
Lecture Notes in Physics 894

Ilya Feranchuk
Alexey Ivanov
Van-Hoang Le
Alexander Ulyanenkov

Non-perturbative 
Description of 
Quantum Systems



Lecture Notes in Physics

Volume 894

Founding Editors

W. Beiglböck
J. Ehlers
K. Hepp
H. Weidenmüller

Editorial Board

B.-G. Englert, Singapore, Singapore
P. HRanggi, Augsburg, Germany
W. Hillebrandt, Garching, Germany
M. Hjorth-Jensen, Oslo, Norway
R.A.L. Jones, Sheffield, UK
M. Lewenstein, Barcelona, Spain
H. von LRohneysen, Karlsruhe, Germany
M.S. Longair, Cambridge, UK
J.-M. Raimond, Paris, France
A. Rubio, Donostia, San Sebastian, Spain
M. Salmhofer, Heidelberg, Germany
S. Theisen, Potsdam, Germany
D. Vollhardt, Augsburg, Germany
J.D. Wells, Geneva, Switzerland



The Lecture Notes in Physics

The series Lecture Notes in Physics (LNP), founded in 1969, reports new devel-
opments in physics research and teaching-quickly and informally, but with a high
quality and the explicit aim to summarize and communicate current knowledge in
an accessible way. Books published in this series are conceived as bridging material
between advanced graduate textbooks and the forefront of research and to serve
three purposes:

• to be a compact and modern up-to-date source of reference on a well-defined
topic

• to serve as an accessible introduction to the field to postgraduate students and
nonspecialist researchers from related areas

• to be a source of advanced teaching material for specialized seminars, courses
and schools

Both monographs and multi-author volumes will be considered for publication.
Edited volumes should, however, consist of a very limited number of contributions
only. Proceedings will not be considered for LNP.

Volumes published in LNP are disseminated both in print and in electronic for-
mats, the electronic archive being available at springerlink.com. The series content
is indexed, abstracted and referenced by many abstracting and information services,
bibliographic networks, subscription agencies, library networks, and consortia.

Proposals should be sent to a member of the Editorial Board, or directly to the
managing editor at Springer:

Christian Caron
Springer Heidelberg
Physics Editorial Department I
Tiergartenstrasse 17
69121 Heidelberg/Germany
christian.caron@springer.com

More information about this series at
http://www.springer.com/series/5304

http://www.springer.com/series/5304


Ilya Feranchuk • Alexey Ivanov • Van-Hoang Le •
Alexander Ulyanenkov

Non-perturbative Description
of Quantum Systems

123



Ilya Feranchuk
Physics Department
Belarusian State University
Minsk
Belarus

Alexey Ivanov
Physics Department
Belarusian National Technical University
Minsk
Belarus

Van-Hoang Le
Department of Physics
Ho Chi Minh City University of Pedagogy
Ho Chi Minh City
Vietnam

Alexander Ulyanenkov
Atomicus GmbH
Karlsruhe
Germany

ISSN 0075-8450 ISSN 1616-6361 (electronic)
Lecture Notes in Physics
ISBN 978-3-319-13005-7 ISBN 978-3-319-13006-4 (eBook)
DOI 10.1007/978-3-319-13006-4
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014958312

© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


Dedicated to the memory of
Professor Lev Komarov





Preface

There are many excellent books and monographs dedicated to the fundamentals of
quantum mechanics. The content of these books is mainly focused on what has to be
done to describe a physical system in a quantum-mechanical way, namely to solve
the Schrödinger equation for a wave function or statistical operator. This book is an
attempt to discuss how to describe a real quantum mechanical system, and we use
a variety of examples from the broad spectrum of physical problems in support of
this attempt.

In contrast to equations of condensed matter physics or hydrodynamics, the
direct numerical solution of the Schrödinger equation, using a finite-element
approximation for differential operators, is practically ineffective due to the large
number of variables. Therefore, the most widely used approach for the solution is
to approximate the physical system by some models, which have an exact solution.
Then construct the perturbation series for the perturbation operator, which is defined
by the difference between the Hamiltonian of real system and the Hamiltonian of
the model. The applicability of this approach depends on the existence of small
parameters for the perturbation operator.

Modern theoretical physics, however, deals with physical systems, the majority
of which do not permit us to define a small parameter bearing a physical sense
and mathematically fitting to the formal method of perturbation theory. Even after
being constructed, the perturbation series often have an asymptotic nature and zero
convergence radius. Moreover, there are many practical physical problems where the
parameters of Hamiltonian vary within a broad range of values, and the perturbation
operator is not sorted out. These systems require a non-perturbative approach for
the development of the quantum theory without a physical small parameter.

There are several methods capable of theoretically investigating quantum sys-
tems without introducing a small parameter. The direct numerical integration of
the Schrödinger equation by using expansion over an artificial parameter, a step
of finite-difference approximation derivatives, is a frequently used technique to
avoid implementation of a small parameter. The use of lattice models of quantum
field theory is another example of non-perturbative methods. The lattice constant
is a non-physical parameter which determines the accuracy of the calculation for
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viii Preface

functional integrals when the integration is replaced by summation. The drawbacks
of numerical methods are the exponential growth of calculations and instability
of the algorithm with increased degrees of freedom for the investigated physical
system.

The physical non-perturbative methods include, for example, the variational
principle, the Hartree–Fock method, a method of approximating Hamiltonians,
the density functional theory, and others. In the framework of these methods, the
estimate for the ground state energy can be obtained; however, the calculation of
successive approximations with required accuracy and the calculus of the spectrum
of the system provoke essential difficulties.

This monograph introduces and demonstrates the application of the original
non-perturbative method for the description of quantum systems, which overcomes
most of the above-mentioned obstacles typical for non-perturbative techniques. This
method, named the operator method (OM), was first introduced and published
in numerous works by authors in the early 1980s. For the construction of zeroth
approximation of the operator method and further successive approximations there
is no necessity to solve differential and integral equations because all calculations
are reduced to algebraic calculus with matrix elements of the operators. A very
prominent feature of the operator method is an ability to obtain zeroth approxima-
tion for the eigenfunctions and eigenvalues of the Hamiltonian, which are uniformly
suitable in the entire range of physical parameters and quantum numbers of the
system. The successive approximations of operator method deliver the converging
sequence, which enables the calculation of physical characteristics with any required
accuracy.

The book presents both the mathematical fundamentals of the operator method
and its practical applications for real quantum systems, including ones with an
infinite number of the degrees of freedom. A further generalization of the method
is given for the quantum statistics, which implements the additional physical
parameter, temperature. In comparison with the description of pure quantum states,
the calculation of observables in statistics using the density matrix includes an
additional complicated procedure: the summation over all states of physical system.
For this purpose, the standard procedure of the operator method is supplemented by
a non-perturbative algorithm for the summation over quantum states. This combined
technique calculates the thermodynamic characteristics of physical systems in a
wide diapason of temperatures and remains effective for the systems with multiple
degrees of freedom.

The authors dedicate this book to the memory of Professor Lev Ivanovich
Komarov, who was one of the pioneers of OM development and contributed
essential research on operator methods. The major part of the studies described in
this monograph was conducted by the scientists and alumnus of the Department of
Theoretical Physics and Astrophysics of the Belarusian State University (Minsk,
Belarus). We are thankful to all of our colleagues for their studies published in
the recent decades together with the authors of this book: I.K. Dmitrieva, G.I.
Plindov, L.I. Gursky, I.V. Nichipor, T.S. Romanova, A.L. Tolstik, S.I. Fisher,
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I. Tsvetkov, P.A. Khomyakov, V.V. Triguk, A.V. Leonov, X.H. Ly, Z.A. Chan,
N.T. Vu, A.T. Le, and N.T. Hoang-Do. We also appreciate C. Klein for the help
with stylistic corrections.

The target audience for this monograph is researchers, post-graduate students,
and students studying theoretical and mathematical physics.

Minsk, Belarus Ilya Feranchuk
Minsk, Belarus Alexey Ivanov
Ho Chi Minh City, Vietnam Van-Hoang Le
Karlsruhe, Germany Alex Ulyanenkov
July 2014
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Chapter 1
Capabilities of Approximate Methods
in Quantum Theory

The majority of physical phenomena in condensed matter, atomic and molecular
systems is defined by electromagnetic interactions and governed by quantum
mechanics laws. The systems possess an entirely defined Hamiltonian and the
physical properties are described by the corresponding solutions of Schrödinger
equation. The quantum description has an universal character, which assumes
the wave functions of complex systems are the solutions of the linear equations,
which have similar mathematical structure for the physical systems with essentially
different physical properties. The mathematics plays a special role in a quantum
mechanics [1], and any new method for the solution of Schrödinger equation results
in essential progress in the description of numerous physical systems.

For the most of the problems in a quantum theory of many-body systems, the
numerical solution of Schrödinger equation using a finite-element approximation
for differential operators is ineffective, even by using modern powerful computers,
because of the complexity of algorithms and large volume of processed information.
The use of the functional integrals for quantum theory [2] faces a similar difficulty.
Therefore, the development of new methods for approximate description of quantum
systems plays a crucial role for both analytical investigations and design of the
algorithms for numerical calculation of physical properties of the objects.

In the Chap. 1, we discuss the general criteria for the effectiveness of the
approximate methods (AM), and make an assessment of most frequently used
AMs in quantum theory. In this monograph, we apply exclusively the operator
(Schrödinger’s) formulation of quantum mechanics, and do not discuss the ap-
proximate methods for quantum theory in the form of Feynman’s functional path
integrals [2]. The analytical and approximate methods in the latter form have
been widely presented in numerous monographs (for example, [3] and references
therein). However, it is worth to mention that the non-perturbative investigations in
both forms of quantum mechanics are pretty similar.

© Springer International Publishing Switzerland 2015
I. Feranchuk et al., Non-perturbative Description of Quantum Systems,
Lecture Notes in Physics 894, DOI 10.1007/978-3-319-13006-4_1
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2 1 Capabilities of Approximate Methods in Quantum Theory

1.1 Effectiveness Criteria for Approximate Methods

The criteria for mathematical methods to be effective listed below have rather
subjective nature, however, they are nevertheless important for the assessment of
general effectiveness. To our opinion, they are:

– universality,

meaning the representation of the calculus scheme in a form, which is not related to
the specific features of the physical problem. However, there is no universal method
exists which delivers exact solution of Schrödinger equation for the system with an
arbitrary Hamiltonian. Instead of, the method should include an iteration algorithm,
which establishes the procedure for the successive approximations. Therefore, the
following criteria have to be added:

– high accuracy of the zeroth approximation,

which has to describe correctly the most principal properties of the physical system,
and

– uniform convergence of successive approximations, for calculation of the
solution with any required accuracy. For practical applications, the following
criterion is important:

– simple enough algorithm for calculation of zeroth and successive approxi-
mations, to be applicable for the systems with a large number of the degrees of
freedom.

The detailed assessment of widely used AMs based on the above-mentioned
criteria will be given in the following sections. The perturbation theory (PT) and its
modifications (for example, [4, 5] and citations therein) seems to possess a highest
universality in the sense of criteria listed above. The PT series can be constructed
by the extraction of the operator OH0 from the entire Hamiltonian OH , which has the
known spectrum of eigenvalues (EV) and eigenfunctions (EF), and the operator of
perturbation OV , both satisfying the condition OH D OH0 C � OV . The dimensionless
parameter � � 1 defines the characteristic value of the perturbation amplitude
in relation with the distance between the energetic levels of the non-perturbed
system with Hamiltonian OH0. Following a simple receipt, formally applicable to
arbitrary quantum system, the series over the parameter � for both EV and EF can
be constructed. However, for the majority of physical systems, the series over �,
obtained on the basis of canonic form of PT, have an asymptotic nature. These series
[5] are divergent and do not permit to find a solution of Schrödinger equation by a
simple summation of the terms of series. Therefore, the quantitative description of
the physical systems using PT is only possible in narrow diapason of small values
of the parameter � and for low energies of excitation.

All aforesaid is also true for the limit of strong coupling (� � 1), where a small
parameter is ��1 [6], and for the quasi-classic approximation (with Planck constant
„ as a small parameter), and for various modifications of adiabatic expansion,
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where a small parameter is placed in a front of the operator of kinetic energy
[7]. The asymptotic character of the expansions is manifested in the fact, that
two-sided approximations being constructed for the same system, for instance,
using parameters � and ��1, result in a different functional dependence of EV on
Hamiltonian parameters, which does not permit the continuous transition from one
series to another. Thus, using the PT in real applications, the important property
of universality is lost, because of the focus is switched from the mathematical
procedure for construction of successive approximations to the deep understanding
of the physics of processes, taking into account the qualitative characteristics of
physical systems in operator OH0. This behavior is well described by the statement
after L.Landau “There is no physical theory without a small parameter”.

The modern theoretical physics deals with the problems, the majority of which
do not allow to select a small parameter having a certain physical sense. On the
contrary, there are many problems exist where all parameters of Hamiltonian are
varied in a wide range. Therefore, the development of the methods, which are able
to build a theory of quantum system without a small parameter, or so called non-
perturbative methods, is an actual trend of modern theoretical physics. For certainty,
we mean here the avoidance of small parameters in the Hamiltonian of the system.
At the same time, this does not exclude the use of supplementary or artificially
introduced parameters in non-perturbative methods, which govern the accuracy of
the numerical calculations.

There are also many methods exist, which investigate quantum systems without
introduction of a physical small parameter (see, for example, [8–11] and citations
therein). In a first turn, the direct numerical integration of Schrödinger equation
using expansion over the artificially introduced parameter, for instance, the step of
the finite-element approximation of derivatives, is an example of non-perturbative
method. Another example is a lattice model of the quantum field theory, where
the non-physical parameter is a lattice constant, which defines the accuracy of
calculation of functional integrals for the transition from integration to summation
[3]. The drawbacks of direct numerical methods are the exponential growth of the
calculation volume and the loss of the algorithm stability when the dimension of the
system s increases, for example, at s � 3 their effectiveness is already essentially
low.

There are more examples of non-perturbative methods having a physical nature:
variational principle, Hartree–Fock method for multi-electron atoms, approximating
Hamiltonian method, etc. In the most cases, these methods deliver an approximate
estimate for the energy of ground state and are not capable to calculate the entire
energy spectrum of the system with a required precision.

In the majority of applications, the divergence of PT series is not related to the
real properties of the physical system, but just points to necessary rearrangement of
the received expansion over the Hamiltonian parameter to provide the analytical
extension of EV and EF outside of the convergence region of the initial series.
This task is partly solved by the summation methods for asymptotic series [12] and
various modifications of Pade-approximation [13]. However, all these methods are



4 1 Capabilities of Approximate Methods in Quantum Theory

not really universal in the sense mentioned above, and cannot be generalized for the
systems with the multiple degrees of freedom.

For quantitative characterization of the effectiveness and the accuracy of non-
perturbative methods, the supplementary definitions have been introduced [14]. Let
us assume that some characteristics of the quantum system is described by the func-
tion Fn.�/, which depends on the quantum number n (quantum number set) of the
state and on the parameter � (parameter set), defining the perturbation amplitude in
the system. We assume further that the non-perturbative method delivers both zeroth
F
.0/
n .�/ and successive F .s/

n .�/; s D 0; 1; 2; : : : approximations for the function
in question. Then these functions yield a uniformly available approximation (UAA)
for the physical system, provided the following conditions are fulfilled for the entire
range of parameter � and for all quantum numbers n:

ˇ
ˇ
ˇ
ˇ
ˇ

F
.s/
n .�/� Fn.�/

Fn.�/

ˇ
ˇ
ˇ
ˇ
ˇ

� �.s/; (1.1)

where each parameter �.s/ < 1 is independent on n and � and defines the accuracy
of the approximation. The condition of the convergence of non-perturbative method
corresponds to decreasing sequence of parameters �.s/:

lim
s!1 F .s/

n .�/ D Fn.�/: (1.2)

The asymptotic series obtained from PT are obviously not satisfying the con-
ditions (1.1) and (1.2), because of they approximate the function in question in
a narrow range of n; � and are not convergent. At the same time, the two-side
asymptotic expansions, corresponding to limits � � 1 and � � 1, allow to control
the conditions of UAA for various non-perturbative methods [14]. In contrast to the
asymptotic expansions, the UAA approximates the value with high relative accuracy
�.s/ in the entire range of the variation of physical parameters and quantum
numbers of states. Thus, the effectiveness of the non-perturbative method can be
quantitatively estimated from the infinitesimality of �.s/ in primary approximations
and the speed of their decay with the increase of s.

In this short introductory chapter dedicated to non-perturbative methods for
quantum systems, we illuminate the techniques, which are to some extent related to
the approach taking a central place in this monograph: operator method (OM). First
of all, one of this techniques is a non-perturbative method utilizing the self-similar
approximation for calculation of the dependence of system characteristics on the
parameters of Hamiltonian. The basic ideas of this approach have been published
for the first time in [15], and later it has been successfully applied to numerous
problems of quantum mechanics and field theory (see, for instance, the review [16]
and citations therein).
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The non-perturbative method for calculation of functional integrals for the
systems with a non-linear operation (see, for example, [17] and citations therein)
has been used in the theory of strong interaction. The scheme of non-linear scaling
of coupling constant in quantum chromodynamics makes possible the calculation of
the processes in the range of energy variables, where the standard form of PT fails.
The application area for this approach can be essentially extended, if the method is
generalized for the theory of condensed matter and quantum mechanics of multiple-
particle systems.

The method presented in this monograph is a kind of universal algorithm for
rearrangement of PT series and it satisfies all the requirements for non-perturbative
techniques listed above. This method is named an operator method in the sense
that both for zeroth approximation and for high-order approximations there is no
necessity to solve differential or integral equations: all calculations are reduced to
the algebraic calculus with matrix elements of operators. In the book, we illustrate
the application of OM to the description of various quantum systems, including the
systems with infinite number of the degrees of freedom. The results demonstrate that
already zeroth approximation gives a uniformly available approximation for EV and
EF of Schrödinger equation at arbitrary values of Hamiltonian parameters, and the
successive approximations converge to the exact solution for all values of quantum
numbers of the system and for the entire range of parameters. The algebraic nature
of calculations simplifies the development of the algorithms to obtain the higher
approximations for the systems with a large number of the degrees of freedom, and
to find the eigenvalues and eigenfunctions with a high accuracy.

A special attention is paid to the generalization of operator method for the quan-
tum statistics. In this case, the physical system obtains one additional parameter:
a temperature. In comparison with the description of pure quantum states, the
calculation of the observed values in statistics involves a complex procedure of
summation over all states of the system. Thus, the operator method for calculation
of EV and EF is supplemented by the algorithm for the summation over the
quantum states. This approach permits to calculate thermodynamical characteristics
of physical systems in a wide range of temperature and is effective for the systems
with the multiple degrees of freedom.

Prior the start of the detailed description of operator method in Chap. 2, we
remind in current chapter the basic relationships from other recognized methods
used for approximate evaluation of quantum systems. Their ability and limitations
will be demonstrated by applying them to the model systems: the quantum
anharmonic oscillator (QAO) and the coupled anharmonic oscillator (CAO), which
both are widely used for approval of approximate methods in quantum [18, 19] as
well as in classic [20] theories. The analysis of these problems shed the light on
the difficulties of approximate methods, which are successfully overcome by the
operator method.
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1.2 Perturbation Theory for Solution of Stationary
Schrödinger Equation

In 1939 Paul Dirac [21] introduced the notations and terminology, which are
perfectly fitting the representation of perturbation theory in algebraic form. The
state of the quantum system in arbitrary representation [22] is given by ket-vector
j�ni, where index n defines the set of quantum numbers corresponding to this
state. In general case, these numbers may have both discrete (discrete spectrum)
and continuous (continuous spectrum) values. The bra-vector h�nj corresponds to
Hermitian conjugate vector of the state. The wave function is determined by the
projections of the state vector onto the axes of Hilbert space [22], which corresponds
to this representation. For example, for wave functions in coordinate representation:

�n.x/ � hxj�niI ��
n .x/ � h�njxiI

Z

dx��
m.x/�n.x/ � h�mj�ni: (1.3)

In these notations, the stationary Schrödinger equation for eigenvalues En.�/,
complete Hamiltonian and normalized eigenfunction j�ni take the following form:

OH j�ni D En.�/j�ni; OH D OH0 C � OV I h�nj�ni D 1: (1.4)

For the unperturbed system:

OH0j ni D �nj ni; h nj ni D 1: (1.5)

where OH0 is a Hamiltonian of zeroth approximation, for which a complete set of
eigenvalues �n and eigenfunctions j ni of the solutions of Eq. (1.5) is known.
We assume that the ratio of the matrix elements of perturbation operator � OV to
the difference between energy levels of non-perturbed system has an amplitude
determined by the dimensionless physical parameter �.
The state vector j�ni can be expanded into full set j mi:

j�ni D
1X

mD0
Cnmj mi; (1.6)

and after substitution it into (1.5), we find an exact system of equations for the
coefficients Cnm [4]:

.En � �k/Cnk D �
X

m

VkmCnmI Vkm D h kj OV j mi; (1.7)

which include matrix elements Vkm of the perturbation operator.
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Formally the perturbation theory corresponds to the expansion of values in
question into series over the �:

Cnk D C
.0/
nk C �C

.1/
nk C �2C

.2/
nk C : : : I

En.�/ D E.0/
n C �E.1/

n C �2E.2/
n C : : : (1.8)

There are two ways to obtain this expansion: the algorithm of Rayleigh-Schrödinger
for perturbation theory (RSPT) [23, 24] and the method of Brillouin-Wigner for
perturbation theory (BWPT) [25, 26]. They differ each from the other by the
normalization of the state vector. In case of RSPT, the corrections for the coefficient
C
.l/
nn in each approximation order are selected from the condition for normalization

h�nj�ni D 1 to be satisfied with the accuracy up to the terms of the order �l .
Assuming all the eigenvalues of Hamiltonian OH0 are non-degenerate ( �m ¤ �n for
all m ¤ n), we obtain [4]:

En.�/ D �n C �Vnn � �2
X

m¤n

jVmnj2
�m � �n

C : : : ;

j�ni D j ni � �
X

m¤n

Vmn

�m � �n
j mi C �2

�
X

m¤n

X

k¤n

Vmk

.�m � �n/
Vkn

.�k � �n/
j mi �

�
X

m¤n

VnnVmn

.�m � �n/2
j mi �

X

m¤n

jVmnj2
2.�m � �n/2

j ni
�

C : : : (1.9)

In the case of degeneration of the states of unperturbed Hamiltonian, each energy
level �n has a corresponding set of the distinguished vectors:

j n1iI j n2iI : : : j nsni; (1.10)

where sn is a multiplicity of degeneration. In this case, to obtain the RSPT series, a
new set of states for zeroth approximation has to be constructed [4]:

j �n i D
snX

sD1
c�s j nsiI � D 1; 2; : : : sn: (1.11)

Here the coefficients c�s and new eigenvalues ��n are calculated from the solution of
the system of linear equations:

.��n � �n/c�s D �
X

s0

V
.n/

ss0 c
�
s0 I V .n/

ss0 D h ns0j OV j nsiI h � 0

n j �n i D ıss0 : (1.12)
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This additional operation does not influence the convergence and the general form
of the series RSPT, if the set of indices n; � is included in the definition of quantum
number n.

If the BWPT form of the expansion over the parameter � is used, the following
fact is exploited: due to the linearity of Schrödinger equation (1.4) the solutions are
defined with the accuracy of constant, and therefore the normalization vector can be
found by applying the alternative normalization condition:

OH j Q�ni D En.�/j Q�ni;
h nj Q�ni D 1I j�ni D Aj Q�niI A2 D Œh Q�nj Q�ni��1: (1.13)

As a result, the system of equations for coefficients of the expansion of state vector
is found:

j Q�ni D j ni C
X

k¤n
QCnkj ki;

En D �n C �Vnn C �
X

k¤n
QCnkVnkI

QCnk D �

En � �k
�

Vkn C
X

m¤n
QCnmVmk

�

I k ¤ n: (1.14)

The successive approximations of the BWPT series are found by iterating the last
equation in the expression (1.14):

QC .0/
nk D 0I QC .1/

nk D �Vkn

En � �k I

QC .2/
nk D �

En � �k
�

Vkn C �
X

m¤n

VnmVmk

En � �m

�

I : : : ; (1.15)

and the energy levels for each approximation are found as the solutions of transcend
equation. For example, in the second order BWPT this equation has a form:

En D �n C �Vnn C �2
X

k¤n

VnkVkn

En � �k
: (1.16)

The expansion (1.14) is generalized for the case of degenerate states using the
substitution of j ni; �n by the states j �n i; ��n in zeroth approximation. Thus, the
formulas (1.9) and (1.14) define the universal method for calculation of eigenvalues
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and eigenfunctions as a series over the ratio of matrix elements of perturbation
operator to the distance between the energy levels of the zeroth approximation:

�n D
X

k¤n

�Vkn

�n � �k
: (1.17)

However, these series allow to calculate eigenvalues and eigenfunctions within
a limited range of the parameters of perturbation operator even for simple physical
systems. As an example, we consider here one-dimensional QAO, which is often
used for approbation of the solution of Schroödinger equation or as a basic model
in the field theory with non-quadratic Hamiltonian [18]. The problem is reduced to
the solution of the following equation (further we use the units system with Planck
constant „ and particle mass m both equal unity) [19]:

OH j�ni D En.�/j�ni;
OH D 1

2
. Op2 C x2/C �x2 C �x4I Op D �i d

dx
: (1.18)

We start with the consideration of the case with � D 0, which gives a
good illustration of several obstacles in the canonic perturbation theory [27]. The
perturbation operator is chosen as:

OH0 D 1

2
. Op2 C x2/I OV D �x2I � > �1

2
: (1.19)

Here we use the algebraic calculations in the particle number representation [4],
which is based on the canonic transformation to the creation and annihilation
operators for unperturbed oscillator:

Ox D 1p
2

� Oa C OaC� ;

Op D i
1p
2

� OaC � Oa� ; (1.20)

The operators of annihilation Oa and creation OaC satisfy to the permutation relation:

� Oa OaC� D 1: (1.21)

In this representation the operators OH0 and OV have the following form:

OH0 D 1

2

�

1C 2 OaC Oa� ; (1.22)

OV D �

2

h

1C 2 OaC Oa C � OaC�2 C . Oa/2
i

: (1.23)
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The eigenfunctions for unperturbed oscillator in this representation coincide with
the eigenvectors of the operator of the excitation numbers On:

jni D 1p
nŠ

� OaC�n j0i ; n D 0; 1; 2; 3; : : : ;

On D OaC Oa; On jni D n jni ;
Oa jni D p

n jn� 1i ; OaC jni D p
nC 1 jnC 1i ; (1.24)

and the ground state of unperturbed system follows from the expression:

Oa j0i D 0: (1.25)

Thus, the zeroth approximation for eigenvalues and eigenfunctions in the
Eq. (1.19) is given by:

E.0/
n D 1

2
.2nC 1/;

ˇ
ˇ�.0/

n

˛ D jni : (1.26)

Using the algebra (1.21) for the creation and annihilation operators, the first terms
of the series over the operator OV can be found from the formula (1.9):

E.1/
n D hnj OV jni D �

2
.2nC 1/; (1.27)

E.2/
n D �

ˇ
ˇ
ˇhnC 2j OV jni

ˇ
ˇ
ˇ

2

E
.0/
nC2 �E.0/

n

D ��
2

8
.nC 1/.nC 2/; (1.28)

and in a similar way for further terms. As follows from the expression (1.27), even
for the ground state with n D 0 the series of the perturbation theory converges
only in the domain j�j < 1

2
. At the same time, the operator (1.19) is evidently a

Hamiltonian of the harmonic oscillator with frequency:

!.�/ D p

1C 2�; (1.29)

with known set of eigenfunctions and exact spectrum of eigenvalues:

En D !.�/

�

nC 1

2

	

D
�

nC 1

2

	
p

1C 2�: (1.30)

The eigenvalues (1.30), considered as the functions of parameter �, have a
singularity at � D � 1

2
, because of at � < � 1

2
the Hamiltonian (1.19) does not

possess a discrete spectrum. In general, the convergence radius of the power series



1.2 Perturbation Theory for Solution of Stationary Schrödinger Equation 11

Fig. 1.1 The potential energy of anharmonic oscillator for different values of �

is determined by the distance to the nearest singular point in complex plane � [5],
that limits the convergence of PT series to the values of perturbation parameter in
interval j�j < 1

2
. However, from (1.29) follows that all the values of the parameter

are permissible in the interval
�� 1

2
I 1�

. Thus, even in this simple situation the
calculation of EV spectrum for the entire range of Hamiltonian parameter requires
an essential reconstruction of PT series. For the operator (1.18) with � D 0, � ¤ 0

the situation becomes even more complicated:

OH0 D 1

2
. Op2 C x2/I OV D �x4: (1.31)

The potential energy U.x/ D x2=2C�x4 at various � for the oscillator is shown
in Fig. 1.1. At the values � < 0, the motion of particle in this potential becomes
infinite due to the subbarrier tunneling. That means the system has not discrete
spectrum at infinitesimal negative � and the functions En.�/ have a singularity at
� D 0. In this case, the power series over this parameter have a zeroth convergence
radius and are not converging at any values of �. Such series are called asymptotic,
and they can be used with a limited number of terms and only for estimate
of eigenvalues at small � [5]. The described above properties of PT series are
confirmed when the formulas (1.9) are used for calculations in the particle number
representation for operators (1.31):

OH0 D 1

2

�

1C 2 OaC Oa� ; OV D �

16

� OaC C a
�4
: (1.32)
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Using the Eq. (1.24) for matrix elements of the creation and annihilation
operators, the following expressions are found for the first terms of the RSPT
series [4]:

En.�/ D
�

nC 1

2

	

C 3

4
�Œ2n2 C 2nC 1� �

��
2

8
Œ34n3 C 51n2 C 59nC 21�C

C�3

16
Œ375n4 C 750n3 C 1416n2 C 1041nC 333�C : : : (1.33)

For the ground state of the system .n D 0/, the calculations are easier, and we show
here more terms of the series [19]:

E0.�/ D
1X

sD0
�sAs0 D 1

2
C 3

4
� � 21

8
�2 C 333

16
�3 � 30885

128
�4 C 916731

256
�5 � : : :

(1.34)

In the formula (1.33) the effective expansion parameter is �n, and for high
excitation levels the RSPT series can only be used for very small �. The graph
on the Fig. 1.2, calculated on the basis of expression (1.34) for the function

E
.l/
0 .�/ D

lX

sD0
�sAs0;

Fig. 1.2 The estimate for the energy of ground state of QAO for different numbers of terms
E
.l/
0 in (1.34). The accurate values for E0.�/ are obtained in [28] from numerical solution of

Schrödinger equation
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illustrates the asymptotic character of the series with zeroth convergence radius:
the larger the number of the involved terms in the expansion, the narrower is the
applicability range of the series.

The divergence of RSPT series for the eigenvalues follows from its representation
as power series, for example, for ground state:

E0.�/ D
1X

sD0
�sA

.s/
0 : (1.35)

The general behavior of the coefficients of the series at s � 1 was found in [18]:

A
.s/
0 � .�1/sC1

�
6

	3

	1=2




�

s C 1

2

	

3s; (1.36)

and using the general expression for the convergence radius R of the power series
[5], we obtain:

R D lim
s!1

ˇ
ˇ
ˇ
ˇ
ˇ

A
.s/
0

A
.sC1/
0

ˇ
ˇ
ˇ
ˇ
ˇ

� lim
s!1

1

3.s C 1=2/
D 0: (1.37)

Summarizing all written above, the demonstrated in this section examples show
that even for relatively simple physical systems the canonic perturbation theory is
not able to find an uniformly available approximation for the solution of Schrödinger
equation.

1.3 Non-perturbative Methods for Stationary Schrödinger
Equation

The other than canonic perturbation theory methods are usually formulated not
universally and relate to the specific properties of quantum system. To illustrate
the principle idea of these methods, we again use the quantum anharmonic
oscillator problem. One of the effective non-perturbative method is the strong
coupling approximation (SCA), which is conveniently formulated in the coordinate
representation of Schrödinger equation:

� 1

2

d2�n.x/

dx2
C 1

2
x2�n.x/C �x4�n.x/ D En.�/�n.x/: (1.38)

The basic idea of SCA in the range � � 1 consists of the transformation of
independent variable in such a way that new small parameter is introduced in the
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equation, which depends on ��1 � 1. By re-scaling the variable in the Eq. (1.35)
as:

x D �yI �n.y�/ D ˚n.y/I

� 1

2�2
d2˚n.y/

dy2
C 1

2
�2y2˚n.y/C ��4y4˚n.y/ D En.�/˚n.y/; (1.39)

and choosing the parameter � under the condition that the coefficients at highest
derivative in the equation and the largest term in the limit � � 1 coincide:

��2 D ��4I � D ��1=6I

�1
2

d2˚n.y/

dy2
C 1

2�2=3
y2˚n.y/C y4˚n.y/ D �n.�/˚n.y/I

En.�/ D �1=3�n.�/; (1.40)

we reduce the problem to the form, which can be treated by the perturbation theory
with the effective parameter ��2=3 � 1 and the equation for zeroth approximation,
which is independent on �:

� 1

2

d2�n.y/

dy2
C y4�n.y/ D �.0/n �n.y/: (1.41)

In strong coupling approximation, contrary to the case � � 1, the equation
for zeroth approximation does not have an analytical solution for eigenvalues and
eigenfunctions, and therefore the dependence on � is manifested as a series:

En.�/ D �1=3
1X

sD0
Bs
n�

�2s=3; (1.42)

and for the coefficients Bs
n the numerical calculation of EV and EF is required from

the differential equation (1.41) and matrix elements of the perturbation operator
1

2�2=3
y2 (see, for example, [19]). In the next chapters we compare the analytical

results after OM with the numerical calculations, and here we show some few
results for the coefficientsBs

0 to demonstrate the asymptotic character of SCA series,
illustrated in Fig. 1.3, where the following functions are presented:

QE.l/
0 .�/ D �1=3

lX

sD0
Bs
n�

�2s=3I

B0
0 � 0:6680I B1

0 � 0:1437I B2
0 � �0:0088: (1.43)
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Fig. 1.3 The estimate for the energy of ground state of QAO for different numbers of terms QE.l/
0

in (1.43) for the case of SCA

As has been previously discussed in the Sect. 1.2, the applicability area of
the perturbation theory is determined both by parameter � and small values of
a quantum number n. In the range n � 1, the quasi-classic approximation of
Wentzel-Kramers-Brillouin (WKB) [4] can be used for calculation of eigenvalues.
For the Eq. (1.38), this method is reduced to the Bohr-Sommerfeld quantization
procedure:

Z x0

n

xn

Œ2En � x2 � 2�x4�1=2dx D 	

�

nC 1

2

	

CO.1=n/; (1.44)

where stationary points xn; x0
n are defined as real solutions of the equation:

2En � x2 � 2�x4 D 0:

In general case of arbitrary �, the use of WKB is ineffective because of requires
the time-consuming calculation of the elliptic integrals [29]. However, in the limit
� � 1 these integrals can be approximated by using the expansion over the
parameter ��1=3 and the series similar to (1.42) is obtained with approximate
analytical expressions for coefficients [19]:

B0
n � 34=3	2

�




�
1

4

	��8=3 �
nC 1

2

	4=3

I

B1
n � 34=34	3

�




�
1

4

	��16=3 �
nC 1

2

	2=3

I B2
n � � 1

32
C 6	4

�




�
1

4

	��8
:

(1.45)
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Another asymptotic expression used further for the analysis of the effectiveness
of methods is obtained from the numerical solution of the Eq. (1.38) by using
the power series [5]. To execute this procedure, the asymptotic behavior of wave
function at jxj � 1 has to be studied, where the wave function is determined from
the solution of the equation:

�1
2

d2�n.x/

dx2
C �x4�n.x/ � 0I

�n.x/ 	 e�jxj3p2� CO

�
1

jxj
	

: (1.46)

Using the design of the wave function in the form:

�n.x/ D e�jxj3p2�

1X

kD0
ankx

k;

the coefficients ank satisfy to the system of recurrent equations, which can be
investigated analytically in the limiting case:

� ! 0I n ! 1I �n D ˇ < 1;

and for eigenvalues the following asymptotic expansion is obtained [19]:

En D .nC 1

2
/

�

1C 3

2
ˇ � 17

16

4C 9ˇ

.1C 3ˇ/2
ˇ2 C : : :

�

: (1.47)

Summarizing the above presented approaches, all the approximate methods
described in this chapter are able to estimate the functions En.�/, each method in
a particular domain of the parameters n; �. However, neither algorithm provides
the uniformly available approximation in the entire range of the parameters.
Another essential drawbacks of all methods are the divergence of the successive
approximations and cumbersome form of wave functions for zeroth approximations.

The variational method (VM) is used often for the evaluation of ground state
energy for arbitrary amplitude of perturbation. This method is based on the fact that
Schrödinger equation for the wave function �0.f�g/, which depends on the set of
variables f�g parameterizing the physical system, corresponds to the extremum of
the following functional [5]:

I0Œ� � D
Z

d f�g��
0 .f�g/Œ OH � E0��0.f�g/I

ıI

ı��
0

D 0I
Z

d f�g��
0 .f�g/�0.f�g/ D 1: (1.48)
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The principle idea of VM consists of the replacement of the exact solution of
Schrödinger equation by the function, which is modeled by analytical expression
(trial function) containing the set of variational parameters !i ; i D 1; 2; : : : s:

�0.f�g/ �  0.f�g; .f!ig/I
Z

d f�g �
0 .f�g/ 0.f�g/ D 1: (1.49)

By substituting (1.49) into (1.48), we find the approximate value of the energy,
which depends on these parameters:

E0 ! �0.f!i g/ D
Z

d f�g �
0 .f�g/ OH 0.f�g/;

and the best approximation for the energy on the selected class of functions is
obtained on the basis of the choice of variational parameters from the minimum
condition for �0.f!i g/:

@�0.f!i g/
@!i

D 0I i D 1; 2; : : : sI ) f!.0/i gI

E0 � �0.f!.0/i g/: (1.50)

In general case, the function �0.f!i g/ is non-linear. Therefore, in this formulation
of VM it is difficult to design the regular procedure for improvement of the accuracy
of zeroth approximation as well as to evaluate the convergence of the resulted
estimate for the large number of parameters. Moreover, the use of VM for excited
states becomes complicated due to the accounting of additional orthogonality
of wave function to the wave functions of all lower states, which have to be
implemented in the variation of the functional.

InŒ� � D
Z

d f�g��
n .f�g/Œ OH � En��n.f�g/I

Z

d f�g��
n .f�g/�n.f�g/ D 1I

Z

d f�g��
m.f�g/�n.f�g/ D 0; m D 0; 1; : : : .n � 1/: (1.51)

To some extent, these problems are eliminated when using the variational
principle based on the Ritz-Bubnov-Galerkin method [30]. In this method, the trial
function consists of limited number of terms of the series (1.6) in the expansion of
the state vector:

j�.N/i D
NX

mD0
Cmj mi: (1.52)

The set of the coefficients Cm represents the variational parameters in this case. By
substituting expression (1.52) into functional (1.48), and calculating the variational
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derivatives, the system of N linear uniform equations for these coefficients is found
and the determinantN is written as:

.E � �k/Ck D �

NX

mD0
VkmCmI

N.E; �/ Dk .E � �k/ıkm � �Vkm k : (1.53)

The solution of the equation N.E; �/ D 0 delivers .N C 1/ eigenvalues
EN
n .�/In D 0; : : : N and corresponding eigenvectors j�.N/

n i. This method is one of
the techniques to numerically solve the Schrödinger equation, which has been used
in [28] for calculation of eigenvalues and eigenfunctions for QAO. However, this
method is not able to investigate analytically the qualitative behavior of quantum
system for various ranges of physical parameters, which is a key subject for the
presented in this monograph operator method. There are also substantial difficulties
of the application of Ritz-Bubnov-Galerkin method for the physical systems with
a large number of the degrees of freedom because of the cumbersome matrix
elements and the increase of the dimension of the determinant in (1.53). To illustrate
the non-perturbative nature of VM, we consider here the functional (1.48), which
corresponds to the Eq. (1.38) for the ground state of anharmonic oscillator:

I0Œ� � D
Z 1

�1
dxfjd�0.x/

dx
j2 C ��

0 .x/Œx
2 C 2�x4 �E0��0.x/gI

Z 1

�1
dxj�0.x/j2 D 1: (1.54)

The trial function is chosen in compliance with the wave function of harmonic
oscillator, but with arbitrary frequency ! [4]:

�0.x/ � Q�0.x/ D C exp

�

�!x
2

2

�

; (1.55)

and the normalizing constant C and the frequency ! are treated as variational
parameters. The calculation of integrals in (1.54) with the function (1.55) results
in:

I0Œ� � � QI0Œ!; C � D C2

r
	

!

�
1

2
.! C 1

!
/C 3�

!2
� QE0

�

I C2

r
	

!
D 1: (1.56)

The calculation of the derivatives over C from the functional gives to the equation
for energy, and the value C is found from the normalization condition:

QE0 D 1

2

�

! C 1

!

	

C 3�

!2
I C D


!

	

�1=4

; (1.57)
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and the derivative over ! determines the dependence of the variational parameter
on the coupling constant �:

!3 � ! � 6� D 0: (1.58)

Thus, the Eqs. (1.57) and (1.58) define the parametric form of the function QE0.�/,
which can be used for the estimate of the eigenvalueE0.�/ in the entire range of the
parameter �. The analytical solution of these equations at � � 1 and � � 1 results
in the following expansions:

QE0.�/ � 1

2
C 3

4
� � 9

4
�2 C : : : ; � � 1I

QE0.�/ � �1=3

"�
3

4

	4=3

C 1

4.36�/2=3
� 1

144�4=3
C : : :

#

; � � 1: (1.59)

These expansions are in a good agreement with the asymptotic series RSPT (1.34)
and SCA (1.43), respectively, but contrary to them are convergent for all �.
Thereby the variational method delivers an uniformly available approximation for
the eigenvalues in a zeroth approximation. It is worth to notice that in VM the wave
function of physical system is modeled and not the Hamiltonian, as in the case of
perturbation theory. Being used in the systems with several degrees of freedom,
VM faces some specific issues, which can be illustrated by a simple model of two
coupled harmonic oscillators [31]. The dimensionless form of Hamiltonian for this
system is written as [32]:

OH D 1

2
Op2x C 1

2M
Op2y C 1

2
x2 C 1

2
y2 C � xy; (1.60)

where M is the ratio of the oscillator masses and � is the interaction parameter.
In spite of its simplicity, this Hamiltonian is often used for the approbation of
various approximate methods in many-particle quantum theory [31]. The classical
trajectories of the system are described by rather complicated Lissajous figures
which demonstrates the essential dependence of the quantum levels on the inter-
action and mass parameters. The exact eigenvalues of the Hamiltonian are found
straightforward:

Enm D �1

�

nC 1

2

	

C �2

�

mC 1

2

	

; (1.61)

where �1;2 are defined by the expression:

�21;2 D 1

2M
.1CM ˙

p

.1�M/2 C 4�2M/: (1.62)
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The formula (1.62) shows that the system energy has singularities if it is
considered as an analytical function in the complex plane of the parameters �
and M . Thus, the series in terms of powers of these parameters have the finite
convergence radii. This is the mathematical reason of the restrictions for various
approximate methods, as has been discussed earlier for one-dimensional system.

The analogous restrictions for the convergence of the series appear when the
interactions between the oscillators are considered by some approximate method.
Let us consider the results of VM in one-particle approximation used for the
Hamiltonian (1.60). The wave functions of the system in the zeroth order are chosen
as the product of one-particle functions, i.e. Hartree approximation is applied (the
symmetrization of the function in the case of M D 1 is not essential for our
discussion):

�VM.x; y/ D '.x/�.y/I
Z 1

�1
dxj'.x/j2 D

Z 1

�1
dyj�.y/j2 D 1: (1.63)

The system of the approximate equations for one-particle functions follows from
the exact variational principle (1.48):

�
1

2
Op2x C 1

2
x2 C � xymm � �n



'n D 0I
�
1

2M
Op2y C 1

2
y2 C � yxnn � �m



�m D 0: (1.64)

Both equations correspond to the uncoupled harmonic oscillators with displaced
equilibrium positions defined as:

Nx D ymm D
Z 1

�1
dy�m.y/

�y�m.y/I Ny D xnn D
Z 1

�1
dx'n.x/

�x'n.x/: (1.65)

The energy spectrum of the system in this approximation is:

EVM
nm D

�

nC 1

2

	

C 1p
M

�

mC 1

2

	

� 1

2
�2.x2nn C y2mm/ � �xnnymm: (1.66)

This expression is actually the power series of the parameter �, and taking into
account the conditions of self-consistency for the values Nx; Ny:

Nx D �� NyI Ny D �� Nx;

one finds Nx D Ny D 0 for arbitrary value of �.
Thus, the zeroth-order approximation of EVM

nm differs essentially from the
corresponding exact value. Certainly, the consequent corrections take into account
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the particle correlations, but in any case VM fails to describe the energy levels over
the entire range of parameters � and M . The so-called adiabatic approximation
.M � 1/ being applied to the Schrödinger equation with the Hamiltonian (1.60)
leads to analogous problem. A similar calculation has also been considered in [31]
to illustrate the general method for calculation of high-order corrections for the
adiabatic approximation. In the adiabatic zeroth-order approximation the operator
Op2y should be neglected and the “adiabatic” terms �n.y/ are defined by the energy

levels of that part of the Hamiltonian which depends on the “quick” variable x:

�n.y/ D nC 1

2
� 1

2
�2y2:

These values play the role of the potential energy in the Schrödinger equation
for the “slow” oscillator y in the next order of the approximation. In the result, the
energy spectrum of the system, taking into account two orders of the series in the
parameter 1=

p
M , has the form:

EAA
nm D nC 1

2
C
r

1 � �2

M

�

mC 1

2

	

: (1.67)

Comparing this expression with formula (1.62), it becomes evident that the adi-
abatic (Born-Oppenheimer) [33] approximation also does not lead to the uniformly
suitable estimation for the energy levels, even for such a simple system. Certainly,
the same restrictions of the considered methods appear for more complicated model
when the anharmonicity of the oscillators is included. In any case, the singularities
of the energy, considered as an analytical function of the Hamiltonian parameters,
define the finite radii of convergence for the power series in these parameters and do
not allow to find an uniformly suitable approximation.

As we have shown above, while working with the real physical systems, the
perturbation methods applied for the solution of the Schrödinger equation have led
to the divergent asymptotic series for the energy corrections. However in some cases
it is possible to develop the methods of regular summation of such series. We will
mention here one of these methods—the Borel’s summation [34], which is very
effective for calculation of the divergent or very slowly convergent series. This
method was developed in the end of the nineteenth century by Emile Borel and
then generalized by Gösta Mittag-Leffler [35].

First of all, we recall some main ideas of the method, starting with the
investigation of power series:

f .z/ D
C1X

kD0
ckzk: (1.68)
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The series (1.68) could be divergent at a certain area of value z, or very slowly
convergent. Therefore, instead of (1.68) we consider another series called the Borel
transform of (1.68):

F.z/ D
C1X

kD0

1

kŠ
ckzk: (1.69)

The Borel transform (1.69) is obviously converging faster than (1.68), and
assuming it converges to the analytical function near the point z D 0, the analytical
continuation can be performed along the positive real axis. The following integral is
defined:

f .z/.Borel/ D
C1Z

0

e�tF .zt/dt; (1.70)

which is called the Borel summation of (1.68). The function (1.70) can converge to
a certain value even in the region where the series (1.68) is divergent.

This method is very effective for the calculation of divergent series, which
depends on single variable. The method was generalized and adjusted to different
problems, for example, in [36–40]. Here we generalize the Borel summation (1.69)
by applying the Pade approximant [38,39] of the orderm=n to obtain the result with
a better convergence:

P.z/ D a0 C a1z C : : :C amzm

1C b1z C : : :C bnzn
; (1.71)

where the coefficients are defined by the following equations:

P.0/ D F.0/; P 0.0/ D F 0.0/; P 00.0/ D F 00.0/; : : :

: : : P .mCn/.0/ D F .mCn/.0/: (1.72)

These equations reflect the fact that the Taylor expansion of P.z/ at zero point has
the firstmCn terms coinciding with the firstmCn terms of F.z/. Using the notation
for Pade approximant as Œm=n�F .z/, the Borel summation (1.70) is rewritten as:

f Œm=n�.z/.Borel � Pade/ D
C1Z

0

e�t Œm=n�F .zt/dt: (1.73)

The method of Borel summation with the Pade approximant can be applied
to the problem of the anharmonic oscillator. In quantum mechanics, the use of
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the perturbation theory delivers the energy in the form of a power series of the
perturbation parameter:

E.�/ D E.0/ C
C1X

kD1
Ck�

k: (1.74)

Here we consider a specific case of the anharmonic oscillator with the perturbation
term �x4. Using the Rayleigh-Schrödinger scheme, the energy of the ground state
is written in the form:

E0.�/ D 1C 0:214286

�
7�

2

	

� 0:107143

�
7�

2

	2

C0:121356

�
7�

2

	3

� 0:200990

�
7�

2

	4

C0:426130

�
7�

2

	5

� 1:087689

�
7�

2

	6

COŒ�7�:

(1.75)

The series (1.75) has a zero radius of convergence [40], which means even for a
very small parameter �, the high-order corrections for the energy do not result in a
right value. For large values of �, the terms of high order in (1.75) grow very fast,
and the series (1.75) quickly becomes divergent. However, applying the Borel-Pade
technique described above in the formulae (1.68–1.73), the correct values of energy
E0.�/ can be obtained from (1.75) in the wide range of the parameter �.

For the illustration of this technique, we reproduce in the Table 1.1 the energy
values with the different orders of Pade approximation [38]. The results show the
convergence to the known values of the energy for anharmonic oscillator. In the
work [39], the Borel-Pade method of regular summation has been applied to obtain
the asymptotic energy values for large parameter � � 1: E0.�/ 	 �1=3.

Table 1.1 Energy of ground state EŒm=n�
0 .�/ for different orders of Pade approximant

m=n D m � D 0:1 � D 0:2 � D 1:0

1 1.063829787234 1.111111111111 1.272727272727

2 1.065217852490 1.117540578275 1.348289096707

3 1.065280680051 1.118183011861 1.373799864956

4 1.065285049128 1.118272722955 1.383756497228

5 1.065285455239 1.118288405206 1.388075603389

6 1.065285502030 1.118291631128 1.390103754651

7 1.065285508357 1.118292382860 1.391116612108

8 1.065285509335 1.118292576357 1.391648018148

9 1.065285509503 1.118292630404 1.391938365335

10 1.065285509535 1.118292646573 1.392102495074

11 1.065285509541 1.118292651703 1.392198009942

12 1.065285509543 1.118292653416 1.392255010021
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The table demonstrates the fast convergence of the method, however, the
generalization of this technique for calculation of the energies of high excited
states, and especially for multi-dimensional case, encounters substantial difficulties.
Moreover, the partial summation of the series (1.74) for energy does not define the
wave function and other physical characteristics of the system.
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Chapter 2
Basics of the Operator Method

The majority of approximate methods for the solution of Schrödinger equation (SE)
demonstrated in Chap. 1 is not sufficiently universal and theirs applications in the
case of system with many degrees of freedom are bound up with serious difficulties.
In the following chapters we consider the method which is proposed as an universal
procedure for transformation of the perturbation series and its further applications
for various quantum systems. We call this technique operator method (OM) in
the sense that all calculations are reduced to the algebraic manipulations with the
operator matrix elements without solving any differential or integral equations, in
zeroth-order approximation as well as in calculating the successive approximations.
The results prove that the OM zeroth-order approximation provides an uniformly
fitted estimation of the SE eigenvalues and eigenfunctions in the entire range of the
Hamiltonian parameters. As a result, the OM sequential approximations converge
to the exact solution in the entire range of the system parameters and quantum
numbers. The algebraic nature of the method also allows to construct the effective
procedure for the calculation of the higher approximations and to determine the
systems of the eigenvalues and the eigenfunctions with a high accuracy. We will
demonstrate that the OM successive approximations converge as the geometric
progression with the denominator defined by the ratio of non-diagonal to diagonal
matrix elements of the Hamiltonian. This value depends on the choice of the initial
basis set of quantum states but is less then unity under all possible conditions.

The operator method had been initially introduced in the papers [1–3]. Some
ideas, which we used in our concept of the OM, were described earlier in the
papers [4–10] and the development of the technique has been contributed by
Fernandes, Meson and Castro [11–16] and other authors [17–20]. The similar results
were obtained later by many authors (for example, [21–24]) and there are many
publications where OM applications for the specific systems were reported (for
example, [25–43]).

Any new method for the solutions of the SE describing the real quantum systems
has to be testified upon the nontrivial model problems. In the case of nonrelativistic

© Springer International Publishing Switzerland 2015
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quantum mechanics, the role of such test is performed by the problem of one-
dimension system corresponding to QAO (1.18). The abstract quantum system with
the Hamiltonian (1.18) allows to characterize the real physical systems successfully.
This physical system has important applications in atomic, molecular and solid state
physics, and can be considered as one-dimensional field quantum theory modeling
typical features of the four-dimension quantum field systems. Due to these reasons,
practically all known analytical methods have being approved for calculation of
the QAO eigenvalue and eigenfunction. In the present paper we also use the QAO
problem in order to introduce main ideas of the operator method for the solution
of SE, to discuss its possibilities in comparison with other methods, to consider the
calculation procedure of the successive approximations to the exact eigenvalues and
eigenfunctions and the convergence of this procedure [44].

2.1 The Zeroth Approximation Choice

We start here with the simple example (1.19) which has been already considered
within the framework of PT: the eigenvalues and eigenfunctions of the operator

OH D 1

2
. Op2 C Ox2/C � Ox2; (2.1)

have to be found, where � > � 1
2
.

The second quantization representation in a general form is used for this purpose,
which is a further extension of (1.19):

Ox D 1p
2!

�

a.!/C aC.!/
�

; Op D i

r
!

2

�

aC.!/� a.!/
�

; (2.2)

where ! is an arbitrary positive real value. The operators of annihilation a.!/ and
creation aC.!/ satisfy the standard permutable relations:

Œa.!/; aC.!/� D 1: (2.3)

By substituting (2.2) into (2.1) and reducing the operator OH to the normal form (all
operators of creation are to the left side of annihilation operators) by the permutable
relations (2.3) we obtain:

OH D !
4

"

1C 2aC.!/a.!/ � .aC.!//2 � .a.!//2
#

C

C 1C2�
4!

"

1C 2aC.!/a.!/C .aC.!//2 C .a.!//2

#

:

(2.4)
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Operator of the excitations number On.!/ D aC.!/a.!/ can be defined with the
eigenvectors, which are the following normalized state vectors:

jn.!/i D 1p
nŠ

�

aC.!/
�n

j0.!/i; n D 0; 1; 2; 3 : : :

aC.!/a.!0/jn.!/i D njn.!/i:
(2.5)

The state of vacuum of the excitations is then defined by the equation:

a.!/j0.!/i D 0: (2.6)

In fact, this procedure is the generalization of the full set of the state vectors as a
further extension of (1.25). In the case of PT, the Hamiltonian was considered in the
analogous form but at ! D 1:

OH D OH0 C OV ; (2.7)

OH0 D 1
2
Œ1C 2aC.1/a.1/�;

OV D �

2

h

1C 2aC.1/a.1/C .aC.1//2 C .a.1//2
i

:

(2.8)

The PT series for (2.7) has been shown to converge only in the range of
j�j < 1=2, whereas this parameter may vary in the range of .� 1

2
;1/. Thus, the

analytical continuation of the PT series is necessary to find the spectrum in the
closed form and to build a new PT series converging at all possible values of the
parameter �. That can be done by choosing other type of zeroth approximation for
Hamiltonian, namely to include the part of the operator OH (2.4) which commutes
with the excitation number operator On.!/ D aC.!/a.!/ at arbitrary ! into OH0,
which means a new splitting of the operator OH D OH0 C OH1 has to be used:

OH0 D 1

4!
.!2 C 1C 2�/Œ1C 2aC.!/a.!/�I (2.9)

OH1 D � 1

4!
.!2 � 1 � 2�/Œ.aC.!//2 C a2.!/�: (2.10)

Thus in zeroth approximation of the operator (2.4) the eigenvalues have the
following form:

E.0/
n .!/ D 1

4!
.!2 C 1C 2�/.1C 2n/I n D 0; 1; 2 : : : (2.11)

In order to find the parameter, used in the powers series of the eigenvalue
expansion of the operator (2.4) in PT with a new perturbation Hamiltonian (2.10),
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one has to use (2.9) and (2.10) in the standard PT series, however, with different
perturbation operator, and this leads to the following series:

En D .1C 2n/
1

4!
.!2 C 1C 2�/

"

1 � 1

2

�
!2 � 1� 2�

!2 C 1C 2�

	2

C : : :

#

: (2.12)

In this case the perturbation parameter is

� D

 !2 � 1 � 2�

!2 C 1C 2�

�2

;

which takes the values � < 1 at any real positive ! and � > � 1
2
, and therefore

the new PT series converges in this range. Thus, the above mentioned choice
of the zeroth approximation Hamiltonian allows one to construct an analytical
continuation of the converging PT series in order to calculate Hamilton operator
eigenvalues and eigenfunctions at all possible values of the parameter � [14].

We would like to draw the attention to the fact that the parameter ! in
(2.9)–(2.11) has not yet been fixed. This gives us an additional degree of freedom
allowing the acceleration of the convergence of the rebuilt PT series. Since the exact
eigenvalues of the total hermitian Hamiltonian don’t depend on the choice of the
particular representation of the full wave function set (the parameter ! in our case),
the following condition has to be satisfied for exact energies:

@En

@!
D 0: (2.13)

To make further PT calculations more convenient, the parameter ! is chosen to
satisfy the zeroth approximation (2.11) to the condition (2.13) or

@

@!
E.0/
n .!/ D 0: (2.14)

Using (2.11) in the considered example one can find:

1

4

�

1 � 1C 2�

!2

	

.2nC 1/ D 0I ! D !0 D p

1C 2�I

E.0/
n .!0/ D

�

nC 1

2

	
p

1C 2�: (2.15)

Hence both the described procedure of the construction of Hamiltonian for zeroth
approximation and the condition (2.14) lead to the exact solution for the eigenvalues
and eigenfunctions of the operator (2.1) and the perturbation Hamiltonian (2.10)
becomes equal to zero at ! D !0. This example proposed for the first time in
[14] illustrates well the ideas of the zeroth approximation of the OM. Furthermore,
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we testify the suitability of this method in solving the non-trivial problem before
making any generalization, for example, considering the QAO with Hamiltonian:

OH D 1

2
. Op2 C Ox2/C � Ox4; � � 0: (2.16)

As shown in the Sect. 2.1, the operator (2.16) has no discrete spectrum at
� < 0, which means the PT series with perturbation operator � Ox4 has zero
radius of convergence in a complex plane of the parameter �. To construct the
Hamiltonian (2.16) zeroth approximation in the above mentioned way, we substitute
the canonical transformation (2.2) in (2.16) and reduce the operator OH to the normal
form:

OH D OH0 C OH1;

where

OH0 D 1

4!
.!2 C 1/.1C 2aCa/C 3�

4!2

h

1C 2aCa C 2.aCa/2
i

I (2.17)

OH1 D � 1
4!
.!2 � 1/

h

.aC/2 C a2
i

C

C �
4!2

h

2.aC/2.2aCa C 3//C 2.2aCa C 3/a2 C .aC/4 C a4
i

:

(2.18)

We omit here the argument ! of the annihilation and creation operators and assume
that it should be clear from the text to which values of ! the operators correspond.
The eigenvectors of the OM zeroth approximation for the Hamilton operator (2.17)
are the vectors (2.5) and the corresponding eigenvalues are:

E.0/
n .!; �/ D 1

4!
.!2 C 1/.1C 2n/C 3�

4!2
.1C 2nC 2n2/I n D 0; 1; 2 : : :

(2.19)

According to the condition (2.13), we choose the parameters ! from the equation at
each particular value of the eigenvalue of the operator (2.17):

@

@!
E.0/
n .!; �/ D 0; (2.20)

which has the following form for the definite n:

!3n � !n � 6�
1C 2nC 2n2

1C 2n
D 0: (2.21)
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Contrary to the case of the harmonic oscillator and usual form of PT, the
parameter ! D !n appears to be different for different states in the problem of
QAO. Due to this fact the dependence of the energy levels on the quantum number n
is sufficiently complex even in zeroth approximation. Combining (2.19) and (2.21),
we find the zeroth approximation of the QAO energy levels:

E.0/
n .�/ D 1

4




3!n C 1

!n

�


nC 1

2

�

; (2.22)

where !n is the solution for the algebraic equation (2.21). It seems unusual that a
parameter in the Hamiltonian depends on the energy level, however, we emphasize
again that the parameter ! is not the real parameter of the system, but has
been introduced in the Hamiltonian artificially in order to rebuild the perturbation
operator. The condition (2.20) reconstructs the independence of the eigenvalues on
this artificial parameter in zeroth approximation. Actually, the Eqs. (2.20) and (2.22)
define the energy of the n-th level as a function of � in a parametric form.

The condition (2.20) has a formal resemblance with the variational principle,
however, the coincidence occurs only for the energies of the lowest (n D 0) and the
first excited (n D 1) states. The difference between the conditions (2.20) and the
variational evaluation at n � 2 is determined by the fact that in the given approach
the eigenvectors of the operator (2.17) are not orthogonal to the vectors with the
lower numbers. Indeed, the vectors jn.!n/i and jn.!m/i are not orthogonal because
of according to the Eq. (2.21) they correspond to the wave functions of the harmonic
oscillators with different frequencies. At the same time, according to (2.5), every
vector jn.!n/i provides an accurate symmetry and corresponding number of branch
points of the wave function in coordinate representation. This is sufficient to obtain
an appropriate approximation of En.0/.�/ to the exact values of En.�/ (see below).
However, we should use only the full orthonormal set of the state vectors in order to
compute higher approximations for the energy level corresponding to the quantum
number n. The diagrams in Fig. 2.1 illustrate the relation between the states used
in the canonical PT and in the OM. Evidently, the main difference between these
approaches is in the fact that the different full sets of wave functions are used to
compute the various eigenvalues. The set of the functions for definite state does not
coincide with those introduced to consider other states.

The method for the choice of the parameter ! introduced in the Hamiltonian
by transformation (2.4) is closely connected with the transformations introduced
by other authors in order to exceed the bounds of PT in computing QAO energy
levels. First of all, it is the Principle of Minimum Sensitivity reported by Caswell
[5]. The coordinate scale transformation was introduced by Dmitrieva and Plindov
[7] as a method for the approximate calculation of the QAO levels. The results
in these papers are similar to ours in the case of the lowest energy levels in the
zeroth approximation. However, the approaches considered by these authors were
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Fig. 2.1 The scheme of the full sets of states used in the standard PT series and the OM zeroth
approximation. A—exact levels of QAO; B—harmonic oscillator levels for PT; C, D and E are
the different full states used for the ground, 1st and 2nd levels correspondingly in the OM zeroth
approximation

not presented in the universal form because they were based on the peculiarities
of the QAO system. Besides, the regular method of calculation of successive
approximations to exact eigenvalues was not proposed in these papers, too.

The delta-expansion method has been suggested as a non-perturbation approach
in the quantum field theory (see, for example, the paper [45]). This method is
similar to the OM with respect to several details: for example, an artificial parameter
was introduced in order to rebuild the perturbation operator and to optimize the
convergence of the PT series. However, alternatively to this method, the OM
contains the additional idea how to include all diagonal elements of the perturbation
operator to the Hamiltonian of zeroth approximation. This condition has a principal
significance for the convergence of the successive approximations (see below
Sect. 2.4).

The canonical transformation, being more common then (2.2), was considered in
[46]. This transformation corresponds to the complex values of the parameter ! and
defines a three-parametric group of transformation of the operators a and aC. The
investigation has shown that the choice of real ! provided the correct evaluation of
the energy of the QAO stationary states.
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To assess the effectiveness of the methods, let us compare the eigenvalue in
zeroth approximation defined by the Eqs. (2.21) and (2.22) with the known exact
results. In the weak coupling limit (� ! 0), the following expansion (2.21) is valid:

!n D 1C 3�1C2nC2n2
1C2n � 3

2

�

3�1C2nC2n2
1C2n

	2

C

C4
�

3�1C2nC2n2
1C2n

	3

CO.�4/;

(2.23)

which being substituted in the formula (2.22) results in:

E
.0/
n .�/ D nC 1

2
C 3

4
�.1C 2nC 2n2/� 9

4
�2

.1C2nC2n2/2
1C2n C

C 27
2
�3

.1C2nC2n2/3
.1C2n/2 CO.�4/:

(2.24)

This expression can be compared with the Rayleigh-Shrödinger canonic PT, applied
to this problem (1.33):

En.�/ D nC 1
2

C 3
4
�.1C 2nC 2n2/ � 1

8
�2.21C 59nC 51n2 C 34n3/C

C 1
16
�3.333C 1041nC 1416n2 C 750n3 C 375n4/CO.�4/:

(2.25)
Table 2.1 compares the numerical values for several coefficients of both expan-

sions presented in the following forms:

E.0/
n .�/ D

1X

kD0
a
.OM/
nk �k I En.�/ D

1X

kD0
a
.PT/
nk �k:

Table 2.1 Coefficients of the weak coupling in PT and OM series for the QAO

k

a
.OM/
nk .a

.PT /
nk / 0 1 2 3

n D 0 0.5 0.75 �2.25 13.5

(0.5) (0.75) (�2.63) (20.8)

n D 1 1.5 3.75 �18.75 187.5

(1.5) (3.75) (�20.63) (244.7)

n D 2 2.5 9.75 �76.05 1186.38

(2.5) (9.75) (�76.88) (1254.94)

n D 3 3.5 18.75 �200.893 4304.8469

(3.5) (18.75) (�196.875) (4176.5625)

n D 10 10.5 165.75 �5232.964 330424.3

(10.5) (165.75) (�4963.875) (290771.4)
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Evidently the coefficients do not fully coincide because PT leads to the asymptot-
ically divergent series, whereas the OM series converges. In the opposite limit, when
the anharmonicity parameter � ! 1, the functional dependence on � in asymptotic
expansion of the operator (2.16) is defined by the formula (1.42), which results in:

En.�/ D �1=3
1X

kD0
b
.T /
nk .�/

� 2
3 k (2.26)

at � � 1.
In contrast with PT series, the coefficients of asymptotic expansion (2.26) are

derived numerically from the solutions of the complex differential equations. On the
other hand, the solution of our algebraic equation (2.21) has the following expansion
at � � 1:

!n D�1=3
�

61=3
�
1C 2nC 2n2

1C 2n

	1=3

C 1

3 � 61=3
�

1C 2n

1C 2nC 2n2

	1=3
1

�2=3
CO


 1

�2

��

;

(2.27)

which results in the formula:

En.�/ D �1=3
�

34=3

28=3




1C 2nC 2n2
�1=3

.1C 2n/2=3C

C 1

4�61=3
.1C2n/4=3

.1C2nC2n2/1=3
1

�2=3
� 1

144

.2nC1/2
.1C2nC2n2/

1

�4=3

�

CO. 1
�2
/

(2.28)

after the substitution in (2.22). As follows from the comparison of (2.28) and (2.26),
the OM zeroth approximation delivers the correct functional dependence of the
parameter � on the eigenvalues in the range of strong anharmonicity. The numerical
values of the coefficients bnk in formulas (2.26) and (2.28) are presented in the
Table 2.2.

Table 2.2 Coefficients of
strong coupling asymptotic
(A) and OM series for QAO

k

b
.OM/
nk .b

.T /
nk / 0 1 2

n D 0 0.68142 0.13758 �0.0069

(0.66799) (0.14367) (�0.0088)

n D 1 2.42374 0.34812 �0.0125

(2.39364) (0.35780) (�0.0140)

n D 2 4.68526 0.50027 �0.0133

(4.69680) (0.49397) (�0.0125)

n D 3 7.29111 0.63005 �0.0136

(7.33573) (0.61826) (�0.0116)
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Thus, comparing the formulas (2.24) and (2.28) with the formulas (2.25) and
(2.26) we conclude that the function En.0/.�/ correctly reproduces a functional
structure of the asymptotic series in corresponding limits. In contrast to PT
series or strong coupling limit, when it is necessary to take into account higher
approximations to compute addends containing new powers of �, the function
E
.0/
n .�/ initially contains all necessary powers of coupling constant.
Therefore, we expect thatEn.0/.�/ provides a suitable approximation to the exact

eigenvalues En.�/ in the range of intermediate �. Indeed, comparing the energy
values defined by the formulas (2.21) and (2.22) with the numerical calculation
results [47], we see that the function E.0/

n .�/ provides a valid approximation of the
QAO energy levels at any n and � (Table 2.3), the accuracy of the results is about 2–
3 %. This statement is illustrated by Fig. 2.2, which shows the functionsE.0/

n .�/ and
En.�/ and analogous functions found by PT and strong coupling approximation.

Table 2.3 Comparison of some numerical (N ) and OM zeroth approximation results for QAO

�

E
.N/
n .E

.OM/
n / 0.1 1 10 100

n D 0 0.560307 0.812500 1.53125 3.19244

(0.559146) (0.803771) (1.50497) (3.13138)

n D 10 17.26588 32.66349 68.17094 145.8383

(17.35190) (32.93326) (68.03695) (147.2270)

n D 40 94.84034 192.7883 409.8935 880.546

(95.56017) (194.6022) (413.9383) (889.325)

Fig. 2.2 Comparison of the function E0.�/ calculated in different approximations: exact values,
OM, PT and strong coupling (SC) series
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Fig. 2.3 Characteristic parameter �.0/n .�/ which defines the accuracy of the OM zeroth approxi-
mation and PT for various � and n D 0

Fig. 2.4 Characteristic parameter �.0/n .�/ which defines the accuracy of the OM zeroth approxi-
mation and PT for various n and � D 1

Figure 2.3 shows the dependence of the characteristic parameter �.0/, which defines
the accuracy of the OM zeroth approximation for the coupling constant � and
quantum number n (Fig. 2.4). Thus, the OM zeroth approximation satisfies to the
UAA condition, according to the definition in (1.1).
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2.2 Iteration Scheme for Calculation of the Successive
Approximations

The goodness of the function E.0/
n .�/ for approximation of the exact eigenvalue

En.�/ means that the operator OH0 (2.17), separated from OH according to the
OM prescription, takes into account all the peculiarities of the initial Hamiltonian.
Therefore, we may expect that the use of the operator OH1 (2.18) for the solution
of SE will not result in qualitative changes of the energy spectrum and makes
it possible to construct the algorithm for calculation of the eigenvalues and
eigenfunctions with any required accuracy at all n and �. Thus, we consider here
SE for eigenvector j ni, corresponding to the energyEn:

. OH0 C OH1/j ni D Enj ni; (2.29)

where operators OH0 and OH1 are determined by formulas (2.17) and (2.18). The
vector j ni can be presented in terms of the eigenfunctions of operator OH0:

j ni D jn.!n/i C
X

k¤n
Cnkjk.!n/i (2.30)

with the coefficients Cnk to be defined by the Eq. (2.29). Note that all the state
vectors jk.!n/i correspond to the same parameter !n values at fixed n and hence,
satisfy the ordinary conditions of orthogonality and completeness. The state vector
(2.30) should be normalized by the following condition:

hn.!n/j ni D 1; (2.31)

which essentially simplifies the further derivations. The similar condition is used for
the solution of the Eq. (2.29) by means of the BWPT scheme (1.13). By substituting
the expansion (2.30) in the Eq. (2.29) and calculating the projection on bra-vector
hnj by taking into account (2.31), the following expression is obtained:

En D Hnn C
X

k¤n
CnkHnk: (2.32)

We omit the index ! in the subsequent formulas:

. OH0/nn � HnnI . OH1/nk � Hnk; k ¤ n:

The equations for the coefficients Cnm are found by projecting the Eq. (2.29) onto
different vectors jmi of the full set of states:

Cnm D �
h

Hmm �En
i�1h

Hnm C
X

k¤n
HnkCkm

i

I m ¤ n: (2.33)
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By using the expressions for the matrix elements of the creation and annihilation
operators (ık;n is a Kronecker symbol):

hkjajni D p
nık;n�1I hkjaCjni D p

nC 1ık;nC1; (2.34)

the expressions for the diagonal matrix elementsHnn and non-zero transition matrix
elements Hnk in the case of QAO can be found:

Hnn D 1

4!
.!2 C 1/.1C 2n/C 3�

4!2




1C 2nC 2n2
�

I (2.35)

Hn;nC2 D HnC2;n D 1
4

p

.nC 1/.nC 2/
h
1�!2
!

C 2�
!2
.2nC 3/

i

I

Hn;nC4 D HnC4;n D �
4!2

q
.nC4/Š
nŠ

:

(2.36)

The system of the nonlinear algebraic equations (2.32), (2.33) is an exact
one and is completely equivalent to the initial SE (2.29). As mentioned above,
the dependence of the coefficients Cnk on the parameter ! is determined by the
fact that the form of the wave function depends on the choice of the specific
representation, defined by !n in our case. In accordance with Fig. 2.5, these
representations are different for various quantum numbers n. In contrast to SE in
a coordinate representation, where the numerical solution requires a finite-element
approximation for the derivatives, in the present case the problem reduces to the
algebraic calculations only with the matrix elements of the Hamiltonian. On the

Fig. 2.5 The dependence of the OM successive approximations on the parameter !
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basis of the results, described in Sect. 2.1 for the case of QAO, there is exist a
uniformly suitable zeroth approximation:

! D !nI E.0/
n D Hnn.!n/I C .0/

nk D 0I j .0/n i D jn.!n/i: (2.37)

Based on the statements above, the non-diagonal matrix elements Hnk are
supposed to make a negligible contribution into the energy of the system within
the range of ! 	 !n and this fact permits to develop a scheme of successive
approximations for En. There are several models exists for this scheme. First of
all, the calculation procedure [3, 48] is chosen based on the solution of Eqs. (2.32),
(2.33) by ordinary form of RSPT (1.9). By adding to the operator OH1 a formal small
parameter ˇ ( OH1 ! ˇ OH1), the unknown quantities En and Cnk can be presented in
the form of the following series:

En D Hnn C
1X

sD1
ˇs�.s/n I Cnk D

1X

sD1
ˇsC

.s/
nk I k ¤ n: (2.38)

The parameterˇ is equal to unity in the formulas (2.38) while performing all specific
calculations. By substituting the expansion (2.38) in the Eqs. (2.32), (2.33) and
comparing the coefficients at similar powers of ˇ, we find the recurrence formulas
connecting the values �n.s/ and Ckn

.s/ with the corrections of the lower order

�
.1/
n D 0I
�
.s/
n D P

k¤n HnkC
.s�1/
kn ; s D 2; 3; : : :

C
.s/
mn D

h

Hnn �Hmm

i�1� P
k¤m;n HmkC

.s�1/
kn �Ps�1

tD1 C
.t/
mn �

.s�t /
n



:

(2.39)

Generally speaking, the parameter ! in Eqs. (2.39) remains arbitrary and it is not
obvious that the choice of ! D !n on the basis of condition (2.14), which is optimal
in the zeroth approximation, remains the best in the consequent approximations.
Moreover, the paper [11] shows that in the case of QAO, the recurrence relations
(2.39) diverge at ! D !n starting from some s � s0, and the value j�n.s/j stops
to decrease at s � s0. As shown below, the choice of different values of ! results
in a reconstruction of the coefficients of the series (2.39), similarly to the partial
summation of some sequences of ordinary PT terms. Therefore the sequence (2.39)
converges and the rate of the convergence depends on the value !. The parameter
!n0

.s/ depends on the number of iterations s, and here we discuss the procedure for
calculation of the optimal value for !n0.s/ in the Eq. (2.39) for the case of QAO, as
reported in [30]. We introduce the following partial sums:

S.t/n .!/ D Hnn.!/C
tX

sD2
�.s/n .!/; (2.40)
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Fig. 2.6 The convergence of the OM series in cases of fixed (B) and optimized (A) parameter !

which become equal to the exact eigenvalues En at t ! 1 and hence should not
depend on the parameter !. This dependence disappears for QAO, and Fig. 2.5
shows several functions Sn.t/.!/ at different n and t , computed by Eqs. (2.39)
and (2.40). The algebraic nature of this calculation requires a minor computing
time, which is a big advantage of the method. Computational time for the functions
Sn

.t/.!/ at t � 10 is practically defined by the rate of the results readout and is
much less than the time of the direct numerical solution of the SE in coordinate
representation by using finite-difference approximation for derivatives [49], or by
other known methods [47], assuming the same accuracy of results. The analysis of
the curves reproduced in Fig. 2.6 shows the convergence of the function Sn.t/ to
the value En: with t increasing, the difference jSn.t/ � Ej becomes an oscillating
function of !. The oscillation magnitude, however, quickly tends to zero, and
therefore the locations of the extrema of the function Sn.t/ change essentially at
different t and the condition (2.14) for the selection of ! becomes variational in the
higher approximations. At the same time, there are such values of !n0 at which Sn.t/

coincides with its limiting valueEn, and this statement is valid at t � 2, if n D 0I 1.
The numerical algorithm for calculation of the optimal value of !n0 follows from

the solution of the equation:

Hnn.!n0/C �.2/.!n0/ D En; n D 0I 1:;

Hnn.!n0/ D En; n � 2:

(2.41)

The exact value En is unknown and in fact !n0 is calculated as a limit of

!n0 D lim
t!1!

