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Preface

Fluid and thermodynamics (FTD) are generally taught at technical universities as
separate subjects and this separation can be justified simply by reasons of the
assigned time; the elements of each subject can be introduced within a semester of
*15 weeks. Most likely, these outer educational boundaries may even have well
furthered this separation. Intellectually, the two subjects, however, belong together,
especially since for all but ideal fluids the second law of thermodynamics imposes
constraint conditions on the parameters of the governing equations (generally
partial differential equations) that are then used in the fluid dynamic part of the joint
effort to construct solutions to physically motivated initial boundary value problems
that teach us important facts of the behavior of the motion of the fluid under certain
circumstances.

One of the authors (K.H.) found this combination of fluid and thermodynamics
as an assigned one-semester course, when he started in 1987 in the Department of
Mechanics at Technische Universität Darmstadt (at that time ‘Technische
Hochschule’) as successor of the late Prof. Dr. rer.nat. ERNST BECKER (1929–1984).
With K.H’s emphasized interest in continuum mechanics and thermodynamics, this
dual understanding of the mathematical description of fluid matter was ideal and the
assignment to teach it was a welcome challenge, which was declared as a ‘credo’ to
the working environment in both teaching and research in his group.

The course notes of FTD taught to upper-class electrical engineers for 18 years
were quickly worked out into the book ‘Fluid und Thermodynamik – eine
Einführung’ and published by Springer Verlag, Berlin etc., (ISBN 3-540-59235-0,
second edition). All the chapters of this book—some slightly extended—have been
translated (by K.H.) into the English language and are interwoven in this treatise
with chapters, which, as a whole, should provide a fairly detailed understanding of
FTD.

All subjects of this treatise of FTD have been taught in one or another form as
lectures in courses to students at Technische Universität Darmstadt, Swiss Federal
Institute of Technology in Zürich (ETHZ), and in guest lectures in advanced
courses at other universities and research institutions worldwide. The audience in
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these courses consisted of students, doctoral candidates and postdoctoral assistants
of engineering (civil, mechanical, chemical, mechanics), natural sciences (meteo-
rologists, oceanographers, geophysicists), mathematics, and physics. Some of the
topics included are as follows:

• Fluid mechanics,
• Continuum mechanics and thermodynamics,
• Mechanics of environmentally related systems (glacier, ice-sheet mechanics,

physical oceanography, lake physics, soil motion, avalanches, debris, and mud
flows),

• Vorticity and angular momentum,
• Turbulence modeling (of zeroth, first and second order),
• Regular and singular perturbations,
• Continuum mechanics and thermodynamics of mixtures,
• Continuum mechanics and thermodynamics of COSSERAT continua and COSSERAT

mixtures,
• Theoretical glaciology,
• Shallow creeping flows of landslides, glaciers, and ice sheets,

and others. It is hoped that we were successful in designing a coherent picture of the
intended text FTD.

Writing the book chapters also profited from books that were written earlier by
us and co-authors [1–6].

Fluid and Thermodynamics
Volume 1: Basic Fluid Mechanics

This volume consists of 10 chapters and begins in an introductory Chap. 1 with
some historical facts, definition of the subject field and lists the most important
properties of liquids.

This descriptive account is then followed in Chap. 2 by the simple mathematical
description of the fundamental hydrostatic equation and its use in analyses of
equilibrium of fluid systems and stability of floating bodies, the derivation of the
ARCHIMEDEAN principle and determination of the pressure distribution in the
atmosphere.

Chapter 3 deals with hydrodynamics of ideal incompressible (density pre-
serving) fluids. Streamlines, trajectories, and streaklines are defined. A careful
derivation of the balances of mass and linear momentum is given and it is shown
how the BERNOULLI equation is derived from the balance law of momentum and how
it is used in applications. In one-dimensional smooth flow problems the momentum
and BERNOULLI equations are equivalent. For discontinuous processes with jumps
this is not so. Nevertheless the BERNOULLI equation is a very useful equation in
many engineering applications. This chapter ends with the balance law of moment
of momentum and its application for EULER’s turbine equation.
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The conservation law of angular momentum, presented in Chap. 4, provides the
occasion to define circulation and vorticity and the vorticity theorems, among them
those of HELMHOLTZ and ERTEL. The goal of this chapter is to build a fundamental
understanding of vorticity.

In Chap. 5 a collection of simple flow problems in ideal fluids is presented. It is
shown how vector analytical methods are used to demonstrate the differential
geometric properties of vortex-free flow fields and to evaluate the motion-induced
force on a body in a potential field. The concept of virtual mass is defined and
two-dimensional fluid potential flow is outlined.

This almanac of flows of ideal fluids is complemented in Chap. 6 by the pre-
sentation of the solution techniques of two-dimensional potential flow by
complex-valued function theoretical methods using conformal mappings. Potential
flows around two-dimensional air foils, laminar free jets, and the SCHWARZ–

CHRYSTOFFEL transformations are employed to construct the mathematical descrip-
tions of such flows through a slit or several slits, around air wings, free jets, and in
ducts bounding an ideal fluid.

The mathematical physical study of viscous flows starts in Chap. 7 with the
derivation of the general stress–strain rate relation of viscous fluids, in particular
NAVIER–STOKES fluids and more generally, non-NEWTONian fluids. Application
of these equations to viscometric flows, liquid films, POISEUILLE flow, and the slide
bearing theory due to REYNOLDS and SOMMERFELD demonstrate their use in an
engineering context. Creeping flow for a pseudo-plastic fluid with free surface then
shows the application in the glaciological-geological context.

Chapter 8 continues with the study of two-dimensional and three-dimensional
simple flow of the NAVIER–STOKES equations. HAGEN–POISEUILLE flow and the
EKMAN theory of the wall-near wall-parallel flow on a rotating frame (Earth) and its
generalization are presented as solutions of the NAVIER–STOKES equations in the
half-space above an oscillating wall and that of a stationary axisymmetric laminar
jet. This then leads to the presentation of PRANDTL’s boundary layer theory with
flows around wedges and the BLASIUS boundary layer and others.

In Chap. 9 two- and three-dimensional boundary layer flows in the vicinity of a
stagnation point are studied as are flows around wedges and along wedge sidewalls.
The flow, induced in the half plane above a rotating plane, is also determined. The
technique of the boundary layer approach is commenced with the BLASIUS flow, but
more importantly, the boundary layer solution technique for the NAVIER–STOKES
equations is explained by use of the method of matched asymptotic expansions.
Moreover, the global laws of the steady boundary layer theory are explained with
the aid of the HOLSTEIN–BOHLEN procedure. The chapter ends with a brief study of
non-stationary boundary layers, in which an impulsive start from rest, flow in the
vicinity of a pulsating body, oscillation induced drift current, and non-stationary
plate boundary layers are studied.

In Chap. 10 pipe flow is studied for laminar (HAGEN–POISEUILLE) as well as for
turbulent flows; this situation culminates via a dimensional analysis to the
well-known MOODY diagram. The volume ends in this chapter with the plane
boundary layer flow along a wall due to PRANDTL and VON KÁRMÁN with the famous
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logarithmic velocity profile. This last problem is later reanalyzed as the contro-
versies between a power and logarithmic velocity profile near walls is still ongoing
research today.

Fluid and Thermodynamics
Volume 2: Advanced Fluid Mechanics and Thermodynamic Fundamentals

This volume consists of 10 chapters and commences in Chap. 11 with the deter-
mination of the creeping motion around spheres at rest in a NEWTONian fluid. This is
a classical problem of singular perturbations in the form of matched asymptotic
expansions. For creeping flow the acceleration terms in NEWTON’s law can be
ignored to approximately calculate flow around the sphere by this so-called STOKES
approximation. It turns out that far away from the sphere the acceleration terms
become larger than those in the STOKES solution, so that the latter solution violates
the boundary conditions at infinity. This lowest order correction of the flow around
the sphere is due to OSEEN (1910). In a systematic perturbation expansion the outer
—OSEEN—series and the inner—STOKES—series with the small REYNOLDS number
as perturbation parameter must be matched together to determine all boundary and
transition conditions of inner and outer expansions. This procedure is rather tricky,
i.e., not easy to understand for beginners. This theory, originally due KAPLUN and to
LAGERSTRÖM has been extended, and the drag coefficient for the sphere, which also
can be measured is expressible in terms of a series expansion of powers of the
REYNOLDS number. However, for REYNOLDS numbers larger than unity, convergence
to measured values is poor. About 20–30 years ago a new mathematical approach
was designed—the so-called Homotopy Analysis Method; it is based on an entirely
different expansion technique, and results for the drag coefficient lie much closer to
the experimental values than values obtained with the ‘classical’ matched asymp-
totic expansion, as shown in Fig. 11.11. Incidentally the laminar flow of a viscous
fluid around a cylinder can analogously be treated, but is not contained in this
treatise.

Chapter 12 is devoted to the approximate determination of the velocity field in a
shallow layer of ice or granular soil, treated as a non-NEWTONian material flowing
under the action of its own weight and assuming its velocity to be so small that
STOKES flow can be assumed. Two limiting cases can be analyzed: (i) In the first, the
flowing material on a steep slope (which is the case for creeping landslides or snow
on mountain topographies with inclination angles that are large). (ii) In the second
case the inclination angles are small. Situation (ii) is apt to ice flow in large ice
sheets such as Greenland and Antarctica, important in climate scenarios in a
warming atmosphere. We derive perturbation schemes in terms of a shallowness
parameter in the two situations and discuss applications under real-world
conditions.

In shallow rapid gravity driven free surface flows the acceleration terms in
NEWTON’s law are no longer negligible. Chapter 13 is devoted to such granular
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flows in an attempt to introduce the reader to the challenging theory of the
dynamical behavior of fluidized cohesionless granular materials in avalanches of
snow, debris and mud, etc. The theoretical description of moving layers of granular
assemblies begins with the one-dimensional depth integrated MOHR–COULOMB

plastic layer flows down inclines—the so-called SAVAGE–HUTTER theory, but then
continues with the general formulation of the model equations referred to topog-
raphy following curvilinear coordinates with all its peculiarities in the theory and
the use of shock-capturing numerical integration techniques.

Chapter 14 on uniqueness and stability provides a first flavor into the subject of
laminar-turbulent transition. Two different theoretical concepts are in use and both
assume that the laminar–turbulent transition is a question of loss of stability of the
laminar motion. With the use of the energy method one tries to find upper bound
conditions for the laminar flow to be stable. More successful for pinpointing the
laminar-turbulent transition has been the method of linear instability analysis, in
which a lowest bound is searched for, at which the onset of deviations from the
laminar flow is taking place.

In Chap. 15, a detailed introduction to the modeling of turbulence is given.
Filter operations are introduced to separate the physical balance laws into evolution
equations for the averaged fields on the one hand, and into fluctuating or pulsating
fields on the other hand. This procedure generates averages of products of fluctu-
ating quantities, for which closure relations must be formulated. Depending upon
the complexity of these closure relations, so-called zeroth, first, and higher order
turbulence models are obtained: simple algebraic gradient-type relations for the flux
terms, one or two equation models, e.g., k-ε; k-ω, in which evolution equations for
the averaged correlation products are formulated, etc. This is done for density
preserving fluids as well as so-called BOUSSINESQ fluids and convection fluids on a
rotating frame (Earth), which are important models to describe atmospheric and
oceanic flows.

Chapter 16 goes back one step by scrutinizing the early zeroth order closure
relations as proposed by PRANDTL, VON KÁRMÁN and collaborators. The basis is
BOSSINESQ’S (1872) ansatz for the shear stress in plane parallel flow, τ12, which is
expressed to be proportional to the corresponding averaged shear rate o�v1=ox2 with
coefficient of proportionality ρε, where ρ is the density and ε a kinematic turbulent
viscosity or turbulent diffusivity [m2 s−1]. In turbulence theory the flux terms of
momentum, heat, and suspended mass are all parameterized as gradient-type rela-
tions with turbulent diffusivities treated as constants. PRANDTL realized from data
collected in his institute that ε was not a constant but depended on his mixing length
squared and the magnitude of the shear rate (PRANDTL 1925). This proposal was
later improved (PRANDTL 1942) to amend the unsatisfactory agreement at positions
where shear rates disappeared. The 1942-law is still local, which means that the
REYNOLDS stress tensor at a spatial point depends on spatial velocity derivatives at
the same position. PRANDTL in a second proposal of his 1942-paper suggested that
the turbulent diffusivity should depend on the velocity difference at the points where
the velocity of the turbulent path assumes maximum and minimum values. This
proposal introduces some non-locality, yielded better agreement with data, but
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PRANDTL left the gradient-type dependence in order to stay in conformity with
BOUSSINESQ. It does neither become apparent nor clear that PRANDTL or the modelers
at that time would have realized that non-local effects would be the cause for better
agreement of the theoretical formulations with data. The proposal of complete
non-local behavior of the REYNOLDS stress parameterization came in 1991 by P.
EGOLF and subsequent research articles during *20 years, in which also the local
strain rate (= local velocity gradient) is replaced by a difference quotient. We
motivate and explain the proposed Difference Quotient Turbulence Model (DQTM)
and demonstrate that for standard two-dimensional configurations analyzed in this
chapter its performance is superior to other zeroth order models.

The next two chapters are devoted to thermodynamics; first, fundamentals are
attacked and, second a field formulation is presented and explored.

Class experience has taught us that thermodynamic fundamentals (Chap. 17) are
difficult to understand for novel readers. Utmost caution is therefore exercised to
precisely introduce terminology such as ‘states’, ‘processes’, ‘extensive’, ‘inten-
sive’, and ‘molar state variables’ as well as concepts like ‘adiabatic’, and
‘diathermal walls’, ‘empirical’ and ‘absolute temperature’, ‘equations of state’, and
‘reversible’ and ‘irreversible processes’. The core of this chapter is, however, the
presentation of the First and Second Law of Thermodynamics. The first law bal-
ances the energies. It states that the time rate of change of the kinetic plus internal
energies are balanced by the mechanical power of the stresses and the body forces
plus the thermal analogies, which are the flux of heat through the boundary plus the
specific radiation also referred to as energy supply. This conservation law then leads
to the definitions of the caloric equations of state and the definitions of specific
heats. The Second Law of Thermodynamics is likely the most difficult to under-
stand and it is introduced here as a balance law for the entropy and states that all
physical processes are irreversible. We motivate this law by going from easy and
simple systems to more complex systems by generalization and culminate in this
tour with the Second Law as the statement that entropy production rate cannot be
negative. Examples illustrate the implications in simple physical systems and show
where the two variants of entropy principles may lead to different answers.

Chapter 18 extends and applies the above concepts to continuous material
systems. The Second Law is written in global form as a balance law of entropy with
flux, supply and production quantities, which can be written in local form as a
differential statement. The particular form of the Second Law then depends upon
which postulates the individual terms in the entropy balance are subjected to. When
the entropy flux equals heat flux divided by absolute temperature and the entropy
production rate density is requested to be non-negative, the entropy balance law
appears as the CLAUSIUS–DUHEM inequality and its exploitation follows the axio-
matic procedure of open systems thermodynamics as introduced by COLEMAN and
NOLL. When the entropy flux is left arbitrary but is of the same function class as the
other constitutive relations and the entropy supply rate density is identically zero,
then the entropy inequality appears in the form of MÜLLER. In both cases the Second
Law is expressed by the requirement that the entropy production rate density must
be non-negative, but details of the exploitation of the Second Law in the two cases
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are subtly different from one another. For standard media such as elastic and/or
viscous fluids the results are the same. However, for complex media they may well
differ from one another. Examples will illustrate the procedures and results.

Chapter 19 on gas dynamics illustrates a technically important example of a
fluid field theory, where the information deduced by the Second Law of
Thermodynamics delivers important properties, expressed by the thermal and
caloric equations of state of, say, ideal and real gases. We briefly touch problems of
acoustics, steady isentropic flow processes and their stream filament theory. The
description of the propagation of small perturbations in a gas serves in its
one-dimensional form ideally as a model for the propagation of sound, for e.g. in a
flute or organ pipe, and it can be used to explain the DOPPLER shift occurring when
the sound source is moving relative to the receiver. Moreover, with the stream
filament theory the sub- and supersonic flow through a nozzle can be explained. In a
final section the three-dimensional theory of shocks is derived as the set of jump
conditions on surfaces for the balance laws of mass, momentum, energy, and
entropy. Their exploitation is illustrated for steady surfaces for simple fluids under
adiabatic flow conditions. These problems are classics; gas dynamics, indeed forms
an important advanced technical field that was developed in the twentieth century as
a subject of aerodynamics and astronautics and important specialties of mechanical
engineering.

Chapter 20 is devoted to the subjects ‘Dimensional analysis, similitude and
physical experimentation at laboratory scale’, topics often not systematically taught
at higher technical education. However, no insider would deny their usefulness.
Books treating these subjects separately and in sufficient detail have appeared since
the mid-twentieth century. We give an account of dimensional analysis, define
dimensional homogeneity of functions of mathematical physics, the properties of
which culminate in BUCKINGHAM’s theorem (which is proved in an appendix to the
chapter); its use is illustrated by a diversity of problems from general fluid
dynamics, gas dynamics, and thermal sciences, e.g., propagation of a shock from a
point source, rising gas bubbles, RAYLEIGH–BÉNARD instability, etc. The theory of
physical models develops rules, how to down- or up-scale physical processes from
the size of a prototype to the size of the model. The theory shows that in general
such scaling transformations are practically never exactly possible, so that scale
effects enter in these cases, which distort the model results in comparison to those in
the prototype. In hydraulic applications, this leads to the so-called FROUDE and
REYNOLDS models, in which either the FROUDE or REYNOLDS number, respectively,
remains a mapping invariant but not the other. Application on sediment transport in
rivers, heat transfer in forced convection, etc., illustrate the difficulties. The chapter
ends with the characterization of dimensional homogeneity of the equations
describing physical processes by their governing differential equations. The
NAVIER–STOKES–FOURIER–FICK fluid equations serve as illustration.

The intention of this treatise is, apart from presenting its addressed subjects, a
clear, detailed, and somewhat rigorous mathematical presentation of FTD on the
basis of limited knowledge as a prerequisite. Calculus or analysis of functions of a
single or several variables, linear algebra and the basics of ordinary and partial
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differential equations are assumed to be known, as is the theory of complex
functions. The latter is not universally taught in engineering curricula of univer-
sities; we believe that readers not equipped with the theory of complex functions
can easily familiarize themselves with its basics in a few weeks’ reading effort.

A second goal of this treatise is to frame the individual subjects in their historical
content by providing biographical sketches of the inventors of the particular con-
cepts. The science of fluid and thermodynamics began in the Western world more
than 2000 years ago, e.g., by ARCHIMEDES in Syracuse. First careful observations on
turbulence were described by LEONARDO DA VINCI and on the motion of falling
bodies by GALILEO GALILEI. Mathematical description of the motion of physical
bodies was begun by ISAAC NEWTON, and DESCARTES. EULER and father JOHANN and
son DANIEL BERNOULLI introduced, among others, the continuous methods for ideal,
i.e., reversible materials. Most of this research took place in the seventeenth and
eighteenth centuries and was perfected in the upcoming nineteenth and twentieth
centuries. The recognition of the energy balance equation and the entropy imbal-
ance statement as physical laws are achievements of the nineteenth and first part
of the twentieth centuries and are associated with scientists like SADI CARNOT, JULIUS
MAYER, HERMANN HELMHOLTZ, RUDOLF CLAUSIUS, PIERRE MAURICE MARIE DUHEM,
WILLIAM THOMSON (LORD KELVIN), WILLIARD GIBBS, and MAX PLANK, to name a few.

The solutions of the (initial) boundary value problems which ensue from the
emerging equations have been solved by a large number of follow-up scientists
from the mid-nineteenth century to present, of whom a few stand out distinguish-
ingly: OSBORNE REYNOLDS, LORD RAYLEIGH, LUDWIG PRANDTL, THEODORE VON

KÁRMÁN, G.I. TAYLOR, HERMANN SCHLICHTING, and many others. The history, which
evolved from the work of all these scientists, is fascinating. By listing short bio-
graphical sketches of those scientists who contributed to the development of fluid
and thermodynamics, we hope to guide the reader to a coherent historical devel-
opment of the fascinating subject of fluid and thermodynamics.

We regard this dual approach as a justified procedure, especially since the
twenty-first century university students do no longer sufficiently appreciate the fact,
on which shoulders of giants and predecessors we stand.

The books have been jointly drafted by us from notes that accumulated during
years. As mentioned before, the Chaps. 1–3, 5, 7, 10, 17–20 are translated (and
partly revised) from ‘Fluid- und Thermodynamik – eine Einführung’. Many of the
other chapters were composed in handwriting and TEXed by K.H. and substantially
improved and polished by Y.W. We share equal responsibility for the content and
the errors that still remain. Figures, which are taken from others, are reproduced and
mostly redrawn, but mentioned in the acknowledgment and/or figure captions.
Nevertheless a substantial number of figures have been designed by us. However,
we received help for their electronic production: Mr. ANDREAS ROHRER, from the
Laboratory of Hydraulics, Hydrology and Glaciology at ETH Zurich (VAW), drew
figures for Chaps. 8 and 9 and the student assistants Mr. WALDEMAR SURNIN and Mr.
JAN BATTRAM from the Institute of Fluid Dynamics at Technische Universität
Darmstadt aided in the production of figures of several other chapters. Mr. ANDREAS
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SCHLUMPF from VAW and Ms. ALEXANDRA PAUNICA and Prof. IOANA LUCA drew
figures for Chap. 6 and several other chapters.

It is custom of most publishers to ask referees to review book manuscripts
shortly before submission for printing by experts of the subjects treated in the
forthcoming book. It is, however, also almost consequential that reviewers for a
two-volume treatise of more than 1200 pages can hardly be found, simply because
of the excessive labor that goes with such an assignment. Nevertheless this burden
was taken up by two emeriti, Dr.-Ing. PETER HAUPT, Professor of Mechanics at the
University of Kassel, Germany and Dr. rer. nat, Dr. h.c. HANS DIETER ALBER,
Professor of Mathematics, Technical University, Darmstadt, Germany. We thor-
oughly thank these colleagues for their extensive help. Their criticisms and rec-
ommendations are gratefully incorporated in the final version of the manuscript.

K.H. wishes to express his sincere thanks to ETH Zurich and in particular to
Prof. Dr. R. BOES for the allowance to share a desk as an emeritus professor from
Darmstadt at the Laboratory of Hydraulics, Hydrology and Glaciology at ETH
Zurich and he equally thanks Profs. Dr. MARTIN FUNK and Dr. WILLI H. HAGER,
members of this laboratory, for their support. Y.W. would like to express his thanks
to Prof. Dr. MARTIN OBERLACK for the free and constructive collaboration in his fluid
dynamic working unit at Technische Universität Darmstadt.

This treatise was planned as a three-volume project, and, indeed, two chapters of
a possible volume III have already been written. We still hold up this intention, but
the advanced age of one of us does not guarantee that we will be successful in this
endeavor. We shall see …

Finally, we thank Springer Verlag, and in particular Dr. Annett Buettner, for the
interest in our FTD treatise and AGEM2, in general.
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Chapter 11
Creeping Motion Around Spheres at Rest
in a Newtonian Fluid

Abstract This volume consists of 10 chapters and commences in this chapter with
the determination of the creeping motion around spheres at rest in a Newtonian
fluid. This is a classical problem of singular perturbations in the form of matched
asymptotic expansions. For creeping flow the acceleration terms in Newton’s law
can be ignored to approximately calculate flow around the sphere by this so-called
Stokes approximation. It turns out that far away from the sphere the acceleration
terms become larger than those in the Stokes solution, so that the latter solution
violates the boundary conditions at infinity. This lowest order correction of the flow
around the sphere is due toOseen. In a systematic perturbation expansion the outer—
Oseen—series and the inner—Stokes—series with the small Reynolds number
as perturbation parameter must be matched together to determine all boundary and
transition conditions of inner and outer expansions. This procedure is rather tricky,
i.e., not easy to understand for beginners. This theory, originally due to Kaplun

and Lagerström has been extended, and the drag coefficient for the sphere, which
also can be measured, is expressible in terms of a series expansion of powers of the
Reynolds number. However, forReynolds numbers larger than unity, convergence
to measured values is poor. In the 1990s of the last century a new mathematical
approach was designed—the so-called Homotopy Analysis Method; it is based on
an entirely different expansion technique, not restricted to smallReynolds numbers,
and results for the drag coefficient lie much closer to the experimental values than
values obtained with the ‘classical’ matched asymptotic expansion. Incidentally, the
laminar flow of a viscous fluid around a cylinder can analogously be treated, but is
not contained in this treatise.

Keywords Creepingmotion ·Stokes approximation ·Stokes–Oseen expansion ·
Drag coefficient for the sphere as a function of the Reynolds number · Homotopy
analysis

List of Symbols

Roman Symbols

a Radius of a circle or sphere
A, B, C, D Constants of integration when integrating L4ψ = 0
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2 11 Creeping Motion Around Spheres at Rest in a Newtonian Fluid

cw General drag coefficient on a sphere
cw = 24/R Stokes drag coefficient
ds Line increment
dξi, i = 1, 2, 3 Coordinate increments
ê1, ê2, ê3 Unit basis vectors
f Specific body force
[H] Reference height
HAM Homotopy Analysis Method
H Auxiliary operator in HAM
h1, h2, h3 Metric coefficients in orthogonal curvilinear coordinates
� Auxiliary parameter in HAM
In = vr

∂vr
∂r Radial inertial acceleration

Kn Knudsen number
L2,L4

Stokes operator
[L] Reference length
L̃4

ρ(·) ‘Stretched’ Stokes operator
L4(·) see (11.92) and (11.96)

NS-· · · Navier–Stokes-· · ·
O Order symbol
p, p̄ Pressure, dimensionless—
q ∈ [0, 1] Embedding parameter in HAM
r Radial coordinate—distance
R = [L] [U]

ν
Reynolds number

R
′ = 2R Reynolds number based on L = 2a for spheres

[U] Reference velocity
uw Velocity tangential to the wall
V = ν ∂vr

∂r Radial viscous (diffusive) acceleration
v = (u, v, w) Velocity vector—its components
v̄ = (ū, v̄, w̄) Dimensionless velocity vector—its components
vz, vr, vθ Axial, radial and azimuthal velocity components
W = W1 + W2 Drag force exerted on a sphere by a parallel flow
W1 Pressure drag
W2 Viscous drag
x = (x, y, z) Cartesian coordinates, position vector
x̄ = (x̄, ȳ, z̄) Dimensionless position vector
(z, y,ϕ) Cylindrical coordinates, axial, radial, azimuthal

Greek Symbols

α,β, γ, δ Constants of integration for the ordinary differential equation
L4ψ = 0

Δ,ΔH Laplace operator—in 2D
η Dynamic viscosity
ρ Mass density
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ρ = Rr ‘Stretched’ radius for the construction of the Oseen expan-
sion

μ = cos θ New azimuthal coordinates
λ Mean free path
ν Kinematic viscosity
θ Polar angle in cylindrical coordinates
σr,σθ,σϕ Normal stress components in spherical coordinates
τrθ, τrϕ, τθϕ Shear stress components in spherical coordinates
ψ Stream function
ψo,ψi Outer and inner expansions respectively, of ψ
ψ0(r,μ) Initial guess for ψ(r,μ) in HAM
(ψo)i, (ψi)o ‘Outer-inner’ and ‘inner-outer’ asymptotic representation of

ψ(
νL2 − U ∂

∂z

) (L2ψ
)

Oseen operator (see Eq. (11.58))

11.1 Motivation

The fundamental equations of this chapter are the Navier–Stokes (NS) equations
of density preserving fluids, which shall be used here in the form

div v = 0,
∂v

∂t
+ grad

|v|2
2

− v × curl v = −1

ρ
grad p − νcurl (curl v) + f

as stated in Chap.7 as (7.33)1 and (7.39). The first of these equations is the continuity
equation, the second the balance of momentum; v is the velocity field, p the pressure,
ρ the constant density, ν the kinematic viscosity and f the external body force, which
henceforth will be ignored. In dimensionless form, when v = [U]v̄, (x, y, z) =
[L](x̄, ȳ, z̄), p = [ρU2]p̄, the above equations take for steady state (∂v/∂t = 0) the
forms

div x̄v̄ = 0, grad x̄

∣∣∣
∣
v̄

2

∣∣∣
∣

2

− v̄ × curlx̄ v̄ = −grad x̄ p̄ − 1

R
curlx̄(curlx̄ v̄), (11.1)

in which grad x̄, div x̄ and curl x̄ are operators over (x̄, ȳ, z̄). Subsequently, their sub-
scripts will be dropped unless the context does not obviously indicate to which
variables the operators are referred. Moreover,

R = [L][U]
ν

(11.2)

is the Reynolds number, defined by the length and velocity scale and the constant
viscosity of the fluid. We interpret here the term ‘creeping’ as slow flow, for which

http://dx.doi.org/10.1007/978-3-319-33633-6_7


4 11 Creeping Motion Around Spheres at Rest in a Newtonian Fluid

the Reynolds number is small, R � 1. In the ensuing analysis we shall investigate
to what extent this means that the acceleration terms in the momentum equations can
be ignored. This is known as the assumption of so-called Stokes flow; our analysis,
however, will show that flows may still be qualified as creeping when acceleration
ought to be accounted for. This requirement leads to the extension of Stokes flow
to theOseen correction and at last to an asymptotic expansion, in which successive
correction by ‘Stokes-lets’ and ‘Oseen-lets’ are consecutively correcting lower
order approximations. This matched asymptotic expansion is the outcome of the
so-called Lagerström–Kaplun theory (1957) [5].

Matched asymptotic expansion is a form of a singular perturbation approach,
here used for theNavier–Stokes (NS) equations. Its solution technique is based on
the presence in the governing equations of a small parameter, here the Reynolds

number R � 1. It is, however, known in fluid dynamics that many fluid flows can be
characterized as creeping, even if the Reynolds number R is larger than unity. For
instance, in pipe flow, laminar flow exists for R � 2000 for which the approximate
solutions of the NS-equations by perturbation techniques cannot represent realistic
results obtained by experiments. In such cases approximate solution procedures must
be based on techniques, which are not inherently based on small parameters. In the
past 20–30 years such a technique has been proposed and been applied for a number
of classical problems of fluid mechanics. It is based on the homotopy method. In
the ensuing analysis we shall study laminar flow around a stationary sphere by the
method ofmatched asymptotic expansions but shall also demonstrate results obtained
with the homotopy method.

Stokes flows are velocity and pressure solutions of the NS-equations, when the
acceleration terms are ignored. This does not mean that such flows are automatically
steady as time dependencemay enter through the boundary conditions. Thus,Stokes
flows are solutions of

div v = 0, −grad p + ηΔv = 0,
or in dimensionless notation

div v̄ = 0, −grad p̄ − 1
R
curl (curl v̄) = 0.

⎫
⎬

⎭
(11.3)

By forming the divergence and curl ,1 respectively, of (11.3) we get, owing to
div grad p = Δp and curl grad p = 0,

div grad p = Δp = 0,
curl (curl (curl v)) = 0.

(11.4)

These are the governing equations of Stokes flow. The pressure obeys the potential
equation and the triple rotation of the velocity field vanishes. It is obvious that
solutions of (11.4) canonly be reasonable approximations to the original equations for
small Reynolds numbers. For general, steady motions, formation of the divergence
and rotation of (11.1) yields, respectively,

1The curl of the momentum equation is often referred to as vorticity equation.
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Δ

(
p

ρ
+

∣∣∣∣
v2

2

∣∣∣∣

)
= 0, curl (v × curl v) = νcurl (curl (curl v)),

or in dimensionless notation

Δ

(
p̄ +

∣∣∣∣
v̄2

2

∣∣∣∣

)
= 0, curl (v̄ × curl v̄) = 1

R
curl (curl (curl v̄)).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(11.5)

In Eq. (11.5)2 R → 0 implies the Stokes equations as expected. However, the
complete consistent theory of slow creeping flow around bodies (spheres, cylinders)
must employ Eq. (11.5), in which, generally, the squared velocity term in the pressure
equations is neglected.

11.2 Mathematical Preliminaries

In this section, the NS-equations will be written in cylindrical and spherical coor-
dinates. The goal is to treat parallel flow around a sphere in detail. To this end we
shall first write them in cylindrical coordinates (z, y,ϕ), see Fig. 11.1. Let us first
recall the div—and curl-operators in curvilinear, orthogonal coordinates. These are
obtained from the squared line increment

ds2 = h2
1dξ

2
1 + h2

2dξ
2
2 + h2

3dξ
2
3 (11.6)

as

curl v = 1

h1h2h3

∣∣
∣∣∣∣∣∣

h1ê1 h2ê2 h3ê3
∂

∂ξ1

∂

∂ξ2

∂

∂ξ3
h1v1 h2v2 h3v3

∣∣
∣∣∣∣∣∣

,

div v = 1

h1h2h3

{
∂

∂ξ1
(v1h2h3) + ∂

∂ξ2
(v2h3h1) + ∂

∂ξ3
(v3h1h2)

}
.

(11.7)

Fig. 11.1 Sphere at rest,
circumflown by a fluid with
constant upstream velocity U
in the z-direction.
Coordinates are: z—axial;
y —perpendicular to z;
r —radial; θ —latitudinal;
ϕ —azimuthal; a is the
radius of the sphere

r

z

U

Sphere

2a

y
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Here, ξi (i = 1, 2, 3) are curvilinear coordinates. In cylindrical coordinates
(ξ1, ξ2, ξ3) = (z, y,ϕ) one has h1 = 1, h2 = 1 and h3 = y; consequently, according
to (11.7)2,

div v = ∂vz

∂z
+ 1

y

∂(yvy)

∂y
+ 1

y

∂vϕ

∂ϕ
= 0.

For steady flow around spheres from a source—constant velocity U parallel to the
z-axis at z = −∞—the flow is axisymmetric, so that vϕ = 0 and ∂(·)/∂ϕ = 0. For
this case the above continuity equation can be identically satisfied by introducing the
Stokes stream function ψ(z, y) according to

vz = 1

y

∂ψ

∂y
, vy = −1

y

∂ψ

∂z
. (11.8)

Moreover, with the restriction vϕ = 0 and with (11.8) curl v takes the form

curl v =
(

∂vy

∂z
− ∂vz

∂y

)
êϕ = −1

y

{
∂2ψ

∂z2
+ y

∂

∂y

(
1

y

∂ψ

∂y

)}

︸ ︷︷ ︸
L2ψ

êϕ, (11.9)

from which the expressions

curl (curl v) = 1

y

∣
∣∣∣∣∣
∣∣

êz êy yêϕ

∂

∂z

∂

∂y
0

0 0 −L2ψ

∣
∣∣∣∣∣
∣∣

= −1

y

∂L2ψ

∂y
êz + 1

y

∂L2ψ

∂z
êy,

curl (curl (curl v)) = 1

y

∣∣∣∣∣
∣∣∣∣∣

êz êy yêϕ

∂

∂z

∂

∂y
0

−1

y

∂L2ψ

∂y

1

y

∂L2ψ

∂z
0

∣∣∣∣∣
∣∣∣∣∣

=
{
1

y

∂2L2ψ

∂z2
+ ∂

∂y

(
1

y

∂L2ψ

∂y

)}
êϕ

= 1

y

{
∂2

∂z2
+ y

∂

∂y

(
1

y

∂

∂y

)}
L2ψêϕ = 1

y
L2

(L2ψ
)

êϕ

= 1

y
L4ψêϕ (11.10)

follow. For Stokes flow the stream function satisfies the equation2

2We shall call L2(·) and L4(·) Stokes operators.
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L4ψ = 0. (11.11)

Alternatively, it is easy to verify that

v × curl v = −1

y
L2ψvyêz + 1

y
L2ψvzêy

= 1

y2
L2ψ

∂ψ

∂z
êz + 1

y2
L2ψ

∂ψ

∂y
êy,

curl (v × curl v) =

∣∣∣∣
∣∣∣∣∣

êz êy êϕ

∂

∂z

∂

∂y
0

1

y2
L2 ∂ψ

∂z

1

y2
L2 ∂ψ

∂y
0

∣∣∣∣
∣∣∣∣∣

=
{

∂

∂z

(
1

y2
L2ψ

∂ψ

∂y

)
− ∂

∂y

(
1

y2
L2ψ

∂ψ

∂z

)}
êϕ

=
{
2

y3
∂ψ

∂z
+ 1

y2

(
∂ψ

∂y

∂

∂z
− ∂ψ

∂z

∂

∂y

)}
L2ψêϕ. (11.12)

Substituting the results (11.10) and (11.12) into the vorticity equation (11.5) yields
this vorticity equation in cylindrical coordinates as follows:

ν

y
L4ψ = 1

y2

{
2

y

∂ψ

∂z
+

(
∂ψ

∂y

∂

∂z
− ∂ψ

∂z

∂

∂y

)}
L2ψ,

L2[·] =
{

∂2

∂z2
+ y

∂

∂y

(
1

y

∂

∂y

)}
[·].

(11.13)

The next step now consists of transforming this equation into spherical coordinates.
To this end we again make use of the axial symmetry of the flow, vϕ = 0, ∂(·)/∂ϕ =
0, and employ the relations

z = r cos θ, r = √
z2 + y2,

y = r sin θ, θ = arctan(y/z),
(11.14)

from which there follows

∂

∂z
= cos θ

∂

∂r
− sin θ

1

r

∂

∂θ
,

∂

∂y
= sin θ

∂

∂r
+ cos θ

1

r

∂

∂θ
.

(11.15)

With the relations (11.14) and (11.15) the foundations are now layed down to write
Eqs. (11.11) and (11.13) in terms of the spherical coordinates (r, θ). With the inter-
mediate steps
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(i) L2ψ = ∂2ψ

∂z2
+ ∂2ψ

∂y2
− 1

y

∂ψ

∂y
= Δ(2)ψ − 1

y

∂ψ

∂y

= ∂2ψ

∂r2
+ 1

r

∂ψ

∂r
+ 1

r2
∂2ψ

∂θ2
− 1

r

∂ψ

∂r
− cos θ

r2 sin θ

∂ψ

∂θ

= ∂2ψ

∂r2
+ sin θ

r2
∂

∂θ

(
1

sin θ

∂ψ

∂θ

)
,

(ii)
2

y

∂ψ

∂z
+
(

∂ψ

∂y

∂

∂z
− ∂ψ

∂z

∂

∂y

)

= 2

r

(
cotanθ

∂ψ

∂r
− 1

r

∂ψ

∂θ

)
+ 1

r

∂ψ

∂θ

∂

∂r
− 1

r

∂ψ

∂r

∂

∂θ
,

(11.16)

the steady NS-equation in axisymmetric spherical coordinates and written in terms
of the stream function takes the form

νL4ψ = 1

r2 sin θ

{
∂ψ

∂θ

∂

∂r
− ∂ψ

∂r

∂

∂θ
+ 2cotanθ

∂ψ

∂r
− 2

r

∂ψ

∂θ

}
L2ψ, (11.17)

in which L2ψ is given in (11.16). The Stokes approximation is again given by
L4ψ = 0.

Relation (11.17) could also have been obtained by writing (11.6) and (11.7) in
terms of the metric in spherical coordinates

ds2 = dr2 + r2dθ2 + r2 sin2 θdϕ2. (11.18)

According to (11.7)2, this would have led to

div v = 1

r2
∂(r2vr)

∂r
+ 1

r sin θ

∂(vθ sin θ)

∂θ
+ 1

r sin θ

∂vϕ

∂ϕ
. (11.19)

For axisymmetric flow (vϕ = 0) this suggests the introduction of the stream function
ψ with the velocity relations

vr = 1

r2 sin θ

∂ψ

∂θ
, vθ = − 1

r sin θ

∂ψ

∂r
, (vϕ = 0). (11.20)

With these relations the continuity equation (11.19) is identically satisfied.Moreover,
this spherical stream function agrees with the earlier stream function modulo an
additive constant.

Finally, let us collect at one place those formulae, which will be used in the
subsequent sections:
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vz = 1

y

∂ψ

∂y
, vr = 1

r2 sin θ

∂ψ

∂θ
,

vy = −1

y

∂ψ

∂z
, vθ = − 1

r sin θ

∂ψ

∂r
,

L2ψ = ∂2ψ

∂r2
+ sin θ

r2
∂

∂θ

(
1

sin θ

∂ψ

∂θ

)
, spherical coordinates,

curl curl v = −1

y

∂L2ψ

∂y
êz + 1

y

∂L2

∂z
êy, cylindrical coordinates.

(11.21)

11.3 Stokes Flow Around a Stagnant Sphere

11.3.1 Rigid Sphere and No-Slip Condition
on the Surface of the Sphere

For creeping Stokes flow around a sphere the following boundary value problem
must be solved, see Fig. 11.1.

L4ψ = 0, inR3\V,

vr = vθ = 0, for r = a,

ψ = U

2
y2 = U

2
r2 sin2 θ, for r → ∞.

(11.22)

Here, V is the spherewith radius a, and vr and vθ are the radial and azimuthal velocity
components. The boundary condition (11.22)3 states that the flow at r → ∞ merges
into the rectilinear flow parallel to the z-axis; indeed vz = (1/y)(∂ψ/∂y) = U,
according to (11.8)1; the boundary value problem (11.22) describes the flow exterior
to the sphere. The problem was first solved by Georg Gabriel Stokes in 1851
[19]; for his brief biography, see Vol. 1, Fig. 7.4.

Let
ψ = rn sin2 θ (11.23)

be a trial separation solution. It implies

∂2ψ

∂r2
= n(n − 1)rn−2 sin2 θ,

∂ψ

∂θ
= 2rn sin θ cos θ, (11.24)

∂

∂θ

(
1

sin θ

∂ψ

∂θ

)
= ∂

∂θ
(2rn cos θ) = −2rn sin θ
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and, thus, in view of (11.21)

L2ψ = (n(n − 1) − 2) rn−2 sin2 θ,
L4ψ = (n(n − 1) − 2) ((n − 2)(n − 3) − 2) rn−4 sin2 θ.

(11.25)

It follows that L4ψ = 0 is satisfied, if

(n(n − 1) − 2) = 0 and ((n − 2)(n − 3) − 2) = 0

with the solution n = −1, 2, 1, 4. The most general solution of L4ψ = 0, thus, has
the form

ψ =
(

Ar + Br2 + Cr4 + D

r

)
sin2 θ =

(
A

r
+ B + Cr2 + D

r3

)
y2. (11.26)

As r → ∞, the above expression agrees with (11.22)3, provided that C = 0 and
B = U/2, so that

ψ =
(

Ar + Ur2

2
+ D

r

)
sin2 θ. (11.27)

The second and third terms are the stream functions of the constant rectilinear flow
(ψ = Uy2/2, vz = U) and flow due to a dipole ψ = (D/r) sin2 θ with strength D,
respectively, see Vol. 1, Fig. 5.7. They are potential flows and are not responsible for
friction; the influence of friction must, therefore, be due to the first term involving A.

Before determining the constants A and D with the aid of boundary conditions
at the surface of the sphere, let us first determine a number of additional physical
quantities:

• Velocity:

vr = 2 cos θ

r2

(
Ar + Ur2

2
+ D

r

)
=

(
2A

r
+ U + 2D

r3

)
cos θ,

vθ = −
(

A

r
+ U − D

r3

)
sin θ.

(11.28)

• Pressure: This can be obtained from the equation

grad p = −η curl (curl v).

Indeed, with the expression immediately above (11.10) one obtains

1

η

∂p

∂y
= −1

y

∂L2ψ

∂z
= −1

y

∂

∂z

(
−2A

r
sin2 θ

)
= −1

y

∂

∂z

(
− 2Ay2

(y2 + z2)3/2

)
,

1

η

∂p

∂z
= 1

y

∂L2ψ

∂y
= 1

y

∂

∂y

(
−2A

r
sin2 θ

)
= 1

y

∂

∂y

(
− 2Ay2

(y2 + z2)3/2

)
.
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It suffices to transform the first of these expressions; a first step yields

∂p

∂y
= −3ηAz

2y

(y2 + z2)5/2

and after integration

p = −3ηAz

y∫

0

2y′

(y′2 + z2)5/2
dy′ + p∗(z),

p = 2ηA
z

(y2 + z2)3/2
= 2ηA

cos θ

r2
,

(11.29)

in which p∗ = 0 has been so selected to yield p(∞) = 0 for normalization.
Evidently, the pressure distribution is exclusively given byA (and not the rectilinear
flow and the dipole flow).

To evaluate the force exerted by the fluid onto the sphere, the frictional stress
components in spherical coordinates are needed. These are given as follows:

σr = 2η
∂vr

∂r
,

σθ = 2η

(
1

r

∂vθ

∂θ
+ vr

r

)
,

σϕ = 2η

(
1

r sin θ

∂vϕ

∂ϕ
+ vr

r
+ vθcotanθ

r

)
,

τrθ = η

(
1

r

∂vr

∂θ
+ ∂vθ

∂r
− vθ

r

)
,

τrϕ = η

(
∂vϕ

∂r
+ 1

r sin θ

∂vr

∂ϕ
− vϕ

r

)
,

τθϕ = η

(
1

r sin θ

∂vθ

∂ϕ
+ 1

r

∂vϕ

∂θ
− vϕcotanθ

r

)
.

(11.30)

The simplifications which emerge for these expressions for axisymmetric flow can
easily be identified. If in (11.30)1,4 the results of (11.28) and (11.29) are substituted,
then the expressions

σr = −4η cos θ

(
A

r2
+ 3D

r4

)
,

τrθ = −6η sin θ
D

r4
, (11.31)

σr − p = −6η cos θ

(
A

r2
+ 2D

r4

)

are obtained. Due to symmetry of the flow around the sphere the resultant force
exerted on the sphere possesses only a component in the direction far upstream of



12 11 Creeping Motion Around Spheres at Rest in a Newtonian Fluid

Fig. 11.2 Stress vectors
acting on the surface of the
sphere

a

Area

U

2a

Sphere

2 a anis d

r

r - p

the sphere; this is the z-direction. Therefore, with reference to Fig. 11.2, this leads to

W = W1 + W2

with

W1 =
π∫

0

(σr − p) cos θ 2πa2 sin θdθ

= −6η(2πa2)

(
A

a2
+ 2D

a4

) π∫

0

cos2 θ sin θdθ

︸ ︷︷ ︸
2/3

= −8πη

(
A + 2D

a2

)
,

W2 = −
π∫

0

τrθ sin
2 θ 2πa2dθ = 6η 2πa2 D

a4

π∫

0

sin3 θdθ

︸ ︷︷ ︸
4/3

= 8ηπ
2D

a2
.

Consequently, the total frictional force is given by

W = −8πηA. (11.32)

Notice that, owing to our earlier recognition that only terms involving A are con-
tributing to the viscous drag, only those quantities involving A would have to be
accounted for in the evaluation of the drag force. That the contributions involving D
cancel out in the computation, is a comfortable control of the computation. Notice,
moreover, that the above formulae are valid for whatever boundary conditions apply
on the spherical surface.

Next, let us determine the constants of integration, A and D. If we require the
no-slip condition on the surface, then vr(a, θ) = 0, vθ(a, θ) = 0, so that, in view of
(11.28),

A

a
+ D

a3
= −U

2
,

A

a
− D

a3
= −U,
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from which we obtain

A = −3

4
Ua, D = 1

4
Ua3.

so that

ψ = Ua2

4

(
2
( r

a

)2 + a

r
− 3

r

a

)
sin2 θ,

vr = U cos θ

(
1 + 1

2

(a

r

)3 − 3

2

a

r

)
,

vθ = U sin θ

(
−1 + 1

4

(a

r

)3 + 3

4

a

r

)
, (11.33)

p = −3

2
ηU cos θ

a

r2
,

W = 6πη Ua = 3πη U(2a).

This concludes the evaluation of Stokes flow around a sphere. As final remarks we
state:

• The Stokes drag consists of two contributions:

W1 = 2πη Ua, a pressure drag,

W2 = 4πη Ua, a viscous drag.

The denotation ‘pressure drag’ is justified, because for r = a,σr = 0.
• A physical interpretation of the Stokes drag is obtained, if one computes the force
exerted on a sphere, which moves with Reynolds number ‘1’. Indeed,

R = 2aU

ν
= 1 −→ Ua = ν

2
= η

2ρ
(11.33)5−→ W = 3π

η2

ρ
. (11.34)

The quantity η2/ρ is formed only by material quantities, which possess the dimen-
sion of a force; it moves a body, large or small, with the Reynolds number ‘1’.

• It is customary to characterize the Stokes drag by a dimensionless drag parameter
cw

cw = W
ρ
2U2πa2

= (6πη)(2Ua)

ρU2πa2
= 12ν

Ua

= 24

R
with R = 2aU

ν
. (11.35)

• The domain of the validity of the Stokes solution can be found, if a typical vis-
cous diffusive element and a typical convective acceleration term in the Navier–
Stokes equations are compared to one another. These are for instance
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vr
∂vr

∂r
typical inertial member of the NS-equation,

ν
∂2vr

∂r2
typical viscous (diffusive) member of the NS-equation

and can be computed with the aid of (11.33) as follows:

vr
∂vr

∂r
= U2 cos2 θ

(
1 + 1

2

a3

r3
− 3

2

a

r

)(
3

2

a

r2
− 3

2

a3

r4

)
≡ In,

ν
∂2vr

∂r2
= νU cos θ

(
6a3

r5
− 3a

r3

)
≡ V,

which implies

In

V
(θ = 0) = Ua

ν

( r

a

) 3
2

a
r − 3

2
a3

r3

6 a3
r3 − 3 a

r

(
1 + 1

2

a3

r3
− 3

2

a

r

)
. (11.36)

In the vicinity of the sphere this ratio is of the order of magnitude of theReynolds
number R = 2Ua/ν � 1. To ignore the inertial terms in the neighborhood of
the sphere is, therefore, justified. However, for r/a → ∞ the ratio In/V grows
indefinitely3; this says that far away from the sphere the inertial forces are no
longer negligible. Far away, the inertial as well as the viscous forces have, however,
essentially fallen to zero as follows:

In(r → ∞) = O(r−2), V (r → ∞) = O(r−3).

The Stokes theory, therefore, requires amendments.

11.3.2 Cunningham’s Correction

This correction replaces the no-slip condition at the surface of the sphere by a sliding
law. It has its significance in the determination of the charge of an electron according
toRobertAndrewsMillikan andHarvey Fletcher in 1909 [3]. In their attempt
to observe buoyant oil particles under a microscope and to measure the fall velocity
one encounters the limitation of the applicability of continuum mechanics. For a
fluid sphere ‘suspended’ in a gas corrections must be incorporated, if the radius of
the sphere approaches the order ofmagnitude of themean free pathλ of themolecules
of the gas. The ratio

3At r = a, Eq. (11.36) yields In/V = 0. Expanding (11.36) in Taylor series for small values of
(a − r)/a and, respectively, small values of a/r corroborates these statements.
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Fig. 11.3 A wall-near
particle hitting a boundary,
when being ‘glued’ to the
boundary by the impact. The
wall is locally considered
plane and the coordinate
perpendicular to the wall is y

uw x

Moleculey

Wall

Kn = λ

a

is known as Knudsen number.4 For Kn � 1 the prerequisites of the continuum
approximation in the Stokes approximation remain still valid, but the fundamental
assumption of the no-slip condition at the spherical boundary remains no longer
strictly satisfied. For Kn > 1 one may still assume the NS-equations to remain valid,
but must replace the no-slip condition by a viscous sliding law. The new boundary
condition now reads

vr = 0 vθ = λ

η
τrθ, λ mean free path. (11.37)

This sliding law can be motivated as follows, see Fig. 11.3. A particle (oil drop in
Millikan’s experiment) close to the wall possesses the wall-parallel speeds:

(i) prior to the impact: uw + λ
∂u

∂y
(ii) after the impact: 0

⎫
⎬

⎭
mean uw = 1

2

(
uw + λ

∂u

∂y

)
,

of which the mean wall velocity satisfies the equation uw = 1
2 (uw + λ∂u/∂y) or

uw = λ

2

∂u

∂y
= λ

η
τxy,

if linear Newtonian behavior is supposed. The formulae (11.27)–(11.32) remain
valid, since they were derived for arbitrary boundary conditions at the surface of the
sphere. When (11.37) is used Eqs. (11.28) and (11.31)2 now yield

A

a
− D

a3

(
1 + 6λ

a

)
= −U,

(
vθ = λ

η
τrθ

)
,

Aa + D

a
= −Ua2

2
, (vr = 0) .

4AfterMartin Hans Christian Knudsen (15. Feb. 1871–27. May 1949), a physicist who studied
primarily molecular gas flows.
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Fig. 11.4 Scaled drag force
on a sphere, W/(6πηUa),
plotted against λ/a

W

1

0
0 2 4 6 8 10

+21 a

1 3+ a a

These equations, when being solved for A and D have the solution

A = −3

4
Ua

1 + 2λ/a

1 + 3λ/a
, D = Ua3

4

1

1 + 3λ/a
(11.38)

implying

W = 6πUa
1 + 2λ/a

1 + 3λ/a
, (11.39)

see Fig. 11.4. This formula shows that for λ = 0 the Stokes solution is recovered;
The sliding boundary condition reduces this at most by a factor of 2

3 . The limit
λ → ∞ is interesting. It does not produce W = 0, which corresponds to perfect
sliding; the reason for W 	= 0 is that the fluid remains viscous in this case, which
produces the viscous drag W = 4πηUa without the pressure drag. For 0 < λ < ∞
W lies between 4πηUA and 6πηUa.

11.3.3 Rigid Infinitely Thin Spherical Shell Filled
with a Fluid of Different Viscosity

Very small droplets, which fall or rise in another viscous fluid are often kept in
spherical shape due to the effect of surface tension or by impurities attached to the
surface. If the fluids within the sphere (with viscosity η̄) and the exterior fluid (with
viscosity η) are immiscible, then the steady motion of the sphere can be determined.
In this case a circulating flow occurs also in the interior of the sphere, which, at
sufficiently small Reynolds numbers satisfies the equation L4ψ = 0.

Consider first the flow in the interior of the sphere. For this, L4ψ = 0 has the
solution (11.26), or

ψ =
(

αr + βr2 + γr4 + δ

r

)
sin2 θ (11.40)
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with the four constants of integration α,β, γ, δ. Because of the regularity of the
solution at r = 0, one must have δ = 0, so that

∂ψ

∂r
= (

α + 2βr + 4γr3
)
sin2 θ,

∂ψ

∂θ
= (

αr + βr2 + γr4
)
2 sin θ cos θ.

With the aid of (11.21) these expressions allow evaluation of vr and vθ as follows:

vr = 2 cos θ
(α

r
+ β + γr2

)
,

vθ = −2 sin θ
( α

2r
+ β + 2γr2

)
.

To avoid singularities in the velocity components, vr and vθ, in the center of the
sphere, the constant α must vanish. Thus,

vr = 2 cos θ
(
β + γr2

) −→ ∂vr

∂θ
= −2 sin θ(β + γr2),

vθ = −2 sin θ
(
β + 2γr2

) −→ ∂vθ

∂r
= −8 sin θγr,

(11.41)

so that the shear stress τrθ is given by, see (11.30),

τrθ = η̄

(
1

r

∂vr

∂θ
+ ∂vθ

∂r
− vθ

r

)
= −2 sin θ

(
β

r
+ γr + 4γr − β

r
− 2γr

)
η̄

= −6η̄γr sin θ. (11.42)

The flow in the space exterior to the sphere is described by formulae (11.27)–
(11.30). Let us collect here the relevant statements:

exterior : vr = 2 cos θ

(
A

r
+ U

2
+ D

r3

)
, see (11.28),

vθ = − sin θ

(
A

r
+ U − D

r3

)
, see (11.28),

τrθ = −6η sin θ
D

r4
, see (11.31),

interior : vr = 2 cos θ(β + γr2), see (11.41),
vθ = −2 sin θ(β + 2γr2), see (11.41),
τrθ = −6η̄γr sin θ, see (11.42).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.43)

The four constants A, D,β and γ must be determined with the aid of the transition
conditions at the surface of the sphere; these conditions read as follows:
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1. The radial velocity at the surface vanishes immediately inside and outside the
sphere: vr(a, θ) = 0,

A

a
+ D

a3
= −U

2
, (11.44)

β + γa2 = 0. (11.45)

2. The tangential velocity is continuous, �vθ� = 0,

A

a
+ U − D

a3
= 2β + 4γa2. (11.46)

3. At the surface of the sphere the shear stresses τrθ are continuous,

η
D

a4
= η̄γa. (11.47)

The solution of Eqs. (11.44)–(11.47) is given by

A = −Ua

4

2 + 3η̄/η

1 + η̄/η
,

D = Ua3

4

η̄/η

1 + η̄/η
, (11.48)

γ = − β

a2
= U

4a2

1

1 + η̄/η
,

so that in view of (11.32) the drag force is given by

W = 2πη Ua
2 + 3η̄/η

1 + η̄/η
, (11.49)

a result that is due to G.I. Taylor
5 (1932) [20]. Accordingly, η̄ → ∞ implies the

result for a rigid sphere, W = 6πηUa; alternatively, for η̄ → 0 we obtain instead
W = 4πηUa, the solution for a frictionless surface (λ = 0); both results are as
expected. Moreover, with α = δ = 0 and β, γ as given in (11.48)3,4 the stream
function in the interior of the sphere is obtained. Indeed, with (11.40) we have

ψ = − U

4a2
(a2 − r2)r2 sin2 θ

1

1 + η̄/η
. (11.50)

5For a biography of Taylor, see Fig.11.5.
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Fig. 11.5 Geoffrey Ingram Taylor (7. March 1886–17. June 1975). (Right photo) Wavy
Taylor vortices in the gap between concentrical cylinders, reproduced in laboratory by
K.G. Roesner.

Geoffrey Ingram Taylor was an applied mathematician and physicist specialized in
fluid dynamics and wave theory. Taylor studied mathematics at Trinity College, Cambridge
University. With work on shock waves, 1909, he won the Smith’s Prize and was elected a
fellow at Trinity College in 1910 and a Reader in Dynamical Meteorology in the following
year. His publication ‘Turbulent motion in fluids’ won him the Adams Prize in 1915.
During World War II Taylor was sent to the Royal Aircraft Factory in Farnborough to
apply his knowledge in aerodynamics and meteorology to aircraft design; there he worked
on stress in propeller shafts, learned to fly airplanes and made parachute jumps. After World
War I, he returned to Cambridge, where he worked on rotating fluids. In 1915 Taylor

was appointed a Royal Society research professorship. This freed him from teaching and
led to a period of very active research on both fluid and solid mechanics (also of crystalline
materials), including statistical approaches to turbulence. In 1934 Taylor realized—almost
simultaneously with Polanyi andOrovan—that the plastic deformation of ductilematerial
could be explained with the theory of dislocations.
During World War II Taylor worked on applications of his expertise to military problems,
among others the propagation of blast waves in air and water. His prediction of the strength
of the atomic explosion performed as part of the Manhattan Project in the desert of New
Mexico is well known. In 1944 he was also knighted.
Taylor continued his research after the war, working on the development of supersonic
aircraft. He officially retired in 1952 from active duty; he continued to work for twenty more
years. He wrote his final paper on electrical activity in thunderstorms in 1969, when he was
83. He suffered a stroke in 1972 and died on 27 June 1975.
The text is based on www.wikipedia.org
Further references:

B. Pippard: Sir Geoffrey Taylor, Physics Today, Sept 1975, p. 67

G.Batchelor: The life and legacy of G.I. Taylor. Cambridge University Press, 1994. ISBN

0-521-46121-9

www.wikipedia.org
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Remarks

• Figure 11.6 displays the streamlines (panel (a)) and the perspective view (panel
(b)) of the function (11.50), called a Hill vortex.

• Formula (11.49) allows evaluation of the rising velocity of a spherical gas bubble
with density ρ̄ in a heavier fluid according to the equation

4π

3
a3ρg

︸ ︷︷ ︸
Buoyancy

= 4π

3
a3ρ̄g

︸ ︷︷ ︸
Weight

+ 2πηUa
2 + 3η̄/η

1 + η̄/η
︸ ︷︷ ︸

Drag Force

,

U

(a)

(b)

Fig. 11.6 Streamlines (a) and perspective plot of the stream function (b) of a Hill vortex
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from which

U = 2

3

a2g

ν

(
1 − ρ̄

ρ

)
1 + η̄/η

2 + 3η̄/η
,

(
ν = η

ρ

)
(11.51)

follows. The limits η̄ → ∞ and η̄ = 0 yield

η̄ � η : U = 1

3

a2g

ν

(
1 − ρ̄

ρ

)
,

η̄ 
 η : U = 2

9

a2g

ν

(
1 − ρ̄

ρ

)
.

Experimentally one often observes for η̄ � η, the rising velocity for the case
η̄ 
 η. This corresponds to the no-slip condition and can be explained by a
stiffening of the interface due to a gradient of the surface tension by a contamination
of the surface.

• George Batchelor (1988) [1] considered the configuration of Fig. 11.7 to
explain the possible existence of air bubbles in ‘fluidized beds’: In a fluid with
constant steady speed U at infinity, rigid particles with radius a are suspended
having falling velocity W . The particles are surrounded by spherical air bubbles
of radius R. In the frame of the moving particles the approaching velocity is given
by U − W . We then have:

in the exterior region (water)

vr = 2 cos θ

(
A

r
+ U − W

2
+ D

r3

)
,

vθ = − sin θ

(
A

r
+ U − W − D

r3
,

)
, (11.52)

τrθ = −6η sin θ
D

r4
;

in the inner region (air)

vr = 2 cos θ

(
α

r
+ β + γr2 + δ

r3

)
,

vθ = −2 sin θ

(
α

r
+ β + 2γr2 − δ

r3

)
(11.53)

τrθ = −6η̄γr sin θ.
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Fig. 11.7 Spherical particle
enclosed in a spherical air
bubble rising or falling in a
viscous fluid

The constants A, D,α,β, γ, δ are so determined that for r = a the velocities
vr = vθ = 0 and for r = R, vr(R+) = vr(R−) = 0; moreover, for r = R, vθ

and τrθ must be continuous. These are six equations whose solution is given by
Batchelor (1988) [1].

11.4 Oseen’s Theory6

11.4.1 Governing Equations of the Oseen Theory

The essence of the Stokes theory is the solution of L4ψ = 0, Eq. (11.11), for the
stream function ψ(z, y) from which the axial, vz, and the radial, vy, velocity com-
ponents (11.8) in cylindrical coordinates (z, y) can be determined. It was demon-
strated with (11.36) and subsequent discussions that far away from the stationary
rigid sphere the inertial (convective) acceleration terms dominate over the viscous
(diffusive) terms. This implies that, strictly, the convective acceleration terms must
somehow, be accounted for C.W. Oseen (1910) [15] recognized that far away from
the sphere the actual flow around the sphere cannot deviate much from the rectilinear
flow v ≈ U êz and approximated for this reason (grad v)v by (grad v)U êz, so that

(grad v)v ≈ U
∂v

∂z
. (11.54)

For steady flow, the momentum equation, therefore, takes the form

6For a brief biography of Carl Wilhelm Oseen, see Fig. 11.8.
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Fig. 11.8 Carl Wilhelm Oseen (17. April 1879–7. Nov. 1944)

Carl Wilhelm Oseen was a Swedish theoretical physicist in Uppsala and Director of
the Nobel Institute for theoretical physics. Starting in 1896 he studied at Lund University,
where he graduated in 1900; he also studied in Göttingen. 1902 he became a docent and
subsequently until 1910 substitute professor of mathematics. Between 1909 and 1933 Carl
Oseen was professor of mechanics and mathematical physics at the University of Uppsala.
In 1921 he became a member of the Royal Swedish Academy of Sciences and in 1933 he
acquired the head office of the Nobel Institute, which under Arrhenius emphasized on
research in chemistry, now concentrated its activities on theoretical physics. 1924 Oseen

became a corresponding member of the Bavarian Academy of Sciences.
Carl Wilhelm Oseen’s research focus was the development of the theory of elasticity of
liquid crystals. He proposed in 1921 Albert Einstein for the Nobel prize, was among
the first Swedish physicists to accept Niels Bohr’s atomic model. Most important for fluid
dynamics were the Oseen equations in viscous fluid flows, which demonstrated for a linear
viscous fluid that creeping flow around a sphere far away from the sphere needed to account
for the (linearized) advective acceleration terms as illustrated in Sect. 11.4.1. This led later
to the famous asymptotic Stokes–Oseen expansion of bodies, slowly circumflown by a
Newtonian fluid. He also performed pioneering work in the theory of liquid crystals.

The text is based on www.wikipedia.org

www.wikipedia.org
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U
∂v

∂z
= −1

ρ
grad p − ν curl (curl v). (11.55)

This approximation corresponds to a linearizationof the convective acceleration term,
if it is assumed that the motion of the fluid deviates only slightly from rectilinear
flow in the z-direction. In the neighborhood of the circumflown body this assumption
cannot be valid. Here, however, it was recognized that the Stokes approximation
was sufficiently accurate, at least for spheres, for which computations have been
demonstrated. All the more, it was confirmed that the acceleration terms were indeed
negligibly small; it may, therefore be accepted that the error, which is introduced by
the Oseen approximation, is likely of negligible order of magnitude.

It was shown in Sect. 11.1 [between the formulae (11.8), (11.9) and (11.10)] that

curl v = −1

y
L2ψ êϕ,

curl (curl (curl v)) = 1

y
L4ψ êϕ.

(11.56)

Forming the rotation (curl) of (11.55) yields

U
∂

∂z
curl v = −ν curl (curl (curl v)), (11.57)

or after substitution of (11.56)

(
νL2 − U

∂

∂z

)
L2ψ = 0, (11.58)

as the vorticity equation in the Oseen approximation. Let us also recall the operator
L2[·],

L2[·] =
{

∂2

∂z2
+ y

∂

∂y

(
1

y

∂

∂y

)}
[·], in cylindrical coordinates,

=
{

∂2

∂r2
+ sin θ

r2
∂

∂θ

(
1

sin θ

∂

∂θ

)}
[·], in spherical coordinates.

(11.59)

We now wish to solve (11.58). This will be done by first seeking a particular solution
of theOseen equation,which vanishes as r → ∞; this solutionwill then be combined
with solutions ofL2ψ = 0 [these are also solutions of (11.58)] for which all boundary
conditions are satisfied.
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11.4.2 Construction of a Particular Integral of (11.58)

Oseen started with the representation

L2ψ = f (z)φ(z, y), (11.60)

in which (z, y) are the cylindrical coordinates and L2[·] is given in (11.59)1. Thus,
one may easily deduce

L4ψ = L2 (f (z)φ(z, y)) = f ′′φ + 2f ′φz + fL2φ,
∂(f φ)

∂z
= f ′φ + f φz,

(11.61)

in which f ′ = df /dz and φz = ∂φ/∂z. If Eq. (11.61) are substituted into (11.58), the
following equation is obtained

ν

(
f ′′φ + 2f ′φz︸ ︷︷ ︸

+fL2φ

)
− U

(
f ′φ + f φz︸︷︷︸

)
= 0. (11.62)

If we now request somewhat arbitrarily that the underbraced terms together vanish,
then

2νf ′ − Uf = 0

is obtained, a differential equation for f with the solution

f = exp

(
Uz

2ν

)
. (11.63)

Back substitution of this exponential function for f into (11.62) leads to the equation

(
L2 − U2

4ν2

)
φ(z, y) = 0. (11.64)

Oseen’s ansatz (11.60) has been cleverly so selected that the fourth order differential
equation (11.58) is solved by two second order equations, first, Eq. (11.64), which
is linear and homogeneous, and, second, by the linear but inhomogeneous equation
(11.60).

At this stage of the computations it is advisable to go over to spherical coordinates
and to seek a solution of (11.64) in the form

φ = F(r) sin2 θ. (11.65)

Substituting this expression in (11.59) leads to



26 11 Creeping Motion Around Spheres at Rest in a Newtonian Fluid

L2φ =
(

F ′′ − 2

r2
F

)
sin2 θ, (11.66)

so that in view of (11.64) the radial function must satisfy the ordinary differential
equation

F ′′ −
(
2

r2
+ U2

4ν2

)
F = 0. (11.67)

The reader may demonstrate by substitution that

F = C

(
1 + 2ν

Ur

)
exp

(
−Ur

2ν

)
, C = const. (11.68)

solves (11.67) and enjoys the desired property to vanish as r → ∞. Hence, with
(11.60) and (11.63) we arrive at the intermediate result

L2ψ = C sin2 θ

(
1 + 2ν

Ur

)
exp

(
−Ur

2ν
(1 − cos θ)

)
. (11.69)

This result is significant simply, because, according to (11.56)1, the operator−L2ψ/y
is the vorticity of the motion.

There remains to construct by integration of (11.69) a particular solution for ψ.
To this end, we set

ψ = g(z, y) exp

(
U

2ν
z

)
. (11.70)

Substituting this into (11.59)1 yields for L2ψ

L2ψ = ψzz + ψyy − 1

y
ψy

=
(

U2

4ν2
g + U

ν
gz + L2g

)
exp

(
Uz

2ν

)
, (11.71)

in which subscripts y and z denote partial derivatives. Equating (11.69) to (11.71)
and transformation of the emerging expression to spherical coordinates results in the
following linear and inhomogeneous partial differential equation for g:

U2

4ν2
g + U

ν

(
cos θ

∂g

∂r
− sin θ

r

∂g

∂θ

)
+ ∂2g

∂r2
+ sin θ

r2
∂

∂θ

(
1

sin θ

∂g

∂θ

)

= C sin2 θ

(
1 + 2ν

Ur

)
exp

(
−Ur

2ν

)
. (11.72)

A particular solution of this equation has the form
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g = 2ν2

U2
C (1 + cos θ) exp

(
− U

2ν
r

)
. (11.73)

Back substitution into (11.70) leads to the following particular solution

ψ = B(1 + cos θ)

{
exp

(
−Ur

2ν
(1 − cos θ)

)
− 1

}
, B = const. (11.74)

of the Oseen equation.

11.4.3 ‘Stokes-Lets’ and ‘Oseen-Lets’

To the particular solution for ψ in (11.74) we now add the same potential flow
solution, which we already employed in the Stokes solution. Thus, we write

ψ = ψ1 + ψ2,

ψ1 = U

4

(
2r2 + a3

r

)
sin2 θ, (11.75)

ψ2 = B(1 + cos θ)

{
exp

(
−Ur

2ν
(1 − cos θ)

)
− 1

}
.

ψ1 satisfies the potential equation Δψ1 = 0, and, therefore, also L2ψ1 = 0, as well
as theOseen equation (11.58). In the immediate neighborhood of the sphere we have
Ur/ν � 1, and ψ2 can be approximated as follows:

ψ2 ∼ B(1 + cos θ)

{
1 − Ur

2ν
(1 − cos θ) + · · · − 1

}

∼ −B(1 + cos θ)
Ur

2ν
(1 − cos θ) = −B

Ur

2ν
sin2 θ.

Therefore, in the vicinity of the sphere, ψ takes on the form

ψ ∼ U

4

(
2r2 + a3

r

)
sin2 θ − B

U

2ν
r sin2 θ. (11.76)

This is the same as the Stokes solution (11.33)1 provided B = 3
2aν. With this choice

the boundary condition at the surface of the sphere is only approximately satisfied.
The final result is
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ψOseen = U

4

(
2r2 + a3

r

)
sin2 θ

+ 3

2
aν(1 + cos θ)

{
exp

(
−Ur

2ν
(1 − cos θ)

)
− 1

}

︸ ︷︷ ︸
‘Oseen−let′

. (11.77)

As is known from potential theory, the terms in the first line of this expression are
due to doublets (dipoles) at infinity and the origin of the coordinates. Consequently,
the third term due to the particular solution of the Oseen equation is characteristi-
cally called ‘Oseen-let’. In the Stokes solution, the corresponding term is called
‘Stokes-let’ and is, according to (11.33)1, given by

ψStokes = Ua2

4

(
2

r2

a2
+ a

r

)
sin2 θ + 3

4
Uar sin2 θ

︸ ︷︷ ︸
‘Stokes-let’

. (11.78)

We close this section by the following remarks.

• If one computes the drag of the spherewith the solution found this way, one obtains
again the result by Stokes,

W = 6πηUa or cw = 24

R
. (11.79)

However, this result is only obtained, because of the approximate satisfaction of the
boundary conditions at the surface of the sphere. If the constants of integration,
A and D, in the solution of the Oseen equation are exactly satisfied, then one
obtains (Goldstein, 1929, [4])

cw = 24

R

{
1 + 3

16
R + · · ·

}
. (11.80)

Up to Reynolds numbers R ≈ 1 this drag coefficient agrees well with experi-
ments.
Sidney Goldstein

7 [4] went even further in the Oseen expansion and computed
six terms of higher order and obtained

cw = 24

R

{
1 + 3

16
R − 19

1280
R

2 + 71

20, 480
R

3

− 30, 179

34, 406, 400
R

4 + 122, 519

550, 502, 400
R

5 + · · ·
}

. (11.81)

7For a brief biography of Sidney Goldstein, see Fig. 11.9.
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Fig. 11.9 Sidney Goldstein (3. Dec. 1903–22. Jan. 1989). Right the Taylor–Goldstein
equation describes the dynamics of internal waves in the presence of density stratification
and shear flow. A schematic diagram shows the base flow which is parallel to x axis, subject
to a small perturbation away from this state which has components in both x, z directions.

Sidney Goldstein started his higher education at the University of Leeds in 1921, where
he studied mathematics, but moved to St. John’s College, Cambridge, graduating from the
mathematical Tripos 1925 and gaining the Smith’s Prize in 1927. He was awarded an
Isaac Newton Studentship to continue research in applied mathematics and completed his
Ph. Degree under Harold Jeffreys with a thesis entitled ‘The theory and application of
Mathieu functions’ in 1928. With a Rockefeller Research Fellowship he then spent a
year at the University of Göttingen with Ludwig Prandtl, where he performed laboratory
experiments of a fluid in a rotating elliptical container.
In 1929, Goldstein returned to Cambridge, but accepted in the same year a lectureship in
mathematics at the University of Manchester. It had a profound influence on Goldstein

through the heritage of Osborne Reynolds and Horace Lamb. He moved to Cambridge
again in 1931 and took over, onLamb’s death, the edition of ‘Modern Developments in Fluid
Dynamics’ which appeared in 1938. He was elected Fellow of the Royal Society in London
in 1937. During World War II, Goldstein worked at the National Physical Laboratory on
boundary layer theory. In 1945 Goldstein moved again to the University of Manchester,
where he assumed the chair of Applied Mathematics.
In 1950 Goldstein accepted the chairmanship of the mathematics department of the Tech-
nion at Haifa, but resigned 1955, owing to the administrative overload, and took the chair
of Applied Mathematics at Harvard University, Cambridge, USA.
Goldstein was a very influential fluid dynamicist, best known for his work on steady flow
laminar boundary layers and turbulent resistance to rotation of a disk in a fluid. His work in
aerodynamics and its influence led Sir James Lighthill to say that he was ‘one of those
who most influenced progress in fluid dynamics during the 20th century’.

The text is based on www.wikipedia.org and Lighthill [12]. Photo from http://www.

annualreviews.org/

www.wikipedia.org
http://www.annualreviews.org/
http://www.annualreviews.org/
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According toMilton Van Dyke (1964) [21] the last term has been corrected by
D. Shanks (1955) [18]. However, owing to the matching requirement of the
Stokes–Oseen expansions, treated in the next section, the higher order terms
are not reliable, as we shall see.

• The vorticity, induced by the motion, can be evaluated with the help of (11.77).
The resulting expression is

curl v = −1

y
L2ψêϕ = − 1

r sin θ

{
∂2ψ

∂r2
+ sin2 θ

r2
∂

∂θ

(
1

sin2 θ

∂ψ

∂θ

)}

= −3

2
Ua

y

r3

(
1 + Ur

2ν

)
exp

(
−Ur

2ν
(1 − cos θ)

)
. (11.82)

Close to the axis, at fixed y, one obtains

(i) for θ → 0: The vorticity decays for large r as r−2,
(ii) for θ → π: For large r the vorticity decays exponentially as exp (−Ur/(2ν)).

In other words, the vorticity is larger downstream of the sphere than upstream of
it. This explains why dead zones have the tendency to arise in the wake.

11.5 Theory of Lagerstöm and Kaplun

11.5.1 Motivation

We have seen that the Stokes theory of the flow exterior to a rigid stagnant sphere
fails far away from the sphere at distances

r � a

R
= ν

U
, R = Ua

ν
. (11.83)

(Note, the Reynolds number is here defined with the radius and not the diameter of
the sphere.) In terms of the stretched variable

s := r

a
R

the Stokes solution (11.33)1 takes the form

ψ

Ua2
=

{
1

2

s2

R2
− 3

4

s

R
+ · · · + 1

4

R

s
+ · · ·

}
sin2 θ. (11.84)

In this expression dots indicate that the solution (11.84) ought to be interpreted as a
beginning series expansion in terms of the Reynolds number. We demonstrated in



11.5 Theory of Lagerstöm and Kaplun 31

Fig. 11.10 Validity regimes
of the Stokes–Oseen
expansion. 1 Validity regime
of the Stokes expansion, 2
Validity regime of the Oseen

expansion, 3 Overlapping
region, in which both
expansions are
asymptotically equal

U

Sphere

1

2 3

earlier sections of this chapter that in the Stokes solution the nonlinear convective
members of the full NS-equations were ignored, but when accounted for would
dominate the linear term far away from the sphere.

To improve the situation, C.W.Oseen developed his theory, in which the convec-
tive termswere accounted for in such away that for r → ∞ theywere asymptotically
correctly taken into account. Oseen’s theory is linear; however, because the bound-
ary conditions at the surface of the sphere are not exactly satisfied, additional terms
must be incorporated in the Stokes expansion. The Oseen solution reads

ψ

Ua2
=

{
1

2

r2

a2
+ 1

4

a

r

}

sin2 θ − 3

2

1 + cos θ

R

(
1 − exp

(
− rR

2a
(1 − cos θ)

))
. (11.85)

Obviously, this is an outer expansion, which is valid far away from the sphere
(the Oseen solution is an approximation of this). On the other hand, the Stokes

solution is a beginning inner expansion with a validity region close to the sphere.
The two solutions merge in an overlapping region and must bematched together,
a process, which determines unknown coefficients in the outer and inner expansions,
see Fig. 11.10.

In order to present this matched asymptotic expansion procedure, let us write the
axisymmetric NS-equations in dimensionless form. They read as follows:

L̃4ψ = R

r2 sin θ

{
∂ψ

∂θ

∂

∂r
− ∂ψ

∂r

∂

∂θ
+ 2cotanθ

∂ψ

∂r
− 2

r

∂ψ

∂θ

}
L̃2ψ,

L̃2ψ =
{

∂2

∂r2
+ 1

r2

(
∂2

∂θ2
− cotanθ

∂

∂θ

)}
ψ =

{
∂2

∂r2
+ sin θ

r2
∂

∂θ

(
∂/(∂θ)

sin θ

)}
ψ,

R = Ua

ν
,

ur = 1

r2 sin θ

∂ψ

∂θ
, uθ = −1

r sin θ

∂ψ

∂r
.

(11.86)
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In these expressions all quantities are dimensionless. The boundary conditions, for
which these equations must be solved are:

On the surface of the sphere: ur = uθ = 0, or in terms of the stream function

ψ(1, θ) = 0,
∂ψ

∂r
(1, θ) = 0, r = 1. (11.87)

At infinity as r → ∞: v = ez, or,

ur cos θ − uθ sin θ = 1,

ur sin θ + uθ cos θ = 0.

These two equations are identically satisfied if

lim
r→∞ ψ(r, θ) = 1

2
r2 sin2 θ. (11.88)

Equations (11.86)–(11.88) define together the complete boundary value problem.

11.5.2 Stokes Expansion

In the vicinity of the sphere (i.e. in the inner region) we write

ψ = ψi(r, θ) = ψi
0 + Rψi

1 + R
2ψi

2 + · · · . (11.89)

When substituting this series expansion into (11.86) a recursive set of principally
solvable differential equations is obtained:

L̃4ψi
k = gk, k = 0, 1, 2, . . . ,

gk = 1

r2 sin θ

〈{
∂ψi

∂θ

∂

∂r
− ∂ψi

∂r

∂

∂θ
+ 2cotanθ

∂ψi

∂r
− 2

r

∂ψi

∂θ

}
L̃2ψi

〉

k−1

.
(11.90)

For k = 0 the counting index k − 1 must be set to zero as must the indexed variables
e.g. g−1. The zeroth order equation is simply L̃4ψ = 0 with the solution

ψi
0 =

⎛

⎜⎜
⎝

1

2
r2

︸︷︷︸
I

− 3

4
r

︸︷︷︸
II

+ 1

4

1

r︸︷︷︸
III

⎞

⎟⎟
⎠ sin2 θ. (11.91)

Hence, the term I stands for the rectilinear potential flowwith (L̃2ψ0)I = 0. Similarly,
the term III is a dipole (doublet) flow also satisfying (L̃2ψ0)III = 0. Only the term II
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delivers a contribution to the relation

curl (v0II) = −3

2

1

r2
sin θ êϕ.

Substitution of (11.91) into (11.90) leads to the differential equation for ψi
1

L̃4ψi
1 = −9

4

(
2

r2
− 3

r3
+ 1

r5

)
sin2 θ cos θ. (11.92)

A particular integral, which satisfies the boundary conditions at the surface of the
sphere is

− 3

32

{
2r2 − 3r + 1 − 1

r
+ 1

r2

}
sin2 θ cos θ. (11.93)

Adding to this a solution of the homogeneous equation, which equally satisfies the
boundary conditions at the surface of the sphere yields the complete first order inner
solution

ψi
1 = C

{
2r2 − 3r + 1

r

}
sin2 θ − 3

32

(
2r2 − 3r + 1 − 1

r
+ 1

r2

)
cos θ sin2 θ,

(11.94)
in which C is a still undetermined constant.

Remarks

• If one tries to satisfy the velocity boundary conditions at r → ∞ with (11.94),
this cannot be done. Even worse, in the next approximation the velocity would get
infinitely large.
The non-existence of the second order approximation of the Stokes expansion is
known asWhiteheadParadox (1889).Whitehead [24] believed that the paradox
could be removed by discontinuities in the solution. Today we know that this is
not the case.

• In the analogous problem of the flow around a circular cylinder, the paradox is
even stronger. The analogue to (11.91) would here be

ψi
0 = C

⎛

⎜
⎝− 1

2 r
︸︷︷︸

I

+ r log(r)
︸ ︷︷ ︸

II

+ 1
2
1
r︸︷︷︸

III

⎞

⎟
⎠ sin θ.

The second term in this formula is the ‘Stokes-let’. The solution, however, cannot
be completed because no choice of the constant C satisfies the upstream boundary
condition: ψ(r, θ) ∼ r sin θ as r → ∞. The non-existence of a solution of the
Stokes equations in the infinite two-dimensional flow around a circular cylinder
is known as Stokes’ paradox. It was recognized by Stokes in 1851 [19].
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11.5.3 Oseen Expansion

Our position here is that Oseen’s solution is a limit of a series expansion, which is
valid for large r. Because we seek solutions for small Reynolds numbers R, the
stretching transformation

ρ = rR (11.95)

brings the outer region closer to the sphere. So, the transformation (11.95) is actually
a squeezing operation. In these ‘stretched’ coordinates (11.86) reads

L̃4
ρψ = R

2

ρ2 sin θ
{·}ρ L̃2

ρψ, (11.96)

in which the index ρ labels the fact that the operator {·} has to be taken with respect
to ρ (not r). {·} is defined in (11.98)2 below. Notice also that the Reynolds number
on the right-hand side of (11.96) appears with the common factor R

2. This means
that in the squeezed coordinates the nonlinear terms receive a larger weight.

In a fashion analogous to Eq. (11.89) one now writes for the outer region

ψ = 1

R2
Ψ o(ρ, θ) = 1

R2

{
Ψ o
0 + RΨ o

1 + R
2Ψ o

2 + · · · } . (11.97)

Substitution of this expansion into (11.96) generates the recursive formula

L̃4
ρΨ

o
k = 1

ρ2 sin2 θ
〈{·}ρ L̃2

ρψ
o〉k,

{·} =
{

∂Ψ o

∂θ

∂

∂ρ
− ∂Ψ o

∂ρ

∂

∂θ
+ 2cotanθ

∂Ψ o

∂ρ
− 2

ρ

∂Ψ o

∂θ

}
.

(11.98)

The pre-factor 1/R
2 in (11.97) achieves that in (11.98) both sides of the equation have

the same R-weight. The solutions of (11.98) must satisfy the boundary conditions at
r → ∞

Ψ o
0 → 1

2ρ
2 sin2 θ, for ρ → ∞,

ψo
k = 0, k = 1, 2, . . . , for ρ → ∞.

(11.99)

As zeroth order solution of (11.98), for which the right-hand side of (11.98) vanishes,
it is tempting to take

Ψ o
0 = 1

2
ρ2 sin2 θ. (11.100)

It satisfies the boundary conditions for r → ∞ and represents the flow around a
sphere with vanishing radius. Comparison of (11.91) with (11.99) also demonstrates
that (11.100) represents exactly the dominant effect of the Stokes solution far away
from the sphere. For, if one writes the Stokes solution (11.91) in the outer variables
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(ψi
0)

o = 1

R2

{
1

2
ρ2 − 3

4
Rρ + 1

4
R

3 1

ρ

}
sin2 θ

∼ 1

R2

1

2
ρ2 sin2 θ, for R → 0,

oneobtains exactly theOseen solution. If one evaluates the right-hand side of (11.98),
one obtains 〈

{·} [Ψ o
0 + RΨ o

1 + · · · ]L̃2
ρ[Ψ o

0 + RΨ o
1 + · · · ]

〉

k=1

or since L̃2
ρΨ

o
0 = 0,

〈·〉1 = R

〈
{·} [Ψ o

0 ]L̃2
ρ[Ψ o

1 ]
〉
,

〈·〉1
r2 sin2 θ

= R

{
− sin θ

ρ

∂

∂θ
+ cos θ

∂

∂ρ

}
L̃2Ψ o

1 .

Therefore, the Oseen differential equation of first order takes the form

L̃4Ψ o
1 =

{
− sin θ

ρ

∂

∂θ
+ cos θ

∂

∂ρ

}
L̃2Ψ o

1 . (11.101)

This is exactly the original Oseen equation in dimensionless form, see (11.58). Its
solution has been given as (11.74) and is repeated here:

Ψ o
1 = B(1 + cos θ)

{
exp

(
−ρ

2
(1 − cos θ)

)
− 1

}
. (11.102)

The complete first order Oseen solution is, therefore, given by

ψo = ρ2

2R2
sin2 θ + B(1 + cos θ)

R

{
exp

(
−ρ

2
(1 − cos θ)

)
− 1

}
+ O(1). (11.103)

11.5.4 Matching Procedure

The two Stokes andOseen expansions must asymptotically agree with one another
in the overlapping region, see Fig. 11.10. To this end one writes the outer expansion
in terms of the inner variables and expands the emerging relation in powers of r. This
yields
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(ψo)i = 1

2
r2 sin2 θ + B(1 + cos θ)

R

×
{
1 − R(1 − cos θ)

r

2
+ R

2(1 − cos θ)2
r2

8
+ · · · − 1

}

= r2

2
sin2 θ − B

r

2
sin2 θ + RB

r2

8
sin2 θ(1 − cos θ) + · · · . (11.104)

Alternatively, the inner Stokes expansion can be written as

ψi = r2

2
sin2 θ − 3

2

r

2
sin2 θ + 1

4

1

r
sin2 θ

+ RC

{
2r2 − 3r + 1

r

}
sin2 θ

− R
3

32

{
2r2 − 3r + 1 − 1

r
+ 1

r2

}
sin2 θ cos θ, (11.105)

see (11.91) and (11.94), the dominant terms of which for large r → ∞ are

ψi
r→∞ = r2

2
sin2 θ − 3

2

r

2
sin2 θ + · · ·

+ CR sin2 θ 2r2 − 3

16
Rr2 sin2 θ cos θ. (11.106)

By comparing the underlined terms in (11.104) and (11.106) it is seen that the inner
and outer expansions can only be matched, if

B = 3

2
, C = B

16
= 3

32
.

The improved inner solution, thus, reads

ψi = 1
4 (r − 1)2 sin2 θ

{(
1 + 3

8R
) (

2 + 1

r

)
− 3

8
R

(
2 + 1

r
+ 1

r2

)
cos θ

}
(11.107)

and is now a function of the Reynolds number. The streamline ψi = 0 is now given
by the following equations.

1. θ = 0,π, corresponding to the axis y = 0.
2. r = 1, on the surface of the sphere.
3. {·} = 0, corresponding to the dead water region behind the sphere and given by

cos θ =
(

8

3R
+ 1

)
2 + 1/r

2 + 1/r + (1/r)2
.

The dead water zone can only exist, when | cos θ| < 1; so, for r = 1 we have



11.5 Theory of Lagerstöm and Kaplun 37

3

4

{
8

3R
+ 1

}
< 1 −→ R > 8. (11.108)

This matching procedure can be continued; this was done to second order by
I. Proudman and J.R.A. Pearson (1957) [16]. Their second order drag coefficient
is given as

cw = 24

R′

{
1 + 3

16
R

′ + 9

160
R

′2 lnR
′ + O(R′3)

}
,

R
′ = 2Ua

ν
= 2R.

(11.109)

A third order extension of this matched asymptotic expansion is due to W. Chester
and D.R. Breach (1969) [2], and their third order drag formula reads

cw = 24

R′

{
1 + 3

16
R

′ + 9

160
R

′2
(
lnR

′ + γ + 2

3
ln 2 − 323

360

)

+ 27

640
R

′3 lnR
′ + O(R′4)

}
, (11.110)

where γ is the Euler constant. S.-J. Liao (2002) [9] writes: ‘it is a little baffling
that, when R

′ > 2 the above 3rd order drag formula is even worse than the 2nd order
formula (11.109), as shown in Fig. 11.11’. This figure indicates that the 2nd and 3rd
order solutions for cw obtained by matching approximate inner and outer expansions
(by Proudman–Pearson and Chester–Breach) are less accurate for R

′ � 1 than
that of the Oseen solution. It is thus tempting to try such a comparison with results
from higher order outer solutions of Oseen-type. The six-term solution

cw = 24

R′

{
1 + 3

16
R

′ − 19

1280
R

′2 + 71

20480
R

′3

− 30179

34406400
R

′4 + 122519

550502400
R

′5 + · · ·
}

(11.111)

was constructed by Sidney Goldstein (1929) [4]. S.-J. Liao (2002) [9] states:
‘In 1970, Milton Van Dyke [22] extended the above drag formula to 24 terms
by computer [...] and found that its convergence is limited by a simple pole at
R

′ = −4.18172. Using the Euler transformation, Van Dyke [22] enlarged its
convergence region to infinity. However, the agreement between Van Dyke’s [22]
drag formula (given by Euler transformation) with experimental data is not satis-
factory for R

′ > 5, as shown in Fig. 11.11’. For all mentioned solutions, there is
a large disagreement between all above mentioned theoretical drag formulae and
experimental data. So, as pointed out by F.M. White in 1991 [23] and quoted by
S.-J. Liao [9], ‘the idea of using creeping flow to expand into the high Reynolds

number region has not been successful’.
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Fig. 11.11 Comparison of experimental data of drag coefficient of a sphere in a uniform stream
with theoretical results. Symbols experimental data; solid lines theoretical results by the indicated
authors as described in the main text. Data are taken from T. Maxworthy [13], R. Ockendon
and G.A. Evans [14], F.W. Roos and W.W. Willmarth [17] and C. Wieselsburger [25, 26].
Adapted from S.-J. Liao (2002, 2004) [9, 10]

11.6 Homotopy Analysis Method—The Viscous Drag
Coefficient Computed for Arbitrary Reynolds
Numbers

As revealed by the above mentioned perturbation approaches, and explicitly demon-
strated by Fig. 11.11, the drag coefficient, predicted by them is only in conformity
with the experimental results, provided the Reynolds number is small, ideally
R

′ < 1 and realistically certainly R
′ < 5. None of the presented perturbation

drag formulae is valid for R
′ > 1—more generally for realistic values of R

′ up
to R

′ < 2000. It is clear that the two solutions, constructed by matching inner and
outer solutions (2nd order: Proudman–Pearson, 3rd order: Chester–Breach)
deviate considerably from the experimental points, when R

′ > 1. Alternatively, the
Oseen-type solutions (Oseen [15], Van Dyke [22]) approximate the experimen-
tally determined drag coefficient much better when R

′ = O(100 − 101) than the
perturbation solutions based on matching. The reason is that ‘the Oseen equation
has nothing to do with any small parameter’ [9].

An approximate solution procedure for the steady flow of a viscous fluid around a
fixed body ought to be available which allows construction of approximate sequences
of the solutions of the full NS-equations around a fixed body for arbitrary values of
the Reynolds number. Such a method has been proposed by S.-J. Liao in 1992
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[6]. It is suitable for the solution of nonlinear differential equations and is based on
homotopy, a technique of topology. It was coined by Liao the homotopy analysis
method (HAM) [6]. S.-J. Liao wrote a number of articles applying this method
in fluid mechanics (two-dimensional viscous flow over a semi-infinite flat plate [7],
Blasius flow [8]). The analysis of the drag force on a stationary sphere due to steady
parallel uniform flow of a viscous fluid is presented by him in [9].

11.6.1 The Mathematical Concept

It is not the place here to present the full derivation of the mathematical techniques
of HAM applied to the steady viscous flow past a sphere. The reader must consult
the pertinent literature for that: [7–11].

Starting point are the NS-equations in spherical coordinates, (11.17), which in
dimensionless units and on the basis of the transformation

μ = cos θ, 0 � θ � 2π,
∂

∂θ
= − sin θ

∂

∂μ
(11.112)

yields the boundary value problem

Aψ := L4ψ − R

r2

{
∂ψ

∂r

∂

∂μ
− ∂ψ

∂μ

∂

∂r
+ 2μ

(1 − μ2)

∂ψ

∂r
+ 2

r

∂ψ

∂μ

}
L2ψ = 0,

ψ(r,μ) = ∂ψ(r,μ)

∂r
= 0, when r = 1, (11.113)

lim
r→+∞ ψ(r,μ) = 1

2
r2(1 − μ2).

A is called Navier–Stokes-operator; r is now dimensionless and the Reynolds

number R = Ua/ν is based on the radius of the sphere.
The key step inHAMconsists in constructing a family of boundary value problems

involving an embedding parameter q ∈ [0, 1] and a non-zero auxiliary parameter �

as follows:

(1 − q)H[Ψ (r,μ, q) − ψ0(r,μ)] = q�AΨ (r,μ, q), r > 1,

Ψ (1,μ, q) = ∂Ψ (r,μ, q)

∂r

∣
∣
r=1 = 0,

lim
r→+∞ Ψ (r,μ, q) = 1

2 r2(1 − μ2),

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

−1 � μ � 1,

0 � q � 1.
(11.114)

Here, the real function ψ0(r,μ) is an initial guess for the solution of (11.113)1 and
must satisfy the boundary conditions (11.113)2,3. H is an auxiliary linear operator,
� a non-zero auxiliary parameter and Ψ (r,μ, q, �) a function of four variables. The
function ψ0, the operator H and the non-zero parameter q can be freely assigned.

Of special significance is the embeddingparameterq; it plays an important role and
operates like a ‘deus ex machina’ in generating so-called deformation equations.
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Indeed, consider (11.114) when q = 0 and q = 1 two limiting values between which
q can vary:

q = 0 → Ψ (r,μ, 0) = ψ0(r,μ), provided H 	= 0,
q = 1 → Ψ (r,μ, 1) = ψ(r,μ), since AΨ (r,μ, 1) = 0.

(11.115)

‘Thus, the process of q increasing from zero to one is just the process of Ψ varying
from ψ0(r,μ) to ψ(r,μ). This is exactly the idea of the homotopy, and this kind
of process is called deformation in topology; so, (11.113) are called the ‘zeroth
order deformation equations’, [9]’. They form one boundary value problem for Ψ .
The parameter q—our ‘deus ex machina’—however, allows to generate additional
boundary value problems, if one assumes that the deformation function Ψ (r,μ, q)

is sufficiently smooth with respect to q to be arbitrarily times differentiable with
respect to q. With the notation

ψ[m]
0 (r,μ) := ∂mΨ (r,μ, q)

∂qm

∣∣∣
∣
q=0

, m = 1, 2, 3, . . . , (11.116)

one may then develop Ψ (r,μ, q) into Taylor series about q = 0,

Ψ (r,μ, q) = Ψ (r,μ, 0)︸ ︷︷ ︸
(11.115): ψ0(r,μ)

+
+∞∑

m=1

ψ[m]
0 (r,μ)

m!︸ ︷︷ ︸
ψm(r,μ)

qm

= ψ0(r,μ) +
+∞∑

m=1

ψm(r,μ)qm. (11.117)

Assuming that ψ0(r,μ), the linear operator H and the non-zero parameter � are so
selected that the Taylor series expansion is convergent at q = 1, then (11.117) and
(11.115) imply

ψ(r,μ) = ψ0(r,μ) +
+∞∑

m=1

ψm(r,μ). (11.118)

This equation is a formal recipe to find the ultimate solution ψ(r,μ) by successive
approximation, if ψm(r,μ), m = 1, 2, 3, . . ., can be found. Such equations can be
obtained by performing the mth derivatives of the zeroth order deformation equation
(11.114) with respect to q, then setting q = 0 and finally dividing the resulting equa-
tion by m!. This yields the boundary value problems for ψm(r,μ), m = 1, 2, 3, . . .,
which structurally take the forms
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H[ψm(r,μ)] = Gm(r,μ), r � 1,

ψm(1,μ) = ∂ψm(r,μ)

∂r

∣
∣
r=1 = 0,

lim
r→+∞

1

r2
ψm(r,μ) = 0,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

m � 1,

−1 � μ � 1,
(11.119)

where Gm is given by

Gm(r,μ) = (χmH + �L4)ψm−1

−�R

r2

m−1∑

k=0

{
∂ψk

∂r

∂

∂μ
− ∂ψk

∂μ

∂

∂r
+ 2μ

(1 − μ2)

∂ψk

∂r

+2

r

∂ψk

∂μ

}
L2ψm−1−k, (11.120)

in which

χm =
{
0 when m � 1,
1 when m � 2.

(11.121)

The above formulated boundary value problems (11.119) are all linear and can be
solved consecutively, starting with an estimate for ψ0. Then, G1 is determined by
substituting ψ0 on the right-hand side of (11.120) and solving the emerging linear
boundary value problem (11.119) for ψ1, etc. In this way an infinite number of
functionsψm, m = 1, 2, . . . can be determined. In practice, this sequence is truncated
atm = M bywhich an approximation for (11.118) is found.Obviously, this procedure
is only useful, provided the sum

∑+∞
m=1 ψm(r,μ) is convergent. Fortunately, the HAM

provides us with great freedom to select ψ0(r,μ), H and � to express the solution
and at the same time to ensure the convergence of (11.118).

To summarize,HAMhas transformed the solution of thenonlinearboundary value
problem (11.113) into an (ideally infinite) set of linear boundary value problems.
With proper choice of ψ0, H and � these linear boundary value problems lead to
convergent series of (11.118) which then represent approximate and increasingly
more accurate solutions of the original problem (11.113).

11.6.2 Selection of ψ0,H, � and Approximate Solution

In conformity with the construction of the functions ψm, the initial guess ψ0(r,μ)

must satisfy the boundary conditions (11.114)2,3. The most obvious choice is then
the Stokes solution (11.33) [with a = 1, sin2 θ = (1 − μ2)],

ψ0 = 1

4

(
2r2 − 3r + 1

r

)
(1 − μ2), (11.122)
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and it is tempting to choose H[·] proportional to the Stokes operator L4[·]

H[·] = H(r,μ)

(
∂2

∂r2
+ (1 − μ2)

r2
∂2

∂μ2

)2

[·], (11.123)

in which H(r,μ) is a function of r and μ. Liao [9] also chose

ψN (r,μ) = (1 − μ2)

N∑

k=0

fm,k(r)μ
k, (11.124)

which is a kind of separation ansatz, and the prefactor (1−μ2) is so selected to have a
chance to satisfy the boundary conditionwhen r → ∞; moreover,N might be infinite
or finite. With the choice (11.124), the determination of ψm(r,μ) is transferred to
the determination of fm,k(r). At last, a selection for H(r,μ) is needed; Liao [9] was
successful with the choice8

H(r,μ) = rσ, σ > 0. (11.125)

and picked σ = 1 for explicit computations.
The remainder consists in the substitution of (11.122)–(11.125) into the deforma-

tion equations (11.119) consecutively form = 1, 2, 3 . . . and in solving the emerging
boundary value problems for f (m, k; �), verification of the convergence property of
the successive approximations for ψ(r,μ) as given by (11.118). The higher order
approximations have been determined byMATHEMATICA up to the 9th order in the
index m resulting in a 10th order drag coefficient. The convergence depends upon the
choice of the parameter �; i.e. depending upon the series; (11.118) is only convergent
for R

′ < R
′
limit(�). It turned out that the following convergence limits were obtained

for the 10th order approximation:

� −1 −1/2 −1/3
R

′
limit 5 9 20

It transpires that R′
limit-convergence can be improved when negative values approach

0− ε, ε > 0. Liao [9] tried by making � Reynolds number dependent as follows:

� = − 1
3 exp(−R

′/30), and � = − 1

1 + R′/4
(11.126)

8
Liao tried with several different choices and found

1. for H = 1 the emerging solution for m = 1 does not satisfy the boundary condition at infinity;
2. for σ � 0 the solution (11.119) does not satisfy the uniform-stream condition at infinity.



11.6 Homotopy Analysis Method—The Viscous Drag … 43

Fig. 11.12 Comparison of
the 10th order HAM drag
formula for � = −1/3 and �

given by (11.126).
Dash-double dotted line:
� = −1/3; dash-dotted line:
(11.126a); dashed line:
(11.126b). Adapted from
S.-J. Liao (2002, 2004)
[9, 10]

103

102

101

100

100

Reynolds number

Chester & Breach
(1969)

Proudman & Pearson
(1957)

Oseen (1910)

Van Dyke (1970)Stokes
(1851)

D
ra

g 
co

ef
fic

ie
nt

101 102 103

The 10th order approximation of the drag coefficient, computed with these repre-
sentations, is shown in Fig. 11.12. It indicates that the theoretical formula agrees
well with the experimental data as long as R

′ < 30. Even though data are available
up to R

′ = 1000, the approximations could not be continued, because of over flow
arising in MATHEMATICA at the 11th iteration. Farther reaching computations are
not known to us.

11.7 Conclusions and Discussion

This chapter was devoted to a physically simple problem, the determination of the
drag force (or better the drag coefficient) exerted on a sphere subjected to a steady
parallel flow of a linearly viscous fluid under laminar conditions without separation.
The reader will certainly have realized that the solution of the problem is mathe-
matically rather complex, but still not satisfactorily solved. An analogous situation
prevails also for the flow across an infinite circular cylinder, but was not dealt with
by us.

Apart from the differential properties initially dealt with, the analysis in spherical
and cylindrical coordinates of Navier–Stokes operators, the topic was begun with
the analysis of Stokes flow around a rigid stagnant sphere, i.e., the construction of
the solution of the steadyNavier–Stokes equations, when the acceleration terms in
the momentum equations are ignored. This mathematical problem was solved with
imposed no-slip and viscous sliding conditions at the surface of the sphere, as well
as for the case that the sphere was filled with a fluid or gas of different viscosity.
This entailed the formation of a double circulation within the sphere—called Hill
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vortex—and also led to the formation of steady suspensions of particle-containing
air bubbles in fluidized beds.

Scrutiny of the Stokes solution with estimates of typical convective acceleration
terms revealed that far away from the sphere these accelerations outweigh the corre-
sponding values of the Stokes solution. This result means nothing else than that a
Reynolds number correction to the drag coefficient of the Stokes solution must be
determined. The first version of this correction was given by CarlWilhelm Oseen

in 1910. The Oseen solution yields a linear R of the drag coefficient.
The constructions of Stokes andOseen in regular perturbation series could only

be completed by matching the two series step by step by which free coefficients
are determined in an overlapping region by the requirement that the two series are
asymptotically equal in this region. The solution of this problem kept applied math-
ematicians busy for about three quarters of the 20th century. However, the results
are somewhat disappointing because the results deviate more and more from those
obtained by experiments, when the Reynolds number exceeds unity as seen from
Fig. 11.11. In a way, this cannot be a surprise since ‘small R’ is a prerequisite of
perturbation formulations in this parameter.

In the 90s of the 20th century, S.-J. Liao therefore proposed a different method
to find approximate series solutions of the Navier–Stokes equations for ‘arbitrary
values’ of the Reynolds number. This is the Homotopy Analysis Method (HAM),
which can be judged to be a successful approach for the determination of the drag
force prior to separation. This rather complex analysis is combined with equally
complex numerical techniques. It seems that HAMmight prove successful in pushing
the results at R > 101 − 102 closer to measured values.
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Chapter 12
Three-Dimensional Creeping Flow—
Systematic Derivation of the
Shallow Flow Approximations

Abstract This chapter is devoted to the approximate determination of the velocity
field in a shallow layer of ice or granular soil, treated as a non-Newtonian material
flowing under the action of its own weight and assuming its velocity to be so small
that Stokes flow can be assumed. Two limiting cases can be analyzed: (i) The de-
forming material flows on a steep slope (which is the case for creeping landslides or
snow deposits on mountain topographies with inclination angles that are large). (ii)
In the second case the inclination angles are small. Situation (ii) is apt to ice flow
in large ice sheets such as Greenland and Antarctica, important in climate scenar-
ios in a warming atmosphere. The two situations require different approximations.
Perturbation schemes are derived in terms of a shallowness parameter in the two sit-
uations; applications are discussed under real world conditions. Applications focus
on thermo-mechanical coupled plane ice sheet flows and to the Greenland ice sheet
response to present day climate driving. In shallow, but still slow gravity driven free
surface flows the acceleration terms in Newton’s law are no longer negligible.

Keywords Viscous material spreading · Thermo-mechanical coupling · Stokes

approximation ·Free surface shallow creeping flows · Inclined and horizontal gravity
driven creep flow.

List of Symbols

Roman Symbols

A(T ) Rate factor as a function of temperature T
A Arrhenius parameter: A = Q

k TR

a(x, , y, zS, t) Accumulation (rate) function at the free surface z = zS
C Dimensionless coefficient in the sliding law
c(T ) Specific heat as a function of temperature
c̄(θ) Dimensionless specific heat as a function of temperature
D Stretching tensor, strain rate—, rate of strain—

D = 1
2 (L + LT )

D Domain inRn , n = 1, 2, 3
D Dimensionless diffusivity (see (12.18))
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[d] Scale for a frequency [1/time]
E Ratio of the gravitational potential to the internal energy (see

(12.18))
EG Dimensionless scale measuring dissipation or strain heating, —

in the SIA
F(t II ) Creep response function as function of the second stress deviator

invariant
F
2 Squared Froude number in the SIA: F2 = U 2

g[H ]
F̂
2 Squared Froude number (see (12.18)): F̂2 = F

2

sin(α)

F Ratio of nonlinear sliding functions (see (12.9) and (12.24))
f0, f1, f2 Parameters in the quadratic law for the fluidity (see (12.67))
G Parameter characterizing the constitutive response of t (see

(12.18)) and in the SIA
g Gravity vector
[H ] Depth/height scale
hS, hB Heat transfer coefficients at the free surface and at the base
hrefS,B Reference height for hS and hB

k Boltzmann constant: k = 1.3806488 × 10−23 [J K−1]
k Dimensionless fluidity at zero shearing (see (12.66))
L = grad v Spatial velocity gradient
[Lx ], [Ly] Length scales in the x- and y-directions
NS,B Nusselt number for the free surface and the base
n Exponent of the power law for stress (Glen: n = 3)
NS Length of nS

nS, nB Normal vectors perpendicular to the surface, —the base
p, p̄ Pressure, dimensionless—
p = ρg[H ] cosα Pressure scale
Q Activation energy
Qx , Qy Volume flux in the x- and y-directions
q Heat flux vector
R3 Three dimensional real space
TA Atmospheric temperature
TR Reference temperature TR = 273.15 ◦C
T Time scale T = [Lx ]

[U ]
t Cauchy stress
{txx , txy, . . . , tzz} Scales for the components of—

{txx , txy, . . . , tzz} = ρg[H ] sinα{σx , τxy, . . . ,σzz}
t S Tangential traction vector at the basal surface

t S := tnB − tn
tn Traction vector perpendicular to the basal surface

tn := (nB · tnB)nB

tII Second stress deviator invariant
[U ], [V ] Velocity scales in the x- and y-directions
v = (u, v, w) Velocity vector, components of—
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[W ] Scale of the velocity component in the z-direction
x = (x, y, z) Position vector in R3, Cartesian components of x
z = zS(x, y, t) Free surface equation
z = zB(x, y, t) Equation for the basal surface
Z = [ΔT ]

TR
Dimensionless temperature scale

Greek and Miscellaneous Symbols

α Inclination angle of the (x, y)-plane relative to the horizontal
plane

[ΔT ] Temperature scale
ε Internal energy
εx , εy Horizontal aspect ratios, εx = [H ]

[Lx ] , εy = [H ]
[Ly ]

η Ratio of x-scaling/y-scaling, η = εx
εy

= [Ly ]
[Lx ]

ρ Mass density
κ(T ) Heat conductivity as function of T
κ̄(θ) Heat conductivity as function of θ
μeff Effective dynamic viscosity
Φ(|t S|2, |tn|2) Drag coefficient, sliding—
θA, θB Dimensionless temperature of the atmosphere, —base
Ψ Essential parameter in defining the sign of the longitudinal ve-

locity component u (see (12.55))
ψ Parameter in the interval (0, 1): ψ := εy = cotanα
ψx O(1)-quantity for the non-dimensionalization of the governing

equations (12.53): ψx := εxcotanα
ψy O(1)-quantity for the non-dimensionalization of the governing

equations (12.53): ψy := εycotanα
[τ ] Scale for horizontal shear stress τxy : [τ ] = [ρgH ]ε
σx , τxy, ...,σz Dimensionless stress deviator components
τII Dimensionless second stress deviator invariant
∂DS,B Free surface and basal boundary of the domain D
SFA Shallow Flow Approximation
SIA Shallow Ice Approximation
SOSIA Second Order Shallow Ice Approximation
SSA Shallow Shelf Approximation
SOSSA Second Order Shallow Self Approximation

12.1 Introductory Motivation

Section7.4 in Chap.7 was devoted to what was said to be among the most complex
configurations of the so-called pressure drag flow. A motivation of the simplified
equations from the original fluid mechanical equations was presented; it was de-
veloped for shallow creeping flows of thermo-mechanically coupled processes of

http://dx.doi.org/10.1007/978-3-319-33633-6_7
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non-linear viscous heat conducting materials subject to gravity and resting on a more
or less horizontal bed. As a typical example the flow of ice in large ice sheets (such
as Greenland and Antarctica) was serving as motivating geophysical model, and the
simplified initial boundary value problem was explored up to a level at which it is
today used in circulation models of climate reconstructions through millennia and
future climate scenarios for centennial sea level rise predictions in future Greenhouse
scenarios.

The ‘derivation’ of the simplified initial boundary value problems from the bal-
ance laws of mass, momentum and energy was neither systematic nor rational, but
at best plausible and, in particular, did not suggest a process of improved approx-
imation. Moreover, delineation of the regime of validity of the approximate set of
equations was equally not precisely stated. In this chapter we shall partly repeat and
partly extend the analysis in Sect. 7.4 of Chap.7. We shall non-dimensionalize the
rigorously formulated initial boundary value problem and introduce a scale analy-
sis for the various physical quantities and a coordinate stretching appropriate for
creeping flows down an inclined surface. For such situations it is natural that depth-
to-length ratios are different in the downhill direction and perpendicular to it, and
that the flow is essentially from higher altitudes to lower ones. This has not been
so for the case(s) treated in Chap.7. The normalized energy equation shows that
for the applications considered, in-plane and out-of-plane (transverse) convection is
equally important. Alternatively, transverse diffusion and dissipation are both impor-
tant, whereas ‘in-plane’ diffusion may be ignored to lowest order. The introduction
of the scales and the different small aspect ratio parameters allow identification of
the shallow flow approximation as the lowest order approximation of a regular
perturbation scheme, using the aspect ratio parameter as perturbation parameter.
Furthermore, this analysis makes also clear that free-surface-creeping flow of a very
viscous fluid on a more or less horizontal plane (ice sheets on Earth or other planets;
honey on the breakfast plate, polymeric fluid spreading) and down a corrie (creep of
soil down mountain slopes, etc.) are described by different sets of partial differential
equations, each leading to slightly different initial-boundary-value problems. Con-
sequently, there is not a single Shallow Flow Approximation, there are rather several
ones, each covering (slightly) different flow configurations.

An early account of shallowness properties by stretched scaling is byKurt Otto
Friedrichs published in 1948 [22], who set the shallow water approximation on
a rational mathematical scaling. Such scalings have systematically been introduced
in the early eighties of the last century in glacier and ice sheet dynamics almost
simultaneously by Andrew C. Fowler and D.A. Larson (1978) [20], K. Hutter
(1981, 1983, 1984) [37, 39, 40], Leslie W. Morland and Ian R. Johnson (1980,
1982) [53, 54] andMorland (1984) [52]. In this chapter we followK. Hutter and
Laurent Vulliet (1985) [43], who applied the method to creeping of soil down
slopes in a geotechnical context. These latter authors introduced scalings, which
differ fromone another depending upon,whether the flow is essentially unidirectional
from higher altitudes to lower ones, or whether it forms a divide, separating the flow
directions, see Figs. 12.1, 12.2 and 12.3. In one case, the plane to which the free
basal surface and the flows are referenced, is inclined in the main flow direction

http://dx.doi.org/10.1007/978-3-319-33633-6_7
http://dx.doi.org/10.1007/978-3-319-33633-6_7
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Fig. 12.1 Piedmont glaciers in Southern Axel Heiberg Island. A series of wide, confined valley
glaciers that spread out as wide lobes when they leave narrow mountain valleys to enter a wider
valley or a plain, are called Piedmont glaciers. Aerial photo, 1977. c©J. Alean

Fig. 12.2 Glacier of the ice cap on the beamMartin Mountains, dividing Baffin and Bylot Islands,
Canada. This glacier has an expanded foot, characteristic of a Piedmont glacier, where it widens
onto a lowland. SourceNatural Resources Canada. c©Terrain Sciences Division, Geological Survey
of Canada. http://nsidc.org/cryosphere/glaciers/gallery/piedmont.html

with a finite angle; in the second case, this plane is horizontal or has a very small
inclination. The asymptotic analysis to the situation to all three cases of Fig. 12.3 is
given in this chapter.

http://nsidc.org/cryosphere/glaciers/gallery/piedmont.html
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(a) (b) (c)

Fig. 12.3 Slow creeping flow of a mass of a very viscous body under its own weight. a Flow
down an inclined surface. Motion is strictly from higher altitudes to lower ones. Spreading occurs
downslope and cross-slope. b Spreading of a mass of a viscous body on a flat bed. Motion is from a
dome (or divide in 2 dimensions) into all directions. c Downward motion on a sloping bottom, but
such that the front is pushed upward beyond the lowest point of the topography. The main flow is
from above to below in the positive x-direction, but there are domains (cross section B–B) where
backward flow can arise. Based on [43]

12.2 Model Equations

Consider a three-dimensional domain D ∈ R3 with bounding surfaces ∂DS (free
surface) and ∂DB (base). Let x, y, z be Cartesian coordinates (see Fig. 12.4); x, y
are in a plane which is inclined relative to a horizontal plane with inclination angleα;
x is in the direction of steepest descent and positive downwards; y is perpendicular
to it and thus horizontal. We regard the (x, y)-plane to be a best planar fit to the
basal surface. The third coordinate, z is perpendicular to x, y and points upwards.
The top free surface and the basal surface1 will be denoted by z = zS(x, y, t) and
z = zB(x, y), respectively, and the domain D is assumed to be continuously filled
with a density preserving heat conducting body under slow creepingmotion, ofwhich
the constitutive response is characteristically that of a fluid. We assume the material
inD to be in thermodynamic non-equilibrium and subject to heat exchange both at the
free and basal surfaces, but we ignore phase changes. Our interest is in the evolution
of the domain D(t) and the velocity and temperature distributions within it.

12.2.1 Field Equations

Governing equations are the balance laws of mass (continuity), momentum and
energy,2

1For simplicity, we treat here the basal surface as rigid and non-moving ; the more general case is
left to the reader as an exercise.
2A derivation of the energy equation is given in Chap. 17, ‘Thermodynamics—Fundamentals’.

http://dx.doi.org/10.1007/978-3-319-33636-7_17
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Fig. 12.4 Definition of configuration and coordinate system. The direction of steepest descent
defines the x-coordinate of a Cartesian coordinate system. The y-axis is horizontal, perpendicular
to the x-axis. The (x, y)-axes form a plane; perpendicular to it is the third, z-axis, positive upward.
The bottom topography (dashed lines), assumed to be un-deformable and the moving deformable
free surface (solid lines) bound themovingmass that enters the space froma narrow valley, from [43]

div v = 0,

ρ
dv

dt
= −grad p + div t + ρg, (12.1)

ρ
dε

dt
= −div q + tr(t D),

inwhich v is the velocity vector ofwhich the components in theCartesian coordinates
x, y, z will be denoted as u, v, w. ρ, p, t, g are the density, pressure, stress deviator
and gravity vector; ε and q denote the internal energy and the heat flux vector and
D is the stretching tensor, which is defined by D = sym(grad v). Moreover, ‘grad ’,
‘div ’ and ‘tr’ are the gradient, divergence and trace operators and d/dt is the material
time derivative, which is given by

d(·)
dt

= ∂(·)
∂t

+ grad (·)v. (12.2)

Occasionally we shall also use the notations

L = grad v, D = 1
2 (L + LT ).
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In order that the balance laws become field equations, they must be complemented
by constitutive relations. In this chapter we shall restrict ourselves to a fluid with
negligible elastic, but strong thermo-viscous response of the form

ε =
T∫

0

c(T ′)dT ′,

q = −κ(T ) grad T, (12.3)

D = A(T )F(tII )t, tII = 1
2 tr(t

2).

Here, c(T ) is the temperature dependent heat capacity andκ(T ) the heat conductivity,
typical of a heat conducting fluid. The third of Eq. (12.3) assumes that stretching D
and stress deviator t are collinear with a coefficient which is separated into a stress
dependent creep response function F (which is assumed to depend only on the
second stress deviator invariant tII ) and a temperature dependent rate factor A > 0.
Lateron the significance of one of several hidden variables will also be studied; they
may alter the constitutive relations. Explicit expressions for F and A will be given
below. Here, it may suffice to mention that physically reasonable F’s and A’s have
F(tII ) � 0, A(T ) > 0, for all tII and T . With F(0) �= 0 the creep law exhibits finite
viscosity at zero stress, for F(0) = 0 it is infinite, and singular behavior must be
expected. This case will be excluded. Furthermore, for creeping flow at elevated
temperatures, A varies in general several orders of magnitude within a relatively
small range of temperature, suggesting a strong thermomechanical coupling.

12.2.2 Boundary Conditions

These must be formulated at the free surface and at the bed and comprise kinematic
and dynamic statements. The free surface z = zS(x, y, t)will be assumed to be stress
free and to exchange heat with the environment. With the exterior unit normal vector
nS and with

NS =
[

1 +
(

∂zS
∂x

)2
+
(

∂zS
∂y

)2]1/2
(12.4)

the kinematic surface equation becomes

N−1
S

∂zS
∂t

+ nS · v = a(x, y, zS, t), at z = zS(x, y, t), (12.5)

inwhich a(x, y, zS(x, y, t), t) is the so-called accumulation rate function, express-
ing the addition of mass at the free surface, perpendicular to the surface. For a = 0,
Eq. (12.5) simply expresses that the free surface is material. The boundary conditions
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of zero traction and heat exchange are written in the form3

tnS − pnS = 0,

at z = zS(x, y, t).
q · nS = hS(T − TA),

(12.6)

For non-vanishing accumulation rate, a �= 0, these are approximate. TA is the air
temperature outside a thermal boundary layer and hS is the heat transfer coefficient,
which may itself be a function of the surface temperature and other variables of the
environment (say a boundary layer wind speed).

Boundary conditions at the un-deformable base z = zB(x, y) comprise a kine-
matic statement, if a slip is permitted, and a thermal heat transfer statement. The
analogues of Eqs. (12.5) and (12.6)2 are, therefore,4

v · nB = 0,
at z = zB(x, y, t),

q · nB = hB(T − TG),

(12.7)

where TG is the ground temperature outside the basal thermal boundary layer and
hB is the basal heat transfer coefficient. It remains to conjecture a sliding law that
is compatible with the kinematic condition (12.7)1. Postulating collinearity of basal
velocity and shear traction, we define

t S := tnB − tn, tn := (nB · tnB)nB (12.8)

and write
v = −Φ(|t S|2, |tn|2)t S, at z = zB(x, y), (12.9)

in which Φ � 0 is a possible non-linear function of the magnitudes of the shear
and normal tractions at the base. Physically we must have Φ > 0 for non-zero t S
or tn , but one may have Φ(0, 0) = 0, or Φ(0, 0) �= 0. It is easily seen that (12.9)
satisfies the tangency condition (12.7)1; furthermore, Φ ≡ 0 corresponds to no-slip
and Φ → ∞ yields perfect sliding. This completes the formulation of the formal
boundary value problem.

3For a material surface these expressions are accurate, but for a non-material surface (12.6) ignores
the impulse due to the mass flow across the surface. This is generally justified.
4The first of relations (12.7) assumes that there is no mass flow through the surface, e.g. no melting
of ice if glaciers or ice sheets are considered.
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12.3 Scaling Procedure

Non-dimensionalization of the above field equations are motivated by the fact that
domains, in which such creep flows usually take place (lava flows from volcanoes,
wide glacier flows, melts, etc.), are long and wide but shallow. We, thus scale the
horizontal and vertical coordinates and corresponding velocities differently andwrite
for these, for the time, the stresses and temperature

x = [Lx ]x̄, u = [U ]ū, txx = ρg[H ] sinα σx ,

y = [Ly]ȳ, v = [V ]v̄, txy = ρg[H ] sinα τxy,

z = [H ]z̄, w = [W ]w̄,

a = [W ]ā,
etc.,

t = [T]t̄, T = TR + [ΔT ]θ, p = ρg[H ] cosα p̄,

(12.10)

in which [Lx ], [Ly], [H ] are length scales in the x, y and z-directions, [T] is a typical
time, [U ], [V ] and [W ] are characteristic velocities in the x, y and z-directions.
Moreover, TR is a constant reference temperature and [ΔT ] a temperature range
within the material occupying the domain D. Note that pressure has been scaled
with ρg[H ] cosα and components of the stress deviator with ρg[H ] sinα, because
it is supposed that the basal tractions (normal pressure, shear traction) are basically
responding to a hydrostatic pressure distribution. This will naturally limit the flow
configurations in the approximations treated below. Greek and overbarred quantities
are dimensionless.

We now focus attention to processes of which the velocity components arise in
proportion of the length scales in the x-, y- and z-directions, [Lx ], [Ly] and [H ],
respectively. This suggests the identifications

[V ]
[U ] = [Ly]

[Lx ] ,
[W ]
[U ] = [H ]

[Lx ] , [T] = [Lx ]
[U ] . (12.11)

The choices (12.11)1,2 say that the geometric stretchings and the velocity stretchings
are the same. So, localized features, i.e., formations of local vortices are not optimally
incorporated and, in a stretching based approximation, eliminated. On the other
hand, it is readily seen that with (12.11)1,2 the dimensionless continuity equation,
div xv = 0 is preserved, div x̄ v̄ = 0. Moreover, (12.11)3 together with (12.11)1,2 and
the scaling (12.10) show that

dv

dt
−→ ρgF̂2 dv̄

dt̄
,

dv̄

dt̄
= ∂v̄

∂ t̄
+ (grad x̄ v̄) · v̄, (12.12)

where F̂ is defined in (12.18) (below) or for any scalar variable (·)

d(·)
dt

−→ α(·̄)
d(·)
dt̄

, (12.13)
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in which α(·̄) is an isotropic stretching measure. Thus, mass balance is fully pre-
served and substantive derivatives of the velocity vector or any scalar variable are
isotropically stretched or squeezed. This is indication that these quantities are well
transformed under the chosen scalings. We shall soon see that this is different for
flux terms.

It is straightforward, even though a bit cumbersome, to show that the component
form of the field Eq. (12.1) and constitutive relations (12.3) in dimensionless form
become

∂ū

∂ x̄
+ ∂v̄

∂ ȳ
+ ∂w̄

∂ z̄
= 0,

F̂
2 dū

dt̄
= εx

(
−cotanα

∂ p̄

∂ x̄
+ ∂σx

∂ x̄

)
+ εy

∂τxy

∂ ȳ
+ ∂τxz

∂ z̄
+ 1,

F̂
2η

dv̄

dt̄
= εx

∂τxy

∂ x̄
+ εy

(
−cotanα

∂ p̄

∂ ȳ
+ ∂σy

∂ ȳ

)
+ ∂τyz

∂ z̄
,

F̂
2εx tanα

dw̄

dt̄
= εx tanα

∂τxz

∂ x̄
+ εy tanα

∂τyz

∂ ȳ
−
(

∂ p̄

∂ z̄
+ tanα

∂σz

∂ z̄
+ 1

)
,

c̄(θ)
dθ

dt̄
= D

[
ε2x

∂

∂ x̄

(
κ̄(θ)

∂θ

∂ x̄

)
+ ε2y

∂

∂ ȳ

(
κ̄(θ)

∂θ

∂ ȳ

)
+ ∂

∂ z̄

(
κ̄(θ)

∂θ

∂ z̄

)]

+EG2 Ā(θ)f(τII )τII , (12.14)
∂ū

∂ x̄
= G Ā(θ)f(τII )σx ,

∂v̄

∂ ȳ
= G Ā(θ)f(τII )σy,

∂w̄

∂ z̄
= G Ā(θ)f(τII )σz,

∂ū

∂ ȳ
+ η2 ∂v̄

∂ x̄
= 2ηG Ā(θ)f(τII )τxy,

∂ū

∂ z̄
+ ε2x

∂w̄

∂ x̄
= 2εxG Ā(θ)f(τII )τxz,

∂v̄

∂ z̄
+ ε2y

∂w̄

∂ ȳ
= 2εyG Ā(θ)f(τII )τyz,

in which

τII = 1
2

(
σ2
x + σ2

y + σ2
z

)+ τ 2
xy + τ 2

yz + τ 2
zx , (12.15)

d

dt̄
= ∂

∂ t̄
+ ∂

∂ x̄
ū + ∂

∂ ȳ
v̄ + ∂

∂ z̄
w̄
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are the dimensionless stress deviator invariant and the dimensionless material time
derivative and

εx = [H ]
[Lx ] , εy = [H ]

[Ly] , η = εx

εy
= [Ly]

[Lx ] (12.16)

are aspect ratios. Furthermore,

f(τII ) := F
(
(ρg[H ] sinα)2τII

)

F
(
(ρg[H ] sinα)2 · 1) ,

Ā(θ) := A(T )

A(TR)
= A(TR + [ΔT ]θ)

A(TR)
:= A′(θ)

A(TR)
,

(12.17)

κ̄(θ) := κ(T )

κ(TR)
= κ(TR + [ΔT ]θ)

κ(TR)
:= κ′

κ(TR)
,

c̄(θ) := c(T )

c(TR)
= c(TR + [ΔT ]θ)

c(TR)
:= c′(θ)

c(TR)

are a dimensionless creep response function, rate factor, heat conductivity and heat
capacity, all positive functions. Moreover, F̂, G, D and E are dimensionless charac-
teristic numbers, defined by

F̂
2 := [U 2]

g[Lx ] sinα

G := [Lx ]
[U ] ρg sinα[H ]A(TR)F

(
(ρg[H ] sinα)2

)
,

(12.18)
D := [Lx ]

[U ]
κ(TR)

ρc(TR)[H 2] ,

E := g[H ] sinα

c(TR)[ΔT ] .

F̂ is a Froude5 number,D a dimensionless diffusivity,G a parameter characterizing
the constitutive response of stress, and the product EG measures the significance of
dissipation or strain heating.

Let us pause and inspect equations (12.14) more closely: (12.14)1 is the dimen-
sionless mass balance equation for a density preserving body; (12.14)2,3 are the
(x, y)-parallel components of the momentum balance, whilst (12.14)4 is that perpen-
dicular to the (x, y)-plane. We take the position that the dimensionless variables in
Eq. (12.14) are of order unity, whereas the factors F̂, F̂ tanα,D,E,G and εx , εy , η take

5In continental Europe F̂ is defined as Froude number, in English speaking countries it is more
often F̂

2. For a biographical sketch of Froude, see Fig. 7.25 in Vol. 1.
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Table 12.1 Magnitudes of physical quantities and orders of magnitude for typical scales for
glaciers, soil, lava and steel-melt flows, after [43]

Quantity Dimensiona Glacier iceb Soild Lava flowse Steel
meltf

g [m (∗)−2] 9.76 × 1015 9.81 9.81 9.81

ρ [kgm−3] 900 2000 2500 7500

TR [◦K] 273.15 – 1773 1773

κ(TR) [J K−1m−1(∗)−1] 7 × 107 – 2 − 4 30

c(TR) [J kg−1K−1] 2 × 103 – 1.225 ×
103

650

μeff [kgm−1(∗)−1] c7.5 ×
(1018 − 1023)

c3.2 × 1020 0.2 0.2

n [−] 3 3 1 1

[ΔT ] [◦K] 20 – 100 100

[U ] [m (∗)−1] 100 − 1000 10−2 − 10−1 10−2 −
10−1

0.5

[d]−1 [(∗)] 10 − 102 10 − 103 102 − 103 0.2

[H ] [m] 102 − 103 10 − 102 1 − 5 0.1

α [◦] 3 − 30 10 − 20 5 5

A(TR) [(∗)−1((∗)2m kg)n] 1.73 × 10−61 1.6 × 10−24 1.3 × 10−7 –

[bar−n(∗)−1] =0.17 – – –
aThe asterisk stands for seconds (soil, steel melts, lava flows) or years (glaciers)
bData are taken from K. Hutter [39]
cCalculated on the basis of a power law constitutive law: μ−1

eff = A(TR)(ρg[H ] sinα)n−1

dData are taken fromAnonymous [3]. Temperature hardly affects theflowand the stress distribution
eData are taken from A. Rittmann [59] but (mostly) from T. Murase & A.R. McBirney [56]
fData are taken from F. Richter [58]

values as dictated by the material properties and the chosen scales, see Tables 12.1
and 12.2. The proper choice of these quantities is a delicate matter and must be se-
lected such that the dimensionless (overbarred) variables assume order unity values
in the processes to which they are projected. Equation (12.14)5 is the dimensionless
form of the internal energy balance. The two terms on its right-hand side describe
diffusion due to Fourier-type heat flux and dissipation due to strain heating (or
dissipation). Interestingly, and different from the behavior of the convective operator
in (12.12) and (12.13), the diffusive operator in braces exhibits anisotropic contribu-
tions in the three coordinate directions. Indeed, the (x, y)-parallel diffusion terms are
weighted with the aspect ratios ε2x and ε2y whereas the z-component has the weight-
ing factor 1. If εx and εy are small, the corresponding terms may be negligible. The
introduced scaling process favors diffusion perpendicular to the main flow direction.
We emphasize once more, the dimensionless stresses, velocities and temperature, as
well as dimensionless material functions, listed in (12.17) are all of order unity, if
scales are properly selected.
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With the physical parameters and the scales listed in Table12.1, the dimensionless
parameters (12.18) take on the order of magnitudes listed in Table12.2. Accordingly,
F̂ is very small, justifying the Stokes approximation, which ignores the acceleration
terms in Newton’s law. Hence, the momentum equations reduce to force balances.
In the evaluation of the quantities of Table12.2 we have used

A(TR)F
(
(ρg[H ] sinα)2

)−1 = μeff , (12.19)

which is an effective viscosity, and have introduced [d] ≡ [U ]/[Lx ], which is a
representative scale for the stretching. This choice is preferable to the independent
selection of [Lx ], because strain rates can directly be measured and typical values be
estimated. [Lx ] is then simply a deduced quantity, an order of magnitude for a length
over which dimensionless stresses and strain rates vary by order unity. A value for
this typical length follows from the recognition thatG = O (ε−1

x

)
as explained below

and yields [Lx ] = [H 2]ρg sinα/(μeff [d]). Table12.2 also indicates that G is large,
and D and E are not small, in general; so, in the energy equation neither diffusion
nor dissipation should be ignored in comparison to advection.

Substituting the scales (12.10) into the free surface boundary conditions (12.5)–
(12.7) and using relations (12.11) and (12.16) yields the boundary conditions in
dimensionless form. At the upper surface z̄ = z̄S(x̄, ȳ, t̄) they are

∂ z̄S
∂ t̄

+ ∂ z̄S
∂ x̄

ū + ∂ z̄S
∂ ȳ

v̄ − w̄ = ā(x̄, ȳ, z̄S, t̄),

εx (−σx + cotanα p̄)
∂ z̄S
∂ x̄

− εyτxy
∂ z̄S
∂ ȳ

+ τxz = 0,

−εxτxy
∂ z̄S
∂ x̄

+ εy
(−σy + cotanα p̄

) ∂ z̄S
∂ ȳ

+ τyz = 0, (12.20)

−εxτxz
∂ z̄S
∂ x̄

− εyτyz
∂ z̄S
∂ ȳ

+ (−σz + cotanα p̄) = 0,

κ̄(θ)

[
∂θ

∂ z̄
− ε2x

∂θ

∂ x̄

∂ z̄S
∂ x̄

− ε2y
∂θ

∂ ȳ

∂ z̄S
∂ ȳ

]
= −NSh̄S(θ − θA)NS,

in which NS is the free surface Nusselt number,6

6For a biographical sketch of Nusselt, see Fig. 12.5.
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Fig. 12.5 Ernst Kraft Wilhelm Nusselt (25. Nov. 1882–1. Sept. 1957)

Ernst Kraft Wilhelm Nusselt was a German mechanical engineer with specialization
in thermodynamics. He studied at the University Berlin Charlottenburg and the Technische
Hochschule (TH) in Munich. He received his habilitation degree in 1909 and the titular
professorship of the TH Dresden in 1915. After some years of practical engineering work,
he was called as full professor of Theoretical Machine Design at the TH Karlsruhe (1920–
1925). From 1925–1952, he held the position of Head and Professor of the ‘Institute of
Theoretical Machine Design’ and the ‘Laboratory of Heat Engines’ at the TH Munich.

Wilhelm Nusselt was an internationally recognized researcher and teacher of great es-
teem. His and his pupils’ publications were primarily devoted to specialties of technical
thermodynamics. In his famous early paper ‘Das Grundgesetz des Wärmeübergangs’ (The
fundamental law of heat transfer) in 1915 he laid the theoretical basis of this law, now sum-
marized by the dimensionless Nusselt number (12.21). The Universities of Danzig (now
Gdańsk, Poland) and Dresden honored himwith honorary doctorates and in 1953 he became
a Member of the Bavarian Academy of Sciences.

Text and photo based on: https://www.mach.kit.edu/wilhelm_nusselt.php

NS := hrefS [H ]
κ(TR)

, with hS = hrefS h̄S (12.21)

and

NS =
[

1 + ε2x

(
∂ z̄S
∂ x̄

)2
+ ε2y

(
∂ z̄S
∂ ȳ

)2]1/2
.

https://www.mach.kit.edu/wilhelm_nusselt.php
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Equation (12.20)1 is the dimensionless version of the kinematic surface equation; it is
form-invariant under the applied scalings. The next three equations are the boundary
conditions of stress expressing continuity of shear and normal tractions, and the last
equation expresses the heat transfer from the body to the environment. The limits
NS → ∞ andNS → 0 imply prescribed surface temperature and vanishing heat flow,
respectively.

The derivation of the basal boundary conditions is more involved. With the defi-
nition (12.8) and the scalings

(t S, tn) = ρg[H ] sinα( t̄ S, t̄n) (12.22)

one can readily show that at z̄ = z̄B(x̄, ȳ)

t̄Sx = − 1

NB

[
τxz + εx

∂ z̄ B
∂ x̄

(−σx + cotanα p̄) − εy
∂ z̄ B
∂ ȳ

τxy

]

+ 1

N 3
B

[
εx

∂ z̄ B
∂ x̄

(−σz + cotanα p̄) + O (ε2x , εxεy, . . .
)]

,

t̄Sy = − 1

NB

[
τyz − εx

∂ z̄ B
∂ x̄

τxy + εy
∂ z̄ B
∂ ȳ

(−σy + cotanα p̄
)]

+ 1

N 3
B

[
εy

∂ z̄ B
∂ ȳ

(−σz + cotanα p̄) + O (ε2y, εxεy, . . .
)
]

, (12.23)

t̄Sz = − 1

NB

[
(σz − cotanα p̄) − εx

∂ z̄ B
∂ x̄

τxz − εy
∂ z̄ B
∂ ȳ

τyz

]

+ 1

N 3
B

[
(σz − cotanα p̄) − 2εx

∂ z̄ B
∂ x̄

τxz − 2εy
∂ z̄ B
∂ ȳ

τyz

+O (ε2x , ε2y, εxεy, . . .
) ]

,

with

NB =
[

1 + ε2x

(
∂ z̄ B
∂ x̄

)2
+ ε2y

(
∂ z̄ B
∂ ȳ

)2]1/2
,

in which O is the order symbol and the dots indicate higher order terms. The terms
in the second lines of each of (12.23) comprise the x-, y- and z-components of tn .
The explicit derivation of (12.23) from Eq. (12.8) is somewhat involved, but it is not
difficult. Defining

F :=
Φ
(
(ρg[H ] sinα)2

∣∣ t̄ S
∣∣2 , (ρg[H ] sinα)2

∣∣ t̄n
∣∣2
)

Φ
(
(ρg[H ] sinα)2 · 1, (ρg[H ] sinα)2 · 1) (12.24)

and using the scales (12.10) and (12.22), straightforward manipulations with (12.9)
yield the dimensionless sliding law in the form
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ū B = −CF
(∣∣ t̄ S
∣∣2 ,
∣∣ t̄n
∣∣2
)
t̄Sx ,

at z̄ = z̄ B(x̄, ȳ), (12.25)

ηv̄B = −CF
(∣
∣ t̄ S
∣
∣2 ,
∣
∣ t̄n
∣
∣2
)
t̄Sy ,

in which

C := cΦ(c2, c2)

[U ] , c := ρg[H ] sinα. (12.26)

The third velocity component at the base follows from the tangency condition vB ·
nB = 0 and reads in dimensionless form

w̄B = ū B
∂ z̄ B
∂ x̄

+ v̄B
∂ z̄ B
∂ ȳ

. (12.27)

Moreover, the thermal boundary condition (12.7)2 becomes

κ̄(θ)

[
∂θ

∂ z̄
− ε2x

∂θ

∂ x̄

z̄B
∂ x̄

− ε2y
∂θ

∂ ȳ

z̄B
∂ ȳ

]
= NBhB(θ − θB)NB, at z̄ = z̄ B(x̄, ȳ),

(12.28)
in which

NB := hrefB [H ]
κ(TR)

, with hB = hrefB h̄B (12.29)

is the basal Nusselt number and NB is defined immediately below (12.23). Again
the limits NB → ∞ and NB → 0 incorporate the cases of prescribed temperature
and vanishing heat flow.

The transformation of the boundary value problem to dimensionless form is now
complete. However, it is convenient to complement the above equations by the depth
integrated continuity equation. From (12.14)1 we may deduce

z̄S∫

z̄B

(
∂ū

∂ x̄
+ ∂v̄

∂ ȳ

)
dz̄ + w̄z̄S − w̄z̄B = 0,

or, when using in the integral term on the left-hand side the Leibniz rule,

∂

∂ x̄

z̄S∫

z̄B

ū(x̄, ȳ, z̄, t̄)dz̄

︸ ︷︷ ︸
Qx̄

+ ∂

∂ ȳ

z̄S∫

z̄B

v̄(x̄, ȳ, z̄, t̄)dz̄

︸ ︷︷ ︸
Qȳ

−
(

∂ z̄S
∂ x̄

ū z̄S + ∂ z̄S
∂ ȳ

v̄z̄S − wz̄S

)

︸ ︷︷ ︸
− ∂ z̄S

∂ t̄ +NSā(x̄,ȳ,z̄S ,t̄)

+
(

∂ z̄B
∂ x̄

ū z̄B + ∂ z̄B
∂ ȳ

v̄z̄B − w̄z̄

)

︸ ︷︷ ︸
=0 [for z̄=z̄B (x̄,ȳ)]

= 0, (12.30)
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so that
∂ z̄S
∂ t̄

+ ∂Qx̄

∂ x̄
+ ∂Qȳ

∂ ȳ
= NSā (12.31)

with

Qx̄ :=
z̄S∫

z̄B

ū(x̄, ȳ, z̄, t̄)dz̄, Qȳ :=
z̄S∫

z̄B

v̄(x̄, ȳ, z̄, t̄)dz̄, (12.32)

which are the volume fluxes in the x̄- and ȳ-directions, respectively.
Equations (12.14), (12.20), (12.25) and (12.28) constitute the boundary value

problem in dimensionless form. It involves several dimensionless parameters;G � 1
is large, and in view of the fact that we expect [Lx ] � [H ], [Ly] � [H ], but
[Ly] � [Lx ], one has εx � 1 and εy � 1, but η � O(1). Moreover, since α is small
(5◦–20◦), tanα � 1, but cotanα is large.

Clearly, various distinguished limits can be analyzed, but here we assume that the
downhill motion causes a dimensionless shear stretching of order unity. Because A
and F have been scaled such that Ā and f are order unity quantities, Eq. (12.14)10 then
requires that G = O(ε−1

x ), for otherwise the order unity left-hand side of (12.14)10
would not be balanced by an order unity right-hand side. Since G is large, this im-
plies small εx , but the value of εx defines also, over which lengths an order unity
dimensionless stress causes an order unity dimensionless stretching. Analogously,
Eq. (12.14)11 implies G = O(ε−1

y ), so that εx ≈ εy .7 In reality, see Fig. 12.3, it is
expected that εx � εy , and in fact, we will assume so; more specifically, it is re-
quired that εxcotanα is small, perhaps of order εy , while εycotanα and εx/εy = η
are O(1). This essentially delimits application of subsequent developments to flow
situations of Fig. 12.3a. This means physically that the flow is primarily downhill.
The inclination angle must clearly be bounded away from zero. We shall see that
this scaling makes approximate equations applicable e.g. to mountainous glacier
flows and creeping landslides down mountain slopes. Furthermore, for Stokes flow
(F̂2 → 0), the momentum Eq. (12.14)2,3,4 reduce to force balances: in the down-
hill direction the shear stresses are, to lowest order, balanced by the gravity force
component in that direction.8 The z-momentum equation reduces to the hydrostatic
pressure equation. In the y-direction, however, shear stresses should be balanced
by the transverse ȳ-pressure gradients for otherwise τyz would identically vanish in
view of the boundary condition (12.20)3. This would then contradict with the fact
that a sidewise shear stretching is possible. Thus, in order to balance in equation
(12.14)3 the vertical shear stress gradient ∂τyz/∂ z̄ with the pressure gradient, one
must necessarily have εycotanα = O(1).

7If we would assume G to be O(1), whilst εx , εy are small, Eq. (12.14)10,11 would to lowest order
request that the horizontal velocity components would be independent of the z-variable (plug flow),
which for any shearing deformation must be unrealistic.
8Strictly this assumes that tanα(∂σz)/(∂ z̄) is small as compared to unity, see (12.14)4, which shall
be assumed.
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12.4 Lowest Order Model Equations for Flow Down Steep
Slopes (Strong Steep Slope Shallow Flow
Approximation)

The purpose of the non-dimensionalization of the model equations in Sect. 12.2 has
been to obtain field equations and boundary conditions in which the independent
variables and their space and time derivatives are pure numbers with order of magni-
tude equal to unity; these are possibly pre-multiplied with dimensionless quantities
of which the numerical values are dictated by the scalings and material quantities
(coefficients). These can have values from very small to very large and may then
suggest procedures of approximation e.g. by dropping terms that are thought to be
of negligible influence. This was done in Chap.7 in an ad-hoc manner. Here, with
the employed scaling and the non-dimensionalization of the boundary value prob-
lem, the procedure is more rational and, thus guarantees, since small parameters are
present, that systematic simplifications can be implemented. The discussion in the
last paragraph of Sect. 12.3 suggests that the following distinguished limit should be
studied:

F̂ → 0, Stokes approximation,
G = O (ε−1

x

)
,

εxcotanα = φ εy, φ finite, bounded away from zero,
εycotanα = ψ, ψ finite, bounded away from zero,
η = εx

εy
= finite, finite, bounded away from zero.

(12.33)

All other dimensionless quantities are regarded as finite. With (12.33), the bound-
ary value problem (12.14), (12.20), (12.25), (12.28) can be expressed as operator
equations involving the small parameters εx , εy in terms of which perturbation solu-
tions can be sought. Here we are less ambitious and only deal with the lowest order
approximation, εx → 0, εy → 0. The constitutive relations (12.14)6−11 then imply
(bars, characterizing dimensionless quantities, will henceforth be omitted):

σx = σy = σz = τxy = 0,
∂u
∂z = 2A(θ)f(τII )τxz, in D,

∂v
∂z = 1

η
2A(θ)f(τII )τyz,

(12.34)

in which
τII = τ 2

xz + τ 2
yz . (12.35)

The momentum equations reduce to

∂τxz
∂z + 1 = 0,

−ψ ∂ p
∂y + ∂τyz

∂z = 0, in D,
∂ p
∂z + 1 = 0,

(12.36)

http://dx.doi.org/10.1007/978-3-319-33633-6_7
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and themechanical boundary conditions of stress on the free surface, (12.20), become

τxz = 0, τyz = 0, p = 0, on ∂DS, (12.37)

whereas on the immobile basal surface, (12.25) and (12.27) remain unchanged,

uB = CF(·, ·)τxz,
ηvB = CF(·, ·)τyz, on ∂DB,

wB = uB
∂zB
∂x + vB

∂zB
∂y ,

(12.38)

except that F is now given by

F = F

(
(
τ 2
xz + τ 2

yz

)
,

(

cotan2(α) p2 + ψ2 p2
(

∂zB
∂y

)2))

. (12.39)

The thermal equations will later be dealt with. Equation (12.36) subject to the bound-
ary conditions (12.37) can be integrated and the results be substituted into (12.34)2,3.
For a known temperature field the emerging equations for u and v can then be inte-
grated subject to the boundary conditions (12.38). This process yields

τxz(x, y, z, t) = (zS(x, y, t) − z) ,

τyz(x, y, z, t) = −ψ
∂zS(x, y, t)

∂y
(zS(x, y, t) − z) , (12.40)

p(x, y, z, t) = (zS(x, y, t) − z) ,

and

u(x, y, z, t) = CF(·, ·) (zS(x, y, t) − zB(x, y))

+2

z∫

zB

A (θ(x, y, z, t)) f (τII (x, y, ζ, t)) · (zS(x, y, t) − ζ) dζ,

(12.41)

v(x, y, z, t) = −CF(·, ·)ψ
η

∂zS(x, y, t)

∂y
(zS(x, y, t) − zB(x, y))

−2ψ

η

∂zS(x, y, t)

∂y

z∫

zB

A (θ(x, y, z, t)) f (τII (x, y, ζ, t))

· (zS(x, y, t) − ζ) dζ,



68 12 Three-Dimensional Creeping Flow—Systematic Derivation of the Shallow …

in which

τII (x, , y, z, t) =
(

1 + ψ2

(
∂zS(x, y, t)

∂y

)2)

(zS(x, y, t) − z)2 ,

F(·, ·) = F

{

(zS(x, y, t) − zB(x, y))2
(

1 + ψ2

(
∂zS(x, y, t)

∂y

)2)

, (12.42)

(zS(x, y, t) − zB(x, y))2
(

cotan2(α) + ψ2

(
∂zB
∂y

)2)}

.

Finally, once u and v are determined from (12.41), w can be determined by depth
integrating the continuity equation from ζ = zB to ζ = z; with the aid of (12.38)3
this yields

w = uB
∂zB
∂x

+ vB
∂zB
∂y

−
z∫

zB

(
∂u

∂x
(x, y, ζ) + ∂v

∂y
(x, y, ζ)

)
dζ, (12.43)

or with (12.41) in which z = zB ,

w(x, y, z, t) = CF(·, ·) (zS(x, y, t) − zB(x, y))

×
[
∂zB(x, y)

∂x
− ψ

η
· ∂zS(x, y, t)

∂y

zB(x, y)

∂y

]

−
z∫

zB

(
∂u(x, y, ζ, t)

∂x
+ ∂v(x, y, ζ, t)

∂y

)
dζ, (12.44)

in which u and v are to be substituted from (12.41). As would be expected, w (in
physical dimensions) is small.

