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Preface

Fluid and thermodynamics (FTD) are generally taught at technical universities as
separate subjects and this separation can be justified simply by reasons of the
assigned time; the elements of each subject can be introduced within a semester of
~ 15 weeks. Most likely, these outer educational boundaries may even have well
furthered this separation. Intellectually, the two subjects, however, belong together,
especially since for all but ideal fluids the second law of thermodynamics imposes
constraint conditions on the parameters of the governing equations (generally
partial differential equations) that are then used in the fluid dynamic part of the joint
effort to construct solutions to physically motivated initial boundary value problems
that teach us important facts of the behavior of the motion of the fluid under certain
circumstances.

One of the authors (K.H.) found this combination of fluid and thermodynamics
as an assigned one-semester course, when he started in 1987 in the Department of
Mechanics at Technische Universitit Darmstadt (at that time ‘Technische
Hochschule’) as successor of the late Prof. Dr. rer.nat. ERNST BECKER (1929-1984).
With K.H’s emphasized interest in continuum mechanics and thermodynamics, this
dual understanding of the mathematical description of fluid matter was ideal and the
assignment to teach it was a welcome challenge, which was declared as a ‘credo’ to
the working environment in both teaching and research in his group.

The course notes of FTD taught to upper-class electrical engineers for 18 years
were quickly worked out into the book ‘Fluid und Thermodynamik — eine
Einfiihrung’ and published by Springer Verlag, Berlin etc., (ISBN 3-540-59235-0,
second edition). All the chapters of this book—some slightly extended—have been
translated (by K.H.) into the English language and are interwoven in this treatise
with chapters, which, as a whole, should provide a fairly detailed understanding of
FTD.

All subjects of this treatise of FTD have been taught in one or another form as
lectures in courses to students at Technische Universitat Darmstadt, Swiss Federal
Institute of Technology in Ziirich (ETHZ), and in guest lectures in advanced
courses at other universities and research institutions worldwide. The audience in
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these courses consisted of students, doctoral candidates and postdoctoral assistants
of engineering (civil, mechanical, chemical, mechanics), natural sciences (meteo-
rologists, oceanographers, geophysicists), mathematics, and physics. Some of the
topics included are as follows:

e Fluid mechanics,

e Continuum mechanics and thermodynamics,

e Mechanics of environmentally related systems (glacier, ice-sheet mechanics,
physical oceanography, lake physics, soil motion, avalanches, debris, and mud
flows),

Vorticity and angular momentum,

Turbulence modeling (of zeroth, first and second order),

Regular and singular perturbations,

Continuum mechanics and thermodynamics of mixtures,

Continuum mechanics and thermodynamics of CosSERAT continua and COSSERAT
mixtures,

Theoretical glaciology,

Shallow creeping flows of landslides, glaciers, and ice sheets,

and others. It is hoped that we were successful in designing a coherent picture of the
intended text FTD.

Writing the book chapters also profited from books that were written earlier by
us and co-authors [1-6].

Fluid and Thermodynamics
Volume 1: Basic Fluid Mechanics

This volume consists of 10 chapters and begins in an introductory Chap. 1 with
some historical facts, definition of the subject field and lists the most important
properties of liquids.

This descriptive account is then followed in Chap. 2 by the simple mathematical
description of the fundamental hydrostatic equation and its use in analyses of
equilibrium of fluid systems and stability of floating bodies, the derivation of the
ARCHIMEDEAN principle and determination of the pressure distribution in the
atmosphere.

Chapter 3 deals with hydrodynamics of ideal incompressible (density pre-
serving) fluids. Streamlines, trajectories, and streaklines are defined. A careful
derivation of the balances of mass and linear momentum is given and it is shown
how the BERNOULLI equation is derived from the balance law of momentum and how
it is used in applications. In one-dimensional smooth flow problems the momentum
and BERNOULLI equations are equivalent. For discontinuous processes with jumps
this is not so. Nevertheless the BERNOULLI equation is a very useful equation in
many engineering applications. This chapter ends with the balance law of moment
of momentum and its application for EULER’s turbine equation.
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The conservation law of angular momentum, presented in Chap. 4, provides the
occasion to define circulation and vorticity and the vorticity theorems, among them
those of HELMHOLTZ and ERTEL. The goal of this chapter is to build a fundamental
understanding of vorticity.

In Chap. 5 a collection of simple flow problems in ideal fluids is presented. It is
shown how vector analytical methods are used to demonstrate the differential
geometric properties of vortex-free flow fields and to evaluate the motion-induced
force on a body in a potential field. The concept of virtual mass is defined and
two-dimensional fluid potential flow is outlined.

This almanac of flows of ideal fluids is complemented in Chap. 6 by the pre-
sentation of the solution techniques of two-dimensional potential flow by
complex-valued function theoretical methods using conformal mappings. Potential
flows around two-dimensional air foils, laminar free jets, and the ScHwarz—
CHRYSTOFFEL transformations are employed to construct the mathematical descrip-
tions of such flows through a slit or several slits, around air wings, free jets, and in
ducts bounding an ideal fluid.

The mathematical physical study of viscous flows starts in Chap. 7 with the
derivation of the general stress—strain rate relation of viscous fluids, in particular
Navier—StokEes fluids and more generally, non-Newtonian fluids. Application
of these equations to viscometric flows, liquid films, PoiseuiLLE flow, and the slide
bearing theory due to ReynoLDs and SOMMERFELD demonstrate their use in an
engineering context. Creeping flow for a pseudo-plastic fluid with free surface then
shows the application in the glaciological-geological context.

Chapter 8 continues with the study of two-dimensional and three-dimensional
simple flow of the NAVIER—STOKES equations. HAGEN—PoisEUILLE flow and the
ExMaN theory of the wall-near wall-parallel flow on a rotating frame (Earth) and its
generalization are presented as solutions of the NAVIER-STOKES equations in the
half-space above an oscillating wall and that of a stationary axisymmetric laminar
jet. This then leads to the presentation of PRANDTL’s boundary layer theory with
flows around wedges and the BLasius boundary layer and others.

In Chap. 9 two- and three-dimensional boundary layer flows in the vicinity of a
stagnation point are studied as are flows around wedges and along wedge sidewalls.
The flow, induced in the half plane above a rotating plane, is also determined. The
technique of the boundary layer approach is commenced with the Brasius flow, but
more importantly, the boundary layer solution technique for the NAVIER—STOKES
equations is explained by use of the method of matched asymptotic expansions.
Moreover, the global laws of the steady boundary layer theory are explained with
the aid of the HoLsTEIN—-BoHLEN procedure. The chapter ends with a brief study of
non-stationary boundary layers, in which an impulsive start from rest, flow in the
vicinity of a pulsating body, oscillation induced drift current, and non-stationary
plate boundary layers are studied.

In Chap. 10 pipe flow is studied for laminar (HAGEN—PoISEUILLE) as well as for
turbulent flows; this situation culminates via a dimensional analysis to the
well-known Mooby diagram. The volume ends in this chapter with the plane
boundary layer flow along a wall due to PRANDTL and voNn KARMAN with the famous
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logarithmic velocity profile. This last problem is later reanalyzed as the contro-
versies between a power and logarithmic velocity profile near walls is still ongoing
research today.

Fluid and Thermodynamics
Volume 2: Advanced Fluid Mechanics and Thermodynamic Fundamentals

This volume consists of 10 chapters and commences in Chap. 11 with the deter-
mination of the creeping motion around spheres at rest in a NEwrtonian fluid. This is
a classical problem of singular perturbations in the form of matched asymptotic
expansions. For creeping flow the acceleration terms in NEwTON’s law can be
ignored to approximately calculate flow around the sphere by this so-called STOKES
approximation. It turns out that far away from the sphere the acceleration terms
become larger than those in the STOKES solution, so that the latter solution violates
the boundary conditions at infinity. This lowest order correction of the flow around
the sphere is due to OsgeN (1910). In a systematic perturbation expansion the outer
—OseeNn—series and the inner—STokeEs—series with the small REyNOLDS number
as perturbation parameter must be matched together to determine all boundary and
transition conditions of inner and outer expansions. This procedure is rather tricky,
i.e., not easy to understand for beginners. This theory, originally due KapLun and to
LAGERSTROM has been extended, and the drag coefficient for the sphere, which also
can be measured is expressible in terms of a series expansion of powers of the
REynoLDs number. However, for REyNoLDs numbers larger than unity, convergence
to measured values is poor. About 20-30 years ago a new mathematical approach
was designed—the so-called Homotopy Analysis Method; it is based on an entirely
different expansion technique, and results for the drag coefficient lie much closer to
the experimental values than values obtained with the ‘classical’ matched asymp-
totic expansion, as shown in Fig. 11.11. Incidentally the laminar flow of a viscous
fluid around a cylinder can analogously be treated, but is not contained in this
treatise.

Chapter 12 is devoted to the approximate determination of the velocity field in a
shallow layer of ice or granular soil, treated as a non-NEwTONian material flowing
under the action of its own weight and assuming its velocity to be so small that
StokEs flow can be assumed. Two limiting cases can be analyzed: (i) In the first, the
flowing material on a steep slope (which is the case for creeping landslides or snow
on mountain topographies with inclination angles that are large). (ii) In the second
case the inclination angles are small. Situation (ii) is apt to ice flow in large ice
sheets such as Greenland and Antarctica, important in climate scenarios in a
warming atmosphere. We derive perturbation schemes in terms of a shallowness
parameter in the two situations and discuss applications under real-world
conditions.

In shallow rapid gravity driven free surface flows the acceleration terms in
NewToN’s law are no longer negligible. Chapter 13 is devoted to such granular
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flows in an attempt to introduce the reader to the challenging theory of the
dynamical behavior of fluidized cohesionless granular materials in avalanches of
snow, debris and mud, etc. The theoretical description of moving layers of granular
assemblies begins with the one-dimensional depth integrated MoHrR—CoULOMB
plastic layer flows down inclines—the so-called SAVAGE-HUTTER theory, but then
continues with the general formulation of the model equations referred to topog-
raphy following curvilinear coordinates with all its peculiarities in the theory and
the use of shock-capturing numerical integration techniques.

Chapter 14 on uniqueness and stability provides a first flavor into the subject of
laminar-turbulent transition. Two different theoretical concepts are in use and both
assume that the laminar—turbulent transition is a question of loss of stability of the
laminar motion. With the use of the energy method one tries to find upper bound
conditions for the laminar flow to be stable. More successful for pinpointing the
laminar-turbulent transition has been the method of linear instability analysis, in
which a lowest bound is searched for, at which the onset of deviations from the
laminar flow is taking place.

In Chap. 15, a detailed introduction to the modeling of turbulence is given.
Filter operations are introduced to separate the physical balance laws into evolution
equations for the averaged fields on the one hand, and into fluctuating or pulsating
fields on the other hand. This procedure generates averages of products of fluctu-
ating quantities, for which closure relations must be formulated. Depending upon
the complexity of these closure relations, so-called zeroth, first, and higher order
turbulence models are obtained: simple algebraic gradient-type relations for the flux
terms, one or two equation models, e.g., k-¢, k-w, in which evolution equations for
the averaged correlation products are formulated, etc. This is done for density
preserving fluids as well as so-called BoussinesqQ fluids and convection fluids on a
rotating frame (Earth), which are important models to describe atmospheric and
oceanic flows.

Chapter 16 goes back one step by scrutinizing the early zeroth order closure
relations as proposed by PranDTL, vON KARMAN and collaborators. The basis is
BossiNesQ’s (1872) ansatz for the shear stress in plane parallel flow, ti,, which is
expressed to be proportional to the corresponding averaged shear rate v, /Ox, with
coefficient of proportionality pe, where p is the density and ¢ a kinematic turbulent
viscosity or turbulent diffusivity [m? s™']. In turbulence theory the flux terms of
momentum, heat, and suspended mass are all parameterized as gradient-type rela-
tions with turbulent diffusivities treated as constants. PRANDTL realized from data
collected in his institute that € was not a constant but depended on his mixing length
squared and the magnitude of the shear rate (PRaNDTL 1925). This proposal was
later improved (PrRanDTL 1942) to amend the unsatisfactory agreement at positions
where shear rates disappeared. The 1942-law is still local, which means that the
REYNOLDS stress tensor at a spatial point depends on spatial velocity derivatives at
the same position. PRANDTL in a second proposal of his 1942-paper suggested that
the turbulent diffusivity should depend on the velocity difference at the points where
the velocity of the turbulent path assumes maximum and minimum values. This
proposal introduces some non-locality, yielded better agreement with data, but


http://dx.doi.org/10.1007/978-3-319-33636-7_14
http://dx.doi.org/10.1007/978-3-319-33636-7_15
http://dx.doi.org/10.1007/978-3-319-33636-7_16

X Preface

PranDTL left the gradient-type dependence in order to stay in conformity with
BoussinesQ. It does neither become apparent nor clear that PRANDTL or the modelers
at that time would have realized that non-local effects would be the cause for better
agreement of the theoretical formulations with data. The proposal of complete
non-local behavior of the REYNOLDs stress parameterization came in 1991 by P.
EcoLr and subsequent research articles during ~ 20 years, in which also the local
strain rate (= local velocity gradient) is replaced by a difference quotient. We
motivate and explain the proposed Difference Quotient Turbulence Model (DQTM)
and demonstrate that for standard two-dimensional configurations analyzed in this
chapter its performance is superior to other zeroth order models.

The next two chapters are devoted to thermodynamics; first, fundamentals are
attacked and, second a field formulation is presented and explored.

Class experience has taught us that thermodynamic fundamentals (Chap. 17) are
difficult to understand for novel readers. Utmost caution is therefore exercised to
precisely introduce terminology such as ‘states’, ‘processes’, ‘extensive’, ‘inten-
sive’, and ‘molar state variables’ as well as concepts like ‘adiabatic’, and
‘diathermal walls’, ‘empirical’ and ‘absolute temperature’, ‘equations of state’, and
‘reversible’ and ‘irreversible processes’. The core of this chapter is, however, the
presentation of the First and Second Law of Thermodynamics. The first law bal-
ances the energies. It states that the time rate of change of the kinetic plus internal
energies are balanced by the mechanical power of the stresses and the body forces
plus the thermal analogies, which are the flux of heat through the boundary plus the
specific radiation also referred to as energy supply. This conservation law then leads
to the definitions of the caloric equations of state and the definitions of specific
heats. The Second Law of Thermodynamics is likely the most difficult to under-
stand and it is introduced here as a balance law for the entropy and states that all
physical processes are irreversible. We motivate this law by going from easy and
simple systems to more complex systems by generalization and culminate in this
tour with the Second Law as the statement that entropy production rate cannot be
negative. Examples illustrate the implications in simple physical systems and show
where the two variants of entropy principles may lead to different answers.

Chapter 18 extends and applies the above concepts to continuous material
systems. The Second Law is written in global form as a balance law of entropy with
flux, supply and production quantities, which can be written in local form as a
differential statement. The particular form of the Second Law then depends upon
which postulates the individual terms in the entropy balance are subjected to. When
the entropy flux equals heat flux divided by absolute temperature and the entropy
production rate density is requested to be non-negative, the entropy balance law
appears as the Crausius—DuHEM inequality and its exploitation follows the axio-
matic procedure of open systems thermodynamics as introduced by CoLEMAN and
NoLL. When the entropy flux is left arbitrary but is of the same function class as the
other constitutive relations and the entropy supply rate density is identically zero,
then the entropy inequality appears in the form of MULLER. In both cases the Second
Law is expressed by the requirement that the entropy production rate density must
be non-negative, but details of the exploitation of the Second Law in the two cases
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are subtly different from one another. For standard media such as elastic and/or
viscous fluids the results are the same. However, for complex media they may well
differ from one another. Examples will illustrate the procedures and results.

Chapter 19 on gas dynamics illustrates a technically important example of a
fluid field theory, where the information deduced by the Second Law of
Thermodynamics delivers important properties, expressed by the thermal and
caloric equations of state of, say, ideal and real gases. We briefly touch problems of
acoustics, steady isentropic flow processes and their stream filament theory. The
description of the propagation of small perturbations in a gas serves in its
one-dimensional form ideally as a model for the propagation of sound, for e.g. in a
flute or organ pipe, and it can be used to explain the DoppLER shift occurring when
the sound source is moving relative to the receiver. Moreover, with the stream
filament theory the sub- and supersonic flow through a nozzle can be explained. In a
final section the three-dimensional theory of shocks is derived as the set of jump
conditions on surfaces for the balance laws of mass, momentum, energy, and
entropy. Their exploitation is illustrated for steady surfaces for simple fluids under
adiabatic flow conditions. These problems are classics; gas dynamics, indeed forms
an important advanced technical field that was developed in the twentieth century as
a subject of aerodynamics and astronautics and important specialties of mechanical
engineering.

Chapter 20 is devoted to the subjects ‘Dimensional analysis, similitude and
physical experimentation at laboratory scale’, topics often not systematically taught
at higher technical education. However, no insider would deny their usefulness.
Books treating these subjects separately and in sufficient detail have appeared since
the mid-twentieth century. We give an account of dimensional analysis, define
dimensional homogeneity of functions of mathematical physics, the properties of
which culminate in BuckiNGHAM’s theorem (which is proved in an appendix to the
chapter); its use is illustrated by a diversity of problems from general fluid
dynamics, gas dynamics, and thermal sciences, e.g., propagation of a shock from a
point source, rising gas bubbles, RaAYLEIGH-BENARD instability, etc. The theory of
physical models develops rules, how to down- or up-scale physical processes from
the size of a prototype to the size of the model. The theory shows that in general
such scaling transformations are practically never exactly possible, so that scale
effects enter in these cases, which distort the model results in comparison to those in
the prototype. In hydraulic applications, this leads to the so-called FrRoupe and
REeyNoLDs models, in which either the FRoube or REyNoLDs number, respectively,
remains a mapping invariant but not the other. Application on sediment transport in
rivers, heat transfer in forced convection, etc., illustrate the difficulties. The chapter
ends with the characterization of dimensional homogeneity of the equations
describing physical processes by their governing differential equations. The
Navier—Stokes—Fourier—Fick fluid equations serve as illustration.

The intention of this treatise is, apart from presenting its addressed subjects, a
clear, detailed, and somewhat rigorous mathematical presentation of FTD on the
basis of limited knowledge as a prerequisite. Calculus or analysis of functions of a
single or several variables, linear algebra and the basics of ordinary and partial
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differential equations are assumed to be known, as is the theory of complex
functions. The latter is not universally taught in engineering curricula of univer-
sities; we believe that readers not equipped with the theory of complex functions
can easily familiarize themselves with its basics in a few weeks’ reading effort.

A second goal of this treatise is to frame the individual subjects in their historical
content by providing biographical sketches of the inventors of the particular con-
cepts. The science of fluid and thermodynamics began in the Western world more
than 2000 years ago, e.g., by ARCHIMEDES in Syracuse. First careful observations on
turbulence were described by LEoNnARDO DA VINcI and on the motion of falling
bodies by GALILEO GaLILEL. Mathematical description of the motion of physical
bodies was begun by Isaac Newton, and DescaRTEs. EULER and father JoHANN and
son DANIEL BErRNOULLI introduced, among others, the continuous methods for ideal,
i.e., reversible materials. Most of this research took place in the seventeenth and
eighteenth centuries and was perfected in the upcoming nineteenth and twentieth
centuries. The recognition of the energy balance equation and the entropy imbal-
ance statement as physical laws are achievements of the nineteenth and first part
of the twentieth centuries and are associated with scientists like Sapr CARNOT, JULIUS
MAYER, HERMANN HELMHOLTZ, RUDOLF CLAUSIUS, PIERRE MAURICE MARIE DUHEM,
WiLLiaM THomsoN (LorD KELVIN), WILLIARD GiBBS, and Max PLANK, to name a few.

The solutions of the (initial) boundary value problems which ensue from the
emerging equations have been solved by a large number of follow-up scientists
from the mid-nineteenth century to present, of whom a few stand out distinguish-
ingly: OsBORNE REyYNOLDs, LORD RAYLEIGH, LupwiG PRANDTL, THEODORE VON
KARMAN, G.I. TAYLOR, HERMANN SCHLICHTING, and many others. The history, which
evolved from the work of all these scientists, is fascinating. By listing short bio-
graphical sketches of those scientists who contributed to the development of fluid
and thermodynamics, we hope to guide the reader to a coherent historical devel-
opment of the fascinating subject of fluid and thermodynamics.

We regard this dual approach as a justified procedure, especially since the
twenty-first century university students do no longer sufficiently appreciate the fact,
on which shoulders of giants and predecessors we stand.

The books have been jointly drafted by us from notes that accumulated during
years. As mentioned before, the Chaps. 1-3, 5, 7, 10, 17-20 are translated (and
partly revised) from ‘Fluid- und Thermodynamik — eine Einfiihrung’. Many of the
other chapters were composed in handwriting and TEXed by K.H. and substantially
improved and polished by Y.W. We share equal responsibility for the content and
the errors that still remain. Figures, which are taken from others, are reproduced and
mostly redrawn, but mentioned in the acknowledgment and/or figure captions.
Nevertheless a substantial number of figures have been designed by us. However,
we received help for their electronic production: Mr. ANDREAsS ROHRER, from the
Laboratory of Hydraulics, Hydrology and Glaciology at ETH Zurich (VAW), drew
figures for Chaps. 8 and 9 and the student assistants Mr. WALDEMAR SURNIN and Mr.
Jan BaTTtRAM from the Institute of Fluid Dynamics at Technische Universitit
Darmstadt aided in the production of figures of several other chapters. Mr. ANDREAS
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ScHLumPF from VAW and Ms. ALEXANDRA Paunica and Prof. Ioana Luca drew
figures for Chap. 6 and several other chapters.

It is custom of most publishers to ask referees to review book manuscripts
shortly before submission for printing by experts of the subjects treated in the
forthcoming book. It is, however, also almost consequential that reviewers for a
two-volume treatise of more than 1200 pages can hardly be found, simply because
of the excessive labor that goes with such an assignment. Nevertheless this burden
was taken up by two emeriti, Dr.-Ing. PETER HaupT, Professor of Mechanics at the
University of Kassel, Germany and Dr. rer. nat, Dr. h.c. HaANS DIETER ALBER,
Professor of Mathematics, Technical University, Darmstadt, Germany. We thor-
oughly thank these colleagues for their extensive help. Their criticisms and rec-
ommendations are gratefully incorporated in the final version of the manuscript.

K.H. wishes to express his sincere thanks to ETH Zurich and in particular to
Prof. Dr. R. BoEs for the allowance to share a desk as an emeritus professor from
Darmstadt at the Laboratory of Hydraulics, Hydrology and Glaciology at ETH
Zurich and he equally thanks Profs. Dr. MARTIN Funk and Dr. WiLL1 H. HAGER,
members of this laboratory, for their support. Y.W. would like to express his thanks
to Prof. Dr. MARTIN OBERLACK for the free and constructive collaboration in his fluid
dynamic working unit at Technische Universitdt Darmstadt.

This treatise was planned as a three-volume project, and, indeed, two chapters of
a possible volume III have already been written. We still hold up this intention, but
the advanced age of one of us does not guarantee that we will be successful in this
endeavor. We shall see ...

Finally, we thank Springer Verlag, and in particular Dr. Annett Buettner, for the
interest in our FTD treatise and AGEM?, in general.
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Chapter 11
Creeping Motion Around Spheres at Rest
in a Newtonian Fluid

Abstract This volume consists of 10 chapters and commences in this chapter with
the determination of the creeping motion around spheres at rest in a NEWTONian
fluid. This is a classical problem of singular perturbations in the form of matched
asymptotic expansions. For creeping flow the acceleration terms in NEWTON’s law
can be ignored to approximately calculate flow around the sphere by this so-called
STOKES approximation. It turns out that far away from the sphere the acceleration
terms become larger than those in the STOKES solution, so that the latter solution
violates the boundary conditions at infinity. This lowest order correction of the flow
around the sphere is due to OSEEN. In a systematic perturbation expansion the outer—
OSEEN—series and the inner—STOKES—series with the small REYNOLDS number
as perturbation parameter must be matched together to determine all boundary and
transition conditions of inner and outer expansions. This procedure is rather tricky,
i.e., not easy to understand for beginners. This theory, originally due to KAPLUN
and LAGERSTROM has been extended, and the drag coefficient for the sphere, which
also can be measured, is expressible in terms of a series expansion of powers of the
REYNOLDS number. However, for REYNOLDS numbers larger than unity, convergence
to measured values is poor. In the 1990s of the last century a new mathematical
approach was designed—the so-called Homotopy Analysis Method; it is based on
an entirely different expansion technique, not restricted to small REYNOLDS numbers,
and results for the drag coefficient lie much closer to the experimental values than
values obtained with the ‘classical’ matched asymptotic expansion. Incidentally, the
laminar flow of a viscous fluid around a cylinder can analogously be treated, but is
not contained in this treatise.

Keywords Creeping motion - STOKES approximation + STOKES—OSEEN expansion *
Drag coefficient for the sphere as a function of the REYNOLDS number + Homotopy
analysis

List of Symbols

Roman Symbols

a Radius of a circle or sphere

A, B,C,D Constants of integration when integrating £*1) = 0
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General drag coefficient on a sphere

STOKES drag coefficient

Line increment

Coordinate increments

Unit basis vectors

Specific body force

Reference height

Homotopy Analysis Method

Auxiliary operator in HAM

Metric coefficients in orthogonal curvilinear coordinates
Auxiliary parameter in HAM

Radial inertial acceleration

KNUDSEN number

STOKES operator

Reference length

‘Stretched” STOKES operator

L£4(-) see (11.92) and (11.96)

NAVIER—STOKES-- - -

Order symbol

Pressure, dimensionless—

Embedding parameter in HAM

Radial coordinate—distance

REYNOLDS number

REYNOLDS number based on L = 2a for spheres
Reference velocity

Velocity tangential to the wall

Radial viscous (diffusive) acceleration

Velocity vector—its components

Dimensionless velocity vector—its components
Axial, radial and azimuthal velocity components
Drag force exerted on a sphere by a parallel flow
Pressure drag

Viscous drag

Cartesian coordinates, position vector
Dimensionless position vector

Cylindrical coordinates, axial, radial, azimuthal

Constants of integration for the ordinary differential equation
L% =0

LAPLACE operator—in 2D

Dynamic viscosity

Mass density
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p=Rr ‘Stretched’ radius for the construction of the OSEEN expan-
sion

= cosf New azimuthal coordinates

A Mean free path

v Kinematic viscosity

0 Polar angle in cylindrical coordinates

Or, 09, Oy Normal stress components in spherical coordinates

Tr0s Tro» Top Shear stress components in spherical coordinates

P Stream function

O, Outer and inner expansions respectively, of

Yo (r, 1) Initial guess for ¢ (r, u) in HAM

W), (¥H° ‘Outer-inner’ and ‘inner-outer’ asymptotic representation of
(0

(I/E2 - Ua%) (521/)) OSEEN operator (see Eq. (11.58))

11.1 Motivation

The fundamental equations of this chapter are the NAVIER—STOKES (NS) equations
of density preserving fluids, which shall be used here in the form
| 2

0 1
i + grad % — v x curlv = ——grad p — vcurl (curl v) + f
P

divv =0,
iv o

as stated in Chap. 7 as (7.33); and (7.39). The first of these equations is the continuity
equation, the second the balance of momentum; v is the velocity field, p the pressure,
p the constant density, v the kinematic viscosity and f the external body force, which
henceforth will be ignored. In dimensionless form, when v = [Ulv, (x,y,2) =
[L1(%, 9, 2), p = [pU?]p, the above equations take for steady state (Jv/0t = 0) the
forms

2
1
— v X curlzv = —gradzp — @curlg(curl,—cf)), (11.1)

N <

diviv =0, grad;

in which grad ;, div 3 and curl 3 are operators over (X, y, 7). Subsequently, their sub-
scripts will be dropped unless the context does not obviously indicate to which
variables the operators are referred. Moreover,

[LI[U]
v

R =

(11.2)

is the REYNOLDS number, defined by the length and velocity scale and the constant
viscosity of the fluid. We interpret here the term ‘creeping’ as slow flow, for which
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the REYNOLDS number is small, R < 1. In the ensuing analysis we shall investigate
to what extent this means that the acceleration terms in the momentum equations can
be ignored. This is known as the assumption of so-called Stokes flow; our analysis,
however, will show that flows may still be qualified as creeping when acceleration
ought to be accounted for. This requirement leads to the extension of STOKES flow
to the Oseen correction and at last to an asymptotic expansion, in which successive
correction by ‘STOKES-lets’ and ‘OSEEN-lets’ are consecutively correcting lower
order approximations. This matched asymptotic expansion is the outcome of the
so-called LAGERSTROM—KAPLUN theory (1957) [5].

Matched asymptotic expansion is a form of a singular perturbation approach,
here used for the NAVIER—STOKES (NS) equations. Its solution technique is based on
the presence in the governing equations of a small parameter, here the REYNOLDS
number R « 1. It is, however, known in fluid dynamics that many fluid flows can be
characterized as creeping, even if the REYNOLDS number R is larger than unity. For
instance, in pipe flow, laminar flow exists for R < 2000 for which the approximate
solutions of the NS-equations by perturbation techniques cannot represent realistic
results obtained by experiments. In such cases approximate solution procedures must
be based on techniques, which are not inherently based on small parameters. In the
past 20-30 years such a technique has been proposed and been applied for a number
of classical problems of fluid mechanics. It is based on the homotopy method. In
the ensuing analysis we shall study laminar flow around a stationary sphere by the
method of matched asymptotic expansions but shall also demonstrate results obtained
with the homotopy method.

STOKES flows are velocity and pressure solutions of the NS-equations, when the
acceleration terms are ignored. This does not mean that such flows are automatically
steady as time dependence may enter through the boundary conditions. Thus, STOKES
flows are solutions of

dive =0, —gradp + nAv =0,
or in dimensionless notation (11.3)
divo =0, —gradp — gcurl (curl v) = 0.

By forming the divergence and curl,! respectively, of (11.3) we get, owing to
div grad p = Ap and curl grad p = 0,

divgradp = Ap =0,
curl (curl (curl v)) = 0. (114
These are the governing equations of STOKES flow. The pressure obeys the potential
equation and the triple rotation of the velocity field vanishes. It is obvious that
solutions of (11.4) can only be reasonable approximations to the original equations for
small REYNOLDS numbers. For general, steady motions, formation of the divergence
and rotation of (11.1) yields, respectively,

'The curl of the momentum equation is often referred to as vorticity equation.
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2
A (I—7 + v? ) =0, curl (v x curl v) = vcurl (curl (curl v)),
p
or in dimensionless notation (11.5)
=2
A ([7 + | = ) =0, curl (v x curlv) = ﬁcurl (curl (curl v)).

In Eq.(11.5), R — 0 implies the STOKES equations as expected. However, the
complete consistent theory of slow creeping flow around bodies (spheres, cylinders)
must employ Eq. (11.5), in which, generally, the squared velocity term in the pressure
equations is neglected.

11.2 Mathematical Preliminaries

In this section, the NS-equations will be written in cylindrical and spherical coor-
dinates. The goal is to treat parallel flow around a sphere in detail. To this end we
shall first write them in cylindrical coordinates (z, y, ), see Fig. 11.1. Let us first
recall the div—and curl-operators in curvilinear, orthogonal coordinates. These are
obtained from the squared line increment

ds? = hid& + h3d&3 + h3des (11.6)
as

hlél hzéz h3é3
1 0 0 0

curlv = — — — |,
hihohs | 081 0§ 0& (11.7)
hivy havy hsvs '
0 0 0
dive = o (vihahs3) + — (vahzhy) + — (vshihy) ¢ .
hihahs | 06 73} 0&3
Fig. 11.1 Sphere at rest, y
circumflown by a fluid with
constant upstream velocity U )
in the z-direction.
Coordinates are: 7—axial; 0
y —perpendicular to z; U .
r —radial; 0 —latitudinal; z
o —azimuthal; a is the
radius of the sphere
l——— 29—
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Here, & (i = 1,2,3) are curvilinear coordinates. In cylindrical coordinates
&1,&,&) = (z,y, p) one has hy = 1, h, = 1 and h3 = y; consequently, according
to (11.7),,

81)1 +18(yvy) +l%=0
0z y Oy y 0p

For steady flow around spheres from a source—constant velocity U parallel to the
z-axis at z = —oo—the flow is axisymmetric, so that v, = 0 and 9(-)/9¢ = 0. For
this case the above continuity equation can be identically satisfied by introducing the
STOKES stream function (z, y) according to

10vy 10vy
yoy T yVor (s

v;

Moreover, with the restriction v, = 0 and with (11.8) curl v takes the form
v Ov 1 (0% 0 (10y
lo=(2_-"2)¢e =_——-12*~ —-=—)1e.,, 11.9
e (0z ay)% y[8z2+y8y(y0y)}e“’ (19

L2

from which the expressions

e, & yé,
| (curl ) o 0 0 1852% N 10L*
curl (cur =—|= = = —= - )
y |0z Oy y oy oy 0z 7
0 0 —L%
éz é)f yéW
| 2 92
curl (curl (curl v)) = — 0z Qy
y _16£21/J 1 0L 0
y Oy y 0z

_[162£2¢+ 0 (1(%21/))]@
i o 2

y 072 5_)’ y Oy
1[0 o (10 STV BT
= o vm ()] 2o = @
— 1541/;@@ (11.10)
y

follow. For STOKES flow the stream function satisfies the equation”

2We shall call £2(-) and £*(-) STOKES operators.
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L4 =0. (11.11)

Alternatively, it is easy to verify that

1 1
v x curlv = ——L‘zwvyéz + —Ezz/)vzéy
y
oY, 1 oY,
2 2
—E w— —2[: 1/18—yey,
e, e, é,
0 0
curl (v x curl v) = oz dy

1,00 1 aw
—2£ 0z y_ﬁ ady

(01 . 00 @ 2\] 5
_[3_2(_2“/}87) 3y( Ew@Z)]e“"
_[2aw+ (81/1(9 b 9

—_—— — —— 2 P

Substituting the results (11.10) and (11.12) into the vorticity equation (11.5) yields
this vorticity equation in cylindrical coordinates as follows:

y 1 (200 (0 0 azpa)l ,
Yprp= 12280 (2L I 2y,
y v y? [y@z+(8yaz 0z Oy v

& d (10
2. — JR— J— —_— .
£t [3Z2+y3y (yay)][]'

The next step now consists of transforming this equation into spherical coordinates.
To this end we again make use of the axial symmetry of the flow, v, = 0, 9(:)/0p =
0, and employ the relations

_ ) 2
Z=rcosb, r=+/z22+y?, (11.14)

y =rsin6, 6 = arctan(y/z),

(11.13)

from which there follows

0 10
3_z =cos€8— sm9;%,
9 15 (11.15)
3_y = 51n9—r +cos€;—9

With the relations (11.14) and (11.15) the foundations are now layed down to write
Egs.(11.11) and (11.13) in terms of the spherical coordinates (r, ). With the inter-
mediate steps
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_ 5 Py P 1 109
® LY :8_z2+a_y2_§8_y=A(2)w___
Py 10y  10%) 10y cosf oY
et R v or  Psin0 o0
0%  sinf 0 1 oy
I %(— )

Snd 90 (11.16)
2 9 +(8w 9 oY 8)
y 0z dy 0z 0z Oy

o 181/}) 1000 109

(ii)

2
= — (cotanf— — — — —_——
r( or r 00 rde or r Or 00
the steady NS-equation in axisymmetric spherical coordinates and written in terms
of the stream function takes the form

1 (ova 0o o6 200
4y _ - )= _ZTr = v _sZr 2
VEN = g [ 90 or ~ arog TG T 5 ] £v, L)

in which £%4 is given in (11.16). The STOKES approximation is again given by
L4 =0.

Relation (11.17) could also have been obtained by writing (11.6) and (11.7) in
terms of the metric in spherical coordinates

ds? = dr? 4 r2d6* + r? sin® 9dg02. (11.18)
According to (11.7),, this would have led to

dive — i@(rzv,) 1 O(vgsin6) 1 Ov,
T2 or rsinf 90 rsind Op

(11.19)

For axisymmetric flow (v, = 0) this suggests the introduction of the stream function
1 with the velocity relations

a1 ey
T 2sin0 000 T " rsind or w, =0). (11.20)

With these relations the continuity equation (11.19) is identically satisfied. Moreover,
this spherical stream function agrees with the earlier stream function modulo an
additive constant.

Finally, let us collect at one place those formulae, which will be used in the
subsequent sections:
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10y 1 oy
V= ——(——, Uy = . an
STy oy r2sinf 90
10vy 1 oy
W=—Too Y=
y 0z rsinf Or
2 : (11.21)
) 0*p  sinf 0 1 oy . .
LY = W + r_zﬁ m% ,  spherical coordinates,
1 0L? 10,3
curl curlv = ———wéz + ——éy, cylindrical coordinates.
y Oy y 0z

11.3 Stokes Flow Around a Stagnant Sphere

11.3.1 Rigid Sphere and No-Slip Condition
on the Surface of the Sphere

For creeping STOKES flow around a sphere the following boundary value problem
must be solved, see Fig. 11.1.

L4 =0, in R*\V,
v, =vy =0, forr = a,

v, U, (11.22)
w:Ey =Er sin“ 0, forr — oo.

Here, V is the sphere with radius a, and v, and vy are the radial and azimuthal velocity
components. The boundary condition (11.22)5 states that the flow at r — oo merges
into the rectilinear flow parallel to the z-axis; indeed v, = (1/y)(0v/0y) = U,
according to (11.8);; the boundary value problem (11.22) describes the flow exterior
to the sphere. The problem was first solved by GEORG GABRIEL STOKES in 1851
[19]; for his brief biography, see Vol. 1, Fig.7.4.
Let
Y = r"sin’ 0 (11.23)

be a trial separation solution. It implies

& 2 2

57 = n(n — 1)r'""~sin“ 0,

Z—z} = 2r"sin 6 cos 9, (11.24)
0 1 oy o . "

5 (m%) =% (2r" cosf) = —2r"sin 0
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and, thus, in view of (11.21)

L2 = (n(n—1) —2) " 2sin’ 6,

LY = mn—1)—2)((n—2)(n—3) —2) r"*sin® 4. (11.25)
It follows that £* = 0 is satisfied, if
(nmhn—1)—2)=0 and (n—-2)(n—-3)—-2)=0
with the solution n = —1, 2, 1, 4. The most general solution of £41/) = 0, thus, has

the form
D A D
Y= (Ar + Br? + Cr* + —) sin? 0 = (— +B+Cr + —3) 2. (11.26)
r r r

As r — oo, the above expression agrees with (11.22)3, provided that C = 0 and
B = U/2, so that

U D
W= (Ar + Tr + —) sin® 6. (11.27)
r

The second and third terms are the stream functions of the constant rectilinear flow
(¢ = Uy?/2, v, = U) and flow due to a dipole ¢y = (D/r) sin? # with strength D,
respectively, see Vol. 1, Fig.5.7. They are potential flows and are not responsible for
friction; the influence of friction must, therefore, be due to the first term involving A.

Before determining the constants A and D with the aid of boundary conditions
at the surface of the sphere, let us first determine a number of additional physical
quantities:

e Velocity:

r2

A D\ .
vw=—\-+U-3 sin 6.
r s

2 cos Ur: D 2A 2D
v, = Ar+7+— =|—+ U+ — )cosb,
r

e Pressure: This can be obtained from the equation
grad p = —ncurl (curl v).

Indeed, with the expression immediately above (11.10) one obtains

10p 102 13( 2A,2) 18( 242 )
- = =——|——sin"f) =— — |

ndy y 9z  yoz\ r yaz \ (% +22)3
1op 10L% 10 ( 24 s'n29) 10 ( 24y? )
—_—— = - = - — ——S1 = - — —_—_— .
ndz y Oy y Oy r yoy \ (?+22)3%2
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It suffices to transform the first of these expressions; a first step yields

op 2y
X 3pA—
o TP

and after integration

y

2y’
p= —377Az/ — =+,
S 02422 ) (11.29)
Ccos

p= = 2nA

’

r2

z
nA (2 + 232

in which p* = 0 has been so selected to yield p(co) = 0 for normalization.
Evidently, the pressure distribution is exclusively given by A (and not the rectilinear
flow and the dipole flow).

To evaluate the force exerted by the fluid onto the sphere, the frictional stress
components in spherical coordinates are needed. These are given as follows:

61),

o

e
(1

ov v vgcotand
T (’—)

% = rsinf Oy r r
- 1 - - (11.30)
o= r 89 or r)’
v, L Ov v
‘”(W* rsind 0p 7)’

I Ovg 10v, wv,cotand
Top = —t - -—).
o =T\ rsing Op r 00 r

The simplifications which emerge for these expressions for axisymmetric flow can
easily be identified. If in (11.30); 4 the results of (11.28) and (11.29) are substituted,

then the expressions
A 3D
o, = —4ncos b (—2 + —4) ,
r r
. .D
Trg = —6m sin 60—, (11.31)
r

A 2D
o, —p = —6ncosf ﬁ+_

4

are obtained. Due to symmetry of the flow around the sphere the resultant force
exerted on the sphere possesses only a component in the direction far upstream of
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Fig. 11.2 Stress vectors

> Sphere Trg
acting on the surface of the
sphere
‘- 2nasinfadf
Area

[———2a——~

the sphere; this is the z-direction. Therefore, with reference to Fig. 11.2, this leads to

W=W+W,
with
W, = / (o, — p) cos 0 2ma® sin 0dO
0
A 2D\ [ 2D
= —6n(2ma?) (a_2 7 ) / cos® fsin 0df = —87 (A + —)
0
———— ————
2/3
[ D [ 2D
Wy =— / Tr sin” 0 2ma’d6 = 61)2ma’ — / sin® 0df = 8nw—-.
a a
0 ————
4/3
Consequently, the total frictional force is given by
W = —8mnA. (11.32)

Notice that, owing to our earlier recognition that only terms involving A are con-
tributing to the viscous drag, only those quantities involving A would have to be
accounted for in the evaluation of the drag force. That the contributions involving D
cancel out in the computation, is a comfortable control of the computation. Notice,
moreover, that the above formulae are valid for whatever boundary conditions apply
on the spherical surface.

Next, let us determine the constants of integration, A and D. If we require the
no-slip condition on the surface, then v, (a, #) = 0, vg(a, §) = 0, so that, in view of
(11.28),

A+D Uu A
a 3 27 a
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from which we obtain

A=-2U = Ly
=7 a, =12 a’.
so that
Ua® r\Z a r\ .,
P =— 2(—) + — —3—)sin” 0,
4 a r a
1 33
v, = Ucosf l—i——(c—l) _ 24 ,
2 \r 2r
. 1 /a\3 3a
vy = Usin0 —1+—(—) +24), (11.33)
4 \r 4r

= 3 Ucos@a
p_ 277 rz?
W = 6mnpUa = 37mn U(2a).

This concludes the evaluation of STOKES flow around a sphere. As final remarks we
state:

e The STOKES drag consists of two contributions:

W, = 2mn Ua, a pressure drag,
W, = 4mn Ua, a viscous drag.

The denotation ‘pressure drag’ is justified, because for r = a, o, = 0.
e A physical interpretation of the STOKES drag is obtained, if one computes the force
exerted on a sphere, which moves with REYNOLDS number ‘1°. Indeed,

2aU 33 2
N /7 T R L T e (11.34)
v 2 2 p

R

The quantity n?/p is formed only by material quantities, which possess the dimen-
sion of a force; it moves a body, large or small, with the REYNOLDS number ‘1°.

e Itis customary to characterize the STOKES drag by a dimensionless drag parameter

Cw
w (6mn)(2Ua) 12v
Cy = 75 = = —
SUma? pU2ma? Ua
24 2aU
=2 with R="2 (11.35)
R v

e The domain of the validity of the STOKES solution can be found, if a typical vis-
cous diffusive element and a typical convective acceleration term in the NAVIER—
STOKES equations are compared to one another. These are for instance
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8 r . . . .
vra—v typical inertial member of the NS-equation,
r
5, . i o .
v 52 typical viscous (diffusive) member of the NS-equation
r

and can be computed with the aid of (11.33) as follows:

v, 1l 3 3 343
v,—U=U2cos29(1+—a—— a)( a_ a)EIl’l,

o R A Crl
&%, 17 cos 6a®>  3a v
v—— =vUcosH|— — =)=V,
o2 5 3

which implies
In Ua ;ry 2¢— 29 la® 3a
) =—(—)u I 11.36
V( ) v \a 6‘:_3_3% +2r3 2r ( )

In the vicinity of the sphere this ratio is of the order of magnitude of the REYNOLDS
number R = 2Ua/v « 1. To ignore the inertial terms in the neighborhood of
the sphere is, therefore, justified. However, for r/a — oo the ratio In/V grows
indefinitely?; this says that far away from the sphere the inertial forces are no
longer negligible. Far away, the inertial as well as the viscous forces have, however,
essentially fallen to zero as follows:

In(r - 00) =072, V@ — 00)=00).

The STOKES theory, therefore, requires amendments.

11.3.2 Cunningham’s Correction

This correction replaces the no-slip condition at the surface of the sphere by a sliding
law. It has its significance in the determination of the charge of an electron according
to ROBERT ANDREWS MILLIKAN and HARVEY FLETCHER in 1909 [3]. In their attempt
to observe buoyant oil particles under a microscope and to measure the fall velocity
one encounters the limitation of the applicability of continuum mechanics. For a
fluid sphere ‘suspended’ in a gas corrections must be incorporated, if the radius of
the sphere approaches the order of magnitude of the mean free path A of the molecules
of the gas. The ratio

3Atr = a, Eq.(11.36) yields In/ V = 0. Expanding (11.36) in TAYLOR series for small values of
(a — r)/a and, respectively, small values of a/r corroborates these statements.
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Fig. 11.3 A wall-near y
particle hitting a boundary,

when being ‘glued’ to the

boundary by the impact. The A
wall is locally considered
plane and the coordinate l A
perpendicular to the wall is y
Wall Uy, == X

Kn = é

a

is known as KNUDSEN number.* For Kn <« 1 the prerequisites of the continuum
approximation in the STOKES approximation remain still valid, but the fundamental
assumption of the no-slip condition at the spherical boundary remains no longer
strictly satisfied. For Kn > 1 one may still assume the NS-equations to remain valid,
but must replace the no-slip condition by a viscous sliding law. The new boundary
condition now reads

A
v, =0 vy =—7y9, A mean free path. (11.37)
n

This sliding law can be motivated as follows, see Fig. 11.3. A particle (oil drop in
MILLIKAN’s experiment) close to the wall possesses the wall-parallel speeds:

Ou
N . ) ou 1 9
(i) prior to the impact: u,, + A@y mean i, = — (uw \ u) ’

(if) after the impact: O 9y

of which the mean wall velocity satisfies the equation u,, = % (uy + AOu/0dy) or

Adu A
Uy = Eﬁ_y = ;Tx_\'v
if linear NEWTONian behavior is supposed. The formulae (11.27)—(11.32) remain
valid, since they were derived for arbitrary boundary conditions at the surface of the
sphere. When (11.37) is used Eqs. (11.28) and (11.31), now yield

A D 6 A
-1+ D) =-v. (v="S7).
a a a2 n

D U
Aa+ = = 22, (v, = 0).
a 2

4 After MARTIN HANS CHRISTIAN KNUDSEN (15. Feb. 1871-27. May 1949), a physicist who studied
primarily molecular gas flows.
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Fig. 11.4 Scaled drag force w
on a sphere, W/(6mnUa), 6nnUa
plotted against \/a 1
%
A
y \ 1+2 a
* A A
1+3 a 2
0 T T T T

These equations, when being solved for A and D have the solution

3
A= Sy tr2Na o Ve 1 (11.38)
4 T 3N /a 4 1+3)a
implying
142)
W = 6nUar T 22 (11.39)
14+3)\/a

see Fig. 11.4. This formula shows that for A = 0 the STOKES solution is recovered;
The sliding boundary condition reduces this at most by a factor of % The limit
A — oo is interesting. It does not produce W = 0, which corresponds to perfect
sliding; the reason for W # 0 is that the fluid remains viscous in this case, which
produces the viscous drag W = 4nnUa without the pressure drag. For 0 < A < oo
W lies between 4mnUA and 6mnUa.

11.3.3 Rigid Infinitely Thin Spherical Shell Filled
with a Fluid of Different Viscosity

Very small droplets, which fall or rise in another viscous fluid are often kept in
spherical shape due to the effect of surface tension or by impurities attached to the
surface. If the fluids within the sphere (with viscosity 77) and the exterior fluid (with
viscosity 1) are immiscible, then the steady motion of the sphere can be determined.
In this case a circulating flow occurs also in the interior of the sphere, which, at
sufficiently small REYNOLDS numbers satisfies the equation £*) = 0.

Consider first the flow in the interior of the sphere. For this, £*) = 0 has the
solution (11.26), or

)
) = (ar + 8r* +yr* + —) sin” 0 (11.40)
r
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with the four constants of integration «, 0, 7y, d. Because of the regularity of the
solution at » = 0, one must have § = 0, so that

68—1/) = (a +20r + 47r3) sin 6,
,
g—z = (ar + 8r + 'yr4) 2sinf cos 6.

With the aid of (11.21) these expressions allow evaluation of v, and vy as follows:

v, = 200549(g +ﬁ+7r2),
r

vg = —2sin9(%+ﬂ+27r2).

To avoid singularities in the velocity components, v, and vy, in the center of the
sphere, the constant o must vanish. Thus,

v =2cosf (B+r7) — 0 o gin 03 + 1),
59 (11.41)

vg = —2sinf (6 + 2’yr2) — B_re = —8sin fyr,

so that the shear stress 7,¢ is given by, see (11.30),

1 Ov, )
Ty = 1) —(% —i—%—% = —2sinf é+fyr+47r_é_27r 7
r 00 or r r r

= —6ijyrsin. (11.42)

The flow in the space exterior to the sphere is described by formulae (11.27)—
(11.30). Let us collect here the relevant statements:

. A U D ]
exterior : v, =2cosf | —+ —+ — ), see(11.28),
ro 2

. A D
v9=—sm0(—+U——), see (11.28),

r r3
. (11.43)
Tr9 = —6msin 0 —, see (11.31),
r
interior : v, = 2cos (08 + yr?), see (11.41),
vy = —2sin0(6 + 2yr?), see (11.41),
Ty9 = —67yrsin g, see (11.42). |

The four constants A, D, 8 and v must be determined with the aid of the transition
conditions at the surface of the sphere; these conditions read as follows:
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1. The radial velocity at the surface vanishes immediately inside and outside the
sphere: v,(a, 8) =0,

A + b__ U (11.44)
a a2’ ’
B+ ~a* = 0. (11.45)
2. The tangential velocity is continuous, [vg] = 0,
A D 2
—+U—- 5 =23+4ya. (11.46)
a a’
3. At the surface of the sphere the shear stresses 7,9 are continuous,
D _
— =1a. (11.47)
a
The solution of Eqs. (11.44)—(11.47) is given by
A Ua 2+ 31/
4 1+q/]
ua® 1
p=Ya _an_ (11.48)
4 141/
. 3 U 1
TETR T a2 1+q/n
so that in view of (11.32) the drag force is given by
2+ 3n
W = 27y Ua 2211 (11.49)
L+7/n

a result that is due to G.I. TAYLOR® (1932) [20]. Accordingly, i} — oo implies the
result for a rigid sphere, W = 67mnUa; alternatively, for n — 0 we obtain instead
W = 4mnUa, the solution for a frictionless surface (A = 0); both results are as
expected. Moreover, with & = 6 = 0 and 3,y as given in (11.48); 4 the stream
function in the interior of the sphere is obtained. Indeed, with (11.40) we have

(@® — rH)r*sin’ 0

- . 11.50
4q2 14+7/n ( )

QZ}:

SFor a biography of TAYLOR, see Fig. 11.5.
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Fig. 11.5 GEOFFREY INGRAM TAYLOR (7. March 1886-17. June 1975). (Right photo) Wavy
Taylor vortices in the gap between concentrical cylinders, reproduced in laboratory by
K.G. ROESNER.

GEOFFREY INGRAM TAYLOR was an applied mathematician and physicist specialized in
fluid dynamics and wave theory. Taylor studied mathematics at Trinity College, Cambridge
University. With work on shock waves, 1909, he won the Smith’s Prize and was elected a
fellow at Trinity College in 1910 and a Reader in Dynamical Meteorology in the following
year. His publication ‘Turbulent motion in fluids’ won him the ADAMS Prize in 1915.
During World War I TAYLOR was sent to the Royal Aircraft Factory in Farnborough to
apply his knowledge in aerodynamics and meteorology to aircraft design; there he worked
on stress in propeller shafts, learned to fly airplanes and made parachute jumps. After World
War I, he returned to Cambridge, where he worked on rotating fluids. In 1915 TAYLOR
was appointed a Royal Society research professorship. This freed him from teaching and
led to a period of very active research on both fluid and solid mechanics (also of crystalline
materials), including statistical approaches to turbulence. In 1934 TAYLOR realized—almost
simultaneously with POLANYI and OROVAN—that the plastic deformation of ductile material
could be explained with the theory of dislocations.

During World War II TAYLOR worked on applications of his expertise to military problems,
among others the propagation of blast waves in air and water. His prediction of the strength
of the atomic explosion performed as part of the Manhattan Project in the desert of New
Mexico is well known. In 1944 he was also knighted.

TAYLOR continued his research after the war, working on the development of supersonic
aircraft. He officially retired in 1952 from active duty; he continued to work for twenty more
years. He wrote his final paper on electrical activity in thunderstorms in 1969, when he was
83. He suffered a stroke in 1972 and died on 27 June 1975.

The text is based on www.wikipedia.org

Further references:

B. PIPPARD: Sir Geoffrey Taylor, Physics Today, Sept 1975, p. 67

G. BATCHELOR: The life and legacy of G.I. Taylor. Cambridge University Press, 1994. ISBN
0-521-46121-9
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Remarks

e Figure 11.6 displays the streamlines (panel (a)) and the perspective view (panel
(b)) of the function (11.50), called a HILL vortex.

e Formula (11.49) allows evaluation of the rising velocity of a spherical gas bubble
with density p in a heavier fluid according to the equation

4 4 2437

?ﬂ-a3pg = ?ﬂ-cﬂﬁg + 27r77Ua—1+ _77/77’
+17/n

Buoyancy Weight Drag Force

i

e
Rt N ‘\\\\ %\\ \
Gl

X%

Fig. 11.6 Streamlines (a) and perspective plot of the stream function (b) of a HILL vortex



11.3 Stokes Flow Around a Stagnant Sphere

2azg( ﬁ) 1+ i/ (
U=-——(1—-—=) ———, V=
3 v p) 24+3n/n

follows. The limits 7 — oo and 7 = 0 yield

from which

v p
2 d? D

P> U:_ﬂ(l—f)
9 v P

21

(11.51)

Experimentally one often observes for 7 < 1, the rising velocity for the case
7 > n. This corresponds to the no-slip condition and can be explained by a
stiffening of the interface due to a gradient of the surface tension by a contamination

of the surface.

e GEORGE BATCHELOR (1988) [1] considered the configuration of Fig. 11.7 to
explain the possible existence of air bubbles in ‘fluidized beds’: In a fluid with
constant steady speed U at infinity, rigid particles with radius a are suspended
having falling velocity W. The particles are surrounded by spherical air bubbles
of radius R. In the frame of the moving particles the approaching velocity is given

by U — W. We then have:

in the exterior region (water)

_|__

A U-W D
v, =2cosf | —+ ,
r 2 r3

. A D
vg = —sinf —+U—W——3, )
r T

. D
Typ = —6m sin 9—4;
r
in the inner region (air)
« )
v, =200s0(—+6+’yr2+—3),
r r

5
vy = —2sin0(% + G429 — 3)

Trg = —67yrsin 6.

(11.52)

(11.53)
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Fig. 11.7 Spherical particle
enclosed in a spherical air
bubble rising or falling in a
viscous fluid

The constants A, D, «, 3,7, § are so determined that for r = a the velocities
v, = vg = 0 and for r = R, v,(R") = v,(R™) = 0; moreover, for r = R, vy
and 7,9 must be continuous. These are six equations whose solution is given by
BATCHELOR (1988) [1].

11.4 Oseen’s Theory®

11.4.1 Governing Equations of the Oseen Theory

The essence of the STOKES theory is the solution of £*) = 0, Eq.(11.11), for the
stream function 1 (z, y) from which the axial, v,, and the radial, v,, velocity com-
ponents (11.8) in cylindrical coordinates (z, y) can be determined. It was demon-
strated with (11.36) and subsequent discussions that far away from the stationary
rigid sphere the inertial (convective) acceleration terms dominate over the viscous
(diffusive) terms. This implies that, strictly, the convective acceleration terms must
somehow, be accounted for C.W. OSEEN (1910) [15] recognized that far away from
the sphere the actual flow around the sphere cannot deviate much from the rectilinear
flow v &~ Ue, and approximated for this reason (grad v)v by (grad v)Ue,, so that

B
(grad v)v ~ Uﬁ—". (11.54)
Z

For steady flow, the momentum equation, therefore, takes the form

SFor a brief biography of CARL, WILHELM OSEEN, see Fig. 11.8.
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WiLHELM ()SEEN

Fig. 11.8 CARL WILHELM OSEEN (17. April 1879-7. Nov. 1944)

CARL WILHELM OSEEN was a Swedish theoretical physicist in Uppsala and Director of
the NOBEL Institute for theoretical physics. Starting in 1896 he studied at Lund University,
where he graduated in 1900; he also studied in Gottingen. 1902 he became a docent and
subsequently until 1910 substitute professor of mathematics. Between 1909 and 1933 CARL
OSEEN was professor of mechanics and mathematical physics at the University of Uppsala.
In 1921 he became a member of the Royal Swedish Academy of Sciences and in 1933 he
acquired the head office of the NOBEL Institute, which under ARRHENIUS emphasized on
research in chemistry, now concentrated its activities on theoretical physics. 1924 OSEEN
became a corresponding member of the Bavarian Academy of Sciences.

CARL WILHELM OSEEN’s research focus was the development of the theory of elasticity of
liquid crystals. He proposed in 1921 ALBERT EINSTEIN for the NOBEL prize, was among
the first Swedish physicists to accept NIELS BOHR’s atomic model. Most important for fluid
dynamics were the OSEEN equations in viscous fluid flows, which demonstrated for a linear
viscous fluid that creeping flow around a sphere far away from the sphere needed to account
for the (linearized) advective acceleration terms as illustrated in Sect. 11.4.1. This led later
to the famous asymptotic STOKES—OSEEN expansion of bodies, slowly circumflown by a
NEwTONian fluid. He also performed pioneering work in the theory of liquid crystals.

The text is based on www.wikipedia.org
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ov 1
— = ——grad p — vcurl (curl v). (11.55)
0z P
This approximation corresponds to a linearization of the convective acceleration term,
if it is assumed that the motion of the fluid deviates only slightly from rectilinear
flow in the z-direction. In the neighborhood of the circumflown body this assumption
cannot be valid. Here, however, it was recognized that the STOKES approximation
was sufficiently accurate, at least for spheres, for which computations have been
demonstrated. All the more, it was confirmed that the acceleration terms were indeed
negligibly small; it may, therefore be accepted that the error, which is introduced by
the OSEEN approximation, is likely of negligible order of magnitude.

It was shown in Sect. 11.1 [between the formulae (11.8), (11.9) and (11.10)] that

1
curlv = ——[,zwéw,

(11.56)
curl (curl (curl v)) = — L%y é,.
y
Forming the rotation (curl) of (11.55) yields
0
Ua—curl v = —v curl (curl (curl v)), (11.57)
Z
or after substitution of (11.56)
2 9 2
vLf—U— ) LY =0, (11.58)
0z

as the vorticity equation in the OSEEN approximation. Let us also recall the operator
L2,

2 1
L] = ’8—2 + y2 (—ﬁ) ] [-], in cylindrical coordinates,
0z dy \y Oy (11.59)
= 8_2+_sin9£ 1o [-1, in spherical coordinat |
=192 2 59 \sno 90 , spherical coordinates.

We now wish to solve (11.58). This will be done by first seeking a particular solution
of the OSEEN equation, which vanishes as r — 00; this solution will then be combined
with solutions of £%v) = 0 [these are also solutions of (11.58)] for which all boundary
conditions are satisfied.
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11.4.2 Construction of a Particular Integral of (11.58)

OSEEN started with the representation

L% =f(2)(z, y), (11.60)

in which (z, y) are the cylindrical coordinates and £>[-] is given in (11.59),. Thus,
one may easily deduce

L% = L2 (F Qe y) = "0 +2f b + fL2,
oo

)
8—Z—f¢+f¢z,

(11.61)

in which f" = df /dz and ¢, = 0¢/0z. If Eq. (11.61) are substituted into (11.58), the
following equation is obtained

v (f”eb +2f's. +f£2¢) "y (f’¢> ; f@) —o. (11.62)
— N

If we now request somewhat arbitrarily that the underbraced terms together vanish,
then

2uf —Uf =0

is obtained, a differential equation for f with the solution

f=exp (g) . (11.63)
2v

Back substitution of this exponential function for f into (11.62) leads to the equation

2 U2
(ﬁ - E) bz, y) =0. (11.64)

OSEEN’s ansatz (11.60) has been cleverly so selected that the fourth order differential
equation (11.58) is solved by two second order equations, first, Eq. (11.64), which
is linear and homogeneous, and, second, by the linear but inhomogeneous equation
(11.60).

At this stage of the computations it is advisable to go over to spherical coordinates
and to seek a solution of (11.64) in the form

¢ = F(r)sin” 0. (11.65)

Substituting this expression in (11.59) leads to
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2 " 2 s 02
Lo=|F — —F ) sin 0, (11.66)
r

so that in view of (11.64) the radial function must satisfy the ordinary differential
equation

2 2
F'— (— + U—) F=0. (11.67)

rz = 42

The reader may demonstrate by substitution that

2v Ur
F=C{l+ —)exp{—=—), C = const. (11.68)
Ur 2v

solves (11.67) and enjoys the desired property to vanish as » — oo. Hence, with
(11.60) and (11.63) we arrive at the intermediate result

2 U
£2¢=Csin26(1+7’/) exp (—z—r(l —cose)). (11.69)
r v

This result is significant simply, because, according to (11.56),, the operator —L£?)/y
is the vorticity of the motion.

There remains to construct by integration of (11.69) a particular solution for .
To this end, we set

U
Y =g(z,y) exp (—z) . (11.70)
2v
Substituting this into (11.59), yields for L
2 1
L 1/) = zbzz +1/)yy - ;%

U? U Uz
= (mg+;gz+£2g) exp (E) (11.71)

in which subscripts y and z denote partial derivatives. Equating (11.69) to (11.71)
and transformation of the emerging expression to spherical coordinates results in the
following linear and inhomogeneous partial differential equation for g:

U_2+£ Cose@_SiHH@ +@+Sin92 _l @
22977 or  r 00) " a2 " 2 96 \sind 06

2v Ur
=Csin?0(1+ = ——). 11.72
sin (—G—Ur)exp( 2y) ( )

A particular solution of this equation has the form
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202 U
g= %C(l—#cos@)exp (—Er). (11.73)
Back substitution into (11.70) leads to the following particular solution
Ur
1 = B(1 + cos ) [exp (—2—(1 — cos 9)) — 1] , B = const. (11.74)
v

of the OSEEN equation.

11.4.3 ‘Stokes-Lets’ and ‘Oseen-Lets’

To the particular solution for ¢ in (11.74) we now add the same potential flow
solution, which we already employed in the STOKES solution. Thus, we write

Y=+,
3
=2 <2r2 n "_) sin2 0. (11.75)
4 r

1y = B(1 + cos ) [exp (—%(1 — c059)> — l} .

1 satisfies the potential equation A, = 0, and, therefore, also £2¢; = 0, as well
as the OSEEN equation (11.58). In the immediate neighborhood of the sphere we have
Ur/v < 1, and 9, can be approximated as follows:

U
1y ~ B(1 4 cos 0) [1 — z—r(l —cost) +---— 1]
v
U U
~ —B(1 +cos€)—r(l —cosf) = —B—r sin® .
2v 2v

Therefore, in the vicinity of the sphere, v takes on the form

U 3 U
v~ (2r2 n “—) sin? 0 — B sin’ . (11.76)
r

v

This is the same as the STOKES solution (11.33); provided B = %au. With this choice
the boundary condition at the surface of the sphere is only approximately satisfied.
The final result is
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U 3
1)bOseen = — (2"2 + a—) SiIl2 0
4 r

+ §az/(l + cos 6) [exp (—ﬂ(l - 0059)) — 1] . (1177
2 2v

‘Oseen—let’

As is known from potential theory, the terms in the first line of this expression are
due to doublets (dipoles) at infinity and the origin of the coordinates. Consequently,
the third term due to the particular solution of the OSEEN equation is characteristi-
cally called ‘Oseen-let’. In the STOKES solution, the corresponding term is called
‘Stokes-let’ and is, according to (11.33);, given by

Ua? 2 3
Usiores = — (22 + 2 ) sin26 + > Uar sin 6. (11.78)
4 a r 4
——
‘Stokes-let’

We close this section by the following remarks.

e If one computes the drag of the sphere with the solution found this way, one obtains
again the result by STOKES,

24
W =6mnUa or c, = T (11.79)
However, this result is only obtained, because of the approximate satisfaction of the
boundary conditions at the surface of the sphere. If the constants of integration,
A and D, in the solution of the OSEEN equation are exactly satisfied, then one
obtains (GOLDSTEIN, 1929, [4])

24 1 5 R 11.80
cw—R[+l6 —I—} (11.80)
Up to REYNOLDS numbers R =& 1 this drag coefficient agrees well with experi-
ments.

SIDNEY GOLDSTEIN’ [4] went even further in the OSEEN expansion and computed
six terms of higher order and obtained

R3

24{ 3 19
cw=—11

71
—R-— R?
R| T 16 1280 +20,480

30, 179 4 122,519 5 ]

- + (11.81)
34, 406, 400 550, 502, 400

7For a brief biography of SIDNEY GOLDSTEIN, see Fig. 11.9.
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Fig. 11.9 SIDNEY GOLDSTEIN (3. Dec. 1903-22. Jan. 1989). Right the TAYLOR—GOLDSTEIN
equation describes the dynamics of internal waves in the presence of density stratification
and shear flow. A schematic diagram shows the base flow which is parallel to x axis, subject
to a small perturbation away from this state which has components in both x, z directions.

SIDNEY GOLDSTEIN started his higher education at the University of Leeds in 1921, where
he studied mathematics, but moved to St. John’s College, Cambridge, graduating from the
mathematical Tripos 1925 and gaining the SMITH’s Prize in 1927. He was awarded an
Isaac NEWTON Studentship to continue research in applied mathematics and completed his
Ph. Degree under Harold JEFFREYS with a thesis entitled ‘The theory and application of
MATHIEU functions’ in 1928. With a ROCKEFELLER Research Fellowship he then spent a
year at the University of Gottingen with Ludwig PRANDTL, where he performed laboratory
experiments of a fluid in a rotating elliptical container.

In 1929, GOLDSTEIN returned to Cambridge, but accepted in the same year a lectureship in
mathematics at the University of Manchester. It had a profound influence on GOLDSTEIN
through the heritage of Osborne REYNOLDS and HORACE LAMB. He moved to Cambridge
again in 1931 and took over, on LAMB’s death, the edition of ‘Modern Developments in Fluid
Dynamics’ which appeared in 1938. He was elected Fellow of the Royal Society in London
in 1937. During World War II, GOLDSTEIN worked at the National Physical Laboratory on
boundary layer theory. In 1945 GOLDSTEIN moved again to the University of Manchester,
where he assumed the chair of Applied Mathematics.

In 1950 GOLDSTEIN accepted the chairmanship of the mathematics department of the Tech-
nion at Haifa, but resigned 1955, owing to the administrative overload, and took the chair
of Applied Mathematics at Harvard University, Cambridge, USA.

GOLDSTEIN was a very influential fluid dynamicist, best known for his work on steady flow
laminar boundary layers and turbulent resistance to rotation of a disk in a fluid. His work in
aerodynamics and its influence led Sir JAMES LIGHTHILL to say that he was ‘one of those
who most influenced progress in fluid dynamics during the 20th century’.

The text is based on www.wikipedia.org and LIGHTHILL [12]. Photo from http://www.
annualreviews.org/
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According to MILTON VAN DYKE (1964) [21] the last term has been corrected by
D. SHANKS (1955) [18]. However, owing to the matching requirement of the
STOKES—OSEEN expansions, treated in the next section, the higher order terms
are not reliable, as we shall see.

e The vorticity, induced by the motion, can be evaluated with the help of (11.77).
The resulting expression is

1 1 0% sin’f 0 1 oy
lv=—L%e, = —— | — = -
cury y Ve, rsin 6 [ or? + r2 06 (sin29 69)]

3y Ur Ur

Close to the axis, at fixed y, one obtains

(i) for # — 0: The vorticity decays for large r as r—2,

(ii) for # — m: For large r the vorticity decays exponentially as exp (—Ur/(2v)).

In other words, the vorticity is larger downstream of the sphere than upstream of
it. This explains why dead zones have the tendency to arise in the wake.

11.5 Theory of Lagerstom and Kaplun

11.5.1 Motivation

We have seen that the STOKES theory of the flow exterior to a rigid stagnant sphere
fails far away from the sphere at distances

a v Ua
>—=—, R=—. 11.83
" R U v ( )

(Note, the REYNOLDS number is here defined with the radius and not the diameter of
the sphere.) In terms of the stretched variable

r
s:=—-R
a

the STOKES solution (11.33), takes the form
P 1s> 3 1R 5
L e PO i O 6. 11.84
v~ |2® Car Uiy oo (11.84)

In this expression dots indicate that the solution (11.84) ought to be interpreted as a
beginning series expansion in terms of the REYNOLDS number. We demonstrated in
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Fig. 11.10 Validity regimes
of the STOKES—OSEEN

expansion. (D Validity regime Sphere
of the STOKES expansion, Q) — O
Validity regime of the OSEEN u ©)
expansion, Q) Overlapping i
region, in which both .
expansions are ® T@

asymptotically equal

earlier sections of this chapter that in the STOKES solution the nonlinear convective
members of the full NS-equations were ignored, but when accounted for would
dominate the linear term far away from the sphere.

To improve the situation, C.W. OSEEN developed his theory, in which the convec-
tive terms were accounted for in such a way that for r — oo they were asymptotically
correctly taken into account. OSEEN’s theory is linear; however, because the bound-
ary conditions at the surface of the sphere are not exactly satisfied, additional terms
must be incorporated in the STOKES expansion. The OSEEN solution reads

2
¥ = {1" + la}sinzﬁ— %1—1—70059 (1 —exp (—;E(l —cos@))). (11.85)
a

Obviously, this is an outer expansion, which is valid far away from the sphere
(the OSEEN solution is an approximation of this). On the other hand, the STOKES
solution is a beginning inner expansion with a validity region close to the sphere.
The two solutions merge in an overlapping region and must be matched together,
a process, which determines unknown coefficients in the outer and inner expansions,
see Fig. 11.10.

In order to present this matched asymptotic expansion procedure, let us write the
axisymmetric NS-equations in dimensionless form. They read as follows:

_ R (90 oo oY 200 4

4y o _owo , oY 20¥ | 5
£y r2sin9[89 ar  or g T comndy, rGG]L v
~ ”? 1 (8 0 0% sinf 0 (0/(00)

2, _ 9o Lo o _ |9  smvo
£ = ’8r2 T2 (892 COtanaaa)]¢ [BrZ T2 ae( sin 0 )]w

R=Y

14
1 o —1 )

T 2sing 00 T rsind or
(11.86)
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In these expressions all quantities are dimensionless. The boundary conditions, for
which these equations must be solved are:

On the surface of the sphere: u, = ugp = 0, or in terms of the stream function

P(l,0) =0, Qfaﬂ):a r=1. (11.87)
or

At infinity as r — 00: v = e, Of,

u,cos —uysind = 1,

u, sin @ + ug cos 6 = 0.

These two equations are identically satisfied if
lim ¥ (r, 0) = —r°sin“ 6. (11.88)
r—00 2

Equations (11.86)—(11.88) define together the complete boundary value problem.

11.5.2 Stokes Expansion

In the vicinity of the sphere (i.e. in the inner region) we write
Y = i(r, 0) = P + Ryl +R2ph +- -+ . (11.89)

When substituting this series expansion into (11.86) a recursive set of principally
solvable differential equations is obtained:

LYY =g, k=0,1,2,...,
1 <[a¢ia i o o 2a¢f]~2i> (11.90)
P
k—1

= Zemo\| 30 ar ~ or 99 T 2@l 5 o — 5

Gk
For k = 0 the counting index k — 1 must be set to zero as must the indexed variables
e.g. g_1. The zeroth order equation is simply £*) = 0 with the solution

vi=| 2= 20 4 1 e (11.91)

Hence, the term / stands for the rectilinear potential ﬂow~ with (ﬁzwo) ; = 0. Similarly,
the term I11 is a dipole (doublet) flow also satisfying (£2vo);; = 0. Only the term I7



11.5 Theory of Lagerstom and Kaplun 33

delivers a contribution to the relation
31 .
curl (vg) = 33 sinfe,.
Substitution of (11.91) into (11.90) leads to the differential equation for Wi

<4 9(2 3 Iy .
LY = -1 (72 -5+ ﬁ) sin® @ cos 6. (11.92)
A particular integral, which satisfies the boundary conditions at the surface of the
sphere is

3 2 ro1) .,

— —1{2r"=3r+1— -+ — tsin“fcosb. (11.93)

32 roor?

Adding to this a solution of the homogeneous equation, which equally satisfies the

boundary conditions at the surface of the sphere yields the complete first order inner
solution

(11.94)
in which C is a still undetermined constant.

Remarks

e If one tries to satisfy the velocity boundary conditions at r — oo with (11.94),

this cannot be done. Even worse, in the next approximation the velocity would get
infinitely large.
The non-existence of the second order approximation of the STOKES expansion is
known as Whitehead Paradox (1889). WHITEHEAD [24] believed that the paradox
could be removed by discontinuities in the solution. Today we know that this is
not the case.

e In the analogous problem of the flow around a circular cylinder, the paradox is
even stronger. The analogue to (11.91) would here be

wé =C —%r+r log(r) + %% sin 6.
~—~— S—— —~—
I n Ji/4

The second term in this formula is the ‘STOKES-let’. The solution, however, cannot
be completed because no choice of the constant C satisfies the upstream boundary
condition: ¥ (r, #) ~ rsinf as r — oo. The non-existence of a solution of the
STOKES equations in the infinite two-dimensional flow around a circular cylinder
is known as STOKES’ paradox. It was recognized by STOKES in 1851 [19].
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11.5.3 Oseen Expansion

Our position here is that OSEEN’s solution is a limit of a series expansion, which is
valid for large r. Because we seek solutions for small REYNOLDS numbers R, the
stretching transformation

p=rR (11.95)

brings the outer region closer to the sphere. So, the transformation (11.95) is actually
a squeezing operation. In these ‘stretched’ coordinates (11.86) reads

2
{4, L2 (11.96)

2sinf = PP

” R
L 5
in which the index p labels the fact that the operator {-} has to be taken with respect
to p (not r). {-} is defined in (11.98), below. Notice also that the REYNOLDS number
on the right-hand side of (11.96) appears with the common factor R2. This means
that in the squeezed coordinates the nonlinear terms receive a larger weight.
In a fashion analogous to Eq. (11.89) one now writes for the outer region

1 1
)= @qf”(p, 0) = @{W5+Rlpf+R2lPZO+“-}. (11.97)

Substitution of this expansion into (11.96) generates the recursive formula

~ 1 ~
47,0 2.0
LW = m({'}p L%k, .
oo v o o owe 20w ‘
1 06 0p Op 00 dp p 00 |’

The pre-factor 1/R? in (11.97) achieves that in (11.98) both sides of the equation have
the same R-weight. The solutions of (11.98) must satisfy the boundary conditions at
r— 0o

vy — %pz sin? 6, for p — oo,

11.99
Yp=0, k=1,2,..., forp— oo. ( )

As zeroth order solution of (11.98), for which the right-hand side of (11.98) vanishes,
it is tempting to take

1
v = Ep2 sin® 6. (11.100)

It satisfies the boundary conditions for r — oo and represents the flow around a
sphere with vanishing radius. Comparison of (11.91) with (11.99) also demonstrates
that (11.100) represents exactly the dominant effect of the STOKES solution far away
from the sphere. For, if one writes the STOKES solution (11.91) in the outer variables



11.5 Theory of Lagerstom and Kaplun 35

iyo 1
(o) =@[

1, 3 1 51] .,
—p-—-R -R°— 0
2 Tty p]m
L1, ,
~ @Ep sin“f, forR — 0,
one obtains exactly the OSEEN solution. If one evaluates the right-hand side of (11.98),
one obtains

<{-} [ + R, + - 1L2[W) + RYY + - - ]>k:l

or since Lf)!lf(j’ =0,

G =R{EI2).
D [ sn00 0]
o [ 89+cos98p]ﬁl1/1.