.t/
n0 I !n0 > !n;
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with the parameter !n0.t/ being determined by one of the equations:

tX

sD3
�.s/n .!

.t/
n0 / D 0I n D 0I 1;

tX

sD1
�.s/n .!

.t/
n0 / D 0I n � 2: (2.42)

for every eigenvalue after the calculation of t-th correction. Moreover, it is necessary
to select the solution, which is the closest to the value !n of (2.21) to be optimal in
zeroth approximation. The condition (2.42) simplifies the recurrent formulas (2.39),
which take the following form:

C
.s/
nk D .Hkk �Hnn/

�1 X

m¤k
HnmC

.s�1/
mk : (2.43)

Figure 2.6 illustrates the convergence of the successive approximations for !n0
and eigenvaluesEn by formulas (2.39)–(2.42) for QAO. The results of the numerical
calculations show that for the optimal choice of the parameter !, the successive
corrections �n.s/ decrease with increasing s as the terms of the geometric progression
with denominator q 	 1

8
, when the relations (2.39) are used. At fixed ! [11] the

convergence rate proves to be essentially less (q ' 1
3
). The comparison of exact

values for QAO with the results based on the operator method with parameter
optimization procedure is shown in Table 2.4.

There are another ways for adjustment of the parameter ! for calculation of
high order corrections, which changes the convergence rate [11, 50]. Such a change
of ! is necessary for calculation of the energy and the coefficients Cnk in the
form of series (2.38) because of the divergence of these series for fixed !. This
is an important procedure, even despite for the operator method the growth of
addend takes place in the approximations of essentially higher orders than for
the conventional PT. In real calculations, the optimization of ! depending on the
approximation order s requires a repeated application of the recurrent formulas
(2.39) at different values of ! that leads to the essential increase of the calculation

Table 2.4 Results of the optimal choice of the parameter !

� E0 H00 C �
.2/
0 .!

.8/
00 / H00 C �

.2/
0 .!

.9/
00 / !

.9/
00

1 0.80377065 0.80377079 0.80377071 2.5170107

50 2.49970877 2.49971045 2.49970957 8.7704769

� E2 H22 C �
.2/
2 .!

.8/
20 / H22 C �

.2/
2 .!

.9/
20 / !

.9/
20

1 5.17929169 5.17929328 5.17929202 3.0118979

50 17.4369921 17.4370082 17.4369958 10.712937
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time. Besides, the optimization algorithm is kind of a trial-and-error character in a
certain sense and its application for the systems more complex than QAO may lead
to time-consuming calculations. Therefore, we introduce here another scheme for
the solution of the initial equations (2.32) and (2.39), which to our opinion is more
effective, especially for description of the physical systems with several degrees
of freedom. The present approach is based on the simple iterations in nonlinear
equation system (2.32) and (2.33) and practically is a modification of operator OH1

in BWPT. In this case, the calculation of the higher approximation is reduced to
computing of the sequences of En.s/ and Cnk

.s/, and not to the calculation of the
corrections for zeroth order values, as it is in (2.38):

En D lim
s!1E.s/

n I Cnk D lim
s!1C

.s/
nk : (2.44)

Two neighboring terms of the sequences (2.44) satisfy the algebraic recurrences,
which appear in the iteration scheme for the exact equations (2.32), (2.33):

E.s/
n D Hnn.!/C

X

k¤n
C
.s�1/
nk Hkn.!/I

C
.s/
nk D

h

E.s�1/
n �Hkk

i�1�
Hnk.!/C

X

m¤k;n
Hnm.!/C

.s�1/
mn



; (2.45)

E.0/
n D HnnI C

.0/
nk D 0: (2.46)

The volume of the calculations required to compute high order approximations
by formulas (2.45) is essentially less than in using a conventional BWPT, where a
complex nonlinear equation forEn.s/ should be solved to calculate the energy in sth

approximation [51]:

E.s/
n D Hnn C

X

k¤n
Hkn

h

E.s/
n �Hkk

i�1�
Hnk C

X

m¤k;n
HnmC

.s�1/
mn



:

At the same time, the calculation of both energy and wave functions of given
state with any required precision by the iteration scheme (2.45) with the initial
condition (2.46) requires a single calculation of sufficient amount of terms for
recurrent sequence (2.45), which proves to converge evenly in the whole range of
the parameter ! satisfying the condition:

! > !n; (2.47)

where !n is obtained as a solution of the Eq. (2.23). The results of calculation
for QAO are demonstrated in Table 2.5, which shows that the rate of convergence
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strongly depends on the choice of the specific value !. The best accuracy has been
reached in [14] on the basis of these formulas for calculation of QAO energy levels.

We hope the reader, that had the patience to reach formula (2.47), has already
suspected that SE solution for QAO is not an aim in itself. Therefore, in spite of
the simplicity of the iteration scheme (2.45), we improve it in such a way that it is
no longer connected to the specific properties of QAO. The summation over all the
states jki has to be performed, for which operator OH provides nonzero transition
probability, to calculate every iteration in (2.45) at certain n. In the case of QAO,
the operator OH has only 4 non-zero matrix elements at fixed n, which cuts down
the volume of calculations for this specific problem. However, in the common
case of non-polynomial Hamiltonian, the number of matrix elements Hnk will be
infinite and the problem of cutting off the summation over k in (2.45) arises in real
numerical calculations.

Zeroth approximation of OM En
.0/ D Hnn correctly describes qualitative

features of the energy spectrum of the physical system, when the transitions onto
the states different from jni are not considered. The magnitude of the corrections to
the zeroth approximation, determined by the influence of other states jki; k ¤ n,
are expected to decrease with the growth of the difference l D jn� ki, and this fact
might be settled by using the following representation:

Hnk D
1X

lD1

n

V
.C/

nl ık;nCl C V
.�/

nl ık;n�l
o

I k ¤ n; (2.48)

where

V
.˙/

nl D Hn;n˙l :

We suppose here that each term of series (2.48) has to be taken into account, starting
from those elements of the sequences (2.44) for which iteration number s coincides
with the “transition length” l D jn� kj. Then the recurrent relations (2.45) result in
the following expressions:

E.s/
n D Hnn C

s�1X

lD1

n

C
.s�l/
n;nClV

.C/
nl C C

.s�l/
n;n�lV

.�/
nl

o

I (2.49)

C
.s/
nk D Hnk

E
.s�1/
n �Hkk

C
s�1X

lD1

(

V
.C/

nl

E
.s�l/
n �Hkk

C
.s�l/
nCl;k C V

.�/
nl

E
.s�l/
n �Hkk

C
.s�l/
n�l;k

)

;

with the initial conditions (2.48) remaining unchanged. To calculate the approxi-
mations, the summation has to be carried out in the finite limits due to the use of
formulas (2.49), which determine the OM calculation procedure for the solution of
SE with any required accuracy and for the discrete spectrum states.
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Table 2.5 Convergence of the OM iteration scheme (2.45)

.nI�/
E
.s/
n � E

.s�1/
n (10;10) (0;1)

s D 4 �0:1212077 � 10�5 �0:911329466 � 10�8

s D 8 �0:10778 � 10�9 0:3108703 � 10�10

s D 12 0:737 � 10�11 0:4712 � 10�11

s D 16 0:57 � 10�13 0:172 � 10�14

E
.exact/
n .s � 25/ 68:80369551829225 0:803770651234274

The matrix elements for QAO (2.36) with l D 2 and l D 4 can be divided
into two classes, based on the expansion (2.48). The comparison of the calculations
by formulas (2.49) with the similar ones based on the full iteration scheme (2.45)
shows that successive inclusion of matrix elements does not lead to tangible changes
in convergence rate of OM, however, it makes this convergence more smooth. The
convergence of the OM iteration scheme (2.45) is shown in Table 2.5.

2.3 Calculation Accuracy of the Wave Function

The results of the previous sections demonstrate the ability of OM to find the
QAO eigenvalue spectrum with any required accuracy. However, for any method
dedicated to the solution of SE, the precision of the eigenfunction calculation is
even more important test because of the useability of eigenfunctions for various
applications. The are different ways to assess the accuracy of the wave functions,
and first of all we consider matrix elements of different operators by using zeroth
approximation of OM and iteration scheme (2.49) for further approximations.

The case appears to be simple when we calculate the diagonal matrix elements
since they are reduced to the well-known matrix elements of the transition between
the harmonic oscillator states. For instance, the formulas for calculation of the value
xnn

2 in zeroth approximation .xnn
2/0 and after applying s iterations .xnn

2/s have the
following form:

.x2nn/0 D hn.!n/j 1
2!n




aC2 C a2 C 2aCa C 1
�

jn.!n/i D 2nC1
2!n

I

.x2nn/s D h .s/n j 1
2!




aC2 C a2 C 2aCa C 1
�

j .s/n i � h .s/n j .s/n i�1I
(2.50)

j .s/n i D jn.!/i C
X

k¤n
C
.s/
nk jk.!/iI
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h .s/n j .s/n i � A.s/n D 1C
X

k¤n

h

C
.s/
nk

i2I (2.51)

.x2nn/s D 1

2!A
.s/
n

�

2nC 1C
X

k¤n
.2k C 1/

h

C
.s/
nk

i2 Cp

n.n � 1/C
.s/
n;n�2C

p

.nC 1/.nC 2/C
.s/
n;nC2 C

X

k¤n

hp

k.k � 1/C .s/
nk C

.s/

n;k�2C

p

.k C 1/.k C 2/C
.s/
nk C

.s/

n;kC2
i

;

In formula (2.50), the parameter!n is taken as a solution of the Eq. (2.19) and in the
Eq. (2.51) the parameter ! takes any value for which the iterations (2.49) converge.
The results listed in Table 2.6 show that for calculation of diagonal matrix elements,
the OM has the same characteristics as for calculation of eigenvalues: zeroth order
produces evenly valid approximation at every �. The rate of the convergence to the
exact value x2nn for the matrix element .x2nn/s is of the same order as for E.s/

n .
The calculation of non-diagonal matrix elements requires an additional consid-

eration. In order to be fully confident we take into account the values xn;nCk which
are used to calculate dipole transition probability, and for this purpose the following
values have to be calculated:

.xn;nCk/0 D hn; !nj OxjnC k; !nCki; (2.52)

in which different frequencies !n and !nCk correspond to the initial and the finite
states, respectively. The operator Ox can be represented in terms of the operators a!
and aC

! , related to arbitrary frequency. To remove this uncertainty and to preserve
the algebraic nature of calculations we construct the operator OR.!; !0/ which
transforms the state jn; !i into the state jn; !0i, corresponding to the frequency !0
[3]. As a basis of this construction for OR.!; !0/ we use the invariance of coordinate
Ox and momentum Op operators under the following transformations:

Ox D 1p
2!
.aC
! C a!/ D 1p

2!0 .a
C
!0 C a!0 /I

Op D i

r
!

2
.aC
! � a!/ D i

r

!0
2
.aC
!0 � a!0 /I (2.53)



2.3 Calculation Accuracy of the Wave Function 47

that is

aC
!0 D



r

!0
!

C
r
!

!0
�

aC
! C



r

!0
!

�
r
!

!0
�

a!

a!0 D


r

!0
!

C
r
!

!0
�

a! C


r

!0
!

�
r
!

!0
�

aC
! (2.53a)

The explicit form of the operator OR.!; !0/ realizing the transformation (2.53a) can
be found as:

OR.!0; !/ D exp
n
1
4




aC
!

2 � a2!

�

ln !0

!

o

I

a!0 D OR.!0; !/a! OR�1.!0; !/I jn; !0i D OR.!0; !/jn; !i;
(2.54)

by using simple identities arising from the algebra of creation and annihilation
operators. Since there are only quadratic combinations of the operators a! and aC

!

in the exponent index of OR.!; !0/, the latter can be reduced to the normal form [52]:

OR.!0; !/ D exp



'1a
C
!

2
�

exp
h

'2




aC
! a! C 1

2

�i

exp.�'1a2!/; (2.55)

where

'1 D ! � !0

2.! C !0/
I '2 D ln

2
p
!!0

! C !0 :

By using (2.55) in formula (2.52), we find the following expression for the
considered matrix element in the zeroth approximation:

.xn;nCk/0 D hn; !n
ˇ
ˇ
ˇ
ˇ

a
C

!nCa!np
2!n

OR.!nCk; !n/
ˇ
ˇ
ˇ
ˇ
nC k; !ni D

1p
2!n

np
nhn� 1j OR.!nCk; !/jnC ki C p

nC 1hnC 1j OR.!nCk; !/jnC ki
o

:

(2.56)

For example,

.x01/0 D 1p
2!0

�
2
p
!0!1

!0 C !1

�3=2

:
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Table 2.6 Calculation
results for QAO matrix
elements and inverse problem
( OH D
1
2
. Op2 C Ox2/C ˛ Ox3 C � Ox4

[30])

˛ 0.0 1.0 1.0

� 1.0 1.0 0.6

x
.0/
01 0.501263 0.528346 0.594462

x
.s�8/
01 0.506600 0.527097 0.595176

x
.0/
03 0.023587 0.029017 0.298617

x
.s�8/
03 0.022483 0.027096 0.031825

n2 ! n1

.˛ D 0/ 1 ! 0 3 ! 0 2 ! 1

˝
Œ47�
n2n1 1.934221 8.775756 5.025446

� 1 2 10

�.0/ 0.998562 1.999673 9.994531

�.10/ 0.999998 1.999998 9.999985

E
.10/
n1 D E

Œ47�
n1 0.803771 0.954568 5.321609

At the same time, the formula for .xn;nCk/s is similar to the expression (2.51)
after s iterations, because of the recurrent relations (2.49) converge in a wide range
of frequencies !, and the coefficients Cnk of the initial and the finite states can be
computed at the same values of the parameter !:

.xn;nCk/s D 1
q

2!A
.s/
n A

.s/

nCk

�p
nC 1ık;1 C p

nık;�1C

C
X

j¤n
Cnj

hp

jCnCk;j�1 Cp

j C 1CnCk;jC1
i

C

C p
nCnCk;n�1 C p

nC 1CnCk;nC1


: (2.57)

Here we have taken into account the normalizing condition hnj .0/n i D 1 for the
wave functions. The results of the calculations by formulas (2.56) and (2.57) are
also presented in Table 2.6.

2.4 Iterative Solution for Inverse Problem

The possibility of the conversion of OM with respect to the Hamiltonian parameters
is a good test for the iteration scheme (2.49). This operation is required for the
description of real physical systems, when the potential parameters have to be
found for given frequencies of transitions between energy levels (inverse problem
of spectroscopy [53]). The problem can be also reduced to the recurrent formulas
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for calculation of the parameter �, analogous to (2.49). The QAO Hamiltonian is
represented in the following form:

OH D . OH0 C OH1/C �. OV0 C OV1/; (2.58)

where OH0 C OH1 is the Hamiltonian of the harmonic oscillator and OV0 C OV1 is
the anharmonic part of the potential, divided into diagonal and non-diagonal parts
according to recipe of the OM:

OH0 D 1
4




! C 1
!

�

.2 OnC 1/I OH1 D 1
4



1
!

� !
�

.aC2 C a2/I On D aCaI

OV0 D 3
4!2
.1C 2 OnC 2 On2/I

OV1 D 1
4!2
Œ6.a2 C aC2

/C a4 C aC4 C 4. Ona2 C aC2 On/�:
(2.59)

We assume here that the transition frequencies are known:

˝mn D Em � En:

Then using the expansions:

j mi D jmi C
X

l¤m
CmljliI j ni D jni C

X

k¤n
Cnkjki;

the equations for energy levels Em and En analogous to (2.32) are obtained:

Em D Hmm C �Vmm C
X

l¤m
Cml.Hlm C �Vlm/I (2.60)

Cml D �
h

Hll C �Vll �Em
i�1�

Hml C �Vml C
X

i¤m;l
Cmi.Hil C �Vli/



I

En D Hnn C �Vnn C
X

k¤n
Cnk.Hkn C �Vkn/I (2.61)

Cnk D �
h

Hkk C �Vkk � En

i�1�
Hnk C �Vnk C

X

j¤n;k
Cnj.Hjk C �Vjk/



I

The solution of these equations in zeroth approximation over the operators OH1 and
OV1 permits to express the anharmonicity constant � and the absolute value of the
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energyEn in terms of the transition frequency:

C
.0/
nk D C

.0/
ml D 0I

�.0/ D ˝mn�.Hmm�Hnn/

V
.0/
m �V .0/l

I E
.0/
n D Hnn C �.0/Vnn:

(2.62)

@�.0/

@!
D 0I ! D 2˝mn

m � n
: (2.63)

Thus, these expression can be used as the initial condition for the recurrent formulas
for iteration of exact equations (2.60) and (2.61).

�.s/ D
h

Vmm � Vnn

i�1�
˝mn �

X

l¤m
C
.s�1/
ml




Hlm C �.s�1/Vlm

�

C

C
X

k¤n
C
.s�1/
nk




Hkn C �.s�1/Vkn

�

�



Hmm �Hnn

�

I

E.s/
n D Hnn C �.s�1/Vnn C

X

k¤n
C
.s�1/
nk




Hkn C �.s�1/Vkn

�

I (2.64)

C
.s/
nk D �

h

Hkk C �.s�1/Vkk � E.s�1/
n

i�1�
Hnk C �.s�1/VnkC

C
X

j¤n;k
C
.s�1/
nj




Hjk C �.s�1/Vjk

�

:

Similarly to the Eq. (2.45), the exact values of the quantities to be found are
defined as the limits of the corresponding sequences:

� D lim
s!1�.s/I En D lim

s!1E.s/
n :

By analogy with (2.49), the iteration scheme (2.64) can be generalized for non-
polynomial interaction potentials, used in the modeling of the interatomic potentials
[53]. The comparison of the exact values � with the ones calculated from (2.64) and
shown in Table 2.6, demonstrates the efficiency of OM in the solution of the inverse
problem.
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2.5 Non-perturbative Approach in the Theory of Classical
Nonlinear Oscillations

The considered above examples involve the calculation of the wave functions, which
correspond to small quantum numbers and have a small number of nodes. Another
test of the quality of wave functions found by OM, can be done for the systems with
quickly oscillating wave functions of highly excited states. The characteristics of
these systems are important in studying the properties of the quantum mechanical
systems in a classical limit, which corresponds to the Plank constant „ ! 0. For
these systems, we find the approximate analytical solutions for the SE for arbitrary
quantum number n:

. OH �En/ n.x/ D 0I (2.65)

with Hamiltonian

OH D 1

2
Op2 C v. Ox/I Op D �i„ d

dx
; (2.66)

where v.x/ is an arbitrary potential. With these solutions, the time dependence
of the average value of the coordinate operator Ox at arbitrary initial state can be
determined. Using the limit „ ! 0 in the obtained expression (for this, n ! 1 so
that the system energy should still remain a finite value), the classical law of motion
x.t/ can be found, which is the approximate solution to the Newton’s equation:

d2x.t/

dt2
D �@v.x/

@x
: (2.67)

For the systems with Hamilton function (2.66), the mentioned scheme of the
limit transition might be considered as a uniformly fitted method in the theory of
nonlinear oscillations of classic Hamilton systems [3], which has a wider field of
application in comparison with known asymptotic methods of averaging (see, e.g.,
[54]). This method is able to find the oscillation characteristics for any physical
parameters. As an example, we consider the Eq. (2.65), assuming that a part of
the solutions for this equation relates to the discrete spectrum. This assumption
corresponds to the existence of the periodic solutions in the Eq. (2.65) within the
classical limit. In addition, for simplicity sake we suppose function v.x/ to be even
function of its argument. Then carrying out the canonic transformation:

Ox D
q

„
2!
.aC C a/I Op D i

q

„!
2
.aC � a/I

aaC � aCa D 1;

(2.68)
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the Hamiltonian (2.66) is reduced to the following form:

OH D 1
4
„!.1C 2aCa � aC2 � a2/C

C 1
2	

1R
�1

dy v.y/
1R

�1
dk e�ikye� „k2

4! e
ik
q

„

2! a
C

e
ik
q

„

2! a:
(2.69)

According to the recipe of the OM for the Eq. (2.65) in zeroth approximation, we
extract the part of Hamiltonian (2.69) which commutates with the excitation number
operator On D aCa:

OH D OH0 C OH1; (2.70)

where

OH0 D „!
4
.1C 2aCa/C (2.71)

C 1

2	

1Z

�1
dy v.y/

1Z

�1
dk e� „k2

4!

1X

sD0

.�1/s
.sŠ/2


 „
2!

�s

k2s.aC/sas I

OH1 D �„!
4
.aC2 C a2/C (2.72)

C 1

2	

1Z

�1
dy v.y/

1Z

�1
dk e�ikye� „k2

4!

�

e
ik
q

„

2! a
C

e
ik
q

„

2! a�

�
1X

sD0

.�1/s
.sŠ/2


 „
2!

�s

k2s.aC/sas
	

:

In accordance with the definition, the eigenvectors of the operator OH0 are the
following vectors:

jni D 1p
nŠ
.aC/nj0iI n D 0; 1; 2; : : : I aj0i D 0; (2.73)

belonging to the eigenvalues:

E.0/
n D „!

4
.1C2n/C 1

2	

1Z

1
dy v.y/

1Z

�1
dk e�ikye� „k2

4

nX

sD0

.�1/s
.sŠ/2

nŠ

.n � s/Š


„k2
2!

�s

:

(2.74)



2.5 Non-perturbative Approach in the Theory of Classical Nonlinear Oscillations 53

As a next step, the transition to the classical limits in the expression (2.76) for
eigenvalues is carried out in the following way:

„ ! 0; n ! 1; „n ! ˇ D const; (2.75)

and then taking into account the fact that for n ! 1:

nŠ

.n� s/Š
! ns;

we find the energy of the classical motion in the field of potential v.x/ using the
following formula:

lim
„!0
n!1

E.0/
n D E D 1

2
!ˇ C 1

2	

1Z

�1
dy v.y/

1Z

�1
dk e�iky

1X

sD0

.�1/s
.sŠ/2

�
1

2
k

r

2ˇ

!

	2s

;

(2.76)

which brings together the energy E with the parameter ˇ. Let us note that the value
ˇ might be also considered with the respect to the arbitrary choice of the parameter
!. Taking notice of that, the sum in the right part of the Eq. (2.76) is a Bessel

function J0



k

q
2ˇ

!

�

and then using the integral [55]:

1Z

0

dk cos kyJ0

�

k

r

2ˇ

!

	

D
(
q

2ˇ

!
� y2;

2ˇ

!
� y2 > 0I

0;
2ˇ

!
� y2 < 0;

(2.77)

we finally find the following formula:

E D 1

2
!ˇ C 2

	

p
2ˇ!�1
Z

0

dy
v.y/

p

2ˇ!�1 � y2
: (2.78)

Expression (2.78) is derived from the formulas (2.66) for Hamiltonian eigen-
value, obtained in the OM zeroth approximation. The accounting of the corrections
caused by the perturbation operator OH1 in the eigenvalues leads to the change of
the Eq. (2.78). However, the Eq. (2.78) remains unchanged with respect to these
corrections. This situation happens when the optimal value of the parameter ! is
chosen from the nullification condition for the second order correction to zeroth
approximation for eigenvalues over H1 (the OM first order correction is equal to
zero by definition). The application of this condition after the transition to the classic
limit results in the following equation, which determines the parameter ! (we omit
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calculation details, which are analogous to the transition from (2.74) to (2.78)):

�!
2ˇ

8�
� 1

8
!2ˇ2AC !

8	�

�Z

0

dy
yv0.y/
p

�2 � y2
C 2!ˇA

	

�Z

0

dy
v.y/

p

�2 � y2



2
y2

�2
� 1

�

�

� 1

	ˇ�

�Z

0

dy
y v0.y/ v.y/
p

�2 � y2
C 2

	2ˇ�

�Z

0

dy
y v0.y/
p

�2 � y2
�Z

0

dz
v.z/

p

�2 � z2
C

C 4A

	2

 �Z

0

dy
v.y/

p

�2 � y2

!2

� 2A

	

�Z

0

dy
v2.y/

p

�2 � y2
D 0; (2.79)

where to shorten the expression we introduced the notations:

� D
r

2ˇ

!
I � D 1

2
! C 1

	ˇ

�Z

0

dy
y v0.y/
p

�2 � y2
I v0.y/ D dv

dy
I

A D �2

4	�2ˇ2

�Z

0

dy
v00.y/

p

�2 � y2




2
y2

�2
� 1

�

:

Thus, the dependence of the classic motion energyE on the parameters ! and ˇ
is defined by the algebraic equations (2.78) and (2.79), without necessity to define
the form of the potential function v.x/. Using the condition of the independence
of eigenvalue E on the parameter ! without optimal choice of this parameter, we
obtain even more simple equation instead of (2.79):

@E

@!
D 1

2
ˇ� 4

	!

�

1C�2
�Z

0

dy

.�2 C y/
p

�2 � y2

h

v0.y/� 3
2

v.y/

� C y

i

D 0: (2.80)

Equation (2.80) provides less accuracy for calculation of the parameters of
classic motion law than (2.79) does, but instead allows to present the results in
an analytical form. The classical law of motion x.t/ can be defined on the basis of
the approximate solution of the SE found above. Assuming the exact eigenfunctions
j mi and corresponding eigenvalues Em are known, the following wave packet can
be constructed:

j .t/i D
X

m

Cme
� i

„
Em.t�t0/j miI

X

m

jCmj2 D 1: (2.81)
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The coefficients Cm determine the packet form at t D t0. According to the general
rules of quantum mechanics we find the average value of the coordinate Ox operator
in a state (2.81) as:

x.t/ D
X

mm0

C �
m0Cme

i
„
.Em0 �Em/.t�t0/h m0 j Oxj mi; (2.82)

or

x.t/ D
X

mk

C �
mCkCme

i
„
.EmCk�Em/.t�t0/h mCkj Oxj mi: (2.83)

The classical trajectory of a particle implies the wave packet in which the
coefficients Cm as a function ofm have a maxima close to the value n � 1, defined
by (2.75) and (2.76):

En D E; „n D ˇ:

This definition demonstrates that the classical law of motion does not depend on the
wave packet form and is defined by the following expression:

x.t/ D
1X

kD�1
eik˝.t�t0/ lim

„!0
n!1

h nCkj Oxj ni; (2.84)

where

˝ D @E

@̌
(2.85)

is the frequency of the classical periodic motion. For the following calculations we
use the approximate expressions, obtained by OM for wave vectors of stationary
states j ni in (2.84). In the zeroth approximation these wave functions are defined
by the formula (2.73):

j .0/n i D jn; !ni; (2.86)

where from evidently follows that in the OM zeroth approximation every state with
n excitations corresponds its own value !n due to the choice of the parameter !
described above. The states jn; !ni and jm;!mi are nonorthogonal at m ¤ n and
that results in a certain change of the definition (2.84) for the classical law of motion
:

x.0/.t/ D 1

N.t/

1X

kD�1
eik˝.t�t0/ lim

„!0
n!1

hnC k; !nCk j Oxjn; !ni; (2.87)
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where

N.t/ D
1X

kD�1
eik˝.t�t0/ lim

„!0
n!1

hnC k; !nCkjn; !ni: (2.88)

The further calculations are based on the use of a unitary transformation (2.56),
and applying the normal form (2.57) we find:

hnC k; !nCkjn; !ni D



ch 2�
��1=2hnC kje�AC

2 th 2�e�On ln ch 2�e
A
2 th 2�jni; (2.89)

where

� D 1

4
ln
!nCk
!n

' 1

2
�
k

n
I � D ˇ

2!

@!

@̌
; (2.90)

and thus all the operators and wave vectors are reduced to the same value of the
parameter !n. By performing the limit transition in formula (2.89):

lim
„!0
n!1

hnC k; !nCkjn; !ni D
( J1

2 k
.�k/; k D 2l I

0; k D 2l C 1;

(2.91)

where J�.x/ is the �-th order Bessel function. Then, applying the integral represen-
tation of the Bessel function [55]:

Jk.z/ D 1

	

	Z

0

d' cos.k' � z sin '/; (2.92)

the expression for normalizing factor N.t/ can be reduced to the following form
.t0 D 0/:

N.t/ D 1C 2

	

	Z

0

lim
�!0

1X

kD1
e��k cos.2˝tk/ cos.k' � 2�k sin '/ (2.93)

and takes its final form after summation and integration:

N.t/ D 1

1 � 2� cos'
; (2.94)

with phase ', which is determined by the equation:

˝t � 1

2
' C � sin ' D 0: (2.95)
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By doing similar calculations in the numerator of the formula (2.87), the use of
the OM zeroth approximation for eigenvalues and eigenfunctions of Hamiltonian
in the range of high quantum numbers leads to the following expression for the
classical law of motion:

x.0/.t/ D
r

2ˇ

!
cos

'

2
; (2.96)

with the phase ' being defined by the Eqs. (2.95). The parameters ˇ, � , ! and˝ are
determined by the classical motion energy E by formulas (2.78), (2.79) or (2.80),
(2.85) and (2.90). The parameter ! equals to the classical motion frequency, and is
calculated from the Eq. (2.80):

!.E/ D ˝.E/: (2.97)

Having finished with the bulky analytical computations in general case, we move
to the quantitative comparison of the results obtained above with the exact solution
for the classical law of motion for anharmonic oscillator, which is the main subject
of this chapter. For anharmonic oscillator, the function x.t/ represents the solution
of the differential equation in the form of (2.67):

d2x

dt2
C x C 4�x3 D 0; (2.98)

and is defined by the following formula:

x.t/ D
�p

1C 16�E � 1
4�

�1=2

cn.�; k/; (2.99)

where

� D t.1C 16�E/1=4; k2 D 1

2

�

1 � 1p
1C 16�E

�

I

E is the energy of the classical motion, cn.�; k/ is the elliptical Jacobi function. The
classical motion frequency is defined by the following expression:

˝ D 	

2K.k/
.1C 16�E/1=4; (2.100)

whereK.k/ is the full elliptical integral of the first kind [55]. The averaging methods
for the problem of QAO [54] deliver only the asymptotic expansions for functions
(2.99) and (2.100), which are valid at �E � 1. Within the limits of the OM zeroth
approximation, the analytical formula for a classical oscillation frequency might be



58 2 Basics of the Operator Method

found by using the Eq. (2.80) and the relation (2.97):

˝0.E/ D
�
1C 2

p
1C 18�E

3

	1=2

:

The results of the calculation of the oscillation period T .0/.E/ D 2	=˝0.E/

using above formula are shown in the Table 2.7 as a function of the dimensionless
parameter �E . These results have been compared with the exact values of period
T .E/ and function T2.E/, obtained by the Eq. (2.79), which corresponds to the
second order of the OM. In the same table the laws of the QAO motion obtained by
the exact formula (2.99) and the approximate one (2.96) are compared in the case
of �E � 1, which is the most unfavorable case from the point of view of the result
accuracy. Formulas (2.95) and (2.96) obtained above have a universal form, which
does not depend on the form of the potential function. If anharmonicity parameter
satisfies the condition � � 1, they lead to the same results as the asymptotical
method of averaging does [54]. However, the Table 2.7 shows that the formulas
provide the motion laws similar to the exact ones in the case of �E � 1. Thus,
the results obtained indicate that OM provides evenly valid interpolation of the SE
solution for QAO within the limits of asymptotically high quantum numbers.

Another useful result obtained from the formulas (2.100) and (2.97) is the
analytical approximation of the full elliptical integral of the first kind. At 0 � k �
1=

p
2 we obtain:

K.k/ � 	

2

 

3

1 � 2k2 C 2
q

1C 1
2
k2.1 � k2/

!1=2

; (2.101)

and the precision of the approximations described above has the same order as for
the estimation of the classical motion period.

Table 2.7 Oscillation period and motion law of a classical anharmonic oscillator

�E

T 0.1 0.5 1.0 10 .�E/1=4T; �E � 1

T .E/ 5.21198 4.00431 3.47306 2.04604 3.70815

T .2/.E/ 5.21195 4.00425 3.47302 2.04605 3.70820

T .0/.E/ 5.21992 4.02115 3.49105 2.06007 3.73600

� D 2.�E/1=4t; �E � 1

x 0 0.4 1.0 1.4 1.6

x.�/ 1 0.923 0.596 0.321 0.176

x.0/.�/ 1.017 0.905 0.551 0.293 0.164
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2.6 Why Do the OM Successive Approximations Converge?

The set of the empirical results obtained above in using of the OM prescriptions
for QAO is not a fully sufficient basis to expand this method to other systems. It is
necessary to find the reason why the special choice of the zeroth approximation
Hamiltonian with arbitrary parameter results in a radical reconstruction of the
successive approximation series, which converge evenly at any quantum numbers
within the entire range of the Hamiltonian parameters, and are not asymptotic with
zeroth convergence radius as it is in the PT canonical scheme. For this purpose
we compare once again the ways of the division of the QAO Hamiltonian into
zeroth approximation Hamiltonian OH0

0
and perturbation operator OH1

0
in the case

of canonical PT:

OH0

0 D 1

2
.2 OnC 1/I On D aCaI OH1

0 D �

4
.aC aC/4; (2.102)

and in OM ( OH0 and OH1):

OH0 D 1
4!2

h

!.!2 C 1/.2 OnC 1/C 3�.2 On2 C 2 OnC 1/
i

I
OH1 D 1

4!2
aC2

h

2�.2 On2 C 3/� !.!2 � 1/
i

C
C 1
4!2

h

2�.2 OnC 3/� !.!2 � 1/
i

a2 C �
4!2




aC4 C a4
�

:

(2.103)

The formula (2.103) differs from (2.102) in two essential features: (i) it includes
all addends commutating with the operator of excitation number On into OH0;
(ii) dependence of the zeroth approximation Hamiltonian OH0 on free parameter (fre-
quency !). Parameter ! can be used either to choose the best zeroth approximation,
or to increase the convergence rate of successive approximations. The Hamiltonian
division similar to (2.103) can be carried out for any system on the basis of full
set of the state vectors as it will be shown below for other applications of the
OM [1–3]. Now we discuss the role of each of the mentioned factors in the PT
series reconstruction in details. The factor (i) leads to the appearance of coupling
constant � and the quantum numbers of intermediate states in the denominators of
the terms of the series for exact SE solution. They are located in the expansion of the

operator OH1 powers due to the propagator .En.0/ �H0/
�1

. The exact eigenvalues
and eigenfunctions of Hamilton operator OH can be represented in the form of the
following operator series (see, e.g., [56]):

j ni D lim
˛!0

OU˛jni
hnj OU˛jni ;

En D E.0/
n C lim

˛!0

hnj OH1
OU˛jni

hnj OU˛jni ; (2.104)
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where

OU˛ D 1C
1X

sD1

1

E
.0/
n � OH0 C is˛

OH1

1

E
.0/
n � OH0 C i.s � 1/˛

OH1 : : :

: : :
1

E
.0/
n � OH0 C i˛

OH1; (2.105)

and therefore the successive approximations are defined by the operator powers:

OBn D 1

E
.0/
n � OH0

OH1; (2.106)

which provides the following results for the arbitrary intermediate k-quantum state:

OBn.PT/jki D �
4

1

E
.0/
n �.kC4C1=2/

q
.kC4/Š
kŠ

jk C 4iC

C�
2

2kC3
E
.0/
n �.kC2C1=2/

q
.kC2/Š
kŠ

jk C 2i C 3
4
�1C2kC2k2

E
.0/
n �k jkiC

C�
2

2k�1
E
.0/
n �.k�2C1=2/

q
kŠ

.k�2/Š jk � 2i C �
4

1

E
.0/
n �.k�4C1=2/

q
kŠ

.k�4/Š jk � 4i

(2.107)

in the case of PT forH0
0 andH1

0, defined by formulas (2.102), and

OBn.OM/jki D

�
4!2

1

E
.0/
n � 1

4!2
Œ!.!2C1/.1C2kC8/C3�.1C2kC8C2k2C16kC32/�

q
.kC4/Š
kŠ

jk C 4iC

1
4!2

2�.2kC3/�!.!2�1/
E
.0/
n � 1

4!2
Œ!.!2C1/.1C2kC4/C3�.1C2kC4C2k2C8kC8/�

q
.kC2/Š
kŠ

jk C 2iC

1
4!2

2�.2k�1/�!.!2�1/
E
.0/
n � 1

4!2
Œ!.!2C1/.1C2k�4/C3�.1C2k�4C2k2�8kC8/�

q
kŠ

.k�2/Š jk � 2iC

�
4!2

n

E
.0/
n � 1

4!2
Œ!.!2 C 1/.1C 2k � 8/C

C3�.1C 2k � 8C 2k2 � 16k C 8/�
o�1q

kŠ
.k�4/Š jk � 4i

(2.108)

for the operators (2.103) corresponding to the OM.
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Apparently for any finite n in the limit of k � 1 the matrix element of the

operator OBn.PT/
behaves as

k OBn.PT/k D c�k .c D const/;

while for the arbitrary finite values of n; � and ! the matrix element of OBn.OM/
at

k � 1 do not exceed:

k OBn.OM/k < 2

3
;

which follows from the inclusion of the operator

3�

4!2
.2 On2 C 2 OnC 1/

into OH0 and results in a power decrease of all coefficients in the expansion (2.104)
instead of their factorial increase when taking into account the whole anharmonicity
by PT. To prove this fact, we consider the particular sequences (2.104) determining
the nth steady state energy. The sequence of addends in the form:

n� nC4 �: : :� nC4k�4 � nC4k � nC4k�4 �: : :� nC4 �n (2.109)

proves to be the one of the most quickly increasing within the limits of ordinary
PT. Here we use a symbolic graphic presentation of intermediate states, following
from the analytical formula (2.104) for the kth term of the series corresponding to
diagram (2.109):

Ik D Hn;nC4 1

E
.0/
n �HnC4;nC4

HnC4;nC8 1

E
.0/
n �HnC8;nC8

: : :

: : : 1

E
.0/
n �HnC4;nC4

HnC4;n:
(2.110)

By substituting the matrix elements of the operators OBn.PT/
and OBn.OM/

, defined
by the formulas (2.107) and (2.108), into (2.110), we find the following expressions
for Ik in the limits of PT and OM:

I
.PT/
k D �


�

4

�2k 1

Œ.k � 1/Š�2
.nC 4k/Š

nŠ
I (2.111)

I
.OM/
k D �


�

8

�2k 2kŒ!.!2 C 1/C 3�.4k C 2nC 1/�

!2nŠ.kŠ/2
: (2.112)
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For fixedm;� and ! and at k � 1:

I
.PT/
k D �


4�

e

�2k

k2kCnC 3
2 A.PT/

n I (2.113)

I
.OM/
k D � 1

62k
1

k
!.!2C1/

6�

A.OM/
n ; (2.114)

where A.PT/
n and A.OM/

n are the constants, which are independent on k. As follows
from (2.113), the series formed of the addends (2.109), diverges at any � > 0

in the case of PT. At the same time, the formula (2.114) shows that for OM a
similar series converges even at � � 1, with the rate which is not worse than
the geometrical progression with denominator q D 1

36
. This radical change of

the convergence is caused by including the intermediate state quantum numbers in

propagator ŒEn.0/ � OH0�
�1

. A similar treatment of the series formed of the addends
corresponding to the diagrams:

n� nC2 �: : :� nC2k�2 � nC2k � nC2k�2 �: : :� nC2 �n (2.115)

results (at k � 1) in the estimation:

J
.OM/
k D �


4

9

�k 1

k
!.!2C1/

3� C !.!2�1/
4�

A.1/n : (2.116)

Thus the sequence of addends corresponding to the diagrams (2.115) converges
not worse than the geometrical progression with the denominator 4

9
. The results

obtained above allows us to conclude that the first specific feature of the OM (the
including of all diagonal matrix elements in OH0) results in an absolute convergence
of different sequences appearing in the power series of the operator OH1 in the whole
range of the Hamiltonian parameters. This property of OM is universal and does not
depend on the choice of the representation form [25–43].

The above choice of the Hamiltonian for zeroth approximation is very close to
some methods widely used in the description of the systems with many particles.
For example, in Hartree–Fock method the state vectors jNif�igi play the role of
the basis set and correspond to N noninteracting particles, and one-particle wave
function chosen from the variation analogue of the condition (2.14) [56, 57] act as
arbitrary parameter. Another example is the method based on the separation of so-
called coherent wave [58, 59] in describing the particle interaction with a system
possessing an infinite number of degrees of freedom. In this case, the basis set
corresponds to the plane waves with the refractive index different from unity and
is an analogue of the parameter ! in the QAO problem.
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However, the adequate choice of the Hamiltonian for zeroth approximation in
the OM, resulting in the convergence of partial sequences of PT series over the
operator OH1, does not automatically mean that this series converges at arbitrary
choice of the basic set of functions. The number of possible diagrams increases
rapidly with the PT order increase. As an example we show in Fig. 2.7 all diagrams
corresponding to the corrections of the 2–4th order for the QAO energy on nth
level (analytical expression for diagram can be written using the same rules as in
formula (2.110)). Thus, convergence of the series depends not only on convergence
of partial sequences of diagrams, but on the rate of the number of such sequences
Sk, and increases with the growth of the number k, which determines PT order.
Therefore to limit the Sk growth and to accelerate a convergence of PT series, the
additional degrees of freedom included into the given scheme of the OM can be
used: (1) the choice of the full set of functions; (2) the use of the optimal values
for the parameters like !; (3) the calculations on the basis of iteration procedure
providing the most rapid convergence. The way to use these opportunities depends
on the specific peculiarities of the physical systems, however, several general recipes
can be derived which are common for the majority of the applications.

Concluding this paragraph, we would like to briefly discuss how the additional
degrees of freedom of the OM influence the value of Sk in the case of QAO. For
example, all the uncoupled diagrams (diagrams 17–32 of the 4th-order correction in
Fig. 2.7) disappear due to the wave function normalizing condition (2.31). A special
choice of the parameter ! lessens the number of the diagrams, which are not equal
to zero. In particular, by choosing ! from the condition for the matrix element
of transition (in the nearest state for given level) to be zero [3], all the odd order
diagrams disappear and the number of the diagrams in PT even order essentially
decreases (for example, in Fig. 2.7 only the diagrams 1,4 in the second order and
the diagrams 1,2 and 15,16 in the forth order are not equal to zero). By choosing
!opt from the condition (2.42), the parameter takes a value, for which the sum of
all diagrams beyond some given order turns to zero. Finally, the recurrent sequence
defined by the iteration procedure (2.45) permits to calculate more precise values
of energy, and this is a full analogue of Dyson equations arising from the summing
diagrams which describe any quantum mechanical system.

The qualitative arguments listed in this paragraph are not a mathematical proof
of the OM convergence, but to a certain extent they explain a high efficiency of
the method in describing various physical systems which will be considered in the
following chapters.
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Fig. 2.7 The diagrams corresponding to the OM approximations of the 2-nd–4-th orders
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2.7 Calculation of Energy and Level Width
of Quasi-Stationary States

The QAO model can be applied to various quantum systems, including the case
with the states having a finite lifetime or quasi-stationary ones. These systems are
described by an operator in the following form:

OH D 1

2
. Op2 C Ox2/ � � Ox4 � 1

2
Op2 C V.x/: (2.117)

A quasi-stationary nature of these systems for arbitrary � > 0 is shown in
Fig. 2.8, which demonstrates the form of potential pit where the particle is moving.
A particle is not able to stay an infinitely long time in the section I , which
corresponds to the classical finite movement, due to the quantum mechanical tunnel-
effect. This effect causes the particle moves into the section III after a certain
period of time and transfers to infinity [56].

The probability P of the particle penetration through the barrier is known to
decrease exponentially with the increase of the height and the width of the barrier.
The magnitudeP becomes 	 exp.� a

�
/ at � ! 0, where a is a certain constant [60].

Hence, the eigenvaluesEn of the Hamiltonian (2.117) are the complex values:

En D E 0
n � i 
n

2
:

The parameter 
n 	 P and the level width 
 	 P is inversely proportional to
the state lifetime, and the solution of SE is:

OH j�ni D Enj�ni; (2.118)

Fig. 2.8 Form of the potential pit for quasi-stationary states
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which are considered as the functions of the parameter� having essential singularity
at � D 0. Therefore, the use of the PT canonical form for this problem does not help
to calculate the level width for small � [61]. The method used to exceed the limits
of PT and to estimate the value 
 is based on the quasi-classical approximation for
calculation of the coefficient of barrier permeability [62]. However, this approach
can be only applied for exponentially small values of 
 .

The method of coordinate rotation in the complex plane is used for numerical
integration of the Eq. (2.118) for complex-valued En [63]. The substitution of the
variables:

x D �ei' (2.119)

allows to choose the method of integration of the Eq. (2.118) in a complex plane �
at ' > '0, where the wave function j�ni becomes absolutely normalized. However,
the Hamiltonian becomes non-hermitian and the finite-difference approximation of
derivatives within the infinite integration interval becomes essentially complex.

According to the general theory of the differential equations [64], the solutions
expressed in the complex-valued variables and parameters are the analytical contin-
uation of the solutions defined in the real space. Therefore, the operator method is
able to calculate not only the real energies for the states of the discrete spectrum
but also the complex eigenvalues of the states with a finite lifetime. To investigate
this new opportunity provided by OM, we consider the Eqs. (2.117) and (2.118).
Within the limit of the zeroth approximation, the canonical transformation (2.2)
can be applied to this problem. Because of the Hamiltonian (2.16) differs from the
operator (2.117) only by the sign of the parameter �, a simple transformation of the
Eqs. (2.19) and (2.21) results in the following equation for zeroth approximation of
energy En.0/.!; �/ for the state with the quantum number n and corresponding !
value:

E.0/
n D 1

4




! C 1

!

�

� 3�

4!2
.1C 2nC 2n2/I n D 0I 1I 2I : : : (2.120)

.!3 � !/.2nC 1/C 6�.1C 2nC 2n2/ D 0: (2.121)

In a coordinate representation, the wave function is:

j0; !i ! �0.x/ D

!

	

�1=4

e� !
2 x

2

;

which is absolutely normalized only if the condition is fulfilled:

!0 � Re.!/ > 0; (2.122)

where Re.!/ is the real part of the parameter !, corresponding to the state vector
j0; !i which is the basic state of the OM basic set.
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Fig. 2.9 Choice of the parameter ! for quasi-stationary states

Table 2.8 Comparison of the results of numerical En [63] and approximate E.0/
n calculations for

the energy and the level width of QAO quasi-stationary states

� D 0:1 E 0

n 
n ReE.0/
n 


.0/
n

n D 0 0.397 0.045 0.384 0.042

n D 1 1.096 0.340 1.074 0.353

n D 2 1.753 0.969 1.769 0.971

In contrast to the Eq. (2.21) with a single root satisfying the condition (2.122) at
any �, the Eq. (2.121) depends on value � (see Fig. 2.9). There are two real roots
!1;2 at � < �b

.n/ with

�
.n/

b D 2nC 1

9
p
3.2n2 C 2nC 1/

(2.123)

and there is a single complex root with !0 > 0 at � > �
.n/

b . In the range 0 <

� < �
.n/

b , the root !2 has to be selected satisfying the adiabaticity condition and
transforming to the solution ! D 1 of the harmonic oscillator in the limit � ! 0.

Thus, the OM zeroth approximation allows to find the complex-valued eigen-
values exclusively at � > �

.n/

b , where the energy level width becomes sufficiently

high 
n.0/ > 0:01ReE.0/
n . As follows from the results of Sect. 2.1, this approx-

imation can provide accuracy of several percents for the energy values. For the
values satisfying the condition (2.122), the simple analytical formulas (2.120) and
(2.121) estimate the energy and the level width with a sufficiently high precision.
Table 2.8 demonstrates this fact, presenting the values 
 .0/

n and ReE.0/
n calculated

by Eqs. (2.120) and (2.121), compared with the results for 
n and E 0
n, obtained in

[63] on the basis of a bulky numerical solution of the SE with Hamiltonian (2.117).
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The value � D 0:1 used in calculation satisfies the condition (2.123) even for basic
state. With the increase of �, the accuracy for calculated energy and level width is
almost unchanged and varies around 	 2–3% which is typical for the OM zeroth
approximation.

The algorithm of OM zeroth approximation requires the use of the complex-
valued parameter !, which lead to the strict definition of the basic set of the
states jn; !i when the imaginary part !00 (Im ! D !00) is not equal to zero. It is
easier to construct this definition using the operator OR.!; !1/, which transforms
the operators of creation and annihilation from the parameter !1 to the parameter
!, corresponding to the secondary quantization representation for an ordinary
harmonic oscillator:

a! D OR�1a1 ORI aC
! D OR�1aC

1
OR

jnI!i D OR.!; 1/jnI 1iI a1j0I 1i D 0:

(2.124)

According to the formula (2.55), the operator R.!; 1/ is defined by a simple
analytical expression:

OR.!I 1/ D exp
h1

4
.aC2 � a21/ ln!

i

and the full set of the eigenfunctions of harmonic oscillator is known, and therefore
the formula (2.124) is used as analytical continuation of the basic sequence for the
state vectors on the complex-valued !. It is worth to note that the operators a!
and a!C and the state vectors jn; !i and h!; nj are not Hermitian-conjugated at
complex !. The following expression can be derived using a closed form of the
operator OR.!/:

.jnI!i/C D h!�InjI .a!/
C D aC

!� :

The parameter !, being a canonical parameter for transformation of (2.2):

Ox D 1p
2!
.aC
! C a!/

to the representation of the secondary quantization, assures the equivalence of the
complex ! to the coordinate rotation in the complex plane which numerically
integrates the SE for these states [63] in the case of application of OM to the quasi-
stationary states.

Below the iteration procedure is applied for the OM successive approximations
described in Sect. 2.2. The convergence for complex ! and the calculation of En0
and
n with required accuracy is considered for the algorithm based on the following
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algebraic recurrent relations [31]:

En D lim
s!1E.s/

n I Cnk D lim
s!1C

.s/
nk I (2.125)

E.s/
n D Hnn C

X

k¤n
C
.s�1/
nk HnkI

C
.s/
nk D




E.s�1/n �Hkk

��1

Hnk C

X

l¤n;k
C
.s�1/
nl Hlk

�

; (2.126)

where Cnk are the coefficients of the state vector expansion:

j�ni D jn; !i C
X

k¤n
Cnkjk; !i

with the normalization condition:

h!; nj�ni D 1:

The initial elements of the sequences (2.125) are defined by the OM zeroth
approximation:

E.0/
n D Hnn.!/I C

.0/
nk D 0: (2.127)

To complete the picture, the formulas for nonzero Hamiltonian matrix elements
included in (2.126) are written below:

Hnn D 1

4




! C 1

!

�

.2nC 1/� 3�

2!2




n2 C nC 1

2

�

I

Hn;nC2 D HnC2;n D �
p

.nC 1/.nC 2/

4!2
Œ�.4nC 6/C !.!2 � 1/�I

Hn;nC4 D HnC4;n D � �

4!2
Œ.nC 1/.nC 2/.nC 3/.nC 4/�1=2:

The parameter ! has to be fixed for the use in the formulas (2.126). As shown in the
Sect. 2.4, the optimal value of !opt at which the sequence (2.126) quickly converges
to the exact solution is different from the ones delivered by the Eq. (2.121) for !n,
which corresponds to the best OM zeroth approximation. The parameter !n can
not be used in (2.126) at � < �b

.n/ because the condition 
n ¤ 0 is not fulfilled.
The same situation occurs in the method of the complex coordinate rotation, which
implements the rotation of (2.119) at certain finite angle ' > '0 ¤ 0 to normalize
the state vector j�ni and to calculate 
n. The numerical computing using the
formulas (2.125) shows that the OM successive approximations converge fast to
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Table 2.9 The energy levels of QAO with OH D 1
2
. Op2 C Ox2/� � Ox4

� D 0:1

E
.s/
0 .E

0; 

2
/ ! D 0:1C i 0:8 ! D 1:0C i 1:0

E
.0/
0 0.392400 0.122665 0.375000 0.162500

E
.6/
0 0.397473 0.044629 0.397682 0.044932

E
.10/
0 0.397441 0.044705 0.397682 0.044715

E
.s�13/
0 0.397441 0.044706 0.397441 0.044706

E
j70j
0 0.397 0.045 0. 0.

� D 0:025 � D 0:5

E
.s/
n .E

0; 

2
/ ! D 1:0C i 0:2 ! D 2:0C i 1:5

E
.s�10/
0 0.479117 0.000007 0.373874 0.304990

E
j70j
0 0.479117 0.000007 0.37 0.31

E
.s�20/
1 1.385667 0.000771 1.205286 1.257500

E
j70j
1 1.38564 0.00077 1. 1.3

E
.s�20/
2 2.157234 0.021984 2.198786 2.68970

E
j70j
2 2.157 0.021 2. 2.5

the exact values of En0 and 
n in a wide range of the complex plane ! D !0 C i!00
where the following inequalities are satisfied:

!0 > !0
nI !00 > !00

n : (2.128)

Under the condition !00
n D 0 at � < �

.n/

b , the value !00 � 0:1!0 is not firmly fixed
because by satisfying the Eqs. (2.128) the convergence rate in (2.127) is sensitive to
the values of !0 and !00. Within the reasonable accuracy, the eigenvalues En do not
change with the variation of !, which can be set as iteration convergence criteria. At
the same time, the coefficients Cnk depend on the choice of the parameter !, which
defines the basis set of the states jn; !i in the exact vector j�ni. The results shown
in the Table 2.9 demonstrate that for certain values of � a high accuracy of results is
obtained using fast numerical calculations by formulas (2.126) in comparison with
the results obtained by other authors using complex numerical methods (see, e.g.,
[65]).

In the conclusion of this paragraph, we consider a calculation procedure for the
eigenvalues of QAO Hamiltonian with a cubic nonlinearity:

OH D Op2
2

C V3.x/ � 1

2
p2 C 1

2
x2 C �x3: (2.129)

The states of this system are quasi-stationary at any signature of �, and the
operator OH does not commutate with the parity operator in opposite to other systems
considered in previous paragraphs. The potential energy is not symmetric with
respect to the origin of the coordinate system, and therefore the functions have to be



2.7 Calculation of Energy and Level Width of Quasi-Stationary States 71

Fig. 2.10 Form of the potential V3.x/

used, which are localized closely to certain value x D u ¤ 0. For this purpose, the
OM generalizes the canonical transformation (2.2) [3]:

Ox D u C 1p
2!
.aC C a/I Op D i

r
!

2
.aC � a/; (2.130)

by introducing another arbitrary parameter u, additionally to !, which defines the
equilibrium position of the considered system (Fig. 2.10). The general scheme of
calculations remains unchanged and is based on the use of the recurrent relations
(2.126) with the matrix elements calculated by means of the substitution of operators
(2.130) in Hamiltonian (2.129):

Hnn D 1

4




! C 1

!

�

.2nC 1/C 1

2
u2 � �

h

u3 C 3u

2!
.2nC 1/

i

I

Hn;nC1 D HnC1;n D up
2!

p
nC 1

h

1 � 3�



u2 C n

2!
C 1

�i

I

Hn;nC3 D HnC3;n D � �

.2!/3=2
Œ.nC 1/.nC 2/.nC 3/�1=2:

The parameter u is found from the equation:

@E
.0/
n

@u
D @Hnn

@u
D u � 3�




u2 C 2nC 1

2!

�

D 0;

and! is obtained using the same algorithm as in previous sections. Table 2.10 shows
the effectiveness of operator method for the states of QAO.



72 2 Basics of the Operator Method

Table 2.10 The energy levels of QAO with OH D 1
2
. Op2 C Ox2/� � Ox3

� D 0:1 � D 0:5

E
.s/
n .E

0; 

2
/ ! D 1:5C i 0:5 ! D 2:7C i 1:9

E
.0/
0 0.494862 0.012833 0.385852 0.142919

E
.s�20/
0 0.484316 0.000008 0.472129 0.252714

E
j70j
0 0.48432 0.00001 0.5 0.25

E
.s�30/
1 1.378073 0.003141 1.631 1.051

E
j70j
1 1.3782 0.003 1.5 1.

E
.s�30/
2 2.09437 0.09101 2.70 1.31

E
j70j
2 2.09 0.1 3. 2.

2.8 States with a Broken Symmetry (Integrals of Motion)

A modern quantum field theory deals frequently with the concept of the spontaneous
symmetry breaking (see, e.g. [66, 67]). In general case, the solution of such kind
of problems is reduced to the system states which do not possess a symmetry of
the initial Hamiltonian. The general form of QAO Hamiltonian (2.1) proves to be
sufficiently flexible for the modeling of mentioned systems:

H D 1

2
Op2 C VD.x/ D 1

2
Op2 � 1

2
x2 C �x4: (2.131)

In this equation, the function VD.x/ consists of two symmetric potential pits, the
depth and the distance between them increase with the decrease of � (Fig. 2.11).

Fig. 2.11 The double-well potential and the function of the lowest symmetric (red line) and
antisymmetric (black line) states
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The analysis of the common properties of one-dimensional quantum system [68]
shows that the eigenfunction of the operator (2.131) at energyE < 0 is concentrated
near one of the potential energy minima. Again, as in previous paragraph, the
canonical transformation (2.130) is applied:

Ox D 1p
2!
.aC C a/I Op D i

r
!

2
.aC � a/I a D u C bI aC D u C bC:

(2.132)

The state vector jni, being the vacuum state with respect to the operators b, is written
as:

bjui D .a � u/jui D 0; (2.133)

and acts as the zeroth approximation to the wave function of system basic state. In
the coordinate representation, the state vector jni corresponds to the wave function:

hxjui D

!

	

�1=4

e� !.x�u/2

2 ;

which describes the oscillator concentrated near the point x D u. On the other hand,
jni is the coherent state and the eigenvector of the operator a [69]:

ajui D ujuiI
jui D euaC j0ie u2

2 I aj0i D 0:
(2.134)

In contrast to the operator (2.129), the Hamiltonian (2.130) commutates with the
parity operator OP , and therefore its eigenfunctions:

OH j��i D E�j��i; (2.135)

appear to be the eigenfunctions of OP as well:

OP j��i D �j��i; � D ˙1I Œ OP OH� D 0: (2.136)

At the same time, the canonical transformation (2.142) does not commutate with
the parity operator, which is presented in the terms of operators a and aC by the
following expression [70]:

OP D ei	a
Ca:

Therefore, in the function j��i the exact integral of motion defined by the
Eq. (2.136) has be taken into account before using any approximation for this
function. For this purpose, we introduce here the operator of vector projection on
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the state with a definite value of the integral of motion, which has the following
form with parity � D ˙1:

T� D 1

2
.1C �ei	a

Ca/I T 2� D T�: (2.137)

Assuming j�i is the solution of the equation:

OL�j�i � . OH � E�/ OT�j�i D 0; (2.138)

the state vector j��i D OT�j�i satisfies both Eqs. (2.135) and (2.136) at the
same time. As the state vector j�i is not bound to any additional conditions, the
regular OM procedure can be applied to solve (2.138) on the basis of canonical
transformation (2.132) of the operator OL�. In particular, to construct the OM zeroth
approximation, the operator OL� has to be reduced to the normal form and then retain
only the operators which commutate with the operator of excitation number bCb.
For example, the parity operator is reduced to the normal form as follows:

OP D e2u2 e�2ubC

ei	b
Cbe�2ub:

As a result, the expressions for the energies of two lowest states with different
parities in the OM zeroth approximation are presented in the following way:

E
.0/
0� .!; u/ D 1

4




! � 1

!
C 3�

4!2

�

C u2

!2
.6� � ! C 4�u2/�

��u2Z.u2/



! � 1

!
C 6�

!2
C 4�u

!2

�

I Z.u2/ D e�2u2

1C �e�2u2
:

The parameters ! and u are calculated based on the independence principle of the
eigenvalues of hermitian operator from the choice of representation, which results
in the equations:

@E
.0/
0�

@u
D @E

.0/
0�

@!
D 0I

!3 C! C 4!u2 C 5e�2u2 .!3 C ! � 4!3u2/� �.6C 48u C 32u2 C 6�e�2u2 / D 0I

2�.3C 4u2/ � ! C 2u2Z2.u2/Œ!.!2 � 1/C 2�.3C 2u2/��

��Z.u2/Œ!.!2 � 1/� 6� � 2u2!.!2 � 1/� 4�u2.1C 2u2/� D 0:
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The analytical solution for these equations can be found in both limits of large
and small �, and in the case � ! 0 the solution is:

E
.0/
0� ' � 1

16�
C 1p

2
� 3�

16�
e

� 1

2�
p

2 I
E

.0/
0 D E

.0/
0� � E

.0/
0C ' 3

8�
e

� 1

2�
p

2 :
(2.139)

Thus, the OM zeroth approximation identifies successfully the exponentially small
splitting of levels [71].

The operator method is proved to have the outstanding capabilities for accurate
calculation of the eigenvalues of the Hamiltonian (2.131), whereas this task is very
challenging for regular numerical methods, especially for the range of small � [72].
The iteration scheme of the OM for Eq. (2.135) can be applied in different ways,
for example, the operator OH can be transformed into the secondary quantization
representation by a canonical transformation (2.2), which does not break the parity
and contains only one arbitrary parameter !. In this representation, the Hamiltonian
OH has a simple polynomial form with respect to a, aC:

OH D 1
4




! � 1
!

�

.2aCaC 1/� 1
4




! C 1
!

�

.a2 C aC2
/C

C �
4!2
.6 On2 C 6 OnC 3C aC4 C a4 C 4aC2 C 4aCa2 C 6aC2 C 6a2/:

(2.140)

Furthermore, the recurrent relations (2.126) are used with the matrix elements
of the Hamiltonian (2.140), and the expansion of the eigenfunction j�nsi over the
states with a certain excitation number:

Onjni D njniI

j�n�i D jni C
X

n¤k
C
.�/
nk jki (2.141)

has to include only the state vectors with even k at � D C1 and with odd k
at � D �1. This approach has been used in [16], where in spite of the tangible
difference between the zeroth approximation wave function jni and the exact state
vectors j�si, especially at small �, the OM iteration sequence has been proved to
converge to the exact SE solution and calculates the level splitting with any required
accuracy. However, the convergence rate is found to be very slow in the range of
exponentially small distance E between the levels corresponding to symmetric
and non-symmetric states, for example, it takes about 300 iterations to compute
E � 10�5. The use of the mentioned form of OM for the systems similar to
(2.130) and with several degrees of freedom becomes ineffective. This fact is due
to the qualitative change of the wave function of the system at � ! 0, contrary to
the wave functions of harmonic oscillator. Therefore, a certain modification of the
recurrent relations (2.126) can be done, which allows to get more accurate wave
functions for zeroth approximation and to provide the conservation of the state
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parity at the same time. First of all, we consider the iteration procedure of the SE
solution:

OH j�.�/
0 i D E

.�/
0 j�.�/

0 i (2.142)

for the lowest symmetric j�.C/
0 i and non-symmetric j�.�/

0 i states. According to
the procedures described above, the following normalized state vectors provide a
sufficiently exact representation of the solution of the Eq. (2.141) with respect to
the parity of the system:

j�.�/
0 i ' j'.s/0 i � C.1C � OP /jui D C.jui C �j � ui/I

C D 1p
2.1Cjhuj�uij2/ :

(2.143)

The state vector jui is defined by the formula (2.133) with the parameters ! and
u. The difference between the state vectors j�.�/

0 i and j'.�/0 i is small at any � and
can be found in the form of the expansion into the series over a full set of states jni:

j�.C/
0 i D j'.C/0 i C

1X

kD0
C
.C/
2k j2kiI C

.C/
2kC1 D 0I

j�.�/
0 i D j'.�/0 i C

1X

kD0
C
.�/
2kC1j2k C 1iI C

.�/
2k D 0I (2.144)

Substituting these expansions into the Eq. (2.142), the nonlinear algebraic equations
for the eigenvaluesE and coefficients Cn is obtained:

E
.�/
0 D

�

E
�
00 C

1X

kD0
C
�

k hkj OH j'.�/0 i
�

1C
1X

kD0
C
�

k h'.�/0 jki
�1

I

E
�
00 D h'.�/0 j OH j'.�/0 iI (2.145)

C .�/ D �
h

Hll � E
.�/
00

i�1n
E
.�/
0 hl j'.�/0 i � hl jH j'.�/0 i �

X

p¤l
C .�/
p Hpl

o

I (2.146)

Hkl D hkj OH jli:

However, the solution of this equations by ordinary iterations scheme (2.126)
faces the problem mentioned in Sect. 2.1: due to the nonorthogonality of the
approximate state vector j'.�/0 i and the basis functions hnj'.�/0 i ¤ 0, the number of
the accounted in the Eqs. (2.145) and (2.146) intermediate states becomes infinite
in spite of a polynomial nature of Hamiltonian. This problem is not simplified even
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by choosing the basis functions in the form:

jn; ui D .bC/np
nŠ

j0; uiI b D a � uI bj0; ui D 0;

which corresponds to the excited states of the shifted harmonic oscillator without
a definite parity. In order to simplify the solution of the Eqs. (2.145) and (2.146),
we use the fact that the diagonal matrix element of the Hamiltonian h'.�/0 j OH j'.�/0 i
defines the OM zeroth approximation evenly valid at any � for proper choice of
the parameters ! and u. Therefore, the procedure of the successive inclusion of the
matrix elements hkj OH j'.�/0 i into the iteration scheme is utilized, which has been
described in Sect. 2.2 with respect to the non-polynomial Hamiltonian (formula
(2.49)). As a result, the OM recurrent relation system for the solution of SE can be
presented in the following form:

E
.s/
0 D

�

E
.�/
0 C

n0CsX

nDn0�s
C .s�1/
n hnjH j'.�/0 i

��

1C
n0CsX

kDn0�s
C
.s�1/
k hkj'.�/0 i

��1
I

(2.147)

C
.s/

l D �
h

E
.�/
0 �E.s/

0

i�1�
E
.s/
0 hl j'.�/0 � hl jH j'.�/0 i� (2.148)

�
n0CsX

nDn0�s
C .s/
n hnjH jn0i



I

where

E
.�/
0 D lim

s!1E
.s/
0 I C

.�/

l D lim
s!1C

.s/

l I E
.0/
0 D E

.�/
0 I C

.0/

l D 0: (2.149)

Due to the nonorthogonality of the functions jni and j'.�/0 i, the main contribution
to the corrections for the wave functions of zeroth approximation in the expansions
(2.144) is determined by the state vector jn0i with a quantum number n0, which
is not equal to zero even for the basic state. Therefore, in contrast to the recurrent
formulas used before, the sequence (2.148) is calculated starting from the coefficient
Cn0 . The parameter n0 is an additional parameter and its optimal choice permits to
increase the convergence rate of the iteration scheme (2.148). The value of this
parameter is found from the fact that in the first iteration the coefficients Cn are
defined by the overlap integral hnj'.�/0 i, and therefore the maximum value of Cn
reached at n0 is found at the extremum condition:

@

@n
hnj'.�/0 i D 0: (2.150)
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Table 2.11 The energies of symmetric and antisymmetric states of the system with Hamiltonian
(2.131)

� n0 s0 ! u E
.�/.0/
0 E

.�/.s�s0/
0 E

.C/.s�s0/
0

0.005 20 34 0.4 3.05 �11.1965301 �11.7979755 �11.7979755

0.012 15 19 0.6 2.35 �4.2749434 �4.5137280 �4.5137283

0.016 11 19 0.6 1.98 �2.9896903 �3.2160644 �3.2160702

0.02 9 14 0.6 1.73 �2.2255034 �2.4393456 �2.4394387

0.05 7 10 0.9 1.2 �0.5170587 �0.5765296 �0.6327464

0.5 3 10 2.0 0.2 1.5697561 1.4172688 0.3288265

10. 0 12 5.5 0.02 5.2279415 4.9895186 1.2836945

� n0 s0 ! u E
.�/.0/
1 E

.�/.s�s0/
1 E

.C/.s�s0/
1

0.01 15 48 1.5 4.25 �4.1287797 �4.2039848 �4.2039848

The described above scheme for the solution of SE can be generally used
for any quantum system, where the exact symmetry of the wave functions in
zeroth approximation can be constructed. For demonstration of the numerical
results obtained for Hamiltonian (2.131), the expressions for matrix elements in
Eqs. (2.147), (2.148) are explicitly derived:

hnj'.�/0 i D e� u2
2

u2

nŠ
Œ1C �.�1/n�I

h'.�/0 j OH j'.�/0 i D 1
4




! � 1
!

�

C 3�
4!2

C



1C �e�2u2
��1




h
�u2

!2
.4u2 C 6/� u2

!
� �!u2e�2u2

i

I
hl jH jki D p

k.k C 1/ıkC2;l Cp

k.k C 1/.k C 2/.k C 3/ıl;kC4:
(2.151)

The calculation results show that the parameter n0 influences the iteration con-
vergence rate. The value .n0/opt, at which the convergence rate has a maximum,
corresponds to the one derived from the formula (2.150). Table 2.11 displays the
results for the basic state energy E.˙/

0 calculated at different values of �, the values
of the parameters ! and u at which the calculations are carried out, the value .n0/opt
for every � and the number of the iterations s0 required to obtain the mentioned
results. These results, being compared to the ones of the paper [72], prove the
modification of OM iteration scheme defined by (2.147) to considerably decrease
a number of the iterations for calculation of the eigenvalues with required accuracy.

Summarizing this section, the choice of the wave function for excited states
has been considered, and the best approximation is obtained with a symmetrized
linear combination of the excited state wave functions of the shifted oscillator. The
symmetric and non-symmetric functions of the nth excited state can be presented in
the following form:

j Q'.�/n i D 1p
nŠ

h

.aC � u/nj0; ui C .�1/n�.aC C u/nj0;�ui
i

: (2.152)



References 79

This approximation can be further improved provided the orthogonality of this
function to the wave functions of all lower laying states is preserved for calculation
of the state vector j'.�/n i by formulas:

j'.�/n i D j Q'.�/n i �
n�1X

kD0
h'.�/n jj Q'.�/n ij'.�/k i: (2.153)

The substitution of these functions in the iteration scheme defined by the
formulas (2.146) and (2.147) delivers the solution of SE for the excited states.
Table 2.11 shows the results of this calculation for two closest excited states.
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Chapter 3
Applications of OM for One-Dimensional
Systems

The extended analysis of various physical problems related to anharmonic oscillator
performed in previous chapter makes it possible to sort out the capabilities of the
operator method, which are not exclusively related to QAO and can be exploited
for description of more complex quantum systems. These effective features of OM
are

1. a special choice of the wave functions for zeroth approximation
ˇ
ˇ
ˇ�

.0/
n!n

E

, in general

case non-orthogonal, depending on the variational parameters !n, unique for
every n;

2. an explicit receipt for calculation of the parameters !n in zeroth approximation
of OM using the full Hamiltonian OH without separation of the perturbation
operator;

3. a construction of the iterative scheme for successive approximations for eigenval-
ues and eigenfunctions j�ni as the sequences uniformly converging to the exact
solutions in the entire range of Hamiltonian’s parameters.

For the physical calculations performed for the systems in previous sections,

the wave functions in the occupation number representation
ˇ
ˇ
ˇ�

.0/
n!n

E

were chosen as

the state vectors jn; !ni, corresponding to the excitation numbers. However, this
choice of the functions jn; !ni is not unique and predominantly conditioned by the
simplicity of calculations for QAO. For more complex quantum systems, a certain
complication of the calculations due to alternative choice of the basic set is worth in
exchange to the improvement of the accuracy of zeroth approximation. This chapter
considers several physical systems where the application of the extended operator
method gives the effective results.

© Springer International Publishing Switzerland 2015
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3.1 Anharmonic Oscillator with High Anharmonicity

We start here with the potential represented by a polynomial of high degree,
that facilitates the investigation of the operator method for the potentials with
qualitatively different behavior. The system is assumed to be described by the
Hamiltonian [1]:

OH D 1

2
. Op2 C Ox2/C

NX

mD2
�mx

2m: (3.1)

The systems with polynomial potentials, called also generalized QAO, are of
wide interest for numerous applications. For example, the polynomial potential
is used for the solution of inverse problem in molecular spectroscopy, because
of the limitation by the fourth order of potential is insufficient for reconstruction
of the interatomic interaction potential [2, 3]. The oscillators with high degree of
anharmonicity [4, 5] have been investigated in numerous works, for example, in
[6] by perturbation theory, or in [7–13] on the basis of various non-perturbative
approaches. Below we use the technique of OM described in Chap. 2 for Hamilto-
nian (3.1), which implements the canonic transformation:

Ox D 1p
2!
. OaC OaC/; Op D �i

r
!

2
. Oa � OaC/ (3.2)

being applied to expression (3.1) modifies it to:

OH D 1

4

�
1

!
. Oa C OaC/2 � !. Oa � OaC/2

	

C
NX

mD2
�m

1

.2!/m
. Oa C OaC/2m: (3.3)

The anharmonic part of the potential (3.3) is then transformed to the normal form,
using the transposition of the creation and annihilation operators:

. Oa C OaC/2m D
mX

kD0

.2m/Š

2kkŠ

2m�2kX

jD0

. OaC/2m�2k�j Oaj
j Š.2m � 2k � j /Š

: (3.4)

The Hamiltonian for zeroth approximation OH0 is selected as a part of full operator
OH , which commutates with the operator of excitation number On D OaC Oa and thus

contains the terms with the products of the equal order of creation and annihilation
operators:

OH0 D 2 OnC 1

4

�

! C 1

!

	

C
NX

mD2

�m

.2!/m

mX

kD0

.2m/Š

2kkŠ..m � k/Š/2 . Oa
C/m�k Oam�k:

(3.5)
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As a next step, the formula for transition from the creation and annihilation operators
to the particle number operator is used [14]:

. OaC/M OaM D On. On � 1/ � : : : � . On �M C 1/; (3.6)

and the expression for the energy in zeroth approximation is found:

E0.n; !n/ � < nj OH jn >D 2nC 1

4

�

!n C 1

!n

	

C
NX

mD2

�m.2m/Š

.2!n/m



"
m�1X

kD0

1

2kkŠ..m � k/Š/2

m�k�1Y

iD0
.n � i/C 1

2mmŠ

#

: (3.7)

The parameter !n is derived from the expression (2.14) for the independence
of eigenvalues from the parameter !, where the substitution of (3.7) results in the
algebraic equation of the order .N C 1/:

!NC1
n � !N�1

n � 1

2nC 1

NX

mD2

m.2m/Š�m!
N�m
n

2m�2



"
m�1X

kD0

1

2kkŠ..m � k/Š/2
m�k�1Y

iD0
.n � i/C 1

2mmŠ

#

D 0: (3.8)

The relationships (3.7) and (3.8) determine the zeroth approximation of OM for
energy spectrum of the oscillator with polynomial potential. For particular case of
the system with Hamiltonian (3.1) with N D 3:

OH D 1

2
. Op2 C Ox2/C � Ox4 C � Ox6; (3.9)

the following expression is found from (3.7):

E.0/
n D 2nC 1

4

�

!n C 1

!n

	

C 3�

4!2n
.2n2 C 2nC 1/

C 5�

8!3n
.4n3 C 6n2 C 8nC 3/: (3.10)

The equation for !n follows from (3.8):

!4n � !2n � !n 6�.2n
2C2nC1/
2nC1 � 15�.4n3C6n2C8nC3/

2.2nC1/ D 0: (3.11)
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Table 3.1 Energy spectrum of the quantum anharmonic oscillator of sixth order for E.0/
n .0; 1/

and E.0/
n .0; 50/ in comparison with the values En.0; 1/ and En.0; 50/ from [12]; n is a quantum

number, �.0/n is the relative accuracy of OM zeroth approximation

n E
.0/
n .0; 1/ En.0; 1/ �

.0/
n .0; 1/% E

.0/
n .0; 50/ En.0; 50/ �

.0/
n .0; 50/%

0 0,837797 0,804966 4,1 1,97349 1,85849 6,2

1 2,96566 2,87467 3,2 7,26237 6,97310 4,1

2 5,80729 5,77197 0,6 14,5779 14,4886 0,6

3 9,26189 9,32485 0,7 23,5802 23,7825 0,9

4 13,2404 13,4151 1,3 34,0057 34,5233 1,5

5 17,6816 17,9787 1,7 45,6801 46,5369 1,8

6 22,5411 22,9706 1,9 58,4801 59,6999 2,0

7 27,7853 28,3564 2,0 72,3131 73,9188 2,2

8 33,3877 34,1092 2,1 87,1062 89,1200 2,3

9 39,3265 40,2067 2,2 102,800 105,244 2,3

10 45,5835 46,6305 2,2 119,346 122,239 2,4

11 52,1433 53,3520 2,3 136,700 140,026 2,4

12 58,9922 60,3655 2,3 154,828 158,592 2,4

13 66,1187 67,6501 2,3 173,698 177,880 2,4

14 73,5122 75,1888 2,2 193,280 197,843 2,3

15 81,1633 82,9634 2,2 213,550 218,431 2,2

16 89,0637 90,9606 2,1 234,485 239,611 2,1

17 97,2057 99,1633 2,0 256,065 261,335 2,0

Table 3.1 shows the results for the energy E.0/
n .�; �/ of the QAO of sixth order

[1]. For the comparison, the same energies are shown calculated by numerical
method based on the generalized Bloch equation [12]. The iterative technique of
OM provides the same results as in [12] after 5–6 iterations. This data confirms
the uniform suitability of approximation obtained by OM. The parameter �.0/n .�; �/
in Eq. (1.1), which determines the accuracy of the energy spectrum in OM zeroth
approximation for arbitrary quantum number n and for entire range of Hamiltonian
parameters, satisfies the condition �.0/n � 0:06. The conventional PT is not suitable
for the description of this quantum system, because its applicability at small values
of the anharmonic parameters only.