It is appropriate here to pause and to review what has been achieved. For given
geometry, Eq. (12.40) permit evaluation of the dimensionless stresses. Accordingly,
the ‘downhill’ shear stress and the overburden pressure are simply given by the
overburden depth. Because the latter is always positive, τxz cannot change signs.
Alternatively, τyz , the cross-slope shear stress, is proportional to the product of over-
burden depth and surface gradient, ∂zS/∂y, which may be positive or negative. This
suggests that u > 0, whereas v>

<0 depending on whether ∂zS/∂y
<
>0. BecauseF � 0,

A > 0 and f � 0 for all arguments, these properties are readily corroborated with
the aid of (12.41). A fortiori, (12.41)2 implies that v = 0 whenever ∂zS/∂y = 0.
Because this last equation defines the ‘ridge’, it follows that along the ridge the flow
is in the x-direction at all depths. Moreover, from (12.41) we deduce
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v

u
= −ψ

η

∂zS(x, y, t)

∂y
, (12.45)

independent of z and zB . Therefore, for fixed x and y the in-plane velocity vector
does not rotate as one moves downward parallel to the z-axis.9 To obtain a complete
picture of the velocity field in the (x, y)-plane, it suffices to construct vector plots of
the surface velocities (u, v) or associated streamlines and profiles of speed for fixed
x and y.

Note also that determination of all fields in Eqs. (12.40)–(12.42) and (12.44)
requires knowledge of the phenomenological functions F, A, f and C, as well as
the temperature distribution as functions of space and time. Moreover, the surface
geometry must also be known. Given this information the stresses τxz, τyz , the pres-
sure p and velocity components u, v, w can be determined by only using quadratures
in the z-direction. Thus, for the solution of the complete problem the heat equation
and the kinematic wave equation must be solved along with (12.40)–(12.42). To
lowest order in εx and εy the temperature boundary value problem (12.14)5, (12.20)5
and (12.28) reduces to the boundary value problem

c(θ)

(
∂θ

∂t
+ ∂θ

∂x
u + ∂θ

∂y
v + ∂θ

∂z
w

)

in D,

= D
∂

∂z

(
κ(θ)

∂θ

∂z

)
+ 2EGA(θ)f(τII )τII ,

(12.46)

κ(θ)
∂θ

∂z
= −NShS(θ − θA), on ∂DS,

κ(θ)
∂θ

∂z
= NShS(θ − θB), on ∂DB

(12.47)

subject to the initial condition

θ(x, y, z, 0) = θ0(x, , y, z) in D. (12.48)

On the other hand, the evolution equation for the free surface (12.31) can with
(12.45) be given in the form

9In field campaigns of glacier or soil flows, vertical bore holes are equipped with inclinometers at
various depths with the aid of which the velocity profiles can be determined. In such measurements
it is possible to verify whether all inclinometers lie indeed in a vertical plane. If this is not the case,
one reason could be that the basal sliding law is not isotropic. In that case (12.9) and (12.25) would
have to be changed.
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∂zS
∂t

+ ∂Qx

∂x
− ψ

η

∂

∂y

(
∂zS
∂y

Qx

)
= a(x, y, zS, t), in PD,

Qx = CF(·) (zS − zB)2

+ 2

zS∫

zB

A(θ(x, y, ζ, t)) · f (τII (x, y, ζ, t)) (zS(x, y, t) − ζ)2 dζ (12.49)

to be solved in the projection onto the (x, y)-plane, PD of D, and subject to the
boundary condition zS = zB along the grounding line ∂DS ∩ ∂DB . Equation (12.46)
is an unsteady advection-diffusion-reaction equation for temperature in a three di-
mensional domain. Analogously, because the third term on the left of (12.49)1 de-
pends explicitly on ∂zS/∂y, but also because F and f contain it implicitly (compare
(12.42)), Eq. (12.46) is a forced advection-diffusion equation in the two-dimensional
domain PD. In view of (12.49)2 one has

Qx = Q̃

(
zS,

∂zS
∂y

, ·
)

,

so that (12.49)1 may be written as

∂zS
∂t

+ ∂ Q̃

∂zS

[
∂zS
∂x

− ψ

η

(
∂zS
∂y

)2]

+ ∂ Q̃

∂(∂zS/∂y)

∂2zS
∂x ∂y

+
{

−ψ

η

[

Q̃ + ∂ Q̃

∂(∂zS/∂y)

∂zS
∂y

]}
∂2zS
∂y2

= a(x, y, zS, t), (12.50)

from which it is now seen that the surface elevation equation is parabolic and quasi-
linear. However, it is also singular at the grounding line, because for zS = zB, Q̃ =
0, ∂ Q̃/∂zS = 0, ∂ Q̃/∂(∂zS/∂y) = 0, for the proof of which (12.49)2 and (12.42)
are used. Furthermore,

∂ Q̃

∂(∂zS/∂y)
= 2Cψ2 (zS − zB)4 F′(·)∂zS

∂y

+ 4ψ
∂zS
∂y

zS∫

ZB

A(θ)f ′ (τII (x, y, ζ, t)) (zS − ζ)4dζ,

in which f ′(ξ) := df(ξ)/dξ and F′(ξ, ·) = ∂F(ξ, ·)/∂ξ. Any physically reasonable
constitutive relations and sliding laws have f ′ > 0 and F′ > 0, so that

∂ Q̃

∂(∂zS/∂y)
<
> 0 ⇐⇒ ∂zS

∂y
<
> 0 ⇐⇒ v >

< 0,
∂ Q̃

∂zS
> 0, if zS > zB . (12.51)
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Thus, the term in braces in (12.50) is always negative, which verifies the positive dif-
fusive nature of the equation for both steady and non-steady flows and demonstrates
the invariance of Eq. (12.50) to the sign of ∂zS/∂y as would be expected.

12.5 A Slightly More General Steep Slope Shallow Flow
Approximation (Weak Steep Slope Shallow Flow
Approximation)

It was demonstrated earlier that the preceding scaling analysis does not apply to
situations of panels b and c in Fig. 12.3. Whereas the situation of Fig. 12.3b needs
to be treated quite differently (see the subsequent section), that of Fig. 12.3c can
relatively easily be included. However, it requires a different ordering of equations,
namely εx ≈ εy as well as

εxcotanα = ψx ≈ εycotanα = ψy = O(1), (12.52)

All other order of magnitude relations remain valid. With (12.52), Eq. (12.14)2,3,4
appear now in the forms

−ψx
∂ p̄
∂ x̄ + ∂τxz

∂ z̄
+ 1 = 0,

−ψy
∂ p̄
∂ ȳ + ∂τyz

∂ z̄
= 0,

∂ p̄
∂ z̄ − 1 = 0.

(12.53)

Integrating these equations, subject to the boundary conditions p̄(·, z̄S) = τxz
(·, z̄S) = τyz(·, z̄S) = 0 yields the stress distribution

p̄(x̄, ȳ, z̄, t̄) = (z̄S
(
x̄, ȳ, t̄

)− z̄
)
,

τxz(x̄, ȳ, z̄, t̄) =
(
1 − ψx

∂ z̄S(x̄, ȳ, t̄)

∂ x̄

)
(
z̄S
(
x̄, ȳ, t̄

)− z̄
)
, (12.54)

τyz(x̄, ȳ, z̄, t̄) = −ψy
∂ z̄S(x̄, ȳ, t̄)

∂ ȳ

(
z̄S
(
x̄, ȳ, t̄

)− ȳ
)
.

Moreover, substituting these into (12.34)2,3 and integrating the emerging relations
with respect to ζ from ζ = z̄B to ζ = z̄ and observing the basal boundary conditions
(12.38) yields
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ū(x̄, ȳ, z̄, t̄) = CF(·, ·)
(
1 − ψx

∂ z̄S(x̄, ȳ, t̄)

∂ x̄

) (
z̄S(x̄, ȳ, t̄) − z̄ B(x̄, ȳ)

)

+ 2

(
1 − ψx

∂ z̄S(x̄, ȳ, t̄)

∂ x̄

)
I (z̄, z̄S(x̄, ȳ, t̄), z̄ B(x̄, ȳ)

)
,

(12.55)

v̄(x̄, ȳ, z̄, t̄) = −CF(·, ·)ψy

η

∂ z̄S(x̄, ȳ, t̄)

∂ ȳ

(
z̄S(x̄, ȳ, t̄) − z̄ B(x̄, ȳ)

)

− 2
ψy

η

∂ z̄S(x̄, ȳ, t̄)

∂ ȳ
I (z̄, z̄S(x̄, ȳ, t̄), z̄ B(x̄, ȳ)

)
,

in which

τII (x̄, ȳ, z̄, t̄) =
[(

1 − ψx
∂ z̄S(x̄, ȳ, t̄)

∂ x̄

)2
+ ψ2

y

(
∂ z̄S(x̄, ȳ, t̄)

∂ ȳ

)2]

× (z̄S(x̄, ȳ, t̄) − z̄
)2

,

F(·, ·) = F

[
(
z̄S(x̄, ȳ, t̄) − z̄ B(x̄, ȳ)

)2
((

1 − ψx
z̄(x̄, ȳ, t̄)

∂ x̄

)2

+ψ2
y

(
∂ z̄S(x̄, ȳ, t̄)

∂ ȳ

)2)

,
(
z̄S(x̄, ȳ, t̄) − z̄ B(x̄, ȳ)

)2

×
(

cotan2α × ψ2
x

(
∂ z̄ B(x̄, ȳ)

)2
+ ψ2

y

(
∂ z̄ B(x̄, ȳ)

∂ ȳ

)2)]

,

(12.56)

I (z̄, z̄S(x̄, ȳ, t̄), z̄ B(x̄, ȳ)
)

=
z̄∫

z̄B

Ā
(
θ(x̄, ȳ, ζ, t̄)

)
f
(
τII (x̄, ȳ, ζ, t̄)

) (
z̄S(x̄, ȳ, t̄) − ζ

)
dζ.

It follows, as before, that v >
<0 depending on whether ∂ z̄S(x̄, ȳ, t̄)/∂ ȳ<

>0, but ū is no
longer strictly positive as before. In fact, the sign of ū depends on that of

Ψ :=
[
1 − ψx

∂ z̄(x̄, ȳ, t̄)

∂ x̄

]
. (12.57)

Over most part of the domain we have Ψ > 0, so ū > 0, in particular at the thalweg
position, where the flow crosses from one valley side to the other, Fig. 12.6 and the
motion may proceed uphill on the other side of the valley. Only where

ψx
z̄S(x̄, ȳ, t̄)

∂ x̄
> 1
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Fig. 12.6 Flow near the
thalweg position. The flow
crosses from one valley side
to the other and the motion
may proceed uphill on the
other side of the valley

a return flow does occur as shown on Fig. 12.3c (cross section B–B). Because in view
of (12.55)

v

u
= − ψy∂ z̄S/∂ ȳ

η(1 − ψx∂ z̄S/∂ x̄)
, (12.58)

which is independent of z, the in-plane velocity vector does not rotate with depth as
before, and the kinematic surface equation becomes

∂ z̄S
∂ t̄

+ ∂

∂ x̄

((
1 − ψx

∂ z̄S
∂ x̄

)
Qx

)
− ψy

η

∂

∂ ȳ

(
Qx

∂ z̄S
∂ ȳ

)
= ā, (12.59)

where Qx is defined in (12.49)2. Alternatively, since

Qx = ˜̃Qx

(
z̄S,

∂ z̄S
∂ x̄

,
∂ z̄S
∂ ȳ

, ·
)

, (12.60)

one has as evolution equation of z̄S

∂ z̄S
∂ t̄

+
(
1 − ψx

∂ z̄S
∂ x̄

)
∂ ˜̃Q
∂ z̄S

∂ z̄S
∂ x̄

− ψy

η

∂ ˜̃Q
∂ z̄S

(
∂ z̄S
∂ ȳ

)2

−
[

−
(
1 − ψx

∂ z̄S
∂ x̄

)
∂ ˜̃Q

∂(∂ z̄S/∂ x̄)
+ ψx

˜̃Q
]

∂2 z̄S
∂ x̄2

−
[

−
(
1 − ψx

∂ z̄S
∂ x̄

)
∂ ˜̃Q

∂(∂ z̄S/∂ ȳ)
+ ψy

η

∂ ˜̃Q
∂(∂ z̄S/∂ x̄)

∂ z̄

∂ ȳ

]
∂2 z̄S
∂ x̄∂ ȳ

− ψy

η

[
˜̃Q + ∂ ˜̃Q

∂(∂ z̄S/∂ ȳ)

∂ z̄

∂ ȳ

]
∂2 z̄S
∂ ȳ2

= ā(x̄, ȳ, z̄S, t̄). (12.61)

This is a quasi-linear advection-diffusion-reaction equation. Its invariance to the sign
of ∂ z̄S/∂ ȳ can be proven, but a demonstration of the positive diffusive nature has
not been possible under all flow situations even though it is likely.

Because computations are only slightly more difficult with this scaling than the
previous one they are best performed with this equation set.
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12.6 Phenomenological Expressions
for Creeping Glacier Ice

The model is completed by presenting explicit expressions for the functions A(θ), f)
(τII ) and F(|t S|2, |tn|2). Typical of thermo-viscous bodies at elevated temperature is
an Arrhenius-type rate factor10

10For a biographical sketch of Svante August Arrhenius, see Fig. 12.7. This might be the point
where climatologically other significant work of Svante Arrhenius ought to be mentioned. This
is justified in a chapter in which the dynamics of ice sheets, in particular their nutrition and wastage
of mass and energy, is described by the accumulation of mass and the flow of heat through the free
surface by radiation from the outer space. From a climatological point of view, Arrhenius was
probably the first scientist to draw attention to the anthropogenic effect caused by the greenhouse
gases. Indeed: ‘Arrhenius developed a theory to explain the ice ages, and in 1896, was the first
scientist to attempt to calculate how changes in the levels of carbon dioxide in the atmosphere could
alter the surface temperature through the greenhouse effect. Hewas influenced by thework of others,
including Joseph Fourier, John Tyndall or Claude Pouillet. Arrhenius used the infrared
observations of the moon by Frank Washington Very and Samuel Pierpont Langley at the
AlleghenyObservatory in Pittsburgh to calculate the absorption of infrared radiation by atmospheric
CO2 and water vapour. Using the Stefan–Boltzmann law, he formulated his greenhouse law. In
its original form, Arrhenius’ greenhouse law reads as follows:

if the quantity of carbonic acid [CO2] increases in geometric progression, the augmentation of
the temperature will increase nearly in arithmetic progression.

The following equivalent formulation of Arrhenius’ greenhouse law is still used today:

ΔF = α ln(C/C0).

HereC is carbon dioxide (CO2) concentration measured in parts per million by volume (ppmv);C0
denotes a baseline or unperturbed concentration of CO2, andΔF is the radiative forcing, measured
in watts per square meter. The constant α has been assigned a value between five and seven.

Based on information from his colleague Arvid Högbom, Arrhenius was the first person to
predict that emissions of carbon dioxide from the burning of fossil fuels and other combustion
processes were large enough to cause global warming. In his calculation he included the feedback
from changes in water vapor as well as latitudinal effects, but he omitted clouds, convection of heat
upward in the atmosphere, and other essential factors. His work is currently seen less as an accurate
prediction of global warming than as the first demonstration that it should be taken as a serious
possibility.

Arrhenius’ absorption values for CO2 and his conclusions met criticism byKnut Angström
in 1900, who published the first modern infrared spectrum of CO2 with two absorption bands, and
published experimental results that seemed to show that absorption of infrared radiation by the gas in
the atmosphere was already “saturated” so that adding more could make no difference.Arrhenius
replied strongly in 1901 (Annalen der Physik), dismissing the critique altogether. He touched the
subject briefly in a technical book titled ‘Lehrbuch der kosmischen Physik’ (1903) (Course book on
cosmic physics). He later wrote ‘Världarnas utveckling’ (1906) (English: ‘Worlds in the Making’
(1908)) directed at a general audience, where he suggested that the human emission of CO2 would
be strong enough to prevent the world from entering a new ice age, and that a warmer earth would
be needed to feed the rapidly increasing population.’ Based on www.wikipedia.org.

www.wikipedia.org
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Fig. 12.7 Svante August Arrhenius (19. Feb. 1859–2. Oct. 1927) (Right photo)
Arrhenius visiting Boltzmann in Graz 1887

Svante August Arrhenius was a Swedish scientist, originally a physicist, but often re-
ferred to as a chemist, and one of the founders of the science of physical chemistry. He
received the Nobel Prize for Chemistry in 1903, becoming the first Swedish Nobel laure-
ate, and in 1905 became director of the Nobel Institute where he remained until his death.

Arrhenius was born at Vik, near Uppsala, Sweden [...]. At the age of three, Arrhenius
taught himself to readwithout the encouragement of his parents, and bywatching his father’s
addition of numbers in his account books, became an arithmetical prodigy. At age eight,
he entered the local cathedral school, starting in the fifth grade, distinguishing himself in
physics and mathematics, and graduating as the youngest and most able student in 1876.

He studied at the Physical Institute of the Swedish Academy of Sciences under the physicist
Erik Edlund, working on the conductivities of electrolytes. In 1884, he submitted a 150-
p dissertation on electrolytic conductivity to Uppsala for the doctorate and received only a
fourth class degree, but upon his defense it was reclassified as third class. His main statement
was that neither pure salts nor pure water are conductors, but solutions of salts in water are.
Later, extensions of this very work would earn him the Nobel Prize in Chemistry. European
scientists, such as Rudolf Clausius,Wilhelm Ostwald, and J.H. van’t Hoff, were far
more impressed.

Arrhenius received a travel grant from the Swedish Academy of Sciences, which enabled
him to study with Ostwald in Riga (Latvia), with Friedrich Kohlrausch in Würzburg,
Germany, withLudwigBoltzmann in Graz, Austria, andwithvan’tHoff in Amsterdam.

In 1889 he explained the fact that most reactions require added heat energy to proceed by
formulating the concept of activation energy, an energy barrier that must be overcome before
two molecules will react.

In 1891 he became a lecturer at the Stockholm University College, being promoted to
professor of physics in 1895, and rector in 1896. In 1900, Arrhenius aided in setting up
the Nobel Institutes and the Nobel Prizes. For the rest of his life, he was a member of the
Nobel Committee on Physics and a de facto member of the Nobel Committee on Chemistry
[...]. In 1901 he was elected to the Swedish Academy of Sciences. He became a Fellow of
the Royal Society, London, in 1910 and [...] in 1911 he was elected a Foreign Honorary
Member of the American Academy of Arts and Sciences [...].

The text is based on www.wikipedia.org

www.wikipedia.org
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A(T ) = A0 exp

(
− Q

kT

)
, (12.62)

where Q is what is called the activation energy, k is the Boltzmann constant and
A0 is a constant. Formula (12.62) follows from rate process theory and describes the
dependence of the viscosity upon the temperature. However, for processes close to
a phase transition (say melting for cold glacier ice) Arrhenius relations are known
to be inaccurate. Exponential curve fitting may be advantageous in this case. Thus,
we have either the Arrhenius relation

A(θ) = exp(Aθ̂), θ̂ = 1

1 + Zθ
,

(12.63)

A = Q

kTR
, Z = [ΔT ]

TR
,

in which Q is the activation energy measured in electron volts [eV], k is
Boltzmann’s constant (k = 1.3806488 × 10−23 [J K−1]) and TR is the reference
temperature, measured in degrees Kelvin. An alternative parameterization, not re-
lated to the Arrhenius relation, and also appropriate for ice close to the melting
point e.g. for 263K < T < 273.15K is

A(θ) = a exp(αθ) + b exp(βθ), (12.64)

inwhich a, b andα,β are constantswhich can be determined from creep experiments
at various different temperatures.GeorgeSmith andLeslieW.Morland [63] have
analyzed ice creep data and obtainwith the choices TR = 273.15K and [ΔT ] = 20K

a = 0.7242, α = 11.9567,

b = 0.3438, β = 2.9494.
(12.65)

The dimensionless creep response function f is often prescribed as a simple power
law (Norton’s, Glen’s law, Ostwald-de Waele law, …); however, the perturba-
tion scheme that is based on the present scalings can be shown to become invalid,
because of singularities that develop at higher order terms, see Hutter (1983) [39],
R.E. Johnson and R.M. McMeeking (1984) [47]. It is, therefore, advantageous to
use polynomial representations, which exhibit finite viscosity at zero stretching or
stress deviator. The simplest proposition (Hutter [37, 40]) is

f(τII ) = τ
(n−1)/2
II + k

1 + k
with k = 1/η0

(ρg[H ])m−1
, (12.66)
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in which η0 is the viscosity (dimension Nsm−2) at zero stretching and n > 1 is a
stress exponent, usually having values from 1 to 10, for ice n = 1.7–4, generally n =
3, and k ≈ 0.1 or less. Clearly, for k → 0, Eq. (12.66) corresponds to a power law
(Norton, Glen, Ostwald-deWaele, …). The modern trend is to use polynomial
representations, i.e.,

f(τII ) = f0 + f1τII + f2τ
2
II , (12.67)

with materially dependent coefficients f0, f1, f2. For iceGeorge Smith and Leslie
W. Morland obtained

f0 = 0.3336, f1 = 0.3200, f2 = 0.0296 for ice. (12.68)

The sliding law is the least known of the three functions A, f and F, because it
expresses the effect of the small scale boundary layer flow close to the ground that is
dominated by the roughness elements on the outer flow distant from the base. Here,
we simply suggest the phenomenological relation

F(|t S|2, |tn|2) = +
√

|tn|2lμ.. −1 = |tn|lμ.. −1, (12.69)

in which lμ.. is a dimensionless constant ‘viscosity’, whose dimensional counterpart
has the dimension of a velocity, or

F(|t S|2, |tn|2) = B(|tn|2)(|t S|2)(m−1)/2. (12.70)

B is sometimes chosen to be a constant and m � 1. The non-linear relation (12.70)
is more general than (12.69), in which the basal shear traction t S is linearly related
to the tangential velocity vB , but the limit behavior t S → 0 linearly with tn has
been shown to be compatible with a finite surface slope profile up to the grounding
line (Leslie W. Morland and Ian R. Johnson, [53, 54]). This will be assumed
here, for otherwise a separate margin analysis is required that involves Frobenius
expansions, see Hutter [39]. In addition, lowest order approximations could not be
uniformly valid. All this has already been discussed in principle in Chap.7, Sect. 7.4.

12.7 Applications to Downhill Creeping Flows

12.7.1 Computational Procedure

Equations (12.46), (12.47) and (12.50) are viewed as initial value problems, which
must be solved by forward marching in time. To this end, an initial profile z0S =
zS(x, y, t0) must be prescribed along with an initial accumulation function a0 =
a(x, y, z0S, t0) and temperature field θ0 = θ(x, y, z, t0), which is compatible with

http://dx.doi.org/10.1007/978-3-319-33633-6_7
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the boundary conditions (12.47). While initial functional values for z0S and a0 may
be obtained straightforwardly either from own measurements or from the literature,
those for θ0 must be constructed from e.g. a prescription of measured or estimated
temperature θ0 and temperature gradient ∂θ0/∂z along the free surface and the base,
respectively. With (12.47) it suffices to prescribe θ0S(x, y, zS, t0) and θ0B(x, y, zB, t).

Implementation of initial conditions requires thought. In applications of themodel
equations to glacier and ice sheet flows the initial temperature and free surface fields
cannot be exactly prescribed, but must be reasonably guessed, because data are
generally not sufficiently available. One way is to assume a judiciously selected
surface geometry and a constant temperature distribution, say −10 ◦C through-
out the ice domain and to prescribe a temporally constant accumulation function
a(x, y, zS, t0), t0 = initial time; with this choice one then determines the velocity
and stress fields with (12.40)–(12.42) and integrates (12.46)–(12.49) or (12.50)
for some time until steady state is reached. This approach treats the initial fields
(u, v, T, zS, θ)0 as strictly steady, which in realistic climate scenarios is likely never
occurring, but since processes in ice sheets are extremely slowly varying, the de-
tails of the initial temperature distribution and geometry will not considerably affect
these fields at later times, provided integrations are begun sufficiently in the past. In
general, 104–105 years of integration into steady state are needed to reach reliable
initial conditions for ice sheet profiles and temperature distributions. For glaciers at
most a few hundred years are needed.

This process of generating initial conditionsmay be accelerated if one starts with a
prescribed initial geometry and given temperature fields on the free and basal surfaces
close to reality and uses a heat transfer model (such as (12.47) that delivers estimates
for θ0

′
S and θ0

′
B ). In this spirit the temperature representation in the fluid domain is

chosen as a cubic polynomial in z with coefficients, which depend on x and y,

θ0 = c0(x, y) + c1(x, y)z + c2(x, y)z
2 + c3(x, y)z

3, (12.71)

where evaluation of θ0 and θ′
0 = ∂θ0/∂z on z = zS and z = zB yields four equa-

tions in four unknowns c0, c1, . . . , c3, which can be solved. For plane flow (no
y-dependence) the solution is (seeMorland and Smith (1984) [55])

c0(x, y) = θ0B − θ0
′
B + r1z

2
B − r2z

3
B,

c3(x, y) = r2,

(12.72)c1(x, y) = θ0
′
B − 2r1zB + 3r2z

2
B,

c2(x, y) = r1 − 3r2zB,

and

r1 = (zS − zB)−2
[
3
(
θ0S − θ0B

)− (zS − zB)
(
2θ0

′
B + θ0

′
S

)]
,

(12.73)

r2 = (zS − zB)−3
[
2
(
θ0B − θ0S

)− (zS − zB)
(
2θ0

′
B + θ0

′
S

)]
.
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θ0S and θ0B are the prescribed initial surface and basal temperatures, respectively, and

θ0
′
S = −NBhS

(
θ0S − θ0A

)

κ
(
θ0S
) , θ0

′
B = NBhB

(
θ0B − θ0G

)

κ
(
θ0B
) . (12.74)

θ0A and θ0B are the constant ambient and ground temperatures, respectively. This se-
lection of an initial temperature distribution may also be useful in three-dimensional
ice sheets if reliable temperature distributions for θS and θB are known.

With (12.71)–(12.74) starting conditions are given for the evaluation of the stresses
(12.40), the velocities (12.41) and (12.44). From (12.46), (12.47) and (12.50) ∂θ/∂t
and ∂zS/∂t can then be calculated over the entire domainsD(t0) and PD(t0), respec-
tively. Marching forward in time permits evaluation of θ and zS one time step ahead,
which defines D(t1) and PD(t1), when t1 = t0 + Δt , etc. Steady conditions, if they
exist, are best sought by searching for a large time solution which becomes indepen-
dent of t as t → ∞. Details of the numerical method are described in a dissertation
by L. Vulliet (1986) [64].

12.7.2 Profiles and Flows for Isothermal Conditions

The simplest application of the presented shallow flow approximation is restriction
to isothermal conditions. In this case the thermal initial-boundary-value problem
(12.46), (12.47) is superfluous and the rate factor A(θ) arising in (12.41), (12.42)
may be set equal to the constant 1. Given the initial profile for z = zS and z = zB
(the latter being rigid), the stress and velocity fields can be determined by simple
quadratures of (12.40)–(12.42), and z = zS can be updated by forward evaluation of
z = zS with Eq. (12.50).

Computations were performedwith an initial geometry similar to that of Fig. 12.4.
The domain (at t = 0) is defined by

zS =
(

1 −
(

y

yB(x)

)2)

d tanh (b(xe − x)) + tan γ (xe − x),

zB = −
(

1 −
(

y

yB(x)

)2)

d tanh (b(xe − x)) + tan γ′ (xe − x), (12.75)

yB(x) = a(xe − x) exp

(
− xe − x

c

)
,

in which yB(x) is an auxiliary variable and

a = 4, d = 100m,

b = 2.7 × 10−3 m−1, xe = 1000m,

c = 200m, α = 10◦
(12.76)
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and

tan γ = tanα − d

dxe
(tanh(bxe)) ,

(12.77)
tan γ′ = 2d

xe
tanh(bxe) + tan γ.

Here, x is the down-slope and y the cross-slope variable; for constant x the profiles
(12.75) are parabolas of degree 2 both for the free and bottom surfaces, the former
of concave, the latter of convex geometry. The variable yB(x) measures the cross-
slope curvature that can be varied in the downslope direction. The selection (12.75)3
makes yB(x) to grow linearly for small (xe − x) and to exponentially decay for
(xe − x) → ∞. The profiles z = zS(x, y) and z = zB(x, y) are symmetric in y; so,
symmetric flow states are to be expected under constant gravity force application.

Finite difference techniques were used to discretize the geometry with mesh
sizes Δx = 40m, Δy = 20m and a total of 595 grid points. The integrations in the
z-direction were performed using the trapezoidal rule and dividing the depth into
40 intervals. Computations indicated that these could even be decreased without es-
sential loss of accuracy. Computations in time where performed, using an increment
Δt = 10−3[T] where [T] is the characteristic time given below, but the graphs were
produced for t = 0, t = 40Δt , t = 80Δt , …only.

The constitutive and scaling properties, summarized in Table 12.3, are grossly
representative for landslides or glaciers, but were chosen somewhat arbitrarily.

Figure 12.8a–c show surface velocities in scaled coordinates for the three con-
secutive times mentioned above. A conspicuous spreading of the domain at early
times can be observed, which is expected, given the pronounced initial cross-profile
velocities. Once this spreading has taken place, velocities become mainly longitu-
dinal as seen in Fig. 12.8b and c. For comparison, Figs. 12.9a–c show the same in
physical space.

In order to better see the evolution in time of the free surface we show in
Figs. 12.10a–b the geometries at the cross sections A–A and B–B again in scaled
coordinates. The initial parabolic shape of the profile (solid lines) is flattened-out in
the cross-profile direction, which results in the more pronounced longitudinal veloc-
ity distribution seen earlier. A closer view on output for early times showed that this
spreading takes place very quickly and slows down at later times (shown here).

Figure 12.11 displays in physical coordinates (i) the evolution in time of the do-
main in the cross section C–C (see Fig. 12.8) and (ii) a few selected velocity profiles
including their evolution in time. A pronounced thinning of the domain and reduction
in speeds in the upper part is observed, which is counterbalanced by a correspond-
ing thickening, advance and velocity increase close to the snout. Moreover, for the
physical conditions implemented in this case the downslope velocity is composed of
some sliding and primarily differential shearing.
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(a) (b) (c)

Fig. 12.8 Dimensionless surface velocities of an isothermal deformation of amass of a very viscous
power law fluid, moving down an inclined surface. The basal surface is given by z = zB and initial
profile geometry given by z = zS (see (12.75)–(12.77)) released from rest. Panels a–c show the
surface velocity field at t = 0, t = 24, and t = 48 years. Note the different velocity scales in panel
(a) from the other panels. After [43] with changes

(a) (b) (c)

Fig. 12.9 Surface velocity distributions in physical space corresponding to Fig. 12.8. The snapshots
are again for the times 0, 24, 48 years. Note also the different velocity scales in panels a–c. After
[43] with changes
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Table 12.3 Physical constants and scales used in the computations for Figs. 12.8, 12.9, 12.10 and
12.11, from [43]

Viscosity η−1
0 = 6.24 × 10−15 [m s kg−1]

Rate factor A = 2.76 × 10−29 [s5m3kg−3]

Creep exponent n = 3 [–]

Sliding law exponent m = 1 [–]

Sliding coefficient B = 10−13 [m s kg−1]

Density ρ ρ = 2000 [kgm−3]

Characteristic depth [H ] = 50 [m]

Characteristic length [Ly] = 600 [m]

Typical stretching [d] = [U/Lx ] =
5.314 × 10−11

[s−1]

Inclination angle α = 10 [◦]
μeff = A−1(ρg[H ] sinα)−2 = 9.41 × 1013 [m s kg−1]

[Lx ] = ρg sinα[H2]/([d]μeff ) = 1000 [m]

[U ] = [dLx ] = 5.314 × 10−8 [m s−1]

= 1.7 [m a−1]

[V ] = [LyU/Lx ] = 3.18 × 10−8 [m s−1]

= 1.0 [m a−1]

[W ] = [HU/Lx ] = 2.66 × 10−9 [m s−1]

= 0.08 [m a−1]

[T] = [Lx/U ] = 1.88 × 106 [s]

= 600 [a]

12.7.3 Remarks for Use of the Shallow Flow Approximation
for Alpine Glaciers

The above shallow flow approximation has been developed in the 80s of the last
century when electronic computational facilities were much less developed than
they are now. For creeping landslides over time scales of a few decades to, say,
a century, they are useful when a fairly smooth rigid rocky basal surface can be
identified. In such geotechnical applications it generally suffices, if the isothermal,
reduced module of the discretized version of the equations is employed. In steep
hanging glaciers at high altitudes in the Alps the ice is generally cold, so that the
thermomechanical equations must be solved. This then entails the prescription of
not only the thermal boundary condition at the free surface, but equally also on the
rock bed, which generally is hard to determine both geometrically and thermally. In
the past the no-slip boundary condition was imposed; but in the present and future
climate warming the basal temperature at some regions of the basal surface may
reach the melting temperature which then requires imposition of a sliding law.



12.7 Applications to Downhill Creeping Flows 83

(b)(a)

Fig. 12.10 Cross sections A–A and B–B (see Figs. 12.8 and 12.9). Panel (a) shows the parabolic
basal topography, and the surface profiles for t = 0 years (solid lines), t = 24 years (dashed lines)
and t = 48 years (dashed-dotted lines). Panel b shows the analogous results for cross section B–B.
After [43] with changes

Fig. 12.11 Longitudinal cut C–C (see Figs. 12.8 and 12.9) along the symmetry line. The figure
shows the profiles normal to the x-axis at the indicated positions from bottom to the free surface for
t = 0 (solid lines), t = 24 (dashed lines) and t = 48 years (dashed-dotted lines). After [43] with
changes

For estimation of such endangering scenarios into the immediate future (a few
decades), the shallow flow approximation in glaciers is somewhat questionable.With
today’s computational facilities and available software it may be advantageous to
employ the original equations in the Stokes approximation. For computations over
a few decades these may today well be a competitive more realistic alternative.
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12.8 Free-Surface Gravity-Driven Creep Flow of a Very
Viscous Body with Strong Thermomechanical
Coupling—A Rigorous Derivation of the Shallow Ice
Approximation

The scaling analysis introduced in Sect. 12.3 has as one of its intentions the replace-
ment of the physical variables by dimensionless analogues so that the initial boundary
value problems could be written in terms of quantities that are dimensionless. The
difficulty of this procedure lies in the appropriate selection of the coordinates (x, y),
which here are the ‘best fit’ to the boundary topography z = zB(x, y). This was in
the present analysis a plane, inclined at an angle α to the horizontal plane. This sug-
gested in Eq. (12.10) a scaling for the stresses, which involves the angle α and led to
the dimensionless set of Eq. (12.14), which involve terms with tanα and cotanα as
factors. The analysis then showed that the associated Shallow Flow Approximation
[Eqs. (12.40)–(12.42) and (12.44)–(12.50)] is only meaningful for α bounded away
from zero. The case α = 0 involves singularities (limα→0 cotanα → ∞). So, for a
creeping mass of a non-Newtonian fluid on a horizontal plane or a topography close
to this, a new scale analysis must be made.

12.8.1 The Classical Shallow Flow Approximation

Because spreading in the two horizontal directions is likely of the same order
of magnitude, it is tempting to choose [Lx ] = [Ly] and [U ] = [V ] and to non-
dimensionalize the dynamical equations as follows:

{x, y, z, t} =
{
[L]x̄, [L]ȳ, [H ]z̄, [W ]

[H ] t̄
}

,

{u, v, w, a} = {[U ]ū, [U ]v̄, [W ]w̄, [W ]ā} ,

{p, txx , tyy, tzz} = [ρgH ] { p̄, ε2σx , ε
2σy, ε

2σz
}
,

(12.78){txy, txz, tyz} = [ρgH ] {ε2τxy, ετxz, ετyz
}
,

T = T0 + [ΔT ]θ
A(T ) f (IIσ) = [D]

[σ] Āf( ĪIσ),

where we have chosen the aspect ratio

ε = [H ]
[L] = [W ]

[U ] . (12.79)

So, the aspect ratios of the length scales and velocity scales are the same. Note,
moreover, that the scales of the stresses are weighted with ε and ε2, respectively. The



12.8 Free-Surface Gravity-Driven Creep Flow … 85

Fig. 12.12 Creeping flow of
a fluid on a horizontal basis.
Under hydrostatic conditions
the pressure forces at x and
x + dx are in equilibrium
with the basal shear stresses,
explaining the scale for txz
and tyz

pressure is scaled with a reference overburden pressure [ρgH ]. Relative to this, the
normal components of the stress deviator are O(ε2) smaller and the vertical shear
stresses are O(ε) smaller. These weights are at first not evident but can be made
plausible. To this end, consider plane flow as shown in Fig. 12.12. Let the stress
distribution be hydrostatic, so that the indicated column of length dx is subjected to
the triangular pressure forces 1

2ρgH 2(x),− 1
2ρgH 2(x + dx) and the basal shear stress

tdx . A horizontal force balance then yields, after Taylor-series expansion restricted
to linear terms,

tdx = ρgH

(
−∂H

∂x

)
dx,

or when non-dimensionalized

t = [τ ]τ̄ = [ρgH ] [H ]
[L] h̄(x̄)

(
−∂h̄

∂ x̄

)

implying
[τ ] = [ρgH ]ε (12.80)

This result explains, why the scales for txz and tyz must be of order [ρgH ]ε.
There are further reasons for this scaling. To see this, wewrite the force balances11

in scaled form, using (12.78), but not implementing theO(ε2)-weights in the stresses
σx , σy , σz , τxy . These yield

−ε
∂ p̄

∂ x̄
+ ε

∂σ̃x

∂ x̄
+ ε

∂τ̃xy

∂ ȳ
+ ε

∂τxz

∂ z̄
= 0,

−ε
∂ p̄

∂ ȳ
+ ε

∂τ̃xy

∂ x̄
+ ε

∂σ̃y

∂ ȳ
+ ε

∂τyz

∂ z̄
= 0, (12.81)

−∂ p̄

∂ z̄
+ ε2

∂τxz

∂ x̄
+ ε2

∂τyz

∂ ȳ
+ ∂σ̃z

∂ z̄
= 1,

11We omit the accelerations as they play no role for the arguments.
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Here,
{txx , tyy, tzz, txy} = [ρgH ]{σ̃x , σ̃y, σ̃z, τ̃xy} (12.82)

We know fromphysics of such flows that the tilde-quantities (12.82)must be small. In
Eq. (12.81), these are identified by writing them in color. This observation justifies to
lowest order the use of the hydrostatic pressureEq. (12.81)3 in the form∂ p̄/∂ z̄ = −1.
Consequently, we may either assume σ̃z = (εσz) or σ̃z = (ε2)σz , but only the latter
choice makes sense as we expect the next order to be ε2. Indeed, the continuity
equation, div v = 0, paired with the constitutive law D ∝ σ implies that the normal
stresses σ̃x , σ̃y, σ̃z must all be of the same orderO(ε2). Finally, this also implies that
τ̃xy is of the order O(ε2), since the (x, y) coordinates may be arbitrarily oriented on
the horizontal plane. So, we now have

{σ̃x , σ̃y, σ̃z, τ̃xy} = ε2{σx ,σy,σz, τxy}. (12.83)

The scalings (12.78) are now justified. The component forms of the field Eq. (12.1)
and constitutive relations (12.3) take with these scalings the forms

∂ū

∂ x̄
+ ∂v̄

∂ ȳ
+ ∂w̄

∂ z̄
= 0,

F
2

ε

dū

dt̄
=
(

−∂ p̄

∂ x̄

)
+ ε2
(

∂σx

∂ x̄
+ ∂τxy

∂ ȳ

)
+ ∂τxz

∂ z̄
,

F
2

ε

dv̄

dt̄
=
(

−∂ p̄

∂ ȳ

)
+ ε2
(

∂σy

∂ ȳ
+ ∂τxy

∂ x̄

)
+ ∂τyz

∂ z̄
,

F
2ε
dw̄

dt̄
=
(

−∂ p̄

∂ z̄

)
+ ε2
(

∂τxz

∂ x̄
+ ∂τyz

∂ ȳ

)
+ ε2

∂σz

∂ z̄
− 1,

c̄(θ)
dθ

dt̄
= D

{
ε2
[

∂

∂ x̄

(
κ̄(θ)

∂θ

∂ x̄

)
+ ∂

∂ ȳ

(
κ̄(θ)

∂θ

∂ ȳ

)]
+ ∂

∂ z̄

(
κ̄(θ)

∂θ

∂ z̄

)}

+E2 Ā(θ)f(τII )τII , (12.84)
∂ū

∂ x̄
= G Ā(θ)f(τII )σx ,

∂v̄

∂ ȳ
= G Ā(θ)f(τII )σy,

∂w̄

∂ z̄
= G Ā(θ)f(τII )σz,

∂ū

∂ ȳ
+ ∂v̄

∂ x̄
= 2G Ā(θ)f(τII )τxy,

∂ū

∂ z̄
+ ε2

∂w̄

∂ x̄
= 2G Ā(θ)f(τII )τxz,

∂v̄

∂ z̄
+ ε2

∂w̄

∂ ȳ
= 2G Ā(θ)f(τII )τyz,
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in which

τII = τ 2
xz + τ 2

yz + ε2
[
1
2

(
σ2
x + σ2

y + σ2
z

)+ τ 2
xy

]
(12.85)

is the dimensionless second order stress deviator invariant and

f(IIσ) = F([ρgH ]2τII )
F([ρgH ]2 · 1) ,

Ā(θ) = A(T )

A(TR)
= A(TR + [ΔT ]θ)

A(TR)
= A′(θ)

A(TR)
,

(12.86)

κ̄(θ) = κ(T )

κ(TR)
= κ(TR + [ΔT ]θ)

κ(TR)
= κ′(θ)

κ(TR)
,

c̄(θ) = cp(T )

cp(TR)
= cp(TR + [ΔT ]θ)

cp(TR)
= c′(θ)

cp(TR)

are the analogous quantities already defined in (12.17). They show no dependence
on the inclination angle α. Moreover,

F
2 = [U 2]

g[H ] ,

G = ε2

SΣ DΔ

, SΣ = [σ]
[ρgH ] , DΔ = [W ]/[H ]

[D] , (12.87)

D = κ(TR)[L]
ρcp(TR)[U ][H 2] = κ(TR)

ρcp(TR)[W ][H ] ,

E = A

SE DΔ

, (12.88)

F
2 is the (squared) Froude number, D is a dimensionless thermal diffusivity, G a

parameter characterizing the constitutive response of stress; SΣ is a stress ratio of a
material stress to an overburden stress; DΔ is a vertical strain rate and E measures
the significance of dissipation or strain heating.

The field Eq. (12.84) are supposed to be so non-dimensionalized that all expres-
sions printed in black are order unity quantities whereas the colored quantities have
values as dictated by the chosen scales and given by (12.87). These latter quanti-
ties appear in color in (12.84). In applications to large ice sheets, say Greenland and
Antarctica, the various scales and the physical parameters for polycrystalline ice have
values as listed in Table 12.4. With them, it is a straightforward exercise to see that
ε = O(10−3 − 10−2), F2 = O(10−18 − 10−14), so that F2/ε = O(10−16 − 10−11)

and F
2ε = O(10−21 − 10−16). Similar estimates for the remaining quantities sug-

gest that ‘with some tolerance’ (D,E,G) = O(10−1 − 101). These estimates should
not be looked at as strict ranges of values, but rather as guidelines suggesting the
following approximations:
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Table 12.4 Characteristic scales and physical parameters for large ice sheets such as Greenland
and Antarctica

[U ] 102–103 m/a Characteristic horizontal speed

[W ] 1–10m/a Characteristic vertical speed

[L] 500–4000km Characteristic ice sheet extent

[H ] 500–3000m Typical ice sheet depth

[σ] 105 Pa Typical material stress

[g] 9.81ms−2 =
9.76 × 1015 ma−2

Gravity constant

[ρ] 910kgm−3 Ice density

[ΔT ] 20–30 ◦C Ice sheet temperature range

[cp] 2 × 103 Jkg−1 K−1 Specific heat of ice at
273.15 ◦K

TR 273.15 ◦K Melting temperature of ice

1. In the momentum equations the acceleration terms can be ignored, sinceF2/ε and
F
2ε are both substantially smaller than any other terms in Eq. (12.84). Dropping

the acceleration terms is called the Stokes approximation.
2. This Stokes approximation is satisfied to a very high degree; in other words, if ε

is used as a perturbation parameter and regular perturbation solutions are sought
for Φ = {ū, v̄, w̄, p̄, θ} in the spirit that

Φ = Φ0 + εΦ1 + ε2Φ2 + · · · ≈
N∑

ν=0

ενΦν, (12.89)

then the Stokes approximation remains an acceptable assumption at least to
second (N = 2) or third (N = 3) order.12 The approximation N = 0 is called in
glaciology the Shallow Ice Approximation (SIA), whereas N = 2 characterizes
the Second Order Shallow Ice Approximation (SOSIA).13

3. Looking at (12.84)2−4 it is seen that the convective heat transport is fully
accounted for in any approximation (N < ∞) (as are, incidentally also the
convective accelerations, but this is irrelevant in a Stokes approximation). By
contrast, the horizontal momentum and heat fluxes can be dropped in the SIA and
SOSIA approximations as compared to the corresponding fluxes in the normal,
z-direction. Similarly, (12.84)10,11 imply that in the SIA the horizontal stretching
can be dropped.

4. In the z-component of the momentum equation, all flux terms, except ∂ p̄/∂ z̄
are O(ε2) and can be dropped in the SIA. What then remains is the hydrostatic

12This is often not so for applications in rheology.
13Note that SIA and SOSIA are meant here to apply to ice sheets, but neither to (steep) glaciers nor
floating ice shelves.
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pressure equation, ∂ p̄/∂ z̄ = 1. Corrections to this behavior only enter at the
SOSIA. Moreover, to account for vertical accelerations would require a higher
order model with N = 3 or N = 4. This has so far never been attempted. An
alternative would be to employ a non-stretched non-dimensionalization of the
governing equation and employing depth integration of these equations as is
done in hydraulics with theBoussinesq equations against the de Saint Venant
equations, but for creeping flow this has not yet been done, see [11, 42], to our
knowledge.

5. In the limit as ε → 0, Eq. (12.84) take the limiting forms

∂ū

∂ x̄
+ ∂v̄

∂ ȳ
+ ∂w̄

∂ z̄
= 0,

−∂ p̄

∂ x̄
+ ∂τxz

∂ z̄
= 0,

−∂ p̄

∂ ȳ
+ ∂τyz

∂ z̄
= 0,

(12.90)−∂ p̄

∂ z̄
− 1 = 0,

c̄
dθ

dt̄
= D

∂

∂ z̄

(
κ̄(θ)

∂θ

∂ z̄

)
+ 2E Ā(θ)f(τII )τII ,

∂ū

∂ z̄
= 2G Ā(θ)f(τII )τxz,

∂v̄

∂ z̄
= 2G Ā(θ)f(τII )τyz

and

∂ū

∂ x̄
= G Ā(θ)f(τII )σx ,

∂v̄

∂ ȳ
= G Ā(θ)f(τII )σy,

(12.91)∂w̄

∂ z̄
= G Ā(θ)f(τII )σz,

∂ū

∂ ȳ
+ ∂v̄

∂ x̄
= 2G Ā(θ)f(τII )τxy .

Equations (12.90) and (12.91) have been separated for reasons which will soon
become apparent; relations (12.90) are the proper SIA-equations, (12.91) are only
needed for the higher order models N � 2.
By contrast, (12.85) reduces to

τII = τ 2
xz + τ 2

yz . (12.92)
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It appears as if also this reduced second stress deviator invariant should be
dropped. This should not be done, however; for f(0) �= 0 a Newtonian fluid
model would emerge at the SIA-level; for f(0) = 0, e.g. a power law fluid,
(12.90)6,7 yield (∂ū/∂ z̄, ∂v̄/∂ z̄) = (0, 0), implying a constant vertical profile of
the horizontal velocity components. This contradicts inclinometer observations
in vertical ice bore holes. This second interpretation is also correct from a scaling
analysis viewpoint, since τII = O(1 − 101), which is not small.

6. Inspecting the field Eqs. (12.84) and (12.85), one may conclude as if the pertur-
bation solutions would step in orders ε2, i.e., Φ =∑N

ν=0 ε2νΦν so that odd order
solutions would vanish. Whether such behavior prevails can be seen, once the
boundary conditions are formulated. Ordinarily, it is assumed that the first order
quantities, Φ1, vanish, which we regard as questionable.

Boundary conditions are to be formulated at the free and basal surfaces and are
stated as (12.5), (12.6) and (12.7)–(12.9), respectively. These statements will be de-
rived here in Cartesian coordinates (x, y horizontal, z vertical) and using the scales
(12.78), (12.79). Somewhat lengthy, but straightforward calculations then show the
following:

(i) For the free surface z̄ = z̄S(x̄, ȳ, t̄) the surface boundary conditions are given
by

∂ z̄S
∂ t̄

+ ∂ z̄S
∂ x̄

ū + ∂ z̄S
∂ ȳ

v̄ − w̄ = NSā,

p̄
∂ z̄S
∂ x̄

+ τxz − ε2
(

σx
∂ z̄S
∂ x̄

+ τxy
∂ z̄S
∂ ȳ

)
= 0,

p̄
∂ z̄S
∂ ȳ

+ τyz − ε2
(

σy
∂ z̄S
∂ ȳ

+ τxy
∂ z̄S
∂ x̄

)
= 0, (12.93)

p̄ − ε2
(

σz − τxz
∂ z̄S
∂ x̄

− τyz
∂ z̄S
∂ ȳ

)
= 0,

κ̄(θ)

{
∂θ

∂ z̄
− ε2
(

∂θ

∂ x̄

∂ z̄S
∂ x̄

+ ∂θ

∂ ȳ

∂ z̄S
∂ ȳ

)}
= NS(θ − θA)NS.

Equation (12.93)1 is the kinematic surface condition, in which ā is the dimensionless
accumulation function; (12.93)2,3,4 are the two horizontal and one vertical force
balance equations, and (12.93)5 is the boundary condition of heat, in which

NS =
{

1 + ε2

[(
∂ z̄S
∂ x̄

)2
+
(

∂ z̄S
∂ ȳ

)2]}1/2
. (12.94)

NS is the free surface Nusselt number, defined as
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NS = hrefS [H ]
κ(TR)

. (12.95)

For NS → ∞, the thermal boundary condition reads θ = θA and is of Dirichlet
type, whilst for NS → 0 it is of Neumann type.

(ii) For the rigid basal surface, z̄B(x̄, ȳ − z̄) = 0, Eqs. (12.7)–(12.9) allow the
derivation of the following dimensionless laws:

ū B = CFB
(| t̄ S|2, | t̄n|2

) (
t̄S
)
x ,

v̄B = CFB
(| t̄ S|2, | t̄n|2

) (
t̄S
)
y , (12.96)

w̄B = ū B
∂ z̄ B
∂ x̄

+ v̄B
∂ z̄ B
∂ ȳ

,

κ̄(θ)

{
∂θ

∂ z̄
− ε2
(

∂θ

∂ x̄

∂ z̄ B
∂ x̄

+ ∂θ

∂ ȳ

∂ z̄ B
∂ ȳ

)}
= NB(θ − θA)NB,

in which

NB =
{

1 + ε2

[(
∂ z̄ B
∂ x̄

)2
+
(

∂ z̄ B
∂ ȳ

)2]}1/2
, (12.97)

NB = hrefB [H ]
κ(TR)

.

The index (·)B refers to the bottom surface. Equation (12.96)1,2 express the slid-
ing law, according to which the tangential velocity at the base is collinear to the
tangential traction with a dimensionless sliding function F(| t̄ S|2, | t̄n|2), which de-
pends on the dimensionless tangential and normal surface tractions | t̄ S| and | t̄n|,
respectively. Symbolically, and in physical space, the sliding law is expressed as
vB = −F(|t S|2, |tn|2)t S , where

t S := tnB − tn, tn := (nB · tnB)nB (12.98)

and

FB
(| t̄ S|2, | t̄n|2

) = ΦB
(
c2| t̄ S|2, c2| t̄n|2

)

ΦB(c2, c2)
, c := [ρgH ] (12.99)

as well as t S = c t̄ S, tn = c t̄n; the drag coefficient is

CB = cΦ(c2, c2)

[U ] ε. (12.100)

Please note the definition of c in (12.99), which is different from that in (12.26)2.
Moreover,
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(t S)x,y = [ρgH ]ε( t̄ S)x̄,ȳ, (tn)x,y = [ρgH ]ε( t̄n)x̄,ȳ (12.101)

with

( t̄ S)x = 1

NB

{(
− p̄

∂ z̄S
∂ x̄

− τxz

)
+ ε2
(

σx
∂ z̄ B
∂ x̄

+ τxy
∂ z̄ B
∂ ȳ

)}
− 1

NB
| t̄n|∂ z̄ B

∂ x̄
,

( t̄ S)y = 1

NB

{(
− p̄

∂ z̄S
∂ ȳ

− τyz

)
+ ε2
(

σy
∂ z̄ B
∂ ȳ

+ τxy
∂ z̄ B
∂ x̄

)}
− 1

NB
| t̄n|∂ z̄ B

∂ ȳ
,

| t̄ n| = 1

N 2
B

〈
−
{
p̄ + ε2

(
τxz

∂ z̄ B
∂ x̄

+ τyz
∂ z̄ B
∂ ȳ

− σz

)}
(12.102)

+
{
ε2
(

− p̄
∂ z̄ B
∂ x̄

− τxz

)
+ O(ε3)

}
∂ z̄ B
∂ x̄

+
{
ε2
(

− p̄
∂ z̄ B
∂ ȳ

− τyz

)
+ O(ε3)

}
∂ z̄ B
∂ ȳ

〉
.

Equations (12.93)–(12.102) show that to second order approximation in ε, only ε0

and ε2-terms arise. Only when higher order perturbation solutions N � 3 are sought,
odd order ε terms will arise. So, as long as the SIA and SOSIA solutions are sought,
the first order FOSIA can be set identically equal to zero [unless, of course, the basal
topography z = zB(x, y) has small wave length O(ε) variations, a case which is
generally excluded.]

Specifically, in the SIA the boundary conditions are as follows.
(i) At the free surface z̄ = z̄S(x̄, ȳ, t̄):

∂ z̄S
∂ t̄

+ ∂ z̄S
∂ x̄

ū + ∂ z̄S
∂ ȳ

v̄ − w̄ = NSā, NS = 1,

p̄
∂ z̄S
∂ x̄

+ τxz = 0,

p̄
∂ z̄S
∂ ȳ

+ τyz = 0,

p̄ = 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

implying

⎧
⎨

⎩

p̄ = 0,
τxz = 0,
τyz = 0,

κ̄(θ)
∂θ

∂ z̄
= NS(θ − θA).

(12.103)

(ii) At the fixed bottom surface z̄B(x̄, ȳ) − z̄ = 0 we obtain the sliding condition in
the form

ū B = CBFB
(| t̄ S|2, | t̄n|2

)
τ B
xz,

v̄B = CBFB
(| t̄ S|2, | t̄n|2

)
τ B
yz, (12.104)

w̄ = ū B
∂ z̄ B
∂ x̄

+ v̄B
∂ z̄ B
∂ ȳ

.
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The classical shallow ice approximation SIA is now governed by Eqs. (12.90)–
(12.92), (12.103), (12.104). Integrating the momentum Eq. (12.90)2−4, subject to
the boundary conditions (12.103)2−4, yields

p̄(x̄, ȳ, z̄, t̄) = (z̄S(x̄, ȳ, t̄) − z̄
)
,

τ̄xz(x̄, ȳ, z̄, t̄) = −∂ z̄S(x̄, ȳ, t̄)

∂ x̄

(
z̄S(x̄, ȳ, t̄) − z̄

)
, (12.105)

τ̄yz(x̄, ȳ, z̄, t̄) = −∂ z̄S(x̄, ȳ, t̄)

∂ ȳ

(
z̄S(x̄, ȳ, t̄) − z̄

)
.

Assuming that θ(x̄, ȳ, z̄, t̄) ∈ D is known, Eq. (12.90)6,7 can now be integrated sub-
ject to the boundary conditions (12.104). This yields

ū(x̄, ȳ, z̄, t̄) = ū B(x̄, ȳ, t̄) − 2G
∂ z̄S
∂ x̄

z̄∫

z̄B (x̄,ȳ)

Ā
(
θ(x̄, ȳ, ζ, t̄)

)
f
(
τII (x̄, ȳ, ζ, t̄)

)

× (z̄(x̄, ȳ, t̄) − ζ
)
dζ,

(12.106)

v̄(x̄, ȳ, z̄, t̄) = v̄B(x̄, ȳ, t̄) − 2G
∂ z̄S
∂ ȳ

z̄∫

z̄B (x̄,ȳ)

Ā
(
θ(x̄, ȳ, ζ, t̄)

)
f
(
τII (x̄, ȳ, ζ, t̄)

)

× (z̄(x̄, ȳ, t̄) − ζ
)
dζ,

where

ū B(x̄, ȳ, t̄) = −CF

[

(z̄S − z̄B)2 F

((
∂ z̄S
∂ x̄

)2
+
(

∂ z̄S
∂ ȳ

)2)

, (z̄S − z̄B)2

]

×∂ z̄S
∂ x̄

(z̄S − z̄B) ,

(12.107)
v̄B(x̄, ȳ, t̄) = −CF

[

(z̄S − z̄B)2 F

((
∂ z̄S
∂ x̄

)2
+
(

∂ z̄S
∂ ȳ

)2)

, (z̄S − z̄B)2

]

×∂ z̄S
∂ ȳ

(z̄S − z̄B) ,

τII = τ 2
xz + τ 2

yz = (z̄S(x̄, ȳ, t̄) − ζ
)2
((

∂ z̄S
∂ x̄

)2
+
(

∂ z̄S
∂ ȳ

)2)

. (12.108)

Moreover, the continuity equation (12.90)1 together with (12.104)3 allow evaluation
of the velocity component w̄ as follows:
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w̄(x̄, ȳ, z̄, t̄) = w̄B(x̄, ȳ, z̄ B(x̄(ȳ), t̄)) −
z̄∫

z̄B (x̄,ȳ)

(
∂ū

∂ x̄
+ ∂v̄

∂ ȳ

)
(x̄, ȳ, ζ, t̄)dζ.

(12.109)
Scrutiny of formulae (12.106)–(12.108) shows that the horizontal velocity v̄H =
(ū, v̄) is structurally given by

v̄H (x̄, ȳ, z̄, t̄) = −J(x̄, ȳ, z̄, t̄)grad H z̄S(x̄, ȳ, t̄), (12.110)

in which J(x̄, ȳ, z̄, t̄) is a scalar function, which can simply be inferred from
(12.106)–(12.109). This formula gives rise to the following theorem:

Fundamental SIA Theorem

1. At a fixed position (x̄, ȳ) the horizontal velocity vH points in the direction of
steepest descent at all depths z̄B � z̄ � z̄S . In other words, in a vertical bore hole,
the velocity vH does not rotate around the vertical bore hole axis when one moves
down the hole.

2. Positions of zero horizontal velocity agree with positions of horizontal tangent
planes of the surface z̄ = z̄S(x̄, ȳ, t̄). In three dimensions these are positions of
domes or troughs or saddle points; in two dimensions, these positions are ice
divides.

3. Since the flow in the vicinity of troughs is towards the trough minimum, such
depressions are filled with time. Troughs are unsteady features of the surface
topography.

4. Vertical surfaces through crests are separating surfaces of cryological or hydro-
logical basins, i.e., there is no flow of ice across such surfaces. The ice velocity
vector is strictly within the vertical surface crest.

If any observations are not in conformity with the statements of this fundamental
theorem, then the prerequisites of the SIA do not hold. One such condition would be
non-isotropic sliding,14 in which sliding velocity and basal shear traction would not
be collinear. Interpreted this with different emphasis we can state that in the SIA the
basal velocity is always pointing in the direction of the free surface slope, no matter
how the basal surface is oriented.

It is evident that in the evaluation of the stresses (12.105)2,3 and the velocity com-
ponents (12.106)–(12.109) only algebraic and differential operations and quadrature
formulae are involved. With these variables being determined the thermal boundary
value problem is given by (12.90)5, (12.93)5, (12.96)4, or

14For instance, if the basal interface would be a ‘corrugated sheet’, the basal drag coefficient would
be orthogonal, i.e. different parallel and orthogonal to the sheet orientation.
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c̄(θ)

{
∂θ

∂ t̄
+ ∂θ

∂ x̄
ū + ∂θ

∂ ȳ
v̄ + ∂θ

∂ z̄
w̄

}
= D

∂

∂ z̄

(
κ̄

∂θ

∂ z̄

)
+ 2E Āf(τII )τII , in D,

κ̄
∂θ

∂ z̄
= NS(θ − θA), on z̄ = z̄S, (12.111)

κ̄
∂θ

∂ z̄
= NB(θ − θG), on z̄ = z̄ B .

This boundary value problem for θ is generally non-linear in all terms of the field
equations and boundary conditions. However, when c̄ and κ̄ are constants, the only
nonlinearity is in the reaction term Ā(θ), which for an Arrhenius parameterization
is exponential. In any case, for given z̄ = z̄S(x̄, ȳ, t̄) and z̄ = z̄ B(x̄, ȳ), the boundary
value problem (12.111) is solvable, at least numerically.

The next step is to perform a forward integration step in time of the geometry of the
moving mass. To this end the continuity equation (12.90)1 is integrated over depth
from z̄ = z̄B(x̄, ȳ) to z̄ = z̄S(x̄, ȳ, t̄), thereby incorporating the kinematic surface
equations (12.93)1 and (12.96)3. This computation parallels that derived to obtain
(12.31). The result is

∂ z̄S
∂ t̄

+ ∂ Q̄x

∂ x̄
+ ∂ Q̄y

∂ ȳ
= NSā, (12.112)

(this equation is exact!) with

Q̄x (x̄, ȳ, t̄) := ū B(x̄, ȳ, t̄)
(
z̄S(x̄, ȳ, t̄) − z̄ B(x̄, ȳ)

)

− 2G
∂ z̄S
∂ x̄

z̄S∫

z̄B

dz̄

z̄∫

z̄B

Ā
(
θ(x̄, ȳ, ζ, t̄)

)
f (τII (·, ζ))

(
z̄S(x̄, ȳ, t̄) − ζ

)
dζ

= ū B(x̄, ȳ, t̄)
(
z̄S(x̄, ȳ, t̄) − z̄ B(x̄, ȳ)

)

− 2G
∂ z̄S(x̄, ȳ, t̄)

∂ x̄

z̄S∫

z̄B

(
z̄S(x̄, ȳ, t̄) − z̄

)2
Ā
(
θ(x̄, ȳ, ζ, t̄)

)
f (τII (·, z̄)) dz̄,

(12.113)

Q̄y(x̄, ȳ, t̄) := v̄B(x̄, ȳ, t̄)
(
z̄S(x̄, ȳ, t̄) − z̄ B(x̄, ȳ)

)

− 2G
∂ z̄S(x̄, ȳ, t̄)

∂ ȳ

z̄S∫

z̄B

(
z̄S(x̄, ȳ, t̄) − z̄

)2
Ā
(
θ(x̄, ȳ, ζ, t̄)

)
f (τII (·, z̄)) dz̄.

(12.114)

Using integration by parts, the double integral in (12.113) has been transformed into
a single integral. Moreover, it is easily seen that
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Q̄x = Q̃x

(
z̄(x̄, ȳ, t̄),

∂ z̄S(x̄, ȳ, t̄)

∂ x̄
,
∂ z̄S(x̄, ȳ, t̄)

∂ ȳ

)
,

(12.115)

Q̄x = Q̃x

(
z̄(x̄, ȳ, t̄),

∂ z̄S(x̄, ȳ, t̄)

∂ x̄
,
∂ z̄S(x̄, ȳ, t̄)

∂ ȳ

)
.

This, together with (12.112), implies the evolution equation

∂ z̄S
∂ t̄

+ ∂ Q̃x

∂ z̄S

∂ z̄S
∂ x̄

+ ∂ Q̃y

∂ z̄S

∂ z̄S
∂ ȳ

−
{

∂ Q̃x

∂ (∂ z̄S/∂ x̄)

∂2 z̄S
∂ x̄2

+
(

∂ Q̃x

∂ (∂ z̄S/∂ ȳ)
+ ∂ Q̃y

∂ (∂ z̄S/∂ x̄)

)
∂2 z̄S
∂ x̄∂ ȳ

+ ∂ Q̃y

∂ (∂ z̄S/∂ ȳ)

∂2 z̄S
∂ ȳ2

}

= NSā (12.116)

for the surface. It provides information about the detailed structure of (12.112). In a
numerical program, in which Q̄x and Q̄y are computed in a finite difference grid, it is
certainly more direct to computeΔz̄S/Δt̄ in a forward time step from (12.112) rather
than from (12.116). This yields the new free surface z̄S(x̄, ȳ, t̄ + Δt̄) as z̄S(x̄, ȳ, t̄) +
Δz̄S and thus fixes the conditions for the next step forward in time. With the new
geometry computations can be started again at time t̄ + Δt̄ with the determination
of the stresses { p̄, τxz, τyz} by using (12.105) the velocity components {ū, v̄, w̄}
with (12.106)–(12.109), the updated temperature field (12.111) and Δz̄S , etc. This
principal procedure is applied as such in quite a number of software programs, which
were developed in the last decade of the 20th century. Early pioneers having done this
are K. Herterich et al. [50], R. Calov [7–9], P. Huybrechts [46] and R. Greve

[23] and others. Today’s software incorporates besides cold ice (i.e. ice of which
the temperature distribution is below the melting point) also temperate ice (with
the temperature exactly at the melting point), which are separated by a singular
surface which operates as a so-called Stefan surface at which ice may melt or water
may freeze. The SIA formulation for such polythermal ice is structurally analogous
to the SIA without phase changes; for literature on this see Hutter [38, 39, 41,
45], Greve [23–25, 27]. An open source program due to Ralf Greve bears the
name SICOPOLIS (for Simulation Code for Polythermal Ice Sheets) and has been
applied in many scenarios of climate reconstructions of the large ice sheets on Earth
through the last ice ages and for prognostic views into hundred and more years of ice
sheets subject to different climate scenarios. The newest version of SICOPOLIS is
complemented by an ice-shelf module15 to make it applicable to Antarctica, which
is surrounded by two large and many smaller ice shelves, Sato [60], Sato and
Greve [61].

15For the theory of ice shelves see Magnus Weis et al. (1999) [67].
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Before turning to applications mention should be made of the fact that equations
(12.91) were not used in establishing the zeroth order SIA-solutions. It is interesting
that exactly these terms provide indications as to the possible limitation of the zeroth
order SIA, terms which are not contributing at all to the solutions (12.106)–(12.109).
In fact, these formulae allow evaluation of σx ,σy,σz, τxy as follows:

{
σx ,σy,σz, τxy

} =

{
∂ū

∂ x̄
,
∂v̄

∂ ȳ
,
∂w̄

∂ z̄
, 1
2

(
∂ū

∂ ȳ
+ ∂v̄

∂ x̄

)}

G Ā(θ)f(τII )
. (12.117)

Critical in this formula is the creep response function f(τII ) with the second stress
deviator invariant τII given in (12.92) as argument. At a dome, ice divide and on
the free surface τII = 0, since (τxz, τyz) = (0, 0); so, if f(0) = 0, then the stresses
(12.117) are infinitely large at these positions in this case. A finite viscosity law has
f(0) �= 0, for which the above stresses remain regular at a dome, divide and on the
free surface. This was already spelled out and consequences discussed in Chap.7
Sect. 7.4 and Fig. 7.32.

12.8.2 Applications

(a) Plane steady ice sheet flow. The first applications of the SIA-equations were
restricted to plane ice flow in two dimensions and to steady state. Leslie W. Mor-

land andGeorge Smith (1984) [55] prescribed the temperature distribution within
the ice according to (12.72)–(12.74). They chose [H ] = 2000m, [L] = 400km
(ε = 0.005) and employed an accumulation pattern given by

ā =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

12.5
(
z̄S − h̄e

) h̄e
h̄0e

(z̄S < h̄e),
{
12.5(z̄S − h̄e) − 76(z̄S − h̄e)

2

+136(z̄S − h̄e)3
} h̄e

h̄0e

(h̄e � z̄S � h̄e + 0.25),

0.5
h̄e
h̄0e

(z̄S � h̄e + 0.25),

(12.118)

with h̄0e = h̄e = 1 and [H ] = 1000m the ‘equilibrium height’. In general h̄e =
h̄e(x̄, ȳ), but Morland and Smith chose h̄e = const. = 1. Equation (12.118) cor-
responds to a linear decrease of the surface melting with height, if z̄S < h̄e, a cubic
growth of precipitation for h̄e � z̄S � h̄e + 0.25 and a constant value of snow ac-
cumulation above h̄e + 0.25. Morland and Smith chose the surface temperature
to decrease 0.8K per 100m and the vertical atmospheric surface temperature gra-
dient to vanish, corresponding to zero heat loss at the surface. Alternative values of
−(1–2.5)K per 100m are assumed for the vertical temperature gradient at the base,

http://dx.doi.org/10.1007/978-3-319-33633-6_7
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reflecting respective geothermal heat fluxes of (0.8–2.0) × 106 Jm−2a−1, if frictional
heating and dissipation are negligible at the base.

These choices specifically led

• at the free surface to

TS = TM − 16 (K)h̄(ξ̄),
dTS
d ȳ

= 0, ξ̄ = εx̄, (12.119)

where TM is the margin temperature by choice of the margin as coordinate origin
and

• at the basal surface to

dTb
d ȳ

= −20K, TM = (−2,−6) ◦C. (12.120)

Figures 12.13 and 12.14 display computational results ‘for uniformbed temperatures
Tb = −2 ◦C and Tb = −6 ◦C in the prescribed temperature pattern. The temperature
variation with height at three sections, together with the resulting profile, basal
velocity and relative longitudinal velocity at three sections, are shown [...]. For the
moderately warmer bed (Fig. 12.13) the temperature influence on the rate factor is
reflected by the increased differential motion, but there is negligible change of span
and only a modest decrease in maximum thickness in comparison with Fig. 12.14
[...]. The change of the velocity distribution accompanying the temperature varia-
tion influences the large scale features significantly. Moreover, the enhanced velocity
gradients extend well beyond a negligible boundary layer’, [55].

The most significant inferences that can be drawn from the Morland-Smith
analysis in steady state is as follows:

1. The flow pattern obtained with realistic temperature distributions are vastly dif-
ferent from corresponding steady patterns in the ice sheet that are subjected to
isothermal conditions.

2. The enhanced velocity gradients in the warmer basal regions (of the temperature
patterns considered) do not include a high shear rate boundary layer with negli-
gible shear rate through the bulk flow. That is, the viscous response of the ice is
not confined, in general, to a thin boundary layer.

A second, more complete study of the steady response of the two-dimensional
SIA equations is due to Sidney Yakowitz et al. (1985) [68] and K. Hutter et al.
(1986) [44]. In their computations the temperature distributionwas not prescribed but
computed along with the ice sheet profile, the velocity distribution (u, v, w) and the
general flow pattern. So, in these computations the temperature distribution satisfies
the heat equation together with the thermal boundary conditions at the free and basal
surfaces.

Hutter et al. [44] chose Morland and Smith’s [55] accumulation function
(12.118) with

h̄e = h̄0e
(
1 − p1 x̄ − p2 x̄

2) (12.121)
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Fig. 12.13 Steady state ice
sheet flows with prescribed
temperature distribution.
Solution for temperature
variation with uniform bed
temperature Tb = −2 ◦C:
a profile and temperature
variation; b longitudinal
velocities relative to the
basal velocity; c basal
velocity distribution,
redrawn from [55] with
changes

(a)

(b)

(c)

and a simplified version of it, namely

ā =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a(z̄S − h̄e),

(
z̄S < h̄e + b

a

h̄e
h̄0e

)
,

b
h̄e
h̄0e

,

(
z̄S > h̄e + b

a

h̄e
h̄0e

)
,

(12.122)

Furthermore, the surface temperature in ◦C is parameterized as

TS = TM − T (1)
M z̄S − T (2)

M x̄ . (12.123)

In these formulae x̄ = 0 marks the ice divide and the parameters have the values

−40 ◦C � TM � 0 ◦C, 0 ◦C � T (1)
M � 2 ◦C, 0 ◦C � T (2)

M � 2 ◦C,

0.375 � h̄0e � 0.75, 0 � p1 � 0.15, 0 < p2 � 0.1.
(12.124)
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Fig. 12.14 Steady state ice
sheet flows with prescribed
temperature distribution.
Solution for temperature
variation with uniform bed
temperature Tb = −6 ◦C:
a profile and temperature
variation; b longitudinal
velocities relative to the
basal velocity; c basal
velocity distribution,
redrawn from [55] with
changes

(a)

(b)

(c)

Moreover, at the flat basal surface, z̄b = 0, a constant heat flow was imposed accord-
ing to

θz̄ = G0[H ]
[20K] , with 0 � θz̄ < 10, (12.125)

in which G0 is the geothermal temperature gradient, typically 1 ◦K/100m =
10−2 ◦Km−2 (implying for [H ] = 2000m, θz̄ = 1).

Figure 12.15 summarizes the results of a typical run for conditions described in
the figure legend. ‘In this figure the top two graphs (panels a and b) display the
temperature distribution in the form of isotherms and vertical profiles, respectively.
They show the pattern one would expect, given the available data from observations
and earlier approximate models [...]. Figure12.15d–f summarize the results obtained
for the dimensionless velocity distribution. Graph (c) shows vertical profiles for the
longitudinal velocityU , graph (d) the difference betweenU and the sliding velocity
UB , characterizing the flow component due to viscous deformation. This difference
will be called gliding velocity. In view of the scales shown as insets on these graphs,
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(a) (b)

(c) (d)

(e) (f)

Fig. 12.15 Steady-state temperature distribution and flow pattern.Distributions of the temperature
and (scaled) velocities for computations using h̄0e = 0.5, p1 = 0.1, p2 = 0, TM = −2 ◦C, T (1)

M =
−16 ◦C, T (2)

M = 0.2 ◦C. The temperature distribution, indicated in ◦C, is shown for the top two
graphs, a displaying a few selected isotherms, and b showing vertical profiles with the temperature
scale drawn as an inset. The plots c–f depict the non-dimensional and scaled velocities. The first
figure c shows vertical profiles of the total horizontal velocity; figure d shows the same profiles for
the difference (U −UB), called gliding velocity, while figure e gives vertical profiles of the vertical
velocity W . Dimensionless scales for all three are given as insets. Finally, figure f gives the vector
plot for the velocities, indicating the flow pattern within the ice sheet. Scales are not indicated, from
Hutter et al. [44], c© J. Glaciology, reproduced with changes

we see that the gliding velocity is approximately 0.5% or less of the sliding velocity
[...]. Note the continuous growth of the gliding velocity as one moves upwards away
from the bed. This behavior is, of course, corroboration that the applied software has
produced reliable results beyond two places of accuracy’ [44].

‘Figure12.15e displays vertical profiles of the dimensionless vertical velocity. The
linear profile has often been conjectured in glaciology and was first used byGorden
Robin [16] to explain the contribution of vertical convection to the temperature
distribution. Here, it is a proven result of the computation [but it is theoretically not
compelling]. Notice also that [the vertical velocity] W is downwards everywhere,
including the ablation zone, contrary to what one might expect’.



102 12 Three-Dimensional Creeping Flow—Systematic Derivation of the Shallow …

‘The flow pattern along the free surface is still as expected, namely into the ice
within the ablation zone. This is demonstrated in Fig. 12.15f, which is a vector plot
of the velocity distribution [...] that gives a fairly reliable view of the streamline
pattern’, [44].

The temperature distributionwithin the ice sheet ismainly governed by the relative
weights of diffusion versus vertical convection (compare graphs a & b of Fig. 12.15
with graphs a&b and c&d inFig. 12.16, respectively)’. ‘In this figure,α is ameasure
for vertical convection andβ for vertical diffusion.Evidently,whenβ is small, vertical
convection dominates, vertical temperature profiles change slowly in the upper part
of the ice sheet but relatively quickly close to the base, [44]. The boundary layer can
clearly be seen (Fig. 12.15 [...]). One detail in these temperature distributions should
be emphasized; over most of the ice sheet the temperature profile for fixed x̄ shows
an inversion; in other words, along a vertical line, the temperature is coldest not at
the surface but at a certain depth [...]. The location of the inversion point relative
to the surface varies with position (it is close to the surface towards the snout). Its
existence is to a large extent the result of the fact that thermal diffusivities are small.
Figure12.16 corroborates this statement. When β = 0.1 (top of Fig. 12.16), vertical
temperature profiles are still curved but more tapered than seen from the isotherm
plots. The basal boundary layer has disappeared, advection no longer dominates over
diffusion but both compete with comparable amounts. Finally, when β = 1 (bottom
of Fig. 12.16) diffusion over-rides advection. This is why isotherms are essentially
horizontal and temperature profiles linear in this case’, [44].

Hutter et al. [44] present a whole range of applications, in which the external
forcing (accumulation rate, surface temperature; geothermal heat) and internal para-
meters (basal sliding; rate factor, creep response function) are varied. As an example,
Fig. 12.17 displays isotherm depth plots for varied accumulation functions according
to Eq. (12.122) for parameters a and b as indicated as insets in the figure. The three
accumulation functions are nearly equal but the isotherm plots in Fig. 12.17 indicate
considerably different temperature distributions as is well seen from the isotherms
close to the base.

(b) The SIA applied to the Greenland ice sheet. The SIA has been applied to the
larger ice sheets on Earth, (i) to obtain the present day geometry, velocity and tem-
perature distributions by integrating the SIA equation. Early computational attempts
are given in [7–9, 25, 29, 30, 44, 66]. Ralf Greve and Ute C. Herzfeld (2013)
[28] performed computations subject to the following condition:

• Realistic initial conditions at pre-Eemian times (before ≈175,000 years) and re-
sponding to reasonable parameterizations of the precipitation/melting scenarios
at the moving and deforming free surface through the ice age(s) until the present
time.

• Incorporated in this model must be polythermal modules, separately accounted
for cold and temperate ice with their equations, in disjoint domains, which join
at the cold-temperate-transition surface at which the Clausius–Clapeyron
behavior must hold, [23–25, 27, 29, 38, 39, 41, 45].
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(a) (b)

(c) (d)

Fig. 12.16 Temperature distribution under steady flow conditions. In the computations the
accumulation rate function (12.118) was used with h̄0e = 0.5, p1 = 0.1, p(2) = 0, TM = −20 ◦C,
T (1)
M = 16 ◦C and T (2)

M = 0 ◦C. The two coefficients α and β are defined as

and are measures for convection and vertical diffusion, respectively. Here: g = 9.81m s−2,
cp = 2 × 103 m2s−2K−1, λ = 2.2N kg−1K−1, ρ = 910 kgm−3, [H ] = 500–3000m, Δ T =
20K, [W] = 1m a−1, from Hutter et al. [44], c© J. Glaciology, reproduced with changes

• Because the heavy weights of the large ice sheets deform the solid earth on
which they sit, the isostatic depression and rebound of the lithosphere due to
the changing ice load must be evaluated along with the varied mass distribution
of the sheet. Early models employed a relaxation type response of lithosphere
pillars into the asthenosphere, [7, 8]. R. Greve and U.C. Herzfeld [28] apply
the elastic-lithosphere relaxing-asthenosphere approach due to E. Le Meur and
Philippe Huybrechts [51] or R. Greve [26]. This models the lithosphere as a
viscoelastic plate (or shell).

• Of significance is the digital elevation model of the present day topography of the
Greenland ice sheet. Early models used a 40km grid; today’s ice sheet data by
J.L. Bamber et al. (2001) [4] have grid spacing of 5km. This is still not sufficiently
fine to capture local morphological features such as deep canyons and canyon
systems. Herzfeld et al. [35, 36] devised an algorithm for preserving impor-
tant sub-scale morphologic features at grids of lower resolution. In the model
computations of R. Greve and U.C. Herzfeld [28] these sub-scale features are
incorporated into the 5km grid of J.L. Bamber et al. [4].
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(a) (b)

(c) (d)

(e) (f)

Fig. 12.17 Isotherm distribution for different surface accumulation functions. An explanation of
the considerable temperature change with accumulation. Shown are isotherm plots determined
by using the accumulation function (12.122). Thermal and basal conditions are the same as for
Fig.12.15. Panels a, c, e (left) show the isotherm distributions when the parameter b is varied;
figures b, d, f show those when a is varied, from Hutter et al. [44] c© J. Glaciology, reproduced
with changes

The remaining details of the model, how the climate input is modeled and the ‘spin-
up’ of the model reaches acceptable initial pre-Eemian geometry, temperature and
velocity distributions as well as the integration to the present time are described in
sufficient details in [28]. Here, we confine attention to a comparison of the present
day features of the computed Greenland ice sheet and compare it with corresponding
features, obtained from the present day observations.

‘The result of the paleo-climatic spin-up run at the highest resolution of 5km [...]
for the present [time] are shown in Fig. 12.18. Comparison of the simulated (panel
a) and observed (panel b; data by I. Joughin et al. 2010 [48]) surface velocities
reveals that the general pattern with the low-velocity (<10m/year) ‘backbone’, the
general acceleration towards the coast and the organization into drainage systems
is reproduced very well. The most conspicuous discrepancy is in the region of the
northeast Greenland ice stream (negis), which appears only very weakly in the
simulation.
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Fig. 12.18 Results of the paleo-climatic spin-up of the Greenland Ice Sheet at 5km resolution
over 150.000 years. a Simulated vs and b (observed vs,obs; Joughin et al. 2010 [48]) present-day
surface velocities. c Difference of simulated (h) and observed (hobs) present-day ice thicknesses
d simulated present-day basal temperature relative to pressure melting. From [28] c©Annals of
Glaciology, reproduced with changes

This is reflected in the difference of simulated and observed ice thicknesses
(panel c). This misfit is generally small (<100m) due to the fixed-topography
constraint during most of the spin-up run. However, some areas stick out, and one



106 12 Three-Dimensional Creeping Flow—Systematic Derivation of the Shallow …

Table 12.5 Basal temperatures at the four positions of ice drill sites in Greenland, computed by
Greve and Herzfeld [28] and measured according to the listed references

Site Computed basal
temperature [◦C]

Measured basal
temperature [◦C]

References

GRIP −8.66 −8.56 Dansgaard et al. (1993) [15]

Dahl-Jensen et al. (1998) [12]

North GRIP −2.64 (pressure
melting)

−2.4 Dahl-Jensen et al. (2003) [13]

North GRIP members (2004) [57]

Camp century −13.96 −13.00 Dansgaard et al. (1969) [14]

Gundestrup et al. (1987, 1993)
[32, 33]

Dye 3 −14.08 −13.22 Gundestrup & Handsen (1984) [31]

of them is the negis area, where simulated ice thicknesses are too large as a con-
sequence of the under-predicted drainage towards the coast. The same holds for the
area of Petermann Glacier in the northwest. In contrast, along the southeastern
ice margin simulated ice thicknesses are generally too small, which may be due to
over-predicted ice flow (difficult to judge because of gaps in the observational cov-
erage) or inaccuracies in the surface mass balance. Most of the rapid topographic
adjustments that lead to these local misfits arise early during the short transient run
[...] over 100 years at the end of the spin-up sequence. After these 100 years, the
ice-sheet geometry has largely stabilized, and no spurious rapid adjustments occur
in the future-climate runs [...].’ [28].

‘Basal temperatures (panel d) are at the pressure-melting point for ≈44% of
the ice covered area, including all major draining basins’. At the ice core sites,
the computed basal temperatures agree very well with those measured (Table 12.5).
R. Greve andU.C.Herzfeld say that the good agreement ismainly due to the choice
of the geothermal heat flux. They also analyze the surface velocities, particularly in
the vicinity of linear deep troughs. From the results obtained at 20, 10 and 5km
resolutions it becomes apparent that the 5km resolution performs best, but still not
sufficiently satisfactorily, consult [28].

(c) Shallow flow approximations—research into the future. Antarctica is the
largest ice mass on Earth consisting of a grounded shallow portion to which a number
of floating ice shelves is attached; its two largest ones are the Ross Ice Shelf and
the Rønne-Filchner Ice Shelf, more than 1000km in horizontal extent and of varied
depth between 50 to less than 2000m thickness. To first order approximation ice
shelves behave like viscous membranes, which are, via ice streams, nourished by
the inland ice and wasted by the calving processes at their fronts. In the vicinity of
the grounding line at the sheet-shelf transition, they exert a buttress to the sheet,
which affects the flow from the sheet to the shelf; so, sheet and shelf are dynamically
coupled. In addition, Antarctica has relatively large portions of temperate ice and
needs to be treated as a polythermal ice mass.
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In spite of these complexities, early attempts to the understanding of the dy-
namics of Antarctica ignored the shelves or used an extremely simple patching-
together model and employed the SIA by restricting Antarctica to the grounded
portion, see [10, 34, 46]. A physically acceptable model for ice masses with sheet-
shelf combinations must employ the shallow flow approximations for the grounded
portion(s)—these are the SIA and SOSIA—and the corresponding approximations
for the shelves—these are the shallow shelf approximation, SSA and the second
order shallow shelf approximation, SOSSA. The theoretical basis for these approx-
imations is given by Dambaru Baral (1999) [5], who delivers systematic deriva-
tions of the SIA, SOSIA for grounded ice sheets as well as of the SSA, SOSSA
for floating shelves. D. Baral, K. Hutter and R. Greve (2001) [6] present the
asymptotic theory for sheets, M. Weis, R. Greve and K. Hutter (1999) re-iterate
on the SSA. The SOSSA is so far only available in [5].

A first analysis beyond these limited computations has been presented byEgholm
et al. (2011) [17]. Work at greater depth by Ahlkrona et al. (2013) [1, 2] compares
various asymptotic results (including SIA and SOSIA) with those from a Stokes

model (ELMER [18]). It is found that the regular perturbation of the SIA and SOSIA
gloss over the high viscosity boundary layer (in the inner regions near the free surface
and the vicinity of domes and divides) as mentioned in plane flows by Johnson &
McMeeking (1984) [47] and in three dimensional flow by Schoof andHindmarsh
(2010) [62].

Reliable computations of sheet-shelf combinations with equations of the shallow
flow approximations are given by Sato (2012) [60] in his dissertation and a brief
account by Sato and Greve (2012) [61]. Their technique is to patch together the
SIA- and SSA-equations at the grounding line. Systematically, this is not possible
with the SIA-SSA equations alone as explained by Kirchner et al. (2011) [49]. For
a consistent asymptotic matching of the sheet and shelf dynamics the higher order
modelsSOSIA-SOSSAare the least ordermodelswhichmust be applied. Preliminary
work byKirchner et al. (2011) [49] andwork in progress byAhlkrona,Kirchner
and Lötstedt (personal communication, 2014) suggests that the grounding line
sheet-shelf transition requires more than a regular straightforward SOSIA-SOSSA
matching procedure.

12.9 Discussion and Conclusions

This chapter has been devoted to systematic derivations of approximate models of
gravity driven free surface creeping flows of very viscous fluid-like materials, which
are initially, or develop with time into, shallow geometries. The physical circum-
stances were motivated by creeping soil on mountain slopes, which may move sev-
eral centimeters to meters per year, or by the moving of large ice masses sitting on
solid ground such as glaciers in mountainous territory or ice sheets covering large
areas or even continents, such as piedmont glaciers and the Greenland ice sheet and
Antarctica. The physics of such flows is graphically illustrated in Fig. 12.3; the flow
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pattern is dictated primarily by the hydrostatic pressure. Scrutiny of the governing
equations indicates that the mean slope angle of the basal topography is crucial in
developing approximate model equations. This difference is quantified by the dif-
ferences in scaling analyses, in which the sinus of the mean slope angle enters the
characteristic dimensionless quantities such as the Froude number, when the flow
is down steep slopes, but is missing, when the fluid-like mass moves on horizontal
topography (see (12.18) and (12.87)). This different scaling procedure has led to
distinct approximations. It strictly implies mathematically that the flow of a shallow
creeping mass down a mountain valley into an approximately horizontal bed cannot
be described by a single mathematical model. The two approximate models of this
chapter must be patched together accordingly.

This, however, has not beendone so far. Instead, the notion ‘shallowness’ should be
defined relative to a curvilinear imbedding, in which the coordinate metric is based
upon the underlying topography. This has been done for rapid shallow flows (see
Chap.13), where the acceleration term in the momentum equation is important. As
we have seen, when estimating the orders of magnitude of the acceleration terms, the
Stokes approximation (i.e., the neglect of the acceleration terms in the momentum
equation) is valid in the studied geophysical applications to a very high degree. This
makes the use of non-Cartesianmetric not so important. For cases, when higher order
shallow flow approximations request to account for the non-hydrostatic acceleration
terms (e.g., in some engineering applications this would likely be different).

This discussion leads to the question, whether approximate formulations in the
spirit of SIA and SOSIA should simply be dismissed and be replaced today (i.e.
the year 2015) by general software modules, which directly integrate the Stokes

equations. Such software has indeed been developed (e.g. ELMER, …) and applied
to ice flow problems. The disadvantage of such software is that CPU-times for com-
putations are excessively long, far too long that climate reconstructions over several
100,000 years cannot be performed. As long as faster and more efficient software is
not available, the use of the approximate computations as dealt with in this chapter,
are to be preferred.
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Chapter 13
Shallow Rapid Granular Avalanches

Abstract This chapter is devoted to rapid granular flows in an attempt to intro-
duce the reader to the challenging theory of the dynamical behavior of fluidized
beds. The peculiar behavior of such materials is exhibited in typical responses such
as ‘dilatancy’, ‘liquefaction’, (size) ‘segregation’, ‘normal and inverse grading’ etc.
The fluid mechanical description of cohesionless granular materials—dry or wet—in
avalanches of snow, debris and mud also applicable to transport of dry granular mate-
rials in industrial production chains, follows continuum and discrete descriptions. The
theoretical modeling of moving layers of granular assemblies begins with the one-
dimensional depth integrated Mohr–Coulomb plastic layer flows down inclines—
the earliest description being the so-called Voellmy model (1955), extended by the
Savage-Hutter theory (1989) and its extensions—but then continues with the gen-
eral formulation of the model equations referred to topography-following curvilin-
ear coordinates, with all its peculiarities in the theory and the use of shock-capturing
numerical integration techniques. Detailed comparison of computational results with
laboratory chute flows and field events demonstrate the suitability of the various
models.

Keywords Dilatancy · Segregation · Liquefaction · Shallow flow models · Curvi-
linear coordinates · Shock capturing numerical techniques ·Laboratory chute flows ·
Field events of large landslides

List of Symbols

Roman Symbols

Ax , Ay Spatial matrices in the hyperbolic partial differential equation
(13.120): Ax = ∂ f /∂ω, Ay = ∂g/∂ω

a, a Acceleration—vector
b(x, y) =: z Equation for the basal surface relative to a reference ruled sur-

face
C = ρg/ξ Viscous friction coefficient
D Stretching tensor, strain rate tensor (deviator)
Fs,b(x, t) = 0 Equation of the free/basal surface
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f Flux matrix associated with w (see (13.112) and (13.113))
f̄ Depth average of f : f̄ = 1

h

∫ s
b f dz

g Gravity constant
gi Covariant basis vector: gi = ∂r

∂xi

gi Contravariant basis vector
gi j = gi · g j Covariant metric coefficients
g∗

j := g j/|g j | Unit basis vector
h(x), h(x, y, t) Height of a granular mass—of a moving mass relative to the

reference surface
H, [H ] Scaling length perpendicular to the (x, y)-plane

K b
x , K b

y Earth pressure coefficient at the basal surface: K b
x := pb

xx
pb

zz
,

K b
y := pb

yy

pb
zz

Kact/pas Active/passive earth pressure coefficients
K b

xact/pas
, K b

yact/pas
Active/passive earth pressure coefficients at the base

L , [L] Scaling length in the directions parallel to the(x, y)-plane
mx , my Specific momentum in the x- and y-directions: mx = hu,

my = hv

mδ Coefficient in the parametrization of the bed friction angle
N Force normal to an internal cut at a point in a body
ns,b Unit normal vector on a free/basal surface of the body
O Order symbol
p Pressure, overburden –
pL Longitudinal pressure
ps,b Pressure tensor evaluated at the free/basal surface of a body
pxx , pxy, . . . , pzz Components of the pressure tensor
pzz ‘Hydrostatic pressure’: pzz = (s − z) cos ζ
R Typical radius of curvature
r(x, y, z) Position vector of a body point
rr (x, y) Position vector to a point on the reference surface
S Shear force tangential to an internal cut at a point of a body
sgn(u) Sign of u: sgn(u) = 1 if u > 0, = 0 if u = 0 and = −1 if u < 0
s(x, y) = z Equation for the free surface of a body
t Time
u, u Velocity vector, downslope velocity of a sliding body point
umax Maximum velocity of a sliding body
w Array of independent variables of a partial differential equation

in conservative form (see (13.112) and (13.113))
x Position of a sliding body
x, y, z Coordinates (not necessarily Cartesian)
x f , xr Front and rear end positions of an avalanche
x, y, z Cartesian coordinates



13 Shallow Rapid Granular Avalanches 115

Greek and Miscellaneous Symbols

|α|, |β|, |γ| < 1 Exponents in the order relations O(εα),O(εβ),O(εγ)

γ Shear angle in e.g. simple shearing, 2× (shear rate)
Γ k

�m Christoffel symbol of second kind
Δb = |∇Fb| Basal surface quantity (see (13.75))
δ, δ0 Bed friction angle, constant bed friction angle
ε = H

L � 1 Aspect ratio
ξ Manning-Gaukler-Strickler coefficient
ζ, ζ̃ Inclination angle(s)
κ Coefficient of a Reiner-Riwlin fluid
κ = ∂ζ/∂x1 Curvature in the downslope direction
λ = L/R Typical measure of the radius of curvature of the topography
μ Dynamic viscosity,
μ = tan δ0 Friction coefficient formed with a typical angle of friction
ρ Density of a fluid—of a granular heap,
ρa Density of air
σ,σD Cauchy stress tensor—deviator
τ Shear stress, basal shear stress
φ Angle of internal friction, typical parameter measuring the cur-

vature of the basal topography
Ψ Typical parameter measuring the curvature of the basal topog-

raphy
IID Second invariant of D: IID = 1

2 tr D2

∇ Gradient operator: ∇ := gk ∂
∂xk

NOC scheme Non-oscillatory central difference scheme
SH model Savage-Hutter model
TVD method Total variation diminishing method

13.1 Introduction

In the geophysical environment avalanches occur in a variety of circumstances. Such
rapid mass flows might occur in the form of rock and snow avalanches, as landslides
of catastrophic soil release, debris and mud flows, gravity driven motions of volcanic
ash and as turbidity currents (under water avalanches). Industrial examples are flows
of cereals, pharmaceuticals, coal and cement in storage facilities, production lines,
power stations and construction sites. All these cases do have many common features
and their mathematical description can be based on similar physical principles. Thus,
not surprisingly, nearly the same concepts have been applied to avalanching mass
movements in different fields of science and engineering specialties.

The model equations, which will be our focus in this chapter, are depth integrated
versions of the balance laws of mass and momentum, and as such involve idealizing
approximations e.g., the shallowness of the geometries of the moving masses. They
are in most parts based on a dry granular concept and employ a one-constituent
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continuum formulation. The derivation of the depth integrated equations is based
on mathematical simplifications, notably a scaling analysis, in which a shallowness
parameter, expressed as the ratio of a typical flow depth to avalanche extent, ε =
[H ]/[L], may be used to construct approximate field equations in the limit as ε → 0.
Such models must be tested against experiments in the laboratory and possibly in
Nature, in order to identify their range of applicability.

Snow avalanche conditions are usually caused by the combination of heavy snow
fall, wind and changing temperatures. The number of avalanches falling annually
in the USA is on the order of 105, and the number of avalanches falling annually
worldwide is on the order of 106. Of the about 100 people who are annually caught by
avalanches in the USA about 17 are killed and the average annual property damage
is 400,000 USD. Yearly death casualties are about 25 in Switzerland and Austria,
31 in France, 20–30 in Italy, 30 in Japan, 10–15 in Norway, 10 in Germany and 7 in
Canada, according to B.R. Armstrong and K. Williams [3] and these figures have
not appreciably decreased in the last 30 years. Figures 13.1, 13.2 and 13.3 show
manifestations of dense flow avalanches and powder snow avalanches.

Fig. 13.1 Deposits of avalanches in two different situations. a Deposit of a real snow avalanche
in the Alps (Courtesy of the Swiss Federal Institute of Snow and Avalanche Research, SLF, Davos
b Laboratory avalanche simulation with a mixture of sand and gravel [29]
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Fig. 13.2 A sequence of snapshots of a powder snow avalanche in the Himalaya Courtesy
F. Tschirki, Swiss Federal Institute of Snow and Avalanche Research, Davos, Switzerland

Avalanches also occur in the form of the motion of soil or rock down mountain
sides, sometimes mixed with uprooted bushes, trees and often containing water.
When water does not play any significant role in the motion of the granular masses,
geologists also talk of avalanches or rock falls. If water is likely to be the triggering
element of the soil in motion, then the terminology is debris flow, even if eventually
i.e. during the catastrophic motion of the granular mass, the water can be ignored as
a dynamic element. Mud flows are flows of soil and added debris that is substantially
mixed with interstitial fluid, which contributes to the dynamics of the solid-fluid
mixture. Figure 13.4 shows a view of the village Gondo in southern Switzerland as
it has been hit by the spitting mud flow of 14 October 2000. The heavy rainfall of
48 h prior to the event triggered the 10.000 m3 mud flow.
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Fig. 13.3 Photographs of a powder avalanche taken from a helicopter. This avalanche was artifi-
cially released by blasts from the helicopter. Courtesy Swiss Federal Institute of Snow and Avalanche
Research, SLF, Davos, Switzerland

Volcanic eruptions (e.g. Mount Saint Helens in Washington State, USA, 1980)
often generate gravity currents of hot ash down the mountain side. These debris
flows are referred to as pyroclastic and are often also called lahars, because of their
considerable heat and burning temperatures. Earth quakes are often equally triggering
landslides or debris flows. Figure 13.5 depicts the devastating debris slide in January
2001 in Las Colinas, El Salvador. This landslide may have buried as many as 500
homes.
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Fig. 13.4 Destruction by mud flow and landslide: 10.000 m3 spitting mud flow in Gondo (South
Switzerland) on 14 October 2000 caused 14 deaths and destroyed a dozen buildings, including the
400 years old Stockalper tower. © Berner Zeitung

Fig. 13.5 Deposit of a devastating debris slide in Las Colinas (on the outskirts of San Salvator),
January 2001. This landslide was induced by an earthquake and buried as many as 500 homes, from
http://www.crealp.ch

13.2 Distinctive Properties of Granular Materials

Many rapid mass movements in geophysical flows have a granular structure. Among
these are snow avalanches and landslides that are formed from rock falls, ice
avalanches that evolve from fragmented ice junks, which broke off from steep
glaciers, debris flows of soil soaked with water during and in the aftermaths of a heavy

http://www.crealp.ch
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rain storm. Air or water borne density currents, such as powder snow avalanches,
dust clouds above deserts by wind, and sub-aquatic water suspended turbulent mass
flows also define a class of granular flows, but these are structurally distinct from
dense granular flows and must be treated by mixture concepts. By contrast, in dense
granular flows the interstitial fluid or gas plays a small, generally negligible dynamic
role. It is this latter class of gravity driven granular flows, which will be more closely
analyzed in this chapter.

13.2.1 Dilatancy

Deformations in a granular body are almost always accompanied by corresponding
volume changes. Osborne Reynolds in 1885 [71] called this phenomenon dila-
tancy. If an array of identical spheres (or parallel circular cylinders in two dimensions)
at closest packing is subject to a load so as to cause a shear deformation, then from
pure geometric considerations those particles must ride one over the other, and it
follows that an increase in volume of the bulk material will occur, see Fig. 13.6.
Dilatancy in this case is due to kinematic constraints.

Dilatancy is the cause that granular materials exhibit what in rheology is called
‘normal stress effect’. This means that shearing of a granular pack, in which the
expansion of the sheared specimen is constrained, will automatically induce a nor-
mal stress perpendicular to the direction of shearing. A constitutive postulate must
account for this property; for instance, in a density preserving fluid a stress strain
rate relation of the form σD = 2μ(IID)D, where σD is the stress deviator, D
is the stretching tensor, IID = 1

2 trD2, does not exhibit normal stresses, but the
Reiner-Rivlin fluid

σD = 2μσ + κ
{

D2 − 2
3 IID I

}
(13.1)

initial state shear + dilatation

Fig. 13.6 Left shearing of a closed packing of spheres or circular cylinders generates a volume
expansion. Right displacing a saturated mixture of grains with the pore space filled with water at
closest packing by pressing the belly from outside will enlarge the pore space in the belly, so that
the water in the capillary will drop, from [86]. © Springer Verlag, reproduced with permission
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does so. Indeed, in simple shearing we have

D =
⎛

⎝
0 γ/2 0

γ/2 0 0
0 0 0

⎞

⎠ , D2 =
⎛

⎝
γ2/4 0 0

0 γ2/4 0
0 0 0

⎞

⎠ , IID = γ2

4
(13.2)

and, therefore according to (13.1)

σD = 2μ

⎛

⎝
0 γ/2 0
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0 0 0

⎞

⎠ + κ

⎡

⎣

⎛

⎝
γ2/4 0 0
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⎛
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⎠
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⎝
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⎞

⎠ + κ

3

⎛

⎝
γ2/4 0 0

0 γ2/4 0
0 0 0

⎞

⎠ (13.3)

with normal stresses σx = κ
12γ2,σy = κ

12γ2,σz = 0. With κ = 0, (13.3) does not
exhibit normal stress effects.

13.2.2 Cohesion

In a granular deposit the contact forces between particles can be normal and tangential
to the tangent plane in the contact point. If the normal forces are restricted to pressures,
the granular material is said to be cohesionless. If also some tension is active, then
the contact is cohesive. Tensile forces can e.g. be induced in a soil deposit by partly
wetting the particles. Surface tension that is active in the menisci then gives rise
to cohesive behavior of the deposited mass, compare Fig. 13.7. In this particular
application the forces are also called capillary forces. The effect arises e.g. in water

empty space

grain

water film

Fig. 13.7 In wet soil the water accumulates in liquid films in the pore space between grains
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saturated soil immediately above the ground-water surface, when the soil is only
partly saturated in the so-called capillary fringe.

Cohesion is a physical mechanism that is likely more significant for snow, soil
and rock masses at rest or in creeping deformations than in rapid motion. Dynamic
processes tend to break the bonds that exist because of the liquid bridges between
the particles. Once broken, the tension forces between the grains are not likely to
be re-established, because the sliding motion and the bouncing of the particles are
too strong that surface tension at the menisci in the fluid between particles can be
established.

13.2.3 Lubrication

There are several distinct mechanisms, which reduce friction in granular materials in
motion. One of them is lubrication and expresses the reduction of frictional resistance
by introducing an additional medium, the lubricant between the surfaces of two
bodies that are displaced relative to one another. For granular gravity driven mass
flows lubrication is particularly important, because it is likely responsible for large
run-out distances of the avalanching mass down low slope angles. Air or water
can act as lubricating media, or lubrication can be process-induced, e.g. when the
particles in the vicinity of the sliding surface experience increased pulsations, which
increase their fluctuation energy (i.e., granular temperature), enlarge the mean free
path between the particles and, thus, reduce the friction.

In flow avalanches of snow, lubrication may arise in form of a liquid water film
between the surfaces of the sliding snow and the ground. These kinds of lubrication,
the frictional energy between the sliding snow at the base and the stagnant base
may continuously generate melt water as its own lubricant. In very large landslides
(of several millions of m3 of rocks) the frictional heat at the sliding surface may
cause basal temperatures of more than 1000 K, so that the gravel may melt and act
as lubricant between the rock avalanche and the stagnant base. T. Erismann and
G. Abele [27] demonstrate for the historic avalanche event at Köfels (Austria) that
rock material in this sliding motion must have melted during motion and subsequently
again solidified, while being deposited. Geologists call such sintered ‘volcanic rocks’
“frictionites”.

It is quite clear that the thermal component of avalanching flows of lahars, volcanic
ash, lava possibly with phase changes, need to be described by energy considerations
apart from balances of mass and momentum. Theoretical descriptions of these flows
are very scarce. A model on lava flow in the spirit of the ‘cold’ avalanche theories
dealt with in this chapter is by K. Hutter and O. Baillifart [44].

A particular limit of lubricated sliding is un-lubricated sliding. By this one usually
means sliding that operates without the action of a lubricant. The best known case
of such un-lubricated friction is so-called solid friction according to the classical
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Coulomb
1 law. It postulates that the resistance opposed to a sliding motion of

a granular body is proportional to the compressive force acting at right angle to
the contact surface. The factor of proportionality is called the coefficient of friction,
which is assumed to be characteristic for the surface (but not the load, relative velocity
and time).

When using the simpleCoulomb law, the motion of a mass point along an inclined
plane, see Fig. 13.9, is described by

a = g (sin ζ − μ cos ζ) , (13.4)

in which a is the acceleration, ζ the slope angle, μ the coefficient of friction of
the material with the basal surface and g the gravity constant. In (13.4) g sin ζ is
the driving gravity force and gμ cos ζ the un-lubricated frictional force resisting the
motion. This dry friction force does not depend on the velocity difference between
avalanche sole and solid bed. Such a viscous drag will likely depend on the square
of this velocity difference with a drag coefficient C . Thus, (13.4) changes to

a︸︷︷︸
acc.

= g sin ζ︸ ︷︷ ︸
velocity parallel

gravity force

− gμ cos ζ︸ ︷︷ ︸
Coulomb

friction

− Cu2
︸︷︷︸
viscous
friction

. (13.5)

With

a = d u

d t
= d2x

d t2
(13.6)

Equations (13.5) and (13.6) can directly be integrated with the results,

• For (13.4):

u = g (sin ζ − μ cos ζ) t + u0,

x = g

2
(sin ζ − μ cos ζ) t2 + u0t + x0.

(13.7)

• For (13.5):

u =
√

g (sin ζ − μ cos ζ)

C
tanh

{√
C g (sin ζ − μ cos ζ) (t − t0)

}
,

x = ln cos

√
g (sin ζ − μ cos ζ)

C
(t − t0) + x0. (13.8)

1For a biographical sketch of Coulomb, see Fig. 13.8.
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Fig. 13.8 Charles-Augustine de Coulomb (14. June 1736–23 Aug. 1806)

Charles-Augustine de Coulomb was a French physicist best known for developing
Coulomb’s law, describing the electrostatic attraction and repulsion of electric charges,
but he also did important work on dry friction. He went to school in the Collège Mazarin
in Paris where, at the Ecole de Génie militaire de Mezière, he received a profound edu-
cation in mathematics, astronomy, chemistry and botany, as well as philosophy, language
and literature. He graduated in 1761 and then spent his next 20 years in the military with
engineering assignments: structural, fortifications, soil mechanics. From 1764 to 1772 he
was in Martinique, where he was in charge of building the new fort Bourbon. Later, he had
similar assignments in France and abroad. In 1789, on the outbreak of the revolution, he
resigned his appointment and retired in a small estate, which he possessed in Blois, but he
was recalled to Paris for a time order to take part in the new determination of weights and
measures, which had been decreed by the Revolutionary government

Augustine Coulomb’s scientific achievements are manifold and substantial. He is known
for:
(i) his law on solid friction;
(ii) the law on internal friction of liquids;
(iii) the development of the first ever formulated shear stress-normal stress interaction in
soil mechanics and the introduction of the earth pressure coefficient;
(iv) his outstanding work on the experimental demonstration of the electrostatic force-distant
law between two electric charges ((1/distance squared) law), which is one of the universal
physical laws

The text is based on www.wikipedia.org

www.wikipedia.org
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Interesting are the limit values of the velocities as t → ∞. They are

u →
√

g (sin ζ − μ cos ζ)

C
t for (13.7)1

u →
√

g (sin ζ − μ cos ζ)

C
for (13.8)1

⎫
⎪⎪⎬

⎪⎪⎭
as t → ∞. (13.9)

Equation (13.7)1 tells us that the velocity of the sliding mass grows linearly with
time; it never comes to a constant limiting value. By contrast, we conclude from
(13.8)1 or (13.8)2 that for velocity-dependent sliding an avalanching mass reaches a
steady asymptotic flow state with constant velocity.

It is not clear whether the asymptotic velocity will be constant or whether an
infinite increase of the velocity will persist. Experiments by W. Eckart et al. (2003)
[21] andCh.Ansey and M.Meunier, 2003, [4] do not come to a conclusion whether
viscous sliding may be dropped and only Coulomb sliding is relevant.

13.2.4 Liquefaction

Liquefaction, also called fluidization, is a transitional state of water saturated soils,
which may occur during and in aftermaths of earthquakes or as a result of artificial
explosions in loose saturated sand deposits. Liquefaction manifests itself in a sudden
change of the saturated soil from an essentially solid material state to a fluid behavior
or something in-between. This transition sets in some time in the last stretch of an
earthquake or immediately thereafter and lasts for some minutes. It tapers off due to

F

mg

ζ

x
N

u

Fig. 13.9 Motion of a rigid body down an inclined plane The frictional force consists of two
contributions, aCoulomb type, |F

Coulomb
| = μN and a velocity dependent contribution Fviscous =

Cu2. In this case N = (ρ − ρa)g cos ζ, Fviscous = (ρ − ρa)g sin ζ and C = ρg/ξ. Here, ρa is the
density of the atmosphere
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the solidification or consolidation processes, which set-in simultaneously with the
fluidization and the concurrent partial separation of the solid and fluid constituents.
Soil deposits, which have been subject to liquefaction in the past e.g. by an earthquake
may not be sufficiently consolidated after settlement to be absolutely stable and safe
against further fluidization in future oscillating or impact events.

It must be the geotechnician’s intention to describe the implications, which can
be possibly deduced from observations of the processes and remains of destructions
caused by earthquake-induced events, now identified as liquefaction. The description
of these observations leads to implications of the physical behavior of the saturated
soil as a material and, subsequently, to a proposal of a possible constitutive modeling,
which is subject to consistency requirements with the Second Law of Thermodynam-
ics and later scrutinized in numerical applications of geotechnical scenarios.

An excellent description of the liquefaction of soils by earthquakes is by
N. Ambraseyes and S. Sarma [1]. In their introductory statement they write:

“Liquefaction of deposits caused by earthquakes is not an uncommon phenom-
enon. It accounts for submarine slides and subsequent turbidity currents
(N. Morgenstern, 1967) [64], for landslides and flows of subaerial deposits
(A. Casagrande, 1936) [10]; it is a phenomenon that may even explain the mecha-
nism that allowed the debris of some of the larger prehistoric and more recent slides,
of many cubic miles of material, to travel distances of over 20 km (J. Harrison
and N. Falcon, 1937) [36]. On flat ground, sand blows, mud volcanoes and exten-
sive flooding of the ground by exuded water, are the results of liquefaction. Also,
the settlements of man-made structures, in some cases to the extent that the ground
becomes level with windowsills, can be produced by liquefaction of the foundation
materials. Underground structures such as septic and storage tanks, sewage conduits
and manholes, water mains, even piles driven into the ground, have floated up, many
feet above ground level, after the earthquake. Most of these effects do not usually
appear until toward the end or several minutes after the earthquake and they persist
for some time.” These authors analyzed observations of ten earthquakes between
1899 and 1966 and their detailed description points at typical behavioral patterns,
which occur in the saturated top layers of soils, when an earthquake passes these
locations:

• Between few and up to a large number of vertical jets of water, 0.5–2.0 m high,
emerged from motion-induced fissures in the plain. These spouts are mixed with
sand, peats or coals.

• Such ejections began during the earthquake and generally lasted 3–5 min, some-
times up to 30 min or more after the shaking had been ceased.

• These mud volcanoes, also called cold volcanoes, may have arisen just once and
then died out or they spurted intermittently, i.e., ejections would stop and then
resume action after a few seconds later.

• Drainage channels, up to 5 and more meters deep, had their bottom lifted until
they became level with their banks. Similarly, wells overflowed as their bottoms
were blowing-up and flooded plains. In some places, the material brought up by
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the fluid mixture, was the same as that of the stratum encountered by wells as deep
as ∼25 m.

• 2–3 mins after the beginning and towards the end of the earthquake, the ground
around some buildings began to crack and to open-up in places. A minute or two
later, water began to come up around the buildings. Structures of all kinds sank
into the ground. In some cases they stayed intact but sank into the ground, were
tilted and/or slid on the foundation, in others they were destroyed by the excessive
differential vertical displacements of parts of the foundation.

• Underground structures (septic tanks, storage tanks, petrol tanks, sewage conduits
and manholes, etc.) floated-up or sank into the ground.

• Other surface structures (bridge abutments) were differentially lifted and thus
destroyed by the excessive strains induced by this.

Qualitatively similar observations are equally stated (but less systematically doc-
umented) by D. Kolymbas (1998, 2013) [50, 51] also for earthquakes beyond
1964, e.g. the Loma Prieta earthquake in San Francisco, 1989 (see J.P. Bardet and
F. Kapuskar, 1993, [5] and Japanese earthquakes analyzed by E. Kuribayashi
and F. Tatsuoka (1977) [54]). The general observations in Kolymbas’ papers do
not go beyond the above summary of stated effects about near surface devastations.
Figure 13.10 displays some destruction that occurred as a result of the liquefaction
of the saturated soils subject to earthquakes and Fig. 13.11 illustrates a cold volcano
under action.

N. Ambraseys and S. Sarma [1] further observed that (i) artesian and oil wells
at depth of more than 100 m were not affected and (ii) ground movements show
that soon after the beginning of the earthquake this ground shaking subsided. This
indicates that, as soon as deeper strata liquefied, they ceased to transmit the earthquake
vibrations to the overlying deposits.

It, thus, appears that at depth of approximately 100 m or more, the seismic excita-
tion seems not to be strong enough to sufficiently liquefy the stratum material. Our
present ad-hoc interpretation is that the exciting seismic wave is primarily a sur-
face wave (Rayleigh or/and Love-wave), which attenuates with depth below the
surface. This, in turn, also means that fluidization is only partial but not complete.
The individual grains are still partly in contact with one another; consequently, solid
friction between some particles is still effective so that frictional solid shear stresses
can still be transmitted among some particles. Hence, ‘soon after the beginning of
the earthquake the ground shaking subsides’ as a consequence of the associated dis-
sipation. With this interpretation, it is then equally clear that deeper, partly ‘liquefied
strata cease to transmit vibrations to the overlying deposits’. So, it appears that full
liquefaction is restricted to surface near layers, if it really develops fully. Below a
certain depth only partial fluidization exists, of which the relative amount decreases
with depth and causes induced vibrations to attenuate at a faster rate than at shallow
depth. The inference which follows from this may be stated as follows:

The fluidization in a binary solid-fluid mixture theory ought to be incorporated in
the constitutive relation for the granular stress by a scalar variable, which expresses
the granular stress as a functional that depends on a scalar variable 0 ≤ li ≤ 1
such that for li = 0 a full solid stress representation emerges, while for li = 1 the
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Fig. 13.10 (Upper-left) Overturned buildings after the devastating earthquake in Niigata, Japan,
1964. (Upper-right) Debris moraines in Tuyk Valley, Alaarcha basin North Tien Shan, Kirgizstan.
© Prof. Aizen. (Lower left) Broken asphalt road and lifted manhole by Chuetsu Earthquake, 2004,
Oijya, Niigata, Japan, reproduced from NGU Free Documentation License. (Lower right) Canter-
bury Earthquake, 04. Sept. 2010, New Zealand. Concrete sump, popped up out of the road due
to liquefaction, Lower Styx Road, Canterbury, licensed under the Creative Commons Attribution
Share 2.0

functional represents a stress formula for which full liquefaction is present for which
no solid stress contribution survives.

Two limiting processes are seemingly responsible for the observations during,
and in the aftermaths of, a strong earthquake. The first is a direct response of the
soil to the driving surface-near (visco)-elastic wave and can be characterized as
acoustic fluidization with high particle oscillations due to the strong and rapid oscil-
lations. The second process, responsible for the post-earthquake water ejections,
cannot be interpreted as an acoustic wave response since no driving mechanism is
active. Consolidation and water ejection may be explained in this phase by the col-
lapse of medium to high solid volume-fraction-soil lenses in an otherwise still loosely
packed but denser matrix medium. During lens collapses, grains dripping from the
matrix into the lenses will fill them with grains, so that the water must escape, even-
tually forming the cold volcanoes. For a regular distribution of the lenses continuous
water ejection may take place. When the lenses are of different size, and irregularly
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Fig. 13.11 Liquefaction by
densification through
explosives in the Lausitz,
Eastern Germany.
© Walter Kunze and
Dimitrios Kolymbas

distributed lens collapses may occur in an uncorrelated fashion and lead to intermit-
tent water ejection. Both these processes are associated with dissipation due to solid
and liquid response to it with solid and liquid stress contribution that is monitored
by the fluidization parameter, li .

13.2.5 Segregation, Inverse Grading, Brazil Nut Effect

It is common experience for everyone who wishes to mix different types of granular
particles that it is very difficult to achieve homogeneous mixing of several sorts of
grains, whereas it is, in general, fairly easy to achieve homogeneous mixing with
miscible fluids (e.g. water and ink). A system containing particles of different prop-
erties usually tends to show segregation. The nature of it depends on many factors,
such as size, geometry and surface properties of the particles, the size of the veloc-
ity gradients and on boundary conditions. The dominant effect of segregation is the
ratio of particle size between large and small particles in the mixture. However, the
structure of the contact forces (resilience) and the smoothness or bumpiness of the
surfaces of the particles also exercises an effect on the characterization of the segre-
gation structure. Shaking a box of muesli before use brings any of the large nuts to
the surface and rinsing with a spoon a jar of dried frozen coffee transports the large
grains to the top. Such separations need dynamic action, i.e., particles must move
and/or bounce against each other to activate the interaction between the particles.
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Fig. 13.12 a Sketch of a profile from a deposit of a pyroclastic flow due to the volcanic eruption
of Mount Saint Helens, Washington USA, 1980. The profile is taken from a position about 6.7 km
north of the crater and 1 km southwest of Spirit Lake. One complete ‘flow unit’ is shown that is
over- and underlayed by other flow units. The profile depicts a clear reverse grading, in which larger
grains are at the upper portion of the flow unit, while smaller grains are in its lower parts. Each flow
unit corresponds to the passage of one pyroclastic flow (Courtesy S. Straub [77]). b Debris flow
deposit from a disastrous flow event on 31. July-01 August 1996 in Taiwan. The front side of the
road has been cleared. The picture demonstrates also particle size separation. The free surface of the
deposit is covered by large boulders, whilst the lower part consists of the fine material, from [86]

This phenomenon is known as Brazil nut effect and has much importance in industrial
and geological processes. When a granular material consisting of grains differing in
size, shape, density, etc., is agitated or deformed in the presence of a gravitational
field, segregation or grading of particles can occur. In gravity driven shear flows with
a free surface it is observed that the fine particles collect at the lower parts of the
layers, whereas the largest particles move towards the free surface. In the geological
literature, this phenomenon is called reverse or inverse grading.

Such particle size separations are often observed in snow avalanches, debris flows
and pyroclastic flow deposits. In dynamical systems of such flows one generally
observes that the large particles move to the front and to the top surface, whilst the
small particles accumulate at the bottom and in the rear part of the avalanche. In
deposits of pyroclastic flows due to volcanic eruptions or in marine sediments of
turbidity currents depositions show often a repetitive occurrence of ‘flow units’ with
the fine particles at the bottom and particle size increasing as one moves higher up
until a level is reached where a new flow unit commences as shown in Fig. 13.12a.
Each flow unit corresponds to a passage of an avalanche, manifesting inverse grading.

Similar structures of inverse grading can also be seen in debris and (less obvious)
in mud flows. Figure 13.12b shows a debris deposit in which large particles cover
the top, whereas the lower main part is composed of smaller size particles.
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Fig. 13.13 Experiment, demonstrating inverse grading in an avalanche deposition of a bi-disperse
granular mixture. The particles were initially almost uniformly mixed, and segregated due to their
motion. a Small scale laboratory model with a parabolic chute inclined at 45◦, continuously merging
into a horizontal plane. b Photograph from above, of the deposited binary mixture consisting of
small (dark) and large (pale) particles. The large particles are primarily at the top and in the front.
c Photograph of the deposited mixture from below. A frontal horse shoe ring of pale, large particles
is clearly seen, but the remainder of the basal deposit is made up of dark small particles, from [70]

Figure 13.13 shows a table-top experiment of an avalanche flowing down a
Plexiglas-chute into a horizontal deposition area. The granular mass consists of par-
ticles with two different sizes: small (dark) and large (pale) particles. The granular
mass is initially mixed; this mass is suddenly released at the top of the chute and the
deposition on the horizontal Plexiglas is photographed from above and below the
deposit. The panel in the middle shows the deposition from above in pale whitish
color, indicating that the large particles ended up on the top of the deposit, Fig. 13.13b.
Panel (c) shows the photo from below; primarily the dark particles which are of small
size are seen. The horse-shoe type ring shows the pale big particles in the front part
of the deposit. The figure corroborates our earlier statement that the large particles
are in the front and on top, whereas the small ones are primarily at the bottom.

Finally, it should be stated that normal grading also exists but such situations are
much less frequent.

13.3 Shallow Flow Avalanche Modeling

In this subsection we shall present the dominant avalanche models as they have
been derived in the second half of the 20th century, beginning with Voellmy’s one-
dimensional hydraulic or simple mass point model and ending with those models
which are presently under use as depth integrated two-dimensional shallow flow
models—for that see e.g. Pudasaini and Hutter [70], who give a detailed account
of the subject and also present a historical review of it.
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Fig. 13.14 Adolf Voellmy (15. July 1900–20. Feb. 1990)

Dr.AdolfVoellmy is born in Murten, a town in Freiburgian Switzerland. He was educated
as an engineer at the ‘Technikum Burgdorf’ (a junior college) and entered the ‘Federal
Institute of Technology’ (ETH) in Zurich by compulsory entrance examination, where he
graduated as a civil engineer and earned the Dr. sc. tech. with a dissertation on ‘Eingebettete
Rohre’ (‘Embedded pipes’). Following a transitory period on construction sites, he entered
the ‘Eidgenössische Materialprüfungsanstalt’ (EMPA) (‘Swiss Laboratories for Materials
Science and Technology’) in Dübendorf, where he acted since 1931 as Section Head and
retired in December 1965.

His overall working attitude was outlined by himself in his dissertation: ‘The ensuing inves-
tigations follow the trustworthy approach applied in technology, namely to obtain, on the
basis of simple assumptions, a principally correct picture about the static circumstances,
and subsequently to experimentally verify some typical implications that are based on these
knowingly simplified assumptions, in order, thus, to gain concrete, albeit restricted guidelines
for computations. A solution will only correspond to the practical needs, if it is simultane-
ously to the point as well as simple.’

Adolf Voellmy was a calm, alert listener, whose opinions were moderately stated but
objective, based on rational, well thought out arguments.

Photo: Archive EMPA. The text is based on [2].

13.3.1 Voellmy’s Avalanche Model

A. Voellmy,2 an engineer working at the Swiss Institute of Materials Testing (Eid-
genössische Materialprüfungsanstalt, EMPA) in 1955 presented the first theoretical

2For a biographical sketch of Adolf Voellmy, see Fig. 13.14.
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analysis of avalanche dynamics that was internationally recognized.3 His work
remained largerly unnoticed. Veollmy’s work appeared in a paper ‘Über die
Zerstörkraft von Lawinen’ (about the destructive power of avalanches) in four con-
secutive parts and is based on a consultancy assignment to EMPA by the private
company ‘VOBAG AG’ (in Vorarlberg, Austria) to analyze the damage done on
properties in the Vorarlberg in the avalanche event of January 1954. Part 2 of the
series of papers is relevant to us as it deals with the dynamics of snow masses.

Consider a snow layer of height h on a rigid plane inclined at the angle ζ relative
to the horizontal plane. For the snow layer of density ρ immersed in an atmosphere of
density ρa = 0.127 kg m−3

Newton’s second law, formulated parallel to the sliding
plane, see Fig. 13.9 reads

ρ h
d u

d t
= g (ρ − ρa) h sin ζ︸ ︷︷ ︸

driving force

− (g (ρ − ρa) h cos ζ) μ︸ ︷︷ ︸
friction

− ρg

ξ
u2

︸ ︷︷ ︸
turb. friction

. (13.10)

In this equation the resistive force has two contributions, a dry friction Coulomb

resistive force with (drag) coefficient μ and a turbulent Manning-Gaukler-
Strickler term proportional to the squared velocity with coefficient ξ (ms−2). By
a routine computation (13.10) can be transformed to

d u

d t
= g

h ξ

{
ξ

(
1 − ρa

ρ

)
h (sin ζ − μ cos ζ)

︸ ︷︷ ︸
u2

max

−u2

}
= g

h ξ

{
u2

max − u2} ; (13.11)

umax :=
√

ξ

(
1 − ρa

ρ

)
h (sin ζ − μ cos ζ).

With the further variable transformation

y = u

umax
and τ := umax

k
t, k = hξ

g
(13.12)

Equation (13.11) takes the form

dy

dτ
= 1 − y2 −→ y = tanh τ =⇒ u = umax tanh

(umax

k
t
)

(13.13)

for a motion starting from rest at t = 0. The avalanche velocity follows a hyperbolic
tangent law and leads to an asymptotic velocity u = umax at t → ∞. The travel
distance s is obtained as

3This is historically actually not correct. A French forest engineer, P.Mougin published in 1922 his
results on the physical characteristics of snow and proposed a simple model to compute avalanche
velocity and impact pressure: an avalanche was considered to be a sliding block experiencing a
Coulomb friction force. For more details see [70].
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s(t) =
t∫

0

u(t ′)dt ′ = k

τ∫

0

tanh(τ ′)dτ ′ = k ln
[
cosh

(umax

k
t
)]

. (13.14)

To estimate the time t∗, which it takes to reach 80 % of the limit velocity umax, one
must invert the equation

tanh
(umax

k
t∗
)

= 0.8 (13.15)

for umaxt∗/k and substitute this value into (13.14). A. Voellmy estimated s∗ ≈
0.5 k = 0.5 hξ/g. With ξ = 500 ms −2 and g = 10 ms −2 one obtains s∗ ≈ 25 h:
The avalanche travels 25 times its height to reach 80 % of its maximum speed.

The above formulae can be simplified if the density of air is ignored as compared
to the snow density ρ and if also theCoulomb friction force is ignored in comparison
to the viscous force (μ = 0). Then,

v2
max ≈ ξh sin ζ.

The above are the few central lines ofA.Voellmy’s text, extended by us to explain a
few computational steps that fills only about half a page in the Swiss Civil Engineering
Magazine (Schweizerische Bauzeitung) [84]. The entire paper is a landmark, because
beyond the presentation of the above derivation, it contains a wealth of side issues that
are touched, which demonstrate a superb physical understanding of the dynamical
problem concerning fundamental as well as applied aspects of the stated problem.

13.3.2 The SH Model, Reduced to Its Essentials

The Voellmy model received in the 60 and 70 s of the 20th century a number of
additions and improvements, in particular in attempts to design a model that could be
applied to curved down-slopes. One rather important issue, however, was not touched,
namely the fact that real avalanches do deform in the course of their motion, and
Voellmy’s model as a mass point model does not have the flexibility to account for
the geometric changes, which a moving granular mass experiences during its motion.
In plane down-slope flow the toe of the avalanche will flow differently from its rear
and correspondingly, the velocities inside the avalanche and the geometry will also
accordingly adjust to these conditions. The new model, incorporating the geometric
variations under movement, was developed in 1986 with publication in 19894 by
Steward B. Savage and K. Hutter [72]; it became so popular that extensions of
it were immediately following and are still in the process of being developed. The

4The paper was not at all well received by the referees and had to go through a nearly 3-year
process of revisions and extensions. K.H. still thinks, the original draft was more to the point than
the published version, which now also contains a number of side issues.
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model became known as Savage-Hutter (SH) model. In this subsection we present
a derivation following an engineering approach of simple mechanics and will later
present a slight generalization of the model derived from first principles.

Consider plane two-dimensional flow of a granular mass down an inclined plane
and assume the flow to be density preserving. Isolate a column of length dx and for-
mulate the mass and x-momentum balance equations for this element, see Fig. 13.15.
Assume, moreover, that the down-slope velocity is constant over depth, so that
u = u(x, t). Equating the growth rate of mass within the column due to the growth
in height to the inflow of mass from above and outflow from below yields

∂

∂ t
(ρh(x, t)) dx = ρh(x, t)u(x, t) − ρh(x + dx, t)u(x + dx, t)

= − ∂

∂ x
(ρh(x, t)u(x, t)) dx + O (

(dx)2
)
, (13.16)

or after dropping the constant mass density ρ,

∂ h

∂ t
+ ∂(hu)

∂ x
= 0. (13.17)

In (13.16) Taylor series expansion was employed with higher terms being dropped
in the second term of the first line. This will be done as well in the ensuing develop-
ments of many mathematical expressions without mentioning it.

Balance of momentum in the x-direction will be formulated following Newton’s
second law. With the x-momentum of the column given by ρhudx we write

• Time rate of change of ρhudx :

τ dx
gh(x, t)ρ

P(x, t)

P(x+dx, t)u(x+dx, t)

u(x, t)

dx

h(x, t)

p

x

(a) z (b)

Fig. 13.15 Plane flow of a finite mass of granular material down an inclined plane a Sketch
of the geometry, coordinate system and an infinitesimal column for which mass and momen-
tum balances are formulated. b Free body diagram of the column with acting forces, where
P(x, t) = ∫ h(x,t)

0 pL (x, z, t)dz and P(x + dx, t) = ∫ h(x+dx,t)
0 pL (x + dx, z, t)dz, from [70]



136 13 Shallow Rapid Granular Avalanches

∂

∂ t
((ρhu)(x, t)) dx, (13.18)

• Flux of x-momentum through the column walls:

ρh(x, t)u2(x, t) − ρh(x + dx, t)u2(x + dx, t)

= − ∂

∂ x

(
ρh(x, t)u2(x, t)

)
dx + O (

(dx)2
)
, (13.19)

• Forces in the x-direction applied on the column:

(i) = ρgh sin ζ (driving component of gravity),

(ii) = −τdx (basal friction), (13.20)

(iii) =
h(x,t)∫

0

pL(x, z, t)dz −
h(x+dx,t)∫

0

pL(x + dx, z, t)dz

(sum of longitudinal pressures).

The next step is the evaluation of the longitudinal pressure, pL , in terms of the
overburden pressure. This step is based on the recognition that in soils the overburden
pressure

p(x, z, t) = ρg (h(x, t) − z) cos ζ,

obtained from a force balance perpendicular to the x-direction, differs from the
longitudinal pressure pL by the earth pressure coefficient Kact/pas, viz.,

pL(x, z, t) = Kact/pas p(x, z, t) (13.21)

with

Kact/pas =
{

Kact, if ∂ u/∂ x > 0,

Kpas, if ∂ u/∂ x < 0,
(13.22)

where Kact and Kpas correspond to the extensive and compressive modes of defor-
mation. With the representation (13.21) Eq. (13.20)3 can be approximated as

−ρg

2
cos ζ

∂

∂ x

(
Kact/pash

2(x, t)
)

dx + O (
dx)2

)
.

Applying a Coulomb-type friction law for the shear traction at the base yields

τ (x, t)dx = −ρgh(x, t) cos ζ sgn (u) tan δ,

in which δ is the bed friction angle. Adding all contributions of (13.20), this yields
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x − −force =
{
ρgh(x, t)(sin ζ − sgn (u) tan δ cos ζ)

− ρg

2

∂

∂ x

(
Kact/pash

2(x, t)
)

cos ζ

}
dx + O (

dx)2
)
. (13.23)

If we now collect (13.18) + (13.19) = (13.23) and drop the common factor ρdx in
the emerging equation, we have

∂

∂ t
(hu) + ∂

∂ x

(
hu2)

= g

{
(sin ζ − sgn u tan δ cos ζ)h − 1

2

∂

∂ x

(
Kact/pash

2(x, t)
)

cos ζ

}
.

(13.24)

Equations (13.17) and (13.24) constitute a system of two partial differential equa-
tions for the unknown longitudinal velocity u(x, t) and the distribution of the height
h(x, t). They appear here in conservative form. Applying product differentiation in
the respective terms on the left-hand side and right-hand side of (13.24) and using
the mass balance Eq. (13.17) in the emerging equation yields instead of (13.24) the
alternative equation

ρ

(
∂ u

∂ t
+ u

∂ u

∂ x

)

= ρg(sin ζ − sgn u tan cos ζ) − ρgKact/pas
∂ h

∂ x
cos ζ, (13.25)

in which the constant density ρ has been re-substituted to makeNewton’s second law
more explicit as (mass times acceleration) = (sum of the forces). Equations (13.17)
and (13.25) are the Savage-Hutter equations as derived by them in [72] in a more
rigorous fashion. When p = pL (Kact/pas = 1) the pressure distribution is that of a
liquid. In this form the equations correspond to the usual hydraulic models and are
often called de Saint-Venant or Boussinesq equations. They were used in this
form by the avalanche scientists in the Soviet Union, see S.S. Grigoriyan et al.
[33–35] and M.E. Eglit et al. [22–24, 26].

Equation (13.25) appears in a physically transparent form. The force terms on the
right-hand side are the gravity driving force (first term), a Coulomb sliding force
resisting the motion and slowing it down (second term) and a force (third term),
which for ∂ h/∂ x < 0 enhances the acceleration and for ∂ h/∂ x > 0 reduces it.
So, looking at Fig. 13.15, the last term on the right-hand side accelerates the moving
mass on the frontal part and decelerates it in the rear part of the pile; the moving
pile becomes longer with growing time on a plane with slope angle ζ. Omitting this
term from (13.25) reduces the equation to the momentum balance of a rigid mass
model that cannot account for geometric changes of the moving mass. Except for
the turbulent viscous term, this is analogous to the Voellmy model.
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Fig. 13.16 Christian Otto Mohr (8. Oct. 1835 – 2. Oct. 1918)

Christian Otto Mohr was a German structural engineer who started his engineering
education with 16 years at the Polytechnicum Hannover. 1855 he started to work as an
engineer for the Royal Hanoverian State Railway System. As an assistant working for this
governmental company he published in 1860 a paper on the statics of continuous bending
beams. This work became instantly known, since it simplified the determination of the stress
distribution in such structures. After moving to the Oldenburg State Railways, Otto Mohr

was the first structural engineer to design a steel bridge in Germany; its characteristics were
to have been consequently composed of a truss of triangles, which allowed him to apply a
simple computational scheme for the internal stresses, which was in 1863 further perfected
by August Ritter.

1867, at the young age of 32, Otto Mohr was appointed professor of applied mechanics
and road and earth mechanics at the University of Stuttgart. He is said to have delivered
attractive lectures of theoretical mechanics, so that his lectures were well attended. Scientif-
ically, he reached a considerable simplification of the computation of the bending curve of
beams by inventing his graphical construction by a string polygon. Otto Mohr also devel-
oped the Willot-Mohr diagram and the Maxwell-Mohr method for analyzing statically
indeterminate structures. Best known is Otto Mohr’s graphical method to construct in a
body point under plane stress the principal stresses by the Mohr stress circle, which is now
taught to every engineering student in the basic courses of strength of materials. In 1873,
Otto Mohr assumed a chair of engineering science at the Polytechnicum Dresden, where
he stayed until his retirement in 1900. He continued working scientifically, and his yield
criterion for failure, alluded to in the main text by us is published in [62].

The above figure shows for plane stress that failure at a material point will occur when the
Mohr circle touches the failure line τ = c + (tan φ)σ.

The text is based on www.wikipedia.org

There still remains the identification of the earth pressure coefficient under active
and passive pressure conditions. To this end, we consider the granulate to be a cohe-
sionless Coulomb material with angle of internal friction φ > δ, where δ is the bed
friction angle. The state of stress (p,−τ ) for a plane material element (Fig. 13.17a)

www.wikipedia.org
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at the base must lie on a straight line through the origin inclined at the angle (−δ)
(Fig. 13.17b). All other elements that are rotated relative to the element shown in
Fig. 13.17a must lie on circles through the point (p,−τ ), which are also tangen-
tial to the lines through the origin with inclination ±φ; there are two such circles,
a bigger, passive, and a smaller, active-one. The stress states (pL , τ ) on the per-
pendicular elements lie on opposite sides of these Mohr-circles,5 as indicated in
Fig. 13.17b. The center of the bigger Mohr-circle lies at 1

2 (pL + p) and its radius is

given by r = (
τ 2 + 1

4 (pL − p)2
)1/2

. Moreover, from the geometry of the circles in
Fig. 13.17b we identify

τ

p
= tan δ, sin2 φ = τ 2 + 1

4 (pL − p)2

1
4 (pL + p)2 . (13.26)

Substituting (13.26)1 into (13.26)2 and observing that pL/p = Kact/pas leads to a
quadratic equation for Kact/pas with the solution

Kact/pas = 2 sec 2 φ
(

1 ∓ (
1 − cos2 φ sec 2δ

)1/2
)

− 1, (13.27)

in which the upper (lower) signs apply for Kact (Kpas) and sec φ = 1/ cos φ. This
shows that only two phenomenological constants, the angle of internal friction, φ,
and the bed friction angle, δ, describe the earth pressure coefficient, the only two
material parameters arising in this SH model. A further advantage of this model is
also, that in applications δ and φ can relatively easily be estimated.

The above equations have been written in dimensional form. It is always advanta-
geous to put them in dimensionless form because in that form characteristic dimen-
sionless quantities arise explicitly, which point at the significance of the physical
processes that are described by the equations. We shall introduce dimensionless
quantities for the variables {x, z, h, u, t} in the form

{x, z, h, u, t} =
{

Lx̂, H ẑ, Hĥ,
√

gLû,
√

(L/g)t̂
}

, (13.28)

in which L and H are length and depth scales,
√

L/g is a time scale, reminiscent of
the free fall and,

√
gL is a free fall velocity and the (·̂)-quantities are dimensionless

variables. Substitution of the transformations (13.28) into (13.17) and (13.24) or
(13.25) transform these into

• in conservative form:

∂ h

∂ t
+ ∂ hu

∂ x
= 0,

∂ hu

∂ t
+ ∂ hu2

∂ x
= (sin ζ − sgn (u) tan δ cos ζ)h − ∂

∂ x

(ε

2
Kact/pash

2 cos ζ
)

,

(13.29)

5For a biographical sketch of C.O. Mohr, see Fig. 13.16.
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Fig. 13.17 a Material plane
element at the basal plane
with the stresses (p,−τ )and
(pL , τ ), acting at the faces as
indicated. bMohr circles,
representing active and
passive stress states: The
element touching the base,
the side element,
pL/p = Kact/pas follows
from trigonometric relations
(13.26)
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• in non-conservative form:

∂ h

∂ t
+ ∂ hu

∂ x
= 0,

∂ u

∂ t
+ u

∂ u

∂ x
= (sin ζ − sgn (u) tan δ cos ζ) − ε cos ζKact/pas

∂ h

∂ x
,

(13.30)

in which the hat symbols have been deleted, and

ε = H/L � 1. (13.31)

ε is very small, generally ε = 10−3 − 10−2.
Equations (13.29) and (13.30) show no other characteristic parameters than

Kact/pas, which stands for normal stress effects. ε is also dimensionless and mea-
sures as an aspect ratio the significance of theshallowness of the avalanching mass.
Thus, apart from the angle of internal friction no other parameter such as the Froude
and Reynolds numbers enter the equations. Since φ and δ are easy to keep invariant
under down-scaling processes to laboratory dimensions one concludes that the SH
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equations are scale invariant. Reason for this is that no turbulent viscous resistive
forces are included in the SH equations.

13.4 A Three-Dimensional Granular Avalanche Model

In this section we shall not present a rigorous derivation of the SH equations; for that
we refer the reader to the original paper byS.B.Savage andK.Hutter [72]. Here we
derive a slight generalization of it due to J.M.N.T. Gray et al. [30], namely the flow
of avalanches over shallow parabolic three-dimensional topography. This will lead to
the first, still somewhat academic, description of the flow of a finite mass of granular
material down a valley or corrie. A reference surface that follows the mean down-
slope bed topography is used to define an orthogonal curvilinear coordinate system
Oxyz, see Fig. 13.18. The z-axis is normal to the reference (ruled) surface, and the
x- and y-coordinates are tangential to it with the x-axis oriented in the down-slope
direction. The down-slope inclination angle ζ is used to define the reference surface
as a function of the down-slope coordinate x . The reference surface does not vary
with the cross-slope coordinate y. The chute geometry is superposed by defining the
height z = b(x, y, t) above the reference surface, z = 0, as illustrated in Fig. 13.18.
Even though the local down-slope direction may not coincide with the direction of
the x-coordinate, for notational simplicity, the components in the x-direction are
referred to as down-slope components and components in the y-direction as cross-
slope components. Here we will present a detailed derivation of the model equations,
which will reduce to the SH equations with adequate simplifications.

13.4.1 Field Equations

The avalanche is assumed to be a density preserving material6 with constant density
ρ0 throughout the body. Then, the mass and momentum conservation laws reduce to

∇ · u = 0, (13.32)

ρ0

{
∂u
∂ t

+ ∇ · (u ⊗ u)

}
= −∇ · p + ρ0g, (13.33)

where u is the velocity, ⊗ is the tensor product, p is the pressure tensor (negative
Cauchy stress tensor) and the g-vector is the gravity constant. The granular

6Experiments by Thilo Koch [49] have shown in this case that the avalanche volume expands
immediately after the start of the motion by approximately 10 % and then remains approximately
constant during the entire motion.
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Fig. 13.18 The rectangular Cartesian coordinate system O XY Z aligned so that the Z -axis is
parallel but opposite in direction to the gravity acceleration vector, and the Y -axis is parallel to
the cross-slope reference surface coordinate y. The basal topography (solid lines), on which the
avalanche slides, Fb(x, y, t) = 0, is defined by its height above the curvilinear reference surface
Fb = b(x, y, t) − z (dashed lines). The shallow complex three-dimensional geometry is therefore
superposed on the two-dimensional reference surface, from [30]. © Proc. Royal Soc. London

avalanche is assumed to satisfy a Mohr–Coulomb yield criterion, in which the
internal shear stress S and the normal pressure N on the plane element, seeFig. 13.19,
are related by

|S| = N tan φ, (13.34)

where φ is the angle of internal friction. The conservation laws (13.32) and (13.33) are
complemented by kinematic boundary conditions at the free surface Fs(x, t) = 0,
and at the base, Fb(x, t) = 0, of the avalanche,

Fs(x, t) = 0,
∂ Fs

∂ t
+ us · ∇Fs = 0, (13.35)

Fb(x, t) = 0,
∂ Fb

∂ t
+ ub · ∇Fb = 0, (13.36)

where the superscripts ‘s’ and ‘b’ indicate that a variable is to be evaluated at the
surface and the base, respectively. There are also dynamical boundary conditions
that must be satisfied. The free surface of the avalanche is traction free, while at the
base satisfies a Coulomb dry friction sliding law will hold. That is
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Fig. 13.19 Sketch showing
the relation between the
internal shear stress S and
the normal pressure N on a
plane element in the granular
body

N
S

φ

Fs(x, t) = 0, ps ns = 0, (13.37)

Fb(x, t) = 0, pbnb − nb
(
nb · pbnb

) = (
ub/|ub|) (nb · pbnb

)
tan δ, (13.38)

where the surface and basal normal vectors are

ns = ∇ Fs

|∇ Fs | , nb = ∇ Fb

|∇ Fb| . (13.39)

Remarks

1. Notice that pn is the negative traction vector, n · pn is the normal pressure and
pn − n(n · pn) is the negative shear traction. Thus, the Coulomb dry friction
law, (13.38), expresses the fact that the magnitude of the basal shear stress equals
the normal basal pressure multiplied by the coefficient of friction, tan δ, called
the basal friction angle.

2. The basal shear traction is assumed to point in the opposite direction to the basal
velocity ub in (13.38). This implicitly assumes that the basal topography is fixed,
so that ub · nb = 0 by (13.36). This implies that the basal velocity vb is tangential
to the basal surface. It also states that entrainment of snow from the ground
is ignored. Defining the direction of the shear stress in this way introduces a
singularity into the equation at ub = 0.

3. This singularity can be avoided by replacing ub/|ub| by the vector valued function

f α = ( fu, fv), (13.40)

where

fu = tanh(αu), fv = tanh(αv), (13.41)

where α > 1 is a real number. This parameterization removes the singularity at
ub = 0. Moreover, as α → ∞, f α approaches the function ub/|ub|.

In actual modeling computations this restriction causes problems at the onset of the
motion and near the end of the avalanche motion when the moving mass comes to a
rest.
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13.4.2 Curvilinear Coordinates7

The complex topography is modeled by defining an orthogonal curvilinear refer-
ence surface, and then superposing the shallow basal topography on it, as shown
in Fig. 13.18. For precise explanation, a rectangular Cartesian coordinate system
O ′ XY Z is defined with unit basis vectors i, j , k aligned so that the vector k is paral-
lel, but in the opposite sense, to the gravity vector g, and k lies in the vertical plane,
in which the reference surface varies. A simple curvilinear coordinate system oxyz
is introduced. In this coordinate system, the position vector r is given by

r = rr (x, y) + znr , (13.42)

where rr is the position vector of the reference surface and nr is the unit normal
vector to this surface. In Cartesian coordinates

nr = sin ζ i + cos ζk, (13.43)

where ζ is the inclination angle of the normal vector relative to the Z -axis. For
ease of notation the identification (x, y, z) = (x1, x2, x3) is made. These are the
contravariant components in the curvilinear coordinate system (see e.g. [48]), and
the associated covariant basis vectors, gi are given by

gi = ∂ r
∂ xi

. (13.44)

The gradients ∂ r/∂ x1 and ∂ r/∂ x2 are the tangent vectors to the reference surface
in the x1- and x2-directions, respectively. Thus, choosing the orthogonal vectors
with the x-axis in the O ′ X Z -plane, it follows that ∂r/∂x1 = cos ζ i − sin ζk and
∂r/∂ x2 = j , so that

g1 = (
1 − κx3

)
(cos ζ i − sin ζk) ,

g2 = j , (13.45)

g3 = sin ζ i + cos ζk,

where the curvature is defined as

κ = − ∂ ζ

∂ x1
. (13.46)

The covariant metric coefficients are defined as gi j = gi · g j , so that in view of
(13.45)

7In this section and henceforth knowledge of the basic elements of tensor calculus are supposed
known. There is a great number of books on this e.g. R. Bowen and C.C. Wang [7],
I.S. Sokolnikoff [76], E. Klingbeil [48], L. Brillouin [8].
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(gi j ) =
⎛

⎝
(1 − κ x3)2 0 0

0 1 0
0 0 1

⎞

⎠ . (13.47)

Since the off-diagonal elements of this metric tensor are all zero, this simple curvi-
linear coordinate system is called orthogonal. The covariant unit vectors are defined
as g∗

i = gi/
√

g(i i), where the Einstein summation convention is dropped for the
indices in parentheses. The contravariant basis vectors g j are constructed by

gi · g j = δ
j
i , (13.48)

and this formula delivers for (13.45)

g1 = (cos ζ i − sin ζk)

1 − κ x3
,

g2 = j ,

g3 = sin ζ i + cos ζk.

Moreover, the associated contravariant metric coefficients are given by the metric

(
gi j

) = (
gi · g j

) =
⎛

⎝
1/(1 − κ x3)2 0 0

0 1 0
0 0 1

⎞

⎠ .

It is clear that in contrast to the unit vectors i, j , k, the covariant vectors gi vary as
functions of position. We need the Christoffel8 symbols of second kind to transfer
the equations of motion from coordinate free form to the curvilinear coordinate
system; they are defined as

Γ k
lm = 1

2g(kk)
(
gmk,l + gkl,m − glm,k

)
, (13.49)

and the Einstein summation convention is again dropped for the indices in paren-
theses. For the curvilinear coordinates (13.47) the components of the Christoffel

symbol are

Γ 1 = −1

1 − κ z

⎛

⎝
κ′ 0 κ
0 0 0
κ 0 0

⎞

⎠ , Γ 2 =
⎛

⎝
0 0 0
0 0 0
0 0 0

⎞

⎠ ,

Γ 3 = (1 − κ z)

⎛

⎝
κ 0 0
0 0 0
0 0 0

⎞

⎠ , (13.50)

where κ′ = ∂ κ/∂ x1.

8For a portrait and a short biography of E.B. Christoffel, see Vol. 1, Chap. 6, Fig. 6.35.

http://dx.doi.org/10.1007/978-3-319-33633-6_6
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Further, the vector differential operator ∇ is defined as

∇ := gk ∂

∂ xk
, (13.51)

with components given by the contravariant basis gk ; the gradient of a given scalar
field F is ∇ F = F,kg

k . For the curvilinear coordinate system defined in (13.47) in
terms of the covariant unit basis, this can be expressed as

∇ F = 1

1 − κ z

∂ F

∂ x
g∗

1 + ∂ F

∂ y
g∗

2 + ∂ F

∂ z
g∗

3 (13.52)

in terms of the variables (x, y, z). Here, g∗
j = g j/|g|, j = 1, 2, 3 are unit vectors

and the prefactors of g∗
j are called the physical components of the gradient of F .

