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Preface

This book focuses on the numerical methods of the two-phase fluid flow and the
displacement in fractured vuggy porous carbonate reservoirs as well as quantitative
approaches for describing such multi-scale physical processes. The book is intended
to complement the existing literature by presenting new advances and updated
developments in the two-phase fluid flow in fractured porous media, especially for
fractured vuggy carbonate reservoirs. The material of this book is based primarily
on (1) a series of peer-reviewed papers, published by our research group, (2) the
technical reports that we have done during the research projects, including National
Program on Key Basic Research Project (973 Program) and National Key
Technologies R & D Program of China, and (3) the course notes that we used to
teach undergraduate and graduate courses on advanced multiphase fluid flow in
porous media at the China University of Petroleum (East China). The publications
that this book is based on are related to the research on the subject of two-phase
fluid flows in fractured vuggy porous media, which we have carried out or been
involved with since the late 2000s.

This book can be used as a textbook or reference for senior undergraduate and
graduate students in petroleum engineering, hydrogeology or groundwater
hydrology, soil sciences, and other related engineering fields, such as civil and
environmental engineering. It can also serve as a reference book for petroleum
reservoir engineers, and other engineers and scientists working in the area of flow
and transport in fractured porous media, especially in fractured karstic/vuggy
media.

The contents of the book are organized to cover fundamentals of two-phase fluid
flow in fractured and fractured vuggy porous media based on the discrete medium
concepts and its corresponding applications. It discussed the multi-physical pro-
cesses and principles governing coupling two-phase free flow and porous flow by
using Navier–Stokes equations and Darcy’s law. The book starts from the discrete
fracture model, and then various numerical approaches are introduced to model the
immiscible two-phase fluid flow in fractured reservoirs. Specifically, we proposed
the discrete fracture-vug network model (DFVN) to analyze immiscible two-phase
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flow in fractured vuggy porous media. The DFVN model is an extension of discrete
fracture model for fractured vuggy porous media. Based on these discrete models,
an efficient equivalent medium numerical simulation is also developed and pre-
sented, which is more suitable for practical applications. In addition, the book
reviews the hybrid and multi-scale concepts, approaches, and developments for
modeling two-phase flow in fractured vuggy porous media. In an effort to include
the new developments, the book also presents mathematical formulations and
numerical modeling approaches for two-phase flow by using multi-scale finite
element methods.

Qingdao, China Jun Yao
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Chapter 1
Introduction

Abstract This chapter reviews background and progress made in development and
application of the numerical theory and methods of fluid flow in fractured vuggy
carbonate reservoirs. It discusses the characteristics of fractured vuggy porous
media and the importance of quantifying flow processes in fractured vuggy porous
media to scientific understandings and engineering applications. In addition, this
chapter points out the need in further studies of the physics of complicated mul-
tiphase fluid flow in fractured vuggy porous media, driven by recent development in
several frontiers of energy and natural resources. Then, this chapter is concluded by
introducing the contents of the remaining five chapters.

Keywords Fractured vuggy carbonate reservoirs � Porous medium flow � Free-
fluid flow � Discrete fracture-vug networks model � Multi-scale numerical
simulation

1.1 Background

With the rapid development of economics, China has become the second largest
fuel-consuming country. The demand for oil has increased from 3.2 × 108 t in 2005
to 4.98 × 108 t in 2013. The annual growth rate has reached 7.43 %. Since 1993,
China became an oil-importer country, and the oil and gas import have increased
from 1.567 × 107 t in 1993 to 2.89 × 108 t in 2013. The ratio of hydrocarbon
import resources has reached to 60 %, and it still has an increasing trend (Xu 2013).
To ensure the sustainable development of our economics, petroleum industry of
China confronts with several challenges.

Hydrocarbon mainly reserved in terrestrial detrital reservoir-sand marine-
carbonate reservoirs. The latter can be further subdivided into three types:
(1) pore type carbonate reservoir, (2) fractured carbonate reservoir, and (3) fractured
vuggy carbonate reservoir. The theory of oil and gas development of terrestrial
detrital reservoirs, and water-flooding theory and applications have been the fun-
damentals of the rapid and steady development of our oil industry in the last half
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century. With the increasingly high degree to exploitation and development in
terrestrial detrital reservoirs, the challenge has become much larger. Our aim has
transferred from east to west. At present, the reserves in carbonate formation are
50 % of known economic reserves all over the world, and the production is higher
than 60 %. The total oil and gas resources in marine-carbonate formation are larger
than 300 × 108 t oil equivalent quantity. The oil mass is 150 × 108 t, mainly
distributed in Tarimu Basin and HuaBei area. But the proved reserves are only
about 11 %, among which fractured vuggy reservoir accounts for 2/3 of the proved
reserves. So it will be the main exploitation and development region in the future in
China (Yao and Zisheng 2007).

There have been more than 25-years history for the development of fractured
vuggy carbonate reservoir in China. Zhuangxi area of Shengli oil field was
developed in 1986, and Tahe oil field has been also developed for more than
15 years. In Tahe oil field, natural energy plays the main role in exploitation and
development. Both a single well-water injection for displacing oil and fractured
vuggy unit water injection development are adopted, which gain a relatively good
effect of increasing recovery of oil. However the overall development needs to be
further enhanced. Up to now, the recovery efficiency of such kind of reservoir is
only 13–15 %, and the utilization rate is very low which is less than half that of
terrestrial detrital reservoirs. The annual declining rate of production is more than
25 %. One of the main reasons is lack of understanding for fluids flow in fractured
vuggy carbonate reservoir.

Fractured vuggy carbonate reservoir usually experiences the processes of
multi-period tectonic movement, multi-period Karst superposition reconstruction
and multi-period hydrocarbon accumulation processes. Reservoir porous media
possesses strong heterogeneity and anisotropy. There are many types of reservoir
porosities, and the relationship between oil and water is complicated. Multi-type
fluid flow coexist in such carbonate reservoirs, including the free-fluid flow in
large-scale cavities and the porous flow in porous matrix. The flow regimes may
range from laminar flow (in low-permeability matrix) to turbulent flow (in cavities
or fractures drilled with a well). It is a kind of complex coupling fluid flow (Li
2013). Therefore, the conventional theory and fundamentals of fluid flow through
porous media is not completely appropriate for the study on this kind of reservoir.
There is an urgent need to establish a new set of fluid flow mathematical model and
numerical simulation methods to describe and model the fluid flow processes in
fractured vuggy carbonate reservoirs.

1.2 Characteristics of Fractured Vuggy Carbonate
Reservoirs

Different from conventional clastic rock reservoir, fractured vuggy carbonate
reservoir has a strong anisotropy and multi-scale characteristics:
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(1) The storage categories of medium is various, including matrix, fractures, vugs,
and cavities.

(2) The range of scale variation is huge, especially for the space size of fractures
and vugs may range from mm-scale to the m-scale.

(3) Influenced by tectonic movement in latter stage, fractures, and solution cav-
ities are filled seriously, which aggravates the heterogeneous of formation.
There are not only mechanical and physical filling with sand and mud but also
chemical filling such as siliceous and calcite.

The above three characteristics lead to the extreme complexity of the fluid flow
in fractured vuggy carbonate reservoir. How to model such complex fluid flow and
make a prediction of production is always the major challenge in the development
and management of fractured vuggy carbonate reservoir.

(1) Triple-porosity model
For the current reservoir simulation of fractured vuggy carbonate reservoirs, the
concept models and modeling approaches still use or refer to the research methods
which are applied in fractured reservoirs, such as double-porosity model,
triple-porosity model, and their extended models. These methods still belong to the
scope of seepage mechanisms used in conventional porous media. Double-porosity
model was first established to model the matrix-fracture flow system in 1960s by
Barrenblatt et al. (1960). Afterwards, Warren and Root build a more complete
Warren-Root double-porosity model (Warren and Root 1963), and it has been
widely used in fractured reservoir simulation nowadays. Then, the study on
double-porosity model mainly focused on the calculation of the exchange flow
function between matrix and fracture systems (Coats 1989; Kazemi et al. 1976;
Saidi 1983; Thomas et al. 1983; Ueda et al. 1989). Recently, based on the classical
double-porosity model, Pruess et al. make a subdivision on matrix rock gridding,
and proposed the MINC (Multiple INteraction Continua) model (Pruess and
Narasimhan 1985; Wu and Pruess 1988).

During the development process of fractured vuggy carbonate reservoirs, how-
ever, there are some special fluid flow phenomena and problems, which cannot
been explained by the current double-porosity models. For example, the circular
exploitation and development in Tahe oil field show that there exists the third
storage space, i.e., vug system which cannot be neglected in fractured vuggy car-
bonate reservoirs. To this end, researchers proposed the triple-porosity model in
terms of the idea on double-porosity model. Currently, the corresponding studies on
triple-porosity model mainly focus on well-testing analysis region. We can dis-
tinguish whether the reservoir has triple-porosity characteristics by well-testing
analysis curves (Chang et al. 2004; Yao and Zisheng 2007; Yao et al. 2004).
Recently, Kang (2010) and Wu et al. (2011) extend triple-porosity model to the
study on reservoir simulation of fractured vuggy carbonate reservoirs.

This triple-porosity model can describe the phenomenon of preferential flow in
fractured vuggy reservoirs in some degree, and it simultaneously considers the mass
exchange between fracture, matrix, and vug systems, which is much closer to
reality. However, this model is based on assumption that matrix and vug are divided
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into the same size-shape medium by fractures; assumption is too simple and cannot
fully describe the discontinuity and multi-scale characteristics of fractures and vugs.
Moreover, there is no corresponding theory and method to determine the mass
exchange function coefficient between matrix, fractures, and vugs systems.
Especially for two-phase and multiphase fluid flow, the difficulty of introducing the
effects of gravity and wettability to the mass exchange function is nontrivial. In
addition, the triple-porosity model still belongs to the conventional continuous
medium model. The triple continua assumption is feasible only under the condition
that there is a high fractured degree and connectivity of fractures and vugs.
Furthermore, the triple-porosity model cannot describe the multi-scale coupling
flow characteristic. As a result, in many practice applications, the triple-porosity
model will result in a relative big error.

(2) Equivalent medium model
Different from double-and triple-porosity models, equivalent medium model
regards the overall fractured vuggy reservoir as a continuous porous system. We
can represent its heterogeneity by the corresponding equivalent parameters. This
model has a high calculation efficiency and a simple requirement for parameters. It
has gained a far-reaching development in rock hydraulics (Zhang 2005; Zhou and
Wang 2004). Currently, the study on this model mainly focuses on the single phase
flow in fractured porous media. For two-phase or multiple phase flow and fractured
vuggy reservoirs, there is no mature theory and method to calculate the corre-
sponding equivalent parameters, such as the equivalent relative permeabilities and
equivalent capillary curve (Wang et al. 2011; Zhou and Wang 2004). Actually, the
theoretical basis of equivalent medium model is up-scale theory, and its mathe-
matical essence is to reduce the differential orders of the flow equations on fine
scale. Thus, the up-scale model is macroscopic scale, and we can smooth the effect
of heterogeneity and multi-scale characteristics of fractures and vugs.

Recently, Huang et al. developed an oversampling technique to describe the
macroscopic heterogeneity of fractured vuggy medium and the connectivity of
fractures between coarse scale grid blocks. The results of single flow is much more
accurate than the conventional equivalent medium model (Yan et al. 2013). But there
is still huge error in two phases flow and multiple phases flow problems. The main
reason is that such equivalent medium model is largely simplified on macroscopic
scale, and it cannot capture the fine-scale characteristic of fractures and vugs.

(3) Discrete medium model
After a long-term geologic process of carbonate formation, it will generate a dis-
crete surface with different type, scale and mechanical property including joint,
fracture, and fault. Meanwhile, due to the karst and washout in different periods, it
will generate discrete vug system. Thus, all the rock system growing with fractures
and vugs are discrete. They belong to discrete medium concept. If an accurate
discrete fracture or fracture-vug network model can be obtained, we can describe
the fluid flow more accurately in fractured vuggy medium. Because the corre-
sponding REV (Representative Elementary Volume) does not exist in such frac-
tured vuggy carbonate reservoir, the above two types of continua medium model
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are not effective any more, and the discrete medium model will have an obvious
advantage and should be applied.

The concept of discrete fracture is first proposed by Snow for rock hydraulic
problem (Snow 1968). The discrete fracture model used in nowadays reservoir
simulation is developed by Noorishad and Mehran (1982). They developed a finite
element numerical scheme for 2-D solute diffusion-convection problem in discrete
fractured porous medium by using the upstream method. During the process of
calculation, matrix rock adopts 2-D surface elements, and the fractures are dis-
cretized as 1-D line element. These two different dimension elements are coupled
by using superposition principle. Since the double-porosity model and finite dif-
ference method were popular on reservoir numerical simulation, this model has not
been paid too much attention by the petroleum industry.

Until 1999, Kim and Deo applied the discrete model to simulate the two-phase
flow in fractured reservoir (Kim and Deo 1999, 2000). In the last 15 years, the
discrete fracture model has a considerable development in reservoir numerical
simulation, and various numerical formulations have been proposed, including finite
difference method, Galerkin finite element method, control-volume finite element
method, finite volume method, mixed finite element method, and mimic finite dif-
ference method. Based on the concept and methods used in fractured porous med-
ium, Yao et al. proposed discrete fracture-vug network (DFVN) model (Yao et al.
2010a, b). These model add vugs system into the classical discrete fracture model,
which can be considered as an extension of the discrete fracture model.

Discrete medium model makes an explicit description of fractures or vugs in
reservoirs. And it use flux equivalent principal to regard flow in fracture as seepage
flow. This model has a high precision and possesses a good reality. Meanwhile this
model can be used to solve the relevant equivalent parameters of double-porosity,
triple-porosity, and equivalent medium models. In recent years, with the develop-
ment of geological model building technique, we can establish the detailed
multi-scale discrete fracture or fracture-vug geological model. However, the cor-
responding fluid flow model and numerical simulation method are still not mature.

1.3 Purpose and Scope

In the past decade, the authors have made a deep and systematic research on discrete
medium model, and developed a complete system of fractured vuggy carbonate
reservoir simulation based on discrete medium models. The objectives of this book
are to discuss the discrete concept models and the corresponding numerical simu-
lation of fracture vuggy carbonate reservoirs. The remaining chapters of the book are
organized as follows.

Chapter 2 focuses on the classical discrete fracture model and the related numerical
schemes. First, a brief introduction and review of its principal and development has
been done. Then, different numerical schemes are presented to model the fluid flow in
discrete fracture model, including finite element method, finite volume method, and

1.2 Characteristics of Fractured Vuggy Carbonate Reservoirs 5

http://dx.doi.org/10.1007/978-3-662-52842-6_2


mimic finite difference method. Due to the present challenge raised from the
unstructured gridding of such complex discrete models, we have developed an effi-
cient embedded discrete fracture model based on mimic finite difference method. The
new model can use the current mature finite difference simulator. This model can be
appropriate for the complicated shape and there is no need for complex unstructured
gridding process. It is a non-matched grid model which can reduce the computational
resources and improve the computational efficiency.

Chapter 3 describes the discrete fracture-vug network model and its corre-
sponding numerical simulation. By adding vug system into the classical discrete
fracture model, we propose the discrete fracture-vug network model. This model
divide fractured vuggy media into three flow systems: (1) the matrix system (in-
cluding microfractures and matrix porosity), (2) the macroscopic fractures system
and (3) vugs system, among which matrix and fractures system belong to seepage
region and vug system is the free-fluid flow region. First, a basic model for coupling
two-phase free flow with porous flow is developed. It is valid on the representative
elementary volume (REV) scale and accounts for mass and momentum transfer
across the fluid-porous interface. The development is based on a two-step up-scaling
approach, in which the volume averaging method is applied. The comparisons
between analytical solutions and Beavers-Joseph experimental data indicate that the
new fits are more in line with the experimental data than the previous studies. Then,
the Galerkin finite element method has been used to model the fluid flow in the
porous region based on the discrete fracture model. For the free-flow region,
the upstream Petrov-Galerkin finite element method has been applied to discretize
the average two-fluid model based on operator splitting method. And then an
alternate solution scheme is used to couple such two regions.

In Chapter 4, an efficient numerical model has been developed for immiscible
two-phase flow in fractured karst reservoirs based on the idea of equivalent con-
tinuum representation, which is suitable to the field-scale reservoir simulation.
Based on the discrete fracture-vug model and homogenization theory, the equiva-
lent absolute permeability tensors for each grid blocks are calculated. Then an
analytical procedure to obtain a pseudo-relative permeability curves for a grid
block-containing fractures and cavities has been successfully implemented. Next, a
full-tensor simulator has been designed based on a hybrid numerical method
(combining mixed finite element method and finite volume method). Some
numerical examples have been used to validate the method. Summing up, an effi-
cient fluid flow model and its modeling theory have been developed in this dis-
sertation, which can be applied to the fractured vuggy carbonate reservoirs.

Chapter 5 focuses on the hybrid models for fractured porous media and the
corresponding numerical simulation methods. The fractured reservoir with complex
fracture networks has strong heterogeneity and various scale fractures. To this end,
we develop a hybrid fracture model and discuss the corresponding numerical
method and technique. At first, the criterion and classification of fractures are
discussed. Based on this, different flow mathematical models are applied to describe
the fluid flow in different scale fracture systems. And then, the finite element
numerical schemes are used for the hybrid model.
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In Chap. 6, we have presented our recent research results of the multi-scale
simulation methods used in fractured vuggy reservoirs. The difficulty in analyzing
multiphase fluid flow in real reservoirs is mainly caused by the strong heterogeneity
of the reservoirs. The multiple scales in reservoirs may span several orders of
magnitude. It takes a long time to calculate multi-scale problem by utilizing con-
ventional numerical method. Multi-scale method incorporates the small-scale
information into the base functions; therefore, multiple scale method has exclusive
advantages when it is applied to reservoir numerical simulation. The multi-scale
methods only need to carry out the coarse mesh on the macroscale. The multi-scale
basis function, constructed by solving the partial differential equations on the coarse
mesh, could capture the small-scale information. It aims at reducing the compu-
tational amount and capturing the small-scale characteristics. Besides, the efficiency
can be further improved by applying parallel computation. In this chapter, we
present some applications of multi-scale methods to fluid flows in carbonate
reservoirs. We discuss multi-scale methods for transport equations and their cou-
pling to flow equations which are solved using MsFEMs.
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Chapter 2
Discrete Fracture Model

Abstract This chapter introduces the concept of discrete fracture model. It started
by reviewing the background and the state of the art of discrete fracture model. It
then explains three numerical methods to solve discrete fracture model including
the Galerkin finite element method, the control volume method, and the mimetic
finite difference method. In this chapter, detailed process of the establishment of
mathematical model and the corresponding solution for the three numerical meth-
ods are explained. Then these numerical methods are applied to some examples. By
the end of the chapter, the embedded discrete fracture model is introduced. A full
discussion of the establishment and solving for the embedded discrete fracture
mathematical model is included.

Keywords Discrete fracture model � Numerical simulation � Galerkin finite
element method � Control volume method � Mimetic finite difference method �
Embedded discrete fracture model

2.1 Background and the State of the Art

Fracture, the smallest geological structure (Van Golf-Racht 1982), is any break or
fracture occurring in the rock caused by the deformation or the physical diagenesis
in the rock. All rocks in the earth’s crust are fractured to some extent. In ground-
water dynamics, the rock masses with well-developed fractures are known as
fractured porous media. The problems of two-phase flow in fractured porous media
widely exist in different engineering practices, such as the oil and gas field
development, the prevention and control of groundwater pollution, and the disposal
of underground nuclear wastes (Slough et al. 1999; Yuan et al. 2004).

In fracture porous media, two types of media may be distinguished: fractured
media of single porosity and fractured media of double porosity. Both media are
composed of a network of fractures surrounding rock blocks, but what differentiates
the two types of reservoirs are the porosity and permeability of the rock blocks. In
the first case, the rock blocks are practically impervious while in the second case the

© Petroleum Industry Press and Springer-Verlag Berlin Heidelberg 2016
J. Yao and Z.-Q. Huang, Fractured Vuggy Carbonate Reservoir Simulation,
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porosity and permeability are quite significant. Fractures distribute very randomly
and display multiscale features (Zhang 2005; Zhou and Wang 2004; Rutqvist et al.
2002) (as shown in Fig. 2.1). Therefore, it is difficult to establish an accurate and
effective mathematical flow model and the corresponding numerical simulation
method, which is the current research focus of petroleum industry and rock
hydraulics (Feng et al. 2009; Huang et al. 2010; Reichenberger et al. 2006; Yao
et al. 2010; Zhang and Wu 2010; Zhou 2007).

Since the 1980s, discrete fracture model (DFM) has been a great deal of
development. The major characteristic of DFM is explicit expression and reducing
dimension. For DEM, fractures are viewed as entity and the relationship between
fractures and matrix can be established without interporosity flow function. This
kind of model keeps their computational accuracy while the data volume and the
cost of computation are reduced. Meanwhile, the model considers the permeability
of matrix, namely fluid flow in matrix as well as in fractures. For this reason, DFM
can not only accurately describe the flow character within fractures, but also
describe the inhomogeneous character and seepage character of fracture media.

Originally, Noorishad and Mehran (1982) put forward DFM to solve
single-phase flow problem in 2-D porous media. In this model, fractures are viewed
as 1-D entity and finite element method is used to solve transient transport equation.

Fig. 2.1 Fractured porous media of different scales
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While Kim and Deo (2000) adopt finite element to do discretization to discrete
fracture model and combine matrix and fractures according to superposition prin-
ciple. For nonlinear partial differential equations, pressure and saturation fully
implicit scheme and Newton’s method can solve it.

In 2003, Karimi-Fard and Firoozabadi (2003) adopt discrete fracture model to
solve the two-phase flow problem of fractured media. As shown in Fig. 2.2, the
model used line element to do discretization for fractures and used irregular mesh
element such as triangle to do discretization for matrix. Furthermore, Galerkin finite
element method is used to process numerical simulation based on implicit pressure–
explicit saturation equation. The method greatly simplifies the problem so it can be
applied to any complex structure in fractured media. There is an excellent match
between the result of this method and traditional numerical simulation method that
is based on single-porosity model. On this basis, Jun Yao et al. did further research,
and the validity of model and algorithm has been verified by computation examples
(Yao et al. 2010). By analyzing the impacts of fractures on the water flooding
development effect, the discrete fracture model is regarded as the method which has
good applicability for reservoir of low development degree of fractures, especially
when the reservoir has several large fractures that control the direction of flow.

Lange et al. (2004) put forward a new discretization method of discrete fracture
model. Based on the concept of dual media, the model does discretization to com-
plex fractures according to minimum principia of calculation amount based on the
geologic model and confirms fracture pressure at real fractures. Fractures are dis-
cretized by the model in each horizontal plane of formation, which means confirm
compute nodes at every intersection and the end points of fractures and combine rock
blocks with every fracture elements by rapid processing algorithms according to
minimum principia of distance from fracture mesh, as shown in Fig. 2.3.

Above scholars mostly use finite element method when solving the model while
finite element method cannot ensure locally mass conserving, so some scholars
apply finite volume method which is based on physical conservation to discrete
fracture model. P. Bastian et al. performed two-phase flow numerical simulations of
fractured media to discrete fracture model by finite volume method and developed
corresponding simulator (Bastian et al. 2000). In 2004, S. Geiger et al. applied

2D matrix element

1D fracture element

Fig. 2.2 Schematic of mesh
generation in discrete fracture
model
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control volume method to solve flow potential equations while solving saturation
equations by finite volume method (Geiger et al. 2004).

In recent years, discrete fracture model is getting more and more attention
interiorly and becoming a hot research topic with the development of unconven-
tional resources such as shale gas, tight reservoirs, and fractured reservoir. Further
research has been done by Huang et al. (2011) in two-phase flow simulation of
fractured reservoirs based on discrete fracture model. Combining the appropriate
unstructured mesh generation technique, discrete fracture model can keep the
arbitrary of development and distribution for fractures very well, describes
the heterogeneity, anisotropy, and discontinuity of fractured media, and depicts the
unique flow characteristic in fractures. Lv et al. (2012) did some research of discrete
fracture mesh flow simulation based on control volume method. The high efficiency
of calculation and the validity of flow simulation theory and algorithm for discrete
fracture model based on finite volume method have been verified by examples
(Lv 2010; Lv et al. 2012).

In recent 15 years, discrete fracture model has had a great development in
fractured reservoir numerical simulation and several numerical discrete forms have
sprung up, which include finite difference method, Galerkin finite element method,
control volume method, finite volume method, mixed finite element method,
mimetic finite difference method, etc.

(1) Finite difference method
Slough et al. applied finite difference method to do some research about multiphase
flow problem for discrete fractured media based on discrete fracture model (Slough
et al. 1999). Discrete fracture model is discretized into regular structured mesh to
adapt to finite difference computation format in this study, while the discrete
fracture always has complex geometry in practical problems. So this method has not
been widely promoted.

After that, Lee et al. first proposed an embedded discrete fracture model to make
full use of the existing mature finite difference reservoir numerical simulator and

Fig. 2.3 Schematic of discrete fracture model
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adapt to the complex geometry of discrete fracture model (Lee et al. 2001). As
shown in Fig. 2.4a, this model is typical nonmatching grid. In recent years, Li,
Moinfar, Panfili, and Zhou et al. did further promotion and improvement to the
model (Li and Lee 2008; Moinfar et al. 2012; Panfili et al. 2013; Zhou et al. 2014).
Recently, Xia Yan et al. established a new embedded discrete fracture numerical
computation format based on mimetic finite difference method to adapt to the
condition of full tensor permeability (Yan et al. 2014).

(2) Galerkin finite element method
Based on the work of Kim and Deo (1999, 2000), Karimi-Fard and Firoozabadi
used Galerkin finite element method to study water flooding numerical simulation
in discrete fracture model (Karimi-Fard et al. 2003). Considering the influence of
different wettability and comparing with the numerical result of single-porosity
model (fractures are viewed as narrow high permeable zone), the validity of discrete
fracture model can be verified. However, although Galerkin finite element method
has whole conservation, the local conservation of elements cannot be guaranteed,
especially on the singularities such as injection and production well. The oscillation
of solutions is existent even when applied in the upstream format. Toward this,
Zhang et al. put forward local conservation Galerkin finite element method (Zhang
et al. 2013). In essence, the method meets the quantity of flow continuity condition
at boundary of elements by the post-processing of element node to guarantee the
local conservation of elements, which is similar to mixed finite element method.
The method has not been given strict mathematic proof, so whether the method can
extend to discrete fracture model remains to be studied.

(3) Control volume method
Based on control volume method, Monteagudo and Firoozabadi established a
discrete fracture numerical computation format that has good local conservation to
make up the short of Galerkin finite element method (Monteagudo and Firoozabadi
2007). Furthermore, they did some research about 3-D two-phase immiscible flow
problem of fractured media. After that, Matthai et al. did further study about the
method. A mixed mesh computation format was established to improve applica-
bility of this method to the discrete fracture model (Matthäi and Belayneh 2004).

Fig. 2.4 Schematic of embedded discrete fracture model
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Reichenberger et al. developed a fully implicit numerical computation format based
on control volume method (Reichenberger et al. 2006). Two sets of mesh are
needed in control volume computation to solve the control volume of element node
in every mesh: one is the initial mesh based on element nodes; another one is the
auxiliary mesh system based on the central point of element. Consequently, the
computational amount of this method will be increased compared with Galerkin
finite element method.

(4) Finite volume method
Based on finite volume method, Granet et al. established a set of new discrete
fracture numerical computation format and studied the 2-D incompressible
two-phase flow (Granet et al. 1998). After that, Karimi-Fard et al. extended the
method to 3-D multiphase flow problem based on GPRS reservoir numerical
simulator of Stanford University (Karimi-Fard et al. 2003, 2004). Above compu-
tation format belongs to two-point flux approximation (TPFA). Accordingly, it
cannot adapt to the condition of full tensor permeability. Sandve et al. deduced
multipoint flux approximation (MPFA) of discrete fracture model to solve the
problem (Sandve et al. 2012).

Finite volume method has good local conservation and little computation
compared with finite element method and been widely used in reservoir numerical
simulation. However, finite volume method is not as convenient as finite element
method when it deal with cross fracture in discrete fracture model. To solve this
problem, Karimi-Fard et al. put forward Delta–Star method to deal with cross
fracture with the experience of resistance analysis method in cross circuit
(Karimi-Fard et al. 2004). For single-phase flow, the method has high computation
precision; for two-phase flow, Karimi-Fard et al. indicate that the computation error
can meet the requirements only when the fracture densities are small, while the
applicability and validity have not been verified for large-scale computation in
reservoir.

(5) Mixed finite element method
In 1970s, Raviart and Thomas successfully applied the mixed finite method to
reservoir numerical simulation and put forward the famous low-order RT0 mixed
finite element computation format (Raviart and Thomas 1977). Mixed finite ele-
ment method is viewed as the finite volume method in finite element method for the
good local conservation. Recently, Hoteit and Firroozabadi studied incompressible
two-phase flow problem in discrete fracture model by combining mixed finite
element method and discontinuous Galerkin finite element method (Hoteit and
Firoozabadi 2006). They put forward an upstream weighted computation format
that has high computational accuracy when they deal with cross fracture. For mixed
finite element method, the point is the structure of the pressure and velocity basis
function. For triangle, quadrangle, and regular hexahedron, the structure of the basis
function has matured theory and method. The matured universal method for 3-D
unstructured mesh such as tetrahedron and irregular polyhedron element has not
been developed, which restricts the development and application of mixed finite
element method in discrete fracture reservoir numerical simulation to some extent.
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(6) Mimetic finite difference method
Huang et al. deduced a new discrete fracture numerical computation format based
on mimetic finite difference method and studied incompressible two-phase flow
problem (Huang et al. 2014). The mimetic finite difference method which is put
forward by Breezi et al. (2005) has been widely used in research such as compu-
tational fluid dynamics (Lie et al. 2012; Lipnikov et al. 2014), electromagnetism,
reservoir numerical simulation, etc., for the good local conservation and application
to complicate mesh. The method is treated as the mixed finite element method in
finite volume method, which means the computation format is similar to mixed
finite element method and the difference is structure of element computation format.
Mimetic finite difference method can structure computation format only based on
single mesh element, so it can adapt to arbitrary complicate mesh system even the
concave mesh. Because of reducing requirement to the mesh, mimetic finite dif-
ference method is more applicable than mixed finite element method for the flow
simulation of complicate discrete fracture model.

2.2 Galerkin Finite Element Numerical Simulation

2.2.1 Discrete Fractured Model

Affected by the generation environment (stress, deposition, erosion, effloresce, etc.),
fractures have complicated geometric configuration. It is necessary to simplify the
fractures for convenience. Usually fractures are simplified into a parallel plate
model inside which flow follows Navier–Stokes equation. For laminar flow con-
ditions, velocity distribution along the fracture aperture can be obtained. Rewriting
the quantity of flow in the form of equivalent Darcy’s law gives the fractures’
equivalent permeability. Evidently, the flow parameters and correlative physical
quantities keep constant along the direction of the fracture in aperture, so reducing
the dimension of the fracture in aperture direction is feasible. Fractures are sim-
plified into 1-D line element for 2-D problem, and 2-D surface area element for 3-D
problem (Fig. 2.5). Such simplification is the fundamental concept of the discrete
fractured model.

1-D fracture line element

x

y

o

2-D fracture face element

x

z

o

y

Fig. 2.5 Schematic of simplified fracture
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The matrix system comprising microfissure and rock mass are regarded as
equivalent porous continuum and the macroscopic fractures are represented mani-
festly as discrete fractures. As shown in Fig. 2.1, fractures occur at a variety of
scales, from microscopic to field scale. Therefore, the division of microfissure and
macroscopic fissure should comply with the specific research problem and the
required precision of numerical simulation. Generally, a large fracture should be
longer than a mesh of numerical simulation.

Therefore, the whole fracture porous media consists of matrix system and
fracture system. The research region is X ¼ Xm þ P

ai � ðXfÞi, where m repre-
sents matrix, f represents fracture, and a is the aperture of the i-th fracture.
Assuming the representative element volumes of both matrix and fracture system
exist, the two-phase flow equations FEQ (Flow Equations) are applicable to the
entire research area. Then for the discrete fractured model, the integral form of the
flow equation can be expressed asZ

X
FEQ dX ¼

Z
Xm

FEQ dXm þ
X
i

ai �
Z

Xfð Þi
FEQ d Xfð Þi ð2:1Þ

When neglecting the storage and seepage ability of matrix system, the research
area only include fracture system and the above model degenerates into DFN
(Discrete Fracture Network) model. When we consider the storage and seepage
ability of the matrix system, the above model is the discrete fracture model. If the
fractures are treated as microfissure, the above model only includes matrix system
and changes into classical porous media flow model.

2.2.2 Two-Phase Flow Mathematical Model

For simplicity, we only consider isothermal flow of impressible fluid, which is
similar to the analysis of other flow problem. Flow equations include mass con-
servation equation, generalized Darcy’s law, saturation auxiliary equation, and
capillary pressure relationship. Specific equations are as follows:

/
@Sa
@t

þr � va ¼ qa; a ¼ w; n ð2:2Þ

va ¼ �K
kra
la

rpa þ qagrzð Þ; a ¼ w; n ð2:3Þ

Sw þ Sn ¼ 1 ð2:4Þ

pc Swð Þ ¼ pn � pw; ð2:5Þ
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where ϕ is porosity; Sl is saturation; vi is seepage velocity, (m/s); D is Hamilton
operator; ql is source term, (1/s); w, n denote wetting phase and non-wetting phase,
respectively; K is permeability tensor, (m2); krl is relative permeability; ll is fluid
viscosity, (Pa s); pl is fluid pressure, (Pa); ql is fluid density, (kg/m3); g is accel-
eration of gravity; z denotes highness, positive on the upward side, (m); pc is
capillary pressure, (Pa). Herein, we define the flow potential Φl as follows:

Ua ¼ pa þ qagz ð2:6Þ

and the corresponding capillary force potential Φc as

Uc ¼ Un � Uw ¼ pc þ qn � qwð Þgz ð2:7Þ

Based on the above definitions, flow Eqs. (2.2), (2.3), and (2.5) can be written as

/
@Sw
@t

þr � �KkwrUwð Þ ¼ qw ð2:8Þ

/
@Sn
@t

þr � �KknrUnð Þ ¼ qn ð2:9Þ

Uc ¼ Un � Uw; ð2:10Þ

where

kw ¼ krw
lw

; kn ¼ krn
ln

ð2:11Þ

denote the mobility coefficient of wetting phase and non-wetting phase,
respectively.

Substituting Eqs. (2.4) and (2.10) into Eqs. (2.8) and (2.9) leads to the flow
potential equation and phase saturation equation of wetting phase, written in the
form of matrix:

0 0
0 /

� �
@

@t
Uw

Sw

� �
þr � � K kw þ knð Þ Kknp0c

Kkw 0

� �
r Uw

Sw

� �� �
¼ qn þ qw

qw

� �
;

ð2:12Þ

where

p0crSw ¼ rUc ¼ dUc

dSw
rSw ¼ dpc

dSw
rSw ð2:13Þ
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The initial condition and boundary conditions are stated below:
(1) Initial conditions

Ua x; 0ð Þ ¼ Ua xð Þ ; Sa x; 0ð Þ ¼ Sa xð Þ; at t ¼ 0 ð2:14Þ

(2) Dirichlet boundary conditions

Ua x; tð Þ ¼ Ua; Sa x; tð Þ ¼ Sa; onCD ð2:15Þ

(3) Neumann boundary conditions (the outer boundary is impermeable), i.e.,

va � n ¼ �KkarUað Þ � n ¼ 0
rSa � n ¼ 0

�
; onCN; ð2:16Þ

where n is the outer normal unit vector of outer boundary. N points to the outer
normal direction of the interface of fracture line and outer boundary for 2-D
problem and of fracture surface and outer boundary for 3-D problem.
(4) Internal impermeable boundary conditions mainly refer to the impermeable
internal boundaries such as fault and fracture filled with mud, etc.

vl � n ¼ �KkarUað Þ � n ¼ 0; onCF; ð2:17Þ

where n is normal unit vector of internal boundary.
By substituting Eq. (2.12) as two-phase flow equation FEQ of fractured porous

media into Eq. (2.1) and with the above initial conditions and boundary conditions,
the complete mathematical model of the discrete fractured model can be developed.

2.2.3 Finite Element Numerical Formula

The discrete fractured model usually has complex fracture network structure and
fractures distribute randomly. So in the numerical calculations, unstructured meshes
are often used to adapt to its complex geometrical configuration. Therefore, the
finite element method is applied to solve the numerical problem. The Galerkin
weighted residual method is used to deduce the finite element calculation formula
of Eq. (2.12). For convenience, the flow potential equation and phase saturation
equation of wetting phase in Eq. (2.12) are derived separately, and the corre-
sponding weight functions are variations of flow potential and saturation, respec-
tively. Specific equations are as follows:
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(1) Flow potential equation.Z
X
r � �K kw þ knð ÞrUw½ �dUwdXþ

Z
X
r � �Kknp0crSw
� �

dUwdX

¼
Z
X

qn þ qwð ÞdUwdX ð2:18Þ

(2) Saturation equation.Z
X
/
@Sw
@t

dSwdXþ
Z
X
r � �KkwrUwð ÞdSwdX ¼

Z
X
qwdSwdX ð2:19Þ

After integration by parts, combining impermeable boundary conditions (2.16),
we obtainZ

X
K kw þ knð ÞrUw½ �r dUwð ÞdXþ

Z
X

Kknp0crSw
� �r dUwð ÞdX

¼
Z
X

qn þ qwð ÞdUwdX ð2:20Þ
Z
X
/
@Sw
@t

dSwdXþ
Z
X

KkwrUwð Þr dSwð ÞdX ¼
Z
X
qwdSwdX ð2:21Þ

For 2-D problem, Delaunay triangular mesh is employed to subdivide the whole
research region and 1-D line element is employed to represent fracture. For 3-D
problem, Delaunay triangular mesh is used to subdivide the fracture surface; the
entire research region is subdivided by relevant tetrahedron or hexahedron, as
shown in Fig. 2.6.

In each element, finite element approximation of flow potential and saturation is

Uw �
Xm
i¼1

Ni Uwð Þi ¼ N xð ÞUw tð Þ Sw �
Xm
i¼1

Ni Swð Þi ¼ N xð ÞSw tð Þ; ð2:22Þ

2D matrix face 
element

1D fracture line 
element

3D matrix element

2D fracture element

Fig. 2.6 Mesh schematics of discrete fractured model. a 2-D problem; b 3-D problem
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where m is the number of element nodes; N ¼ N1; . . .;Nm½ � is shape function;

Uw ¼ ðUwÞ1; . . .; ðUwÞm
� 	T is flow potential value of wetting phase at element

nodes; Sw¼ ½ðSwÞ1; . . .; ðSwÞm�T is saturation value of wetting phase at element
nodes.

Substituting Eq. (2.22) into Eqs. (2.20) and (2.21) and considering the arbi-
trariness of variation results in the following equation:

0 0
0 MS

� �
_Uw
_Sw

� �
þ BU1 BU2

BS1 BS2

� �
Uw

Sw

� �
¼ QU

QS

� �
; ð2:23Þ

where

BU1 ¼
P
e
Be
U1 ¼

P
e

R
Xe rTN K kw þ knð Þ½ �rN dXe;

BU2 ¼
P
e
Be
U2 ¼

P
e

R
Xe rTN Kknp0c

� �rNdXe;

QU ¼P
e
Qe

U ¼P
e

R
Xe rTN qn þ qwð ÞdXe; MS ¼P

e
Me

S

R
Xe NT/NdXe;

BS1 ¼
P
e
Be
S1 ¼

P
e

R
Xe rTN Kkwð ÞrNdXe; BS2 ¼ 0; QS ¼P

e
Qe

S ¼P
e

R
Xe rTNqwdX

e;

where e denotes the elements set.
The interface of fractures and the matrix system needs special numerical cal-

culation, for the reducing dimension of fractures in the discrete fractured model. As
shown in Fig. 2.6, the nodes of fracture element and the matrix element are coin-
cident at the interface. Assuming the water is wetting phase, the pressure of water
phase at interface of fracture and the matrix is continuous. Therefore, the flow
potential of water is continuous. After calculating the fracture element and the
matrix element, respectively, and using superposition principle, the completely
matrix equation can be developed, as shown in Fig. 2.7.
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Fig. 2.7 Schematic of processing fracture and matrix element
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Generally, the capillary pressure curves of fractures and the matrix system are
different. The saturation at interface of fractures and the matrix system is not always
continuous, as shown in Fig. 2.8. Herein, the water phase saturation equation of
fractures needs special treatment in above superposing process. For the flow
potential of water is continuous, the capillary force potential and the capillary
pressure are both continuous. Combining Fig. 2.8, the saturation of fractures and
the matrix system meet the equation as follows:

kup ¼ ki if Ui �Uj

kj if Ui\Uj

�
ð2:24Þ

For fractures, Eq. (2.12) can be written as

0 0
0 0

� �
@

@t
U f

w
Sfw

� �
þr � � Kf kfw þ kfn

� �
Kfkfn pfc

� �0
Kfkfw 0

" #
r Uf

w
Sfw

� �( )
¼ qfw þ qfn

qfw

� �
ð2:25Þ

Substituting the water phase flow potential continuous conditions and Eq. (2.24)
into Eq. (2.25), we obtain

0 0
0 / f dSfw

dSmw

" #
@

@t
Um

w
Smw

� �
þr � � Kf kfw þ kfn

� �
Kfkfn pfc

� �0dSfw
dSmw

Kfkfw 0

" #
r Um

w
Smw

� �( )
¼ qfw þ qfn

qfw

� �
ð2:26Þ
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Fig. 2.8 Capillary pressure
curve for fracture and matrix
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As shown in Eq. (2.26), only when dSfw
dSmw

¼ 1, Sfw ¼ Smw can be derived, the

saturation continuous, i.e.,
obtaining the matrix equations by combining equations of fractures and the

matrix system according to Eq. (2.1) and Fig. 2.7. For each node, the corre-
sponding network element at the interface of fractures is not always in the same
fracture line or fracture surface. Therefore, the global coordinates change into local
coordinates when we get the specific property matrix. After superposing the above
specific property matrix, the algebra equations can be derived. For the time term,
the backward difference will be used to solve the problem. Then, the flow potential
and distribution of matrix saturation of water phase can be developed. The satu-
ration value of water phase in fractures can be deduced by Eq. (2.24). The mass
matrix Ms of water phase saturation equation is usually off-diagonal consistent
mass matrix. The row-sum lumping method is used to get lumped mass matrix
(Reddy 1993), and specific equation in e element as follows:

M̂
� 	e

ii¼
Xm
j¼1

Z
X
Ne
i /N

e
j dX ; M̂

� 	e
ij¼ 0 ð2:27Þ

Fig. 2.9 Schematic of discrete fracture finite element numerical calculation process

22 2 Discrete Fracture Model



Based on above numerical calculation formula, the MATLAB programming
language is used to program corresponding finite element numerical calculation
program of two-phase discrete fracture. The specific process is shown in Fig. 2.9.

It is possible that numerical oscillation occurs if convection dominated, when the
standard Galerkin finite method is used to solve two-phase flow problem.
Therefore, the upwind Galerkin calculation formula is used to solve the equations,
specific equation as follows:

kup ¼ ki; Ui �Uj

kj; Ui\Uj

�
; ð2:28Þ

where the fluidity coefficient is defined at every nodes of elements. The upwind
Galerkin calculation formula has well stability and convergence. Corresponding
analysis refers to references (Dalen 1979; Helmig and Huber 1998).

2.2.4 Numerical Examples and Applications

(1) Single fracture model
First, consider a two-phase flow problem in a single fracture. For search conve-
nience, the wetting phase is always water and the non-wetting phase is always oil in
the following context. Assume that fracture is filled with oil initially, water is
injected from the left end in a constant speed and the pressure in the right end keeps
the initial pressure. Make further assumption as follows: the fracture is partially
filled and the length is 100 m, porosity / ¼ 0:25, aperture is 1 mm, absolute
permeability K ¼ 1 lm2, viscosity of water lw ¼ 1mPa s, viscosity of oil
lo ¼ 5mPa s, both irreducible water saturation and residual oil saturation are zero,
water phase relative permeability krw ¼ S2w, oil phase relative permeability

km ¼ ð1� SwÞ2, initial pressure is 10 MPa, and injection rate q ¼ 6:0� 10�6 m=s.
Uniform mesh is applied, and the number of nodes is 251; the elements are

quadratic; neglect the gravity and capillary pressure; the fluid is incompressible.
This example is a typical Buckley–Leverett problem and its analytical solution is
expressed as

x ¼ f 0w Swð Þ
/A

Z t

0
qindt; ð2:29Þ

where A is the cross-sectional area of fracture, (m2); fw ¼ kw= kw þ koð Þ is water
cut, f 0w Swð Þ ¼ dfw=dSw. Figure 2.10 shows that there is an excellent match between
numerical solution and analytical solution.
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(2) Double porosity example
Consider the complex fracture reservoir model in Fig. 2.11, which includes
diversion fracture and fault. The thickness of the reservoir is 10 m. Porosity of
homogeneous isotropic matrix / ¼ 0:2, permeability Km ¼ 1000 lm2; fracture
aperture a ¼ 1mm, permeability Kf ¼ a2=12 ¼ 8:33� 104 lm2. Viscosity of
water lw ¼ 1mPa s viscosity of oil lo ¼ 5mPa s, irreducible water saturation is
Swr ¼ 0, residual oil saturation is Sor ¼ 0:2.

Water phase relative permeability krw ¼ S2w, oil phase relative permeability

km ¼ ð1� SwÞ2, initial pressure is 10 MPa, both injection and production rates are

x [m]
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q ¼ 30m3=d. Assume that the reservoir model is water wetting, and the capillary
pressure curve follows the Brooks–Corey capillary pressure function, and that both
the matrix’s capillary pressure and the fracture’s pressure are considered.

pc Swð Þ ¼ pd
Sw � Swr

1�Swr � Sor


 ��1
k

; 0:2� k� 3:0 ð2:30Þ

For matrix, threshold value pc ¼ 10000 Pa, λ equals to 2.0. For fractures,
threshold value pd ¼ 1000 Pa, λ equals to 1.0.

As illustrated in Fig. 2.12, the finite element meshes consist of 532 nodes and
982 elements. Figure 2.13 is representing the water saturation distributions at dif-
ferent times. The results indicate that the injected water displaces oil down the
matrix and then moves forward rapidly along fractures when the oil/water front
encounters conduit fractures, as suggested by Fig. 2.13a. At the same time, fault
acts as a flow barrier, which forces the fluid flow along the extension direction of
the fault, as shown in Fig. 2.13b; conduit fractures connected with fault can rapidly
introduce lower fluid into upper reservoir across the fault, as shown in Fig. 2.13c, d.
Evidently, the existence of fractures results in strong heterogeneity and anisotropy,
which have a great influence in the water flooding development. Owing to the
presence of capillary pressure, the recovery of water flooding development is
improved because of the expansion of sweep area; but the entire development effect
is still controlled by fractures.

Fig. 2.12 Finite element
meshes
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2.3 Control Volume Method Numerical Simulation

First, two-phase flow control equations are developed. Then results in discrete
fracture model according to the equivalence principle of quantity of flow for single
fracture are presented, accompanied with the saturation relationship at the interface
of inhomogeneous media. The fundamental assumptions of the reservoir model are
as follows:

(1) The flow in this reservoir model is isothermal flow;
(2) Considering the existence of two-phase: water and oil, which cannot dissolve

and react with each other, and their flow both follow the Darcy law;
(3) The fluid in matrix and fractures is slight compressible;
(4) Neglecting the compressibility of rock mass;
(5) Neglecting the effect of gravity, considering the effect of capillary pressure.
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Fig. 2.13 Water saturation distributions at different times. a After 20 days; b after 50 days; c after
80 days; d after 120 days
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2.3.1 Two-Phase Flow Control Equations

The two-phase flow control equations comprise mass conservation equation, the
Darcy law, state equation, saturation equation, capillary pressure relationship, etc.
Considering the gravity and capillary pressure of fluid, the mathematic model which
could describe the two-phase flow of slightly compressible fluid in reservoir can be
established.

(1) Mass conservation equation.
Based on the principle of mass conservation, the continuity equation of oil phase
and water phase can be established, respectively.

For oil phase:

�r � qo � voð ÞþQo ¼ @ /qoSoð Þ
@t

ð2:31Þ

For water phase:

�r � qw � vwð ÞþQw ¼ @ /qwSwð Þ
@t

; ð2:32Þ

where o represents oil, w represents water; qi is fluid density, kg/m3; vi is fluid
velocity, m/s; / is formation porosity; Si fluid saturation; Qi is source term which
represents mass change in unit time and unit volume, and Qi equals to positive
value for injection well and Qi equals to negative value for producing well,
kg=ðm3 sÞ.
(2) Momentum equation.
When the fluid in reservoir follows the Darcy law, flow velocity can be expressed as
follows:

For oil phase:

vo ¼ � kroK
lo

rpo þ qogrzð Þ ð2:33Þ

For water phase:

vw ¼ � krwK
lw

rpw þ qwgrzð Þ; ð2:34Þ

where li is fluid viscosity, Pa s; pi is fluid pressure; g is acceleration of gravity,
m/s2; z is highness from a reference plane, positive on the upward side, m; Krl is
relative permeability; K is permeability tensor, which changes into scalar K in
isotropic matrix, m2.
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For 2-D problem, the permeability tensor K is defined as

K ¼ Kxx Kxy

Kyx Kyy

� �
For 3-D problem, the permeability tensor K is defined as

K ¼
Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

24 35
If the feature vector of K coincides with the direction of coordinate axis,

K degenerates into the tensor in diagonal form:

K ¼
Kxx

Kyy

Kzz

24 35
The direction of permeability tensor is always different from coordinate axis,

especially for the complex reservoir. Therefore, full permeability tensor is needed
for making up the deviation. But most of the simulator cannot simulate this kind of
permeability now (Durlofsky 1993).