Table 3.2 presents the energy spectrum values for quantum anharmonic oscillator
with general symmetric potential of sixth order at different parameters of the
Hamiltonian (3.10) in zeroth approximation.
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Table 3.2 Energy spectrum En of quantum anharmonic oscillator with Hamiltonian OH D 1
2
. Op2C

Ox2/C � Ox4 C � Ox6; n is a quantum number

n � D 1; � D 1 � D 1; � D 10 � D 10; � D 1 � D 10; � D 10

0 0.963747 1.40218 1.55933 1.74713

1 3.39770 5.09920 5.50129 6.26672

2 6.60022 10.1483 10.5979 12.2809

3 10.4240 16.3176 16.4991 19.4450

4 14.7741 23.4339 23.0460 27.5691

5 19.5880 31.3823 30.1451 36.5339

6 24.8212 40.0814 37.7330 46.2556

7 30.4399 49.4698 45.7637 56.6717

8 36.4174 59.4991 54.2014 67.7327

9 42.7318 70.1299 63.0178 79.3989

10 49.3650 81.3293 72.1893 91.6367

11 56.3012 93.0694 81.6963 104.418

12 63.5271 105.326 91.5218 117.718

13 71.0308 118.078 101.651 131.515

14 78.8019 131.306 112.072 145.791

15 86.8309 144.994 122.772 160.528

16 95.1094 159.126 133.742 175.711

17 103.630 173.689 144.973 191.326

18 112.385 188.671 156.455 207.361

19 121.369 204.059 168.182 223.804

20 130.575 219.843 180.147 240.644

30 145.000 245.433 196.308 266.484

40 164.066 279.485 216.560 300.448

50 184.785 316.402 238.521 337.382

60 206.353 354.743 261.455 375.870

70 228.498 394.044 285.078 415.419

80 251.116 434.134 309.263 455.834

90 274.163 474.949 333.948 497.032

100 297.620 516.464 359.098 538.975

200 421.842 738.875 480.115 759.114

A similar data are also available for the QAO with the potential of eighth order
described by Hamiltonian:

OH D 1

2
. Op2 C Ox2/C � Ox4 C � Ox6 C � Ox8: (3.12)
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Equations (3.7) and (3.8) in this case have the following form for energy of zeroth
approximation:

E.0/
n D 2nC 1

4

�

!n C 1

!n

	

C 3�

4!2n
.2n2 C 2nC 1/

C 5�

8!3n
.4n3 C 6n2 C 8nC 3/C 7�

16!4n
.10n4 C 20n3 C 50n2 C 40nC 15/;

(3.13)

and for the parameter !n:

!5n � !3n � !2n
6�.2n2 C 2nC 1/

2nC 1
� !n 15�.4n

3 C 6n2 C 8nC 3/

2.2nC 1/

�7�.10n
4 C 20n3 C 50n2 C 40nC 15/

2nC 1
D 0: (3.14)

Equations (3.13) and (3.14) determine the energy spectrum for the oscillator
with the potential of eighth order in OM zeroth approximation. Table 3.3 shows
the results from [12] and by using OM iterative scheme (2.45). Similar to the case

Table 3.3 The energy spectrum for QAO of eighth order for � D 1 (E0
n.1/) and � D 50 (E0

n.50/)
at � D 0; � D 0 in comparison with the energy values En.1/ and En.50/; n is a quantum number,
�.0/.1/ and �.0/.50/ are the relative accuracy of data

n E0
n.1/ En.1/ �.0/.1/% E0

n.50/ En.50/ �.0/.50/%

0 0,889691 0,820685 8,4 1,77826 1,59433 11,5

1 3,19731 2,99980 6,6 6,58611 6,09751 8,0

2 6,35835 6,21052 2,4 13,3490 13,0167 2,6

3 10,3210 10,3303 0,1 21,9069 21,9511 0,2

4 15,0132 15,2303 1,4 32,0826 32,6009 1,6

5 20,3726 20,8285 2,2 43,7308 44,7849 2,4

6 26,3497 27,0702 2,7 56,7386 58,3815 2,8

7 32,9051 33,9135 3,0 71,0173 73,2982 3,1

8 40,0065 41,3248 3,2 86,4952 89,4608 3,3

9 47,6273 49,2765 3,4 103,113 106,808 3,5

10 55,7449 57,7450 3,5 120,820 125,289 3,6

11 64,3396 66,7101 3,6 139,572 144,855 3,6

12 73,3943 76,1540 3,6 159,334 165,472 3,7

13 82,8939 86,0563 3,7 180,069 187,092 3,8

14 92,8249 96,4041 3,7 201,750 209,687 3,8
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Fig. 3.1 The comparison of energy spectra of quantum anharmonic oscillator for various poten-
tials

of QAO of sixth order, the uniformly suitable convergence exists over both the
quantum number n and anharmonic parameter � , and the parameter governing the
uniform suitability is �.0/ � 0:1. The standard perturbation theory is not applicable
for QAO of eighth order at small values of anharmonicity parameter � even for low
energy level (Fig. 3.1) .

Table 3.4 presents the energy of QAO for general potential of eighth order. The
dependence of energy levels from the quantum number is non-monotonic with the
increase of anharmonicity: the energy of levels at � D 1; � D 10; � D 1 grows
slower than the one with lower anharmonicity � D 10; � D 1; � D 1, however,
starting from n D 4 the energy of levels grows faster.

A comparison of energy levels for various coefficients and orders of anhar-
monicity is shown in Fig. 3.1. As follows from the Table 3.4 and Fig. 3.1, the
role of anharmonicity is changing as the quantum number varies: the coefficient
at the fourth order of perturbation � is crucial at small quantum numbers n, the
coefficient at eighth order � dominates at n � 30, and for intermediate n the
essential contribution is provided by the coefficient of sixth order �. This fact is
very important for the determination of interatomic potentials from the oscillating
spectra of molecules.
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Table 3.4 The energy levelsEn of QAO with Hamiltonian OH D 1
2
. Op2C Ox2/C� Ox4CC� Ox6C� Ox8;

n is a quantum number

� D 1 � D 10

� D 1 � D 10 � D 1 � D 10

n � D 1 � D 10 � D 10 � D 1 � D 10 � D 10

0 1.06696 1.38823 1.57716 1.58103 1.71793 1.84817

1 3.82587 5.08402 5.78509 5.59915 6.18072 6.68534

2 7.55380 10.2140 11.6127 10.8381 12.1744 13.2239

3 12.1272 16.6434 18.8562 16.9751 19.4370 21.1632

4 17.4522 24.2421 27.3451 23.8665 27.8273 30.3242

5 23.4598 32.9058 36.9563 31.4278 37.2472 40.5867

6 30.0976 42.5541 47.5990 39.6018 47.6226 51.8629

7 37.3248 53.1231 59.2026 48.3461 58.8953 64.0852

8 45.1083 64.5614 71.7109 57.6275 71.0174 77.1995

9 53.4206 76.8261 85.0775 67.4192 83.9491 91.1608

10 62.2383 89.8809 99.2632 77.6986 97.6563 105.931

11 71.5414 103.695 114.234 88.4467 112.110 121.479

12 81.3123 118.240 129.962 99.6467 127.283 137.774

13 91.5353 133.492 146.420 111.284 143.153 154.793

14 102.197 149.430 163.585 123.345 159.700 172.512

15 113.284 166.035 181.437 135.819 176.904 190.912

16 124.786 183.288 199.957 148.694 194.750 209.974

17 136.691 201.173 219.128 161.962 213.220 229.682

18 148.992 219.676 238.934 175.612 232.302 250.020

19 161.678 238.784 259.361 189.638 251.981 270.974

20 174.742 258.483 280.396 204.030 272.246 292.531

30 199.882 298.311 320.770 228.215 311.304 332.386

40 234.758 353.679 376.696 261.397 365.600 387.510

50 272.704 413.612 437.497 298.067 424.763 447.723

60 312.227 475.827 500.786 336.708 486.451 510.611

70 352.894 539.712 565.877 376.781 549.978 575.432

80 394.566 605.094 632.549 418.065 615.118 641.926

90 437.196 671.928 700.732 460.457 681.791 709.997

100 480.772 740.212 770.407 503.905 749.974 779.608

200 740.757 1151.06 1185.04 758.210 1158.23 1191.94

3.2 Anharmonic Oscillator with Non-symmetric Potential

The interatomic potentials in real molecules and crystals are essentially asymmetric
with respect to the reflection operation [15–18]. The accounting of this asymmetry
is necessary for theoretical description of the thermal expansion of solids, phonon-
phonon interaction, and other physical effects. To analyze the application of OM for
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Fig. 3.2 The model potential (3.15)

these objects, the following QAO potential is considered here:

OH D 1

2
. Op2 C Ox2/C � Ox3 C � Ox4; (3.15)

which corresponds to the potential well presented in Fig. 3.2.
According to the procedure of OM, the supplementary parameters are introduced

into Hamiltonian (3.15) by canonical transformation for coordinate and momentum
transfer operators. Alternatively to transformation (3.2) for symmetric QAO, this
operation has to be fulfilled taking into account the asymmetry of potential:

Ox D u C 1p
2!
. OaC C Oa/; Op D i

r
!

2
. OaC � Oa/; (3.16)

where u is a parameter determining the non-zero mean value of coordinate operator
Nx. This parameter will be further considered as variational one, and the value
of it is found from the condition for best approximation in zeroth order of OM.
For zeroth approximation of the energy, the diagonal matrix elements of full
Hamiltonian (3.15) are selected, that results in:

E.0/
n D E.0/

n .un; !n/ D 2nC 1

4

�

!n C 1

!n

	

C u2n
2

C �

�

u3n C 3un
2!n

.2nC 1/

�

C�
�

u4n C 3u2n
!n
.2nC 1/C 3

4!2n
.2n2 C 2nC 1/

�

: (3.17)
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and the best approximation condition is written as:

@E
.0/
n

@un
D0; u3nC 3�

4�
u2nC!nC6�.2nC1/

4�!n
unC 3�.2nC1/

8�!n
D0;

@E
.0/
n

@!n
D0; !3n�Œ1C6un.�C�un/� !n� 6�.2n

2C2nC1/
2nC1 D0: (3.18)

The expressions (3.17) and (3.18) define the uniformly suitable approximation for
the energy of the system with Hamiltonian (3.15). Depending on the relationship
between the parameters, two qualitatively different forms of potential are possible:
in case the equation for the extrema points of potential

x C 3�x2 C 4�x3 D 0 (3.19)

possesses a single root x D 0, the potential well has a single minimum (Fig. 3.2).
This condition is fulfilled if the denominator of the quadratic equation followed
from (3.19) is less or equal to zero:

D D 9�2 � 16� � 0; (3.20)

that implements the limitation for Hamiltonian parameters, which is satisfied for
majority of the molecular systems:

j� j � 4

3

p
�: (3.21)

However, there are exist physical systems with extremely large potential asymmetry,
for example, the atomic oscillations in the crystals with complex elementary unit
cell. In such cases, the problem is treated as a one with two asymmetric potential
wells, which causes the peculiarities in thermodynamical features of the system (see
[19] citations therein). This case is described by inequality:

j� j > 4

3

p
�: (3.22)

The simple algebraic relationships (3.17) and (3.18) derived from zeroth approx-
imation of the operator method are found to describe all qualitative properties of
the system. Assuming the validity of the inequality (3.21), the mean value of the
coordinate operator Nx over the wave functions of OM zeroth approximation:

Nx D hnj Ox jni D u; (3.23)

is not equal to zero for any non-zero values of the parameter � , which corresponds
to the shifted position of the localization of wave function and makes possible the
description of the thermal expansion of solids. Table 3.5 presents the numerical data
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Table 3.5 Energy levels of the oscillator with Hamiltonian OH D 1
2
. Op2 C Ox2/ C � Ox3 C � Ox4 by

zeroth approximation of OM E
.0/
n and by group-theoretic approach [20] E.TG/

n ; n is a quantum
number

� D 1

E
.0/
n E

.TG/
n

n � D 0:1 � D 0:7 � D 1:3 � D 0:1 � D 0:7 � D 1:3

0 0.8118 0.7760 0.6657 0.7875 0.7535 0.6484

1 2.7578 2.6508 2.3541 2.7164 2.6164 2.3281

2 5.1691 5.0083 4.5749 5.1588 5.0033 4.5681

3 7.9037 7.6966 7.1464 7.9590 7.7504

4 10.895 10.646 9.9906 11.080 10.866

5 14.103 13.815 13.063 14.371

6 17.501 17.177 16.333 17.851

7 21.069 20.710 19.780 21.490

8 24.795 24.400 23.386 25.287

9 28.657 28.233 27.140 29.250

10 32.654 32.200 31.030 33.331

20 78.5099 77.7885 75.9507

� D 25

E
.0/
n E

.TG/
n

n � D 1 � D 3 � D 6:5 � D 1 � D 3 � D 6:5

0 2.0379 2.0271 1.9808 1.9563 1.9483 1.9055

1 7.2021 7.1741 7.0562 7.0548 7.0306 6.9220

2 13.865 13.824 13.654 13.825 13.789 13.624

3 21.528 21.477 21.263 21.735 21.669

4 29.974 29.914 29.660 30.550

5 39.077 39.008 38.717 40.094

6 48.755 48.674 48.349 50.148

7 58.938 58.852 58.494

8 69.586 69.493 69.103

9 80.661 80.560 80.140

10 92.130 92.023 91.574

20 224.306 224.137 223.435

for the energy of QAO with Hamiltonian (3.15) for several values of the parameters
� and �, satisfying the condition (3.21) and calculated in zeroth approximation of
the operator method. For comparison, the results by group-theoretic approach from
[20] are displayed, too.

Provided the condition (3.22) is fulfilled, there are several solutions of (3.18)
available for parameter un at fixed quantum number n. This leads to sophisticated
sequence of the energy levels due to the overlap of the wave functions localized in
different potential wells. Nevertheless, the results from the Table 3.5 demonstrate
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the ability of OM to deliver the uniformly suitable approximation for both energy
levels and their relative positions.

3.3 Morse Potential

A real interatomic potential possesses the finite number of bound states, and
therefore the use of perturbation theory, which exploits the harmonic oscillator with
infinite number of bound states for initial approximation, yields the incorrect results
for the energy spectra. To analyze the effectiveness of the operator method for such
systems, the model with the finite number of the discrete energy levels is applied,
which corresponds to Morse potential (Fig. 3.3).

The Schrödinger equation with this potential has an analytical solution, which
is widely used to model the two-atomic molecules [16, 21–23]. The exact energy
spectrum for the system with Hamiltonian

OH D Op2
2

CDc.e
�2˛x � 2e�˛x/ (3.24)

is determined by the following expression [14]:

En D �Dc

�

1 � ˛p
2Dc

�

nC 1

2

	�2

; (3.25)

Fig. 3.3 Morse potential (3.24)



3.3 Morse Potential 93

where the quantum number n varies in the limits:

0 � n <

p
2Dc

˛
� 1

2
: (3.26)

The Morse oscillator is frequently used for approbation of both PT and non-
perturbative approaches [8, 24–27]. According to general OM prescription for
calculation of the energy spectrum, we select the diagonal elements of the Hamilto-
nian (3.24) with respect to the full set of functions, which can be the wave functions
of harmonic oscillator with undefined frequency!. The following mean values have
to be calculated:

E.0/
n D hnj Op2

2
CDc.e

�2˛x � 2e�˛x/ jni ; (3.27)

where jni are the eigenfunctions of the operator of particle number On D OaC Oa.
The averaging of the operator of kinetic energy results in:

hnj Op2
2

jni D !

2

�

nC 1

2

	

: (3.28)

To calculate the contribution of the potential energy, the expression for the
averaged value of the exponential operator over the wave functions of the harmonic
oscillator with arbitrary frequency is used:

hnj e�˛x jniD
p
!p

	2nnŠ

C1Z

�1
e�˛xe�!x2H2

n.
p
!x/dxDLn

�

� ˛2

2!

	

e
˛2

4! ; (3.29)

where Ln.x/ are the orthogonal Laguerre polynomials [28], and the result is:

hnj e�2˛x � 2e�˛x jni D Ln

�

�2˛
2

!

	

e
˛2

! � 2Ln

�

� ˛2

2!

	

e
˛2

4! ; (3.30)

that with the use of (3.28) leads to the expression for the energy in OM zeroth
approximation:

E.0/
n D !n

2

�

nC 1

2

	

CDc

�

Ln

�

�2˛
2

!n

	

e
˛2

!n � 2Ln

�

� ˛2

2!n

	

e
˛2

4!n



; (3.31)
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and the optimal choice of the parameter !n follows from the solution of the non-
linear algebraic equation:

.1C 2n/!2n � 4e
˛2

!n ˛2Dc

�

Ln

�

�2˛
2

!n

	

C 2L1n�1
�

�2˛
2

!n

	�

C2e ˛2

4!n ˛2Dc

�

Ln

�

� ˛2

2!n

	

C 2L1n�1
�

� ˛2

2!n

	�

D 0; (3.32)

where Lan.x/ are the generalized orthogonal Laguerre polynomials and the expres-
sion for the derivative of Laguerre polynomials [28] has been used:

d

dx
Ln.x/ D �L1n�1.x/: (3.33)

In opposite to perturbation approaches and direct summation of asymptotic
series [8], the zeroth approximation of OM takes into account the existence of the
upper border of the discrete energy spectrum. The spectrum of the system with
Hamiltonian (3.24) is continuous at E � 0, whereas the discrete non-degenerate
levels exist at E < 0 [14] only. From the expression (3.31), the following inequality
follows:

n <
2Dc

!n

�

2Ln

�

� ˛2

2!n

	

e
˛2

4!n � Ln

�

�2˛
2

!n

	

e
˛2

!n



� 1

2
; (3.34)

which permits to find the maximal number nm of molecule bound states for different
parameters of the potential. By solving the Eq. (3.32) for each n and substituting the
results in (3.31), we obtain the energy spectrum of Morse oscillator in OM zeroth
approximation. Table 3.6 demonstrates the uniform suitability of the approximation
obtained for both parameters of the physical system.

The relatively poor accuracy (	 10%) corresponds to the highly excited states at
small values of

p
Dc=˛, when the total number of coupled states is small. For the

range
p
Dc=˛ > 30, which corresponds to the vibrational terms for the majority of

real molecules, the accuracy stays within the 3 % range.
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Table 3.6 The energy levels En of the Morse oscillator; nm and n.ex/
m are the maximal number of

coupled states for OM and exact number of coupled states, respectively; � is the accuracy of the
energy levels

Dc D 10

E
.0/
n Exact values En Accuracy �, %

˛ D 0; 01 ˛ D 0; 1 ˛ D 0; 01 ˛ D 0; 1 ˛ D 0; 01 ˛ D 0; 1

n nm D 497 n
.ex/
m D 446 nm D 51 n

.ex/
m D 44

0 �9.97762 �9.77423 �9.97765 �9.77764 0.0003 0.03

1 �9.93281 �9.31846 �9.93303 �9.34043 0.002 0.24

2 �9.88791 �8.85445 �9.88851 �8.91322 0.006 0.66

3 �9.84293 �8.38248 �9.84409 �8.49600 0.01 1.3

4 �9.79786 �7.90281 �9.79977 �8.08879 0.02 2.3

5 �9.75271 �7.41569 �9.75555 �7.69158 0.03 3.7

6 �9.70747 �6.92132 �9.71142 �7.30436 0.04 5.2

7 �9.66214 �6.41990 �9.66740 �6.92715 0.05 7.3

8 �9.61673 �5.91161 �9.62348 �6.55993 0.07 9.9

9 �9.57124 �5.39661 �9.57966 �6.20272 0.09 13.0

10 �9.52566 �4.87508 �9.53594 �5.85551 0.11 16.7

Dc D 100

E
.0/
n Exact values En Accuracy �, %

˛ D 0; 05 ˛ D 0; 2 ˛ D 0; 05 ˛ D 0; 2 ˛ D 0; 05 ˛ D 0; 2

n nm D 314 n
.ex/
m D 282 nm D 79 n

.ex/
m D 70

0 �99.6459 �98.5771 �99.6468 �98.5908 0.0009 0.014

1 �98.9366 �95.7142 �98.9422 �95.8024 0.006 0.09

2 �98.2252 �92.8176 �98.2400 �93.0539 0.015 0.25

3 �97.5116 �89.8881 �97.5404 �90.3455 0.03 0.51

4 �96.7958 �86.9265 �96.8433 �87.6771 0.05 0.86

5 �96.0779 �83.9334 �96.1487 �85.0487 0.07 1.3

6 �95.3580 �80.9095 �95.4566 �82.4602 0.10 1.9

7 �94.6359 �77.8554 �94.7670 �79.9118 0.14 2.6

8 �93.9117 �74.7718 �94.0799 �77.4034 0.18 3.4

9 �93.1855 �71.6590 �93.3953 �74.9349 0.22 4.4

10 �92.4572 �68.5176 �92.7132 �72.5065 0.28 5.5

3.4 Solution of the Mathieu Equation

The Mathieu equation is a canonic equation of the mathematical physics, which
describes numerous physical system (see, for example, [29]). The properties of
the solutions for Mathieu equation, so called Mathieu functions, are well studied,
however, these functions are expressed either through other special functions or as
infinite fractions [28], which limits their use in real applications. The use of operator
method for the solution of Mathieu equation may deliver the convenient analytical
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form for the approximation of Mathieu functions, useable for physical applications.
We use here the dimensionless form of the Mathieu equation, which corresponds to
the Schroödinger equation for the particle of mass m D 1

2
moving in the field of

one-dimensional potential:


 OH �E
�

� D
�

� d2

dx2
C h cos 2x �E

	

� D 0; (3.35)

where h � 0 is a dimensionless amplitude of the potential; E is an eigenvalue of
Hamiltonian OH . We look for the periodic solutions of the Eq. (3.35):

�.x C 2	/ D �.x/; �.x C 	/ D ˙�.x/; (3.36)

without any preliminary assumptions about parameter h. To construct the wave
functions of OM zeroth approximation for Mathieu equation, the Hamiltonian OH
is presented in the form, which simplifies the approximate factorization:

OH D Op2 C h

2
cos2 x C h

2
(3.37)

by using two adjoint operators:

Oa D Op � i
r

h

2
cosx; OaC D Op C i

r

h

2
cos x; (3.38)

which define the basic functions of two types:

ˇ
ˇ�˙˛ D exp

 

˙
r

h

2
sinx

!

; Oa j��i D 0; OaC ˇˇ�C˛ D 0: (3.39)

The commutator of the operators Oa and OaC is more complex then for harmonic
oscillator, and therefore these operators do not factorize exactly the Hamiltonian OH
and the functions (3.39) are not the exact solutions of the Eq. (3.35). Nevertheless,
they can be used to build a basic set of functions �n for operator method. In
previous chapter, the wave functions of the harmonic oscillator have been used
to approximate the wave functions of the anharmonic oscillator (2.16) by using
the single-parameter unitary transformation (2.2) for the operators of creation and
annihilation with the parameter! in the basic set of functions. The similar operation
can be performed for the operators (3.38), which corresponds to the introduction of
the parameter � in considered functions [30]:

ˇ
ˇ�˙˛ ! ˇ

ˇ��̇
˛ D exp




˙�

2
sin x

�

: (3.40)
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To build the whole spectrum of the periodic solutions of Eq. (3.35), the
symmetry of wave functions (3.36) has to be taken into account and the algorithm
for the construction of the excited states has to be created. The translations of
the state vectors (3.36) for translations can be provided by linear combinations
of the functions (3.40), and then the approximate normalized equations (3.35),
corresponding to two minimal values E0 and E1, are written as:

j�0;�i D 1
p

1C I0.�/
ch

�

2
sin x

�

; (3.41)

j�1;�i D 1
p�1C I0.�/

sh

�

2
sin x

�

: (3.42)

Here I0.�/ is the Bessel function of zeroth order with imaginary argument, and the
orthogonality and normalization conditions follow from the scalar product:

h�˛;� j �ˇ;�
˛ D

2	Z

0

� �̨
;�.x/�ˇ;�.x/dx D 	ı˛ˇ: (3.43)

These simple analytical functions j�0;�i and j�1;�i give a good approximation
for Mathieu functions ce0 and se0 [29] uniformly suitable for � and x provided the
parameter � is chosen properly. The cumbersome form of the commutator Oa and OaC
complicates the algebraic calculation of both the excited states of the system and the
matrix elements of the perturbation operator, as in the case of harmonic oscillator.
Nevertheless, using the linear combinations of the functions (3.41) and (3.42)
multiplied by polynomials over cos x, and orthogonality procedures [28], the wave
functions of OM zeroth approximation can be constructed for required number of
the excited states j�n;�i. The optimal value �n varies for different n, and thus the
functions j�n;�ni, being orthogonal at certain �, become non-orthogonal when the
parameter � is being optimized. Nevertheless, the preliminary orthogonalization
of state vectors j�n;�i is necessary to provide the correct symmetry and proper
number of nodes in wave functions for the excited states. We derive here the
normalized functions j�2;�i and j�3;�i for two excited states, which give an
analytical approximation for the Mathieu functions ce1 and se1:

j�2;�i D
�
1

�
I1.�/C 1

2

��1=2
cos x ch


�

2
sin x

�

;

j�3;�i D
�
1

�
I1.�/� 1

2

��1=2
cos x sh


�

2
sin x

�

(3.44)

and correspond to the eigenvalues E2;3. The general algorithm to obtain the
approximate solutions j�n;�i for arbitrary n is built in the following way: the set
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of the functions j�n;�i is introduced according to the following rule:

j�n;�i D
�

coskx � ch
�
�
2

sin x
� I n D 2kI k D 0; 1; : : :

coskx � sh
�
�
2

sin x
� I n D 2k C 1I k D 0; 1; : : :

(3.45)

The state vectors j�n;�i possessing the required number of nodes and orthogonal
to the wave functions of all states with smaller n are found from the recurrent
equations:

j�n;�i D Cn;�

(

j�n;�i �
n�1X

lD0
j�l;�i h�l;� j �n;�i

)

; (3.46)

where the constants Cl;� are determined from the normalization conditions. The
integrals in formulas (3.45) and (3.46) are expressed through the Bessel functions,
and the choice of the parameters �n in OM zeroth approximation is defined by the
independence condition of eigenvalues En on the parameters, which manage the
representation of the wave functions, as stated in Sect. 2.1:

@

@�n
E.0/
n .�/ D 0: (3.47)

At n D 0, only one of these equations coincides with the form of the variational
principle on the functions class j�n;�i. To apply the variational principle for
calculation of the energy of excited states (n ¤ 0), the trial functions depending on
n parameters are used, which are required for orthogonality of the state vector j�n;�i
to the wave functions of the states, corresponding to smaller quantum numbers [28].
The energy of the system in OM zeroth approximation at certain � is calculated as:

E.0/
n .�/ D

2	Z

0

��
n;�.x/

OH�n;�.x/dx; (3.48)

where the state vectors j�n;�i are determined from (3.45) and (3.46). For example,
for the states n D 0; 1; 2; 3 the equations are:

E
.0/
0;1 D 1

I0 ˙ 1

�

�1

8
�2 C 1

4
�I1 C h

�
2

�
I1 � I0

	�

; (3.49)

h D �

4

I 20 � 1˙ I1
�
1
2
� � I1

�

I1
�
2I1
�

� I0
�C .I0 ˙ 1/

�

I1
�

1C 4
�2

� � 2I0
�

� ;
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E
.0/
2;3 D 1

2I1
�

˙ 1

�

˙1� 3

16
�2 C 3

2
I0 � I1

�
�

� h

�

�1

2
� 12I0

�2
C 2I1

�

�

1C 12

�2

	�

; (3.50)

h D I 21 � I 20 C 2
�
I0I1 � 1

8
�2 ˙ 2

�
I1 ˙ I0

�
1
8
�2 � 1�

8
�2
I 20 ˙ I0

�

1C 16
3�2

� � 8
�2
I 21
�

1C 4
�2

�� 2
�
I1
�

3C 16
�2

� :

These equations express the dependence of the eigenvalues of the Mathieu equation
on the potential amplitude. The use of the perturbation theory or strong coupling
approximation for solution of Mathieu equations [31] results in asymptotic series
over h2 or h�1=2, respectively. The OM zeroth approximation E.0/

n .h/ by formu-
las (3.47) and (3.48), however, calculates the system energy with the accuracy,
which is independent on h. For example, the solutions of the Eqs. (3.49) at n D 0

in the limits h � 1 or h � 1 are found in analytical form:

h ' 1

4
�2I E

.0/
0 .h/'

1

16

�
1

8
�4 � h�2

	

' �1
8
h2I h � 1I

h ' 1

8
�2I E

.0/
0 .h/'

�

4

I1

I0
Ch

�
2

�

I1

I0
�1
	

'�hC
p
2hI h � 1;

(3.51)

and this result is equivalent to the asymptotic expansion for exact eigenvalues
E0.h/ [32]. Further terms in the expansion (3.51) contain the same orders of h
as asymptotic series do, but with different coefficients, and similar results are
obtained for the excited states, too. Table 3.7 shows the accuracy of OM zeroth
approximation for eigenvalues and eigenfunctions of the Mathieu equation for
intermediate values h.

For real applications of the approximation for Mathieu functions, the use of the
parameter � is more convenient than the parameter h. This replacement makes a
use of the Eq. (3.47) for calculation of functions h.�/, instead of the solution of
transcendental equations. This approach is especially beneficial for the applications
with a wide range of the parameter h.

The zeroth approximation of the operator method gives an accurate approxima-
tion for the periodic Mathieu functions, which are only particular solutions of the
Eq. (3.35). According to the Floquet theorem (or Bloch theorem), which is valid for
all periodic potentials [28], the general solution of the Eq. (3.35) is:

ˇ
ˇ�k

n .x/
˛ D eikx'n.x/I 'n.x C 	/ D 'n.x/; (3.52)

which depends on the quasimomentum k varying in the range:

�1 � k � 1;
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Table 3.7 Comparison of the exact periodic solutions and eigenvalues of the Mathieu equation
[32] with OM zeroth approximation

h E0 ce0
�

0; h
2

�

ce
�
	
2
; h
2

�

Exact 10 �5.800 4.48�10�2 1.335

solution 30 �22.513 1.93�10�3 1.550

D8.331 10 �5.800 4.14�10�2 1.333

D14.944 30 �22.513 1.76�10�3 1.550

h E1 Sl
0

1

�

0; h
2

�

Sl1
�
	
2
; h
2

�

Exact 10 �5.790 1:75 � 10�1 1.337

solution 30 �22.513 1:39 � 10�2 1.550

D8.371 10 �5.790 1:70 � 10�1 1.337

D14.944 30 �22.513 1:32 � 10�2 1.550

h E2 C l1
�

0; h
2

�

Cl
0

1

�
	
2
; h
2

�

Exact 10 1.858 2:57 � 10�1 �3.469

solution 30 �8.101 1:50 � 10�2 �5.764

D6.784 10 1.867 2:28 � 10�1 �3.388

D13.772 30 �8.100 1:17 � 10�2 �5.740

h E3 Sl
0

2

�

0; h
2

�

Sl2
�
	
2
; h
2

�

Exact 10 2.099 7:33 � 10�1 �3.641

solution 30 �8.099 9:18 � 10�2 �5.766

D7.212 10 2.100 7:09 � 10�1 �3.615

D13.779 30 �8.099 8:06 � 10�2 �5.742

and specifying the zone spectrum En.k/ of the particle in the periodic potential.
The approximate calculation of En.k/ in OM zeroth approximation is executed
in a standard way as in previous paragraphs: the expression (3.52) is substituted
into (3.35) and the equation for the periodic function 'n.x/ is obtained:


 OHk�E
�

'n.x/�
�

� d2

dx2
� 2ik

d

dx
Ck2Ch cos 2x�E

�

'n.x/D0: (3.53)

The Hamiltonian OHk for this equation does not possess any certain parity, therefore
the combination of even and odd vectors has to be used for construction of the basic
set of the wave functions, in opposite to (3.45):

'.0/n .x/ D A j�n;�i C B j�nC1;�i e�ix: (3.54)

The functions j�n;�i follow from the Eq. (3.46), and the coefficients A and B are
related each to other by normalization condition:

jAj2 C jBj2 D 1:
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Table 3.8 The energy spectrum of the lower levels for Mathieu equation in OM zeroth approxi-
mation at h D 30

k 0.0 0.5 1.0

E
.0/
0 .k/ �22.513026 �22.512980 �22.512993

E
.0/
1 .k/ �8.098766 �8.099101 �8.100342

The energy E.0/
n .k/, corresponding to the level with quasimomentum k in nth

energy zone is found from the formula:

E.0/
n .k/ D

2	Z

0

'.0/n .x/
� OHk'

.0/
n .x/dx; (3.55)

and the coefficients A and B as well as parameter � follow from:

@E
.0/
n

@A
D @E

.0/
n

@B
D @E

.0/
n

@�
D 0: (3.56)

The results of numerical simulations for zone spectrum using formula (3.55) are
presented in Table 3.8.

As a next step of the application of operator method to Mathieu equation, we
analyze the convergence of successive approximations for numerical solution of
Mathieu equation by OM. Along with the algorithm (3.45) for calculation of the
wave functions of basic set for zeroth approximation, the iterative scheme (2.49) can
be applied for further approximations of non-polynomial Hamiltonians. However,
this calculation faces the following problem: due to complicated algebra of the
operators (3.38), the matrix elements OHk of the basic set (3.54) required for
high iterations are extremely cumbersome. Assuming the wave function of zeroth

approximation
ˇ
ˇ
ˇ'
.0/
n

E

gives a good results in a wide range of x, this obstacle can

be overcame. The Fourier series converges quickly for all arguments and for small

difference j'ni �
ˇ
ˇ
ˇ'
.0/
n

E

, which is a periodic function. Therefore, for the basic set

of the exact solution, not the functions of zeroth approximation (3.54) are used like
in iterative scheme (2.49), but the coefficients of the expansion Cnl of the Fourier
series:

j'n.x/i D ˇ
ˇ'.0/n .x/

˛C
C1X

lD�1
Cnl jli I jli D 1p

2	
eilx: (3.57)

In this case and opposite to (2.49), the function for zeroth approximation is not
orthogonal to the basic vectors:

h '.0/n jli ¤ 0;
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that results in the modification of the iterative scheme (2.49) by accounting of the
overlapping integral, and the iterative scheme becomes:

E.s/
n D

2

41C
s�1X

lD�.s�1/
C
.s�l�1/
nl h '.0/n jli

3

5

�1



(

˝

'.0/n
ˇ
ˇ OHk

ˇ
ˇ'.0/n

˛C
s�1X

lD�.s�1/
C
.s�l�1/
nl

D

'.0/n

ˇ
ˇ
ˇ OHk

ˇ
ˇ
ˇ l
E
)

;

C
.s/
nl D

h

E.s�1/
n � hl j OHk jli

i�1
(3.58)



(
D

l
ˇ
ˇ
ˇ OHk

ˇ
ˇ
ˇ '.0/n

E

� E.s�1/
n hl j'.0/n i C

s�1X

mD�.s�1/
C s�m�1

nm hmj OHk jli
)

:

Here
D

l
ˇ
ˇ
ˇ OHk

ˇ
ˇ
ˇ '

.0/
n

E

and hl j OHk jmi are the matrix elements of the Hamiltonian,

and the exact solution of the Schrödinger equation is defined by the limit of the
sequence:

En.k/ D lim
s!1E

.s/
n .k/I Cnl D lim

s!1C
.s/
nl I

E
.0/
n D

D

'
.0/
n

ˇ
ˇ
ˇ OHk

ˇ
ˇ
ˇ'
.0/
n

E

I C
.0/
nl D 0: (3.59)

Table 3.9 demonstrates the convergence of the numerical simulations of the
successive approximations for E.s/

0 .k/ based on (3.58) for lower energy zone:

hl j OHk jmi D .l C k/2ıl;m C h

2
Œıl;m�2 C ıl;mC2� ;

D

'
.0/
0

ˇ
ˇ
ˇ OHk

ˇ
ˇ
ˇ l
E

D .l C k/2 h '.0/0 jli C h
D

'
.0/
0 jcos 2xj l

E

D .�1/l
�
.l C k/2p

2

h

AIl


�

2

�

C BIlC1

�

2

�i

Table 3.9 Convergence of
OM successive
approximations for lower
energy zone of the Mathieu
equation at h D 30

k 0.0 0,5 1.0

E
.0/
0 �22.513026 �22.512980 �22.512993

E
.1/
0 �22.513031 �22.512991 �22.512993

E
.10/
0 �22.513031 �22.512999 �22.512998

E
.s�20/
0 �22.513037 �22.513021 �22.513004
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�h
2

h
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IlC2

�

2

�

C Il�2

�

2

��

(3.60)

C B



IlC3

�

2

�

C Il�1

�

2

��io

;

where the coefficients A and B in linear combination (3.54) follow from (3.56).
In the conclusion of this section, we discuss shortly a further possible generaliza-

tion of OM for complex systems. As follows from the Chap. 1, the eigenfunctions
of the harmonic oscillator can be efficiently used in OM zeroth approximation
for the solution of Schrödinger equation with polynomial Hamiltonian. A similar
conclusion can be made from this chapter for the particle moving in the field of
one-dimensional periodic potential represented as Fourier series:

V.x/ D
C1X

nD�1
Vne

inx: (3.61)

Despite of the basic function set (3.52) and (3.54) obeying the Bloch theorem
has been introduced for a simple form of the potential (3.61), it is found to be very
effective for both zeroth approximation and iterative scheme for arbitrary potential.
This fact is successfully used for the analysis of electromagnetic radiation in the
channeling of charged particles inside the crystals [33, 34]. The zeroth approxima-
tion of OM based on (3.52) and (3.54), being applied to this problem, has certain
advantages over other methods and provides the accurate values for energy spectrum
(relative accuracy is below 1 %) and analytical expressions for matrix elements of
transitions, population coefficients and other important physical characteristics of
electromagnetic radiation for both one-dimensional (plane channeling) and two-
dimensional (axial channeling) cases [35].

3.5 Quasienergies and Wave Functions of the Two-Level
System in a Classical Monochromatic Field

The method of quasienergies is an effective technique for the description of quantum
systems undergoing the influence of the external temporal periodic fields. This
method has been introduced for the first time in [36] and is widely used for the
analysis of various problems (see, for example, [37] and citations therein). In
this section, the capability of the operator method will be demonstrated for the
description of the evolution of the two-levels atom in a monochromatic linear
polarized field. This physical system describes very well the behavior of many
real phenomena [38]. There are numerous numerical and approximate analytical
calculations done for the quasienergies in various limiting cases. However, the
analytical expressions for the wave functions and quasienergies of two-level system
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are of a special interest for the use as a basis for the description of complex atomic
states.

As usual, we start with the construction of OM zeroth approximation for
Schrödinger equation for two-levels atom in a classic monochromatic field [38]:

OH j�.�/i �
�

�i! @

@�
C 1

2
E�3 � F�1 cos �

�

j�.�/i D � j�.�/i : (3.62)

Here � D !t is a dimensionless time, ! is a frequency of the field, E is a
distance between the energy levels of the atom, � is a quasienergy, �i are Pauli
matrices, parameter F is proportional to the amplitude of the field and to the dipole
matrix element of the transition between the atomic states. The calculation of the
exact values of the quasienergy � [37] requires the computing of the infinite Hill
determinant.

Equation (3.62) is the system of two differential equations of the first order, with
a mathematical structure similar to the equations obtained from the factorization of
the Mathieu equation (Sect. 3.4). Therefore, the basic set of functions (3.40) is used
for zeroth approximation, taking into account the spinor structure of the Eq. (3.62):

ˇ
ˇ�˙˛ D exp Œ˙i� sin �� �˙I �C D

�
1

0

	

I �� D
�
0

1

	

; (3.63)

where � is arbitrary parameter. The combination of spinors (3.63) for two lower
quasienergy zones �.0/n (n D 1; 2) is built to reconstruct the exact solution of the
Eq. (3.62) in quasi-classic limit (F � 1) and in the limit of weak coupling (F � 1).
The state vectors obeying these conditions are:

ˇ
ˇ
ˇ�

.0/

n;�.�/
E

D C1�1 C C2�2e
i� I (3.64)

�1 D
�

cos'
�i sin '

	

I �2 D
�

sin '
i cos'

	

I ' D � sin �;

where coefficients C1;2 are connected through the normalization [39] for periodic
functions:

hh�˛.�/ j �ˇ.�/
˛˛ D

2	Z

0

h�˛.�/j �ˇ.�/
˛

d� D ı˛ˇ:

Other branches of the quasienergy spectrum can be calculated by using the
functions analogous to (3.45) represented through the polynomials over ei� as the
multipliers at spinors (3.64). Because of the limited space for this chapter, we
consider further only the states, corresponding to quasienergies �.0/n . The zeroth
approximation for these functions is a diagonal part of the Hamiltonian OH with
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respect to the functions (3.64):

�.C1; C2; �/ D hh�n;� j OH j�n;�ii : (3.65)

By variation of the expression (3.65) over the coefficients C1;2, the following
equation system is obtained:

�C1 D 1

2
E ŒJ0.2�/C1 C iJ1.2�/C2�C 1

2
i.F � !�/C2; (3.66)

�C2 D !C2 � 1

2
F ŒJ0.2�/C2 C iJ1.2�/C1� � 1

2
i.F � !�/C1;

where J0 and J1 are the Bessel functions of real argument. The zeroth approximation
for quasienergy follows from the existence of the non-trivial solution of the
Eq. (3.66):

A1;2 D �
.0/
1;2 .�/

E
D 1

2

8

<

:

!

E
˙
s

h!

E
� J0.2�/

i2 C
�
!�

E
� F

E
� J1.2�/

�2

9

=

;
;

(3.67)

provided the optimal value of � is a root of the equation:

@

@�
�
.0/
1;2 .�/ D 0;

2J1.2�/
h!

E
� J0.2�/

i

C
�
!�

E
� F

E
� J1.2�/

� �
!

E
C J1.2�/

�
� 2J0.2�/

�

D 0;

(3.68)

where the following formulas are used:

@J0

@�
D J

0

0.2�/ D �J1.2�/I J
00

0 .2�/ D J1.2�/

2�
� J0.2�/:

The coefficients C1;2 can be found for above defined �.0/ and �, using the
normalization condition for wave function (3.64):

C1 D i

F
E

C J1.2�/� !�
E


I C2 D 2A� J0.2�/


I (3.69)

 D
s

Œ2A� J0.2�/�2 C
�
F

E
C J0.2�/� !�

E

�2

:
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Equations (3.67)–(3.69) reconstruct properly the behavior of asymptotic expansions
for quasienergy in different limiting cases [38]. For example, the Eq. (3.68) in the
limit F � ! results in:

� ' F

!
C E

!
J1

�
2F

!

	

CO

�r
!

F

	

;

and from (3.67) follows:

�
.0/
1 ' F

2

s

2

	x0
cos




x0 � 	

4

�

;

�
.0/
2 ' ! � F

2

s

2

	x0
cos




x0 � 	

4

�

;

x0 D 2F

!
:

In the resonant limit (F � E , ! ' E), the following expressions are obtained:

� ' F

! C E
;

�
.0/
1;2 ' 1

2

(

! ˙
r

.! � F /2 C 1

4
F 2

)

;

that agrees well with know results by alternative methods.
The important advantage of the operator method, the uniformly suitable inter-

polation of the exact solutions in a wide range of arguments, is illustrated in the
Fig. 3.4. The plots obtained from the formulas (3.67) and (3.68), are compared with
the results of the numerical calculations at intermediate values of the parameters

Fig. 3.4 Comparison of the
numerical calculation of
quasienergies �10 [40] (dash
line) and OM zeroth
approximation �.0/10 (solid
line) for the same values as a
function of the external field
magnitude
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[40]. The properly chosen zeroth approximation along with the iterative scheme for
sequential approximations makes possible the expansion of the temporal periodic
spinor into quickly converging Fourier series (similar to Mathieu equation):

jU.�/i D j�n.�/i �
ˇ
ˇ
ˇ�

.0/

n;�.�/
E

and to find an exact solution of the Eq. (3.62) in the following form:

j�n.�/i D
ˇ
ˇ
ˇ�

.0/

n;�.�/
E

C
1X

lD�1

�
Cl1
Cl2

	

eil� : (3.70)

Taking into account 2nC1 terms of this series (from �n to n), the approximation of
nth order is defined. The iterative scheme for the solution of the Eq. (3.62) is built
similarly to (3.58), assuming the sth approximation is determined by the limited

number l � s of the transitions
D

l
ˇ
ˇ
ˇ OH
ˇ
ˇ
ˇ�

.0/

n;�

E

. The equations for the coefficients Cl1
and Cl2 are found from the projections:

DD

mi

ˇ
ˇ
ˇ OH � �

ˇ
ˇ
ˇ�n

EE

I i D 1; 2I jm1;2i D eim��1;2;

which lead to the following recurrent relationships:
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ˇ
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ˇ
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(3.71)
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.s/
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ˇ
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ˇ
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E
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hkj OH�
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where

H0̇ D �i! @

@�
˙ E

2
;
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and the matrix elements in (3.71) are:

D

�
.0/
1 j l

E

D
�
B; l D 2k;

0; l D 2k C 1;

D

�
.0/
2 j l

E

D
�
0; l D 2k;

�B; l D 2k C 1;

D

�
.0/
1;2

ˇ
ˇ
ˇ OH0̇

ˇ
ˇ
ˇ l
E

D
D

�
.0/
1;2 j l

E �

!l ˙ E

2

	

;

hkj OH0̇ jli D
�

!l ˙ E

2

	

ıkl ; (3.72)
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�
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�
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hkj cos � jli D 1

2
.ık;lC1 C ık;l�1/ ;

B D C �
1 Jl .�/C iC �

2 Jl�1.�/:

The series of the successive approximations for quasienergy is built from the
equation:

D

�
.0/
1;2

ˇ
ˇ
ˇ OH � �

ˇ
ˇ
ˇ�1;2

E

D 0;

which in explicit form is written as:
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.s/

l2

D

�
.0/
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Cl2

D

�
.0/
1 jcos � j l

E

C Cl1

D

�
.0/
2 jcos � j l

E �i
)

; (3.73)

where the exact values of the coefficients Cl1;2 and quasienergies �1;2 are the limits
of the sequences:

Cl1;2 D lim
s!1C

.s/

l1;2
I �1;2 D lim

s!1 �
.s/
1;2:
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Table 3.10 The quasienergies of two-level system at different parameters

F D 0:4 F D 0:4

E D 0:1 E D 0:3 E D 0:1 E D 0:3

�
.2/
0I1 4:2146 � 10�2 1:0390 � 10�1 4:7658 � 10�2 1:3564 � 10�1

�
.10/
0I1 4:1420 � 10�2 1:0075 � 10�1 4:7631 � 10�2 1:3516 � 10�1

�
.�20/
0I1 4:1140 � 10�2 1:0060 � 10�1 4:7589 � 10�2 1:3514 � 10�1

The results of the calculations for the quasienergy of two-level system using the
OM described above are presented in the Table 3.10, and illustrate the convergence
of the successive approximations of OM.

3.6 More Applications of Operator Method

To illustrate the power of the operator method in analytical investigation of complex
physical systems, we consider in this section the Schrödinger equation with diverse
one-dimensional potentials, which are widely used in various applications, and
in these examples we limit ourselves to zeroth approximation for eigenvalues of
Hamiltonian. Let us start with the non-polynomial potential, which has been studied
in numerous works [41]:

V.x/ D x2 C �x2

1C gx2
: (3.74)

The method of the summation of asymptotic series is not applicable in this situation,
however, the Schrödinger equation with this potential has an exact solution [42], if
the parameters � and g obey certain conditions. The OM is able to calculate the
eigenvaluesE.�; g/ with high accuracy for any values of � and g. The Schrödinger
equation is written as:

�

Op2 C Ox2 C � Ox2
1C g Ox2

�

j� i D E j� i : (3.75)

To implement the OM procedure, the particle number representation for operators
of coordinate Ox and momentum Op are introduced:

Ox D 1p
2!

� OaC C Oa� I Op D i

r
!

2

� OaC � Oa� I � OaI OaC� D 1;

which contains the arbitrary parameter !. Using the expression

.1C gx2/�1 D
1Z

0

exp
��u.1C gx2/

�

du;
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the Eq. (3.75) is transformed to the normal form as in (2.55):

8

<

:
�g!
2

�

. OaC/2C Oa2�1�2 OaC Oa�C 1

2g!

�

. OaC/2C Oa2C1C2 OaC Oa�

C �

g

2

41�!
1Z

0

e'1. OaC/2e'2 OaC Oae'1 Oa2e 12 '2�!udu

3

5�E
9

=

;
j� i D 0;

(3.76)

where

'1 D u

2.1C u/
I '2 D � ln.1C u/:

The operator OH0 corresponds to the zeroth approximation of OM and commu-
tates with the operator of the excitation number On D OaC Oa, and its eigenvector jni
obeys the equation:

OaC Oa jni D On jni D n jni :

The eigenvalues of the operator OH0 determine the zeroth approximation for the
energy spectrum of the system with potential (3.74), which has a cumbersome form
due to non-polynomial Hamiltonian:

E.0/
n D

�

nC 1

2

	�

g! C 1

g!

	

(3.77)

C�

g

2

41 � !

n
2X

kD0

nŠ

.kŠ/2.n � 2k/Š

1Z

0

e
1
2 '2�!u'2k1 e

'2.n�2k/du

3

5 :

All the integrals in the Eq. (3.77) are expressed through the error function [43] and
its derivatives. For each quantum number n, the parameter !n is found from the
equation obtained from (3.77) by differentiation over !:

�

nC 1

2

	�

g � 1

g!2

	

� �

g

n
2X

kD0

nŠ

.kŠ/2.n � 2k/Š



1Z

0

'2k1 e
'2.nC 1

2�2k/.1 � !u/e�!udu: (3.78)
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Table 3.11 Comparison of
the approximate and exact
values for energy levels of
particle in the potential
V .x/ D x2 C �x2

1Cgx2

g � E
.0/
0 E0 E

.0/
1 E1

0.5 0.1 1.036 1.031 3.080 3.074

0.5 1.177 1.157 3.379 3.371

1.0 1.345 1.315 3.759 3.742

1.0 0.1 1.027 1.024

0.5 1.125 1.121

1.0 1.259 1.242

2.0 0.1 1.018 1.017

0.5 1.091 1.086

1.0 1.178 1.172

100 0.1 1.00085 1.00084 3.00114 3.00098

10 1.085 1.084 3.102 3.098

100 1.850 1.841 3.985 3.983

500 0.1 1.00019 1.00018

100 1.187 1.185

500 1.924 1.922

As a result, the equation system for energy of the ground state is written as:

E
.0/
0 D 1

2

�

g! C 1

g!

	

C �

g

0

@1 �
1Z

0

e�u

p
! C u

du

1

A I

ˇ
ˇ
ˇ�

.0/
0

E

D j0i I (3.79)

�g! C 1

g!
C �

g

p
!

1Z

0

e�u

p
! C u

�

1 � !

! C u

	

du D 0;

and is equivalent to the equations obtained in [41] using variational principle.
However, in opposite to variational approach the OM finds the energy spectrum in
a consistent way, and further corrections to zeroth approximation can be calculated.
To illustrate the accuracy of the approximation for En.�:g/ by OM, the Table 3.11
shows the values E.0/

0 .�; g/ and E
.0/
1 .�; g/ in comparison with E0.�; g/ and

E1.�; g/, found in [41] from the numerical solution of the Schrödinger equation
with the potential (3.74).

The zeroth approximation of the OM is proved in the table to be able to
calculate the eigenvalues with the accuracy better than 3 % in the entire range of
the parameters � and g. The uniformity of this approximation is confirmed by the
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principle terms of the expansion E.0/
0 .�; g/ for small and large g, which equal to

the known exact solutions:

E
.0/
0 '

p

1C �

�

1 � 3�g

4
p
1C �

	

; g � 1;

E
.0/
0 ' 1C �

g
� �

p
	

g3=2
; g � 1:

The accuracy of the zeroth approximation of OM can be also estimated from the
first correction toE.0/

0 over the operator OH1 D OH � OH0. This correction is expressed
as:

E
.2/
0 D � h0j OH1


 OH0 �E.0/
0

��1 OH1 j0i ;

and due to non-polynomial potential V.x/ the action of the operator OH1 on the state
vector of zeroth approximation results in the infinite series over the operator:

OH1 j0i D
1X

kD4
Ck
. OaC/kp
kŠ

j0i :

As a result, the correction E.2/
0 is determined by the sum of the infinite series:

E
.2/
0 D �

1X

kD4
C 2
k

1

E0.k/ � E
.0/
0

; (3.80)

where E0.k/ is a result of the action after operator OH0 on the state jki with certain
number of excitations and for parameter !, corresponding to ground state.

By applying the described in the Sect. 2.3 iterative scheme for OM based on
the successive inclusion of matrix elements of non-polynomial Hamiltonian, the
correction E.2/

0 takes into account only the first term in (3.80), which corresponds
to the transition of the system in four-quantum intermediate state. The numerical
calculations demonstrate that by choosing the parameter ! from the Eq. (3.79),
the series (3.80) converge quite fast and the contribution from four-quantum
intermediate state is much higher than the one from the next to it eight-quantum
state, which is of the same order as correction of third order to operator OH1.
As an example, the values of the energy of ground state E0 at � D 1 and
g D 1, found numerically in [41] and calculated by formulas for zeroth and second
approximations of OM are equal:

E0 D 1:24013I E
.0/
0 D 1:24032I

E
.2/
0 .4/ D �0:00074I E

.2/
0 .8/ D �0:00002;
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where E.2/
0 .k/ is a contribution to the second order correction due to excitation of

the state with k quanta.
The initial Schrödinger equation (3.74) can be formally transformed to polyno-

mial one, and thus the application of OM is simplified after the the multiplication by
the operator 1 C g Ox2. However, the effective Hamiltonian becomes non-hermitian
and the OM zeroth approximation gives less accurate results than for the initial
Hamiltonian. As shown for Mathieu equation in Sect. 3.5, the accurate estimation
of the eigenvalues in zeroth approximation requires the choice of the basic wave
functions, which are more complex than ones for eigenvectors of the harmonic
oscillator. To formalize the approach for the selection of these functions, we
consider again the one-dimensional system with Hamiltonian:

OH D 1

2

� Op2 C Ox2� � � Ox4; (3.81)

which has been already considered in Sect. 2.5. The choice of the waves functions of
harmonic oscillator for the basic set of OM zeroth approximation makes it possible
to calculate the width of the levels 
 of quasi-stationary states for restricted values
of the coupling constant (2.123):

� > �min D 2nC 1

9
p
3 .2n2 C 2nC 1/

;

and for the smaller � the successive approximations of OM have to be used, which
require the numerical simulations. However, the analytical approximation of the
dependence of the level width 
 .�/ on the coupling constant is of essential interest
for numerous applications, especially because of the function
 .�/ has a singularity
at � ! 0 . Here we introduce two operators as was done for the solution of the
Mathieu equation above:

OA˙ D 1p
2

Op ˙ i

r

1

2
Ox2 � � Ox4: (3.82)

By neglecting the commutator of these operators, the operators factorize approx-
imately the initial Hamiltonian (3.81). All further derivations are performed for
the ground state. Two state vectors

ˇ
ˇ�0̇�

˛

are further introduced, which contain the
arbitrary parameter � and are the solutions of the following differential equations of
the first order:

"

1p
2

Op ˙ i�

r

1

2
Ox2 � � Ox4

#

ˇ
ˇ�0̇�

˛ D 0: (3.83)

The arbitrary parameter � has been introduced as a linear combination of the
operators OA˙ in a similar way as for anharmonic oscillator in (2.2). To evaluate
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the energy of the ground state, the wave function is chosen as a linear superposition
of the vectors:

j�00i D
8

<

:

p
2 ch

h

i 	
4

C �
�

�

1 � 2�x2�3=2
i

I jxj � 1
2�

exp
h

i �
�

�

2�x2 � 1
�3=2

i

I jxj > 1
2�
:

(3.84)

The coefficients in the function (3.84) are selected in such a manner that it contains
only diverging at jxj ! 1 wave and is continuous along with its first and second
derivatives in singular point x D 1p

2�
. The vectors j�n�i for the excited states

are constructed as products of the wave function j�0�i and Hermit polynomials
Hn

�p
�
3
x
�

. Then the energy in zeroth approximation E.0/
0 is determined by the

equation:

h�0� j OH � E
.0/
0 .�/ j�0�i D 0; (3.85)

where the optimal value � is found from the equation:

@

@�
E
.0/
0 .�/ D 0: (3.86)

In a general case of quasi-stationary states, the solution of the Eq. (3.86) is a
complex value, at which the state vector h�0� j is defined as [44]:

h�0� j D
n

j�0�iCo�
:

Equation (3.85) is then transformed to:

1p
2�

1Z

0

tdtp
1 � t 2

�
i

2

�

exp
�
2�t3

�

	



�
1 � 36�2
4�

t2.1 � t 2/C 3�

t
.2t2 � 1/ � E0

	

� exp

�

�2�t
3

�

	�
1�36�2
4�

t2.1�t 2/ � 3�

t
.2t2�1/�E0

	�

C 1 � 36�2

4�
t2.1 � t 2/ �E0



(3.87)

C 1p
2�

1Z

0

zdzp
1C z2

exp

�

i
2�z3

�

	



�
1 � 36�2

4�
z2.1C z2/C 3i�

z
.2z2 C 1/ �E0

	

D0:

The technique described above has an exclusive application area at small � �
�min � 0:1, where the simple form of OM is not applicable (see Sect. 2.5), and
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therefore we use a limit (� � 1) for the Eq. (3.87), which simplifies essentially all
simulations and deliversE.0/

0 .�/ in analytical form:

E
.0/
0 .�/ ' F.�/� 4i

r

3�

	�
exp.�2�

�
/

�
1 � 36�2

30�
� F.�/

	

�4
r

6�

	
exp

�

�2�
�

	




�
1

3

	
�2=3

25=4�1=4
exp




i
	

6

� �

1CO.�1=6/
�

;

F .�/ D 1

24�
C 3�

2
� �

48�2
: (3.88)

The solution of the Eq. (3.86) in the same limit results in:

�0 � �0.�/ D 1

6

�

1 � 3

2
�

	

CO.�2/;

and finally the following formula for the energy of ground state is obtained:

E
.0/
0 .�/ ' 1

2
� 3

4
� � 9

4
�2 CO.�3/ (3.89)

Ci
r

e

2	
exp

�

� 1

3�

	 

8

5
p
�

� 

�
1
3

�

32=3�1=6
CO.�1=6/

!

:

The parameter �0 contains the exponentially small correction � 	 exp
�� 1

3�

�

,
which can be neglected in the Eq. (3.88) because of the corresponding change of the
energy E.0/

0 is proportional to .�/2 due to the extremum of the function E.0/
0 .�/

in the point � D �0. Table 3.12 presents the results for the real and imaginary parts
of the ground state energy for the system with Hamiltonian (3.81), computed by
formula (3.89), and the results of the numerical calculations from [44] for E

0

0 and
E

00

0 .
The approximate factorization of the linear Schrödinger equation by opera-

tors (3.82) used above is also effective for the approximate solution of non-linear
equations of the second order in the case when the equations of the first order
obtained after factorization have an analytical representation. To illustrate this
opportunity, the approximate solution of Thomas-Fermi equation [14] is discussed

Table 3.12 The energy of
the quasi-stationary states for
the system with
Hamiltonian (3.81) at � � 1

� E
0

0 <E.0/
0 .�/ E

00

0 =E.0/
0 .�/

0.025 0.479 0.480 7:8 � 10�6 8:2 � 10�6

0.030 0.474 0.475 6:2 � 10�5 6:8 � 10�5

0.050 0.450 0.456 3:3 � 10�3 4:2� 10�3

0.100 0.397 0.402 4:5 � 10�2 7:4 � 10�2
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here, which determines the self-consistent potential '.x/ in multiple-electron atom:

d2'

dx2
�
p

'3p
x

D 0; 0 � x < 1 (3.90)

with boundary conditions:

'.0/ D 1; '.1/ D 0: (3.91)

The asymptotic behavior of the solution for Eq. (3.90) at x ! 1 is determined by
the formula [14]:

'.x/ ' 144

x3
; (3.92)

and we write a non-linear equation (3.90) in the form of Schrödinger equation:

OH'.x/ D 0

with zeroth eigenvalue and Hamiltonian depending on function:

OH.'/ � Op2 C
r
'

x
: (3.93)

The analogue of the operators (3.82) for approximate factorization of the Hamilto-
nian (3.93) has the following form:

OB˙ D Op ˙ i

'

x

�1=4

: (3.94)

The linear combination of these operators with arbitrary parameter makes the
equation of the first order:

�

Op � i�

'0

x

�1=4
�

'0 D 0; (3.95)

and its solution approximates the function '.x/ at the proper choice of the
parameters. This solution is easy to find:

'0.x/ D 1
�
�
3
x3=4 C C

�4
;

where the constants � and C follow from the boundary condition:

C D 1;

�
3

�

	4

D 144:



3.7 Operator Method for Uniformly Suitable Approximation of Integrals and. . . 117

Table 3.13 Comparison of
the approximate and the exact
solution for Thomas-Fermi
equation

x '0.x/ '.x/

0 1 1

1 0.362599 0.388633

2 0.205361 0.227292

3 0.132319 0.137382

4 0.0918463 0.0948242

5 0.0670401 0.0703753

6 0.0507696 0.0537674

7 0.0395559 0.0408496

8 0.0315267 0.0321377

9 0.0256000 0.0258943

10 0.0211146 0.0212346

100 9:50131 � 10�5 9:60678 � 10�5

Finally, the analytical solution of the Thomas-Fermi equation is:

'0.x/ D 144

.x3=4 C p
12/4

; (3.96)

which gives a good approximation to the exact solution in the entire range of the
parameter x (Table 3.13).

3.7 Operator Method for Uniformly Suitable Approximation
of Integrals and Sums

A fast development of the computers does not underestimate the analytical methods
for description of the physical processes. The analytical solutions expose the quali-
tative features of the physical system and choose the proper initial approximation for
further numerical simulations. The advantage of the analytical methods is an ability
to provide the correct functional dependencies of the physical properties in a broad
range of the parameters, and the absolute accuracy plays the secondary role. As
shown above by multiple examples, the zeroth approximation of OM successfully
solves the former task, and we demonstrate below that this ability is not limited
to the differential equations for quantum physics. In many cases, the solutions of
the physical problems are expressed through special functions or reduced to the
integrals and sums, which are not analytically calculated. We apply here operator
method for analytical approximations of integrals and sums, which can not be
calculated by using asymptotic methods [45]. The first example is an integral:

J.�/ D
C1Z

�1
e�x2��x4dx; (3.97)
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the expansions of which for large and small � are:

J.�/ ' p
	

�

1 � 3

2
�C : : :

�

; � � 1; (3.98)

J.�/ ' 1

2
��1=4

�




�
3

4

	

� 1p
�



�
5

4

	

C : : :

�

; � � 1:

Both expansions are asymptotic and cannot describe the function J.�/ in the whole
range 0 � � < 1. To apply OM for calculation of the integral (3.97), the following
normalization vector is introduced:

j!i D

!

	

�1=4

e� 1
2 !x

2

(3.99)

with the parameter !, which will be determined later. The initial integral is
transformed to the averaged expression with the state vector for some exponential
operator:

J.�/ D
r
	

!
h!j e.!�1/ Ox2�� Ox4 j!i �

r
	

!
h!j e OH.!;�/ j!i ; (3.100)

where the average is defined by standard quantum mechanics rules. The idea of
OM procedure for calculation of this average value is based on the choice of the
parameter ! to make the state vector j!i being the approximate eigenfunction of
the operator OH :

OH.!; �/ j!i ' E.!; �/ j!i ; ! D !.�/: (3.101)

Then the estimate for integral is written as:

J.�/ '
r
	

!
eE.!;�/: (3.102)

Thus the calculation of the integral is reduced to the approximate solution of
the Eq. (3.101), which is constructed by the procedure of OM. Using the second
quantization representation:

Ox D 1p
2!

� Oa C OaC� ;
� OaI OaC� D 1;

and

Oa j!i D 0;
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and split in OH the operator of zeroth approximation OH0 and the operator of
excitation OH1:

OH D OH0 C OH1;

OH0 D ! � 1

2!

�

2 OaC Oa C 1
�� 3�

4!2




2
� OaC�2 Oa2 C 4 OaC OaC 1

�

;

OH1 D 1

2!2
Œ!.! � 1/� 3��

h� OaC�2 C Oa2
i

(3.103)

� �

!2

h� OaC�3 OaC OaC Oa3
i

� �

4!2

h� OaC�4 C Oa4
i

:

In zeroth approximation of OM, the state vector j!i is an approximate eigenfunc-
tion of the operator OH provided the matrix element of the transition to the nearest
excited state equals zero, i.e. the term with

� OaC�2 j!i in expression OH1 j!i, which
lead to the following equation for the parameter !:

!.! � 1/� 3� D 0: (3.104)

The equivalent equation is obtained if the Bogolyubov-Feynman [46] inequality is
applied to the expression (3.100):

J.�/ D
r
	

!
h!j e OH j!i � J0.�; !/ D

r
	

!
eh!j OH j!i (3.105)

and the parameter ! is found from the extremum condition for the right part of the
inequality (3.105):

@

@!
J0.�; !/ D 0: (3.106)

This integral is expressed through the Bessel function of the order 1=3 [43],
however, substituting the solution of the Eq. (3.104) into formula (3.102), the
analytical approximation is obtained:

J.�/'J0.�; !/
ˇ
ˇ
ˇ
ˇ
ˇ
!D!.�/

D
s

2	

1Cp
1C12� exp

"

3�
�

1Cp
1C12��2

#

: (3.107)

The first terms of the expansion of this function at � � 1 coincide with first equation
in (3.98), whereas the central term in (3.107) at � � 1 is:

J0.�/ '
s

2	
p
ep

12�
' 1:73

�1=4
; � � 1; (3.108)
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and is comparable with asymptotic expansion in (3.98):

J.�/ ' 1:81

�1=4
; � � 1:

Thus, the simple formula (3.107) demonstrates the proper functional dependency
J.�/, and numerical calculations show the deviations from the exact solution less
than 5 % in the entire range 0 � � < 1. Whereas the zeroth approximation of OM
is satisfactory for required accuracy of the estimates for the integrals, the corrective
iterative procedure for improvement of the accuracy of zeroth approximation can be
realized. Assuming the exact eigenfunctions of the operator OH (3.103) are known:

OH j�ni D En j�ni ; (3.109)

the solution of the Eq. (3.109) can be expanded into the series over the eigenfunc-
tions of the harmonic oscillator:

j�ni D
1X

kD0
Cnk jk!i ; jk!i D

� OaC�k
p
kŠ

j!i

and re-write the formula (3.100) as follows:

J.�/ D
r
	

!

1X

nD0
C 2
n0e

En : (3.110)

The complete set of eigenvalues En and eigenvectors is found by OM from the
Eq. (3.109) using the expansion over the perturbation operator OH1 from (3.103), and
zeroth approximation results in:

ˇ
ˇ�.0/

n

˛ ' jn!i ;
Cn0 D ın0; (3.111)

E.0/
n ' En D ! � 1

2!
.2nC 1/C 3�

4!2

�

2n2 C 4nC 1
�

;

and the first order correction for wave function is:

ˇ
ˇ�.1/

n

˛ D �

 OH0 �E.0/

n

��1 OH1 jn!i

D �

8!2

"

!2

2!.! � 1/� 3�.2nC 5/

r

.nC 4/Š

nŠ
jnC 4; !i

� 1

2

!.! � 1/� �.2nC 3/

2!.! � 1/� 3�.2nC 3/

r

.nC 2/Š

nŠ
jnC 2; !i

#

: (3.112)
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The equation for parameter ! is not equivalent to the extremum condition (3.106),

because of the coefficient at operator
� OaC�2 in expression OH1


ˇ
ˇ
ˇ�

.0/
0

E

C
ˇ
ˇ
ˇ�

.1/
0

E�

must be zero. The latter expression arises from the action of the perturbation
operator onto the ground state vector with accounting a first order correction, which
results in equation:

!2 � ! � 3�C 3�

2

!.! � 1/� 7�

2!.! � 1/� 15�
D 0; (3.113)

with analytical solution:

! D 1

2


p

1C 4� C 1
�

; � D �

8




39�
p
392 � 16 � 69

�

:

Using the function
ˇ
ˇ
ˇ�

.0/
0

E

C
ˇ
ˇ
ˇ�

.1/
0

E

in formula (2.104), the following expression is

found:

J.�/ ' J1.�/ D
r
	

!

("

1 � 3�2

8.2� � 15�/
� 1

2

�
� � 3�

2� � 9�

	2
#

eE
.0/
0 CE.2/0

C 1

2

�
� � 3�

2� � 9�
	2

eE
.0/
2 CE.2/2 C 3

8

�2

.2� � 15�/2 e
E
.0/
4 CE.2/4

)

; (3.114)

where

E.2/
n D � �2

32!2
.nC 1/.nC 2/.nC 3/.nC 4/

Œ2� � 3�.2nC 5/�

� Œ� � �.2nC 3/�2 .nC 1/.nC 2/

4!2 Œ2� � 3�.2nC 3/�

C Œ� � �.2n� 1/�2 n.n � 1/

4!2 Œ2� � 3�.2n� 1/�

C �2

32!2
.n � 1/.n � 2/.n � 3/.n � 4/

Œ2� � 3�.2n� 3/� ;

and the parameters ! and � are determined from the Eq. (3.113). The for-
mula (3.114) gives more accurate approximation for the function J.�/ in compari-
son with (3.107). In the limit of � � 1:

J1.�/ ' 1:80

�1=4
;
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which has a relative accuracy better than 0.5 %. For some integrals, a more general
than (3.103) canonic transformation of the operators has to be used. For example,
the integral defining the gamma function:


 .x/ D
1Z

0

tx�1e�tdt D 1

x

1Z

0

txe�tdt: (3.115)

The operator form for 
 .x/, similar to (3.100), can be obtained by the substitution
of the variable extending the integration interval to the entire numerical axis:

t D e�; dt D e�d�; �1 < � < C1; (3.116)

and by transition to the second quantization and further separation of classic
component from the operators, because of the maximum of the integrand is not
located in the origin:

� D u C 1p
2!

� OaC OaC� ;
� OaI OaC� D 1: (3.117)

As a result, we obtain:


 .x/ D eu.xC1/

x

r
	

!
h!j e OH j!i ; (3.118)

where

OHD .xC1/p
2!

� OaC OaC��euC 1
4! e

OaC
COa

p

2! C 1

2


� OaC�2C Oa2C2 OaC OaC1
�

;

Oa j!i D 0:

According to OM procedure, the parameters ! and u for integral are chosen to
nullify the coefficients at operators

� OaC�2 and OaC in the expansion OH , which define
the transition in the nearest excited states:

euC 1
4! D x C 1; euC 1

4! D 2!: (3.119)

Substituting the solutions of (3.119) into OH and using the Bogolyubov-Feynman
inequality for (3.118), the following analytical formula is found for gamma function:


 .x/ ' 
1.x/ D eu.xC1/

x

r
	

!
eh!j OH j!i D p

2	
.x C 1/xC 1

2

x
e�.xC1/: (3.120)
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Despite the function
1.x/ is expressed through the elementary functions, it deviates
from 
 .x/ less than 8 % in the entire range 0 < x < C1:


1.x/ ' 0:922

x
; x � 1; 
1.1/ ' 0:960; 
1.2/ ' 0:972;


 .x/ ' 1

x
; x � 1; 
 .1/ D 1; 
 .2/ D 1;


1.x/ ' p
2	xx� 1

2 e�x; x � 1;

which coincides in the limit with the asymptotic Stirling’s formula. A certain
complication for evaluation of integrals may occur in the case if the equation for
variational parameters does not have an analytical solution. We consider below two
special functions: the error function [32]:

erfcz D 2p
	

1Z

z

e�t 2dt; (3.121)

and the function H.b; a/, which describes the broadening of spectrum lines due to
the radiation damping and the Doppler effect [47]:

H.b; a/ D a

	

C1Z

�1

e�t 2

.t � b/2 C a2
dt: (3.122)

The error function approximation is obtained in a similar way as (3.117):

erfcz D 2p
!

�

!

ˇ
ˇ
ˇ
ˇ
exp

�

! Oy2 C u C Oy �



euC Oy C z
�2
ˇ
ˇ
ˇ
ˇ
!

�

;

Oy D 1p
2!

� OaC OaC� : (3.123)

Restricting ourselves to the OM zeroth approximation, the inequality of
Bogolyubov-Feynman is applied to (3.123):

erfcz ' J.!; u; z/ D 1p
!

exp
�

u C ! � z2 � 1� (3.124)

and the extrema of the function with respect to the parameters ! and u are:

z2 D .1 � !/2

! � 1
2

e
1
2! ; u D 1

2

�

ln

�

! � 1

2

	

� 1

!

�

: (3.125)
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Table 3.14 Comparison of
the exact values of the error
function erfcz with the results
of zeroth approximation by
operator method

!
p

e
2
J.z/ erfcz

0.04 0.7726 0.7679

0.25 0.4878 0.4804

0.92 0.1802 0.1751

1.00 0.1620 0.1573

3.68 0.0070 0.0067

In this case, the equation for ! doesn’t have analytical solution, however, the
dependence

z D '.!/; J D f .!/

can be used instead as an approximating function J.z/, which gives the uniformly
suitable approximation for erfcz. In the asymptotic limits:

z � 1; erfcz ' 1; J.z/ '
r

2

e
; (3.126)

z � 1; erfcz ' 1p
	

e�z2

z
; J.z/ '

p
2

e

e�z2

z
:

In both limits, the function J.z/ produces the one-side deviation from the exact
solution, and therefore the function J.z/ can be multiplied by factor

p
e
2

' 1:167,
which is selected from the condition of the coincidence of asymptotics for J.z/ and
erfcz at z ! 0. Table 3.14 shows the values of the function J.z/ approximating the
error function with a high accuracy for all z.

The OM zeroth approximation of the function H.b; a/ is obtained as:

H.b; a/ ' W.b; a; u; !/ D ap
	!

exp
�
1
2

� b2 � 1
2!

�

.u � b/2 C a2 C 1
2!

; (3.127)

where the parameters ! and u are found from the equation:

! D b

b � u
;

1

2




1 � u

b

�

D b

u
� 1 � a2 � .u � b/2:

In the limiting cases, the formula (3.127) demonstrates a good agreement with the
exact formulas:

b � 1; a � 1; W ' 1

2a
p
	
; H ' 1

2a
p
	
;

b � 1; a � 1; W ' ap
	b2
; H ' ap

	b2
;
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Table 3.15 Comparison of
the exact values of the
function H.a; b/ with the
results by zeroth
approximation of operator
method

a b W.a; b/ H.a; b/

0.5 0.2 0.5331 0.6015

0.5 10 0.0028 0.0030

1.0 0.4 0.3835 0.4038

1.0 1.0 0.2745 0.3047

10 2.0 0.0539 0.0541

10 40 0.0033 0.0033

b � 1; a � 1; W ' 1

a
p
	
; H ' 1

a
p
	
;

b � 1; a � 1; W ' p
e
2	
e�b2 ; H '

�

1� 2ap
	

	

e�b2Ca2 ;

and the results for intermediate arguments are shown in the Table 3.15.
Feynman and Kleinert [48] proposed the approximate method for calculation of

the integrals based on the trajectory integrals for non-quadratic Lagrangian, and
the results of this approach agree well with the ones from the OM. The operator
method can also be extended to the approximation of the functions represented by
sums, which is important for several problems of quantum statistics. As an example,
the uniformly suitable interpolation for Weierstrass function (�-function) is derived
below, which is used in the solution of the diffusion equation or for the calculation
of statistical sums of quantum systems. The canonic form of this function is written
as [43]:

�3.�; v/ D
C1X

nD�1
exp

��	�n2 C i2	vn
�

: (3.128)

In a similar way as for (3.100), the �-function is represented as a quantum-
mechanical average using the following state vector different than for (3.100):

jui D
p
1 � u2

1X

nD0
un jni ; (3.129)

where u is an arbitrary parameter, and jni is an eigenvector of the operator of
excitation number. Then the function �3.�; v/ is transformed to the following form:

�3.�; v/ D 2

1 � u2
˝

u
ˇ
ˇexp

�

i2	v On � 	� On2 � 2 On ln u2
�ˇ
ˇ u
˛� 1; (3.130)
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where On is an operator of the excitation number. Using the Bogolyubov-Feynman
inequality in (3.130), the result for the mean value is:

hu j Onj ui D u2

2.1� u2/
;

˝

u
ˇ
ˇ On2ˇˇ u

˛ D u2.1C u2/

.1 � u2/2
;

and

�3.�; v/ � S.˛/ � 2 exp

�
2	v˛

1 � ˛ i � 	�˛.1 C ˛/

.1 � ˛/2 � ˛ ln˛

1 � ˛
� ln.1� ˛/

�

� 1;

˛ D u2: (3.131)

The estimation (3.131) delivers the best results if the parameter ˛ is determined
from the extremum condition S.˛/:

ln˛ D 2	vi C 	�
1C 3˛

˛ � 1 : (3.132)

At ˛ satisfying the Eq. (3.132) the approximation has a simple analytical form:

S D 2

1 � ˛
exp

�

2	�
˛2

.1 � ˛/2

�

: (3.133)

This formula gives the results equivalent to the asymptotic for �-function in the
limiting cases:

� � 1; ˛ ' e2	vi�	�; S ' 1C e2	vi�	�;

� � 1; v D 0; ˛ ' 1 � 2
p
	�; S '

r

e�

	
� 1;

� � 1; ˛ ' e2	vi ; S ' �

1 � e2	vi ��1 :

Table 3.16 shows that the formula above can calculate the values of �-function with
absolute accuracy 	 95 % for any values of the arguments.