Therefore, the OSEEN differential equation of first order takes the form

; in0 0 9]
fhwe = [_%% + cos 9a_p] L2y, (11.101)

This is exactly the original OSEEN equation in dimensionless form, see (11.58). Its
solution has been given as (11.74) and is repeated here:

W = B(1 + cos §) {exp (—g(l—cose)) —1}. (11.102)

The complete first order OSEEN solution is, therefore, given by

? B(1 9
wﬂzp_sirﬂ@_._w

R2 R {GXP (—g(l - cos@)) - 1} +O(1). (11.103)

11.5.4 Matching Procedure

The two STOKES and OSEEN expansions must asymptotically agree with one another
in the overlapping region, see Fig. 11.10. To this end one writes the outer expansion
in terms of the inner variables and expands the emerging relation in powers of r. This
yields
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B(1 4 cos )

1y
Ul:— 9
@) 2rsm + R

2
X [1 —R®1 —cos@)%—l—Rz(l —cos@)2%+~-~— 1]

}’2

2
=5 sin? @ — B% sin® 0 + RB% sin? (1 — cos@) + - - - . (11.104)

Alternatively, the inner STOKES expansion can be written as
v r? 20 3r _29+11 20
= —sin“ 0 — == sin ——sin
2 22 4r
1
+RC [2r2 —3r+ -] sin” 0
r

3 1 1
—R—1{2r"=3r+1— -+ —{sin®Ocos¥, (11.105)
32 roor?

see (11.91) and (11.94), the dominant terms of which for large r — oo are

. 2 3
oo = %sin29— z%sinzﬁ—l—-u
3
+ CRsin? 02r* — 1—6Rr2 sin® 6 cos 6. (11.106)

By comparing the underlined terms in (11.104) and (11.106) it is seen that the inner
and outer expansions can only be matched, if

B=2, C=—=—_—.
2

The improved inner solution, thus, reads
i1 22 3 1 3 1 1
=z =17sin" 01 (1+5R) (24 = ) =SR2+ =+ 5 Jcosfp (11.107)
r 8 r r2

and is now a function of the REYNOLDS number. The streamline ¢/ = 0 is now given
by the following equations.

1. 8 =0, 7, corresponding to the axis y = 0.
2. r = 1, on the surface of the sphere.
3. {-} = 0, corresponding to the dead water region behind the sphere and given by

8 24 1/r
cosf={—+1)—m——.
3R 24 1/r+ (1/r)?

The dead water zone can only exist, when | cos §| < 1; so, for r = 1 we have



11.5 Theory of Lagerstom and Kaplun 37

38
2[3—R+1]<1—>R>8. (11.108)

This matching procedure can be continued; this was done to second order by
I. PROUDMAN and J.R.A. PEARSON (1957) [16]. Their second order drag coefficient
is given as

TR 16 60
_ 2Ua
o 12

24 3 9
Cow = I1 + —R + I—R/Z InR +OR™M ¢,
(11.109)
R =2R.

A third order extension of this matched asymptotic expansion is due to W. CHESTER
and D.R. BREACH (1969) [2], and their third order drag formula reads

24 2 2
Cu [1+3R+1R’2(lnﬂ£’+7+—m2—2)

R 16 160 3 360
27
—_R*InR +O®RY}, 11.110
+64O nR 4+ O[R™) ( )

where 7 is the EULER constant. S.-J. LIAO (2002) [9] writes: ‘it is a little baffling
that, when R’ > 2 the above 3rd order drag formula is even worse than the 2nd order
formula (11.109), as shown in Fig. 11.11°. This figure indicates that the 2nd and 3rd
order solutions for ¢, obtained by matching approximate inner and outer expansions
(by PROUDMAN-PEARSON and CHESTER-BREACH) are less accurate for R’ > 1 than
that of the OSEEN solution. It is thus tempting to try such a comparison with results
from higher order outer solutions of OSEEN-type. The six-term solution

24 3 19 71
p= g R - R ?
c R,[ T 16 1280 T 20480
_ 30179 122519 o (11.111)
34406400 550502400 '

was constructed by SIDNEY GOLDSTEIN (1929) [4]. S.-J. Liao (2002) [9] states:
‘In 1970, MILTON VAN DYKE [22] extended the above drag formula to 24 terms
by computer [...] and found that its convergence is limited by a simple pole at
R’ = —4.18172. Using the EULER transformation, VAN DYKE [22] enlarged its
convergence region to infinity. However, the agreement between VAN DYKE’s [22]
drag formula (given by EULER transformation) with experimental data is not satis-
factory for R’ > 5, as shown in Fig.11.11°. For all mentioned solutions, there is
a large disagreement between all above mentioned theoretical drag formulae and
experimental data. So, as pointed out by FM. WHITE in 1991 [23] and quoted by
S.-J. L1AO [9], ‘the idea of using creeping flow to expand into the high REYNOLDS
number region has not been successful’.
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Fig. 11.11 Comparison of experimental data of drag coefficient of a sphere in a uniform stream
with theoretical results. Symbols experimental data; solid lines theoretical results by the indicated
authors as described in the main text. Data are taken from T. MAXWORTHY [13], R. OCKENDON
and G.A. EVANS [14], EW. Roos and W.W. WILLMARTH [17] and C. WIESELSBURGER [25, 26].
Adapted from S.-J. L1ao (2002, 2004) [9, 10]

11.6 Homotopy Analysis Method—The Viscous Drag
Coefficient Computed for Arbitrary Reynolds
Numbers

As revealed by the above mentioned perturbation approaches, and explicitly demon-
strated by Fig. 11.11, the drag coefficient, predicted by them is only in conformity
with the experimental results, provided the REYNOLDS number is small, ideally
R’ < 1 and realistically certainly R < 5. None of the presented perturbation
drag formulae is valid for R’ > 1—more generally for realistic values of R’ up
to R" < 2000. It is clear that the two solutions, constructed by matching inner and
outer solutions (2nd order: PROUDMAN-PEARSON, 3rd order: CHESTER—BREACH)
deviate considerably from the experimental points, when R’ > 1. Alternatively, the
OSEEN-type solutions (OSEEN [15], VAN DYKE [22]) approximate the experimen-
tally determined drag coefficient much better when R’ = O(10° — 10') than the
perturbation solutions based on matching. The reason is that ‘the OSEEN equation
has nothing to do with any small parameter’ [9].

An approximate solution procedure for the steady flow of a viscous fluid around a
fixed body ought to be available which allows construction of approximate sequences
of the solutions of the full NS-equations around a fixed body for arbitrary values of
the REYNOLDS number. Such a method has been proposed by S.-J. LIAO in 1992
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[6]. It is suitable for the solution of nonlinear differential equations and is based on
homotopy, a technique of topology. It was coined by LIAO the homotopy analysis
method (HAM) [6]. S.-J. LIAO wrote a number of articles applying this method
in fluid mechanics (two-dimensional viscous flow over a semi-infinite flat plate [7],
BLASIUS flow [8]). The analysis of the drag force on a stationary sphere due to steady
parallel uniform flow of a viscous fluid is presented by him in [9].

11.6.1 The Mathematical Concept

It is not the place here to present the full derivation of the mathematical techniques
of HAM applied to the steady viscous flow past a sphere. The reader must consult
the pertinent literature for that: [7-11].

Starting point are the NS-equations in spherical coordinates, (11.17), which in
dimensionless units and on the basis of the transformation

0 0
w=cosf, 0<6<L2m, 20 —sm&a (11.112)

yields the boundary value problem

oo o 2u Oy 20¢

e L2
Ordp  Ouor  (1—p2or  rou v=

A 1= L4 — =

awv, 1)
or

: 1 2 2
rgrpoow(r, W) = 5" (1 —p7).

P(r, p) = =0, whenr=1, (11.113)

A is called NAVIER-STOKES-operator; r is now dimensionless and the REYNOLDS
number R = Ua/v is based on the radius of the sphere.

The key step in HAM consists in constructing a family of boundary value problems
involving an embedding parameter ¢ € [0, 1] and a non-zero auxiliary parameter &
as follows:

(I = @QH[W (r, i1, @) — Yo(r, W] = ghA¥Y (r, p, @), r > 1,

ov (r, 1, q) -1
Wl q) = ——| _ =0,
(1, 1. q) 5 =1 o
lim @ (r, p.q) = 377 (1 — i),
r——+00

L <1

I ,
11.114
g< 1l ¢ )

Here, the real function v (r, 1) is an initial guess for the solution of (11.113); and
must satisfy the boundary conditions (11.113), 3. H is an auxiliary linear operator,
h a non-zero auxiliary parameter and ¥ (r, u, g, h) a function of four variables. The
function 1)y, the operator H and the non-zero parameter g can be freely assigned.
Of special significance is the embedding parameter g; it plays an important role and
operates like a ‘deus ex machina’ in generating so-called deformation equations.
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Indeed, consider (11.114) when ¢ = 0 and ¢ = 1 two limiting values between which
g can vary:

q=0— Y(r,u,0) =(r, ), provided H # 0, (11.115)
g=1 - ¥, u 1) =@, pn), since AV(r,u,1)=0. )
“Thus, the process of g increasing from zero to one is just the process of ¥ varying
from o (r, ) to 1 (r, p). This is exactly the idea of the homotopy, and this kind
of process is called deformation in topology; so, (11.113) are called the ‘zeroth
order deformation equations’, [9]’. They form one boundary value problem for ¥.
The parameter g—our ‘deus ex machina’—however, allows to generate additional
boundary value problems, if one assumes that the deformation function ¥ (r, y, q)
is sufficiently smooth with respect to g to be arbitrarily times differentiable with
respect to g. With the notation

am&l’(r, s q)

[m]
w 8 qm

, m=1,2,3,..., (11.116)
q=0

one may then develop V¥ (r, i, g) into TAYLOR series about g = 0,

[m]
Vo) = w0 +3 0

_,_/
A1) vo(ry M=
U, 0)

+00
= o(r. ) + D n(r, g™ (11.117)

m=1

Assuming that (7, 1), the linear operator H and the non-zero parameter / are so
selected that the TAYLOR series expansion is convergent at g = 1, then (11.117) and
(11.115) imply

+00
Y, @) = o, @) + D b(r, ). (11.118)

m=1

This equation is a formal recipe to find the ultimate solution 1 (r, u) by successive
approximation, if ,,(r, u), m = 1,2, 3, ..., can be found. Such equations can be
obtained by performing the mth derivatives of the zeroth order deformation equation
(11.114) with respect to ¢, then setting ¢ = 0 and finally dividing the resulting equa-
tion by m!. This yields the boundary value problems for ¢,,(r, ), m = 1,2,3, ...,
which structurally take the forms
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Hlpm(r, W] = Gu(r,p), r=1,
_ OYw(r, )

_ 21,
Un(l, p) = == =0, " (11.119)
1 -1 <<,
A, 7 ) =0

where G,, is given by

Gu(r, 1) = (XuH + RLY Yy
_@R’“{awk 0 00 2w O

r2 Or Ou O Or (1 —pu?) Or
2
+—%]£2wm_l_k, (11.120)
r ou

in which
0 whenm <1,
Xm = [ 1 whenm > 2. (11.121)

The above formulated boundary value problems (11.119) are all linear and can be
solved consecutively, starting with an estimate for ¢)p. Then, G is determined by
substituting 1y on the right-hand side of (11.120) and solving the emerging linear
boundary value problem (11.119) for 1, etc. In this way an infinite number of
functions v,,, m = 1, 2, ... can be determined. In practice, this sequence is truncated
atm = M by which an approximation for (11.118) is found. Obviously, this procedure
is only useful, provided the sum Z;z U (r, p) is convergent. Fortunately, the HAM
provides us with great freedom to select ¥y (r, i), H and 7 to express the solution
and at the same time to ensure the convergence of (11.118).

To summarize, HAM has transformed the solution of the nonlinear boundary value
problem (11.113) into an (ideally infinite) set of /inear boundary value problems.
With proper choice of 1)y, H and £ these linear boundary value problems lead to
convergent series of (11.118) which then represent approximate and increasingly
more accurate solutions of the original problem (11.113).

11.6.2 Selection of 1o, H, h and Approximate Solution

In conformity with the construction of the functions v, the initial guess ¥y (r, 1)
must satisfy the boundary conditions (11.114), 3. The most obvious choice is then
the STOKES solution (11.33) [witha = 1, sin® 6 = (1 — uz)],

1 ) 1 2
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and it is tempting to choose H[-] proportional to the STOKES operator L]

62 1— 2 82 2
H[1=H(r, p) (W + %8—%) (1, (11.123)

in which H (7, i) is a function of » and p. LIAO [9] also chose

N
On(rs ) = (=45 D fur (P, (11.124)

k=0

which is a kind of separation ansatz, and the prefactor (1 — %) is so selected to have a
chance to satisfy the boundary condition when r — 00; moreover, N might be infinite
or finite. With the choice (11.124), the determination of ,,(r, u) is transferred to
the determination of f,, x (). At last, a selection for H (r, p) is needed; LIAO [9] was
successful with the choice®

H(r,p) =17, o> 0. (11.125)

and picked o = 1 for explicit computations.

The remainder consists in the substitution of (11.122)—(11.125) into the deforma-
tion equations (11.119) consecutively form = 1, 2, 3 ... and in solving the emerging
boundary value problems for f (m, k; 1), verification of the convergence property of
the successive approximations for ¢ (r, i) as given by (11.118). The higher order
approximations have been determined by MATHEMATICA up to the 9th order in the
index m resulting in a 10th order drag coefficient. The convergence depends upon the
choice of the parameter h; i.e. depending upon the series; (11.118) is only convergent
for R" < Ry, (7). It turned out that the following convergence limits were obtained
for the 10th order approximation:

h —1-1/2—-1/3
R.. 5 9 20

limit

It transpires that R}, . -convergence can be improved when negative values approach

0 —¢&,e > 0. L1AO [9] tried by making # REYNOLDS number dependent as follows:

1

- — (11.126)
1+R//4

h=—exp(-R'/30), and h=—

8L1A0 tried with several different choices and found

1. for H = 1 the emerging solution for m = 1 does not satisfy the boundary condition at infinity;
2. for o < 0 the solution (11.119) does not satisfy the uniform-stream condition at infinity.
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Fig. 11.12 Comparison of [
the 10th order HAM drag
formula for A = —1/3 and h 10° E
given by (11.126). [ Chester & Breach
Dash-double dotted line: L (1969)
h = —1/3; dash-dotted line: = 10k Prolidman & Pearson
(11.126a), dashed line: k] F (1957)
(11.126D). Adapted from § E
S.-J. L1A0 (2002, 2004) 3

o
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The 10th order approximation of the drag coefficient, computed with these repre-
sentations, is shown in Fig. 11.12. It indicates that the theoretical formula agrees
well with the experimental data as long as R" < 30. Even though data are available
up to R” = 1000, the approximations could not be continued, because of over flow
arising in MATHEMATICA at the 11th iteration. Farther reaching computations are
not known to us.

11.7 Conclusions and Discussion

This chapter was devoted to a physically simple problem, the determination of the
drag force (or better the drag coefficient) exerted on a sphere subjected to a steady
parallel flow of a linearly viscous fluid under laminar conditions without separation.
The reader will certainly have realized that the solution of the problem is mathe-
matically rather complex, but still not satisfactorily solved. An analogous situation
prevails also for the flow across an infinite circular cylinder, but was not dealt with
by us.

Apart from the differential properties initially dealt with, the analysis in spherical
and cylindrical coordinates of NAVIER—STOKES operators, the topic was begun with
the analysis of STOKES flow around a rigid stagnant sphere, i.e., the construction of
the solution of the steady NAVIER—STOKES equations, when the acceleration terms in
the momentum equations are ignored. This mathematical problem was solved with
imposed no-slip and viscous sliding conditions at the surface of the sphere, as well
as for the case that the sphere was filled with a fluid or gas of different viscosity.
This entailed the formation of a double circulation within the sphere—called HILL
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vortex—and also led to the formation of steady suspensions of particle-containing
air bubbles in fluidized beds.

Scrutiny of the STOKES solution with estimates of typical convective acceleration
terms revealed that far away from the sphere these accelerations outweigh the corre-
sponding values of the STOKES solution. This result means nothing else than that a
REYNOLDS number correction to the drag coefficient of the STOKES solution must be
determined. The first version of this correction was given by CARL WILHELM OSEEN
in 1910. The OSEEN solution yields a linear R of the drag coefficient.

The constructions of STOKES and OSEEN in regular perturbation series could only
be completed by matching the two series step by step by which free coefficients
are determined in an overlapping region by the requirement that the two series are
asymptotically equal in this region. The solution of this problem kept applied math-
ematicians busy for about three quarters of the 20th century. However, the results
are somewhat disappointing because the results deviate more and more from those
obtained by experiments, when the REYNOLDS number exceeds unity as seen from
Fig. 11.11. In a way, this cannot be a surprise since ‘small R’ is a prerequisite of
perturbation formulations in this parameter.

In the 90s of the 20th century, S.-J. L1AO therefore proposed a different method
to find approximate series solutions of the NAVIER—STOKES equations for ‘arbitrary
values’ of the REYNOLDS number. This is the Homotopy Analysis Method (HAM),
which can be judged to be a successful approach for the determination of the drag
force prior to separation. This rather complex analysis is combined with equally
complex numerical techniques. It seems that HAM might prove successful in pushing
the results at R > 10" — 102 closer to measured values.
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Chapter 12

Three-Dimensional Creeping Flow—
Systematic Derivation of the

Shallow Flow Approximations

Abstract This chapter is devoted to the approximate determination of the velocity
field in a shallow layer of ice or granular soil, treated as a non-NEWTONian material
flowing under the action of its own weight and assuming its velocity to be so small
that STOKES flow can be assumed. Two limiting cases can be analyzed: (i) The de-
forming material flows on a steep slope (which is the case for creeping landslides or
snow deposits on mountain topographies with inclination angles that are large). (ii)
In the second case the inclination angles are small. Situation (ii) is apt to ice flow
in large ice sheets such as Greenland and Antarctica, important in climate scenar-
ios in a warming atmosphere. The two situations require different approximations.
Perturbation schemes are derived in terms of a shallowness parameter in the two sit-
uations; applications are discussed under real world conditions. Applications focus
on thermo-mechanical coupled plane ice sheet flows and to the Greenland ice sheet
response to present day climate driving. In shallow, but still slow gravity driven free
surface flows the acceleration terms in NEWTON’s law are no longer negligible.

Keywords Viscous material spreading + Thermo-mechanical coupling + STOKES
approximation + Free surface shallow creeping flows - Inclined and horizontal gravity
driven creep flow.

List of Symbols

Roman Symbols

A(T) Rate factor as a function of temperature T

A ARRHENIUS parameter: A = %

a(x,,y,zs,t) Accumulation (rate) function at the free surface z = zg

¢ Dimensionless coefficient in the sliding law

c(T) Specific heat as a function of temperature

c(0) Dimensionless specific heat as a function of temperature

D Stretching tensor, strain rate—, rate of strain—
D=3L+L")

D Domainin R",n=1,2,3

D Dimensionless diffusivity (see (12.18))
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Scale for a frequency [1/time]

Ratio of the gravitational potential to the internal energy (see
(12.18))

Dimensionless scale measuring dissipation or strain heating, —
in the SIA

Creep response function as function of the second stress deviator
invariant

Squared FROUDE number in the SIA: F2 = gﬁ;]

Squared FROUDE number (see (12.18)): 2 = %

Ratio of nonlinear sliding functions (see (12.9) and (12.24))
Parameters in the quadratic law for the fluidity (see (12.67))
Parameter characterizing the constitutive response of ¢ (see
(12.18)) and in the SIA

Gravity vector

Depth/height scale

Heat transfer coefficients at the free surface and at the base
Reference height for hg and hp

BOLTZMANN constant: k = 1.3806488 x 10~ [JK~!]
Dimensionless fluidity at zero shearing (see (12.66))
Spatial velocity gradient

Length scales in the x- and y-directions

NUSSELT number for the free surface and the base
Exponent of the power law for stress (GLEN: n = 3)
Length of ng

Normal vectors perpendicular to the surface, —the base
Pressure, dimensionless—

Pressure scale

Activation energy

Volume flux in the x- and y-directions

Heat flux vector

Three dimensional real space

Atmospheric temperature

Reference temperature T = 273.15°C

Time scale ¥ = %

CAUCHY stress

Scales for the components of—

., Iz} = pg[H]sinafoy, Txys oo o
Tangential traction vector at the basal surface
ts:=tng—t,

Traction vector perpendicular to the basal surface

t, = (nB . tnB)nB

Second stress deviator invariant

Velocity scales in the x- and y-directions

Velocity vector, components of—

{txm t)cy’ .-



12 Three-Dimensional Creeping Flow—Systematic Derivation of the Shallow ... 49

(W]
x=(x,y,2)
z=2zs(x,y,1)
z=2zp(x,y,1)

— [AT]
Z—T—R

Scale of the velocity component in the z-direction
Position vector in R?, Cartesian components of x
Free surface equation

Equation for the basal surface

Dimensionless temperature scale

Greek and Miscellaneous Symbols

«
[AT]

Ex, Ey

n

0

w(T)

K(0)

eft

D(|ts]?, [ta]?)
9/1! 03

"4

G
Uy

Inclination angle of the (x, y)-plane relative to the horizontal
plane

Temperature scale

Internal energy

Horizontal aspect ratios, €, =

= ]
Ratio of x-scaling/y-scaling, n = == {2:]
Mass density ' '

Heat conductivity as function of T

Heat conductivity as function of ¢

Effective dynamic viscosity

Drag coefficient, sliding—

Dimensionless temperature of the atmosphere, —base
Essential parameter in defining the sign of the longitudinal ve-
locity component u (see (12.55))

Parameter in the interval (0, 1): ¢ := ¢, = cotan «
O(1)-quantity for the non-dimensionalization of the governing
equations (12.53): ¥, := e,cotan o

O(1)-quantity for the non-dimensionalization of the governing
equations (12.53): v, := e, cotan o

Scale for horizontal shear stress 7,,: [7] = [pgH e
Dimensionless stress deviator components

Dimensionless second stress deviator invariant

Free surface and basal boundary of the domain D

Shallow Flow Approximation

Shallow Ice Approximation

Second Order Shallow Ice Approximation

Shallow Shelf Approximation

Second Order Shallow Self Approximation

[H]
1

12.1 Introductory Motivation

Section 7.4 in Chap. 7 was devoted to what was said to be among the most complex
configurations of the so-called pressure drag flow. A motivation of the simplified
equations from the original fluid mechanical equations was presented; it was de-
veloped for shallow creeping flows of thermo-mechanically coupled processes of
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non-linear viscous heat conducting materials subject to gravity and resting on a more
or less horizontal bed. As a typical example the flow of ice in large ice sheets (such
as Greenland and Antarctica) was serving as motivating geophysical model, and the
simplified initial boundary value problem was explored up to a level at which it is
today used in circulation models of climate reconstructions through millennia and
future climate scenarios for centennial sea level rise predictions in future Greenhouse
scenarios.

The ‘derivation’ of the simplified initial boundary value problems from the bal-
ance laws of mass, momentum and energy was neither systematic nor rational, but
at best plausible and, in particular, did not suggest a process of improved approx-
imation. Moreover, delineation of the regime of validity of the approximate set of
equations was equally not precisely stated. In this chapter we shall partly repeat and
partly extend the analysis in Sect.7.4 of Chap.7. We shall non-dimensionalize the
rigorously formulated initial boundary value problem and introduce a scale analy-
sis for the various physical quantities and a coordinate stretching appropriate for
creeping flows down an inclined surface. For such situations it is natural that depth-
to-length ratios are different in the downbhill direction and perpendicular to it, and
that the flow is essentially from higher altitudes to lower ones. This has not been
so for the case(s) treated in Chap.7. The normalized energy equation shows that
for the applications considered, in-plane and out-of-plane (transverse) convection is
equally important. Alternatively, transverse diffusion and dissipation are both impor-
tant, whereas ‘in-plane’ diffusion may be ignored to lowest order. The introduction
of the scales and the different small aspect ratio parameters allow identification of
the shallow flow approximation as the lowest order approximation of a regular
perturbation scheme, using the aspect ratio parameter as perturbation parameter.
Furthermore, this analysis makes also clear that free-surface-creeping flow of a very
viscous fluid on a more or less horizontal plane (ice sheets on Earth or other planets;
honey on the breakfast plate, polymeric fluid spreading) and down a corrie (creep of
soil down mountain slopes, etc.) are described by different sets of partial differential
equations, each leading to slightly different initial-boundary-value problems. Con-
sequently, there is not a single Shallow Flow Approximation, there are rather several
ones, each covering (slightly) different flow configurations.

An early account of shallowness properties by stretched scaling is by KURT OTTO
FRIEDRICHS published in 1948 [22], who set the shallow water approximation on
a rational mathematical scaling. Such scalings have systematically been introduced
in the early eighties of the last century in glacier and ice sheet dynamics almost
simultaneously by ANDREW C. FOWLER and D.A. LARSON (1978) [20], K. HUTTER
(1981, 1983, 1984) [37, 39, 40], LESLIE W. MORLAND and IAN R. JOHNSON (1980,
1982) [53, 54] and MORLAND (1984) [52]. In this chapter we follow K. HUTTER and
LAURENT VULLIET (1985) [43], who applied the method to creeping of soil down
slopes in a geotechnical context. These latter authors introduced scalings, which
differ from one another depending upon, whether the flow is essentially unidirectional
from higher altitudes to lower ones, or whether it forms a divide, separating the flow
directions, see Figs.12.1, 12.2 and 12.3. In one case, the plane to which the free
basal surface and the flows are referenced, is inclined in the main flow direction
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Fig. 12.1 Piedmont glaciers in Southern Axel Heiberg Island. A series of wide, confined valley
glaciers that spread out as wide lobes when they leave narrow mountain valleys to enter a wider
valley or a plain, are called Piedmont glaciers. Aerial photo, 1977. © J. Alean

Fig. 12.2 Glacier of the ice cap on the beam Martin Mountains, dividing Baffin and Bylot Islands,
Canada. This glacier has an expanded foot, characteristic of a Piedmont glacier, where it widens
onto a lowland. Source Natural Resources Canada. (©) Terrain Sciences Division, Geological Survey
of Canada. http://nsidc.org/cryosphere/glaciers/gallery/piedmont.html

with a finite angle; in the second case, this plane is horizontal or has a very small
inclination. The asymptotic analysis to the situation to all three cases of Fig. 12.3 is
given in this chapter.
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(@) (b) e

Fig. 12.3 Slow creeping flow of a mass of a very viscous body under its own weight. a Flow
down an inclined surface. Motion is strictly from higher altitudes to lower ones. Spreading occurs
downslope and cross-slope. b Spreading of a mass of a viscous body on a flat bed. Motion is from a
dome (or divide in 2 dimensions) into all directions. ¢ Downward motion on a sloping bottom, but
such that the front is pushed upward beyond the lowest point of the topography. The main flow is
from above to below in the positive x-direction, but there are domains (cross section B—-B) where
backward flow can arise. Based on [43]

12.2 Model Equations

Consider a three-dimensional domain D € R? with bounding surfaces 9Dy (free
surface) and 0Dy (base). Let x, y, z be Cartesian coordinates (see Fig.12.4); x, y
are in a plane which is inclined relative to a horizontal plane with inclination angle «;
x is in the direction of steepest descent and positive downwards; y is perpendicular
to it and thus horizontal. We regard the (x, y)-plane to be a best planar fit to the
basal surface. The third coordinate, z is perpendicular to x, y and points upwards.
The top free surface and the basal surface' will be denoted by z = z5(x, y, t) and
z = zp(x, y), respectively, and the domain D is assumed to be continuously filled
with a density preserving heat conducting body under slow creeping motion, of which
the constitutive response is characteristically that of a fluid. We assume the material
in D to be in thermodynamic non-equilibrium and subject to heat exchange both at the
free and basal surfaces, but we ignore phase changes. Our interest is in the evolution
of the domain D(¢) and the velocity and temperature distributions within it.

12.2.1 Field Equations

Governing equations are the balance laws of mass (continuity), momentum and
energy,”

IFor simplicity, we treat here the basal surface as rigid and non-moving ; the more general case is
left to the reader as an exercise.

2 A derivation of the energy equation is given in Chap. 17, “Thermodynamics—Fundamentals’.
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Fig. 12.4 Definition of configuration and coordinate system. The direction of steepest descent
defines the x-coordinate of a Cartesian coordinate system. The y-axis is horizontal, perpendicular
to the x-axis. The (x, y)-axes form a plane; perpendicular to it is the third, z-axis, positive upward.
The bottom topography (dashed lines), assumed to be un-deformable and the moving deformable
free surface (solid lines) bound the moving mass that enters the space from a narrow valley, from [43]

dive =0,
dv .

pa = —grad p +divt + pg, (12.1)
de divg 4+ tr(¢D)
— = —div ,

pdt q

in which v is the velocity vector of which the components in the Cartesian coordinates
x,y, z will be denoted as u, v, w. p, p, t, g are the density, pressure, stress deviator
and gravity vector; € and ¢ denote the internal energy and the heat flux vector and
D is the stretching tensor, which is defined by D = sym(grad v). Moreover, ‘grad’,
‘div’ and ‘tr’ are the gradient, divergence and trace operators and d/dt is the material
time derivative, which is given by

ae) _ o)

u - o + grad (-)v. (12.2)

Occasionally we shall also use the notations

L=gradv, D=3(L+L").
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In order that the balance laws become field equations, they must be complemented
by constitutive relations. In this chapter we shall restrict ourselves to a fluid with
negligible elastic, but strong thermo-viscous response of the form

T
€ =/c(T’)dT’,

0
q=—r(T)grad T, (12.3)

D = A(T)F(t;)t, ty = 3.

Here, c(T) is the temperature dependent heat capacity and «(7') the heat conductivity,
typical of a heat conducting fluid. The third of Eq. (12.3) assumes that stretching D
and stress deviator ¢ are collinear with a coefficient which is separated into a stress
dependent creep response function F' (which is assumed to depend only on the
second stress deviator invariant ¢;;) and a temperature dependent rate factor A > 0.
Lateron the significance of one of several hidden variables will also be studied; they
may alter the constitutive relations. Explicit expressions for F and A will be given
below. Here, it may suffice to mention that physically reasonable F’s and A’s have
F(t;;) 2 0, A(T) > 0, for all t;; and T. With F(0) # 0O the creep law exhibits finite
viscosity at zero stress, for F(0) = 0 it is infinite, and singular behavior must be
expected. This case will be excluded. Furthermore, for creeping flow at elevated
temperatures, A varies in general several orders of magnitude within a relatively
small range of temperature, suggesting a strong thermomechanical coupling.

12.2.2 Boundary Conditions

These must be formulated at the free surface and at the bed and comprise kinematic
and dynamic statements. The free surface z = zg5(x, y, ) will be assumed to be stress
free and to exchange heat with the environment. With the exterior unit normal vector

ng and with
12
dzs\’ dzs\’
Ne=|1 = il 12.4
: [+(6x)+(8y) (12.4)

the kinematic surface equation becomes

_,0z
Ng' =2 dms v =ale yoas, 0, ats =350, (12.5)

inwhicha(x, y, zs(x, y, t), t) is the so-called accumulation rate function, express-
ing the addition of mass at the free surface, perpendicular to the surface. For a = 0,
Eq. (12.5) simply expresses that the free surface is material. The boundary conditions
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of zero traction and heat exchange are written in the form?

tng — png =0,
at z = zg(x, y, ). (12.6)
q-ns=hs(T —Ty),

For non-vanishing accumulation rate, a # 0, these are approximate. T4 is the air
temperature outside a thermal boundary layer and /¢ is the heat transfer coefficient,
which may itself be a function of the surface temperature and other variables of the
environment (say a boundary layer wind speed).

Boundary conditions at the un-deformable base z = zp(x, y) comprise a kine-
matic statement, if a slip is permitted, and a thermal heat transfer statement. The
analogues of Egs. (12.5) and (12.6), are, therefore,*

v-ng=0,
atZ :ZB(X, y’t)s (127)
q-ng=nhp(T —T5),

where T is the ground temperature outside the basal thermal boundary layer and
hp is the basal heat transfer coefficient. It remains to conjecture a sliding law that
is compatible with the kinematic condition (12.7);. Postulating collinearity of basal
velocity and shear traction, we define

ts:=tng—t,, t,:=(npg-tng)ng (12.8)

and write
v=—®(ts]’, [t,))ts, atz=2zp(x,y), (12.9)

in which @ > 0 is a possible non-linear function of the magnitudes of the shear
and normal tractions at the base. Physically we must have @ > 0 for non-zero g
or t,, but one may have @(0,0) =0, or @(0,0) # 0. It is easily seen that (12.9)
satisfies the tangency condition (12.7);; furthermore, @ = 0 corresponds to no-slip
and @ — oo yields perfect sliding. This completes the formulation of the formal
boundary value problem.

3For a material surface these expressions are accurate, but for a non-material surface (12.6) ignores
the impulse due to the mass flow across the surface. This is generally justified.

“The first of relations (12.7) assumes that there is no mass flow through the surface, e.g. no melting
of ice if glaciers or ice sheets are considered.
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12.3 Scaling Procedure

Non-dimensionalization of the above field equations are motivated by the fact that
domains, in which such creep flows usually take place (lava flows from volcanoes,
wide glacier flows, melts, etc.), are long and wide but shallow. We, thus scale the
horizontal and vertical coordinates and corresponding velocities differently and write
for these, for the time, the stresses and temperature

x =[Ly]x, u=I[Ulx, tee = pglH]sina oy,
y=I[L,]ly, v=[V]y, tyy = pg[H]sin a 7y,

_ _ w=[W]w, (12.10)
z=[H]z, 4= [Wla. etc.,

t = [T]f, T =Tgr+[AT10, p=pglH]cosap,

inwhich [L,], [L,], [H] are length scales in the x, y and z-directions, [T] is a typical
time, [U], [V] and [W] are characteristic velocities in the x, y and z-directions.
Moreover, Ty is a constant reference temperature and [AT] a temperature range
within the material occupying the domain D. Note that pressure has been scaled
with pg[H] cos o and components of the stress deviator with pg[ H] sin o, because
it is supposed that the basal tractions (normal pressure, shear traction) are basically
responding to a hydrostatic pressure distribution. This will naturally limit the flow
configurations in the approximations treated below. Greek and overbarred quantities
are dimensionless.

We now focus attention to processes of which the velocity components arise in
proportion of the length scales in the x-, y- and z-directions, [L,], [L,] and [H],
respectively. This suggests the identifications

vl _ Lyl Wl _ [H] (5] = [Lx]
(U] [Li] ’ (w1’

U]~ [L.]

(12.11)

)

The choices (12.11), » say that the geometric stretchings and the velocity stretchings
are the same. So, localized features, i.e., formations of local vortices are not optimally
incorporated and, in a stretching based approximation, eliminated. On the other
hand, it is readily seen that with (12.11); , the dimensionless continuity equation,
div ,v = O is preserved, div ;v = 0. Moreover, (12.11); together with (12.11), , and
the scaling (12.10) show that

dv R @,2d1—) dv Ov + (grad ;5) - 5 (12.12)
—_— -, - = —= raa;v) - v, .
dr P dr’ dr ot g

where [ is defined in (12.18) (below) or for any scalar variable (-)

de) d¢)
d_[ — Ck(?)?, (1213)
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in which o, is an isotropic stretching measure. Thus, mass balance is fully pre-
served and substantive derivatives of the velocity vector or any scalar variable are
isotropically stretched or squeezed. This is indication that these quantities are well
transformed under the chosen scalings. We shall soon see that this is different for
flux terms.

It is straightforward, even though a bit cumbersome, to show that the component
form of the field Eq.(12.1) and constitutive relations (12.3) in dimensionless form
become

ou Ov Ow

1+ =0
w+w+& '

du —cotan 613 =+ +
=g, a— £y —= a
dt ox 0x T 0y 0z

A, dv 0Ty op O 0
IFZ v =g, TV—}—Q\,( cotanaa—p—l—&)—i— Tyz

do, ) 0Ty  OTy;
3 = + ]’

i " Ox oy 0z’
A dw or. 87 ap do
25 ] - Xz E Yz el <
F<e, tanozdt_ L tan o EF + £, tan a_ (3Z +tano¢aZ +1),
_.de , 0 (_ 00 20 0 0
&) —D[Cﬁ (a(e%) + &2 ( ©) ) a_( ) )]
+EG2AE (1) 711, (12.14)

% GAOETo,
ox

oY _
a—; = GAO)E(ry)oy,

0 _
—; = GAO)E(T)o-,
Z

Ot 0v -

MY = 2GABE ()T,

oy 0x

ou 0w _

— +¢; =2:,GAO)E 2

az + X ai J ( ) (TII)T z

ov ow -

=t sﬁa—y = 25,GAO)E(T11) Ty,
in which

7'11=%(0 +0 +J)+T +T +TZX,
d o 0 0 0

7ottt e

(12.15)

w
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are the dimensionless stress deviator invariant and the dimensionless material time

derivative and
_[Hl _ [H] e L]

Ex , y = , = — 12.16
T Ty T T (1210
are aspect ratios. Furthermore,
Eir) e & ((pglH] an 06)27'11)’
F ((pg[H] sina)? - 1)
A(0) = A(T) _ A(Tr + [AT]6) o A'(0)
©A(Tp) A(Tg) CA(TR)’
(12.17)
_ Kk(T) k(Tg + [AT]0) K
k(0) = = = ,
k(Tg) k(Tg) K(TR)
0) = c(T) _ c(Tr +[AT]0) — (0
"~ e(Tp) c(Tg) © e(Tp)

are a dimensionless creep response function, rate factor, heat conductivity and heat
capacity, all positive functions. Moreover, F, G, D and E are dimensionless charac-
teristic numbers, defined by

. U7

" g[L,]sina

L, . .

G := %pg sina[H]A(TR)F ((pg[H]sin )?)
_ L R(TR)

(U] pe(TR)[H?]
_ glH]sin«
— (TR)[AT]

(12.18)

[ is a FROUDE® number, D a dimensionless diffusivity, G a parameter characterizing
the constitutive response of stress, and the product EG measures the significance of
dissipation or strain heating.

Let us pause and inspect equations (12.14) more closely: (12.14); is the dimen-
sionless mass balance equation for a density preserving body; (12.14), 3 are the
(x, y)-parallel components of the momentum balance, whilst (12.14), is that perpen-
dicular to the (x, y)-plane. We take the position that the dimensionless variables in
Eq. (12.14) are of order unity, whereas the factors IF, F tan o, D, E, G and ¢, €, 1y take

SIn continental Europe [ is defined as FROUDE number, in English speaking countries it is more
often #2. For a biographical sketch of Froude, see Fig.7.25 in Vol. 1.
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Table 12.1 Magnitudes of physical quantities and orders of magnitude for typical

glaciers, soil, lava and steel-melt flows, after [43]

59

scales for

Quantity | Dimension® Glacier ice® Soild Lava flows® | Steel
melt’
g [m (x)~2] 9.76 x 10 | 9.81 9.81 9.81
p [kgm™3] 900 2000 2500 7500
Tk [°K] 273.15 - 1773 1773
k(TR) DK m= 1)~ 7 x 107 - 2-4 30
c(Tg) [Dkg 'K 2 x 103 - 1.225 x 650
103
Heoff [kgm~! (%)~ ©7.5 x €32 x 102 |02 0.2
(1018 — 10%3)
n [—] 3 3 1 1
[AT] [°K] 20 - 100 100
[U] [m (%)~ 100 —1000 | 1072 —10"" | 1072 - 0.5
107!
[d17! [(%)] 10 — 102 10— 10° 102—-10° |02
[H] [m] 102 — 103 10 — 102 1-5 0.1
a [°] 3-30 10 — 20 5 5
A(TR) [() 1 ((*)2m kg)"] 1.73x107% | 1.6 x 107 | 13x 1077 | -
[bar ™" (%)~ 1] =0.17 - - -

2The asterisk stands for seconds (soil, steel melts, lava flows) or years (glaciers)

YData are taken from K. HUTTER [39]

¢Calculated on the basis of a power law constitutive law: ue_ffl = A(TRr)(pg[H] sin )1

dData are taken from ANONYMOUS [3]. Temperature hardly affects the flow and the stress distribution
®Data are taken from A. RITTMANN [59] but (mostly) from T. MURASE & A.R. MCBIRNEY [56]
fData are taken from F. RICHTER [58]

values as dictated by the material properties and the chosen scales, see Tables 12.1
and 12.2. The proper choice of these quantities is a delicate matter and must be se-
lected such that the dimensionless (overbarred) variables assume order unity values
in the processes to which they are projected. Equation (12.14)s is the dimensionless
form of the internal energy balance. The two terms on its right-hand side describe
diffusion due to FOURIER-type heat flux and dissipation due to strain heating (or
dissipation). Interestingly, and different from the behavior of the convective operator
in (12.12) and (12.13), the diffusive operator in braces exhibits anisotropic contribu-
tions in the three coordinate directions. Indeed, the (x, y)-parallel diffusion terms are
weighted with the aspect ratios £2 and 53. whereas the z-component has the weight-
ing factor 1. If €, and €, are small, the corresponding terms may be negligible. The
introduced scaling process favors diffusion perpendicular to the main flow direction.
We emphasize once more, the dimensionless stresses, velocities and temperature, as
well as dimensionless material functions, listed in (12.17) are all of order unity, if
scales are properly selected.
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With the physical parameters and the scales listed in Table 12.1, the dimensionless
parameters (12.18) take on the order of magnitudes listed in Table 12.2. Accordingly,
[Fis very small, justifying the STOKES approximation, which ignores the acceleration
terms in NEWTON’s law. Hence, the momentum equations reduce to force balances.
In the evaluation of the quantities of Table 12.2 we have used

ATR)F ((pglHsina)?) ™" = jies, (12.19)

which is an effective viscosity, and have introduced [d] = [U]/[L,], which is a
representative scale for the stretching. This choice is preferable to the independent
selection of [L, ], because strain rates can directly be measured and typical values be
estimated. [L,] is then simply a deduced quantity, an order of magnitude for a length
over which dimensionless stresses and strain rates vary by order unity. A value for
this typical length follows from the recognition that G = O (¢, ') as explained below
and yields [L,] = [H?]pg sin o/ (it [d]). Table 12.2 also indicates that G is large,
and D and E are not small, in general; so, in the energy equation neither diffusion
nor dissipation should be ignored in comparison to advection.

Substituting the scales (12.10) into the free surface boundary conditions (12.5)—
(12.7) and using relations (12.11) and (12.16) yields the boundary conditions in
dimensionless form. At the upper surface 7 = Zg(x, y, 7) they are

0zs O0zg_. Ozs_ _  _ _ _ _ -
= e - U = S ) 7t 3
T + &Eu—i— ayv w=a(x,y,zs,t)

gy (—oy + cotan « p) % — SV\-Txy%—Z; + 7, =0,

—EXTXy% + &, (—oy + cotana p) %—Z; + 7y, =0, (12.20)
—VXTXZ% — 5\‘7'%68—2; + (=0, + cotana p) = 0,

7 (0) [g—g - gﬁg% - gfg—gz—?} = —Nghgs(0 — 04)Ns,

in which N is the free surface NUSSELT number,°

SFor a biographical sketch of NUSSELT, see Fig.12.5.
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Fig. 12.5 ERNST KRAFT WILHELM NUSSELT (25. Nov. 1882—1. Sept. 1957)

ERNST KRAFT WILHELM NUSSELT was a German mechanical engineer with specialization
in thermodynamics. He studied at the University Berlin Charlottenburg and the Technische
Hochschule (TH) in Munich. He received his habilitation degree in 1909 and the titular
professorship of the TH Dresden in 1915. After some years of practical engineering work,
he was called as full professor of Theoretical Machine Design at the TH Karlsruhe (1920-
1925). From 1925-1952, he held the position of Head and Professor of the ‘Institute of
Theoretical Machine Design’ and the ‘Laboratory of Heat Engines’ at the TH Munich.

WILHELM NUSSELT was an internationally recognized researcher and teacher of great es-
teem. His and his pupils’ publications were primarily devoted to specialties of technical
thermodynamics. In his famous early paper ‘Das Grundgesetz des Wirmetibergangs’ (The
fundamental law of heat transfer) in 1915 he laid the theoretical basis of this law, now sum-
marized by the dimensionless NUSSELT number (12.21). The Universities of Danzig (now
Gdarisk, Poland) and Dresden honored him with honorary doctorates and in 1953 he became
a Member of the Bavarian Academy of Sciences.

Text and photo based on: https://www.mach.kit.edu/wilhelm_nusselt.php

_ h§'[H]
~ K(Tg)

NGNS 2(azs)2
Ng=|1+e|— el —
s * ~‘(ax) 9\ %

st , with hg = hhy (12.21)

and
1/2
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Equation (12.20); is the dimensionless version of the kinematic surface equation; it is
form-invariant under the applied scalings. The next three equations are the boundary
conditions of stress expressing continuity of shear and normal tractions, and the last
equation expresses the heat transfer from the body to the environment. The limits
Ng — oocand Ny — 0imply prescribed surface temperature and vanishing heat flow,
respectively.

The derivation of the basal boundary conditions is more involved. With the defi-
nition (12.8) and the scalings

(ts, ty) = pglH]sina(ts, t,) (12.22)

one can readily show that at z = zp(x, y)

7 1 i ZB _ 823
Is, = == | Tx ex—— (—o, + cotan — &y ——Txy
Sy Ng _Tz'l' ox (—ox + ap) 83 Txy
+L [ % (-0, +cotana p) + O (g7, £.¢ )-
Ng _V-“‘ 6)2. 4 p Cx?»CXCys oo | 5
by 1T 823 823 _
tSy = —N—B _Tyz - Engxy + 5_\'8_)_} (_0}' + COtanozp)
—i—L —f % (=0, +cotana p) + O (7, c.¢ )_ (12.23)
N; _&\' ay z P EysExCyyenn | , .
I, ——L -(O' —cotana p) — ¢ —aZBT —¢ _aZBT
S, NB | z cx ox Xz Ey a}_} vz
LT — aZB 823
+N—g i (0, —cotan a p) — 25"'57’“ - 25"'8_)77”

with "
975\ 9z5\°
Ng= |1+ == 2 == ,
’ [ " ‘(6&) N -‘(ay

in which O is the order symbol and the dots indicate higher order terms. The terms
in the second lines of each of (12.23) comprise the x-, y- and z-components of ¢,.
The explicit derivation of (12.23) from Eq. (12.8) is somewhat involved, but it is not
difficult. Defining

@ ((pglH1sin)? [fs] ., (pglH1sin o)? [£, )
F .= - - (12.24)
@ ((pglH]sin0)? - 1, (pglH]sina)® - 1)

and using the scales (12.10) and (12.22), straightforward manipulations with (12.9)
yield the dimensionless sliding law in the form
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iy = —€F ([t [2,]") ..
nog = —eF ([t &) is
in which -
@
e = % — pg[H]sin a. (12.26)

The third velocity component at the base follows from the tangency condition vp -
np = 0 and reads in dimensionless form
0zp | _ Ozp

— + vp——. 1227
PF 555 ( )

wB = Up——

Moreover, the thermal boundary condition (12.7), becomes

_ [0 90 7 09 z S
n(é))[a—z—naé—eia—w—ﬂ Nphg(8 —05)Np, atZ =I5, ),
(12.28)
in which ]
hre H _
B: ;(;R)]’ with hg = h'S'hg (12.29)

is the basal NUSSELT number and Ny is defined immediately below (12.23). Again
the limits Ny — oo and N — 0 incorporate the cases of prescribed temperature
and vanishing heat flow.

The transformation of the boundary value problem to dimensionless form is now
complete. However, it is convenient to complement the above equations by the depth
integrated continuity equation. From (12.14); we may deduce

s

ou 0Ov

e e d_ -’,— Vs :O
/(8x+8y) Z+ Wz — Wz, ’

Zp

or, when using in the integral term on the left-hand side the LEIBNIZ rule,

s
0
f_/‘(i y,z,0dz +—/v(x ¥, 2, 1)dz
0% ,

ZB

—_— \—/—"
Ox Oy
0zs _ 07s _ 0zp _ 7 _ _
— (W”ZS + ai)_lvzs — wgs + EMZB + 87&”28 —wz ) = 0, (1230)
9z - =0 [for z=Zp(X,¥)]

—W'FNSC}()E»vaSJ)
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so that 9z 90 90
Zs i 5 _
— =N 12.31
of T ox Ty (12.31)
with ) )
s s
[oF ::/ﬁ(i,y,z,t_)dz, 05 ::/5(x,y,z,f)dz, (12.32)
Zp B

which are the volume fluxes in the x- and y-directions, respectively.

Equations (12.14), (12.20), (12.25) and (12.28) constitute the boundary value
problem in dimensionless form. It involves several dimensionless parameters; G > 1
is large, and in view of the fact that we expect [L.] > [H], [L,] > [H], but
[Ly] <[L,],onehase, <« lande, <« 1, butn < O(1). Moreover, since « is small
(5°-20°), tan o < 1, but cotan « is large.

Clearly, various distinguished limits can be analyzed, but here we assume that the
downhill motion causes a dimensionless shear stretching of order unity. Because A
and F have been scaled such that A and f are order unity quantities, Eq. (12.14),o then
requires that G = O(e; "), for otherwise the order unity left-hand side of (12.14)o
would not be balanced by an order unity right-hand side. Since G is large, this im-
plies small €,, but the value of ¢, defines also, over which lengths an order unity
dimensionless stress causes an order unity dimensionless stretching. Analogously,
Eq.(12.14);; implies G = 0(5;1), so that &, ~ ¢,.” In reality, see Fig.12.3, it is
expected that €, < €y, and in fact, we will assume so; more specifically, it is re-
quired that e, cotan « is small, perhaps of order €,, while eycotan « and €, /e, =7
are O(1). This essentially delimits application of subsequent developments to flow
situations of Fig. 12.3a. This means physically that the flow is primarily downhill.
The inclination angle must clearly be bounded away from zero. We shall see that
this scaling makes approximate equations applicable e.g. to mountainous glacier
flows and creeping landslides down mountain slopes. Furthermore, for STOKES flow
(F? — 0), the momentum Eq.(12.14), 3 4 reduce to force balances: in the down-
hill direction the shear stresses are, to lowest order, balanced by the gravity force
component in that direction.® The z-momentum equation reduces to the hydrostatic
pressure equation. In the y-direction, however, shear stresses should be balanced
by the transverse y-pressure gradients for otherwise 7,, would identically vanish in
view of the boundary condition (12.20)3. This would then contradict with the fact
that a sidewise shear stretching is possible. Thus, in order to balance in equation
(12.14)3 the vertical shear stress gradient 07,,/0z with the pressure gradient, one
must necessarily have eycotan o = O(1).

71f we would assume G to be O(1), whilst e, e, are small, Eq. (12.14)10,1; would to lowest order
request that the horizontal velocity components would be independent of the z-variable (plug flow),
which for any shearing deformation must be unrealistic.

8Strictly this assumes that tan a(9o;) /(9Z) is small as compared to unity, see (12.14)4, which shall
be assumed.
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12.4 Lowest Order Model Equations for Flow Down Steep
Slopes (Strong Steep Slope Shallow Flow
Approximation)

The purpose of the non-dimensionalization of the model equations in Sect. 12.2 has
been to obtain field equations and boundary conditions in which the independent
variables and their space and time derivatives are pure numbers with order of magni-
tude equal to unity; these are possibly pre-multiplied with dimensionless quantities
of which the numerical values are dictated by the scalings and material quantities
(coefficients). These can have values from very small to very large and may then
suggest procedures of approximation e.g. by dropping terms that are thought to be
of negligible influence. This was done in Chap.7 in an ad-hoc manner. Here, with
the employed scaling and the non-dimensionalization of the boundary value prob-
lem, the procedure is more rational and, thus guarantees, since small parameters are
present, that systematic simplifications can be implemented. The discussion in the
last paragraph of Sect. 12.3 suggests that the following distinguished limit should be
studied:

F— o0, STOKES approximation,

G=0("),

excotan o = P ey, ¢ finite, bounded away from zero, (12.33)
eycotanv = 1, ) finite, bounded away from zero,

n= 5— = finite, finite, bounded away from zero.

Ey

All other dimensionless quantities are regarded as finite. With (12.33), the bound-
ary value problem (12.14), (12.20), (12.25), (12.28) can be expressed as operator
equations involving the small parameters €., €, in terms of which perturbation solu-
tions can be sought. Here we are less ambitious and only deal with the lowest order
approximation, e, — 0, €, — 0. The constitutive relations (12.14)s_1; then imply
(bars, characterizing dimensionless quantities, will henceforth be omitted):

Oy =0y =0, =Ty, =0,

G = 2A)E (71T in D, (12.34)
& = 1240 (Ti)Ty,

in which
T =To, 4 Ty (12.35)

The momentum equations reduce to

s 1=,
0Ty, :
g¢g—§ + F= =0, in D, (12.36)
P

+1=07

9z
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and the mechanical boundary conditions of stress on the free surface, (12.20), become
Tee =0, 7, =0, p=0, on0dDy, (12.37)

whereas on the immobile basal surface, (12.25) and (12.27) remain unchanged,

up = eg() ')TXZ7
nvg = CF(, ')Tyz’ on ODg, (12.38)

[2) i)
wp = upHt + UBQL;,

except that F is now given by

2
F = ?((szz +75.) (cotanz(a) pr+ytp? (6;—;) )) (12.39)

The thermal equations will later be dealt with. Equation (12.36) subject to the bound-
ary conditions (12.37) can be integrated and the results be substituted into (12.34); 3.
For a known temperature field the emerging equations for u and v can then be inte-
grated subject to the boundary conditions (12.38). This process yields

Te (X, y,2, 1) = (2s(x, y,1) — 2),

Oyt ey =2, (12.40)
dy

p('x’yizvt) - (ZS(xvy,t)_Z)a

Tyz(xs Y.z, t) = _¢

and

u(x, D) th) = eg:(a ) (ZS(-xv y’t) _ZB(xv Y))

+2/A(9(X, Yy, Z,t))f(T”(x, y’C’ t)) : (ZS(-X, y’t) - C)dc’

8 (12.41)

1/1815(% y’t)

v(x7y’zat)=_eg:("')_ (ZS(xvyvt)_ZB(x’y))
n Oy

2 Ozs(x, y, 1) |
__ww/A(a(x,y,z,t))if(m(x,y,C, 1))
7 dy :

'(ZS(XV yvt) _C)dCs
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in which
2
TII(XHysZ’f) :(1+¢2 (azs‘(g—;]y’t)) )(ZS(-xﬂyvt)_Z)zv
2
F(., ) =5—"[(zs(x,y,t) —zB(x,y))2(1 + o2 (az“(g—’yy’[)) ) (12.42)

2
(zs(x, v, 1) — zp(x, ))? (cotanz(a) +9? (%Z_yB) )} '

Finally, once u and v are determined from (12.41), w can be determined by depth
integrating the continuity equation from ¢ = z to { = z; with the aid of (12.38);
this yields

BzB 813
W=up—— +vp—4—

/ Ou v
Ox dy _/(a—x(x,y, C)+a—y(x,y,<)) d¢, (12.43)

ZB

or with (12.41) in which z = zp,

U)(.X, ) th) = e:}.(v ) (ZS(-X, yvt) _ZB(X, y))

« 313()6,)1) _f.aZS(XvY»t)ZB(X,)’)
Ox n dy dy

_j (au(x, y,C, 1) N ov(x, y,¢, 1)
Ox ay

) d¢, (12.44)

ZB

in which u and v are to be substituted from (12.41). As would be expected, w (in
physical dimensions) is small.

It is appropriate here to pause and to review what has been achieved. For given
geometry, Eq. (12.40) permit evaluation of the dimensionless stresses. Accordingly,
the ‘downhill’ shear stress and the overburden pressure are simply given by the
overburden depth. Because the latter is always positive, 7, cannot change signs.
Alternatively, 7., the cross-slope shear stress, is proportional to the product of over-
burden depth and surface gradient, Ozs/0y, which may be positive or negative. This
suggests that u > 0, whereas v70 depending on whether 0z5/0y=0. Because F > 0,
A > 0 and f > 0 for all arguments, these properties are readily corroborated with
the aid of (12.41). A fortiori, (12.41), implies that v = 0 whenever Jz5/0dy = 0.
Because this last equation defines the ‘ridge’, it follows that along the ridge the flow
is in the x-direction at all depths. Moreover, from (12.41) we deduce



12.4 Lowest Order Model Equations for Flow Down Steep ... 69

v Ozs(x, v, 1)
u n ady ’

(12.45)

independent of z and zg. Therefore, for fixed x and y the in-plane velocity vector
does not rotate as one moves downward parallel to the z-axis.” To obtain a complete
picture of the velocity field in the (x, y)-plane, it suffices to construct vector plots of
the surface velocities (u, v) or associated streamlines and profiles of speed for fixed
x and y.

Note also that determination of all fields in Egs.(12.40)—(12.42) and (12.44)
requires knowledge of the phenomenological functions F, A, f and C, as well as
the temperature distribution as functions of space and time. Moreover, the surface
geometry must also be known. Given this information the stresses 7, 7., the pres-
sure p and velocity components u, v, w can be determined by only using quadratures
in the z-direction. Thus, for the solution of the complete problem the heat equation
and the kinematic wave equation must be solved along with (12.40)—(12.42). To
lowest order in €, and ¢, the temperature boundary value problem (12.14)s, (12.20)s
and (12.28) reduces to the boundary value problem

0 00 N 00 N 06 N 06
c —+ —u+ —v+ —w
ot Ox oy 0z

in D, (12.46)
0 00
=D— (k@) 5 ) + 2EGAO)E (111) 71,
0z 07
a6
K(H)a— = —Nghs(0 — 04), on 0Dy,
Z
(12.47)
00
5(9)— = Nshs(9 - 03), on 82?3
0z
subject to the initial condition
O(x,y,2,0) =b(x,,y,z) inD. (12.48)

On the other hand, the evolution equation for the free surface (12.31) can with
(12.45) be given in the form

°In field campaigns of glacier or soil flows, vertical bore holes are equipped with inclinometers at
various depths with the aid of which the velocity profiles can be determined. In such measurements
it is possible to verify whether all inclinometers lie indeed in a vertical plane. If this is not the case,
one reason could be that the basal sliding law is not isotropic. In that case (12.9) and (12.25) would
have to be changed.
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8zg an ’L/J 8 (8Z5

o ox  nay\oy

0. = CF() (zs — zp)*

s

+2/A(9(x,y, ¢ o) F(ru(x,y, ¢ 0) @sx, y, 1) = )P d¢ (12.49)

B

Qx) =a(x,y,zs,t), in PD,

to be solved in the projection onto the (x, y)-plane, PD of D, and subject to the
boundary condition zs = zp along the grounding line 0Ds N 0D g. Equation (12.46)
is an unsteady advection-diffusion-reaction equation for temperature in a three di-
mensional domain. Analogously, because the third term on the left of (12.49), de-
pends explicitly on Ozg/0y, but also because F and f contain it implicitly (compare
(12.42)), Eq. (12.46) is a forced advection-diffusion equation in the two-dimensional
domain PD. In view of (12.49), one has

= (25 %55
QX_Q(ZS’ ay’)’

so that (12.49), may be written as

ot 9zs | ox o \ 9y 9(dzs/dy) Ox Dy

- 20 @ 0?
+I—% [Q+8(8ZSQ/8”8L;” ayzj =a(x,y, zs.1), (12.50)

from which it is now seen that the surface elevation equation is parabolic and quasi-
linear. However, it is also singular at the grounding line, because for zg = zp, 0=
0,00/8zs = 0,00/8(0zs/dy) = 0, for the proof of which (12.49), and (12.42)
are used. Furthermore,

05 00 [azs ¥ (3zs)2:| N 00 &z

6Q _ 2 _ 4aq7. %
DOz Oy) 2oV Es ) T O

s

0
+41/}ai; / A(e)f/ (TII (xs Y, Cv t)) (ZS - <)4d<’

Zg

in which £(€) := df(£)/d¢ and F' (&, -) = OF (&, -)/O&. Any physically reasonable
constitutive relations and sliding laws have ' > 0 and 3’ > 0, so that
00

0 &= v20, — >0, ifzg>zp. (12.51)
325

9(9zs/0y) ~ dy



12.4 Lowest Order Model Equations for Flow Down Steep ... 71

Thus, the term in braces in (12.50) is always negative, which verifies the positive dif-
fusive nature of the equation for both steady and non-steady flows and demonstrates
the invariance of Eq. (12.50) to the sign of 0z5/Jy as would be expected.

12.5 A Slightly More General Steep Slope Shallow Flow
Approximation (Weak Steep Slope Shallow Flow
Approximation)

It was demonstrated earlier that the preceding scaling analysis does not apply to
situations of panels b and c in Fig. 12.3. Whereas the situation of Fig. 12.3b needs
to be treated quite differently (see the subsequent section), that of Fig.12.3c can
relatively easily be included. However, it requires a different ordering of equations,
namely €, ~ ¢, as well as

excotan o = P, ~ g cotan o = P, = O(1), (12.52)

All other order of magnitude relations remain valid. With (12.52), Eq.(12.14), 3.4
appear now in the forms

95 OTy,
—UegE+ o+ 1=0,
Lo I g (12.53)
RGN ’
9 1 =0.

0z

Integrating these equations, subject to the boundary conditions p(-, zs) = 7y,
(-, Zs) = Ty: (-, Zs) = 0 yields the stress distribution

p(f?yvzvt_) = (ZS ()E,)_’,f) _Z),

(7.5, 5.1) = (1 - %%) (s (7.5.0)—2).  (12.54)

- 0zs(X, ¥, 0) . . _ o
Tyz (X, ¥, 2, 1) —?/)y—a_ (Zs (x,y,t) —y).
y
Moreover, substituting these into (12.34), ;3 and integrating the emerging relations

with respect to ¢ from { = zp to ( = 7 and observing the basal boundary conditions
(12.38) yields
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- 07s(x, y,t o
A(F, 5,7, 1) = CF(, ) (1 - m%) (Zs(E, 7, 1) — 25(%, )
825()2’ .)_)’E)

+2(1_¢x (9)2

)z (2. 25(%, 7. 1), 25 (R, )
(12.55)
)%825()27 y$ f)
U dy

8_ _7 _7f > 540y 5 ) 5 X.V
0 OSE VD7 5 55 2 )
n 0y

ﬁ(iv)_}vzsf)z_eg(v (25(215)’;)_23(2»&))

in which
-2 IS
(%, 3,2, 1) = |:(1 —@[JXW) +¢§ (‘925(;—;_)%0) ]
x (355, 5,0 —2)°,

G 3DV cos 5 i s e s
+ (%yw)) ) (Es(E. 5.0 — 253, 9)°

2 I
X (Cotan2a x 1? (M) 4 1/)5 (513({, y)) ):| ’
dy

(12.56)

2, 5,0\
Ox

I(z,2z5(x,5,0,28(F, )

Z

- / A0 7. C. D) E (rn (R 5. €. D) (E5(E. 5. 5) — ¢) dC.

ZB

It follows, as before, that v Z0 depending on whether 0z (x, ¥, 7)/0y=0, but & is no
longer strictly positive as before. In fact, the sign of # depends on that of

(12.57)

v [1 _wxaza,y,f)].

ox

Over most part of the domain we have ¥ > 0, so u > 0, in particular at the thalweg
position, where the flow crosses from one valley side to the other, Fig.12.6 and the
motion may proceed uphill on the other side of the valley. Only where

Z5(X, y,1)

N = 1
Ox ~
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Fig. 12.6 Flow near the
thalweg position. The flow
crosses from one valley side
to the other and the motion
may proceed uphill on the
other side of the valley

areturn flow does occur as shown on Fig. 12.3c (cross section B—B). Because in view

f (12.55)
° v_ %525/5)7 (12.58)
u (= 10z5/0%) '

which is independent of z, the in-plane velocity vector does not rotate with depth as
before, and the kinematic surface equation becomes

825 8 8z5 1/Jy 8 8z5 -
Ta- a-— X — X - T a- X A= ) 12
8t+3f(( v )Q) n Oy Q(’?y - (1259
where Q, is defined in (12.49),. Alternatively, since
z (_ 0zs OZg
x = Ux y = == ) 12.60
o 0 (ZS 5% 55 ) ( )

one has as evolution equation of zZg

1_%825) 3Q 0zs Uy 8Q (815)

0x ) 075 0x  n 075 \ 0y

0Zs 00 9z
_[ ( o _)3(325/5)+wx ]82

_( _wxazs) 00 v 90 az] Pzs

v ) 0075/05) T n 0(975/0%) 95 | 903
_Wg 90 0z | s
Ui [Q+ 0(075/0Y) ay] - =a(x,y,zs.1). (12.61)

This is a quasi-linear advection-diffusion-reaction equation. Its invariance to the sign
of 0zg/0y can be proven, but a demonstration of the positive diffusive nature has
not been possible under all flow situations even though it is likely.

Because computations are only slightly more difficult with this scaling than the
previous one they are best performed with this equation set.
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12.6 Phenomenological Expressions
for Creeping Glacier Ice

The model is completed by presenting explicit expressions for the functions A (6), f)
(111) and F(|£5]2, |£,]%). Typical of thermo-viscous bodies at elevated temperature is
an ARRHENIUS-type rate factor'”

19For a biographical sketch of SVANTE AUGUST ARRHENIUS, see Fig.12.7. This might be the point
where climatologically other significant work of SVANTE ARRHENIUS ought to be mentioned. This
is justified in a chapter in which the dynamics of ice sheets, in particular their nutrition and wastage
of mass and energy, is described by the accumulation of mass and the flow of heat through the free
surface by radiation from the outer space. From a climatological point of view, ARRHENIUS was
probably the first scientist to draw attention to the anthropogenic effect caused by the greenhouse
gases. Indeed: ‘ARRHENIUs developed a theory to explain the ice ages, and in 1896, was the first
scientist to attempt to calculate how changes in the levels of carbon dioxide in the atmosphere could
alter the surface temperature through the greenhouse effect. He was influenced by the work of others,
including JOSEPH FOURIER, JOHN TYNDALL or CLAUDE POUILLET. ARRHENIUS used the infrared
observations of the moon by FRANK WASHINGTON VERY and SAMUEL PIERPONT LANGLEY at the
Allegheny Observatory in Pittsburgh to calculate the absorption of infrared radiation by atmospheric
CO, and water vapour. Using the STEFAN—-BOLTZMANN law, he formulated his greenhouse law. In
its original form, ARRHENIUS’ greenhouse law reads as follows:

if the quantity of carbonic acid [CO»] increases in geometric progression, the augmentation of
the temperature will increase nearly in arithmetic progression.

The following equivalent formulation of ARRHENIUS’ greenhouse law is still used today:

AF = aln(C/Cy).

Here C is carbon dioxide (C O») concentration measured in parts per million by volume (ppmv); Cy
denotes a baseline or unperturbed concentration of C Oy, and AF is the radiative forcing, measured
in watts per square meter. The constant « has been assigned a value between five and seven.

Based on information from his colleague ARVID HOGBOM, ARRHENIUS was the first person to
predict that emissions of carbon dioxide from the burning of fossil fuels and other combustion
processes were large enough to cause global warming. In his calculation he included the feedback
from changes in water vapor as well as latitudinal effects, but he omitted clouds, convection of heat
upward in the atmosphere, and other essential factors. His work is currently seen less as an accurate
prediction of global warming than as the first demonstration that it should be taken as a serious
possibility.

ARRHENIUS’ absorption values for C O, and his conclusions met criticism by KNUT ANGSTROM
in 1900, who published the first modern infrared spectrum of C O» with two absorption bands, and
published experimental results that seemed to show that absorption of infrared radiation by the gas in
the atmosphere was already “saturated” so that adding more could make no difference. ARRHENIUS
replied strongly in 1901 (Annalen der Physik), dismissing the critique altogether. He touched the
subject briefly in a technical book titled ‘Lehrbuch der kosmischen Physik’ (1903) (Course book on
cosmic physics). He later wrote ‘Viirldarnas utveckling’ (1906) (English: ‘Worlds in the Making’
(1908)) directed at a general audience, where he suggested that the human emission of C O, would
be strong enough to prevent the world from entering a new ice age, and that a warmer earth would
be needed to feed the rapidly increasing population.” Based on www.wikipedia.org.
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Fig. 12.7 SVANTE AUGUST ARRHENIUS (19. Feb. 1859-2. Oct. 1927) (Right photo)
ARRHENIUS visiting BOLTZMANN in Graz 1887

SVANTE AUGUST ARRHENIUS was a Swedish scientist, originally a physicist, but often re-
ferred to as a chemist, and one of the founders of the science of physical chemistry. He
received the NOBEL Prize for Chemistry in 1903, becoming the first Swedish NOBEL laure-
ate, and in 1905 became director of the NOBEL Institute where he remained until his death.

ARRHENIUS was born at Vik, near Uppsala, Sweden [...]. At the age of three, ARRHENIUS
taught himself to read without the encouragement of his parents, and by watching his father’s
addition of numbers in his account books, became an arithmetical prodigy. At age eight,
he entered the local cathedral school, starting in the fifth grade, distinguishing himself in
physics and mathematics, and graduating as the youngest and most able student in 1876.

He studied at the Physical Institute of the Swedish Academy of Sciences under the physicist
ERIK EDLUND, working on the conductivities of electrolytes. In 1884, he submitted a 150-
p dissertation on electrolytic conductivity to Uppsala for the doctorate and received only a
fourth class degree, but upon his defense it was reclassified as third class. His main statement
was that neither pure salts nor pure water are conductors, but solutions of salts in water are.
Later, extensions of this very work would earn him the Nobel Prize in Chemistry. European
scientists, such as RUDOLF CLAUSIUS, WILHELM OSTWALD, and J.H. VAN’T HOFF, were far
more impressed.

ARRHENIUS received a travel grant from the Swedish Academy of Sciences, which enabled
him to study with OSTWALD in Riga (Latvia), with FRIEDRICH KOHLRAUSCH in Wiirzburg,
Germany, with LUDWIG BOLTZMANN in Graz, Austria, and with VAN’T HOFF in Amsterdam.

In 1889 he explained the fact that most reactions require added heat energy to proceed by
formulating the concept of activation energy, an energy barrier that must be overcome before
two molecules will react.

In 1891 he became a lecturer at the Stockholm University College, being promoted to
professor of physics in 1895, and rector in 1896. In 1900, ARRHENIUS aided in setting up
the NOBEL Institutes and the NOBEL Prizes. For the rest of his life, he was a member of the
Nobel Committee on Physics and a de facto member of the Nobel Committee on Chemistry
[...]. In 1901 he was elected to the Swedish Academy of Sciences. He became a Fellow of
the Royal Society, London, in 1910 and [...] in 1911 he was elected a Foreign Honorary
Member of the American Academy of Arts and Sciences [...].

The text is based on www.wikipedia.org
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A(T) = Ag exp (—%) , (12.62)

where Q is what is called the activation energy, k is the BOLTZMANN constant and
Ay is a constant. Formula (12.62) follows from rate process theory and describes the
dependence of the viscosity upon the temperature. However, for processes close to
a phase transition (say melting for cold glacier ice) ARRHENIUS relations are known
to be inaccurate. Exponential curve fitting may be advantageous in this case. Thus,
we have either the ARRHENIUS relation

A A 1
A) = AD), 0= —
(0) = exp(AD), 1576’
(12.63)
A= g 7 — [AT]’
kTg Tr

in which Q is the activation energy measured in electron volts [eV], k is
BOLTZMANN’s constant (k = 1.3806488 x 10~2* [JK~!']) and T is the reference
temperature, measured in degrees Kelvin. An alternative parameterization, not re-
lated to the ARRHENIUS relation, and also appropriate for ice close to the melting
pointe.g. for 263K < T < 273.15K is

A(0) = a exp(ab) + b exp(809), (12.64)
inwhicha, b and «, (3 are constants which can be determined from creep experiments
at various different temperatures. GEORGE SMITH and LESLIE W. MORLAND [63] have

analyzed ice creep data and obtain with the choices T = 273.15Kand [AT] = 20K

a =0.7242, o = 11.9567,
b=0.3438, [ =2.9494.

(12.65)

The dimensionless creep response function f is often prescribed as a simple power
law (NORTON’s, GLEN’s law, OSTWALD-DE WAELE law, ...); however, the perturba-
tion scheme that is based on the present scalings can be shown to become invalid,
because of singularities that develop at higher order terms, see HUTTER (1983) [39],
R.E. JOHNSON and R.M. MCMEEKING (1984) [47]. It is, therefore, advantageous to
use polynomial representations, which exhibit finite viscosity at zero stretching or
stress deviator. The simplest proposition (HUTTER [37, 40]) is

(n—1)/2 k 1
) = u with k = /o

1+k (pglHD"=1" (12.66)
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in which )y is the viscosity (dimension Nsm~2) at zero stretching and n > 1is a
stress exponent, usually having values from 1 to 10, forice n = 1.7-4, generally n =
3, and k &~ 0.1 or less. Clearly, for k — 0, Eq. (12.66) corresponds to a power law
(NORTON, GLEN, OSTWALD-DE WAELE, ...). The modern trend is to use polynomial
representations, i.e.,

£(ri) = fo+ fitu + forips (12.67)

with materially dependent coefficients fy, fi, f>. Forice GEORGE SMITH and LESLIE
W. MORLAND obtained

Jo=0.3336, f1 =0.3200, f, =0.0296 for ice. (12.68)

The sliding law is the least known of the three functions A, f and &, because it
expresses the effect of the small scale boundary layer flow close to the ground that is
dominated by the roughness elements on the outer flow distant from the base. Here,
we simply suggest the phenomenological relation

Flts? 1617 = +V 18 P ™" = [talp " (12.69)

in which ju is a dimensionless constant ‘viscosity’, whose dimensional counterpart
has the dimension of a velocity, or

F(tsl? 1ta 1) = Bt ) (25 ™D/, (12.70)

B is sometimes chosen to be a constant and m > 1. The non-linear relation (12.70)
is more general than (12.69), in which the basal shear traction ¢ is linearly related
to the tangential velocity vp, but the limit behavior £ — 0 linearly with £, has
been shown to be compatible with a finite surface slope profile up to the grounding
line (LESLIE W. MORLAND and IAN R. JOHNSON, [53, 54]). This will be assumed
here, for otherwise a separate margin analysis is required that involves FROBENIUS
expansions, see HUTTER [39]. In addition, lowest order approximations could not be
uniformly valid. All this has already been discussed in principle in Chap. 7, Sect. 7.4.