(3) State equation.
Considering the compressibility of oil and water, we obtain

For oil phase:

Co ¼ 1
qo

dqo
dpo

ð2:35Þ

For water phase:

Cw ¼ 1
qw

dqw
dpw

; ð2:36Þ

where qi is fluid density, kg/m3; pi is fluid pressure, Pa; Cl is elastic compression
coefficient of fluid, Pa−1.

(4) Auxiliary equation.
Saturation equation:

So þ Sw ¼ 1 ð2:37Þ
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Capillary pressure equation:

po � pw ¼ pc Swð Þ; ð2:38Þ

where pc is capillary pressure, Pa.
Substituting above momentum equations of oil phase and water phase into

continuity equation, respectively, we obtain
For oil phase:

r � qo �
kroK
lo

rpo þ qogrzð Þ

 �

þQo ¼ @ /qoSoð Þ
@t

ð2:39Þ

For water phase:

r � qw � krwK
lw

rpw þ qwgrzð Þ

 �

þQw ¼ @ /qwSwð Þ
@t

ð2:40Þ

Equations (2.39) and (2.40) are simplified by compound function derivation law,
we obtain

For oil phase:

r � qo �
krok
lo

rpo þ qogrzð Þ
 !

þQo ¼ / qo
@So
@t

þ So
@qo
@t


 �
ð2:41Þ

For water phase:

r � qw � krwk
lw

rpw þ qwgrzð Þ
 !

þQw ¼ / qw
@Sw
@t

þ Sw
@qw
@t


 �
ð2:42Þ

Assuming condition as follows:

@qi
@t

¼ @qi
@pi

@pi
@t

l ¼ o,wð Þ ð2:43Þ

Then Eqs. (2.41) and (2.42) can be expressed as
For oil phase:

r � qo �
kroK
lo

rpo þ qogrzð Þ

 �

þQo ¼ /qo
@So
@t

þ So
1
qo

@qo
@po

@po
@t


 �
ð2:44Þ
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For water phase:

r � qw � krwK
lw

rpw þ qwgrzð Þ

 �

þQw ¼ /qw
@Sw
@t

þ Sw
1
qw

@qw
@pw

@pw
@t


 �
ð2:45Þ

Substituting state equation into Eqs. (2.44) and (2.45), we obtain
For oil phase:

r � qo �
kroK
lo

rpo þ qogrzð Þ

 �

þQo ¼ /qo
@So
@t

þ/qoSoCo
@po
@t

ð2:46Þ

For water phase:

r � qw � krwK
lw

rpw þ qwgrzð Þ

 �

þQw ¼ /qw
@Sw
@t

þ/qwSwCw
@pw
@t

ð2:47Þ

Divide Eq. (2.46) and Eq. (2.47) by fluid density qi (i ¼ o; w gf ), and standard
control equation can be developed, which can describe immiscible displacement of
two-phase slightly compressible fluid.

For oil phase:

/
@So
@t

þ/SoCo
@po
@t

�r � kroK
lo

rpo þ qogrzð Þ

 �

� qo ¼ 0 ð2:48Þ

For water phase:

/
@Sw
@t

þ/SwCw
@pw
@t

�r � krwK
lw

rpw þ qwgrzð Þ

 �

� qw ¼ 0; ð2:49Þ

where qi ¼ Qi=qi, which represents quantity of flow into or out in unit volume unit
time, S−1.

Assuming condition as follows:

kl ¼ krlK
ll

ð2:50Þ

The flow potential of l phase can be defined as

Ul ¼ pl þ qlgz ð2:51Þ

Then the capillary pressure flow potential can be defined as

Uc ¼ Uo � Uw ¼ Pc þ qo � qwð Þgz ð2:52Þ
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Based on the above definition, permeability scalar K is employed to replace
permeability tensor in homogeneous isotropic matrix. Neglecting gravity, the
immiscible flow control equation of two-phase slightly compressible fluid can be
expressed as

For oil phase:

/
@So
@t

þ/SoCo
@po
@t

�r � korpoð Þ � qo ¼ 0 ð2:53Þ

For water phase:

/
@Sw
@t

þ/SwCw
@pw
@t

�r � kwrpwð Þ � qw ¼ 0 ð2:54Þ

Add control equations of oil phase and water phase up and keep the water phase
control equation. Combine two auxiliary equations and define composite com-
pressibility as Ct ¼ SwCw þ SoCo,

@pc
@t � 0. Then above mathematical model can be

expressed as two partial differential equations:

�/Ct
@pw
@t

þr � ko þ kwð Þrpwð Þþr � korpcð Þþ qo þ qwð Þ ¼ 0 ð2:55Þ

/
@Sw
@t

þ/SwCw
@pw
@t

�r � kwrpwð Þ � qw ¼ 0 ð2:56Þ

Equation (2.55) is pressure equation, and Eq. (2.56) is saturation equation.
The mathematical model initial conditions are

pi x ; 0ð Þ ¼ pi xð Þ; Si x ; 0ð Þ ¼ Si xð Þ; t ¼ 0; l ¼ w, of g ð2:57Þ

The boundary conditions can be all forms of Dirichlet boundary condition,
Neumann boundary condition, and mixed mode.

Dirichlet condition is

pi x; tð Þ ¼ pi; Si x; tð Þ ¼ Si; i ¼ w, of g; onCD ð2:58Þ

Neumann condition is (assume the boundary is impermeable)

vi � n!¼ � kirpið Þ � n!¼ 0; rSi � n!¼ 0; i ¼ w, of g; onCN ð2:59Þ

Then the immiscible flow mathematical model of two-phase slightly com-
pressible fluid is developed.
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2.3.2 Discrete Fracture Mathematical Model

Based on the equivalence principle of quantity of flow for single fracture, discrete
fracture model can be developed, as shown in Fig. 2.14. The model is built upon a
parallel plate of single fracture and is fracture aperture. Assume that flow of fluid in
fracture follows N-S equation. The flow in parallel plate is laminar flow when fluid
velocity is small. The velocity distribution and quantity of flow along the fracture
aperture can be obtained. According to Darcy’s law, the quantity of flow gives the
fractures’ equivalent permeability and the equivalent flow velocity distribution.
And the value is kept constant along the direction of fracture in aperture. Evidently,
the instability of the flow parameters and correlative physical quantities along the
direction of the fracture in aperture reduce the dimension of the fracture in aperture
and develop the discrete fracture model.

Fractures are simplified into 1-D line element for 2-D problem, and 2-D surface
area element for 3-D problem, as shown in Fig. 2.15.
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Fig. 2.14 Velocity distribution in single fracture. a Realistic velocity, b equivalent velocity
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Fig. 2.15 Schematic of discrete fracture model. a Single-porosity model, b discrete fracture
model
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Considering the 2-D porous media region in single fracture, the whole area is X,
and the matrix area is Xm, the fracture area is Xf in single fracture model and is aX

0
f

in discrete fracture model. So based on the discrete fracture model, the whole region
of reservoir can be expressed as

X ¼ Xm þ aX
0
f ð2:60Þ

where a is fracture aperture. In above 2-D discrete fracture model, the 2-D control
equation system of the matrix region is

�/mCt
@pmw
@t

þr � kmo þ kmw
� �rpmw
� �þr � kmo rpmc

� �þ qmo þ qmw
� � ¼ 0 ð2:61Þ

/m @Smw
@t

þ/mSmwCw
@pmw
@t

�r � kmw rpmw
� �� �� qmw ¼ 0 ð2:62Þ

The 1-D control equation system of the matrix region is

�/fCt
@pfw
@t

þ kfo þ kfw
� � @pfw

@n


 �
þ @

@n
kfo

@pfc
@n


 �
þ qfw þ qfo
� � ¼ 0 ð2:63Þ

/f @S
f
w

@t
þ/fSfwCw

@pfw
@t

� @

@n
kfw

@pfw
@n


 �
 �
� qfw ¼ 0; ð2:64Þ

where n is coordinate system along the direction of fracture in aperture.
In single fracture model, if f is used to represent pressure equation and saturation

equation system, the integral form of the whole equation can be written asZ
X
fdX ¼

Z
Xm

fmdXm þ
Z
Xf

f fdXf ¼ 0 ð2:65Þ

According to X ¼ Xm þ eX
0
f , the integral form of pressure equation and satu-

ration equation in the discrete fracture model can be expressed asZ
X
fdX ¼

Z
Xm

fmdXm þ e
Z
Xf

f fdX
0
f ¼ 0 ð2:66Þ

That way, the two-phase discrete fracture model flow equation is developed. In
theory, the discrete fracture model can be applied to any fractured porous media that
has complex form. Compared to single fracture model, the integration in fractures
of the discrete fracture model can simplify the problem to a great extent. And
fracture aperture will appear in front of 1-D integral form as a coefficient in order to
keep the integral form.
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2.3.3 Saturation Discontinuity Treatment at the Interface

After discretized space and time, and performing linearization of the nonlinear term
in Eq. (2.66), we can get the discrete equation of system:Z

X
fdX ¼ Am xm � bm þAf xf � bf ¼ 0; ð2:67Þ

where

x ¼ pw; Sw½ �T

Neglecting the compressibility of fluid, Karimi-Fard, Firoozabadi, Kim, Deo
(Karimi-Fard and Firoozabadi 2003; Kim and Deo 2000) have changed Eq. (2.67)
into Eq. (2.68).

Am þAf� �
x� bm � bf ¼ 0 ð2:68Þ

There is an implicit relationship xm ¼ xf ¼ x in Eq. (2.68) and it is only applied
to particular circumstances. Hence, the relationship between the matrix system and
fracture as well as the corresponding equation in the interface of the matrix and
fracture needs to be developed based on a real physical meaning.

There is no change of fluid mass in the interface Cmf of the matrix and fracture,
so the quantity of flow and direction of normal velocity are continuous, i.e.,

qf	i ¼ qm	
i ; vmi � nmf ¼ vmi � nmf ; i ¼ w, of g; onCmf ; ð2:69Þ

where nmf is the normal vector at the matrix and fracture.
Superposition principle is applied to integrate flow equations in discrete fracture

mode and these terms will be eliminated when flow equations are added up. So the
quantity of flow at interface of the matrix and fracture can be neglected in flow
equations.

The coordinate of arbitrary fixed point z at interface of the matrix and fracture is
same and Um

i ¼ Uf
i can be known from Eq. (2.51). The capillary pressure potential

is same too as shown in Eq. (2.52), i.e.,

Um
c Smw
� � ¼ Uf

c Sfw
� � ð2:70Þ

It is equivalent to the continuity of capillary pressure. Figure 2.16 is capillary
pressure at the interface of two different phases. Because the capillary pressure at
the interface of the matrix and fracture is same, pfc ¼ pmc ¼ p	c , and the water
saturation deciding capillary pressure is discontinuous at the interface. The physical
relationship of Sfw and Smw at the interface can be developed using the continuity
condition of capillary pressure.
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Smw ¼ 1;
pmc
� 	�1

pfcðSfwÞ;
�

Sfw [ S	w
Sfw � S	w

ð2:71Þ

Making use of Eq. (2.71) and compound function derivation law, the saturation
equation of fractures can be applied to the water saturation Smw of the matrix and be
expressed as follows:

/f dS
f
w

dSmw

@Smw
@t

þ/fSfwCw
@pfw
@t

� @

@n
kfw

@pfw
@n


 �
 �
� qfw ¼ 0 ð2:72Þ

According to the assumption xm ¼ xf ¼ x in Eq. (2.68), it can be applied only
when the capillary pressure function of the matrix and fracture is same, namely
when dSfw

�
dSmw ¼ 1. Thus the corresponding dSfw

�
dSmw should be calculated for

different capillary pressure functions of the matrix and fracture. The fluid exchange
term can be neglected, because it will be eliminated when added up in control
volume element.

2.3.4 Control Volume Numerical Formulation

The control volume method was originally used in computational fluid dynamics.
And it is essentially a finite volume computation format based on Delaunay mesh
dual element. Hence, the Delaunay dual mesh is needed first when developing the
computation format based on control volume method. Then by integrating the

matrix

fracture

SwSw
mSw

f

pc

pc
mpc

f

Sw
*

pc
*

Fig. 2.16 Capillary pressure
at the interface between
matrix and fracture
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pressure equation and the saturation equation at each control volume element, the
numerical computation format can be established.

(1) Discrete fracture model control volume mesh generation
Unstructured mesh is applied to accomplish geometrical discrete of discrete fracture
model for the distribution of fractures in fractured reservoir is random. For 2-D
problem, first, Delaunay triangle mesh is generated. Triangle element will be
employed to discrete the matrix and 1-D line element represents the fracture area, as
shown in Fig. 2.17a. So-called control volume is a polygonal area. Each area con-
trolled by a node is connected by the center of gravity of adjacent triangle element
and midpoint of side that links to the node. And volume element will be divided into
three areas by lines connected by the center of gravity and midpoint of side.

As shown in Fig. 2.17b, the adjacent nodes of node a are b1; b2; . . .; b6f g,
triangles which take node a as the vertex are T1; T2; . . .; T6f g, the center of gravity
of triangles are G1;G2; . . .;G6f g, midpoints of sides which take node a as vertex
are Mab1 ;Mab2 ; . . .;Mab6f g. The control volume element of node a is polygon
G1Mab1G2Mab2G3Mab3G4Mab4G5Mab5G6Mab6 , which can be obtained by connecting
the center of gravity of triangles with corresponding midpoint of sides. Control
volume element of the other nodes in research region can be obtained in the same
way, where ab1 represents fractures. In standard control volume element, Delaunay
triangle is local homogeneous while control volume element might be nonhomo-
geneous. The major characteristics of polygon control volume are covering the
entire calculation region without overlap and keeping calculation accuracy by the
cross-distribution of triangle elements and control volume.

The matrix of fractured porous media is homogeneous. Considering saturation
variable ðSw; SoÞ is constant in each control volume element while flow pressure
variable pw; po; pcð Þ can be estimated with linear approximation by the value of
Delaunay mesh element (triangle or tetrahedron) which comprise control volume
element:

Fig. 2.17 Delaunay triangle mesh and the dual control volume mesh of 2-D discrete fracture
model
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W xð Þ ¼
Xm
i¼1

SiðxÞWi; ð2:73Þ

where x is coordinate in the dimension of corresponding control volume element;
m is the number of vertex; Wi is arbitrary variable of node i at coordinate xi; Si is
shape factor and defined as follows:

For triangle:

SiðxÞ ¼ ai þ bixþ ciy
2A

ð2:74Þ

For tetrahedron:

Si xð Þ ¼ ai þ bixþ ciyþ diz
6V

; ð2:75Þ

where A is area of triangle element, m2; V is volume of tetrahedron element, m3;
ð ai ; bi ; ci ; di Þ are constants about geometric coordinates of element nodes.

Assume that constants are used to coding triangle element nodes and anti-
clockwise direction is positive direction. Thus ai ; bi ; ci in Eq. (2.74) can be
expressed as follows, respectively (Wang 2003):

ai ¼
xj yj
xk yk

  ¼ xjyk � xkyj

bi ¼ � 1 xj
1 yk

  ¼ yj � yk

ci ¼
1 xj
1 xk

  ¼ �xj þ xk

ð2:76Þ

From Eq. (2.73), the gradient of arbitrary variable in a triangle is

rW ¼
Xm
i¼1

WirSiðxÞ ð2:77Þ

For 3-D tetrahedron, it is similar to the above 2-D triangle.

(2) The establishment of control volume computation format
To establish numerical computation format of mathematical model by control
volume method, integral should be done first for pressure Eq. (2.55) and saturation
Eq. (2.56) in every control volume element, respectively. In 2-D discrete fracture
model, the control volume discrete computation format method has to establish
saturation equation which is:

Applying integral to Eq. (2.56) in arbitrary control volume element CVi, we can
obtain
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ZZ
X

/
@Sw
@t

þ/SwCw
@pw
@t


 �
dA�

ZZ
X
r � kwrpwð ÞdA�

ZZ
X
qwdA ¼ 0

ð2:78Þ

Assuming that porosity only changes at space and transforms surface integral
into line integral for the second term of the left side of Eq. (2.78) with Gauss
divergence theorem, we obtainZZ

X
/
@Sw
@t

þ/SwCw
@pw
@t


 �
dA�

Z
C

kwrpwð Þ � ndC�
ZZ

X
qwdA ¼ 0; ð2:79Þ

where C is boundary of control volume element CVi; n is unit outward normal
vector on boundary C.

The water saturation of the matrix and fractures can be connected with each
other by Eq. (2.71), the first term of the left side of Eq. (2.79) can be approximately
expressed asZZ

X
/
@Sw
@t

þ/SwCw
@pw
@t


 �
dA � A/i

@Smw
@t

þ SwCw
@pw
@t


 �
; ð2:80Þ

where

Aui ¼
Xt
k¼1

ukAku
m
k þ

Xs
l¼1

dSfw
dSmw

el Llj juf
l ; ð2:81Þ

where A/i is pore volume of CVi; t is the number of Delaunay triangle element
which takes node i as vertex; uk is triangle k’s area radio to Delaunay triangle k in
control volume element CVf ; Ak is the area of Delaunay triangle k; /m

k is porosity of
the matrix system in triangle k; s is the number of fracture in CVf ; /

f
l , el, and Llj j are

porosity, aperture, and length of fracture l in control volume element CVi,
respectively.

The first term of the right side of Eq. (2.81) represents pore volume of the matrix
in CVi; the second term represents pore volume of fractures in CVi. To express the
whole equation with the matrix water saturation, the second term will be multiplied

by dSfw
dSmw

.

The second integral of the left side of Eq. (2.79) can be expressed asZ
C

kwrUwð Þ � ndC �
Xt
k¼1

skj j kmw Sm;up
w

� �rpw
� 	

k�nk þ
Xs
l¼1

elk
f
w Sf;upw

� � @pfw
@n

; ð2:82Þ
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where skj j is internal boundary of CVi in triangle k and has unit outward normal
vector; rpw is water phase flowing pressure gradient at skj j, which can be esti-
mated by Eq. (2.47); n is local coordinate along the direction of fracture; @pfw

�
@n is

flowing potential gradient on fracture l.
The first term of the right side of Eq. (2.82) represents quantity of flow through

control volume element CVi’s boundary; the second term represents quantity of
flow through every fracture in CVi The value of saturation comply with upstream
standard, where superscript up represents upstream value. For the flow in fractures
can viewed as 1-D, @pfw

�
@n can be estimated by the following equation:

dpfw
dn

¼ pj � pi
2 Llj j ; ð2:83Þ

where pi, pj represent pressure of 1-D adjacent element.
The third term of the left side of Eq. (2.79) can be approximately expressed asZZ

X
qwdA � qwiAi; ð2:84Þ

where Ai is the area of 2-D control volume element CVi and can be calculated by the
following equation:

qwiAi ¼ qmwi
Xt
k¼1

ukAk þ
Xs
l¼1

el Llj jqfw;l ð2:85Þ

Based on above approximation, the numerical computation format of saturation
equation in every control volume element can be written as

Aui
@Smw
@t

þ SwCw
@pw
@t


 �
�

Xt
k¼1

skj j kmw Sm;up
w

� �rpw
� 	

k�nk þ
Xs
l¼1

elk
f
w Sf;upw

� � @pfw
@n

" #
� qwiAi ¼ 0

ð2:86Þ

The assumption that flow pressure of corresponding mesh at interface of the
matrix and fractures is similar has been done, above step could be applied to
pressure equation too. For 2-D matrix system and 1-D fracture system, the
numerical computation format of flowing pressure equation can be written as

AuiCt
@pw
@t

�
Xt
k¼1

skj j kmrpw þ kmo rpc
� 	

k�nk þ
Xs
l¼1

kf
@pw
@n

þ kfo
@pc
@n

� �
el

" #
� qwi þ qoið ÞAi ¼ 0

ð2:87Þ
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where k ¼ kw þ ko is the total fluidity. Fluidity in equation should comply with
upstream standard and capillary pressure gradient in fractures can be estimated with
following equations: Eqs. (2.86) and (2.87) are the numerical computation format
of pressure equation and saturation equation that are based on control volume
method in 2-D research region. The method can be easily extended to 3-D discrete
fracture model.

(3) Inhomogeneous matrix discrete fracture model numerical formulation
Control volume computation format of discrete fracture model for homogeneous
matrix has been established. There have been some researchers who studied the
inhomogeneous problem with the method of control volume. While they mostly
had focus on the inhomogeneity of absolutely permeability and the anisotropy of
unidirectional flow (Edwards 2002). For permeability, as it changes rapidly at the
interface of inhomogeneous media, there will be imprecise velocity field when we
use the standard control volume method at the interface (Durlofsky 1994). As
shown in Fig. 2.18a, Delaunay triangle is locally homogeneous and control volume
element polygon is inhomogeneous in standard control volume method. Some
researchers put forward locally homogeneous control volume element to get precise
velocity field, as shown in Fig. 2.18b. The fact that Delaunay triangle is inhomo-
geneous can be known from Fig. 2.18b.

To pressure equation and saturation equation, control volume method is used to
process spatial discretization. First, do the integral to equations in a control volume
element, which is the dual mesh connected by the center of gravity and midpoint of
2-D Delaunay triangle or 3-D tetrahedron. Figure 2.19a is fractured porous media
control volume element schematic for homogeneous matrix, and the two-phase
numerical computation format of slightly compressible fluid in discrete fracture
model has been established. Figure 2.19b is fractured porous media control volume
element schematic for inhomogeneous matrix, and the two-phase numerical com-
putation format of slightly compressible fluid will be established below.

(a) (b)

Fig. 2.18 Inhomogeneous media control volume element. a Standard control volume element,
b local homogeneous control volume element
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Flowing pressure equation and saturation equation both are composed of three
terms:
(1) Time derivative term, it is /Ct

@pw
@t in flowing pressure equation and is / @Sw

@t and

/SwCw
@pw
@t in saturation equation;

(2) Source term qi, where i ¼ ðo, wÞ;
(3) Divergence term r � F, flow vector F ¼ F Swð Þ, which is equal to
ko þ kwð Þrpw and korpc in flow pressure equation and is equal to kwrpw in
saturation equation.

As shown in Fig. 2.19b, there exists one fracture and two kinds of matrix rock
mass in one control volume element. As same as the interface of matrix and
fractures in above section, capillary pressure between different matrix is continuous.
Hence, saturations of inhomogeneous matrix rock mass can be connected:Z

A

/
@Sw
@t

þ/SwCw
@pw
@t


 �
dA ¼

Xm
k¼1

@

@t
Skw/

kAk þ SkwC
k
w/

kAk @pw
@t


 �
; ð2:88Þ

where m represents the number of media in control volume element.
Equation (2.88) can be expressed on the basis of reference media Sþ

w which
comply with the parameter B in capillary pressure model Eq. (2.89).

Pk
c ¼ �BklnSkw; ð2:89Þ

where superscript k ¼ 1 � � � nm is the index of media in control volume element.
The relationship between different media’s saturations can be established based

on the concept of capillary pressure continuation. For example, as far as fracture
media:

Smw
�
Sfw ¼ exp �Bm�Bf� �

Fracture Fracture (Rock 3)

Rock 1

Rock 2

Matrix

(a) (b)

Swm Sw1

Sw2

Swf Swf

Fig. 2.19 Control volume element with fractures. a Homogeneous matrix, b Inhomogeneous
matrix
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The maximum of Bk in Eq. (2.89) is chosen as reference media in here. Based on
Eq. (2.88) and compound function derivation method, we obtain

Z
A

/
@Sw
@t

þ/SwCw
@pw
@t


 �
dA ¼

Xm
k¼1

dSkw
dSþ

w
/kAk

 !
@

@t
Sþ
w þ

Xm
k¼1

SkwC
k
w/

kAk

 !
@pw
@t

ð2:90Þ

The integral of source term can be written asZ
A

qwdA ¼
Xm
k¼1

Akqkw ð2:91Þ

The integral of divergence term can be confirmed in the light of equation below:Z
A

r � F dA ¼
Z
CA

F � n dCA �
Xnb
j¼1

F � n½ �j; ð2:92Þ

where nb is the number of boundary element.
Every triangle included in control volume element is local homogeneous.

Saturation between different media can be calculated by Eq. (2.71). Combining
above three equations, we obtain the numerical computation format of pressure
equation and saturation equation.

Xm
k¼1

dSkw
dSþ

w
/kAk

 !
@

@t
Sþ
w þ

Xm
k¼1

SkwC
k
w/

kAk

 !
@pw
@t

�
Xnb
j¼1

F � n½ �j �
Xm
k¼1

Akqkw ¼ 0

ð2:93Þ

With this, based on control volume method, the discrete fracture model
numerical computation format that considers inhomogeneous matrix has been
established.

2.3.5 Numerical Examples

As shown in Fig. 2.20, there is a simple 1/4 five-point water injection scheme, the
size of porous media model is 1 m × 1 m, initial pressure is pi = 10 MPa, porosity
of homogeneous isotropic matrix is ϕ = 0.2, permeability is Km ¼ 1� 10�3 lm2.
Considering the existence of fractures in porous media with azimuthal angle of
θ = 0°, θ = 45°, θ = 90°, and θ = 135°, and the center of fracture and porous media
are overlapping, the length of fractures is L = 60

ffiffiffi
2

p
cm, fracture aperture is
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a = 1 mm, permeability is Kf ¼ a2
�
12 ¼ 8:33� 104 lm2. There is a water injec-

tion well in the lower left corner and a production well in the top right corner. The
injection rate is qin = 0.01 PV/day (PV is the acronym of Pore Volume which
represents multiple of pore volume) and production rate is qout = 0.01 PV/day.
Viscosity of water phase is lw ¼ 1mPa s, viscosity of oil phase is lo ¼ 5mPa s,
density of water phase is qw ¼ 1 kg

�
m3, density of oil phase is ρo = 0.8 kg/m3,

compressibility of oil phase is Co ¼ 10� 10�4 MPa�1, compressibility of water
phase is Cw ¼ 5� 10�4 MPa�1, irreducible water saturation is Swc ¼ 0, residual
oil saturation is Sor ¼ 0, normalized saturation is Se ¼ ðSw � SwcÞ=ð1� Swc � SorÞ,
relative permeability of water phase for matrix and fractures is krw ¼ Se, relative
permeability of oil phase for matrix and fractures is kro ¼ 1� Se, initial water
saturation is 0. Ignore the impact of capillary pressure and gravity.

As shown in Fig. 2.21, porous media models which have one fracture with angle
of θ = 0°, θ = 45°, θ = 90°, or θ = 135° (in degrees from horizontal) are described
with Delaunay triangle mesh based on three models. There are 874, 878, 875, and
878 control volume elements and 1646, 1654, 1648, and 1654 triangle mesh ele-
ments after mesh generation, respectively. For single-porosity model, the fracture
aperture that is 1 mm and the scale of research region can differ by three magni-
tudes, so it is essential to do mesh refinement for real fractures. In single-porosity
model I, the number of control volume element node is 9466 and the number of
elements is 18,854 for horizontal fracture model whose azimuthal angle is θ = 0°;
the number of control volume element node is 9343 and the number of triangle
elements is 18,620 for the fracture whose azimuthal angle is θ = 45°; the number of
control volume element node is 9294 and the number of triangle elements is 18,510
for vertical fracture whose azimuthal angle is θ = 90°; the number of control vol-
ume element node is 9236 and the number of triangle elements is 18,406 for the
fracture whose azimuthal angle is θ = 135°. The single-porosity model II that have
not been done mesh refinement around fracture are meshed to verify the high

0 1

1

0

 production injection m

matrix

fra
ctu

re

Fig. 2.20 Schematic of 2-D
reservoir model
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efficiency of discrete fracture model method. 1094, 1088, 1096, and 1092 control
volume element nodes and 2068, 2054, 2070, and 2062. Delaunay triangle elements
can be obtained after mesh generation. It is observed that the number of control
volume element for discrete fracture model and single-porosity model tends to be
similar, and both of them are much less than the control volume element number for
single-porosity model I.

Water saturation section for the injection volume of 0.5 PV can be obtained
based on control volume method, as shown in Fig. 2.22. As can be seen from the
figure, fractures have a significant impact on fluid flow, and the computed result of
discrete fracture model and single-porosity model is almost same.

Figure 2.23 is schematic of recovery degree for single-porosity media that have
different azimuthal angles based on discrete fracture model and single-porosity

=0° =45° =90° =135°

=0° =45° =90° =135°

=0° =45° =90° =135°

(a)

(b)

(c)

Fig. 2.21 Mesh distribution for porous media that have single fracture with different azimuthal
angle. a Discrete fracture model, b single-porosity model I, c single-porosity model II
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model I when the well has been produced for 300 days. As can be seen from the
figure, the computed result of discrete fracture model and single-porosity model I
showed a great consistency.

As shown in Figs. 2.22 and 2.23, regarding the single-porosity model I which
has local mesh refinement as reference solution, the validity of numerical method
can be verified for the computed result of discrete fracture model correlated well
with the reference solution.

To verify the efficiency of discrete fracture model, we consider geometric
models with different dips and computing times based on discrete fracture model or
single-porosity model which has local mesh refinement or not, where CPU clock
speed is 2.93 GHz. The corresponding computing time is shown in Table 2.1.

As can be seen from Table 2.1, discrete fracture model has the same calculation
accuracy with single-porosity model while the former has less computing time than
the latter, which could explain that discrete fracture model have high efficiency. In
addition, the latter has a poorer convergence than discrete fracture model for the
wide difference between meshes around fracture.

=0° =45° =90° =135°

=0° =45° =90° =135°

(a)

(b)

Fig. 2.22 Schematic of water saturation distribution for two models when the injection volume is
0.5 PV. a Discrete fracture model, b single-porosity model I
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2.4 Mimetic Finite Difference Numerical Simulation

The existing numerical calculation methods of discrete fracture flow mainly include
two categories as below: finite volume method and finite element method. The
former needs to simplify and equivalent the processes, which leads to reducing
calculation accuracy when processing the mass calculation; the latter has some
defects in conservation-type calculation format and computational stability. As a
new numerical calculation method, MFD (Mimetic Finite Difference) gets a suc-
cessful application in the numerical simulation calculation of fluid mechanics,
electromagnetic field, and oil reservoir, because of its good local conservation and
the applicability of the complex grid. In this section, we have further put this
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Fig. 2.23 Comparison diagram of recovery degree for single-porosity media based on two
models. a θ = 0°, b θ = 45°, c θ = 90°, d θ = 135°

Table 2.1 Computing time
of different porous media
based on different models

Computation times/s θ = 0° θ = 45° θ = 90° θ = 135°

Discrete fracture
model

47.42 48.81 52.33 54.63

Single-porosity
model I

402.83 397.00 382.06 390.59

Single-porosity
model II

144.93 132.07 138.74 141.22
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method into use to flow numerical simulation research of discrete fracture model,
elaborated the basic principle of Mimetic Finite Difference, set up a corresponding
discrete fracture numerical format, and we have solved the two-phase flow problem
by the method of IMPES (Implicit Pressure and Explicit Saturation Scheme). In the
end, we have proved the validity of this method by an example.

2.4.1 Two-Phase Fluid Flow Mathematical Model

For brevity, we only consider incompressible oil–water two-phase flow problems,
and other problems’ methods remain the same. Here, we use the classical fractional
flow mathematical model, of which the pressure equation is

m ¼ �Kk � rpþK � ðkw � qw þ koqoÞG; r � m ¼ q; ð2:94Þ

where m ¼ mw þ mo stands for total seepage velocity; K is permeability tensor;
k ¼ kw þ ko stands for overall coefficient of fluidity, of which we impose
k ¼ krl=ll ðl ¼ w; oÞ, and define shunt function fl ¼ kl=k; krl is relative perme-
ability of l-phase fluid; ll is viscosity of l-phase fluid; ql is the density of two-phase
fluid; G ¼ �grz is gravity item, of which g is gravitational acceleration; z is
reservoir depth (positive upward); q ¼ qw þ qo is source or sink term; and the
global pressure p is defined as below:

p ¼ po �
ZSw
1

fwðnÞ @pc
@Sw

ðnÞdn ð2:95Þ

where pc is capillary force, and Sw is water phase saturation.
The corresponding water phase saturation equation is

/
@Sw
@t

þr � vw ¼ qw ð2:96Þ

mw ¼ fw½mþKko � rpc þKko � ðqw � qoÞG� ð2:97Þ

where / denotes porosity.
Assume that the flow in the matrix and fracture meet the Darcy’s law, therefore,

the above equations are applicable to the entire area of the fractured media. In this
text, we use IMPES solution to solve Eqs. (2.94) and (2.96) in turns: where we
employ IMPES to solve pressure Eq. (2.94), and use finite volume method to get an
explicit solution of formula (2.96).

In order to adapt to complex geometry of A discrete fracture model, we adopt
unstructured mesh generation technology to discretize the research area, as shown
in Fig. 2.24. Due to the small fracture aperture, for this fracture, we employ

2.4 Mimetic Finite Difference Numerical Simulation 47



dimensionality reduction, that is, fracture is simplified as fracture line element in the
2-D problems, and simplified as fracture plane unit in the 3-D problems. By
dimension reduction process, the number of grids can be cut down so that com-
putational efficiency is enhanced; however, fracture aperture is only considered in
specific numerical calculation.

2.4.2 Solution Strategies for the Pressure Equation

(1) Matrix section
Assume that the research area X 2 Rd is subdivided by a set of nonoverlapping
polygon (d = 2) or polyhedron (d = 3) grids Xh ¼ Xif g. As shown in Fig. 2.21, we
can take any unit Xi to analyze, and Xj is adjacent unit. Ak ¼ Xi \Xj is interface,
nk ¼ Akj jn̂k is the area-weighted normal vector of interface area Ak. n̂k is the unit
outward normal vector (Fig. 2.25).

First of all, on the unit center xi and boundary surface center xk, we can,
respectively, define unit pressure pi and boundary surface pressure pk as follows:

Physical model

fracture

matrix

Unstructured grids

Fig. 2.24 The discrete fracture model and unstructured mesh generation diagram

Cell face centroid

Cell centroid

i
pi

Ak

xik
j

pj

k

nk

Fig. 2.25 Analysis
schematic diagram of finite
difference grid cell simulation
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pi ¼ 1
Xij j
Z
Xi

pdX; pk ¼
Z
Ak

pdA ð2:98Þ

Notice that if the gravity is taken into account, the pressure equations described
above should be regarded as flow potential. By Darcy’s law, it is easy to know that
the normal seepage velocity vi on boundary surface can be written as the following
formula:

vi ¼ Ti � ðeipi � piÞ ð2:99Þ

In this formula, Ti is transmission matrix, vi ¼ v1; . . .; vm½ � T, m is the number
of boundary surface of the unit Xi, ei ¼ 1; . . .; 1½ �T. The structure of the matrix
ei ¼ 1; . . .; 1½ �T is the key of MFD simulation.

Suppose that pressure on the unit has linear variation, that is, p ¼ a � xþ b, so by
the Darcy law, we can get binding equations:

vk ¼ �l�1 Akj jn̂k � K � rp ¼ l�1 Akj jn̂k � K � a ð2:100Þ

Combining Eqs. (2.99) and (2.100), and considering pi � pk ¼ a � ðxi � xkÞ, we
can get the following equation:

mi ¼ Ti �

x1 � xi
..
.

xk � xi
..
.

xm � xi

2666664

3777775 � a ¼ l�1

A1j jn̂1
..
.

Akj jn̂k
..
.

Amj jn̂m

26666664

37777775 � K � a ) TiX ¼ l�1NK ð2:101Þ

In this formula, X ¼ X1½ �; . . .; Xd½ � , N ¼ ½N1�; . . .; ½Nd �, and NTX ¼ ½Zij� d�d . In
this definition, x ðiÞ denotes the ith dimension Cartesian coordinates of x, so we get

Zij ¼ NT
i Xj ¼

Xm
k¼1

Akj jn̂ðiÞk ðxk � xiÞðjÞ ð2:102Þ

Notice, xk � xi ¼ 1
Akj j
R
Ak

ðx� xiÞdA, and combine divergence theorem, then we

can obtain format as follows:

Zij ¼
Xm
k¼1

Akj jêi � n̂k 1
Akj j
Z
Ak

ðx� xiÞðjÞdA ¼
Xm
k¼1

êi �
Z
Ak

ðx� xiÞðjÞ � n̂kdA

¼ êi �
Z
Xi

r � ðx� xiÞðjÞdX ¼ êi � êj Xij j ¼ dij Xij j
ð2:103Þ
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di j
0 i 6¼ j
1 i ¼ j

�
Namely, NTX ¼ Xij jEd , where Ed is d order unit matrix, therefore. Through the

equations, we can obtain conductance matrix Ti as follows:

Ti ¼ 1
l Xij jNKN

T þT2 ð2:104Þ

where T2Z ¼ 0. In order to ensure the existence of inverse matrix, we apply
Brezzi–Lipnikov–Simoncini theorem (Thomas et al. 1983) to construct matrix. In
this paper, we employ the following form:

Ti ¼ 1
l Xij j NKNT þ 6

d
traceðKÞAðEm � QQTÞA

� �
ð2:105Þ

in which, A ¼ diagð Akj jÞ ; Q ¼ orthðAXÞ. For the continuity equation in this
equation, we can directly integral divergence theorem in the unit Xi, and get

Xm
k¼1

mfk ¼
Z
Xi

qidX ð2:106Þ

Consider that speed continuity conditions on the surface of the cell boundaries,
combine Eqs. (2.102) and (2.106), so MFD numerical calculation format can be
obtained as follows:

B �C D
C 0 0
DT 0 0

24 35 m

p
p

24 35 ¼
g
q
f

24 35 ð2:107Þ

where m ¼ ½mk� is seepage velocity array of unit boundary surface; p ¼ ½pi� is unit
center pressure array; p ¼ ½pk� is pressure array on unit boundary surface center.
g ¼ ½gk� is gravity item. q ¼ ½qi� is source sink term of unit Xi. f ¼ ½fi� is flow
boundary conditions. f ¼ 0 represents impermeable barrier. The first line of
equation corresponds to the Darcy’s law. The second line corresponds to the
continuity equation. The third line is continuity conditions for normal speed on the
surface of the cell boundaries. The coefficient matrix of above equation is specific
as follows:

B ¼
T�1
1

. .
.

T�1
Ne

264
375 ;C ¼

e1
. .
.

eNe

264
375 ;D ¼

I1
. .
.

INe

264
375 ð2:108Þ
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where Ne is the sum of grid cells: Ii ¼ Em:
Conclusion can be drawn from the above derivation process: MFD method is

only based on a single grid cell to construct the numerical format, which is suitable
for any complicated grid system. Besides, it has good local conservation property
which is similar to the hybrid finite element. However, for complex grid system, the
structure of the mixed finite element numerical calculation format has a big
difficulty.

(2) Numerical solution of the discrete fracture model
As mentioned earlier, flow of fractures and matrix all meet the Darcy’s law. If we
consider closed outer boundary, the corresponding equations are as follows:

Bm �Cm Dm

CT
m 0 0

DT
m 0 0

24 35 mm
pm
pm

24 35 ¼
gm
qm
0

24 35 ð2:109Þ

Bf �Cf Df

CT
f 0 0

DT
f 0 0

24 35 mf
pf
pf

24 35 ¼
gf
qf
0

24 35 ð2:110Þ

In these equations, the subscripts m and f, respectively, denote matrix and
fracture. Notice that, in this paper, the fracture has been reducing dimensions.
Therefore, the space dimension of Eq. (2.110) is low 1-D than Eq. (2.109).

The key of MFD discrete fracture numerical format’s structure consists in the
coupling of pressure equation of matrix and fracture (Fig. 2.26).

Fracture cell centroidMatrix cell centroid

E E0F

E

F

E0

¼m ¼mpf

vFm;E vFm;E 0

v1f;F

v2f;F

)

If F is fracture

Fig. 2.26 Fracture–matrix
coupled flow analysis diagram

2.4 Mimetic Finite Difference Numerical Simulation 51



Withal, consider fracture–matrix coupled hybrid flow grid analysis diagram as
shown in Fig. 2.22. Fracture grid cell can be treated as the boundary of the matrix
grid cell surface, thus fracture unit pressure pf and boundary surface pressure pm of
adjacent matrix unit are equal. Therefore, we can just reserve pm in the numerical
format. Seepage velocity term is coupling on the fracturing unit in Eqs. (2.109) and
(2.110) in accordance with the following conditions.

(1) If F is diversion fractures, the total flow exchange between adjacent rock
element and fractures element can be denoted as QF

f . For fracture unit, this flow can
be used as a source/sink term. So, the equation is as follows:

vFm;E þ vFm;E0 ¼ QF
fP

i
vif;F ¼ QF

f þ qFf

(
ð2:111Þ

Where vFm:E, v
F
m:E

0 , respectively, are exchange to fracture from matrix elements

E and E′; qFf represents sources/sinks;
P

i v
i
f:F in the second line of above equations

corresponds to equation of continuity of fracture element.
(2) If F is flow barrier, it will be processed in accordance with impermeable barrier.
At the moment, Eqs. (2.109) and (2.110) can be coupled together to form the

corresponding discrete fracture numerical formats as follows:

Bm �Cm D 0 0
CT
m 0 0 0 0

DT
m 0 0 �CT

f 0
0 0 �Cf Bf Df

0 0 0 DT
f 0

266664
377775

mm
pm
pm
mf
pf

266664
377775 ¼

gm
qm
�qf
gf
0

266664
377775 ð2:112Þ

2.4.3 The Solution of the Saturation Equation

(1) The calculation format of finite volume method
In this work, we use the IMPES (implicit pressure, explicit saturation) method, which
used to be quite popular in the industry. In the IMPES method, the fluid pressure
equations (flow equations) are solved implicitly while the saturation field is fixed,
yielding the velocities of the fluid phases. These velocities are used to calculate the
mass balance of the fluid phases in the transport equations while the pressure field
remains fixed. For saturation equation, we apply the finite volumemethod for solving.
We can directly integral the formula (2.96) on element and it can be written asZ

Xi

/
@S
@t

dXþ
Z
@Xi

ffw½mþKko � rpc þKko � ðqw � qoÞG�g � nidC ¼
Z
Xi

qwdX

ð2:113Þ
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For convenience of writing, we have removed the subscript w of the water
saturation Sw. For the time dimension, if we apply θ-rules, the following finite
volume numerical discrete format can be obtained:

/i

Dt
ðSnþ 1

i � Sni Þþ
1
Xij j
Xm
k¼1

½hFkðSnþ 1Þþ ð1� /ÞFkðSnÞ� ¼ qwðSni Þ ð2:114Þ

where

FkðSÞ ¼
Z
Ak

fwðSÞ½ �kðm � n̂k þKko � rpc � n̂k þKko � ðqw � qoÞG � n̂kÞdA ð2:115Þ

where superscript n stands for time step.
On boundary surface Ak , we have applied following format fwðSÞ½ �k, which is

the upstream windward format

fwðSÞ½ �k¼
fwðSiÞ if m � n̂k � 0
fwðSjÞ if m � n̂k\0

�
ð2:116Þ

We can solve explicit solution for the saturation equation, namely h ¼ 0. In
order to calculate stability, the time step applies the CFL condition as follows:

Dt� /i Xij j
vini maxff 0wðSÞg0� S� 1

ð2:117Þ

where

vini ¼ maxðqi; 0Þ �
X
Ak

minðvk; 0Þ ;
@fw
@S

¼ @fw
@S	

@S	

@S
¼ 1

1� Swc � Sor

@fw
@S	

In these equations, S	 is the water phase saturation after the normalization; Swo is
irreducible water saturation; Sro is residual oil saturation.

(2) The saturation calculation at fractures’ intersections
When two or more fractures intersect, the key in the discrete fracture flow simu-
lation is saturation calculation. At present there are mainly two kinds of processing
methods: one is the upstream windward format of conductivity calculation based on
Delta–Star (Karimi-Fard et al. 2004), which simplifies and equivalently deals with
the crossed fracture. Another is upstream wind weighted format (Hoteit and
Firoozabadi 2006), which is of high calculation precision, but needs to get real
seepage of velocity of every fracture unit at intersections. In this paper, we apply
the latter one. As shown in Fig. 2.27, assume that there are NI fracture elements ei
intersect at I; each fracture element corresponds to distribution function fw;ei . vf;ei is
the seepage velocity at the intersection. We can define the inflows and outflows on
the intersection I as follows:
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vf;ei � 0; 0\i�N ðeffluxÞ
vf;ei � 0; N\i\NI ðinfluxÞ

�
ð2:118Þ

By the law of conservation of mass, the equation is written as

XNI

i¼Nþ 1

vf;ei ¼ �
XN
i¼1

vf;ei ð2:119Þ

Further, by the definition of upstream windward format, we can get

XNI

i¼Nþ 1

fw;ivf;ei ¼ �
XN
i¼1

fw;Ivf;ei ¼ �fw;I
XN
i¼1

vf;ei ð2:120Þ

Thus, upstream windward weighted distribution function in fracture’s intersec-
tions I is as follows:

fw;I ¼ �
PNI

i¼Nþ 1 fw;ivf;eiPN
i¼1 vf;ei

: ð2:121Þ

2.4.4 Numerical Example

First, this section presents two simple numerical examples of discrete fracture
model. And through the comparison of the experimental results, the validity of
these methods and procedures have been verified. Then, the calculation examples of
complex discrete fracture model have further verified the correctness of the method
and the robustness of the program.

(1) The simple calculation example of discrete fracture model
Consider the one-well injection and one-well production physical model, as shown
in Figs. 2.24 and 2.25, whose size is 1 m × 1 m × 0.025 m and can be treated as

2-D problem 3-D problem

e1

e2
e3

e4

e5

e1

e2
e3

e4

e5

I

I

Fig. 2.27 The fracture’s intersections saturation calculation diagram
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planar flow problem. Figure 2.24 is for a single fracture model and Fig. 2.25 is for
two intersecting fractures model. They all are produced by glass (160–180 mesh)
sand combined with epoxy resin by compaction and cementation, and then
encapsulated by transparent organic glass. Matrix can be regarded as homogeneous
isotropic medium, whose porosity is ϕ ≈ 0.4, and permeability Km = 10 μm2.
Fractures are replaced by ultrathin sheet steel when modeling. It will be dissociated
after model’s cementation, its aperture is about 1 mm, and its permeability is
Kf = a2/12 = 8.33 × 104 μm2. The flow of water injection well is qin = 0.01
PV/min. And production well connects to the barometric pressure. The viscosity of
water is lw = 1 mPa s, the oil viscosity is lo = 5 mPa s, the density of water is
qw = 1000 kg/m3, and the density of oil is qo = 800 kg/m3

The initial value of oil saturation, irreducible water saturation, and residual oil
saturation of model is all zero. The water phase relative permeability of matrix and
fractures is krw ¼ Sw, and the oil phase relative permeability is kro ¼ 1� Sw. When
we use the method mentioned in this paper to do numerical modeling, we can
ignore the influence of capillary force and gravity in the calculation. The corre-
sponding Delaunay triangle mesh subdivision and the results of numerical simu-
lation are shown in Figs. 2.24 and 2.25. By comparison with true flow process in
experiment we can see that the results of numerical calculation and experimental
results are basically identical. Thus we have verified the correctness of the method
and procedure in this paper. It is worth noting that, the rapid flow phenomenon
appears on the left border in Fig. 2.28(a), which is due to the poor sealing of the
experimental model (Fig. 2.29).
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Fig. 2.28 The comparison between results of water saturation and single fracture model.
a Experimental result, b numerical result
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(2) Complex discrete fracture model
In this section, we consider a complex fractured model, dimension of 100 m × 50 m
(x × y), as shown in Fig. 2.30, the blue lines represent the fractures which generated
random based on the geological statistics. The Delaunay triangular gridding is used
to discrete the geometrical model (Fig. 2.26 right). Homogeneous isotropic matrix’s
porosity ϕ = 0.2, permeability Km = 10 mD (1 mD = 10−3 μm2), fracture aperture
a = 1 mm, permeability Kf = a2/12 = 8.33 × 107 mD, and physical property
parameters of oil and water is in accordance with 5.1 calculation example. The initial
reservoir pressure is 10 MPa, initial water saturation is zero, and the speeds of
injection wells and production wells are 0.01 PV/day. Water phase relative per-
meability of matrix and fracture is Krw ¼ S2w, oil phase relative permeability is

Kro ¼ ð1� SwÞ2. Assume that model is water-wet reservoir. If we consider the
influence of the capillary force in rock and fracture, assume that both types of the
capillary force accord with Brooks–Corey capillary force function as shown in
formula (2.122). For the matrix, threshold pressure value is pd = 1000 Pa, and k is
2.0. For fractures, threshold pressure value is pd ¼ 1000, and k is 1.0.

pcðSwÞ ¼ pd
Sw � Swc

1� Swc � Sor


 ��1
k

; 0:2\k\3:0: ð2:122Þ

Figure 2.31 shows the water saturation distribution at different times. The
analogous calculation results indicate: the induced water flows into the fracture
quickly; and the existence of fractures results in the strong heterogeneity of
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Fig. 2.29 The comparison between results of water saturation and double fracture model.
a Experimental result, b numerical result
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medium; the existence of the capillary force makes the water-flood swept area
increased, but the overall effect is still controlled by the macroscopic fracture
(macro fracture). Through this calculation example, we further verified the cor-
rectness of this suggested method, at the same time we can see that this method still
has good applicability for extremely complicated grid system.