Table 3.16 Comparison of
OM zeroth approximation for
� -function with exact results

� � OM [43]

0 1.6 1.007 1.013

0 0.74 1.098 1.195

1.0 1.6 0.993 0.987

1.0 1.0 0.957 0.914
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Chapter 4
Operator Method for Quantum Statistics

The construction of the uniformly available approximation (UAA) for thermody-
namical functions has two specific features, which differ it from the solution of the
Schrödinger equation for stationary states. First of all, these functions depend both
on Hamiltonian parameters and on the temperature T . In second, these functions are
expressed through the partition function (PF) Z of the system, which requires the
UAA for the whole energy spectrum and the summation to be carried out:

Z.ˇ/ D
X

n

gne
�ˇEn ; (4.1)

where ˇ D 1=kT is an inverse temperature, k is Boltzmann constant, En is the
energy level corresponding to the quantum number n (for the systems with multiple
degrees of freedom it is a set of quantum numbers fng) and to the degeneration
multiplicity gn. Thus, the algorithms for both finding the energy spectrum and for
summation over the energy states have to be established to find an approximation,
which is uniform over the Hamiltonian parameters and temperature. This chapter
illustrates the application of the operator method for such kind of tasks.

4.1 General Algorithm for Calculation of PF

To find an algorithm for the summation over the states, the partition function is
represented as a quantum-mechanical mean of the exponential operator [1–3]. As a
first step, the basic set of the state vectors is considered, which corresponds to the
eigenfunctions of the operator, which is formally equivalent to the operator of the
excitation numbers with eigenvalue corresponding to the quantum number n:

On jni D n jni : (4.2)
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130 4 Operator Method for Quantum Statistics

By using these states, the definition (4.1) is re-written as:

Z.ˇ/ D hˇ� ˇˇexp
��ˇE. On/C 2ˇ� On � lnN.ˇ�/

�ˇ
ˇ ˇ�i : (4.3)

Here jˇ�i is a normalization vector of state depending on the arbitrary parameterˇ�,
which has a physical meaning of the effective inverse temperature for equilibrium
excitation system corresponding to (4.2). The value of the parameter ˇ� will be
found later from the condition of the best approximation for PF of the system. The
state vector jˇ�i is written as follows:

jˇ�i D p
N

1X

nD0

p
gn exp

��ˇ�n
� jni ; (4.4)

where the constantN is determined from the normalization of the state vector jˇ�i:

N D
( 1X

nD0
gn exp

��2ˇ�n
�

)�1
: (4.5)

The operator representation of PF similar to (4.3) can also be obtained with more
complex trial vector instead of used one (4.4), which fits the qualitative features
of the system in the best way. Such a choice improves the zeroth approximation,
however, complicates the construction of the successive approximations. The simple
form of the vector (4.4) makes it possible to construct the universal scheme of UAA
for arbitrary quantum system and to develop successive approximations [1]. The
approximate summation method over the quantum states is based on the cumulant
expansion (CE) [4], which is valid for any exponential operator averaged over
normalized state vector:

D

exp OA
E

D exp

" 1X

nD1

Kn

nŠ

#

; (4.6)

where the cumulantsKn are expressed through the moments of the operator OA. The
expansion (4.6) is an accurate one, and each cumulant corresponds to the partial
summation of the power series. As follows from [4], the cumulants can be found by
using recurrent relationships, for example,the first terms in (4.6) are:

K1 D
D OA
E

;

K2 D
D OA2

E

�
D OA
E2

; (4.7)

K3 D
D OA3

E

� 3
D OA
E D OA2

E

C 2
D OA
E3

:
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It is worth to note that the use of only first cumulant in (4.6) is equivalent to the
inequality of Bogolyubov-Feynman [5].

The cumulant expansion is intensively used in the theory of probability [6]
as well as for description of the critical phenomena and phase transition [7],
and for investigation of the influence of the random processes on the physical
characteristics [8]. The general procedure of the cumulant expansion can be applied
to the partition function in operator form (4.3). The successive approximations are
further calculated using the cumulants, and here we consider only primary and
secondary cumulants:

Z � Z.ˇ; ˇ�/ D Z0.ˇ; ˇ
�/Z1.ˇ; ˇ�/

D exp

�

hA. On/i C lnN C 1

2


˝

A2. On/˛ � hA. On/i2
��

;

A. On/ D �ˇE. On/C 2ˇ� On: (4.8)

For any fixed number of cumulants in the formula (4.8), the partition function
depends on the parameter ˇ�, which plays a role of the variational parameter for
best approximation in each order of CE. For example, the zeroth approximation
Z0.ˇ; ˇ

�/ and first successive correctionZ1.ˇ; ˇ�/ follow from the formulas [1]:

Z0 D exp
h

�ˇE.ˇ�/C 2ˇ� Nn � lnN.ˇ�/
i

; (4.9)

Z1 D
�
1

2

h

ˇ2.E2 � NE2/� 4ˇˇ�.En� NE Nn/C 4ˇ�2.n2 � Nn2/
i

:

In the formulas (4.9), all values are averaged over the trial distribution function,
which corresponds to the excitation ensemble (4.2) with degeneracies gn and
effective inverse temperature ˇ�:

E.ˇ�/ D N

1X

nD0
gnEn exp

��2ˇ�n
�

;

Nn.ˇ�/ D N

1X

nD0
gnn exp

��2ˇ�n
� D N

2

@N

@̌ � : (4.10)

Within the approximation for PF found above, the free energy is expressed as
follows:

F.ˇ/ D � 1
ˇ

lnZ.ˇ/ � F .0/ C F .1/ C : : :

D � 1
ˇ

�

lnZ0.ˇ; ˇ�/C lnZ1.ˇ; ˇ�/C : : :
�

: (4.11)
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The approximation to be found for all above mentioned values and for certain
energy spectrum is defined be the variational parameter ˇ�, which being a function
of the inverse temperature ˇ, has to be found from the condition of the best zeroth
approximation of CE [1]:

@Z0

@̌ � D ˇ
@ NE
@̌ � � 2 Nn� 2ˇ� @ Nn

@̌ � C 1

N

@N

@̌ � D 0: (4.12)

For calculation of the moments E and E2 with distribution function (4.10), the
approximation for energy spectrum found by OM can be used, and then the
relations (4.9) and (4.12) determine the uniformly suitable approximation for the
thermodynamic system with the accuracy up to the second order of OM. However,
the equations obtained are still cumbersome and the additional approximation can
be applied to simplify the mathematical calculation at the cost of the accuracy of
zeroth approximation. The condition

@

@!
E.0/
n D 0 (4.13)

corresponds to the optimal choice of the parameter !n for energy level n in zeroth
approximation of OM. The convergence of the successive approximations of OM
has been shown in [9] to exist for any value of the parameter !. The partition
function and free energy are the integral characteristics in the space of the quantum
numbers. Therefore, the parameter! equal for all quantum numbers can be selected
to approximate both functions, and this parameter is determined by the simultaneous
optimization of free energy in OM and CE techniques. Using this approach, the
moments of the energy spectrum have to account only explicit dependence of the
spectrum on quantum number n and the dependence followed from the selection of
!n from (4.13) can be ignored [1]. This procedure makes the values

E.ˇ�; !/ '
1X

nD0
gn
�

E.0/
n .!/CEn.!/

�

exp
��2ˇ�n

�

;

E2.ˇ�; !/ '
1X

nD0
gn
�

E.0/
n .!/

�2
exp

��2ˇ�n
�

(4.14)

dependent on both parameters ˇ� and !, which are determined from the minimum
condition for free energy in zeroth approximation. As a result, a single equation for
! has to be resolved instead of the system of the algebraic equations (4.13) for !n:

@

@!

1X

nD0
gn
�

E.0/
n .!/

�

exp
��2ˇ�n

� D 0: (4.15)
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The physical meaning of the Eq. (4.15) is the selection of the parameter ! from
the condition of the best approximation for energy level with highest population at
certain temperate [2]. The results delivered by uniformly suitable approximations
obtained below for PF with the use of cumulant expansion are compared with the
exact numerical calculations and direct numerical summation over the energy levels
found by OM.

4.2 Statistics of Non-interacting Systems
with One-Dimensional Energy Spectrum

As a first example, we consider the system consisting of the non-interacting quantum
anharmonic oscillators with the Hamiltonian (2.16); the energy spectrum of QAO
has been obtained by OM in the Chap. 2. This physical model describes the ideal gas
of diatomic molecules with anharmonic interatomic potential or anharmonic atomic
oscillations in crystallographic lattice. The accuracy of approximations described
in the Sect. 4.1 and applied to this system can be derived as follows. The partition
function and free energy of the non-interacting QAO is expressed as:

Z.ˇ; �/ D
1X

nD0
e�ˇEn.�/I F.ˇ; �/ D � 1

ˇ
lnZ.ˇ; �/; (4.16)

where the multiplicity of the degeneration in (4.16) equals to unity gn D 1. First
of all, we consider here the calculation of PF and free energy for QAO with 8
energy levels found in [10]. The fixed number of energy levels implements the
inaccuracy in partition function in the limit of high temperatures .ˇ ! 0/, where
the highly excited quantum states contribute essentially in the sum. In this situation,
the asymptotic expansion for partition function of QAO obtained analytically at
.ˇ ! 0/ [1, 11]:

Z.ˇ; �/ ' 1C e�ˇE0.�/; ˇ � 1;

Z.ˇ; �/ ' e�ˇ=2

1 � e�ˇ

�

1C 3�e�ˇ

.1 � e�ˇ/2

�

;
�

.1 � e�ˇ/2
� 1;

Z.ˇ; �/ '
1X

nD0
exp

��ˇ�1=3bn
�

; � � 1; (4.17)

where bn are the coefficients of asymptotic expansion for energy levels of QAO in
the limit of strong coupling [10]. The approximate analytical expression for these
coefficients in zeroth approximation of OM is given by formula (2.28):

bn '
�
3

4

	4=3 �
1C 2nC 2n2

.1C 2n/2

�1=3

: (4.18)
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The uniformly available approximation in the second order of OM for this system
is provided by the Eqs. (2.23)–(2.24). According to the Sect. 4.1, there are several
forms of UAA can be constructed for PF (4.16):

Z.0/.ˇ; �/ D
1X

nD0
exp

��ˇE.0/
n .�/

�

;

Z.1/.ˇ; �/ D
1X

nD0
exp

��ˇ �E.0/
n .�/CEn.�/

��

; (4.19)

Z.01/.ˇ; �/ D
1X

nD0
.1 � ˇEn.�// exp

��ˇE.0/
n .�/

�

;

where the energy in zeroth approximation E.0/
n .�/ and the second-order correction

En.�/ are defined by OM formulas (2.21) and (2.49). The former Z.0/.ˇ; �/ is a
zeroth approximation for PF, the latterZ.1/.ˇ; �/ is determined by the second-order
OM approximation for eigenvalues with exact summation over quantum numbers,
and the third expression Z.01/.ˇ; �/ is used in the expansion over En.�/. These
expressions for PF lead to the approximations for free energy:

F .0/.ˇ; �/ D � 1
ˇ

ln

( 1X

nD0
exp

��ˇE.0/
n .�/

�

)

; (4.20)

F .1/.ˇ; �/ D � 1
ˇ

ln

( 1X

nD0
exp

��ˇ �E.0/
n .�/CEn.�/

��

)

;

F .01/.ˇ; �/ D � 1
ˇ

ln

( 1X

nD0
.1 � ˇEn.�// exp

��ˇE.0/
n .�/

�

)

:

The results by different approximations for free energy are shown in Figs. 4.1
and 4.2. As follows from the Fig. 4.1, in the domain of small temperatures the
accuracy of the calculated by the expansion over En.�/ free energy decreases
(which makes this approximation invalid at ˇ 	 1=En), whereas the accuracy
of the result by OM remains constant. In zeroth approximation of OM, the
accuracy of UAA is estimated by formula (1.1), �.0/ � 0:085. In the second-order
approximation and F .1/.ˇ; �/, the accuracy is �.1/ � 0:025.

A similar conclusion about uniformly suitable approximation of the free energy
of QAO on the anharmonic parameter � follows from the Fig. 4.2, where the
drawback of the numerical summation over the limited number of levels is evident.
An accounting of only 5 instead of 8 levels of the states of QAO worsens the results
essentially. Using the direct summation of the levels calculated by OM, the error
due to the limitation of the level numbers is considerably less because of 100 levels
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Fig. 4.1 The approximation for free energy F and relative accuracy �F for QAO by using a direct
summation of the energy spectrum in OM and by numerical calculations in [10] at � D 10

Fig. 4.2 The free energy of QAO and relative accuracy calculated on the basis of direct
summation with the use of the energy spectrum simulated by operator method for various inverse
temperatures ˇ
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are taken into account. This error riches 1 % at ˇ 	 5=E
.0/
100.�/, which corresponds

to relatively high temperature even for harmonic oscillator (� D 0):

� 	 O.e�ˇE.0/100.�// (4.21)

The source of this inaccuracy is eliminated when cumulant expansion is used,
as will be shown below. Figure 4.2 demonstrates the uniform suitability of the
approximation on the inverse temperature ˇ both in zeroth and the first order.
The dependence of free energy of QAO on anharmonic parameter � is similar for
ˇ D 0:1 and ˇ D 1.

A similar scheme of the approximation is also applicable to the Hamiltonian with
polynomial potential (3.1) with the energy spectrum in the zeroth approximation
of OM is described by (3.7) and (3.8). For this physical system, the zeroth
approximations for free energy and partition function are considered and the
summation involves 1000 energy levels:

Z.0/.ˇ; �/ D
1000X

nD0
exp

��ˇE.0/
n .�/

�

;

F .0/.ˇ; �/ D � 1
ˇ

lnZ.0/.ˇ; �/: (4.22)

In the same way as in the Sect. 3.1 for QAO with polynomial potential,
we consider here the particular cases of Hamiltonian of the oscillator of eights
order (3.12) and sixth order (3.9) and compare the results for partition function and
free energy by numerical calculations [12]. The results for the partition function of
the oscillator with polynomial potential are shown in Fig. 4.3, and for free energy in
Fig. 4.4.

The results obtained can be used to estimate the precision of the calculations for
the thermodynamical characteristics of QAO with polynomial potential in zeroth
approximation of OM by comparing the zeroth and the second approximations. In
the entire range of the inverse temperature and the parameters of Hamiltonian, the
second-order correction improves the values by maximal 7 %, which fits well the
estimate for UAA in zeroth approximation �.0/ � 0:07.

Another approach for calculation of thermodynamical properties of quantum
systems assumes the replacement of exact summation by the approximate one on
the basis of cumulant expansion [1]. The advantage of this method is a relatively
small number of terms to be summed to rich a required accuracy of the results. As
a first step, CE is applied to the system with known energy spectrum, which makes
possible to estimate instantly the accuracy of the CE and the UAA based on this
technique. As a model for this step, the ensemble of quantum rotators is chosen,
which is frequently used for the description of the rotational degrees of freedom
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Fig. 4.3 The approximation of the partition function for the oscillator with polynomial potential
for various coefficients at the perturbation part of Hamiltonian (3.12). The red line corresponds to
harmonic oscillator

Fig. 4.4 The approximation for free energy of the oscillator with polynomial potential for various
coefficients at the perturbation part of the Hamiltonian (3.12). The red line corresponds to harmonic
oscillator

in molecular gases [13]. The energy levels of this physical system follow from the
equation:

En D „2
2I
.n2 C n/; (4.23)
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where I is the inertia of the rotator. The multiplicity of degeneracy of the level n is
gn D 2n C 1, and with known energy spectrum and degeneracy, the rotational PF
Zr can be calculated as in (4.1):

Zr.x/ D
1X

nD0
.2nC 1/ exp

��x.n2 C n/
�

; (4.24)

where x D ˇ�r is a dimensionless parameter, �r D „2=2I is a rotational
temperature of the system in the energy units. In the limiting cases of low and
high temperatures, where x � 1 and x � 1, the asymptotic approximations for
PF (4.24) [13] are:

Zr.x/ ' 1C 3 exp.�2x/C : : : ; x � 1: (4.25)

The use of two terms in the summation Euler formula:

1X

nD1
f .nC a/ '

Z 1

0

f .y/dy � 1

2
f .a/ � 1

12
f

0

.a/C : : : ; (4.26)

the following expansion is obtained:

Zr.x/ ' 1C
Z 1

0

.2y C 1/ exp
��x.y2 C y/

�

dy � 1

2
� 1

12
.2� x/C : : : �

D 1

x
C 1

3
C x

12
; x � 1: (4.27)

The expressions (4.25) and (4.27) do not adequately describe the partition
function Zr.x/ in the range of intermediate x. However, this PF can be expressed
through the Weierstrass function [14], which is too complex for analytical inves-
tigations (the application of OM for this PF has been discussed in the Sect. 3.7).
The use of cumulant expansion indeed is able to build a uniformly available
approximation for Zr.x/ in the entire range of temperatures. All the mean values
in the formula (4.10) can be expressed through the moments of trial function of
distribution:

N D
" 1X

nD0
.2nC 1/e�2ˇ�n

#�1
D .1 � q/2

1C q
; q D e�2ˇ�

;

n D N

1X

nD0
n.2nC 1/e�2ˇ�n D q.3C q/

1 � q2
; (4.28)

n2 D q.3C 8q C q2/

.1C q/.1� q/2
:
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Substituting the expressions (4.27) into formula (4.9), the following expression
for PF in zeroth approximation of CE can be found (the parameter q 2 .0I 1/ is
treated as a variational parameter instead of ˇ�):

Z.0/
r D exp Œ'.x; q/� ; (4.29)

'.x; q/ D �x 6q

.1 � q/2 � 3q C q2

1 � q2 ln q � ln

�
.1 � q/2
1C q

�

:

The formula (4.29) has to be supplemented by the equation for function q D q.x/,
following from (4.12) when the parameter for the best zeroth approximation is
selected:

@'

@q
D 0; x D � .3C 2q C 3q2/.1 � q/

6.1C q/3
ln q; (4.30)

that results in the following PF in zeroth CE approximation:

Z.0/
r .q/ D exp Œ'.q/� ;

'.q/ D q

�
3C 2q C 3q2

.1 � q/.1C q/2
� .3C q/.1 � q2/

�

ln q �

� ln

�
.1 � q/2
1C q

�

: (4.31)

The system of the Eqs. (4.30) and (4.31) defines in a parametric way the function
Z
.0/
r .x/, which is an analytical zeroth approximation for the partition function of

the ensemble of rotators. The first order correction for PF is [2]:

Z.1/
r .x; q/ D exp Œ'1.x; q/� ;

'1.x; q/ D 1

2
x2
h

.n2 C 2/2 � .n2 C n/
2
i

� (4.32)

�2x
h

n.n2 C n/ � n.n2 C n/
i

ln q C
h

n2 � n2
i

ln2 q:

Finally, using the Eq. (4.30), the following expression is obtained:

Z.1/
r .q/ D exp Œ'1.q/� ; (4.33)

'1.q/ D q2.15C 4q C 26q2 C 4q3 C 15q4/

6.1 � q/2.1C q/6
ln2 q:

The formulas (4.30), (4.31) and (4.33) determine the uniformly available ap-
proximation for rotational partition function. In the limiting cases, the following
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expressions are valid:

x ' � ln q

2
; '.q/ ' 3q; Z.0/

r .x/ ' 1C 3 exp.�2x/; x � 1; (4.34)

and

x ' .1 � q/2

6
; '.q/ ' 1C ln 2 � 2 ln.1 � q/;

Z.0/
r .x/ ' 0; 906

x
C 0; 303; x � 1: (4.35)

By comparing these equations with the asymptotic formulas (4.25) and (4.27),
the obtained approximation is found to describe correctly the dependence of the
partition function on the parameter x in both limiting cases. The general accuracy
of the approximation, as defined in (1.1), is determined by the parameter �.0/ ' 0; 1.
In our case, the first-order correction for PF (4.33) improves the accuracy and in the
limit of small x:

Zr.x/ ' Z.0/
r .x/Z

.1/
r .x/ ' 1; 063

x
C 0; 348C : : : ; x � 1: (4.36)

Figure 4.5 shows the calculation result for free energy of the ensemble of rotators:

F.x/ D � 1
ˇ

lnZ.x/; (4.37)

Fig. 4.5 Calculated free energy on the basis of CE for the ensemble of quantum rotators as a
dependence on parameter x
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based on the direct summation of 1000 energy levels in zeroth and first orders of
CE. The acceptable accuracy of zeroth approximation of CE and uniform suitability
of the method in entire range of x is evident from the plot.

The poor accuracy at small values of x is explained by the fact, that at high
temperatures the entire energy spectrum becomes essential and limitation to only
1000 levels in direct summation causes unavoidable error in the simulation. This
error is in fact not a failure of CE, but a failure of direct summation procedure.
Applying the CE procedure to QAO with Hamiltonian (2.18) and using the energy
of the system calculated by OM (2.22)–(2.23), the CE zeroth approximation is:

Z.0C/.ˇ; �/ D exp
�

'.ˇ; ˇ�; �; !/
�

; (4.38)

'.ˇ; ˇ�; �; !/ D �ˇE.0/
n .ˇ�; �; !/C 2ˇ�n.ˇ�/ � lnN;

where the normalizing constantN is defined as follows:

N D
" 1X

nD0
exp.�2ˇ�n/

#�1
D .1 � q/; q D e�2ˇ�

: (4.39)

The mean values in the formula (4.38) are found from:

n D q

1 � q
; n2 D q.q C 1/

.1 � q/2
; (4.40)

E
.0/
n .ˇ�; �; !/ D 1

4!
.!2 C 1/.2nC 1/C 3�

4!2
.2n2 C 2nC 1/;

E
.0/
n .ˇ�; �; !/ D 1

4!
.!2 C 1/

.1C q/

.1� q/ C 3�

4!2
.1C q/2

.1 � q/2
:

The expressions (4.39) and (4.40) lead to the following form of the function
'.ˇ; ˇ�; �; !/:

' D �ˇ
�
1

4!
.!2 C 1/

.1C q/

.1� q/
C 3�

4!2
.1C q/2

.1� q/2

�

�

�q ln q

1 � q
� ln.1 � q/: (4.41)

The variational parameters q; ! are determined from the nullification condition for
the derivatives of ', as follows from (4.12) and (4.15), that results in:

@'

@q
D 0 ) �ˇ

�
!2 C 1

2!.1 � q/
C 3�.1C q/

!2.1 � q/2

�

� ln q

1 � q
D 0;

@'

@!
D 0 ) !3 � ! � 6�

1C q

1� q
D 0: (4.42)
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Fig. 4.6 Calculated free energy of QAO on the basis of CE as a dependence on the anharmonic
parameter �

The most convenient technique for the solution of the Eqs. (4.42) is: the functions
�.q; !/ and ˇ.q; !/ are considered as functions of variables q; !, instead of
numerical solution of the Eqs. (4.42). These functions along with the formu-
las (4.38)–(4.41) define the unknown function Z.0C/.ˇ; �/ in a parametric form.
The results of the described technique applied for calculation of the free energy of
QAO are shown in Fig. 4.6.

For direct numerical summation presented above, the results for the energy
spectrum of QAO from [10] have been used. For small values of the inverse
temperature ˇ, the accuracy of the calculated free energy of QAO decreases, which
is explained by unavoidable error caused by the limited number of the accounted
energy levels. In the region of high anharmonicity� 	 100, the local decrease of the
accuracy is observed, and this fact is explained by a low precision of the calculated
energy spectrum. As a prove of this, with the decrease of temperature and increase
of parameter ˇ up to unity, the accuracy improves because of the population of
levels becomes smaller and excited levels contribute less to free energy. Figure 4.7
shows the dependence of the free energy of QAO (F .0C/ D �.1=ˇ/ lnZ.0C/) on the
inverse temperature ˇ.

The local fluctuations of the accuracy in the range of high temperatures are of the
same nature as mentioned above, and with the decrease of temperature the accuracy
reduces to the level below 2 %. The analysis of the Figs. 4.6 and 4.7 demonstrates
the uniform suitability of the approximation for free energy of QAO calculated by
cumulant expansion and operator method. The limiting cases with regard to the
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Fig. 4.7 Cumulant expansion for free energy of QAO as a dependence on the inverse tempera-
ture ˇ

temperature for this approximation are important, and for low temperatures (ˇ !
1), neglecting the terms inversely proportional to square and higher powers of the
temperature ˇ, the approximation is:

!30 � !0 � 6� D 0; q ' e�ˇK; n ' e�ˇK � 1;

E.0/ ' 1

4

�

!0 C 1

!0
C 3�

!20

�

; Z.0C/ ' e�ˇE.0/ ; F .0C/ ' E.0/;

K D 1

2

�

!0 C 1

!0

�

C 3�

!20
: (4.43)

In the opposite case of high temperatures (ˇ ! 0), we obtain under similar
assumption:

!n ' 3
p
6�n; n '

 

2

3ˇ

3=4
!�

1

6�

	1=4

� 1; q' e�1=n ! 1;

E.0/ ' 2

3ˇ
; Z.0C/ ' n; F .0C/ ' � 1

ˇ
lnn: (4.44)

To improve the accuracy of the obtained approximation, the successive approxi-
mations can be calculated, and there are exist several options to make the corrections
to zeroth approximations. The first one is the use of zeroth approximation of CE
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with energy levels obtained by OM with the accuracy of the second order at fixed
parameter !: Z.1C/ and F .1C/. The second option is the account of the second
cumulant in the zeroth approximation of OM for energy levels: Z.2C/ and F .2C/.
Finally, the third option is to take into account both the second cumulant and the
correction to the energy levels by OM:Z.3C/, F .3C/. The former approach result in:

Z.1C/.ˇ; �/ D exp
�

'1.ˇ; ˇ
�; �; !/

�

;

'1.ˇ; ˇ
�; �; !/ D �ˇ.E.0/

n .ˇ�; �; !/CEn.ˇ�; �; !//C
C2ˇ�n.ˇ�/ � lnN; (4.45)

where the mean values are determined by the formulas (4.39), (4.40) and the
expression:

En.ˇ�; �; !/ D

D �
"

.nC 1/.nC 2/ Œ!.1 � !2/C 2�.2nC 3/�
2

16!2 Œ!.!2 C 1/C 3�.2nC 3/�

#

�

�
�
�2.nC 1/.nC 2/.nC 3/.nC 4/

32!2 Œ!.!2 C 1/C 3�.2nC 5/�

�

D

D �N
1X

nD0

("

.nC 1/.nC 2/
�

!.1 � !2/C 2�.2nC 3/
�2

16!2 Œ!.!2 C 1/C 3�.2nC 3/�

#

C

C
�
�2.nC 1/.nC 2/.nC 3/.nC 4/

32!2 Œ!.!2 C 1/C 3�.2nC 5/�

�)

e�2ˇ�n D

D �.1 � q/
(

1

H4.1 � q/4



 �H3
�

D.1 � q/3 C q..1 � q/.B C C C q.B � C// C
C A.1C 4q C q2///

�� (4.46)

�H2.1 � q/ �C.1 � q/2 C q.ACB C q.A� B//
�

G C
C H.1 � q/2 .B.1 � q/C Aq/G2 �A.1 � q/3G3

�C

C
�
T

G
� D

H
C CG

H2
� BG2

H3
C AG3

H4

	

2F1

�
G

H
; 1I H CG

H
I q
	

C

C 1

16H4.1 � q/4 



 �8H3
�

P.1 � q/3 C q..1 � q/.LCM C q.L �M// C
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C K.1C 4q C q2///
� �

�4H2.1 � q/
�

M.1� q/2 C q.K C LC q.K � L//
�

RC
C 2H.1 � q/2 .L.1 � q/C Kq/R2 �K.1 � q/3R3

�C

C
�
Q

R
� P

2H
C MR

4H2
� LR2

8H3
C KR3

16H4

	

2F1

�
R

2H
; 1I 2HCR

2H
I q
	)

;

and the following notations are used:

A D 16�2; B D 8�.12�C !.1 � !//;
C D 32�2 C 24�.6�C !.1 � !//C .6�C !.1 � !//2;
D D 16�.6�C !.1 � !//C 3.6�C !.1 � !//2;
G D 16!2.!.!2 C 1/C 9�/; H D 96�!2;

K D �2; L D 10�2; M D 35�2;

P D 50�2; Q D 24; R D 32!2.!.!2 C 1/C 15�/;

T D 2.6�C !.1 � !//2; q D e�2ˇ�

;

and 2F1.a; bI cI z/ is hypergeometric function [15].
The second approach assumes the accounting of the second cumulant in the

formulas (4.8) and (4.9). The mean values in (4.9) with substituted from (2.22)
and (2.24) energy spectrum of QAO are expressed as:

.E.0//2 D 8 Nn2 C 8 NnC 1

16

�

! Nn C 1

! Nn

	2

C

C 9�2

16!4Nn

�

96 Nn4 C 192 Nn3 C 120 Nn2 C 24 NnC 1
�C

C 3�

8!2Nn

�

! Nn C 1

! Nn

	
�

24 Nn3 C 36 Nn2 C 14 NnC 1
�

; (4.47)

E.0/n D Nn.4 NnC3/
4

�

! NnC 1

! Nn

	

C 3�

4!2Nn
Nn �12 Nn2C16 NnC5� :

which leads to the following expression for the partition function of QAO:

Z.2C/.ˇ; �/ D exp
�

'2.ˇ; ˇ
�; �; !/

�

;

'2.ˇ; ˇ
�; �; !/ D �ˇ.E.0/

n .ˇ�; �; !//C 2ˇ�n.ˇ�/ � lnN C
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C1

2

�

ˇ2..E
.0/
n /2 � E

.0/
n

2

/ � 4ˇˇ�.E.0/
n n � E

.0/
n Nn/ C

C 4ˇ�2.n2 � Nn2/
i

: (4.48)

Finally, in the third approach for calculation of PF accounting both second
cumulant and second correction for energy by OM, the partition function has a form:

Z.3C/.ˇ; �/ D exp
�

'3.ˇ; ˇ
�; �; !/

�

;

'3.ˇ; ˇ
�; �; !/ D �ˇ.E.2/

n .ˇ�; �; !//C 2ˇ�n.ˇ�/ � lnN C

C1

2

�

ˇ2..E
.2/
n /2 � E

.2/
n

2

/ � 4ˇˇ�.E.2/
n n � E

.2/
n Nn/C

C 4ˇ�2.n2 � Nn2/
i

; (4.49)

where the second approximation of OM for energy is:

E.2/
n D E.0/

n CEn: (4.50)

Figure 4.8 shows the comparison of various second-order approximations as a
dependence on the anharmonic parameter � at different inverse temperatures ˇ.

Fig. 4.8 The comparison of the accuracy of second-order approximations for free energy of QAO
at different values of the anharmonic constant �
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Fig. 4.9 Comparison of the accuracy for various approximations of the second order for free
energy of QAO as a dependence on the inverse temperature ˇ

The accounting of the second-order OM correction is a most essential factor for
improvement of accuracy. A large errors at ˇ D 0:1 are explained by the failures
of numerical summations. This becomes evident at small values of � for ˇ D 0:1,
when the number of excitations exceeds essentially 8 taken from [10]. At the same
time, Fig. 4.8 demonstrate a uniform suitability for all approximations based on
operator method in dependence on the anharmonicity parameter �.

Figure 4.9 compares the second-order approximations as a dependence on the
inverse temperature ˇ. Similar to previous case, the second-order correction in OM
plays crucial role in the achievement of high accuracy. All the approaches provide
the UAA for thermodynamical characteristics and the best accuracy was supplied
by zeroth approximation of CE and second approximation of OM.

For any value of the parameter � and inverse temperature, the following
inequality is fulfilled:

ˇ
ˇ
ˇ
ˇ

F .1/ � F .0/

F .0/

ˇ
ˇ
ˇ
ˇ

� 1; (4.51)

which corresponds to the definition of UAA (1.1). The higher corrections improve
the accuracy of the approximation, which satisfies the requirement (1.2) for the
convergence of the successive approximations in quantum statistics. The non-
perturbative approach based on combination of OM and CE is effective for even
more complex potentials described by Hamiltonian (3.1). The zeroth approximation
for energy is provided by (3.7) and (3.8). The expression for PF in zeroth CE
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approximation follows from the formulas (4.9). To perform an averaging of energy
in (4.9), the mean values of operator of particle number have to be calculated:

n D n;

n2 D n.2nC 1/;

n3 D n.6n2 C 6nC 1/; (4.52)

:::

np D 1

nC 1
Li�p

�
n

nC 1

	

;

where Lin.z/ is a polylogarithmic function [15],

Lin.z/ D
1X

jD1

zj

j n
: (4.53)

Taking into account the relationships (4.52) and (4.53), the mean value for
energy (3.7) is:

E.0/.n; !n/ D 2nC 1

4

�

! Nn C 1

! Nn

	

C 1

NnC 1

Q
X

mD2

�m.2m/Š

.2! Nn/m





"
m�1X

kD0

1

2kkŠ..m � k/Š/2

 (4.54)



m�k�1X

pD0
.�1/p�pLi�.m�k�p/

�
n

nC 1

	

C 1

2mmŠ

3

5 ;

where �p is a sum of all possible products of natural numbers from 1 to m � k � 1

in amount of p multiplicands:

�0 D 1;

�1 D 1C 2C : : :C .m � k � 1/;
�2 D 1 � 2C 1 � 3C : : :C 1 � .m � k � 1/C

C 2 � 3C 2 � 4C : : :C 2 � .m � k � 1/C
C : : :C .m � k � 2/ � .m � k � 1/; (4.55)

:::
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�m�k�1 D 1 � 2 � 3 � : : : � .m � k � 1/;

�p D
m�k�p
X

i1D1
i1

m�k�pC1
X

i2Di1C1
i2

m�k�pC2
X

i3Di2C1
i3 � : : : �

m�k�1X

ipDip�1C1
ip

„ ƒ‚ …

p

:

which leads to the expressions for PF and free energy in zeroth CE approximation:

Z.0/ D exp
h

�ˇE.0/.n; !n/C . NnC 1/ ln. NnC 1/� Nn ln Nn
i

;

F .0/ D � 1
ˇ

lnZ.0/: (4.56)

The condition (4.12) takes the following form if the formula (4.54) is taken into
account:

ˇ

(

1

2

�

! Nn C 1

! Nn

	

C 1

Nn.1C Nn/2
Q
X

mD2
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.2! Nn/m
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2kkŠ..m � k/Š/2

m�k�1X
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.�1/p�p 
 (4.57)



�

Li�.m�k�pC1/
�

n

nC 1

	

� NnLi�.m�k�p/
�

n

nC 1

	�

D

D ln
nC 1

n
;

where the following expression is used for the derivative of the polylogarithmic
function [15]:

dLin.z/

d z
D 1

z
Lin�1.z/; (4.58)

and the mean number of the excitations Nn is an variational parameter. For the
limiting low temperature case (ˇ ! 1), and by neglecting the terms of the second
order, the approximation becomes:

!
QC1
0 � !

Q�1
0 �

Q
X

mD2

m�m.2m� 1/ŠŠ!
Q�m
0

2m�2 D 0;

E.0/ ' 1

4

�

!0 C 1

!0

	

C
Q
X

mD2

�m.2m/Š

22mmŠ!m0
; (4.59)

Z.0/ ' e�ˇE.0/ ; F .0/ ' E.0/:
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In the limit of high temperatures (ˇ ! 0) and by neglecting the terms of the
second order:

!
QC1
Nn ' .2Q/Š

QŠ.Q � 1/Š2Q�1 �Q NnQ�1;

E
.0/
n ' ! Nn Nn

2
C .2Q/Š�Q

QŠ2Q!
Q

Nn
NnQ D 1

ˇ

1C .Q � 1/Š

1CQŠ
;

Nn '
�

1

ˇ.1CQŠ/

�QC1
2Q

�
.Q � 1/ŠQŠ22Q

.2Q/Š�Q

� 1
2Q

� 1; (4.60)

Z.0/ ' Nn; F .0/ ' � 1
ˇ

ln Nn:

To calculate the second-order approximation, the second cumulant in the for-

mula (4.9) has to be computed, which involves the mean values .E.0/
n /2, E

.0/
n n, and

for energy spectrum of QAO with polynomial potential they are:
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5 ; (4.62)

Basing on the derived above analytical expressions, the particular cases of the
calculation of thermodynamical parameters are demonstrated below. The uniformly
suitable CE approximation for QAO of the sixth order with Hamiltonian (3.9)
and energy spectrum (3.10), (3.11) can be written in explicit form using the
relation (4.54):

E.0/ D 2 NnC 1

4

�

! Nn C 1

! Nn

	

C 3�

4!2Nn
.4 Nn2 C 4 NnC 1/C

C 5�

8!3Nn
.24 Nn3 C 36 Nn2 C 18 NnC 3/; (4.63)

that simplifies the expression (4.57):

ˇ

�
1
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�

! NnC 1

! Nn

	

C 3�

!2Nn
.2 NnC1/C 45�

4!3Nn
.4 Nn2C4 NnC1/

�

D ln
NnC1

Nn : (4.64)

By calculating the mean number of excitation Nn for each inverse temperature
ˇ from formula (4.64) and substituting it into (4.63), the expressions for PF and
free energy of the QAO of sixth order are obtained in zeroth CE approximation.
The correction of the second order is derived in a similar way by simplifying the
expressions (4.62) and using the energy spectrum.
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.0/
n n D Nn.4 NnC 3/
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C 3�

4!2Nn
Nn.12 Nn2 C 16 NnC 5/C

C 15�

8!3Nn
Nn.32 Nn3 C 60 Nn2 C 36 NnC 3/; (4.65)
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! Nn

	

.24 Nn3 C 36 Nn2 C 14 NnC 1/C

C 9�2

16!4Nn
.96 Nn4 C 192 Nn3 C 120 Nn2 C 24 NnC 1/C

C 15�

16!3Nn

�

! NnC 1

! Nn

	

.64 Nn4 C 128 Nn3 C 84 Nn2 C 22 NnC 1/C

C 45��

!5Nn
.320 Nn5 C 960 Nn4 C 704 Nn3 C 256 Nn2 C 34 NnC 1/C

C 225�2

64!6Nn
.1280 Nn6 C 3840 Nn5 C 4320 Nn4 C 2240 Nn3 C

C 528 Nn2 C 48 NnC 1/:

The results are presented in the Fig. 4.10. The results obtained by CE zeroth
approximation are very similar to ones after direct summation, see Fig. 4.4.
Figure 4.11 shows the accuracy of both methods. A relatively large error in the
domain of high temperatures is related to the inaccuracy of direct summation
method in this range. The accounting of the second cumulant reduces the error
of the calculation of free energy. The analogous simulations can be performed
for QAO of eighth order with Hamiltonian (3.12) and energy spectrum (3.13)
and (3.14). The expressions for mean value of energy (4.55) and for mean number

Fig. 4.10 Zeroth approximation of free energy for QAO of sixth order at different parameters of
Hamiltonian as a dependence on inverse temperature ˇ
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Fig. 4.11 The error for calculated by OM free energy of QAO of sixth order at � D 0 as a
dependence on inverse temperature ˇ

of excitations (4.57) in this case are written as:

E.0/ D 2 NnC 1

4

�

! Nn C 1

! Nn

	

C 3�

4!2Nn
.4 Nn2 C 4 NnC 1/C

C 5�

8!3Nn
.24 Nn3 C 36 Nn2 C 18 NnC 3/C (4.66)
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�

D ln
NnC 1

Nn : (4.67)

The mean values required for the second cumulant are:
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E
.0/
n n D Nn.4 NnC 3/

4
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and the results for free energy of QAO of eighth order for various Hamiltonian’s
parameters as a dependence on the inverse temperature ˇ are presented in Fig. 4.12.

Figure 4.13 shows the relative error of the approximation for free energy of the
QAO of eighth order by CE with respect to the direct summation method. As in
case of QAO of sixth order, the large errors are seen at high temperatures, which is
typical for direct summation method.

Figure 4.14 shows the results calculated on the basis of approximations for free
energy of sixth and eighth order QAO by CE, direct summation of energy levels
computed by OM and exact ones [12]. For general comparison, the results of the
thermodynamical perturbation theory are also shown. The direct summation on the
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Fig. 4.12 Zeroth approximation for free energy of QAO of eighth order at varied Hamiltonian’s
parameters as a dependence on the inverse temperature ˇ

Fig. 4.13 The calculation error of free energy for QAO of eighth order by operator method (� D 0,
� D 0) with respect to the results of direct summation as a dependence on the inverse temperature ˇ

basis of OM and CE approximation give a good accuracy within entire range of
inverse temperatures ˇ. A certain discrepancy is observed between CE method and
direct summation, which is explained by the loss of accuracy in the summation
over the limited number of levels. Indeed at small inverse temperature ˇ the level
population becomes essential n ! 1, and for direct summation the number of
accounted levels is limited apriori, which implements an error at high temperatures.

In this part of the section, we pay a special attention to the uniformly available
approximation of the thermodynamical characteristics of quantum systems with
asymmetric potential and Hamiltonian (3.15). The cumulant expansion is used to
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Fig. 4.14 The approximation for free energy of QAO of sixth and eighth order based on CE, direct
summation by OM and exact levels as well as the errors of these approximations in comparison
with the direct summation on the basis of exact energy spectrum

build an UAA for this physical system. According to the formulas (4.8) and (4.9),
the zeroth approximation by cumulant expansion for partition function of the system
with Hamiltonian (2.10) and energy spectrum (3.17)–(3.18) is chosen as:

Z.0/.ˇ/ D exp
�

'.ˇ; ˇ�; �; �; !; u/
�

;

'.ˇ; ˇ�; �; �; !; u/ D �ˇ
�
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! Nn

	

C u2Nn
2

C

C�
�

u3Nn C 3u Nn
2! Nn

.2 NnC 1/

�

C (4.68)
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u4Nn C 3u2Nn
! Nn
.2 NnC 1/C 3

4!2Nn
.4 Nn2 C 4 NnC 1/

�

C

C. NnC 1/ ln. NnC 1/� Nn ln Nn;
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where Nn D Nn.ˇ/ is an average number of excitations at certain temperature. The
values Nn, ! Nn, u Nn are determined from the best fit of approximation in zeroth order of
CE:

@'

@ Nn D 0 )

ˇ

�
1

2

�

! Nn C 1

! Nn

	

C 3�u Nn
! Nn

C 3�

�
2u2Nn
! Nn

C 1

!2Nn
.2 NnC 1/

�

D

D ln

� NnC 1

Nn
	

; (4.69)

@'

@u Nn
D 0 )

u3Nn C 3�

4�
u2Nn C ! Nn C 6�.2 NnC 1/

4�! Nn
u Nn C 3�.2 NnC 1/

8�! Nn
D 0;

@'

@! Nn
D 0 )

!3Nn � Œ1C 6u Nn.� C �u Nn/� ! Nn � 6�.4 Nn2 C 4 NnC 1/

2 NnC 1
D 0:

In a similar way as former applications of CE to quantum systems, the following
algorithm is optimal for the solution of the Eq. (4.69). First step is to find the
inverse temperature ˇ, which corresponds to the selected number of excitations Nn.
A next stage is to compute the parameters u Nn and ! Nn using the known parameters
of Hamiltonian and average number of excitations, and further to calculate the
value of PF and free energy. The Hamiltonian’s parameters have to satisfy the
above described requirement (3.21). This criteria can be slightly violated, as in
the case of QAO with cubic potential, unless at least one energy level appears
in the region of the second local minimum. Because of the missing data for
the energy spectrum and the thermodynamical characteristics of the system with
Hamiltonian (3.37), we compare the obtained results with the ones by direct
summation with the use of the approximate energy spectrum obtained in OM zeroth
order. The comparison with the results of thermodynamical perturbation theory is
also provided, which are knowingly non-uniformly suitable and demonstrate good
results in the region of very small values of Hamiltonian’s parameters. Figure 4.15
shows the approximation results for free energy of QAO with cubic term in the
potential.

Figure 4.15 shows that the approximation by CE improves the results obtained
by direct summation in the entire range of Hamiltonian’s parameters and is an
uniformly available approximation. The relative error of this approximation is
shown in Fig. 4.16.

The curves demonstrate an error less than 10 % in the entire range, which riches
this maximum only in the range of high temperatures, where direct summation
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Fig. 4.15 The comparison of different approximations (zeroth order CE, direct summation of
energy spectrum by zeroth order OM, thermodynamical perturbation theory) for free energy of
QAO with cubic term in the potential as a dependence on the inverse temperature ˇ for various
combinations of Hamiltonian’s parameters. The red dots correspond to TPT

Fig. 4.16 The errors of the calculation of free energy for QAO with cubic term in the potential
by OM as a dependence on the inverse temperature ˇ for various combinations of Hamiltonian’s
parameters

apriori fails, and at low temperatures the error tends to zero. In opposite to the range
of high temperatures, where the number of energy levels is unlimited (n ! 1), the
systems with limited number of excited levels (e.g., oscillator Morse) is described
well by the direct summation technique. The procedure of summation over all
quantum states of the system using approximation energy spectrum is applied below
for the oscillator with Hamiltonian (3.24). The exact spectrum of this system is
given by (3.25), and the approximate one by OM zeroth approximation by (3.31)
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and (3.34). Both exact and approximate spectra have a limited number of energy
levels:

nmax D
�p

2Dc

˛
� 1

2

�

; (4.70)

where brackets mean the integer numbers. As for exact PF and free energy, the
following expressions are chosen:

Zex.ˇ/ D
nmaxX

nD0
exp Œ�ˇEn� ;

Fex.ˇ/ D � 1
ˇ

lnZex.ˇ/; (4.71)

with exact spectrum En from (3.25). As for zeroth approximation of operator
method, the following relationships are used:

Z.0/.ˇ/ D
nmaxX

nD0
exp

��ˇE.0/
n

�

;

F .0/.ˇ/ D � 1
ˇ

lnZ.0/.ˇ/; (4.72)

where E.0/
n is a zeroth approximation of OM for energy from (2.25) and (2.26).

Figure 4.17 shows the results of the approximation for free energy of Morse

Fig. 4.17 The approximations for free energy (with negative sign) of Morse oscillator as a
dependence on the inverse temperature ˇ for different combinations of the parameters of
Hamiltonian. The direct summation of both exact energy spectrum and approximate spectrum
calculated by zeroth order OM are depicted
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Fig. 4.18 The errors of calculation of free energy of Morse oscillator in direct summation method
using approximate energy spectrum by zeroth order OM in relation to exact spectrum. The
error plot is depicted in dependence on the inverse temperature ˇ for different combinations of
Hamiltonian’s parameters

oscillator as a dependence on the inverse temperature ˇ for various combinations of
Hamiltonian’s parameters. To confirm the uniform suitability of the approximation,
the calculation accuracy for free energy of Morse oscillator is shown in Fig. 4.18 for
direct summation method with exact spectrum replaced by the approximate values
from OM.

The demonstrated results display the uniform suitability of the proposed approx-
imation scheme: for any set of the parameters of the Hamiltonian the error is not
exceeding 8 %.

4.3 Coupled Quantum Anharmonic Oscillators (CQAO)

In the preceding sections, we analyzed the uniformly suitable approximations
for energy spectra and thermodynamical characteristics for the systems with a
single degree of freedom. However, to generalize the application area of the
non-perturbative methods proposed in this monograph, the systems with multiple
degrees of freedom have to be considered, too. As a typical one, the system of
asymmetric CQAO is discussed, described by the Hamiltonian:

OH D 1

2
Op21 C 1

2
Op22 C 1

2
. Ox21 C˝2 Ox22/C � Ox1 Ox2 CA Ox41 C B Ox42 C C Ox21 Ox22 ; (4.73)
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where A;B;C are dimensionless parameters (A > 0;B > 0;C > �2pAB).
There are both quadratic and linear interactions of oscillators under consideration,
because of latter plays an essential role in the modeling of molecular potentials and
potentials of crystallographic lattice [16]. The energy spectrum of this system in
zeroth approximation of OM is found in [17] (see also Sect. 5.1) and is written as:

E.0/
n1n2

.!1; !2; ˛/ D 1

4

�

!1 C u2 C˝2v2
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C �uv

4!1!2
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 �2u2v2.3AC 3B � 2C /C C.u4 C v4/
�

;

where u D cos˛; v D sin ˛, and ˛ is a parameter. The non-trivial dependence of the
energy on quantum numbers is governed by parameters !1; !2; ˛, which are found
from the algebraic equations:
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.AC B � C/ cos 2˛ D 0:

These formulas have to be modified to take into account the additional degeneration
of the energy levels caused by the transposed symmetry of the system in case of
identical oscillators (A D B;˝ D 1). The ignorance of this fact leads to the pseudo-
singularities in high order corrections, which are typical for any modification of the
perturbation theory for energy spectrum close to the degeneracy [18]. This problem
is bypassed in OM by the selection of proper linear combinations [17], which leads
to the following expression for the energy levels of the system of CQAO:

Eṅ1n2D
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where matrix elements:

hn1; n2j OV jn2; n1i D C

4!1!2
Œ.n1 C 1/.n1 C 2/ın1;n2�2 C

C.n2 C 1/.n2 C 2/ın1;n2C2� : (4.79)

In the case of the systems with multiple degrees of freedom like CQAO, the
relationships of cumulant expansion technique are modified and the partition
function is written as:

Z.ˇ/ D
X

n1

X

n2

gn1n2e
�ˇEn1n2 ; (4.80)
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where the multiplicity of degeneration gn1n2 for CQAO equals unity. The partition
function can be represented in operator form:

Z.ˇ/ D h˛�; ˇ�j exp
��ˇE. On1; On2/C 2ˇ� On1 C 2˛� On2�

� lnN.˛�; ˇ�/
� j˛�; ˇ�i : (4.81)

According to definition, the trial vector j˛�; ˇ�i has a following form:

j˛�; ˇ�i D p
N

1X

n1D0

1X

n2D0

p
gn1n2 exp

��.ˇ�n1 C ˛�n2/
� jn1; n2i ; (4.82)

where the constant N is defined from the condition for normalization of vector
j˛�; ˇ�i:
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or in the case of interacting CQAO:

N D
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1 � e�2ˇ�

i
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; (4.84)

p D e�2ˇ�

:

As a result, in the zeroth order of cumulant expansion the partition function of
CQAO is:
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The mean values in the formula (4.85) are written as:
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The expressions (4.86) result in the following explicit form for the function
'.ˇ; ˛�; ˇ�/:
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The variational parameters q, p, !1, !2, and ˛ are determined from the nullifica-
tion of corresponding derivatives of ', which yields the following equations:
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The equations obtained along with the expressions (4.85)–(4.87) define a uni-
formly available approximation for the partition function of CQAO. The con-
venient technique for the solution of these equations is to treat the functions
˝ D ˝.q; p; !1; !2; ˛/, � D �.q; p; !1; !2; ˛/, A D A.q; p; !1; !2; ˛/,
B D B.q; p; !1; !2; ˛/, C D C.q; p; !1; !2; ˛/ as functions of the variables
q; p; !1; !2; ˛, instead of numerical solution of the Eqs. (4.88)–(4.90). These
functions along with the formulas (4.83)–(4.87) define the functions in question
in a parametric form.

4.4 Density Matrix

Alongside with the partition function, the statistical operator (density matrix) plays
an important role in the description of the quantum systems. Indeed the known
density matrix permits to calculate a mean value of any physical parameter and the
distribution of the probability density for any physical characteristics of the system.
The density matrix is a most general form of the quantum mechanical description
due to its capability to interpret the mixed states of the system, whereas the wave
function deals with the pure states only [18]. The widely used methods for the
approximation of the density matrix are mainly related to the formulation of the
quantum mechanics by path integrals (see, for example, [11] and citations therein).
However, as mentioned in the Chap. 1, this approach is not universal because of
the calculations of energy spectrum and thermodynamical characteristics involves
heavy mathematical operations with path integrals even for simple Hamiltonians.

Here we introduce the algorithm for the construction of UAA for the density
matrix within the framework of the cumulant expansion [19]. All the formulas are
derived for zeroth order of the approximate methods, which are of the importance
for analytical analysis of physical systems. Let us assume the system is described
by the Hamiltonian OH , and has the energy spectrumEn.!/ in zeroth approximation
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of the operator method. The wave functions of this system < xjn >D �n.x/ are
known: for example, in OM zeroth approximation they are chosen as wave functions
of the harmonic oscillator with arbitrary frequency ! [18]:

�n.x/ D
sp

!

2nnŠ
e�!x2Hn.x

p
!/; (4.93)

where Hn.z/ are the orthogonal polynomials of Hermit [15]. Then the density matrix
is approximated by the following function [19]:

�.x; x
0

; ˇ/ D
1X

nD0
e�ˇEn.!/�n.x/��

n .x
0

/; (4.94)

based on the approximate energy spectrum En.!/.
According to the algorithm of cumulant expansion, a new normalized basis is

selected which depends on the additional variational parameter ˇ�, meaning the
effective inverse temperature. The value of this parameter will be found later from
the condition of best fit of approximation:

jˇ�; xi D 1
p

A.x/

1X

nD0
e�ˇ�n�n.x/ jni : (4.95)

The function A.x/ is determined from the normalization condition for the
basis (4.95):

hx; ˇ�j ˇ�; xi D 1

A

1X

nD0
e�2ˇ�n j�n.x/j2 D 1

A
�0.x; 2ˇ

�/ D 1: (4.96)

The sum �0.x; 2ˇ
�/ in the (4.96) is represented by the diagonal elements of the

density matrix of harmonic oscillator corresponding to the frequency ˇ� [18], and
the normalizing function is then expressed as:

A.x/ D �0.x; 2ˇ
�/: (4.97)

In the same way, the normalizing function for a new basis related to different
coordinates can be implemented:

hx0

; ˇ�jˇ�; xi D 1

A.x; x0/

1X

nD0
e�2ˇ�n��

n .x
0

/�n.x/ D

D 1

A.x; x0/
�0.x; x

0

; 2ˇ�/ D 1; A.x; x0/ D �0.x; x
0

; 2ˇ�/;
(4.98)
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where the function �0.x; x
0

; 2ˇ�/ is determined by non-diagonal elements of the
density matrix of harmonic oscillator [18]. As a result, the density matrix (4.94) is
identically written in operator form:

�.x; x
0

; ˇ/D�0.x; x0

; 2ˇ�/
D

x
0

; ˇ�
ˇ
ˇ
ˇexp

h

�̌ OH. On/C On ln 2ˇ�
ǐ
ˇ
ˇ x; ˇ�

E

; (4.99)

and in zeroth order of CE:

�.x; x
0

; ˇ/ ' �0.x; x
0

; 2ˇ�/ exp
h

�ˇ
D

x
0

; ˇ�
ˇ
ˇ
ˇ OH. On/

ˇ
ˇ
ˇ x; ˇ

�EC

C ln 2ˇ�
D

x
0

; ˇ� j Onj x; ˇ�
Ei

: (4.100)

All the values in exponent can be expressed through the density matrix of the
harmonic oscillator �0.x; x

0

; 2ˇ�/, for example:

hx0

; ˇ�j Onjx; ˇ�i D 1

2�0

@

@̌ � �0.x; x
0

; 2ˇ�/;

hx0

; ˇ�j On2jx; ˇ�i D 1

4�0

@2

@.ˇ�/2
�0.x; x

0

; 2ˇ�/; (4.101)

:::

hx0

; ˇ�j Onpjx; ˇ�i D 1

2p�0

@p

@.ˇ�/p
�0.x; x

0

; 2ˇ�/:

The variational parameters ˇ�; ! have to be derived from the best fit of the
approximation for density matrix in zeroth order of CE, which means the solution
of the following equations:

@�

@!
D @�

@̌ � D 0 ) ˇ�
0 ; !0: (4.102)

The relationships (4.100)–(3.100)establish the uniformly suitable approximation
for the density matrix of the quantum system with known energy spectrum. The
density matrix used in the expressions above is written in explicit form as [18]:

�0.x; x
0

; ˇ/ D
r

!

	
th
ˇ!

2
exp

"

�!.x C x
0

/2

4
th
ˇ!

2
�

� !.x � x
0

/2

4
cth

ˇ!

2

#

: (4.103)
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The use of this expression for calculation of mean values in the formulas (4.101)
results in the construction of UAA for the density matrix of quantum system in
analytical form. The formulas obtained are essentially simplified for the diagonal
elements of the density matrix. Assuming x D x

0

in (4.100)–(4.103), the result is
[19]:

�0.x; ˇ/ D
r

!

	
th
ˇ!

2
exp

�

�!x2 th
ˇ!

2

�

;

�.x; ˇ/ ' �0.x; 2ˇ
�/ exp

h

�ˇ hx; ˇ�j OH. On/ jx; ˇ�i C
C ln 2ˇ� hx; ˇ�j On jx; ˇ�i� : (4.104)

The proposed above algorithm for the approximation of the density matrix has
several advantages in comparison with other known methods: (i) the generalization
of this technique for the systems with arbitrary number of the degrees of freedom is
easy and straightforward; (ii) the variational basis is composed of the arbitrary set of
normalized state vectors; (iii) the approach is well fitted to the systems with special
Hamiltonians, for example, Coulomb’s system or spin system. In the case of QAO,
the system is described by Hamiltonian (2.18) and has the energy spectrum defined
by Eqs. (2.21) and (2.23) in zeroth approximation of OM. The maximal order of the
operator of the number of excitations for spectrum (2.21) equals two, therefore the
explicit expressions for the mean values (4.101) with the use of the density matrix
of harmonic oscillator (4.103) are:
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C!2
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.x C x
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#)

:

The equations obtained give an analytical approximation for density matrix of QAO
with Hamiltonian (2.18) in CE zeroth approximation.
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: (4.106)

In accordance with the variational relationships for optimization of parameters
ˇ� and !, the following equations have to be resolved:
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where the derivatives of the mean values are:
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and the differentiation over the parameter ! results in:
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:

The relations (4.105)–(4.110) define the UAA for full density matrix of QAO.
The form of these equations is simplified essentially if only the diagonal elements
of the density matrix is considered, i.e. the probability of the distribution of QAO
over the coordinates:
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where the mean values are from formulas (4.112), and then the variational condi-
tions (4.107)–(4.110) are transformed into:

!

2
p

thˇ�! ch2 ˇ�!
Cp

thˇ�!
�

� !2x2

chˇ�!
�

�ˇ
"

1

2

�

! C 1

!
.1C 2�/

�
@ Qn
@̌ � C 3�

2!2

"

@en2

@̌ � C @ Qn
@̌ �

##

C

C @ Qn
@̌ � ln 2ˇ� C 2 Qn

ˇ�

)

D 0; (4.114)

thˇ�! ch2 ˇ�! C ˇ�!
2
p

! thˇ�! ch2 ˇ�!
C
p

! thˇ�!
n

� x2 thˇ�! � ˇ�!x2

ch2 ˇ�!
�

�ˇ
�
2 QnC 1

4

�

1 � 1

!2
.1C 2�/

	

C 1

2

@ Qn
@!

�

! C 1

!
.1C 2�/

	

�

� 3�

8!3




2en2C2 QnC1
�

C 3�

2!2

 

@en2

@!
C @ Qn
@!

!#

C @ Qn
@!

ln 2ˇ�
o

D 0;

with the derivatives:
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:

To evaluate the accuracy of the approximation obtained, the numerical results for
the probability density of QAO for certain values of the anharmonic parameter �
are compared with the results received in [11] on the basis of the direct numerical
solution of the Schrödinger equation using Feynman formulation of the quantum
mechanics. Figure 4.19 shows the calculations of the probability density of QAO at
� D 40 for different inverse temperatures ˇ.

To illustrate the universal character of the proposed approach, the density
matrix of the Morse oscillator with the Hamiltonian (3.24) and exact energy
spectrum (3.25) possessing a limited number of the discrete levels is considered
hereafter. Using the density matrix of the harmonic oscillator as approximation,

Fig. 4.19 The comparison of different approximations for probability density of QAO at � D 40

for several values of the inverse temperature ˇ
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the density matrix of the coupled states of the system in zeroth order of cumulant
expansion can be obtained. Indeed starting from the expressions (4.100)–(4.103),
we arrive at:
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where the mean values follow from the relations (4.101).
The expressions for the zeroth approximation of the density matrix has to be

complemented with the variational equations to determine the parameters ! and
ˇ�. Following the standard CE algorithm, we obtain:
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where the derivatives of the mean values are obtained again from the Eqs. (4.108)–
(4.110), as in case of QAO. The expressions (4.116)–(4.117) and (4.108)–(4.110)
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determine the uniformly suitable approximation for the density matrix of the Morse
oscillator. For the probability density, the Eq. (4.116) is transformed to:
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and the variational equations are transformed into the form:
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Finally, the derivatives of the mean functions are defined by the Eqs. (4.115).

4.5 Calculation of Physical Characteristics

As has been demonstrated in the previous section, the use of OM and CE result in
a correct description of the mixed quantum states, and the analytical expressions
for mean values of the observed physical parameters can be obtained within the
quantum statistics. In this section, we provide further examples how the above
presented technique can be used for calculation of physical characteristics, and
we start with the coefficient of thermal expansion: the parameter defined by the
mean value of the operator of atomic coordinates. For symmetric potential, this
value equals zero, and therefore we consider here the QAO with the cubic term
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in the potential as in Sect. 3.2. The mean value of the coordinate operator of
non-interacting two-atomic molecules with the Hamiltonian (3.15) and for the
interatomic potential with a canonic distribution on the oscillating degrees of
freedom of the molecule is written as:

Nx.ˇ/ D 1

Z

1X

nD0
un exp Œ�ˇEn� : (4.121)

This quantity defines the average distance between the atoms and the average
size of the molecule as a function of the temperature. In the description of real
gases, this value is used to take into account the additional dependence of the gas
kinetic coefficients on the temperature. These coefficients take a part in the transfer
equations due to their proportionality to Nx.ˇ/2 [20]. Moreover, adopting the Van-
der-Waals law for real gases [13], the average size of the molecule also determines
the critical parametersP0; V0; T0. In particular, using the explicit expressions for the
critical parameters [13], the corrections for these parameters due to asymmetry of
the potential are expressed through Nx.ˇ/ in the following way:

T0

T0
' � Nx.ˇ0/

R0
;

V0

V0
' Nx.ˇ0/

R0
;

P0

P0
' �2 Nx.ˇ0/

R0
: (4.122)

Another application of the approximate methods for calculation of physical
thermodynamical characteristics is a microscopical evaluation of the coefficient of
the linear expansion of crystals. According to crystallographical chemistry [21],
the distance between neighbor atoms inside the real crystals is almost equal to the
equilibrium distance between the atoms in two-atomic molecule composed of the
same atoms. Because of the distance between the atoms in crystal makes the linear
dimension of the elementary crystallographic unit cell, the parameter Nx.ˇ/ defines
well the coefficient of the thermal expansion ˛ of solid state at temperatures far from
the melting point, when the expansion is governed by linear law.

In general case, it is difficult to derive the analytical expression for the coefficient
of linear expansion for Hamiltonian (3.15) because of essentially non-linear depen-
dence of the parameters un and !n on quantum number n. The situation, however, is
simplified in the limiting case of low temperatures (ˇ ! 1), where the linear law
of expansion is valid. Indeed, simplifying the Eqs. (4.68), (4.69), and (4.121) and
neglecting the terms of the second order, we obtain:

ˇ ! 1; Nn � 1;

!30 � Œ1C 6u0.� C �u0/� !0 � 6� D 0;

u30 C 3�

4�
u20 C !0 C 6�

4�!0
u0 C 3�

8�!0
D 0; (4.123)

E ' 1

4

�

!0 C 1

!0

	

C u20
2

C �u0

�

u20 C 3

2!0

�

C



178 4 Operator Method for Quantum Statistics

C�
�

u40 C 3u20
!0

C 3

4!20

�

;

Nn ' e�ˇK; K D 1

2

�

!0 C 1

!0

	

C 3�u0
!0

C 3�

!0

�

2u20 C 1

!0

�

;

Nx ' u0;

Because for the energy ground state the parameters u0; !0 take on a non-zero
constant value determined by the Eqs. (4.123), they can be represented as:

un D u0

�

1C ı

ˇ

	

;

!n D !0

�

1C �

ˇ

	

; (4.124)

where the terms of the second order are shown in brackets. Substituting these
parameters in the Eqs. (4.69), and using (4.123), the following equations are
obtained:

ı

ˇ

�

3u30 C 3�u20
2�

C u0
4�

C 3

2!0

�

� �

ˇ

�
3u0
2!0

C 3�

8�!0

�

C

CNn
�
3�u0
!0

C 3�

4�!0

�

; (4.125)

�

ˇ

�

!0.!
2
0 � 1/

�� ı

ˇ
Œ6u0!0.� C 2�u0/� � 12� Nn D 0:

The coefficients are then found from the solution of the linear equations above:

ı

ˇ
D CE � GB

AE � BD
Nn;

�

ˇ
D CD � GA

AE � BD
Nn; (4.126)

where the following notations are introduced for constant quantities:

A D 3u30 C 3�u20
2�

C u0
4�

C 3

2!0
;

B D 3u0
2!0

C 3�

8�!0
;

C D 3�u0
!0

C 3�

4�!0
; (4.127)
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D D 6u0!0.� C 2�u0/;

E D !0.!
2
0 � 1/; G D 12�:

Using the expression for the mean number of the excited states from (4.123)
and notations (4.124), the explicit functional of the mean operator of coordinate
depending on the Hamiltonian’s parameters and inverse temperature is:

Nx D u0

�

1C CE � GB

AE � BD
e�ˇK

�

; (4.128)

and the coefficients of the thermal expansion depending on Hamiltonian’s parame-
ters and inverse temperature are:

˛.ˇ/ D ˇ
CE � GB

AE � BD
e�ˇK; (4.129)

where the constant coefficients are taken from formulas (4.123) and (4.127).
In an analogous way, the coefficient of the thermal expansion can be calculated

for arbitrary temperature. The algorithm is as follows: (i) for a certain temperature
T0, the mean number of excitations Nn is computed using (4.69); (ii) using the
second and third equations from (4.69), the parameters u Nn and ! Nn are calculated,
which correspond to the mean number of excitations; (iii) in a small vicinity of
the temperature T0, make the parameter u to vary linearly with the change of
temperature:

u.T / D u.T0/ .1C ˛.T0/.T � T0// ; (4.130)

(iv) the variational equations (4.69) are expanded into series over ˛.T /.T � T0/ in
the vicinity of T0 with the accuracy of the second order; (v) the coefficient of thermal
expansion is calculated from the linear equations system obtained in the step (iv).
This local determination of the coefficient of thermal expansion makes it possible to
numerically simulate it at any temperature and for any parameters of Hamiltonian,
i.e. to construct a uniformly suitable approximation.

A next example of the calculation of physical characteristics of quantum systems
is a determination of the mean value of the energy of the system with known
Hamiltonian, using QAO [2]. For this purpose, we use the numerical values for
the QAO spectrum E

.num/
n [10], and the values obtained in the lower order of the

perturbation theory E.PT/
n and operator method E.OM/

n as well as the cumulant
expansion. Thus, the following approximations are considered for this observed
physical parameter:

E.num/ D 1

Z
.nm/
A

X

n

E.nm/
n exp Œ�ˇE.nm/

n �;

E.OM/ D 1

Z
.0/
A

X

n

E.0/
n exp Œ�ˇE.0/

n �;
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E.PT/ D 1

Z
.TB/
A

X

n

E.TB/
n exp Œ�ˇE.TB/

n �;

E.CE/ D � 1

Z.KP/

@

@̌
Z.KP/.ˇ/: (4.131)

The numerical results of these approximations are presented in the Fig. 4.20, which
demonstrates the uniform suitability of CE for mean energy values of the QAO
ensemble.

Finally, we calculate in this section the partition function of the ideal gas
consisting on two-atoms molecules possessing the limited number n of the coupled
states:

Z D
nX

kD0

D

�k

ˇ
ˇ
ˇexp.�ˇ OH/

ˇ
ˇ
ˇ�k

E

; (4.132)

where j�ki are the eigenvectors of the Hamiltonian of the molecule OH :

OH j�ki D Ek j�ki ; (4.133)

Fig. 4.20 A mean energy value of QAO depending on the anharmonic parameter � for different
inverse temperatures ˇ (left panel) and as a dependence on the inverse temperature ˇ for different
values of the anharmonic parameter � (right panel)
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and ˇ D 1=kT is the inverse temperature. Introducing the normalized state vector:

jvi D p
C

nX

kD0

p
vk j�ki ; 0 � v � 1

hvj vi D 1; C.v/ D 1 � v
1 � vnC1 ; (4.134)

the PF is represented in the form:

Z.ˇ/ D
D

v
ˇ
ˇ
ˇe� OR

ˇ
ˇ
ˇ v
E

;

OR D ˇ OH C Ok ln v C lnC.v/; (4.135)

where the operator Ok is defined by the equation:

Ok j�ki D k j�ki :

To approximately calculate the partition function, the zeroth order CE is used to
estimate the average in the formula (4.132):

Z ' exp Œ�'.ˇ; v/� ; (4.136)

'.ˇ; v/ D ˇC

nX

kD0
vkEk C

�
v

1 � v � .nC 1/vnC1

1� vnC1

�

ln v �

� ln
1 � v

1 � vnC1 :

The accuracy of the estimate (4.136) depends on two factors: (i) accuracy of the
eigenvalues of Hamiltonian, (ii) optimal choice of the parameter v. Here we discuss
only the influence of the second factor for the system with a finite number of the
levels as in the case of real molecules. Therefore, the Morse model is used for the
interatomic potential, which delivers the exact eigenvalues En with respect to the
anharmonicity and the upper limitation of the spectrum:

En D
"

�

r

2D

m
� �2

2m

�

nC 1

2

	#�

nC 1

2

	

; (4.137)

whereD and � are the parameters of the Morse potential .„ D c D 1/:

U.x/ D D .1 � e��x/2 ;
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and the coordinate x D R � R0 is defined with the center in the equilibrium point
R0 of the atoms with the mass m. The function '.ˇ; v/ in (4.136) is calculated
analytically:

'.ˇ; v/ D ˇ�

r

2D

m

�
v

1 � v � .nC 1/vnC1

1 � vnC1 C 1

2

�

�

� ˇ
�2

2m

�
2v

.1 � v/2 � .1C v/

.1� v/

.nC 1/vnC1

.1 � vnC1/
�

� .nC 1/2vnC1

1 � vnC1 C 1

4

�

C (4.138)

C
�

v

1 � v
� .nC 1/vnC1

1 � vnC1

�

ln v � ln
1 � v

1 � vnC1 ;

and the parameter v follows from the extremum condition for the right side of the
equation:

@

@v
'.ˇ; v/ D 0: (4.139)

Equations (4.138) and (4.139) specify the parametric approximation of the
functionZ.ˇ/. However, the real computations show the equivalence up to 	 99%
of the solutions for these equations at n � 5, which applicable to real molecules, to
the solutions of the equations in the limit n ! 1, which are considerably easier to
solve:

'.ˇ; v/ D 1

2
ˇ�

r

2D

m

.1C v/

.1 � v/ � ˇ �
2

2m

�
2v

.1 � v/2
C 1

4

�

�

� v

1 � v
ln v � ln.1 � v/; (4.140)

1

ˇ
ln v D �2

m

.1C v/

.1 � v/ � �
r

2D

m
:

The approximations derived above can also be used for UAA of other thermo-
dynamical characteristics of gas, for example, an average energy of the molecule
.n � 1/:

E D @'

@̌
D �

2

r

2D

m

.1C v/

.1 � v/ � �2

2m

�
2v

.1 � v/2
C 1

4

�

; (4.141)
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and for heat capacity:

CV .ˇ/ D
"

�

r

2D

m
� �2

m

.1C v/

.1� v/

#

v ln v
h

2v �
2

m
� 1�v2

ˇ

i ; (4.142)

where the parameter v is calculated from the second equation in (4.140).
The presented in this chapter methods can be used for calculation of the atomic

deviations from the equilibrium state Nx, which is caused by the anharmonicity of the
potential and is not reduced to the derivative of PF:

Nx D 1

Z

nX

kD0
xke

�ˇEk ; (4.143)

where xk is a diagonal matrix element of the coordinate operator. To estimate such
a sum quantity, the use of the ansatz jvki is very beneficial, which has more general
form than (4.134):

jvki D
p

Ck

nX

kD0

p

xkvk j�ki : (4.144)

For Morse potential this yields:

xk D 1

�

"

�

 

2

p
2mD

�

!

� �
 

2

p
2mD

�
� k

!#

;

with �.z/ as a logarithmic derivative of 
 -function [15]. Because for the real
molecules the condition is satisfied:

p
2mD

�
� 1

the expression for xk is substantially simplified:

xk ' �

2
p
2mD

�

k C 1

2

	

;

and produces the following estimate for Nx:

Nx D 1

4
p
2mD

.1C v/

.1� v/
: (4.145)

Table 4.1 compares the thermodynamical characteristics of the ideal gas
of molecules N2, calculated by zeroth order OM and CE, and exact values
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Table 4.1 Thermodynamical characteristics of the ideal gas of molecules N2. m D 7:004 a.e.m.,

� D 4:28 � 107 cm�1, D D 79890 cm�1, n D 56, !0 D �
2	C

q
2D
m

D 2358 cm�1, !0x0 D
„�2

4	mC D 14:14 cm�1, T0 D hC!0
k

D 3391 K

T , K

1000 2000 5000 10000 20000

v.n ! 1/ 0:035 0:189 0:521 0:732 0:868

Z 0:191 0:529 1:474 3:053 6:243

Zex 0:191 0:529 1:474 3:053 6:431

Zh 0:190 0:525 1:447 2:935 5:891

E � 0:5 0:035 0:228 1:059 2:608 5:977

Eex � 0:5 0:035 0:228 1:059 2:607 5:987

Eh � 0:5 0:035 0:225 1:031 2:477 5:410

CV 0:424 0:807 1:002 1:081 1:253

CV;ex 0:414 0:807 1:004 1:091 1:254

CV;h 0:362 0:791 0:963 0:990 0:997

Nx � 103 Å 9:287 12:696 27:610 57:462 135:120

(subscript ex) and frequently used approximate values computed with harmonic
interatomic potential (subscript h). The parameters of the Morse potential are taken
from [22].
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Chapter 5
Quantum Systems with Several Degrees
of Freedom

The multi-dimensional physical systems with low number of the degrees of freedom
take a special place in the development of new analytical and approximate methods
for theoretical physics. The approaches used for the systems with the large number
of the degrees of freedom and applied to the statistical physics and to the theory of
the quantum field are not useable for multi-dimensional systems. For the latter, the
alternative approaches are used, which split the variables in Schrödinger equation.
The Born-Oppenheimer [1] technique, called also the adiabatic approximation, is
one of the important members of these methods, which separates the variables for
fast and slow sub-systems. Another member of this class of methods is one-particle
approximation (Hartree or Hartree–Fock methods), where the wave function of the
physical system is approximated by the product of the wave functions of single
particles [2] .

For many physical phenomena, the non-adiabatic and correlational multi-particle
effects are essential and have to be taken into account already in zeroth approx-
imation. These effects may play a crucial role in the correct classification of the
energy levels or in qualitative analysis of the systems near the degeneracy points of
eigenvalues with different quantum numbers. Therefore, the methods are demanded,
which deliver the approximate solutions of Schrödinger equation in the entire range
parameters without assumption of negligibility for correlations and non-adiabaticity.

Operator method finds an analytical and uniformly suitable solution for collective
energy levels and classifications for any quantum numbers and Hamiltonian param-
eters. The similar results after the standard perturbation theory, adiabatic expansion
or method of the strong coupling interaction can be obtained as limiting cases from
the algebraic formulas for OM zeroth approximation. Moreover, the successive
approximations of OM improve the results and converge to the exact values for
the energy and the level width.

This chapter illustrates the application of OM for the description of the systems
with several degrees of freedom: (1) two coupled quantum anharmonic oscillators
(CQAO), and (2) non-relativistic quantum theory of atom with two electrons.