12.7 Applications to Downhill Creeping Flows

12.7.1 Computational Procedure

Equations (12.46), (12.47) and (12.50) are viewed as initial value problems, which
must be solved by forward marching in time. To this end, an initial profile zg =
zs(x, y, to) must be prescribed along with an initial accumulation function ay =
a(x,y, zg, to) and temperature field 6y = 6(x, y, z, fy), which is compatible with
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the boundary conditions (12.47). While initial functional values for zg and ap may
be obtained straightforwardly either from own measurements or from the literature,
those for 6y must be constructed from e.g. a prescription of measured or estimated
temperature 6, and temperature gradient 06y/0z along the free surface and the base,
respectively. With (12.47) it suffices to prescribe 9(5) (x,y,zs, 1) and 9% (x,y,28,1).

Implementation of initial conditions requires thought. In applications of the model
equations to glacier and ice sheet flows the initial temperature and free surface fields
cannot be exactly prescribed, but must be reasonably guessed, because data are
generally not sufficiently available. One way is to assume a judiciously selected
surface geometry and a constant temperature distribution, say —10°C through-
out the ice domain and to prescribe a temporally constant accumulation function
a(x,y,zs, t), to = initial time; with this choice one then determines the velocity
and stress fields with (12.40)—(12.42) and integrates (12.46)—(12.49) or (12.50)
for some time until steady state is reached. This approach treats the initial fields
(u,v, T, zs, 0)9 as strictly steady, which in realistic climate scenarios is likely never
occurring, but since processes in ice sheets are extremely slowly varying, the de-
tails of the initial temperature distribution and geometry will not considerably affect
these fields at later times, provided integrations are begun sufficiently in the past. In
general, 10*~103 years of integration into steady state are needed to reach reliable
initial conditions for ice sheet profiles and temperature distributions. For glaciers at
most a few hundred years are needed.

This process of generating initial conditions may be accelerated if one starts with a
prescribed initial geometry and given temperature fields on the free and basal surfaces
close to reality and uses a heat transfer model (such as (12.47) that delivers estimates
for 92/ and 9%/). In this spirit the temperature representation in the fluid domain is
chosen as a cubic polynomial in z with coefficients, which depend on x and y,

0 = co(x, y) + c1(x, Yz + c2(x, y)2° + ealx, )27, (12.71)
where evaluation of 6y and 6, = 96y/0z on z = zg and z = zp yields four equa-

tions in four unknowns cy, cy, ..., c3, which can be solved. For plane flow (no
y-dependence) the solution is (see MORLAND and SMITH (1984) [55])

0 0 2 3
CO(x’ )’) = 93 - GB +r1zB — g,

c3(x,y) =n,

c1(x,y) = 0% —2r1z5 + 3223, (12.72)
CZ(X, y) =ry — 3}’2ZB,
and
n o= (zs = 20) 2 [3(08 — 0) — (s — zp) (205 +6F) ],
(12.73)

e e [~ ) - oo (2 )]
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92 and 6% are the prescribed initial surface and basal temperatures, respectively, and

_Nghs (05— 03) o _ Nahs (05 — 05)
I ()

9% and 0% are the constant ambient and ground temperatures, respectively. This se-
lection of an initial temperature distribution may also be useful in three-dimensional
ice sheets if reliable temperature distributions for 65 and € are known.

With (12.71)—(12.74) starting conditions are given for the evaluation of the stresses
(12.40), the velocities (12.41) and (12.44). From (12.46), (12.47) and (12.50) 06/t
and Jzg/0t can then be calculated over the entire domains D(zy) and PD(ty), respec-
tively. Marching forward in time permits evaluation of 6 and zg one time step ahead,
which defines D(¢;) and PD(t;), when t; = fy + At, etc. Steady conditions, if they
exist, are best sought by searching for a large time solution which becomes indepen-
dent of ¢ as t — o0. Details of the numerical method are described in a dissertation
by L. VULLIET (1986) [64].

0% = (12.74)

12.7.2 Profiles and Flows for Isothermal Conditions

The simplest application of the presented shallow flow approximation is restriction
to isothermal conditions. In this case the thermal initial-boundary-value problem
(12.46), (12.47) is superfluous and the rate factor A(f) arising in (12.41), (12.42)
may be set equal to the constant 1. Given the initial profile for z = zg and z = z3
(the latter being rigid), the stress and velocity fields can be determined by simple
quadratures of (12.40)—(12.42), and z = zg can be updated by forward evaluation of
z = zs with Eq. (12.50).

Computations were performed with an initial geometry similar to that of Fig. 12.4.
The domain (at = 0) is defined by

2
zs=(1- ( Y ) dtanh (b(x, — x)) + tany (x, — x),
yp(x)

2
23 =— 1—( 4 ) dtanh (b(x, — x)) + tan~ (x, — x), (12.75)
yp(x)

c

Xe — X
ye(x) = a(x, —x)exp | — ,
in which yg(x) is an auxiliary variable and
a=4, d = 100m,

b=27%x10"3m!, X, = 1000 m, (12.76)
¢ =200m, a = 10°
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and

d

Xe

tany = tan o — (tanh(bxg)) ’

, 2d (12.77)
tany' = — tanh(bx,) + tan .
X

e

Here, x is the down-slope and y the cross-slope variable; for constant x the profiles
(12.75) are parabolas of degree 2 both for the free and bottom surfaces, the former
of concave, the latter of convex geometry. The variable yg(x) measures the cross-
slope curvature that can be varied in the downslope direction. The selection (12.75)3
makes yg(x) to grow linearly for small (x, — x) and to exponentially decay for
(xe — x) — oo. The profiles z = zg(x, y) and z = zg(x, y) are symmetric in y; so,
symmetric flow states are to be expected under constant gravity force application.

Finite difference techniques were used to discretize the geometry with mesh
sizes Ax = 40m, Ay = 20m and a total of 595 grid points. The integrations in the
z-direction were performed using the trapezoidal rule and dividing the depth into
40 intervals. Computations indicated that these could even be decreased without es-
sential loss of accuracy. Computations in time where performed, using an increment
At = 1073[T] where [Z] is the characteristic time given below, but the graphs were
produced for ¢t = 0, t = 40A¢,t = 80A¢, ...only.

The constitutive and scaling properties, summarized in Table12.3, are grossly
representative for landslides or glaciers, but were chosen somewhat arbitrarily.

Figure 12.8a—c show surface velocities in scaled coordinates for the three con-
secutive times mentioned above. A conspicuous spreading of the domain at early
times can be observed, which is expected, given the pronounced initial cross-profile
velocities. Once this spreading has taken place, velocities become mainly longitu-
dinal as seen in Fig. 12.8b and c. For comparison, Figs.12.9a—c show the same in
physical space.

In order to better see the evolution in time of the free surface we show in
Figs.12.10a-b the geometries at the cross sections A—A and B—B again in scaled
coordinates. The initial parabolic shape of the profile (solid lines) is flattened-out in
the cross-profile direction, which results in the more pronounced longitudinal veloc-
ity distribution seen earlier. A closer view on output for early times showed that this
spreading takes place very quickly and slows down at later times (shown here).

Figure 12.11 displays in physical coordinates (i) the evolution in time of the do-
main in the cross section C—C (see Fig. 12.8) and (ii) a few selected velocity profiles
including their evolution in time. A pronounced thinning of the domain and reduction
in speeds in the upper part is observed, which is counterbalanced by a correspond-
ing thickening, advance and velocity increase close to the snout. Moreover, for the
physical conditions implemented in this case the downslope velocity is composed of
some sliding and primarily differential shearing.
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Fig.12.8 Dimensionless surface velocities of an isothermal deformation of a mass of a very viscous
power law fluid, moving down an inclined surface. The basal surface is given by z = zp and initial
profile geometry given by z = zs (see (12.75)—(12.77)) released from rest. Panels a—c show the
surface velocity field att = 0,t = 24, and t = 48 years. Note the different velocity scales in panel
(a) from the other panels. After [43] with changes
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Fig.12.9 Surface velocity distributions in physical space corresponding to Fig. 12.8. The snapshots
are again for the times 0, 24, 48 years. Note also the different velocity scales in panels a—c. After
[43] with changes
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Table 12.3 Physical constants and scales used in the computations for Figs. 12.8, 12.9, 12.10 and
12.11, from [43]

Viscosity 7]0_1 =6.24 x 1071 [mskg™']
Rate factor A=276x107% [s°m3kg—3]
Creep exponent n=3 [-]
Sliding law exponent m=1 [-]
Sliding coefficient B=10"1 [mskg™!]
Density p p = 2000 [kgm—3]
Characteristic depth [H] =50 [m]
Characteristic length [Ly] =600 [m]
Typical stretching [dl=[U/Ly] = s~
5.314 x 10~
Inclination angle « =10 [°]
peit = AN (pg[H]sina)™% | =9.41 x 1013 [mskg™!]
[Ly] = pgsin ol H?1/([d]pesr) | = 1000 [m]
[U]=[dL] =5314x 108 [ms™1]
=17 [ma~']
[V1=I[L,U/L,] =318 x 1078 [ms~1]
=1.0 [ma=']
[W]=[HU/L,] =2.66 x 107 [ms1]
=0.08 [ma~']
[T]=[L,/U] =1.88 x 10° [s]
= 600 [a]

12.7.3 Remarks for Use of the Shallow Flow Approximation
Jor Alpine Glaciers

The above shallow flow approximation has been developed in the 80s of the last
century when electronic computational facilities were much less developed than
they are now. For creeping landslides over time scales of a few decades to, say,
a century, they are useful when a fairly smooth rigid rocky basal surface can be
identified. In such geotechnical applications it generally suffices, if the isothermal,
reduced module of the discretized version of the equations is employed. In steep
hanging glaciers at high altitudes in the Alps the ice is generally cold, so that the
thermomechanical equations must be solved. This then entails the prescription of
not only the thermal boundary condition at the free surface, but equally also on the
rock bed, which generally is hard to determine both geometrically and thermally. In
the past the no-slip boundary condition was imposed; but in the present and future
climate warming the basal temperature at some regions of the basal surface may
reach the melting temperature which then requires imposition of a sliding law.
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(a) cross section A-A (b) cross section B-B

65.8 m

471m 150 m
[—t=0years -—- t=24years —~—t=48years]

Fig. 12.10 Cross sections A-A and B-B (see Figs. 12.8 and 12.9). Panel (a) shows the parabolic
basal topography, and the surface profiles for t = 0 years (solid lines), t = 24 years (dashed lines)
andt = 48 years (dashed-dotted lines). Panel b shows the analogous results for cross section B—B.
After [43] with changes

0 100 geometry [m]

! —— t=0years
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section C - C with velocity profiles

Fig. 12.11 Longitudinal cut C-C (see Figs.12.8 and 12.9) along the symmetry line. The figure
shows the profiles normal to the x-axis at the indicated positions from bottom to the free surface for
t = 0 (solid lines), t = 24 (dashed lines) and t = 48 years (dashed-dotted lines). After [43] with
changes

For estimation of such endangering scenarios into the immediate future (a few
decades), the shallow flow approximation in glaciers is somewhat questionable. With
today’s computational facilities and available software it may be advantageous to
employ the original equations in the STOKES approximation. For computations over
a few decades these may today well be a competitive more realistic alternative.
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12.8 Free-Surface Gravity-Driven Creep Flow of a Very
Viscous Body with Strong Thermomechanical
Coupling—A Rigorous Derivation of the Shallow Ice
Approximation

The scaling analysis introduced in Sect. 12.3 has as one of its intentions the replace-
ment of the physical variables by dimensionless analogues so that the initial boundary
value problems could be written in terms of quantities that are dimensionless. The
difficulty of this procedure lies in the appropriate selection of the coordinates (x, y),
which here are the ‘best fit’ to the boundary topography z = zp(x, y). This was in
the present analysis a plane, inclined at an angle « to the horizontal plane. This sug-
gested in Eq. (12.10) a scaling for the stresses, which involves the angle « and led to
the dimensionless set of Eq. (12.14), which involve terms with tan o and cotan « as
factors. The analysis then showed that the associated Shallow Flow Approximation
[Egs. (12.40)—(12.42) and (12.44)—(12.50)] is only meaningful for o bounded away
from zero. The case o = 0 involves singularities (lim,—( cotan &« — 00). So, for a
creeping mass of a non-NEWTONian fluid on a horizontal plane or a topography close
to this, a new scale analysis must be made.

12.8.1 The Classical Shallow Flow Approximation

Because spreading in the two horizontal directions is likely of the same order
of magnitude, it is tempting to choose [L,] =[L,] and [U] =[V] and to non-
dimensionalize the dynamical equations as follows:

[H]
{u,v,w,a} ={[Ulu, [Uv, [W]w, [W]a},

(P texs tyy, b} = [pgH1{p. %04, %0y, €70},

w]._
.y 2,1} = [[L]f, [Lly, [H]z, ut] ,

{teys bz ty2) = [pgH1{€ Ty, €Taz, €732} (12.78)
T =T+ [AT10
D] - -
A(T) fly) = !Al"f(lla),
[o]
where we have chosen the aspect ratio
H
€= 14] = @ (12.79)
(L] [U]

So, the aspect ratios of the length scales and velocity scales are the same. Note,
moreover, that the scales of the stresses are weighted with £ and €2, respectively. The
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Fig. 12.12 Creeping flow of
a fluid on a horizontal basis.
Under hydrostatic conditions
the pressure forces at x and

x + dx are in equilibrium H(x+dx)

with the basal shear stresses, 1 p gH?(x+dx)
explaining the scale for t,, T 2 AN
and ty; Y v
CPHX) [T pgH(x+dx), X
dx
x  x+dx

pressure is scaled with a reference overburden pressure [pgH]. Relative to this, the
normal components of the stress deviator are O (e?) smaller and the vertical shear
stresses are O(g) smaller. These weights are at first not evident but can be made
plausible. To this end, consider plane flow as shown in Fig.12.12. Let the stress
distribution be hydrostatic, so that the indicated column of length dx is subjected to
the triangular pressure forces % pgH?(x), — % pgH?(x 4+ dx) and the basal shear stress
tdx. A horizontal force balance then yields, after Taylor-series expansion restricted

to linear terms,
OH
tdx = pgH { ——— ) dx,
Ox
or when non-dimensionalized
i} [H]- _ Oh
t = = Hl—=h -
(717 = [pg ][L] (x) ( 8;2)

implying
[7] = [pgH]e (12.80)

This result explains, why the scales for #,, and #,, must be of order [pgH ]e.

There are further reasons for this scaling. To see this, we write the force balances
in scaled form, using (12.78), but not implementing the O(¢?)-weights in the stresses
Oy, Oy, 0z, Tyy. These yield

11

0p | 03, | 07, | Or
“ox "o T oy oz
op OTxy da, Ty,
_or 499 —0, 12.81
o5 Tor Tty Tz (12.81)
op 5 0T, , 07y, 00,
22 T Ty T

"'We omit the accelerations as they play no role for the arguments.
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Here,
{te: tyys tuzs by} = [pg H WG, Gy 5z Ty} (12.82)

‘We know from physics of such flows that the tilde-quantities (12.82) must be small. In
Eq. (12.81), these are identified by writing them in color. This observation justifies to
lowest order the use of the hydrostatic pressure Eq. (12.81); inthe form 0p /07 = —1.
Consequently, we may either assume &, = (¢0.) or &, = (¢2)0, but only the latter
choice makes sense as we expect the next order to be 2. Indeed, the continuity
equation, div v = 0, paired with the constitutive law D o o implies that the normal
stresses Oy, 0y, 0 must all be of the same order O(£?). Finally, this also implies that
Txy is of the order O(e?), since the (x, y) coordinates may be arbitrarily oriented on
the horizontal plane. So, we now have

{5y Gy oy Ty} = €200, 0y, 07, Ty ) (12.83)

The scalings (12.78) are now justified. The component forms of the field Eq. (12.1)
and constitutive relations (12.3) take with these scalings the forms

@J’_@_'_a_w—o
ox oy 09z
I diz op , (0o OTyy 0Ty,
_E_(_ﬁ)“(axJ“ay)Jraz’

Frdv  ( 0p 0oy | Oy 0Ty,
sdt'_( ay)+°(ay+ax T
, dw ap 5 [(OTe: 0Ty, , 0o,
Free=—— £ € —1
dt ( 32) + ( O0x + ay + 0z '

0 [ .0 90\ 0 00\1 . 0
o =0 (o (05) + 55 (035) ]+ 2 (0)

+E2AE ()71, (12.84)

% = GAWB) (1),
ox
B GAO T,
oy ’
ow _
5= GAOE(mi)o,

Z
o Ob _
8_)_7 + & = ZGA(G)E(TII)TX)H
on 0w _
mte = 2GAOE(Tir)Tyz,
B 20 G AT,

0z y
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in which
T = sz + T}2=z + &2 [% (af + 05 + 03) + Tfy] (12.85)

is the dimensionless second order stress deviator invariant and

F(11,) = F(lpgH1711)
7 F(lpgHP - 1)
A(@) _ A(T) _ A(Tg + [AT]0) _ A’(6)
A(Tg) A(Tg) A(Tg)’
/ (12.86)
() = K(T) _ Kk(Tg +[AT]0) _ kK Q) ’
K(Tr) K(TR) k(Tr)
&6) = c,(T) _ c,(Tr +[AT]0) _ ()
cp(Tr) cp(Tr) cp(Tr)

are the analogous quantities already defined in (12.17). They show no dependence
on the inclination angle «. Moreover,

F? = @
glHY

G €2 sy = (o] . D,— [W]/[H]’
SxDa [pgH] [D]

_ K(TR)L] _ K(TRr)

~ pep(TRIUIH?] — pey(TR)IWIH]

_ A

T SeDy

(12.87)

E (12.88)

2 is the (squared) FROUDE number, D is a dimensionless thermal diffusivity, G a
parameter characterizing the constitutive response of stress; Sy is a stress ratio of a
material stress to an overburden stress; D4 is a vertical strain rate and I|E measures
the significance of dissipation or strain heating.

The field Eq. (12.84) are supposed to be so non-dimensionalized that all expres-
sions printed in black are order unity quantities whereas the colored quantities have
values as dictated by the chosen scales and given by (12.87). These latter quanti-
ties appear in color in (12.84). In applications to large ice sheets, say Greenland and
Antarctica, the various scales and the physical parameters for polycrystalline ice have
values as listed in Table 12.4. With them, it is a straightforward exercise to see that
e =007 —1072), F? = 01078 — 107'%), so that F?/e = O(1071 — 10~'1)
and F2c = O(1072! — 107'%). Similar estimates for the remaining quantities sug-
gest that ‘with some tolerance’ (D, E, G) = O(10~" — 10"). These estimates should
not be looked at as strict ranges of values, but rather as guidelines suggesting the
following approximations:
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Table 12.4 Characteristic scales and physical parameters for large ice sheets such as Greenland

and Antarctica

[U] 102-103 m/a Characteristic horizontal speed
[W] 1-10m/a Characteristic vertical speed
[L] 500-4000km Characteristic ice sheet extent
[H] 500-3000m Typical ice sheet depth
[o] 10° Pa Typical material stress
[g] 9.81ms™2 = Gravity constant

9.76 x 10" ma=—2
[p] 910kgm™3 Ice density
[AT] 20-30°C Ice sheet temperature range
[ep] 2 x 103 Jkg ' K~! Specific heat of ice at

273.15°K

Tr 273.15°K Melting temperature of ice

1. Inthe momentum equations the acceleration terms can be ignored, since F? /e and

[F2¢ are both substantially smaller than any other terms in Eq. (12.84). Dropping
the acceleration terms is called the STOKES approximation.

. This STOKES approximation is satisfied to a very high degree; in other words, if €
is used as a perturbation parameter and regular perturbation solutions are sought
for @ = {u, v, w, p, 6} in the spirit that

N
D =Py +eD +2Py+ - & 25”@,,, (12.89)
v=0

then the STOKES approximation remains an acceptable assumption at least to
second (N = 2) or third (N = 3) order.'? The approximation N = 0 is called in
glaciology the Shallow Ice Approximation (SIA), whereas N = 2 characterizes
the Second Order Shallow Ice Approximation (SOSIA)."?

. Looking at (12.84),_4 it is seen that the convective heat transport is fully
accounted for in any approximation (N < oco) (as are, incidentally also the
convective accelerations, but this is irrelevant in a STOKES approximation). By
contrast, the horizontal momentum and heat fluxes can be dropped in the STA and
SOSIA approximations as compared to the corresponding fluxes in the normal,
z-direction. Similarly, (12.84);¢ 11 imply that in the SIA the horizontal stretching
can be dropped.

. In the z-component of the momentum equation, all flux terms, except dp/dz
are O(¢?) and can be dropped in the SIA. What then remains is the hydrostatic

12This is often not so for applications in rheology.

3Note that SIA and SOSIA are meant here to apply to ice sheets, but neither to (steep) glaciers nor
floating ice shelves.
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pressure equation, Jp/07 = 1. Corrections to this behavior only enter at the
SOSIA. Moreover, to account for vertical accelerations would require a higher
order model with N =3 or N = 4. This has so far never been attempted. An
alternative would be to employ a non-stretched non-dimensionalization of the
governing equation and employing depth integration of these equations as is
done in hydraulics with the BOUSSINESQ equations against the DE SAINT VENANT
equations, but for creeping flow this has not yet been done, see [11, 42], to our
knowledge.
5. In the limit as € — 0, Eq. (12.84) take the limiting forms

il N o n ow _0
ox " 9y 0z
op 0Ty _
o Tz 70
op = 01y,
R, == 01
25 o
o (12.90)
_— = 1 — Oa
0z
do o 00 <
i N -39 Nt 2EA(OT
‘i ez (“(0) az) AT
a_L_t = 2GA(0)E(TH)TXZ’
0z
8_1_) = 2GAO)E (1) 7y
07 '
and
% = GA(G)E(T]{)UX9
Ox
ov =
55 = GAO)E (T)oy,
Yy
i ) (12.91)
= = GAOf (Ty)o,
Z
on  0v =
a_}_) 4 ﬁ = ZGA(Q)ILE(TII)TX}"

Equations (12.90) and (12.91) have been separated for reasons which will soon
become apparent; relations (12.90) are the proper SIA-equations, (12.91) are only
needed for the higher order models N > 2.

By contrast, (12.85) reduces to

T =To, 4 Ty (12.92)



90 12 Three-Dimensional Creeping Flow—Systematic Derivation of the Shallow ...

It appears as if also this reduced second stress deviator invariant should be
dropped. This should not be done, however; for £(0) # 0 a NEWTONian fluid
model would emerge at the SIA-level; for £(0) =0, e.g. a power law fluid,
(12.90) 7 yield (Qut/0z, 0v/0z) = (0, 0), implying a constant vertical profile of
the horizontal velocity components. This contradicts inclinometer observations
in vertical ice bore holes. This second interpretation is also correct from a scaling
analysis viewpoint, since 7; = O(1 — 10"), which is not small.

6. Inspecting the field Eqs. (12.84) and (12.85), one may conclude as if the pertur-
bation solutions would step in orders eie,® = ZIILO 6,2, @,, so that odd order
solutions would vanish. Whether such behavior prevails can be seen, once the
boundary conditions are formulated. Ordinarily, it is assumed that the first order

quantities, @, vanish, which we regard as questionable.

Boundary conditions are to be formulated at the free and basal surfaces and are
stated as (12.5), (12.6) and (12.7)—(12.9), respectively. These statements will be de-
rived here in Cartesian coordinates (x, y horizontal, z vertical) and using the scales
(12.78), (12.79). Somewhat lengthy, but straightforward calculations then show the
following:

(i) For the free surface 7 = Zs(x, y, t) the surface boundary conditions are given
by

0zs Ozs_ 07Zs_
o Tt oy

_07 0z 0z
p_S + Taz — e (Ux_s + Txy_s) =0,
X y

0x ox ay
_555 2 aZS aZS _
pa—}_) + Tyz 15 (U)va—)_) + TXy%) = O, (1293)
5 2 o T % T _aZS —
p—¢€ z Xz ox yZ 8y =V,
_ 00 00 0zs =~ 00 0z
o) | 2 2 (S2ES L TN Ng(@ — 04N
g )[az (ax 9% 0y ay)] Ns(® = 6.)Ns

Equation (12.93); is the kinematic surface condition, in which a is the dimensionless
accumulation function; (12.93), 3 4 are the two horizontal and one vertical force
balance equations, and (12.93)s is the boundary condition of heat, in which

2| (9% 9zs\’ v
Ng=11+¢ Fr + 5_y . (12.94)

Ny is the free surface NUSSELT number, defined as



12.8 Free-Surface Gravity-Driven Creep Flow ... 91

_ h§'[H]
 K(Tg)

Ns (12.95)

For Ny — o0, the thermal boundary condition reads § = 64 and is of DIRICHLET
type, whilst for Ny — 0 it is of NEUMANN type.

(ii) For the rigid basal surface, zp(x,y — z) =0, Egs.(12.7)—(12.9) allow the
derivation of the following dimensionless laws:

iip = CFp (|5, 11.1°) (is),

o = €T (1Es 18.1°) (7s), . (12.96)
_ _ Ozp _ Ozp
Wy =Up—o + Usa—y,

_ 00 0zp 00 07p
722 es - — —
6(9)[ z ¢ (8)2 EF + 35 05 )] Np(@ — 04)Np,

2| (978 75\’ v
Np=q1+4¢" (W) +(6_y) s (12.97)

_ W§[H]
 Kk(Tg)

in which

B

The index (-)p refers to the bottom surface. Equation (12.96), » express the slid-
ing law, according to which the tangential velocity at the base is collinear to the
tangential traction with a dimensionless sliding function F(|£s|?, |£,|?), which de-
pends on the dimensionless tangential and normal surface tractions |£s| and |Z,],
respectively. Symbolically, and in physical space, the sliding law is expressed as
vp = —F(|ts|*, |t,|))ts, where

tS = tnB — tn, tn = (nB . tnB)nB (1298)

and _ _
g (*|Es]*, e )

Fp (Its?, |2,%) = , = [pgH 12.99
8 (1£s1%, 12.17) D5 ) c:=lpgH] ( )
as well as tg = ctg, t, = cl,; the drag coefficient is
cd(c?, c2)
Cp=——""¢. 12.100
B (U] € ( )

Please note the definition of ¢ in (12.99), which is different from that in (12.26),.
Moreover,
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(ts)ey =[pgHle(ts)i5,  (tw)ry = [pgHle(t)z 5 (12.101)
with
- _ 825 623 823 1 aZB
(ts)x = H( )+C ( Fr +Txya_)_))} - N—B|tn|E,
__— 825 B Y 9zp\| 1 . 9zp
(tS)y— I( )+v (ya_ +TX)8 )] N |tn|8)_;9
- _ 823 623 .
|£a] = < [p (xz E Jrfyza—y oz)] (12.102)
[5 ( 8ZB )+O( )} 813
o2 (255 ) oo | 33)

Equations (12.93)~(12.102) show that to second order approximation in ¢, only £°
and £2-terms arise. Only when higher order perturbation solutions N > 3 are sought,
odd order ¢ terms will arise. So, as long as the SIA and SOSIA solutions are sought,
the first order FOSIA can be set identically equal to zero [unless, of course, the basal
topography z = zp(x, y) has small wave length O(e) variations, a case which is
generally excluded.]
Specifically, in the SIA the boundary conditions are as follows.

(i) At the free surface 7 = 7s(X, ¥, 1):

525 825 _ st —

§+§u+a—yv—u')_N5a Nsg =1,
0z
gZS + T, = 0, 13 =0
-0zs _ implying { 7., = 0, (12.103)
P—=— + 7y =0,
5 ayo " Tyz =0,
p =

00
R(9)§ = Ng(0 — 0,4).
Z

(1) At the fixed bottom surface zg(x, y) — z = 0 we obtain the sliding condition in
the form

iig = CpTp (IEs% 12,17 72
g = CpFp (75’ 1£.1°) 7. (12.104)

W= %Haﬁ
~Pax TP oy
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The classical shallow ice approximation SIA is now governed by Egs.(12.90)—

(12.92), (12.103), (12.104). Integrating the momentum Eq.(12.90),_4, subject to
the boundary conditions (12.103),_4, yields

ﬁ(i’ys Zv ) = (ZS(-%’ )_7’1_) _Z) s

. 0zs(X,y.1) .. _ _ . _

TR, 5.2,0) = —% (Es(5. 5.5 — 7)., (12.105)
. 0zs(*,y,0) . _ _ - _

Fe 5,5 = - 28D ek 5 7).

dy

Assuming that 6(x, ¥, Z, f) € D is known, Eq. (12.90)¢ 7 can now be integrated sub-
ject to the boundary conditions (12.104). This yields

x (2(%, 3,1 =€) d¢,
(12.106)
_ _ oZs [ - _ _
ﬁ(i,;,i,r):ﬁg(f,y,z)—zGai; / A0, 5, ¢.D)E (Tu(x,5,¢.D)
2p(%,y)

x (2. 5.5 — ¢) ¢,

where

o, 25\ (97s\°) - -
iup(x,y, 1) = —CF|(zs—zp)° F —) +| = ,(Zs — ZB)
ox ay

0zs _ _
XE (zs —zB),

o o (12.107)
_ JE - _ - 2 aZS aZS _ - 2
vp(x,y,1) = —=CF|(@s—zp) " F| | == ) +| == , (zs —zB)
Jx ay
.
xai;(zs—zg),

=15+ 72 = EsE 5D — () (%)2+ (%)2 (12.108)
xe T Tye = ST ) ox oy) ) 7

Moreover, the continuity equation (12.90), together with (12.104)3 allow evaluation
of the velocity component w as follows:
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Fofon 0 _
By (F, 5. 25 E (). D) — / (8—%6—”) &, 3, ¢, DydC.

NI

)

w(x,y,z,
zp(x,y)
(12.109)
Scrutiny of formulae (12.106)—(12.108) shows that the horizontal velocity vy =
(u, v) is structurally given by

'_)H()Ev y? Z’ lr) = _3()27 )_77 Z: f)gradHZS()z3 y: f)v (12110)

in which J(x, y,Z,7) is a scalar function, which can simply be inferred from
(12.106)—(12.109). This formula gives rise to the following theorem:

Fundamental SIA Theorem

1. At a fixed position (x, y) the horizontal velocity vy points in the direction of
steepest descent at all depths zp < Z < Zs. In other words, in a vertical bore hole,
the velocity vy does not rotate around the vertical bore hole axis when one moves
down the hole.

2. Positions of zero horizontal velocity agree with positions of horizontal tangent
planes of the surface 7 = Zg(x, ¥, 7). In three dimensions these are positions of
domes or troughs or saddle points; in two dimensions, these positions are ice
divides.

3. Since the flow in the vicinity of troughs is towards the trough minimum, such
depressions are filled with time. Troughs are unsteady features of the surface
topography.

4. Vertical surfaces through crests are separating surfaces of cryological or hydro-
logical basins, i.e., there is no flow of ice across such surfaces. The ice velocity
vector is strictly within the vertical surface crest.

If any observations are not in conformity with the statements of this fundamental
theorem, then the prerequisites of the SIA do not hold. One such condition would be
non-isotropic sliding,'* in which sliding velocity and basal shear traction would not
be collinear. Interpreted this with different emphasis we can state that in the SIA the
basal velocity is always pointing in the direction of the free surface slope, no matter
how the basal surface is oriented.

It is evident that in the evaluation of the stresses (12.105); 3 and the velocity com-
ponents (12.106)—(12.109) only algebraic and differential operations and quadrature
formulae are involved. With these variables being determined the thermal boundary
value problem is given by (12.90)s, (12.93)s, (12.96)4, or

14For instance, if the basal interface would be a ‘corrugated sheet’, the basal drag coefficient would
be orthogonal, i.e. different parallel and orthogonal to the sheet orientation.
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C(@)[ao 00 80_} DQ(—Z")HEAE(TH)TH, in D,

5" 8_§v i 8_Zw 0z
o7} o
Fae = Ng(0 — 04), onz=Zs, (12.111)
o0
"‘} =Np(@ —0s), onz=2zp.

This boundary value problem for 6 is generally non-linear in all terms of the field
equations and boundary conditions. However, when ¢ and & are constants, the only
nonlinearity is in the reaction term A (6), which for an ARRHENIUS parameterization
is exponential. In any case, for given 7 = Zg(x, ¥, ) and 7 = Zp(X, ¥), the boundary
value problem (12.111) is solvable, at least numerically.

The next step is to perform a forward integration step in time of the geometry of the
moving mass. To this end the continuity equation (12.90), is integrated over depth
from z = Zp(x, y) to Z = Zs(X, ¥, f), thereby incorporating the kinematic surface
equations (12.93); and (12.96)3. This computation parallels that derived to obtain
(12.31). The result is

0Zs " 0 Q 8Qy
or 0x ay

= Nga, (12.112)
(this equation is exact!) with
0. (%, y,1) 1= iip(X, y, 1) (zsoz 3.0 = Zs(%. )
_QG% / az / 5,5, CD) £ (- O) (B 5.1 — ¢) &

=zzB(x,y,t) (Zs(x y, 1) — 25(%, 3))

e M/ (Es(F, 5.0 — 2) A (0E, 5. ¢, D) £ (7 (-, D) ¢,

(12.113)
0,(&, 3,1 =X, 3,1) (Zs(X, §, 1) — Z5(%, 3))

e M/ (Es(F, 5. D) — 2)° A (0E. 5. C, D) £ (7 (-, D) .

(12.114)

Using integration by parts, the double integral in (12.113) has been transformed into
a single integral. Moreover, it is easily seen that
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sz Qx Z()E,)_),t_), 8ZS(x9_y3t),8ZS(x1yst) i
0x ay

(12.115)
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This, together with (12.112), implies the evolution equation
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for the surface. It provides information about the detailed structure of (12.112). Ina
numerical program, in which Q, and Q, are computed in a finite difference grid, it is
certainly more direct to compute AZg/Af in a forward time step from (12.112) rather
than from (12.116). This yields the new free surface Zs(x, y,  + Af) as Zs(X, ¥, 1) +
Azs and thus fixes the conditions for the next step forward in time. With the new
geometry computations can be started again at time 7 + Af with the determination
of the stresses {p, Ty, 7y} by using (12.105) the velocity components {it, v, w}
with (12.106)—(12.109), the updated temperature field (12.111) and Azg, etc. This
principal procedure is applied as such in quite a number of software programs, which
were developed in the last decade of the 20th century. Early pioneers having done this
are K. HERTERICH et al. [50], R. CALOV [7-9], P. HUYBRECHTS [46] and R. GREVE
[23] and others. Today’s software incorporates besides cold ice (i.e. ice of which
the temperature distribution is below the melting point) also temperate ice (with
the temperature exactly at the melting point), which are separated by a singular
surface which operates as a so-called STEFAN surface at which ice may melt or water
may freeze. The SIA formulation for such polythermal ice is structurally analogous
to the SIA without phase changes; for literature on this see HUTTER [38, 39, 41,
45], GREVE [23-25, 27]. An open source program due to RALF GREVE bears the
name SICOPOLIS (for Simulation Code for Polythermal Ice Sheets) and has been
applied in many scenarios of climate reconstructions of the large ice sheets on Earth
through the last ice ages and for prognostic views into hundred and more years of ice
sheets subject to different climate scenarios. The newest version of SICOPOLIS is
complemented by an ice-shelf module' to make it applicable to Antarctica, which
is surrounded by two large and many smaller ice shelves, SATO [60], SATO and
GREVE [61].

15For the theory of ice shelves see MAGNUS WEIS et al. (1999) [67].
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Before turning to applications mention should be made of the fact that equations
(12.91) were not used in establishing the zeroth order SIA-solutions. It is interesting
that exactly these terms provide indications as to the possible limitation of the zeroth
order SIA, terms which are not contributing at all to the solutions (12.106)—(12.109).
In fact, these formulae allow evaluation of oy, o, 0;, 7, as follows:

on 90 ob (00 06
ox’ 9y’ 0z \dy 0Ox

GAO)E ()

{va Oy, Oz, 7-)cy} = (12.117)

Critical in this formula is the creep response function f(7;;) with the second stress
deviator invariant 7;; given in (12.92) as argument. At a dome, ice divide and on
the free surface 7; = 0, since (7, 7,;) = (0, 0); so, if £(0) = 0, then the stresses
(12.117) are infinitely large at these positions in this case. A finite viscosity law has
£(0) # 0, for which the above stresses remain regular at a dome, divide and on the
free surface. This was already spelled out and consequences discussed in Chap.7
Sect.7.4 and Fig.7.32.

12.8.2 Applications

(a) Plane steady ice sheet flow. The first applications of the SIA-equations were
restricted to plane ice flow in two dimensions and to steady state. LESLIE W. MOR-
LAND and GEORGE SMITH (1984) [55] prescribed the temperature distribution within
the ice according to (12.72)—(12.74). They chose [H] = 2000m, [L] = 400km
(e = 0.005) and employed an accumulation pattern given by

Nll Nl
=R

12.5 (z5 — he)
{12.5@s — he )—76(2s—h)

+136(zg —he) )k 2

(Zs < he),

Q1
I

(he < Zg < h,+0.25), (12.118)

~

O.SE (Zs = h. +0.25),

with ho =h, =1 and [H] = 1000m the ‘equilibrium height’. In general /, =

he(X, ¥), but MORLAND and SMITH chose &, = const. = 1. Equation (12.118) cor-
responds to a linear decrease of the surface melting with height, if zg < k., a cubic
growth of precipitation for 4, < Zg < h, + 0.25 and a constant value of snow ac-
cumulation above /1, + 0.25. MORLAND and SMITH chose the surface temperature
to decrease 0.8 K per 100 m and the vertical atmospheric surface temperature gra-
dient to vanish, corresponding to zero heat loss at the surface. Alternative values of
—(1-2.5)K per 100m are assumed for the vertical temperature gradient at the base,
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reflecting respective geothermal heat fluxes of (0.8-2.0) x 10°J m~2a~!, if frictional
heating and dissipation are negligible at the base.
These choices specifically led

e at the free surface to
- - dT. = _
Ts =Ty — 16 (K)h(&), — =0, & =¢x, (12.119)

where T}, is the margin temperature by choice of the margin as coordinate origin
and
e at the basal surface to

T,
5 = 20K Ty =(-2.-6)°C. (12.120)

Figures 12.13 and 12.14 display computational results ‘for uniform bed temperatures
T, = —2°Cand T, = —6°C in the prescribed temperature pattern. The temperature
variation with height at three sections, together with the resulting profile, basal
velocity and relative longitudinal velocity at three sections, are shown [...]. For the
moderately warmer bed (Fig. 12.13) the temperature influence on the rate factor is
reflected by the increased differential motion, but there is negligible change of span
and only a modest decrease in maximum thickness in comparison with Fig. 12.14
[...]. The change of the velocity distribution accompanying the temperature varia-
tion influences the large scale features significantly. Moreover, the enhanced velocity
gradients extend well beyond a negligible boundary layer’, [55].

The most significant inferences that can be drawn from the MORLAND-SMITH
analysis in steady state is as follows:

1. The flow pattern obtained with realistic temperature distributions are vastly dif-
ferent from corresponding steady patterns in the ice sheet that are subjected to
isothermal conditions.

2. The enhanced velocity gradients in the warmer basal regions (of the temperature
patterns considered) do not include a high shear rate boundary layer with negli-
gible shear rate through the bulk flow. That is, the viscous response of the ice is
not confined, in general, to a thin boundary layer.

A second, more complete study of the steady response of the two-dimensional
SIA equations is due to SIDNEY YAKOWITZ et al. (1985) [68] and K. HUTTER et al.
(1986) [44]. In their computations the temperature distribution was not prescribed but
computed along with the ice sheet profile, the velocity distribution (u, v, w) and the
general flow pattern. So, in these computations the temperature distribution satisfies
the heat equation together with the thermal boundary conditions at the free and basal
surfaces.

HUTTER et al. [44] chose MORLAND and SMITH’s [55] accumulation function
(12.118) with

he =0 (1 — pix — pi?) (12.121)
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Fig. 12.13 Steady state ice (a)
sheet flows with prescribed 20004
temperature distribution.

Solution for temperature h (m)
variation with uniform bed
temperature T, = —2°C:
a profile and temperature
variation; b longitudinal

1000 4

velocities relative to the 0~
basal velocity; ¢ basal
velocity distribution, (b)
redrawn from [55] with
changes 2000+
h (m)
1000 4
O,
(©)
200 :
150 :
ug(ma-) !
100 - !
50 :
0 ‘ .
0 100 200 300 400
x (km)
and a simplified version of it, namely
.- _ - bh
a(ZS - he), (ZS < he + _—_e) )
ahf
a = B B (12.122)
h _ - bh
b—_;’ (Z5>he+_—_(e))9
hy ah)

Furthermore, the surface temperature in °C is parameterized as
Ty =Ty — T, 7s — TP . (12.123)
In these formulae x = 0 marks the ice divide and the parameters have the values

—40°C < Ty <0°C, 0°C< Ty <2°C, 0°C<Ty <2°C,

N 12.124
0.375 < h? < 0.75, 0< p1 K0.15, 0<p2x0.1. ( )
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Fig. 12.14 Steady state ice (a)
sheet flows with prescribed 2000 |
temperature distribution.
Solution for temperature h (m)
variation with uniform bed
temperature T, = —6°C: 1000 1
a profile and temperature
variation; b longitudinal
velocities relative to the 0l
basal velocity; ¢ basal
velocity distribution,
redrawn from [55] with (b)
changes
2000 19ma!
h (m)
1000
0 4
(c)
200 :
150 {
ug(ma-) !
100 A !
50
|
0+ r T T T T T - -+ T
0 100 200 300 400
X (km)

Moreover, at the flat basal surface, z;, = 0, a constant heat flow was imposed accord-
ing to
_ GolH]

6; = ., with 0<6: < 10, (12.125)
[20K]

in which Gy is the geothermal temperature gradient, typically 1°K/100m =
1072 °K m~2 (implying for [H] = 2000m, 6; = 1).

Figure 12.15 summarizes the results of a typical run for conditions described in
the figure legend. ‘In this figure the top two graphs (panels a and b) display the
temperature distribution in the form of isotherms and vertical profiles, respectively.
They show the pattern one would expect, given the available data from observations
and earlier approximate models [...]. Figure 12.15d—f summarize the results obtained
for the dimensionless velocity distribution. Graph (c) shows vertical profiles for the
longitudinal velocity U, graph (d) the difference between U and the sliding velocity
Usp, characterizing the flow component due to viscous deformation. This difference
will be called gliding velocity. In view of the scales shown as insets on these graphs,
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Fig. 12.15 Steady-state temperature distribution and flow pattern. Distributions of the temperature
and (scaled) velocities for computations using }_12 =0.5,p1=0.1, pp =0, Tyy = -2°C, TA(,,I) =
—16°C, TA(,IZ) = 0.2°C. The temperature distribution, indicated in °C, is shown for the top two
graphs, a displaying a few selected isotherms, and b showing vertical profiles with the temperature
scale drawn as an inset. The plots c—£ depict the non-dimensional and scaled velocities. The first
figure ¢ shows vertical profiles of the total horizontal velocity, figure d shows the same profiles for
the difference (U — Up), called gliding velocity, while figure e gives vertical profiles of the vertical
velocity W. Dimensionless scales for all three are given as insets. Finally, figure £ gives the vector
plot for the velocities, indicating the flow pattern within the ice sheet. Scales are not indicated, from
HUTTER et al. [44], © J. Glaciology, reproduced with changes

we see that the gliding velocity is approximately 0.5 % or less of the sliding velocity
[...]. Note the continuous growth of the gliding velocity as one moves upwards away
from the bed. This behavior is, of course, corroboration that the applied software has
produced reliable results beyond two places of accuracy’ [44].

‘Figure 12.15e displays vertical profiles of the dimensionless vertical velocity. The
linear profile has often been conjectured in glaciology and was first used by GORDEN
ROBIN [16] to explain the contribution of vertical convection to the temperature
distribution. Here, it is a proven result of the computation [but it is theoretically not
compelling]. Notice also that [the vertical velocity] W is downwards everywhere,
including the ablation zone, contrary to what one might expect’.
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‘The flow pattern along the free surface is still as expected, namely info the ice
within the ablation zone. This is demonstrated in Fig. 12.15f, which is a vector plot
of the velocity distribution [...] that gives a fairly reliable view of the streamline
pattern’, [44].

The temperature distribution within the ice sheet is mainly governed by the relative
weights of diffusion versus vertical convection (compare graphs a & b of Fig. 12.15
with graphs a & b and ¢ & d in Fig. 12.16, respectively)’. ‘In this figure, v is a measure
for vertical convection and 3 for vertical diffusion. Evidently, when 3 is small, vertical
convection dominates, vertical temperature profiles change slowly in the upper part
of the ice sheet but relatively quickly close to the base, [44]. The boundary layer can
clearly be seen (Fig. 12.15 [...]). One detail in these temperature distributions should
be emphasized; over most of the ice sheet the temperature profile for fixed x shows
an inversion; in other words, along a vertical line, the temperature is coldest not at
the surface but at a certain depth [...]. The location of the inversion point relative
to the surface varies with position (it is close to the surface towards the snout). Its
existence is to a large extent the result of the fact that thermal diffusivities are small.
Figure 12.16 corroborates this statement. When 5 = 0.1 (top of Fig. 12.16), vertical
temperature profiles are still curved but more tapered than seen from the isotherm
plots. The basal boundary layer has disappeared, advection no longer dominates over
diffusion but both compete with comparable amounts. Finally, when § = 1 (bottom
of Fig. 12.16) diffusion over-rides advection. This is why isotherms are essentially
horizontal and temperature profiles linear in this case’, [44].

HUTTER et al. [44] present a whole range of applications, in which the external
forcing (accumulation rate, surface temperature; geothermal heat) and internal para-
meters (basal sliding; rate factor, creep response function) are varied. As an example,
Fig.12.17 displays isotherm depth plots for varied accumulation functions according
to Eq.(12.122) for parameters a and b as indicated as insets in the figure. The three
accumulation functions are nearly equal but the isotherm plots in Fig. 12.17 indicate
considerably different temperature distributions as is well seen from the isotherms
close to the base.

(b) The SIA applied to the Greenland ice sheet. The SIA has been applied to the
larger ice sheets on Earth, (i) to obtain the present day geometry, velocity and tem-
perature distributions by integrating the SIA equation. Early computational attempts
are given in [7-9, 25, 29, 30, 44, 66]. RALF GREVE and UTE C. HERZFELD (2013)
[28] performed computations subject to the following condition:

e Realistic initial conditions at pre-Eemian times (before 175,000 years) and re-
sponding to reasonable parameterizations of the precipitation/melting scenarios
at the moving and deforming free surface through the ice age(s) until the present
time.

e Incorporated in this model must be polythermal modules, separately accounted
for cold and temperate ice with their equations, in disjoint domains, which join
at the cold-temperate-transition surface at which the CLAUSIUS—CLAPEYRON
behavior must hold, [23-25, 27, 29, 38, 39, 41, 45].
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Fig. 12.16 Temperature distribution under steady flow conditions. In the computations the
accumulation rate function (12.118) was used with hg =0.5, p1 =0.1, po) =0, Tyy = =20°C,
T,f;) =16°C and T,ff) = 0°C. The two coefficients o and 3 are defined as

g[H] A

a = 8=

AT’  pep[H][W]

and are measures for convection and vertical diffusion, respectively. Here: g =9.81 ms~2,
cp =2x103m?s72K~!, A =22Nkg'K™!, p=910kgm™3, [H]=500-3000m, AT =

20K, [W] = 1ma~!, from HUTTER et al. [44], © J. Glaciology, reproduced with changes

e Because the heavy weights of the large ice sheets deform the solid earth on
which they sit, the isostatic depression and rebound of the lithosphere due to
the changing ice load must be evaluated along with the varied mass distribution
of the sheet. Early models employed a relaxation type response of lithosphere
pillars into the asthenosphere, [7, 8]. R. GREVE and U.C. HERZFELD [28] apply
the elastic-lithosphere relaxing-asthenosphere approach due to E. LE MEUR and
PHILIPPE HUYBRECHTS [51] or R. GREVE [26]. This models the lithosphere as a
viscoelastic plate (or shell).

e Of significance is the digital elevation model of the present day topography of the
Greenland ice sheet. Early models used a 40km grid; today’s ice sheet data by
J.L. BAMBER et al. (2001) [4] have grid spacing of 5 km. This is still not sufficiently
fine to capture local morphological features such as deep canyons and canyon
systems. HERZFELD et al. [35, 36] devised an algorithm for preserving impor-
tant sub-scale morphologic features at grids of lower resolution. In the model
computations of R. GREVE and U.C. HERZFELD [28] these sub-scale features are
incorporated into the Skm grid of J.L. BAMBER et al. [4].
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Fig. 12.17 Isotherm distribution for different surface accumulation functions. An explanation of
the considerable temperature change with accumulation. Shown are isotherm plots determined
by using the accumulation function (12.122). Thermal and basal conditions are the same as for
Fig. 12.15. Panels a, c, e (left) show the isotherm distributions when the parameter b is varied;
figures b, d, f show those when a is varied, from HUTTER et al. [44] © J. Glaciology, reproduced
with changes

The remaining details of the model, how the climate input is modeled and the ‘spin-
up’ of the model reaches acceptable initial pre-Eemian geometry, temperature and
velocity distributions as well as the integration to the present time are described in
sufficient details in [28]. Here, we confine attention to a comparison of the present
day features of the computed Greenland ice sheet and compare it with corresponding
features, obtained from the present day observations.

‘The result of the paleo-climatic spin-up run at the highest resolution of Skm [...]
for the present [time] are shown in Fig. 12.18. Comparison of the simulated (panel
a) and observed (panel b; data by 1. JOUGHIN et al. 2010 [48]) surface velocities
reveals that the general pattern with the low-velocity (<10m/year) ‘backbone’, the
general acceleration towards the coast and the organization into drainage systems
is reproduced very well. The most conspicuous discrepancy is in the region of the
northeast Greenland ice stream (NEGIS), which appears only very weakly in the
simulation.
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Fig. 12.18 Results of the paleo-climatic spin-up of the Greenland Ice Sheet at 5km resolution
over 150.000 years. a Simulated vy and b (observed vs obs; JOUGHIN et al. 2010 [48]) present-day
surface velocities. ¢ Difference of simulated (h) and observed (hovs) present-day ice thicknesses
d simulated present-day basal temperature relative to pressure melting. From [28] © Annals of
Glaciology, reproduced with changes

This is reflected in the difference of simulated and observed ice thicknesses
(panel ¢). This misfit is generally small (<100m) due to the fixed-topography
constraint during most of the spin-up run. However, some areas stick out, and one
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Table 12.5 Basal temperatures at the four positions of ice drill sites in Greenland, computed by
GREVE and HERZFELD [28] and measured according to the listed references

Site Computed basal Measured basal | References
temperature [°C] temperature [°C]
GRIP —8.66 —8.56 Dansgaard et al. (1993) [15]
Dahl-Jensen et al. (1998) [12]
North GRIP —2.64 (pressure -2.4 Dahl-Jensen et al. (2003) [13]
melting)
North GRIP members (2004) [57]
Camp century | —13.96 —13.00 Dansgaard et al. (1969) [14]
Gundestrup et al. (1987, 1993)
[32, 33]
Dye 3 —14.08 —13.22 Gundestrup & Handsen (1984) [31]

of them is the NEGIS area, where simulated ice thicknesses are too large as a con-
sequence of the under-predicted drainage towards the coast. The same holds for the
area of PETERMANN Glacier in the northwest. In contrast, along the southeastern
ice margin simulated ice thicknesses are generally too small, which may be due to
over-predicted ice flow (difficult to judge because of gaps in the observational cov-
erage) or inaccuracies in the surface mass balance. Most of the rapid topographic
adjustments that lead to these local misfits arise early during the short transient run
[...] over 100 years at the end of the spin-up sequence. After these 100 years, the
ice-sheet geometry has largely stabilized, and no spurious rapid adjustments occur
in the future-climate runs [...]." [28].

‘Basal temperatures (panel d) are at the pressure-melting point for ~44 % of
the ice covered area, including all major draining basins’. At the ice core sites,
the computed basal temperatures agree very well with those measured (Table 12.5).
R. GREVE and U.C. HERZFELD say that the good agreement is mainly due to the choice
of the geothermal heat flux. They also analyze the surface velocities, particularly in
the vicinity of linear deep troughs. From the results obtained at 20, 10 and Skm
resolutions it becomes apparent that the 5 km resolution performs best, but still not
sufficiently satisfactorily, consult [28].

(c) Shallow flow approximations—research into the future. Antarctica is the
largest ice mass on Earth consisting of a grounded shallow portion to which a number
of floating ice shelves is attached; its two largest ones are the Ross Ice Shelf and
the Rgnne-Filchner Ice Shelf, more than 1000 km in horizontal extent and of varied
depth between 50 to less than 2000 m thickness. To first order approximation ice
shelves behave like viscous membranes, which are, via ice streams, nourished by
the inland ice and wasted by the calving processes at their fronts. In the vicinity of
the grounding line at the sheet-shelf transition, they exert a buttress to the sheet,
which affects the flow from the sheet to the shelf; so, sheet and shelf are dynamically
coupled. In addition, Antarctica has relatively large portions of temperate ice and
needs to be treated as a polythermal ice mass.
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In spite of these complexities, early attempts to the understanding of the dy-
namics of Antarctica ignored the shelves or used an extremely simple patching-
together model and employed the SIA by restricting Antarctica to the grounded
portion, see [10, 34, 46]. A physically acceptable model for ice masses with sheet-
shelf combinations must employ the shallow flow approximations for the grounded
portion(s)—these are the SIA and SOSIA—and the corresponding approximations
for the shelves—these are the shallow shelf approximation, SSA and the second
order shallow shelf approximation, SOSSA. The theoretical basis for these approx-
imations is given by DAMBARU BARAL (1999) [5], who delivers systematic deriva-
tions of the SIA, SOSIA for grounded ice sheets as well as of the SSA, SOSSA
for floating shelves. D. BARAL, K. HUTTER and R. GREVE (2001) [6] present the
asymptotic theory for sheets, M. WEIS, R. GREVE and K. HUTTER (1999) re-iterate
on the SSA. The SOSSA is so far only available in [5].

A first analysis beyond these limited computations has been presented by EGHOLM
etal. (2011) [17]. Work at greater depth by AHLKRONA et al. (2013) [1, 2] compares
various asymptotic results (including SIA and SOSIA) with those from a STOKES
model (ELMER [18]). It is found that the regular perturbation of the SIA and SOSIA
gloss over the high viscosity boundary layer (in the inner regions near the free surface
and the vicinity of domes and divides) as mentioned in plane flows by JOHNSON &
MCMEEKING (1984) [47] and in three dimensional flow by SCHOOF and HINDMARSH
(2010) [62].

Reliable computations of sheet-shelf combinations with equations of the shallow
flow approximations are given by SATO (2012) [60] in his dissertation and a brief
account by SATO and GREVE (2012) [61]. Their technique is to patch together the
SIA- and SSA-equations at the grounding line. Systematically, this is not possible
with the STA-SSA equations alone as explained by KIRCHNER et al. (2011) [49]. For
a consistent asymptotic matching of the sheet and shelf dynamics the higher order
models SOSIA-SOSSA are the least order models which must be applied. Preliminary
work by KIRCHNER et al. (2011) [49] and work in progress by AHLKRONA, KIRCHNER
and LOTSTEDT (personal communication, 2014) suggests that the grounding line
sheet-shelf transition requires more than a regular straightforward SOSIA-SOSSA
matching procedure.

12.9 Discussion and Conclusions

This chapter has been devoted to systematic derivations of approximate models of
gravity driven free surface creeping flows of very viscous fluid-like materials, which
are initially, or develop with time into, shallow geometries. The physical circum-
stances were motivated by creeping soil on mountain slopes, which may move sev-
eral centimeters to meters per year, or by the moving of large ice masses sitting on
solid ground such as glaciers in mountainous territory or ice sheets covering large
areas or even continents, such as piedmont glaciers and the Greenland ice sheet and
Antarctica. The physics of such flows is graphically illustrated in Fig. 12.3; the flow
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pattern is dictated primarily by the hydrostatic pressure. Scrutiny of the governing
equations indicates that the mean slope angle of the basal topography is crucial in
developing approximate model equations. This difference is quantified by the dif-
ferences in scaling analyses, in which the sinus of the mean slope angle enters the
characteristic dimensionless quantities such as the FROUDE number, when the flow
is down steep slopes, but is missing, when the fluid-like mass moves on horizontal
topography (see (12.18) and (12.87)). This different scaling procedure has led to
distinct approximations. It strictly implies mathematically that the flow of a shallow
creeping mass down a mountain valley into an approximately horizontal bed cannot
be described by a single mathematical model. The two approximate models of this
chapter must be patched together accordingly.

This, however, has not been done so far. Instead, the notion ‘shallowness’ should be
defined relative to a curvilinear imbedding, in which the coordinate metric is based
upon the underlying topography. This has been done for rapid shallow flows (see
Chap. 13), where the acceleration term in the momentum equation is important. As
we have seen, when estimating the orders of magnitude of the acceleration terms, the
STOKES approximation (i.e., the neglect of the acceleration terms in the momentum
equation) is valid in the studied geophysical applications to a very high degree. This
makes the use of non-Cartesian metric not so important. For cases, when higher order
shallow flow approximations request to account for the non-hydrostatic acceleration
terms (e.g., in some engineering applications this would likely be different).

This discussion leads to the question, whether approximate formulations in the
spirit of SIA and SOSIA should simply be dismissed and be replaced today (i.e.
the year 2015) by general software modules, which directly integrate the STOKES
equations. Such software has indeed been developed (e.g. ELMER, ...) and applied
to ice flow problems. The disadvantage of such software is that CPU-times for com-
putations are excessively long, far too long that climate reconstructions over several
100,000 years cannot be performed. As long as faster and more efficient software is
not available, the use of the approximate computations as dealt with in this chapter,
are to be preferred.
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Chapter 13
Shallow Rapid Granular Avalanches

Abstract This chapter is devoted to rapid granular flows in an attempt to intro-
duce the reader to the challenging theory of the dynamical behavior of fluidized
beds. The peculiar behavior of such materials is exhibited in typical responses such
as ‘dilatancy’, ‘liquefaction’, (size) ‘segregation’, ‘normal and inverse grading’ etc.
The fluid mechanical description of cohesionless granular materials—dry or wet—in
avalanches of snow, debris and mud also applicable to transport of dry granular mate-
rials inindustrial production chains, follows continuum and discrete descriptions. The
theoretical modeling of moving layers of granular assemblies begins with the one-
dimensional depth integrated MOHR—COULOMB plastic layer flows down inclines—
the earliest description being the so-called VOELLMY model (1955), extended by the
SAVAGE-HUTTER theory (1989) and its extensions—but then continues with the gen-
eral formulation of the model equations referred to topography-following curvilin-
ear coordinates, with all its peculiarities in the theory and the use of shock-capturing
numerical integration techniques. Detailed comparison of computational results with
laboratory chute flows and field events demonstrate the suitability of the various
models.

Keywords Dilatancy - Segregation + Liquefaction - Shallow flow models - Curvi-
linear coordinates + Shock capturing numerical techniques - Laboratory chute flows *
Field events of large landslides

List of Symbols

Roman Symbols

A Ay Spatial matrices in the hyperbolic partial differential equation
(13.120): A, = 0f /0w, A, = 0g/0w

a,a Acceleration—vector

b(x,y) =:z2 Equation for the basal surface relative to a reference ruled sur-
face

C =pg/& Viscous friction coefficient

D Stretching tensor, strain rate tensor (deviator)

FbP(x,1)=0 Equation of the free/basal surface
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Flux matrix associated with w (see (13.112) and (13.113))
Depth average of f: f =1 [, fdz

Gravity constant

Covariant basis vector: g; = C%’
Contravariant basis vector
Covariant metric coefficients
Unit basis vector

Height of a granular mass—of a moving mass relative to the
reference surface

Scaling length perpendicular to the (x, y)-plane

b
Earth pressure coefficient at the basal surface: K f = ;’7:,
b =
b._ Py
Ky = Ea

Active/pé{ssive earth pressure coefficients

Active/passive earth pressure coefficients at the base

Scaling length in the directions parallel to the(x, y)-plane
Specific momentum in the x- and y-directions: m, = hu,
my = hv

Coefficient in the parametrization of the bed friction angle
Force normal to an internal cut at a point in a body

Unit normal vector on a free/basal surface of the body

Order symbol

Pressure, overburden —

Longitudinal pressure

Pressure tensor evaluated at the free/basal surface of a body
Components of the pressure tensor

‘Hydrostatic pressure’: p,, = (s — z) cos

Typical radius of curvature

Position vector of a body point

Position vector to a point on the reference surface

Shear force tangential to an internal cut at a point of a body
Signof u:sgn(u) = lifu > 0,=0ifu =0and= —1ifu <0
Equation for the free surface of a body

Time

Velocity vector, downslope velocity of a sliding body point
Maximum velocity of a sliding body

Array of independent variables of a partial differential equation
in conservative form (see (13.112) and (13.113))

Position of a sliding body

Coordinates (not necessarily Cartesian)

Front and rear end positions of an avalanche

Cartesian coordinates
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Greek and Miscellaneous Symbols

lal, 18], 7] < 1 Exponents in the order relations O(e%), O(e?), O(")

¥ Shear angle in e.g. simple shearing, 2x (shear rate)

Flljn CHRISTOFFEL symbol of second kind

Ay = |VF? Basal surface quantity (see (13.75))

4, 0 Bed friction angle, constant bed friction angle

€= % <1 Aspect ratio

13 MANNING-GAUKLER-STRICKLER coefficient

¢, <~ Inclination angle(s)

K Coefficient of a REINER-RIWLIN fluid

Kk = 0(/0x; Curvature in the downslope direction

A=L/R Typical measure of the radius of curvature of the topography

W Dynamic viscosity,

/4 = tan dg Friction coefficient formed with a typical angle of friction

p Density of a fluid—of a granular heap,

Pa Density of air

o,0p CAUCHY stress tensor—deviator

T Shear stress, basal shear stress

10} Angle of internal friction, typical parameter measuring the cur-
vature of the basal topography

' Typical parameter measuring the curvature of the basal topog-
raphy

Ilp Second invariant of D: IID = ltrD2

\% Gradient operator: V := g

NOC scheme Non-oscillatory central d1fference scheme

SH model SAVAGE-HUTTER model

TVD method Total variation diminishing method

13.1 Introduction

In the geophysical environment avalanches occur in a variety of circumstances. Such
rapid mass flows might occur in the form of rock and snow avalanches, as landslides
of catastrophic soil release, debris and mud flows, gravity driven motions of volcanic
ash and as turbidity currents (under water avalanches). Industrial examples are flows
of cereals, pharmaceuticals, coal and cement in storage facilities, production lines,
power stations and construction sites. All these cases do have many common features
and their mathematical description can be based on similar physical principles. Thus,
not surprisingly, nearly the same concepts have been applied to avalanching mass
movements in different fields of science and engineering specialties.

The model equations, which will be our focus in this chapter, are depth integrated
versions of the balance laws of mass and momentum, and as such involve idealizing
approximations e.g., the shallowness of the geometries of the moving masses. They
are in most parts based on a dry granular concept and employ a one-constituent
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continuum formulation. The derivation of the depth integrated equations is based
on mathematical simplifications, notably a scaling analysis, in which a shallowness
parameter, expressed as the ratio of a typical flow depth to avalanche extent, ¢ =
[H]/[L], may be used to construct approximate field equations in the limitas e — 0.
Such models must be tested against experiments in the laboratory and possibly in
Nature, in order to identify their range of applicability.

Snow avalanche conditions are usually caused by the combination of heavy snow
fall, wind and changing temperatures. The number of avalanches falling annually
in the USA is on the order of 10°, and the number of avalanches falling annually
worldwide is on the order of 10°. Of the about 100 people who are annually caught by
avalanches in the USA about 17 are killed and the average annual property damage
is 400,000 USD. Yearly death casualties are about 25 in Switzerland and Austria,
31 in France, 20-30 in Italy, 30 in Japan, 10-15 in Norway, 10 in Germany and 7 in
Canada, according to B.R. ARMSTRONG and K. WILLIAMS [3] and these figures have
not appreciably decreased in the last 30 years. Figures 13.1, 13.2 and 13.3 show
manifestations of dense flow avalanches and powder snow avalanches.

Fig. 13.1 Deposits of avalanches in two different situations. a Deposit of a real snow avalanche
in the Alps (Courtesy of the Swiss Federal Institute of Snow and Avalanche Research, SLF, Davos
b Laboratory avalanche simulation with a mixture of sand and gravel [29]
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Fig. 13.2 A sequence of snapshots of a powder snow avalanche in the Himalaya Courtesy
F. TSCHIRKI, Swiss Federal Institute of Snow and Avalanche Research, Davos, Switzerland

Avalanches also occur in the form of the motion of soil or rock down mountain
sides, sometimes mixed with uprooted bushes, trees and often containing water.
When water does not play any significant role in the motion of the granular masses,
geologists also talk of avalanches or rock falls. If water is likely to be the triggering
element of the soil in motion, then the terminology is debris flow, even if eventually
i.e. during the catastrophic motion of the granular mass, the water can be ignored as
a dynamic element. Mud flows are flows of soil and added debris that is substantially
mixed with interstitial fluid, which contributes to the dynamics of the solid-fluid
mixture. Figure 13.4 shows a view of the village Gondo in southern Switzerland as
it has been hit by the spitting mud flow of 14 October 2000. The heavy rainfall of
48 h prior to the event triggered the 10.000 m® mud flow.
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Fig. 13.3 Photographs of a powder avalanche taken from a helicopter. This avalanche was artifi-
cially released by blasts from the helicopter. Courtesy Swiss Federal Institute of Snow and Avalanche
Research, SLF, Davos, Switzerland

Volcanic eruptions (e.g. Mount Saint Helens in Washington State, USA, 1980)
often generate gravity currents of hot ash down the mountain side. These debris
flows are referred to as pyroclastic and are often also called lahars, because of their
considerable heat and burning temperatures. Earth quakes are often equally triggering
landslides or debris flows. Figure 13.5 depicts the devastating debris slide in January
2001 in Las Colinas, El Salvador. This landslide may have buried as many as 500
homes.
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Fig. 13.4 Destruction by mud flow and landslide: 10.000 m> spitting mud flow in Gondo (South
Switzerland) on 14 October 2000 caused 14 deaths and destroyed a dozen buildings, including the
400 years old Stockalper tower. © Berner Zeitung

Fig. 13.5 Deposit of a devastating debris slide in Las Colinas (on the outskirts of San Salvator),
January 2001. This landslide was induced by an earthquake and buried as many as 500 homes, from
http://www.crealp.ch

13.2 Distinctive Properties of Granular Materials

Many rapid mass movements in geophysical flows have a granular structure. Among
these are snow avalanches and landslides that are formed from rock falls, ice
avalanches that evolve from fragmented ice junks, which broke off from steep
glaciers, debris flows of soil soaked with water during and in the aftermaths of a heavy


http://www.crealp.ch

120 13 Shallow Rapid Granular Avalanches

rain storm. Air or water borne density currents, such as powder snow avalanches,
dust clouds above deserts by wind, and sub-aquatic water suspended turbulent mass
flows also define a class of granular flows, but these are structurally distinct from
dense granular flows and must be treated by mixture concepts. By contrast, in dense
granular flows the interstitial fluid or gas plays a small, generally negligible dynamic
role. It is this latter class of gravity driven granular flows, which will be more closely
analyzed in this chapter.

13.2.1 Dilatancy

Deformations in a granular body are almost always accompanied by corresponding
volume changes. OSBORNE REYNOLDS in 1885 [71] called this phenomenon dila-
tancy.If an array of identical spheres (or parallel circular cylinders in two dimensions)
at closest packing is subject to a load so as to cause a shear deformation, then from
pure geometric considerations those particles must ride one over the other, and it
follows that an increase in volume of the bulk material will occur, see Fig. 13.6.
Dilatancy in this case is due to kinematic constraints.

Dilatancy is the cause that granular materials exhibit what in rheology is called
‘normal stress effect’. This means that shearing of a granular pack, in which the
expansion of the sheared specimen is constrained, will automatically induce a nor-
mal stress perpendicular to the direction of shearing. A constitutive postulate must
account for this property; for instance, in a density preserving fluid a stress strain
rate relation of the form op = 2u(llp)D, where op is the stress deviator, D
is the stretching tensor, IIp = %trDz, does not exhibit normal stresses, but the
REINER-RIVLIN fluid

op=2uo + r{D* - 21IpI} (13.1)

Fig. 13.6 Left shearing of a closed packing of spheres or circular cylinders generates a volume
expansion. Right displacing a saturated mixture of grains with the pore space filled with water at
closest packing by pressing the belly from outside will enlarge the pore space in the belly, so that
the water in the capillary will drop, from [86]. © Springer Verlag, reproduced with permission
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does so. Indeed, in simple shearing we have

V240

0 ~/2 0 0 2

D=[~r20 0], D’=( 0 4 0|, =1 @32
0 0 0 0 0 0

and, therefore according to (13.1)
0 ~v/2 0 /400 52 [0 00
op=2u(~20 0 )+xl[ 0 240 )-22 010

0 0 0 o o o) 3%*\oo1
0 7/2 0 /40 0

—2ulv2 0 0)+2[ 0 424 0 (13.3)
0 0 0 0 0 0

Witl.l 1.10rma1 stresses o, = %’yz, oy = l—ﬁzfyz, o, = 0. With k = 0, (13.3) does not
exhibit normal stress effects.

13.2.2 Cohesion

In a granular deposit the contact forces between particles can be normal and tangential
to the tangent plane in the contact point. If the normal forces are restricted to pressures,
the granular material is said to be cohesionless. If also some tension is active, then
the contact is cohesive. Tensile forces can e.g. be induced in a soil deposit by partly
wetting the particles. Surface tension that is active in the menisci then gives rise
to cohesive behavior of the deposited mass, compare Fig. 13.7. In this particular
application the forces are also called capillary forces. The effect arises e.g. in water
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Fig. 13.7 In wet soil the water accumulates in liquid films in the pore space between grains

" grain
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saturated soil immediately above the ground-water surface, when the soil is only
partly saturated in the so-called capillary fringe.

Cohesion is a physical mechanism that is likely more significant for snow, soil
and rock masses at rest or in creeping deformations than in rapid motion. Dynamic
processes tend to break the bonds that exist because of the liquid bridges between
the particles. Once broken, the tension forces between the grains are not likely to
be re-established, because the sliding motion and the bouncing of the particles are
too strong that surface tension at the menisci in the fluid between particles can be
established.

13.2.3 Lubrication

There are several distinct mechanisms, which reduce friction in granular materials in
motion. One of them is lubrication and expresses the reduction of frictional resistance
by introducing an additional medium, the lubricant between the surfaces of two
bodies that are displaced relative to one another. For granular gravity driven mass
flows lubrication is particularly important, because it is likely responsible for large
run-out distances of the avalanching mass down low slope angles. Air or water
can act as lubricating media, or lubrication can be process-induced, e.g. when the
particles in the vicinity of the sliding surface experience increased pulsations, which
increase their fluctuation energy (i.e., granular temperature), enlarge the mean free
path between the particles and, thus, reduce the friction.

In flow avalanches of snow, lubrication may arise in form of a liquid water film
between the surfaces of the sliding snow and the ground. These kinds of lubrication,
the frictional energy between the sliding snow at the base and the stagnant base
may continuously generate melt water as its own lubricant. In very large landslides
(of several millions of m® of rocks) the frictional heat at the sliding surface may
cause basal temperatures of more than 1000 K, so that the gravel may melt and act
as lubricant between the rock avalanche and the stagnant base. T. ERISMANN and
G. ABELE [27] demonstrate for the historic avalanche event at Kofels (Austria) that
rock material in this sliding motion must have melted during motion and subsequently
again solidified, while being deposited. Geologists call such sintered ‘volcanic rocks’
“frictionites”.

Itis quite clear that the thermal component of avalanching flows of lahars, volcanic
ash, lava possibly with phase changes, need to be described by energy considerations
apart from balances of mass and momentum. Theoretical descriptions of these flows
are very scarce. A model on lava flow in the spirit of the ‘cold” avalanche theories
dealt with in this chapter is by K. HUTTER and O. BAILLIFART [44].

A particular limit of lubricated sliding is un-lubricated sliding. By this one usually
means sliding that operates without the action of a lubricant. The best known case
of such un-lubricated friction is so-called solid friction according to the classical
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CoUuLOMB! law. It postulates that the resistance opposed to a sliding motion of
a granular body is proportional to the compressive force acting at right angle to
the contact surface. The factor of proportionality is called the coefficient of friction,
which is assumed to be characteristic for the surface (but not the load, relative velocity
and time).

When using the simple COULOMB law, the motion of a mass point along an inclined
plane, see Fig. 13.9, is described by

a=g(sin¢— pcos(), (13.4)

in which a is the acceleration, ( the slope angle, p the coefficient of friction of
the material with the basal surface and g the gravity constant. In (13.4) gsin( is
the driving gravity force and gu cos ¢ the un-lubricated frictional force resisting the
motion. This dry friction force does not depend on the velocity difference between
avalanche sole and solid bed. Such a viscous drag will likely depend on the square
of this velocity difference with a drag coefficient C. Thus, (13.4) changes to

— ; _ _ 2
a = gsin( gpucos¢— Cu” . (13.5)
acc. velocity parallel ~ Coulomb ‘f’i.SC.OUS
gravity force friction riction
With
_du d2x (13.6)
T T are '
Equations (13.5) and (13.6) can directly be integrated with the results,
e For (13.4):
u=g(sin¢ — pcos{)t+ up,
g . . 2 13.7)
X = 2 (sin¢ — pcos)t” + upt + xo.
e For (13.5):
U= \/g(sm(j ;MCOSO tanh {\/Cg(sinc —pcos() (t — to)} ,
x =1ncos\/g(sm<2‘“’°SO (t — 1) + Xo. (13.8)

IFor a biographical sketch of COULOMB, see Fig. 13.8.
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Fig. 13.8 CHARLES-AUGUSTINE DE COULOMB (14. June 1736-23 Aug. 1806)

CHARLES-AUGUSTINE DE COULOMB was a French physicist best known for developing
COULOMB’s law, describing the electrostatic attraction and repulsion of electric charges,
but he also did important work on dry friction. He went to school in the College Mazarin
in Paris where, at the Ecole de Génie militaire de Meziere, he received a profound edu-
cation in mathematics, astronomy, chemistry and botany, as well as philosophy, language
and literature. He graduated in 1761 and then spent his next 20 years in the military with
engineering assignments: structural, fortifications, soil mechanics. From 1764 to 1772 he
was in Martinique, where he was in charge of building the new fort Bourbon. Later, he had
similar assignments in France and abroad. In 1789, on the outbreak of the revolution, he
resigned his appointment and retired in a small estate, which he possessed in Blois, but he
was recalled to Paris for a time order to take part in the new determination of weights and
measures, which had been decreed by the Revolutionary government

AUGUSTINE COULOMB’s scientific achievements are manifold and substantial. He is known
for:

(i) his law on solid friction;

(ii) the law on internal friction of liquids;

(iii) the development of the first ever formulated shear stress-normal stress interaction in
soil mechanics and the introduction of the earth pressure coefficient;

(iv) his outstanding work on the experimental demonstration of the electrostatic force-distant
law between two electric charges ((1/distance squared) law), which is one of the universal
physical laws

The text is based on www.wikipedia.org
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Interesting are the limit values of the velocities as + — oc. They are

" —> \/g (sinQ = peos) o (13.7);

C
/g(sinC—MCOSC)
u —
C

ast — oQ. (13.9)

for (13.8),

Equation (13.7); tells us that the velocity of the sliding mass grows linearly with
time; it never comes to a constant limiting value. By contrast, we conclude from
(13.8); or (13.8), that for velocity-dependent sliding an avalanching mass reaches a
steady asymptotic flow state with constant velocity.