2.5 The Embedded Discrete Fracture Numerical
Simulation

At present, fractured oil reservoir numerical simulation is mostly based on the
double medium model, but this model is only applicable to highly matured fracture
in the reservoir. When there are several large fractures that control the direction and
the scale of fluid flow, the error in calculation results is bigger. To solve this
problem, the discrete fracture model was set up, and with the wide use of artificial
fracturing technology in unconventional reservoirs, its corresponding flow simu-
lation technique has a rapid development. However, the existing numerical discrete
fracture models are all based on matched grid, that is, we treat the fractures as
internal boundary and constrain face for grid subdivision. Due to the complexity of
the fracture’s geometrical morphology, we need to adopt the unstructured grid

production
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Fig. 2.30 The mode of complex discrete fracture and unstructured grid subdivision. a The mode
of complex discrete fracture, b unstructured grid subdivision
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Fig. 2.31 The water saturation distribution at different times. a 10 days later, b 40 days later
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technique, whose subdivision process is very complicated and tedious. Especially
when the distance or the angle between the fractures is very small, the mesh
generation often is of poor quality, which leads to deviation calculation, as shown
in Fig. 2.32a. However, the embedded discrete fracture model does not need to
consider the internal fracture morphology when partitioning grid, where matrix
system separately generates grids, fracture part generates grids according to the
intersection of fracture and matrix grids, as shown in Fig. 2.32b, that greatly
reduces the complexity of meshing, so that it can improve the calculation efficiency.

To this end, Lee and Moinfar et al. (2012) put forward embedded discrete
fracture model. This model will directly embed fracture network into the matrix
structured grid system, which has avoided the complex unstructured grid subdivi-
sion process. Although we need to calculate geometry information between the

magnify

(a)

(b)

Fig. 2.32 The discrete fracture model and the embedded discrete fracture model mesh generation
contrast. a Matched unstructured grid, b Non-matched structured grid
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fracture and grid, computation complexity is significantly reduced to improve
computational efficiency, relative to the complex unstructured grid subdivision
process.

However, the existing embedded discrete fracture models all adopt finite dif-
ference method to solve, so it cannot process accurately the permeability situation
of full tensor, and applies only to structured grid. To this, it is necessary to set up a
new embedded discrete fracture numerical format, based on the simulation of finite
difference method, to apply to numerical simulation of complex fractured reservoir.

Discrete fractures numerical model regards fractures as internal constraint face to
generate mesh. Due to the complexity of the fracture’s geometrical morphology, we
need to adopt the unstructured grid technique, whose subdivision process is very
complicated and tedious. Especially when the distance or the angle between the
fractures is very small, the mesh generation often is of poor quality, which leads to
deviation calculation, as shown in Fig. 2.32a. However, the embedded discrete
fracture model do not need to consider the internal fracture morphology when
partitioning grid, where matrix system separately generates grids, fracture part
generates grids according to the intersection of fracture and matrix grids, as shown
in Fig. 2.32b, that greatly reduces the complexity of meshing, so that it can improve
the calculation efficiency.

2.5.1 The Mathematical Model of Embedded Discrete
Fracture Model

For the convenience of study, illustrate the basic ideas and principals of embedded
numerical simulation, based on the 2-D single-phase flow. Assume that the fluid
flow process is of constant temperature, regardless of the matrix and the fluid
compressibility; matrix system and fluid flow in fracture system meet Darcy’s law;
ignore the influence of gravity and capillary pressure.

Matrix system mathematical model:

vm ¼ �Km

l
� rpm ð2:123Þ

r � vm ¼ qm þ qmf

Vm
dmf ð2:124Þ

Fracture system mathematical model:

Kf

l
@2pf
@n2

¼ qf þ qmf þ qffdff
Vf

ð2:125Þ
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where

dmf ¼ 1 if there are fractures embedding on the bedrock grid
0 if there is no fracture embedding on the bedrock grid

�

dff ¼ 1; if one fracture element intersect with another
0; if one fracture element doesn't intersect with any other

�
where vm is rock seepage velocity; Km is rock permeability tensor; Kf is fracture
permeability (scalar); l is fluid viscosity; pm and pf , respectively, are basement and
fracture of the pressure (or streaming potential); Vf and Vm, respectively, are
fracture element and the volume of rock unit; qm and qf , respectively, represent
basement and fracture source sink term; n is local coordinate system along the
fracture direction; qmf denotes quantity flow between basement and fracture; qff
denotes quantity flow between intersecting fracture elements;

(1) Flow between matrix and fracture element
The fracture aperture is very small compared with mesh scale, and the fracture
permeability is greater than the matrix permeability, so we can think that the
pressure is of succession on both sides of the fractures. The expression of quantity
flow calculation between matrix and fracture element can be written as

qmf ¼ �Tmf pm � pfð Þ ð2:126Þ

where

Tmf ¼ kmfAmf

lbd ; bd ¼
R
xmfdS
S

; Kmf ¼ 1
1=Kf

þ 1=Km

where bd represents equivalent distance between the matrix grid and fracture section,
that is, the average of vertical distance between all the points in the matrix grids and
fracture section; S is the volume of matrix element; Km denotes permeability
(scalar), in the direction perpendicular to fracture; Amf denotes contact area of
fracture section and bed rock; xmf is perpendicular distance from all points in the
matrix grids to fracture.

(2) Flow between fracture elements
Calculate quantity flow between fractures referring to Karimi-Fard’s using transfer
coefficient method in calculating intersecting fracture section:

qff ¼ Tff pfi � pfj
� � ð2:127Þ
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where

Tff ¼ TfiTfj
Tfi þ Tfj

; Tfi ¼ kfiafi
lbdi ; Tfj ¼ Kfjafj

lbdj
bdi ¼ li1

li1 þ li2
� 1
2
li1 þ li2

li1 þ li2
� 1
2
li2

bdj ¼ lj1
lj1 þ lj2

� 1
2
lj1 þ lj2

lj1 þ lj2
� 1
2
lj2

where af denotes fracture aperture, and l denotes the length of fracture (Fig. 2.33).

2.5.2 Numerical Solution of Mathematical Model

(1) Finite difference solution for matrix
Matrix is subdivided by a set of nonoverlapping polygon mesh shown as in
Fig. 2.34, we analyze any unit Xi, Xj is the adjacent cell, the interface Ak ¼ Xi \Xj,
nk ¼ Akj jn̂k is vector by the area-weighted method of the interface Ak , n̂k is the unit
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Fig. 2.33 Fracture section–
intersection diagram
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Fig. 2.34 Simulation of finite
difference grid cell analysis
diagram

2.5 The Embedded Discrete Fracture Numerical Simulation 61



outward normal vector. In the central point xi of unit Xi and central point xk of
boundary surface, it is defined, respectively, unit pressure pemi and the pressure pfmk
on the boundary surface, as follows:

pemi ¼
1
Xij j
Z
Xi

pm dX; pfmk ¼
1
Akj j
Z
Ak

pm dA ð2:128Þ

It is easy to know by Eq. (2.123) that on the surface of the matrix boundary, the
normal seepage velocity and pressure gradient have the relationship as follows:

vfm ¼ Tmi � eipemi � pfm
� � ð2:129Þ

where Tmi is conductance matrix of matrix grid, vfm ¼ vm1; vm2; � � � ; vmn½ �T, n is
number of boundary surface of the unit Xi, ei ¼ 1; � � � ; 1½ �T. Therefore, the key of
the finite difference simulation is gaining the matrix Tmi, hereon, assume that the
pressure is linearly varying, pm ¼ am � xþ bm. Evidently, based on Eq. (2.123), we
can get equations as follows:

vfmk ¼ �l�1 Akj jbnk � Km � rpm ¼ �l�1 Akj jbnk � Km � am ð2:130Þ

Meanwhile, pemi � pfmk ¼ am � xi � xkð Þ, and combine Eqs. (2.129) and (2.130),
then we can obtain formula as follows:

vfm ¼ Tmi �

x1 � xi
..
.

xk � xi
..
.

xn � xi

2666664

3777775 � am¼l�1

A1j jn_1

..

.

Akj jn_k

..

.

Anj jn_n

26666664

37777775 � Km � am ) TmiX ¼l�1NKm

ð2:131Þ

where X ¼ X1j; � � � ; Xnj½ �, N ¼ N1j; � � � ; Nnj½ �, and NTX ¼ Zij
� 	

n�n = Xij j Ed, where
Ed is d order unit matrix.

Therefore, conduction matrix can be obtained by Eq. (2.131), as shown in the
following formula:

Tmi ¼ 1
l Xij jNKmNT þT2 ð2:132Þ

Tmi ¼ 1
l Xij j NKmNT þ 6

d
traceðKmÞA Em � QQT� �

A
� �

ð2:133Þ
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where

A ¼

A1j j
. .
.

Akj j
. .
.

Anj j

26666664

37777775 ; Q ¼ orth AXð Þ ð2:134Þ

For this equation, integral directly and use the divergence theorem on the matrix
grid cell: Xn

k¼1

vfmk ¼
Z
Xi

qmidXþ qmfdmf ð2:135Þ

Consider the velocity continuity conditions on the cell boundaries surface,
combine equation, and obtain simulation of the finite difference numerical formats
of matrix section:

Bm �Cm Dm

CT
m 0 0

DT
m 0 0

24 35 vm
pm
pm

24 35 ¼
0

fm þQmf
0

24 35 ð2:136Þ

where vm ¼ vfmk

� 	
; pm ¼ pemi

� 	
; pm ¼ pfmk

� 	
; fm ¼ fmi½ �,of which fmi ¼

R
Xi
qmidX;

Qmf ¼ ½qmfidmfi�, in order to convenient writing, this item should be on the right
side of the equation, and shift it to the left in the final calculation format.

Obviously in this equation, the first line corresponds to the Darcy’s law, the
second line corresponds to the law of conservation of mass, and the third line
represents the normal velocity continuity conditions on the cell boundaries surface.
The specific expression of coefficient matrix of above equation is as follows:

Bm ¼
T�1
m1

. .
.

T�1
mNe

0B@
1CA; Cm ¼

e1
. .
.

eNe

0B@
1CA; Dm ¼

I1
. .
.

INe

0B@
1CA

ð2:137Þ

where the subscript Ne is the total number of grid cells; Ii ¼ En.
For this Eq. (2.137), the coefficient matrix of Eq. (2.136) only is related to the

geometry information and reservoir parameters of grid cell, however, has no
requirement for the grid geometry, so it is easy to solve, and applicable to any
complex grid in principle.

(2) Finite Difference Solution for the fracture parts
For 1-D fracture system, we employ implicit difference, and equation multiplies
grid cell volume Vf at both ends, so its difference equation is shown as (2.138)
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Tniþ 1
2
pfiþ 1 � pfið Þ � Tni�1

2
pfi � pfi�1ð Þ ¼ ffi þ qmfi þ qffidffi ð2:138Þ

where

Tniþ 1
2
¼ Kf

l
dfi

0:5ðDni
1 þDniÞ
; ffi ¼ Vfiqfi:

(3) The embedded discrete fracture model format
Note that we take the situation with two fractures for example in this section, the
calculation format for other situation with more fractures is analogous.

Bm �Cm Dm 0 0
CT
m Tmf1 þTmf2 0 �Tmf1 �Tmf2

DT
m 0 0 0 0
0 Tmf1 0 Tf1 � Tmf1 � Tff Tff

0 Tmf2 0 Tff Tf2 � Tmf2 � Tff

266664
377775

mm
pm
pm
pf1
pf2

266664
377775

¼

0
fm
0
f f1
f f2

266664
377775

ð2:139Þ

where Tmfi ¼ ½Tmfi� represents transmissibility matrix between the i-th fracture and
matrix; Tff ¼ ½Tff � represents transmissibility matrix between fractures; and,
respectively, represent finite difference conductivity coefficient matrix of i-th
fracture.

2.5.3 Numerical Examples

(1) Fractured medium single-phase flow experimental verification
Consider one-injection and one-production physical model as shown in Fig. 2.35,
whose size is 7 cm × 17 cm × 1 cm, and can be treated as situation of plane flow.
This model is made up of quartz sand (80–100 mesh) and epoxy resin through the
cementation and compaction, then it is encapsulated by the transparent organic
glass. Matrix can be regarded as homogeneous isotropic media, its porosity is
ϕ = 0.3, and its permeability is Km ¼ 10 lm2 while the model is manufactured,
fractures are replaced by stalloys. When the model is cemented, we will dissociate
the stalloys. In the model, the opening is about 2 mm, fracture permeability is
Kf ¼ 6:67� 102 lm2. Viscosity of water is lw ¼ 1mPa s, and density of water is
qo ¼ 1000 kg=m3. The model injects and produces stable discharge with constant
pressure difference.
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To saturated water of this model, at initial moment, we have calculated its fluid
pressure by measuring liquid column height in the glass tube at each point under
steady flow state. In this section, we apply the discrete fracture model and the
embedded discrete fracture model to simulate the above physical experiment, while
gravity influence is ignored. The corresponding numerical simulation results are
shown in Fig. 2.36. Figure 2.37 shows pressure curve measured by these two
methods in the straight line between the injection–production two points, and it
shows comparison results of pressure value measured experiments. From Fig. 2.36,
the results of numerical calculation and results of experiment are basically identical,
thus the correctness of the method and procedure in this paper is verified. It is worth
noting that in this model, the profiles of organic glass and quartz sand glue joint so
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Fig. 2.35 Physical model and experimental model diagrams. a Physical model, b experimental
model

Fig. 2.36 Pressure field distribution by these two methods (KPa). a Discrete fracture model, b the
embedded discrete fracture model (MFD)
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that model is difficult to achieve completely sealed and quartz sand is hard to be
completely homogeneous filling in the model. Therefore, the results will have
certain error.

(2) Irregular quadrilateral fractured reservoir
As shown in Fig. 2.38a, it is an irregular quadrilateral fractured reservoir geometry
model, matrix permeability is full tenser format. Figure 2.38b, c, respectively, are
the embedded triangular mesh which treats the fracture as inner boundary and
matched triangular mesh which do not consider fracture subdivision. The basic
parameters of the model are as follows: the fracture permeability is
Kf ¼ 1� 10 lm2, fracture aperture is a = 1 mm, fluid viscosity is 1 mPa s, and

rock permeability is Km ¼ 3 1
1 2

� �
� 10�3 lm2.

Based on the above two kinds of grid system, we, respectively, use the discrete
fracture model (Fig. 2.39a) and the embedded discrete fracture model combined
with simulation of finite difference (Fig. 2.39b) to do single-phase flow numerical
simulation of the fractured reservoir. Figure 2.13 indicates two methods on the
straight line of two-point source and sink to obtain pressure curve. In the figure, we
can see that the method calculated results and the discrete fracture model reference
solution are basically identical. The error norm is 2.0 %, and the local maximum

Fig. 2.37 Comparison of pressure distribution on the injection–production diagonal
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Fig. 2.38 Geometry model of fractured reservoir and result of meshing. a Geometry model,
b matching triangular mesh system, c embedded triangular mesh system
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error norm is 5.0 %. It can be seen that the method mentioned by this paper also
applies to the triangle grid system. Therefore, this method will be applicable for all
kinds of complicated boundary shape fractured reservoir flow simulation when
combining with a triangular mesh or hybrid mesh (Fig. 2.40).

(3) Complex fractured reservoir
According to an actual fractured reservoir, fracture statistical information data
include the fracture density, length, aperture, and direction; we have to generate the
corresponding actual complex fractured reservoir model, as shown in Fig. 2.14,
where fracture penetrates the ground in the vertical direction. Some parameters in
the model are shown as follows: the fracture permeability is Kf ¼ 1� 10 lm2,
fracture aperture is a = 1 mm, fluid viscosity is 1 mPa s, and rock permeability is

Km ¼
3 1 0
1 2 0
0 0 1

0@ 1A� 10�3 lm2 (Fig. 2.41)

We, respectively, use the discrete fracture model (Fig. 2.42a) and the embedded
discrete fracture model (Fig. 2.42b), combined with closed constant pressure
boundary condition to carry out single-phase flow numerical simulation to the
complex fractured reservoir. Figures 2.43 and 2.44, respectively, show pressure

Fig. 2.39 Pressure field distributions calculated by these two methods (MPa). a The discrete
fracture model, b the embedded discrete fracture model (MFD)

Fig. 2.40 Comparison of
pressure distribution on the
injection–production diagonal
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curve on the two straight lines y = 26.25 m and x = 48.75 m, which are measured
by these two methods. And both results are basically identical.

(4) Calculation example of two-phase flow fractured reservoirs
Based on the embedded discrete fracture single-phase flow model and its solution,
and combining the saturation equation by limited volume method in Sect. 2.4.3, the
embedded discrete fracture model can be extended to two-phase flow simulation. It
is worth noting that this model adapts upstream weighting method to calculate

50m 100m

10m

Fig. 2.41 Complex fractured reservoir model

Fig. 2.42 Pressure field distributions by the discrete fracture model and MFD (MPa). a The
discrete fracture model, b the embedded discrete fracture model (MFD)

Fig. 2.43 Comparison of
pressure field distribution on
the line y = 26.2 m
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coefficient of fluidity of two-phase flow channeling item in between fracture and
matrix.

Three-dimensional fractured reservoir geometry model is shown in Fig. 2.45,
whose size is 40 m × 100 m × 100 m (x × y × z). In the reservoir, there are six
large fractures, and to the matrix permeability, we should consider scalar form and
full tensor form. Parameters of the model are shown in Table 2.2.

We used the embedded discrete fracture model for Water flooding Displacement
numerical simulation of the fractured reservoir, and we have, respectively, con-
sidered two forms of matrix permeability, scalar form and full tenser form.
Figure 2.46 shows the water saturation distribution in the two forms of matrix
permeability when exchange of injection water is 0.5 PV. Figure 2.47 shows the
injection–production relation curve under different conditions.

Fig. 2.44 Comparison of
pressure field distribution on
the line x = 48.75 m

Fig. 2.45 Sketch of
geometrical of the 3-D
fractured porous medium
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Table 2.2 The parameters of physics models

Name of properties Value

Matrix properties
/m ¼ 0:4;Km ¼ 1� 10�15 m2;Km ¼

1 0:5 0:8
0:8 1 0:5
0:5 0:5 1

24 35� 10�15 m2

Fracture properties /f ¼ 1:0;Kf ¼ 8:33� 10�8 m2; af ¼ 1� 10�3 m

Fluid properties lw ¼ lo ¼ 1:0mPa s, qw ¼ qo ¼ 1000 kg/m3

Residual saturations in
matrix and fractures

Swc ¼ 0:0; Sor ¼ 0:0

Relative permeabilities
in matrix and fractures

krw ¼ Se; kro ¼ 1� Se; Se ¼ ð1� SwÞ=ð1� Swc � SorÞ

Capillary pressure Neglected

Water injection and oil
production rates

0:01 PV/d

Fig. 2.46 Water saturation profiles after 0.5 PV water injection with different rock permeability.
a Scalar permeability field, b tenser permeability field

Fig. 2.47 Cumulative oil
production curve
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2.6 Summary and Remarks

(1) Discrete fracture model gives an explicit representation to each fracture on the
medium, and has good advantages of high calculation precision and good accuracy.
But the large amount of calculation is its disadvantage. With the rapid development
of computer technology, based on this model, detailed flow simulation will be
possible. At the same time, this model, as a tool, can obtain related parameters of
double medium and the equivalent medium model. So, it has broad application
prospects. Based on the concept of equivalent single fracture, we have set up the
discrete fracture model in this section, and elaborated the basic principle of the
model. And a variety of numerical solution of the model is given, including the finite
element method, finite volume method, and simulation finite difference method. The
correctness of the model and algorithm is verified by calculation examples.
(2) The finite volume method needs to be simplified and equivalent process in
fracture’s intersections makes calculation accuracy to reduce during large-scale
computation; finite element method has certain defects, in the aspects of
conservation-type format structure and calculation stability; simulation finite dif-
ference method is only based on a single grid node and surface information when
structuring numerical computational formulation, and it is applicable to any com-
plex grid system in theory. It also has a good local conservation, and can be applied
to the discrete fracture flow simulation research, which indicates that it has a broad
application prospect.
(3) The embedded discrete fracture model do not need to consider the reservoir
fracture morphology when partitioning grid. It only needs to do simple grid sub-
division on the matrix system. Therefore, it can effectively avoid the situation of
poor quality of the grid which is caused by too much small distance or angle
between the fractures. This model needs to compute fluid channeling information
between the fracture element and the matrix grid, however, it treats fracture as the
inner boundary and the constraint to do unstructured grid subdivision relative to the
discrete fracture model, so that its complexity of grid is reduced greatly, which
improves efficiently the computational efficiency. From simulation finite difference
method to the embedded discrete fracture model, the latter overcomes the limita-
tions of the former. The limitations of the former are as follows: based on the finite
difference method, it cannot effectively deal with the permeability of full tensor, and
it is not applicable to complicated boundary shape fractured reservoir.
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Chapter 3
Discrete Fracture-Vug Network Model

Abstract In this chapter, a novel conceptual model named discrete fracture-vuggy
network (DFVN) model, which is assumed to be composed of free flow region
(macrovug system) and porous medium region (macrofracture system and porous
rock matrix system), has been developed to demonstrate the flow characterization:
coupling of free flow and porous media flow. Based on DFVN, the macromathe-
matical model of two-phase coupling flow, including coupling interface conditions,
is developed by upscaling micro Navier–Stokes equation through Volume Average
Method. Darcy’s law is utilized to describe the flow behavior in the porous med-
ium, while in the free flow region, Navier–Stokes equation is applied. Besides,
normal stress and mass continuity conditions, as well as Beavers–Joseph–Saffman
boundary condition are added to coupling the two different flow subdomains. The
whole mathematical model is solved by upwind Petrov–Galerkin finite element
method and the coupling is implemented via alternative solution method. Finally,
several numerical cases are given to validate the effectivity and accuracy of the
coupling model.

Keywords DFVN � Beavers–Joseph–Saffman condition � Coupling fluid–porous
flow � Volume average method � Finite element method

Vugs and macrofractures are developed in earth crust under the effect of karst and
tectonic movement. Their spatial scales are much larger than intergranular pore and
also have an important influence on the physical properties of rocks and fluids flow
in the stratum, which is defined as fractured-vuggy medium in the exploration and
development of petroleum. Figure 3.1 illustrates the outcrop of the typical
fractured-vuggy medium. This kind of medium, such as carbonate reservoir,
underground karst aquifer, etc., exist extensively in nature and has a close rela-
tionship with human beings. A fracture is the smallest geologic structure, almost
existing in all the stratums. In book of “Carbonate Reservoir Characterization,”
Lucia defined vugs as a sort of caves whose pore spaces are larger than inter-
granular pore in porous medium which are formed because of dissolution and
decomposition occurring in carbonate and sulfate (Lucia 2007). Vugs can become

© Petroleum Industry Press and Springer-Verlag Berlin Heidelberg 2016
J. Yao and Z.-Q. Huang, Fractured Vuggy Carbonate Reservoir Simulation,
Springer Mineralogy, DOI 10.1007/978-3-662-52842-6_3
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more complicated fractured-vuggy network by connecting with fractures in stratum
as in Fig. 3.1b, f.

Fractured-vuggy medium has complicated internal structure, including not only
bed rocks and fractures but also multi-scale spatial vugs, whose volumes range from
millimeter scale to meter scale (Erzeybek and Akin 2008). Meanwhile a large
number of logging, core, and outcrop materials indicate that due to tectonic
movement in the late period, fractures and vugs are filled severely not only by
physical filling process such as with sand, mud, etc., but also by chemical filling
process with silicon, calcite, etc., which aggravate the heterogeneity of the stratums
as Fig. 3.1e shows.

3.1 Mathematical Models: The State of the Art

The complication and multi-scale in fractured-vuggy medium structure make it a
challenge task to describe and simulate the fluid flow behavior accurately (Popov
et al. 2009b). Because of the presence of vugs which are connected via fracture
networks at vuggy multiple scales, the main challenge is the coexistence of seepage
mechanics and free flow in the state of laminar or/and turbulent flow in such
reservoirs (Zheng et al. 2009). Similar to the research on fluid flow in fracture

Fig. 3.1 Typical fractured-vuggy medium field outcrop
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medium, the mathematical model used in the present research on fluid flow in
fractured-vuggy porosity can be divided into two classes: conventional continuous
porosity model and discrete porosity model. The former can be subdivided into
triple porosity model, equivalent porosity model, and its evolutionary model.

3.1.1 Conventional Continuous Media Model

(1) Triple porosity model
In China, the concept of triple porosity model was initially proposed by Wu and Ge
(1983) while in foreign countries, Abdassah and Ershagi were the first who pro-
posed it (1986). All of their researches are about natural fractured reservoirs. They
found that the pressure character curves in some fractural reservoirs vary from the
previous research results and cognition. Even the double-porosity fluid flow theory
could not make a perfect explanation, so they proposed the concept of triple
porosity. In this research, they divide rock matrix into two classes: one has a good
connectivity with fracture systems and the other class has a bad one. There are two
possible reasons contributing these two classes pore systems. One reason is due to
the heterogeneity of primary pores and connectivity and the other one is that there
are isolated vugs in some rock matrixes. As Fig. 3.2 shows it is considered that the
comprehensive permeability of rock matrix with vugs are better than that of without
vugs. Thus rock system can be considered as two pore systems, which compose
triple porosity system together with fracture system by interporosity flow function.

Liu et al. made a research on the characteristic of fluid flow in fractured litho-
physa rock with triple porosity model (Liu et al. 2003). Lithophysa structure is a
common innate orbicular structure. There are multilayer concentric spheres—some
with cavities as a result of gas escape and volume shrinkage during the process of
solidification. Most of the lithophysa are cavities and this type of rock structure is a
typical fractured-vuggy medium. In their research, fluid only flows in the fracture

vug fracturematrix

reservior Representative 
element volume

Fig. 3.2 Schematic of fractured-vuggy medium triple pores system
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network system while rock matrix and vugs act as the primary reservoir space. Fluid
flows into fracture system and flow between systems can be described by
quasi-steady state interporosity flow function. Under the condition of variable
well-bore storage and aiming at triple porosity reservoirs consisting of rock matrix
systems, fracture systems and vugs systems, Jun Yao et al. made a research on well
test interpretation model where there is a connectivity between vugs and wellbores
(Chang et al. 2004; Yao et al. 2004; Yang et al. 2005). In their research, wellbore is
assumed to be only connected with vug systems and the liquid from fractures and
rock matrix are neglected. In other words, both rock matrix and fractures are only
considered as source and quasi-steady interporosity flow happens among matrix,
fractures, and vugs.

Afterwards Velazquez et al. (2005), Wu et al. (2004, 2006, 2007), Yao and
Zisheng (2007) and Zhang et al. (2008) made further development for triple
porosity model based on the characteristic of fractured-vuggy porosity. They
divided this type of porosity into three parallel continuous systems, namely high
permeability fracture system, low permeability rock system, and vug system.
Relationships can be built up among these three systems by Quasi-steady state
function. Based on this function the character curves reflecting pressure variation of
natural fracture reservoir is studied and well test curves template was produced
which enhanced our understanding for the characteristic of fluid flow in
fractured-vuggy reservoir. Although triple porosity model describes the phe-
nomenon of preferential flow in fractured-vuggy media to some degree and con-
siders the exchange of matter among fracture systems, rock matrix systems and vug
systems, which conforms to actual models, the characteristics such as anisotropy,
discontinuity, multi-scale, etc., of fractured-vuggy media cannot be displayed as we
have assumed that rock matrix and vug systems divided by fracture systems have
the same sizes and shapes that are overly simplified. Meanwhile the coefficient of
matter exchange is difficult to determine and the triple continuous assumption will
be appropriate under the condition that fractures and vugs have a good develop-
ment. What’s more important is that this model does not show the multi-scale
coupling characteristics of fluid flow in fractured-vuggy reservoir. Therefore in
many cases the calculated results have a huge deviation from practice.

(2) Equivalent porosity model
Varying from the triple continuous assumption in triple media model, equivalent
media model considers the whole fractured-vuggy media as a continuum where
physical parameters in every coordinate are in a local equilibrium state under the
effects of adequate fluids exchange among fracture rock matrix and vugs. This model
focuses on macroflow characteristic showing in the entire media. Some parameters
like the solute concentration and permeability, etc., are averaged equivalently in the
whole media, which therefore is considered as anisotropy media with permeability
tensor and physical structure of single fracture and vug will be neglected. This media
will be thought as common porous media, whose flow characteristic and numerical
simulation can be explained with present fluid flow theory. It is critical to gain
equivalent permeability and reservoir parameters in media.
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There are two methods to determine permeability in porous media. They are
experimental measurement and theoretical calculation. The former one mainly used
logging, well testing, tracer, and core to determine the permeability. However, there
are many problems (Arbogast et al. 2004) existing in this method because of the
spatial multi-scale of fractures and vugs in fractured-vuggy media, which cannot
reflect the real permeability. Thus theoretical calculation has been paid more
attention gradually and has become a primary method to predict the permeability in
complex media. The first step in theoretical calculation is to build corresponding
model to describe the flow condition in media. The secondary step is to obtain the
equivalent permeability by using equivalence principle.

Equivalent media model has many advantages. This model is simple and its
theory is mature and it is easy to calculate. This model is appropriate for fluid flow
in large-range areas where there is an intensive fractures and vugs distribution while
it will generate huge errors if using the theory of continuous media making an
analysis when the fractures and vugs are highly discrete. It is a controversial topic
about whether we can utilize equivalent media model to study fractured-vuggy
media model. The key point is to judge whether the Representative Element
Volume (REV) exists. Actually effective REV does not exist because the influence
from heterogeneity and multi-scale in most of fractured-vuggy media exist.

In conclusion, conventional continuous media model is not appropriate for most
of fractured-vuggy media. Therefore it is realized that it is not feasible to study this
type of media based on conventional fluid flow. We must establish a new set of
appropriate study method and mathematical description for this special media. At
present there is no mature study foundation in this area and it is still at the stage of
exploration.

3.1.2 Discrete Media Model

After experiencing a long-term geological process, rock system will generate dis-
crete surface with different types, sizes and mechanical properties, including joints,
fractures, and faults. Therefore, all the rock systems with developed fractures
belong to discrete media. In 1971, Louis and Wittke have come up with line
element network model (Louis and Wittke 1971) which is similar with cyclic
current method in circuit analysis. The mathematical model in this method is
developed based on node flux conservation, loop pressure conservation, and
bar-type element water pressure difference conservation, which is the earliest dis-
crete media model. This model was developed into discrete fracture network model
afterwards by Wilson and Witherspoon, where permeability in rock matrix (Wilson
and Witherspoon 1974) were not considered. Then Noorishad et al. (1982) and
Baca et al. (1984) established discrete media model with the consideration of rock
matrix permeability, called discrete fracture model. During the past decade, with the
continuous development of fractured reservoir, tight sandstone reservoir and low
permeability reservoir, discrete fracture model is gradually causing scholars’
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attention abroad and becoming the research focus. In recent years in Yao et al.
pursued professional research work (Yao et al. 2010c; Huang et al. 2011a, b) in
areas of oil–water flow simulation in fracture reservoir based on discrete fracture
model. The results showed that this model highlights the hydraulic power charac-
teristics of single fracture and can depict fluid flow characteristics in fracture rock
matrix accurately.

Based on the research methods and results on fractured reservoir and given the
characteristics of fractured-vuggy medium, Yao et al. (2010a) proposed Discrete
Fractured-Vuggy Network Model (DFVN). This model combines vug system to the
former discrete fracture model, which made it appropriate to the research on
fractured-vuggy media. This is an effective extension and expansion, which reflects
the structure characteristics of fractured-vuggy media and fully illustrates the
multi-scale coupling flow feature.

At present DFVN model is limited in single phase flow research (Yao et al.
2010b; Huang et al. 2011b), whose fluid flow area conformed to Darcy flow. The
area of free flow is described by Navier–Stokes equations and two-phase region can
be coupled by Beavers–Joseph–Saffman boundary conditions. The result shows that
DFVN model can describe the flow conditions in fractures-vugs accurately and
depict the single flow characteristics in fracture-vugs explicitly.

3.1.3 Discrete Fractured-Vuggy Network Model(DFVN)

Fractured-vuggy media varies from conventional clasolite reservoir and common
fracture media in form, distribution, attitude, etc., due to the effect of structure
fracture, corrosion, diagenesis, and epigenesis.

The main structure characteristics are listed as follows:

(1) Reservoir spaces are various, including pores, fractures, and vugs. Pores are
void space whose spatial scales are similar and no less than 2 mm in three
directions. There are many formation factors and types of pores, whose
porosity and permeability are poor. Similar to pores, vugs are also void space
whose spatial scales are close and less than 2 mm, but they can be recognized
completely in cores and they are a variety of important reservoir space.
Fractures are void space whose one direction scale is small and the other two
are very large (usually less than 1:10). Fractures are the tiniest geological
structure. They exist in reservoir widely and they can link to vugs effectively
to form primary reservoir and fluid flow space.

(2) The scale of reservoir space range from several micrometers to scores of
meters, having obvious scale characteristics and heterogeneity, Table 3.1
shows the spatial scale classification of fractures and vugs. It also shows the
geological cause of formation.
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Vugs and fractures are filled seriously. A large amount of logging, cores, and
outcrops materials show that there exists mechanical–physical filling (by sand and
mud) and chemical filling (by siliceous and calcite) in fractures and vugs, which
aggravate the heterogeneity of reservoir due to the tectonic movement in later stage.

In terms of above structure characteristics, fractured-vuggy medium is actually a
huge discrete fractured-vuggy network space where both free flow and porous flow
exist, as Fig. 3.3a shows. This model is such a complex coupling flow system that
the present theories are not suitable for this type of media. Thus we propose discrete
fractured-vuggy network model, aiming to describe the real flow behavior in
fractured-vuggy media.

As Fig. 3.3b shows, in DFVN model, fractured-vuggy medium is divided into
rock system (including matrix, microfracture, and microvugs), fracture system and
vug system, among which fracture and vug are imbedded into rock, forming a
network. Vugs are considered as free flow region while rock and fractures are
thought as free flow region. Fluid flow region can be regarded as typical discrete
fracture model. Thus DFVN model is an effective extension and expansion of
discrete fracture. As Fig. 3.4 shows, DFVN model can be divided into two different
flow regions: free flow region and porous flow region. How to establish corre-
sponding coupling flow mathematic model is the main purpose of our study.
Obviously, DFVN model is concerned with two critical scientific problems: the
coupling of porous flow and free flow and the establishment of discrete fracture
mathematic model in porous flow region.

3.2 The Coupling Theory of Porous Flow–Free Flow

The coupling of porous flow and free flow is a universal phenomenon in nature. For
example, the evaporation of water in soil with air flows, proton exchange membrane
fuel cell technology, well-reservoir coupling in oil production and blood–organ
interactions, etc.

Table 3.1 Classification of fractures and vugs

Form Classification Diameter/aperture
(μm)

Geologic process

Cavity Large cavity >5 × 105 Denudation

Medium cavity 5 × 105 to 1 × 104

Small cavity 1 × 104 to 2 × 103

Fracture Tectonic corroded
fracture

Vary in size Tectonic denudation

Tectonic fracture <1 Tectogenesis

Interlayer fracture 10–200 Sedimentation

Pressolved fracture Several microns Sedimentation and
lithogenesis

3.1 Mathematical Models: The State of the Art 81



Macro large 
vug

Rock system

Vug systemRock system

Oil wellOil well

Fracture system

Seepage flow

Free flow

Macro large fracture

L (m)

Rock REV

enlargement

l (mm)

Micro fracture Micro vug

matrix
w

 (
m

)

W
 (

m
)

(a)

(b)

Fig. 3.3 Scheme of natural fractured-vuggy medium

Discrete fracture model(seepage flow region) Vug system(free flow region)

+

DFVN model

=

Fig. 3.4 Decomposition chart of DFVN model

82 3 Discrete Fracture-Vug Network Model



As Fig. 3.5a shows, the fluid flow is always conformed to Navier–Stokes
equation in microscope pore scale not only in free pathway but also in pores.
Theoretically, the particular description on fluid flow in coupling flow area can be
obtained if geometry structure information is known. However, it is nearly
impossible to explicitly describe the complex geometry structure in porous media
apart from some particularly simple conditions (such as straight capillary model).
To overcome this difficulty, we usually transformed it into much larger scale to
describe, namely macroscale representative elementary volume (REV) scale. Darcy
law is used to describe macroscale flow in REV scale. The control differential
equations in two flow regions vary in physical significance and differential order,
which causes some difficulties to the coupling of two kinds of flows. At present
there are two methods to deal with this coupling physical problem: single-domain
approach (SDA) and two-domain approach (TDA).

3.2.1 Coupling Flow Method and Its Surface Condition

(1) Single-Domain Approach
In this method, the whole coupling flow region is considered as continuous system
by introducing the definition of interface transition region. Among this method,
physical attribute of porous media changes continuously in spatial distribution, such
as porosity and permeability. The whole region can be described by a set of unified
flow equations. Assuming fluid and heterogeneous porous media are incompress-
ible, the unified flow equations can be written as follows:

r � v ¼ 0 ð3:1Þ

porous medium

Free flow region

Macro coupling 
interface

Solid skeleton 
particleFluid phase

Porous media

Interface transmission domain

Free flow region Free flow region

Porous media

(a) (b) (c)

Fig. 3.5 Comparison of interface description in different coupling methods
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/�1 @ qvð Þ
@t

þ/�2r � qvvð Þ ¼ �rpþ qgþ ler2v� lK�1 � v|fflfflfflffl{zfflfflfflffl}
Darcy term

ð3:2Þ

where q, v, l and p are density, velocity vector, viscosity, and pressure of the fluid,
respectively; g is acceleration of gravity; / is porosity; le is effective viscosity; K is
permeability tensor of porous media.

In free flow region, / = 1, le = l, K → ∞. Thus the Darcy term in Eq. (3.2)
tends to be zero and this equation is simplified into Navier–Stokes equation. In
porous media fluid flow region, / ¼ /p � µe is relevant to structure characteristic of
porous media, generally le ¼ l=/. Although all the terms that have relationships
with velocity are kept, only Darcy term plays the primary role. The advantage of
this method is that the whole region is described by a unified set of equations. Thus
the requirement for continuity is satisfied automatically in interface. There is no
need to introduce extra interface conditions. In SDA, it is critical to determine the
parameters in interface transition region while present research method could not be
able to determine these parameters and their change. This set of unified equations is
only suitable for single phase flow. There is no unified equation now and it is very
difficult to study for two phases flow.

(2) Two-Domain Approach, TDA
TDA will establish flow mathematic model in two different flow regions respec-
tively, which is different from SDA. Then this two flow models are coupled by
introducing specific interface conditions, as Fig. 3.5c shows. In free flow region,
fluid flow can be described by classical Navier–Stokes equations, while in porous
media, flow model can be described by Darcy equations or its modified equations.
Meanwhile appropriate interface conditions are required to couple this two flow
regions. There are many scholars doing some work on this problem and they have
gained a series of research results during the past half century.

Although Rhodes and Rouleau had made a discussion (Rhodes and Rouleau
1966) on this coupling flow problem in 1966, systematical experiment and theoretic
research were finished initially by Beavers and Joseph (1967). Based on the
experimental results and theoretical analysis, Beavers and Joseph proposed a
semiempirical formula to couple Stokes equations and Darcy equations. This for-
mula is the famous BJ velocity slip condition as follows:

du
dy y¼0þ
�� ¼ affiffiffiffi

K
p uB � Qð Þ ð3:3Þ

where u is velocity component in x axis in free flow region; 0+ is the underlying
boundary in free flow region, as shown in Fig. 3.6a; uB is slip velocity on
boundary; Q is seepage velocity in x axis in porous media; a is nondimensional slip
coefficient, which is used to represent porous structure characteristic in interface
region; K is the permeability of porous media.
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Afterwards, Beavers et al. (1970) additionally did a series of experiment to
validate the accuracy of interface conditions further. To validate the universality of
the interface conditions, Beavers et al. did experiment with gas (Beavers et al. 1974)
and the experiment results validated the accuracy and universality of Eq. (3.3)
again. Saffman proved the effectiveness of BJ condition from the perspective of
physics and mathematics meanwhile Saffman pointed that BJ condition was only
suitable for models similar to Beavers–Joseph experiment equipment and he also
proposed a more universal interface condition (Saffman and Saffman 1971), namely
Beavers–Joseph–Saffman (BJS) conditions:

uB ¼
ffiffiffiffi
K

p

a
@u
@n

þO Kð Þ ð3:4Þ

where n is normal direction of the interface.
Compared with Eq. (3.3), we can see that Q = Q(K). Generally, seepage velocity

Q is far less than slip velocity uB. Thus Q can be neglected. Slip velocity can be
neglected if slip velocity is smaller than the largest seepage velocity in porous
media, namely nonslip interface conditions. Dagan (1979) proposed the same
conclusion. Taylor (1971) and Richardson (1971) proved the correctness of BJ
theoretically further. Afterwards Jonse re-clarified the mathematical and physical
significance of BJ condition (Jones 1973). He thought the essence of BJ condition is
linking shear stress with slip velocity and establishing general boundary condition:

u � k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � K � kp

la
n � s � kð Þ ð3:5Þ

where k is a unit tangent vector of the interface. N is unit normal vector. s is viscous
stress of fluid in free flow region.

Seepage velocity can be neglected in Eq. (3.5).
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Fig. 3.6 Comparison of different coupling flow modes (h is the height of free flow)
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Recently, Jager and Mikelic (1999, 2009) deduced the same interface condition
based on homogenization theory. The interface condition of both Eqs. (3.4) and
(3.5) can be considered as the modification and extension of BJ condition.

Compared with nonslip wall condition, the total flux in free flow region will
increase after introducing velocity slip condition. Toward this, Beavers and Joseph
defined a parameter U to represent this variation. They draw the result that is
basically agree with experiment data by adjusting slip coefficient whose range is
0:1� a� 4:0. Meanwhile, they think that the slip coefficient a is not relevant to the
property of fluid and is only relevant to the structure characteristic of porous media.
Then Beavers (1970), Richdson (1971), and Goyeau (2003) made a research on
how to determine slip coefficient a. And the results show that a has a close rela-
tionship with local geometry structure of the interface. But until now there is no
specific expression for it. Recently, Zhang and Prosperetti (2009) showed that as to
the same topic there is difference in a between pressure-driven flow and viscous
stress-driven flow and a is relevant to Reynolds number. Later Liu and Prosperetti
(2010) proposed a new boundary condition to express this characteristic as follows:

du
dy y¼0þ
�� ¼ affiffiffiffi

K
p uB � cQð Þ ð3:6Þ

where c is a dimensionless scalar. Liu and Prosperetti predicted that this coefficient
has relationship with the volume percentage of void space in interface region.
Obviously, this new boundary condition comes from intuition and experience. The
problem that how to determine a and c is present hot spot and difficult point, which
will be elaborated in Eq. (3.3).

In TDA, Darcy equation is used in the flow analysis of seepage region while the
flow in porous media can be described by Brinkman equation. In 1971, Taylor
(1971) had noticed that BJ condition can be deduced from Brinkman equations
though he did not use the term of Brinkman equation. After that, the work of Neale
and Nader (1974) showed that the results from Brinkman equations and the results
that gained by combining Darcy equations with BJ conditions are consistent in
seepage region. Furthermore, they obtained a ¼ ffiffiffiffiffiffiffiffiffiffi

le=l
p

. Ochoa-Tapia and
Whitaker (1995a, b) proposed stress jump condition and velocity continuity con-
dition based on nonlocal average Stokes equation. Brinkman equations will be
adopted in seepage region and Stokes equations will be utilized in free flow region,
as Fig. 3.6b shows. The stress jump condition can be listed as follows:

ue
@v
@y

� l
@u
@y

¼ bffiffiffiffi
K

p u; y ¼ 0 ð3:7Þ

where v is seepage velocity; u is the velocity in free flow region; b is dimensionless
coefficient and le=l ¼ 1=/. The analytical solution of above model can almost
matches to Beavers–Joseph experimental data by adjusting coefficient b. In fact
stress jump condition is a representative of the rapid porous media structure vari-
ation in interface region, which is similar to BJ condition. Chandesris and Jamer
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(2006, 2009) and Jamet and Chandesris (2009) proposed a general two steps scale
updated method and combined this method with asymptotic expansion method to
deduce and establish the corresponding coupling interface condition of single phase
laminar flow and turbulent flow.

However, Nield pointed that this coupling model was not suitable to two phases
and multiphases flow because it will be very difficult to consider the effect from
interfacial tension in interface region. Meanwhile the mutability of porous media
will disturb the continuity of Marangoni effect, which brings some difficulties. Thus
Nield thinks that the best approach is to introduce a tiny interface transition region
and to utilize BJ condition to solve this coupling flow problem.

Apart from the above two primary coupling models in TDA, Bars and Worster
(2006) proposed a new coupling model. A viscous transition region was defined in
seepage flow–free flow porous media. In this region, Stokes equations are still
suitable while outside this region fluid flow meets Darcy law, as Fig. 3.6c shows.
The equation can be listed as follows:

u x;�dþð Þ ¼ v x;�d�ð Þ; d ¼ c
ffiffiffiffi
K

p
ð3:8Þ

where c is dimensionless scalar coefficient, c = O(1).
In the case of porosity changing continuously within the interfacial region, the

analytical solution based on interface condition Eq. (3.8) matches better with
Beavers–Joseph experimental data than on BJ condition. However, it is very dif-
ficult to apply this interface condition primarily in practical engineering because
defining and describing this coupling interface of practical problem accurately is
impossible.

According to the above analysis, we have known the coupling flow characteristic
of single phase laminar and turbulent flow very well. However, two phases and
multiphases have not been studied. There are two reasons contributing to current
situation: one is that the research on seepage flow–free flow for two phases and
multiphases is very difficult; another one is that engineering single phase flow
played a primary role in previous practical. Two phases and multiphases attracted
much more attention with the expansion of human activities range and the deep-
ening of research.

Mosthaf et al. (2011) considered air free flow as a single phase and two com-
ponents flow model when he studied the effectiveness on climate from water
evaporation. However, two phases and two components seepage model will be
adopted in soil. In this model these two flows can be coupled by applying normal
velocity continuity and normal stress continuity and BJS in interface. Obviously,
they simply extend the result of single phase flow into the established model but
lack of enough support theoretically. Even though, this result still promotes the
study on coupling two phases flow. It is still a challenging task to build corre-
sponding two phases coupling flow model. As to this problem, two phases coupling
flow mathematic model and its interface condition will be established theoretically
by applying volume average method and two scale upscaling method based on
TDA, which will be introduced later in Sect. 3.3.
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3.2.2 Two Phases Flow of Discrete Fracture-Vug Network

In micro-porous scale, fluid flow can be described by Navier–Stokes equation and
interfacial tension equation in both free flow region and porous medium region. Thus
there is no difference in the control differential equations of fluid flow in porous
scale. However, porous medium flow usually needs to be described and analyzed in a
much larger scale by macroscopic Darcy equation or its modified formula (Bear
1972). In this case, scale difference exists in control differential equations between
two kinds of flow regions. How to remove the scale difference is the critical problem
in establishing the coupling mathematic model of porous fluid flow.

This section solves this problem by twice scale updating based on volume
average method. Then the mathematic model of two-phase coupling of porous fluid
flow is built. First, make a scale update from the perspective of flow equation in
microscale based on volume average method for both the two flow regions directly.
A set of universal volume average equations can be obtained, which are suitable in
the whole coupling flow regions without introducing any scale limit. Then by
introducing particular scale limiting condition, simplify the above volume average
equations in free flow region and seepage flow region respectively. In free flow
region, it can be simplified into typical two fluids model while in seepage flow
region, it can be simplified into two-phase flow Darcy model. To remove the error
during the process of simplification, establish corresponding coupling interface
condition by introducing surface excess function and the complete mathematic
model for two-phase coupling of porous fluid flow is formed. The following part
will elaborate the basic concepts and corresponding principles first in order to lay
foundations for the later theoretical derivation.

1. The basic principles of volume average method
Considering two-phase flow system as Fig. 3.7 shows, we can assume an average
volume V which will not vary with time. This volume V includes solid matrix

n-phase

w-phase

k=w or n

Average volume

L

V

s-phase

rk

x

yk

lk

ls

Fig. 3.7 Representative element volume in study region
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(s-phase), wetting phase (w-phase), and non-wetting phase (n-phase). Volume
average method is mainly based on the following five basic definitions and
principles.

(1) Superficial average

wkh i xj ¼ 1
V

Z
Vk

wk xþ yk

�� dV ð3:9Þ

where wk is one certain physical property of k phase (k = w, n). This property may
be scalar, vector or high order tensor, such as pressure, velocity, and stress. V is the
average volume of substance region. Vk is the volume percentage of k phase.

When applying volume average method, another average value is required to
represent macroscopic physical quantity, namely the intrinsic average.