The divergence of the vector field u = uigi is expressed as

∇ · u =
(

gk ∂

∂ xk

)
· (uigi

) = ui
,i + uiΓ k

ik, Γ k
ik = gk · gi,k . (13.53)

The vector physical components ui∗ of u are defined by ui∗ = ui√g(i i). The diver-
gence of a vector u in curvilinear coordinates is now computed by substituting this
into (13.53) together with the Christoffel symbols (13.50) as

∇ · u = ∂

∂ x

(
u1∗

1 − κ z

)
+ ∂u2∗

∂ y
+ ∂ u3∗

∂ z
− u1∗κ′z

(1 − κ z)2
−
(

u3∗κ
1 − κ z

)
. (13.54)

In a similar manner, for a given symmetric rank-2 tensor p = pi jgi ⊗ g j , the
divergence can be computed as

∇ · p =
(

gk ∂

∂ xk

)
· (pi jgi ⊗ g j

) = (
pki

,k + p jiΓ k
jk + pk jΓ i

jk

)√
g(i i)g

∗
i . (13.55)

As before, the physical components pi j∗ of a second order tensor p are related to
the contravariant components by pi j∗ = pi j

(√
g(i i)

√
g( j j)

)
. This, together with the

Christoffel symbols (13.50), after substitution into (13.55) implies the following
curvilinear form of ∇ · p:

∇ · p =
(

∂

∂ x

(
p11∗

1 − κ z

)
+ ∂ p12∗

∂ y
+ ∂ p13∗

∂ z
− κ′zp11∗

(1 − κ z)2
− 2κp13∗

1 − κ z

)
g∗

1

+
(

∂

∂ x

(
p12∗

1 − κ z

)
+ ∂ p22∗

∂ y
+ ∂ p23∗

∂ z
− κ′zp12∗

(1 − κ z)2
− 2κp23∗

1 − κ z

)
g∗

2

+
(

∂

∂ x

(
p13∗

1 − κ z

)
+ ∂ p23∗

∂ y
+ ∂ p33∗

∂ z
− κ′zp13∗

(1 − κ z)2
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− κ

(
p33∗ − p11∗

1 − κ z

))
g∗

3. (13.56)

13.4.3 Equations in Dimensionless Form

Let us now write the mass and momentum balance equations in the curvilinear coor-
dinates using the basis g∗

1, g
∗
2, g

∗
3. With respect to this basis the components of the

velocity vector are u, v, w, so that u = ug∗
1 + vg∗

2 + wg∗
3. Similarly, the physi-

cal components of the symmetric pressure tensor p are pxx , pyy, pzz, pxy, pyz, pzx ,
where the convention that subscripts define covariant quantities is now dropped,9 i.e.
pxx , etc., are now and henceforth physical components. The physical variables are
non-dimensionalized by using the scaling transformations

(
x, y, z, Fs, Fb, t

) =
(

Lx̂, L ŷ, H ẑ, H F̂b, H F̂s,
√

(L/g)t̂
)
,

(u, v, w) = √
gL

(
û, v̂, εŵ

)
,

(pxx , pyy, pzz) = ρ0gH
(

p̂xx , p̂yy, p̂zz
)
, (13.57)

(pxy, pxz, pyz) = ρ0gHμ
(

p̂xy, p̂xz
)
,

(κ) = Rκ̂,

where the variables ˆ(·) are dimensionless. The scalings (13.57) assume that the
avalanche has a typical length tangential to the reference surface and a typical thick-
ness H normal to it, and R is a typical radius of curvature of the reference geometry.
Assuming a granular static balance, the typical normal pressures at the base of the
avalanche are of the order10 ρ0gH , and the Coulomb dry friction law suggests that
the basal shear stresses are of the order ρ0gH tan δ0, where δ0 is a typical basal angle
of friction. Finally, the down-slope curvature κ is in the order of 1/R. These scalings
introduce three non-dimensional parameters, namely

ε = H/L , λ = L/R, μ = tan δ0, (13.58)

where ε is the aspect ratio of the avalanche, λ is a measure of the radius of curvature
of the reference geometry with respect to the length of the avalanche and μ is the
coefficient of friction associated to the base.

The mass balance equation (13.32) can be written in curvilinear coordinates by
using the transformation rule (13.53) for the divergence of a vector field. Applying

9For orthogonal coordinate systems there is no difference between co- and contravariant components
of vectors and tensors anyhow.
10This scaling for the normal pressure tacitly assumes a ‘hydrostatic nature of the pressure’ in
a granular heap. This is in fact untypical of granular systems for which the pressure is not the
overburden weight but saturates after a certain depth.
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the scalings (13.57) and (13.58), it follows that the non-dimensional curvilinear form
of the mass balance equation (13.54) is

∇ · u = ∂

∂ x
(uψ) + ∂ v

∂ y
+ ∂ w

∂ z
− ελκ′zuψ2 − ελκwψ = 0, (13.59)

where the hats are now dropped and

ψ = 1√
1 − ελκz

. (13.60)

The momentum balance equation (13.33) can be written in curvilinear coordinates
by using relation (13.56) to transform the tensor u ⊗ u and the pressure tensor p.
Let g1, g2 and g3 be the physical components of the gravitational acceleration along
the x-, y- and z-axes, respectively. Assume, moreover, that g = (g1, g2, g3). For
the present coordinate system g1 = g sin ζ, g2 = 0 and g3 = −g cos ζ. It follows
that the non-dimensional curvilinear components of the momentum balance in the
down-slope, cross-slope and normal directions to the reference surface are

∂u

∂ t
+ ∂

∂ x

(
u2ψ

) + ∂

∂ y
(uv) + ∂

∂ z
(uw) − ελκ′zu2ψ2 − 2ελκuwψ

= sin ζ−ε
∂

∂ x
(pxxψ)−εμ

∂ pxy

∂ y
−μ

∂ pxz

∂ z
+ε2λκ′zpxxψ

2+2ελμκpxzψ, (13.61)

∂v

∂ t
+ ∂

∂ x
(uvψ) + ∂

∂ y

(
v2) + ∂

∂ z
(vw) − ελκ′zuvψ2 − ελκvwψ

= −εμ
∂

∂ x

(
pxyψ

) − ε
∂ pyy

∂ y
− μ

∂ pyz

∂ z
+ ε2λμκ′zpxyψ

2 + ελμκpyzψ, (13.62)

ε

{
∂w

∂ t
+ ∂

∂ x
(uwψ) + ∂

∂ y
(vw) + ∂

∂ z

(
w2

)}
− ε2λκ′zuwψ2 − λκ

(
ε2w2 − u2

)
ψ

= cos ζ − εμ
∂

∂ x
(pxzψ) − εμ

∂ pyz

∂ y
− ∂ pzz

∂ z
+ ε2λμκ′zpxzψ

2 + ελκ(pzz − pxx )ψ,

(13.63)

respectively. Further simplication of these equations is possible, but they are left in
the given form as this proves to be particularly useful when the free surface and basal
boundary conditions are included once the depth integration process is performed.



13.4 A Three-Dimensional Granular Avalanche Model 149

13.4.4 Kinematic Boundary Conditions

The free surface of the avalanche, Fs = 0, and the basal topography over which the
avalanche is assumed to slide, Fb = 0, are defined by their respective heights above
the curvilinear reference:

Fs ≡ z − s(x, y, t) = 0, Fb ≡ −z + b(x, y, t) = 0. (13.64)

Consider the basal surface Fb(x, t) = 0, z = b(x, y, t); briefly Fb ≡ b − z = 0 in
dimensional form. Then,

∂Fb

∂ t
+ ub · ∇ Fb = 0 (13.65)

describes the kinematic surface condition. It is emphasized that ub is here the material
velocity of particles at the base, but then processes of bed erosion or sedimentation
are excluded. In case these processes are included, ub in (13.65) would have to be
replaced by w, say, the non-material velocity with which the base is moving when
erosion from, and deposition of the material to, the base are accounted for. This
not being considered, we deduce from (13.51), (13.64)2, and (13.65) the following
kinematic condition for the basal surface (13.51),

∂b

∂ t
+
(

1

1 − κ z

)b

ub ∂ b

∂ x
+ vb ∂b

∂ y
− wb = 0. (13.66)

Similarly, the kinematic condition for the free surface is

∂s

∂ t
+
(

1

1 − κ z

)s

us ∂ s

∂ x
+ vs ∂s

∂ y
− ws = 0. (13.67)

Now we will derive the non-dimensional form of the kinematic conditions. From
(13.57) and (13.66) we have

∂(Hb)

∂ (
√

L/gt)
+
(

1

1 − H
Rκ z

)b
∂(Hb)

∂ (Lx)
+ √

gLvb ∂(Hb)

∂ (Ly)
− √

gL εwb = 0.

We can derive a similar equation for the free surface. Using (13.58), it follows from
(13.66) and (13.67) that the non-dimensional curvilinear form of the surface and
basal kinematic conditions are

z = b(x, y, t),
∂b

∂ t
+ ψbub ∂b

∂ x
+ vb ∂b

∂ y
− wb = 0, (13.68)

z = s(x, y, t),
∂s

∂ t
+ ψsus ∂s

∂ x
+ vs ∂s

∂ y
− ws = 0, (13.69)

where hats have been dropped.



150 13 Shallow Rapid Granular Avalanches

13.4.5 Traction Free Condition at the Free Surface

From (13.52), (13.57) and (13.58), we obtain the non-dimensional form of the gra-
dient of the free surface as follows

∇ Fs = ε

(
1

1 − ελκ z

)s ∂ s

∂ x
g∗

1 + ε
∂ s

∂ y
g∗

2 + ∂s

∂ z
g∗

3. (13.70)

From (13.37) and the definition (13.51) of the gradient of a scalar field, the traction-
free condition reads

pi j∗
√

g( j j)

∂Fs

∂ x j
g∗

i = 0. (13.71)

Hence, the traction free boundary condition at the free surface of the avalanche has
down-slope, cross-slope and normal physical components as follows

− εψs ps
xx

∂ s

∂ x
− εμps

xy

∂s

∂ y
+ μps

xz = 0,

−εμψs ps
xy

∂ s

∂ x
− εps

yy

∂ s

∂ y
+ μps

yz = 0, (13.72)

−εμψs ps
xz

∂s

∂ x
− εμps

yz

∂ s

∂ y
+ ps

zz = 0,

written here again in dimensionless form.

13.4.6 Coulomb Sliding Law at the Base

The Coulomb basal sliding law (13.38) implies the relation

pbnb = (
nb · pbnb

) {(
ub/|ub|) tan δ + nb

}
.

It follows from this that the down-slope, cross-slope and normal components of the
above relation, respectively, are

εψb pb
xx

∂ b

∂ x
+ εμpb

xy

∂ b

∂ y
− μpb

xz = (
nb · pbnb

) (
Δb

ub

|ub| tan δ + εψ
∂ b

∂ x

)
,

εμψb pb
xy

∂ b

∂ x
+ εpb

yy

∂ b

∂ y
− μpb

yz = (
nb · pbnb

) (
Δb

vb

|ub| tan δ + ε
∂ b

∂ y

)
, (13.73)

εμψb pb
xz

∂ b

∂ x
+ εμpb

yz

∂ b

∂ y
− pb

zz = (
nb · pbnb

) (
Δb

εwb

|ub| tan δ − 1

)
,
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where |u| = (
u2 + v2 + ε2w2

)1/2
, the basal unit normal vector nb is given by

Δbnb = ∇ Fb, Δb := |∇ Fb |, (13.74)

and the associated normalization factor is

Δb =
{

1 + ε2 (ψb
)2
(

∂ b

∂ x

)2

+ ε2

(
∂ b

∂ y

)2
}1/2

. (13.75)

This completes the transformation from the coordinate independent form of the
Coulomb sliding law to curvilinear coordinates using the non-dimensional variables
defined in (13.57).

13.4.7 Depth Integration

The difference between the height of the free surface s(x, y, t) and the height of the
basal topography b(x, y, t), defines the thickness, or depth, of the avalanche

h(x, y, t) = s(x, y, t) − b(x, y, t), (13.76)

measured along the normal direction of the reference surface. A crucial step in
deriving the equations of motion for a shallow granular material is the process of
integration of the mass and momentum balance equations through this thickness.
In order to perform this step, it is useful to define the mean value of the function
f = f (x, y, z, t) through the avalanche thickness

f = 1

h

s∫

b

f dx, (13.77)

where the overbar is a shorthand notation for the mean of the depth integrated function
f In the process of depth integration, we need the Leibniz rule to change the order
of integration and differentiation. According to this rule, if G(x, t) and ∂G(x, t)/∂ t
are continuous with respect to x and t and if both a(t) and b(t) are differentiable
with respect to t , then the following holds true

d

dt

b(t)∫

a(t)

G(x, t)dx =
b(t)∫

a(t)

∂ G(x, t)

∂t
dx +

[
G(x, t)

dx

dt

]b(t)

a(t)

, (13.78)

where the square bracket defines the difference of the enclosed function at the two
limiting points of integration, [ f ]b

a = f b − f a . On using Leibniz’ rule the mass
balance (13.59) is integrated through the avalanche depth. This yields
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s∫

b

{
∂uψ

∂ x
+ ∂v

∂ y
+ ∂w

∂ z

}
dz

= ∂

∂ x

(
huψ

)
+ ∂

∂ y
(hv) −

[
uψ

∂z

∂ x
+ v

∂z

∂ y
− w

]s

b

= 0. (13.79)

The function contained in square brackets in (13.79) has a number of terms in com-
mon with the equations expressing the kinematic boundary conditions (13.68) and
(13.69). From (13.68), (13.69) and (13.76) we obtain

0 = ∂ h

∂ t
+
[

uψ
∂z

∂ x
+ v

∂z

∂ y
− w

]s

b

. (13.80)

From (13.79) and (13.80) it follows that the depth-integrated form of the mass balance
(13.59) takes the simple form

∂ h

∂ t
+ ∂

∂ x

(
h uψ

)
+ ∂

∂ y
(hv) − ελκ′h zuψ2 − ελκ wψ = 0. (13.81)

This is the depth-integrated mass balance of the density preserving fluid.
The process of depth integration of the momentum balance equations (13.61)–

(13.63) is performed in a number of steps. Considering first four terms in (13.61)
and integrating these yields

ax : =
s∫

b

{
∂ u

∂ t
+ ∂

∂ x

(
u2ψ

) + ∂

∂ y
(uv) + ∂

∂ z
(uw)

}
dz

=
[

∂

∂ t
(h u) + ∂

∂ x

(
h u2ψ

)
+ ∂

∂ y
(h uv)

]

−
[

u

(
∂ z

∂ t
+ uψ

∂ z

∂ x
+ v

∂ z

∂ y
− w

)

︸ ︷︷ ︸
=0 (see (13.68), (13.69))

]s

b

.

Hence,

ax = ∂

∂ t
(h u) + ∂

∂ x

(
h u2ψ

)
+ ∂

∂ y
(h uv) . (13.82)

Analogously, from the last term of the right-hand side of (13.61), we deduce

bx : =
s∫

b

{
ε

∂

∂ x
(pxxψ) + εμ

∂

∂ y

(
pxy

) + μ
∂

∂ z
(pxz)

}
dz
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= ε
∂

∂ x

(
h pxxψ

)
+ εμ

∂

∂ y

(
h pxy

) −
[
εpxxψ

∂ z

∂ x
+ εμpxy

∂ z

∂ y
− μpxz

]s

b

.

With (13.72)1 and (13.73)1, this expression reduces to

bx = ε
∂

∂ x

(
h pxxψ

)
+ εμ

∂

∂ y

(
h pxy

)

+ (
nb · pbnb

) (
Δb

ub

|ub| tan δ + εψ
∂ b

∂ x

)
, (13.83)

where the Coulomb dry friction law and the down-slope component of the basal
normal pressure have entered through the boundary conditions. In a similar fash-
ion we can derive the depth-integrated cross-slope and normal components of the
momentum balances. It follows that the depth-integrated down-slope, cross-slope
and normal components of the momentum balance laws, respectively, take the forms

∂

∂ t
(h u) + ∂

∂ x

(
h u2ψ

)
+ ∂

∂ y
(h uv) − ελκ′h zu2ψ2 − 2ελκh uwψ

= h sin ζ −
(

Δb
ub

|ub| tan δ + εψb ∂b

∂ x

)(
nb · pbnb

)
− εψ

∂

∂ x
(h pxx )

− ε
∂

∂ x

(
h pxxψ

)
− εμ

∂

∂ y

(
h pxy

) + ε2λκ′h zuvψ2 + 2ελκh pxzψ, (13.84)

∂

∂ t
(h v) + ∂

∂ x

(
h uvψ

)
+ ∂

∂ y

(
h v2

)
− ελκ′h zuvψ2 − ελκh zvwψ

= −
(

Δb
vb

|ub| tan δ + ε
∂b

∂ x

)(
nb · pbnb

)
− εμ

∂

∂ x

(
h pxyψ

)

− ε
∂

∂ y

(
h pyyψ

)
− ε2λμκ′h zpxyψ2 + ελκ′h pyzψ, (13.85)

ε

{
∂

∂ t
(h w) + ∂

∂ x

(
h uwψ

)
+ ∂

∂ y
(h vw)

}
− ε2λκ′h zuwψ2

− λκh
(
ε2w2 − u2

)
ψ

= −h cos ζ −
(

Δb
εwb

|ub| tan δ − 1

)(
nb · pbnb

)

− εμ
∂

∂ x

(
h pxzψ

)
− εμ

∂

∂ y

(
h pyz

) + ε2λκ′h zpxzψ2

+ ελκh (pzz − pxx )ψ. (13.86)

The formal depth-integration process is now complete. The depth-integrated mass
balance (13.81), and the depth integrated down-slope and cross-slope momentum
balances (13.84) and (13.85), form the basis of the (shallow) granular flow equations.
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The depth integrated normal component of the momentum equation, (13.86) thereby
serves as an auxiliary equation defining the pressure.

13.4.8 Ordering Relations

Equations (13.81), (13.84)–(13.86) constitute four scalar field equations for h, u, v

and w as unknowns. However, they contain more than just these unknowns, because
many ‘correlation terms’ arise, which are thickness averages of product quantities of
h, u, v and w. The number of these unknown variables can be reduced by introducing
a further approximation that is based on the ordering of the various terms arising in
the stated equations. Such orders of magnitude are now assumed for the parameters
λ and μ. Realistic avalanche lengths are generally larger than typical curvature radii
of the topographic surfaces. Of course, this is not unanimously so, but 0 < λ < 1 is
almost everywhere correct. Similarly, δ0 as a typical basal friction angle is smaller
than 45◦ (usually between 20◦ and 30◦), so, also 0 < μ < 1 must hold. Since the
aspect ratio is generally much smaller than unity, ε � 1, such corrections are fulfilled
for

λ = O (εα) , μ = O (
εβ
)
, (13.87)

where 0 < α,β < 1 are realistic for typical curvature radii and coefficients of basal
friction. As long as no formal perturbation expansion involving higher order terms
is pursued, the exponents α and β need not further be specified except that α �= 1
and β �= 1. As typical values of these parameters we can take α = β = 1

2 , ε = 10−2

and μ = 10−1. The functions ψ from (13.60) and Δb from (13.75), respectively, can
be estimated by

ψ = 1 + O (
ε1+α

)
, Δb = 1 + O (

ε2
)
. (13.88)

With these orderings, the depth-integrated mass balance equation (13.81) reduces to

∂ h

∂ t
+ ∂

∂ x
(h u) + ∂s

∂ y
(h v) = 0 + O (

ε1+α
)
. (13.89)

The down-slope and cross-slope components of the depth-integrated momentum
balances (13.84) and (13.85) must be approximated to leading and first order in
the small parameter ε in order to obtain a realizable theory, which includes some
constitutive properties of granular material. These equations contain a term that is
multiplied by the factor nb · pbnb. From the normal component of the momentum
balance (13.86), it follows that

nb · pbnb = h cos ζ + λκh u2 + O (ε) = h cos ζ + O (εα) , (13.90)
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to order εα. Applying this to the depth-integrated momentum balance equations in
the two principal flow directions, relations (13.84) and (13.85) reduce the latter to

∂

∂ t
(h u) + ∂

∂ x

(
h u2

)
+ ∂

∂ y
(h uv)

= h sin ζ − ub

|ub|h tan δ
(

cos ζ + λκu2
)

− ε
∂

∂ x
(h pxx ) − ε cos ζh

∂ b

∂ x

+ O (
ε1+γ

)
, (13.91)

∂

∂ t
(h v) + ∂

∂ x
(h uv) + ∂

∂ y

(
h v2

)

= − vb

|ub|h tan δ
(

cos ζ + λκu2
)

− ε
∂

∂ y

(
h pyy

) − ε cos ζh
∂ b

∂ y

+ O (
ε1+γ

)
, (13.92)

where γ = min (α,β) that satisfies the inequality 0 < γ < 1 and u = (u, v, 0)T

is the two-dimensional tangential velocity at the bed. It is important to mention here
that ignoring O(ε) and to dropO(ε1+γ)-terms and higher order terms yields the mass
point model. So, it is physically very significant to carry the theory to O(ε) and only
to drop higher order terms. From the normal component of the momentum balance
we then obtain the equation for the pressure as

∂ pzz

∂ z
= − cos ζ + O (εα) . (13.93)

Integrating this equation with respect to z and applying the traction free bound-
ary condition, pb

zz = 0 + O (εα), from (13.93), we receive the following pressure
distribution that is linear in the normal direction as follows:

pzz = (s − z) cos ζ + O (εα) , (13.94)

which is consistent with (13.73)3 and (13.90) and equivalent to the hydrostatic pres-
sure assumption.

13.4.9 Closure Property

Further reduction of Eqs. (13.91) and (13.92) requires constitutive information about
the pressure tensor p and the depth-integrated tangential velocity u. Note that the
component pzz need only be approximated to order εα as it is used to simplify the
depth integrated down-slope and cross-slope pressure terms pxx and pyy , which are
already order ε-terms in Eqs. (13.91) and (13.92).
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The SH theory assumes that a very simple state of stress prevails within the
avalanche. Following common practice in soil mechanics we assume that the pressure
terms pxx and pyy can be expressed in terms of the overburden pressure pzz with
the aid of the Mohr-circle. This holds at the base and at the stress free surface.
So, its validity through depth is justified by the continuity requirement. Because the
predominant shearing takes place in vertical surfaces perpendicular to the direction
of steepest descent, it may, as a rough approximation, be justified to assume that the
lateral confinement pressure pyy is close to a principal stress, p1, say, see Fig. 13.20.
Furthermore, it shall be assumed that one of the other principal stresses acting in
the (x, z)-surface, p2 and p3, equals p1. This is an ad-hoc assumption that is not
guaranteed by any physical argument, but it reduces the three Mohr-circles that
describe all possible combinations of normal stresses and shear stresses to only one
Mohr-circle as in the case of two dimensional flow. Thus, to a given stress state
(pb

xx , pb
xy) at the base, two Mohr-circles can be constructed to satisfy both the basal

sliding law and the internal yield criterion simultaneously. Their construction is
shown in Fig. 13.21.

The principal stresses, p2 and p3 in the xz-plane are given by

(px , pz) = 1

2

{
(pxx + pzz) ±

√
(pxx − pzz)

2 + 4τ 2
xz

}
, (13.95)

p yy
~ p

1

horizo
ntal

xx
p

p
zz

y
p

p
xz

xz

z

x

steepest  descent

Fig. 13.20 Infinitesimal cubic element cut out of the avalanche with surface perpendicular to the
coordinates. The motion is predominantly in the direction of steepest descent and the dominant
shearing is acting on planes normal to the x-and z-directions. This gives rise to the dominant shear
stresses τxz = −pxz and normal pressures pxx , pyy, pzz . Shear stresses τxy, τyz also arise but are
much smaller than τxz . Thus, pyy is approximately equal to p1, one of the principal stresses. (When
τxy, τyz are exactly zero, then pyy is exactly p1). The other two principal stresses, p2, p3 act on
surface elements, of which the surface normals lie in the (xz)-plane, from [70]
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Fig. 13.21 Mohr-circle diagram representing the stress state within the avalanche The yield cri-
terion corresponds to the two straight lines at angles ±φ to the horizontal. Similarly, the Coulomb
basal dry friction is indicated by the line at an angle −δ to the horizontal. The passive basal stress
state is indicated by the solid circle of radius r and the center at p = a. The circle is both tangent
to the yield curves and passes through the point (pzz,−pzz tan δ). The broken-line circle represents
a second active stress state that also satisfies these conditions. Full squares indicate the possible
stress states in the xz-plane. Full circles show possible stress states for pyy , from [70]

and the cross-slope principal stress pyy = p2 or pyy = p3, depending on the nature
of the deformation. The Mohr circles can be constructed which satisfy both the
sliding law and the angle of internal friction at the same time. In the original works
of Savage-Hutter [72] the basal normal pressure equals pb

zz and the shear stress
equals −pb

xz . The basal down-slope normal pressure equals pb
zz and the shear stress

equals −pb
xz = τ b

xz . The basal down-slope pressure pb
xx can therefore assume two

values, one on the smaller circle, pb
xx ≤ pb

zz , and one on the larger circle pb
xx ≥ pb

zz ,
which are related to active and passive stress states, respectively. Since there are
four possible values for the principal stresses, pb

x and pb
z , there are four values for

the basal cross-slope pressure pb
yy . The earth pressure coefficients K b

x and K b
y are

defined as follows:

K b
x = pb

xx

pb
zz

, K b
y = pb

yy

pb
zz

. (13.96)

To determine the values of these pressure coefficients, elementary geometric argu-
ments with theMohr-circle representation in Fig. 13.21 can be used. The reader may
corroborate the formulae

K b
xact/pas

= 2 sec 2φ
{

1 ∓ (
1 − cos2 φ sec 2δ

)1/2
}

− 1, (13.97)

(
K x

yact/pas

)b = 1

2

{
K b

x + 1 ∓
((

K b
x − 1

)2 + 4 tan2 δ
)1/2

}
, (13.98)

for K b
xact/pas

and
(

K x
yact/pas

)b
, which are real for δ ≤ φ.
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To uniquely determine the value of the earth pressure coefficient associated with
a particular deformation, the earth pressure coefficient Kx is defined to be active or
passive according to whether the down-slope motion is dilating or compacting as
given by

K b
x =

{
Kxact , ∂ u/∂ x > 0,

Kxpas, ∂ u/∂ x < 0.
(13.99)

Analogously, the earth pressure coefficients in the lateral direction are computed by
considering whether the down-slope and cross-slope deformations are dilatational
or compressive:

K b
y =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

K xact
yact

, ∂ u/∂ x > 0, ∂ v/∂ y,> 0,

K
xpas
yact , ∂ u/∂ x < 0, ∂ v/∂ y,> 0,

K xact
ypas

, ∂ u/∂ x > 0, ∂ v/∂ y,< 0,

K
xpas
ypas , ∂ u/∂ x < 0, ∂ v/∂ y,< 0.

(13.100)

At the traction free surface of the avalanche the Mohr–Coulomb yield criterion
collapses to order εα to a single point and the down-slope and cross-slope normal
surface pressures are

ps
xx = 0 + O (εγ) , ps

yy = 0 + O (εγ) . (13.101)

Having the values of pxx and pyy at the base and at the free surface, intermediate
values are now interpolated accordingly. The SH theory assumes that the down-slope
and cross-slope pressures vary linearly with normal pressure through the avalanche
depth. This is achieved to leading order by the following expression

pxx = K b
x pzz + O (εγ) , pyy = K b

y pzz + O (εγ) . (13.102)

Substituting pzz from (13.94) and integrating the emerging expressions through the
avalanche depth, the depth-integrated pressures in the down-slope and cross-slope
directions are, respectively, given by

pxx = 1
2 Kx cos ζh + O (εγ) ,

pyy = 1
2 Ky cos ζh + O (εγ) . (13.103)

13.4.10 Nearly Uniform Flow Profile

Since the constitutive properties that are used in the SH theory provide no link
between stress and strain rate, it is assumed that the velocity profiles are approx-
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imately uniform through the avalanche depth; this is essentially Boussinnesq’s
assumption, and it means that primarily sliding and little differential shearing takes
place, explicitly,

u = ub + O (
ε1+γ

)
, v = vb + O (

ε1+γ
)
. (13.104)

In this case the velocity product can be factorized as

uv = ubvb + O (
ε1+γ

)
. (13.105)

The assumption of plug flow is supported by measurements in large scale and labo-
ratory avalanches, see e.g. [17, 30, 61, 79]. On the other hand, one may also assume
power law velocity profiles with vanishing basal velocity (corresponding to no slid-
ing and all differential shearing). This then yields u2 = αu2. For a parabolic profile
α = 1.20 and for plug flow α = 1. Since it is likely that sliding is present, the active
shear zone is confined to a thin basal layer and the velocity profile is blunt. This fact
justifies the O (

ε1+γ
)

error term in the above formulae. Explicit computations were
performed by K. Hutter et al. (2005) [43]. They justify the use of α = 1.

13.4.11 Summary of the Two-Dimensional SH Equations

In this subsection we now collect the avalanche equations in the shallow flow approx-
imation in which terms of order O (

ε1+γ
)
, γ > 0 are dropped.

Equations in conservative form. From (13.104) it follows that the mass balance
equation (13.89) reduces to

∂ h

∂ t
+ ∂

∂ x
(h u) + ∂

∂ y
(hv) = 0. (13.106)

With the assumptions (13.103), (13.104) and (13.105), the depth-integrated down-
slope and cross-slope momentum balance laws yield

∂

∂ t
(h u) + ∂

∂ x

(
h u2

) + ∂

∂ y
(h uv) = hsx − ∂

∂ x

(
βx h2

2

)
, (13.107)

∂

∂ t
(h v) + ∂

∂ x
(h uv) + ∂

∂ y

(
h v2

) = hsy − ∂

∂ y

(
βyh2

2

)
, (13.108)

accurate to order O (
ε1+γ

)
, and where the superscript ‘b’ has been dropped. The

factors βx and βy are defined as

βx = ε cos ζKx , βy = ε cos ζKy, (13.109)
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respectively. The terms sx and sy represent the net driving accelerations in the down-
slope and cross-slope directions, respectively, and are given by

sx = sin ζ − u

|u| tan δ
(
cos ζ + λκu2

) − ε cos ζ
∂ b

∂ x
, (13.110)

sy = − v

|u| tan δ
(
cos ζ + λκu2

) − ε cos ζ
∂ b

∂ y
, (13.111)

where |u| = (
u2 + v2

)1/2
. The first term on the right-hand side of (13.110) is due

to the gravitational acceleration and has no contribution in the lateral, y-direction.
The second terms of both Eqs. (13.110) and (13.111) emerge from the Coulomb dry
friction and the third terms are associated with the contribution of the basal topogra-
phy. The system of Eqs. (13.106)–(13.108), including (13.109)–(13.111), constitute
a two dimensional conservative system of partial differential equations. It is useful
here to quote the definition of a conservative system of partial differential equations:

Definition: A system of partial differential equations is said to be in conservative
form, if it can be written as

∂ w

∂ t
+ ∂ f

∂ x
= s, (13.112)

where w and s are vector-valued quantities and f is a matrix. Else, it is said to be
in non-conservative form.

For (13.106)–(13.111) w, f , s are given by

w =
⎛

⎝
h

hu
hv

⎞

⎠ , f =
⎛

⎝
hu h v

u2 + βx h2/2 h uv

h uv v2 + βyh2/2

⎞

⎠ , s =
⎛

⎝
0

hsx

hsy

⎞

⎠ . (13.113)

In this form of writing the governing partial differential equations w is the vector of
conservative variables, f is the matrix of transport flux elements and the vector s
represents the elements of source terms.

Equations in non-conservative form. For smooth solutions the mass balance equa-
tion (13.106) can be used to simplify the convective terms in the momentum equations
(13.107) and (13.108). Provided the earth pressure coefficients satisfy the relations
∂ Kx/∂ x = O(εγ) and ∂ Ky/∂ y = O(εγ), then

∂

∂ x

(
1

2
Kx h2 cos ζ

)
= h Kx cos ζ

∂ h

∂ x
+ O(εγ),

∂

∂ y

(
1

2
Kyh2 cos ζ

)
= h Ky cos ζ

∂ h

∂ y
+ O(εγ).

(13.114)
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Now, substituting (13.103)–(13.105) and (13.114) into the depth-integrated momen-
tum Eqs. (13.91), and (13.92), and making use of the depth-integrated mass balance
equation (13.106) with

d

d t
= ∂

∂ t
+ u

∂

∂ x
+ v

∂

∂ y

yields

du

d t
= sin ζ − u

|u| tan δ
(
cos ζ + λκu2) − ε cos ζ

(
Kx

∂ h

∂ x
+ ∂ b

∂ x

)
, (13.115)

dv

d t
= − v

|u| tan δ
(
cos ζ + λκu2

) − ε cos ζ

(
Ky

∂ h

∂ y
+ ∂ b

∂ y

)
, (13.116)

provided h �= 0. The system of equations (13.106), (13.115) and (13.116), constitutes
a non-conservative system of equations, derived originally by J.M.N.T. Gray et
al. [30] to generalize the one-dimensional SH theory, [72, 73]. Given the basal
topography b(x, y, t), a reference surface (slope) ζ(x) and the material parameters
δ and φ, both these systems of equations allow three independent variables h, u and
v to be computed once the initial conditions are prescribed.

To put everything at one place, this generalized SH avalanche model can be
phrased in the following way:

Consider the following assumptions [70]:

(a) Topography: A reference surface can be described by an orthogonal curvilinear
coordinate system Oxyz, in which the z-axis is normal to the surface and the
x- and y-axes are tangential to it, with the x-axis oriented down slope. The
function ζ = ζ(x) represents the down-slope inclination to the horizontal and
κ = −∂ ζ/∂ x is the curvature. Suppose z = b(x, y, t) is the chute geometry
above this surface and z = s(x, y, t) the free surface, so that h = s−b represents
the avalanche thickness along the z-axis.

(b) Material: The avalanche is assumed to consist of a shallow, density preserving,
cohesionless, dry and dense continuous material.

(c) Closure: Assume that the material satisfies the Coulomb dry friction law at
the slide and the Mohr–Coulomb plastic yield in the interior; moreover, the
dominant deformation takes place in the down-slope direction. Furthermore, the
down-slope and the cross-slope pressures vary linearly with the normal pressure
through the depth of the avalanche, and shearing occurs in a very small basal
layer so that the velocity distribution is almost uniform over the depth.

(d) Parameters: Let δ and φ be the bed and internal friction angles, respectively,
of the granular material and let Kx,y = Kx,y(δ,φ) be functions constructed by
using the Mohr circle with respect to the closure property of the form
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Kx = 2sec2φ
{

1 ∓ (
1 − cos2 φ sec2δ

)1/2
}

− 1,

Ky = 1

2

{
Kx + 1 ∓ (

(Kx − 1)2 + 4 tan2 δ
)1/2

}
.

Let, moreover, H, L and R = 1/κ0 be a typical avalanche thickness, length and
radius of curvature. Define ε = H/L , λ = L/R, and

βx,y = ε cos ζKx,y,

sx = sin ζ − u

|u| tan δ
(
cos ζ + λκu2

) − ε cos ζ
∂ b

∂x
,

sy = − v

|u| tan δ
(
cos ζ + λκu2) − ε cos ζ

∂ b

∂y
,

where u = (u, v) is the depth-averaged surface parallel velocity with compo-
nents u and v along the x- and y-axes, respectively.

(e) Smoothness: Suppose that all field variables are sufficiently smooth that the
order of differentiation and integration can be interchanged. Then, under a
realistic non-dimensionalization, the dynamics of a granular avalanche can be
described by the following set of equations:

∂ h

∂ t
+ ∂

∂ x
(hu) + ∂

∂ y
(hv) = 0,

∂

∂ t
(hu) + ∂

∂ x

(
hu2

) + ∂

∂ y
(huv) = hsx − ∂

∂ x

(
βx h2

2

)
, (13.117)

∂

∂ t
(hv) + ∂

∂ x
(huv) + ∂

∂ y

(
hv2

) = hsy − ∂

∂ y

(
βyh2

2

)
,

accurate to order ε1+γ , 0 < γ < 1.

13.4.12 Standard Form of the Differential Equations

System (13.117) can be put into the standard form

∂w

∂ t
+ ∂ f

∂ x
+ ∂g

∂ y
= s, (13.118)

where w denotes the vector of conservative variables and f and g represent the
transport fluxes in the x- and y-directions, respectively. Let us define the conservative
variables as h, mx = hu and my = hv. Then, the SH Eq. (13.117) can be written in
the form (13.118), where f , g and s are given by
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w =
⎛

⎝
h

mx

my

⎞

⎠ , f =
⎛

⎝
mx

(mx )
2/h + βx h2/2
mx my/h

⎞

⎠ ,

g =
⎛

⎝
my

mx my/h
(my)

2/h + βyh2/2

⎞

⎠ , s =
⎛

⎝
0

hsx

hsy

⎞

⎠ . (13.119)

To compute the characteristic speed for the system (13.118) and (13.119), we rewrite
it as

∂w

∂ t
+
(

Ax 0
0 Ay

)
⎛

⎜
⎝

∂ w

∂ x
∂ w

∂ y

⎞

⎟
⎠ = s, (13.120)

where

Ax = ∂ f
∂ w

=
⎛

⎝
0 1 0

−(mx )
2/h2 + βx h 2mx/h 0

−mx my/h2 my/h mx/h

⎞

⎠ ,

Ay = ∂ g

∂ w
=

⎛

⎝
0 0 1

−mx my/h2 my/h mx/h
−(my)

2/h2 + βyh 0 2my/h

⎞

⎠ . (13.121)

Next, we evaluate the eigenvalues of the matrix A defined by

A =
(

Ax 0
0 Ay

)
. (13.122)

The characteristic equation for this system, i.e.,

det(A − λI6) = det(Ax − λI3) det(Ay − λI3) = 0 (13.123)

(note I3 and I6 are 3 × 3 and 6 × 6 unit matrices) possesses the following six
eigenvalues (see [80])

λ1 = u, λ3,5 = mx/h ± √
βx h,

λ2 = v, λ4,6 = my/h ± √
βyh, (13.124)

The first two solutions, λ1,2, yield as characteristic speed the particle velocity c2
p =(

u2 + v2
)

and as characteristic directions the streamline directions. The remaining
eigenvalues λ3,...,6 constitute the other four different characteristic speeds in four
different directions
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C++ = (
λ2

3 + λ2
4

)1/2
, C+− = (

λ2
3 + λ2

6

)1/2
,

C−+ = (
λ2

5 + λ2
4

)1/2
, C−− = (

λ2
5 + λ2

6

)1/2
. (13.125)

Here, C++ is the fastest and C−− the slowest characteristic speed. The flow is called
supercritical for cp > C−− and subcritical for cp < C−−. When a finite avalanching
mass of granular material moves down a steep slope, reaches a supercritical speed
and then approaches the run-out zone, where a considerable deceleration occurs,
it experiences a sudden transition from supercritical to subcritical flow. Any such
transition from a supercritical to a subcritical flow state produces a shock. These shock
fronts are experienced by the avalanching body when the avalanche depth and speed
go quickly from small heights and large speeds to large heights and small speeds,
see Fig. 13.22. This is the reason why numerical schemes must be implemented in
these generalized SH equations, which are capable of capturing possible shocks.

Fig. 13.22 Schematic
diagrams and photographs of
a downward moving and b
upward propagating
dispersed shock wave The
material below the shock is
at rest or near rest, whilst the
grains in panel (a) and above
the shock are flowing rapidly
down-slope. The experiment
was conducted between
parallel plates which prevent
lateral spreading of the
avalanche and exert an
additional wall friction that
slows the avalanche to
observable speed. A mixture
of (white) sugar crystals and
(dark) spherical iron powder
is used with mixing ratio by
volume of ∼1 : 1. Kinetic
sieving mechanism sorts the
grains by their size
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13.5 Avalanche Simulation and Verification
with Experimental Laboratory Data

13.5.1 Introduction

In this section numerical methods shall be used to solve typical initial value prob-
lems (IVPs) for avalanche motions of the free boundary value problems derived and
stated in Sect. 13.4. Results from such computations will then be compared with
data exploited from laboratory experiments to validate the computational models by
accordingly adjusting the phenomenological parameters (here the angle of internal
friction, φ, and the bed friction angle, δ). This will eventually lead to an accept-
able verification of the model equations for the geo-material configurations of the
topographies to which the model of Sect. 4 is applicable. Our presentation is only
a brief account of certain aspects of the research that was performed in the past
approximately 30 years; a more detailed and fairly complete approach is given by
Shiva P. Pudasaini and Kolumban Hutter [70].

Both attempts of arriving at acceptable numerical schemes for adequately solv-
ing IVPs of the partial differential equations (PDEs) of Sect. 13.4, (13.117) or
(13.118), (13.119) and performing adequate laboratory experiments have been
research endeavors as substantial as the derivation of the avalanche models them-
selves. We shall only be able to provide a selection of important results: In the
numerical issues we will show the peak of a long interesting climb to the ultimate or
perhaps pre-ultimate approach, and on the experimental side, only final results will
be shown, leaving all the peculiar details aside. A more complete account can again
be obtained from S.P. Pudasaini and K. Hutter [70]. We wish to acknowledge
the unlimited help of students and post-doctoral assistants, who provided support
through the years.

13.5.2 Classical and High Resolution Shock Capturing
Numerical Methods

Twenty five years ago the one-dimensional SH equations [72] were numerically
attacked by employing Eulerian and Lagrangean discretization techniques to find
approximate solutions. The equations are close in form to the shallow water equations
(SWE); however, they are in fact quite cumbersome to integrate. Reasons for this
are:

• “When a pile of granular material is released from rest on a slope, the material
near the rear end often tends to initially move up the slope. Similarly, near the rear
end in the deposition zone material is still approaching the deposited mass; often
parts of the mass at the rear end move backwards before they come to a complete
rest.
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• Because the motion is dominantly advective (=convective), acceleration terms
critically decide about the stability of a numerical scheme, one must be careful to
use appropriate up-winding (in Eulerian finite discretization) to avoid numerical
instability.

• The avalanche model equations are very close in structure to the SWEs, but the
geometries of the avalanches are different from those of the usual water wave
problem, and so the wave solutions differ considerably from those of the SW-
waves.

• The flow of a granular mass can be regarded as a moving interface and embodies
all the associated difficulties of such bodies”, from [70], with changes.

In this regard it should also be realized that the accuracy of the numerical solution,
in particular for the resolution of steep gradients, it is important that the equations
are formulated in the conservative form; i.e., the momentum equations should be
stated as

“time rate of change of momentum = sum of the forces” and not as

“mass times acceleration = sum of the forces”.

(I)EULERian and LAGRANGEan Integration Schemes

(a)EULERian approach. Among several implicit and explicit schemes to test one-
dimensional hyperbolic systems of the form

∂ w

∂ t
+ ∂ f (w)

∂ x
= s. (13.126)

S.B.Savage andK.Hutter [72] used in their solution approach of the SH equations
a method similar to that of R.W. MacCormack [58], comprising a two-step explicit
finite difference scheme. From the solution known at time t = nΔ t , the values of h
and u at the new time (n + 1)Δ t can be predicted by employing one-sided upwind
differences to approximate the first derivatives. Corrections are made in the second
step to predict values using opposite one-sided differences for first derivatives. The
method is second order accurate and stable for adequately chosen time steps. The
method generates evolutions of avalanches down an inclined plane from a hump at rest
into a moving and extending M-wave not a hump,11 see Fig. 13.23. Experience has
shown that the commonly used Eulerian scheme is fraught with several difficulties;
among these are, see [70]:

11The spatially one dimensional SH equations allow construction of two types of exact similarity
solutions. One is a parabolic hump with vanishing depths at the front and rear ends, called a parabolic
hump, the other is also of parabolic shape but with finite maximum depths at the end point, called
by S.B. Savage and K. Hutter M-wave [70, 72] as seen in the experiments (for details see [72,
73] ([70], Fig. 7.2 on p. 302)). Figure 13.23 indicates that the parabolic hump seems to develop
into a profile close to an M-wave.
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Fig. 13.23 Results obtained
from R.W. MacCormack’s

explicit Eulerian finite
difference scheme for the
evolution of the motion of a
finite mass of granular
material starting from rest
down a bed with inclination
angle ζ = 32◦, an angle of
internal friction φ = 29◦ and
bed friction angle δ = 22◦
(a), 16◦ (b), 10◦ (c), from
[72]. © J. Fluid Mech

• The scheme uses a fixed spatial grid that extends upstream and downstream of the
moving pile.

• Even at those parts of the bed, where no material exists and the depth is zero, the
equations of motion yield non-vanishing velocities upstream and downstream of
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Fig. 13.24 Definition of
mesh cell notation for the
Lagrange an numerical
scheme The indices i refer to
cell centers, j to cell
boundaries

x

0 1 2 3 j j+1 k-1 k

i
i+1

the pile. This causes sudden changes in the velocities up- and downstream of the
pile, a destabilizing effect in the numerical integrations.

• When using artificial viscosity to control such instabilities, the velocities in the
region outside of that occupied by the pile began to affect the results in the region
of the pile itself.

(b)LAGRANGEan approach. In the one-dimensional Lagrange an scheme one
divides the length of the avalanche into equal elements, see Fig. 13.24

xn
j = xn−1

j + xn−1/2
j Δ t, ( j = 1, 2, . . . , N ),

xn
i = 1

2

(
xn

j + xn
j+1

)
, ( j = 1, 2, . . . , N ) (13.127)

and integrates in a first step the mass balance equation (13.30)1

∂ h

∂ t
+ ∂ hu

∂ x
= 0 (13.128)

from xi−1 to xi to obtain

d

d t

xi∫

xi−1

h dx = d Fi

d xi
= 0, (13.129)

where Fi is the area of the i th cell, i.e., the area of any numerically advected cell is
conserved. Approximating Fi by hi (xi − xi−1), (13.129) implies

hn
i

(
xn

i − xn
i−1

) = hn−1
i

(
xn−1

i − xn−1
i−1

)
, (i = 1, 2, . . . , N ), (13.130)

which is an equation for hn
i , since all other quantities are known.

The depth averaged momentum equation in non-conservative form, (13.30)2 is
used to solve for the new values of velocities at the cell boundary points. Since the
left-hand side of this equation contains ∂ h/∂ x , the boundary cells must separately
be handled. The finite difference representation for this yields
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un+1/2
j = un−1/2

j + Δ t
[

sin ζ − sgn
(

un−1/2
j

)
cos ζ tan δ

−εKact/pas cos ζ Pn
j

]
, (13.131)

where

Pn
j =

⎧
⎨

⎩

hn
0/

(
xn

0 − xn
1

)
, for j = 0,(

hn
i − hn

i−1

)
/
(
xn

i − xn
i−1

)
, for j = 1, 2, . . . , N − 1,

hn
N−1/

(
xn

N − xn
N−1

)
, for j = N

and

xn
i = 1

2

(
xn

j + xn
j+1

)
, (13.132)

Kact/pas =
{

Kact , for u j+1 − u j ≥ 0,

K pas, for u j+1 − u j < 0.
(13.133)

Numerical computations using (13.130)–(13.133) remained only stable if the artifi-
cial viscosity

μ
∂ u2

∂x2
= μ

(
un−1/2

j+1 − 2 un−1/2
j + un−1/2

j−1

)/ (
xn

j+1 − xn
j−1

)2
(13.134)

was added to the right-hand side of (13.131) with 0.01 < μ < 0.05.
Numerical solutions of the one-dimensional SH equations were constructed in

[72] by the above described Lagrangean approach, in which the computational grid
was advected with the material; the construction of the solution is simple, efficient
and reliable. It was applied and compared with laboratory experiments for one- and
two-dimensional flows down various basal geometries from initiation to run-out, see
e.g. [31, 41, 42, 47, 72, 73]. Figure 13.25 shows time slices of length profiles from
t = 0 to t = 5 (dimensionless time) for an avalanche down an inclined plane.

Since Eqs. (13.130)–(13.133) are based on the momentum equation in non-
conservative form, these finite difference equations are not explicitly shock-capturing.
Steep gradients and spurious oscillations of the field variables must be handled by
numerical diffusion, using the latter judiciously, where instability prone oscillations
occur. This has been reasonably successful, but it is unsatisfactory and calls for better
schemes.

(II) High Resolution Shock-Capturing Numerical Methods for One- and Two-
Dimensional Avalanche Modeling.

(a) A quick review for the need of TVD and discontinuous Galerkin methods. In
a continuum-mechanical approach, the governing equations for granular-fluid flows
comprise of a strongly convective hyperbolic system, especially for the granular
phase. Successful numerical modeling of strongly convective hyperbolic equations
is one of the most challenging problems in computational fluid mechanics, particu-
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Fig. 13.25 Height h plotted against distance x for Lagrangean calculations of avalanche length
profiles at six different times. With increasing time the profile tends to become closer to parabolic.
Also shown in the inset are the front, middle and rear end velocities. The points indicate computed
values (from [72]), whilst the crosses are from A. Huber [37]. Computations were performed for
ζ = 32◦,φ = 20◦, δ = 22◦ and ε = 0.3218, from [72]. © J. Fluid Mech

larly when large gradients of the physical variables occur, e.g. for a moving front or
possibly arising shock waves in a granular avalanche. Shock formation is an essential
mechanism in granular flows on an inclined surface merging into a horizontal run-
out zone or encountering an obstacle when the velocity becomes subcritical from
its supercritical state. In the past decades numerical techniques have been devel-
oped to solve hyperbolic equations for typical moving boundary value problems of
granular flows. Most of these techniques are based on Lagrangean moving mesh
finite-difference schemes. In these Lagrangean schemes explicit artificial numer-
ical diffusion is often incorporated to maintain stability. In doing so the quality of
resolution deteriorates. In fact, the adequacy of these numerical solutions can be chal-
lenged because of uncontrolled spreading due to this numerical diffusion. Without
adding extra artificial diffusion the formation of the shock results in numerical insta-
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bilities of the Lagrangean moving grid technique. This also occurs for an Eulerian
integration technique if traditional high-order schemes are employed. Although tradi-
tional first-order finite difference methods, e.g. the upstream schemes, are monotonic
and stable, due to inherent numerical diffusion, they are strongly dissipative, causing
the solution to become also smeared out and often grossly inaccurate. It is therefore
natural to apply conservative high-resolution numerical techniques. Modern high-
resolution schemes are based on flux/slope limiters which switch between linear high-
order (usually second or third order) and low-order (usually first order) discretizations
adaptively depending on the smoothness of the solution. To a certain extent, such
schemes are able to resolve the steep gradients and moving fronts often observed in
experiments but not captured by the Lagrangean finite difference scheme and tra-
ditional Eulerian finite difference schemes. Y. Wang and K. Hutter (2001) [85]
compared a series of more than ten most frequently used numerical schemes with
respect to convectively dominated problems. Numerical results showed that the high-
resolution modified total variation diminishing (TVD) Lax-Friedrichs method is
the most competent method for convectively dominated problems with a steep spatial
gradient of the variables. The TVD algorithm can ensure that the total variation of
the variables does not increase with time, thus no spurious numerical oscillations
are generated. The numerical solution can be second- or even third-order accurate in
the smooth parts of the solution, but only first-order near regions with large gradi-
ents. Shock capturing TVD techniques have been developed to solve numerically the
SH equations for single-phase granular flows [79, 87], two-phase fluid-solid mix-
tures with negligible difference of particle fluid and solid velocities [69]. Although
this numerical approach can demonstrate fairly good numerical results, the accu-
racy of a high-resolution discretization inevitably degrades to the first order at local
extrema. Furthermore, an insuperable difficulty arises when granular flows around a
wall obstacle are investigated where high-resolution schemes require more boundary
conditions than those provided physically.

Within the last decade, the Discontinuous Galerkin (DG) method [14] has been
rather successfully established for solving hyperbolic conservation laws, especially
in computational fluid dynamics [6, 19, 32, 74]. There are especially two reasons
for this ascent which obviates essential limitations of classical techniques such as
finite volume or finite difference methods. DG cleverly combines

(i) an arbitrary order p ∈ N in the numerical discretization error O(h p) with
(ii) a local flux evaluation which is at most to be computed from adjacent cells.

Here h refers to the local grid spacing, and p the order of the DG basis polynomials.
Item (i) is in strong contrast to the established schemes which are substantially limited
to O(hn) with n ≤ 2 for unstructured grids, and even on Cartesian grids n is rather
limited to small values because of the increasing number of stencils for increasing n.
Item (ii) avoids the necessity of more boundary conditions required in high-resolution
schemes. At present, the DG scheme has still not been applied to simulate granular
flows.
(b) Comparison of the performances of the various schemes. Comparison of the
performances of the various numerical schemes will be conducted with the laboratory
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Fig. 13.26 a Laboratory
avalanche chute consisting of
upper inclined plane merging
continuously into a
horizontal plane. b Idealized
bottom topography with
dimensionless distance along
the lower coordinate to test
the various numerical
schemes, from [13].
© Min-Ching Chiou
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chute displayed in Fig. 13.26. A hemispherical shell holding the material together at
the upper end of the chute is suddenly released so that the bulk material commences
to slide on an inclined flat plane at 35◦ into a horizontal run-out plane by a smooth
transition. The computational domain is the rectangle x ∈ [0, 30] and y ∈ [−7, 7]
in dimensionless length units, where the inclined section lies in the interval x ∈
[0, 17.5] and the horizontal region lies where x ≥ 21.5 with a smooth change of
the topography in the transition zone x ∈ [17.5, 21.5]. Furthermore, the inclination
angle is prescribed as

ζ̃(x) =
⎧
⎨

⎩

ζ̃0, 0 ≤ x ≤ 17.5,

ζ̃0 (1 − (x − 17.5)/4) , 17.5 < x < 21.5,

0◦, x ≥ 21.5,

(13.135)
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with ζ̃0 = 35◦. Simulations are performed with an angle of internal friction φ = 30◦
and a bed friction angle δ = 30◦. The material is suddenly released at t = 0 from the
hemispherical shell with initial radius r0 = 1.85 in dimensional length-units. The
center of the cap is initially located at (x0, y0) = (4, 0). The results of the numerical
simulations will below be tested against laboratory avalanche experiments.

Numerical results are obtained with the central difference scheme applied to
(13.118) and (13.119) with the artificial diffusion term

μx
∂2w

∂ x2
+ μy

∂2w

∂ y2

added to the right-hand sides with viscosities μx = μy = 0.02; for smaller viscosities
the simulation becomes unstable. The central difference schemes, as well as many
other traditional higher order difference methods, introduce dispersive effects to the
equations, which are susceptible to numerical instabilities and lead to unphysical
oscillations in the numerical solutions. These are usually located behind the advanc-
ing front and are damped with growing distance from the front. The three dimen-
sional evolution of the avalanche geometry at three different dimensionless times,
t = 6, 9, 12 is shown Fig. 13.27. It displays the free surface distribution at these
times when μx = μy = 0.02. When sufficiently large artificial diffusion is added to
dampen the spurious oscillations, a numerical solution without superimposed numer-
ical oscillation can be obtained. However, in such cases the corresponding solution
will be highly diffusive. The simulated granular flow will then spread over a much
wider area than with higher order difference schemes, finer resolution, less numerical
diffusion, and it will probably also be less physically realistic.

Computations, performed with the non-oscillatory central difference scheme
(NOC) and use of the Minmod TVD limiter have performed much more stably,

Fig. 13.27 Three dimensional geometries of the avalanche at three dimensionless times t =
6, 9, 12, obtained with the traditional difference scheme and μx = μy = 0.02, from [87] ©
Zeitschrift für Angewandte Mathematik und Mechanik
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Fig. 13.28 Three-dimensional geometries of the avalanche at six different dimensionless times
t = 3, 6, 9, 12, 15, 18, obtained with the NOC scheme and the Minmod limiter In this example the
down-slope inclination angle is defined as

with ζ̃ = 45◦, x� = 11.5, xr = 44.5, (x0, y0) = (3, 0), y ∈ [−5, 5] and φ = 43◦, δ = 33◦, from
[87]. © Zeitschrift für Angewandte Mathematik und Mechanik

Fig. 13.28, as can be seen from the humps at dimensionless times = 3, 6, 9, 12, 15, 18
and without the explicit use of additional numerical viscosity.

One of the important questions is the influence of obstructions upon the flow of
avalanches. In practice, often constructions are erected in possible avalanche tracks
to divert the motion of an avalanche or reduce its dynamics and so to protect property
which can possibly be damaged by it. The effect of a tetrahedron positioned in an
avalanche track was tested by M.C. Chiou, Y. Wang and K. Hutter (2005) [12],
shown inFig. 13.29. It can be seen that for a sufficiently high obstacle, all the granular
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Fig. 13.29 Three-dimensional geometries of an avalanche past a tetrahedral wedge located on
the inclined plane for different dimensionless times, from [12]. © Acta Mech. Springer Verlag,
reproduced with permission

material approaching the obstacle is diverted to its sides and flows around the obstacle
downwards. A so-called granular vacuum is formed behind the tetrahedron, hence the
obstacle can prevent the zone directly behind it from being attacked by the granular
flow.

The generalized SH equations withCoulomb-type frictional stress parameteriza-
tion are a hyperbolic system of equations and, consequently, susceptible to solutions
involving shocks. Figure 13.30 shows supercritical flows of a layer of grains down
an inclined plane being diverted (i) by a straight or curved wall, perpendicular to the
plane, (ii) by a circular cylinder and (iii) by a regular tetrahedron. The shocks are
clearly visible in the photographs and show that the flow regimes before and behind
the shock differ from one another. The shock structure is sketched and indicates that
the flow speed, orientation of the shock and height of the granular layer behind the
shock adjust to the wall.12 In the case of the division of the flow by the side faces of

12The shocks arise at singular surfaces across which certain variables suffer jump discon-
tinuities, here for the avalanche thickness and for the surface tangential velocity components.
The equations, which hold between the field variables on the two sides of such surfaces are known as
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Fig. 13.30 Sketches and snapshots of supercritical granular flows down inclined planes, which
are diverted by obstructing walls (straight and curved, but perpendicular to the inclined planes), a
circular cylinder and a regular tetrahedron. Top row from [78], bottom row from [79]. © Yih-Chin
Tai

the tetrahedron into two separate granular side discharge units generate in-between a
granular vacuum protecting an object (here the blue building). Computational analy-
sis in the last panel shows that the SH equations reproduce the shock structure in this
case characteristically correctly.

Numerical solutions of the SH equations have been constructed by the shock-
capturing NOC, second order finite difference scheme using the Minmod limiter. A
great number of such computations have been performed to study the performance of
the numerical scheme for the motion of a finite mass down the laboratory chute having
bottom topographies typically as shown in Fig. 13.18 or Fig. 13.26 with various cross
flow parabolic curvatures, see [70] and literature in there. In this way strongly or
weakly channelized flows down inclines merging into a horizontal channel or plane
can be tested with regard to the spreading of the granular mass and the details of trim
lines and depositions in location and form.

Figure 13.3113 depicts the thickness contours of the avalanching body taken
from [70], originally published in [68], at ten non-dimensional time steps. ‘The flow

(Footnote 12 continued)
Rankine-Hugoniot relations and follow from the jump relations of the balance laws of mass and
momentum. In the shock capturing numerical schemes they are automatically incorporated in the
integration technique.
13Text follows closely [70].
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of the finite mass of granular material is down a circular channel into a horizontal
channel of the same cross-flow shape. The bulk body commences to slide and deform
continuously along the chute as long as the bed friction resistive force is smaller than
the down-slope component of the gravity force. The first few panels in this figure
show clearly that, once the cap holding the mass is opened, the avalanche accelerates
and spreads rapidly in the down-slope direction due to the channeling effect in the
cross-slope direction. The avalanche decelerates rapidly as soon as it enters the run-
out zone, which starts at t ≥ 4.5, because of the continued mass flux from the tail, its
front is then able to spread laterally as evident in panels 5 − 7 for t = 6.0, 7.5, 9.0’.

‘After t = 7.5, due to the channeling effect of the cross section, the tail of the
avalanche reduces in width, but the head expands in width in the run-out zone. Owing
to the reduction of the avalanche speed from supercritical to subcritical conditions
the transition zone into the horizontal induces a shock associated with the height of
the avalanche that is moving upstream from time t = 9.0 onward. The avalanche
comes to rest after t = 13.5. The first three panels of Fig. 13.31 indicate that due
to the dilatation, the granular body is extending in all directions, if mainly in the
downhill direction. At t = 6.0 the front part has completely reached the transition
zone. Therefore, the mass at the front is contracting due to the effect of the passive
earth pressure coefficient, but the mass in the tail is still extending. At t = 7.5,
deposition of mass starts in the vicinity of the lower end of the transition zone. Owing
to the effect of the curvature, the flowing body starts contracting longitudinally and
extending laterally. After t = 9.0, a steep surface-height gradient starts to develop
on the tail side of the avalanche. Although the body is almost at standstill, the mass
from the tail is continuously flowing down and is deposited on the tail side of the
body. This is the main mechanism for the development of the shock front moving
upstream. The physical explanation for this is that from the front there is a strong
resistive force from the bed that prevents the body from sliding further. Thus, mass
arriving from the upper part of the channel must be deposited at the back of the body.
Consequently, the stopped body must extend upward. The last three panels show the
continuous development of the backward moving shock. At the same time, there is
almost no motion at the front. Due to the partial lateral confinement, the extension
of the body in the cross-slope direction is almost negligible’, [70].

S.P. Pudasaini and K. Hutter [70] discuss a great number of results from com-
putations for granular avalanches down inclines into a horizontal deposition zone,
using various cross-channel curvatures to estimate the dependences of the deposi-
tion geometries on these parameters. S.P. Pudasaini also looks at the dynamics of
granular masses down helically curved channels and gives quantifications on run-out
distances and spreading of the granular masses in the deposition zone. Moreover, he
demonstrates that avalanche run-out distances depend strongly on the dependence
of the bed friction angle on the pressure [67].

Comparison with channelized laboratory avalanche flows. S.P. Pudasaini and
K. Hutter ([70], pp 425 ff) summarize a great many laboratory experiments for
flows down a sliding surface that is a straight parabolic channel down an inclined
plane merging into a horizontal plane. Specifically, such models have been used
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Fig. 13.31 A sequence of numerical snapshots of the avalanching motion of a granular material
with internal and basal friction angles φ = 43◦ and δ = 33◦, for different time slices. Contours
of equal thickness are plotted at ten time intervals using ‘unrolled’ projected non-dimensional
curvilinear coordinates (x, y). The transition zone lies between x = 11.5 to x = 14.5. The 45◦
inclined section lies on the left and the horizontal part lies on the right of each panel. The thalweg
of the valley is indicated by the line y = 0. The panels demonstrate the deformation and settling of
avalanches in doubly curved channels, from S.P. Pudasaini et al. [68]. © Annals of Glaciology
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to test the validity of the theoretical model for this slightly complex geometry. A
reference surface is defined, which consists of a plane with inclination angle ζ = 40◦,
which is connected to a horizontal run-out zone by a cylindrical transition zone.
The x-axis is aligned with the direction of steepest descent of the reference surface
and the y-axis points in the cross slope direction. Superimposed on the inclined
section of the chute is a shallow parabolic cross-slope topography, b = y2/(2R)

with R = 110 cm forming a channel which partly confines the avalanche motion.
The inclined parabolic chute lies in the range x < 175 cm, the plane run-out zone
lies in the range 215 cm < x < 320 cm and the transition zone smoothly joins these
two regions. The partly confined chute channels the flow and results in significantly
longer maximum run-out distances than in an unconfined chute. Below we discuss
the results of J.M.N.T. Gray et al. [30].

The experiment was performed with quartz chips of mean diameter of 2–4 mm,
an angle of internal friction φ = 40◦ and a basal friction angle δ = 30◦. The granular
material was released from rest on the parabolic inclined section of the chute by
means of a cap having the form of a hemispherical surface and fitted to the basal
surface topography. In an experiment, once the cap is suddenly released, the avalanche
accelerates and spreads rapidly in the down-slope direction. As it enters the run-out
zone, it rapidly decelerates and spreads out laterally when the partial confinement of
the topography ceases. The avalanche comes to rest after 1.79 s.

Figure 13.32 shows a comparison of the marginal curves (black closed lines) of the
experimental avalanche with the computed topography (shaded area), demonstrating
that the computed speeds of the rear parts of the avalanche are considerably under-
predicted. The last panel in the figure also shows that the experimental avalanche has
come to rest while the rear part of the computed avalanche is still in motion. The most
likely cause for this is that the basal sliding law is considerably more complicated
than Coulomb dry friction with constant friction angle.

In order to demonstrate that a change in the bed friction sliding law can quali-
tatively bring theory and experiment into better agreement, the numerical compu-
tations have been repeated using a variable bed friction angle. In the front quarter
of the avalanche the bed friction angle is held constant as before, but it is linearly
reduced in the rear according to

δ =
{

δ0, x ≥ x f − 1
4

(
x f − xr

)
,

δ0 − mδ

(
x f − x

) − 1
4 (x f − xr ), x < x f − 1

4

(
x f − xr

)
,

(13.137)

where δ0 is the constant bed friction angle, mδ = 10◦ m−1 is the bed friction reduc-
tion factor and x f and xr are the positions of the front and rear of the avalanche,
respectively. The avalanche thickness distributions computed by using the modified
bed friction relation (13.137) are illustrated in Fig. 13.33. The reduced bed friction
angle in the avalanche tail allows the rear of the avalanche to accelerate more rapidly
under the action of gravity and the agreement with the experimental boundary is
considerably better. For more details and further comparison with laboratory data
see [30, 67, 70, 88].
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Fig. 13.32 Computed avalanche thickness, illustrated at five time slices using ‘unrolled’ projected
curvilinear coordinates (x, y) Contours of equal thickness are indicated in cm and thickness ranges
are differently shaded. The time is indicated in the top left-hand corner and all lengths are in cm.
The solid lines at x = 175 cm and at 215 cm indicate the position of the transition zone. The 40◦
inclined parabolic section lies on the left and the horizontal plane on the right of each panel. The
line y = 0 is the thalweg. The thick solid line indicates the position of the avalanche edge in the
laboratory experiment, determined from photographs, from [30]. © Proc. Royal Soc. London
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Fig. 13.33 Same as in Fig. 13.32 but the avalanche thickness is computed by using the modified
basal friction angle (13.137) and comparison with the experimental avalanche boundary, from [30].
© Proc. Royal Soc. London

It was pointed out earlier that the SH equations or any of their extensions are
very similar in form to the Shallow Water Equations of fluid mechanics. The essen-
tial difference lies in the assumed constitutive properties and the basal topography.
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Fig. 13.34 Computed avalanche thickness using the shallow water avalanche model, illustrated
at the indicated time slices (in the upper left corners) For the computations, Kx = Ky = 1 were
used. The dark lines in the panels outline the experimental avalanche margins of the experiment of
Fig. 13.32 or Fig. 13.33, from [30]. © Proc. Royal Soc. London
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Fig. 13.35 Laboratory gully for simulations of granular avalanches. On a plane inclined by 40◦ a
parabolically shaped channel is mounted where the thalweg deviates sinusoidally from the direction
of steepest descent. A mixture of 40 kg sand and gravel is released from a Plexiglass hemispherical
cap at the upper edge of the channel. A clock on the left in the pictures measures the time, its long
arm performs one revolution per second. The photographs show five shots of the moving avalanche.
Note that the originally well-mixed gravel mass is de-mixed with the coarse particles in the front
and the small ones in the rear, from [30]. © Proc. Royal Soc. London

Fig. 13.36 Plane view of the unrolled chute of the top panels with the avalanche motion from
top to bottom The horizontal lines show where the sinusoidal thalweg begins (above at x = 65
cm), ends at x = 320 cm) and where the horizontal plane begins (below = 275 cm). The times in
the panels indicate the moments since the avalanche was released from rest. The graphs show the
topographies in different shadings (with numbers indicating the thickness in cm, as obtained via
numerical computations the black solid lines show the margins of the avalanche piles as determined
from the photographs, from [30]. © Proc. Royal Soc. London
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It was also mentioned that the SH equations reflect shallow water properties when
Kx = Ky = 1. A one-dimensional version of such a hydraulic avalanche model
was developed by M.E. Eglit et al. [22–26], however, with no numerical compu-
tations and no experimental verification. A repetition of the computations of our
avalanche model on the doubly curved topography with Kx = Ky = 1 yielded
instructive results of which the essentials are displayed in Fig. 13.34. It is evident
from this figure that under rapid dilatational motion the computed avalanche shapes
do not considerably deviate from that of the experiment. In the deposition zone,
where contracting flow conditions prevail, deviations from the experimental results
are substantial. The travel distance is too short and the avalanche spread too wide.
Coulomb frictional behavior is therefore, very significant in catching the correct
dynamical behavior of the avalanche.

Selecting earth pressure coefficients unequal to unity is tantamount to accepting
normal stress effects in the constitutive relations. These stress anisotropies evidently
become significant when the avalanche enters the horizontal run-out zone (and some-
what earlier), as seen in the fifth panel of Fig. 13.34. Without the passive earth pressure
coefficient to act against sidewise spreading, the computed deposition of the granular
avalanche is too wide and its front is behind that of the experiments.

Let us close this analysis with small scale laboratory avalanches, in which the
thalweg is not only curved in a vertical plane defining the direction of the steepest
descent, but also to the side. Figure 13.35 shows a laboratory gully for laboratory
avalanche simulations, where the thalweg deviates sinusoidally from the direction
of steepest descent. The parabolic channel merges after 240 cm into the horizontal
plane in the foreground and thus gives up the parabolic profile. A mixture of 40 kg
gravel and sand is released from a hemispherical Plexiglas cap and moves down
the gully; by the sidewise sinusoidal deviation of the thalweg from the direction
of steepest descent; the moving granular flow deviates from the symmetric motion
down the direction of steepest descent. This un-symmetry is clearly seen in the five
photographs of Fig. 13.35. The early longitudinal stretching and the formation of
a tail of fine material that still moves, when the front of the avalanche has already
settled down are typical. Figure 13.36 displays a comparison of the experiment with
computational results, here also based on the Lagrangean integration technique,
used by J.M.N.T. Gray et al. [30].

13.6 Attempts of Model Validation and Verification
of Earthquake and Typhoon Induced Landslides

In the previous sections the coordinate systems underlying the governing equations
have in general not exactly followed the true topography but only nearly so; devi-
ations from the actual topographies were accounted for by especially introducing
the base geometry via an equation Fb(x, t) = 0 It seems obvious that curvilinear
coordinates should be employed, which are constructed with the aid of the digital ele-
vation data of the geographical information system provided in the area of potential
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landslide occurrences, which are now almost everywhere available to an accuracy of
5 m. These coordinate-based approaches have been introduced by F. Bouchut and
M. Westdickenberg [9] and were applied to the Mohr–Coulomb constitutive
model byY.- Ch.Tai andCh.- Y.Kuo (2008) [81] and I.Luca et al. (2009) [55, 56],
Y.-Ch.Tai et al. (2012) [83]. The governing equations of these models are derived by
constructing a terrain-fitted coordinate system, in which the flow depth is defined in
the direction normal to the basal surface. Along this depth-wise direction the inertial
effects are of a small negligible magnitude, which leads to a hydrostatic pressure
assumption. The last 10–15 years have witnessed a search of papers dealing with
these descriptions.

Models achieving equivalent approximate descriptions and applied to the cho-
sen constitutive class of these authors are by H. Chen and C.F. Lee (2000) [11],
S. McDougall and O. Hungr (2004) [59] and O. Hungr and S. McDougall

(2009) [40] and R.P. Denlinger and R.M. Iverson (2004) [16] and R.M. Iverson
and R.P. Denlinger (2004) [45], R.P. Iverson et al. (2004) [46] and S. De Toni

and P. Scotton (2005) [18].
The aforementioned references employ either Eulerian or Lagrangean finite

differences paired with the use of non-oscillatory numerical schemes and TVD slope
limiters (see G.S. Jiang and E. Tadmor (1997) [63] or for an overview [70]). They
require as a preliminary step derivation of the governing equations (balances of
mass, momentum,...) referred to the basal topography fitted coordinates. In the newer
approachY.- Ch.Tai et al. (2012) [83] “the model equations are written for the Carte-
sian components of the momentum and stresses in the terrain-fitted coordinates. The
difference between the present model and traditional description of [the] governing
equations over curvilinear coordinates is that the new model avoids the calculation of
the Chrystoffel symbols; see for comparison I. Luca et al. [55, 56]. This form is not
the first seen in the literature, but it is a special form(the Eulerian description limit)
of the Unified Coordinate (UC) formalism [W.H. Hui and S. Kourdriakov (2002)
[39]; W.H. Hui (2007) [38]]. As a fuller example Y.- Ch. Tai and Ch.- Y. Kuo [81]
and Y.- Ch. Tai et al. [83] further elaborate on the capability of moving coordinates
in the UC method for their two-dimensional model with erosion and deposition”,
after C.- Y. Kuo et al. (2011) [53].

Apart from a great number of validation attempts for table top, see [15, 46], and
laboratory avalanches of the 1–5 m size, [59], using the constitutive class of the SH
model—performances are reported in this chapter and to a much larger extent by
S.P. Pudasaini and K. Hutter [70] and, incorporating also entrainment and depo-
sition phenomena, by Y.- Ch. Tai and Y.C. Lin (2008) [82] and S. McDougall and
O. Hungr [60]—large scale chute experiments (of 95 m length) were done by Iver-

son and Denlinger (2004) [45] and Pudasaini et al. [69].
The book by I.Luca,Y.- Ch.Tai andCh.- Y.Kuo [57] gives a detailed summary

of the numerical methods and validation and verification of the models equations,
[57].

R.P. Denlinger and R.M. Iverson performed their outdoor experiments in a
rectangular chute of 2 m width and ca 70 m down-slope length and 31.5◦ incli-
nation angle, merging into a 25 m long plane inclined 2.5◦. They used a 10 m3

mass of a gravel-water mixture suddenly released from a head gate at the top of
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the chute. Because of the pressure of the water a mixture model was formulated and
reduced to a classical avalanche model extended by accounting for the pore pressure.
Two models, physically equivalent, but with [69], and without [15], accounting
for the curvature effects along the trajectory are derived by R.P. Denlinger and
R.M. Iverson [16] and S.P. Pudasaini et al. [69]. Results are comparable to one
another, though those of S.P. Pudasaini et al. seem to match measurements a bit
better, see Fig. 13.37.
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Fig. 13.37 a 95 m long chute-horizontal plane combination of USGS, photographed here on
1st September 2001 for solid-water debris flow tests. For details see [15]. b Predicted profiles of
debris flow surges along the down-slope coordinate in the middle of the channel in panel (a) at
four successive times on the inclined rectangular flume with inclination angle of 31.4◦, [69]. c, d
Comparison between measurements and two model predictions. c Experimental data of flow depth
at three cross sections of a water saturated debris flow at USGS, 24. July 1995, and numerical
results predicted by R.P. Denlinger and R.M. Iverson [15]. d Numerical results predicted by
S.P. Pudasaini et al. [69]. © Natural Hazards and Earth System Sciences
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Fig. 13.38 Analysis of the Frank slide Plane and oblique views of the simulated flow position at
20 s intervals. The flow depth contours are at 5 m intervals. The thick, solid line indicates the extent
of the real event (digitized from the Canada Department of Mines: Map 57A (Frank, Alberta 1917)),
from [60]. © Canadian Geotech. Journal

S. McDougall and O. Hungr [59] performed back analyses of a historical and
recent landslides to see whether the model equations adequately reproduce the soil
mass movements in the landslides, see Fig. 13.38. They used
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• the Frank slide in Canada: “On April 29, 1903, approximately 30 million m3 of rock
descended Turtle Mountain into the Crow’s-nest River Valley, partially burying the
town of Frank, Alberta and killing about 70 people. It was Canada’s worst landslide
disaster, Evans (2001) [28]. The simulation shown in Fig. 13.38 is based on a
detailed digital elevation model of the present-day topography, provided by the
Geological Survey of Canada. The topography of the deposition zone was modified
to approximate the pre-slide condition by removing approximately 30 million m3

from the area according to estimated deposit depths. The starting position of the
30 million m3 slide mass was similarly estimated.
The model provided a good match of the general extent and distribution of the
final deposit, using a frictional rheology with δ = 14◦ and φ = 40◦. The low
value of the bed friction angle points at the existence of pore water pressure in
the flowing material and would require a solid-fluid mixture model for adequate
physical description. Computations have shown that the flow must have come to
rest in about 100 s. For more details see [59].

• The second landslide analyzed by S.McDougall andO.Hungr [60] is the 1999-
Nomash River rock slide-debris avalanche in British Columbia. This landslide
began with the collapse of 300,000 m3 of crystalline limestone, with the head
scarp located about 430 m above the river on the Western side of the V -valley
and then continuing down, roughly along the thalweg to stop after more than a
kilometer. The computations performed without supposing mass being entrained
from the ground on the Western slope always made the computed avalanche to stop
before it turned its motion down the main valley. Water did not seem to be the cause
for the farther continuing motion of the real avalanche motion. However, “steep
talus-like deposits at the foot of the source slope” [60], have led S. McDougall

and O. Hungr to postulate a volume entrainment density per unit area, compare
also Fig. 13.39,

V = E |v| h, (13.138)

where |v| is the modulus of the depth-averaged topography parallel velocity and
h is the avalanche depth as a function of space. By trial and error E = 1.9 × 10−3

(m−1) was found to be optimal for matching trim lines with snapshots of computed
avalanche margins. Details are shown in Fig. 13.39 and its caption.

The above description of avalanching motions of granular materials in small table
top, laboratory and outdoor experiments were complemented by two landslide events
in Nature by Ch.- Y. Kuo et al. [52, 53]. In [53], the theory that was used in the com-
putational validation attempts were based on the assumptions of Coulomb internal
frictional and basal Mohr–Coulomb sliding behavior, which allowed anisotropic
stress responses for the normal stresses σxx , σyy tangential to the basal surface, in
the approximation of this Mohr–Coulomb model expressed as (13.95)–(13.103),
so that in general the down-slope and cross-slope normal pressures differ from one
another. Such a stress anisotropy is denied by the geophysical mass flow group of
the New York State University at Buffalo, [65, 66], who choose
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Fig. 13.39 Oblique
surfacial views of the
1999-Nomash-River rock
slide-debris avalanche in
British Columbia, Canada
(Photographs courtesy
D. Ayotte). Top photograph
looking down valley, bottom
photograph showing the
erosion in the track, from
[60]. © Canadian Geotech.
Journal

σxx = σyy = Kact/pasσzz (13.139)

with the active and passive earth pressure coefficient selected according to whether

∂u

∂x
+ ∂u

∂y
(13.140)
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Fig. 13.40 Simulation of the Nomash River landslide accounting for entrainment of material from
the source slope. The surface elevation contours are shown at 20 m intervals. Dashed lines show
the computed trim lines, from [60]. © Canadian Geotech. Journal

is positive or negative. They have advertized their model in B. Pitman et al. (2003)
[65] andB.Pitman andL.Lee (2005) [66] and employ their own software TITAN2D.
Comparison of their solid-fluid mixture model with data from field observations
are not known to us (in 2014). Neither seems the stress (an)isotropy law (13.139),
(13.140) have been corroborated by detailed laboratory experiments; for details see
[70], p. 455 ff (Fig. 13.40).

A further careful analysis of the simulation and validation of the landslide of the
Hsiaolin catastrophe, Taiwan is reported by Ch.- Y. Kuo et al. (2011) [53]. Accord-
ingly, Typhoon Morakot struck southern Taiwan in the summer of 2009, causing
the most severe flooding since the 1950s. In the early morning of August 9, rainfall
triggered the Hsiaolin landslide, which itself caused 474 of the total 724 deaths by
overrunning the Hsiaolin village. Good pre- and post event topographies (5 × 5 m
grid resolution) of the region, where the catastrophic mass flow took place allowed
estimation of (11 + 2) million m3 of moving mass without entraining mass.
Ch.- Y. Kuo et al. [53] based their computation on their extended SH formula-
tion in topography-following coordinates by Y.- Ch. Tai and Ch.- Y. Kuo (2008)
[81] andY.- Ch.Tai et al. (2012) [83], a formulation, which avoids the calculation of
the Christoffel symbols, see for comparison I. Luca et al. [55, 56], but restricted
their analysis to the simplified material behavior of the shallow water assumption, i.e.
by putting Kact/pas = 1 (vanishing angle of internal friction) and employing a basal
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Fig. 13.41 a Actual deposit and b simulated deposit of the Hsiaolin landslide, Taiwan. The deposit
depths are coded with the same color axis. The area boxed in the bold dark green polygon is the region
for the minimization scheme, from [53] © American Geophysical Union, J. Geophys. Research,
Solid Earth

Coulomb or Voellmy drag parameterization (see [53], formulae (5) and (8)).14

They employed an optimization procedure using the method of least squares,

h2
stat = min

μ,α

1

A

∫

A

{h(x,μ,α) − hmeas(x)}2 , (13.141)

14Details on conditions of validity of this assumption are given in [57].
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where A is the area of the deposition, μ the Mohr–Coulomb friction and α
the Voellmy coefficient. Moreover, h(x,μ,α) is the computed deposition height
obtained for given μ and α and hmeas(x) the corresponding measured height. The
above minimum for h2

stat is first computed for α = 0 and variable μ; then μ = μopt

is held fixed and a second optimization yields an optimal value for α = αopt.
Figure 13.41 shows a comparison between, (a) the actual deposit and (b) the simu-
lated deposit. The area boxed by the bold green polygon is the region for which the
minimization procedure is applied (for a more detailed and more objective judgment,
the reader may consult [53]). We emphasize that, apart from the many difficulties
in the interpretation of the topographic data and the insecurities of the pre- and post
event surveyor data the results leave the reader insecure with regard to the cho-
sen constitutive response. More specifically, the computations have been performed
with an isotropic stress postulate (Kx = Ky = 1), which in laboratory data (see
Fig. 13.34) have shown a significant dependence on the earth pressure dependent
stress anisotropy. It would be worthwhile to conduct such a comparison to judge
the reliability of the assumption made in [53]. For additional model verification, see
[57].
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Chapter 14
Uniqueness and Stability

Abstract This chapter on uniqueness and stability provides a first flavor into the
subject of laminar-turbulent transition. Two different theoretical concepts are in use
and both assume that the laminar-turbulent transition is a question of loss of stability
of the laminar motion. With the use of the energy method one tries to find conditions
for the laminar flow to be stable. Energy stability criteria operatewith the construction
of upper bounds of the rate of the perturbed kinetic energy K (t) of the fluid system, in
order to obtain by time integration an inequality of the form K (t) < K (0)exp (−t/τ ).
Here, τ > 0 guarantees decay and τ < 0 growth rates of the perturbed energy, τ = 0
guarantees neutral stability of the perturbation flows. The difficulty of the method is
that the condition τ = 0 generally provides poor, i.e., very safe estimates for stability.
More successful for pinpointing the laminar-turbulent transition has been the method
of linear instability analysis, in which a lowest bound, is searched for, at which the
onset of deviations from the laminar flow is taking place. For plane channel flows the
Rayleigh and Orr–Sommerfeld equations with associated boundary conditions
for an ideal and viscous fluid, respectively, are derived and the associated eigenvalue
problems are discussed, which leads to the stability chart, separating Reynolds

number dependent stable and unstable flow regimes.

Keywords Kinetic energy of the difference motion · Uniqueness · Energy stability
of laminar channel flows · Rayleigh equation · Orr–Sommerfeld equation

List of Symbols

Roman Symbols

c = ω/α Phase speed
D[v] Stretching, strain rate deviator

D[v] = 1
2 [grad v + grad T v]

d Width of a canal, radius of a sphere
E I Bending stiffness of an Euler beam
〈 f 〉 Spatial average of the function f (see (14.38))
h(x, y) Auxiliary vector function
K Kinetic energy per unit mass
L Length of an (Euler) beam
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M(x) Bending moment in an (Euler) beam
−m,m > 0 Lower bound for the eigenvalues of D[u]
P Axial load of an (Euler) beam
P(x, y) Pressure in a plane channel
p′ Perturbation pressure
p, p∗ Pressure associated with v(x, t) and v∗(x, t), respectively
Rn Real space of dimension n
R = Ued/ν Reynolds number
r Radial distance
t R, t R∗

Cauchy viscous stress deviator in two different motions
Ue,U0 Mean flow velocity through a channel of width d
u = v∗ − v Difference of two velocity fields
V (t) Domain of a body
v(x, t), v∗(x, t) Velocity fields satisfying the Navier–Stokes equations
u′, v′ Perturbation velocity components in a channel
y(x) Transverse displacement of a beam
x, y, z Cartesian coordinates

Greek Symbols

α Wave number
ν Kinematic viscosity
ρ Mass density
ρK Kinetic energy of a body per unit volume
ι = √−1 Imaginary unit
ψ Streamfunction in two dimensional flow
Ψ (y) Amplitude function of the streamfunction ψ
ω Frequency
∂V (t) Boundary domain of a body of volume V (t)
∇2 = Δ (Two dimensional) Laplace operator

14.1 Introduction

Stability in mechanics characterizes states of deformations and stresses in material
bodies, in which a body configuration, which smoothly changes as the result of
smooth changes of the exciting loads, suddenly transits rapidly or instantly into
another configuration that is far distant from the previous one. A famous example is
the so-called Euler beam, Fig. 14.1, a straight rod of constant cross section loaded
at its hinged ends in the direction of, and toward, the rod axis. For small loads,
P , the straight rod is a persistent, i.e., stable equilibrium configuration; the beam
will become somewhat shorter, but no transverse deflection will occur. A fortiori,
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Fig. 14.1 a Euler beam,
axially loaded by P and b its
bifurcated configurations

P

L
M = Py

x

y

(a) (b)

if a small deflection is artificially induced, and the beam is left to adjust to this
perturbation, the transverse deflection will return to its zero value. Evidently, the
zero deflection is a unique stable configuration. If, however, the load has the value
Pn = E I (nπ/L)2, the beam may possess the zero deflection or any sinusoidal,
displaced axis y(x) = sin[(nπ/L)x]. Here, n is an integer, E I the bending rigidity
and L the length of the shaft. It is clear from Fig. 14.1 and its figure legend that
y ≡ 0 is solution of the differential equation (14.1). However, when P is given as
one of the Euler loads Pn , a second sinusoidal, solution exists. One speaks in this
situation of a possible bifurcation from the trivial y ≡ 0, solution to the bifurcated,
Euler solution with non-zero transverse deflection y = α sin[(nπ/L)x], where α is
an undetermined amplitude. The simple, linear, homogeneous differential equation
does not tell us which of the solutions the Euler beam may prefer at buckling. A
deeper analysis shows that for P 	= Pn , y ≡ 0 is the only solution, whilst at P = Pn ,
only y = α sin[(nπ/L)x] is the assumed solution. One speaks for the configuration
y ≡ 0 of the stable, trivial, solution, which becomes unstable when P equals one of
the Euler loads Pn .

The differential equation of its bending is

y′′ = −M(x)

E I
, M = P y −→ y′′ + P

E I
y = 0, (14.1)

subject to hinged endpoints possesses the only zero solution y = 0, but if P = Pn =(
nπ
L

)2
, then it also has the sinusoidal solution y = α sin[(nπ/L)x].

The Euler beam is likely the simplest example with the aid of which the concepts
of stability and uniqueness can be explained. These concepts occur in any subject
of science and engineering, also in fluid mechanics. Indeed, the stability/instability
descriptions form an important special field of fluid mechanics, which e.g. chiefly
contributed to the conceptual understandingof the transition from laminar to turbulent
flow, which today is understood as a loss of stability of the laminar flow and the
associated transition to the turbulent flow configuration.
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In this chapterwe shall only scratch the surface of the title topic, given the extensive
literature that exists about this subject.1 There are different mathematical procedures
how the question of the stability and/or uniqueness of a basic flow can analytically be
attacked. Common to these procedures is the assumption that the bifurcated solution
from the basic flow is a perturbation field, which sets in as a small deviation from the
basic flowandwill evolve in time and space. If the evolution of the perturbed variables
dies out in time, the basic flow will eventually be the sole contribution of the total
field quantities that will survive. If this happens, stability of the basic flow will then
have been demonstrated. If the perturbed fields grow in time, then the total solution
consisting of the basic fields plus the perturbations will constitute a new solution:
The basic flow will in this case not be stable; it is then called unstable. Details of
the mathematical methods in use to analyse this situation differ according to whether
the perturbations are small or large, i.e., of the order of magnitude of the basic
flow. If they are small, perturbation equations can be linearized in the perturbation
quantities. This procedure leads to linear stability analyses. For these, analytical-
numerical techniques are well known today, but results provide only information on
the transition from the basic flow to the perturbed flow. Stability/instability transition
is expressed as a growth rate of the perturbed field variables exclusively under the
conditions of the instability onset. When the values of the perturbation variables
are not small, linearization of the total fields is not permissible. Fully nonlinear
equations must be handled and proofs of stability (here, at this moment, interpreted
as boundedness of the perturbation fields) require advanced mathematical tools of
analysis.

Stability/instability analyses and proofs for uniqueness following the linearization
procedure use the methods of linear ordinary and partial differential equations sub-
ject to boundary and initial conditions, a special field of highly developed applied
mathematics. The full nonlinear theory makes chiefly use of differential relations
of kinetic energy of the perturbation fields and searches for bounds of its growth
rate. The values of these bounds deliver statements of stability, if such growth rates
are negative. They cannot provide information on the stability/instability transition
(which are often termed neutral stability). By contrast, the linear stability/instability
methods capture the conditions of this neutral stability and formulate this transition
(and only the transition) precisely. Mathematically, it is generally expressed as an
eigenvalue problem for a complex valued phase speed, of which the sign of the
imaginary value provides information on the growth or attenuation of the perturbed
fields.

In what follows, we shall give and introduction to these concepts and no more.
In the next section we shall start with the derivation of the balance equation for
the kinetic energy of the perturbed motion. Next, we shall take up this balance
law of kinetic energy to prove under restricted conditions the uniqueness of the

1There is a large number of books treating stability as a whole subject. Among these we men-
tion S. Chandrasekhar [2], F. Charru [3], P.G. Drazin [4], P.G. Drazin and W.H. Reid [6],
C.Godreche and C.Manneville [8], C.C. Lin [12], D.D. Joseph [10, 11], S.S. Sritharan [21],
H.L. Swinney and J.P. Gollub [22].
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flow of a specific initial boundary value problem of the Navier–Stokes equations.
Section14.4 is devoted to energy stability criteria. These criteria will then be applied
in Sect. 14.5 for a study of stability of laminar channel flow. Finally, in Sect. 14.6
linear stability analysis of laminar channel flow will be tackled on the basis of work
by Lord Rayleigh and W.M.F Orr and A. Sommerfeld. Our aim, however will
be only to give a flavor of this fascinating subject of fluid mechanics.

14.2 Kinetic Energy of the Difference Motion

Let V (t) be a region inR3 with boundary∂V (t) that is filledwith a density preserving
viscous fluid. Assume, moreover, that on ∂V (t) the velocity is prescribed (e.g. via
the no-slip condition).

Let v(x, t) and v∗(x, t) be two velocity fields, which satisfy theNavier–Stokes
equations within V (t) and the velocity boundary conditions on ∂V (t); let p and p∗
be the corresponding pressure fields. The difference motion in V (t) is defined by

u = v∗ − v. (14.2)

Its kinetic energy in V (t) is given by

ρK = ρ

2

∫

V (t)

|u|2 dv (14.3)

and is called the kinetic energy of the difference motion. The momentum equation
for the velocities v and v∗ are

ρ

{
∂v

∂t
+ (grad v)v

}
= −grad p + div t R,

ρ

{
∂v∗

∂t
+ (grad v∗)v∗

}
= −grad p∗ + div t R

∗
.

By taking the difference of these equations one obtains

ρ

{
∂u
∂t

+ (grad v∗)v∗ − (grad v)v

}
= −grad (p∗ − p) + div (t R

∗ − t R).

The nonlinear term on the left-hand side can be transformed as follows

(grad v∗)v∗ − (grad v)v

= (grad v∗ − grad v)v∗ + (grad v)(v∗ − v)

= (grad u)v∗ + (grad v)u,
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so that

ρ

{
∂u
∂t

+ (grad u)v∗ + (grad v)u
}

= −grad (p∗ − p) + div (t R
∗ − t R). (14.4)

Scalar multiplication of this equation with the difference velocity u yields a balance
equation for the difference motion; it has the form

ρ

{
∂

∂t

( |u|2
2

)
+ u · ((grad u)v∗)+ u · ((grad v)u)
︸ ︷︷ ︸

(i)

}

= −u · grad (p∗ − p)
︸ ︷︷ ︸

(i i)

+ u · div
(
t R

∗ − t R
)

︸ ︷︷ ︸
(i i i)

. (14.5)

In this equation the underbraced terms can be transformed as follows:

(i) = ui
∂ui
∂xk

v∗
k + ui

∂vi

∂xk
uk = 1

2

∂

∂xk

(
uiuiv

�
k

)− 1

2
uiui

∂v∗
k

∂xk︸︷︷︸
=0

+ 1

2

(
ui

∂vi

∂xk
uk + ui

∂vk

∂xi
uk

)

︸ ︷︷ ︸
u·D[v]u

= 1

2
div
(|u|2v∗)+ u · D[v]u,

(i i) = −div
(
u(p∗ − p)

)+ (p∗ − p) div u︸︷︷︸
=0

= −div
(
u(p∗ − p)

)
,

(i i i) = ui
∂τik

∂xk
= ∂

∂xk
(uiτik) − τik

∂ui
∂xk

, τik := (t R)∗ik − (t R)ik

= ∂

∂xk
(uiτik) − τik

1

2

(
∂ui
∂xk

+ ∂uk
∂xi

)

= div
(
u(t R

∗ − t R)
)

− tr
(
(t R

∗ − t R)D[u]
)

.

Substituting these expressions into (14.5) yields the balance law for the kinetic energy
of the difference motion in the form

ρ

{
∂

∂t

( |u|2
2

)
+ 1

2
div
(|u|2v∗)+ u · D[v]u

}

= −div
(
u(p∗ − p)

)+ div
(
u(t R

∗ − t R)
)

− tr
(
(t R

∗ − t R)D[u]
)

. (14.6)
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We quote that

D[v] = 1

2

(
grad v + (grad v)T

)
,

(14.7)

D[u] = D[v∗] − D[v] =: D∗ − D,

because of the linearity of the operator D[·]. Integration of (14.6) over V (t) yields

ρ
dK

dt
= −

∫

V (t)

{
ρu · D[v]u + tr

(
(t R

∗ − t R)D[u]
)}

dv. (14.8)

In the derivation of this equation, the divergence theorem was used, e.g.,

∫

V (t)

div

(
ρ
|u|2
2

v∗
)

dv =
∫

∂V (t)

ρ|u|2
2

(
v∗ · n) da = 0,

∫

V (t)

div
(
u(p∗ − p)

)
dv =

∫

∂V (t)

(p∗ − p) (u · n) da = 0,

due to u = v∗ − v = 0 on the boundary ∂V (t).
Moreover,

∫

V (t)

ρ
∂

∂t

( |u|2
2

)
dv =

∫

V (t)

∂

∂t

(
ρ|u|2
2

)
dv

= d

dt

∫

V (t)

ρ|u|2
2

dv −
∫

∂V (t)

(
ρ|u|2
2

)∣∣
∣∣
∂V (t)︸ ︷︷ ︸

=0

(v · n) da.

It is emphasized that application of the boundary condition u|∂V (t) = 0 at the body
surface was essential in obtaining (14.8). However, the fluid may even be nonlinearly
viscous.

Let us now specialize Eq. (14.8) for Newtonian density preserving fluids. In this
case,

t R = 2ρνD[u], t R
∗ − t R = 2ηD[u], η := ρν,

so that

tr
(
(t R

∗ − t R)D[u]
)

= 2ρν tr ((D[u]) (D[u]))
= 2ρν tr

((
1
2

(
L + LT

)) (
1
2

(
L + LT

)))
, L := grad u
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= 1
2ρν

{
tr (LL) + tr

(
LLT

)+ tr
(
LT L

)+ tr
(
LT LT

)}

(∗)= ρν
{
tr (LL) + tr

(
LLT

)}

(+)= {
div (u LT ) + tr

(
LLT

)}
.

The step ‘
(∗)=’ follows because tr (LL) = tr

(
LT LT

)
as well as tr

(
LLT

) =
tr
(
LT L

)
. On the other hand ‘

(+)= ’ implies

tr (LL) = ui, j u j,i = [(uiu j,i ), j − ui u j, j i︸︷︷︸
=0

] = (uiu j,i ), j = div (uLT ),

and this yields

∫

V (t)

ρν div (uLT ) dv =
∫

∂V (t)

ρν (u · grad (div u)) da = 0,

according to the divergence theorem and the boundary condition u|∂V = 0. It follows
that (14.8) takes for a Newtonian fluid the form

dK

dt
= −

∫

V (t)

{
ν tr

(
LLT

)+ u · D[v]u} dv

= −
∫

V (t)

{
ν tr

(
(grad u) (grad u)T

)+ u · D[v]u} dv, (I). (14.9)

A slightly altered form of this equation can be derived as follows:

u · D[v]u = ui
1
2 (vi, j + v j,i )u j = 1

2uivi, j u j + 1
2uiv j,i u j

= 1
2 (uivi u j ), j − 1

2vi (uiu j ), j + 1
2 (uiv j u j ),i − 1

2v j (uiu j ),i

= (uivi u, j ), j − vi (uiu j ), j

= div ((u · v)u) − v · ((grad u)u) .

When substituting this into (14.9), the divergence theorem can be used to transform
the volume integral into a surface term,which vanishes due to the boundary condition,
u|∂V = 0. Thus, instead of (14.9), one may also write

dK

dt
=
∫

V (t)

{
v · ((grad u)u) − ν tr

(
(grad u) (grad u)T

)}
dv, (II). (14.10)
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The two formulae (I ) and (II ) differ in form, how the basic flow v arises in the
integral on the right-hand side. It is apparent that for positive dK/dt the flow may
become unstable. This becomes in (II ) manifest via a largemodulus of v; by contrast,
this is achieved in (I ) by a too large modulus of the shear velocity D[v].

These formulae will now be used in subsequent solutions for a search of unique-
ness or/and stability of the flow.

14.3 Uniqueness

In the year 1929 E. Foá proved the following theorem2:

Theorem 14.1 If two flows, which obey the Navier–Stokes equations of a density
preserving fluid possess in a bounded material region V (t) the same velocity distri-
butions at time t = 0 and they have for all times t > 0 coinciding velocities along
the boundary ∂V (t) of V (t), then the two flows in V (t) are identical.

For the proof the two velocity fields will be denoted by v∗ and v, and the difference
motion is described by u = v∗ − v. Since the two fields agree with one another at
t = 0 in V (t) and ∂V (t), one has

K (0) = 0. (14.11)

Furthermore, on the boundary one has

u|∂V (t) = 0, ∀t � 0. (14.12)

Thus, the prerequisites of the above theorem are satisfied. Because tr
(
LLT

)
� 0,

∀L, Eq. (14.9) implies

dK

dt
� −

∫

V (t)

u · D[v]u dv. (14.13)

Now, since D[v] is a deviator (div v = 0), the sum of its eigenvalues vanishes.
Otherwise stated, the smallest eigenvalue is negative. Let’s call the lower bound of
this eigenvalue in V (t) for t � T , −m with m > 0. Then we have for 0 � t � T

u · D[v]u � −m|u|2. (14.14)

2
E. Foá: L’ Industria, 43, 426 (1929), Milan.
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Consequently, we have a fortiori

dK

dt
� −

∫

V (t)

u · D[v]u dv � m
∫

V (t)

|u|2 dv = 2mK

−→ dK

dt
− 2mK � 0. (14.15)

This is an ordinary differential inequality, which can also be written as

d

dt
(K exp (−2mt)) � 0. (14.16)

Integration over the interval 0 � t � T yields

K (t) exp (−2mt) � 0, since K (0) = 0. (14.17)

Now, K (t) can never be negative by definition, hence K (t) = 0; this means that
u(t) = 0. This proves the uniqueness of the basis solution:

u = 0, ∀t ∈ [0, T ). (14.18)

14.4 Stability

In this section we will derive stability criteria in order to apply them later to special
flows. Let us call v(x, t) the basic flow and v∗(x, t) the perturbed flowof v(x, t); u =
v∗ − v is a perturbation of the basic flow. We assume that the basic flow and the
perturbation flow satisfy the same boundary conditions on ∂V (t), so that u|∂V (t) = 0.
Now, however, we assume that K (0) 	= 0. If one can demonstrate that for all t � 0,
dK/dt < 0, then one has proved that the basic flow is stable. This gives a lower
bound for stability.

In the following we shall deduce from relation (I ) a stability criterion (III ), and
similarly from relation (II ) a stability criterion (I V ).3

a) Derivation of relation (III)
Let h and u be differentiable vector fields. Then one may deduce

0 �
(
ui,k + uihk

) (
ui,k + uihk

) = ui,kui,k + 2 uihkui,k + |u|2|h|2
= ui,kui,k + (uiui hk),k − |u|2hk,k, + |u|2|h|2
= tr

(
(grad u) (grad u)T

)+ div
(|u|2h)+ |u|2 (|h|2 − div (h)

)
.

3See e.g. Handbuch der Physik III/1 ‘Strömungsmechanik (I)’, p. 153 ff.
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If this inequality is integrated over V (t) and the divergence theorem is applied where
possible and the boundary condition, u|∂V = 0, is accounted for, then one obtains

∫

V (t)

tr
(
(grad u) (grad u)T

)
dv �

∫

V t)

|u|2 (div h − |h|2) dv. (14.19)

If this inequality is used in Eq. (14.9) (I ), we obtain

dK

dt
� −

∫

V (t)

{
ν
(
div h − |h|2) |u|2 + u · D[v]u} dv

dK

dt

(14.14)
� −

∫

V (t)

ν
(
div h − |h|2) |u|2 dv + 2mK . (14.20)

To derive a concrete formula, let us select now a specific vector field h. To this end
we choose a sphere with radius d, which encloses the entire V (t), Fig. 14.2. Let r be
the radial distance from the center of the sphere and choose

h = C tan(Cr) êr , (14.21)

in which êr is the radial unit vector and C is a constant, which shall later be taken as
C = π/d. The field h is continuously differentiable in V (t) and we have in spherical
coordinates

div h = 2

r
C tan(Cr) + C2

cos2(Cr)
,

div h − |h|2 = 2C

r
tan(Cr) + C2

cos2(Cr)

(
1 − sin2(Cr)

)

Fig. 14.2 Sphere with radius
d which encloses V (t) at all
times t ∈ [0, T ) the distance
measured from the center of
the sphere is given by r

d

r

V (t)

sphere



208 14 Uniqueness and Stability

= 2C2

Cr
tan(Cr) + C2 � 3C2. (14.22)

The last inequality holds, since (tan x)/x � 1, ∀x ∈ [0,π]. With C = π/d the
inequality (14.22) holds for all points in the sphere with radius d.

If (14.22) is used in (14.20), one obtains

dK

dt
� −3C2ν

∫

V (t)

|u|2 dv + 2mK =
(
2m − 6π2ν

d2

)
K ,

−→dK

dt
−
(
2m − 6π2ν

d2

)
K � 0. (14.23)

Integration over t yields

K (t) � K (0) exp

((
2m − 6π2ν

d2

)
t

)
, (III), (14.24)

which is the statement that was earlier announced. One easily recognizes that K (t)
is exponentially growing, when the argument of the exponential function is positive.
Thus, the basic flow is stable, provided that

m <
3π2ν

d2
, (stability!).

Strictly, (14.24) only states that K (t) is a decreasing function, if m = (3π2ν)/d2 =:
m0 for all t < T , a fact which one associates with stability. Else, the bound m0 may
be too ‘rough’ to infer anything on instability. So m < m0 is a sufficient condition
for stability.

b) Derivation of relation (IV)
In this subsection, we base the analysis on the inequality

0 � (νui,k − vi uk)(νui,k − vi uk) = ν2ui,kui,k − 2 νvi ui,kuk + |u|2|v|2.

This implies

ν2 tr
(
(grad u) (grad u)T

)+ |u|2|v|2 � 2 νv ((grad u) u) ,

or

v · ((grad u)u) � 1

2 ν

{
ν2 tr

(
(grad u) (grad u)T

)+ |u|2|v|2} . (14.25)
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If this inequality is substituted into inequality (14.10) (II ), then one obtains

dK

dt
� 1

2 ν

∫

V (t)

{|u|2|v|2 + (ν2 − 2 ν2
)
tr
(
(grad u) (grad u)T

)}
dv

= 1

2 ν

∫

V (t)

{|u|2|v|2 − ν2 tr
(
(grad u) (grad u)T

)}
dv. (14.26)

Let v0 be the largest modulus of the velocity of the basic flow in V (t) during 0 �
t < T . Then, (14.26) implies

dK

dt
� 1

2 ν

{
2 v2

0 K − ν2
∫

V (t)

tr
(
(grad u) (grad u)T

)
dv

}

(14.19)
� 1

2 ν

{
2 v2

0K − ν2
∫

V (t)

(
|u|2 (div h − |h|2)

︸ ︷︷ ︸
>3C2= 3π2

d2

)
dv

}

� 1

2 ν

{
2 v2

0K − 3π2

d2
ν22 K

}
,

or

dK

dt
− 1

ν

{
v2
0 − 3π2ν2

d2

}
K � 0, (14.27)

from which by integration one obtains

K (t) � K (0) exp

((
v2
0 − 3π2ν2

d2

)
t

)
, (IV ). (14.28)

This is the statement (I V ), a second inequality, from which stability of the flow can
be deduced:

Stability ⇐⇒ v2
0 <

3π2ν2

d2
−→ v0 d

ν
<

√
3π ≈ 5.44. (14.29)

The quantity v0 d/ν is a Reynolds number and the statement says that the flow
of the viscous fluid is stable provided this Reynolds number is smaller than 5.44.
Experience teaches that this limit value is far too low.

The two stability criteria (III ) (14.24) and (I V ) (14.28) make two physically
different statements. In (III ) the amount of shearing is limited; in (I V ) the velocity
itself is limited. These facts suggest that neither of the two describes this bifurcation
of the flow adequately. An appropriate criterion should involve both.
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14.5 Energy Stability of the Laminar Channel Flow

Consider plane viscous channel flow with the steady velocity profile, Fig. 14.3,

v = U (z) êx , U (z) = 3

2
U0

(
1 − 4

( z
d

)2)
, U ′′ = −12U0

d2
. (14.30)

The parabolic velocity profile is a solution of the Navier–Stokes equations, if it is
driven by the pressure gradient

ΔP = 12ν
U0

d2
. (14.31)

Let us now perturb this basic flow by writing

v = U (z)êx + u, grad p = ΔP êx + ρ grad π. (14.32)

The Navier–Stokes equation for the difference motion is then given by

∂u
∂t

+ (grad u + grad
(
U êx

)) (
u +U êx

) = −grad π + ν Δu. (14.33)

The basic flow satisfies already the equation ΔP − (12 νU0)/(d2) = 0. Now,

(gradU êx )U êx = 0, and (gradU êx )u = wU ′ êx , (14.34)

in which U ′ = dU/dz and w is the z-component of the perturbation velocity u =
(u, v, w). Therefore, (14.33) reduces to

∂u
∂t

+ (grad u)v + wU ′ êx = −grad π + ν Δu. (14.35)

Fig. 14.3 Plane laminar
channel flow of a viscous
fluid

z steady state velocity profile

Parabola

d/2

d/2
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This is the momentum equation for the difference motion. Scalar multiplication of
this equation with u yields

∂

∂t

( |u|2
2

)
+ u · (grad u)v
︸ ︷︷ ︸

(i)

+uwU ′ = −u · grad π
︸ ︷︷ ︸

(i i)

+ν u · Δu︸ ︷︷ ︸
(i i i)

, (14.36)

in which the underbraced terms are expressible as

(i) = uiui, jv j = 1

2

(
uiuiv j

)
, j − |u|2

2
v j, j︸︷︷︸
=0

= 1

2
div
(|u|2v) ,

(i i) = −uiπ,i = −(ui π),i − ui,i︸︷︷︸
=0

π = −div (u π),

(i i i) = (uiui, j j ) = (uiui, j ), j − ui, j ui, j

= div (u grad u) − tr
(
(grad u) (grad u)T

)
.

Substitution of these results into (14.36) leads to the evolution equation

∂

∂t

( |u|2
2

)
+ uwU ′ = −ν tr

(
(grad u) (grad u)T

)

+ div

{
νu · grad u − uπ − |u|2v

2

}
. (14.37)

This equation will now serve as principal equation for the derivation of the stabil-
ity/instability state of the channel flow. To this end, let us define spatial averages as

〈 f 〉 := lim
L→∞

1

4 dL2

d/2∫

−d/2

L∫

−L

L∫

−L

f dxdydz. (14.38)

Application of this averaging process to (14.37) will eliminate the last divergence
term on the right-hand side of (14.37), since the divergence theorem will transform
it to

∮ {
νu grad u − u π − |u|2v

2

}
· n da, (14.39)

which vanishes along the channel wall because of the boundary condition, u|∂V = 0.
As an integral over the cross section at x = −L and x = +L the surface integrals
in Eq. (14.39) are of order {·}dL since {·} is bounded. It follows from (14.38) in this
case that



212 14 Uniqueness and Stability

lim
L→∞

1

4 dL2

∮
{·} · n da = O(1/L) → 0.

Averaging (14.37) according to (14.38), thus, yields

d

dt

〈 |u|2
2

〉
+ 〈uwU ′〉 = −ν

〈
tr
(
(grad u) (grad u)T

)〉
.

With

〈
uwU ′〉 = −

〈
uw

12U

d2
z

〉
= −12U0

d2
〈uwz〉,

we, thus, obtain

d

dt

〈 |u|2
2

〉
= 12U0

d2
〈uwz〉

︸ ︷︷ ︸
energy supply due to

the basic flow

−ν
〈
tr
(
(grad u) (grad u)T

)〉

︸ ︷︷ ︸
energy dissipation by

viscous effects

. (14.40)

The question, whether the channel flow is stable or unstable, depends, according to
this equation, upon the amount how the energy supply due to the basic flow and the
energy dissipation balance each other.

Equation (14.40) can also be written as

d

dt

〈 |u|2
2

〉
= −2 ν

〈
tr
(
(grad u) (grad u)T

)〉

×
{
1

2
− 12U0

ν d2

〈uwz〉
2
〈
tr
(
(grad u) (grad u)T

)〉

}

. (14.41)

In this form stability or instability now depends on the sign of the curly bracket in
(14.41). To investigate this statement, let us define two numbers, λ and Λ, such that

d3

λ
= max

{
〈uwz〉

〈tr ((grad u) (grad u)T
)〉

}

,

(14.42)

Λ

d2
= min

{
2 〈tr ((grad u) (grad u)T

)〉
〈|u|2〉

}

.

In order that these numbers exist (i.e. are bounded), it must be ascertained that u
on z = ±d/2 satisfies the boundary condition, u = 0. Moreover, u and π must be
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almost periodic functions.4 With these assertions Eqs. (14.41) and (14.42) imply

d

dt

〈 |u|2
2

〉
� −2 ν

〈
tr
(
(grad u) (grad u)T

)〉 {1
2

− 6U0

λ ν

}

� − ν

d2
Λ〈|u|2〉

{
1

2
− 6U0

λν

}
.

This implies, after integration,

〈|u|2〉 (t) �
〈|u|2〉 (0) exp

{
−ν Λ

d2

(
1 − 12U0d

λ ν

)
t

}
. (14.43)

It is recognized that a stability statement is only possible if one can adequately
determine λ. This is quite complicated as we shall now see. To this end we shall
first look at the lower half of the channel, −d/2 � z � 0 and apply the Schwarz

inequality

b∫

a

|ϕχ| dz �

√√√√
√

b∫

a

|ϕ|2 dz

√√√√
√

b∫

a

|χ|2 dz

for two integrable functions ϕ(z) and χ(z). If one applies the Schwarz inequality
to the functions ϕ = 1 and χ = ∂u/∂z one may write

u(x, y, z, t) =
z∫

−d/2

1
∂u

∂z′ dz
′ �

z∫

−d/2

1

∣∣∣
∣
∂u

∂z′

∣∣∣
∣ dz

′

Schwarz=
√

z + d

2

√√√
√√

z∫

−d/2

(
∂u

∂z′

)2

dz′. (14.44)

With the abbreviated notation

f := lim
L→∞

L∫

−L

L∫

−L

f dxdy,

4An almost periodic function is uniformly bounded and its value at any position x, y is (for fixed
z, t) in a distant point again assumed with almost the same value, see Fig. 14.4.
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Fig. 14.4 A picture of an
almost periodic function. If
the segment •—–• is moved
through the graph as
indicated by the three
segments, its length is not
constant but only nearly
constant x

Almost periodic function

equation (14.44) implies

u2 �
(
z + d

2

) z∫

−d/2

(
∂u

∂z′

)2

dz′ �
(
z + d

2

) 0∫

−d/2

(
∂u

∂z′

)2

dz′

�
(
z + d

2

) 0∫

−d/2

{(
∂u

∂z′

)2

+
(

∂u

∂x

)2

+
(

∂u

∂y

)2
}

dz′

=
(
z + d

2

) 0∫

−d/2

grad 2u dz. (14.45)

Similarly,

w2 �
(
z + d

2

) 0∫

−d/2

grad 2w dz. (14.46)

Furthermore, the following estimate applies:

uwz � 1

4 L2

∫∫
|z||uw| dxdy = 1

4 L2
|z|
∫∫ √

u2w2 dxdy

∗
� 1

8 L2

∫∫ (
u2 + w2

)
dxdy = |z|

2

(
u2 + w2

)

(14.15),(14.16)
� |z|

2

(
z + d

2

) 0∫

−d/2

{
grad 2u + grad 2w

}
dz′

� |z|
2

(
z + d

2

) 0∫

−d/2

{
grad 2u + grad 2v + grad 2w

}
dz′. (14.47)
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The step indicated by ‘
∗
�’ can be proved as follows: We start with

(
(u2)1/2 ± (w2)1/2

)2 � 0 =⇒ u2 + w2 ± 2 |u| |w| � 0.

From this follows the inequality

u2 + w2 � 2
(
u2 w2)1/2 or

(
u2w2)1/2 � 1

2

(
u2 + w2) .

Integrating (14.47) from z′ = −d/2 to z′ = 0, thus, yields

0∫

−d/2

uwz dz �
0∫

−d/2

|z|
2

(
z + d

2

)
dz

︸ ︷︷ ︸
d3/96

0∫

−d/2

tr
(
(grad u) (grad u)T

)
dz′. (14.48)

The same estimate is also obtained, if the integration is carried out from z = 0 to
z = d/2,

d/2∫

0

uwz dz � d3

96

d/2∫

0

tr
(
(grad u) (grad u)T

)
dz. (14.49)

Adding (14.48) and (14.49) yields

〈uwz〉 � d3

96

〈
tr
(
(grad u) (grad u)T

)〉

−→ 〈uwz〉
〈
tr
(
(grad u) (grad u)T

)〉 � d3

96
,

or with the statement (14.42)

d3

λ
= max

{
〈uwz〉

〈
tr
(
(grad u) (grad u)T

)〉

}

� d3

96
−→ λ � 96. (14.50)

This is a definite estimate for λ as was anticipated in (14.43). With this value of λ,
(14.43) implies that the steady laminar channel flow is stable, if

12U0 d

96ν
< 1 =⇒ U0 d

ν
< 8. (14.51)
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With 〈v〉 = U0 the last inequality can be written as

〈v〉 d
ν

� 8. (14.52)

This says that if the Reynolds number formed with the mean velocity is smaller
than 8, then the basic steady laminar channel flow is stable. One may say ‘certainly
stable’ because the bound (14.52) is far too low simply by observational experience.
It is in fact the major difficulty of the energy stability method to find bounds as high
as possible, which guarantee stability of the basic flow.

14.6 Linear Stability Analysis of Laminar Channel Flow

14.6.1 Basic Concepts

Energy stability analyses had their success in fluid dynamics in problems described
by nonlinear initial-boundary-value problems of partial differential equations. In
such formulations nonlinear deviations from basic flows are of interest; the answer
to the question, whether these deviations remain bounded and reduce in size as
time proceeds, or bifurcate further to different flow configurations generally affords
nonlinear analysis techniques.

In linear stability analyses the focus is primarily in the onset of the bifurcated
flow. This fact is interpreted as the emerging instability of the basic flow, if the
bifurcated flow shows a positive growth rate at that instant. More precisely, if the
perturbation velocity components are (exponentially) growing, then the basic flow is
called linearly unstable, however, if they are (exponentially) decaying, then the basic
flow is stable, sometimes called absolutely stable. Finally, if the perturbed velocity
components are steady or stationary, then the basic flow is called neutrally stable.

The mathematical prerequisite of linear stability analysis is linearization of the
governing equations in the variables of deviation from the basic field variables. This
linearization of the perturbation equations in the perturbed fields is the reason, why
only the onset of bifurcated flows can be predicted, but nothing beyond it.Herrmann
Schlichting and Klaus Gersten [18], pp. 424 ff give an excellent review up-to
the year 2000. They are strong supporters of this method of small disturbances and
prefer it to the energy method. In fact they state: ‘This energy method, which was
mainly developed byH.A. Lorentz (1907) proved unsuccessful: therefore wewill not
discuss it further here’. This somewhat strong statement does not lessen, however,
the excellent review of the state of the art of the turbulence science at the beginning
of the 21st century, which the authors provide.

To derive the governing equations for the perturbedfield quantities, letU, V,W, P
be the Cartesian velocity components and the pressure of the basic flow, which
satisfies the Navier–Stokes equations and the boundary and initial conditions of
a moving viscous mass of fluid. Moreover, let the corresponding quantities for the



14.6 Linear Stability Analysis of Laminar Channel Flow 217

disturbances be u′, v′, w′, p′ such that

(u, v, w) = (U + u′, V + v′,W + w′), p = P + p′. (14.53)

In a linear stability analysis it is assumed that the perturbation quantities (with primes)
are small in comparison to the basic quantities.5 The expressions (14.53) are now
substituted into the Navier–Stokes equations and the boundary and initial condi-
tions of the initial-boundary-value problem formulated here for a linearly viscous
fluid. In this process it is assumed that only the variables in the differential equa-
tions and initial conditions are perturbed but not in the boundary conditions. In the
evolving equations all product terms of the primed quantities are dropped, because
they are considered small as compared to the linear (primed) terms. The emerging
initial-boundary-value problem is then a set of linear partial differential equations
and associated boundary and initial conditions which must be solved.

As an example, let us consider again laminar two-dimensional steady channel
flow, for which the basic flow is governed by

U = U (y)

[
= 3

2
Ue

(
1 − 4

( y
d

)2)]
, V = W = 0,

(14.54)

P = P(x, y)

[
= 12ν

Ue

d2
x

]
,

in which the expressions in square bracket hold for a steady plane laminar channel
flow (see (14.30) and (14.31), however, here we use y as the transverse coordinate,
rather than z. Above, the expressions serve as examples of more general parallel
laminar flows).

Inserting the representations (14.53) into the Navier–Stokes equations, with
the basic fields satisfying (14.54), and assuming that the basic fields also satisfy the
Navier–Stokes equations, and, furthermore, dropping all products of the primed
quantities, yields after somewhat lengthy calculations

∂u′

∂t
+U

∂u′

∂x
+ v′ dU

dy
+ 1

ρ

∂ p′

∂x
= ν∇2u′,

∂v′

∂t
+U

∂v′

∂x
+ 1

ρ

∂ p′

∂y
= ν∇2v′, (14.55)

∂u′

∂x
+ ∂v′

∂y
= 0,

in which ∇2 = ∂2

∂x2
+ ∂2

∂y2
.

5This statement has to be understood in the sense that if e.g. V = 0, then v′ is obviously not small in
comparison to V , but it may still be small in comparison to another variable of the same dimension,
e.g. U .
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These are three equations for u′, v′, p′. The appropriate boundary conditions require
for this two-dimensional channel flow that the perturbation velocities u′, v′ vanish
at the walls (no slip condition). It should be mentioned here that, even though the
basic flow is two-dimensional, velocities in the third spatial direction, w′, could
occur and might give rise to the bifurcation at smaller Reynolds numbers than
Eq. (14.55). It was, however, proved by H.B. Squire [20] as early as 1933 that plane
parallel flow becomes unstable with respect to three-dimensional perturbations at
higher Reynolds numbers than two-dimensional perturbations. It follows that two-
dimensional perturbations dominate.

14.6.2 The Orr–Sommerfeld and the Rayleigh Equations

W.F.M.Orr in 1907 and Arnold Sommerfeld
6 in 1908, respectively, transformed

equations (14.55)1,2 for analyzing wave modes into a single equation for the stream
function ψ(x, y, t) of the two-dimensional velocity field. To this end, Eq. (14.55) are
in a first step transformed to the vorticity equation (by eliminating the pressure, p′)
and in a second step by replacing the continuity equation by introducing the stream
function ψ and writing

u′ = ∂ψ

∂y
, v′ = −∂ψ

∂x
, (14.56)

which satisfy the continuity equation identically. Wave solutions for ψ are sought in
the form

ψ(x, y, t) = Ψ (y) exp (ι(α x − ω t)) . (14.57)

In this equation, Ψ (y) is a y-dependent amplitude for the stream function, α is a
wave number and ω a frequency; we assume α to be real and positive, α > 0, whilst
ω could be complex valued. Following the custom in wave theory

c = ω

α
= cr + ι ci (14.58)

is a complex valued phase speed; its real part is the truewave speed of the perturbation
stream function, whilst its imaginary part (or the imaginary part of ω) measures the
growth or attenuation in time of the stream function. For ωi > 0 (or ci > 0) one has
−ι2ci = ci > 0; the function ψ(x, y, t) grows with time. This says that the basic
motion is unstable. By contrast, for ωi < 0 (or ci < 0) the function ψ(x, y, t) decays
with time. This means that u′ and v′, given by

6For a short biography of Sommerfeld, see Fig. 14.5.
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Fig. 14.5 Arnold Johannes Wilhelm Sommerfeld (5. Dec. 1868 – 26. April 1951)

Arnold Johannes Wilhelm Sommerfeld was a German theoretical physicist who pio-
neered developments in atomic quantum physics, and also mentored a large number of
students for the new area of theoretical physics. He was born near Königsberg (now Kalin-
ingrad), East Prussia, studied at its University ‘Albertina’ under the supervision of Fer-
dinand Lindemann and benefited there from instructions by Adolf Hurwitz, David
Hilbert and Ernst Wiechert. He received his Ph.D in 1891. He went to Göttingen and
completed his Habilitation there under Felix Klein in 1895. Subsequently, he assumed a
teaching assignment of mathematics at the School of Mining in Clausthal–Zellerfeld and
in 1900 an associate professorship at the Technische Hochschule in Aachen. It was there,
where he developed hydrodynamics as a formal theory; he maintained his interest in fluid
dynamics for a long time. Proof for this is the slide bearing theory, which he and Osborn

Reynolds developed independently (see Sect. 7.3.6 in Chap.7, Vol. 1) and the fact that two
of his Ph.D students (Ludwig Hopf,Werner Heisenberg) wrote their Ph.D dissertations
on hydrodynamic topics. In 1906 he assumed the new chair of theoretical physics at the
Technische Hochschule Munich, where he taught for 32 years.

Arnold Sommerfeld served as Ph.D supervisor for more Nobel prize winners in physics
than any other supervisor to date, and he was proposed for the Nobel prize 81 times—more
often than any other physicists before and after him.

Arnold Sommerfeld was a very successful academic teacher of theoretical physics as a
whole, i.e., classical and modern physics. Among his Ph.D students wereWerner Heisen-

berg, Wolfgang Pauli as well as Peter Debye, Hans Bethe, Paul Sophus Epstein,
Walter Heitler, Joseph Meixner and many others. Apart from his slide bearing the-
ory, his significant hydrodynamic achievement was the derivation of theOrr–Sommerfeld
equation, the viscous extension of theRayleigh equation for 2D channel flow of ideal fluids
[15, 16, 19].

The text is based on www.wikipedia.org

u′ = ∂ψ

∂y
= dΨ

dy
(y) exp (ι(α x − ω t)) ,

(14.59)

v′ = −∂ψ

∂y
= −ι α Ψ (y) exp (ι(α x − ω t)) ,

http://dx.doi.org/10.1007/978-3-319-33633-6_7
www.wikipedia.org
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will approach zero values as the time tends to infinity. Inserting the above expressions
into (14.55) and then eliminating the pressure from the emerging equations yields
the following ordinary differential equation for the amplitude Ψ (y) of the stream
function

(
U ∗ − c∗) ((Ψ ∗)′′ − (α∗)2Ψ ∗)− (U ∗)′′Ψ ∗

= − ι

α∗R
(
(Ψ ∗)′′′′ − 2α∗(Ψ ∗)′′ + (α∗)4Ψ ∗) , (·)′ = d(·)

dy∗ , (14.60)

inwhich all quantities carrying an asterisk are dimensionless andwhere the following
non-dimensionalizations

(x∗, y∗) = 1

d
(x, y),

(
α∗,

d

dy∗

)
= d

(
α,

d

dy

)
, (u∗, v∗) = 1

Ue
(u′, v′),

(14.61)

t∗ = t
Ue

d
, Ψ ∗ = Ψ

d Ue
, c∗ = c

Ue
, U ∗ = U

Ue

have been introduced; d is a typical length and Ue a characteristic velocity.
Equation (14.60) is the dimensionless form of the Orr–Sommerfeld equation.

Its left-hand side is due to the inertial terms, whereas those on the right-hand side
represent the influence of the linear viscous material behavior. This is recognizable
by the pre-factor ι/(α∗

R), where

R = Ued

ν
is theReynolds number, (14.62)

characteristic of the mean flow.
The boundary conditions that must be applied at both walls in a channel flow, or at

one wall and infinitely far away from the wall in a boundary layer flow, are vanishing
velocity components u′, v′; thus,7

y = 0, d : u′ = v′ = 0 =⇒ Ψ = 0, Ψ ′ = 0,

(14.63)

y → ∞ : u′ = v′ = 0 =⇒ Ψ = 0, Ψ ′ = 0.

7These coordinates differ from those used in Fig. 14.3 or (14.30) by the translation y = y� − d
2 , for

which (14.30)2 reads

U (y�) = 3

2
U0

(

4

(
y�

d

)
− 4

(
y�

d

)2)

.

Thus, (14.63) is formally valid. Moreover, the prime, Ψ ′, in (14.63) and consecutive formulae
designates now dΨ/dy.
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A theoretical limit of theOrr–Sommerfeld equation is the so-called Rayleigh

equation [17], derived by him in 1880, prior to the derivations of (14.60) byOrr and
Sommerfeld, and given by

(U − c)
(
Ψ ′′ − α2Ψ

)−U ′′Ψ = 0 (14.64)

in which asterisks have now been, and henceforth will be omitted, and which follows
from (14.60) for R → ∞ (or ν → 0). Since this equation is of second order, only
two of the four boundary conditions can be posed, e.g.,

Ψ = 0, at y = 0 and y = d, or y → ∞. (14.65)

Equation (14.64), subject to the boundary conditions (14.65) is the linear perturbation
equation for a parallel flow of an inviscid fluid.

14.6.3 The Eigenvalue Problem

The Orr–Sommerfeld and Rayleigh equations with associated boundary condi-
tions are descriptions of eigenvalue problems. This means that non-trivial solutions
generally only exist, if a parameter of the equation assumes a certain value.8 This
parameter is in (14.60) and (14.64) with associated boundary conditions (14.63) and
(14.65), respectively, the complex phase speed c = cr + ιci and is the eigenvalue of
the boundary value problem. Its real part, cr , is the phase velocity and its imaginary
part ci is the rate factor, which, according to (14.57) and (14.58), determines the
linear stability (ci < 0) or instability (ci > 0) of the basic flow. The value ci = 0
describes neutral (indifferent) stability.

For (14.60) and (14.63) nontrivial solutions can be sought by selecting values for
U and U ′′ (provided by the basic flow), the Reynolds number R (equally provided
by the basic flow and the viscosity of the fluid) and the characteristic length, d. If for
given R and α d = α∗ the value of ci can be determined by solving the eigenvalue
problem, it can be decided, whether the pair of values (R,α∗), representing a point
in the first quadrant of the plane (R,α∗) characterizes a state of stability or instability
of the basic flow. Repeating this computation for a rectangular net of (R,α∗)-values,
separates domains in the (R,α∗)-plane of stability or instability. The curve separat-
ing these domains defines neutral stability for which ci = 0. Figure14.6, which is
a copy from Herrmann Schlichting and Klaus Gersten [18], displays qualita-
tively the curves of neutral stability for a plane boundary layer for two-dimensional
perturbations of a density preserving viscous fluid. The curve with label a belongs
to the neutral stability curve for a velocity profile of the basic motion with an inflec-
tion point. Alternatively, the curve with label b shows the characteristic course for

8Please note that Eqs. (14.60), (14.63) as well as (14.64), (14.65) possess the zero solutions Ψ = 0.
This is so because of the homogeneity of the boundary value problems.
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Fig. 14.6 Curves of neutral stability of a plane boundary layer flow for a density preserving
fluid under two dimensional perturbations. a The inset a shows a velocity profile of the basic
motion with an inflection point which is always unstable for an inviscid fluid predicted by the
Rayleigh equation (14.64). The corresponding neutral stability curve, labeled a is determined by the
Orr–Sommerfeld equation (14.60) for a viscous fluid. The asymptotes of the curve of neutral sta-
bility for R → ∞ are obtained from the Rayleigh equation (14.64) for an inviscid fluid. b The
inset b shows a velocity profile of the basic motion without inflection point. The neutral stability
curve, labeled b is obtained by the Orr–Sommerfeld equation (14.60) for a viscous fluid. Unsta-
ble domains are indicated by shading and indifferent stability states are indicated by Rind (dashed
lines), after [18]

a velocity profile without inflection point. The shaded side indicates the unstable
regime. The point on the neutral stability curve, where the Reynolds number is
smallest (see the tangent to the neutral stability curve perpendicular to theReynolds
axis), is of special interest. This is the smallest Reynolds number, below which all
linear modes are damped, whilst above this value some modes are amplified. This
Reynolds number on the neutral stability curve is called the indifferenceReynolds
number characterizing the limit of stability.

The neutral stability curves in Fig. 14.6 are of qualitative nature (note that the two
axes, R and α∗ do not show any scales for R and α∗). To obtain precise results, the
eigenvalue problems of (14.60), (14.63–14.65) must be solved. Lord Rayleigh

was able to solve his boundary value problem (14.64). However, according to
H. Schlichting and K. Gersten [18], he ‘was basically only able to prove that
the presence of a point of inflection is a necessary condition for the appearance of
unstable waves, but W. Tollmien in 1935 showed much later that the presence of
a point of inflection is a sufficient condition for the presence of amplified waves.
The point of inflection criterion is of fundamental importance for stability theory,
since, provided that we include a correction due to the neglected viscosity effects,
it provides a first rough classification of all laminar flows’ [18]. This property has
also been observed in convergent/divergent channels, as these flows show favorably
decreasing/increasing pressure gradients, which in the velocity profile have/have-not
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a point of inflection. This fact is stated in [18] as a theorem: ‘Velocity profiles with
points of inflection are unstable’.

The effects of viscosity to the solutions of the eigenvalue problems (14.60),
(14.63) due to Orr–Sommerfeld are qualitatively similar to those of the bound-
ary value problem of the Rayleigh equation (14.64) with the boundary conditions
(14.65) which describes the inviscid behavior (label a). The neutral stability curves
in Fig. 14.6 for viscous flows are of type b instead. They differ most strikingly from
those of type a by the fact that for infinitely large Reynolds numbers, R → ∞, the
neutral stability curve for inviscid fluids approaches two horizontal asymptotes with
α∗ = 0 and α∗ = A. This says that for inviscid fluids all perturbations at R → ∞
with α∗ = 0 (λ → ∞) are prone of destabilization. More precisely, at R → ∞
all perturbations with 0 < α∗ < A are unstable. By contrast, for viscous fluids: in
this case ‘at infinitely large Reynolds numbers, the region of unstable perturbation
wavelengths shrinks to nothing, and it is only for finitely large Reynolds numbers
that a region of unstable waves exists’, [18].

A second result, due to Lord Rayleigh [17] and W. Tollmien [24–26] is also
stated as a theorem in [18]: ‘In boundary-layer profiles, the velocity of propagation
for neutral perturbations (ci = 0) is smaller than the maximum velocity of the mean
flow’. This law states ‘that there is a point inside the flow of neutral perturbations
whereU − c = 0’. Note that this point is a singular point of the Rayleigh equation
(14.64), where |Ψ ′′| becomes infinitely large, unless U ′′ vanishes there simultane-
ously’. In the context of matched asymptotic expansions this says that in viscous flu-
ids with small viscosity (large Reynolds numbers) the Rayleigh equation (14.64)
describes the outer flow behavior within the critical layer where U = c. The two
distinct behaviors described by perturbation series in the perturbation parameterR−1

must be matched together.
The extensive literature on the stability/instability transitions of the Rayleigh

andOrr–Sommerfeld equations is discussed by H. Schlichting and K.Gersten
[18] pp. 433 ff. We restrict ourselves here to mentioning just a few important mem-
oirs. An overview of solutions of theRayleigh equations from amathematical point
of view is e.g. given by P.G. Drazin and L.N. Howard (1966) [5] and P.G. Drazin
and W.H. Reid (1981) [6]. Early, primarily analytical attempts of solving the
Orr–Sommerfeld equation are given by O. Tietjens (1922) [23] and
W. Heisenberg (1924) [9]. W. Tollmien (1929–47) [24–26] presented detailed
analytical calculations, whilst J.M. Gersting and D.F. Jankowski (1972) [7] and
R. Betchov andW.O. Criminale (1967) [1] summarized the numerical integration
techniques.

With this very brief introduction into the onset of turbulence as a problem of fluid
flow stability/instability transition we stop here. H. Schlichting and K. Gersten
[18] discuss a wealth of further studies on experiments and validation of the sta-
bility/instability transition of flows based on the Navier–Stokes equations, e.g.,
construction of neutral stability curves and influences, such as effects of pressure
gradients, heat transfer etc., and the effects of three-dimensionality of the flow.
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Chapter 15
Turbulent Modeling

Abstract In this chapter a detailed introduction to the modeling of turbulence is
given. Filter operations are introduced to separate the physical balance laws into
evolution equations for the averaged fields on the one hand, and into fluctuating or
pulsating fields on the other hand. The mathematical properties of the filter define
the structure of the averaged equations. Reynolds introduced the steady statistical
filter, leading to theReynolds averagedNavier–Stokes equations. This procedure
generates averages of products of fluctuating quantities, for which closure relations
must be formulated. Depending upon the complexity of these closure relations, so-
called zeroth, first and higher order turbulence models are obtained: simple algebraic
gradient-type relations for the flux terms, one or two equation models, e.g., k − ε,
k − ω models, in which evolution equations for the averaged correlation products
for k and ε are formulated, etc. This is done for density preserving fluids as well as
so-called Boussinesq and convection fluids on a rotating frame (Earth), which are
important models to describe atmospheric and oceanic flows.

Keywords Statistical filter operator · Reynolds averaged Navier–Stokes equa-
tions · Closure relations for fluctuating correlation terms · k − ε, k − ω models ·
Boussinesq, convection fluids

List of Symbols

Roman Symbols

cα Species mass ratio of constituent α
cb,s

D Basal/free surface drag coefficient
D Strain rate tensor (deviator), stretching tensor
D(θ) Total (laminar+ turbulent) thermal diffusivity

D(θ) =
(
χ(θ) + νt

σθ

)

D(c) Total species diffusivity D(c) =
(
χ(c) + νt

σc

)

D(k) Total diffusivity of the turbulent kinetic energy

D(k) =
(
ν + νt

σk

)
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D(ε) Total diffusivity of the turbulent dissipation rate

Dε =
(
ν + νt

σε

)

e Specific turbulent enstrophy e = 1
2 (ω · ω)

f ′ Fluctuation of f in statistical averaging (RANS)
f ′′ Fluctuation of f in a Favre averaging
g Gravity vector
g Density of a physical quantity
g′ ⊗ v′ Correlation flux of the average of g′ with v′
j cα

Mass flux of species α

j t Turbulent species mass flux j t := ρc′v′
k Turbulent kinetic energy per unit mass (see (15.29))

k = 1
2v

′ · v′
� Turbulent mixing length
Mground

⊥ Flow rate of fluid mass into the ground
p, patm Pressure, atmospheric pressure
q Heat flux vector
q t Turbulent heat flux vector q t = ρu′v′
Qa

ir, Qw
ir Black body radiation of the atmosphere and water at the free surface

Q�, Qs Latent/sensible heat fluxes between water and air
R Turbulent Reynolds stress tensor R := −ρ(v′ ⊗ v′)
r Specific energy supply, specific radiation
t R Frictional (viscous) stress
u, u′ Specific internal energy, its fluctuation
V Typical velocity
v Velocity vector
〈v〉 Average velocity over a sample, over time or over space
v′ Fluctuation (pulsation) of v

W ‖ Wind velocity parallel to the free surface
zg Supply density of g
zcα

Mass supply density of species α

Greek Symbols

ν, νt Kinematic viscosity, turbulent viscosity
ρ Mass density
ε Turbulent dissipation rate (see (15.30))
θ Temperature (absolute or Celsius)
φg Flux of g
φ Total turbulent dissipation rate
Φk,φε Flux of turbulent kinetic energy—of turbulent dissipation rate

κ Curvature of ρ as a function of θ, κ = d2ρ
dθ2

∣∣∣
θ

χ(θ)
t ,χ(c)

t Turbulent eddy diffusivities of heat and mass ratio
σθ,σc Prandtl/Schmidt number
σk,σε Prandtl numbers for k and ε
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πk,πε Production rate densities of the turbulent kinetic energy
—of the turbulent dissipation rate

πg Production density of g
ω = curlv Vorticity vector
ω′ Fluctuation of ω
Ω Angular velocity of the non-inertial frame (angular velocity of the Earth)

Miscellaneous Symbols

〈·〉T Time average of (·) over a ‘time’ interval T
〈·〉R Space average of (·) over a ‘radius’ R
〈·〉S Statistical average over probability space
{ f } Favre average { f } = 〈ρ f 〉/〈ρ〉
〈·〉 Reynolds average of (·)
IID Second invariant of D

15.1 A Primer on Turbulent Motions

In daily life turbulent motions are ubiquitous fluid dynamical elements which can
be observed in various forms e.g. in wind gusts and surface water flows in rivers,
lakes and the ocean. ‘Scientists have investigated turbulent phenomena for hundreds
of years. For instance, Leonardo Da Vinci (1452–1519) (see Fig. 15.1) studied
turbulent flows and produced several hand-drawings, showing eddies of various sizes
[and how they interact]. Based on such observations today we have knowledge of
energy cascade models describing the turbulent kinetic energy of flow as a function
of eddy size […]’, [4].

Fig. 15.1 Drawings of turbulent eddies in water motions by Leonardo Da Vinci. The right panel
shows a free water jet issuing from a square hole into a pool; it represents, perhaps the world’s
first use of visualization as a scientific tool to study a turbulent flow. Leonardo wrote (translation
by Ugo Piomelli, University of Maryland) ‘Observe the motion of the surface of the water, which
resembles that of hair, which has two motions, of which one is caused by the weight of the hair,
the other by the direction of the curls, thus the water has eddying motion, one part of which is due
to the principal current, the other to the random and reverse motion. According to L. Lumley,
Cornell University, Leonardo may have prefigured the now famous Reynolds decomposition
nearly 400years prior to Osborne Reynolds’ own flow visualization and analysis’. Figure and
text courtesy [5]
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Fig. 15.2 Osborne Reynolds in 1903 (23. Aug. 1842–21. Feb. 1912)

Osborne Reynolds was a mathematician with degree from Cambridge University (1867)
and prominent innovator in the understanding of fluid dynamics. Hewas appointed professor
of engineering at Owens College in Manchester, the first professor in UK university history
to hold the title of ‘Professor of Engineering’. Reynoldsmost famously studied the condi-
tions in which the flow of fluid in pipes transitioned from laminar flow to turbulent flow. His
studies of condensation and heat transfer between solids and fluids brought radical revision
in boiler and condenser technology. He also proposed a mathematical procedure which is
now known as Reynolds-averaging of turbulent flows. This led to the ‘bulk’ description
of turbulent flows as expressed in theReynolds-Averaged Navier–Stokes equations. His
final theoretical model, published in the mid 1890s is still the standard mathematical frame-
work used today. Another subject which Reynolds studied in the 1880s was the mechanical
behavior of granular materials.

The text is based on www.wikipedia.org

The first basic thoughts and experiments on turbulence are likely due to Joseph

ValentinBoussinesq (1872) [3] andOsborneReynolds (1883)1. [14], who both
studied the flow of a fluid through pipes with circular cross sections. Boussinesq
proposed that the turbulent stress can be parameterized just as its laminar counterpart
as the product of the mean turbulent strain rate multiplied with a scalar quantity
of the dimension of a viscosity [m2 s−1], called the turbulent viscosity. Reynolds
recognized (by adding dye through a pipette to the fluid) that basically two flow

1For a biographical sketch of Reynolds see Fig. 15.2

www.wikipedia.org
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laminar flow

parabola

turbulent flow

logarithmic profile

(a) (b)

Fig. 15.3 Laminar and turbulent flow in a cylindrical pipe. a To visualize the flow dye is added
to the water through a capillary pipette. The nozzle of this pipette is visible at the left end of the
photographs on the left (courtesy Royal Society London [14]). b Mean velocity profiles in a circular
pipe under steady laminar and turbulent conditions, respectively, from [7]

regimes exist: In one case, the so-called laminar flow, the dye forms coherent thin
filaments; in the second case, known as turbulent flow, the dye filament is torn
very quickly after it left the nozzle of the pipette and is spread over the entire cross
section of the pipe,Fig. 15.3. The transition from laminar to turbulent flow is a sudden
event—a fluid flow instability. The critical quantity that characterizes the change is
the Reynolds number

R = V D

ν
, if R > 2000, then the flow is turbulent,

where V, D, ν are the mean axial velocity, the inner pipe diameter and the kinematic
viscosity of the fluid. The velocity profiles, averaged over a time interval (which
eliminates fluctuations) look as shown in Fig. 15.3b. The transition from the laminar
to the turbulent flow regime takes place for 500 < R < 2000. Exactly at which
Reynolds number this transition takes place depends largely upon the set-up and
performance of the experiment. ForR > 2000 the flow is essentially turbulent, unless
very careful precursory measures are taken.

15.1.1 Averages and Fluctuations

In Fig. 15.3b the velocity profile for the turbulent flow is drawn for the mean axial
velocity; the true velocity is fraught with strong fluctuations. For steady driving
and adequately constructed mean values of the velocity, the mean profiles are also
steady and have homogeneous random appearances. Such fluctuations are seen for
turbulent flows in time series of the velocity at a fixed point,Fig. 15.4 aswell as spatial
variations at fixed time. The time and space scales of these pulsations are for most
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(a)

(b)

Fig. 15.4 Typical examples of measured signals. a Time variation of the northward component of
the current speed during the period of 100h, measured by ADCP in the middle of Lake Constance
at a depth of 2m on 24–28 October 2001. CourtesyAndreas Lorke, data delivered to [2]. b Water
temperature in a laboratory flume, measured with the time step of 5ms

applications not relevant; rather, one is interested in some average behavior, forwhich
space and time scales extend overmany typical ‘periods’ of the turbulent fluctuations.
This suggests to additively decompose the velocity into two contributions, the mean
value 〈v〉 and the fluctuations v′,

v = 〈v〉 + v′. (15.1)

Of course, this composition is not unique and the split between 〈v〉 and v′ depends
on how 〈v〉 is defined. For a temporal average

〈v〉T := 1

T

t+T/2∫

t−T/2

v(x, τ )dτ , (15.2)

this mean value depends on the large-scale interval of averaging, T , and, conse-
quently, so does also the ‘subscale’ fluctuation velocity, v′. In computing such an
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average from a given time series, it must be observed that the interval T , over which
the averaging operation is performed, is not too small, so that the turbulent pulsa-
tions are indeed ‘eliminated’. Conversely, this interval should neither be too large,
because if so, important non-turbulent time dependent phenomena may thereby be
lost. It transpires that the decomposition of v into 〈v〉 and v′ depends on the selection
of T , and via this choice it defines, which scales of the time variations belong to the
mean processes and which are part of the fluctuations. Moreover, this decomposition
will also depend on the mathematical properties of the averaging operator, which is
often also called filter.

15.1.2 Filters

Above, in relation (15.2) the temporal filter was introduced. For the spatial filter, one
integrates the field in question over a spherical (or nearly spherical) volume V (x, r)

with center at x and radius r , and defines the mean value as

〈v〉R := 1

V

∫

V (x,r)

v(ξ, t)dξ. (15.3)

The volume V (x, r) under consideration is a compact set, defining the region of in-
fluence as nearly spherical, which is sufficiently compact that a typical parameter can
be defined for a sphere, which may replace the actual volume. For (15.3) variations
of v with wave length smaller than O(V 1/3) are filtered away. The quantity 〈v〉R is
a function of position x and time t , and may also depend on V (x, r). It is obvious
that (15.2) and (15.3) define different averages, 〈v〉T and 〈v〉R , and one may easily
see that in general 〈〈·〉T,R〉T,R �= 〈·〉T,R .

The filter that was used first in describing the turbulent fluid behavior is the
statistical filter, used by Osborne Reynolds. It is based on the assumption that, on
a local scale, the fluctuations have the properties of a stationary random process.

Let u(x, t) denote the value at (x, t) of the scalar function u, for example the
first component of the velocity field. The value u(x, t) can be any real number. If
ρ(x, t, û) denotes the density of the probability that u(x, t) takes the value û at the
point (x, t), where û is any real number, one has

∫ ∞

−∞
ρ(x, t, û)dû = 1. (15.4)

The expectation value for the value of the function u at (x, t) is

〈u〉S(x, t) =
∫ ∞

−∞
û ρ(x, t, û)dû, (15.5)

in which the subscript is an identifier of the statistical averaging. In a certain sense,
the expectation value 〈 u 〉S(x, t)(x, t) is the most probable value of u at (x, t).
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The statistical filter has been the only filter used in early turbulence research; it is
still important today and has the following properties, which the reader may easily
prove with the use of (15.5):

1. Linearity: Let u, v be two quantities of a turbulent field and a a real number.
Then,

〈u + aw〉S = 〈u〉S + a〈w〉S. (15.6)

2. Commutability with differentiation

〈∂u〉S = ∂〈u〉S, where ∂ ∈
{

∂

∂x
,

∂

∂y
,

∂

∂z
,

∂

∂t

}
. (15.7)

3. Invariance under multifold averaging

〈〈u〉S〉S = 〈u〉S. (15.8)

Of course, this condition implies

〈〈. . . 〈u〉S . . .〉S〉S = 〈u〉S. (15.9)

Of the three filters introduced above, only the statistical filter satisfies all these prop-
erties. In the ensuing analysis we shall assume that the chosen filter satisfies all three
conditions. This hypothesis is called the ergodic hypothesis. The reader may also
verify the following computational rules

〈u′〉S = 〈u〉′S = 0,

〈〈u〉S v〉S = 〈u〉S〈v〉S,

〈〈u〉 v′〉S = 0,

〈u v〉S = 〈u〉S〈v〉S + 〈u′v′〉S.

(15.10)

In what follows the subscript S in 〈·〉 will henceforth be dropped. In modern turbu-
lence theory models are being developed, which request the invariance of the mul-
tifold filtering as well as others which negate it. The Reynolds-Averaged-Navier-
Stokes (RANS) models satisfy the conditions of the statistical filter. Models, for
which 〈u′〉 �= 0, equally do not satisfy (15.9). These models are summarized under
the heading Large Eddy Simulation (LES) models.