It is not clear whether the asymptotic velocity will be constant or whether an
infinite increase of the velocity will persist. Experiments by W. ECKART et al. (2003)
[21] and CH. ANSEY and M. MEUNIER, 2003, [4] do not come to a conclusion whether
viscous sliding may be dropped and only COULOMB sliding is relevant.

13.2.4 Liquefaction

Liquefaction, also called fluidization, is a transitional state of water saturated soils,
which may occur during and in aftermaths of earthquakes or as a result of artificial
explosions in loose saturated sand deposits. Liquefaction manifests itself in a sudden
change of the saturated soil from an essentially solid material state to a fluid behavior
or something in-between. This transition sets in some time in the last stretch of an
earthquake or immediately thereafter and lasts for some minutes. It tapers off due to

Fig. 13.9 Motion of a rigid body down an inclined plane The frictional force consists of two
contributions, a COULOMB type, | F couioms| = 1N and avelocity dependent contribution Fyiscous =
Cu?. In this case N = (p — pa)gcos (, Fyiscous = (p — pa)gsin( and C = pg/E. Here, pg, is the
density of the atmosphere
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the solidification or consolidation processes, which set-in simultaneously with the
fluidization and the concurrent partial separation of the solid and fluid constituents.
Soil deposits, which have been subject to liquefaction in the past e.g. by an earthquake
may not be sufficiently consolidated after settlement to be absolutely stable and safe
against further fluidization in future oscillating or impact events.

It must be the geotechnician’s intention to describe the implications, which can
be possibly deduced from observations of the processes and remains of destructions
caused by earthquake-induced events, now identified as liquefaction. The description
of these observations leads to implications of the physical behavior of the saturated
soil as a material and, subsequently, to a proposal of a possible constitutive modeling,
which is subject to consistency requirements with the Second Law of Thermodynam-
ics and later scrutinized in numerical applications of geotechnical scenarios.

An excellent description of the liquefaction of soils by earthquakes is by
N. AMBRASEYES and S. SARMA [1]. In their introductory statement they write:

“Liquefaction of deposits caused by earthquakes is not an uncommon phenom-
enon. It accounts for submarine slides and subsequent turbidity currents
(N. MORGENSTERN, 1967) [64], for landslides and flows of subaerial deposits
(A. CASAGRANDE, 1936) [10]; it is a phenomenon that may even explain the mecha-
nism that allowed the debris of some of the larger prehistoric and more recent slides,
of many cubic miles of material, to travel distances of over 20km (J. HARRISON
and N. FALCON, 1937) [36]. On flat ground, sand blows, mud volcanoes and exten-
sive flooding of the ground by exuded water, are the results of liquefaction. Also,
the settlements of man-made structures, in some cases to the extent that the ground
becomes level with windowsills, can be produced by liquefaction of the foundation
materials. Underground structures such as septic and storage tanks, sewage conduits
and manholes, water mains, even piles driven into the ground, have floated up, many
feet above ground level, after the earthquake. Most of these effects do not usually
appear until toward the end or several minutes after the earthquake and they persist
for some time.” These authors analyzed observations of ten earthquakes between
1899 and 1966 and their detailed description points at typical behavioral patterns,
which occur in the saturated top layers of soils, when an earthquake passes these
locations:

e Between few and up to a large number of vertical jets of water, 0.5-2.0m high,
emerged from motion-induced fissures in the plain. These spouts are mixed with
sand, peats or coals.

e Such ejections began during the earthquake and generally lasted 3—5 min, some-
times up to 30 min or more after the shaking had been ceased.

e These mud volcanoes, also called cold volcanoes, may have arisen just once and
then died out or they spurted intermittently, i.e., ejections would stop and then
resume action after a few seconds later.

e Drainage channels, up to 5 and more meters deep, had their bottom lifted until
they became level with their banks. Similarly, wells overflowed as their bottoms
were blowing-up and flooded plains. In some places, the material brought up by
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the fluid mixture, was the same as that of the stratum encountered by wells as deep
as ~25m.

e 2-3mins after the beginning and towards the end of the earthquake, the ground
around some buildings began to crack and to open-up in places. A minute or two
later, water began to come up around the buildings. Structures of all kinds sank
into the ground. In some cases they stayed intact but sank into the ground, were
tilted and/or slid on the foundation, in others they were destroyed by the excessive
differential vertical displacements of parts of the foundation.

e Underground structures (septic tanks, storage tanks, petrol tanks, sewage conduits
and manholes, etc.) floated-up or sank into the ground.

e Other surface structures (bridge abutments) were differentially lifted and thus
destroyed by the excessive strains induced by this.

Qualitatively similar observations are equally stated (but less systematically doc-
umented) by D. KOLYMBAS (1998, 2013) [50, 51] also for earthquakes beyond
1964, e.g. the Loma Prieta earthquake in San Francisco, 1989 (see J.P. BARDET and
F. KAPUSKAR, 1993, [5] and Japanese earthquakes analyzed by E. KURIBAYASHI
and F. TATSUOKA (1977) [54]). The general observations in KOLYMBAS’ papers do
not go beyond the above summary of stated effects about near surface devastations.
Figure 13.10 displays some destruction that occurred as a result of the liquefaction
of the saturated soils subject to earthquakes and Fig. 13.11 illustrates a cold volcano
under action.

N. AMBRASEYS and S. SARMA [1] further observed that (i) artesian and oil wells
at depth of more than 100m were not affected and (ii) ground movements show
that soon after the beginning of the earthquake this ground shaking subsided. This
indicates that, as soon as deeper strata liquefied, they ceased to transmit the earthquake
vibrations to the overlying deposits.

It, thus, appears that at depth of approximately 100 m or more, the seismic excita-
tion seems not to be strong enough to sufficiently liquefy the stratum material. Our
present ad-hoc interpretation is that the exciting seismic wave is primarily a sur-
face wave (RAYLEIGH or/and LOVE-wave), which attenuates with depth below the
surface. This, in turn, also means that fluidization is only partial but not complete.
The individual grains are still partly in contact with one another; consequently, solid
friction between some particles is still effective so that frictional solid shear stresses
can still be transmitted among some particles. Hence, ‘soon after the beginning of
the earthquake the ground shaking subsides’ as a consequence of the associated dis-
sipation. With this interpretation, it is then equally clear that deeper, partly ‘liquefied
strata cease to transmit vibrations to the overlying deposits’. So, it appears that full
liquefaction is restricted to surface near layers, if it really develops fully. Below a
certain depth only partial fluidization exists, of which the relative amount decreases
with depth and causes induced vibrations to attenuate at a faster rate than at shallow
depth. The inference which follows from this may be stated as follows:

The fluidization in a binary solid-fluid mixture theory ought to be incorporated in
the constitutive relation for the granular stress by a scalar variable, which expresses
the granular stress as a functional that depends on a scalar variable 0 < Ii < 1
such that for /i = 0 a full solid stress representation emerges, while for /i = 1 the



128 13 Shallow Rapid Granular Avalanches

Fig. 13.10 (Upper-left) Overturned buildings after the devastating earthquake in Niigata, Japan,
1964. (Upper-right) Debris moraines in Tuyk Valley, Alaarcha basin North Tien Shan, Kirgizstan.
© Prof. Aizen. (Lower left) Broken asphalt road and lifted manhole by Chuetsu Earthquake, 2004,
Oijya, Niigata, Japan, reproduced from NGU Free Documentation License. (Lower right) Canter-
bury Earthquake, 04. Sept. 2010, New Zealand. Concrete sump, popped up out of the road due
to liquefaction, Lower Styx Road, Canterbury, licensed under the Creative Commons Attribution
Share 2.0

functional represents a stress formula for which full liquefaction is present for which
no solid stress contribution survives.

Two limiting processes are seemingly responsible for the observations during,
and in the aftermaths of, a strong earthquake. The first is a direct response of the
soil to the driving surface-near (visco)-elastic wave and can be characterized as
acoustic fluidization with high particle oscillations due to the strong and rapid oscil-
lations. The second process, responsible for the post-earthquake water ejections,
cannot be interpreted as an acoustic wave response since no driving mechanism is
active. Consolidation and water ejection may be explained in this phase by the col-
lapse of medium to high solid volume-fraction-soil lenses in an otherwise still loosely
packed but denser matrix medium. During lens collapses, grains dripping from the
matrix into the lenses will fill them with grains, so that the water must escape, even-
tually forming the cold volcanoes. For a regular distribution of the lenses continuous
water ejection may take place. When the lenses are of different size, and irregularly
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Fig. 13.11 Liquefaction by
densification through
explosives in the Lausitz,
Eastern Germany.

© WALTER KUNZE and
DIMITRIOS KOLYMBAS

distributed lens collapses may occur in an uncorrelated fashion and lead to intermit-
tent water ejection. Both these processes are associated with dissipation due to solid
and liquid response to it with solid and liquid stress contribution that is monitored
by the fluidization parameter, /i.

13.2.5 Segregation, Inverse Grading, Brazil Nut Effect

It is common experience for everyone who wishes to mix different types of granular
particles that it is very difficult to achieve homogeneous mixing of several sorts of
grains, whereas it is, in general, fairly easy to achieve homogeneous mixing with
miscible fluids (e.g. water and ink). A system containing particles of different prop-
erties usually tends to show segregation. The nature of it depends on many factors,
such as size, geometry and surface properties of the particles, the size of the veloc-
ity gradients and on boundary conditions. The dominant effect of segregation is the
ratio of particle size between large and small particles in the mixture. However, the
structure of the contact forces (resilience) and the smoothness or bumpiness of the
surfaces of the particles also exercises an effect on the characterization of the segre-
gation structure. Shaking a box of muesli before use brings any of the large nuts to
the surface and rinsing with a spoon a jar of dried frozen coffee transports the large
grains to the top. Such separations need dynamic action, i.e., particles must move
and/or bounce against each other to activate the interaction between the particles.
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Profile height [em]

Fig. 13.12 a Sketch of a profile from a deposit of a pyroclastic flow due to the volcanic eruption
of Mount Saint Helens, Washington USA, 1980. The profile is taken from a position about 6.7 km
north of the crater and 1km southwest of Spirit Lake. One complete ‘flow unit’ is shown that is
over- and underlayed by other flow units. The profile depicts a clear reverse grading, in which larger
grains are at the upper portion of the flow unit, while smaller grains are in its lower parts. Each flow
unit corresponds to the passage of one pyroclastic flow (Courtesy S. STRAUB [77]). b Debris flow
deposit from a disastrous flow event on 31. July-01 August 1996 in Taiwan. The front side of the
road has been cleared. The picture demonstrates also particle size separation. The free surface of the
deposit is covered by large boulders, whilst the lower part consists of the fine material, from [86]

This phenomenon is known as Brazil nut effect and has much importance in industrial
and geological processes. When a granular material consisting of grains differing in
size, shape, density, etc., is agitated or deformed in the presence of a gravitational
field, segregation or grading of particles can occur. In gravity driven shear flows with
a free surface it is observed that the fine particles collect at the lower parts of the
layers, whereas the largest particles move towards the free surface. In the geological
literature, this phenomenon is called reverse or inverse grading.

Such particle size separations are often observed in snow avalanches, debris flows
and pyroclastic flow deposits. In dynamical systems of such flows one generally
observes that the large particles move to the front and to the top surface, whilst the
small particles accumulate at the bottom and in the rear part of the avalanche. In
deposits of pyroclastic flows due to volcanic eruptions or in marine sediments of
turbidity currents depositions show often a repetitive occurrence of ‘flow units’ with
the fine particles at the bottom and particle size increasing as one moves higher up
until a level is reached where a new flow unit commences as shown in Fig. 13.12a.
Each flow unit corresponds to a passage of an avalanche, manifesting inverse grading.

Similar structures of inverse grading can also be seen in debris and (less obvious)
in mud flows. Figure 13.12b shows a debris deposit in which large particles cover
the top, whereas the lower main part is composed of smaller size particles.
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Fig. 13.13 Experiment, demonstrating inverse grading in an avalanche deposition of a bi-disperse
granular mixture. The particles were initially almost uniformly mixed, and segregated due to their
motion. a Small scale laboratory model with a parabolic chute inclined at 45°, continuously merging
into a horizontal plane. b Photograph from above, of the deposited binary mixture consisting of
small (dark) and large (pale) particles. The large particles are primarily at the fop and in the front.
¢ Photograph of the deposited mixture from below. A frontal horse shoe ring of pale, large particles
is clearly seen, but the remainder of the basal deposit is made up of dark small particles, from [70]

Figure 13.13 shows a table-top experiment of an avalanche flowing down a
Plexiglas-chute into a horizontal deposition area. The granular mass consists of par-
ticles with two different sizes: small (dark) and large (pale) particles. The granular
mass is initially mixed; this mass is suddenly released at the top of the chute and the
deposition on the horizontal Plexiglas is photographed from above and below the
deposit. The panel in the middle shows the deposition from above in pale whitish
color, indicating that the large particles ended up on the top of the deposit, Fig. 13.13b.
Panel (c) shows the photo from below; primarily the dark particles which are of small
size are seen. The horse-shoe type ring shows the pale big particles in the front part
of the deposit. The figure corroborates our earlier statement that the large particles
are in the front and on top, whereas the small ones are primarily at the bottom.

Finally, it should be stated that normal grading also exists but such situations are
much less frequent.

13.3 Shallow Flow Avalanche Modeling

In this subsection we shall present the dominant avalanche models as they have
been derived in the second half of the 20th century, beginning with VOELLMY’s one-
dimensional hydraulic or simple mass point model and ending with those models
which are presently under use as depth integrated two-dimensional shallow flow
models—for that see e.g. PUDASAINT and HUTTER [70], who give a detailed account
of the subject and also present a historical review of it.
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Fig. 13.14 ADOLF VOELLMY (15. July 1900-20. Feb. 1990)

Dr. ADOLF VOELLMY is born in Murten, a town in Freiburgian Switzerland. He was educated
as an engineer at the ‘Technikum Burgdorf® (a junior college) and entered the ‘Federal
Institute of Technology’ (ETH) in Zurich by compulsory entrance examination, where he
graduated as a civil engineer and earned the Dr. sc. tech. with a dissertation on ‘Eingebettete
Rohre’ (‘Embedded pipes’). Following a transitory period on construction sites, he entered
the ‘Eidgenossische Materialpriifungsanstalt’” (EMPA) (‘Swiss Laboratories for Materials
Science and Technology’) in Diibendorf, where he acted since 1931 as Section Head and
retired in December 1965.

His overall working attitude was outlined by himself in his dissertation: “The ensuing inves-
tigations follow the trustworthy approach applied in technology, namely to obtain, on the
basis of simple assumptions, a principally correct picture about the static circumstances,
and subsequently to experimentally verify some typical implications that are based on these
knowingly simplified assumptions, in order, thus, to gain concrete, albeit restricted guidelines
for computations. A solution will only correspond to the practical needs, if it is simultane-
ously to the point as well as simple.’

ADOLF VOELLMY was a calm, alert listener, whose opinions were moderately stated but
objective, based on rational, well thought out arguments.

Photo: Archive EMPA. The text is based on [2].

13.3.1 Voellmy’s Avalanche Model

A. VOELLMY,? an engineer working at the Swiss Institute of Materials Testing (Eid-
gendssische Materialpriifungsanstalt, EMPA) in 1955 presented the first theoretical

2For a biographical sketch of ADOLF VOELLMY, see Fig. 13.14.
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analysis of avalanche dynamics that was internationally recognized.® His work
remained largerly unnoticed. VEOLLMY’s work appeared in a paper ‘Uber die
Zerstorkraft von Lawinen’ (about the destructive power of avalanches) in four con-
secutive parts and is based on a consultancy assignment to EMPA by the private
company ‘VOBAG AG’ (in Vorarlberg, Austria) to analyze the damage done on
properties in the Vorarlberg in the avalanche event of January 1954. Part 2 of the
series of papers is relevant to us as it deals with the dynamics of snow masses.

Consider a snow layer of height / on a rigid plane inclined at the angle ( relative
to the horizontal plane. For the snow layer of density p immersed in an atmosphere of
density p, = 0.127 kgm~> NEWTON’s second law, formulated parallel to the sliding
plane, see Fig. 13.9 reads

du . g
ph==g(p—po) hsinC—(g(p—p) heosQ) 1= ”?uz . (13.10)
driving force friction ~——

turb. friction

In this equation the resistive force has two contributions, a dry friction COULOMB
resistive force with (drag) coefficient ;4 and a turbulent MANNING-GAUKLER-
STRICKLER term proportional to the squared velocity with coefficient £ (ms~2). By
a routine computation (13.10) can be transformed to

du _ 9 A YR IR
dt_hg[f(l p)h(smC pcos ) u]—hg{umax w?}; o (13.11)

2
Uinax

Umax = \/f (1 — %a) h (sin ¢ — pcos().

With the further variable transformation

and 7 := . t, k=— (13.12)
Equation (13.11) takes the form

D1y & y—tanhr = u = upy tanh (”Lr) (13.13)
dr k

for a motion starting from rest at # = 0. The avalanche velocity follows a hyperbolic
tangent law and leads to an asymptotic velocity # = upyax at t — oo. The travel
distance s is obtained as

3This is historically actually not correct. A French forest engineer, P. MOUGIN published in 1922 his
results on the physical characteristics of snow and proposed a simple model to compute avalanche
velocity and impact pressure: an avalanche was considered to be a sliding block experiencing a
CoOULOMB friction force. For more details see [70].
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t T

s(1) :/u(t’)dt’ :k/tanh(T’)dT’ —kln [cosh (”%z)] (13.14)

0 0

To estimate the time #*, which it takes to reach 80 % of the limit velocity #max, One
must invert the equation

tanh (%t) —0.8 (13.15)

for umaxt™/k and substitute this value into (13.14). A. VOELLMY estimated s* =~
0.5k = 0.5h&/g. With € = 500 ms ~2 and ¢ = 10 ms ~2 one obtains s* &~ 25h:
The avalanche travels 25 times its height to reach 80 % of its maximum speed.

The above formulae can be simplified if the density of air is ignored as compared
to the snow density p and if also the COULOMB friction force is ignored in comparison
to the viscous force (1 = 0). Then,

v A EhsinC.
The above are the few central lines of A. VOELLMY’s text, extended by us to explain a
few computational steps that fills only about half a page in the Swiss Civil Engineering
Magazine (Schweizerische Bauzeitung) [84]. The entire paper is a landmark, because
beyond the presentation of the above derivation, it contains a wealth of side issues that
are touched, which demonstrate a superb physical understanding of the dynamical
problem concerning fundamental as well as applied aspects of the stated problem.

13.3.2 The SH Model, Reduced to Its Essentials

The VOELLMY model received in the 60 and 70s of the 20th century a number of
additions and improvements, in particular in attempts to design a model that could be
applied to curved down-slopes. One rather important issue, however, was not touched,
namely the fact that real avalanches do deform in the course of their motion, and
VOELLMY’s model as a mass point model does not have the flexibility to account for
the geometric changes, which a moving granular mass experiences during its motion.
In plane down-slope flow the toe of the avalanche will flow differently from its rear
and correspondingly, the velocities inside the avalanche and the geometry will also
accordingly adjust to these conditions. The new model, incorporating the geometric
variations under movement, was developed in 1986 with publication in 1989* by
STEWARD B. SAVAGE and K. HUTTER [72]; it became so popular that extensions of
it were immediately following and are still in the process of being developed. The

“The paper was not at all well received by the referees and had to go through a nearly 3-year
process of revisions and extensions. K.H. still thinks, the original draft was more to the point than
the published version, which now also contains a number of side issues.
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model became known as SAVAGE-HUTTER (SH) model. In this subsection we present
a derivation following an engineering approach of simple mechanics and will later
present a slight generalization of the model derived from first principles.

Consider plane two-dimensional flow of a granular mass down an inclined plane
and assume the flow to be density preserving. Isolate a column of length dx and for-
mulate the mass and x-momentum balance equations for this element, see Fig. 13.15.
Assume, moreover, that the down-slope velocity is constant over depth, so that
u = u(x, t). Equating the growth rate of mass within the column due to the growth
in height to the inflow of mass from above and outflow from below yields

% (ph(x,t))dx = ph(x,Hu(x,t) — ph(x +dx, Hu(x +dx, 1)
= —(% (ph(x, Hu(x, 1)) dx + O ((dx)?), (13.16)

or after dropping the constant mass density p,

oh n O(hu)
ot ox

0. (13.17)

In (13.16) TAYLOR series expansion was employed with higher terms being dropped
in the second term of the first line. This will be done as well in the ensuing develop-
ments of many mathematical expressions without mentioning it.

Balance of momentum in the x-direction will be formulated following NEWTON’s
second law. With the x-momentum of the column given by phudx we write

e Time rate of change of phudx:

Fig. 13.15 Plane flow of a finite mass of granular material down an inclined plane a Sketch
of the geometry, coordinate system and an infinitesimal column for which mass and momen-
tum balances are formulated. b Free body diagram of the column with acting forces, where

P(x,t) = foh(x") pr(x,z,t)dz and P(x + dx,t) = foh(XerX”) pL(x + dx, z, t)dz, from [70]
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0
N ((phu)(x, 1)) dx, (13.18)
e Flux of x-momentum through the column walls:
ph(x, Du*(x, 1) — ph(x + dx, Hu?(x + dx, 1)

-2 (ph(x, Du*(x, 1)) dx + O ((dx)?) (13.19)
X

e Forces in the x-direction applied on the column:

(i) = pgh sin(  (driving component of gravity),

(i) = —7dx (basal friction), (13.20)
h(x,t) h(x+dx,t)

(iii) = / pr(x, z,t)dz — / pr(x +dx, z,)dz
0 0

(sum of longitudinal pressures).

The next step is the evaluation of the longitudinal pressure, p;, in terms of the
overburden pressure. This step is based on the recognition that in soils the overburden
pressure

p(x.z.1) = pg (h(x,1) —2) cos,

obtained from a force balance perpendicular to the x-direction, differs from the
longitudinal pressure p; by the earth pressure coefficient Kyeijpas, Viz.,

pr(x,z,t) = Kact/pas p(x,z,1) (13.21)
with

Ko, ifO0u/0x >0,

Kact/pas = [ KpaSa if au/ax <0, (1322)

where K, and Kp,s correspond to the extensive and compressive modes of defor-
mation. With the representation (13.21) Eq. (13.20); can be approximated as

ryg 0

— =08 (=— (Kacypash” (x, 1)) dx + O (dx)?) .

2 0x

Applying a COULOMB-type friction law for the shear traction at the base yields
7(x, t)dx = —pgh(x, t) cos ( sgn (u)tand,

in which ¢ is the bed friction angle. Adding all contributions of (13.20), this yields
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x — —force = [pgh(x, t)(sin ¢ — sgn (u) tan é cos )

0
_ %a_x (Kact/pash® (x, 1)) cos C]dx + 0 (dx)?). (13.23)
If we now collect (13.18) + (13.19) = (13.23) and drop the common factor pdx in
the emerging equation, we have

) o .
57 (o) + = ()

10

=y [(sin( — sgnutan§cos ()h — 331 (Kact/pash®(x, 1)) cos(] )
X

(13.24)

Equations (13.17) and (13.24) constitute a system of two partial differential equa-
tions for the unknown longitudinal velocity u(x, ¢) and the distribution of the height
h(x,t). They appear here in conservative form. Applying product differentiation in
the respective terms on the left-hand side and right-hand side of (13.24) and using
the mass balance Eq. (13.17) in the emerging equation yields instead of (13.24) the
alternative equation

Ou n du
— I/t_
P\or " "ox
. Oh
= pg(sin( — sgn utancos() — pgKact/pasa— cos (, (13.25)
X

in which the constant density p has been re-substituted to make NEWTON’s second law
more explicit as (mass times acceleration) = (sum of the forces). Equations (13.17)
and (13.25) are the SAVAGE-HUTTER equations as derived by them in [72] in a more
rigorous fashion. When p = p; (Kact/pas = 1) the pressure distribution is that of a
liquid. In this form the equations correspond to the usual hydraulic models and are
often called DE SAINT-VENANT or BOUSSINESQ equations. They were used in this
form by the avalanche scientists in the Soviet Union, see S.S. GRIGORIYAN et al.
[33-35] and M.E. EGLIT et al. [22-24, 26].

Equation (13.25) appears in a physically transparent form. The force terms on the
right-hand side are the gravity driving force (first term), a COULOMB sliding force
resisting the motion and slowing it down (second term) and a force (third term),
which for 0 h/0 x < 0 enhances the acceleration and for 9 h/0x > 0 reduces it.
So, looking at Fig. 13.15, the last term on the right-hand side accelerates the moving
mass on the frontal part and decelerates it in the rear part of the pile; the moving
pile becomes longer with growing time on a plane with slope angle . Omitting this
term from (13.25) reduces the equation to the momentum balance of a rigid mass
model that cannot account for geometric changes of the moving mass. Except for
the turbulent viscous term, this is analogous to the VOELLMY model.



138 13 Shallow Rapid Granular Avalanches
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Fig. 13.16 CHRISTIAN OTTO MOHR (8. Oct. 1835 — 2. Oct. 1918)

CHRISTIAN OTTO MOHR was a German structural engineer who started his engineering
education with 16 years at the Polytechnicum Hannover. 1855 he started to work as an
engineer for the Royal Hanoverian State Railway System. As an assistant working for this
governmental company he published in 1860 a paper on the statics of continuous bending
beams. This work became instantly known, since it simplified the determination of the stress
distribution in such structures. After moving to the Oldenburg State Railways, OTTO MOHR
was the first structural engineer to design a steel bridge in Germany; its characteristics were
to have been consequently composed of a truss of triangles, which allowed him to apply a
simple computational scheme for the internal stresses, which was in 1863 further perfected
by AUGUST RITTER.

1867, at the young age of 32, OTTO MOHR was appointed professor of applied mechanics
and road and earth mechanics at the University of Stuttgart. He is said to have delivered
attractive lectures of theoretical mechanics, so that his lectures were well attended. Scientif-
ically, he reached a considerable simplification of the computation of the bending curve of
beams by inventing his graphical construction by a string polygon. OTTO MOHR also devel-
oped the WILLOT-MOHR diagram and the MAXWELL-MOHR method for analyzing statically
indeterminate structures. Best known is OTTO MOHR’s graphical method to construct in a
body point under plane stress the principal stresses by the MOHR stress circle, which is now
taught to every engineering student in the basic courses of strength of materials. In 1873,
OTTO MOHR assumed a chair of engineering science at the Polytechnicum Dresden, where
he stayed until his retirement in 1900. He continued working scientifically, and his yield
criterion for failure, alluded to in the main text by us is published in [62].

The above figure shows for plane stress that failure at a material point will occur when the
MOHR circle touches the failure line 7 = ¢ + (tan ¢)o.

The text is based on www.wikipedia.org

There still remains the identification of the earth pressure coefficient under active
and passive pressure conditions. To this end, we consider the granulate to be a cohe-
sionless COULOMB material with angle of internal friction ¢ > §, where 9 is the bed
friction angle. The state of stress (p, —7) for a plane material element (Fig. 13.17a)


www.wikipedia.org
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at the base must lie on a straight line through the origin inclined at the angle (—§)
(Fig. 13.17b). All other elements that are rotated relative to the element shown in
Fig. 13.17a must lie on circles through the point (p, —7), which are also tangen-
tial to the lines through the origin with inclination +¢; there are two such circles,
a bigger, passive, and a smaller, active-one. The stress states (p., 7) on the per-
pendicular elements lie on opposite sides of these MOHR-circles,” as indicated in
Fig. 13.17b. The center of the bigger MOHR-circle lies at %( pr + p) and its radius is

givenby r = (72 + 1 (pL — p)?) "2 Moreover, from the geometry of the circles in
Fig. 13.17b we identify

4+ 1 (p—p)’

YL+ p)? (1520
1

-
— =tand, sin’ ¢ =
p

Substituting (13.26); into (13.26), and observing that p; /p = Kac/pas leads to a
quadratic equation for Kye(/pas With the solution

Kucapas = 2500 2 & (15 (1 = cos ¢ sec 29)"”) — 1, (13.27)

in which the upper (lower) signs apply for K, (Kpqs) and sec ¢ = 1/ cos ¢. This
shows that only two phenomenological constants, the angle of internal friction, ¢,
and the bed friction angle, 9, describe the earth pressure coefficient, the only two
material parameters arising in this SH model. A further advantage of this model is
also, that in applications ¢ and ¢ can relatively easily be estimated.

The above equations have been written in dimensional form. It is always advanta-
geous to put them in dimensionless form because in that form characteristic dimen-
sionless quantities arise explicitly, which point at the significance of the physical
processes that are described by the equations. We shall introduce dimensionless
quantities for the variables {x, z, &, u, t} in the form

oz, hu,t) = {L;E, H:, Hh,/gLi, «/(L/g)f} , (13.28)

in which L and H are length and depth scales, /L/g is a time scale, reminiscent of
the free fall and, \/gL is a free fall velocity and the (°)-quantities are dimensionless
variables. Substitution of the transformations (13.28) into (13.17) and (13.24) or
(13.25) transform these into

e in conservative form:

oh Ohu
o Tox 0

x (13.29)
Ohu |\ OMC _ (gin¢ — sgn () tandcos O — (5 Kueupash® cos )
ey = S sgn (u) tan 0 cos ax 2 act/pas/l” COSG J,

SFor a biographical sketch of C.0. MOHR, see Fig. 13.16.
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Fig. 13.17 a Material plane (a)
element at the basal plane
with the stresses (p, —7)and
(pL, T), acting at the faces as
indicated. b MOHR circles,
representing active and
passive stress states: The
element touching the base,
the side element,

pL/P = Kact/pas follows
from trigonometric relations
(13.26)

(b)

B Daer

e in non-conservative form:

Oh Ohu
ar T ox

! * (13.30)
O 4 4% _ (sin¢ — sgn (w)tan b cos ¢) — £ 08 CKaetpas o
—_— — = (sin{ — sgn n — —

oY uax S sgn (u) tan § cos €cos act/pas 7

in which the hat symbols have been deleted, and
e=H/LK1. (13.31)

€ is very small, generally e = 10~ — 1072,

Equations (13.29) and (13.30) show no other characteristic parameters than
Kact/pas» Which stands for normal stress effects. ¢ is also dimensionless and mea-
sures as an aspect ratio the significance of theshallowness of the avalanching mass.
Thus, apart from the angle of internal friction no other parameter such as the FROUDE
and REYNOLDS numbers enter the equations. Since ¢ and ¢ are easy to keep invariant
under down-scaling processes to laboratory dimensions one concludes that the SH
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equations are scale invariant. Reason for this is that no turbulent viscous resistive
forces are included in the SH equations.

13.4 A Three-Dimensional Granular Avalanche Model

In this section we shall not present a rigorous derivation of the SH equations; for that
we refer the reader to the original paper by S.B. SAVAGE and K. HUTTER [72]. Here we
derive a slight generalization of it due to J.M.N.T. GRAY et al. [30], namely the flow
of avalanches over shallow parabolic three-dimensional topography. This will lead to
the first, still somewhat academic, description of the flow of a finite mass of granular
material down a valley or corrie. A reference surface that follows the mean down-
slope bed topography is used to define an orthogonal curvilinear coordinate system
Oxyz, see Fig. 13.18. The z-axis is normal to the reference (ruled) surface, and the
x- and y-coordinates are tangential to it with the x-axis oriented in the down-slope
direction. The down-slope inclination angle ( is used to define the reference surface
as a function of the down-slope coordinate x. The reference surface does not vary
with the cross-slope coordinate y. The chute geometry is superposed by defining the
height z = b(x, y, t) above the reference surface, z = 0, as illustrated in Fig. 13.18.
Even though the local down-slope direction may not coincide with the direction of
the x-coordinate, for notational simplicity, the components in the x-direction are
referred to as down-slope components and components in the y-direction as cross-
slope components. Here we will present a detailed derivation of the model equations,
which will reduce to the SH equations with adequate simplifications.

13.4.1 Field Equations

The avalanche is assumed to be a density preserving material® with constant density
po throughout the body. Then, the mass and momentum conservation laws reduce to

V.ou=0, (13.32)
ou
po[E+V~(u®u)]=—V~p+pog, (13.33)

where u is the velocity, ® is the tensor product, p is the pressure tensor (negative
CAUCHY stress tensor) and the g-vector is the gravity constant. The granular

SExperiments by THILO KOCH [49] have shown in this case that the avalanche volume expands
immediately after the start of the motion by approximately 10 % and then remains approximately
constant during the entire motion.
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Fig. 13.18 The rectangular Cartesian coordinate system O XY Z aligned so that the Z-axis is
parallel but opposite in direction to the gravity acceleration vector, and the Y-axis is parallel to
the cross-slope reference surface coordinate y. The basal topography (solid lines), on which the
avalanche slides, F”(x, y,t) = 0, is defined by its height above the curvilinear reference surface
F? = b(x, y, 1) — z (dashed lines). The shallow complex three-dimensional geometry is therefore
superposed on the two-dimensional reference surface, from [30]. © Proc. Royal Soc. London

avalanche is assumed to satisfy a MOHR—COULOMB yield criterion, in which the
internal shear stress S and the normal pressure N on the plane element, see Fig. 13.19,
are related by

IS| = N tan ¢, (13.34)

where ¢ is the angle of internal friction. The conservation laws (13.32) and (13.33) are
complemented by kinematic boundary conditions at the free surface F*(x,t) = 0,
and at the base, F”(x, t) = 0, of the avalanche,

s

FS(x,1) =0, +u' - VF =0, (13.35)

OF?
F’(x,t) =0, el u’ - VF’ =0, (13.36)

where the superscripts ‘s’ and ‘b’ indicate that a variable is to be evaluated at the
surface and the base, respectively. There are also dynamical boundary conditions
that must be satisfied. The free surface of the avalanche is traction free, while at the
base satisfies a COULOMB dry friction sliding law will hold. That is
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Fig. 13.19 Sketch showing
the relation between the
internal shear stress S and
the normal pressure N on a
plane element in the granular
body

F'(x,t) =0, p'n’=0, (13.37)
Fb(x, t) =0, pbnb —nt (nb . pbnb) = (ub/|ub|) (nb . pbnb) tand, (13.38)

where the surface and basal normal vectors are

V FS , VF?
S=———, n'=——. (13.39)
|V Fs| |V F?|

Remarks

1. Notice that pn is the negative traction vector, n - pn is the normal pressure and
pn — n(n - pn) is the negative shear traction. Thus, the COULOMB dry friction
law, (13.38), expresses the fact that the magnitude of the basal shear stress equals
the normal basal pressure multiplied by the coefficient of friction, tan d, called
the basal friction angle.

2. The basal shear traction is assumed to point in the opposite direction to the basal
velocity u? in (13.38). This implicitly assumes that the basal topography is fixed,
so that u” - n” = 0 by (13.36). This implies that the basal velocity v” is tangential
to the basal surface. It also states that entrainment of snow from the ground
is ignored. Defining the direction of the shear stress in this way introduces a
singularity into the equation at u” = 0.

3. This singularity can be avoided by replacing u” /|u’| by the vector valued function

fo=fu, 1), (13.40)

where
fu = tanh(au), f, = tanh(awv), (13.41)
where v > 1 is a real number. This parameterization removes the singularity at

u? = 0. Moreover, as o« — 00, f ., approaches the function ub / lu?].

In actual modeling computations this restriction causes problems at the onset of the
motion and near the end of the avalanche motion when the moving mass comes to a
rest.
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13.4.2 Curvilinear Coordinates’

The complex topography is modeled by defining an orthogonal curvilinear refer-
ence surface, and then superposing the shallow basal topography on it, as shown
in Fig.13.18. For precise explanation, a rectangular Cartesian coordinate system
O'XY Z is defined with unit basis vectors i, j, k aligned so that the vector k is paral-
lel, but in the opposite sense, to the gravity vector g, and k lies in the vertical plane,
in which the reference surface varies. A simple curvilinear coordinate system oxyz
is introduced. In this coordinate system, the position vector r is given by

r=r'(x,y)+zn", (13.42)

where r” is the position vector of the reference surface and n" is the unit normal
vector to this surface. In Cartesian coordinates

n" =sin (i + cos (k, (13.43)

where ( is the inclination angle of the normal vector relative to the Z-axis. For
ease of notation the identification (x, y, z) = (x', x2, x3) is made. These are the
contravariant components in the curvilinear coordinate system (see e.g. [48]), and
the associated covariant basis vectors, g; are given by

or

== 13.44
9=75 (13.44)

The gradients dr /0 x' and O r /0 x? are the tangent vectors to the reference surface
in the x'- and x2-directions, respectively. Thus, choosing the orthogonal vectors
with the x-axis in the O’'X Z-plane, it follows that Or /0x' = cos (i — sin Ck and
or/0x* = j, so that

g1 = (1 — kx?) (cos (i — sin k),
9 =1J (13.45)
g5 = sin (i + cos Ck,

where the curvature is defined as

9¢

The covariant metric coefficients are defined as g;; = g; - g;, so that in view of
(13.45)

7In this section and henceforth knowledge of the basic elements of tensor calculus are supposed
known. There is a great number of books on this e.g. R. BOWEN and C.C. WANG [7],
1.S. SOKOLNIKOFF [76], E. KLINGBEIL [48], L. BRILLOUIN [8].
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(1—kx)? 00
(gij) = 0 1 0]. (13.47)
0 01

Since the off-diagonal elements of this metric tensor are all zero, this simple curvi-
linear coordinate system is called orthogonal. The covariant unit vectors are defined
as g; = g,/./9ai)» where the EINSTEIN summation convention is dropped for the
indices in parentheses. The contravariant basis vectors g/ are constructed by

g9,-9' =7, (13.48)
and this formula delivers for (13.45)

 _ (cosCi —sinCk)
N 1 —kx3

Moreover, the associated contravariant metric coefficients are given by the metric

- o 1/(0—=kx%»? 00
(") =(¢'-9’) = 0 10
0 01

It is clear that in contrast to the unit vectors Z, j, k, the covariant vectors g; vary as
functions of position. We need the CHRISTOFFEL® symbols of second kind to transfer
the equations of motion from coordinate free form to the curvilinear coordinate
system; they are defined as

F/fn = %g(kk) (gmk,l + Gki.m — glm,k) , (13.49)

and the EINSTEIN summation convention is again dropped for the indices in paren-
theses. For the curvilinear coordinates (13.47) the components of the CHRISTOFFEL
symbol are

1 K 0K 000
r'= 000, r’={oooj,
I=rz\ . 00 000
00
r’=(1-xz){000}, (13.50)
000

where k' = 0 k/0x!.

8For a portrait and a short biography of E.B. CHRISTOFFEL, see Vol. 1, Chap.6, Fig.6.35.
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Further, the vector differential operator V is defined as

V:.=g (13.51)

0 xk’

with components given by the contravariant basis g*; the gradient of a given scalar
field F is V F = F;g*. For the curvilinear coordinate system defined in (13.47) in
terms of the covariant unit basis, this can be expressed as

1 OF OF OF
VF = —gf+ —qgit+ —gi 13.52
l—ﬁzaxgl+8y92+8zg3 ( )

in terms of the variables (x, y, z). Here, gjf =g;/1gl, j = 1,2, 3 are unit vectors
and the prefactors of g’j’f are called the physical components of the gradient of F.
The divergence of the vector field u = u'g; is expressed as

0 . . .
v (gkﬁ) (Wg) =ui+u' Ty, Ti=g" g (1353

The vector physical components u'* of u are defined by u’™* = u' /gar,. The diver-
gence of a vector u in curvilinear coordinates is now computed by substituting this
into (13.53) together with the CHRISTOFFEL symbols (13.50) as

a ul* (9142* au3* ul*ﬁ/Z u3*li
V-u=— — — . (13.54
"= ok (I—HZ)+ dy + 0z (1 —kz)? (l—mz) ( )

In a similar manner, for a given symmetric rank-2 tensor p = pg, ® g j» the
divergence can be computed as

a ij i ji j i
V.p= ( kﬁ) (p7g;®g;) = (P + P/ T+ PV T Vg (13.55)

As before, the physical components p”/* of a second order tensor p are related to
the contravariant components by p'/* = p'/ (/g /9(5)- This, together with the
CHRISTOFFEL symbols (13.50), after substitution into (13.55) implies the following
curvilinear form of V - p:

o 11 o 12 o 13x% /SN B T 2 13x%
vop=(2 (2 I S S ) R W
Ox \1—kz Oy 0z (1-k2? 1—-kz
bl 12 o 22 o 23 Ii/Z 12 2K 23
(2 (r L op P P2
dx \1—kz

0y + 9z (—k7)? 1—kz
B! 13% o 23% o 33% /5 13%

+(_( P )+ p=r 0P Kzp
Ox \1 —kz Oy 0z (1 —kz)?
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33% 1%
— (u) ) g (13.56)

1—kz

13.4.3 Equations in Dimensionless Form

Let us now write the mass and momentum balance equations in the curvilinear coor-
dinates using the basis g7, g5, g5. With respect to this basis the components of the
velocity vector are u, v, w, so that u = ugj + vg; + wgj. Similarly, the physi-
cal components of the symmetric pressure tensor p are p., Pyy, Pzzs Pxys Pyzs Paxs
where the convention that subscripts define covariant quantities is now dropped,’ i.e.
Dxx» etc., are now and henceforth physical components. The physical variables are
non-dimensionalized by using the scaling transformations

(x,y,2, F*, F?, 1) = (L)E, L$, H: HE,, HF, (L/g)f),
(u, v, w) = /gL (ﬁ, 0, Eﬁ)),

(Pxx, Pyys Dzz) = pogH (ﬁxxv ﬁyyﬂ ﬁzz)’ (13.57)
(Pxys Pxz> Pyz) = pogH (ﬁxw ﬁxz,)v
(k) = Rk,

where the variables (T) are dimensionless. The scalings (13.57) assume that the
avalanche has a typical length tangential to the reference surface and a typical thick-
ness H normal to it, and R is a typical radius of curvature of the reference geometry.
Assuming a granular static balance, the typical normal pressures at the base of the
avalanche are of the order'® pogH, and the COULOMB dry friction law suggests that
the basal shear stresses are of the order pog H tan ), where dy is a typical basal angle
of friction. Finally, the down-slope curvature « is in the order of 1/R. These scalings
introduce three non-dimensional parameters, namely

e=H/L, A=L/R, u=tand, (13.58)

where ¢ is the aspect ratio of the avalanche, ) is a measure of the radius of curvature
of the reference geometry with respect to the length of the avalanche and p is the
coefficient of friction associated to the base.

The mass balance equation (13.32) can be written in curvilinear coordinates by
using the transformation rule (13.53) for the divergence of a vector field. Applying

9For orthogonal coordinate systems there is no difference between co- and contravariant components
of vectors and tensors anyhow.

10This scaling for the normal pressure tacitly assumes a ‘hydrostatic nature of the pressure’ in
a granular heap. This is in fact untypical of granular systems for which the pressure is not the
overburden weight but saturates after a certain depth.
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the scalings (13.57) and (13.58), it follows that the non-dimensional curvilinear form
of the mass balance equation (13.54) is

V.ou= —( ¢)+@+g— — eAk zup? — edrwi) = 0, (13.59)
dy

where the hats are now dropped and

1
V1 =elkz

The momentum balance equation (13.33) can be written in curvilinear coordinates
by using relation (13.56) to transform the tensor # ® u and the pressure tensor p.
Let g1, g» and g3 be the physical components of the gravitational acceleration along
the x-, y- and z-axes, respectively. Assume, moreover, that g = (g1, 92, g3). For
the present coordinate system g; = gsin(, gop = 0 and g3 = —gcos (. It follows
that the non-dimensional curvilinear components of the momentum balance in the
down-slope, cross-slope and normal directions to the reference surface are

= (13.60)

Ou 0

0 0
2T (2 = il _ ro292
ot + Jx (u 1/)) + ("“)) + 9z (uw) — eAR' zu“Y” — 2e\kuwp
‘9ny Pxz | 2y s 2
=sin(— S (pxxw) — P K PP 2Nk pagtb, (13.61)
ay 0z
v 0 2 0 ’ 2
E"‘*( v¢)+7( )+8—Z(vw)—s)\ﬁzuvw — eAKVWY
0 8 : 0
= —epa (pxyl/J) ;;) - (;Jyz + Ak’ sz}l/J +eMukpyp, (13.62)

(Z—u; + — ( w)) —|— — (vw) + ﬂ ( 2)} — 52/\/§/zuw1/12 — Ak (£2w2 — u2) P

Euapyz _ 0pz;
dy 0z

+ EZAMK szzw + eX6(pzz — pxx)V,
(13.63)

7]
=cos( — El‘a (pxz¥) —

respectively. Further simplication of these equations is possible, but they are left in
the given form as this proves to be particularly useful when the free surface and basal
boundary conditions are included once the depth integration process is performed.



13.4 A Three-Dimensional Granular Avalanche Model 149

13.4.4 Kinematic Boundary Conditions

The free surface of the avalanche, F* = 0, and the basal topography over which the
avalanche is assumed to slide, F? = 0, are defined by their respective heights above
the curvilinear reference:

FS=z—s(x,y,0)=0, F'=—z+b(x,y,t)=0. (13.64)

Consider the basal surface F?(x,t) = 0, z = b(x, v, t); briefly Fb=b—7z=0in
dimensional form. Then,

OFP?
W—i—ub-VFb =0 (13.65)

describes the kinematic surface condition. It is emphasized that u” is here the material
velocity of particles at the base, but then processes of bed erosion or sedimentation
are excluded. In case these processes are included, u” in (13.65) would have to be
replaced by w, say, the non-material velocity with which the base is moving when
erosion from, and deposition of the material to, the base are accounted for. This
not being considered, we deduce from (13.51), (13.64),, and (13.65) the following
kinematic condition for the basal surface (13.51),

db 1\ ,ab  ,o
— - — —wr=o. 13.66
8t+(1—/@z)uax+v0y v ( )

Similarly, the kinematic condition for the free surface is

o 1\ 0 B
—S+( ) WL E o (13.67)
ot 1—kz

Now we will derive the non-dimensional form of the kinematic conditions. From
(13.57) and (13.66) we have

b
d(Hb) +( 1 )G(Hb)_i_\/g—vaa(Hb)_\/g»LEwb:O.

0 (J/L/gt) 1-Ekz ) 9(Lx) d(Ly)

We can derive a similar equation for the free surface. Using (13.58), it follows from
(13.66) and (13.67) that the non-dimensional curvilinear form of the surface and

basal kinematic conditions are

ob ob ob
b P bt 2 0 9 b 13.68
Z (x,y,0), at+1/1u 8x+v y w , ( )
z=ys(x,y,1), % ~I—¢‘YU‘Y§—1 + v“j—i —w' =0, (13.69)

where hats have been dropped.
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13.4.5 Traction Free Condition at the Free Surface

From (13.52), (13.57) and (13.58), we obtain the non-dimensional form of the gra-
dient of the free surface as follows

—— 1 " s fye Js +6s . (13.70)
=e|\——— ) — — .
[—owz) 991 Ty T 9

From (13.37) and the definition (13.51) of the gradient of a scalar field, the traction-
free condition reads

ij% OF*
P gt =0. (13.71)
JIGj 9x7

Hence, the traction free boundary condition at the free surface of the avalanche has
down-slope, cross-slope and normal physical components as follows

0s os
—e)f —eupl,— +upl. =0,
L oy HPy y KDy,

,  Os , Os S

—ep)’ pyy ax  Pway + ppy, =0, (13.72)
., Os , Os s

Y Py HPy: g +p.. =0,

written here again in dimensionless form.

13.4.6 Coulomb Sliding Law at the Base

The COULOMB basal sliding law (13.38) implies the relation
p'n® = (n”- p’n”) {(u"/1u"]) tan 6 + n"} .

It follows from this that the down-slope, cross-slope and normal components of the
above relation, respectively, are

b ob ub ob
E’(/prxxa + E,U/px} ay - przz = (nb . pbnb) (A u b| tan d + 51/) )
b

ob ob v ob
elﬂ/lbpxya +spy‘8—y —ppl, = (n"- p'n”) (A W an6+£a—y), (13.73)

ob ob b
E/M/prx Ix +€'up“8_y —pz = ( b.pbn”) (A;,Wtané— 1),
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12 . .
where |u| = (u2 +v?+ Ezwz) / , the basal unit normal vector n” is given by
A’ =V F, A= |VF, (13.74)

and the associated normalization factor is
2

2 ARV
= [1+52 (w”)z(%) +é (g—l;) ] : (13.75)

This completes the transformation from the coordinate independent form of the
CouLOMSB sliding law to curvilinear coordinates using the non-dimensional variables
defined in (13.57).

13.4.7 Depth Integration

The difference between the height of the free surface s(x, y, #) and the height of the
basal topography b(x, y, t), defines the thickness, or depth, of the avalanche

hix,y,t) =s(x,y,t)—b(x,y,1), (13.76)

measured along the normal direction of the reference surface. A crucial step in
deriving the equations of motion for a shallow granular material is the process of
integration of the mass and momentum balance equations through this thickness.
In order to perform this step, it is useful to define the mean value of the function
f = f(x,y,z, t) through the avalanche thickness

f= %/fdx, (13.77)
b

where the overbar is a shorthand notation for the mean of the depth integrated function
f In the process of depth integration, we need the LEIBNIZ rule to change the order
of integration and differentiation. According to this rule, if G(x, t) and 0G (x, 1) /0t
are continuous with respect to x and ¢ and if both a(¢) and b(z) are differentiable
with respect to ¢, then the following holds true

b(t)

b(t)
_/G(x £)dx /aG(x D4 +[G(x,t)j—x} , (13.78)
a(t) a(t) a®

where the square bracket defines the difference of the enclosed function at the two
limiting points of integration, [ f]° = f” — f9. On using LEIBNIZ’ rule the mass
balance (13.59) is integrated through the avalanche depth. This yields
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r duyp  Ov  Ow
/!W*%*a—z]dz
b

0

. ) 3 ' s
= 5= (huw) + gy 00 - [w—x fodt w:| —0. (13.79)

The function contained in square brackets in (13.79) has a number of terms in com-
mon with the equations expressing the kinematic boundary conditions (13.68) and
(13.69). From (13.68), (13.69) and (13.76) we obtain

9k

0z 0z )
0=, |:mpa—x+v——w:| | (13.80)

dy b

From (13.79) and (13.80) it follows that the depth-integrated form of the mass balance
(13.59) takes the simple form

oh 0 ; — 0
oh 9 P p— .
5 + oy (100) + 50 0) = b zud? — e\ewd =0, (1381)

This is the depth-integrated mass balance of the density preserving fluid.

The process of depth integration of the momentum balance equations (13.61)—
(13.63) is performed in a number of steps. Considering first four terms in (13.61)
and integrating these yields

122 e e L s 2
ax-—/[at+ax(uw)+8y(uv)+az(uw)]dz

b

o 9, —— b
— [E () + 5 (hu%,p) + 8—y(huv)i|

— (%_}_ ¢%+U%— ) '
“Nor T"ox "oy Y b

=0 (see (13.68), (13.69))

Hence,
0 0 — 0
— — (hu il 2
ay = BT (hu) + ox (hu 1/1) + 3y (huv). (13.82)

Analogously, from the last term of the right-hand side of (13.61), we deduce

by : = / [56—x (Pux®) + eua—y (Pxy) + P (sz)] dz
b
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s

0 0 0z
Ea—(hpuw)+€ua (h Pxy) — [é?pxxw +enpo g upsz-

With (13.72); and (13.73), this expression reduces to

b, = aaa (h pxxw) + auaa (hPwy)

+ (n” - p'n®) (A,, " tan § + 51/) ) (13.83)

where the COULOMB dry friction law and the down-slope component of the basal
normal pressure have entered through the boundary conditions. In a similar fash-
ion we can derive the depth-integrated cross-slope and normal components of the
momentum balances. It follows that the depth-integrated down-slope, cross-slope
and normal components of the momentum balance laws, respectively, take the forms

2 (h ) + i (h Lﬂzp) + 2 (h WD) — ek Zul? — 2ekh wwp

= hsing—( | b|tan5+5wb )(nb.pbnb)—5¢aax(hpxx)

e () - wa% (P5y) +2A'h zuvy? + 22Ach pacd, (13.84)

% (h7) + % (hm) + % (hﬁ) — eMW'h Zuv? — ehich Zowd

v N (bbb d [, —
_(Ab|ub| tm“ax) (1" p'n") —ens— (npu¥)
9 A 2 /g — 1, —
- 687), (h Pyyw) — €MUK h ZDyyyr + EARh pyz ), (13.85)
£ [aat (hw) + 8% (hm) + % (hvw)] -

— Akh (£2w? —u?) Y
b

= —hcos( — (Ab(|€uuz’| tand — 1) (n” . pbnb)
0 [ — o , L
— gua (h pxz@b) - E,uafy (h pyz) +20k'h 2Pz )?
+ eAkh (pzz — pax). (13.86)
The formal depth-integration process is now complete. The depth-integrated mass

balance (13.81), and the depth integrated down-slope and cross-slope momentum
balances (13.84) and (13.85), form the basis of the (shallow) granular flow equations.
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The depth integrated normal component of the momentum equation, (13.86) thereby
serves as an auxiliary equation defining the pressure.

13.4.8 Ordering Relations

Equations (13.81), (13.84)—(13.86) constitute four scalar field equations for &, u, v
and w as unknowns. However, they contain more than just these unknowns, because
many ‘correlation terms’ arise, which are thickness averages of product quantities of
h, u, vand w. The number of these unknown variables can be reduced by introducing
a further approximation that is based on the ordering of the various terms arising in
the stated equations. Such orders of magnitude are now assumed for the parameters
A and p. Realistic avalanche lengths are generally larger than typical curvature radii
of the topographic surfaces. Of course, this is not unanimously so, but0 < A < 1is
almost everywhere correct. Similarly, dy as a typical basal friction angle is smaller
than 45° (usually between 20° and 30°), so, also 0 < g < 1 must hold. Since the
aspectratio is generally much smaller than unity, ¢ < 1, such corrections are fulfilled
for

A=0E, p=0("), (13.87)

where 0 < «, 3 < 1 are realistic for typical curvature radii and coefficients of basal
friction. As long as no formal perturbation expansion involving higher order terms
is pursued, the exponents « and (3 need not further be specified except that o # 1
and 3 # 1. As typical values of these parameters we can take o = 3 = %, e=10"2
and ;o = 10~". The functions v from (13.60) and A, from (13.75), respectively, can
be estimated by

Y=140(""), A4,=1+0(). (13.88)
With these orderings, the depth-integrated mass balance equation (13.81) reduces to

%—i—(%(hﬁ)—i—g—i(hi)zO—i—O(s””). (13.89)
The down-slope and cross-slope components of the depth-integrated momentum
balances (13.84) and (13.85) must be approximated to leading and first order in
the small parameter ¢ in order to obtain a realizable theory, which includes some
constitutive properties of granular material. These equations contain a term that is
multiplied by the factor n” - p®n”. From the normal component of the momentum
balance (13.86), it follows that

n’ - pPn® =hcos¢ + Achu? +O ) =hcosC+ O (%),  (13.90)
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to order €. Applying this to the depth-integrated momentum balance equations in
the two principal flow directions, relations (13.84) and (13.85) reduce the latter to

) 9/ — 0
_ 7 _ 2 _ 70
(D) + 5 (hu)+ 5y

u®

— 0 ob
=hsin( — Whtané (cos(—i— /\nuz) —c5s (hPrx) — scosCha

+0 ("), (13.91)
0 0 9 (
. m I T I 2
57 (hv) + 7 (huv) + By (hv )
b

_ 0 ob
= —ﬁhtané (cos(+ )\nuz) - Ea—y (h Pyy) — € cos Cha—y

+0 ("), (13.92)

where v = min («, ) that satisfies the inequality 0 < v < 1 and u = (u, v, 0)7
is the two-dimensional tangential velocity at the bed. It is important to mention here
that ignoring O(¢) and to drop O (g!™7)-terms and higher order terms yields the mass
point model. So, it is physically very significant to carry the theory to O(¢) and only
to drop higher order terms. From the normal component of the momentum balance
we then obtain the equation for the pressure as

dpz.

=—cosC+ O (). (13.93)
0z

Integrating this equation with respect to z and applying the traction free bound-
ary condition, pfz =0+ O ("), from (13.93), we receive the following pressure
distribution that is linear in the normal direction as follows:

Pz = (s —z)cos(+ O (), (13.94)

which is consistent with (13.73); and (13.90) and equivalent to the hydrostatic pres-
sure assumption.

13.4.9 Closure Property

Further reduction of Egs. (13.91) and (13.92) requires constitutive information about
the pressure tensor p and the depth-integrated tangential velocity u. Note that the
component p,. need only be approximated to order €* as it is used to simplify the
depth integrated down-slope and cross-slope pressure terms p,, and p,, which are
already order e-terms in Egs. (13.91) and (13.92).
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The SH theory assumes that a very simple state of stress prevails within the
avalanche. Following common practice in soil mechanics we assume that the pressure
terms py, and p,, can be expressed in terms of the overburden pressure p.. with
the aid of the MOHR-circle. This holds at the base and at the stress free surface.
So, its validity through depth is justified by the continuity requirement. Because the
predominant shearing takes place in vertical surfaces perpendicular to the direction
of steepest descent, it may, as a rough approximation, be justified to assume that the
lateral confinement pressure p, is close to a principal stress, pi, say, see Fig. 13.20.
Furthermore, it shall be assumed that one of the other principal stresses acting in
the (x, z)-surface, p, and ps, equals p;. This is an ad-hoc assumption that is not
guaranteed by any physical argument, but it reduces the three MOHR-circles that
describe all possible combinations of normal stresses and shear stresses to only one
MOoHR-circle as in the case of two dimensional flow. Thus, to a given stress state
(P2, pfzy) at the base, two MOHR-circles can be constructed to satisfy both the basal
sliding law and the internal yield criterion simultaneously. Their construction is
shown in Fig. 13.21.

The principal stresses, p, and ps in the xz-plane are given by

1 2 5
(Pxs P2) = B (Pxx + Pz2) £ \/(pxx —P) +AT (13.95)

Fig. 13.20 Infinitesimal cubic element cut out of the avalanche with surface perpendicular to the
coordinates. The motion is predominantly in the direction of steepest descent and the dominant
shearing is acting on planes normal to the x-and z-directions. This gives rise to the dominant shear
stresses Ty; = — px; and normal pressures pyyx, pyy, Pz Shear stresses Tyy, Ty, also arise but are
much smaller than 7y;. Thus, pyy is approximately equal to py, one of the principal stresses. (When
Ty, Ty are exactly zero, then pyy is exactly py). The other two principal stresses, p2, p3 act on
surface elements, of which the surface normals lie in the (xz)-plane, from [70]
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(pxx ’ sz)act

shear stress
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Fig. 13.21 MoHR-circle diagram representing the stress state within the avalanche The yield cri-
terion corresponds to the two straight lines at angles ¢ to the horizontal. Similarly, the COULOMB
basal dry friction is indicated by the line at an angle —¢ to the horizontal. The passive basal stress
state is indicated by the solid circle of radius r and the center at p = a. The circle is both tangent
to the yield curves and passes through the point (p.., — p.. tan §). The broken-line circle represents
a second active stress state that also satisfies these conditions. Full squares indicate the possible
stress states in the xz-plane. Full circles show possible stress states for pyy, from [70]

and the cross-slope principal stress p,, = p, or p,, = p3, depending on the nature
of the deformation. The MOHR circles can be constructed which satisfy both the
sliding law and the angle of internal friction at the same time. In the original works
of SAVAGE-HUTTER [72] the basal normal pressure equals pfz and the shear stress
equals — pfz. The basal down-slope normal pressure equals pzbZ and the shear stress
equals — pfz = sz. The basal down-slope pressure p’ can therefore assume two
values, one on the smaller circle, p?. < p? ., and one on the larger circle p?, > p?,
which are related to active and passive stress states, respectively. Since there are
four possible values for the principal stresses, p? and pf , there are four values for
the basal cross-slope pressure p? . The earth pressure coefficients K? and K are
defined as follows:

b
kb= Pe g Do (13.96)
pZZ pZZ

To determine the values of these pressure coefficients, elementary geometric argu-
ments with the MOHR-circle representation in Fig. 13.21 can be used. The reader may
corroborate the formulae

Ko =2see?o 15 (1-cos? sec0) ) 1, (1397)
| 12
(k..) = S [K}; + 15 (K2 = 1) + 4tano) ] . (13.98)

b
for K fm/pas and (K x ) , which are real for § < ¢.

Yact/pas
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To uniquely determine the value of the earth pressure coefficient associated with
a particular deformation, the earth pressure coefficient K is defined to be active or
passive according to whether the down-slope motion is dilating or compacting as
given by

sz K.xada au/ax>0,
* K du/dx < 0.

Xpas ?

(13.99)

Analogously, the earth pressure coefficients in the lateral direction are computed by
considering whether the down-slope and cross-slope deformations are dilatational
or compressive:
K;Ca"f:’ ou/dx >0, dv/dy, >0,
K)f,pis, Ju/dx <0, dv/0y,> 0,
kb — ] B / /9y (13.100)
Y K;‘;:, Ou/dx >0, dv/dy, <0,
Ky™, Qu/0x <0, dv/dy, <O.
At the traction free surface of the avalanche the MOHR—COULOMB yield criterion
collapses to order €* to a single point and the down-slope and cross-slope normal

surface pressures are
P =0+0(EM, p),=0+0(E). (13.101)

Having the values of p,, and p,, at the base and at the free surface, intermediate
values are now interpolated accordingly. The SH theory assumes that the down-slope
and cross-slope pressures vary linearly with normal pressure through the avalanche
depth. This is achieved to leading order by the following expression

Pox =K + O ), py =K pe +0 (). (13.102)
Substituting p., from (13.94) and integrating the emerging expressions through the

avalanche depth, the depth-integrated pressures in the down-slope and cross-slope
directions are, respectively, given by

Pxx = %Kx cosCh + O(E),
Pyy = 3Ky cosCh+ O (). (13.103)

13.4.10 Nearly Uniform Flow Profile

Since the constitutive properties that are used in the SH theory provide no link
between stress and strain rate, it is assumed that the velocity profiles are approx-
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imately uniform through the avalanche depth; this is essentially BOUSSINNESQ’s
assumption, and it means that primarily sliding and little differential shearing takes
place, explicitly,

u=u"+0(E"), v=21"+0(("). (13.104)
In this case the velocity product can be factorized as
v =u"v" 4+ O (7). (13.105)

The assumption of plug flow is supported by measurements in large scale and labo-
ratory avalanches, see e.g. [17, 30, 61, 79]. On the other hand, one may also assume
power law velocity profiles with vanishing basal velocity (corresponding to no slid-
ing and all differential shearing). This then yields u? = ou°. For a parabolic profile
a = 1.20 and for plug flow o = 1. Since it is likely that sliding is present, the active
shear zone is confined to a thin basal layer and the velocity profile is blunt. This fact
justifies the O (6“’7) error term in the above formulae. Explicit computations were
performed by K. HUTTER et al. (2005) [43]. They justify the use of o = 1.

13.4.11 Summary of the Two-Dimensional SH Equations

In this subsection we now collect the avalanche equations in the shallow flow approx-
imation in which terms of order O (5”7 ) ,7y > 0 are dropped.

Equations in conservative form. From (13.104) it follows that the mass balance
equation (13.89) reduces to

Oh 0 0

—+ —(h — (hv) = 0. 13.106
3t+8x(u)+8y(v) ( )
With the assumptions (13.103), (13.104) and (13.105), the depth-integrated down-
slope and cross-slope momentum balance laws yield

d d . 5 0 B 9 (Bh?
E(hu)—}—a—x(hu)+8—y(huv)_hsx—8—x(7), (13.107)
b, ) ) a ([ Bh?
— (h —(h — (hv?) = hsy — — | =— 13.1
at(”Hax(“”Hay(”) 5y ay(z)’ (13.108)

accurate to order O (5”7), and where the superscript ‘b’ has been dropped. The
factors 3, and 3, are defined as

By =ecos(CKy, [y =c¢ecos(Ky, (13.109)
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respectively. The terms s, and s, represent the net driving accelerations in the down-
slope and cross-slope directions, respectively, and are given by

b

se =sin{ — itané(cos{+ )\nuz) —500548—, (13.110)
|ue] 0x
v ob

sy = ——tan d (cos ¢ 4+ \ku?) — e cos (—, (13.111)
y |u| ( ) ay

where |u| = (uz + vz)l/z. The first term on the right-hand side of (13.110) is due
to the gravitational acceleration and has no contribution in the lateral, y-direction.
The second terms of both Egs. (13.110) and (13.111) emerge from the COULOMB dry
friction and the third terms are associated with the contribution of the basal topogra-
phy. The system of Eqgs. (13.106)—(13.108), including (13.109)—(13.111), constitute
a two dimensional conservative system of partial differential equations. It is useful
here to quote the definition of a conservative system of partial differential equations:

Definition: A system of partial differential equations is said to be in conservative
form, if it can be written as

dw OJf
St =5 (13.112)

where w and s are vector-valued quantities and f is a matrix. Else, it is said to be
in non-conservative form.
For (13.106)—(13.111) w, f, s are given by

h hu hv 0
w=|hul|, f=|u®>+p3hr*2 huv ,s=1| hs, |.(13.113)
hv huv V2 + Byh% /2 hsy,

In this form of writing the governing partial differential equations w is the vector of
conservative variables, f is the matrix of transport flux elements and the vector s
represents the elements of source terms.

Equations in non-conservative form. For smooth solutions the mass balance equa-
tion (13.106) can be used to simplify the convective terms in the momentum equations
(13.107) and (13.108). Provided the earth pressure coefficients satisfy the relations
OK,/0x =0O(")and O K,/0y = O(e"), then

86 (IK hzcoscj) =hK, cos(—+(’)(€7)
5 o (13.114)
3_( K hzcosg) =hKkK, cosC +(’)(57)
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Now, substituting (13.103)—(13.105) and (13.114) into the depth-integrated momen-
tum Eqgs. (13.91), and (13.92), and making use of the depth-integrated mass balance
equation (13.106) with

yields
d Oh 0b
d—L;=SinC—|Z—|tan5(cos§—i—/\mu2)—ecos((Kxa—x—Fa—x), (13.115)
dv v Oh 0b
= ——tand Aku?) — K,—+—1), {d3.116
T ] 0 (cos ¢ + Aku?) acosC( 3y 8y) ( )

provided i # 0. The system of equations (13.106), (13.115) and (13.116), constitutes
a non-conservative system of equations, derived originally by J.M.N.T. GRAY et
al. [30] to generalize the one-dimensional SH theory, [72, 73]. Given the basal
topography b(x, y, t), a reference surface (slope) ((x) and the material parameters
¢ and ¢, both these systems of equations allow three independent variables %, u and
v to be computed once the initial conditions are prescribed.

To put everything at one place, this generalized SH avalanche model can be
phrased in the following way:

Consider the following assumptions [70]:

(a) Topography: A reference surface can be described by an orthogonal curvilinear
coordinate system Oxyz, in which the z-axis is normal to the surface and the
x- and y-axes are tangential to it, with the x-axis oriented down slope. The
function ( = ((x) represents the down-slope inclination to the horizontal and
k = —0(/0x is the curvature. Suppose z = b(x, y, t) is the chute geometry
above this surface and z = s(x, y, t) the free surface, so thath = s —b represents
the avalanche thickness along the z-axis.

(b) Material: The avalanche is assumed to consist of a shallow, density preserving,
cohesionless, dry and dense continuous material.

(c) Closure: Assume that the material satisfies the COULOMB dry friction law at
the slide and the MOHR—COULOMB plastic yield in the interior;, moreover, the
dominant deformation takes place in the down-slope direction. Furthermore, the
down-slope and the cross-slope pressures vary linearly with the normal pressure
through the depth of the avalanche, and shearing occurs in a very small basal
layer so that the velocity distribution is almost uniform over the depth.

(d) Parameters: Let 6 and ¢ be the bed and internal friction angles, respectively,
of the granular material and let K. , = K, (6, ¢) be functions constructed by
using the MOHR circle with respect to the closure property of the form
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2 2 20\1/2
K, = 2sec (b{l:}:(l—cos ¢ sec’d) }—1,

K, = % {Kx +1F (K, — 1)2+4tan25)l/2}.

Let, moreover, H, L and R = 1/krg be a typical avalanche thickness, length and
radius of curvature. Definee = H/L, A\ = L/R, and

Br,y = €cos Ky y,

b
sy = sin( — 2 tans (cos ¢ + Aku*) —ecos (—,
|ul 0x

ob
sy = —itané(cosc—i-)\fiuz)—ECOSC_v
) |u| dy

where u = (u, v) is the depth-averaged surface parallel velocity with compo-
nents u and v along the x- and y-axes, respectively.

(e) Smoothness: Suppose that all field variables are sufficiently smooth that the
order of differentiation and integration can be interchanged. Then, under a
realistic non-dimensionalization, the dynamics of a granular avalanche can be
described by the following set of equations:

oh 0 0

— —(h —_— =

5, T gy 0+ y (hv) 0,

a a 2 6 _ a /Bxh2

0 0 o, 5 o (pBh?
5 (hv) + a_x (hl/tl)) + a_y (hU ) = hSy a ( ) s

accurate to order €'77,0 < v < 1.

13.4.12 Standard Form of the Differential Equations

System (13.117) can be put into the standard form

ow OJf Og

— + =+ = =35, 13.118
dt  Odx Oy ( )
where w denotes the vector of conservative variables and f and g represent the
transport fluxes in the x- and y-directions, respectively. Let us define the conservative
variables as h, m, = hu and m, = hv. Then, the SH Eq. (13.117) can be written in
the form (13.118), where f, g and s are given by
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h my
w=|m |, [f=|m)/h+ph/2]|,
my, memy/h
m, 0
g= mymy/h , s= | hs, |. (13.119)
(my)?/h + Byh?/2 hsy

To compute the characteristic speed for the system (13.118) and (13.119), we rewrite
it as

ow
ow A, 0 Dx
E + ( 0 Ay) dw | = s, (13.120)
dy
where
0 1 0
Ay = g_f = _(mx)Z/hZ + Bch 2my/h 0 >
w —mym, /) h? my/h m/h
og 0 0 1
A =22 — —memy/h® my/h omy/h ). (13.121)
w )

—(my)2 W2+ Bk O 2my/h

Next, we evaluate the eigenvalues of the matrix A defined by

A, 0
A= ( 0 Ay). (13.122)

The characteristic equation for this system, i.e.,
det(A — M) = det(A, — AI3)det(Ay, — AI3) =0 (13.123)

(note I3 and I are 3 x 3 and 6 x 6 unit matrices) possesses the following six
eigenvalues (see [80])

AM=u, As=my/h=EB:h,
Ne=v. Aug=my/hE /B, (13.124)

The first two solutions, A », yield as characteristic speed the particle velocity clz, =
(u2 + vz) and as characteristic directions the streamline directions. The remaining
eigenvalues A3 ¢ constitute the other four different characteristic speeds in four
different directions
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172 172

CTH=(3+X) "7, =+ ",
1/2

cr=M+A)", =2+ (13.125)

Here, C™ is the fastest and C~~ the slowest characteristic speed. The flow is called
supercritical for ¢, > C~~ and subcritical for c, < C~~. When a finite avalanching
mass of granular material moves down a steep slope, reaches a supercritical speed
and then approaches the run-out zone, where a considerable deceleration occurs,
it experiences a sudden transition from supercritical to subcritical flow. Any such
transition from a supercritical to a subcritical flow state produces a shock. These shock
fronts are experienced by the avalanching body when the avalanche depth and speed
go quickly from small heights and large speeds to large heights and small speeds,
see Fig. 13.22. This is the reason why numerical schemes must be implemented in
these generalized SH equations, which are capable of capturing possible shocks.

Fig. 13.22 Schematic (a)
diagrams and photographs of
a downward moving and b
upward propagating
dispersed shock wave The
material below the shock is
at rest or near rest, whilst the
grains in panel (a) and above
the shock are flowing rapidly
down-slope. The experiment
was conducted between
parallel plates which prevent
lateral spreading of the
avalanche and exert an
additional wall friction that (b)
slows the avalanche to
observable speed. A mixture
of (white) sugar crystals and
(dark) spherical iron powder
is used with mixing ratio by
volume of ~1 : 1. Kinetic
sieving mechanism sorts the
grains by their size
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13.5 Avalanche Simulation and Verification
with Experimental Laboratory Data

13.5.1 Introduction

In this section numerical methods shall be used to solve typical initial value prob-
lems (IVPs) for avalanche motions of the free boundary value problems derived and
stated in Sect. 13.4. Results from such computations will then be compared with
data exploited from laboratory experiments to validate the computational models by
accordingly adjusting the phenomenological parameters (here the angle of internal
friction, ¢, and the bed friction angle, §). This will eventually lead to an accept-
able verification of the model equations for the geo-material configurations of the
topographies to which the model of Sect.4 is applicable. Our presentation is only
a brief account of certain aspects of the research that was performed in the past
approximately 30 years; a more detailed and fairly complete approach is given by
SHIVA P. PUDASAINI and KOLUMBAN HUTTER [70].

Both attempts of arriving at acceptable numerical schemes for adequately solv-
ing IVPs of the partial differential equations (PDEs) of Sect.13.4, (13.117) or
(13.118), (13.119) and performing adequate laboratory experiments have been
research endeavors as substantial as the derivation of the avalanche models them-
selves. We shall only be able to provide a selection of important results: In the
numerical issues we will show the peak of a long interesting climb to the ultimate or
perhaps pre-ultimate approach, and on the experimental side, only final results will
be shown, leaving all the peculiar details aside. A more complete account can again
be obtained from S.P. PUDASAINI and K. HUTTER [70]. We wish to acknowledge
the unlimited help of students and post-doctoral assistants, who provided support
through the years.

13.5.2 Classical and High Resolution Shock Capturing
Numerical Methods

Twenty five years ago the one-dimensional SH equations [72] were numerically
attacked by employing EULERian and LAGRANGEan discretization techniques to find
approximate solutions. The equations are close in form to the shallow water equations
(SWE); however, they are in fact quite cumbersome to integrate. Reasons for this
are:

e “When a pile of granular material is released from rest on a slope, the material
near the rear end often tends to initially move up the slope. Similarly, near the rear
end in the deposition zone material is still approaching the deposited mass; often
parts of the mass at the rear end move backwards before they come to a complete
rest.
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e Because the motion is dominantly advective (=convective), acceleration terms
critically decide about the stability of a numerical scheme, one must be careful to
use appropriate up-winding (in EULERian finite discretization) to avoid numerical
instability.

e The avalanche model equations are very close in structure to the SWEs, but the
geometries of the avalanches are different from those of the usual water wave
problem, and so the wave solutions differ considerably from those of the SW-
waves.

e The flow of a granular mass can be regarded as a moving interface and embodies
all the associated difficulties of such bodies”, from [70], with changes.