(2) Intrinsic average

wkh ik xj ¼ 1
Vk

Z
Vk

wk xþ yk

�� dV ð3:10Þ

Obviously, wkh i ¼ ek wkh ik and ek ¼ Vk=V is the volume percentage of k phase
substance.

(3) Space decomposition of physical quantity
Generally in an average volume, the real physical property wk at a random spot is
not equal to volume average value wkh ik. Its deviation is decided by the inner
structure of porous media and flow regime. wk can be written as follows:

wk ¼ wkh ik þ ~wk ð3:11Þ

where we can see wkh ik only changes in spatial scale L while deviation value ~wk
changes in spatial lk as Fig. 3.7 shows.

(4) Spatial average principal
Gradient and divergence calculations are generally required in volume average
method. In terms of this, Slattery (1967) and Whitaker (1999) created corre-
sponding spatial average principal as follows:

rwkh i xj ¼ r wkh i xj þ 1
V

Z
Ak

nkwk xþ yk

�� dA ð3:12Þ

If wk is a vector, then

rwkh i xj ¼ r wkh i xj þ 1
V

Z
Ak

nk � wk xþ yk

�� dA ð3:13Þ
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where Ak is the interface of k phase and i phase. i stands for one certain substance in
V (i = w, n, s, i 6¼ k). Its outward normal unit vector nk points to i phase from
k phase.

The above space average principal is also suitable for high order tensor.

(5) Mass transfer equation
Assume that Vk(t) is a spatial region which can change with time, whose interface is
Ak(t). Then

@wk

@t

� �
xj ¼ @ wkh i xj

@t
� 1
V

Z
Ak

wk xþ yk

�� wk � nkdA ð3:14Þ

where wk is the velocity of two phases interface.
When wk ¼ 1, Eqs. (3.13) and (3.14) can be simplified as follows:

rek ¼ � 1
V

Z
Ak

nkdA ð3:15Þ

@ek
@t

¼ 1
V

Z
Ak

wk � nkdA ð3:16Þ

2. Microscopic scale two-phase flow description
As Fig. 3.7 shows, two-phase flow system on a microscopic scale consists of closed
regions of every single phase fluid. Assuming that the flow region of every single
phase fluid is considered as continuous media in microporous scale, two-phase flow
can be described by the following differential equations.

@qk
@t

þr � qkvkð Þ ¼ 0 ð3:17Þ

@ qkvkð Þ
@t

þr � qkvkvkð Þ ¼ �rpk þ lkr2vk þ qkg ð3:18Þ

vk ¼ 0; at Aks ð3:19Þ

�pkIþ skð Þ � n ¼ �pmIþ smð Þ � nþ 2rjn; at Akm ð3:20Þ

where m 2 w; nf g and m 6¼ k; r and j are respectively the curvature of interface
tension and Akm; I is the unit matrix.

Obviously, if microscopic porous media structure in flow region can be
described accurately, flow state can be obtained by the above basic differential
equations and boundary conditions. However, it is nearly an impossible task to
obtain its inner porous structure with the present techniques. Even if we can get
accurate inner structure of pores, there are still many difficulties in solving the
above partial differential equation sets, such as the stability of numerical calcula-
tion, the method of describing two phases interface and huge calculation. Thus we
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need to study this problem in much larger scale, namely so-called upscaling. At
present, many upscaling methods have been proposed such as volume average
method, averaging theory, etc. At this moment we will adopt volume average
method.

3. Upscaling based on volume average method
Continuous equation upscaling

As to Eq. (3.17), apply superficial average operator at both ends of the equation
first, and we can get

@qk
@t

� �
þ r � qkvkð Þh i ¼ 0h i ð3:21Þ

Applying space average principle (3.13) and mass transfer Eq. (3.14), we can get

@ qkh i
@t

þr � qkvkh i ¼ 1
V

Z
Akm

qk vk � wkð Þ � nkmdA ¼ 0 ð3:22Þ

where the final term at the left of this equation is mass transfer representative term
of two phases interface. If we do not consider substance diffusion and physical–
chemical reaction, then vk = wk. In this condition we just only consider non-mixed
two phases flow. Thus the final term is constantly equal to zero. Equation (3.22) can
be written as:

@ qkh i
@t

þr � qkvkh i ¼ 0 ð3:23Þ

To simplify the problem, assume that the fluid and porous media skeleton are all
impressible. Then Eq. (3.23) can be simplified into

@ek
@t

þr � vkh i ¼ 0 ð3:24Þ

The above velocity is superficial average value. However in two phases flow, we
often use intrinsic average value. Thus Eq. (3.24) can be written as Eq. (3.25)

@ek
@t

þr � ek vkh ik
� �

¼ 0 ð3:25Þ

During the above deduction, there is no scale limitation condition introduced.
Thus Eq. (3.25) is suitable for the whole flow region.

(1) Momentum equation upscaling
As to momentum Eq. (3.18), similar analysis can be used to deduce equations. At
first apply superficial average operator at both end of equation, we can get
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@ qkvkh i
@t

� �
þ r � qkvkvkh ih i ¼ � rpkh iþ lk r2vk

	 
þ ekqkg ð3:26Þ

Applying mass transfer principle and space average principle respectively and
combining vk = wk, we can get

qk
@ vkh i
@t

þ qkr � vkvkh i ¼ � rpkh iþ lk r2vk
	 
þ ekqkg ð3:27Þ

Applying space average principle on the first term at right end of the above
equation, then

rpkh i ¼ r pkh iþ 1
V

Z
Akm

nkmpk xþ yk

�� dA ð3:28Þ

Transfer Eq. (3.28) into intrinsic average form as follows:

rpkh i ¼ ekr pkh ik þ pkh ikrek þ 1
V

Z
Akm

nkmpk xþ yk

�� dA ð3:29Þ

At this moment applying Eq. (3.15), the above equation can be written as
Eq. (3.30)

rpkh i ¼ ekr pkh ik þ 1
V

Z
Akm

nkm pk xþ yk � pkh ik xj
��� �

dA ð3:30Þ

Similarly as to Eq. (3.27), apply space average principal on the second term at
the right end of equation, and we can get

lk r � rvkh i ¼ lkr � rvkh iþ 1
V

Z
Akm

nkm � rvk xþ yk

�� dA ð3:31Þ

As to Eq. (3.31), apply space average principal on the first term at the right end
of equation, and we can get

lk r � rvkh i ¼ lkr � rvkh iþ 1
V

Z
Akm

nkm � rvk xþ yk

�� dA þ 1
V
r

�
Z
Akm

nkmvk xþ ykdA
��� �

ð3:32Þ

As to Eq. (3.32) apply intrinsic average and Eq. (3.15) on the first term at the
right end of the equation, then we can get
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lk r � rvkh i ¼lkekr2 vkh ik þ lk r2ek vkh ik þrek � r vkh ik
� �

þ 1
V

Z
Akm

nkm � rvk xþ yk �r vkh ik xj
��� �

dA

þ 1
V
r �

Z
Akm

nkmvk xþ ykdA
��� � ð3:33Þ

Substitute Eqs. (3.30) and (3.33) into Eq. (3.27), then

qke
�1
k

@ vkh i
@t

þr � vkvkh i
� �

¼�r pkh ik þ qkgþ lkr2 vkh ik

þ lke
�1
k r2ek vkh ik þrek � r vkh ik
� �

� lkFk

ð3:34Þ

Fk can be defined as follows:

lkFk ¼� 1
Vk

Z
Ak

nk � �I pk xþ yk

�� � pkh ik xj
� �

þ lk rvk xþ yk

�� �r vkh ik xj
� �h i

dA

� 1
Vk

r �
Z
Akm

lkvknkdA
� �

ð3:35Þ

As to Eq. (3.34), applying space average principal on the second term at the left
of equation, we can get

r � vkvkh i ¼ r � ek vkh ik vkh ik
� �

þr � stk þ vkvkh iNL
 � ð3:36Þ

where

stk ¼ ~vk~vkh i ð3:37Þ

vkvkh iNL¼ vkh ik vkh ik
D E

þ ~vk vkh ik
D E

þ vkh ik~vk
D E

� ek vkh ik vkh ik ð3:38Þ

Equation (3.37) is called local turbulent term. Equation (3.38) is nonlocal vol-
ume average deviation term.

As to Eqs. (3.37) and (3.38), there are no better methods to represent and cal-
culate. But it must be noticed that these two terms can be neglected because they are
very small or they tend to be zero when they are in free flow region and seepage
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flow region without the effect from interface. Thus add the effect to lkFk and
consider the effect of Eqs. (3.37) and (3.38) by adjusting corresponding parameters.

To simplify the problem, we omit these two terms and put Eq. (3.36) into
Eq. (3.34), then we can get Eq. (3.39)

qke
�1
k

@ ek vkh ik
� �

@t
þr � ek vkh ik vkh ik

� �24 35 ¼�r pkh ik þ qkgþ lkr2 vkh ik

þ lke
�1
k r2ek vkh ik þrek � r vkh ik
� �

� lkFk

ð3:39Þ

During above derivation process, we did not introduce any scale limitation or
constraint. Thus Eq. (3.39) is suitable in the whole study region.

2. A description on REV scale two phases flow
Equations (3.25) and (3.39) are respectively continuous equation and momentum
equation after the first upscaling. In REV scale after introducing some special scale
limited condition or constraint, the above two equations can be further simplified.
To apply conventional Darcy law, we assume that flow in porous media is under the
condition that Reynold number is small. That is to say Re ≪ 1. In this case, the
effect of inertia item in porous media can be neglected. It is not necessary for free
flow region. There is a clear interface transition region as Eq. (3.8) shows. There
will be a sharp change in the structure attribute of porous media through interface
region. Due to this region, two flow region can have different flow state in REV
scale. As to porous media fluid flow, we can introduce the following typical con-
straint conditions:

r2

LLd
� 1; l � r � L; L � Lp ð3:40Þ

where Ld is characteristic length relevant to the derivative of volume average
physical parameters. Lp is the characteristic scale relevant to inertia term. r is the
characteristic length of average volume.

After introducing the above scale constraint, as to Eq. (3.39), there are following
order analysis estimated by magnitudes.

1
Vk

Z
Ak

nk � lk rvk xþ yk

�� �r vkh ik xj
� �

dA ¼ O
lkvk
l2k

� �
ð3:41Þ

1
Vk

r �
Z
Akm

lkvknkdA
� �

¼ O
lkvk
Llk

� �
ð3:42Þ
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lkr2 vkh ik¼ O
lkvk
L2

� �
ð3:43Þ

lke
�1
k r2ek vkh ik¼ O

lkvk
L2

� �
ð3:44Þ

lke
�1
k rek � r vkh ik¼ O

lkvk
L2

� �
ð3:45Þ

According to Eq. (3.40), the estimated magnitude order of Eqs. (3.42)–(3.45) is
much smaller than Eq. (3.41). Thus as to the fluid flow in porous media,
Eqs. (3.42)–(3.45) can be neglected in Eq. (3.39). At this moment, Eqs. (3.25) and
(3.39) can be simplified respectively as follows:

@ekx
@t

þr � ekx vkh ikx
� �

¼ 0 ð3:46Þ

0 ¼ �r pkh ikx þ qkg� lkK
�1
kx � ekx vkh ikx

� �
ð3:47Þ

where subscript x represents porous media region as Fig. 3.8 shows. The final term
in Eq. (3.47) is equal to lkFk and Krw ¼ krkKx is the effective permeability of
k phase. Kx is the absolute permeability tensor in porous media. krk is the relative
permeability of k phase fluid.

The process of detailed derivation can be found in Whitaker (1986).
In free flow region Eqs. (3.25) and (3.39) can be written in REV scale as

follows:

@ekg
@t

þr � ekg vkh ikg
� �

¼ 0 ð3:48Þ
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Fig. 3.8 Scheme of coupling flow model
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qk
@ ekg vkh ikg
� �

@t
þ qkr � ekg vkh ikg vkh ikg

� �
¼� ekgr pkh ikg þ ekgqkg

þ ekglkr2 vkh ikg�ekglkFkg

ð3:49Þ

where subscript g represents free flow region (Fig. 3.8). We introduce two scale
constraints r2 � LLd and lk � L.lkFkg in Eq. (3.49) is momentum term of inter-
face, generally written as follows:

lkFkg ¼ K�1
kg � vmh img� vkh ikg

� �
ð3:50Þ

Equations (3.48) and (3.49) is typical macroscopic average two-fluid model,
which is the most popular model at present in area of two-phase flow.

Similarly Eq. (3.20) can be updated by above upscaling method. At first apply
Eq. (3.11) in (3.20) and we can get

�~pknkm ¼� ~pmnkm þ pkh ik� pmh im
� �

þ 2rjnkm

� lk r~vk þr~vTk
 � � nkm � lm r~vm þr~vTm

 � � nkm� � ð3:51Þ

where the following two equations are needed.

lk r vkh ik þr vkh ik
� �T� �

� lk r~vk þr~vTk
 �

lm r vmh im þr vmh imð ÞT
h i

� lm r~vm þr~vTm
 �

8><>: ð3:52Þ

Similar to the analysis on orders estimated by magnitudes in Eqs. (3.41)–(3.45),
consider the scale constraint of Eq. (3.40), we can get

r~vk ¼ O vkh ik=lk
� �

; r vkh ik¼ O vkh ik=L
� �

; lk � L ð3:53Þ

Thus the accuracy of Eq. (3.52) is obvious. At this moment, make an area
average on every normal component of Eq. (3.51) at interface Akm, we can get

� pkh ik� pmh im
� �

¼ 2r jh ikm� ~pk � ~pmh i
� lknkm � r~vk þr~vTk

 � � nkm � lmnkm � r~vm þr~vTm
 � � nkm	 


ð3:54Þ
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where:

jh ikm¼
1
Akm

Z
Akm

j dA ð3:55Þ

Apply Eqs. (3.40) and (3.9) and combine corresponding analysis method of
orders estimated by magnitudes, we can get

� pkh ik� pmh im
� �

¼ 2r kh ikm þO
lk vkh ik

lk

 !
ð3:56Þ

At this moment, if we introduce the following scale constraint:

lk vkh ik
2r kh ikmlk

� 1 ð3:57Þ

We can get macroscopic expression Eq. (3.58) on two-phase flow in REV scale.

pkh ik� pmh im¼ 2r�j ð3:58Þ

where �j is average curvature of k-m interface in average volume V.
The detailed deduction can be found in (Whitaker 1986). The left side in

Eq. (3.57) can be defined as capillary number.
Obviously Eqs. (3.41)–(3.44) is not appropriate in interface transition region.

Deviation from original problem will appear if Eqs. (3.41)–(3.44) are used in
interface region. How to remove the derivation is the current research focus. We
will eliminate the above error by introducing jump boundary conditions in coupling
interface. In practical engineering interface, transition can be simplified into a
simple interface region because it is extremely small relative to the whole region,
when corresponding boundary condition needs to be introduced. In the following
section we will introduce a surface excess function to build coupling interface
condition. This process is the second process of upscaling.

4. Two-phase flow interface condition on the coupling porous fluid flow
As Fig. 3.9 shows, take a volume element V out of the coupling interface region
randomly. This outer surface of this element consists of three sections: upper
surface A+ which is connected with free flow region, the lower surface A− which is
connected to porous media fluid flow and lateral surface, whose unit outer normal
vector is ns. To simplify our study, we assume A+ and A− are planes and they are
trapped by curve C. d is the thickness of interface region and dC is lateral super-
ficial area. l and Δ are respectively characteristic sizes in porous media flow region
and free flow region.

(1) The establishment of velocity jump condition
To deduce the velocity condition in interface, make an integration for continuous
equation Eq. (3.25) in interface element V. detail as follows:
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Z
V

@ek
@t

dVþ
Z
V
r � ek vkh ik
� �

dV ¼ 0 ð3:59Þ

Applying divergence principal we can get Eq. (3.60)Z
A�

nxg � ekx vkh ikxdA�
Z
Aþ

nxg � ekg vkh ikgdA ¼
Z
A

@

@t

Z d

0
ekdx3

� �
dA

þ
I
C

Z d

0
ns � ek vkh ikdx3dC

ð3:60Þ

Obviously the first term on the right of Eq. (3.60) can be written as follows:Z
A

@

@t

Z d

0
ekdx3

� �
dA ¼

Z
A

�Hkd
@

@t
ekx � ekg
 �

dA ð3:61Þ

where �Hk is a dimensionless scalar parameter which can be adjusted and
�Hk ¼ Oð1Þ.

As to the second term on the right of Eq. (3.60), we introduced the average flux

function of interface region in unit volume d vkh iks¼
Rd
0
ek vkh ikdx3 and combined

divergence principal, Eq. (3.62) hence obtained as: can be gained.Z
A
nxg � ekx vkh ikx�ekg vkh ikg

� �
dA ¼

Z
A

�Hkd
@

@t
ekx � ekg
 �þrs � d vkh iks

� �� �
dA

ð3:62Þ

Interface transmission 
region

Porous medium 
region

Free flow region

Macro mutation 
region

Average volume

n

-n
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C

Δ

l
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x1

x2

x3

0

Fig. 3.9 Analysis model for coupling interface condition
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where rs ¼ ðI � nxgnxgÞ � r ¼ @=@xj; j ¼ 1; 2. Consider the randomicity of
interface A, Eq. (3.62) can be simplified into the following normal velocity
condition.

nxg � ekx vkh ikx�ekg vkh ikg
� �

¼ �Hkd
@

@t
ekx � ekg
 �þrs � d vkh iks

� �
ð3:63Þ

In practical engineering, d can be neglected because it is much smaller than
characteristic length L. Thus Eq. (3.63) can be simplified into

nxg � ekg vkh ikg�ekx vkh ikx
� �

¼ Hk
ffiffiffiffiffiffi
Kn

p @

@t
ekg � ekx
 � ð3:64Þ

where Hk is a dimensionless scalar parameter which can be adjusted and Hk = O(1);
d = O(

ffiffiffiffiffiffi
Kn

p
), Kn ¼ nxg � Kx � nxg is a component in normal direction of porous

media permeability tensor.
Equation (3.64) is called normal velocity jump condition. As to tangential

velocity condition, according to the physical significance and characteristic of
model, Eq. (3.65) can be written directly.

kxg � ekg vkh ikg�ekx vkh ikx
� �

¼ uks ð3:65Þ

where kxg is unit tangent vector and uks is relative slip velocity of k phase fluid in
porous fluid flow interface.

(2) The establishment of stress jump condition
Similarly we can make a derivation and analysis on Eq. (3.39). At first, make an
analysis and simplification on the two terms which include rek and r2ek.
Obviously there are in the same orders with the following estimated magnitudes in
these two terms:

lke
�1
k r2ek vkh ik¼ O

lk vkh ik
L2NL

 !
; lke

�1
k rek � r vkh ik¼ O

lk vkh ik
L2NL

 !
ð3:66Þ

where LNL is the characteristic length related with nonlocal volume average
parameters. Obviously these two terms have the same magnitudes estimate, thus we
can rewrite these two terms as:

lke
�1
k r2ek vkh ik þrek � r vkh ik
� �

¼ 1þ nð Þlke�1
k r2ek vkh ik ð3:67Þ
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where n is a dimensionless scalar parameter and n = O(1).
Substitute Eq. (3.67) into Eq. (3.39) and repeat the derivation process of

velocity jump condition. Make an integral and neglect the inertia term. Then we can
get

qk

Z
Aþ

nxg � vkh ikg vkh ikgdA�
Z
A�

nxg � vkh ikx vkh ikxdAþ
Z
A
rs � dUk

s

 �
dA

� �
þ qk

Z
A

Z d

0
e�1
k rek � vkh ik vkh ikdx3dA ¼ �

Z
Aþ

nxg pkh ikgdAþ
Z
A�

nxg pkh ikxdA

�
Z
A
rs d pkh iks
� �

dAþ
Z
A
deksqkgdAþ

Z
A
rs � dsks

 �
dAþ

Z
Aþ

nxg � lkr vkh ikgdA

�
Z
A�

nxg � lkr vkh ikxdAþ
Z
A

Z d

0
1þ nð Þlke�1

k r2ek vkh ikdx3dA�
Z
A

Z d

0
lkFkdx3dA

ð3:68Þ

where surface excess is introduced. And surface excess is defined as follows

dUk
s ¼

Z d

0
vkh ik vkh ikdx3; d pkh iks¼

Zd
0

pkh ikdx3

deks ¼
Z d

0
ekdx3; dsks ¼

Z d

0
lkr vkh ikdx3

ð3:69Þ

ek is included in the final term at the left end of Eq. (3.68) and ek ¼ dSk in
two-phase flow. Sk is the saturation of k phase. e�1

k rek can be written as follows:

e�1
k rek ¼ /�1r/þ S�1

k rSk ð3:70Þ

where r/� nxg r/j j and rSk �Bk � nxg rSkj j is obvious. Bk is a dimensionless
two orders tensor coefficient and Bk = O(1). Then we can get the following
approximate expressionZ d

0
e�1
k rek � vkh ik vkh ikdx3 � e�1

k d rekj j Bk þ Ið Þ � nxg � vkh ik vkh ik
� �

ð3:71Þ

Thus the final term at the left end of Eq. (3.68) can be written as follow:Z d

0
e�1
k rek� vkh ik vkh ikdx3 ¼ BK þ vIð Þ � nxg � vkh ikg vkh ikg� vkh ikx vkh ikx

� �
ð3:72Þ

where v is a dimensionless scalar parameter and v = O(1).
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Considering Reynold number Re ≪ 1 in porous flow region, inertia term and
viscous force term can be neglected. Equation (3.69) will approach to zero when
d ! 0. Thus Eq. (3.68) can be simplified as Eq. (3.73):Z

A
Ek � nxg � qk vkh ikg vkh ikgdA ¼

Z
A
nxg � I pkh ikx� pkh ikg þ lkr vkh ikg

h i
dA

þ
Z
A

Z d

0
1þ nð Þlke�1

k r2ek vkh ikdx3dA�
Z
A

Z d

0
lkFkdx3dA

ð3:73Þ

where Ek ¼ ð1þ vÞIþBk , a dimensionless two-order tensor coefficient.
The last two terms at the right of Eq. (3.73) cannot be neglected and need to be

simplified. According to references (Ochoa-Tapia and Whitaker 1995a, b) the last
term at the right of Eq. (3.73) is called excess bulk stress and can be written as
follows:Z d

0
lkFkdx3 ¼ dlkDk � K�1

kx � ekx vkh ikx
� �h i

� dDk � K�1
kg � vmh img� vkh ikg

� �h i
ð3:74Þ

where Dk is a dimensionless two orders tensor coefficient and Dk = O(1).
Then we will analyze the second term at the right of Eq. (3.73) which involves

e�1
k vkh ik . In single phase flow, this term can be seen as constant and ek ¼ /. In
two-phase flow, this term can be written as:

e�1
k vkh ik¼ /�1 vkh ik

� �
S�1
k krk ð3:75Þ

where e�1
k vkh ik is also constant. Then we can get:Z
A

Z d

0
1þ nð Þlkr2eke

�1
k vkh ikdx3

¼
Z
A

1þ nð Þlkd�1 ekx � ekg
 �

Ak � e�1
kg vkh ikg þ e�1

kx vkh ikx
� �

dA
ð3:76Þ

where Ak is a dimensionless two orders tensor coefficient and Ak = O(1).
Substituting Eqs. (3.76) and (3.74) into Eq. (3.73) and considering the ran-

domicity of A, we can get the following general stress jump condition:

nxg � I pkh ikx� pkh ikg
� �

þ lkr vkh ikg
h i

¼ lk Akg � vkh ikg�Akx � ekx vkh ikx
� �

þEk � nxg � qk vkh ikg vkh ikg
� Gk � vmh img� vkh ikg

� � ð3:77Þ
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Akg ¼ 1þ nð Þd�1e�1
kg ekg � ekx
 �

Ak

Akx ¼ 1þ nð Þd�1e�2
kx ekg � ekx
 �

Ak � dDk �K�1
kx

Gk ¼dDk �K�1
kg

8>><>>: ð3:78Þ

The second term at the right of Eq. (3.77) represents the effect of inertia term in
interface in free flow region and it can be neglected when flow velocity is low. This
inertia term is relevant to both flow state and the porous structure in interface
region. The last term at the right end of Eq. (3.77) means friction force term, which
is relevant to volume percentage and relative velocity closely.

(3) The two-phase flow mathematic model which couples seepage flow and free
flow
The two-phase flow mathematic model which couples seepage flow and free flow
and its corresponding coupling condition has been built theoretically based on
volume average method. This model is suitable for REV scale. To simplify our
study, change the above basic mathematic model into typical form as follows.

① seepage flow region in porous media

@ /qkSkð Þ
@t

þr � qkvkð Þ ¼ 0 ð3:79Þ

vk ¼ � krk
lk

K � rpk � qkgð Þ ð3:80Þ

Sw þ Sn ¼ 1; pc Swð Þ ¼ pn � pw ð3:81Þ

where vk is the seepage velocity of k phase fluid and pc is capillary pressure which
is the function of saturation of wetting phase.

② free flow region

@ qkCkð Þ
@t

þr � qkCkukð Þ ¼ 0 ð3:82Þ

@ qkCkukð Þ
@t

þr � qkCkukukð Þ ¼ �Ckrpk þCkqkgþCklkr2uk � bk uw � unð Þ
ð3:83Þ

Cw þCn ¼ 1; pn � pw ¼ 2r�j ð3:84Þ

where Ck is the volume percentage of k phase in free flow region; uk is the average
velocity of k phase fluid in V; pn − pw is the pressure difference between two-phase
fluids and it is relevant to flow state and interface attribute. If interfacial tension is
neglected, then pn = pw. �j is average curvature of two-phase interface. bk is a
coefficient.
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According to Eq. (3.83), the kinetic equation of two-phase fluid can be linked by
the last term which is called frictional resistance term where bk can be written as
Eq. (3.85)

bw ¼ �bn ¼ 1
8
cdqcai uw � unj j ð3:85Þ

where qc is the density of continuous fluid in V. ai is the area of two-phase interface
in V. cd is an empirical coefficient which is relevant to Reynold number and
two-phase flow state.

In the study of Mat and Ilegbusi (2002) a simpler and more convenient empirical
equation is proposed as follows:

bw ¼ �bn ¼ �qcdCwCn ð3:86Þ

where �q ¼PCkqk is the density of fluid mixture and cd = 20 is an empirical
constant.

Equation (3.86) does not include the coefficient ai. This equation is suitable for
two-phase laminar flow and low velocity flow. ai is very important in more com-
plex flow when Eq. (3.85) is required.

bk is relevant to the flow state of two-phase flow but there are not a general
method to determine this coefficient. Especially under the critical condition at
which the flow state transfers, we still do not have effective calculated method and
theory mainly because there are too many flow states of two phases and influencing
factors, and at the same time, their relationship are complex as shown in Fig. 3.10.
Even though the above two models are the main applied model in the study of
two-phase flow, especially in practical engineering. In addition, Eq. (3.83) will
have a form similar to Darcy’s law if the inertial term is neglected, which will guide
in the following research.

③ the velocity condition in coupling interface

n � Ckuk � vkð Þ ¼ Hk
ffiffiffiffiffiffi
Kn

p @

@t
Ck � /Skð Þ ð3:87Þ

k � Ckuk � vkð Þ ¼ uks ð3:88Þ

The above two equations are normal velocity and tangent velocity conditions
respectively.

As to Eq. (3.87), Hk is similar to a in BJ condition, both of which are the
representatives of structures in porous media. If the thickness of interfacial area
d � ðn � ukÞtc (tc is characteristic scale of time), then normal velocity condition
Eq. (3.87) can be simplified as:

n � Ckuk � vkð Þ ¼ 0 ð3:89Þ
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④ the stress condition in the coupling interface

pxk � n � Ipgk � lkruk
 � � n ¼ lk Akg � uk � Akx � vk

 � � n
þ Ek � nxg � qkukuk � n�Gk � um � ukð Þ � n

ð3:90Þ

n � lkruk � k ¼ lk Akg � uk � Akx � vk
 � � k

þ Ek � nxg � qkukuk � k�Gk � um � ukð Þ � k ð3:91Þ

The above two equations are normal stress and tangent stress conditions
respectively in coupling interface, in which Gk ¼ dDkbk .

In practical study especially in numerical simulation, time step length is gen-
erally much larger than time scale tc.

If assuming thermodynamic equilibrium is reasonable in coupling interface, we
can neglect nonlinear inertia term. Meanwhile velocity in free flow region is over
three magnitudes larger than flow velocity in porous media. Thus velocity at the
right of Eqs. (3.90) and (3.91) can be neglected. Then we can get:

pxk � n � Ipgk � lkruk
 � � n ¼ lkAkg � uk � n�Gk � um � ukð Þ � n ð3:92Þ

n � lkruk � k ¼ lkAkg � uk � k�Gk � um � ukð Þ � k ð3:93Þ

(1) (3) (5)

(2) (4) (6)

(7) (9) (11)

(8) (10) (12)

(13) (15) (17)

(14) (16) (18)

Fig. 3.10 Different flow state of two-phase flow
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If assuming velocity is same for two-phase fluid in free flow region, then um ¼ uk
and we can get:

pxk � n � Ipgk � lkruk
 � � n ¼ lkAkg � uk � n ð3:94Þ

n � lkruk � k ¼ lkAkg � uk � k ð3:95Þ

Note that Eq. (3.95) has the same form with BJS condition, which is Cauchy
boundary condition.

(1) The validation on model analysis and interface condition
The accuracy and university of Eqs. (3.79)–(3.84) have been validated above. Thus
whether this coupling model is accurate depends on the interface condition.
According to some simplified result, the result of new interface condition has the
same form as the typical boundary condition, which has showed the accuracy of
new boundary condition. But the much stronger and direct validation require
physical and numerical experiment.

At present, there are few physical experiments about the coupling flow problem.
Single phase flow experiment made by Beavers and Joseph is a representative one.
Corresponding two-phase flow have not been developed. The main reason is that it
is very difficult to control and measure experiment parameters. With the develop-
ment of hydromechanics, some scholars begin to apply LDA and PIV to measuring
flow field close to the coupling interface but so far it is still restricted in single phase
flow. On one hand, the above measurement device can only measure velocity and it
cannot distinguish the data of two fluids. On the other hand, error is easy to generate
due to the plugging of launcher by particles in porous media. Single phase flow can
be regarded as a limitation of two-phase. Thus theoretically the interface condition
of two-phase flow is suitable for single phase flow. At first the interface condition of
coupling two-phase flow is simplified and transferred into the condition of single
phase flow. Then a comparison with the experiment result of Beavers–Joseph is
made.

At first, assuming there is k phase fluid exiting in flow region thus volume
percentage Ck ¼ Sk ¼ 1. Put it into Eqs. (3.87), (3.88), (3.90) and (3.91), then we
can get:

n � uk � vkð Þ ¼ 0 ð3:96Þ

k � uk � vkð Þ ¼ us ð3:97Þ

pxk � n � Ipgk � lkruk
 � � n ¼ lk Akg � uk � Akx � vk

 � � n ð3:98Þ

n � lkruk � k ¼ lk Akg � uk � Akx � vk
 � � k ð3:99Þ

Considering the experiment device of Beavers–Joseph in Fig. 3.11, when the
flow state reach equilibrium, the pressure distribution is same between the upper
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free flow region and lower porous media region and flux Q in porous media is
constant. As to free flow region, its upper boundary is impermeable wall where
u = 0. u only changes in y direction when normal velocity and stress interface
condition meet continuous condition. Thus we can get the following model:

lk
d2u
dy2

¼ dp
dx

; 0� y� h ð3:100Þ

Q ¼ �Kw

lk

dp
dx

; �H� y� 0 ð3:101Þ

uB � Q ¼ us; at y ¼ 0 ð3:102Þ

n � ruk � k ¼ k � Ag � uk � Ax � vk
 � ð3:103Þ

where uk ¼ uk, vk ¼ Qk. Put it into Eq. (3.103) and we can get the following
boundary condition

du
dy y¼0þ
�� ¼ b1ffiffiffiffiffiffi

Kx
p u� b2ffiffiffiffiffiffi

Kx
p Q ð3:104Þ

where b1 ¼
ffiffiffiffiffiffi
Kx

p ðk � Ag � kÞ and b2 ¼
ffiffiffiffiffiffi
Kx

p ðk � Ax � kÞ, then

du
dy y¼0þ
�� ¼ b1ffiffiffiffiffiffi

Kx
p u� cQð Þ ð3:105Þ

Equation (3.105) is same with Eq. (3.6), where a ¼ b1, c ¼ b2=b1. We can get:

a ¼ ffiffiffiffiffiffi
Kx

p
1þ nð Þd�1 1� /ð Þk � A � k� � ð3:106Þ

c ¼ /�2 � d2k � D �K�1
x � k

1þ nð Þ 1� /ð Þk � A � k ð3:107Þ
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Fig. 3.11 Scheme of Beavers–Joseph experimental instrument (a) and its flow model (b)
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In Eq. (3.106), ð1þ nÞ means a is relevant to not only the structure characteristic
of porous media but also the flow state while Eq. (3.107) shows c is the function of
fluid volume percentage. As to single phase flow, the percentages of fluid volume
are 1 and / respectively in free flow region and porous media region. If the porosity
of porous media / is very small, the velocity of porous flow Q is also very small. In
this case, only when c is very large, will porous flow velocity begin to work. But
when / is very large, Q is also very large when c ¼ Oð1Þ. The porous media
material in the experiment of Beavers–Joseph belongs to this case.

As to the above model, it is very easy to obtain analytical solution. Velocity in
free flow region is

u ¼ 1
2lk

dp
dx

y2 � ar2 � 2ar
2lk 1þ arð Þ

dp
dx

hy� Kx r2 þ 2arcð Þ
2lk 1þ arð Þ

dp
dx

ð3:108Þ

where r ¼ h=
ffiffiffiffiffiffi
Kx

p
.

As to Eq. (3.108), make an integration in y direction and we can get the cor-
responding total flux M:

M ¼
Z h

0
u dy ¼ � h3

12lk

dp
dx

� h3

12lk

dp
dx

3 rþ 2acð Þ
r 1þ arð Þ ð3:109Þ

The first term at the right of Eq. (3.109) is the total flux Mp of the outlet end in
Poiseuille flow problem. The sole difference between Poiseuille flow and coupling
flow is the set of lower boundary condition. The lower and upper boundaries of
Poiseuille flow are nonslip wall (u ¼ 0) while the lower boundary condition of
coupling model is velocity slip condition (u ¼ uB ¼ 0). To simplify our study,
Beavers and Joseph defines the parameter U ¼ ðM �MpÞ=Mp to express the dif-
ference of these two models. We can get:

U ¼ 3 rþ 2acð Þ
r 1þ arð Þ ð3:110Þ

We can find the analytical result almost matches well with the experiment result
of Beavers–Joseph by adjusting a and c, better than the previous BJ condition. As
Fig. 3.12 shows, black solid line is the fit line under BJ condition and a = 0.8. In
new fit line c = 1.5 while α changes from 0.6 to 2.2. Obviously as to one certain
media material, the parameter c should be kept constant, which can reflect the
geometry characteristic in interface region of porous media. As to Foam et al.
material in Fig. 3.12, its porosity can be as high as 0.78. Thus there exists an
apparent flow transition its coupling interface region. Based on Eq. (3.74) we can
judge D is positive, thus we can estimate:
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c ¼ 0:78�2 � d2k � D �K�1
x � k

1þ nð Þ 1� ekxð Þk � A � k � 1:64 ð3:111Þ

where c = 1.5.
All the experiment data can be included between two dotted lines by adjusting a.

As mentioned above, a is relevant to the structure characteristic of porous media
and its flow state. Thus as to one certain experiment material, results are different
when the experiment condition is different. This is why experimental data of
Beavers–Joseph distributes zonally. From this perspective, new interface condition
has more apparent physical significance, whose fitting effect is better. Other
physical properties of Foam et al. as porous media material can be seen in
Table 3.2.

To validate the accuracy of new interface condition, we also analyzed and
contrast other experiment data in Beavers–Joseph experiment. The results are
showed in Figs. 3.13 and 3.14. The physical properties of these five porous media
materials are listed in Table 3.2.

Fig. 3.12 Comparison between analytical solution for fractional excess flow rate and Beavers–
Joseph experimental data(Foametal)

Table 3.2 Material properties in Beavers–Joseph

Material Permeability Kx, m
2 Average diameter d, m Porosity /

Foam et al. 7.1 × 10−9 –* 0.78

Foam et al. A 9.7 × 10−9 4.06 × 10−4 0.78

Foam et al. B 3.94 × 10−8 8.64 × 10−4 0.78

Foam et al. C 8.2 × 10−8 1.14 × 10−3 0.79

Aloxite 1 6.45 × 10−10 3.30 × 10−4 0.58

Aloxite 2 1.6 × 10−9 6.86 × 10−4 0.52

*Note Data about the average grain diameter of Foam et al. is absent in (Beavers and Joseph 1967)
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As to the three kinds of porous media materials in Fig. 3.13, the porosity is
/ � 0:79, seen from Eq. (3.103), c� 1:6. Meanwhile this figure shows the ana-
lytical solution obtained under new interface condition matches well with experi-
mental data when c is small. Figure 3.14 shows that the results based on new
interface condition can still match well with the experimental data under a large c,
while at this moment BJ condition is not satisfied. The black solid line in Fig. 3.14
shows the best fit with BJ condition, which has a larger deviation compared with
the experiment. Thus new coupling interface condition has an apparent advantage.
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this work, α=1.4, γ=0.8
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Fig. 3.13 Comparison between analytical under new interface condition solution and Beavers–
Joseph experimental data (foam mental A–C)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 20 40 60 80 100

BJ experiment: Aloxite 1

BJ experiment: Aloxite 2

this work, α=0.8, γ=130

this work, α=0.15, γ=55

BJ calculation, α=0.1

Fig. 3.14 Comparison between analytical under new interface condition solution and Beavers–
Joseph experimental data (Aloxite 1–2)
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To validate the accuracy of the new interface condition further, we designed and
made a single phase experimental instrument based on LDA, as shown in Figs. 3.15
and 3.16. We applied Flow-Explore 62N09 produced by Dantee Company to
measure, collect and process experimental data.

Porous media in our model is filled with uniform rock particles by compaction
whose porosity is 0.45 and the permeability is 5 × 10−9 m2. In order to use LDA,
organic glass is employed to close the experimental model and the height of free

Fig. 3.15 Schematic of LDA experimental setups

x

y

porous media

free flow region

cushioning partition

Fig. 3.16 Scheme of the
experimental physical model
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flow region is 20 mm. Pressure gradient is −0.33 Pa/m in experiment. Experimental
fluid is fresh water and its viscosity is 0.001 Pa s.

Based on Eq. (3.105), we can get velocity distribution as follows:

us ¼ 1þ affiffiffiffi
K

p y

� �
uB þ 1

2l
ðy2 þ 2ba

ffiffiffiffi
K

p
yÞ dp

dx
ð3:112Þ

where

uB ¼ � K
2l

ðr
2 þ 2bar
1þ ar

Þ dp
dx

ð3:113Þ

Figure 3.17 shows both new interface condition and BJ condition can match up
with LDA experiment data very well. We can get better result by adjusting b,
especially for high flow velocity region in central section. Our experiment also
shows velocity slip exists in the interface coupling of seepage flow and free flow,
which is larger than Darcy velocity ud. b is much larger because the heterogeneity
of surface structure in porous media filled with rock particles. This result is similar
to the aluminum sand model experiment of Beavers–Joseph. The new interfacial
condition is verified further by this experiment.
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Fig. 3.17 Comparison of
velocity profile between
theoretical and experimental
results
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3.3 Numerical Simulation of Free Flow in Vugs

3.3.1 Two Impressible Fluids Model

To adapt to complex geometry model of DFVN, we adopt upwind finite element
method to make a numerical solution to two-phase flow in vugs system. Two-phase
free flow mathematic model is macroscopic two-phase flow model. As to
impressible fluid, its basic equation can be written as follows:

@Ck

@t
þr � Ckukð Þ ¼ 0; k ¼ w; nð Þ ð3:114Þ

@uk
@t

þ ukr � uk ¼ � 1
qk

rpþ gþ 1
qk

rsk � kk uw � unð Þ ð3:115Þ

Cw þCn ¼ 1 ð3:116Þ

where kk ¼ bk=ðCkqkÞ is still defined as frictional coefficient between two-phase

interface; sk ¼ lk ruk þðrukÞT
h i

.

We assume the pressure of the two-phase fluid is equal, which is suitable for
most of practical engineering.

3.3.2 Time Discrete Formulation

As to time term, we adopt ICE method (Harlow and Amsden 1971) (Implicit
Continuous Fluid Eulerian Method) proposed by Harlow and Amsden to make a
discretization and its corresponding time discrete format can be listed as follows:

Cnþ 1
k � Cn

k

Dt
þr � Cn

ku
nþ 1
k

 � ¼ 0; k ¼ w; nð Þ ð3:117Þ

unþ 1
k � unk

Dt
þ unk � runk ¼ � 1

qk
rpnþ 1 þ gþ 1

qk
r � snk � knk unw � unn

 � ð3:118Þ

Cnþ 1
w þCnþ 1

n ¼ 1 ð3:119Þ

where superscript n is time step size number, t ¼ nDt.
Solve Eq. (3.118) and we can get

unþ 1 ¼ �Dt
q�k

rpnþ 1 þwn
k ð3:120Þ
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where

q�k ¼ dk=qn þ ck=qw; wn
k ¼ dkW

n
n þ ckW

n
w ð3:121Þ

Wn
n ¼ unk � D unk � runk �

1
qk

r � snk � g
� �

ð3:122Þ

dn
dw

cn
cw

� �
¼ 1þ knnDt

knwDt
�knnDt

1� knwDt

� ��1

ð3:123Þ

Add up Eq. (3.117) of two-phase fluids and combine with Eq. (3.119), we can
get

r � Cn
wu

nþ 1
w þCn

nu
nþ 1
n

 � ¼ 0 ð3:124Þ

Equation (3.124) is called mass conservation equation.

3.3.3 Operator Splitting Method

We can get flow parameters at t ¼ ðnþ 1ÞDt by solving Eqs. (3.117), (3.120), and
(3.124) simultaneously. Here we will adopt operator splitting method and separate
it into two steps.

First, neglect pressure gradient term and get velocity ~uk approximately by
applying Eq. (3.120),

~unþ 1 ¼ wn
k ð3:125Þ

Equation (3.120) minus Eq. (3.125), we can get

unþ 1
k ¼ ~unþ 1

k � 1
q�k

rw ð3:126Þ

where w is defined as follows:

pnþ 1 ¼ w
Dt

ð3:127Þ

At this moment, substitute Eq. (3.126) into Eq. (3.124) and we can get Poisson
equation concerning about w
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r � Cn
w

q�w
þ Cn

n

q�n

� �
rw

� �
¼ r � Cn

w~uw þCn
n~un

 � ð3:128Þ

The second step is to solve Poisson equation and get w. Then put w into (3.127)
and Eq. (3.126), we can get pnþ 1 and unþ 1

k . And put unþ 1
k into Eq. (3.117) to get

Cmþ 1
k .

3.3.4 Upwind Finite Element Numerical Calculation
Format

Equation (3.127) and (3.128) are discretized numerically with upwind finite
method. The computation domain is discretized by applying Delaunay triple net-
work unit. Delaunay unit is shown in Fig. 3.18, where pressure p is only defined in
the central spot. In other words, pressure in the whole unit is constant. However,
velocity uk, percentage of fluid volume Ck , and potential function w are all defined
in angular point of triangle elements. We can make an approximation by the fol-
lowing interpolation function:

uk �
X3
i¼1

Niuki; Ck �
X3
i¼1

NiCki; w �
X3
i¼1

Niwi ð3:129Þ

where Ni is interpolation function, which can be determined by

N1 ¼ a1 þ b1xþ c1y
2A

N2 ¼ a2 þ b2xþ c2y
2A

N3 ¼ a3 þ b3xþ c3y
2A

8><>: ð3:130Þ
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Fig. 3.18 Schematic of triangle element
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The area of triangle unit A can be defined as follows:

A ¼ 1
2

1 x1 y1
1 x2 y2
1 x3 y3

������
������ ð3:131Þ

where a1 ¼ x2y3 � x3y2, b1 ¼ y2 � y3, c1 ¼ x3 � x2. Their subscript is rotated by 1,
2, 3.

We can get the equivalent integration of Eq. (3.125) by weighted residual
method.Z

X
u� � ~ukdX ¼

Z
X
u� � dkun þ ckuwð ÞdX

� Dt
Z
X
u� � dkun � run þ ckuw � ruwð ÞdX

þ Dt
qn

Z
X
snnr � u�dkð ÞdX�

Z
C
u�dksnn � ndC

� �
þ Dt

qw

Z
X
snwr � u�ckð ÞdX�

Z
C
u�cksnw � ndC

� �
� Dtg �

Z
X
u� dk þ ckð ÞdX

ð3:132Þ

where C is the outer boundary of solution region X and n is its unit outer normal
vector.

To avoid the vibration of solutions, we adopt upwind weight Petrov–Galerkin
finite element method Brooks and Hughes (1982) and Hughes et al. (1986) to
process the convective term. In calculation, we will apply modified function

Wjk ¼ e�ak1 x�xjð Þ�ak2 y�yjð ÞNj ð3:133Þ

where

ak1 ¼ k
Un

kx

Un
k

�� �� ; ak2 ¼ k
Un

ky

Un
k

�� �� ð3:134Þ

where k is nonnegative constant and if k = 0, Wjk ¼ Nj and the above method will
reduce to standard Galerkin method. Un

kx and Un
ky are the velocity components of Un

k

respectively. Velocity vector Un
k can be defined as follows:

Un
k ¼ dkunn þ ckunw ð3:135Þ

Substitute Eq. (3.133) into Eq. (3.132) and we can get finite element numerical
computational format in tangible unit. Arrange it as matrix form as follows:
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Me
k~uke ¼ Me

k dk unne þ ckunwe
 � �� Fn

k

 �
eDt ð3:136Þ

where

Me
k ¼

Z
Xe

WT
k � NdXe ð3:137Þ

Fn
k

 �
e ¼De

k dkunneu
n
ne þ ckunweu

n
we

 �þKe dkln=qnð Þunne þ cklw=qwð Þunwe
� �

� Be dk snne � n
 �

=qn þ ck snwe � n
 �

=qw
� �� Se dk þ ckð Þg ð3:138Þ

De
k ¼

Z
Xe

WT
k � NT � rN
 �

dXe ð3:139Þ

Ke ¼
Z
Xe

rNð ÞT � rNð ÞdXe þ
Z
Xe

rTN
 � � rNð ÞdXe ð3:140Þ

Be ¼
Z
Xe

NT � NdXe; Se ¼
Z
Xe

NTdXe ð3:141Þ

where e means an element.
As to Eq. (3.136), make a circulation for all the elements and we can get the

following matrix equation to solve variation ~uk .

Mk~uk ¼ Mk dkunn þ ckunw
 �� Fn

kDt ð3:142Þ

where

Mk ¼
X
e

Me
k; Fn

k ¼
X
e

Fn
k

 �e ð3:143Þ

Similarly as to Eqs. (3.117) and (3.126)–(3.128), standard Galerkin finite ele-
ment method is adopted to make a numerical calculation. Corresponding finite
element calculation format is as follows:

pnþ 1
e ¼ Sw= Xej jDtð Þ ð3:144Þ

MCnþ 1
k ¼ MCn

k � QkDt ð3:145Þ

Munþ 1
k ¼ M~unk � Ek ð3:146Þ

Tw ¼ �RþP ð3:147Þ
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where

M ¼
X
e

Me; Qk ¼
X
e

ReCn
keu

nþ 1
ke ; Ek ¼

X
e

Rewn
ke=q

�
k

 � ð3:148Þ

R ¼
X
e

Re Cn
ne~une þCn

we~uwe
 � ð3:149Þ

T ¼
X
e

Te Cn
ne

q�n
þ Cn

we

q�w

� �
; P ¼

X
e

Pe Cn
ne

q�n
þ Cn

we

q�w

� �
ð3:150Þ

The unit characteristic matrix of the above equations are:

Me ¼
Z
Xe
NT � NdXe; Re ¼

Z
Xe
NT � rNdXe ð3:151Þ

Te ¼
Z
Xe

rTN
 � � rNð Þ � NdXe; Pe ¼

Z
Xe

NT � N � rw � nð ÞdXe ð3:152Þ

pnþ 1 can be obtained by solving Eq. (3.144), whilst Cnþ 1
k , unþ 1

k and w can be
obtained by solving and combining Eqs. (3.145)–(3.147). We employ concentrated
mass matrix technology for mass matrix Mk and M in the calculation. The whole
flowchart can be seen in Fig. 3.19.

3.3.5 Examples and Analysis of Numerical Validation

(1) One-dimensional Burger equation
As Fig. 3.20 shows, 1-D water–oil displacement is considered here. Gravity is
neglected and assume that fluid flow is laminar flow and the velocities of two-phase
fluids are equal. Thus the friction between two-phase will be zero. Additionally,
interfacial tension is neglected and the pressures of two-phase fluids are equal. Thus
the basic mathematical model Eqs. (3.114)–(3.116) can be simplified as typical
one-dimensional Burger equation.