© Springer International Publishing Switzerland 2015
I. Feranchuk et al., Non-perturbative Description of Quantum Systems,
Lecture Notes in Physics 894, DOI 10.1007/978-3-319-13006-4_5
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The model of CQAO possesses numerous properties, which are typical for multi-
dimensional systems and therefore is frequently used to testify the non-perturbative
methods [3, 4]. The theory of two-electrons atom is a canonic problem of the
quantum mechanics [5], and OM is shown to construct a new form of the
perturbation theory accounting the correlational corrections.

5.1 Analytical Approximation for the Energy Levels
of CQAO

The system of coupled harmonic oscillator (CHO) has been used in [6] to analyze
the applicability of adiabatic and one-particle approaches to the description of multi-
particle systems. The dimensionless form of the Hamiltonian for CHO is written as:

OH D 1

2
Op2x C 1

2M
Op2y C 1

2

�

x2 C y2
�C � xy; (5.1)

where M is a parameter for the ratio between the oscillators masses; � is
dimensionless parameter of the interaction. The classic trajectories of this system
are described by Lissajous curves, which in quantum case are related to the non-
trivial dependence of energy levels on the parameters of Hamiltonian. The exact
eigenvalues follow from the formula:

Enm D �1

�

nC 1

2

	

C �2

�

mC 1

2

	

; (5.2)

where the frequencies of normal oscillations �1;2 are:

�21;2 D 1

2M
.1CM ˙

p

.1�M/2 C 4�2M/: (5.3)

As follows from the formula (5.2), the energy, being an analytical function
in complex plane of the parameters � and M , has the singularities (branching
points). The series over these parameters have a limited convergence radius, and
this fact is a reason of the restriction for the application of the perturbation theory.
Due to the same reason, the one-particle (Hartree) approximation is not also
applicable to interpret the coupling of the oscillators. The wave function of zeroth
approximation in this case is selected as a product of the one-particle wave functions
(the symmetrization at M D 1 is obsolete for this analysis):

�OA.x; y/ D 'n.x/�m.y/I
Z

'n.x/'m.x/ dx D
Z

�n.x/�m.x/ dx D ımn: (5.4)
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The system of approximate equations for one-particle functions follows from the
exact Schrödinger equation:

�
1

2
Op2x C 1

2
x2 C � xymm � �n



'n.x/ D 0I
�
1

2M
Op2y C 1

2
y2 C �yxnn � �m



'm.y/ D 0: (5.5)

and this equations system corresponds to the uncoupled harmonic oscillators with
shifted equilibrium positions:

Nx D ��ymmI Ny D ��xnn:

The energy spectrum of the system in this approximation is:

E.OA/
nm D nC 1

2
C 1p

M

�

mC 1

2

	

� 1

2
�2.y2mm C x2nn/� �xnnymm; (5.6)

and represents the primary terms of the power series over the parameter �. The
self-consistency of Nx; Ny leads to:

Nx D �� Ny; Ny D �� Nx; (5.7)

and for arbitrary � we arrive at:

Nx D Ny D 0: (5.8)

Thus, the zeroth order of one-particle approximationEOA
mn differs essentially from

the exact values. The correlational effects can be accounted in the successive orders,
however, the one-particle approximation does not provide the uniformly suitable
approximation for energy E in the entire range of the parameters � and M . The
adiabatic approximation for the Schrödinger equation with Hamiltonian (5.1) leads
to a similar problem [6]. This case corresponds to the condition M � 1, and the
operator Op2y can be omitted in zeroth approximation. As a result, the adiabatic terms
�n.y/ are defined by the energy levels of the Hamiltonian’s part depending on the
fast variable x:

�n.y/ D nC 1

2
� 1

2
�2y2: (5.9)

These quantities play a role of the potential energy in Schrödinger equation for slow
oscillator y in the successive order of the adiabatic approximation. The resulting
energy spectrum with the accuracy up to the second order on 1p

M
is:

E.AA/
nm D nC 1

2
C
r

1� �2

M
.mC 1

2
/: (5.10)
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The comparison of this expression with the formula (5.2) demonstrates the
non-uniform suitability of the adiabatic approximation for this simple system. In
opposite, the OM zeroth approximation provides the uniformly suitable expression.
According to routine OM algorithm described in Chap. 3, the set of normalized
state vectors is introduced, which depend on two variables and expressed through
the creation aC; bC and annihilation a; b operators:

jnm >D .aC/np
nŠ

.bC/mp
mŠ

j00 >I aj00 >D bj00 >D 0: (5.11)

Similarly to one-dimensional case (2.2), this selection of the basis corresponds to
the transition from the coordinate representation to the one of particle number by
using the canonic transformations:

x D x0 cos˛ C y0 sin˛; y D y0 cos˛ � x0 sin˛;

Opx D Op0
x cos˛ C Op0

y sin˛; Opy D � Op0
x sin˛ C Op0

y cos˛;

x0 D aC aC
p
2!1

; y0 D b C bC
p
2!2

;

Op0
x D �i.a � aC/

r
!1

2
; Op0

y D �i.b � bC/
r
!2

2
: (5.12)

The variational parameters !1;2 for coordinates in the formulas (5.12) are
introduced in a similar way to one-dimensional case. The parameter ˛ for trans-
formation of the operator’s phases is related to the additional degree of freedom
for two-dimensional systems. The transformation (5.12) in the considered case is
equivalent to the transformation of Bogolyubov-Tyablikov [7], and is shown later
to be applicable in OM for complex systems. The Hamiltonian (5.1) in a new
representation is:

OH D 1

4

�

.a2 C aC2/
�
1

!1
� !1

	

C .b2 C bC2/
�
1

!2
� !2

	

C

C.2aCa C 1/

�
1

!1
C !1

	

C .2bCb C 1/

�
1

!2
C !2

	

C

C�

2

�
cos 2˛p
!1!2

.ab C aCbC C aCb C abC/C

sin 2˛

2

�

� 1

!1
.a2 C aC2 C 2aCaC 1/C

1

!2
.b2 C bC2 C 2bCb C 1/

�

C
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1

4

�

1 � 1

M

	

Œ.aC � a/2!1 sin2 ˛ C

.bC � b/2!2 cos2 ˛ � .aC � a/.bC � b/p!1!2 sin 2˛�: (5.13)

The zeroth approximation of the operator method corresponds to the part of
Hamiltonian, which commutates with the operator of the excitation numbers aCa D
On and bCb D Om:

OH0 D 1

4

��
1

!1
C !1

	

.2 OnC 1/C
�
1

!2
C !2

	

.2 OmC 1/

�

C

� sin 2˛

4

�
1

!2
.2 OmC 1/� 1

!1
.2 OnC 1/

�

C

C1

4

�
1

M
� 1

	

Œ!1.2 OnC 1/ sin2 ˛ C !2.2 OmC 1/ cos2 ˛�: (5.14)

As shown for one-dimensional case in Sect. 2.1, the series over the operator
OV D OH� OH0 converges in the entire range of parameters�;M and ˛; !1;2. However,

the best zeroth approximation of OM corresponds to the independence condition of
eigenvalues on the choice of the representation:

@Emn

@!1
D @Emn

@!2
D @Emn

@˛
D 0; (5.15)

where the energy Emn.!1; !2; ˛/ is determined from the formula (5.14) with
substitution of operators by numbers m; n. Two equations (5.15) allow to find
!1;2.˛/ and exclude them from the expression for energy:

E.OM/
mn .˛/ D �1.˛/

�

nC 1

2

	

C �2.˛/

�

mC 1

2

	

I

�21;2 D 1

2M
.1˙ � sin 2˛/Œ.M C 1/� .M � 1/ cos 2˛/�: (5.16)

The eigenvalue (5.15) has an extremum, when the transformation parameter ˛
equals to:

z1;2 D 1

2M�
Œ.M � 1/˙

p

.M � 1/2 C 4M�2�; (5.17)

where z D tan ˛. The substitution of the quantities (5.17) into Eq. (5.14) demon-
strates the good agreement of the energy levels E.OM/

mn with the exact values (5.2)
in zeroth approximation of OM. The quadratic form of the Hamiltonian (5.1)
emphasizes this coincidence, however, the uniform suitability of the eigenvalues
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calculated by operator method remains unchanged for complex systems, too. We
consider here the general form of the asymmetric Hamiltonian CQAO [8]:

OH D 1

2
Op2x C 1

2
Op2y C 1

2
.x2 C˝2y2/C � xy C Ax4 C By4 C Cx2y2: (5.18)

Here A;B;C are the dimensionless parameters (A;B > 0IC > �2pAB), and
additionally to the quadratic interaction between oscillators, the linear component
is introduced, which is essential for the modeling of several molecular and atomic
potentials [9]. Following OM algorithm, the zeroth approximation is constructed
by transition to the secondary quantization in Hamiltonian (5.18) using the trans-
formation (5.12) and by separation of zeroth order operator OH0 as a part of OH ,
which commutates with the operators of particle numbers Ona and Onb . As a result, the
operator OH0 is written as:

OH0 D 1

2

�

!1 C u2 C˝2v2

!1

	�

Ona C 1

2

	

C

1

2

�

!2 C v2 C˝2u2

!2

	�

Onb C 1

2

	

C �uv

!1!2

�

!1

�

Onb C 1

2

	

� !2

�

Ona C 1

2

	�

C

C 3

2!21

�

On2a C Ona C 1

2

	

.Au4 C Bv4 C Cu2v2/C

C 3

2!22

�

On2b C Onb C 1

2

	

.Av4 C Bu4 C Cu2v2/C

1

!1!2

�

Ona C 1

2

	�

Onb C 1

2

	

Œ2u2v2.3AC 3B � 2C /C

C.u4 C v4/�; (5.19)

where

u D cos˛I v D sin ˛;

and the oscillator frequencies are considered as variational parameters. The eigen-
functions of the operator (5.19) are identical to the eigenvectors of the operators of
particle numbers:

OnajN;M >D N jN;M >I OnbjN;M >D M jN;M >; (5.20)

where the eigenvaluesE.0/
NM.!1; !2; ˛/ are found from formula (5.19) by substitution

of quantum numbers N;M instead of corresponding operators. However, these
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eigenvalues play an intermediate role and lead to OM zeroth approximation only in
case, if the parameters !1; !2 and ˛ are calculated from the condition of extremum
of the energy levels (5.19) for arbitrary quantum state. After this procedure, the
eigenvalues become the cumbersome functions of quantum numbers and parameters
of Hamiltonian, and namely this fact pre-defines the uniform suitability of OM
zeroth approximation. The analytical approximation for energy levels of CQAO is
then found as follows:

E
.OM/
NM D 1

4

�

3!1 C u2 C˝2v2

!1

	�

N C 1

2

	

C

1

4

�

3!2 C v2 C˝2u2

!2

	�

M C 1

2

	

C

C �uv

2!1!2

�

!1

�

M C 1

2

	

� !2

�

N C 1

2

	�

: (5.21)

The non-trivial dependence of energy on quantum numbers is defined by the
parameters !1; !2; ˛, which are the solutions of the following algebraic equations:

!31 � !1
�

u2 C˝2v2 � 2�uv C

4

!2

�

M C 1

2

	�

.3AC 3B � 2C /u2v2 C C

2

�

u4 C v4
�
� 

�

6.2N 2 C 2N C 1/

2N C 1
.Au4 C Bv4 C Cu2v2/ D 0: (5.22)

!32 � !2
�

v2 C˝2u2 C 2�uvC

4

!1

�

N C 1

2

	�

.3AC 3B � 2C /u2v2 C C

2

�

u4 C v4
�
� 

�

6.2M2 C 2M C 1/

2M C 1
.Av4 C Bu4 C Cu2v2/ D 0: (5.23)

�

!1

�

M C 1

2

	

� !2

�

N C 1

2

	�

.1 �˝2 C 2� cot2˛/C

3!2

!1
.2N 2 C 2N C 1/ŒB � .AC B/ cos2 ˛ C C

2
cos 2˛�C

3!1

!2
.2M2 C 2M C 1/ŒA� .AC B/ cos2 ˛ C C

2
cos 2˛�C

12

�

N C 1

2

	

.M C 1

2
/.AC B � C/ cos 2˛ D 0: (5.24)
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In case of identical oscillators (A D B;˝ D 1), the Hamiltonian (5.18)
obtains an additional motion integral, which is due to the transpositional symmetry.
According to the rules of Sect. 2.8, the exact motion integrals have to be accounted
in OM zeroth approximation to correctly describe the condition of degeneracy for
energy spectrum. Partially this degeneracy is removed due to the transformation
by the coordinate rotation, which is governed by the parameter ˛ and leads to
the term in formula (5.22), which is asymmetric with respect to the transposition
N $ M . This term is proportional to the parameter of linear coupling �, and the
degeneracy remains in the particular case of even degrees of the coordinate operators
of oscillators [8]. The known algorithm for the solution of this problem consists of
the construction of proper linear combination of degenerated wave functions and
further creation of the perturbation operator on the basis of these functions [10].
This approach has been already considered for OM description of the two-level
system in quantum field (Sect. 3.5). The modification of OM zeroth approximation
within above approach means that the wave functions of collective states

j�.0/
NM >D C1jN;M > CC2jM;N >I N 6D M; (5.25)

have to be used for calculation of the energy levels instead of the eigenfunctions of
the operators Ona; Onb . The coefficients C1;2 for arbitrary set of the quantum numbers
become the additional variational parameters. Then the degeneracy is removed due
to the terms in the perturbation operator OV D OH � OH0, which are proportional to
the quantities:

OVab D aC2b2 C a2bC2; (5.26)

commutating with the operator of a full particle number:

On D Ona C Onb;

and mixing the states, which differ by the order of the quantum numbersN andM .
The condition of the existence of non-zero coefficients C1;2 lead to the following
expression for energy levels of CQAO instead of formula (5.21):

EṄM D 1

2
.E

.OM/
NM CE

.OM/
MN /˙

r

1

4
.E

.OM/
NM � E

.OM/
MN /2 C j < N;M j OVabjM;N > j2 (5.27)

with the matrix elements:

< N;M j OVabjM;N >D C

4!1!2

�

.N C 1/.N C 2/ıN;M�2 C

.M C 1/.M C 2/ıN;MC2
�

; (5.28)
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where ıN;M is a Kronecker symbol. The transformation parameters !1; !2; ˛ are
determined by the Eqs. (5.22)–(5.24).

The expressions (5.21)–(5.24), (5.27) are the principal result of this section. They
deliver the algebraic representation for energy levels of CQAO, which is accurate
in the entire range of Hamiltonian’s parameters and quantum numbers, and thus is
the uniformly suitable approximation. These formulas complement essentially the
asymptotic and numerical methods when the real physical systems are qualitatively
modeled by CQAO.

5.2 Comparison with Known Analytical and Numerical
Results

The uniformly suitable approximation provided by formulas (5.21)–(5.24)
and (5.27) means that this result has to agree with the analytical results by
asymptotic series in all limiting cases. Moreover, the energy E.OM/

NM calculated
by OM zeroth approximation is worth to compare with the numerically calculated
one E.acc/

NM for intermediate values of parameters. Last but not least, the operator
method calculates the corrections of the second order, estimates the accuracy of
zeroth and successive approximations according to the definition (1.1).

The standard asymptotic series are meaningful in a narrow range of parameters,
whereas OM zeroth approximation is an analytical function of the parameters in
their entire range. By expanding these functions into power series, the coefficients
of this series are not equal to ones of asymptotic series, and the difference between
both is of the same order as the accuracy of OM zeroth approximation within the
intermediate range of parameters.

(1) Small anharmonicity and low excitation level (ANI CM � 1, and for simplicity
sake ˝ D 1; B D � D 0).

The perturbation series with the accuracy up to the second order of A and C
results in:

E
.PT/
NM ' N CM C 1C 3

4
.2N 2 C 2N C 1/AC

1

4
Œ.2N C 1/.2M C 1/˙ .N 2 C 3N C 2/ıN;M�2 ˙

.M2 C 3M C 2/ıN;MC2�C �
1

8
.34N 3 C 51N 2 C 59N C 21/A2 �
3

4
.2M C 1/.2N 2 C 2N C 1/AC �
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3

16
Œ3NM.N CM C 2/C 3

2
.N 2 CM2/C

5

2
.N CM/C 1�C 2: (5.29)

The applicability of the perturbation theory is limited both by small values of the
anharmonicity constants (A;C � 1) and low excitation levels. To analyze the OM
zeroth approximation (5.27) in the above mentioned limit, the approximate solutions
of the Eqs. (5.22)–(5.24) have to be found:

!1 ' 1C p1

2
� p21
8

� p1p2

4
� p1q

2
C q

2
� 3q2

8
I

!2 ' 1C p2

2
� p22
8

� p1p2

4
� p2q

4
I˛ D 0I

p1 D .2M C 1/C I p2 D .2N C 1/C I q D 6A
2N2 C 2N C 1

2N C 1
: (5.30)

By substituting these solutions into formula (5.27), the obtained expansion for
E
.˙/
NM in the case of small anharmonicity has a similar form as E.PT/

NM in the
expression (5.29), however, with different coefficients in the terms of the second
order:

� 9

4

.2N 2 C 2N C 1/2

2N C 1
A2I

�C
2

8
Œ4NM.N CM C 2/C 2.N 2 CM2/C 3N C 3M C 1�: (5.31)

(2) Strong anharmonicity and quasi-classic approximation.

The equivalent simplification of OM formulas can be performed both in the
limit of strong coupling (A;B;C � 1) and in quasi-classic approximation
(N;M � 1). The asymptotic expressions in the limit of strong coupling remains
very cumbersome, and therefore we present these formulas here for the particular
case only A D BI˝ D 1I� D 0. Starting from the equation for OM parameters:

˛ D 0I u D 1I v D 0I

!1 '
�

C z.2M C 1/C 6A
2N2 C 2N C 1

2N C 1

�1=3

I

!2 '
�
C

z
.2N C 1/C 6A

2M2 C 2M C 1

2M C 1

�1=3

; (5.32)
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where z is a positive solution of the following algebraic equation:

z36A
2M2 C 2M C 1

2M C 1
C z2C.2N C 1/�

zC.2M C 1/� 6A
2N2 C 2N C 1

2N C 1
D 0; (5.33)

the following approximate formula for energy is obtained:

E
˙/
NM ' 3!1

8
.2N C 1/C 3!2

8
.2M C 1/˙ C

4!1!2

f.N C 1/.N C 2/ıN;M�2 C .M C 1/.M C 2/ıN;MC2g: (5.34)

In the case of non-interacting systems (C D 0), the energy for each oscillator is:

�N ' 3

8
Œ6A.2N C 1/2.2N 2 C 2N C 1/�1=3;

and as shown in (2.26) these quantities make a good approximation for principal
term in asymptotic expansion of energy of one-dimensional anharmonic oscillator
in the limit of strong coupling. There are no exact asymptotic formulas for the
energy of interacting oscillators exist in the limit of strong coupling, however, a
comparison of the calculations by formula (5.34) with numerical ones proves the
small error (	3–5 %) for the coefficients of the series, which determine the function
dependence of the energy levels on the parameters of Hamiltonian.

(3) Adiabatic approximation (˝ � 1).

The Hamiltonian (5.18) is simplified to find exact asymptotic series and compare
them with the results after OM. AssumingA D B D � D 0I˝y D Y , the following
Hamiltonian is considered:

OHad D 1

2
Op2x C ˝2

2
Op2Y C 1

2
.x2 C Y 2/C C

˝2
x2Y 2: (5.35)

The adiabatic terms of fast oscillator (variable x) define the zeroth order of Born-
Oppenheimer approximation:

�N .Y / D
r

1C 2
C

˝2
Y 2
�

N C 1

2

	

'
p
2C

˝
jY j

�

N C 1

2

	

:

The oscillating spectrum of the slow oscillator (Y ) is obtained in quasi-classic
approximation, where the principal term of the asymptotic approximation is:

E
.AD/
NM ' .

3	

4
/2=3

"

C

�

N C 1

2

	2 �

M C 1

2

	2
#1=3

: (5.36)
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A similar expansion follows from zeroth approximation of OM by using correspond-
ing limiting transition in formulas (5.21)–(5.24), which results in:

E
.OM/
NM '

 

6
p
3

4

!2=3 "

C

�

N C 1

2

	2 �

M C 1

2

	2
#1=3

: (5.37)

in good agreement with the expression (5.36).

(4) Numerical simulations.

Table 5.1 compares the analytical results by operator method with ones obtained
by numerical computing in [3,8] for intermediate region of Hamiltonian parameters
and quantum numbers. In this table, the values E.0/ are calculated using analytical
formulas of OM zeroth approximation, andE.A/ are simulated numerically in [3,8].
Moreover, the quantitiesE.2/ D E.0/CE.2/ are displayed containing the successive
correction of operator methodE.2/, which is calculated by using perturbation theory
of the second order over the operator OV D OH � OH0 and with operators OH and
OH0, from formulas (5.18) and (5.19). More details about high order successive

approximations by operator method are considered in the Chap. 2, and here we
present the analytical expression for the second order:

Table 5.1 The energy of
ground state E00 for CQAO
� D 0I˝ D 1IA D
�a11IB D �IC D 2�a12

a11 � E a12 D 1:0 a12 D 0:0 a12 D �0:6
0.1 E.0/ 1.1432 1.1103 1.0889

E.2/ 1.1410 1.1083 1.0862

E.A/ 1.1409 1.1082 1.0861

0.8 1.0 E.0/ 1.7066 1.5852 1.5003

E.2/ 1.6923 1.5712 1.4776

E.A/ 1.6913 1.5689 1.4740

10 E.0/ 3.2641 2.9620 2.7444

E.2/ 3.2240 2.9208 2.6739

E.A/ 3.2200 2.9118 2.6572

0.1 E.0/ 1.1226 1.0874 1.0643

E.2/ 1.1206 1.0859 1.0621

E.A/ 1.1206 1.0859 1.0621

0.4 1.0 E.0/ 1.6263 1.4859 1.3824

E.2/ 1.6130 1.4743 1.3575

E.A/ 1.6123 1.4725 1.3545

10 E.0/ 3.0597 2.6979 2.4175

E.2/ 3.0207 2.6616 2.3266

E.A/ 3.0175 2.6538 2.3057



5.2 Comparison with Known Analytical and Numerical Results 199

E
.2/
MN D X1

�
1

4

�
1

!1
� !1

	

C 2a.2N � 1/C c.2M C 1/

�2

C

X2

�
1

4

�
1

!1
� !1

	

C 2a.2N C 3/C c.2M C 1/

�2

C

X3

�
1

4
.
˝2

!2
� !2/C 2b.2M � 1/C c.2N C 1/

�2

C

CX4
�
1

4

�
˝2

!2
� !2

	

C 2b.2M C 3/C c.2N C 1/

�2

C

X5a
2 CX6b

2 CX7c
2; (5.38)

where

a D A

4!21
I b D B

4!22
I c D C

4!1!2
I

X1 D N.N � 1/
ZN�2;M

IX2 D .N C 1/.N C 2/

ZNC2;M
I

X3 D M.M � 1/

ZN;M�2
IX4 D .M C 1/.M C 2/

ZN;MC2
I

X5 D N.N � 1/.N � 2/.N � 3/
ZN�4;M

C

.N C 1/.N C 2/.N C 3/.N C 4/

ZNC4;M
I

X6 D M.M � 1/.M � 2/.M � 3/

ZN;M�4
C

.M C 1/.M C 2/.M C 3/.M C 4/

ZN;MC4
I

X7 D N.N � 1/M.M � 1/
ZN�2;M�2

C

.N C 1/.N C 2/.M C 1/.M C 2/

ZNC2;MC2
I

ZKL D �E.OM/
KL C E

.OM/
NM : (5.39)

Table 5.1 demonstrates that OM zeroth approximation calculates the energy
of the ground state with high accuracy at arbitrary value of the parameters of
oscillators. Tables 5.2 and 5.3 prove the effectiveness of OM for calculation of the
energy of excited collective states and splitting of levels with different symmetry
caused by the interaction.
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Table 5.2 The energy of the
collective states E˙

02 for
CQAO � D 0I˝ D 1IA D
1IB D 1

C=2 E E
C

02 E�

02

1.0 E.0/ 6.527 6.249

E.2/ 6.526 6.248

E.A/ 6.549 6.214

0.8 E.0/ 6.434 6.199

E.2/ 6.435 6.201

E.A/ 6.454 6.173

0.4 E.0/ 6.227 6.096

E.2/ 6.233 6.102

E.A/ 6.242 6.083

0.0 E.0/ 5.985 5.985

E.2/ 5.993 5.993

E.A/ 5.983 5.983

�0.4 E.0/ 5.687 5.868

E.2/ 5.688 5.869

E.A/ 5.657 5.879

�0.8 E.0/ 5.297 5.752

E.2/ 5.260 5.715

E.A/ 5.174 5.759

�1.0 E.0/ 5.046 5.698

E.2/ 4.958 5.610

E.A/ 4.775 5.690

To illustrate the convergence of OM for the system with several degrees of
freedom, the calculation of the energy spectrum of CQAO is presented below. A
concise description of OM algorithm has been done in the Chap. 2, and here we
make a short outline of it. The following Schrödinger equation has to be resolved:

OH j�NMi D ENMj�NMi (5.40)

with Hamiltonian (5.18), and eigenvectors in the form:

j�NMi D jN;M i C
X

K;L6DN;M
C KL

NMjK;Li: (5.41)

Here jN;M i are the eigenvectors obtained from the Eq. (5.20). The operators Ona;b
and their eigenfunctions depend on the transformation parameters and on quantum
numbers N;M when the transition to the secondary quantization is performed, as
follows from the Eqs. (5.21)–(5.24). As a result, the state vectors j�.0/

NMi ' jN;M i
in OM zeroth approximation are non-orthogonal. However, this non-orthogonality
is not related to the expansion (5.41), which uses the fully orthogonal basis unique
for various quantum numbersN;M .
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Table 5.3 The energy of the
collective states E˙

13 for
CQAO . OH D
Op2x C Op2y Cx2Cy2CCx2y2/

C E E
C

13 E�

13

0.1 E.0/ 10:3495 10:5943

E.2/ 10:3440 10:5888

E.A/ 10:3439 10:5883

1.0 E.0/ 12:4137 13:5932

E.2/ 12:3339 13:5134

E.A/ 12:3323 13:4505

5.0 E.0/ 16:8013 19:3336

E.2/ 16:5758 19:1080

E.A/ 16:5965 18:7387

20 E.0/ 24:1062 28:4908

E.2/ 23:6777 28:0622

E.A/ 23:7604 27:1386

100 E.0/ 39:1704 46:9931

E.2/ 38:3734 46:1960

E.A/ 38:582 44:249

1,000 E.0/ 82:5140 99:6842

E.2/ 80:7340 97:9042

E.A/ 81:29 93:2

5,000 E.0/ 140:5087 169:9703

E.2/ 137:4448 166:9065

E.A/ 138:39 158:8

The expansion (5.41), being substituted into (5.40), results in the infinite alge-
braic system of non-linear equations for the energyENM and coefficients CKL

NM , and
with the normalization condition corresponding to Brillouin-Wigner perturbation
theory (Sect. 1.3):

hN;M j�NMi D 1:

Assuming the Hamiltonian (5.19) of OM zeroth approximation as a principal
contributor into exact eigenvalue, the equations above can be solved by using simple
iteration procedure, where the operator OV D OH � OH0 is considered as a small value.
This procedure is expressed through the following recurrent equations:

E
.s/
NM D E

.0/
NM C

X

K;L6DN;M
C KL

NM.s � 1/hN;M j OV jK;LiI

C KL
NM.s/ D ŒE

.s/
NM � hK;Lj OH0jK;Li��1

fhN;M j OV jK;Li C
X

P;Q 6DN;M
hN;M j OV jP;QiC PQ

KL .s � 1/g; (5.42)
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Table 5.4 The convergence of the iterations E.s/
NM for eigenvalues of CQAO � D 0I˝ D 1IA D

BIC D �A

A 0.1 0.1 1.0 1.0 10 10

� 1.0 �1.0 1.0 �1.0 1.0 �1.0

E
.0/
00 1.152760 1.085516 1.765877 1.492155 3.108030 2.770058

E
.8/
00 1.150188 1.081282 1.724184 1.443776 3.301210 2.557740

E
.A/
00 1.1502 1.0813 1.7242 1.4438 3.3012 2.5577

E
.0/
10 2.419662 2.231765 3.835767 3.105372 7.610856 5.924771

E
.8/
10 2.414341 2.221196 3.830324 3.066649 7.527043 5.487183

E
.A/
10 2.4143 2.2112 3.8304 3.0666 7.5271 5.4881

where s D 0; 1; 2 : : : and the initial recurrences are:

C KL
NM.0/ D 0I E

.0/
NM D E

.OM/
NM :

In a standard perturbation theory, the eigenvalues are calculated as a sum of the
successive corrections obtained as a series over the power of selected parameter.
This series is usually divergent, also for anharmonic oscillator. In opposite, the OM
procedure calculates the energies and wave functions as the limits of the recurrent
sequences:

C KL
NM D lim

s!1C KL
NM.s/I

ENM D lim
s!1E

.s/
NM; (5.43)

which converge fast. The numerical data in the Table 5.4 shows that eight iterations
of the operator method find the eigenvalues with higher accuracy than ones found
in [8] by using more complicated algorithm.

In the conclusion of this section, we would like to discuss one more important
application of the operator method. As demonstrated for one-dimensional systems
in the Chap. 2, the optimal choice of the artificial parameters for the transition
to the secondary quantization is important for the uniform suitability of zeroth
approximation. However, in the iteration procedure these parameters influence the
speed and not the convergence of the successive approximations. This result valid
also for CQAO. The recurrent sequence (5.43) converges in complex space of the
parameters !1;2, which enables the combination of the operator method with the
method of complex rotation of coordinates used for the calculation of the energy
and the levels width of quasi-stationary states [11]. This problem occurs for the
negative values of the parameters A;B in Hamiltonian (5.18).

Table 5.5 shows the real parts E.s/
NM of the energy of quasi-stationary levels

and imaginary parts �
 .s/
NM=2 calculated using the Eq. (5.42) after s iterations. As

follows from the table, twelve OM iterations were sufficient to obtain six exact
digits, which is indeed a good accuracy at effective convergence speed.



5.3 Regular Perturbation Theory for Two-Electron Atoms 203

Table 5.5 Complex energy values ReE
.s/
NM � iImE

.s/
NM for quasi-stationary states of CQAO � D

0I˝ D 1IA D BIC D �A

A �0.1 �0.1 �0.2 �0.2 �0.4 �0.4

� 1.0 �1.0 1.0 �1.0 1.0 �1.0

ReE.10/00 0.753411 0.864702 0.719257 0.798733 0.752215 0.768634

ImE.10/00 0.159099 0.046916 0.379077 0.163381 0.642765 0.340915

ReE
.12/
10 1.439368 1.663981 1.458860 1.627066 1.596000 1.651425

ImE.12/10 0.571692 0.252742 1.070673 0.540111 1.646405 0.884010

5.3 Regular Perturbation Theory for Two-Electron Atoms

In spite of the long history of the two-electron atom in non-relativistic quantum
mechanics, the problem of the development of the effective and universal method for
the solution of the Schrödinger equation for such systems is still vital (for example,
[12]). This problem is of interest because it could be generalized as well for multi-
electron atoms due to the two-particle character of the Coulomb potential.

At present the best accuracy for calculating the energy levels of two-electron
atoms is achieved by means of the variational approach based on the special form of
a many parameter trial wave function (for example, [13,14]). However, this method
is difficult to apply for numerical analysis of multi-electron atoms. Therefore, a less
accurate variational approach with a trial wave function in the form of a product of
the one-particle wave functions, the Hartree–Fock (HF) method, is commonly used
in this case (cf., [15]). For example, the energy for the He atom (the 11S ground
state) calculated numerically via the HF method is EHF

0 D �2:86168 [15], which
differs from the more accurate variational result of ER

0 D �2:90372 [13, 14] on
the value of the correlation energy Ec D ER

0 � EHF
0 D �0:04204 (the Coulomb

system of units [2] is used in this section). At the same time a very simple analytical
approximation of the Coulomb potential with an equal effective charge for each
electron leads to Eeff

0 D �2; 84766 [2]. This means that the correlation energy is
more important than the effect of the self-consistent field Escf D EHF

0 � E
eff
0 D

�0:01402 taken into account in the HF approximation.
One can suppose that regular perturbation theory (RPT) on the basis of the

independent Coulomb wave functions for each electron will prove to be very
effective for taking into account the electron correlation. This basis corresponds to
the choice of the state vector by OM zeroth approximation for the considered system
(Chap. 3). However, in this case the calculation of the OM further approximations
is connected with the calculation of the slowly convergent sums of the two-
particle potential matrix elements over the whole spectrum of the intermediate
states. Therefore at present only the variational perturbation theory is used for the
estimation of these sums by means of a trial function [16]. Unfortunately it is also
difficult to generalize this method for the excited states of the two-electron atom and
for multi-electron atoms.
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The present section demonstrates that the sum over the intermediate states in
the second order RPT presented with the OM zeroth approximation basis can
be calculated in closed form through the two-particle Coulomb Green’s function
represented below analytically. This method is applied to both the ground and
excited states of the two-electron atom [17]. It is shown that the larger part of
the correlation energy proves to be taken into account just in the second order
approximation of RPT. Actually our purpose is not only the two-electron atom itself
but also development of the approach that could be generalized for calculation of
the correlation energy in multi-electron atoms and their interaction with external
fields. This approach is expected to be effective because the OM zeroth order
approximation allowed us to calculate characteristics of the multi-electron atoms
with rather good accuracy [18].

Let us consider the application of RPT for calculation of the ground state energy
of the two-electron atom with the following Hamiltonian:

OH D
X

iD1;2

�

�i

2
� Z

ri

�

C 1

jr1 � r2j : (5.44)

The potentials with the effective charge Ze can be used in order to separate the
OM zeroth-order Hamiltonian with the known spectrum:

OH0 D Op21
2

� Ze

r1
C Op22

2
� Ze

r2
I

E.0/
mn D �Z

2
e

2

�
1

.nC 1/2
C 1

.mC 1/2

�

I n;m D 0; 1; 2; : : : (5.45)

and the perturbation operator:

OV D �Z �Ze

r1
� Z �Ze

r2
C 1

jr1 � r2j : (5.46)

If the ground state is considered, the results for the energy in the zeroth and first-
order approximations of the RSPT series (Sect. 1.2) are calculated in a simple way
[2]:

E
.0/
0 D �Z2

e I E.1/
0 D �2Ze .Z �Ze/C 5

8
Ze: (5.47)

Let us consider the RSPT second-order correction for the same state:

E
.2/
0 D

X

�

X

�

0
ˇ
ˇ
ˇ

D

��
ˇ
ˇ
ˇ OV
ˇ
ˇ
ˇ 00

Eˇ
ˇ
ˇ

2

�Z2
e � E

.0/

� � E
.0/
�

: (5.48)
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Here �;� are the set of quantum numbers for electrons in the intermediate states
defined by the vectors j��i that are represented as the product of the Coulomb wave
functions including the continuous spectrum that gives important contribution to
the whole sum. The term corresponding to the ground state j00i D  0 .r1/ 0 .r2/

should be omitted in the sum. The expression (5.48) can be divided into two terms:

E
.2/
0 D 2

X

�¤0

ˇ
ˇ
ˇ

D

�0
ˇ
ˇ
ˇ OV
ˇ
ˇ
ˇ 00

Eˇ
ˇ
ˇ

2

�Z2e
2

� E�
C
X

�¤0

X

�¤0

ˇ
ˇ
ˇ

D

��
ˇ
ˇ
ˇ OV
ˇ
ˇ
ˇ 00

Eˇ
ˇ
ˇ

2

�Z2
e � E

.0/

� � E
.0/
�

� ˙1 C˙2: (5.49)

The first term can be calculated on the basis of the approach of [19] that was
used in the problem of the interaction of hydrogen-like atoms with external fields.
In this method, the sum over intermediate states is expressed analytically through
one-particle Coulomb Green’s function (CGF) and the ground state wave functions:

GE.r; r
0/ D

X

�

 �
� .r/ � .r

0/
E �E.0/

�

: (5.50)

In this case it leads to the following result:

˙1 D �2
Z

 �
0 .r1/ 

�
0 .r2/

X

�¤0

 �
�

�

r 0
1

�

 � .r1/

E �E.0/

�




OV .r1; r2/ 0.r2/ �
0 .r

0
2/

OV .r1 0; r2 0/ 0.r1 0/ 0.r2 0/dr1dr2dr1
0dr2

0 D

�2
Z

 �
0 .r1/  

�
0 .r2/

OV .r1; r2/ �
0 .r2/

QG�Z2e =2.r1; r1
0/ �

0

�

r2
0� 


OV .r1 0; r2 0/ 0.r1 0/ 0.r2 0/dr1dr2dr1
0dr2

0: (5.51)

Here QGE.r1; r 0
1/ is the reduced CGF:

QGE.r1; r1 0/ D GE.r1; r1
0/�  �

0 .r1/  0
�

r 0
1

�

E � E0
; (5.52)

which was calculated analytically in [20]. The total CGF is defined as the sum of
the series over the spherical harmonics Yl;ml .˝/ (for example, [21]):

GE
�

r ; r 0� D
X

l;ml

1

rr 0GE;l
�

r; r 0�Y �
l;ml

.˝/Yl;ml
�

˝ 0� I

GE;l
�

r; r 0� D �

Z


 .l C 1 � �/

 .2l C 2/

M�;lC1=2
�
2Z

�
r<

	

W�;lC1=2
�
2Z

�
r>

	

; (5.53)
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with � D Z=
p�2E; M ;W are the Whittaker functions [22], r< and r> are the

minimal and maximal values from r and r 0 accordingly.
Taking into account that  0 .r/ D  �

0 .r/ D R1;0.r/Y0;0.�; �/ (here R1;0.r/ D
2Z3=2e�rZ is the radial part, and Y0;0.�; �/ D 1p

4	
is the angular part), one finds as

the result of integration over the angular variables:

˙1 D �2
Z

R1;0 .r1/ R
2
1;0 .r2/

OV0.r1; r2/ QG�Z2e =2;0.r1; r1
0/R1;0

�

r1
0� 


R21;0
�

r2
0� OV0.r1 0; r2 0/r1r 0

1r
2
2 r

02
2 dr1dr2dr1

0dr2 0; (5.54)

with OV0 .r1; r2/ D � .Z �Ze/


1
r1

C 1
r2

�

C 1
r>

; and r> is the maximal value from
r1, r2.

Let us use the analogous approach in order to calculate the second term in
Eq. (5.51), considering the identity:

1Z

�1

d�

.a C i�/.b � i�/ D � 2	

a C b
I a < 0; b < 0: (5.55)

The summations over the quantum numbers of different electrons in ˙2 can be
separated:

�
1Z

�1

d�

2	

X

�;�¤0

D

��
ˇ
ˇ
ˇ OV
ˇ
ˇ
ˇ 00

E D

00
ˇ
ˇ
ˇ OV
ˇ
ˇ
ˇ��

E




�Z2e
2

�E.0/

� C i�
� 


�Z2e
2

� E
.0/
� � i�

� : (5.56)

and each of the summations can then be calculated by means of CGF’s after their
analytical continuations to the complex values E D �Z2

e =2˙ i�:

˙2 D �
1Z

�1

d�

2	

Z

 0 .r1/  0 .r2/  0
�

r1
0� 0

�

r2
0� OV .r1; r2/ 


QG�Z2e =2Ci�.r1; r1
0/ QG�Z2e =2�i�.r2; r2

0/ OV .r1 0; r2 0/dr1dr2dr1
0dr2

0 (5.57)

The function

X

�;�¤0

j��i h��j
E � E� � E�

D 2 QGE=2.r1; r1 0/ 0 .r2/ 0
�

r2
0� �

� 1

2	

1Z

�1
QGE=2Ci�.r1; r1 0/ QGE=2�i�.r2; r2 0/d� (5.58)
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is the two-particle reduced CGF and

X

�;�

j��i h��j
E � E� � E�

D � 1

2	

1Z

�1
GE=2Ci�.r1; r1 0/GE=2�i�.r2; r2 0/d� (5.59)

is the total two-particle CGF that is the result of convolution of two one-particle
CGF’s [17, 23].

The one-particle part �.Z �Ze/=r1 � .Z �Ze/=r2 of the perturbation operator
doesn’t contribute to (5.57) because of the orthogonality of the wave functions. Then
Eq. (5.57) has the following form after integration over the angular variables:

˙2 D �
1X

lD0

1

2l C 1

Z 1

�1
d�

2	

Z 1

0

dr1dr2dr
0
1dr

0
2 


R1;0 .r1/R1;0 .r2/R1;0
�

r 0
1

�

R1;0
�

r 0
2

� rl<

rlC1>

r 0l
<

r 0lC1
>




QG0
�Z2e =2Ci�;l .r1; r1

0/ QG0
�Z2e =2�i�;l .r2; r2

0/r21 r22 r 02
1r

02
2: (5.60)

Here the radial part of the reduced CGF is calculated as follows:

QG0
�Z2e =2˙i�;l

�

r; r 0� D
(

G�Z2e =2˙i�;0 .r; r
0/˙ rr 0  0.r/ 0.r 0/

i�
; l D 0

G�Z2e =2˙i�;l .r; r
0/ ; l > 0

: (5.61)

The second order correction depends analytically on the effective charge. The
denominator in Eq. (5.49) is represented in the form E

.0/
0 � E

.0/
n D Z2

e .�0 � �n/,
where �0 and �n are the values corresponding to Ze D 1. The perturbation operator
is written in the form:

OV .r1; r2/ D � .Z �Ze/ V1.r1; r2/C V2 .r1; r2/ ;

V1 D .1=r1 C 1=r2/ IV2 D 1= jr1 � r2j : (5.62)

If the scale variables x1;2 D Zer1;2 are used for integration in matrix elements, we
find that

E
.2/
0 D �a .Z �Ze/2 C b .Z �Ze/� c: (5.63)

Thus, only the parameters a, b, c have to be calculated numerically, which don’t
depend on Z and Ze . When calculating a and b, the integration over r2 and r 0

2 in
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Eq. (5.58) can be performed analytically and numerical integration is only necessary
over two variables:

a D �8
Z

e�x1�x0

1 QG� 1
2 ;0

�

x1; x
0
1

�

dx1dx0
1I (5.64)

b D 16

Z

e�x1�3x0

1




e2x
0

1 � 1 � x0
1

� QG� 1
2 ;0

�

x1; x
0
1

�

dx1dx0
1I (5.65)

c D �8
Z
�

e2x1 � 1 � x1
� 


e2x
0

1 � 1 � x0
1

�

e�3x1�3x0

1


 QG� 1
2 ;0

�

x1; x
0
1

�

dx1dx0
1 � 1

2	

1X

lD0

1

2l C 1

1Z

�1
d�

Z

16e�x1�x2�x0

1�x0

2


 QG0�1=2Ci�;l
�

x1; x
0
1

� QG0�1=2�i�;l
�

x2; x
0
2

� xl<

xlC1>

x0l
<

x0lC1
>

x1x2x
0
1x

0
2fd4xgI

fd4xg D dx1dx2dx0
1dx0

2: (5.66)

The values a D 1 and b D 5=8 are found with an accuracy of 10�8. The
most complicated task is the calculation of the expression in Eq. (5.60) that delivers
the coefficient c in Eq. (5.64). The sum over l is found to converge better than
P1

lD0 1=l3 and c was calculated as 0:15759 with an accuracy 	 3 � 10�5. Thus,
the first three terms of RPT lead to the following result for the ground state energy:

E
.0/
0 C E

.1/
0 C E

.2/
0 D �Z2 C 5

8
Z � 0:15759: (5.67)

This result does not depend on the effective charge and it fits well the result of the
variational PT [24], for example, for helium:

ERPT
0 � �2:90759I E D ER

0 � ERPT
0 � 0:00387; (5.68)

which means that RPT converges rather quickly and about 90 % of the correlation
energy is taken into account in the second order approximation.

5.4 Energies of the Excited States

Let us now apply RPT to the low excited states (21S and 23S ) of He-like system
with configuration .1s/1.2s/1. If the Hamiltonian OH0 is chosen in the form (5.45)
with the same effective charge for both electrons, the degeneracy of the states
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with permutation of electrons should be taken into account in the zeroth order
approximation:

ˇ
ˇ
ˇ 

.0/

˙
E

D 1p
2
Œ 0 .r1/  1 .r2/˙  1 .r1/  0 .r2/� D

D 1p
2
Œj01i ˙ j10i� ; (5.69)

where j ˙i are the para- and orthosymmetric states, respectively. Zeroth order
approximations for both states are defined by the following formula that replicates
the result in [2]:

E
.0/

˙ D �5
8
Z2˙I Z˙ D Z � 4

5
.K ˙ I /I ZC D 1:8145;Z� D 1:8497;

E
.0/
C D �2:0578;E.0/� D �2:1383: (5.70)

Here, the effective charges were calculated from the condition that the RPT first

order correction E.1/

˙ D
D

 
.0/

˙
ˇ
ˇ
ˇ OV
ˇ
ˇ
ˇ 

.0/

˙
E

should be equal to zero [25] and the

Coulomb integrals are calculated in the usual way:

K D
Z
 �
0 .x1/ 

�
1 .x2/ 0 .x1/  1 .x2/ dx1dx2

jx2 � x1j D 17

81
I

I D
Z
 �
0 .x1/ 

�
1 .x2/ 0 .x2/  1 .x1/ dx1dx2

jx2 � x1j D 16

729
: (5.71)

Following the same ideas as for the ground state, one can write the RSPT second
order correction in the following form:

E
.2/

˙ D .Z �Z˙/2 AC .Z �Z˙/ .B ˙B/C .C ˙C/ ; (5.72)

and after the integration over the angular variables:

A D �
Z �

4e�x1�x0

1 QG� 1
2 ;0

�

x1; x
0
1

�C

1

8
e� 1

2 x1� 1
2 x

0

1 .x1 � 2/.x0
1 � 2/ QG� 1

8 ;0

�

x1; x
0
1

�
�

dx1dx0
1I (5.73)

B D
Z

e�x1�2x0

1




�8 � 8ex0

1 � 6x0
1 � 2x02

1 � x03
1

�




QG�1=2;0
�

x1; x
0
1

�

dx1dx0
1 C 1

4

Z

e� 1
2 x2� 5

2 x
0

2 .x2 � 2/ �x0
2 � 2
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.e2x
0

2 � x0
2 � 1/ QG�1=8;0

�

x2; x
0
2

�

dx2dx0
2I
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B D � 4

27

Z

e�x1�2x0

1
�

3x03
1 � 4x21 � 4x0

1

� QG�1=2;0
�

x1; x
0
1

�

dx1dx0
1

� 4

27

Z

e� 1
2 x2� 5

2 x
0

2 .x2 � 2/
�

2x0
2 C 3x02

2

� QG�1=8;0
�

x2; x
0
2

�

dx2dx0
2I (5.74)

C D �Cj00i �
Z

e� 5
2 x1� 5

2 x
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1

�
1

8
.x1 � 2/

�
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1 � 2� �e2x1 � 1 � x1

� 




e2x
0

1 � 1 � x0
1

�

� 32

729
x1x

0
1.2C 3x1/.2C 3x0

1/

�

QG� 1
8 ;0

�

x1; x
0
1

�

dx1dx0
1 �

1

2	

1X

lD0

1
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1� x2
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2
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x0lC1
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� QG0
� 5
16�i�;l

�

x2; x
0
2

�

x1x2x
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1 C 3x02
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QG0
� 5
16Ci�;l

�

x1; x
0
1

� QG0
� 5
16�i�;l

�

x2; x
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�

x1x2x
0
1x
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2fd4xgI

QG0�5=16˙i�;l
�

x; x0� D
(

G�5=16˙i�;0 .x; x0/˙ xx0  0.x/ 0.x0/

� 3
16	i� ; l D 0

G�5=16˙i�;l .x; x0/ ; l > 0
I

Cj00i D 8

3

ˇ
ˇ
ˇ
ˇ

�

00

ˇ
ˇ
ˇ
ˇ

1

jx2 � x1j
ˇ
ˇ
ˇ
ˇ
01

�ˇ
ˇ
ˇ
ˇ

2

: (5.75)

After performing the numerical integration, we obtain A � � 5
8
, B � 17

81
, B �

16
729

, C D �0:08095, and C D �0:03354, and the second order RPT energy for
these states can be written as:

E21S D �5
8
Z2 C 169

729
� 0:11449; (5.76)

E23S D �5
8
Z2 C 137

729
� 0:04741: (5.77)

The dependence on the effective charge Z˙ vanishes in this case, just as for the
ground state. For helium we get �2:1716 for the 23S state and �2:1508 for 21S ,
which can be compared with the variational results [26] �2:175229 and �2:145973.
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It means that the correlation energies for the excited states are taken into account
with the same accuracy as for the ground state.

Equations (5.76) and (5.77) can also be compared with the known [27] Z�1
perturbation theory expansions:

E21S D �5
8
Z2 C 169

729
� 0:114510C : : : ;

E23S D �5
8
Z2 C 137

729
� 0:047409� : : : :

The two-particle Coulomb Green’s function found in this chapter allows to
fulfil in the closed form the summation of the transition matrix elements from the
electron-electron interaction operator over all intermediate states and to develop
RPT on this basis. The efficiency of this approach is analyzed when calculating the
second order approximation for the energies of two-electron atoms. In this particular
case, the low level energies were calculated by other methods with essentially higher
accuracy. However the further applications of RPT for higher order approximations,
multi-electron systems and analysis of the interaction between atom and external
fields are also possible. Let us consider briefly several examples in order to show
qualitatively how to extend the method for these cases. The detailed analysis of
such system is out of the framework of this book devoted mainly to the basics of
OM.

Firstly, let us show how to calculate the further terms of the RPT series. If
standard formulas of the perturbation theory [2] are used with the operator (5.46)
the third order correction to the ground state energy can be represented in the form
analogous to (5.63) with the same scaling transformation:

E
.3/
0 D a1Ze C .b1 � 2a1Z/C a1Z

2 � b1Z � c1

Ze
: (5.78)

Here the coefficients a1; b1; c1 are expressed in a closed form by means of the two-
particle Coulomb Green’s functions with the effective chargeZe D 1 and should be
calculated numerically. The value E.3/

0 can be minimized relatively to Ze that leads
to the following expression:

E
.3/
0 D 2

q

a21Z
2 � a1b1Z � a1c1 C b1 � 2a1Z; (5.79)

which shows that the RPT successive terms are not reduced to the series over Z�1
and it can be useful for analysis of the singularity of the function E0.Z/ [16].
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The method described above can be also generalized for many-electron atoms.
As for example, Hamiltonian of a three-electron atom can be divided into zeroth
order Hamiltonian OH0 and the perturbation operator OV in the following way:

OH0 D
3X

iD1

Op2i
2

�Z.1/
e

�
1

r1
C 1

r2

	

� Z
.2/
e

r3
I

OV D �.Z �Z.1/
e /

�
1

r1
C 1

r2

	

� Z �Z.2/
e

r3
C

3X

iD1;j¤i

1
ˇ
ˇr i � rj

ˇ
ˇ
; (5.80)

with different effective charges Z.1;2/
e for internal and external shells. In the

zeroth order approximation, the electrons are considered as distinguishable particles
without taking into account the exchange corrections. As shown recently [18], this
approach allows one to calculate physical characteristics of multi-electron atoms
and ions with rather good accuracy. In order to take into account the permutation
symmetry of the wave function, the projection operators (Sect. 2.8) can be used:

OT .s/ij D p
2
.1C s OPij/; s D .�1/Sij ; (5.81)

where OPij is the permutation operator and Sij is the spin of the electron pair.
The following equation for the wave function �0.r1; r2; r3/ of the three electron

atom ground state can be considered instead of the Schrödinger equation from
Sect. 2.8:

f OH �E0g.1 � P13/.1C P23/ 0.r1; r2; r3/ D 0I

�0.r1; r2; r3/ D 1

2
.1 � P13/.1C P23/ 0.r1; r2; r3/: (5.82)

The wave function  0.r1; r2; r3/ is calculated by means of RPT with the trans-
formed perturbation operator but without additional symmetrization:

OVR.E0/ D OV .1C OP /C . OH0 � E0/ OP I OP D P23 � P13 � P13P23: (5.83)

In this representation, the exchange and correlation corrections are taken into
account in the RPT series simultaneously and all sums over the intermediate states
are reduced to the two-particle Coulomb Green’s functions.
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The RPT can be also useful for the analysis of the Rydberg states of helium in
order to take into account the polarization effects [28]. In this case Hamiltonian of
the system in the scaled variables has the following form [28]:

OH0.r/ D �
�

r2
r C 4

r

	

I OH0.x/ D �
�

r2
x C 2

x

	

I

OV .x; r/ D 2

jx � rj � 2

x
� 2m

MHe Cm
r rr x: (5.84)

In the RPT second order, the energy shift  of the Rydberg level E.1sNL/ is
represented in a closed form in terms of the reduced Coulomb Green’s functions:

 D �
1Z

�1

d�

2	

Z

 0 .r/ �
�
NLM .x/

OV .r ;x/ QG�4Ci�.r ; r 0/ 


QG�1=N2�i�.x;x 0/ OV .r 0;x 0/ 0
�

r 0��NLM
�

r2
0� drdxdr 0dx 0: (5.85)

This quantity can be calculated numerically without the expansion of the
integrand in a formal power series over OH0.x/= OH0.r/ as in the paper [28].
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Chapter 6
Two-Dimensional Exciton in Magnetic Field
with Arbitrary Strength

A two-dimensional exciton in a magnetic field has been of great interest to both
theoretical and experimental researchers for many years [1–3] and continues to be
after several new and interesting physical effects discovered in recent years [4–7].
The energy spectrum and wave function of exciton in magnetic field, therefore, need
to be calculated with increasing precision. Since the 1990s, the perturbation method,
the variational method and some other numerical methods have been employed
to calculate the energy of this system in weak and strong magnetic fields [1, 3].
The solution of the problem for a medium magnetic field was calculated using
extrapolation (see [3] and references therein).

In the last decade, however, solving the problem with higher precision was
preferred. In the work [8], the problem was solved using the mixed-basis variational
method in combination with the shifted 1/N method, while in the work [9],
the asymptotic iteration method was employed. Both of these methods provided
solutions with a precision of up to seven decimal places for the ground state 1s
and the excited states 2p�, 3d� only. Numerical results for higher excited states
have not been obtained up till now. The increase of the precision and application
of these methods to higher excited states are not easy and are inefficient in terms
of computing resources. Therefore, the development of a new method to calculate
energy and wave functions for not only the ground state but also other high excited
states with any given precision is of certain interest for theoretical physics.

In this chapter, we will use the operator method described in Chap. 2 to obtain
exact numerical solutions of the Schrödinger equation for a two-dimensional exciton
in a constant magnetic field of arbitrary strength. The operator method is applicable
to non-perturbation problems that allows considering the problem with arbitrary
external magnetic field intensity. Furthermore, the schemes of calculating the high-
order terms of corrections allow a finding the exact numerical solutions with a
given precision with a high convergence rate. Unfortunately, the operator method
cannot be applied directly to atomic systems because the expression of Coulomb
interaction, which contains coordinates in the denominator, cannot be calculated
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using algebraic transformations of the creation and annihilation operators. We will
overcome this difficulty by using the Levi-Civita transformation [10]. According
to the work [11], a two-dimensional exciton problem through the Levi-Civita
transformation is equivalent to a harmonic oscillator problem. This connection
makes it possible to obtain the wave functions of a two-dimensional exciton in an
algebraic form which is very convenient for calculation. This leads us to the use
of the Levi-Civita transformation to transform the problem of a two-dimensional
exciton in magnetic field into that of an anharmonic oscillator in order to apply the
operator method. The obtained results are also interesting in the meaning that the
operator method can be applied to other specific problems of interest in recent years
for two-dimensional atomic systems, such as those mentioned in [12, 13].

The special point in the application of the operator method for solving the
Schrödinger equation in this chapter is that it transforms the problem into a very
simple problem of an anharmonic oscillator. Hence we think about using it to
find approximate analytical solutions with high precision uniformly stable over the
whole range of magnetic field strength. As mentioned in the previous chapters,
we can use the zeroth-order approximation of the operator method as analytical
solutions. These solutions are pretty precise in weak and medium magnetic fields.
However, their precision decreases dramatically in strong magnetic field. In this
chapter, we will improve the calculations by adding to the Schrödinger equation the
component of the wave functions representing the asymptotic behavior in a region of
strong magnetic field. In this asymptotic component, we also introduce a parameter
which is used to significantly improve the precision of our analytical solutions.

The results presented in this chapter have been reported in the papers [14–16].

6.1 The Schrödinger Equation through the
Levi-Civita Transformation

In this section, the Levi-Civita transformation [10, 11] is used to transform the
Schrödinger equation of a two-dimensional exciton in a magnetic field into that
of a two-dimensional anharmonic oscillator. For a two-dimensional exciton in a
magnetic field we consider the following Schrödinger equation written in the atomic
units:

OH �.r/ D E �.r/; (6.1)

OH D �1
2

�
@2

@ x2
C @2

@ y2

	

�1
2
i �

�

x
@

@y
� y

@

@x

	

C1

8
�2
�

x2 C y2
��Z

r
: (6.2)

Here, the effective Rydberg constant: R� D m�e4=16	2"02„2 is an energy unit; the
coordinates are measured in unit of the effective Bohr radius: a� D 4	"0 „2=m�e2
and the dimensionless parameter � is defined by the formula � D „!c=2R� with
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the cyclotron frequency !c D eB=2	m� and the magnetic field intensity B; m�; "
are the electron effective mass and the static dielectric constant respectively; Z is
the charge of the hole, which equals 1 in this case to compare the obtained results
with those in [8,9]. A wide range of � covering both weak and strong magnetic field
regions is considered.

We will now consider the Eqs. (6.1) and (6.2) in another space which is more
convenient for calculation through the Levi-Civita transformation:

�
x D u2 � v2;
y D 2 u v:

(6.3)

The transformation (6.3) connects the two real two-dimensional spaces .x; y/
and .u; v/. We can easily prove the following equalities:

dx dy D 4.u2 C v2/ dudv; r D
p

x2 C y2 D u2 C v2; (6.4)

which will be used in the following calculation.
From Eq. (6.4) we see that the Jacobian of the transformation (6.3) is not a

constant but is instead 4.u2 C v2/, so it will appear as a weight in the equation
for calculating the scalar product of two state vectors when transforming from the
.x; y/ space to the .u; v/ space. This means that if a certain operator OK is Hermitian
in the .x; y/ space then the operator QK D 4.u2 C v2/ OK is also Hermitian in the
.u; v/ space. Hence, in order to ensure that the Hamiltonian is Hermitian through
the transformation (6.3), we need to rewrite Eq. (6.1) as follows:

r. OH � E/� .r/ D 0:

In the .u; v/ space, this equation reads:

QH � .u; v/ D Z� .u; v/ ; (6.5)

with the Hamiltonian:

QH D �1
8

�
@2

@u2
C @2

@v2

	

�



E � �

2
OLz

�

.u2 C v2/ C �2

8
.u2 C v2/3: (6.6)

We see in Eqs. (6.5) and (6.6) an interchange of Z and E in the role of the
eigenvalue. The energy E is no longer the eigenvalue but is instead a parameter,
while Z becomes the eigenvalue of Eq. (6.5). However, we can still solve the
Schrödinger equation to find E when keeping Z D 1. Furthermore, in the
Hamiltonian (6.6) there is also the operator OLz which is the orbital angular
momentum operator. Because the system under investigation is two-dimensional,
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this operator is also its projection operator on the direction perpendicular to the
plane of motion. In the .u; v/ space, this operator reads

OLz D � i
2

�

u
@

@v
� v

@

@u

	

: (6.7)

We can also prove that OLz commutes with the Hamiltonian of Eq. (6.5). This means
that angular momentum is conserved in the problem under consideration. We will
use this conservation by constructing a basis set for solving Eq. (6.5) which contains
the eigenfunctions of the orbital angular momentum operator. Then we replace
OLz by its eigenvalue in the Hamiltonian (6.6). Now we can see that Eqs. (6.5)
and (6.6) represent a two-dimensional anharmonic oscillator. In other words, we
have transformed a two-dimensional exciton in magnetic field into an anharmonic
oscillator via the Levi-Civita transformation. This result allows the application of
the operator method to find the exact numerical solutions of Eqs. (6.5) and (6.6).

6.2 Solving the Schrödinger Equation by the Operator
Method

Here, we will present four basic steps of the operator method of solving the
Schrödinger equation (6.5).

Step 1 is writing the Hamiltonian in algebraic form:

QH
�
@

@u
;
@

@v
; u; v; �

	

! QH



Oa; Ob; OaC; ObC; �
�

; (6.8)

using the creation and annihilation operators defined as follows:

Oa.!/ D
r
!

2

�

� C 1

!

@

@��

	

; OaC.!/ D
r
!

2

�

�� � 1

!

@

@�

	

;

Ob.!/ D
r
!

2

�

�� C 1

!

@

@�

	

; ObC.!/ D
r
!

2

�

� � 1

!

@

@��

	

;

(6.9)

in which the complex coordinates are defined as: � D u C i v; �� D u � i v.
We can easily check that the operators (6.9) satisfy the well-known commutation
relations:

� Oa ; OaC� D 1;
h Ob ; ObC

i

D 1: (6.10)

In definition (6.9), we use complex coordinates for convenience in writing only.
The positive real number ! given in Eq. (6.9) is considered a free parameter whose
role in the method will be discussed in the next steps.
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Plugging (6.9) into (6.6) we obtain the algebraic form of the Hamiltonian as
follows:

QH. OaC; ObC; Oa; Ob; �/ D !2 � 2E Cm�

4!
. OaC Oa C ObC Ob C 1/

�!
2 C 2E �m�

4!
. OaC ObC C Oa Ob/

C �2

64!3
. OaC ObC C Oa Ob C OaC Oa C ObC Ob C 1/3:

(6.11)

We also have an algebraic form of the orbital angular momentum operator:

OLz D �1
2
. OaC Oa � ObC Ob/; (6.12)

which is a neutral operator.

Step 2 is splitting the Hamiltonian (6.12) into two components—the major
component and the perturbation one:

QH. OaC; ObC; Oa; Ob; �/ D QH0. OaC Oa; ObC Ob; �; !/C QV . OaC; ObC; Oa; Ob; �; !/: (6.13)

The separation (6.13) is done based on a completely different principle from that
of the perturbation method. Here, the major component contains only neutral oper-
ators which are products of equal numbers of creation and annihilation operators:

QH0. OaC Oa; ObC Ob; �; !/ D !2 � 2E Cm�

4!
. OaC Oa C ObC Ob C 1/

C �2

64!3
. OaC Oa C ObC Ob C 1/Œ. OaC OaC ObC Ob C 1/


. OaC Oa C ObC Ob C 4/C 6 OaC Oa ObC Ob C 2�: (6.14)

The rest is the perturbation term:

QV . OaC; ObC; Oa; Ob; �; !/ D �!
2 C 2E �m�

4!
. OaC ObC C Oa Ob/

C �2

64!3

�

. OaC ObC/3 C . Oa Ob/3 C 3 OaC ObC




OaC Oa C ObC Ob C 1
�2

C3. OaC ObC/2



OaC OaC ObC Ob C 1
�

C 3



OaC OaC ObC Ob C 1
�

. Oa Ob/2

C3. OaC ObC/2. Oa Ob/C 3 OaC ObC. Oa Ob/2 C 3



OaC OaC ObC Ob C 1
�2 Oa Ob
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C9 OaC ObC




OaC OaC ObC Ob C 1
�

C 9



OaC OaC ObC Ob C 1
�

Oa Ob

C6. OaC ObC/2 C 6. Oa Ob/2 C 6 OaC ObC C 6 Oa Ob
i

: (6.15)

We see that the operator QH0. OaC Oa; ObC Ob; �; !/ commutes with the operators OaC Oa
and ObC Ob, hence its exact solutions are the wave functions of the harmonic oscillator
described by these operators. Furthermore, notice that although the Hamiltonian
of the system does not depend on the free parameter !, the split components
QH0. OaC Oa; ObC Ob; �; !/ and QV . OaC; ObC; Oa; Ob; �; !/ do. This means that we can adjust

the correlation between the major and the perturbation components by changing the
value of !.

Step 3 is finding the approximate zeroth-order energy and wave function using
the approximate Hamiltonian QH0. OaC Oa; ObC Ob; �; !/. This Hamiltonian contains
only neutral operators OaC Oa and ObC Ob, so its eigenfunctions have the following
form:

. OaC/j . ObC/k j0.!/i ; (6.16)

in which j , k are non-negative integers and the vacuum state j0.!/i is defined
from the equations:

Oa.!/ j0.!/i D 0; Ob.!/ j0.!/i D 0; (6.17)

and the normalization equation:

h0.!/ j 0.!/i D 1: (6.18)

As stated in Sect. 6.1, the angular momentum is conserved in the problem
under consideration. We will use this conservation by constructing a basis set
which contains the eigenfunctions of the orbital angular momentum operator OLz.
This operator in the algebraic form (6.12) is also a neutral operator, hence its
eigenfunctions are also in the form (6.16). Therefore, the wave function vectors
(6.16) are rewritten in normalization form as follows:

jn.m/i D 1
p

.n �m/Š.nCm/Š
. OaC/n�m. ObC/nCm j0.!/i ; (6.19)

in which the principal quantum numbers n are non-negative integers: n D
0; 1; 2; : : :, and the magnetic quantum numbers m are integers satisfying the
condition �n � m � n. Furthermore, we use the notation n D nr C jmj in which
nr D 0; 1; 2; : : : are radial quantum numbers.
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Thus we have the approximate zeroth-order wave function corresponding to the
state of principal quantum number n and the magnetic quantum numbersm:

ˇ
ˇ n.m/

˛.0/ D jn.m/i : (6.20)

Now we let the Hamiltonian (6.14) act on the wave function (6.20) and consider
Eq. (6.5). As a result, we obtain the approximate zeroth-order energy:

E.0/ D � 2!Z

2nC 1
C 1

2
!2 C �2

16!2
.5n2 C 5n� 3m2 C 3/C 1

2
m�: (6.21)

Here the free parameter is determined from the condition @E.0/=@! D 0, which
leads to the following equation:

� 2Z

2nC 1
C ! � �2

8!3
.5n2 C 5n � 3m2 C 3/ D 0: (6.22)

A numerical analysis of the analytical solutions (6.21) will be given in the next
section as a result.

Step 4 is calculating high-order corrections to obtain exact numerical solutions.
In principle, we may use various schemes, e.g. the perturbation theory scheme
for calculating high-order corrections in order to obtain the energy and the wave
function with higher precision. If that scheme leads to a result that converges to a
certain value with any given precision then we have the exact numerical solution.
In this chapter, we will propose an iteration scheme to calculate the energy and
wave function with a given precision.

For convenience we rewrite Eqs. (6.5) and (6.6) as follows:

. QHR � E QR/ j i D 0; (6.23)

in which the operator QHR and QR takes the following forms:

QHR D !2 Cm�

4!
. OaC OaC ObC Ob C 1/� !2 �m�

4!
. OaC ObC C Oa Ob/

C �2

64!3
. OaC ObC C Oa Ob C OaC OaC ObC Ob C 1/3 � 1 ; (6.24)

QR D 1

2!
. OaC ObC C Oa Ob C OaC Oa C ObC Ob C 1/:

We will use the basis set of wave functions (6.19) to construct the wave functions
of the problem at hands. The matrix elements of the operators (6.24) corresponding
to this basis set will be calculated through purely algebraic transformation. In
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fact, using the commutations (6.10) and Eqs. (6.17) and (6.18), we easily obtain
following formula:

OaC ObC jn.m/i D
p

.nC 1/2 �m2 jnC 1 .m/i ;
Oa Ob jn.m/i D

p
n2 �m2 jn � 1 .m/i ; (6.25)

. OaC OaC ObC Ob/ jn.m/i D 2n jn .m/i :
from which we calculate the matrix elements as follows:

HR
nn D hn.m/j QHR jn.m/i

D !2 �m�

4!
.2nC 1/C �2

32!3
.2nC 1/.5n2 C 5nC 3 � 3m2/ �Z;

HR
n;nC1 D hn.m/j QHR jnC 1.m/i D

p

.nC 1/2 �m2



�

�!
2 Cm�

4!
C 3�2

64!3
.5n2 C 10nC 6 �m2/

	

;

HR
n;nC2 D hn.m/j QHR jnC 2.m/i

D 3�2

64!3
.2nC 3/

p

.nC 1/2 �m2
p

.nC 2/2 �m2; (6.26)

HR
n;nC3 D hn.m/j QHR jnC 3.m/i

D �2

64!3

p

.nC 1/2 �m2
p

.nC 2/2 �m2
p

.nC 3/2 �m2;

Rnn D hn.m/j QR jn.m/i D 2nC 1

2!
;

Rn;nC1 D hn.m/j QR jnC 1.m/i D � 1

2!

p

.nC 1/2 �m2:

Besides (6.26), we can calculate other non-zero matrix elements using the
symmetry propertiesHR

nk D HR
kn, Rnk D Rkn.

We can write the exact wave function as a linear combination of the basic
functions (6.19):

ˇ
ˇ n.m/

˛ D jn.m/i C
C1X

jDjmj;j¤n
Cj jj.m/i ; (6.27)

and define the approximate wave function at the sth order approximation (sth
iteration loop) as:

ˇ
ˇ n.m/

˛.s/ D jn.m/i C
nCsX

jDjmj;j¤n
C
.s/
j jj.m/i ; (6.28)
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corresponding to the approximate energy E.s/. If lim
s!1C

.s/

k D Ck then the

approximate wave function (6.28) converges to the exact wave function (6.27). If
then we have E.s/ ! ET while s ! C1, we also have the exact energy. We will
use the notations for quantum states as in the work [8,9], e.g.: 1s, 2s, 2p�, 2pC, 3s,
3p�, 3pC, 3d�, 3dC, etc. The first digit stands for the state level nC 1, in which n
is the principal quantum number defined in (6.19); the letters symbolize the orbital
quantum numbers l D jmj: s corresponding to l D 0, p to l D 1, d to l D 2, f to
l D 3, g to l D 4, etc.; the ˙ sign is of the magnetic quantum numberm.

By implementing Eq. (6.28) into the Schrödinger equation (6.23), we obtain the
expression for the approximate sth order energy:

E.s/ D
HR

nn C
nCsP

kDjmj;k¤n
C
.s/

k HR
nk

Rnn C
nCsP

kDjmj;k¤n
C
.s/

k Rnk

: (6.29)

Here, the coefficients C .s/

k .k D jmj ; jmj C 1; : : : ; n � 1; nC 1; : : : ; nC s/ are
determined by a system of nC s � jmj linear equations:

nCsX

kDjmj; k¤n; k¤j

�

HR
jk � E.s�1/� C .s/

k D RnjE
.s�1/ �HR

nj ; (6.30)

in which j D jmj ; jmj C 1; : : : ; n � 1; nC 1; : : : ; nC s.
So, by substituting the solutions of Eq. (6.30) into Eq. (6.29) we obtain the energy

of the system at the sth iteration loop, which is called the sth order approximation
energy. Numerical results show that with appropriate choice of !, for the considered
problem we obtain a series of approximate energies

E.0/; E.1/; E.2/; : : : ; E.s/; : : : (6.31)

which rapidly converges to a value ET . We call them the exact numerical solutions
because their values can be obtained with any given precision. In this work, we
calculate these solutions with precision of up to 20 decimal places due to the
limitation of the default precision for real numbers in FORTRAN and the computing
speed of computer. However, this is an important progress. As we know, the
precision for real numbers in FORTRAN is limited to 15 decimal places. By
appropriate programming, we can increase this precision up to 50 decimal places.
In our final results for energies and wave functions, we require a precision of up
to 20 decimal places in order to avoid the accumulation of errors in calculating
procedure. Besides energy, the coefficients C .s/

k also converge rapidly so we obtain
not only exact numerical energy but also exact numerical wave functions.
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The parameter ! is chosen using the method described in the previous chapter.
In principle, this parameter does not affect the exact numerical results. However,
investigation shows that the convergence rate to the exact solutions depends
significantly on the choice of !. In this work, the equation @E.0/=@! D 0 provides
the first value !0 which is not the optimal value. For high excited states nr , such
a choice of ! even does not lead to convergence to exact values. We can scan to
find the optimal value of parameter around the first value of !0. The results in this
chapter reconfirm the conclusions of [17, 18] about the existence of the range of
parameter such that the convergence rate of (6.28) is highest.

6.3 Exact Numerical Solutions

Table 6.1 presents energies with precision of up to 20 decimal places for the ground
state 1s .n D m D 0/ and some excited states 2p�.n D 1;m D �1/; 3d�.n D
2;m D �2/. These states were calculated with the precision of up to seven decimal
places in [8, 9]. Here, the results in [8, 9] are not shown because all of these seven
places overlap with our results shown in Table 6.1. The energy of the 2pC.n D
1;m D C1/; 3dC.n D 2;m D C2/ states can be calculated from that of the
2p�; 3d� states based on the relation En.m/ D En.�m/ Cm� .

The energies with precision of up to 20 decimal places presented in Table 6.1 are
a new record presented for the first time in the paper [14]. By choosing the optimal
value of the free parameter, to obtain the ground state energy with seven decimal
places, we need s D 6 iterations loops for � 0 D 0:05 (weak magnetic field), s D 8

iteration loops for � 0 D 0:55 (medium magnetic field), s D 26 iteration loops for
� 0 D 0:95 (strong magnetic field); and to obtain the precision of 20 decimal places
we need s D 16; 35; 124 iterations loops for the three cases above, respectively. For
excited states, more iteration loops are required but not more than 300. Although the
results presented in Table 6.1 are with 20 decimal places, we did attempt to run the
program to get up to 50 decimal places for the ground state and some low excited
states. Hence, we conclude that the operator method applied in this chapter provides
numerical results with any given precision. In other words, they are exact numerical
solutions.

The wave function of the system in the form (6.28) is also obtained by calculating
the coefficients C .s/

k . The more iteration loops are carried out, the more coefficients
are obtained. These coefficients converge to a certain value, and we obtain the exact
numerical wave function. For example, for the ground state in weak magnetic field
� 0 D 0:05, when the energy is obtained with precision of 20 decimal places, the
obtained wave function has 18 coefficients C .15/

k , three of which are with precision
of 20 decimal places and the others with precision ranging from 1 to 19 decimal
places. Similarly, for the case � 0 D 0:55, there are 38 coefficients C .35/

k with
precision ranging from 1 to 19 decimal places. Furthermore, we can increase the
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Table 6.1 Exact energies for the ground state and some low-order excited states with different
values of magnetic field

� 0 1s 2p� 3d�

0:05 �1:99987017095990613170 �0:24474134557798881450 �0:11440510079734191774
0:10 �1:99942166507712501693 �0:26197520208978872077 �0:13025445178430606781
0:15 �1:99854256186645709957 �0:27410756889059385484 �0:13674173884597401955
0:20 �1:99707966222489033807 �0:28145662051014027268 �0:13659636693603053469
0:25 �1:99482091674920995739 �0:28409801197305611464 �0:13064401380817189943
0:30 �1:99146906712008245351 �0:28179705884272357348 �0:11888179385839621521
0:35 �1:98660128273873874036 �0:27398063451910408445 �0:10076026619266554000
0:40 �1:97960585091255737141 �0:25967324608666750763 �0:07521698217897997805
0:45 �1:96958003578721667516 �0:23736745684644382973 �0:04057485324928431054
0:50 �1:95515968324675916048 �0:20479038588298687027 0:00569412879010892499

0:55 �1:93422334282651768145 �0:15849200397641926789 0:06740516636374326600

0:60 �1:90335295328070946150 �0:09310153718673498788 0:15045496413924365797

0:65 �1:85679038695312423867 0:00008428907312278363 0:26432778727006523882

0:70 �1:78426176250820398205 0:13597809871739040778 0:42515253567577483784

0:75 �1:66598114826115218564 0:34214588246038558324 0:66251797890286951771

0:80 �1:45958713448989797632 0:67521872604493890722 1:03673987328882310035

0:85 �1:05902943085968226100 1:27112332610485384793 1:69141167638720390304

0:90 �0:12110157606243169047 2:55062439464316783261 3:06707775217066545341

0:95 3:23173503617812205039 6:70030514510251978855 7:42860734182398557718

These results are presented with 20 decimal places and overlap with the results after other authors
with seven decimal places obtained from the variational method combined with 1=N expansion
[8] and by the asymptotic perturbation method [9]. For comparison purpose, the magnetic field
strength is represented by � 0 D �=.� C 1/

precision of these coefficients up to 20 decimal places by running some more
iteration loops.