In this regard it should also be realized that the accuracy of the numerical solution,
in particular for the resolution of steep gradients, it is important that the equations
are formulated in the conservative form; i.e., the momentum equations should be
stated as

“time rate of change of momentum = sum of the forces” and not as

“mass times acceleration = sum of the forces”.

(DEULERian and LAGRANGEan Integration Schemes

(a)EULERian approach. Among several implicit and explicit schemes to test one-
dimensional hyperbolic systems of the form

dw 0 f(w)
ey Tt (13.126)

S.B. SAVAGE and K. HUTTER [72] used in their solution approach of the SH equations
amethod similar to that of R W. MACCORMACK [58], comprising a two-step explicit
finite difference scheme. From the solution known at time ¢t = nA ¢, the values of &
and u at the new time (n + 1) A ¢ can be predicted by employing one-sided upwind
differences to approximate the first derivatives. Corrections are made in the second
step to predict values using opposite one-sided differences for first derivatives. The
method is second order accurate and stable for adequately chosen time steps. The
method generates evolutions of avalanches down an inclined plane from a hump at rest
into a moving and extending M-wave not a hump,'! see Fig. 13.23. Experience has
shown that the commonly used EULERian scheme is fraught with several difficulties;
among these are, see [70]:

1'The spatially one dimensional SH equations allow construction of two types of exact similarity
solutions. One is a parabolic hump with vanishing depths at the front and rear ends, called a parabolic
hump, the other is also of parabolic shape but with finite maximum depths at the end point, called
by S.B. SAVAGE and K. HUTTER M-wave [70, 72] as seen in the experiments (for details see [72,
73] ([70], Fig.7.2 on p. 302)). Figure 13.23 indicates that the parabolic hump seems to develop
into a profile close to an M-wave.
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Fig. 13.23 Results obtained
from R.W. MACCORMACK’S
explicit EULERian finite
difference scheme for the
evolution of the motion of a
finite mass of granular
material starting from rest
down a bed with inclination
angle ¢ = 32°, an angle of
internal friction ¢ = 29° and
bed friction angle 0 = 22°
(a), 16° (b), 10° (¢), from
[72]. © J. Fluid Mech

Depth, h

Depth, h

e The scheme uses a fixed spatial grid that extends upstream and downstream of the

moving pile.

e Even at those parts of the bed, where no material exists and the depth is zero, the
equations of motion yield non-vanishing velocities upstream and downstream of
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Fig. 13.24 Definition of
mesh cell notation for the
LAGRANGE an numerical
scheme The indices i refer to
cell centers, j to cell
boundaries

0 1 2 3 jooj+l 1k

the pile. This causes sudden changes in the velocities up- and downstream of the
pile, a destabilizing effect in the numerical integrations.

e When using artificial viscosity to control such instabilities, the velocities in the
region outside of that occupied by the pile began to affect the results in the region
of the pile itself.

(b)LAGRANGEan approach. In the one-dimensional Lagrange an scheme one
divides the length of the avalanche into equal elements, see Fig. 13.24

n n— n—1/2 .
X =X l—l—xj 2 At, (Gj=12,...,N),
1 .
W= (W), G=1200N (13.127)

and integrates in a first step the mass balance equation (13.30),

Oh Ohu
- =0 13.128
o1 " ox (13.128)
from x;_; to x; to obtain
d ]hd df; 0 (13.129)
— x=——=0, .
dt dx;
Xi—1

where F; is the area of the ith cell, i.e., the area of any numerically advected cell is
conserved. Approximating F; by h; (x; — x;—1), (13.129) implies
R —xl ) =R (T = x), G=1,2,...,N), (13.130)
which is an equation for A7, since all other quantities are known.
The depth averaged momentum equation in non-conservative form, (13.30); is
used to solve for the new values of velocities at the cell boundary points. Since the

left-hand side of this equation contains 0 /1/0 x, the boundary cells must separately
be handled. The finite difference representation for this yields
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u;'.“/z = u:f_]/z + At[sing — sgn (u';_l/z) cos ( tan &

_EKact/pas COs <P7]7 (13131)
where
hy/ (x5 — 7). for j =0,
PJ’?: (hl’.’—hl’.‘_l)/(xf—xf_l), for j=1,2,...,N—1,
y_1/ (X = x-1) - for j=N
and
n 1 n n
Xl = > (xj +xj+1), (13.132)
- K, for Ujr] — Uj > 0,
Kacl/pas - [Kpass for Wig —u; < 0. (13133)

Numerical computations using (13.130)—(13.133) remained only stable if the artifi-
cial viscosity

8 uz n— n— n—
Hoa = H (MH}/2 —2u; 24 ujj/z) /(- x;‘_l)2 (13.134)
was added to the right-hand side of (13.131) with 0.01 < p < 0.05.

Numerical solutions of the one-dimensional SH equations were constructed in
[72] by the above described LAGRANGEan approach, in which the computational grid
was advected with the material; the construction of the solution is simple, efficient
and reliable. It was applied and compared with laboratory experiments for one- and
two-dimensional flows down various basal geometries from initiation to run-out, see
e.g. [31, 41, 42, 47, 72, 73]. Figure 13.25 shows time slices of length profiles from
t = 0totr =5 (dimensionless time) for an avalanche down an inclined plane.

Since Eqgs.(13.130)—(13.133) are based on the momentum equation in non-
conservative form, these finite difference equations are not explicitly shock-capturing.
Steep gradients and spurious oscillations of the field variables must be handled by
numerical diffusion, using the latter judiciously, where instability prone oscillations
occur. This has been reasonably successful, but it is unsatisfactory and calls for better
schemes.

(IT) High Resolution Shock-Capturing Numerical Methods for One- and Two-
Dimensional Avalanche Modeling.

(a) A quick review for the need of TVD and discontinuous Galerkin methods. In
a continuum-mechanical approach, the governing equations for granular-fluid flows
comprise of a strongly convective hyperbolic system, especially for the granular
phase. Successful numerical modeling of strongly convective hyperbolic equations
is one of the most challenging problems in computational fluid mechanics, particu-
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Fig. 13.25 Height 4 plotted against distance x for LAGRANGEan calculations of avalanche length
profiles at six different times. With increasing time the profile tends to become closer to parabolic.
Also shown in the inset are the front, middle and rear end velocities. The points indicate computed
values (from [72]), whilst the crosses are from A. HUBER [37]. Computations were performed for
¢ =32° ¢ =120°¢ =22°and ¢ = 0.3218, from [72]. © J. Fluid Mech

larly when large gradients of the physical variables occur, e.g. for a moving front or
possibly arising shock waves in a granular avalanche. Shock formation is an essential
mechanism in granular flows on an inclined surface merging into a horizontal run-
out zone or encountering an obstacle when the velocity becomes subcritical from
its supercritical state. In the past decades numerical techniques have been devel-
oped to solve hyperbolic equations for typical moving boundary value problems of
granular flows. Most of these techniques are based on LAGRANGEan moving mesh
finite-difference schemes. In these LAGRANGEan schemes explicit artificial numer-
ical diffusion is often incorporated to maintain stability. In doing so the quality of
resolution deteriorates. In fact, the adequacy of these numerical solutions can be chal-
lenged because of uncontrolled spreading due to this numerical diffusion. Without
adding extra artificial diffusion the formation of the shock results in numerical insta-
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bilities of the LAGRANGEan moving grid technique. This also occurs for an EULERian
integration technique if traditional high-order schemes are employed. Although tradi-
tional first-order finite difference methods, e.g. the upstream schemes, are monotonic
and stable, due to inherent numerical diffusion, they are strongly dissipative, causing
the solution to become also smeared out and often grossly inaccurate. It is therefore
natural to apply conservative high-resolution numerical techniques. Modern high-
resolution schemes are based on flux/slope limiters which switch between linear high-
order (usually second or third order) and low-order (usually first order) discretizations
adaptively depending on the smoothness of the solution. To a certain extent, such
schemes are able to resolve the steep gradients and moving fronts often observed in
experiments but not captured by the LAGRANGEan finite difference scheme and tra-
ditional EULERian finite difference schemes. Y. WANG and K. HUTTER (2001) [85]
compared a series of more than ten most frequently used numerical schemes with
respect to convectively dominated problems. Numerical results showed that the high-
resolution modified total variation diminishing (TVD) LAX-FRIEDRICHS method is
the most competent method for convectively dominated problems with a steep spatial
gradient of the variables. The TVD algorithm can ensure that the total variation of
the variables does not increase with time, thus no spurious numerical oscillations
are generated. The numerical solution can be second- or even third-order accurate in
the smooth parts of the solution, but only first-order near regions with large gradi-
ents. Shock capturing TVD techniques have been developed to solve numerically the
SH equations for single-phase granular flows [79, 87], two-phase fluid-solid mix-
tures with negligible difference of particle fluid and solid velocities [69]. Although
this numerical approach can demonstrate fairly good numerical results, the accu-
racy of a high-resolution discretization inevitably degrades to the first order at local
extrema. Furthermore, an insuperable difficulty arises when granular flows around a
wall obstacle are investigated where high-resolution schemes require more boundary
conditions than those provided physically.

Within the last decade, the Discontinuous Galerkin (DG) method [14] has been
rather successfully established for solving hyperbolic conservation laws, especially
in computational fluid dynamics [6, 19, 32, 74]. There are especially two reasons
for this ascent which obviates essential limitations of classical techniques such as
finite volume or finite difference methods. DG cleverly combines

(1) an arbitrary order p € N in the numerical discretization error O(h?) with
(i1) a local flux evaluation which is at most to be computed from adjacent cells.

Here & refers to the local grid spacing, and p the order of the DG basis polynomials.
Item (i) is in strong contrast to the established schemes which are substantially limited
to O(h™) with n < 2 for unstructured grids, and even on Cartesian grids » is rather
limited to small values because of the increasing number of stencils for increasing .
Item (ii) avoids the necessity of more boundary conditions required in high-resolution
schemes. At present, the DG scheme has still not been applied to simulate granular
flows.

(b) Comparison of the performances of the various schemes. Comparison of the
performances of the various numerical schemes will be conducted with the laboratory
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Fig. 13.26 a Laboratory
avalanche chute consisting of
upper inclined plane merging
continuously into a
horizontal plane. b Idealized
bottom topography with
dimensionless distance along
the lower coordinate to test
the various numerical
schemes, from [13].

© Min-Ching Chiou

chute displayed in Fig. 13.26. A hemispherical shell holding the material together at
the upper end of the chute is suddenly released so that the bulk material commences
to slide on an inclined flat plane at 35° into a horizontal run-out plane by a smooth
transition. The computational domain is the rectangle x € [0,30] and y € [-7,7]
in dimensionless length units, where the inclined section lies in the interval x €
[0, 17.5] and the horizontal region lies where x > 21.5 with a smooth change of
the topography in the transition zone x € [17.5, 21.5]. Furthermore, the inclination
angle is prescribed as

B o, 0<x <175,
Cx)=1¢U—(x—175)/4), 175 <x <?21.5, (13.135)
0°, x >21.5,
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with fo = 35°. Simulations are performed with an angle of internal friction ¢ = 30°
and a bed friction angle 6 = 30°. The material is suddenly released at t = 0 from the
hemispherical shell with initial radius ro = 1.85 in dimensional length-units. The
center of the cap is initially located at (xg, yo) = (4, 0). The results of the numerical
simulations will below be tested against laboratory avalanche experiments.

Numerical results are obtained with the central difference scheme applied to
(13.118) and (13.119) with the artificial diffusion term

82w+ Pw
=y “y8y2

added to the right-hand sides with viscosities i, = p, = 0.02; for smaller viscosities
the simulation becomes unstable. The central difference schemes, as well as many
other traditional higher order difference methods, introduce dispersive effects to the
equations, which are susceptible to numerical instabilities and lead to unphysical
oscillations in the numerical solutions. These are usually located behind the advanc-
ing front and are damped with growing distance from the front. The three dimen-
sional evolution of the avalanche geometry at three different dimensionless times,
t = 6,9, 12 is shown Fig. 13.27. It displays the free surface distribution at these
times when p, = p, = 0.02. When sufficiently large artificial diffusion is added to
dampen the spurious oscillations, a numerical solution without superimposed numer-
ical oscillation can be obtained. However, in such cases the corresponding solution
will be highly diffusive. The simulated granular flow will then spread over a much
wider area than with higher order difference schemes, finer resolution, less numerical
diffusion, and it will probably also be less physically realistic.

Computations, performed with the non-oscillatory central difference scheme
(NOC) and use of the Minmod TVD limiter have performed much more stably,

t=26 t=9 t=12

Fig. 13.27 Three dimensional geometries of the avalanche at three dimensionless times ¢ =
6,9, 12, obtained with the traditional difference scheme and y, = py = 0.02, from [87] ©
Zeitschrift fiir Angewandte Mathematik und Mechanik
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t=12 t=15 t=18

Fig. 13.28 Three-dimensional geometries of the avalanche at six different dimensionless times
t=3,6,9,12, 15, 18, obtained with the NOC scheme and the Minmod limiter In this example the
down-slope inclination angle is defined as

Co, 0<z<xy,

(2) =4 &, (u) , (13.136)
Ty — Ty
0°, T >z,

with 5 =45° x; = 11.5, x, = 44.5, (x0, yo) = (3,0), y € [-5,5] and ¢ = 43°, 6 = 33°, from
[87]. © Zeitschrift fiir Angewandte Mathematik und Mechanik

Fig. 13.28, as can be seen from the humps at dimensionless times = 3, 6, 9, 12, 15, 18
and without the explicit use of additional numerical viscosity.

One of the important questions is the influence of obstructions upon the flow of
avalanches. In practice, often constructions are erected in possible avalanche tracks
to divert the motion of an avalanche or reduce its dynamics and so to protect property
which can possibly be damaged by it. The effect of a tetrahedron positioned in an
avalanche track was tested by M.C. CHIOU, Y. WANG and K. HUTTER (2005) [12],
shown in Fig. 13.29. It can be seen that for a sufficiently high obstacle, all the granular
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t=15 t =18 t=21

Fig. 13.29 Three-dimensional geometries of an avalanche past a tetrahedral wedge located on
the inclined plane for different dimensionless times, from [12]. © Acta Mech. Springer Verlag,
reproduced with permission

material approaching the obstacle is diverted to its sides and flows around the obstacle
downwards. A so-called granular vacuum is formed behind the tetrahedron, hence the
obstacle can prevent the zone directly behind it from being attacked by the granular
flow.

The generalized SH equations with COULOMB-type frictional stress parameteriza-
tion are a hyperbolic system of equations and, consequently, susceptible to solutions
involving shocks. Figure 13.30 shows supercritical flows of a layer of grains down
an inclined plane being diverted (i) by a straight or curved wall, perpendicular to the
plane, (ii) by a circular cylinder and (iii) by a regular tetrahedron. The shocks are
clearly visible in the photographs and show that the flow regimes before and behind
the shock differ from one another. The shock structure is sketched and indicates that
the flow speed, orientation of the shock and height of the granular layer behind the
shock adjust to the wall.'? In the case of the division of the flow by the side faces of

2The shocks arise at singular surfaces across which certain variables suffer jump discon-
tinuities, here for the avalanche thickness and for the surface tangential velocity components.
The equations, which hold between the field variables on the two sides of such surfaces are known as
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Fig. 13.30 Sketches and snapshots of supercritical granular flows down inclined planes, which
are diverted by obstructing walls (straight and curved, but perpendicular to the inclined planes), a
circular cylinder and a regular tetrahedron. Top row from [78], bottom row from [79]. © Yih-Chin
Tai

the tetrahedron into two separate granular side discharge units generate in-between a
granular vacuum protecting an object (here the blue building). Computational analy-
sis in the last panel shows that the SH equations reproduce the shock structure in this
case characteristically correctly.

Numerical solutions of the SH equations have been constructed by the shock-
capturing NOC, second order finite difference scheme using the Minmod limiter. A
great number of such computations have been performed to study the performance of
the numerical scheme for the motion of a finite mass down the laboratory chute having
bottom topographies typically as shown in Fig. 13.18 or Fig. 13.26 with various cross
flow parabolic curvatures, see [70] and literature in there. In this way strongly or
weakly channelized flows down inclines merging into a horizontal channel or plane
can be tested with regard to the spreading of the granular mass and the details of trim
lines and depositions in location and form.

Figure 13.31'"% depicts the thickness contours of the avalanching body taken
from [70], originally published in [68], at ten non-dimensional time steps. ‘The flow

(Footnote 12 continued)

RANKINE-HUGONIOT relations and follow from the jump relations of the balance laws of mass and
momentum. In the shock capturing numerical schemes they are automatically incorporated in the
integration technique.

3Text follows closely [70].
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of the finite mass of granular material is down a circular channel into a horizontal
channel of the same cross-flow shape. The bulk body commences to slide and deform
continuously along the chute as long as the bed friction resistive force is smaller than
the down-slope component of the gravity force. The first few panels in this figure
show clearly that, once the cap holding the mass is opened, the avalanche accelerates
and spreads rapidly in the down-slope direction due to the channeling effect in the
cross-slope direction. The avalanche decelerates rapidly as soon as it enters the run-
out zone, which starts at t > 4.5, because of the continued mass flux from the tail, its
front is then able to spread laterally as evident in panels 5 — 7 for r = 6.0, 7.5, 9.0".

‘After + = 7.5, due to the channeling effect of the cross section, the tail of the
avalanche reduces in width, but the head expands in width in the run-out zone. Owing
to the reduction of the avalanche speed from supercritical to subcritical conditions
the transition zone into the horizontal induces a shock associated with the height of
the avalanche that is moving upstream from time ¢ = 9.0 onward. The avalanche
comes to rest after r = 13.5. The first three panels of Fig. 13.31 indicate that due
to the dilatation, the granular body is extending in all directions, if mainly in the
downhill direction. At ¢t = 6.0 the front part has completely reached the transition
zone. Therefore, the mass at the front is contracting due to the effect of the passive
earth pressure coefficient, but the mass in the tail is still extending. At t = 7.5,
deposition of mass starts in the vicinity of the lower end of the transition zone. Owing
to the effect of the curvature, the flowing body starts contracting longitudinally and
extending laterally. After ¢+ = 9.0, a steep surface-height gradient starts to develop
on the tail side of the avalanche. Although the body is almost at standstill, the mass
from the tail is continuously flowing down and is deposited on the tail side of the
body. This is the main mechanism for the development of the shock front moving
upstream. The physical explanation for this is that from the front there is a strong
resistive force from the bed that prevents the body from sliding further. Thus, mass
arriving from the upper part of the channel must be deposited at the back of the body.
Consequently, the stopped body must extend upward. The last three panels show the
continuous development of the backward moving shock. At the same time, there is
almost no motion at the front. Due to the partial lateral confinement, the extension
of the body in the cross-slope direction is almost negligible’, [70].

S.P. PUDASAINT and K. HUTTER [70] discuss a great number of results from com-
putations for granular avalanches down inclines into a horizontal deposition zone,
using various cross-channel curvatures to estimate the dependences of the deposi-
tion geometries on these parameters. S.P. PUDASAINI also looks at the dynamics of
granular masses down helically curved channels and gives quantifications on run-out
distances and spreading of the granular masses in the deposition zone. Moreover, he
demonstrates that avalanche run-out distances depend strongly on the dependence
of the bed friction angle on the pressure [67].

Comparison with channelized laboratory avalanche flows. S.P. PUDASAINI and
K. HUTTER ([70], pp 425 ff) summarize a great many laboratory experiments for
flows down a sliding surface that is a straight parabolic channel down an inclined
plane merging into a horizontal plane. Specifically, such models have been used
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Fig. 13.31 A sequence of numerical snapshots of the avalanching motion of a granular material
with internal and basal friction angles ¢ = 43° and § = 33°, for different time slices. Contours
of equal thickness are plotted at ten time intervals using ‘unrolled’ projected non-dimensional
curvilinear coordinates (x,y). The transition zone lies between x = 11.5 to x = 14.5. The 45°
inclined section lies on the left and the horizontal part lies on the right of each panel. The thalweg
of the valley is indicated by the line y = 0. The panels demonstrate the deformation and settling of
avalanches in doubly curved channels, from S.P. PUDASAINI et al. [68]. © Annals of Glaciology
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to test the validity of the theoretical model for this slightly complex geometry. A
reference surface is defined, which consists of a plane with inclination angle { = 40°,
which is connected to a horizontal run-out zone by a cylindrical transition zone.
The x-axis is aligned with the direction of steepest descent of the reference surface
and the y-axis points in the cross slope direction. Superimposed on the inclined
section of the chute is a shallow parabolic cross-slope topography, b = y?/(2R)
with R = 110cm forming a channel which partly confines the avalanche motion.
The inclined parabolic chute lies in the range x < 175cm, the plane run-out zone
lies in the range 215 cm < x < 320 cm and the transition zone smoothly joins these
two regions. The partly confined chute channels the flow and results in significantly
longer maximum run-out distances than in an unconfined chute. Below we discuss
the results of J.M.N.T. GRAY et al. [30].

The experiment was performed with quartz chips of mean diameter of 2—4 mm,
an angle of internal friction ¢ = 40° and a basal friction angle 6 = 30°. The granular
material was released from rest on the parabolic inclined section of the chute by
means of a cap having the form of a hemispherical surface and fitted to the basal
surface topography. In an experiment, once the cap is suddenly released, the avalanche
accelerates and spreads rapidly in the down-slope direction. As it enters the run-out
zone, it rapidly decelerates and spreads out laterally when the partial confinement of
the topography ceases. The avalanche comes to rest after 1.79s.

Figure 13.32 shows a comparison of the marginal curves (black closed lines) of the
experimental avalanche with the computed topography (shaded area), demonstrating
that the computed speeds of the rear parts of the avalanche are considerably under-
predicted. The last panel in the figure also shows that the experimental avalanche has
come to rest while the rear part of the computed avalanche is still in motion. The most
likely cause for this is that the basal sliding law is considerably more complicated
than COULOMB dry friction with constant friction angle.

In order to demonstrate that a change in the bed friction sliding law can quali-
tatively bring theory and experiment into better agreement, the numerical compu-
tations have been repeated using a variable bed friction angle. In the front quarter
of the avalanche the bed friction angle is held constant as before, but it is linearly
reduced in the rear according to

do, x>xp—1(xp—x),
5= : 13.137
[50_m5(xf_x)_%(xf_xr)ﬁ x<xf_%(xf_xr)’ ( )

where Jj is the constant bed friction angle, ms = 10° m~! is the bed friction reduc-
tion factor and x; and x, are the positions of the front and rear of the avalanche,
respectively. The avalanche thickness distributions computed by using the modified
bed friction relation (13.137) are illustrated in Fig. 13.33. The reduced bed friction
angle in the avalanche tail allows the rear of the avalanche to accelerate more rapidly
under the action of gravity and the agreement with the experimental boundary is
considerably better. For more details and further comparison with laboratory data
see [30, 67, 70, 88].
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Fig. 13.32 Computed avalanche thickness, illustrated at five time slices using ‘unrolled’ projected
curvilinear coordinates (x, y) Contours of equal thickness are indicated in cm and thickness ranges
are differently shaded. The time is indicated in the top left-hand corner and all lengths are in cm.
The solid lines at x = 175 cm and at 215 c¢m indicate the position of the transition zone. The 40°
inclined parabolic section lies on the left and the horizontal plane on the right of each panel. The
line y = 0 is the thalweg. The thick solid line indicates the position of the avalanche edge in the
laboratory experiment, determined from photographs, from [30]. © Proc. Royal Soc. London
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Fig. 13.33 Same as in Fig. 13.32 but the avalanche thickness is computed by using the modified
basal friction angle (13.137) and comparison with the experimental avalanche boundary, from [30].
© Proc. Royal Soc. London

It was pointed out earlier that the SH equations or any of their extensions are
very similar in form to the Shallow Water Equations of fluid mechanics. The essen-
tial difference lies in the assumed constitutive properties and the basal topography.
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Fig. 13.34 Computed avalanche thickness using the shallow water avalanche model, illustrated
at the indicated time slices (in the upper left corners) For the computations, K, = Ky = 1 were
used. The dark lines in the panels outline the experimental avalanche margins of the experiment of
Fig. 13.32 or Fig. 13.33, from [30]. © Proc. Royal Soc. London
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Fig. 13.35 Laboratory gully for simulations of granular avalanches. On a plane inclined by 40° a
parabolically shaped channel is mounted where the thalweg deviates sinusoidally from the direction
of steepest descent. A mixture of 40 kg sand and gravel is released from a Plexiglass hemispherical
cap at the upper edge of the channel. A clock on the left in the pictures measures the time, its long
arm performs one revolution per second. The photographs show five shots of the moving avalanche.
Note that the originally well-mixed gravel mass is de-mixed with the coarse particles in the front
and the small ones in the rear, from [30]. © Proc. Royal Soc. London

-
s B
T

] 21k & %

T

L

BQLT=) o o
B 2= - o
EH0E=1 o 0

Fig. 13.36 Plane view of the unrolled chute of the top panels with the avalanche motion from
top to bottom The horizontal lines show where the sinusoidal thalweg begins (above at x = 65
cm), ends at x = 320 cm) and where the horizontal plane begins (below = 275 cm). The times in
the panels indicate the moments since the avalanche was released from rest. The graphs show the
topographies in different shadings (with numbers indicating the thickness in cm, as obtained via
numerical computations the black solid lines show the margins of the avalanche piles as determined
[from the photographs, from [30]. © Proc. Royal Soc. London
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It was also mentioned that the SH equations reflect shallow water properties when
K, = K, = 1. A one-dimensional version of such a hydraulic avalanche model
was developed by M.E. EGLIT et al. [22-26], however, with no numerical compu-
tations and no experimental verification. A repetition of the computations of our
avalanche model on the doubly curved topography with K, = K, = 1 yielded
instructive results of which the essentials are displayed in Fig. 13.34. It is evident
from this figure that under rapid dilatational motion the computed avalanche shapes
do not considerably deviate from that of the experiment. In the deposition zone,
where contracting flow conditions prevail, deviations from the experimental results
are substantial. The travel distance is too short and the avalanche spread too wide.
COULOMB frictional behavior is therefore, very significant in catching the correct
dynamical behavior of the avalanche.

Selecting earth pressure coefficients unequal to unity is tantamount to accepting
normal stress effects in the constitutive relations. These stress anisotropies evidently
become significant when the avalanche enters the horizontal run-out zone (and some-
whatearlier), as seen in the fifth panel of Fig. 13.34. Without the passive earth pressure
coefficient to act against sidewise spreading, the computed deposition of the granular
avalanche is too wide and its front is behind that of the experiments.

Let us close this analysis with small scale laboratory avalanches, in which the
thalweg is not only curved in a vertical plane defining the direction of the steepest
descent, but also to the side. Figure 13.35 shows a laboratory gully for laboratory
avalanche simulations, where the thalweg deviates sinusoidally from the direction
of steepest descent. The parabolic channel merges after 240 cm into the horizontal
plane in the foreground and thus gives up the parabolic profile. A mixture of 40kg
gravel and sand is released from a hemispherical Plexiglas cap and moves down
the gully; by the sidewise sinusoidal deviation of the thalweg from the direction
of steepest descent; the moving granular flow deviates from the symmetric motion
down the direction of steepest descent. This un-symmetry is clearly seen in the five
photographs of Fig. 13.35. The early longitudinal stretching and the formation of
a tail of fine material that still moves, when the front of the avalanche has already
settled down are typical. Figure 13.36 displays a comparison of the experiment with
computational results, here also based on the LAGRANGEan integration technique,
used by J.M.N.T. GRAY et al. [30].

13.6 Attempts of Model Validation and Verification
of Earthquake and Typhoon Induced Landslides

In the previous sections the coordinate systems underlying the governing equations
have in general not exactly followed the true topography but only nearly so; devi-
ations from the actual topographies were accounted for by especially introducing
the base geometry via an equation F”(x,t) = 0 It seems obvious that curvilinear
coordinates should be employed, which are constructed with the aid of the digital ele-
vation data of the geographical information system provided in the area of potential
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landslide occurrences, which are now almost everywhere available to an accuracy of
5m. These coordinate-based approaches have been introduced by F. BOUCHUT and
M. WESTDICKENBERG [9] and were applied to the MOHR—COULOMB constitutive
model by Y.- CH. TAIand CH.- Y. KuUo0 (2008) [81] and I. LuCA et al. (2009) [55, 56],
Y.-CH. Tar et al. (2012) [83]. The governing equations of these models are derived by
constructing a terrain-fitted coordinate system, in which the flow depth is defined in
the direction normal to the basal surface. Along this depth-wise direction the inertial
effects are of a small negligible magnitude, which leads to a hydrostatic pressure
assumption. The last 10-15 years have witnessed a search of papers dealing with
these descriptions.

Models achieving equivalent approximate descriptions and applied to the cho-
sen constitutive class of these authors are by H. CHEN and C.F. LEE (2000) [11],
S. McDOUGALL and O. HUNGR (2004) [59] and O. HUNGR and S. MCDOUGALL
(2009) [40] and R.P. DENLINGER and R.M. IVERSON (2004) [16] and R.M. IVERSON
and R.P. DENLINGER (2004) [45], R.P. IVERSON et al. (2004) [46] and S. DE TONI
and P. SCOTTON (2005) [18].

The aforementioned references employ either EULERian or LAGRANGEan finite
differences paired with the use of non-oscillatory numerical schemes and TVD slope
limiters (see G.S. JIANG and E. TADMOR (1997) [63] or for an overview [70]). They
require as a preliminary step derivation of the governing equations (balances of
mass, momentum,...) referred to the basal topography fitted coordinates. In the newer
approach Y.- CH. TATetal. (2012) [83] “the model equations are written for the Carte-
sian components of the momentum and stresses in the terrain-fitted coordinates. The
difference between the present model and traditional description of [the] governing
equations over curvilinear coordinates is that the new model avoids the calculation of
the Chrystoffel symbols; see for comparison I. LUCA et al. [55, 56]. This form is not
the first seen in the literature, but it is a special form(the EULERian description limit)
of the Unified Coordinate (UC) formalism [W.H. HUI and S. KOURDRIAKOV (2002)
[39]; W.H. Hut (2007) [38]]. As a fuller example Y.- CH. TAI and CH.- Y. KUO [81]
and Y.- CH. TAI et al. [83] further elaborate on the capability of moving coordinates
in the UC method for their two-dimensional model with erosion and deposition”,
after C.- Y. Kuo et al. (2011) [53].

Apart from a great number of validation attempts for table top, see [15, 46], and
laboratory avalanches of the 1-5m size, [59], using the constitutive class of the SH
model—performances are reported in this chapter and to a much larger extent by
S.P. PUDASAINI and K. HUTTER [70] and, incorporating also entrainment and depo-
sition phenomena, by Y.- CH. TAI and Y.C. LIN (2008) [82] and S. MCDOUGALL and
O. HUNGR [60]—Tlarge scale chute experiments (of 95 m length) were done by IVER-
SON and DENLINGER (2004) [45] and PUDASAINI et al. [69].

The book by I. LucA, Y.- CH. TATand CH.- Y. KUO [57] gives a detailed summary
of the numerical methods and validation and verification of the models equations,
[57].

R.P. DENLINGER and R.M. IVERSON performed their outdoor experiments in a
rectangular chute of 2m width and ca 70m down-slope length and 31.5° incli-
nation angle, merging into a 25m long plane inclined 2.5°. They used a 10m?
mass of a gravel-water mixture suddenly released from a head gate at the top of
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the chute. Because of the pressure of the water a mixture model was formulated and
reduced to a classical avalanche model extended by accounting for the pore pressure.
Two models, physically equivalent, but with [69], and without [15], accounting
for the curvature effects along the trajectory are derived by R.P. DENLINGER and
R.M. IVERSON [16] and S.P. PUDASAINI et al. [69]. Results are comparable to one
another, though those of S.P. PUDASAINI et al. seem to match measurements a bit
better, see Fig. 13.37.
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Fig. 13.37 a 95m long chute-horizontal plane combination of USGS, photographed here on
Ist September 2001 for solid-water debris flow tests. For details see [15]. b Predicted profiles of
debris flow surges along the down-slope coordinate in the middle of the channel in panel (a) at
four successive times on the inclined rectangular flume with inclination angle of 31.4°, [69]. ¢, d
Comparison between measurements and two model predictions. ¢ Experimental data of flow depth
at three cross sections of a water saturated debris flow at USGS, 24. July 1995, and numerical
results predicted by R.P. DENLINGER and R.M. IVERSON [15]. d Numerical results predicted by
S.P. PUDASAINI et al. [69]. © Natural Hazards and Earth System Sciences
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Fig. 13.38 Analysis of the Frank slide Plane and oblique views of the simulated flow position at
20s intervals. The flow depth contours are at 5 m intervals. The thick, solid line indicates the extent
of the real event (digitized from the Canada Department of Mines: Map 57A (Frank, Alberta 1917)),
from [60]. © Canadian Geotech. Journal

S. MCDOUGALL and O. HUNGR [59] performed back analyses of a historical and
recent landslides to see whether the model equations adequately reproduce the soil
mass movements in the landslides, see Fig. 13.38. They used
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e the Frank slide in Canada: “On April 29, 1903, approximately 30 million m? of rock

descended Turtle Mountain into the Crow’s-nest River Valley, partially burying the
town of Frank, Alberta and killing about 70 people. It was Canada’s worst landslide
disaster, EVANS (2001) [28]. The simulation shown in Fig. 13.38 is based on a
detailed digital elevation model of the present-day topography, provided by the
Geological Survey of Canada. The topography of the deposition zone was modified
to approximate the pre-slide condition by removing approximately 30 million m*
from the area according to estimated deposit depths. The starting position of the
30 million m? slide mass was similarly estimated.
The model provided a good match of the general extent and distribution of the
final deposit, using a frictional rheology with § = 14° and ¢ = 40°. The low
value of the bed friction angle points at the existence of pore water pressure in
the flowing material and would require a solid-fluid mixture model for adequate
physical description. Computations have shown that the flow must have come to
rest in about 100s. For more details see [59].

e The second landslide analyzed by S. MCDOUGALL and O. HUNGR [60] is the 1999-
Nomash River rock slide-debris avalanche in British Columbia. This landslide
began with the collapse of 300,000m? of crystalline limestone, with the head
scarp located about 430 m above the river on the Western side of the V-valley
and then continuing down, roughly along the thalweg to stop after more than a
kilometer. The computations performed without supposing mass being entrained
from the ground on the Western slope always made the computed avalanche to stop
before it turned its motion down the main valley. Water did not seem to be the cause
for the farther continuing motion of the real avalanche motion. However, “steep
talus-like deposits at the foot of the source slope” [60], have led S. MCDOUGALL
and O. HUNGR to postulate a volume entrainment density per unit area, compare
also Fig. 13.39,

V =Ev|h, (13.138)

where |v| is the modulus of the depth-averaged topography parallel velocity and
h is the avalanche depth as a function of space. By trial and error E = 1.9 x 1073
(m~") was found to be optimal for matching trim lines with snapshots of computed
avalanche margins. Details are shown in Fig. 13.39 and its caption.

The above description of avalanching motions of granular materials in small table
top, laboratory and outdoor experiments were complemented by two landslide events
in Nature by CH.- Y. KUo et al. [52, 53]. In [53], the theory that was used in the com-
putational validation attempts were based on the assumptions of COULOMB internal
frictional and basal MOHR—COULOMB sliding behavior, which allowed anisotropic
stress responses for the normal stresses o,,, 0y, tangential to the basal surface, in
the approximation of this MOHR—COULOMB model expressed as (13.95)—(13.103),
so that in general the down-slope and cross-slope normal pressures differ from one
another. Such a stress anisotropy is denied by the geophysical mass flow group of
the New York State University at Buffalo, [65, 66], who choose
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Fig. 13.39 Oblique
surfacial views of the
1999-Nomash-River rock
slide-debris avalanche in
British Columbia, Canada
(Photographs courtesy

D. AYOTTE). Top photograph
looking down valley, bottom
photograph showing the
erosion in the track, from
[60]. © Canadian Geotech.
Journal

Oxx = Oyy = RKact/pasOzz (13.139)
with the active and passive earth pressure coefficient selected according to whether

ou  Ou

4= 13.14
5y (13.140)
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Fig. 13.40 Simulation of the Nomash River landslide accounting for entrainment of material from
the source slope. The surface elevation contours are shown at 20 m intervals. Dashed lines show
the computed trim lines, from [60]. © Canadian Geotech. Journal

is positive or negative. They have advertized their model in B. PITMAN et al. (2003)
[65] and B. PITMAN and L. LEE (2005) [66] and employ their own software TITAN2D.
Comparison of their solid-fluid mixture model with data from field observations
are not known to us (in 2014). Neither seems the stress (an)isotropy law (13.139),
(13.140) have been corroborated by detailed laboratory experiments; for details see
[70], p. 455 ff (Fig. 13.40).

A further careful analysis of the simulation and validation of the landslide of the
Hsiaolin catastrophe, Taiwan is reported by CH.- Y. Kuo et al. (2011) [53]. Accord-
ingly, Typhoon Morakot struck southern Taiwan in the summer of 2009, causing
the most severe flooding since the 1950s. In the early morning of August 9, rainfall
triggered the Hsiaolin landslide, which itself caused 474 of the total 724 deaths by
overrunning the Hsiaolin village. Good pre- and post event topographies (5 x 5m
grid resolution) of the region, where the catastrophic mass flow took place allowed
estimation of (11 + 2) million m® of moving mass without entraining mass.
CH.- Y. KUO et al. [53] based their computation on their extended SH formula-
tion in topography-following coordinates by Y.- CH. TAT and CH.- Y. KUO (2008)
[81]and Y.- CH. TAIetal. (2012) [83], a formulation, which avoids the calculation of
the CHRISTOFFEL symbols, see for comparison I. LUCA et al. [55, 56], but restricted
their analysis to the simplified material behavior of the shallow water assumption, i.e.
by putting Kci/pas = 1 (vanishing angle of internal friction) and employing a basal
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depths are coded with the same color axis. The area boxed in the bold dark green polygon is the region

for the minimization scheme, from [53] © American Geophysical Union, J. Geophys. Research,
Solid Earth

COULOMB or VOELLMY drag parameterization (see [53], formulae (5) and (8)).1
They employed an optimization procedure using the method of least squares,

1
h?’fa’f = IBI(F Z / {h(xy /’Lv 0{) - hmeas(x)}2 ’ (13141)
A

14Details on conditions of validity of this assumption are given in [57].
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where A is the area of the deposition,  the MOHR—COULOMB friction and «
the VOELLMY coefficient. Moreover, i (x, i, o) is the computed deposition height
obtained for given p and o and Apyeqs(x) the corresponding measured height. The
above minimum for h2,, is first computed for v = 0 and variable /; then p = fiop
is held fixed and a second optimization yields an optimal value for o = ap.
Figure 13.41 shows a comparison between, (a) the actual deposit and (b) the simu-
lated deposit. The area boxed by the bold green polygon is the region for which the
minimization procedure is applied (for a more detailed and more objective judgment,
the reader may consult [53]). We emphasize that, apart from the many difficulties
in the interpretation of the topographic data and the insecurities of the pre- and post
event surveyor data the results leave the reader insecure with regard to the cho-
sen constitutive response. More specifically, the computations have been performed
with an isotropic stress postulate (K, = K, = 1), which in laboratory data (see
Fig. 13.34) have shown a significant dependence on the earth pressure dependent
stress anisotropy. It would be worthwhile to conduct such a comparison to judge
the reliability of the assumption made in [53]. For additional model verification, see
[57].

References

1. Ambraseys, N., Sarma, S.: Liquefaction by soils induced by earthquakes. Bull. Seismol. Soc.
Am. 59(2), 651-664 (1969)
2. Amstutz, Ed, Staub, A.: Dr. A. Voellmy zum 65. Geburtstag. Schweiz. Bauzeitung 85(28), 481
(1965)
3. Armstrong, B.R., Williams, K.: The Avalanche Book. Fulcrum Publishing Golden, CO, Golden
(1986), (1992)
4. Ansey, Ch., Meunier, M.: Estimating bulk rheological properties of flowing avalanches from
the field data. J. Geophys. Res. 109, NoF1:F001004 (2003). doi:10.1029/2003JF0036
5. Bardet, J.P., Kapuskar, M.: Liquefaction and sand boils in San Francisco during 1989 Loma
Prieta earthquake ASCE. J. Geotech. Eng. 119, 543-562 (1993)
6. Bassi, F., Ghidoni, A., Rebay, S., Tesini, P.: High-order accurate p-multigrid discontinuous
Galerkin solution of the Euler equations. Int. J. Numer. Meth. Fluids 60, 847-865 (2008)
7. Bowen, R., Wang, C.C.: Introduction to Vectors and Tensors. Vol. I Linear and Multilinear
Algebra; Vol. 2 Vector and Tensor Analysis. Plenum Press, New York (1976)
Brillouin, L.: Tensors in Mechanics and Elasticity. Academic Press, New York (1964)
9. Bouchut, F., Westdickenberg, M.: Gravity driven shallow water models for arbitrary topography.
Commun. Appl. Math. Sci. 2(3), 359-389 (2004)
10. Casagrannde, A.: Characteristics of cohesionless soils affecting the stability of slopes and earth
fills. J. Boston Soc. Civil Eng. (1936)
11. Chen, H., Lee, C.F.: Numerical simulation of debris flows. Can. Geotech. J. 37, 146—-160 (2000)
12. Chiou, M., Wang, Y., Hutter, K.: Influence of obstacles on rapid granular flows. Acta Mech.
175, 105-122 (2005)
13. Chiou, M.: Modelling dry granular avalanches past different obstruct (Elektronische
Ressource): numerical simulations and laboratory analyses. Ph.D. thesis, TU Darmstadt (2005)
14. Cockburn, B., Karniadakis, G.E., Shu, C.-W.: The development of discontinuous galerkin meth-
ods. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods.
Lecture Notes in Computational Science and Engineering, vol. 11, pp. 3-50. Springer, Heidel-
berg (2000)

e


http://dx.doi.org/10.1029/2003JF0036

References 193

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.
28.

29.
30.

31.

32.

33.

34.

35.

36.
37.

38.

Denlinger, R.P.,, Iverson, R.M.: Flow of variably fluidized granular material across three-
dimensional terrain 2. Numerical predictions and experimental tests. J. Geophys. Res. 106,
553-566 (2001)

Denlinger, R.P., Iverson, R.M.: Granular avalanches across irregular three-dimensional terrain.
1. Theory and computation. J. Geophys. Res. 109 (2004). doi:10.11029/2003JF00085

Dent, J.D., Burrel, K.J., Schmidt, D.S., Louge, M.Y., Adams, E.E., Jazbutis, T.G.: Density,
velocity and friction measurements in a dry-snow avalanche. Ann. Glaciol. 26, 247-252 (1998)
De Toni, S., Scotton, P.: Two-dimensional mathematical and numerical model for the dynamics
of granular avalanches. Cold Reg. Sci. Technol. 43, 3648 (2005)

Dolejsi, V., Feistauer, M.: A semi-implicit discontinuous Galerkin finite element method for
the numerical solution of inviscid compressible flow. J. Comp. Phys. 198, 727-746 (2004)
Eckart, W., Faria, S., Hutter, K, Kirchner, N. Pudasaini, S,P., Wang, Y.: Continuum descrip-
tion of granular materials. Spring School at the Department of Structural and Geotechnical
Engineering, Polytechnic Institute, Turin, Italy, 8—12 April 2002

Eckart, W., Gray, JM.N.T. and Hutter, K.: Particle image velocimetry (PIV) for granular
avalanches on inclined planes. In: Hutter, K., Kirchner, N. (eds.) Dynamic Response of Granular
and Porous Materials Under Catastrophic Deformations. Springer, Berlin (2003)

Eglit, M.E.: Theoretical approaches to the calculation of the motion of snow avalanches. In:
Itogi Nauki, Moscow, Viniti 60-97. English translation in Glaciological Data Report GD-16,
63-118 (1974)

Eglit, M.E., Shveshnikoya, E.I.: Mathematical modeling of snow avalanches (in Russian).
English translation Data of Glaciological Studies 38, 79-84 (1980)

Eglit, M.E.: Calculation of the parameters of avalanches in the region of breaking and halting
(in Russian). English translation Data of Glaciological Studies 53, 35-39 (1982)

Eglit, M.E.: Some mathematical models of snow avalanches. In: Shahinpoor, M. (ed.) Advances
in mechanics and the flow of granular materials, vol. 2, pp. 577-588. Clausthal-Zellerfeld and
Gulf Publishing Company, Houston (1983)

Eglit, M.E.: Mathematical modeling of dense avalanches. In: 25 Years of Snow Avalanche
Research at NGI. Anniversary Conference, Voss, Norway, 12-26 May 1998

Erismann, T., Abele, G.: Dynamics of Rockslides and Rockfalls. Springer, Berlin, (2001)
Evans, S.G.: Landslides. In: Brooks, G.R. (ed.) A synthesis of geological hazards in Canada.
Geol. Surv. Can. Bull. 548, 43-79 (2001)

Gray, J.M.N.T., Hutter, K.: Physik granularer Lawinen. Physikalische Blitter, 54, 37-44 (1998)
Gray, . M.N.T., Wieland, M., Hutter, K.: Gravity driven free surface flow of granular avalanches
over complex basal topography. Proc. R. Soc. Lond. A455, 1841-1874 (1999)

Greve, R., Hutter, K: The motion of a granular avalanche in a convex and concave curved chute:
Experiments and theoretical predictions. Philos. Trans. R. Soc. Lond. A342, 573-604 (1993)
Griault, V., Riviere, B., Wheeler, M.F.: A splitting method using discontinuous Galerkin for the
transient incompressible Navier—Stokes equations. ESIAM: M2AN, 39(6), 1115-1147 (2005)
Grigoriyan, S.S., Ostoumov, A. V.: On the mechanics of the formation and collaps of moun-
tainous slag heaps. (in Russian) Inst. Mekh. Moskov. Gos. Univ. Moscow. Report Nr 1724
(1975a)

Grigoriyan, S.S., Ostoumov, A. V.: Calculation of the parameters of the motion and the force
action on an avalanche dike. (in Russian) Inst. Mekh. Moskov. Gos. Univ. Moscow. Report Nr
1695 (1975b)

Grigoriyan, S.S.: A new law of friction and mechanism for large-scale slag heaps and landslides
(English translation in Soviet Phys. Dokl. 24, 110-111 (1979)

Harrison, J., Falcon, N.: The Saidmarreh Landslip southwest Iran. Geogr. J. 89, 42-47 (1937)
Huber, A.: Schwallwellen in Seen als Folge von Felsstiirzen, Mitteilung Nr. 47 der Versuch-
sanstalt fiir Wasserbau, Hydrologie und Glaziologie an der ETH Ziirich (1980)

Hui, W.H.: The unified coordinates system in computational fluid mechanics. Commun. Com-
put. Phys. 2(4), 577-610 (2007)


http://dx.doi.org/10.11029/2003JF00085

194 13 Shallow Rapid Granular Avalanches

39. Hui, W.H., Koudriakov, S.: Computation of the shallow water equations using the unified
coordinates. SIAM, J. -Sci. Comput. 23(5) 1615-1654 (2002)

40. Hungr, O., McDougall, S.: Two numerical models for landslide dynamic analysis. Comput.
Geosci. 35, 978-992 (2009)

41. Hutter, K., Koch, T.: Motion of a granular avalanche in an exponentially curved chute. Exper-
iments and theoretical predictions. Philos. Trans. Royal. Soc. Lond., A 334, 93—138 (1991)

42. Hutter, K., Siegel, M., Savage, S.B., Nohguchi, Y.: Two-dimensional spreading of a granular
avalanche down an inclined plane. I. Theory Acta. Mech. 100, 37-68 (1993)

43. Hutter, K., Wang, Y., Pudasaini, S.P.: The Savage-Hutter avalanche model. How far can it be
pushed? Philos. Trans. R. Soc. A363, 1507-1528 (2005)

44. Hutter, K., Baillifard, O.: A continuum formulation of lava flows from fluid ejection to solid
deposition. In: Hutter, K., Wu, T.T., Shu, Y.Ch. (eds.) From Waves in Complex Systems to
Dynamics of Generalized Continua, pp. 219-283. World Scientific, Singapore (2011)

45. Iverson, R.M., Denlinger, R.P.: Flow of variable fluidized granular masses across three-
dimensional terrain: 1 Coulomb mixture theory. J. Geophys. Res. 106, 537-552 (2004). doi: 10.
1029/2000JB900329

46. Iverson, R.M., Logan, M., Denlinger, R.P.: Granular avalanches across three-dimensional ter-
rain. 2. Experimental tests. J. Geophys. Res. 109 FO1015, (2004). doi:10.1029/2003JF00084

47. Kerswell, R.R.: Dam break with Coulomb friction: a model for granular slumping? Phys.
Fluids, 17, 057101 (2005)

48. Klingbeil, E.: Tensorrechnung fiir Ingenieure (Hochschultaschenbiicher) Bibliographisches
Institut Mannheim (1966)

49. Koch, T.: Bewegung einer granularen Lawine auf einer geneigten und gekriimmten Fliche.
Entwicklung und Anwendung eines theoretischen numerischen Verfahrens und dessen Uber-
priifung durch Laborexperimente. Ph.D. thesis. Technische Hochschule Darmstadt, 255 p
(1994)

50. Kolymbas, D.: Behaviour of liquefied sand. Philos. Trans. R. Soc. Lond. A356, 2609-2622
(1998)

51. Kolymbas, D.: Liquefaction and cold volcanism. Acta Geotechnica (2014). doi:10.1007/
s11440-013-0268-x

52. Kuo, C.Y., Tai, Y.C., Bouchut, F., Mangeney, A., Pelanti, M., Chen, R.F., Chang, K.J.: Simula-
tion of Tsaoling landslide, Taiwan, based on Saint Venant equations over general topography.
Eng. Geol. 104, 181-189 (2009)

53. Kuo, C. Y, Tai, Y. C., Chen, C.C., Chang K. J., Siau, A, Y., Dong, J.J., Han, R.H., Shimamoto,
T., Lee, C.T.: The landslide stage of the Hsiaolin catastrophe: simulation and validation. J.
Geophys. Res. 116 F04007, (2011). doi:10.1029/2010JF001921

54. Kuribayashi, E., Tatsuoka, F.: History of earthquake-induced soil liquefaction in Japan. Bull.
of Public Works Research Institute Ed. Ministry of Construction, 38, Tokyo (1977)

55. Luca, L., Tai, Y-Ch., Kuo, Chih-Yu.: Non-Cartesian topography based avalanche equations and
approximations of gravity driven ideal and viscous fluids. Math. Models Methods Appl. Sci.
19, 127-171 (2009)

56. Luca, L., Hutter, K., Tai, Yih-Chin, Kuo, Chih-Yu.: A hierarchy of avalanche models on arbitrary
topography. Acta Mechanica 205, 121-149 (2009)

57. Luca, L., Tai, Y.-Ch., Kuo, Chih-Yu.: Rapid Geophysical Mass Flows down Arbitrary Topog-
raphy, p. 287. Springer, Berlin (2016)

58. MacCormack, R.W.: An efficient explicit-implicit characteristic method for solving the com-
pressible Navier—Stokes equations. SIAM-AMS Proc. 11, 130-155 (1978)

59. McDougall, S., Hungr. O.: A model for the analysis of rapid landslide motion across three-
dimensional terrain. Can. Geotech. J. 41, 1084—-1097 (2004)

60. McDougall, S., Hungr. O.: Dynamic modelling of entrainment in rapid landslides. Can.
Geotech. J. 42(5), 1437-1448 (2005)

61. McElwaine, J., Nishimura, K.: Ping-pong wall avalanche experiments. Ann. Glaciol. 32, 241—
250 (2001)


http://dx.doi.org/10.1029/2000JB900329
http://dx.doi.org/10.1029/2000JB900329
http://dx.doi.org/10.1029/2003JF00084
http://dx.doi.org/10.1007/s11440-013-0268-x
http://dx.doi.org/10.1007/s11440-013-0268-x
http://dx.doi.org/10.1029/2010JF001921

References 195

62.

63.

64.

65.

66.

67.

68.
69.
70.
71.
72.
73.
74.
75.
76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

Mohr. O.: Welche Umstinde bedingendie Elastizitdtsgrenze und den Bruch eines Materials?
Zeitschrift des Vereins Deutscher Ingenieure, 24, 1524-1530, 1572-1577 (1914)

Jiang. G.S., Tadmor, E.: Non-oscillatiory schemes for multi-dimensional hyperbolic conserva-
tion laws. SIAM J. Sci. Comput. 9(6), 1892-1917 (1997)

Morgemstern, N.: Submarine slumping and the initiation of turbidity currents, pp. 189-220.
Proceedings of the International Res. Conference Marine Geotechnique, Univ Illinois (1967)
Pitman, B., Patra, A K., Bauer, A.C., Nichita, C.C., Sheridan, M., Bursik, M.: Computing
granular avalanches and landslides. Phys. Fluids 15, 3638-3646 (2003)

Pitman, B., Lee, L.: A two-fluid model for avalanche and debris flows. Philos. Trans. R. Soc.
Lond. A363, 1573-1601 (2005)

Pudasaini, S.P.: Dynamics of flow avalanches over curved and twisted channels: theory, numeric
and experimental validation. Ph.D. Dissertation, Darmstadt University of Technology, Germany
(2003)

Pudasaini, S.P., Wang, Y., Hutter, K.: Dynamics of avalanches along general mountain slopes.
Ann. Glaciol. 38, 357-362 (2005)

Pudasaini, S.P., Wang, Y., Hutter, K.: Modeling debris flows down general channels. Nat.
Hazards Earth Syst. Sci. 5, 799-819 (2005)

Pudasaini, S.P., Hutter, K.: Avalanche Dynamics—Dynamics of Rapid Flows of Dense Granular
Avalanches, p. 602. Springer, Berlin (2007)

Reynolds, O.: On the dilatancy of media composed of rigid particles in contact. Philos. Mag.
Ser. 5(20), 469481 (1885)

Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline.
J. Fluid Mech. 199, 177-215 (1989)

Savage, S.B., Hutter, K.: Dynamics of avalanches of granular materials from ignition to run-out.
Part I: Anal. Acta Mechanica 86, 201-233 (1991)

Shahbazi, K., Fischer, P.F., Ethier, C.R.: A high-order discontinuous Galerkin method for the
unsteady incompressible Navier—Stokes equations. J. Comput. Phys. 222, 391-407 (2007)
Sino-Geotechnics, Research and Development Foundation, Taipei Taiwan (1996)
Sokolnikoff, 1.S.: Tensor Analysis Theory and Applications. Wiley, New York (1951)

Straub, S.: Schnelles granulares Fliessen in subaerischen pyroclastischen Strémen. Ph.D. Dis-
sertation Bayerische Julius Maximilians Universitit, Wiirzburg, Germany (1994)

Tai, Y.-Ch., Wang, Y., Gray, J. M.N.T., Hutter, K: Methods of similitude in granular avalanche
flows. In: Hutter, K., Wang, Y., Beer, H. (eds) Advances in Cold-region Thermal Engineering
and Sciences, pp. 415-428. Springer, Berlin (1999)

Tai, Y.- Ch.: Dynamics of granular avalanches and their simulations with shock-capturing and
front-tracking numerical schemes Ph. D. dissertation, Darmstadt University of Technology,
Darmstadt, Germany (2000)

Tai, Y.-Ch., Gray, J.M.N.T., Hutter, K.: Dense granular avalanches: mathematical descrip-
tion and experimental validation. In. Balmforth, N.J., Provincale, A. (eds.) Geophysical Fluid
Mechanics, pp 339-366. Springer, Berlin (2001)

Tai, Y-Ch., Kuo, Ch-Y: A new model of granular flows over general topography with erosion
and deposition. Acta Mechanica 199, 71-96 (2008)

Tai. Y.-Ch., Lin Y.C.: A focused view of the behavior of granular flows down a confined inclined
chute into the horizontal runout zone. Phys. Fluids, 20, 123302, (2008). doi: 10.1063/1.3033490
Tai, Y-Ch., Kuo, Ch-Y, Hui, W.-H.: An alternative depth integrated formulation for granular
avalanches over temporally varying topography with small curvature. Geophys. Astrophys.
Fluid Dyn. 106(6), 596-629 (2012)

Voellmy, A.: Uber die Zerstorkraft von Lawinen. Schweizerische Bauzeitung, 73, 159-162,
212-217, 246-249, 280-285 (1955)

Wang, Y., Hutter, K.: Comparisons of numerical methods with respect to convectively domi-
nated problems. Int. J. Numer. Meth. Fluids 37, 721-745 (2001)

Wang, Y., Hutter, K.: Granular material theories revisited. In: Balmforth, N.J., Provenzale, A.
(eds.) Geomorphological Fluid Mechanics, pp. 79-107. Springer, Heidelberg (2001)


http://dx.doi.org/10.1063/1.3033490

196 13 Shallow Rapid Granular Avalanches

87. Wang, Y., Hutter, K., Pudasaini, S.: The Savage-Hutter theory: a system of partial differential
equations for avalanche flows of snow, debris, and mud. Z. Angew. Math. Mech. 84(8), 507-527
(2004)

88. Wieland, M., Gray, J.M.N.T., Hutter, K.: Channelized free surface flow of cohesionless granular
avalanches in a chute with shallow lateral curvature. J. Fluid Mech. 392, 73—-100 (1999)



Chapter 14
Uniqueness and Stability

Abstract This chapter on uniqueness and stability provides a first flavor into the
subject of laminar-turbulent transition. Two different theoretical concepts are in use
and both assume that the laminar-turbulent transition is a question of loss of stability
of the laminar motion. With the use of the energy method one tries to find conditions
for the laminar flow to be stable. Energy stability criteria operate with the construction
of upper bounds of the rate of the perturbed kinetic energy K (¢) of the fluid system, in
order to obtain by time integration an inequality of the form K () < K (0)exp (—t/7).
Here, 7 > 0 guarantees decay and 7 < 0 growth rates of the perturbed energy, 7 = 0
guarantees neutral stability of the perturbation flows. The difficulty of the method is
that the condition 7 = 0 generally provides poor, i.e., very safe estimates for stability.
More successful for pinpointing the laminar-turbulent transition has been the method
of linear instability analysis, in which a lowest bound, is searched for, at which the
onset of deviations from the laminar flow is taking place. For plane channel flows the
RAYLEIGH and ORR—-SOMMERFELD equations with associated boundary conditions
for an ideal and viscous fluid, respectively, are derived and the associated eigenvalue
problems are discussed, which leads to the stability chart, separating REYNOLDS
number dependent stable and unstable flow regimes.

Keywords Kinetic energy of the difference motion - Uniqueness - Energy stability
of laminar channel flows - RAYLEIGH equation + ORR—SOMMERFELD equation

List of Symbols

Roman Symbols

c=w/a Phase speed
D[v] Stretching, strain rate deviator
D[v] = }[grad v + grad "v]
d Width of a canal, radius of a sphere
EI Bending stiffness of an EULER beam
(f) Spatial average of the function f (see (14.38))
h(x,y) Auxiliary vector function
K Kinetic energy per unit mass
L Length of an (EULER) beam
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M (x) Bending moment in an (EULER) beam

—m,m >0 Lower bound for the eigenvalues of D[u]

P Axial load of an (EULER) beam

P(x,y) Pressure in a plane channel

P Perturbation pressure

p, p* Pressure associated with v(x, #) and v*(x, t), respectively
R" Real space of dimension n

R=U.d/v REYNOLDS number

r Radial distance

(R R* CAUCHY viscous stress deviator in two different motions
U,., Uy Mean flow velocity through a channel of width d
u=v"—v Difference of two velocity fields

V() Domain of a body

v(x, 1), v*(x, 1) Velocity fields satisfying the NAVIER-STOKES equations
u', v Perturbation velocity components in a channel

y(x) Transverse displacement of a beam

X, 9,2 Cartesian coordinates

Greek Symbols

« Wave number

v Kinematic viscosity

p Mass density

pK Kinetic energy of a body per unit volume

L=+—1 Imaginary unit

Y Streamfunction in two dimensional flow

v (y) Amplitude function of the streamfunction

w Frequency

oV (t) Boundary domain of a body of volume V (¢)

Vi=A (Two dimensional) LAPLACE operator

14.1 Introduction

Stability in mechanics characterizes states of deformations and stresses in material
bodies, in which a body configuration, which smoothly changes as the result of
smooth changes of the exciting loads, suddenly transits rapidly or instantly into
another configuration that is far distant from the previous one. A famous example is
the so-called EULER beam, Fig. 14.1, a straight rod of constant cross section loaded
at its hinged ends in the direction of, and toward, the rod axis. For small loads,
P, the straight rod is a persistent, i.e., stable equilibrium configuration; the beam
will become somewhat shorter, but no transverse deflection will occur. A fortiori,
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Fig. 14.1 a EULER beam, SN b
a) \/
axially loaded by P and b its ( (b)
bifurcated configurations
Y
M = Py

if a small deflection is artificially induced, and the beam is left to adjust to this
perturbation, the transverse deflection will return to its zero value. Evidently, the
zero deflection is a unique stable configuration. If, however, the load has the value
P, = EI(nm/L)?, the beam may possess the zero deflection or any sinusoidal,
displaced axis y(x) = sin[(n7/L)x]. Here, n is an integer, E I the bending rigidity
and L the length of the shaft. It is clear from Fig. 14.1 and its figure legend that
y = 0 is solution of the differential equation (14.1). However, when P is given as
one of the EULER loads P,, a second sinusoidal, solution exists. One speaks in this
situation of a possible bifurcation from the trivial y = 0, solution to the bifurcated,
EULER solution with non-zero transverse deflection y = «a:sin[(n7/L)x], where « is
an undetermined amplitude. The simple, linear, homogeneous differential equation
does not tell us which of the solutions the EULER beam may prefer at buckling. A
deeper analysis shows that for P # P,, y = 0 is the only solution, whilstat P = P,,
only y = arsin[(nm/L)x] is the assumed solution. One speaks for the configuration
y = 0 of the stable, trivial, solution, which becomes unstable when P equals one of
the EULER loads P,.
The differential equation of its bending is

o MO ey sy By (14.1)
TR y Y+ 7y =0, :

subject to hinged endpoints possesses the only zero solution y = 0, butif P = P, =

("T”)z, then it also has the sinusoidal solution y = asin[(n7/L)x].

The EULER beam is likely the simplest example with the aid of which the concepts
of stability and uniqueness can be explained. These concepts occur in any subject
of science and engineering, also in fluid mechanics. Indeed, the stability/instability
descriptions form an important special field of fluid mechanics, which e.g. chiefly
contributed to the conceptual understanding of the transition from laminar to turbulent
flow, which today is understood as a loss of stability of the laminar flow and the

associated transition to the turbulent flow configuration.
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In this chapter we shall only scratch the surface of the title topic, given the extensive
literature that exists about this subject.! There are different mathematical procedures
how the question of the stability and/or uniqueness of a basic flow can analytically be
attacked. Common to these procedures is the assumption that the bifurcated solution
from the basic flow is a perturbation field, which sets in as a small deviation from the
basic flow and will evolve in time and space. If the evolution of the perturbed variables
dies out in time, the basic flow will eventually be the sole contribution of the total
field quantities that will survive. If this happens, stability of the basic flow will then
have been demonstrated. If the perturbed fields grow in time, then the total solution
consisting of the basic fields plus the perturbations will constitute a new solution:
The basic flow will in this case not be stable; it is then called unstable. Details of
the mathematical methods in use to analyse this situation differ according to whether
the perturbations are small or large, i.e., of the order of magnitude of the basic
flow. If they are small, perturbation equations can be linearized in the perturbation
quantities. This procedure leads to linear stability analyses. For these, analytical-
numerical techniques are well known today, but results provide only information on
the transition from the basic flow to the perturbed flow. Stability/instability transition
is expressed as a growth rate of the perturbed field variables exclusively under the
conditions of the instability onser. When the values of the perturbation variables
are not small, linearization of the total fields is not permissible. Fully nonlinear
equations must be handled and proofs of stability (here, at this moment, interpreted
as boundedness of the perturbation fields) require advanced mathematical tools of
analysis.

Stability/instability analyses and proofs for uniqueness following the linearization
procedure use the methods of linear ordinary and partial differential equations sub-
ject to boundary and initial conditions, a special field of highly developed applied
mathematics. The full nonlinear theory makes chiefly use of differential relations
of kinetic energy of the perturbation fields and searches for bounds of its growth
rate. The values of these bounds deliver statements of stability, if such growth rates
are negative. They cannot provide information on the stability/instability transition
(which are often termed neutral stability). By contrast, the linear stability/instability
methods capture the conditions of this neutral stability and formulate this transition
(and only the transition) precisely. Mathematically, it is generally expressed as an
eigenvalue problem for a complex valued phase speed, of which the sign of the
imaginary value provides information on the growth or attenuation of the perturbed
fields.

In what follows, we shall give and introduction to these concepts and no more.
In the next section we shall start with the derivation of the balance equation for
the kinetic energy of the perturbed motion. Next, we shall take up this balance
law of kinetic energy to prove under restricted conditions the uniqueness of the

IThere is a large number of books treating stability as a whole subject. Among these we men-
tion S. CHANDRASEKHAR [2], F. CHARRU [3], P.G. DRAZIN [4], P.G. DRAZIN and W.H. REID [6],
C. GODRECHE and C. MANNEVILLE [8], C.C. LIN [12], D.D. JOSEPH [ 10, 11], S.S. SRITHARAN [21],
H.L. SWINNEY and J.P. GOLLUB [22].
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flow of a specific initial boundary value problem of the NAVIER-STOKES equations.
Section 14.4 is devoted to energy stability criteria. These criteria will then be applied
in Sect. 14.5 for a study of stability of laminar channel flow. Finally, in Sect. 14.6
linear stability analysis of laminar channel flow will be tackled on the basis of work
by LORD RAYLEIGH and W.ML.F ORR and A. SOMMERFELD. Our aim, however will
be only to give a flavor of this fascinating subject of fluid mechanics.

14.2 Kinetic Energy of the Difference Motion

Let V (¢) bearegionin R3 with boundary OV (¢) that s filled with a density preserving
viscous fluid. Assume, moreover, that on V() the velocity is prescribed (e.g. via
the no-slip condition).

Let v(x, #) and v*(x, t) be two velocity fields, which satisfy the NAVIER-STOKES
equations within V () and the velocity boundary conditions on 0V (¢); let p and p*
be the corresponding pressure fields. The difference motion in V (¢) is defined by

u=v"—v. (14.2)
Its kinetic energy in V (¢) is given by
_p 2
pK = 5 |u|” dv (14.3)
V()

and is called the kinetic energy of the difference motion. The momentum equation
for the velocities v and v* are

0
) [8—: + (grad v)v] = —grad p + dive®,

ov* *
p[ ;t +(gradv*)v*] = —grad p* +dive®".

By taking the difference of these equations one obtains

0 *
P [6—1: + (grad v*)v* — (grad v)v} = —grad (p* — p) + div (¢5" — %),

The nonlinear term on the left-hand side can be transformed as follows

(grad v*)v* — (grad v)v
= (grad v* — grad v)v* + (grad v)(v* — v)
= (gradu)v* + (grad v)u,
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so that

ot
= —grad (p* — p) + div ¢*" — ¢%). (14.4)

p [B_u + (grad u)v* + (grad v)u]

Scalar multiplication of this equation with the difference velocity u yields a balance
equation for the difference motion; it has the form

[2 (ﬁ) +u - ((gradw)v*) +u - (( radv)u)]
Plac \ 2 £ a

@)
= —u -grad (p* — p) +u - div (tR* - tR) . (14.5)
(i)

(iii)

In this equation the underbraced terms can be transformed as follows:

@) Ou, . Ov; 10 ( 9 1 vy
1) =u,—v Ui—Up = - —— \UiUjV ) — ZUjUj —
axk k 8xk k 28xk k 2 axk
N——

=0

u-D[vlu
1
= 5div (lul*v*) +u - D[v]u,

(i) = —div (u(p” = p)) + (p" — p) diva = —div (u(p" — p)).

=0
OTik 0 Ou; R\ R
@ii) = Mia—xk = a—xk(umk) - Tika_xkv Tik = ()i — )ik
0 1 (Ou;  Ouy
= 8—xk(uiTik) ~Tiky (8_xk + 6'_x,)

= div (u(tR* - tR)) —u ((tR* - tR)D[u]) .

Substituting these expressions into (14.5) yields the balance law for the kinetic energy
of the difference motion in the form

O (lwPY 1. oo,
p[a (T)+§dlv (|u| v )+u~D[v]u]

= —div (u(p® — p)) + div (u(tR* - tR)) _ . ((tR* - tR)D[u]). (14.6)
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We quote that

1
D[v] = (grad v 4 (grad v) )
14.7)
D[u] = D[v*] — D[v] =: D* — D,
because of the linearity of the operator D[-]. Integration of (14.6) over V (¢) yields

dK

pE = — / {pu - D[v]u + tr ((tR* — tR)D[u])} dv. (14.8)

V()

In the derivation of this equation, the divergence theorem was used, e.g.,

2 2
/ div (p%v*) dv = / % (v*-n) da =0,

V() oV (t)
/ div (u(p* — p)) dv = / (p* = p)(u-n)da=0,
V() oV (t)

due to u = v* — v = 0 on the boundary 9V (¢).
Moreover,

[ () o= [ 5 ()

V() V()

/plul2 o / plul*
T dr 2 2
—_—

oV (t)
V() av (1)

(v-n) da.

=0

It is emphasized that application of the boundary condition u|sy () = 0 at the body
surface was essential in obtaining (14.8). However, the fluid may even be nonlinearly
viscous.

Let us now specialize Eq. (14.8) for NEWTONian density preserving fluids. In this
case,

R = 2pvDlul, R R = 2nDlu], n:=pv,
so that

tr (" = %) Dlul) = 2pvw (Dl (DIu))
=2pvtr (3(L+LT))(3(L+L"))), L:=gradu
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=1pv{tr (LL)+tr (LL") +t (L"L) +t (L"L")}
@ pv{tr (LL) +u (LLT))

E {div@ L") + o (LLT)}.

The step @ follows because tr (LL) = tr (LTLT) as well as tr (LLT) =
tr (LTL). On the other hand ‘2" implies

tr (LL) =U;juj; = [(uiuj,i),j — U Mj,ji] = (uiuj,i)ﬁj = div (uLT),
~—
=0
and this yields

/ prdivLT)dv = / pv (u - grad (divu)) da = 0,
V@) v ()

according to the divergence theorem and the boundary condition u|sy = 0. It follows
that (14.8) takes for a NEWTONian fluid the form

dK

W= [ L) vu b

V()

- / {vir ((gradu) (gradw)”) + u - D[vlu} dv, (I). (14.9)
Vi)

A slightly altered form of this equation can be derived as follows:

I I 1
u-Dvlu = M,‘E(U,‘,]‘ + Uj,,‘)u‘]' = FU;iVj jU;j + FUIVj il
1 1 1 1
= s uiviuj) j — svi(uiug) j + 5@ivju;) i — 50 Uiu;)
= (ujviu ;) ;j — vi(uiu;) ;
=div (- v)u) —v - ((gradu)u) .

When substituting this into (14.9), the divergence theorem can be used to transform
the volume integral into a surface term, which vanishes due to the boundary condition,
u|sy = 0. Thus, instead of (14.9), one may also write

dK
i / {v- ((gradw)u) — vir ((gradu) (gradw)")} dv, (II). (14.10)
)
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The two formulae (I) and (I7) differ in form, how the basic flow v arises in the
integral on the right-hand side. It is apparent that for positive dK /d¢ the flow may
become unstable. This becomes in (/) manifest via a large modulus of v; by contrast,
this is achieved in (/) by a too large modulus of the shear velocity D[v].

These formulae will now be used in subsequent solutions for a search of unique-
ness or/and stability of the flow.

14.3 Uniqueness

In the year 1929 E. FOA proved the following theorem?:

Theorem 14.1 [ftwo flows, which obey the NAVIER-STOKES equations of a density
preserving fluid possess in a bounded material region V (t) the same velocity distri-
butions at time t = 0 and they have for all times t > 0 coinciding velocities along
the boundary OV (t) of V (t), then the two flows in V (t) are identical. ]

For the proof the two velocity fields will be denoted by v* and v, and the difference
motion is described by u = v* — v. Since the two fields agree with one another at
t =0in V(¢) and OV (¢), one has

K(0) = 0. (14.11)
Furthermore, on the boundary one has
ulove =0, Vi 2 0. (14.12)

Thus, the prerequisites of the above theorem are satisfied. Because tr (LLT) >0,
VL, Eq.(14.9) implies

dK
& <= / u - D[v]udv. (14.13)
V@)

Now, since D[v] is a deviator (divv = 0), the sum of its eigenvalues vanishes.
Otherwise stated, the smallest eigenvalue is negative. Let’s call the lower bound of
this eigenvalue in V(¢) fort < T, —m withm > 0. Then we have for 0 <¢ < T

u-Dvlu > —mlul|*. (14.14)

2E. Foi L Industria, 43, 426 (1929), Milan.
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Consequently, we have a fortiori

dK )

Eg— u-Dvludv <m lu|“dv =2mK
V() V()

dK

This is an ordinary differential inequality, which can also be written as
d
I (K exp(—2mt)) < 0. (14.16)

Integration over the interval 0 < ¢ < T yields
K@)exp(—2mt) <0, since K(0)=0. (14.17)

Now, K (t) can never be negative by definition, hence K () = 0; this means that
u(t) = 0. This proves the uniqueness of the basis solution:

u=0, VvViel0,T). (14.18)

14.4 Stability

In this section we will derive stability criteria in order to apply them later to special
flows. Letus call v(x, t) the basic flow and v*(x, 7) the perturbed flow of v(x, ¢); u =
v* — v is a perturbation of the basic flow. We assume that the basic flow and the
perturbation flow satisfy the same boundary conditions on 9V (¢), so that u|gy ) = 0.
Now, however, we assume that K (0) # 0. If one can demonstrate that for all ¢ > 0,
dK/dt < 0, then one has proved that the basic flow is stable. This gives a lower
bound for stability.

In the following we shall deduce from relation (/) a stability criterion (/II), and
similarly from relation (II) a stability criterion (IV).?

a) Derivation of relation (I1I)
Let & and u be differentiable vector fields. Then one may deduce

0 < (uik + uihe) (uix + uihe) = wiguix + 2uihgu;x + lul|h|?
= wigtti g + (inihy) g — U heg, + lul*|h)?
tr ((gradu) (gradw)”) + div ([ul*h) + |u|* (|h|* — div (b)) .