@Ck

@t
þ uk

@Ck

@x
¼ 0 ð3:153Þ

This equation is a classical convective equation and analytical solution exists.
Equation (3.153) is solved with upwind finite element numerical method and the
numerical method and code are validated by comparing with analytical solutions.
Assume uw ¼ un ¼ 5 m per day in the calculation. The total length of research
region is L ¼ Lw þ Ln ¼ 100 m. At initial time Lw = 50 m. Time step size is
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Dt ¼ 0.1 day. Uniform network step size is Dx ¼ 0.5 m. Parameter of shape
function k = 0.5.

Figure 3.21 represents the distribution of the volume percentage of water phase
and the comparison of analytical solutions at different time. Numerical results show
that upwind finite element numerical format has ideal numerical stability and high
precision. We can find that Eq. (3.153) is similar to Buckley–Leverett equation in
forms.

(2) Two-dimensional cavity flow simulation
As for two-phase flow problem shown in Fig. 3.22, we will make a flow simulation
by adopting different boundary conditions and initial conditions. The length of
research region is L ¼ Lx þ Ln ¼ 100 m. at initial time Lx ¼ 20 m. time step size
is Dt ¼ 0.1 day. The initial pressure in whole research region is 1 atm, velocity of
injection water on the left end is ux ¼ 10 m per day. Right end is set as constant
pressure boundary (defined as 1 atm). The viscosity of water and oil are

Start

End

n = 0 , t = 0

Set up the initial 
condition

t = (n+1) t

Calculate      based on (3.37) Calculate      bases on (3.42)

Calculate         Based on (3.39)Calculate  based on (3.41)

Calculate          Base on (3.40)

n = n + 1
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1np +

1n
k

+C

t T≤

Fig. 3.19 Upwind finite element calculation flow chart
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wL nL

Fig. 3.20 Schematic of
uniform velocity water
flooding model
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lx ¼ 1 mPa�s and ln ¼ 5 mPa�s respectively. Calculation network is shown in
Fig. 3.22a. Research region can be divided into 2384 triangle units. Parameter of
shape function is k = 0.5. We will neglect the velocity difference and friction
between two phases.

Figure 3.22 shows the distribution of volume percentage of water phase. And
results show that this method has ideal stability and robustness. Similar to porous
media, apparent fingering phenomenon exists in two-phase free flow.

Fig. 3.21 Comparison between numerical solution and analytical solution

(a) Delaunay triangle gridding division 

(b) 2 days later

(c) 4 days later

(d) 6 days later

Fig. 3.22 Grid division and the volume distribution of water phase at different time
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3.4 Numerical Simulation of Coupling Seepage Flow–Free
Flow

3.4.1 The Establishment of Discrete Fractured-Vuggy
Network Geometry Model

As classical discrete media model, the initial problem of discrete vugs network is to
establish corresponding discrete media geometry model. At present, relevant
research work mainly focuses on the establishment of discrete fracture network
model. Popov and Qin et al. made an analysis (Popov et al. 2009; Qin et al. 2010) on
pure cavity without considering fractures. In this section, we will add vug systems
based on discrete fracture network model. Discrete fractured-vuggy network
geometry model will be built by Monte Carlo method, which can lay a foundation for
flow simulation research based on discrete fractured-vuggy network model.

In discrete media geometry model, we will assume that the seepage action in
fractured-vuggy can be predicted by the geometry shape of fractured-vuggy, single
fracture, and hydrodynamic characteristic in vugs. Spatial statistic properties (in-
cluding the permeability of a small fracture) can be measured and used for gen-
erating fractured-vuggy network which has same spatial properties and it also can
be used to solve flow laws in network. The other basic assumption is that a single
fracture and a single vug both have regular geometry shapes. As to two-dimensional
problems, a fracture is a linear segment which has different trace lengths, aperture,
and inclination. A vug can be simplified as ellipse or rectangle. As to triangle
problem, a fracture can be simplified as Baecher disk model (Baecher 1983) while
vugs can be considered as spheroid or hexahedron.

To build discrete media geometry model, we must make a practical measurement
on the geometry parameters of rock fractures and vugs. Then we will make a
statistic analysis to gain corresponding statistic parameters and the probability
density function it obeys. Based on these, equivalent discrete media geometry
model in statistic degree is constructed.

1. The geometry parameter description on fractures and its statistic laws
Geometry parameters of fractures mainly include a shape, an aperture, occurrence,
geometry size, and frequency (or density).

(1) Fracture shape
Fracture shape can be simplified as linear segment in a two-dimensional problem. In a
three-dimensional problem, there exists two models at present. One is Baecher disk
model and the other one is Veneziano polygon model, whose geometry shape is
excessively complex in three-dimensional space. Thusmost of scholars applyBaecher
disk model which is relatively simple. Here we also adopt Baecher disk model.

(2) Fracture aperture
Fracture aperture is the distance between fracture surface. This parameter is the
main contributor for porosity and permeability and it complies with logarithmic
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normal distribution. Fracture aperture has an effect on flow laws of fluids in frac-
tures. As to small fractures, seepage theory can be applied because it meets cube
formula. And as to big fracture systems, when hydraulic gradient is relatively big,
flow condition transfers from laminar flow to turbulent flow where cube formula
does not work and it need to be modified. Thus during the process of model
building, we make a division in order to approach to reality.

(3) Fracture occurrence
Generally, it is defined by two variables, strike and inclination. As Fig. 3.23 shows,
azimuth angle a and inclination angle b can be applied to describe fracture
occurrence. As it may be bunching in one or several statistics dominant. Thus we
need to make a distribution for fracture occurrence and then make a statistic
analysis on every group. The frequently used probability distribution are uniform
distribution, normal distribution, Arnold semi-sphere normal distribution, Bingham
distribution, and Fisher distribution. Literature (Zhang 2005) makes a comparison
on local geological data and it thinks Fisher distribution and Bingham have a good
matching.

Fisher distribution is also called sphere normal distribution. If uniform direction
of occurrence is consistent with polar axis of reference spherical surface, then its
probability density function is,

f un; hnð Þ ¼ 1
2p

g sin hneg cos hn

eg � e�g
ð3:154Þ
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Fig. 3.23 Relationship between spatial location and orientation of fracture surface
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where un; hnð Þ is a variable in spherical axis system and g is intensive extent
parameter of climax gather in fracture system. When g ¼ 0, it is normal distribu-
tion. When g is very big, climaxes are concentrated in a small range in dominant
occurrence direction. As to two-dimensional problems, fracture occurrence can be
defined by azimuth h as Fig. 3.24 shows.

(4) The geometric dimensioning of fracture surface
It is very difficult to gain the specific information under present technique condition.
We can only measure the trace length of a fracture. Generally, we assume that trace
length complies with logarithmic normal distribution or exponent distribution.
When the fracture surface is circular, the trace length can be fitted by an exponent
curve. When the fracture surface is generated, the distribution of fractural disk
diameters is needed and it is generally regarded the same as trace length. Although
the diameter distribution will not lead to the same distribution of trace length, the
effect of measurement errors is needed to be considered.

(5) Fracture frequency
Fracture frequency reflects the density of fracture and it can be defined as follows:
the number of central spots of the same group fracture surface in unit volume is
called volume frequency f3 and the number of central spots of the same group
fractural trace length unit area is called area frequency f2. The number of the same
group trace length which are intersected with unit line segment is called line fre-
quency f1.

(6) Porosity, permeability, and connectivity in fractures
A fracture pore is a variety of secondary pore which is formed by rock fracturing.
There is no big void space in Fractures. But when they are connected with primary
pore, porosity and permeability will increase dramatically. The void volume of
fractures can be calculated by other attributes such as the size of fracture and
effective fracture aperture. The permeability and connectivity of fractures reflect the
ability to flow in fractures. Generally, the permeability of fracture is very high,
which is mainly because the sole pores are connected by fractures, which have
become seepage channels. As to fractured medium, its permeability is contributed
by matrix and fractures. Fracture connectivity is the number of mutual intersected
fractures in unit area or volume, which will influence the flow condition in fractures

L

r

a

x(east)

y(north)Fig. 3.24 Schematic of
two-dimensional fracture line
in x–y axis
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of the whole fluids. But in engineering practice, it is very difficult to make a
quantitative description on the fracture connectivity.

In some reservoir stratum whose fractural porosity is very high, the fracture is
both the primary seepage channel and the primary reservoir space. Especially in
carbonatite stratum, these secondary pores are very obvious. In addition, some
non-reservoir rock such as granite, when its fracture develop, it can work as the
reservoir for oil and gas. This kind of reservoir is very common at the Archean
Erathem in the south sea and the east sea and the pacific in Bohai Bay Basin.

2. Geometry description parameter on vugs and its statistic laws
Similarly, the geometry description parameters of a vug include shape, geometrical
size, spatial azimuth, and frequency (or density).

(1) The shape of a vug
The shapes of natural vugs are very complicated. According to the results from
local geologic survey, we can see vugs as spheroid in order to describe conve-
niently. Literature (Popov et al. 2009a, b; Qin et al. 2010) will simplify it into
ellipse in two-dimensional problems.

(2) The geometry size of vugs
Under present technical condition, it is very difficult to gain the specific information
about the geometry size of vugs. Through the above simplification, the size of vugs
can be described by radius a, b, c in three principal axes of spheroid as Fig. 3.25a
shows three principal radii which comply with logarithmic normal distribution,
exponent normal distribution, or uniform distribution. As to two-dimensional
problems, there are only two principal radii a and b as Fig. 3.25b shows.

(3) The spatial location of vugs
As to spheroid, since principal c is vertical to the plane where principal a and b
exist, thus its spatial location can be determined uniquely. As Fig. 3.25a shows it
can be described with azimuth angle h and inclination angle u. Its frequently used
probability distributions are uniform distribution, normal distribution, Arnold
hemisphere normal distribution, Bingham distribution, and Fisher distribution.
Azimuth angle h can be used to describe plane problem as Fig. 3.25b shows.

x(east)

z

O
y(north)a

b

c

O
'

(x
c,

y c,
z c)

x(east)

y(north)

ab

(a) (b)

Fig. 3.25 The size of vugs and its spatial orientation
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(4) The frequency of vugs
Similar to the frequency of fractures, the frequency of vugs reflects the density of
vugs. The number of central spots of the same group vugs in unit volume is called
volume frequency m3. The number of central spots of the same group vugs ellipsoid
in unit area is called area frequency m2.

3. The method of Monte Carlo random model building
After getting the prior probability model about geometry parameters of fractures
and vugs, we will make a random selection from these probability distributions in
order to get the specific parameters of fractures or vugs system. Then we will make
a combination between these parameters and it will become the computer fulfill-
ment of geometry models on fractures and vugs. Based on random sampling in
known probability distribution, Monte Carlo method will be adopted to edit a
program. In this method, random number from 0 to 1 will be generated first. Based
on this condition all kinds of random numbers which are matched to all distribu-
tions will be generated.

(1) The generation of random number from 0 to 1
At present congruence method is the most universal one, which is put forward by D.
H.L in 1951 (Lehmer 1951). If integers N and M divide one positive integer and we
can get the same remainder, we will call it congruence concerning about m. It can
be written as N = M (mod m). The general formula which can be used to generate
the random number can be written as follows:

xn ¼ axn�1 þ cð Þ mod mð Þ; Rn ¼ xn
m

ð3:155Þ

where xn is a random variable which is corresponding to random number. a is
multiplier, commonly a constant number. c is an increment, commonly a constant
number. m is a modulus. Rnf g is a random array between 0 and 1. When n = 1, x0 is
a seed number, commonly system time of the computer.

The array we gain from Eq. (3.155) will repeat itself periodically. Thus the
random we get by mathematic method is not the true one and we call it false
random number. In order to gain a long enough circle, every parameter should
attempt to utilize the word length of the computer. As to a 32-bit computer, the
frequently used constant number will be listed as follows:

m ¼ 231 � 1
a ¼ 216 þ 1

c ¼ 0:5þ ffiffiffi
3

p �
=m

8<: ð3:156Þ

(2) The method of random sampling
As to random distribution function F(x), direct sampling method is shown as
follows:
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XF ¼ inf
F tð Þ	R

t ð3:157Þ

where XF is the individual in simple subsample X1;X2; . . .Xkf g coming from dis-
tribution function. R is the random number which is corresponding to random array
R1;R2; . . .Rkf g
As to continuous distribution function F(x), if its inverse function exists, we can

make a direct sampling as follows:

Xi ¼ F�1 Rið Þ ð3:158Þ

The fundamental step is:
① generate a uniform distribution random Ri;
② gain the random number which submitted to the given distribution by

Xi ¼ F�1 Rið Þ.
Based on the above work, we make a program FracVugGen corresponding to

two and three discrete fractured-vuggy network geometry model. You can see its
flowchart in Fig. 3.26. We use MATLAB to edit the program and analyze the
results by measurement data. We also can input the distribution laws of
fractured-vuggy geometry parameter to fulfill model building. You can see its basic
step as follows:

① at first, define a global coordinate system and determine a generated field in
this system. This generated field should be larger than analysis field and research
field in order to avoid the influence from boundary effect. In two dimension con-
dition, we assume it rectangle and in three dimension condition we assume it
hexahedron. Only if the central spot stays in the inner boundary, the boundary effect
will work. Else those vugs whose parts of space stretche into the boundary will be
neglected.

② then divide fractures and vugs into groups. Determine the geometry char-
acteristic parameter of every fracture and vug. Calculate the number of every
fracture and vug. We assume that the central spots location of fractures and vugs is
submitted to uniform distribution, thus the number of fractures and vugs are equal
to corresponding space region multiplied by frequency.

③ based on the above work, at first generate the location coordinate of the vug
in generated domain and generate the specific geometry characteristic parameters
by applying Monte Carlo method based on prior model, in order to determine the
size and location of vugs.

④ as to the fractures in every group, generate the specific geometry parameter
by applying Monte Carlo method based on the prior models: the location of central
spots, occurrence (or azimuth), radius (or trace length), and aperture. After all the
fracture parameters are generated, we will gain a discrete fracture network model,
meanwhile it is allowed that determine the geometry parameters of the fracture
according to observed value.

⑤ generate the research field boundary according to the actual sharp and size of
the analysis field. Get the intersection lines or intersection points between fractures
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and between fractures and boundaries(vugs included). As vugs are free flow space,
it is regarded as internal boundary). Cut those parts outside the analysis domain and
inside vugs, a discrete media model including vugs and fractures will be gained.

4. Cases studies
(1) Two-dimensional case 1
Assuming the research domain is square and the length of the side is a dimen-
sionless unit length. This assumption is also applicable in the following cases.
Figure 3.27a is an outcrop photograph data in one certain geological spot of Ta He
oil field in Xin Jiang. To simplify the study, we transfer the length of sides into
dimensionless unit length. Through statistics, the location of vugs is submitted to
uniform random distribution between 0 and p

2. The principal axes a and b are
submitted to normal distribution (0.2, 2). The average value is 0.2 and the standard
deviation is 0. The frequency is m2 ¼ 15. Figure 3.27b shows a sample of the
generated discrete fractured-vuggy network model. The modeling result shows the
robustness.

Start

Classification and statistic analysis for 
fractures and cavities, determine the domains

Determine the number of groups 
of cavities

Determine the number of cavities 
in the current group

Choose the distribution type of the geometric 
parameters of cavities in different groups

Generate the coordinate position of central point, 
orientation and principal axis radius of cavities

Solve and record the information of cavities

The cavities in the current group 
has been generated completely?

All the groups have been 
finished?

YesYes

YesYes

NoNo

NoNoNo

Determine the number of groups 
of fractures

Determine the number of 
fractures in the current group

Choose the distribution type of the geometric 
parameters of fractures in different groups

Generate the coordinate position of central point, 
orientation or occurrence, trace length(or radius), 

and apertureof fractures

Solve and record the information of fractures

The fractures in the current group 
has been generated completely?

YesYes

All the groups have been 
finished?

YesYes

Cavities are regarded as the inner boundaries of 
computational domain; cut off the fractures 

outside this domain; form into the final model and 
record relevant information

System visualization

End

NoNo

NoNoNo

Fig. 3.26 FracVugGen program flow chart
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(2) Two-dimensional case 2
Figure 3.28a is another spot outcrop data. This rock contains vugs and vertical
fracture system. Make a division statistics and analyze on it. The location of the vug
is 0. The frequency is m2 ¼ 5. Other data is the same as that of in case 1. The
fractures are optimized into four groups in two catalogs (large and small). The
statistics has been input as Table 3.3 (the location is satisfied with normal distri-
bution and the trace length is satisfied with exponent distribution. The aperture is

Fig. 3.27 Field outcrop and its random simulation in 2-D case 1

Fig. 3.28 Field outcrop and its random simulation in 2-D case 2

Table 3.3 Input data of fractures 2-D in case 2

Group Frequency Azimuth Trace Aperture

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

1 10 0 0 0.8 0 0.0001 0

2 10 p/2 0 0.8 0 0.0001 0

3 10 0 0 0.8 0 0.001 0

4 10 p/2 0 0.8 0 0.001 0
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satisfied with logarithmic normal distribution), the results simulated by
FracVugGen program can be seen in Fig. 3.28b. The thick line stands for a fracture
system with large aperture. The thin line stands for the small fracture system. The
ellipse domains represent vugs. The modeling result shows the robustness.

(3) Two-dimensional case 3
In this case, there are two groups of different fractures with different occurrence and
a group of vugs. And the data of fractures input has been listed in Table 3.4 (the
location is satisfied with normal distribution and the trace length is satisfied with
exponent distribution, the aperture is satisfied with logarithmic normal distribution),
the location of vugs is submitted to uniform random distribution. The orientation is
distributed randomly between 0 and p

2. The principal a and b are submitted to
normal distribution (0.2, 2), among which the mean value is 0.2 and the standard
deviation is 0. The frequency is m2 = 6. The discrete media model generated can be
seen in Fig. 3.29a. The thick line stands for a fracture system with large aperture.
The thin line stands for the small fracture system. The ellipse domain means vugs.
The simulation results show that random model is appropriate to the generation of
two-dimensional complicated fracture network model.

(4) A three-dimensional case
In this case, the location of a vug is submitted to uniform random distribution. The
orientation is constant. The principal a, b, c are distributed randomly between 0.1
and 0.3. The frequency is m2 = 5. The parameters input of two groups of

Fig. 3.29 The result from random simulation

Table 3.4 Input data of fractures 2-D in case 3

Group Frequency Azimuth Trace Aperture

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

1 40 p/3 0 0.8 0 0.0001 0

2 10 p/2 0 0.8 0 0.001 0
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orthogonality fractures have been listed in Table 3.5 (the fracture inclination is
satisfied with normal distribution, the radius is satisfied with uniform distribution,
the aperture is satisfied with logarithmic normal distribution), the model results can
be seen in Fig. 3.29b. The results show that the random model is appropriate for the
generation of three-dimensional complicated fracture network model.

3.4.2 Two Phases Flow Mathematic Modeling
of the Coupling of Seepage Flow–Free Flow

We will fulfill this simulation by combining new boundary condition. In the cou-
pling flow simulation, we will adopt alternate solution method in order to decrease
the complexity and calculation. In this method, we first view the physical quantities
in free flow solution domain as the initial value in the coupling boundary, which is
generally the calculated value of the last time step. Once we got the numerical
solution of this seepage domain, the numerical value in the coupling interface can
be substituted into the solution in free flow region as the boundary condition. If the
solution method is steady and accurate, we can continue the alternate solution
method.

We adopt boundary condition equation (3.87)–(3.91) in the coupling interface.
Considering the low speed flow in reservoir, we can neglect the inertia item in free
flow region of vugs and friction item between interfaces. Thus the normal line in the
coupling interface is satisfied with the continuity condition of velocity and
momentum. In the tangent line, it will degenerate into BJS condition, where the slip
coefficient a is 1.0. In the following, two numerical cases will be given to validate
the accuracy.

1. A case on the single vug media model
Consider a model which has one injection well and one production well shown in
Fig. 3.30. There is a large rectangle vug in the center of reservoir model. As to
matrix, this case will consider homogeneity and heterogeneity respectively. As to
homogeneous matrix system, we assume that its porosity is / = 0.2 and its per-
meability is Km = 1 μm2. As to heterogeneous matrix rock, its permeability can be
seen in Fig. 3.30b. At the initial time, the model is saturated by oil. The saturations
of both the residual oil and the irreducible water are zero. The injection well will
inject water with a constant speed qw = 0.01 PV/d. The production well will

Table 3.5 Input data of fractures 3-D in case 4

Group Frequency Dip angle Radius Aperture

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

1 40 0 0 0.25 0.0075 0.001 0

2 10 p/2 0 0.25 0.0075 0.001 0
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recover the oil at the same speed. For simplification, the effect of gravity and
capillary force are neglected, the relative permeability for water phase is krw ¼ S2w.
The relative permeability for oil phase is krw ¼ 1� Swð Þ2. The viscosity of water is
lw = 1 mPa�s, the viscosity of oil is ln = 5 mPa�s, the densities of water and oil are
qw ¼ 1000 kg/m3 and qo ¼ = 800 kg/m3 respectively. Delaunay triangle mesh is
shown in Fig. 3.30b, where the mesh density of vug domain is 2.5 times for the
mesh density of matrix rock domain and the time step length is 0.1d.

Figures 3.31 and 3.32 compares the distribution of water saturation and water
phase pressure at different time. The data results show that the pressure in vugs is
nearly constant because of its infinite conductivity, no matter in homogeneous
matrix system, or heterogeneous matrix system. Thus this system can be seen as
equipotential body. The forward speed in leading edge of oil and water is higher
than matrix rock system. The simulation in the free flow region has neglected the
effect of inertia item, thus the computation format in the whole region is standard
Galerkin finite element numerical discrete format.

2. A case on the discrete fractured-vuggy network model
For the complex fractured-vuggy network reservoir model the thickness is 10 m, as
shown in Fig. 3.33. The porosity of uniform and homogeneous matrix is / = 0.2,
the permeability is Km = 0.1 μm2, the aperture is a = 1 mm and permeability is
Kf ¼ a2

12 ¼ 8:33
 104 lm2. At the initial time, the model is saturated by oil. The
saturations of both the residual oil and the irreducible water are zero. The injection
well will inject water with a constant speed qw = 0.01 PV/d and the production well
will recover the oil at the same speed.

For simplicity, the effect of gravity and capillary force are neglected, the relative
permeability for water phase is krw ¼ S2w. The relative permeability for oil phase is
krw ¼ 1� Swð Þ2. The viscosity of water is lw = 1 mPa�s, the viscosity of oil is
ln = 5 mPa�s, the densities of water and oil are qw ¼ 1000 kg/m3 and qw ¼

Water injection 
well

Oil production well

10040 60

60

100

Matrix
rock

x/m

y/
m

40

Vug

-11.5

-11

-10.5

-10

-9.5

(a) (b)

Fig. 3.30 Single vug model and its logarithmic distribution of matrix permeability
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Fig. 3.32 Comparison of the distribution of water phase pressure

Fig. 3.31 Comparison of the distribution of water saturation
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800 kg/m3 respectively. Delaunay triangle mesh is shown in Fig. 3.30b, where the
mesh density of fractured-vuggy domain is 2.5 times for the mesh density of matrix
domain. The number of triangle element of matrix rock and vug domain is 2780.
The number of fracture line element is 62.

Figure 3.34 compares the water saturation and the water phase pressure distri-
bution at different time in discrete fracture-vug network model. According to the
results, fractures and vugs can be seen as equipotential body. They have out-
standing conductivity function. When the fractured-vuggy reservoir is developed by
injecting water, we should avoid producing oil along the fractured-vuggy network,
or it will lead to water channeling and logging, which will decrease the recovery
efficiency. We should drive oil to the two sides of the fractures, which will stretch
the water line and enlarge the displacement area and enhance the displacement
efficiency. Thus the injection well should be arranged along the direction of frac-
tures and the producing well should be arranged vertical to fractured-vuggy
network.

3. A case study on one certain fractured-vuggy unit in Ta He oil field
In the following part, we have taken a certain single well model of one
fractured-vuggy unit in Ta He oil field as an example and applied a discrete
fractured-vuggy network model to simulate the characteristics of productivity and
moisture content.

(1) A description on the single well model
This single well is drilled in a structure north high spot in Aixieke number 2,
located in northeast 21°. The horizontal distance is 2.3 km. On January 1, 1999, this
well began to be drilled and this project was completed on May 17, 1999. The depth
of this well designed is 5587.7 m and its completed depth is 5612.7 m. The
completed position is Lower Ordovician series. The initial productivity is 200 t/d
and the original formation pressure is 55.04 Mpa. The calculated pressure
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Fig. 3.33 Discrete fractured-vuggy model and its grid division

132 3 Discrete Fracture-Vug Network Model



coefficient is 1.1. Thus the pressure in this formation is constant. The skin factor is
−3.7, which means that the measurement of removing blocking is obvious after acid
fracturing. The formation permeability is 3.3 μm2, which means that the flow
resistance is very small when oil flows out. Thus we can know that the fracture
grow extraordinarily after formation acid fracturing. Number 16(1) formation
(depth from 5414.0–5420.0 m) is the relative developed belt and number 16(2)
formation (depth from 5420–5441.0 m) is fractured-vuggy developed belt. Up to
Feb 13, 2008, the accumulated liquid productivity capacity is 359,613 t, the
accumulated oil productivity capacity is 148,113 t and the accumulated water
productivity capacity is 211,500 t.

During the process of fractured-vuggy formation, geologic structure such as fault
will have an effect on the distribution of fractured-vuggy. Research finds that there
is a very good corresponding relationship between small scale fractures and faults.
The shorter the distance between fracture and fault is, the larger the density of the
small scale fracture will be. Conversely, it will be smaller. In the fourth district Ta
He oil field, there are three principal azimuthal faults developed: northeast, south–
north, and northwest. The density of small scale fracture in northeast is the largest
and the fracture density within 100 m far from northeast fault is the highest.
Beyond 100 m, the density of small scale fracture reaches a stable level of 0.4 piece

The distribution of water phase pressure

 The distribution of water saturation

(a)

(b)

Fig. 3.34 The distribution of water phase pressure and saturation in fractured-vuggy medium
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per meter. The density of south–north small scale fracture takes a second place. The
density within 115 m far from south–north fracture is relatively higher. Beyond
115 m, the density of small scale fracture reaches a stable level of 0.2 piece per
meter. Northwest small scale fractures developed least. There are small scale
fractures developing within 165 m far from northwest fault, while not beyond
165 m.

Fractures in the single unit develop relatively well and there exist macroscopic
large fractures and vugs which can be seen as fractured-vuggy geological forma-
tion. The permeability of formation is good and it presents an apparent uniform
reservoir characteristic in well test curve. As a result of limited capacity of the
fractured-vuggy media, the initial productivity capacity is high but the stable pro-
duction period is short. The water content will increase and production will
decrease seriously after water breakthrough. It will experience a long-term stage
when the water content is high and oil production is low, as Fig. 3.35 shows.

(2) The numerical simulation on discrete fractured-vuggy network model
Number 16 formation is a typical fractural one. At this moment, we just make a
DFN numerical simulation on formation 16(1). The depth of this formation is
5414.0–5420.0 m and its average effective thickness is 6.0 m. The average porosity
of the formation matrix rock is around 4 %. The permeability is 3.5 × 10−3 µm2.
The average water saturation is 20 %. The porosity of the fracture is around 0.5 %.
The macroscopic fracture probability is 8–30 %. Its aperture is around 1000 µm.

Fig. 3.35 Curves of oil production and water cut for single well per day
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The inclination angle is larger than 80°, which can be seen as vertical fracture. Oil
saturation is 82 %. The other basic parameters on the reservoir are shown in
Table 3.6. The relative permeability curve is shown in Fig. 3.36. Due to its frac-
tures and considering a simple calculation, the effect of capillary is neglected. The
density of water is 1000 kg/m3. The viscosity of water is 1.0 mPa�s.

According to the geological statistic data, we build a corresponding discrete
fractured-vuggy network model as Fig. 3.37a shows. The mark of water injection
well is TK407. The corresponding triangle gridding is shown in Fig. 3.37b.

We have applied the discrete fractured-vuggy network numerical simulation
method to make a historic fitting on the production performance. In this unit there is
a single producing well TK404 and it belongs to flowing production at the initial
stage. As time goes by, water from injection well will bypass the fault and in-pour
into this unit. The injected water will intrude into this place from a small area
between northeast and south–north fault. Figure 3.38 shows the distribution of
water saturation of a single unit at different moment.

The fitting result of oil production indicates a good precision as Fig. 3.39 shows.
Thus we can use it as a model for the next historic fitting. By comparing with the

Table 3.6 Physical properties of the reservoir

Parameter Value Unit Data source

Oil density ρo 0.8635 g/m3 Well TK404PVT

Oil layer thickness h 6 m Logging interpretation

Porosity ϕ 0.05 (–) Logging interpretation

Volume coefficient Bo 1.1 (–) Well TK404PVT

Compressibility Co 0.001065 1/MPa Well TK404PVT

Oil viscosity μo 24.09 mPa�s Well TK404PVT

Fig. 3.36 Relative permeability curves of oil and water
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true water content curve, we can find a good fitting precision in the early and late
stages in the discrete fractured-vuggy network model. But this model will have
water breakthrough much earlier than the actual situation. If adjusting the fracture
occurrence and parameters, we can gain a better simulation effect (Fig. 3.40).

Fig. 3.37 Geological statistic model and grid division of TK404 well

Fig. 3.38 The distribution of water saturation of single well at different time
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3.5 Conclusions

(1) In this chapter, we come up with discrete fractured-vuggy network model
based on the structural characteristics of fractured-vuggy media. This model
add vug system into discrete fracture model to describe the flow characteristics
of coupling seepage flow and free flow in fractured-vuggy medium. This new
model is a typical mathematic model which overcomes the weakness of the
current mathematic model. In this model, free flow exists in vug system, which
can be described by Navier–Stokes equation. Seepage flow exists in fracture
and matrix rock system. Based on geological statistic principle, we formed a

Fig. 3.39 Comparison of oil production per day for single well

Fig. 3.40 Comparison of water cut for single well
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set of random model building method on discrete fractured-vuggy network
and presented the corresponding cases.

(2) Based on the volume average method, we deduce two phases flow numerical
model which couples seepage flow and free flow by two timescale upgrades.
Then we build the corresponding coupling interface condition. By comparing
with Beavers–Joseph experimental data, we validate the accuracy of this
coupling interface condition. The coupling mathematic model we build is a
typical two phases flow Darcy mathematic model in seepage region while it is
a typical macroscopic two phases model in free flow region. As to the cou-
pling flow mathematic model, we can build discrete fractured-vuggy network
two phases flow mathematic model by applying discrete fracture model in
seepage region. We make an elaborate research on the flow simulation theory
and method of macroscopic discrete fractured-vuggy network model. As to its
complexity, we form the corresponding unstructured gridding division
method. As to two-dimensional problem, we will adopt Delaunay triangle
gridding. As to three-dimensional problem, we will adopt Delaunay tetrahe-
dron gridding. Based on the discrete fracture model, we build two phases flow
mathematic model in the seepage region. We build two phases free flow
mathematic model in vugs by applying two fluids model. Then we make this
numerical value discretized by adopting upwind Petrov–Galerkin definite
element method and the algorithm is verified by 1-D Burger equation

(3) Combining the coupling interface condition and applying alternate solution
method, we fulfill the numerical simulation on two phases flow which couples
seepage flow and free flow. Then corresponding numerical cases are given.
The calculation results show that this system has an infinite conductivity
capacity and it can be seen as equipotential body which is easy to form a
dominant transport. Based on the geological statistic data of a single well in
one certain fractured-vuggy unit in Ta He oil field, we build the corresponding
discrete fracture-vug network model. Then we applied the simulation method
we build in this chapter to make a simulation on the production performance.
The results show that this model has a higher fitting precision. By adjusting
the fracture occurrence and other parameters, we can gain better results.

References

Abdassah D, Ershaghi I (1986) Triple-porosity systems for representing naturally fractured
reservoirs. SPE Form Eval 1:113–127

Arbogast T, Brunson DS, Bryant SL, Jennings JW (2004) A preliminary computational
investigation of a macro-model for vuggy porous media. Dev Water Sci 55:267–278

Baca RG, Arnett RC, Langford DW (1984) Modelling fluid flow in fractured-porous rock masses
by finite-element techniques. Int J Numer Meth Fl 4(4):337–348

Baecher GB (1983) Statistical analysis of rock mass fracturing. J Int Assoc Math Geol 15:329–348
Bear J (1972). Dynamics of fluids in porous media. American Elsevier, New York

138 3 Discrete Fracture-Vug Network Model



Beavers GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech
30:197–207

Beavers GS, Sparrow EM, Magnuson RA (1970) Experiments on coupled parallel flows in a
channel and a bounding porous medium. J Fluids Eng 92:72

Beavers GS, Sparrow EM, Masha BA (1974) Boundary condition at a porous surface which
bounds a fluid flow. AIChE J 20:596–597

Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection
dominated flows with particular emphasis on the incompressible Navier-Stokes equations.
Comput Methods Appl Mech Eng 32:199–259

Chandesris M, Jamet D (2006) Boundary conditions at a planar fluid–porous interface for a
Poiseuille flow. Int J Heat Mass Transf 49:2137–2150

Chandesris M, Jamet D (2009) Derivation of jump conditions for the turbulence k6103 model at a
fluid/porous interface. Int J Heat Fluid Flow 30:306–318

Chang X, Yao J, Dai W, Wang Z (2004) The study of well test interpretation method for a triple
medium reservoir. J Hydrodyn 19:339–346

Dagan G (1979) The generalization of Darcy’s Law for nonuniform flows. Water Resour Res
15:1–7

Erzeybek S, Akin S (2008) Pore network modeling of multiphase flow in fissured and vuggy
carbonates. In: SPE improved oil recovery symposium

Ger W, Mikeli, 1999. On the interface boundary condition of beavers, Joseph and Saffman.
SIAM J Appl Math 60:1111–1127

Goyeau B, Lhuillier D, Gobin D, Velarde MG (2003) Momentum transport at a fluid–porous
interface. Int J Heat Mass Transf 46:4071–4081

Harlow FH, Amsden AA (1971) A numerical fluid dynamics calculation method for all flow
speeds. J Comput Phys 8:197–213

Huang ZQ, Yao J, Wang YY, Lv XR (2011a) Numerical Simulation of the waterflooding
development in fractured reservoir based on discrete fracture model. Chin. J. Comput. Phys.
28:41–49

Huang ZQ, Yao J, Wang YY, Tao K (2011b) Numerical study on two-phase flow through
fractured porous media. Sci. China Technol. Sci. 54:2412–2420

Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational
fluid dynamics: V. Circumventing the babu08 ka-brezzi condition: a stable Petrov-Galerkin
formulation of the stokes problem accommodating equal-order interpolations. Comput
Methods Appl Mech Eng 59:85–99

Jager W, Mikeli A (2009) Modeling effective interface laws for transport phenomena between an
unconfined fluid and a porous medium using homogenization. Transp PorousMedia 78:489–508

Jones IP (1973) Low Reynolds number flow past a porous spherical shell. In Mathematical
proceedings of the Cambridge philosophical society, vol 73, No 01. Cambridge University
Press, pp 231–238

Jamet D, Chandesris M (2009) On the intrinsic nature of jump coefficients at the interface between
a porous medium and a free fluid region. Int J Heat Mass Transf 52:289–300

Le Bars M, Worster MG (2006) Interfacial conditions between a pure fluid and a porous medium:
implications for binary alloy solidification. J Fluid Mech 550:149–173

Lehmer DH (1951) Mathematical methods in large-scale computing units. In: Proceedings of 2nd
Symposium on Large-Scale Digital Calculating Machinery, Harvard University Press,
Cambridge, pp 141–146

Liu Q, Prosperetti A (2010) Pressure-driven flow in a channel with porous walls. In: 63rd annual
meeting of the APS division of fluid dynamics, pp 77–100

Liu J, Bodvarsson GS, Wu YS (2003) Analysis of flow behavior in fractured lithophysal
reservoirs. J Contam Hydrol 62–63:189–211

Louis C, Wittke W (1971) Experimental study of water flows in jointed rock massif, Tachien
project, Formosa. Geotechnique 21(1):29

Lucia FJ (2007) Carbonate reservoir characterization. Springer, Berlin Heidelberg

References 139



Mat MD, Ilegbusi OJ (2002) Application of a hybrid model of mushy zone to macrosegregation in
alloy solidification. Int J Heat Mass Transf 45:279–289

Mosthaf K, Baber K, Flemisch B, Helmig R, Leijnse A, Rybak I, Wohlmuth B (2011) A coupling
concept for two-phase compositional porous-medium and single-phase compositional free
flow. Water Resour Res 47:447

Neale G, Nader W (1974) Practical significance of Brinkman’s extension of Darcy’s law: coupled
parallel flows within a channel and a bounding porous medium. Can J Chem Eng 52(4):
475–478

Noorishad J, Mehran M (1982) An upstream finite element method for solution of transient
transport equation in fractured porous media. Water Resour Res 18:588–596

Ochoa-Tapia JA, Whitaker S (1995a) Momentum transfer at the boundary between a porous
medium and a homogeneous fluid–I. Theoretical development. Int J Heat Mass Transf
38:2635–2646

Ochoa-Tapia JA, Whitaker S (1995b) Momentum transfer at the boundary between a porous
medium and a homogeneous fluid—II. Comparison with experiment. Int J Heat Mass Transf
38:2647–2655

Popov P, Efendiev Y, Qin G (2009a) Multiscale modeling and simulations of flows in naturally
fractured karst reservoirs. Commun Comput Phys 6:162–184

Popov P, Qin G, Bi L-F, Efendiev Y, Kang Z-J, Li J-L (2009b) Multiphysics and multiscale
methods for modeling fluid flow through naturally fractured carbonate karst reservoirs. SPE
Reserv Eval Eng 12:218–231

Qin G, Bi L, Popov P, Efendiev Y, Espedal M (2010) An efficient upscaling procedure based on
Stokes-Brinkman model and discrete fracture network method for naturally fractured carbonate
karst reservoirs. In: International Oil and Gas Conference and Exhibition in China. Society of
Petroleum Engineers

Rhodes CA, Rouleau WT (1966) Hydrodynamic lubrication of partial porous metal bearings.
J Fluids Eng 88:53–60

Richardson S (1971) A model for the boundary condition of a porous material. Part 2. J Fluid
Mech 49

Saffman PG, Saffman PG (1971) On the boundary condition at the surface of a porous medium.
Stud Appl, Math

Slattery JC (1967) Flow of viscoelastic fluids through porous media. Aiche J 13:1066–1071
Taylor GI (1971) A model for the boundary condition of a porous material. Part 1. J Fluid Mech

49:319–326
Velazquez RC, Vasquez-Cruz MA, Castrejon-Aivar R, Arana-Ortiz V (2005) Pressure transient

and decline curve behaviors in naturally fractured Vuggy carbonate reservoirs. SPE Reserv
Eval Eng 8:95–112

Whitaker S (1986) Flow in porous media II: the governing equations for immiscible, two-phase
flow. Transport Porous M 1(2):105–125

Whitaker S (1999) The method of volume averaging, theory and applications of transport in
porous media. Kluwer Academic, The Netherlands

Wilson CR, Witherspoon PA (1974) Steady state flow in rigid networks of fractures. Water Resour
Res 10:328–335

Wu YS, Ge JL (1983) The fluid flow problem in triple medium fracture-vug reservoirs. Chin J
Theor Appl, Mech

Wu Y, Liu HH, Bodvarsson GS (2004) A triple-continuum approach for modeling flow and
transport processes in fractured rock. J Contam Hydrol 73:145–179

Wu YS, Qin G, Ewing RE, Efendiev YY, Kang Z, Ren Y (2006) A multiple-continuum approach
for modeling multiphase flow in naturally fractured Vuggy petroleum reservoirs. In:
International oil and gas security conference, China

Wu Y-S, Ehlig-Economides C, Qin G, Kang Z, Zhang W, Ajayi B, Tao Q (2007) A
triple-continuum pressure-transient model for a naturally fractured vuggy reservoir. In: 2007
Society of petroleum engineers (SPE) annual technical conference and exhibition, Anaheim,
California, U.S.A., 11–14 November 2007

140 3 Discrete Fracture-Vug Network Model



Yao J, Zisheng W (2007) Theory and method for well test interpretation in fractured-vuggy
carbonate reservoirs. China University of Petroleum Press, Shandong Dongying

Yang J, Yao J, Wang ZS (2005) Study of pressure transient characteristic for triple medium
composite reservoirs. J Hydrodyn 20:418–425

Yao J, Dai W, Wang Z (2004) Study on well testing interpretation method in triple medium
reservoir of variable well-bore storage. J Univ Pet 28:46–51

Yao J, Huang Z, Li Y, Wang C, Xinrui LV, Yao J, Huang Z, Li Y, Wang C, Xinrui LV (2010a)
Discrete fracture-vug network model for modeling fluid flow in fractured vuggy porous media.
In: International oil and gas security conference, exhibition, China

Yao J, Huang ZQ, Wang ZS, Li YJ, Wang C (2010b) Mathematical model of fluid flow in
fractured Vuggy reservoirs based on discrete fracture-vug network. Acta Pet Sin 31:815–819

Yao J, Wang ZS, Zhang Y, Huang ZQ (2010c) Numerical simulation method of discrete fracture
network for naturally fractured reservoirs. J Univ Pet 31:284–288

Zhang Y (2005) Rock hydraulics and engineering. China WaterPower Press, Beijing
Zhang Q, Prosperetti A (2009) Pressure-driven flow in a two-dimensional channel with porous

walls. J Fluid Mech 631:1–21
Zhang D, Yao J, Wang Z, Zhan A (2008) Study on well testing model and pressure characteristics

of triple medium reservoirs. Xinjiang Pet Geol 29:222–226
Zheng SQ, Li Y, ZhangWM, Zhang HF, Zhao YY (2009) Composite medium model and fluid flow

mathematical model for fractured Vuggy reservoir. Pet Geol Oilfield Dev Daqing 28:63–66

References 141



Chapter 4
Equivalent Medium Model

Abstract Numerical simulation of fluid flow in fractured karst reservoirs is still a
challenging issue. The multiple-porosity model is the major approach until now.
However, the multiple-porosity assumption in this model is unacceptable for many
cases. In the present work, an efficient numerical model has been developed for
fluid flow in fractured karst reservoirs based on the idea of equivalent continuum
representation. First, based on the discrete-fracture model and homogenization
theory, the effective absolute permeability tensors for each grid blocks are calcu-
lated. And then an analytical procedure to obtain a pseudo-relative permeability
curves for a grid block containing fractures and cavities has been successfully
implemented. Next, a full-tensor simulator has been designed based on a hybrid
numerical method (combining mixed finite element method and finite volume
method). A simple fracture system has been used to demonstrate the validity of our
method. Lastly, we have used the fracture and cavity statistics data from a TAHE
outcrop in west China, effective permeability values and other parameters from our
code, and an equivalent continuum simulator to calculate the water flooding profiles
for a more realistic system.

Keywords Fractured karst reservoirs � Effective permeability tensor �
Discrete-fracture model � Full-tensor simulator

4.1 The Research Status and Trends

The equivalent continuum model (ECM) was first proposed by Snow (1970), it is a
mathematical model which describes flow in a fractured media based on the
equivalent continuum theory. Since then, several scholars have made a large
number of researches on (largely researched) this method (Feng et al. 2007;
Liu et al. 2000; JCS Long 2012; Oda 1986; Tian 1984).

In the equivalent continuum model, the whole research region (most of the
research work) is regarded as a hypothetical continuum. Every point in the system
is at local equilibrium as the fluid exchanges between fracture and matrix. This

© Petroleum Industry Press and Springer-Verlag Berlin Heidelberg 2016
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method focuses on the macro-flow characteristic expressed by fractured media.
First, the permeability of fractures is distributed to the whole fractured media
uniformly, then the fractured media is regarded as an anisotropic porous media, and
the equivalent continuum model can be established based on the flow theory of
porous media. However, the equivalent is just for flow.

The outstanding advantage of ECM is that the flow can be analyzed based on the
anisotropic continuum media theory. So, it has solid foundation on both theory and
method. (Therefore, both theory and practically tried methods contribute to the
solid foundations of ECM). Moreover, it does not need to know the exact position
and hydraulic characteristic for each fracture. Therefore, (This proves that) ECM is
a valuable tool for the engineering problem which has difficulty in getting exact
data for each fracture. Although the ECM is easy to implement, it still has two
difficulties: one is the validity of the ECM; the other is the calculation of the
equivalent parameters for fractured media.

The porous media, which is composed of solid particles and voids between
particles, is discontinuous at microscale. However, analyzing flow in porous media
with the continuum theory has never been in doubt, it is because that (simply
because), the respective element volume (REV) of porous media is sufficiently
small. Mechanical property of any material can be obtained by special experiment.
The property obtained by experiment has no significant relationship with the size of
sample as the size of sample is bigger than a specific value. On the contrary, the
property obtained will be fluctuant as the size of sample is smaller than a specific
value. For the permeability coefficient of a porous media, the relationship between
the value and volume V can be plotted as a curve, as shown in Fig. 4.1. Because the
REV of porous media is small and its structure is uniform, the reliable permeability
can be obtained by using several small samples. Therefore, it is reasonable to treat
the porous media as continuum media.

For the controversy about validity of treating the fractured media as continuum
media, several scholars have given the criterion, respectively: Louis (1972) regar-
ded that the equivalent media model can be applied when the number of fracture is
more than 1000 within the range of engineering; Zhou et al. (2004) regarded that
the equivalent media model can be applied when the radio between the average
fracture interval and building size is lesser than 0.05; Wilson et al. (1983) regarded

V

K

V0o

Fig. 4.1 The relationship
curve for permeability
coefficient K and
representative element
volume REV (V0)
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that the equivalent media model can be applied when the radio between the max-
imum joint spacing and building size is lesser than 0.02. However, all of these
criteria are deduced by specific project or theory, which means it is difficult to be
applied in practical.

Long et al. (1985) pointed out two conditions that need to be met as the fractured
reservoir can be viewed as continuum media: (1) the REV is existent and the
equivalent permeability changes with the size of sample negligibly; (2) the
equivalent permeability tensor has symmetry. The method that determines whether
the permeability tensor with symmetry is measuring directional permeability or not.
Assuming that the permeability at potential gradient direction is KJ and the per-
meability at flow direction is Kf, the media has symmetrical permeability tensor if
(KJ)

−1/2 and (Kf)
−1/2 can constitute the ellipse in polar coordinates. Obviously, the

ellipse turns into circle for homogeneous isotropic media, and the flow direction is
consistent with the gradient direction.

For fractured reservoir, the equivalent permeability depends on the density and
the distribution of fractures as well as the fracture network. In terms of permeability,
the value of REV for fractures rock mass is several orders of magnitude larger than
the value of REV for porous rock mass. Sometimes it is even nonexistent. So it is
not always feasible to view the fractured reservoir as equivalent media. Moreover,
Youtian Zhang summarizes up the essential condition for fractured reservoir when
analyzing flow problem with the tool of equivalent media model.

For the equivalent permeability of fracture-vug media, Neale and Nader (1973)
are the pioneers of the related research. In their study, Navier–Stokes equation was
employed in the spherical cavity, and the Darcy equation was used to describe the
flow in porous medium. They studied the impact of spherical vugs on the perme-
ability in homogeneous isotropic porous media based on flow equivalent principle.
However, the systematic theory has not been developed as the research object is too
simple. Recently, Arbogast et al. (2004), Arbogast and Gomez (2009), Arbogast
and Lehr (2006) studied the permeability of fracture-vug media. They described the
macro-flow in fracture-vug media by applying Darcy–Stokes equations. Using the
Beavers–Joseph–Saffman boundary condition, the fracture-vug media is coupled to
the free-flow region. And based on the homogenization theory, they gain a
macroscopic equivalent Darcy flow equation and the theoretical formula of
equivalent permeability tensor. Moreover, Arbogast et al. point out that the
equivalent permeability distributions obtained by theory computation are totally
different for the same medium model when they used different domain decompo-
sition methods, although oversample technology is used to process the computa-
tion. As shown in Fig. 4.2, the values of equivalent permeability and the
corresponding distributions calculated at 2 × 2 grid blocks and 3 × 3 grid blocks
are different. The fundamental reason is that the artificial domain decomposition
destroyed the topological structure of original fracture-vug media, while the
problem is difficult to solve by the methods we have now.

Popov et al. (2009) think that the real vugs are always companied with different
degrees of filling. Then the Stokes–Brinkman equations are more effective when
describing the coupling flow in fracture-vug media and can avoid the explicit
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formulation of the boundary conditions at the interface between fluid and porous. In
their study, the fractures are treated as free-flow regions as same as vugs. This
approach provided an accurate model. But it was not practical due to a large number
of grids required because of two different length scales.

Toward this, Huang et al. (2010, 2011) and Qin et al. (2010) brought the concept
of discrete fracture in the research of fractured-vuggy media, and studied the impact
of the size, shape, position, and vugs combination on equivalent permeability. But
all existing researches are about single-phase flow, the permeability calculated is
equivalent permeability. The equivalent relative permeability of different phases is
needed to simulate fluid flow in real reservoir. However, few works have been
studied. Therefore, Huang et al. (2013) proposed a method to calculate equivalent
relative permeability curve based on discrete fracture-vug network model and
preferential flow assumption, while the method can only be adapted to the reservoir
which has a high degree of fracture-vug network connectivity.

4.2 The Equivalent Process of Fractured Medium

4.2.1 Brief Introduction to Permeability Tensor

The permeability has directionality. This directionality reflects the anisotropy of a
reservoir and the permeability should be represented by tensor.

