest case, commands are entered and the result displayed: 
> (15+6)*3 
[1] 63 

The numerical values can be assigned to a named variable. Perhaps confusingly, R 
does not use “=” as an assignment operator. Instead, an arrow “<–” is imple-
mented, corresponding to a combination of “<” (less than) and “-” (minus) char-
acters2: 
x <- 5 

In direct mode, the content of a variable is displayed by typing its name: 
x 
[1] 5 

If an incomplete command is entered, R displays a prompt “+” giving the oppor-
tunity to add what is needed.  
> (15+6 
+ )*3 
[1] 63 

The R environment automatically records a command history. The previous com-
mands can be recalled using the vertical arrow keys, edited and re-used, as de-
sired. The history can be displayed by the namesake function: 
history() 

Batch Mode 

A sequence of R commands or program can also be prepared beforehand in the 
form of a plain text file. This can be written by any editor ranging from Notepad, to 
more sophisticated word processors. In the latter case the file may need to be ex-
ported as Plain/ASCII text. However, the most useful seem to be text editors de-
signed especially for programmers as they often provide extra functionality such 
as line numbering, syntax checking/highlighting and brackets matching (WinEdt, 
Tinn-R, Notepad++, etc.) 

Commonly used suffixes for R program scripts are “r” or “R”. The script can 
be run from the menu File|Source R code or using the command source: 
> source("myprogram.r")3 

The program can be stopped by pressing the Esc key or from the menu 
Misc|Stop current computation. Optional comments start with a hash mark: 
> # My comment 

                                                           
2 In fact the “=” 
the code readability. We prefer using the arrow notation throughout the book. 
3 Assuming that the code resides in the current working directory; otherwise the full path needs 
to be specified or directory changed. 

280 Appendix A R Syntax in a Nutshell

also works as an assignment operator, however it is considered to degrade 
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Table A1.1 Overview of the most important object types in the R language 

Object Characteristics Possible modes 
Can have 
several 
modes? 

Vector one-dimensional collection of elements numeric, character,  
complex, logical No 

Factor each element is set to one of several discrete 
values, or levels (a categorical variable) numeric, character No 

Array multidimensional collection of elements numeric, character,  
complex, logical No 

Matrix two-dimensional array numeric, character,  
complex, logical No 

like a matrix but every column can be of a 
different mode  

numeric, character,  
complex, logical Yes 

List 
consists of an ordered collection of objects 
(components) that can be of various modes 
(recursive, i.e. list can itself consist of lists) 

numeric, character,  
complex, logical, function, 
expression, formula 

Yes 

Function 
fundamental piece of code, typically 
dedicated to a single task, with defined input 
parameters (arguments) and output values  

– – 

Data frame 

Note that in batch mode the content of a variable must be displayed using 
the commands print or cat (this Appendix, Chap. 3.1). Unlike in direct 

mode, typing the mere variable name does not suffice here. 
> e <- 1.602 
> print(e) 
[1] 1.602 

The usage of batch mode (and graphical capabilities) of R is best demonstrated by 
running some built-in demos, such as: 
> demo(graphics) 
> demo(image) 

1.2.2 Handling Objects in Memory 

R stores data using a variety of object types including vectors, arrays, matrices 
(two-dimensional arrays), factors, data frames, lists and functions (Table A1.1). 
To display the current list of user objects, use the menu or: 
> ls()  
Unnecessary objects can be removed with the function rm: 
> rm(x,y,junk) 

All user R objects can be deleted using the menu item Misc|Remove all objects. 

 Misc|List objects



1.3 Numeric Vectors 

1.3.1 Assignment 

Assignment of several items to a vector is done using the combine function c: 
> x <- c(10.4, 5.6, 3.1, 6.4, 21.7) 
> y <- c(x, 0, x) 
> y 
 [1] 10.4  5.6  3.1  6.4 21.7  0.0 10.4  5.6  3.1  6.4 21.7 

1.3.2 Vector Arithmetic 

For vectors, calculations are made using basic arithmetic operators: + - * / ^. 
The use of these operators for two vectors of the same length is intuitive. In other 
cases, the elements of the shorter vector are recycled as often as necessary. For in-
stance, for the x vector defined above, we can calculate:  
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1.2.3 Attributes to 

Every object possesses several properties, called attributes. The two most im-
portant of these are length and mode. Some object types, or in R jargon classes, 
can have more modes. For the given object, the mode (logical, numeric, complex 
or character) can be displayed using the namesake function: 
> mode(10) 
[1] "numeric" 

Objects

All the objects are stored in memory, and not automatically saved to disc. When 
quitting the R environment, you are given the opportunity to save the current 
workspace, i.e. all the objects created during the given session. If you accept, they 
are written to a .RData in the current directory and reloaded automatically the 
next time R is started. Different R sessions may therefore be maintained in separate
directories. 

 file



> x*2 
[1] 20.8 11.2  6.2 12.8 43.4 
> x*c(1,2) 
[1] 10.4 11.2  3.1 12.8 21.74 

1.3.3 Names 

Each vector may have an attribute names (the lengths of the vector itself and its 
names must be matching!). For instance: 
> x <- c(3,15,27) 
> names(x) <- c("Opx","Cpx","Pl")  
> x 
Opx Cpx  Pl  
  3  15  27 

1.3.4 Generating Regular Sequences 

Regular sequences with step 1 or -1 can be generated using the colon operator 
(“:”). It has the highest priority within an expression, higher than the other opera-
tors (+-*/^). 
> 1:9 
[1] 1 2 3 4 5 6 7 8 9 
> 9:1 
[1] 9 8 7 6 5 4 3 2 1 
> 1:9*2 
[1]  2  4  6  8 10 12 14 16 18 
> 1:(9*2) 
[1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 

seq(from, to, by) 
Yields a sequence of numbers with an arbitrary step (by): 
> seq(30,22,-2) 
[1] 30 28 26 24 22 

rep(x, times) 
Repeats the argument x specified a number of times: 
> x <- c(3,9) 
> rep(x,5)
[1] 3 9 3 9 3 9 3 9 3 9 

                                                           
4 NB that this is not a dot (scalar) product, but simply a result of an element-wise multiplication. 
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1.3.5 Functions to Manipulate Numeric Vectors 

The R language contains a number of functions. Only those most important for 
manipulation of numeric vectors are presented in Table A1.2. Information about 
others and the whole range of available parameters can be found in the R docu-
mentation.  

 
Table A1.2 Basic functions for numeric vectors manipulation 

Function Explanation 

abs(x) absolute value 
sqrt(x) square root 
log(x) natural logarithm 
log10(x) common (base 10) logarithm 
log(x,base) logarithm of the given base 
exp(x) exponential function 
sin(x) 

cos(x) 

tan(x) 
trigonometric functions 

min(x) minimum 
max(x) maximum 
which.min(x) index of the minimal element of a vector 
which.max(x) index of the maximal element of a vector 
range(x) range of elements in x; equals to c(min(x),max(x)) 
length(x) number of elements (= length) of a vector 
rev(x) reverses the order of elements in a vector 
sort(x) sorts elements of a vector (ascending) 
rev(sort(x)) sorts elements of a vector (descending) 
round(x,n) rounds elements of a vector to n decimal places 
sum(x) sum of the elements of a vector 
mean(x) mean of the elements of a vector 
prod(x) product of the elements of a vector 

1.4 Character Vectors 

Character vectors are collections of text strings, i.e. sequences of characters delim-
ited by the double quote symbol, e.g., "granite". They use \ – backslash as the 
escape sequence for special characters, including “\t” – tab and “\n” – new line. 
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paste(x, y, …, sep="") 
Merges two (or more) character vectors, one by one, the elements being separated 
by string sep: 
> paste("Gabbro","olivine and","pyroxene",sep=" with ") 
[1] "Gabbro with olivine and with pyroxene" 

substring(x, start, stop) 
Extracts a part of vector x starting at position first and ending at last: 
> x <- c("Plagioclase","Biotite","Muscovite") 
> substring(x,1,4) 
[1] "Plag" "Biot" "Musc" 

strsplit(x, split) 
Splits the strings in  into substrings based on the presence of split. Returns a list 
(see this Appendix, Chapter 1.8): 
 
> x <- c("Plagioclase","K-feldspar") 
> strsplit(x,"a") 
[[1]] 
[1] "Pl"    "giocl" "se"    

[[2]] 
[1] "K-feldsp" "r" 

1.5 Logical Vectors 

Logical vectors consist of elements that can attain only two logical values: 
TRUE or FALSE. These can be abbreviated as T and F, respectively. 

In the R language, the symbol name F is reserved as an abbreviation for 
logical FALSE. For this reason, it is not advisable to name any variable F. 

The same applies, of course, to T.  

1.5.1 Logical Operators 

The logical vectors are typically produced by comparisons using operators <
(smaller than) <= (smaller or equal to) > (greater than) >= (greater or equal to) == 
(equals to) != (does not equal to). For instance: 
> x <- c(1,12,15,16,13,0) 
> x > 13 
[1] FALSE FALSE  TRUE  TRUE FALSE FALSE 
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The result can be assigned to a vector of the mode logical: 
> temp <- x>13 
> temp  
[1] FALSE FALSE  TRUE  TRUE FALSE FALSE 
 
Boolean arithmetic combines two or more logical conditions using the logical op-
erators: and(&), or(|), not(!)with or without  brackets: 
> x <- c(1,12,15,16,13,0) 
> c1 <- x>10 
> c2 <- x<15 
> c1 
[1] FALSE  TRUE  TRUE TRUE TRUE FALSE 
> c2 
[1]  TRUE  TRUE FALSE FALSE  TRUE  TRUE 
> c1 & c2 # logical "and" 
[1] FALSE  TRUE FALSE FALSE  TRUE FALSE 
> c1 | c2 # logical "or" 
[1] TRUE TRUE TRUE TRUE TRUE TRUE 
> !c1 # negation 
[1]  TRUE FALSE FALSE FALSE FALSE  TRUE 

1.5.2 Missing Values (NA, NaN) 

Within R, missing data are represented by a special value NA
operations which give no meaningful result in the circumstances will return its spe-
cial form, (not a number): 
> sqrt(-15) 
[1] NaN 
 
Moreover, division by zero gives +  (Inf). 
> 1/0 
[1] Inf 

is.na(x) 
Tests for the presence of missing values in each of the elements of the vector x: 
> x <- c(5,9,-4,12,-6,-7) 
> is.na(sqrt(x)) 
[1] FALSE FALSE TRUE FALSE TRUE TRUE 

1.6 Arrays, Matrices, Data Frames 

Several kinds of table-like objects exist in R. Data frames are data objects to be 
processed by statistics, with “observations” as columns (elements/oxides in geo-
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 (not available). Some 

NaN

∞



chemistry) and “cases” (samples) in rows. They can contain columns of any mode, 
even mixed modes; thus they are not intended for matrix operations.  

For such purpose, matrices should be used. All elements of a matrix can only 
be of a single mode (numeric, most commonly). Arrays are generalized matrices: 
they must have a single mode but can have any number of dimensions. Although 
superficially similar, these three types of objects must not be confused. 

Depending on the exact content of the file, many file reading operations 
(such as read.table) would generate a data frame: it is the user’s respon-
sibility to convert it to a matrix if it is to be used later for calculations. 

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE) 
This command defines a matrix of nrow rows and ncol columns, filled by the 
data data has several elements, they will be used down columns, unless an ex-
tra parameter byrow=TRUE is provided). For instance: 
> x <- matrix(1:12,3,4) 
> x  

[,1] [,2] [,3] [,4] 
[1,]    1    4    7   10 
[2,]    2    5    8   11 
[3,]    3    6    9   12 
 
> x <- matrix(1:12,3,4,byrow=TRUE) 
> x 

[,1] [,2] [,3] [,4] 
[1,]    1    2    3    4 
[2,]    5    6    7    8 
[3,]    9   10   11   12 

The default behaviour for filling a matrix with data—as well as matrix di-
vision by a vector—proceeds along columns, not rows! 

array(data = NA, dim = length(data)) 
Defines a new data array and fills it with data. The argument dim is a vector of 
length one or more, giving maximal dimensions in each of the directions.  