3See e.g. Handbuch der Physik I1I/1 ‘Stromungsmechanik (I)’, p. 153 ff.
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If this inequality is integrated over V (¢) and the divergence theorem is applied where
possible and the boundary condition, # |5y = 0, is accounted for, then one obtains

/tr ((gradu) (gradu)”) dv >/|u|2 (divh — |h|?) dv. (14.19)
V(t) V)

If this inequality is used in Eq. (14.9) (), we obtain

dK
= < —/{y(divh—|h|2) lu* +u - D[v]u} dv
V()
dK (14.14)
o S —/y(divh—|h|2)|u|2dv+2mK. (14.20)

40)

To derive a concrete formula, let us select now a specific vector field k. To this end
we choose a sphere with radius d, which encloses the entire V (¢), Fig.14.2. Let r be
the radial distance from the center of the sphere and choose

h = C tan(Cr) e,, (14.21)
in which e, is the radial unit vector and C is a constant, which shall later be taken as

C = m/d. The field h is continuously differentiable in V (#) and we have in spherical
coordinates

2 2
divh = - C tan(C _,
v r an(Cr) + cos2(Cr)
divh — |h)* = 2 tan(Cr) + —2 (1 —sin*(Cr))
r cos2(Cr)

Fig. 14.2 Sphere with radius
d which encloses V (¢) at all

times ¢ € [0, T') the distance
measured from the center of

the sphere is given by r

sphere
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2C? ) )
= C_ tan(Cr) +C~ 2 3C~. (14.22)
P

The last inequality holds, since (tanx)/x > 1, Vx € [0, w]. With C = 7/d the
inequality (14.22) holds for all points in the sphere with radius d.
If (14.22) is used in (14.20), one obtains

dK 2 ) 61y
<-3Cv lu|“dv+2mK = | 2m — K,

dr d?
V()
dK 6 v
— | 2m - K <0. (14.23)
dr dz

Integration over ¢ yields

2

6mv
K() < K(0)exp ((Zm -5 ) t) , (1), (14.24)

which is the statement that was earlier announced. One easily recognizes that K ()
is exponentially growing, when the argument of the exponential function is positive.
Thus, the basic flow is stable, provided that

37ty
a2’

m <

(stability!).

Strictly, (14.24) only states that K (¢) is a decreasing function, if m = 37%v)/d*> =:
myq for all t < T, a fact which one associates with stability. Else, the bound my may
be too ‘rough’ to infer anything on instability. So m < my is a sufficient condition
for stability.

b) Derivation of relation (IV)
In this subsection, we base the analysis on the inequality

0 < (uix — viug) Wik — viug) = V2ug gt g — 200 g + |ul* ol
This implies
v r ((gradw) (gradw)”) + |ulv]* > 2vv ((gradw) u)

or

v - ((grad u)u) < % {v*tr ((gradw) (gradw)") + |u*|v*}.  (14.25)
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If this inequality is substituted into inequality (14.10) (II), then one obtains

T <oy [ PR (7 =207 (Geradu) (erad ")) do
V()

2 / {|u| |1‘| votr ((glad u) (glad u) )} dv ( 2 )
14 . 4 6
V()

Let vy be the largest modulus of the velocity of the basic flow in V(¢) during 0 <
t < T. Then, (14.26) implies

d—K < L 2v2K—1/2/tr ((gradu) (gradu)T) dv
d = 2v|7°
V(r)
(14.19) 1
< 2—[2U§K—y2/ (|u|2(divh—|h|2))dv]
v —_—
v ~3c2=18

1 2 3r?,
g E[ZUOK—?VzK ,

or
dk 1 [, 37%7°
E — ; Vy — —d2 K < O, (1427)
from which by integration one obtains
, 3 n2u?
K () < K(0)exp ((Uo — 7) t) , av). (14.28)

This is the statement (I V'), a second inequality, from which stability of the flow can
be deduced:

,  3m? vod

Swbility = vj <= — —-<VIr~5M. (1429)
14

The quantity vod/v is a REYNOLDS number and the statement says that the flow
of the viscous fluid is stable provided this REYNOLDS number is smaller than 5.44.
Experience teaches that this limit value is far too low.

The two stability criteria (/1) (14.24) and (I V) (14.28) make two physically
different statements. In (/IT) the amount of shearing is limited; in (/ V) the velocity
itself is limited. These facts suggest that neither of the two describes this bifurcation
of the flow adequately. An appropriate criterion should involve both.
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14.5 Energy Stability of the Laminar Channel Flow

Consider plane viscous channel flow with the steady velocity profile, Fig. 14.3,

N 3 Z\2 n_ 12U0
v=U(@z)e,, U(Z)—5U0(1—4(E)), U’ =— R (14.30)

The parabolic velocity profile is a solution of the NAVIER—STOKES equations, if it is
driven by the pressure gradient

U
AP = 12yd—§. (14.31)

Let us now perturb this basic flow by writing
v=U()é,+u, gradp= APé,+ pgradm. (14.32)
The NAVIER-STOKES equation for the difference motion is then given by

ou

o + (gradu + grad (Uey)) (u+ Uéy) = —gradm + v Au.  (14.33)

The basic flow satisfies already the equation AP — (12 vU)/ (d*) = 0. Now,
(gradUe,)Ueé, =0, and (gradU é,)u=wU'e,, (14.34)

in which U’ = dU/dz and w is the z-component of the perturbation velocity u =
(u, v, w). Therefore, (14.33) reduces to

Ou
B + (gradu)v +wU'e, = —gradm + v Au. (14.35)
Fig. 14.3 Plane laminar ~A steady state velocity profile

channel flow of a viscous
fluid ?
d/2

v A

f Parabola
d/2

y

\/
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This is the momentum equation for the difference motion. Scalar multiplication of
this equation with u yields

o 2
9 (E +u-(gradu)v +uwlU’ = —u -gradw+v u - Au, (14.36)
() (i) .
in which the underbraced terms are expressible as
: 1 |u|? .
(l) = Uil jV; = E (uiu,-v_,-),j — T Vjj = Ele (|u|2v) s
=0
() =—uim; = —;m),; — uy; ™= —div(um),
—
=0
(ii) = (uiu; j;) = (Wing j) j — ui ju;
=div (u grad u) — tr ((grad u) (grad u)T) .
Substitution of these results into (14.36) leads to the evolution equation
o 2
9 (L +uwU' = —vtr ((gradu) (grad u)T)
ot \ 2
. lul>v
+div jrvu - gradu —um — . (14.37)

This equation will now serve as principal equation for the derivation of the stabil-
ity/instability state of the channel flow. To this end, let us define spatial averages as

| dj2 L L
(f):= ngr;om / //fdxdydz. (14.38)
—d/2—-L-L

Application of this averaging process to (14.37) will eliminate the last divergence
term on the right-hand side of (14.37), since the divergence theorem will transform
it to

2
y{ [uu gradu —um— |u£ v] -nda, (14.39)

which vanishes along the channel wall because of the boundary condition, u |5y = 0.
As an integral over the cross section at x = —L and x = +L the surface integrals
in Eq. (14.39) are of order {-}d L since {-} is bounded. It follows from (14.38) in this
case that
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1
lim
L-oo 4dL2

f{'}-ndazO(l/L)a 0.

Averaging (14.37) according to (14.38), thus, yields

d | |ul?

5 <T> + <qu’) = —1/<tr ((grad u) (grad u)T)).

With

12U 12U,
= - (nwz),

<qu’) = —<uw71 = 7

we, thus, obtain

2
c(li_t<%>= lzijo(”w@ —v{tr ((gradw) (gradw)’)).  (14.40)
~——

energy supply due to energy dissipation by

. viscous effects
the basic flow

The question, whether the channel flow is stable or unstable, depends, according to
this equation, upon the amount how the energy supply due to the basic flow and the
energy dissipation balance each other.

Equation (14.40) can also be written as

d 2
5 <%> = —2v(tr ((gradu) (gradu)”))

[ 1 120, (uwz)

1 , 14.41
2 wvd? 2 <tr ((grad u) (grad ”)T))] ( :

In this form stability or instability now depends on the sign of the curly bracket in
(14.41). To investigate this statement, let us define two numbers, A and A, such that

d—3 = max fuwz)
A (tr ((gradu) (gradu)T)) ’
(14.42)

a2 (Jul?)

A . [ 2 (tr ((grad u) (grad u)T)) ]
= min .

In order that these numbers exist (i.e. are bounded), it must be ascertained that u
on z = =£d /2 satisfies the boundary condition, # = 0. Moreover, # and m must be
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almost periodic functions.* With these assertions Egs. (14.41) and (14.42) imply

d [|u? [l 60Uy
(2« __
dt< 3 >\ 2v(tr ((gradu) (gradu)”)) 57
14 1 6U0
< ——A(uPy )= - =1,
5 A(jul >[2 Ay]
This implies, after integration,
A 12 Uyd
2 (1) < (Juf?) 0 Sl P i 14.43
(lul?) (1) < (lu)?) (0) exp 7 o ( )

It is recognized that a stability statement is only possible if one can adequately
determine A. This is quite complicated as we shall now see. To this end we shall
first look at the lower half of the channel, —d /2 < z < 0 and apply the SCHWARZ

inequality
b b b
/Isoxldzé /Isalzdz /lezdz

for two integrable functions ¢(z) and x(z). If one applies the SCHWARZ inequality
to the functions ¢ = 1 and x = Ju/0z one may write

Z

Z
0
M(x»y,va): / l_udz/ < / 1
07’

—d/2 —d/2

Ou

lord

dz

2
u
— ) dz. (14.44
6z/) ¢ )

With the abbreviated notation

L L
7:=Llim //fdxdy,

—L —L

4An almost periodic function is uniformly bounded and its value at any position x, y is (for fixed
z, t) in a distant point again assumed with almost the same value, see Fig. 14.4.
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Fig. 14.4 A picture of an Almost periodic function
almost periodic function. If

the segment e—e is moved

through the graph as

indicated by the three

segments, its length is not m ﬂ n

constant but only nearly H A” f »
constant ’ : ’ \ /w \ j T

|
U
~
)

8_1,{2_'_ a_u 2+ a_u ’ dz7’
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grad 2u dz. (14.45)
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Similarly,

0
— d -
w? < (z + 5) / grad 2w dz. (14.46)

—d/2

Furthermore, the following estimate applies:
uwz < 4L2/ |z|luw|dxdy = LZIZI//V 2dxdy

8L2//u+w dxdy—u( )

(14.15),(14.16) |7] d
< > (Z + E) / {gradzu + gradzw} d7

—d/2

|z]

0
d /
< Sl=+3 {grad 2u + grad 2v + gradzw} dz'. (14.47)

—d)2
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The step indicated by ‘%’ can be proved as follows: We start with

(@72 @) P)’ >0 = u’+w’£2ulw] >0.
From this follows the inequality

uw? +w? =2 (u2 wz)]/2 or (uzwz)l/2 < % (u2 + wz) .

Integrating (14.47) from z’ = —d /2 to z’ = 0, thus, yields

0 0 0

d
/uwzdz< / %(Z-i-z)dz / tr ((gradu) (gradu)”) dz’.  (14.48)
—d)2

) —d)2

d3/96

The same estimate is also obtained, if the integration is carried out from z = 0 to
z=d/2,

dj2 d3 dj2
/_uwz dz < %/tr ((gradw) (gradw)") dz. (14.49)
0 0

Adding (14.48) and (14.49) yields

3
(uwz) < 3—6(& ((grad u) (grad w)"))

(hwz) d_3
(tr ((grad u) (grad u)T)) S 96

3

or with the statement (14.42)

d3 (uwz) d?
a _ <&, A>096 (1450
P H (tr ((grad u) (grad u)T))] s 96 9 ( )

This is a definite estimate for A as was anticipated in (14.43). With this value of A,
(14.43) implies that the steady laminar channel flow is stable, if

12U0pd Uod
— <1 — <

8. 14.51
96v = v ( )
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With (v) = Uj the last inequality can be written as

(v)d
v

<8. (14.52)

This says that if the REYNOLDS number formed with the mean velocity is smaller
than 8, then the basic steady laminar channel flow is stable. One may say ‘certainly
stable’ because the bound (14.52) is far too low simply by observational experience.
It is in fact the major difficulty of the energy stability method to find bounds as high
as possible, which guarantee stability of the basic flow.

14.6 Linear Stability Analysis of Laminar Channel Flow

14.6.1 Basic Concepts

Energy stability analyses had their success in fluid dynamics in problems described
by nonlinear initial-boundary-value problems of partial differential equations. In
such formulations nonlinear deviations from basic flows are of interest; the answer
to the question, whether these deviations remain bounded and reduce in size as
time proceeds, or bifurcate further to different flow configurations generally affords
nonlinear analysis techniques.

In linear stability analyses the focus is primarily in the onset of the bifurcated
flow. This fact is interpreted as the emerging instability of the basic flow, if the
bifurcated flow shows a positive growth rate at that instant. More precisely, if the
perturbation velocity components are (exponentially) growing, then the basic flow is
called linearly unstable, however, if they are (exponentially) decaying, then the basic
flow is stable, sometimes called absolutely stable. Finally, if the perturbed velocity
components are steady or stationary, then the basic flow is called neutrally stable.

The mathematical prerequisite of linear stability analysis is linearization of the
governing equations in the variables of deviation from the basic field variables. This
linearization of the perturbation equations in the perturbed fields is the reason, why
only the onset of bifurcated flows can be predicted, but nothing beyond it. HERRMANN
SCHLICHTING and KLAUS GERSTEN [18], pp.424 ff give an excellent review up-to
the year 2000. They are strong supporters of this method of small disturbances and
prefer it to the energy method. In fact they state: ‘This energy method, which was
mainly developed by H.A. Lorentz (1907) proved unsuccessful: therefore we will not
discuss it further here’. This somewhat strong statement does not lessen, however,
the excellent review of the state of the art of the turbulence science at the beginning
of the 21st century, which the authors provide.

To derive the governing equations for the perturbed field quantities, let U, V, W, P
be the Cartesian velocity components and the pressure of the basic flow, which
satisfies the NAVIER-STOKES equations and the boundary and initial conditions of
a moving viscous mass of fluid. Moreover, let the corresponding quantities for the
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disturbances be u’, v’, w’, p’ such that
u,v,w)=U+u,V+1,W+uw), p=P+p. (14.53)

Inalinear stability analysis it is assumed that the perturbation quantities (with primes)
are small in comparison to the basic quantities.” The expressions (14.53) are now
substituted into the NAVIER-STOKES equations and the boundary and initial condi-
tions of the initial-boundary-value problem formulated here for a linearly viscous
fluid. In this process it is assumed that only the variables in the differential equa-
tions and initial conditions are perturbed but not in the boundary conditions. In the
evolving equations all product terms of the primed quantities are dropped, because
they are considered small as compared to the linear (primed) terms. The emerging
initial-boundary-value problem is then a set of linear partial differential equations
and associated boundary and initial conditions which must be solved.

As an example, let us consider again laminar two-dimensional steady channel
flow, for which the basic flow is governed by

U=U(®) [: 2U8(1—4(§)2)] V=W=0,

U
P=Px,y) |:= IZV—exj| ,

(14.54)

d2

in which the expressions in square bracket hold for a steady plane laminar channel
flow (see (14.30) and (14.31), however, here we use y as the transverse coordinate,
rather than z. Above, the expressions serve as examples of more general parallel
laminar flows).

Inserting the representations (14.53) into the NAVIER—STOKES equations, with
the basic fields satisfying (14.54), and assuming that the basic fields also satisfy the
NAVIER-STOKES equations, and, furthermore, dropping all products of the primed
quantities, yields after somewhat lengthy calculations

ou’ +U8u’ n ,dU . 1 op’ w2y
_ —_— v — - =V 9
ot Ox dy p Ox
o'’ o' 1 9p’
>t U o + p 81; = V3, (14.55)
ou’ n ov’ _0
ox 0Oy -
0? 0?
. . 2
in which V _W—i_a_yz'

SThis statement has to be understood in the sense that if e.g. V = 0, then v’ is obviously not small in
comparison to V, but it may still be small in comparison to another variable of the same dimension,
eg U.
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These are three equations for 1/, v’, p’. The appropriate boundary conditions require
for this two-dimensional channel flow that the perturbation velocities #’, v' vanish
at the walls (no slip condition). It should be mentioned here that, even though the
basic flow is two-dimensional, velocities in the third spatial direction, w’, could
occur and might give rise to the bifurcation at smaller REYNOLDS numbers than
Eq. (14.55). It was, however, proved by H.B. SQUIRE [20] as early as 1933 that plane
parallel flow becomes unstable with respect to three-dimensional perturbations at
higher REYNOLDS numbers than two-dimensional perturbations. It follows that two-
dimensional perturbations dominate.

14.6.2 The Orr-Sommerfeld and the Rayleigh Equations

W.EM. ORR in 1907 and ARNOLD SOMMERFELD® in 1908, respectively, transformed
equations (14.55), » for analyzing wave modes into a single equation for the stream
function v (x, y, t) of the two-dimensional velocity field. To this end, Eq. (14.55) are
in a first step transformed to the vorticity equation (by eliminating the pressure, p’)
and in a second step by replacing the continuity equation by introducing the stream
function 1) and writing

o0y Oy

= -, VvV = —— N 14.56
“T9 y ox ( )
which satisfy the continuity equation identically. Wave solutions for v are sought in
the form

Yx,y, 1) =¥ (y)exp (Llax —wt)). (14.57)

In this equation, ¥ (y) is a y-dependent amplitude for the stream function, « is a
wave number and w a frequency; we assume « to be real and positive, o > 0, whilst
w could be complex valued. Following the custom in wave theory

c=% =¢ +1c (14.58)
o

is acomplex valued phase speed; its real part is the true wave speed of the perturbation
stream function, whilst its imaginary part (or the imaginary part of w) measures the
growth or attenuation in time of the stream function. For w; > 0 (or ¢; > 0) one has
—t*¢; = ¢; > 0; the function P(x,y,t) grows with time. This says that the basic
motion is unstable. By contrast, for w; < 0 (or ¢; < 0) the function ¢/ (x, y, t) decays

with time. This means that u” and v/, given by

SFor a short biography of SOMMERFELD, see Fig. 14.5.
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Orr-Sommerfeld equation

U=—c) (¢ —a’w) -U"W
= —;TR (@" — 200" + a'0),

Fig. 14.5 ARNOLD JOHANNES WILHELM SOMMERFELD (5. Dec. 1868 — 26. April 1951)

ARNOLD JOHANNES WILHELM SOMMERFELD was a German theoretical physicist who pio-
neered developments in atomic quantum physics, and also mentored a large number of
students for the new area of theoretical physics. He was born near Konigsberg (now Kalin-
ingrad), East Prussia, studied at its University ‘Albertina’ under the supervision of FER-
DINAND LINDEMANN and benefited there from instructions by ADOLF HURWITZ, DAVID
HILBERT and ERNST WIECHERT. He received his Ph.D in 1891. He went to Gottingen and
completed his Habilitation there under FELIX KLEIN in 1895. Subsequently, he assumed a
teaching assignment of mathematics at the School of Mining in Clausthal-Zellerfeld and
in 1900 an associate professorship at the Technische Hochschule in Aachen. It was there,
where he developed hydrodynamics as a formal theory; he maintained his interest in fluid
dynamics for a long time. Proof for this is the slide bearing theory, which he and OSBORN
REYNOLDS developed independently (see Sect.7.3.6 in Chap. 7, Vol. 1) and the fact that two
of his Ph.D students (LUDWIG HOPF, WERNER HEISENBERG) wrote their Ph.D dissertations
on hydrodynamic topics. In 1906 he assumed the new chair of theoretical physics at the
Technische Hochschule Munich, where he taught for 32 years.

ARNOLD SOMMERFELD served as Ph.D supervisor for more NOBEL prize winners in physics
than any other supervisor to date, and he was proposed for the NOBEL prize 81 times—more
often than any other physicists before and after him.

ARNOLD SOMMERFELD was a very successful academic teacher of theoretical physics as a
whole, i.e., classical and modern physics. Among his Ph.D students were WERNER HEISEN-
BERG, WOLFGANG PAULI as well as PETER DEBYE, HANS BETHE, PAUL SOPHUS EPSTEIN,
WALTER HEITLER, JOSEPH MEIXNER and many others. Apart from his slide bearing the-
ory, his significant hydrodynamic achievement was the derivation of the ORR—SOMMERFELD
equation, the viscous extension of the RAYLEIGH equation for 2D channel flow of ideal fluids
[15, 16, 19].

The text is based on www.wikipedia.org

[ _w — d_ —_
u = ST (yexp (tlax —wt)),
(14.59)

v = ¥ =—ra¥(y)exp (Llax —wt)),
dy


http://dx.doi.org/10.1007/978-3-319-33633-6_7
www.wikipedia.org
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will approach zero values as the time tends to infinity. Inserting the above expressions
into (14.55) and then eliminating the pressure from the emerging equations yields
the following ordinary differential equation for the amplitude ¥ (y) of the stream
function

(U* _ C*) ((l[/*)// _ (a*)ij*) _ (U*)”II/*

((W*)/W _ 201*(![/*)” + (a*)4g/*) , ()/ = ijz, (14.60)

L
a*R
in which all quantities carrying an asterisk are dimensionless and where the following
non-dimensionalizations

(", y9) 1( ) . 9 d d (U™, v*) 1(//)
X, = X, ) @, — )= @, — |, u,v =—wu,v),
Y d Y dy* dy U,
(14.61)
U, v c U
U= ——, = — U
d dUe Ue

have been introduced; d is a typical length and U, a characteristic velocity.

Equation (14.60) is the dimensionless form of the ORR—SOMMERFELD equation.
Its left-hand side is due to the inertial terms, whereas those on the right-hand side
represent the influence of the linear viscous material behavior. This is recognizable
by the pre-factor ¢/(a*R), where

Ud .
R = —— is the REYNOLDS number, (14.62)
v

characteristic of the mean flow.

The boundary conditions that must be applied at both walls in a channel flow, or at
one wall and infinitely far away from the wall in a boundary layer flow, are vanishing
velocity components u’, v'; thus,’

(14.63)

"These coordinates differ from those used in Fig. 14.3 or (14.30) by the translation y = y* — %, for

which (14.30); reads
3 y* y* 2
Uy ==Upl4|=)—-4(— .
oh=3 ( (5)-+(%)

Thus, (14.63) is formally valid. Moreover, the prime, ¥’, in (14.63) and consecutive formulae
designates now d¥//dy.
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A theoretical limit of the ORR—SOMMERFELD equation is the so-called RAYLEIGH
equation [17], derived by him in 1880, prior to the derivations of (14.60) by ORR and
SOMMERFELD, and given by

U—0o) (¢ —a’¥)-U"¥ =0 (14.64)

in which asterisks have now been, and henceforth will be omitted, and which follows
from (14.60) for R — oo (or v — 0). Since this equation is of second order, only
two of the four boundary conditions can be posed, e.g.,

v =0, aty=0andy =d,or y — o0. (14.65)

Equation (14.64), subject to the boundary conditions (14.65) is the linear perturbation
equation for a parallel flow of an inviscid fluid.

14.6.3 The Eigenvalue Problem

The ORR—SOMMERFELD and RAYLEIGH equations with associated boundary condi-
tions are descriptions of eigenvalue problems. This means that non-trivial solutions
generally only exist, if a parameter of the equation assumes a certain value.® This
parameter is in (14.60) and (14.64) with associated boundary conditions (14.63) and
(14.65), respectively, the complex phase speed ¢ = ¢, + tc; and is the eigenvalue of
the boundary value problem. Its real part, c,, is the phase velocity and its imaginary
part ¢; is the rate factor, which, according to (14.57) and (14.58), determines the
linear stability (¢; < 0) or instability (¢; > 0) of the basic flow. The value ¢; = 0
describes neutral (indifferent) stability.

For (14.60) and (14.63) nontrivial solutions can be sought by selecting values for
U and U"” (provided by the basic flow), the REYNOLDS number R (equally provided
by the basic flow and the viscosity of the fluid) and the characteristic length, d. If for
given R and aod = o™ the value of ¢; can be determined by solving the eigenvalue
problem, it can be decided, whether the pair of values (R, a*), representing a point
in the first quadrant of the plane (R, ) characterizes a state of stability or instability
of the basic flow. Repeating this computation for a rectangular net of (R, o*)-values,
separates domains in the (R, a*)-plane of stability or instability. The curve separat-
ing these domains defines neutral stability for which ¢; = 0. Figure 14.6, which is
a copy from HERRMANN SCHLICHTING and KLAUS GERSTEN [18], displays qualita-
tively the curves of neutral stability for a plane boundary layer for two-dimensional
perturbations of a density preserving viscous fluid. The curve with label a belongs
to the neutral stability curve for a velocity profile of the basic motion with an inflec-
tion point. Alternatively, the curve with label b shows the characteristic course for

8Please note that Eqgs. (14.60), (14.63) as well as (14.64), (14.65) possess the zero solutions ¥ = 0.
This is so because of the homogeneity of the boundary value problems.
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st
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Fig. 14.6 Curves of neutral stability of a plane boundary layer flow for a density preserving
fluid under two dimensional perturbations. a The inset @ shows a velocity profile of the basic
motion with an inflection point which is always unstable for an inviscid fluid predicted by the
Rayleigh equation (14.64). The corresponding neutral stability curve, labeled a is determined by the
ORR-SOMMERFELD equation (14.60) for a viscous fluid. The asymptotes of the curve of neutral sta-
bility for R — oo are obtained from the RAYLEIGH equation (14.64) for an inviscid fluid. b The
inset ® shows a velocity profile of the basic motion without inflection point. The neutral stability
curve, labeled b is obtained by the ORR—SOMMERFELD equation (14.60) for a viscous fluid. Unsta-
ble domains are indicated by shading and indifferent stability states are indicated by Rinq (dashed
lines), after [18]

a velocity profile without inflection point. The shaded side indicates the unstable
regime. The point on the neutral stability curve, where the REYNOLDS number is
smallest (see the tangent to the neutral stability curve perpendicular to the REYNOLDS
axis), is of special interest. This is the smallest REYNOLDS number, below which all
linear modes are damped, whilst above this value some modes are amplified. This
REYNOLDS number on the neutral stability curve is called the indifference REYNOLDS
number characterizing the limit of stability.

The neutral stability curves in Fig. 14.6 are of qualitative nature (note that the two
axes, R and a* do not show any scales for R and «*). To obtain precise results, the
eigenvalue problems of (14.60), (14.63—14.65) must be solved. LORD RAYLEIGH
was able to solve his boundary value problem (14.64). However, according to
H. SCHLICHTING and K. GERSTEN [18], he ‘was basically only able to prove that
the presence of a point of inflection is a necessary condition for the appearance of
unstable waves, but W. TOLLMIEN in 1935 showed much later that the presence of
a point of inflection is a sufficient condition for the presence of amplified waves.
The point of inflection criterion is of fundamental importance for stability theory,
since, provided that we include a correction due to the neglected viscosity effects,
it provides a first rough classification of all laminar flows’ [18]. This property has
also been observed in convergent/divergent channels, as these flows show favorably
decreasing/increasing pressure gradients, which in the velocity profile have/have-not
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a point of inflection. This fact is stated in [18] as a theorem: ‘Velocity profiles with
points of inflection are unstable’.

The effects of viscosity to the solutions of the eigenvalue problems (14.60),
(14.63) due to ORR—SOMMERFELD are qualitatively similar to those of the bound-
ary value problem of the RAYLEIGH equation (14.64) with the boundary conditions
(14.65) which describes the inviscid behavior (label a). The neutral stability curves
in Fig. 14.6 for viscous flows are of type b instead. They differ most strikingly from
those of type a by the fact that for infinitely large REYNOLDS numbers, R — oo, the
neutral stability curve for inviscid fluids approaches two horizontal asymptotes with
o = 0 and o* = A. This says that for inviscid fluids all perturbations at R — oo
with o* = 0 (A — o00) are prone of destabilization. More precisely, at R — oo
all perturbations with 0 < o™ < A are unstable. By contrast, for viscous fluids: in
this case ‘at infinitely large REYNOLDS numbers, the region of unstable perturbation
wavelengths shrinks to nothing, and it is only for finitely large REYNOLDS numbers
that a region of unstable waves exists’, [18].

A second result, due to LORD RAYLEIGH [17] and W. TOLLMIEN [24-26] is also
stated as a theorem in [18]: ‘In boundary-layer profiles, the velocity of propagation
for neutral perturbations (c¢; = 0) is smaller than the maximum velocity of the mean
flow’. This law states ‘that there is a point inside the flow of neutral perturbations
where U — ¢ = 0. Note that this point is a singular point of the RAYLEIGH equation
(14.64), where |¥"| becomes infinitely large, unless U” vanishes there simultane-
ously’. In the context of matched asymptotic expansions this says that in viscous flu-
ids with small viscosity (large REYNOLDS numbers) the RAYLEIGH equation (14.64)
describes the outer flow behavior within the critical layer where U = c. The two
distinct behaviors described by perturbation series in the perturbation parameter R~!
must be matched together.

The extensive literature on the stability/instability transitions of the RAYLEIGH
and ORR—SOMMERFELD equations is discussed by H. SCHLICHTING and K. GERSTEN
[18] pp. 433 ff. We restrict ourselves here to mentioning just a few important mem-
oirs. An overview of solutions of the RAYLEIGH equations from a mathematical point
of view is e.g. given by P.G. DRAZIN and L.N. HOWARD (1966) [5] and P.G. DRAZIN
and W.H. REID (1981) [6]. Early, primarily analytical attempts of solving the
ORR-SOMMERFELD equation are given by O. TIETJENS (1922) [23] and
W. HEISENBERG (1924) [9]. W. TOLLMIEN (1929-47) [24-26] presented detailed
analytical calculations, whilst J.M. GERSTING and D.F. JANKOWSKI (1972) [7] and
R. BETCHOV and W.O. CRIMINALE (1967) [1] summarized the numerical integration
techniques.

With this very brief introduction into the onset of turbulence as a problem of fluid
flow stability/instability transition we stop here. H. SCHLICHTING and K. GERSTEN
[18] discuss a wealth of further studies on experiments and validation of the sta-
bility/instability transition of flows based on the NAVIER-STOKES equations, e.g.,
construction of neutral stability curves and influences, such as effects of pressure
gradients, heat transfer etc., and the effects of three-dimensionality of the flow.
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Chapter 15
Turbulent Modeling

Abstract In this chapter a detailed introduction to the modeling of turbulence is
given. Filter operations are introduced to separate the physical balance laws into
evolution equations for the averaged fields on the one hand, and into fluctuating or
pulsating fields on the other hand. The mathematical properties of the filter define
the structure of the averaged equations. REYNOLDS introduced the steady statistical
filter, leading to the REYNOLDS averaged NAVIER—STOKES equations. This procedure
generates averages of products of fluctuating quantities, for which closure relations
must be formulated. Depending upon the complexity of these closure relations, so-
called zeroth, first and higher order turbulence models are obtained: simple algebraic
gradient-type relations for the flux terms, one or two equation models, e.g., k — ¢,
k — w models, in which evolution equations for the averaged correlation products
for k and € are formulated, etc. This is done for density preserving fluids as well as
so-called BOUSSINESQ and convection fluids on a rotating frame (Earth), which are
important models to describe atmospheric and oceanic flows.

Keywords Statistical filter operator + REYNOLDS averaged NAVIER—STOKES equa-
tions + Closure relations for fluctuating correlation terms * k — ¢, k — w models *
BOUSSINESQ, convection fluids

List of Symbols
Roman Symbols
Co Species mass ratio of constituent cv
C%S Basal/free surface drag coefficient
D Strain rate tensor (deviator), stretching tensor
D® Total (laminar + turbulent) thermal diffusivity
0 _ (v L u
D= (" + )
D© Total species diffusivity D(© = (X(C) + Z—’)
D® Total diffusivity of the turbulent kinetic energy

D = (u + a)
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D® Total diffusivity of the turbulent dissipation rate

Df = (1/ + (’;—’)

e Specific turbulent enstrophy e = %(w - w)

f Fluctuation of f in statistical averaging (RANS)
1" Fluctuation of f in a FAVRE averaging

g Gravity vector

g Density of a physical quantity

g Correlation flux of the average of g’ with v’
Je, Mass flux of species «
J: Turbulent species mass flux j, := pc'v’
k Turbulent kinetic energy per unit mass (see (15.29))
k= %v/ v
L Turbulent mixing length
ME™ Flow rate of fluid mass into the ground
p, p™ Pressure, atmospheric pressure
q Heat flux vector
q, Turbulent heat flux vector ¢, = pu'v’
&, 0y Black body radiation of the atmosphere and water at the free surface
0Oy, Os Latent/sensible heat fluxes between water and air
R Turbulent REYNOLDS stress tensor R := —p(v' ® v’)
r Specific energy supply, specific radiation
R Frictional (viscous) stress
u,u Specific internal energy, its fluctuation
Vv Typical velocity
v Velocity vector
(v) Average velocity over a sample, over time or over space
v Fluctuation (pulsation) of v
Wi Wind velocity parallel to the free surface
79 Supply density of g
Ze, Mass supply density of species «
Greek Symbols
v, Y Kinematic viscosity, turbulent viscosity
p Mass density
€ Turbulent dissipation rate (see (15.30))
0 Temperature (absolute or Celsius)
¢! Flux of ¢
10) Total turbulent dissipation rate
ok ¢° Flux of turbulent kinetic energy—of turbulent dissipation rate
K Curvature of p as a function of 6, kK = % J
X,(()), x,(c) Turbulent eddy diffusivities of heat and mass ratio
oy, O¢ PRANDTL/SCHMIDT number

Ok, O Prandtl numbers for k and ¢
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nk, me Production rate densities of the turbulent kinetic energy
—of the turbulent dissipation rate
sl Production density of g
w = curlv Vorticity vector
W Fluctuation of w
2 Angular velocity of the non-inertial frame (angular velocity of the Earth)

Miscellaneous Symbols

Time average of (-) over a ‘time’ interval T

()r

o Space average of (-) over a ‘radius’ R
(-)s Statistical average over probability space
{f) FAVRE average { £} = (p.f)/ ()

() REYNOLDS average of (-)

1l Second invariant of D

15.1 A Primer on Turbulent Motions

In daily life turbulent motions are ubiquitous fluid dynamical elements which can
be observed in various forms e.g. in wind gusts and surface water flows in rivers,
lakes and the ocean. ‘Scientists have investigated turbulent phenomena for hundreds
of years. For instance, LEONARDO DA VINCI (1452-1519) (see Fig.15.1) studied
turbulent flows and produced several hand-drawings, showing eddies of various sizes
[and how they interact]. Based on such observations today we have knowledge of
energy cascade models describing the turbulent kinetic energy of flow as a function
of eddy size [...]", [4].

Fig. 15.1 Drawings of turbulent eddies in water motions by LEONARDO DA VINCI. The right panel
shows a free water jet issuing from a square hole into a pool; it represents, perhaps the world’s
first use of visualization as a scientific tool to study a turbulent flow. LEONARDO wrote (translation
by UGO PIOMELLL, University of Maryland) ‘Observe the motion of the surface of the water, which
resembles that of hair, which has two motions, of which one is caused by the weight of the hair,
the other by the direction of the curls, thus the water has eddying motion, one part of which is due
to the principal current, the other to the random and reverse motion. According to L. LUMLEY,
Cornell University, LEONARDO may have prefigured the now famous REYNOLDS decomposition
nearly 400years prior to OSBORNE REYNOLDS’ own flow visualization and analysis’. Figure and
text courtesy [5]
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Fig. 15.2 OSBORNE REYNOLDS in 1903 (23. Aug. 1842-21. Feb. 1912)

OSBORNE REYNOLDS was a mathematician with degree from Cambridge University (1867)
and prominent innovator in the understanding of fluid dynamics. He was appointed professor
of engineering at Owens College in Manchester, the first professor in UK university history
to hold the title of ‘Professor of Engineering’. REYNOLDS most famously studied the condi-
tions in which the flow of fluid in pipes transitioned from laminar flow to turbulent flow. His
studies of condensation and heat transfer between solids and fluids brought radical revision
in boiler and condenser technology. He also proposed a mathematical procedure which is
now known as REYNOLDS-averaging of turbulent flows. This led to the ‘bulk’ description
of turbulent flows as expressed in theREYNOLDS-Averaged NAVIER—STOKES equations. His
final theoretical model, published in the mid 1890s is still the standard mathematical frame-
work used today. Another subject which REYNOLDS studied in the 1880s was the mechanical
behavior of granular materials.

The text is based on www.wikipedia.org

The first basic thoughts and experiments on turbulence are likely due to JOSEPH
VALENTIN BOUSSINESQ (1872) [3] and OSBORNE REYNOLDS (1883)'. [14], who both
studied the flow of a fluid through pipes with circular cross sections. BOUSSINESQ
proposed that the turbulent stress can be parameterized just as its laminar counterpart
as the product of the mean turbulent strain rate multiplied with a scalar quantity
of the dimension of a viscosity [m?s~!], called the turbulent viscosity. REYNOLDS
recognized (by adding dye through a pipette to the fluid) that basically two flow

!For a biographical sketch of REYNOLDS see Fig.15.2


www.wikipedia.org
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laminar flow

parabola

turbulent flow

logarithmic profile

Fig. 15.3 Laminar and turbulent flow in a cylindrical pipe. a To visualize the flow dye is added
to the water through a capillary pipette. The nozzle of this pipette is visible at the left end of the
photographs on the left (courtesy Royal Society London [14]). b Mean velocity profiles in a circular
pipe under steady laminar and turbulent conditions, respectively, from [7]

regimes exist: In one case, the so-called laminar flow, the dye forms coherent thin
filaments; in the second case, known as turbulent flow, the dye filament is torn
very quickly after it left the nozzle of the pipette and is spread over the entire cross
section of the pipe, Fig. 15.3. The transition from laminar to turbulent flow is a sudden
event—a fluid flow instability. The critical quantity that characterizes the change is
the REYNOLDS number

VD

R , if R > 2000, then the flow is turbulent,
v

where V, D, v are the mean axial velocity, the inner pipe diameter and the kinematic
viscosity of the fluid. The velocity profiles, averaged over a time interval (which
eliminates fluctuations) look as shown in Fig. 15.3b. The transition from the laminar
to the turbulent flow regime takes place for 500 < R < 2000. Exactly at which
REYNOLDS number this transition takes place depends largely upon the set-up and
performance of the experiment. For R > 2000 the flow is essentially turbulent, unless
very careful precursory measures are taken.

15.1.1 Averages and Fluctuations

In Fig. 15.3b the velocity profile for the turbulent flow is drawn for the mean axial
velocity; the true velocity is fraught with strong fluctuations. For steady driving
and adequately constructed mean values of the velocity, the mean profiles are also
steady and have homogeneous random appearances. Such fluctuations are seen for
turbulent flows in time series of the velocity at a fixed point, Fig. 15.4 as well as spatial
variations at fixed time. The time and space scales of these pulsations are for most
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Fig. 15.4 Typical examples of measured signals. a Time variation of the northward component of
the current speed during the period of 100 h, measured by ADCP in the middle of Lake Constance
at a depth of 2m on 24-28 October 2001. Courtesy ANDREAS LORKE, data delivered to [2]. b Water
temperature in a laboratory flume, measured with the time step of 5ms

applications not relevant; rather, one is interested in some average behavior, for which
space and time scales extend over many typical ‘periods’ of the turbulent fluctuations.
This suggests to additively decompose the velocity into two contributions, the mean
value (v) and the fluctuations v’,

v={(v)+7. (15.1)

Of course, this composition is not unique and the split between (v) and v’ depends
on how (v) is defined. For a temporal average
1+T/2
1
(V)7 = T / v(x, 7)dr, (15.2)
=T)2

this mean value depends on the large-scale interval of averaging, T, and, conse-
quently, so does also the ‘subscale’ fluctuation velocity, v". In computing such an
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average from a given time series, it must be observed that the interval T, over which
the averaging operation is performed, is not too small, so that the turbulent pulsa-
tions are indeed ‘eliminated’. Conversely, this interval should neither be too large,
because if so, important non-turbulent time dependent phenomena may thereby be
lost. It transpires that the decomposition of v into (v) and v’ depends on the selection
of T, and via this choice it defines, which scales of the time variations belong to the
mean processes and which are part of the fluctuations. Moreover, this decomposition
will also depend on the mathematical properties of the averaging operator, which is
often also called filter.

15.1.2 Filters

Above, in relation (15.2) the temporal filter was introduced. For the spatial filter, one
integrates the field in question over a spherical (or nearly spherical) volume V (x, r)
with center at x and radius r, and defines the mean value as

1
(g = / v(€, 1)dE. (15.3)

V(x,r)

The volume V (x, r) under consideration is a compact set, defining the region of in-
fluence as nearly spherical, which is sufficiently compact that a typical parameter can
be defined for a sphere, which may replace the actual volume. For (15.3) variations
of v with wave length smaller than O(V!/3) are filtered away. The quantity (v) is
a function of position x and time ¢, and may also depend on V (x, r). It is obvious
that (15.2) and (15.3) define different averages, (v)r and (v)g, and one may easily
see that in general ({(-)r r)7.r # (*)T.Rr-

The filter that was used first in describing the turbulent fluid behavior is the
statistical filter, used by OSBORNE REYNOLDS. It is based on the assumption that, on
a local scale, the fluctuations have the properties of a stationary random process.

Let u(x, t) denote the value at (x, ¢t) of the scalar function u, for example the
first component of the velocity field. The value u(x, ) can be any real number. If
p(x,t, i) denotes the density of the probability that u(x, ¢) takes the value it at the
point (x, ), where i is any real number, one has

o0
/ p(x,t,n)diu = 1. (15.4)
—00
The expectation value for the value of the function u at (x, 7) is
o0
wsten) = [ pGe. o i (15.5)
—0Q

in which the subscript is an identifier of the statistical averaging. In a certain sense,
the expectation value (u )s(x, ¢)(x, t) is the most probable value of u at (x, 7).
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The statistical filter has been the only filter used in early turbulence research; it is
still important today and has the following properties, which the reader may easily
prove with the use of (15.5):

1. Linearity: Let u, v be two quantities of a turbulent field and a a real number.
Then,

(u+aw)s = (u)s + a(w)s. (15.6)

2. Commutability with differentiation

(Ou)s = O{u)sg, where J € I%,%,%,%] (15.7)
3. Invariance under multifold averaging
((u)s)s = (u)s. (15.8)
Of course, this condition implies
(.. (u)s...)s)s = (u)s. (15.9)

Of the three filters introduced above, only the statistical filter satisfies all these prop-
erties. In the ensuing analysis we shall assume that the chosen filter satisfies all three
conditions. This hypothesis is called the ergodic hypothesis. The reader may also
verify the following computational rules

u')s = (u)y =0,
((M>Sli>s = (u)s{v)s, (15.10)
((u)v')s =0,
(uv)s = (u)s(v)s + (u'v')s.

In what follows the subscript S in (-) will henceforth be dropped. In modern turbu-
lence theory models are being developed, which request the invariance of the mul-
tifold filtering as well as others which negate it. The Reynolds-Averaged-Navier-
Stokes (RANS) models satisfy the conditions of the statistical filter. Models, for
which (1) # 0, equally do not satisfy (15.9). These models are summarized under
the heading Large Eddy Simulation (LES) models.

15.1.3 Reynolds Versus Favre Averages

The ultimate purpose of the above calculations is to employ them in the derivation
ofaveraged balance laws of mass, momentum, energy and further averaged statements
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if necessary. In this regard the conservation law of mass points at a subtlety, which
we shall now explain. Therefore, consider the conservation laws of mass,

% +div (pv) =0, (15.11)

which, when RANS-averaged, takes the form

<%> + (div (pv)) = 0. (15.12)

Employing the computational rules (15.10), transforms (15.12) into

% +div ((p)(v)) +div (('v)) = 0. (15.13)

The third term on the left-hand side is the divergence of the correlation mass flux
{(p'v") which only vanishes for a density preserving fluid (o’ = 0). For a gas or a
compressible fluid this term does not vanish, but we would wish it to be zero in order

to preserve the conservation law for mass under turbulent conditions (for the mean
quantities). This can be reached as follows:

Definition 15.1 The density weighted average { f} of a quantity f is defined as

{f}= %, =+ (15.14)

{1 is the so-called FAVRE average of f and f” = f — {f} is its fluctuation. ]

We leave the following statements to prove to the reader:

(' f =g ' (15.15)

1=+ R o)

For a density preserving material, p’ = 0; so, (15.15) implies in this case that
{(f}={(f), f"=f foradensity preserving material. (15.16)

This implies that FAVRE averages must only be performed for compressible materials
for which the balance law of mass (15.13) reduces to

? +div ({p){v}) =0, (15.17)

in which (15.15); has been used.
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15.2 Balance Equations for the Averaged Fields

The purpose in studying turbulent motions in fluid mechanics is to determine the
distribution and evolution of the field variables such as velocity, pressure, temperature
and tracer mass concentration. Experience shows that in many circumstances these
fields often fluctuate both in time and space with varied periods and wave lengths.
In engineering and geophysical applications not all those scales can or should be
resolved. Field equations of averages of the true fields are sought which, in turbulent
flows, are fluctuating. Turbulent motion manifests itself often as a cascade of vortical
structures, of which the sizes are restricted by the extent of the domains, where
the motions take place. In a particular bounded domain the largest gyre that can
occur is of the size of the largest extent of the domain—in the ocean or a lake
given by the coasts or shores. By fluid flow instabilities these gyres break down into
smaller vortices of cascading dimensions down to very small eddies, whose remaining
energy will be absorbed into heat. In geophysical applications—oceanography and
meteorology—the sizes of these vortical structures are from approximately 1 mm to
several kilometers (in the ocean up to thousands of kilometers).

Complete resolution of all vortical structures is computationally impossible. In
a theoretical description the motion can only be resolved to a certain length and
period, usually twice the grid size by which the governing equations or boundary
geometry is discretized. In fluid dynamics (of water and air) it is the conviction of
most scientists that on the smallest time scales the NAVIER-STOKES equations are
the adequate description of the fluid motion by which the turbulent eddies through all
sizes can be well reproduced. This has been demonstrated by comparison of results
obtained by Direct Numerical Simulations (DNS) with measured velocity fields in
a wealth of examples since the late 80s of the last century. The resolution of all
time and space scales in a numerical computation is impossible, however. As one
alternative one, therefore, averages the NAVIER—STOKES equations by selecting the
smallest space and time scales that one can afford to resolve and thereby filters those
pulsations of the processes out, which are of ‘subscale structure’. However, the loss
of information is partly counteracted by parameterizing the correlation terms in a
way similar to constitutive closure relations, yet slightly more flexible.

We shall demonstrate this procedure for a BOUSSINESQ fluid and/or a free con-
vection fluid.? Let us start with a general balance statement

%/g(x,t)dv =/¢"(x,t)da+/(7r9+z9)du, (15.18)

dw

2 A BOUSSINESQ fluid is a fluid, which is kinematically volume preserving (div v = 0) with constant
density except in the gravity term where p may vary with position and time. In a free convection
fluid the density function in the ‘acceleration terms’ (podv/dt, podu/dt, podc®/dr) varies with z
(p = po(z) + p'(x, y, z, 1)), where in applications z is the vertical direction of the gravity and po(z)
is prescribed. This approximation is popular in geophysical flows.
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in which g is a specific physical quantity (mass density, momentum density, ...),
@’ (x, 1) is its flux into the body region w through its boundary dw, and 79(x, ¢) and
Z9(x, t) are the specific production and specific supply rate densities of g, respec-
tively.

For differentiable fields the global balance law (15.18) transforms to the local law

dg
ot
dg
o

+div (gv — ¢?) — 79 — 27 =0, (g is a scalar field) , (15.19)
+div(gQuv—¢?) — w9 —z9 =0, (gis a vector field) .

The transformation from (15.18) to (15.19) is standard if the fields arising in (15.18)
are differentiable. This is explicitly demonstrated in Chap. 3.

Subjecting these equations to a statistical filter with the properties (15.6)—(15.10)
the following REYNOLDS averaged balance laws are obtained:

Jq —

8—‘? + div (ﬁﬁ - ¢)g) — 79— 79 = —div (g’v’) (g is a scalar field),
(15.20)

Jg

% + div <§ RV — Eg) — 7" —79 = —div (¢’ ® V') (g is a vector field) .
Here and henceforth notation has been simplified by denoting the averaging operation
by an overbar. The various quantities arising in (15.19) are defined in Table 15.1 for
the conservation statements of mass, linear momentum and the balance laws of
internal energy and an additional scalar quantity c,. In (15.20) the production 7v*9
may consist of an averaged quantity plus a correlation term as is e.g. the case for the
production density of internal energy.

If one substitutes the entries of Table 15.1 into the balances (15.20) describing the
turbulent average behavior the following equations are obtained:

e For the conservation of mass:

dp

i +div (pv) = —div (p'v'),

Table 15.1 Density of a physical quantity g, its flux ¢7, supply z7 and production ¢ densities for
mass, momentum, internal energy and a scalar field

Balance law g @Y z9 9

Mass p 0 0 0

Momentum PV tR —p1 rg 0

Internal energy pu —q pr tr (¢R D)

Scalar field PCa, Jeo Zey Teo

tR = stress deviator, D = strain rate tensor, p = density, p = pressure, v = velocity, u = internal

energy, ¢ = heat flux vector, r = energy supply rate density, g = gravity constant


http://dx.doi.org/10.1007/978-3-319-33633-6_3
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which for constant p reduces to
dive = 0. (15.21)

The specification ‘p = const.” means that the variability of the density is ignored
kinematically, as this is e.g. done for a BOUSSINESQ fluid or a free convection fluid.
e For the conservation of linear momentum:

-
P L div 3®7) | { —

7 5% + —grad p — —diveR — g = —div (v @ v').

EEE—F(gradﬁ)i p P

(15.22)

e For the balance law of internal energy:

o
et + div (1 v) 1 . 1
ot di — —tr (tRD) + —gradgq
du P P
dt
1 =
= —div (V) + ~tr (tR D’) Y (1523)
P
e For the balance law of a scalar field ¢, (&« = 1,2,3, ..., v):
0cq .
p ( 8C + div (¢, v)) -
pus +div (F,,) = Te, = Ze, = —pdiv (,0)),
p (6—f + grad @i))

(a=1,...,v). (15.24)

In what follows the counting index « will be dropped as only one typical scalar
field ¢ will be stated.

At this point, the following remarks are helpful:

1. In Egs. (15.21)—(15.24) the density, wherever it arises, is to be understood either
as a constant (p = p* for a BOUSSINESQ fluid) or as a time independent function
of z (p = po(z) for a free convection fluid). In both cases its fluctuation does not
arise or is ignored.

2. Equations (15.21)—(15.24) are 5 4 v equations for the 5 4+ v variables v, u, p and
Cq (a=1,...,v). All the remaining quantities must be described by phenom-
enological relations. For a NAVIER-STOKES fluid or a more complex nonlinear
viscous fluid such constitutive relations must be postulated for ¢%, ¢ (and %). In
addition, for the turbulent correlation terms

VRV, uv, w@t'D), v, (15.25)

«

turbulent closure relations are to be formulated.
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15.3 Turbulent Closure Relations

Definitions:

e The quantity

R:=—p (v/®v’) (15.26)

is called the REYNOLDS stress tensor. It is symmetric and has first been introduced
by OSBORNE REYNOLDS in 1894 [15].
e The flux vector of internal energy

q,:=puv' = pc,0v (15.27)

is called the turbulent heat flux vector, and ¢’ is the temperature fluctuation.
e The flux vector

Ji=pvc (15.28)

is called the rurbulent species mass flux (if c is a mass ratio).
e The turbulent kinetic energy (density) is defined as

Vv, (15.29)

e The turbulent dissipation rate density is defined by

1 = Q@ , —
e S Ry &) -
ci=ou (X' D) (_ 4u11D) , (15.30)

in which IIjy = %tr (D'D) is the second invariant of the strain rate deviator D’

and the step 2 holds for a NEWTONian fluid only.

15.3.1 Reynolds Stress Hypothesis and Turbulent
Dissipation Rate

The definition of the REYNOLDS stress tensor implies that tr R = —ptr (v/ V) =

—pv’ - v/ = —2pk, in which k is the turbulent kinetic energy, defined in (15.29).
Thus, we may alternatively write instead of (15.26)

R= —p[ VR — 3kl ] — 3pk1. (15.31)
—_—
R p = deviator
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Thus, for a BOUSSINESQ fluid or a free convection fluid, since for these the strain
rate tensor is deviatoric, one may request a turbulent closure relation of the form

Rp = R;(D), implying that

- % pkl+2pu, D, NEWTONIAN FLUID

R:—%pk1+RD(5)= (15.32)

—%pkl + pF (115)5, nonlinear viscous fluid.

Here, v, is a turbulent viscosity in analogy to the laminar kinematic viscosity as
proposed in a simple context but corresponding to (15.32), by JOSEPH BOUSSINESQ
(1872) [3]. F(II3) is dimensionally a kinematic viscosity [m?s~!] and generally
monotonic function of /1.

In anticipation of the analysis of mixing length parameterizations, we wish to
emphasize here that the turbulent closures (15.32) for the REYNOLDS stress tensor
are of gradient type (D is the symmetrized velocity gradient) just as is the constitutive
assumption for the material behavior of the viscous stress under laminar flows. We
have, however, not yet said anything about how the turbulent viscosity in the vicinity
of a spatial point might depend on the detailed structure of the turbulence in the
vicinity of this point. Suggestions, how such dependences might affect the turbulent
closure relations, have begun by LUDWIG PRANDTL by making the turbulent viscosity
depend upon his turbulent mixing length in 1925 [11].

With the definition of ¢ = tr (tRD) this total dissipation rate density can be
written as

%5 = étr (ﬁ) = %tr (t_RE) n %tr (tR_D’) (15.33)

= 2vtr (D D) + 2vtr (D’D’) for a Newtonian fluid

= 4vily + 4uily , (15.34)
~—— ~——
dissipation rate due turbulent
to the mean velocity dissipation rate &

in which v is the material kinematic viscosity v = n/p. The second quantity of the
above definition is theturbulent dissipation rate density, defined in (15.30). Splitting
¢/p in (15.33) into mean flow and turbulent fluctuation contributions as in (15.34)
for a nonlinear REYNOLDS stress parameterization is more elaborate and will not be
given here.

15.3.2 Averaged Density Field p

The averaged conservation equation of momentum (15.22), when simplified to a
BOUSSINESQ or free convection fluid requires knowledge of p/p* or p/po. We start
with the equation of state in its simplest form p = (). If we substitute 6 = 6 + ¢',
assume that |#'| « |6] and employ TAYLOR series expansion, we obtain
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n / P ’ /N2
—— . 15.
p(a+0) . 9+2d92 @) + (15.35)
and after averaging
— 1 d%p| —
G+6)=p@) 15.36
pO+0) = p® + 5 5| @7+ (15.36)

in which p(@) = p(6). This result is interesting: to lowest order p(0) is simply p(0),
but when temperature fluctuations are not small, then the second term on the right-
hand side of (15.36) with the autocorrelation (6”)?2 is also important. This contribution
may be written as

k@2, k= —|, (15.37)

where « is the curvature of the density as a function of temperature (which for
a quadratic equation of state (for water between 0 and 30°C) can be taken to be
constant). If this second-order term is not negligible, it must be expressed in terms of
the original independent fields. We conclude that the higher-order approximation of
the density function has led to a new temperature correlation for which an additional
closure condition is needed.

It is now pretty clear, how p can be evaluated when p = p(6, a), where a is either
the pressure p or the salinity s or any other tracer substance. We leave it to the reader
to show that

p@, @) = p@,a@) + 190 + Kpa@@ + Lr @2+, (1538)
with
>p *p &p
Ky = s Rba = 77— , Ky = — . (15.39)
892 (?,E) 898a @ﬁ) 8612 (gﬁ)

Note that the above are three second order correlation terms for all of which closure
relations must be formulated at this level of approximation. We shall not pursue this
avenue because second order correlation terms would also have to be formulated for
the flux terms.

15.3.3 Turbulent Heat Flux q, and Turbulent
Species Mass Flux j,

The decisive postulation in the REYNOLDS stress parameterization in (15.32) is the
closure proposition . .
Rp(D) =2pv, D, (15.40)
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as essentially already proposed by JOSEPH BOUSSINESQ. It assumes R j, to be collinear
(affine) to D = %(gradi + grad Tv) and can, thus, be characterized as a gradient-
type closure condition. The REYNOLDS stress is a momentum flux quantity. It has
become customary in turbulence modeling to parameterize (all) flux quantities in
this fashion; so also for ¢, and j,. This suggests closure conditions analogous to
FOURIER’s law of heat conduction and FICK’s first law of mass flux as follows?:

g, = pv'u = pc,v'0 = —pcyx\Vgradd, (15.41)
j, = pv'd = —px\9grad@. (15.42)

Here, ¢, has been assumed to be a constant. The coefficients X;e) and x,(c) are called
turbulent eddy diffusivities of heat and mass ratio, respectively, which have the dimen-
sion [m?s~!]. These turbulent closure quantities are again not constants but subject to
similar extensions of the type of mixing length propositions as suggested by LUDWIG
PRANDTL for the REYNOLDS stress tensor.

With (15.40)—(15.42) the turbulent fluxes of momentum, energy and species mass
ratio have been systematically chosen to be of gradient type with respect to the
corresponding field variables, viz.,

— R is proportional to D,
— ¢, isproportional to grad 0, (15.43)
— J, I1sproportional to gradc.

The general form is, of course, motivated by the NAVIER—STOKES-FOURIER-SCHMIDT
constitutive parameterizations of the material response. Moreover, such closure re-
lations of zeroth order are also made for higher order closure schemes, e.g. k — ¢
or k — £ or k — w models, as soon will be demonstrated. However, they cannot be
claimed to represent any notion of universality. More on this shall be said in Chap. 16
where PRANDTL’s mixing length parameterizations and extensions of it shall be scru-
tinized.

The averaging procedure of the NAVIER—STOKES equations has brought into evi-
dence a number of new turbulent quantities, which can be grouped as

Group 1: {k, e, v, X;e)’ X,(C)}, (15.44)
Group 2: {(9/)2, @), %} (15.45)

where e.g. a = p and a = s for pressure and salinity. Those in group 1 are scalar
coefficients, of which numerical values or functional relations need to be prescribed,
whereas the variables in the second group arise when the density function p(f, a) is
averaged to second order, see (15.36). In the lowest order approximation, in which

3For short biographies of JEAN BAPTISTE JOSEPH FOURIER and ADOLPH EUGEN FICK, see Figs. 18.1
and 17.31.
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p0,a) = p(@, @), these variables are of no relevance.* If we consider this case, there
remain, however, still the five quantities of the first group. They may, in general,
be functions of 6, ¢ and all invariants of D, grad  and grad ¢, but it is customary
in turbulence theory to assume {v/, X§9>, X,(")} to be functions of {k, ¢, 9, c}, and in

heterogeneous turbulence also of the spatial coordinates; hence
©® Oy _ 0=
{Vl7 Xt s Xi } - fCtS(k’ g, 07 Cvx)' (1546)

Moreover, it is also customary to introduce the ratios between the eddy viscosity and
the turbulent diffusivities of heat and mass,

Vy Vy
gy = _(6) s Oc := —(C)
t t

(15.47)

and to call oy turbulent PRANDTL number and o, turbulent SCHMIDT’ number,
respectively. The turbulent heat and mass fluxes can then be written as

v = —igradg, Ve = —igradE. (15.48)
gy -

C

As long as one chooses for {1, 0y, 0.} independent functional representations of
{k, e, 5, c}, (15.48) is equivalent to (15.46). If, however, oy and o, are assumed to
be constant, which is often the case, then the functional dependencies of X;‘” and
X,(C) are affine to that of v,. This is a kind of similarity rule, sometimes not being
experimentally corroborated, but often employed. In this simple case, one then only
needs to find a relation for

v, =k, e,0,¢, x). (15.49)

If v, neither depends on 6 nor on ¢, then, apart from a dependence on x (15.50)
reduces to
vy = by(k,e,-), or evensimpler v, =0, (k, ), (15.50)

where the dot stands for a possible x-dependence. If the parameterization of v; on
k, €, and x or on k (and x) are known, one then only needs additional algebraic or
differential equations for £ and ¢ to fix the turbulent viscosity. Depending upon, which
case prevails, one then speaks of one- or two-equation models. In early turbulence
modeling the turbulent viscosity was often assumed to be at most a function of
position.

4What is meant here is that no new turbulent closure must be given if the equation of state is
prescribed.

SFor a biographical sketch of SCHMIDT see Fig. 15.5.
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ERRST SCAMILT 1852 1974

Fig. 15.5 ERNST HEINRICH WILHELM SCHMIDT (11. Feb. 1892-22. Jan. 1975)

ERNST HEINRICH WILHELM SCHMIDT was a German thermodynamicist and University
teacher. He studied at the Technical Universities (Hochschule (TH)) of Dresden and Mu-
nich civil engineering but quickly changed to electrical engineering and applied physics. In
1911/12 he served in the German military and was drafted in the first World War from 1914—
1918. In 1919, he completed his studies in Munich and graduated with diploma in electrical
engineering. In 1920 he was promoted to Dr.-Ing in Munich and subsequently worked under
OSKAR KNOBLAUCH as laboratory assistant of applied physics at TH Munich. He obtained
the habilitation degree from TH Munich and immediately captured the professorship for
thermodynamics at TH Danzig (now Gdansk, Poland). In November 1933 he signed a sup-
porting statement of the University and TH professors in Germany for ADOLF HITLER and
joined the supporting members of the NSDAP. With the assignment of HERMANN GORING
ERNST SCHMIDT was installed in 1943 as plenipotentiary for jet propulsion. As such, he
established the largest German research network for solid-propulsion rockets.

ERNST SCHMIDT was professor of engine research between 1937 and 1945, and again pro-
fessor of thermal sciences from 1945 to 1952, both at TH Braunschweig. From 1952-1961
he was full professor for thermodynamics at the TH Munich, where he retired in 1972.

The SCHMIDT number is named after him. It measures the ratio of the diffusive momentum
to diffusive mass transfer. SCHMIDT, moreover, focused his research on thermodynamics of
rocket engines, which are extensively treated in [18].

The text is based on www.wikipedia.org and http://www.deutsche-biographie.de/pnd1187
95228 .html
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‘QJ Ludwig Prandtl (1904)
/

y ’ with his fluid test channel

Fig. 15.6 LUDWIG PRANDTL (4. Feb. 1875-15. Aug. 1953)

LUDWIG PRANDTL was a German engineer, a pioneer in the development of rigorous system-
atic mathematical analyses which he used to underlay the science of aerodynamics. He wrote
his doctoral dissertation on SAINT VENANT torsion in shafts under AUGUST FOPPL (1854—
1924), where he presented his membrane analogy between torsion of beams and bending of
soap films under transverse pressure, spanned over a wire of the form of the boundary of
the beam’s cross section (see Fig. 8.3 in Vol. 1). In the 1920s he developed the mathematical
basis for subsonic aerodynamics including transonic velocities. His studies identified the
boundary layer, thin-airfoils, and lifting-line theories. In 1901 PRANDTL became a professor
of fluid mechanics at the Technische Hochschule Hannover, where he developed many of
his most important theories. In 1904 he delivered a groundbreaking paper, Fluid Flow with
Very Little Friction, in which he described the boundary layer, its importance for drag and
streamlining and the flow separation as a result of the boundary layer, clearly explaining the
concept of stall for the first time. In 1918-1919, he published the LANCHESTER—PRANDTL
wing theory. Considerable work was included on the nature of induced drag and wingtip
vortices and turbulence. Other works examined the problem of compressibility at high sub-
sonic speeds, known as the PRANDTL-GLAUERT correction. He also worked on meteorology,
plasticity and structural mechanics.

The above photo with Prandtl’s test channel is taken from [21].

The text is based on www.wikipedia.org

15.3.4 One- and Two-Equation Models

PRANDTLS. in his seminal papers [11, 12], which gave quantitative turbulence mod-
eling an early start, did not postulate closure conditions for k£ and ¢ but described

SFor a biographical sketch of PRANDTL see Fig.15.6
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the eddy viscosity as a function of the mean velocity gradient and a mixing length,
v, = £%|0v;/Ox,|, for simple shearing which in three-dimensional flows may be
extrapolated to have the form

v = 20%/1l3, (15.51)

(which was not proposed in this form by LUDWIG PRANDTL. He initially only for-
mulated it for turbulent simple shear). This formula requires parameterization of the
mixing length £. This was done by LUDWIG PRANDTL himself in his paper of 1933
[12], by postulating a balance law of the form

ot

o, +div (D) +20 /Iy +---=0 (15.52)

for the mixing length.
PRANDTL’s proposal is an example of a one-equation model. If £ is determined
by (15.52), the turbulent viscosity and diffusivities are known by the equations

v ” 1%
v = 20/Ilp, whjj x’ ==, (15.53)

and, since dimensionally [k] = [1?/£?], one may also set
k = ¢ 46% 11 (15.54)

In (15.53) and (15.54), 0y, 0. and ¢ are fitting constants.

An alternative to the above closure relations (15.52) and (15.53) is to propose
evolution equations for two quantities: k, € or the mixture length ¢ or any turbulent
scalar quantity that characterizes the turbulent intensity e.g., the turbulent vorticity
w. These quantities are dimensionally related by

_ [k*/?] k]
[e] = W, [w] = m, (15.55)

and equation models have been proposed for the turbulent variable pairs (k, £), (k, €),
(k, w) and are called k — ¢ model, k — € model and k — w model, respectively. For
each of these, balance law-type equations have been proposed. The most popular is
the kK — € model [9, 10]. This model has extensively been tested against experiments
[16, 17], however, the k — w model has also gained popularity in geophysical appli-
cations, [23, 24].

For all these models a direct connection with the turbulent viscosity must still be
established. This is obtained with the aid ofdimensional analysis by appropriately
constructing the physical dimension of the quantity under question. The reader may
easily check the dimensional relations

(k]

M=—ﬂWM=m
[]

[w!/2]”
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from which we may postulate the parameterizations
v=c k—2 = k' = kw? (15.56)
He M Iz ’
in which ¢, ¢, cZ are coefficients adjusted by experiments. Interestingly, in spite

of this, these coefficients exhibit some notion of universality, i.e., their numerical
values are assumed to hold for (nearly) all turbulent processes.

15.4 k — € Model for Density Preserving
and Boussinesq Fluids

In the k — ¢ model evolution equations are constructed for the turbulent kinetic
energy k, and the turbulent dissipation rate, € and the actual values for the turbulent
diffusivity v; are computed with the aid of (15.56) viz.,

k2
v = C#?. (15.57)

Since [v,] = [k?] /l€], it follows that ¢, is a dimensionless scalar, which, in the k — ¢
model is taken to be a constant. For k and ¢, partial differential equations of balance
type are derived. These will also contain scalar parameters and must equally be
determined numerically by validating the model.

Historically, the kK — ¢ model has originally been developed in the 1970s by
K. HANJALIC and B.E. LAUNDER [6], W.P. JONES and B.E. LAUNDER [9] and
B.E. LAUNDER and D.B. SPALDING [10]. It has, in the last decades, attracted great
attention in the engineering and geophysical and hydraulic engineering commu-
nity. W. RoDI [16, 17] describes its applicability in geophysics and the hydraulic
engineering community, J. WEIS [22] and L. UMLAUF [20] put it in proper per-
spective with other two-equation models. A derivation using continuum mechanical
principles is given in HUTTER and K. JOHNK [7]. Here we provide a summary only.

15.4.1 The Balance Equations

In the k — ¢ closure scheme the balance laws of mass, momentum, energy and tracer
mass for the mean motion are complemented by the balance laws for turbulent kinetic
energy and turbulent dissipation rate. They are given by
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d
a/kdv —/d)k-nda—i—/ﬂ'kdv,
Ow w

d
E/Edv —/¢€~nda+/w5dv,
Ow w

w

(15.58)

or in local form

% + div (kv) = —div (¢*) + 7,
! (15.59)

% + div (ev) = —div (¢°) + 77,

in which ¢* and ¢° are flux and 7%, 7° are production terms. The imaginative part of
the proposal of the k — € model is the postulation of these flux and production terms
as are the parameterizations for R, ¢q,, j, in (15.32), (15.41) and (15.42), which are
repeated as follows

R N 2 —
—=—vVQvV=—k1+4+2u,D,
p 3
9 _ vy = " grad?, (15.60)
PCy gg
I _ v = —igradE,
.

in which the relations in (15.47) have been applied. These parameterizations all
involve the turbulent (momentum) viscosity v, and PRANDTL and SCHMIDT numbers
oy and o, which are assumed to be constants. This serves as motivation also to
parameterize the flux terms in (15.59) in the same form, viz.,

¢k - _ (i + y) gradk = —D(k)gradk,
o (15.61)

e Vy £
¢ =— (— + V) grade = —D®grade
o-

€

with two new PRANDTL numbers, o; and o., respectively, to be numerically deter-
mined; v; is the turbulent and v the material kinematic viscosity.”

7To write down the local forms (15.59) and the gradient type representations (15.61) one presupposes
locality and differentiability of k, e, ¢*, ¢°, 7%, m. More precisely, (15.58) is assumed to hold for
any region w, how-so ever small and the fields involved are smooth. Neither of these assumptions
seems to us to be obvious, even though they appear to never have been explicitly questioned.
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The judicious selection of the production rate densities 7° and 7° is the heart of

the construction of the k — € model. For a BOUSSINESQ fluid the resulting relations
are

7k = v Iy — €+ wig - grad 0,
p* op

2 S (15.62)
7w =dcklly — co— + C3p ’ Lkg-grad®,
k p* og
in which 1 9p(0)
_ 14 .. D
=—-—— —| , Iy = str (DD 15.63
(6 7] ﬁg 89 , D 2 ( ) ( )

are the coefficient of thermal expansion and 1 is the second invariant of D. The first
and the second terms on the right-hand side of (15.62) are the classical production
terms of the k — ¢ model of density preserving fluids, whereas the last terms are due
to the buoyancy effects of the BOUSSINESQ fluid.

A detailed derivation of the k — £ model will not be given here; however, a sketch
of the derivation is provided; for details the reader is, however, referred to [7].

Turbulent kinetic energy: To briefly outline the procedure, let us commence with
the derivation of the equation of the turbulent kinetic energy. To this end, one scalarly
multiplies the momentum equation for the fluctuation velocities®

/

%—l;eriv TRV +v®7)+div (v ®v — v @)

1
+ —grad p’ — div (vgradv’) =0 (15.64)
p

with the fluctuation velocity v’ and then applies the filter operation (-) to the emerging
equation. The result is

8/
a—';-v/+div(v/®v)-v/+div(v®v/)-v/

—_——
@ ©) ®
- 1 P -
+div(v' @ v') - v/ + —div p'v' —v(divgradv’) - vV =0,  (15.65)
—_— p* —_———
@ — ®
®

in which a term linear in v’ has been omitted, since v’ = 0. The individual underbraced
terms are expressible as

8This is the difference of the momentum equation for ¥ + v’ and the momentum equation for .
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oo K
T
@ = div (kv),

2

1 - k
® = _;tr(RD) :41/,115:4@;115, (15.66)

@ = div (%(v’ . v’)v’) ,
@ % 01
® = vdivgradk —e.
All these expressions are exact and obtained by algebraic manipulations except the

pressure term (3, which is approximate. Note, that the term @ is the divergence of
the average of a triple correlation. We define this vectorial quantity as

q“ = (3v ) (15.67)

and postulate for it the gradient law

k2
q. = —ngradk = —igradk = —c,—gradk. (15.68)
Ok (23

Combining this expression with the first part of (15.66)¢ then generates the flux of
the turbulent kinetic energy, which was already stated in (15.61) without motivation.
The remaining terms in (15.66) then define the first two terms on the right-hand side
of (15.62);. The last (third) terms on the right-hand sides of (15.62) arise only in a
BOUSSINESQ fluid and will later be explained.

Turbulent dissipation rate: The balance law for the turbulent dissipation rate ¢
is intimately based on the fact that vorticity, i.e., w = curl v, is the cause for the
formation of eddies. This is evidenced by the relation

(15.34) —_— —
e 2V 4T, = 2w (D'D)

= gtr [(grad v + grad Tv’) (grad v’ + grad Tv’)]

= g|grad v/ + grad Tv'|?
= vlcurl V|2 = vw' - W = 2ve, (15.69)

where
e= %(w/ -w’) (15.70)

is called the specific turbulent enstrophy. Equation (15.69) is the salient expression
of the connection between turbulent dissipation and vorticity.
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To derive an evolution equation for ¢, it is therefore tempting to proceed formally
as with the balance law for the turbulent kinetic energy. One starts with the momen-
tum equation for the fluctuation velocities (15.64), takes its curl and, thus, obtains
thevorticity transport equation for the turbulent velocity’

aa—a:+div (w’®(5+ v’) —(5+ v')®w’+§® v’—v’®§)

—vdivgradw' —div (W' @ v — v @ w’) = 0. (15.71)

It is now clear that an evolution equation for € or e will emerge, if one multiplies
(15.71) scalarly with w" and then applies to the emerging equation the filter operation
(). This yields the relation

0O

ot
(i1) —2vw - div[(v+7v) ® W]

6)) +2vw - div[w ® (v+ v')]

(iii) +2vw - diviw® v — v Q W]

(15.72)
(iv) — 212w’ - div (grad w’)
v) —2uw - div (W @V — v @ W)

=0.

The individual terms in the five lines of (15.72) are transformed and interpreted in a
relatively complex detailed computation, see e.g. Chap. 11 in [7]. The result can be
summarized as follows:

0 -
G = a—j + div (ev) + div ¢°, 9" =v(Ww W)Y,

(i) = =41k II;, c¢; = const.,

(iii) ~ 0,

_ 15.73

(iv) = —div (v grad e) + 2 v*|grad w'|2 ( )
2

€
~ —div (v grade) + 62?, ¢, = const.,

v)=0.

Notice that statement (i) contains a flux term ¢°; similarly, (iv) also involves a flux
term given by v grad €. With the gradient type parameterization

9The derivation of this equation is given in the solution to the homework Nr. 7 of Chap.7 on p. 518
of [7].
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~ . k2 ~ 12 cy K2 cp
q- =—x; grade = —cg? grade, x;=—=——, o.=— (1574

o, 0 € Ce

the two flux terms can be combined to form

Uy
¢° = — (— + u) grade = —D®grad e, (15.75)

O¢

already stated in (15.61). In summary, the balance of turbulent dissipation takes the
final form

de . _ , k2 2
o + div (e v) = div c.— +v)grade +4c1k115—czI, (15.76)
€
——

e

in which the specific production rate density 7° has already been anticipated in the
first two terms of (15.62),. Its third term is only present in a BOUSSINESQ fluid. This
completes the presentation of the k — ¢ equations for a density-preserving fluid.

15.4.2 Boussinesq Fluid Referred to a Non-inertial Frame

Recall that a BOUSSINESQ fluid is kinematically density preserving, but accounts for
small density variations in the gravity term. Moreover, in geophysical applications
non-inertial effects are accounted for by the CorioLIs!? acceleration, whilst cen-
tripetal accelerations are generally absorbed in the gravity term.!' This implies that
the momentum equation for the velocity fluctuations, relation (15.64), must on the
left-hand side be complemented by
/
202 xv — p;)_*g

where $2 is the angular velocity of the frame. After scalar multiplication with v’ and
then averaging,

_ o
02 xv)- v/—% == g (15.77)
—_—

0

is obtained. It follows, the balance law of turbulent kinetic energy has the additional
production rate density (15.77), so that

10For a short biography of GASPARD DE CORIOLIS, see Fig.8.10, Vol. 1. An interesting his-
torical addendum is the book ‘Pendulum—Léon Foucault and the Triumph of Science’ by
AMIR D. ACZzEL [1].