We notice that the states presented in Table 6.1 and considered in the works [8,9]
are special cases only. Indeed, they are 1s .n D 0; m D 0/, 2p� .n D 1; m D �1/,
3d� .n D 2; m D �2/ which correspond to the principal quantum number
n D jmj. It means the radial quantum number nr D 0 for all the states mentioned
above. All of them are the lowest states when the magnetic quantum numbers are
fixed, so they can be considered the ground states of a one-dimensional motion
remaining after the motion related to angular momentum is taken off. For these
states, the variational method works well but for states with nr ¤ 0, it does not. We
have not found any follow-up works of [8,9] on these states. Therefore, our success
in obtaining the exact solutions not only for the ground state but also for any excited
states corresponding to nr D 0 as well as nr ¤ 0 is a significant progress. The
computing programs are tested for excited states with principal quantum number of
up to n D 150. The exact energies for the states with the principal quantum number
of up to n D 4: 2s; 3s; 3p�; 4p�; 4d�; 4f �; 5d�; 5f �; 5g� are presented in
Tables 6.2, 6.3 and 6.4 for illustration. These data which are original and are
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Table 6.2 Energies of some excited states corresponding to different values of the magnetic field

� 0 2s 3s 3p�

0:05 �0:21728279396968785397 �0:05137115812285705179 �0:08036721744503109760
0:10 �0:20160591618074023247 0:01598790970267759145 �0:04916051442900800150
0:15 �0:17457048111136615243 0:10955543404170749556 0:00108637565485044813

0:20 �0:13546551574551668372 0:22721834540118963879 0:06738328574548576958

0:25 �0:08298007150252920818 0:37047446264365413831 0:14986742555393444603

0:30 �0:01502952750059654076 0:54292733023387127727 0:25028633092701018244

0:35 0:07142846360607761967 0:75013268675298689141 0:37170668580947103502

0:40 0:18070180520537274524 1:00000000000000000000 0:51867414992190953559

0:45 0:31887814627104300055 1:30366017149884873723 0:69769322374130095062

0:50 0:49467963883695179668 1:67697071075735877489 0:91810396914076738153

0:55 0:72091579831145684540 2:14309105414624009242 1:19360373208799551825

0:60 1:01705668872877975106 2:73703806534873385927 1:54495188613538814666

0:65 1:41405521488835508770 3:51419634203232951294 2:00503229789835964832

0:70 1:96407032991584636290 4:56741386886003820741 2:62903276273533536486

0:75 2:76203075990704173477 6:06476489650834377662 3:51694576840641184652

0:80 4:00000000000000000000 8:34434942653877459541 4:87008864382744499370

0:85 6:13177508892586718321 12:19997778752228732308 7:16153917283062994829

0:90 10:53825335361872298997 20:02986405533713661963 11:82192792999323245234

0:95 24:24854780554921085193 43:93175572792464946928 26:07692664470341686614

Table 6.3 Energies of some high excited states with n D 3 corresponding to different values of
the magnetic field

� 0 4p� 4d� 4f �

0:05 0:00090050861670000681 �0:03603819112188519016 �0:07763315014992853255
0:10 0:09390796453557639448 0:00747840526168139693 �0:08803520910560353969
0:15 0:21323373403753960833 0:06842568965737196928 �0:08888339654701696510
0:20 0:35668048473475479870 0:14447370643180047832 �0:08315384587850637174
0:25 0:52606940637774516311 0:23628341974950389743 �0:07160076440801957770
0:30 0:72533207396702501971 0:34594127952399409512 �0:05412267756001832601
0:35 0:96036057230843709310 0:47676457059152532284 �0:03006828179726522415
0:40 1:23944041995229360305 0:63351735049084262159 0:00173399981723935616

0:45 1:57415466587235095938 0:82292516365874272605 0:04308672404388300910

0:50 1:98093584143111358970 1:05458031287213984997 0:09667213220019815981

0:55 2:48370977153057734079 1:34249561828604384524 0:16650643696559374134

0:60 3:11856112568506923453 1:70785470976146371028 0:25876268139530569281

0:65 3:94243430849379882861 2:18414967307751588723 0:38332586831977878052

0:70 5:05058514254628752285 2:82749853910929518464 0:55694141965414866451

0:75 6:61507130462100771829 3:73942662403763270927 0:81021701467250590897

0:80 8:98122289598444673098 5:12403034105099778843 1:20531843995110106672

0:85 12:95785147539592703023 7:46015607265407629634 1:88968201934687586146

0:90 20:98177530017893504943 12:19329771792373821144 3:31375703786321820117

0:95 45:30314463505568435467 26:60790678762850209795 7:78159090037994763851
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Table 6.4 Energies of some excited states with n D 4 corresponding to different values of the
magnetic field

� 0 5d� 5f � 5g�

0:05 0:02905749316697708979 �0:01420058007237175099 �0:06007875519489516057
0:10 0:13341069872580500192 0:03570019722639813037 �0:06604657997486724854
0:15 0:26190026516127302629 0:10204170420617281261 �0:06292240231373530831
0:20 0:41356740099965750564 0:18308786847417280362 �0:05344145079515578704
0:25 0:59077510317782206889 0:27975368917130985634 �0:03821140930631437516
0:30 0:79776115680429092118 0:39427787158829185045 �0:01703067582967511760
0:35 1:04063336998574952266 0:53009357416698937372 0:01083372779566949526

0:40 1:32786142397127676506 0:69207101474623163562 0:04663124135459961939

0:45 1:67121288127923035467 0:88704788903212652389 0:09224854476563663044

0:50 2:08732965304714088906 1:12474823987081387279 0:15046790575342597724

0:55 2:60039856986566405608 1:41935251349090562787 0:22543362638168408645

0:60 3:24685460813888191684 1:79227191808221737000 0:32349322334645939986

0:65 4:08414376941622929138 2:27732643588718193308 0:45478350257101208093

0:70 5:20828847495739630265 2:93113687655407534814 0:63643631212786443537

0:75 6:79260902069767290808 3:85605806748978018262 0:89969714506691749633

0:80 9:18472403676149577875 5:25769124636313341999 1:30788909126295026871

0:85 13:19819451070249609938 7:61800718398620959057 2:01085156632785457493

0:90 21:28207427023502943214 12:39055080521797139007 3:46522653749514333096

0:95 45:73489523603524444325 26:89161351897346612252 7:99955272626774688799

presented for the first time in the paper [14] would be interesting for further
reference.

We also found an interesting result while analyzing data in Table 6.2. For the
case � 0 D 0:8, corresponding to � D 4, the energy of the 2s state is exactly equal
to 4. Similarly, for the 3s state and � 0 D 0:4, corresponding to � D 2=3, the energy
is exactly equal to 1. That means there are some values of magnetic field at which
exact analytical solutions of the problem can be derived. This detection needs to be
investigated in more details in another research.

The numerical results in the tables are also illustrated in Figs. 6.1 and 6.2.
We see that for magnetic field � > 0:1, the levels of energies corresponding to
the principal quantum numbers begin to disarrange. For example, 2s and 2pC
levels are higher than 3d� and 4f � levels; 3s and 3pC are higher than 4d�; 4f �
levels. That is because we use the principal quantum numbers of the Coulomb
problem which is reasonable only in weak magnetic field. In strong magnetic
field, Coulomb interactions are considered as a perturbation which eliminates the
degenerate Landau levels. Thus, in this case the principal quantum numbers must



228 6 Two-Dimensional Exciton in Magnetic Field with ArbitraryStrength
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Fig. 6.1 The dependence of energy on magnetic field strength for the states with principal
quantum number nD3: 1s; 2s; 2p˙; 3s; 3p˙; 3d˙; 4p˙; 4d˙; 4f ˙. We see that in strong
magnetic fields, the degenerated Landau levels split out due to Coulomb interaction although they
are still close to each other and are magnified in (a), (b), (c), and (d)

follow Landau levels in the problem of motion of electrons in a uniform magnetic
field. Our finding of exact solutions for highly excited states with principal quantum
number of up to hundreds allows investigation of not only the degenerate separation
of Landau levels but also quantum chaos effects. These are some suggestions for
further research.
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Fig. 6.2 Energy levels in
� 
 1 region of magnetic
field

6.4 Schrödinger Equation with Asymptotic Components

Figure 6.3 shows the energies of the system corresponding to the ground state and
some excited states 1s; 2s; 2p�; 3d�. The dotted line represents the results, which
can be considered analytical solutions, obtained with zeroth-order approximation
using Eqs. (6.20) and (6.21). The solid line represents the exact numerical results for
comparison purposes. These exact results are obtained from the iteration Eqs. (6.26)
and (6.27). On this figure, we see that the analytical solutions are pretty precise for
the ground and excited states in magnetic field region � � 1. In stronger magnetic
field, this precision decreases while the correlation between the energy levels stays
the same.

In order to obtain analytical solutions which are highly precise and are uniformly
suitable in the whole range of magnetic field, we need to consider the asymptotic
behavior of the wave function in strong magnetic field region. We can easily verify
that in strong magnetic field � >> 1, the solutions of Eqs. (6.1) and (6.2) take the
form:

	 e� 1
4 �.x

2Cy2/: (6.32)

Hence, we can find the solution of Eqs. (6.5) and (6.6) in the form �.u; v/ D
e�˛.u2Cv2/2 .u; v/ in which the parameter ˛ is considered as a second free param-
eter of the operator method. Here we have used the relation x2 C y2 D .u2 C v2/2

obtained from the Levi-Civita transformation. �.u; v/ can be considered the wave
function of the new equation as follows:

e�˛.u2Cv2/2 . QH �Z/ e�˛.u2Cv2/2 .u; v/ D 0: (6.33)
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Fig. 6.3 Energies obtained
from analytical equations are
compared with exact energies
of the system for the
1s; 2s; 2p�; 3d� states. For
the ground state, the
analytical solution is pretty
precise, while its error
increases for the excited
states in the region of strong
magnetic field

By this way, the asymptotic component e�˛.u2Cv2/2 is included in the Hamilto-
nian of the equation. We have multiplied this asymptotic component to the right side
of the operator to make the new Hamiltonian being Hermitian. Equation (6.33) can
be rewritten as follows:

e�2˛.u2Cv2/2 . OH �Z/  .u; v/ D 0; (6.34)

OH D �1
8

�
@2

@u2
C @2

@v2

	

� .E � 2˛ � m�

2
/.u2 C v2/

C �2 � 16˛2
8

.u2 C v2/3 C ˛.u2 C v2/

�

u
@

@u
C v

@

@v

	

: (6.35)

Note that Eqs. (6.5) and (6.6) describe a system in which the z-component of the
angular momentum is conserved. This conservation still holds when these equations
are transformed into (6.34) and (6.35) with the new wave function  .u; v/, which
can easily be checked by calculating the commutation of OH and OLz. We can also see

that the asymptotic operator e�˛.u2Cv2/2 commutes with OLz; therefore, if the wave
function � .u; v/ of Eqs. (6.5) and (6.6) is the eigenfunction of OLz: OLz .u; v/ D
m .u; v/ with the eigenvalues m D 0; ˙1; ˙2; ::, the same is applicable to the
wave function of Eqs. (6.34) and (6.35). We replace OLz by its eigenvalues in (6.34)
and (6.35) for this reason.
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The operators in Eqs. (6.34) and (6.35) can be written in terms of the annihilation
and creation operators as follows :

u2 C v2 D 1

2!
. OaC ObC C Oa ObC OaC Oa C ObC Ob C 1/ D 1

2!
. OMCC OM C ON C 1/;

@2

@u2
C @2

@v2
D 2! . OaC ObC C Oa Ob � OaC Oa � ObC Ob � 1/

D 2! . OMC C OM � ON � 1/; (6.36)

u
@

@u
C v

@

@v
D Oa Ob � OaC ObC � 1 D OM � OMC � 1;

OLz D �i
�

u
@

@v
� v

@

@u

	

D �1
2
. OaC Oa � ObC Ob/:

Here, the operators OM D Oa Ob; OMC D OaC ObC; ON C 1 D OaC Oa C ObC Ob C 1 are
defined for convenience in calculation. These operators commute with the orbital
angular momentum operator and make a closed algebra:

h OM; OMC
i

D ON C 1;
h OM; ON C 1

i

D 2 OM;
h ON C 1; OMC

i

D 2 OMC: (6.37)

Equations (6.34) and (6.35) can be rewritten in algebraic form as follows:

OA. OH �Z/ j i D 0; (6.38)

in which the Hamiltonian OH reads :

OH D �
�
!

4
C E

2!
� ˛

!
� m�

4!

	

. OMC C OM/

C
�
!

4
� E

2!
C ˛

!
C m�

4!

	

. ON C 1/

C�2 � 16˛2
64!3

. OMC C OM C ON C 1/3

C ˛

2!
. OMC C OM C ON C 1/. OM � OMC � 1/: (6.39)

The asymptotic operator in the equation is written via Fourier transformation as
follows:

OA D e�2˛.u2Cv2/2 D 1

2
p
2˛	

C1Z

�1
dk e� k2

8˛ e�ik.u2Cv2/
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in order to be represented in the normal form of the creation and annihilation
operators which allows algebraic calculation. This operator can be written in terms
of the operators OM; OMC; ON C 1 as follows:

OA D
r
�

	

C1Z

�1
dk e��k2 exp

� �ik

1C ik
OMC



 exp

�

. ON C 1/ ln
1

1C ik



exp

� �ik

1C ik
OM


; (6.40)

in which a new parameter is defined � D !2=2˛. For obtaining the normal form
(6.40) of OA, we apply the algebraic equations (6.37) in the following procedure.

Let us consider the exponential component

OS D exp



�ik . OMC C OM C ON C 1/
�

in the asymptotic operator and convert it into the normal form so that the annihilation
operators are on the right, the creation operators on the left and the neutral operators
in the middle. To do so, we first define � D ik which can be formally considered a
real number. We need to find the functions f1.�/; f2.�/; f3.�/ so that:

OS D exp



�� . OMC C OM C ON C 1/
�

D exp



f1.�/ OMC
�

exp



f2.�/ . ON C 1/
�

exp



f3.�/ OM
� (6.41)

with the boundary conditions:

f1.0/ D 0; f2.0/ D 0; f3.0/ D 0: (6.42)

The functions can be found by following three steps:

Step 1: Differentiating both sides of (6.41) with respect to � then multiplying
with the inverse operator OS�1 we obtain:

OMC C OM C ON C 1 D f 0
1.�/

OMC

Cf20.t/ exp



f1.�/ OMC� . ON C 1/ exp



�f1.�/ OMC�

Cf 0
3.�/ exp




f1.�/ OMC
�

exp



f2
0.�/ . ON C 1/

�


 OM exp



�f20.�/ . ON C 1/
�

exp



�f1.�/ OMC� :

(6.43)
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Step 2: Applying the well-known equation below:

exp

 OX

� OY exp



� OX
�

D OY C
h OX; OY

i

C 1

2Š

h OX;
h OX; OY

i i

C 1

3Š

h OX;
h OX;

h OX; OY
i i i

C : : :

and the commutation relations (6.37) on (6.43), we obtain the equation:

� OMC � OM � ON � 1 D f1
0.�/ OMC C f2

0.�/

 ON C 1 � 2f1.�/ OMC

�

C f 0
3.�/ exp

��2f20.�/
� 
 OM � f1.�/. ON C 1/C f 2

1 .�/
OMC� : (6.44)

Step 3: Equating the factors in front of the operators OMC; OM; ON C 1 we have
a system of differential equations that have exact solutions. By solving these
equations with the use of the boundary conditions (6.42), we arrive at the desired
functions:

f1.�/ D � �

1C �
; f2.�/ D � ln j1C � j ; f3.�/ D � �

1C �
;

which means we have determined the normal form of the operator as in (6.40).

6.5 Highly Accurate Analytical Solutions

For the approximate analytical solutions we need to plug the wave function (6.19)
into Eqs. (6.38) and (6.39) to obtain the approximate zeroth-order energyEnm.!; �/

depending on the two parameters � and !. These parameters are determined from
the notice that the exact solutions of the equation are independent of this parameter.
First, we will calculate the matrix elements of the operators OH and OA in the wave
function set (6.19) algebraically.

Using the commutation relations (6.37) of the operators OM; OMC; ON C 1 we
have the following results for matrix elements of the operator OH :

HnCs;n D hnC s .m/j OH jn .m/i

D
s

.nC s Cm/Š.nC s �m/Š

.nCm/Š.n �m/Š hnCs;n; s D 0; 1; 2; 3 (6.45)

Hn�s;n D hn � s .m/j OH jn .m/i

D
s

.nCm/Š.n �m/Š
.n � s Cm/Š.n � s �m/Šhn�s;n; s D 1; 2; 3
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in which

hnC3;n D �2

64!3
� !

16�2
;

hnC2;n D 3�2

64!3
.2nC 3/� .2nC 3/

3!

16�2
� !

4�
;

hnC1;n D �!
4

� 2E �m�

4!
� 3!

16�2
˛n C 3�2

64!3
˛n � !

2�
.nC 1/;

hn;n D .2nC 1/

�
!

4
� !

8�2
ˇn � 2E �m�

4!
C �2

32!3
ˇn

	

;

hn�1;n D �!
4

� 2E �m�

4!
� 3!

16�2
˛n�1 C 3�2

64!3
˛n�1 C !

2�
n;

hn�2;n D � 3!

16�2
.2n � 1/C 3�2

64!3
.2n � 1/C !

4�
;

hn�3;n D �2

64!3
� !

16�2
:

Here we use the following notations:

˛n D 5n2 C 10nC 6�m2; ˛n�1 D 5n2 C 1�m2; ˇn D 5n2 C 5nC 3� 3m2:

All other matrix elements of OH besides (45) are zero. For the operator OA we have
the results:

AnCs;n D hnC s.m/j OA jn.m/i

D
s

.nCm/Š.n�m/Š

.nC s Cm/Š.nC s �m/Š
anCs;n; s D 0; 1; 2; 3; : : : (6.46)

An�s;n D hn � s.m/j OA jn.m/i

D
s

.n �m/Š.nCm/Š

.n � s �m/Š.n � s Cm/Š
an�s;n; s D 0; 1; 2; 3; : : :

in which

anCs;n D
n�jmj
X

hD0

.nC s �m/Š.nC s Cm/Š

.hC s/ŠhŠ.n �m � h/Š.nCm � h/Š



nCŒs�
X

lD0

.�1/hClCŒsC1�.2nC s C 1/Š

.2l C fsg/Š.2nC 2 Œs� � 2l C 1/Š
I
hClCŒsC1�
2nCsC1 .�/;
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an�s;n D
n�s�jmj
X

hD0

.n � s �m/Š.n � s Cm/Š

.h � s/ŠhŠ.n �m � h/Š.nCm � h/Š



n�ŒsC1�
X

lD0

.�1/hCl�Œs�.2nC s C 1/Š

.2l C fsg/Š.2n� 2 Œs C 1� � 2l C 1/Š
I
hCl�Œs�
2n�sC1 .�/:

Here we use the notations fsg D 0; Œs� D s=2 if s is an even number, and
fsg D 1, Œs� D .s � 1/=2 if s is an odd number. Besides, the integral I qp .�/ is
defined as follows:

I qp .�/ D 2�p�q
p
	

C1Z

0

dk
e�k2k2q

.�C k2/p
: (6.47)

We can use partial integration to lower the power of positive integers p; q and then
convert it into the error integral e�erfc

p
� [19].

To calculate the approximate zeroth-order energy, we plug the wave functions
(6.19) into Eqs. (6.38) and (6.39) and use the explicit formulae of the matrix
elements (6.45) and (6.46). We obtain a formula of energy in the following form,
general for every state:

Enm.!; �/ D �1
2
m� C !2fnm.�/ � 2!Z gnm.�/C �2

32!2
hnm.�/: (6.48)

In (6.48) and from here on, we use the additional to ! parameter �. We note
that the functions f .�/, g.�/, h.�/ depend on � only. These functions are different
for each state; hence the indices of these functions in (6.48) are the characteristic
quantum numbers of particular states. In the following equations, however, we
neglect these indices for convenience. These functions have the following explicit
form:

f .�/ D
�

2.2nC 1/an;n � 2an;nC1 � 2an;n�1 � dn

8�2

� 1

2�
.an;nC2 C 2.nC 1/an;nC1 � 2nan;n�1 � an;n�2/

�


 Œan;nC1 C an;n�1 C .2nC 1/an;n�
�1 ; (6.49)

g.�/ D an;n

an;n�1 C an;nC1 C .2nC 1/an;n
;

h.�/ D dn

an;nC1 C an;n�1 C .2nC 1/an;n
;
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with

dn .�/ D an;n�3 C 3.2n � 1/an;n�2 C 3.5n2 C 1 �m2/an;n�1
C2.2nC 1/ˇnan;n C 3˛nan;nC1 C 3.2nC 3/an;nC2 C an;nC3:

The parameters !; � in (6.48) are determined from the following equations:

@E.!; �/=@! D 0; (6.50)

@E.!; �/=@� D 0: (6.51)

Equation (6.50) is obtained from the fact that the exact solutions of the equation are
independent of the free parameter. Although � looks like a variational parameter,
Eq. (6.51) is obtained by the same principle for Eq. (6.50). Indeed, both the
parameters � and ! define certain coordinate representation of the wave function
whose choice definitely does not affect on the exact energy of the system. That
leads to Eqs. (6.50) and (6.51) in the zeroth approximation.

After substituting (6.48) into (6.50) and (6.51) and rearranging, we obtain the
following equations for ! and �:

! D g.�/h0.�/ � 2h.�/g0.�/
2 .h.�/f .�//0

; (6.52)

�2

!3
D g.�/f 0.�/ � 2f .�/g0.�/

2 .h.�/f .�//0
: (6.53)

We see that the parameter ! can be eliminated from the equations that leads to
the analytical expressions of �.�/, Enm .�/, representing the dependence of energy
on the magnetic field strength via the parameter �. The explicit expressions of the
functions f .�/, g.�/, h.�/ given in (6.49) allow us to obtain explicit expressions of
energy for any excited states. Numerical analysis shows that the obtained analytical
expressions have high precision which is uniformly stable in the whole range of the
magnetic field � .

Results for the Ground State

The energy of the ground state is:

E .�; !; �/ D �2

16!2
��.1C �/C .3C 2�/�I.�/

.�1C I.�//

C!2 �2C I.�/

4� .�1C I.�//
C !Z

I.�/

� .�1C I.�//
; (6.54)
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in which ! can be written in terms of �:

! .�/ D Œ8� .1C �/� 2� .13C 8�/ I.�/

C ��3C 18�C 8�2
�

I 2.�/C 6I 3.�/
�


 Œ2 .�2C �/ �C .7 � 4�/ �I.�/
C�

1 � 5�C 2�2
�

I 2.�/C 2�I 3.�/
��1
: (6.55)

We can also write the magnetic field strength in terms of � as follows:

1

4!3
�2 D �

8�� 14�I.�/C .�3C 6�/I 2.�/C 2I 3.�/
�

��2


 Œ2 .�2C �/ �C .7 � 4�/ �I.�/ (6.56)

C �

1 � 5�C 2�2
�

I 2.�/C 2�I 3.�/
��1
:

Here, we use the function I.�/ defined as follows:

I.�/ D 2�p
	

C1Z

0

d�
e��2

�C �2
D p

	�e�erfc.
p
�/;

in which the function erfc.x/ is an error integral. So we obtain the explicit expression
for the energy of the ground state depending on the magnetic field strength in terms
of �. This energy can be rewritten as follows:

E.�/ D
h

128�2.1C �/2 � 16�2.42C 73�C 31�2/I.�/

C4�.�24C 274�C 473�2 C 180�3/I 2.�/

�4�.�99C 108�C 314�2 C 116�3/I 3.�/

C.18� 483�� 360�2 C 228�3 C 112�4/I 4.�/

C6.�9C 24�C 40�2 C 8�3/I 5.�/ C36.1C �/I 6.�/
�

.2�/�1


�2.�2C �/�C .7 � 4�/�I.�/C .1 � 5�C 2�2/I 2.�/C 2�I 3.�/
��2
:

(6.57)

Figure 6.4a representing Eq. (6.55) shows the dependence of the parameter !
on �. We see that ! takes values from 1.6 to 2.0 when � varies from 0.0 to 150.0
(which can be considered infinitely large). Figure 6.4b represents the dependence
of the magnetic field strength on the parameter �. This dependence is one-fold,
i.e. for each value of � there is only one value of � and from (6.57) we have one
corresponding value of energy. In other words, we have obtained the dependence
of the ground state energy on the magnetic field strength E.�/, which is shown in
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a b

Fig. 6.4 The dependence of ! and magnetic field strength � on �

a b

Fig. 6.5 Energies for some states as functions of magnetic field: (a) for a large range of magnetic
field; (b) for weak magnetic field

Fig. 6.5a. The exact values of energy are also shown in this figure for comparison.
In Table 6.5, specific numerical data is given and is compared with the exact values
of energy to show the precision of the analytical expression (6.57). We see that this
precision is very high and uniform over the whole range of the magnetic field for up
to three decimal places. Note that we need to use the asymptotic expression of the
error integral:

erfc.x/ D e�x2

x
p
	

�

1 � 1

2x2
C 3

22x4
� 5 
 3
23x6

C 7 
 5 
 3
24x8

� : : :

	

;
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Table 6.5 The analytical
solution for the ground state
1s.n D 0;m D 0/ in
comparison with the exact
numerical solution, assuming
� 0 D �=.� C 1/

� 0 Analytical solution Exact numerical solution

0:05 �1:999870 �1:99987017095990613170
0:10 �1:999421 �1:99942166507712501693
0:15 �1:998542 �1:99854256186645709957
0:20 �1:997079 �1:99707966222489033807
0:25 �1:994819 �1:99482091674920995739
0:30 �1:991466 �1:99146906712008245351
0:35 �1:986595 �1:98660128273873874036
0:40 �1:979593 �1:97960585091255737141
0:45 �1:969555 �1:96958003578721667516
0:50 �1:955114 �1:95515968324675916048
0:55 �1:934144 �1:93422334282651768145
0:60 �1:903220 �1:90335295328070946150
0:65 �1:856577 �1:85679038695312423867
0:70 �1:783933 �1:78426176250820398205
0:75 �1:665490 �1:66598114826115218564
0:80 �1:458876 �1:45958713448989797632
0:85 �1:058024 �1:05902943085968226100
0:90 �0:119709 �0:12110157606243169047
0:95 3:233664 3:23173503617812205039

when calculating numerically the expression (6.57) with � larger than 150.0 in the
case of weak magnetic field to avoid calculating the exponential function with very
large value.

We see in Fig. 6.4b that when � ! 0 then � ! C1 and vice versa. Expanding
(6.54) in terms of �, we obtain the analytical expression for the asymptotic cases as
follows:

E D 0:5 � � 1:253
p
� � 0:688� 0:463

1p
�

CO
�

��3=2� ; � � 1 (6.58)

E D �2C 3

64
�2 � 153

65536
�4 COŒ�6�; � � 1: (6.59)

In order to demonstrate the accuracy of our analytical solutions for the whole range
of the field intensity, we also calculate several terms of the exact asymptotic series
of solution of Eqs. (6.1) and (6.2) by the conventional asymptotic method [20] in
the cases � � 1 (perturbation theory) and � � 1 (strong coupling series). For
the both cases, the first two terms of the series (6.58) and (6.59) coincide with that
obtained by the conventional asymptotic method. The following terms are different
between the two methods but the numerical analysis shows that this difference is
very small. So we can say that our analytical solutions describe exactly the system
in the asymptotic cases while the magnetic field is either very strong or very weak.
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Results for Excited States

We can find the explicit expressions for the energy of excited states similar to (6.54),
(6.55) and (6.56) for the ground state. More exactly, we have obtained the explicit
expressions for the energy of the 2p� and 3d� states similar to (6.57) although
they are longer and are not reported here. We consider these states as examples for
excited states. Table 6.6 presents the energy in the whole range of the magnetic field
strength in comparison with the exact values to demonstrate the high precision of
the analytical solutions for these excited states. Figure 6.5a, b also show the values
in Table 6.6. We see that for all three considered states, the analytical energies
obtained have uniform precision of up to four decimal places in the whole range
of the magnetic field strength.

Table 6.6 Analytical solution for the excited states 2p�.n D 1;m D �1/ and 3d�.n D 2;

m D �2/ in comparison with the exact numerical solution, assuming � 0 D �=.� C 1/

2p� 3d�

Analytical Exact numerical Analytical Exact numerical

� 0 solution solution solution solution

0:05 �0:244740 �0:24474134557798881450 �0:114399 �0:11440510079734191774
0:10 �0:261966 �0:26197520208978872077 �0:130243 �0:13025445178430606781
0:15 �0:274086 �0:27410756889059385484 �0:136728 �0:13674173884597401955
0:20 �0:281422 �0:28145662051014027268 �0:136581 �0:13659636693603053469
0:25 �0:284053 �0:28409801197305611464 �0:130628 �0:13064401380817189943
0:30 �0:281742 �0:28179705884272357348 �0:118865 �0:11888179385839621521
0:35 �0:273918 �0:27398063451910408445 �0:100743 �0:10076026619266554000
0:40 �0:259604 �0:25967324608666750763 �0:075200 �0:07521698217897997805
0:45 �0:237293 �0:23736745684644382973 �0:040557 �0:04057485324928431054
0:50 �0:204711 �0:20479038588298687027 0:005711 0:00569412879010892499

0:55 �0:158409 �0:15849200397641926789 0:067422 0:06740516636374326600

0:60 �0:093015 �0:09310153718673498788 0:150472 0:15045496413924365797

0:65 0:000173 0:00008428907312278363 0:264345 0:26432778727006523882

0:70 0:136069 0:13597809871739040778 0:425170 0:42515253567577483784

0:75 0:342239 0:34214588246038558324 0:662535 0:66251797890286951771

0:80 0:675315 0:67521872604493890722 1:036757 1:03673987328882310035

0:85 1:271222 1:27112332610485384793 1:691429 1:69141167638720390304

0:90 2:550724 2:55062439464316783261 3:067092 3:06707775217066545341

0:95 6:700411 6:70030514510251978855 7:428620 7:42860734182398557718
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The Wave Function in Algebraic Form

The approximate zeroth-order wave function with asymptotic component can also
be obtained in algebraic form as follows:

j�nmi D
r
�

	

C1Z

�1
dk e��k2 exp

� �ik

1C ik
OMC



 exp

�

. ON C 1/ ln
1

1C ik



exp

� �ik

1C ik
OM


jn.m/i :

Expanding the operators in exponential form, applying them on the state
function, using commutation relations (6.37) and definition of the vacuum state
(6.17), we obtain the wave function in the following form:

j�nmi D
C1X

lD0

n�jmj
X

jD0

p

.n �m/Š.nCm/Š.n� j C l Cm/Š.n � j C l �m/Š

lŠj Š.n � j Cm/Š.n� j �m/Š



r

2�

	

C1Z

�1
dk e�2�k2 .�ik/jCl

.1C ik/2n�jClC1 jn � j C l.m/i : (6.60)

Note that when calculating the matrix elements using the wave function (6.60), the
integrals in the final results are similar to (6.47) and can be converted to the error
integral.

6.6 OM Application to Complex Two-Dimensional Atomic
Systems

In the previous sections, we have shown that the operator method can be suc-
cessfully applied to the problem of two-dimensional exciton in a magnetic field
with arbitrary strength. We obtain not only exact numerical solutions but also
approximate analytical solutions with a very high precision in the whole range
of the magnetic field strength. In this section, we will show the application
can be performed for other more complex two-dimensional atomic systems: (1)
two-dimensional screened donor state in a magnetic field; (2) two-dimensional
negatively charged exciton.
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Two-Dimensional Screened Donor State in a Magnetic Field

For the problem of two-dimensional screened donor state, the Hamiltonian is
different from the one of an exciton in a magnetic field only in the term of
interaction. Instead of the Coulomb interaction, the term �Ze�� r

ı

r is used with
the screening parameter � [8, 9]. While transforming the Schrödinger equation into
the space with variables u; v by the Levi-Civita transformation this term becomes:

OS D exp
���.u2 C v2/

�

: (6.61)

The system with the screened potential remains the conservation of the orbital
angular momentum. Therefore, the way of solving the problem is the same as in
Sects. 6.1, 6.2 and 6.3 for the exciton in a magnetic field. The only difference is
additional calculation of matrix elements of the operator (6.61).

The operator OS in the form of the annihilation and creation operators is easy to
transform into the normal form by the procedure similar to (6.41)–(6.44):

OS D exp

�

� �

�C 2!
OMC


exp

��

ln
2!

�C 2!

	

. ON C 1/




 exp

�

� �

�C 2!
OM


:

(6.62)

For simplicity, we use the notation � D �=2!. Matrix elements of the operator
(6.62) can be calculated algebraically; as a result we have:

Sn;nCs D hn.m/j OS jnC s.m/i

D 1

sŠ

s

.nC s �m/Š.nC s Cm/Š

.n �m/Š.nCm/Š

.��/s
.1C �/2nCsC1 Fs.n;m;�

2/; (6.63)

with Fs.n;m; x/ is the Gaussian hypergeometric function, defined as follows:

Fs.n;m; x/ D 2F1.m � n;�m � nI s C 1I x/

D
n�jmj
X

kD0

sŠ.n �m/Š.nCm/Š

kŠ.k C s/Š.n �m � k/Š.nCm � k/Šx
k:

A computing program was constructed by FORTRAN that allows to calculate
the wave function and energy for any state with a precision up to 20 decimal places.
The program is checked for value of the screening parameter up to � D 5:0, and for
the excited states with the principal quantum numbers up to n D 150; nr D 3.
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Two-Dimensional Negatively Charged Exciton

Negatively charged exciton is a very important subject for both theoretical and
experimental investigations [21–23]. The solutions of the Schrödinger equation for
three-body systems in two-dimensional space are only reported for helium [24, 25].
However, in those works there is no discussion about the negatively charged exciton.
Formally, a negatively charged exciton is similar to the ion H� or the helium atom
but its bound energy is much smaller. Besides, the effective masses of electron and
of hole are in the same order of size in principle, therefore we cannot use the Born-
Oppenheimer approximation for movement of the hole. Thus, the negatively charged
exciton is not similar to the helium at all.

The Schrödinger equation for a negatively charged exciton in two-dimensional
space has the form :

OH�.r1; r2/ D E �.r1; r2/; (6.64)

OH D �1
2
1 � 1

2
2 � ˛h

�
@2

@x1@x2
C @2

@y1@y2

	

� Z

r1
� Z

r2
C 1

jr1 � r2j : (6.65)

This is the equation describing the relative movement of two electrons with respect
to the hole. The movement of center of mass was separated and not considered here.
The quantities r1 D p

x12 C y12, r2 D p

x22 C y22 are correspondingly the relative

distances from electron to the hole ; r12 D jr1 � r2j D
q

.x1 � x2/2 C .y1 � y2/
2 is

the distance between two electrons. We use the notations:

1 D @2

@x12
C @2

@y12
; 2 D @2

@x22
C @2

@y22
; ˛h D 1

1Cm�
h=m

�
e

;

in which m�
e , m�

h are the effective masses of electron and hole in superconductors.
Here we use the atomic unit system, in which the distance and energy units are

the effective Bohr radius a0� D 4	"0„2=�e2 and the effective Rydberg constant
Ry

� D �e4=16	2"0
2„2 correspondingly. Because the relative movement between

electron and hole is considered, the reduced mass � D m�
e m

�
h=.m

�
e Cm�

h/ is used.
For example, for the semiconductor GaAs/AlGaAs, from the data m�

e ' 0:067 me

and m�
h ' 0:45 me, we have the reduced mass � ' 0:058 m�

e . Therefore, the
effective Bohr radius increases by about 17 times against the Bohr radius; and the
effective Rydberg constant is about 17 times smaller than the Rydberg constant.
The other difference between the negatively charged exciton and helium atom is the
additional term in the Hamiltonian (6.65):

OJ D ˛h

�
@2

@x1@x2
C @2

@y1@y2

	

; (6.66)
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which is neglected in the case of helium atom because of the smallness of the
coefficient ˛h ' 0:00014. For the negatively charged exciton in the semiconductor
GaAs/AlGaAs, ˛h ' 0:13 so the term (6.66) of the Hamiltonian could not be
neglected.

Fortunately, including the term (6.66) in the Hamiltonian, the orbital angular
momentum is still conserved. Therefore, the Schrödinger equation (6.64) should be
solved with the following equations:

OLz�.r1; r2/ D m �.r1; r2/; (6.67)

OLz D i

�

x1
@

@y1
� y1

@

@x1
C x2

@

@y2
� y2

@

@x2

	

; (6.68)

with m D 0;˙1;˙2; : : : is a magnetic quantum number.
The algebraic method will be used for calculation via the annihilation and

creation operators, defined as follows:

OaC
s D

r
!

2

�

xs � 1

!

@

@xs

	

; Oas D
r
!

2

�

xs C 1

!

@

@xs

	

;

ObC
s D

r
!

2

�

ys � 1

!

@

@ys

	

; Obs D
r
!

2

�

ys C 1

!

@

@ys

	

:

(6.69)

Here, index s D 1; 2; the free parameter ! is a positive real number.
The operators defined in (6.69) and having the same nature (creation operator

if having the sign .C/; annihilation operator if not having the sign .C/), commute
each other. Otherwise, they satisfy the following commutation relations:

� Oas; OaC
t

� D ıst ;
h Obs; ObC

t

i

D ıst : (6.70)

For diagonalization of the operator OLz, we rewrite the creation and annihilation
operators by the canonical transformations:

OuC
s D 1p

2




OaC
s C i ObC

s

�

; Ous D 1p
2
. Oas � i Obs/;

OvC
s D 1p

2




OaC
s � i ObC

s

�

; Ovs D 1p
2




Oas C i Obs
�

:

(6.71)

The new operators satisfy the same commutation relations (6.70). Now the operators
in Hamiltonian (6.65) are rewritten in term of annihilation and creation operators
(6.71):
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1 D �!
2
. OMC

1 � ON1 C OM1/; 2 D �!
2
. OMC

2 � ON2 C OM2/;

x1
2 C y1

2 D 1

2!
. OMC

1 C ON1 C OM1/; x2
2 C y2

2 D 1

2!
. OMC

2 C ON2 C OM2/;

.x1 � x2/2 C .y1 � y2/
2 D 1

2!
. OM C OMC C ON � 2 OmC � 2 Om � 2 On/;

@2

@x1@x2
C @2

@y1@y2
D 1

2!
. OmC C Om � On/:

(6.72)

In (6.72) the notations OMC D OMC
1 C OMC

2 ;
OM D OM1 C OM2; ON D ON1 C ON2,

On D On1 C On2 are used for the operators defined as follows :

OMC
1 D 2OuC

1 OvC
1 ;

OM1 D 2Ou1 Ov1; OMC
2 D 2OuC

2 OvC
2 ;

OM2 D 2Ou2 Ov2;
ON1 D 2OuC

1 Ou1 C 2 OvC
1 Ov1 C 2; ON2 D 2OuC

2 Ou2 C 2 OvC
2 Ov2 C 2;

OmC D OvC
1 OuC

2 C OuC
1 OvC

2 ; Om D Ov1 Ou2 C Ou1 Ov2;
On1 D OuC

2 Ou1 C OvC
2 Ov1; On2 D OuC

1 Ou2 C OvC
1 Ov2:

(6.73)

Also the operator of orbital angular momentum has the form:

OLz D OuC
1 Ou1 � OvC

1 Ov1 C OuC
2 Ou2 � OvC

2 Ov2 (6.74)

that is a neutral operator, commuting with all operators in (6.73). It is important
for algebraic calculations that the operators (6.73) build a closed algebra with the
following commutation relations:

h OM1; ON1
i

D 4 OM1;
h OM1; OMC

1

i

D 2 ON1;
h ON1; OMC

1

i

D 4 OMC
1 ;

h OM2; ON2
i

D 4 OM2;
h OM2; OMC

2

i

D 2 ON2;
h ON2; OMC

2

i

D 4 OMC
2 ;

� Om; OmC� D 1
2
. ON1 C ON2/; Œ On1; On2� D � 1

2
. ON1 � ON2/;

h ON1; OmC
i

D 2 OmC;
h ON1; OmC

i

D 2 OmC;
h

Om; ON1
i

D 2 Om;
h

Om; ON2
i

D 2 Om;
Œ Om; On1� D OM1; Œ Om; On2� D OM2;

� On1; OmC � D OMC
2 ;
� On2; OmC � D OMC

1 ;

h OM1; On1
i

D 0;
h OM2; On1

i

D 2 Om;
h OM1; On2

i

D 2 Om;
h OM2; On2

i

D 0;

h

On2; OMC
1

i

D 0;
h

On2; OMC
2

i

D 2 OmC;
h

On1; OMC
1

i

D 2 OmC;
h

On1; OMC
2

i

D 0;

h

Om; OMC
1

i

D 2 On2;
h

Om; OMC
2

i

D 2 On1;
h OM1; OmC

i

D 2 On1;
h OM2; OmC

i

D 2 On2;
h ON1; On1

i

D �2 On1;
h ON2; On1

i

D 2 On1;
h ON1; On2

i

D �2 On2;
h ON2; On2

i

D 2 On2:

(6.75)
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Apart from the relations (6.75), other commutation relations are equal zero. Indeed,
beside the operators On1; On2 and ON1; ON2, other operators with the sign .C/ are
creation operators, without the sign .C/ are annihilation operators. All creation
operators (or annihilation operators) commute each to other. Besides, the operators
with the same index (1 or 2) commute each to other, except for operators On1; On2.

In the Hamiltonian (6.65) there are several terms related to the Coulomb
interaction that contain coordinates in denominator. We will use the Laplace
transformation to lead these terms into the form suitable for algebraic calculations.
The basic transformation is as follows:

OU D 1

r
D 1p

	

C1Z

0

e�tr2

p
t

dt: (6.76)

By using Eqs. (6.76) and (6.72) we rewrite the Coulomb interaction terms:

OV1 D �Z
r1

D � Zp
	

C1Z

0

dtp
t

exp

��t
2!


 OMC
1 C ON1 C OM1

��

;

OV2 D �Z
r2

D � Zp
	

C1Z

0

dtp
t

exp

��t
2!


 OMC
2 C ON2 C OM2

��

; (6.77)

OV12 D 1

jr1 � r2j D Zp
	

C1Z

0

dtp
t


 exp

�

� t

2!
. OM C OMC C ON � 2 OmC � 2 Om � 2 On/

�

:

The closed algebra (6.75) allows us to use the procedure similar to (6.42)–(6.44) to
have the normal form of the operators:

OV1 D �
p
2!Zp
	

C1Z

0

dt
1p
t

exp

�

� t

1C 2t
OMC
1

	


 exp



� ON1 ln
p
1C 2t

�

exp

�

� t

1C 2t
OM1

	

;

OV2 D �
p
2!Zp
	

C1Z

0

dt
1p
t

exp

�

� t

1C 2t
OMC
2

	


 exp



� ON2 ln
p
1C 2t

�

exp

�

� t

1C 2t
OM2

	

; (6.78)
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OV12 D
p
2!p
	

C1Z

0

dtp
t

exp

�

� t

1C 4t
OMC
	

exp

�
2t

1C 4t
OmC
	


 exp

�

�1
2

ln
p
1C 4t ON

	

exp



ln
p
1C 4t On

�


 exp

�

� t

1C 4t
OM
	

exp

�
2t

1C 4t
Om
	

:

Now we will construct the basis set of wave functions in the algebraic represen-
tation. From the eigenfunctions of the neutral operators OuC

1 Ou1; OuC
2 Ou2; OvC

1 Ov1, OvC
2 Ov2,

we can easily build the basis set as follows :

jj1j2j3j4i D 1
p

j1Šj2Šj3Šj4Š
.OuC
1 /

j1. OvC
1 /

j2 OuC
2

j3
. OvC
2 /

j4 j0 .!/i ; (6.79)

with j1; j2; j3; j4 are the non-negative integer. The vacuum state is a solution of
the equations:

Ou1 j0.!/i D 0; Ou2 j0.!/i D 0; Ov1 j0.!/i D 0; Ov2 j0.!/i D 0; (6.80)

with the normalization condition: h0.!/ j0.!/i D 1.
As mentioned above, due to the conservation of the orbital angular momentum,

we should construct basis set from the eigenfunctions of the operator OLz. The
operator OLz is diagonal so the eigenvalue ism D j1Cj3�j2�j4. We determine the
principal quantum numberN D j1Cj2Cj3Cj4 and see thatN D 2j1C2j3�m D
2j2C2j4Cm. BecauseN is a non-negative integer, it should beN D 2nCjmj, with
n D 0; 1; 2; : : : related to the numbers j1; j2; j3; j4 as follows: (a) n D j1 C j3
ifm < 0, (b) n D j2Cj4 ifm � 0. For convenience, we use four quantum numbers
n; j1; j2; m for characterization of the states in the basis set and rewrite (6.79) as
follows:

jn; j1; j2;mi D 1
p

j1Šj2Š.nC jmj � j1/Š.n � j2/Š


.OuC
1 /

j1. OvC
1 /

j2.OuC
2 /

nCjmj�j1. OvC
2 /

n�j2 j0 .!/i ; (6.81)

for the case of m � 0, and

jn; j1; j2;mi D 1
p

j1Šj2Š.n � j1/Š.nC jmj � j2/Š


.OuC
1 /

j1. OvC
1 /

j2.OuC
2 /

n�j1. OvC
2 /

nCjmj�j2 j0 .!/i ; (6.82)
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for the case of m < 0. Here, n is a non-negative integer; m is an integer; j1; j2
are two non-negative integers satisfying the conditions: n C jmj � j1 � 0 and
n � j2 � 0 in the case of m � 0; or n � j1 � 0; nC jmj � j2 � 0 in the case of
m < 0.

We consider here a specific case when m D 0. Note that the Hamiltonian (6.65)
contains only the operators given in (6.73), we construct the new basis set as a
combination of (6.81) and (6.82) in order to have the form:

jn; j1; j2i D . OMC
1 /

j1. OMC
2 /

j2.mC/n�j1�j2 j0 .!/i : (6.83)

The use of new basis set (6.83) will save much more computing resource than using
the basis set (6.81) and (6.82). The matrix elements of Hamiltonian can be calculated
by the algebraic method based on the commutation relation (6.70) for the basic wave
functions (6.81) and (6.82); or based on the commutation relation (6.75) for the
basic wave functions (6.83). Here we give some formulae for calculation of matrix
elements with the basis set (6.83) as follows:

ON1 jn; j1; j2i D 2.nC j1 � j2 C 1/ jn; j1; j2i ;
ON2 jn; j1; j2i D 2.n� j1 C j2 C 1/ jn; j1; j2i ;
On1 jn; j1; j2i D .n � j1 � j2/ jn; j1; j2 C 1i C 2j1 jn; j1 � 1; j2i ;
On2 jn; j1; j2i D .n � j1 � j2/ jn; j1 C 1; j2i C 2j2 jn; j1; j2 � 1i ;
OM1 jn; j1; j2i D 4j1.n � j2/ jn � 1; j1 � 1; j2i

C .n� j1 � j2/.n � j1 � j2 � 1/ jn � 1; j1; j2 C 1i ; (6.84)

OM2 jn; j1; j2i D 4j2.n � j1/ jn � 1; j1; j2 � 1i
C .n� j1 � j2/.n � j1 � j2 � 1/ jn � 1; j1 C 1; j2i ;

Om jn; j1; j2i D .nC j1 C j2 C 1/.n � j1 � j2/ jn � 1; j1; j2i
C 4j1j2 jn � 1; j1 � 1; j2 � 1i :

Consequently, we have constructed a closed algebra including the quadratic
operators of the annihilation and creation operators and then have successfully
expressed the Hamiltonian of the negatively charged exciton via these opera-
tors. This result allows us to use purely algebraic calculations while solving the
Schrödinger equation for the considered system by the operator method. The
basis set of wave functions was also constructed via the annihilation and creation
operators and the useful formulae are established for calculation of matrix elements.
All calculations in this section are enough for applying the operator method for the
negatively charged exciton.
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Chapter 7
Atoms in the External Electromagnetic Fields

In this chapter, the operator method is applied to analyze the following models
intensively used for the description of the interaction of atomic systems with
external fields: (1) hydrogen-like atom in electric and magnetic fields, and (2) two-
level atom in resonant electromagnetic field.

Hydrogen-like atom in electric field or/and in magnetic field is an old problem
involving many investigations resulted in discovery of extremely important quantum
effects such as the Zeeman effect as well as the Stark effect [1–4]. For a long time,
the problem of hydrogen-like atom in a constant magnetic field has been considered
as a model for testing various methods of solving the dynamical equations of
microscopic world [5–9]. Recently, this problem is of great interest because of the
new observations in astrophysics related to the measurement of spectrum of atoms in
a very strong magnetic field [10,11]. From other side, the problem of hydrogen-like
atom in electric field remains interesting because of the new trend of research about
interaction of ultra-short intense laser pulses with atoms and molecules. Particularly,
the dependence of photo-ionization rate in the parameters of electric field is of
interest recently [12, 13].

The application of OM to the problem of hydrogen-like atom in a strong magnetic
field was given in the works [14–16]. It was shown that the zero approximation of
OM gives a high accuracy and the precision is uniformly suitable for the whole
range of the magnetic intensity. In the work [16] the possibility of calculating higher
corrections by the iteration scheme was also given. The advantage of OM is that
the calculation process is general enough for applying to electromagnetic fields of
various configurations. In the work [17], OM was used for calculation of highly
excited Rydberg states of hydrogen atom in an electric field. The obtained results
fitted well to the experimental data [18].

To apply the algebraic method with using annihilation and creation operators
for the atomic problems, the Kustaanheimo-Stiefel transformation [19] was used
in [20–23]. The problem of hydrogen-like atom thus can be transformed to the
harmonic oscillator in four-dimensional space. In this chapter we will recall

© Springer International Publishing Switzerland 2015
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the main points of this connection, especially the algebraic calculus, and show
the application of the method for hydrogen atom in magnetic and in electric
fields.

The model of a two-level system in a one-mode quantum field (TLS) is one of the
simplest but widespread and effective model used for consideration of the qualitative
characteristics of the interaction between a quantum system and a resonant external
field (see, for example, [24] and papers cited therein). It is of great interest both
as a mathematical problem and as a good physical model for consideration of the
non-adiabatic transitions [25], the squeezed states [26], the quantum chaotic system
[27] and other effects.

Accurate eigenvalues and eigenfunctions of TLS interacting with a single-
mode quantum field are calculated analytically and numerically by means of
special iteration procedure based on OM. This procedure permits one to consider
the solution within the wide range of the Hamiltonian parameters and to find
the uniformly approximating analytical formula for the eigenvalues [28]. The
characteristic features of the model such as the level intersections, the population
of the field states and the TLS evolution on the basis of OM were considered in the
recent publications [29–31].

7.1 Hydrogen-Like Atom and Harmonic Oscillator

We will consider the dimensionless Schrödinger equation for four-dimensional har-
monic oscillator. For convenience in notation and calculation, the two-dimensional
complex coordinates are used instead of the four-dimensional real coordinates. We
will call it the �-space and the equation in the �-space is as follows:

OH  .�/ D Z  .�/; (7.1)

OH D �1
2

@2

@�s@��
s

C 1

2
!2�s�

�
s : (7.2)

In the Hamiltonian (7.1) and further on the repeating of indices s; t mean a
summation over all values of these indices s; t D 1; 2. Here we also use the
transformation of coordinates:

8

<

:

x� D ��
s .��/st �t ;

� D arg.�1/;
(7.3)

with � D 1; 2; 3 corresponding to three coordinates x1; x2; x3. The extra variable
� could contain certain physics interpretation [32], however, it does not have any
special meaning in our further calculations and the physical wave functions will be
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required to be independent on this variable. In Eq. (7.3) we use the Pauli matrices
in a following explicit form:

�1 D
�
0 1

1 0

	

; �2 D
�
0 � i

i 0

	

; �3 D
�
1 0

0 � 1
	

:

Via the transformation (7.3), Eqs. (7.1) and (7.2) written in �-space becomes an
equation in the real x; y; z; � coordinates:

�

�1
2
r

�
@

@x�
C A�.r/

@

@�

	�
@

@x�
C A�.r/

@

@�

	

� 1

8r

@2

@�2
C 1

2
!2r



 .r; �/ D Z .r; �/: (7.4)

We are interested only on the physically meaningful wave function  .r/, indepen-
dent on the variable �, then Eq. (7.4) becomes the one for a hydrogen-like atom:

�

�1
2

@2

@x�@x�
� Z

r

	

 .r/ D E .r/; (7.5)

with the energy in the discrete regionE D �!2=2. Here and further on the repeating
of Greek indices means summation over them in a whole region: � D 1; 2; 3.

We note that to obtain Eq. (7.5) from Eq. (7.4) the last should be divided by r .
To explain this circumstance we look at the identity:

1

8r
dx1dx2dx3d� D d�1

0d�100d�20d�200;

for transforming the �-space into the space of coordinates r; �. Here we use
notations: �s

0 � Re�s , �s
00 � Im�s . Because we use the definition of the scalar

product of two wave functions for each space as follows:

h a.r/j  b.r/i D
C1Z

�1
dx1

C1Z

�1
dx2

C1Z

�1
dx3  

�
a .r/  b.r/; (7.6)

h a.�/j  b.�/i D
C1Z

�1
d�1

0
C1Z

�1
d�1

00
C1Z

�1
d�2

0
C1Z

�1
d�2

00 �
a .�/  b.�/; (7.7)

we can see that if operator OA is hermitic in the � then the operator OA=r will be
hermitic in the r-space. Instead of solving the Schrödinger (7.5) for hydrogen-like
atom we can deal with the Eqs. (7.1) and (7.2) for harmonic oscillator in two-
dimensional complex space. The wave function has to be independent on the extra
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variable �, which means the wave functions in �-space should satisfy the following
equation:

d

d�
 .r/ D 0 ,

�

��
s

@

@��
s

� �s @
@�s

	

 .�/ D 0: (7.8)

For the problem of hydrogen-like atom in electromagnetic field A.r/; '.r/, we
consider the following equation in � -space:

�

�1
2

@2

@�s@��
s

C 1

2
!2�s�

�
s � 1

2
B�
s

@

@�s
� 1

2
Bs

@

@��
s

�1
4

@B�
s

@�s
� 1

4

@Bs

@��
s

� 1

2
B�
s Bs



 .�/ D Z .�/: (7.9)

Here we have the connection between .A; '/ , �

Bs; B
�
s

�

:

8

ˆ̂
<

ˆ̂
:

A�.r/ D i

2r
.��/st .�

�
s B

�
t � �sBt /;

'.r/ D 1

8r2
.��/st .�

�
s B

�
s C �sBs/

2:

(7.10)

From (7.10) we can get equations for inversion of the fields:

8

<

:

Bs.�/ D i.��/ts�
�
t A� C ��

s

p
2';

B�
s .�/ D �i.��/st �tA� C �s

p
2':

(7.11)

For the problem of hydrogen atom in electromagnetic fields we can consider the
Eq. (7.9) in �-space with the potentials defined by Eq. (7.11) and with the wave
function satisfying also the Eq. (7.8).

As has been shown in the works [20, 22, 23], the algebraic method of solving
Schrödinger equation based on the connection between the Coulomb problem and
the problem of harmonic oscillator is possible and this fact will be used hereinafter.
The readers interested in a relativistic are referred to [21].

Based on the fundamentals described above, the wave functions of a hydrogen-
like atom can be extracted from the wave functions of the harmonic oscillator in
�-space by enforcing them to satisfy the condition (7.8). For the hydrogen-like
atom with nuclear charge Z and energy e D �!2ı2 we consider the Schrödinger
equation (7.1) and (7.2) for the harmonic oscillator in �-space in the form:

� 1

2
! . OaC

s Oas C ObC
s

Obs C 2/ j i D Z j i ; (7.12)
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where the annihilation and creation operators are defined as follows:

8

ˆ̂
<

ˆ̂
:

Oas.!/ D
r
!

2

�

�s C 1

!

@

@��
s

	

; OaC
s .!/ D

r
!

2

�

��
s � 1

!

@

@�s

	

;

Obs.!/ D
r
!

2

�

��
s C 1

!

@

@�s

	

; ObC
s .!/ D

r
!

2

�

�s � 1

!

@

@��
s

	

;

(7.13)

and the vacuum state j0.!/i is determined by the equations:

Oas j0.!/i D 0 ; Obs j0.!/i D 0; (7.14)

with the normalization condition: h0.!/ j 0.!/i D 1. Operators (7.13) satisfy the
following standard commutation relations:

� Oas.!/; OaC
t .!/

� D ıst ;
h Obs.!/; ObC

t .!/
i

D ıst (7.15)

and other commutation relations are equal to zero.
The wave functions of the harmonic oscillator in �-space, which are in fact the

solutions of the Eq. (7.12), can be represented in the form:

jn1; n2; n3; n4 ; !i D 1p
n1Šn2Šn3Šn4Š

. OaC
1 /

n1. OaC
2 /

n2. ObC
1 /

n3. ObC
2 /

n4 j0.!/i ;

(7.16)

with n1; n2; n3; n4 are non-negative integers. From (7.16), we will now establish the
state vectors for the hydrogen-like atom in the discrete region of energy. For this
purpose, the state vectors (7.16) have to satisfy the condition (7.8), which has the
following simple form in the algebraic representation of annihilation and creation
operators:

. OaC
s Oas � ObC

s
Obs/ j i D 0: (7.17)

Substituting the wave vector (7.16) into Eqs. (7.12) and (7.17), we obtain the
following equations for eigenvalues:

� 1

2
! .n1 C n2 C n3 C n4 C 2/ D Z; (7.18a)

n1 C n2 D n3 C n4: (7.18b)

Equation (7.18b) is the condition for the state vector (7.16) to be the wave function
of the hydrogen-like atom. This condition can be rewritten in the form: na D nb �
n, which means that in the wave function (7.16) the quantity na D n1 C n2 of the
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operators OaC
s equals to the one of the operators ObC

s : nb D n3 Cn4. Equation (7.18b)
leads to the energy level of hydrogen-like atom:

!n D Z

nC 1
; En D � Z2

2.nC 1/2
: (7.19)

Thus the matrix elements of any physical operator OA:

˝

 j .r/
ˇ
ˇ OA j k.r/i D

C1Z

�1
dx1

C1Z

�1
dx2

C1Z

�1
dx3  

�
j .r/ OA k.r/

D ˝

j; !j
ˇ
ˇ r OA jk; !ki (7.20)

can be calculated algebraically. The possibility of purely algebraic calculation fol-
lows from several circumstances. First, there exists a unitary transformation which
transforms the wave function from certain frequency ! to another frequency !0:

ˇ
ˇ .!0/

˛ D U.!0; !/ j .!/i Oas.!0/ D U.!0; !/ Oas.!/U�1.!0; !/; (7.21)

where U.!0; !/ D exp
n
1
2

ln !0

!

h

Oas.!/ Obs.!/ � OaC
s .!/

ObC
s .!/

io

or in the normal

form:

U.!0; !/ D 4!!0

.! C !0/2
exp

�

�!
0 � !

!0 C !
OMC.!/

�


 exp

�

� ln
!0 C !

2
p
!0!

ON.!/
�

exp

�
!0 � !
!0 C !

OM.!/

�

: (7.22)

For convenience, in Eq. (7.22) and henceforth, we use the notations:

OM D Oas Obs; OMC D OaC
s

ObC
s ;

ON C 2 D OaC
s Oas C ObC

s
Obs C 2 ;

Om� D .��/st Oat Obs; OmC
� D .��/st OaC

s
ObC
t ;

Ona� D .��/st OaC
s Oat ; Onb� D .��/st ObC

t
Obs:

(7.23)

Second, all operators corresponding to physical quantities can be expressed via
the combinations (7.23) of annihilation and creation operators. We write here, for
example, some operators:

r D ��
s �s D 1

2!
. OM C OMC C ON C 2/;

x� D ��
s .��/st �t D 1

2!
. Om� C OmC

� C Ona� C Onb�/;
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rp2 D � @2

@�s@�
�
s

D !

2
. ON C 2� OM� OMC/; rp� D � i

2
. Om�� OmC

� /; (7.24)

Ol� D 1

2
.��/st

�

�t
@

@�s
� ��

s

@

@��
t

	

D 1

2
. Ona� � Onb�/;

OL2 D Ol� Ol� D 1

4
ON. ON C 2/� OMC OM;

x�p� D � i
2

�

�s
@

@�s
C ��

s

@

@��
s

	

D 1

2
! . ON C 2 � OMC � OMC/:

The fifteen operators in (7.23) form a closed algebra, isomorphic to the algebra of
the Lie group SO(4,2) of the dynamic symmetry of hydrogen-like atom due to the
commutation relations:

h

Om�; OmC
�

i

D ı��. ON C 2/� i"���. Ona� � Onb�/;
h

Ona�; Ona�
i

D 2i"��� Ona�;
h

Onb�; Onb�
i

D �2i"��� Onb� ;
h

Om�; Ona� C Onb�
i

D 2ı�� OM;
h

Om�; Ona� � Onb�
i

D 2i"��� Om�;

h

Ona� C Onb�; OmC
�

i

D 2ı�� OMC;
h

Ona� � Onb�; OmC
�

i

D �2i"��� OmC
� ;

h OM; OMC
i

D ON C 2;
h OM; ON C 2

i

D 2 OM;
h ON C 2; OMC

i

D 2 OMC;
h

Om�; OMC
i

D Ona� C Onb�;
h OM; OmC

�

i

D Ona� C Onb� ;
h OM; Ona� C Onb�

i

D 2 Om�;
h

Ona� C Onb�; OMC
i

D 2 OmC
� ;

h OM; Ona� � Onb�
i

D 0;
h

Ona� � Onb�; OMC
i

D 0 ;

h

Om�; ON C 2
i

D 2 Om�;
h ON C 2; OmC

�

i

D 2 OmC
� ;

h

Ona� C Onb�; ON C 2
i

D 0;
h

Ona� � Onb�; ON C 2
i

D 0 :

(7.25)

Here, ı�� is the Kronecker delta symbol; "��� is the Levi-Civita symbol.
Now we construct the wave functions of hydrogen-like atoms with given

quantum numbers. Taking into account the fact that the angular momentum and its
projection in the z-axis are the integrals of motion we first build wave functions in
the parabolic coordinates. The wave functions belong to eigenvalues of the operators
Ol3, i.e. satisfy the following equations:

Ol3 j i D 1

2
. OaC
1 Oa1 � OaC

2 Oa2 � ObC
1

Ob1 C ObC
2

Ob2/ j i D m j i : (7.26)
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Here the integer m is the magnetic quantum number. Substituting the states
vectors (7.16) into Eq. (7.26) we have the equation:

n1 � n2 � n3 C n4 D 2m: (7.27)

Taking into account Eqs. (7.18b) and (7.27) we can have the wave functions are
derived:

jn1; n2;m i D 1
p

n1Š.n1 C jmj/Šn2Š.n2 C jmj/Š

. OaC

1
ObC
1 /

n1. OaC
2

ObC
2 /

n2. OmC
˙/

jmj j0.!/i ; (7.28)

where we use OmC
C D OmC

1 C i OmC
2 D OaC

1
ObC
2 for the case when m > 0; and OmC� D

OmC
1 � i OmC

2 D OaC
2

ObC
1 for the case when m < 0. In both cases the principal quantum

number: n D n1 C n2 C jmj.
We can also establish the wave functions with two given quantum numbers: the

angular momentum quantum number l and the magnetic quantum number m, i. e.
the wave function in spherical coordinates. We require the wave function to satisfy
the equation:

OL2 j i D
�
1

4
ON. ON C 2/� OMC OM

�

j i D l.l C 1/ j i : (7.29)

We will find the wave function with given quantum numbers l; m in the combination
of state vectors (7.28):

jl; m i D . OmC
˙/

jmj
NX

kD0
Ck. OmC

3 /
k. OMC/N�k j0.!/i ; (7.30)

where Ck are coefficients we need to find in order to have the wave function (7.30)
being a solution of Eq. (7.29). By substituting (7.30) into (7.29) and using the
commutation relations (7.25) as well as Eq. (7.14), we obtain recurrent equations
defining the coefficientsCk . The calculations performed by purely algebraic method
described above result in:

jjlm i D Njlm. OMC/j . OmC
˙/

jmj



l�jmj
X

kD0

.�1/k.l C jmj C k/Š

kŠ.k C jmj/Š.l � jmj � k/Š . Oa
C
1

ObC
1 /

k. OMC/l�jmj�k j0.!/i :
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7.2 Analytical Estimate for Rydberg States of a Hydrogen
Atom in an Electric Field

The increase of the computer facilities does not reduce the significance of analytical
calculations permitting to make a qualitative analysis of the physical effects, and to
estimate the range of parameters which are of interest in the specific experimental
conditions. One of the possible ways of performing such analytical investigations
can be based on using the operator method for solution of the Schrödinger equation.
In the previous chapters, it has been shown that the OM zeroth approximation gives a
good estimation of the Hamiltonian eigenvalues in the entire range of its parameters
and define correctly the relative positions of the energy levels depending on the
quantum numbers of the system.

In the last years of the 1980s, a number of experimental and theoretical papers
were devoted to the investigation of highly excited states of the hydrogen atom in
a homogeneous electric field (see, for example, [18, 33–35]). A particular interest
was evoked by the quasi-steady Stark states with vanishingly small energy. This
section will recall some main results of the paper [17] in which the simplified
approximation of the zeroth-order OM energy formula is used to find a sufficiently
accurate analytical estimation of the energies and widths of the system levels.
Further on, we also investigate these quantities depending on the quantum numbers
and on the field amplitude.

The initial Hamiltonian of the system can be written as follows:

OH D 1

2
Op2 � 1

r
C ˇx3: (7.31)

Here atomic units are used; the x3-axis is directed along the electric field amplitude
F and the dimensionless parameter ˇ is:

ˇ D F

F0
; F0 D me

2e5

„4 :

In accordance with Sect. 7.1, the Schrödinger equation with Coulomb singularity
in the Hamiltonian can be considered on the basis of the two-dimensional complex
space where the operator (7.31) reduces to the anharmonic oscillator one. First let
us perform the following scale transformation of the coordinates and the energy of
the system:

x� ! "x� ; E D � 1

2"2
:

The coordinate x� is considered as a real value and this transformation for complex
x� is analogous to the complex coordinate rotation used for the description of
the quasi-stationary states [18]. The complex coordinates �s; ��

s .s D 1; 2/ of
the two-dimensional complex space are connected with the Cartesian coordinates
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x� .� D 1; 2; 3/ by the transformation (7.3). Then the Schrödinger equation is
modified to:

r. OH �E/ j i D 0

and can be written in the form:

QH.�/ j i D " j i ;
QH.�/ D �1

2

@2

@�s@��
s

C 1

2
�s�

�
s C ˇ"3

h

.�1�
�
1 /
2 � .�2�

�
2 /
2
i

: (7.32)

In order to obtain the OM zeroth approximation, the operator has to be
transformed to the second quantized form:

8

ˆ̂
<

ˆ̂
:

Oas D
r
!s

2

�

�s C 1

!s

@

@��
s

	

; OaC
s D

r
!s

2

�

��
s � 1

!s

@

@�s

	

;

Obs D
r
!s

2

�

��
s C 1

!s

@

@�s

	

; ObC
s D

r
!s

2

�

�s � 1

!s

@

@��
s

	

;

� Oas; OaC
t

� D ıst ;
h Obs; ObC

t

i

D ıst ;

(7.33)

with arbitrary parameters !1; !2. Then one has to select from the operator QH the
part which commutes with the particle number operators Ona1 D OaC

1 Oa1 Ona2 D OaC
1 Oa1,

Onb1 D ObC
1

Ob1 Onb2 D ObC
2

Ob2:

QH0 D P

sD1;2

�

.!s C 1=!s/. Onas C Onbs C 1/�

�.�1/s.ˇ"3=!2s /
h

2C 3. Onas C Onbs /C . Onas C Onbs /2 C 2 Onas Onbs
i

:

(7.34)

In this approximation the eigenfunctions of the system are defined by the quantum
numbers na1 na2; nb1 nb2 . There are only three independent quantum numbers
because the vector j i for the physically meaningful state does not have to depend
on the supplementary variable � of the considered space. This condition is fulfilled
if j i is the solution of the Eq. (7.17) that leads to:

na1 � nb1 C na2 � nb2 D 0:

Another integral of motion is defined by the angular momentum projection Ol3 on
the electric field direction that leads to:

na1 � nb1 � na2 C nb2 D 2m:
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Here m is the magnetic quantum number. The other parabolic quantum numbers n1
and n2 as shown in (7.28) are:

n1 D 1

2
.na1 C nb1/� jmj ; n2 D 1

2
.na2 C nb2/� jmj ; jmj � n1; n2:

Then the zeroth-order OM energy formula is:

"n1n2m D 1

4

X

sD1;2

�

.!s C 1=!s/.2ns C jmj C 1/� .�1/s.ˇ"3=!2s /Bs
�

; (7.35)

where:

Bs D 2C 3.2ns C jmj/C 3

2
.2ns C jmj/2 � 1

2
m2:

As demonstrated in previous chapters, the OM successive approximations for
Eq. (7.32) converge to the exact complex eigenvalues E with different quantum
numbers. But we consider only the OM zeroth approximation because we are inter-
ested in the analytical investigation of the problem. The equations for calculating
the parameters !1; !2 are obtained from the conditions of independence of the
eigenvalues on the choice of the wave function representation and in the considered
approximation they are:

@"n1n2m

@!s
D 0 ; .s D 1; 2/

!s
3 � !s C .�1/s2ˇ"3 Bs

2ns C jmj C 1
D 0:

(7.36)

The system of simple algebraic equations (7.35), (7.36) permits one to calculate
the energy levels with accuracy 1 % typical for the OM zeroth approximation.
Let us consider the analytical solution of these equations in the limit n1 � n2
which corresponds to the quasi-stationary states with vanishingly small energies
investigated experimentally [18]. In this limit one can find the following expansions
for the parameters:

!1 ' �1=3 C 1

3
��1=3 C : : : ; j�j � 1

� D 2ˇ"3
B1

n0
' 3ˇ"3

�

n0 C 1 �m2

3n0

	

; n0 D 2n1 C jmj C 1;

(7.37)

!2 � !0
2 C i!00

2 D
p
3

2
.AC C A�/C 1

2
i.AC � A�/;

A˙ D

p

2=4C 1=27˙=2
�1=3

;

j!2j � j!1j ;

(7.38)
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where

 D 3ˇj"0j3
�

2n2 C jmj C 1C 1 �m2

3.2n1 C jmj C 1/

	

;

"0
2 D � n0

4�.3n0�=8 � 1/
; � D

�

3ˇ

�

n0 C 1 �m2

3n0

	�1=3

:

Other roots of the cubic equations (7.36) give the solutions which do not satisfy
the inequalities, which are essential for the existence of the canonical transforma-
tion (7.33):

0 < !0
s; E

00 < 0; E � E 0 C i E 00:

Let us substitute expansions (7.37), (7.38) into formula (7.35) and find the energy
of the quasi-stationary state with the corresponding set of quantum numbers:

E
.0/
n1n2m D � 1

2"2n1n2m
D E1 C i
 =2;

E1 D .3n0�=8 � 1/.n0=2� C 2�1/

.n0=2� C 2�1/
2 C 4�22

; 
 D 4�2.3n0�=8� 1/

.n0=2� C 2�1/
2 C 4�22

;

(7.39)

where

�1 D �2n2 C jmj C 1

8

�

3 � 1

j!2j2
	

!00
2 j"0j ;

�2 D �2n2 C jmj C 1

8

�

3C 1

j!2j2
	

!0
2 j"0j :

We use here the reduced amplitude of the electric field [34]:

f D ˇN4
0 ; N0 D n0=2;

and take into account the estimation:

��1;2

n0
	
�
n2

n1

	4=3

� 1:

Then the formulae (7.39) simplify to:

2N 2
0 E1 ' A

�

1 � .2=N 2
0 / q�1

�

; N 2
0 
 ' .4A=N2

0 / q�2; (7.40)

with

q D �

6.N �
0 =N0/ f

�1=3
; A D 2q.3q=4� 1/; N �

0 D 1

2

�

n0 C 1�m2

3n0

	

:
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Formulae (7.40) deliver a good estimation for the parameters which define the
spectrum of the system near E1 D 0. For example, the limiting curve which
corresponds to n1 ! 1 passes through zero when f D f0 D 25=34 � 0:395.
The distance between the levels near E1 D 0 is defined by the formula:

@E1

@N1

ˇ
ˇ
ˇ
ˇ
E1D0

D 3.2ˇ3/1=4 D 3:568 ˇ3=4:

The corresponding values found in [34] by means of the Bohr-Sommerfeld quanti-
zation condition are:

f0 � 0:384 ;
@E1

@N1

ˇ
ˇ
ˇ
ˇ
E1D0

D 3:708 ˇ3=4:

The analytical expression for the parabolic quantum number n1c of the level with
zero energy is:

n1c ' 25=4

3
ˇ3=4 � 1C jmj

2
;

which is in a good accordance with the experimental results from [18] and with
the theoretical values from [36]. Let us also note that the field amplitude F and
the parabolic quantum number n1 are included in the values E1 and � in such
combinations which define the scaling in the Stark effect for Rydberg atoms when
n1 � 1. This result has been recently described in [37] using another method.

In order to give a notion for the accuracy of our estimations we compare them
in Table 7.1 with the numerical results from [33] for some values of the quantum
numbers and amplitudes of the field. The analytical formulae (7.40) ensure a relative
accuracy of 5 % while calculating the width of the levels and 	 10% for their
energies. It is essential to note that the OM accuracy of calculating the matrix

Table 7.1 Numerical estimation for our analytical formulae for high excited Rydberg state
energies in comparison with other numerical calculations

E1 � 104 
 � 104

N1 N2 jM j n1 n2 jmj this work [33] this work [33]

F D 6:5 kV/cm 48 0 0 24 0 0 1.277 1.433 0.390 0.417

48 2 0 24 1 0 1.355 1.523 1.332 1.366

49 1 1 24 0 1 1.741 2.087 0.969 0.964

50 0 0 25 0 0 2.432 2.687 0.509 0.521

F D 8:0 kV/cm 48 0 0 24 0 0 3.118 3.383 0.631 0.638

48 2 0 24 1 0 3.265 3.433 1.981 1.955

49 1 1 24 0 1 3.748 4.090 1.391 1.370

50 0 0 25 0 0 4.524 4.764 0.734 0.719
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elements of the physical operators is of the same magnitude as for the energy
levels [38, 39]. Therefore the method described in this section can be useful for
the calculation of the atomic photo-ionization cross-section [18], too.

7.3 Iterative Calculation of Energy for Quasi-Stationary
States

For the hydrogen atom in a constant electric field we have only quasi-stationary
states and correspondingly the energy has complex value. The direct numerical
method of solving the Schrödinger equation leads to additional difficulties. There-
fore, some modifications of calculation method were given; particularly the method
of using complex coordinates is used for some integration [40]. The energy levels
calculation for Rydberg quasi-stationary states, therefore, become a complicated
problem, especially, when the high accuracy of the results is required [41].

In the previous chapters we proved that the iteration scheme of calculating the
high orders of OM approximations is effective for numerical calculation of energy
and wave functions with any given precision. The calculation is expected to be
effective also for quasi-stationary states, and we will apply this scheme of OM for
Eq. (7.32).

According to the OM scheme, the Hamiltonian (7.32) is divided into two parts:

QH."/ D QH0 C
X

˛D1;2
QV˛;

QV˛ D 1 � !2˛
4!˛

. OM˛ C OM C̨/

� .�1/˛ˇ"3
4!˛2

h

2.2C ON˛/ OM˛ C 2 OM C̨.2C ON˛/C OM2
˛ C OMC2

˛

i

;

(7.41)

where ON˛ D Ona˛ C Onb˛ ; OM˛ D Oa˛ Ob˛ ; OM C̨ D OaC̨ ObC̨. The diagonal part
QH0 which commutes with the particle number operators is given in (7.34). For

calculation process we need matrix elements of the non-diagonal part QV˛ of the
Hamiltonian:

OM1 jn1n2mi D 1

2

p

n12 �m2 jn1 � 2; n2mi ;

OMC
1 jn1n2mi D 1

2

q

.n1 C 2/2 �m2 jn1 C 2; n2mi ;
(7.42)

where jn1n2mi for n1; n2 D 0; 1; 2; : : : jmj � n1; n2 are the basis state vectors
described in (7.28) for �-space corresponding to the basis set of the parabolic wave
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functions. The formulae for ˛ D 2 are similar to (7.42) for the case ˛ D 1. Note that
there is the separation of coordinates in the Hamiltonian QH."/ but the two oscillators
corresponding to ˛ D 1 and ˛ D 1 are connected to each other via the parameter "3.
The eigenfunctions of Eq. (7.32) with quantum numbers n1; n2; m will be found
in the form:

j n1n2mi D jn1n2mi C
C1X

kD0

C1X

jD0
jk¤n1n2

Cjk j jkmi ; (7.43)

with the normalization condition: hn1n2m j  n1n2mi D 1.
In the expansion (7.43) the magnetic number m is not changed because of the

conservation of the angular momentum projection. It should be noted that the wave
function expansion (7.43) has local property because each term in this expansion
belongs to different basis set. Indeed, each state vector jn1n2mi dependent on
the frequencies !1; !2 which are the function of the quantum numbers n1; n2;m,
see Eq. (7.36), and thus hn1n2m j n0

1n
0
2mi ¤ 0. Nevertheless, we will fix the

parameters !1; !2 in the expansion (7.43), i.e. j jkm; !1;2.n1n2m/i. By this way
we have a set of orthogonal and normalized state vectors for the expansion of wave
functions. We will use the iteration scheme of OM which has the following form for
the specified considered problem:

".s/˛n1n2m
D hn1n2mj QH˛."

.s�1/
n1n2m

/ jn1n2mi
C

X

j;k¤n1n2
h jkmj QH˛."