1.6.1 Matrix/Data Frame Operations 

Matrices can be subject to scalar operations using the common operators (+-*/^). 
Similar to vectors, the shorter component is recycled as appropriate. Useful func-
tions for matrix/data frame manipulations are summarized in Table A1.3. 
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 (if 



 

Table A1.3 Basic matrix/dataframe-related functions 

Function Explanation 

nrow(x) number of rows 
ncol(x) number of columns 
rownames(x) row names 
colnames(x) column names 

rbind(x,y) binds two objects (matrices or data frames) of the same ncol 
(or vectors of the same length) as rows 

cbind(x,y) binds two objects (matrices or data frames) of the same nrow 
(or vectors of the same length) as columns 

t(x) transposition 

apply(X,MARGIN,FUN) 
applies function FUN

) or columns ( ) of a data matrix 
x%*%y matrix multiplication (does not work on data frame!) 
solve(A) matrix inversion (see Appendix C) 
dix(x) diagonal elements of a matrix 

Of the functions presented in the table, some explanation is required for apply: 

apply(X, MARGIN, FUN, …) 
If X is a matrix, it is split into vectors along rows (if MARGIN = 1) or columns (if 
MARGIN = 2). To each of these vectors is applied the function FUN with optional 
parameters ... passed to it.
For instance, we can calculate row sums of a matrix: 
> x <- matrix(1:12,3,4,byrow=TRUE) 
> apply(x,1,sum) 
[1] 10 26 42 

1.7 Indexing/Subsetting of Vectors, Arrays and Data Frames 

In real life, one often needs to select some elements of a vector or a matrix, fulfill-
ing certain criteria. This data selection functionality can be achieved using logical 
conditions or logical variables placed in square brackets after the defined object 
name. Subsets can be also used on the left hand side of the assignments when re-
placement of selected elements by certain values is desired.  
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 (for vector manipulations) along the rows 
( MARGIN = 2MARGIN = 1

It is worth noting that matrix multiplication is performed using the %*%

X

operator.



 

1.7.1 Vectors 

Subsets of a vector may be selected by appending to the name of the vector an 
le, first create a named vector: 

 
> x <- c(1,12,15,NA,16,13,0,NA,NA) 
> names(x) <- c("Pl","Bt","Mu","Q","Kfs","Ky","Ol","Px","C")

Pl  Bt  Mu   Q Kfs  Ky  Ol  Px   C  
  1  12  15  NA  16  13   0  NA  NA 
 
Index vectors can be of several types: logical, numeric (with positive or negative 
values), and character: 

1. Logical vector 
> x[x>10] # all elements of x higher than 10 (or NA)
Bt   Mu <NA>  Kfs   Ky <NA> <NA> 

  12   15   NA   16   13   NA   NA  
> x[!is.na(x)] # all elements of x that are available 
Pl  Bt  Mu Kfs  Ky  Ol  

  1  12  15  16  13   0 

2. Numeric vector with positive values 
> x[1:5] # the first five elements 
Pl  Bt  Mu   Q Kfs  
1 12  15  NA  16 
> x[c(1,5,7)] # 1st, 5th and 7th elements 

1  16  0 

3. Numeric vector with negative values (specifies elements to be excluded) 
> x[-(1:5)] # all elements except for the first five 

13   0  NA  NA 

4. Character vector (referring to the element names) 
> x[c("Q","Bt","Mu")] 
Q Bt Mu 

NA 12 15 

1.7.2 Matrices/Data Frames 

Elements of a matrix are presented in the order [row,column]. If nothing is given 
for a row or column, it means no restriction. For instance: 
> x[1,]  # (all columns) of the first row 
> x[,c(1,3)]  # (all rows) of the first and third columns 
> x[1:3,-2]  # all columns (apart from the 2nd) of rows 1–3 
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index vector in square brackets. For examp

> x 

Pl Kfs Ol  

Ky  Ol  Px  C 



If the result is a single row or column, it is automatically converted to a vector. To 
prevent such a behaviour, one can supply an optional parameter drop=F, e.g.: 
> x[1,,drop=F]  # (all columns) of the 1

Moreover, matrices can be manipulated using index arrays. This concept is best 
explained on an example. Let’s assume a matrix defined as: 
> x <- matrix(1:20,4,5) 

If the elements [1,3], [2,2] and [3,1] in x are to be replaced by zeroes, create 
an  index array i containing the elements coordinates: 
> i <- matrix(c(1,2,3,3,2,1),3,2) 
> i 

[,1] [,2] 
[1,]    1    3 
[2,]    2    2 
[3,]    3    1 
 
> x[i] 
[1] 9 6 3 
> x[i] <- 0 
> x 

[,1] [,2] [,3] [,4] [,5] 
[1,]    1    5    0   13   17 
[2,]    2    0   10   14   18 
[3,]    0    7   11   15   19 
[4,]    4    8   12   16   20 
 
The situation for multidimensional arrays is analogous—just the appropriate num-
ber of dimensions is higher. 

1.8 Lists 

Lists are ordered collections of other objects, known as components, which do not 
have to be of the same mode or type. Thus lists can be viewed as very loose 
groupings of R objects, involving various types of vectors, data frames, arrays, 
functions and even other lists. Components are numbered and hence can be 
addressed using their sequence number given in double square brackets, x[[3]].
Moreover, components may be named and referenced using an expression of the 
form list_name$component_name. Subsetting is similar to that of other ob-
jects, described above. 

list.name  
Builds a list with the given components. 
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< -

st row, keep as matrix

 list(component_name_1=, component_name_2=…) 

’



> x1 <- c("Luckovice","9 km E of Blatna","disused quarry") 
> x2 <- "melamonzonite" 
> x3 <- c(47.31,1.05,14.94,7.01,8.46,10.33) 
> names(x3) <- c("SiO2","TiO2","Al2O3","FeO","MgO","CaO") 
> luckovice <- list(ID="Gbl-4",Locality=x1,Rock=x2,major=x3) 
> luckovice 
$ID 
[1] "Gbl-4" 
$Locality 
[1] "Luckovice" "9 km E of Blatna" "disused quarry" 
$Rock 
[1] "melamonzonite" 
$major 
 SiO2  TiO2 Al2O3 Fe2O3   FeO   MgO   CaO  
47.31  1.05 14.94  2.23  7.01  8.46 10.33  

As well as some examples of subsetting: 
> luckovice[[1]] 
[1] "Gbl-4" 

> luckovice$Rock # or luckovice[[3]] 
[1] "melamonzonite" 

> luckovice[[2]][3] 
[1] "disused quarry" 

> luckovice$major[c("SiO2","Al2O3")] 
 SiO2 Al2O3  
47.31 14.94 

1.9 Coercion of Individual Object Types 

R is generally reasonably good at dealing seamlessly with data types, converting 
them on the fly when needed and being able to use the same operators on different 
data types. When necessary, there are a series of functions for testing the mode or 
type of an object: 
is.numeric(x), is.character(x), is.logical(x), is.matrix(x), is.data.frame(x) 

At times there is a need to explicitly convert between data types/modes using 
functions such as: 
as.numeric(x), as.character(x), as.expression(x) 

Less straightforward are: 
as.matrix(x), as.data.frame(x)  
which attempt to convert an object x to a matrix or data frame, respectively. A 
more user-friendly way of converting data frames to matrices is provided by the 
function data.matrix that converts all the variables in a data frame x to numeric 
mode and then binds them together as the columns of a matrix. 
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Here is a simple real-life example of a list definition:  

Appendix_I/Code/Codeboxes/lists.r
Appendix_I/Code/Codeboxes/lists.r
http://book.gcdkit.org/Appendix_A/Codeboxes/lists.r


1.10 Factors 

Factors are vector objects used for discrete classification (grouping) of compo-
nents in other vectors of  the  same  length,  matrices  or  data  frames.  In  statistical  ap-
plications, these often serve as categorical variables.  

1.10.1 Basic Usage of Factors 

factor(x) 
The (unordered) factors are set by the function factor where x is a vector of 
data, usually containing a small number of discrete values (known as levels). In 
this case the levels are stored in alphabetical order. For instance: 
> x <- c("Pl","Bt","Pl","Pl","Kfs","Pl","Bt","Pl",NA) 
> factor(x) 
[1] Pl   Bt   Pl   Pl   Kfs  Pl   Bt   Pl   <NA> 
Levels: Bt Kfs Pl 

ordered(x, levels) 
This function defines a special type of factor in which the order of levels is speci-
fied explicitly using the namesake parameter. Following the previous example: 
> ordered(x,c("Pl","Kfs","Bt")) 
[1] Pl   Bt   Pl   Pl   Kfs  Pl   Bt   Pl   <NA> 
Levels: Pl < Kfs < Bt 

levels(x) 
Returns all possible values (levels) of the factor x. 

1.10.2 Conversion of Numeric Vectors to Factors 

In some cases it is advantageous to divide the total range of a numeric vector x 
into a certain number of discrete ranks (groups), and code the values in x accord-
ing to the rank they fall into. If each of these ranks is labelled by identifying text, 
the result is a factor of the same length as the original vector.  

cut(x, breaks, labels) 
The function cut splits a numeric vector x into a number of ranks and classifies 
its items accordingly. The argument breaks either defines cut-off values or a de-
sired number of intervals. Parameter labels may provide names for individual 
ranks. For an example of use, see Part I, Exercise 2.7. 
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1.10.3 Frequency Tables

table(…) 
This function counts the number of occurrences of the given level within the fac-
tor. A pair of factors defines a two-way cross-classification (a frequency-
contingency table) (Part I, Exercise 2.8). 

1.10.4 Using Factors to Handle Complex Datasets 

Examples of using factors to deal with complex geochemical datasets are given in 
Part I, exercises 2.5 and 2.6, the relevant syntax is presented here. 

The components of the vector x are split into several (non-empty) groups of val-
ues, based on levels of the factor INDEX (or list of two factors) of the same length. 
Then a function FUN is applied to each of the groups, optionally with further argu-
ments (...) passed to it. The vector and the factor used for grouping collectively
form a so-called ragged array, since the group sizes are typically variable. 

aggregate(x, by, FUN, )
Applies function FUN
data frame x respecting grouping given by factor (or list of factors) by. Each of 
the variables in x is split into subsets (rows) of  identical combinations of the com-
ponents of by, and FUN is applied to each such a subset. Again, further arguments 
can be passed to FUN, as desired, via the ... argument.

by(data, INDICES, FUN, )
A data frame data is split by rows into data frames subset by the values of 
INDICES (a factor or list of factors). The function FUN is applied to each such 
subset (data frame) with further arguments in ... passed to it. In fact the function
by is an object-oriented wrapper for tapply designed to deal with data frames. 

1.11 Data Input/Output, Files 

1.11.1 Reading Data 

The tools for data handling and editing available in R are fairly limited and thus it 
is a good idea to prepare them beforehand in a dedicated application, such as a 
spreadsheet or database program. 
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tapply(x, INDEX, FUN, …)

…

…

to each of the variables (columns) of a numeric matrix or



read.table(filename, header = FALSE, sep = "", na.strings = "NA",  
check.names = TRUE, quote = "\"'", dec = ".", fill = !blank.lines.skip) 

This function imports a data file specified by ‘filename’, in which the individual 
items are separated by separator sep. The common separators are “,” – comma, 
“\t” – tab, and “\n” – new line. The parameter dec specifies a character inter-
preted as a decimal point. Note that the result is a data frame (and not a matrix), 
even if the file contains only numerical values. If matrix operations are to be em-
ployed, the data object must be explicitly converted. 