Low-order tensor is widely applied in various disciplines. Scalar (e.g., mass,
density) is zero-order tensor; vector (e.g., velocity, displacement) is one-order
tensor; two-order tensor is defined as a physical quantity that has one value and two
directions and has nine components. The mathematical meaning can be understood
as a matrix whose size of value and directions are changed simultaneously. Another
important property of tensor is that tensor (it) is irrelevant to coordinate system,
which means one tensor expresses one (the) same physical meaning in different
coordinates, although this tensor may have different forms in different coordinates.

Fig. 4.2 The example diagrams in the research of Arbogast
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This property that provides theoretical foundation for permeability tensor can be
expressed by permeability elliptic.

Permeability tensor in Darcy’s law is the element that connects pressure gradient
U with flow rate Q:

Q ¼ KU ð4:1Þ

For the 3-D reservoir, permeability tensor is two-order tensor and it has the form

K ¼
kxx
kyx
kzx

kxy
kyy
kzy

kxz
kyz
kzz

2
4

3
5 ð4:2Þ

where the first subscript represents the direction of flow; the second subscript
represents the direction of pressure gradient. For example, kxx represents the flow
rate that the pressure gradient in x-direction creates in the x-direction. Likewise, kyz
represents the flow rate that the pressure gradient in z direction creates in the
y-direction. After expansion, Darcy’s law will have the following form:

Qx ¼ � kxxð@P@xÞþ kxyð@P@yÞþ kxzð@P@zÞ
h i

Qy ¼ � kyxð@P@xÞþ kyyð@P@yÞþ kyzð@P@zÞ
h i

Qz ¼ � kzxð@P@xÞþ kzyð@P@yÞþ kzzð@P@zÞ
h i ð4:3Þ

The physical meaning of permeability tensor can be understood in this way: if a
certain pressure gradient is put on a rock in a certain direction. Fluid outflows not
only from this direction, but also from other direction. The flow in this direction is
called the main flow; the flow in other directions of this pressure gradient is very
small and it is called the secondary flow. Because the main direction permeability is
usually much larger than the secondary direction permeability, the main flow is
much larger than the secondary flow. So in most practical problems, permeability
can (or must) be assumed to be diagonal tensor. This assumption is conditional.
According to the property that tensor is irrelevant to the coordinate, there is always
a direction that can make the non-diagonal tensor to be zero. This direction is called
the main permeability direction. The permeability tensor in this direction has the
following form:

K ¼
kxx
0
0

0
kyy
0

0
0
kzz

2
4

3
5 ð4:4Þ

If the coordinate is in parallel with the main permeability direction, the per-
meability has the form of Formula 4.4. In other coordinates, the permeability has
the form of Formula 4.2. So in most cases, neglecting the non-diagonal element of
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permeability tensor can cause serious error. Fancy the thought that when the
coordinate and the main permeability are at an angle of 45°, the error of the flow
calculated with Darcy’s law can be 45 %.

There are some examples of permeability tensor in several special situations.

(1) Diagonal permeability tensor is adopted in black oil model, like Formula 4.4.
At this time, the angle between the coordinate direction and the main per-
meability direction is zero or very small.

(2) As we can see from the stratified reservoir in Fig. 4.3, if it is known to us that
the permeability in x′ direction is ka, then the permeability in z′ direction is kh.
In this 2-D section, if the x-z coordinate is parallel to the direction of x′-z′
coordinate, the permeability tensor is

K ¼ ka 0
0 kh

� �
ð4:5Þ

While, if the x-z coordinate is not parallel to the direction of x′-z′ coordinate, the
permeability tensor is

K ¼ kxx kxy
kyx kyy

� �
¼ ka cos2 hþ kh sin2 h ðka � khÞ cos h sin h

ðka � khÞ cos h sin h ka sin2 hþ kh cos2 h

� �
ð4:6Þ

For a strong anisotropic reservoir, the effective permeability calculated by
equivalent continuum model should be full tensor, like Formula 4.2. In some
special situations, when the fracture is perpendicular to the boundary, like Fig. 4.4,
equivalent permeability tensor has the following form:

Fig. 4.3 The schematic
diagram of stratified reservoir
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K ¼
Kxx

Kyx

0

Kxy

Kyy

0

0
0
Kzz

2
4

3
5 ð4:7Þ

4.2.2 The Equivalent Permeability Tensor of Fractured
Medium

For the calculation of equivalent permeability tensor of fractured medium,
researchers have done many researches and put forward many calculation methods.
(To find the equivalent permeability tensor of a fractured medium, researchers have
explored far and wide and have put forward many calculation methods). These
methods can be roughly divided into two categories: the analytical method which is
based on the geometric information of the fracture and the numerical method which
is based on flow simulation. The analytical method based on geometric information
requires statistical analysis of the fracture geometric information: generalizing
group of all the fractures and then applying analytical formula to calculate the
equivalent permeability tensor. This kind of method is very effective, however it
ignores connectivity between the fractures so the result is inaccurate. With the
continuous improvement of numerical method and development of computer
technology, the numerical method based on flow simulation is attracting more and
more attention. The main idea of this method is: to implement single flow simu-
lation on a small scale, then calculate the equivalent permeability tensor according
to equivalent flow assumption. For this kind of method, boundary condition is
especially important for the calculation of equivalent permeability. The most

Fig. 4.4 Typical vertical fracture grid block
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commonly used boundary conditions are periodic boundary condition and closed
fixed pressure condition boundary condition.

(1) The calculation method of periodic boundary condition
The equivalent permeability tensor of grid reflects the effect that bedrock and
fracture have on seepage. Thus, the calculation of equivalent permeability tensor
should consider the effect of the fluids flow in the bedrock or the fracture and the
channeling between the two media. Let us take the calculation of the equivalent
permeability tensor of the grid in the Fig. 4.5 for example, to illustrate the basic
principle of the calculation of periodic boundary condition. A grid of fractured
reservoir is shown in Fig. 4.5. There are six fractures in the grid and all the fractures
satisfy the following conditions: (1) The fractures are distributed randomly, the
fractures can intersect with each other and may end in the grid or stretch across
several grids. (2) When one fracture stretches across several grids, the solution is to
segment the fracture according to the grids before analysis. (3) If one fracture
intersects with the boundary, we can shorten the fracture inward at the intersection
of the fracture and the boundary. (4) The fractures have a mutual height and height
equal to the grid height. This grid block’s horizontal equivalent permeability tensor
has the following form:

K ¼ kxx kxy
kyx kyy

� �
ð4:8Þ

As shown in Fig. 4.5, there are two kinds of medium in the 2-D grid: bedrock
and fracture. Fracture permeability is far larger than bedrock permeability and when
fluids flow through the two kinds of medium, the fluids satisfy Darcy’s law and
conservation of mass. Replace the practical grids with equivalent grids. Equivalent
grids are homogeneous and anisotropic. Equivalent permeability is K (tensor).
When the fluids flow through equivalent grids, the fluids also satisfy Darcy’s law
and conservation of mass. A fluid of unit viscosity is assumed to flow through the

Fig. 4.5 A 2-D grid with
vertical fracture
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equivalent grid, a pressure gradient J (vector) is exerted on the grid. We can get
average flow rate Q(vector) according to Darcy’s law

Q ¼ �K � J ð4:9Þ

If the pressure gradient exerted on the grid J = (1,0)T, we can get the average
flow rate at this pressure gradient according to Formula 4.9:

Q ¼ �ðkxx; kyxÞT ð4:10Þ

That is to say, the first column of permeability tensor corresponds with the
average flow rate at unit pressure gradient. At this pressure gradient, we can cal-
culate the flow Q at the grid boundary when fluids flow through real grids, and we
can calculate kxx and kyx according to Formula 4.10. Likewise, we can calculate the
other two elements of this permeability tensor if we exert an unit pressure gradient
J = (1,0)T in direction y.

Let us look at the rectangular grid block in the Fig. 4.6, it has four outer
boundaries Γi (i = 1, 2, 3, 4), and ni (i = 1, 2, 3, 4) is the outer normal vector of the
boundaries. For example, exert an unit pressure gradient J = (1,0)T in direction x,
now periodic condition boundary is

pjC2
¼ pjC4

� 1; on C2 and C4

pjC1
¼ pjC3

; on C3 and C1

qjC1
� n1 ¼ �qjC3

� n3; on C3 and C1

qjC2
� n2 ¼ �qjC4

� n4; on C2 and C4

8>><
>>: ð4:11Þ

Through solving the single-phase steady discrete fracture model of periodic
boundary, and through the above calculation process, we can get the equivalent
permeability tensor. We can refer to Chap. 1 for the specific establishment process
of discrete fractured model and the solving process of finite element method. Some
scholars adopt boundary element method to solve this problem.

Fig. 4.6 Grid block and its
boundaries
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Periodic boundary condition guarantees us an accurate equivalent permeability
tensor in full tensor form. But for the fracture that intersects with the grid boundary,
we need to shorten the fracture inward at the intersection of the fracture and the
boundary in order to make the fractures in the grid satisfy periodic distribution. This
behavior reduces the flow conductivity of the fracture in certain degree.

(2) The calculation method of closed fixed pressure boundary condition
However, for practical fractured reservoir, the fracture distribution situation in each
grid is not the same, and fractures often intersect with the boundaries. So the
fractures in the grid cannot satisfy periodic distribution, the grid sub-tense intersects
with the fracture and the situation is symmetrical. At this time, if we adopt periodic
boundary condition, the results will have big deviation. To this, a new method
based on discrete fracture model to calculate equivalent permeability tensor is put
forward. This method adopts closed fixed pressure boundary condition and this
method is applicable in various situations in which fractures are distributed com-
plicatedly. First, build discrete fracture model in the coarse grid unit and solve the
model by the finite unit method. Then calculate the average value of the pressure
and the flow rate in the coarse grid unit. Finally, calculate the equivalent perme-
ability in full tensor form according to Darcy’s law (Fig. 4.7).

In coarse grid unit, deem the fractures as the inner boundary to divide unstruc-
tured grid and solve the discrete fracture model in the grid unit (refer to Chap. 2 for
the specific solving process), then we can get the pressure of each nodes. Based on
this, use interpolation to calculate the velocity and the pressure gradient of each
triangular grid in the coarse grid unit, then solve the average value of the velocity and
the volume average value of pressure gradient in the coarse grid unit:

Fig. 4.7 The flow chart of the calculation of the equivalent permeability field in fractured
reservoir
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uh i j¼ 1
Vb

Z
V

u jdV ¼ 1
Vb

XN
l¼1

ulVl ð4:12Þ

where j ¼ x; y (represents the coordinate axis direction of the fixed pressure
boundary); Vb represents the volume of the coarse grid unit; ul and rpð Þl represent,
respectively, the velocity and the pressure gradient in the number l triangular grid of
the coarse grid unit; Vi represents the volume of number l triangular grid;
N represents the number of the units in the coarse grid.

uh i j and rph i j consist of two parts: direction x and direction y. Combined with
Darcy’s law uh i ¼ � keff

l � rph i, we can get the following set of equations.

rph ixx rph ixy 0 0
0 0 rph ixx rph ixy
rph iyx rph iyy 0 0
0 0 rph iyx rph iyy

0
BB@

1
CCA

kxx
kxy
kyx
kyy

0
BBB@

1
CCCA ¼ �l

uh ixx
uh ixy
uh iyx
uh iyy

0
BBBB@

1
CCCCA ð4:13Þ

We can get equivalent permeability tensor by solving this set of equations. When
we consider the closed fixed pressure boundary condition, the permeability we get
may not satisfy symmetry. We can let kxy ¼ kyx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kxy � kyx

p
.

(3) Oversample technology
In view of that, the conventional methods just consider the grid during the
small-scale flow simulation process and the influence of the peripheral grids on the
grid is neglected. And these methods can be collectively referred to as local flow
analytical method. The advantage of this kind of method is that they have a small
amount of calculation. Its disadvantage is that, when handling reservoirs that
contain large fractures, this kind of method cannot characterize the effective con-
ductivities of the big-scale fractures which cut through several grid blocks and the
influence of the distribution of the fractures in the peripheral grids. So the result is
not accurate. Therefore, some scholars put forward global flow analytical method.
Namely obtain discrete fractured geological model seepage field of the whole
fractured reservoir, then analyze the seepage field in each grid unit. The accurate
result of the whole seepage field can be obtained. But the amount of calculation of
this technique is too huge to be applied to practical engineering.

Considering comprehensively about the advantages and the disadvantages of the
two methods above, we put forward the concept of oversample cell: on the basis of
target grid, expand the flow analysis area to the scale of several grids to give full
consideration to the influence that the peripheral grids have on this flow. Although
the amount of calculation increases, this technology can fully reflect the conduc-
tivity of long fractures.
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Oversample technology consists of peripheral grids of the object grid (shown in
Fig. 4.8). For example, in 2-D systems, when object grid is in the corner, the
oversample grids contain four grids; when the object grid is on the edge, the
oversample grids contain six grids; when the object grid is inside, the oversample
grids contain nice grids.

The specific calculation process is consistent with the previous calculation
process of closed fixed pressure boundary on the whole. The main difference is that
oversample technology requires obtaining the oversample cell of every coarse grid.
It need to establish discrete fractured model in the oversample cell and do the
single-phase numerical simulation for calculating the pressure and velocity field in
the oversample cell. Finally, the volume average of the velocity and pressure
gradient in the target primitive coarse grid are calculated and we can get the
equivalent permeability of the target grid. Figure 4.9 is the flowchart of calculation.

(4) The analysis of the example calculation
Take the fractured reservoir in Fig. 4.9a as an example. First, employ 10 × 5 and
20 × 10 two different grid systems to discrete this model (Fig. 4.10a, b). The basic
parameters of the model are listed in Table 4.1.

Figures 4.11 and 4.12 give the distribution result of equivalent permeability with
respectively applying the proposed method and conventional method in two of
different grid systems.

The results show that equivalent permeability field obtained without using
oversample technology obviously loses the connectivity of long fracture, while the
equivalent permeability field obtained by using oversample technology character-
izes the long fracture’s connectivity well.

Based on 20 × 10 grid system and the equivalent permeability calculated by the
above two methods, respectively, establish equivalent continuum media model to

Fig. 4.8 The schematic of oversample technology
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numerically simulate the single-phase flow in fractured reservoir. Compare the
result with the simulation result of discrete fracture model (shown in Fig. 4.13).
Obviously, the result calculated by the proposed method is more realistic and

Fig. 4.9 Flowchart of the calculation of permeability field in fractured reservoir based on
oversample technology. a The distribution of fracture in reservoir. b 5 × 10 grid system. c The
schematic of oversample analysis for grid element

(a) (b)

Fig. 4.10 Grid system of fractured reservoir. a 10 × 5 grid system. b 20 × 10 grid system

Table 4.1 The basic
parameters of the fractured
reservoir

Parameter name Parameter value

Matrix permeability (μm2) 1 × 10−3

Fracture permeability (μm2) 1 × 104

Fracture aperture (m) 1 × 10−3

Fluid viscosity (mPa s) 1
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consistent with the result of discrete fracture model. Figures 4.14 and 4.15,
respectively, give the comparison of pressure curves in the conditions of y = 20 m
and x = 40 m. As the figure shows, result calculated by the method presented in this
paper fits better with discrete fracture model which also verify the correctness and
effectiveness of this method.

(a1)

(a2) (b2) (c2)

(b1) (c1)

Fig. 4.11 The cloud pictures of equivalent absolute permeability in 10 × 5 grid system with two
methods, μm2. (a1) Using oversample, lg kxxð Þ (b1) Using oversample, lg kxy

� �
(c1) Using

oversample, lg kyy
� �

(a2) Not using oversample, lg kxxð Þ (b2) Not using oversample, lg kxy
� �

(c2) Not
using oversample, lg kyy

� �

(a1) (b1) (c1)

(a2) (b2) (c2)

Fig. 4.12 The cloud pictures of equivalent absolute permeability in 20 × 10 grid system with two
methods, μm2. a1 Using oversample, lg kxxð Þ. b1 Using oversample, lg kxy

� �
. c1 Using oversample,

lg kyy
� �

. a2 Not using oversample, lg kxxð Þ. b2 Not using oversample, lg kxy
� �

. c2 Not using
oversample, lg kyy

� �
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(a) (b) (c)

Fig. 4.13 The pressure distribution of 2-D example, MPa. a Discrete fracture model. b Not using
oversample. c Using oversample

(a) (b)

Fig. 4.14 The comparison of pressure distribution along y = 20 m. a Not using oversample.
b Using oversample

(a) (b)

Fig. 4.15 The comparison of pressure distribution along y = 40 m. a Not using oversample.
b Using oversample
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4.3 The Equivalent Simulation of Fractured-Vuggy Media

The flow simulation of discrete fracture-vug network model has been introduced in
Chap. 3. The simulation results indicate that this model can subtly simulate the real
flow in fractured-vuggy media at macro-REV scale and provide important massage
for identifying the flow rules in fractured-vuggy media. However, the model cal-
culates expensively, which means it is difficult to implement flow simulation for the
whole 3-D oil field under the existing computational condition. Therefore, we will
describe another alternative numerical model for immiscible two-phase flow in
fractured karst reservoirs with homogenization method based on discrete
fracture-vug network model.

For the fractured-vuggy media shown in Fig. 4.16, the coarse grids are generated
first, then the equivalent parameters of each coarse grid are obtained to describe
macro-flow characteristic of fractured-vuggy media. The key problem in equivalent
simulation is getting equivalent parameters of each coarse grid (such as equivalent
permeability, relative permeability curve, capillary pressure curve, etc.).

4.3.1 Equivalent Absolute Permeability Calculation

There are two methods that can be applied to calculate the equivalent permeability
of coarse grid: one is based on simple arithmetic, geometric average, or statistical
average (Aarnes et al. 2009); The other one is flow-based method which has

Ds

Dd = Dm + Df

cavity

matrix

fra
ctu

re

Dd

(a)

grid block
magnify

§

vertical permeability (µm2)

horizontal permeability (µm2)

(b)

100 1.0

y

x

effective permeability tensor ellipse
150

50

Fig. 4.16 Simple fracture-vug media and the permeability tensor map
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comprehensive applicability (Efendiev and Durlofsky 2002), and its key point is the
establishment and solution of flow mathematical model. Obviously, the former one
cannot be applied to fractured-vuggy media.

1. Single-phase flow mathematical model of discrete fracture-vug network

As shown in Fig. 4.16, the grid-block problem that is used to obtain effective
permeability tensor of a grid block can be described with discrete fracture-vug
network model. The corresponding single-phase flow mathematical model can be
obtained by simplifying the general coupled two-phase flow mathematical model
proposed in Chap. 3.

(1) Free-flow region
To calculate the effective permeability tensor of coarse grid, we first study the
steady flow. Then corresponding flow mathematical model can be described by
Stokes equation

r � u = 0 ð4:14Þ

�lr2uþrps ¼ qf ð4:15Þ

where f is unit body force, m/s2; the subscript s represents free-flow region.
For incompressible Newtonian fluid, the stress tensor r is

r ¼ �psIþ 2lS uð Þ ð4:16Þ

where I is unit tensor, S(u) is strain rate

S uð Þ ¼ 1
2

ruþ urð Þ ð4:17Þ

The corresponding boundary condition: Dirichlet (velocity) and Neumann
(traction) conditions are as follows:

u ¼ uD; on CD ð4:18Þ

n � r ¼ tN; on CN ð4:19Þ

where uD is the specific velocity on Dirichlet boundary; tN is the specific force on
Neumann boundary.

Besides above boundaries, no-slip boundary conditions are specified on the
impermeable wall of the open fluid domain. Traction-free boundary conditions are
imposed on the outlet surface. The conditions at the interface between the free-flow
region and porous medium need to be handled carefully, details of such interfacial
conditions will be presented below.
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(2) Porous flow region
For the porous flow region, one has the classical Darcy law both for rock matrix and
fractures, specific equation as follows:Z

X

FEQ dX ¼
Z
Xm

FEQ dXm þ e�
Z
Xf

FEQ dXf ð4:20Þ

where flow control equation FEQ is single-phase flow mathematical model which
can be written as

r � v ¼ 0 ð4:21Þ

l Kð Þ�1vþrpd ¼ qf ð4:22Þ

where subscript d represents porous flow region.
The boundary conditions of above mathematical model are

pd ¼ pD; on CD ð4:23Þ

n � K
l

rpd � qfð Þ ¼ qN; on CN ð4:24Þ

where pd is specific pressure on Dirichlet boundary; qN is specific quantity of flow
on Neumann boundary.

(3) Interfacial boundary conditions
The problem then remains in defining relevant boundary conditions at the interface
between the two regions. It is clear that the mass and momentum must be balanced
across the interface between the free-flow region and porous medium. Continuity of
normal stress tensor and normal velocity (i.e., mass conservation) are robust and
generally accepted boundary conditions expressed as

u � n ¼ v � n; on R ð4:25Þ

n � �r � nð Þ ¼ n � pdI � nð Þ; on R ð4:26Þ

The tangential velocity and stress condition are generally written as

k � u� vð Þ ¼ us ð4:27Þ

u � k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � K � kp

la
�r � nð Þ � k; on R ð4:28Þ
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The left term of Eq. 4.28 neglects the effect of flow velocity for the effect is too
small to be considered when permeability of media is not high. For Newtonian
fluid, Eqs. 4.26 and 4.28 can be simplified as follows:

2ln � S uð Þ � n ¼ ps � pd; on R ð4:29Þ

u � k ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � K � kp

a
n � S uð Þ � k; on R ð4:30Þ

2. The fundamentals of homogenization theory

Homogenization theory was proposed by Benssousan et al. (2011), when they
studied macroscopic equivalent material parameter of composite material in 1970s.
After that, the homogenization theory is widely used in the field of material science
and solid mechanics. With strict mathematical theoretical background, the method
that is called multi-scale homogenization method in some paper is widely applied in
the field of heat and mass transfer in porous media and hydromechanics, etc.
(Allaire 1992; Auriault 1991; Hornung 1997). From a mathematical point of view,
the theory of homogenization is a limit theory which uses the asymptotic expansion
and the assumption of periodicity to substitute the differential equations with
rapidly oscillating coefficients, with differential equations whose coefficients are
constant or slowly varying in such a way that the solutions are close to the initial
equations. As the periodic dimension approaches zero, the homogenized effective
or equivalent properties are obtained and their asymptotic behavior can be
calculated.

A heterogeneous medium is said to have a regular periodicity if the functions
denoting some physical quantity of the medium (either geometrical or some other
characteristics) have the following property

F xþNYð Þ ¼ F xð Þ ð4:31Þ

where

N ¼
n1 0 0
0 n2 0
0 0 n3

2
4

3
5 ð4:32Þ

where x ¼ x1; x2; x3f g is the coordinate vector of spatial point; ni is any integer,
i ¼ 1; 2; 3; Y ¼ Y1; Y2; Y3½ �T is constant vector which determines the period of
research region; F is the function of position vector and it can be scalar, vector or
tensor.

In homogenization theory, assume that the period Y is very small compared with
the whole research region and strong heterogeneity characteristic function will
rapidly change in a small neighborhood of a point x. Accordingly, all physical
quantities rely on two different scales: one on the global level or coarse scale x,
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which describes the slow variations; and the other on local level or fine scale y,
which indicates the rapid oscillations. And then, we can introduce a small parameter
ε, which is the ratio of two different scale unit vectors, so εy = x or y = x/ε. For
strong heterogeneity media, any physical quantity w can be written as

w ¼ w x; yð Þ ¼ w x;
x
e

� �
¼ w x; eð Þ ð4:33Þ

To illustrate this technique, let us assume that U xð Þ is a rapidly oscillating
quantity function of strong heterogeneity media and its variation is described in
Fig. 4.17a. In order to study these oscillations, we should use the two-scale
expansion, and the space can be enlarged as indicted in Fig. 4.17b. Our purpose is
to find the slowly changing equivalent curve of U xð Þ on whole research region, as
U xð Þ shown in Fig. 4.17.

We assign a coordinate system x = (x1, x2, x3) in R3 space to define the overall
domain Ω. And then we assume that the region is periodically arranged by base
cells whose identical dimensions are εY1, εY2, and εY3, where Y1, Y2, and Y3 are the
sides of base cell in a local coordinate system y = (y1, y2, y3) = x/ε. Y ¼
Y1;Y2;Y3½ �T is the boundary of base cell. Assuming that the physical quantity at
point x of coarse-scale research region is periodic of period Y, the physical quantity
U can be written as follows:

Ue xð Þ ¼ U x;
x
e

� �
¼ U x; yð Þ ¼

X1
i

eiUi x; yð Þ ð4:34Þ

where e ! 0, Ui x; yð Þ is a smooth function to coordinate x and Y-periodic in y,
which means that the periodic boundary condition should be imposed to base cell.

x

Φ (x)

i i+1

Φ (x)
–

y=x/ε

Φ (x, y)

i i+1

Φ (x)
–

(a) (b)

Fig. 4.17 The rapidly oscillating quantity function in strong heterogeneity media. a Rapidly
oscillating function. b Changes on partial enlarged view
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3. The solving of equivalent permeability tensor

Considering a fractured-vuggy media X and assuming that the research region is
periodic of period Y, the element volume of base cell Y is Yj j. Setting Xe

s is the
free-flow region in base cell, Xe

d is corresponding porous flow region, Re is the
coupling interface, and ns is unit normal vector, ks is the unit tangent vector. Then
the single-phase flow mathematical model of discrete fracture-vug network in base
cell Y can be written as

(1) Free-flow region (Stokes equation).

�le2r2ue þrpes ¼ qf ; in Xe
s ð4:35Þ

r � ue ¼ 0; in Xe
s ð4:36Þ

(2) Porous flow region (Darcy equation).

�lK�1ve þrpes ¼ qf ; in Xe
d ð4:37Þ

r � ve ¼ 0; in Xe
d ð4:38Þ

(3) Interfacial boundary condition.

ue � ns ¼ ve � ns; on Re ð4:39Þ

2le2ns � S ueð Þ � ns ¼ pes � ped; on Re ð4:40Þ

ue � ks ¼ �2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ks � K � ks

p
a

ns � S ueð Þ � ks; on Re ð4:41Þ

(4) Outer boundary condition.

ue ¼ 0; on @X\ @Xe
s ð4:42Þ

ve � n ¼ 0; on @X\ @Xe
d ð4:43Þ

The homogenization problem is to determine the behavior of the system as
e ! 0. In order to ensure the existence of limitation of pressure and velocity as
ε → 0, in the equations we have scaled both the viscosity μ and the permeability
tensor Kε by ε2. In fact this is the usual scaling for deriving Darcy’s law from Stokes
flow in porous media. If we assume that the representative element volume
(REV) is existing, then the pressure and velocity variable in above mathematical
model can be written as the form of asymptotic expansion
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ue xð Þ ¼
X1
i¼0

eiui x; yð Þ ¼ u0 x; yð Þþ e1u1 x; yð Þþ e2u2 x; yð Þþ . . . ð4:44Þ

ve xð Þ ¼
X1
i¼0

eivi x; yð Þ ¼ v0 x; yð Þþ e1v1 x; yð Þþ e2v2 x; yð Þþ . . . ð4:45Þ

pes xð Þ ¼
X1
i¼0

eipis x; yð Þ ¼ p0s x; yð Þþ e1p1s x; yð Þþ e2p2s x; yð Þþ . . . ð4:46Þ

ped xð Þ ¼
X1
i¼0

eipid x; yð Þ ¼ p0d x; yð Þþ e1p1d x; yð Þþ e2p2d x; yð Þþ . . . ð4:47Þ

Substituting the above four equations in Eqs. (4.35)–(4.43), and considering that
∇ = ∇x + ε−1∇y. We can see that the first term of the right of Eqs. (4.46) and (4.47)
only changes at coarse scale while has no relationship with fine scale by comparing
the coefficient of e�1 in equations.

p0 xð Þ ¼ p0s xð Þ ¼ p0d xð Þ; on X ð4:48Þ

After that, we can obtain the corresponding cell problem by comparing the
coefficient of e0 as follows:

�lr2
yu0 þryp

1
s ¼ � rxp

0
s � qf

� �
; in Ys ð4:49Þ

ry � u0 ¼ 0; in Ys ð4:50Þ

�lK�1v0 þryp
1
d ¼ � rxp

0
d � qf

� �
; in Yd ð4:51Þ

ry � v0 ¼ 0; in Yd ð4:52Þ

u0 � ns ¼ v0 � ns; on R ð4:53Þ

2lns � S u0ð Þ � ns ¼ p1s � p1d; on R ð4:54Þ

u0 � ks ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ks � K � ks

p
a

ns � S u0ð Þ � ks; on R ð4:55Þ

Generally, the right term of Eqs. (4.49) and (4.51) can be written as

rxp
0
l � qf ¼

X
j

ej @xjp0l xð Þ � qf xj
	 


; l ¼ s; d ð4:56Þ

where ej is the unit vector at j-direction in Cartesian coordinate system.
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Separation of variables for u0, v0 and p1l , we obtain

u0 x; yð Þ ¼ � 1
l

X
j

ej @xjp0s xð Þ � qf xj
	 


w j
s ð4:57Þ

v0 x; yð Þ ¼ � 1
l

X
j

ej @xjp0d xð Þ � qf xj
	 


w j
d ð4:58Þ

p1l x; yð Þ ¼ � 1
l

X
j

ej @xjp0l xð Þ � qf xj
	 


p j
s ð4:59Þ

where w j
l and p j

l (l = s,d) are both physical field function with period Y.
Substituting Eqs. (4.56)–(4.59) in Eqs. (4.49)–(4.55), we can obtain auxiliary

equation for base cell

�r2
yw

j
s þryp

j
s ¼ ej; in Ys ð4:60Þ

ry � w j
s ¼ 0; in Ys ð4:61Þ

K�1w j
d þryp

j
d ¼ ej; in Yd ð4:62Þ

ry � w j
d ¼ 0; in Yd ð4:63Þ

w j
s � ns ¼ w j

d � nd; on R ð4:64Þ

ns � S w j
s

� � � ns ¼ p j
s � p j

d; on R ð4:65Þ

w j
s � ss ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ss � K � ss

p
a

ns � S w j
s

� � � ss; on R ð4:66Þ

After solving the above auxiliary problem, we can obtain the equivalent per-
meability tensor K at coarse scale by below equation

K ¼ 1
Yj j

Z
Ys

w j
sdyþ

Z
Yd

w j
ddy

0
B@

1
CA ð4:67Þ

Obviously, the component is

Kij ¼ 1
Yj j

Z
Ys

w j
s

� �
idyþ

Z
Yd

w j
d

� �
idy

0
B@

1
CA ð4:68Þ
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From the definition of discrete fracture model, we can obtainZ
Yd

w j
d

� �
idy ¼

Z
Ym

w j
m

� �
idyþ e�

Z
Y f

w j
f

� �
idy; m = matrix; f = fracture ð4:69Þ

The equivalent quantity of flow at macro-coarse scale can be written as classical
Darcy’s law when e ! 0, specific equation as follows:

l Kð Þ�1�uþrp0 ¼ qf ð4:70Þ

r � �u ¼ 0 ð4:71Þ

where �u is macro-rate of flow.
Note that w j in Eqs. (4.60)–(4.66) are the fine-scale velocities in the base cell,

and unit vector in j-direction in Eqs. (4.60) and (4.62) can be written as

ry p j
l � yj

� � ¼ ryp
j
l � ej ð4:72Þ

Above equation indicates that the rate of flow w j results from the boundary base
cell that is periodic when it is under unit pressure gradient effect in j-direction.
Accordingly, above auxiliary problem for base cell has the same formula with
Strokes–Darcy problem and is easy to solve. Moreover, we can get the equivalent
absolute permeability tensor at coarse scale with Eq. (4.67).

4. Example verification

For real engineer problem, we will need Eqs. (4.70) and (4.71) to simulate the flow
at coarse scale. To verify the validity for above method, we analyze a simple
fracture-vug media (as shown in Fig. 4.18a) and make some numerical computation
on it. First, the whole region is discretized into the 5 × 5 coarse grids as shown in
Fig. 4.18b and the equivalent permeability tensor at every coarse grid block is
calculated based on homogenization theory and numerical simulation. Then,
Eqs. (4.70) and (4.71) are used to simulate the flow at coarse scale. Lastly, we
compare the computation result with DFVN model at fine scale.

We plot the corresponding coarse-scale pressure in Fig. 4.19. We have com-
pared this coarse-scale pressure with the averaged coarse-scale pressure obtained
from the fine-scale solution. The numerical result indicates that the numerical
computation result at coarse scale can reflect the characteristic of flow while the fine
solution at fine scale can describe the fractures and vug more detailed. More
comparison result is shown in Fig. 4.20, and a good match with fine-scale and
coarse-scale solutions has been achieved. It is clear that the solution of
macro-model based on equivalent permeability would be more accurate as ε tends
to zero.
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4.3.2 Computation of Pseudo-relative Permeability

For two-phase flow simulation of fracture-vug media at coarse scale, the key
problem is how to describe the influence of fractures and vug for water and oil front.
Toward this, the concept of pseudo-relative permeability at coarse scale is proposed
based on preferential flow assumption for fracture-vug, and the corresponding
solution has been formed. The pseudo-relative permeability is not a new concept,
Hearn (1971) has proposed it when he studied the two-phase flow problem of
layered formation. After that, Talleria et al. (1999) studied the application and
limitation of it. Meanwhile, van Golf-Racht (1982) pointed out that it is possible to

Fig. 4.19 Comparison of the fine-scale a and coarse-scale b pressure solutions

5×5 coarse-scale block partitioningFine-scale domain

vug

rock matrix

fractire

Coarse-scale bolck
Block partitioning for 

fine-scale domain 

(a) (b)

Fig. 4.18 Fine-scale domain a consisting of rock matrix and discrete fracture-vug networks. The
coarse-scale block partitioning b used for numerical calculations of equivalent permeability
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establish pseudo-relative permeability curve with experiment method for fractures
media. Pruess et al. (1990) applied this concept to study equivalent medium
parameter for double medium model and deduced some simple expressions.

van Lingen et al. (2001) developed a set of theory method to solve
pseudo-relative permeability that includes fracture at coarse grid block. On this
basis, Abdel-Ghani (2009) reinterpret the solution and the concept of parameter in
it. The research result indicated that the method can adapt to formation that has
fractures developed. Based on the work of Abdel-Ghani, Huang et al. (2011a, b)
proposed a set of theory and method for solving pseudo-relative permeability of
fracture-vug media. First, preferential flow assumption of fracture-vug network is
proposed, which means wetting fluid preferentially flows in fractures and vug
before absorbed into matrix with the method of imbibition. This assumption is
realistic for fracture-vug network always having high conductivity, which is 3–7
orders of magnitude large than matrix. This is also verified in Tahe field. For the
coarse network shown in Fig. 4.16, the porosity /b is defined as follows:

/b ¼ /m þ/f þ/c ¼ /m þ
P

eili
V

þ
P

Vcð Þj
V

ð4:73Þ

where /m, /f and /c are the porosity of matrix, fracture and vug, respectively; ei
and li are the aperture and length of i-th fracture, respectively; Vcð Þj is the volume of
i-th vug; V is the volume of coarse grid. Note that both the inner porosity in
fractures and cavities are taken as 1.

1. Residual oil saturation and irreducible water saturation
The effective residual saturations and end-point relative permeabilities of grid
blocks are changed by the presence of discrete fracture-cavity networks. The
effective residual oil saturation of a fractured karst gird block Sor;b is calculated
using the following arithmetic average:
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Fig. 4.20 Comparison of the
fine-scale (solid curves) and
coarse (dashed curves)
pressure profiles at various
values of y and x
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Sor;b ¼ /mSor;m þ /f þ/cð ÞSor;fc
/m þ/f þ/c

ð4:74Þ

where Sor;m is the residual oil saturation in the matrix, and Sor;fc is the residual oil
saturation in the discrete fracture-cavity network. Similarly, the effective connate
water saturation of a gird block Swc;b is calculated as

Swc;b ¼ /mSwc;m þ /f þ/cð ÞSwc;fc
/m þ/f þ/c

ð4:75Þ

where Swc;m is the connate water saturation in the matrix, and Swc;fc is the connate
water saturation in the discrete fracture-cavity network.

After having above definition, the corresponding koe;b and kwe;b can be deduced.
Relative permeability koe;b.

koe;b ¼ koe;mkm/m þ koe;fckfc /f þ/cð Þ
km/m þ kfc /f þ/cð Þ ð4:76Þ

where koe;m is the relative permeability of oil that corresponds to the residual oil
saturation of matrix; koe;fc is the relative permeability of oil that corresponds to the
residual oil saturation of fracture-vug system; km ¼ trace Kmð Þ=n, where n is the
space dimension, Km is the permeability tensor of matrix; kfc ¼ trace Kfcð Þ=n, where
Kfc is the permeability tensor of fracture-vug.

K ¼ Km þKfc ð4:77Þ

As can be seen from above equation, three permeabilities are all symmetric
positive definite two-order tensor. We assume that the relative permeability has a
property of direction-invariance and it is universal in the multiphase study for
porous media. Relative permeability kwe;b.

kwe;b ¼ kwe;mkm/m þ kwe;fckfc /f þ/cð Þ
km/m þ kfc /f þ/cð Þ ð4:78Þ

where kwe;m is the relative permeability of oil that corresponds to the irreducible
water saturation of matrix; kwe;fc is the relative permeability of oil that corresponds
to the irreducible water saturation of fracture-vug system.

2. Pseudo-relative permeability curve
Based on preferential flow assumption, specific calculation process for
pseudo-relative permeability curve is shown in Fig. 4.21. First, normalization
processing is carried out for the real relative permeability curve of matrix and
fracture-vug system, where the normalized relative permeability curve of
fracture-vug system is viewed as classical X shape (as shown in Fig. 4.12a). To
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solve parameters in Fig. 4.21c, we need couple relative permeability parameters of
matrix and fracture-vug system as follows:

afc ¼
1� Swc;fc � Sor;fc
� �

/f þ/cð Þ
1� Swc;fc � Sor;fc
� �

/f þ/cð Þþ 1� Swc;m � Sor;m
� �

/m
ð4:79Þ

afc represents the contribution of the fracture-cavity volume to the total mobile
porosity in a grid block. bfc;w in Fig. 4.21, the contribution of fracture-cavity system
to the maximum grid block relative permeability to water, is defined as

bfc;w ¼ kfckwe;fc /f þ/cð Þ
kfckwe;fc /f þ/cð Þþ kmkwe;m/m

ð4:80Þ

bm;o, the contribution of matrix to the maximum grid block relative permeability
to oil, is defined as
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bm;o ¼
kmkoe;m/m

kfckoe;fc /f þ/cð Þþ kmkoe;m/m
ð4:81Þ

And then the new normalized points from the original matrix curves are cal-
culated as the following transformations

S�wn;b ¼ Swn;m 1� afcð Þþ afc

k�rw;b ¼ krw;m þ S�wn;b � krw;m
� �

bfc;w

k�ro;b ¼ kro;m þ 1� S�wn;b � kro;m
� �

1� bm;o

� �
8>><
>>: ð4:82Þ

where Swn;m represents the saturation of water phase in matrix.
Remark, the pseudo-relative permeability curve obtained by above method is

between the relative permeability curve of matrix and fracture-vug, as shown in
Fig. 4.21d.

Then the quantitative evaluation of the effective continuum capillary pressure is
straightforward. Based on preferential flow assumption, there are two flow stages in
a grid block containing fracture-cavity networks, i.e., the preferential flow stage in
the fracture-cavity network and the second stage flow in matrix. So given a certain
average water saturation of grid block Sw;b, the corresponding water saturation Sw;m
and Sw;fc, in fracture-cavity system and matrix can be found from the following
equation

Sw;b ¼ /mSw;m þ /f þ/cð ÞSw;fc
/m þ/f þ/c

ð4:83Þ

The capillary pressure could be found from the capillary functions of the
fracture-cavity system and matrix, respectively.

With this, we have successfully obtained the equivalent absolute permeability
tensor and the pseudo-relative permeability curve of coarse grid.

4.4 Numerical Simulation Method for Equivalent Media

Generally, the equivalent permeability is a full rank tensor rather than diagonal
tensor. Therefore, the full tensor numerical simulator should be applied to do
corresponding flow numerical simulation. However, corresponding commercial
software has not been developed, and we will develop an efficient full tensor
numerical simulation technology by combining mixed finite element and finite
volume method in this section. We apply the classical IMPES method to larger
scale two-phase flow simulation: the pressure equation is implicitly discretized by
mixed finite element method, and the saturation equation is explicitly solved by
finite volume method.
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4.4.1 Two-Phase Flow Mathematical Model in Large Scale

(1) Global pressure equation
First, by combining the continuity equation of water and oil phase and expanding it,
we can obtain

r � vw þ voð Þþ @/
@t

þ/
Sw
qw

@qw
@t

þ/
So
qo

@qo
@t

þ vw
qw

� rqw þ vo
qo

� rqo ¼ q ð4:84Þ

For simplicity, the fluid and rock mass are assumed to be incompressible. Then
above equation can be simplified as

v ¼ � Kkw rpw � qwGð ÞþKko rpo � qoGð Þ½ � ; r � v ¼ q ð4:85Þ

where v ¼ vw þ vo, overall velocity of fluid; q ¼ qw þ qo, source term; K, perme-
ability tensor of coarse grids; G ¼ grz, acceleration of gravity term.

There are two pressure variables pw and po in above equation. By introducing
capillary pressure pc ¼ po � pw (assume that water is wetting and capillary pressure
is a function of saturation Sw), we can eliminate a variable

v ¼ � K kw þ koð Þrpo � Kkwrpcow½ � þK kwqw þ koqoð ÞG ð4:86Þ

Obviously, this method will result in a strong coupling between pressure
equation and saturation equation, which is difficult to be solved. So we
apply another method to eliminate rpc. We first assume that the capillary pressure
pcow is the monotone function of water saturation Sw. Then the overall pressure
p ¼ po � pcom is introduced, where pcom is called modified pressure

pcom Swð Þ ¼
ZSw
1

fw sð Þ @pc
@Sw

sð Þds ð4:87Þ

where fw ¼ kw= kw þ koð Þ is fractional flow function of water phase.
From above equation, we can know rpcom ¼ fwrpc, then

v ¼ �KkrpþK kwqw þ koqoð ÞG ð4:88Þ

where k ¼ kw þ koð Þ, total mobility.
Substituting above equation in continuity equation of Eq. 4.85, we can obtain

�r � Kkrp� K kwqw þ koqoð ÞG½ � ¼ q ð4:89Þ

Obviously, the pressure equation is elliptic equation.

172 4 Equivalent Medium Model



(2) Saturation equation for water phase
For saturation equation, we usually use water phase equation. Based on the Darcy’s
law, we can obtain

kovw � kwvo ¼ Kkwkorpc þKkwko qw � qoð ÞG ð4:90Þ

Substituting vo ¼ v� vw in above equation and the dividing it by k, we can get
the velocity of water phase

vw ¼ fw vþKkorpc þKko qw � qoð ÞG½ � ð4:91Þ

Substituting above equation in continuity equation of water phase, we can obtain

/
@Sw
@t

þr � fw Swð Þ vþKkorpc þKko qw � qoð ÞG½ �f g ¼ qw ð4:92Þ

This is the classical parabolic equation.

4.4.2 Mixed FEM for Pressure Equation

The mixed finite element method (Aarnes et al. 2007; Durlofsky 1993; Yotov 1996)
is applied to solve globe pressure equation Eq. (4.89). This method has advantages
of finite element method and finite volume method: one is meeting the conservation
of mass in each element; another one is that it can deal with the computation of full
tensor permeability conveniently. The difference with standard Galerkin finite
element is that the mixed finite element takes the pressure and velocity as direct
physical variables, discretizes the Darcy equation and continuity equation respec-
tively, and establish corresponding mixed computation format.

Specific procedure: searching the approximate solution p; vð Þ in space L2 Xð Þ �
H1;div

0 Xð Þ to satisfy the equivalent integral equations

Z
X
u � Kk Skw

� �� ��1 � vkþ 1 dX�
Z
X
pkþ 1r � u dX

¼
Z
X
u � fw Skw

� �
qw þ fo Skw

� �
qo

� �
G dX

ð4:93Þ

Z
X

lr � vkþ 1 dX ¼
Z
X

lqkþ 1 dX ð4:94Þ

For all u 2 H1;div
0 Xð Þ and l 2 L2 Xð Þ. The superscript k represents k-th time step.
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Here, we use the low-order linear Raviart–Thomas space (RT0 space), specific
contents as follows:

P ¼ P 2 L2 Xð Þ : pjXi
is constant 8Xi 2 X

n o
ð4:95Þ

V ¼ v 2 H1;div
0 Xð Þ : vjXi

have linear components 8Xi;

v � nij
� ���

cij
is constant 8cij 2 X; and v � nij is continuous across cij

( )

ð4:96Þ

where nij is the unit normal to cij pointing from Xi and Xj, as shown in Fig. 4.22.
The corresponding Raviart–Thomas mixed FEM thus seeks p; vð Þ 2 P� V such
that holds for all u 2 V and l 2 P.

To express Eqs. (4.93) and (4.94) as a linear system, observe that functions in
V are, for admissible grids, spanned by base functions wij

� 
that are defined by

wij
�  2 P Xið Þd [P Xj

� �d ð4:97Þ
Z
ckl

wij � nkl dC ¼ 1 if ckl ¼ cij
0 else

�
ð4:98Þ

where P Xið Þ and P Xj
� �

are linear functions at Xi and Xj; superscript d is space
dimension.
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Fig. 4.22 Schematic of mixed finite element
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For pressure space P, we can definite the basis function space as below

U ¼ span wmf g

where

vm ¼ 1 if x 2 Xm

0 else

�
ð4:99Þ

Accordingly, the approximate expression of pressure and velocity can be written
as

p̂ ¼
X
Xm

pmwm ; v̂ ¼
X
cij

vijwij ¼ Wv ð4:100Þ

Substituting above equation in Eqs. (4.93) and (4.94), and after integration by
part, we can obtain

X
Xe

Z
Xe

WT
e � jk SkW

� �	 
�1
e �We dX vkþ 1

e

� �
�
X
Xe

Z
Xe

r �WT
e dX pkþ 1

e

� �

¼
X
Xe

Z
Xe

WT
e � qeGe dX

� �

ð4:101Þ

X
Xe

Z
Xe

r �We dX vkþ 1
e

0
B@

1
CA ¼

X
Xe

Z
Xe

qkþ 1 dX

0
B@

1
CA ð4:102Þ

where

qe ¼ fw Skw
� �

qw þ fo Skw
� �

qo

Generally, we write above equations as follows:

B �CT

C 0

� �
vkþ 1

pkþ 1

� �
¼ gkþ 1

qkþ 1

� �
ð4:103Þ
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where

B ¼
X
Xe

Z
Xe

WT
e � jk SkW

� �	 
�1
e �We dXvkþ 1

e

� �

C ¼
X
Xe

Z
Xe

r �We dXvkþ 1
e

� �

gkþ 1 ¼
X
Xe

Z
Xe

WT
e � qeGe dX

� �

qkþ 1 ¼
X
Xe

Z
Xe

qkþ 1 dX
� �

To get the information of elements in above equations, we need to analyze the
characteristic of element. The main idea of mixed finite element method is similar to
block-centered finite volume method and differs from standard Galerkin finite
element, which means pressure is defined at the center point of element to present
the average pressure of whole element as shown in Eq. 4.99 and velocity is defined
at the boundary of element as shown in Fig. 4.22b. For rectangular element, the
velocity can be deduced by the following equation:

v ¼
X
Am

vmwm ¼ �w1;w2;�w3;w4ð Þ
v1
v2
v3
v4

0
BB@

1
CCA ¼ Wv ð4:104Þ

In the above equation, we define that all positive values of vector function are
consistent with the positive direction of coordinate, as shown in Fig. 4.22b.
Obviously, velocity is linear function for RT0 space. Then we have

wm ¼ am1 þ am2x
am3 þ am4y

� �
ð4:105Þ

where the coefficient can be solved by the characteristic of unit basis function belowZ
Ai

wm � ni dA¼dmi ð4:106Þ
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As shown in Fig. 4.22b, for basis function, we can obtain

Z
A1

w1 � n1 dA¼1 )
Zhy
0

� am1 þ am2xið Þ dy ¼ 1

Z
A2

w1 � n2 dA¼0 )
Zhy
0

am1 þ am2xiþ 1ð Þ dy ¼ 0

Z
A3

w1 � n3 dA¼1 )
Zhx
0

� am3 þ am4yið Þ dx ¼ 0

Z
A4

w1 � n4 dA¼1 )
Zhx
0

am3 þ am4yiþ 1ð Þ dx ¼ 0

By solving above equations, we can get coefficient ami and the specific
expression of basis function w1. In the similar way, we can get the velocity basis
function at other boundary as follows:

w1 ¼ 1
hxhy

x� hx
0

� �
; w2 ¼ 1

hxhy

x

0

� �

w3 ¼ 1
hxhy

0

y� hy

� �
; w4 ¼ 1

hxhy

0

y

� � ð4:107Þ

Substituting above equation in Eq. (4.104), we will obtain the specific expres-
sion of unit approximate function for velocity. After substituting it in Eqs. (4.101)
and (4.102), we will obtain the element characteristic matrix of Eq. (4.103) as
follows:

Be ¼
Z
Xe

WT
e � Kk Skw

� �	 
�1
e �We dX

¼
Z
Xe

�we
1

we
2

�we
3

we
4

2
6664

3
7775
4�2

kKe
11 kKe

12

kKe
21 kKe

22

� ��1

2�2

�we
1 we

2 �we
3 we

4½ �2�4 dX

¼ 1

hxhy
� �2

Zhy
0

Zhx
0

hx � x 0

x 0

0 hy � y

0 y

2
6664

3
7775
4�2

j11 j12
j21 j22

� �
2�2

hx � x x 0 0

0 0 hy � y y

� �
2�4

dxdy
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Then we can get

Be ¼

K11hx
3hy

K11hx
6hy

K12
4

K12
4

K11hx
6hy

K11hx
3hy

K12
4

K12
4

K21
4

K21
4

K22hy
3hx

K22hy
6hx

K21
4

K21
4

K22hy
6hx

K22hy
3hx

2
66664

3
77775
4�4

ð4:108Þ

Similarly, the characteristic matrix and array of other elements are as follows,
respectively.