.s�1/
n1n2m

/ jn1n2mi C .s�1/
jk ;

C
.s/
jk D �

".s�1/n1n2m
� h jkmj QH˛."

.s�1/
n1n2m

/ j jkmi��1



�

h jkmj QH˛."
.s�1/
n1n2m

/ j jkmi

C
X

j 0 k0¤j k
j 0 k0¤n1n2

˝

j 0 k0m
ˇ
ˇ QH˛."

.s�1/
n1n2m

/ j jkmiC .s/

j 0 k0

	

; (7.44)

".s/n1n2m D
X

˛D1;2
".s/˛n1n2m

; "n1n2m D lim
s!1 ".s/n1n2m; Cjk D lim

s!1C
.s/
jk :

All matrix elements in (7.44) can be calculated using the formulae (7.42). The
iteration scheme (7.44) is quickly convergent for any amplitude of electric field.
Table 7.2 compares the results by the operator method [42] with calculations by
other methods [41].
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Table 7.2 Quasi-stationary
energy levels E D E 0 C iE 00

of the hydrogen atom in an
electric field

jn1; n2; m > ˇ �E 0 �E 00

(0,0,0) 0.1 2.054836 0.014538

(0,0,0) 0.25 1.170062 0.188576

(2,0,0) 0.004 0.114305 0.000001

(2,0,0) 0.01 0.103895 0.001640

(2,0,0) 0.02 0.088984 0.015446

(0,2,0) 0.012 0.175060 0.009628

(0,2,0) 0.024 0.220676 0.041892

(4,0,0) 0.003 0.035205 0.001681

(4,0,0) 0.004 0.029577 0.004197

(0,4,0) 0.008 0.156605 0.002160

(0,4,0) 0.01 0.166094 0.005443

(0,4,0) 0.014 0.183546 0.014372

7.4 Operator Method for Hydrogen Atom in Magnetic Field

Let us now consider the problem of a hydrogen atom in a magnetic field described
by the following Schrödinger equation:

�
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@x�@x�
� Z

r
� i
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�

x1
@

@x2
� x2

@

@x1

	

C 1

8
�2.x21 C x22/



 .r/

D E .r/:
(7.45)

The equation is written in the atomic system of units when � D „3B=m2
ece3 is

a dimensionless magnetic intensity; Z is nuclear charge. Instead of Eq. (7.45) we
will use the equation written in the �-space with essentially simplified algebraic
structure. The equation in �-space for the considered problem is as follows:

� QH.�/ �Z� .�/ �
�

�1
2
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C 2�2��
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@

@��
2

	

 .�/D0:

(7.46)

As described in Sect. 7.1, Eq. (7.46) can be written in the presentation of annihila-
tion and creation operators that is useful for applying the OM:

QH D !

2
. ON C 2 � OM � OMC/� E Cm�=2

2!
. ON C 2C OM C OMC/C
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C 1

16!3
�2. ON C 2C OM C OMC/


. ON1 C 1C OM1 C OMC
1 /.

ON2 C 1C OM2 C OMC
2 /: (7.47)

In (7.47) we replace the operator

Ol3 D i

2
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1
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@��
1

C �2
@

@�2
� �1

@

@�1
� ��

2

@

@��
2

	

by the magnetic quantum numberm because for the considered system the angular
momentum projection is conserved. The diagonal part of the Hamiltonian (7.47)
that commutes with the particle number operators is obtained:

OH0 D
�
!

4
� E Cm�=2

2!

	

. ON C 2/

C 1

16!3
�2
h

. ON C 2/. ON1 C 1/. ON2 C 1/

C2 OMC
1

OM1. ON2 C 1/ C2 OMC
2

OM2. ON1 C 1/
i

: (7.48)

We can calculate the energy in zero order approximation by OM with the results
shown in the Table 7.3. Several formulae required for calculation of the matrix
elements with respect to the parabolic wave functions are presented here:


 OM1

�j jn1; n2;mi D
s

n1Š .n1 C jmj/Š
.n1 � j /Š .n1 C jmj � j /Š

jn1 � j; n2;mi ;


 OMC
1

�j jn1; n2;mi D
s

.n1 C j /Š .n1 C jmj C j /Š

n1Š .n1 C jmj/Š jn1 C j; n2;mi ;

 ON1 C 1

�

jn1; n2;mi D .2n1 C jmj C 1/ jn1; n2;mi (7.49)

Let us use now the OM zeroth approximation with some modifications to obtain
an analytical description of a hydrogen atom in a magnetic field of arbitrary strength.
Taking into account the asymptotic behavior of the wave function in the region of
strong magnetic field we consider the wave function of hydrogen atom in magnetic
field in the form:

 .r/ D e� 1
2 � .x1

2Cx22/�.r/; (7.50)

where � is a parameter to be defined latter. Substituting the wave function (7.50)
into the Eq. (7.45) we have the following equation for the new wave function �.r/:
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Table 7.3 Energy of ground state calculated by OM in zeroth order approximation compared with
exact numerical calculations

� E
.0/
1s E

.0/
1s CE

.2/
1s [43]

0.01 �0:499 975 001 �0:499 975 002 760 �0:499 975 002 759
0.02 �0:499 900 020 �0:499 900 044 109 �0:499 900 044 089
0.04 �0:499 600 319 �0:499 600 703 002 �0:499 600 701 769
0.06 �0:499 101 611 �0:499 103 536 095 �0:499 103 522 564
0.1 �0:497 512 316 �0:497 526 738 745 �0:497 526 480 401
0.2 �0:490 188 942 �0:490 392 003 224 �0:490 381 565 035
0.4 �0:460 508 812 �0:464 505 768 398 �0:464 605 379 868
0.6 �0:421 077 143 �0:428 043 598 749 �0:427 462 287 757
1 �0:308 761 166 �0:331 972 429 129 �0:331 168 896 733
2 0:067 442 249 �0:015 366 630 637 �0:022 213 907 665
4 1:0 0:769 419 885 036 0:719 201 983 948

10 4:273 986 768 3:537 250 502 446 3:252 202 836 286

20 10:247 642 981 8:604 763 540 674 7:784 601 484 567

40 22:834 813 500 19:304 961 929 265 17:198 970 175 222

100 62:172 884 749 52:800 667 751 171 46:210 195 763 695
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�.r/ D 0: (7.51)

Here we multiply in the left-hand side of the Schrödinger equation (7.45) by the
factor exp

��� .x12 C x2
2/=2

�

in order to have the Hamiltonian of Eq. (7.51) being
hermitic. Equation (7.51) is equivalent to the equation in �-space as follows:

OA

 OH �Z
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�.�/ D 0; (7.52)
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2 :
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For the use in further calculation we write the normal form of the factor OA:

e�4� �1��

1 �2�
�

2 D 1

2	

C1Z

0

dt

C1Z

�1
dk e�ikte�4�t�1��

1 /eik�2�
�

2

D 1

2	

C1Z

0

dt

C1Z

�1
dk e�ikt exp

�

� t

t C x
OaC
1

ObC
1 C ik

1 � ik
OaC
2

ObC
2

	


 exp

�

. OaC
1 Oa1C ObC

1
Ob1/ ln

x

tCxC. OaC
2 Oa2C ObC

2
Ob2C1/ ln

1

1�ik

�


 exp

�

� t

t C x
Oa1 Ob1 C ik

1 � ik
Oa2 Ob2

	

; (7.53)

where we use the new parameter x D !2=� instead of the parameter � . We will
use the state vectors (7.28) (parabolic wave function) for the wave function of our
system in the zeroth order of approximation. Therefore, all matrix elements can be
calculated using the formulae (7.49), and here the matrix elements for the operator
OA are:

An1n2In0
1n0

2 D hn1n2mj e�4� �1��

1 �2�
�

2

ˇ
ˇn0

1n
0
2m
˛

D .�1/n2Cn0
2Cmxn1Cn0

1Cn2Cn0
2C2mC1



p

n1Š.n1 Cm/Šn2Š.n2 Cm/Šn0
1Š.n0

1 Cm/Šn0
2Š.n0

2 Cm/Š



min.n1;n0

1/X

pD0

min.n2;n0
2/X

sD0

.n2 � n0
2 � 2s/Š

pŠ.p Cm/ŠsŠ.s Cm/Š


 1

.n1 � p/Š.n0
1 � p/Š.n0

2 � s/Š



n2�n0

2�2sX

qD0

.n1 C n0
1 C n2 C n0

2 Cm� 2p � q/Š

qŠ.n2 C n0
2 � 2s � q/Š.n2 C n0

2 Cm � q/Š



n1Cn0

1Cn2Cn0
2Cm�2p�q

X

lD0

1

xlCq


 .�1/l
lŠ.n1 C n0

1 C n2 C n0
2 Cm � 2p � q � l/Š



C1Z

0

dt
e�t

.t C x/n1Cn0
1CmC1�l : (7.54)
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All integrals appearing in (7.54) finally lead to the integral:

I.x/ D
C1Z

0

dt
e�t

t C x
;

which is well investigated.
We note that the Eq. (7.26) is symmetric with respect to the transformation �1 !

�2; �2 ! �1. Therefore we will consider the wave function in the form:

�ṅ1n2m D jn1n2mi ˙ jn2n1mi : (7.55)

Substituting the wave function (7.55) into Eq. (7.52) we obtain energy in the zeroth
order approximation of OM which is considered as analytical energy:

Eanl
n1n2m

.!; x; �/ D !2

2
g.x/ �Z!p.x/C �2

!2
h.x/; (7.56)

where g.x/; p.x/; h.x/ are elementary functions of variables x and I.x/. The
parameters x and ! can be defined as the OM parameters, and they satisfy the
following equations:

@E

@x
D 0 ;

@E

@!
D 0;

which lead to the equations:

!2

2
g0.x/�Z!p0.x/C �2

!2
h0.x/ D 0; (7.57)

!2

2
g0.x/ �Z!p0.x/C �2

!2
h0.x/ D 0: (7.58)

Equations (7.57) and (7.58) can be solved analytically with the solution for the
parameter !:

! D Z
p0.x/h.x/C p.x/h0.x/
g0.x/h.x/C g.x/h0.x/

: (7.59)

Therefore, we obtain the energy as an analytical function of magnetic amplitude �
via the parameter x: E.x/; �.x/.

For demonstration of the advantages of the method we present the calculations
for the ground state as follow:

E.x/ D !2

2x Œ1 � xI.x/�
� !Z I.x/

1 � xI.x/

C �2

8!2
x Œ1C x � x.2C x/I.x/�

1 � xI.x/
;
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Table 7.4 Numerical
estimation for highly accurate
analytical energy obtained by
OM

E.0/ C E.2/ Eexact Eanalytical

� [15] [44] (7.60)

1 �0.33029 �0.33114 �0.329

2 �1:6146 � 10�2 �2:2215 � 10�2 �1:761 � 10�2

20 8.4222 7.7848 7.8243

200 107.76 95.273 95.424

! D Z2.2.1C x/ � .1C 9x C 4x2/I.x/

Cx.2C 7x C 2x2/I 2.x/C 2x2I 3.x//


.�1C x � x.1C 2x/I.x/C x.2C 2x C x2/I 2.x//�1;

�2

4!3
D Z

2 � .1C 3x/I.x/C x2I 2.x/

x2 Œ�1C x � x.1C 2x/I.x/C x.2C 2x C x2/I 2.x/�
: (7.60)

Essentially, that the analytical formula (7.60) gives the energy of ground state
suitable for the whole range of magnetic field. In Table 7.4 some numerical results
by the operator method are shown compared with other method [15, 44]. The
expansion in the asymptotic region of magnetic field gives the results exactly
coinciding with the well-known results:

E.�/ D 1

2
� �Z2ln2� C :: � � 1;

E.�/ D �1
2
� � 1

4Z2
�2 C :: � � 1:

(7.61)

7.5 Two Level System in a Single-Mode Quantum Field

The most popular representation of the Hamiltonian of TLS in a single-mode
quantum field is connected with Jaynes-Cummings [45] model. It is analytically
solvable due to the so called rotating wave approximation (RWA). But the strict
analysis of the RWA validity is not usually considered in the concrete applications
and a range of the system parameters where the results are correct remains uncertain.
Moreover, the exact isolated solutions for TLS were found by several authors [46]
and it was proved that RWA did not describe peculiarities of the accurate energy
spectrum in dependence on the atom-field coupling constant.

Therefore, it is of great interest to analyze the accurate numerical solution of
the TLS problem within a wide range of the Hamiltonian parameters in comparison
with the RWA results. Such kind of studies is useful for the determination of validity
limits of RWA as well as for describing of physical systems with a rather big
coupling constant (e.g. the interaction of condensed matter with high-power laser
radiation or the processes occurring at the long-wave coherent radiation).
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There is the continued-fraction algorithm used by a number of authors for
numerical study of the spectrum and the time evolution of a system [47]. But this
method is rather ineffective for a large coupling constant and quantum numbers
because of the effect of the exponentially diverging solution of the Schrödinger
equation.

In this section we use OM for the numerical and analytical analysis of the TLS
problem. We will see, that the OM algorithm permits one to find the eigenvalues and
eigenfunctions of the TLS Hamiltonian with any required accuracy and to analyze
various characteristics of the system almost with the same efficiency as on the basis
of the analytical solution. It is found that the RWA results coincide qualitatively
with the accurate ones only in the range of small coupling constant and when the
low energy levels are excited. The OM zeroth approximation for the TLS problem
is shown to lead to the analytical formulae which uniformly fit the accurate energy
spectrum for any parameters of the system [28]. The analogous results were also
obtained later in [48, 49].

The Hamiltonian of the considered model has a simple dimensionless form:

OH D 1

2
E�3 C aCaC f .�C C ��/.aC aC/; (7.62)

where aC and a are the photon creation and annihilation operators;E is the atomic
level separation energy; f is the atom-field coupling constant proportional to the
dipole moment of the transition; �3; �˙ D 1

2
.�1 ˙ i�2/ are standard Pauli matrices

with the commutation relations:

Œ�i ; �j � D 2i"ijk�k

and the energy units are chosen in such a way that the photon frequency equals 1.
The Hamiltonian (7.62) leads to the exact solution only if the counter-rotating terms
�CaC; ��a are omitted.

The exact integral of motion (combined parity) is assumed to exist in the
system; it can be written in the form [the representation corresponding to the
Hamiltonian (7.62)]:

OP D �3 OS D �3e
i	aCa: (7.63)

Thus, the exact state vector of the system depends on the two quantum numbers and
it is the joint solution to the following equations:

OH j�npi D Enpj�npi;

OP j�npi D pj�npi:
(7.64)

Here the numbers p D ˙1 define the parity and n D 0; 1; 2; : : : are the energy
quantum numbers for the steady-state eigenvalues Enp.
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In accordance with the OM prescription, one has to use a complete set of the basic
vectors depending on arbitrary parameters which take into account the variation of
system states due to the interaction. In the considered case the atom-field coupling
leads to a shift of the equilibrium position of field oscillators. This shift can be
described by means of the following canonical transformation in the operator form:

a D �u C b; aC D �u C bC;

b D OR�1a OR; OR D eu.aC�a/ D e�u2=2euaC

e�ua;

(7.65)

where bC and b are the new creation and annihilation operators, parameter u will be
defined later. Then the relevant basic set can be chosen by means of eigenfunctions
of the operators On D bCb and �1:

j˚nsi D jn; ui�s;

On D njn; ui; �1�s D s�s .s D ˙/:
(7.66)

The state jn; ui corresponds to the n-quantum excitation of the field coherent
state and connects with the photon vacuum j0i as follows:

jn; ui D .aC C u/np
nŠ

1X

kD0

uk

kŠ
.aC/kj0ie�u2=2: (7.67)

The amplitude u of the classical component of the field to be determined defines
the choice of the presentation for the wave function of the system stationary states.
The functions �s are the following linear combinations of the atom ground and
excited states:

�
˙

D 1p
2
.�

"
˙ �

#
/:

The transformation of Eq. (7.65) leads to presenting the Eq. (7.64) in the
following form:

�
1

2
E�3 C u2 � 2uf�1 C .�u C f�1/.b C bC/C bCb

�

j�npi D Enpj�npi;

�3e
�2u2 e2ubC

ei	b
Cbe2ubj�npi D pj�npi; (7.68)

and the state vector is expanded into the series of the basic set functions:

j�npi D
1X

kD0

X

sD˙
C

np
ks jk; ui�s: (7.69)
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Finally, the algebraic recurrence relations for coefficients C np
kC and C np

k� can be
found as:

.kCu2�2uf�Enp/C
np
kCC.f �u/.

p
kC

np
k�1;CC

p

kC1C np
kC1;C/C

1

2
ECnp

k� D 0;

C
np
k� D p

X

m

Skm.u/C
np
mC; (7.70)

where

Skm.u/ D Smk.u/;

Skm.u/ D .�1/me�2u2
q

mŠ
kŠ
.2u/k�mLk�m

m .4u2/; k � m;

(7.71)

here L˛n.x/ are the Laguerre polynomials [50].
The equation for C np

k� also follows from (7.68) but it is the linear combination of
the Eq. (7.70) when Enp coincides with the exact eigenvalue. The further numerical
calculations show that the connection betweenC np

k� andC np
kC due to the exact integral

of motion OP is more important for the convergence of the OM series than the
connection of these coefficients through the Eq. (7.68).

The most effective algorithm for the calculation of the OM successive approxi-
mation is based on simple iterations within the system of equations for unknown
eigenvalue and the coefficients of the wave function expansion. This scheme
provides the diagonal part of the total Hamiltonian is taken into account exactly
in every iteration order (Chap. 2). Applying this algorithm to the Eq. (7.70) we
arrive at the following recurrence relations for the successive approximations to the
accurate values Enp and C np

kC:

Enp.t/ D nC u2 � 2uf C 1

2
pESnn.u/C .f � u/.

p
nC

np
n�1;C.t � 1/

Cp
nC 1C

np
nC1;C.t � 1//

C1

2
pE

X

m. 6Dn/
Snm.u/C

np
mC.t � 1/;

C
np
kC.t/ D ıkn � .1 � ıkn/Œk C u2 � 2uf C 1

2
pESkk.u/� Enp.t � 1/��1

f.f � u/Œ
p
kC

np
k�1;C.t � 1/C

p

k C 1C
np
kC1;C.t � 1/�C

C1

2
pE

X

m. 6Dk/
Skm.u/C

np
mC.t � 1/�g: (7.72)
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and the values Enp and C np
kC are defined as the limits of the sequences:

Enp D lim
t!1 Enp.t/; C

np
kC D lim

t!1C
np
kC.t/: (7.73)

One can use the OM zeroth-order approximation in order to find the initial
elements of the sequences:

C
np
kC.0/ D ınk; Enp.0/ D nC u2 � 2uf C 1

2
pESnn.u/: (7.74)

By the definition, the exact eigenvalues don’t depend on the parameter u which
is related to the choice of the wave function representation only and the accurate
numerical calculations confirm this statement. But the rate of convergence of the
sequences (7.73) depends on this value and it proves to be maximal when

u D f: (7.75)

This choice is optimal for the OM zeroth approximation as well (see below).
The iteration scheme described above permits one to find the solution to the

Schrödinger equation for the TLS with any required accuracy within the entire range
of the Hamiltonian parameters. In this sense we shall consider this solution as an
exact one and it proves to be as effective for the analysis of the system characteristics
as an analytical solution.

Let us consider some features of the exact solution which are qualitatively
differed from the results obtained in the limits of RWA for this model. Figure 7.1a, b
compare the accurate energy spectrum of the system with its asymptotic approxima-
tions: RWA in the case of f � 1 and Enp ' n� f 2 in the limit of strong coupling.
One can see that the intersections of the levels with different parities theoretically
described earlier [46] lead to the formation of peculiar “plaits” on the diagram of the
levels. The real spectrum structure can be approximated by the spectrum of RWA
only in the range of small enough coupling constant until to the first intersection of
the levels with different parities. The width of this range decreases for high-excited
states of the system proportionally to 1p

n
. Figure 7.1 illustrates this statement and

shows that our numerical solution is effective for any quantum numbers.
Figure 7.2 shows the contribution of various harmonics of the field in the

formation of the accurate stationary states. We remind that in the RWA limits the nth
state is a superposition of two field states only. However, as follows from Fig. 7.2,
quite a lot of field quanta contribute to the formation of the first system excited state
even for the coupling constant f ' 1.

We also verified the conjectured analytical solution by [51, 52] for those
parameters which were considered in these papers. It is also possible to deduce
the approximate but analytical formulae which interpolate the energy and other
characteristics of the TLS uniformly within the entire range of the coupling constant
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a b

c d

Fig. 7.1 (a, b)—exact and approximate eigenvalues of the TLS Hamiltonian as the functions of
the coupling constant and the separation energy; (c, d)—highly excited states of the TLS



7.5 Two Level System in a Single-Mode Quantum Field 277

a

b

Fig. 7.2 Coefficients of the series on the basic set functions for the first excited even (a) and odd
(b) states of the TLS

and quantum number variation. The solution to this problem can be obtained in the
OM zeroth approximation, too.

In accordance with the OM algorithm one has to take into account only the
diagonal part of the full Hamiltonian with respect to the considered basic set in
order to find the OM zeroth-order approximation. To select this part from the matrix
equations (7.68) let us expand the state vector j�npi in the eigenfunctions of the
matrix �1:

j�npi D j'npCi�C C j'np�i��; (7.76)

and exclude the variables, related to the energy spin. Then the effective Schrödinger
equation is:

OHeff j'npCi D
�

u2 � 2uf C bCb C .f � u/.b C bC/C 1

2
pE OS

�

j'npCi; (7.77)

here OS is the operator with matrix elements defined in the Eq. (7.71).
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In accordance with the generalized form of the OM considered in Chap. 3
the diagonal form of the Hamiltonian can be extracted with respect to linear
combinations of the vectors from a basic set which take into account the most
essential properties of the exact wave functions. In the considered case such a
peculiarity is defined by the degeneration (for f D 0 and u D 0) of the states
with the quantum numbers n and n C q (q D p.�1/n) when E D 1, and can be
described by means of the following correct linear combinations:

j'.0/npCi D Ajn; ui C BjnC q; ui; (7.78)

with the constant coefficients A and B .
Certainly, the exact eigenvalues do not depend on a choice of the parameter

u, which defines only the wave functions representation. But just this artificial
parameter ensures flexibility of the OM zeroth-order approximation for various
coupling constants and there are several ways to choose the optimal value for this
parameter. The optimal value u for effective Hamiltonian (7.77) is very simple
u D f and permits one to turn into zero the main part of the operator which defines
the transitions between the nearest states. Applying the state vector (7.78) to the
Eq. (7.77) leads to the following analytical formula for the stationary state energies
in the OM zeroth approximation:

E .0/np D nC 1

2
q � f 2 C 1

4
Eq.�1/n.Snn.f /C SnCq;nCq.f //�

�1
2
q

r

�1
2
E.�1/n.Snn.f /� SnCq;nCq.f //�2CE2S2n;nCq.f /: (7.79)

Similarly to other applications of the OM the formula (7.79) proves to be
uniformly suitable because it reproduces the exact asymptotic behavior of the
function Enp in the limit cases f � 1; f � 1 and describes rather accurately
the quantitative peculiarities of the energy spectrum for the intermediate values of
the coupling constant (see Fig. 7.3).

Indeed, one can obtain the following formula for f � 1:

Snn.f / � .�1/n; Sn;nCq.f / � .�1/nC 1
2 .1Cq/2f

r

nC 1

2
.1C q/; (7.80)

and for j1 �Ej � f :

E .0/np � nC 1

2
q � 1

2
q

s

.1 � E/2 C 4f 2

�

nC 1

2
.1C q/

�

(7.81)

which coincides with the results of RWA in Jaynes-Cummings model.
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Fig. 7.3 Comparison of the exact eigenvalues (solid lines) with the OM zeroth approximation
(dotted lines)

In the opposite limit case f � 1, the exponentially small terms in formula (7.79)
can be omitted and it leads to the simple expression:

E .0/np � n � f 2; (7.82)

which is asymptotically exact.
A simpler formula may be used as the zeroth approximation takes into account

the fact that the degeneration of levels is significant only in the domain of small f :

E .0/np D n � f 2 C 1

2
qEe�2f 2Ln.4f 2/; q D p.�1/n: (7.83)

As we could see above (Figs. 7.1 and 7.2) the characteristic feature of energy
spectrum for the considered system is the intersection of the levels with the same
quantum number n and different parity. The formula (7.79) [or (7.83)] shows that the
OM zeroth-order approximation for spectrum has the same property (see Fig. 7.3).

The approximate estimation for the roots of the equation for f 2:

En;1.f / D En;�1.f / (7.84)
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with E from (7.83) can be found by means of the simple formula:

Ln.4f
2/ D 0: (7.85)

According to the exact results [46], the Ln.4f 2/ is the polynomial of the degree
n with alternating terms in relation to f 2. As for example, the solutions of the
Eq. (7.83) for n D 1 and n D 2 are written as:

f 2
1 D 1

4
; n D 1I f 2

1;2 D 1

4
.2˙ p

2/; n D 2

and can be compared with analogous accurate values [46]:

f 2
1 D 1

4
.1 � E2

4
/; f 2

1;2 D 1

4

 

2 � 3

16
E2 ˙

r

2 � E2

8
C E4

256

!

:

Thus, the simple Eq. (7.83) permits one to find the characteristic points of the
spectrum with accuracy 	 25% in the most interesting resonant case.

The analytical expression for the system energy could be of special interest in
case of large quantum numbers (n�1) which are essential while considering the
interaction of an atom with an intensive electromagnetic field. In this limit the
matrix elements of the operator OS are essentially simplified. Using the asymptotic
formula (see [50]):

L˛n.x/ D 1p
	
e
1
2 xx� 1

2 ˛� 1
4 n

1
2 ˛� 1

4 cos
h

2
p

nx � ˛	

2
� 	

4

i

CO.n
1
2 ˛� 3

4 /;

one may find:

Skn.f / D .�1/n
p

2	f
p
n

cos

�

4f
p
n � .k � n/	

2
� 	

4

	

; n � 1; .k � n/ � n:

As a result, the formula (7.79) transforms as following:

E .0/np D n � f 2 C qE

2
p

2	f
p
n

cos



4f
p
n � 	

4

�

; (7.86)

and can be used in the limit when the field is described semiclassically.
The efficiency of the numerical solution is very important for the problem of the

system time evolution when many stationary states have to be calculated. Therefore,
we consider briefly the time evolution of some initial states of the system when the
exact solution is used instead of RWA.
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Let us suppose, for example, that at the moment t D 0 the atom occupies an
excited state and the quantum field is in the vacuum state. It means that an initial
wave packet in the considered system has the following form:

j�.0/i D j0i�
"
: (7.87)

One can expand it in the exact stationary states (7.72) and calculate the
probability P

"
.t/ to find the atom in the excited state again at the moment t

regardless of the field quantum number. It is well known that in the limits of
the Jaynes-Cummings model the value P

"
.t/ oscillates periodically at the Rabi

frequency. The exact expression for P
"
.t/ is the following:

P
"
.t/ D 1

2

X

mp

X

nq

AmpAnq cosŒ.Emp � Enq/t �
X

k

.C
mp
kC C C

mp
k�/.C

nq
kC C C

nq
k�/;

C
mp
k� D

X

l

Skl.f /C
mp
lC ;

Amp D 1

N
p
2
e� 1

2 f
2
X

k

f k

p
kŠ
.C

mp
kC C C

mp
k�/;

N 2 D
X

k

Œ.C
mp
kC/

2 C .C
mp
k�/

2�: (7.88)

We calculated the required probability on the basis of the formula (7.88) and
the numerical solution of the Eq. (7.72) for stationary states. Figure 7.4 shows the
results of the calculation for various values of the coupling constant. The increase
of the coupling constant leads to the modification of the oscillating regime of the
function P

"
being periodic with period 2	 to the specific case which corresponds

to the quasi-periodic motion in the theory of instability [53] and arises as a result of
a superposition of many motions with incommensurable frequencies.

The same tendency can be observed in Fig. 7.5 which shows the function hP
"
.n/i

averaged over the main period of oscillation that is:

hP
"
.n/i D 1

2	

2	.nC1/Z

2	n

dt P
"
.t/:

One of the possible ways of chaotization in dynamical systems is connected with
doubling of the oscillation frequency [53]. One can see (Figs. 7.6 and 7.7) that such
kind of behavior appears in the considered system. In particular Fig. 7.6 shows the
spectrum of the function P

"
.t/ that is the function:

P
"
.!/ D

1Z

�1
dt e�i!tP

"
.t/;
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a

b

c

Fig. 7.4 Probability of the population of the atom excited state as a function of time



7.5 Two Level System in a Single-Mode Quantum Field 283

a

b

c

Fig. 7.5 Probability of the excited state population averaged over the main period
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Fig. 7.6 Spectral function for the probability of the excited state population

Fig. 7.7 Amplitudes of the main harmonics as the functions of coupling constant
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depending on the coupling constant f . Figure 7.7 demonstrates a non-monotone
dependence of the main harmonic amplitudes on the value f .

More detailed analysis of non-RWA effects in the evolution of TLS in a single-
mode quantum field was considered recently in the papers [29–31].
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Chapter 8
Many-Electron Atoms

The essential achievements in modern quantum theory are closely connected to the
microscopic description of many-electron systems in quantum chemistry, biology
and condensed matter physics by using density functional theory (DFT), introduced
in pioneering works [1,2]. This approach is used as a basis for ab initio calculations
for complex molecular systems and the details of the method are presented in
numerous monographs and reviews [3–6]. The idea of DFT is a use of one-
electron density ne.r/ as a principle dynamic variable defining the state of the
system, instead of many-particle wave function �.�1; �2; : : : ; �N /, which depends
on the coordinate and spins of all electrons. The exact expression for the density in
ground state is determined after the minimization of the density functionalF Œne.r/�,
and thus the problem is reduced to the construction of the approximation for the
functional at certain coordinates of the nuclei of the atoms of system (adiabatic
approximation).

The most effective and simple way to obtain F Œne.r/� is based on the local
density approximation (LDA) with the use of the model of Thomas-Fermi (MTF)
or its modifications [7, 8]. The main advantages of this approach are the universal
expressions for atomic values depending on nuclear charges Z, and the accurate
asymptotic formulas for energy and other physical characteristics of atoms and ions.
In the MTF concept, the atom is considered as electron gas with a small gradient
of density, and thus one-electron basis is described by quasi-classic wave functions,
which are close to plane waves [7]. These functions describe approximately the
real localized wave functions of atomic electrons in the region Z � 1 only,
that results in the disadvantages of MTF: unlimited increase of electron density
near atomic nuclei, non-exponential decay at the infinity, the absence of shell
effects in atomic characteristics, and asymptotic nature of the corrections to zeroth
approximation. As a result, the LDA functional F Œne.r/� in the basis of MTF
describes the distribution of electron density not accurately, especially for the atoms
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with small number of electrons [4]. The correction for the density gradient by
accurate quasi-classic approximation improves the results of the model [3], however,
complicates essentially the calculations and is not uniformly suitable for arbitrary
atomic charges.

The aim of this chapter is to illustrate the construction of LDA for DFT by
operator method using the one-electron basis of either wave functions of harmonic
oscillator (Sect. 8.1) or Coulomb wave functions (Sect. 8.3), which interpolate a real
distribution of atomic electrons better than plane waves in MTF. This approach
constructs the approximation for electron density of atom, which remains uniformly
suitable at any distances from the nuclei and for atoms with any number of electrons.
Within the framework of this approach, the shell effects are taken into account and
the universal dependence of atomic characteristics on Z in the region Z � 1 is
found.

Another development trend in quantum theory of many-electron systems involves
the method of Hartree–Fock (HF), based on one-electron approximation for many-
particle wave function [9, 10]. The wave function �.�1; �2; : : : ; �N / of the system
is represented as Slater determinant [11], composed of the one-electron functions
(orbitals), which are found by numerical solution of complex system of integro-
differential equations (see, for example, [12] and citations therein). In zeroth
approximation of HF method, the contributions to the energy of the system are
taken into account, which are determined by the Coulomb interaction between
electrons and nuclei, the averaged potential of the repulsion between electrons, and
quantum exchange interaction caused by the identity of electrons. The successive
approximations take into account many-electron correlations by improving the wave
functions with configuration interaction method [13]. A substantial difficulty for
applications of HF method in quantum chemistry and condensed matter physics are
cumbersome numerical calculations for the functions of zeroth approximation [12].
This fact complicates the analysis of qualitative properties of atoms in dependence
on the nuclei charge Z, the construction of the excited states, the interaction of
atoms with external fields and inter-atomic interaction in molecules. These problems
are partly eliminated due to the use of Slater orbitals [11], which include the set of
phenomenological parameters selected from best approximation of numerical wave
functions of HF and depending on quantum number. The OM is also applicable
in this case (Sect. 8.4), providing an effective charges model (ECM) [14, 15] for
basic set of one-electron wave functions. Such approach guarantees the accuracy of
zeroth approximation for atomic characteristics, which is comparable to the results
after HF method. The operator method permits to construct the wave functions of
zeroth approximation for excited states and to build a regular scheme for calculation
of corrections to one-electron approximation.
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8.1 Oscillator Model of Atom

We start here with the equations, which define the ground state of atom in OM
zeroth approximation for one-electron wave functions of harmonic oscillator. These
functions are not the best choice for the description of electron in Coulomb field
(see Sect. 7.2), however, they are better than plane wave approximation of MTF and
permit to account the effects of non-uniformity of electron density. The Schrödinger
equation for the wave function of electron in self-consistent potential v.r/ is used,
which includes both nucleus potential and averaged potential of electrons [9].
Without accounting of exchange and spin effects in Hartree approximation, this
equation is written as:

. OH � ��/j �i D
�
1

2
p2 C v.r/� ��

	

j �i D 0I

�.�1; �2; : : : ; �N / D
Y

i

h�i j �i i; (8.1)

where index � includes four quantum numbers defining one-particle wave function
j �i and energy of electron ��; p is a momentum operator. Without applying
symmetrization of wave function, the numeration of electrons in atom is arbitrary,
but due to Pauli principle the set of quantum numbers � is in a single-valued
correspondence with the index i , which defines the electron number in the selected
sequence. In this chapter, the Coulomb units are used [9], where „ D m D e D 1,
the distances are measured in the units of Bohr radius aB D „2=me2 D 0:529 Å,
and energy in atomic units �B D me4=„2 D 27:21 eV .

The mathematical derivation of Thomas-Fermi equation is based [7] on the
quasi-classic approximation for Eq. (8.1). The closed equations for the potential
are possible due to analytical expression for wave functions j �i for arbitrary form
of potential. The similar calculations can be performed for zeroth approximation of
operator method, too. According to general receipt of OM (Chap. 3), the following
canonic transformation for operators in the Eq. (8.1) is sufficient for the transition
to oscillator basis:

p� D i

r
!�

2
.aC
� � a�/I x� D

s

1

2!�
.aC
� C a�/: (8.2)

Here � D .x; y; z/; a�; aC
� are the operators of creation and annihilation, and the

transformation parameters !� will be defined later. These parameters depend on
quantum numbers, which is specific for operator method. The operators a�; aC

� are
supplementary operators, which are used for determination of the state of separate
electron in accordance with Eq. (8.1) and not for the state of the whole many-particle
system. Therefore, these operators satisfy to commutative relations Œa�; aC

� � D ı�� ,
corresponding to Bose-operators. The zeroth approximation of OM is determined
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by the part of one-electron Hamiltonian OH , which commutates with the operators
of excitation numbers aC

� a�, and has a following form:

OH0 D !�

4
.3C 2

X

�

aC
� a�/

C 1

.2	/3

Z

drv.r/

Z

dke�ikre�k2=4!�X

�

1X

mDo
.�1/m k2�

4!�

.aC
� /

m.a�/
m

.mŠ/2
:

(8.3)

The eigenvectors of the operator OH0 are defined by the quantum numbers � D
.nx; ny; nz/, j 0�i D jfn�gi, and one-particle energy at arbitrary v.r/ is calculated
from:

�� D !�

4

 

3C 2
X

�

n�

!

C 1

.2	/3

Z

drv.r/

Z

dke�ikre�k2=4!� Y

�

L0n�.
k2�

4!�
/; (8.4)

where Lmn .x/ are the Laguerre polynomials [16].
A further simplification of the model is attained assuming the self-consistent

potential of the atom to be spherically symmetric, and due to this symmetry over all
components, the parameters!� depend on principle quantum numbern D nxCnyC
nz only, which describes the oscillatory shell of the atom. Under this assumption, all
the electrons on the shell have equal energy, and the summation can be performed
over all states at fixed n in formula (8.4) using the following relationship [16]:

nX

nxD0
L0nx

�
k2x
2!

	 n�nxX

nyD0
L0ny

 

k2y

2!

!

L0n�nx�ny

 

k2z

2!

!

D L2n

�
k2

2!

	

: (8.5)

As a result, the energy of the electron on the shell with a degeneracy (with two spin
states) is:

gn D .nC 1/.nC 2/; (8.6)

and is calculated from the formula:

�n D !n

4
.2nC 3/C 2

gn

1

.2	/3

Z

drv.r/

Z

dke�ikre�k2=4!nL2n
�
k2

2!n

	

: (8.7)
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The self-consistency of the model is achieved in a similar way as for MTF [7] by
using Poisson equation for one-electron potential:

v.r/ D 4	Zı.r/ � 4	ne.r/: (8.8)

The solution for this equation for the nuclear chargeZ is written as:

v.r/ D �Z
r

C 1

	2

Z

dk
e�ikr

k2

nmX

nD0
e�k2=4!n



nX

nxD0
L0nx

�
k2x
2!n

	 n�nxX

nyD0
L0ny

 

k2y

2!n

!

L0n�nx�ny

 

k2z

2!n

!

: (8.9)

To calculate the electron density ne.r/ for the system in a ground state, the
summation in formula (8.9) is performed over the completed states, according to
Pauli principle. The total number of states equals to number nm of last complete
shell, which is found from the normalization condition to the total number of
electronsN0 in atom or ion, and thereforeN0 6D Z:

N0 D 2

nmX

nD0

nX

nxD0

n�nxX

ny

1 D
nmX

nD0
.nC1/.nC2/ D .nm C 1/

3
.n2mC5nmC6/: (8.10)

The formulas (8.7), (8.9) and (8.10) are useable for the atoms with completely
filled shells. The real number of electrons in any atom equals:

N D N0 C q; (8.11)

where N0 is a number of electrons on filled shells. For the exceeding equivalent
electrons q on external uncomplete shell with a quantum number nm C 1, the
effective averaged energy from the formula below can be used:

�nm;q D q

gnmC1
�nmC1: (8.12)

By performing a partial summation of Legendre polynomials in (8.9) using
expression (8.5) and integration over the angles, the spherically-symmetric self-
consistent potential is written as:

v.r/ D �Z
r

C 4

	

Z 1

0
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˚.k/I
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nD0
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: (8.13)
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The radial distribution of the electron density is calculated by the formula:

ne.r/ D 1

	2

Z 1

0

dkk
sin kr

r
˚.k/; (8.14)

and the expression for total energy of atom is found in a form:

E.N;Z; f!ng/ D
nmX

nD0
gn�n.!n/C q�nmC1 �

Z

drne.r/ve.r/I

ve.r/ D v.r/C Z

r
; (8.15)

where the last term in the Eq. (8.15) appears due to double accounting of the
interaction of electrons in a sum of one-particle energies. According to general OM
procedure, the optimal values for the sequence of parameters !n are determined by
the extremum for the function (8.15) over these parameters:

@

@!n
E.N;Z; f!ng/ D 0; n D 0; 1; 2; : : : ; nm C 1: (8.16)

Equation (8.16) are not generally equivalent to variational principle because of
they can be used for both ground and excited states. The successive approximations
of operator method over the operator OV D OH � OH0 lead to the convergent and not
asymptotic sequence (Chap. 3). The equations system for variables !n following
from (8.16) contains the integrals with known polynomials, and for any real atom the
number of the equations is quite limited (n � 6 for Z D 112). By substituting the
solutions of these equations into (8.15) or by minimizing the value E.N;Z; f!ng/,
the total energy of atom and other characteristics can be easily calculated as
functions of Z;N .

The principle result of the model described above is the uniform suitability
for all atomic characteristics calculated on the basis of this model and for any Z
and N . Modern computing tools solve the Eq. (8.16) for quantum numbers with
n < 6 with effectiveness comparable to one of analytical calculations. To illustrate
this fact, the Table 8.1 shows the total energy of atoms calculated by OM zeroth
approximation, the numerical method of Thomas-Fermi E.TF/

tot , and Hartree–Fock
methodE.HF/

tot without relativistic corrections. The valueE.OM/
tot is found from direct

solution of the equations system for OM zeroth approximation (8.15), whereas the
value E.�/

tot follows from the solution of these equations for continuous quantum
numbers, which corresponds to the limit Z � 1 (see next section).
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Table 8.1 The total energy
of atoms calculated for
oscillatory model

Z 20 40 70 112

!0 210.212 871.819 2712.76 7001.4

!1 21.7021 112.066 382.417 1033.07

!2 2.21197 28.1641 117.368 347.57

!3 2.51031 29.7238 111.928

!4 3.66659 36.9953

!5 4.06341

E
.OM/
tot �601:025 �3095:55 �11659:3 �35542:5

E
.�/
tot �820:233 �3991:12 �14450:1 �42769:3

E
.TF/
tot �834:673 �4206:49 �15524:2 �46482:4

E
.HF/
tot �676:758 �3538:97 �13391:5 �40937:8

Fig. 8.1 A distribution of the radial electron density in neutral atoms with Z D 70 and Z D 112

using oscillatory model

The important advantage of the presented above atomic model in comparison
to MTF one is the description of the electron density oscillations caused by
shell structure of atoms. Figure 8.1 shows these oscillations calculated by OM
zeroth approximation (8.14). The above results by OM zeroth approximation
demonstrate the potential of this method and the uniform suitability of the obtained
approximations for atomic characteristics providing the accuracy of 	 8–10 % in
the whole range of physical parameters and describing correctly the qualitative
properties of the system. The considerable improvement of the accuracy can be
obtained using a basic set of the states of OM which takes into account a Coulomb
nature of the potential (Sect. 8.3). The analytical model has also an advantage in
easy development of the iteration technique for successive approximations of the
operator method [17].
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8.2 Continuous Oscillator Model in the Limit Z � 1

To apply the oscillatory atomic model in density function theory, the expressions
obtained in previous section will be considered here in the limit Z � 1, which
makes the equations universal similarly to the quasi-classic limit in statistical theory
of atom. In this case, the state of most of the electrons corresponds to the quantum
number n � 1, which makes possible a use of the asymptotic representation for the
Laguerre polynomials [16]:

e� x
2 Lmn .x/ ) 
 .nCmC 1/

nŠ.nC mC1
2
/m=2

x�m=2Jm

 s

4x

�

nC mC 1

2

	!

; (8.17)

where 
 and Jm are 
 -function and Bessel function, respectively. Within this
limit, the integrals over k in formulas (8.7)–(8.13) are expressed through elementary
functions [16], for example, the one-particle energy (8.7) is:

�n D !n

4
.2nC 3/C 16

	

�
!n

2nC 3

	3=2

Z 1

0

drr2v.r/

s

1 � !nr2

2nC 3
�

�

1 � !nr
2

2nC 3

	

; (8.18)

where � is a stepwise Heaviside function. A similar transformation can be done in
other formulas, and new convenient parameters can be introduced instead of !n:

a2n D 2hr2in D 2nC 3

!n
: (8.19)

These values are directly connected to mean-square radii of the corresponding
oscillator shells, and according to (8.18) define the borders of the electron density
distribution within the shells in asymptotic limits, in which the quantum numbers
n can be considered as continuous variables. As a result, the system of algebraic
equations is transformed into integral equation (we consider here only neutral
atoms Z D N ), and new scale variables with universal dependence on Z can be
introduced:

nC 3

2
D .3Z/1=3�I u� D r.3Z/1=3

˛�
I ˛� D a�.3Z/

1=3: (8.20)

The atomic potential is then written as follows:

v.r/ D �Z
r

�

1 � 16

	

Z 1

0

d��2
Z u�

0

ds.1 � s2/ 32 �.1 � s/

�

: (8.21)
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and total energy of atom is:

E D 31=3Z7=3Œ9

Z 1
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; (8.22)

where F.a; bI cI x/ is a hypergeometric function [16].
Thus, the atomic characteristics at large Z are described by universal functions

depending onZ in a similar way as in the model of Thomas-Fermi. The coefficients
in these functions are expressed through the sole function ˛� , which is the solution
of dimensionless integral equation independent on Z. In fact, this equation plays
the same role as MTF equation in the statistical theory of atom, it follows from the
condition (8.16) as a result of the transfer to the continuous variable:

8

9	
˛� � �2 D 4

3	
˛�

Z 1
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d��2
�

A3���.1 � A��/F

�
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;�1
2

I 4IA2��
	

C�.1 � A��/

�

2F

�
1

2
;�3
2

I 3IA2��
	

� A2��F

�
3

2
;�1
2

I 4IA2��
	�

;

(8.23)

where

A�� D A�1
�� D ˛�

˛�
:

The electron density is an atomic characteristics, which is not universally
depends on Z. This means the asymptotic limit Z ! 1 is not uniformly available
for density, and has various shapes for the center of atom, the external region and
the region with maximal electron density. Mathematically it is manifested in the
singularities of the integrals, which define the asymptotic expression for electron
density:

ne.r/ D 36

	2
Z2

Z �0

ı

d��2˛�3
�

q

1 � u2��.1 � u�/: (8.24)

At Z ! 1, the value � varies within the limits [0;1], which is utilized in
formula (8.21), where the integrand has no singularities at the interval borders.
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However, for anyZ the integral limits ı and �0 are defined by the equations follow-
ing from the normalization condition (8.10) and definition of scale variables (8.20),
if the integral is replaced by the sum:

Z D
nmX

nD0
.nC 1/.nC 2/ D

nmX

0

��

nC 3

2

	2

� 1

4

�

� 3Z

Z �0

ı

�

�2 � ı2

9

�

d�I

ı D 3

2

1

.3Z/1=3
I �0 D .3Z/�1=3

�

nm C 3

2

	

: (8.25)

By using the Eq. (8.10) the expression for �0 is found:

�30 C ı�20 C 11

9
ı2�0 � 5

9
ı3 D 1I

�0 � 1 � ı

3
� 11

27
ı2 C : : : (8.26)

The behavior of the function ˛� on the borders of interval Œ0I 1� does not allow
to set ı ! 0 and x0 ! 1 in the limit Z ! 1, in opposite to the case of
converging integrals for other atomic characteristics. This circumstance causes also
the incorrect values of the electron density in asymptotic MTF theory at r ! 0

and r ! 1. The universal function ˛� found from numerical solution of the
Eq. (8.23), is shown in Fig. 8.2. In this figure, the discrete average radii an of
the shell with number n are depicted by points, which are found from OM zeroth
approximation (8.15) and (8.16) without transition to continuous limit. The function
˛� is an interpolation curve for discrete values an, which are located on this curve

Fig. 8.2 Universal function ˛� for oscillator model of atom in continuous limit
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in both asymptotic limit and for real atoms. Thus, the interpretation of the discrete
values n as continuous is a good approximation for all values of nucleus chargeZ.

The expressions above are valid for atoms with complete shells of three-
dimensional spherical oscillator, which correspond to the chargesZl following from
the formulas (8.10):

Zl D .l C 1/

3
.l2 C 5l C 6/I l D 0I 1I 2I : : : (8.27)

For the physical characteristics F.Z/ of arbitrary atom with the nucleus charge in
interval

Zl � Z � Z.lC1/;

the following interpolation can be used:

F.Z/ � F.Zl/C Z �Zl

.l C 2/.l C 3/
ŒF.Z.lC1//� F.Zl /�: (8.28)

As follows from the Eq. (8.23), the universal function ˛� is monotonically
increasing function on an interval [0;1], and the Eq. (8.23) can be re-written as:
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� 2F
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2
;�3
2

I 3IA2��
	��1

;

(8.29)

that permits to investigate an asymptotic behavior of the function ˛� at both edges
of the interval to make it useable for calculation of electron density from (8.24). In
the limit of small �:

˛� � 9	

8
�2; � � 1: (8.30)

At the opposite edge of the interval, the second integral in (8.29) tends to unity
at � ! 1 due to normalization of electron density for neutral atom. Therefore ˛� 	
.1� �/�1 at � ! 1, however, the coefficient is expressed through the integrals from
hypergeometric functions, and it is easier to find this asymptotic numerically:

˛� � 0:57271

1 � �
; � ! 1: (8.31)
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Now we can use Eq. (8.22) for calculation of the total energy of atom in the limit
Z � 1:

E D �0; 68480Z7=3:

The analogous coefficient in the exact asymptotic formula of MTF equals to
�0:76874 [8]. The known qualitative restrictions of Thomas-Fermi model are the
unlimited growth of electron density in the vicinity of nucleus and unlimited
effective radius of atom. Equation (8.24) shows that the model based on the operator
method leads to the limited value of ne.0/ and certain value of atomic radius r0, at
which the electron density becomes zero, in opposite to MTF. At coordinates r lesser
than radius of the first shell:

r < anD0 D ˛ı

.3Z/1=3
D 27	

32Z
;

the electron density tends to constant value ne.0/ computed from the formula:

ne.0/ D 36

	2
Z2

Z �0

ı

d�
�2

˛3�
: (8.32)

The main contribution to the integral is defined by the function at lower limit.
Using an analytical approximation (8.30) for ˛� , the value ne is:

ne.0/ ' 36

	2
Z2.

8

9	
/3
Z �0

ı

d�

�4
D 1

	5
.
4

3
/7Z3: (8.33)

Due to uniformly suitable nature of OM, this function describes correctly the
dependence ne.0/ on the nucleus charge [18]. However, the numerical coefficient
is underestimated in comparison with HF because the interpolation (8.17) has a
poor accuracy at small n and the formula (8.15) has to be engaged with numerical
summation of Laguerre polynomials (see Fig. 8.1). The external boundary of atom
assumes the electron density (8.24) tends to zero when the coordinate r equals to
the radius of external shell:

r0 D ˛�0
.3Z/1=3

' 0:57271

.3Z/1=3.1 � �0/ : (8.34)

The function �0 tends to (�0 ' 1 � ı
3
) at large Z, and the analytical

approximation (8.31) can be used to calculate the atomic radius:

r0 ' 3
0:57271

.3Z/1=3ı
� 1:1454: (8.35)
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This result correlates with a qualitative estimate for atomic radius stating the r0
depends weakly on the nucleus charge [19]. However, the absolute magnitude differs
from the value found experimentally because of the wave functions of harmonic
oscillator describe badly the asymptotic of Coulomb functions (Sect. 8.3).

Using the model of atom discussed in this section, the contribution of quantum
effects into physical characteristics of atom can be also evaluated. This analysis is
of certain interest for further applications of the model derived from the operator
method. Besides the essential contribution into total energy of atom, which may
improve the results of OM zeroth approximation, it can assist the calculation of
complex atomic characteristics for exchange contribution to DFT functional, which
determines the energy of electron subsystem in condensed matter. We start with the
expression for exchange energy through the wave functions [20]:

Eex D � 1

2	2

Z
dk

k2

n0X

�

n0X

�

jh �jeikr j �ij2: (8.36)

The expression (8.36) is valid for atoms with filled shells and the summation
is performed over the completed states of electrons. In the case of large Z,
corresponding to continuous limit of the model, the influence of non-filled shells is
relatively small and can be taken into account by interpolation formula (8.29). The
representation of the exchange energy as a density functional based on the plane
waves (uniform electron density) for the states j �i has been derived by Dirac [20]:

EexŒne� D �3
4

�
3

	

	1=3 Z

n4=3e dr: (8.37)

This expression is used to account the exchange energy in DFT method within
LDA approach [6]. Engaging the oscillatory model for atom, the numerical calcula-
tion of Eex is pretty simple because of the matrix elements in (8.36) are expressed
through the Laguerre polynomials. However, to be used in DFT method, this model
has to implement a continuous approximation with continuous quantum number n
and continuous function ˛� instead of set of values an. Then the most of calculations
in (8.36) are performed analytically using operator technique andEex is represented
as functional of ˛� . By using the following equation, the restrictions for summations
can be avoided:

Z 2	

0

d'ei'.n�m/ D 2	ım;n;

where ım;n is a Kronecker symbol. The expression (8.36) is then rewritten as:

Eex D � 1

8	4

Z
dk

k2

n0X

nD0
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Z 2	
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S D
X

�

X

�

hn�jei' On�eikrei� Om� jm�ihm�je�ikr jn�i: (8.38)

where the operator of particles number On� is:

On� D Onx C Ony C Onz:

The eigenvalues of this operator define the number of the atomic shell and
are limited by the values n0.Z/. However, the summation over indices nx;y;z in
formula (8.36) covers all values from zero to infinity, that means the summation
over the entire set of vectors of intermediate states jm�i results in unity operator
and the function S is:

S D
X

�

hn�jei' On�eikrei� Om�e�ikr jn�i: (8.39)

The calculation of the value S can be reduced to the summation of the diagonal
elements (trace) of some operator, and this reduction is realized analytically because
of all operators in the exponent contain only linear and quadratic forms of the
creation and annihilation operators. These calculations, however, are cumbersome
due to non-commutativity of operators of particle numbers On� and Om� because of
they belong to different shells and therefore correspond to different frequencies.
The principle term in the expression for Eex, corresponding to continuous function,
is calculated from the following estimate:

@!n

@n
	 Z�1=3 !n: (8.40)

Thus, the variational parameter !n is independent on n within the used accuracy,
which makes possible to refer both operators of particle numbers to the same
frequency !n. The summation in the formula (8.39) is reduced to the product of
three independent sums, and therefore it is enough to consider only one of them, for
example, the sum Sx for x-component of the vector r. Using the representation (8.2)
for the coordinate, the function Sx in operator form is written as:

Sx D
1X

lD0
hl jei'aCaei.aCaC/kx=

p
2!nei�a

Cae�i.aCaC/kx=
p
2!n jli: (8.41)

Here we omit the index x for operators of creation and annihilation. The for-
mula (8.41) can be simplified by rearranging two last operators:

Sx D
1X

lD0
hl jei'aCaei�.a

CCikx=
p
2!n/.a�ikx=

p
2!n/jli: (8.42)
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The expression (8.42) is a trace of the operator and it is independent on the choice
of representation for state vectors jli. Therefore, to simplify the calculations and to
reduce the operator to the diagonal form, the additional canonic transformation is
used, which is equivalent to the change of representation for jli:

a D u C bI aC D u� C bC; (8.43)

where the classic parameter u will be defined later. As a next step, the first
exponential operator in the expression (8.42) is reduced to the normal form, whereas
the second to anti-normal form:

ei'.u
�CbC/.uCb/ D eu.ei'�1/bC

ei'b
Cbeu�.ei'�1/beu�u.ei'�1/I

ei�.v
�CbC/.vCb/ D ev

�.1�e�i� /bei�b
Cbev.1�e�i� /bC

ev
�v.1�e�i� /I

v D u � ikx=
p

2!n: (8.44)

We choose the parameter u in the following way:

u D i
kxp
2!n

1 � z1
1 � zz1

I u� D �i kxp
2!n

1 � z1
1 � zz1

I

z D ei' I z1 D ei�; (8.45)

to eliminate the exponentials with linear operators. As a result, the function Sx is
transformed to:

Sx D
1X

lD0
hl jei.'C�/bCbe

�k2x=2!n .1�z/.1�z1/
1�zz1 jli: (8.46)

To calculate the integrals, we change to the complex integration variables z and
z1 instead of ' and � in formula (8.38). The integration contours are deformed into
the closed contours over the circle with radius jzj D jz1j D 1. The functions Sx;y;z
are transformed after integration over k, and the expression for the exchange energy
is obtained:

Eex D 1

.2	/2

n0X
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.1 � zz1/
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�1=2: (8.47)

The summation overm and the calculation of contour integral in (8.47) leads to the
following expression:

Eex D �
n0X

nD0
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A
5=2

k A
3=2

n0�kA
1=2

n�k: (8.48)



302 8 Many-Electron Atoms

Here the valuesApk are the coefficients at xk in the expansion of binomial .1�x/�p
in a power series. Finally, the last step is the transition to continuous limit over
the variables n; k according to the definition (8.20) and use of asymptotic for the
coefficients [21]:

A
p

k ' kp�1


 .p/
; k � 1:

As a result, the following expression for the functional of exchange energy is found:

EexŒ˛� � D � 2

	
35=3Z5=3

Z 1
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d�
�5=2

˛�
: (8.49)

The numerical value of the coefficient follows from the universal function ˛�
(Fig. 8.2), which delivers:

Eex D �0:518948Z5=3: (8.50)

The expression obtained demonstrates a similar dependence on the nucleus charge
as MTF model [8], however, with different coefficient:

EMTF
ex D �0:269900Z5=3:

In the conclusion of this section, the functional of total energy in the DFT method
unifies the formulas (8.22) and (8.50) if the exchange effect is taken into account:
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(8.51)

Thus, the universal function ˛� , which expresses all atomic characteristics, is
obtained from the minimum condition of full functional (8.51). At large yet finite Z
this function depends on the nucleus charge and differs from the one displayed in
Fig. 8.2.
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8.3 Coulomb Based Atomic Model

According to general scheme of operator method (Sect. 3.1), the zeroth approxi-
mation is constructed on the basis of various basic sets. The approach described
in previous section for oscillator atomic model can be generalized for the case
of one-electron wave functions approximated by Coulomb basis, which takes into
account the Coulomb nature of the nucleus potential. This application demonstrates
the universality of the method and improves essentially the accuracy of OM zeroth
approximation. The results of this section are published in the works [22, 23].
The electron density plays a crucial role in atomic-molecular calculations by DFT
method:

%.r/ D h� j
NX

jD1
ı.r � rj /j� i; (8.52)

where j� i is a state vector of the system and for many-electron atom j� i is defined
from the Schrödinger equation:

0

@

NX

jD1

p2j
2

�
NX

jD1

Z

rj
C 1

2

NX

i¤j

1

jri � rj j

1

A j� i D E j� i: (8.53)

Here N is a total number of electrons in atom; Z is a nucleus charge; pj and rj are
the operators of momentum and location of j th electron; E is a total energy of the
system. In the model of independent Hartree particles, the Coulomb wave functions
of hydrogen-like atom nlm.r/ are selected as one-particle basis functions i.ri / for
the construction of the atomic wave function:

�.r1; r2; : : :; rN / D  1.r1/  2.r2/: : :  N .rN /: (8.54)

The electron density of nth atomic shell is written as:

%n.r/ D
n�1X

lD0

lX

mD�l
 �

nlm.r/  nlm.r/; (8.55)

where the summation over quantum numbers l andm corresponds to the summation
over the degenerated states of hydrogen-like atom at fixed principle quantum
number n. The sum (8.55) is calculated as analytical expression for electron density
of the shell in asymptotic limit n ! 1. This calculation can be performed
algebraically if using the relationship between the solutions of Schrödinger equation
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for hydrogen-like atom with the solutions for isotropic harmonic oscillator in two-
dimensional space with complex coordinates �s .s D 1; 2/, where Schrödinger
equation has a following form:

H Q D �1
2

@2 Q 
@��
s @�s

C !2

2
��
s �s

Q D Z Q : (8.56)

The coordinates �s .s D 1; 2/ are considered as components of spinor, and the
asterisk corresponds to the conjuncted value; ! is a real positive number; the
summation is performed over doubly repeated indices. Equation (8.56) is invariant
relatively to transformation:

�s ! �se
i�; ��

s ! ��
s e

�i� ; (8.57)

that corresponds to nullification of the commutator of HamiltonianH with operator:

Q D ��
s

@

@��
s

� �s
@

@�s
: (8.58)

The detailed description of the representation is given in Chap. 7 for application
of OM to the quantum theory of hydrogen-like atom in external field. Below we
provide a reader with the key characteristics of this representation required for the
description of many-electron atoms. In the Eq. (8.56), we use new variables:

x� D ��
s .��/st�t .� D 1; 2; 3/;

˚ D arctg

�
� 00
1

� 0
1

	

; (8.59)

where .��/st are the matrix elements of Pauli matrix ��, and � 0
s D Re �s , � 00

s D Im �s .
The properties of the spinor �s guarantee the real numbers x� to be the components
of three-dimensional vector r. Equation (8.56) in the variables (8.59) has the
following form:
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C 1

2.r C x3/
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Q C !2

2
r Q D Z Q ;

(8.60)

where r D jrj, is a Laplace operator. We consider here the physically meaningful
solutions of the Eq. (8.60) independent on˚ and corresponding to zeroth eigenvalue
of the operatorQ, which in variables (8.59) has the following form:

Q D i
@

@˚
: (8.61)
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As follows from the Eq. (8.60), the physically meaningful solutions are the solutions
of three-dimensional Schrödinger equation for the particle moving in Coulomb field
and having the energy:

E D �!
2

2
: (8.62)

The relationship between the Schrödinger equation for hydrogen-like atom and
Schrödinger equation for isotropic harmonic oscillator in two-dimensional complex
space permits to present the solutions of these equations in a simple algebraic form.
The scalar product of wave functions in �-space is:

h Q�j Q i D
Z

d4� Q��.��
1 ; �

�
2 ; �1; �2/

Q .��
1 ; �

�
2 ; �1; �2/; (8.63)

where d4� D d� 0
1d�

0
2d�

00
1 d�

00
2 . Furthermore we introduce the annihilation operators
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; (8.64)

and Hermitian conjugated with respect to the scalar product (8.63) creation opera-
tors aC

s ; b
C
s :
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: (8.65)

These operators satisfy the canonic transposition relationships:

�

as; a
C
t

� D ıst;
�

bs; b
C
t

� D ıst; (8.66)

and other commutators equal zero. By substituting the operators @=@�s , �s , @=@��
s ,

��
s expressed through operators (8.64) and (8.65) into (8.56), the following equation

is obtained:

!

2

�

2C aC
s as C bC

s bs
� D Zj i: (8.67)
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The solution of this equation follows from the eigenvectors of the creation operators.
The ground state (vacuum) is defined by the equation:

as j0.!/i D bsj0.!/i D 0: (8.68)

Using the transposition formulas (8.66), the state vectors

j Q na1 ;nb1 ;na2 ;nb2 .!/i D .aC
1 /

na1 .bC
1 /

nb1 .aC
2 /

na2 .bC
2 /

nb2

.na1Š n
b
1Š n

a
2Š n

b
2Š/

1=2
j0.!/i; (8.69)

with non-negative integer numbers na1 , nb1 , na2 , nb2 are the eigenvectors of commu-
tating operators aC

1 a1, b
C
1 b1, a

C
2 a2, b

C
2 b2, and these eigenvectors belong to the

eigenvalues na1 , nb1 , na2 , nb2 . Thus, the states (8.66) are the solutions of the Eq. (8.67)
in assumption of:

! D 2Z

2C na1 C nb1 C na2 C nb2
: (8.70)

Equation (8.62) then lead to the expression:

E D � 2Z2

.2C na1 C nb1 C na2 C nb2/
2
: (8.71)

The physically meaningful solutions are the ones (8.69), which correspond
to zeroth eigenvalue of the operator Q expressed through the operators (8.64)
and (8.65) as follows:

Q D aC
s as � bC

s bs: (8.72)

This means that the only quantum numbers na1 , nb1 , na2 , nb2 satisfying the condition:

na1 C na2 D nb1 C nb2; (8.73)

are physically meaningful. The operator of the orbital momentum is defined through
the operators (8.64) and (8.65):

l� D 1

2
.��/st.a

C
s at � bC

s bt /: (8.74)

The connection between the quantum numbers (8.69) and spectroscopical clas-
sification of the states of hydrogen-like atom is established as follows: the energy is
determined by principle quantum number n D n C 1 (n D na1 C na2 D nb1 C nb2),
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which takes the values n D 1; 2; 3; : : :. The orbital quantum numbers l correspond
to the states (without normalization multipliers):

l D 0 W .aC
s b

C
s /

nj0i; n D 0; 1; 2; : : :

l D 1 W .��/sta
C
s b

C
t .a

C
j b

C
j /

nj0i; � D 1; 2; 3; n D 0; 1; 2; : : :;

: : :: : ::

which are the linear combinations of the states (8.69). The detailed calculations
of matrix elements using state vectors (8.69) are presented in Chap. 7. Using
the transformation (8.64) to express the Eq. (8.55) in the representation of two-
dimensional complex oscillator, the sum (8.55) is written as:

%n .r/ D
n�1X

lD0

lX

mD�l
 �

nlm.r/  nlm.r/ D
n�1X

lD0

lX

mD�l

Z

d3 Qr ı.3/.r � Qr/ j nlm.Qr/j2 D

D N2

nX

na1D0

nX

nb1D0

Z

d4 Q� ı.4/.� � Q�/ j Q na1 ;nb1 ;n�na1;n�nb1 .
Q�/j2; (8.75)

where the summation over na1 , nb1 corresponds to the summation over the degener-
ated states, and the Eq. (8.73) and the relationships between integration measures
and delta-functions in �- and r-spaces are utilized:

d4� D 1

8.x�x�/1=2
dx1dx2dx3d˚; (8.76)

Z 2	

0

d Q̊ ı.4/.� � Q�/ D 8 r ı.3/.r � Qr/; (8.77)

ı.4/.� � Q�/ D
Z

d4k

.2	/4
ek .��Q�/; (8.78)

and k .� � Q�/ D k0
1 .�

0
1 � Q� 0

1/C k0
2 .�

0
2 � Q� 0

2/C k00
1 .�

00
1 � Q� 00

1 /C k00
2 .�

00
2 � Q� 00

2 /.
Since the Coulomb wave functions Q .�/ in the representation of two-

dimensional complex space are normalized to unity in �-space relatively to scalar
product (8.63), the normalization factor N in (8.75) is chosen as follows:

Z

d3r j n.r/j2 D
Z

d3r
Z 2	

0

d˚

2	
j n.r/j2 D

D N2 4

	

Z

d4� r j Q na1 ;nb1 ;n�na1;n�nb1 .�/j
2 D N2 4

	

nC 1

!n
D 1;

N 2 D 	!n

4.nC 1/
; (8.79)
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where r D ��
s �s , and !n is determined from the Eq. (8.70) at n D na1Cna2 D nb1Cnb2 .

Using the definition of delta-function (8.78), the Eq. (8.75) is transformed to:

%n .r/ D 	!n

4 .nC 1/

Z
d4k

.2	/4
ei k�



nX

na1D0

nX

nb1D0
h Q na1;nb1 ;n�na1;n�nb1 .!n/je

�i kQ� j Q na1 ;nb1 ;n�na1;n�nb1 .!n/i:

(8.80)

The state vector j Q i corresponds to the state of hydrogen-like atom with energy
En D �Z2=2n2 and is a linear combination of Coulomb state vectors with different
angular quantum numbers but with equal principle quantum number n. The method
of the construction of state vectors with quantum numbers n, l ,m in the basis (8.69)
is explained in Chap. 7.

Using the definitions (8.68), (8.69), (8.64), and (8.65), the transposition formu-
las (8.66) and summing rule for Laguerre polynomials (8.974.4) from [16], the
expression for sum (8.75) is obtained:

%n.r/ D 	!n

4.nC 1/

Z
d4k

.2	/4
ei k� e� jkj

2

8!n

�

L1n

� jkj2
8!n

	�2

; (8.81)

where Lmn .x/ are Laguerre polynomials [16]. To integrate (8.81) over k, the
following coordinate system is used:

cos �1 D k0
1�

0
1 C k00

1 �
00
1

jk1j j�1j ; z cos ˛ D jk1j;

cos �2 D k0
2�

0
2 C k00

2 �
00
2

jk2j j�2j ; z sin ˛ D jk2j; (8.82)

with 0 � �1 � 2	 , 0 � �2 � 2	 and 0 � z < 1, 0 � ˛ � 	=2. By integrating over
�1 and �2 in (8.81), using the integral representation of Bessel function (8.411.1) in
[16], we arrive at equations:

%n.r/ D 	!n

4.nC 1/

Z 1

0

d z

.2	/2
z3e� z2

8!n

�

L1n

�
z2

8!n

	�2



Z 	=2

0

d˛ sin ˛ cos ˛ J0.z sin ˛ j�1j/J0.z cos ˛ j�2j/: (8.83)
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Finally, integrating over ˛ with the use of formula (6.683.2) in [16], the following
integral representation for the sum (8.75) is derived:

%n.r/ D 	!n

4.nC 1/

Z 1

0

d z

.2	/2
z3 e� z2

8!n

�

L1n

�
z2

8!n

	�2
J1.z

p
r/

z
p
r

; (8.84)

where from (8.59) follows r D j�1j2 C j�2j2. Thus, the calculation of sum (8.75) is
reduced to the calculation of the integral:

I D
Z 1

0

dz z2 J1.z
p
r/ e� z2

8!n

�

L1n

�
z2

8!n

	�2

; (8.85)

which is calculated according to the technique proposed in [22, 23].
The Laguerre polynomials L1n can be written in integral representation using

the generating function (8.975.1) from [16]. The integration over z using formula
(6.631.4) from [16] leads to:

I D 16 !2n
p
r

.2	i/2

I
dz1

znC1
1

dz2
znC1
2

1

.1 � z1z2/2
exp

�

�2!nr .1 � z1/.1 � z2/

1 � z1z2

�

: (8.86)

The use of generating function to perform inverse transformation leads to:

I D 16 !2n
p
r

.2	i/2

1X

pD0

I
dz1

zn�pC1
1

I
dz2

zn�pC1
2

L1p

�

2!nr
.1 � z1/

z1

.1 � z2/

z2

	

: (8.87)

The Laguerre polynomial L1p is represented through the sum of polynomials Lm
using the formula (8.974.3) from [16] and Lm, and definition (8.970.1) from [16].
The expression is integrated over z1 and z2:

I D 16 !2n
p
r

1X

pDn

1

Œ.p � n/Š�2
p
X

lD0

lX

kD0

lŠ

.nC k � p/Š
.�2!nr/k

.nC k � p/Š.l � k/Š
;

(8.88)

and is modified to the following formula for I :

I D 16 !2n
p
r

nX

lD0
Ll.2!nr/

�

1C l C 1

.1Š/2
.�2!nr/C .l C 1/.l C 2/

.2Š/2


.�2!nr/2 C : : :

	

D 16 !2n
p
r

nX

lD0
Ll.2!nr/˚.l C 1; 1;�2!nr/

D 16 !2n
p
r e�2!nr

nX

lD0
ŒLl .2!nr/�

2 ; (8.89)
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where ˚.˛; ˇ; z/ is a degenerated hypergeometric function. The final expression for
the integral (8.85) is derived by using the formula (8.974.1) from [16] for the sum
of the products of Laguerre polynomials:

I D 8!n.nC 1/
p
r e�2!nr

�
dLn .2!nr/

dr
LnC1 .2!nr/

� Ln .2!nr/
dLnC1 .2!nr/

dr

�

: (8.90)

Substituting (8.90) into (8.84), the sum (8.75) is written as:

%n.r/ D !2n
2	

e�2!nr 

�
dLn .2!nr/

dr
LnC1 .2!nr/�Ln .2!nr/ dLnC1 .2!nr/

dr

�

:

(8.91)

To obtain the sum (8.91) in asymptotic limit n � 1, the integral representa-
tion (8.86) is used. Since the value 2%n has a meaning of the density of electrons
number on the filled shell n of atom, the normalization condition for total number
of electrons on shell is fulfilled:

Z

d3r 2%n.r/ D 2 .nC 1/2: (8.92)

A total number of electrons in neutral atom with filled shells equals to Z D
P

n 2 .nC1/2, and to switch to the limit n � 1 in (8.85), the asymptotic expression
for Laguerre polynomials is used:

e� x
2 Lmn .x/ ) 
 .nCmC 1/

nŠ.nC mC1
2
/m=2

x�m=2Jm

 s

4x

�

nC mC 1

2

	!

; (8.93)

where 
 and Jm are Gamma and Bessel functions, respectively. Equation (8.85) is
modified then to:

%as
n .r/ D !2n

	

Z 1

0

dz
J1.z

p
r/p
r

J1

 

z

s

nC 1

2!n

!2

: (8.94)

Integrating over k with the use of formula (6.578.9) from [16], we obtain for %n
in asymptotic limit n � 1 the following expression:

%as
n .r/ D 2

	2
2.nC 1/2

a3n

r
an

r
� 1 �

�

1 � r

an

	

; (8.95)
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where �



1 � r
an

�

is a Heaviside function, at r > an the function � D 0, and at

r < an the function � D 1, an D 2.n C 1/=!n. The quantity %as
n satisfies the

normalization condition (8.92). The expression (8.95) is an analogue of the electron
density in MTF. Based on (8.95), the statistical model represents both electron
density %as

n and electron potential 'as
n :

'as
n .r/ D

Z

d3r0 %as
n .r

0/
jr � r0j ; (8.96)

in analytical form. Similarly to the oscillator model, the atom has a finite size
because of at r > a� the electron density equals zero. Additionally, after the
transformation

x D r

a�
; %as.x/ D a3n

2 .nC 1/2
%as
n .r/; (8.97)

the electron density %as.x/, shown in Fig. 8.3, is the universal function for any shell
due to the independence on n and Z.

The electron potential 'as.x/, defined as:

x D r

an
; 'as.x/ D an

2 .nC 1/2
'as
n .r/; (8.98)
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Fig. 8.3 The universal function of electron density %as.x/ (thick line), for third shell (dashed line),
and for 31st shell (thin line)
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is also a universal function, i.e. the potentials created by electron shells are similar
each to the other. The potential 'as.x/ is:

'as.x/ D �.1 � x/C �.x � 1/

2 x
C �.1 � x/

3 	 x
f
p

.1 � x/ x Œ4 .1 � x/ x � 3�C

C .3 � 6 x/ arcsin.
p
x/
�

: (8.99)

Thus, this model preserves the universality of the atom description, which
is equivalent to the universality of Thomas-Fermi model, because of %as.x/ is
independent on the charge of the atomic nucleusZ.

The function %as
n is an exact limit of the function (8.91) at � ! 1, as

evident from the Fig. 8.3. The curves of the electron density (8.85) oscillate
around asymptotic curve (8.97), however, with the increase of the shell number the
amplitude decays rapidly and tends to zero at � ! 1. As a matter of fact, both
curves merge in asymptotic limit.

To construct the theory of atom taking into account the shell effects, the density
of the electrons number in atom % D 2

P

� %n can be used, because of it is regular in
the origin of coordinates and has oscillating character in accordance with the shell
structure of atom. Is a self-similarity preserved in such an atomic theory? To answer
this question, we transform the electron density (8.91) according to (8.97):

%n.x/ D 2 .nC 1/

	
e�4 .nC1/ x

�
dLn .4 .nC 1/ x/

dx
LnC1 .4 .nC 1/ x/

� Ln .4 .nC 1/ x/
dLnC1 .4 .nC 1/ x/

dx

�

; (8.100)

and the corresponding transformations (8.98) for electron potential 'n (8.96):

'n.x/ D
Z

d3x0 %n.x0/
jx � x0j : (8.101)

As follows from Fig. 8.4, the curve of electron density (8.100) is close to
asymptotic curve at small values of �, which corresponds to the shells of real atoms.
The quantity %n.x/ is normalized to the same value for all shells.

In real applications, the interest is focused on physical values with electron
density under integral sign, for example, electron potential (8.101), rather than
electron density itself. The plots of potential (8.101) for the shells of real atoms
and of asymptotic potential (8.99) are shown in Fig. 8.5. All curves practically
coincide with the asymptotic line. For the quantitative assessment of the difference
between the potentials of first four shells and asymptotic potential, Fig. 8.6 shows
the deviations ın.x/ D 100 .'n.x/�'as.x//='as.x/. The largest deviation from the
asymptotic has first shell ı1 < 9%, the second shell is ı2 < 3%, and for the rest
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Fig. 8.4 The electron density %n for first six shells, the dashed line for first shell, the thick line for
sixth shell
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Fig. 8.5 Electron potential 'n.x/ for first six shells and asymptotic potential 'as.x/ (thick line);
dashed line corresponds to the first shell

ın is lesser than one percent. This accuracy is typical for OM zeroth approximation,
which describes the self-similarity of electron potential quite well. The electron
potential 'as.x/, i.e. the potential in asymptotic limit y ! 1, plays a role of
universal function.