Unless the full path is specified, the file is searched
getwd()

setwd(dir) function or the menu option File|Change dir... 

A parameter worth resetting to FALSE is check.names as it determines whether 
the row and column names are to be syntactically checked to be valid R names. 
When TRUE, R will replace e.g. accented characters and slashes (“/”) with dots. 

There is a useful convention; if the first row in the data file has one item less 
than the following ones, it is interpreted as column names and every first item in 
subsequent rows as a respective row name. The file might look as follows: 
 
SiO2 TiO2  Al2O3  Fe2O3  FeO 
Li1  51.73  1.48  16.01  1.03  7.06 
Li2  51.88  1.48  15.93  0.99  6.85 … 
 

In order to read a text file in which the lengths of rows are all the same, but 
column names are present, one can employ header=TRUE,row.names = 1). 

Parameter na.strings specifies text strings to be interpreted as missing val-
ues, e.g., na.strings=c("b.d.","-","NA"). 

It is fairly common for a file exported from a spreadsheet such as MS Excel 
to have all trailing empty fields and their separators omitted. To read such 
files set fill = TRUE or simply copy and paste the data from a spreadsheet 

to your text editor directly using the Windows clipboard. 

readClipboard() 
In its simplest form, this function reads the text from the Windows clipboard.  
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Several packages are available on CRAN to help communicate with databases 
using SQL or ODBC

see the “R Data Import/Export” pdf documentation

In many situations it will be sufficient to import plain text files. The most pow-
erful of the functions available for this purpose is: 

dows applications (including MS Excel) via the DCOM interface. If you require
protocols. Moreover there is a package interfacing to Win-

any of these sophisticated tools, 
file.

for in the current
working directory. The directory can be queried with the

and set with the 
command



 

1.11.2 Sample Data Sets 

R and its packages contain numerous sample datasets that can be attached to the 
current session using the function data(…). For instance: 
> data(islands) 
Then documentation is available using the help command: 
> ?islands 

1.11.3 Saving Data

write.table(x, file = "", append = FALSE, sep = " ",na = "NA", dec = ".", 
row.names = TRUE, col.names = TRUE) 

This function writes an object x or an object that can be 
converted to such) to the specified file, separating the individual items by sep. 
As for read.table, one can specify the strings re
and the decimal point. Moreover, there are logical parameters determining wheth-
er row and/or column names are to be stored (row.names,col.names) and 
whether to append the data without erasing those possibly already present. 

writeClipboard(str) 
Writes the text specified by the character vector str to the Windows clipboard. 

 
 

Chapter 2 
Graphics 
A key benefit of using R is the large range of functions for the production and ex-
port of (near) publication-quality diagrams. They can be divided into two types; 
high-level functions that open a new graphical window and set up a coordinate 
system of the brand new graph (Table A1.4) and low-level functions that annotate 
pre-existing plots (Table A1.5). Note also that some of the functions (e.g., curve) 
can show both types of behaviour depending on the given arguments.  

2.1 Obtaining and Annotating Binary Plots 

plot() 
This is a key plotting function. For two numeric vectors, it produces a binary plot 
[plot(x,y)]. If one vector is shorter, it is recycled as appropriate.  
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presenting the missing values 

 (a matrix, a data frame, 



A quick peek at objects, classes and methods… 
There are special methods of plot to handle many types of R objects. A 
factor for instance produces a barplot of its individual levels whereas an 
object created by hierarchical clustering plots as a dendrogram. This is a 

consequence of R being an object-oriented language whereby a function can be 
used on any type of data (class) for which the method (e.g.,  or print) has 
been defined. 

Often it is possible to plot most objects directly, without the need to restructure  
the data; the appropriate x and y values are extracted as required. Developers can 
extend the capabilities by creating new classes and associated methods. 

Table A1.4 An overview of the selected high-level graphical functions in R 

Function Purpose  
plot(x,y) binary plot x vs. y (two numeric vectors) 

curve(expr,from,to) curve specified by expr (written as a function of x)  
in the interval from–to 

contour(x,y,z) contour plot (x and y specify a regular grid, z the values) 
filled.contour(x,y,z)filled contour plot (x and y specify a regular grid, z the values) 
boxplot(x) “box-and-whiskers” plot 

coplot(formula) 
conditioning plot; if formula = y~x|z,  
bivariate plots of x vs. y for each level of the factor z 

pairs(x) matrix of all possible bivariate plots between columns of 
x

hist(x) histogram of frequencies for x 
pie(x)  circular pie-chart 
 
When calling the function plot, and indeed many other graphical functions, a 
number of additional parameters can be specified to modify the appearance of the 
plot. Some are fairly universal (e.g., col or pch), but others are restricted or may 
behave unexpectedly. An overview of the most commonly used graphical parame-
ters is given in Table A1.6. If in doubt, the manual page of the particular plotting 
function should be consulted. Colours may be arranged into collections called pal-
ettes. The codes for available plotting symbols, standard colours and preview of 
palettes are in Fig. A1.2. 

The complete set of graphical parameters supported by many standard R 
functions can be obtained using . For detailed explanation, and other 
topics related to R graphics, see the monograph of Murrell (2005). 
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 plot

 (matrix or data frame) 

 ?par



Table A1.5 An overview of the most useful low-level graphical functions in R 

Function (basic use) Explanation 

points(x,y,type="p") adds extra data points at [x,y] 
text(x,y,labels) adds text specified by labels at [x,y] 

mtext(text,side) 
places text at margins, outside the plotting 
region on side 1 = bottom, 2 = left, 3 = top,  
4 = right) 

contour(x,y,z,add=TRUE) 
contour plot (x and y specify the regular grid,  
z the values) 

lines(x,y,type="l")  joins the points with straight line segments 
curve(expr,add=TRUE) adds a curve specified by expr x) 
arrows(x0,y0,x1,y1) arrows from [x0,y0] to [x1,y1] 
abline(a,b) straight line defined by intercept (a) and slope (b) 
abline(v=x),abline(h=y) vertical or horizontal straight line(s) 
grid(nx,ny=nx) grid with nx cells horizontally and ny vertically 
rect(xleft,ybottom,xright,ytop) rectangle given left, bottom, right and top limits  
polygon(x,y) polygons whose vertices are given in  and y 

axis(side,at,labels) 
custom axis; side = 1 for x, 2 for y; at = 
values to be annotated bylabels 

box(which) 
box around the plotting region (which = 
"plot") or "figure", "inner",

legend(x,y,legend,lty,lwd,pch)  adds a legend at the point [x,y] 
title(main,sub,xlab,ylab)  main title/subtitle or axes labels to the plot 

 

palette(value) 
This function serves to view or manipulate a colour palette. Optional parameter 
value is the name of palette predefined in standard R. For instance: 
> ee <- palette(heat.colors(5)) 
> ee 
[1] "red"     "#FF5500" "#FFAA00" "yellow"  "#FFFF80" 
 

abline(a = NULL, b = NULL, h = NULL) 
This command is used to draw a straight line. For instance: 
> abline(a,b) # slope b, intercept a 
> abline(h=y)  # horizontal line(s) 
> abline(v=1:5,lty="dotted") # vertical dotted grid lines 
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Table A1.6 An overview of the main graphical parameters 

Parameter Meaning Example 

adj text justification relative to the coordi-
nates [x,y]  

0 – left, 1 – right,  
0.5 – centered 

aspect ratio y/x asp = 1 

logical, should the axes be drawn? axes = FALSE 

background colour bg = "khaki" 

relative character size expansion (of text 
or symbols)  cex = 2 

cex.main,cex.sub size of plot  title, subtitle  

cex.lab,cex.axis size of axes labels, tick labels  

plotting colour col = 0, col = "red" 

 
style of axis labels 
 

0 –
1 –
2 – 3 – vertical 

which of the axes is/are logarithmic?  log = "xy",log = "" 

 line type (a number or text string) 

1 – "solid"  
2 – "dashed"  
3 – "dotted" 
4 – "dotdash" 

relative line width lwd = 2 
main title of the diagram (top) main = "My diagram" 
outer margins of a plot in lines of text 
c(bottom, left, top, right) mar = c(4,4,0,0) 

mfcol=c(nr,nc) 
mfrow=c(nr,nc) 

splits the plotting window into nr rows 
and nc columns, the graphs are filled by 
columns (mfcol) or rows (mfrow) 

mfcol = c(2,1) 
mfrow = c(2,1) 

plotting character; a numeric code or a 
single alphanumeric symbol  pch = 7, pch = "Q" 

position of the text relative to the coordi-
nates [x,y] 

1 – below, 2 – left,  
3 – above, 4 – right 

type of plot region to be used "s" – square, "m" – maximal 
rotation of the text in degrees srt = 90 

subtitle of the diagram (bottom) sub = "for thesis" 

 type of the diagram  

"p" – points, 
"l" – lines, 
"b" – both,  
"o" – overplot, 
"n" – none (no plotting) 

xaxs, yaxs scaling style for axes (default is extended: 
plotted symbols cannot crash with axes)  

"r" – extended range  
"i" – exact scaling 

xlab, ylab labels for x and y axes  xlab = "SiO2[wt.%]" 

xlim, ylim limits of the x and y axes xlim=c(50,70) 
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Fig. A1.2 Plotting symbols and colours available through the parameters pch and col (the first 
row, labelled ‘standard’)5 as well as some examples of palettes built-in plain R (black names) and 
GCDkit (brown names). 

lm(formula) 
A function for fitting linear models. The simplest form of formula is “y~x”, i.e. y 
as a function of x, performing a linear regression. To see details of the resulting

summary. Note that abline has a method for plotting thus 
generated linear fits. 

text(x, y, labels) 
This low-level function displays the given text at coordinates [x,y]. It is espe-
cially useful to label individual data points  of  the  binary diagrams  (in  combination  
with the pos parameter). For example, using data from the calc-alkaline Sázava 
suite of the Variscan Central Bohemian Plutonic Complex (Janoušek et al. 2004): 

sazava.data 
> sazava<- read.table("sazava.data",sep="\t") 
>  plot(sazava[,"SiO2"],sazava[,"Ba"],xlab=expression(SiO[2]),
+ cex=1.5,ylab="Ba",pch=16,main="Sazava",xlim=c(45,75)) 
> abline(h=seq(0,1500,500),lty="dotted",col="gray") 
> abline(v=seq(40,80,10),lty="dotted",col="gray") 
>  text(sazava[,"SiO2"],sazava[,"Ba"],rownames(sazava),pos=4,
+ col="red")  

                                                           
5 Standard codes correspond to "black", , "green3", "blue", "cyan", "magenta", 
"yellow" . Function colors() displays all the symbolic names available (657 
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We can also produce a linear fit, and assign the result to an arbitrary variable ee: 
> ee <- lm(sazava[,"Ba"]~sazava[,"SiO2"]) 
> ee 
Call: 
lm(formula = sazava[, "Ba"] ~ sazava[, "SiO2"]) 

Coefficients: 
 (Intercept)  sazava[, "SiO2"]   
    -1680.45         43.67 

and the object ee is ready to be plotted by the function abline (Fig. A1.3): 
> abline(ee,lwd=2,lty="dashed",col="blue") 

If we want to know the details, we can display the whole list ee using: 
> summary(ee) 
[Output intentionally omitted] 

 
 

Fig. A1.3 Binary plot SiO2 (wt. %) vs. Ba (ppm) for the Sázava suite of the CBPC. Linear fit was 
plotted by abline, as were the grid lines.  

grid(nx, ny) 
A convenience function creating better-looking grids with spacing nx and ny in 
the x and y axis directions. 

curve(expr, from = NULL, to = NULL, add = FALSE) 
A function for adding a curve (if add=TRUE) specified by an expression (expr; 
written as a function of x). Optionally, the range of the x axis can be also set, us-
ing the parameters from and to. For example: 