"Obviously, this is not so in laboratory experiments on rotating platforms.
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ok L . c.k?
— +div (kv) — div — 4 v ) gradk
ot (7%

k? 11—
—4c,—Ily+ec——pv-g=0. 15.78
Cﬂg D TE p*pv g ( )

The balance law for the turbulent dissipation rate is obtained if the curl of the equa-
tion for the velocity fluctuations is formed, which is then scalarly multiplied by the
vorticity fluctuation w’ = curl v’, and the resulting equation is subsequently filtered.
This generates the two additional terms

/
2v Icurl 282 xv)-curlv — curl (%) - curl v’] (15.79)
p*

in the balance of turbulent dissipation rate. The common factor 2v enters because of
(15.69). With (15.79) the balance law of the turbulent dissipation rate is, therefore,
given by

2 2

k
+div (7) — div ((cg— + y) grads) —dek Iy + 62%
&

@
ot

— 21/|:curl (gi) . curl v’] +2ufcul 22 xv) -curlo] =0.  (15.80)
p*

The new terms in (15.78) and (15.80) are, respectively, due to the small density
variations in the buoyancy term and CORIOLIS acceleration inferred by the non-
inertial frame.

In the turbulence literature the parameterization

/
- 2V|:curl (%) - curl v’i| =9 -cﬁﬁ (15.81)
P [

is suggested. The following argument may serve to justify this proposal. On the left-
hand side p’ and v’ are the only arising fluctuating variables. So, it is tempting to
postulate that the left-hand side of (15.81) is affine (collinear) to p'v’ with an adjust-
ment using k and € to match the dimensions on the two sides of the equation. This
requires the right-hand side to involve the explicit factor €/k with a dimensionless
coefficient c3 as a modeling constant. In geophysical applications c¢3 is small and
often set to zero: c3 = 0. For more details of the ‘derivation’ of (15.81), see e.g. [7].

The term in (15.80) due to the CORIOLIS acceleration is generally ignored. This
assumption may be justified by the argument that the CORIOLIS acceleration does
not produce any turbulent kinetic energy; so, the corresponding production in the
turbulent dissipation equation should equally vanish. An alternative motivation for
this choice is again given in [7].
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In summary, the above arguments suggest that under fairly weak simplifying as-
sumptions of the differential equation for the turbulent dissipation a BOUSSINESQ
fluid is the same as the corresponding equation for a density preserving fluid.

For the simplest form of the thermal equation of state p = p(#) a TAYLOR series
expansion yields

~

p

p=p@)=pl+6) =~ p@) + %gawm, (15.82)
implying a linear approximation
p=p@).
. 2_2(5)9/ — (15.83)
where
ay = Gy(0) = _ﬁ(lé) %’(5) (15.84)

is the averaged coefficient of thermal expansion. The added term in (15.78) due to
the density variations in the balance law of turbulent kinetic energy can with (15.83),
be written as

_9 PV = 9g - 0V = —ﬁag@)g- igrad@, (15.85)
p* p* a9

in which at step ‘=’ the gradient-type law (15.60),, i.e.,

v = — L orad (15.86)
oy}

was employed, in which v, is the turbulent viscosity and oy the PRANDTL number for
adjustment with experiments. Similarly, the corresponding term in the balance law
of turbulent dissipation in (15.80) [see also (15.81)] takes the form

_ I v =8 P skg - eradd. (15.87)
pr Tk 0 P

15.4.3 Summary of the k — € Equations

It is helpful to collect all governing field equations of the turbulent motion of a
BOUSSINESQ fluid at one place. These equations are as follows:
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e Balance of mass
divv = 0. (15.88)

Balance of linear momentum

ov

ot
1 _ . P

= — grad p +div (2(v + v,)D) + %g. (15.89)

+divir®v)+22 xv

e Balance of energy
o0 =
> + div (v6)

. L — 4y r
= div X7+ —)grad0 )+ — I+ —. (15.90)
o

[4 v Cy

Balance of species mass (we write ¢ for c,,)

dc

5 T div (v¢) = div ((x“) + i) grad E) + . (15.91)
g,

c

e Balance of turbulent kinetic energy
Ok
— +div (vk
r iv (vk)

= div ((u n i) gradk) YAy —c+ 2 Vg oradd. (15.92)
Ok p* oy

e Balance of turbulent dissipation rate'?

Oe

ot

2 [
= div ((V + i) grada) +4ciklly— ng_ + Py %kg - grad 6.
€ k P 0p

+ div (ve)

(15.93)

In these equations no expression has been proposed for the production rate density
@° of species c. Its postulation depends on the particular problem at hand, which is
the reason why it remains unspecified here. For salinity, however, we have ?° =0.
Moreover, it should be mentioned that the buoyancy related terms in the balance

12Notice that in [8] the last term on the right-hand side of (15.93) is in error (misprint).
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r!‘able 15.2 Numerical values ¢, =0.09 ¢ =0.126 =192
for the closure constants of
the k — € model

c3~0 o, =14 o.=1.3

relations of turbulent kinetic energy and turbulent dissipation rate have formally
been ignored.

To the many empirical constants which arise in the above equations, numerical
values must be assigned. These are collected in Table 15.2. The numerical values
of these coefficients have been obtained by relatively simple model calculations (for
details see [17]).

15.4.4 Boundary Conditions

The form of the boundary conditions, which have to be formulated in a solution
scheme of the partial differential equations of the k — £ model, depend on the partic-
ular physical situation at hand. In what follows, we will focus attention to problems as
they arise in meteorology, oceanography, limnology and conceptually related prob-
lems of geophysical or environmental contexts.

“The field equations (15.88)—(15.93) constitute a set of 7 4+ v (‘v’ for v species
mass balances (15.91)) equations for the unknown fields v (3), p (1), 9 (1), ¢,
(a=1,2,...,v), k (1), € (1) unknowns. They form a system of nonlinear partial
differential equations, for which boundary conditions must be prescribed. The equa-
tions are of parabolic type (they are of first order in time and of second order in
the space variables (via the flux parameterizations)). Consequently, boundary con-
ditions must be formulated at the solid and at the free surface for all diffusive-type
equations’ [8].

Boundary conditions of momentum: The bottom surface is generally treated as
rigid and material, only for extremely shallow regions (e.g. of the atmosphere, the
ocean or lakes) the bottom surface may move and material of the basal soil be dis-
lodged. Excluding these cases, the fixed botfom surface may allow a certain discharge
of water, QTundary, into the ground and the velocity tangential to the bed may ei-
ther be zero (no-slip condition) or related to the basal traction. Let us introduce the

notation

v =" m,

vy :=0v' — (V¥ -nm)n =v° —vin,
! . (15.94)

p,=—n-tn,

ty:=tn—(n-t'n)n==t'n+pin,

in which s is a label for a surface (s = b for the bottom surface) and n is the unit
normal vector perpendicular to the surface and exterior to the domain, in which the
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boundary value problem is to be solved. v, v}, p} and ¢ are, in turn, the water
velocity normal and parallel to the surface, and the surface normal pressure and the
shear traction parallel to it. With the notation (15.94), the basal boundary conditions
read (s = b stands for ‘bottom surface’)

W = g = —prch b T, (15.95)

For Mgfmnd = 0 the bottom surface is impermeable for the water, this is the usual
case. Should ground water accretion be substantial, then Mimund # 0 follows from a
coupling of the k — ¢ equations with a ground water model. p* is the water density at
4°Cand c), ~ 1.5 x 1073 is the basal drag coefficient, c% — 00 corresponds to the
no-slip condition, ﬂ" =0, and c% = 0 models frictionless sliding, for which tﬁ =0.

At the free surface, momentum is transferred by wind and atmospheric pressure.
Such traction boundary conditions are usually described as follows:

t|s| = pac%lW”lW”(xs, t), pi = patm(x, l), (1596)

in which p, ~ 1.4 kg m~3 is the density of air at atmospheric pressure, ¢, ~ 1.2 x
1073 is the drag coefficient and W the wind velocity parallel to the water surface,
ordinarily 10m above the surface. Wind velocities measured at different heights
above the water surface affect the value of ¢}, adjustments are then necessary, see the
specialized literature, e.g. [ 7], Chap. 13. A dependence of the atmospheric pressure on
the spatial coordinate and time can often be ignored for lakes, because their extents are
generally small in comparison to the spatial variability of the atmospheric pressures.
Only in storm surge situations grad p*™(x, r) # 0 and must be accounted for.

Boundary conditions for the temperature field: At the bottom surface one usually
requests that

0(x°, 1) = [0(zP, r))Pate, (15.97)

where [0(z°, 1)]%2% is the static temperature distribution prescribed and held constant.
Alternatively, one may also request continuity of the heat flow across the bottom
surface

g°-n= Q5" (15.98)

where (15.98) is to be preferred over (15.97) in regions of high volcanic activity.
When the thermal regime of a water basin (lake or ocean) is coupled to the thermal
regime of the ground then continuity of both the heat flow and the basal surface
temperature are required, viz.,

[0, H1 =0, [g°-nl] =0, (15.99)
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in which [ ] is the difference of the values of f on the side of the ground (f*) and
of the water (f ™). This situation requires a mathematical model for the lake domain
and its complement (i.e. the exterior region to the lake).

The most difficult setting of a boundary condition is the energetic transfer at the
free surface of a lake or the ocean. The proper handling of this problem is pursued
with a radiation balance, which may be expressed as

¢ -n=0,— 0"+ Q¢+ 0, (15.100)

Here, Qi and Qj/ are the black body radiation above the surface and water, whilst
Q. and Q are the latent and sensible heat fluxes between water and air. For their
explicit parameterizations, see the specialized literature, e.g. [7], pp. 582-584.

Boundary conditions for the species concentration: Boundary conditions for tracer
substances depend on the kind of biochemical-physical processes to which these
substances are subjected and whether bio-chemical-hydro-mechanical processes are
in focus. Boundary conditions to be established depend largely upon the complexity
of the problem at hand. In the simplest cases either the concentration or its derivative
normal to the free surface or a combination of these is generally prescribed at the
free surfaces.

Boundary conditions for k and : In general, these are rather difficult to postulate,
because the peculiar conditions of turbulence near boundaries are not directly ac-
cessible. Commonly one wishes to prescribe numerical values for k and ¢ or their
fluxes (derivatives of k and € perpendicular to the surface). Such values or formulae
can often only be obtained by consideration of the dynamics of the boundary layer.

At the bottom surface where the flow is weakly turbulent or turbulence has died
out all together, one may require

k=0, e=0 at the bottom. (15.101)

However, close to solid walls the k — ¢ model requires the introduction of wall
functions to properly describe the turbulent boundary layer. This means that (15.101)
is an approximation and should be taken as a gross simplification of the correct
behavior.

Atthe free surface a physically appropriate postulation of the boundary conditions
is more complicated and also more critical. A fairly simple and also physically
transparent assumption is to request that there is no diffusive loss of turbulent kinetic
energy and turbulent energy dissipation through the free surface. With the gradient
type relations (15.61) this says

ak_o Oe

— =0, — =0 at the free surface. (15.102)
on on

The reader is asked to consult the specialized literature e.g. [7, 19].
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15.4.5 Closing Remarks

In this chapter an introduction into turbulence modeling has been given. The basic
‘philosophy’ in such modeling is that a sufficient level of approximation of the true
fluctuation dynamics is replaced by an averaging or smoothing operation, by which
those variations of the physical variables are eliminated, which are thought to exert
anegligible influence upon the processes under consideration. The first such averag-
ing operation has been introduced by JOSEPH BOUSSINESQ (1872) [3] and in a more
detailed mathematical form by OSBORNE REYNOLDS [14]. The averaging operations
have been introduced in this chapter either by spatial or temporal or statistical fil-
ters, which have different mathematical properties and, therefore, yield averaging
equations in which the differences in eliminated fluctuations are accounted for by
adequately selected closure conditions. The statistical averaging operator as a filter
of homogeneous processes is based on ensemble averaging; it is defined by the math-
ematical properties (15.6)—(15.9) and computational rules summarized in (15.10).
The acronym for the form of the emerging equations is RANS, for REYNOLDS-
Averaged-NAVIER—STOKES equations This filter satisfies the so-called ergodic prop-
erty, according to which multiple averaging does not yield smoother and smoother
computed processes. Of course, such behavior cannot universally be expected from
physical processes. Results, based on computations founded on RANS equations
must be interpreted as approximations, possibly subject to amendment. Therefore,
the statistical filter is today sometimes replaced by more general averaging rules,
which do not obey ergodicity. The so called Large Eddy Simulations (LES) are such
more general averaging rules, which have not been dealt with in this chapter.

The balance laws for mass, momentum, energy and for a scalar field, when sub-
jectto the RANS-averaging operation again possess balance equation structure. Their
detailed forms (15.21)—(15.24) contain in comparison to the non-averaged analogous
equations additional 4 correlation terms (15.25), three of which have flux nature and
one is an energy production rate. In an attempt of turbulent closure of the REYNOLDS
stress tensor R, (15.31), and the mean turbulent dissipation rate %5 two new quan-
tities arise, the turbulent kinetic energy, k, defined as (15.29) and the turbulent dis-
sipation rate ¢, defined in (15.30), but naturally introduced in (15.34), for which
independent closure statements must be postulated. It should be stated here that
in the earliest zeroth order closure attempt, see the following Chap. 16, no closure
relations needed to be postulated, because these variables did not arise in the simpler
flow configurations, which were under focus there.

Nevertheless, the earliest proposals for the scalar stress components under plane
or axisymmetric flow due to JOSEPH BOUSSINESQ (1872) [3] introduced a turbulent
viscosity €, suggested by

abtl
T2 = PE——

8)(2 ’
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Follow-up suggestions for the turbulent heat flux, ¢, (15.41), and turbulent mass
flux (15.42) were then analogously proposed with gradient-type proposals (15.43),
‘setting in motion’ the victorious advance of the gradient-type closure relations. This
apparent ‘gradient-mania’ found its continuation in the first order closure scheme,
as we have demonstrated when deriving and motivating the balance laws for the
turbulent kinetic energy, k and the turbulent dissipation rate, €, and the closure
postulates for the flux of turbulent kinetic energy (15.68) and turbulent dissipation
rate (15.73). Here, too, it seems as if the second and third generations of turbulence
modelers would have forgotten already PRANDTL’s attempts in his 1933 and 1945
[12, 13] papers with the intention to reach better agreement of the theoretical mean
velocity distributions with gradient free parameterizations of flux terms, see Chap. 16.

References

1. Aczel, A.D.: Pendulum — Léon Foucault and the Triumph of Science. Washington Square Press,
New York (2003). ISBN 0-74344-6439-6

2. Béuerle, E., Chubarenko, B., Chubarenko I., Halder, J., Hutter, K., Wang, Y.: Autumn phys-
ical limnological experimental campaign in the Mainau Island Limnological Zone of Lake
Constance (Constance Data Band) 12 October—19 November 2001. Report of the ‘Sonder-
forschungsbereich 454 Bodenseelittoral’, 85 p. (2001)

3. Boussinesq, J.: Essay sur la téotie des eaux courrantes. Mémoires présentés par div. Savants 1’
Academie des Sciences de I’ Institut de France. Tome 23 (avec supplément in Tome 24) (1872)

4. Egolf, P.W.: Difference-quotient turbulent model: a generalization of Prandtl’s mixing length
theory. Phys. Rev. E 49(2), 1260-1268 (1994)

5. Gad-el-Hak, M.: Flow Control: Passive, Active and Research Flow Management. Cambridge
University Press, Cambridge (2000)

6. Hanjalic, K., Launder, B.E.: A Reynolds stress model of turbulence and its application to thin
shear flows. J. Fluid Mech. 52, 609-638 (1972)

7. Hutter, K., Johnk, K.: Continuum Methods of Physical Modeling, 635 pp. Springer, Berlin
(2004)

8. Hutter, K., Wang, Y., Chubarenko, I.: Physics of Lakes, Volume 1: Foundation of the Mathe-
matical and Physical Background, 434 pp. Springer, Berlin (2011)

9. Jones, W.P,, Launder, B.E.: The prediction of laminarisation with a two equation model of
turbulence. J. Heat Mass Transf. 15, 301-314 (1972)

10. Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flow. Comput. Methods
Appl. Mech. Eng. 3, 269-288 (1974)

11. Prandtl, L.: Bericht iiber Untersuchungen zur ausgebildeten Turbulenz. Zeitschrift fiir ange-
wandte Mathmatik und Mechanik (ZAMM) 5(2), 136-39 (1925)

12. Prandtl, L.: Neuere Ergebnisse der Turbulenzforschung. Zeitschr. VDI 77, 105-113 (1933)

13. Prandtl, L.: Uber ein neues Formelsystem fiir die ausgebildete Turbulenz. Nachr. Akad. Wiss.
Gottingen Math.-Phys. Klasse, pp. 6-19 (1945)

14. Reynolds, O.: An experimental investigation of circumstances, which determine whether the
motion of water shall be direct or sinuous, and the law of resistance in parallel channels. Philos.
Trans. R. Soc. Lond. A 174, 935-982 (1883)

15. Reynolds, O.: On the dynamical theory of turbulent incompressible viscous fluids and the
determination of the criterion. Philos. Trans. R. Soc. Lond. A 186, 123-164 (1894)

16. Rodi, W.: Examples of calculation methods for flow and mixing in stratified fluids. J. Geophys.
Res. C5(92), 5305-5328 (1987)


http://dx.doi.org/10.1007/978-3-319-33636-7_16

References 261

17.

18.

19.

20.

21.

22.

23.

24.

Rodi, W.: Turbulence Models and their Application in Hydraulics IAHR Monograph Series.
A.A. Balkema, Rotterdam/Brookfield (1993)

Schmidt, E.H.W.: Einfiihrung in die technische Thermodynamik und in die Grundlagen der
chemischen Thermodynamik, 10th edn. Springer, Berlin (1963)

Svensson, U.: A mathematical model for the seasonal variation of the thermocline, Report 1002,
Department of WaterResources Engineering, University of Lund, Sweden, 187 pp. (1978)
Umlauf, L.: Turbulence Parameterization in Hydro-Biological Models for Natural Waters.
Ph.D. Dissertation, Department of Mechanics, Darmstadt University of Technology, Darmstadt,
Germany, 231 p. (2001)

Vogel-Prandtl, J.: Ludwig Prandtl, a Personal Biography Drawn from Memories and Corre-
spondence. Universititsverlag Gottingen, 248 p. (2014)

Weis, J.: Ein algebraisches Reynolds Spannungs-Modell. Ph.D. Dissertation, Department of
Mechanics, Darmstadt University of Technology, Darmstadt, Germany, 111 p. (2001)
Wilcox, D.C.: Reassessment of the scale-determining equation for advanced turbulence models.
ATAAJ. 26(11), 1299-1310 (1988)

Wilcox, D.C.: Turbulence Modeling for CFD, 2nd edn. DCW Industries, Inc., La Canada (1998)



Chapter 16

Turbulent Mixing Length Models and Their
Applications to Elementary Flow
Configurations

Abstract In comparison to Chap. 15, this chapter goes back one step by scrutinizing
the early zeroth order closure relations as proposed by PRANDTL, VON KARMAN and
collaborators. The basis is BOSSINESQ’s (Mém. Prés. Div. Savant Acad. Sci. Paris,
23:46 [3]) ansatz for the shear stress in plane parallel flow, 715, which is postulated
to be proportional to the corresponding averaged shear rate Jv; /Ox, with coefficient
of proportionality pe, where p is the density and € a kinematic turbulent viscosity
or turbulent diffusivity (m2s~"). In turbulence theory the flux terms of momentum,
heat and suspended mass are all parameterized as gradient-type relations with tur-
bulent diffusivities treated as constants. PRANDTL realized from data collected in his
institute that € was not a constant but depended on his mixing length squared and
the magnitude of the shear rate (PRANDTL, ZAMM 5:136-139, [23]). This proposal
was later improved (“Prandtl (1942), Abriss der Stromungslehre” PRANDTL [25])
to amend the unsatisfactory agreement at positions where shear rates disappeared.
The 1942-1aw is still local, which means that the REYNOLDS stress tensor at a spatial
point depends on spatial velocity derivatives at the same position. PRANDTL, in a
second proposal of his 1942-paper suggested that the turbulent diffusivity should
depend on the velocity difference at the points where the velocity of the turbu-
lent path assumes maximum and minimum values. This proposal introduces some
non-locality, and it yielded better agreement with data, but PRANDTL left the non-
gradient-type dependence in order to stay in conformity with BOUSSINESQ. It does
become neither apparent nor clear that Prandtl or the modelers at that time would
have realized that non-local effects would be the cause for better agreement of the
theoretical formulations with data. The proposal of complete nonlocal behavior of
the REYNOLDS stress parameterization came in 1991 by P. EGOLF and subsequent
research articles during 20 years, in which also the local strain rate (=local velocity
gradient) is replaced by a difference quotient. We motivate and explain the proposed
Difference Quotient Turbulence Model (DQTM) and demonstrate that for standard
two-dimensional configurations analyzed in this chapter its performance is superior
to other zeroth order models.

This chapter has been criticized by Prof. P. EGOLF. This led to improvements. The authors
thoroughly thank for this help.
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Keywords Local/nonlocal turbulent stress closure * Criticisms on zeroth order local
stress closures + PRANDTL turbulent plane wake *+ Axisymmetric isothermal jet -
Turbulent jet in parallel co-flow - Plane POISEUILLE flow
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Turbulent convection parameter

Strain rate, stretching tensor (deviator)

Diameter of a cylinder immersed in a parallel flow

Mean force per unit width exerted on a circular cylinder by a
viscous fluid

Dimensionless functions describing the transverse variation
of v}, 03, v|vh

Dimensionless auto-correlation functions for W

Gravity vector—constant

Scaled transverse distribution of v} for plane POISEUILLE
flow: g1 () = f1(1)/f1(0)

gii =~/ fii (ii = 11,22,33) (see (16.91) and (16.102)).
Auxiliary parameter _

Turbulent kinetic energy (3v/v;), dimensionless constant
Characteristic length of the similarity representation of field
variables (16.22)—(16.25)

PRANDTL mixing lengths

Axial mass flow at the exit nozzle of a round jet—at a general
cross section

Order symbol

Pressure, mean— constant reference—

Virtual origin of a jet stream, production of turbulent kinetic
energy

Exponent of (x; — p)/(kd) in the similarity representations
of b, v}, V3, viv}

REYNOLDS stress tensor

REYNOLDS shear stress Rjy = Tj2 = —pvjvs = 1, 3%
REYNOLDS stress deviator )
REYNOLDS number

Viscous stress tensor (deviator)

Undisturbed parallel flow velocity far upstream

Mean exit velocity at the nozzle of a jet exit

Velocity field components of v in an orthogonal,
not-necessarily orthonormal coordinate system
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Maximum/minimum mean velocity in the turbulent domain
at a fixed value of x;

X1-, respectively, x,-component of the mean velocity field
Steady jet stream velocity at the exit nozzle

Reduction of v; from Ug

Auto-correlation functions of the velocity components v} (i =
1,2,3)

Position vector with its components

Characteristic length (equivalent to kd)

Position x; (at fixed x;), where v; assumes a Maximum

Parameters in the DQTM equation (16.171) for plane
POISEUILLE flow

Auxiliary parameter, dimensionless parameter in the similar-
ity representation of b(x) (see (16.25))

Shifted coordinate x; with origin at x; = —p
Dimensionless scaled transverse coordinate for a jet stream
Parameter in representation (16.46) to adjust fi(n) to the
experiments

Dimensionless Cartesian coordinates for plane POISEUILLE
flow: £ = x1/a,n = x2/a

Dynamic viscosity

Kinematic material/turbulent viscosity

Mass density

Unspecified field quantity

Mean value of  in turbulent processes

Fluctuation of y in a REYNOLDS averaging process
Correlation product of x and ¥

Characteristic length in the x;,-direction, e.g., b(x)

Order parameter in plane POISEUILLE flow

Auxiliary variable

16.1 Motivation/Introduction

As pointed out in Chap. 15, turbulent motions are, in principle, analyzed by per-
forming a statistical average of the governing variables into mean quantities and
fluctuations according to

X=X+x. xelvi,vvsp.ef, . (16.1)
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where vy, vy, v3 are any three independent components of the velocity field. More-
over, Y denotes the mean value of y, interpreted as an ensemble average, and ' is
the deviation of  from its mean value *, called the fluctuation or pulsation of x. For
REYNOLDS averaging they have the properties that

=0, I=0% X=X x¥=X0+xV. (16.2)

Performing for a density preserving fluid the averages of the equations of balances
of mass and momentum yields, on use of the computational rules (16.2),

divv =0, (16.3)

v - _
IpE + pdiv [(6 )+ W ® v/)” = —gradp +diveR + pg, (16.4)

as have also been shown in (15.21) and (15.22), in which {v, p, t%, p, g} are the aver-
aged velocity vector, pressure, frictional (or viscous) stress tensor and the constant
density and gravity vector. Moreover, v ® v is the dyadic product of the velocity
vector with itself. Defining by (15.26), i.e.,

R=—pvV®Vv (16.5)

the symmetric turbulent stress tensor, the averaged momentum equation can also be
written as

@eriv @)
P ot

@+(rad5)i
Pl T

= —gradp+diveR +divR + pg.  (16.6)

Because regularly, || div ¢k || is much smaller than || div R ||, the viscous stress is
often ignored in (16.6) for a fully developed turbulent flow. Furthermore, the gravity
force is often also absorbed into a hydrostatic pressure such that

P = Dsat T Pdyn; such that grad pga = pg. (16.7)

The classical viscous stress in a NEWTONian fluid is given by ¥ = 2pv D so that its
average is given by

tR =2p0D (16.8)
having in three (two) dimensions five (two) independent components because trD =

0. An analogous parameterization of R for fully developed turbulence is, however, not
appropriate, because, according to (16.5), the turbulent kinetic energy, k, defined by
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11— 1 1

k= zvjv,=-tr (0 ®v)= —2—tr R, (16.9)
p

does not need to vanish in general (even though the fluid has been assumed to be
density preserving). Consequently, a consistent zeroth order stress parameterization
must be of the form (see also (15.32);)

1 2 _
~V®v=-R=-2k1+2D. (16.10)
P

In the above, v and v, are the material and turbulent viscosities, respectively and
are often of quite different orders of magnitude (e.g. v ~ 10™°m?s~! and v, >
1073m?s™!, for water). The first proposal of the form (16.10) is due to JOSEPH
BOUSSINESQ (1872) [3]. In his parameterization, the turbulent kinetic energy was not
modeled (k = 0), so his proposal corresponds to éR = 2u, D, or in Cartesian tensor
notation %Ri ;i =1,(v; ; + ;). BOUSSINESQ was looking at uniaxial axisymmetric
plane flow in pipes or plane parallel flow, thus situations with the shear stress being
of the form

R12 =T12 =l/f%’ (1611)

8xz

since v, = v3 = 0. Here and henceforth we have changed the notation: For turbulent
simple shear flows, v} (x,, x3), the turbulent shear stress 7, or 7 is often used instead
of Rj». In what follows, the analysis will follow PETER EGOLF [8]. According to this
reference, several authors [2, 8, 29] have since the 70’s of the last century criticized
the phenomenological gradient approaches such as (16.10) or (16.11). PETER EGOLF
mentions several criticisms, which we shall now report.1

e Criticism 1: The analogy between molecular and turbulent transport is question-

able. In molecular dynamics the size of the molecules is small compared to the
mean free path between the molecules. In contrast to this, the largest interacting
eddies may have any size, i.e. may not be small as compared with the characteris-
tic length scale of the flow under consideration. A fortiori, the ‘mixing length’ is
not even small as compared with the characteristic length scale of the flow under
consideration.
In the kinetic theory of gases the viscosity is proportional to the product of the root-
mean-square velocity and the mean free path of the molecules. LUDWIG PRANDTL
(1925) [23] in his mixing length theory introduced the mean velocity by a first
order expansion amounting to an eddy-exchange in a layer of thickness ¢, defining
the mixing length ¢:

81)1
8x2

81}1 2 (95]

=L |—. 16.12
axz Eturb axz ( )

T2 (x1, x2) = pl* | —

Quotation is not exactly word by word.
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This mixing-length proposal found its successful application in free turbulence
and in plane viscous boundary layers as well as in atmospheric flows (planetary
boundary layers, geostrophic flows, HOLTON (1979) [16]).? So, ‘length x velocity’
on the molecular dynamic side is replaced by ‘length? x Strain rate’ on the turbulent
side. Whereas these expressions are dimensionally equal, they express different
emphases of the physics.

e Criticism 2: Comparing measured and calculated mean velocity profiles v,
as functions of x, revealed deviations at the points of vanishing derivatives,
0v1/0x, = 0. This was recognized by LUDWIG PRANDTL, and in 1942 [25] he
proposed an extended version of the eddy viscosity by making the eddy viscosity
also dependent on the curvature of the velocity profile at the considered point,
viz.,

12
— — N 2 _
T (X1 1) = pez[(% _'_5,8 v1) } vy (16.13)

Oxy 0x3 oxy’

where he assumed the second mixing length ¢’ to be statistically equally distributed
in the positive and negative directions, so that in this mean gradient theory the cross
terms in the curly bracket of (16.13) cancel out, viz.,

S [ v \? L (0*0) " 0w,
=2 (L v aay 16.14
e[ () e (E2y] "R e

Computations with (16.14) instead of (16.13) yielded better agreement with data,
see H. GORTLER [12].

e Criticism 3: Model predictions with (16.13) or (16.14) are still deficient since they
predict characteristic length scales which are much smaller than the largest eddies
observed in the flow under consideration. LUDWIG PRANDTL (1942), therefore,
tried in the free shear layer theory to relate the eddy viscosity to the overall flow
conditions, namely the width b of the turbulent zone and the greatest mean velocity
difference

0v|

T2 = lipb(ilmx — vlmi“)a—xz, (1615)

in which & is a constant.

In this expression PRANDTL'’s viscosity is now ‘length x velocity’ (= b x (v, —
v1,,,)) as in molecular dynamics. More importantly, however, if we compare the
eddy viscosity of (16.15) with the earlier ones, e.g. (16.12) and (16.13), it is
recognized that LUDWIG PRANDTL replaces local expressions by nonlocal ones,
in which the eddy viscosity is replaced by a nonlocal term in (16.15) [the term

2For LUDWIG PRANDTL’s derivation in the German language along with K.H.’s translation into
English, see Appendix to this chapter.
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(Vi — Ui,;,)]- This is in partial anticipation of PETER EGOLF’s [8] analogous
but extended difference expression. H. GORTLER® (1942) [12] calculated velocity
functions with the approach (16.15), which he found to be in good agreement with
experimental results, but still with one exception:

e Criticism 4: At the boundary of the mixing zone there are deviations, because the
eddy viscosity in (16.15) does not vanish there. To alter (16.15) and improve the
turbulent shear stress proposition, let us write (16.15) in the form

5, (1, — 1,
T12(X1, X2) = ﬁpbza—z; (UI""XTM"“") . (16.16)

When we assume the difference of the positions, at which v, and vy, arise, to
be the distance b (the half width of the turbulent jet), then the last term may be
called a difference quotient. Formula (16.16) contains the differential, 9v,/0x»,
and a difference quotient, the last term in (16.16). It bears the disadvantage that
the differential quotient does not involve the position x; for which 7y, (xy, x2) is
calculated. However, the difference quotient introduces non-local effects, which
are not present in earlier parameterizations of 7y, except in (16.15) which is due to
LUDWIG PRANDTL. This is so, since in the evaluation of (16.16) at least two spatial
points are involved namely that, where 7y is evaluated and those where v, and
vy,,, are evaluated.

e The difference quotient model of Peter Egolf [8]: One can go further than in
the parameterization (16.16) and also replace 0v;/0x; by a difference quotient by
writing

— b . _
T12(x1, x2) = —pvjvh = pxo— (U1 — Vi) (
dx1

vlmmx B Ul

), (16.17)

X2pax — X2

in which x> € [x,b] is a variable or characteristic length scale of the flow,
perpendicular to the main flow direction and x,_  denotes the location where the

mean downstream velocity attains its maximum, vy, . Note that this rather unusual
model does not make use of the eddy viscosity concept (16.11).

PETER EGOLF [8] writes ‘The difference quotient, which for certain locations is
a mean quotient over a very large domain, introduces a non-locality. For that
reason criticism 1 does not apply to this model’. Computed results for turbulent
shear flows ‘show no deviations from measurements at the points of vanishing
derivatives (criticism 2)’. The shortcoming of too small computed mixing lengths
(criticism 3) does not apply either, ‘because X, is a large length scale, e.g., the
width b of the entire turbulent zone. Moreover, if we let v; approach the value
v1,,, at the boundary, the turbulent shear stress in (16.17) will vanish as it should,
(criticism 4)’. From this discussion, PETER EGOLF [8] concludes, ‘that the dif-
ference quotient model is a natural continuation of LUDWIG PRANDTLS ideas on
momentum transfer’.

3For a short biography of H. GORTLER see Fig.16.1.
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e

(H.Gortler)

Fig. 16.1 HENRY GORTLER also HEINRICH GORTLER (26. Oct. 1909 —31. Dec. 1987). (Right)
GORTLER vortices: ‘A: down-wash regions; B: up-wash regions’.

HENRY GORTLER, born in Calgary (Canada) came in 1923 to Giessen, Germany. He studied
architecture and then mathematics and physics at the University in Munich with ARNOLD
SOMMERFELD and afterwards at the University of Giessen with JAFFE and HARALD GEPPERT
and wrote his doctoral dissertation on ‘Asymptotische Eigenwertgesetze bei Differential-
gleichungen vierter Ordnung’ (‘Asymptotic laws of eigenvalues of fourth order differential
equations’) (1936) [11]. In 1937 he became a close collaborator of Ludwig Prandtl in G6ttin-
gen, where he worked on boundary layer theory. Noteworthy are the GORTLER series in the
computation of two-dimensional laminar boundary layers (1957) and the TAYLOR-GORTLER
vortices [instability of a three-dimensional boundary layer as an extension of the instabil-
ity of two-dimensional laminar boundary layers (TOLLMIEN—SCHLICHTING waves), see the
above right panel of the figure, showing a GORTLER vortex © [13]].

In 1944 GORTLER became associate professor and in 1949 full professor at the University of
Freiburg, Germany, where he founded the Institute of Applied Mathematics. He was a mem-
ber of the academy of Sciences in Heidelberg (1961) and Leopoldina (1963) and received the
CARL-FRIEDRICH GAUSS Medal (1967). Moreover, he received an honorary doctorate from
the university of Calgary and was president of the ‘Gesellschaft fiir Angewandte Mathematic
und Mechanik’ (GAMM) (1955-58).

The text is based on www.wikipedia.org

The above developments of LUDWIG PRANDTL’s mixing-length postulates lay
open two modeling operations, which are in conflict with today’s schemes of con-
tinuum material modeling as well as modern turbulence closure procedures: These
loss of (i) the locality principle and absence of (ii) Euclidean invariance. Both
se properties are explicitly spelled out above and clearly evidenced by the above
criticisms, and they are manifest in the formulae (16.15) and (16.17). Interestingly,
one of the authors of this book (K.H.) has through most of his career as continuum
modeler never looked at turbulence from such a point of view. And indeed, modern
higher order turbulence closure schemes, see [17], neither apply principles of non-
linearity consequentially, but accept the violation of Euclidean invariance, which is

obvious in formulae (16.15) and (16.17).


www.wikipedia.org
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It is nevertheless conceptually tempting to scrutinize P. EGOLF’s extension of
L. PRANDTL’s shear stress formulae, in particular, because it will be seen that compu-
tational results are more satisfactory when compared with experiments and analytical
results based on LUDWIG PRANDTL’s proposal, see e.g., [12, 26].

On the other hand, it seems to be pretty clear from the analysis in this chapter
that it will be practically impossible to apply L. PRANDTL’s or P. EGOLF’s ad hoc
non-locality concept in a fully three dimensional turbulence field theory.

16.2 The Turbulent Plane Wake

A turbulent plane wake is created e.g. if a constant parallel flow Uy in the x-direction
passes a circular cylinder of, say, diameter d and generates a (symmetric) velocity
profile as shown in Fig. 16.2. Sufficiently far downstream from the cylinder the mean
perturbed flow is given by

v =Ug — 77, (16.18)

in which v7 is the reduction of the mean flow velocity behind the cylinder. To guaran-
tee fully turbulent velocity disturbances, experience tells that the REYNOLDS number
must be in the range

Usd
R = —%% < 800. (16.19)
14

Moreover, at positions far downstream, i.e. for

g =2 - P <o, (16.20)

it can be expected that a self similar flow regime with R-similarity occurs. This
regime has its origin at x; = p, upstream of the axis of the cylinder. The Cartesian
coordinates x; and x, have their origin in the center of the cylinder and are oriented
parallel and perpendicular to the approaching velocity Ug, respectively.

Fig. 16.2 Turbulent plane I3 L
wake flow behind a cylinder Ug

b(z,)

1|
Ug —vi(z1,22)

-]
é
R
T
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The balance laws of mass and momentum are applied to the density preserv-
ing fluid, without gravity, with negligible viscosity and for steady state conditions.
This yields for the continuity and EULER equations (see HINZE [14], Chap. 6), after
applying a scale analysis, the equations

o (TN 0 (T
v - =0,
Ox, (UG) * Oxy UG)

o (w0 (v iy (16.21)
6x1 UG 8x2 UCZ; o

Similarity solutions are found for (16.21) by transforming these equations into ordi-
nary differential equations in a suitably chosen new coordinate 17 = 7(x;, x»). Based
on precursory use by O. HINZE [14], P. EGOLF [8] has found that this goal is achieved
by the following relations.

_ P1
v = Ug (xlkd p) fi(m), (16.22)
e X1 —p P2
v, = Ug ( d ) (), (16.23)
- _ P12
Vv = —Ug (%) fi2(m), (16.24)

X2 _ X1 —p po

U vt b(xy) = ﬁ( ¥ ) kd. (16.25)

In the above, the quantity b(x;) denotes a characteristic width of the turbulent free
shear flow and k is a constant. Moreover, Ug, p, p1, P2, P12 are constants, while
—k

f1(m), f2(n), fi2(n) are profile functions for the velocity components v7, v; and the
shear stress pv|v5. It is easy to show that

xi Oxidy xi—p) "y
8_817d_1(kd)”°d
Ox,  Oxpdn  pkd \x,—p) dn’

g ond o ( 1 d
(16.26)

Substituting (16.22) and (16.23) into (16.21),, the balance law of mass yields

0 x —p\” 0 x1—p\"» B
a_xl|:( d ) fl(n)]-Fa—xz[(—kd ) f2(77):|—0,

R (xl—p P )+(x1—p P dfim) O, %)
Pr\ "ka ka kd dny o,

(B P dfm) on(x, xa)
kd dp  dx,

0, insert (16.26)


http://dx.doi.org/10.1007/978-3-319-33633-6_6
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1 (x—p\" d
(x‘ L ) [mfl(n)—ponm]

kd \ kd dn
1 _ P2—Po d
L (azp f2(n) _o (16.27)
Bkd \ kd dn

The left-hand side of this equation can be viewed as a function of x; and 7, but the
x1-dependence drops out if all exponents of the function (x; — p)/(kd) are the same.
So, one must request p; — 1 = p, — po, or

po+pr—p2=1 (16.28)
With this choice (16.27) reduces to the ordinary differential equation

dfitm  1dfatm)
p1f1(n) — pon an +E dn =0

Proceeding in the same way with the momentum Eq. (16.21), leads to

0 X1 —p P1 0 X —p P12 _
8_x1[( d ) fl(ﬁ)]—a—xz[( d ) f12(77):|—0,

_ pi—1 1 _ Pig 9 )
o (x1 P) gfl(ﬂ)‘i' (x1 P) S1(m) O(n(x1, x2))

(16.29)

kd kd dn Ox;
(1 =P\ dfia®m) 0(n(x1, x2)) 0. insert (16.26)
kd dn Ox, o '
., L(u=p\! 10— pon LD
kd kd p1J1(n) — pon dn
L (xi—p\" " dfia(n)
- = = 16.
Bkd ( kd ) a0 (16.30)

Requesting again that the x,-dependence of the left-hand side drops out, implies

pot+pi—pe=1, (16.31)
dfi(m)  1dfia(n)
p1fi(m) — pon + = =0 (16.32)
dp  f dp
The above computations have led to two ordinary differential equations for the func-
tions fi, f», fi2 and 4 constants pg, p1, p2, P12, but they do obviously not suffice to
uniquely determine these functions and parameters. At least Egs. (16.28)—(16.32) do
not conflict with one another. This says that these equations possess the potential of
similarity solutions (ordinary differential equations for the functions fi, f», fi» are
the prerequisite for this), but at least two additional equations must be found amongst
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the parameters po, pi1, p2, p12- These functions are furnished by the following
postulates:

e It is requested that the turbulent shear stress, scaled with the mean velocity in the
principal flow direction, is independent of x|, [14]

P12
X1 —Pp
- (552"
d (V] d G
—(”lvz)zo — kd —0, (1633)

dx dx, X1 —p 2p1
U2 2
G (—kd ) fl (n

D
in which (16.22); and (16.24) have been used. This requires

2p1 — p12=0. (16.34)

e Next, note that, owing to (16.21),,

d ET T2 |*®
— do=-—>| =0,
d)C1 UG pUG —00

the integral
o0
7]
——dx, = const., (16.35)
Ug

along a path perpendicular to the flow direction, is a constant, since the turbulent
shear stresses vanish at x, = F=00.

e Important in obtaining self-similarity is the assumption that the mean disturbance
is at least one order of magnitude smaller than the undisturbed mean flow,

< 1. (16.36)

Now, considering the momentum fluxes through a rectangle (Fig.16.3), of which
the sides normal to the flow direction extend from x, = —o0 to x, = 00, these
fluxes are in steady state given by

o]

oo
/ p UG — (Ug — v)*] dxa =~ 2pUg / vidxa, (16.37)

—00
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Fig. 16.3 Explaining the
momentum flux through the
boundary of a rectangle. At
X2 = +00 no horizontal
momentum flux can occur,
since the velocity is
tangential to the flow path.
Courtesy P. EGOLF and D.A.
WEISS [9], © Phys. Rev. E,
reproduced with changes

and the approximation (16.36) has been used. [The contributions along the flow
parallel paths vanish at x, = 00, because the unit normal to the wall is perpen-
dicular to the flow path there.]

Equation (16.37) can be interpreted in the sense that the rectangle of Fig. 16.3 loses
so much more momentum at the inflow section as it loses at the outflow section.
Therefore, the loss of momentum flux in the x;-direction is given by

[}
—pUG / ﬁdel.
—00

The expression on the right-hand side of (16.37) is the loss of momentum from far
upstream to far downstream within the rectangle due to viscous effects and due
to the reacting force of the cylinder, which equally distributes between the two
effects. Thus, the mean drag force acting on the cylinder can, in dimensionless
form, be written as

_ o
F 1 [
= == —dx, = const., (16.38)
pUGd d UG
—00

and in steady state this force is constant. Introducing (16.22)—(16.25) in (16.38)
yields

F Bkd (x; — p
k

Pot+pi ®
pUéd 4 ) / Jf1(n)dn = const., (16.39)
—00

————
const.
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and this becomes independent of x| provided that
po+ p1 =0. (16.40)

Let us now collect all equations for the exponents at one place:

po+pr—p2=1, po =1/2,
po+pi—pr=1, p1 =—1/2,

with the solution (16.41)
2p1 — pr2 =0, P2 =-—1,
po+p1=0, pi2 =—1.

With these values of pg, pi1, pa2, p12 one obtains for (16.22)—(16.25)

kd \'72
UI=UG( ) fi(m), 5§=UG< )fz(ﬁ),
Xp—p X1 —p
vivy = —Ug (xl — p) J(m), (16.42)
2 pay =g (2P l/zkd
= — X = )
T ey T kd
and for (16.29) and (16.32)
dfi  2dfaln)
f1(ﬂ)+77d—l—ﬁ j =0,
g U (16.43)
JSiln) + 77% _2d/em =0
dp B dn '
It is seen from (16.42) that
asx; — 00, v}~ (JxD7 v ~xt vl ~xt b~ o

The singularities of the functions (16.42) as x; — p are irrelevant since the simi-
larity solutions are not physically representative there. The two ordinary differential
equations (16.43) are, however, insufficient to determine the functions fi, f2, fi2
and, thus, require a closure condition. Surprisingly, though, this condition cannot
come from a postulate on the turbulent shear stress as f»(n) can be expressed in
terms of fj(n). Indeed, if one writes (16.43), as

dfio) 8 dfi)] B d
i) 97 0] 00

an mfAam),

this ordinary differential equation integrates to
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fio= gnﬁ )R (16.44)

where a constant of integration has been set to zero because f12(n) = — f12(—n) for

Jim) = fi(=n).
Similarly, from (16.43); we may deduce

d d
D 2o +282] = 2L i,
" dn 2dn

implying
() = gnfl (m (16.45)

and a constant of integration is again dropped because f>(n) = — f>(—n).

It is seen from (16.44) and (16.45) that f>(n) and fi»(n) are determined once
f1(n) is prescribed as a symmetric function of 7). A turbulence closure can in this
case not be spelled out in terms of a parameterization of the turbulent shear stress
because the latter is intimately related to the velocity distributions v} or/and v5. The

simplest ansatz is
7 \2
J1() =exp (— (2—) ) (16.40)
o

in which 7y follows from an adjustment with data of v;- and v,-velocities. In prin-
ciple, optimal coincidence may be reached between experimental data and theory
by replacing (16.46) by an exponential sum and adjusting the free parameters to the
available data.

On the other hand, based on (16.44), one may write

7o 2 kd
T12(X1, X2) = —pv|vy(x1, X2) = —pUg P Si2(n)
=

Tio(x1x2) @ kd X2 1 X1 —p 1/2 (X1, X2)
pU: 2 \x1—p) Bkd (x1 _p)lﬂ kd Ug
kd

Y GRS R CITE ) (16.47)
2\x1—p Us .

Now, whereas no stress parameterization is needed, it can at least be tested whether
P. EGOLF’s [8] Difference Quotient Turbulence Model (DQTM) proposal (16.17)
generates the solution (16.47). If one substitutes

X2 = X2, X2max = b, i]mi" = 0, 51 = UG (1648)
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as obvious choices into (16.17), then

—— db _ Ug — [Ug — vi(x1, x2)]
] = —xs— (U — 0}(x1, ,
Vi) X2dx1 (Ug — 75 (x1, x2)) b(x1. 12) — %5
A 1 db . v} (x1, x2)
U_(z; = _le_)d_xl (UG - U1(x11x2)) —_ o
b

or in the limit as b — oo, when v} (x;, x2) < Ug and x,/b — 0, and with

ldb_ Do _1 1
b dx; Xy —p ) xi—p)’

n *

ﬂzl( *2 )E_T (16.49)
Uz 2\x;1—p) U’

which agrees with (16.47). It follows that the DQTM-model is for large x; asymp-
totically in conformity with the similarity solution (16.44) and (16.45).

This positive result should not delude over the fact that the approximate turbulent
equations (16.21) generate structurally the same Eqs.(16.29) and (16.32), for the
similarity functions fi, f>, fi2. Indeed, simple inspection of these equations reveals
that (modulo boundary conditions) f, and fi, must be affine to one another. So,
conditions to being able to construct solutions, in which a closure model for the
turbulent shear stress can be formulated must be based on a generalization of (16.21).

16.3 The Axisymmetric Isothermal Steady Jet

Consider an axisymmetric steady turbulent flow of an incompressible viscous fluid
out of a circular orifice into a quiescent infinite three-dimensional domain, Fig. 16.4.
For REYNOLDS numbers
vod,
R =2 > 25000 (16.50)

v

fully turbulent jets are observed. Under such prerequisites the jet has a linearly
growing width in the downstream direction. Let dy be the nozzle diameter, vy the
mean exit velocity at the nozzle from the pipe in the x; direction of a two-dimensional
coordinate system with axial and radial coordinates and vanishing azimuthal mean
velocity component, v3 = 0, and

0
— (@ =0, forpe (v, v]v),...}. (16.51)
8)C3
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(a) Iy

—_— T

p 0 2f m af

Fig. 16.4 Turbulent round axisymmetric jet emerging from a nozzle with diameter dy. a According
to current understanding, the fictitious core length xq is used as length scale in the description
of the problem. b In a meridional plane the time averaged velocity component in the longitudinal
direction on the centerline is shown. In the core region x| < x| it is constant, vo. Beyond a transition
region (x| < x1 < x{) in the self-similarity domain (x| < x1) the axial velocity component follows
a GAUSSian-type curve. The boundary of the jet is then given by v} /./e. Courtesy P. EGOLF and
D.A. WEISS [9], © Phys. Rev. E, reproduced with changes

The turbulent REYNOLDS Eqgs. (15.21) and (15.22), for a NEWTONian fluid read in
this case

0V 1 0
L (x,T) = 16.52
O, + % s (x202) =0, (16.52)

ov, _ 0 1 0p 0— 1 0 —

ikl § e T ST} - ') =0, 16.53
v 0x1 + 2 Oxy poOx;  Ox ne X3 Ox3 (xzvlvz) ( )
Vi 8)(1 v 8x2 + pa)Q + axl 1% +

1 0 — 1 —
-z (xzvgz) — o2 =0. (16.54)
X2 8x2 X2
These equations represent, in turn, the continuity equation, the axial and radial com-
ponents of the momentum equations, in which the materially dependent viscous

terms have been ignored as REYNOLDS numbers are very large, see (16.50).
In Eq. (16.54) the terms

_ Oy _ 0y 0 (/_vg)

Ui—, U—, — (v
Ox O0xy dxp \!

can be neglected in comparison to the remaining terms, owing to the boundary
layer character of the flow and since |v;| < |v]. This then implies that the radial
momentum equation reduces to

1a_ﬁ+1a(

__ 1 —
- 2) — —vi2=0. 16.55
pOxs  xp Oxp 20 ) X Y3 ( )


http://dx.doi.org/10.1007/978-3-319-33636-7_15
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Moreover, note that in (16.53) and (16.55) all three quadratic fluctuation terms,

v}2, vh2, vi?, arise. At this stage, therefore, the assumption of orthotropy of the fluc-

tuations
v2 = )2 (16.56)
is introduced. With this assumption, Eq. (16.55) reduces to

lap 0

pOx, * 8x2( )_O = P+l =po, (16.57)

in which py = const. is the unperturbed pressure far from the turbulent domain. This
equation can be used to eliminate from (16.53) the pressure, so that

v v, 0 (—5 1 0 —
v]8_1+v28_x2+3_xl<v1 vy )+gax2 (va vz) 0, (16.58)

which can further be simplified by assuming isotropy of the kinetic fluctuations,

viz = véz, (16.59)
implying
— 81}1 _ 851 1 8
— =0. 16.60
Y ox, 8x1 Tt 8)(?2 t e X2 8)62 ()sz vz) ( )

The axial momentum equation will be assumed in this reduced form.

Experimental observations suggest that ‘forallx; > x| (Fig. 16.4) aself-similarity
domain exists, [...], where the mean physical quantities can be made dimensionless
to become functions of only one variable. This leads to the possibility of transform-
ing the two partial differential equations (16.52) and (16.60) into a single ordinary
differential equation. The following self-similarity relations are assumed to hold.
Distances from the pole, (x; — p), are replaced by x| because in the self-similarity
domain x; > |p|; we then have

_ X1 m _ X1 P2
U] = (—) fitm), V2= (—) ), (16.61)
X0 X0
— ) X1 P12
Vv =~ T fi2(n), (16.62)
Po
n= 2 b=p (ﬂ) X0, (16.63)
b ,X'Q

according to P. EGOLF and D.A. WEISS [9], in which vy and x; are constants.
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The ensuing computations parallel the analogous computations in Sect. 16.2. The
expressions (16.61)—(16.63) are substituted into Eqgs. (16.52) and (16.60), and it is
required that the exponents of x;/x( of all the terms in the emerging equations are
identical, so that the x| -dependence drops out and only ordinary differential equations
in the variable 7 survive. This computation is relatively long and only the outcome
of this process is given here. The results are*

po+pi—p =1,

po+2p1—pn=1, (16.64)
Po+ 1 =0
for the exponents and
dfi 11d
pfi—pon——+--—0f) =0,
dn ~ Bndn (16.65)
f-ph L (pS 1L ) 0 |
P1J1 170771d77 3 2d77 77d777712 =

for the residual equations of continuity and momentum balance: Relations (16.64)
are short by one equation to uniquely determine the exponents pg, pi, p2, pi2. From
the requirement of self-similarity of the REYNOLDS stresses in the sense that

12 = — fiu(), (16.66)

it follows, owing to (16.61) and (16.62), that
vi(x1) =v1(x1,0) and 2p; — p1p =0. (16.67)
Equations (16.64), (16.67), now yield the unique solutions
po=1 pi=-1, pp=-1 pp=-2 (16.68)
and, correspondingly, from (16.65)

dfi _11dmf) _,

e 16.69

/i +ndn Bn dn ( )
2 dfi 10 dfi 1dinf)) _

i +nh ar 6( T )_0. (16.70)

These are two equations for the three unknowns fi, f», fi». Therefore, a turbulence
closure model is required to close the system of equations. Before this problem
is attacked with P. EGOLFs [8] difference quotient turbulence model (DQTM), the

4Equation(16.64)3 follows in the same way as (16.40) was derived.
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following rearrangement of Eq. (16.69) is made

mAim) =55 fm) —
Bn(mfim) = ) —>  integration
7
nf) =P [EEHE©) dE —>  integration by parts  (16.71)
0
7
f2(n) =ﬁ[77f1 — 1 [En©dE
0

in which (-)) = 9/0n. It follows that f,(n) is known, once f}(n) is determined.
To formulate the missing turbulent closure relation, recall Eq. (16.17), the DQTM
appropriate for the axisymmetric jet, in which the substitutions

= 0, 51 =0 51max = iT()C]) (1672)

min

X2

max

are made, and b is taken to be the semi-width of the jet with

8= f—z — tan (%) . (16.73)

Owing to Fig.16.4 these are plausible selections. With the assignments (16.72),
(16.73) and the aid of (16.17) and (16.62) it is straightforward to show that

1
f12=—ﬁ5f1(1—f1). (16.74)

So, fi» is equally determined by f;(n). Substituting (16.71) and (16.74) into (16.70)
leads to the integro-differential equation for f;

2

Ui
/ fi©EdE =12/ — n%- (16.75)
1
0

Differentiating this expression with respect to 7 yields, finally, the highly nonlinear
differential equation

nfLfl =2 = 3nfi(f)* — fLfi =0. (16.76)

A solution to this equation is

772
f1=-exp (—7) , (16.77)

as P. EGOLF and D.A. WEISS [9] say. The reader may corroborate this by substitution.
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Fig. 16.5 Axisymmetric steady jet: Theoretical representation and experimental data of the time-
averaged axial velocity distribution in the radial direction 7). The theoretical curve follows (16.77);
the experimental data are taken from [30] The measured points lie very close to the GAUSSian
distribution function (16.77). Courtesy P. EGOLF and D.A. WEISS [9], © Phys. Rev. E, reproduced
with changes

Experimental data are taken from P. EGOLF and D.A. WEISS [9]. The graph of
Fig.16.5 shows excellent agreement between the theoretical GAUSSian distribution
of the axial velocity component and the experimental points, taken at three distances
from the nozzle.

With f(n) determined, so are, according to (16.71) and (16.74) also f>(n) and

Jra(n):
(1-exp (b))

, (16.78)

f=s {n exp (— if) -

N— I |~

= 5 (nfl “La-p
n
1
fio = _55 (exp (—%772) —exp (—772)) ) (16.79)

Experiments on the radial velocity component in a meridional plane were also pub-
lished by I. WYGANSKI and J. FIEDLER [30]. Figure 16.6 displays the experimental
points together with the graph of the mathematical curve (16.78). However, Fig. 16.6
also contains additional results, namely the experimental results of Fig. 16.5 when
inserting these into the expression on the right of (16.78), to obtain mean velocities
in the radial direction shown for three distances; these points are presented by open
symbols. It is no surprise that these show less agreement with the theoretical curve.

P. EGOLF and D.A. WEISS [9] also show the graph of the theoretical turbulent
shear stresses (16.79) together with the different extracted experimental data (see
Fig.16.7); those represented by the symbol D indicate the distances downstream
from the nozzle and measured in units of d, whilst those with the symbol / show
the shear stress by taking the data of f} in Fig. 16.5 and applying (16.74).
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Fig. 16.6 Axisymmetric steady jet: Theoretical results (16.78) shown as solid curve and exper-
imental points from [30] for the radial mean velocity component (solid circles). Note, the radial
velocity component is less than 2 % of the axial mean velocity component. In domains where f> < 0
the turbulent jet is fed by the ambient fluid. This is the region of entrainment. Courtesy P. EGOLF
and D.A. WEISS [9], © Phys. Rev. E, reproduced with changes
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Fig. 16.7 Radial distribution of the REYNOLDS stress function. The number after the letter D
denotes the distance downstream from the nozzle measured in units of dy. The three Reynolds shear
stresses, represented by I, were calculated by taking the data of fi shown in Fig. 16.5 and then
applying Eq.(16.79). Courtesy P. EGOLF and D.A. WEISS [9], © Phys. Rev. E, reproduced with
changes

The above computations demonstrate a convincing performance of the turbulent
spreading properties of a steady round jet regarding the mean axial and radial veloci-
ties as well as the REYNOLDS stress 7j,. There is even convincing evidence regarding
the turbulent entrainment rate, the REYNOLDS normal stress and certain contributions
to the turbulent energy balance.

Entrainment rate, ordinarily simply called entrainment, can be determined from
the axial mass flow

9]
m; = 27Tp/51)€2 dXQ. (1680)
0
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It represents the total axial flux of mass by the jet for given x;. When being scaled
with the outgoing mass flow at the nozzle exit
d2
my = pWZOvo, (16.81)
then,
o0

m_ 83%x0x /exp (—1e)ede = ky (Z_(l)) — 862 (x_1> . (16.82)

my d; X0
0

implying that the so-called mixing number, m, is given by

dy
X0 '

m (16.83)

It is the dimensionless ratio of the nozzle diameter d to the fictitious core distance
xo and possesses values in the interval 0.16 < m < 0.19 [7], when jets emerge from
round nozzles.

According to P. EGOLF and D.A. WEISS [9] ‘F.P. RIcOU and D.B. SPALDING
(1961) [28] also report a linear behavior of the mass flux as a function of the axial
distance x;. After a reviewing process they conclude that the values of the constant
k obtained [see Eq.(16.82)] range from about 0.22 up to 0.404 according to the
investigators [listed by them]. Their own experimentally determined value of the
constant is k; = 0.32. They further comment that [...] the constant k; can only be
determined by experimental means. [It will be] shown that with high accuracy [one]
has

m=28 <« k =48. (16.84)

F.P. Ricou and D.B. SPALDING do not mention the spreading angle or the spreading
parameter. However, from k; = 0.32 [...] 3 is now determined to be 0.080, which
certainly must be close to its actual value (compare e.g. in [30] 5 = 0.074 or in [22]
B = 0.082). The experimental results of F.P. RICOU and D.B. SPALDING are shown
in Fig. 16.8. There is no doubt that the mass flow is very accurately a linear function
of x;°, [9].

Longitudinal turbulent normal stress: In the above analysis, because of the
isotropy assumption for v; 20 =1,2,3 (see (16.56) and (16.59)) no information
can be obtained for these turbulent normal stresses. A separate closure condition is
needed. In this subsection a proposal of the class (16.17) is suggested. P. EGOLF and
D.A. WEISS [9] took formula (16.17), in which the index 2 is replaced by the index
1; in this way the following DQTM-parameterization is obtained
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Fig. 16.8 Linear B e e
dependence of the mass flux — Theory, B = 0.080, m — 0.16
in axial direction on the I | ® Experiment
distance xi. The = 150 + g
DQTM-theory matches very E‘
well numerically the linear g
dependence. Here, the ¥ 100 E
theoretical results obtained =
are compared with data from ﬁ
[28]. Courtesy P. EGOLF and = 50 g
D.A. WEISS [9], © Phys.
Rev. E, reproduced with r
changes 0 ittt . :
0 100 200 300 400 500
Ilfdg
3 = Vi — U
viz = —oxi1(v; —7y,,) ———, (16.85)
Klnax = X1
)_Clnm = {x1 |v, = max{ﬁl}}, (16.86)
X
with the following suggestive assignments, see Fig. 16.4,
X1 = X0, Xl =X, VUi, =0, Vi, =1 (16.87)
together with
db
o=-—=pF=tan(la). (16.88)
dx1

‘It is meaningful that the characteristic length in the x;-direction is identical to the
only available length in this direction, the core distance x,’ [9]. With (16.87), (16.88),
Eq.(16.85) and the definitions

— X
Tt = v (—0) fir = =5, (16.89)
X1 Uy
one obtains for (16.85)
Xo
— db  _ vg—71; X0 vo — Yo (x_l) S
V)T = — — xo0——— = —fBxovo | — ) fi—F—<—
dx X0 — X1 1

x ( xl)
B X0
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Fig. 16.9 Fluctuation intensities g1 plotted against x2/x1. a Computed according to (16.91),
b experimentally given by [30] and [5]. Note, the experimentally observed off-axis peaks in (b) are
also seen in the theoretical curves (a). Courtesy P. EGOLF and D.A. WEISS [9], © Phys. Rev. E,
reproduced with changes

X0 X1
=0 VX0 xo !
= —[x0 vo— f1vo 1x1 =—pvfj — = y3
1 - 2L
—— X0 1— —) ——
vt ( X0 bR *o
xi
o h
= v’l‘2 )?1—1 fi- (16.90)
g _
Therefore,
X1 172
——
g =i =8 ’ﬁé’l—l 11/2' (16.91)
x_o _

The function g1, ((x1/x0), n7) was evaluated and plotted in [9] against x; /x; for various
values of xj/xp, see Fig.16.9a and for experiments Fig. 16.9b. It is seen that for
growing values of x;/xg a self-similar bell shaped profile is approached. Indeed,

X
as — — 0o, fitm) = f10) =1
0

= g1 — Bf1(0) = /3 = const.. (16.92)



288 16  Turbulent Mixing Length Models and Their Applications ...

0.6 T
—Theory, =, /dy = 97.5
0.5¢ e Expt., x,/dy =60
O Expt., z;/dy =75
04r a Expt., z;fdy = 97.5
- 0.3 4
L= o
e - °
0.2F
0.1
0 L i L

Fig. 16.10 Relative fluctuation intensity gj; plotted against 7 for various values of xj/dp.
Experimental data are taken from [30]. The deviation of the theoretical function from the exper-
imental results at mean distances 1) is related to the production of turbulent kinetic energy and
an incomplete turbulent transport of this kind of energy. Courtesy P. EGOLF and D.A. WEISS [9],
© Phys. Rev. E, reproduced with changes

As indicated in Fig. 16.9b ‘the jet measured by S. CORRSIN and M.S. UBEROI
(1949) [5] is narrower than the one that was experimentally investigated by
I. WYGANSKI and J. FIEDLER [30]. This [...] corresponds to the presented theory,
which states that the fluctuation intensity on the axis [x;/x; = 0] is smaller for a
narrower jet. However, this only qualitatively confirms the result

— =B (16.93)

by measurements. More reliable comparisons of theoretical predictions and experi-
mental data of the normal stress in the axial direction are shown in Fig.16.10. The
deviation of measurements from the theoretical results varies to a great extent on the
experimental work taken into consideration in each case. [...] it is believed that devi-
ations [from self-similarity], occurring at medium values of x,/x; only, are caused
by the underlying production of turbulent kinetic energy and that fluctuation energy
has not been perfectly distributed over the whole width of the jet [via] transportation
by the mean motion and turbulent convection ..." [9].

Finally, we note that the numerical value of 3 = o has been determined in
Fig.16.10 by curve fitting with a value 3 = 0.074. By contrast, a theoretical value
can be obtained by evaluating g, ( = 0), see Fig. 16.10; this yields /3 = 0.28, thus,
([ = 0.079. This is rewarding corroboration of the value of 3 by two independent
approaches.

Transverse turbulent normal stresses v5> = v;*: With the radial and azimuthal
turbulent intensities being equal, one may write for these

Wl =0 = %vﬁ (16.94)
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with v < for axisymmetric orthotropy and v = 0 for isotropy. Formula (16.94)
assumes that v}2, v;? follow the radial distribution similarly to that of v}?. The axial
momentum balance yields [22]

T — W24
M(x)) = 27rp/ o7 4 v}? — % x2dx, = M(0), (16.95)
0
d2
M©0) = 250 p2, (16.96)

4
Substituting into (16.95) the relations (16.61), (16.90) and (16.89), one obtains

X1

0 2 _— f] 2
M (x;) 2mp 2 X0) 2 X0 2 (X0
— = 3 UO —_— 1 + X1 ﬁflvo _
v} 5 (%o X1 ——1 X1
Vg Z 0 X0
X1 f
— - N 2
aé X0 > [ Xo 2
_B ﬂ . ﬁfﬂ)o (;) b (xl) 77d77
X0 B2 (x1 /x0)2x3
d2 2
= "0 (16.97)
X0
402 (=
Vo (xl)
from which
00 ﬂ — fl
/ R+B-7| 2 | Ay
0 X0
22 /x\N21 1 1 1 (do (v’
_ b (_1) . (_) (__) (16.98)
8vg \xo/ B* (x;\ X0 88* \di/ \V]
X0

is obtained. Substituting for f; the GAUSSian profile (16.77) and employing the
transformation 7> = ¢ leads to

(y=B8-1 eXp(—S)d§+—H exp(—=§d§ +(8 — ) [ exp(—2)d§ ]
Jorcos oncomnn o

—— ——
=1 =1 =2

_ (@)2 (ﬂ _ 1) (16.99)
432 \ xo Xo ' .
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Fig. 16.11 Relative turbulent intensities a, gp» in the radial and b ¢33 in the azimuthal direc-
tions. Experimental data are from [30]. Courtesy P. EGOLF and D.A. WEISS [9], © Phys. Rev. E,
reproduced with changes

which can readily be transformed into

X1 m2
ETANE %
N=p— 0 . where (—0) =m?. (16.100)
ﬁ 1 X0
(%)
Isotropic turbulence implies, according to (16.100),
Isotropy = ~v=0 <<= m=203, (16.101)
which has been differently derived in (16.84).
P. EGOLF and D.A. WEISS [9] evaluate and plot
), W ), W
f22 = 922 = ﬁ and f33 = 933 = ﬁ (16102)
1 1

against 7) for 3 and m-values as shown as insets (m > 2(3) and compare the theoretical
results with the experimental data from [30]. Their plots are displayed in Fig.16.11
as panels (a) (radial, g»;) and (b) (azimuthal, g33). The theoretical curves mimic the
GAussian profile as already displayed for g;; in Fig. 16.10. The experimental points
for g»» and gs3 are closer to the theoretical curves than g; in Fig. 16.10, even though
they slightly overestimate the g,>- and gs3-values at small 7 < 1 and underestimate
them for larger values of > 2.
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Fig. 16.12 JOHN LEASK LUMLEY (11. Nov. 1930-30. May 2015)

JOHN LEASK LUMLEY received his M.S.E. and Ph.D. degrees from Johns Hopkins University
in 1954 and 1957, respectively. His Ph.D. supervisor was STANLEY CORRSIN (1920-1986).
He started his academic career at the Pennsilvania State University, where he became Evan
Pugh Professor of Aerospace Engineering. He was also in charge of research on turbulence
and transition at the Applied Research Laboratory. In 1977 LUMLEY joined Cornell Univer-
sity where he has been Professor emeritus of Mechanical and Aerospace Engineering until
his death. He made seminal contributions to engineering in the study of turbulent fluid flow:
Complex and chaotic, ubiquitous in nature and engineering devices, turbulence is found in
cumulus clouds, smoke stacks and jet exhausts. Experts agree that ‘more than any other
person, he defined the field of turbulence during the second half of the 20th century’.

LUMLEY made important contributions regarding buoyant plumes and smokestacks, turbu-
lent dispersion of pollution in the atmosphere, the propagation of waves in the atmosphere
and oceans, turbulence in the presence of atmospheric inversions, the flow of air over objects,
the diffusion of salt in water known as ‘salt-fingering’, and the effects of electromagnetic
fields on turbulence. His theoretical contributions are key to our modern knowledge of tur-
bulence; they include statistical processes, the identification of structures in turbulence, the
cascade dynamics of turbulence, and modeling of generic fluid flows, such as jets and wakes
and turbulent flows near walls.

His 1972 book, ‘A First Course in Turbulence with Henk Tennekes’ [29], was the first book
to place dimensional analysis and scaling arguments as central to the subject. In 1964, with
HANS PANOFSKY [20], he wrote the influential book ‘The Structure of Atmospheric Turbu-
lence’ and in 1998 with PHIL HOLMES and GAL BERKOOZ they co-authored ‘Turbulence,
Coherent Structures, Dynamical Systems, and Symmetry’ [15].

In 1990, LUMLEY received the Fluid Dynamics Prize of the American Physical Society.
Other awards include the Fluid and Plasma Dynamics Award of the American Institute of
Aeronautics and Astronautics in 1982 and the Timoshenko Medal in 1993. LUMLEY was a
fellow in the American Institute of Aeronautics and Astronautics, the American Academy
of Arts and Sciences, and a member of the National Academy of Engineering.

The text is based on www.wikipedia.org
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Production of turbulent kinetic energy: When deriving the balance law of turbulent
kinetic energy by taking the inner product of the momentum equation with the veloc-
ity vector and subsequently averaging the emerging equation, the resulting equation
is the turbulent kinetic energy equation, see e.g. O. HINZE [14], H. TENNEKES and
JL. LUMLEY? [29], K. HUTTER and K. JOHNK [17]. It contains the following terms
for an axisymmetric flow,

——0u 500 =300

— L -, 16.103
P U1U2 8)(2 + vl axl 2 8x2 ( )
172 T2 o2
P ek (16.104)
2 v}
dfi On _,4 e dv] _.3dk On
= 53 32l 32 20
¢ dn 8xlvl 3417 dx; + dn 0x;
1, _,; dfs On _,4 _.3dk On
— Hv 7k + ——0k * 16.105
+x2f2v1 + dn ax2”‘ + /v dn Ox; ( )

among others, which cannot be handled in this context, see e.g. [14] and [9]. Note
that all terms on the right-hand sides of (16.103), (16.104), (16.105) have been dealt
with in the preceding sections, so that p, k, ¢ can be computed for the axisymmetric
jet.

The dimensionless form of p is

(16.106)

and can straightforwardly be computed from (16.103) and earlier expressions for
fi, f2, fi1, fo2. The result is

dfi 0 1 (0v} dfy 0
T = X1 —flzi—n+f11_—* —Lfi+7; fi O
dn 0x, v \ Ox)

Vdn ox,
dfa On
it 16.107
+ f dn oxs ( )
which, with the expressions
on 1 on 1 dvj 1_,
L=y, =L =_— = ——7 16.108
Ox1 77x1 0x,  fPx;  dx X1 U ( )
takes the form
1 dfs d fi 1, df
= —— i, — — fon——. 16.109
™ ﬁflz an S (fl+nd77)+ 5f22 an ( )

SFor a biographical sketch of LUMLEY see Fig. 16.12.
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Inserting (16.74) for f, and (16.79) for f, as well as (16.102) for f>; and f33 (with
the isotropy assumption) yields

d
7r=(717 liw fl)(l—fl)w fli (16.110)

Replacing in this expression d f1 /dn by —n f| owing to (16.77), finally yields for the
dimensionless pressure

1 1
7T=f13_f12<1+5+ﬁﬁ)+ﬂﬁfl, (16.111)

which is a relatively simple polynomial expression for 7 in terms of f;. The function
m(n) is plotted in Fig. 16.13 together with data points from [30]. The modulus of 7
shows a relative maximum at finite non-zero 7).

Substituting (16.77) for f; into (16.111) and performing a TAYLOR series expan-
sion of the emerging expression about 7 = 0 produces

T (52_%)_% ) (16.112)
It follows that for n = 0
m(0) = —11. (16.113)
With 3 = 0.074 one obtains m = —0.037 as shown in Fig. 16.13.

A second term, which can be computed for the axisymmetric steady jet is the
turbulent kinetic energy itself, (16.104), which can easily be written in the form

6"‘2 __fl isotropy 3
27 X ARS8 fi. (16.114)
L

k(xy,x2) =
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of which the expression on the far right holds for isotropic turbulence. For large
distances x; > x from the orifice the last expression in (16.114) reduces to

k=381 (16.115)

The third quantity is the ‘turbulent convection parameter’ c, listed in (16.105). Its
dimensionless version is

= fx; (16.116)

vy

With Eq. (16.108), this expression takes the form

dfi 11 1c1f2
x——nd—k— 3fik — nf1 ﬂnfk 5 dn szd (16.117)

which, with the aid of (16.78), and (16.115), becomes

_35(? %_ > Ldf
x(n)—zﬁ( fi fi o dn

3
x(0) = Eﬂfl O =3£1(0) = -35.

3
) (e SBAA =3/,
(16.118)

This result is in excellent agreement with experimental results of I. WYGANSKI and
J. FIEDLER [30]. Their experimentally based curve in Fig.16.14 shown by open
circles—is referred to in several articles and textbooks in the years subsequent to
their work, see e.g. O. HINZE [14].
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Fig. 16.14 Dimensionless turbulent convection term. Dashed curve as calculated with the DQTM-
parameterization (16.17); open circles as extracted from measurements given in [30]. At n = 1.2
the convection parameter x changes sign. The x(n)-function reaches a maximum value at n = 2.1
and approaches x — 0 as n — oo. Courtesy P. EGOLF and D.A. WEISS [9], © Phys. Rev. E,
reproduced with changes
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16.4 Turbulent Round Jet in a Parallel Co-flow

The axisymmetric jet dealt with in the last section is restricted to the situation of a jet
inflow into a quiescent ambient fluid. P. EGOLF [8] has also looked at the situation of
ajet entering a fluid moving with a constant velocity parallel to the jet exit velocity. If
Ug, see Fig.16.15, is the speed of its background velocity and U the mean jet speed
at the nozzle beyond U, then an approach analogous to that in the previous section
shows that similarity solutions do not exist in general, but can still be constructed in
the limits, when

U U
— —> 0 and — — o0. (16.119)
Ug Ug

In the first case the jet velocity at the nozzle is small in comparison to the ambient
velocity; in the second case it is reverse, i.e., the ambient velocity is small as com-
pared to that of the jet. This case has been analyzed in Sect. 16.3 of this chapter. The
proof of this fact may e.g. by following mathematically the approach of Sect. 16.3:
Existence of similarity solutions is postulated and a contradiction is derived. Nec-
essary conditions for the exponents py, ..., pj» (compare (16.61), (16.62), (16.63))
are established for which similarity solutions will not exist. This happens to be the
case if U/ Ug is bounded from below and above, i.e., if it is of finite value. In the
limits (16.119), however, similarity solutions can be constructed. The solution for
the limit U/ Ug — oo has essentially been shown in Sect. 16.3. The other case is the
topic of this section.