15.1.3 Reynolds Versus Favre Averages

The ultimate purpose of the above calculations is to employ them in the derivation
ofaveragedbalance lawsofmass,momentum, energy and further averaged statements
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if necessary. In this regard the conservation law of mass points at a subtlety, which
we shall now explain. Therefore, consider the conservation laws of mass,

∂ρ

∂t
+ div (ρv) = 0, (15.11)

which, when RANS-averaged, takes the form

〈
∂ρ

∂t

〉
+ 〈div (ρv)〉 = 0. (15.12)

Employing the computational rules (15.10), transforms (15.12) into

∂〈ρ〉
∂t

+ div (〈ρ〉〈v〉) + div
(〈ρ′v′〉) = 0. (15.13)

The third term on the left-hand side is the divergence of the correlation mass flux
〈ρ′v′〉 which only vanishes for a density preserving fluid (ρ′ = 0). For a gas or a
compressible fluid this term does not vanish, but we would wish it to be zero in order
to preserve the conservation law for mass under turbulent conditions (for the mean
quantities). This can be reached as follows:

Definition 15.1 The density weighted average { f } of a quantity f is defined as

{ f } := 〈ρ f 〉
〈ρ〉 , f = { f } + f ′′. (15.14)

{ f } is the so-called Favre average of f and f ′′ = f − { f } is its fluctuation.
We leave the following statements to prove to the reader:

{ f } = 〈 f 〉 + 〈ρ′ f ′〉
〈ρ〉 , f ′′ = f ′ − 〈ρ′ f ′〉

〈ρ〉 . (15.15)

For a density preserving material, ρ′ = 0; so, (15.15) implies in this case that

{ f } = 〈 f 〉, f ′′ = f ′ for a density preserving material. (15.16)

This implies that Favre averagesmust only be performed for compressiblematerials
for which the balance law of mass (15.13) reduces to

∂〈ρ〉
∂t

+ div (〈ρ〉{v}) = 0, (15.17)

in which (15.15)1 has been used.



236 15 Turbulent Modeling

15.2 Balance Equations for the Averaged Fields

The purpose in studying turbulent motions in fluid mechanics is to determine the
distribution and evolution of the field variables such as velocity, pressure, temperature
and tracer mass concentration. Experience shows that in many circumstances these
fields often fluctuate both in time and space with varied periods and wave lengths.
In engineering and geophysical applications not all those scales can or should be
resolved. Field equations of averages of the true fields are sought which, in turbulent
flows, are fluctuating. Turbulent motion manifests itself often as a cascade of vortical
structures, of which the sizes are restricted by the extent of the domains, where
the motions take place. In a particular bounded domain the largest gyre that can
occur is of the size of the largest extent of the domain—in the ocean or a lake
given by the coasts or shores. By fluid flow instabilities these gyres break down into
smaller vortices of cascadingdimensions down tovery small eddies,whose remaining
energy will be absorbed into heat. In geophysical applications—oceanography and
meteorology—the sizes of these vortical structures are from approximately 1mm to
several kilometers (in the ocean up to thousands of kilometers).

Complete resolution of all vortical structures is computationally impossible. In
a theoretical description the motion can only be resolved to a certain length and
period, usually twice the grid size by which the governing equations or boundary
geometry is discretized. In fluid dynamics (of water and air) it is the conviction of
most scientists that on the smallest time scales the Navier–Stokes equations are
the adequate description of the fluid motion by which the turbulent eddies through all
sizes can be well reproduced. This has been demonstrated by comparison of results
obtained by Direct Numerical Simulations (DNS) with measured velocity fields in
a wealth of examples since the late 80s of the last century. The resolution of all
time and space scales in a numerical computation is impossible, however. As one
alternative one, therefore, averages the Navier–Stokes equations by selecting the
smallest space and time scales that one can afford to resolve and thereby filters those
pulsations of the processes out, which are of ‘subscale structure’. However, the loss
of information is partly counteracted by parameterizing the correlation terms in a
way similar to constitutive closure relations, yet slightly more flexible.

We shall demonstrate this procedure for a Boussinesq fluid and/or a free con-
vection fluid.2 Let us start with a general balance statement

d

dt

∫

ω

g(x, t)dv =
∫

∂ω

φg(x, t)da +
∫

ω

(πg + zg)dv, (15.18)

2ABoussinesq fluid is a fluid, which is kinematically volume preserving (div v = 0) with constant
density except in the gravity term where ρ may vary with position and time. In a free convection
fluid the density function in the ‘acceleration terms’ (ρ0dv/dt , ρ0du/dt , ρ0dcα/dt) varies with z
(ρ = ρ0(z) + ρ′(x, y, z, t)), where in applications z is the vertical direction of the gravity and ρ0(z)
is prescribed. This approximation is popular in geophysical flows.
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in which g is a specific physical quantity (mass density, momentum density, …),
φg(x, t) is its flux into the body region ω through its boundary ∂ω, and πg(x, t) and
zg(x, t) are the specific production and specific supply rate densities of g, respec-
tively.

For differentiable fields the global balance law (15.18) transforms to the local law

∂g

∂t
+ div (gv − φg) − πg − zg = 0, (g is a scalar field) , (15.19)

∂g

∂t
+ div (g ⊗ v − φg) − πg − zg = 0, (g is a vector field) .

The transformation from (15.18) to (15.19) is standard if the fields arising in (15.18)
are differentiable. This is explicitly demonstrated in Chap.3.

Subjecting these equations to a statistical filter with the properties (15.6)–(15.10)
the following Reynolds averaged balance laws are obtained:

∂g

∂t
+ div

(
g v − φ

g
)

− πg − zg = −div
(
g′v′) (g is a scalar field),

(15.20)

∂g

∂t
+ div

(
g ⊗ v − φ

g
)

− π∗g − zg = −div
(
g′ ⊗ v′) (g is a vector field) .

Here and henceforth notation has been simplified by denoting the averaging operation
by an overbar. The various quantities arising in (15.19) are defined in Table15.1 for
the conservation statements of mass, linear momentum and the balance laws of
internal energy and an additional scalar quantity cα. In (15.20) the production π∗g

may consist of an averaged quantity plus a correlation term as is e.g. the case for the
production density of internal energy.

If one substitutes the entries of Table15.1 into the balances (15.20) describing the
turbulent average behavior the following equations are obtained:

• For the conservation of mass:

∂ρ

∂t
+ div (ρ v) = −div

(
ρ′v′) ,

Table 15.1 Density of a physical quantity g, its flux φg , supply zg and production πg densities for
mass, momentum, internal energy and a scalar field

Balance law g φg zg πg

Mass ρ 0 0 0

Momentum ρv tR − p1 ρ g 0

Internal energy ρu −q ρr tr (tR D)

Scalar field ρcα j cα
zcα πcα

tR = stress deviator, D = strain rate tensor, ρ = density, p = pressure, v = velocity, u = internal
energy, q = heat flux vector, r = energy supply rate density, g = gravity constant

http://dx.doi.org/10.1007/978-3-319-33633-6_3
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which for constant ρ reduces to
div v = 0. (15.21)

The specification ‘ρ = const.’ means that the variability of the density is ignored
kinematically, as this is e.g. done for aBoussinesq fluid or a free convection fluid.

• For the conservation of linear momentum:

∂v

∂t
+ div (v ⊗ v)

dv

dt
≡ ∂v

∂t
+ (grad v) v

⎫
⎪⎬

⎪⎭
+ 1

ρ
grad p − 1

ρ
div t R − g = −div

(
v′ ⊗ v′) .

(15.22)

• For the balance law of internal energy:

∂u

∂t
+ div (u v)

du

dt

⎫
⎪⎬

⎪⎭
− 1

ρ
tr

(
t R D

)
+ 1

ρ
grad q

= −div
(
u′v′) + 1

ρ
tr

(
t R ′D′

)
+ r. (15.23)

• For the balance law of a scalar field cα, (α = 1, 2, 3, . . . , ν):

ρ

(
∂cα

∂t
+ div (cα v)

)

ρ

(
∂cα

∂t
+ grad (cα v)

)

⎫
⎪⎪⎬

⎪⎪⎭
+ div

(
j cα

) − πcα
− zcα

= −ρdiv (c′
αv′

α),

(α = 1, . . . , ν). (15.24)

In what follows the counting index α will be dropped as only one typical scalar
field c will be stated.

At this point, the following remarks are helpful:

1. In Eqs. (15.21)–(15.24) the density, wherever it arises, is to be understood either
as a constant (ρ = ρ∗ for a Boussinesq fluid) or as a time independent function
of z (ρ = ρ0(z) for a free convection fluid). In both cases its fluctuation does not
arise or is ignored.

2. Equations (15.21)–(15.24) are 5 + ν equations for the 5 + ν variables v, u, p and
cα (α = 1, . . . , ν). All the remaining quantities must be described by phenom-
enological relations. For a Navier–Stokes fluid or a more complex nonlinear
viscous fluid such constitutive relations must be postulated for t R, q (and u). In
addition, for the turbulent correlation terms

v′ ⊗ v′, u′v′, tr (t R ′D′), c′
αv′, (15.25)

turbulent closure relations are to be formulated.
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15.3 Turbulent Closure Relations

Definitions:

• The quantity

R := −ρ
(
v′ ⊗ v′) (15.26)

is called the Reynolds stress tensor. It is symmetric and has first been introduced
by Osborne Reynolds in 1894 [15].

• The flux vector of internal energy

q t := ρ u′v′ = ρ cvθ′v′ (15.27)

is called the turbulent heat flux vector, and θ′ is the temperature fluctuation.
• The flux vector

j t := ρ v′c′ (15.28)

is called the turbulent species mass flux (if c is a mass ratio).
• The turbulent kinetic energy (density) is defined as

k := 1
2v

′ · v′. (15.29)

• The turbulent dissipation rate density is defined by

ε := 1

ρ
tr

(
t R ′D′)

(
(2)= 4ν IID′

)
, (15.30)

in which IID′ = 1
2 tr (D

′D′) is the second invariant of the strain rate deviator D′

and the step
(2)= holds for a Newtonian fluid only.

15.3.1 Reynolds Stress Hypothesis and Turbulent
Dissipation Rate

The definition of the Reynolds stress tensor implies that tr R = −ρtr
(
v′ ⊗ v′) =

−ρv′ · v′ = −2ρk, in which k is the turbulent kinetic energy, defined in (15.29).
Thus, we may alternatively write instead of (15.26)

R = −ρ

{
v′ ⊗ v′ − 2

3k1
︸ ︷︷ ︸

RD = deviator

}
− 2

3ρk1. (15.31)
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Thus, for a Boussinesq fluid or a free convection fluid, since for these the strain
rate tensor is deviatoric, one may request a turbulent closure relation of the form
RD = RD(D), implying that

R = −2

3
ρk1 + RD(D) =

{ − 2
3ρ k1 + 2ρνt D, Newtonian fluid

− 2
3ρ k1 + ρF(IID)D, nonlinear viscous fluid.

(15.32)

Here, νt is a turbulent viscosity in analogy to the laminar kinematic viscosity as
proposed in a simple context but corresponding to (15.32), by Joseph Boussinesq

(1872) [3]. F(IID) is dimensionally a kinematic viscosity [m2 s−1] and generally
monotonic function of IID.

In anticipation of the analysis of mixing length parameterizations, we wish to
emphasize here that the turbulent closures (15.32) for the Reynolds stress tensor
are of gradient type (D is the symmetrized velocity gradient) just as is the constitutive
assumption for the material behavior of the viscous stress under laminar flows. We
have, however, not yet said anything about how the turbulent viscosity in the vicinity
of a spatial point might depend on the detailed structure of the turbulence in the
vicinity of this point. Suggestions, how such dependences might affect the turbulent
closure relations, have begun byLudwig Prandtl bymaking the turbulent viscosity
depend upon his turbulent mixing length in 1925 [11].

With the definition of φ = tr
(
t R D

)
this total dissipation rate density can be

written as

1

ρ
φ := 1

ρ
tr

(
t R D

)
= 1

ρ
tr

(
t R D

)
+ 1

ρ
tr

(
t R ′D′

)
(15.33)

= 2νtr
(
D D

) + 2νtr
(
D′D′

)
for aNewtonian fluid

= 4ν IID︸ ︷︷ ︸
dissipation rate due
to the mean velocity

+ 4ν IID′
︸ ︷︷ ︸

turbulent
dissipation rate ε

, (15.34)

in which ν is the material kinematic viscosity ν = η/ρ. The second quantity of the
above definition is theturbulent dissipation rate density, defined in (15.30). Splitting
φ/ρ in (15.33) into mean flow and turbulent fluctuation contributions as in (15.34)
for a nonlinear Reynolds stress parameterization is more elaborate and will not be
given here.

15.3.2 Averaged Density Field ρ

The averaged conservation equation of momentum (15.22), when simplified to a
Boussinesq or free convection fluid requires knowledge of ρ/ρ∗ or ρ/ρ0. We start
with the equation of state in its simplest form ρ = ρ̂(θ). If we substitute θ = θ + θ′,
assume that |θ′|  |θ| and employ Taylor series expansion, we obtain
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ρ
(
θ + θ′

)
= ρ(θ) + dρ

dθ

∣∣∣∣
θ

θ′ + 1

2

d2ρ

dθ2

∣∣∣∣
θ

(θ′)2 + · · · , (15.35)

and after averaging

ρ(θ + θ′) = ρ(θ) + 1

2

d2ρ

dθ2

∣∣∣
∣
θ

(θ′)2 + · · · , (15.36)

in which ρ(θ) ≡ ρ(θ). This result is interesting: to lowest order ρ(θ) is simply ρ(θ),
but when temperature fluctuations are not small, then the second term on the right-
hand side of (15.36)with the autocorrelation (θ′)2 is also important. This contribution
may be written as

1
2κ(θ′)2, κ := d2ρ

dθ2

∣∣∣∣
θ

, (15.37)

where κ is the curvature of the density as a function of temperature (which for
a quadratic equation of state (for water between 0 and 30 ◦C) can be taken to be
constant). If this second-order term is not negligible, it must be expressed in terms of
the original independent fields. We conclude that the higher-order approximation of
the density function has led to a new temperature correlation for which an additional
closure condition is needed.

It is now pretty clear, how ρ can be evaluated when ρ = ρ(θ, a), where a is either
the pressure p or the salinity s or any other tracer substance. We leave it to the reader
to show that

ρ(θ, a) = ρ(θ, a) + 1
2κθ(θ′)2 + κθaa′θ′ + 1

2κa(a′)2 + · · · , (15.38)

with

κθ = ∂2ρ

∂θ2

∣∣∣∣
(θ,a)

, κθa = ∂2ρ

∂θ∂a

∣∣∣∣
(θ,a)

, κa = ∂2ρ

∂a2

∣∣∣∣
(θ,a)

. (15.39)

Note that the above are three second order correlation terms for all of which closure
relations must be formulated at this level of approximation. We shall not pursue this
avenue because second order correlation terms would also have to be formulated for
the flux terms.

15.3.3 Turbulent Heat Flux qt and Turbulent
Species Mass Flux jt

The decisive postulation in the Reynolds stress parameterization in (15.32) is the
closure proposition

RD(D) = 2 ρνt D, (15.40)
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as essentially already proposed by JosephBoussinesq. It assumes RD to be collinear
(affine) to D = 1

2 (grad v + grad T v) and can, thus, be characterized as a gradient-
type closure condition. The Reynolds stress is a momentum flux quantity. It has
become customary in turbulence modeling to parameterize (all) flux quantities in
this fashion; so also for q t and j t . This suggests closure conditions analogous to
Fourier’s law of heat conduction and Fick’s first law of mass flux as follows3:

q t := ρv′u′ = ρcvv′θ′ = −ρcvχ
(θ)
t grad θ, (15.41)

j t := ρv′c′ = −ρχ(c)
t grad c. (15.42)

Here, cv has been assumed to be a constant. The coefficients χ(θ)
t and χ(c)

t are called
turbulent eddy diffusivities of heat andmass ratio, respectively,which have the dimen-
sion [m2s−1]. These turbulent closure quantities are again not constants but subject to
similar extensions of the type of mixing length propositions as suggested by Ludwig

Prandtl for the Reynolds stress tensor.
With (15.40)–(15.42) the turbulent fluxes of momentum, energy and species mass

ratio have been systematically chosen to be of gradient type with respect to the
corresponding field variables, viz.,

− RD is proportional to D,

− q t is proportional to grad θ,
− j t is proportional to grad c.

(15.43)

The general form is, of course,motivated by theNavier–Stokes-Fourier-Schmidt
constitutive parameterizations of the material response. Moreover, such closure re-
lations of zeroth order are also made for higher order closure schemes, e.g. k − ε
or k − � or k − ω models, as soon will be demonstrated. However, they cannot be
claimed to represent any notion of universality. More on this shall be said in Chap. 16
where Prandtl’s mixing length parameterizations and extensions of it shall be scru-
tinized.

The averaging procedure of the Navier–Stokes equations has brought into evi-
dence a number of new turbulent quantities, which can be grouped as

Group 1:
{

k, ε, νt , χ(θ)
t , χ(c)

t

}
, (15.44)

Group 2:
{
(θ′)2, (a′)2, θ′a′

}
, (15.45)

where e.g. a = p and a = s for pressure and salinity. Those in group 1 are scalar
coefficients, of which numerical values or functional relations need to be prescribed,
whereas the variables in the second group arise when the density function ρ(θ, a) is
averaged to second order, see (15.36). In the lowest order approximation, in which

3For short biographies of Jean Baptiste Joseph Fourier andAdolph Eugen Fick, see Figs. 18.1
and 17.31.

http://dx.doi.org/10.1007/978-3-319-33636-7_16
http://dx.doi.org/10.1007/978-3-319-33636-7_18
http://dx.doi.org/10.1007/978-3-319-33636-7_17
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ρ(θ, a) ≈ ρ(θ, a), these variables are of no relevance.4 If we consider this case, there
remain, however, still the five quantities of the first group. They may, in general,
be functions of θ, c and all invariants of D, grad θ and grad c, but it is customary
in turbulence theory to assume {νt ,χ

(θ)
t ,χ(c)

t } to be functions of {k, ε, θ, c}, and in
heterogeneous turbulence also of the spatial coordinates; hence

{νt ,χ
(θ)
t ,χ(c)

t } = fcts(k, ε, θ, c, x). (15.46)

Moreover, it is also customary to introduce the ratios between the eddy viscosity and
the turbulent diffusivities of heat and mass,

σθ := νt

χ(θ)
t

, σc := νt

χ(c)
t

(15.47)

and to call σθ turbulent Prandtl number and σc turbulent Schmidt
5 number,

respectively. The turbulent heat and mass fluxes can then be written as

v′θ′ = − νt

σθ
grad θ, v′c′ = − νt

σc
grad c. (15.48)

As long as one chooses for {νt ,σθ,σc} independent functional representations of
{k, ε, θ, c}, (15.48) is equivalent to (15.46). If, however, σθ and σc are assumed to
be constant, which is often the case, then the functional dependencies of χ(θ)

t and
χ(c)

t are affine to that of νt . This is a kind of similarity rule, sometimes not being
experimentally corroborated, but often employed. In this simple case, one then only
needs to find a relation for

νt = ν̂t (k, ε, θ, c, x). (15.49)

If νt neither depends on θ nor on c, then, apart from a dependence on x (15.50)
reduces to

νt = ν̂t (k, ε, ·), or, even simpler νt = ν̂t (k, ·), (15.50)

where the dot stands for a possible x-dependence. If the parameterization of νt on
k, ε, and x or on k (and x) are known, one then only needs additional algebraic or
differential equations for k and ε to fix the turbulent viscosity.Depending upon,which
case prevails, one then speaks of one- or two-equation models. In early turbulence
modeling the turbulent viscosity was often assumed to be at most a function of
position.

4What is meant here is that no new turbulent closure must be given if the equation of state is
prescribed.
5For a biographical sketch of Schmidt see Fig. 15.5.
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Fig. 15.5 Ernst Heinrich Wilhelm Schmidt (11. Feb. 1892–22. Jan. 1975)

Ernst Heinrich Wilhelm Schmidt was a German thermodynamicist and University
teacher. He studied at the Technical Universities (Hochschule (TH)) of Dresden and Mu-
nich civil engineering but quickly changed to electrical engineering and applied physics. In
1911/12 he served in the German military and was drafted in the first WorldWar from 1914–
1918. In 1919, he completed his studies in Munich and graduated with diploma in electrical
engineering. In 1920 he was promoted to Dr.-Ing in Munich and subsequently worked under
Oskar Knoblauch as laboratory assistant of applied physics at TH Munich. He obtained
the habilitation degree from TH Munich and immediately captured the professorship for
thermodynamics at TH Danzig (now Gdańsk, Poland). In November 1933 he signed a sup-
porting statement of the University and TH professors in Germany for Adolf Hitler and
joined the supporting members of the NSDAP. With the assignment of Hermann Göring

Ernst Schmidt was installed in 1943 as plenipotentiary for jet propulsion. As such, he
established the largest German research network for solid-propulsion rockets.

Ernst Schmidt was professor of engine research between 1937 and 1945, and again pro-
fessor of thermal sciences from 1945 to 1952, both at TH Braunschweig. From 1952–1961
he was full professor for thermodynamics at the TH Munich, where he retired in 1972.

The Schmidt number is named after him. It measures the ratio of the diffusive momentum
to diffusive mass transfer. Schmidt, moreover, focused his research on thermodynamics of
rocket engines, which are extensively treated in [18].

The text is based on www.wikipedia.org and http://www.deutsche-biographie.de/pnd1187

95228.html

www.wikipedia.org
http://www.deutsche-biographie.de/pnd118795228.html
http://www.deutsche-biographie.de/pnd118795228.html
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Ludwig Prandtl (1904)
with his fluid test channel

Fig. 15.6 Ludwig Prandtl (4. Feb. 1875–15. Aug. 1953)

Ludwig Prandtlwas a German engineer, a pioneer in the development of rigorous system-
atic mathematical analyses which he used to underlay the science of aerodynamics. Hewrote
his doctoral dissertation on Saint Venant torsion in shafts under August Föppl (1854–
1924), where he presented his membrane analogy between torsion of beams and bending of
soap films under transverse pressure, spanned over a wire of the form of the boundary of
the beam’s cross section (see Fig. 8.3 in Vol. 1). In the 1920s he developed the mathematical
basis for subsonic aerodynamics including transonic velocities. His studies identified the
boundary layer, thin-airfoils, and lifting-line theories. In 1901 Prandtl became a professor
of fluid mechanics at the Technische Hochschule Hannover, where he developed many of
his most important theories. In 1904 he delivered a groundbreaking paper, Fluid Flow with
Very Little Friction, in which he described the boundary layer, its importance for drag and
streamlining and the flow separation as a result of the boundary layer, clearly explaining the
concept of stall for the first time. In 1918–1919, he published the Lanchester–Prandtl
wing theory. Considerable work was included on the nature of induced drag and wingtip
vortices and turbulence. Other works examined the problem of compressibility at high sub-
sonic speeds, known as the Prandtl–Glauert correction. He also worked onmeteorology,
plasticity and structural mechanics.

The above photo with Prandtl’s test channel is taken from [21].

The text is based on www.wikipedia.org

15.3.4 One- and Two-Equation Models

Prandtl
6. in his seminal papers [11, 12], which gave quantitative turbulence mod-

eling an early start, did not postulate closure conditions for k and ε but described

6For a biographical sketch of Prandtl see Fig. 15.6

www.wikipedia.org
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the eddy viscosity as a function of the mean velocity gradient and a mixing length,
νt = �2|∂v1/∂x2|, for simple shearing which in three-dimensional flows may be
extrapolated to have the form

νt = 2�2
√

IID, (15.51)

(which was not proposed in this form by Ludwig Prandtl. He initially only for-
mulated it for turbulent simple shear). This formula requires parameterization of the
mixing length �. This was done by Ludwig Prandtl himself in his paper of 1933
[12], by postulating a balance law of the form

∂�

∂t
+ div (�v) + 2�

√
IID + · · · = 0 (15.52)

for the mixing length.
Prandtl’s proposal is an example of a one-equation model. If � is determined

by (15.52), the turbulent viscosity and diffusivities are known by the equations

νt = 2�2
√

IID, χ(θ)
t = νt

σθ
, χ(c)

t = νt

σc
, (15.53)

and, since dimensionally [k] = [ν2
t /�2], one may also set

k = ck 4�
2 IID. (15.54)

In (15.53) and (15.54), σθ, σc and ck are fitting constants.
An alternative to the above closure relations (15.52) and (15.53) is to propose

evolution equations for two quantities: k, ε or the mixture length � or any turbulent
scalar quantity that characterizes the turbulent intensity e.g., the turbulent vorticity
ω. These quantities are dimensionally related by

[ε] = [k3/2]
[�] , [ω] = [k]

[�2] , (15.55)

and equationmodels have been proposed for the turbulent variable pairs (k, �), (k, ε),
(k,ω) and are called k − � model, k − ε model and k − ω model, respectively. For
each of these, balance law-type equations have been proposed. The most popular is
the k − ε model [9, 10]. This model has extensively been tested against experiments
[16, 17], however, the k − ω model has also gained popularity in geophysical appli-
cations, [23, 24].

For all these models a direct connection with the turbulent viscosity must still be
established. This is obtained with the aid ofdimensional analysis by appropriately
constructing the physical dimension of the quantity under question. The reader may
easily check the dimensional relations

[νt ] = [k2]
[ε] = [k1/2][�] = [k]

[ω1/2] ,
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from which we may postulate the parameterizations

ν = cμ
k2

ε
= c′

μk1/2� = c′′
μk ω−1/2, (15.56)

in which cμ, c′
μ, c′′

μ are coefficients adjusted by experiments. Interestingly, in spite
of this, these coefficients exhibit some notion of universality, i.e., their numerical
values are assumed to hold for (nearly) all turbulent processes.

15.4 k − ε Model for Density Preserving
and Boussinesq Fluids

In the k − ε model evolution equations are constructed for the turbulent kinetic
energy k, and the turbulent dissipation rate, ε and the actual values for the turbulent
diffusivity νt are computed with the aid of (15.56) viz.,

νt = cμ
k2

ε
. (15.57)

Since [νt ] = [k2]/[ε], it follows that cμ is a dimensionless scalar, which, in the k − ε
model is taken to be a constant. For k and ε, partial differential equations of balance
type are derived. These will also contain scalar parameters and must equally be
determined numerically by validating the model.

Historically, the k − ε model has originally been developed in the 1970s by
K. Hanjalic and B.E. Launder [6], W.P. Jones and B.E. Launder [9] and
B.E. Launder and D.B. Spalding [10]. It has, in the last decades, attracted great
attention in the engineering and geophysical and hydraulic engineering commu-
nity. W. Rodi [16, 17] describes its applicability in geophysics and the hydraulic
engineering community, J. Weis [22] and L. Umlauf [20] put it in proper per-
spective with other two-equation models. A derivation using continuum mechanical
principles is given in Hutter and K. Jöhnk [7]. Here we provide a summary only.

15.4.1 The Balance Equations

In the k − ε closure scheme the balance laws of mass, momentum, energy and tracer
mass for themeanmotion are complemented by the balance laws for turbulent kinetic
energy and turbulent dissipation rate. They are given by
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d

dt

∫

ω

k dv = −
∫

∂ω

φk · n da +
∫

ω

πk dv,

d

dt

∫

ω

ε dv = −
∫

∂ω

φε · n da +
∫

ω

πε dv,

(15.58)

or in local form

∂k

∂t
+ div (kv) = −div (φk) + πk,

∂ε

∂t
+ div (εv) = −div (φε) + πε,

(15.59)

in whichφk andφε are flux and πk,πε are production terms. The imaginative part of
the proposal of the k − ε model is the postulation of these flux and production terms
as are the parameterizations for R, q t , j t in (15.32), (15.41) and (15.42), which are
repeated as follows

R
ρ

= −v′ ⊗ v′ = −2

3
k1 + 2νt D,

q t

ρcv

= v′θ′ = − νt

σθ
grad θ, (15.60)

j t

ρ
= v′c′ = − νt

σc
grad c,

in which the relations in (15.47) have been applied. These parameterizations all
involve the turbulent (momentum) viscosity νt and Prandtl and Schmidt numbers
σθ and σc, which are assumed to be constants. This serves as motivation also to
parameterize the flux terms in (15.59) in the same form, viz.,

φk = −
(

νt

σk
+ ν

)
grad k = −D(k)grad k,

φε = −
(

νt

σε
+ ν

)
grad ε = −D(ε)grad ε

(15.61)

with two new Prandtl numbers, σk and σε, respectively, to be numerically deter-
mined; νt is the turbulent and ν the material kinematic viscosity.7

7Towrite down the local forms (15.59) and the gradient type representations (15.61) one presupposes
locality and differentiability of k, ε,φk ,φε,πk ,πε. More precisely, (15.58) is assumed to hold for
any region ω, how-so ever small and the fields involved are smooth. Neither of these assumptions
seems to us to be obvious, even though they appear to never have been explicitly questioned.
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The judicious selection of the production rate densities πk and πε is the heart of
the construction of the k − ε model. For a Boussinesq fluid the resulting relations
are

πk = 4νt IID − ε + ρ αθ

ρ∗
νt

σθ
g · grad θ,

πε = 4c1k IID − c2
ε2

k
+ c3

ρ αθ

ρ∗
cμ

σθ
k g · grad θ,

(15.62)

in which

αθ = − 1

ρ̂θ

∂ρ(θ)

∂θ

∣∣∣∣
θ

, IID = 1
2 tr (D D) (15.63)

are the coefficient of thermal expansion and IID is the second invariant of D. The first
and the second terms on the right-hand side of (15.62) are the classical production
terms of the k − ε model of density preserving fluids, whereas the last terms are due
to the buoyancy effects of the Boussinesq fluid.

A detailed derivation of the k − ε model will not be given here; however, a sketch
of the derivation is provided; for details the reader is, however, referred to [7].

Turbulent kinetic energy: To briefly outline the procedure, let us commence with
the derivation of the equation of the turbulent kinetic energy. To this end, one scalarly
multiplies the momentum equation for the fluctuation velocities8

∂v′

∂t
+ div

(
v ⊗ v′ + v′ ⊗ v

) + div
(
v′ ⊗ v′ − v′ ⊗ v′)

+ 1

ρ
grad p′ − div

(
νgrad v′) = 0 (15.64)

with the fluctuation velocity v′ and then applies the filter operation (·) to the emerging
equation. The result is

∂v′

∂t
· v′

︸ ︷︷ ︸
1

+ div (v′ ⊗ v) · v′
︸ ︷︷ ︸

2

+ div (v ⊗ v′) · v′
︸ ︷︷ ︸

3

+ div (v′ ⊗ v′) · v′
︸ ︷︷ ︸

4

+ 1

ρ∗ div p′v′
︸ ︷︷ ︸

5

− ν(div grad v′) · v′
︸ ︷︷ ︸

6

= 0, (15.65)

inwhich a term linear inv′ has beenomitted, sincev′ = 0. The individual underbraced
terms are expressible as

8This is the difference of the momentum equation for v + v′ and the momentum equation for v.
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1 = ∂k

∂t
,

2 = div (kv),

3 = −1

ρ
tr (RD) = 4 νt IID = 4 cμ

k2

ε
IID,

4 = div
(
1
2 (v

′ · v′)v′
)

,

5 ≈ 0,

6 = νdiv grad k − ε.

(15.66)

All these expressions are exact and obtained by algebraic manipulations except the
pressure term 5 , which is approximate. Note, that the term 4 is the divergence of
the average of a triple correlation. We define this vectorial quantity as

qk = (
1
2v

′ · v′) v′ (15.67)

and postulate for it the gradient law

qk = −χk
t grad k = − νt

σk
grad k = −cμ

k2

σkε
grad k. (15.68)

Combining this expression with the first part of (15.66)6 then generates the flux of
the turbulent kinetic energy, which was already stated in (15.61) without motivation.
The remaining terms in (15.66) then define the first two terms on the right-hand side
of (15.62)1. The last (third) terms on the right-hand sides of (15.62) arise only in a
Boussinesq fluid and will later be explained.

Turbulent dissipation rate: The balance law for the turbulent dissipation rate ε
is intimately based on the fact that vorticity, i.e., ω = curl v, is the cause for the
formation of eddies. This is evidenced by the relation

ε
(15.34):= 4 ν IID′ = 2νtr (D′D′)

= ν

2
tr

[(
grad v′ + grad T v′) (

grad v′ + grad T v′)
]

= ν

2
|grad v′ + grad T v′|2

= ν|curl v′|2 = νω′ · ω′ = 2νe, (15.69)

where
e = 1

2 (ω
′ · ω′) (15.70)

is called the specific turbulent enstrophy. Equation (15.69) is the salient expression
of the connection between turbulent dissipation and vorticity.
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To derive an evolution equation for ε, it is therefore tempting to proceed formally
as with the balance law for the turbulent kinetic energy. One starts with the momen-
tum equation for the fluctuation velocities (15.64), takes its curl and, thus, obtains
thevorticity transport equation for the turbulent velocity9

∂ω′

∂t
+ div

(
ω′ ⊗ (

v + v′) − (
v + v′) ⊗ ω′ + ω ⊗ v′ − v′ ⊗ ω

)

−νdiv gradω′ − div
(
ω′ ⊗ v′ − v′ ⊗ ω′) = 0. (15.71)

It is now clear that an evolution equation for ε or e will emerge, if one multiplies
(15.71) scalarly withω′ and then applies to the emerging equation the filter operation
(·). This yields the relation

(i)
∂ε

∂t
+ 2 νω′ · div [ω′ ⊗ (v + v′)]

(ii) − 2 νω′ · div [(v + v′) ⊗ ω′]

(iii) + 2 νω′ · div [ω ⊗ v′ − v′ ⊗ ω]

(iv) − 2 ν2ω′ · div (gradω′)

(v) − 2 νω′ · div (
ω′ ⊗ v′ − v′ ⊗ ω′)

= 0.

(15.72)

The individual terms in the five lines of (15.72) are transformed and interpreted in a
relatively complex detailed computation, see e.g. Chap. 11 in [7]. The result can be
summarized as follows:

(i) = ∂ε

∂t
+ div (εv) + div qε, qε := ν(ω′ · ω′)v′,

(ii) = −4 c1k IID, c1 = const.,

(iii) ≈ 0,

(iv) = −div (ν grad ε) + 2 ν2|gradω′|2

≈ −div (ν grad ε) + c2
ε2

k
, c2 = const.,

(v) = 0.

(15.73)

Notice that statement (i) contains a flux term qε; similarly, (iv) also involves a flux
term given by ν grad ε. With the gradient type parameterization

9The derivation of this equation is given in the solution to the homework Nr. 7 of Chap. 7 on p. 518
of [7].

http://dx.doi.org/10.1007/978-3-319-33633-6_7


252 15 Turbulent Modeling

qε = −χε
t grad ε = −cε

k2

ε
grad ε, χε

t = νt

σε
= cμ

σε

k2

ε
, σε = cμ

cε
(15.74)

the two flux terms can be combined to form

φε = −
(

νt

σε
+ ν

)
grad ε = −D(ε)grad ε, (15.75)

already stated in (15.61). In summary, the balance of turbulent dissipation takes the
final form

∂ε

∂t
+ div (ε v) = div

((
cε

k2

ε
+ ν

)
grad ε

)
+ 4c1k IID − c2

ε2

k︸ ︷︷ ︸
πε

, (15.76)

in which the specific production rate density πε has already been anticipated in the
first two terms of (15.62)2. Its third term is only present in a Boussinesq fluid. This
completes the presentation of the k − ε equations for a density-preserving fluid.

15.4.2 Boussinesq Fluid Referred to a Non-inertial Frame

Recall that a Boussinesq fluid is kinematically density preserving, but accounts for
small density variations in the gravity term. Moreover, in geophysical applications
non-inertial effects are accounted for by the Coriolis

10 acceleration, whilst cen-
tripetal accelerations are generally absorbed in the gravity term.11 This implies that
the momentum equation for the velocity fluctuations, relation (15.64), must on the
left-hand side be complemented by

2Ω × v′ − ρ′g
ρ∗ ,

where Ω is the angular velocity of the frame. After scalar multiplication with v′ and
then averaging,

(2Ω × v′) · v′
︸ ︷︷ ︸

0

− g

ρ∗ · ρ′v′ = − 1

ρ∗ ρ′v′ · g (15.77)

is obtained. It follows, the balance law of turbulent kinetic energy has the additional
production rate density (15.77), so that

10For a short biography of Gaspard de Coriolis, see Fig. 8.10, Vol. 1. An interesting his-
torical addendum is the book ‘Pendulum—Léon Foucault and the Triumph of Science’ by
Amir D. Aczel [1].
11Obviously, this is not so in laboratory experiments on rotating platforms.
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∂k

∂t
+ div (k v) − div

((
cμk2

σkε
+ ν

)
grad k

)

− 4 cμ
k2

ε
IID + ε − 1

ρ∗ ρ′v′ · g = 0. (15.78)

The balance law for the turbulent dissipation rate is obtained if the curl of the equa-
tion for the velocity fluctuations is formed, which is then scalarly multiplied by the
vorticity fluctuation ω′ = curl v′, and the resulting equation is subsequently filtered.
This generates the two additional terms

2 ν

{

curl (2Ω × v′) · curl v′ − curl

(
gρ′

ρ∗

)
· curl v′

}

(15.79)

in the balance of turbulent dissipation rate. The common factor 2ν enters because of
(15.69). With (15.79) the balance law of the turbulent dissipation rate is, therefore,
given by

∂ε

∂t
+ div (εv) − div

((
cε

k2

ε
+ ν

)
grad ε

)
− 4 c1 k IID + c2

ε2

k

− 2 ν

[
curl

(
gρ′

ρ∗

)
· curl v′

]
+ 2 ν[curl (2Ω × v′) · curl v′] = 0. (15.80)

The new terms in (15.78) and (15.80) are, respectively, due to the small density
variations in the buoyancy term and Coriolis acceleration inferred by the non-
inertial frame.

In the turbulence literature the parameterization

− 2 ν

[
curl

(
gρ′

ρ∗

)
· curl v′

]
= − g

ρ∗ · c3
ε

k
ρ′v′ (15.81)

is suggested. The following argument may serve to justify this proposal. On the left-
hand side ρ′ and v′ are the only arising fluctuating variables. So, it is tempting to
postulate that the left-hand side of (15.81) is affine (collinear) to ρ′v′ with an adjust-
ment using k and ε to match the dimensions on the two sides of the equation. This
requires the right-hand side to involve the explicit factor ε/k with a dimensionless
coefficient c3 as a modeling constant. In geophysical applications c3 is small and
often set to zero: c3 = 0. For more details of the ‘derivation’ of (15.81), see e.g. [7].

The term in (15.80) due to the Coriolis acceleration is generally ignored. This
assumption may be justified by the argument that the Coriolis acceleration does
not produce any turbulent kinetic energy; so, the corresponding production in the
turbulent dissipation equation should equally vanish. An alternative motivation for
this choice is again given in [7].
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In summary, the above arguments suggest that under fairly weak simplifying as-
sumptions of the differential equation for the turbulent dissipation a Boussinesq

fluid is the same as the corresponding equation for a density preserving fluid.
For the simplest form of the thermal equation of state ρ = ρ̂(θ) a Taylor series

expansion yields

ρ = ρ̂(θ) = ρ̂(θ + θ′) ≈ ρ̂(θ) + ∂ρ̂

∂θ

∣∣∣∣
θ

θ′ + · · · , (15.82)

implying a linear approximation

ρ = ρ̂(θ),

ρ′ = ∂ρ̂

∂θ
(θ)θ′ = −ρ αθθ

′,
(15.83)

where

αθ = α̂θ(θ) = − 1

ρ̂(θ)

∂ρ̂

∂θ
(θ) (15.84)

is the averaged coefficient of thermal expansion. The added term in (15.78) due to
the density variations in the balance law of turbulent kinetic energy can with (15.83)2
be written as

− g

ρ∗ · ρ′v′ = ρ

ρ∗ αθg · θ′v′ ∗= − ρ

ρ∗ αθ(θ)g · νt

σθ
grad θ, (15.85)

in which at step ‘
∗=’ the gradient-type law (15.60)2, i.e.,

θ′v′ = − νt

σθ
grad θ (15.86)

was employed, in which νt is the turbulent viscosity and σθ the Prandtl number for
adjustment with experiments. Similarly, the corresponding term in the balance law
of turbulent dissipation in (15.80) [see also (15.81)] takes the form

− g

ρ∗ · c3
ε

k
ρ′v′ = c3 cμ

σθ

ρ

ρ∗ αθ k g · grad θ. (15.87)

15.4.3 Summary of the k − ε Equations

It is helpful to collect all governing field equations of the turbulent motion of a
Boussinesq fluid at one place. These equations are as follows:
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• Balance of mass

div v = 0. (15.88)

• Balance of linear momentum

∂v

∂t
+ div (v ⊗ v) + 2Ω × v

= − 1

ρ∗ grad p + div
(
2(ν + νt )D

) + ρ

ρ∗ g. (15.89)

• Balance of energy

∂θ

∂t
+ div (vθ)

= div

((
χ(θ) + νt

σθ

)
grad θ

)
+ 4ν

cv

IID + r

cv

. (15.90)

• Balance of species mass (we write c for cα)

∂c

∂t
+ div (v c) = div

((
χ(c) + νt

σc

)
grad c

)
+ Φ

c
. (15.91)

• Balance of turbulent kinetic energy

∂k

∂t
+ div (vk)

= div

((
ν + νt

σk

)
grad k

)
+ 4 νt IID − ε + ρ αθ

ρ∗
νt

σθ
g · grad θ. (15.92)

• Balance of turbulent dissipation rate12

∂ε

∂t
+ div (vε)

= div

((
ν + νt

σε

)
grad ε

)
+ 4 c1k IID − c2

ε2

k
+ ρ αθ

ρ∗
c3cμ

σθ
kg · grad θ.

(15.93)

In these equations no expression has been proposed for the production rate density
Φ

c
of species c. Its postulation depends on the particular problem at hand, which is

the reason why it remains unspecified here. For salinity, however, we have Φ
c = 0.

Moreover, it should be mentioned that the buoyancy related terms in the balance

12Notice that in [8] the last term on the right-hand side of (15.93) is in error (misprint).
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Table 15.2 Numerical values
for the closure constants of
the k − ε model

cμ = 0.09 c1 = 0.126 c2 = 1.92

c3 ≈ 0 σk = 1.4 σε = 1.3

relations of turbulent kinetic energy and turbulent dissipation rate have formally
been ignored.

To the many empirical constants which arise in the above equations, numerical
values must be assigned. These are collected in Table 15.2. The numerical values
of these coefficients have been obtained by relatively simple model calculations (for
details see [17]).

15.4.4 Boundary Conditions

The form of the boundary conditions, which have to be formulated in a solution
scheme of the partial differential equations of the k − ε model, depend on the partic-
ular physical situation at hand. Inwhat follows, wewill focus attention to problems as
they arise in meteorology, oceanography, limnology and conceptually related prob-
lems of geophysical or environmental contexts.

‘The field equations (15.88)–(15.93) constitute a set of 7 + ν (‘ν’ for ν species
mass balances (15.91)) equations for the unknown fields v (3), p (1), θ (1), cα

(α = 1, 2, . . . , ν), k (1), ε (1) unknowns. They form a system of nonlinear partial
differential equations, for which boundary conditions must be prescribed. The equa-
tions are of parabolic type (they are of first order in time and of second order in
the space variables (via the flux parameterizations)). Consequently, boundary con-
ditions must be formulated at the solid and at the free surface for all diffusive-type
equations’ [8].

Boundary conditions of momentum: The bottom surface is generally treated as
rigid and material, only for extremely shallow regions (e.g. of the atmosphere, the
ocean or lakes) the bottom surface may move and material of the basal soil be dis-
lodged. Excluding these cases, the fixed bottom surfacemay allow a certain discharge
of water, Qboundary

⊥ , into the ground and the velocity tangential to the bed may ei-
ther be zero (no-slip condition) or related to the basal traction. Let us introduce the
notation

vs
⊥ := vs · n,

vs
‖ := vs − (vs · n)n = vs − vs

⊥n,

ps
⊥ := −n · tsn,

ts‖ := tsn − (n · tsn)n = tsn + ps
⊥n,

(15.94)

in which s is a label for a surface (s = b for the bottom surface) and n is the unit
normal vector perpendicular to the surface and exterior to the domain, in which the
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boundary value problem is to be solved. vs
⊥, vs

‖, ps
⊥ and ts‖ are, in turn, the water

velocity normal and parallel to the surface, and the surface normal pressure and the
shear traction parallel to it. With the notation (15.94), the basal boundary conditions
read (s = b stands for ‘bottom surface’)

vb
⊥ = Mground

⊥ , tb‖ = −ρ∗cbD|vb
‖| vb

‖. (15.95)

For Mground
⊥ = 0 the bottom surface is impermeable for the water, this is the usual

case. Should ground water accretion be substantial, thenMground
⊥ �= 0 follows from a

coupling of the k − ε equations with a ground water model. ρ∗ is the water density at
4◦C and cbD ≈ 1.5 × 10−3 is the basal drag coefficient, cbD → ∞ corresponds to the
no-slip condition, vb

‖ = 0, and cbD = 0 models frictionless sliding, for which tb‖ = 0.
At the free surface, momentum is transferred by wind and atmospheric pressure.

Such traction boundary conditions are usually described as follows:

ts‖ = ρacsD|W ‖|W ‖(xs, t), ps
⊥ = patm(x, t), (15.96)

in which ρa ≈ 1.4 kg m−3 is the density of air at atmospheric pressure, csD ≈ 1.2 ×
10−3 is the drag coefficient and W ‖ the wind velocity parallel to the water surface,
ordinarily 10m above the surface. Wind velocities measured at different heights
above the water surface affect the value of csD , adjustments are then necessary, see the
specialized literature, e.g. [7], Chap. 13.Adependence of the atmospheric pressure on
the spatial coordinate and time can often be ignored for lakes, because their extents are
generally small in comparison to the spatial variability of the atmospheric pressures.
Only in storm surge situations grad patm(x, t) �= 0 and must be accounted for.

Boundary conditions for the temperature field: At the bottom surface one usually
requests that

θ(xb, t) = [θ(zb, t)]static, (15.97)

where [θ(zb, t)]static is the static temperature distributionprescribed andheld constant.
Alternatively, one may also request continuity of the heat flow across the bottom
surface

qs · n = Qgeotherm
⊥ , (15.98)

where (15.98) is to be preferred over (15.97) in regions of high volcanic activity.
When the thermal regime of a water basin (lake or ocean) is coupled to the thermal
regime of the ground then continuity of both the heat flow and the basal surface
temperature are required, viz.,

[[θ(xb, t)]] = 0, [[qb · n]] = 0, (15.99)
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in which [[ f ]] is the difference of the values of f on the side of the ground ( f +) and
of the water ( f −). This situation requires a mathematical model for the lake domain
and its complement (i.e. the exterior region to the lake).

The most difficult setting of a boundary condition is the energetic transfer at the
free surface of a lake or the ocean. The proper handling of this problem is pursued
with a radiation balance, which may be expressed as

qs · n = Qa
ir − Qw

ir + Q� + Qs. (15.100)

Here, Qa
ir and Qw

ir are the black body radiation above the surface and water, whilst
Q� and Qs are the latent and sensible heat fluxes between water and air. For their
explicit parameterizations, see the specialized literature, e.g. [7], pp. 582–584.

Boundary conditions for the species concentration: Boundary conditions for tracer
substances depend on the kind of biochemical-physical processes to which these
substances are subjected and whether bio-chemical-hydro-mechanical processes are
in focus. Boundary conditions to be established depend largely upon the complexity
of the problem at hand. In the simplest cases either the concentration or its derivative
normal to the free surface or a combination of these is generally prescribed at the
free surfaces.

Boundary conditions for k and ε: In general, these are rather difficult to postulate,
because the peculiar conditions of turbulence near boundaries are not directly ac-
cessible. Commonly one wishes to prescribe numerical values for k and ε or their
fluxes (derivatives of k and ε perpendicular to the surface). Such values or formulae
can often only be obtained by consideration of the dynamics of the boundary layer.

At the bottom surface where the flow is weakly turbulent or turbulence has died
out all together, one may require

k = 0, ε = 0 at the bottom. (15.101)

However, close to solid walls the k − ε model requires the introduction of wall
functions to properly describe the turbulent boundary layer. This means that (15.101)
is an approximation and should be taken as a gross simplification of the correct
behavior.

At the free surface a physically appropriate postulation of the boundary conditions
is more complicated and also more critical. A fairly simple and also physically
transparent assumption is to request that there is no diffusive loss of turbulent kinetic
energy and turbulent energy dissipation through the free surface. With the gradient
type relations (15.61) this says

∂k

∂n
= 0,

∂ε

∂n
= 0 at the free surface. (15.102)

The reader is asked to consult the specialized literature e.g. [7, 19].
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15.4.5 Closing Remarks

In this chapter an introduction into turbulence modeling has been given. The basic
‘philosophy’ in such modeling is that a sufficient level of approximation of the true
fluctuation dynamics is replaced by an averaging or smoothing operation, by which
those variations of the physical variables are eliminated, which are thought to exert
a negligible influence upon the processes under consideration. The first such averag-
ing operation has been introduced by Joseph Boussinesq (1872) [3] and in a more
detailed mathematical form by Osborne Reynolds [14]. The averaging operations
have been introduced in this chapter either by spatial or temporal or statistical fil-
ters, which have different mathematical properties and, therefore, yield averaging
equations in which the differences in eliminated fluctuations are accounted for by
adequately selected closure conditions. The statistical averaging operator as a filter
of homogeneous processes is based on ensemble averaging; it is defined by the math-
ematical properties (15.6)–(15.9) and computational rules summarized in (15.10).
The acronym for the form of the emerging equations is RANS, for Reynolds-
Averaged-Navier–Stokes equations This filter satisfies the so-called ergodic prop-
erty, according to which multiple averaging does not yield smoother and smoother
computed processes. Of course, such behavior cannot universally be expected from
physical processes. Results, based on computations founded on RANS equations
must be interpreted as approximations, possibly subject to amendment. Therefore,
the statistical filter is today sometimes replaced by more general averaging rules,
which do not obey ergodicity. The so called Large Eddy Simulations (LES) are such
more general averaging rules, which have not been dealt with in this chapter.

The balance laws for mass, momentum, energy and for a scalar field, when sub-
ject to theRANS-averaging operation again possess balance equation structure. Their
detailed forms (15.21)–(15.24) contain in comparison to the non-averaged analogous
equations additional 4 correlation terms (15.25), three of which have flux nature and
one is an energy production rate. In an attempt of turbulent closure of the Reynolds
stress tensor R, (15.31), and the mean turbulent dissipation rate 1

ρ
Φ two new quan-

tities arise, the turbulent kinetic energy, k, defined as (15.29) and the turbulent dis-
sipation rate ε, defined in (15.30), but naturally introduced in (15.34), for which
independent closure statements must be postulated. It should be stated here that
in the earliest zeroth order closure attempt, see the following Chap.16, no closure
relations needed to be postulated, because these variables did not arise in the simpler
flow configurations, which were under focus there.

Nevertheless, the earliest proposals for the scalar stress components under plane
or axisymmetric flow due to Joseph Boussinesq (1872) [3] introduced a turbulent
viscosity ε, suggested by

τ12 = ρε
∂u1

∂x2
.

http://dx.doi.org/10.1007/978-3-319-33636-7_16
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Follow-up suggestions for the turbulent heat flux, q t (15.41), and turbulent mass
flux (15.42) were then analogously proposed with gradient-type proposals (15.43),
‘setting in motion’ the victorious advance of the gradient-type closure relations. This
apparent ‘gradient-mania’ found its continuation in the first order closure scheme,
as we have demonstrated when deriving and motivating the balance laws for the
turbulent kinetic energy, k and the turbulent dissipation rate, ε, and the closure
postulates for the flux of turbulent kinetic energy (15.68) and turbulent dissipation
rate (15.73). Here, too, it seems as if the second and third generations of turbulence
modelers would have forgotten already Prandtl’s attempts in his 1933 and 1945
[12, 13] papers with the intention to reach better agreement of the theoretical mean
velocity distributionswith gradient free parameterizations of flux terms, seeChap.16.
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Chapter 16
Turbulent Mixing Length Models and Their
Applications to Elementary Flow
Configurations

Abstract In comparison to Chap.15, this chapter goes back one step by scrutinizing
the early zeroth order closure relations as proposed by Prandtl, von Kármán and
collaborators. The basis is Bossinesq’s (Mém. Prés. Div. Savant Acad. Sci. Paris,
23:46 [3]) ansatz for the shear stress in plane parallel flow, τ12, which is postulated
to be proportional to the corresponding averaged shear rate ∂v1/∂x2 with coefficient
of proportionality ρε, where ρ is the density and ε a kinematic turbulent viscosity
or turbulent diffusivity (m2s−1). In turbulence theory the flux terms of momentum,
heat and suspended mass are all parameterized as gradient-type relations with tur-
bulent diffusivities treated as constants. Prandtl realized from data collected in his
institute that ε was not a constant but depended on his mixing length squared and
the magnitude of the shear rate (Prandtl, ZAMM 5:136–139, [23]). This proposal
was later improved (“Prandtl (1942), Abriss der Strömungslehre” Prandtl [25])
to amend the unsatisfactory agreement at positions where shear rates disappeared.
The 1942-law is still local, which means that the Reynolds stress tensor at a spatial
point depends on spatial velocity derivatives at the same position. Prandtl, in a
second proposal of his 1942-paper suggested that the turbulent diffusivity should
depend on the velocity difference at the points where the velocity of the turbu-
lent path assumes maximum and minimum values. This proposal introduces some
non-locality, and it yielded better agreement with data, but Prandtl left the non-
gradient-type dependence in order to stay in conformity with Boussinesq. It does
become neither apparent nor clear that Prandtl or the modelers at that time would
have realized that non-local effects would be the cause for better agreement of the
theoretical formulations with data. The proposal of complete nonlocal behavior of
the Reynolds stress parameterization came in 1991 by P. Egolf and subsequent
research articles during 20 years, in which also the local strain rate (=local velocity
gradient) is replaced by a difference quotient. We motivate and explain the proposed
Difference Quotient Turbulence Model (DQTM) and demonstrate that for standard
two-dimensional configurations analyzed in this chapter its performance is superior
to other zeroth order models.

This chapter has been criticized by Prof. P. Egolf. This led to improvements. The authors
thoroughly thank for this help.
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Keywords Local/nonlocal turbulent stress closure ·Criticisms on zeroth order local
stress closures · Prandtl turbulent plane wake · Axisymmetric isothermal jet ·
Turbulent jet in parallel co-flow · Plane Poiseuille flow
List of Symbols

Roman Symbols

A, B Constants of integration in plane Poiseuille flow
a Half width of a two-dimensional channel
b Half width of a plane or axial turbulent jet
c Turbulent convection parameter
D Strain rate, stretching tensor (deviator)
d Diameter of a cylinder immersed in a parallel flow
F Mean force per unit width exerted on a circular cylinder by a

viscous fluid
f1(η), f2(η), f12(η) Dimensionless functions describing the transverse variation

of v∗
1, v

∗
2, v

′
1v

′
2

fii , i i = 11, 22, 33 Dimensionless auto-correlation functions for (v′
i )
2

g, g Gravity vector—constant
g1(η) Scaled transverse distribution of v∗

1 for plane Poiseuille

flow: g1(η) = f1(η)/ f1(0)
gi i gi i = √

fii (i i = 11, 22, 33) (see (16.91) and (16.102)).
k1 = 4β Auxiliary parameter
k Turbulent kinetic energy ( 12v

′
iv

′
i ), dimensionless constant

kd Characteristic length of the similarity representation of field
variables (16.22)–(16.25)

�, �′
Prandtl mixing lengths

m0,m1 Axial mass flow at the exit nozzle of a round jet—at a general
cross section

O Order symbol
p, p, p0 Pressure, mean— constant reference—
p Virtual origin of a jet stream, production of turbulent kinetic

energy
p0, p1, p2, p12 Exponent of (x1 − p)/(kd) in the similarity representations

of b, v∗
1, v

∗
2, v

′
1v

′
2

R = ρv′
1 ⊗ v′

2 Reynolds stress tensor
R12 Reynolds shear stress R12 = τ12 = −ρv′

1v
′
2 = νt

∂v1
∂x2

RD Reynolds stress deviator
R Reynolds number
t R Viscous stress tensor (deviator)
UG Undisturbed parallel flow velocity far upstream
U +UG Mean exit velocity at the nozzle of a jet exit
v = (v1, v2, v3) Velocity field components of v in an orthogonal,

not-necessarily orthonormal coordinate system
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vmax, vmin Maximum/minimum mean velocity in the turbulent domain
at a fixed value of x1

v1, v2 x1-, respectively, x2-component of the mean velocity field
v0 Steady jet stream velocity at the exit nozzle
v∗
1 Reduction of v1 from UG

(v′
i )
2 Auto-correlation functions of the velocity components v′

i (i =
1, 2, 3)

x = (x1, x2, x3) Position vector with its components
x0 Characteristic length (equivalent to kd)
x2max Position x2 (at fixed x1), where v1 assumes a Maximum

Greek Symbols

α = f1(0)/R∗ Parameters in the DQTM equation (16.171) for plane
Poiseuille flow

β = σ ( f1(0))
2 Auxiliary parameter, dimensionless parameter in the similar-

ity representation of b(x1) (see (16.25))
ξ1 Shifted coordinate x1 with origin at x1 = −p
η = x2

b(x1)
Dimensionless scaled transverse coordinate for a jet stream

η0 Parameter in representation (16.46) to adjust f1(η) to the
experiments

ξ, η Dimensionless Cartesian coordinates for plane Poiseuille

flow: ξ = x1/a, η = x2/a
η = ρν Dynamic viscosity
ν, νt Kinematic material/turbulent viscosity
ρ Mass density
χ Unspecified field quantity
χ Mean value of χ in turbulent processes
χ′ Fluctuation of χ in a Reynolds averaging process
χ′ψ′ Correlation product of χ and ψ
χ2 Characteristic length in the x2-direction, e.g., b(x1)
χ = β(α)/4 Order parameter in plane Poiseuille flow
db/dx1 = tanα Auxiliary variable

16.1 Motivation/Introduction

As pointed out in Chap.15, turbulent motions are, in principle, analyzed by per-
forming a statistical average of the governing variables into mean quantities and
fluctuations according to

χ = χ + χ′, χ ∈ [v1, v2, v3, p, t Ri j , . . .], (16.1)

http://dx.doi.org/10.1007/978-3-319-33636-7_15
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where v1, v2, v3 are any three independent components of the velocity field. More-
over, χ denotes the mean value of χ, interpreted as an ensemble average, and χ′ is
the deviation of χ from its mean value χ, called the fluctuation or pulsation of χ. For
Reynolds averaging they have the properties that

χ′ = 0, ∂χ = ∂χ, χ = χ, χψ = χψ + χ′ψ′. (16.2)

Performing for a density preserving fluid the averages of the equations of balances
of mass and momentum yields, on use of the computational rules (16.2),

div v = 0, (16.3)
{
ρ
∂v

∂t
+ ρdiv

[
(v ⊗ v) + (v′ ⊗ v′)

]}
= −grad p + div t R + ρg, (16.4)

as have also been shown in (15.21) and (15.22), in which {v, p, t R, ρ, g} are the aver-
aged velocity vector, pressure, frictional (or viscous) stress tensor and the constant
density and gravity vector. Moreover, v ⊗ v is the dyadic product of the velocity
vector with itself. Defining by (15.26), i.e.,

R = −ρv′ ⊗ v′ (16.5)

the symmetric turbulent stress tensor, the averaged momentum equation can also be
written as

ρ

(
∂v

∂t
+ div (v ⊗ v)

)

ρ

(
∂v

∂t
+ (grad v) v

)

⎫
⎪⎪⎬

⎪⎪⎭
= −grad p + div t R + div R + ρg. (16.6)

Because regularly, ‖ div t R ‖ is much smaller than ‖ div R ‖, the viscous stress is
often ignored in (16.6) for a fully developed turbulent flow. Furthermore, the gravity
force is often also absorbed into a hydrostatic pressure such that

p = pstat + pdyn, such that grad pstat = ρg. (16.7)

The classical viscous stress in a Newtonian fluid is given by t R = 2ρνD so that its
average is given by

t R = 2ρνD (16.8)

having in three (two) dimensions five (two) independent components because trD =
0.An analogous parameterization of R for fully developed turbulence is, however, not
appropriate, because, according to (16.5), the turbulent kinetic energy, k, defined by

http://dx.doi.org/10.1007/978-3-319-33636-7_15
http://dx.doi.org/10.1007/978-3-319-33636-7_15
http://dx.doi.org/10.1007/978-3-319-33636-7_15
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k := 1

2
v′
iv

′
i = 1

2
tr

(
v′ ⊗ v′) = − 1

2ρ
tr R, (16.9)

does not need to vanish in general (even though the fluid has been assumed to be
density preserving). Consequently, a consistent zeroth order stress parameterization
must be of the form (see also (15.32)1)

− v′ ⊗ v′ = 1

ρ
R = −2

3
k1 + 2νt D. (16.10)

In the above, ν and νt are the material and turbulent viscosities, respectively and
are often of quite different orders of magnitude (e.g. ν ≈ 10−6m2s−1 and νt �
10−3m2s−1, for water). The first proposal of the form (16.10) is due to Joseph

Boussinesq (1872) [3]. In his parameterization, the turbulent kinetic energy was not
modeled (k = 0), so his proposal corresponds to 1

ρ
R = 2νt D, or in Cartesian tensor

notation 1
ρ
Ri j = νt (vi, j + v j,i ). Boussinesq was looking at uniaxial axisymmetric

plane flow in pipes or plane parallel flow, thus situations with the shear stress being
of the form

R12 = τ12 = νt
∂v1

∂x2
, (16.11)

since v2 = v3 = 0. Here and henceforth we have changed the notation: For turbulent
simple shear flows, v1(x2, x3), the turbulent shear stress τ12 or τ is often used instead
of R12. In what follows, the analysis will follow Peter Egolf [8]. According to this
reference, several authors [2, 8, 29] have since the 70’s of the last century criticized
the phenomenological gradient approaches such as (16.10) or (16.11). Peter Egolf
mentions several criticisms, which we shall now report.1

• Criticism 1: The analogy between molecular and turbulent transport is question-
able. In molecular dynamics the size of the molecules is small compared to the
mean free path between the molecules. In contrast to this, the largest interacting
eddies may have any size, i.e. may not be small as compared with the characteris-
tic length scale of the flow under consideration. A fortiori, the ‘mixing length’ is
not even small as compared with the characteristic length scale of the flow under
consideration.
In the kinetic theory of gases the viscosity is proportional to the product of the root-
mean-square velocity and the mean free path of the molecules. Ludwig Prandtl

(1925) [23] in his mixing length theory introduced the mean velocity by a first
order expansion amounting to an eddy-exchange in a layer of thickness �, defining
the mixing length �:

τ12(x1, x2) = ρ�2
∣∣∣∣
∂v1

∂x2

∣∣∣∣
∂v1

∂x2
, εturb = �2

∣∣∣∣
∂v1

∂x2

∣∣∣∣ . (16.12)

1Quotation is not exactly word by word.

http://dx.doi.org/10.1007/978-3-319-33636-7_15
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This mixing-length proposal found its successful application in free turbulence
and in plane viscous boundary layers as well as in atmospheric flows (planetary
boundary layers, geostrophic flows,Holton (1979) [16]).2 So, ‘length×velocity’
on themolecular dynamic side is replaced by ‘length2×Strain rate’ on the turbulent
side. Whereas these expressions are dimensionally equal, they express different
emphases of the physics.

• Criticism 2: Comparing measured and calculated mean velocity profiles v1

as functions of x2 revealed deviations at the points of vanishing derivatives,
∂v1/∂x2 = 0. This was recognized by Ludwig Prandtl, and in 1942 [25] he
proposed an extended version of the eddy viscosity by making the eddy viscosity
also dependent on the curvature of the velocity profile at the considered point,
viz.,

τ12(x1, x2) = ρ�2

{(
∂v1

∂x2
+ �′ ∂

2v1

∂x22

)2
}1/2

∂v1

∂x2
, (16.13)

where he assumed the secondmixing length �′ to be statistically equally distributed
in the positive and negative directions, so that in thismean gradient theory the cross
terms in the curly bracket of (16.13) cancel out, viz.,

τ12 = ρ�2

{(
∂v1

∂x2

)2

+ (�′)2
(

∂2v1

∂x22

)2
}1/2

∂v1

∂x2
. (16.14)

Computations with (16.14) instead of (16.13) yielded better agreement with data,
see H. Görtler [12].

• Criticism 3: Model predictions with (16.13) or (16.14) are still deficient since they
predict characteristic length scales which are much smaller than the largest eddies
observed in the flow under consideration. Ludwig Prandtl (1942), therefore,
tried in the free shear layer theory to relate the eddy viscosity to the overall flow
conditions, namely the width b of the turbulent zone and the greatest mean velocity
difference

τ12 = κρb(v1max − v1min)
∂v1

∂x2
, (16.15)

in which κ is a constant.
In this expression Prandtl’s viscosity is now ‘length× velocity’ (= b× (v1max −
v1min)) as in molecular dynamics. More importantly, however, if we compare the
eddy viscosity of (16.15) with the earlier ones, e.g. (16.12) and (16.13), it is
recognized that Ludwig Prandtl replaces local expressions by nonlocal ones,
in which the eddy viscosity is replaced by a nonlocal term in (16.15) [the term

2For Ludwig Prandtl’s derivation in the German language along with K.H.’s translation into
English, see Appendix to this chapter.



16.1 Motivation/Introduction 269

(v1max − v1min)]. This is in partial anticipation of Peter Egolf’s [8] analogous
but extended difference expression. H. Görtler3 (1942) [12] calculated velocity
functions with the approach (16.15), which he found to be in good agreement with
experimental results, but still with one exception:

• Criticism 4: At the boundary of the mixing zone there are deviations, because the
eddy viscosity in (16.15) does not vanish there. To alter (16.15) and improve the
turbulent shear stress proposition, let us write (16.15) in the form

τ12(x1, x2) = κρb2
∂v1

∂x2

(
v1max − v1min

b

)
. (16.16)

When we assume the difference of the positions, at which v1max and v1min arise, to
be the distance b (the half width of the turbulent jet), then the last term may be
called a difference quotient. Formula (16.16) contains the differential, ∂v1/∂x2,
and a difference quotient, the last term in (16.16). It bears the disadvantage that
the differential quotient does not involve the position x2 for which τ12(x1, x2) is
calculated. However, the difference quotient introduces non-local effects, which
are not present in earlier parameterizations of τ12 except in (16.15) which is due to
Ludwig Prandtl. This is so, since in the evaluation of (16.16) at least two spatial
points are involved namely that, where τ12 is evaluated and those where v1min and
v1max are evaluated.

• The difference quotient model of Peter Egolf [8]: One can go further than in
the parameterization (16.16) and also replace ∂v1/∂x2 by a difference quotient by
writing

τ12(x1, x2) = −ρv′
1v

′
2 = ρχ2

db

dx1

(
v1 − v1min

)
(

v1max − v1

x2max − x2

)
, (16.17)

in which χ2 ∈ [x2, b] is a variable or characteristic length scale of the flow,
perpendicular to the main flow direction and x2max denotes the location where the
mean downstream velocity attains itsmaximum, v1max . Note that this rather unusual
model does not make use of the eddy viscosity concept (16.11).
Peter Egolf [8] writes ‘The difference quotient, which for certain locations is
a mean quotient over a very large domain, introduces a non-locality. For that
reason criticism 1 does not apply to this model’. Computed results for turbulent
shear flows ‘show no deviations from measurements at the points of vanishing
derivatives (criticism 2)’. The shortcoming of too small computed mixing lengths
(criticism 3) does not apply either, ‘because χ2 is a large length scale, e.g., the
width b of the entire turbulent zone. Moreover, if we let v1 approach the value
v1min at the boundary, the turbulent shear stress in (16.17) will vanish as it should,
(criticism 4)’. From this discussion, Peter Egolf [8] concludes, ‘that the dif-
ference quotient model is a natural continuation of Ludwig Prandtls ideas on
momentum transfer’.

3For a short biography of H. Görtler see Fig.16.1.



270 16 Turbulent Mixing Length Models and Their Applications …

Fig. 16.1 HenryGörtler alsoHeinrichGörtler (26. Oct. 1909 – 31. Dec. 1987). (Right)
Görtler vortices: ‘A: down-wash regions; B: up-wash regions’.

Henry Görtler, born in Calgary (Canada) came in 1923 to Giessen, Germany. He studied
architecture and then mathematics and physics at the University in Munich with Arnold

Sommerfeld and afterwards at the University of Giessen with Jaffé andHaraldGeppert

and wrote his doctoral dissertation on ‘Asymptotische Eigenwertgesetze bei Differential-
gleichungen vierter Ordnung’ (‘Asymptotic laws of eigenvalues of fourth order differential
equations’) (1936) [11]. In 1937 he became a close collaborator of Ludwig Prandtl in Göttin-
gen, where he worked on boundary layer theory. Noteworthy are the Görtler series in the
computation of two-dimensional laminar boundary layers (1957) and the Taylor-Görtler
vortices [instability of a three-dimensional boundary layer as an extension of the instabil-
ity of two-dimensional laminar boundary layers (Tollmien–Schlichting waves), see the
above right panel of the figure, showing a Görtler vortex c© [13]].

In 1944Görtler became associate professor and in 1949 full professor at the University of
Freiburg, Germany, where he founded the Institute of AppliedMathematics. He was a mem-
ber of the academy of Sciences in Heidelberg (1961) and Leopoldina (1963) and received the
Carl–Friedrich GaussMedal (1967). Moreover, he received an honorary doctorate from
the university of Calgary andwas president of the ‘Gesellschaft für AngewandteMathematic
und Mechanik’ (GAMM) (1955–58).

The text is based on www.wikipedia.org

The above developments of Ludwig Prandtl’s mixing-length postulates lay
open two modeling operations, which are in conflict with today’s schemes of con-
tinuum material modeling as well as modern turbulence closure procedures: These
are loss of (i) the locality principle and absence of (ii) Euclidean invariance. Both
these properties are explicitly spelled out above and clearly evidenced by the above
criticisms, and they are manifest in the formulae (16.15) and (16.17). Interestingly,
one of the authors of this book (K.H.) has through most of his career as continuum
modeler never looked at turbulence from such a point of view. And indeed, modern
higher order turbulence closure schemes, see [17], neither apply principles of non-
linearity consequentially, but accept the violation of Euclidean invariance, which is
so obvious in formulae (16.15) and (16.17).

www.wikipedia.org
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It is nevertheless conceptually tempting to scrutinize P. Egolf’s extension of
L. Prandtl’s shear stress formulae, in particular, because it will be seen that compu-
tational results aremore satisfactorywhen comparedwith experiments and analytical
results based on Ludwig Prandtl’s proposal, see e.g., [12, 26].

On the other hand, it seems to be pretty clear from the analysis in this chapter
that it will be practically impossible to apply L. Prandtl’s or P. Egolf’s ad hoc
non-locality concept in a fully three dimensional turbulence field theory.

16.2 The Turbulent Plane Wake

A turbulent planewake is created e.g. if a constant parallel flowUG in the x1-direction
passes a circular cylinder of, say, diameter d and generates a (symmetric) velocity
profile as shown in Fig. 16.2. Sufficiently far downstream from the cylinder the mean
perturbed flow is given by

v1 = UG − v∗
1, (16.18)

in which v∗
1 is the reduction of the mean flow velocity behind the cylinder. To guaran-

tee fully turbulent velocity disturbances, experience tells that the Reynolds number
must be in the range

R ≡ UGd

ν
> 800. (16.19)

Moreover, at positions far downstream, i.e. for

ξ1 = x1 − p

d
� 0, (16.20)

it can be expected that a self similar flow regime with R-similarity occurs. This
regime has its origin at x1 = p, upstream of the axis of the cylinder. The Cartesian
coordinates x1 and x2 have their origin in the center of the cylinder and are oriented
parallel and perpendicular to the approaching velocity UG , respectively.

Fig. 16.2 Turbulent plane
wake flow behind a cylinder
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The balance laws of mass and momentum are applied to the density preserv-
ing fluid, without gravity, with negligible viscosity and for steady state conditions.
This yields for the continuity and Euler equations (see Hinze [14], Chap.6), after
applying a scale analysis, the equations

∂

∂x1

(
v∗
1

UG

)
+ ∂

∂x2

(
v∗
2

UG

)
= 0,

∂

∂x1

(
v∗
1

UG

)
− ∂

∂x2

(
v′
1v

′
2

U 2
G

)

= 0.
(16.21)

Similarity solutions are found for (16.21) by transforming these equations into ordi-
nary differential equations in a suitably chosen new coordinate η = η̂(x1, x2). Based
on precursory use by O.Hinze [14], P. Egolf [8] has found that this goal is achieved
by the following relations.

v∗
1 = UG

(
x1 − p

kd

)p1

f1(η), (16.22)

v∗
2 = UG

(
x1 − p

kd

)p2

f2(η), (16.23)

v′
1v

′
2 = −U 2

G

(
x1 − p

kd

)p12

f12(η), (16.24)

η = x2
b(x1)

, b(x1) = β

(
x1 − p

kd

)p0

kd. (16.25)

In the above, the quantity b(x1) denotes a characteristic width of the turbulent free
shear flow and k is a constant. Moreover, UG, p, p1, p2, p12 are constants, while
f1(η), f2(η), f12(η) are profile functions for the velocity components v∗

1, v
∗
2 and the

shear stress ρv′
1v

′
2. It is easy to show that

∂

∂x1
= ∂η

∂x1

d

dη
= −p0

(
1

x1 − p

)
η
d

dη
,

∂

∂x2
= ∂η

∂x2

d

dη
= 1

βkd

(
kd

x1 − p

)p0 d

dη
.

(16.26)

Substituting (16.22) and (16.23) into (16.21)1, the balance law of mass yields

∂

∂x1

[(
x1 − p

kd

)p1

f1(η)

]
+ ∂

∂x2

[(
x1 − p

kd

)p2

f2(η)

]
= 0,

−→ p1

(
x1 − p

kd

)p1−1 1

kd
f1(η) +

(
x1 − p

kd

)p1 d f1(η)

dη

∂(η(x1, x2))

∂x1

+
(
x1 − p

kd

)p2 d f2(η)

dη

∂η(x1, x2)

dx2
= 0, insert (16.26)

http://dx.doi.org/10.1007/978-3-319-33633-6_6
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−→ 1

kd

(
x1 − p

kd

)p1−1 [
p1 f1(η) − p0η

d f1(η)

dη

]

+ 1

βkd

(
x1 − p

kd

)p2−p0 d f2(η)

dη
= 0. (16.27)

The left-hand side of this equation can be viewed as a function of x1 and η, but the
x1-dependence drops out if all exponents of the function (x1 − p)/(kd) are the same.
So, one must request p1 − 1 = p2 − p0, or

p0 + p1 − p2 = 1. (16.28)

With this choice (16.27) reduces to the ordinary differential equation

p1 f1(η) − p0η
d f1(η)

dη
+ 1

β

d f2(η)

dη
= 0. (16.29)

Proceeding in the same way with the momentum Eq. (16.21)2 leads to

∂

∂x1

[(
x1 − p

kd

)p1

f1(η)

]
− ∂

∂x2

[(
x1 − p

kd

)p12

f12(η)

]
= 0,

−→ p1

(
x1 − p

kd

)p1−1 1

kd
f1(η) +

(
x1 − p

kd

)p1 d f1(η)

dη

∂(η(x1, x2))

∂x1

−
(
x1 − p

kd

)p12 d f12(η)

dη

∂(η(x1, x2))

∂x2
= 0, insert (16.26)

−→ 1

kd

(
x1 − p

kd

)p1−1 [
p1 f1(η) − p0η

d f1(η)

dη

]

+ 1

βkd

(
x1 − p

kd

)p12−p0 d f12(η)

dη
= 0. (16.30)

Requesting again that the x1-dependence of the left-hand side drops out, implies

p0 + p1 − p12 = 1, (16.31)

p1 f1(η) − p0η
d f1(η)

dη
+ 1

β

d f12(η)

dη
= 0. (16.32)

The above computations have led to two ordinary differential equations for the func-
tions f1, f2, f12 and 4 constants p0, p1, p2, p12, but they do obviously not suffice to
uniquely determine these functions and parameters. At least Eqs. (16.28)–(16.32) do
not conflict with one another. This says that these equations possess the potential of
similarity solutions (ordinary differential equations for the functions f1, f2, f12 are
the prerequisite for this), but at least two additional equations must be found amongst
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the parameters p0, p1, p2, p12. These functions are furnished by the following
postulates:

• It is requested that the turbulent shear stress, scaled with the mean velocity in the
principal flow direction, is independent of x1, [14]

d

dx1

(
v′
1v

′
2

v∗ 2
1

)

= 0 =⇒ d

dx1

⎛

⎜⎜
⎜
⎝

−U 2
G

(
x1 − p

kd

)p12

f12(η)

U 2
G

(
x1 − p

kd

)2p1

f 21 (η)

⎞

⎟⎟
⎟
⎠

= 0, (16.33)

in which (16.22)1 and (16.24) have been used. This requires

2p1 − p12 = 0. (16.34)

• Next, note that, owing to (16.21)2,

d

dx1

∞∫

−∞

(
v∗
1

UG

)
dx2 = − τ12

ρU 2
G

∣∣∣
∞
−∞

= 0,

the integral

∞∫

−∞

v∗
1

UG
dx2 = const., (16.35)

along a path perpendicular to the flow direction, is a constant, since the turbulent
shear stresses vanish at x2 = ±∞.

• Important in obtaining self-similarity is the assumption that the mean disturbance
is at least one order of magnitude smaller than the undisturbed mean flow,

v∗
1

UG
� 1. (16.36)

Now, considering the momentum fluxes through a rectangle (Fig. 16.3), of which
the sides normal to the flow direction extend from x2 = −∞ to x2 = ∞, these
fluxes are in steady state given by

∞∫

−∞
ρ
[
U 2

G − (UG − v∗
1)

2
]
dx2 ≈ 2ρUG

∞∫

−∞
v∗
1dx2, (16.37)
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Fig. 16.3 Explaining the
momentum flux through the
boundary of a rectangle. At
x2 = ±∞ no horizontal
momentum flux can occur,
since the velocity is
tangential to the flow path.
Courtesy P. Egolf and D.A.
Weiss [9], c©Phys. Rev. E,
reproduced with changes

and the approximation (16.36) has been used. [The contributions along the flow
parallel paths vanish at x2 = ±∞, because the unit normal to the wall is perpen-
dicular to the flow path there.]
Equation (16.37) can be interpreted in the sense that the rectangle of Fig. 16.3 loses
so much more momentum at the inflow section as it loses at the outflow section.
Therefore, the loss of momentum flux in the x1-direction is given by

−ρUG

∞∫

−∞
v∗
1dx1.

The expression on the right-hand side of (16.37) is the loss of momentum from far
upstream to far downstream within the rectangle due to viscous effects and due
to the reacting force of the cylinder, which equally distributes between the two
effects. Thus, the mean drag force acting on the cylinder can, in dimensionless
form, be written as

F

ρU 2
Gd

= 1

d

∞∫

−∞

v∗
1

UG
dx2 = const., (16.38)

and in steady state this force is constant. Introducing (16.22)–(16.25) in (16.38)
yields

F

ρU 2
Gd

= βkd

d

(
x1 − p

kd

)p0+p1
∞∫

−∞
f1(η)dη

︸ ︷︷ ︸
const.

= const., (16.39)
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and this becomes independent of x1 provided that

p0 + p1 = 0. (16.40)

Let us now collect all equations for the exponents at one place:

p0 + p1 − p2 = 1, p0 = 1/2,
p0 + p1 − p12 = 1, p1 = −1/2,

with the solution
2p1 − p12 = 0, p2 = −1,
p0 + p1 = 0, p12 = −1.

(16.41)

With these values of p0, p1, p2, p12 one obtains for (16.22)–(16.25)

v�
1 = UG

(
kd

x1 − p

)1/2

f1(η), v�
2 = UG

(
kd

x1 − p

)
f2(η),

v′
1v

′
2 = −U 2

G

(
kd

x1 − p

)
f12(η), (16.42)

η = x2
b(x1)

, b(x1) = β

(
x1 − p

kd

)1/2

kd,

and for (16.29) and (16.32)

f1(η) + η
d f1
dη

− 2

β

d f2(η)

dη
= 0,

f1(η) + η
d f1
dη

− 2

β

d f12(η)

dη
= 0.

(16.43)

It is seen from (16.42) that

as x1 → ∞, v�
1 ∼ (

√
x1)

−1, v�
2 ∼ x−1

1 , v′
1v

′
2 ∼ x−1

1 , b ∼ √
x1.

The singularities of the functions (16.42) as x1 → p are irrelevant since the simi-
larity solutions are not physically representative there. The two ordinary differential
equations (16.43) are, however, insufficient to determine the functions f1, f2, f12
and, thus, require a closure condition. Surprisingly, though, this condition cannot
come from a postulate on the turbulent shear stress as f12(η) can be expressed in
terms of f1(η). Indeed, if one writes (16.43)2 as

d f12(η)

dη
= β

2

[
f1(η) + η

d f1(η)

dη

]
= β

2

d

dη
(η f1(η)) ,

this ordinary differential equation integrates to
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f12 = β

2
η f1(η), (16.44)

where a constant of integration has been set to zero because f12(η) = − f12(−η) for
f1(η) = f1(−η).
Similarly, from (16.43)1 we may deduce

d f2(η)

dη
= β

2

[
f1(η) + η

d f1(η)

dη

]
= β

2

d

dη
(η f1(η)) ,

implying

f2(η) = β

2
η f1(η) (16.45)

and a constant of integration is again dropped because f2(η) = − f2(−η).
It is seen from (16.44) and (16.45) that f2(η) and f12(η) are determined once

f1(η) is prescribed as a symmetric function of η. A turbulence closure can in this
case not be spelled out in terms of a parameterization of the turbulent shear stress
because the latter is intimately related to the velocity distributions v∗

1 or/and v∗
2. The

simplest ansatz is

f1(η) = exp

(

−
(

η

2η0

)2
)

, (16.46)

in which η0 follows from an adjustment with data of v1- and v2-velocities. In prin-
ciple, optimal coincidence may be reached between experimental data and theory
by replacing (16.46) by an exponential sum and adjusting the free parameters to the
available data.

On the other hand, based on (16.44), one may write

τ12(x1, x2) = −ρv′
1v

′
2(x1, x2) = −ρU 2

G

(
kd

x1 − p

)
f12(η)

τ12(x1x2)

ρU 2
G

= β

2

(
kd

x1 − p

)
x2

βkd

1
(
x1 − p

kd

)1/2

(
x1 − p

kd

)1/2
v∗
1(x1, x2)

UG

= 1

2

(
x2

x1 − p

)
v∗
1(x1, x2)

UG
. (16.47)

Now, whereas no stress parameterization is needed, it can at least be tested whether
P. Egolf’s [8] Difference Quotient Turbulence Model (DQTM) proposal (16.17)
generates the solution (16.47). If one substitutes

χ2 = x2, x2max = b, v1min = 0, v1max = UG (16.48)
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as obvious choices into (16.17), then

v′
1v

′
2 = −x2

db

dx1

(
UG − v∗

1(x1, x2)
) UG − [UG − v∗

1(x1, x2)]
b(x1, x2) − x2

,

v′
1v

′
2

U 2
G

= −x2
1

b

db

dx1

(
UG − v∗

1(x1, x2)
) v∗

1(x1, x2)

1 − x2
b

,

or in the limit as b → ∞, when v∗
1(x1, x2) � UG and x2/b → 0, and with

1

b

db

dx1
=

(
p0

x1 − p

)
= 1

2

(
1

x1 − p

)
,

v′
1v

′
2

∗

U 2
G

= 1

2

(
x2

x1 − p

)
v∗
1

UG
, (16.49)

which agrees with (16.47). It follows that the DQTM-model is for large x1 asymp-
totically in conformity with the similarity solution (16.44) and (16.45).

This positive result should not delude over the fact that the approximate turbulent
equations (16.21) generate structurally the same Eqs. (16.29) and (16.32), for the
similarity functions f1, f2, f12. Indeed, simple inspection of these equations reveals
that (modulo boundary conditions) f2 and f12 must be affine to one another. So,
conditions to being able to construct solutions, in which a closure model for the
turbulent shear stress can be formulatedmust be based on a generalization of (16.21).

16.3 The Axisymmetric Isothermal Steady Jet

Consider an axisymmetric steady turbulent flow of an incompressible viscous fluid
out of a circular orifice into a quiescent infinite three-dimensional domain, Fig. 16.4.
For Reynolds numbers

R = v0d0
ν

� 25 000 (16.50)

fully turbulent jets are observed. Under such prerequisites the jet has a linearly
growing width in the downstream direction. Let d0 be the nozzle diameter, v0 the
mean exit velocity at the nozzle from the pipe in the x1 direction of a two-dimensional
coordinate system with axial and radial coordinates and vanishing azimuthal mean
velocity component, v3 = 0, and

∂

∂x3
(ϕ) = 0, for ϕ ∈ {v1, v2, v

′
1v

′
2, . . .}. (16.51)
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Fig. 16.4 Turbulent round axisymmetric jet emerging from a nozzle with diameter d0. a According
to current understanding, the fictitious core length x0 is used as length scale in the description
of the problem. b In a meridional plane the time averaged velocity component in the longitudinal
direction on the centerline is shown. In the core region x1 < x ′

1 it is constant, v0. Beyond a transition
region (x ′

1 < x1 < x ′′
1 ) in the self-similarity domain (x

′
1 < x1) the axial velocity component follows

a Gaussian-type curve. The boundary of the jet is then given by v�
1/

√
e. Courtesy P. Egolf and

D.A. Weiss [9], c©Phys. Rev. E, reproduced with changes

The turbulent Reynolds Eqs. (15.21) and (15.22), for a Newtonian fluid read in
this case

∂v1

∂x1
+ 1

x2

∂

∂x2
(x2v2) = 0, (16.52)

v1
∂v1

∂x1
+ v2

∂v1

∂x2
+ 1

ρ

∂ p

∂x1
+ ∂

∂x1
v′ 2
1 + 1

x2

∂

∂x2

(
x2v′

1v
′
2

)
= 0, (16.53)

v1
∂v2

∂x1
+ v2

∂v2

∂x2
+ 1

ρ

∂ p

∂x2
+ ∂

∂x1
v′
1v

′
2 + 1

x2

∂

∂x2

(
x2v′ 2

2

)
− 1

x2
v′ 2
3 = 0. (16.54)

These equations represent, in turn, the continuity equation, the axial and radial com-
ponents of the momentum equations, in which the materially dependent viscous
terms have been ignored as Reynolds numbers are very large, see (16.50).

In Eq. (16.54) the terms

v1
∂v2

∂x1
, v2

∂v2

∂x2
,

∂

∂x1

(
v′
1v

′
2

)

can be neglected in comparison to the remaining terms, owing to the boundary
layer character of the flow and since |v2| � |v1|. This then implies that the radial
momentum equation reduces to

1

ρ

∂ p

∂x2
+ 1

x2

∂

∂x2

(
x2v′ 2

2

)
− 1

x2
v′ 2
3 = 0. (16.55)

http://dx.doi.org/10.1007/978-3-319-33636-7_15
http://dx.doi.org/10.1007/978-3-319-33636-7_15
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Moreover, note that in (16.53) and (16.55) all three quadratic fluctuation terms,
v′ 2
1 , v′ 2

2 , v′ 2
3 , arise. At this stage, therefore, the assumption of orthotropy of the fluc-

tuations

v′ 2
2 = v′ 2

3 (16.56)

is introduced. With this assumption, Eq. (16.55) reduces to

1

ρ

∂ p

∂x2
+ ∂

∂x2

(
v′2
2

)
= 0 =⇒ p + ρv′ 2

2 = p0, (16.57)

in which p0 = const. is the unperturbed pressure far from the turbulent domain. This
equation can be used to eliminate from (16.53) the pressure, so that

v1
∂v1

∂x1
+ v2

∂v1

∂x2
+ ∂

∂x1

(
v′ 2
1 − v′ 2

2

)
+ 1

x2

∂

∂x2

(
x2v′

1v
′
2

)
= 0, (16.58)

which can further be simplified by assuming isotropy of the kinetic fluctuations,

v′ 2
1 = v′ 2

2 , (16.59)

implying

v1
∂v1

∂x1
+ v2

∂v1

∂x2
+ 1

x2

∂

∂x2

(
x2v′

1v
′
2

)
= 0. (16.60)

The axial momentum equation will be assumed in this reduced form.
Experimental observations suggest that ‘for all x1 > x ′′

1 (Fig. 16.4) a self-similarity
domain exists, [...], where the mean physical quantities can be made dimensionless
to become functions of only one variable. This leads to the possibility of transform-
ing the two partial differential equations (16.52) and (16.60) into a single ordinary
differential equation. The following self-similarity relations are assumed to hold.
Distances from the pole, (x1 − p), are replaced by x1 because in the self-similarity
domain x1 � |p|; we then have

v1 = v0

(
x1
x0

)p1

f1(η), v2 = v0

(
x1
x0

)p2

f2(η), (16.61)

v′
1v

′
2 = −v2

0

(
x1
x0

)p12

f12(η), (16.62)

η = x2
b

, b = β

(
x1
x0

)p0

x0, (16.63)

according to P. Egolf and D.A. Weiss [9], in which v0 and x0 are constants.
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The ensuing computations parallel the analogous computations in Sect. 16.2. The
expressions (16.61)–(16.63) are substituted into Eqs. (16.52) and (16.60), and it is
required that the exponents of x1/x0 of all the terms in the emerging equations are
identical, so that the x1-dependence drops out and only ordinary differential equations
in the variable η survive. This computation is relatively long and only the outcome
of this process is given here. The results are4

p0 + p1 − p2 = 1,
p0 + 2p1 − p12 = 1,
p0 + p1 = 0

(16.64)

for the exponents and

p1 f1 − p0η
d f1
dη

+ 1

β

1

η

d

dη
(η f2) = 0,

p1 f
2
1 − p0η f1

d f1
dη

+ 1

β

(
f2
d f1
dη

− 1

η

d

dη
(η f12)

)
= 0

(16.65)

for the residual equations of continuity and momentum balance: Relations (16.64)
are short by one equation to uniquely determine the exponents p0, p1, p2, p12. From
the requirement of self-similarity of the Reynolds stresses in the sense that

v′
1v

′
2

v∗ 2
1

= − f12(η), (16.66)

it follows, owing to (16.61) and (16.62), that

v∗
1(x1) = v1(x1, 0) and 2p1 − p12 = 0. (16.67)

Equations (16.64), (16.67)2 now yield the unique solutions

p0 = 1, p1 = −1, p2 = −1, p12 = −2 (16.68)

and, correspondingly, from (16.65)

f1 + η
d f1
dη

− 1

β

1

η

d(η f2)

dη
= 0, (16.69)

f 21 + η f1
d f1
dη

− 1

β

(
f2
d f1
dη

− 1

η

d(η f12)

dη

)
= 0. (16.70)

These are two equations for the three unknowns f1, f2, f12. Therefore, a turbulence
closure model is required to close the system of equations. Before this problem
is attacked with P. Egolfs [8] difference quotient turbulence model (DQTM), the

4Equation (16.64)3 follows in the same way as (16.40) was derived.
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following rearrangement of Eq. (16.69) is made

(η f1(η))′ = 1
β
1
η (η f2(η))′ −→

βη (η f1(η))′ = (η f2(η))′ −→ integration

η f2(η) = β
η∫

0
ξ (ξ f1(ξ))

′ dξ −→ integration by parts

f2(η) = β

{
η f1 − 1

η

η∫

0
ξ f1(ξ)dξ

}
,

(16.71)

in which (·)′ = ∂/∂η. It follows that f2(η) is known, once f1(η) is determined.
To formulate the missing turbulent closure relation, recall Eq. (16.17), the DQTM

appropriate for the axisymmetric jet, in which the substitutions

x2max = 0, v1min = 0 v1max = v∗
1(x1) (16.72)

are made, and b is taken to be the semi-width of the jet with

β = db

dx1
= tan

(α

2

)
. (16.73)

Owing to Fig. 16.4 these are plausible selections. With the assignments (16.72),
(16.73) and the aid of (16.17) and (16.62) it is straightforward to show that

f12 = −β
1

η
f1(1 − f1). (16.74)

So, f12 is equally determined by f1(η). Substituting (16.71) and (16.74) into (16.70)
leads to the integro-differential equation for f1

η∫

0

f1(ξ)ξdξ = 1 − 2 f1 − η
f 21
f ′
1

. (16.75)

Differentiating this expression with respect to η yields, finally, the highly nonlinear
differential equation

η f 21 f ′′
1 − 2( f ′

1)
3 − 3η f1( f

′
1)

2 − f 21 f ′
1 = 0. (16.76)

A solution to this equation is

f1 = exp

(
−η2

2

)
, (16.77)

as P. Egolf and D.A.Weiss [9] say. The reader may corroborate this by substitution.
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Fig. 16.5 Axisymmetric steady jet: Theoretical representation and experimental data of the time-
averaged axial velocity distribution in the radial direction η. The theoretical curve follows (16.77);
the experimental data are taken from [30] The measured points lie very close to the Gaussian
distribution function (16.77). Courtesy P. Egolf and D.A. Weiss [9], c©Phys. Rev. E, reproduced
with changes

Experimental data are taken from P. Egolf and D.A. Weiss [9]. The graph of
Fig. 16.5 shows excellent agreement between the theoretical Gaussian distribution
of the axial velocity component and the experimental points, taken at three distances
from the nozzle.

With f1(η) determined, so are, according to (16.71) and (16.74) also f2(η) and
f12(η):

f2 = β

{
η exp

(− 1
2η

2
) − 1

η

(
1 − exp

(
1
2η

2
))}

= β

(
η f1 − 1

η
(1 − f1)

)
, (16.78)

f12 = −β
1

η

(
exp

(− 1
2η

2
) − exp

(−η2
))

. (16.79)

Experiments on the radial velocity component in a meridional plane were also pub-
lished by I. Wyganski and J. Fiedler [30]. Figure16.6 displays the experimental
points together with the graph of the mathematical curve (16.78). However, Fig. 16.6
also contains additional results, namely the experimental results of Fig. 16.5 when
inserting these into the expression on the right of (16.78), to obtain mean velocities
in the radial direction shown for three distances; these points are presented by open
symbols. It is no surprise that these show less agreement with the theoretical curve.

P. Egolf and D.A. Weiss [9] also show the graph of the theoretical turbulent
shear stresses (16.79) together with the different extracted experimental data (see
Fig. 16.7); those represented by the symbol D indicate the distances downstream
from the nozzle and measured in units of d0, whilst those with the symbol I show
the shear stress by taking the data of f1 in Fig. 16.5 and applying (16.74).
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Fig. 16.6 Axisymmetric steady jet: Theoretical results (16.78) shown as solid curve and exper-
imental points from [30] for the radial mean velocity component (solid circles). Note, the radial
velocity component is less than 2% of the axial mean velocity component. In domains where f2 < 0
the turbulent jet is fed by the ambient fluid. This is the region of entrainment. Courtesy P. Egolf
and D.A. Weiss [9], c©Phys. Rev. E, reproduced with changes

Fig. 16.7 Radial distribution of the Reynolds stress function. The number after the letter D
denotes the distance downstream from the nozzle measured in units of d0. The three Reynolds shear
stresses, represented by I , were calculated by taking the data of f1 shown in Fig. 16.5 and then
applying Eq. (16.79). Courtesy P. Egolf and D.A. Weiss [9], c©Phys. Rev. E, reproduced with
changes

The above computations demonstrate a convincing performance of the turbulent
spreading properties of a steady round jet regarding the mean axial and radial veloci-
ties as well as the Reynolds stress τ12. There is even convincing evidence regarding
the turbulent entrainment rate, theReynolds normal stress and certain contributions
to the turbulent energy balance.

Entrainment rate, ordinarily simply called entrainment, can be determined from
the axial mass flow

m1 = 2πρ

∞∫

0

v1x2 dx2. (16.80)
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It represents the total axial flux of mass by the jet for given x1. When being scaled
with the outgoing mass flow at the nozzle exit

m0 = ρπ
d2
0

4
v0, (16.81)

then,

m1

m0
= 8β2x0x1

d2
0

∞∫

0

exp
(− 1

2ξ
2
)
ξdξ = k1

(
x1
d0

)
= 8β2

m2

(
x1
x0

)
, (16.82)

implying that the so-called mixing number, m, is given by

m = d0
x0

. (16.83)

It is the dimensionless ratio of the nozzle diameter d0 to the fictitious core distance
x0 and possesses values in the interval 0.16 < m < 0.19 [7], when jets emerge from
round nozzles.

According to P. Egolf and D.A. Weiss [9] ‘F.P. Ricou and D.B. Spalding
(1961) [28] also report a linear behavior of the mass flux as a function of the axial
distance x1. After a reviewing process they conclude that the values of the constant
k1 obtained [see Eq. (16.82)] range from about 0.22 up to 0.404 according to the
investigators [listed by them]. Their own experimentally determined value of the
constant is k1 = 0.32. They further comment that [...] the constant k1 can only be
determined by experimental means. [It will be] shown that with high accuracy [one]
has

m = 2β ←→ k1 = 4β. (16.84)

F.P. Ricou and D.B. Spalding do not mention the spreading angle or the spreading
parameter. However, from k1 = 0.32 [...] β is now determined to be 0.080, which
certainly must be close to its actual value (compare e.g. in [30] β = 0.074 or in [22]
β = 0.082). The experimental results of F.P. Ricou and D.B. Spalding are shown
in Fig. 16.8. There is no doubt that the mass flow is very accurately a linear function
of x1’, [9].

Longitudinal turbulent normal stress: In the above analysis, because of the
isotropy assumption for v′ 2

i , i = 1, 2, 3 (see (16.56) and (16.59)) no information
can be obtained for these turbulent normal stresses. A separate closure condition is
needed. In this subsection a proposal of the class (16.17) is suggested. P. Egolf and
D.A. Weiss [9] took formula (16.17), in which the index 2 is replaced by the index
1; in this way the following DQTM-parameterization is obtained
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Fig. 16.8 Linear
dependence of the mass flux
in axial direction on the
distance x1. The
DQTM-theory matches very
well numerically the linear
dependence. Here, the
theoretical results obtained
are compared with data from
[28]. Courtesy P. Egolf and
D.A. Weiss [9], c©Phys.
Rev. E, reproduced with
changes

v′ 2
1 = −σχ1(v1 − v1min)

v1max − v1

x1max − x1
, (16.85)

x1max := {x1 | v1 = max
x1

{v1}}, (16.86)

with the following suggestive assignments, see Fig. 16.4,

χ1 = x0, x1max = x0, v1min = 0, v1max = v0 (16.87)

together with

σ = db

dx1
= β = tan

(
1
2α

)
. (16.88)

‘It is meaningful that the characteristic length in the x1-direction is identical to the
only available length in this direction, the core distance x0’ [9].With (16.87), (16.88),
Eq. (16.85) and the definitions

v∗
1 := v0

(
x0
x1

)
, f11 := v′ 2

1

v∗ 2
1

, (16.89)

one obtains for (16.85)

v′ 2
1 = − db

dx1︸︷︷︸
β

x0v1
v0 − v1

x0 − x1
= −βx0v0

(
x0
x1

)
f1

v0 − v0

(
x0
x1

)
f1

x0

(
1 − x1

x0

)
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Fig. 16.9 Fluctuation intensities g11 plotted against x2/x1. a Computed according to (16.91),
b experimentally given by [30] and [5]. Note, the experimentally observed off-axis peaks in (b) are
also seen in the theoretical curves (a). Courtesy P. Egolf and D.A. Weiss [9], c©Phys. Rev. E,
reproduced with changes

= −βx0 v0
x0
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1
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⎝
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⎞

⎟
⎠ f1. (16.90)

Therefore,

g11 := √
f11 := √

β

⎛

⎜
⎝

x1
x0

− f1

x1
x0

− 1

⎞

⎟
⎠

1/2

f 1/21 . (16.91)

The functiong11((x1/x0), η)was evaluated andplotted in [9] against x2/x1 for various
values of x1/x0, see Fig. 16.9a and for experiments Fig. 16.9b. It is seen that for
growing values of x1/x0 a self-similar bell shaped profile is approached. Indeed,

as
x1
x0

→ ∞, f1(η) → f1(0) = 1

=⇒ g11 → √
β f1(0) = √

β = const. . (16.92)
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Fig. 16.10 Relative fluctuation intensity g11 plotted against η for various values of x1/d0.
Experimental data are taken from [30]. The deviation of the theoretical function from the exper-
imental results at mean distances η is related to the production of turbulent kinetic energy and
an incomplete turbulent transport of this kind of energy. Courtesy P. Egolf and D.A. Weiss [9],
c©Phys. Rev. E, reproduced with changes

As indicated in Fig. 16.9b ‘the jet measured by S. Corrsin and M.S. Uberoi
(1949) [5] is narrower than the one that was experimentally investigated by
I. Wyganski and J. Fiedler [30]. This [...] corresponds to the presented theory,
which states that the fluctuation intensity on the axis [x2/x1 = 0] is smaller for a
narrower jet. However, this only qualitatively confirms the result

√
v′ 2
1

v∗
1

= √
β (16.93)

by measurements. More reliable comparisons of theoretical predictions and experi-
mental data of the normal stress in the axial direction are shown in Fig. 16.10. The
deviation of measurements from the theoretical results varies to a great extent on the
experimental work taken into consideration in each case. [...] it is believed that devi-
ations [from self-similarity], occurring at medium values of x2/x1 only, are caused
by the underlying production of turbulent kinetic energy and that fluctuation energy
has not been perfectly distributed over the whole width of the jet [via] transportation
by the mean motion and turbulent convection …’ [9].

Finally, we note that the numerical value of β ≡ σ has been determined in
Fig. 16.10 by curve fitting with a value β = 0.074. By contrast, a theoretical value
can be obtained by evaluating g11(η = 0), see Fig. 16.10; this yields

√
β = 0.28, thus,

β = 0.079. This is rewarding corroboration of the value of β by two independent
approaches.

Transverse turbulent normal stresses v′ 2
2 = v′ 2

3 : With the radial and azimuthal
turbulent intensities being equal, one may write for these

v′ 2
2 = v′ 2

3 = γ

β
v′ 2
1 (16.94)
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with γ < β for axisymmetric orthotropy and γ = β for isotropy. Formula (16.94)
assumes that v′ 2

2 , v′ 2
3 follow the radial distribution similarly to that of v′ 2

1 . The axial
momentum balance yields [22]

M(x1) = 2πρ

∞∫

0

(

v2
1 + v′ 2

1 − v′ 2
2 + v′ 2

3

2

)

x2dx2 = M(0), (16.95)

M(0) = πd2
0

4
ρv2

0 . (16.96)

Substituting into (16.95) the relations (16.61), (16.90) and (16.89), one obtains
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from which
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is obtained. Substituting for f1 the Gaussian profile (16.77) and employing the
transformation η2 = ξ leads to

(γ − β − 1)

∞∫

0

exp(−ξ)dξ

︸ ︷︷ ︸
=1

+ x1
x0
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︸ ︷︷ ︸
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2
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)2 ( x1
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− 1

)
, (16.99)
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Fig. 16.11 Relative turbulent intensities a, g22 in the radial and b g33 in the azimuthal direc-
tions. Experimental data are from [30]. Courtesy P. Egolf and D.A. Weiss [9], c©Phys. Rev. E,
reproduced with changes

which can readily be transformed into

γ = β −

(
1 − x1

x0

)(
1 − m2

4β2

)

(
2x1
x0

− 1

) , where

(
d0
x0

)2

= m2. (16.100)

Isotropic turbulence implies, according to (16.100),

Isotropy ⇐⇒ γ = β ⇐⇒ m = 2β, (16.101)

which has been differently derived in (16.84).
P. Egolf and D.A. Weiss [9] evaluate and plot

f22 = g222 := v′ 2
2

v∗ 2
1

and f33 = g233 := v′ 2
3

v∗ 2
1

(16.102)

against η forβ andm-values as shown as insets (m > 2β) and compare the theoretical
results with the experimental data from [30]. Their plots are displayed in Fig. 16.11
as panels (a) (radial, g22) and (b) (azimuthal, g33). The theoretical curves mimic the
Gaussian profile as already displayed for g11 in Fig. 16.10. The experimental points
for g22 and g33 are closer to the theoretical curves than g11 in Fig. 16.10, even though
they slightly overestimate the g22- and g33-values at small η < 1 and underestimate
them for larger values of η > 2.



16.3 The Axisymmetric Isothermal Steady Jet 291

Fig. 16.12 John Leask Lumley (11. Nov. 1930–30. May 2015)

JohnLeask Lumley received hisM.S.E. and Ph.D. degrees from Johns Hopkins University
in 1954 and 1957, respectively. His Ph.D. supervisor was Stanley Corrsin (1920–1986).
He started his academic career at the Pennsilvania State University, where he became Evan
Pugh Professor of Aerospace Engineering. He was also in charge of research on turbulence
and transition at the Applied Research Laboratory. In 1977 Lumley joined Cornell Univer-
sity where he has been Professor emeritus of Mechanical and Aerospace Engineering until
his death. He made seminal contributions to engineering in the study of turbulent fluid flow:
Complex and chaotic, ubiquitous in nature and engineering devices, turbulence is found in
cumulus clouds, smoke stacks and jet exhausts. Experts agree that ‘more than any other
person, he defined the field of turbulence during the second half of the 20th century’.

Lumley made important contributions regarding buoyant plumes and smokestacks, turbu-
lent dispersion of pollution in the atmosphere, the propagation of waves in the atmosphere
and oceans, turbulence in the presence of atmospheric inversions, the flow of air over objects,
the diffusion of salt in water known as ‘salt-fingering’, and the effects of electromagnetic
fields on turbulence. His theoretical contributions are key to our modern knowledge of tur-
bulence; they include statistical processes, the identification of structures in turbulence, the
cascade dynamics of turbulence, and modeling of generic fluid flows, such as jets and wakes
and turbulent flows near walls.

His 1972 book, ‘A First Course in Turbulence with Henk Tennekes’ [29], was the first book
to place dimensional analysis and scaling arguments as central to the subject. In 1964, with
Hans Panofsky [20], he wrote the influential book ‘The Structure of Atmospheric Turbu-
lence’ and in 1998 with Phil Holmes and Gal Berkooz they co-authored ‘Turbulence,
Coherent Structures, Dynamical Systems, and Symmetry’ [15].

In 1990, Lumley received the Fluid Dynamics Prize of the American Physical Society.
Other awards include the Fluid and Plasma Dynamics Award of the American Institute of
Aeronautics and Astronautics in 1982 and the Timoshenko Medal in 1993. Lumley was a
fellow in the American Institute of Aeronautics and Astronautics, the American Academy
of Arts and Sciences, and a member of the National Academy of Engineering.

The text is based on www.wikipedia.org

www.wikipedia.org
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Production of turbulent kinetic energy:When deriving the balance law of turbulent
kinetic energy by taking the inner product of the momentum equation with the veloc-
ity vector and subsequently averaging the emerging equation, the resulting equation
is the turbulent kinetic energy equation, see e.g. O. Hinze [14], H. Tennekes and
J.L. Lumley5 [29], K. Hutter and K. Jöhnk [17]. It contains the following terms
for an axisymmetric flow,

p = v′
1v

′
2

∂v1

∂x2
+ v′ 2

1

∂v1

∂x1
+ v′ 2

2

∂v2

∂x2
, (16.103)

k = 1

2

v′ 2
1 + v′ 2

2 + v′ 2
3

v∗ 2
1

, (16.104)

c = d f1
dη

∂η

∂x1
v∗ 3
1 k + 3 f1v

∗ 2
1

dv∗
1

dx1
k + f1v

∗ 3
1

dk

dη

∂η

∂x1

+ 1

x2
f2v

∗ 3
1 k + d f2

dη

∂η

∂x2
v∗ 3
1 k + f2v

∗ 3
1

dk

dη

∂η

∂x2
, (16.105)

among others, which cannot be handled in this context, see e.g. [14] and [9]. Note
that all terms on the right-hand sides of (16.103), (16.104), (16.105) have been dealt
with in the preceding sections, so that p, k, c can be computed for the axisymmetric
jet.

The dimensionless form of p is

π = px1
v∗ 3
1

(16.106)

and can straightforwardly be computed from (16.103) and earlier expressions for
f1, f2, f11, f22. The result is

π = x1

{
− f12

d f1
dη

∂η

∂x2
+ f11

1

v∗
1

(
∂v∗

1

∂x1
f1 + v∗

1
d f1
dη

∂η

∂x1

)

+ f22
d f2
dη

∂η

∂x2

}
, (16.107)

which, with the expressions

∂η

∂x1
= −η

1

x1
,

∂η

∂x2
= 1

βx1
,

dv∗
1

dx1
= − 1

x1
v∗
1, (16.108)

takes the form

π = − 1

β
f12

d f1
dη

− f11

(
f1 + η

d f1
dη

)
+ 1

β
f22

d f2
dη

. (16.109)

5For a biographical sketch of Lumley see Fig. 16.12.
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Fig. 16.13 Dimensionless
turbulent production π(η)

plotted against η. Dashed
curve is from DQTM
computations, open circles
from data obtained by
I. Wyganski and J. Fiedler
[30]. Courtesy P. Egolf and
D.A. Weiss [9], c©Phys.
Rev. E, reproduced with
changes

Inserting (16.74) for f12 and (16.79) for f2 as well as (16.102) for f22 and f33 (with
the isotropy assumption) yields

π =
(
1

η
f1
d f1
dη

+ β
1

η2
f1

)
(1 − f1) + β

1

η
f1
d f1
dη

. (16.110)

Replacing in this expression d f1/dη by −η f1 owing to (16.77), finally yields for the
dimensionless pressure

π = f 31 − f 21

(
1 + β + β

1

η2

)
+ β

1

η2
f1, (16.111)

which is a relatively simple polynomial expression for π in terms of f1. The function
π(η) is plotted in Fig. 16.13 together with data points from [30]. The modulus of π
shows a relative maximum at finite non-zero η.

Substituting (16.77) for f1 into (16.111) and performing a Taylor series expan-
sion of the emerging expression about η = 0 produces

π ≈ η2
(
β2 − 1

2

) − 1
2β. (16.112)

It follows that for η = 0

π(0) = − 1
2β. (16.113)

With β = 0.074 one obtains π = −0.037 as shown in Fig. 16.13.
A second term, which can be computed for the axisymmetric steady jet is the

turbulent kinetic energy itself, (16.104), which can easily be written in the form

k(x1, x2) = β + 2γ

2

⎛

⎜
⎝

x1
x0

− f1

x1
x0

− 1

⎞

⎟
⎠ f1

isotropy= 3

2
β

⎛

⎜
⎝

x1
x0

− f1

x1
x0

− 1

⎞

⎟
⎠ f1, (16.114)
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of which the expression on the far right holds for isotropic turbulence. For large
distances x1 � x0 from the orifice the last expression in (16.114) reduces to

k = 3
2β f1. (16.115)

The third quantity is the ‘turbulent convection parameter’ c, listed in (16.105). Its
dimensionless version is

χ = cx1
v∗ 3
1

. (16.116)

With Eq. (16.108), this expression takes the form

χ = −η
d f1
dη

k − 3 f1k − η f1
dk

dη
+ 1

β

1

η
f2k + 1

β

d f2
dη

k + 1

β
f2
dk

dη
, (16.117)

which, with the aid of (16.78)2 and (16.115), becomes

χ(η) = 3

2
β

(
2

η
f1
d f1
dη

− f 21 − 1

η

d f1
dη

)
(16.77)= 3

2
β f1(η)(1 − 3 f1(η)),

χ(0) = 3

2
β f1(0)(1 − 3 f1(0)) = −3β.

(16.118)

This result is in excellent agreement with experimental results of I. Wyganski and
J. Fiedler [30]. Their experimentally based curve in Fig. 16.14 shown by open
circles—is referred to in several articles and textbooks in the years subsequent to
their work, see e.g. O. Hinze [14].

Fig. 16.14 Dimensionless turbulent convection term.Dashed curve as calculated with the DQTM-
parameterization (16.17); open circles as extracted from measurements given in [30]. At η = 1.2
the convection parameter χ changes sign. The χ(η)-function reaches a maximum value at η = 2.1
and approaches χ → 0 as η → ∞. Courtesy P. Egolf and D.A. Weiss [9], c©Phys. Rev. E,
reproduced with changes
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16.4 Turbulent Round Jet in a Parallel Co-flow

The axisymmetric jet dealt with in the last section is restricted to the situation of a jet
inflow into a quiescent ambient fluid. P. Egolf [8] has also looked at the situation of
a jet entering a fluid moving with a constant velocity parallel to the jet exit velocity. If
UG , see Fig. 16.15, is the speed of its background velocity andU the mean jet speed
at the nozzle beyond UG , then an approach analogous to that in the previous section
shows that similarity solutions do not exist in general, but can still be constructed in
the limits, when

U

UG
→ 0 and

U

UG
→ ∞. (16.119)

In the first case the jet velocity at the nozzle is small in comparison to the ambient
velocity; in the second case it is reverse, i.e., the ambient velocity is small as com-
pared to that of the jet. This case has been analyzed in Sect. 16.3 of this chapter. The
proof of this fact may e.g. by following mathematically the approach of Sect. 16.3:
Existence of similarity solutions is postulated and a contradiction is derived. Nec-
essary conditions for the exponents p0, . . . , p12 (compare (16.61), (16.62), (16.63))
are established for which similarity solutions will not exist. This happens to be the
case if U/UG is bounded from below and above, i.e., if it is of finite value. In the
limits (16.119), however, similarity solutions can be constructed. The solution for
the limitU/UG → ∞ has essentially been shown in Sect. 16.3. The other case is the
topic of this section.

For the axisymmetric steady flow the balances of mass and momentum of the
mean turbulent motion are given by (16.52), (16.60) together with (16.18),

Fig. 16.15 Turbulent circular jet entering an ambient region with constant velocity UG parallel to
the jet. The relative mean velocity to the velocity of the ambient fluid is U, so that its absolute speed
is U +UG. The perturbed velocity above UG downstream of the nozzle is v∗

1(x1, x2). The diameter
of the nozzle is d and the distance of influence of the flow out of the pipe is kd. Courtesy P. Egolf
[8], c©Phys. Rev. E., reproduced with changes
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∂v∗
1

∂x1
+ 1

x2

∂(x2v
∗
2)

∂x2
= 0, (16.120)

v∗
1
∂v∗

1

∂x1
+ v∗

2
∂v∗

1

∂x2
+ 1

x2

∂(x2v′
1v

′
2)

∂x2
= 0, (16.121)

in which v1 = UG + v∗
1; here, v

∗
1 is the axial perturbation speed andUG the constant

parallel speed of the surrounding fluid.
Ifwe nowuse the product decompositions of v∗

1, v
∗
2, v

′
1v

′
2, η = x2/b and b as shown

in (16.22)–(16.25), substitute these in (16.120) and (16.121) and request similarity
behavior, then the continuity equation leads to

p0 + p1 − p2 = 1, and p1 f1 − p0η
d f1
dη

+ 1

β

1

η

d(η f2)

dη
= 0, (16.122)

as before in (16.64)1 and (16.65)1. However, the approximate axial momentum equa-
tion transforms to

1

kd

{((
UG

U

)
+

(
x1 − p

kd

)p1

f1

)(
x1 − p

kd

)p1−1 (
p1 f1 − p0η

d f1
dη

)

+ 1

β

(
x1 − p

kd

)p2+p1−p0

f2
d f1
dη

− 1

β

(
x1 − p

kd

)p12−p0 1

η

d(η f12)

dη

}

= 0 (16.123)

and is more difficult to explore. Requesting next also that the Reynolds stress,
scaled with the mean velocity in the principal flow direction, is independent of x1,
see (16.33), then relation (16.34) must equally hold,

2p1 − p12 = 0. (16.124)

Finally, one may equally request that the force on the cylinder, induced by the flow is
x1-independent. This has also been explained earlier, between (16.37)–(16.39) and
yielded

p0 + p1 = 0. (16.125)

Returning to (16.123), notice that this equation involves UG/U , and it is this term,
which destroys its similarity property. Indeed, the equation consists of 4 terms, each
with its own exponent of (x1 − p)/(kd). For instance, for finite values ofUG/U one
would have to request that p1 − 1 = 2p1 − 1 or 1 = 2, unless p1 = 0, p0 = 0,
p12 = 0, p2 = −1, which is obviously inconsistent! So, there is only hope for
similarity behavior in the limits (16.119).
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(a) Large jet velocity such that UG/U → 0
Dropping UG/U in (16.123) and comparing the exponents of (x1 − p)/(kd) in the
emerging equation generates again (16.122), and the new equation

p0 + 2p1 − p12 = 1. (16.126)

The four Eqs. (16.122)1, (16.124), (16.125), (16.126) [and two non-conflicting
remaining equations] generate the solution

p0 = 1, p1 = −1, p2 = −1, p12 = −2, (16.127)

which agree with (16.68). This must obviously be so, because the condition
UG/U = 0 corresponds with a jet merging into a quiescent ambient. It is, there-
fore, consequential that the DQTM-solutions for f1, f2, f12 also agree with (16.77),
(16.71) and (16.74). The reader may prove this by himself/herself.

(b) Small jet velocity such that UG/U → ∞
Rewriting (16.123) as

{

1 + U

UG

(
x1 − p

kd

)p1

f1

}(
x1 − p

kd

)p1−1 (
p1 f1 − p0η

d f1
dη

)

+ 1

β

U

UG

(
x1 − p

kd

)p2+p1−p0

f2
d f1
dη

− 1

β

U

UG

(
x1 − p

kd

)p12−p0 1

η

d

dη
(η f12) = 0 (16.128)

and ignoring all terms linear inU/UG leads to a single ordinary differential equation
for f1,

d

dη
(η f1(η)) = 0, ∀η ∈ [0,∞) −→ f1(η) ≡ 0, (16.129)

which is simply the trivial solution.6 No jet can be formed in this limit. It follows, for
a non-trivial solution some of the terms involvingU/UG in (16.128) should survive.
Several choices are possible, but only one is appropriate. A natural selection is to
drop the second term in the curly bracket in the first line of (16.128), and balancing

(
x1 − p

kd

)p1−1

and

(
x1 − p

kd

)p12−p0

; (16.130)

6Another non-trivial solution is f1 = c/η. However, this solution is equally inadmissible, since it
generates a singularity at η = 0, which is unphysical.
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this yields

p1 − 1 = p12 − p0 =⇒ p0 + p1 − p12 = 1. (16.131)

Together with (16.122), (16.125), (16.126), which still hold, the following p-values,

p0 = 1
3 , p1 = − 2

3 , p2 = − 4
3 , p12 = − 4

3 , (16.132)

are obtained. With them, the exponents of the (x1 − p)/(kd)-terms take the values

p1 − 1 = p12 − p0 = − 5
3 , p2 + p1 − p0 = 2p1 − 1 = − 7

3 . (16.133)

This implies that, asymptotically for large values of (x1 − p)/(kd),

(
x1 − p

kd

)−5/3

is larger than

(
x1 − p

kd

)−7/3

, (16.134)

so that in this limit the underscored terms in (16.128) can be dropped in comparison
to the remaining terms. This leads now to the asymptotic similarity behavior for
which (16.122)2, obtained from the continuity equation and the reduced momentum
equation (16.128), yields

2 f1 + η
d f1
dη

− 3

β

1

η

d(η f2)

dη
= 0,

−→ d

dη
(η f2) = β

3

d

dη

(
η2 f1

)
,

−→ f2 = β

3
η f1, (16.135)

2 f1 + η
d f1
dη

+ 3

β

(
U

UG

)
1

η

d(η f12)

dη
= 0, (16.136)

in which the p-values (16.132) have been substituted. These are two equations for
three unknowns.

The DQTM-model of Egolf [8] is now introduced in the form (16.17), in which
χ2 = b is used. This yields

v′
1v

′
2

U 2
= b

db

dx1

[
UG

U
+ v∗

1(x1, x2)

U

] [
UG

U
+ v∗

1(x1, 0)

U
−

(
UG

U
+ v∗

1(x1, x2)

U

)]
1

x2

≈ b
db

dx1︸ ︷︷ ︸
1
3β

UG

U

v∗
1(x1, 0) − v∗

1(x1, x2)

Ux2
(16.137)

and implies with (16.22)–(16.25)
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f12 = 1

3
β
UG

U

1 − f1
η

. (16.138)

Substitution of this equation into (16.136) yields

2 f1 +
(

η + 1

η

)
d f1
dη

= 0, (16.139)

which is an ordinary differential equation for f1 alone and possesses the solution

f1 = 1

1 + η2
, (16.140)

which enjoys the symmetry property that f1(η) = f1(−η). Based on (16.138) and
(16.135), Eq. (16.140) generates the functions

f2 = β

3

η

1 + η2
, (16.141)

f12 = −β

3

(
UG

U

)
η

1 + η2
, (16.142)

which are both anti-symmetric: f2(η) = − f2(−η), f12(η) = − f12(−η) and propor-
tional to each other.

Graphs of the functions (16.140)–(16.142) are shown in Fig. 16.16. The mean
velocity profile in the main direction, f1, shows a maximum at η = 0 and decreases
algebraically to zero as η → ∞. Because of symmetry requirements the mean scaled
radial velocity f2(η) and the Reynolds shear stress f12 vanish for η = 0 and as

Fig. 16.16 Distribution of f1, f2 and f12(η)/(UG/U ) as functions of η, according to (16.140),
(16.141) and (16.142)
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η approaches ∞. Moreover, f2 is positive for η > 0 and negative for η < 0 and,
therefore, does not exhibit the entrainment phenomenon.

16.5 A Study of Turbulent Plane Poiseuille Flow

Consider plane steady turbulent flow between two parallel rigid planes a distance
2a apart. Let x1 and x2 be Cartesian coordinates parallel and orthogonal to the
flow direction, see Fig. 16.17. Moreover, consider the balance laws of mass and
momentum under the restriction that v2 = 0 and ∂(·)/∂x3 = 0 for all field variables
of the system under consideration. It then follows from the continuity equation that
v1 is only a function of x2. This implies that the convective acceleration terms in the
horizontal directions,

v1
∂v1

∂x1
+ v2

∂v1

∂x2
= 0, v1

∂v2

∂x1
+ v2

∂v2

∂x2
= 0, (16.143)

vanish identically. Therefore, the horizontal momentum equations (15.22) for a
Newtonian fluid reduce to the force balances

1

ρ

∂ p

∂x1
− ν

∂2v1

∂x22
+ ∂v′

1v
′
2

∂x2
= 0,

1

ρ

∂ p

∂x2
+ ∂v′ 2

2

∂x2
= 0,

(16.144)

in which we have used the viscous stress representations

(tD)i j = ρν

(
∂vi

∂x j
+ ∂v j

∂xi

)
, (16.145)

Fig. 16.17 Laminar and turbulent Poiseuille flow between two plane parallel plates. a In the
laminar case, the velocity profile is parabolic, b In turbulent steady flow the profile flattens more
and more as the Reynolds number increases

http://dx.doi.org/10.1007/978-3-319-33636-7_15
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where ν is the kinematic viscosity. It is easy to show that all material stress com-
ponents vanish with the above assumptions, except (tD)12 = τ . Moreover, it is also
readily seen that only the Reynolds stresses R12 = τ12 = τt and R22 = σt survive.

Introducing the dimensionless space coordinates

ξ = x1/a, η = x2/a (16.146)

and the shear velocity

v∗ =
√

|τ0|
ρ

, τ0 = ±ρν
∂v1

∂x2

∣∣±a (16.147)

as well as the Reynolds numbers

R = v1maxa

ν
, R

∗ = v∗a
ν

=⇒ R = v1max

v∗ R
∗. (16.148)

Equations (16.144) are now made dimensionless by defining the quantities7

f1(η,R∗) = v1

v∗ , (16.149)

P(ξ, η,R∗) = p − p0
ρ(v∗)2

, (16.150)

f12(η,R∗) = v′
1v

′
2

(v∗)2
, (16.151)

f22(η,R∗) = v′ 2
2

(v∗)2
. (16.152)

With these, Eqs. (16.144) take the forms

∂P

∂ξ
− 1

R∗
∂2 f1
∂η2

+ ∂ f12
∂η

= 0,

∂P

∂η
+ ∂ f22

∂η
= 0.

(16.153)

The second of these equations implies that P + f22(η) = F(ξ,R∗). Alternatively,
the first equation says ∂P/∂ξ = G(η,R∗) [where G can easily be inferred from
(16.153)1]. Thus,

∂P

∂ξ
= G(η,R∗) = ∂F(ξ,R∗)

∂ξ
. (16.154)

7Note, P is a function of ξ, since p depends on ξ. f12 and f22 have no ξ-dependence by assumptions
analogous to (16.33).
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This implies that G and ∂F/∂ξ can neither depend on ξ nor on η and, thus, must be
the same function of R∗ alone. Consequently, integration of F yields

F = A(R∗)ξ + C(R∗). (16.155)

Therefore, we have from (16.153)2

P + f22 = A(R∗)ξ + C(R∗). (16.156)

and from (16.153)1

∂

∂η

{
1

R∗
∂ f1
∂η

− f12

}
= A(R∗)

−→ 1

R∗
∂ f1(η,R∗)

∂η
− f12(η,R∗) − A(R∗)η + B(R∗) = 0. (16.157)

The parameter A(R∗) and the constants of integration B(R∗) and C(R∗) must be
determined.

The boundary conditions at the two walls request

{ f1; f12; f22} (±1,R∗) = 0 (16.158)

and

P(0,−1,R∗) = 0 for normalization of the pressure. (16.159)

Relations (16.158) say that the mean velocity v1 and the turbulent stresses τt and
σt vanish at the walls, so that the total stress τtot is given by the viscous τ and the
turbulent or Reynolds shear stress τt ,

τtot = τ + τt = ρν
∂v1

∂x2
− ρv′

1v
′
2. (16.160)

Near the wall, the turbulent fluctuations disappear. From this and (16.147), one may
deduce

τtot

ρ

∣∣±a = ν
∂v1

∂x2

∣∣±a = ∓(v∗)2, (16.161)

which yields, together with the definition (16.149),

ν
v∗

a

d f1
dη

∣∣±1 = ∓(v∗)2 =⇒ d f1
dη

∣∣±1 = ∓v∗a
ν

= ∓R
∗. (16.162)

Substituting these results into (16.157) yields
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A + B = −1 and − A + B = 1 =⇒ A = −1, B = 0. (16.163)

Therefore, (16.156) with C = 0 (due to (16.159)) and (16.157) take the forms

P(ξ, η,R∗) + f22(η,R∗) + ξ = 0,
1

R∗
d f1(η,R∗)

dη
− f12(η,R∗) + η = 0.

(16.164)

The second of these equations can be integrated subject to the boundary conditions
that f1(±1,R∗) = 0. This leads to

f1(η,R∗) = R
∗

⎧
⎨

⎩

η∫

−1

f12(η,R∗)dη + 1
2

(
1 − η2

)
⎫
⎬

⎭
, (16.165)

owing to the symmetry requirement f12(η) = − f12(−η) for the shear stress. To
fulfill the boundary conditions f1(−1,R∗) = 0, the integration constant in (16.165)
has been set equal to 1

2 . For laminar flows ( f12 = 0), f1(η) takes the form

f1(η,R∗) = R
∗

2

(
1 − η2

)
, (16.166)

which is the Hagen–Poiseuille profile.
There remains the implementation of the DQTM parameterization of the shear

stress; with (16.17) it may be expressed as

τt = −ρv′
1v

′
2

= ρσχ2
[
v1(x1, x2) − v1min(x1)

] v1max(x1) − v1(x1, x2)

x2max − x2
, (16.167)

in which σ is the spreading parameter. In (16.17), where free turbulence was dealt
with, we chose σ = db/dx1, where b is the spreading width of the turbulent region.
‘In Poiseuille flow the spreading by turbulent convection is only a flow internal
feature, [whilst] in a jet flow it also defines the boundary of the turbulent domain.
The turbulence intensities are small compared with the mean downstream velocity
[|v1| � (v′ 2

1 )1/2]’ [10]. Since v1min = 0 and v1max = v1(0,R∗), substitution of
(16.149) into (16.167) yields [we do not show the dependence on R∗]

f12(η) = σ

η
f1(η) ( f1(0) − f1(η)) . (16.168)

Thus, one obtains from (16.164)2 the differential equation

1

R∗
d f1(η)

dη
− σ

1

η
f1(η) [ f1(0) − f1(η)] + η = 0. (16.169)
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Turbulent closure relationswould also have to be formulated for f22 and P that would
be substituted into (16.164)1. Because Eq. (16.169) is independent of (16.164)1 and
not affected by (16.164)2, the ensuing analysis will be restricted to the exploitation
of (16.169).

With the new functions

g1(η) ≡ f1(η)

f1(0)
, g12(η) = f12(η) (16.170)

and the abbreviations

α ≡ f1(0)

R∗ , β ≡ σ ( f1(0))
2 , (16.171)

the differential equation (16.169) transforms into

αη
dg1(η)

dη
− βg1(η) + β (g1(η))2 + η2 = 0 (16.172)

and must be solved subject to the following symmetry, normalization and boundary
conditions

g1(η) = g1(−η), g1(0) = 1, g1(1) = 0, (16.173)

as well as (16.162) or

dg1
dη

∣∣±1 = ∓ R
∗

f1(0)
= ∓ 1

α
, (16.174)

owing to (16.171). This says that the slope of the mean velocity profile at the plates
is directly proportional to the Reynolds number R∗. These results are due to P.
Egolf and D.A. Weiss [10]. They state that ‘this is in qualitative agreement with
experimental observations of a decreasing boundary layer thickness in terms of an
increasing Reynolds number’, [10].

P. Egolf and D.A. Weiss performed the numerical integration of (16.172) by a
shooting procedure, starting at η = −1, selecting a certain value of β, using α as
shooting parameter and varying it until the profile would hit (η, g1) = (+1, 0) on
the opposite side and fulfill the boundary condition (16.173)3. The function

χ = β(α)/4, (16.175)

which has been evaluated by this procedure, is shown in Fig. 16.18. It is referred to
as order parameter.

As this figure suggests, if α → 0, then β approaches 4 and χ approaches 1.
Moreover, as numerically indicated, the values for β are positive and smaller and/or
equal to 4, a value, which can be shown analytically to be correct [10]. Owing to the
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Fig. 16.18 Analytically and
numerically derived
functional relation between
the stress parameters α and β
(or the order parameter χ). α
is inversely related to the
Reynolds number, see
equation (16.174).
Corresponding mean
velocity profiles and
Reynolds stresses are
shown in Fig. 16.19.
Courtesy P. Egolf and D.A.
Weiss [10], c©Phys. Rev. E.
reproduced with changes

symmetry condition (16.173)1, it suffices to study the behavior of g12 in the interval
0 � η < 1.

Egolf and Weiss [10] solved Eqs. (16.164)2 and (16.168), or alternatively
(16.172) and (16.168) with definitions (16.170) subject to boundary condition
(16.173), (16.174) and plottedmean velocity profiles g1 andReynolds shear stresses
g12 ≡ f12 as functions of η for the values of β as shown as insets in Fig. 16.19. These
graphs show that with increasing parameter β, the time averaged velocity profiles
flatten and the Reynolds shear stresses converge toward a linear distribution in η.

P. Egolf and D.A. Weiss [10] also attack the solution of (16.172) subject to
the conditions (16.170), (16.171). These solutions were constructed by them for
low, moderate and high Reynolds numbers. In these regimes, analytical, or partly
analytical solutions could be found.

Low Reynolds numbers: For this limit β = 0 and α = 1
2 , see Fig. 16.18 and

formulae (16.171), (16.172), for which

g1(η) = 1 − η2. (16.176)

This represents the laminar velocity profile forReynolds numbers below the critical
values.

Moderate Reynolds numbers: In this case β > 0,α > 0. The following transfor-
mation

g1 = H
h′

h
, H ≡ α

β
η (16.177)

is considered, implying for (16.172)

α2ηh′′ + (α2 − αβ)h′ + βηh = 0. (16.178)
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Fig. 16.19 Four time-averaged velocity profiles g1 and Reynolds shear stress distributions (for
0 < η < 1) g12 for different turbulent intensities 0 � β � 4. Note that with growing β the velocity
profile flattens and the turbulent shear stresses approach a linear distribution with η. Courtesy P.
Egolf and D.A. Weiss [10], c©Phys. Rev. E. reproduced with changes

Applying the further transformation

ψ ≡ λη, λ ≡
√

β

α
(16.179)

leads to the following Bessel differential equation

ψ
∂2h

∂ψ2
+

(
1 − β

α

)
∂h

∂ψ
+ ψh = 0. (16.180)

P. Egolf and D.A. Weiss [10] show that the general solution for g1, defined in
(16.177), is given by

g1(ψ) = ψ

2κ

pJκ−1(ψ) + qYκ−1(ψ)

pJκ(ψ) + qYκ(ψ)
, (16.181)
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where

κ = β

2α
(16.182)

and Jκ and Yκ are the Bessel functions of first and second kind, respectively and
order κ. For ψ → 0, i.e., η → 0 the function g1(ψ) must reach its maximum value,
see (16.173)2,

lim
ψ→0

g1(ψ) = 1. (16.183)

This implies, since limψ→0 Y (ψ) → ∞, that q = 0, so that

g1(ψ) = ψ

2κ

Jκ−1(ψ)

Jκ(ψ)
= Jκ−1(ψ)

Jκ−1(ψ) + Jκ+1(ψ)
. (16.184)

The second boundary condition, (16.173)3 now requires that ψ(η = 1) = λ =√
β/α, and, consequently, from (16.184)

Jκ−1

(√
β

α

)
= 0, =⇒

√
β

α
= jκ−1,1, (16.185)

in which jκ−1,1 is the first zero of the Bessels function Jκ−1. Because 2κ = β/α,
according to (16.182), one can solve these equations for α and β separately:

α = 2κ

( jκ−1,1)2
, β = 4κ2

( jκ−1,1)2
. (16.186)

To given κ, pairs of (α,β) can be calculated by means of tables (e.g.,Abramowitz–
Stegun [1]. Using this source, P. Egolf and D.A. Weiss [10] also find the repre-
sentations

Jκ(ψ) =
(

ψ

2

)κ ∞∑

k=0

(
−ψ2

4

)k

k! Γ (κ + k + 1)
, (16.187)

g1(ψ) = 1

κ

∞∑

k=0

(
−ψ2

4

)k

k!Γ (κ + k)

∞∑

k=0

(
−ψ2

4

)k

k!Γ (κ + k + 1)

, (16.188)
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Fig. 16.20 Time-averaged
mean velocity and turbulent
shear stress distributions for
infinite Reynolds number.
The velocity distribution is a
perfect half circle, the shear
stress is triangular

g12 = β jκ−1,1
1

ψ

Jκ−1 Jκ+1

(Jκ−1 + Jκ+1)2
. (16.189)

Here Γ (x) is the Gamma function and k! the factorial of k.
Infinite Reynolds number: With the definition of α and α → 0, Fig. 16.18 suggests
β = 4 (χ = 1); consequently, (16.172) reduces to the quadratic equation

g21(η) − g1(χ) + η2

4
= 0, =⇒ g1 = 1

2

(
1 +

√
1 − η2

)
. (16.190)

P. Egolf and D.A. Weiss [10] prove that this in fact is the pointwise limit of the
solution of (16.184) for κ → ∞. Substituting the variable change

ζ = 2g1 − 1

the solution (16.190) can be written as

ζ2 + η2 = 1, (16.191)

an equation describing the unit circle. Figure16.20a, b displays the time-averaged
velocity profile and the corresponding turbulent shear stress for a motion from left
to right. With the representation (16.190)2 (and β = 4) we obtain

g12(η) = 4

η

1 + √
1 − η2

2

(

1 − 1 + √
1 − η2

2

)

= η, (16.192)

which indeed reproduces the linear distribution displayed in Fig. 16.20.

Comparison with experiments: The computational result that the turbulent mean
velocity profiles for very high Reynolds numbers converge toward a semi circle,
is a marvelous test against experiments. Such data are given by J. Laufer [18] and
H.Reichardt [26]. P.Egolf and D.A.Weiss [10] chose the data of the latter, which
are displayed in Fig. 16.21 ‘The experiments confirm the model results convincingly,
but the good results are a littlemisleading. In the domain surrounding η = ±0.6 some
measured quantities are somewhat smaller than the functional values. On the other
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Fig. 16.21 Measured
time-averaged velocity
profile for fully turbulent
flow. Data from [26] with
v∗ = 15.2 cms−1 compared
with the circle solution,
denoted by ‘present theory’.
The measurements were
performed in a channel with
height 24.6 cm, which is
transformed to η ∈ [−1, 1].
The width of the channel was
98 cm. The dashed parabolic
profile is due to an earlier
model, given by Reichardt
[27]. Courtesy Egolf and
Weiss [10], c©Phys. Rev. E.
reproduced with changes

hand, exactly there—where the excitation of the flow system is further increased—the
mean velocity profiles begin to exceed the theoretical functions…’ [10].

P. Egolf and D.A. Weiss [10] mention the ‘Princeton Super Pipe Data’ [31]
as ‘the newest results of the axisymmetric Poiseuille flow measured [until the
year 2000] at highest Reynolds numbers, for example R = 17,629,500. The mean
velocity profile between η = −0.5 and η = 0.5 also follows the circle profile with
a maximum relative error of 1.2%. Only in the turbulent boundary layer, at larger
absolute values of η, the relative deviation takes higher values. From theory and
experiments it is known that in the boundary layer, closer to the wall, the results
of pipe and channel flow are practically identical. [...] so, also in the plane case, at
higher Reynolds numbers, it is expected that the experimental values could exceed
the theoretical ones shown in Fig. 16.21. But the solution in the core region, which
is roughly defined by the interval −0.5 < η < 0.5, hardly alters any more when the
excitation is further increased. Therefore, in Fig. 16.21 only in the core region the
agreement between theory and experiment is reliable’ [10].

Figure16.22 displays a comparison of the calculated Reynolds stresses with
experimental data. The theoretical results are again in good agreement with the
experimental data set; and they are as expected from Fig. 16.19.

The graphs in Fig. 16.19 and the results obtained forR∗ → ∞ provide a justifica-
tion for the denotation ‘order parameter’ to χ. The v∗

1-velocity andReynolds stress
distributions across a channel profile depend on the α or β-parameter and, thus, also
on theReynolds numberR∗ = v∗

1a/ν. For β = 0 (lowReynolds number flow) the
DQTM model for Poiseuille flow delivers a parabola as the longitudinal velocity
profile, whose curvature is largest at the channel axis that becomes continuously flat-
ter as one moves toward the upper and lower walls. The corresponding shear stress
distribution is linear! As β (and R

∗) grow, the longitudinal velocity distribution
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Fig. 16.22 Reynolds shear
stress g12 at R = 12 300. The
distribution is already very
close to the distribution for
R = ∞. The experimental
data are taken from [18] and
[21]. Courtesy P. Egolf and
D.A. Weiss [10], c©Phys.
Rev. E. reproduced with
changes

deviates more and more from the parabola and approaches a semi-circular profile,
which it exactly reaches as R∗ → ∞. Correspondingly, the turbulent shear stress
g12 that is skew-symmetric in η builds up from the zero function at β = 0, building
a hump with zero values at η = 0 and η = 1 with maximum value closer to the
wall than the channel axis. For growing β ∈ (0, 4) (R∗ ∈ [0+,∞)) the maximum
of this hump grows and its position moves toward the wall approaching an exactly
circularmean velocity profile and linear shear stress distribution asR∗ → ∞. These
results are marvelously corroborated by data from L. Laufer [18] and S.I. Pai [21],
as evidenced in Figs. 16.21 and 16.22.

P.Egolf andD.A.Weissmention results obtainedwith the ‘Princeton Super Pipe
Data’ taken at R = 17 629 500. Small deviations of these data for 0.5 < η � 1 from
the exact circle are also observed there as in Fig. 16.22. More important than those
small deviations, also observable in Fig. 16.22, seem to us the positive conclusion
that the DQTM closure scheme yields a significant improvement over the classical
Prandtl-type modeling.

16.6 Discussion

This chapter is devoted to a number of zero order turbulence models for free turbu-
lence and plane channel flow. Mathematically, the study is restricted to steady flows
and situations, in which the processes can be reduced to two spatial dimensions—
either exactly or approximately. The basis of our analysis is the Göttinger school,
primarily under Ludwig Prandtl, who himself proposed his own turbulence clo-
sure relations, originally based uponBoussinesq’s proposition of the turbulent eddy
viscosity concept. Ludwig Prandtl introduced in 1925 [23] his mixing length con-
cept, in which in two dimensions εturb = �2|dv1/dx2|. For L. Prandtl’s presentation
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of this model, see Appendix A to this chapter. This concept was criticized even by
L. Prandtl himself by adding a second length scale �′, involving the curvature
effects of the velocity profile (see (16.14)). However, with these proposals optimal
validation by experiment delivered values of the mixing lengths much smaller than
the largest eddies in the flow under consideration. This fact makes it likely that
L. Prandtl regarded the mixing length not just as a phenomenological quantity, but
assigned a direct physical meaning to it. In his next proposal in 1942 he then might
have thought that the physical dimension of εturb is [m2s−1]; incorporation of effects
of the largest and smallest eddies (of a whole cascade) into εturb may be achieved by
constructing a viscosity with v1max , v1min within the cross section of the free turbulent

flow and the width b of the turbulent spread: εturb
prop= b[v1max −v1min ]. This expression

has the correct physical dimension, but to have the flexibility to adjust its value by
validation with experiments, L. Prandtl conjectured

εPrandtlturb = κb[v1max − v1min ]. (16.193)

and it is hoped that κ = O(1), see (16.15). That H. Görtler [12] found good
agreement with experiments in his validation attempt is rewarding; more important
is the fact that L. Prandtl gave up the strict locality concept and made his suggested
εturb at point x to depend on field quantities at points y �= x (but nota bene also still at
the same time). The shear stress formula, however, was in his case product-composed
of the non-local expression of εPrandtlturb with the local mean velocity gradient:

τ12

ρ
= (

εPrandtlturb

)

︸ ︷︷ ︸
non−local

∂v1

∂ x2︸︷︷︸
local

(16.194)

It is not known to us whether any-one or L. Prandtl himself was thinking along
these lines; fact is that we have not found statements, neither in Prandtl’s paper [25]
nor inGörtler’s paper [12] that would mention the non-locality. The least in the 21-
st century, in which invariance principles of continuum theories are well known, this
might have raised resistance because a generalization to arbitrary three-dimensional
processes can hardly be visualized. H. Görtler found the largest deviations from
measurements in the vicinity of the boundary of the mixing zone, because the eddy
viscosity (16.193) does not vanish there.

It is at this point where P. Egolf in 1992 [7] replaced (16.194) by a completely
non-local expression, namely by

τ12 = −ρv′
1v

′
2 = ρχ2

db

dx1

(
v1 − v1min

) v1max − v1

x2max − x2
, (16.195)

in which χ2 ∈ [x2, b] is a length parameter and x2max is that position in the cross
section, where v1 = v1max . Moreover, ρ,χ2 are still local quantities but the remaining
factors are of non-local typ.Here, any notions of turbulent viscosity and local velocity
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gradient are gone, but since v1 at the boundary of the mixing zone equals v1min , τ12,
evaluated with (16.195) will vanish there.

The remainder of the chapter demonstrates that (nearly) all cases, for which tur-
bulent mean velocities are computed, results are more convincing than with the older
closure options. The procedures that have been followed are simple steady two-
dimensional (plane or axisymmetric) flows, for which far away from initiating or
disturbing elements exact or approximate similarity solutions of the governing equa-
tions can be constructed. They are expressible in general as functions f1, f2, f12, . . .
of a variable η perpendicular to the main flow direction, and f2 and f12 have been
shown to be expressible in terms of a functional of f1(η). The following problems
have been attacked:

1. The turbulent plane wake: What just has been said above does not fully apply:
Here, f2 and f12 are expressible as functionals of f1. However, the equations do
not reveal a boundary value problem for f1. The function f1 can only be deter-
mined by constructing an optimal fit with experimental data. The mathematical
determination of f1(η) remains unsolved.

2. Axisymmetric isothermal steady jet into a quiescent ambient is fully analytically
determinable, provided the terms

v1
∂v2

∂x1
, v2

∂v2

∂x2
,

∂

∂x1

(
v′
1v

′
2

)

are ignored. The first is the convective acceleration in the x1-direction, which is
parallel to the direction of the principal flow. The second is small, since v2 is small
and the third term expresses the slow variation of the shear stress in the longi-
tudinal direction of the jet. The functions f1(η), f2(η) and − f12(η) marvelously
match data (Figs. 16.5, 16.6, 16.7) of I.Wyganski and J. Fiedler [30], as do the
functions gi i (η) which are representative of (v′

i )
2 (i = 1, 2, 3). The mathematical

method allows in this case also the computation of the density of turbulent kinetic
energy, its production rate and convection parameter (see Eqs. (16.9)–(16.12)).
Because these quantities were also experimentally determined by I.Wyganski

and J. Fiedler, validation of the computational results on the basis of their exper-
iments is a particular convincing test of the closure model.

3. Turbulent round jet in a parallel co-flow: This case is similar to handle as the case
of the jet-flow into a quiescent ambient fluid. It so happens that the general case,
for which the speed of the jet and the outer fluid velocity parallel to the jet speed
does not permit similarity solutions; on the other hand, if the jet speed is much
larger than the speed of the ambient fluid, the functions f1, f2 and f12 agree with
the solutions of a jet flow into a quiescent ambient fluid; else, f1, f2 and f12 as
functions of η are as given in (16.140)–(16.142).

4. Turbulent plane Poiseuille flow: This case is a bounded flow; it differs from the
earlier cases insofar as f1(η,R∗), P(ξ, η,R∗), f12(η,R∗), f22(η,R∗), which are
representative of v1, p, v′

1v
′
2, (v

′
2)

2 are determinable as functionals of η = x2/a
(2a = distance of the walls) and ξ and the Reynolds number R∗ = v∗a/ν.
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Owing to the wall boundary conditions { f1; f12; f22}(±1,R∗) = 0 the equations

P(ξ, η,R∗) + f22(η,R∗) + ξ = 0, (16.196)

f1(η,R∗) = R
∗
{∫ η

−1
f12(η,R∗)dη + 1

2

(
1 − η2

)}
(16.197)

can be derived. These equations have been obtained without a closure condition
for the turbulent shear stress −v′

1v
′
2, but with a linear viscous material behavior.

For laminar flow, f12 ≡ 0 and (16.197) implies

f12(η,R∗) = R
∗

2

(
1 − η2

)
(laminar flow),

which is the Hagen-Poiseuille profile, as we have already seen. If some tur-
bulence is present, DQTM parameterization must be added. This then yields
f12(η,R∗) as a function of f1. When this relation is combined with (16.197),
a differential equation for a function g1(η) (proportional to f1 or v1) subject to
boundary conditions involving two parameters, α and β (see (16.172)). Solu-
tions to this boundary value problem only exist when β = β(α) [expressed in
(16.175) as χ = β/4χ(α)]. This function is called order parameter. It measures
the distribution of the longitudinal velocity f1 and of the shear stresses f12 as
shown in Figs. 16.18 and 16.19. In other words, depending upon R

∗, the trans-
verse distribution of v1 and τ12 depend on R. An exact parabolic velocity profile
and strictly linear shear stress distribution are only possible for R∗ = 0, and a
precisely semi-circular longitudinal velocity profile and a linear shear stress dis-
tribution are obtained when R

∗ → ∞. Excellent agreement of these computed
with corresponding measured profiles is displayed in Figs. 16.21 and 16.22. In
between these profiles are continuously deformed; this transition is monitored by
the continuous change of the order parameter.

Appendix A: Prandtl’s Mixing Length

We present here Prandlt’s ansatz of the turbulent mixing length (16.12) in
Prandlt’s original German form and K.H.’s translation into the English language.

– Bericht über Untersuchungen zur ausge-
bildeten Turbulenz
‘. . .
II. Weiter möchte ich von einem Ansatz
berichten, der dazu dienen sollte, die Verteilung
der Grundströmung einer turbulenten Bewe-
gung unter den verschiedensten Bedingun-
gen hydrodynamisch zu berechnen. Nach ver-
schiedenen vergeblichen Versuchen konnte hier
ein erfreulicher Erfolg erzielt werden, und
es zeigte sich überdies, daß der Ansatz für
die durch den Impulsaustausch hervorgebrachte

– Report about investigations regard-
ing fully developed turbulences
‘. . .
II. Furthermore, I wish to report about an
ansatz which should serve as a means to
hydrodynamically compute under various
conditions the distribution of the mean
flow of a turbulent motion. After sev-
eral fruitless attempts a gratifying suc-
cess could be reached in this regard, and
it turned out, in addition, that the for-
mula of concern for the fictitious shear
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scheinbare Schubspannung τ , um die es sich
hier handelt, auch einer recht anschaulichen
Begründung fähig ist. In der Boussinesqschen
Formel

stress τ that is generated by the momen-
tum exchange, can also clearly be moti-
vated. In the Boussinesq formula

τ = ρε
∂u

∂y
(16.198)

ist ε ein Maß für den turbulenten ‘Aus-
tausch’ und ist seiner Dimension nach, die
gleich derjenigen von ν ist, das Produkt
einer Länge und einer Geschwindigkeit. Diese
Länge und die Geschwindigkeit lassen sich
nun vorstellungsmäßig fassen. Die letztere ist
die Quergeschwindigkeit w, mit der im Mit-
tel die von beiden Seiten herankommenden
Flüssigkeitsballen durch die Schicht mit dem
zeitlichen Mittelwert der Qergeschwindigkeit u
hindurchtreten.