45 50 55 60 65 70 75

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

1
4

0
0

Sázava

SiO2

B
a

Sa−1

Sa−2

Sa−4

Sa−7

SaD−1

Gbs−1

Gbs−2

Gbs−3

Po−1

Po−3
Po−4

Po−5

300 Appendix A R Syntax in a Nutshell

http://book.gcdkit.org/Appendix_A/Codeboxes/sazava_SiO2-Ba_plot.r
http://book.gcdkit.org/Appendix_A/Codeboxes/sazava_SiO2-Ba_plot.r


 

sazava.data 
> sazava <- read.table("sazava.data",sep="\t") 
> plot(sazava[,"Rb"],sazava[,"Sr"],xlab="Rb (ppm)", 
+ ylab="Sr (ppm)",pch=sazava[,"Symbol"],cex=2, 
+ xlim=c(0,70),ylim=c(0,650),xaxs="i",yaxs="i")  
> abline(0,5,col="red",lwd=1.5,lty="dashed") 
> curve(x^2,add=TRUE,col="blue",lwd=1.5,lty="dotted", 
+  from=0,to=25) 

 
Fig. A1.4 Binary plot Rb (ppm) vs. Sr (ppm) for the Sázava suite. The red trend is linear, created 
by abline, while the blue one is parabolic, drawn by curve.  

points(x, y, type = "p") 
Function points adds new data points with coordinates [x,y] to an existing 
plot. The argument type controls how they are displayed (as points, lines, etc.).  

lines(x, y) 
Adds straight line segments; and y are vectors of corresponding coordinates. 

legend(x, y = NULL, legend, fill = NULL, col, pch, lty, lwd, inset = 0)  
Adds a legend at [x,y]. If y = NULL, the position (x) can be specified by a sin-
gle keyword such as "bottomright" . The explanatory text is given 
by a character vector legend; the attributes for the symbols can be fill (colours 
to fill boxes), pch (plotting characters), col (colours of plotting characters or 
lines), lty (line types) or lwd (line widths). The numeric argument inset defines 
a distance from the margins as a fraction of the plot region size. 
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2.2 Additional High-level Plotting Functions 

Here we show examples of the most useful of the other high-level functions for 
plotting boxplots, correlation matrices, histograms and such alike (Table A1.4). 

boxplot(x) 
Creates a “box-and-whiskers” plot, i.e. a diagram, in which each variable (column 
of a data frame/matrix x) is represented by a rectangle (its horizontal sides corre-
spond to the 1st and 3rd quartiles a horizontal line denotes a median). Two vertical 
lines join extremes (minimum and maximum); outliers6 are plotted as tiny circles.  

 sazava.data 
> sazava <- read.table("sazava.data",sep="\t") 
> oxides <- c("MgO","CaO","Na2O","K2O") 
> boxplot(sazava[,oxides],col=c("khaki","gray","red","blue")) 

Fig. A1.5 Boxplot of selected oxides from the Sázava suite. 

summary(x) 
Information similar to boxplot but in textual form gives: 
> summary(sazava[,oxides]) 
MgO             CaO              Na2O       
Min.   :0.520   Min.   : 3.670   Min.   :1.670   

 1st Qu.:2.033   1st Qu.: 6.718   1st Qu.:2.525   
Median :3.365 Median : 7.835   Median :2.795 … 

pairs(x) 
A scatterplot matrix for all possible combinations of columns in matrix x: 
> pairs(sazava[,oxides],pch=15,col="darkred") 

                                                           
6 For details on the underlying calculations, see ?boxplot.stats. 
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Fig. A1.6 Correlation plots obtained by pairs for selected oxides from the Sázava suite. 

hist(x) 
Produces a histogram of frequencies of the vector x: 
> hist(sazava[,"Sr"],xlab="Sr",ylab="frequency", 
+ xlim=c(100,700),col="darkred",density=5,angle=45) 
> box() 

Fig. A1.7 Histogram of frequencies for Sr contents (ppm) in the Sázava suite. 
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coplot(y~x|z) 
Conditioning plot; in this form it displays a set of bivariate plots of x vs.y for each 
level of the factor z. 

> coplot(sazava[,"CaO"]~sazava[,"SiO2"]|sazava[,"Intrusion"], 

Fig. A1.8 Coplot showing SiO2–CaO variations in individual rock types within the Sázava suite. 

contour(z, add = FALSE) 
Creates a contour plot, or adds contour lines to a pre-existing plot (if add=TRUE) 
based on a data matrix z7. A simple use will be demonstrated on isohypses of the 
Maunga Whau volcano, as given in the volcano dataset (see ?volcano ): 
> data(volcano) 
> contour(volcano,col="blue") 

filled.contour(z, color.palette = cm.colors) 
Creates a filled contour plot, in which the values of z are represented by individu-
al colours from the color.palette. Another example using volcano dataset:  
> filled.contour(volcano,color.palette=terrain.colors,asp=1) 

                                                           
7 NB that the data must be prepared in a regular grid and that the function does not perform any 
interpolation such as kriging. In this form, both coordinates are normalized from 0 to 1. The real 
ones can be provided by the optional arguments x and y. 
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+ cex=1.5,xlab=expression(SiO[2]),ylab="CaO", 
+ pch=sazava[,"Symbol"],col=sazava[,"Colour"]) 
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Fig. A1.9 Contour plots for the Maunga Whau volcano, New Zealand, plotted using contour (a) 
and filled.contour b) functions.

2.3 Creating Custom Layouts and Axes 

To gain more control of the plotting window, use the graphical parameters func-
tion par to create multi figure  plots  and  the  axis  function  to  fine-tune  style  and  
placement of axes. 

par(mfrow = c(nrow, ncol)) 
par(mfcol = c(nrow, ncol)) 
Create multi figure layouts by splitting the graphical window into a matrix of nrow 
× ncol plotting regions to be sequentially  filled  by  plotted  graphs (row wise—
mfrow or column wise—mfcol). 
Arbitrary sized plotting regions can be configured using the fig option to par. 

axis (side, at, labels) 
The plot function can be called with a parameter axes=FALSE such that no axes 
are drawn. This is a prelude to the command axis, to define a custom layout. The 
arguments side = 1 for  bottom  (x),  2 left (y), 3 top, 4 right; at – a vector with 
values to be labelled; labels – character vector with the text labels. For example: 

> plot(1,1,xlim=c(0,3),ylim=c(-1,1),axes=FALSE, 
+  xlab="custom X",ylab="custom Y",type="n") 
> axis(1,0:3,c("A","B","C","D")) 
> axis(2,-1:1,c("I","II","III")) 
> box() 
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Fig. A1.10 Custom axes created and annotated using the function axis. 

In order to produce true publication quality diagrams, R includes a powerful way 
of coding mathematical expressions that can be plotted on diagrams, e.g. as text or 

expression and as.expression are used. 

expression(…), as.expression(x) 
Return a vector of type "expression" containing its unevaluated arguments. 
> expression(SiO[2]) 
expression(SiO[2]) 
> plot(1,1,xlab=expression(SiO[2])) 
 
Some examples of valid expressions related to geochemical plotting are (details in 
the following Next step box):  
 

Expression Meaning 
TiO[2] TiO2 
FeO^T FeOT 

Al[2]*O[3]  Al2O3
 

epsilon[Nd] 
Nd 

30*degree 30° 

parse(text = NULL) 
A function that returns a parsed, but unevaluated expression. The most common 
use—in conjunction with the function as.expression—is to convert character 
string(s) with mathematical annotations to expressions ready for plotting.  
> x <- "SiO[2]" 

custom X

A B C D

I
II

II
I
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> parse(text=as.expression(x)) 
expression(SiO[2]) 

substitute(expr) 
This function returns the unevaluated expression expr, substituting any variables 
therein by their values. For instance: 
> sazava <- read.table("sazava.data",sep="\t") 
> sr.mean <- mean(sazava[,"Sr"],na.rm=TRUE) 
> text(1,0,as.expression(substitute(italic(bar(x)[Sr])==m, 
+ list(m=sr.mean)))) 
results in: 443Srx  
 
An additional example is useful if dealing with isotopes: 
> age <- 350 
> text(1,0,as.expression(substitute(" "^87*Sr/" "^86*Sr[m], 
+  list(m=age)))) 

as it gives: 87 86
350/Sr Sr . 
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Mathematical annotations to plots 
The fairly complex syntax used by as.expression and expression is 
based on the typesetting package TeX. The table below summarizes se-
lected features; see ?plotmath and example(plotmath)for details. 

 
Syntax Meaning Result 
x + y, x – y x plus y, x minus y    
x*y juxtapose x and y   
x %/% y, x %*% y x divided by y, x times y   
x/y x slash y   
x %+-% y x plus or minus y   

x[2], x^2 x subscript 2 , x superscript 2  

frac(x,y), over(x,y) x over y 
 

x == y x equals y  
bar(x)  x with bar  
x*degree x degrees  
sqrt(x), sqrt(x,y)  square root of x, yth root of x  

sum(x[i],i==1,n)  sum x[i] for i equals 1 to n 
 

plain(x), bold(x), 
italic(x), bolditalic(x) sets typeface for x   

alpha–omega, Alpha–Omega  

x y  x y

xy

x ÷ y x × y

x y
x y

x2 x
2

x

y

x y

x

x
x

y
x

i 1

n

xi

lower and upper case Greek letters 



2.4 Exporting Graphs from R and Graphical Devices 

Graphs can be exported to a word processor, a desktop publishing or a graphical 
package (e.g. Adobe Illustrator or CorelDraw) for further editing. They can be 
copied to the Clipboard or saved into a file by right-clicking the graphical window 
and selecting Save as… Alternatively, corresponding items in the menu File of 
the graphical window can be invoked. There are a wealth of formats to choose 
from, including the most popular vector (PostScript, PDF,WMF) and bitmap (TIF, 
PNG, BMP, JPG) ones. Of course, for further editing or publishing, vector formats 
are to be preferred. PostScript and PDF are generated in a quality superior to the 
Windows Metafile (WMF) format.  

As a useful alternative, the graphical output can be redirected to one of the 
many supported graphical devices (Table A1.7). 

Table A1.7 Selected devices available in R 

Function Description Type 
windows() a graphical window (Windows) – 
quartz() a graphical window (Mac OS X) – 
x11() a graphical window (Linux) – 
postscript(file) PostScript (see also ?ps.options) Vector 
pdf(file) Adobe PDF (Portable Document Format) Vector 
win.metafile(filename)Windows Metafile (WMF) Vector 
png(filename) bitmap (lossless compression, less common) Raster 
tiff(filename) bitmap (lossless uncompressed, widely accepted) Raster 
jpeg(filename) bitmap (lossy compression, small files) Raster 

dev.off() 
Close the current graphical window. 

graphics.off() 
Close all the opened graphical windows. 

2.5 Interaction with Plots 

The ability to interact with graphics makes it possible, for instance, to select outli-
ers and label them with sample names. Or one can pick samples for further pro-
cessing, such as setting end members for numerical modelling. Clearly these func-
tions are only useful for interactive plotting devices. 
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locator() 
The locator returns the coordinates of one or more points clicked on by the left 
mouse button. Identification is stopped by pressing the right mouse button and se-
lecting Stop.  

identify(x, y, labels) 
This function annotates the plot with labels for each given [x,y] coordinate. 
Usually only useful when there are a small number of data points. 

Chapter 3 
Programming in R 
This chapter deals with preparing R scripts to be run in batch mode. We shall learn 
to control the output to the screen and input from the keyboard, to build condition-
al statements and loops as well as to program simple user-defined functions. 