Ce ¼
Z
Xe

r �We dX ¼
Z
Xe

�r � we
1 r � we

2 �r � we
3 r � we

4½ �1�4 dX

¼ 1
hxhy

Z
Xe

�1 1 �1 1½ �1�4 dX ¼ �1 1 �1 1½ �1�4

ð4:109Þ

ge ¼
Z
Xe

WT
e � qeGe dX ¼

Z
Xe

�we
1

we
2

�we
3

we
4

2
6664

3
7775
4�2

qgx
qgy

� �
2�1

dxdy

¼ qe
hxhy

Zhy
0

Zhx
0

hx � x 0

x 0

0 hy � y

0 y

2
6664

3
7775
4�2

gx
gy

� �
2�1

dxdy

¼ qe
2

gxhx
gxhx
gyhy
gyhy

2
6664

3
7775
4�1

ð4:110Þ

qe ¼
Z
Xe

qkþ 1 dX ¼ Aeq
kþ 1 ð4:111Þ

Looping all the elements, constituting overall matrix Eq. (4.103) with element
characteristic matrix and applying Gaussian elimination method to solve the
equation, we can obtain the value of elements at whole coarse grid system and the
rate of flow at the boundary of elements.
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4.4.3 FVM for Saturation Equation

In this section, we describe the finite volume method used for the approximation of
the saturation equation. Only a short description of the method employed will be
given. The interested reader is referred to Afif and Amaziane (2002a, b, 2003) for
more details. The saturation discretization in the i-th grid block based on finite
volume method is given as

Z
Xi

/
@S
@t

dXþ
Z
@Xi

fw vþKko � rpc þKko � qw � qoð ÞGð Þ½ � � ni dC ¼
Z
Xi

qw dX

ð4:112Þ

For convenience, we dropped the subscript w for water saturation Sw. Applying
divergence theory, we write above equation as

Z
Xi

qw dX ¼
Z
Xi

/
Dt

Skþ 1
i � Ski

� �
dX

þ
X
cij

fw Sð Þij v � nij þKko � rpc � nij þKko � qw � qoð ÞG � nij
� �h i

ð4:113Þ

Applying time discretization h-rule for temporal discretization, we obtain

/i

Dt
Skþ 1
i � Ski

� �þ 1
Xij j

X
cij

hFij S
kþ 1� �þ 1� hð ÞFij S

k
� �	 
 ¼ qw Ski

� � ð4:114Þ

where

Fij Sð Þ ¼
Z
cij

fw Sð Þij v � nij þKko � rpc � nij þKko � qw � qoð ÞG � nij
� �h i

dC

ð4:115Þ

Here, Fij Sð Þ is the numerical approximation of the flux over edge cij.
For a first-order scheme, it is common to use upstream weighting for the frac-

tional flow

fw Sð Þij¼
fw Sið Þ if v � nij � 0

fw Sj
� �

if v � nij\0

(
ð4:116Þ
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An explicit scheme, i.e., h = 0, is employed. Such scheme is quite accurate but
need impose stability restrictions on the time step, i.e., the CFL condition,

Dt� /i Xij j
vini max f 0w Sð Þ� 

0� S� 1

ð4:117Þ

where

vini ¼ max qi; 0ð Þ �
X
cij

min vij; 0
� � ð4:118Þ

@fw
@S

¼ @fw
@S�

@S�

@S
¼ 1

1� Swc � Sor

@fw
@S�

ð4:119Þ

where S� represents the normalized water saturation.

4.4.4 Numerical Examples

Based on above numerical simulation theory and method, the MATLAB is used to
compile corresponding full tensor two-phase flow numerical simulator. Before
giving the flow simulation examples of two complex fractured-vuggy media at
coarse scale, we have initially tested the validity of equivalent method and
numerical program in a simple fractured medium.

(1) Numerical validation
We consider a single fracture in the matrix block. Water-flooding simulations are
carried out for two different orientations of the fracture (θ = 0, π/4). Figure 4.23a is
the geometrical configuration. We consider a fracture thickness e = 100 μm and
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Fig. 4.23 Geometrical configuration of the fractured media with a single fracture (left) and a
single fracture (left) and a mesh of grid blocks (medium) and its corresponding permeability tensor
map (right)
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(kf = 8.37 × 105 μm2). The porosity and the permeability of the matrix are ϕ = 1.0
and km = 1 μm2, respectively. The medium is initially filled with oil. Residual oil
saturation and irreducible water saturation are both zero. We inject water at the
bottom left corner at the rate of q = 0.01 PV/day. Liquid is produced from the top
right corner at the same rate of injector. For simplicity, we neglect the gravity and
capillary effects and the original matrix and fracture relative permeability curves are
both X shape. The pseudo-relative permeability curve in coarse grid is X shape too,
as discussed in Sect. 4.3.2.

First, we generated a mesh of grid blocks for the region, by uniformly subdi-
viding it into 21 × 21 grid blocks, as illustrated in Fig. 4.23b. Here we just show
the inclined fracture cases with θ = π/4. Figure 4.23c illustrates the corresponding
effective permeability tensor ellipses.

Then let us evaluate the validation and accuracy of the present equivalent
continuum method by comparing the results with those obtained by the
discrete-fracture model. Two different meshes of grid blocks are considered, one is
21 × 21 and the other is 31 × 31. Figure 4.24 presents the water saturation dis-
tribution at 0.5 PV water injection. As can be seen, the results from the equivalent
continuum simulation are in excellent agreement with the discrete-fracture model. It
also implies that the numerical results will be more satisfied with the refining of the
mesh.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b) (c)

Fig. 4.24 Water saturation profiles at 0.5 PV water injection: simple fractures media with a single
fracture, one with a titled fracture (top) and one with horizontal fracture (bottom). a 21 × 21 grid
block. b 31 × 31 grid block. c discrete fracture model
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(2) Complex fractured karst reservoir 1
Based on statistical data from fractured karst reservoir outcrop in the TAHE oilfield
in west China, we applied random modeling technology to generate corresponding
discrete fractured-vuggy model. Some of the fracture statistics for fractures system
are presented in Table 4.2. And the cavities are simplified into some ellipses with
some statistics characteristics, which are presented in Table 4.3. Using these data,
we generated the realization of the fractured karst system depicted in Fig. 4.25a.
The size of this region is 100 m × 200 m (x × y).

Then we generated a mesh of grid blocks for the region, by uniformly subdi-
viding it into 10 × 20 grid blocks, as illustrated in Fig. 4.25b. The permeability
tensor of the whole mesh system can be obtained by homogenization theory. The
permeability map along y-direction is presented in Fig. 4.25c. From this map, we
can see that the fracture-vug networks have an important influence in the effective
permeability. We chose a matrix permeability of km = 1 µm2 and a uniform fracture
aperture of 100 µm (kf = 8.37 × 105 µm2). The corresponding porosity and
effective permeability tensor are calculated by using Eqs. 4.67 and 4.73. For sim-
plicity, we also neglect the gravity and capillary effects and the original normalized
fracture-vug relative permeability curves are X shape and the origin normalized
matrix relative permeability curves are krw;m ¼ ðS�w;mÞ2 and kro;m ¼ ð1� S�w;mÞ2.
Both the connate water saturation and residual saturation of matrix and fracture-vug
system are zero. The pseudo-relative permeability curves and corresponding
parameter distributions for coarse grid blocks are shown in Fig. 4.26b. The medium
is initially filled with oil. We inject water at the bottom left corner at the rate of
q = 0.004 PV/day. Liquid is produced from the top right corner at the same rate of
injector.

Figure 4.27 shows the influence of variations in the effective parameters on the
motion of the water through the fractured karst region. Three snapshots of the
subsequent evolution of the water flooding are presented in the figure. They help to
illustrate how fluid moves through the homogenized grid blocks. In the figure, we
can see that the variations in the effective permeability and pseudo-relative

Table 4.2 Macro-fractures’ statistic data

Characteristic parameter Minimum value Maximum value Average value

Length (m) 20 160 65.2

Orientation (°) 45 45 45

Intensity (1/m) 0.14 0.58 0.33

Table 4.3 Macro-cavities statistic data

Characteristic parameter Minimum value Maximum value Average value

Axis length (m) 2.1 8.3 6.5

Orientation (°) 0 15 5.0

Density (1/km2) 1026 2100 1750
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permeability curves have had a pronounced and cumulative effect on the flow
through the region. In Fig. 4.27, we also superimpose the fracture-cavity system
onto a plot of the water saturation profile at 0.5 PV water injection. We can see that
the fluid flow is primarily determined by the orientation and intensity of
fracture-cavity system. The figure shows that the preferred direction of motion is
primarily determined by the properties of the fracture-cavity system. And the
corresponding effective parameters of the homogenized grid blocks honor these
properties.
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Fig. 4.25 Realization of a fracture-vug media geometric model generated with the statistics
corresponding to the TAHE outcrop from Tables 4.2 and 4.3 (left); the mesh of grid blocks
(medium); the permeability logarithm map along y-direction (right)
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(3) Complex fractured karst reservoir 2
In the above example, the fractures are aligned with the same direction. In this
section, we will give a more general case with fractures in multiple directions. As
illustrated in Fig. 4.28a, the size of the study domain is 100 m × 100 m (x × y),
where the coordinate system is as same as that of the complex fractured karst
reservoir 1 depicted in Fig. 4.25. The permeability of matrix km = 11 µm2, and a
uniform fracture aperture of 100 µm (kf = 8.37 × 105 µm2). The medium is
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Fig. 4.26 Pseudo-curve parameters determination for each gird blocks (left) and the correspond-
ing pseudo-relative permeability curves of grid blocks (right)
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Fig. 4.27 Three water saturation profiles at different times and the superposition of the
fracture-vug system on the evolved water saturation map. a 25 d. b 75 d. c 125 d. d 125 d
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initially filled with oil. We inject water at the bottom left corner at the rate of
q = 0.01 PV/day. Liquid is produced from the top right corner at the same rate of
injector. The other parameters are the same as those given in above example.

First, we generated a mesh of grid blocks for the region. Two different meshes of
grid blocks are considered, one is 20 × 20 and the other is 10 × 10, as shown in
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Fig. 4.28 A conceptual fractures system (left); the permeability logarithm map along x-direction
at the fine grid (medium); the corresponding permeability logarithm map along x = direction at the
coarse grid (right)
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Fig. 4.29 Comparison with water saturation profiles between the fine grid (top) and the coarse
grid (bottom) at different times. a 20 × 20 grid block. b 10 × 10 grid block
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Fig. 4.28. Thenwe obtain the absolute permeability tensor (as shown in Fig. 4.28b, c)
and the pseudo-relative permeability curve (similar to Fig. 4.26).

Figure 4.29 shows the water saturation map at different times. As can be seen
from the figure, the existence of fracture and cavity results in the in-homogeneity of
media, and coarse-scale equivalent flow simulation method can adapt to the con-
dition very well. The guidance effect of fracture-vug system can be seen from water
saturation map. Simultaneously, the numerical computation result of two different
coarse grid systems is basically consistent. Although the result at coarse grid is
more homogeneous, the strong heterogeneity of reservoir can be reflected.
Figure 4.30 presents the cumulative oil production curve and water cut for both two
grid systems until 2PV water injection. We observe very close agreement between
the two grid systems, which again demonstrate the validity of our approach.

4.5 Summary

In this chapter, the introduction for numerical simulation of equivalent media model
has been made in detail. Based on the discrete fracture model and discrete
fracture-vug network model, the equivalent theory and numerical simulation
methods, which can be used to simulate two-phase flow in fractured-vuggy reser-
voirs at reservoir scale, have been established. It provides an efficient method for
the numerical simulation of fractured-vuggy reservoirs. Specific works and con-
clusions as follows:

(1) For the coarse grids with fractures, the equivalent permeability tensors have
been obtained based on oversample technology, DFM method and Galerkin
finite element, and the accuracy is verified by several numerical examples.

(2) For the coarse grids with fractures and vugs, the equivalent permeability
tensors have been obtained based on homogenization theory, DFVN method
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Fig. 4.30 Comparison with cumulative oil production between the fine grid and coarse grid (left);
and water cut curves for the fine grid and the coarse grid (right)
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and Galerkin finite element, and the accuracy is verified by several numerical
examples.

(3) On the basis of the preferential flow assumption, an analytical calculation for
pseudo-relative permeability curves of grid blocks has been conducted easily.
And these effective parameters are used in equivalent continuum simulations
of naturally fractured karst reservoirs. The simulation results indicate that the
pseudo-relative permeability can efficiently represent the motion characteristic
of water-oil front in fracture-vuggy media. However, it is not suitable for the
coarse grids with little fractures and vugs, which means a new computation
method is needed and it will be the next research points in the future.

(4) Based on the mixed finite element and finite volume method, an efficient
numerical simulation method is formed, which can be used to full tensor
permeability. The validity of numerical method has been verified by several
numerical examples.
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Chapter 5
Hybrid Fracture Model

Abstract This chapter introduces the numerical simulation of mixed models for
fractured medium. It starts with presenting the rules for dealing with the fractures
during the modeling process. It then introduces the concept models that are usually
used to describe the flowing characteristic of the fluids in fractured medium.
However, the fractured medium is too complicated, so several kinds of mixed
models, like coupled model and combined model, are introduced to realize better
modeling. Then the categories, characteristics, and realization process of the cou-
pled model are introduced. Also, the categories and realization process of combined
model are introduced briefly.

Keywords Combined model � Coupled model � Numerical simulation � Fractured
medium � Seepage concept model

5.1 Development Characteristics of Fractured Medium

Under the effect of geological tectonic stress or artificially applied stress, rock
medium will be damaged and fractures will come into being. There are many
factors influencing the development of rock fractures, including the size and
direction of stress, lithology, formation thickness, and the position of the fracture on
the geological structure. Owing to these different influencing factors, fractures in
rock medium tend to develop in a rather complex way, which is manifested as a
diversity of fractures’ length, aperture, strike, dip, density, etc. Thus, fractured
medium tends to have obvious multi-scale characteristic and strong heterogeneity
(shown in Fig. 5.1). Multi-scale characteristic means there are fractures of various
lengths in the same area. And strong heterogeneity means there is obvious differ-
ence between the development degrees of the fractures in different areas, for
example, there are fractures of various sizes near the fault area or the fracturing
area, and with the distance from the fault area or the fracturing area increases, the
development degree of the fractures decreases (most of the fractures are of middle
or small sizes), and the number of the fractures decreases significantly.

© Petroleum Industry Press and Springer-Verlag Berlin Heidelberg 2016
J. Yao and Z.-Q. Huang, Fractured Vuggy Carbonate Reservoir Simulation,
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Fractures of different development degrees have different permeabilities. And for
the fracture areas that have different fracture development degrees, the connectivity
and permeability of the fracture network in these areas be different. Thus the
fracture development degree can influence and change the seepage path. The
description of complex fracture and the measurement of its connectivity and per-
meability are especially important for the research of the seepage in fractured
medium.

When describing a fracture, we need to describe its length, aperture, dip, strike,
density, etc. Underground fractures develop in a rather complex way, however its
development has certain laws we can find. Research shows that, the development of
underground fractures conforms to geo-statistic law. Generally, fracture length, l
conforms to certain exponential function law:

n l; Lð Þ ¼ dcL
2 � a� 1ð Þ � l�a

l�aþ 1
min

; l 2 lmin; lmax½ � ð5:1Þ

where n l; Lð Þ is the number of the fractures whose system scale is L and whose
length is in the range of [l, l + dl]; a is one parameter in the exponential function for
fracture distribution, usually a 2 ½1:5; 3�; dc is the number of fractures that have
fracture center point in per unit area; [lmin, lmax] is the range of fracture length.

The value of a reflects the development status of fracture length in the model,
when a > 3, the model contains both big and small fractures, and it can be rec-
ognized as typical seepage model; when a < 2, the fluids mainly flow in the big
fractures, so we can adopt the discrete fracture grid model; and when 2 ≤ a ≤ 3, the
condition will be rather complex, and both big fractures and small fractures both
can influence the seepage process of the fluids.

Fig. 5.1 Complex fractured
reservoirs with fractures of
different scales
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Parameter C indicates the connectivity of the fracture. We usually set a
parameter, C0, as the threshold value. When C > C0, the fracture network is
connected. But C0 can also be regarded as a parameter that is independent of the
change of the fracture scale (Bour and Davy 1997, 1998). The change of parameter
a, which is in the exponential function, has so little influence on the C0 that this
influence can be neglected.

p� d � L a\2
p� d � L3�a

l2�a
min

2\a\3
p� d � lmin a[ 3

8<
: ð5:2Þ

When a > 3, the fracture’s permeability and connectivity is independent of the
scale. When a < 3, its connectivity is related to dc (fracture’s density) and
L (fracture’s scale). There are four independent variables in the fracture exponential
function: a (fracture length index), lmin (fracture’s minimum length), L (the fracture
system length), dc (fracture density or permeability parameter). There can be three
kinds of situations (Dreuzy et al. 2001): when a < 2, the fluids mainly flow through
long fractures and the fracture network is in a secondary position; for fracture
network, characteristic length is the system length, so reducing the size of the grid
cannot improve the permeability. When a > 3, fracture network is composed of
small fractures, so we apply the seepage theory to describing the system. When
2 ≤ a ≤ 3, there is no need to classify the fracture length strictly.

5.2 Conceptual Model of Seepage

It is especially important for us to choose a proper seepage model when simulating
the flow of the fluids in fractured medium. Owing to the obvious multi-scale
characteristic and strong heterogeneity, ordinary seepage models cannot satisfy the
requirements of the simulation. There are mainly two categories of seepage models,
continuum model and discrete fracture model that are usually applied to describing
the flow of fluids in fractured medium. Continuum model assumes that the fractures
are uniformly distributed in the matrix rock, and mathematical methods like sta-
tistical averaging and volume averaging are used to approximate the parameters of
the model. Equivalent medium model and double-porosity model are the main parts
of the corresponding conceptual models (Barenblatt et al. 1960; Kazemi et al. 1976;
Warren and Root 1963). While the other kind focuses on building a seepage model
that accords with the real fractures’ form according to the real geological
information of fracture development. The corresponding conceptual models contain
discrete fracture grid model and discrete fracture model. Those conceptual models
all have respective applicable conditions and scope.
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5.2.1 Continuum Model

Equivalent medium model assumes that fractured medium is an ideal hypothetical
continuum, and the physical quantities of each point of the system are in partial
equilibrium state. This model will distribute the fracture physical parameters
equivalently in the entire medium, and we regard the medium as an anisotropic
medium with symmetric tensor. This model ignores the physical structure of each
single fracture so it cannot describe or characterize every fracture precisely.

Double-porosity model assumes that the medium is two parallel continuous
systems, namely a fracture system and a matrix system. And continuous matrix is
assumed that to be divided into a series of rocks by the fracture system, these two
systems are coupled together by channeling. This kind of model can be roughly
divided into four types: double-porosity model, dual-permeability model, multirole
model, and sub-domain model. In order to characterize the change of pressure and
saturation in matrix, we use the sub-domain decomposition method to build
different models. For example, the MINC model is very common (Gong et al. 2006;
Karimi‐Fard et al. 2006; Pruess 2013; Wu and Pruess 1988). Research shows that, it
is very difficult to obtain an exact solution if we use a double-porosity model to
characterize the strongly heterogeneous fractured reservoir that contains large-scale
fractures. Thus, double-porosity model is suitable for fractured reservoir where
many small-scale fractures developed and the fractures developed richly and have a
good connectivity. However, double-porosity is not suitable for the situation where
fractures developed limitedly and have a bad connectivity.

5.2.2 Discrete Fracture Model

Discrete fracture network model assumes that fluids flow in the fracture network
only. The matrix’s permeability is ignored while emphasis is laid on the flow of
fluids in the fracture network. Discrete fracture network model is suitable for the
reservoir in which fracture development degree is high, the connectivity is high and
the matrix’s permeability can be neglected.

Discrete fracture model takes the matrix’s permeability into consideration,
namely when building a discrete fracture model we conduct precise explicit
expression on the fractures on the basis on taking matrix’s permeability into con-
sideration. When compared to double-porosity model, discrete fracture model has
explicit expression and calculation for each fracture; so there is no need to calculate
the fracture-matrix flow between fractures and matrix; and fracture’s dimensionality
is reduced so the calculation amount that fine grid decomposition on the fracture
aperture brings is reduced. In numerical simulation, most models adopt the finite
element method, which is based on unstructured grid. The fractures are located at
the boundary of the finite element. Later researchers put forward embedded discrete
fracture model, which adopts the regular structured grid, the fractures are embedded
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in the matrix grid and are treated as the well’s source. Embedded discrete fracture
model can make the gridding process of complex fractured medium very effective.

5.2.3 Hybrid Model

Usually, fractured medium is so complex that single seepage models cannot satisfy
our requirements. So the researchers began to combine different seepage models to
solve the practical problems. Overall, there are several situations as listed below

(1) Hierarchical model (Lee et al. 2001): classify the fractures according to their
scales and choose different methods to calculate their equivalent permeability.

(2) Coupling model (Sarda et al. 2002): in the same area, different kinds of
seepage models are coupled together. A representative example is that discrete
fracture model is coupled with other kinds of seepage models.

(3) Combined model (Wang et al. 2011): in the simulated space, adopt different
suitable seepage models in different areas and obtain a simultaneous solution
of the areas.

According to the analysis of the above seepage models, every model has certain
applicability. It is difficult to characterize precisely the multi-scale characteristic and
the heterogeneity characteristic if we only adopt single seepage model. For this
reason, we adopted the coupling model (continuum model and discrete fracture
model are coupled together) and combined model (shown in Fig. 5.2). Coupling
model is that many seepage models are coupled together in one research area;
Hybrid model is that many seepage models in different partitions are combined
together to use.

Fig. 5.2 Coupling model and
hybrid model for fractured
medium
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When building a hybrid model, we have chosen the applicable seepage model
according to the fracture development characteristics, in order to characterize the
fluids in the fractured medium precisely.

According to the above analysis, fractures can be divided into isolated small
fractures, small fractures of strong connectivity, mesoscale fractures of strong
connectivity and high density, sparse connected fractures, big-scale fractures or
faults, etc. The complex fractures of different lengths and different connectivity
have different kinds of applicable seepage models (shown in Fig. 5.3):

(1) Small isolated model can be equivalent to matrix pore, the Representative
Element Volume (REV) of the same scale can characterize the seepage
characteristics of it and matrix pores. And its flow characteristics can be
described by single equivalent anisotropic medium model.

(2) As for the small fractures of strong connectivity, the permeability is obviously
stronger than the permeability of the matrix pores, so the porosity and the
permeability characteristic of the whole Representative Element Volume is
improved. Thus, double-porosity equivalent continuum medium model can be
adopted and the porosity and permeability in the Representative Element
Volume are the statistical average value of the fracture and matrix.

(3) For mesoscale fractures of strong connectivity and high density, they have
different properties from the matrix. And the seepage velocities and fluids

Fig. 5.3 Seepage models applicable for different fractured medium
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properties are also different. According to the matrix’s seepage properties, we
can choose from discrete fracture network model, double-porosity and
single-permeability model, and double-porosity and dual permeability model.

(4) As for sparse connected fractures, big-scale fractures or faults, the number of
fractures is limited and the permeability is strong, and these factors influence the
seepage path of the seepage area. Thus, we can choose discrete fracture model.

5.3 Types of Coupling Models and Their Realization

Coupling model means that many seepage models are coupled together in the same
area. It is mainly for the multi-scale characteristics of fractured media. That is,
choose the applicable seepage model according to the development characteristics
of the fractures of different scale and couple the chosen seepage models together.

5.3.1 Coupling Model

The types of coupling model and the fractured medium they are applicable for is
listed in Table 5.1.

Now, equivalent medium-double-porosity-discrete fracture model is taken as an
example to illustrate the realization of coupling model.

5.3.2 Mathematical Equation

It is assumed that both the rock and the fluids are incompressible, the influence of
gravity and capillary pressure is neglected, and the flow of the water phase and the
oil phase, both comply with Darcy’s law.

/
@So
@t

þr � vo ¼ Fo ð5:3Þ

/
@Sw
@t

þr � vw ¼ Fw ð5:4Þ

vo ¼ �ko Soð ÞKrpo ð5:5Þ

vw ¼ �kw Swð ÞKrpw ð5:6Þ
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where, / is porosity; So and Sw are respectively the oil phase saturation and the
water phase saturation, and So + Sw = 1; vo and vw are respectively the oil phase
flow rate and the water phase flow rate; qo and qw are the source terms; K is the
permeability tensor; po and pw are respectively the oil phase pressure and water
phase pressure; ko and λw are respectively the oil phase mobility and the water
phase mobility, which comply with

Table 5.1 Types of coupling models and the fractured medium they are applicable for

Types of coupling The development
characteristics of the
Fractured medium

Seepage model The development
characteristics of the
applicable fracture

Equivalent
medium-double-
porosity model

There are many isolated
or connected
small-scale fractures
and many mesoscale
fractures of good
connectivity in the
medium

Equivalent
medium model

The small fractures
whose scales are far
smaller than the size of
the simulation grid as
well as that are isolated
or well connected

Double-porosity
model

The well connected
fractures whose scale is
same with the size of
the simulation grid

Double-porosity-
discrete fracture
model

There are many
mesoscale fractures of
high connectivity and
limited number
large-scale fractures in
the medium

Double-porosity
model

The well connected
fractures whose scale
are same with the size
of simulation grid

Discrete fracture
model

Large-scale fractures,
faults whose number is
limited and scales are
far larger than the
simulation grid

Equivalent medium-
double-porosity
discrete fracture
model

There are many isolated
or connected
small-scale fractures
and many mesoscale
fractures that are highly
connected and limited
number of large-scale
fractures

Equivalent
medium model

The fractures whose
scale is far less than the
size of the simulation
grid and small fractures
that are isolated or well
connected

Double-porosity
model

The well connected
fractures whose scales
are same with the size
of the simulation grid

Discrete fracture
model

The big fractures, faults
whose number is
limited and scales are
far larger that the
simulation grid
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ko ¼ kro
lo

; kw ¼ krw
lw

ð5:7Þ

where, kro and krw are the relative permeability of oil and water, respectively; lo and
μw are the viscosity of oil and water respectively.

Because the influence of capillary pressure is neglected, so po ¼ pw. Let
p ¼ po ¼ pw, so we can derive the pressure formula from formula (5.3) to formula
(5.6):

r � v ¼ F ð5:8Þ

v ¼ �kKrp ð5:9Þ

where, v ¼ vo þ vw is the total flow rate; k ¼ ko þ kw is the total mobility;
q ¼ qo þ qw is the total source item.

Let the fractional flow be fw = λw/λ, so we can derive the formula to calculate
the water saturation by formula (5.4):

v ¼ �kKrp ð5:10Þ

Formulas from (5.8)–(5.10) form the fractional flow model for the seepage of the
incompressible two phases in matrix.

5.3.3 Longitudinal Coupled Model of Equivalent Medium,
Dual Medium and Discrete Fracture

The mathematical model of equivalent medium is applicable for the formula (5.6)
and (5.7). What is important is calculating the equivalent porosity and equivalent
permeability of the Representative Element Volume according to the small
fractures.

(1) Double-porosity mathematical model (DPM)
A matrix system and a fracture system are coupled together by channeling function
(shown in Fig. 5.4). Fracture-matrix flow q is related to the factors like the per-
meability, the shape factor a, and the pressure difference between the two systems.
While shape factor a is related to the factors like the rock size, the fracture spacing
and the fracture density of the matrix system. And big fractures are divided into two
parts, and then they are coupled to the matrix system and the fracture system
respectively. And these two parts are also coupled together by channeling. In this
model, both the porosity and the permeability of matrix are taken into
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consideration. Thus, we adopt the double porosity-dual permeability model. So the
seepage equation in Ωm and Ωf is

r � vn þ �1ð Þnq ¼ Fn ð5:11Þ

vn ¼ �knKnrpn ð5:12Þ

/n @S
n
w

@t
þr � f n

w
vn

� �
þ �1ð Þnqw ¼ Fn

w ð5:13Þ

qm ¼ amK
mkm pm � pf

� �
for pm � pf

amK
mkf pm � pf

� �
for pm\pf

(
ð5:14Þ

qm;w ¼ amK
mkmw pm � pf

� �
for pm � pf

amK
mkmw pm � pf

� �
for pm\pf

(
ð5:15Þ

where, the superscript n = 1 or 2. And n = 1 represents a fractured system, n = 2
represents a matrix system; F and Fw are the total fracture-matrix flow and the water
phase fracture-matrix flow; α is the shape factor of the matrix system; Km is the
absolute permeability tensor.

Similarly, big fracture also accords with the above equations. And the shape
factor in fracture-matrix flow is αf. Adopt the absolute permeability Kf of the big
fractures as the absolute permeability.

(2) Discrete fracture mathematical model (DFM)
For big fractures, discrete fracture model is adopted. The method of dimension
reduction is adopted, so the 2-D fractures are seen as 1-D element located at the
interface of the surrounding medium unit. The final equation of the relation between
the big fractures and the surrounding medium is established by the relationship
between the flow rate and the pressure. The seepage equation is

M

f

V1

V2

F2

F1

qm

qF
qm

Fig. 5.4 Schematic diagram
of dual medium (Fm and Ff

are the channeling between
dual medium and big fracture)
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r � vFn þ �1ð ÞnqF ¼ FFn ð5:16Þ

vFn ¼ �kFnKFnrpFn ð5:17Þ

/Fn @S
Fn
w

@t
þr � f Fn

w
vFn

� �
þ �1ð ÞnqF;w ¼ QFn

w þFFn
w ð5:18Þ

where, the superscript n = 1 or 2. And n = 1 represents the big fractures that are
coupled with a fractured system, n = 2 represents the big fractures that are coupled
with a matrix system; ϕFn is the porosity of the big-scale fractures. SFnw is the
saturation of big-scale fractures; qFnw is the effect that source sink term has on the
big-scale fractures; QFn

w is the flow rate between the big-scale fractures and their
surrounding medium.

(3) Coupling conditions
The longitudinal coupling between the seepage models is realized according to
certain coupling conditions. The equivalent media part can be seen as the matrix
system of the dual media. We focus on the longitudinal coupling between the
discrete fracture and the dual medium. Ωf [ ΩF1 and Ωm [ ΩF2 can be seen as
two parallel systems. Like conventional dual medium, the two systems are coupled
together by fracture-matrix flow. In each system, the big fractures are coupled with
the surrounding medium according to the relationship of flow rate and pressure.
That is, on ΓV1, the surface pressure of the large-scale fracture is equal to the
pressure that the fracture system unit has on this side, and the amount of
inflow/outflow of the large-scale fracture is same with the amount of outflow/inflow
of the fracture system (Fig. 5.5)

qfe;l þ qfe0;l ¼ QF1
l on CV1

pfl;e ¼ pfl;e0 ¼ pF1l on CV1

(
ð5:19Þ

V1

Fig. 5.5 Schematic diagram
of discrete fracture model
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where, qfe;l and qfe0;l represent respectively the flow rate of the inflow from –e and e′

(the micro-fracture system units on both sides of the big fracture l) into l; QF1
l is the

flow rate of the inflow from the micro-fracture system units on both sides of the big
fracture l into l; pfe;l and pfe0;l represent respectively the pressure that the

micro-fracture units on both sides of the big fracture have on the side l; pF1e;l is the
pressure on the large-scale fracture l.

Similarly, on ΓV2, the surface pressure of the big-scale fracture equals to the
pressure the matrix system unit has on this side. And the amount of inflow/outflow
of the large-scale fracture is same with the amount of outflow/inflow of the matrix
system

qme;l þ qme0;l ¼ QF2
l on CV2

pml;e ¼ pml;e0 ¼ pF2l on CV2

(
ð5:20Þ

5.3.4 Numerical Simulation for Coupling Model

(1) The comparison between coupling model and the dual medium model that
contain large-scale fractures

In order to test the accuracy of coupling model, dual medium model is chosen to be
compared with the coupling model of dual medium and discrete fracture. It is
assumed that the size of the complex medium model that contains one big fracture
and many fractures of middle or small scale is 70 cm × 10 cm, the physical
parameters of the model is shown in Table 5.2. And point A, which is 10 cm from
the right side, is chosen as the reference point. When the big fracture has different
lengths (shown in Fig. 5.6), the calculation results of point A are shown in Fig. 5.7.
The maximum size of the triangular grids in the model is 2.0 cm. And the grids near
the big fracture are in-filled and the maximum of the grids is 0.2 cm. The model
contains 807 nodes and 1532 finite elements (shown in Fig. 5.6).

Table 5.2 The relative physical parameters of the model

Matrix system properties /m = 0.1, Km = 1 × 103 μm2

Fracture system properties /f = 0.01, Kf = 6 × 103 μm2

Large-scale fracture properties KF = 1 × 106 μm2, e = 0.001 m

Fluid properties lw = lo = 1 mPa S,
qw ¼ qo ¼ 1000 kg/m3

Type of the relative permeability curve Linear

Capillary pressure Neglected

Irreducible water saturation and residual oil saturation Srw ¼ 0:0, Sro ¼ 0:0

200 5 Hybrid Fracture Model



As we can see from the Fig. 5.7, when the length of the large scale is 2 cm, there
is only slight difference between the water saturation of point A from the two
models. However, if the length becomes 50 cm, there would be an obvious dif-
ference between the water saturation of point A from the two models. For the
coupling model, the water breakthrough time is early, and the fluid seeps through
the fractures quickly into point A. And for dual medium model, this process lags

Fig. 5.6 Mesh division of the model

Fig. 5.7 0–1 The water
saturation curve of point A.
a The length of the bigfracture
is 2 cm. b The length of the
big fracture is 50 cm
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obviously. The results of the numerical simulation are shown in Fig. 5.8. Thus,
coupling model can realize the detailed characterization of the seepage character-
istics of large-scale fractures.

(2) The pressure of single phase flow in fractured reservoir
Design a 1 × 1 two-dimension unit area fractured medium model, in which many
micro fractures and large-scale fractures developed. In the model, for the large-scale
fracture, the permeability Kf = 100,000 μm2, ϕm = 0.1, ϕf = 0.01, ϕF = 1, the
aperture a = 0.001 m, μw = 1 mPa s, μo = 1 mPa s, the shape factor αm = 20,
αF = 10, the fluid density ρw = ρo = 1000 kg/m3. Linear relationship is adopted for
the relative permeability curve, capillary pressure is neglected, and residual oil
saturation and irreducible water saturation are assumed to be zero. The bottom left
of the model is a water injection well and the up right is a production well.

Let us analyze the pressure change characteristic in the model of single phase
flow seepage. In the simulation for single phase fluids seepage, the compression
properties of rock are taken into consideration. The compressibility Cm = 0.02,
Cf = 0.1, CF = 0.2. Produce under constant pressure and the pressure of the
injection well is 1 × 106 Pa, and the pressure of production well is 1 × 105 Pa. The
absolute permeability tensor Km (unit: μm2) of the matrix system and the absolute
permeability tensor Kf (unit: μm2) of the fracture system are respectively

Km ¼ 0:01 0:0
0:0 0:01

� �
Kf ¼ 1:0 0:0

0:0 1:0

� �
ð5:21Þ

From the Fig. 5.9 we can find that the pressure in the fractured system changes
dramatically, the differential pressure between the water injection well and the
production well is about 1 × 106 Pa; while the pressure in the matrix system
changes gently, and the differential pressure between the water injection well and
the production well is about 1 × 105 Pa. In the fracture system, the pressure field
near the big fracture changes obviously, and the pressure drops along the big
fracture. The fracture-matrix flow rate between the systems changes obviously.
Around the water injection well, fluids flow into the matrix system from the fracture
system; while around the production well, fluids flow into the fracture system from

Fig. 5.8 The comparison of the water saturation distribution map at different time (the length of
the fracture is 50 cm). a The water saturation distribution in the dual medium model at the time of
13 and 20 s. b The water saturation distribution in the coupling model at the time of 13 and 20 s
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the matrix system. That shows, the characteristics of the pressure distribution of the
numerical simulation and the change of the fracture-matrix flow rate are in accor-
dance with the theory. The porosity of the fracture system is low, the permeability is
high, the pressure changes obviously. And a high pressure zone around the water
injection is well formed in a short time. The porosity of the matrix system is high,
permeability is low, and the pressure changes slowly. Owing to the difference
between the properties of the two systems, the pressures change in a different way,
which makes the channeling directions of the systems be different.

(3) The two-phase fluids in fractured reservoir
For dual medium seepage model, it is required that the permeability of the fracture
system is far larger than the permeability of the matrix system and the porosity of
the fracture system is far less than the porosity of the matrix system. In the
numerical simulation of water flooding oil, the speed of the process of water
flooding oil in fracture system is far larger than the speed of matrix system. In order
to analyze the displacement result, the difference of the two speed is reduced so as
to analyze the characteristics of the oil-water two-phase seepage in the coupling
model. The absolute permeability Kf (unit: 103 μm2) of the fracture system and the
absolute permeability Km (unit: 103 μm2) of the fracture system are respectively

Kf ¼ 6:0 0:0
0:0 8:0

� �
Km ¼ 1:0 0:0

0:0 1:0

� �
ð5:22Þ

The rate of oil production and water injection are both q = 10 m3/d. And the
physical properties of the model are shown in Table 5.3.

As we can see from the Figs. 5.10 and 5.11, the isotropic matrix system exhibits
an anisotropic pressure distribution characteristic, which indicates that the seepage
characteristic influences the pressure change of the matrix system directly. On the

Fig. 5.9 The pressure distribution in the coupling models of single phase flow for fractured
reservoir a pressure distribution in the fracture system b pressure distribution in the matrix system
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water saturation distribution map, the large-scale fracture can directly influence the
change of the water saturation of the fracture system around the fracture and the
matrix system. The fluids around the fracture are obviously being displaced.

Table 5.3 The relative physical properties of the model

Matrix system /m = 0.2

Porosity of the fracture system /f = 0.02

Large-scale fracture properties KF = 1 × 106 μm2, a = 0.001 m

Fluid properties μw = 1 mPa S, ρw = 1000 kg/m3;
μo = 2 mPa S, ρo = 800 kg/m3

Type of the relative permeability curve
of the matrix system

Linear

Type of the relative permeability curve
of the fracture system

Quadric form

Capillary pressure Neglected

Irreducible water saturation and residual oil
saturation

Srw ¼ 0:0, Sro ¼ 0:0

y

x

(a) (b)

(d) (e)

(c)

Fig. 5.10 The distribution of pressure and water saturation distribution when PV = 0.1.
a Complex fractured medium model. b Pressure of the fracture system. c Pressure of the bed
rock system. d Saturation of the fracture system. e Saturation of the bed rock system
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5.4 The Types of Hybrid Model and Its Realization

5.4.1 The Types of Hybrid Model

The mathematical equations of equivalent medium model and discrete fracture
model are applicable to formulas from (5.3) to (5.10). But the fractures in discrete
fracture model are upgraded: the fracture in a 2-D space is treated as a line with a
certain aperture; the fracture in a 3-D space is treated as a plane with certain
thickness. The seepage equations of dual medium model are same with the formulas
from (5.11) to (5.15).

Realize the coupling between the seepage models according to the conditions for
coupling. The equivalent medium portion can be seen as the matrix system of the
dual medium or the matrix portion of the discrete fracture model.

Fig. 5.11 The distribution of pressure and water saturation distribution when PV = 2.3.
a Pressure of the fracture system. b Pressure of the bed rock system. c Saturation of the fracture
system. d Saturation of the bed rock system
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(1) When equivalent medium and discrete fracture are going to be coupled, the
matrix boundary pressure is required to be equal to the pressure within the
fracture, and the flow rate of the outflow of the matrix units near the fracture
boundary is required to be equal to the inflow of the fracture at this area.

(2) When discrete fracture and dual medium are going to be coupled, the discrete
fracture-matrix portion is coupled with the dual medium matrix system. Make
them have the same pressure and comply with conservation of mass. And
discrete fracture is coupled with dual medium fracture system, make them
have the same pressure and comply with conservation of mass.

5.4.2 Result Analysis for the Numerical Simulation

The pressure distribution in the hybrid model of single phase seepage in fractured
reservoir is shown in Fig. 5.12.

We can see from the Fig. 5.12, the pressure variation of the dual medium part is
different from the discrete fracture portion. The pressure of the dual medium
fracture system dropped obviously, while the pressure of the matrix system changes
gently. In the discrete fracture portion, the discrete fracture exhibits isobaric feature.
The pressure around the discrete fracture drops obviously.

5.5 Summary

Because of the strong heterogeneity and the multi-scale property of fracture med-
ium, single flow model cannot realize the detailed characterization. But we can
adopt hybrid model. That means choosing applicable models according to the

Fig. 5.12 pressure distribution in the hybrid model of single phase seepage in fractured reservoir.
a Pressure distribution in fractured system. b Pressure distribution in matrix system
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fracture development characteristic and using several models at the same time.
Thus, the advantages of different models can be made good use of. The numerical
simulation of hybrid model can broaden the scope of application of single model
and realize the detailed characterization of the heterogeneity and multi-scale
characteristic of the fracture development in complicate fractured medium.
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Chapter 6
Multiscale Numerical Simulation

Abstract The difficulty in analyzing multi-phase fluid flow in real reservoirs is
mainly caused by the strong heterogeneity of the reservoirs. The multiple scales in
reservoirs may span several orders of magnitude. It takes a long time to calculate
multi-scale problem by utilizing conventional numerical method. Multi-scale
method incorporates the small-scale information into the base functions; therefore,
multiple scale method has exclusive advantages when it is applied to reservoir
numerical simulation. The multi-scale methods only need to carry out the coarse
mesh on the macro scale. The multi-scale basis function, constructed by solving the
partial differential equations on the coarse mesh, could capture the small scale
information. It aims at reducing the computational amount and capturing the small
scale characteristics. Besides, the efficiency can be further improved by applying
parallel computation. In this chapter, we present some applications of multi-scale
methods to fluid flows in carbonate reservoirs. We discuss multi-scale methods for
transport equations and their coupling to flow equations which are solved using
MsFEMs.

Keywords Multi-scale finite element methods � Numerical simulation � Fractured
vuggy carbonate reservoir � Discrete fracture model � Discrete fracture-vug net-
work model

6.1 Background and the State of Art of Multi-Scale
Methods

A broad range of scientific and engineering problems involve multiple scales.
Traditional approaches have been known to be valid for limited spatial and tem-
poral scales. Multiple scales dominate simulation efforts wherever large disparities
in spatial and temporal scales are encountered. Such disparities appear in virtually
all areas of modern science and engineering, for example, composite materials,
porous media, turbulent transport in high Reynold’s number flows, and so on.
A complete analysis of these problems is extremely difficult. For example, the
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difficulty in analyzing groundwater transport is mainly caused by the heterogeneity
of subsurface formations spanning over many scales. This heterogeneity is often
represented by the multi-scale fluctuations in the permeability (hydraulic conduc-
tivity) of the media.

When the traditional numerical methods are applied to solve the multiple scale
problems, we need to partition the area firstly, and solve the problem on the fine grid.
The amount of calculation is very huge when the grid partition is fine. The direct
numerical solution of multiple scale problems is difficult even with the advent of
supercomputers. The major difficulty of direct solutions is the size of the compu-
tation. A tremendous amount of computer memory and CPU time are required, and
this can easily exceed the limit of today’s computing resources. The situation can be
relieved to some degree by parallel computing; however, the size of the discrete
problem is not reduced. Whenever one can afford to resolve all the small-scale
features of a physical problem, direct solutions provide quantitative information of
the physical processes at all scales. On the other hand, from an application per-
spective, it is often sufficient to predict the macroscopic properties of the multi-scale
systems. Therefore, it is desirable to develop a method that captures the small-scale
effect on the large scales, but does not require resolving all the small-scale features.

When dealing with multi-scale processes, it is often the case that input infor-
mation about processes or material properties is not available everywhere. For
example, if one would like to study the fluid flows in a subsurface, then the
subsurface properties at the pore-scale are not available everywhere in the reservoir.
In this case, one can use Representative Volume Element (RVE) which contains
essential information about the heterogeneities. Assuming that such information is
available over the entire domain in macroscopic regions (see Fig. 6.1 for illustra-
tion), one can perform up-scaling (or averaging) and simulate a process over the
entire region. Multi-scale methods can easily handle such cases. For example, when
we study the fluid flow in the subsurface, the permeability field is a spatial field
varying over multiple scales. It is possible that the full description of permeability at

Macroscopic region boundaries

Representative Volume Element

Fig. 6.1 Schematic
description of Representative
Volume Element and
macroscopic elements
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the finest resolution is not available, and we can only access it in small portions of
the domain (RVE). One can attempt to simulate the macroscopic behavior of the
material or subsurface processes based on RVE information. However, we must
assume that the material has some type of scale separation.

In Fig. 6.2, geological variation over multiple scales is shown (Efendiev and
Hou 2009). Here, one can observe faults (in Fig. 6.2a) with complicated geometry,
thin but laterally extensive compaction bands that represent low-conductivity
regions (in Fig. 6.2b) as well as other features at different scales. A blowup of the
fault zone is shown in Fig. 6.2b. The fault rock is of low conductivity and the slip

Fig. 6.2 Schematic description of hierarchy of heterogeneities in subsurface formations (modified
from Efendiev and Hou 2009)
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band sets consist of fractures that are filled (fully or partially) with cement.
Pore-scale views of portions of a slip band set are shown in Fig. 6.2c, d. When
simulating based only on RVE information as discussed before, the large-scale
nonlocal information is disregarded, and this can lead to large errors. Thus, it is
crucial to incorporate the multi-scale structure of the solution at all scales that are
important for simulations.

With the development of the multiple scale simulation, the multiple scale
problems have caused the widespread attention and promote the development of
multiple scale computing method. There are many disadvantages when the tradi-
tional Finite Element Method is applied to deal with the multiple scale problems.
However, the Multi-scale Finite Element Method can solve the problems.
Especially the development of computer and the advanced theory has supported the
development of the multi-scale simulation.

With the process of technology, the spatial scale has been developed to
micro-level in the scientific research and engineering application. Meanwhile the
multi-scale modeling and multi-scale calculation are also the hot topics of the
world. The direct numerical solution of multiple scale problems is difficult even
with the advent of supercomputers. Furthermore, it is not necessary to obtain all the
microcosmic information when we analyze multiple scale problems. Therefore,
researchers at home and abroad have proposed various multi-scale computing
methods, divided into traditional multi-scale computing method and multi-scale
computing method developed in recent years.

6.1.1 Traditional Finite Element Method

When traditional finite element method is applied to perform numerical simulation,
we need to partition the area in order to form a series of finite elements, and suppose
that the media in these finite elements is homogeneous. The polynomial interpo-
lation is adopted to represent the characteristics of physical field in these elements.
The finite element equation is built based on the Ritz method or Galerkin method.
The characteristics of physical field in the area are obtained by solving the finite
element equation in the end. The interpolation functions are linear polynomial and
this is an approximation of the real physical field in these elements. When the
porous media is heterogenic, the error will be enlarged. Therefore, we assume that
the porous media is homogeneous when traditional finite element method is
adopted. It is necessary to divide the area into finer finite elements so as to ensure
that the parameters in every element are constant if the porous media is hetero-
geneous. Theoretically, the numerical solution of finite element method will be
closer to the theoretical solution if the interpolation function is closer to the physical
field function, the grids are finer and the points are more intensive. In general,
interpolation function is linear interpolation. However, the physical field is non-
linear when the porous media is heterogeneous, and this will lead to large error.
A tremendous amount of computer memory and CUP time are required when the
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finer grids are adopted. As a result, there are some disadvantages when we apply
FEM to solve multiple scale problems related to fractured reservoir, one of the main
reasons is the basis functions could not describe the physical field accurately. For
MsFEM method, the basis functions satisfy the governing equation, therefore the
effect of small scales on the large scales is correctly captured.

MsFEM is proposed for solving multiple scale problems, for example, the
heterogeneous porous media involves multiple scales, this heterogeneity is often
represented by the multi-scale fluctuations in the permeability (hydraulic conduc-
tivity) of the media. The difficulty in analyzing groundwater transport is mainly
caused by the heterogeneity of subsurface formations spanning over many scales.
MsFEM solves the multiple scale problems on coarse grid, and incorporates the
small-scale information into the base functions. For the problems of simulation on
large region, MsFEM applies great to the porous media with strong heterogeneity.
The parameters in every element could change when MsFEM is adopted, the
variation of pressure distribution will be captured by the basis functions. Therefore,
we can depict the change of parameters and the distribution of flow field on the
coarse grid with very few calculations. The key of the MsFEM is to build the basis
functions that can capture the fine-scale features of physical field; this is the
essential difference with traditional finite element method.