ε is ameasure for the turbulent ‘exchange’
and, according to its dimension, which is
the same as that of ν, is the product of a
length and a velocity. This length and the
velocity can now conceptually be under-
stood. The latter is the transverse velocity
w by which, on average, the fluid pack-
ages enter from both sides the fluid layer
that moves with a temporal mean of the
transverse velocity u.

Die von der Seite der größeren
Geschwindigkeiten kommenden Flüssigkeits-
ballen bringen auch größere Werte der
Geschwindigkeit u mit, die von der Seite
der kleineren Geschwindigkeiten dagegen
kleinere, so daß immer mehr Impuls in der
einen Richtung transportiert wird als in der
entgegengesetzten (abgesehen von der Stelle
von u = umax). Die gesuchte Länge � ist nun
dadurch charakterisiert, daß sie die Entfernung
von der betrachteten Schicht angibt, in der
die durchschnittlichen u–Geschwindigkeiten,
die die Flüssigkeitsballen bei ihrem Durchtritt
haben, als zeitlicher Mittelwert der Strömungs-
geschwindigkeit angetroffen werden. Genähert
sind diese Geschwindigkeiten also u + l∂u/∂y
und u − �∂u/∂y. Daß � der Größenordnung
nach mit dem Durchmesser der Flüssigkeits-
ballen übereinstimmt, sei nebenher erwähnt
(genauer ist es der ‘Bremsweg’ des Flüssigkeits-
ballens in der übrigen Flüssigkeit, der aber dem
Durchmesser proportional ist). Ueber die Länge
� kann einstweilen nur ausgesagt werden, daß
sie an der Wand gegen Null gehen muß, da hier
nur noch Ballen, deren Durchmesser kleiner
als der Wandabstand ist, sich wie besprochen
bewegen können. Im übrigen soll � einen
möglichst regelmäßigen Verlauf haben. Ist β
der durchschnittliche verhältnismäßige Anteil
der Fläche, der von den von der einen Seite
durchtretenden Flüssigkeitsballen eingenom-
men wird, so tritt an dieser Seite sekundlich ein
Impuls βρw ·�∂u/∂y durch die Flächeneinheit,
von der anderen Seite ungefähr der gleiche

The fluid packages coming from the side
with the larger velocities also carry with
them larger values of the velocity u, those
from the side with the smaller veloci-
ties, however, smaller ones, so that always
more momentum is transported in one
direction than in the other (except
at a position where u = umax). The
sought length � is now characterised by
the fact that it provides the distance from
the considered layer in which the aver-
age u-velocities, which the fluid pack-
ages have on their passage, are encoun-
tered as a temporal mean value. Approx-
imations of those velocities are therefore
u+l∂u/∂y and u−l∂u/∂y. That � agrees
in order ofmagnitudewith the diameter of
the fluid packages is only remarked here
parenthetically (more accurately, it is the
‘stopping distance’ of the fluid package
in the remaining fluid, which, however,
is proportional to the diameter). About
the length � one can presently only say,
that it must go to zero at the wall, since
only packages, of which the diameter is
smaller than the distance from the wall,
can move as discussed. Besides, � should
have a behaviour as regular as possible. If
β is the averaged relative fraction of area
that is encountered by the fluid packages
passing from one side, then the momen-
tum per second entering from this side
is βρw · �∂u/∂y, from the opposite side
about the same amount, so that we
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Betrag, so daß wir den Boussinesqschen
Ansatz also bestätigen und ε = 2βw�

setzen können. Es handelt sich jetzt noch
darum, für die Mischgeschwindigkeit w einen
brauchbaren Ansatz zu machen. Diese Mis-
chgeschwindigkeit wird immer rasch abge-
bremst und muß immer wieder neu geschaf-
fen werden. Wir nehmen daher an, daß
sie beim Zusammentreffen von zwei Ballen
mit verschiedener Geschwindigkeit u erzeugt
wird und darum dem Geschwindigkeitsunter-
schied, also dem Betrage von l∂u/∂y pro-
portional ist. Damit wird aber, falls wir
alle unbekannten Zahlenfaktoren auf die
nicht genauer bekannte Länge � werfen,
die scheinbare Schubspannung τ

can corroborateBoussinesq’s ansatz and
set ε = 2βw�.
The remainder now consists in making a
useful hypothesis for the mixing veloc-
ity w. This mixing velocity is always
very quickly attenuated andmust continu-
ously be newly created.We therefore sup-
pose that it is generated in an encounter
of two packages with different velocity
u and thus is proportional to the veloc-
ity difference, whence the modulus of
l∂u/∂y.With this, and providedwe throw
all unknown factors on this not exactly
known length �, the fictitious shear stress
τ becomes

τ = ρ�2
∣∣
∣∣
∂u

∂y

∣∣
∣∣ · ∂u

∂y
.

Dieser Ansatz bedarf noch einer Berichtigung
für den Fall, daß ∂u/∂y = 0 wird. Für die
Erzeugung der Geschwindigkeit w wirkt die
Nachbarschaft in einer gewissen Breite zusam-
men; sie wird nicht Null, wenn ∂u/∂y = 0
ist, wird vielmehr einem statistischen Mittel-
wert von |∂u/∂y| proportional gesetzt werden
können, also proportional |∂u/∂y|; verändert
sich das Geschwindigkeitsprofil in der Strö-
mungsrichtung, wie bei verengten und erweit-
ertenKanälen, sowird dieStelle, über die gemit-
telt wird, auch um einen gewissen Betrag stro-
mauf gelegt werden müssen, da der Vorgang
der Ausbildung der Geschwindigkeit w Zeit
beansprucht.
…’

This formula still needs to be amended
for the case that ∂u/∂y = 0. For the
creation of velocity w the neighbourhood
of a certain width is active; it does not
become zero, if ∂u/∂y = 0, it may rather
be set proportional to an average value
of |∂u/∂y|, thus proportional to |∂u/∂y|
itself; if the velocity profile changes in
the direction of the flow, as is the case in
contracting and diverging channels, then
the position about which the average is
taken will have to be moved somewhat
upstream, because the process of the cre-
ation of the velocity w will take some
time.
…’
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Chapter 17
Thermodynamics—Fundamentals

Abstract This chapter is devoted to thermodynamics; first, fundamentals are
attacked and, second, a field formulation is presented and explored. Class experi-
ence has taught us that thermodynamic fundamentals are difficult to understand for
novel readers. Utmost caution is therefore exercised to precisely introduce terminol-
ogy such as ‘states’, ‘processes’, ‘extensive’, ‘intensive’ and ‘molar state variables’
as well as concepts like ‘adiabatic’, and ‘diathermic walls’, ‘empirical’ and ‘absolute
temperature’, ‘equations of state’ and ‘reversible’ and ‘irreversible processes’. The
core of this chapter is, however, the presentation of the first and second law of thermo-
dynamics. The first law balances the energies. It states that the time rate of change
of the kinetic plus internal energies are balanced by the mechanical power of the
stresses and the body forces plus the thermal analogies, which are the flux of heat
through the boundary plus the specific radiation referred to as energy supply. This
conservation law then leads to the definitions of the caloric equations of state and the
definitions of specific heats. The Second Law of Thermodynamics is likely the most
difficult to understand and it is introduced here as a balance law for the entropy and
states that all physical processes are irreversible. We motivate this law by going from
easy and simple systems to more complex systems by generalization and culminate
in this tour with the Second Law as the statement that entropy production rate can-
not be negative. Examples illustrate the implications in simple physical systems and
show where the two variants of entropy principles may lead to different answers.

Keywords Reversible/irreversible processes · Empirical/absolute temperature ·
First, second law of thermodynamics · Thermodynamic states—processes · Exten-
sive, intensive, molar state variables · Adiabatic/non-adiabatic systems · Diathermic
wall · Thermal equations of state · van derWaals gas · Caloric equation of state ·
Specific heats

List of Symbols

Roman Symbols

A,B,C Identifiers for thermodynamic systems
a, b Two constants in the thermal equation of state forvanderWaals

fluids
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AΔt Work of the non-conservative external forces on a body
C Capacity in an electric circuit, elastic constant of a spring, mass

concentration of a tracer
cv Specific heat at constant volume cv = ( ∂u

∂T

)
V

cp Specific heat at constant pressure cp = ( ∂h
∂T

)
V

Cm
V ,Cm

p Specific molar heats of a van der Waals gas
D Strain rate tensor, stretching tensor (deviator)

D = 1
2 (L + LT )

D,Dc Diffusivity,—of a tracer
E Specific total energy per unit mass
E Distortion (rate) tensor E = D − 1

3 (tr)1
e Specific total energy per unit mass e = 1

2 |v|2 + u
EG EG = T + U − ψ, Kinetic + internal energy − potential of the

conservative force
F Force acting on a finite body or a mass point
f Specific body force per unit mass
ftrans, frot, fosc Translational, rotational and oscillation degrees of freedom
g, g Gravity vector, gravity constant
h = u + p/ρ Specific enthalpy per unit mass
I0 Initial electric current (strength)
L Inductivity of a condenser, power of working of F formed with v,

power of working of a body
L1 Power of working of the conservative external forces
L = grad v Spatial velocity gradient
M Mole mass, mass of a rigid body
ṁa, ṁe Inflow and outflow (rate) of mass through a system
N Normal force (positive as a pressure) acting on a body at and ⊥

to a basal surface, Integrating denominator of a two-dimensional
Pfaffian form

n Number of mole masses
n Unit normal vector at a point of the boundary ∂V of a body V
p, pc Pressure, critical—for a van der Waals gas
pVm = RmT Thermal equation of state for an ideal gas
Q (Total) heating supplied to a body at its boundary
QA,QB Heating of systems A and B
QΔt Heating of external sources applied to a body during a time step

Δ

q Heat supplied at a body point per unit mass
q Heat flux vector supplied to a body at a point on ∂V
(q12)p Heat added to a system between states 1 and 2 at constant pressure
R Resistivity of an electric circuit
R = Rm/M Gas constant of an ideal gas whose mole mass is M
Rm Universal or molar gas constant

Rm = 8.31451 ± 0.00007 [J mol−1K−1]
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R Gas constant of an ideal gas R = cp(T) − cv(T)

S Entropy of a finite system
Ṡ, ṡ Gibbs relation for a system Ṡ = 1

T

(
U̇ + pV̇

)
,

– for a unit mass ṡ = 1
T (u̇ + pv̇)

s Specific entropy per unit mass
T = 1

2m|v|2 Kinetic energy of a mass point
T Tangential sliding force of a moving body along a surface, kinetic

energy at a point per unit mass
T(ϑ) Absolute temperature as a function of the empirical temperature

ϑ
Tr = 273.16[K] Temperature at the triple point of water
t Celsius temperature: t = T − 273.15[C◦]
tF Fahrenheit temperature tF = T − 32[F◦] = T − T0

T0 Temperature oft the ice point
Tc Critical temperature of a van der Waals gas
t Cauchy stress tensor
tR Frictional (viscous) Cauchy stress tensor (deviator)
t · v Stress power
tn Traction vector on ∂V of V
U, u Internal energy of a body, specific internal energy per unit mass
u(y, t) Velocity component along the x-axis as a function of the y-axis

and time t
u0 Boundary value of u(0, t)
V, Vm Volume of a body, mole volume
v, v Velocity vector, y-component of v
x Displacement vector, position vector
ẋ0 Initial velocity
Z State variable
z1 = Z/m Specific state variable per unit mass
z2 = Z/V Specific state variable per unit volume
Z/n Molar state variable
z = Zm/M Specific state variable

Greek and Miscellaneous Symbols

γ Damping constant, specific entropy production per unit volume
Δme,Δma Mass entering/leaving a system
η = ρν Dynamic viscosity
ηth Thermal efficiency
ηc = ηrev

th Carnot factor, Carnot efficiency
ḢV Rate of entropy of a body V
ν Kinematic viscosity
ργ Specific entropy production per unit mass
ρf · v Power of working of the body force
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ρs Specific entropy per unit volume
ϑ Empirical temperature
Θ(ϑ) Empirical temperature
Φ Dissipation function
ΦV Dissipation function due to pure volume changes
ΦG Dissipation function due to pure form changes
−ψ̇ Power of working of the conservative external forces of a body
τ Shear stress
∂V Surface of a body V

17.1 Concepts and Some Historical Remarks

Up to now we have devoted our attention to questions of fluid mechanical concern;
in particular, we determined with the aid of the mechanical laws the motion of
liquids (such as water, oil, etc.) and gases (air, etc). Apart from applying the general
laws of conservation of mass and linear and angular momenta, we also made
use of material technological-statements, as e.g. the postulation of a connection
between shear stress and shear angle in simple shear, or the relation between the
stress tensor and the strain rate (stretching) tensor in viscous fluids (Chap. 7). The
formulation of these laws has, however, been introduced in a rather bold fashion
without support by other physical principles; these laws find at last their support
by experimental tests. In so doing, the goal is to make the mechanical balance laws
integrable by complementary statements, which describe the material behavior, at
least in principle, to arrive at a closed system of equations. In this sense such laws or
equations are also called closure conditions. To explain this situation by means of a
very simple example, consider an unsteady parallel flow along a moving wall parallel
to the x-direction, see Fig. 17.1. With the assumptions of the velocity components
u, v in the x- and y-directions and the pressure p

Fig. 17.1 Flow along a
moving wall. Velocity profile
u(y, t) and fluid element
dxdy with the shear tractions
acting on it

d

dd

d

http://dx.doi.org/10.1007/978-3-319-33633-6_7
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u = u(y, t), v = 0, p = constant,

respectively, formulation of the balance of linear momentum in the x-direction for
the illustrated rectangular element yields

ρ
∂u

∂t
dx dy = ∂τ

∂y
dx dy,

or

ρ
∂u

∂t
= ∂τ

∂y
, (17.1)

which is a relation between velocity u and shear stress τ . Only if we complement
the above equation with the material equation

τ = η
∂u

∂y
, (17.2)

in which η is the dynamic shear viscosity that changes from material to material,
we obtain from (17.1) by substitution of (17.2) a differential equation for u alone,
namely

∂u

∂t
= ν

∂2u

∂y2
, (17.3)

which, subject to adequate boundary conditions, becomes integrable. For instance,
for a harmonically oscillating wall and a velocity field that dies out to a state of rest
at y = ∞ these boundary conditions read

u(y, t) = u0 cos ωt, y = 0,

u(y, t) = 0, y → ∞,
(17.4)

and the solution of (17.3) takes in this case the form

u(y, t) = u0 exp

(
−
√

ω

2ν
y

)
cos

(
ωt−

√
ω

2ν
y

)
, (17.5)

which is graphically displayed in Fig. 17.2. That (17.5) is indeed a solution of (17.3)
subject to the boundary conditions (17.4) may be corroborated by simple substitution
of (17.5) into (17.3) and (17.4).

Thermodynamics is less concerned with the construction of such solutions—even
though this is equally its ultimate goal—but rather with the theoretical foundation
of material laws such as (17.2). Thermodynamics formulates physical principles,
according to which it can be decided, whether a postulated material law is physically
meaningful or senseless. It took a rather long time until such an interpretation of
the basic goals of thermodynamics crystallized. For its roots we have to go back to
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Fig. 17.2 Flow along a
moving wall. Distributions
of the horizontal velocity
perpendicular to the wall for
a harmonically oscillating
wall, plotted for different
times

the explanation of phenomena such as energy conversation and energy transfer in
heat engines; this then merged into a theory of heat.

To reach the above goal two principal laws had to be recognized. The first concerns
the extension of the notion of energy to non-mechanical forms. The decisive
quantities are in this regard the internal energy and heat and the recognition of their
equivalence. The balance law, expressing conservation of the sum of all mechanical,
thermal, (electrical and chemical) energy forms, is expressed as the First Law of
Thermodynamics. It describes how the individual forms of energy balance, i.e.,
transfer into one another, provided such transfers are allowable at all. Regarding
the transfer of the individual energy forms the First Law is symmetric. Changes of
mechanical energy into thermal energy is in principle equally possible as the reverse
changes from thermal into mechanical energy.

Many observations and long experiences, however, showed that the transfer from
a non-thermal to a thermal energy form is favored by nature; this is the basic expres-
sion of the Principle of Irreversibility which finds its mathematical formulation in
the Second Law of Thermodynamics. This law essentially expresses the fact that
physical processes favor a direction in their evolution. This is sometimes expressed
by saying that physical processes cannot be traversed in the reversed direction of time.
If such time reversal is possible, the respective process must be exceptionally seldom
and physically idealized. For the mathematization of the notion of irreversibility the
concept of entropy was created. This is a physical quantity, which is very difficult
to intellectually grasp; indeed, its meaning and interpretation can probably best be
disclosed by the mathematical laws, which are formulated for it.1

1For didactic reasons it is recommended here to most readers to initially accept these mathematical
laws and not to ask too deeply for their physical meaning or background, but to accept their functional
and mathematical implications and to understand their consequences analytically. The reason for
this recommendation is that the laws are only physically fully justifiable for simplified cases, but
must be accepted as axioms in the general case.
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Without dwelling into details (because they would hardly be understood at the
present stage of the development), we mention that in a modern formulation of the
Second Law, apart from the entropy density also entropy flux, entropy production
and entropy supply are defined for which a balance law is formulated. To this end,
consider a material volume V with boundary ∂V for which the following balance
statement holds2

{
Time rate of change
of the entropy in, V

}
=
{

Flux of the entropy
through the boundary ∂V of V

}

+
{

Production of entropy
within the volume V

}

+
{

Supply of entropy from
outside to the volume V

}
. (17.6)

In this form the Second Law finds its expression in the statement that the entropy
production in the body is not allowed to take negative values for whichever physical
process that may take place within the body.3 This exclusiveness of the sign of the
entropy production is expression of the irreversibility. If the production vanishes,
the process is reversible, if it is negative, the process is physically not realizable.
Moreover, if the entropy flux from the outside vanishes, it follows from statement
(17.6) that the time rate of change of the entropy in V cannot be negative, but must
grow or remain constant.

These statements are simple mathematical inferences drawn from the balance
(17.6) and the requirement that the entropy production is not allowed to become
negative. They must in the subsequent text be ‘filled’ with physical content. The
fact that the balance (17.6) must hold for all possibly thinkable processes finds its
consequences in the fact that this apparently implies constraints for the material
equations. Such a constraint is, for instance the requirement that the shear viscosity
is a positive quantity. Expressed somewhat more generally, the material functionals
for a bodymust be so structured that theymake it impossible for a body in any process
deduced from the equations to violate the fundamental axioms of physics.

2Such a balance may be formulated for any quantity and need not be restricted to physical quantities
or entropy. Let in (17.6) e.g. ‘entropy’ be replaced by ‘money of any form in a bank’. Its amount will
grow if customers physically enter the building, make a deposit and leave. This is the flux of money
through the boundary. If within the building notes are printed or coins are pressed, then money is
produced; this production also can take negative values, if worn-out notes are destroyed. Finally,
if a customer makes a payment electronically from outside to a deposit of the bank, then money is
supplied. Of course, in this example of a balance law, the production ordinarily vanishes, because
only special banks are authorized to print notes and press coins. The law governing the growth of
money in the bank is then a conservation law.
3That the entropy production must be non-negative is a convention associated with the definition of
the entropy. It would at this stage be better to request the entropy production to have only one sign.
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air

(a) (b)

(c) (d)

Fig. 17.3 Irreversible Processes. a Consecutive decrease of the jumping heights of a bouncing
ping-pong ball. b Oscillations of a mathematical pendulum in air. c Mass oscillator with spring
and dashpot. d Electrical circuit with capacity, resistivity and induction coil

Irreversible processes are overwhelmingly observed in Nature. Obvious are those,
which cannot be observed in temporally reversed situation. One example is the bounc-
ing ping-pong ball, whose height of jump decreases from one jump to the next and
whose evolution in reverse sequence has never been observed, see Fig. 17.3a. Another
example is a pendulum oscillating in air, of which the amplitude decreases with
time, whereby the air is heated, see Fig. 17.3b. The initial energy of the pendulum
is transferred after some time to the air and the pendulum is in its position at rest. It
has never been observed that the pendulum would be excited from its rest position
by still air whilst the latter is being cooled.

The examples, which demonstrate the irreversibility in the governing equations
and which are probably familiar to the reader are illustrated in Fig. 17.3c, d: the
mechanical and electrical oscillators. For a mass point M, which is exposed to a
spring force proportional to its elongation x, cx, and a damping force, proportional
to the rate of elongation ẋ, γẋ, application of Newton’s fundamental law yields the
differential equation

ẍ + γ

M
ẋ + c

M
x = 0. (17.7)

For the electrical circuit (Fig. 17.3d) with condenser of capacity C, resistance of
resistivity R and inductance of inductivity L, application of Kirchhoff’s law after
closure of the circuit yields for the electric current the ordinary differential equation

Ï + R

L
İ + 1

LC
I = 0. (17.8)

In these equations dots denote differentiation with respect to time, and so it is obvious
that time reversal that changes dt into −dt will change the sign in the second terms
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Fig. 17.4 Irreversible
expansion and mixing. a
Flow of a gas from one bottle
into a vacuum bottle. b
Diffusive mixing of two
originally separated gases

vacuum

plastic 
folio

(a) (b)

on the left-hand sides of (17.7) and (17.8), but leave the other terms unchanged. With
the initial conditions

x(t = 0) = 0, I(t = 0) = 0,

ẋ(t = 0) = ẋ0, İ(t = 0) = İ0,
(17.9)

the solutions can be written as

x = ẋ0

ω
exp
(
− γ

2M
t
)

sin ωt, I = I0 exp

(
− R

2L
t

)
sin Ωt

ω =
√

c

M
− γ2

4M2
, Ω =

√
1

LC
− R2

4L2
.

(17.10)

For positive γ or R, they represent damped oscillations. In the mechanical example,
kinetic energy at time t = 0 is transformed into frictional heat, in the example of
the electric circuit the energy originally stored in the condenser is transformed into
Joule heat. The processes evolving reversed in time (change of the sign of γ and R)
would result in temporally amplified oscillations, which has never been observed.

An irreversible process can also be illustrated by the flow of a gas into a vacuum
container, see Fig. 17.4a. A bottle filled with a gas—usually NO2 is used, because
of its brown color it is easily visible—is connected by a tube with a second bottle
(initially under vacuum) until the gas in the bottle is subjected to the same pressure.
However, one has never observed that the gas would by itself collect itself in one of
the two bottles.

Analogously, two masses of different gasses confined in a bottle and separated
by a foil will, after removal of the foil, (slowly) mix until a homogeneous mixture
of both gases is reached. This mixing process is called diffusion, and it can, if left
un-accelerated by adequate means, last very long. A de-mixing of the mixed gases
by themselves has never been observed. Analogously, one has never observed that a
solution of sugar in water at moderate concentration would spontaneously separate
the sugar from the water.

Historically, the formulations of the First and Second Laws of Thermodynam-
ics must be located in the 19th century, when one recognized that heat is some
sort of energy. In fact, this recognition came long after the realization of the steam
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engine, which transforms heat into mechanical work. Its first construction in Europe
is attributed to the French physicistDenisPapin (1647–1712) and falls into the period
around 1690. As already mentioned in the introduction, it was, however Nicolas
Léonard Sadi Carnot (1796–1832)4 who first formulated the generation of usable
work from heat in a general form. In so doing he formulated the notions of a perfect
machine and reversible processes, which are today known as Carnot’s circular
processes. He also arrived at a certain limited formulation of the Second Law.

Carnot’s memoirs were largely only published 40 years after his death. This
is the likely reason, that most thermodynamicists attribute the merit of having first
hypothesized the equivalence of heat and energy to Robert Mayer (1814–1878),5

and to have spelled out the fact that in a closed system the total energy is conserved,
where ‘closed’ means ‘materially bounded’.

Independently of Mayer’s theoretical considerations of 1842 and 1845 James

Prescott Joule (1818–1889)6 laid down between 1843 and 1848 the experimen-
tal foundations of the First Law by determining the mechanical heat equivalent.
Clifford Ambrose Truesdell (1919–2000), however, has shown in his histori-
cal studies (1980) that these attributions must be regarded as exaggerations, since
Mayer’s works only allow the interconvertibility of heat and work for isothermal
processes; moreover, he mentions that Joule’s experimental results were subject to
such large fluctuations that Lord Kelvin doubted the correctness of Joule’s infer-
ences. It appears that around 1850 the First Law and the Second Law were ‘somewhat
in the air’, but had yet still not clearly been spelled out.

On the basis of the works by Mayer, Joule and above all Carnot, Julius
EmanuelClausius (1822–1888)7 then succeeded in the years (1850–1865) to tailor
the two thermodynamic laws in a mathematical form, first for reversible circular
processes (1850) and later (1862) for irreversible processes. In so doing, he expressed
the First Law as a balance between heat, work and internal energy and introduced
for the formulation of the Second Law the new thermodynamic quantity, which he
called entropy (1865). In his memoir of 1865 he spelled out the famous sentences8:

• ‘Die Energie der Welt ist konstant: The energy of the world is constant’, and
• ‘Die Entropie der Welt strebt einemMaximum zu: The entropy of the world strives
for a maximum’.

4For a short biography of Nicolas Léonard Sadi Carnot, see Fig. 17.5.
5For a short biography of Julius Robert von Mayer, see Fig. 17.6.
6For a short biography of Juames Prescott Joule, see Fig. 17.7.
7For a short biography of Rudolf Julius Emanuel Clausius, see Fig. 17.8.
8These sentences may possibly have led natural philosophers to spell out inferences of grandeur
and world-embracement which seem to be large and unjustified exaggerations, given the relatively
simple thermodynamic concepts dealt with by Clausius for which the above two sentences apply.
In Clausius’ context the world is a very simple physical system which is not apt to describe the
complexity of the universe.
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Fig. 17.5 Nicolas Léonard Sadi Carnot (1. June 1796–24. Aug. 1832)

Nicolas Léonard Sadi Carnot was a French physicist and engineer who, with his the-
oretical works on heat engines and the related cyclic (Carnot) processes, founded what
became thermodynamics. He was born in Paris into a family of politics and science and was
persuaded by his father to study the technical sciences. He entered École Polytechnique in
Paris in 1812, but left it in 1814 for a military career in the French army’s corps of engi-
neers. In 1819 he asked for discharge to fully concentrate on science: Chemistry, physics,
mathematics, natural sciences and political economy.
In his studiesCarnot concentrated on steam engines performing cyclic processes. Empirical
studies by Newcomen (1664–1729) of these had in the early 18th century (in 1712 in the
form of piston-operated steam engines) been studied by James Watts (1736–1819). Sadi
Carnot felt it necessary to scrutinize the phenomenon of the ‘generation of motion by the
moving of heat’. The results of these efforts were shown in 1824 in a memoir ‘Réflections
sur la puissance motrice du feu et sur les machines propres à developer cette puissance’,
[6]. This was the only paper that was published in Carnot’s life time. Only in 1890 an
English translation appeared [7], and in 1892 Wilhelm Ostwald (1853–1932) published
a translation into the German language [8].
Emile Clapeyron (1799–1864) was the first to reflect in 1834 on Carnot’s paper, but
in spite of his positive reflection, did hardly find any response. Only around the 1850s the
situation improved: William Thomson (Lord Kelvin) was motivated in 1848 by Sadi

Carnot’s reflections to introduce his temperature scale. Similarly,RudolfClausius noted
in Poggendorffs ‘Annalen der Physik und Chemie’ of 1850 and emphasizedCarnot’s sci-
entific exceptional contribution. Surprisingly, neither William Thomson (Lord Kelvin)
nor Rudolf Clausius were aware of Carnot’s 1824-memoir, but only knew Emile

Clapeyron’s paper. Wilhelm Ostwald in 1892 explicitly stated that Sadi Carnot’s
1824-treatize intellectually presented what is today called the Second Law of Thermody-
namics.
Sadi Carnot died in 1832 at the young age of 36 due to scarlet and ‘brain fewer’ during a
cholera epidemy in Paris.
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Fig. 17.6 Julius Robert von Mayer (25. Nov. 1814–20. March 1878)

Julius Robert von Mayer, a German physician and physicist (by devotion), is often
claimed to be one of the founders of thermodynamics. He is best known for enunciating in
1841 one of the original statements of the conservation of ‘energy’ (expressed as ‘forces’ in
his paper), which is now often called the first version of the First Law of Thermodynamics,
namely that ‘energy in a body can neither be created nor destroyed’. This memoir submitted
to Poggendorff’s ‘Annalen der Physik und Chemie’ contained a number of fundamental
physical flaws and was initially rejected by the scientific community.
If energy of motion (kinetic energy) can be transformed into thermal energy (heat) water
would have to be transformed into heat by simply shaking it. This experiment led Julius

Mayer to the determination of the mechanical equivalent of heat, which he published in
1842 in the Liebig ‘Annalen der Chemie und Pharmacie’ [36]. Julius Mayer improved his
first value of mechanical equivalence of heat from 365 to eventually 425 kg*m/kcal [kg*
= force kilogram]. Today’s value is 4.184 KJ/kcal (=426.6 kg*m/kcal). This relation says
that work and heat are equivalent to one another; these are different forms of energy, which
can always be transformed to one another by the ‘universal’ ratio of 4.184 kJ/kcal. This is,
in fact, a first version of the First Law of Thermodynamics that was perfected by Hermann

Helmholtz (1821–1896) in the year 1847.
Julius Mayer was convinced about the significance of his discovery, but his lack of pro-
fessionalism in expressing himself scientifically and his speculative tendencies as well as
his obedient religiosity did not further his scientific recognition; the contemporary physi-
cists refused his conservation law of energy. One doubted Mayer’s qualification in physical
knowledge. In the aftermaths of these circumstances and because of the concurrent death in
1848 of two of his children, his mental state was thrown into turmoil. After an attempt of
suicide on 18 May 1850 he was hospitalized in two nerve clinics; upon his release, he was
a broken man. He retreated to his privacy, acted as a foster parent to the two daughters of
his elder brother after the latter’s death and devoted his time to his medical practice. Only
after 1860 he opened his life faint-heartedly to the public and recognized that his scientific
stand had somewhat increased. So, he received a late recognition of his achievements, even
though he was no longer able to properly enjoy it.
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Fig. 17.7 James Prescott Joule (24. Dec. 1818–11. Oct. 1889)

James Prescott Joule and his apparatus for measuring the mechanical equivalent of heat
in which the ‘work’ of the falling weight is converted into the ‘heat’ of agitation in the water.
The falling of the weight is transmitted to a rotation of the paddles in the water chamber
James Prescott Joule was an English physicist and brewer. James Joule studied the
nature of heat, and discovered its relation to mechanical work. This led to the law of conser-
vation of energy, the development of the first law of thermodynamics. The SI derived unit of
energy, the ‘Joule’, is named after James Prescott Joule. He worked with William

Thomson (Lord Kelvin) to develop the absolute scale of temperature the ‘Kelvin’-
temperature. James Joule also made observations of magnetostriction, and he found the
relation between the electric current through a resistor and the associated dissipated heat,
which is now called Joule’s first law.
The son of a wealthy brewer, Joule was tutored as a young man by the famous scientist John
Dalton and was strongly influenced by chemistWilliamHenry and Manchester engineers
Peter Ewart and Eaton Hodgkinson. He was also fascinated by electricity. However,
he left this field in the benefit of work on the convertibility of energy. In 1843 he estimated
the mechanical equivalent of heat and reported his results to the British Association for the
Advancement of Science in August 1843 and was there met by silence. By forcing water
through a perforated cylinder he could measure the slight viscous heating of the fluid; it led
to a mechanical equivalent of 4.14 J/cal. Subsequently he perfected the experiments: these
were so constructed that to thermally isolated water mass a precise amount of mechanical
energy was added and subsequently the raise in temperature was measured. This led to a
mechanical equivalent of heat of 4.41 J/cal. This had already been demonstrated in 1841
by Julius Robert Mayer. A further improvement of James Joule’s measurements in
1850 yielded 4.159 J/cal which is closer to today’s standard value 4.1860 J/cal. For original
literature see [19–24].
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Fig. 17.8 Rudolf Julius Emanuel Clausius (2. Jan. 1822–24. Aug. 1888)

Rudolf JuliusEmanuelClausiuswas a German physicist and mathematician and is considered
one of the founders of the science of thermodynamics, in particular a first rational version of its
Second Law. He studied mathematics and physics in Berlin, where he also became a Private Docent.
1855 he was called to the newly founded Eidg. Polytechnicum (now Swiss Federal Institute of
Technology) in Zurich, where he stayed until 1867, when he moved to the University Würzburg
and in 1869 to Bonn, where he stayed until his death.
His most famous paper, ‘Über die bewegende Kraft der Wärme’ (‘On the Moving Force of Heat
and the Laws of Heat which may be deduced therefrom’) [9] was published in 1850, and dealt
with the mechanical theory of heat. In this paper, he recognized—as William Thomson (Lord
Kelvin) did—thatSadi Carnot’s 1824-concept andMayer’s, Joule’s andHelmholtz’ energy
conservation law were in conflict. He restated the two laws of thermodynamics to overcome this
contradiction. He gave the conservation law of energy a new framing by establishing a new relation
between heat Q and work W and internal energy U: dU = dQ+ W. He recognized that heat was
not an unchangeable substance, but merely a form of energy, which can be transformed to other
energy forms (e.g., kinetic energy) in a combined statement. He formulated in 1854/56 [10, 11]
a first version of the second law with the statement (I) above. This is the expression that thermal
processes are directed; otherwise stated, thermal processes are not reversible. The heat transfer
relative to the temperature at this transfer (expressed as dQ/T ) is a measure for the transfer of heat
into work and thus, for the quality of the process, expressed by S = dQ/T .
In 1865, Clausius gave the first mathematical version of the concept of entropy, and also gave
it its name [14]. He chose the word ‘entropy’ because the meaning, from Greek, en + tropein,
is ‘content transformative’ or ‘transformation content’ (German: ‘Verwandlungsinhalt’). This
landmark paper in which he introduced the concept of entropy ends with the above statement (II)
of the first and second laws of thermodynamics, [13, 14].
Clausius also contributed profoundly to the kinetic theory of gases and electrolytic dissociation.
The concept of free wavelength was also introduced by him. These works led James Clerk

Maxwell and Ludwig Boltzmann to significant discoveries, which laid the theoretical foun-
dation of the kinetic theory of gases. And he researched on electrodynamics of moving bodies,
for which only Albert Einstein 1905 found its solution through the special theory of relativity.
See also [12, 13].
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Independently and almost simultaneously (1851) William Thomson (Lord
Kelvin)9 was led to a different formulation of the Second Law; he extended
Clausius’ theory to general fluids. He was coining the word thermodynamics,
introduced already in 1848 on the basis of the developments of Carnot the absolute
temperature, and demonstrated the universality of a temperature scale that is inde-
pendent of the particular properties of real thermometers.

Two new approaches, which complemented and extended this phenomenological
theory of spatially homogeneous processes, were introduced in the second half of
the 19th century. One of them is the statistical mechanics or statistical thermody-
namics, which led with James Clerk Maxwell’s (1831–1879)10 second theory
of kinetic gases to a field theory for gases. In this theory temperature, heat, work,
energy, stress and heat flux are defined as statistical expectation values of fluctuat-
ing quantities of molecules bouncing into each other. Maxwell formulated in his
kinetic theory also a field equation for the energy and, thus, gave the First Law the
form that is employed today. His formulation is neither restricted to homogeneous
processes nor states in the vicinity of thermodynamic equilibrium. Ludwig Boltz-

mann (1844–1906)11 later used Maxwell’s second theory (1872, 1875, 1896) to
derive his ‘H-theorem’,12 which in the kinetic theory is the analogue to the Second
Law, see also [2]. With it, one arrives at a natural definition of the entropy within the
kinetic theory.

The other, second, new approach was constructed by Josiah Willard Gibbs

(1839–1903).13 He formulated the classical phenomenological theory for the ther-
modynamic equilibria and applied it to systems consisting of several phases. He dis-
covered the so-called phase rule and introduced the chemical potentials to describe
the thermostatics of mixtures. Considerations of the equilibria of chemically react-
ing materials made it then necessary to also consider the behavior of the entropy at
the absolute zero of the temperature; it was necessary to identify a constant of inte-
gration, which was done by Walter Hermann Nernst (1864–1941)14 and later
by Max Planck (1858–1947).15 This theorem is often called the Third Law of
Thermodynamics.

9For a short biography of Lord Kelvin, see Fig. 17.9.
10For a short biography of James Clerk Maxwell, see Fig. 17.10.
11For a short biography of Ludwig Eduard Boltzmann, see Fig. 17.11.
12H is to be understood as capital Greek η and not as capital Roman h, since η is the common
mathematical symbol for entropy.
13For a short biography of Josiah Willard Gibbs, see Fig. 17.12.
14For a short biography of Walther Hermann Nernst, see Fig. 17.13.
15For a short biography of Max Karl Ernst Ludwig Planck, see Fig. 17.14.
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Fig. 17.9 William Thomson, first Baron Kelvin (26. June 1824–17. Dec. 1907)

AKelvin- Helmholtz instability rendered visible by clouds over Mount Duval in Australia
William Thomson, first Baron Thomson or Lord Kelvin, or Kelvin of Largs was a
mathematical physicist and engineer. He was professor of Natural Philosophy at Glasgow
University for more than 50 years and did important work in the mathematical analysis of
electricity and the formulation of the first and second law of thermodynamics. He also had
a successful career as an electrical telegraph engineer which propelled him into the public
eye and ensured his wealth, fame and honour. Largely for this work he was knighted by
Queen Victoria (1866), becoming Sir Willliam. Moreover, for his scientific key role
in developing the basis of the absolute temperature and the Kelvin temperature scale, and
because of his opposition to the Irish Home Rule, he received ennoblement as BaronKelvin
of Largs or Lord Kelvin (1892).
As a child William Thomson lost his mother at the age of 6 years (1830). The 4 boys and
2 girls were educated by their father who in 1834 became professor at Glasgow University.
So, son William started his university education in Glasgow at the age of 10. In the academic
year 1839/40 he won the class prize in Astronomy for his essay on the figure of the Earth.
When coming across Fourier’s Théorie analytique de la chaleur he committed himself to
study continental mathematics. He left Glasgow University in 1841 without a degree and
went to Cambridge, where he graduated in 1845. In 1846, already at the age of 22, he was
appointed to the chair of Natural Philosophy in the University of Glasgow, a position he kept
until 1899.
William Thomson’s important work on the first and second law of thermodynamics was
done in the years from 1847 onwards during about 10 years. Besides his fundamental work
on absolute zero, he and James Prescott Joule collaborated, one result being the Joule-

Thomson effect. He also phrased the second law in the form: It is impossible, by means
of inanimate material agency, to derive mechanical effect from any portion of matter by
cooling it below the temperature of the coldest of the surrounding objects.

Thomson did also major work on electricity and developed his Thomson bridge, Kelvin

generator, mirror galvanometer and many more. He was deeply involved in the proper build-

up of the telegraph cable across the Atlantic. He was also an enthusiastic yachtsman and

contributed to the perfection to many marine instruments. His interest in tides led to the

description of Kelvin waves and the Thomson tide predicting machine.
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Thomson published more than 600 scientific papers and filed 70 patents. His book ‘Treatise

on Natural Philosophy’ (1867) with Peter Guthrie Tait did much in unifying the modern

physics of that time.
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Towards the end of the 19th and the beginning of the 20th century the clas-
sical phenomenological thermodynamics reached a certain stage of completion
with works by Max Planck, George Hartley Bryan (1864–1928) Con-

stantine Carathéodory (1873–1950)16 and Pierre Maurice Marie Duhem

(1861–1916).17
Planck proposed in his works a form of the second law, which

today is known as the Clausius–Planck Inequality and can be regarded as the pre-
cursor of the Clausius-Duhem Inequality. Indeed, the two collapse to the same
statement for homogeneous systems. George Hartley Bryan was the first who
drew in his work on the foundations of thermodynamics attention to the fact that the
internal energy as an independent essential quantity must necessarily be introduced
to properly formulate the First Law, and Carathéodory gave in 1909 an axiomatic
justification of thermodynamics by introducing an axiom concerning the reachability
by a system of thermodynamic states under adiabatic isolation. Unfortunately, his
postulate cannot be extended to general systems.

The true breakthrough to a thermodynamic field theory was reached when Pierre

MauriceMarieDuhemwas formulating the Second Law for a material body essen-
tially, but not yet completely, in the form (17.6) of a balance law. Mathematically,
his Second Law can be written as

ḢV � −
∫

∂V

q · n
T

dA. (17.11)

Here, ḢV denotes the time rate of change of the entropy of the body in V and q
is the heat flux vector, so that −q · n is the heat supplied to the body through the
boundary ∂V = 0 of V per unit time and T is the absolute temperature. Inequality
(17.11) expresses the fact that the heat gained by a body divided by the absolute
temperature is a lower bound for the entropy growth.MaxPlanck restricts attention
to homogeneous processes for which − ∫∂V q · n = Q, which transforms (17.11) to
the Clausius–Planck inequality

ḢV � Q

T
, (17.12)

and Clausius’ analysed circular processes C for which
∫
C ḢV dt = 0, so that

Clausius’ form of theSecond Law takes the form
∫

C

Q

T
dt � 0. (17.13)

16For a short biography of Constantine Carathéodory, see Fig. 17.15.
17For a short biography of Pierre Maurice Marie Duhem, see Fig. 17.16.
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Fig. 17.10 James Clerk Maxwell (13. June 1831–5. Nov. 1879) (Left) Maxwell’s
Portrait; (Right) Commemoration of Maxwell’s equations at King’s College. One of three
identical IEEE Milestone Plaques, the others being at Maxwell’s birthplace in Edinburgh
and the family home at Glenlair. c© James Clerk Maxwell Foundation

James Clerk Maxwell was a Scottish scientist in the field of mathematical physics. His
most notable achievement was to formulate the classical theory of electromagnetic radiation,
bringing together for the first time electricity, magnetism, and light as manifestations of the
same phenomenon. Maxwell’s equations for electromagnetism, see Fig. 17.10b have been
called the ‘second great unification in physics’, after the first one, realized by IsaacNewton.
With the publication of ‘A Dynamical Theory of the Electromagnetic Field’ in 1865,
Maxwell demonstrated that electric and magnetic fields travel through space as waves
moving at the speed of light. The unification of light and electrical phenomena led also to
the prediction of the existence of radio waves.
Maxwell helped develop the Maxwell- Boltzmann distribution, a statistical means of
describing probability aspects of the kinetic theory of gases. He is also known for present-
ing the first durable colour photograph in 1861 and for his foundational work on graphical
statics in the determination of the internal stress distribution in statically determinate trusses
(Maxwell- Cremona maps). His discoveries in electrodynamics furthered advanced spe-
cial relativity and quantum mechanics; so his contributions to the science are considered to
be of comparable universality as those of Isaac Newton and Albert Einstein.

Maxwell entered in Oct. 1850 Cambridge University. In 1854 he graduated from Trinity

College with a degree in mathematics and was made a fellow in 1855. He worked exper-

imentally on the colours of light and demonstrated that white light would result from a

mixture of red, green and blue light. His paper ‘Experiments on colour, as perceived by the

eye, with remarks on colour blindness’ was presented in March 1855 to the Royal Society of

Edinburgh. In 1856 he applied to the Chair of Natural Philosophy at Marischall College in

Aberdeen (now University of Aberdeen). He stayed there until 1860 and focused his atten-

tion to the 200 years old problem of the Nature of Saturn’s rings. He proved that a regular

solid ring would not be stable, while a fluid ring would be forced by wave action to break

into blobs. Maxwell, thus, concluded that the rings must be composed of numerous small

particles, which he called ‘brick-bats’. His prediction was confirmed in 1980 by observations

during the voyager’s flyby.
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In 1860 Marischall college merged with King’s College in Aberdeen; so Maxwell was
laid-off. He subsequently assumed the Chair of Natural Philosophy at King’s College in
London. The following years (1860–1865) he developed ideas on the viscosity of gases and
dimensional analysis. Particularly noteworthy are, however, his advances on the fields of
electricity and magnetism. This was done in his multi-part papers ‘On the physical lines of
forces’ (1861/62), in which he provided conceptual models for electromagnetic induction and
magnetic flux and discussed electrostatics, displacement current and polarization of light.
In 1865 Maxwell resigned the chair of King’s College, London and moved back to his
home town, Glenlair, close to Edinburgh, where he wrote his textbook ‘Theory of Heat’ ,
which is still available today in its ninth edition, [33]. In 1871 he became the first Cavendish
Professor of Physics at Cambridge, where he was principally involved with the build-up
and installation of the institute and edited the work of Henry Cavendish (1731–1810).
Maxwell died on 5. Nov. 1879 of abdominal cancer at the age of 48.
For Maxwell’s papers, see e.g. [24–35] and [45]
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Naturally, the route of the developments was in the reverse direction. Duhem did not
derive his form of the Second Law by using theClausius or Planck inequalities. He
could have at most motivated his inequality by using them. Similarly, the Clausius-
Duhem inequality, one of today’s forms of the Second Law, cannot be derived but
only motivated by using Duhem’s inequality. One may motivate it as follows: The
left-hand side of (17.11) may alternatively be written as

ḢV = d

dt

∫
ρsdV,

where s is the specific entropy. This assignment makes the entropy an additive quan-
tity. The right-hand side of the imbalance (17.11) is the supply of entropy through
the boundary ∂V of V and given by the heat in-flow divided by the absolute temper-
ature. If there is, in addition, a volumetric supply of entropy from the outside, then
one may postulate it as a volumetric heat supply divided by the absolute temperature,
integrated over the volume. So, the right-hand side of (17.11) can be generalized to

−
∫

∂V

q · n
T

dA +
∫

V

ρq

T
dV,

where q is the heat supply per unit mass within the body. So, a natural extension of
(17.11) is

d

dt

∫

V

ρsdV � −
∫

∂V

q · n
T

dA +
∫

V

ρq

T
dV . (17.14)

To free this statement from the imbalance we now write it as an equality
d

dt

∫

V

ρsdV = −
∫

∂V

q · n
T

dA +
∫

V

ρq

T
dV +

∫

V

ργdV

︸ ︷︷ ︸
PV

, (17.15)
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Fig. 17.11 Ludwig Eduard Boltzmann (20. Feb. 1844–5. Sept. 1906) (Left) Boltzmann
1902; (right) his signature; (right below) Boltzmann’s bust in the courtyard arcade of the
main building, University of Vienna

LudwigEduardBoltzmannwas an Austrian physicist and philosopher whose greatest achieve-
ment was in the development of statistical mechanics, which explains and predicts how the prop-
erties of atoms (such as mass, charge, and structure) determine the physical properties of matter
(such as viscosity, thermal conductivity, and diffusion).
LudwigEduardBoltzmann, born in Vienna studied physics at the University of Vienna, starting
in 1863. He received his doctoral degree in 1866 working under the supervision of Joseph Stefan

on kinetic theory of gases. In 1867 he became a Privatdozent and Stefan introduced him to
Maxwell’s work. In 1869 at age 25 he was appointed full Professor of Mathematical Physics
at the University of Graz. In 1869 he spent several months in Heidelberg working with Robert

Bunsen and Leo Königsberger. In 1871, he wasKirchhoff with Gustav and Hermann

von Helmholtz in Berlin. In 1873 Boltzmann joined the University of Vienna as Professor of
Mathematics, where he stayed until 1876. Then,Boltzmannwent back to Graz to take up the chair
of Experimental Physics. Among his students in Graz were Svante Arrhenius, see Fig. 12.7,
and Walther Nernst, see Fig. 17.13. He spent 14 happy years in Graz and it was there that
he developed statistical mechanics. In 1890 he was appointed to the Chair of Theoretical Physics
at the University of Munich. In 1893, he succeeded his teacher Joseph Stefan as Professor of
Theoretical Physics at the University of Vienna. In 1900, he went to the University of Leipzig,
on the invitation of Wilhelm Ostwald but after the retirement of Ernst Mach, Boltzmann
returned back to Vienna in 1902. His students there included Karl Przibram, Paul Ehrenfest
and Lise Meitner.

Boltzmann was subject to rapid alternation of depressed moods, likely the symptoms of undiag-

nosed bipolar disorder, which dominated much of his later life. On Sept. 1906, during an attack

of depression he committed suicide. Boltzmann was an influential researcher and teacher both

in physics and natural philosophy, which has been on his unquestioned believe of the existence

of atoms and molecules as structural elements of our Nature. This was in contrast to the leading

defenders at the time of what is called energetics, among them the physicist. Ernst Mach, see

Fig. 19.9, the physical chemist Wilhelm Ostwald and the mathematical chemist Georg Helm.

http://dx.doi.org/10.1007/978-3-319-33636-7_12
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They saw energy, and not matter, as the chief compositing agents of the universe and denied the
existence of atoms and molecules. These opposite positions occupied the natural philosophy com-
munity strongly in the 1890s. Boltzmann’s most important contributions in the kinetic theory,
the Maxwell- Boltzmann distribution in the kinetic theory of dilute gases, the Boltzmann

statistics with the definition of entropy S as S = kBW , where kB is the Boltzmann constant and
W the probability, i.e., the frequency of occurrence of a macro state, and, at last, the success of
statistical physics is proof of this.
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and call PV the total and γ the specific entropy productions. Equation (17.15) is
nothing else than the mathematical form of the balance (17.6), andDuhem’s postulate
now corresponds to the statement

PV � 0, (17.16)

or, if (17.15) holds for any subvolume

γ � 0. (17.17)

Thematerial equations for a bodymust be so structured that in no process the entropy
production assumes a negative value.

The additional supply term (involving the radiation q in the above imbalances has
been introduced in 1957 by Clifford A. Truesdell (1919–2000) who called the
imbalance (17.14) the Clausius- Duhem inequality. We also mention for complete-
ness that even further generalizations of the entropy balance have been postulated.
These cannot well be motivated at this early stage of the developments and will
therefore be introduced later in this book.

17.2 General Notions and Definitions

17.2.1 Thermodynamic System

A thermodynamic investigation starts such that one identifies and delimits the region
in the space in which the investigation is conducted. In this spirit we mean by a
system a bounded spatial region or a bounded material substance. The substance
delimited by these boundaries or the corresponding control volume are called a
thermodynamic system. Everything that does not belong to the system is defined as
its environment. Directly or indirectly idealized properties are often assigned to the
system boundaries; these pertain, in particular to the permeability of these boundaries
with respect to matter and/or energy. The properties of these specializations are given
in the following

www.wikipedia.org
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Fig. 17.12 Josiah Willard Gibbs (11. Feb. 1839–28. April 1903) (Left) Photograph of
Josiah Willard Gibbs taken around 1895; (middle) Front cover of his book on Statistical
Mechanics; (right) Bronze memorial tablet at the entrance to the Josiah Willard Gibbs

Laboratories, Yale University

JosiahWillard Gibbs was an American scientist, who made important theoretical contri-
butions to chemical thermodynamics, physics and mathematics. He studied at the University
of New Haven and was from 1863–1866 tutor at the Yale College. Subsequently, he went
to Europe to continue his studies in Paris, Berlin and Heidelberg. 1871 he was appointed
professor at Yale University in New Haven.
His work on the application of thermodynamics was instrumental in transforming physical
chemistry into a rigorous deductive science. Together with James Clerk Maxwell and
Ludwig Boltzmann he created statistical mechanics (a term that he coined), explaining
the laws of thermodynamics as consequences of statistical properties of large ensembles of
particles. This work is summarized in his book [18] of which the front page is reproduced
above. Josiah Willard Gibbs also worked on the application of the Maxwell equations
to problems on physical optics. As a mathematician, he invented the modern vector calculus
(as did at the same time and independently Oliver Heaviside). They replaced thereby
the previously popular calculus of quaternions due to William Rowan Hamilton (1805–
1865).
Between 1876 and 1878 Gibbs wrote a series of articles summarized under the heading ‘On
the Equilibrium of Heterogeneous Substances’, which counts as one of the great achieve-
ments of mathematical physics of the 19th century and built the foundation of physical
thermodynamics to interpret physicochemical manifestations. Among his findings are the
so-called Gibbs relation and the Gibbs phase rule. These articles appeared in the ‘Trans-
actions of the Connecticut Academy’. The article ‘On the Equilibrium of Heterogeneous
Substances’ was translated into the German Language by the chemist Wilhelm Ostwald

(1853–1932). Josiah Willard Gibbs’ collected work is given in [4, 26, 47].
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Fig. 17.13 Walther Hermann Nernst (25. June 1864–8. Nov. 1941)

Walther Hermann Nernst was a German physicist who is known for his theories behind
the calculation of chemical affinity as embodied in the Third Law of Thermodynamics, for
which he won in 1920 the Nobel Prize in chemistry. He helped establish the modern field
of physical chemistry and contributed to electrochemistry, thermodynamics and solid state
physics.
Walther Nernst was born in west Prussia, now Poland and studied physics and math-
ematics in Zürch, Berlin, Graz and Würzburg, where he received his doctoral degree in
physics in 1887 under Friedrich Kohlrausch [37]. In 1889 he finished his habilitation at
the University of Leipzig with the physical chemist Wilhelm Ostwald [38]. 1890 he was
‘Private docent’ (assistant professor) at the University of Heidelberg, but moved in 1891
to the University of Göttingen, where he was associate professor and from 1895–1905 full
professor. In the same year he moved to the University Berlin as full professor and director
of the Institute of Physical Chemistry until 1933, when he was forced out because he was a
vocal critic of Adolf Hitler and Nazism.
Walther Nernst is best known for the Third Law of Thermodynamics, which he estab-
lished in 1905 and called the ‘New Heat Theorem’. It describes the behavior of matter as
temperatures approach absolute zero. This law is sometimes stated as follows. The entropy
of a perfect crystal at absolute zero is exactly equal to zero. An equivalent statement is: It is
impossible by any procedure, no matter how idealized, to reduce the absolute temperature
of any system to zero in a finite number of finite operations.
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Fig. 17.14 MaxKarl Ernst Ludwig Planck (23. April 1858–4. Oct. 1947) (Left) Planck
as a young man, 1878: (middle) his signature; (right) Planck in 1933

Max Karl Ernst Ludwig Planck was a prominent German physicist, who originated
quantum theory, which won him the Nobel Prize in Physics in 1918. He made many con-
tributions to theoretical physics, but his fame as a physicist rests primarily on his role as
an originator of the quantum theory. His name is also known through his presidency of the
Kaiser Wilhelm Gesellschaft and its re-naming in 1948 as the Max Planck Gesellschaft
(Society, MPS), which now includes more than 800 institutions over a wide range of scientific
specialties.
Born in Kiel, Germany, Max Planck spent his childhood in Munich and passed his high-
school degree (Abitur) at the ‘Maximillian’s Gymnasium’ in 1874. Despite his talents as
a singer, pianist and cellist, he chose physics for his academic education in Munich and
Berlin. At the Friedrich Wilhelm University Kirchhoff Gustav(see Fig. 3.42), Hermann
von Helmholtz (Fig. 4.10) and Karl Weierstrass were among his teachers. However,
he did self-education by studying Rudolf Clausius’ papers on the theory of heat. He had
already learnt of the principle of energy conservation, as a high school scholar and chose
Clausius’ second law as basis of his doctoral work with dissertation ‘On the Second Law of
the mechanical theory of heat’ (1879) [41]. In 1880 he passed his habilitation degree with a
thesis ‘On the states of equilibria of isotropic bodies’. These articles were hardly recognized
by the physics community; nevertheless Planck continued his research on the theory of
heat, in particular entropy and its role in mixtures of gases and fluid solutions.
From 1885–1889 Max Planck was professor at the Christian-Albrechts University in Kiel.
Here, he participated in an academic competition ‘on the nature of energy’. He won second
prize with his monograph ‘The principle of the conservation of energy’ [42]. In 1889Planck
was offered the chair of theoretical physics at the Friedrichs Wilhelm University in Berlin,
fist as associate and then as full professor, that had become vacant Kirchhoff after’s death
in 1887 and Boltzmann’s rejection of the first offer.
In Berlin in 1894 Planck turned his attention to the problem of black body radiation. The
problem had already been stated by G. Kirchhoff in 1859. The decisive solution covering



17.2 General Notions and Definitions 341

the range of all wave lengths was presented to the Deutsche Physikalische Gesellschaft
(DFG) (German Physical Society) in Dec. 1900 and was based on Planck’s postulate that
electromagnetic energy could be emitted only in quantized form; it had to be an integer
multiple of an elementary unit, Ė = h, where h, a frequency, is Planck’s constant. This
was the birth of quantum mechanics.
In this book we shall work in parts on extensions of Planck’s work on the second law of
thermodynamics, [40–43]
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Definition 17.1

• An open system allows exchange of matter and energy with its environment.
• A system is called materially closed, if across its boundary no transport of matter

can occur.
• A system is called absolutely closed if across its boundary neither matter nor

energy can be exchanged.
• A system is called adiabatic, if it does not exchange any heat with its environment.

Of special significance in these definitions is the difference between material
closeness and absolute closeness. Apparently a material volume, as introduced in
continuum mechanics is a materially closed but not necessarily absolutely closed
system, since it can exchange heat and therefore energy with the surroundings. If
one interprets the mass of a gas confined in a cylinder as a system, see Fig. 17.17a,
then this defines a materially closed system; in spite of possible volume changes the
mass of the gas remains constant. However, a turbine, see Fig. 17.17b, is an open
system, since vapor or fluid enters and leaves the turbine via openings, so there are
mass flows into and out of the system.

17.2.2 Thermodynamic States, Thermodynamic Processes

The delineation of a system against its environment is a first step of its description.
Within the system boundaries physical processes are taking place which are described
by a certain number of physical quantities. At a certain time t these quantities have
certain values by which the state of the system at time t is characterized. If the values
of these quantities are followed for some time, then they describe a thermodynamic
process within the system. Therefore, one may interpret a thermodynamic state as a
time slice or snapshot of a thermodynamic process.

In classical thermodynamics, which restricts itself to the description of macro-
scopically measurable properties of systems, a relatively small number of variables
describe the properties of the systems. It is one step of the description of a thermody-
namic system to identify the physical quantities for a particular problem which char-
acterize a thermodynamic process. For the confined gas in the cylinder of Fig. 17.17
these variables are the volume V , the pressure p and the mass m of the system.
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Fig. 17.15 Constantine Carathéodory (13. Sept. 1873–2. Feb. 1950)

Constantine Carathéodory was a Greek mathematician who spent most of his professional
career in Germany. He made significant contributions to the theory of functions of a real variable,
the calculus of variations, and measure theory. His work also includes important results in confor-
mal representations and theory of boundary correspondence. In 1909, Carathéodory pioneered
the Axiomatic Formulation of Thermodynamics along a primarily geometrical approach.
Carathéodory was born in Berlin into a family of an Osmanian diplomat from Constantinople
and grew up in Brussels, where he studied civil engineering and then worked until 1902 inter-
nationally on several construction sites, when he decided to study mathematics. His Ph.D. topic
was ‘Variational Calculus’ under Hermann Minkowski in Göttingen. There he also received
his Habilitation under Felix Klein. He was professor of mathematics, mathematical physics and
engineering at the Technical Universities Hannover and Breslau (now Wroclaw) as well as the
Universities Göttingen and Munich, where he retired in 1938. He also had an assignment at the
University in Smyrna. His scientific contributions to mathematics and mathematical physics are
exceptional. We restrict attention here to Thermodynamics:
In 1909,Carathéodory published a pioneering work ‘Investigations on the Foundations of Ther-
modynamics’ [5] in which he treated the Laws of Thermodynamics axiomatically. It is sometimes
said that he was using only mechanical concepts and the theory of Pfaff’s differential forms
(named after Johann Friedrich Pfaff (1765–1825)). However, in reality he also relied heavily
on the concept of an adiabatic process. Its physical meaning rests on the concepts of heat and
temperature. Carathéodory’s ‘first axiomatically rigid foundation of thermodynamics’ [5] was
acclaimed by Max Born [3], but criticized by Max Planck [44].
In his theory he simplified the basic concepts, for instance heat is not an essential concept but a
derived one. He formulated the axiomatic principle of irreversibility in thermodynamics stating that
inaccessibility of states is related to the existence of entropy, where temperature is the integration
function. The Second Law of Thermodynamics was expressed via the following axiom: “In the
neighborhood of any initial state, there are states which cannot be approached arbitrarily close
through adiabatic changes of state.” In this connection he coined the term adiabatic accessibility,
see [25].
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Fig. 17.16 Pierre Maurice Marie Duhem (10. June 1861–14. Sept. 1916)

Pierre Maurice Marie Duhem was a French physicist, mathematician, historian and
philosopher of science, best known for his writings on the indeterminacy of experimental
criteria and on scientific development in the Middle Ages. Duhem also made major contri-
butions to the sciences of his days, particularly in the fields of hydrodynamics, elasticity, and
thermodynamics. He studied at the École Normale Suérieur and taught theoretical physics
at the Universities of Lille, Rennes and Bordeaux.
His philosophical ideas are expressed in The Aim and Structure of Physical Theory [15],
which appeared in 1914. In this work, he opposed Newton’s statement that the Principia’s
law of universal mutual gravitation was deduced from ’phenomena’, including Kepler’s
second and third laws. Newton’s claims in this regard had already been attacked by critical
proof-analyses of the German logician Leibniz and then most famously by Immanuel Kant,
following Hume’s logical critique of induction. But the novelty of Duhem’s work was his
proposal that Newton’s theory of universal mutual gravity flatly contradictedKepler’s Laws
of planetary motion because the interplanetary mutual gravitational perturbations caused
deviations from Keplerian orbits.
Duhem is well known for his work on the History of Science, which is documented in his
10 volume treatize Le système du monde: histoire des doctrines cosmologiques de Platon
à Copernic (The System of World: A History of Cosmological Doctrines from Plato to
Copernicus) (1914). He was instrumental in working out the role played by the Middle
Ages to the sciences of his time.
Duhem is also known for his work in thermodynamics, being in part responsible for the
development of his form of the Second Law, in this book expressed by Eq. (17.11). This
was a generalization of the Second Law in Rudolf Clausius’ form and eventually led to
the Clausius- Duhem inequality. He is also known via the Gibbs- Duhem relation and the
Duhem- Margules equation. Duhem thought that from the first principles of thermody-
namics physicists should be able to derive all the other fields of physics—e.g., chemistry,
mechanics, and electromagnetism, but he failed in achieving this. With the physicist, Ernst
Mach and the physical chemist Wilhelm Ostwald, Duhem also shared a scepticism with
regard to the existence of atoms.
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Fig. 17.17 System identifications. a Gas in a cylinder as an example of a materially closed system.
Despite volume changes the mass of the gas inside the system remains constant. b Steam turbine
as an example of an open system

The variables, which describe the state of a system, are called state variables.
Sometimes, one differentiates between external and internal state variables; the
former characterize the mechanical state, i.e., position, velocity, acceleration; the
latter describe the thermodynamic state and, thus, comprise mass, volume, pressure,
etc. The differentiation between external and internal state variables is, however,
artificial, not unique and not necessarily meaningful, since the state variables interact
and, thus, cannot really be separated into two different groups.

In the above discussion we have defined a ‘state’ for a system as a whole. This
is obviously only meaningful, if the state variables are typical for the system as
a whole. In this sense one speaks of homogeneous systems and homogeneous
states. Inhomogeneous systems may occasionally be subdivided into a number of
nearly homogeneous sub-systems. In this way a material body may be divided into
infinitesimal volume elements of an infinite number of nearly homogeneous systems.
The homogeneity of the states in the individual volume elements, however, is not
exactly satisfied, since non-vanishing gradients of the state variables may arise. In
thermodynamics one generally assumes that the gradients are small in these cases so
that they are not affecting the state of the system.

A special state is the thermodynamic equilibrium.

Definition 17.2

• An equilibrium state is a state of a thermodynamic system, which does not change
in time when external actions on the system are absent.
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The theory of thermostatic equilibria is also called thermostatics. A system that
consists of two or more substances is called a heterogeneous system.

In thermodynamics the participating substances are also called phases; however,
it is not mandatory that the different phases are different chemical substances. At the
phase boundaries the values of the phase variables may change discontinuously. A
container filled with water and its vapor is a heterogeneous two-phase system; the
chemical composition of water and water vapor is the same, but across the phase
boundary e.g., the density changes abruptly. Mixtures consisting of several chemical
elements are also heterogeneous. They belong to the multiphase systems, and it is
easy to see that such systems are in general heterogeneous, since their composition
generally changes from position to position. Non-heterogeneous systems are single
phase systems and are therefore also called simple systems. Their thermodynamic
state can completely be characterized by volume, mass and pressure. For instance, air
can be regarded as a simple system, even though it is composed of different phases
(gases). In the following we shall mostly be concerned with such simple systems.

17.2.3 Extensive, Intensive, Specific and Molar State
Variables

It was already mentioned that a simple system is characterized by the state variables:
mass m, volume V and pressure p. In heterogeneous systems, beside these also other
state variables occur. We shall here denote state variables by the letter Z .

A homogeneous system can be arbitrarily thought to be divided into partial sys-
tems. The original system and the partial systems are described by their state vari-
ables. A state variable, of which the value is the sum of the respective state variables
of the individual partial systems, is called an extensive quantity; else, it is called an
intensive quantity. The mass m and the volume V of a system are extensive vari-
ables; they are today more often also called additive variables. A state variable that
is divided by the mass or volume of the system,

z1 = Z

m
, z2 = Z

V
, (17.18)

is called a specific state variable. Examples of such state variables are:

mass density ρ = m

V
,

specific volume18 v = V

m
.

(17.19)
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If the state variable is, however, divided18 by the mole number n (i.e., the number
of mole masses in the system), then one obtains the molar state variable

Zm = Z

n
. (17.20)

Since, in particular

m = Mn,

where M is the mole mass, one obtains the connection

z = Zm
M

, or Zm = zM (17.21)

between the specific and molar state variables.
For each homogeneous system that is divisible into sub-systems, we have for the

specific state variable z the relation

z = ZA
mA

, (A = 1, 2, . . .). (17.22)

This says: the value of the state variable z is independent of the sub-system. If Z is
an extensive quantity of the system, one obtains

Z =
∑

ZA = z
∑

mA = zm. (17.23)

In other words, the state variable Z is proportional to the mass of the system. This
property offers an alternative possibility of the notion of extensive or additive prop-
erty. All these notions will now be summarized in the following definition:

Definition 17.3

• A quantity that is proportional to the mass of a system is called extensive or
additive. If the state variable is independent of the mass of the system, it is called
intensive.

• A quantity that is measured by units of the mass is called specific state variable.
If it is measured in units of the mole size, it is called a molar state variable.

Examples of extensive or additive variables are the mass—obviously—and the
volume; every specific quantity, however, is intensive, as e.g. are the pressure and
the temperature. As an example, consider a container with volume V , in which a
two phase system, consisting of water and saturated water vapor with total mass m,
see Fig. 17.18. The partial volumes of water and water vapor are given by VW and

18The specific volume is denoted here by v, which is also often used to indicate a velocity component.
We trust this notation will not cause confusion.
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Fig. 17.18 Two phase
systems. Container with
volume V , filled with water
(index W) and water vapor
(index V )

V V V

VV , and the common pressure of the two phases is p. The specific volumes vW and
vV depend on the pressure; this functional dependence is assumed to be known. We
would like to determine the masses mW and mV . Because of the additivity property
we have

VW + VV = V, mW + mV = m, (17.24)

and
VW = mWvW (p), VV = mV vV (p). (17.25)

These four equations allow determination of the unknowns

mV = V − mvW

vV − vW
, VV = mV vV ,

mW = V − mvV

vW − vV
, VW = mWvW .

(17.26)

Provided the equations of state vW (p) and vV (p) are known, the partial masses and
volumes can be calculated.

17.2.4 Adiabatic and Diathermic Walls

In Definition 17.1 materially closed and absolutely closed systems were defined.
These notions are now complemented by two further system specializations as
follows:
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adiabatic wall

diathermic walldisthermic wall

Fig. 17.19 Illustrating thermodynamic equilibria. When A and B are in equilibrium and B and C
are in equilibrium, then A is also in equilibrium with C

Definition 17.4

• Two systems, separated by an adiabatic wall can be in equilibrium at all values
of their state variables.

• Two thermodynamic systems that are in different states of equilibrium and are
brought in contact with a diathermic wall reach, after a long time a common
thermodynamic equilibrium.

Note that these definitions are indirect. This is so, because the description of the
notion ‘adiabatic wall’ and ‘diathermic wall’ require knowledge of the temperature
and heat flux which have not yet been introduced. Later we shall call a wall adia-
batic, if it does not exchange heat with the environment, and two systems will be in
equilibrium with one another, if they possess the same temperature.

Consider now the equilibrium between three systems A,B and C, see Fig. 17.19.
We assume that system A is in equilibrium with system B and system B is in equilib-
rium with system C. If one separates the systems from one another without changing
their states and if one brings them in contact such that systems A and C are in contact
with one another via a diathermic wall, then experience tells us that systems A and
C are equally in equilibrium with one another. In other words, if two systems are in
equilibrium with a third, then the three systems are also in equilibrium amongst all of
them. This property of transitivity of thermodynamic equilibria is sometimes called
the zeroth Law of Thermodynamics. The notion of thermodynamic equilibrium
is also symmetric, in other words, if a system A is in equilibrium with system B,
then system B is also in equilibrium with system A. And, finally, the thermodynamic
equilibrium also possesses the property of reflexivity, i.e., system A is trivially in
equilibrium with itself. With these three properties thermodynamic equilibria ful-
fill mathematically the properties of equivalence relations. Systems, which are in
mutual equilibrium, are described by one and the same equivalence class, whilst
systems which are not in equilibrium with the latter belong to different, alien equiva-
lence classes. It is apparent that one would like to characterize equivalence classes by
a state variable, of which the value would allow to differentiate between the different
equivalence classes. We shall see that this variable is the temperature.
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17.2.5 Empirical Temperature, Gas Temperature
and Temperature Scales

The notion of the temperature is closely connected with our understanding of the
notions ‘cold’ and ‘warm’ or ‘hot’. Such sensations are purely subjective and do not
allow a clear and unique definition of the notion ‘temperature’. In fact, our sensation
of ‘hot’ and ‘cold’ is not even monotonic but rather relative. We may on occasion feel
severe coldness as rather hot, for instance when we touch cold CO2-ice and then get
blisters. It transpires that the definition of the temperature is difficult and should be
chosen independently of the human sensation. It is, however, not possible to define
the temperature in a direct manner. It must be defined indirectly via the notion of
thermodynamic equilibrium. One says: Two systems have the same temperature, if
they are in thermal equilibrium with one another. This statement is so expressed that
the temperature is only defined for equilibria. One can express this fact also in the
reverse way: As long as the temperatures of two systems differ from one another
they cannot be in a common equilibrium.

There is also another approach to define temperature, and this approach is also
applicable to non-equilibria. According to this approach the empirical temperature
is any physical quantity, which allows establishment of a unique connection between
the value of this quantity and the sensation of heat (or the degree of hotness) of a
system. Of course, this connection must be unique; this implies that the functional
relation of the empirical temperature must depend monotonically on the sensation
of heat, see Fig. 17.20a. Empirical temperatures are measured with thermometers in
which a physical quantity is uniquely related to the degree of hotness. This variable
is for

• the gas thermometer a pressure, for
• the mercury thermometer or the fluid thermometer a volume, and for
• resistivity thermometers an electrical resistivity.

empirical temperature
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Fig. 17.20 Illustrating the definition of the temperature. a The empirical temperature must be
connected with the sensation of heat in a monotone fashion. b Thermometer that uses the thermal
expansion of a fluid as a measure of empirical temperature
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For instance, a fluid is apt as thermometer substance, if this fluid experiences a
thermal expansion when heat is supplied to it, but does hardly change its volume
when being subjected to pressure variations. If the empirical temperature is denoted
by θ, one may regard the specific volume alone as a function of θ. If this fluid is
kept in a glass container to which a pipette is attached vertically, the position of the
fluid meniscus in the pipette can be taken as a measure for the empirical temperature.
With reference to Fig. 17.20b two positions l0 and l1 can be assigned the empirical
temperatures θ0 and θ1, and so one is led via linear interpolation to the representation

θ = θ0 + θ1 − θ0

l1 − l0
(l − l0), (17.27)

in which larger fluid-wetted capillary lengths indicate higher temperatures.
This example of the fluid thermometer demonstrates the arbitrariness of the rela-

tion by which a value of the temperature is assigned to a particular state of the
thermometer. It also becomes certainly clear that in general each thermometer is
characterized by its own empirical temperature. In order to remove this arbitrariness,
one would have to agree to declare a certain empirical temperature as the generally
accepted one, or one would have to corroborate the question whether an absolute
or universal temperature exists, with the property that to a certain thermodynamic
state of a system always the same value of the temperature can be assigned, no matter
with what kind of a thermometer it is measured. Of course, into the definition of such
a temperature no specific properties of the thermometer can enter. As we shall see
later in this chapter, the Second Law of Thermodynamics will allow the definition of
such a temperature. It was introduced by LordKelvin in the year 1848 and is called
in his honor the Kelvin temperature. It can be realized by the definition of an ideal
gas thermometer. We shall use the convention to denote any empirical temperature
by the letter θ and the absolute temperature by the symbol T .

The measurement of the temperature by an ideal gas thermometer is based on the
fact that for the gaseous form of a pure substance the thermal equation of state has the
form θ = θ(p, Vm). Therefore, by measuring the pressure and the mole-volume alone
one can deduce the temperature. At small pressure this equation can be written as

pVm = A0(θ) + A1(θ)p + · · · , (17.28)

with coefficients Ai(θ), i = 0, 1 which are only functions of the empirical temper-
ature. For isothermal processes (θ = const.), the product pVm only depends upon
the pressure. Now, one would expect that the coefficients A0(θ),A1(θ), . . . for dif-
ferent gases would assume different values. This, they do, but A0(θ) is independent
of the gas (compare Fig. 17.21), which shows the isotherms of the product pVm for
various gases). Consequently, one is tempted to define by A0(θ) a special empirical
temperature Θ(θ) by setting

A0(θ) = RmΘ(θ) (17.29)
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Fig. 17.21 Isotherms of
ideal gases. Isotherms of the
product pVm for the gases
He, Ar, N2 at the triple point
of water

with the universal or molar gas constant Rm. We shall demonstrate later that Θ can
be identified with the absolute temperature T . Equation (17.28) can therefore also
be written as

pVm = RmT + A1(T)p + · · · , (17.30)

where we have now replaced Θ by T . An ideal gas is characterized by the thermal
equation of state

pVm = RmT . (17.31)

It represents for real gases the limiting behavior at vanishingly small pressure.
The value of the universal molar gas constant Rm depends upon the choice of

the temperature scale for the absolute temperature. This scale is the Kelvin scale,
according to which 1 Kelvin (= 1K) is given by

1 K = Tr
273.16

, Tr = 273.16, (17.32)

and Tr is the temperature at the triple point (at which water, ice and water vapor are in
thermodynamic equilibrium). Because of historical reasons this temperature has the
value Tr = 273.16. Provided once the temperature scale is fixed, one can measure
the value of pVm at T = Tr and obtains from this the value

Rm = (8.31451 ± 0.00007) J mol−1 K−1. (17.33)

Besides the Kelvin temperature there are also other empirical temperatures in
use. These are today defined by agreed transformation formulae from and to the
Kelvin temperature.

The Celsius temperature19 t is defined by

t = T − 273.15 [ ◦C] (17.34)

19After Andreas Celsius (1701–1744), a Swedish astronomer, mathematician and physicist. For
a brief biography, see Fig. 17.22.
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Fig. 17.22 Anders Spole Celsius (27. Nov. 1701–25. April 1744) (Right) The observatory
of Anders Celsius, from a contemporary engraving

Anders Spole Celsius was a Swedish astronomer, physicist and mathematician. He was pro-
fessor of astronomy at Uppsala University from 1730 to 1744, but traveled from 1732 to 1735
visiting notable observatories in Germany, Italy and France. He founded the Uppsala Astronom-
ical Observatory in 1741, and in 1742 proposed the Celsius temperature scale which now bears
his name. As the son of an astronomy professor and the grandson of a mathematician, he was a
talented mathematician from an early age. Anders Celsius studied at Uppsala University, where
his father was a teacher, and in 1730 he too, became a professor of astronomy there. He died from
tuberculosis in 1744.
In 1730, Celsius published the Nova Methodus distantiam solis a terra determinandi (New Method
for Determining the Distance from the Earth to the Sun). His research also involved the study of
auroral phenomena, which he conducted with his assistant Olof Hiorter. He was the first to
suggest a connection between the aurora borealis and changes in the magnetic field of the Earth.
He observed the variations of a compass needle and found that larger deflections correlated with
stronger auroral activity. At Nuremberg in 1733, he published a collection of 316 observations of
the aurora borealis made by himself and others over the period 1716–1732.

Celsius traveled frequently in the early 1730s, including to Germany, Italy and France, when he

visited most of the major European observatories. In Paris he advocated the measurement of an arc

of the meridian in Lapland. In 1736, he participated in the expedition organized for that purpose

by the French Academy of Sciences, led by the French mathematician Pierre LouisMaupertuis

(1698–1759) to measure a degree of latitude. The aim of the expedition was to measure the length

of a degree along a meridian, close to the pole, and compare the result with a similar expedition to

Peru, today in Ecuador, near the equator. The expeditions confirmed Isaac Newton’s belief that the

shape of the earth is an ellipsoid flattened at the poles. In 1738, he published the De observationibus

pro figura telluris determinanda (Observations on Determining the Shape of the Earth). Celsius’

participation in the Lapland expedition won him much respect in Sweden with the government

and his peers, and played a key role in generating interest from the Swedish authorities in donating

the resources required to construct a new modern observatory in Uppsala. He was successful in

the request, and Celsius founded the Uppsala Astronomical Observatory in 1741. The observatory

was equipped with instruments purchased during his long voyage abroad, comprising the most

modern instrumental technology of the period.
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Celsius was the first to perform and publish careful experiments aiming at the definition of an
international temperature scale on scientific grounds. In his Swedish paper ‘Observations of two
persistent degrees on a thermometer’ he reports on experiments to check that the freezing point
is independent of latitude (and of atmospheric pressure). He determined the dependence of the
boiling of water with atmospheric pressure which was accurate even by modern day standards. He
proposed the Celsius temperature scale in a paper to the Royal Society of Sciences in Uppsala
in 1710.
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and thus represents the difference between two thermodynamic temperatures. Its unit
is therefore Kelvin [t] = K and is denoted by ◦C. The value 273.15 is the Kelvin

temperature of the ice point and deviates from the value 273.16 because of historical
reasons. t = 0 agrees with the melting point of water and t = 100 with the boiling
point of water at 1 atm (atmosphere) pressure.

In the United States of America one still uses the Fahrenheit temperature tF
with the unit 1◦F = (5/9)K, it is related to the Kelvin temperature by

tF − 32◦F = T − T0, (17.35)

where T0 denotes the temperature of the ice point.

17.3 Thermal Equations of State

A thermodynamic system is characterized by a certain number of state variables
which depend on the kind of system under consideration; in general, this number is
the larger, the more complex its structure is. If the number of variables introduced to
describe the system is larger than the number necessary to describe the thermody-
namic state, then the state variables must be related to one another by the equations
of state.

The states of a simple system, e.g. a fluid, in which electromagnetic properties
are irrelevant, can be characterized by pressure p, temperature T and specific volume
v (and other variables that are expressible in terms of these). Experience, however,
teaches us that two of the above three variables suffice to characterize the system.
The thermal equation of state, therefore, establishes a connection between these
three quantities,

F(p,T , v) = 0, (17.36)

and, thus, reduces the number of independent variables to two. This functional rela-
tion is materially dependent and must be determined experimentally. Under the
assumption that relation (17.36) is one-to-one and onto (i.e., bijective), this rela-
tion can also be represented in one of the following three representations:

www.wikipedia.org
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p = f (T , v), T = g(p, v), v = h(p,T), (17.37)

which allow definition of the following curves:

Isobar : p = f (T , v) = constant,
Isotherm : T = g(p, v) = constant,
Isochor : v = h(p,T) = constant.

(17.38)

They define the graphs for constant pressure, temperature and volume, respectively.

17.3.1 Ideal Gas

We have defined an ideal gas already in the last subsection by the thermal equation
of state

pVm = RmT . (17.39)

The gas is called ideal, because the general expansion (17.30) terminates after the
first term (Ai = 0 for i � 1); correspondingly, the resulting Eq. (17.39) can be applied
for real gases only at small pressure p. Practically, the pressures must lie below 1
MPa.

If in (17.39) we introduce with

v = Vm/M, (17.40)

the connection between the specific volume v, the molar volume Vm and the mole
mass M, the thermal equation of state of an ideal gas can also be written as

pv = RT , R = Rm/M, (17.41)

where R is no longer the universal gas constant, but the gas constant of the individual
ideal gas. As evident from (17.41), it can be obtained from the universal gas constant
and the mole mass of the substance in question.

The isobars, isotherms and isochors of an ideal gas are given by the relations

T/v = constant, (isobar),
pv = constant, (isotherm),
T/p = constant, (isochor).

(17.42)

In a (T , v)-diagram the isobars are given by a set of straight lines through the origin,
the isotherms are in the (p, v)-diagrams representable as a set of hyperbolas and the
isochors in the (p,T)-diagrams are a set of radial straight lines through the origin,
see Fig. 17.23. Practically, the isotherms are particularly significant, as the isotherms
of ideal and real gases differ markedly from one another.
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isobars isotherms isochors

Fig. 17.23 Thermal equation of state. Isobars, isotherms and isochors of an ideal gas

17.3.2 Real Gases

Real gases or real fluids show conspicuous differences to the behavior of ideal fluids.
Their isotherms in the (p, v)-diagram look as qualitatively shown in Fig. 17.24.
To explain this figure, we consider the following gedanken experiment. A cylinder,
filled with a gas (e.g.CO2) and absolutely closed with a piston and having diathermic
walls is thought to be submerged in a heat bath, of which the temperature is held
constant at the value T1, which is smaller than the critical temperature Tc of the
gas. (Tc = 304 K for CO2). This critical temperature belongs in Fig. 17.24 to that
isotherm, which touches the dashed curve with horizontal tangent at its highest point.
Starting with a certain initial volume the gas is now compressed by moving the piston
so slowly (theoretically infinitely slowly) that the temperature in the cylinder agrees
at all times with the temperature of the reservoir, T1, see Fig. 17.25. Such a process
is called a quasi-static isothermal compression. In this process the pressure first
increases monotonically; however, as soon as the volume decreases below a certain
value v2 (which depends on the gas and the temperature T1 at which the experiment
is performed), liquid is accumulated at the bottom of the cylinder.20

This process is called condensation because the liquid is denser than the gas.
Once the volume is smaller than v2, it does not increase for some time, but stays
constant. However, one observes that the liquid volume increases as the volume in
the cylinder further decreases until at v = v1 the entire cylinder is filled with liquid.
If the volume within the cylinder is further decreased, the pressure increases very
steeply. Apparently, the compressibility of the liquid is much smaller than that of the
gas. If the experiment is conducted at various different values of the temperatures
of the bath, one obtains the qualitative behavior sketched in Fig. 17.24. Below the
dashed curve of the (p, v)-diagram gas and liquid phases coexist arbitrarily long; they
are in thermodynamic equilibrium. One speaks of the coexistence of the liquid with
the gas or vapor phase. One also sees in Fig. 17.24 that in the region of coexistence

20The collection of the fluid at the bottom is the consequence of gravity, because the larger liquid
droplets, owing to their correspondingly larger weight can no longer be kept suspended in the gas
by the impacts of the molecules of the gas. If the experiment would be performed in outer space
without gravity, the liquid droplets would be homogeneously distributed in the entire cylinder and
after a very long time they would cluster as larger liquid regions.
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critical point

Fig. 17.24 Thermal equation of state. Graphs of the isotherms for a real fluid
only fluid

coexistence
only gasfluid

gas

(a) (b)

Fig. 17.25 Quasi-static isothermal compression. a Fluid confined in a cylinder with piston, on the
left as a pure gas at large specific volume, on the right as a two phase medium with vapor and fluid
phases at small specific volume. b Isotherm for a temperature T < Tc, at which phase changes are
possible

of liquid and gas phases the pressure no longer depends upon the volume but only
the temperature. To each temperature there belongs its peculiar vapor pressure.

Coexistence between gas (vapor) and liquid only arises below the critical tem-
perature Tc. The isotherm for Tc is called critical isotherm. At the point of critical

Table 17.1 Critical temperatures Tc and critical pressures pc for a number of gases

Material Tc (K) pc (Pa) Material (K) Tc (Pa) pc

He 5.2 0.233 × 106 O2 154.0 5.07 × 106

H2 33.2 1.31 × 106 Kr 211.0 5.47 × 106

Ne 44.7 2.74 × 106 Xe 290.0 5.88 × 106

N2 126.0 3.34 × 106 CO2 304.0 7.40 × 106

Ar 151.0 4.86 × 106 NH3 406.0 11.35 × 106
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Fig. 17.26 Quasi-static
thermodynamic process. In a
thermodynamic process
along the indicated curve AB
a gas turns into a liquid
without being noticeable

volume vc and critical pressure pc it possesses an inclination point with horizontal
tangent. The values Tc and pc only depend upon the substance, whilst vc is propor-
tional to the amount of the substance. Values of the critical temperatures and critical
pressures for some gases are shown in Table 17.1.

It is possible to imagine a quasi-static transition of a system from a gaseous state
to a liquid state by a sequence of quasi-static equilibria, which avoid the region of
coexistence of a gas and a liquid, as e.g. along the curve AB shown in Fig. 17.26.
In this case in point A of the (p, v)-diagram, we have a gas, whilst in point B, we have
a liquid. By adequate changes of the variables p, v and T along the indicated curve,
the system can be changed from state A to state B without being able to tell with
certainty where its gaseous state terminates and where the liquid state commences.

17.3.3 The Phenomenological Model of van der Waals

Johannes Diderik Van der Waals (1837–1923)21 proposed in the year 1873 a
thermal equation of state which is capable of mimicking a large part of real gases
and liquids, respectively. It reads

(
p + a

V 2
m

)
(Vm − b) = RmT , (17.43)

and is referred to the volume of a mole, Vm. Rm is the universal gas constant and a and
b are constants, which depend on the substance. One can make Eq. (17.43) plausible
by means of certain model considerations, but it cannot be deduced from physical
principles. It is therefore a phenomenological proposal. To motivate Eq. (17.43), we
write its left-hand side as (p + pB)(Vm − b) and so realize that pB = a/(Vm)2 is an
additional pressure, whilst b has the dimension of a volume. In a Van der Waals

gas the pressure is increased by the internal pressure, pB, whereas the mole volume
is reduced by the so-called inaccessible volume b. The occurrence of the internal
pressure can be explained by the fact that the smaller mean distance of the liquid

21For a short biography of Johannes Diderik Von der Waals, see Fig. 17.27.
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Fig. 17.27 Johannes Diderik Van der Waals (23. Nov. 1837–8. March 1923)

JohannesDiderikVanderWaalswas a Dutch physicist, who received in 1910 the Nobel
Prize for Physics. After his basic education he worked as a teacher at his home town Leiden.
Without a formal high school degree (Abitur, Matura) he could not attend a regular university
education, but he visited from 1862–1865 lectures and seminars at the University of Leiden
and achieved thus an extension of his certificate of teaching mathematics and physics. This
also brought him a teaching position at a school in den Haag, where he advanced to the level
of school director. A change in the educational law of Holland allowed him to commence a
study in Natural Sciences, which he finished in 1873 with a doctoral dissertation in physics,
[30, 46]. From 1877 until 1908, he was professor of physics at the University of Amsterdam.
VanderWaals studied the behavior of molecules in particular and matter in general. 1869,
he discovered the cause of the attraction of atoms and non-polarized molecules, which later
were called Van derWaals forces (see Fig. 17.29). 1873 he developed in his dissertation a
model describing the continuous transition of matter in gaseous and liquid state of existence.
He then proposed a thermal equation of state, which showed that states of gases and liquids
not only can be transformed into one another, but are based on the same physical principle.
This led to the Nobel Prize for physics of 1910.

The text is based on www.wikipedia.org

molecules as compared to the gas molecules makes the Van der Waals attracting
forces between the molecules more effective than in the gas, for which they are
negligible, see Fig. 17.29. By the mutual attraction in the coexisting region of gas
and liquid the continuum builds something like its own pressure. In Eq. (17.43) this is
phenomenologically achieved by the addition of the internal pressure; this is added
as a kind of self-pressure to the thermodynamic pressure. On the other hand, the
inaccessible volume b is interpreted as the influence of the finite volume which the
molecules of real gases and liquids have as opposed to ideal gases of mass points,
whose molecules are thought to have vanishing extent. If the molecules are thought
as hard, elastic spheres of finite radius, their mobility is restrained. For a given mean

www.wikipedia.org
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Fig. 17.28 Van der

Waals fluid. Isotherms and
theirMaxwell corrections
(see inset) in the co-existence
regime of both phases
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kinetic energy (i.e., at given temperature) the number of impacts per unit time is,
therefore, larger than for a gas of mass points. One can qualitatively account for this
by incorporating into the equation of state of the ideal gas a volume that is smaller
than the mole volume by the inaccessible volume of the molecules. This plausibility
argument, therefore, also gives us a hint, which value one must expect for b. One
may substitute for it the fourfold22 value of the self-volume of the molecules.

The graph of the isotherms for the equation of state of Van der Waals gases
is sketched qualitatively in Fig. 17.28. No horizontal regions arise, which would
allow characterizing the coexistence regime of the gas and liquid. However, there
is an isotherm with a point of horizontal tangent and changing inclination. It is
tempting to identify this isotherm with the critical temperatureTc. The isotherms with
T > Tc show a bijective relation between pressure and volume. For those isotherms
whose temperature lies below the critical temperature the functional relation between
pressure p and volume Vm is not bijective. Whereas to a given volume Vm there is
a unique pressure, the reverse does not hold: to a given pressure p three values of
the volume Vm can be assigned. We shall define the critical point in the (p, Vm)-
diagram as that point of the isotherm belonging to Tc which has a horizontal tangent
and a vanishing curvature. Using Eq. (17.43), it can easily be shown that this point
is given by

Tc = 8a

27bRm
, pc = a

27b2
, Vmc = 3b. (17.44)

To this end one only needs to compute

dp

dVm
= 0, and

d2p

dV 2
m

= 0,

22We cannot give a justification of this value here.
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Fig. 17.29 Van derWaals

forces. Two molecules are
subjected to an interaction
force, which at very large
distance is a very small
attraction, but turns into a
repulsion when the molecule
distance is very small

and to solve these two equations together with (17.43) for p = pc, T = Tc and
Vm = Vmc. Elimination of a and b from (17.43) with the aid of (17.44) yields the
simple Van der Waals relation

pcVmc = 3

8
RmTc. (17.45)

Thus, if the Van der Waals gas is a good description of a real gas, then this gas
must satisfy the relation

pcVmc

RmTc
= 3

8
= 0.375. (17.46)

As Table 17.2 shows, the experimental values all lie below 0.375. As revealed by
Table 17.1, the critical temperatures of some of these gases differ by orders of mag-
nitude; on this basis the values in Table 17.2 must be regarded as close to the value
(17.46).

Consider now an isotherm for T < Tc in the regime of positive inclination
dp/dVm > 0, see insert in Fig. 17.28 between the points identified as L and M.
In this regime, a small volume change in an isothermal process would be amplified
as follows: A small volume increase would yield an increase in pressure, which would
again cause a volume increase. Analogously, a small volume decrease would yield
a pressure decrease, which would again lead to a volume decrease. Hence, such a
process cannot be stabilized. The negative compressibility of the Van der Waals

gas in this regime leads to an unstable thermodynamic state. Small changes are
amplified—this is a positive feedback—and the system moves farther and farther
away from its original state.

As we have already seen, the experimental isotherm in this regime does not behave
as a Van der Waals gas; the pressure in this regime is independent of the volume.
Neither is it plausible that unstable thermodynamic states should exist. One can mod-
ify the Van der Waals model such that one changes the isotherms in the unstable
regime such that along the new, corrected isotherm the pressure does not change. In
the inset panel of Fig. 17.28 this is sketched by the shaded alteration of the isotherm.
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Table 17.2 Values of the constants pcVmc/(RmTc) for some gases

Material
pcVmc
RmTc

Material
pcVmc
RmTc

H2O 0.230 CHh 0.290

SO2 0.269 N2 0.291

C2H4 0.270 Ar 0.291

C2H2 0.274 O2 0.292

CO2 0.275 CO 0.294

C2H6 0.285 H2 0.304

Xe 0.288 4He 0.308

However, we now must ask, how this straight horizontal segment of the isotherm
must be positioned to satisfy the thermodynamic requirements. The answer to this
question was given by James Clerk Maxwell: The dashed areas above and below
the straight new segment must possess the same areas in order that the Second Law
of Thermodynamics is satisfied. This will be later scrutinized in this chapter. With
this construction of Maxwell it is possible to eliminate the non-unique regime in
the (p, Vm)-diagram of a Van der Waals gas (this regime in Fig. 17.28 is outlined
by the shaded curve) and to define the vapor pressure and the coexistence of the gas
and the liquid.

There exists a particularly elegant dimensionless representation of the Van der

Waals equation (17.43). If one defines the dimensionless quantities

p̄ = p

pc
, v̄ = Vm

Vmc
= v

vc
, T̄ = T

Tc
,

then (17.43) together with (17.44) can be put into the form

(
p̄ + 3

v̄2

)
(3v̄ − 1) = 8T̄ . (17.47)

This form of the Van der Waals equation can be denoted as universal, since it
does not contain the parameters a and b, which change from substance to substance.
The equation says that in Van der Waals gases, for which two values of p̄, v̄, T̄
agree with one another, the third value must also agree. In the (p̄, v̄)-diagram all
Van derWaals gases have the same coexistence region of gas and liquid. They are
in so-called corresponding states whenever they agree in two of the dimensionless
variables p̄, v̄, T̄ . Interestingly, this law of corresponding states is for real fluids sat-
isfied with large precision, even though their behavior is only qualitatively described
by the van derWaals equation that is complemented by Maxwell’s construction
in the region of coexistence between gas and liquid.



362 17 Thermodynamics—Fundamentals

17.4 Reversible and Irreversible Thermodynamic Processes

Thermodynamic states were already defined in Sect. 17.1. If a thermodynamic state
changes in time by some outside action, then a thermodynamic process is generated;
we wish to formally lay down this by the

Definition 17.5

• A thermodynamic process in a system is a temporal sequence of events, in which
previous events determine ensuing events such that they imply a particular time
dependent sequence of thermodynamic states

In this definition it is irrelevant how these states are caused. It is only important
that a temporal sequence of exactly identifiable events can be defined, which cause
the change of state. The process can be initiated by releasing internal constraints or
the removal of an external action.

In the introduction to this chapter we have already spoken of processes and intro-
duced the notion of the principle of irreversibility without clearly formulating this
notion. We shall now precisely define reversibility and irreversibility how they were
introduced already in the year 1824 by Nicolas Léonard Sadi Carnot.

Definition 17.6

• If a system, in which a thermodynamic process has taken place, can be brought
back into its initial state such that no changes remain in its environment, then
the process is called reversible. If the initial state of the system cannot be re-
established without leaving any changes in the environment, then the process is
called irreversible.

According to this definition the process is not reversible only by the fact that the
system can be brought back to its initial state; this is in principle always possible. An
essential part of the definition is the statement that after the back transformation of the
system to its initial state equally no changes are allowed to remain in the environment
of the system. Most natural processes are irreversible, for they usually start with a
non-equilibrium state and often end in an equilibrium state, or they connect two
equilibrium states.

We have already mentioned irreversible processes in Sect. 17.1, see Figs. 17.3
and 17.4. A decisive characterization of the irreversibility of a process was thereby
the observation that the process evolving backward in time was physically impossi-
ble. Let us describe here a well-known process for which this impossibility of time
reversal can easily be identified.

17.4.1 Diffusion

We consider a dye that is in solution with a fluid and wish to describe its spreading,
see Fig. 17.30. To this end, we imagine that the molecules of the dye in a point of the
fluid move on average with the velocity of the fluid. The number of the molecules
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Fig. 17.30 Derivation of the
diffusion equation.
Explaining the derivation of
the diffusion equation. Body
with volume V and boundary
∂V . The volume element dV
contains the mass ρcdV of a
tracer substance. Through
the surface element dA the
amount qc · ndA of the tracer
mass is moving

d

d

on a material particle can then be regarded as a measure of their concentration. If
one denotes the mass ratio of the dye to that of the fluid at the point x and at time t
by c(x, t), then the total mass of the dye contained in the fluid volume V is given by∫
V ρc dV , and its time rate of change is

d

dt

∫

V

ρc dV . (17.48)

Now, observation shows that the dye is spreading. Per unit time, an amount of dye,
thus, moves through the fluid surface ∂V ; this flux is given by

∫

∂V

qc · ndA, (17.49)

in which qc is the so-called diffusive flux and n is the unit vector pointing to the
exterior to V . The time rate of change of the dye mass (17.48) must therefore be
equal to the flux (17.49) through the surface

d

dt

∫

V

ρcdV = −
∫

∂V

qc · ndA. (17.50)

(The negative sign is due to the fact that qc · n is positive as an outflow). With the
aid of the transport theorem proved in Chap. 3 (see p. 88 in Vol. 1)

d

dt

∫

V

ρcdV =
∫

ρ
dc

dt
dV (17.51)

http://dx.doi.org/10.1007/978-3-319-33633-6_3
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and applying the divergence theorem to the surface integral (17.49), viz.,

∫

∂V
qc · ndA =

∫

V

div qcdV, (17.52)

we may also write (17.50) in the form

∫

V

(
ρ

dc

dt
+ div qc

)
dV = 0, (17.53)

or, since V can be arbitrary

ρ
dc

dt
+ div qc = 0. (17.54)

This equation, known as Fick’s second law,23 is nothing else that the mass balance
for the dye.

Equation (17.54) does not suffice to describe the spreading of the dye concentra-
tion. It must be complemented by a relation for the diffusive flux. It was the merit of
Adolf Eugen Fick to have proposed a phenomenological relation for it. He namely
realized that the dye in solution or suspension of the fluid moves from regions of
high concentration to regions of low concentration. This fact suggests to set the
diffusive flux proportional to the concentration gradient with negative constant of
proportionality,

qc = −ρDgrad c, D > 0. (17.55)

D > 0 is the diffusion coefficient or diffusivity and its positivity is a requirement
of the Second Law of Thermodynamics as we shall see. This equation is known as
Fick’s first law. Substitution of (17.55) into (17.54) leads to the equation

ρ
dc

dt
= div (ρDgrad c),

which for a density preserving fluid and constant diffusion coefficient takes the form

dc

dt
= ∂c

∂t
+ (grad c)v = DΔc, (17.56)

in which Δ(·) = div grad (·) denotes the Laplace operator. If the fluid is at rest, the
convective term is absent.

Equation (17.56) is called diffusion equation; it discloses the irreversibility of
the diffusion processes simply by its non-invariance under time reversal t → −t.
Indeed, in this transformation the signs of ∂c/∂t and (grad c) · v change, but not the
sign of Δ c. A diffusion process that is traversed backward in time cannot exist. This

23According toAdolfEugenFick (1829–1901) Professor of medicine at the Universities of Zurich
and Würzburg. For a short biography see Fig. 17.31.
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Fig. 17.31 Adolph Eugen Fick (3. Sept. 1829–21. Aug. 1901)

Adolph Eugen Fick showed in his early life a remarkable talent for mathematics and physics,
which he started to study at the University of Marburg. However, under the prodding of his elder
brother Heinrich Fick, he was persuaded that his talents would fall on particular fertile ground
in medicine. Therefore, he matriculated in medicine and completed his medical doctorate in 1851
with the dissertation ‘Tractatus de errore optico’, in which he connected astigmatism with the
curvature of the cornea. Subsequently, Fick specialized in physiology and assumed a position at
the medical school of the University of Zurich, where he received his habilitation in 1953. In 1856
he was promoted to Associate and in 1862 to Full Professor of Physiology. In 1868, Fick moved
to the University of Würzburg, where he held the chair of physiology until his retirement in 1899.
Fick’s mathematical talent found its trace in many of his scientific works. 1851 he published a
fundamental paper on the movement of the eyes. 1955, he formulated his diffusion theory of matter
with his two basic laws, known as Fick’s first and second laws. He invented the myographion to
measure muscle jerks (1862), designed an instrument, called later ‘Plethysmograph’ to measure the
speed of the blood in arteries of humans (1868) and devised a technique for measuring cardiatic
output (1870). Fick also invented the tonometer to measure the pressure in the eyes (1888),
however, the invention of the contact lenses is by his nephew Adolph, Gaston Eugen Fick.
Fick received an honorary doctor degree of the University of Leipzig, and was member of the Acad-
emies in Berlin, Munich, Stockholm, Uppsala, Lund and Florence; he also received the Golden
Cothenius Medal of the ‘Deutschen Akademie der Naturforscher’ and was named ‘Geheimer
Rath’ and received a title of nobility by the ‘Bavarian Crown’, however he was too modest to ever
use these attributes.
Fick’s phenomenologically motivated diffusion law received a theoretical foundation through A.

Einstein’s work on Brownian motion (1905) [16]. A detailed description on this connection is
given by J. Philibert, [39].
In physics, chemistry and engineering Fick’s first law expresses the flux of a species concentration
in a bearer fluid to be proportional to the gradient of the concentration field and pointing from
high concentration to small concentration.

The text is based on www.wikipedia.org
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can be visualized by the fact that non-uniform concentrations are homogenized with
time but not vice versa.

The example, incidentally, also shows that there exist irreversible processes for
which the temperature does not play a role. The Second Law of thermodynamics
should also be able to cope with such phenomena.

17.4.2 Reversible Expansion and Compaction of a Gas

As already said, reversible processes do not exist in Nature. Under idealized
conditions one may, however, imagine situations in which these thought processes
are traversed reversibly. In the expansion of the gas that is confined in the cylinder of
Fig. 17.32 one can imagine that by the expansion of the gas a weight in the gravity
field of the Earth is lifted. The work that is performed by the gas when moving the
piston is then stored as potential energy and can be regained. This process can be
reversibly conducted only provided the pressures at the piston perform under expan-
sion exactly the same work as the work that is necessary to compress the gas again
into its initial state. This is only possible, if the gas pressure in the cylinder performs
at all times the same power of working as does the weight. This can be achieved
by adequately forming the guiding curve. Of course, the conditions of reversibility
also require that the gas is always in a homogeneous state such that all irreversible
homogenization processes between the different parts of the system are avoided.
The motion must therefore be a sequence of quasi-static changes of thermodynamic
states.

17.5 First Law of Thermodynamics

The First Law of Thermodynamics expresses the principle of energy conservation of
all energy forms, mechanical, thermal and if present electrical, chemical and nuclear
energies. The application of this principle leads us to introduce, besides the common
mechanical energy, also other energy forms, namely internal energy and heat. For
the formulation of the First Law we first summarize a number of notions that were
already defined earlier or are well known from basic mechanics.

17.5.1 Mechanical Energies

Definition 17.7

• By work of a system we mean the work done by all forces acting on the system.
• Power or power of working is work per unit time.
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Fig. 17.32 Reversible
expansion. Imagined
construction to achieve
reversible expansion and
compaction of a gas in an
isolated cylinder

Fig. 17.33 Mass point in
motion. Motion of a mass
point with mass m and
resulting force F along its
trajectory

trajectory

We assume that the reader is familiar with these notions from basic mechanics,
but explain them below with the aid of a few examples.

Consider a mass point with mass m which moves with velocity ẋ along its tra-
jectory x(t) and is subjected to the external force F, see Fig. 17.33. Newton’s law
reads in this case

(mẋ)̇ = mẍ = F. (17.57)
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Fig. 17.34 Motion of a cube
along an inclined plane. The
external forces are G, N and
T, the coordinate is x and the
cube is displaced from x1
to x2

mẋ is the momentum and ẍ the acceleration. One commonly writes v for the velocity,
which we shall now do. If (17.57) is scalarly multiplied with v, then one obtains

Ṫ = mv̇ · v = d

dt

(
m

|v|2
2

)
= F · v = L, (17.58)

in which
T = m

2
|v|2 and L = F · v (17.59)

denote the kinetic energy of the mass point and the power of working of the forces
acting on the mass point. Integration of (17.58) along the trajectory yields

∫ t2

t1

Ṫ(t) dt =
∫ t2

t1

L(t) dt =
∫ t2

t1

F · v dt = A12,

T2 − T1 = A12. (17.60)

The difference of the kinetic energies of the mass point at the times t2 and t1 equals
the work A12 done by the forces acting on the mass point during the motion from
t1 to t2. We infer from formula (17.60) the equivalence between ‘work’ and ‘kinetic
energy’; for, if they are correlated as in Eq. (17.60), they have the same dimension,
namely (kg m2s−2).

For the rectangular block of Fig. 17.34, which slides down the inclined plane, the
external forces are given by the weight G and the reactions N and T between sliding
mass and supporting plane. With the coordinate x as shown in the figure, the power
of working is given by

L(t) = (G sin α − T)v(t),

which, together with Coulomb’s24 dry friction law

T = μN = μG cos α,

24For a short biography of Charles- Augustine de Coulomb see Fig. 13.8.

http://dx.doi.org/10.1007/978-3-319-33636-7_13
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Fig. 17.35 Illustrating the calculation of the work due to volume changes. The work of the pressure
p due to the displacement of the piston is for a circular cylinder with diameter D given by (17.63).
[The work of the pressure acting on the gas would be the negative value of that given in (17.63).]

can also be written as

L(t) = G(sin α − μ cos α)
dx

dt
(t). (17.61)

The normal force N does not contribute to the value of the power since it is per-
pendicular to the displacement increment. The work A12, which the external forces
supply during the motion of the sliding mass between positions 1 and 2, is therefore
given by

A12 = G(sin α − μ cos α)

∫ t2

t1

dx

dt
(t) dt = G(sin α − μ cos α)(x2 − x1). (17.62)

When the piston of a cylinder that is filled with a gas is moved, the forces that act
on the piston are the resulting pressure and the external force K acting on the piston,
see Fig. 17.35. The power of working and the work done by the pressure during the
displacement of the piston are given by

L dt = dA = p
πD2

4
dx = p dV,

A12 = πD2

4

∫ x2

x1

p(x) dx =
∫ V2

V1

p dV , (17.63)

respectively. They can be calculated as soon as the pressure p is known as a function
of x. The work (17.63) is called the work done due to volume changes. The work
done by the gas has obviously the reverse sign and is given by

Agas
12 = −

∫ V2

V1

p dV . (17.63a)

With these examples we are now in the position to formulate the total kinetic
energy of the material volume V with boundary ∂V as well as the powers of working
of the volume and surface forces, see Fig. 17.36a, as volume and surface integrals
of the respective specific quantities; they are
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n n

d

dd
d

(a) (b)

Fig. 17.36 Illustrating the derivation of the First Law. a Material volume V with boundary ∂V
and volume element dV with indicated velocity v and specific body force ρf and surface element
dA with vector of surface traction t(n). b Same as in a, but now illustrating a mass element with
specific internal energy ρudV and specific radiation ρqdV , and surface element dA with heat flux
vector q. The two panels separate the mechanical and thermodynamic quantities

T =
∫

V

ρ

2
|v|2 dV , (kinetic energy),

LV =
∫

V

ρf · v dV , (power of working of the volume forces), (17.64)

L∂V =
∫

∂V

v · t(n) dA, (power of working of the surface forces).

LV + L∂V is the mechanical power brought by all forces acting on the body. On the
basis of the calculations conducted for the above mass point example, see Eq. (17.60),
one may now be tempted to set the time rate of change of the kinetic energy equal
to this power of working. It is, however, exactly the recognition, which found its
realization in the First Law of Thermodynamics, that this is not correct in general
and may be correct only in a very simplified idealized case.

17.5.2 Definitions, Important for the First Law

There are two new quantities, which we must introduce to be able to properly
formulate the First Law; one is the notion of heat, the other that of internal energy.
In thermodynamics these notions are often introduced indirectly via other quantities
already defined. Here, we wish to simply declare heat as a form of rate of energy,
which complements the power of working of the external forces as a non-mechanical
counterpart. Correspondingly, we declare the internal energy as a primarily thermal,
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and if mechanical, then system-internal, deformation-induced energy form that com-
plements the kinetic energy. More formally:

Definition 17.8

• The internal energy of a system is an extensive or additive quantity which, together
with the kinetic energy forms the total energy of the system

• The heat of a system is non-mechanical energy per unit time that is supplied to
the system from the outside.

The following remarks are important additions to this definition: First, as the kinetic
energy, the internal energy is a quantity of the system inherent to the body that,
together with the kinetic energy, defines the energetic state of the body. As such the
internal energy can comprise thermal, mechanical, electromagnetic and chemical
‘components’, depending upon whether such interactions will arise. If a body deforms
elastically, then the internal energy contains such a ‘component’. Second, heat is a
process quantity, which is supplied to a body just as power of working is supplied
from the outside. It is customary to choose the notations

• U for the internal energy of the system,
• Q for the heat supplied to the system.

The connection with the kinetic energy T and the power of working L is apparent;
accordingly, one calls

• T + U the total energy stored in the system,
• L+Q the power of working plus the heat supplied to the system from the outside.

The following statement now forms the content of the First Law of Thermodynamics:

First Law of Thermodynamics, Mathematically Formulated

• In a materially closed system the time rate of change of the sum of kinetic plus
internal energies equals the sum of the mechanical power of the external forces
plus the heat supplied to the system from the outside:

Ṫ + U̇ = L + Q. (17.65)

This statement is a postulate and cannot be deduced from other principal laws of
physics, but forms a fundamental law, just as mass balance and Newton’s law; it
can only be tested for correctness by experimental verification. A disproval of it has
never been found; so, the statement (17.65) is accepted as a general physical principle
since the middle of the 19th century.

Special cases of the First Law can easily be formulated and have in parts well
known forms:

• For a materially closed system at rest the kinetic energy T vanishes and (17.65)
takes the form

U̇ = L + Q, (17.66)
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or after an integration by time from t = t1 to t = t2

U2 − U1 =
∫ t2

t1

(L + Q) dt = A12 + Q12, (17.67)

in which U1 = U(t1), U2 = U(t2) are the internal energies at the times t1 and t2;
moreover, A12 and Q12 are the work performed by the external forces and the heat
supplied to the body during the time interval t2 − t1, respectively.

• For an adiabatic system at rest both the kinetic energy and the heat supplied to the
body vanish, T = 0, Q = 0, so here we have

U̇ = L =⇒ U2 − U1 = A12, (17.68)

where it is often customary to write Aad
12 instead of A12, to emphasize that Aad

12 is
the work done on the system under adiabatic conditions.

• In a purely mechanical, rigid, adiabatic system, as e.g. a mass point, see Fig. 17.33,
we have U̇ = 0, Q = 0 and so

Ṫ = L =⇒ T2 − T1 = A12, (17.69)

a statement that was already written down in Eq. (17.60)
• If the external forces are conservative, they can be derived from a potential Ψ . Since

in such a case their work is independent of their trajectories, we have L = −Ψ̇

One can in this case generally additively compose the power of working into
L = L1 − Ψ̇ , where L1 is the power of the non-conservative forces and −Ψ̇ that of
the conservative forces. The First Law of Thermodynamics (17.65), thus can also
be written as

Ėg = Ṫ + U̇ + Ψ̇ = L1 + Q, (17.65a)

in which Eg is the sum of the kinetic, internal and potential energies (of the con-
servative forces).

All these statements concern materially closed systems, i.e., material bodies, which
do not exchange mass with the environment. It is possible to formulate the First
Law also for open systems—and this we shall occasionally do. In this case, however,
kinetic and internal energies also enter through the system boundaries. Consequently,
a relation that connects T and U with L and Q so logically and clearly and divides
these quantities into system and process quantities, is no longer possible.

Let us, finally, present the First Law in a form as it finds applications in a modern
field theory. In so doing we shall use the expressions for the kinetic energy of a
material body V with boundary ∂V and power of workings of the volume and surface
forcesLV +L∂V as listed in (17.64). Since the internal energy is an additive (extensive)
quantity, we may introduce the internal energy per unit mass,25 u, and then may assign

25The internal energy per unit mass is denoted here by u, which is also often used to identify the
velocity component. We trust this notation will not cause confusion.
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ρudV as internal energy of a volume element dV , see Fig. 17.36b. Thus, the internal
energy of the body V is given by

U =
∫

V

ρu dV . (17.70)

The heat that is supplied to the body from the outside also consists of two contribu-
tions (as does the power of working of the external forces), a volume and a surface
contribution. If q is the heat supplied to the body from outside per unit mass, then
its value per unit volume is ρqdV , and the quantity

QV =
∫

V

ρq dV (17.71)

is that part of the heat that is supplied to the body via the volume by distant action.
Radiation is of this kind and it is effectively used in a microwave oven. One calls q
the specific energy supply or the specific radiation and QV the heat supplied to
the body by radiation.

Finally, heat can also be supplied to a body V by heat flow through the boundary
∂V . If q is the heat flux vector at a boundary point, then −q · ndA is the heat flow
through the surface area element dA through ∂V into the body (the negative sign
accounts for the fact that q · n is positive as an outflow). Consequently,

Q∂V = −
∫

∂V

q · n dA (17.72)

is that part of the heat supplied to the body via the surface ∂V .
Collecting all these formulations: (17.64) and (17.70)–(17.72) we may write

T + U =
∫

V
ρ
(

1
2 |v|2 + u

)
dV ,

L + Q = (L∂V + Q∂V ) + (LV + QV ) (17.73)

=
∫

∂V
(v · t(n) − q · n) dA +

∫

V
ρ(f · v + q) dV,

so that the First Law of Thermodynamics, (17.65), for a material body takes the form

d

dt

∫

V

ρ
(

1
2 |v|2 + u

)
dV =

∫

∂V
(v · t(n) − q · n) dA +

∫

V
ρ(f · v + q)dV, (17.74)

in which t(n) is the surface traction on the surface element with exterior unit normal
vector n, which is related to the Cauchy stress tensor t and the pressure and extra
stress tensor tE (or the so-called frictional stress tensor tR) according to
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t(n) = tn = (−p1 + tR)n, (17.75)

see Eq. (7.6). Equation (17.74) holds for any material body, also material parts of
such bodies, so that it may also be applied to an infinitesimal body. Before doing this,
a few remarks should be made that set the above deductions in the proper perspective.

• All above stated mathematical relations are different arrangements and interpreta-
tions of the First Law, (17.65), which is the truly essential statement in form of a
non-provable postulate. The First Law is expressed in terms of the sum Q + L of
supplied heat and power of working of external origin. There are no indications to
separate these two terms, which therefore must be treated as equals. In this sense
the First Law postulates the unrestricted possibility to transform different forms of
energy into one another. This is different with the sum of the kinetic and internal
energies, T +U. It is quite clear here what kinetic energy is; consequently also the
internal energy is well defined as the difference between total and kinetic energy.

• The equivalence between heat and power of working in exactly this sense will
be further explained by the following example of an adiabatic system. Consider
a container filled with a gas and materially closed by adiabatic walls. An electric
circuit is so arranged that its resistance is in contact with the gas. Figure 17.37
shows two possible delineations of the system (dashed). If a current flows through
the circuit, then power of working is supplied to the system that can be calculated
via the electrical power. With the system delineation in the right panel in Fig. 17.37
the system receives this rate of energy in the form of heat. The electrical power
supplied to the resistance increases the system’s internal energy; its temperature
rises and due to the temperature differences the resistance supplies heat to the gas.
It is seen that the form of energy supplied to a system, whether as heat or as power
of working, depends on the choice of the system’s boundaries.

• Finally, we mention that the interpretation of heat as dimensionally the same as
power of working goes back toConstantineCarathéodory. He showed that the
entire theory can be based on concepts without the assumption of the existence of
a physical quantity that deviates from the ordinary mechanical quantities, namely
heat. Prior to this understanding, physicists were of the opinion that heat would
consist of a substance to which a certain measurable amount could be assigned.
For this reason one did not speak of heat but amount of heat, a denotation still
occasionally in use today. This understanding of heat as an independent entity
with its own physical dimension made it necessary to introduce the so-called
heat equivalent, in order to relate to one another or to transform into one another
mechanical and thermal energies.

The First Law of Thermodynamics can also be formulated for an open system. To
this end we recall its form for a material volume V , (17.74). However, we assume now
that the velocity field v and the internal energy in V are continuously differentiable.
Under such prerequisites one may define the specific total energy e by

e = 1

2
|v|2 + u, (17.76)

http://dx.doi.org/10.1007/978-3-319-33633-6_7
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Fig. 17.37 Explaining heat
and power of working.
Whether a quantity is
interpreted as heat or power
of working also depends on
the definition of the
boundaries of the system

system boundary

adiabatic walls

and apply the Reynolds transport theorem

d

dt

∫

V

ρe dV =
∫

V

∂(ρe)

∂t
dV +

∫

∂V
ρe(v · n) dA, (17.77)

(see footnote on p. 88 of Vol. 1). In the integral on the left-hand side it is important
to regard V as a material volume that moves with the fluid; in the integrals on the
right-hand side, this interpretation is no longer compelling, one may even regard V as
a stationary volume, since the differentiation is performed in the integrand function.
Physically, the surface integral in (17.77) can then be interpreted as the flux of e
through the surface ∂V . Instead of (17.74) one obtains therefore

∫

V

∂(ρe)

∂t
dV −

∫

∂V

(v · t − q − ρev) · n dA −
∫

V

ρ(f · v + q) dV = 0, (17.78)

in which (17.75)1 was also used. One recognizes that in the derivation of the First
Law the distinction between an open and a closed system is actually only a semantic
one. If, in the surface integral of (17.77), we now also apply the divergence theorem

∫

∂V

(v · t − q − ρev) · n dA =
∫

V
div (v · t − q − ρev) dV, (17.79)

one can write (17.78) alternatively also as

∫

V

(
∂(ρe)

∂t
− div (v · t − q − ρev) − ρ(f · v + q)

)
dV . (17.80)

Since this equation holds for all volumes V , the integrand function in parentheses
must vanish by itself, so that one obtains the local statement

∂(ρe)

∂t
+ div (ρev − v · t + q) − ρ(f · v + q) = 0. (17.81)
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Because of its complexity, this equation does not offer an easy physical interpretation.
By mathematical transformations, it may however, be simplified considerably. With
(17.76) one obtains for the individual terms

∂(ρe)

∂t
= ∂ρ

∂t
e + ρv · ∂v

∂t
+ ρ

∂u

∂t
(17.82)

and

div (ρev − v · t + q) = (div ρv)e + ρv · (Lv) + ρ(grad u) · v
−v · div t − tr (LT · t) + div q (17.83)

with L = grad v. With these, Eq. (17.81) can be put into the form

(
∂ρ

∂t
+ div ρv

)

︸ ︷︷ ︸
=0

e + v ·
(

ρ
dv

dt
− div t − ρf

)

︸ ︷︷ ︸
=0

+
(

ρ
du

dt
+ div q − tr (LT t) − ρq

)
= 0. (17.84)

Because of mass conservation and balance of linear momentum (see equations (3.44)
and (7.5) in Vol. 1), the first two brackets in (17.84) vanish. If one further uses the
representation t = −p1 + tR, then (17.84) simplifies and becomes

ρ
du

dt
= −p div v

︸ ︷︷ ︸
power of working of pressure

+ tr (LT tR)︸ ︷︷ ︸
power of working of dissipation Φ

−div q
︸ ︷︷ ︸

heat conduction

+ ρq
︸︷︷︸

radiation

. (17.85)

The time rate of change of the internal energy is thus balanced by four terms, (i) the
power of working of the pressure, which is given as the product of the pressure with
the rate of volume change, div v, (ii) the power of working of the viscous stresses
which vanish for an ideal fluid, since then tR = 0, (iii) the conductive heat, −div q
and (iv) the specific radiation, ρq. Incidentally, one can easily show with the use of
the balance equation of mass that (17.85) can also be written as

ρ

(
du

dt
− p

ρ2

dρ

dt

)
= Φ − div q + ρq, (17.86)

a form of the First Law that is particularly useful when exploiting the Second Law of
Thermodynamics.26 Moreover, for a linearly viscous fluid the dissipation function
can also be put into a different form; indeed, using (see (7.28) in Vol. 1)

26With the enthalpy
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tR = ζ(div v)1 + 2ηE,

E = D − 1

3
(div v)1, D = 1

2
(L + LT ), (17.87)

we successively obtain

Φ = tr (LT tR) = tr (DtR)

= tr [(E + 1
3 (div v)1)(ζ(div v)1 + 2ηE)]

= tr [ ζ
3 (div v)21 + 2ηE2 + ζ(div v)E + 1

3 (div v)2ηE]
= ζ(div v)2 + 2ηtr E2 = ΦV + ΦG, (17.88)

which, in Cartesian coordinates can also be written as

ΦV = ζ

{(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)2
}

ΦG = η

{(
∂u

∂y
+ ∂v

∂x

)2

+
(

∂v

∂z
+ ∂w

∂y

)2

+
(

∂w

∂x
+ ∂u

∂z

)2
}

.

(17.89)

The quantities ΦV and ΦG are called dissipation function due to volume changes
and dissipation function due to changes of shape. In purely dilating or compacting
deformations ΦV �= 0 and ΦG = 0, but in isochoric deformations ΦV = 0 and
ΦG �= 0. Obviously also, the first vanishes for a density preserving fluid or when the
Stokes assumption (ζ = 0) is made, the second differs from zero for all deformations
involving shearing.

Equation (17.85) or (17.86) represent local balances for the internal energy, how
it evolves in a body point as a function of time. In order that it can be computed at all,
the pressure, the velocity field, the viscosities ζ and η, the heat flux vector and the
energy supply must be known. In the form, written down above, the equations hold for
inhomogeneous systems, of which the thermodynamic states change from position
to position. (This alone follows from the fact that differentiations with respect to the
spatial coordinates arise.)

A material body can be thought to be composed of infinitesimal elements, and each
of these elements can be interpreted as a subsystem on which forces perform work
and to which heat is supplied. The individual contributions are shown in equation

(Footnote 26 continued)

h =: u + p

ρ

this may also be written as

ρ
dh

dt
− dp

dt
= Φ − div q + ρq,

which is equivalent to (17.86).
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(17.85). If the heat flux vector q and the specific radiation q vanish in all body points
the heat supplied to the body is zero. In this case one calls the material body locally
adiabatic, since none of its elements is receiving any heat. If a heat exchange between
the individual elements is possible, but the supply of heat across the boundary ∂V
is prevented, the material body is under global adiabatic conditions. Ordinarily,
however, the particularizations ‘local’ and ‘global’ are not mentioned, as one tacitly
assumes that it is evident from the context which situation prevails.

17.5.3 Caloric Equations of State for Fluids and Gases

We have already met the thermal equation of state p = p(ρ,T) = p(v,T), which
establishes an experimental relation between p, ρ, T or p, v = 1/ρ, T . The analysis in
the last subsection has also shown that in a locally adiabatic system free of dissipation
(Φ = 0)27, the energy Eq. (17.86) reduces to the equation

ρ

(
du

dt
− p

ρ2

dρ

dt

)
= 0. (17.90)

This relation now suggests that the internal energy umay be described by a functional
relation of the form

u = u(T , v) or u = u(T , ρ). (17.91)

This equation, which is also based on experimental facts and, thus, has different
forms for different materials represents a caloric equation of state of a particular
material.

That a relation of the form (17.91) (or of more general form) is necessary, can be
seen as follows. For a locally adiabatic, dissipation-free system the balance laws of
mass, momentum and energy read

dρ

dt
+ ρ div v = 0, (see (3.44))

ρ
dv

dt
= −grad p + ρ f , (see (7.5))

ρ
du

dt
= −p div v. (see (17.90))

(17.92)

Together, they comprise five equations for the seven unknowns ρ, v, p,T , u. If to
these equations the thermal and the caloric equations of state are added, and with
their use two unknowns are thought to be eliminated, then the number of unknowns
is reduced to five, and one obtains from (17.92) at least formally an integrable sys-
tem of equations. However, that in a non-locally adiabatic and dissipative system
relation (17.91) is the form of the caloric equation, that apart from T and v = 1/ρ,

27In this situation the stress tensor reduces to a pressure tensor, t = −p1.
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no other independent variables can arise in (17.91), is not obvious at this stage of the
developments and will be proved to be a consequence of the Second Law of Ther-
modynamics, which will allow the derivation of a relation between the thermal and
caloric equations of state. According to this so-called Gibbs relation, it is possible
with the knowledge of the thermal equation of state to calculate ‘some aspects of
the caloric equation of state’, without directly having to measure them.28 The total
differential of the internal energy may be calculated with the aid of the chain rule of
differentiation, viz.,

du =
(

∂u

∂T

)

v

dT +
(

∂u

∂v

)

T

dv = cvdT +
(

∂u

∂v

)

T

dv. (17.93)

In this formula the subscripts v and T attached to the partial derivative terms indicate
that the subscripted variable is held constant in the process of differentiation. This
notation is customary in thermodynamics, but it is not necessary if one differentiates
the function from its values, which one might assume.

The quantity

cv =
(

∂u

∂T

)

v

(17.94)

is called specific heat at constant volume or heat capacity at constant volume. If
the specific volume does not change in a thermodynamic process, i.e., if

(
∂u

∂v

)

T

= 0, (17.95)

then the specific internal energy does not depend on the specific volume, and u =
u(T).

In ideal gases the specific internal energy depends only upon the temperature. In
this case one can set

cv = du

dT
= c0

v(T), (17.96)

and obtains after integration

u(T) =
∫ T

T0

c0
v(T

′)dT ′ + u0, (17.97)

where u0 is the value of the internal energy at the temperature T0. For some gases
the specific heat (at constant volume), cv can be assumed to be constant in a certain
temperature range; in such cases one obtains instead of (17.97)

28Tables of the specific internal energy as a function of the absolute temperatureT and parameterized
for various values of the density ρ or the specific volume v = 1/ρ for real fluids are given in books
on technical thermodynamics [1].
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u(T) = c0
v(T − T0) + u0. (17.98)

For air c0
v = 0.717 kJ kg−1K−1, valid for −273 ◦C � T � 100 ◦C with deviations

from measured values less than 1 %.
The fact that the internal energy in ideal gases only depends upon the temperature

has been demonstrated for dilute gases as early as 1807 by Joseph Louis Gay-

Lussac (1778–1850)29 with experiments on overflow; the results were later (1845)
corroborated by James Prescott Joule (1818–1889). InMaxwell’s kinetic theory
the temperature, as well as the internal energy, are defined by the sum of the kinetic
fluctuation energies of the molecules, and the potential of the intermolecular forces
is ignored. In other words, T and u are proportional to each other; obviously then,
in the kinetic theory the internal energy is only a function of the temperature by
definition.

In the classical kinetic theory of gases the internal energy is defined as the mean
value of the kinetic energy of the fluctuating motion of a large number of molecules
that is generated by the molecule encounters. Based on this, one can show that the
internal energy is given by

u(T) = 1
2RT(ftrans + frot + 2fosc),

where R is the gas constant of the gas under study and ftrans, frot, fosc are the degrees
of freedom of the translational, rotational and oscillating motion of the molecules.
The above rule, according to which the internal energy is the sum of the internal
energies due to translational, rotational and oscillating motion, is called the law of
equipartition. With the above formula, one obtains in view of (17.94)

cv = 1
2R(ftrans + frot + 2fosc).

On the one hand, this formula shows that, according to the classical kinetic theory of
gases, the specific heat at constant volume cannot depend on the temperature, and on
the other hand, that its value depends on the degree of freedom of the molecules, see
Fig. 17.39a. For a monatomic gas, of which the molecules possess three translational
degrees of freedom, one would expect cv = 3

2R. A diatomic gas with a rigid dumb-
bell structure of the molecules has three translational and two rotational degrees of
freedom (the rotational degree of freedom about the dumbbell axis does not count,
since the moment of inertia about this axis is vanishingly small); we, thus, obtain
here cv = 5

2R. If the connection of the molecules is, however, elastic, an additional
degree of freedom for the extensional oscillation of the dumbbell-axis must be added,
so that cv = 7

2R.

29For a brief biography of Joseph Louis Gay- Lussac, see Fig. 17.38.
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Fig. 17.38 JosephLouisGay- Lussac (6. Dec. 1778–9. May 1850)Gay- Lussac andBiot
ascend in a hot air balloon (left and right), 1804. Illustrations from the late 19th century

Joseph Louis Gay- Lussac was a French chemist and physicist. He is known mostly for
two laws related to gases, and for his work on alcohol-water mixtures, which led to the
degrees Gay-Lussac used to measure alcoholic beverages in many countries.
He received his early education from catholic monks and began his education in Paris, finally
entering the École Polytechnique in 1798, but transferred three years later to the École des
Ponts et Chaussées. In 1802, he was receiving the position as demonstrator toA.F. Fourcroy
at the École Polytechnique, where in (1809) he became professor of chemistry. From 1808
to 1832, he was professor of physics at the Sorbonne, a post, which he only resigned for the
chair of chemistry at the Jardin des Plantes. In 1821, he was elected a foreign member of
the Royal Swedish Academy of Sciences. In 1831 he was elected to represent the district
Haute-Vienne in the chamber of deputies, and in 1839 he entered the chamber of peers.
In 1802Gay- Lussacfirst formulated the law, Gay-Lussac’s Law, stating that if the mass and
volume of a gas are held constant then the gas pressure increases linearly as the temperature
rises. The law is sometimes written as p = kT , where k is a constant dependent on the mass
and volume of the gas and T is the temperature on an absolute scale (in terms of the ideal
gas law, k = n · R/V ).
In 1804 he and Jean- Baptiste Biot made a hot-air balloon ascent to a height of 7,016 m
(23,018 ft) in an early investigation of the Earth’s atmosphere. He wanted to collect samples
of the air at different heights to record differences in temperature and moisture. This caused
a surge of popularity as evidenced by the above illustrations.
In 1808 he was the co-discoverer of boron and in 1811 he recognized iodine as a new element,
described its properties, and suggested the name iode.

The text is based on www.wikipedia.org

Measurements, done with real gases, show the qualitative behavior of Fig. 17.39.
The specific heat for the monatomic gases He,Ar,Hg-vapor is indeed given by
cv = 3

2R; for bi-atomic and multi-atomic gases it is, however, temperature dependent
and only fulfills the equipartition law in a certain range of the temperature. The
hydrogen gas H2 behaves at low temperature as a monatomic gas with cv = 3

2R,

www.wikipedia.org
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Fig. 17.39 Specific heat at
constant volume, cv . The
specific heat of a
multi-atomic gas can be
estimated with the
equipartition law. a Model of
a monatomic and a bi-atomic
gas with and without frozen
oscillating degree of
freedom. b Specific heats
cv/R of various real gases as
functions of the Kelvin
temperature

monatomic bi-atomic

single-atomic

vapor

(a)

(b)

whilst at high temperature as a bi-atomic gas with cv = 5
2R, which can only be

understood, if one freezes either the oscillating or the rotational degrees of freedom.
The specific heats of Cl2 and N2 approach at high temperatures the value cv = 7

2R
of the equipartition law, and tend to cv = 5

2R for low temperatures; if measurements
at yet even lower temperatures would be possible, then cv = 3

2R would be reached.
Various bi-atomic gases behave qualitatively in exactly this way. At low temper-

ature the internal energy corresponds to that of a monatomic gas, in which only the
three translational degrees of freedom of the molecule contribute to the specific heat.
The rotational and oscillation degrees of freedom are quasi-frozen. With increasing
temperature these degrees of freedom are released, first the rotational and afterwards
the oscillational degrees of freedom. This order is revealed by measurements of the
specific heats of multi-atomic gases as functions of the temperature. The ‘freezing’
and re-‘thawing’ of certain degrees of freedom cannot be explained with the classical
kinetic theory of gases; its explanation requires methods of quantum mechanics.

17.5.4 Simple Applications of the First Law

(a) Energy balance for an open system. Consider an open system that is bounded
by a fixed spatial control volume; see Fig. 17.40. We assume momentarily that fluid
is entering this control volume only at one position; similarly we suppose that fluid
leaves the volume only through a small cross section. The inflow and outflow cross
sections are assumed to be so small that of all physical quantities that mean values
taken over the cross section characterize the fluid properties sufficiently accurately.
For the balance law of energy in the form



17.5 First Law of Thermodynamics 383

Fig. 17.40 Energy balance
in an open system. Material
control volume, enclosing
the open system a at time t
and b at time t + Δ t

control volume

(a) (b)

ĖG = Ṫ + U̇ + Ψ̇ = L1 + Q

the open system is replaced by the materially closed but moving system of Fig. 17.40.
At time t this new system has the mass contained in the (original) control volume, plus
a small mass Δme of the fluid that enters at the temporal increment Δ t the control
volume. At time t + Δt the materially closed system, however, contains the fluid
mass in the control volume at that time plus the small mass Δma that left the control
volume during the time increment Δt. The two elements of fluid mass Δme and
Δma are in general not the same; this is so only under steady state conditions. If
we integrate the equation above over the incremental time Δt, the above equation
becomes

EG(t + Δt) − EG(t) = QΔt + AΔt, (17.99)

in which EG = T + U + Ψ is the sum of the kinetic, internal and potential energies
of the materially closed system, and QΔ t and AΔ t are the heat and the work of the
non-conservative forces supplied to the system in the time interval Δt. If we define
by E(t) the sum of the kinetic, internal and potential energies, which are contained
in the control volume, then we have for the new materially closed system

EG(t + Δt) = E(t + Δt) + Δma

(
ua + v2

a

2
+ Ψa

)
,

EG(t) = E(t) + Δme

(
ue + v2

e

2
+ Ψe

)
. (17.100)
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Alternatively, the heat supplied via the materially closed system to the control volume
during the time interval is given by

QΔt =
t+Δt∫

t

Q(τ ) dτ ≈ Q(t)Δt. (17.101)

The work AΔt performed during the time Δ t consists of two contributions, first the
work supplied by a machine—pump—to the system

AM
Δt =

t+Δt∫

t

L(τ ) dτ ≈ L1(t)Δt, (17.102)

and, second, the work done by the pressure at the entrance cross section (positive,
the fluid is displaced in the same direction as the pressure is acting) and at the exit
cross section (negative)

Ap
Δt = L2(t)Δt = peAeveΔt − paAavaΔt

= peΔVe − paΔVa = peveΔme − pavaΔma, (17.103)

in which Ae,Aa,ΔVe,ΔVa, ve, va are the cross sectional areas, volume increments
and specific volumes of the fluid elements at the entrance and exit, respectively.
Moreover, L(t) = L1(t) + L2(t).

If we substitute these separately derived quantities into the energy balance (17.99),
we obtain

t+Δt∫

t

(Q(τ ) + L(τ )) dτ = E(t + Δt) − E(t) + Δma

(
ua + v2

a

2
+ Ψa

)

−Δme

(
ue + v2

e

2
+ Ψe

)
. (17.104)

If, finally, this equation is divided by Δ t and the limit Δ t → 0 is performed then,
on account of

lim
Δt→0

1

Δt

t+Δt∫

t

(Q(τ ) + L(τ )) dτ = Q(t) + L(t),

lim
Δt→0

E(t + Δt) − E(t)

Δt
= ∂E

∂t
,

lim
Δt→0

Δmk

Δt
= dmk

dt
= ṁk (k = a, e),

(17.105)

we obtain the equation
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Q(t) + L1(t) = ∂E

∂t
+ ṁa

(
ua + pava + v2

a

2
+ gza

)

−ṁe

(
ue + peve + v2

e

2
+ gze

)
, (17.106)

in which we have set Ψ = gz, which is the gravity potential, the likely most important
case of a conservative force system. It is customary to slightly transform equation
(17.106). To this end we need

Definition 17.9

• The specific enthalpy h is defined as the state variable

h = u + pv. (17.107)

The internal energy u = u(T , v) as a caloric equation of state is a function of the
temperature and the specific volume. With the help of the thermal equation of state
v = v(T , p) it may be expressed as a function of the temperature and pressure, so, h
too, may be thought of as a function h = h(T , p). In principle h may also be viewed
as a function of T and v, however, the Second Law will demonstrate that to regard
h as a function of T and p is more natural. The enthalpy is therefore also given as a
caloric equation of state: h = h(T , p).

With (17.107) equation (17.106) can be written as

∂E

∂t
= Q(t) + L1(t) − ṁa

(
ha + v2

a

2
+ gza

)
+ ṁe

(
he + v2

e

2
+ gze

)
. (17.108)

Accordingly, the local time rate of change of the sum of the internal, kinetic plus
potential energies in an open control volume is balanced by the heat supplied to and
the work of the non-conservative forces done on the system plus the inflow (positive)
and the outflow (negative) of the energy fluxes across the boundaries.

The following are two special cases of the balance (17.108):

• Materially closed systems: for these we have ṁa = ṁe = 0 and therefore

∂E

∂t
= Q + L1, (17.109)

an equation, which formally agrees with (17.65a).
• Steady state processes: Here ∂E/∂t = 0 and ṁa = ṁe = ṁ, implying that

Q + L1 = ṁ
[
(ha − he) + 1

2 (v2
a − v2

e ) + g(za − ze)
]
. (17.110)

The sum of the heat and mechanical power of working supplied to the system
equals the sum of differences of the enthalpies, kinetic energies and potentials
multiplied with the mass flow ṁ flowing through the open system per unit time.
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Often a control volume receives heat by the mass flow rate ṁ, so that one may
set Q = q12ṁ; similarly, often L1 is proportional to ṁ, namely when e.g. L1 is a
technical power, L1 = wt

12ṁ In this case one may write (17.110) as

q12 + wt
12 = (h2 − h1) + 1

2 (v2
2 − v2

1) + g(z2 − z1). (17.111)

Here, the indices e and a have been replaced by the numbers 1 and 2, which in
applications is often advantageous, since fluids often flow consecutively through a
set of control volumes which need to be adequately identified. The variable wt

12 is
called the technical work done by the fluid; it describes the energy per unit mass
of the fluid that is supplied to, or consumed by, the system.

(b) Enthalpy. In Definition 17.9 the specific enthalpy

h = u + pv (17.112)

was defined as a function of the state variables T and p, h = h(T , p) and called a
caloric equation of state. Its differential, dh, can, thus be written as

dh =
(

∂h

∂T

)

p

dT +
(

∂h

∂p

)

T

dp = cpdT +
(

∂h

∂p

)

T

dp. (17.113)

The quantity

cp =
(

∂h

∂T

)

p

(17.114)

is called the specific heat at constant pressure or the specific isobaric heat
capacity. With its help, the specific enthalpy change at constant pressure between
the temperatures T1 and T2 can be computed as

h(T2, p) − h(T1, p) =
T2∫

T1

cp(T
′, p) dT ′ ≈ c0

p(p)(T2 − T1), (17.115)

where in the expression to the far right it was assumed that in the temperature interval
T1 � T � T2 the specific heat can be replaced by the value c0

p, which only depends
on p and, may often be assumed to be constant.

Formula (17.111) now suggests how the specific enthalpy of a simple system could
be experimentally determined. To this end we consider quasi-static (thus theoretically
infinitely slow) processes for which the kinetic energy vanishes. If neither the center
of gravity of the system is moved, whence no mass is lifted or lowered, the potential
energy difference will equally vanish. If, finally, the process between the two states
1 and 2 is performed such that no technical work is being performed, wt

12 will vanish
and (17.111) will reduce to the statement q12 = h2 − h1. If the change of the states
of the system from state 1 to state 2 is performed with pure temperature changes at
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constant pressure, then this yields, finally,

(q12)p = h(T2, p) − h(T1, p) =
T2∫

T1

cp(T
′, p) dT ′, (17.116)

or
∂ (q12)p

∂T
= cp(T , p). (17.117)

This result says: The specific heat at constant pressure can be measured by exposing
a system that is held at constant pressure to an environment with homogeneous
temperature and changing the temperature of the heat bath quasi-statically. If one
measures for such temperature changes, the heat supplied to the system as a function
of the temperature, then by differentiation of this experimentally determined function
with respect to the temperature, cp is obtained and, consequently also h(T , p) at
constant pressure.

The specific enthalpy of a calorically ideal gas, for which

pv = RT and u = u(T),

does not depend on the pressure; indeed

h = u(T) + pv = u(T) + RT = h(T). (17.118)

For an ideal gas the specific internal energy and the enthalpy are only functions of
the temperature. Moreover, because of (17.118)

cp = ∂h

∂T
= ∂u

∂T
+ R = cv + R,

or
R = cp(T) − cv(T). (17.119)

Consequently, even though the specific heats themselves can depend upon the tem-
perature, their difference equals the gas constant R of the ideal gas considered which
is independent of the temperature.

(c) Two applications

Example 1 Hydraulic power plant
As a simple but instructive application of the first law for steady processes, let us look
at the model of a water plant as shown in Fig. 17.41. The boundaries of the control
volume at the upstream and downstream sides are so chosen that in these sections the
fluid velocities are negligibly small. Moreover, we shall assume steady and adiabatic
conditions, so that the balance of energy can be taken as stated in (17.111), or
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turbine

boundary of
control volume

Fig. 17.41 Sketch of a hydraulic power plant. Application of the First Law for the calculation of
the temperature increase of the water between the inflow cross section and return cross section to
the river

wt
12 = (h2 − h1) + g(z2 − z1)

= u2 − u1 + p2

ρ
− p1

ρ
+ g(z2 − z1)

= u2 − u1 + g [(z2 + Δz2) − (z1 + Δz1)]

= u2 − u1 − gΔzgeod, (17.120)

in whichp1 = p2 was assumed. The power of working provided by the turbine is, thus,
essentially given by the loss of potential energy of the water in the gravity field of the
Earth. The internal energy is not used; all the more, because of the frictional losses
we have u2 > u1. These frictional losses give rise to an increase of the temperature
of the water, which can be estimated as follows: If one denotes by η the degree of
efficiency of the plant, this degree is given by

η =
∣∣∣
∣∣

wt
12(

wt
12

)
ideal

∣∣∣
∣∣
= 1 − u2 − u1

gΔzgeod
. (17.121)

If we also set
u2 − u1 = cv(T2 − T1), (17.122)

one may compute from these two relations the temperature rise
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Fig. 17.42 Throttle. Cross
sectional contraction in a
pipe or channel for the
explanation of the
functioning of an adiabatic
throttle

T2 − T1 = (1 − η)gΔzgeod

cv

. (17.123)

Water power plants have typical hydraulic degrees of efficiency of η = 0.9, and for
water cv = 4.19 kJ kg−1K−1 for a geodetic height of Δzgeod = 100 m this yields

T2 − T1 = 0.1 × 100 × 9.81

4.19 × 103
K = 0.023 K.

By measuring the temperature difference one may, alternatively, estimate the degree
of efficiency of the plant.

Example 2 Adiabatic throttle
Consider the flow through the channel section of Fig. 17.42. Such a sudden cross
sectional narrowing and immediate following widening is called a throttle. Practi-
cally, it is often employed at positions of the traps of a valve in pipe systems. By the
cross sectional narrowing the fluid is locally accelerated and the pressure is corre-
spondingly lowered. If the cross sections 1 and 2 are positioned sufficiently behind
and ahead of the cross-section narrowing and if the channel or pipe is horizontally
oriented, the energy equation reduces, because q12 = wt

12 = 0 and z1 = z2, to

h2 − h1 = − 1
2

(
v2

2 − v2
1

)
, (17.124)

or, if one ignores the change of kinetic energy

h1 = h2. (17.125)

The enthalpies ahead and behind the position of the throttle are the same. If p1,T1

and p2 are known, this result allows determination of the temperature T2 in cross
section 2.

If the gas flowing through the throttle device is an ideal gas, then because of
h = h(T), we have T1 = T2. Thus, even though the pressure drops, p2 < p1, no tem-
perature change arises. In real gases the enthalpy depends on both, the temperature
and the pressure, and from this it follows that in an adiabatic throttle one encoun-
ters indeed a temperature change; this fact is called the Joule-Thomson effect. Its
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measuring, i.e., the measuring of a temperature change through an adiabatic throttle
can be used to experimentally determine the pressure dependence of the enthalpy.
If, alternatively, the caloric equation h = h(T , p) is known for a real gas, one can
calculate the temperature decrease in the passage of an adiabatic throttle. For air at
T1 = 300 K, p1 = 106 Pa, p2 = 0.7 × 106 Pa one obtains T2 = 299.35 K, thus a
temperature decrease of only 0.65 K.

To clear, whether the change of the kinetic energy can indeed be ignored we
complement (17.124) with the steady state mass balance equation

ρ1v1A1 = ρ2v2A2 → v2 = ρ1

ρ2
v1 (17.126)

(with A1 = A2). If one takes an ideal gas for which

h2 − h1 = cp(T2 − T1),
p

ρ
= RT (17.127)

holds, then (17.124), (17.126) and (17.127) can be combined to yield

T2 = T1 − v2
1

2cp

{(
T2p1

T1p2

)2

− 1

}

, (17.128)

in which the second term represents the influence of the kinetic energy. For air we
have

cv = 0.717 × 103 kJ kg−1 K−1,

R = 0.287 × 103 kJ kg−1 K−1,

cp = 1.004 × 103 kJ kg−1 K−1,

(17.129)

so that the above example yields with v1 = 20 m s−1 the temperature difference

T2 − T1 = 0.21 mK

which can iteratively be calculated. It corresponds to a velocity change of 43%:
v2 = 1.43v1.

17.5.5 Specific Heats of Real Gases

According to the definition (17.94) and (17.114) the specific heats at constant volume
and at constant pressure are given by

cv =
(

∂u

∂T

)

v

, cp =
(

∂h

∂T

)

p

, (17.130)
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where u and h are prescribed by the functional relations

u = u(T , v), h = h(T , p) = u(T , v(T , p)) + pv = ū(T , p) + pv. (17.131)

These formulae allow to relate cv and cp to one another, as in (17.119). To this end
one writes with (17.131)

cp =
(

∂ū

∂T

)

p

+ p

(
∂v

∂T

)

p

=
(

∂u

∂T

)

v︸ ︷︷ ︸
cv

+
(

∂u

∂v

)

T

(
∂v

∂T

)

p

+ p

(
∂v

∂T

)

p

, (17.132)

from which

cp − cv =
{(

∂u

∂v

)

T

+ p

}(
∂v

∂T

)

p

(17.133)

is obtained. For an ideal gas the internal energy is independent of the specific volume,
so that (∂u/∂v)T = 0 and (∂v/∂T)p = R/p, as one can easily deduce from the
thermal equation of state of an ideal gas. Thus, one obtains cp − cv = R, as already
obtained in Eq. (17.119).

As an additional example we consider a van der Waals gas outside the region of
coexistence of combined gas-liquid phases. In Sect. 17.3.3 we explained the thermal
equation of state by mentioning that in theVanderWaalsgas the mutual interaction
forces of the molecules must be accounted for; these are neglected in an ideal gas.
In other words, the internal energy of the Van der Waals gas differs from that of
an ideal gas by the potential of the molecular forces of attraction. When the gas is
heated at fixed volume, the mean distance of the molecules does not change. It follows
that the potential energy of the forces of attraction does not yield a contribution to
cv = (∂u/∂T)v; for a Van der Waals gas the specific heat at constant volume,
cv , has accordingly the same value as for the corresponding ideal gas. However,
the potential energy of the molecular attraction grows with growing volume. One,
therefore expects Cm

p − Cm
v > Rm.30

Now the self-pressure is given by

UB = −AVm→∞ = −
∞∫

Vm

pB dV =
Vm∫

∞

a

V 2
dV = − a

Vm
, (17.134)

so that the internal energy per mole is given by

Um = Um
ideal − a

Vm
, (17.135)

in which Um
ideal is the internal energy per mole of the corresponding ideal gas. From

30Because in Subsection 17.3.3 all quantities are referred to the mole volume, we here calculate
the difference of the heats for a body of 1 mole mass. For the same reason we also choose capital
letters Cm

p and Cm
v .
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(
∂Um

∂Vm

)

T

=
(

∂Um
ideal

∂Vm

)

T︸ ︷︷ ︸
=0

+ a

V 2
m

= a

V 2
m

, (17.136)

relation (17.133), written for a mole implies

Cm
p − Cm

v =
(

a

V 2
m

+ p

)(
∂Vm

∂T

)

p

. (17.137)

If one also uses the thermal equation of state (17.43)

(
a

V 2
m

+ p

)
(Vm − b) = RmT ,

one may deduce from it the relation

(
∂T

∂Vm

)

p

= 1

Rm

{
− 2a

V 3
m

(Vm − b) + RmT

Vm − b

}
, (17.138)

which, when substituted into (17.137) leads to

Cm
p − Cm

v = Rm

1 − 2a

RmTV 3
m

(Vm − b)2
> Rm, (17.139)

an inequality, one might have expected.

17.6 The Second Law of Thermodynamics—Principle
of Irreversibility

17.6.1 Preamble

As explained in the introductory remarks to this chapter, the Second Law of Thermo-
dynamics expresses the fact, that physical processes can only evolve in one direction
whereas a process, which is traversed in the opposite direction, is physically not
realizable. The First Law—the conservation law of energy—is symmetric in this
respect. It allows, in principle, a transformation of mechanical energy into heat and
makes the re-gain of this mechanical energy from heat possible by a process that is
traversed in the reverse direction. We have given examples to the impossibility of
this in Figs. 17.3 and 17.4.