3.1 Input and Output 

print(x) 
Prints the contents of an object x, nicely formatted. 

cat(…, file="", sep="") 
This function displays the contents of one or more R objects in a less sophisticated 
way, but enabling much more control over the output format8: 
 
> x <- 5.8 
> cat("The result is ",x," N/m.\n") 
The result is  5.8  N/m. 

readline(prompt) 
Displays the prompt and then reads input from the keyboard:  
> x <- readline("Enter x:\n") 
Enter x: 
> 5.8 
> x 
[1] "5.8" 

This example shows that keyboard input is always in the form of a character vec-
tor of length 1. If required it has to be coerced to a numeric value using the func-
tion as.numeric: 
> x <- as.numeric(x) 
> x 
[1] 5.8 

                                                           
8Note that this function does not append a newline character that must be added explicitly to the 
output string as "\n". 
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3.2 Conditional Execution 

Conditional execution of R code can be achieved using:  

if(condition) expression1 else expression2 
If condition evaluates to TRUE, expression1
expression2 is run. Complicated commands may be grouped together in braces: 

 
> x <- 6 
> y <- 0.5 
> if(x>2 & y<1){ 
> print(x) 
> print(y) 
> }else{ 
> cat("Warning, x<=2 or y>=1!\n") 
>} 

3.3 Loops 

Sometimes it is useful to run some chunk of code repetitively in a loop. Due to the 
powerful indexing in R, loops are needed considerably less often than in any con-
ventional programming language. They can be built using the statement:  

for(variable in expression1) expression2 
expression2 is a chunk of R code, usually grouped in braces to be executed once 
for each of the values of the control variable. The range of possible values for 
the variable is specified by a vector, expression1. See the example, which 
calculates and prints the square roots of the sequence of numbers 1, 3, 5, 7, and 9: 

 
> for(f in seq(1,10,by=2)){ 
> cat("Square root of",f,"is",sqrt(f),"\n") 
> }  
Square root of 1 is 1  
Square root of 3 is 1.732051  
Square root of 5 is 2.236068  
Square root of 7 is 2.645751  
Square root of 9 is 3 

Try to avoid loops if possible. Their execution in R tends to be time con-
suming and there are, usually, other alternatives. For instance here, thanks 

to the recycling rules in R, we can write: 
> x <- seq(1,10,by=2) 
> ee <- paste("Square rootof",x,"is",sqrt(x),"\n") 
> cat(ee) 
Commands apply, tapply sapply (below) are commonly a better approach. 
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while(condition) expression 
In this case, expression will be executed as long as the condition remains valid 
(i.e. is TRUE). 

repeat expression 
This command is used in conjunction with a break statement (this is not a func-
tion and thus no brackets are required). In fact, the break statement can be used to 
terminate any loop, if necessary. The next statement can be invoked to discontin-
ue one particular cycle and skip to the next one. 

3.4 User-defined Functions 

User-defined functions provide a stylish way of extending the set of the available 
commands. In fact, much of R itself is  written  in R!  The  function  definition
looks like:  

function.name <– argument1, argument2, …) expression 
The expression is a chunk of R code, usually groupe d i n braces. order to 
avoid confusion, the last statement should be return(z), where z is an expres-
sion or variable name giving the value(s) to be returned by the function9. 

For example, we can write a user-defined function calculating a geometric 
mean, defined as the nth root of the product of n numbers, and use it on some data: 

 
n

n i
i

S x   

> geo.mean <- function(x){ 
> z <- prod(x)^(1/length(x)) 
> return(z) 
> } 

[1] 57.49363 

3.4.1 Arguments to Functions 

There are two possibilities for providing arguments to an R function. First, you 
can pass them in the order matching the function’s definition. The second is to 

                                                           
9 If more values need to be returned, they can be assembled into a list object. 
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> sazava<- read.table("sazava.data",sep="\t") 
> geo.man(sazava[,"SiO2"]) 

=1

In
 function (



supply the arguments in the form argument.name = value in an arbitrary se-
quence.  

When writing a user-defined function, one can provide default values as in the 
following example: 

 
> my.plot <- function(x,y,symb="+",colour="red"){ 
> plot(x,y,pch=symb,col=colour) 
> } 
 
And such a function then can be called in a number of ways10, for instance: 
> my.plot(x,y) #red crosses 
> my.plot(x,y,"o") #red circles 
> my.plot(x,y,colour="blue") #blue crosses 

But it is also obvious that:  
> my.plot(x,y,"blue")  

will not work as intended because the third parameter will be interpreted as pa-
rameter symb, i.e. a plotting character and a red ‘b’ will be plotted. 

args(name) 
Displays the arguments to an existing function specified by name, e.g.: 
> args("my.plot") 
function (x, y, pch = "+", col = "red") 

3.4.2 Assignments in Functions 

Importantly, the variables used within a user-defined function (in the example of 
the function calculating a geometric mean these were x and z) are local (in R jar-
gon, limited to the function’s “environment”). This means that any assignments 
done within the function are temporary, being lost after the evaluation is done. 
Therefore, such assignments do not affect the value of the variable with the same 
name in the calling environment. 

In (rare) cases when it is desirable to alter the value of a variable globally (in 
the .GlobalEnv environment), this can be done with the “super assignment”: 
> x <<- "Hello" 

                                                           
10Note that in R, most of the arguments to the functions have been given sensible defaults appro-
priate to most of the applications. Thus the ordinary user does not need to specify all of them, or 
to even be aware of their existence. 
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3.5 An Alternative to Loops  

If loop-like execution of code seems unavoidable, often a mo
tion can be made using functions such as apply,tapply or sapply. 

sapply(x, FUN) 
Applies a function FUN over a vector x. This means, that the function is run once 
for each of the values that are present in the vector x. An example (the same as
given for for  
> sapply(seq(1,10,by=2),sqrt) 
[1] 1.000000 1.732051 2.236068 2.645751 3.000000 

Of course, the function FUN can also be a user-defined one. 

Anonymous functions 
A strategy, often employed in R, is to use an anonymous function. 

sapply statement: 
> sapply(seq(1,10,by=2),function(i){ 
> z <- paste("Square root of ",i," is ",round(sqrt(i),6)) 
> return(z) 
> }) 
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Appendix B

 

 
Processing whole-rock data in igneous geochemistry is often a tedious and error-
prone activity, whether it includes simple recalculations and plotting or advanced 
modelling as described in this book. GCDkit is a freeware package tailored to fa-
cilitate such work. It is designed for a Windows edition of the open-source R lan-
guage (R in short), but may also be installed under a suitable Windows emulator 
on Linux and MacOS systems. It comprises tools written to solve a comprehensive 
set of (geochemist’s) real-life tasks, and (mostly thanks to the underlying R) the 
code can be examined and explored. Expandability is almost unlimited. 

Chapter 1

First Steps with GCDkit 

1.1 Installation 

Installation of GCDkit is as simple as for any other Windows application. There is 
just one catch: since it is a package for R, the R environment (the Rgui) has to 
be installed first, followed by GCDkit. GCDkit simply has to ‘find’ R in the sys-
tem. Please follow the instructions at its website (www.gcdkit.org). While these 
can vary over time, in general you have to: 

 Check which version of R is needed at the GCDkit website (www.gcdkit.org), 
 Download the appropriate Windows version of R (cran.r-project.org), 
 Install R by running the installer, 
 Download the GCDkit installer from www.gcdkit.org/download, 
 Install GCDkit by running it. 

Administrator’s rights are necessary for the installation in the Windows system, 
otherwise the process fails1. 

It is also good to check the website from time to time for patches fixing known 
bugs or other issues. If there is one, you can download and install a patch by drag-
ging-and-dropping the file onto the main GCDkit window.  
                                                           
1 For installation without admin rights (with some limitations) see the download page. 

© Springer-Verlag Berlin Heidelberg 2016 
V. Janoušek et al., Geochemical Modelling of Igneous Processes – Principles  
And Recipes in R Language, Springer Geochemistry,  
DOI 10.1007/978-3-662-46792-3
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This text is based on version 4.0 of GCDkit. 

 

1.2 GCDkit Overview: The User Interface 

When installed, GCDkit is started by double clicking its hammer & test-tube icon. 

 

Fig. A2.1 Screenshot of principal parts of the GCDkit interface—R-Console with text input and 
output, an opened menu and a graphical window with a plot. 

As seen in Fig. A2.1, the program starts with a single window, . This 
presents a standard command line interface, where the operator enters R com-
mands (in red), and the output result is displayed (in blue). If you type 
print("Hello") or simply 1+1, you get the expected result. In the same way 
any of innumerable R or  functions can be entered, as described in more de-
tail in Appendix A and in a number of online and printed resources. 

Furthermore, there is a series of pull-down menus at the top of the R-Console. 
The first six entries (from File to Help) refer to the R system and are almost of no 
importance to us. The remaining belong to GCDkit itself, and are covered by this 
Appendix. A further set of menu items is available on top of the graphical win-
dows and within right-click context menus.
or more functions. This implies that GCDkit functionality is accessible both by 
pull-down menus as well as from the text console. The former is more straight-
forward and intuitive; the latter is trickier but brings more flexibility and 
power. Fig. A2.2 summarizes some basic operations in both interactive and text 
mode. 
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 R-Console

 GCDkit

 Invoking each menu entry triggers one 



Fig. A2.2 Suggestions of simple tasks to start with GCDkit; multiple other options and proce-
dures are available for more advanced users. 

GCDkit degustation menu

#Menu shows how to work with GCDkit in interactive mode; parameters are defined in pop-up dialogs

#R-console shows use of functions in text mode with example parameters; type ?function for help

Import data file:

Menu: GCDkit|Load data file

R-console: loadData("Sazava.data") # *.data,*.csv,*.xls,*.xlsx,*.mdb

#Correct data format necessary, see Appendix II, Chapter 1.3; set working directory by gcdOptions()

Plot binary diagram:

Menu: Plots|Binary plot

R-console: binary("SiO2","K2O",log="xy")

Plot ternary diagram:

Menu: Plots|Ternary plot

R-console: ternary("Na2O+K2O","FeOt","MgO",grid=T,ticks=F)

Plot Harker-style diagrams:

Menu: Plots|Multiple plots …|1 vs. majors

R-console: multiple("SiO2",y="MgO,Na2O+K2O,(FeOt+MgO)/MgO,3*Rb")

#any available compound and simple formula applies

Plot predefined diagram (classification, geotectonic):

Menu: Plots|Classification… or Plots|Geotectonic…

R-console: plotDiagram("TAS") or plotPlate("Wood")

#check ?plotDiagram and ?plotPlate for applicable parameters

Plot spidergram (including REE patterns):

Menu: Plots|Spider plots …|… for selected samples

R-console: spider(WR,"Boynton",0.1,1000,pch="*",col="red")

Split data into groups (for plotting, numerical exploration etc):

Menu: Data handling|Set groups by…|… label

R-console: groupsByLabel("Intrusion") #more options available

Retouch plot: #not applicable for multiple and statistical diagrams

Zoom in: Plot editing|Zoom…|…in or figZooming()

Add legend: Plot editing|Add…|legend or figLegend()

Label samples: Plot editing|Identify points or figIdentify()#end by Esc

Add contours: Plot editing|Add contours or addContours()

Assign plotting symbols and colours to samples:

Menu: Plot settings|Symbols/colours by groups

R-console: assignSymbGroup()

#confirm changes by closing the spreadsheet window

#can be predefined in the source file in columns “Symbols” and “Colours”

Perform normative mineral calculation (norm):

Menu: Calculations|Norms…

R-console: results<-CIPW(WR)  #more norms available

#results can be copied into clipboard via menu GCDkit|Copy results to clipboard

Obtain basic statistical description:

Menu: Calculations|Statistics|Majors summary All/selection

R-console: summaryAll("SiO2,MgO,Rb",show.boxplot=T,show.hist=T)
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GCDkit is (apart from I/O functions) responding in two ways: textual informa-
tion is displayed in the Console, whereas plots pop-up in separate graphical win-
dows. The most recent plot (labelled ACTIVE) can be in most cases further edited 
as described later. Any graphical window can be saved to a selected format or to 
the clipboard (from context menu or GCDkit|Save all graphics to…). Also the text 
output displayed on the Console can be saved using GCDkit|Save results. 