6.1.2 Multi-Scale Methods

Traditional multi-scale methods include multi-grid method, domain decomposition
method and adaptive finite element method. These three methods will be briefly
described as follows.

Multi-grid Method is proposed by Brandt (1977), which is widely used in fluid
mechanics and other application fields. The basic idea is to form coarse and fine
meshes, and then to establish the corresponding differential or finite element dis-
cretization equation. Then, the equation is solved on the coarse and fine meshes
iteratively. The use of coarse mesh is to eliminate the low-frequency smooth part,
and the use of fine mesh is to eliminate the high frequency error section. However,
this method is still difficult to solve the multi-scale problem.

Adaptive Finite Element (AFE) method is proposed by Babuska and Rheinboldt
(1978). AFE method is divided into h, p, and h-p types (Guo and Babuška 1986).
When keep the degree of basis function of h type AFE method constant, decreasing
element size h to obtain the desired accuracy. P type method is to keep h constant
and increase p to improve the accuracy of approximation. h-p type is the combi-
nation of h type and p type.

Domain Decomposition Method (DDM) can be divided into two types, i.e.,
overlapping and non-overlapping. Overlapping DDM is derived from Schwarz
alternating method in (Schwarz 1890). Non-overlapping DDM is more intuitive
than DDM, which is suitable for the complex problem in different regions.
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For the above several multi-scale methods, these methods are computed on the
small scale. Thus, there are still some difficulties when we solve practical engi-
neering problems. Therefore, it is necessary to find a more effective method to solve
the multi-scale problem. In recent years, many scholars put forward many
multi-scale calculation method, in addition to the multi-scale finite element method,
including homogenization method, wavelet numerical uniform method, variational
multi-scale method, non uniform multi scales method, multi-scale finite volume
method, adaptive multi-scale finite element method, scale lifting method and the
method of Equation-Free (Kevrekidis et al. 2004) and some other methods.

Homogenization Method (Gr et al. 1992; Cui and Cao 1999) is analyzed to study
the small scales on periodic unit, and then the information of small scale is mapped
to large scale. Thus, we can derive the homogenization equation on large scale. In
engineering and other applications, this method has been successful used. But it is
based on the assumption of the periodic structure of the micro structure; its
application range is limited.

Wavelet-based Numerical Homogenization Method is proposed to solve the
elliptic problems by Dorobantu and Engquist (1996). The method is based on
multi-resolution analysis, and the discrete operator of the original equation is
established on a small scale. Then the discrete operator is imposed on the wavelet
transform. The method greatly reduces the computation time, but the process of
wavelet transform is very complex.

The method is based on the multi-scale model analysis and the posteriori error
estimates. The scalar field is decomposed into large-scale and small-scale solutions.
The decomposition of the solution is based on the assumption that the small scale
information of the solution cannot be captured on a given grid. Generally, the scale
solution can be determined by analyzing or numerical method. More accurate
numerical approximation can be obtained by the modified variational form.

Heterogeneous multi-scale method (HMM) is a general framework of the
multi-scale calculation method, proposed by Weinan (2003), Weinan and Yue
(2004), Ren and Weinan (2005). The method firstly constructs the coarse grid
format with the unknown coefficients, and then solves local small scale unit to
estimate macroscopic coefficients. Finally in the whole region, the macroscopic
equation is solved. This method is composed of two important parts: coarse grid
format and macroscopic coefficients. High-order finite element can be used as
macro algorithm and it can be applied to high-order cases, as shown in Fig. 6.3
(Weinan et al. 2005).

Multi-scale Finite Volume Method (MsFVM) is proposed by Jenny et al. (2003,
2005). The method is to divide the region on the large scale and then determine the
control volume on these elements; the differential equations are integrated to obtain
cell balance equation. MsFVM is suitable to solve the problems with complex
boundaries. The basic feature of this method is able to maintain physical local
conservation.

Adaptive Multi-scale Finite Element Method (Adaptive MsFEM) is first pro-
posed by He and Ren (2009a, b). In this method, the multi-scale basis functions
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with adaptive characteristics in time domain are coupled to deal with the local
problem defined in small scale. The idea of this method is to use modified iterative
format as the framework of multi-scale method, and build adaptive multi-scale base
functions which could capture the small scale information in the coefficients of the
equation.

The basic idea of up-scaling method is to build large-scale equations with a
known analytical form, which may be different from the basic small scale equations,
and then solve these up-scaled equations in the large-scale grid (Desbarats 1998;
Neuweiler and Cirpka 2005). The method has been successfully applied in some
ways, but it depends on some specific assumptions of the porous media and this
makes its application limited. The up-scaling methods proposed by Durlofsky
(1991), Mccarthy (1995) is more general. Durlofsky used up-scaling method to
calculate the permeability tensor of the porous media, which is shown in Fig. 6.4.

Fig. 6.3 Schematic
description of HMM

Fig. 6.4 Space periodic
porous media
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Durlofsky assumed that permeability tensor in small scale y is changed but in large
scale x is constant, which simplify the determination of the multi-scale variation of
permeability tensor to solving small scale y equivalent permeability tensor, but it is
only for heterogeneity in two different scales or the equivalent permeability tensor.
Up-scaling method is based on the homogenization theory, so it may be not suitable
for the non periodic problem. When medium correlation scale is larger, the appli-
cation is also very difficult.

Multi-scale finite element method is derived from the pioneering work of
Babuška et al. In 1983, (Babuška and Osborn 1983) applied the multi-scale base
functions to solve elliptic equation with a special scale parameter for the
one-dimensional problem. In 1994, he (Babuška and Osborn 1994) analyzed the
two-dimensional problems. In 1997, Hou and Wu (1997), Hou and Cai (1999)
extended it to solve the general two-dimensional problem with oscillating coeffi-
cients, and then proposed multi-scale finite element method. They used multi-scale
finite element method for solving elliptic problems.

Hou and Wu (1997) simulated the single phase stable flow in two-dimensional
porous media. They proposed two types of boundary conditions for basis functions:
one choice is linear boundary conditions, similar with the basis function of standard
finite element method of which is only related to the node coordinates, along the
boundary changing from 1 to 0. The other one is the oscillatory boundary condition.
The basis function on the boundary satisfies simplified elliptic equation, and it can
reflect the changes of boundary parameters caused by pressure changes. For
example, the basis function /i of element E (Fig. 6.5) satisfies the following
simplified elliptic equation:

Fig. 6.5 Schematic
description of element E
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rK xð Þr/i ¼ 0; x 2 E ð6:1Þ

where K xð Þ is permeability tensor, and /i xj
� �

¼ dij. When K xð Þ is separable in
space, i.e., K xð Þ ¼ K1 xð ÞK2 yð Þ, /i can be computed analytically. For example, on
C1 we have

/i xð Þ C1j ¼

R x2
x

dt
K tð ÞR x2

x1

dt
K tð Þ

ð6:2Þ

If K is a constant, then /i xð Þ ¼ x2 � xð Þ= x2 � x1ð Þ is linear. If K is not a con-
stant, /i is oscillatory due to the oscillations in K. Combining with (6.1), we can get
the multi-scale basis functions.

Also, with both types of boundary condition, one has
Pd

i¼1 /i ¼ 1.
Hou and Wu proposed an oversampling method to overcome the difficulty due to

scale resonance. Let E be the original domain, S be a oversampled domain (see
Fig. 6.6). First, the basis functions wi i ¼ 1; . . .; dð Þ of sampled domain S is
obtained, we then form the actual basis /i i ¼ 1; . . .; dð Þ by linear combination of
wi i ¼ 1; . . .; dð Þ

/i ¼
Xd
i¼1

cijwj; i ¼ 1; . . .d ð6:3Þ

The coefficients cij are determined by condition /i xj
� �

¼ dij.
Hou and Wu also applied MsFEM to solve the nonlinear problem Efendiev et al.

(2004) and Efendiev and Pankov (2004). Multi-scale basis function is the key of
multi-scale finite element method. To eliminate the adverse effects of element scale,

Fig. 6.6 Schematic
description of oversampled
domain
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basis function can better reflect the small scale information. But Hou only studied
the two-dimensional steady flow.

In 2003, Chen and Hou (2003) proposed mixed multi-scale finite element
method for severely heterogeneous porous media, combining with oversampling
technique to solve the local Neumann boundary value problem, to obtain more
accurate the multi-scale basis functions.

In 2002, Chen and Yue (2002) studied steady flow problems in heterogeneous
porous media based on MsFEM. They proposed a scale technology, which makes
the small scale information integrated into macro information on large scale.

Many kinds of multi-scale methods are designed to build a general computa-
tional framework for multi-scale simulation. Equation-Free (Kevrekidis et al. 2002),
HMM and other methods are used to solve the macro equations in RVE, and these
methods are widely used. When solving partial differential equations, MsFEM is
similar to these methods. For these problems, the basis function is approximated by
RVE. For MsFEM, the local problem can be expressed by different global equa-
tions. The important step is to determine the form of the macro equations and the
variables of the basis function. However, many general numerical methods are not
described the way of determining the variables that affect the macro-scale basis
functions in multi-scale simulation.

The multi-scale methods considered pre-compute the effective parameters that
are repeatedly used for different sources and boundary conditions. In this regard,
these methods can be classified as up-scaling methods where the up-scaled
parameters are precomputed. In multi-scale approaches, one can reuse precomputed
quantities to form coarse-scale equations for different source terms, boundary
conditions and so on. Moreover, adaptive and parallel computations can be carried
out with these methods where one can downscale the computed coarse-scale
solution in the regions of interest. These features of up-scaling methods and
MsFEMs are exploited in subsurface applications. The multi-scale methods differ
from domain decomposition methods where the local problems are solved many
times. Domain decomposition methods are powerful techniques for solving
multi-physics problems; however, the cost of iterations can be high, in particular,
for multi-scale problems. These iterations guarantee the convergence of domain
decomposition methods under suitable assumptions. Multi-scale methods with
up-scaling concepts in mind, on the other hand, attempt to find accurate sub-grid
capturing resolution and avoid the iterations. This may not be always possible, and
for that reason, some type of hybrid methods with accurate sub-grid modeling can
be considered in the future.

In recent years, one of the research directions of multi-scale simulation is the use
of some limited global information. Limited global information is often used in the
up-scaling method. It uses some simplified models to extract important information
about the nonlocal physical processes. One example is the two-phase flow in
heterogeneous medium. Chen and Durlofsky (2006) studied the two-phase
immiscible flow in heterogeneous media, using single phase flow information to
upscale the governing equations of two-phase flow. In particular, the flow and
transport of two-phase flow in the coarse grid are calculated by solving the global
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single phase flow equation with the calculation of the scale of the penetration
coefficient. Similar with the basic idea of up-scaling using limited global data,
multi-scale finite element method using limited global information is also proposed
Aarnes (2004), Owhadi and Zhang (2007). Owhadi and Zhang (2007) provides a
theoretical basis for the use of the limited global information. MsFEM using limited
global information is to establish a multi-scale basis function using limited global
information.

6.2 Multi-Scale Finite Element Method

The difference between multi-scale finite element method and traditional finite
element method is the choice of basis functions. Basis functions of traditional finite
element are usually linear that could not reflect the physical field. Multi-scale basis
functions of MsFEM are obtained by solving local differential equations based on
the governing equation. MsFEM is especially suitable for large-scale heterogeneous
reservoir problem, which overcomes the above-mentioned shortcomings of FEM.
Multi-scale basis functions of MsFEM can reflect the fine features of the unit
parameters through computing on the coarse meshes, which could reduce the
amount of calculation.

6.2.1 Multi-Scale Basis Functions

Multi-scale basis functions are important ingredients of MsFEM. Basis functions
are designed to capture the multi-scale features of the results. Consider

�r � K x; yð Þ
l

rp

� �
¼ f x; yð Þ 2 X ð6:4Þ

where K is a permeability tensor; p is pressure; f is source/sink term. Let Kh be a
coarse partition of X. We consider an element E 2 Kh that has d vertices, the
multi-scale basis functions /i

E; i ¼ 1. . .d
� �

are given by:

�r � K
l
r/i

E

� �
¼ 0 ð6:5Þ

where /i
E xj
� �

¼ dij and 1
Pd

i¼1 /
i
E ¼ 1. We would like to note that the solution of

(6.5) is usually not analytic. We need to divide the coarse element into fine ele-
ments. Thus, numerical solution of (6.5) can be got through finite element methods.
The small features of the local domain are incorporated into multi-scale basis
functions (see Fig. 6.7).
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6.2.2 Boundary Conditions of Multi-Scale Basis Functions

The choice of boundary conditions in defining the multi-scale basis functions plays
a crucial role in approximating the multi-scale solution. The boundary conditions
are generally divided into linear boundary conditions and oscillatory boundary
conditions.

Linear boundary conditions are similar with the variation of the basis function of
finite element method that cannot reflect the changed of the boundary parameters.
The linear conditions are only related to the coordinates of points on the boundary.
The oscillatory boundary conditions can reflect the changes of parameters. When
solving multi-scale basis functions on a coarse grid, if the division of fine mesh of
coarse grid resolves heterogeneity of cell medium, the solutions of multi-scale finite
element method have the same convergence with that of finite element method. If
the division of fine mesh could not resolve heterogeneity, finite element method will
not get accurate results, the results of multi-scale finite element method are much
better than that of finite element method.

6.2.3 Oversampling Technique

In order to avoid the scale resonance, Hou proposed an oversampling method to
overcome the difficulty due to scale resonance.

Let Dijk be a coarse grid, Dabc be a sampled domain, as shown in Fig. 6.8. The
sampled domain may slightly, or many times, be larger than the original domain,
but too much times will cause extra computation of solving the basic function. It
should be noted that the sampled domain must be similar to the shape of original
domain.

We denote /i
K , /

j
K , /

k
K be the actual basis functions of points i, j, k; w1, w2, w3

be the basis functions of points a, b, c. Take, for example, w1 of point a in Dabc. w1
is set to satisfy the following equations
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Fig. 6.7 2D basis functions of MsFEM and FEM
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Lew1 ¼ 0 in x 2 Dabc

w1 ¼ x1 on @Dabc

�
ð6:6Þ

where x1 aj ¼ 1, x1 bj ¼ 0, x1 cj ¼ 0. Similar to the computation of w1, we can get
w2, w3.

Because K � S, the actual basis functions /i
K , /

j
K , /

k
K can be formed by linear

combination of wj j ¼ 1; 2; 3ð Þ

/m
K ¼

X3
l�1

Cm;lwl; m ¼ i; j; k

where Cm;l is given by /m
K xlð Þ ¼ dlm.

6.3 MsFEM for Fluid Flow in Heterogeneous Reservoir

Many problems of fundamental and practical importance in science and engineering
have multi-scale solutions; for example, porous media, composite materials and so
on. The direct numerical simulation of problems involving multi-scale solutions is
difficult, due to the requisite of tremendous amount of computer memory and CPU
time, which can easily exceed the limit of today’s computer resources. On the other
hand, in practice, it is often sufficient to predict the large-scale solutions to a certain
accuracy. Thus, a number of multi-scale numerical methods have been presented,
such as heterogeneous multi-scale methods, multi-scale finite element methods
(MsFEM) and variational multi-scale method.

In this part we will apply MsMFEM to numerical computation of incompress-
ible, immiscible two-phase flow in heterogeneous reservoir. The main idea of
MsMFEM is to model fine-scale patterns in the velocity field by computing
multi-scale base functions that reflect the impact of the fine-scale heterogeneous
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Fig. 6.8 Schematic
description of oversampled
domain
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structures. It allows the pressure equation to be solved on a coarse grid and it
produces velocity fields that are mass conservative on a sub-grid scale so that we
can use upstream finite volume method to compute the saturation equation on a fine
grid. So, large-scale effects are accounted for by the degrees of freedom on a coarse
grid, and fine-scale effects are accounted for by subresolution in the basis functions.

6.3.1 Mathematical Model

Incompressible flow in strong heterogeneous reservoir obeys Darcy’s law.
Neglecting the effect of gravity, compressibility, capillary pressure, and the gov-
erning equations for two-phase immiscible flow can be described by the fractional
flow model.

/
@Sw
@t

þr � fwvð Þ ¼ qw ð6:7Þ

v ¼ � kw þ koð ÞKrp; r � v ¼ q ð6:8Þ

where / is porosity; Sw is water saturation, and So þ Sw ¼ 1; q ¼ qo þ qw is the
total volumetric source term; v ¼ vo þ vw is the total velocity; K is a permeability
tensor; p is the pressure; fw ¼ kw=k is the fractional flow of water; ko, kw are the oil
and water mobility, that satisfy

ko ¼
Kro

lo
; kw ¼ Krw

lw
ð6:9Þ

where Kro and Krw are the relative permeability of phase oil and water; lo; lw
denote the viscosity of phase oil and water.

In the following, we will study (6.7) on the coarse and fine-scale and (6.8) is
solved separately, using the sequential fully implicit method. For the model, we will
assume no-flow boundary conditions and neglect body forces.

6.3.2 MsMFEM Method

First, we state some notations to be used in the paper. Let X be the reservoir domain
and n be the outward-pointing unit normal on @ X. To solve the pressure equations
on the coarse scale, we will use a mixed finite element formulation. Then, for (6.7)
we find ~p; ~vð Þ 2 L20 Xð Þ � Hd

0 Xð Þ such that,
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Z
X

u � kKð Þ�1~vdX�
Z
X

~pr � u dX ¼ 0 8u 2 L20 Xð Þ ð6:10Þ

Z
X

lr � ~vdX ¼
Z
X

qldX; 8l 2 Hd
0 Xð Þ ð6:11Þ

Let T be a coarse-grid partition of X. U and V are finite dimensional subspace of
Hd

0 Xð Þ and L2 Xð Þ. To derive a discretization of (6.10) and (6.11), we find p; vð Þ 2
U � V such thatZ

X

u � kKð Þ�1vdX�
Z
X

pr � udX ¼ 0 8u 2 U ð6:12Þ

Z
X

lr � vdX ¼
Z
X

qldX; 8l 2 V ð6:13Þ

Let wif g and /kf g be the basis functions of U and V . The local equations can be
assembled to form a hybrid system

B C
CT 0

	 

v
�p

	 

¼ 0

q

	 

ð6:14Þ

where v ¼
P

viwi, p ¼
P

pk/k, B ¼ bij
� �

, bij ¼
R
X wi � kKð Þ�1wjdx; C ¼ cikf g,

cik ¼
R
X /kr � widx; q ¼ qkf g, qk ¼

R
X /kqdx; v ¼ vif g; p ¼ pkf g.

Let Th ¼ Xif g be a coarse-grid partition of X by a collection of polyhedral
elements and Xij ¼ Xi [Cij [Xj contains two neighboring grid blocks Xi and Xj

(see Fig. 6.9). For each Cij ¼ @Xi \ @Xj and Xi, we assign a multi-scale basis
function wij 2 UMs and a basis function /i 2 V separately.

(1) Basis function for velocity
In the MsMFEM, the basis function associated with the interface Cij ¼ @Xi \ @Xj is
constructed by solving

Fig. 6.9 Multi-scale grid
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wij xð Þ ¼ �kKr/ij ð6:15Þ

r � wij ¼
xi xð Þ; x 2 Xi

�xj xð Þ; x 2 Xj

�
ð6:16Þ

wij xð Þ � n ¼ 0 8x 2 @Xij ð6:17Þ

wij xð Þ � nij ¼ vij 8x 2 Cij ð6:18Þ

here, n is the outward unit normal on @Xij, nij is the unit normal to Cij pointing from
Xi to Xj, x xð Þi is a source distribution function, which is to produce a flow with unit
average from Xi to Xj. For all Xi such that

R
Xi
qdx 6¼ 0, we choose x xð Þi to be

x xð Þi¼
1= Xij j;

R
Xi

qdx ¼ 0

q xð Þ
.R

Xi
q nð Þdn;

R
Xi

qdx 6¼ 0;

8><>: ð6:19Þ

To ensure a conservative approximation on the fine grid, for block-grids with no
source, the simplest choice is x xð Þi¼ 1= Xij j. The local boundary condition vij
should reflect heterogeneous structures. So we define vij according to

vij xð Þ ¼
v0ij xð ÞR

Cij
v0ij sð Þds ; x 2 Cij ð6:20Þ

where

v0ij ¼ nij � Kkð Þ � nij: ð6:21Þ

(2) Basis Functions for Pressure
To approximate the pressure we will use functions that are constant on each coarse
grid block with no source. Thus, for each Xi we assign a basis function /i 2 V ,
such that

/i xð Þ ¼ 1; x 2 Xi

0; x 62 Xi

�
ð6:22Þ

This type of approximation space for pressure is also used in the lowest order
Raviart–Thomas method.

(3) Coarse-scale Hybrid System
Then we arrange all the basis functions wij as columns in a matrix W. Let I is the
prolongation from blocks to cells. If block number i contains cell number j, then
Iij = 1, otherwise Iij = 0. The coarse grid system can then be obtained in the form
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Bc eCeCT 0

	 

vc

�pc

	 

¼ 0

qc

	 

ð6:23Þ

where Bc ¼ WTB fW; eC ¼ WTC f I; qc ¼ ITq f I.

6.3.3 Numerical Experiments

In this section, we apply the MsMFEM and the up-scaling method to model
incompressible and immiscible two-phase flow. The system is considered to be one
of the layers of the benchmark test, the SPE comparative project. The
log-permeability of the layer number 85 is given in Fig. 6.10. The fine field is
220 × 60. Assuming that the reservoir is initially fully oil-saturated. The water and
oil mobilities are defined by

kw ¼ S2w
lw

and ko ¼
1� Swð Þ2

lo
:

We consider a quarter-five spot problem. A source and a sink are introduced in
bottom left corner and top right corner, respectively.

Figure 6.11 shows saturation profiles after an injection of water corresponding to
100 % of the total pore volume in the reservoir. The grids are up-scaled by a factor
four and ten in each coordinate direction, respectively, so that the coarse grid
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consists of 55 × 15 blocks and 22 × 6 blocks. The figure indicates that the water
distributions obtained using MsMFEM are in excellent agreement with the refer-
ence fine-scale solutions. The up-scaling method has lost all fine-scale information
and only gives a crude approximation to the global flow pattern.

Fig. 6.11 Water saturation profiles at 1.0PVI. a Fine-scale solution (220 × 60), b MsMFEM
(55 × 15), c MsMFEM (22 × 6), d upascaling method (55 × 15), e upascaling method (22 × 6)
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6.4 MsFEM for Fluid Flow in Fractured Reservoir

Numerical simulation in naturally fractured media is challenging because of the
coexistence of porous media and fractures on multiple scales that need to be
coupled. We present a new approach to reservoir simulation that gives accurate
resolution of both large-scale and fine-scale flow patterns. Multi-scale methods are
suitable for this type of modeling, because it enables capturing the large-scale
behavior of the solution without solving all the small features. Double-porosity
models in view of their strength and simplicity can be mainly used for sugar-cube
representation of fractured media. In such a representation, the transfer function
between the fracture and the matrix block can be readily calculated for water-wet
media. For a mixed-wet system, the evaluation of the transfer function becomes
complicated due to the effect of gravity.

In this part, we use a multi-scale finite element method (MsFEM) for two-phase
flow in fractured media using the discrete fracture model. By combining MsFEM
with the discrete fracture model, we aim toward a numerical scheme that facilitates
fractured reservoir simulation without up-scaling. MsFEM uses a standard Darcy
model to approximate the pressure and saturation on a coarse grid, whereas
fine-scale effects are captured through basis functions constructed by solving local
flow problems using the discrete fracture model.

6.4.1 Governing Equations

We illustrate our method for the case where two immiscible fluid phases, oil and
water for example, are flowing in fractured porous medium. The basic equations of
incompressible two-phase flow include mass conservation equation, saturation
equation, and capillary pressure relationship,

@ /Snð Þ
@t

¼ r � Kkn rpn � qngrzð Þð Þþ qn ð6:24Þ

@ /Swð Þ
@t

¼ r � Kkw rpw � qwgrzð Þð Þþ qw ð6:25Þ

Sn þ Sw ¼ 1 ð6:26Þ

pn � pw ¼ pc Swð Þ ð6:27Þ

where the subscripts n and w denote the non-wetting and wetting phase, respec-
tively. Si, pi, and qi denote the saturation, pressure and source/sink term of phase i,
respectively. pc is capillary pressure. K is permeability tensor, / is the porosity of
the medium. g is the acceleration of gravity, z is the vertical coordinate (positive in
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the upward direction) and t denotes the time. The relative mobility of each phase is
defined by

kn ¼ � krn
ln

; kw ¼ � krw
lw

ð6:28Þ

where kri and li denote the relative permeability and viscosity of phase i respec-
tively. Due to the incompressible fluids assumption, the viscosity of a particular
phase is constant. We define a flow potential for each phase

Un ¼ pn þ qngz ð6:29Þ

Uw ¼ pw þ qwgz ð6:30Þ

In addition, we define the capillary flow potential Φc to include the gravity and
the capillary effects.

Uc ¼ Un � Uw ¼ pc þ qn � qwð Þgz

Equations (6.24)–(6.27) can be combined and formulated in terms of only two
dependent variables, Uw and Sw, based on these definitions. With this procedure,
the flow equations for two-phase flow are written as

r � K kw þ knð ÞrUwð Þ ¼ r � Kkn rUcð Þð Þ � qn þ qwð Þ ð6:31Þ

@ /Swð Þ
@t

¼ r � Kkw rUwð Þð Þþ qw ð6:32Þ

The flow equations can be written in the form of matrix:

0 0
0 /

	 

@

@t
Uw
Sw

	 

þr � � K km þ kn

� �
Kknp

0
c

Kkm 0

	 

r Um

w
Smw

	 
� �
¼ qn þ qw

qw

	 

ð6:33Þ

where

rUc ¼
dUc

dSw
rSw ¼ dpc

dSw
rSw ¼ p0crSw

In the following, we will study (6.33) as our flow models on the coarse and
fine-scale. We will assume no-flow conditions for both models. The initial and
boundary conditions are taken to be given in the form:

① Initial conditions:

Ui x; t ¼ 0ð Þ ¼ Ui;0 xð Þ; Si x; t ¼ 0ð Þ ¼ Si;0 xð Þ 8x 2 X
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② Dirichlet boundary conditions:

Ui x; tð Þ ¼ eUi; Si x; tð Þ ¼ eSi onCD

③ Neumann boundary conditions, the boundary conditions in this paper are
assumed to be impervious:

vi � n ¼ � kirUið Þ � n ¼ 0; rSi � n ¼ 0 onCN

where n is the outer normal unit vector of outer boundary, the subscript i represents
the non-wetting or wetting phase.

For 2D problems, 1D element is employed to represent fracture in the discrete
fracture model. Thus, the system of Eqs. (6.31) and (6.32) will be discretized in
two-dimensional form for the matrix and in one-dimensional form for the fractures.
The whole domain X is X ¼ Xm

P
i di � Xf ;i, where m and f represent the matrix

and the fracture, and di is the aperture of the ith fracture. Let FEQ represent the flow
equations. Therefore, the integral form of these equations can be written asZ

X

FEQdX ¼
Z
Xm

FEQdXm þ
X
i

di�
Z
Xf ;i

FEQdXf ;i: ð6:34Þ

To reduce the dimension of fractures, we assume the wetting potential should be
continuous at the matrix–fracture interface, that is,Um

w = U f
w. This implies that the

capillary potential and capillary pressure are also continuous at the interface.
However, at the matrix–fracture interface have the same capillary pressure p�c ,
wetting saturation may be discontinuous at the interface. So, special measures
should be taken toward the saturation equation of wetting phase in fractures.
Corresponding to the continuity of capillary potential at the matrix–fracture inter-
face, there is a relation between Smw and S f

w:

S f
w ¼

pmc Smw
� �
p f
c

ð6:35Þ

Equation (6.33) for the fracture domain can be written as

0 0
0 aw/

f

	 

@

@t
Um

w
Smw

	 

þr � � K k f

m þ k f
n

� �
awKk

f
n p f

c

� �0
Kk f

m 0

	 

r Um

w
Smw

	 
� �
¼ qmn þ qmw

qmw

	 

ð6:36Þ

where aw ¼ dS f
w

dSmw
.
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6.4.2 Multi-scale Finite Element Method

(1) Discretization and Hybrid System
To solve (6.36) on the fine-scale and the coarse scale, we will use the finite element
formulation. To simplify the presentation of the finite element formulation, we
assume the boundary conditions are impervious. Here, the flow potential equation
and the saturation equation in (6.36) are derived separately. The variational prob-
lems of the equations are to seek ~Uw and ~Sw from suitable discrete approximation
spaces defined over Ω, such thatZ

X

K kw þ knð ÞreUwrWdX ¼ �
Z
X

KknreUcrWdXþ
Z
X

qn þ qwð ÞWdX ð6:37Þ

Z
X

/
@eSw
@t

rWdX ¼ �
Z
X

KkwreUwrWdXþ
Z
X

qwWdX ð6:38Þ

where W is the weight function. Let Th be a coarse-grid partition of X by a
collection of polyhedral elements, and for each element E 2 Th, the region is dis-
cretized using triangular elements for the matrix and line elements for the fractures,
as shown in Fig. 6.12. In each element E, we define a set of local basis functions
WE

i ; i ¼ 1; . . .d
� �

with d being the number of nodes of the element. The superscript
E will be neglected if the basis functions are considered in the same element. Thus,
the flow potential and saturation are approximated as

Uw � eUw ¼
Xd
i¼1

WiUw;i; Sw � eSw ¼
Xd
i¼1

WiSw;i ð6:39Þ

Substituting (6.39) into (6.37) and (6.38) yield a hybrid system of the form:

0 0
0 A

	 

_U
f
w
_S
f
w

" #
þ B C1

C2 0

	 

U f

w
S f
w

	 

¼ Q1

Q2

	 

ð6:40Þ

Matrix element

Fracture element

Fig. 6.12 Mesh schematics
of discrete fractured model
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where Φw, Sw are the vectors of flow potential values Φw,i and saturation values Sw,i,
respectively. The entries in the matrices are

Aij ¼
Z
X

Wi/WjdX; Bij ¼
Z
X

rTWi K kw þ knð Þ½ �rWjdX;

Cij;1 ¼
Z
X

rTWi Kknp
0ð ÞrWjdX;Cij;2 ¼

Z
X

rTWi Kkwð ÞrWjdX

Qi;1 ¼
Z
X

rTWi qn þ qwð ÞdX; Qi;2 ¼
Z
X

rTWiqwdX:

The mass matrix A is not diagonal. To be able to update the saturation explicitly,
we use a lumped matrix. The lumped matrix AE in each element E is defined as

AE
ii ¼

Xd
j¼1

Z
X

Wi/WjdX ¼
Z
X

WidX; AE
ij ¼ 0

(2) Basis Functions and the Boundary Condition
Based on the discrete-fracture model, in coarse element E, the basis functions Wif g
are set to satisfy the following problem:

�r � KrWið Þ ¼ 0 ð6:41Þ

for some function gi defined on the boundary of the coarse element E.
Although the final multi-scale results are not sensitive to the accuracy of the

multi-scale basis function, the boundary condition of the basis functions can have a
big influence on the accuracy of MsFEM, in other words, a good choice of
boundary conditions would significantly improve the accuracy of the multi-scale
method. In most previous literatures, one choice of the function gi for each i is to let
gi vary linearly along @E. Another way is to choose gi to be the solution of the
reduced elliptic problems on each side of @E. For example, on C1 in Fig. 6.13, Wi

satisfies the reduced elliptic problem:

@

@y
K yð Þ @Wi

@y

� �
¼ 0 ð6:42Þ

The boundary condition of the 1D elliptic equation is given by Wi xj
� �

¼ dij (dij
is the Kronecker delta, i.e., dii = 1, while dij = 0 for i 6¼ j). The (6.43) can be solved
analytically, that is,

WijC1
¼

Z y

yi�1

dt
K tð Þ

�Z yi

yi�1

dt
K tð Þ ð6:43Þ

If K is constant, then Wi is linear.
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In the coarse-grid partitioning model, there may exist fractures (line segments) in
coarse grids. Generally, the fracture distributes in a coarse grid with three patterns
(see Fig. 6.14). In one case, no fracture intersects the boundaries (see Fig. 6.14a),
then the boundary condition of the basis functions is the same as (6.43). In the
second case, there are some fractures intersected the boundaries of the coarse grid.
To motivate the construction of the boundary condition, let us consider a simple
case that only one fracture intersects the boundary (see Fig. 6.14b), the boundary
condition is given by

WijC1
¼

R y
yi�1

dt
Km tð Þ

. R yi
yi�1

dt
Km tð Þ þ d

K f

� 
; if y\y fR y

yi�1

dt
Km tð Þ þ d

K f

� . R yi
yi�1

dt
Km tð Þ þ d

K f

� 
; if y	 y f

8<: ð6:44Þ

where y f is the node intersected by the fracture and the boundary, d is the aperture
of the fracture. In the third case, the fracture coincides with the boundary (see
Fig. 6.14c). We have

Γ1

Ψ
xi xi+1

xi-1

i(xi)=1 Ψi(xi+1)=0

Ψi(xi-1)=0 Ψi(x)=0

(a) (b)

Fig. 6.13 Schematic showing a fine and coarse scale grid and b nodal points

Γ1 Γ1 Γ1

(a) (b) (c)

Fig. 6.14 Fracture distributes in a coarse grid with three patterns: a the fracture does not intersect
the boundary; b the fracture intersect the boundary; c the fracture coincides with the boundary
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WijC1
¼

R y
yi�1

dt
Km tð Þ

.
Afm; if y\y f1R y f1

yi�1

dt
Km tð Þ þ

R y
y f1

dt
Km tð ÞþK fð Þ þ

� .
Afm; if y f1 
 y
 y f2

Afm �
R yi
y

dt
Km tð Þ

� .
Afm; if y[ y f2

8>>><>>>: ð6:45Þ

where yf1 , yf2 are the nodes intersected by the fracture and the boundary, and

Afm ¼
Zy f1
yi�1

dt
Km tð Þþ

Zy f1
y f2

dt
K f tð ÞþKm tð Þþ

Zyi
y f2

dt
Km tð Þ:

Figure 6.15 displays basis functions for three domains with a fracture. We see
that the basis function reflects the fine-scale details in the fractured domain.

(3) Coarse-scale Hybrid System
Here, we arrange all the multi-scale basis function Ψi as columns in a matrix Ψ.
Then, the multi-scale system is now obtained by summing the fine grid equations as
follows:

WT 0
0 WT

	 

0 0
0 A

	 

_U
f
w

_S
f
w

" #
þ WT 0

0 WT

	 

B C1

C2 0

	 

U f

w
S f
w

	 

¼ Q f

1

Q f
2

	 

ð6:46Þ

For the fine-scale potential and saturation, we have

U f � WUc; S f � WSc

With the above approximation of coarse grid-block potential, the coarse-scale
hybrid system reads

0 0
0 eA

	 

_U
c
w

_S
c
w

	 

þ

eB eC1eC2 0

	 

Uc

w
Scw

	 

¼

eQc
1eQc
2

" #
ð6:47Þ

where eA ¼ WA fW, eB¼WB fW, eCi ¼ WC f
i W, eQi ¼ WTQi i ¼ 1; 2ð Þ.
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Fig. 6.15 Three MsFEM basis functions for a homogeneous domain
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6.4.3 Numerical Experiments

The model has three small fractures, with apertures of 1 mm and lengths of 280 cm
(see Fig. 6.16). The fracture permeability is Kf ¼ d2=12 ¼ 8:33� 105 lm2. The
model has 2009 fine-scale grids, and the multi-scale discretization is illustrated in
Fig. 6.17. The injection well was placed at the lower left corner and production well
was placed at the upper right corner. The density and viscosity of each phase are
shown in Table 6.1. The porosity ϕ of the matrix is 0.2 and the
permeability km is 1 md.
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)

Fig. 6.16 Fractured media
with complex fractures

Fig. 6.17 Multiscale mesh
for discrete fractured media

234 6 Multiscale Numerical Simulation



We measure the relative permeability functions are specified as

Krw ¼ ðS�Þ2; Kro ¼ ð1� S�Þ2; S� ¼ S� Swc
1� Swc � Sor

; ð6:48Þ

with Swc ¼ Sor ¼ 0:1, and initial saturation So ¼ Swc. The water flow rate was set to
0.2 PV/d. Ignore the effect of capillary pressure.

In Fig. 6.18, the saturation profiles at 0.25 and 0.45 PV are compared. To
provide a comparison of the accuracy of the saturation solution, the saturation

Table 6.1 Fluid parameters Property Water Oil

Density, kg/m3 1000 800

Viscosity, Pa s 1.0 × 10−3 0.5 × 10−2

Fig. 6.18 Saturation maps for reference solution and MsFEM. a Reference saturation at 0.25 PV,
b reference saturation at 0.45 PV, cMsFEM saturation at 0.25 PV, dMsFEM saturation at 0.45 PV
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computed along y = 10 m is compared against the reference solution in Fig. 6.19.
As we see, there is a very good agreement between the reference saturation and the
saturation field obtained by the MsFEM. Saturation errors for MsFEM are 0.0272
and 0.0158. The results show that the computations are accurate. The total CPU
time of solving the problem by MsFEM requires about 40 % less CPU time than the
reference solution. It does not greatly reduce the total CPU time, as the MsFEM
needs an extra basis function calculation step.

6.5 Multi-Scale Numerical Simulation of Discrete
Fracture-Vug Model

Naturally fracture-vuggy carbonate reservoirs are special reservoirs. Such reservoirs
are characterized by the presence of fractures, vugs, and caves at multiple scales.
The main difficulty in numerical simulations in such reservoirs is the coexistence of
porous and free flow regions, typically at several scales that require coupling. We
need to analyze the fine-scale information if the traditional finite element method is
applied to solve the problem, and this requires a tremendous amount of CPU time.
This section presents a multi-scale mixed finite element method for simulation of
fluid flow in naturally fractured and vuggy reservoirs.

6.5.1 Mathematical Models

In this paper, we consider the fluid flow is isothermal, single phase, and incom-
pressible with constant fluid viscosity. In the DFVN conceptual model, the flow in
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Fig. 6.19 Comparison of
saturation distribution along
y = 10 m
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matrix and fractures follows Darcy’s law, and incompressible flow in the vugs
obeys the Stokes equations.

The mathematical model of matrix and fracture system Xpf is

@ q/ð Þ
@t

þr � vD ¼ q; vD ¼ �K
l
rpD ð6:49Þ

The mathematical model of matrix and vugs system Xpf is

@ q/ð Þ
@t

þr � vS ¼ q; lr � rvS þrvTS
� �

�rpS ¼ q
@vS
@t

ð6:50Þ

The equations of the free-flow and the porous media domains are unified into a
single system of equations

@ q/ð Þ
@t

þr � v ¼ q; �lK�1v�rpþ ~lDv ¼ Cq
@v
@t

ð6:51Þ

where v is velocity; q is source term; K is a permeability tensor; p is pressure; l is
fluid viscosity; ~l is an effective viscosity. K, ~l and C are determined by the type of
area. Equation (6.51) is Stokes-Brinkman equation.

In vugs system Xv, we let

~l ¼ l; K ¼ 1; C ¼ 1

then the Stocks–Brinkman equation can be simplified to the Stokes equations. In
matrix and fracture system Xpf , let K equal to porous media permeability, C ¼ 0,
(6.51) becomes

rp ¼ �lK�1vþ ~lDv ð6:52Þ

If ~l = 0, Eq. (6.52) simplifies to the coupled Darcy–Stokes equations, which
reintroduces the requirement for the interface conditions and computational
intractability. If we set ~l ¼ l, so rp � �lK�1v, and Eq. (6.52) can be seen as
Darcy’s equation with a small viscosity perturbation. Therefore, we set ~l ¼ l.

For 2D problems, 1D element is employed to represent fracture. The vugs are
simplified by (d-1)-dimensional elements, then the whole domain X isZ

X

FEQdX ¼
Z
Xm

FEQdXm þ
X
i

ai �
Z
Xf ;i

FEQdXf ;i þ
Z
Xv

FEQdXv ð6:53Þ

where, ai is the aperture of the ith fracture.
We use a Darcy model to approximate pressure and velocity on a coarse grid and

uses Stokes–Brinkman model, based on DFVN model to solve multi-scale basis
function.
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6.5.2 The Multi-Scale Mixed Finite Element Method

(1) Discretization and Hybrid System
Let Ω be a polyhedral domain in � R

dðd ¼ 2; 3Þ, with boundary @X whose unit
outer normal is denoted by n. Then the variational problems of (6.51) are to seek a
pair of functions ~p; ~vð Þ 2 W � V , such thatZ

X

u � kKð Þ�1~vdX�
Z
X

~pr � udX ¼ 0; 8u 2 W ð6:54Þ

Z
X

lr � ~vdX ¼
Z
X

qldX; 8l 2 V ð6:55Þ

where W and V are finite dimensional subspaces of Hd Xð Þ and L2 Xð Þ.
For Darcy problems, we will use a set of generalized RT0 basis functions. In

order to obtain the normal velocity that is continuous across cell face, continuity of
the normal component is reintroduced using Lagrange multipliers in which the
pressure k at the element faces plays the role of the Lagrange multipliers. Let
v ¼

P
Qiwi, p = ∑ pkδk, the Darcy equations can now be assembled to form a

hybrid system of the form

B C D
CT 0 0
DT 0 0

24 35 QC

�pc

kc

24 35 ¼
0
qc

0

24 35 ð6:56Þ

where Qc is the vector of the outward fluxes ordered cell-wise; pc is vector of cell
pressures; kc is vector of face pressures; Bij ¼

R
X wi � lKð Þ�1wjdX;

Cij ¼
R
X djr � widX; Dij ¼

R
@X wi � nj

�� ��ds wi and wj are outward-pointing velocity
basis functions, nj is the normal of cell face j, dj satisfies

di ¼
1; x 2 Xi

0; x 62 Xj

�
For the Stokes–Brinkman problem, its variational forms are similar to the

variational forms of Darcy equation: seek ~p; ~vð Þ 2 Q� V , such thatZ
X

u � lKð Þ�1~vdX�
Z
X

~pr � udXþ
Z
X

~lru � r~vdX ¼ 0; 8u 2 Q ð6:57Þ

Z
X

lr � ~vdX ¼
Z
X

qldX; 8l 2 V ð6:58Þ
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We split the velocity v into its two spatial components v1 and v2. Let
vk ¼

P
vikwi k ¼ 1; 2ð Þ, p ¼

P
pk/k, the mixed system can then be assembled in

the form

B1 0 C1

0 B2 C2

CT
1 CT

1 0

24 35 v1
v2
�p

24 35 ¼
0
0
q

24 35 ð6:59Þ

where v1, v2 are vectors of the two velocity components vi1 and vi2, respectively,
p is the vector of pressure values pi

Bk ¼ Bkð Þm þ Bkð Þf þ Bkð Þv

Bij;k
� �

m¼
Z
Xm

wi � lKm;k
� ��1

wjdXm þ
Z
Xm

~l
@wi

@x1

@wj

@x1
þ @wi

@x2

@wj

@x2

� �
dXm

Km ¼ Km;1

0
0

Km;2

	 


Bij;k
� �

f¼ d
Z
Xf

wi �
l
Kf

wjdXf þ
Z
Xf

~l
@wi

@x1

@wj

@x1
þ @wi

@x2

@wj

@x2

� �
dXf

Bij;k
� �

v¼
Z
Xv

wi �
l
Kv

wjdXv þ
Z
Xv

~l
@wi

@x1

@wj

@x1
þ @wi

@x2

@wj

@x2

� �
dXv

Ck ¼ Ckð Þm þ Ckð Þf þ Ckð Þv

Cij;k
� �

w¼
Z
Xw

@wi

@xk
/jdXw; Cij;k

� �
f¼ d

Z
Xf

@wi

@xk
/jdXf

q ¼ qm þ qf þ qv

qlð Þw¼
Z
Xw

/lqdXw; qlð Þv¼
Z
Xv

/lqdXv; qlð Þf¼ d
Z
Xf

/lqdXf

where subscript m, f , v denote matrix system, fracture system and vug system,
respectively; w ¼ m; v; k ¼ 1; 2 denotes the spatial dimension. d is the aperture of
the fracture.
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(2) MsMFEM basis Functions
Let T h ¼ fXig is partition of X, Cij ¼ @Xi \ @Xj, we seek wij on Cij and seek /i on
Xi.

In Xij ¼ Xi [Cij [Xj, the basis function associated with the interface is con-
structed by solving the following flow problem over

lK�1wij þr/ij � ~lDwij ¼ 0 ð6:60Þ

r � wij ¼
xi xð Þ; x 2 Xi

�xi xð Þ; x 2 Xj

0; x 62 Xij

8<: ð6:61Þ

wij xð Þ � n ¼ 0 8x 2 @Xij ð6:62Þ

Here, xi xð Þ is a weight function on Xi, satisfies
R
Xi
xi xð Þdx ¼ 1, To obtain a

conservative method, we choose:

x xð Þi¼
r xð Þ=

R
Xi
r nð Þdn;

R
Xi
qdx ¼ 0

q xð Þ=
R
Xi
q nð Þdn;

R
Xi
qdx 6¼ 0

�
ð6:63Þ

where r xð Þ ¼ traceðKÞ=d, trace Að Þ denotes the sum of Eigen value of matrix A.
To obtain conservative multi-scale basis functions, we should apply a conser-

vative method to solve fine-scale problem, like finite volume method. The method
is also depends on the local grid structure.

So for a cell Xi, the corresponding pressure basis function /i is given by

/i xð Þ ¼ 1; x 2 Xi

0; x 62 Xi

�
(3) Coarse-scale Hybrid System
We split the basis functions into two parts:

wij ¼ wH
ij � wH

ji

where

wH
ij Eð Þ ¼ wij Eð Þ; E 2 XijnXj

0; E 62 Xi

�

wH
ji Eð Þ ¼ �wij Eð Þ; E 2 Xj

0; E 62 Xj

�
w is a matrix which all the basis functions wH

ij arranged as columns.
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The starting point in developing the multi-scale method is the assumption that
the fine-scale fields can approximately be expanded in the corresponding spaces
spanned by the basis functions. For the fine-scale pressure and velocity, we have

v f ¼ wA�1qc; p f ¼ Ipc

Here, A is a matrix; I is the prolongation from blocks to cells, if block j contains
cell i, Iij ¼ 1, otherwise Iij ¼ 0. The coarse-scale face pressure kc is given as

kci ¼
Z
Cij

k fwij � nds

Let J is the prolongation from coarse to fine face such that Jij ¼ 1 if coarse face j
contains fine face i and is zero otherwise. Then for the fine-scale face pressure is
given as

k f ¼ Jkc

The multi-scale system is obtained by summing all the fine-scale equations, the
coarse-scale system is

Bc Cc Dc

CcT 0 0
DcT 0 0

24 35 vc

�pc

kc

24 35 ¼
0
qc

0

24 35 ð6:64Þ

where Bc ¼ wTB fw; Cc ¼ wTC f I; Dc ¼ wTC f J; qc ¼ ITq f .

6.5.3 Numerical Experiments

The fracture-vugs model shown in Fig. 6.20 is constructed. The model is calculated
by MsMFEM and finite element method, respectively. The sample is 25 m/25 m2.
A pressure gradient of 1.0 MPa/m along the x-direction is created by imposing
pressure on the left and right vertical boundary, respectively. We consider no flow
at top and bottom sides of the domain. The permeability is 1 × 10−6 m2. The
aperture of fractures equals 10 cm.

Figure 6.21 illustrates the pressure and velocity solutions from FEM and
MsMFEM, respectively. The pressure and velocity distributions along x-direction
on y = 12 m is shown in Fig. 6.22. Numerical results have shown that, the results
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from MsMFEM are in close agreement with fine-scale solutions; the pressure and
velocity discrepancies are less than 6 %. The calculation speed of MsMFEM is
faster than fine-scale solution. The simulation results illustrates that the influence of
~lDv is insignificant.

Fig. 6.20 Schematic of three sample models

Fig. 6.21 Pressure and velocity distributions. a FEM, b MsMFEM
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6.6 Concluding Remarks

We have presented a first attempt to extend the multi-scale mixed finite element
method (MsMFEM) to fluid flow in fractured porous media using DFVN model.
This has been successfully achieved. In addition to implementation of the method,
several examples were provided to demonstrate the accuracy and robustness of
MsMFEM.

In this chapter, we introduce multi-scale simulation method for carbonate
reservoirs, different multi-scale mathematical models are built, the theory and
method is developed for multi-scale simulation of carbonate reservoirs, the con-
clusions are follows:

(1) 2D multi-scale model is built for heterogeneous reservoirs, the multi-scale
simulation method is developed based on the multi-scale mixed finite element
method and some calculation results are used to verify the validity and reli-
ability of the numerical method. The results from MsMFEM are in close
agreement with fine-scale solutions. MsMFEM saves calculation amount
enormously and it has prominent advantages over conventional method when
deal with fluid flow problems in heterogeneous reservoirs.

(2) For fracture reservoirs, the multi-scale mathematical model is built based on
discrete fracture model. The multi-scale finite method that based on the global
information is applied to analyze the model and the validity is verified by the
numerical examples.

(3) We extend the Multi-scale mixed finite element method (MsMFEM) to fluid
flow in fractured porous media using DFVN model, several examples were
provided to demonstrate the accuracy and robustness of MsMFEM.
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Fig. 6.22 Pressure
distribution for fine-scale
solution and MsMFEM
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