For the axisymmetric steady flow the balances of mass and momentum of the
mean turbulent motion are given by (16.52), (16.60) together with (16.18),

T2 Ug UC:
/ﬁc-{—/b" Ug + 71(x1, 12)
i — - (i 1
.-I P 0 o Z}:‘_A‘I d _;;q o
= i
I|

Fig. 16.15 Turbulent circular jet entering an ambient region with constant velocity Ug parallel to
the jet. The relative mean velocity to the velocity of the ambient fluid is U, so that its absolute speed
is U + Ug. The perturbed velocity above Ug downstream of the nozzle is Ff (x1, x2). The diameter
of the nozzle is d and the distance of influence of the flow out of the pipe is kd. Courtesy P. EGOLF
[8], © Phys. Rev. E., reproduced with changes
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ov; | 1 0y
8)61 X2 8)(2
ovr vt 1 d(xvv))
o T, T n om

—0, (16.120)

—*

=0, (16.121)

in which v; = Ug + v7}; here, 0] is the axial perturbation speed and Ug the constant
parallel speed of the surrounding fluid. o

If we now use the product decompositions of v}, v3, v{ v}, = x2/b and b as shown
in (16.22)—(16.25), substitute these in (16.120) and (16.121) and request similarity
behavior, then the continuity equation leads to

d 1 1d(nf)
po+pi—p2=1, and Plfl_Poni‘i‘__n—fZ:Ov (16.122)
dn  Bn dn

as before in (16.64); and (16.65),. However, the approximate axial momentum equa-
tion transforms to

1 Ug x;—p\” x—p\"! dfi
kdl(( )+ (7)) () (o)

1 /x — p2+pi—po d
+_( 1 P) fzi

3\ ka dn
1 (xi—p\" 7" 1dinfi) |
_5< - ) - ] ~0 (16.123)

and is more difficult to explore. Requesting next also that the REYNOLDS stress,
scaled with the mean velocity in the principal flow direction, is independent of xi,
see (16.33), then relation (16.34) must equally hold,

2p1 — P12 = 0. (16124)

Finally, one may equally request that the force on the cylinder, induced by the flow is
xi-independent. This has also been explained earlier, between (16.37)—(16.39) and
yielded

po+p1=0. (16.125)

Returning to (16.123), notice that this equation involves U /U, and it is this term,
which destroys its similarity property. Indeed, the equation consists of 4 terms, each
with its own exponent of (x; — p)/(kd). For instance, for finite values of Ugs /U one
would have to request that p;y — 1 = 2p; — 1l or 1 = 2, unless p; = 0, py = 0,
p12 = 0, p» = —1, which is obviously inconsistent! So, there is only hope for
similarity behavior in the limits (16.119).
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(a) Large jet velocity such that Ug /U — 0
Dropping Ug /U in (16.123) and comparing the exponents of (x; — p)/(kd) in the
emerging equation generates again (16.122), and the new equation

po+2p1—pn=1 (16.126)

The four Egs.(16.122);, (16.124), (16.125), (16.126) [and two non-conflicting
remaining equations] generate the solution

po=1 pi=-1, pp=—-1, pp=-2, (16.127)

which agree with (16.68). This must obviously be so, because the condition
Ug/U = 0 corresponds with a jet merging into a quiescent ambient. It is, there-
fore, consequential that the DQTM-solutions for f1, f», fi2 also agree with (16.77),
(16.71) and (16.74). The reader may prove this by himself/herself.

(b) Small jet velocity such that Ug /U — oo
Rewriting (16.123) as

U (x—p\"” xi—p\"! d fi
[l—i-U—G( d ) fl]( d ) (Plfl—Poﬁa)

(xl _p)P2+P1P0 dfl

x| — P]z—Pol d
(‘ p) - (fi) =0 (16.128)
ndn

and ignoring all terms linear in U/ U leads to a single ordinary differential equation
for fi,

d

an (nfim) =0, Vne[0,00) —>  fi(n) =0, (16.129)

which is simply the trivial solution.® No jet can be formed in this limit. It follows, for
a non-trivial solution some of the terms involving U/ Uy in (16.128) should survive.
Several choices are possible, but only one is appropriate. A natural selection is to
drop the second term in the curly bracket in the first line of (16.128), and balancing

_ pi—1 _ P12—po
h-P and (2P : (16.130)
kd kd

6 Another non-trivial solution is f; = ¢/n. However, this solution is equally inadmissible, since it
generates a singularity at ) = 0, which is unphysical.
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this yields

pi—l=pp—pp = pot+tpr—pn=1 (16.131)
Together with (16.122), (16.125), (16.126), which still hold, the following p-values,

) P1=—%, P2=—§, P12=—§, (16.132)

W=

Po =
are obtained. With them, the exponents of the (x| — p)/(kd)-terms take the values
p—l=po—po=—3 p+p—po=2p—1=-% (16.133)

This implies that, asymptotically for large values of (x; — p)/(kd),

Xi—p -5/3 Xi—p -7/3
is larger than , (16.134)
kd kd

so that in this limit the underscored terms in (16.128) can be dropped in comparison
to the remaining terms. This leads now to the asymptotic similarity behavior for
which (16.122),, obtained from the continuity equation and the reduced momentum
equation (16.128), yields

dfi _31dnf) _

o) 2
N +nd77 Bn dn
d B d
— an nf) = 3dy (" f1),
— = éﬂfh (16.135)
dfi 1.d(n f12)
26 43t —0, 16.136
fi+ U +ﬂ (UG) 0 dn ( )

in which the p-values (16.132) have been substituted. These are two equations for
three unknowns.

The DQTM-model of EGOLF [8] is now introduced in the form (16.17), in which
x2 = b is used. This yields

) db U v (xg, U vi(x1,0 U, v (xq, 1
vivy _ 90 _G " vi(x1, x) | | Us n vi(x1,0)  (Us n vi(x, )\ | 1
U2~ Uda U U U U U P

bdb UG vy (x1, 0) — 07 (x1, x2)

dx1 U U)Cz
S——

30

(16.137)

and implies with (16.22)—(16.25)
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1 Usl—-fi
= -3— . 16.138
fi2 35 U ( )

Substitution of this equation into (16.136) yields

1\ d
2f1 + (n + _) dfi _ 0, (16.139)
n/ dn

which is an ordinary differential equation for f; alone and possesses the solution

1

- 16.140
1472 ( )

S

which enjoys the symmetry property that f1(n) = fi(—n). Based on (16.138) and
(16.135), Eq. (16.140) generates the functions

B m
S 16.141
12 314+ ( )
B (Ug n
= (=)—", 16.142
Sz 3\U ) 14n? ( )

which are both anti-symmetric: f>(n) = — f2(—n), fi12(n) = — fi12(—n) and propor-
tional to each other.

Graphs of the functions (16.140)—(16.142) are shown in Fig.16.16. The mean
velocity profile in the main direction, f;, shows a maximum at 7 = 0 and decreases
algebraically to zero as  — 0o. Because of symmetry requirements the mean scaled
radial velocity f>(1) and the REYNOLDS shear stress fi, vanish for = 0 and as

@ () 5015
0.8
£ 001
0.6} s
< :
0.4} I
NU.UUS
‘-i...‘
02
0 0 o . ]
0 2 4 6 8 10 0 2 4 6 8 10
n n

Fig. 16.16 Distribution of fi, f> and f12(n)/(Ug/U) as functions of 7, according to (16.140),
(16.141) and (16.142)
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1 approaches co. Moreover, f> is positive for 7 > 0 and negative for n < 0 and,
therefore, does not exhibit the entrainment phenomenon.

16.5 A Study of Turbulent Plane Poiseuille Flow

Consider plane steady turbulent flow between two parallel rigid planes a distance
2a apart. Let x; and x, be Cartesian coordinates parallel and orthogonal to the
flow direction, see Fig.16.17. Moreover, consider the balance laws of mass and
momentum under the restriction that v, = 0 and 9(-)/0x3 = 0 for all field variables
of the system under consideration. It then follows from the continuity equation that
v is only a function of x,. This implies that the convective acceleration terms in the
horizontal directions,

ﬁla—xl +526—x2 =0, 512—2? +5zg—;z=0, (16.143)
vanish identically. Therefore, the horizontal momentum equations (15.22) for a
NEWTONian fluid reduce to the force balances

1 0p 0*v,  Ov)v,

——— —v— =0,
p Ox; 0x3 Ox> (16.144)
1 9p LR '
p Oxy Oxy
in which we have used the viscous stress representations
Jv; 0y,
tp)ii = — 4+ ), 16.145
(tD)ij pl/(axijaxi) ( )
(@ b N
| Vlmaz A 1
a 1 S
e Y S
- - o
©.0) ! 0,0 = &
—a -1 "

Fig. 16.17 Laminar and turbulent POISEUILLE flow between two plane parallel plates. a In the
laminar case, the velocity profile is parabolic, b In turbulent steady flow the profile flattens more
and more as the REYNOLDS number increases
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where v is the kinematic viscosity. It is easy to show that all material stress com-

ponents vanish with the above assumptions, except (tp);» = 7. Moreover, it is also

readily seen that only the REYNOLDS stresses Rj» = T2 = 7; and Ry = o, survive.
Introducing the dimensionless space coordinates

E=xi/a, n=x/a (16.146)
and the shear velocity
170l v,
= =+or— 16.147
P 70 Pvaxz |ia ( )

as well as the REYNOLDS numbers

o *
Ul @ * v
9 ]R -

v 14

R = a

— R= Yl (16.148)
v*

Equations (16.144) are now made dimensionless by defining the quantities’

fi(n, RY) = % (16.149)

P(&n,RY) = I;(;ff (16.150)

f2(, RY) = (Uv‘v)zz (16.151)
ﬁ

[, RY) = (Ui)z. (16.152)

With these, Eqgs. (16.144) take the forms

oP 1 9*fi  Ofin

- 4 =0
¢ R* on? on ’
o, 0 , (16.153)
on o o

The second of these equations implies that P 4 f2, (1) = F (&, R*). Alternatively,
the first equation says OP/0¢ = G(n, R*) [where G can easily be inferred from
(16.153)]. Thus,

oP . OF(£,R)
9¢ = O R = ==,

5 (16.154)

"Note, P is a function of £, since p depends on €. f12 and f2; have no {-dependence by assumptions
analogous to (16.33).
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This implies that G and 0 F /0¢ can neither depend on & nor on 7 and, thus, must be
the same function of R* alone. Consequently, integration of F' yields

F = AR"¢ + C(R*). (16.155)

Therefore, we have from (16.153),

P+ fo = AR"E + C(RY). (16.156)
and from (16.153),
o [10f .
o [R_*a_n - f12] = A(R"Y)
1 dfi(n, R*
@—ﬁ({; ) fon RY) — AR+ BRY = 0. (16.157)
1

The parameter A(R*) and the constants of integration B(R*) and C(R*) must be
determined.
The boundary conditions at the two walls request

{fi: fizs f2} (X1, R*) =0 (16.158)

and
P(0,—1,R*) =0 for normalization of the pressure. (16.159)

Relations (16.158) say that the mean velocity v; and the turbulent stresses 7; and
o, vanish at the walls, so that the total stress Ty is given by the viscous 7 and the
turbulent or REYNOLDS shear stress 7;,

ov N
Tt =T+ T = pVﬂ — pujvs. (16.160)
8)(2

Near the wall, the turbulent fluctuations disappear. From this and (16.147), one may
deduce

Ttot vy 2
7 ia:I/a—x2|ia=:':(l) ) . (16161)

which yields, together with the definition (16.149),

v* df]
a dn

d *
fiy _ 2V pe (16.162)
1%

v d_n|:|:1 =

|1 = F0)? =

Substituting these results into (16.157) yields
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A+B=—-land —A+B=1 — A=-1,B=0. (16.163)
Therefore, (16.156) with C = 0 (due to (16.159)) and (16.157) take the forms
PEn,RY) + fu(n,R) +£=0,

1 d)l(”? ]Ig*)
—_— ,R*) +1n=0.
R dny J2(n, RY) 41

(16.164)

The second of these equations can be integrated subject to the boundary conditions
that f;(£1, R*) = 0. This leads to

n
fi(n, R*) = R* /flz(ﬁ, R*dp+ 1 (1 - )t (16.165)

-1
owing to the symmetry requirement fi,(n) = — f12(—n) for the shear stress. To

fulfill the boundary conditions f;(—1, R*) = 0, the integration constant in (16.165)
has been set equal to % For laminar flows ( f1, = 0), f1(n) takes the form

*

R
AR = — (1=, (16.166)
which is the HAGEN—POISEUILLE profile.
There remains the implementation of the DQTM parameterization of the shear
stress; with (16.17) it may be expressed as

T, = —pUiv)
Vi, (1) — U1(x1, X2)

= poxz [V1(x1, x2) — V1, (x1)] P B , (16.167)
D — X2

max

in which o is the spreading parameter. In (16.17), where free turbulence was dealt
with, we chose o = db/dx;, where b is the spreading width of the turbulent region.
‘In POISEUILLE flow the spreading by turbulent convection is only a flow internal
feature, [whilst] in a jet flow it also defines the boundary of the turbulent domain.
The turbulence intensities are small compared with the mean downstream velocity
[[o1] > *)2] [10]. Since vy, = 0 and v;,, = (0, R*), substitution of
(16.149) into (16.167) yields [we do not show the dependence on R*]

Sl = %fl M (f1(0) = fi(m) . (16.168)

Thus, one obtains from (16.164), the differential equation

1 dfi@)
R* dn

1
—Uﬁf1(77) L/1(0) = fitm] +n =0. (16.169)
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Turbulent closure relations would also have to be formulated for f», and P that would
be substituted into (16.164);. Because Eq. (16.169) is independent of (16.164); and
not affected by (16.164),, the ensuing analysis will be restricted to the exploitation
of (16.169).

With the new functions

q(n) = %, gi(n) = fia(n) (16.170)
and the abbreviations
a= ’?R(f), 8=0(fi(0)?, (16.171)

the differential equation (16.169) transforms into

dgi(n)
an=g, = = B +B (i) +1° =0 (16.172)
and must be solved subject to the following symmetry, normalization and boundary
conditions

g =g (=n), ¢ =1, g()=0, (16.173)
as well as (16.162) or

dgi R* 1
oy o ® _0 16.174
ol =F o = Fa (16174

owing to (16.171). This says that the slope of the mean velocity profile at the plates
is directly proportional to the REYNOLDS number R*. These results are due to P.
EGOLF and D.A. WEISS [10]. They state that ‘this is in qualitative agreement with
experimental observations of a decreasing boundary layer thickness in terms of an
increasing REYNOLDS number’, [10].

P. EGOLF and D.A. WEISS performed the numerical integration of (16.172) by a
shooting procedure, starting at = —1, selecting a certain value of (3, using « as
shooting parameter and varying it until the profile would hit (0, g;) = (+1, 0) on
the opposite side and fulfill the boundary condition (16.173)5. The function

X = B(a)/4, (16.175)

which has been evaluated by this procedure, is shown in Fig. 16.18. It is referred to
as order parameter.

As this figure suggests, if « — 0, then 3 approaches 4 and y approaches 1.
Moreover, as numerically indicated, the values for (3 are positive and smaller and/or
equal to 4, a value, which can be shown analytically to be correct [10]. Owing to the
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Fig. 16.18 Analytically and L5 J
numerica”y derived O Numerical result
functional relation between o= Aiialitical esult
the stress parameters « and (3 '
(or the order parameter x). o
is inversely related to the
REYNOLDS number, see
equation (16.174).
Corresponding mean
velocity profiles and
REYNOLDS stresses are /
shown in Fig. 16.19. . S s W
Courtesy P. EGOLF and D.A. 0.001 0.01 0.1 T

WEISS [10], © Phys. Rev. E. Stress parameter o
reproduced with changes

Order parameter x

Ceerit

symmetry condition (16.173),, it suffices to study the behavior of g, in the interval
0<n<1.

EGOLF and WEISS [10] solved Eqgs.(16.164), and (16.168), or alternatively
(16.172) and (16.168) with definitions (16.170) subject to boundary condition
(16.173), (16.174) and plotted mean velocity profiles g; and REYNOLDS shear stresses
g12 = f12 as functions of 7 for the values of 3 as shown as insets in Fig. 16.19. These
graphs show that with increasing parameter /3, the time averaged velocity profiles
flatten and the REYNOLDS shear stresses converge toward a linear distribution in 7.

P. EGOLF and D.A. WEISS [10] also attack the solution of (16.172) subject to
the conditions (16.170), (16.171). These solutions were constructed by them for
low, moderate and high REYNOLDS numbers. In these regimes, analytical, or partly
analytical solutions could be found.

Low Reynolds numbers: For this limit 5 = 0 and o = %, see Fig.16.18 and
formulae (16.171), (16.172), for which

gi(m) =1 =17 (16.176)
This represents the laminar velocity profile for REYNOLDS numbers below the critical
values.

Moderate Reynolds numbers: In this case § > 0, @ > 0. The following transfor-
mation

/

e!
=H—, H=-— 16.177
g1 I 677 ( )
is considered, implying for (16.172)

o?nh" 4+ (o* — af)h’ + fnh = 0. (16.178)
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Fig. 16.19 Four time-averaged velocity profiles g; and REYNOLDS shear stress distributions (for
0 < n < 1) g2 for different turbulent intensities 0 < 3 < 4. Note that with growing (3 the velocity
profile flattens and the turbulent shear stresses approach a linear distribution with 1. Courtesy P.
EGOLF and D.A. WEISS [10], © Phys. Rev. E. reproduced with changes

Applying the further transformation

b= A=Y (16.179)
o)
leads to the following BESSEL differential equation
0%h B\ Oh
— 1—=)— h = 0. 16.180
v+ (1-2) g+ (16.180)

P. EGOLF and D.A. WEISS [10] show that the general solution for g, defined in
(16.177), is given by

ﬂ pjnfl(’(/}) + qYﬁfl(Qb)
26 ple@) +qYe(y)

g1 () = (16.181)
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where
K= — (16.182)

and J,; and Y,; are the BESSEL functions of first and second kind, respectively and
order k. For 1» — 0, i.e., n — 0 the function g; (¢)) must reach its maximum value,
see (16.173),,

lim g:() = 1. (16.183)

This implies, since lim_,o ¥ (1)) — oo, that ¢ = 0, so that

Y Jeo1 () J—1(¥)
= = . 16.184
91 (%) 2k Jo(1)) Jom1 () + T 1 (¢) ( )

The second boundary condition, (16.173); now requires that 1)(n = 1) = \ =
B/, and, consequently, from (16.184)

Ji—1 (\/E) =0, = g = ju—11, (16.185)

in which j,_1 1 is the first zero of the BESSELS function J,,_;. Because 2x = (3/a,
according to (16.182), one can solve these equations for o and ( separately:

2K 452

e L S L 16.186
(Ju=1.1)? b (Ju=1.1)? ( )

To given x, pairs of («, ) can be calculated by means of tables (e.g., ABRAMOWITZ—
STEGUN [1]. Using this source, P. EGOLF and D.A. WEISS [10] also find the repre-
sentations

(5)
T () =( ) Zk (16.187)

'Fm+k+n

) (16.188)
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Fig. 16.20 Time-averaged (a) 7 (b) 1
mean velocity and turbulent
shear stress distributions for
infinite REYNOLDS number. =

The velocity distribution is a ray

perfect half circle, the shear t e (] = (12
stress is triangular g

. I Jeden
=fBj11————. 16.189
g1 = Bj 1,1w Ut Je)? ( )

Here I" (x) is the Gamma function and k! the factorial of k.

Infinite Reynolds number: With the definition of v and @ — 0, Fig. 16.18 suggests
(6 =4 (x = 1); consequently, (16.172) reduces to the quadratic equation

2
i 1
KO =900+ =0 = g=3 (1 +1 —772). (16.190)
P. EGOLF and D.A. WEISS [10] prove that this in fact is the pointwise limit of the
solution of (16.184) for k — oo. Substituting the variable change

¢=291—1
the solution (16.190) can be written as
CH+nP=1, (16.191)

an equation describing the unit circle. Figure 16.20a, b displays the time-averaged
velocity profile and the corresponding turbulent shear stress for a motion from left
to right. With the representation (16.190), (and 5 = 4) we obtain

41+~/1—n2(1_ 1+~/1—n2)
2 2

g = " =7, (16.192)

which indeed reproduces the linear distribution displayed in Fig. 16.20.

Comparison with experiments: The computational result that the turbulent mean
velocity profiles for very high REYNOLDS numbers converge toward a semi circle,
is a marvelous test against experiments. Such data are given by J. LAUFER [18] and
H. REICHARDT [26]. P. EGOLF and D.A. WEISS [10] chose the data of the latter, which
are displayed in Fig. 16.21 ‘The experiments confirm the model results convincingly,
but the good results are a little misleading. In the domain surrounding 7 = £0.6 some
measured quantities are somewhat smaller than the functional values. On the other
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Fig. 16.21 Measured 1T
time-averaged velocity
profile for fully turbulent
flow. Data from [26] with
v* =152 ems™" compared 0.5¢
with the circle solution,
denoted by ‘present theory’.

The measurements were * Measurement
performed in a channel with s 0 P"e’“_*“t theory | 1
height 24.6 cm, which is ~ ~ Previous theory
transformed ton € [—1, 1].
The width of the channel was .
98 cm. The dashed parabolic —05
profile is due to an earlier
model, given by REICHARDT
[27]. Courtesy EGOLF and e lesefice
WEISS [10], © Phys. Rev. E. 0.5 0.6 0.7 0.8 09 1
reproduced with changes o
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hand, exactly there—where the excitation of the flow system is further increased—the
mean velocity profiles begin to exceed the theoretical functions...” [10].

P. EGOLF and D.A. WEISS [10] mention the ‘Princeton Super Pipe Data’ [31]
as ‘the newest results of the axisymmetric POISEUILLE flow measured [until the
year 2000] at highest REYNOLDS numbers, for example R = 17,629,500. The mean
velocity profile between n = —0.5 and np = 0.5 also follows the circle profile with
a maximum relative error of 1.2 %. Only in the turbulent boundary layer, at larger
absolute values of 7, the relative deviation takes higher values. From theory and
experiments it is known that in the boundary layer, closer to the wall, the results
of pipe and channel flow are practically identical. [...] so, also in the plane case, at
higher REYNOLDS numbers, it is expected that the experimental values could exceed
the theoretical ones shown in Fig. 16.21. But the solution in the core region, which
is roughly defined by the interval —0.5 < 1 < 0.5, hardly alters any more when the
excitation is further increased. Therefore, in Fig. 16.21 only in the core region the
agreement between theory and experiment is reliable’ [10].

Figure 16.22 displays a comparison of the calculated REYNOLDS stresses with
experimental data. The theoretical results are again in good agreement with the
experimental data set; and they are as expected from Fig. 16.19.

The graphs in Fig. 16.19 and the results obtained for R* — oo provide a justifica-
tion for the denotation ‘order parameter’ to . The v}-velocity and REYNOLDS stress
distributions across a channel profile depend on the « or (3-parameter and, thus, also
on the REYNOLDS number R* = vja/v. For # = 0 (low REYNOLDS number flow) the
DQTM model for POISEUILLE flow delivers a parabola as the longitudinal velocity
profile, whose curvature is largest at the channel axis that becomes continuously flat-
ter as one moves toward the upper and lower walls. The corresponding shear stress
distribution is linear! As 8 (and R*) grow, the longitudinal velocity distribution
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Fig. 16.22 REYNOLDS shear 1 : . .
stress g2 at R = 12300. The A
distribution is already very !
close to the distribution for " i
R = oco. The experimental 05¢ Re = 12300 1;
data are taken from [18] and 1
[21]. Courtesy P. EGOLF and
D.A. WEISS [10], © Phys. 20
Rev. E. reproduced with &
changes ]
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deviates more and more from the parabola and approaches a semi-circular profile,
which it exactly reaches as R* — oco. Correspondingly, the turbulent shear stress
g12 that is skew-symmetric in 7 builds up from the zero function at 5 = 0, building
a hump with zero values at » = 0 and n = 1 with maximum value closer to the
wall than the channel axis. For growing 3 € (0,4) (R* € [0", 00)) the maximum
of this hump grows and its position moves toward the wall approaching an exactly
circular mean velocity profile and linear shear stress distribution as R* — oo. These
results are marvelously corroborated by data from L. LAUFER [18] and S.I. PAI [21],
as evidenced in Figs. 16.21 and 16.22.

P. EGOLF and D.A. WEISS mention results obtained with the ‘Princeton Super Pipe
Data’ taken at R = 17 629 500. Small deviations of these data for 0.5 < 1 < 1 from
the exact circle are also observed there as in Fig. 16.22. More important than those
small deviations, also observable in Fig. 16.22, seem to us the positive conclusion
that the DQTM closure scheme yields a significant improvement over the classical
PRANDTL-type modeling.

16.6 Discussion

This chapter is devoted to a number of zero order turbulence models for free turbu-
lence and plane channel flow. Mathematically, the study is restricted to steady flows
and situations, in which the processes can be reduced to two spatial dimensions—
either exactly or approximately. The basis of our analysis is the Gottinger school,
primarily under LUDWIG PRANDTL, who himself proposed his own turbulence clo-
sure relations, originally based upon BOUSSINESQ’s proposition of the turbulent eddy
viscosity concept. LUDWIG PRANDTL introduced in 1925 [23] his mixing length con-
cept, in which in two dimensions £, = £?|dv; /dx,|. For L. PRANDTL’S presentation
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of this model, see Appendix A to this chapter. This concept was criticized even by
L. PRANDTL himself by adding a second length scale ¢’, involving the curvature
effects of the velocity profile (see (16.14)). However, with these proposals optimal
validation by experiment delivered values of the mixing lengths much smaller than
the largest eddies in the flow under consideration. This fact makes it likely that
L. PRANDTL regarded the mixing length not just as a phenomenological quantity, but
assigned a direct physical meaning to it. In his next proposal in 1942 he then might
have thought that the physical dimension of e is [m%s~']; incorporation of effects
of the largest and smallest eddies (of a whole cascade) into £, may be achieved by
constructing a viscosity with v;__, vy within the cross section of the free turbulent

max ? min

flow and the width b of the turbulent spread: ey, "= b[T),,, — 1, | This expression

has the correct physical dimension, but to have the flexibility to adjust its value by
validation with experiments, L. PRANDTL conjectured

ebrandl — fob[T), — Tip- (16.193)

and it is hoped that xk = (O(1), see (16.15). That H. GORTLER [12] found good
agreement with experiments in his validation attempt is rewarding; more important
is the fact that L. PRANDTL gave up the strict locality concept and made his suggested
Ewrb at point x to depend on field quantities at points y # x (but nota bene also still at
the same time). The shear stress formula, however, was in his case product-composed

of the non-local expression of sf:fr“gld” with the local mean velocity gradient:

12 Prandtl Jv 1
— = —_— 16.194
P (5lurb ) ) ) ( )

non—local v
local

It is not known to us whether any-one or L. PRANDTL himself was thinking along
these lines; fact is that we have not found statements, neither in PRANDTL'’s paper [25]
nor in GORTLER’s paper [12] that would mention the non-locality. The least in the 21-
st century, in which invariance principles of continuum theories are well known, this
might have raised resistance because a generalization to arbitrary three-dimensional
processes can hardly be visualized. H. GORTLER found the largest deviations from
measurements in the vicinity of the boundary of the mixing zone, because the eddy
viscosity (16.193) does not vanish there.

It is at this point where P. EGOLF in 1992 [7] replaced (16.194) by a completely
non-local expression, namely by

— db Ve — VI
! - bl max
T2 = —pPUVV, = 27— V1 — Vi) — (16195)
pUIV, = PX dx; ( )meM — X
in which x» € [x2, b] is a length parameter and x,_, is that position in the cross
section, where v| = v, . Moreover, p, X are still local quantities but the remaining

factors are of non-local typ. Here, any notions of turbulent viscosity and local velocity
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gradient are gone, but since v at the boundary of the mixing zone equals v, 712,
evaluated with (16.195) will vanish there.

The remainder of the chapter demonstrates that (nearly) all cases, for which tur-
bulent mean velocities are computed, results are more convincing than with the older
closure options. The procedures that have been followed are simple steady two-
dimensional (plane or axisymmetric) flows, for which far away from initiating or
disturbing elements exact or approximate similarity solutions of the governing equa-
tions can be constructed. They are expressible in general as functions f1, f2, fi2, ...
of a variable 7 perpendicular to the main flow direction, and f, and f, have been
shown to be expressible in terms of a functional of f} (7). The following problems
have been attacked:

1. The turbulent plane wake: What just has been said above does not fully apply:
Here, f> and fi, are expressible as functionals of f;. However, the equations do
not reveal a boundary value problem for f;. The function f; can only be deter-
mined by constructing an optimal fit with experimental data. The mathematical
determination of f}(n) remains unsolved.

2. Axisymmetric isothermal steady jet into a quiescent ambient is fully analytically
determinable, provided the terms

_0v, _ Ovy 8(,/)

Ui——, Uy-—, —— \vv
8)C1 (9)62 axl 172

are ignored. The first is the convective acceleration in the x;-direction, which is
parallel to the direction of the principal flow. The second is small, since v is small
and the third term expresses the slow variation of the shear stress in the longi-
tudinal direction of the jet. The functions f;(n), f>(n) and — fi>(n) marvelously
match data (Figs. 16.5, 16.6, 16.7) of . WYGANSKI and J. FIEDLER [30], as do the
functions g;; () which are representative of (v[)2 (i =1, 2,3). The mathematical
method allows in this case also the computation of the density of turbulent kinetic
energy, its production rate and convection parameter (see Eqs. (16.9)—(16.12)).
Because these quantities were also experimentally determined by I. WYGANSKI
and J. FIEDLER, validation of the computational results on the basis of their exper-
iments is a particular convincing test of the closure model.

3. Turbulent round jet in a parallel co-flow: This case is similar to handle as the case
of the jet-flow into a quiescent ambient fluid. It so happens that the general case,
for which the speed of the jet and the outer fluid velocity parallel to the jet speed
does not permit similarity solutions; on the other hand, if the jet speed is much
larger than the speed of the ambient fluid, the functions fi, f, and f}, agree with
the solutions of a jet flow into a quiescent ambient fluid; else, f;, f> and fi, as
functions of 7 are as given in (16.140)—(16.142).

4. Turbulent plane POISEUILLE flow: This case is a bounded flow; it differs from the
earlier cases insofar as fi(n, R*), P(§,n, R), fi2(n, R*), f22(n, R*), which are
representative of vy, p, vjv}, (v5)? are determinable as functionals of = x,/a
(2a = distance of the walls) and ¢ and the REYNOLDS number R* = v*a/v.
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Owing to the wall boundary conditions { f1; fi2; f22}(£1, R*) = 0 the equations

P&, n,RY) + fo(n, R*) + £ =0,
n

filn,R*) =R [/ @ R+ 5 (1 - nz)] (16.197)
-1

(16.196)

can be derived. These equations have been obtained without a closure condition
for the turbulent shear stress —vj v}, but with a linear viscous material behavior.
For laminar flow, f1, = 0 and (16.197) implies

R* 5 )
fi2(n, R*) = - (1—=7%)  (laminar flow),
which is the HAGEN-POISEUILLE profile, as we have already seen. If some tur-
bulence is present, DQTM parameterization must be added. This then yields
f12(n, R*) as a function of f;. When this relation is combined with (16.197),
a differential equation for a function g, (1) (proportional to f; or v;) subject to
boundary conditions involving two parameters, o and 3 (see (16.172)). Solu-
tions to this boundary value problem only exist when § = ((«) [expressed in
(16.175) as x = (3/4x(«)]. This function is called order parameter. It measures
the distribution of the longitudinal velocity f; and of the shear stresses fi, as
shown in Figs. 16.18 and 16.19. In other words, depending upon R*, the trans-
verse distribution of v; and 7y, depend on R. An exact parabolic velocity profile
and strictly linear shear stress distribution are only possible for R* = 0, and a
precisely semi-circular longitudinal velocity profile and a linear shear stress dis-
tribution are obtained when R* — oo. Excellent agreement of these computed
with corresponding measured profiles is displayed in Figs. 16.21 and 16.22. In
between these profiles are continuously deformed; this transition is monitored by
the continuous change of the order parameter.

Appendix A: Prandtl’s Mixing Length

We present here PRANDLT’s ansatz of the turbulent mixing length (16.12) in
PRANDLT’s original German form and K.H.’s translation into the English language.

— Bericht iiber Untersuchungen zur ausge-
bildeten Turbulenz

II. Weiter mochte ich von einem Ansatz
berichten, der dazu dienen sollte, die Verteilung
der Grundstromung einer turbulenten Bewe-
gung unter den verschiedensten Bedingun-
gen hydrodynamisch zu berechnen. Nach ver-
schiedenen vergeblichen Versuchen konnte hier
ein erfreulicher Erfolg erzielt werden, und
es zeigte sich iiberdies, dafl der Ansatz fiir
die durch den Impulsaustausch hervorgebrachte

— Report about investigations regard-
ing fully developed turbulences

II. Furthermore, I wish to report about an
ansatz which should serve as a means to
hydrodynamically compute under various
conditions the distribution of the mean
flow of a turbulent motion. After sev-
eral fruitless attempts a gratifying suc-
cess could be reached in this regard, and
it turned out, in addition, that the for-
mula of concern for the fictitious shear
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scheinbare Schubspannung 7, um die es sich
hier handelt, auch einer recht anschaulichen
Begriindung fihig ist. In der BOUSSINESQschen
Formel

T = pE—

ist € ein MaB fiir den turbulenten ‘Aus-
tausch’ und ist seiner Dimension nach, die
gleich derjenigen von v ist, das Produkt
einer Linge und einer Geschwindigkeit. Diese
Linge und die Geschwindigkeit lassen sich
nun vorstellungsmifBig fassen. Die letztere ist
die Quergeschwindigkeit w, mit der im Mit-
tel die von beiden Seiten herankommenden
Fliissigkeitsballen durch die Schicht mit dem
zeitlichen Mittelwert der Qergeschwindigkeit u
hindurchtreten.

Die von der Seite der groferen
Geschwindigkeiten kommenden Fliissigkeits-
ballen bringen auch groere Werte der
Geschwindigkeit # mit, die von der Seite
der kleineren Geschwindigkeiten dagegen
kleinere, so daff immer mehr Impuls in der
einen Richtung transportiert wird als in der
entgegengesetzten (abgesehen von der Stelle
Von U = Umgx). Die gesuchte Linge ¢ ist nun
dadurch charakterisiert, daB} sie die Entfernung
von der betrachteten Schicht angibt, in der
die durchschnittlichen u—Geschwindigkeiten,
die die Flussigkeitsballen bei ihrem Durchtritt
haben, als zeitlicher Mittelwert der Stromungs-
geschwindigkeit angetroffen werden. Genihert
sind diese Geschwindigkeiten also u + [0u /0y
und u — €0u/Oy. DaB £ der GroBenordnung
nach mit dem Durchmesser der Fliissigkeits-
ballen iibereinstimmt, sei nebenher erwihnt
(genaueristes der ‘Bremsweg’ des Fliissigkeits-
ballens in der iibrigen Fliissigkeit, der aber dem
Durchmesser proportional ist). Ueber die Linge
£ kann einstweilen nur ausgesagt werden, daf
sie an der Wand gegen Null gehen muf, da hier
nur noch Ballen, deren Durchmesser kleiner
als der Wandabstand ist, sich wie besprochen
bewegen konnen. Im iibrigen soll ¢ einen
moglichst regelmifigen Verlauf haben. Ist
der durchschnittliche verhiltnisméBige Anteil
der Fldche, der von den von der einen Seite
durchtretenden Fliissigkeitsballen eingenom-
men wird, so tritt an dieser Seite sekundlich ein
Impuls Spw - £0u /0y durch die Flacheneinheit,
von der anderen Seite ungefihr der gleiche
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stress 7 that is generated by the momen-
tum exchange, can also clearly be moti-
vated. In the BOUSSINESQ formula

(16.198)
¢ is ameasure for the turbulent ‘exchange’
and, according to its dimension, which is
the same as that of v, is the product of a
length and a velocity. This length and the
velocity can now conceptually be under-
stood. The latter is the transverse velocity
w by which, on average, the fluid pack-
ages enter from both sides the fluid layer
that moves with a temporal mean of the
transverse velocity u.

The fluid packages coming from the side
with the larger velocities also carry with
them larger values of the velocity u, those
from the side with the smaller veloci-
ties, however, smaller ones, so that always
more momentum is transported in one
direction than ~ in  the other (except
at a position where u = umax). The
sought length £ is now characterised by
the fact that it provides the distance from
the considered layer in which the aver-
age u-velocities, which the fluid pack-
ages have on their passage, are encoun-
tered as a temporal mean value. Approx-
imations of those velocities are therefore
u—+10u/0y andu—10u/0y. That £ agrees
in order of magnitude with the diameter of
the fluid packages is only remarked here
parenthetically (more accurately, it is the
‘stopping distance’ of the fluid package
in the remaining fluid, which, however,
is proportional to the diameter). About
the length ¢ one can presently only say,
that it must go to zero at the wall, since
only packages, of which the diameter is
smaller than the distance from the wall,
can move as discussed. Besides, £ should
have a behaviour as regular as possible. If
(3 is the averaged relative fraction of area
that is encountered by the fluid packages
passing from one side, then the momen-
tum per second entering from this side
is Bpw - £du /Dy, from the opposite side
about the same amount, so that we
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Betrag, so daB wir den BOUSSINESQschen
Ansatz also bestitigen und ¢ = 2pwl
setzen konnen. Es handelt sich jetzt noch
darum, fiir die Mischgeschwindigkeit w einen
brauchbaren Ansatz zu machen. Diese Mis-
chgeschwindigkeit wird immer rasch abge-
bremst und mufl immer wieder neu geschaf-
fen werden. Wir nehmen daher an, daf}
sie beim Zusammentreffen von zwei Ballen
mit verschiedener Geschwindigkeit u erzeugt
wird und darum dem Geschwindigkeitsunter-
schied, also dem Betrage von [0u/0dy pro-
portional ist. Damit wird aber, falls wir
alle unbekannten Zahlenfaktoren auf die
nicht genauer bekannte Lidnge ¢ werfen,
die scheinbare Schubspannung 7

2

T=pl

Dieser Ansatz bedarf noch einer Berichtigung
fiir den Fall, daB Ou/0y = 0 wird. Fiir die
Erzeugung der Geschwindigkeit w wirkt die
Nachbarschaft in einer gewissen Breite zusam-
men; sie wird nicht Null, wenn Ju/0y = 0
ist, wird vielmehr einem statistischen Mittel-
wert von |Ou/dy| proportional gesetzt werden
konnen, also proportional |Ou/dy|; verindert
sich das Geschwindigkeitsprofil in der Stro-
mungsrichtung, wie bei verengten und erweit-
erten Kanélen, so wird die Stelle, tiber die gemit-
telt wird, auch um einen gewissen Betrag stro-
mauf gelegt werden miissen, da der Vorgang
der Ausbildung der Geschwindigkeit w Zeit
beansprucht.

ou
dy
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can corroborate BOUSSINESQ’s ansatz and
set e = 20w.

The remainder now consists in making a
useful hypothesis for the mixing veloc-
ity w. This mixing velocity is always
very quickly attenuated and must continu-
ously be newly created. We therefore sup-
pose that it is generated in an encounter
of two packages with different velocity
u and thus is proportional to the veloc-
ity difference, whence the modulus of
[0u/0y. With this, and provided we throw
all unknown factors on this not exactly
known length ¢, the fictitious shear stress
T becomes

Ju

dy’

This formula still needs to be amended
for the case that Ju/0y = 0. For the
creation of velocity w the neighbourhood
of a certain width is active; it does not
become zero, if Ju/dy = 0, it may rather
be set proportional to an average value
of |Ou/dy|, thus proportional to |Ou/0y|
itself; if the velocity profile changes in
the direction of the flow, as is the case in
contracting and diverging channels, then
the position about which the average is
taken will have to be moved somewhat
upstream, because the process of the cre-
ation of the velocity w will take some
time.

>
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Chapter 17
Thermodynamics—Fundamentals

Abstract This chapter is devoted to thermodynamics; first, fundamentals are
attacked and, second, a field formulation is presented and explored. Class experi-
ence has taught us that thermodynamic fundamentals are difficult to understand for
novel readers. Utmost caution is therefore exercised to precisely introduce terminol-
ogy such as ‘states’, ‘processes’, ‘extensive’, ‘intensive’ and ‘molar state variables’
as well as concepts like ‘adiabatic’, and ‘diathermic walls’, ‘empirical’ and ‘absolute
temperature’, ‘equations of state’ and ‘reversible’ and ‘irreversible processes’. The
core of this chapter is, however, the presentation of the first and second law of thermo-
dynamics. The first law balances the energies. It states that the time rate of change
of the kinetic plus internal energies are balanced by the mechanical power of the
stresses and the body forces plus the thermal analogies, which are the flux of heat
through the boundary plus the specific radiation referred to as energy supply. This
conservation law then leads to the definitions of the caloric equations of state and the
definitions of specific heats. The Second Law of Thermodynamics is likely the most
difficult to understand and it is introduced here as a balance law for the entropy and
states that all physical processes are irreversible. We motivate this law by going from
easy and simple systems to more complex systems by generalization and culminate
in this tour with the Second Law as the statement that entropy production rate can-
not be negative. Examples illustrate the implications in simple physical systems and
show where the two variants of entropy principles may lead to different answers.

Keywords Reversible/irreversible processes « Empirical/absolute temperature -
First, second law of thermodynamics * Thermodynamic states—processes * Exten-
sive, intensive, molar state variables + Adiabatic/non-adiabatic systems + Diathermic
wall - Thermal equations of state - VAN DER WAALS gas - Caloric equation of state *
Specific heats

List of Symbols

Roman Symbols

A B, C Identifiers for thermodynamic systems

a, b Two constants in the thermal equation of state for VAN DER WAALS
fluids
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Work of the non-conservative external forces on a body
Capacity in an electric circuit, elastic constant of a spring, mass
concentration of a tracer

. — (u
Specific heat at constant volume ¢, = (5%),

Specific heat at constant pressure ¢, = (2) v

Specific molar heats of a VAN DER WAALS gas

Strain rate tensor, stretching tensor (deviator)

D=3IL+L"

Diffusivity,—of a tracer

Specific total energy per unit mass

Distortion (rate) tensor E = D — 1(tr)1

Specific total energy per unit mass e = %|v|2 + u

Ec = T + U — %, Kinetic + internal energy — potential of the
conservative force

Force acting on a finite body or a mass point

Specific body force per unit mass

Translational, rotational and oscillation degrees of freedom
Gravity vector, gravity constant

Specific enthalpy per unit mass

Initial electric current (strength)

Inductivity of a condenser, power of working of F formed with v,
power of working of a body

Power of working of the conservative external forces

Spatial velocity gradient

Mole mass, mass of a rigid body

Inflow and outflow (rate) of mass through a system

Normal force (positive as a pressure) acting on a body at and L
to a basal surface, Integrating denominator of a two-dimensional
PFAFFian form

Number of mole masses

Unit normal vector at a point of the boundary OV of a body V
Pressure, critical—for a VAN DER WAALS gas

Thermal equation of state for an ideal gas

(Total) heating supplied to a body at its boundary

Heating of systems A and B

Heating of external sources applied to a body during a time step
A

Heat supplied at a body point per unit mass

Heat flux vector supplied to a body at a point on 9V

Heat added to a system between states 1 and 2 at constant pressure
Resistivity of an electric circuit

Gas constant of an ideal gas whose mole mass is M

Universal or molar gas constant

R, = 8.31451 £ 0.00007 [J mol'K~!]
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Gas constant of an ideal gas R = ¢,(T') — ¢,(T)

Entropy of a finite system ] )

GIBBS relation for a system § = % (U + pV),

—for a unit mass § = % (it + pv)

Specific entropy per unit mass

Kinetic energy of a mass point

Tangential sliding force of a moving body along a surface, kinetic
energy at a point per unit mass

Absolute temperature as a function of the empirical temperature
0

Temperature at the triple point of water

CELSIUS temperature: t = T — 273.15[C°]

Fahrenheit temperature ty =T — 32[F°] =T — T
Temperature oft the ice point

Critical temperature of a VAN DER WAALS gas

CAUCHY stress tensor

Frictional (viscous) CAUCHY stress tensor (deviator)

Stress power

Traction vector on 9V of V

Internal energy of a body, specific internal energy per unit mass
Velocity component along the x-axis as a function of the y-axis
and time ¢

Boundary value of u(0, r)

Volume of a body, mole volume

Velocity vector, y-component of v

Displacement vector, position vector

Initial velocity

State variable

Specific state variable per unit mass

Specific state variable per unit volume

Molar state variable

Specific state variable

Greek and Miscellaneous Symbols

~y
Am,, Am,
n=pv
Tth

Ne = M
Hy

v

Py

of v

Damping constant, specific entropy production per unit volume
Mass entering/leaving a system

Dynamic viscosity

Thermal efficiency

CARNOT factor, CARNOT efficiency

Rate of entropy of a body V

Kinematic viscosity

Specific entropy production per unit mass

Power of working of the body force
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ps Specific entropy per unit volume

0 Empirical temperature

O1) Empirical temperature

@ Dissipation function

Dy Dissipation function due to pure volume changes

g Dissipation function due to pure form changes

—¢ Power of working of the conservative external forces of a body
T Shear stress

ov Surface of a body V

17.1 Concepts and Some Historical Remarks

Up to now we have devoted our attention to questions of fluid mechanical concern;
in particular, we determined with the aid of the mechanical laws the motion of
liquids (such as water, oil, etc.) and gases (air, etc). Apart from applying the general
laws of conservation of mass and linear and angular momenta, we also made
use of material technological-statements, as e.g. the postulation of a connection
between shear stress and shear angle in simple shear, or the relation between the
stress tensor and the strain rate (stretching) tensor in viscous fluids (Chap. 7). The
formulation of these laws has, however, been introduced in a rather bold fashion
without support by other physical principles; these laws find at last their support
by experimental tests. In so doing, the goal is to make the mechanical balance laws
integrable by complementary statements, which describe the material behavior, at
least in principle, to arrive at a closed system of equations. In this sense such laws or
equations are also called closure conditions. To explain this situation by means of a
very simple example, consider an unsteady parallel flow along a moving wall parallel
to the x-direction, see Fig. 17.1. With the assumptions of the velocity components
u, v in the x- and y-directions and the pressure p

Fig. 17.1 Flow along a
moving wall. Velocity profile
u(y, t) and fluid element
dxdy with the shear tractions
acting on it

dy
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u=u(y,t), v=0, p=constant,

respectively, formulation of the balance of linear momentum in the x-direction for
the illustrated rectangular element yields

Ou or
—dxdy = — dxdy,
P drdy =5 dxdy
or
Ou Ot (17.1)
Par = oy ‘

which is a relation between velocity u and shear stress 7. Only if we complement
the above equation with the material equation

=n—, 17.2
T=1 dy (17.2)
in which 7 is the dynamic shear viscosity that changes from material to material,
we obtain from (17.1) by substitution of (17.2) a differential equation for u alone,

namely

Ou O*u

which, subject to adequate boundary conditions, becomes integrable. For instance,
for a harmonically oscillating wall and a velocity field that dies out to a state of rest
at y = oo these boundary conditions read

u(y,t) = uycoswt, y=0,
u(y, t) =0, y — 00, (17.4)

and the solution of (17.3) takes in this case the form

w w
u(y, t) = upexp (—\/;y) cos (wt— Ey) , (17.5)

which is graphically displayed in Fig. 17.2. That (17.5) is indeed a solution of (17.3)
subject to the boundary conditions (17.4) may be corroborated by simple substitution
of (17.5) into (17.3) and (17.4).

Thermodynamics is less concerned with the construction of such solutions—even
though this is equally its ultimate goal—but rather with the theoretical foundation
of material laws such as (17.2). Thermodynamics formulates physical principles,
according to which it can be decided, whether a postulated material law is physically
meaningful or senseless. It took a rather long time until such an interpretation of
the basic goals of thermodynamics crystallized. For its roots we have to go back to
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Fig. 17.2 Flow along a
moving wall. Distributions
of the horizontal velocity
perpendicular to the wall for
a harmonically oscillating
wall, plotted for different
times
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the explanation of phenomena such as energy conversation and energy transfer in
heat engines; this then merged into a theory of heat.

To reach the above goal two principal laws had to be recognized. The first concerns
the extension of the notion of energy to non-mechanical forms. The decisive
quantities are in this regard the internal energy and heat and the recognition of their
equivalence. The balance law, expressing conservation of the sum of all mechanical,
thermal, (electrical and chemical) energy forms, is expressed as the First Law of
Thermodynamics. It describes how the individual forms of energy balance, i.e.,
transfer into one another, provided such transfers are allowable at all. Regarding
the transfer of the individual energy forms the First Law is symmetric. Changes of
mechanical energy into thermal energy is in principle equally possible as the reverse
changes from thermal into mechanical energy.

Many observations and long experiences, however, showed that the transfer from
anon-thermal to a thermal energy form is favored by nature; this is the basic expres-
sion of the Principle of Irreversibility which finds its mathematical formulation in
the Second Law of Thermodynamics. This law essentially expresses the fact that
physical processes favor a direction in their evolution. This is sometimes expressed
by saying that physical processes cannot be traversed in the reversed direction of time.
If such time reversal is possible, the respective process must be exceptionally seldom
and physically idealized. For the mathematization of the notion of irreversibility the
concept of entropy was created. This is a physical quantity, which is very difficult
to intellectually grasp; indeed, its meaning and interpretation can probably best be
disclosed by the mathematical laws, which are formulated for it.!

!For didactic reasons it is recommended here to most readers to initially accept these mathematical
laws and not to ask too deeply for their physical meaning or background, but to accept their functional
and mathematical implications and to understand their consequences analytically. The reason for
this recommendation is that the laws are only physically fully justifiable for simplified cases, but
must be accepted as axioms in the general case.



17.1 Concepts and Some Historical Remarks 323

Without dwelling into details (because they would hardly be understood at the
present stage of the development), we mention that in a modern formulation of the
Second Law, apart from the entropy density also entropy flux, entropy production
and entropy supply are defined for which a balance law is formulated. To this end,
consider a material volume V with boundary 0V for which the following balance
statement holds?

of the entropy in, V through the boundary 0V of V
{ Production of entropy }

[ Time rate of change ] _ [ Flux of the entropy ]

within the volume V

{ Supply of entropy from ] . (17.6)

outside to the volume V

In this form the Second Law finds its expression in the statement that the entropy
production in the body is not allowed to take negative values for whichever physical
process that may take place within the body.? This exclusiveness of the sign of the
entropy production is expression of the irreversibility. If the production vanishes,
the process is reversible, if it is negative, the process is physically not realizable.
Moreover, if the entropy flux from the outside vanishes, it follows from statement
(17.6) that the time rate of change of the entropy in V cannot be negative, but must
grow or remain constant.

These statements are simple mathematical inferences drawn from the balance
(17.6) and the requirement that the entropy production is not allowed to become
negative. They must in the subsequent text be ‘filled’” with physical content. The
fact that the balance (17.6) must hold for all possibly thinkable processes finds its
consequences in the fact that this apparently implies constraints for the material
equations. Such a constraint is, for instance the requirement that the shear viscosity
is a positive quantity. Expressed somewhat more generally, the material functionals
for a body must be so structured that they make it impossible for a body in any process
deduced from the equations to violate the fundamental axioms of physics.

2Such a balance may be formulated for any quantity and need not be restricted to physical quantities
or entropy. Letin (17.6) e.g. ‘entropy’ be replaced by ‘money of any form in a bank’. Its amount will
grow if customers physically enter the building, make a deposit and leave. This is the flux of money
through the boundary. If within the building notes are printed or coins are pressed, then money is
produced; this production also can take negative values, if worn-out notes are destroyed. Finally,
if a customer makes a payment electronically from outside to a deposit of the bank, then money is
supplied. Of course, in this example of a balance law, the production ordinarily vanishes, because
only special banks are authorized to print notes and press coins. The law governing the growth of
money in the bank is then a conservation law.

3That the entropy production must be non-negative is a convention associated with the definition of
the entropy. It would at this stage be better to request the entropy production to have only one sign.
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(a) (b)

air

Fig. 17.3 Irreversible Processes. a Consecutive decrease of the jumping heights of a bouncing
ping-pong ball. b Oscillations of a mathematical pendulum in air. ¢ Mass oscillator with spring
and dashpot. d Electrical circuit with capacity, resistivity and induction coil

Irreversible processes are overwhelmingly observed in Nature. Obvious are those,
which cannot be observed in temporally reversed situation. One example is the bounc-
ing ping-pong ball, whose height of jump decreases from one jump to the next and
whose evolution in reverse sequence has never been observed, see Fig. 17.3a. Another
example is a pendulum oscillating in air, of which the amplitude decreases with
time, whereby the air is heated, see Fig. 17.3b. The initial energy of the pendulum
is transferred after some time to the air and the pendulum is in its position at rest. It
has never been observed that the pendulum would be excited from its rest position
by still air whilst the latter is being cooled.

The examples, which demonstrate the irreversibility in the governing equations
and which are probably familiar to the reader are illustrated in Fig. 17.3c, d: the
mechanical and electrical oscillators. For a mass point M, which is exposed to a
spring force proportional to its elongation x, cx, and a damping force, proportional
to the rate of elongation X, yx, application of NEWTON’s fundamental law yields the
differential equation

. v . c

X+ Mx + Mx =0. (17.7)
For the electrical circuit (Fig. 17.3d) with condenser of capacity C, resistance of
resistivity R and inductance of inductivity L, application of KIRCHHOFF’s law after
closure of the circuit yields for the electric current the ordinary differential equation

. R. 1
I+—-1+—I=0. 17.8
+ i3 + Ic ( )

In these equations dots denote differentiation with respect to time, and so it is obvious
that time reversal that changes dr into —dz will change the sign in the second terms
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Fig. 17.4 Irreversible (a) (b)
expansion and mixing. a
Flow of a gas from one bottle
into a vacuum bottle. b
Diffusive mixing of two
originally separated gases

plastic
folio

vacuum

on the left-hand sides of (17.7) and (17.8), but leave the other terms unchanged. With

the initial conditions
xt=0)=0, It=0)=0,

it =0) =50, 1(t=0)=lp, (17.9)
the solutions can be written as
Xo Y . R .
X = —exp (—mt) sinwt, [ =Iyexp _it sin §2¢
“ (17.10)
1

PR \/71#
W=,/ = —, 2=—-—.
M 4AM? LC 417
For positive vy or R, they represent damped oscillations. In the mechanical example,
kinetic energy at time t = 0 is transformed into frictional heat, in the example of
the electric circuit the energy originally stored in the condenser is transformed into
Joule heat. The processes evolving reversed in time (change of the sign of v and R)
would result in temporally amplified oscillations, which has never been observed.

An irreversible process can also be illustrated by the flow of a gas into a vacuum
container, see Fig. 17.4a. A bottle filled with a gas—usually NO; is used, because
of its brown color it is easily visible—is connected by a tube with a second bottle
(initially under vacuum) until the gas in the bottle is subjected to the same pressure.
However, one has never observed that the gas would by itself collect itself in one of
the two bottles.

Analogously, two masses of different gasses confined in a bottle and separated
by a foil will, after removal of the foil, (slowly) mix until a homogeneous mixture
of both gases is reached. This mixing process is called diffusion, and it can, if left
un-accelerated by adequate means, last very long. A de-mixing of the mixed gases
by themselves has never been observed. Analogously, one has never observed that a
solution of sugar in water at moderate concentration would spontaneously separate
the sugar from the water.

Historically, the formulations of the First and Second Laws of Thermodynam-
ics must be located in the 19th century, when one recognized that heat is some
sort of energy. In fact, this recognition came long after the realization of the steam
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engine, which transforms heat into mechanical work. Its first construction in Europe
is attributed to the French physicist DENIS PAPIN (1647-1712) and falls into the period
around 1690. As already mentioned in the introduction, it was, however NICOLAS
LEONARD SADI CARNOT (1796-1832)* who first formulated the generation of usable
work from heat in a general form. In so doing he formulated the notions of a perfect
machine and reversible processes, which are today known as CARNOT’s circular
processes. He also arrived at a certain limited formulation of the Second Law.

CARNOT’s memoirs were largely only published 40 years after his death. This
is the likely reason, that most thermodynamicists attribute the merit of having first
hypothesized the equivalence of heat and energy to ROBERT MAYER (1814—1878),°
and to have spelled out the fact that in a closed system the total energy is conserved,
where ‘closed’ means ‘materially bounded’.

Independently of MAYER’s theoretical considerations of 1842 and 1845 JAMES
PRESCOTT JOULE (1818-1889)° laid down between 1843 and 1848 the experimen-
tal foundations of the First Law by determining the mechanical heat equivalent.
CLIFFORD AMBROSE TRUESDELL (1919-2000), however, has shown in his histori-
cal studies (1980) that these attributions must be regarded as exaggerations, since
MAYER’s works only allow the interconvertibility of heat and work for isothermal
processes; moreover, he mentions that JOULE’s experimental results were subject to
such large fluctuations that LORD KELVIN doubted the correctness of JOULE’s infer-
ences. It appears that around 1850 the First Law and the Second Law were ‘somewhat
in the air’, but had yet still not clearly been spelled out.

On the basis of the works by MAYER, JOULE and above all CARNOT, JULIUS
EMANUEL CLAUSIUS (1822-1888)” then succeeded in the years (1850—1865) to tailor
the two thermodynamic laws in a mathematical form, first for reversible circular
processes (1850) and later (1862) for irreversible processes. In so doing, he expressed
the First Law as a balance between heat, work and internal energy and introduced
for the formulation of the Second Law the new thermodynamic quantity, which he
called entropy (1865). In his memoir of 1865 he spelled out the famous sentences®:

e ‘Die Energie der Welt ist konstant: The energy of the world is constant’, and
e ‘Die Entropie der Welt strebt einem Maximum zu: The entropy of the world strives
for a maximum’.

“4For a short biography of NICOLAS LEONARD SADI CARNOT, see Fig. 17.5.
SFor a short biography of JULIUS ROBERT VON MAYER, see Fig. 17.6.

SFor a short biography of JUAMES PRESCOTT JOULE, see Fig. 17.7.

7For a short biography of RUDOLF JULIUS EMANUEL CLAUSIUS, see Fig. 17.8.

8These sentences may possibly have led natural philosophers to spell out inferences of grandeur
and world-embracement which seem to be large and unjustified exaggerations, given the relatively
simple thermodynamic concepts dealt with by CLAUSIUS for which the above two sentences apply.
In CLAUSIUS’ context the world is a very simple physical system which is not apt to describe the
complexity of the universe.
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Fig. 17.5 NICOLAS LEONARD SADI CARNOT (1. June 1796-24. Aug. 1832)

NICOLAS LEONARD SADI CARNOT was a French physicist and engineer who, with his the-
oretical works on heat engines and the related cyclic (CARNOT) processes, founded what
became thermodynamics. He was born in Paris into a family of politics and science and was
persuaded by his father to study the technical sciences. He entered Ecole Polytechnique in
Paris in 1812, but left it in 1814 for a military career in the French army’s corps of engi-
neers. In 1819 he asked for discharge to fully concentrate on science: Chemistry, physics,
mathematics, natural sciences and political economy.

In his studies CARNOT concentrated on steam engines performing cyclic processes. Empirical
studies by NEWCOMEN (1664-1729) of these had in the early 18th century (in 1712 in the
form of piston-operated steam engines) been studied by JAMES WATTS (1736-1819). SADI
CARNOT felt it necessary to scrutinize the phenomenon of the ‘generation of motion by the
moving of heat’. The results of these efforts were shown in 1824 in a memoir ‘Réflections
sur la puissance motrice du feu et sur les machines propres a developer cette puissance’,
[6]. This was the only paper that was published in CARNOT’s life time. Only in 1890 an
English translation appeared [7], and in 1892 WILHELM OSTWALD (1853-1932) published
a translation into the German language [8].

EMILE CLAPEYRON (1799-1864) was the first to reflect in 1834 on CARNOT’s paper, but
in spite of his positive reflection, did hardly find any response. Only around the 1850s the
situation improved: WILLIAM THOMSON (LORD KELVIN) was motivated in 1848 by SADI
CARNOT’s reflections to introduce his temperature scale. Similarly, RUDOLF CLAUSIUS noted
in POGGENDORFFs ‘Annalen der Physik und Chemie’ of 1850 and emphasized CARNOT’s sci-
entific exceptional contribution. Surprisingly, neither WILLIAM THOMSON (LORD KELVIN)
nor RUDOLF CLAUSIUS were aware of CARNOT’s 1824-memoir, but only knew EMILE
CLAPEYRON’s paper. WILHELM OSTWALD in 1892 explicitly stated that SADI CARNOT’s
1824-treatize intellectually presented what is today called the Second Law of Thermody-
namics.

SADI CARNOT died in 1832 at the young age of 36 due to scarlet and ‘brain fewer’ during a
cholera epidemy in Paris.

The text is based on www.wikipedia.org
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Fig. 17.6 JULIUS ROBERT VON MAYER (25. Nov. 1814-20. March 1878)

JULIUS ROBERT VON MAYER, a German physician and physicist (by devotion), is often
claimed to be one of the founders of thermodynamics. He is best known for enunciating in
1841 one of the original statements of the conservation of ‘energy’ (expressed as ‘forces’ in
his paper), which is now often called the first version of the First Law of Thermodynamics,
namely that ‘energy in a body can neither be created nor destroyed’. This memoir submitted
to POGGENDORFF’s ‘Annalen der Physik und Chemie’ contained a number of fundamental
physical flaws and was initially rejected by the scientific community.

If energy of motion (kinetic energy) can be transformed into thermal energy (heat) water
would have to be transformed into heat by simply shaking it. This experiment led JULIUS
MAYER to the determination of the mechanical equivalent of heat, which he published in
1842 in the LIEBIG ‘Annalen der Chemie und Pharmacie’ [36]. JULIUS MAYER improved his
first value of mechanical equivalence of heat from 365 to eventually 425 kg*m/kcal [kg*
= force kilogram]. Today’s value is 4.184 KJ/kcal (=426.6 kg*m/kcal). This relation says
that work and heat are equivalent to one another; these are different forms of energy, which
can always be transformed to one another by the ‘universal’ ratio of 4.184 kJ/kcal. This is,
in fact, a first version of the First Law of Thermodynamics that was perfected by HERMANN
HELMHOLTZ (1821-1896) in the year 1847.

JULIUS MAYER was convinced about the significance of his discovery, but his lack of pro-
fessionalism in expressing himself scientifically and his speculative tendencies as well as
his obedient religiosity did not further his scientific recognition; the contemporary physi-
cists refused his conservation law of energy. One doubted MAYER’s qualification in physical
knowledge. In the aftermaths of these circumstances and because of the concurrent death in
1848 of two of his children, his mental state was thrown into turmoil. After an attempt of
suicide on 18 May 1850 he was hospitalized in two nerve clinics; upon his release, he was
a broken man. He retreated to his privacy, acted as a foster parent to the two daughters of
his elder brother after the latter’s death and devoted his time to his medical practice. Only
after 1860 he opened his life faint-heartedly to the public and recognized that his scientific
stand had somewhat increased. So, he received a late recognition of his achievements, even
though he was no longer able to properly enjoy it.
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Fig. 17.7 JAMES PRESCOTT JOULE (24. Dec. 1818-11. Oct. 1889)

JAMES PRESCOTT JOULE and his apparatus for measuring the mechanical equivalent of heat
in which the ‘work’ of the falling weight is converted into the ‘heat’ of agitation in the water.
The falling of the weight is transmitted to a rotation of the paddles in the water chamber
JAMES PRESCOTT JOULE was an English physicist and brewer. JAMES JOULE studied the
nature of heat, and discovered its relation to mechanical work. This led to the law of conser-
vation of energy, the development of the first law of thermodynamics. The SI derived unit of
energy, the ‘Joule’, is named after JAMES PRESCOTT JOULE. He worked with WILLIAM
THOMSON (LORD KELVIN) to develop the absolute scale of temperature the ‘Kelvin’-
temperature. JAMES JOULE also made observations of magnetostriction, and he found the
relation between the electric current through a resistor and the associated dissipated heat,
which is now called JOULE’s first law.

The son of a wealthy brewer, Joule was tutored as a young man by the famous scientist JOHN
DALTON and was strongly influenced by chemist WILLIAM HENRY and Manchester engineers
PETER EWART and EATON HODGKINSON. He was also fascinated by electricity. However,
he left this field in the benefit of work on the convertibility of energy. In 1843 he estimated
the mechanical equivalent of heat and reported his results to the British Association for the
Advancement of Science in August 1843 and was there met by silence. By forcing water
through a perforated cylinder he could measure the slight viscous heating of the fluid; it led
to a mechanical equivalent of 4.14 J/cal. Subsequently he perfected the experiments: these
were so constructed that to thermally isolated water mass a precise amount of mechanical
energy was added and subsequently the raise in temperature was measured. This led to a
mechanical equivalent of heat of 4.41 J/cal. This had already been demonstrated in 1841
by JULIUS ROBERT MAYER. A further improvement of JAMES JOULE’S measurements in
1850 yielded 4.159 J/cal which is closer to today’s standard value 4.1860 J/cal. For original
literature see [19-24].
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(I) Heat can never pass from a colder to a
warmer body without some other change,
connected therewith, occurring at the same
time.

(II) The energy of the universe is constant.
The entropy of the universe tends to a
maximum

Fig. 17.8 RUDOLF JULIUS EMANUEL CLAUSIUS (2. Jan. 1822-24. Aug. 1888)

RUDOLFJULIUS EMANUEL CLAUSIUS was a German physicist and mathematician and is considered
one of the founders of the science of thermodynamics, in particular a first rational version of its
Second Law. He studied mathematics and physics in Berlin, where he also became a Private Docent.
1855 he was called to the newly founded Eidg. Polytechnicum (now Swiss Federal Institute of
Technology) in Zurich, where he stayed until 1867, when he moved to the University Wiirzburg
and in 1869 to Bonn, where he stayed until his death.

His most famous paper, ‘Uber die bewegende Kraft der Wirme’ (‘On the Moving Force of Heat
and the Laws of Heat which may be deduced therefrom’) [9] was published in 1850, and dealt
with the mechanical theory of heat. In this paper, he recognized—as WILLIAM THOMSON (LORD
KELVIN) did—that SADI CARNOT’s 1824-concept and MAYER’s, JOULE’s and HELMHOLTZ’ energy
conservation law were in conflict. He restated the two laws of thermodynamics to overcome this
contradiction. He gave the conservation law of energy a new framing by establishing a new relation
between heat Q and work W and internal energy U: dU = dQ + W. He recognized that heat was
not an unchangeable substance, but merely a form of energy, which can be transformed to other
energy forms (e.g., kinetic energy) in a combined statement. He formulated in 1854/56 [10, 11]
a first version of the second law with the statement (I) above. This is the expression that thermal
processes are directed; otherwise stated, thermal processes are not reversible. The heat transfer
relative to the temperature at this transfer (expressed as dQ/T) is a measure for the transfer of heat
into work and thus, for the quality of the process, expressed by S = dQ/T.

In 1865, CLAUSIUS gave the first mathematical version of the concept of entropy, and also gave
it its name [14]. He chose the word ‘entropy’ because the meaning, from Greek, en + tropein,
is ‘content transformative’ or ‘transformation content’ (German: ‘Verwandlungsinhalt’). This
landmark paper in which he introduced the concept of entropy ends with the above statement (II)
of the first and second laws of thermodynamics, [13, 14].

CLAUSIUS also contributed profoundly to the kinetic theory of gases and electrolytic dissociation.
The concept of free wavelength was also introduced by him. These works led JAMES CLERK
MAXWELL and LUDWIG BOLTZMANN to significant discoveries, which laid the theoretical foun-
dation of the kinetic theory of gases. And he researched on electrodynamics of moving bodies,
for which only ALBERT EINSTEIN 1905 found its solution through the special theory of relativity.
See also [12, 13].

The text is based on www.wikipedia.org


www.wikipedia.org

17.1 Concepts and Some Historical Remarks 331

Independently and almost simultaneously (1851) WILLIAM THOMSON (LORD
KELVIN)’ was led to a different formulation of the Second Law; he extended
CLAUSIUS’ theory to general fluids. He was coining the word thermodynamics,
introduced already in 1848 on the basis of the developments of CARNOT the absolute
temperature, and demonstrated the universality of a temperature scale that is inde-
pendent of the particular properties of real thermometers.

Two new approaches, which complemented and extended this phenomenological
theory of spatially homogeneous processes, were introduced in the second half of
the 19th century. One of them is the statistical mechanics or statistical thermody-
namics, which led with JAMES CLERK MAXWELL’s (1831-1879)!° second theory
of Kinetic gases to a field theory for gases. In this theory temperature, heat, work,
energy, stress and heat flux are defined as statistical expectation values of fluctuat-
ing quantities of molecules bouncing into each other. MAXWELL formulated in his
kinetic theory also a field equation for the energy and, thus, gave the First Law the
form that is employed today. His formulation is neither restricted to homogeneous
processes nor states in the vicinity of thermodynamic equilibrium. LUDWIG BOLTZ-
MANN (1844-1906)'! later used MAXWELL’s second theory (1872, 1875, 1896) to
derive his ‘H-theorem’,'> which in the kinetic theory is the analogue to the Second
Law, see also [2]. With it, one arrives at a natural definition of the entropy within the
kinetic theory.

The other, second, new approach was constructed by JOSIAH WILLARD GIBBS
(1839-1903).!% He formulated the classical phenomenological theory for the ther-
modynamic equilibria and applied it to systems consisting of several phases. He dis-
covered the so-called phase rule and introduced the chemical potentials to describe
the thermostatics of mixtures. Considerations of the equilibria of chemically react-
ing materials made it then necessary to also consider the behavior of the entropy at
the absolute zero of the temperature; it was necessary to identify a constant of inte-
gration, which was done by WALTER HERMANN NERNST (1864-1941)'* and later
by MAX PLANCK (1858-1947).!% This theorem is often called the Third Law of
Thermodynamics.

9For a short biography of LORD KELVIN, see Fig. 17.9.
10For a short biography of JAMES CLERK MAXWELL, see Fig. 17.10.
"For a short biography of LUDWIG EDUARD BOLTZMANN, see Fig. 17.11.

12H is to be understood as capital Greek 7 and not as capital Roman /, since 7 is the common
mathematical symbol for entropy.

13For a short biography of JOSIAH WILLARD GIBBS, see Fig. 17.12.
14For a short biography of WALTHER HERMANN NERNST, see Fig. 17.13.
I5For a short biography of MAX KARL ERNST LUDWIG PLANCK, see Fig. 17.14.
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Fig. 17.9 WILLIAM THOMSON, first BARON KELVIN (26. June 1824—17. Dec. 1907)

A KELVIN- HELMHOLTZ instability rendered visible by clouds over Mount Duval in Australia
WILLIAM THOMSON, first BARON THOMSON or LORD KELVIN, or KELVIN of Largs was a
mathematical physicist and engineer. He was professor of Natural Philosophy at Glasgow
University for more than 50 years and did important work in the mathematical analysis of
electricity and the formulation of the first and second law of thermodynamics. He also had
a successful career as an electrical telegraph engineer which propelled him into the public
eye and ensured his wealth, fame and honour. Largely for this work he was knighted by
Queen VICTORIA (1866), becoming Sir WILLLIAM. Moreover, for his scientific key role
in developing the basis of the absolute temperature and the KELVIN temperature scale, and
because of his opposition to the Irish Home Rule, he received ennoblement as Baron KELVIN
of Largs or Lord KELVIN (1892).

As a child WILLIAM THOMSON lost his mother at the age of 6 years (1830). The 4 boys and
2 girls were educated by their father who in 1834 became professor at Glasgow University.
So, son William started his university education in Glasgow at the age of 10. In the academic
year 1839/40 he won the class prize in Astronomy for his essay on the figure of the Earth.
When coming across FOURIER’s Théorie analytique de la chaleur he committed himself to
study continental mathematics. He left Glasgow University in 1841 without a degree and
went to Cambridge, where he graduated in 1845. In 1846, already at the age of 22, he was
appointed to the chair of Natural Philosophy in the University of Glasgow, a position he kept
until 1899.

WILLIAM THOMSON’s important work on the first and second law of thermodynamics was
done in the years from 1847 onwards during about 10 years. Besides his fundamental work
on absolute zero, he and James Prescott JOULE collaborated, one result being the JOULE-

THOMSON effect. He also phrased the second law in the form: It is impossible, by means
of inanimate material agency, to derive mechanical effect from any portion of matter by
cooling it below the temperature of the coldest of the surrounding objects.

THOMSON did also major work on electricity and developed his THOMSON bridge, KELVIN
generator, mirror galvanometer and many more. He was deeply involved in the proper build-
up of the telegraph cable across the Atlantic. He was also an enthusiastic yachtsman and
contributed to the perfection to many marine instruments. His interest in tides led to the
description of KELVIN waves and the THOMSON tide predicting machine.
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THOMSON published more than 600 scientific papers and filed 70 patents. His book ‘Treatise
on Natural Philosophy’ (1867) with Peter Guthrie TAIT did much in unifying the modern
physics of that time.
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Towards the end of the 19th and the beginning of the 20th century the clas-
sical phenomenological thermodynamics reached a certain stage of completion
with works by MAX PLANCK, GEORGE HARTLEY BRYAN (1864-1928) CON-
STANTINE CARATHEODORY (1873-1950)!¢ and PIERRE MAURICE MARIE DUHEM
(1861-1916)."7 PLANCK proposed in his works a form of the second law, which
today is known as the Clausius—Planck Inequality and can be regarded as the pre-
cursor of the Clausius-Duhem Inequality. Indeed, the two collapse to the same
statement for homogeneous systems. GEORGE HARTLEY BRYAN was the first who
drew in his work on the foundations of thermodynamics attention to the fact that the
internal energy as an independent essential quantity must necessarily be introduced
to properly formulate the First Law, and CARATHEODORY gave in 1909 an axiomatic
justification of thermodynamics by introducing an axiom concerning the reachability
by a system of thermodynamic states under adiabatic isolation. Unfortunately, his
postulate cannot be extended to general systems.

The true breakthrough to a thermodynamic field theory was reached when PIERRE
MAURICE MARIE DUHEM was formulating the Second Law for a material body essen-
tially, but not yet completely, in the form (17.6) of a balance law. Mathematically,
his Second Law can be written as

. q-n
Hy > —/ —dA. 17.11)

T
ov

Here, Hy denotes the time rate of change of the entropy of the body in V and ¢
is the heat flux vector, so that —q - n is the heat supplied to the body through the
boundary 0V = 0 of V per unit time and T is the absolute temperature. Inequality
(17.11) expresses the fact that the heat gained by a body divided by the absolute
temperature is a lower bound for the entropy growth. MAX PLANCK restricts attention
to homogeneous processes for which — f oy 4 -1 = O, which transforms (17.11) to
the CLAUSIUS—PLANCK inequality

Hy > % (17.12)

and CLAUSIUS’ analysed circular processes C for which fc Hydt = 0, so that
CLAUSIUS’ form of theSecond Law takes the form

/ngQO. (17.13)
T
c

16For a short biography of CONSTANTINE CARATHEODORY, see Fig. 17.15.
17For a short biography of PIERRE MAURICE MARIE DUHEM, see Fig. 17.16.
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Fig. 17.10 JAMES CLERK MAXWELL (13. June 1831-5. Nov. 1879) (Left) MAXWELL'’s
Portrait; (Right) Commemoration of MAXWELL'’s equations at King’s College. One of three
identical IEEE Milestone Plaques, the others being at Maxwell’s birthplace in Edinburgh
and the family home at Glenlair. () James Clerk Maxwell Foundation

JAMES CLERK MAXWELL was a Scottish scientist in the field of mathematical physics. His
most notable achievement was to formulate the classical theory of electromagnetic radiation,
bringing together for the first time electricity, magnetism, and light as manifestations of the
same phenomenon. MAXWELL'’s equations for electromagnetism, see Fig. 17.10b have been
called 