Documentation is gathered in the help  system available from the menu item 
GCDkit|Help… In addition to its obvious purpose to assist in using the software, it 
also briefly documents the geochemical background and provides appropriate ref-
erences. The help system opens  in  a  web  browser  an from  documentation
for individual functions (mimicking the menu structure), it also contains several 
*.pdf manuals. Documentation is also available in standard R ways, i.e. in  the  
system help or by typing a function name preceded by a question mark. 

GCDkit is mutating. Menus, plots and tools available depend on the type 
of loaded data. If some of the features described below are missing, it is 

most likely because the appropriate data are absent.

1.3 Working with Data 

1.3.1 Data Format 

As seen from the explanation above, data are of two categories: numerical and 
descriptive (textual). Both are treated differently. It is vital to understand how the 
system recognizes the categories: 

Data in any column with correct oxide or  element name  (including  variants  for  
total Fe, H2O+, Mg#...) are considered as numerical; any text therein is im-
ported as a missing value. 
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d,  apart

Any session inevitably has to start by data preparation. The native data format is 
based on a simple table with samples (cases) in rows and compounds (numerical 
variables) with textual metadata (labels) in columns. The columns can be pre-
sented in arbitrary order. A unique name for each sample and compound should be 
stored in the first column and row, respectively. In order to be properly handled by 
the system, the major-element oxides and trace elements must be labelled solely 
by their chemical formulae (SiO2, Sr etc.) and given in wt. % and ppm, respec-
tively. 

Plotting colour, symbol and symbol size for each sample can be specified in 
columns headed ‘Colour’, ‘Symbol’ and ‘Size’. Additional textual or numerical 
information for each sample, such as locality, rock name, age, or isotopic compo-
sition may be stored in additional columns (Fig. A2.3). Further details are pro-
vided in the documentation (type ?loadData); example files are also available. 



Data in columns labelled ‘Symbol’, ‘Colour’ and ‘Size’ are considered as 

Data in any other column containing at least some text (except permitted 
strings for missing values) are treated as textual (descriptive). 
Data in any other column containing strictly numbers (with, or without, permit-
ted strings for missing values) are treated as numerical. 

 
Fig. A2.3 Commented example of a correctly formatted input file. 

Some common formatting mistakes are highlighted in Fig. A2.4. There are no 
doubt many more possibilities to spoil the input; this is a field of unlimited crea-
tivity. 

 

In the following text and in GCDkit, Variable refers to the name of a col-
umn (and the data within it) recognized as numerical. Label is a term re-

served for names of the remaining descriptive columns. 

1.3.2 Loading Data 

There are several ways of introducing data into GCDkit. The basic one leads 
through menu GCDkit|Load data file, which invokes a file selection dialogue to 
find the desired *.data file (and other formats). However, more popular has  
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symbol plotting parameters (this Appendix, Sect.1.4.1). 



Fig. A2.4 Examples of common formatting mistakes. 
 
proved to be pasting via the Windows clipboard: just copy the pre-formatted data 
from the spreadsheet programme (both Excel and OpenOffice family work), and 

GCDkit|Paste data from clipboard. If successful, the R-
Console displays the metadata summary, a listing of loaded plugins and a report of 
data processing finished by the ‘…done!’ statement. If something goes wrong, the 
problem is most probably in the data format.  

In addition, GCDkit is able to read Excel (*.xls, *.xlsx) and Access files. It 
can also import formats of other geochemical programs, such as MinPet, IgPet, 
NewPet, or of online geochemical databases (GeoRoc, Navdat or PetDB).  

There are two potentially dangerous dialogues during data loading, where a 
wrong answer can harm the imported data:  

Fig. A2.5 Dialogues controlling the fate of ‘below detection’ and negative values. 

The first window (Fig. A2.5a) asks whether the values below the known detection 
limit (such as ‘< 0.1’) should be replaced by its half (Sect. 2.1). Such replacement 
can be legitimate if statistical treatment is desired. Otherwise the values should be 
treated as missing (answer ‘No’). 

The other question (Fig. A2.5b) concerns
swering ‘ ’ marks them as below detection limit and they are dealt with in ac-
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select from the menu 

Yes
  the meaning of negative values. An-



cordance with the previous paragraph. If there are legitimate negative values in the 
file (e.g. isotopic ), the answer should be ‘No’. 

GCDkit does not alter the original data file. The system creates its own 
internal copy and any subsequent changes to the data (merging, subsetting, 

adding variables etc.) should be saved manually. 

1.3.3 Merging Data 

Closely related are two helpful tools for data appending and merging, an arduous 
job if done manually. 

One dataset should already be loaded in both cases. The option GCDkit|Append 
samples from file adds new samples to existing data, introducing columns and 
empty values where necessary (Fig. A2.6a). If data overlap occurs (i.e. files con-
tain lines with identical sample names), both are preserved with modified names.  

On the other hand, the option GCDkit|Append variables from file adds columns 
with new data to existing samples. If any column appears in both merged files, 
both are preserved with modified labels (Fig. A2.6b). 
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Fig. A2.6 Schema of merging two datasets: appending samples (a) and appending variables (b). 
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1.3.5 Grouping 

Samples can be assigned to groups based on several criteria. This allows many 
functions throughout the system to split the dataset into coherent subsets, which 
facilitates the comparisons of, say, analyses from individual intrusions. 

Tools for assigning the data to groups, found in menu Data handling|Set 
groups by…, are listed in Table A2.1. 

Table A2.1 Methods of group definition 

Grouping method Comment 

label values of any of the descriptive labels (locality, rock type, …) 
numerical variable range of the variable (e.g. SiO2) split by arbitrary intervals 
classification diagram samples are classified by diagram and groups assigned accordingly 
cluster analysis the method and number of clusters may be chosen 
outline polygons are defined within a plot using mouse, analyses falling within are 

assigned to appropriate groups, the rest to group ‘unclassified’ 
merge groups existing groups are listed in a spreadsheet and new names may be speci-

fied; groups with identical new names will be merged 
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1.3.4 Choosing Data 

It is not always desirable to work with the whole dataset. GCDkit has several tools 
for this purpose.  

1) In order to explore thoroughly part of the original dataset, one can use Data 
handling|Select subset by… to make a subset of the original dataset. The subset is

 available as the ‘main’ dataset from now on, until Select whole data set in the 
Data handling|Select subset by… menu is clicked, restoring the original data. 

2) When specifying input data for a new plot or calculation, only a temporary 
selection is made. The selection criteria are ‘forgotten’ once the procedure (plot-
ting, calculation) is completed, and the master dataset remains untouched. 

3) Temporary selection of displayed data can also be made after a plot has been 
generated (menu Plot editing, see below).  
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which also includes tools for subsequent plot changes (available in menu Plot edit-
ing). Second, so-called plates act as a platform for the arbitrary combination of 
more Figaro plots arranged over a regular grid, which can be edited collectively as 
well as individually. Third, there are the mainly statistically oriented ones, which 
are native to R and cannot be edited by GCDkit tools. All graphics without excep-
tion may be exported in several vector or bitmap formats.  

Most plotting functions are gathered in the Plots menu entry, but some are also 
in the Calculations|Statistics and elsewhere (Table A2.2). Actual plotting is pre-
ceded by series of pop-up windows, which vary from case to case, but the overall 
logic remains the same: what variables to plot (e.g. x, y axis), what samples to use 
and further plot details, if any. 

How to select a variable for plotting or calculation 
A dialogue box requesting variable selectio n pops up in various situations. Here 
are examples of the available responses: 

SiO2 – complete name of variable, 
O – part of the variable name—the system offers a clickable list of matching  
variable names (all oxides and Os in this case), 
5 – the sequential number of a variable listed in the R-Console (fifth here), 
(Na2O+K2O)/K2O – simple equation; variables can be combined with: 

– brackets 
– arithmetic operators +, -, *, /, ^ 
– R numerical functions (sqrt, sum, mean, min, exp etc.) 
– numbers and constants, 
[empty]– entering an empty field invokes a list of all variables. 

It is good to notice that with each pop-up window the R -Console displays supple-
mentary information, such as available compounds or samples.  

Each plot opens in a separate window and remains available for saving until 
closed by the user. Note that too many opened windows may cause GCDkit to 
crash, so it is wise to close unnecessary windows from time to time (either 
individually or by GCDkit|Close all graphic windows entry).  
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1.4 Plotting 

There are several plot categories with different behaviour. First, most of the single 
geochemical plots are generated by an internal GCDkit system called Figaro, 
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1.4.1 Plot Settings 

Although the specific properties of each plot are either predefined or set by the 
function call, there are several system-wide options that can be set beforehand.  

Available symbols 
20 symbols, coded by numbers 1–20 (Plot settings|Show available symbols) 
letters or other text strings (cannot be combined with symbols above) 
ASCII symbols in range 32–159, coded by numbers 
any Unicode symbol specified by its hexadecimal code (e.g. -0x2642L) 

Note that for the latter three it may be difficult to identify the true projection spot 
 
Available colours 

7 basic colours with several shades, coded by numbers 1–49 (Plot  
settings|Show available colours) 
657 named colours, coded by English name string, see showColours() 
any colour in RGB model (8-bit hexadecimal colour code, e.g. #FF0000 is red) 
any colour in RGBA model (the same but with two extra digits for opacity, e.g. 
#FF0000BF is red with 75% opacity (~ 25% transparency)) 

Symbols and colours are defined in several ways. First, they may be specified in 
the input file in columns titled ‘Symbol’ and ‘Colour’. The second option is to 
auto-assign them during loading according to one of the existing labels, for exam-
ple, locality. The third possibility is to invoke the Plot settings menu, where they 
can be set according to a chosen label (Colours by label and Symbols by label) or 
according to groups (Symbols/colours by groups). 

Transparency in the range from 0 to 1 can also be defined for each sample in 
Plot settings|Set transparency.  

Allied to this is the layout of the plot legend. The legend content is defined to-
gether with symbols and colours (obviously). Plotting symbol properties must be 
pre-defined according to a label (or group); otherwise the legend displays mean-
ingless information. A legend can be added to most plots. If both symbols and 
colours are based on the same parameter, only one legend appears; otherwise two 
are drawn, one for symbols and the other for colours. The prepared legend is added 

Some more options controlling the general plot appearance are available in the 
menu GCDkit Options…. For instance, relative plotting symbol size, colour of 
discriminant boundaries and text annotations are adjusted here. 
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1.4.2 Single Plot Editing 

Single plots can be further manipulated using tools in the Plot editing menu.  

Only the current plot can be edited, i.e. that labelled ACTIVE in the Title 
bar. If another plot is created, appropriate places in memory are taken by 

the new data and the previous plot is not adjustable anymore. 

Each plot can be saved to a file (in internal format) and later reloaded including 
the original data (Plot editing|Save a graph and Load a graph). 

Many components of a plot can be edited including title and subtitle as well as 
axis labels, colours, text  and  symbol  sizes. Table  A2.3  lists  available  tools  for  add-
ing items to plots, located in the Plot editing|Add… menu. The last two sit directly 
under Plot editing. Added items can be erased using the Plot editing Redraw
Reset menu entry. 

Table A2.3 Objects that can be added to plots; not all items apply to all plots 

Menu entry Added property 

ticks major and minor ticks for axes 
grid lines dashed grid lines 
legend legend for plotting symbols and colours 
reservoirs/minerals points/lines for predefined reservoirs and minerals 
text text annotation; click centre of its desired position 
arrow arrow; click start and end point 
box box; click opposite corners 
linear fit least-square fit; to all data or each group separately;  

click to position line label 
curve user-defined line/curve (x–y plots only) 
contours by group group outlines based on probability density estimation 
convex hulls by group polygons outlining each group  
Add contours contours of probability density plot 
Filled contour plot filled contour plot based on counting points density over a regular grid; 

no extrapolation takes place; meaningful only for large datasets 

Another useful tool is zooming (Plot editing|Zoom…). There are two options—
you can adjust the limits of either the x or y axis, or interactively select the rectan-
gular zooming area by clicking its opposite corners. The zoomed area appears in a 
new window, which should be closed by clicking the OK button therein. If you 
want to further use it, just put focus on the R-Console and press Esc. 