There are different forms, in which the Second Law of Thermodynamics is spelled
out. This has essentially historical reasons: The Second Law is a statement based
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on observations and experience, and its formulation grew from special conditions to
full generality. For this reason it is not so that its most general form could be derived
from special variants of it. Rather, such generalizations are motivated by statements
that were derived under more restrictive conditions. The generalized form can, thus,
only be justified by the fact that (i) it embraces all results already deduced under
simplified conditions and (ii) nothing physically unrealistic follows from it in the
generalization.

Statements, all of which characterize the content of the Second Law, without,
however, quantifying it, are31:

• All natural processes are irreversible.
• All processes involving friction are irreversible (Planck).
• The adiabatic expansion of a gas without the performance of any work is irre-

versible.
• Heat can never by itself be transferred from a body of low temperature to a body

of higher temperature (Clausius 1854).
• It is impossible to construct a periodically operating machine, which achieves no

more than lifting a load and cooling a reservoir (Planck 1897).
• There exists no machine, which draws heat from a heat bath and transfers it into

work by a cyclic process without the presence of a second heat bath at lower
temperature, to which the machine supplies heat.

All these qualitative statements hit the core of what the principle of irreversibility
speaks out, but do not quantify it. In spite of this, some inferences can be drawn
from it. For instance, in view of the sixth of the above statements, it is impossible
to construct a submarine boat, which takes the energy for the motor that drives the
propeller from the heat content of the surrounding sea water. The reason is that there
is no second heat bath present.

A (thought) machine, which violates the Second Law of Thermodynamics is
called a perpetuum mobile of the second kind. The Second Law of Thermody-
namics is therefore equivalent to the statement that a perpetuum mobile of second
kind cannot exist. (A perpetuum mobile of the first kind violates the First Law of
Thermodynamics). The above mentioned submarine boat, if it existed, would be a
perpetuum mobile of the second kind, because as a continuously operating machine,
it would draw heat from a reservoir and transform it into work without the presence
of a second bath to which heat could be supplied.

Because in the literature (mostly of profane nature) perpetua mobili of the second
kind are of relatively frequent occurrence, we shall here add two additional examples.
The first example is the trap machine. Its principle mimics its well-known analogue
as ‘fish-trap’ and is here operating as a trap machine of molecules, built into the
piston of a closed cylinder that is filled with a gas, but otherwise materially closed,

31
W. Thomson [Lord Kelvin] (1824–1907) essentially already spoke out in the year 1851 what

Rudolf J.E. Clausius and Max Planck expressed in the above statements. His statement reads:
“It is impossible, by means of inanimate agency, to derive mechanical effect from any portion of
matter by cooling it below the temperature of the coldest of the surrounding objects”.
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Fig. 17.43 Trap machine
(‘fish trap machine’). A
cylinder, embedded in an
environment with
temperature T1, contains a
gas and a movable piston,
into which semi-permeable
membranes (the trapping
elements) are built, which
allow molecules to pass only
in the direction of the small
arrow indicated in the figure.
The pressure difference that
is built this way induces a
motion of the piston and a
correspondingly established
working as indicated by the
large arrows

(a)

(b)

as shown in Fig. 17.43. The cylinder is kept in a ‘bath’ of constant temperature
T1. The trap is thought to be constructed such that molecules can enter it through
the large opening and leave it again through the small opening, but not vice versa;
The trap device thus operates as a semi-permeable wall. If the piston is initially
positioned on the left side of the cylinder, and if the two trap elements with their
valves are arranged as in Fig. 17.43a, the number of molecules on the left side of
the piston will grow and, correspondingly the pressure will increase, whereas in
the right part of the cylinder the pressure will decrease. The pressure difference
between the two chambers of the cylinder will push the cylinder to the right, which
via the piston rod (not shown in the figure) will perform work. If the piston is in
the right position a mechanism will change the positions of the traps of the valves
as shown in Fig. 17.43b; as a consequence the motion of the piston is now to the
left, since the displaced molecules will now generate a pressure difference to the left
with a corresponding work transmitted via the piston rod, etc. If in this process the
expansion of the gas is performed isothermally and reversibly, the power of working
in the piston motion from one cylinder end to the other is given by

(w12)rev =
v2∫

v1

Δp dv.

where v1, v2 are the volumes of one part of the cylinder at the two end positions of the
piston. This power of working is brought by withdrawal of heat from the reservoir
with temperature T1. The process can be continued forever, but it is a perpetuum
mobile of the second kind, because it corresponds to the fifth of the above itemized
statements: The trap machine performs periodically work (equal to lifting a load)
and only cools a reservoir of heat by drawing heat from it. The trap machine fails,
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Fig. 17.44 Fenman’s rattle
machine. A gear disk on an
axis with frictionless
supports can only rotate in
one direction, because the
rattle prevents it from the
opposite motion. The paddle,
subjected to a gas of
temperature T1 causes,
owing to molecular
encounters, the rotational
motion that raises a weight

rattle

because the Brownian motion of the molecules makes them also to pass the trap
elements in the ‘wrong’ direction through the small hole of the trap machine.

RichardFeynman, in his ‘Lectures on Physics’ (Vol. 1, pp. 46.1–9) [17], presents
a model of a perpetuum mobile, which is now known as Feynman’s rattle machine,
see Fig. 17.44. It consists of a gear wheel, of which the motion is only possible in one
direction. By the rotation of the wheel a weight is lifted. The axis, on which the wheel
is mounted carries a paddle and is horizontally suspended in frictionless supports.
Moreover, the machine is surrounded by a gas of temperature T1. The rotation of
the disk is thought to be caused by collisions, which the molecules experience with
the shovels of the paddle. Without the rattle at most a fluctuating motion of the disk
will arise, since molecule encounters with the paddle are equally probable on both
sides of the paddle. With the rattle, however, a rotation can be expected, because
the motions that are initiated by the molecular impacts on the ‘wrong side of the
shovels’ are prevented by the rattle. The rotating motion can be used to lift a weight
and the power of working used to raise the weight is taken from the gas by lowering
its temperature. This is again a violation of the fifth of the itemized above statement
(Planck). This perpetuum mobile cannot function, since the rattle will also jump
and then allow backward motions.

17.6.2 The Second Law for Simple Adiabatic Systems

In this subsection we shall present a first form of the Second Law of Thermodynamics
by using a very simple example. The system under consideration will be simple (in
the sense defined earlier), non-moving and adiabatic (and hence isolated against
supply of heat), for which the First Law of Thermodynamics implied the formulae
(17.68), provided processes are conducted reversibly, viz.,
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U2 − U1 +
V2∫

V1

p dV = 0, u2 − u1 +
v2∫

v1

p dv = 0. (17.140)

It is seen that for reversible cyclic processes the work done by the pressure vanishes,
since v1 = v2, so that u1 = u2. Alternatively one can imagine a cyclic irreversible
process such that the work done by the pressure vanishes. For this situation we have
the following law that is founded on experience:

Statement of experience (Sears–Kestin assertion)32

• It is impossible in an irreversibly conducted process of a simple adiabatic system,
which connects two equilibria and is cyclic with respect to the variables that
perform work, to lower the value of the internal energy.

Let us go deeper into this statement by putting it into the proper perspective relative
to formula (17.140), which is valid for reversible processes. So, for irreversible
processes the zero on the right-hand side must be replaced by some non-zero value.
If the process is cyclic with respect to variables that perform work, then this means that
the pressure integral in (17.140) vanishes. For such irreversible processes connecting
two equilibria the above statement of experience now requests that u2 − u1 � 0. As
this is a statement of experience, we must accept it as a fact and treat it as an axiom.

In an adiabatically conducted reversible process of a system from state 1 to state 2,
the system follows a well-defined curve in the (U, V )—or (u, v)-diagram, which,
in Fig. 17.45, is shown in bold, and which is fixed once the thermal and caloric
equations of state are known. On the basis of the statement of experience all final
states of irreversible changes of the system from state 1 into state 2 lie therefore
‘above’ the shown reversible adiabatic curve.

Equation (17.140) implies for adiabatic processes

dU + pdV = 0 ⇐⇒ du + pdv = 0,

U̇ + pV̇ = 0 ⇐⇒ u̇ + pv̇ = 0, (17.141)

or (
∂U

∂V

)

ad,rev

= −p ⇐⇒
(

∂u

∂v

)

ad,rev

= −p. (17.142)

The slope of the reversible adiabatic curve in the (u, v)-diagram is therefore equal
to the negative pressure, see Fig. 17.45.

This fact offers a possibility to determine the reversible adiabatic curves in the
(u, v)-diagram; to this end the thermal, p = p̂(T , v), and caloric, u = û(T , v),
equations of state must be known. Inverting formally the caloric equation of state
for the temperature, T = T̂(u, v), and using this in the thermal equation of state,
one obtains p = p̂(T̂(u, v), v) = p̃(u, v). Thus, from (17.142) one may deduce

32
W. Muschik, Am. J. Phys. 58(3), 1990, 241–244.
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reversible adiabatic process
irreversible adiabatic process

region of reachable
states

non-
reachable
states

rev. adiabatic

rev. adiabatic

d

impossible process

(a) (b)

(c)

Fig. 17.45 Changes of states in a simple adiabatic system. a Changes of states of reversible adi-
abatic processes follow in the (u, v)-diagram the solid curve. At constant volume, it is impossible,
to reduce the internal energy (vertical arrow). All irreversible processes that start in the (u, v)-
diagram from a fixed point (dashed) lie above the reversible adiabatic curve. In each point the
reversible adiabatic curve has the slope −p. b In the vicinity of each point of the (u, v)-diagram,
there are infinitely many non-reachable states. c In a simple adiabatic system, a process 1 − 2′ is
reversible and a process 1 − 2′′ is impossible

du/dv = −p̃(u, v), which is a differential equation that can be solved by the method
of separation of variables.

For an ideal gas with linear caloric equation of state u(T) = c(T−T0) one obtains
e.g.,

p = RT

v
=

R
(u
c

+ T0

)

v
= p̃(u, v), (17.143)

and therefore
(

∂u

∂v

)

ad,rev

= −
R
(u
c

+ T0

)

v

or
du

R
(u
c

+ T0

) = −dv

v
, (17.144)

from which, by integration
u

c
+ T0

u1

c
+ T0

=
(v1

v

)R/c
(17.145)
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ensues, in which (u1, v1) is a fixed state in the (u, v)-plane, which is the constant of
integration that selects the adiabatic curve.

If an infinitesimally conducted process from an equilibrium state 1 connects a
second state 2, then the power of working of the pressure due to the associated
infinitesimal volume change is not zero but pdv. (The second state does not have to
be an equilibrium state.) If one requires for this process that du + pdv � 0, one can
with this requirement obtain the result spelled out in the Sears–Kestin assertion.
To this end one must only consecutively couple such processes to a whole process
that is cyclic with respect to the pressure. We will now require that this statement,
namely du+pdv � 0, is satisfied for all physically realizable processes. With the aid
of Fig. 17.45b this statement can also be expressed in the following form: A closed
adiabatic system in a certain initial state cannot reach every possible state; those
states are not reachable, which possess a smaller internal energy than those states
that are reachable by reversible processes from a state of the same initial volume.
Since through each point in the (u, v)-diagram a reversible adiabatic curve can be
drawn, in which in all points the equation du/dv = −p(u, v) holds, one may also
conclude as follows: In the vicinity of any point in the (u, v)-diagram there are for
a simple adiabatic system infinitely many non-reachable points. In Fig. 17.45b, for
the drawn adiabatic curve this is the shaded region. From Fig. 17.45 and the fact
that for an adiabatic system, Eq. (17.140) implies u2 − u1 = −(w12)ad one further
concludes: Of all processes in a closed adiabatic system between given initial and
final states, the reversible process yields the largest work. These formulations go
back to Constantine Carathéodory, see biography in Fig. 17.15.

Since the reversible adiabatic processes of a simple system are characterized by
relation (17.141), or

du + pdv = 0 ⇐⇒ dh − vdp = 0,

the above described properties concerning the non-reachable states allow to read off
from the sign of du+pdv or dh−vdpwhether an infinitesimal process is irreversibly or
reversibly conducted or is simply impossible (or not realizable). Indeed the following
statements hold:

du + pdv

⎧
⎨

⎩

> 0, ⇐⇒ irreversible
= 0, ⇐⇒ reversible
< 0, ⇐⇒ impossible

⎫
⎬

⎭
process of an
adiabatic system.

(17.146)

These three infinitesimal changes of states are illustrated in Fig. 17.45c by the arrows
2′, 2 and 2′′.

The result (17.146) requires the following clarifying comments: The statement
only holds in the given form for infinitesimal processes, since the value of

2∫

1

(du+ pdv) = u2 − u1 +
2∫

1

p dv,

2∫

1

(dh− vdp) = h2 − h1 −
2∫

1

v dp (17.147)
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for finite processes depends upon the path, along which the change of states is reached.
Mathematically, this means that du + pdv is not a total (or complete) differential.
Indeed, if this were so, then

df = du + pdv = ∂f

∂u
du + ∂f

∂v
dv (17.148)

would have to hold, in which case df is only a total differential, if the integrability
condition

∂

∂v

(
∂f

∂u

)
= ∂

∂u

(
∂f

∂v

)
(17.149)

is satisfied. This condition is necessary in order that the integral
∫ 2

1 df from an initial
state 1 to a final state 2 is independent of the trajectory along which the change of
states 1 → 2 is conducted. We shall shortly come back to this point. If the integrability
condition (17.149) would hold for df = du + pdv, then in view of

∂f

∂u
= 1,

∂f

∂v
= p, (17.150)

the relation
∂p

∂u

∣∣∣∣
v

= 0

would have to be fulfilled; the pressure could not be a function of the internal energy, a
result that obviously disagrees with experience. This is seen for an ideal gas directly
from equation (17.143). Incidentally, for a gas, subjected to constant volume and
frictional work, one measures not only an increase of the internal energy, but also an
increase of the pressure. It follows that (∂p/∂u)|v cannot be zero.

These results hold irrespective of which independent variables are chosen for the
thermal and caloric equations of state. If. e.g., u = u(ϑ, v) and p = p(ϑ, v), then df ,
given by

df = ∂u

∂ϑ
dϑ +

(
∂u

∂v
+ p

)
dv, (17.151)

is not a total differential and for h = h(ϑ, v), v(ϑ, v) neither is

df = ∂h

∂ϑ
dϑ +

(
∂h

∂p
− v

)
dp. (17.152)

Hidden behind this problem—namely the fact that (du + pdv) or (dh − vdp) are
not total differentials—are two concepts of classical thermodynamics of adiabatic
systems, namely that of entropy and that of absolute temperature. Both quantities
have found their prominent role in classical thermodynamics out of mathematical
causes and less because of physical necessity, even though the two concepts express,
once they have been introduced, important physical content.
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(a) Appendix about Pfaffian forms in two independent variables To outline the
role played by Pfaffian33 forms we wish to explain a few facts from the theory of
ordinary differential equations. Consider the so-called Pfaffian form

X(x, y)dx + Y(x, y)dy = 0. (17.153)

This is a differential equation in the two independent variables x, y, and the two
differentiable functions X(x, y) and Y(x, y) are assumed to be prescribed. In gen-
eral, one cannot expect that (17.153) is a total differential in the sense discussed
above. However it is so that such Pfaffian forms have an integrating multiplicator
(or an integrating denominator or divisor), which is not necessarily unique. In
other words, there exists at least one function N(x, y) with the property that

Xdx + Ydy

N
= df (x, y) (17.154)

is a total differential of a well-defined function f , i.e., the following statement holds

df =̂
{

complete
differential

}
⇐⇒ ∂

∂x

(
Y

N

)
= ∂

∂y

(
X

N

)
. (17.155)

If this statement holds true, then the integral
∫ 2

1 df from (x1, y1) to (x2, y2) is inde-
pendent of the trajectory along which the integral is computed. The function which
achieves this property is called integrating denominator or divisor; its inverse is the
integrating factor or multiplicator.

To prove the statement (17.155) we assume first that df is indeed a complete or
total differential. Then, the integral

∮

L

df =
∮

L

{
∂f

∂x
dx + ∂f

∂y
dy

}
= 0 (17.156)

vanishes along any simply closed path L, see Fig. 17.47, else the function f would
not be unique. If we write

K = (Kx,Ky) =:
(

∂f

∂x
,
∂f

∂y

)
, ds = (dx, dy), (17.157)

33For a short biography of Johann Friedrich Pfaff, see Fig. 17.46.
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Fig. 17.46 Johann Friedrich Pfaff (22. Dec. 1765–21. April 1825)

Johann Friedrich Pfaff (sometimes spelled Friederich) was a German mathematician.
He was described as one of Germany’s most eminent mathematicians during the 19th century.
He was a precursor of the German school of mathematical thinking, which under Carl

Friedrich Gauss and his followers largely determined the lines on which mathematics
developed during the nineteenth century.
He received his early education at the Carlsschule, where he met Friedrich Schiller, his
lifelong friend. His mathematical capacity was noticed during his early years. He pursued
his studies at Göttingen under Abraham Gotthelf Kästner, and in 1787 he went to
Berlin and studied practical astronomy under J.E. Bode. In 1788, Pfaff became professor of
mathematics in Helmstedt, and continued his work as a professor until that university was
abolished in 1810. After this event, he became professor of mathematics at the University
of Halle, where he stayed for the rest of his life.
He studied mathematical series and integral calculus, and is noted for his work on partial
differential equations of the first order (Pfaffian systems as they are now called) which
became part of the theory of differential forms. He was Carl Friedrich Gauss’s formal
research supervisor. He knew Gauss well, when they both lived together in Helmstedt in
1798. August Möbius was later his student.
His two principal works are ‘Disquisitiones analyticae maxime ad calculum integralem
et doctrinam serierum pertinentes’ (4to., Vol. i., Helmstädt, 1797) and ‘Methodus gener-
alis, aequationes differentiarum particularum, necnon aequationes differentiales vulgares,
utrasque primi ordinis inter quotcumque variabiles, complete integrandi’ in: Abhandlungen
der Königlichen Akademie der Wissenschaften zu Berlin (1814–1815).
His brother JohannWilhelm Andreas Pfaff was a professor of pure and applied mathe-
matics. Another brother, Christian Heinrich Pfaff, was a professor of medicine, physics
and chemistry.

The text is based on www.wikipedia.org

www.wikipedia.org
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Fig. 17.47 Explaining the
integrating denominator of a
Pfaffian form The integral∮
L df along a simply
connected path L vanishes, if
df is a total differential

d

then (17.156) can also be written in the form (Stokes law)

∮

L

K · ds =
∫∫

A

curlK · dA = 0, (17.158)

in which ds is the vectorial line element along the curve L and dA is the vectorial
surface element (perpendicular to the (x, y)-plane.). In Eq. (17.158) it was assumed
that K is a differentiable two-dimensional vector field, so that the Stokes law can
be applied.

The quantity curlK is understood to be a vector perpendicular to the (x, y)-plane
with the algebraic value (∂Kx/∂y−∂Ky/∂x). Since the statement (17.158) holds for
any simply closed path L, we necessarily have

curlK = 0 ⇒ ∂

∂y

(
∂f

∂x

)
− ∂

∂x

(
∂f

∂y

)
= 0 ⇒ ∂

∂y

(
X

N

)
− ∂

∂x

(
Y

N

)
= 0.

(17.159)
So the first part of (17.155) is proved.

To prove the reverse, one assumes that (17.159) holds; then there follows with
K = (X/N,Y/N) also curlK = 0 in the entire domain, in which X,Y and N are
continuously differentiable. With this result, (17.158) must equally hold: (one only
needs to read this equation in the backward direction). In other words, the line integral∫ 2

1 K · ds along an arbitrary path is independent of this path, and therefore the vector
field K is a gradient field

K = grad f ⇒ ∂f

∂x
= X

N
,

∂f

∂y
= Y

N

⇒
∮

L

{
∂f

∂x
dx + ∂f

∂y
dy

}
=
∮

L

df = 0.

(17.160)

With this result, the existence of an integrating denominator for the Pfaffian form
(17.153) is proved.
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(b) Entropy. Let us apply these findings to the Pfaffian forms (du + pdv) and
(dh − vdp). Depending upon the choice of the independent variables the forms of
the entropy functions differ from one another:

• If u and v are the independent variables, there exists an integrating denominator
N(u, v) such that

ds = du + pdv

N(u, v)
(17.161)

is the total differential of a function s(u, v).
• If h and p are the independent variables, the corresponding statement reads

ds = dh − vdp

N(h, p)
. (17.162)

N(h, p) is here the integrating denominator—not necessarily unique—and ds is
the total differential of a function s(h, p).

• If one chooses ϑ and v as independent variables, the starting point is (17.151), and
the integrating denominator in this case is N(ϑ, v), yielding the total differential

ds =
∂u

∂ϑ

N(ϑ, v)
dϑ +

∂u

∂v
+ p

N(ϑ, v)
dv. (17.163)

• Finally, one may also choose ϑ andp as independent variables and then obtains with
the integrating denominator N(ϑ, p) as well as the relation (17.152) the expression

ds =
∂h

∂ϑ

N(ϑ, p)
dϑ +

∂h

∂p
− v

N(ϑ, p)
dp. (17.164)

The expressions (17.161)–(17.164) are total differentials of functions of two vari-
ables, all of which represent physically analogous quantities. They are called
empirical entropies, because they are not unique owing to the non-uniqueness of
the integrating denominators. They must be additive (extensive) quantities, because
u and v or h and v are themselves additive.

Relations (17.161)–(17.164) allow the derivation of the following integrability
conditions:
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Fig. 17.48 Thermodynamics
of adiabatic systems. Lines
of constant entropy represent
in the (u, v)-diagram the
reversible adiabatic
processes. Starting from a
process 1 only states 2 can
be reached with not smaller
entropy

isentropes

reversible
adiabats

∂

∂v

(
1

N(u, v)

)
= ∂

∂u

(
p(u, v)

N(u, v)

)
for (17.161),

∂

∂p

(
1

N(h, p)

)
= − ∂

∂h

(
v(h, p)

N(h, p)

)
for (17.162),

∂

∂v

⎛

⎜⎜
⎝

∂u

∂ϑ
(ϑ, v)

N(ϑ, v)

⎞

⎟⎟
⎠ = ∂

∂ϑ

⎛

⎜⎜
⎝

∂u

∂v
(ϑ, v) + p(ϑ, v)

N(ϑ, v)

⎞

⎟⎟
⎠ for (17.163),

∂

∂p

⎛

⎜⎜
⎝

∂h

∂ϑ
(ϑ, p)

N(ϑ, p)

⎞

⎟⎟
⎠ = ∂

∂ϑ

⎛

⎜⎜
⎝

∂h

∂p
(ϑ, p) − v(ϑ, p)

N(ϑ, p)

⎞

⎟⎟
⎠ for (17.164).

(17.165)

Of these, the last two relations are of particular practical usefulness. These relations
express equality of the cross differentials

∂2f

∂x∂y

∂2f

∂y∂x
.

They are called Maxwell relations.
For reversible processes of simple adiabatic systems, we have ds = 0 or

s = constant; this follows immediately from the above Eqs. (17.161)–(17.164)
and relation (17.146)2. For simple systems the reversible adiabats are, therefore,
identical with the isentropes. Provided N is a positive function, the Second Law of
Thermodynamics, therefore, says that in adiabatic simple systems starting from an
initial state 1 only states can be reached, of which the entropy is not smaller, see
Fig. 17.48, explicitly,

s2 − s1 � 0, for adiabatic simple systems, if N > 0. (17.166)
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Fig. 17.49 Universality of
the integrating denominator.
An adiabatic system A ∪ B is
split by a diathermic wall
into two non-adiabatic
systems

diathermic wall

adiabatic wall

(c) Absolute or thermodynamic temperature. The result (17.166), according to
which the empirical entropy of an adiabatic system cannot decrease, neither for
reversible nor irreversible processes, is tied to the assumption that, always, a strictly
positive integrating denominator N > 0 can be found. The proof that this is always
possible has not yet been given. Furthermore, we might ask, whether inconsistencies
with the Second Law might emerge, if for different systems, which interact, the
integrating denominators can essentially arbitrarily be chosen. It would, indeed be
an advantage, if the integrating denominator used for the entropy differentials would
be a universal function, independent of the material properties of the system. If this
integrating denominator then would also turn out to be positive, then the statement
(17.166) would hold in an absolute sense, i.e., for the ‘true’ entropy, not simply for
that empirical entropy, for which (accidentally) N > 0 would hold.

To corroborate the existence of a ‘universal’ integrating denominator, let us con-
sider an adiabatic total system A ∪ B that is composed of two partial systems A and
B that are separated from one another by a diathermic wall, see Fig. 17.49. If the two
partial systems are in equilibrium with one another, then their empirical temperatures
must be the same, ϑA = ϑB; for across a diathermic wall the temperature must be
continuous. This property, as well as the additivity property of the entropy, is now
employed to corroborate the material independence of the integrating denominator.
To this end, we write relation (17.161) for the three systemsA,B andA∪B as follows

NA(sA,ϑ) dsA = duA + pdvA,

NB(sB,ϑ) dsB = duB + pdvB, (17.167)

N(s,ϑ) dsA∪B = duA∪B + pdvA∪B = (duA + duB) + p(dvA + dvB),

or
N(s,ϑ) ds = du + pdv. . (17.168)

In these formulae we assumed N to be a function of the entropy and empirical
temperature, and we have set ϑA = ϑB = ϑ, because the systems are in equilibrium
with one another. In addition, we have made use of the additivity of the internal
energy and the specific volume, and have used the fact that p = pA∪B = pA = pB.
Equation (17.168) then implies
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ds = du + pdv

N(s,ϑ)
= duA + pdvA

N(s,ϑ)
+ duB + pdvB

N(s,ϑ)

= NA(sA,ϑ)

N(s,ϑ)
dsA + NB(sB,ϑ)

N(s,ϑ)
dsB. (17.169)

Since in these expressions all quantities are functions of s and ϑ, and, in particular,
ds on the left-hand side only depends on s, but not on ϑ, it follows that the right-hand
side of (17.169) must equally be independent of ϑ. In other words, one has

∂

∂ϑ

(
NA

N

)
= ∂

∂ϑ

(
NB

N

)
= 0, (17.170)

from which
1

N

∂N

∂ϑ
≡ 1

NA

∂NA

∂ϑ
≡ 1

NB

∂NB

∂ϑ

or
∂

∂ϑ
(ln N) ≡ ∂

∂ϑ
(ln NA) ≡ ∂

∂ϑ
(ln NB) =: g(ϑ) (17.171)

is obtained. The three expressions on the left-hand side in (17.171) are, therefore
functions of the empirical temperature (and possibly the entropy). The following
argument, however, makes clear why the entropy cannot arise as a variable. The
division of the total system A ∪ B into the systems A and B is namely arbitrary,
i.e., the diathermic wall can be set at will. Consequently, if a dependence of the
expressions in (17.171) on the entropy would exist, then the three expressions could
not be the same, this because of the additivity of the entropy; for this reason, g is
only a function of ϑ. We may now set g(ϑ) > 0 without any restriction. Integration
of (17.171) yields

N(s,ϑ) = Ψ (s)f (ϑ),

Nα(sα,ϑ) = Ψ (sα)f (ϑ), α = A,B
(17.172)

with

f (ϑ) = exp

⎛

⎝
ϑ∫

ϑ0

g(ϑ̄) dϑ̄

⎞

⎠ > 0, (17.173)

in which the different Ψ ’s are necessarily constants, because of the additivity of s:
N = cf (ϑ). (Substitute (17.172) into (17.169) and request ds = dsA + dsB.) For all
adiabatic systems and except for a multiplicative constant the integrating denominator
is, thus, the same function of the empirical temperature. Without restriction, we may
now choose c = 1; the associated integrating denominator will be called absolute
or thermodynamic temperature or Kelvin temperature

T = f (ϑ) > 0. (17.174)
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Because of the exponential property (17.173) it is positive, and because of g(ϑ) > 0
it is a monotonic function of ϑ.34

We summarize: For simple adiabatic systems there exists an integrating denomi-
nator, which is only a function of the absolute temperature. It is positive and indepen-
dent of the material properties of the systems, i.e., universal and is called absolute
temperature. The entropy that is constructed with this integrating denominator is no
longer called empirical entropy but true entropy or simply entropy. For this we
have

ds = 1

T(ϑ)
(du + pdv) = 1

T(ϑ)
(dh − vdp). (17.175)

ds > 0 characterizes irreversible processes, ds = 0 describes reversible processes
and ds < 0 indicates impossible or physically non-realizable processes. If one inte-
grates the imbalance ds � 0 between an initial state 1 and a final state 2, one obtains

s2 − s1 � 0 for adiabatic systems.

The entropy of an adiabatic system can never decrease. For all natural irreversible
adiabatic processes the entropy increases, for reversible processes it remains con-
stant.

This statement also holds, if several non-adiabatic systems are combined to a total
adiabatic system, i.e., the entropy of the total system also fulfills the above imbalance.
For an absolutely closed system at rest the working supplied to the system under adi-
abatic conditions vanishes, and the energy balance (First Law of Thermodynamics)
reduces to the form stated in (17.68), in which A12 = 0. Hence,

U2 − U1 = 0 and S2 − S1 � 0. (17.176)

All quasi-static (i.e., infinitely slow) processes in absolutely closed systems can
only so evolve that the energy remains constant and the entropy is increased until it
finally reaches a maximum. This state corresponds to a thermodynamic equilibrium.
In other words: The thermodynamic equilibrium of an absolutely closed system is
characterized by the maximum of its entropy. Incidentally, the results (17.176) are
due to Julius Emanuel Clausius, who expressed its content by the statements:
‘The energy of the world is constant’ and ‘The entropy of the world strives for a
maximum’, which we quoted already in Sect. 17.1. Grasping the complexity of the
universe today these statements sound rather courageous.

Back to relations (17.175)! In the honor of the American thermodynamicist Josiah
Willard Gibbs (1839–1903), they are called the Gibbs relations, see Fig. 17.12.
They connect the internal energy (enthalpy), the pressure and specific volume with
the entropy, with the absolute temperature acting as integrating denominator of the
Pfaffian forms (du+pdv) and (dh−vdp), respectively. If ϑ and v are the independent

34Monotonicity is important, since only with it the absolute temperature is a candidate of an
objective measure of the sensation of heat and coldness. These arguments are essentially due to
Carathéodory [5].
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thermodynamic variables, then one obtains the differential of the entropy in the form

ds = 1

T(ϑ)

{
∂u

∂ϑ
(ϑ, v)dϑ +

[
∂u

∂v
(ϑ, v) + p(ϑ, v)

]
dv

}
. (17.177)

If the thermal and caloric equations of state are known as functions of ϑ and v,
then the entropy can be determined by integration along an arbitrary curve in the
(ϑ, v)-plane. If s and v are the independent variables, Eq. (17.175)1 implies

∂u

∂s

∣∣∣∣
v

= T(ϑ),
∂u

∂v

∣∣∣∣
s

= −p. (17.178)

The second of these relations shows once more that reversible processes in adiabatic
systems are automatically also isentropic.

Since the thermodynamic temperature has universal character, this function can
be used for the construction of the absolute temperature scale, independent of the
thermal properties of the material. This has first been recognized by Lord Kelvin

in 1848, and was worked out by him in the years 1850–1854.
Naturally, the absolute temperature T(ϑ) must be determined by using functions,

which are materially dependent. It may be determined from the integrability condition
of (17.177), viz.,

1

T

dT

dϑ
= d ln T

dϑ
=

∂p

∂ϑ
∂u

∂v
+ p

, (17.179)

which, after integration, becomes

T(ϑ) = T(ϑ0) exp

⎧
⎪⎪⎨

⎪⎪⎩

ϑ∫

ϑ0

∂p

∂ϑ̄
(ϑ̄, v)

∂u

∂v
(ϑ̄, v) + p(ϑ̄, v)

dϑ̄

⎫
⎪⎪⎬

⎪⎪⎭
(17.180)

with the constant of integration T(ϑ0). Even though the integrand on the right-hand
side depends on the empirical temperature and the specific volume, the result is only
a function of ϑ; that is to say, if one knows the internal energy and the pressure for one
single material, then the absolute temperature is known except for a multiplicative
factor. Alternatively, if one knows the absolute temperature, one may use Eq. (17.179)
to evaluate on the basis of knowledge of p(ϑ, v) the dependence of the internal energy
on the specific volume. One obtains

∂u

∂v
= T

dT/dϑ

∂p

∂ϑ
− p. (17.181)
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Differentiating both sides of this relation with respect to ϑ, one obtains a relation
for the specific heat at constant volume as a function of the specific volume (and
temperature),

∂cv

∂v
= ∂

∂ϑ

(
T

dT/dϑ

∂p

∂ϑ
− p

)
. (17.182)

These relations corroborate the statement made already earlier, that the SecondLawof
Thermodynamics constrains the form of the caloric equations insofar as they cannot
be chosen independently of the thermal equation of state. Indeed, owing to (17.181)
and (17.182), the functional relation for the internal energy is largely predetermined.

Let us apply the above findings to an ideal and a Van der Waals gas. For a
caloric ideal gas we get

p = RT(ϑ)

v
, u = u(ϑ) =

ϑ∫

ϑ0

cv(T(ϑ̄)) dϑ̄ + u0, (17.183)

and so from (17.163)

ds = cv(T(ϑ))

N(ϑ)

dT

dϑ
dϑ + RT(ϑ)

N(ϑ)

dv

v
. (17.184)

The integrability condition of this Gibbs equation reads

∂

∂v

(
cv(T(ϑ))

N(ϑ)

dT

dϑ

)
= ∂

∂ϑ

(
RT(ϑ)

N(ϑ)v

)
. (17.185)

Because the expression on the left-hand side is independent of the specific volume,
this term vanishes, and, consequently also the right-hand side, implying

T(ϑ)

N(ϑ)
= const., T(ϑ) = cN(ϑ) → T(ϑ) = N(ϑ), for c = 1. (17.186)

Indeed, R is a constant and v is independent of ϑ. The integrating denominator is,
therefore, identical to the ideal gas temperature (except for an unimportant factor,
which only affects the temperature scale). One may now regard the absolute temper-
ature, since any gas at sufficient dilution behaves like an ideal gas, as a measure for
the empirical temperature, and set

T = ϑ. (17.187)

This was the proposal of Lord Kelvin, which is why T is also called the Kelvin
temperature.

Alternatively, if one substitutes the thermal equation of state (17.183)1 into rela-
tions (17.181), (17.182), one obtains ∂u/∂v = 0 and ∂cv/∂v = 0. In other words:
The internal energy of an ideal gas is indeed independent of the specific volume, as
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already assumed in (17.183)2. Moreover, (17.181) does not yield any further restric-
tions for the internal energy.

For a Van der Waals gas we write (17.43) as

p = RmT

Vm − b
− a

V 2
m

= RmT
M

ρ
− b

− a

M2
ρ2, (17.188)

where use has been made of the relation Vm = M/ρ. Equation (17.181) then implies

∂u

∂v
= a

V 2
m

= a

M2
ρ2 → ∂u

∂ρ
= − a

M2
,

so that
∂

∂ρ

∂u

∂ϑ
= ∂cv

∂ρ
= ∂

∂ϑ

(
− a

M2

)
= 0. (17.189)

The specific heat of a Van der Waals gas at constant density (specific volume) is
therefore independent of the density, as for an ideal gas. One may, therefore write

u =
ϑ∫

ϑ0

cv(ϑ̄) dϑ̄ +
ρ∫

ρ0

∂u

∂ρ̄
dρ̄ + u(ϑ0, ρ0)

=
ϑ∫

ϑ0

cv(ϑ̄) dϑ̄ − a

M2
(ρ − ρ0) + u(ϑ0, ρ0)

=
ϑ∫

ϑ0

cv(ϑ̄) dϑ̄ − a

M

(
1

Vm
− 1

V 0
m

)
+ u(ϑ0, V

0
m). (17.190)

These are two forms of the specific heat of a Van der Waals gas.

17.6.3 Generalizations for Non-adiabatic Systems

The results of the preceding section are based on two fundamental assumptions,
first the adiabaticity of the considered systems and, second, the assumption that
the systems are simple and their state, therefore, describable by two variables. The
consequence of the irreversibility of the processes under such restricting conditions
was that physically realizable processes must obey the inequality

du + pdv � 0 or u̇ + pv̇ � 0. (17.191)
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The existence of a state function entropy s and that of the absolute temperature T
found expression in the Gibbs relation

ṡ = 1

T
(u̇ + pv̇) , (17.192)

which relates the total differential of the entropy to those of the internal energy and
specific volume, such that the absolute temperature acts as integrating denominator.
The validity of (17.192) is a consequence of purely mathematical considerations
paired with the additional requirement that the entropy is an additive quantity. The
existence of an integrating denominator for the entropy as stated in (17.192) is,
however, only compelling, if s depends at most on two variables; its material inde-
pendence follows from the required additivity of s. It transpires that in extending the
Second Law of Thermodynamics beyond adiabatic systems one necessarily needs
other and perhaps additional postulates.

To motivate such a generalization let us consider a finite non-adiabatic (but still
simple) system at rest, and assume temporarily that the Gibbs relation

Ṡ = 1

T

(
U̇ + pV̇

)
(17.193)

is still valid under such more general conditions. We shall interpret S in (17.193)
as the entropy of the non-adiabatic system, U as its internal energy and V as its
volume. T is the absolute temperature of which its existence is now pre-assumed (as
its existence has only been proved for adiabatic systems).

Supposing that (17.193) is meaningful, we now combine it with the energy equa-
tion (First Law) for a system at rest, whence with

Q + L = U̇ + pV̇ . (17.194)

Here, Q denotes the heating supplied to the system, L the working of the frictional
forces, −pV̇ the working of the pressure and U̇ the time rate of change of the internal
energy. Combination of (17.193) and (17.194) yields

L

T
= Ṡ − Q

T
. (17.195)

One form of the early forms of the Second Law of Thermodynamics was the statement
L � 0 (the working of the frictional forces is non-negative), so that with T � 0 one
also obtains

Ṡ − Q

T
� 0 ⇐⇒ Ṡ � Q

T
. (17.196)

The growth of the entropy in a non-adiabatic system is bounded from below by the
quotient formed with the heating supplied to the system from the outside, Q, and the
absolute temperature, T , of the system.
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If the system is adiabatic, then Q = 0, and (17.196) reduces to Ṡ � 0, valid
for adiabatic systems. If the process monitoring is reversible and no internal fric-
tional working and, in particular, no internal heating exchanges are produced, then
(17.196) holds with equality sign, so that Ṡ = Q/T . Evidently, one has obtained a
generalization of the formulation of the Second Law of Thermodynamics. However,
more than a plausible extension is not obtained by (17.196), for to reach it, first, the
validity of the Gibbs relation was assumed, second, the energy equation for simple
systems at rest was used and, third, only homogeneous systems were considered.
For an inhomogeneous system, (17.196) can further be generalized by dividing the
system into a finite or infinite number of subsystems and requiring

Ṡ −
∫

Q

T
� 0, (17.197)

owing to the additivity of the entropy. In (17.197), S is the total entropy of the system,∫
is the integral over infinitesimally small sub-systems or the sum over finite sub-

systems. The integral
∫
(Q/T) can be interpreted as the entropy rate supplied to the

system from the outside.

17.7 First Applications of the Second Law
of Thermodynamics

In this section we first apply some classical examples, in which the Second Law is
employed in the form (17.197). This analysis is then followed in Chap. 18 by the
standard treatment of the formal entropy principle.
(a) Irreversibility of the heat transfer. Consider the system A ∪ B sketched in
Fig. 17.50; it consists of two sub-systems A and B, which are separated by a wall,
and is thought as a whole to be adiabatically closed. If the two subsystems are at rest,
the heat transfer from system A to system B takes place without any production of
frictional heat; under such conditions, the first law of thermodynamics, formulated
for the total system reads

U̇A∪B = QA∪B = 0, (17.198)

in which the heating supplied to the system vanishes because of the adiabatic isola-
tion. If one now regards the system A ∪ B to be composed of the subsystems A and
B, one may write

QA + QB = QA∪B = 0 =⇒ QA = −QB = Q.

The heating supplied to sub-system A is withdrawn from sub-system B.
We suppose that the processes in each of the sub-systems A and B are performed

reversibly. The second law (17.196) for the two sub-systems then reads

http://dx.doi.org/10.1007/978-3-319-33636-7_18
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Fig. 17.50 Irreversibility of
the heat transfer. In two
systems A and B which are
separated by a thermally
conducting wall but are
adiabatically isolated as a
whole heat flows from the
hotter system to the colder
system

thermally conducting wall

adiabatic wall

ṠA = QA

TA
= Q

TA
, ṠB = QB

TB
= − Q

TB
. (17.199)

Here, we have used the fact that the exchange of heating takes place only across the
wall, which is common to the two sub-systems, whose temperatures are different
from one another.

For system A ∪ B the heating exchange between the sub-systems A and B is
an internal irreversible process, the whole system A ∪ B is, however, adiabatically
closed, for which the Second Law was proved to have the form ṠA∪B � 0. Owing to
the additivity of the entropy and (17.199), we, thus have

ṠA∪B = ṠA + ṠB = Q

(
1

TA
− 1

TB

)
� 0. (17.200)

This implies
TB � TA =⇒ Q > 0,

TB � TA =⇒ Q < 0.

The heat flow, or better the heating transfer takes place for these systems from the
hotter to the colder medium.

(b) Isothermal condensation of an ideal gas. Consider a cylinder, filled with an ideal
gas that is embedded in an infinite heat bath of temperature Tw. Cylinder A and bath
B together form an adiabatic system, see Fig. 17.51. If one assumes that the entropy
change within the cylinder takes place with a reversibly conducted compression, then
the entropy change is given by dsA = 1

T (du+ pdv) as for an adiabatic system. With
the equations of state of an ideal gas, u = û(T), p = RT/v one has

dSA = mR
dv

v
,

S2
A − S1

A = mR ln
v2

v1
= Qrev

1→2

T
< 0. (17.201)
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Fig. 17.51 Isothermal
compression of an ideal gas.
If the interior of cylinder A
and environment B form an
adiabatic system the
compression of the ideal gas
always yields T � TW

m is the mass of the gas contained in the cylinder. In the above the difference of
the entropies in the states 1 and 2 is negative because the volume is decreased by
compression. Therefore, even though the difference of the entropy in cylinder A
decreases, the Second Law of Thermodynamics is not necessarily violated, since for
the adiabatic total system A ∪ B the inequality

(S2 − S1)A + (S2 − S1)B � 0 (17.202)

must hold. Consider now system B; by the reception of heat, see (17.201), its internal
emergy increases by the amount

(U2 − U1)B = −Qrev
1→2, (17.203)

and the entropy difference is given by

(S2 − S1)B = −Qrev
1→2

TW
=
∣
∣Qrev

1→2

∣
∣

TW
. (17.204)

In this case, the Second Law, thus, requires

∣∣Qrev
1→2

∣∣
{

1

TW
− 1

T

}
� 0. (17.205)

This inequality shows that condensation of an ideal gas must always lead to an
increase of the temperature; moreover, the process is only isothermal, if it is con-
ducted extremely slowly, for which T = TW ; then the entropy of the total system
remains unchanged.

(c) Heat engines. Consider a heat engine, which extracts heat from a heat source and
transforms it into working by some user, see Fig. 17.52a. Let us assume that all the
heating can be transferred to the user. We shall prove that this is impossible, because
it violates the Second Law of Thermodynamics.

We assume that the heat engine plus the heat source together constitute an adiabatic
system for which the inequality
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heat source heat source environment

cold roomsink

HE = heat engine
HP = heat pump

HE HE HP

Fig. 17.52 Illustrating the functioning of a heat engine. a A machine, which does no more than
draw energy (Q) from a source and deliver this as work to a user, violates the Second Law. b To be
in conformity with the Second Law a certain amount of heat Q0 � Q is dissipated and brought to a
sink-bath. This heat counts as being lost. c Withdrawal of some heat Q0 from a cold room requires
that some work A1→2 is provided to the system from outside

ΔSA + ΔSB � 0 (17.206)

must hold; here, ΔSA and ΔSB are the entropy growths of the two partial systems in
a cyclic process. For system B such a process is characterized by the fact that after
completion of the process (or after the termination of a period) the system is in the
same state as at the beginning. This means that ΔSB = 0; and it implies that the
second law for system A ∪ B takes the form

ΔSA � 0. (17.207)

With the definition of Q as shown in Fig. 17.52a, Q for system A is a heat loss, the
heat supplied to system B by system A. Without any restriction the condition of the
process in system A may be assumed to be reversible. This means that the Second
Law for system A takes the form

ΔSA + Q

T
= 0 =⇒ TΔSA = −Q < 0.

We conclude
ΔSA � 0, (17.208)

which is in conflict with (17.207). In other words: A machine, which in a cyclic
process does no more than withdraw energy from an energy reservoir and provide
this energy to a user, is in conflict with the Second Law of thermodynamics.

Apparently, a certain amount of heat must be dissipated to a bath of heat loss. If
this heat loss is given by Q0, the thermal efficiency of a heat engine may be written
as
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ηth = A1→2

Q
= Q − Q0

Q
= 1 − Q0

Q
< 1, (17.209)

which, according to the Second Law of Thermodynamics must be smaller than unity.
The thermal efficiency of a heat engine is amaximum, if all processes are reversibly

conducted. We shall now determine this optimal thermal efficiency by the assumption
that the heat source is a bath with constant temperature T and that the heat Q0 is
lost to a bath with constant temperature T0, see Fig. 17.52b. The individual partial
systems are denoted by A,B,C and the total system A ∪ B ∪ C is assumed to be
adiabatically closed. The Second Law for the total system then requires for a cyclic
process

ΔSA + ΔSB + ΔSC � 0,

ΔSB = 0 (cyclic process).
(17.210)

Since the processes in the two systemsA andC are assumed to be reversibly conducted
(in order to achieve the optimal efficiency), the Second Law for these two systems
reads

ΔSA = −Q

T
, (Q > 0),

ΔSC = Q0

T0
, (Q0 > 0).

(17.211)

Substitution into (17.210) yields

Q0

T0
− Q

T
� 0 =⇒ Q0

Q
� T0

T
. (17.212)

Alternatively, when ignoring the internal energy in system B, the balance of energy
yields

A1→2 = Q − Q0. (17.213)

Combination of (17.210) with (17.211) yields

ηth = A1→2

Q
� T − T0

T
. (17.214)

If all processes are reversibly conducted, then (17.210), (17.211) and (17.213) hold
with equality sign, so that

ηC = ηrev
th = T − T0

T
. (17.215)

The coefficient ηC is called the Carnot factor or the Carnot efficiency, according
to its discoverer Sadi Carnot (1796–1832), see Fig. 17.5. It shows which fraction
of the supplied heating can at most be transformed into mechanical power. It is the
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larger, the higher the temperature T of the working system is and the lower the
temperature T0 is at which the heat is lost to the environment. If the source and sink
temperatures are the same, then ηC = 0 and the heat engine is ineffective, or: heat
that is available at the temperature of the sink (environment) is thermodynamically
worthless.

The procedure described above can also be used for heat pumps and cooling
machines. Such machines transfer heat from a ‘cooling room’ of low temperature
T0 to an environment (the outside of the cooling room at a higher temperature).
According to the Second Law this is not possible by itself; one must via a heat pump,
supply work or, better, power of working, L, see Fig. 17.52c.

If one regards the cooling aggregate C, the heat pump B and the surrounding
environment A as an adiabatic system, and if the processes of systems A and C are
reversibly conducted, then the Second Law yields for the different systems

system A ∪ B ∪ C : ΔSA + ΔSB + ΔSC � 0,

system A : ΔSA = Q

T
,

system B : ΔSB = 0 (cyclicprocess),

system C : ΔSC = −Q0

T0
,

from which by combination one deduces

Q

T
− Q0

T0
� 0 =⇒ Q0

Q
� T0

T
. (17.216)

Moreover, the First Law for system B yields

Q0 − Q + A1→2 = 0, (17.217)

or after combination with (17.216)

A1→2

Q
= 1 − Q0

Q
� T − T0

T
= ηC .

For a cyclically working heat pump, we thus obtain during a cycle

A1→2 � ηCQ. (17.218)

Therefore, the Carnot efficiency indicates, which fraction of heat that is released
by the heat pump must at least be provided by the power of working. With (17.218)
we obtain

Q � 1

ηC
A1→2, (17.219)
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in which (1/ηC) is called degree of provisioning. The formula says: At most the
(1/ηC) part of the supplied mechanical power can be provided as heating by the heat
pump.

For a cooling machine, one is not interested in the heating Q that is provided, but
the heating Q0 that is removed. One then obtains with (17.218)

Q0

A1→2
= 1

Q
Q0

− 1
� T0

T − T0
= T0

T

1

ηC
,

in which, coupled to (17.219), also the factor T0/T of (17.216) appears.
The above examples demonstrate by and large the procedures taken by physicists

and (mechanical) engineers in handling problems of heat engines, cooling machines
and simple irreversible phenomena. Prior to the 1940s the science of thermodynamics
had not yet reached the systematic approach of a field theory; this developed later.
The 19th and early 20th century’s thermodynamicists were occupied with the correct
formulations of the First and Second Laws. This period followed by several decades
of explorative applied (perhaps ’down to Earth’) activities. With the development of
the so-called theories of Irreversible and Rational Thermodynamics in the 1940s and
1960s two very flourishing periods brought mathematical and physical extensions to
field theories, which will be introduced in the the next chapter.

References

1. Baehr, H.: Thermodynamik, 6th edn. Springer, Berlin (1988)
2. Boltzmann, L.: Über die mechanische Bedeutung des zweiten Hauptsatzes der Wärmetheorie.

Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften 53, S. 195–220 (19xy)
3. Born, M.: The Born-Einstein Letters. MacMillan, London (1971)
4. Bunstead, H.A., Van Name, R.G. (eds.): The Scientific Papers of J. Willard Gibbs, vol. 2.

Dover, New York (1961)
5. Carathéodory, C.: Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann. 67,

355–386 (1909)
6. Carnot, N.L.S.: Réflections sur la puissance motrice du feu et sur les machines propres à

developer cette puissance. Annales Scientifiques de l’ Ecole Normale Supérieures, Sér 2, 393–
457 (1872)

7. Carnot, N.S.L.: Reflections on the Motive Power of Heat. Transl: Thurston, Robert Henry
(editor and translator). Wiley, New York (1890)

8. Carnot, N.L.S.: Betrachtungen über die bewegende Kraft des Feuers und die zur Entwick-
lung dieser Kraft geeigneten Maschinen (Übersetzer und Hrsg. Wilhelm Ostwald). Wilhelm
Engelmann-Verlag (1892)

9. Clausius, R.: Über die bewegende Kraft der Wärme. Annalen der Physik 79, 368–397, 500–524
(1850)

10. Clausius, R.: Über eine veränderte Form des zweiten Hauptsatzes der mechanischen Wärmethe-
oriein. Annalen der Physik und Chemie 93(12), 481–506 (1854)

11. Clausius, R.: On a modified form of the second fundamental theorem in the mechanical theory
of heat. Philos. Mag. 4 12(77), 81–98 (1856)

12. Clausius, R.: Über die Wärmeleitung gasförmiger Körper. Annalen der Physik 115, 1–57
(1862). doi:10.1002/andp.18621910102

http://dx.doi.org/10.1002/andp.18621910102


References 419

13. Clausius, R.: Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen
der mechanischen Wärmetheorie. Annalen der Physik 125, 353–400 (1865). doi:10.1002/andp.
18652010702

14. Cropper, W.H.: The Road to Entropy Rudolf Clausius. Great Physicists: The Life and Times
of Leading Physicists from Galileo to Hawking, pp. 93–105. Oxford University Press, Oxford
(2004). ISBN 978-0-19-517324-6

15. Duhem, P., Wiener, P.P.: La Théorie Physique: Son Objet et sa Structure [The Aim and Structure
of Physical Theory]. Jules Vuillemin. Princeton University Press, Princeton (1954). ISBN 978-
0-691-02524-7

16. Einstein, A.: Investigations on the Theory of the Brownian Movement (1905). Edited with
notes by R. Fürth. Dover Publications, New York (1956)

17. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics. Volume I:
Mainly Mechanics, Radiation, and Heat, 2nd edn. Addison-Wesley, Reading (2005)

18. Gibbs, J.W.: Elementary Principles in Statistical Mechanics, Developed with Especial Refer-
ence to the Rational Foundation of Thermodynamics. New York: Dover Publications (1960)
[1902]

19. Joule, J.P.: On the heat evolved by metallic conductors of electricity, and in the cells of a battery
during electrolysis. Philos. Mag. 19, 260 (1841). doi:10.1080/14786444108650416

20. Joule, J.P.: On the calorific effects of magneto-electricity, and on the mechanical value of heat.
Philos. Mag. 3 23, 263, 347 & 435 (1843). doi:10.1080/14786444308644766

21. Joule, J.P.: On the changes of temperature produced by the rarefaction and condensation of air.
Philos. Mag. 3 26(174), 369–383 (1845). doi:10.1080/14786444508645153

22. Joule, J.P.: ‘On the Mechanical Equivalent of Heat’. Brit. Assoc. Rep., trans. Chemical Sect,
p. 31, read before the British Association at Cambridge, June (1845)

23. Joule, J.P.: On the existence of an equivalent relation between heat and the ordinary forms of
mechanical power. Philos. Mag. 3 27(179), 205–207 (1845). doi:10.1080/14786444508645256

24. Joule, J.P.: On the mechanical equivalent of heat. Philos. Trans. R. Soc. Lond. 140, 61–82
(1850). doi:10.1098/rstl.1850.0004

25. Lieb, E., Yngvarson, J.: The physics and mathematics of the second law of thermodynamics.
de.arXiv.org > cond-mat > arXiv:cond-mat/9708200 (1997)

26. Longley, W.R., Van Name, R.G. (eds.): The collected works of J. Willard Gibbs. New York:
Longmans, Green and Company, 2 volumes (1928) Yale University Press, New Haven (1948,
1957)

27. Maxwell, J.C.: A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. Lond.
155, 459–512 (1865)

28. Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. II. Clarendon Press, Oxford
(1873)

29. Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. I. Clarendon Press, Oxford (1873)
30. Maxwell, J.C.: Van der Waals on the continuity of gaseous and liquid states. Nature 10(259),

477–480 (1874). doi:10.1038/010477a0
31. Maxwell, J.C.: On the Stability of the Motion of Saturn’s Rings
32. Maxwell, J.C.: An Elementary Treatise on Electricity. Clarendon Press, Oxford (1881)
33. Maxwell, J.C.: Theory of Heat. Longmans Green Co., London (1908)
34. Maxwell, J.C.: The Scientific Papers of James Clerk Maxwell, vol. I. Dover Publication, New

York (1890)
35. Maxwell, J.C.: The Scientific Papers of James Clerk Maxwell, vol. II. University Press, Cam-

bridge (1890)
36. Mayer, R.: Bemerkungen über die Kräfte der unbelebten Natur. Annalen der Chemie und

Pharmacie 43, 233 (1842) Engl. Translation: Mayer, J.R.: Remarks on the forces of inorganic
nature. Philos. Mag. 4 24(162), 371–377 (1862)

37. Nernst, W.H.: Über die electromotorischen Kräfte, welche durch den Magnetismus in von
einem Wärmestrom durchflossenen Metallplatten geweckt werden. Annalen der Physik 267,
760–789 (1887)

http://dx.doi.org/10.1002/andp.18652010702
http://dx.doi.org/10.1002/andp.18652010702
http://dx.doi.org/10.1080/14786444108650416
http://dx.doi.org/10.1080/14786444308644766
http://dx.doi.org/10.1080/14786444508645153
http://dx.doi.org/10.1080/14786444508645256
http://dx.doi.org/10.1098/rstl.1850.0004
http://arxiv.org/abs/cond-mat/9708200
http://dx.doi.org/10.1038/010477a0


420 17 Thermodynamics—Fundamentals

38. Nernst, W.H.: Über die elektromotorische Wirksamkeit der Jonen. Zeitschrift für Physik u.
Chemie 4, 129 (1889)

39. Philibert, J.: One and a half century of diffusion: fick, Einstein, before and beyond. Diffus.
Fundam. 4, 6.1–6.19 (2006)

40. Planck, M.: Treatise on Thermodynamics. Ogg, A. (transl.). London: Longmans, Green & Co.
(1903)

41. Planck, M.: Über den zweiten Hauptsatz der mechanischen Wärmetheorie. Ackermann,
München (1879)

42. Planck, M.: Das Prinzip von der Erhaltung der Energie. Leipzig (1887) nach: Hoffmann: Max
Planck.München S. 32 (2008)

43. Planck, M.: Gegen die neue Energetik. Annalen der Physik 57, 72–78 (1896). doi:10.1002/
andp.18962930107

44. Pogliani, L., Berberan-Santos, M.-N.: Constantin Carathéodory and the axiomatic thermody-
namics. J. Math. Chem. 28, 1–3 (2000)

45. Truesdell, A.C., Muncaster, R.G.: Fundamentals of Maxwell’s Kinetic Theory of a Simple
Monatomic Gas, Treated as a Branch of Rational Mechanics, 593 pp. Academic Press, New
York (1980)

46. Van der Waals, J.D.: Over de Continuiteit van den Gasen Vloeistoftoestand (On the continuity
of the gas and liquid state). Ph.D. thesis, University Leiden, The Netherlands (1873)

47. Wilson, E.B.: Vector Analysis. A Text-book for the Use of Students. Founded upon the Lectures
of J.W. Gibbs. Yale University Press, New Haven (1901)

http://dx.doi.org/10.1002/andp.18962930107
http://dx.doi.org/10.1002/andp.18962930107


Chapter 18
Thermodynamics—Field Formulation

Abstract This chapter extends and applies the concepts of Chap.17 to continuous
material systems. The Second Law is written in global form as a balance law of
entropy with flux, supply and production quantities, which can be written in local
form as a differential statement. The particular form of the Second Law then depends
upon, which postulates the individual terms in the entropy balance are subjected to.
When the entropy flux equals heat flux divided by absolute temperature and the
entropy-production-rate density is requested to be non-negative, the entropy balance
law appears as the Clausius–Duhem inequality and its exploitation follows the
axiomatic procedure of open systems thermodynamics as introduced by Bernard

Coleman and Walter Noll. When the entropy flux is left arbitrary but is of
the same function class as the other constitutive relations and the entropy supply
rate density is identically zero, then the entropy inequality appears in the form of
Müller. In both cases, the second law is expressed by the requirement that the
entropy-production-rate density is non-negative, but details of the exploitation of the
second law in the two cases are subtly different from one another. For standard media
such as elastic and/or viscous fluids the results are the same. However, for complex
media they may well differ from one another. Examples illustrate the procedures and
results.

Keywords Entropy balance law · Thermodynamic process—equilibrium ·
Clausius–Duhem inequality · Müller’s entropy principle · Exploitation of the
entropy principle · Absolute/empirical temperature · Specific heats of ideal gasses ·
Hyperbolic heat conduction equation

List of Symbols

Roman Symbols

B Body, bodily region
∂B boundary of B
cv Specific heat at constant volume
cp Specific heat at constant pressure
D Strain rate tensor, stretching tensor
f|E Value of f in thermodynamic equilibrium
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f Specific body force
[[f ]] = f + − f − Jump of f across a surface, where f + and f − are the values of

f on the positive/negative sides of the surface
g = p/ρ − Ts Free enthalpy = Gibbs free energy
g, g Specific body force, gravity vector
h = u + p/ρ Specific enthalpy per unit mass
L = grad v Spatial velocity gradient
M Mole mass
n Unit normal vector on a surface (generally ∂B)
p Pressure
Q Heat supply to a (sub)system
q Specific energy supply per unit mass
q Heat flux vector
qi Coefficient of the isotropic representation of q as isotropic func-

tion
R Gas constant of an ideal gas
Rm = RM Universal gas constant
S Total entropy of a thermodynamic system
s Specific entropy per unit mass
T Absolute (Kelvin) temperature
t = tR − p1 Cauchy stress tensor
tR, tE Frictional or extra Cauchy stress tensor
v = 1/ρ Specific mass
v Velocity vector
zs Specific entropy supply

Greek and Miscellaneous Symbols

α Thermal expansion coefficient
β Isochoric stress coefficient
Γ (Total) dissipation (rate) per unit volume
η Dynamic shear viscosity
κ Coefficient in the stress-stretching relation of the Reiner–

Rivlin fluid
λ Second Lamé constant of the viscosity
Λρ

Lagrange parameter for the mass balance equation
Λε

Lagrange parameter for the energy equation
ρ Mass density
φ1 Coefficient of the isotropic representationofφ as isotropic func-

tion
φ Specific entropy flux
Ψ Symbol for an unspecified constitutive variable
ψ = u − Ts Helmholtz free energy
Π s,πs Total/specific entropy production of a thermodynamic system
Θ = Θ(θ) Absolute (or Kelvin) temperature
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θ Empirical temperature
κT Isobaric compressibility
κs Adiabatic compressibility
κ = cp/cv Ratio between cp and cv for an ideal gas
τ Characteristic time in the generalized heat conduction equation

(see (18.163)
Λ(θ, θ̇) Universal coldness function in a theorywith θ̇ as an independent

constitutive variable
1/Λ(θ, 0) = T(θ) Absolute (Kelvin) temperature

This chapter comprises a direct continuation of the formulation of the Second Law
of Thermodynamics of the last chapter, but the focus is now on field formulations
and the exploitation of two popular forms of the Second Law in this context. It will
be demonstrated that field theoretical formulations are well advanced to the extent
that the mathematical procedures to exploit the Second Law are well established,
and inferences can fairly routinely be obtained, provided the mathematical complex-
ities can be mastered. Scrutiny of the subtle differences of the two formulations of
the Second Law, however, also show that scientists have still not agreed on a final
common form of the Second Law. Whereas for simple physical situations the dif-
ferent formulations of the Second Law generate identical results, this may not be so
for relatively complex situations. This then implies that the ultimate Second Law of
Thermodynamics has still not been found and, perhaps may never be found.

18.1 The Second Law of Thermodynamics
for Continuous Systems

We now return to the entropy inequality (17.197) in the last chapter.

Ṡ −
∫

Q

T
� 0, (18.1)

in which S is the total entropy of the system.
∫
is the integral over (infinitesimal)

subsystems. The integral
∫
(Q/T) can be interpreted as the entropy rate supplied to

the system from the outside.
To formalize the imbalance (18.1) somewhat for material bodies, we now define

S :=
∫

B

ρs dV,

∫
Q

T
:= −

∫

∂B

φ ·n dA +
∫

B

ρzs dV,

Π s :=
∫

B

ρπs dV,

(18.2)

http://dx.doi.org/10.1007/978-3-319-33636-7_17
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and combine these to the following balance law

d

dt

∫

B

ρs dV = −
∫

∂B

φ · n dA +
∫

B

ρ (zs + πs) dV . (18.3)

The quantity s is called the specific entropy per unit mass; φ is called entropy
flux, zs specific entropy supply and πs specific entropy production. With the
identifications

φ = q
T

, zs = q

T
, (18.4)

which are obviously motivated by (18.1), the imbalance

Π s � 0 (18.5)

then generates inequality (18.1).The Second Law of Thermodynamics corresponds in
this form to the statement that thermodynamic processes are physically only possible
if the entropy production is non-negative at all times. This generalization calls for
the following remarks:

• The above inequality (18.5) does not suggest, how it could be analytically applied.
This procedure still needs to be explained and defined. Indeed, for the motivation
of (18.5) several, not at all trivial, facts of simple adiabatic systems were used
without verifying their validity in the general case.

• We used unquestioned the following identifications

entropy flux = heat flux

absolute temperature
: φ = q

T
,

entropy supply = heat supply

absolute temperature
: zs = q

T
.

(18.6)

• The total supply of entropy to the bodyB,
∫
(Q/T) is composed of the total entropy

flow across the boundary ∂B ofB (the surface integral) and the bulk entropy supply
(integral over the volume of the body B). Moreover, the existence of the absolute
temperature is unquestioned as is the (non-equilibrium) entropy. For simple adi-
abatic systems, the latter is only uniquely defined once the universality of the
integrating denominator of the Pfaffian form du + pdv was established.

• Inequality (18.5) is a global formulation of the Second Law of Thermodynamics,
valid for the body B as a whole, based on the global entropy balance (18.3). If one
considers differentiable thermodynamic processes, then the Reynolds transport
theorem can be used on the left-hand side of (18.3),

d

dt

∫

B

ρs dV =
∫

B

{
∂(ρs)

∂t
+ div (ρsv)

}
dV =

∫

B

ρ
ds

dt
dV
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and the divergence theorem may be employed in the surface integral,

∫

∂B

φ · n dA =
∫

B

divφ dV,

so that ∫

B
(ρṡ + divφ − ρ (zs + πs)) dV = 0. (18.7)

As required already for the balance laws ofmass,momentumand energy, Eq. (18.7)
is thought to be valid for any material part of the bodyB, also infinitely small ones,
so that

ρṡ + divφ − ρ (zs + πs) = 0 (18.8)

can be deduced, an equation from which (18.6) implies

ρṡ + div
q
T

− ρq

T
= ρπs. (18.9)

The Second Law of Thermodynamics, thus finds in the local form its expression
in the inequality

πs � 0, (18.10)

which must hold for all possible physical processes of a continuous system.
• Combining (18.8), (18.10) and (18.9), (18.10) yield the imbalances

(i) ρṡ + divφ − ρzs � 0,

(ii) ρṡ + div
q
T

− ρq

T
� 0.

(18.11)

The first of these is weaker than the second, because nothing specific is assumed
about the entropy flux vector and the entropy supply. The second imbalance is
more restrictive, since the specifications (18.6) have been employed. The imbal-
ances (18.11) are called local entropy inequalities and (18.11)2 is known as
Clausius–Duhem Inequality1; in this inequality the entropy flux and entropy
supply are expressed in terms of energy quantities, the heat flux and the energy
supply (radiation) and the temperature.

In the motivation of the Second Law of Thermodynamics above (either in its
global, (18.5), or local, (18.11), form), we only said that one of these inequalities
must be fulfilled, if a thermodynamic process should be physically possible.We shall
nowmake the requirementmore concrete. To this end it is, first, necessary to precisely

1For biographies of Clausius and Duhem, see Figs. 17.8 and 17.16, respectively.

http://dx.doi.org/10.1007/978-3-319-33636-7_17
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define a thermodynamic process and, second to clarify under what conditions such
processes are physically possible (realizable).

Recall that it is the goal of thermodynamics to determine in the body B, which
is exposed to external driving mechanisms, the motion, temperature distribution,
etc.,— briefly all field quantities that have been introduced to describe the physical
processes in B—as functions of space and time. To this end, the physical conser-
vation laws of mass, linear momentum, (angular momentum)2 and energy must be
fulfilled for all time; for only such processes are physically possible. As we have
seen already when introducing these laws, the number of physical field variables
that arise in these conservation laws, is much larger, in general, than the number of
independent equations, which is obtained from these balance laws. Hence, there are,
in general, infinitely many field distributions for the physical quantities, by which the
conservation laws can be fulfilled. Consequently, constraint equations must be intro-
duced. In other words, some field variables must be expressed in terms of other field
variables, until the number of independent fields yields a system of equations, which
is at least principally uniquely integrable or solvable. These equations, which relate
the field variables, are different for different materials; they are known as material
or constitutive equations. Examples of such material statements are the thermal and
caloric equations of state, e.g.,

p = p̂(T , v), u = û(T , v), (18.12)

or the stress-stretching relation for viscous fluids,

tR = λ(trD)1 + 2ηD + κD2, (18.13)

see Eq. (7.14). In these equations, v = 1/ρ and D = symgrad v. Incidentally, the
Second Law in the form of one of the entropy principles will show that the thermal,
p = p̂(T , v), and caloric, u = û(T , v), equation of state cannot be independently
selected.

The balance laws of mass, momentum and energy have the forms

dρ

dt
+ ρdiv v = 0,

ρ
dv

dt
= div t + ρf , (18.14)

ρ
du

dt
= −div q + tr (tD) + ρq.

Here, ρ, v, t, f are the density, velocity, Cauchy stress tensor and specific body
force; u, q, q and D are the internal energy, heat flux vector, heat radiation and D =
1
2 (L+LT ), where L = grad v, is the stretching tensor or the tensor of strain rate. The

2The law of angular momentum says that the Cauchy stress tensor is symmetric (see Sect. 3.5,
Eq. (3.276) and, thus, is often not mentioned.
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reader is advised to clearly scrutinize the content of these equations; they have been
discussed already earlier.3 Equations (18.14) constitute together five scalar relations,
which in a body must be satisfied by the fields ρ, v, t, u, q and f , q. Commonly, the
specific body force f and the radiation q are known as quantities, which are supplied
to the body from the outside; moreover, t is symmetric, t = tT to be in conformity
with the balance of angular momentum. Thus, one has 14—and if one also adds
the temperature T—15 unknown field quantities; of these, 15 − 5 = 10 must be
functionally expressed in terms of 5 fields. If one regards density ρ, velocity v and
(absolute) temperature T as the independent fields, then the remaining free fields
must be expressed as functionals of these. For instance, one may consider a fluid, of
which internal energy, stress tensor and heat flux vector are functions of the density,
temperature, temperature gradient and stretching tensor, viz.,

u = û (ρ,T , gradT , D) ,

t = t̂ (ρ,T , gradT , D) , (18.15)

q = q̂ (ρ,T , gradT , D) .

A material, which obeys these constitutive relations, is called a heat conducting
compressible viscous fluid. One sees that the functions û(ρ,T , grad T , D), etc., are
indeed depending on ρ, T and v, partly via spatial derivatives of these. Relations
(18.15) also contain generalizations of the thermal and caloric equations of state;
indeed, they postulate an experimental energy relation between the internal energy
and the pressure (the latter via the stress tensor t, but now, apart from the density ρ
(or the specific volume v = 1/ρ) and the temperature T also containing additional
variables. With these preparations we are now in the position, to exactly lay down
the definition of thermodynamic processes.

Definition 18.1

• Every prescription of functions ρ = ρ(x, t), v = v(x, t), t = t(x, t), u = u(x, t),
q = q(x, t) as well as f = f (x, t), q = q(x, t) with x ∈ B and t ∈ [0,∞), which
satisfy the balance laws (18.14), is called a thermodynamic process.

• If this prescription is also consistent with the material equations, e.g., (18.15), then
the process is called an admissible thermodynamic process.

3Themass balance is discussed in Sect. 3.2 and is e.g. given inEqs. (3.44) and (3.45). Themomentum
equation is discussed in Sects. 3.3 and 7.1, all in Vol. 1. In its form (18.14)2 this equation arises in
(7.5). The energy equation (18.14)3 is given also in (17.85), in which the CauchyCauchy stress is
written as t = −p1 + tR, so that

ρ
du

dt
= −div q − pdiv v + tr

(
tRD
)

+ ρq.

http://dx.doi.org/10.1007/978-3-319-33636-7_17
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The balance laws together with the constitutive relations define the field equations
of which solutions for the considered material build the admissible thermodynamic
processes.

In this connection, the following remarks are in order:

• When postulating the constitutive relations, e.g., (18.15), one is fairly free with the
choice of the independent variables. Whether additional space or time derivatives
of the density, temperature and velocity vector should or must be introduced,
depends upon whether experiments suggest these. (One could, for instance, also
introduce additionally grad ρ and Ṫ , etc., as independent variables.)

• The kind and number of independent constitutive variables that arise in a material
equation, define the material class; at the present stage there is no reason to include
in a constitutive equation a particular physical variable and to omit this variable in
another one. For instance, one could write the constitutive relation for the internal
energy instead as in (18.15)1 as u = û(ρ,T) and leave t, q as stated in (18.15)2,3.
We shall not do this and take the position that such possible reductions ought to
be proven. We shall lay down this working rule as follows:
Rule of aequi presence When postulating material equations, all dependent con-
stitutive variables are supposed to depend on the same number of independent
variables.
With this rule of aequipresence a set of independent materials defines a particular
class of materials.

• In postulating rules such as (18.15), constitutive relations for a material point at
position x are defined by functionals at the same point x and same time t. This
means that variations in the independent constitutive variables are only taken into
account via higher order space and/or time derivatives, thought to be evaluated at
position x and time t. This is expression of the fact that such spatial variations are
only taken into account in the closest vicinity of the point x and not at y �= x or
τ �= t farther away from x and t. The restriction to this rule expresses the notion
of locality in space and time. If such functionals account for the material behavior
at times τ for all τ < t, one speaks of hereditary effects that are accounted for, but
maintains the locality principle for the spatial dependence. Purely spatial locality
is generally simply referred to as ‘locality’. In this chapter and throughout the
remainder of the book we restrict ourselves to the strict rule of locality; recall,
however, Chap.16.

• Apart from the rules of aequipresence and locality one must in the postulation
of constitutive relations also observe additional other rules. For instance, it is
reasonable to request that the constitutive equations of a material are independent
of the observer; in other words, two independent observers, who move relative to
one another, should for one and the same material formulate constitutive relations,
which are independent of the relative motion of the observers. This rule is called
the rule of material objectivity, or the rule of material frame indifference.
The mathematical formulation of this rule is beyond the goals of this book. The
rule, however, has been observed in (18.15). It says for a heat conducting viscous

http://dx.doi.org/10.1007/978-3-319-33636-7_16
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fluid e.g. that the full spatial velocity gradient cannot be part of the independent
constitutive variables; it is only the symmetric partD = 1

2 (L+LT ),L = grad v that
is permissible as an independent variable. These rules have been tacitly observed
in (18.15).4

• The postulation of constitutive relations, as introduced so far, does not employ
the Second Law of Thermodynamics; similarly, the admissible thermodynamic
processes define a whole set of solutions of the field equations, of which the
number exceeds the number of the physically possible ones (which satisfy the
Second Law of Thermodynamics). It is time that we describe more closely the
role that is played by the Second Law. Apparently, its role is to constrain the
number of solutions of the field equations. More explicitly, the Second Law is
regarded as a law, which restricts the postulated material equations or simplifies
them such that the entirety of the solutions of the field equations obtained with
the thus constrained constitutive relations only consists of the physically possible
ones. In other words, the Second Law is primarily a restriction of the material
equations, and only secondarily of the processes.

18.2 Two Popular Forms of the Entropy Principle

In today’s thermodynamic research there exist a number of approaches by which the
SecondLawofThermodynamics is axiomatized.Wemay even say that these different
axiomatic systems form separate thermodynamic schools, whose members defend
their views against each other, sometimes rather vividly. In our opinion the only
objective way to select the best axiomatics is to judge the results against experiments.
Here, we present two entropy principles, which generate identical results for simple
single constituent continuous systems, but may deviate in their results for structured
continua. These are

(i) The Clausius–Duhem inequality applied to open systems, and
(ii) The entropy principle of IngoMüller, which applies to closed as well as open

systems.

In the approach using the Clausius–Duhem inequality the absolute temperature T
is taken over from thermostatics. Its existence and form are unquestioned. Moreover,
for the entropy supply ratesφ and zs a-priori estimates are postulated (φ = q/T , zs =
q/T). In this way a direct link between the Second Law and the physical conservation
laws (balances of mass, momenta, energy) is established.

By contrast, in the entropy principle of Müller, the absolute temperature is not
introduced, but its existence must be proved, or it must be replaced by a more general
concept of ‘universal’ measure of coldness. The link between the Second Law and

4The formal theory of the postulation of material equations is treated in books of continuum ther-
modynamics, e.g., I.Müller [25], K.Hutter andK. Jöhnk [15],M.E.Gurtin [10], P.Chadwick

[2], A.J.M. Spencer (1929–2008) [29], and others. The abstract formulation goes back toWalter

Noll (1925–) [27].
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the remaining physical conservation laws is established without a priori estimates for
φ and zs; instead, φ is postulated to be a constitutive variable of the same class as all
other material field quantities within the context of aequipresence. Moreover, zs is
determined by stating that external field quantities will not influence the constitutive
behavior.5

18.2.1 Entropy Principle 1: Clausius–Duhem Inequality

1. In a body, whose thermodynamic processes are described by the balance laws
of mass, linear and angular momenta, energy and material equations for the
internal energy, the stress tensor and the heat flux vector, there exists an additive
(extensive) quantity, called entropy s, for which the balance law

ρṡ = −div
q
T

+ ρq

T
+ ρπs (18.16)

holds.
2. The entropy is a material quantity, which, according to the rule of aequipresence,

depends on the same independent constitutive quantities as thematerial equations
for the internal energy, stress tensor and heat flux vector.

3. The entropy flux is also a material quantity and is given by the a priori relation

entropy flux = heat flux

absolute temperature
. (18.17)

4. Similarly,

entropy supply = energy supply

absolute temperature
. (18.18)

5. The entropy production πs is for all thermodynamic processes, i.e., all solutions
of the field equations non-negative,

πs � 0 for all thermodynamic processes. (18.19)

In this entropy principle the existence of the absolute temperature, which is strictly
non-negative is a priori assumed; the Second Law finds its expression in the satis-
faction of the Clausius–Duhem inequality. In comparison to the Second Law as
used in the formulation for adiabatic systems,6 in which the absolute temperature is

5For expositions on different formulations of the Second Law, see Hutter (1977) [14], Hutter and
Wang (2003) [16].
6The exact definitions of the axioms for adiabatic systems from which the existence of the absolute
(universal) temperature follows, is given by Carathéodory (1873–1950) in 1909 [1]. For a biog-
raphy of Carathéodory see Fig. 17.15.

http://dx.doi.org/10.1007/978-3-319-33636-7_17
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a derived quantity, this is a loss in rigor. A more general entropy principle should
find its extension in exactly this point.

In the following it will be demonstrated how the entropy principle is exploited
for a heat conducting viscous fluid. Combining (18.16) and (18.19) shows that the
Clausius–Duhem inequality

ρṡ + div
( q
T

)
− ρq

T
� 0 (18.20)

must hold for all thermodynamic processes of all heat conducting viscous fluids. In
other words, (18.20) must hold for all solutions of the balance laws (18.14), viz.,

ρ̇ + ρ div v = 0,

ρv̇ = div t + ρf , (18.21)

ρu̇ = −div q + tr (tD) + ρq,

as well as the material equations (18.15) or

u = û (ρ,T , grad T , D) , t = t̂ (ρ,T , grad T , D) ,

q = q̂ (ρ,T , grad T , D) , s = ŝ (ρ,T , grad T , D) .
(18.22)

Here, we requested as in item (2) of the entropy principle that the entropy density,
s, is given by a constitutive relation that is of the same class as the other constitutive
quantities. In particular, the rule of aequipresence was employed, according to which
the number of independent variables in the postulated material equations of all con-
stitutive variables is the same, here for u, t, q, s. The external forces ρf and the heat
supplies (radiation) ρq are never treated as independent constitutive variables. They
are assumed to be externally provided sources, which can arbitrarily be prescribed.7

To be precise, the exploitation of the Clausius–Duhem inequality is performed on
an open thermodynamic system. This view was first clearly spoken out by Bernard
D. Coleman and Walter Noll.8

If one eliminates with the aid of the energy equation (18.21)3 the radiation q from
the Clausius–Duhem inequality, then the dissipation inequality

7The supposition that the external forces and heat supplies can take any value we please, is actually
so extraordinary that serious natural philosophers may justly question its validity. Contemplating on
this postulate to the very end, it means that we can shift in our thoughts the body in the universe to
any position guaranteeing satisfaction of the momentum and energy equation even if, in reality the
body might ‘evaporate’ or being destroyed because of the extreme sources to which it is exposed.
8
Bernard D. Coleman (1930–) and Walter Noll (1925–) were the leading researchers in the
60s and 70s of the 20th century in themathematical formulation of thermodynamicmodels based on
theClausius–Duhem inequality and the exploitation of the Second Law of Thermodynamics. They
wrote a great number of relevant articles, individually and together, which inspired many scientists
for follow-up articles. This movement led to the science what is called Rational Thermodynamics,
see e.g. [3, 4, 11, 30, 31] and many books on continuum thermodynamics. This book intends to
give a flavor of this movement.
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Γ := ρ (Tṡ − u̇) − q · grad T
T

+ tr (tD) � 0

is obtained, inwhich the quantityΓ will be denoted as (specific) dissipation. If in this
inequality we next substitute thematerial equations (18.22) and perform the indicated
differentiation processes (using the chain rule of differentiation where needed), the
dissipation inequality takes the form

Γ = ρ

{(
T

∂ŝ

∂ρ
− ∂û

∂ρ

)
ρ̇ +

(
T

∂ŝ

∂T
− ∂û

∂T

)
Ṫ + tr

[
T

(
∂ŝ

∂D
− ∂û

∂D

)
Ḋ
]

+
(
T

∂ŝ

∂grad T
− ∂û

∂grad T

)
· (grad T)˙

}
− q̂ · grad T

T
+ tr

(
t̂D
)

� 0, (18.23)

in which the symbol (·̂) means that in the corresponding variables the functional
dependencies (18.22) are thought to be substituted. Inequality (18.23) must be sat-
isfied as an identity for all thermodynamic processes, i.e., all solutions of the field
equations (18.21) (if one thinks all the material equations (18.22) to be substituted).
As already mentioned, we treat ρf and ρq as free source terms. This means that
for any values of ρ,T , grad T and D as well as possible gradients and time deriva-
tives of these variables that may arise, the momentum equations (18.21)2 and energy
equation (18.21)3 can always be fulfilled. One simply must choose for ρf and ρq
values which make (18.21)2,3 to be fulfilled. Otherwise stated, these equations do not
constitute constraint conditions for the identical satisfaction of inequality (18.23).9

On the other hand, ρ̇ in (18.23) cannot be arbitrarily selected, since the continuity
equation (18.21)1 must hold, from which one obtains

ρ̇ = −ρ div v = −ρ tr(D) = −ρ tr(1D),

in which 1 is the unit tensor. The first and the last term in (18.23) may therefore be
combined

tr

{[
t̂ − ρ2

(
T

∂ŝ

∂ρ
− ∂û

∂ρ

)
1
]

D
}

,

so that the dissipation inequality takes the form

Γ := ρ

{(
T

∂ŝ

∂T
− ∂û

∂T

)
Ṫ + tr

[(
T

∂ŝ

∂D
− ∂û

∂D

)
Ḋ
]

+
(
T

∂ŝ

∂grad T
− ∂û

∂grad T

)
· (grad T)˙

}

+ tr

{[
t̂ − ρ2

(
T

∂ŝ

∂ρ
− ∂û

∂ρ

)
1
]

D
}

− q̂ · grad T
T

� 0. (18.24)

9This is the point, where the open systems thermodynamics of Bernard Coleman and Walter

Noll shows its computational advantage: The momentum and energy equations do not exert any
influence on the thermodynamic implications.
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In this form all necessary field equations of a heat conducting fluid are accounted
for as constraint conditions. This also implies that (18.24) must be valid for arbitrary
continuously differentiable fields ρ,T , v, in particular also arbitrary values of Ṫ , Ḋ
and (grad T)·.

The various terms in the balance (18.24) have been so arranged that in the first two
lines only such terms arise, which depend explicitly upon Ṫ , Ḋ and (grad T)·. Since
these variables do not occur as independent constitutive variables, the dissipation
inequality (18.24) is linear in the variables Ṫ , Ḋ and (grad T)·, which can assume
arbitrary values.10 Consequently, in order that the inequality is not violated, the
prefactors of these variables must necessarily vanish, i.e., we have the identities

∂ŝ

∂T
= 1

T

∂û

∂T
,

∂ŝ

∂D
= 1

T

∂û

∂D
,

∂ŝ

∂grad T
= 1

T

∂û

∂grad T
. (18.25)

There remains the residual inequality11

Γ := tr

{[
t̂ − ρ2

(
T

∂ŝ

∂ρ
− ∂û

∂ρ

)
1
]

D
}

− q · grad T
T

� 0. (18.26)

The identities (18.25) can further be exploited. If the functions s = ŝ(·) and u = û(·)
are unique functions of their variables, then the ‘cross differentiations’ must be
independent of the order of differentiation. From (18.25)1,2 one obtains e.g.

∂2ŝ

∂D∂T
= 1

T

∂2û

∂D∂T
,

∂2ŝ

∂T∂D
= 1

T

∂2û

∂T∂D
− 1

T 2

∂û

∂D
. (18.27)

10These variables do not occur in the balance laws of mass and momentum, and only Ṫ arises in
the energy equation, which has a freely assignable radiation term.
11To see this, let the last line of (18.24) be denoted by Φ and make the permissible choices Ḋ = 0,
(grad T)· = 0. With these, (18.24) becomes

Ṫρ

(
T

∂ŝ

∂T
− ∂û

∂T

)
� −Φ,

which is violated if

Ṫ � −Φ

/
ρ

(
T

∂ŝ

∂T
− ∂û

∂T

)

is chosen. So, (18.25)1 must hold true.
In a similar fashion one can also argue if one chooses

Ṫ = 0, Ḋ = 0, (grad T)· �= 0

or
Ṫ = 0, Ḋ �= 0, (grad T)· = 0,

implying (18.25)1,3.
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Uniqueness of s and u requires the integrability conditions

∂2ŝ

∂T∂D
= ∂2ŝ

∂D∂T
,

∂2û

∂T∂D
= ∂2û

∂D∂T
,

which, together with (18.27) implies ∂û/∂D = 0 and owing to (18.25) also ∂ŝ/∂D =
0. Therefore, we have

∂û

∂D
= ∂ŝ

∂D
= ∂û

∂grad T
= ∂ŝ

∂grad T
= 0, (18.28)

where the two last results followed from a similar cross differentiation of (18.25)1,3,
using (grad T) as the variable.

The result (18.28) says that the internal energy and the entropy cannot be functions
of the stretching tensor D and the temperature gradient grad T , and, thus, are of the
form

u = û (ρ,T) , s = ŝ (ρ,T) , (18.29)

where from (18.25) one also infers the relation

∂ŝ

∂T
= 1

T

∂û

∂T
. (18.30)

It follows that, even though we started with the application of the rule of aequipres-
ence, i.e., the assumption for a heat conducting viscous fluid of amore general depen-
dence of the internal energy and the entropy, exploitation of the Second Law in the
version of the Clausius–Duhem inequality led to a reduced functional dependence,
which we had assumed in simple systems.

There remains the exploitation of the residual inequality (18.26). To this end,
recall that its left-hand side for a heat conducting viscous fluid represents a nonlinear
function of ρ, T , D and grad T . For fixed values of ρ and T , the dissipation, Γ , is a
function of D and grad T with parameters ρ,T ,

Γ = Γ̂ρ,T (D, grad T) . (18.31)

The Second Law, therefore, requests that Γ � 0 for all thermodynamic processes.
It can also directly be inferred from (18.26) that

Γ = 0, if D = 0 and grad T = 0. (18.32)

Whenever D = 0 and grad T = 0, no entropy is produced. These are exactly the
conditions of homogeneous systems with uniform temperature and velocity fields.
This suggests the following



18.2 Two Popular Forms of the Entropy Principle 435

Definition 18.2

• A thermostatic or thermodynamic equilibrium of a heat conducting viscous
fluid is a time-independent process with homogeneous temperature and velocity
fields.

Because the dissipation Γ = Γ̂ρ,T (D, grad T) is a non-negative function of its
variables, which assumes its minimum value (namely the value zero) in equilibrium,
the following conditions must necessarily be fulfilled12

∂Γ̂ρ,T

∂D

∣
∣
E
= 0,

∂Γ̂ρ,T

grad T

∣
∣
E
= 0,

A :=

⎛

⎜⎜⎜
⎝

∂2Γ̂ρ,T

∂D∂D
∂2Γ̂ρ,T

∂D∂grad T

sym
∂2Γ̂ρ,T

∂grad T∂grad T

⎞

⎟⎟⎟
⎠
∣
∣
E

is positive semi-definite.
(18.33)

The index (·)|E indicates that the corresponding result holds for conditions of equi-
librium, i.e., for D = 0 and grad T = 0.

Let us exploit (18.33)1,2 first. With (18.26) it is easy to show that

∂Γ̂ρ,T

∂D

∣
∣
E

= t̂ |E − ρ2
(
T

∂ŝ

∂ρ
− ∂û

∂ρ

)
1 = 0,

∂Γ̂ρ,T

∂grad T
|E = 1

T
q |E = 0,

(18.34)

from which one concludes that

t̂ |E = −p1, p = −ρ2
(
T

∂ŝ

∂ρ
− ∂û

∂ρ

)
, q|E = 0. (18.35)

In thermodynamic equilibrium the stress tensor is a pure pressure tensor and the heat
flux vector vanishes. The variable p is called thermodynamic pressure; owing to
(18.35) it is given by the entropy and the internal energy and, thus, only a function of

12This step is based upon the application of a theorem of analysis on extrema of functions of several
variables. If f (x1, . . . , xN ) is a differentiable function, then the extrema of this function f lie where

∂f

∂xi
= 0, (i = 1, . . . ,N).

Moreover, a necessary condition for such an extremum to be a relative minimum is the condition
that the matrix

Aij=̂
(

∂2f

∂xi∂xj

) ∣∣
E is positive definite.

If such a minimum occurs in the neighborhood of an equilibrium, then Aij is positive semi-definite.
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ρ and T : p = p̂(ρ,T). Moreover, the results (18.30) and (18.35)2 can be combined
to obtain the relation

∂ŝ

∂T
= 1

T

∂û

∂T
,

∂ŝ

∂ρ
= 1

T

(
∂û

∂ρ
− p̂

ρ2

)
. (18.36)

Because of (18.29) these two expressions can be combined to the total differential
of the entropy in the form

ds = ∂ŝ

∂T
dT + ∂ŝ

∂ρ
dρ = 1

T

{
∂û

∂T
dT +

(
∂û

∂ρ
− p̂

ρ2

)
dρ

}

= ∂ŝ

∂T
dT + ∂ŝ

∂v
dv = 1

T

{
∂û

∂T
dT +

(
∂û

∂v
+ p̂

)
dv

}
. (18.37)

Here, we replaced in the second line the density by the specific volume, v ≡ 1/ρ as
independent variable, viz.,

u = û(v,T), p = p̂(v,T). (18.38)

This equation is identicalwith theGibbs relation as itwas alreadyderived in (17.177)
for a simple adiabatic system.

If the entropy is a unique function of its variables, then (18.37) must fulfill inte-
grability conditions. From

∂2ŝ

∂T∂ρ
= ∂2ŝ

∂ρ∂T
,

one deduces

T
∂p̂

∂T
− p̂ = −ρ2

∂û

∂ρ
. (18.39)

Similarly,
∂2ŝ

∂T∂v
= ∂2ŝ

∂v∂T

leads to the equation

T
∂p̂

∂T
− p̂ = ∂û

∂v
. (18.40)

Relations (18.39) and (18.40) show that the thermal and caloric equations of states
are not independent of one another. This corroborates our earlier statement that the
Second Law of Thermodynamics constrains the freedom in the postulation of the
thermal and caloric equations of state.

The following remarks are helpful:

• The Gibbs relation in the form (18.37) has been obtained from a general entropy
principle (the Clausius–Duhem inequality) for a heat-conducting viscous fluid.

http://dx.doi.org/10.1007/978-3-319-33636-7_17
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Unlike the corresponding relation for a simple adiabatic system the absolute tem-
perature is here a primitive quantity, i.e., a quantity, which is given a priory—not
derived as a function of an empirical temperature. In this connection theClausius–
Duhem inequality is, therefore, simpler, respectively less far reaching in its infer-
ences than the previously employed simple statement of experience expressed by
the Sears–Kestin assertion: ‘It is impossible to lower the internal energy of a
simple adiabatic system when the specific volume is kept constant’, seeMuschik

(1990) [26].
• Even though the thermodynamic pressure has been obtained by use of a ther-
modynamic equilibrium condition, the three functions s = ŝ(ρ,T), u = û(ρ,T),
p = p̂(ρ,T) can also be taken over as entropy, internal energy and pressure in non-
equilibrium. This follows alone from the fact that these functions are not functions
of D and grad T . If the thermal and caloric equations of state are determined
for quasi-static processes—i.e., thermodynamic equilibria—these functions can
simply be taken over for non-equilibrium processes. Sometimes this is expressed
by the statement that entropy, internal energy and pressure are determined by a
co-moving frozen state of equilibrium.

• With the result (18.35) for the stress tensor in thermodynamic equilibrium, it is
advantageous to additively decompose the Cauchy stress tensor as follows:

t = −p1 + tE . (18.41)

Here, p = p̂(ρ,T) is the thermodynamic pressure (18.35) and its value, which it
assumes for the actual values of the density ρ and the temperature T ; tE is called
extra stress tensor; it agrees with the frictional stress tensor tR, introduced in
Chap.7. However, here, and with the present knowledge, it is not evident that it
is ‘responsible’ for the viscous effects. If one substitutes (18.41) into (18.35), one
obtains

tE|E = 0, q|E = 0. (18.42)

In thermodynamic equilibrium both the extra stress tensor tE and the heat flux
vectorq vanish.

• With (18.41) and (18.35) the residual inequality (18.26) assumes the form

Γ := tr
(
tED
)− q · grad T

T
� 0. (18.43)

This is about as far as an exploitation of the entropy principle can deliver without
explicit assumptions for the material equations. The results, which are obtained are
significant and constrain the choice of the constitutive relations of a heat conducting
viscous fluid:

• Internal energy u, entropy s and thermodynamic pressure p are functions of the
density ρ and temperature T , which are related to one another by theGibbs relation

http://dx.doi.org/10.1007/978-3-319-33633-6_7
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ds = 1

T

{
∂û

∂T
dT +

(
∂û

∂ρ
− p̂

ρ2

)
dρ

}
. (18.44)

• The thermal and caloric equations of state cannot be independently selected, but
must satisfy the relation

T
∂p̂

∂T
− p̂ = −ρ2

∂û

∂ρ
, (18.45)

in order that the entropy is a unique function of its variables. This must also
experimentally be observed if the theory makes sense at all.

• The extra stress tensor and the heat flux vector in thermodynamic equilibrium
vanish,

tE|E = 0, q|E = 0. (18.46)

Before concluding, let us exploit the residual inequality (18.43) for a fluid, for which
material equations for the extra stress tensor and the heat flux vector are given as
linear functions of the strain rate tensor D and the temperature gradient grad T .
One can then easily see that tE cannot depend on grad T , and q cannot depend on
D. For a viscous fluid, the form of the extra stress tensor has already been given in
Chap.7 (Eq. (7.28)). The heat-fluxvector is assumed to be collinear to the temperature
gradient:

tE = ζ(div v)1 + 2η
(
D − 1

3 (div v)1
)

︸ ︷︷ ︸
E

,

q = −κ grad T .

(18.47)

Here, E is the deviator of the stretching tensor, defined by

E := D − 1
3 (div v)1 with tr E = 0,

also called the distortion (rate) tensor. The laws (18.47) are called aNewtonian stress
relation and the Fourier law of heat conduction.13 Here, ζ = ζ̂(ρ,T), η = η̂(ρ,T)

and κ = κ̂(ρ,T) are the bulk viscosity, the shear viscosity and the heat conductivity,
which in the context of a theory linear inD and grad T can still be functions of density
and temperature.

If one substitutes (18.47) into (18.43), one obtains (compare also Eq. (17.88))

13For a remark on Newton, see Chap.7, Eq. (7.21) of Vol. 1 and text immediately below it. Baron
Jean Baptiste Fourier (1768–1830) was a French mathematician and professor at Ecole Nor-
male and Ecole Polytechnique, later—under Napoleon—Governor of Egypt. Fourier series and
integrals are also named after him, which are treated in his oeuvre ‘Théorie analytique de chaleur’
(1822). For a biographical sketch of Fourier see Fig. 18.1.

http://dx.doi.org/10.1007/978-3-319-33633-6_7
http://dx.doi.org/10.1007/978-3-319-33636-7_17
http://dx.doi.org/10.1007/978-3-319-33633-6_7
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Fig. 18.1 Jean Baptiste Joseph Fourier (21. March 1768–16. May 1830) (Right) 1820
watercolor caricatures of French mathematicians Adrien–Marie Legendre (left) and
Joseph Fourier (right) by French artist Julien–LeopoldBoilly, watercolor portrait num-
bers 29 and 30 of Album de 73 Portraits-Charge Aquarelle’s des Membres de I’Institute.
See also Fig. 18.2

Jean Baptiste Joseph Fourier was a French mathematician and physicist. He was the
son of a tailor and was educated at the military school in Auxerre. With the age of 18 he
became professor at that school. He was active in the French revolution, but followed later
Napoleon. Fourier succeeded in 1797Lagrange as professor of Analysis andMechanics
at the École Polytechnique. In physics he is known for the mathematical description of heat
transport in solid bodies, for which he won a prize at the Academy in Paris. His ‘Théorie
analytic de la chaleur’ (1822) is the basis for the description of the heat (temperature) in
continuous bodies. In 1824 and 1827 he described in ‘Mémoire sur les temperatures du
globe terrestre et les espaces planetaire’ for the first time the fundamental mechanisms of
the atmospheric Greenhouse effect [8, 9]. With his Fourier analysis he set the foundation
of the progress in modern physics.

In the context of this book the Fourier law expresses the heat flux vector as proportional
to the temperature gradient with theheat conductivity measuring this proportionality.

The text is based on www.wikipedia.org

Γ = Γ̂ (x, y, z) = ζ
x2

2
+ η

y2

2
+ κ

z2

2
� 0,

(18.48)
x√
2

= div v,
y√
2

=
√
2tr (E2),

z√
2

= |grad T |√
T

,

where new variables x, y, z have been introduced.
Here, the dissipation Γ is a quadratic function of the three scalar variables x, y, z

with coefficients, which themselves may still depend on density and temperature.
Performing the differentiations of (18.48) with respect to x, y, z it is readily shown
that

www.wikipedia.org
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∂Γ̂

∂x
|E = ∂Γ̂

∂y
|E = ∂Γ̂

∂z
|E = 0,

A =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

∂2Γ̂

∂x2
0 0

0
∂2Γ̂

∂y2
0

0 0
∂2Γ̂

∂z2

⎞

⎟⎟⎟⎟⎟
⎟
⎠
∣∣
E

=
⎛

⎝
ζ 0 0
0 η 0
0 0 κ

⎞

⎠ ,

in which the index E denotes the thermodynamic equilibrium that is given by x =
y = z = 0. The matrix A is positive semi-definite, provided that

ζ � 0, η � 0, κ � 0. (18.49)

In order that in a linear, heat conducting fluid the bulk and shear viscosities as
well as the coefficient of heat conduction are in conformity with the second law,
these coefficients must be non-negative functions of the variables density, ρ and
temperature, T .

With these results, all inferences implied by the Second Law in form of the
Clausius–Duhem inequality for a linear, heat conducting linear viscousNewtonian
fluid are exploited.

18.2.2 Entropy Principle of Ingo Müller14

In the last section we formulated the second law in the form of the Clausius–
Duhem inequality and simplified its mathematical exploitation effectively by using
two assumptions. These assumptions were

•

entropy supply = energy supply

absolute temperature
,

entropy flux = heat flux

absolute temperature
.

14Ingo Müller (∗1936), a physicist- engineer with doctorate (1966) and habilitation (1971) from
the Technische Hochschule Aachen, is among the rational thermodynamicists, who was chiefly
involved in research to generalize the entropy principle, to make it more flexible and better apt for
thermodynamic processes than the Clausius–Duhem inequality with its absolute temperature and
the a priori estimate of the entropy flux asq/T. This is seen already in his doctoral dissertation, in
which theGibbs relation found already a thermodynamic extension [21–23], and his books [24, 25].
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• The balance laws of linear momentum and energy accommodate non-vanishing
supply terms, which can be prescribed arbitrarily, and when necessary, can take
every value we please.

The first assumption is restricting, because it assumes the existence of the absolute
temperature; in addition it fails for mixtures and must be modified there. The second
assumption is physically presumptuous, because it assumes that our “universe” is
natured in such a way that, for a body, when necessary, there exists always a neigh-
bourhood for which the external forces and the radiation take values as we please.

In the endeavour of softening these assumptions Ingo Müller in 1971 [23]
formulated a weaker form of entropy principle, which, nevertheless, satisfies all
necessary requirements of an irreversibility statement and reads as follows:

Entropy Principle 2:

(1) In every material body there exists an additive quantity, the specific entropy s,
which obeys a balance equation

ρ
ds

dt
= −divφ + ρzs + ργ, (18.50)

in which φ is the entropy flux, zs the specific entropy supply and γ the specific
entropy production.

(2) The specific entropy s and the entropy flux φ are material quantities for which,
according to the rule of aequipresence, the same material laws hold as for the
remaining constitutive quantities.

(3) The entropy production must be a non-negative quantity,

γ � 0 for all thermodynamic processes, (18.51)

i.e., for all solutions of the field equations (these are the balance equations plus
the constitutive relations together).

(4) The supply terms, which appear in the balance equations, can not influence the
material behaviour.

(5) There exist special material singular surfaces, the so-called ideal walls, between
two continua, across which the normal heat flux and normal entropy flux are
simultaneously continuous.

This entropy principle is weaker in its prerequisites, but equally also more embracing
in its inferences than the Clausius–Duhem inequality. This is the reason why we
prefer it to the latter. However, the analytical operations, which have to be performed
with it, are considerably more complex than with the Clausius–Duhem inequality.
This is why we demonstrate its analytical exploitation with simpler constitutive
classes than with the heat conducting viscous fluid.

(a) Heat Conducting Compressible Fluid. We shall apply this entropy principle for
the simplest case, a heat conducting, compressible fluid; then the material equations
are
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Ψ = Ψ̂ (ρ, θ, grad θ), Ψ ∈ {ε, s, q, t, φ}. (18.52)

Mass, momentum, energy and entropy balances are given by

∂ρ

∂t
+ div (ρv) = 0,

ρ
dv

dt
− div t̂ − ρg = 0,

ρ
dε̂

dt
+ div q̂ − tr (t̂D) − ρq = 0,

ρ
dŝ

dt
+ div φ̂ − ρzs � 0,

(18.53)

in which ρ, θ (the empirical temperature) and v are to be considered as independent
field quantities and the constitutive equations are thought to be substituted (which is
indicated by the notation ˆ( · )). A thermodynamic process is a solution of equations
(18.53)1,2,3, and the entropy principle demands that the entropy inequality (18.53)4
must be fulfilled by all fields, which also satisfy the field equations (18.53)1,2,3.15

It is plausible to think that one can satisfy this statement by the following modi-
fication of the original entropy inequality:

ρ
dŝ

dt
+ div φ̂ − ρzs

− Λρ

{
∂ρ

∂t
+ div (ρv)

}
− Λv·

{
ρ
dv

dt
− div t̂ − ρg

}

− Λε

{
ρ
dε̂

dt
+ div q̂ − tr (t̂D) − ρq

}

� 0. (18.54)

In this inequality the balance equations of mass, momentum and energy multiplied
by the corresponding so-calledLagrange parameters are subtracted, and it is imme-
diately prudent that (18.53) imply (18.54). The converse of this is also true, which
was proved by I- Shih Liu [18]. This proof will be given in the Appendix to this
chapter. Liu’s theorem states that both statements: (i) ‘Satisfy the inequality (18.54)
for unrestricted fields’ and (ii) ‘satisfy the inequality (18.53)4 by simultaneously
satisfying the field equations (18.53)1,2,3’ are equivalent. It is easy to fulfill the

15This entropy principle is more general than the principle using the Clausius–Duhem inequality
and the Coleman–Noll approach by the fact that the form of the constitutive relation for the
entropy flux is kept free within the constitutive class under study and not a priori set in relation
to heat flux and absolute temperature. It is different also by the fact that the concept of absolute
temperature is a derived one, i.e., the measure of coldness of a body is the empirical temperature and
the absolute temperature is functionally related to it (if it is meaningful at all). And third, external
source terms are required not to affect the material behaviour of a body. This latter point is contrary
to the Coleman–Noll approach.
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extended inequality, but one must determine the unknown Lagrange multipliers,
which is again a matter of tedious calculations.

If the constitutive equations (18.52) are substituted in (18.54), and differentiations
with respect to time and space coordinates using the chain rule are executed, one
obtains the resulting modified inequality in the form

ρ

(
∂ŝ

∂θ
− Λε ∂ε̂

∂θ

)
θ̇ + ρ

(
∂ŝ

∂ρ
− Λε ∂ε̂

∂ρ
− Λρ

ρ

)
ρ̇

+ ρ

(
∂ŝ

∂grad θ
− Λε ∂ε̂

∂grad θ

)
(grad θ)̇

+
{

∂φ̂

∂ρ
− Λε ∂q̂

∂ρ
+ Λv ∂ t̂

∂ρ

}

· grad ρ

+
{

∂φ̂

∂grad θ
− Λε ∂q̂

∂grad θ
+ Λv ∂ t̂

∂grad θ

}

· grad (grad θ)

− ρΛv·v̇

+
{

∂φ̂

∂θ
− Λε ∂q̂

∂θ
+ Λv ∂ t̂

∂θ

}

· grad θ

+ Λεtr

[(
t̂ − ρ

Λρ

Λε
I
)

D
]

− ρ zs + ρ g·Λv + ρ qΛε

� 0. (18.55)

This inequality is simplified in a first step, in which point (4) of the entropy principle
should be evaluated. It says that the material properties should not be influenced by
the supply terms, and from this it follows that the Lagrange parametersΛρ,Λv and
Λε cannot depend on zs, g and q, implying that

zs = Λεq + Λv· g. (18.56)

The entropy supply is a linear combination of the energy supply and the momentum
supply, whereby the factors are simply the Lagrangemultipliers of the correspond-
ing equations. The reader may recall that the entropy supply was postulated in the
Clausius–Duhem inequality as zs = q/Θ , where Θ is the absolute temperature;
this is obviously a special case of (18.56).

Substituting (18.56) in (18.55), one obtains an inequality which is linear in

β = [ θ̇, ρ̇, (grad θ)̇ , grad ρ, grad (grad θ), D ]T (18.57)

and expressible in the form

α ·β + Γ � 0. (18.58)
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The vector α is given16 by the prefactors of β (in the first four lines of (18.55)); Γ

embraces the last three lines of (18.55) without the supply terms.
It follows from Liu’s theorem that β is arbitrarily choosable at a fixed mater-

ial point—in other words, it is possible to construct an admissible thermodynamic
process with arbitrary β. Thus, necessary and sufficient condition for (18.58) to hold
is α = 0 (and Γ � 0), or

∂ŝ

∂θ
− Λε ∂ε̂

∂θ
= 0,

∂ŝ

∂ρ
− Λε ∂ε̂

∂ρ
− Λρ

ρ
= 0,

∂ŝ

∂grad θ
− Λε ∂ε̂

∂grad θ
= 0,

∂φ̂

∂ρ
− Λε ∂q̂

∂ρ
+ Λv ∂ t̂

∂ρ
= 0,

{
∂φ̂

∂grad θ
− Λε ∂q̂

∂grad θ
+ Λv ∂ t̂

∂grad θ

}

sym

= 0,

t̂ = ρ
Λρ

Λε
I = −pI, (18.59)

equations, which must be fulfilled as identities. These constrain the constitutive
equations for ŝ, ε̂, q̂, t̂ and φ̂ but can also be viewed as determining equations
for Λε, Λρ and Λv . This last interpretation can be applied to conclude, that the
Lagrange multipliers, as these are determined alone by constitutive quantities,
themselves can only depend on the independent constitutive variables. This implies,
specially, that these can not depend on v̇. Equation (18.55) is therefore also linear in
v̇, and from this it follows that

Λv = 0. (18.60)

The Lagrange multiplier of the momentum equation vanishes, or the momentum
equation does not modify the analysis of the entropy inequality—at least not in
this restricted theory for a compressible heat conducting fluid. This was assumed in
the last section in which the entropy principle was employed as Clausius–Duhem
inequality and the Coleman–Noll approach was used for its exploitation. Finally,
the Cauchy stress is isotropic and known as soon as Λε and Λρ are determined.

The next step in the evaluation of the identities (18.59) consists in the deter-
mination of the Lagrange multiplier Λε. Here as well one starts from explicit
representations of the entropy flux and heat flux as objective vector valued isotropic
functions,

16One could be tempted to regard the term Λv ·v̇ as linear in v̇, however, this is not so—at least not
at this stage of the computations—because the Lagrange multipliers can depend on v̇ in addition
to ρ, θ, grad θ.
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φ =−φ1(ρ, θ, ||grad θ||2) grad θ,
q =−q1(ρ, θ, ||grad θ||2) grad θ.

(18.61)

Substituting these assumptions in the second to the last of the relations (18.59) results,
by considering (18.60), in

φ1I + ∂φ1

∂||grad θ||2 2grad θ ⊗ grad θ

= Λεq1I + Λε ∂q1
∂||grad θ||2 2grad θ ⊗ grad θ, (18.62)

which must be satisfied for arbitrary values of grad θ. From this one obtains

φ1 = Λεq1 and
∂Λε

∂||grad θ||2 = 0. (18.63)

The entropy flux is thus collinear with the heat flux, whereby the factor is given by
the Lagrangemultiplier of the energy equation. In view of (18.63)2 the latter is not
a function of the temperature gradient.

Using (18.63) with (18.61) and (18.60) in (18.59)4, one obtains

Λε ∂q1
∂ρ

+ ∂Λε

∂ρ
q1 = Λε ∂q1

∂ρ
⇒ ∂Λε

∂ρ
q1 = 0, (18.64)

from which with q1 �= 0 (which is to be required) follows that Λε is no longer
permitted to be a function of ρ. In summary, one obtains, from relations (18.59)4,5

φ = Λε(θ) q, (18.65)

a result,which approaches theClausius–Duhem assumptionΛε(θ) = 1/Θ(θ), very
closely where Θ(θ) indicates the absolute temperature. Presently, however, Λε(θ) is
still a materially dependent function of the empirical temperature θ.

In order to prove that the Lagrange multiplier of the energy, Λε(θ), is inde-
pendent of the material properties, (at least within the material class of the heat
conducting compressible fluids) let us recall the last property of the entropy princi-
ple, namely, that between two such materials there exist material singular surfaces
with the property of an ideal wall across which the normal heat flux and normal
entropy flux are simultaneously continuous. We now consider two heat conducting
compressible fluids,which are separated by amaterial singular surface throughwhich
the empirical temperature is continuous. The jump conditions of entropy and energy
read in this case,

[[φ · n]] = [[Λεq · n]] = 0 and [[q · n]] = 0,

or
[[Λε]] q · n = 0 =⇒ [[Λε]] = 0 provided that q · n �= 0. (18.66)
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In other words,Λε(θ)+ = Λε(θ)−; or, the Lagrangemultiplier is the same function
of empirical temperature on both sides of the ideal wall. Since the fluids on both
sides of the ideal wall can be arbitrary within their constitutive class, there follows
the material independency of Λε(θ) within this class. One refers to Λε(θ) as the
coldness function (or simply coldness) and its reciprocal value as the absolute
temperature,

Θ(θ) = 1

Λε(θ)
. (18.67)

Thus, the relations (18.59)4,5 are exploited.17

We now turn our attention to the identities (18.59)1,2,3, where we will simultane-
ously make use of the result Λε = Λε(θ). Differentiating (18.59)1 with respect to
grad θ and (18.59)3 with respect to θ, one can derive the following chain of equations

∂2ŝ

∂grad θ ∂θ
= Λε ∂2ε̂

∂grad θ ∂θ
= ∂2ŝ

∂θ ∂grad θ

= Λε ∂2ε̂

∂θ ∂grad θ
+ ∂Λε

∂θ

∂ε̂

∂grad θ
. (18.68)

Since the sequence of differentiation of the functions ŝ and ε̂ with respect to θ and
grad θ must be irrelevant, (18.68) implies, since ∂Λε(θ)/∂θ �= 0, that ε̂ can not be
a function of grad θ, ∂ε̂/∂grad θ = 0. Resubstituting this result in (18.59)3 shows
then that ŝ does not depend on grad θ either, and—after having shown this for ŝ and
ε̂—the same must also hold for Λρ. Thus, one has the classical result

s = ŝ(ρ, θ), ε = ε̂(ρ, θ), Λρ = Λ̂ρ(ρ, θ). (18.69)

It is still to be demonstrated from (18.59) that the first two identities, which can be
combined together, yield

dŝ = Λε

[
∂ε̂

∂θ
dθ +

(
∂ε̂

∂ρ
+ Λρ

ρΛε

)
dρ

]
= 1

Θ(θ)

[
dε̂ + p̂ d

(
1

ρ

)]
, (18.70)

where we have identified the ratio ρΛρ/Λε with the thermodynamic pressure via

p̂(ρ, θ) = −Λρ(ρ, θ)

Λε(θ)
ρ. (18.71)

This pressure is the same as that introduced in (18.59)6. Equation (18.70) is known as
Gibbs equation, which expresses the total differential of the entropy as the product

17Notice that the above result was obtained by exploiting only relations (18.59) involving entropy
flux and heat flux, but not entropy and internal energy. This is typical. Characteristic is equally the
fact that isotropy relations had also to be used to achieve the result.
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of the inverse of the absolute temperature times the total differential of the internal
energy plus the additional term p̂ d(1/ρ).

Naturally, the Gibbs equation must also satisfy an integrability condition, which
is obtained from the cross differentiations of the coefficients of (18.70); the result is

d lnΛε

dθ
= 1

Λε

dΛε

dθ
= ∂p̂/∂θ

(∂ε̂/∂ρ)ρ2 − p̂
. (18.72)

Integrating this equation yields

ln
Λε

Λε
0

= − ln
Θ

Θ0
=

θ∫

θ0

∂p̂/∂θ

(∂ε̂/∂ρ)ρ2 − p̂(ρ, θ̄)
dθ̄

or

Θ(θ) = Θ0 exp

⎧
⎨

⎩
−

θ∫

θ0

∂p̂/∂θ

(∂ε̂/∂ρ)ρ2 − p̂(ρ, θ̄)
dθ̄

⎫
⎬

⎭
. (18.73)

The absolute temperature Θ is thus known as a function of the empirical tempera-
ture, if one knows p̂(ρ, θ) and (∂ε̂/∂ρ)(ρ, θ) as functions of their variables for any
heat conducting compressible fluid. The left-hand side of (18.73) is materially inde-
pendent, and thus so must be its right-hand side. Conversely, when one knows the
function Θ(θ), the pressure and the internal energy can not be chosen arbitrarily
from each other, since relation (18.73) must be obeyed.

Choosing an ideal gas as the special fluid for which the equations of state are

p = RρΘ(θ), ε = ε̂(θ), (18.74)

where R is the gas constant, then (18.73) exhibits the identity Θ(θ) = Θ(θ). This
can be taken as motivation to set

Θ(θ) =: T . (18.75)

This was suggested by Lord Kelvin.18 One calls T the absolute orKelvin temper-
ature. Using this relation one can replace in all relations the empirical temperature
θ by theabsolute temperature; this we shall now do.

If with
Ψ := ε − Ts = Ψ̂ (ρ,T) (18.76)

theHelmholtz free energy is introduced, then theGibbs equation (18.70) takes the
form

18For a short biography of Lord Kelvin, see Fig. 17.9.

http://dx.doi.org/10.1007/978-3-319-33636-7_17
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(
∂Ψ̂

∂ρ
− p̂

ρ2

)

dρ +
(

∂Ψ̂

∂T
+ ŝ

)

dT = 0, (18.77)

which must be satisfied for arbitrary differentials dρ and dT . Consequently,

s = −∂Ψ̂

∂T
, p̂ = ρ2

∂Ψ̂

∂ρ
. (18.78)

The entropy and the thermodynamic pressure are thus calculable from the prescribed
thermodynamic potential Ψ̂ (ρ, θ), the Helmholtz free energy. The restrictions on
the constitutive functions, which are imposed by the second law, appear as especially
concise in this form.

Thus, the identities (18.59) are exploited and there remains the analysis of the
residual inequality Γ � 0, or

Π s = TΓ = −q · grad T
T

� 0. (18.79)

Thermodynamic equilibrium is defined as a process, which produces no entropy and,
thus, requires grad T = 0. The necessary conditions for this are the statements

(
∂Π s

∂grad T

)

|E
= 0, (18.80)

∂2Π s

(∂grad T)2 |E
is positive semi-definite, (18.81)

where |E indicates evaluation at equilibrium. Performing the differentiation (18.80)
in (18.79) results in

q|E = 0. (18.82)

The equilibrium heat flux vector vanishes. With the isotropic representations

t = −p̂(ρ,T)I,
q = −q1(ρ,T , ||grad T ||2)grad T (18.83)

one can exploit (18.81). The only relation which results from criterion (18.81) is

q1(ρ,T , 0) � 0. (18.84)

The nonlinear material equation (18.83) for the stress tensor and the heat flux vector
are thus compatible with theentropy principle, if p̂ is derived via (18.78) from the
Helmholtz free energy, and the thermal conductivity q1 at grad T = 0 is non-negative.

The entropy principle of Müller, in this example of a heat conducting com-
pressible fluid, has led to the same results, as would have been obtained with the
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application of the Clausius–Duhem inequality carried out in accordance with the
Coleman–Noll approach. However, these results were obtained with the much
weaker formulation. It was proved here by the entropy principle of Ingo Müller

that the momentum balance does not influence the exploitation of the entropy prin-
ciple; the absolute temperature was not assumed a priori to exist, but one has proved
that it can be interpreted as the inverse of the Lagrange multiplier of the internal
energy balance, and further one has shown that it represents a quantity independent
of the material. Finally, rewriting the relations given at the beginning of this section,

entropy supply = energy supply

absolute temperature
,

entropy flux = heat flux

absolute temperature

—in connection with the heat conducting compressible fluids—we can say that these
relations are now proved statements. These facts mediate to the model equations,
which are derived from Müller’s entropy principle, strengthened credibility. But
it is also likely that for general material laws both entropy principles—Clausius–
Duhem inequality with the exploitation of Coleman–Noll on the one hand and
the more general entropy principle of Müller on the other hand—do not necessarily
furnish the same results. This is so in general and must be scrutinized on a case
by case basis. In this regard it is advisable to apply Müller’s entropy principle
whenever possible.

(b) Heat Conducting Density Preserving Fluid In a heat conducting density pre-
serving fluid the independent constitutive variables are θ and grad θ only; thus

Ψ = Ψ̂ (θ, grad θ), Ψ ∈ {ε, s, q, tE,φ}, (18.85)

where
t = −pI + tE, (18.86)

in which p is the constraint pressure and tE the extra stress tensor which may be
taken to be a deviator, tr tE = 0. The balance of mass reduces to div v = 0, so that
the entropy inequality, extended by the field-equation constraints, see (18.54) for
comparison, becomes

ρ
dŝ

dt
+ div φ̂ − ρzs

− Λρdiv v − Λv·
{
ρ
dv

dt
+ div (pI) − div (t̂

E
) − ρg

}

− Λε

{
ρ
dε̂

dt
+ div q̂ + pdiv v − tr (t̂

E
D) − ρq

}
� 0. (18.87)
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This inequalitymust hold for arbitrary independent fields, i.e., also deformation fields
which do not satisfy the condition div v = 0. The constitutive relations are thought
to be substituted in (18.87); this is made visible by writing any constitutive variable
f as f̂ .

Performing the differentiations, using the chain rule wherever needed yields the
inequality

ρ

(
∂ŝ

∂θ
− Λε ∂ε̂

∂θ

)
θ̇ + ρ

(
∂ŝ

∂grad θ
− Λε ∂ε̂

∂grad θ

)
(grad θ)̇

+
{

∂φ̂

∂grad θ
− Λε ∂q̂

∂grad θ
+ Λv ∂ t̂

E

∂grad θ

}

·grad (grad θ)

− ρΛv·v̇ − Λv·grad p

+
{

∂φ̂

∂θ
− Λε ∂q̂

∂θ
+ Λv ∂ t̂

E

∂θ

}

·grad θ − Λε

(
p + Λρ

Λε

)
div v

+ Λεtr

[
t̂
E
(

D − 1

3
IDI
)]

− ρ zs + ρ g·Λv + ρ qΛε � 0. (18.88)

Because the material is assumed to be independent of the external sources (item 4)
in the entropy principle) one necessarily has

zs = Λεq + Λv· g. (18.89)

Moreover, since inequality (18.88) is linear in the variables θ̇, (grad θ),̇grad
(grad θ), div v and

(
D − 1

3 IDI
)
, which all may have any arbitrarily assigned values,

we have

∂ŝ

∂θ
− Λε ∂ε̂

∂θ
= 0,

∂ŝ

∂grad θ
− Λε ∂ε̂

∂grad θ
= 0,

{
∂φ̂

∂grad θ
− Λε ∂q̂

∂grad θ
− Λv ∂ t̂

E

∂grad θ

}

sym

= 0, (18.90)

Λρ = −Λεp,

t̂
E = 0.

These identities show that the Lagrangemultipliers Λε,Λv may be viewed as con-
stitutive quantities. Furthermore,Λρ is determined byΛε and the constraint pressure.
These facts imply that in particular Λv does not depend on v̇ so that the inequality
(18.88) is also linear in v̇. As a consequence

Λv = 0. (18.91)
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The momentum equation does not influence the thermodynamics.
Using the representations of φ and q as isotropic functions of their variables, it is

now straightforward to show that (18.90)3 implies that Λε is only a function of the
empirical temperature, Λε = Λε(θ), and q and φ are collinear such that

φ = Λε(θ) q, (18.92)

for details see the paragraph from (18.61)–(18.65). Similarly, with the aid of item
(5) of the entropy principle it may also be demonstrated that Λε(θ) is a universal
function of the empirical temperature, (see the arguments leading to (18.67)), so that

Θ(θ) = 1

Λε(θ)
= T (18.93)

may be identified with the absolute temperature.
Let us focus the attention now on the identities (18.90)1,2. Differentiating (18.90)1

with respect to grad θ and (18.90)2 with respect to θ and comparing the two emerging
results shows that

s = ŝ(θ), ε = ε̂(θ), (18.94)

provided that Λε(θ) is a nontrivial function of θ; thus the Gibbs relation of a density
preserving heat conducting fluid takes the form

ds = Λε(θ)dε. (18.95)

The results (18.94) and (18.95) are also interesting for the following fact: There is
no relation like (18.72) or (18.73) in a density preserving fluid, in which a certain
combination of derivatives of the pressure and internal energy would be related to
the logarithmic derivative of Λε. The reason for this is that the pressure is a free
field here that cannot be related to anyconstitutive quantity. The above computations
express this quite naturally.

With the identities (18.90)–(18.93) being satisfied, inequality (18.88) reduces to

− q · grad θ

Θ(θ)
� 0, (18.96)

where Θ(θ) > 0. With q = −q1(θ, grad θ)grad θ this implies

q1(θ, 0) � 0. (18.97)

The proof follows the same lines as that which led to (18.84).
This completes the thermodynamic analysis for a heat conducting density pre-

serving fluid; the results, which this more general entropy principle delivers, are in
this case the same as those obtained by the Clausius–Duhem inequality.
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(c) Viscous Heat Conducting Compressible FluidThe results for this class of fluids
obtained with the entropy principle of Müller are the same as those obtained with
the Clausius–Duhem inequality and the exploitation rules of Coleman–Noll, see
Müller (1985) [25].

An example for which the two entropy principles yield different results is given
in Sect. 18.4.

18.3 Thermal and Caloric Equations of State

18.3.1 Canonical Equations of State

In the preceding sections the thermal and caloric equations of state

p = p̂(ρ,T), or p = p̃(v,T),

u = û(ρ,T), or u = ũ(v,T)
(18.98)

werementioned several times; it was shownwith the aid of the Second Law that these
equations of state cannot experimentally be determined completely independently
of each other, as certain integrability conditions for the entropy must be fulfilled.
Neither have we employed uniformity in the choice of the independent variables
(in Eq. (18.98); they are either the pair (ρ,T) or (v,T)). The same non-uniformity
prevailed also in the dependent variables. As the caloric equation of state we deter-
mined once the relation (18.98)2 for the internal energy u = û(ρ,T), and once the
equation h = ĥ(p,T), where h is theenthalpy h = u + pv, with the independent
variable pair (p,T). This fact leads to the justified question, which variable combi-
nations are to be regarded as the most natural ones.A partial answer to this question,
or better, an indication to it, was brought by in Sect. 17.6.2, when the Second Law
was studied for simple adiabatic systems (see theGibbs relations (17.161)–(17.164)
and the corresponding integrability conditions (17.165)). In this subsection we wish
to give an answer to the above question.

A first, direct access to answer these questions can be found in the Gibbs relation
for heat conducting viscous fluids

ds = 1

T
(du + pdv) ,

which we now write in the (more convenient) form

du = Tds − pdv −→ u̇ = Tṡ − pv̇. (18.99)

It explicitly shows that the total differential of the internal energy is expressed as a
linear combination of the differentials ds and dv; obviously, u in (18.99) is assumed

http://dx.doi.org/10.1007/978-3-319-33636-7_17
http://dx.doi.org/10.1007/978-3-319-33636-7_17
http://dx.doi.org/10.1007/978-3-319-33636-7_17
http://dx.doi.org/10.1007/978-3-319-33636-7_17
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as a function of s and v: u = ˜̃u(s, v). Indeed, if one calculates the total differential
of this function, viz.,

du = ∂ ˜̃u
∂s

ds + ∂ ˜̃u
∂v

dv, (18.100)

one recognizes the same linear form as in (18.99). All the more, if the differentials
(18.99) and (18.100) are the same, one obtains the relations

T = ∂ ˜̃u
∂s

, −p = ∂ ˜̃u
∂v

. (18.101)

If one knows the internal energy as a function of the entropy and the specific volume,
the absolute temperature T is obtained from ˜̃u(s, v) by differentiation with respect to
the entropy s and the (negative) pressure, −p, is obtained from ˜̃u(s, v) by differentia-
tion with respect to the specific volume v. The internal energy, regarded as a function
of s andv is a thermodynamic potential for the absolute temperature and the pres-
sure. This inference, deduced from the Gibbs relation, shows the connection of the
thermal and caloric equations of state particularly conspicuously. If one manages to
determine (experimentally) the function ˜̃u(s, v), then the thermal equation of state
does no longer have to be experimentally determined; it follows from (18.101)2 by
differentiation.

Because the specific volume v is related to the density ρ by v = 1/ρ, the Gibbs
relation (18.99) may also be written as

du = Tds + p

ρ2
dρ, (18.102)

since dv = −dρ/ρ2. In this case, we obtain with u = ˆ̂u(s, ρ)

du = ∂ ˆ̂u
∂s

ds + ∂ ˆ̂u
∂ρ

dρ (18.103)

and by comparison of (18.102) and (18.103)

T = ∂ ˆ̂u
∂s

, p = ρ2
∂ ˆ̂u
∂ρ

. (18.104)

This is a result, which one could also have directly obtained from (18.101) by
a variable change v = 1/ρ. One can see that temperature T and pressure p can be
regarded as the components of a two-dimensional vector, which can be obtained by
formation of a gradient operator of a thermodynamic potential. Equations (18.101)
and (18.104) can also be combined in the more compact form

(T ,−p) = ∇s,v
˜̃u(s, v),

(
T ,

p

ρ2

)
= ∇s,ρ

ˆ̂u(s, ρ). (18.105)
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The indices (s, v) and (s, ρ), respectively indicate, with respect to which variables
the functions ˜̃u and ˆ̂u, are differentiated. The variable pairs (T ,−p) ←→ (s, v)

and (T , p/ρ2) ←→ (s, ρ) are called conjugate pairs. The former are obtained by
gradient operation of a certain thermodynamic energy (potential) with respect to the
latter. If such simple relations exist, the conjugate variables are called canonical.

Canonical equations of state are caloric equations of state for thermodynamic
potentials, which lead to simple relations in the sense of (18.105). The following
equations of state are commonly used:

• Internal energy u = ˜̃u(s, v), u = ˆ̂u(s, ρ),

• Enthalpy h = ĥ(s, p),

• Helmholtz free energy ψ = ψ̃(T , v), ψ = ψ̂(T , ρ),

• Free enthalpy or Gibbs free energy g = ǧ(T , p).

Here, we wish to investigate, how these functions are related to one another.
We start with the enthalpy how one may achieve a variable change from the

density or specific volume as independent variable of a thermodynamic potential to
the pressure. To this end we write the Gibbs relation as

u̇ = Tṡ − pv̇ = Tṡ − (pv)̇ + vṗ, (18.106)

or
ḣ = (u + pv)˙= Tṡ + vṗ. (18.107)

In this relation the left-hand side appears as the time derivative of the function
h = u + pv, which was defined already earlier as enthalpy; the right-hand side
appears as a linear combination of the variables ṡ and ṗ. Therefore, one may interpret
the enthalpy as a function of s and p, so that

ḣ = ∂ĥ

∂s
ṡ + ∂ĥ

∂p
ṗ, (18.108)

or when comparing this with (18.107)

T = ∂ĥ

∂s
v = ∂ĥ

∂p
, (18.109)

or
(T , v) = ∇s,pĥ(s, p), (18.110)

with the integrability conditions

∂T̂(s, p)

∂p
= ∂v̂(s, p)

∂s
. (18.111)
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Fig. 18.2 Adrien–Marie Legendre (18 Sept. 1752–10 Jan. 1833) (Left) 1820 watercolor
caricature of Adrien-Marie Legendre by French artist Julien-Leopold, the only existing
portrait known; (middle) 5 Legendre polynomials; (right) side view sketching of French
politician Louis Legendre (1752–1797), whose portrait has been mistakenly used, for nearly
200 years, to represent French mathematician Adrien-Marie Legendre, i.e. up until 2005
when the mistake was discovered, see [6] for details

Adrien–MarieLegendre (alsoLeGendre) was a Frenchmathematician.Hemade numer-
ous contributions tomathematics.Well-knownand important concepts such as theLegendre
polynomials (see above figure, middle panel) are named after him. He was born in Paris to a
wealthy family. He received his education at the Collège Mazarin in Paris, and defended his
thesis in physics andmathematics in 1770.He taught at the ÉcoleMilitaire in Paris from1775
to 1780 and at the École Normale Supérieure from 1795. At the same time, he was associated
with the Bureau des Longitudes. In 1782, the Berlin Academy awarded Legendre a prize
for his treatise on projectiles in resistant media. This treatise also brought him to the attention
of Lagrange. The Académie des Sciences made Legendre an adjoint member in 1783
and an associé in 1785. In 1789 he was elected a Fellow of the Royal Society. Legendre
is known for the Legendre transformation, which is used to go from the Lagrangian to
the Hamiltonian formulation of classical mechanics. In thermodynamics it is also used to
obtain the enthalpy and theHelmholtz andGibbs (free) energies from the internal energy.
He is also the namegiver of theLegendre polynomials, solutions toLegendre’s differential
equation. He is best known as the author of ‘Éléments de géométrie’, which was published in
1794 and was the leading elementary text on the topic for around 100 years. This text greatly
rearranged and simplifiedmany of the propositions fromEuclid’s Elements to create amore
effective textbook.

The text is based on www.wikipedia.org

(T , v) and (s, p) are canonical pairs of variables, and the enthalpy is the associated
potential. Incidentally, a transformation, which achieves an exchange of dependent
and independent variables, is called aLegendre transformation.19 The integrability
conditions (here (18.111)) are called Maxwell relations.

For the Helmholtz free energy (T , v) or (T , ρ) are the independent variables.
Therefore, the Gibbs equation can be brought into the form

u̇ = Tṡ − pv̇ = (Ts)˙− sṪ − pv̇,

19For a short biography of Adrien, Marie Legendre (1752–1833), see Fig. 18.2

www.wikipedia.org
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or
ψ̇ = (u − Ts)˙= −sṪ − pv̇. (18.112)

Therefore, we have ψ = ψ̃(T , v) and, consequently, the identity

∂ψ̃

∂T
Ṫ + ∂ψ̃

∂v
v̇ = −sṪ − pv̇,

from which one concludes

s = −∂ψ̃(T , v)

∂T
, p = −∂ψ̃(T , v)

∂v
,

(18.113)
(−s,−p) = ∇T ,vψ̃(T , v)

with the integrability condition

∂s̃(T , v)

∂v
= ∂p̃(T , v)

∂T
. (18.114)

If (T , ρ) are the independent variables, one may show, using v = 1/ρ

(
−s,

p

ρ2

)
= ∇T ,ρψ̂(T , ρ), (18.115)

− ∂ŝ(T , ρ)

∂ρ
= 1

ρ2
∂p̂(T , ρ)

∂T
. (18.116)

If one knows theHelmholtz free energyψ = u−Ts as function of the variable pairs
(T , v) and (T , ρ), respectively, then the negative entropy is obtained bydifferentiating
ψ̃(T , v) and ψ̂(T , ρ), respectively with respect to the temperature and the negative
pressure by differentiating ψ̃(T , v) with respect to v.

To introduce the free enthalpy or the Gibbs free energy, the Gibbs relation is
written in the form

u̇ = Tṡ − pv̇ = (Ts)˙− sṪ − (pv)̇ + vṗ,

and obtains then

ġ = (u + pv − Ts)˙= (h − Ts)˙= −sṪ + vṗ.

Therefore, we have g = ğ(T , p) and, consequently,

∂ǧ

∂T
Ṫ + ∂ǧ

∂p
ṗ = −sṪ + vṗ,
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Table 18.1 Thermodynamic potentials and Maxwell relations for a simple fluid

Potential Independent Conjugate variables Maxwell relations

variables

u
Internal energy

s, v
du=Tds − pdv

(T ,−p) = ∇s,v ˜̃u(s, v)
∂ ˜̃T(s, v)

∂v
=

−∂ ˜̃p(s, v)

∂s

s, ρ
du=Tds + p

ρ2
dρ

(T ,
p

ρ2
) = ∇s,ρ

ˆ̂u(s, ρ)
∂ ˆ̂T(s, v)

∂ρ
=

1

ρ2
∂ ˆ̂p(s, ρ)

∂s

h
Enthalpy

s, p
dh=Tds + vdp
h = u + pv

(T , v) = ∇s,pĥ(s, p)
∂T̂(s, p)

∂p
= ∂v̂(s, p)

∂s

ψ
Helmholtz

free energy

T , v

dψ = −sdT − pdv
(−s,−p) =
∇T ,vψ̃(T , v)

∂s̃(T , v)

∂v
= ∂p̃(T , v)

∂T

ψ = u − Ts T , ρ
dψ=−sdT+ p

ρ2
dρ

(−s,
p

ρ2
) =

∇T ,ρψ̂(T , ρ)

−∂ŝ(T , ρ)

∂ρ
=

1

ρ2
∂p̂(T , ρ)

∂T

g
Free enthalpy
or
Gibbs

free energy
g = h − Ts

T , p
dg=−sdT+vdp

(−s, v) = ∇T ,pǧ(T , p) −∂š(T , p)

∂p
=

∂v̌(T , p)

∂T

from which one deduces

(−s, v) = ∇T ,pǧ(T , p)

−∂š(T , p)

∂p
= ∂v̌(T , p)

∂T
.

(18.117)

Table 18.1 collects the derived results in summarized form.
In closing, we would like to emphasize that we systematically differentiated in

the above analysis between a function and the value of this function (writing e.g. f̃
and f , respectively). If this differentiation is not made, it is not clear, which pair of
variables is meant in a potential (compare e.g. the two possibilities for the internal
energy and theHelmholtz free energy). When performing the partial derivatives of
functions of two variables, one often employs for clarity an index, which indicates,
which variable is held constant. For instance
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∂s

∂ρ

∣∣
∣∣
T

stands for
∂ŝ(T , ρ)

∂ρ
.

We shall in subsequent chapters occasionally make use of this rule.

18.3.2 Specific Heats and Other Thermodynamic Quantities

As before, we consider a fluid, for which the thermal and caloric equations of state
reduce to functional relations in three variables, thus relations for which conditions
of Table 18.1 apply. It is customary, apart from the already introduced variables, also
to work with the following quantities:

• Thermal expansion coefficientα : α = 1

v

∂v̌(T , p)

∂T
= 1

v

∂v

∂T

∣∣
p

• Isobaric compressibilityκT : κT = −1

v

∂v̌(T , p)

∂p
= −1

v

∂v

∂p

∣∣
T

• Adiabatic compressibilityκs : κs = −1

v

∂v̂(s, p)

∂p
= −1

v

∂v

∂p

∣∣
s

• Isochoric stress coefficientβ : β = 1

p

∂p̃(T , v)

∂T
= 1

p

∂p

∂T

∣∣
v

(18.118)

These quantities plus the potentials, collected in Table 18.1 are not independent of
one another. One e.g. recognizes from a combination of (18.118)1 and the lowest
Maxwell relations of Table 18.1 that

∂š(T , p)

∂p
= −∂v̌(T , p)

∂T
= −αv̌(T , p). (18.119)

Knowledge of such relations is useful in attempts of the experimental determination
of the caloric equation of state. To this end we shall now introduce the specific heat
as follows:

Definition 18.3

• Specific heat is the heat that is reversibly supplied to a system per unit temperature
change at fixed volume or fixed pressure, respectively.

If we start from the Second Law in the form (17.196), it reads, owing to the
reversibly conducted increment of heat,

ds = dQ

T
−→ dQ = Tds. (18.120)

Here, dQ denotes the increment of heat, reversibly supplied to the system, which
gives rise to a change of entropy ds. Now, s is either a function of T and v or of T

http://dx.doi.org/10.1007/978-3-319-33636-7_17


18.3 Thermal and Caloric Equations of State 459

and p, so that the specific heat c = dQ/dT at constant volume or constant pressure
may be defined as

cv := T
∂s̃(T , v)

∂T
= ∂ũ(T , v)

∂T
, cp := T

∂š(T , p)

∂T
= ∂ȟ(T , p)

∂T
. (18.121)

The two expressions in the far right are in this form not understandable. From the
Gibbs relation du = Tds − pdv one concludes at constant volume (dv = 0) du =
Tds, which implies (∂u/∂T)|v = T(∂s/∂T)|v . One regards the internal energy as a
function of T and v. This function is computed as follows (see Table 18.1):

ũ(T , v) = ˜̃u (s̃(T , v), v) = ˜̃u
(

−∂ψ̃(T , v)

∂T
, v

)

.

In much the same way, one obtains from the Gibbs relation dh = Tds − vdp for
constant pressure dh = Tds, so that, analogously to the above procedure, one con-
cludes (∂h/∂T)|p = T(∂s/∂T)|p. The entropy as a function of T and p is obtained
as follows (see Table 18.1):

ĥ(T , p) = ĥ
(
š(T , p), p

) = ĥ

(
−∂ǧ(T , p)

∂T
, p

)
,

where g = ğ(T , p) is the Gibbs free energy.
We wish to demonstrate now that the specific heats and the quantities, introduced

in (18.118) are not independent of each other. For the derivation of the first of these
relationswe start from the second of the definitions (18.121) for cp where s = s̆(T , p).
However, since we wish to correlate cp and cv , we set

s = š(T , p) = s̃(T , v) = s̃
(
T , v̌(T , p)

)
.

The remainder is application of the chain rule of differentiation:

cp = T
∂š(T , p)

∂T
= T

{
∂s̃(T , v)

∂T
+ ∂s̃(T , v)

∂v

∂v̌(T , p)

∂T

}

= cv + T
∂s̃(T , v)

∂v

∂v̌(T , p)

∂T
.

If, in addition, the Maxwell relation for ψ (Table 18.1) is used, we deduce from
this

cp − cv = T
∂p̃(T , v)

∂T

∂v̌(T , p)

∂T
= αβvpT . (18.122)

This is a first relation for the difference of the specific heats. Conversely, one can
also start from the definition of cv . Then, one obtains
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cv = T
∂s̃(T , v)

∂T
= T

dš (T , p̃(T , v))

dT

∣
∣
v

= T

{
∂š(T , p)

∂T
+ ∂š(T , p)

∂p

∂p̃(T , v)

∂T

}
= cp − T

∂v̌(T , p)

∂T

∂p̃(T , v)

∂T
, (18.123)

from which one may again obtain (18.122). With

p = p̃(T , v) = p̃
(
T , v̌(T , p)

) = p̌(T , p)

one deduces by differentiation with respect to T

∂p̌

∂T
!= 0 = ∂p̃(T , v)

∂T
+ ∂p̃(T , v)

∂v

∂v̌(T , p)

∂T

or
∂p̃(T , v)

∂T
= −∂p̃(T , v)

∂v

∂v̌(T , p)

∂T
.

Substituted in (18.123), this yields

cv − cp = T
∂p̃(T , v)

∂v

(
∂v̌(T , p)

∂T

)2

= −α2vT

κT
, (18.124)

in which use was also made of (18.118). This is a second relation for the difference
of the specific heats.

A relation between the adiabatic and isothermal compressibility is obtained if one
starts from the definition of κT

vκT = −∂v̌(T , p)

∂p
= −dv̂

(
š(T , p), p

)

dp

∣∣
T= −∂v̂(s, p)

∂p
− ∂v̂(s, p)

∂s

∂š(T , p)

∂p

= vκs − ∂š(T , p)

∂p

∂v̂(s, p)

∂s
= vκs + ∂v̌(T , p)

∂T︸ ︷︷ ︸
αv

∂v̂(s, p)

∂s
. (18.125)

Here, use was made of the Maxwell relation (Table 18.1) and the definition of the
thermal expansion coefficient. If one also uses the relation

v̌(T , p) = v̂
(
š(T , p), p

)
,

one obtains via differentiation with respect to T

∂v̌(T , p)

∂T
= ∂v̂(s, p)

∂s

∂š(T , p)

∂T

or
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∂v̂(s, p)

∂s
=

∂v̌(T , p)

∂T
∂š(T , p)

∂T

= αvT

cp
. (18.126)

Substitution of this result into (18.125), finally, yields, the relation

κT = κs + α2v2T

cp
, (18.127)

which we were looking for.
We also wish to demonstrate that the internal energy and the entropy can be

computed as functions of T and v, if the specific heat c̃v(T , v) and the pressure
p̃(T , v) are experimentally determined. To this end, we start from the Gibbs relation
and demonstrate that

T
∂s̃(T , v)

∂v
= ∂ũ(T , v)

∂v
+ p̃(T , v), (18.128)

so that
∂ũ(T , v)

∂v
= T

∂p̃(T , v)

∂T
− p̃(T , v). (18.129)

Here, use was made of the correspondingMaxwell relation (see Table 18.1). Inte-
gration yields

ũ(T , v) =
v∫

v0

[
T

∂p̃(T , v̄)

∂T
− p̃(T , v̄)

]
dv̄ + F(T)

=
v∫

v0

p̃(T , v̄) [Tβ(T , v̄) − 1] dv̄ + F(T). (18.130)

If this relation is differentiatedwith respect toT , the functionF(T) can be determined

∂ũ(T , v)

∂T
= cv(T , v) = ∂

∂T

v∫

v0

p̃(T , v̄)
[
T β̃(T , v̄) − 1

]
dv̄ + dF

dT
,

from which

F(T) =
T∫

T0

cv(T̄ , v)dT̄ −
v∫

v0

p̃(T , v̄)
[
T β̃(T , v̄) − 1

]
dv̄
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+
v∫

v0

p̃(T0, v̄)
[
T0β̃(T0, v̄) − 1

]
dv̄ + u(T0, v0)

follows. Substitution of this result in (18.130), finally, yields

ũ(T , v) =
T∫

T0

cv(T̄ , v)dT̄ +
v∫

v0

p̃(T0, v̄)
[
T0β̃(T0, v̄) − 1

]
dv̄ + u(T0, v0).

(18.131)

Alternatively, from the Maxwell relation

∂s̃(T , v)

∂v
= ∂p̃(T , v)

∂T
,

we deduce via integration with respect to v

s̃(T , v) =
v∫

v0

∂p̃(T , v̄)

∂T
dv̄ + S(T) =

v∫

v0

p̃(T , v̄)β̃(T , v̄)dv̄ + S(T).

Differentiating this last relation with respect to T leads to

∂s̃(T , v)

∂T
= cv(T , v)

T
= ∂

∂T

v∫

v0

p̃(T , v̄)β̃dv̄ + dS

dT
,

or after a further integration with respect to T

S(T) =
T∫

T0

cv(T̄ , v)

T̄
dT̄ +

v∫

v0

p̃(T0, v̄)β(T0, v̄)dv̄ −
v∫

v0

p̃(T , v̄)β(T , v̄)dv̄ + S(T0, v0),

so that the entropy can be expressed as

s̃(T , v) =
T∫

T0

cv(T̄ , v)

T̄
dT̄ +

v∫

v0

p̃(T0, v̄)β̃(T0, v̄)dv̄ + S̃(T0, v0). (18.132)

In the formulae (18.131) and (18.132) the pressure must only be known as a function
of ṽ for a fixed reference temperature, whilst the specific heat must be provided as a
function of T and v. If the integration would have been conducted in reverse order,
one would have started from
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ũ(T , v) =
T∫

T0

cv(T̄ , v)dT̄ + G(v).

Differentiation of this expression with respect to v and use of (18.129) determines

G(v)=
v∫

v0

p̃(T , v̄) [Tβ(T , v̄)−1] dv̄−
T∫

T0

cv(T̄ , v)dT̄+
T∫

T0

cv(T̄ , v0)dT̄ + ũ(T0, v0)

so that in lieu of (18.131) and (18.132), one would have

ũ(T , v) =
v∫

v0

p̃(T , v̄) [Tβ(T , v̄) − 1] dv̄ +
T∫

T0

cv(T̄ , v0)dT̄ + ũ(T0, v0)

s̃(T , v) =
v∫

v0

p̃(T , v̄)β̃(T , v̄)dv̄ +
T∫

T0

cv(T̄ , v0)

T̄
dT̄ + S̃(T0, v0).

(18.133)

In these relations p̃(T , v) must be known as bivariate function, whereas cv(T , v0)

must be prescribed only for a fixed prescribed value of v0. Which of the two repre-
sentations is chosen depends upon, in what way the experimental data are available.
Alternatively, the set of data could be used as control set of the reliability of the data.

We leave it as an exercise to the reader to corroborate the representations

ȟ(T , p) =
T∫

T0

cp(T̄ , p) dT̄ +
p∫

p0

v̌(T0, p̄)
[
1 − α(T0, p̄)T0

]
dp̄ + ȟ(T0, p0)

=
T∫

T0

cp(T̄ , p0) dT̄ +
p∫

p0

v̌(T , p̄)
[
1 − α(T , p̄)T

]
dp̄ + ȟ(T0, p0)

š(T , p) =
T∫

T0

cp(T̄ , p)

T̄
dT̄ −

p∫

p0

v̌(T0, p̄)α(T0, p̄)dp̄ + š(T0, p0)

=
T∫

T0

cp(T̄ , p0)

T̄
dT̄ −

p∫

p0

v̌(T , p̄)α(T , p̄)dp̄ + š(T0, p0).

Here, too, two representations which must yield identical results are possible.
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18.3.3 Application to Ideal Gases

For reasons of better understanding, let us repeat here once more the definition of an
ideal gas:

Definition 18.4 An ideal gas is defined by

• the thermal equation of state

p = p(T , v) = RT

v
, (18.134)

• u = u(T); the internal energy is only a function of the temperature. Rm = RM
where R is the universal gas constant and M is the mole mass of the gas.

The second of these properties follows from the first; indeed

∂

∂v
˜̃u (s̃(T , v), v) = ∂ ˜̃u(s, v)

∂v︸ ︷︷ ︸
−p

+ ∂ ˜̃u(s, v)

∂s︸ ︷︷ ︸
T

∂s̃(T , v)

∂v︸ ︷︷ ︸
∂p̃(T , v)

∂T

= 0,

in which the expressions underneath the braces can be taken from Table 18.1 and
the final result obtains by substitution of the thermal equation of state, see (18.134).
Consequently, the internal energy cannot depend on the specific volume. Since

h = u + pv = u(T) + RT −→ h = h(T),

the enthalpy of an ideal gas can neither depend upon the specific volume. If one
has experimentally determined the specific heats (18.121), which now are merely
functions of the temperature, theinternal energy and enthalpy follow by integration
with respect to T ,

u(T) =
T∫

T0

cv(T̄) dT̄ + u(T0),

h(T) =
T∫

T0

cp(T̄) dT̄ + h(T0).

(18.135)

Incidentally, one easily shows with the aid of (18.122)1 and the equation of an ideal
gas, (18.134), that

cp − cv = R. (18.136)
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Even though the specific heats of ideal gases are functions of the temperature, their
difference is a constant. It, thus, suffices to experimentally determine only one of
them.

Next, we compute the entropy. It can be determined from known specific heat
functions. Indeed, we write the Gibbs equation as

ds = 1

T
(du + pdv)

(18.134)= cv(T)
dT

T
+ R

dv

v
,

and then obtain after integration

s − s0 =
T∫

T0

cv(T̄)

T̄
dT̄ + R ln

(
v

v0

)
. (18.137)

Analogously,

ds = 1

T
(dh − vdp) = cp(T)

dT

T
− R

dp

p
,

or

s − s0 =
T∫

T0

cp(T̄)

T̄
dT̄ − R ln

(
p

p0

)
. (18.138)

With the definitions of the Helmholtz free energy ψ and the free enthalpy (Gibbs
free energy) g (see Table 18.1), we get

ψ=u−Ts=
T∫

T0

cv(T̄) dT̄−T

T∫

T0

cv(T̄)

T̄
dT̄− TR ln

(
v

v0

)
+(u0−Ts0), (18.139)

g=h−Ts=
T∫

T0

cp(T̄) dT̄−T

T∫

T0

cp(T̄)

T̄
dT̄+ TR ln

(
p

p0

)
+(h0−Ts0). (18.140)

Finally, we leave it to the reader to corroborate the relations

α = 1

T
, κT = 1

p
, κs = 1

p

[
1 − R

cp

]
, β = 1

T
(18.141)

for the parameters, defined in (18.118) and valid for ideal gases.
Caloric ideal gases are gases of which the specific heats are constant. For these,

one has the simple relation

u − u0 = cv(T − T0),
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h − h0 = cp(T − T0), (18.142)

s − s0 = cv ln
T

T0
+ R ln

v

v0
= cp ln

T

T0
− R ln

p

p0
.