A further group of tools enables data identification within a plot. Go to Plot ed-
iting|Identify points, and by clicking any symbol in the diagram its name will 
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show up. The Select samples and Highlight multiple points selections in turn show 
(or highlight) points chosen by the standard selection procedure.  

1.4.3 Plates and Plate Editing 

Plates are collections of plots in a single window/on a single sheet. Their charm 
rests in the fact that plots can be created and edited individually as well as collec-
tively.  

Whereas plates can be built automatically, as are, for example, most geotec-
tonic diagrams or all Harker plots, they can also easily be constructed from scratch. 
Menu entry Plots|Plate of several plots defines an empty grid of rows and col-
umns. Right-clicking the context menu GCDkit plate|Select slot activates a red 
rectangle highlighting the “active” slot, which moves together with the cursor. The 
selection is confirmed with a left-click, and the rectangle colour becomes ochre. 
Fill the slot with the desired graphics from the GCDkit plate|Introduce plot menu 
option. Several plots are available (Binary plot, Ternary plot, Spiderplot and Clas-
sification diagram); a particularly convenient technique here is to introduce a pre-
viously prepared and saved plot in internal format (Load a saved graph). 

The existing plate can be further edited, either each plot individually using 
tools described above (accessed by the Plot editing entry in the context menu), or 
all plots together (Plate editing). The latter entry contains several exporting op-
tions, tools for axis, plotting symbol and colours editing (and unification) and for 
text annotations removal. 

1.4.4 Spiderplots 

Apart from the standard multi-element diagram (spiderplot) there are several ad-
vanced variants (Sect. 4.2). Instead of individual samples, fields for predefined 
groups, spider boxplots or spider box and percentile plots  can be drawn. Also 
double-normalized plots are available: once normalized data are re-normalized
by the content of one—normally the least incompatible—element, and all the 
patterns intercept here. Further options, such as combination of shaded fields with 
individual patterns, can be  set up from the command line. See exam-
and help(spider). Normalization data can be inspected and edited in a text file,
see this Appendix, Sect. 2.4 for details. The usage of standard spiderplots is discussed
in Sect. 3.6. of the main text. 

Another useful option is to normalize using a sample chosen from the dataset or 
average of selected samples. 
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1.4.5 Classification and Geotectonic Diagrams 

Descriptive geochemistry of igneous rocks traditionally employs numerous classi-
fication diagrams. Whereas some are easy to implement numerically (i.e. Shand’s 
AN/K–ACN/K diagram), other use empirical or even curved field boundaries and 
a graphical approach is the only feasible solution.  

GCDkit contains a series of Figaro-based classification templates, which can be 
employed for plotting as well as (automatic) sample classification. The list of 
available diagrams is accessible from Plots|Classification… (the actual possibili-
ties depending on available data). The classification is to be found at Data han-
dling|Classify… Results can be appended to labels or treated otherwise as de-
scribed later (Sect. 1.6, this Appendix). Classification may also be used for data 
grouping (Data handling|Set groups by… |… diagram).  

Furthermore, GCDkit also contains a set of geotectonic diagrams, available 
from menu Plots|Geotectonic…. Whereas these may resemble classification plots, 
there is one crucial difference: geotectonic diagrams are in all cases designed as a 
hint for geotectonic considerations rather than for authoritative determination of 
palaeotectonic setting. This is why the option for ‘classification’ using geotectonic 
diagrams is (intentionally) disabled. Both types of diagrams are also discussed in 

Read the original paper. This general rule is particularly important here: 
each classification diagram has its limits and application rules specified. 

These guidelines cannot be fully followed by the classification routine, and the 
results can thus be misleading albeit numerically correct. References for each dia- 
gram can be found in GCDkit help, or in the file GCDkit/doc/diagrams.pdf

library folder.  

1.5 Calculations 

Numerous calculation routines are the real core of GCDkit. Calculated data are 
displayed in the Console and stored internally  (in the variable results). From 
here they can be inspected, exported or appended to data (GCDkit|Append results 
to data), i.e. stored for any subsequent calculations and plotting.  

Some calculations are performed automatically during data loading. Depending 
on the data available in the file, some elemental abundances and basic indexes are 
computed (K, Ti, P, FeOt, mg#, Mg#, A/NK, A/CNK, K2O/Na2O). All are ap-
pended to the main data table WR. Majors recalculated to anhydrous basis are 
stored in WRanh, and recast to millications (milli; Sect. 2.2.2, main text).  
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Within the Calculation menu are available several normative and related 
schemes as summarized in Table A2.4. Calculations|Statistics offers  several  vari-
ants of descriptive statistics together with graphical presentation. 

Table A2.4 Main calculation routines 

Required action Solution 
Summary statistics* for one variable  Calculations|Statistics…|Single variable… 
Compare  summary statistics* of single Calculations|Statistics…|Single variable by group 

Compare data ranges  between groups Calculations|Statistics…|Ranges by groups 
Summary statistics* for more variables  Calculations|Statistics…|Majors summary 
Compare summary statistics* of more Calculations|Statistics…|Majors summary by group 

Correlation coefficients matrix Calculations|Statistics…|Correlation: majors  
(in graphical form) 

Principal components Calculations|Statistics…|Principal components 
CIPW  norm Calculations|Norms…|CIPW 
CIPW norm with hornblende and biotite Calculations|Norms…|CIPWhb 
Granite mesonorm  Calculations|Norms…|Granite mesonorm 
Catanorm Calculations|Norms…|Catanorm 
Least -square  calculation of modal Calculations|Norms…|Mode (both constrained and 

unconstrained variants are calculated) 
Niggli’s cationic parameters Calculations|Norms…|Niggli 
Coefficients of De la Roche et al. (1980) Calculations|Norms…|De la Roche 
Coefficients of Debon and Fort (1983) Calculations|Norms…|Debon and Le Fort 
Larsen’s, Kuno’s, Agpaitic indexes Calculations|Norms…|Miscellany 
Data normalization  used for spiderplots Plots|Spider plots… 
User-defined,  new variable Calculations|Calculate a new variable 

*Summary statistics here means number of observations, mean, median, standard deviation, 
minimum, maximum and quartiles

As already mentioned  in Sect. 1.4 of this Appendix, dialogues prompting for a 
variable selection in course of plot preparation also accept simple formulae. Varia-

combined with numbers (3, pi), brackets, arithmetic 
numerical functions (sum, mean, sin etc. ).  

The same calculation routine can also be called on demand at Calcula-
tions|Calculate a new variable and the result appended to the internal data. More 
complicated expressions can be also saved for later use in a text file as R code us-
ing Calculations|Add a new variable to a script.  
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1.6 Exporting from GCDkit 

The system would be of little use without a method to get data and results out of it, 
either numerical or graphical.  

If the dataset was modified within GCDkit, for example by merging, subsetting, 
or direct editing, it is necessary and wise to save it occasionally (yes, the system 
can crash unexpectedly). The menu entry GCDkit|Save data

GCDkit|Export data table 
formats (*.html, , *.xlsx, , ). 

es routines for sample and 
ed. This is 

 table for presentation.  
Apart from raw data, each computation as well as many plots produce numeri-

cal output, displayed in the  and stored in variable results. These val-
ues can be saved or exported in the same formats as the dataset (GCDkit|Save re-
sults and GCDkit|Export results table to…, respectively). Alternatively, perhaps 
more handy is to export via the system clipboard (GCDkit|Copy results to clip- 
board). 

Do not copy results directly from the console. This is particularly incon-
venient, as the output is usually poorly formatted and contains unnecessary 

symbols. Use one of the exporting options outlined above instead. 

Any graphical window may be saved to one of several formats; vector files as well 
as bitmaps (raster). Both vector and bitmap images can also be transferred via the 
Windows clipboard. Exporting options are available in the title bar of each graphi-
cal window (File|Save as…); a somewhat limited set of options is also accessible 
in the right-click context menu. Moreover, all opened graphical windows can be 
saved en bloc via GCDkit|Save all graphics to… option. 

Export to vector graphics for further editing. Using a vector format fa-
cilitates further modification of GCDkit plots with graphical programs 
such as Adobe Illustrator or Corel Draw. Available formats are Windows 

metafile (*.wmf), postscript (*.eps) and Adobe’s portable format (*.pdf), the 
last one usually giving the best results.  
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GCDkit
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the best option to obtain a quick and well formatted data

 native format (Appendix B, sect. 1.3.1), whereas 



Chapter 2 

Under the Bonnet: GCDkit Internals 
Chapter one introduced the reader into using GCDkit with few details of the pro-
gramme’s internal design or binding to the R environment. The dark side of such 
an approach is obvious—a substantial part of the functionality and flexibility re-
mains hidden. Here we try to go into more detail, explaining the structure of the 
data, further tools available via the command line and ways to extend the system. 

2.1 R Language and GCDkit 

R language is an open-source project developed in a public, collaborative manner.
Apart from the team of core developers, a large community is producing special-
ized code organized in packages. Both R-core and contributed packages are avail-
able from the CRAN repository at cran.r-project.org. GCDkit is one such package.
However, as it does not follow the strict rules for official packages (most impor-
tantly, it is so far Windows only), it is not included in the official repository. The 
main download hub remains its own home page www.gcdkit.org/download. 

The GCDkit functions are available through a clickable menu interface or in 
command line mode. In the former approach, input data and other necessary pa-
rameters are supplied to functions via pop-up dialogues. This is user-friendly but 
tedious and the range of variants is limited. Command line mode on the other hand 
offers much more flexibility but is more demanding. Advanced users can type 
commands directly into the R-Console or run a plain text file with a 
script .

To facilitate a user’s transition from menu to console approach, GCDkit dis-
plays the appropriate function in the console (in red) each time a menu is called. 
This statement is however without used parameters. Many functions do not need 
any; these can be re-typed in the same form. Otherwise it is necessary to explore 
the help system (type ?function_name), which lists the proper syntax, all pa-
rameters, detailed description and examples for each function. In particular the 
abundant examples can provide inspiration for more creative uses of the functions. 

Where to find GCDkit within Windows folder structure 
As for any R package, GCDkit files are stored in the library folder of the R in-
stallation. It resides in the default Windows folder (if not specified otherwise dur-
ing installation). So, the complete path to GCDkit root should be something like: 
 C:\Program Files\R\R-3.1.0\library\GCDkit

 
 
A working directory containing the data can be set in menu GCDkit|Options… 
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2.2 Data Variables 

GCDkit stores the geochemical data in several variables. These can be accessed 
directly from the R-Console or used in batch mode (e.g. in plugins): 

 WR – matrix with all loaded and appended numerical data, as well as some 
variables calculated during sample loading (A/CNK, Ti, FeOt…), 

 labels – a dataframe with the rest of the information. Columns contain all 
the textual data, as well as plotting attributes ‘Colour’, ‘Symbol’ and ‘Size’, 

 WRanh – matrix with oxides recalculated to 100 % anhydrous basis, 
 milli –  matrix of molar proportions of the elements (see ?millications), 
 groups  vector of group ‘levels’ assigned to each sample (i.e., if groups are 

defined by locality, vector groups contains locality name for each sample), 
 results – an object (most typically, a matrix) containing the outcome of the 

last calculation, including the auxiliary data of some plotting functions. 

All variables can be accessed and manipulated just like any other R object, for in-
stance WR[,"SiO2"]will return a named vector containing the silica contents of 
your samples. Furthermore, WR, labels, WRanh and milli all carry sample IDs 
as rownames, and the same holds for the groups attribute name. Thanks to this 
the variables can be matched or indexed by sample names.  

2.3 System Variables 

Moreover, GCDkit defines some useful system variables. Vectors major, REE, 
HFSE and LILE contain eponymous species  , and can be used as  a  nickname 
throughout the system (try multiple("SiO2",LILE)
vector ‘mw’ containing atomic weights is obvious (try mw["La"] or mw[LILE]). 
 
Variable Comment 

SiO2, TiO2, Al2O3, Fe2O3, FeO, MnO, MgO, CaO, Na2O, K2O, P2O5 
REE La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu 
LILE Rb, Sr, Ba, K, Cs, Li 

HFSE Zr, Hf, Nb, Ta, Ti, La, Ce, Y, Ga, Sc, Th, U  
MW, mw vector of molar/atomic weights of oxides and elements, respectively 
mol.wt matrix of molar weights, number of cations and of O for all oxides 

name (including path) of last loaded or appended file 
data.dir path to default data folder 
gcdx.dir path to GCDkit system folder 

                                                           
2 NB that these three variables store the list of relevant elements that are present in your file.  
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2.4 Tailoring GCDkit to Suit Your Needs 

GCDkit includes several built-in datasets used for internal purposes. These are 
stored in plain text files and can be edited manually, though care should be taken 
to maintain the formatting.  

Data for normalization within spider diagrams are retrieved from a file 
spider.data in the  GCDkit  library root folder  (see  gcdx.dir
zation series is defined in triplet of text lines, with individual elements separa- 
ted by commas: 
 
MORB (Pearce 1996) 
Th,Nb,Ce,Zr,Ti,Y 
0.2,2.7,10,90,8692.75,30 
 
The first line contains the title and reference, the second element names and the 
third normalizing values. The element order matters as it determines sorting of the 
spidergram. There is an empty row between the adjacent normalization schemes. 
As the file spider.data is read only when it is needed, the user can add or delete 
normalization schemes at will using a text editor. See also help to selectNorm.

Similar format and location apply to the reservoir.data file, which is used 
by the Plot editing|Add…|Reservoirs/Minerals option. However, the elemental or-
der does not matter here, as this function only adds items to an existing plot. The 
same routine also invokes the file idealmins.data to get mineral compositions. 
The format is tab-delimited table in this case, which may add both rows and col-
umns in units corresponding to the data loaded in GCDkit (i.e. wt. % and ppm).  

The templates for classification and geotectonic diagrams are also stored as 
plain text files in the Diagram folder of the GCDkit root. This allows an R-literate 
user to explore, edit (translation being the most likely reason) or even create a new 
template (with a little more effort). Although there is not space to explain the for-
mat in detail, it is fairly self-explanatory. In short, the template defines an R list, 
which is assigned to the variable sheet. The boundaries and texts for the plot are 
each defined as one list item, the item clssf carries parameters for classification, 
item GCDkit and arguments written in the sheet assignment define the parame-
ters determining the plot appearance.  

2.5 Plugins 

The previous section shows some options to adjust built-in data and templates 
used for standard GCDkit functionality. Users can go further, by creating a 
plugin to add new functions. In outline, after successfully loading a datafile the 
system executes any R code (recognized by a suffix of .r or .R) found in the 
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\Plugin subdirectory of your GCDkit installation. The plugin mechanism thus 
enables GCDkit to be expanded without tweaking or breaking the whole system. 

Plugins should include one or more functions that combine R and/or GCDkit  
commands and manipulate any of the geochemical data or system variables (this 
Appendix, sections 2.2 and 2.3). These functions can be integrated into the menu 
structure and invoked by other users. By convention, plugins should be called 
from the Plugins menu.  

In the Windows version of R, there are two functions for defining the menu 
structure: 

 winMenuAdd("Plugins/submenu") – creates a new menu group, 
 winMenuAddItem("Plugins/submenu","Name",function())– defines a 

new menu item and links it to the corresponding function. 

The plugin can also employ dialogue boxes (see help for list of their parameters): 

 winDialog()– returning value of pressed button, such as ‘Ok’ or ‘No’ 
 winDialogString()– returning entered string, 
 select.list()– returning one or more selected values, 
 choose.files()– a file selection dialogue. 

 
A minimalistic plugin can look as follows: 
newPlugin<-function(){ 
    myString<-winDialog("yesno", 

"Print available compounds?") 
    if (myString=="YES") cat(colnames(WR), "\n") 
} 
winMenuAdd("Plugins/New") 
winMenuAddItem("Plugins/New","Run plugin","newPlugin()") 

 

There are some general rules especially important if the new plugin is in-
tended for sharing with other users (which we recommend): 

 do integrate the plugin into the appropriate menu, i.e. Plugins, 
 do not rewrite any existing objects, 
 in order to maintain data integrity, do not alter existing GCDkit variables di-

rectly; create a new variable or use dedicated functions instead, 
 use comments in the code to explain its functionality, 
 write documentation. 

Standard plugins, in the Plugin directory, can serve as an inspiration. Further de-
tails/hints for plugin programming were given by Janoušek and Moyen (2014).  
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Appendix C

1.1 Linear Algebraic Equation Systems (Single Solution) 

Solving sets of linear equations is in fact an inverse of matrix multiplication. If af-
ter multiplication of a matrix A by a vector : 

  (1.1) 

Or, in the R syntax (using the operator %*%—Table A1.3): 
> y <- A%*%x 

using: 
> x <- solve(A,y) 

provided that there is exactly the same number of independent equations as vari-
ables (i.e. is a square matrix that can be inverted). 

Exercise A3.1: Solving a system of linear algebraic equations 

 Solve the following set of linear equations: 

x  + 2y – 0.7z = 21 
3x + 0.2y – z = 24 
0.9x + 7y – 2z = 27 
 

> A <- matrix(c(1,3,0.9,2,0.2,7,-0.7,-1,-2),3,3) 
> A  
     [,1] [,2] [,3] 
[1,]  1.0  2.0 -0.7 
[2,]  3.0  0.2 -1.0 
[3,]  0.9  7.0 -2.0 
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A

x
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> x <- solve(A,y) 
> x 
[1] 30 20 70 
> # checking the result 
> A%*%x 
     [,1] 
[1,]   21 
[2,]   24 
[3,]   27 

1.2 Overdetermined Systems ( nconstrained Least-Square 

If there are more independent equations than variables, the system is overdeter-
mined. The matrix is not square, and thus cannot be inverted. But we can cal-
culate an approximate estimate of the vector  (denoted here ). Defining: 

  (1.2) 

we must find the value of  such that the computed and real elements of the vec-
tor  differ as little as possible. The most common approach is to minimize the 
sum of the squares of the differences between each element of  and (so-
called least-square method: Bryan et al. 1969; Albarède and Provost 1977; Al-
barède 1995): 

  (1.3) 

It can be demonstrated that the best least-square solution is then: 

  (1.4) 

By analogy with Eq. (1.1), 
1T T

A × A × A  is referred to as the (Moore–
Penrose) “pseudo inverse” of matrix (it serves the same purpose as an inverse). 
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Method) 
U

> y <- c(21,24,27) 

A
x x

x
y

y y

= Ay × x

22 minR y y

1T T
yx = A × A × A ×

A
Albarède (1995) discussed in a detail all the necessary mathematical apparatus 

that is behind the solution. Janoušek and Moyen (2014) have shown implementa-
tion of (unconstrained) least-square method in R and its utilization for solving 
simple geochemical problems, such as modal calculations or reverse mass-balance 
modelling of fractional crystallization. The least-squares are implemented by the 
R function: 



lsfit(A, y, intercept = FALSE1) 
The outcome of this function is a list, of which the most interesting is the compo-
nent $coefficients, corresponding to the vector  as defined above, and a 
component $residuals with deviations between the calculated ( ) and ob-
served ( ) compositions.  

The sum of squares of residuals R2 [Eq. (1.3)] is an useful quantifier for the 
goodness of fit. Even though it shows a marked tendency to decrease with increas-
ing number of variables involved in the calculation, as a rule of thumb it should 
not greatly exceed one. R2 >> 1 means that the model is not acceptable: the pro-
posed geological hypotheses (i.e. composition of the primitive liquid, nature or 
composition of the cumulate minerals, or even the process itself) do not explain 
the observed variation. Note that the error is absolute, and it is therefore always 
wise to examine the residuals for individual elements or oxides.  

1.3 Constrained Least-Square Method 

In geochemistry are very often examined some variables that have to fulfil some 
condition. Most commonly they sum up to a certain value (e.g., unity or 100 %). 
The ordinary least-square method generally does not produce such normalized so-
lutions, though. Albarède (1995) presented the necessary equations for modified, 
‘constrained’ least squares defining the Lagrange multiplier  as: 

  (1.5) 

where stands for an ordinary least-square solution 2 and is a vector whose all 
elements are 1. The constrained least-squares solution is then given by: 

                                                           
1 Note that the parameter intercept needs to be set to FALSE for the solution to pass 
through the origin. 
2 Obtained by lsfit as above. 
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  (1.6) 

a worked example of least-squares implementation, both unconstrained and con-
strained, for ‘normative’ calculations (in wt. %) is given in Exercise 9.4. 

x
y

y

1
1 T

T
T

x

A

J

J JA ×
 

1

ˆ
T

A × A+xx = J  

Jx



 

The so-called generalized mixing problems in igneous or metamorphic 
geochemistry (including chemical mode computations, magma mixing, 

liquid line of descent or batch partial melting modelling, end-member calculations 
and balancing of mineral reactions) are indeed the most commonly solved by the 
classic least-square techniques (Bryan et al. 1969; Albarède and Provost 1977; 
Stormer and Nicholls 1978; Le Maitre 1979, 1981). However,these mass-balance 
problems can be approached also by other minimalization algorithms such as
linear programming (Wright and Doherty 1970).  

The standard least-square method does not permit constraining the sign of the 
coefficients of the solution, even when all-positive/all-negative or even mixed 
signs do not make a petrological sense3. This in fact provides an independent 
check on the feasibility of the solution. The linear programming, on the other 
hand, allows much easier forcing all-positive coefficients in the problem. This can 
be a dubious advantage, however (Rock 1988). 

Albarède F (1995) Introduction to geochemical modeling. Cambridge University Press, 
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Albarède F, Provost A (1977) Petrological and geochemical mass-balance equations: an 
algorithm for least-square fitting and general error analysis. Comput and Geosci 3:309–326 
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3 But one needs to be aware of the problem of peritectic minerals, for which a negative coefficient
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Magma mixing. See Mixing 
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ordered(), 292

similar, 291

, 293

cbind()

and
,

n,

p,
335

1



frequency table (incl. 
Exercise), 23

function, 282
anonymous, 313
arguments, 311
user-defined, 311

graphics, 295
graphical parameters, 

298
high-level, 296
low-level, 297

histogram, 303
installation, 277, 315
list, 281, 290
load data, 11, 287, 293
logical operators, 285
loop alternatives. See
Vectorization 
loops, 310
matrix, 281, 287

operations, 287
subsetting, 289

missing values, 11, 286
numerical functions, 284
object, 282, 296

attributes, 282
coercing, 291

packages, 332
plot, 295

annotation, 297, 306
creating, 296
customization, 305
exercise, 27
export, 308
interactive functions, 308
linear fit, 299

parameters, 298
save data, 295
scripts. See Batch mode 
start Console, 277
syntactic rules, 279
table-like objects, 286
variable assignment, 280
vector, 282

assignment, 282
character, 284
logical, 285
named, 283
regular sequence, 283
subsetting, 289
substring, 285

vectorization, 282, 284, 293, 
313
working directory, 294

S 
Saint-Malo Massif, 261
Saturation temperature, 136

exercise, 150
Solubility. See Accessory minerals
Spiderplots, 36

exercise, 38

T
Ternary plot (incl. Exercise), 32
Trace elements, 67, 101

V 
Visualization of data 

projection, 225

Z
Zircon, 129, 232

exercise, 150
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