18.3.4 Isentropic Processes in Caloric Ideal Gases

Isentropic processes are characterized by constant entropy. If (s0,T0, v0) is the state
associated to this constant entropy s = s0 we deduce from (18.142)3 that

cv ln

(
T

T0

)
+ (cp − cv) ln

(
v

v0

)
= 0. (18.143)

Moreover, if one defines with

κ = cp
cv

= R + cv

cv

= 1 + R

cv

> 1 (18.144)

the ratio of the specific heats, then one obtains from (18.143)

ln

(
T

T0

)
+ (κ − 1) ln

(
v

v0

)
= 0,

or after application of the operator exp(·) on both sides of the equation,

T

T0
=
(

v

v0

)−(κ−1)

=
(

ρ

ρ0

)κ−1

,
ρ

ρ0
=
(
T

T0

)1/(κ−1)

. (18.145)

One can analogously proceed if one starts from the entropy, given in Eq. (18.142).
The results are

p

p0
=
(
T

T0

)κ/(κ−1)

,
T

T0
=
(
p

p0

)(κ−1)/κ

,
p

p0
=
(

ρ

ρ0

)κ

. (18.146)

A particularly impressive formula is obtained from (18.146)3, if in this formula ρ is
replaced by 1/v. The result is

pvκ = p0v
κ
0 = constant. (18.147)

Table 18.2 contains the gas constants, specific heats and κ = cp/cv for some gases.
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Table 18.2 Gas constants, specific heats cp and cv and the ratio κ = cp/cv for some gases

R[J/KgK] cp[J/KgK] cv[J/KgK] κ

Hydrogen 4125 14028 9903 1.41

Helium 2077 5232 3155 1.66

Argon 208 532 324 1.64

Nitrogen 296 1023 727 1.40

Oxygen 260 917 657 1.40

Air 287 1005 718 1.40

Carbon dioxide 189 819 630 1.30

Methane 518 2160 1642 1.32

Acetylene 319 1512 1193 1.27

18.4 Thermodynamics of an Inviscid, Heat Conducting
Compressible Fluid—Toward a Hyperbolic Heat
Conduction Equation

It would not be correct when leaving the reader with examples only, for which the
Coleman–Noll approach to theClausius–Duhem inequality and themore general
entropy principle, due to Müller yield identical results. The different axiomatic
structures of the two entropy principles should also yield different results, at least
when demonstrated by an instructive example from which the superiority of one of
the entropy principles is visible.

We consider a heat conducting inviscid compressible fluid and follow essentially
Hutter (1977) [14], for which the balance laws of mass, momentum and energy
take the forms

dρ

dt
+ ρdiv v = 0,

ρ
dv

dt
= div t + ρf , (18.148)

ρ
du

dt
= −div q + tr (tD) + ρq,

in which {ρ, v, u, t, q, D, f , q} are the mass density, the velocity of the fluid particles,
the internal energy, the Cauchy stress tensor, the heat flux vector, the strain rate
tensor, the external specific body force and the specific energy supply rate density.
The constitutive relations will be assumed in the form

u = û(ρ, θ, θ̇, g),

q = q̂(ρ, θ, θ̇, grad θ) = −κ(ρ, θ, θ̇, g)grad θ, (18.149)

t = t̂(ρ, θ, θ̇, grad θ) = −p(ρ, θ, θ̇, g)1 + Q(ρ, θ, θ̇, g) grad θ ⊗ grad θ,
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where g = |grad θ|2 = grad θ · grad θ. Note that in (18.149) the strain rate tensor
is not an independent constitutive variable. θ is the temperature and will be replaced
by the absolute Kelvin temperature T when the Clausius–Duhem inequality is
used as entropy inequality and the Coleman–Noll approach is employed for its
exploitation; else, i.e., when using Müller’s entropy principle, θ is the empirical
temperature.

18.4.1 The Coleman-Noll Approach

It is basic in theColeman–Noll approach of the exploitation of the entropy inequal-
ity that the inequality

ρ
ds

dt
+ divφ − ρσ ≡ ργ � 0, (18.150)

in which s is the specific entropy, φ its flux, σ its specific supply and γ its specific
production rate density; this inequality must be identically satisfied for all thermody-
namic processes. Such a process is understood to be any time-dependent solution of
the field variables satisfying the balance laws of mass, momentum, angular momen-
tum, energy and constitutive relations. In order to establish a connection between the
Eqs. (18.148)–(18.150) a priori estimates for φ and σ are introduced according to

φ = q
T

, σ = q

T
, (18.151)

inwhichT is the absolute temperature, which replaces here the empirical temperature
θ. With (18.151) the entropy inequality (18.150) takes the form

ρ
ds

dt
+ div

( q
T

)
− ρq

T
≡ ργ � 0, (18.152)

and is referred in this form as Clausius–Duhem inequality. For the entropy den-
sity aconstitutive relation of the class (18.149) is formulated, s = ŝ(ρ,T , Ṫ , g),
g = |grad T |2.

It is important to realize thatColeman andNoll regard body force ρf and energy
supply ρ q to be external fields that can be assigned arbitrarily. This implies that for
whatever process that might occur, there are always externally applied body forces
and energy supply distributions, which guarantee the balance laws of momentum and
energy to be identically satisfied. ‘The fact that practical difficulties prevent us from
varying the motion and the temperature arbitrarily, does not affect our argument any
more than our inability to produce arbitrary forces acting on mass points prevents
us from calculating, on the basis of Newton’s law of motion, the force required to
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produce a given, but arbitrary motion of a mass point’ [from Day, [5], pp. 22]. As a
consequence, in exploiting theentropy inequality as an identity, only the balance of
mass must be accounted for.

Eliminating ρq from (18.152) and (18.148)3, substituting in the emerging inequal-
ity the constitutive relations (18.149) and subsequently performing the indicated
differentiations produces the inequality

ρ

{[
T

∂ŝ

∂ρ
− ∂û

∂ρ

]
ρ̇ +

[
T

∂ŝ

∂T
− ∂û

∂T

]
Ṫ +

[
T

∂ŝ

∂Ṫ
− ∂û

∂Ṫ

]
T̈

+
[
T

∂ŝ

∂g
− ∂û

∂g

]
ġ

}
− pδijvi,j + QT,iT,jvi,j + κ g

T
� 0. (18.153)

This imbalancemust hold for all thermodynamic processes,whichmust, in particular,
be in conformity with the balance law of mass (18.148)1, so that

γ = ρ

{[
T

∂ŝ

∂T
− ∂û

∂T

]
Ṫ +

[
T

∂ŝ

∂Ṫ
− ∂û

∂Ṫ

]
T̈ +

[
T

∂ŝ

∂g
− ∂û

∂g

]
ġ

}

−
{[

ρ2
(
T

∂ŝ

∂ρ
− ∂û

∂ρ

)
+ p

]
δij − QT,iT,j

}
vi,j + κ g

T
� 0. (18.154)

The balance laws of momentum and energy do not form constraint conditions for
the satisfaction of (18.154), because in the exploitation of the Clausius–Duhem
inequality arbitrary external body forces ρf and external energy supply terms ρq
allow identical satisfaction of these laws in whatever thermodynamic process. Thus,
(18.154) must be satisfied for arbitrary values of T̈ ,T,i and ġ and vi,j. It follows that

∂ŝ

∂Ṫ
− 1

T

∂û

∂Ṫ
= 0,

∂ŝ

∂g
− 1

T

∂û

∂g
= 0, (18.155)

∂ŝ

∂ρ
− 1

T

(
∂û

∂ρ
− p

ρ2

)
= 0,

and that Q ≡ 0. There remains the residual inequality

γ̂ ≡
(

∂ŝ

∂T
− 1

T

∂û

∂T

)
Ṫ + κ

T,iT,i

T 2
� 0. (18.156)

Defining thermodynamic equilibrium to be a time independent process with uniform
temperature and velocity fields, it is seen that γ̂ assumes its minimum in equilibrium;
of necessity then,
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∂γ̂

∂Ṫ |E
= 0,

∂γ̂

∂T,i |E
= 0,

⎛

⎜⎜
⎝

∂2γ̂

∂Ṫ 2

∂2γ̂

∂Ṫ∂T,i
∂2γ̂

∂T,i∂Ṫ

∂2γ̂

∂T,i∂T,j

⎞

⎟⎟
⎠
∣∣
E

is positive definite,
(18.157)

which imply the relations

∂ŝ

∂T

∣∣
E − 1

T

∂û

∂T

∣∣
E= 0, κ|E � 0,

∂û

∂Ṫ

∣∣
E� 0. (18.158)

Here (18.158)2,3 form the so-calledRouth–Hurwitz criteria of thematrix (18.157)3.
According to this theorem, all principal minors of a matrix must be non-negative in
order that the matrix qualifies to be positive-semi definite. With the aid of (18.156),
it is easy to show that

∂2γ̂

∂Ṫ 2
= ∂

∂Ṫ

(
∂ŝ

∂T
− 1

T

∂û

∂T

)
+ ∂2κ

∂Ṫ 2
T,iT,i

= ∂

∂T

(
∂ŝ

∂Ṫ
− 1

T

∂û

∂Ṫ

)

︸ ︷︷ ︸
=0 in equil.

− 1

T 2

∂û

∂Ṫ
+ ∂2κ

∂Ṫ 2
T,iT,i,

∂2γ̂

∂T,i∂T,j
= κ

T 2
δij,

or in equilibrium,

∂2γ̂

∂Ṫ 2

∣
∣
E= − 1

T 2

∂û

∂Ṫ

∣
∣
E,

∂2γ̂

∂T,iT,j

∣
∣
E= κ|E

T 2
δij,

which proves (18.158). Since T > 0,

∂û

∂Ṫ

∣∣
E� 0, κ|E � 0. (18.159)

With (18.155), (18.158), and (18.159), the inferences of the Clausius–Duhem
inequality are exhausted. Relations (18.155), in particular show that the thermo-
dynamic generalization of the Gibbs equation is the expression

ds = ∂ŝ

∂T
dT + 1

T

{(
∂û

∂ρ
− p

ρ2

)
dρ + ∂û

∂g
dg + ∂û

∂Ṫ
dṪ

}
, (18.160)

which in thermostatic equilibrium, since dg|E = 0, dṪ|E = 0, reduces to
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ds|E = 1

T

{
∂û

∂T
dT +

(
∂û

∂ρ
− p|E

ρ2

)
dρ

}
= 1

T

{
dû|E − p|E

ρ2
dρ

}
. (18.161)

This is the classicalGibbs relation of thermostatics. The expression (18.160) is more
general than theGibbs relation of classical thermodynamics, because the entropy and
internal energy (but not the free energy ψ) may depend on variables, which vanish
in thermostatic equilibrium. Moreover, (18.160) is a proven statement.

However, this theory exhibits defects,which should be discussed. The extension of
theGibbs relation to involve non-equilibrium variables is due to the presence of Ṫ as
an independent constitutive variable, which is good. However, it is desirable that Ṫ is
not an independent constitutive variable. To see this, consider a process with uniform,
time-independent density and velocity fields. Close to thermodynamic equilibrium
the energy equation may then be written as

ρ

{
∂û

∂Ṫ |E
T̈ + ∂û

∂T

∣∣
E Ṫ

}
= κ|EΔT , (18.162)

where Δ is the Laplace operator. Because of inequalities (18.159), Eq. (18.162)
is elliptic, implying that thermal disturbances propagate with infinite speed. If Ṫ is
missing as an independent constitutive variable, the above equation becomes par-
abolic, and the paradox of an infinite speed of thermal disturbances persists. This
does not mean that the Coleman–Noll theory rules out the possibility of a finite
speed of propagation of thermal disturbances. For that purpose the Fourier heat law
must be altered, e.g. to the form

q + τ q̇ = −κ

τ
grad T

−→ q(t) = −
∞∫

0

κ

τ
exp

(
− ξ

τ

)
grad T(t − ξ)dt, (18.163)

where τ is a relaxation time, as has been amply illustrated, see e.g. by Morton

Gurtin and A.C. Pipkin in 1969 [12] and Daniel Joseph and Luigi Preziosi in
1989 [17] for a review.20

20To obtain a finite thermal pulse speed in this case, Ṫ is not allowed to be an independent constitutive
variable. For instance, for a rigid heat conductor, one has the energy equation

du

dt
= −div q, with du = c dT ,

where c is the constant heat capacity. Combining this with(18.163)1 then yields

∂2T

∂t2
+ 1

τ

∂T

∂t
= κ

τc
∇2T .

This is the so-called telegraph equation, which is hyperbolic.
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Here we have shown that in Bernard D. Coleman andWalter Noll’s theory
the above paradox has not been removed by the introduction of Ṫ but worsened.

18.4.2 The Rational Thermodynamics of Ingo Müller

In this approach the entropy inequality is taken over in the form (18.150). The a-priori
estimates (18.151) are not made, i.e., the absolute temperature is a derived quantity
and entropy and entropy flux are formulated as constitutive quantities, here of a heat
conducting compressible fluid, viz.,

s = ŝ(ρ, θ, θ̇, g),
(18.164)

φi = φ̂i(ρ, θ, θ̇, θ,j) = −ϕ(ρ, θ, θ̇, g)θ,i,

in which θ is the empirical temperature. These expressions, which are the most
general isotropic functional relations of theconstitutive class {ρ, θ, θ̇, θ,i}, show that
entropy flux and heat flux are collinear, see (18.149)2.

Following an idea by I- Shih Liu (1973) [19] it is customary to set

σ = λifi + λq, (18.165)

where λi and λ are factors of proportionality, not dependent on fi and q. The assign-
ment (18.165) is a generalization of relation (18.151)2 for a theoretical formulation
without the absolute temperature as a primitive concept. Notice that (18.165) is not
a constitutive concept but a statement that the external supply terms of the theory
should not affect the implications of the second law of thermodynamics.

InMüller’s concept of the second law the independent fieldsρ, v, θ,which satisfy
inequality (18.150), must be solutions of the field Eqs. (18.148) and (18.149). These
field equations can be interpreted as constraint conditions for inequality (18.150).
It is a consequence of Liu’s theorem that satisfaction of these conditions can be
accomplished by the Lagrange parameter method (see Appendix), viz., in this heat
conducting compressible fluid model, by writing

ρṡ + φi,i − ρ(λifi + λq) − Λρ{ρ̇ + ρvi,i}
− Λvi{ρv̇i − tij,j − ρfi}
− Λ{ρu̇ − tijv(i,j) + qi,i − ρq} � 0. (18.166)

In other words, the entropy inequality is enlarged by subtracting from it the scalar
products of Λρ with the mass balance, of Λvi with the momentum balance and
of Λ with the energy balance. The Lagrange parameters Λρ,Λvi and Λ are new
unknown parameters to be determined in the exploitation process of (18.166), in
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which ρ, θ, θ̇, θ,i are now arbitrary fields. Λρ,Λvi and Λ are functions of these vari-
ables plus fi and q.

Apart from the auxiliary quantities ŝ, φ̂ andσ newparametersΛρ,Λvi ,Λ andλi,λ
have now been introduced. Substituting the constitutive equations into (18.166) and
performing all differentiations where appropriate yields the long-hand form of the
extended entropy inequality as follows:

ρ

{
∂ŝ

∂ρ
ρ̇ + ∂ŝ

∂θ
θ̇ + ∂ŝ

∂θ̇
θ̈ + ∂ŝ

∂θ,i
θ̇,i

}

+
{

∂φ̂i

∂ρ
ρ,i + ∂φ̂i

∂θ
θ,i + ∂φ̂i

∂θ̇
θ̇,i + ∂φ̂i

∂θ,k
θ,ik

}

− ρ (λifi + λq)

− Λρ
{
ρ̇ + ρvi,iδij

}

− Λvi

{
ρv̇i − ∂ t̂ij

∂ρ
ρ,j − ∂ t̂ij

∂θ
θ,j − ∂ t̂ij

∂θ̇
θ̇,j − ∂ t̂ij

∂θ,k
θ,kj − ρfi

}

− Λ

{
ρ
∂û

∂ρ
ρ̇ + ρ

∂û

∂θ
θ̇ + ρ

∂û

∂θ̇
θ̈ + ρ

∂û

∂θ,i
θ̇,i

−tijvi,j − ∂q̂i
∂ρ

ρ,i − ∂q̂i
∂θ

θ,i − ∂q̂i
∂θ̇

θ̇,i − ∂q̂i
∂θk

θ,ik − ρq

}
� 0. (18.167)

This imbalance is linear in the variables

{
ρ̇; θ̈; θ̇,k; θik; ρ,k; v̇i, vi,k; fi; q

}
. (18.168)

The standard procedure of its exploitation is to collect the terms of (18.167) in the
order and sequence of (18.168) and the residual terms not involving (18.168). In
certain, not too complex, cases it may turn out to be more economical to directly
operate with (18.167); the above inequality is of this kind. Recall that (18.167) has
the form α · x + β � 0, in which α and β do not depend on x which may assume
any value. Liu’s theorem says in this case that α and β satisfy the conditions

α = 0 and β � 0. (18.169)

In what follows, we now exploit the conditions α = 0.

1. The only term involving v̇i is Λviρv̇i, which must vanish for any value of v̇i. This
requires that

Λvi = 0 (i = 1, 2, 3). (18.170)

This result implies that the momentum equation does not affect the second law.
2. The terms that are linear in θ̈ yield
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∂ŝ

∂θ̇
− Λ

∂û

∂θ̇
= 0. (18.171)

3. The terms linear in ρ,i yield

∂φ̂i

∂ρ
− Λ

∂q̂i
∂ρ

= 0. (18.172)

4. The terms linear in θ,i yield

∂φ̂i

∂θ̇k
− Λ

∂q̂i
∂θ̇k

= 0. (18.173)

5. The terms linear in ρ̇ yield

Λρ = ρ

{
∂ŝ

∂ρ
− Λ

∂û

∂ρ

}
. (18.174)

Equations (18.171)–(18.174) can be viewed as equations determining Λ and Λρ.
This implies that Λ and Λρ are of the function class of the constitutive relations.
Hence, they do not, in particular, depend on f and q.

6. Inequality (18.167) is now linear also in f and q. Therefore,

ρ(λi − Λvi)fi + ρ(λ − Λ)q = 0, ∀f , q (18.175)

implying

λi = Λvi = 0, λ = Λ. (18.176)

7. Caution must be observed, when the terms that are linear in θ̇,i are considered.
Straightforward computation shows

θ̇,i ≡ ∂

∂xi

(
∂θ

∂t
+ θ,jvj

)
= ∂2θ

∂xi∂t
+ ∂2θ

∂xi∂xj
vj + ∂θ

∂xj
vj,i

= (θ,i)
· + θ,jvj,i.

It follows that (θ,i)
· and vi,j are arbitrary, and this implies that the following

identities be satisfied

ρ

{
∂ŝ

∂θ,i
− Λ

∂û

∂θ,i

}
+
{

∂φ̂i

∂θ̇
− Λ

∂q̂i
∂θ̇

}

= 0, (18.177)

{

−Λρρδij + Λtij +
{

∂φ̂i

∂θ̇
− Λ

∂q̂i
∂θ

}

θ,j

}

vj,i = 0, ∀vj,i, (18.178)
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or when Eq. (18.174) is used

(
∂φ̂i

∂θ̇
− Λ

∂q̂

∂θ̇

)

θ,j − ρ2
{

∂ŝ

∂ρ
− Λ

∂û

∂ρ

}
δij + Λtij = 0. (18.179)

There remains the residual inequality

{
φ̂i

∂θ
− Λ

∂q̂i
∂θ

}

θ,i + ρ

{
∂ŝ

∂θ
− Λ

∂û

∂θ

}
θ̇ � 0. (18.180)

If φ̂i = −ϕθ,i and q̂i = −κθ,i are substituted into (18.173), one obtains

(−ϕ + Λκ) δij + 2

(
−∂ϕ

∂g
+ Λ

∂κ

∂g

)
θ,iθk = 0,

or

ϕ = Λκ, and
∂Λ

∂g
κ = 0 −→ ∂Λ

∂g
= 0, κ �= 0, (18.181)

so that

Λ = Λ(ρ, θ, θ̇).

Equation (18.172) now implies ∂Λ/∂ρ = 0, so that

Λ = Λ(θ, θ̇) =⇒ φ = Λ(θ, θ̇)q. (18.182)

This result says that heat flux and entropy flux are collinear and Λ is a function of
the empirical temperature and its time rate of change.

If one requires in addition that the normal component of the entropy flux and the
normal component of the heat flux at an ideal (diathermic) material wall, separating
two heat conducting simple fluids I and II, are continuous if the empirical temperature
is continuous,

[[q · e]] = 0, and [[Λq · e]] = 0, if [[θ]] = 0,

then [[Λ(θ, θ̇)]] = 0, i.e,

ΛI(θ, θ̇) = ΛII(θ, θ̇), (18.183)

in other words, Λ(θ, θ̇) is the same function for the two simple heat conducting
compressible materials on both sides of the ideal diathermic wall. More precisely,
Λ(θ, θ̇) is for such materials the same universal function.
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Substitution of (18.182) into (18.177)–(18.178) leads to the statements

∂ lnΛ

∂θ̇
= Q

κ
, Λρ = −Λ

p

ρ
,

∂ŝ

∂g
= Λ

(
∂û

∂g
+ Q

2ρ

)
, (18.184)

which, together with (18.171) and (18.174), yield

ds = ∂ŝ

∂θ
dθ + Λ(θ, θ̇)

{(
∂û

∂ρ
− p

ρ2

)
dρ + ∂û

∂θ̇
dθ̇ +

(
∂û

∂g
+ Q

2ρ

)
dg

}
(18.185)

as Gibbs relation for thermodynamic processes of heat conducting simple com-
pressible fluids based on Müller’s entropy principle. Please compare (18.185)
with (18.160), the correspondingGibbs relation derived with theClausius–Duhem
inequality and the Coleman–Noll approach for its exploitation! They are not the
same!

Returning to the residual entropy inequality (18.180) and substituting (18.182),
one obtains

γ ≡ ρ

(
∂ŝ

∂θ
− Λ

∂û

∂θ

)
θ̇ + ∂Λ

∂θ
qiθ,i � 0,

−→ γ ≡ ρ

(
∂ŝ

∂θ
− Λ

∂û

∂θ

)
θ̇ − ∂Λ

∂θ
κθ,iθ,i � 0. (18.186)

γ takes its minimum value in thermostatic equilibrium (θ̇ = 0, θ,i = 0). Of necessity
then

∂γ̂

∂θ̇

∣∣
E= 0,

∂γ̂

∂θ,i

∣∣
E= 0,

(18.187)
⎛

⎜
⎜
⎝

∂2γ̂

∂θ̇2
∂2γ̂

∂θ̇∂θ,i
∂2γ̂

∂θ,i∂θ̇

∂2γ̂

∂θ,i∂θ,j

⎞

⎟
⎟
⎠
∣
∣
E

is positive definite.

These conditions imply the relations

∂ŝ

∂θ

∣∣
E= Λ|E

∂û

∂θ

∣∣
E, (qk)|E = −κ|E(θ,k)|E = 0,

∂Λ

∂θ

∣∣
E κ|E � 0,

∂Λ|E
∂θ̇

∂û

∂θ̇

∣∣
E� ∂Λ

∂θ̇

∣∣
E

∂û|E
∂θ

.

(18.188)

Let us return to the Gibbs relation (18.185). This differential, ds, of the entropy is a
total differential in the sense that
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ds = ∂ŝ

∂θ
dθ + ∂ŝ

∂ρ
dρ + ∂ŝ

∂θ̇
dθ̇ + ∂ŝ

∂g
dg

and as such must satisfy the integrability conditions

∂2ŝ

∂xi∂xj
= ∂2ŝ

∂xj∂xi
, where xi := {θ; ρ; θ̇; g}.

Performing all these cross differentiations yields the following chain of integrability
conditions for Λ:

∂ lnΛ

∂θ̇
=

∂p

∂θ̇

ρ2
∂û

∂ρ
− p

=
2
∂p

∂g

κ − ρ
∂κ

∂ρ

=
−∂Q

∂θ̇

Q + 2ρ

(
∂û

∂g

) = Q

κ
. (18.189)

These relations represent an essential contribution of the entropy principle to the ther-
modynamic constitutive theory. We have demonstrated that with the axiom of the
existence of ideal material walls between two heat conducting fluids, see (18.183),
the four different fractions in (18.189) must represent the same universal function
of θ and θ̇. This property is a strong possibility for experimental tests of the phenom-
enological parameters of this theory.

In thermostatic equilibrium the entropy s is only a function of θ and ρ. Indeed for
θ̇ ≡ 0 and g ≡ 0 and with (18.188)1, the Gibbs relation (18.185) reduces to

ds|E = Λ(θ, 0)

{
∂û|E
∂θ

dθ +
(

∂û|E
∂ρ

− p|E
ρ2

)
dρ

}
. (18.190)

The Lagrange parameter Λ(θ, 0) is integrating factor of the Pfaffian form {·} in
(18.190).This expression is exactly of the form,whichConstantinCarathéodory
[1] proved in 1909 for adiabatic equilibrium systems, ifΛ(θ, 0) is identified with the
absolute temperature. This was sufficient reason for I.Müller to make the identifi-
cation

T(θ) = 1

Λ(θ, 0)
. (18.191)

With this identification Λ(θ, θ̇) can justly be considered a thermodynamic general-
ization of the absolute temperature. Müller coined for it the term coldness function
or simply coldness.

Of course, the Gibbs equation in equilibrium, (18.190), also implies an integra-
bility condition which reads
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d ln T

dθ
=

−∂p̂|E
∂θ

ρ2
∂û|E
∂ρ

− p|E

−→ T = T0(θ0) exp

⎧
⎪⎪⎨

⎪⎪⎩

θ∫

θ0

−∂p̂|E
∂ξ

ρ2
∂û|E
∂ρ

− p|E
dξ

⎫
⎪⎪⎬

⎪⎪⎭
. (18.192)

It is evident, the absolute temperature T is a function of the empirical temperature.
So, if we take T0(θ0) > 0, then also T will be positive. Moreover, T(θ) can be
constructed from the measured series of p|E(θ) and ∂û(θ, ρ)/∂ρ. Conversely, if T(θ)
is known, the pressure p|E(θ, ρ) and∂û(θ, ρ)/∂ρ cannot be independently prescribed;
they must be in conformity with (18.192).

Müller’s theory of a simple heat conducting fluid enjoys better behavior than
the Coleman–Noll theory, when linear thermal waves are considered. For a ther-
modynamic process with uniform and time-independent density and velocity fields
the linear heat equation has the form

ρ
∂û

∂θ̇

∣∣
E θ̈ + ρ

∂û

∂θ

∣∣
E θ̇ = κ|EΔθ. (18.193)

Contrary to the theory ofColeman–Noll, see (18.162), this equationmay be hyper-
bolic. Indeed, if (∂û|E/∂θ̇) is positive, then (18.193) is hyperbolic. Such a require-
ment is possible provided that ∂Λ/∂θ̇ �= 0. Thus, θ̇ is an important variable of the
constitutive theory. With ∂û|E/∂θ � 0, (an inequality that must hold for reasons of
stability the inequality (18.188)4, therefore, also implies ∂Λ|E/∂θ̇ < 0.

We conclude that θ̇ is a genuine variable of the coldness function Λ(θ, θ̇). In
fact, were we to set ∂Λ/∂θ̇ = 0 wherever it occurs, we could replace Λ by 1/T(θ)
in all formulas and then would obtain results identical to those of Coleman and
sc Noll. However, this does not mean that Müller’s entropy principle will always
lead to results identical with those of Coleman and Noll whenever ∂Λ/∂θ̇ = 0.
The reader may easily construct the counter example. Starting from the constitutive
assumptions of the form C = Ĉ(ρ, ρ̇, ρ,i, θ, θ,i) (no θ̇ dependence) he may prove
that Müller’s theory will yield the Gibbs relation

ds = 1

T(θ)

{
∂û

∂θ
dθ

}
+ ∂ŝ

∂ρ
dρ, (18.194)

while the Coleman–Noll approach will result in

ds = 1

T

{
∂û

∂T
dT +

(
∂û

∂ρ
− p

ρ2

)
dρ

}
. (18.195)
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Agreat number of analyses concerning theSecondLaw in the formsof theClausius–
Duhem andMüller’s entropy inequalities and procedures of their exploitation have
been performed in the 70 and 80s of the last century. Irrespective of the material
response considered, Müller’s theory is more general than most of the other ther-
modynamic theories in the following points:

• The entropy flux and entropy supply are not a priori given, but their determination
is a basic ingredient of the theory.

• The absolute temperature is not a primitive, but a derived quantity which is deter-
minable as a function of the empirical temperature. Regularly this function is
universal that is, independent of the material, yet there are exceptions.

• The Gibbs equation of thermostatics is a derived specialization of a proven ther-
modynamic Gibbs relation. Hence, the Gibbs relation is a proven statement (as it
already was in thermostatics) [14].

That this leads to essential results is demonstrated by Hutter in [14] and in greater
detail by Müller in [25]. One property that emerges from Müller’s entropy prin-
ciple is that incorporation of the time rate of change of the temperature into the
set of independent constitutive variables may lead to finite speed of thermal pulses.
This is not so, if the Coleman–Noll approach is applied. This does not say that
the Coleman–Noll approach does not lead to a hyperbolic system of equations
for thermal pulses; for that purpose, the Fourier heat law must be replaced by a his-
tory dependent parameterization of the heat flow vector on the temperature gradient.
Moreover, it cannot be proved in general that the coldness would be a universal func-
tion. In fact there are counterexamples to this effect. For instance, for a fluid of the
constitutive class C = Ĉ(ρ; ρ̇; ρ,i; θ; θ̇; θ,i), I-Shih Liu (1973) [19] proved that

φ = Λq, σ = Λq, Λ = Λ̂(ρ, ρ̇, θ, θ̇), (18.196)

i.e., heat flux and entropy flux are still collinear, but Λ is no longer a universal
function.

Further critiques of general nature, raised mostly by physicists are stated in [14].

Appendix: Proof of Liu’s Theorem21

We now return to the balance equations (18.53) and the material equations (18.52).
Substituting the material equations (18.52) into the balance equations (18.53),
the resulting balance equations of mass, momentum and energy—known as field
equations—can be written in the form

21See I- Shih Liu [18], or I. Müller [25]. Actually, Liu’s theorem is a special case of a much
broader theorem well known in operations research. A proof in that context can be found in A.

Schrijver [28], but the theorem dates back to G. Farkas [7] and H. Minkowski [20], see also
R.A. Hauser and N. Kirchner [13].
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Ax + b = 0, (18.197)

in which x, A and b are given by

x = { θ̇, ρ̇, (grad θ),̇ grad ρ, grad (grad θ) },

A =

⎛

⎜⎜⎜⎜
⎝

0 1 0 0 0

0 0 0 − ∂ t̂
∂ρ

− ∂ t̂
∂grad θ

ρ
∂ε̂

∂θ
ρ
∂ε̂

∂ρ
ρ

∂ε̂

∂grad θ

∂q̂
∂ρ

∂q̂
∂grad θ

⎞

⎟⎟⎟⎟
⎠

,

bT =
(

ρdiv v, ρv̇ − ∂ t̂
∂θ

grad θ − ρg, ρ
∂ε̂

∂θ
− tr (t̂D) − ρq

)

.

(18.198)

Likewise the entropy inequality takes the form

α·x + β � 0 (18.199)

with

αT =
(

ρ
∂ŝ

∂θ
, ρ

∂ŝ

∂ρ
, ρ

∂ŝ

∂grad θ
,

∂φ

∂ρ
,

(
∂φ

∂grad θ

)

sym

)

,

β = ∂φ

∂θ
·grad θ.

(18.200)

Equations (18.197) and the inequality (18.199) are linear in the variables x, since
these variables are not contained in the set of constitutive variables. If one considers
a solution of the balance equations at a position in space and time in the form
Ax + b = 0, then from the dimension of A it is apparent that this equation allows a
whole variety of higher dimensions from which x can originate, if A and b are fixed.
Indeed, A possesses in any case more columns than rows. This being assured it is,
however, still not clear whether to all these values of x at fixed A and b there belong
in reality globally meaningful fields as solutions of the balance equations. Actually,
it can be applied even for an empty solution set. This is shown in R.A. Hauser and
N.Kirchner [13]. In many cases the desired proof is carried out with the conditions
ofCauchy andKovalevskaya being fulfilled. This is the case here, butwemention
it only without proof.

Theorem Let a matrix A and vectors x, b and α, as well as a scalar β be given. In
view of their dimensions these are assumed compatible with the statements

Ax + b = 0 and α·x + β � 0. (18.201)

Assume, moreover, that the linear equation system (18.201)1 has for x a non-empty
solution set S. Then the following statements are equivalent:

(a) For all x ∈ S the inequality α·x + β � 0 holds.
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(b) There exists a vector λ �= 0, such that

αT − λTA = 0 and β − λ·b � 0. (18.202)

Proof (i) From (b) follows (a): We multiply the first equation from (b) with an
arbitrary x of dimension of α and add this to the second inequality from (b).
This yields

β − λ·b + (αT − λTA)x � 0
λ· (Ax + b)︸ ︷︷ ︸

=0 since x∈S
+ (α·x + β) � 0 −→ (α·x + β) � 0 ,

which proves statement (a).
(ii) From (a) follows (b): This is shown by contradicting the opposite assumption:

Let us therefore assume, (a) holds, but there does not exist a suitable λ with
αT − λTA = 0. Then the vector αT is linearly independent of the rows of the
matrix A. This lets us find a vector with the property Ax0 = 0, but at the same
time α·x0 �= 0. One now adds a suitable multiple δx0 of this vector to a solution
of Ax + b = 0, one obtains again a solution vector because A(x + δx0) = Ax.
On the other hand, one is now able to violate the inequality α·(x+ δx0)+β � 0
arbitrarily. Thus a contradiction to the assumption that the statement (a) holds
has been obtained. Therefore, there exists really a λ with αT − λTA = 0, and
thus one necessarily has β − λ·b � 0.

In a postscript to this law let us mention that the statement αT − λTA = 0 in
our example corresponds to the identities (18.59), and the second relation (18.202),
β − λ·b � 0 corresponds to the residual inequality (18.79) which has been obtained
from the last two rows of (18.55).
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Chapter 19
Gas Dynamics

Abstract This chapter on gas dynamics illustrates a technically important example
of a fluid field theory, where the information deduced by the second law of ther-
modynamics delivers important properties, expressed e.g. by the thermal and caloric
equations of state of, say, ideal and real gases. Problems of acoustics, steady isentropic
flow processes and their stream filament theory are briefly touched. The description
of the propagation of small perturbations in a gas serves in its one-dimensional form
ideally as a model for the propagation of sound e.g. in a flute or organ pipe, and
it can be used to explain the Doppler shift occurring when the sound source is
moving relative to the receiver. Moreover, with the stream filament theory, the sub-
and supersonic flow through a nozzle can be explained. In a final section the three
dimensional theory of shocks is derived as the set of jump conditions on surfaces
for the balance laws of mass, momentum, energy and entropy. Their exploitation
is illustrated for steady surfaces for simple fluids under adiabatic flow conditions.
This leads to the well-known Rankine–Hugoniot relations. These problems are
classics; gas dynamics, indeed forms an important advanced technical field that was
developed in the 20th century as a subject of aerodynamics and astronautics and
important specialties of mechanical engineering.

Keywords Acoustic waves · Generation of sounds · D’Alembert’s and
Bernoulli’s solution · Acoustic Doppler effect · Isentropic stream filament
theory ·Laval nozzle ·Theory of shocks ·Stationary shocks ·Rankine–Hugoniot
relations

List of Symbols

Roman Symbols

A Cross section of a stream filament or narrow pipe
c Speed of sound, adiabatic speed of sound [c2 = ∂ p̂(ρ, s)/∂ρ|s]
f Thermodynamic field quantity
f ± Restriction of f to positions on the positive/negative side of a singular

surface
f Body force per unit mass
h Specific enthalpy per unit mass
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ι = √−1 Imaginary unit
k, kn Wave number, k = ω/c
L(t) Technical power added to a conduit between two cross sections 1 and

2
M, M∗

Mach number (M = |v|/c, critical Mach number (M∗ = v∗/c, see
(19.111))

m1, m2 Mass flow through the cross sections 1 and 2 of a stream filament
n Unit normal vector on a surface
p, p0 Pressure, equilibrium pressure,∫ p

p0
d p̃/ρ( p̃) Pressure function

Q(t) Heat flow supplied to the wall of a thin stream filament or thin pipe
q Specific energy supply per unit mass, specific radiation
q Heat flux vector
R Universal gas constant: R = 287.04 kg−1 K−1

r Radial distance
S Surface in R

3

s Entropy density per unit mass
T, T0 Temperature, Kelvin temperature
t Time
t Cauchy stress tensor
U Body force potential: f = −grad U
u Specific internal energy per unit mass
u0 Tangential velocity of a moving surface, see (19.58)
u Velocity of a point on a surface
v Material velocity vector
vmax Maximum velocity out of a vessel, see (19.85): vmax = √

2cpT0 =√
2κ

κ−1 RT0

v∗ = c∗ Critical outflow speed from a vessel: v∗ = c∗ = 2RT0κ/(κ + 1)

vn, vt Velocity components normal/tangential to a singular surface

Greek and Miscellaneous Symbols

Δ(·) Laplace operator: Δ(·) = ∇2 = div grad (·)
Δω = u0ω/c Doppler (frequency) shift (ω = c k)
κ Isentropic exponent of a caloric ideal gas
ρ, ρ0 Mass density, equilibrium mass density
Φ Velocity potential, v = −grad Φ

ψ Helmholtz free energy, initial value of Φ̇(x, 0) = ψ(x)

Φ(r, t) d’Alembert’s solution of the spherical wave equation, see Eq.
(19.38) radiating from x = 0: Φ(r, t) = 1

2 f (r − ct)
Θ = ρv Mass flow along a flow filament
χ(x) Initial value of Φ(x, 0) = χ(x)

σ Degree of radiation: σ = ξ2/(1 + ξ2), ξ = ωn/ωk

πs Specific entropy production per unit mass
σ Specific supply quantity of a general balance law
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ω,ωk Circular frequency∮
C v · dx Circulation of v for the closed loop C

[[ f ]] Jump of f across the singular surface S: [[ f ]] = f + − f −
〈〈 f 〉〉 Average value of f on the positive/negative side of a singular surface

S, seeRankine–Hugoniot relations (19.134): 〈〈 f 〉〉 = 1
2 ( f 1+ f −)

19.1 Introductory Remarks

In this chapter the step from general thermodynamics to gas dynamics will be made by
also accounting for the movements that are taking place in the gas. In the last chapter
on thermodynamics the major focuses were the state variables; it was shown that the
thermal and caloric equations of state are coupled to one another as a consequence of
the Second Law of Thermodynamics. In other words, if the caloric state variables as
e.g. the Helmholtz free energy is known as a function of density and temperature,
then the pressure is basically determinable by differentiation of the Helmholtz free
energy with respect to the density, see Table 18.1. In this chapter it is our intention to
treat simple gas-dynamic problems, in which besides the state variables, density and
temperature, also the velocity field arises as one of the unknown quantities. These
are five field quantities, ρ, T, v, for which the balance laws of mass, momentum and
energy serve as five equations. This counting of the variables, however, also assumes
that the pressure and internal energy are given as assigned functions of the density
and temperature and that also a constitutive relation for the viscous stresses is at the
disposal. In the sequel we shall ignore the influence of the frictional stresses. The
balance laws of mass, momentum and energy then take the forms (17.92), whereby
additions of the equations of state for pressure and energy makes these equations
integrable, at least in principle as a set of five partial differential equations for ρ, T
and v, which, when being complemented by initial and boundary conditions, form a
properly posed initial-boundary-value problem (IBVP).

Our goal in this chapter is less ambitious. We shall limit attention to simple flows
in a gas, in particular we shall treat

• simple problems of linear acoustics,
• stationary, isentropic flow processes of linear acoustics,
• stream-filament theory in stationary flows, and
• theory of shocks.

Obviously these can provide only an exemplary first impression of the complex topic
of gas dynamics. Acoustics is a technically important research field, which in the
context of increased demands of environmental protection has acquired more and
more significance. Often the focus in acoustics lies in noise absorption and noise
reduction.

http://dx.doi.org/10.1007/978-3-319-33636-7_18
http://dx.doi.org/10.1007/978-3-319-33636-7_17
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In gas dynamics there exist a large number of technically significant problems,
in which non-linear effects are important. In the stream filament theory we shall
encounter the most important non-linearities of gas dynamics. These type of flows
are fluid motions through thin tubes and pipes, where ‘thin’ means that the cross
section is only slowly varying in a meaning to be made precise shortly.

Singular surfaces in a continuous body are material or nonmaterial orientable
surfaces in the body across which some physical quantities may suffer a jump. In
particular, a singular surface, across which the velocity field is discontinuous, [[v]] �=
0, is called a singular surface of first order. If the normal component of the velocity
is discontinuous, [[v · n]] �= 0, the surface is called a shock. These are conceptually
and technically important and will be looked at in this chapter for stationary shocks
in simple fluids under adiabatic conditions.

19.2 Propagation of Small Perturbations in a Gas

19.2.1 Fundamental Equations

Let us start the ensuing study with

Definition 19.1

• A flow is called isentropic, if the entropy of the fluid particles remains constant,
ds/dt = 0.

• A flow is called homentropic, if the entropy remains constant in the entire domain
that is occupied by the fluid.

Under isentropic conditions the value of the entropy can change from particle to
particle; under homentropic conditions this is not possible; the entropy is constant
throughout the domain of the fluid. If a gas is at rest (v = 0) and in thermodynamic
equilibrium, i.e., if temperature and density are temporally and spatially constant,
then also the entropy is temporally and spatially constant (since s = ŝ(ρ, T )). If
the gas is only brought gently out of its equilibrium, then most likely an oscillatory
movement will ensue, in which temperature, density and velocity will oscillate about
this state of rest. Now, the periods in the acoustic frequency regime are so small that no
temperature adjustment by heat conduction between the single particles of air can be
achieved. One may, therefore, assume that no heat flow is generated, corresponding
ideally to adiabatic conditions. If one considers the balance of energy (17.92)3,
which for this situation takes the form

ρ
du

dt
= −p div v = p

ρ

dρ

dt
(19.1)

http://dx.doi.org/10.1007/978-3-319-33636-7_17
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and replaces the internal energy u by the Helmholtz free energy ψ via u = ψ+T s,
and, finally employs the relations of Table 18.1, Eq. (19.1) becomes

ρ

(

ψ̇ + T ṡ + Ṫ s − ∂ψ̂

∂ρ
ρ̇

)

= ρ

(
∂ψ̂

∂ρ
ρ̇ + ∂ψ̂

∂T
Ṫ + T ṡ + Ṫ s − ∂ψ̂

∂ρ
ρ̇

)

= 0,

(19.2)
which reduces to

ρT ṡ = 0 or ṡ = 0. (19.3)

Adiabatic and isentropic states in a single gas are, therefore, equivalent1; expressed
differently, this means that the energy equation can be replaced by the equation ṡ = 0.
Balance laws of mass, momentum and energy can, thus, be written as

∂ρ

∂t
+ div (ρv) = 0,

∂v

∂t
+ (grad v)v = −1

ρ
grad p,

∂s

∂t
+ (grad s)v = 0.

(19.4)

They constitute in this form five equations for the six unknowns ρ, v, p, s and must
be complemented by the equation of state

p = p̂(s, ρ). (19.5)

With this equation one may write, since ṡ = 0,

grad p = ∂ p̂

∂ρ

∣∣∣
s
grad ρ. (19.6)

The pressure can now be eliminates from (19.4). The derivative of the pressure
function p̂(ρ, s) with respect to the density equals the square of the speed of sound.
This is important enough to be noted as

Definition 19.2

• The quantity

c :=
√(

∂ p̂(ρ, s)

∂ρ

) ∣∣∣
s

(19.7)

is called speed of sound or adiabatic speed of sound. It is generally a function
of density and entropy.

1This statement remains valid also for a heat conducting viscous fluid, provided the dissipative
working is ignored, as was shown in Sect. 18.2.

http://dx.doi.org/10.1007/978-3-319-33636-7_18
http://dx.doi.org/10.1007/978-3-319-33636-7_18
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Equations (19.4)–(19.6) constitute in this general form a system of nonlinear par-
tial differential equations, of which the integration is very difficult. For small pertur-
bations from a thermodynamic equilibrium one may, however, assume that nonlinear
terms in the governing equations may be ignored. This linearization process is our
next goal.

If ρ0, s0 and v0 = 0 denote the values of density, entropy and velocity in equilib-
rium and ρ′, s ′ and v′ deviations thereof, we have

ρ = ρ0 + ρ′, s = s0 + s ′, v = v′. (19.8)

Substitution of (19.8) into (19.4)–(19.6) and omission of all products of primed
quantities (they are regarded to be of higher order small) leads for (19.4)1,2 to the
linearized mass and momentum balances.

∂ρ

∂t
+ ρ0div v = 0,

∂v

∂t
+ c2

0

ρ0
grad ρ = 0, (19.9)

in which primes, identifying perturbation quantities are omitted. The speed of sound,
c0 and the density ρ0 in (19.9) are regarded as constants, of which the values are
treated as fixed, if values for density and temperature (or entropy) of the underlying
thermodynamic equilibrium are known. The third equation (19.4)3 is not needed.

By eliminating the velocity v from (19.9), i.e., differentiation of (19.9)1 with
respect to time and substitution of ∂v/∂t from (19.9)2 one obtains

∂2ρ

∂t2
− c2

0	ρ = 0, (19.10)

where
	 := div grad (19.11)

is the Laplace operator, which in Cartesian coordinates is given by

	 f = ∂2 f

∂x2
+ ∂2 f

∂y2
+ ∂2 f

∂z2
(19.12)

and in spherical coordinates takes the form

	 f = ∂2 f

∂r2
+ 2

r

∂ f

∂r
+ 1

r2 sin ϕ

∂2 f

∂ϕ2
+ 1

r2

∂2 f

∂ϑ2
+ cot ϑ

r2

∂ f

∂ϑ
. (19.13)

If the thermal equation of states, ρ = ρ̂(p, s), is used with
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dρ|s = ∂ρ̂

∂ p

∣∣
∣
s
d p = 1

∂ p/∂ρ̂|s d p = 1

c2
0

d p,

∂ρ

∂t
= 1

c2
0

∂ p

∂t
, grad ρ = 1

c2
0

grad p,

then (19.10) implies
∂2 p

∂t2
− c2

0	p = 0, (19.14)

which is a second form of the acoustic equation, expressed as an equation for the
perturbation pressure.

If one forms the curl of (19.9)2 we obtain ∂(curl v)/∂t = 0 (as curl grad ρ = 0) or,
since in this linear approximation the partial time derivative agrees with the material
time derivative

(curl v)· = 0 → curl v = 0. (19.15)

The operator on the left-hand side states that the vorticity (strength of vortices)
remains constant along particle trajectories, that on the right assumes that the corre-
sponding flow has emerged from a vorticity free state. Here, we shall assume such
conditions. Consequently, then, the velocity field can be derived from a potential φ,

v = −grad φ. (19.16)

If this is substituted in (19.9)2 and the density is eliminated from (19.9)1,2, one obtains

grad

(
∂2φ

∂t2
− c2

0Δφ

)
= 0, (19.17)

which can also be written as
∂2v

∂t2
− c2

0Δv = 0. (19.18)

Alternatively, one can also integrate (19.17) and then obtains

∂2φ

∂t2
− c2

0Δφ = 0, (19.19)

in which an arbitrary constant of integration has been set to zero, because the potential
at time t = 0 can be normed to this value. It is seen that (19.10), (19.14), (19.18)
and (19.19) show that density, pressure, velocity and velocity potential all satisfy the
acoustic wave equation. These equations are also called Helmholtz equations.2

Let us add the following comments:

2
Hermann Ludwig Ferdinand von Helmholtz (1821–1894) physician and physicist, was pro-

fessor of physiology in Königsberg (Kaliningrad), Bonn, Heidelberg and since 1871 professor of
physics in Berlin. For a brief biography, see Fig. 4.10 in Vol. 1.

http://dx.doi.org/10.1007/978-3-319-33633-6_4
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• In (19.16) the velocity potential was introduced with the negative sign (which con-
tradicts the common usage). This choice is advantageous, because the momentum
equation (19.9)2 implies in this case

grad

(
ρ0

∂φ

∂t
− p

)
= 0.

It can directly be integrated to
ρ0

∂φ

∂t
= p,

in which an arbitrary function of time has been set to zero, if the motion starts from
a state of rest. With the choice (19.16), the velocity field is directly proportional
to the time derivative of this potential. This is computationally convenient.

• For an exact proof of our statement that the flow field v, subject to the stated con-
ditions, is irrotational (free of vorticity), consider the balance law of momentum
(3.92), in which the viscous stresses are ignored (t R = 0) and the body force is
derivable from a potential, f = −grad U :

dv

dt
= −

(
grad p

ρ
+ grad U

)
. (19.20)

For isentropic changes of states the thermal equation of state can be written as
p = p̂(ρ, s0) = p̃(ρ). We may, thus, introduce the pressure function

P(ρ) =
p∫

p0

d p̄

ρ̃( p̄)
,

a form, which is restricted to barotropic fluids with the property

grad P = grad p

ρ̃(p)
. (19.21)

If this result is substituted in Eq. (19.20), then

dv

dt
= −grad (P + U ) (19.22)

is obtained. That is, the acceleration is the gradient of a potential.
Consider now an arbitrary simply closed material curve � and compute the time
derivative of the circulation
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d

dt

∮

�

v · dx =
∮

�

v̇ · dx +
∮

�

v · (dx)̇

=
∮

�

v̇ · dx +
∮

�

d

( |v|2
2

)

=
∮

�

d

{ |v|2
2

− P − U

}
= 0. (19.23)

The integral on the right-hand side vanishes, because the path of integration is
closed and the integrand is a unique function. That is, the circulation along particle
trajectories remains constant. We now employ Stokes’ integral theorem in three-
dimensional space

d

dt

∮

�

v · dx = d

dt

∫

A�

curl v · da, (19.24)

in which A� is the area spanned by �. Since A� can be contracted to an infinitely
small area, (19.23) and (19.24) imply

d

dt
(curl v) = 0. (19.25)

The last two statements together define Kelvin’s vorticity theorem. According to
it, the circulation around an arbitrary closed material line is temporally constant. If
the flow is irrotational initially, it remains irrotational for all time. This terminates
the proof of (19.16). We emphasize that the assumption of isentropic conditions
is an important prerequisite of the result.

In Chap. 18, Sect. 18.3.4 isentropic processes in caloric ideal gases were shown
to obey the thermal equation of state

p

p0
=
(

ρ

ρ0

)κ

. (19.26)

With the definition of the speed of sound (19.7), Eq. (19.26) may be used to evaluate

c = √
κRT , (19.27)

which can easily be computed for the gases listed in (19.7). Typical values for c
in the temperature range around 300 K yield c ∈ [250, 450] m s−1. For air with
R = 287.04 J kg−1 K −1, κ = 1.402 and T = 293 ◦K, one obtains the value c =
348.48 m s−1.

http://dx.doi.org/10.1007/978-3-319-33636-7_18
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Fig. 19.1 Jean- Baptiste le Rond d’Alembert (16. Nov. 1717–29. Oct. 1783)

Jean- Baptiste le Rond d’Alembert was a French mathematician, mechanician, physi-
cist, philosopher, and music theorist. Until 1757 he was also co-editor with Denis Diderot

of the Encyclopédie.
Born in Paris, d’Alembert was the illegitimate child of the writer Claudine Guérin de
Tencin and the chevalier Louis- Camus Destouches, an artillery officer. He became the
foster child of the wife of a glazier, Madame Rousseau, with whom d’Alembert lived for
48 years. Destouches secretly paid for the education of Jean le Rond, but did not want his
paternity officially recognized. d’Alembert first attended a private school, supported by
his father, who left him an annuity of 1200 lives on his death in 1726. At the age of twelve he
entered ‘Collège Mazarin’. Here he studied philosophy, law, and the arts, graduating in arts
in 1735. He then entered law school for two years, but was equally interested in medicine
and mathematics.
d’Alembert was an excellent mathematician with interest of its application to solve prob-
lems of mechanics and physics. His most successful contribution to theoretical mechanics
was what later became analytical dynamics. His fundamental thoughts were outlined in his
‘Traité de dynamique’ [4]. In this article he developed the d’Alembert principle, which is
to be regarded as a rule how to treat the equations of motion in a material body; it reduced
the dynamics of bodies to problems of equilibrium. This led to the Lagrangean equations.

d’Alembert published in 1744 an article on the equilibrium and motion of fluids, and

in 1747 he submitted a further article to the Berlin Academy of Science on the theory of

winds on Earth and concluded that the distribution of winds on Earth was the result of the

atmospheric tides [5]. In the same year he studied the vibration of an oscillating string and

deduced the wave equation as the equation of its motion. He recognized that the oscillations

of a string are determined by the prescription of the initial and boundary conditions, see

Figs. 19.2 and 19.3. He also applied the method of separation of variables, attributed to

Daniel Bernoulli and Leonhard Euler. In his ‘Essai d’ une nouvelle théorie de la

résistance des fluids’ (1752) [6] he analyzed the steady motion of a rigid body through

an ideal, incompressible fluid, employed thereby complex functions—before the formal

introduction of the theory of complex variables with the Cauchy–Riemann equations—

and formulated the d’Alembert ‘paradox’: that in three-dimensional steady potential flow
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the force exerted by the fluid on the body vanishes. He was also deeply involved in celestial
mechanics and constructed some solutions to the three body problem. He was elected member
of the Académie Française in 1754 of which he became Permanent Secretary in 1772.
The text is based on www.wikipedia.org and

Fachlexikon: Forscher und Erfinder, Nikol Verlagsgesellschaft mbH & Co. KG

19.2.2 Plane and Spherical Waves

Plane waves are obtained when all variables depend only on a single space coordi-
nate, say x . One is then led to the wave equation

∂2Φ

∂t2
= c2 ∂2Φ

∂x2
− ∞ < x < ∞, (19.28)

in which Φ stands for any of the variables ρ, p,φ and c = c0 is the constant acoustic
speed. We wish to solve (19.28) on the infinite line, subject to the initial conditions

Φ(x, 0) = χ(x), Φ̇(x, 0) = ψ(x). (19.29)

A general solution of the wave equation (19.28) due to Jean Baptiste le Rond

d’Alembert
3 can be written as

Φ(x, t) = f (x − ct) + g(x + ct), (19.30)

in which f and g are differentiable functions. These two functions can be determined
with the aid of the initial conditions. Indeed, substitution of (19.30) into (19.29) yields

f (x) + g(x) = χ(x), c (− f (x) + g(x))′ = ψ̂(x), (19.31)

in which primes indicate differentiation with respect to the arguments x ±ct,χ and ψ̂
are functions, which for x → ±∞ fall sufficiently fast to zero. Integrating (19.31)2

yields

− f (x) + g(x) = 1

c

x∫

−∞
ψ̂(ξ)dξ =: ψ(x), (19.32)

in which a constant of integration has been set to zero, because f and g must each
vanish as x → ±∞. Equations (19.31)1 and (19.32) form a linear system of equations
for f (x) and g(x), which has the solution

f (x) = 1
2 (χ(x) − ψ(x)), g(x) = 1

2 (χ(x) + ψ(x)), (19.33)

3For a brief biography of Jean Baptiste le Rond d’Alembert (1717–1783), see Fig. 19.1.

www.wikipedia.org
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which together with (19.32) implies

f (x − ct) = 1
2χ(x − ct) − 1

2c

x−ct∫

−∞
ψ̂(ξ)dξ,

g(x + ct) = 1
2χ(x + ct) + 1

2c

x+ct∫

−∞
ψ̂(ξ)dξ.

(19.34)

Substitution of these results in (19.30) leads to the general solution of the plane wave
equation according to d’Alembert

Φ(x, t) = 1
2 (χ(x − ct) + χ(x + ct)) + 1

2c

x+ct∫

x−ct

ψ̂(ξ)dξ. (19.35)

The physical significance of the solutions (19.30) and (19.35), respectively, is recog-
nized by the following discussion: For constant argument ξ+ = x − ct , i.e., an
observer propagating with the speed of sound in the positive x-direction the value
of f (ξ+) remains constant; f (x − ct) thus, represents a propagating wave which
moves to the right, i.e., in the positive x-direction. Completely analogously, for con-
stant argument ξ− = x + ct , the value of g(ξ−) remains constant; g(x + ct), thus,
represents a propagating wave, which moves with the speed of sound to the left; i.e.,
in the negative x-direction.

Example 1
If one considers as initial condition a motion from a state at rest, one has ψ(x) = 0;
so, the last integral term on the right of (19.35) vanishes. Consequently, a given initial
perturbation χ(x) will travel with half the amplitude to the left and right; for any
fixed time the two profiles, cut in half and correspondingly positively and negatively
shifted (along the x-axis), will be added where they overlap. Figure 19.2 displays
how these two waves, which propagate to the right and left, evolve from an initially
triangular profile. Once the two perturbations have moved far enough to the left and
right and no longer interact, they propagate as independent triangles each with half
the height to the left and right.

Example 2
Example 1 is insofar special as the domain in which the wave propagates, is assumed
to be of infinite extent to the left and the right. The two waves have finite extent,
they reach the two ends of the line only after an infinitely long time; so, no boundary
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Fig. 19.2 Construction of
d’Alembert’s solution. A
triangular perturbation Φ,
released from rest
propagates to the left and
right with the height cut in
half

conditions have to be taken into account. In realistic problems the solution Φ(x, t)
must not only satisfy initial conditions but equally also certain boundary conditions.
To be able to formulate these, the solution must be extended into the domain where
the physical solution does not exist, such that the boundary conditions are met.

If one takes as an example the one-sided half line x > 0 and assumes a perturba-
tion, which is initially zero (ψ̂ = 0), we obtain as in Example 1

Φ(x, t) = 1
2 (χ(x − ct) + χ(x + ct)) ,

and if one requests as reflection condition the vanishing of the perturbation, thus,
Φ(0, t) = 0, then the last equation implies4

χ(ct) = −χ(−ct) −→ χ(x) = −χ(−x).

4This is e.g. the appropriate condition if Φ is the horizontal velocity.
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Fig. 19.3 Construction of the d’Alembert solution when reflection occurs at x = 0. For a wave
propagating on the half line x > 0, which is reflected at x = 0, the condition Φ(0, t) = 0 is satisfied
by mirrored continuation of Φ to values of x < 0

The perturbation χ(x) for x > 0 must, therefore, anti-symmetrically be extended
into the half-line x < 0.

If one cuts in halves the function χ(x), which is declared for all values of x , and
then lets the two halves move to the left and right, then the perturbation lying on the
positive x-axis (Fig. 19.3) splits into two oppositely moving waves. As soon as the
part moving to the left encounters the origin, its mirror picture occupies the positive
x-axis, so that the amplitude at x = 0 remains zero. After some time, nothing is
left of the wave traveling to the left. Instead its mirror picture travels on the positive
x-axis to the right. At x = 0 a reflection has taken place with simultaneous change
of the sign of the perturbation.

Spherical waves are e.g. formed, if a point source in three dimensions emits
acoustic signals. Technically, this can for instance be reached, if an elastic sphere
‘breathes’ in the acoustic frequency regime. The waves are in this case radially
propagated. In spherical coordinates the wave function cannot have any ϕ- and ϑ-
dependences (if the coordinate origin is in the center of the sphere); so, the Laplace
operator (19.13) reduces to

ΔΦ |ϕ,ϑ= ∂2Φ

∂r2
+ 2

r

∂Φ

∂r
= 1

r

∂2

∂r2
(rΦ). (19.36)

The wave equation, therefore, assumes the form
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∂2(rΦ)

∂t2
= c2 ∂2(rΦ)

∂r2
(19.37)

and is formally equivalent to Eq. (19.28) of plane waves, if in this latter equation Φ

is replaced by rΦ and x is replaced by r . The only formal difference to plane waves
is that the domain of the solution for a source in the coordinate origin is restricted to
values of r > 0 and that only outgoing waves are possible, whereas for plane waves
x may embrace the whole line and waves propagating to the left and to the right are
possible.

Because the surface of the sphere can only emit waves which propagate in the
positive r -direction, d’Alembert’s solution has here the form

Φ(r, t) = 1

r
f (r − ct), (19.38)

where the function f is determined by the source function in r = r0.

Example 3
We assume that a spherical radiator with radius r0 and surface speed5

v(n) = vn exp(ιωnt), for r = r0 (19.39)

with constant vn vibrates, and we ask how pressure and particle velocity are distrib-
uted in the outer space r > r0. This problem can be solved, if the velocity potential
Φ in (19.38) is expressed by the trial function

Φ(r, t) = cn

r
exp [ι(ωnt − knr)] (19.40)

with constant cn . The circular frequency and the wave number kn must obviously be
connected with the speed of sound; this can successfully be done with

exp [ι(ωnt − knr)] = exp

[
−ιkn

(
r − ωn

kn
t

)]
. (19.41)

According to (19.38), (ωn/kn) in (19.41) must agree with c; this means that

ωn

kn
= c. (19.42)

If the speed of sound c and the circular frequency ωn are given, the wave number
follows from (19.42). The ratio (ωn/kn) = c is called in wave theory thephase speed;
it, thus, has been shown that the sound and phase speed agree with one another.

5The index (·)n in (19.39) will shortly become understood below.
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With the aid of the trial solution (19.40), the complex valued radial particle velocity
can be evaluated by differentiation with respect to r ; this yields

v(r, t) = −∂Φ

∂r
= cn

r2
(1 + ιknr) exp [ι(ωnt − knr)] . (19.43)

If this is evaluated for r = r0 and the resulting expression compared with (19.39),
cn can be connected with vn . If the result is again substituted in (19.43), one obtains

v(n)(r, t) = vn
1 + ιknr

1 + ιknr0

(r0

r

)2
exp [ι(ωnt − kn(r − r0))] . (19.44)

Finally, using the relation ρ0∂Φ/∂t = p, the pressure takes the form,

p(n)(r, t) = vn
ιωnρ0r0

2

1 + ιknr0

1

r
exp [ι(ωnt − kn(r − r0))] . (19.45)

If the spherical radiator oscillates with a stimulus velocity having the Fourier

representation

v(r0, t) =
∑

n

v(n)(r0, t) =
∞∑

n=0

vn(r0) exp(ιωnt), (19.46)

the general solution can be obtained by summation over the components (19.44)
and (19.45); this is possible, because of the linearity of the Helmholtz differential
equation and the boundary conditions. For the excitation (19.46) we, thus have

v(r, t) =
∞∑

n=0
vn

1 + ιknr

1 + ιknr0

(r0

r

)2
exp [ι(ωnt − kn(r − r0))] ,

p(r, t) =
∞∑

n=0
vn

ιωnρ0r2
0

1 + ιknr0

1

r
exp [ι(ωnt − kn(r − r0))] .

(19.47)

Let us close this example by a few remarks:

• An important measure in acoustics is the effective radiated acoustic power. Its areal
density is called acoustic intensity and is defined as the product of the pressure
with the velocity. In the complex valued notation given here, it is defined by

j = 1
2 Re(pv∗), (19.48)

in which v∗ is the complex conjugate to v and Re(pv∗) is the real part of pv∗.
With (19.44) and (19.45) there follows
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j = 1
2ρ0cv2

n

(r0

r

)2 (knr0)
2

1 + (knr0)2
, (19.49)

or after multiplication with the total area of the sphere

Pn = j4πr2
0 = 2πr2

0 v2
nρ0c

(knr0)
2

1 + (knr0)2
. (19.50)

Pn is the total radiated power of the frequency ωn of the oscillating sphere. If one
defines with

ωk := c/r0, (19.51)

the so-called corner angular frequency of the spherical radiator, then the total
power Pn takes the elegant form

Pn = 2πr2
0 v2

nρ0c
(ωn/ωk)

2

1 + (ωn/ωk)2
. (19.52)

• We conclude from (19.52) that the radiation power is small if ωn � ωk . Moreover,
the fraction in (19.52) reaches the value 1 if ωn/ωk → ∞. Obviously for small
finite n the fraction is smaller than 1.

• One calls

σ = ξ2

1 + ξ2
, ξ = ωn

ωk
(19.53)

the degree of radiation, which for ξ � 1 has the asymptotic representation
σ = ξ2, but σ ≈ 1 for ξ → ∞. Its logarithm is given by

ln σ = 2
[
ln ξ − ln

√
1 + ξ2

]
. (19.54)

It is proportional to the noise level measured in decibel.

Example 4
The reader has experienced that the horn (siren) of an ambulance or police car sounds
higher for a car approaching an observer at standstill and suddenly lower, once the
car has passed the observer. This frequency shift, called Doppler shift6 can be made
precise with the spherical wave treated in Example 2.

6For a brief biography of Christian Johann Doppler (1803–1853), see Fig. 19.4.
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Fig. 19.4 Christian Andreas Doppler (29. Nov. 1803–17. March 1853)

Christian Andreas Doppler was an Austrian mathematician and physicist, known

through his explanation of the frequency shift of a moving oscillating source when reaching

a receiver at rest (or moving with different velocity). He was the son of a stonemason in

Salzburg (Austria), but of weak health and, therefore, unfit for this choice of profession. He

studied mathematics and physics at the Polytechnic Institute in Vienna and philosophy in

Salzburg.

Subsequently, in 1829, he worked in Vienna as an assistant, and from 1835 was teacher of

mathematics and physics, eventually at the Polytechnic Institute in Prague (a junior college).

1841 he was called as full professor for mathematics and physics at the Charles-University

in Prague, taught for some time mathematics, physics and mechanics at the Academy of

Mines and Forests (in today’s Slovakia) and then moved in 1849 to Vienna where he was

appointed by the Emperor Franz Joseph head of the first ever Institute of Experimental

Physics at the University of Vienna in 1850. Christian Doppler died at the age of 49 in

Venice from pulmonary disease.

Christian Doppler’s scientific work comprises of approximately 50 articles, but his most

notable article is ‘Über das farbige Licht der Doppelsterne und einiger anderer Gestirne

des Himmels’ (On the colored light of the binary stars and some other stars of the heav-

ens), which he read on 25. May 1842 in front of the Königlich Böhmischen Gesellschaft der

Wissenschaften in Prague, which was also published in the same year. There is a facsimile

edition with an English translation by Alec Eden [7].

The text is based on www.wikipedia.org

We idealize the siren on the moving car as a spherical radiator and assume that the
car moves relative to the observer with constant speed u0 in the positive x ′-direction.
The observer is immobile relative to the spatially fixed coordinate system (x, y, z);
the acoustic source moves together with the primed system, see Fig. 19.5.

www.wikipedia.org
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Fig. 19.5 Moving acoustic
point source. A car moves
with constant speed u0 in the
x ′-direction. The observer is
in the origin of the fixed
coordinate system (x, y, z)

carstationary
observer

In the moving system the solution of the acoustic wave equation for the siren as
a spherical radiator has the form

Φ(r ′, t) = C

r ′ exp
[
ι(ωt ′ − kr ′)

]
. (19.55)

For an immobile observer this equation only needs to be written in his coordinates.
With the aid of Fig. 19.5 one has

r ′ =
√

(x − u0t)2 + y2 + z2,

so that (19.55) takes the form

Φ(x, y, z, t) = C
exp
[
ι(ωt − k

√
(x − u0t)2 + y2 + z2)

]

√
(x − u0t)2 + y2 + z2

. (19.56)

This relation explains now, why an observer in the (x, y, z)-system experiences
different sounds depending upon his position relative to the moving car. If his position
is in the origin of the coordinate system (x, y, z), then (19.56) yields

Φ(0, 0, 0, t) = C

u0t
exp [ι(ω − u0k)t] . (19.57)

The observer experiences the sound of the siren with shifted frequency

ωobs = ω − u0k. (19.58)

For u0
<
>0 then ωobs

>
<ω, so that the sound is higher when the car is approaching the

observer, but lower when it is leaving his position. The quantity

	ω = u0k = u0ω

c
,

(ω

k
= c
)

(19.59)
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is called the Doppler frequency shift. If the frequency of the radiator signal and
the speed of sound are known, then the Doppler shift allows measurement of the
velocity u0. This property is exploited in many technical applications, not only in
the acoustic frequency range.

For an observer who is far distant from the x-axis the frequency does not change,
because with (x − u0t)2 � (y2 + z2), (19.56) takes the form

Φ(x, y, z, t) = C
exp
[
ι(ωt − k

√
y2 + z2)

]

√
y2 + z2

, (19.60)

which agrees with (19.40), if one identifies
√

y2 + z2 with the distance between
source and observer.

19.2.3 Eigen Oscillations Determined with Bernoulli’s
Method

Any wind-instrument can in first approximation be regarded as a one-dimensional
acoustic oscillator. The simplest case is an organ pipe, of which the equation of
oscillation is given by

∂2Φ

∂t2
= c2 ∂2Φ

∂x2
, 0 � x � l, (19.61)

which is to be solved subject to initial conditions

Φ(x, 0) = Φ0(x), Φ̇(x, 0) = Φ̇0(x), (19.62)

where Φ0(x) and Φ̇0(x) are prescribed functions. Let the pipe have length l. If Φ is
the velocity we have

Φ(0, t) = Φ(l, t) = 0. (19.63)

The solution of the initial boundary value problem (IBVP) (19.61)–(19.63) can
be constructed with the d’Alembert method. More convenient is the separation
technique

Φ(x, t) = f (x)g(t). (19.64)

Substitution of this expression in Eq. (19.61) leads to

g̈(t)

g(t)︸︷︷︸
fct(t)

= c2 f ′′(x)

f (x)
︸ ︷︷ ︸

fct(x)

= −ω2, (19.65)
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in which the point (prime) denotes differentiation with respect to time (spatial coor-
dinate). The expression on the left is only a function of time t , that in the middle only
a function of position x . Both can only be equal to one another, if they are equal to the
same constant, −ω2 say, which still must be determined. Equation (19.65) implies
the two ordinary differential equations

g̈(t) + ω2g(t) = 0, f ′′(x) + ω2

c2
f (x) = 0 (19.66)

with the solutions

g(t) = C1 sin ωt + C2 cos ωt,

f (x) = D1 sin
(ω

c
x
)

+ D2 cos
(ω

c
x
)

,
(19.67)

where C1, C2, D1, D2 are constants of integration. The boundary conditions (19.63)
are equivalent to the statements f (0) = f (l) = 0, so that according to (19.67)2 we
obtain

D2 = 0,
ωnl

c
= nπ, (n = 1, 2, 3, . . .). (19.68)

To every n there belongs an ω = ωn so that also Φ = Φn(x, t) or

Φn(x, t) = (An sin ωnt + Bn cos ωnt) sin
(ωn x

c

)
(n = 1, 2, 3, . . .), (19.69)

in which An = C1 D1 and Bn = C2 D1 has been chosen. ωn is called nth eigenvalue
or nth eigenfrequency, and Φn is the associated eigenfunction or eigenoscillation
form; there is a countable infinite set for these.

The most general solution is obtained by superposition of all eigensolutions,

Φ(x, t) =
∞∑

n=1

{An sin(ωnt) + Bn cos(ωnt)} sin
(nπx

l

)
(19.70)

with constants An , Bn , n = 1, 2, . . . ,∞. For the determination of these free con-
stants, An and Bn , the solution (19.70) is substituted into the initial conditions (19.62)
from which

∞∑

n=1

Bn sin
(nπx

l

)
= Φ0(x),

∞∑

n=1

ωn An sin
(nπx

l

)
= Φ̇0(x) (19.71)

is obtained. The expressions on the left-hand side are the Fourier sine series of the
prescribed functions on the right-hand side. One can find an expression for Bn by
multiplication of (19.71)1 with sin(mπx/ l) and integration of the resulting expres-
sion from x = −l to x = l:
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l∫

−l

∞∑

n=1

Bn sin
(nπx

l

)
sin
(mπx

l

)
dx =

l∫

−l

Φ0(x) sin
(mπx

l

)
dx,

from which one easily deduces

Bm = 1

l

l∫

−l

Φ0(x) sin
(mπx

l

)
dx . (19.72)

To obtain this result, the orthogonality relations of the trigonometric functions

l∫

−l

sin
(nπx

l

)
sin
(mπx

l

)
dx =

{
l, m = n,

0, m �= n
(19.73)

were used. Analogously, if one multiplies (19.71)2 with sin(mπx/ l) and integrates
the emerging expression from x = −l to x = l, Am can be evaluated:

Am = 1

ωml

l∫

−l

Φ̇0(x) sin
(mπx

l

)
dx, (19.74)

where again the orthogonality relation (19.73) was employed.
An organ pipe that is stimulated by Φ0(x) and Φ̇0(x) and is closed at its upper end,

i.e., at x = l, will respond, in general, with the entire spectrum of the eigenoscil-
lations; ω1 is the frequency of the fundamental tone and ω2,ω3, . . . are those of
the harmonic overtones. The sound of the organ pipe is formed by superposition of
the fundamental tone with the overtones; depending upon how the stimulation takes
place (this corresponds to the prescription of Φ0(x) and Φ̇0(x)), some overtones
stand out more than others and thus determine the timbre of the sound. With wind
instruments without valves (e.g. alphorn or French horn) certain overtones may, with
adequate blowing, stand out loudly, whilst others may only softly be stimulated. This
way one excites natural tones of instruments and can play this way also melodies,
being composed only of such natural tones. In instruments with valves the length l
of the resonating ‘pipe’ is altered by changing this length which, correspondingly
also changes their eigenfrequencies. With such instruments one is generally able to
play the full scale of notes in a certain frequency range.

In the above example we considered a pipe that is closed at both ends and solved
the acoustic equation subjected to the boundary conditions (19.63). For a (standing)
pipe, which is closed below and open above, the boundary conditions are

Φ(0, t) = 0,
∂Φ

∂x
(�, t) = 0. (19.75)
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The general separation solution (19.64) leads in this case equally to the solution of
the form (19.67), however, the boundary conditions (19.75) now request f (0) = 0
and f ′(l) = 0, which leads to

D2 = 0,
ωnl

c
= 2n + 1

2
π, (n = 0, 1, 2, . . .). (19.76)

The eigenfrequencies are in this case, therefore, given by

ωn = 2n + 1

2

πc

l
, (n = 0, 1, 2, . . .). (19.77)

The corresponding eigenfunctions appear again as (19.70), whereby ωn is now given
by (19.77). The forms of the eigenoscillations of the two pipes are displayed in
Fig. 19.6. The wave lengths of the pipes with open upper end are longer than those
with closed upper end, and the eigenfrequencies, i.e., the level of the tones, are lower,
the ground tone by a full octave. In addition, the frequency relations of neighboring

(a) (b)

Fig. 19.6 Eigenfunctions of linear pipes. a For pipes which are closed at the bottom and top. b For
pipes which are closed at the bottom and open at the top (in the figure two pipe lengths are shown).
Both panels show the forms of the oscillations for the ground tone and the next four overtones and
the wave lengths of the tones of the pipe length, l
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overtones are different, which is one reason why open and closed pipes have different
timbres and different sounds.

19.3 Steady, Isentropic Stream Filament Theory

Stream filament flows in gas dynamics are flows through thin pipes or tubes, for
which the tube cross-section changes only slowly along the tube axis. The velocity,
density and pressure fields are treated as uniform over the cross sections. At sufficient
discharge through the conduits the velocity field is with sufficient approximation
axially directed, and density and pressure as well as this axial velocity are merely
functions of time and the coordinate along the conduit axis.

Consider stationary flow through a tube with adiabatic walls; see Fig. 19.7. This
means that the pipe wall is thermally insulated so that heat flow through the wall
is completely prevented. The First Law of Thermodynamics, formulated for a pipe
section between the cross sections 1 and 2 is then given by Eq. (17.108) or

Q(t) + L(t) = ṁ2

(
h2 + v2

2

2
+ gz2

)
− ṁ1

(
h1 + v2

1

2
+ gz1

)
, (19.78)

in which Q(t)(= 0) is the heat flow supplied to the wall from the outside, which
vanishes for an adiabatic pipe wall. Moreover, L(t) is the technical power added to
the conduit between cross sections 1 and 2; ṁ1 and ṁ2 are the mass flow densities
trough the cross sections 1 and 2; h1, h2 are the enthalpy densities; v1, v2 the velocities
parallel to the axis and gz1, gz2 the gravity potentials, all in cross sections 1 and 2. For

Fig. 19.7 Thin stream
filament section. Between the
cross sections 1 and 2 the
conduit wall is assumed to be
adiabatic and it is supposed
that within the tube no
technical working is
performed

http://dx.doi.org/10.1007/978-3-319-33636-7_17
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Q = L = 0 and with ṁ1 = ṁ2 Eq. (19.78) is considerably simplified. If, in addition
the flowing gas is assumed to be subjected to adiabatic, i.e., isentropic conditions,
then we have, owing to T ds = dh − d p/ρ = 0,

dh = d p

ρ
−→ h =

∫
d p

ρ
. (19.79)

With all these prerequisites, the energy equation (19.78) takes the form

v2

2
+
∫

d p

ρ
+ gz = constant. (19.80)

This equation has been derived before for density preserving and/or barotropic fluids
and was then called Bernoulli equation.

For a caloric ideal gas under isentropic conditions Eq. (18.147) applies, (p/p0) =
(ρ/ρ0)

κ,κ = cp/cv . Therefore, we have

p∫

p0

d p

ρ
= κ

p0

ρκ
0

ρ∫

ρ0

ρ̃(κ−2)dρ̃ = κ

κ − 1

p0

ρ0

{(
ρ

ρ0

)κ−1

− 1

}

. (19.81)

For a caloric ideal gas the Bernoulli equation can, thus, be written in the following
equivalent forms:

v2

2
− v2

0

2
= κ

κ − 1

p0

ρ0

{

1 −
(

ρ

ρ0

)κ−1
}

= κ

κ − 1

p0

ρ0

{

1 −
(

p

p0

)(κ−1)/κ
}

= κ

κ − 1
RT0

{
1 − T

T0

}
, (19.82)

in which for (19.82)2,3 relations (18.146) have been employed and the contribution
of the gravity force has been omitted, because of the small gas density that makes
this contribution minute. Let us explain the theory with a simple example.

Example 5
Let us consider the flow of a gas out of a very large container in somewhat greater
detail. We suppose that the container has adiabatic walls; that the gas contained
in it has temperature T0, density ρ0, pressure p0 and vanishing velocity v0 = 0.
To this vessel an exit pipe is connected, out of which the gas can flow in a con-
trolled manner (by a valve). The state of the gas at the exit cross section of the
pipe is given by T, p, ρ and v. Provided the container is sufficiently large, the

http://dx.doi.org/10.1007/978-3-319-33636-7_18
http://dx.doi.org/10.1007/978-3-319-33636-7_18
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conditions of the gas during the out-flow process do hardly change; equally, except
for a short initiating phase, the out-flow process is time independent, so that stationary
conditions can be assumed. Equations (19.82), therefore, imply with v0 = 0

v =
√

2κ

κ − 1
R(T0 − T ) =

√√√√ 2κ

κ − 1
R

(

T0 − T0 ·
(

p

p0

)(κ−1)/κ
)

, (19.83)

or, if one uses the relation

κ

κ − 1
= cp

cp − cv

= cp

R
,

which holds true for ideal gases,

v = √2cp(T0 − T ) =
√√√
√2cp

(

T0 − T0

(
p

p0

)R/cp
)

. (19.84)

This formula shows that, because the absolute temperature must be positive, the
out-flow velocity is bounded from above by

vmax = √2cpT0 =
√

2κ

κ − 1
RT0 . (19.85)

It belongs to the temperature T = 0 and pressure p = 0 and corresponds to out-flow
conditions into vacuum.

Equations (19.83) and (19.84) can be brought into forms, which are more conve-
nient for computations. To this end one preferably starts from (19.82), which with
v0 = 0 takes the form

κ

κ − 1

p

ρ
+ v2

2
= κ

κ − 1

p0

ρ0
= v2

max

2
. (19.86)

(Here one has made use of the ideal gas equation p0/ρ0 = RT0.) If now also use
is made of the isentropic relations (18.146), the chain of Eq. (19.86) leads to the
relations

T

T0
= 1 − v2

v2
max

,

ρ

ρ0
=
(

1 − v2

v2
max

)1/(κ−1)

,

p

p0
=
(

1 − v2

v2
max

)κ/(κ−1)

,

(19.87)

http://dx.doi.org/10.1007/978-3-319-33636-7_18
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of which the functional dependences are displayed in Fig. 19.8. In the neighborhood
of (v/vmax) = 0 the normed temperature, density and pressure are in this approx-
imation given by concave parabolas of rank 2. This approximation reads for the
pressure

p

p0
∼ 1 − κ

κ − 1

v2

v2
max

,
v

vmax
< 0.2. (19.88)

However, it only constitutes a satisfactory approximation for v/vmax < 0.2. For
v/vmax = 1, density ratio ρ/ρ0 and pressure ratio p/p0 have vanishing slopes and
enjoy convex curvature. An approximating formula can also be given here, which,
however, cannot be derived by Taylor series expansion. For the pressure, given in
(19.87), one can write

Eq. (19.88)

(a)

(b)

Fig. 19.8 Flow of a gas out of a vessel. The functions for pressure, density, temperature and mass
flow, normed by the conditions within the vessel are plotted against the dimensionless velocity
v/vmax, where vmax = √

2κ(κ − 1) is the maximum velocity appropriate for vacuum conditions.
The dashed curve represents the approximate dimensionless pressure function (19.88), of which
the validity is restricted to v/vmax < 0.2. Pressure, density and mass flow have in v/vmax = 1 a
horizontal tangent and convex curvature
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p

p0
=
(

1 − v

vmax

)κ/(κ−1) (
1 + v

vmax

)κ/(κ−1)

=
(

1 − v

vmax

)κ/(κ−1) {
2 −

(
1 − v

vmax

)}κ/(κ−1)

∼= 2

(
1 − v

vmax

)κ/(κ−1) {
1 − κ

2(κ − 1)

(
1 − v

vmax

)}
.

The results, derived above can also differently be given, if the velocities are scaled
with the speed of sound. To this end, we start with Definition 19.2, or Eq. (19.7) of
the speed of sound, which for isentropic changes of states of a caloric ideal gas is
given by

c2 = d p

dρ
= d

dρ

(
p0

(
ρ

ρ0

)κ)
= κ

p0

ρ0

(
p

p0

)(κ−1)/κ

= κRT, (19.89)

(see (18.145)–(18.147)). Equation (19.82)2 can then be written as

v2

2
= c2

0 − c2

κ − 1
→ v2

max

2
= c2

0

κ − 1
, (19.90)

where v0 = 0 has also been used; alternatively, or when (19.89) is used

v2

2
= κ

κ − 1
R(T0 − T ) = c2

κ − 1

(
T0

T
− 1

)
. (19.91)

If this equation is solved for T/T0, one obtains

T

T0
=
{

1 + M2 κ − 1

2

}−1

,

ρ

ρ0
=
{

1 + M2 κ − 1

2

}−1/(κ−1)

,

p

p0
=
{

1 + M2 κ − 1

2

}−κ/(κ−1)

,

(19.92)

where for (19.82)2,3 Eq. (18.146) has also been employed. M is defined as

M = v

c
(19.93)

and is called Mach number.7 One differentiates between subsonic flows (M < 1),
sonic flows (M = 1) and supersonic flows (M > 1). Trans-sonic conditions
describe flows in the transition regime for which M ∈ [M − ε, M + ε], where

7For a short biography of Ernst Waldfried Josef Wenzel Mach, see Fig. 19.9.

http://dx.doi.org/10.1007/978-3-319-33636-7_18
http://dx.doi.org/10.1007/978-3-319-33636-7_18
http://dx.doi.org/10.1007/978-3-319-33636-7_18
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0 < ε < 0.1 and hypersonic conditions for which M ≥ 3. If one plots T/T0, ρ/ρ0

and p/p0 against the Mach number, one obtains curves as shown in Fig. 19.10,
where the solid curves are for air (κ = 1.4), whereas the dashed-dotted curves are
for κ = 1.2.

It is evident that the value of the adiabatic exponent exerts its influence particularly
in the supersonic regime. For small Mach numbers the formulae (19.92) can be
approximated by Taylor series expansions about M = 0. In this way one obtains for
the density

ρ

ρ0
∼ 1 − 1

2 M2 + . . . , M2 � 1. (19.94)

With this formula it can be estimated, in which way in a gas conditions of density
preserving are approximately fulfilled. Finally, using (19.84)1 and (19.89)1, v/vmax

can be written as a function of M . One obtains

v

vmax
= κ − 1

2
M

{
1 + κ − 1

2
M2

}−1/2

(19.95)

and can with this formula connect the graphs of Figs. 19.8 and 19.10. This is done
in Fig. 19.8 by a second, nonlinear abscissa for the Mach number.

We close this paragraph with two remarks:

• Special out-flow conditions prevail, if the velocity v reaches exactly the (local)
speed of sound, hence v∗ = c∗. This speed is called critical out-flow speed; it is
denoted here with an asterisk and can be computed with the aid of (19.90). Indeed,
with

v2∗
2

= c2
0 − v2∗
κ − 1

(19.96)

we obtain by solving for v∗

v2
∗ = c2

∗ = 2c2
0

κ + 1
= 2

p0

ρ0

κ

κ + 1
= 2RT0

κ

κ + 1
. (19.97)

• An important combination of the variables displayed in Figs. 19.8 and 19.10 is the
mass flow Θ = ρv; it is scaled with (19.87) and is given by

Θ

ρ0vmax
= v

vmax

(
1 − v2

v2
max

)1/(κ−1)

. (19.98)

Its maximum is at v/vmax = √
(κ − 1)(κ + 1) and takes the value
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Fig. 19.9 Ernst Waldfried Josef Wenzel Mach (18. Feb. 1838–19. Feb. 1916). (Left)
Ernst Mach, 1900; (middle) Ernst Mach’s photography of a bow shock wave around
a supersonic bullet, in 1888; (right) Bust of Mach in the Rathauspark (City Hall Park) in
Vienna, Austria

ErnstWaldfried JosefWenzelMach was an Austrian physicist and philosopher, noted

for his contributions to physics such as the Mach number and the study of shock waves.

As a philosopher of science, he was of major influence on logical positivism, American

pragmatism and through his criticism of Newton, a forerunner of Einstein’s relativity.

Ernst Mach received his education up to the age of 14 at home from his parents. He then

entered a Gymnasium (high school), where he stayed for three years. In 1855 he became a

student at the University of Vienna where he studied physics and for one semester medical

physiology, receiving his doctorate in physics in 1860 and his Habilitation in 1861. His

early work focused on the Doppler effect in optics and acoustics. In 1864 he took a job as

Professor of Mathematics at the University of Graz, and in 1866 was appointed Professor

of Physics there. During that period, Mach continued his work in psycho-physics and in

sensory perception. In 1867, he took the chair of Experimental Physics at Charles University,

Prague, where he stayed for 28 years before returning to Vienna.

Mach’s main contribution to physics involved his description and photographs of spark

shock-waves and then ballistic shock-waves. He described how and when a bullet or shell

created a compression wave. Using Schlieren photography, he and his son Ludwig were

able to photograph the shadows of invisible shock waves. Mach also made many contribu-

tions to psychology and physiology among others especially his discovery of a non-acoustic

function of the inner ear which helps control human balance.

In the field of aerodynamics Mach conducted important explorations in the field of super-

sonic flows around bodies. His paper (1877) correctly describes the sound effects observed

during the supersonic motion of a projectile. He deduced and experimentally confirmed the

existence of a shock wave which has the form of a cone with the projectile at the apex

(see above figure panel in the middle). The ratio of the speed of projectile to the speed of

sound vp/vs is now called Mach number. He also contributed to cosmology the hypothesis

known as Mach’s principle. In natural philosophy Mach shared his views with Duhem and

Ostwald: They did not believe in the existence of atoms.

The text is based on www.wikipedia.org

www.wikipedia.org
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Fig. 19.10 Flow of a gas out
of a vessel. Temperature,
density and pressure (scaled
for conditions in the vessel)
plotted against the Mach
number for two different
values of adiabatic
exponents κ = 1.4 (solid, for
air) and κ = 1.2
(dashed-dotted)

(
Θ

ρ0vmax

)

max

=
√

κ − 1

κ + 1

(
2

κ + 1

)1/(κ−1)

= Θ∗
ρ0vmax

. (19.99)

If one substitutes this expression in (19.98), one obtains

Θ

Θ∗
=
√

κ + 1

κ − 1

v

vmax

{
κ + 1

2

(
1 − v2

v2
max

)}1/(κ−1)

. (19.100)

This function is also shown in Fig. 19.8. For κ = 1.4 its maximum lies at v/vmax ≈
0.408.

In the above analysis computations were based on single stream filaments; how-
ever, we did not touch the fact that this flow filament was embedded in the flow of
a fluid through a narrow pipe, a tube or a nozzle. We now wish to study this and
consider a gas which flows through a conduit with variable cross section A. Let the
flow be steady state, so that mass balance may be stated as

Q = ρvA = constant, (19.101)
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by differentiation this yields

dρ

ρ
+ dv

v
+ dA

A
= 0. (19.102)

For isotropic conditions theBernoulli equation (19.80) must be added to this which,
after omission of the gravity potential, is given by

v2

2
+

p∫

p0

d p̄

ρ( p̄)
= constant, (along streamlines). (19.103)

If this equation is differentiated,

vdv + d p

ρ
= vdv + c2 dρ

ρ
= 0 (19.104)

is obtained. Combining Eqs. (19.102) and (19.104) leads to

dA

A
= (M2 − 1)

dv

v
(19.105)

with Mach number M = v/c. This equation allows the following interpretation:

• For subsonic flow, i.e., for M < 1, the assumption dA<
>0 implies the inequality

dv>
<0. In other words, in a converging pipe segment the velocity increases, in a

diverging segment it decreases.
• For supersonic flow, i.e., for M > 1, the assumption dA<

>0 implies dv<
>0. Here, the

response is reverse. In a converging pipe segment the velocity decreases, whereas
it grows within a diverging pipe segment.

This property can be used in an adequately designed nozzle to continuously accel-
erate the flow. To this end, consider the Laval nozzle8; this nozzle consists of a
converging section, into which gas is flowing, and a diverging section in the out-flow
regime; see Fig. 19.11. If one manages that the flow is subsonic in the converging
section, exactly sonic at the position of the smallest cross section and supersonic in
the outflow section, then the gas will be accelerated throughout the entire nozzle.
Laval nozzles are, therefore, elements, with the aid of which gas can be accelerated
to supersonic flow.

Let us now assume that the gas flows out of a vessel through a convergent nozzle.
Moreover, let the pressure in the vessel be p0, the outside pressure pa < p0 and
assume that p1 > p∗, where p∗ is the critical pressure at which the fluid speed reaches

8The concept of theLaval nozzle was developed in 1878 by the German engineer and manufacturer
Ernst Körting (1842–1921) and independently in 1883 by the Swedish engineer Carl Gustav
Patrik de Laval (1845–1913) for use in steam turbines and rocket engine nozzles. It is named
after Laval only.
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d
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d

d

d

d
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d

d

Fig. 19.11 Flow through a nozzle. A convergent-divergent conduit segment is called a Laval nozzle

(a)

(b)

Fig. 19.12 Out-flow of a gas from a vessel through a convergent nozzle. a Vessel with nozzle,
interior pressure p0, external pressure pa and exit cross sectional area Aa . b Pressure p and
specific mass flow (per stream filament cross section) as functions of the speed v. The indices 1, ∗, 3
characterize three different conditions in the exit cross section

exactly the sonic speed, see (19.97). Furthermore, let the out-flow velocity be v1, the
density in the exit cross section Aaρa , and the mass flowΘ1 Aa .Figure 19.12, in which
the pressure curve and the curve of the specific mass flow, are displayed once more,
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illustrates, which values Θ1 and v1 assume, if p1 is prescribed as external pressure.
The largest mass flow is reached, if the external pressure is the same as the critical
pressure, pa = p∗; then Θ = Θ∗ is a maximum. If the external pressure is below the
critical pressure, pa < p∗ (for instance conditions p3,Θ3, v3 in Fig. 19.12), the flow
of the gas through the converging nozzle cannot take place. The reason is as follows:
Because in this case the velocity would have to rise from the value zero to the value
v3 in the exit cross section, and the pressure would have to fall from the value p0 to
the value p3, the mass flow density Θ would assume its largest value Θ∗ somewhere
in between the vessel and the exit cross section; the mass flow Q∗ Ā in this cross
section Ā would then be larger than the mass flow in the exit cross section Θ3 Aa ,
a fact which would violate in a convergent nozzle the mass balance under steady
flow. However, such a flow state is not possible in a convergent nozzle. Instead, the
pressure will continuously drop from the kettle to the exit cross section and assume
there the critical pressure p∗, independently of the pressure p1 < p∗. This way, the
mass balance can be fulfilled. Because, however, the external pressure is smaller than
p∗, the gas will expand in the jet leaving the nozzle. This post-expansion takes place,
due to reasons which cannot be explained here; what happens is that the jet boundary
deforms in waves as indicated in Fig. 19.13. This can often be observed in rockets.

The explanations make clear that the critical conditions are technically significant.
For this reason we shall now describe these conditions. We start with formula (19.82)2

with v0 = 0, which is here repeated,

v2 = 2κ

κ − 1

p0

ρ0

{

1 −
(

p

p0

)(κ−1)/κ
}

. (19.106)

If this relation is written for critical conditions (v = v∗ = c∗, p = p∗) and

c2
∗ = κRT ∗ = κ

p∗
ρ∗

(19.107)

is used, one easily deduces

(a) (b)

Fig. 19.13 Characteristic flows of a jet from a nozzle. a Smooth flat boundary of a jet leaving the
nozzle, if the external pressure is larger than the critical pressure, pa > p∗. b Wavy jet boundary,
if the external pressure is smaller than the critical pressure, pa < p∗



19.3 Steady, Isentropic Stream Filament Theory 517

κ
p∗
ρ∗

= 2κ

κ − 1

p0

ρ0

{

1 −
(

p∗
p0

)(κ−1)/κ
}

, (19.108)

or, when (18.146)3 is used,

1 −
(

p∗
p0

)(κ−1)/κ

= κ − 1

2

p∗
ρ∗

ρ0

p0
= κ − 1

2

p∗
p0

(
ρ0

ρ∗

)

= κ − 1

2

(
p∗
p0

)(
p0

p∗

)1/κ

= κ − 1

2

(
p∗
p0

)(κ−1)/κ

. (19.109)

This equation allows solution for p∗/p0 and then, with the help of (18.146), deter-
mination of ρ∗/ρ0 and T/T0, respectively, viz.,

p∗
p0

=
(

2

κ + 1

)κ/(κ−1)

=
{

0.5283,

0.5764,

ρ∗
ρ0

=
(

2

κ + 1

)1/(κ−1)

=
{

0.6339,

0.7071,

T∗
T0

= 2

κ + 1
=
{

0.833,

0.909,

(19.110)

in which the upper (lower) figures hold for κ = 1.4 (κ = 1.2). The quantities
on the left depend upon the conditions in the kettle; those on the right-hand side
depend, however, only on the material, i.e., the gas under consideration. The formulae
allow determination of the critical density, temperature and critical pressure, if the
corresponding quantities are known in the kettle. If one introduces now the critical
Mach number

M∗ = v/c∗ = v
/√

2
p0

ρ0

κ

κ + 1
, (19.111)

one obtains with (19.82)1

v2

2
= M2∗c2∗

2
= M2

∗
p0

ρ0

κ

κ + 1
= κ

κ − 1

p0

ρ0

{

1 −
(

ρ

ρ0

)κ−1
}

,

from which one obtains

ρ

ρ0
=
{

1 − M2
∗
κ − 1

κ + 1

}1/(κ−1)

. (19.112)

Analogously, using (18.146) also p/p0 and T/T0 can be computed as functions of
the critical Mach number. The result is

http://dx.doi.org/10.1007/978-3-319-33636-7_18
http://dx.doi.org/10.1007/978-3-319-33636-7_18
http://dx.doi.org/10.1007/978-3-319-33636-7_18
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ρ

ρ0
=
{

1 − M2∗
κ − 1

κ + 1

}1/(κ−1)

,

p

p0
=
{

1 − M2∗
κ − 1

κ + 1

}κ/(κ−1)

,

T

T0
=
{

1 − M2∗
κ − 1

κ + 1

}
.

(19.113)

These formulae give ρ, p, T as functions of κ, M∗ and the quantities ρ0, p0 and T0

in the kettle.
Combining (19.110) and (19.113) allows elimination of the kettle quantities

ρ0, p0, T0. The simple computations yield

ρ

ρ∗
=
{

1 − κ − 1

2

(
M2∗ − 1

)
}1/(κ−1)

,

p

p∗
=
{

1 − κ − 1

2

(
M2∗ − 1

)}κ/(κ−1)

,

T

T∗
=
{

1 − κ − 1

2

(
M2∗ − 1

)
}

.

(19.114)

Finally, the steady state continuity equation ρvA = ρ∗v∗ A∗ yields

ρvA

ρc∗ A∗
= vA

c∗ A∗
= M∗

A

A∗
= ρ∗

ρ
. (19.115)

From this equation and (19.114)1 one may deduce

A∗
A

= M∗
{

1 − κ − 1

2
(M2

∗ − 1)

}1/(κ−1)

, (19.116)

which can be interpreted as the integral of the differential equation (19.105).
We have seen above that in a nozzle, which contracts in the direction of the flow,

the velocity of the gas cannot go beyond the critical velocity (compare Fig. 19.8 and
formula (19.99)). It was also demonstrated that an increase of the speed of the gas
beyond c∗ is nevertheless principally possible in a nozzle, if it contracts first in the
direction of the flow and then extends somewhat, see Fig. 19.14. In Fig. 19.14a it is
assumed that the areal ratio, A0/A∗ of such a converging-diverging nozzle is equal to
the ratio, Θ∗/Θ3, of the specific mass flow belonging to the pressure p3 in Fig. 19.8,
so that the continuity equation A∗Θ∗ = AaΘ3 holds. If the external pressure p3 is
prescribed, the flow velocity in the converging part of the nozzle grows monotonically
up to the value v∗. This monotonic growth is continued in the connecting divergent
part of the nozzle up to the final value v3. The pressure thereby decreases steadily in
the direction of flow and the velocity of the gas grows continuously.

Figure 19.14b contains, apart from this kind of pressure curve, also further pressure
curves, which are then established, when the external pressure p does not agree with
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(a) (b)

Fig. 19.14 Flow through a Laval nozzle. a The external pressure pa and the exit cross section of
the nozzle Aa are exactly such that a continuous decreasing pressure curve is built in the direction
of the flow and also the corresponding velocity distribution is continuous. b Various continuous and
discontinuous pressure curves can be generated in a convergent-divergent nozzle, if the external
pressure pa is varied. Compare also main text

the reference pressure p3 which justifies the areal ratio Aa/A∗ of the nozzle. The
following scenarios must be differentiated:

• If the external pressure pa is below p3, then the pressure distribution is in the entire
nozzle that of Fig. 19.14a. The gas expands in this case once it has left the nozzle
as a free jet.

• If the external pressure is somewhat above p3, the gas just outside the nozzle will
be compressed. Within the nozzle the velocity and pressure distributions will be
as shown in Fig. 19.14a. This is only changed, when pa reaches a certain value ps ,
which we still must determine.

• If ps < p < pv , then compression shocks arise in the nozzle. The pressure
only follows curve ‘a’ in Fig. 19.14b until the compression shock arises, whose
position in the diagram must also be determined. When shock conditions are
reached, the pressure will instantly rise and the pressure will follow curve ‘b’. In
the compression shock the gas will be abruptly decelerated from supersonic to
subsonic conditions.

• When pa → pv see Fig. 19.14b, the shock approaches the position of the smallest
cross section and the strength of the shock attenuates. For pa = pv the pressure
jump across the shock vanishes. In this case the flow in the converging part of
the nozzle is then expansive until the pressure p∗ is reached and the velocity is
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accelerated until v∗ is reached. In the diverging part of the nozzle the flow is
decelerated and the pressure is increased, see Fig. 19.14b, curve ‘c’.

• When pv < p < p0, then the gas in the most narrow cross section neither reaches
the critical pressure p∗ nor the critical velocity, see Fig. 19.14b, curve ‘d’. The
velocity then stays below the critical velocity in the entire nozzle. The flow within
the nozzle is then qualitatively behaving like a density preserving fluid. This near-
incompressible behavior is the better, the smaller |pa − po| is.

Recall that for pa < pv the mass flow equals Q∗ A∗, independent of the external
pressure. One says that the nozzle is ‘blocked’ in this case, because the mass flow
through the nozzle cannot be influenced by changes of the external pressure; it then
decreases until it vanishes when pa = p0, because the gas is then everywhere at rest.

19.4 Theory of Shocks

19.4.1 General Concepts

As indicated by the discussion in the previous section compression shocks or com-
paction shocks may arise in the divergent regime of a Laval nozzle; this fact was
mentioned but neither derived nor justified. In this section we shall only deal with
stationary adiabatic shocks. However, because the theory of shocks is not consider-
ably more complicated for more general cases, we shall in the ensuing introductory
paragraphs derive those facts of shock theory which are common to all continuum
theories and will subsequently specialize these.

In the previous chapters the basic prerequisites were that the thermodynamic fields
ρ, T and v, etc. are differentiable throughout the entire body. This assumption shall
now be weakened by assuming that the thermodynamic fields in the body are still
differentiable, except that these fields may on special surfaces within the body be
discontinuous. Cracks are discontinuities of the displacement field. They cannot arise
in liquids or gases. A thermodynamic quantity could, however, grow to infinity as a
certain surface is approached, or it could assume different but finite values, if this sur-
face is approached from one or the other side of it. In this case the considered physical
quantity experiences a finite jump when the surface is crossed. This is for instance
the case if the density changes abruptly. The interfacial surface between oil and
water is of this nature. The strongest type of singularity is formed when a material
breaks under the applied load and may perform cracks. In this case the displace-
ment field is no longer unique after crack formation. Such discontinuities are called
dislocations. The next level are singular surfaces at which the thermodynamic quan-
tities experience jumps and no cracks are formed. Even weaker are those singularities,
for which the thermodynamic quantities themselves are continuous across the sin-
gular surface, but their derivatives normal to the surface suffer a jump. The strongest
singularities which we shall consider in this chapter are jumps of the thermodynamic
quantities themselves.
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Fig. 19.15 Explaining the
definition of a singular
surface S within a material
body V S partitions the
volume V into V + and V −
with boundaries ∂V + and
∂V −, respectively. V ± are
defined once the orientation
of the unit normal vector n
has been selected

Let V be a material body (here a gas or liquid), which is divided into two partial
volumina by an orientable surface.9 If the surface S is smooth, i.e., if it possesses in
each of its points a unique tangent plane, then by choice of the unit normal vector n
the positive part V + and the negative part, V − of V can be defined, see Fig. 19.15:
V + must lie on that side of S, into which the unit normal vector points. We agree on
the following definition:

Definition 19.3

• A singular surface is an orientable surface across which a thermodynamic field
or its temporal and/or spatial derivative suffer a finite jump, i.e., if the surface is
approached from one or the other side toward the same point, the values of the
thermodynamic field or their time and/or their spatial derivatives are not the same.

• If f (x, t) is a thermodynamic field, then f + and f − denote the function values
f (x+, t) and f (x−, t), respectively, where x± are two points in the immediate
neighborhood of the surface point x on the positive and negative side of the surface
point x ∈ S, respectively.

• The jump of f , i.e.,

� f � := f (x+, t) − f (x−, t) = f + − f −

is the difference of the values of f on the positive and negative sides of the surface
point x ∈ S.

A singular surface can be material or non-material. If it is material, it moves
with the normal velocity of the particles, which define it. If it is non-material, it

9We must restrict ourselves to orientable surfaces, because physically a body or body part has
always an outside and inside, which are always separated by an orientable surface. Examples of
non-orientable surfaces are theMöbius strip or theKleinbottle, seeFig. 19.16.AugustFerdinand
Möbius (17. Nov. 1790–26. Sept. 1868) was a German mathematician and theoretical astronomer
and Felix Klein (25. April 1849–22. June 1925) was a mathematician, who chiefly established the
distinguished mathematical school in Göttingen in the late 19th and early 20th century.
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Fig. 19.16 Examples of non-orientable surfaces. a A two-dimensional representation of the Klein
bottle immersed in three-dimensional space, against which a system for determining a normal vector
cannot be consistently defined. b A parametric plot of a Möbius strip, which is a surface with only
one side and only one boundary component. Whereas a Möbius strip is a surface with boundary,
a Klein bottle has no boundary. c© www.wikipedia.org

possesses its own normal velocity, i.e., in this case the particles can move across the
singular surface, as it is e.g. the case for a shock wave.

Let us list a few examples of singular surfaces (see Fig. 19.17):

• The surface of separation of two immiscible fluids is a material surface. The free
surface of a lake or an ocean is such a material surface, if the body is defined by
the system ‘atmosphere-ocean’. The density across the singular surface changes
discontinuously, if one crosses the surface from one side to the other.
This example ignores the possibility of evaporation and/or precipitation. If these
processes are accounted for, the lake surface is non-material, since water molecules
can be transported through the surface.

• Consider the singular surface between ice and water in a frozen lake. This interface
may be material or non-material; if the lake is in a freezing (thawing) phase, that
is, if the ice cover thickness is growing (thinning), since ice particles from one
side become water particles on the other side of the surface (or vice versa). The
singular surface, thus, does not always consist of the same particles.

• The sliding surface of two bodies, which slide on one another, is a material surface.
For a ski sliding over a snow cover the lower surface of the ski defines this singular

Fig. 19.17 Examples of
singular surfaces

www.wikipedia.org
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surface; however, the sliding surface is also defined by the snow cover; both of
these are material. If the sliding motion generates heat, such that contacting snow
particles melt, then the lower surface of the ski is still material and the ski also
moves orthogonally to this surface with normal velocity given by the melting rate
of the snow particles. On the other hand, the snow below the ski is at absolute
rest, but the interface on the snow side moves according to the melting rate of the
particles.10 This surface is non-material. Note also that the ski moves, whereas the
snow is always at rest in this example.

• The shock surface in a sonic boom is a non-material surface.

19.4.2 Jump Conditions

The balance laws of mass, momentum and energy for a material body have the global
form

d

dt

∫

V

Ψ dV =
∫

∂V

Φ · n dA +
∫

V

(σ + γ)dV, (19.117)

in which the individual quantities are defined in Table 19.1, which also lists con-
nections to other chapters, where more details are given. The balance law (19.117)
is now manipulated with the assumption that the fields Ψ , Φ, σ and γ in V ± are
continuously differentiable and across S experience a finite jump. To this end the
term on the left-hand side (19.117) needs to be transformed. This transformation
builds the content of the Reynolds transport theorem. The integral is divided into
two integrals over V + and V − and then, the classical transport theorem is applied to
(19.117) for V + and V − separately. This yields the following chain of expressions

d

dt

∫

V

Ψ dV = d

dt

∫

V +

Ψ dV + d

dt

∫

V −

Ψ dV

=
∫

V +

∂Ψ

∂t
dV +

∫

∂V +

Ψ (v · n) dA −
∫

S

Ψ + (u · n) dA

+
∫

V −

∂Ψ

∂t
dV +

∫

∂V −

Ψ (v · n) dA +
∫

S

Ψ − (u · n) dA

=
∫

V

∂Ψ

∂t
dV +

∫

∂V

Ψ (v · n) dA −
∫

S

�Ψ (u · n)� dA. (19.118)

10It is assumed here that snow particles turning into water particles fall immediately into the pore
space of the snow space, otherwise the singular surface is material. Alternatively, one may interpret
melting as formation of a water layer between the snow cover and the sole of the ski. In this
interpretation, two singular surfaces must be introduced, a material surface separating the ski sole
and upper water layer and a non-material surface separating the dry snow from the water in the thin
layer above it.
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Table 19.1 Physical quantity Ψ , its flux Φ, supply σ and production γ densities

Balance law Ψ Φ σ γ Remarks equation nr.

Mass ρ 0 0 0 (3.51)a

Momentum ρv t ρ f 0 (7.4), (7.6)

Energy ρ

(
v2

2
+ u

)
(v · t − q) ρ ( f · v + q) 0 (17.74), (17.75)

Entropy ρs −q/T ρq/T ρπs (18.3), (18.6)
aIn (3.51) V is a volume fixed in space. If a material volume is considered, the balance of mass
reads (d/dt)

∫
V ρdV = 0

If we now choose for V an infinitely thin cylinder Vε, which embraces the singular
surface—a so-called pillbox enclosing the singular surface with lid on the positive
and bottom on the negative side, see Fig. 19.18, the following limiting statements
apply

lim
ε→0

∫

Vε

(σ + γ)dV → 0, lim
ε→0

∫

Vε

∂Ψ

∂t
dV → 0,

lim
ε→0

∫

∂Vε

Φ · n dA →
∫

S

�Φ · n� dA,

lim
ε→0

∫

∂Vε

Ψ (v · n) dA →
∫

S

�Ψ (v · n)� dA,

(19.119)

which all hold, because the fields σ, γ, Ψ, ∂Ψ/∂t only experience finite jumps.11

If one uses the results (19.119), (19.118) and (19.117), the balance law (19.117)
reduces to

Fig. 19.18 Material
cylindrical volume Vε with
boundary ∂Vε. The cylinder
cuts the singular surface
such that ‘lid’ and ‘bottom’
lie on opposite sides of S. If
its height ε → 0 then
(19.120) is obtained

singular surface

11Actually, slightly more general dependences are allowed, see e.g. K. Hutter and K. Jöhnk [8].

http://dx.doi.org/10.1007/978-3-319-33636-7_17
http://dx.doi.org/10.1007/978-3-319-33636-7_17
http://dx.doi.org/10.1007/978-3-319-33636-7_18
http://dx.doi.org/10.1007/978-3-319-33636-7_18
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∫

S

{
�Ψ (v − u) · n� − �Φ · n�

}
dA = 0,

an expression, which must be valid for cylinders with arbitrarily large generating
surfaces S, from which there follows

− �Φ · n� + �Ψ (v − u) · n� = 0 (19.120)

as local jump condition. If one substitutes in (19.120) the expressions listed in
Table 19.1, the following jump conditions for mass, momentum, energy and entropy
are obtained:

Mass: �ρ(v − u) · n� = 0,

Momentum: �ρv((v − u) · n)� − �tn� = 0,

Energy:

�

ρ(
v2

2
+ u)(v − u) · n

�

− �(v · t − q)n� = 0,

Entropy: �ρs(v − u) · n� +
�q · n

T

�
� 0.

(19.121)

It is seen that the jump conditions involve only the normal component of the velocity
of the surface S. (The tangential contribution is irrelevant). The quantity

Vs = (u − v) · n (19.122)

is called the propagation speed. This is the speed relative to the speed of a particle
perpendicular to the surface. Equation (19.122) implies several special cases, which
we collect in the following definition.

Definition 19.4

• A singular surface is material, if its normal velocity agrees with the normal veloc-
ities of the particles on either side of the surface,

(v − u) · n = 0. (19.123)

A sliding surface, thus, is material if the normal speeds of the particles are the
same on both sides of the surface.

• A singular surface, across which the velocity is discontinuous, �v� �= 0, is called
a singular surface of first order. If the normal component of the velocity is dis-
continuous across the surface, the surface is called a shock. The moving singular
surface is called in this case a shock wave.

• If the tangential component of the material velocity across the surface is discon-
tinuous but the normal component is continuous, i.e., if

�v · n� = 0, �v × n� �= 0,
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then the singular surface is called a vortex sheet.

With these definitions and the jump conditions (19.121) simple inferences can
now be drawn:

On a material singular surface the jump conditions (19.121) reduce to

�tn� = 0, �(v t − q) · n� = 0,
�q · n

T

�
� 0. (19.124)

These are the jump conditions of momentum, energy and entropy; the jump condition
of mass is trivial; it states that �ρ� may have any value. Equation (19.124)1 states
that the stress vector (traction) across a singular surface is continuous; Eq. (19.124)2

equates the jump of the conductive heat flow to the power of working of the sliding
tractions. This can particularly clearly be recognized if one accounts for the fact that,
owing to �tn� = 0, we also have �v t · n� = �v · tn� = �v� · tn so that the jump
condition of energy, (19.124)2, can also be written in the form

�q · n� = �v� · tn. (19.125)

Provided the temperature is continuous across the singular surface, relation (19.124)3

yields,
�v� · tn � 0, if �T � = 0. (19.126)

If the two materials on the two sides of the singular surface adhere to each other, the
jump of the velocity vanishes, �v� = 0, and no entropy is produced. Incidentally,
(19.126)1 states that the power of the sliding tractions is non-negative.

In an inviscid, simple fluid (gas or liquid) the stress tensor is reduced to a pressure
tensor, t = −p1. If, in addition also v · n is continuous (vortex sheet, sliding surface)
the jump conditions take the forms

Mass: �ρ� (v − u) · n = 0,

Momentum: �v� (ρ(v − u) · n) + �p� n = 0,

Energy:

�
v2

2
+ u

�

(ρ(v − u) · n) + �q · n� + �p� v · n = 0,

Entropy: �s� ρ(v − u) · n +
�q · n

T

�
� 0.

(19.127)

On a sliding surface one has (v − u) · n = 0 but possibly �ρ� �= 0 (jump condition
of mass). Thus, (19.127) imply

�p� = 0, �q · n� = 0, �T � = 0.

For an inviscid fluid the pressure, the normal component of the conductive heat and
the temperature are continuous across such a surface. If across such a singular surface
a mass flow exists, even though �v · n� = 0, then the singular surface is a vortex
sheet and (19.127)1 necessarily requires that ρ is continuous, �ρ� = 0. With this,
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(19.127)2 implies, since �v� is parallel to the singular surface, that

�v� = 0, �p� = 0. (19.128)

In other words, the velocity per se and not only its normal component is continuous,
i.e., shocks are necessarily connected with a jump of the normal velocity component
�v · n� �= 0, or: singular surfaces of first order are necessarily shocks.

19.4.3 Stationary Shocks in Simple Fluids Under Adiabatic
Conditions

We now wish to consider an important gas dynamic special problem, namely a
simple fluid (for which t = −p1) under local adiabatic conditions (for which the
heat flux vector vanishes, q = 0) and for stationarity of the shock (u = 0). With
these restrictive conditions the jump conditions (19.121) become

Mass: ρ̂v̂n = ρvn,

Momentum: ρ̂v̂2
n + p̂ = ρv2

n + p,

ρ̂v̂t v̂n = ρvtvn,

Energy: ρ̂

(
û + v̂2

2

)
v̂n + p̂v̂n = ρ

(
u + v2

2

)
vn + pvn,

Entropy: ρ̂ŝv̂n � ρsvn.

(19.129)

In these equations the variables ahead (behind) the shock are identified with (without)
a caret ‘ ˆ ’. In addition, the velocities are split into components tangential (vt ) and
normal (vn) to the singular surface. Incidentally, Eq. (19.129) are also obtained by
considering a small volume, which crosses the shock surface and writing for it the
corresponding balances. This is sketched in Fig. 19.19.

It is easy to derive from (19.129) the reduced equations

Mass: ρ̂v̂n = ρvn,

Momentum: ρ̂v̂2
n + p̂ = ρv2

n + p,

v̂t = vt ,

Energy: û + p̂

ρ̂
+ v̂2

n

2
= u + p

ρ
+ v2

n

2
,

or ĥ + v̂2
n

2
= h + v2

n

2
,

Entropy: ŝ � s.

(19.130)

These are the reduced shock conditions for stationary shocks of simple fluids under
isentropic (adiabatic) changes of state. From these, a number of inferences can be

drawn which we now wish to derive.
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after the shock

ahead of the shock

stationary
shock surface

Fig. 19.19 Shock surface in a stationary shock. Particle velocities ahead (v : vt , vn) and after
(v̂ : v̂t , v̂n) the shock (The denotations ‘ahead’ and ‘after’ the shock are to be understood such that
fluid particles are ‘ahead’ of the shock, if they have not yet gone through the shock. They are ‘after’
the shock if they have already passed the shock surface)

From (19.130) the normal velocities vn and v̂n can be eliminated, so that equations
emerge, which involve only thermomechanical quantities. Momentum and energy
balances (19.130)2,4 imply the relations

p̂ − p = ρv2
n − ρ̂v̂2

n, ĥ − h = 1

2

(
v2

n − v̂2
n

)
.

Division of the second by the first expression yields

ĥ − h

p̂ − p
= 1

2

v2
n − v̂2

n

ρv2
n − ρ̂v̂2

n

= 1

2

(vn + v̂n)(vn − v̂n)

ρv2
n − (ρ̂v̂n)v̂n

= 1

2

(vn + v̂n)(vn − v̂n)

ρvn(vn − v̂n)
= vn + v̂n

2ρvn

= 1

2

(
1

ρ
+ v̂n

ρvn

)
= 1

2

(
1

ρ
+ 1

ρ̂

)
,

or

ĥ − h = 1

2

(
1

ρ
+ 1

ρ̂

)
( p̂ − p), (19.131)

where also (19.130)1 has been used. If one considers next u = h − p/ρ and also uses
(19.130)1, then



19.4 Theory of Shocks 529

û − u = ĥ − p̂

ρ̂
−
(

h − p

ρ

)
= ĥ − h + p

ρ
− p̂

ρ̂

= 1

2

(
1

ρ
+ 1

ρ̂

)
( p̂ − p) + p

ρ
− p̂

ρ̂

= 1

2

(
p̂

ρ
+ p̂

ρ̂
− p

ρ
− p

ρ̂
+ 2

p

ρ
− 2

p̂

ρ̂

)

= 1

2

(
p̂

ρ
− p̂

ρ̂
+ p

ρ
− p

ρ̂

)
= 1

2

(
1

ρ
− 1

ρ̂

)
(p + p̂) (19.132)

is obtained. This, as well as Eq. (19.131) form together the so-called Rankine–
Hugoniot relations,12 which are separately stated here once more:

û − u = −1

2
( p̂ + p)

(
1

ρ̂
− 1

ρ

)
,

ĥ − h = 1

2

(
1

ρ̂
+ 1

ρ

)
( p̂ − p).

(19.133)

They allow computation of the jump of the caloric state variables u and h by thermal
equations of state on both sides of the shock, whereby not only jumps of p and 1/ρ
arise, but equally also mean values. If these are denoted as

�Ψ � = Ψ̂ − Ψ, 〈〈Ψ 〉〉 = 1
2 (Ψ̂ + Ψ ),

pregnant forms of the Rankine–Hugoniot relations are given by

�u� = −〈〈 p 〉〉
�

1

ρ

�

, �h� =
〈〈
1

ρ

〉〉
�p� . (19.134)

Remark These relations are surprisingly analogous to the following relations which
can be obtained from the Gibbs relation

T ds = du + pd

(
1

ρ

)
= dh −

(
1

ρ

)
d p = 0,

which for isentropic (adiabatic) conditions become

du = −pd

(
1

ρ

)
, dh =

(
1

ρ

)
d p. (19.135)

The correspondence is obtained via the pair analogues d(·) and �(·)� as well as (·) and
〈〈(·)〉〉. For this reason the shock surfaces are sometimes called dynamic adiabatic
conditions. We do not wish to see more behind this than a ‘crib’.

12For brief biographies of William John Macquorn Rankine (1820–1872) and Pierre Henri

Hugoniot (1851–1887), see Figs. 19.20 and 19.21, respectively.



530 19 Gas Dynamics

Fig. 19.20 William John Macquorn Rankine (5. July 1820–24. Dec. 1872)

William JohnMacquornRankinewas a Scottish mechanical and civil engineer, physicist
and mathematician. He was a founding contributor, with Rudolf Clausius and William

Thomson (Lord Kelvin), to the science of thermodynamics, particularly focusing on the
first of the three thermodynamic laws.
Rankine developed a complete theory of the steam engine and of all heat engines. His
manuals of engineering science were used for many decades after their publication in the
1850 s and 1860s. He published several hundred papers and notes on science and engineering
topics, from 1840 onwards, and his interests were extremely varied, including botany, music
theory and number theory, and, later, most major branches of science, mathematics and
engineering. He was an enthusiastic amateur singer, pianist and cellist who composed his
own humorous songs. He was born in Edinburgh and died in Glasgow, a bachelor.
Rankine received his basic education in Glasgow and studied at the Military and Naval
Academy Edinburgh. In 1836 he began his studies at the University of Edinburgh focusing
on natural history and natural philosophy. Here, under Forbes, he was awarded prizes for
essays on physical inquiry and wave theory of light. He left the University in 1838 without
a degree and worked as an engineer apprentice in railway systems in Scotland and Ireland.
In the 1840 s he returned to the mechanics of heat engines and succeeded in finding the
relations between saturated vapor pressure and temperature and the thermal equation of
state for gases. In the 1850s, he made use of energy concepts akin to the first law and
introduced his own thermodynamic function, which he, later, realized to be identical to the
entropy of Clausius. Today he is primarily remembered through the Rankine–Hugoniot
equation for propagation of shock waves, which govern the behavior of shock waves normal
to the oncoming flow.

Especially through his activities in railway engineering, Rankine has recognized early-on

that fatigue and rupture of railway axles are caused by the initiation of cracks; he showed

that the axles had failed by progressive growth of a brittle crack or other stress concentration

sources on the shaft.

The text is based on www.wikipedia.org

www.wikipedia.org


19.4 Theory of Shocks 531

Fig. 19.21 Pierre- Henri Hugoniot (5. June 1851–? Feb. 1887)

Pierre- Henri Hugoniot was an inventor, mathematician, and physicist who worked on
fluid mechanics, especially on issues related to material shock.
Hugoniotwas the son of a metallurgist and demonstrated early talents for science. At the age
of only 17 years he became ‘Préparateur de Physique’ at the faculty of Science in Strasbourg.
After going into the marine artillery upon his graduation from the École Polytechnique in
1872 he became professor of mechanics and ballistics at the School of Artillery Lorient
(1879–1882) and Deputy Director of the Central Laboratory of the Artillery Navy (1882–
1884). He was promoted to captain in January 1884, and in April was appointed assistant
professor of mechanical engineering at the École Polytechnique. He conducted research on
the trigger gas accompanying the detonation of cannons.
This led in 1885 to his mathematical description of shock waves. He invented this theory
based on conservation of mass, momentum, and energy, which allowed for improvements
in fluid flow studies (with applications to aerospace). The Rankine–Hugoniot equation (or
adiabatic dynamics of gas) is the product of these efforts and has been named in his honor.
These papers were published post mortem (he died, probably by overwork) by the mathe-
matician Roger Liouville. His ideas were further explored in France by J. Croussard

(1907) and E. Jouguet (1910) and ‘Mécanique des Explosives’ (1917) [9–11]. A recent
biography is [2].

The text is based on www.wikipedia.org

Photo: W.H. Hager (personal communication). See also his biographical dictionary ‘Hydrauli-

cians in Europe 1800–2000’, Int Assoc. Hydr. Engr. & Research (IAHR 2003)

Caloric Ideal Gases

The above computations have been done for shocks of simple fluids. Let us now
focus on caloric ideal gases for which

p

ρ
= RT, h = cpT + h0, u = cvT + u0 (19.136)

www.wikipedia.org
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with constant specific heats. These relations imply

h − h0 = cp

R

p

ρ
= cp

cp − cv

p

ρ
= κ

κ − 1

p

ρ
,

from which one may conclude

ĥ − h = κ

κ − 1

(
p̂

ρ̂
− p

ρ

)
= 1

2

(
1

ρ
+ 1

ρ̂

)
( p̂ − p), (19.137)

in which (19.133)2 has also been used. Equation (19.137) is a relation between the
pressures and densities on both sides of the shock which can also be expressed in the
forms

p̂ − p

ρ̂ − ρ
= κ

p̂ + p

ρ̂ + ρ
,

p̂

p
=

(κ + 1)
ρ̂

ρ
− (κ − 1)

(κ + 1) − (κ − 1)
ρ̂

ρ

, (19.138)

as was shown by Théodore von Kármán.13 With the aid of the equation of state
(19.136)1 the second of the von Kármán relations can directly be used to determine
the temperature change across the shock. For the ratio T̂ /T one obtains

T̂

T
= ρ

ρ̂

p̂

p
= ρ

ρ̂

(κ + 1)
ρ̂

ρ
− (κ − 1)

(κ + 1) − (κ − 1)
ρ̂

ρ

. (19.139)

For the computation of the entropy jump across the shock, we start with the Gibbs

relation

ds = 1

T

(
cpdT − d p

ρ

)
.

Moreover, the equation of state of ideal gases, p = RT ρ, implies

dT

T
= d p

p
− dρ

ρ
.

13One obtains

κ

κ − 1
( p̂ρ − pρ̂) = 1

2
(ρ̂ + ρ)( p̂ − p),

κ

κ − 1

{
( p̂ − p)(ρ̂ + ρ) − (ρ̂ − ρ)( p̂ + p)

} = (ρ̂ + ρ)( p̂ − p),

( p̂ − p)(ρ̂ + ρ)

{
κ

κ − 1
− 1

}
− κ

κ − 1
(ρ̂ − ρ)( p̂ + p) = 0,

( p̂ − p)(ρ̂ + ρ) = κ(ρ̂ − ρ)( p̂ + p).

This relation leads to the first of the von Kármán relations.
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We eliminate the temperature between the last two equations and so obtain

ds = cp

(
d p

p
− dρ

ρ

)
− R

d p

p
= cv

d p

p
− cp

dρ

ρ
,

which can be integrated to

s − s0 = cv ln
p

p0
− cp ln

dρ

ρ
, (19.140)

so that the entropy jump across the shock surface can be written as

ŝ − s = cv ln
p̂

p
− cp ln

ρ̂

ρ
= ln

{(
ρ̂

ρ

)−κ p̂

p

}

= cv ln

⎧
⎪⎪⎨

⎪⎪⎩

(
ρ̂

ρ

)−κ (κ + 1)

(
ρ̂

ρ

)
− (κ − 1)

(κ + 1) − (κ − 1)

(
ρ̂

ρ

)

⎫
⎪⎪⎬

⎪⎪⎭
. (19.141)

The Second Law of Thermodynamics requires ŝ − s � 0 (see (19.130)6) so that we
easily obtain from the last expression of the first line of (19.141)

p̂

p
�
(

ρ̂

ρ

)κ

. (19.142)

Please recall that the gas is subjected on both sides of the shock to adiabatic changes
of states, for which the isentropic law

p2

p1
=
(

ρ2

ρ1

)κ

(19.143)

must hold. The indices 1 and 2 refer to two points on the same side of the shock.
Figure 19.22 shows how ρ̂/ρ and p̂/p vary according to the von Kármán rela-
tions (19.138) and the isentropic relation (19.143) between ρ2/ρ1, and p2/p1. The
Rankine–Hugoniot curve has for ρ̂/ρ = (κ + 1)/(κ − 1) a vertical asymptote and
at ρ̂/ρ = (κ − 1)/(κ + 1) a zero. Furthermore, the following statements can easily
be proved:

• Both curves have a point of contact in (1, 1) with common tangent.
• For ρ̂/ρ > 1, i.e., ρ2/ρ1 < 1 the Rankine–Hugoniot curve lies above the

isentropic curve; for ρ̂/ρ < 1, i.e., ρ2/ρ1 > 1 it is reverse.
• For the isentropic exponent κ = 1.4, Table 19.2 gives a few values for the two

relations.
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Fig. 19.22 Shock and
isentropic relations.
Rankine–Hugoniot
relation [(19.138), solid] and
isentropic relation [(19.143),
dashed], schematically
displaced. In point (1, 1) the
two curves have a common
tangent

isentropic relation

shock condition
(Rankine-
Hugoniot relation)

Table 19.2 Rankine–Hugoniot and isentropic relations for κ = 1.4

ρ̂/ρ ρ̂2/ρ1 Rankine–Hugoniot relation Isentropic
relation p2/p1

p̂/p T̂ /T
κ−1
κ+1

1
6 0 0 0.0814

1 1 1 1

2 2.75 5.5 2.64

3 5.66 17.0 4.66

4 11.5 46.0 6.96

5 29.0 145.0 9.52

6 ∞ ∞ 12.29

Let us return to the statement (19.142) of the Second Law. According to this for-
mula, only shocks are possible, for which the Rankine–Hugoniot curve lies above
the isentropic curve. Therefore, ρ̂/ρ > 1 must hold. Otherwise stated, the density
of the gas after the shock must be larger than ahead of the shock. Correspondingly,
the speed of the gas after the shock must be larger than that before the shock, as dic-
tated by the mass balance relation (19.130)1. One calls shocks, of which the density
behind the shock is larger than ahead of it, compaction shocks; for these we just have
proved that in calorically ideal gases only compaction shocks are possible. This is a
consequence of the Second Law. The balance laws of mass, momentum and energy
for themselves would permit also rarefaction shocks.
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Fig. 19.23 Shock relations
for calorically ideal gases.
Ratios p̂/p, T̂ /T and
(ŝ − s)/cv (after the shock)
plotted against ρ̂/ρ and M .
The solid curves are
thermodynamically possible,
the dashed curve is not; that
is, for the dashed curve the
Second Law of
Thermodynamics is violated

It is informative to graphically display all shock equations (19.138), (19.139) and
(19.141) in a single graph. This is done in Fig. 19.23, in which the abscissa shows the
density ratio (below with linear scale) and the Mach number M ahead of the shock
(above with nonlinear scale [Their relation is given in Eq. (19.139)]. One recognizes
in these plots, and can corroborate these facts with the corresponding formulae, that
p̂/p, T̂ /T, (ŝ − s)/c approach the value ∞, if ρ̂/ρ → (κ + 1)/(κ − 1) and that
also the Mach number tends to infinity in this case. On the other hand, the jump in
entropy is very small, if the density ratio does not deviate too much from the value 1;
indeed by power series expansion of the expression on the right-hand side of (19.141)
with respect to (ρ̂/ρ − 1), one obtains

ŝ − s

cv

= κ2(κ − 1)

6

(
ρ̂

ρ
− 1

)3

+ . . . . (19.144)

In the vicinity of (ρ̂/ρ−1) the graph of the function (s −s0)/cv is a cubic parabola of
(ρ̂/ρ − 1), with horizontal tangent and vanishing curvature at (ρ̂/ρ = 1): For weak
shocks the entropy jump is of third order small. In spite of this, the jump of entropy
across the shock is never zero, even though the flows ahead of the shock and behind
it have been assumed as isentropic.
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19.5 Final Remarks

In this chapter simple gas-dynamic problems have been presented for ideal compress-
ible fluids as they arise in linear acoustics, in the steady isentropic stream filament
theory and in the theory of shock waves. Only four rather elementary problems have
been touched. For more complete accounts the reader is encouraged to consult the
literature, e.g. [1, 3, 12–14].
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Chapter 20
Dimensional Analysis, Similitude
and Physical Experiments
at Laboratory Scale

Abstract This chapter is devoted to the subjects ‘Dimensional analysis, similitude
and physical experimentation at laboratory scale’, topics often not systematically
taught at higher technical education. However, no insider would deny the useful-
ness of these specialties. Books treating these subjects separately and in sufficient
detail have appeared since the mid 20th century. We give an account of dimensional
analysis, define dimensional homogeneity of functions of mathematical physics, the
properties of which culminate in Buckingham’s theorem (which is proved in an
appendix to the chapter); its use is illustrated by a diversity of problems from general
fluid dynamics, gas dynamics and thermal sciences, e.g., propagation of a shock from
a point source, rising gas bubbles, Rayleigh–Bénard instability, etc. The theory of
physical models develops rules, how to down- or up-scale physical processes from
the size of a prototype to the size of the model. The theory shows that in general such
scaling transformations are practically never exactly possible, so that scale effects
enter in these cases, which distort the model results in comparison to those in the pro-
totype. In hydraulic applications, this leads to the so-called Froude and Reynolds

models, in which the Froude or Reynolds numbers, respectively, remain mapping
invariants but not the other. Application on sediment transport in rivers, heat transfer
in forced convection, etc. illustrate the difficulties. The chapter ends with the charac-
terization of dimensional homogeneity of the equations describing physical processes
by their governing differential equations. TheNavier–Stokes–Fourier–Fick fluid
equations serve as illustration.

Keywords Similitude andmodel experiments ·Dimensional homogeneity ·Buck-
ingham’s theorem · Viscosity in a kinetic gas · Motion of a shock front after an
explosion · Rayleigh–Bénard instability · Sediment transport in a shallow lake ·
Model theory and differential equations · Navier–Stokes–Fourier–Fick fluid

List of Symbols

Roman Symbols

A Amplitude of a harmonic variation of a function,
e.g. ˆ̄ω = A sin(πẑ)

[A] Physical dimension of A
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Aj Derived physical unit (j = 1, . . . , n)
[A]j Dimension of the derived physical unit Aj

Br Brinkman number
cp Specific heat at constant pressure
CD Drag coefficient
c Speed of sound in a fluid, specific heat
cs Concentration of the sediments in a solid-fluid mixture
cα Mass concentration of constituent α
D Characteristic length of a submerged body; typical dimension of

a gas bubble, rising in a vertical fluid pipe
DT = κ/(ρ0c) Thermal diffusivity [m2 s−1]
D = sym gradv Strain rate tensor, stretching tensor
Dαβ Diffusion constant describing the diffusion between constituents

α and β
Dth Thermal diffusivity number: Dth = [κ]/([ρ][cp])
Dspec Representative species diffusivity

(
Dαβ = [Dspec]D̃αβ

)

d Typical dimension of a molecule, representative diameter of sed-
iment grains

d∗ Representative dimensionless diameter of the sediment grains
E(3) Energy, released in a point explosion in R3

E(2) Energy per unit length, released from a straight linear source per
unit length (in R(2))

E(1) Energy released from a point for a straight linear shock propaga-
tion (in R)

E Distortion (rate) tensor E = D − 1
3 (div v)1

Ed Dissipation number
Eu Euler number
Ek Ekman number Ek = [ν]/ ([ω][L]2)
f , f̄ Value of the variable f in Nature (prototype) and in a model
[f ] Constant reference value of f with physical dimension, physical

dimension of f
f Intermolecular ‘force’ (interaction force) at unit distance from the

molecular center
Fr Froude number: Fr = V 2/(gD)

[sometimes Fr = V/
√

gD]
F[ω] Froude number based on [ω]: F[ω] = [ω][V ]/[g]
Gi Fundamental physical unit (i = 1, . . . ,m)
[G]i Dimension of the fundamental physical unit Gi

g Gravity constant
g Gibbs free energy
G = f−k Strength of a kth inverse power force law (see (9.10))
H Plate distance in Rayleigh–Bénard convection
h Water depth measured from a reference surface
K Modulus of a force on a body

http://dx.doi.org/10.1007/978-3-319-33633-6_9


20 Dimensional Analysis, Similitude and Physical … 539

k Roughness length of the interior pipe surface
k/D Dimensionless wall roughness
L Distance between two pipe cross sections
m Mass of a molecule
M = V/c Mach number
N = αD/κ Nusselt number
p(x, t) Pressure
p̃(x, t) Perturbation pressure
P Pressure ratio: P = K/

(
ρV 2D2

)

P[ω] Pressure coefficient
Pe = RePr Péclet number
Pr = ν/DT Prandtl number
Petracer = ReS Tracer Péclet number
R(1)
f Distance of a shock front from the source point of an explosion

R(2)
f Radius of a semi-circular shock front in two-dimensions

R(3)
f Radius of a semi-spherical shock front

r Specific radiation per unit mass
Ra Rayleigh number: Ra = gαΔTH3/(DTν)

(Ra)c Critical Rayleigh number
R = Re Reynolds number: R = Re = VD/ν
Ra[ω] Radiation number: Ra[ω] = [cp][ΔT ][ω]/[r]
Ro Rossby number: Ro = [V ]/ ([ω][L])
S = ν[Dspec] Schmidt number
s Entropy density per unit mass
s Complex valued variable describing the temporal growth for the

vertical velocity component and the temperature
ŝ = sHτ/DT Dimensionless counterpart of s
t Time
T0 Reference temperature
TB Temperature distribution in a state of rest
T̃(x, t) Perturbation temperature
uB Stationary velocity distribution
ũ Perturbation velocity
V Fluid velocity far upstream
W = ρV 2D/σ Weber number (Moritz Weber)
w̄(z) Vertical profile of the vertical velocity component
ˆ̄w = (H/DT )w̄ Dimensionless scaled vertical velocity component
x, y Horizontal Cartesian coordinates
z Vertical coordinate

Greek Symbols

α Coefficient of thermal expansion
α,β Indices, identifiers for constants
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αk = Go
k/G

n
k Ratio of old to new basic units

(examples α1 = 1m/100 cm, α2 = 1 h/3600 s)
β Exponent of the Reynolds number in a parameterization of the

heat transfer coefficient
β = δT/H Vertical mean linear temperature gradient
β = Δp Pressure difference between two pipe cross sections in steady

state
ΔT Temperature difference between two parallel horizontal plates in

the Rayleigh–Bénard problem:
ΔT = Tlower − Tupper

ε Internal energy
ζ Bulk viscosity
η Shear viscosity
θc = τc/ (Δρgd) Critical Shields parameter
κ Thermal conductivity, heat conductivity
λ = n2π2 + â2 Auxiliary parameter
λf = f̄ /f Scale factor for f
λA Scale factor of the acceleration A
λL Scale factor of the length L
λV Scale factor of velocity V
λg = ḡ/g Scale factor of the gravity
λν = ν̄/ν Scale factor of the kinematic viscosity
μ = ρν Dynamic viscosity
ν Kinematic viscosity [m2 s−1]
Π,Πj, . . . Various Π -products
Πj(xi) Dimensionless products (j = 1, . . . ,m) of the physical variables

x1, . . . , xN
πα Production rate (per unit mass) of the mass density of constituent

α
ρ Mass density
ρ0 Reference value of ρ (a constant)
ρs, ρf Densities of the solid and fluid constituents, respectively
σ Surface tension acting on the interface of two bodies
τ , τc Shear traction, critical shear traction (at the onset of sediment

transport)
Φ Dissipation rate of a NS-fluid: Φ = ζ(div v)2 + 2ηtr(E2)

ω,ω Angular velocity of the non-inertial frame

Miscellaneous Symbols

[[f ]] Jump of f across a singular surface: [[f ]] = f + − f −

d(·)
dt

Material time derivative keeping the reference configuration fixed

∂(·)
∂t

Local time derivative, keeping the spatial position fixed
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(
dv
dt

)
abs

Acceleration relative to the inertial frame
(
dv
dt

)
rel

Acceleration relative to the non-inertial frame

20.1 Introductory Motivation1

Physical problems are described by relations, which are determined by quantities
having a certain dimension—length, time, mass, force, temperature, etc. These rela-
tions must be so structured that, dependent and independent quantities are combined
so as to yield dimensionally correct formulas. In an equation defining a physical
process, in which several terms are added, these terms must have the same dimen-
sion; this is often expressed as ‘apples and pears cannot be added together’. Such
properties of expressions describing physical processes are connected with what is
called dimensional homogeneity. In other applied sciences and in humanities, dimen-
sional homogeneity is not required to hold, a fact, which allows equations with more
general structure.

20.1.1 Dimensional Analysis

Loosely expressed, dimensional analysis is a method by which physical intuition is
combinedwith rigorousmathematical analysis, leading to functional representations,
which express uponwhich combinations of physical parameters an envisaged process
can depend. It is particularly useful, when experiments are planned and helps to com-
prehend the sort and number of variableswhich onewill encounter in the performance
of such experiments. If, for instance the quantity y depends upon x1, x2, . . . , xn, where
all quantities have physical dimensions, then dimensional analysis shows that the
envisaged process can only be described by a functional relation f (Πy,Πx) = 0 of
all possible independent dimensionless products of {y, x1, x2, . . . , xn} (their number
is generally less than n + 1). The physical part of the problem is the selection of
the variables {y, x1, x2, . . . , xn}. The scientist confronted with a particular physical
problem must estimate upon which kind of physical parameters a certain fact may
depend. The selection depends on the physical understanding of the studied process.
If the chosen variables do not capture the essential physics, the rational mathematical
steps will either demonstrate this, or physically meaningless relations (i.e. relations
not corroborated by experimental data) will be generated. The mathematical part
follows straightforward rules of linear algebra that will be explained below.

1The topic presented here in this chapter is a popular theme in fluid mechanics and is the subject of
several books, e.g., G.I. Barenblatt [1], Henry Görtler [17], H.L. Langhaar [26], Joseph
Spurk [40], K. Hutter and K. Jöhnk [20] and others. A mathematical theory, based on a system
of axioms with an extensive list of related references is given by D.E. Carlson [13, 14].
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Example 20.1 Viscosity in a Kinetic Gas2

In the kinetic theory of gases the balance laws of mass, momentum and energy are
deduced by building moments of theBoltzmann equation; likewise, it is also possi-
ble to obtain the functional dependence of the shear viscosity from the Boltzmann
equation. The decisive element in this derivation is the collision operator, of which
the form depends upon the law of interaction in binary collisions. Three mechanical
parameters describe this interaction, namely

m : mass of the molecule,
d : typical dimension of the molecule,
f : intermolecular ‘force’ (interaction force) at a unit distance

of the molecule center,

(20.1)

and these may influence the interaction only in certain combinations.

It is known by experience that the viscosity of a gas depends upon the density and
the temperature. Since the latter is a measure for the kinetic energy of the fluctuating
motion of the molecules, and because it is identified as internal energy ε, which is
proportional to the temperature, one may assume the viscosity as a function of the
form

μ = μ(ρ, ε;m, d, f), or f (μ, ρ, ε;m, d, f) = 0, (20.2)

in which the last three variables characterize the dependence of the viscosity upon the
properties of the interaction of the molecules during collisions, whilst the first three
characterize the global response of themolecules in a representative volume element.
We shall employ the identifications y = μ, x1−5 = (ρ, ε,m, d, f). Dimensional analy-
sis will show that these six variables give rise to three independent dimensionless
products, namely e.g.,

Π1 = μd2

m
√

ε
, Π2 = ρd3

m
, Π3 = fd

mε
. (20.3)

With these, the viscosity can be written as

μ = m
√

ε

d2
f (Π2,Π3) = m

√
ε

d2
f

(
ρd3

m
,
fd

mε

)
, (20.4)

where f is still an unspecified function. The number of variables is reduced from six
to three, a dramatic reduction!

Formula (20.4) allows us to study qualitatively the behavior of the viscosity when
the three parameters of the molecule, m, d, f, are varied. For instance, because ρ =
nm, where n denotes the number density of molecules, the first argument in the
function f of (20.4) is given by n d3 and, thus, independent of the molecules’ mass

2SeeClifford A. Truesdell andRobert G. Muncaster [44], where this example is presented
with fewer details.
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and equal to the volume density of the molecules. Moreover, if the molecules do not
exert any force on each other, if their distance is finite, then necessarily f = 0, and
Π3 in (20.3) drops out and Eq. (20.4) reduces to

μ = m
√

ε

d2
f̂

(
ρd3

m

)
= m

√
ε

d2
f̂
(
nd3

)
. (20.5)

In other words, in a gas, in which the molecules do not execute any forces upon each
other at finite distances, the viscosity growswith the square root of the internal energy
(or temperature). This is e.g. the case for molecules behaving as frictionless, perfect
elastic (hard) spheres. If, moreover, the volume of the molecule, nd3, is negligibly
small, then f̂ (0) in (20.5) is a constant and the viscosity takes the form

μ ∝ m
√

ε

d2
for ideal spheres. (20.6)

Such a square root temperature dependence is obeyed e.g. by monatomic gases.

20.1.2 Similitude and Model Experiments3

A physicalmodel is amapping ofNature or at least a sub-process that occurs inNature
to smaller scale. ‘Projection mapping’ or simply ‘projection’ instead of ‘mapping’
would be the better denotation, since some information is generally lost in the map-
ping. Analogously, every theory expressed in mathematical equations and describing
processes of any kind equally represents amathematicalmodel; ‘theory’would there-
fore also better be called ‘model’. It is imputed that it adequately describes certain
processeswhich are observed inNature. Physical andmathematicalmodels generally
describe partial facts of the reality, those which are important for the purposes for
which they have been designed. In this sense all theories or physical models are pro-
jections ofNature, which enjoy some similarities of but do not completely correspond
to Nature. Complete correspondence is usually not possible for conceptual reasons
because it is generally impossible to preserve the scale invariance (i.e., invariance
of the real processes by down- or up-scaling to the modeled processes). Because of
these inescapable facts it is vital that those aspects of the physical processes, which
are the intended focus of the study in question, are (nearly) preserved.

That physical models are subjected to loss of information by, say, geometrical
downscaling, is inescapable. To explain the situation, recall from the example above,
and accept in anticipation the fact that any physical process, which is described by a
set of dimensional parameters y, x1, x2, . . . , xn, must be dimensionally homogeneous,
i.e., expressible by a functional equation of the form

3From K. Hutter et al.: Physics of Lakes, Vol. 3 [21], pp. 313–314.
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f̃
(
Πy,Πx1 ,Πx2 , . . . ,ΠxN

) = 0, or Πy = f
(
Πx1 ,Πx2 , . . . ,ΠxN

)
, (20.7)

where Πy and Πxj (j = 1, . . . ,N ≤ n) are dimensionless products of the variables
{y, x1, . . . , xn}. If by a physical or mathematical model the same process as that
described by the prototype (by Eq. (20.7)) is to be identically reproduced by a down-
scaled model, all the Π -products of the model must have the same values as in
the prototype. This defines complete similarity; it is exactly preserved in a process
whose dimensional analysis leads to a functional expression of the formΠy = f (Πx)

between only two Π -products. In all other cases this cannot be guaranteed. Those
Π -products, which are not preserved in the downscaling, may have a falsifying effect
in inferences drawn frommodel results at the scale of the prototype; they are referred
to as scale effects. By defining the Π -products adequately, such errors may be kept
to a minimum.

As far as mathematical models are concerned, scientists and engineers often pre-
sume as if themodel would describeNature per see. This interpretation is for instance
often given to theNavier–Stokes (NS) equations; in turbulencemodeling it finds its
enthusiastic defenders among all those who apply the Direct Numerical Simulation
(DNS) technique to these equations. More specifically, turbulent modelers are of the
opinion that every turbulent flow of a fluid (the implication is mostly applied to water
and air) can adequately be modeled by the NS-equations, if one simply succeeds in
constructing solutions on all scales, even the smallest possible ones. The stipulation
is that all eddies, no matter how small, can be resolved by the NS-equations, if only
the grid size used in the numerical solution technique is smaller than the smallest
eddies which can arise. Naturally, also the NS-equations find their limitation as a
model of Nature, namely certainly at the length scales of the molecules themselves,
when classical physics loses its validity.

The stipulation, that a set of equations for the description of certain physical
processes is correct in an absolute sense, suggests on the other hand, the following
question: Is it possible to identify certain structures in the equations, which suggest
certain invariance properties? For instance, is it possible by a scale analysis of the
physical variables to non-dimensionalize the field equations and boundary condi-
tions? The answer is yes and because of this, non-dimensional quantities will enter
the field equations and boundary conditions as parameters. These parameters are
nothing else than the Π -products, which are realized by the model equations. For
every set of values of these Π -products a whole class of solutions of the govern-
ing equations is defined. This suggests a principle of similitude. Physical processes,
which are characterized by different length-, time-, velocity-, force-scales etc., for
which, however, the Π -products underlying the governing equations, have the same
values, are similar to each other.4

4The method of using model equations for the description of certain processes as basis of
dimensional analysis has been coined inspectional analysis after Garrett Birkhoff [8], and it is
regarded as being separate from classical dimensional analysis. This method is popular in hydraulic
engineering and its use ‘is recommended as a more rigorous approach to the theory of similitude’,
Donald R.F. Harleman [19]. Its use in downscaling processes from the prototype to the model
size, obviously, assigns the notion of absolute truth to the equations—and they must obviously be
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20.1.3 Systems of Physical Entities

Physical quantities have dimensions such as length, time, mass, velocity, force, tem-
perature etc. Some of these must be introduced as basic or fundamental entities,
others are then obtained as derived quantities. Depending upon which quantities one
chooses as fundamental, different physical systems are chosen. As one of the most
important laws mention might be made of Newton’s second law, which may be
stated as

Force = Mass × Acceleration, (20.8)

which is not the most general form of Newton’s law, but sufficient to illustrate the
point. With this law the most important transformation can be performed. If the mass
is set to unity, 1, and the acceleration equal to the Earth’s gravity constant, g, then
the force unit is equal to g. Thus: The weight of a unit mass equals exactly g units of
the force.

Until about the middle of the 20th century and also somewhat later, many differ-
ent dimensional systems were in use; today the International System (IS) of units is
almost exclusively used. It is an extension of theMKS-system (Meter, Kilogram, Sec-
ond) to include thermal, chemical and electromagnetic entities. It has the following
fundamental entities:

Meter [m] as unit of length,
Second [s] as unit of time,
Kilogram [Kg] as unit of mass,
Kelvin [K] as unit of absolute temperature,
Ampère [A] as unit of electric current,
mole [mole] as unit of substance,
Candela [cd] as unit of light intensity.

(20.9)

Quantities,which appear inSI units as very large or very small numbers, are expressed
as multiples or fractions of the SI units in powers of 10 and are denoted by a prefix.
Table 20.1 collects these standard prefix notations: 1 micrometer (µm) is 10−6 m; 1
Hectopascal (1HPa) is 102 Pascals, and today a standard unit of atmospheric pressure;
1 femto second (1 fs) is 10−15s, etc.

For any of the fundamental quantities (20.9) the SI system of units is fixed accord-
ing to definitions now agreed upon by the United Nations. All other dependent
quantities, such as velocity, acceleration, specific heat, etc., are expressed as certain
products of powers of the fundamental units, e.g.,

(Footnote 4 continued)
known beforehand. In this book we regard inspectional analysis, if used, as part of dimensional
analysis.
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Table 20.1 Prefixes to characterize powers of 10 units in the IS system

Prefix Symbol Power Prefix Symbol Power

Exa E 1018 deci d 10−1

Peta P 1015 centi c 10−2

Tera T 1012 milli m 10−3

Giga G 109 micro μ 10−6

Mega M 106 Nano n 10−9

Kilo K 103 Piko p 10−12

Hecto H 102 Femto f 10−15

Deka Da 101 Atto a 10−18

velocity [m s−1],
force [mKg s−2] ≡ [N],
acceleration [m s−2],
work [m2 Kg s−2] = [Nm] ≡ [J],
diffusivity [m2 s−1],
power [m2 Kg s−3] = [Nm s−1] = [J s−1] ≡ [W],
pressure [Kgm−1s−2] = [Nm−2] ≡ [Pa].

(20.10)

For someof these derived quantities their owndenotations have becomecustomary
to quantify their units. In the IS system 1 force unit is that force which subjects 1
[Kg] mass to an acceleration of [1] [ms−2]; this force unit is called 1 Newton ([N])
as indicated in (20.10)2. Analogously, the unit of work is the work done by 1 unit
of force displaced by 1 [m] and called 1 Joule. Obviously, 1 [J] = 1 [Nm] = 1
[m2 Kg−2], as shown in (20.10)4. The unit of power, i.e., 1 unit of work per unit of
time, is calledWatt ([W]) and obviously given by 1 [W] = 1 [J s−1] = 1 [Nms−1]
= 1 [m2 Kgs−1]. The unit for pressure, defined as force per unit area in the IS
system is 1 Pascal= [Pa]= 1 [Nm−2]= 1 [Kgm−1s−2]; however, in meteorology,
oceanography and limnology 1 bar = 105 [Pa] was and still is more common as unit
for pressure measures. Moreover, pressures in weather forecasts are often given in
Hectopascals, since 1 Hectopascal = 1 millibar. Transformation rules can easily be
found in the internet, as can the units used in the United States of America.

The above text shows that the numerical values for a physical quantity dependupon
which physical entities are selected as fundamental and which units are chosen for
these. In the oldCGS system, centimeter, gram and second are chosen as fundamental
units of length, mass and time and, consequently, 1 [dyne] = 1 [gcms−2] is its force
unit and erg its work unit: 1 [erg] = 1 [dynecm] = 1 [gcms−1]. In this system the
fundamental quantities are the same as in the MKS-system, only their units have
changed. It is, however, not compelling that the number of fundamental quantities
are seven. For instance, it is known from the kinetic theory of gases that temperature
is a measure of the averaged fluctuation energy of the molecules. So, its dimension is
[ρ v2] = [Kgm−1s−2]. The introduction of the temperature as a fundamental physical
quantity is not coercive as it could be reduced to the fundamental quantities of the
MKS quantities. This fact is clearly seen in the history of the theory of heat, in which
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the equivalence of energy and heat had first to be recognized. It led to the first law
of thermodynamics, and more precisely, to the conceptual equivalence of heat and
energy byRobertMayer and Prescotte Joule, for biographical descriptions, see
Figs. 17.6 and 17.7.

20.2 Theory of Dimensional Equations

20.2.1 Dimensional Homogeneity

Definition 20.1 An equation is called ‘homogeneous in its dimensions’ or ‘dimen-
sionally homogeneous’, if the form of this equation does not depend upon the choice
of the fundamental units. �

Example 20.2 Torricelli’s Formula
As an example, consider the flowof an ideal density preservingfluid out of a container
via a short horizontal tube of constant cross section at the bottom of the container.
This flow is described in detail in Chap.3, Example 3.6, Figs. 3.28 and 3.29 by use
of the dynamic Bernoulli equation, see Eqs. (3.139)–(3.145). In steady state the
cross sectional averaged velocity in the exit-cross section is given by the so-called
Torricelli formula (3.146),

v = √
2 g h (Torricelli formula), (20.11)

in which g is the Earth’s gravity constant and h the difference of the levels between
the free surface point 1 and point 2 at the exit-cross section of the pipe, see also
Fig. 3.30 for a biographical description of Evangelista Torricelli.

Equation (20.11) holds in the given form irrespective in which units the height
h and gravity constant g are measured—Lengths: in km, m, cm, miles; Time: in
sec, hours, days, months—the velocity evaluated with the use of (20.11) is always
correctly obtained in units of length and time that were chosen. If instead we use
g = 9.81 [m s−2] and substitute this above, then

v = √
2 × 9.81

√
h = 4.43

√
h (h in [m]). (20.12)

This form of the equation for v is still correct, however, it is in its application referred
to the Earth’s surface at positions where g = 9.81m s−2. Furthermore, it restricts
itself to a particular system of units. Only if the value for h is substituted in [m]
and the emerging value for v is interpreted in [ms−1], formula (20.12) generates a
correct value of the fluid velocity in the exit-cross section, see Fig. 3.28. The reason
for these constraints is that the assignment g = 9.81 is fraught with a physical
dimension, expressed in SI units. It is evident, Eq. (20.11) is stated in dimensionally
homogeneous form, but (20.12) is not.

http://dx.doi.org/10.1007/978-3-319-33636-7_17
http://dx.doi.org/10.1007/978-3-319-33636-7_17
http://dx.doi.org/10.1007/978-3-319-33633-6_3
http://dx.doi.org/10.1007/978-3-319-33633-6_3
http://dx.doi.org/10.1007/978-3-319-33633-6_3
http://dx.doi.org/10.1007/978-3-319-33633-6_3
http://dx.doi.org/10.1007/978-3-319-33633-6_3
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Dimensionally homogeneous functions are a special class of functions.Moreover,
application of dimensional analysis to practical problems is based on the experience
that the solution of a problem of physics leads to dimensionally homogeneous func-
tions only, provided the independent variables are correctly selected. This property is
based on the fact that the fundamental equations of physics are dimensionally homo-
geneous and that deductions performed with such equations again lead to dimension-
ally homogeneous equations. However, there is no a priori reason to assume that a
postulated functional relation describing a certain physical process is dimensionally
homogeneous; this is only so, if the functional relation involves all parameters, which
describe the physical phenomenon in focus. For instance,

Example 20.3 Drag Force on a Body
The drag force K of a body, submerged in a steadily moving fluid with constant
speed at infinity and held fixed (or a steadily moving ship in a still ocean) will likely
depend on the following parameters:

ρ density of the fluid,
ν kinematic viscosity of the fluid,
V fluid velocity approaching the body,
g gravity constant,
c speed of sound of the fluid,
σ surface tension between the body and the fluid,
D characteristic length of the submerged body.

(20.13)

These variables give rise to the general functional relation

f (K, V,D, ρ, g, ν, c,σ) = 0, or K = f (V,D, ρ, g, ν, c,σ). (20.14)

With y = K , x = {V,D, ρ, g, ν, c,σ}, this equation has the alternative form
f (y, x1, x2, . . . , x7) = 0 and can be viewed as an equation expressing K as a function
of the variables {x1, x2, . . . , x7}. With these variables the following five dimension-
less quantities can be formed5.

Π1 Reynolds number R = V D

ν
,

Π2 Froude number Fr = V 2

gD
,

Π3 Mach number M = V

c
,

Π4 Weber number W = ρ V 2 D

σ
,

Π5 pressure ratio P = K

ρ V 2 D2
.

(20.15)

5For short biographies on Reynolds, see Fig. 15.2; on Froude, see Fig. 7.25; on Mach, see
Fig. 19.9, and on Weber, see Fig. 20.1.

http://dx.doi.org/10.1007/978-3-319-33636-7_15
http://dx.doi.org/10.1007/978-3-319-33633-6_7
http://dx.doi.org/10.1007/978-3-319-33636-7_19
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Fig. 20.1 Moritz Gustav Weber (18. July 1871–10. June 1951)

Moritz Gustav Weber grew up in Hannover and studied in Göttingen under Felix Klein.
After his graduation in 1904 he left for Berlin, where he worked as government official civil
servant for the railway system on the first project of electrification of the city railway and
the water supply system of the railway station Charlottenburg. In the same year he became
full professor of mechanics at the Techn. Hochschule Hannover (now Tech. University
Hannover) and in 1913 full professor of mechanics of ship and ship-machine design. He
remained there until his retirement in 1936.

MoritzWeber focused in his scientific activities on (i) the motion of the Comet Halley, (ii)
the principle ofd’Alembert (iii) theLagrangean equations ofmotion and (iv) problems of
oscillations of coupled bodies. His particular interest was devoted to the mechanical theory
of similitude and to rational rules of physical modeling, for which he developed systematic
procedures. The dimensionless Π -product (20.15)4, denoted Weber number, is a measure
that weighs on a free surface element the pressure perpendicular to the element surface
relative to the surface tension tangential to the interface and perpendicular to the element
periphery.

Weber’s first publication in 1919 focuses on mechanics of similitude and appeared in the
Annual Report of the Society of Ship Construction Technique. He expressed in this article
that mechanics of similitude paired with dimensional analysis are not only useful in the
construction of ships, but equally also for model experiments in technical physics such as
thermodynamics, electro technique and strength of materials.

According to his understanding the principles of similitude in physics would go beyond
their mere direct use in designing and exploiting experiments, as was already indicated by
Isaac Newton. This view is outlined in his article of 1930 [49]: ‘The general principle
of similitude of physics and its connection with the sciences of dimensional analysis and
model theory’.

The text is based on www.wikipedia.org

www.wikipedia.org
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They are mutually independent, since Π1 contains only ν, Π2 only g, Π3 only c,
Π4 only σ and Π5 only K . Four of them bear names of scientists from the 19th
and 20th century, moreover, there are no more than five independent so-called Π -
products which can be formed from the eight independent physical variables listed
in (20.15). Therefore, a dimensionless homogeneous representation of (20.14) may
be written as

K = ρ V 2 D2 f̃ (R,Fr,M,W). (20.16)

The function f̃ is a function only of four variables instead of the previously seven
ones. This reduction is the property of the dimensional homogeneity and does not
involve any simplifying approximations. Further reduction of the number of variables
in (20.16) is based on the neglect of dependencies on variables which have likely a
minor or negligible influence. For completely submerged bodies gravity can hardly
influence the drag force; a dependence on Fr can be dropped. Similarly, for subsonic
velocities V/c � 1 a Mach number dependence is unlikely in this case; and if
the body is completely submerged, a dependence of f on W can also be dropped.
Approximately, one therefore obtains

K = ρ V 2 D2 f̂ (R). (20.17)

Example 20.4 Drag Force on a Ship
To determine the drag force on the hull of a floating ship, we identify the force K in
the above example with this drag force and may then write P = f (R,Fr), or

K = ρ V 2 D2 f̃ (R,Fr) = 1
2 CDρV 2A, CD = CD(R,Fr), (20.18)

in which the factor 1
2 has been introduced for conventional reasons of the definition

of the drag coefficient CD. A is taken as the cross sectional area drawn by the ship
perpendicular to the direction of the upstream flow. It is customary to additively
separate the frictional and gravity contributions according to

CD(R,Fr) = C′
D(R) + C′′

D(Fr). (20.19)

Both coefficientsC′
D andC′′

D can be separately determined by experiments. However,
as it is impossible to keep both the Froude and Reynolds numbers simultaneously
invariant, the drag coefficientC′

D will be determined by aReynoldsmodel, whereas
C′′
D follows from a Froude model.
The above discussion makes the following definition plausible.
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Definition 20.2 A set of dimensionless products of given physical variables is com-
plete, if each product in this set is independent of any other and if any such dimen-
sionless product of dimensional variables, which does not belong to the set, can be
expressed as a product of powers of the dimensionless products of the set. �

20.2.2 Buckingham’s Theorem

The above example of functional dependence of the drag force on Π -products as
stated in (20.16) made it clear that, if an equation is formed by terms, all of which are
dimensionally homogeneous, then this equation is trivially dimensionally homoge-
neous, because it does not depend upon the choice of the fundamental quantities and
their units by prerequisite. Therefore, the following statement holds true: Sufficient
condition for an equation to be dimensionally homogeneous is that this equation can
be reduced to an equation of dimensionless products. Edgar Buckingham (1867–
1940)6. [12] has shown that the above statement is not only necessary. He proved
that it is also sufficient. We, therefore have the following theorem:

Theorem 20.1 (Buckingham) If an equation is dimensionally homogeneous, it can
be reduced to a relation of dimensionless products. �
This theorem is proved in the Appendix to this chapter.

Let us re-analyze the case of Eq. (20.14) (drag force on a body) with a focus of
deriving the dimensionless Π -products more formally. We shall do this by ignoring
the speed of sound of the fluid and the surface tension between fluid and body. Thus,
we start now with the functional representation

f (K, V,D, ρ, g, ν) = 0. (20.20)

To derive the dimensionlessΠ -products from the independent variables stated in the
functional relation (20.20) the following trial solution is proposed:

Π = Kk1 V k2 Dk3 ρk4 gk5 νk6 . (20.21)

As before, Π is a dimensionless product formed of all the variables occurring in
(20.20). The exponents kj, j = 1, . . . , 6 are to be determined, and it is hoped that
all combinations of k-values are found which determine the dimensionless products.
The dimension, i.e., exponent of the Π -product on the left-hand side of (20.20) is
[Π ] = 0; so with the physical dimensionsM = mass, L = length and T = time, the
dimensions of (20.21) can be deduced from the equation

[Π ] = [MLT−2]k1 [LT−1]k2 [L]k3 [ML−3]k4 [LT−2]k5 [L2T−1]k6 . (20.22)

6For a short biography of Buckingham see Fig. 20.2.



552 20 Dimensional Analysis, Similitude and Physical …

Fig. 20.2 Edgar Buckingham (8. July 1867–29. April 1940)

Edgar Buckingham was a physicist and soil scientist. He graduated from Harvard with
a bachelor’s degree in physics in 1887. He did additional graduate work at the University
of Strasbourg and the University of Leipzig, where he studied under chemist Wilhelm

Ostwald. Buckingham received a Ph.D. from Leipzig in 1893. He worked at the USDA
Bureau of Soils from 1902 to 1906 as a soil physicist and from 1906–1937 at the (US)
National Bureau of Standards (now the National Institute of Standards and Technology, or
NIST). His fields of expertise included soil physics, gas properties, acoustics, fluid mechan-
ics, and blackbody radiation. He is also the originator of the Buckingham Π -theorem in
the field of dimensional analysis.

Buckingham’s first work on soil physics is on soil aeration, particularly the loss of carbon
dioxide from the soil and its subsequent replacement by oxygen. He found that the rate
of gas diffusion in soil did not significantly depend on the soil structure, compactness or
water content of the soil. He determined the diffusion coefficient as a function of air content.
This relation is still commonly cited in many textbooks and used in modern research. The
outcomes of his research on gas transport were: the exchange of gases in soil aeration takes
place by diffusion and is independent of the variations of the outside barometric pressure.

In his work on soil moistureBuckingham found that soils of various textures could strongly
inhibit evaporation, particularly where capillary flow through the uppermost layers was
prevented. Moreover, he showed that evaporative losses in soil were initially higher from the
arid soil, then after three days the evaporation under arid conditions became less than under
humid conditions, with the total loss ending up greater from the humid soil. Buckingham
believed this occurred due to the self-mulching behavior exhibited by the soil under arid
conditions.

Buckingham is famous for hiswork on unsaturated flow and capillary action.He recognized
the importance of the potential of the forces arising from interactions between soil and water,
which he called capillary potential. He combined capillary theory and an energy potential in
soil physics theory, andwas the first to expound the dependence of soil hydraulic conductivity
on capillary potential. This dependence later came to be known as relative permeability in
petroleum engineering. He also applied a formula equivalent to Darcy’s law to unsaturated
flow.

The text is based on www.wikipedia.org

www.wikipedia.org
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The exponents of [M], [L] and [T ] on the right-hand side of this equation must each
sum up to zero, because [Π ] is dimensionless and so, its exponent is zero. This
requirement yields the three equations

[M] : 0 = k1 + k4,
[L] : 0 = k1 + k2 + k3 − 3k4 + k5 + 2k6,
[T] : 0 = −2k1 − k2 − 2k5 − k6

(20.23)

or in matrix form

⎛

⎝
1 0 0 1 0 0
1 1 1 −3 1 2

−2 −1 0 0 −2 −1

⎞

⎠

︸ ︷︷ ︸
dimensional matrix

⎛

⎜⎜⎜⎜⎜⎜
⎝

k1
k2
k3
k4
k5
k6

⎞

⎟⎟⎟⎟⎟⎟
⎠

=
⎛

⎝
0
0
0

⎞

⎠ . (20.24)

This is a homogeneous system of linear equations for k1, . . . , k6. According to a the-
orem in algebra of the theory of linear equations (20.23) possess N −m independent
fundamental solutions, where N is the number of unknowns (=6 in this case) and m
is the rank of the dimensional matrix. Thus, there are N − m different independent
Π -products. The rank of a rectangular matrix is defined as the largest size of the
square sub-matrices with non-vanishing determinant, which in this case is m = 3,
as can easily be seen from (20.24) whose matrix possesses more than one 3 × 3
sub-matrix with non-vanishing determinant.

It ismathematically not difficult to determine three different fundamental solutions
for the homogeneous system (20.23). Knowing the rank of the dimensional matrix,
one selects 3 different values for three exponents kj e.g.,

k1 = 1, k2 = 0, k3 = 0,
k1 = 0, k2 = 1, k3 = 0,
k1 = 0, k2 = 0, k3 = 1,

with the aid of which the values for k4, k5 and k6 follow (in the same order) as

k4 = −1, k5 = 0, k6 = −2,

k4 = 0, k5 = − 1
3 , k6 = − 1

3 ,

k4 = 0, k5 = 1
3 , k6 = − 2

3 .

(20.25)

This yields the Π -products

Π1 := K

ρ ν2
, Π2 := V

(gν)1/3
, Π3 := D g1/3

ν2/3
. (20.26)
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They can easily be checked to be dimensionless, however, these Π -products are
physically not transparent. It is, therefore, often more convenient to ‘guess’ three
independent Π -products, which transpire the physics more directly. With some lim-
ited knowledge in fluid mechanics already, it is tempting to try in this case with

P := K

ρ V 2 D2
, R := V D

ν
, Fr := V 2

gD
. (20.27)

P is a force (pressure) ratio, R is the classical Reynolds number, Fr the Froude
number, and it is straightforward to see that

P = 2Π1

(Π2 Π3)2
, R = Π2Π3, Fr = Π2

2

Π3
. (20.28)

The above examples make plausible, and the proof of Buckingham’s theorem (see
Appendix to this chapter) rigorously corroborates the content of

Theorem 20.2 The number of dimensionless products in a complete set of physical
variables equals the total number of variables minus the rank of the dimensional
matrix. �

Example 20.5 Pressure Drop in Pipes
This problem has been dealt with in Chap.10, Sect. 10.3.1. Here, we shall demon-
strate, how easily and straightforwardly formula (10.55) for the pressure drop can be
obtained. Let Δp be the pressure drop between two cross sections in a straight circu-
lar pipe that transports a density preserving fluid under steady conditions. Moreover,
let L be the distance between the two cross sections and D the internal diameter of
the pipe. Denote by k the mean roughness length of the interior wall, V the mean
velocity of the fluid within the cross section, ρ the fluid density and ν the kinematic
viscosity of the fluid. The pressure drop between the two cross sections can, thus, be
functionally expressed by

f (Δp,L,D, k, V, ρ, ν) = 0. (20.29)

The dimensional matrix of the variables of (20.29) is given by

Δp L D k V ρ ν
M 1 0 0 0 0 1 0
L −1 1 1 1 1 −3 2
T −2 0 0 0 −1 0 −1

det | · | 	= 0.

It has rank 3, and so, this problem is characterized by four Π -products, which e.g.
can easily be found to be

http://dx.doi.org/10.1007/978-3-319-33633-6_10
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P = Δp
1
2ρ V 2

, R = V D

ν
,

L

D
,

k

D
. (20.30)

With these we may write

Δp = 1

2
ρ V 2 f

(
R,

L

D
,
k

D

)
. (20.31)

A linear dependence of Δp on L can easily be corroborated by experiment. This
implies

Δp = 1

2
ρ V 2 L

D
λ

(
R,

k

D

)
. (20.32)

The function λ(R, k/D) has been experimentally determined. A standardization of
this, based on formulae derived by Ludwig Prandtl [32] and Johannes Niku-

radse [29] is given as Fig. 10.14 in Chap. 10. Section10.3.1 also gives a different
and more detailed presentation of formula (20.32).

Example 20.6 Viscosity in a Kinetic Gas Once Again
Let us go back to Example 20.1 and verify the statements made at the beginning
of this chapter and given without proof. In Eq. (20.2)2 the function f was stated to
describe the viscosity μ of the gas to depend on the three molecular parameters
m, d, f and on the ‘global’ parameters ρ and ε, where ε is the internal energy of the
molecules interpreted as the mean kinetic energy of their fluctuating motion, used
here as measure of the temperature of the kinetic gas. The dimensional matrix is
given by

μ ρ ε m d f

M 1 1 0 1 0 1
L −1 −3 2 0 1 1
T −1 0 −2 0 0 −2

det | · | 	= 0 (20.33)

which has rank 3, so that according to the Π -theorem three independent dimen-
sionless Π -products must exist, namely for instance

μd2

m
√

ε
,

ρd3

m
,

fd

mε
, (20.34)

as the reader may easily corroborate. Thus, given the variable set (20.2) we have now
proven confidence in Eq. (20.4) and the approximations (20.5), (20.6).

Another interesting case of molecular force influence of the viscosity of a kinetic
gas exists, if the molecules repel each other by a force, which is proportional to the
k-th power of the inverse distance of themolecules.Newton’s second law then reads

http://dx.doi.org/10.1007/978-3-319-33633-6_10
http://dx.doi.org/10.1007/978-3-319-33633-6_10
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f = G

rk
, k > 0, G > 0. (20.35)

The exponent k is dimensionless and so [G] = [f rk] = [M Lk+1 T−2]. The dimen-
sional matrix, based on {μ, ρ, ε,m,G} is, thus, given by

μ ρ ε m G

M 1 1 0 1 0
L −1 −3 2 0 k + 1
T −1 0 −2 0 −2

det | · | 	= 0. (20.36)

So, there are two dimensionless Π -products in this case, e.g.

Π1 = m
√

ε

μ

(mε

G

)2/(k−1)
, Π2 = mε

G

( ρ

m

)(1−k)/3
. (20.37)

Consequently,

μ = m
√

ε
(m ε

G

)2/(k−1) ˜̃f
(
mε

G

( ρ

m

)(1−k)/3
)

. (20.38)

Therefore, only inverse power molecules with k 	= 1 are meaningful. Moreover, if μ

is independent of ρ, then ˜̃f = const. and

μ ∝ m
√

ε
(m ε

G

)2/(k−1)
. (20.39)

The kinetic theory of ideal and dilute gases presupposes such conditions.

20.2.3 A Set of Examples from Fluid Mechanics

Example 20.7 Motion of a Shock Front after an (Atomic) Explosion Close to the
Ground
This example is well known among fluid dynamicists, as it caused embarrassment
to the Government of the United States. The basis is the Manhatten Project during
the Second World War, when first atomic bomb tests were conducted in the desert
of New Mexico. The example is reported in [1].

Consider a half space, x, y, z > 0; we regard it as the atmosphere bounded by the
plane ground, see Fig. 20.3. Let a boundary point be the center of the semi-sphere
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Fig. 20.3 Semi-spherical fire ball with radius R(3)
f due to a point explosion (The superscript in

R(3)
f identifies the dimension of the space in which the wave propagates)

in Fig. 20.3, where at time t = 0 a large quantity of energy E(3) is released.7 We
assume that the volume, in which the energy is released, can be identified with an
instantaneous point source; moreover, it is assumed that the source is isotropic in the
upper half space, z > 0, from the point source at the basal surface. These prerequisites
are needed for the formation of a half-spherical shock wave. Its front will at time
t > 0 be a distance R(3)

f (t) away from the center. We wish to find the evolution of the
front position as a function of time. This front moving process will likely depend on
E(3), t and the density ρ0 of air ahead of the shock front, so that R

(3)
f = f (t, ρ0,E(3)).

The corresponding dimensional matrix is

t R(3)
f ρ0 E(3)

M 0 0 1 1
L 0 1 −3 2
T 1 0 0 −2

(20.40)

and has rank 3 and allows determination of the single-family8 dimensionless product

Π = R(3)
f

(
E(3)

ρ0

)1/5

t2/5
= const. (20.41)

Thus,

R3
f (t) = const. ×

(
E(3)

ρ0
t2
)1/5

. (20.42)

7The superscript (3) indicates that the space in which this phenomenon is studied is three-
dimensional.
8Of all the possible Π -products, which only differ by powers from one another, we select that,
which is linear in R(3)

f .
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The expansion of the semi-spherical front grows with t2/5. The free constant can be
determined, if one measures the radius of the front R(3)

f at different times. This is
best done in doubly logarithmic representation, i.e.,

lnR(3)
f = ln (const) + 1

5
ln

(
E(3)

ρ0

)
+ 2

5
ln(t). (20.43)

In a plot with x = ln(t) and y = ln(R(3)
f ) this equation represents a straight line

with inclination 2/5. It crosses the y-axis at ln(const) + 1
5 ln

(
E(3)/ρ0

)
. Incidentally,

the gas dynamical problem is known and shows that const ≈ 1. If one knows this,
then the experimental determination of R(3)

f allows evaluation of the strength of the
explosion. This was done by G.I. Taylor by using a movie film of the nuclear test
in the desert of New Mexico, when the Americans were testing their atomic bombs
in the Manhatten Project during the Second World War. For the nuclear agency of
the USA this caused much embarrassment as Taylor said, since the strength of the
bomb was kept secret, whilst the movie was not classified, [42, 43].

Repetition of the above computation shows that in the two and one-dimensional
cases the formulae analogous to (20.42) are

R(2)
f (t) = const ×

(
E(2)

ρ0
t2
)1/4

,

(20.44)

R(1)
f (t) = const ×

(
E(1)

ρ0
t2
)1/3

.

The speed of expansion of the blast wave changes with the dimension of the space,
in which the wave expands.

Example 20.8 Rising Gas Bubbles
Gas bubbles, which are rising in a quiescent viscous fluid, reach soon after their
release a constant rising velocity (see Fig. 20.4). Parameters, uponwhich the ultimate
velocity U depends are the Earth’s acceleration. g, a typical bubble diameter, D, the
fluid density, ρ, its kinematic viscosity, ν, and, for small bubbles the surface tension,
σ. We neglect the kinematic viscosity of the gas in the bubble as well as the relative
density difference ‖(ρfluid − ρgas)/ρfluid‖ ≈ 1. Moreover, we ignore thermal effects
and the exchange of matter between the bubble and the fluid. The dimensional matrix
of the above variables

U g D ν σ ρ

M 0 0 0 0 1 1
L 1 1 1 2 −1 −3
T −1 −2 0 −1 −2 0

(20.45)
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Fig. 20.4 a Sketch of a
bubble with trailing vortex
ring. The bubble diameter is
D and it is assumed to be
small in comparison to the
pipe diameter. b Photos of
rising bubbles in silicon oil
(Model of demonstration,
Institute of Mechanics,
Darmstadt University of
Technology, Photo and
model courtesy of Prof. K.G.
Roesner)

(a)

(b)

has rank 3 and, thus, gives rise to three dimensionless products, which we choose as

Fr = U√
gD

, R = U D

ν
, W = ρU2 D

σ
, (20.46)

which are the Froude, Reynolds and Weber numbers. For not too small drops a
dependence of Fr onW is unlikely, so that

Fr = f (R).

For a power law

Fr = CRα, (20.47)

with unknowns C and α, one deduces with the definitions (20.46)

U = C
1

1−α g
1

2(1−α) ν
α

α−1 D
2α+1
2−2α . (20.48)
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Observation of rising bubbles with various diameters indicates that, very roughly,
U varies linearly with D; thus, (20.48) implies

2α + 1

2 − 2α
= 1 =⇒ α = 1

4
.

so that

U = C4/3 g2/3 ν−1/3 D. (20.49)

The constant C can be determined by experiment and yields the value C = 2/(3 ×
101/4) = 0.3749.

Example 20.9 Rayleigh–Bénard9 Instability)
Rayleigh–Bénard convection is treated in nearly all books dealing with fluid-flow
instability. It is treated at length by S. Chandrasekhar [15] for the linear theory
and by D. Joseph [22] and B. Straughan [41] with non-linear energy stability
techniques.

Consider a viscous Boussinesq fluid, which is kept between two infinitely long
rigid plates at a distance H. Initially the fluid is thought to be at rest. The lower plate
is heated and the upper plate is cooled below the temperature of the lower plate.
The temperatures of the plates are Tlower and Tupper, and the temperature difference
of the plates is ΔT = Tlower − Tupper, set at a certain value. The coefficient of ther-
mal expansion of the fluid that is kinematically treated as incompressible (volume
preserving) and the kinematic viscosity are given by α [K−1] and ν [L2T−1], respec-
tively. These are conditions of a Boussinesq fluid, for which the velocity field is
treated as solenoidal even though the density varies as Δρ = −αΔTρ0.

Observations show that for sufficiently small values of ΔT the fluid between the
two plates is at rest. In this thermal regime of the fluid layer the transport of heat
from the lower to the upper plate is by thermal conduction. When the temperature
difference ΔT of the plate is sufficiently high, i.e., when ΔT reaches a threshold
value, ΔTthres, a convection flow (in cells, rolls or more complex bounded regions) is
formed. The structure of this convective flow depends upon the initial conditions and
the side boundaries, which hold the fluid between the two plates together. When the
side walls are very far away (theoretically infinitely far away), convective rolls with
horizontal axes are preferentially formed; if side boundaries are present, triangular,
hexagonal or more complex cells are established, in which the fluid is vertically
circulating as e.g. shown in Fig. 20.7. When the horizontal extent of the container
carrying the fluid is relatively small the cells are still bounded, but take non-regular
forms.

9For brief biographies of Lord Rayleigh and Henri Claude Bénard, see Figs. 20.5 and 20.6,
respectively.
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Fig. 20.5 JohnWilliamStrutt, 3.BaronRayleigh (12.Nov. 1842–30. June 1919) (Left)
3. Baron Rayleigh; (right) Ilya Lisenker, Terese Decker Team-3 Spring 2010. Rayleigh–
Benard convection cells visualized in a mixture of olive oil and canola oil with aluminum
and magnesium filings

JohnWilliamStrutt, 3.BaronRayleighwas a physicist, who, withWilliamRamsay,

discovered argon, an achievement for which he earned the Nobel Prize for Physics in 1904.

He also discovered the phenomenon now called Rayleigh scattering, which can be used to

explain why the sky is blue, and predicted the existence of the surface waves in solid bodies,

now known as Rayleigh waves, see Rayleigh’s textbook, ‘The Theory of Sound’, [35, 36].

JohnWilliam Strutt, suffered from frailty and poor health in his early years. He attended

the University of Cambridge in 1861 where he studied mathematics at Trinity College. He

obtained a Bachelor of Arts degree in 1865, and a Master of Arts in 1868. He was subse-

quently elected to a Fellowship of Trinity College. In 1873, on the death of his father, John

Strutt, 2nd Baron Rayleigh, he inherited the Barony of Rayleigh. He was the second

Cavendish Professor of Physics at the University of Cambridge, from 1879 to 1884 (follow-

ing James Clerk Maxwell). He first described dynamic soaring by seabirds in 1883, in

the British journal Nature. From 1887 to 1905 he was Professor of Natural Philosophy at

Cambridge.

Lord Rayleigh was elected Fellow of the Royal Society in June 1873, and served as

its president from 1905 to 1908. In 1919, Rayleigh served as President of the Society

for Psychical Research. He died on 30 June of that year and was succeeded, as the 4th

Lord Rayleigh, by his son Robert John Strutt, another well-known physicist. Lord

Rayleigh’s scientific works are not only immense by substance but equally also by vol-

ume. His scientific collected papers fill six volumes and have been re-published in 2011 by

Cambridge University Press [37].

The analysis in the main text (pp. 559–566) gives a flavor of the simplest possible plane

convective analysis ofRayleigh’s computations, and the above panel shows a geometrically

more complex visualization.

The text is based on www.wikipedia.org

www.wikipedia.org
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Fig. 20.6 Henri Claude Bénard (25. Oct. 1874–29. March 1939) Two kinds of Bénard
convection cells can frequently be distinguished in satellite images, open cells (right) and
closed cells (middle). Courtesy Environmental Technology Laboratory, Boulder, Colorado

Henri Claude Bénard was a French physicist who focused his research activities on

experimental fluid dynamics. He is best known for the discovery of the regular convective

cells, which are known today as Bénard cells. Their formation as a bifurcation from a

motionless configuration have been theoretically predicted for a Boussinesc fluid by Lord

Rayleigh. This is the reason why this bifurcation phenomenon is referred to as Rayleigh–

Bénard convection.

Henri Bénard studied between 1894 and 97 at the ÉcoleNormale Superieure and graduated

with doctorate at the Collège de France and with support from Marcel Brillouin, [3–6].

The second part of the dissertation dealt with the rotation of the polarization plane in sugar

solutions; this work had practical implications in measuring the concentration of sugar, e.g.

in grapes [27, 39].

In 1902 Bénard taught in Lyon and started there work that led to an early understanding of

what later became known as von Kármán vortex street [7]. This led to a priority dispute in

the 1920s between Henri Bénard and Theodore von Kármán. As a consequence Henri

Bénard revisited his work on thermal convection, claiming agreement between his results

and the theory of Lord Rayleigh [34].

Henri Bénard became in 1910 professor at the University in Bordeaux and in 1922 Maitre
de conférences (habilitation) at the Sorbonne with promotion to full professor in 1926. In
1929 he became head of the Laboratory of Hydrodynamics. Moreover, in 1935 he was
called to the Committee for Atmospheric Turbulence and 1937 professor at the École de l’
Aéronauticque.

The text is based on www.wikipedia.org

We conjecture that the transition from the conductive to the convective regime
can be described by a functional relation of the form

f (H, g, ν,α,ΔT ,DT ) = 0, (20.50)

www.wikipedia.org
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Fig. 20.7 Rayleigh–Bénard cells canmost simply bemade visible in shallow shells using silicon
oil and aluminium powder. They are, however also briefly visible when eggs are fried (shortly before
the white of the egg is coagulating) [Courtesy of M.G. Velarde and C. Normand [47]]

in which H is the gap width and g the gravity constant [9.81m s−2]; ν,α,DT are the
kinematic viscosity, the coefficient of thermal expansion and the thermal diffusivity,
all assumed to be constant. ΔT is the temperature difference between the plates.
The transition of the conductive, motionless flow state to the convective motion can
physically easily be understood as the heavier and colder fluid at the top tends to
form lobes. These lobes will eventually ‘break through’ and induce a downward
convective motion that is counterbalanced for mass balance reasons by an upward
motion of warmer fluid merging into a cell like rotation of the fluid.

The dimensional matrix of the variables (20.50) is given by

H g ν α ΔT DT

M 0 0 0 0 0 0
L 1 1 2 0 0 2
T 0 −2 −1 0 0 −1
K 0 0 0 −1 1 0

det | · | 	= 0, (20.51)

in which M,L,T ,K stand for ‘mass’, ‘length’, ‘time’ and ‘temperature’ (Kelvin).
This matrix has rank 3. Thus, there exist three independent Π -products, which may
be selected as

Ra = g α ΔT

DT ν
H3, R =

√
gH H

ν
, Pr = ν

DT
. (20.52)

Ra is the so-calledRayleigh number,R is aReynolds number andPr thePrandtl
number. It follows that the criticalRayleigh number, identifying the transition from
the conductive to the convective regime is given by a relation of the form
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Ra = f (R,Pr). (20.53)

It is likely that the Reynolds number does not influence the bifurcation locus in a
given problem simply since R is formed with the shallow water velocity

√
gH and

the gap width as the characteristic length. It seems, indeed, to be plausible that this
velocity is not a relevant quantity in bounded, primarily convection driven flow. So,
(20.53) reduces to

Ra = f (Pr), (20.54)

which is likely a sufficient relation to describe the bifurcation from the conductive
to the convective thermo-viscous flow state.

This understanding is corroborated if one tries to explicitly determine the function
f (Pr) in (20.54). To this end, consider adensity preserving fluid in the Boussinesq
approximation, i.e., a kinematically incompressible fluid, whose gravity force may
nevertheless vary due to the thermal expansion of its particles under temperature
changes. Consider a fluid, in which the temperature has small variations ΔT about a
constant value T0, leading to variations in the local fluid density.

T = T0 + ΔT −→ ρ = ρ0 + Δρ. (20.55)

In the so-called Boussinesq approximation the density change Δρ due to the tem-
perature change ΔT is given by

Δρ = −α ΔTρ0, (20.56)

in which α is the (constant) coefficient of thermal expansion; it implies a change in
the gravity force

Δg = −ρ0 α ΔTg, (20.57)

in which g is the (constant) value of the gravity acceleration, ‖g‖ = 9.81 [m s−2].
The field equations of a Boussinesq fluid subjected to small temperature changes
are now given by

Mass: ∇ · u = 0,
Momentum: ρ0

{
∂u
∂ t + (grad u) · u

}

= −∇ p + η∇2u + ρ0(1 − αΔT)g,

Energy: ∂ T
∂ t + (grad T)u = DT∇2 T ,

(20.58)

where u,T , p are the velocity, temperature and pressure fields, η is the dynamic
viscosity and DT = constant = κ/(ρ0c) is the coefficient of thermal diffusion.

Consider the fluid to be between two parallel horizontal plates, Fig. 20.8; assume,
moreover, that the basic state is motionless, the lower plate is held at the temperature
T0, whilst the upper plate temperature is monitored to be kept at T0−ΔT ,ΔT = βH,
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INSTABILITYH

x

z

y z = 0; T = T0

z = H ; T = T0 − βH

Fig. 20.8 Basic state (left) with no motion, but a vertical temperature gradient, (right) convective
regime with bounded cells (rolls, finite cells) of convective fluid motion

z

z = 0

z = H

T = T0 ; u = v = w =0

T = T1 ; u = v = w = 0

fixed wall

T = T0 ; u = v = w = 0

T = T1 ; stress free (see text)

fixed wall

T = T0 ; stress free (see text)

T = T1 ; stress free (see text)

free fluid surface

fixed wall free fluid surfacefree fluid surface
(a) (b) (c)

Fig. 20.9 Combinations of boundary conditions, which can in principle, be applied to the layer
of liquid. The combinations of a, b can experimentally be realized, the situation in panel c is not
experimentally realizable and, therefore, somewhat artificial

where H is the gap width. We, thus, assume that the temperature regime is given by
β = ΔT/H.

The fluid system (20.58) is subjected to boundary conditions. Those of the temper-
ature are prescribed, but the mechanical boundary conditions depend upon the kind
of mechanical support. At a fixed wall without slip one may request u = v = w = 0,
whilst at a free fluid surface one has stress free conditions. These can be combined
to the boundary conditions sketched in Fig. 20.9.

The base state with no motion and linear temperature profile in the vertical direc-
tion can be assumed to be given by

uB = 0 and TB = T0 − βz, (20.59)

and, indeed, the field equations (20.58) are satisfied for (20.59), if

dpB
dz

= −ρ0g(1 + αβz) −→ pB = pB(z) = −ρ0g
(
z + 1

2 αβ z2 + p0
)
, (20.60)

in which p0 is the (constant) pressure at the lower boundary z = 0. In the ensuing
analysis (20.60) will not be needed any further.

The linearized perturbed state will be a fluid state beyond the base state,

u = uB + ũ(x, t), T = TB(z) + T̃(x, t), p = pB(z) + p̃(x, t). (20.61)

If this ansatz is substituted in (20.58), nonlinear terms in the tilde-quantities are
systematically omitted and if (20.60) is observed, the linearized governing equations
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Mass: ∇ · ũ = 0,

Momentum: ρ0
∂ ũ
∂ t = −∇p̃ + η ∇2ũ − ρ0αT̃g,

Energy: ∂T
∂ t + (∇TB) · ũ = DT∇2T̃

(20.62)

are obtained, or in Cartesian component form

Mass:
∂ ũ

∂ x
+ ∂ ṽ

∂ y
+ ∂ w̃

∂ z
= 0, (20.63)

Momentum:
∂ ũ

∂ t
= − 1

ρ0

∂ p̃

∂ x
+ ν∇2ũ,

∂ ṽ

∂ t
= − 1

ρ0

∂ p̃

∂ y
+ ν∇2ṽ, (20.64)

∂ w̃

∂ t
= − 1

ρ0

∂ p̃

∂ z
+ ν∇2w̃ + αgT̃ ,

Energy:
∂ T̃

∂ t
− βw̃ = DT∇2 T̃ . (20.65)

Here, ν = η/ρ0 is the (constant) kinematic viscosity.
Equations (20.63)–(20.65) constitute five equations for the unknowns ũ, ṽ, w̃,

p̃, T̃ . They will now be reduced to two equations for the variables w̃ and T̃ . Taking

∂

∂x
(20.64)1 + ∂

∂y
(20.64)2 + ∂

∂z
(20.64)3

and using div ũ = 0, yields

0 = − 1

ρ0
∇2p̃ + α g

∂ T̃

∂ z
. (20.66)

The components ũ, ṽ have disappeared from (20.66); to eliminate the pressure, we,
thus, apply the operator ∇2 to Eq. (20.64)3 and then substitute in the emerging equa-
tion ∇2p̃ from (20.66). This computation yields

∂

∂ t

(∇2w̃
) = α g

(
∇2

HT̃
)

+ ν∇4w̃, (20.67)

in which∇2
H is the horizontal Laplace operator. Equations (20.65) and (20.67) consti-

tute a system of partial differential equations (PDE) for w̃ and T̃ , that was attempted
to be constructed.

Solutions to this system will be sought by the normal mode analysis. To this end,
the following test solution is tried
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w̃(x, y, z, t) = f (x, y)w̄(z) exp (st),

T̃(x, y, z, t) = f (x, y)θ(z) exp (st).
(20.68)

The variable s describes the growth rate and may, in general be complex valued. If
Re(s) > 0, the functions w̃ and T̃ will grow and eventually become exponentially
unbounded. This describes the instability. If Re(s) < 0, the solution (20.68) will die
out in time: The ground state will be stable. For a complex valued s the functions w̃

and T̃ are oscillatory (neutral stability, when Re = 0) plus exponentially decaying
or growing, depending whether the real part of s is positive or negative.

The functions w̄(z) and θ(z) describe the mode structure of w̃ and T̃ in the z-
direction. Finally, f (x, y) describes the horizontal structure of w̃ and T̃ .

Substituting the functional representations (20.68) into (20.65) and (20.67) yields
the following partial differential equations for f and w̄:

s
{(∇2

H f
)
w̄ + f w̄′′} = αg

(∇2
H f

)
θ + ν

{[(
∇2

H + ∂2

∂ z2

)2

f

]

w̄

}

, (20.69)

sf θ − βf w̄ = DT
{(∇2

Hf
)
θ + f θ′′} , (20.70)

in which primes denote differentiations with respect to z. Equation (20.70) is better
written as

sθ(z) − βw̄(z) = DTθ(z)

(∇2
H f

f

)
+ DTθ′′(z). (20.71)

This equation turns into an ordinary differential equation, if one chooses

∇2
H f

f
= constant = −a2. (20.72)

With this choice, Eq. (20.69) takes the form

s
{−a2 f w̄ + f w̄′′} = α g

(−a2f
)
θ + ν

(
d2

dz2
− a2

)2

w̄f ,

s

ν

(
d2

dz2
− a2

)
w̄ = −αga2

θ

ν
+

(
d2

dz2
− a2

)2

w̄,

(
d2

dz2
− a2

)(
d2

dz2
− a2 − s

ν

)
w̄ = αga2

θ

ν
,

(20.73)

and (20.71) reduces to

(
d2

dz2
− a2 − s

DT

)

︸ ︷︷ ︸
O

θ = − β

DT
w̄. (20.74)
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Pre-multiplying (20.73) with the operator O, finally, yields the single sixth order
linear ordinary differential equation (ODE)

(
d2

dz2
− a2 − s

DT

)(
d2

dz2
− a2

)(
d2

dz2
− a2 − s

ν

)
w̄ = −a2αgβ

DTν
w̄ (20.75)

for w̄. It is seen that the choice (20.72) has led to a single ODE of the sixth order in
the variable z.

Introducing the dimensionless variables

ẑ = z
H , d

dẑ = H d
dz ,

â = Ha, ŝ = s H2

DT
, ˆ̄w = H

DT
w̄

(20.76)

transforms (20.75) into

(
d2

dẑ2
− â2 − ŝ

)(
d2

dẑ2
− â2

)(
d2

dẑ2
− â2 − ŝDT

ν

)
ˆ̄w = − â2αH4gβ

DTν
ˆ̄w

or

(
d2

dẑ2
− â2 − ŝ

)(
d2

dẑ2
− â2

)(
d2

dẑ2
− â2 − ŝ

Pr

)
ˆ̄w = −â2Ra ˆ̄w, (20.77)

in which

Pr = ν

DT
, Ra = αH4gβ

DTν
. (20.78)

TheRayleigh number contains the applied thermal gradient β and is used as control
parameter, to be externally varied by the experimenter. The Prandtl number is a
pure material parameter. Table 20.2 gives some values. As would be expected (and
will be corroborated below), for small values of Ra (=small values of β), the base
state is stable, but for large values of β convection (in form of rolls or cells) will
occur. The sixth orderODE(20.77) requires six boundary conditions (i.e. three at each
boundary), which allmust be expressed in terms of w̄, which is difficult in the realistic
cases shown in panels a and b of Fig. 20.9. To illustrate themathematical steps, which
must be taken, consider the case of panel c. In this (physically rather unrealistic) case,
when both fluid surfaces are open to air, we let the boundary conditions be given by

ˆ̄w = 0,
d2 ˆ̄w
dz̄2

= 0,
d4 ˆ̄w
dz̄4

= 0, at ẑ = 0. (20.79)

This was the choice, which Lord Rayleigh took in 1916 [34]. For a detailed
analysis see e.g., S. Chandrasekhar [15]. Because (20.77) and (20.79) contain
only even z-derivatives of the function ˆ̄w and Eq. (20.77) has constant coefficients
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Table 20.2 Approximate values for Prandtl numbers

Sun Liquid metals Gas Water Oils Earth mantle

−8 −2 0 7 2 23

and the boundary conditions (20.79) are repetitive with even derivatives, the function

ˆ̄w = A sin(nπẑ), n = 1, 2, 3, . . . (20.80)

will solve this two-point-boundary-value problem, provided that

(−n2π2 − â2 − ŝ
) (−n2π2 − â2

) (−n2π2 − â2 − ŝ

Pr

)
A = −â2RaA, (20.81)

valid for any value of the amplitude A. If we introduce the abbreviation

λ = n2π2 + â2, (20.82)

then (20.81) takes the form

(
ŝ + λ

) ( ŝ

Pr
+ λ

)
= â2Ra

λ
. (20.83)

This is a quadratic equation for ŝ with the solution

ŝ = −λ(Pr + 1)

2
± 1

2

√

λ2(Pr + 1)2 + 4Pr

(
â2Ra

λ
− λ2

)
. (20.84)

Now, if ŝ is real (which we assume) then ŝ is positive provided that

â2Ra

λ
− λ2 > 0 =⇒ Ra > (Ra)n(â) = λ3

â2
= (n2π2 + â2)3

â2
. (20.85)

Interestingly, this result is independent of the Prandtl number. It corresponds in
(20.54) to f (Pr) = const. For Ra = (Ra)n, ŝ = 0, and there is no growth of w̃

with time. These are conditions of neutral stability. These conditions are plotted
in Fig. 20.10. As the Rayleigh number increases from a value below (Ra)c the
base state (no convection, fluid at rest) first becomes unstable at Ra = (Ra)c to a
convective state, described by the eigenmode withmode number n = 1 in the vertical
direction and âc. (Ra)c and âc are found by minimizing (Ra)1(â) with respect to â.
The result is
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Fig. 20.10 Curves of neutral
stability for Ra against â for
n = 1, 2, 3

â

Ra
n = 3

n =2

n =1

âc

(Ra)c

â2c = π2

2
, (Ra)c =

(
π2 + π2

2

)3

(
π2

2

) = 27

4
π4 = 657.5. (20.86)

This is the most unstable mode. Its distribution in the z-direction is ˆ̄w = sin(πz),
and the variation of this mode in the (x, y)-plane is given by Eq. (20.72), or

∇2
H f + a2c f = 0. (20.87)

This equation has many possible solutions, all of the same energy level. The simplest
of these has no y-dependence and is given by

f (x, y) = cos

(
2πx

L̂x

)
, where

4π2

L̂2
x

= â2c , (20.88)

which yields with (20.85) L̂x = √
8. These roll waves have their axes parallel to the

y-axis and are periodic in the x-direction with period as shown in Fig. 20.11.

x

z

z = H

z = 0

Lx Lx

Fig. 20.11 Roll wave solution of the most unstable Rayleigh–Bénard problem with free-free
boundaries
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20.3 Theory of Physical Models

In this section we will be concerned with the rules of building physical models. We
first will present a set of propositions which provide guidelines, which ought to be
observed, if downscaling of physical processes to smaller scales will lead to results of
model experiments which optimally mimic corresponding processes at the prototype
scale. In a second subsection it will be shown, how differential equations derived for
certain processes can help in the interpretation of the complexity of processes for
which they have been designed. We follow in parts Hutter and Jöhnk [20] and
Hutter et al. [21].

20.3.1 Analysis of the Downscaling of Physical Processes

In model theory one differentiates between geometrically similar and geometrically
distorted models. If practically possible, models are constructed in geometrically
similar reduction; such models are obtained, if all three space directions are reduced
by the same scale.Distortedmodels are obtained if this is not the case; frequent cases
are super-elevated models; this is almost always necessary in hydraulics, physical
oceanography and physical limnology, when the water depths in the model become
so small that effects of surface tension can be recognized and then would influence
the model processes, whilst this is not so at the prototype size.

We quote from [20]. “Generally, there exists a point to point correlation between
themodel and the prototype. In geometrical language, corresponding points between
model and Nature (prototype) are called homologous points. A set of homologous
points will lead to homologous regions and domains. If time dependent processes are
analyzed, onemust introduce the notion of homologous times. To this endNewton’s
second law is used; accordingly, differences of times are declared as homologous,
if a material point on homologous trajectories passes two homologous points at
homologous times. Analogously, one can speak of homologous distributions ofmass,
velocities, moments of inertia, etc. When constructing models it is, however, not
necessary that all the homologies are preserved. One may restrict oneself to those
which have an influence on the physical quantity under study. This, for instance,
is so for an airplane wing of which the drag force is sought; it is not needed for
its determination to reproduce a homologous distribution of mass, however, this is
necessary if one wishes to determine the yield stress of the wing or its behavior in
flow induced vibrations, etc.

Before a problem is subjected to a model study, it is advantageous to first con-
template about which variables might have an influence upon the processes to be
studied. Via a dimensional analysis one thus determines the number of dimension-
less products, which correspond to the chosen variables. IfΠd denotes the dependent
dimensionless variable and Π1, . . . ,Πp the independent dimensionless products,
then
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Πd = f (Π1, . . . ,Πp) (20.89)

gives the physical variable to be analyzed as a function of all dimensionless variables
Π1, . . . ,Πp.

If a model has to correctly reproduce the processes arising in the prototype, then
the values of Π1, . . . ,Πp are not allowed to change when going from the proto-
type conditions to those of the model: for only then the function f (Π1, . . . ,Πp) for
Π1, . . . ,Πp will deliver the same result for the dependent variable. If such conditions
are satisfied, the model is called completely similar. Therefore:

Proposition 20.1 Amodel is capable to reproduce a process inNaturewith complete
similarity, if all the dimensionless products which describe the process, have the same
values in the model as well as in Nature. �

Even though this theorem embraces the entire content ofmodel similarity, it contains
a club-foot, it namely supposes that the engineer or physicist recognizes all variables
which describe a physical process. This need not be the case, if the insight into the
physical problem is incomplete. Conversely, it may occasionally not be possible to
map a process in Nature completely similarly to the model, because one does not
always succeed to reproduce a process in Nature at small scale and thereby preserve
all values of the Π -products in the [above proposition]. With utmost rigor this is in
fact [virtually] never possible as we shall shortly see. Physical processes in Nature
and in the model can completely similarly be mapped into one another at least
mathematically, if all Π -products that describe the processes remain invariant in the
mapping from Nature to model. This is only successful in a rear number of cases;
one is regularly forced to hold only a reduced number of Π -products invariant when
performing the mapping from the prototype to the model and to let the remaining
Π -products vary as dictated by the laws of the mapping. In these circumstances it
is hoped, and often this can also be demonstrated, that the Π -products which do not
remain invariant in the mapping will not, or at least not much, influence the physical
processes that are studied. If they nevertheless should do this, then one speaks in
such cases of scale effects. If a process depends only onΠ -products which all remain
invariant in a model mapping, then this process is called scale invariant”, [20].

Early in this chapter the drag force exerted on the hull of a ship was determined
and it was made clear that the dimensionless drag coefficient is a function of the
Froude and Reynolds numbers,

CD = CD(Fr,Re) with Fr = V 2

g L
, Re = V L

ν
, (20.90)

in which V,L, g, ν are the velocity of the ship, a characteristic length, the gravity
constant and the kinematic viscosity of the water. How can this drag coefficient be
determined by use of a scaled model?

Let overbarred quantities denote physical quantities in themodel; then, invariance
of the Froude number in the mapping from the prototype to the model requires
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V 2

g L
= V̄ 2

ḡ L̄
−→ λV = V̄

V
=

√
L̄

L

√
ḡ

g
= √

λLλg. (20.91)

Here, we have introduced length-, gravity- and velocity scales,

λL := L̄

L
, λg := ḡ

g
, λV := V̄

V
. (20.92)

Thus, Froude number invariance has led to the relation

λV = √
λL λg. (20.93)

λL is the scale of length of the geometrically similar model; its gravity is reduced
by the gravity scale λg and in Froude similitude the scale for velocity then follows
the rule (20.93); it is no longer freely assignable. With the dimensional equation
[T ] = [L/V ] also the scale for time is deducible

λT = T̄

T
= L̄

V̄

V

L
= L̄

L

V

V̄
= λL

1

λV
=

√
λL

λg
(20.94)

as is the acceleration scale

λA = Ā

A
= V̄

V

T

T̄
= λV

1

λT
= √

λL λg

√
λg

λL
= λg. (20.95)

For most situations on the planet Earth the gravity constant may be regarded as
constant (λg = 1), or else artificial measures need be taken (experiments under
microgravity, on a centrifuge).

For invariance of the Reynolds number one must have

VL

ν
= V̄ L̄

ν̄
−→ λV = V̄

V
= L

L̄

ν̄

ν
= 1

λL
λν, (20.96)

where the viscosity scale is defined as

λν := ν̄

ν
. (20.97)

Thus, the velocity scale is given here by

λV := λν

λL
, (20.98)
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which is the ratio of the viscosity scale divided by the length scale; time and
acceleration scales are here given by

λT = T̄

T
= L̄

L

V

V̄
= λL

1

λV
= λ2

L

λν
,

λA = Ā

A
= V̄

V

T

T̄
= λV

1

λT
= λν

λL

λν

λ2
L

= λ2
ν

λ3
L

.

(20.99)

These transformations are summarized in Table20.3.
Models for which the Froude (Reynolds) number is a scale invariant are called

Froude (Reynolds) models; analogously, the corresponding similarity property is
called Froude (Reynolds) similitude. Complete similarity for (20.90) requires that
Fr and Re are simultaneous mapping invariants. This requires additionally that the
velocity scales are the same, namely

√
λLλg = λν

λL
−→ λ2

ν = λ3
Lλg. (20.100)

It is easy to verify with the aid of Table20.3 that also time and acceleration scales are
the same in this case. However, it is very unlikely that this can practically be achieved.

Indeed, with λg = 1 relation (20.100) requires that λν = λ
3/2
L . The viscosity scale

must be the 3
2 -power of the length scale; experimentswould, thus have to be conducted

with a fluid whose viscosity would have to be adjusted to the length scale. “For
Froude similitude and when λg = 1 homologous velocities and time differences
are scaled by the square root of the length scale, whilst the acceleration remains
the same. By contrast, when Reynolds similitude is implemented with λν = 1,
homologous velocities in the model are larger than in the prototype by the factor of
λ−1
L . Homologous time differences are shortened by the square of the length scale

and accelerations are enlarged by the third power of the inverse length scale”, [20].
“To develop the general theory, let us embed Nature and model in Euclidian

spaces with Cartesian coordinates (x, y, z) and (x̄, ȳ, z̄), respectively. Homologous

Table 20.3 Rules of transformations for Froude and Reynolds similitude if the length scale is
λL , the gravity scale λg and the viscosity scale λν

Froude similitude Reynolds similitude

Length λL λL

Velocity
√

λLλg
λν

λL

Time

√
λL

λg

λ2
L

λν

Acceleration λg
λ2

ν

λ3
L
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points and homologous times are then given by

x̄ = λx x, ȳ = λy y, z̄ = λz z, t̄ = λt t. (20.101)

λx, λy, λz are the scale factors in the spatial directions x, y, z and λt is that for time
t. For λx = λy = λz the model is geometrically similar, else, the model is distorted.
λt can be chosen as the ratio of the times that elapse when a material point traces the
distance between two homologous points in the model and prototype, respectively.
If f (x, y, z, t) and f (x̄, ȳ, z̄, t̄) describe a physical process in Nature and in the model,
respectively, then the principal expression of similarity is:

Definition 20.3 The function f is called similar to the function f̄ , if the ratio f̄ /f
remains unchanged when for the arguments (x, y, z, t) and (x̄, ȳ, z̄, t̄) homologous
points and times are chosen. The ratio f̄ /f = λf is called the scale of f . �

In the following we shall discuss the various rules of similitude. Important are the
notions of kinematic and dynamic similitude.

Definition 20.4 Two systems are called kinematically similar, if their motions are
similar, i.e., if homologous particles are to be found at homologous times in homol-
ogous points. �

If kinematic similarity prevails, then corresponding velocities and accelerations
are similar. The scale factors are easily computable from

ū = d x̄

d t̄
, v̄ = d ȳ

d t̄
, w̄ = d z̄

d t̄
. (20.102)

Since d x̄ = λx d x, . . . , d t̄ = λt dt one obtains

ū = λx

λt

d x

dt
= λx

λt
u, v̄ = λy

λt
v, w̄ = λz

λt
w. (20.103)

The scale factors for the velocities are therefore

λu = λx

λt
, λv = λy

λt
, λw = λz

λt
, (20.104)

and for the accelerations one obtains in an analogous manner

λax = λx

λ2
t
, λay = λy

λ2
t
, λaz = λz

λ2
t
. (20.105)

This should show how scales for homologous quantities are computed. This brings
us now to the
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Definition 20.5 Two systems are called dynamically similar if homologous parts
are subject to similar forces, i.e., if the force scale is invariant. �

Basis for this definition is Newton’s second law. So, with similar distributions of
masses according to m̄ = λm m there follows from Newton’s law

F̄x = m̄āx, F̄y = m̄āy, F̄z = m̄āz, (20.106)

or
F̄x

Fx
= m̄āx

max
= λm

λx

λ2
t
, . . . . (20.107)

In Newtonian mechanics the scale factors for the forces are thus given by

λFx = λm
λx

λ2
t
, λFy = λm

λy

λ2
t
, λFz = λm

λz

λ2
t
. (20.108)

The scales for the velocities and accelerations are not freely assignable, but must be
computed from the scale factors of geometry and time. Analogously, for dynamic
similitude the scale factor for the forces is obtained automatically from the scale
factors for length, time and mass.

It has already been said that in a model experiment of a fluid mechanical problem
the Froude and Reynolds numbers cannot simultaneously be held invariant. Thus,
we ask for a rule, which will allow us to select which of the two numbers should be
kept invariant in a particular situation to reach at least approximate similitude. This
decision is facilitated, if one askswhether the gravity force has a decisive influence on
the flow processes. The acceleration of the Earth arises namely only in the definition
of the Froude number. If in a hydrodynamic problem the bounding walls are rigid
and prescribed as is e.g. the case for pipe flow that is driven by pumps, then the
piezometric pressure P = p + ρ g z as a whole is the unknown quantity (and not p
and ρ g z individually). Gravity does not arise as an independent variable in this case;
it follows that pipe flow is governed by Reynolds similitude. On the other hand, if
the fluid is bounded by a free surface, then the variable z in the piezometric pressure
is an unknown and gravity will affect the flow field. If, in addition surface tension
is active to the extent that its effect is recognizable, then besides the Froude and
Reynolds numbers also theWeber number will affect the similarity. We thus have
the following:

Rule: For dynamical ‘similitude’ of flows of density preserving fluids it is sufficient
in a model reproduction that

• in regions with fixed boundaries and geometrically similar boundary values the
Reynolds number is kept invariant, whilst

• in regions with free boundaries and geometrically similar boundary values the
Reynolds, Froude and (possibly) Weber numbers must be the same.
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Now, we have already seen, when discussing the drag force on a ship, that simulta-
neous satisfaction of the invariance of the Froude and Reynolds numbers is not
possible. If one therefore imputes Froude similitude, then the Reynolds number
will assume a different value in the model than in Nature. However, if the quan-
tities to be measured should not depend upon the Reynolds number (or at least
not in observable magnitude), then Froude similitude is applicable without special
precaution. Else, i.e. when both Froude and Reynolds effects are of compara-
ble importance, scale effects will arise with which one may cope as follows: One
must at least build two Froude models with differing scales; with these, identical
experiments are performed, each associated with its own Reynolds number. With
interpolation/extrapolation (linear in this case) one can find in this way functional
dependences of any measured quantity upon the Reynolds number. This principle,
naturally, can also be applied when models with several scales are applied for non-
linear interpolation, or when several Π -products arise, [20]. Because construction
of laboratory models is generally costly, one is often forced to dispense with the
construction of models at two (or more) different scales.

20.3.2 Applications

Example 20.10 Sediment Transport in a Shallow Lake
Consider sediment transport in a very shallow lake or in a lagoon. Depending on
the strength of the circulation due to wind, the primary horizontal current might
erode grains from the lake bottom and, thus, generate a variable load of suspended
sediments in the lake water. It is rather intuitive that the erosion inception of the
sediment in the bed will likely depend on the shear traction exerted on the lake side
of the basal surface τc, the true densities ρs and ρf , of the sediment grains and the
fluid, and the concentration cs, gravity constant g, fluid viscosity ν, and the nominal
diameter of the sediment grains d. So, inception of sediment transport can likely be
described by an equation

f (τc, ρs, ρf , g, d, ν, cs) = 0 (20.109)

evaluated at the bed surface. We shall employ the identifications y = τc, x1−6 =
(ρs, ρf , g, d, ν, cs). Exclusive cs, which is already dimensionless, the dimensional
matrix of the variables (20.109) is given by

τc ρs ρf g d ν
M 1 1 1 0 0 0
L −1 −3 −3 1 1 2
T −2 0 0 −2 0 −1

det | · | 	= 0
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Fig. 20.12 Albert Frank Shields (26. June 1908–1. July 1974)

Albert Frank Shields, was born in Cleveland, Ohio. Following graduation from high

school, he worked for 1 year to earn money to support his further education. In 1927 he

enrolled at Cornell University [Ithaca, N.Y.] and remained there for two semesters before

transferring to Stevens Institute of Technology [Hoboken, New Jersey], where he obtained

his bachelor’s and master’s degrees, both in mechanical engineering, in 1931 and 1933,

respectively [23]. In 1933, he received a fellowship of the German Academic Exchange

Service of the Technical University (TH) Berlin. His plans included pursuit of research at

the Prussian research Institute for Hydraulic Engineering and Shipbuilding (PRI, Director:

ProfR. Seifert) that would serve as the basis for his dissertation, which would be submitted

to TH Berlin for the degree of Doctor of engineering [23].

Kennedy reports in his ‘The Albert Shields Story’ [23] that Shields could not pursue a

thesis on his favored subjects, which he had been dealt with in his master’s degree. ‘The

only available research assignment that would not entail some expenses that Shieldswould

have to bear, was concerned with sediment transport by river flow, and in particular bed-load

transport, which he took up. The fortunate circumstance was that two earlier phases of the

PRI bed-load investigation had been conducted by two other American Freeman scholars,

Hans Kramer (1894–1957) andHugh J. Casey (1898–1981) with their Ph. Dissertations,

[16, 24, 25]. Unfortunately, the American master’s degree was not recognized as equivalent

to the German Diploma, preventing pursuing the doctoral degree. According to [23], the

PRI director, Professor Seifert, reluctantly allowed Shields to discontinue his research in

order to work toward his Diploma.

His missing ‘Diplomarbeit’ (master’s thesis) was done under the famous professor H. Föt-

tinger (1877–1945) and consisted of truly original work done under the supervision of Dr.

Weinig [50]. However, Shields needed to find a job to support his further research, which

he only found in the French Saarland region; furthermore, he missed to obtain professor

Seifert’s permission. The result was that professor Seifert forbade him access to PRI.

Fortunately, after enough agony and humiliating apologies, see [23], the thesis could be

completed; the exam took place on May 30 1936 and the candidate passed with the score

‘gut bestanden’ (∼B−), for Shields a disappointingly low grade.
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Shields took after his degree quite some efforts in Europe and the US to find employment

in sediment transport, but had no luck. He found in 1937 a full time job with the S&S

Corrugated Paper Machinery Co. Inc., of Brooklyn, N. Y. He remained with this company

until retirement in 1973 and never returned to sediment transport research.

The text is based on www.wikipedia.org

and possesses the rank 3 and, therefore, gives rise to three independent dimensionless
products, e.g., together with Π4 := cs, we, thus, have

Π1 = τc

ρ̄ g d
, Π2 = ρs

ρf
, Π3 = (g ν)1/3d

ν
, Π4 = cs. (20.110)

ρ̄ may be a linear combination of ρs and ρf ; in fact, since the detritus layer is sub-
merged in the lake water, the proper density for the definition of Π1 is ρ̄ = ρs − ρf .
Moreover, since (g ν)1/3 has the dimension of a velocity, Π3 may be interpreted as
a particle Reynolds number. When written as Π3 = (g/ν2)1/3d, the prefactor of d
has the dimension of an inverse length. With this identification Π3 allows the inter-
pretation of a dimensionless particle diameter d∗. In the sediment transport literature
Π1 and Π3 are used in the forms

Π∗
1 = τc

(ρs − ρ) g d
= τc

Δ ρ g d
, Π∗

3 =
( g

Δ ν2

)1/3
d, Δ ≡

(
ρs

ρ
− 1

)
, (20.111)

where ρ is the mixture density. It is not difficult to see that for small mass fractions,
cs, the mixture density may approximately be replaced by ρf . We may now write

f (Π∗
1 ,Π2,Π

∗
3 ,Π4) = 0 or

τc

Δ ρ gd
= f̃ (Π2,Π

∗
3 ,Π4). (20.112)

The number of variables is now reduced from 7 to 4. However, even further reduction
is possible. For sediment transport in the geophysical environment Π2 is very nearly
a constant on the entire Globe (∼2700/1000 = 2.7), and Π4 is very small (≤10−2);
so, the Π4-dependence may be dropped. Thus, we may write

θc ≡ τc

Δ ρ g d
= f̂ (Π∗

3 ) = f̂ (Re∗) = f̂ (d∗). (20.113)

θc is called (critical) Shields10. parameter (1936) [38] and represents the dimension-
less shear stress at which value the detritus bed, consisting of particles with diameter
d starts to erode. Had we omitted the fluid viscosity ν in the variable set, Π∗

3 (or Π3)

cannot be defined, and f̂ in (20.113) is necessarily constant in this case, so that

10For a brief biography of Albert Frank Shields, see Fig. 20.12.

www.wikipedia.org
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τc = const. × Δ ρ gd. (20.114)

The experimenter’s burden would simply be to determine this constant. The experi-
mental facts are, however, such that (20.114) is not correct. It follows, inclusion of
ν as a parameter in the list (20.109) is vital. Not including the Earth’s acceleration,
g is disastrous as it eliminates Π∗

1 and Π∗
3 , reducing (20.112)1 to f (Π2,Π4) = 0, a

meaningless expression, not able to describe erosion inception.
The result (20.113) does not say that this equation indeed describes the correct

dependence of the Shields parameter as a function of Re∗ or d∗. It only states that θc
is a function of Re∗ = d∗, if the original variables are chosen as given in (20.109) as
the basic variables describing erosion inception. The proof that (20.109) is a correct
functional relation for sediment transport inception must come from experiments
whichwill determine f̂ (Re∗). This has been done in numerous laboratory experiments
and involves the most prominent hydraulic engineers. Explicit formulae, which have
been validated by experiments, are summarized in [21], pp. 542 ff.

The identification of the function f̂ (Re∗) in formula (20.113) is the major achieve-
ment of experimental sediment transport research that is still going on. David
Vetsch [48] provides in Chap.2 of his dissertation a detailed review of the liter-
ature up to 2012. He restricts consideration to bed local transport in alluvial gravel-
bed rivers with particle grain sizes from sand (0.062 < d < 2mm), over gravel to
(2 < d < 60mm) to stones and small rock. Finer sediment in suspension—termed
wash load—are not considered as neither are exchange processes from suspended
to bed-load fractions and vice versa. ‘The definition of the point of inception [of the
sediment motion] is not clear and varies considerably among the various studies.
This means that in practical cases of turbulent flow there is no single criterion for the
beginning of movement of sediment. Buffington and Montgomery (1997) [11]
give an extensive review on the issue. There is also a large data collection available
by Brownlie (1985) [9] and Brownlie and Brooks (1981) [10]’, [48].

The criterion for incipient motion is usually determined by threshold quantities
such as a critical shear stress, a critical shear velocity or critical lifting force. It is
expressed as a separation line in a log-log plot of the critical Shields parameter
θc (a dimensionless critical shear stress) against the dimensionless particle diameter
d ≡ Re∗. Figure20.13, a copy of Fig. 2.2 from David Vetsch’s Ph.D dissertation
[48], collects experimental results of a number of authors stated in the inset of the
figure. They are identified by distinct symbols and colors. The following statements
may emerge from a scrutiny of the figure:

• The spread of the data suggests that the transition from non-moving to moving
bed load is not a sharp separation, but seems to occur in a regime of a certain band
width.

• Data taken by Shields (1936) are restricted to the regime 6 < Re∗ < 700;
similarly, data of Meyer- Peter–Müller (1948) have been collected for 60 <

Re∗ < 220. Bathurst et al.’s data of 1987 are restricted to the large Re∗-regime
for 900 < Re∗ < 9000. According to Vetsch [48] ‘Bathurst et al. [2] studied
the threshold condition for steep mountain streams. To point out the sensitivity of

http://dx.doi.org/10.1007/978-3-319-33633-6_2
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τ*c

Re*c

0.086

0.03

Bathurst (1987) et al. corr

Meyer-Peter & Müller (1948)

Shields (1936)

Yalin &  Karahan (1979) (turbulent)

Bathurst (1987) et al.

Yalin & Karahan (1979) (laminar)

Yalin & da Silva (2001)
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0.1 1 10 100 1000 10000
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Fig. 20.13 Selected experimental results of incipient motion characterizing the transition from no
(sediment) motion to motion. A facsimile copy of the Shields diagram from the latter dissertation
and the dissertation front page are shown by Kennedy in [23]. The colorized area covers the data
collected by Buffington and Montgomery (1997) [11]. The data are taken from [2, 28, 38, 51, 52].
Courtesy D. Vetsch c© Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH
Zurich, reproduced with permission

the approach for the calculation of the dimensionless shear stress [the value of the
Shields parameter] the results of the latter are drawn in Fig. 20.13 based on the
formula [open triangles] and according to that of Shields (denoted as Bathurst
(1987) corr.’ [filled triangles].

• ‘Investigation into fine sediments such as sand and silt cover the left part of the
Shields diagram for 0.1 < Re∗ < 10 (open and filled triangles in Fig. 20.13).
Yalin and Karnahan (1979) [51] extended the Shields diagram based on
measurements with focus on viscous dominated flow conditions, and they car-
ried out flume experiments with a glycerin-water mixture to obtain laminar flow
and with water for turbulent flow’, [48].

For numerical models, expressions by Van Rijn [45, 46] are frequently used to
calculate the critical shear stress to which a single formula has been developed.

The solid blue curve in Fig. 20.13 is an approximate mathematical proposition to
this by Yalin and Da Silva (2001) [52] and can be expressed as

θc = 0.13(D∗)−0.392 exp
(−0.015(D∗)2

) + 0.045
(
1 − exp (−0.068)D∗) ,

(20.115)

where

D∗ = d

(
Δ ρ g

ρf ν2

)1/3

. (20.116)
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Example 20.11 Heat Transfer by Forced Convection
Consider a rigid body (say a sphere or a cylinder or any other body) with nominal
diameter D immersed in a moving fluid and kept at rest. [As an example one may
think of hot wire anemometry to measure the velocity of the fluid.] Let the velocity
sufficiently distant from the body, subject to free stream be V . The transfer of heat
from the body to the fluidmay depend on the density ρ, kinematic viscosity ν, specific
heat c, on the conductivity of heat of the fluid κ and the temperature difference ΔT
between the body and the fluid distant from it. Of practical interest here is the amount
of heat transferred from the body to the water, expressed as power of working P, that
has to be prescribed by the body. For a sphere this may be written to be proportional
to the area of the section crossed by the fluid πD2, and the temperature difference
ΔT ,

P = απD2ΔT , (20.117)

where α is the heat transfer coefficient with dimension [MT−3K−1]. We shall now
seek a functional dependence of α on Π -products. The dimensional matrix of the
physical variables introduced above is given by

α V ΔT D ρ ν c κ
M 1 0 0 0 1 0 0 1
L 0 1 0 1 −3 2 2 1
T −3 −1 0 0 0 −1 −2 −3
K −1 0 1 0 0 0 −1 −1

det | · | 	= 0.

Its rank is 4, since the determinant of the indicated 4× 4 submatrix does not vanish;
thus, there are 4 independent Π -products, which may be selected as follows:

N ≡ αD

κ
Nusselt number,

Re ≡ V D

ν
Reynolds number,

Pr ≡ ν

κ
Prandtl number,

Br ≡ ρν V 2

κ ΔT
Brinkmann number,

so that N = f (Re,Pr,Br) or, if the fluid in the model is the same as in Nature,

N = f (Re,Br) −→ α = κ

D
f (Re,Br). (20.118)

This equation tells us, first, that the heat transfer coefficient depends, apart from
κD−1, on the Reynolds and Brinkmann numbers, of which a first proposal could
be a power law representation
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α = c
κ

D
Reβ

Brγ . (20.119)

Second, request of invariance of the Brinkmann number in a downscaling from
Nature to the model yields

λΔT = ΔT̄

ΔT
= V̄ 2

V 2
= λ2

V

Reynolds

model= λ−2
L , (20.120)

provided the same fluid is used in model and prototype and Reynolds similitude is
employed. However, this result is disappointing because it tells us that for λL = 10−1

the temperature scale must be λΔT = 102; temperature differences in the model
would have to be a factor of 100 times larger than in Nature, if heat transport in the
model obeys Reynolds similitude. Fortunately, in hot-wire anemometry α depends
only weakly on Re, since the flow around the sphere is turbulent; so, in a first
approximation itsRe-dependence may be dropped in (20.119) [β = 0]. Under those
circumstances λΔT may be chosen independently of λL; so, (20.120) does not apply
in this case.

A different but nevertheless related situation of heat convection prevails, when
e.g. heatedwater from a tributary enters amain river or a lake at its rivermouth.When
the spreading of the heat, discharged by the tributary into the lake in the vicinity of
the river mouth is modeled by laboratory experiments, the existence of the free water
surface gives rise to the addition in the dimensional matrix of the acceleration due to
gravity, g. This implies that N = f (Fr,Re,Pr,Br). Dependences on the Reynolds
and Prandtl numbers will be ignored as above, so thatN ≈ f (Fr,Br). Maintaining
Froude and Brinkmann numbers invariant now yields

λΔT = λ2
V

Froude

model= λL. (20.121)

This result is as disappointing as (20.120), because temperature differences between a
tributary and a lake are atmost∼10 ◦C, implying that forλL = 10−2 these differences
would have to be no larger than 0.1 ◦C in the model. This would require sensibly
acclimatized laboratories, even at less severe downscaling.

20.4 Model Theory and Differential Equations

In this section the position is taken that the differential equations, which are written
down to describe a certain class of physical processes, have been tested, so that their
appropriateness in describing the physical processes under consideration is without
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any doubt.11 Under such prerequisites, these equations and associated boundary con-
ditions are obviously dimensionally homogeneous, but, additionally, when written
in dimensionless form, disclose theΠ -products, which describe the physical content
of the equations. In this form, since the equations are by assumption describing a
certain class of processes, they provide, via the identifiableΠ -products, a possibility
to judge the adequacy of the down-scaling of certain processes described by them.

20.4.1 Avalanching Motions down Curved and Inclined
Surfaces

Interesting cases, in which the governing differential equations and boundary con-
ditions offer insight into the physics of the fluid mechanical processes, are the depth
integrated balance equations of mass and momentum in the shallow flow approxima-
tion as derived inChap.13 “Shallow rapid granular avalanches”. In the formulation of
Savage–Hutter the relevant equations are (13.106)–(13.111) with earth pressure
coefficients as listed in (13.97) and (13.98). These equations contain two dimension-
less constitutive parameters, the angle of internal friction, φ, and the bed friction
angle, δ, and two geometric parameters, ε, and λ, measures for the shallowness and
downhill curvature of the avalanching mass. For a model topography, geometrically
similar to the prototype, it is likely that these typical measures will not change in
the down scaling.12 If this assumption is correct, which shall now be assumed, then
the above stated equations contain no other Π -products than the angles of internal
friction, φ, and the basal friction angle, δ. This makes downscaling of a granular
avalanche flow particularly simple. For geometrically similar basal topographies of
the prototype and the model it suffices to perform experiments with laboratory sand
and bed surface roughness, which agree with that of the prototype. This may be the
reason, why laboratory avalanche models have been so successful, [33].

If the resistive frictional force also contains a viscous contribution proportional
to the velocity or to the velocity squared, this (restricted) scale invariance is not
preserved.

20.4.2 Navier–Stokes–Fourier–Fick Equations

In fluid engineering and geophysical fluid mechanics the Navier–Stokes–Fourier–
Fick (NSFF) equations (or their extensions under turbulence—the Reynolds equa-
tions) are the most important equations, which are able to describe a large class of
fluid motions in this field.

11See also footnote 4, this chapter in Sect. 20.1.3 on p. 591, in which this method is referred to as
‘inspectional analysis’.
12This assumption is often simply implemented by taking the SH-equations with ε = 1 and λ = 1.

http://dx.doi.org/10.1007/978-3-319-33636-7_13
http://dx.doi.org/10.1007/978-3-319-33636-7_13
http://dx.doi.org/10.1007/978-3-319-33636-7_13
http://dx.doi.org/10.1007/978-3-319-33636-7_13
http://dx.doi.org/10.1007/978-3-319-33636-7_13
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These equations emerge from the application of the balance laws ofmass,momen-
tum, energy for these mixtures of water or air and a number of tracer substances
suspended in the fluid or gas. The equations read

∂ρ

∂t
+ div (ρ v) = 0,

ρ

{
∂v

∂t
+ (grad v)v

}
= −grad p + ρ g + grad (ζdiv v) + 2div (η E),

ρT
d s

dt
= div (κ grad T) + Φ + ρ r,

ρ
d cα

dt
= div

⎛

⎝ρ
∑

β 	=α

Dαβgrad cβ

⎞

⎠ + ρ πα, α = 1, . . . , n − 1.

(20.122)

Equations (20.122)1,2,3 are the mixture balance laws of mass, momentum and energy
following the barycentric motion, momentum and energy. Equations (20.122)4 are
n − 1 mass balances for the mass concentrations cα. Moreover,

E = D − 1
3 (div v)1, D := sym grad v,

s = − ∂g

∂T
,

1

ρ
= ∂g

∂p
,

Φ = ζ(div v)2 + 2η trE2,

(g, ζ, η,κ) = fcts(T , s, p).

(20.123)

In the above, ρ, v, p, g,T , r, cα, jα,πα are, in turn, the mixture density, barycentric
velocity, pressure, Earth’s acceleration, Kelvin temperature, specific energy supply
rate density (radiation density), mass concentration of tracer α. D is the mixture
stretching (strain rate) tensor, E its deviator, s the entropy and g the free enthalpy
(Gibbs free energy); ζ, η,κ,Dαβ are the bulk and shear viscosities, the heat conduc-
tivity and species diffusivities. The stress tensor, heat flux vector and diffusive mass
flux vectors are given by

tR = ζ(div v)1 + 2η E,

q = −κ grad T ,

jα = −ρ
∑

β 	=α

Dαβgrad cβ, Dαβ = Dβα,
(20.124)

and the mixture density is given by the following ‘thermal equation of state’

ρ = νf ρf (T , s, p) +
n−1∑

β=1

νβρs, (20.125)
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in which ρf (T , s, p) is the thermal equation of state of the pure fluid (natural water)
as a function of the temperature, salinity (mineralization) and pressure. νf and νβ

are the volume fractions of the fluid and of (n − 1) components of suspended fine
particles with true mass density ρs. (So, together with the salt, there are n tracer
components (α ∈ [s,β = 1, . . . , n − 1]). Now, because of saturation, we have∑

β νβ + νf = 1, and νβ = (ρ/ρs) cβ , ∀β ∈ [1, . . . , n − 1]. With these relations it
follows from (20.125) that

ρ = ρf

1 − ∑
β cβ(1 − ρf /ρs)

, νβ = ρ

ρs
cβ . (20.126)

Finally, we use the approximation

ρT
d s

d t
≈ ρ cp(T)

dT

dt
, (20.127)

see [21].

20.4.3 Non-dimensionalization of the NSFF Equations

(a) Non-rotating Inertial Frame. Field equations such as the NSFF equations can
most easily be put into dimensionless form by splitting each field quantity f into a
product

f = [f ] f̃ , (20.128)

in which [f ] possesses the same dimension as f , is constant and should have a
numerical value such that f̃ assumes a value which is of order unity. It is exactly this
requirement, which reflects a considerable degree of individuality in the selection of
the scales [f ]. Two different choices for the mass density are e.g.

ρ = [ρ]ρ̃, ρ = [ρ](1 + [σ]σ̃). (20.129)

The first is adequate when density variations are large as it may be appropriate for air.
ρ̃ then spans a relatively large interval from 0 (near vacuum) to, say, 1. The second
choice is appropriate for water in the ocean or lakes, where density variations are
small, only a small fraction of the density of water. Here, [ρ] ≈ 1000kgm−3 may
be an adequate reference value of the density of water from which the real density
deviates only by small amounts. This deviation is expressed as [σ]σ̃, where [σ] is of
the order 10−3–10−2 and σ̃ is of order unity. In this text we shall choose
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x = [L]x̃, t = [τ ]t̃, ρ = [ρ]ρ̃,

ζ = [ζ]ζ̃, cp = [cp]c̃p, v = [V ]ṽ,
η = [η]η̃, r = [r]r̃, p = [p]p̃,
κ = [κ]κ̃, g = [g]g̃. T = T0 + [ΔT ]θ,
D = [D]D̃, E = [D]Ẽ, ω = [ω]ω̃,

Dαβ = [Dspec]D̃αβ,

(20.130)

in which ρ̃ is given by (20.129)2. Then the NSFF equations may be written as

[σ]
{
St

∂σ̃

∂ t̃
+ div (σ̃ṽ)

}
+ div ṽ = 0,

ρ̃

{
St

∂ṽ

∂ t̃
+ (grad ṽ)ṽ

}
= −Eugrad p̃

+ 1

Re

{ [ζ]
[η]grad (ζ̃div ṽ) + 2div (η̃Ẽ)

}
+ ρ̃

Fr
g̃,

(20.131)

ρ̃c̃p

{
St

∂θ

∂ t̃
+ (grad θ) · ṽ

}
= 1

Pe
div (κ̃grad θ)

+ 1

Ed

{ [ζ]
[η] ζ̃(div v)2 + 2η̃ trẼ

2
}

+ 1

Ra
ρ̃r̃,

ρ̃

{
St

∂cα
∂ t̃

+ (grad cα)ṽ

}
= 1

ReS

∑

β

div
(
ρ̃D̃αβgrad cβ

)
, α = 1, . . . , n,

in which the hallow quantities represent the characteristic dimensionlessΠ -products
arising in this non-dimensionalization. They are collected in Table 20.4. The deriva-
tion of (20.131) is a bit cumbersome and lengthy but not difficult.

In the scalings (20.130) the typical time [τ ] was chosen independently of the
characteristic length [L] and characteristic velocity [V ]. Analogously, also for the
pressure an independent scale was chosen. If observations suggest that [τ ] may
be interpretable as a time, which a particle needs to propagate a distance [L] with
velocity [V ], then one may choose [τ ] = [L]/[V ] i.e., St = 1. Such a scaling is
appropriate when instationary and convective features are of similar significance.
If an exterior flow around a solid body is considered, then the stagnation pressure
[ρ V 2]may be used as scale for [p], which corresponds to the choice Eu = 1. In such
cases ‘only’ 6 dimensionless Π -products arise. Such reduction of the Π -products
is helpful, because it reduces the number of possible scale invariances, which one
ought to fulfill.

Finally, with regard to scaling properties, Eq. (20.131)3,4 show that

Pe = RePr and Petracer = ReS

must be scale invariants, if heat and mass diffusion processes are to be properly
modeled. Because the Froude and Reynolds numbers cannot be simultaneous
model invariants and free surface flows are best scaled with Froude models, we
conclude
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Table 20.4 Characteristic dimensionless parameters arising in the NSFF equations

Ed := 2ReTh := [cp][ΔT ]
[V 2]

[V ][L]
[η]/[ρ] Dissipation number

Eu := [p]
[ρ][V 2] Euler number, pressure coefficient

Fr := [V 2]
[g][L] Froude number, inverse Richardson number

Pe = RePr := [ρ][cp][V ][L]
[κ] Péclet

a number

Petracer = Re S Tracer Péclet number

Prth := [η]/[ρ]
[κ]/([ρ][cp]) = [ν]

[Dth] Prandtl number

Prtracer := [V ][L]
[D] Prandtl (Schmidt) number of tracer

diffusion

Ra := [cp][ΔT ][V ]
[L][r] Radiation number

Re := [V ][L]
[η]/[ρ] Reynolds number

S := [η]/[ρ]
[Dspec] = [ν]

[Dspec] Schmidt
b number

St := [L]
[V ][τ ] Strouhal

c number

Th = [cp][ΔT ]
[V 2] Temperature number

aFor a brief biography of Jean Claude Eugéne Péclet, see Fig. 20.14
bFor a brief biography of Ernst Heinrich Wilhelm Schmidt, see Fig. 15.5
c(Cenek)Vincence Strouhal (10 April 1850–26 Jan. 1922) was a Chech experimental physicist,
specialized in hydrodynamics. He was one of the founders of the physics department of Charles
University in Prague

Proposition 20.2

• Measuring temperature in Froude models gives no guarantee of appropriate
transfer to corresponding quantities in Nature, or: In Froude models no homol-
ogous temperature field can be generated.

• Measurements of tracer concentrations in Froude models do not permit a trans-
fer to corresponding tracer concentrations in Nature, or: in Froude models no
homologous tracer fields can be generated. �

This result implies that quantitative comparison between flow velocities, tempera-
ture and species distributions inFroudemodels and their prototypes are inadmissible
unless the up-scaling is performed with experimental results obtained with models
of at least two different down-scalings. This obviously limits the usefulness of model
studies of combined fluid dynamics and diffusive processes to principal studies.

http://dx.doi.org/10.1007/978-3-319-33636-7_15
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Fig. 20.14 Jean Claude Eugène Péclet (10. Feb. 1793–6. Dec. 1857)

Jean Claude Eugène Péclet was a French physicist. Born in Besançon, France, he
became, in 1812, one of the first students of the École Normale in Paris with Gay- Lussac
and Dulong being his professors. In 1816, he was elected professor at the Collège de Mar-
seille and taught physical sciences there until 1827. Being nominatedmaître de conférences
(habilitated with fixed employment) at the École Normale, he returned to Paris. In 1829,
he became a professor of physics at the École Centrale des Arts et Manufactures that was
being founded by the businessman Alphonse Lavallée, by Péclet, and by three other
scientists, Philippe Benoît, Jean- Baptiste Dumas and Théodore Olivier. His salary
was then 3000 Francs per year, plus a share of the profits of this private engineering school.
In 1840, Péclet became inspecteur général de l’instruction publique.

The Péclet number is named after him. He was Coriolis’s brother-in-law and he died in
Paris. He is known through his educational books [30, 31]. He was characterized by clarity
of expression, sharp minded views and well-performed experiments.

The text is based on www.wikipedia.org and W H. Hager: Hydraulicians in Europe 1800–
2000, IAHR monograph (2003)

(b) Rotating, Non-inertial Frame. If the body, in which the fluid is kept and of
which the motion is to be studied, is rotating, a new characteristic time [τ ] may be
introduced, which is given by the angular velocity of the rotating frame [τ ] = [ω]−1.
For the Earth [ω] = Ω sin φ, where Ω is the angular velocity of the Earth and φ is
the latitude angle. In an Earth-bound laboratory, rotating about a vertical axis with
steady angular velocity, the absolute angular velocity is [ω + Ω sin φ] ≈ [ω], since
ordinarily |ω| � |Ω sin φ|. With the scales (20.130), in which [τ ] is replaced by
[ω]−1, and with the absolute acceleration given by

www.wikipedia.org
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Table 20.5 Characteristic dimensionless parameters arising in the NSFF equations when [τ ] =
[ω]−1

Ro ≡ 1

St
|[τ ]=[ω]−1 = [V ]

[ω][L] Rossby number

P[ω] ≡ [p]
[ρ][L][ω][V ] Pressure coefficient

Ek ≡ [ν]
[ω][L]2 Ekman number

Fr[ω] ≡ [ω][V ]
[g] Froude number

Ra[ω] ≡ [cp][ΔT ][ω]
[r] Radiation number

(
dv

dt

)

abs

=
(
dv

dt

)

rel

+ 2ω × v︸ ︷︷ ︸
Coriolis acc.

+ω × (ω × x)︸ ︷︷ ︸
centripetal acc.

+ ω̇ × x︸ ︷︷ ︸
Euler acc.

, (20.132)

the NSFF equations take the dimensionless forms

∂ρ̃

∂ t̃
+ Ro div (ρ̃ṽ) = 0,

ρ̃

{
∂ṽ

∂ t̃
+ Ro(grad ṽ) ṽ + 2ω̃ × ṽ + 1

Ro

{
ω̃ × (ω̃ × x̃) + [ω̇]

[ω]2
˙̃ω × x̃

}}

= −P[ω]grad p̃ + Ek

{ [ζ]
[η] grad (ζ̃div ṽ) + 2div (η̃Ẽ)

}
+ 1

Fr[ω]
ρ̃g̃,

(20.133)

ρ̃ c̃p

{
∂θ

∂ t̃
+ Ro (grad θ) · ṽ

}
= Ek

Pr
div (κ̃grad θ)

+ Ek

Th

{
[ζ]ζ̃
[η] (div ṽ)2 + 2 η̃ tr (Ẽ

2
)

}

+ 1

Ra[ω]
ρ̃r̃,

ρ̃

{
∂cα

∂ t̃
+ Ro(grad cα) · ṽα

}
= Ek

Prtracer
∑

β

(
ρ̃D̃αβ

)
grad cβ,

inwhich ρ = [ρ]ρ̃, ω̇ = [ω̇] ˙̃ω, andwhere the newΠ -products are given inTable 20.5.
The rotation of the frameof reference is steady, [ω̇] ≡ 0; likewise, the bulk viscosity is
commonly ignored, [ζ] = 0.Moreover, in geophysical fluid dynamics the centrifugal
force is generally absorbed in the gravity term or it is ignored. This fact points at a
subtle difficulty in laboratory experiments of geophysical flows on rotating platforms,
where the centrifugal terms may exert an effective force expression, different in
direction of the Earth’s gravity.
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Examples of rotating laboratory studies have been reported in specialized reports
of hydraulic engineering. Such experiments were primarily performed in the late-60s
to mid-80s of the last century. Hutter et al. [21] give an account of these modeling
efforts in their Chap. 30, pp. 375–393. It is our impression that the enthusiasm of
those times about experiments on rotating platforms has not continued, probably for
reasons of costs and dizziness of the experimenters, when working on the rotating
platforms with angular frequencies of one revolution in 4–6s. The future will likely
have to be sought in a combination of electronic computations and non-rotating local
experimental analyses.

20.5 Discussion and Conclusions

The primary focus of this chapter has been twofold, namely (i) to lay down the basic
elements of dimensional analysis and (ii) to apply the rules of dimensional homo-
geneity of the governing equations of mathematical physics to thoughtful interpreta-
tions of laboratory experiments, when up- or downscaling these to the size of similar
processes in Nature (i.e. the size of the prototype).

The first goal entails the recognition that physical processes are mathematically
described by dimensionally homogeneous functions. Dimensional analysis is that
sub-branch of linear algebra, which proves that a dimensionally homogeneous func-
tional relation involving a certain number of variables with physical dimensions can
always be transformed into an associated functional relation of alternative, mutually
independent, variables, which are dimensionless. The number of these dimension-
less product combinations of the original variables (with physical dimensions)—the
so-called Π -products—is generally smaller than the number of the original vari-
ables. Buckingham’s theorem is the decisive statement, which ascertains that (1)
any dimensionally homogeneous functional relation can be put into dimensionless
form, and (2) the number of Π -products for a set of given physical parameters is
determined by the rank of the dimensional matrix as follows:

{
Number of independent
dimensionlessΠ -products

}
=

{
Number of physical parameters
− rank of dimensional matrix

}

The theorem is of immense practical help as with it, one may obtain first rough
information about the general behavior of envisagedprocesses. Themethod, however,
requires knowledge and proposition of the physical parameters, which may influence
the outcome of the results for the envisaged process. This is likely the most difficult
part of the identification of the Π -products influencing the behavior of the process.
Examples illustrate the procedure in this selection and corroborate the usefulness of
this analysis, which has an imaginative and a rational, mathematical component.

An alternative approach to guessing the decisive physical parameters that might
affect an envisaged physical processmay be inspectional analysis. Thismethod starts
with the formulated equation set, which is thought to describe the process mathe-
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matically. This may be a set of partial differential equations, boundary and initial
conditions or any other set of equations for the problem. This set of equations is
dimensionally homogeneous by construction, but it is a mathematical model and
may miss some effects of the envisaged processes. Nevertheless, the mere fact that
the set of equations has been constructed gives them a high degree of trustworthi-
ness. Transforming these equations to dimensionless form allows identification of the
dimensionless parameters arising in this mathematical problem. This transformation
to dimensionless form was demonstrated for the Navier–Stokes–Fourier–Fick
equations referred to an inertial and an Earth-bound non-inertial frame, respectively.
It was shownhow the number ofΠ -products can be reduced by selecting special para-
meter combinations for certain Π -products. Additional examples from geophysical
fluid mechanics are given in [20, 21].

Buckingham’s theorem is the basis for the design of experiments of physical
processes at smaller (or larger) scale. Flow processes in a scaled experiment can only
evolve homologously to the processes in the prototype, provided all dimensionless
Π -products remain invariant in the geometric and dynamic downscaling from the
prototype to the model. However, this theoretical request can in practice only seldom
be fulfilled. For instance, it was shown that Froude and Reynolds numbers cannot
simultaneously be fulfilled. Whenever full invariance of all the Π -products cannot
be maintained in the downscaling, experiments are said to exhibit scale effects. Such
effects may be seen in free surface flows (rivers, lakes), when water depths in the
model are less than 1 cm, so that surface tension effects become visible. One method
to minimize scale effects is to select Π -products by combination such that those
Π -products, which cannot be kept invariant are only of a small influence. This can
only be achieved by trial and error. A second method is to perform experiments with
models at different geometric reduction and then inter- and extrapolate the results due
to the non-invariant Π -products; however, this is generally too costly. A promising
procedure is to solve the initial-value-problems numerically; thisway the exact values
of the Π -products can be solved. It is likely that this method of computational fluid
mechanics may become competitive in future.

Appendix A: Algebraic Theory of Dimensional Analysis13

A.1 Transformation of Basic Units

In this Appendix our goal is to derive the theorem of Buckingham [12]. The reader
is requested to have knowledge of Linear Algebra.

Letm be the number of independent, i.e., fundamental dimensions, such as length
[L], mass [M], time [T ], temperature [θ], …. Derived dimensions are formed as
products of the fundamental dimensions. If the dimension of a fundamental unit is
denoted by

13This Appendix follows a corresponding text in [20] with some improvements.
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[G]i, (i = 1, 2, . . . ,m), (20.134)

then the dimensions of the derived units Aj can be written as

[A]j = [G]a1j1 [G]a2j2 · · · [G]amjm (20.135)

=
m∏

i=1

[G]aiji , (j = 1, 2, . . . , n). (20.136)

They are products of powers of the fundamental dimensions.
Let the value of the derived quantity [A]j in (20.136) relative to particularly chosen

units be given by the positive real number xj, and let the fundamental basic unit [G]k
in one set of units be [G]nk and in another set be [G]ok (‘o’ stands for ‘old’ and ‘n’
stands for ‘new’). Then the relation

1 · Go
k = αk · Gn

k (20.137)

describes the connection between the old and new fundamental units: 1 m =
100 cm. Let the value of [A]j in the old and new system be xj and x̄j, respectively.
The old and new values of the derived quantity are then related by

xj
[(
Go

1

)a1j (Go
2

)a2j
. . .

(
Go

m

)amj]

= xj
[(

α
1j
1 G

n
1

)a1j (
α
2j
2 G

n
2

)a2j
. . .

(
αmj
m Gn

m

)amj]

= xj
[(
Gn

1

)a1j (Gn
2

)a2j
. . .

(
Gn

m

)amj]
, (20.138)

so that

xj = xj

m∏

k=1

α
akj
k , (j = 1, 2, . . . , n). (20.139)

A.2 Exact Definition of Dimensional Homogeneity

Let y be a function of n variables i.e., y = f (x1, . . . , xn). If the units of the basic
dimensions are changed, then y and xj become y and xj. An equation is now called
dimensionally homogeneous, if y = f (x1, . . . , xn) can be transformed to

y = f (x1, x2, . . . , xn), (20.140)

inwhich f is the same function as before.Mathematically thismeans that the equation
y = f (x1, . . . , xn) is invariant under the group of transformations which is gener-
ated by all possible changes of units of the fundamental dimensions. This group
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of transformations14 is described by (20.138), in which αk may be arbitrary posi-
tive constants. For the dependent and independent variables relation (20.138) can
symbolically be summarised by the dimensional matrix

y x1 x2 x3 . . . xn
[G]1 a10 a11 a12 a13 . . . a1n
[G]2 a20 a21 a22 a23 . . . a2n

...
...

...
...

...
...

[G]m am0 am1 am2 am3 . . . amn

. (20.141)

If one writes
y = Koy, xj = Kjxj,

one obtains, in view of (20.138),

Ko =
m∏

k=1

α
ako
k , Kj =

m∏

k=1

α
akj
k .

Therefore, the following identity must hold

y = Koy = Kof (x1, x2, . . . , xn) = f (K1x1,K2x2, . . . ,Knxn). (20.142)

Thus we have

Proposition 20.3 The function f (x1, . . . , xn) is dimensionally homogeneous if and
only if the equation

Kof (x1, x2, . . . , xn) = f (K1x1,K2x2, . . . ,Knxn) (20.143)

with

Ko =
m∏

k=1

α
ako
k , Kj =

m∏

k=1

α
akj
k (20.144)

is identically fulfilled in the variables x1, x2, . . . , xn,α1,α2, . . . ,αm. �
Notice that all K ′s are fixed if the αk

′s and the dimensional matrix are known.
Let us give two important applications of Proposition20.3; consider first

(i) y = f (x1, x2, . . . , xn) = x1 + x2 + · · · + xn.

The function f (x1, . . . , xn) is here the sum of its independent variables; in this case
(20.143) reads

14We leave it to the reader to prove that the group properties (as mathematical statements) are
satisfied.
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K0(x1 + x2 + · · · + xn) = K1x1 + K2x2 + · · · + Knxn,

and since this equation must hold identically for all xj, one must have

K0 = K1 = K2 = · · · = Kn (20.145)

or because of (20.144)

ak0 = ak1 = ak2 = · · · = akn , (k = 1, 2, . . . ,m) .

Thus we have the

Lemma 20.1 A sum

y = x1 + x2 + · · · + xn (20.146)

is dimensionally homogeneous if and only if all of its members have the same dimen-
sion. [Apples and pears cannot be added] �

Consider as a second example the composition

(ii) y = xk11 × xk22 × · · · × xknn =
n∏

j=1

x
kj
j (20.147)

with arbitrary kj, (j = 1, . . . , n). Such compositions are products of powers of the
variables x1, . . . , xn. We call them for simplicity products. Then we have

Lemma 20.2 The product

y =
n∏

j=1

x
kj
j (20.148)

is dimensionally homogeneous if and only if the exponents are solutions of the linear
equations

n∑

j=1

aijkj = ai0, (i = 1, 2, . . . ,m). (20.149)

�

Proof The matrix aij is the dimensional matrix of the independent variables; the
vector ai0 is the column of the dependent variables. To prove the Lemma we assume
that the product of powers (20.148) is dimensionally homogeneous; in a change of
the fundamental units it will thus obey (20.143), so that
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K0

⎛

⎝
n∏

j=1

x
kj
j

⎞

⎠ =
n∏

j=1

(Kjxj)
kj =

⎛

⎝
n∏

j=1

K
kj
j

⎞

⎠ ×
⎛

⎝
n∏

j=1

x
kj
j

⎞

⎠ (20.150)

is fulfilled, from which

K0 =
n∏

j=1

K
kj
j (20.151)

is obtained. If one also takes (20.144) into account, one obtains

m∏

k=1

αak0
k =

(
m∏

k=1

αak1
k

)k1

× · · · ×
(

m∏

k=1

αakn
k

)kn

=
m∏

k=1

α
∑n

j=1 akjkj
k , (20.152)

and by comparison of the exponents

ak0 =
n∑

j=1

akjkj, (k = 1, 2, . . . ,m). (20.153)

The exponents of a dimensionally homogeneous power product (20.148) thus neces-
sarily satisfy (20.149). To show the converse, namely that the power product (20.148)
is dimensionally homogeneous, if the exponents obey (20.149), we state (20.148),
written in terms of the old and new fundamental units, as

y =
n∏

j=1

x
kj
j , y =

n∏

j=1

x
kj
j . (20.154)

With the use of the transformation formulas for y and xj the last formula takes the
form

(∏m

i=1
αai0
i

)
y =

∏n

j=1

(∏m

i=1
α
aij
i xj

)kj =
∏n

j=1

(∏m

i=1
α
aijkj
i

)
x
kj
j

=
(∏m

i=1
α

∑n
j=1 aijkj

i

) n∏

j=1

x
kj
j

︸ ︷︷ ︸
y

(20.155)

or

∏m

i=1
α

∑n
j=1 aijkj

i
∏m

i=1
αai0
i

=
m∏

i=1

α
∑n

j=1 aijkj −ai0
i = 1, (20.156)

which is satisfied for arbitrary values of αi if (20.149) are fulfilled. �
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A.3 Calculus of Dimensionless Products

(1)We begin by formulating the condition that allows evaluation, whether a number
of dimensionless products are independent of one another. Let these products be
given by

Π(1) = x
k(1)
1
1 × x

k(1)
2
2 × · · · × x

k(1)
n
n ,

Π(2) = x
k(2)
1
1 × x

k(2)
2
2 × · · · × x

k(2)
n
n ,

...
...

...
...

Π(p) = x
k(p)
1
1 × x

k(p)
2
2 × · · · × xk

(p)
n
n .

(20.157)

They can be arranged in a matrix as follows:

x1 x2 · · · xn

Π(1) k(1)
1 k(1)

2 · · · k(1)
n

Π(2) k(2)
1 k(2)

2 · · · k(2)
n

...
...

...
...

Π(p) k(p)
1 k(p)

2 · · · k(p)
n

(20.158)

in which only the exponents of the xi, i = 1, 2, . . . , p are written down. If Π(1) and
Π(2) are not independent, there exist two numbers h1 and h2, such thatΠ

h1
(1)Π

h2
(2) = 1,

i.e., Π1 is a certain non-trivial power of Π2 (or vice versa). If this argument is
extended to p dimensionless products Π(1), . . . , Π(p), we may conclude that the
dimensionless products Π(1), . . . ,Π(p) are dependent on each other, if there exist
constants h1, h2, . . . , hp, not all of which vanish, such that

Π
h1
(1) × Π

h2
(2) × · · · × Π

hp
(p) = 1 .

This statement can be reformulated in the following

Proposition 20.4 Necessary and sufficient condition that the products Π(1), . . . ,

Π(p) are independent of each other is the fact that the rows of the matrix (20.158) or

⎛

⎜⎜⎜
⎝

k(1)
1 k(1)

2 . . . k(1)
n

k(2)
1 k(2)

2 . . . k(2)
n

...
...

...

k(p)
1 k(p)

2 . . . k(p)
n

⎞

⎟⎟⎟
⎠

(20.159)

are linearly independent. �
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Proof To demonstrate necessity, let us assume that the rows of the matrix (20.159)
are linearly dependent but the products (20.157) are independent. Then there must
exist constants h1, . . . , hp not all of which are identically zero, which satisfy the
relation

h1k
(1)
i + h2k

(2)
i + · · · + hpk

(p)
i = 0, (i = 1, 2, . . . , n). (20.160)

This, however, implies, in view of (20.157),

Π
h1
(1) × Π

h2
(2) × · · · × Π

hp
(p) = x

∑p
j=1 hjk

(j)
1

1 × x
∑p

j=1 hjk
(j)
2

2 × · · · × x
∑p

j=1 hjk
(j)
n

n .

If one substitutes here (20.160), there follows

Π
h1
(1) × Π

h2
(2) × · · · × Π

hp
(p) = x01x

0
2 · · · x0n = 1, (20.161)

which is in conflict with the assumption that the products are independent. Thus the
rows of the matrix (20.159) must be linearly independent.

Sufficiency can be proved as follows: if the rows of thematrix (20.159) are linearly
independent and the dimensionless products are dependent, an equation of the form

Π
h1
(1) × Π

h2
(2) × · · · × Π

hp
(p) = 1

must exist for the exponents hj, not all of which vanish. Then, however, (20.157)
implies

x
∑p

j=1 hjk
(j)
1

1 × x
∑p

j=1 hjk
(j)
2

2 × · · · × x
∑p

j=1 hjk
(j)
n

n = 1, (20.162)

which can only be correct, if all exponents vanish, which is a contradiction to the
assumed linear independence of the matrix (20.159). �

(2) Next, we consider a power product and ask, under which conditions it is dimen-
sionless (and hence a Π -product). The answer to this question is

n∑

j=1

aijkj = 0, (i = 1, 2, . . . ,m) (20.163)

and follows immediately from Lemma 20.2 with ai0 = 0. The linear, homogeneous
equations (20.163) possess (n − r) linearly independent solutions, which we shall
denote by

k(1)
i , k(2)

i , . . . , k(n−r)
i , (i = 1, 2, . . . , n). (20.164)

Here, r denotes the rank of thematrix (aij). According to Proposition20.4 the solution
vectors furnish the exponents for all dimensionless products. There are no additional
ones, so that one can formulate
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Proposition 20.5 Every fundamental system of solutions of the equations

n∑

j=1

aijkj = 0, (i = 1, 2, . . . ,m) (20.165)

determines the n − r exponents of a complete set of dimensionless products of the
variables x1, . . . , xn. Conversely, the exponents of a complete set of dimensionless
products of the variables x1, . . . , xn form a fundamental system of solutions of the
above equations. �

This proposition immediately also implies

Proposition 20.6 The number of independent products in a complete set of dimen-
sionless products of the variables x1, . . . , xn is (n − r), where r denotes the rank of
the dimensional matrix. �

(3) In the practical applicationof dimensional analysis oneoften encounters equations
of the form y = f (x1, . . . , xn). In fact, this form is the rule rather than the exception.
We now consider dimensional products and assume that in the dimensional matrix
not all ai0 are zero. Then the system of equations for the exponents kj reads

n∑

j=1

aijkj = ai0, (i = 1, 2, . . . ,m), (20.166)

and we have

Proposition 20.7 If y is not dimensionless, then there exists a product of the form

y = xk11 · xk22 · · · xknn =
n∏

j=1

x
kj
j , (20.167)

if and only if the dimensional matrix of the variables x1, . . . , xn possesses the same
rank as the dimensional matrix of the variables y, x1, . . . , xn. �

Proof This follows if the system

n∑

j=1

aijkj = ai0 , (i = 1, 2, . . . ,m) (20.168)

is considered. In books on linear algebra it is shown that solutions to the above
equations exist, if the rank of the matrix (aij) is the same as the rank of the matrix
(aij, aio), augmented by the column of the right-hand side.

With the aid of Proposition20.7 we now may prove
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Proposition 20.8 If y = f (x1, x2, . . . , xn) is a dimensionally homogeneous equation
and if y is dimensional, then there exists a product of powers of xj, which has the
same dimension as y. �

Proof We assume that y = f (x1, . . . , xn) is dimensionally homogeneous, but there
does not exist a product of powers of xj with the dimension of y. Assume, moreover,
that the dimensional matrix (ai0, aij) possesses the rank R. The assumption that no
xj-product exists with the same dimension as y implies, because of Proposition 20.7,
that the rank of (aij)must be smaller than R. Without limitation of generality we may
assume that a non-vanishing determinant of (ai0, aij) lies in the upper left corner of
this matrix; its rank is R. If R = m (m is the number of independent fundamental
dimensions), then this determinant is given by

� =
a10 a11 a12 a13 . . . a1(m−1)

a20 a21 a22 a23 . . . a2(m−1)
...

...

am0 am1 am2 am3 . . . am(m−1)

	= 0. (20.169)

If Ai0 are the algebraic complements or co-factors of ai0 of this matrix, then one may
also write

� = A10a10 + · · · + Am0am0 =
m∑

i=1

Ai0ai0. (20.170)

Alternatively, in the theory of determinants one proves that

m∑

i=1

Ai0aik = 0, (∀k = 1, 2, . . . , n). (20.171)

(This result, incidentally, follows for k = 1, 2, . . . ,m−1 from the fact that the value
of the determinant is zero if only two columns of a matrix are the same.) Thus for
k = 1, 2, . . . ,m − 1 (20.171) is correct. For k ≥ m it holds because the rank of the
dimensional matrix is equal to (aij) = R = m.

Since y has been assumed as dimensionally homogeneous, (20.143), (20.144)
hold as identities in the variables αj (j = 1, 2, . . . ,m). We therefore choose now
new fundamental units, such that

αi = GAi0 , (i = 1, 2, . . . ,m) (20.172)

holds with arbitrary positive real G. The factors of transformation Kj are then com-
puted according to (20.144) and yield

Kj =
∏m

i=1
α
aij
i =

∏m

i=1
(GAi0)aij =

∏m

i=1
GAi0aij

= G
∑m

i=1 Ai0aij = 1, (j = 1, 2, . . . , n).
(20.173)
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Thus, by specially choosing αi all Kj (j = 1, 2, . . . , n) have been made equal to
unity. For K0, one obtains

K0 =
m∏

i=1

αai0
i = G

∑m
i=1 Ai0ai0 	= 1. (20.174)

Consequently, (20.143) takes the form

K0 y = f (x1, x2, . . . , xn), K0 = G
∑m

i=1 Ai0ai0 , (20.175)

in which K0 can be arbitrarily assigned since G > 0 was already freely chosen
(because it is an arbitrary transformation of the units of the fundamental dimensions).
With the possibility to arbitrarily choose K0, it is now also shown that

K0 y = f (x1, x2, . . . , xn) (20.176)

cannot be a function. This is in contradiction with the assumption that y =
f (x1, . . . , xn) is a dimensionally homogeneous function.15 The initial assumption
that no power product of xj with the dimension [y] can exist, was therefore wrong.
The proposition is therefore proved for R = m.

If R < m, e.g. R = r, then � is of size r, there is now an r × r matrix with
non-vanishing determinant

� =
a10 a11 a12 a13 . . . a1(r−1)

a20 a21 a22 a23 . . . a2(r−1)
...

...
...

...
...

ar0 ar1 ar2 ar3 . . . ar(r−1)

, r < m. (20.177)

In a way analogous to that before one now concludes that

� = ∑r
i=1Ai0ai0,

∑r
i=1Ai0aik = 0, (k = 1, 2, . . . , n),

(20.178)

where Ai0 are again the algebraic complements of ai0. Withαi = GAi0 (i = 1, . . . , r),
αj = 1 (r < j < m) one now obtains

Kj = G
∑r

i=1 Ai0aij = G0 = 1, K0 = G
∑r

i=1 Ai0ai0 	= 1, (20.179)

so that one arrives at the same conclusion as before. Setting aj = 1 for all j > r
corresponds again to a permissible change of the fundamental units. Proposition 20.8

15Dimensional homogeneity is not important, since f does not even satisfy the prerequisites of a
function.
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therefore says nothing else than that a dimensionally homogeneous equation of the
form y = f (x1, . . . , xn) can always be brought to the form

Π = F(x1, . . . , xn), (20.180)

in which Π is dimensionless and F is a new function. �

A.4 Proof of Buckingham’s Theorem

In closing we wish in this section to prove Buckingham’s theorem orBuckingham
Π–theorem [12] according to which a dimensionally homogeneous equation of sev-
eral variables can be reduced to a relation only involving dimensionless quantities.
The number of these new variables is usually smaller than the original number of
dimensional variables.

Notice in particular that the independent variables in a problem of dimensional
analysis are always real and positive quantities. If thiswere not so, then dimensionless
products with fractional exponents would become complex valued. We shall also see
that Buckingham’s theoremcanonly hold, if the independent variables are restricted
to positive quantities.

Let x1, . . . , xn be the independent variables of a physical problem. These variables
represent entities such as velocity, force, moment, temperature, heat flux etc. They
may be regarded as the Cartesian coordinates of an Euclidian space E . Let, more-
over, αi (i = 1, 2, . . . ,m) be positive constants and Kj (j = 1, 2, . . . , n) variables,
defined by

Kj =
m∏

i=1

α
aij
i , (j = 1, 2, . . . , n) , (20.181)

in which aij is the dimensional matrix corresponding to the x′
js. The equation

xj = Kjx
′
j, (j = 1, 2, . . . , n) (20.182)

then corresponds in the space E to a coordinate or point transformation; it assigns to
each point x′

j a point xj and vice versa. This point transformation shall subsequently
be called K-transformation, and it is easy to show that all K-transformations in E
build a group. Indeed,

(i) With xj = K∗
j x

′
j, x′

j = K∗∗
j x′′

j there follows

xj = (K∗
j K

∗∗
j )x′′

j = Kjx′′
j ,

Kj =
(∏m

i=1
α∗
i
aij
) (∏m

i=1
α∗∗
i

aij
)

=
∏m

i=1

(
α∗
i α

∗∗
i

)aij
,

(20.183)
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i.e., the composition of two K-transformations is again a K-transformation.
(ii) There exists a unit–element, namely the identity transformation xj = xj
(iii) Since Kj differs from zero, there exists to every Kj an inverse transformation

K−1
j . With xj = Kjx′

j and x′
j = K−1

j xj one may deduce

xj = Kj

(
K−1
j xj

)
= KjK

−1
j xj =⇒ KjK

−1
j = 1

=⇒ K−1
j = 1

Kj
= 1

∏m

i=1
α
aij
i

=
m∏

i=1

(
1

αi

)aij

. (20.184)

This defines to each K-transformation its inverse.

One may interpret the entities K1, . . . ,Kn, which are generated by x1, . . . , xn by all
possible K-transformations, as a point in an n dimensional space; this space (or its
extension by the K0-axis) shall simply be called the K-space.

As a preparation to the Buckingham theorem we now prove the following lem-
mas:

Lemma 20.3 A dimensionally homogeneous dimensionless function

Π = f (x1, . . . , xn) (20.185)

is constant in each K-space. �

Proof Since Π is dimensionless the exponents of the fundamental dimensions on
the left-hand side, aio, must all vanish. Therefore, because of (20.144) K0 = 1, and
thus (20.143) reads

Π = f (K1x1, . . . ,Knxn). (20.186)

In the K-space that is generated by x1, . . . , xn, the value of Π must therefore be
constant irrespective of the value of the element (K1, . . . ,Kn). �

Lemma 20.3 implies that every dimensionless product of the variables x1, . . . , xn
is constant in each K-space. If, therefore, (Π1,Π2, . . . ,Πp) is a complete set of
dimensionless products, then for fixed x1, . . . , xn this set does not change its value
for all Kj-values (j = 1, . . . , n) in K-space.

Lemma 20.4 If {Π1,Π2, . . . .,Πp} is a complete set of dimensionless products of
the variables (x1, . . . , xn), then to each set of values that is assigned to the dimen-
sionless products {Π1, Π2, . . . ., Πp}, there belongs one and only one K-space.
In other words, two elements {x′

j} and {x′′
j } of the K-space can only differ by a

K-transformation. �

Proof Let {Π ′
1,Π

′
2, . . . ,Π

′
p} be a set of values of dimensionless products {Π1,

Π2, . . . .,Πp}, and let {x′
j} and {x′′

j } be two points in the E-space, which belong
to the values {Π ′

1,Π
′
2, . . . ,Π

′
p}. Then we have
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Π ′
ν = (x′

1)
k(ν)
1 × · · · × (x′

n)
k(ν)
n = (x′′

1)
k(ν)
1 × · · · × (x′′

n)
k(ν)
n .

Since all x′
j on the right-hand side of this equation are positive, one may take the

logarithm and obtains, after obvious rearrangements,

r1k
(ν)
1 + r2k

(ν)
2 + · · · + rnk

(ν)
n = 0, (ν = 1, 2, . . . , p) (20.187)

with rj = ln(x′
j/x

′′
j ). Notice that it is here that we assume the xj to be posi-

tive. Thus, Buckingham Π - Theorem is only provable for positive xj > 0. Since
{Π1,Π2, . . . ,Πp} is complete, the exponents k(1)

j , . . . , k(r)
j are solutions of the sys-

tem

n∑

j=1

aijk
(ν)
j = 0, (ν = 1, 2, . . . , p), (i = 1, 2, . . . ,m). (20.188)

This is a consequence of Proposition 20.5. Since, however, the solutions of (20.188)
are also solutions of (20.187), the coefficients in (20.187) must linearly depend upon
those of (20.188). Therefore, there must exist non-zero numbers a∗

j (j = 1, . . . ,m),
which satisfy the equation

m∑

j=1

α∗
j aji = ri = ln

(
x′
i

x′′
i

)
, (i = 1, 2, . . . , n). (20.189)

The last equation implies

x′
i = x′′

i exp

⎛

⎝
m∑

j=1

α∗
j aji

⎞

⎠ = x′′
i

m∏

j=1

(
eα∗

j aji
)
. (20.190)

If for simplicity we write αj = eα∗
j , (j = 1, 2, . . . ,m), then there follows

x′
i =

⎛

⎝
m∏

j=1

α
aji
j

⎞

⎠ x′′
i = Kix

′′
i (i = 1, 2, . . . , n). (20.191)

This result shows that x′
i and x′′

i belong to the same K-space. �
With all these results we may now prove the following proposition.

Proposition 20.9 (Buckingham Theorem) Every dimensionally homogeneous
equation can be transformed into an equation involving only dimensionless
products. �

Proof According to Proposition 20.8 every dimensionally homogeneous equation
y = f (x1 . . . xn) can be brought into the form Π = F(x1, . . . , xn) in which Π is
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dimensionless. Let {Π1,Π2, . . . .,Πp} be a complete set of dimensionless products
belonging to (x1, . . . , xn). Then, according to Lemma 20.3, to every set of values of
{Π1,Π2, . . . ,Πp} there is only one single K-space. According to Lemma 20.3 to
every K-space there is only one single value of Π . Therefore, to every set of values
of {Π1,Π2, . . . ,Πp} there is only a single value of Π i.e., Π is a unique function of
{Π1,Π2, . . . .,Πp}. It follows that an arbitrary dimensionally homogeneous function
y = f (x1, . . . , xn) can be reduced to the form Π = F(Π1, . . . ,Πp). According to
Proposition 20.6, p = (n − r), where r is the rank of the dimensional matrix. The
converse of the theorem is equally true, i.e., an equation of dimensionless products
is dimensionally homogeneous. However, this statement is trivial. �
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Ekman number, 590
Energy conservation, 322
Energy supply, 212, 377, 425, 430, 440, 443,

449, 468, 469
rate density, 237, 467, 585
specific, 373

Energy transfer, 322
Enthalpy, 376, 385, 387, 390, 407, 452, 454,

455, 457
density, 506
free, 454, 456, 457, 465, 585
of ideal gas, 464
of real gas, 389
specific, 385–387

Entrainment, 284
phenomenon, 300
rate, 284
rate, turbulent, 284

Entropy, 322, 323, 399, 407, 430, 486, 524–
527, 585

density, 323
empirical, 403, 407
flow, 424
flux, 323, 424, 425, 430
flux vector, 425
production, 323, 337, 424, 430, 441
production, specific, 337, 424, 441
specific, 335, 424
supply, 323, 424, 425, 430, 440, 443, 449,
479

supply rate, 429
supply, bulk, 424

supply, specific, 424, 441
true, 407

Entropy inequality, 423, 442, 444, 468, 469,
472, 480

extended, 449, 473
local, 425
residual, 433, 434, 437, 438, 448, 469,
475, 476

Entropy principle, 426, 429, 437, 441–443,
445, 448, 450, 451, 477

of Müller, 449
of Clausius–Duhem, 429–431, 436, 441,
444, 449, 467, 468

of Müller, 429, 440, 441, 448, 452, 467,
468, 476, 478, 479

Equilibrium state, 344, 362, 398
Equivalence relation, 348
Ergodic hypothesis, 234
Erosion inception, 580
Euclidian

space, 602
Euler

beam, 198, 199
constant, 37
equation, 272
load, 199
number, 587
solution, 199
transformation, 37

Eulerian
approach, 166
description limit, 185
discretization, 165
finite difference scheme, 167, 171, 185
finite discretization, 166
integration scheme, 166
integration technique, 171
scheme, 166

Evolution equation, 211, 246
k − ε, 247
for ε, 251
free surface, 69
surface, 73, 96

Extensive quantity, 345, 346

F
Favre average, 234, 235
Feynman’s rattle machine, 395
Fick’s

first law, 364, 365
first law of mass flux, 242
second law, 364, 365
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Field equation, 52, 54, 56, 57, 60, 66, 86, 87,
90, 95, 331, 428–430, 432, 433, 441,
442, 479

Filter, 233, 234, 259
operation, 249, 251
spatial, 233, 259
statical, 234
statistical, 233, 234, 237, 259
temporal, 233, 259

Flow filament, 513
Fluctuation, 265, 266, 280, 302

energy, 288
intensity, 287, 288
kinetic, 280
quadratic term, 280

Fluctuation energy, 122
Fluidization, 125–127

acoustic, 128
parameter, 129
partial, 127

Fluidized bed, 21, 44
Fourier

heat law, 471, 479
law, 439
law of heat conduction, 242, 438
representation, 498
series, 438
sine series, 503
type heat flux, 59

Frame
inertial, 586, 592
non-Inertial, 589
non-inertial, 252, 253, 592

Free convection fluid, 236, 238, 240
Free shear layer theory, 268
Frictional (stress) tensor, 266, 373, 437
Frictional heat, 122
Frictional heating, 98
Frobenius expansion, 77
Froude model, 587, 588
Froude number, 58, 87, 108, 140, 549, 550,

554, 559, 572, 573, 576, 587, 590
invariance, 573

Froude similitude, 573, 574, 577
Fundamental

basic unit, 593
dimension, 592, 593, 600, 601, 603
entity, 545
equation, 548
quantity, 545, 546, 551
solution, 553
system of solutions, 599

unit, 545–547, 592, 593, 595, 596, 600,
601

Fundamental tone, 504

G
Gas constant, 380, 447, 466

molar, 351
universal, 351, 354, 357, 387, 464
universal molar, 351

Gaussian
-type curve, 279
distribution, 283
distribution function, 283
profile, 289, 290

Geodetic height, 389
Geometrically similar model, 571, 573, 575
Geothermal heat, 102

flux, 98, 106
Gibbs

equation, 409, 446, 447, 455, 465, 470
equation of thermostatics, 479
free energy, 454, 456, 457, 459, 465, 585
relation, 379, 407, 411, 412, 436, 437,
451–454, 456, 459, 461, 476–479, 529,
532

relation for thermodynamic processes,
476

relation of classical thermodynamics,
471

relation of thermostatics, 471
Glacier, 50, 51, 55, 78, 80, 83, 107

Alpine, 82
confined valley, 51
flow, 56, 65
ice, 73
Petermann, 106
Piedmont, 51, 107
typical scales, 59

Grading
inverse, 129–131
of particles, 130
reverse, 130

Greenland, 50, 87, 88, 102–107
Grounding line, 70, 77, 106, 107

H
Hagen-Poiseuille

profile, 303, 313
Heat, 322, 366, 370, 371, 373–375, 383

bath, 355
conducting compressible fluid, 447
conduction, 376



624 Subject Index

flux, 348
flux vector, 53, 237, 333, 370, 373, 377,
426, 427, 430, 435, 438, 439, 448, 467,
527, 585

flux vector, turbulent, 239
frictional, 325
Joule, 325
radiation, 376, 426
supply, 335

Heat capacity, 58, 471
at constant volume, 379
specific isobaric, 386
temperature dependent, 54

Heat conductivity, 54, 58, 438, 439, 585
Heat flux

equilibrium, 448
latent, 258
sensible, 258

Heat pump, 417, 418
Heat transfer

coefficient, 582
coefficient, basal, 55
coefficient, surface, 55

Helmholtz, 328, 330, 336, 340
differential equation, 498
equation, 489
free energy, 447, 448, 454–457, 465, 485,
487

High resolution shock-capturing numerical
method, 165, 169

Hill vortex, 20, 44
Homentropic

condition, 486
flow, 486

Homogeneous in its dimension, 547
Homologous, 571

particle, 575
point, 571, 575
region, 571
temperature, 588
time, 571, 574, 575
tracer, 588
trajectory, 571
velocity, 574

Homotopy analysis method, 4, 39
H-theorem, 331
Hydrostatic pressure, 108, 266

assumption, 155, 185
distribution, 56
equation, 65, 86, 88

I
Ice sheet, 50, 55, 78, 87, 88, 96, 101–103,

107
depth, typical, 87
extent, characteristic, 87
flow, 78
flow, steady state, 99, 100
Greenland, 102–105, 107
grounded, 107
plow, plane steady, 97
profile, 78, 98
temperature range, 87
three-dimensional, 79

Ice shelf, 96, 106
floating, 88, 106, 108
glacier, 88
Ross, 106
Rønne-Filchner, 106

Ideal, 350
Ideal gas, 351, 354, 358, 379, 387, 389–391,

397, 399, 410, 413, 414, 447, 464,
508, 532

caloric, 409, 465, 466, 491, 507, 510, 531
caloric, under isentropic condition, 507
equation, 508

Inaccessible volume, 357
Indifference Reynolds number, 222
Inertial member of the NS-equation, 13
Inner expansion, 31, 36, 37

Stokes, 36
Inner region, 21, 32
Inner solution, 33, 36, 38
Inspectional analysis, 544, 545, 591
Integrability condition, 399, 403, 408, 409,

434, 436, 447, 452, 454–456, 477
Intensive quantity, 345, 346
Internal energy, 53, 237, 239, 322, 326, 333,

366, 370–374, 378–380, 382, 385,
388, 391, 396, 399, 405, 407–409,
411, 426–428, 434, 435, 437, 447,
451–454, 457, 459, 461, 464, 467,
471, 485, 487, 542, 543, 555

balance law, 238, 376, 378
conservation law, 237
for ideal gas, 380, 391
local balance, 377
material equation, 430
of ideal gas, 409
per mole, 391
per mole of ideal gas, 391
per unit mass, 372
specific, 370, 379, 387

Internal pressure, 357
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Internal yield criterion, 156
International System (IS) of units, 545
Invariance under multifold averaging, 234
Inviscid/ideal fluid, 221–223, 526
Irrotational flow, 490, 491
Isentropic, 408, 486, 506

(adiabatic) change of state, 527
(adiabatic) condition, 529
adiabatic state, 487
change of state, 490, 510
condition, 486, 491, 507
curve, 533, 534
exponent, 533
flow, 535
law, 533
process, 466, 485, 491
relation, 508, 533, 534

Isobar, 354, 355
Isochor, 354

of ideal gas, 354
Isochoric

deformation, 377
stress coefficient, 458

Isotherm, 350, 354–356, 359
of ideal gas, 351

Isotropic
function, 444

Isotropic stress postulate, 192

J
Joule-Thomson effect, 389
Jump condition, 523, 525, 526

local, 525
of energy, 445, 525–527
of entropy, 445, 525–527
of entropy across shock, 532, 533
of mass, 525–527
of momentum, 525–527

K
Kelvin, 326, 327, 329, 331, 332, 350, 351,

353, 382, 393, 408, 409
scale, 351
temperature, 350, 351, 353, 409, 447,
468

Kinematic (surface) equation, 54, 63, 73, 95
Kinematic surface condition, 90, 149
Kinematically similar, 575
Kinetic energy, 201

of difference motion, 201, 202
of perturbation field, 200
of perturbed motion, 200

Kinetic sieving mechanism, 164
Kinetic theory

of dilute gas, 556
of gas, 267, 542, 546
of ideal gas, 556

Klein bottle, 521, 522
K -space, 603, 605
K -transformation, 602

L
Lagerström–Kaplun theory, 4, 30
Lagrange

multiplier, 443, 444, 449
parameter, 442

Lagrangean
approach, 168, 169
calchlation, 170
discretization, 165
finite difference scheme, 171, 185
integration scheme, 166
integration technique, 184
moving grid technique, 171
moving mesh, 170
numerical scheme, 168
scheme, 168, 170

Lahars, 118, 122
Landslide, 115, 118, 119, 122, 126, 187, 188

Hsiaolin, 190, 191
induced by a typhoon, 184
induced by an earthquake, 119, 184
Nomash River, 190

Laplace
operator, 364, 471, 488, 496, 566

Large Eddy Simulation (LES), 234, 259
Laval nozzle, 514
Law of equipartition, 380
Legendre

transformation, 455
Leibniz rule, 64, 151
Liquefaction, 125–127, 129

full, 127, 128
Liu’s theorem, 442, 444, 472, 473, 479
Lubricated sliding, 122
Lubrication, 122

M
Mach, 336, 343
Mach number, 510, 511, 513, 514, 517, 535,

549, 550
critical, 517

Mapping invariant, 574
Matched asymptotic expansion, 4, 31, 37
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Material
volume, 323, 341, 369, 370, 374, 375,
524

Material behavior, 320
Material equation, 321, 323, 337, 426–432,

437, 438, 441, 448, 479
Material law, 321
Mathematical model, 543, 544, 592
Maxwell

construction, 361
correction, 359
kinetic theory, 380
relation, 404, 455, 457–462
second theory, 331
second theory of kinetic gas, 331

Mean gradient theory, 268
Mechanical law, 320
Mechanical state, 344
Method

discontinuous Galerkin, 169
homotopy analysis, 4, 39
of energy stability, 216
of matched asymptotic expansion, 4
of quantum mechanics, 382
of separation of variables, 397
of small disturbance, 216
shock-capturing, 169

Metric coefficient
contravariant, 145
covariant, 144

Metric tensor, 145
Millikan’s experiment, 15
Minkowski, 342
Mixing length

turbulent, 264
Mixing number, 285
Mixture

balance laws, 585
density, 579, 585
stretching tensor, 585

MKS-system, 545, 546
Möbis strip, 521, 522
Mohr circle, 139, 140, 156, 157, 161

diagram, 157
representation, 157

Mohr–Coulomb
constitutive model, 185
friction, 192
model, 188
plastic yield, 161
sliding behavior, 188
yield criterion, 142, 158

Mud flow, 115, 117, 119, 130

Muschik, 396

N
Natural tone, 504
Navier–Stokes

equation of a density preserving fluid, 3
equations, 4, 5, 8, 13, 31, 38, 39, 43, 44,
201, 210, 216, 217, 223, 236, 242

equations of a density preserving fluid,
205

fluid, 238
operator, 39, 43

Navier–Stokes–Fourier–Fick equations, 584
Navier–Stokes-Fourier-Schmidt constitutive

parameterization, 242
Navier-Stokes

equations, 544
Navier-Stokes-Fourier-Fick equations, 592
Negative compressibility, 360
Net driving acceleration, 160
Neumann type boundary condition, 91
Neutral stability, 200, 221

condition, 200
curve, 221–223
curve of a plane boundary layer flow, 222

Newton, 324, 334, 367, 371
Newton’s

fundamental law, 324
law, 61, 367, 371, 545, 576
law of motion, 468
mechanics, 576
second law, 133, 135, 137, 545, 555, 571,
576

Newtonian
density preserving fluid, 203
fluid, 1, 204, 239, 240, 266, 279, 300, 440
fluid model, 90
linear behavior, 15
stress relation, 438

No-slip condition, 9, 12, 14, 15, 21, 43, 55,
82, 201

Non-locality, 269, 271, 311
Non-Newtonian

fluid, 84
Non-oscillatory central (NOC) difference

scheme, 173, 174
shock capturing, 176

Normal mode analysis, 566
Normal stress effect, 120, 121, 140
Nusselt number, 582

basal, 64
free surface, 61, 90
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O
One-equation model, 243, 245, 246
Organ pipe, 502
Orr–Sommerfeld equation, 218, 220–223
Oseen

ansatz, 25
approximation, 24
correction, 4
differential equation, 35
equation, 24, 27, 28, 35, 38
expansion, 28, 31, 34, 35
-let, 4, 27, 28
solution, 31, 34, 35, 37
theory, 22, 31
-type solution, 37, 38

Outer expansion, 31, 35–37
Outer region, 34
Outer solution, 37, 38
Overlapping region, 31, 35, 44
Overtone, 504

P
Péclet number, 587
Perfect machine, 326
Perfect sliding, 16, 55
Perpetuum mobile, 395

of the first kind, 393
of the second kind, 393, 394

Perturbation, 199, 496
approach, singular, 4
equation, 200, 216, 221
expansion, 154
field, 200
flow, 206
initial, 494
neutral, 223
of basic flow, 206
parameter, 50, 88, 223
propagation in gas, 486
quantity, 200, 217
regular, 107
scheme, 76
scheme, regular, 50
series, 223
solution, 38, 66, 90
solution, regular, 88
speed, 296
technique, 4
unstable, 223
variable, 200
velocity, 210, 216, 218

Phase rule, 331

Phase speed, 200, 218, 497
Physical component, 146–148, 150
Physical model, 543, 544

theory, 571
Piezometric pressure, 576
Plug flow, 65, 159
Poiseuille flow, 303, 309

laminar, 300
turbulent, 300, 312

Potential
of intermolecular force, 380
of molecular force, 391
thermodynamic, 448

Potential flow, 10, 27, 32
Power law, 76, 77, 559, 582

constitutive law, 59
fluid, 81, 90
Glen, 76, 77
Norton, 76, 77
velocity profile, 159

Power of working, 366, 368–370, 375, 395,
417, 582

mechanical, 385
of dissipation, 376
of external force, 373
of force, 368
of heat pump, 417
of pressure, 376, 398
of sliding traction, 526
of surface force, 370, 372
of turbine, 388
of viscous stress, 376
of volume force, 369, 372

Prandtl
mixing length, 240, 242, 246, 313
mixing length theory, 267
number, 248, 254, 563, 568, 569, 582,
583, 587

number, turbulent, 243
proposal, 246

Pressure
overburden, 136
thermodynamic, 358, 435, 437, 446, 448

Pressure coefficient, 587
Pressure drag, 13, 16
Pressure tensor, 141, 147, 155
Principal stress, 156, 157
Principle of irreversibility, 322, 362, 392,

393
Process

impossible, 398, 407
irreversible, 324–326, 362, 366, 393,
396–398, 407, 413
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irreversible adiabatic, 407
not realizable, 323, 392, 398, 407
realizable, 398, 410
reversible, 323, 326, 362, 366, 367, 396,
398, 404, 407, 412, 415

reversible adiabatic, 396–398, 404
reversible cyclic, 396

Process quantity, 371, 372
Propagation speed, 525
Pyroclastic flow, 118, 130

R
Radiation balance, 258
Radiation number, 587, 590
Rank, 599, 600
Rankine–Hugoniot

curve, 533, 534
relation, 176, 529, 534

Rate factor, 54, 58, 79, 80, 98, 102
Rayleigh

critical number, 563
equation, 218, 221–223
number, 563, 568, 569
wave, 127

Rayleigh–Bénard
cell, 563
convection, 560
Instability, 560
problem, 570

Reflexivity, 348
Reiner-Rivlin fluid, 120
Reynolds, 375

-averaging, 230
average, 234
averaged balance laws, 237
averaging, 266
decomposition, 229
effect, 577
equation, 279, 584
model, 550, 574
normal stress, 284
number, 3, 4, 13, 14, 16, 28, 30, 34, 36–
39, 42, 44, 140, 209, 216, 218, 220–
223, 231, 271, 278, 279, 300, 301, 304,
305, 308, 309, 312, 549, 550, 554, 559,
563, 564, 572–574, 576, 577, 579, 582,
583, 587, 588, 592
particle, 579

shear stress, 284, 299, 302, 305, 306, 310
similitude, 574, 576, 583
stress, 242, 281, 284, 296, 301, 309
stress function, 284

stress hypothesis, 239
stress parameterization, 240, 241
stress tensor, 239, 240, 242, 259
transport theorem, 363, 375, 424, 523

Reynolds-Averaged-Navier–Stokes
(RANS)

-averaging, 259
equations, 259
model, 234

Richardson number, 587
Rock fall, 117, 119
Rossby number, 590
Rule of aequipresence, 428, 430, 431, 434,

441
Rule of material frame indifference, 428
Rule of material objectivity, 428

S
Saturation, 586
Savage-Hutter (SH)

avalanche model, 161
equations, 137, 141, 159, 162, 164, 166,
171, 175, 176, 181, 184

equations, one-dimensional, 165, 166,
169

formulation, 190
model, 134, 135, 139, 185
one-dimensional theory, 161
theory, 156, 158

Scale analysis, 50, 84, 272, 544
Scale effect, 544, 572, 577, 592
Scale invariance, 543, 584, 587
Scale invariant, 572, 574, 587
Scaling, 147, 148, 587

analysis, 116
down-, 140, 543, 544, 571, 583, 584, 591,
592

procedure, 56, 108
process, 59
property, 587
transformation, 147
up-, 543, 588, 591

Schmidt number, 248, 588
turbulent, 243

Schwarz inequality, 213
Segregation, 129, 130
Self-similarity, 274, 281, 288

domain, 279, 280
relation, 280

Separation of variables
method, 397

Separation technique, 502
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Shallow
flow approximation, 159, 584
flow avalanche, 131
flow model, 131
granular flow, 153
granular material, 151
water approximation, 190
water avalanche model, 182
water equation, 165, 181

Shallow creeping flow, 49
Shallow flow approximation, 47, 50, 66, 71,

79, 82–84, 106, 107
Shallow ice approximation, 88, 93

second order, 88
Shallow shelf approximation, 107
Shallow water approximation, 50
Shallowness

of geometry, 115
of the avalanching mass, 140, 584
parameter, 116
property, 50

Shear angle, 320
Shear deformation, 120
Shields diagram, 581
Shields parameter, 579–581

critical, 579, 580
Shock, 525

compaction, 520
compression, 519, 520

Shock wave, 522, 525
dispersed, 164
half-spherical, 557
theory, 536

Similarity, 271, 575, 576
behavior, 296, 298
complete, 544, 572, 574
dunction, 278
kinematic, 575
model, 572
property, 296, 574
solution, 272, 273, 276, 278, 295, 312

Similitude, 543
approximate, 576
dynamic, 575, 576
Froude, 573, 574, 577
kinematic, 575
principle, 544
Reynolds, 574, 576, 583
rule, 575
theory, 544

Singular surface, 96, 486, 520–526
material, 441, 445, 486, 521, 525, 526
moving, 525

non-material, 486, 521
of first order, 486, 525, 527

Sliding law, 14, 15, 55, 70, 77, 82, 91
basal, 69
dimensional, 63
exponent, 80
viscous, 15

Sliding surface, 523, 525, 526
of two bodies, 522

Solid friction, 122
Sonic flow, 510
Specific heat, 382, 387, 458–462, 464–467,

545, 582
at constant pressure, 386, 387
at constant volume, 379, 380, 382, 390,
391, 409

of ice, 87
of ideal gas, 465
of monatomic gas, 381
of multi-atomic gas, 382
of real gas, 390
of van der Waals gas, 410

Specific turbulent enstrophy, 250
Speed of sound, 487, 488, 491, 494, 497, 511

adiabatic, 487
of fluid, 548, 551

Spherical radiator, 499
Stability analysis, 200

energy, 209, 216
linear, 200, 201, 216, 217
linear, laminar channel flow, 216

Stable, 199, 216
absolutely, 216
basic flow, 208
certainly, 216
channel flow, 212, 215, 216
equilibrium configuration, 198
flow, 209
neutrally, 216

Stagnation pressure, 587
State variable, 344–346, 348, 353, 385, 485

caloric, 485, 529
external, 344
internal, 344
molar, 345, 346
specific, 345, 346

Statical thermodynamics, 331
Stationary, 216

adiabatic shock, 520
condition, 508
flow, 485, 506
isentropic flow process, 485
random process, 233
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shock, 486, 527, 528
volume, 375

Stationary random process, 233
Statistical mechanics, 331
Steady state, 3, 78, 97, 98, 274, 275, 513,

547
condition, 272, 383
continuity equation, 518
ice sheet flow, 99, 100
mass balance equation, 390
process, 385

Stokes, 377, 402
approximation, 8, 15, 24, 61, 66, 83, 88,
108

assumption, 377
drag, 13
equation, 5, 33, 108
expansion, 31–33, 35
flow, 4, 6, 9, 13, 43, 65
inner expansion, 36
integral theorem, 491
law, 402
-let, 4, 27, 28, 33
model, 107
operator, 6, 42
-Oseen expansion, 30, 31
paradox, 33
solution, 16, 27, 28, 30, 31, 34, 41
solution, validity, 13
stream function, 6
theory, 14, 22, 30

Stokes drag, 13
Strain heating, 58, 87
Strain rate, 120, 158

deviator, 239
mean turbulent, 230
tensor, 237, 240, 320, 426, 438, 467, 468
tensor, mixture, 585
vertical, 87

Stream filament, 513
cross section, 515
flow, 506
section, 506
theory, 486, 506
theory, steady isentropic, 536

Stream function, 6, 8, 10, 20, 22, 32, 218,
220

in the interior of the sphere, 18
perturbation, 218
spherical, 8

Streamline, 20, 36, 69, 163
Stress (tensor), 320, 378, 427, 430, 435, 448,

526, 585

Cauchy, 141, 373, 426, 427, 437, 444,
467

dimensionless, 579
extra, 373, 437, 438, 449
fictitious shear, 314, 315
frictional, 11, 266, 373, 437, 485
in thermodynamic equilibrium, 437
internal shear, 142, 143
longitudinal turbulent normal, 285
normal, 120, 121, 156, 184, 188
Reynolds, 239, 240, 242, 259, 281, 284,
296, 305, 309

Reynolds normal, 284
Reynolds shear, 306, 310
shear, 17, 18, 65, 68, 156, 157, 267, 272
transverse turbulent normal, 288
turbulent, 266, 267, 302
turbulent shear, 269, 274, 276, 277, 283,
306, 308

viscous, 266, 300, 376, 485, 490
Stress deviator, 53, 54, 56, 58, 76, 85, 120,

237
Stress state, 139, 156, 157

active, 140, 157
passive, 140, 157
passive basal, 157

Stress strain rate relation, 120
Stress (tensor)/shear, 321
Stretching tensor, 53, 120, 426, 427, 434

mixture, 585
Strouhal number, 588
Subcritical flow, 164, 177
Submarine slide, 126
Subsonic flow, 510, 514
Super-elevated model, 571
Supercritical flow, 164, 175–177
Supersonic flow, 510, 514
Surface force, 369
Surface tension, 16, 121, 122, 548, 551, 558,

571, 576
gradient, 21

Suspended matter/sediment, 586
System, 337

absolutely closed, 341, 347, 355, 407
adiabatic, 341, 347
adiabatically closed, 412, 413
closed, 326, 375
closed adiabatic, 398
heterogeneous, 345
heterogeneous two-phase, 345
homogeneous, 333, 344–346, 412
materially bounded, 326
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materially closed, 341, 344, 347, 371,
372, 383–385, 393

materially closed but moving, 383
materially closed by adiabatic wall, 374
materially closed, at rest, 371
non-heterogeneous, 345
open, 341, 344, 375, 383
simple, 345
thermodynamic, 337, 341, 344
with a bounded material substance, 337
with a bounded spatial region, 337

T
Taylor

series, 14, 40
series expansion, 40, 85, 135, 240, 254,
293, 509, 511

Temperate ice, 96, 102, 106
Temperature, 52, 54–56, 59, 63, 64, 67, 69,

70, 74, 76–79, 82, 96–106, 232, 236,
241, 257, 331, 346, 349, 350, 393–
395, 485, 486, 488, 509, 555

absolute, 331, 333, 335, 350, 351, 379,
399, 405–409, 411, 424, 429, 430, 437,
440–443, 446, 447, 449, 451, 453, 468,
472, 477–479, 508, 545

burning, 118
Celsius, 351
critical, 355–357, 359, 360
empirical, 349–351, 405, 406, 408, 409,
437, 442, 445–447, 451, 468, 472, 475,
478

Fahrenheit, 353
fluctuation, 239, 241
granular, 122
ideal gas, 409
Kelvin, 350, 351, 353, 382, 406, 409,
447, 468, 585

melting, 82, 96
thermodynamic, 353, 405, 406, 408
universal, 350, 430

Theory of heat, 322
Thermal efficiency

of heat engine, 415, 416
optimal, 416

Thermal equation of state, 254, 350, 351,
353–357, 378, 379, 385, 391, 392,
396, 399, 408, 409, 426, 427, 436–
438, 452, 453, 458, 464, 487, 488,
490, 491, 529, 532, 586

for ideal gas, 354, 391, 532
for mixture, 585

Thermo-viscous
body, 74
flow state, 564
response, 54

Thermodynamic equilibrium, 331, 344, 348,
349, 351, 355, 407, 435, 437, 438,
440, 448, 471, 486, 488

Thermodynamic potential, 453, 454, 457
Thermodynamic process, 341, 362, 424,

426, 427, 430–432, 434, 441, 442,
468, 469, 478

admissible, 427, 429, 444
differentiable, 424
irreversible, 362
physically possible, 425
quasi-static, 357
reversible, 362

Thermodynamic state, 333, 341, 344, 345,
350, 353, 362, 366, 377

unstable, 360
Thermodynamic system, 337
Thermodynamics

first law, 322, 325, 326, 392, 418, 506,
547

irreversible, 418
rational, 418
second law, 126, 322, 323, 325, 326, 331,
333, 350, 361, 366, 376, 379, 385, 392,
393, 395, 404, 405, 409, 411–418, 423–
426, 429, 430, 434, 436, 440, 448, 452,
458, 472, 473, 479, 485, 533, 534

third law, 331
zeroth law, 348

Thermometer, 349, 350
fluid, 349, 350
gas, 349
ideal gas, 350
mercury, 349
real, 331
resistivity, 349
substance, 350
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