The universal expressions for atomic characteristics have been also obtained
besides MTF, in oscillator model of atom with eigenfunctions of three-dimensional
symmetric oscillator as one-particle wave functions. To apply the model of two-
dimensional complex oscillator for many-electron atom in approximation of inde-
pendent particles, the one-particle equation for electron is written as:

�
p2

2
� Z

r
C v.r/ � E�

	

j �i D 0: (8.102)
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Fig. 8.6 The deviations ın.x/ of the potentials of first four shells from the asymptotic potential;
dashed line corresponds to first shell, thick line to sixth shell

The electron is assumed to be located in self-consistent potential V.r/ D �Z
r

Cv.r/,
caused by other electrons and positively charged nucleus with the charge Z. In
the Eq. (8.102), the parameter � means the set of quantum numbers characterizing
the state of electron in the atom; p is an operator of electron momentum; E� is
the energy of one-electron state. To apply the OM to the solution of one-electron
equation, the Eq. (8.102) is rewritten into secondary quantification form, using the
transformations (8.64), (8.65):

Lj �i �
�
!�

4

�

2CN �MC �M � �Z C
Z

d4 Q� Q�� Q� v. Q��; Q�/
Z

d4k

.2	/4
e�i kQ�


 e
� k2

8 !�

2Y

sD1

1X

nsD0

1X

n0

sD0

�
i ks

2
p
2!�

	ns
�

i k�
s

2
p
2!�

	n0

s .aC
s /

ns .as/
n0

s

nsŠ n0
sŠ



1X

msD0

1X

m0

sD0

�
i ks

2
p
2!�

	ms � i k�
s

2
p
2!�

	m0

s .bC
s /

ms .bs/
m0

s

msŠm0
sŠ

)

j �i

� 1

2 !�

�

2CN CMC CM
�

E� j �i D 0: (8.103)

The potential v.r/ is assumed to be spherically-symmetric, the vector j �i belongs
to Hilbert space of two-dimensional complex oscillator and is a state eigenvector
of the operator Q (8.61) with a zero eigenvalue. According to procedure of OM
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applied to Eq. (8.103), the operator of zeroth approximation L0 commutating with
the operator of particles number N is written as:

L0 D
�
!�

4
.2CN/ �Z C

Z

d4 Q� Q�� Q� v. Q��; Q�/
Z

d4k

.2	/4
e�i kQ�


 e
� k2

8 !�

2Y

sD1

1X

nsD0
.�1/ns

� jksj2
8!�

	ns .aC
s /

ns .as/
ns

.nsŠ/2

1X

msD0
.�1/ms

� jksj2
8!�

	ms


 .b
C
s /

ms .bs/
ms

.msŠ/2



� 1

2 !�
.2CN/E�: (8.104)

The eigenvectors of the operator L0 corresponding to zeroth eigenvalue of
operator Q are determined from the condition na2 D n � na1 and nb2 D n � nb1 .

The index � is then associated with three quantum numbers n, na1 , nb1 and j .0/� i D
j na1;nb1 ;n�na1;n�nb1 i, where n; na1; n

b
1 D 0; 1; 2; 3; 4: : :. Hereinafter we make an

assumption, which is justified below in comparison with the variational results
for atom energy, obtained for Coulomb functions in coordinate representation. The
parameter !� D !n is assumed to be dependent exclusively on principle quantum
number n C 1. The one-particle energy En;na1; nb1 ; s in zeroth approximation for the

potential v.r/ is determined from the equation h .0/� jL0j .0/� i D 0 and equals to:

E
.0/

n; na1 ; n
b
1 ; s

D !2n
2

�Z !n

nC 1
C
Z

d4 Q� Q�� Q� v. Q��; Q�/
Z

d4k

.2	/4
e�i kQ� e� k2

8 !n


Lna1
 

jk1j2
2
p
2!n

!

L
nb1

 

jk1j2
2
p
2!n

!

Ln�na1

 

jk2j2
2
p
2!n

!

L
n�nb1

 

jk2j2
2
p
2!n

!

;

(8.105)

where index s D ˙ 1
2

means the spin states of the electron. Because of the relativistic
effects are not included into consideration, the one-particle energy is degenerated
over s. Thus, according to Pauli principle the .n C 1/th shell may accommodate
gn D 2

Pn
na1D0

Pn

nb1D0 1 D 2 .nC 1/2 electrons.

To make a model self-consistent, the potential v.r/ has to be determined from
the Poisson equation, in a similar way as in Thomas-Fermi method:

v.r/ D �4	 %.r/; (8.106)

where is Laplace operator in three-dimensional space, and %.r/ is electron density
in the model of independent particles from the Eqs. (8.54) and (8.55). For neutral
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atoms with completely filled shells, the zeroth approximation of OM gives the
electron density equal to:

%.r/ D 2

n0X

nD0
%n.r/; (8.107)

where %n is determined from the Eq. (8.84), and n0 from the equation 2
Pn0

nD0.nC
1/2 D Z. The solution of the Poisson equation for potential v.r/ is found as:

v.r/ D 2

n0X

nD0

�
4	

r

Z r

0

dr 0 r 02%n.r 0/C 4	

Z 1

r

dr 0 r 0%n.r 0/
	

: (8.108)

As illustrated in Fig. 8.7, the above described model implements the shell
structure of atom because of electron density has an oscillating nature in opposite to
MTF, which provides the monotonic function.

The total energy of atom as a function of electrons numberNe, nucleus chargeZ
and parameters f!ngnmax

nD0 follows from the equation:

E .Ne;Z; !1; : : :; !nmax/ D
X

n; na1 ; n
b
1 ; s

E
.0/

n; na1 ; n
b
1 ; s

� 1

2

Z

d3r %.r/ v.r/; (8.109)

where summation is performed over one-particle states occupied by electrons under
the condition

P

n; na1 ; n
b
1 ; s
1 D Ne. The parameters !n are determined from the

extremum condition for energy (8.109) in accordance with OM procedure:

@E .Ne;Z; !1; : : :; !nmax/

@!m
D 0; .m D 1; 2; : : :; nmax/: (8.110)

Fig. 8.7 The electron density
�.r/ of the neutral atoms with
completely filled shells for
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This equation system is not fully equal to the variational condition for minimal
energy, and can be applied for excited states, too. By resolving the algebraic system
of Eq. (8.110), the total energy of atom and all related characteristics can be
computed as functions of the total number of electrons Ne and nucleus charge Z.

To further discuss the presented model, we consider the limiting case Z ! 1
and construct the analogue of quasi-classic limit in statistic MTF theory of atom. In
the limit of largeZ, the majority of electrons belongs to shells with n � 1, therefore
we make use of asymptotic expressions (8.94), (8.96) for electron density %as

n and
potential 'as

n of the shell. For simplicity sake, the neutral atoms with completely
filled shells are considered here, i.e. Ne D Z and .1 C n0/.2 C n0/.3 C 2 n0/ D
3Z. In asymptotic limit, the quantum number n is treated as continuous variable
provided the following dimensionless variables are introduced:

x D nC 1
�
3
2
Z
�1=3

; a.x/ D an

�
3

2
Z

	1=3

; u.x/ D r

a.x/

�
3

2
Z

	1=3

; (8.111)

The density of electrons (8.107) of a neutral atom with all filled shells in asymptotic
limit equals:

%.r/ D 18

	2
Z2

Z x0.Z/

ı.Z/

dx
x2

a.x/3

s

1

u.x/
� 1 � .1 � u.x// ; (8.112)

where the limits of integration are determined from the equations:

ı D
�
2

3Z

	1=3

;

1

2
.ı C x0/.2ı C x0/.3ı C 2x0/ D 1: (8.113)

Equation (8.113) has two complex and one real positive solution:

x0 D �3 ı
2

C
31=3 ı2 C




36C p
3

p
432� ı6

�2=3

2 32=3



36C p
3

p
432� ı6

�1=3
� 1 � 3

2
ı C ı2

12
:

(8.114)

It is evident that ı ! 0 and x0 ! 1 in asymptotic limit Z ! 1, however,
the behavior of the function a.x/ in points 0 and 1 does not allow to extend the
integration limits from zero to unity in the expression for electron density (8.112).
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All other atomic characteristics are expressed through the integrals converging on
the interval Œ0; 1�. For example, the expression for electron potential v.r/ looks as
follows:

v.r/ D Z

r

Z 1

0

dx 6x2 u.x/ 'as .u.x// ; (8.115)

where the function 'as is determined from the Eq. (8.96). The total energy of atom
as a functional of the function a.x/ is found from the Eq. (8.109):

E D 8

�
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2
Z

	7=3 �Z 1

0

dx

�
x4

2 a.x/2
� x2

3 a.x/

	

C

C 8

	

Z 1

0

dx
Z 1

0

dy
x2 y2

a.y/

Z 1

0

dz z2
r

1

z
� 1 'as

�

z
a.x/

a.y/

	)

: (8.116)

Thus, the atomic characteristics in the discussed model of atom at large Z are
described by universal expressions, similar as MTF does. All values are expressed
through single function a.x/, which is the solution of integral equation equivalent
to the Eq. (8.110) and in explicit form follows from the condition of nullification of
functional derivative of the functional of energy (8.116):

a.s/ D 3 s2 � 3 a.s/3

s2
ı

ıa.s/

�
8

	

Z 1

0

dx
Z 1

0

dy
x2 y2

a.y/

Z 1

0

dz z2




r

1

z
� 1 'as

�

z
a.x/

a.y/

	)

: (8.117)

The dimensionless function a.x/ is an universal function for all atoms because
of the charge of nucleus is not involved in the Eq. (8.117). Equation (8.117) is an
analogue of MTF equation in statistical model of atom. The model proposed in this
section is applicable for atom with arbitrary Z and Ne . Using modern computing
algebraic resources, the total energy of atom E and shell parameters !n are easily
found from the Eqs. (8.109) and (8.110). Table 8.2 shows the results for total energy
of some atoms along with their accuracies in comparison to Hartree–Fock method,
and accuracy does not exceed two percent. We have not accounted the exchange
energy in calculations, and therefore the table presents total energy with subtracted
self-interaction energy of electrons:

Es D 1

2

X

i

Z

d3r
Z

d3r0 j i.r; !i /j2 j i.r0; !j /j2
jr � r0j ; (8.118)

Table 8.2 shows also the total energy accounting the interaction between electrons
inside shells using the standard formula for exchange energy [20]. In this case, the
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Table 8.2 Total energy and effective frequencies (charges) of neutral atoms with completely filled
shells (Coulomb filling); ı is relative error of current results with respect to the results after
Hartree–Fock method; an0 is effective radius of external shell; Es is energy of self-interaction
of electrons

Z 10 28 60 110 182 280

!0 9.63824 27.5657 59.5221 109.494 181.476 279.463

!1 2.87268 11.7705 27.5268 52.3491 88.2172 137.118

!2 � 4.32759 14.956 31.1974 54.8486 87.2306

!3 � � 5.97149 18.6268 36.0454 60.0219

!4 � � � 7.77147 22.6507 41.549

!5 � � � � 9.69789 26.9724

!6 � � � � � 11.7251

an0 1.392 1.386 1.339 1.286 1.237 1.194

�.E � Es/ 125.905 1482.59 9157.45 38771.4 128138.2 355513.9

ı% 2.0 1.6 1.4 1.2 � �
�.E C Eex/ 129.374 1509.26 9262.34 � � �
ı% 0.7 0.2 0.2 � � �
�EHF 128.547 1506.82 9283.70 39225.0 � �
�ETF 165.6 1830.1 10834.2 44568.6 144304.3 394289.2

self-interaction energy has not to be subtracted because of it is canceled by the same
contribution in the exchange energy Eex:

Eex D �1
2

X

i;j

Z

d3r
Z

d3r0  �
i .r; !i /
jr � r0j ; (8.119)

where  i includes also the spinal part of the wave function of i th electron,
the summation over electron assumes i th and j th electrons belong to the same
shell, and other terms are neglected. This approximation is reasonable because of
the exchange energy between shell electrons is essentially higher than exchange
energy between electrons belonging to different shells. When summing up over all
electrons, the formula (8.119) fails if one-electron wave functions are chosen as
Coulomb functions with arbitrary parameter!i , because of these wave functions are
not orthogonal for the electrons belonging to different shells. The functions i have
been selected in a coordinate representation because of calculation of the exchange
matrix elements is easier in coordinate representation than in the representation of
two-dimensional complex oscillator. Here we have chosen the wave functions of the
hydrogen-like atom for one-particle wave functions j �i:

j �i D Ylm.�; '/
2 .n!nl/

3=2

nlC2 
 .2l C 2/

s


 .nC l C 1/


 .n � l/ .2n!nl r/
l e�!nl r


˚ .�nC l C 1; 2l C 2; 2!nl r/ ; (8.120)
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Table 8.3 Total energy and effective shell charges of neutral atoms with completely filled shells
(experimentally observed filling)

Z 10 18 28 36 40 54

!1s 9.63122 17.5855 27.5573 35.5432 39.5364 53.5209

!2s 3.1717 7.0233 11.9444 15.8503 17.798 24.6776

!2p 2.97605 6.90317 11.8546 15.7909 17.7516 24.6649

!3s � 2.84506 5.43641 7.74579 9.01713 13.3787

!3p � 2.54858 5.23227 7.62518 8.91781 13.3193

!3d � � 4.34388 6.81171 8.18102 12.7479

!4s � � 1.84715 3.19168 4.30557 7.2486

!4p � � � 2.84806 4.00172 7.00315

!4d � � � � 0.999796 6.1527

!5s � � � � 2.20132 3.36666

!5p � � � � � 3.1042

�.E C Eex/ 129.374 529.119 1514.24 2763.55 3552.21 7251.48

�EHF 128.547 526.818 1506.82 2752.06 3538.97 7232.14

ı% 0.7 0.6 0.5 0.4 0.4 0.3

where 
 .n/ is Gamma function;˚.a; b; x/ is degenerated hypergeometric function;
Ylm.�; '/ is spherical function; � D .n; l;m/. The parameters !nl depend both on
principle quantum number n and on orbital quantum number l .

Table 8.3 shows the energy values computed for several atoms using discussed
model with experimentally observed nC l filling of electrons in the shells, which is
described approximately by Madelung-Klechkowski rule. Table 8.3 demonstrates a
good approximation of HF functions by the wave functions of hydrogen-like atom,
which follows from the agreement of calculated energies with ones resulted form HF
method. The parameters !nl weakly depend on orbital quantum number l , therefore
the domination of principle quantum number in the choice of approximation is
reasonable. For example, the total energy of atom Z D 40 without contribution
caused by dependence on l equals to 3550:32, which is close to HF energy 3552:21.

To accurately consider the asymptotic limit Z ! 1 of the presented model, the
Eq. (8.117) is written in the following form:

a.s/ D 3 s2

1 � 24
	

R 1

0
dz z2

q
1
z � 1

R 1

0
dx x2 F




z; a.x/
a.s/

� ; (8.121)
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z
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� z
d
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�

z
a.x/

a.s/

	

:

The analysis of this equation indicates the behavior of function a.s/ � 3 s2 in the
limit s � 1, whereas a.s/ � 1=.1 � s/ in the limit s ! 1, which means the
existence of singularity in the point s D 1. The numerical solution of the integral
equation (8.121) is cumbersome, however, the analytical one can be obtained from
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Fig. 8.8 The universal
function for effective radii of
shells Qa.x/ for different
atoms Z D 2; 10; 28; 60;

110; 182; 280; 408
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the asymptotics for a.x/ assuming the function a.x/ is an interpolative one for
effective radii of atomic shells. Thus, by drawing all the points fx; Qa.x/g on the
graph ( Qa.x/ D an.3Z=2/

1=3, x D .nC 1/.2=3Z/1=3), where Z and an correspond
to real atoms from Table 8.3, we obtain a single curve Qa.x/ shown in Fig. 8.8. The
function Qa.x/ is approximated well by function a.x/, and Qa.x/ � a.x/. As has
been demonstrated in Sect. 8.2, the function a.x/ is interpolative for effective radii
of real atoms, provided the one-particle functions are chosen as eigenfunctions of
harmonic oscillator in oscillatory model of atom, and this feature remains valid for
Coulomb model of atom.

To interpolate the points in Fig. 8.8 in zeroth approximation, the function a.x/ �
a.0/.x/ is chosen in analytical form:

a.0/.x/ D 2a

�
1

1 � x2
� 1

	

C .3 � 2a/ x2; (8.122)

where a is a constant and the function a.0/.x/ has proper asymptotics at zero and
unity. The function a.x/ is specified as a sum of a.0/.x/ and a.1/.x/, which is
interpolated by the following rational function:

a.1/.x/ D x4
c1 C c2 x

4

1C b1 x4 C b2 x8
; (8.123)

here the parameters a; c1; c2; b1; b2 are found from the fit of 35 points fx; Qa.x/g,
corresponding to atoms with Z D 10; 28; 60; 110; 182; 280 and computed from
the data presented in Table 8.2 using the relationship an D 2.n C 1/=!n between
!n and an. As a result, a D 0:5261874, c1 D 0:2634342, c2 D �0:3480257,
b1 D �2:3631431, b2 D 1:4504157, and adding another eight points for Z D 408:
a D 0:4994434, c1 D 0:3514095, c2 D �0:43634995, b1 D �2:2915775, b2 D
1:3711871. The accuracy of the interpolation obtained as Qa.x/ � a.0/.x/C a.1/.x/,
can be assessed by comparing the calculated total energy with the energy computed
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Table 8.4 Total energy of
atoms E int from interpolative
formula for parameters
Qa.x/ � a.0/ C a.1/, and
energy E obtained from exact
minimization

Z E int E ı (%)

10 125.725 125.905 0.1

28 1482.11 1482.596 0.01

60 9156.12 9157.45 0.01

110 38767.61 38771.37 0.01

Table 8.5 The accuracy ı of
the results by interpolation

ı;%

0.49 2.36 0.97 1.06 0.26

0.61 1.42 0.75 0.04 0.20

0.79 1.28 0.27 1.40 0.20

1.06 1.55 0.46 0.70 0.03

1.51 1.21 1.60 0.73 0.07

1.12 4.60 0.37 0.35 0.02

1.26 1.58 0.44 1.92 0.01

by exact minimization. Table 8.4 displays the accuracy of this approximation better
than hundredth of percent.

Table 8.5 shows the accuracy ı D 100 ja.0/Ca.1/� Qa.x/j= Qa.x/ for the parameters
in all 35 points. Thus, the accuracy of the interpolation is very good, and it has a
simple analytical form and fits the asymptotics correctly.

Provided the expression for the function a.x/ is known, the formula for the
atomic energy in the limitZ ! 1 can be derived by substituting a.x/ � a.0/Ca.1/
into Eq. (8.116) and performing a numerical integration:

E D �0:76667 Z7=3: (8.124)

The result demonstrates that the asymptotic value of E in the considered model
is close to the energy of MTF E D �0:76874Z7=3, which in its turn defines
the exact asymptotic expression for total energy in the limit Z ! 1. Thus, the
approximation obtained for a.x/ is close to exact one, which corresponds to the
minimum of the functional of energy (8.116) and is determined from the Eq. (8.121).
The derived approximation does not violate the virial theorem: providing the mean
kinetic energyEk equals

Ek D 8

�
3

2
Z

	7=3 Z 1

0

dx
x4

2 a.x/2
D 0:762485 Z7=3; (8.125)

the total energy of the system with Coulomb interaction is equal to the mean kinetic
energy with the opposite sign E D �Ek . Comparing (8.122) and (8.124), the virial
relation is evidently satisfied well with the accuracy 0:5%. Thus, the approximate
expression for a.x/, derived from the interpolation on the points corresponding to
real atoms is a good interpolation for the solution of Eq. (8.121). As a consequence,
the function a.x/ is an interpolation for effective radii of atoms with both large and
small chargesZ.
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8.4 Effective Charges Model for Many-Electron Atom

In previous sections, the application of the operator method has been focused on
calculation of the observable physical values of atom in ground state, for example,
total energy or electron density. However, the numerous applications related to
many-electron atoms in external fields, their interaction with electrons and photons
require the wave functions of electron sub-system of atoms or ions in ground and
excited states. This section deals with the application of OM to above mentioned
problems and construction of analytical solutions using the representation of one-
electron wave functions on the basis of effective charges model (ECM). This
approach has been used in [14] to analytically derive the atomic scattering factors
required for calculation of X-ray polarizabilities of crystals [24].

There are a lot of databases and papers where precise enough analytical approx-
imation for one-electron wave functions has been derived (for example, [25–27]).
In the most of these cases, the wave functions derived are a result of the numerical
interpolation for solutions of the HF equations for free atoms in the ground states.
This makes it difficult to use these functions for description of the excited states of
the atoms and for calculation of the transition matrix elements which are necessary
for description of interaction between atoms and external fields.

Here we use OM for the calculation of the atomic wave functions on the basis
of the approximate solution of the Shrödinger equation that is valid for the entire
range of Hamiltonian parameters. It was shown in the previous chapters that the
essential feature of OM is its locality in the space of eigenstates of the investigated
quantum system, i.e. a state vector in the zeroth-order approximation includes the
variational parameters defined by the condition of the best description of exactly
this state. This approach can be used both for the ground state and for the excited
states of the system. Another important feature is the convergence of the successive
approximation of OM in the entire range of changing of the Hamiltonian parameters.
Both these features of the OM have permitted us to find the analytical expression
for wave function of many-electron atoms using a comparatively small database of
parameters with clear physical meaning.

Quantitative description of atomic systems is based mainly on the concept of
independent movement of electrons in self-consistent field of HF potential [12].
One-electron state vectors are considered as a basis for construction of zeroth
approximation for electron wave function in this common field. The OM allows
one to extend the conception of a common self-consistent field by inclusion of an
individual field for every electron in every state. It will be shown below that this
helps to realize in full measure the idea of the independent movement of electrons,
when the total energy of the atom is reduced to the sum of energies of individual
electrons; this is in opposition to the total Hartree–Fock energy of atom, which does
not satisfy this condition [28].

In accordance with the OM general rules (Chap. 3) its zeroth approximation
is defined by the optimal choice of the wave function basis as distinct of the
conventional PT which is defined by a choice of the zeroth order Hamiltonian. In
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the considered case the characteristics of the electron individual field are determined
also by the selection of the basis of one-particle wave functions. For atoms the most
natural basis is generated by functions describing the movement of each electron
in its own Coulomb field defined by an effective charge. These individual effective
charges are supposed to be different for different electron states and are considered
as the OM variational parameters for the best zeroth approximation. The charges are
transformed to the charge of atomic nucleus when the interaction between electrons
is adiabatically cut off. The reason for such a parametrization can also be explained
by the fact, that the Coulomb wave functions with a properly chosen effective charge
approximates the Hartree–Fock functions very well [29].

An individualization of the self-consistent field for the electron in every quantum
state does not contradict the permutation symmetry of the initial Hamiltonian of the
whole atom. However, it is very important to use the basic set of orthonormalized
one-electron wave functions for a correct calculation of form factors and higher-
order approximations. The construction of an orthonormalized basis starts from the
functions Rnl.r; Znl), which are the solutions of the radial Shrödinger equation for
a particle in the Coulomb field of the charge Znl and spherical harmonics Ylm.n/.
Here r D jrj; n D r=r and n; l; m are the principal, orbital and azimuth quantum
numbers [9], and the atomic units and traditional spectroscopic classification are
used. Thus, a coordinate part of wave function of an electron in the first shell is
chosen as the 1s state in the field with effective chargeZ1s :

1s .r; Z1s/ D R10.r;Z1s/ Y00.n/: (8.126)

A general form for wave functions of the electrons in the second shell is

2s .r; Z2s/ D .C20R20.r; Z2s/C C21R21.r; Z2s//Y00.n/;
2p m.r; Z2p/ D R21.r;Z2p/ Y1m.n/: (8.127)

Here the coefficients C20 and C21 are chosen from the conditions of the orthogonal-
ity of functions 1s and 2s and normalization of the function 2s :

Z

dr 1s �.r; Z1s/ 2s .r; Z2s/ D 0;

Z

dr j2s .r; Z2s/j2 D 1: (8.128)

This procedure is repeated for the states of electrons in the third shell resulting
in the relations:

3s .r; Z3s/ D .C30 R30.r; Z3s/C C31 R31.r; Z3s/C C32 R32.r; Z3s// Y00.n/;
3p m.r; Z3p/ D .D31 R31.r; Z3p/CD32 R32.r; Z3p// Y1m.n/;

3d m.r; Z3d / D R32.r;Z3d / Y2m.n/; (8.129)
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where, again, the coefficients C30, C31 and C32 are defined by the orthogonality
of the function 3s .r; Z3s/ to the functions 1s .r; Z1s/ and 2s .r; Z2s/ and by
normalization. The coefficients D31 and D32 can be found from the orthogonality
of the functions 3p m.r; Z3p/ and 2p m.r; Z2p/ and their normalization.

The formulas above illustrate the procedure for construction of an orthonormal-
ized basis from the Coulomb functions belonging to different effective charges.
The set of radial functions with the same principal quantum number n is enough
for a similar construction of electron wave functions in any shell. The effective
charges are the only free variational parameters in the functions of the OM’s
zeroth approximation, contrary to the Slater orbitals [26], where essentially more
parameters are introduced in order to interpolate the polynomial structure of radial
functions.

The reasons for a considered way of orthonormal basis construction are also
related to the influence of electron kinetic energy operator on these functions. For
example,

� 1

2
 1s .r; Z1s/ D

�

�Z
2
1s

2
C Z1s

r

	

1s .r; Z1s/

�1
2
 2s .r; Z2s/ D .�Z

2
2s

8
C Z2s

r
/ 2s .r; Z2s

�C21
r2

R21.r; Z2s/ Y00.n/: (8.130)

The components in the right hand sides of the equations �.Z2
1s=2/

1s .r; Z1s/
and �.Z2

2s=8/
2s .r; Z2s/ are eliminated when the total Hamiltonian acts on a

many-particle wave function. In this case, the result is represented as the sum of one-
particle energies of electrons. The considered here one-particle orthonormalized
basis with effective charges of electrons as free parameters permits the construction
of a wave function for the entire atom. For every concrete atomic state, the vector
j� i is presented as a sum of anti-symmetrized products of one-particle functions
from the constructed basis in the form of Slater determinant (spin functions should
be taken into account).

In the zeroth OM approximation, a diagonal matrix element E D h� jH j� i
defines the energy of the atom with a nuclear charge Z and Hamiltonian:

H D �1
2

X

i

i �
X

i

Z

ri
C
X

i<j

1

jri � rj j (8.131)

In accordance with OM, free parameters (effective charges in our case) can be
chosen from the condition of independence of the diagonal matrix elements of the
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Hamiltonian on a wave function representation. In our case, these conditions lead to
the equations:

@E

@Z1s
D 0;

@E

@Z2s
D 0 : : : (8.132)

The Slater determinant is only considered for the mathematical foundation of
the initial approximation. Certainly, the orthonormalization of the basis allows
all the advantages of the secondary quantization formalism to be used in routine
calculations. Let us restrict ourselves to completely filled nl states for illustrative
purposes and introduce the notations for the following matrix elements:

enl D 1

2l C 1

Z

dr
X

m

.nl �
m.r; Znl//

1

r
.nl m.r; Znl//; (8.133)

ecnl D 1

2l C 1

Z

dr
X

m

.nl �
m.r; Znl//

�

� 1

2
C Z2

nl

2n2
� Znl

r

	

.nl m.r; Znl//;

(8.134)

een1l1n2l2 D 1

.2l1 C 1/.2l2 C 1/

Z

dr1

Z

dr2
1

jr1 � r2j


X

m1;m2

jn1l1 m1.r1; Zn1l1 /j2 jn2l2 m2.r2; Zn2l2/j2; (8.135)

exn1l1n2l2 D 1

.2l1 C 1/.2l2 C 1/

Z

dr1

Z

dr2
1

jr1 � r2j


X

m1;m2

.n1l1 �
m1
.r1; Zn1l1// .

n2l2 �
m2
.r2; Zn1l1//


.n2l2 m2.r1; Zn2l2// .n1l1 m1.r2; Zn1l1//: (8.136)

Then the ground state energy for any atom is performed as an algebraic
expression. For example, for atom with four electrons and a nucleus charge Z the
energy can be written as (population of the electron states is defined by the Pauli
principle):

E D E0 C E1I

E0 D �2Z
2
1s

2
� 2

Z2
2s

8
I

E1 D �2 .Z �Z1s/ e10 � 2 .Z �Z2s/ e20 � 2 ec20

Cee1010 C ee2020 C 4 ee1020 � 2 ex1020: (8.137)
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The analogous formula for the atom with ten electrons and nuclear chargeZ is:

E D E0 C E1I

E0 D �2Z
2
1s

2
� 2

Z2
2s

8
� 6Z

2
2p

8
I

E1 D �2 .Z �Z1s/ e10 � 2 .Z �Z2s/ e20 � 6 .Z �Z2p/ e20

�2 ec20 C ee1010 C ee2020 C 4 ee1020 C 12 ee1021 C 12 ee2021

C15 ee2121 � 2 ex1020 � 6 ex1021 � 6 ex2021 � 6 ex2121: (8.138)

The numerical coefficients in the last formulas are determined from the calcula-
tion of the number of electrons in occupied states and number of interacting electron
pairs, i.e. number of electron pairs with equally oriented spins contributing to the
exchange interaction. According to the formulas (8.137)–(8.138), the energy of an
atom can be written as a sum of two terms:

E D E0 C E1; (8.139)

where E0 represents a sum of one-particle energies of electrons, determined by the
formulas following from the relations (8.130):

E1s D �Z
2
1s

2
; E2s D �Z

2
2s

8
; E2p D �Z

2
2p

8
; : : : (8.140)

The valueE1 is the correction of the first order of OM, caused by an approximate
presentation of the potential energy of the atom as the sum of individual potential
energies of electrons.

The results of the OM zeroth approximation can be juxtaposed now with the
HF results for some atomic characteristics. As for example, Table 8.6 shows the
energiesE0 andE1 for neutral Be, B, F, Ne, Na and Mg atoms, calculated assuming
the definition of the effective charges as in Eq. (8.133). The effective charges for
all neutral atoms and some ions were listed in the paper [14], the atomic units are
used in the calculations and the total Hartree–Fock energy for nonrelativistic atoms

Table 8.6 Total energies of atoms calculated by OM (E) and by the HF method (EHF)

Atom (Z) E0 E1 E D E0 C E1 EHF

Be.Z D 4/ �15.4116 0.88164 � 14.5300 � 14.5730

B.Z D 5/ �25.8567 1.40611 �24.4506 �24.5291

F.Z D 9/ �104.454 4.57247 �99.8820 �99.4094

Ne.Z D 10/ �135.133 5.64220 �129.491 �128.547

Na.Z D 11/ �168.803 5.76189 �163.041 �161.859

Mg.Z D 12/ �207.919 7.06993 �200.849 �199.615
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[26] is presented in the last column. The OM estimations for the total atomic energy
are in a good agreement with the HF results. One of the advantages of the OM
approach is the smallness of the nonadditive contribution E1 in comparison with
the total energy, this is in contrast to the HF method [28]. The simple structure of
the wave functions can be also used for accounting of a self-consistent relativistic
contribution to the atomic Hamiltonian [14].

Direct physical interpretation of the OM wave functions can be used to find the
change of the atomic form factors in the external field. For example, the atoms C, Si
and Ge in the magnetic field have in the ground state two external p-electrons, which
form a state with the total spin S D 1 and orbital momentum L D 1. Taking into
account the spin-orbital interaction, the ground state of these atoms corresponds to
the zero eigenvalue of the total momentum J D L C S [9]. In a magnetic field � ,
directed along the z axis, the Hamiltonian of the atom is changed by the value:

ıH D A.LS /C �B�.Lz C 2Sz/; (8.141)

where A > 0 is the constant of the spin-orbital interaction and �B is the
Bohr magneton. The radial wave functions of the OM zeroth approximation
Rn1.r/; n D 2.C /; 3.Si/; 4.Ge/ do not change but their spin-angular dependence
defined by the eigenfunctions of the operator ıH can be diagonalized by means
of the eigenvectors of the full spin and the momentum operators jML;MS >. The
ground state vector of the atom in the field is transformed to the following linear
combination:

j˚0 > D c1j1;�1 > Cc2j0; 0 > Cc3j � 1; 1 >I

c1 D � 1p
3
.1C � � 2

9
�2/; c2 D 1p

3
.1 � 5

9
�2/;

c3 D � 1p
3
.1� � � 2

9
�2/;

� D �B�

A
: (8.142)

These wave functions lead to the appearance of the non-spherical part of
the electron density. As a result, the atomic scattering factor includes a term
proportional to the second Legendre polynomial with an angle � between the axis z
and the vector q. The amplitude of this contribution is defined by the integral of the
radial electron density with Bessel function:

fm.q/ D �10
9
�2P2.cos �/

Z 1

0

drr2R2n1.r/
r

	

2qr
J5=2.qr/

D �10
9
�2P2.cos �/fm.s/: (8.143)
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Thus, the use of OM for effective charges model delivers a simple and physically
obvious algorithm for quantitative description of atomic characteristics in one-
electron approximation with the accuracy satisfactory for numerous applications
[24]. This approach is a basis for accounting of inter-electron correlations in
successive approximations of operator method (Sect. 5.3).
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Chapter 9
Systems with Infinite Number of Degrees
of Freedom

This chapter is dedicated to the applications of operator method for the analysis of
propagation of electron in ionic crystal, called often as propagation of polaron of
a large radius. This task is qualitatively distinguishable from the ones discussed
in previous chapters by the fact that Hamiltonian includes the interaction of
electron with the system possessing infinite degrees of freedom and describing
the phonon field of the lattice vibration. A similar problem arises for the systems,
which require the self-consistent description of objects with external media, and
the significance of polaron covers much wider area than the description of the
interaction between electrons and phonons initially constructed by Fröhlich [1].
The application of polaron in the condensed matter physics have been discussed
in numerous monographs and reviews (see, for example, [2–5]). In this chapter we
consider the application of the operator method to polaron problem.

The Hamiltonian of polaron is frequently considered not only for the description
of the processes in solid state physics, but also as fundamental model to probe the
non-perturbative methods of quantum field theory in the entire range of coupling
constant ˛. Similar to other quantum systems, the polaron can be described both
by Schrödinger equation and by calculating the functional integrals. The idea of
the localized electron state in the field of optical phonons of ionic crystal, called
polaron, has been induced from the variational solution of Schrödinger equation
[6]. The variational estimate for the coupling energy E0.˛/ of the ground state
of polaron has been found from Schrödinger equation for large coupling constant
˛ � 1, which determines the interaction between electron and phonon field [6].
In the works [7–9], the adiabatic PT has been developed, which delivers the exact
asymptotic description of ground state in the limit of strong coupling ˛ ! 1.
In Sect. 9.1, we demonstrate the capability of OM to find in analytical form a
zeroth approximation for polaron in the limit of strong coupling, the successive
approximations and the spectrum of the excited states for polaron as well as to
explain the interaction of polaron with external field [10].

© Springer International Publishing Switzerland 2015
I. Feranchuk et al., Non-perturbative Description of Quantum Systems,
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The great advantage of variational approach introduced by Feynman for the path
integral description of polaron is the approximation found for E0.˛/, which is valid
in the entire range of 0 < ˛ < 1, and the best estimate for coupling energy in the
intermediate range of coupling force [11]. Recently the Monte-Carlo method [12]
has been applied to calculate path integrals and to obtain accurate data for function
E0.˛/. The construction of uniformly available approximation for polaron, however,
has a special importance for the description of spectrum of the excited states and for
the systems with internal degrees of freedom. In Sect. 9.2, we apply the operator
method for the description of one-dimensional polaron in the entire range of ˛,
which makes possible to investigate the spectrum of polaron states [13].

There were many efforts spent to compute the ground state energy of three-
dimensional polaron in the range of intermediate ˛ on the basis of variational
principle for Schrödinger equation. The trial functions used for investigation of
the whole range of ˛ in operator method, result in singularity of E0.˛/ near the
point ˛c ' 7 (see, for example, [14] and citations therein). This fact initiated the
discussion about possible phase transition between two qualitative states of polaron
near ˛c . However, the number of publications (see review [15]) have reported
the function E0.˛/ to be analytical for all ˛ and the phase transition does not
exist. Section 9.3 shows the application of OM for the construction of uniformly
available analytical approximation for polaron in the entire range of ˛ [16, 17]
and generalizes this approach for alternative interaction form between particle and
quantum field [17].

9.1 OM for Strong Coupling Polaron

As has already been mentioned above, the majority of methods applied to compli-
cated case of strong coupling polaron problem (˛ � 1) are based on the variational
principle in various forms. However, in contrast to the perturbation theory, the
variational principle is not the regular calculation method, because it does not permit
to increase directly the calculation precision, to find the spectrum of the excited
states or to take into account the exact law of conservation of full momentum of the
system. Bogolyubov [7] and Tyablikov [9] suggested a new method in the strong
coupling polaron theory in which the polaron energy was expanded in a power
series of the inverse value of the electron-phonon interaction constant ˛. The law
of conservation of total momentum was taken into account exactly, however, the
equations for zeroth-order approximation in this method were very complicated
and the calculation of the next-order corrections required cumbersome numerical
computations.

The regular method of the expansion of large-radius polaron energy into ˛�1
series is developed in present section by means of OM . The law of conservation of
the momentum is taken into account exactly and, at the same time, the high-order
corrections are calculated analytically. The high-order correction for the polaron
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effective mass and polaron polarizability in the external electric field are also
calculated.

Let us consider the Hamiltonian of the large-radius polaron which was con-
structed by Fröhlich [1]:

OH D 1

2
Op2 C 25=4


	˛

˝

�1=2X

k

1

k
Oqk exp.ikr/C 1

2

X

k

. Oqk Oq�k C Opk Op�k/; (9.1)

where Op is the particle momentum operator; Oqk and Opk are the operators of the
phonon coordinate and momentum, respectively; ˝ is the normalization volume
and the system of units is used where the electron mass m and phonon frequency
are equal to unity. The Hamiltonian (9.1) commutates with the operator of the full
momentum of the system:

OP� D Op� � i
X

k

k� Oqk Opk; (9.2)

which is the integral of motion. As a consequence, the polaron state vector must
be the common eigenvector for the Hamiltonian (9.1) and for the operator with
components OP� (� D 1; 2; 3). The strong interaction of the particle with the phonon
field leads to the appearance of the classical component in the field operators.
In order to take into account this circumstance and to fulfil the exact law of
conservation let us make a canonical transformation which was first introduced by
Bogolyubov [7] and Tyablikov [9]:

r D R C �I Oqk D e�ikR.uk C OQk/; (9.3)

where the new variable R is introduced in such a way that canonically conjugate
operator .�i@=@R/ coincides with the operator of total momentum. To leave a
total number of coordinates invariable let us put three additional conditions on new
operators OQk:

X

k

k�vk
OQk D 0: (9.4)

One can express the operator Opk through new variables using Eq. (9.3):

Opk D �i @
@qk

D �i @R�
@qk

�
@

@R�
� @

@��

	

C
X

f

@Qf

@qk

OPf I

OPf D �i @

@Qf

I @Qf

@qk

D eikRıkf C i
@R�

@qk

f�.uf C OQf /: (9.5)
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The conditions (9.4) lead to the equation for the derivative:

� i
@R�

@qk

D eikRk�vk C i
X

f

f�f� OQf

@R�

@qk

: (9.6)

Here the function vk satisfies the condition of orthogonality:

X

k

k�k�ukvk D ı��: (9.7)

In order to realize further calculation at the operator level and not to use the explicit
form of the wave function, let us introduce a new operator notation for � and
.�i@=@�/:

�� D 1p
2!
.a� C aC

� /I �i@=@�� D �i
r
!

2
.a� � aC

� /; (9.8)

where a� and aC
� are the creation and annihilation operators which satisfy the

standard commutative conditions:

a�a
C
� � aC

� a� D ı��; (9.9)

and the parameter ! will be defined below. The formulae (9.3)–(9.8) express the
Hamiltonian of the system through new variables. The main idea of the method
considered below consists of expanding of the Hamiltonian in a power series of the
operators a; aC; OQk; OPk. Then only the quantities of the second order inclusively
remain in Hamiltonian and the quadratic quantic is diagonalized exactly. The rest of
the Hamiltonian is taken into account by means of a standard perturbation theory.

To construct the above mentioned series, the Eq. (9.6) has to be solved by
iteration method with an accuracy up to the first order on the operator OQk. As
a result, one can find the following expression for the operator Opk through new
variables:

Opk D eikRvk.k� �
X

f

k�f�f�vf
OQf /.@=@R� � @=@��/C eikR OP 0

kI

OP 0
k D OPk � k�vk

X

f

f�uf
OPf I

X

f

uf
OP 0
f D 0: (9.10)

The coordinate R enters in OH only in the form of the canonically conjugate operator
�i@=@R which coincides with the momentum of the system. Therefore the polaron
wave function is assumed in the following form:

j� >D eiPRj >; (9.11)
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and the operator �i@=@R in the Hamiltonian may be changed by constant vector P .
Let us also note that the operator exp.ik�/ can be expanded into power series of a�
and aC

� by means of the following operator identity:

ei.k�=
p
2!/.a�CaC

� / D e�k2=4!eik�a
C

� =
p
2!eik�a�=

p
2!: (9.12)

As a result, all the quantities in this series will be presented in a normal form. After
simple but unwieldy transformations, the Hamiltonian (9.6) may be written with an
accuracy of the second order of the field operators as follows:

OH D OH0 C OH1;

where

OH0 D 3

4
! C !

2
.2aC

� a� � aC
� a

C
� � a�a�/C 1

2

X

k

.uku�k C 2uk
OQ�k C

C OQk
OQ�k C OP 0

k
OP 0�k/C 1

2

X

k

.k�k�vkv�kP�P� C 2k�vk
OP 0�kP�/C

C25=4

	˛

˝

�1=2X

k

1

k
.uk C OQk/e

�k2=4!
�

1C i
k�p
2!
.a� C aC

� /

�

�

�25=4

	˛

˝

�1=2X

k

1

k
e�k2=4! uk

4!
k�k�.2a

C
� a� C aC

� a
C
� C a�a�/;

(9.13)

and the perturbation operator OH1 is defined by the following expression:

OH1 D 25=4

	˛

˝

�1=2X

k

1

k
e�k2=4!

�

.uk C OQk/

�

eik�a
C

� =
p
2!eik�a�=

p
2! �

�1 � i
k�p
2!
.a� C aC

� /

�

C uk

4!
k�k�.2a

C
� a� C aC

� a
C
� C a�a�/



:

(9.14)

The operators 	 P�P� are small values when ˛ � 1 but they should be included
in zeroth-order Hamiltonian OH0 in order to find the effective mass of the polaron.
As soon as the polaron binding energy is calculated, the condition P� D 0 can be
utilized. Then those terms in Hamiltonian which consist of the operator OP 0

k in a
linear form become equal to zero if the numbers vk are chosen as:

vk D Au�k:
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As follows from the definition of the operator OP 0
k and from the orthogonality

condition (9.10):

X

k

uk
OP 0
k D 0:

The value A can be found by means of Eq. (9.7):

A
X

k

k�k�uku�k D 1: (9.15)

The terms in the Hamiltonian (9.13) which are proportional to OQk become equal
to zero under the condition:

uk D �25=4

	˛

˝

�1=2 1

k
e�k2=4! : (9.16)

Taking into account the condition (9.4), one can see that the terms in formula (9.13)
which consist of a� and OQk products also become equal to zero if the value uk is
chosen according to formula (9.16). Let us now introduce the following presentation
for the operators OQk and OP 0

k through new creation and annihilation operators which
are connected by additional conditions:

OQk D 1p
2
. Qbk C QbC

�k/I OP 0
k D 1p

2
. QbC

k � Qb�k/I

Qbk D bk � k�vk

X

f

f�uf bf I Œbkb
C
f � D ıkf : (9.17)

As a result of above mentioned transformations and after the integration in
formula (9.13), the Hamiltonian OH0 is expressed as follows:

OH0 D 3

4
! C !

4
.2aC

� a� � aC
� a

C
� � a�a�/� ˛


!

	

�1=2 C

C˛

6


!

	

�1=2

.2aC
� a� C aC

� a
C
� C a�a�/� 3

2
C
X

k

QbC
k

Qbk: (9.18)

The parameter !, which was introduced in formula (9.8), is chosen from the
condition that non-diagonal terms in the Hamiltonian OH0 are equal to zero:

! D 4˛2

9	
I

OH0 D � ˛
2

9	
� 3

2
C 4˛2

9	
aC
� a� C

X

k

QbC
k

Qbk; (9.19)
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and the polaron ground state vector is defined by the following equations:

a�j 0 >D bkj 0 >D 0: (9.20)

The OM enables the calculation of the correction to the energy of polaron ground
state. This correction is defined by the operator OH1 in formula (9.14) and it may
be analytically calculated by means of canonical perturbation theory because the
spectrum of the excitation of zeroth-order Hamiltonian OH0 in formula (9.18) is
already known. The first-order correction is equal to zero identically, and the
second-order correction is defined by the following expression:

E.2/ D<  0j OH1ŒE
.0/ � OH0�

�1 OH1j 0 > : (9.21)

Let us use the following integral representation for the operator ŒE.0/ � OH0�
�1:

.E.0/ � OH0/
�1 D �

Z 1

0

dx exp

"

�x
 

!

3X

�D1
On� C

X

k

ONk

!#

; (9.22)

where

E.0/ D � ˛
2

3	
� 3

2
I On� D aC

� a�I ONk D QbC
k

Qbk: (9.23)

Here the particle number operators describe the excitations of the system in zeroth
approximation. In order to calculate the value (9.21) it is enough to transform the
operators in formula (9.21) to the normal form. This operation may be performed
on the basis of the following identities:

Oc expŒx. OnC 1/� OcI On D OcC OcI Œ Oc OcC� D 1I
exp.ˇ Oc/ exp.x On/ D exp.x On/ exp.exˇ Oc/I Œ Qbk

QbC
f � D ıkf � .kf /ukvf : (9.24)

Thus, the value E.2/ can be written as:

E.2/ D E
.2/
1 CE

.2/
2 CE

.2/
3 I

E
.2/
1 D � ˛2

3	

�

12� 4	 � 12 ln.2C p
3/C 24 ln 2 � 1

4

�

I

E
.2/
2 D ˛

r
!
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Z 1

0

dx
exp.�x/

Œ1 � exp.�!x/�1=2 gI

E
.2/
3 D 12

˛
p
	!

Z 1

0

dx expŒx.! � 1/�

�

Œ4 � exp.�2x!/�1=2 �

� exp.!x/ sin�1
�
1

2
exp.�!x/

� 

: (9.25)



338 9 Systems with Infinite Number of Degrees of Freedom

The function E.2/ can be also used in the case when the coupling constant
˛ ! 0. Furthermore, the value E.0/ C E.2/ coincides with the perturbation
theory result, i.e. .�˛/ when ˛ ! 0. In the limit ˛ � 1, the formula (9.25) leads to
the following expression for the polaron energy in the ground state:

E0 D E.0/ CE.2/ D �1:016 ˛
2

3	
� 2:767: (9.26)

This expression may be compared with the formula found by Feynman [11] on
the basis of the variational method:

EF D � ˛
2

3	
� 2:83; (9.27)

and in strong-coupling region ˛ > 8, where both formulae may be applied, one can
find that our value E0 < EF .

The operator method allows to find directly physical characteristics of the
polaron. In particular, in order to calculate the polaron effective mass we leave in
Hamiltonian (9.13) those items which depend on the total momentum, and then it is
sufficient to calculate the energy of the ground state with an accuracy of P2:

E.P / � E0 C P2

2m� : (9.28)

where m� is an effective mass of the polaron. In zeroth-order approximation .˛ �
1/ the same expression has been obtained by Bogolyubov [7] and Tyablikov [9]:

m� D 1

3

X

k

k2u2k (9.29)

with values uk defined according to formula (9.16), which results in:

m� D 16˛4

81	2
: (9.30)

In order to find next correction to m� in the ˛�1 series the fact is used that the
excitation energy of polaron changes when the total momentum is not equal to zero.
We introduce here two frequencies,which correspond to the cases when particle
coordinate and momentum are expressed through the creation and annihilation
operators:

�1;2 D 1p
2!?

.aC
1;2 C a1;2/I �3 D 1

p

2!k
.aC
3 C a3/; (9.31)

with Z-axis direction coincides with the direction of total momentum.
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The procedure for further calculation is the same as described above for
calculation of polaron energy. The expressions for frequencies !? and !k is found
from zeroth-order Hamiltonian in the following form:

!? D ! C 2

3
�I !k D ! C �I � D � L.M C 3N/

N.M CN/� 2M2
I

L D !3=2=5˛3
p
	I M D ˛=20

p
	!I N D �1 � ˛=60

p
	!: (9.32)

A change of the excitation energy of the polaron leads to appearance of the terms
proportional to P2 in the second-order corrections. Taking into account these
corrections, the following expression for the effective mass of the polaron are found:

m� D 0:9984
16˛4

81	2
C 0:458˛2: (9.33)

The OM enables the calculation of the response of quantum systems to external
field. As for example, we calculate here the polaron polarizability ˇ in a weak
electric field. The polarizability of a system is defined if the excited states are taken
into account and that is why the variational calculation of the polarizability is very
difficult. In order to calculate the polarizability on the basis of OM, it is sufficient to
introduce in Hamiltonian the following operator:

OHint D �e.�E/; (9.34)

which describes the interaction of the polaron and the field E , and to use the
following representation for the operators connected with the particle:

�� D 1p
2!1

.a� C aC
� C f�/I �i@=@�� D �i

r
!1

2
.a� � aC

� /; (9.35)

where f is a constant vector. Then the polaron energy and the parameter !1 are
calculated with an accuracy of E2. The vector f is defined from the condition that
term 	 E in the polaron energy is equal to zero.Finally, the calculation of ˇ is
reduced to the finite integrals, and in the limit ˛ � 1 the following expression is
found:

!1 D !I ˇ D e2

2!2

��

2 � 4

9	
� �1

	

� �2

˛2

�

I

�1 � 0:043I �2 � 4:422: (9.36)

To conclude, the regular strong coupling method considered in the present section
may be used not only in the polaron theory but in any problem where the structure of
a physical particle is formed as the result of the strong interaction of a bare particle
and the quantum field.
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9.2 One-Dimensional Polaron

In previous section, the dependence of polaron energy on the coupling constant
has been considered in the limit of strong interaction of particle with field, which
results in classic component of the field with amplitude depending on particle wave
function. In the present section, the relation of this result to ones obtained for weak
coupling by canonic PT and the construction of UAA for polaron energy for entire
range of coupling constant are considered for one-dimensional polaron. This case
preserves all qualitative features of general polaron problem, however, makes it
possible to perform all calculations analytically [13, 18, 19].

The Hamiltonian of optical polaron of a large radius, being an analogue of the
operator (9.1), is expressed in the following form [20, 21]:

OH D Op2
2

C
X

k

!ka
C
k ak C

X

k

�

V �
k a

C
k e

�ik x C Vk ake
ik x
�

; (9.37)

where!k is frequency of phonon with momentum k, for optical polaron the quantity
!k D ! is independent on k and Vk D 21=4.˛=L/1=2; Op D �i@=@x; x are operators
of momentum and position of electron; aC

k ; ak are phonon creation and annihilation
operators with momentum k; L is normalization length; ˛ is a constant of electron-
phonon interaction. The units are used which imply „, ! and electron mass equal
unity. The large radius polaron assumes the crystal is a uniform dielectric media, and
thus the sum

P

k is replaced by the integralL
R

dk=2	 . The stationary Schrödinger
equation for (9.37) is written as:

OH j� i D Ej� i: (9.38)

First of all, we consider the limit of weak coupling ˛ � 1 for optical polaron
with Hamiltonian (9.37). The perturbation theory over the parameter ˛ is applicable
for this case, which is built by preserving a total momentum (9.2) and using the
unitary transformation Lee-Low-Pines [22] in the Eq. (9.38):

OH 0 D U�1 OHU;
j� i D U j� 0i;
U D exp Œi .P �

X

k

k aC
k ak/ x�; (9.39)

where P is a c-number defining total momentum of the system. After the unitary
transformation (9.39), the Eq. (9.38) is written in the following form:

. OH0 C OH1/j� 0i D Ej� 0i;
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OH0 D 1

2
.P �

X

k

k aC
k ak/

2 C
X

k

aC
k ak; (9.40)

OH1 D
X

k

�

V �
k a

C
k C Vk ak

�

;

where OH0 is unperturbed Hamiltonian, and OH1 is a perturbation operator. The
modified Hamiltonian is independent on the particle coordinate, and the state vector
j� i is an eigenvector for the operator of total momentum at arbitrary j� 0i. We use
here the canonic form of RSPT [23] for the solution of Schrödinger equation (9.38)
in Fock basis, which corresponds to the set of eigenstates of the operator of particle
number for phonons Onk D aC

k ak . The diagonal operator OH0 is a Hamiltonian of
zeroth approximation.

The zeroth approximation for the state vector j� 0i is defined as vacuum state j0i
of the phonon field, and the state vector j0i is determined from the equation:

akj0i D 0I h0jaC
k D 0: (9.41)

Since the state vector of the vacuum of phonon field (9.41) is an eigenvector of
the operator of zeroth approximation OH0, the polaron energy in zeroth approxima-
tion equals to:

E
.0/
0 D h0jH0j0i D P2

2
: (9.42)

As follows from the Eq. (9.42), in zeroth approximation of weak coupling the
polaron is an electron propagating freely in the crystal and not interacting with
the oscillations of crystallographic lattice (phonons). To take into account the
interaction of electron with the lattice, the corrections of higher order have to be
calculated with OH1 as a perturbation operator to zeroth approximation Hamiltonian
OH0. The correction of the first order for polaron energy E.0/

1 D h0jH1j0i equals
zeroth due to relationship (9.41). All other corrections of odd order equal zero
E
.1/
0 D E

.3/
0 D : : : D E

.n/
0 D 0 (n D 1; 3; 5; : : :), too. Therefore, only the

corrections of even order are considered hereinafter E.n/
0 (n D 0; 2; 4; 6; : : :). For

example, the second-order correction equals [21]:

E
.2/
0 D h0j OH1

1

E
.0/
0 � OH0

OH1j0i D

D 21=2˛

2	

Z 1

�1
dk1

1

E
.0/
0 � 1

2
.P � k1/2 � 1

: (9.43)

A special diagram technique is established to analytically calculate the successive
approximations of RSPT over the operator OH1, which helps to derive the terms of
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the expansion over ˛ and to investigate the convergence of the series [18, 19]. The
calculus is reduced to the calculation of one-dimensional integrals (9.43) and here
we present only the selected results of this technique. The energy of polaron with
the accuracy up to the sixth order is:

E0 D E
.0/
0 C E

.2/
0 C E

.4/
0 C : : : ; (9.44)

where the corrections for the energy are:

E
.0/
0 .P / D P2

2
;

E
.2/
0 .P / D � 21=2

.2 � P2/
1=2

˛ D �˛ � P2

4
˛ C o.P 4/;

E
.4/
0 .P / D �

�
P2.P 2 � 4/C 6

.2 � P2/3=2.4 � P2/1=2
� P2.P 2 � 3/C 4

.2 � P2/2

�

˛2

D �
 

3
p
2

4
� 1

!

˛2 C P2

32
.8 � 5

p
2/ ˛2 C o.P 4/: (9.45)

Using the Eqs. (9.44)–(9.45), the ground state energy of slow polaron (P � 1)
is written as:

E0 � P2

2m� � ˛ � 0:0607 ˛2 � 0:0084 ˛3 � 0:0015 ˛4 � : : : ; (9.46)

where the effective mass of electron follows from the equation:

1

m� D @2E0

@P 2

ˇ
ˇ
ˇ
ˇ
PD0

; (9.47)

which results in the expansion:

m� D 1C ˛

2
C 5 � 2

p
2

8
p
2

˛2 C

C 128094744C 90576657
p
2 � 73960128p3 � 52297711p6

576 .�960449� 679140p2C 554400
p
3C 392020

p
6/

˛3

' 1C 0:5 ˛ C 0:1919 ˛2 C 0:0691 ˛3 C : : : : (9.48)

As follows from the Eq. (9.45), there are exist singularities in energy at certain
values of total momentum of the system P , when P D ˙p

n, n D 2; 4; 6; 8; : : :.
The existence of these singularities is related to the infinite degeneration of the
energy levels of unperturbed HamiltonianH0. For example, the energy P2=2 in the
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state j0i and the energy .P � k/2=2C 1 in the state j1ki are equal when P � p
2,

k D P ˙ .P 2 � 2/1=2. Therefore, the secular equation has to be resolved for the
case P � p

2, and the perturbation theory above is only applicable for the case
P � p

2 (slow polaron). The investigation of the convergence of PT series [18]
based on the corrections for energy E0.˛/ � E0.˛/jPD0 of the ground state of
polaron, concludes that the series (9.46) has a limited radius of convergence over
the coupling constant ˛ < ˛c 	 4 � 5. This fact points to degeneration of the
solution of Eq. (9.38) along with the solution corresponding to the strong coupling
case ˛ � 1, presented in Sect. 9.1. To obtain UAA for the function E0.˛/ for the
entire range of coupling constant, the region near degeneracy point ˛ � ˛c has to
be investigated out of PT scope. For this purpose, the Eq. (9.38) is considered in a
strong coupling regime on the basis of adiabatic PT [7,9] (Sect. 9.1) applied to one-
dimensional case. Neglecting the dependence on the total momentum, the solution
is easily obtained by using the unitary transformation of Hamiltonian (9.37), which
distinguishes a classic component uk of phonon field typical for strong coupling
case:

OH 0 D S�1 OHS;
j� i D S j� 0i;

S D exp

"
X

k

.uka
C
k � 1

2
u�
kuk/

#

; (9.49)

where uk is an arbitrary complex number determined later from the condition of
energy minimum for polaron. After the transformation (9.49), the Hamilto-
nian (9.37) and Schrödinger equation are written as:

OH 0 D Op2
2

C v.x/C
X

k

aC
k ak C

X

k

�

u�
kak C uka

C
k

�C

C
X

k

Vk
�

ei kxak C e�i kxaC
k

� I

H 0j� 0i D E 0j� 0i; (9.50)

where the potential v.x/ and eigenvalues of energy E 0 are:

v.x/ D
X

k

Vk
�

uke
i kx C u�

ke
�i kx

�

;

E D E 0 C
X

k

u�
kuk: (9.51)

We select the trial state vector for the Eq. (9.49) in the form:

j� 0i D  .x/j0i; (9.52)
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where  .x/ is a normalized function, and j0i is a vacuum state of the phonon field,
which is defined from the equation ak j0i D 0. By varyingE over the parameters uk
and function  with normalization condition:

Z 1

�1
dx j .x/j2 D 1; (9.53)

the following system of equations is derived for  and uk :

�
p2

2
C v.x/

�

 .x/ D E 0 .x/;

uk D �Vk
Z 1

�1
dx e�i kxj .x/j2: (9.54)

Using the definition of the potential in (9.51), the system of linear equa-
tions (9.54) is transformed to non-linear equation for the function  .x/:

Op2
2
 .x/ � 23=2 ˛ .x/3 D E 0 .x/: (9.55)

Equation (9.55) has an exact solution corresponding to coupled state with energy
E 0
0:

 0.x/ D
r

˛

21=2
1

ch.21=2˛ x/
;

E 0
0 D �˛2: (9.56)

At fixed potential, the Schrödinger equation for the excited states of continuous
spectrum corresponding to momentum p is written as:

p2

2
 .x/ � 23=2 ˛ 0.x/2  .x/ D E 0 .x/ (9.57)

and has exact solutions E 0
p:

 p.x/ D 1
p

L.p2 C 2˛2/
ei px

�

p C 21=2i ˛th.21=2x/
�

;

E 0
p D p2

2
; (9.58)

where 0 � p < C1. This spectrum describes Frank-Condon excited states of
polaron, using the terminology of molecules theory [24] in adiabatic approximation.
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For normalized state vector � and energy of ground state E0, we obtain the
following exact analytical expressions in the limit of strong coupling:

j�0i D  0.x/ exp

"
X

k

.uka
C
k � 1

2
u�
kuk/

#

j0i;

E0 D �˛
2

3
; ˛ �! 1: (9.59)

The value of the energy in ground state in strong coupling limit calculated in
Feynman model of polaron with one-dimensional integral equals:

EF
0 D �˛

2

	
; (9.60)

with an accuracy � 4:5% in comparison to exact value (9.59).
The formal intersection point for the solutions for weak (9.46) and strong (9.59)

coupling corresponds to the value ˛0 � 3:68, which correlates to above estimate
for the radius of convergence of PT series. To perform more detailed analysis, the
structure of the excited states near the ground one has to be closely considered.

There is a classification of the excited states of polaron system [25]: (i) scattering
states, one or more real phonons are excited; (ii) the states, characterizing the
internal excitations of electron subsystem of polaron [26], and there is no excitation
of real phonons (RES states); (iii) Frank-Condon states [26], characterizing the
polaron states in fixed potential corresponding to the ground state of polaron. The
second and third types of excitations are the resonances of metastable polaron
states. There are only exist the experimental observations of scattering states for
free polarons [25].

The internal excited states play important role in bipolarons [25]. Frank-Condon
states have a limited life time and turn into RES states, which are also metastable but
with longer life time in case of intermediate and strong electron-phonon coupling.
In the region of weak coupling, the RES states are unstable because of the mutual
ground state of phonon and polaron is energetically expedient ERES > E0 C „!
[26]. The operator calculations show that there exists a RES state ERES < E0 C „!,
which causes the quasi-crossing of the excited state with ground state near the point
˛ 	 5 [13]. To build a first excited state, the following trial vector is chosen:

j�1i D
Z 1

�1
dk Ck a

C
k j0i; (9.61)

where Ck is a trial function of phonon momentum k normalized to unity:

Z 1

�1
dk jCkj2 D 1: (9.62)
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The energy of zeroth approximation for the first excited state of one-dimensional
optical polaron described by Hamiltonian (9.37) is then defined by the expression:

E
.0/
1 ŒCk� D

Z 1

�1
dk C 2

k C
Z 1

�1
dk
k2

2
C 2
k : (9.63)

When considering the expression (9.63) as functional E.0/
1 ŒCk�, and accounting

the normalization condition (9.62), the extremum for energy E.0/
1 D 1 (equivalent

to the condition of independence of eigenvalues on the selected basis) is realized at
Ck D f .k; ı/jı!0, where f .k; ı/ is normalized to unity function, which tends to
delta function in the limit ı ! 0. This situation conforms to the polaron in ground
state and phonon with momentum k D 0, which is the nearest excited scattering
state to the ground one.

With the increase of the coupling constant, the energy of this excited state is
defined as follows (including the RSPT correction of the second order ˛):

E1 ŒCk� D
Z 1

�1
dk C 2

k C
Z 1

�1
dk
k2

2
C 2
k C 21=2˛

2	





Z 1

�1
dk1

Z 1

�1
dk2 Ck1Ck2

 

1

E
.0/
1 � 1

2
.k1 C k2/

2
� 1

E
.0/
1

!

: (9.64)

The coefficients Ck are determined from the extremum of functional E1ŒCk�,
with the normalization condition (9.62), and the following integral equation for the
function Ck is obtained:

�

1C k2

2
� E

.0/
1

	

Ck C 21=2˛

2	

Z 1

�1
dk1Ck1



 

1

E
.0/
1 � 1

2
.k C k1/

2
� 1

E
.0/
1

!

D 0: (9.65)

Using the Fourier transformation Ck D R1
�1 dk �.x/ e�i k x in the Eq. (9.65), we

arrive at:

� 1

2

d2�.x/

dx2
C p

2˛ ı.x/ �.x/ � ˛ e�p
2jxj�.x/ D �� �.x/; (9.66)

where � D 1 � ˛ � E1 is the difference between the energy of first scattering state
Esc
1 D 1 � ˛ and the energy of the first excited state of the system, calculated

in the second order of perturbation theory. Equation (9.66) after the substitution

z D �p
2 e

� x
p

2 becomes a standard equation for Bessel function. The solution of
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the Eq. (9.66), satisfying the condition of the quadratic integrity of wave function
has a form:

�.x/ D N J2
p
�




2
p
˛ e�p

2 jxj� ; (9.67)

where N is normalization factor and � > 0. The eigenvalues are found from the
continuity of the first derivative:

� 0.0�/� � 0.0C/ D 2
p
2 ˛ �.0/; (9.68)

which experiences the discontinuity in zero point due to delta-shaped potential.
Using the explicit form of the wave function (9.67), the continuity condition is
reduced to the equation:

J2
p
�C1.2

p
˛/� J2

p
��1.2

p
˛/ D 2

p
˛ J2

p
�.2

p
˛/; (9.69)

which has a solution at ˛ > 0. Table 9.1 shows the calculated values of energy of
the first excited state E1 D 1 � ˛ � � within the interval 0 < ˛ � 6. For all values
of the coupling constant ˛ > 0, the energyE1 < Esc

1 , that points out to the stability
of the constructed excited polaron state j�1i and prevent a system from the decay
into phonon and polaron in ground state. Thus, the state with all phonon modes
excited and with the distribution of the probability density jCkj2 is more stable than
the state with a single excited zeroth mode. Table 9.1 contains also the energies E1
for the first RES state obtained in [26]. Nevertheless, the state j�1i is metastable,

Table 9.1 The energies E0, E1 and Esc
1 , calculated by the second-order perturbation theory

˛ E0 E1 Esc
1 E1 from [26] E0 � E1

0.1 -0.1 0:89998 0:9 0:93333 0:99998

0.5 -0.5 0:49544 0:5 0:66667 0:99544

0.8 -0.8 0:18307 0:2 0:46666 0:98307

1.0 -1.0 �0:02999 0:0 0:33333 0:97001

1.5 -1.5 �0:57831 �0:5 0:00000 0:92169

2.5 -2.5 �1:73094 �1:5 �0:66667 0:76905

3.0 -3.0 �2:32981 �2:0 �1:00000 0:67018

3.5 -3.5 �2:94103 �2:5 �1:33333 0:55897

4.0 -4.0 �3:56308 �1:0 �1:66667 0:43691

4.5 -4.5 �4:19479 �3:5 �2:00000 0:30521

5.0 -5.0 �4:83516 �4:0 �2:33333 0:16484

5.557 -5.557 �5:55771 �4:557 �2:70467 �0:00072
6.0 -6.0 �6:13870 �5:0 �3:00000 �0:13870
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Fig. 9.1 The normalized to
unity function Ck for ˛ D 2:5

(thick line) and ˛ D 1:0 (thin
line)
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because of the transition into ground state j�1i ! j�0i is possible due to non-
zero matrix element of the interaction operator. The state j�1i can be interpreted as
coupled with electron one-phonon state, because of the function Ck is quadratically
integrable (see Fig. 9.1), that distinguishes qualitatively this state from the ground
and scattering states.

Figure 9.1 demonstrates that the function Ck tends to delta function in zero point
at ˛ ! 0, because of the case ˛ D 0 corresponds to free electron with momentum
p D 0 and phonon with momentum k D 0 and energy Esc

1 D 1. Table 9.1 shows
that the energy E1 ! 1 at ˛ ! 0, and energies E1 and E0 coincide in ˛ D 5:557,
i.e. there exists an intersection of energy levels of the first excited RES state with the
ground state in the first-order approximation. This intersection is, however, a quasi-
crossing because of the matrix element of interaction operator for the transition
between these two states is non-zero [27], and the linear combination of the states
j�0i and j�1i can be constructed in such a way that the energy levels j�˙i D
C0̇ j�0i ˙ C1̇ j�1i are close each to other near ˛ 	 5:557 but not really intersect.

Thus, the RES energy in the second order of PT has an intersection with ground
state near the point ˛ 	 5:557, that correlates well with the existence of singularity
in E0.˛/ near the real axis. The value of the convergence radius of PT series
obtained from the asymptotic expansion (9.45) is located between ˛c 	 5:07 and
˛c 	 5:57 [18]. To clarify the question of the quasi-intersection between the ground
and excited states of polaron energy, the many-phonon states Ck1;k2;::: have to be
taken into account, which may also have the intersections with ground and first RES
one-phonon states. This kind of OM analysis requires the choice of more general
than (9.61) form of variational function for excited state, which is considered in
next section for three-dimensional and one-dimensional polarons.
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9.3 UAA for Three-Dimensional Polaron Energy

In this section, we make a re-use of the Fröhlich Hamiltonian for three-dimensional
optical polaron of large radius (9.1), represented through the operators of creation
and annihilation of phonons:

OH D �1
2
C

X

k

aC
k ak C 23=4


	˛

˝

�1=2X

k

1

k




eikrak C e�ikraC
k

�

: (9.70)

In general case, to reconstruct the spectrum of polaron states the solution of
Schrödinger equation has to be found:

OH j�Pi D E.˛;P/j�Pi; (9.71)

as well as the equation, corresponding to the conservation law for total momentum
and following from the translational invariance:

OPj�Pi D



� ir C
X

k

kaC
k ak

�

j�Pi D Pj�Pi: (9.72)

As has been illustrated in previous section for one-dimensional polaron, there are
two forms of variational solution of these equations corresponding to asymptotic
limits of strong and weak coupling. These states can be used as basics for the
construction of UAA for state vector of system in the intermediate range. For three-
dimensional polaron, the limit of weak coupling ˛ � 1 corresponds to the state
vector found by the unitary transformation operator Lee-Low-Pines [22] and initial
Hamiltonian (9.71):

OHP D OR OH OR�1I
j�Pi D ORj� iI

OR D exp

"

i.P �
X

k

kaC
k ak/r

#

: (9.73)

The operator OR is the projection operator, which provides the state vector satisfying
the Eq. (9.73) at arbitrary vector j� i. To take into account the influence of many-
phonon transitions, the state vector j� i is chosen in a general trial form, which
admits the separation of classic component, in opposite to (9.63):

j� i D 1p
˝
e
P

kŒvk.P/a
C

k �v�

k .P/ak�j0iI
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j�.D/

P .r/i D ORj� i D 1p
˝
e

 

iPrCPk




e�ikrv�

k .P/a
C

k �vk.P/eikrak

�!

j0iI

akj0i D 0: (9.74)

This polaron state vector defines the delocalized state .D/, and the wave function
of electron corresponds to continuous spectrum and the electron density:

�.r/ D j < rj�.D/

P > j2

and is independent on coordinate. The state vector (9.74) is an exact eigenfunction
of the total momentum operator, and to make it also the best approximation for
the solution of Schrödinger equation (9.71), the fittable parameters vk.P/ have to
be chosen from the minimum of energy calculated as an average from the total
Hamiltonian (9.70) over this state. The variation of the average over vk.P/ leads to
the following result [17]:

vk.P/ D �27=4

	˛

˝

�1=2 1

kŒk2 � 2.P � Q/k C 2�
;

Q D
X

k

kv2k.P/: (9.75)

For simplicity sake, all further calculations are presented for the polaron settle
on standing P D 0, when the coupling energy of polaron is defined by formula [3]:

ED.˛/ D HDD D
Z

drh�.D/
0 .r/j OH j�.D/

0 .r/i D �˛: (9.76)

The second basis state is defined by the variational wave function, which has
been introduced for the first time in [6] and supposes the hypothesis about trapping
of the slowly moving electron in ionic crystal into potential well created due to
polarization of ionic lattice by the same electron. As shown in Sect. 9.1 and [7, 9],
the method exists which provides the translational invariance of this state, and the
state is an asymptotically exact solution of the Schrödinger equation in the limit
˛ ! 1. According to [3], the translational invariant state vector describing self-
localized polaron is written as:

j�.r;R/i D �.r � R/e

 

P

k




e�ikRu�

k a
C

k �eikRukak

�!

j0iI
Z

drj�.r/j2 D 1: (9.77)
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Here R is an arbitrary point in space, in the vicinity of this point the electron with
the wave function �.r � R/ is localized. The classic component of the phonon field
uk is determined from the minimum of energy and is [6]:

uk D �23=4

	˛

˝

�1=2 1

k

Z

drj�.r/j2e�ikr : (9.78)

In turn, the wave function of electron in this state satisfies the following non-linear
equation with eigenvalueEP , derived by Pekar:

�

� 1

2
 � 21=2˛

Z

dr1
j�.r1/j2
jr1 � rj C

C ˛p
2

Z

dr1

Z

dr2
j�.r1/j2j�.r2/j2

jr1 � r2j � EP

�

�.r/ D 0: (9.79)

The exact solution of this equation is found numerically (see, for example, [28]
and citations therein). However, for analytical simulations the wave function �0.r/
can be used, which has been introduced by Pekar as a good approximation [3]:

�0.r/ D
r

8

14C 42c C 45c2
.1C br C cb2r2/e�br; (9.80)

with optimal variational parameters

b D 0:931307˛; c D 0:451668;

at which the coupling energy of polaron is:

EP D �0:108504˛2;
that is close to exact result �0:108513˛2.

The collection of the state vectors (9.80) corresponding to various R describes
the localized states (L) of electron. Each of these states is related to local violation
of translational symmetry in the sense discussed in [29]. However, due to this
symmetry the energy of the system is independent on localization point R, that
is secured by the selection of correct linear combination of degenerated states
j�.r;R/i, being the eigenvector for the operator of total momentum:

j�.L/
P .r/i D 1

NP

p
˝

Z

dReiPRj�.r;R/i; (9.81)

with normalization constant:

N2
P D

Z

dR
Z

dr�.r/ �.r C R/ exp

"
X

k

u2k.e
�ikR � 1/

#

:
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Fig. 9.2 The polaron energies calculated by Pekar (EP ), in delocalized (ED) and localized (EL)
states

The state vector (9.81) combined with the expression (9.80) results in the following
estimate for coupling energy of localized polaron ar arbitrary ˛:

EL.˛/ D HLL D
Z

dr h�.L/
0 .r/j OH j�.L/

0 .r/i: (9.82)

Figure 9.2 compares the functions ED.˛/ and EL.˛/ with the values EP .˛/
computed on the basis of state vector (9.77), which does not account the translational
symmetry of the system.

As follows from Fig. 9.2, there is no restriction on coupling constant ˛ for
both continuous functions ED.˛/ and EL.˛/, describing two qualitatively different
states. However, there is an intersection of these energy terms near the point ˛ '
˛c ' 7, that corresponds to the degeneration of states. A similar degeneration is
known in the electronic band theory in crystals as the intersection of resonant bands
(see, for example, [30]). In opposite to real intersection of energetic levels with
different symmetries discussed in Sect. 3.5 for two-level system, here we observe
a quasi-intersection caused by approximate nature of the mathematical description
of these states. This degeneracy is eliminated if a proper linear combination of both
states is chosen for variational wave function [27]. In accordance with OM princi-
ples, this combination is modeled by ansatz built on the basis of functions (9.74)
and (9.81):

j˚P .r/i D C1j�.D/

P .r/i C C2j�.L/

P .r/i: (9.83)

This ansatz uses only linear variational parameters C1;2, whereas the parameters
for basis states are fixed. In typical variational calculus of polaron energy for
intermediate values of coupling constant, the complex variational functions have
been used being connected to either localized or delocalized polaron states indepen-
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dently, and this fact results in the fictitious phase transition in the point ˛c [3]. The
simple trial function (9.83), which is not reduced to any of these states and provides
the continuity of energetic terms in the point ˛c , has been proposed in [16, 17].

As prescribed by OM algorithm, and due to the fact that both basis vectors are
exact eigenfunctions of the operator of total momentum, the variational func-
tion (9.83) is used for Schrödinger equation (9.71). The condition for existence
of non-trivial solution for coefficients C1;2 results in the following formula for
eigenvalues for adiabatic terms of polaron:

E˙.˛/ D 1

2.1� S2/
.HDD CHLL � 2SHLD ˙ ER/

ER D Œ.HDD CHLL � 2SHLD/
2 �

4.1 � S2/.HDDHLL �HLDHLD/�
1=2: (9.84)

Here HDL;HDD and HLL are matrix elements of total Hamiltonian (9.1) between
the basis states, which are generally not orthogonal, and S ¤ 0 is an overlapping
integral. We skip all intermediate calculations and present the resulting analytical
formulas at P D 0. The simplest expression is:

HDD D �˛; (9.85)

and the energy of localized state is more cumbersome:

HLL D 1

N 2

Z

dR
Z

dr�0.r C R/ exp
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�ikR
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where the normalization constant is:

N2 D
Z

dR
Z

dr�0.r/�0.r C R/ exp

 
X
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u2ke
�ikR

!

:

The matrix element of transition between basis states is written:

HLD D e�˛=4
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Z

dr�0.r/
n

� ˛ C 1

2

 
X
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(9.87)
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Fig. 9.3 Energetic terms of polaron: after Feynman (EF ) and on the basis of formula (9.84) (E
˙

);
EG is an analogous of E� at Gaussian approximation for wave function of electron

Finally, the overlapping integral of vectors is:

S D e�˛=4

N

Z

dr�0.r/ exp

 
X

k

ukvke
ikr

!

: (9.88)

The formulas (9.84)–(9.88) calculate the adiabatic terms of polaron E˙.˛/ in
the entire range of coupling constant, that is demonstrated in Fig. 9.3. The estimate
after Feynman EF .˛/ [11] is depicted in figure, too. The functions E� and EF are
almost coinciding continuous function, and E� is located below EF in asymptotic
region ˛ � 1, which is not shown in figure. This is due to more accurate choice
of trial function (9.77) comparing to [11], where the path integral for harmonic
oscillator is used for description of localized state. The magnitude of term E�
depends weakly on the form of electron wave function �0.r/, as follows from the
curve EG corresponding to Gaussian approximation for this function.

The visible difference between adiabatic term after OM and Feynman approxi-
mation in the domain of intermediate ˛ is due to more accurate accounting of the
non-dependent on ˛ contribution to the coupling energy of polaron in functional
approach. As proved in Sect. 9.1, the second-order OM approximation delivers more
precise results and the term becomes E� < EF . This statement is illustrated in
Fig. 9.4, where the results for one-dimensional polaron with Hamiltonian (9.37) are
presented. The role of constant term is suppressed here and OM calculates polaron
energy more accurately than method of functional integration.
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Fig. 9.4 The same functions
as in Fig. 9.3, for
one-dimensional polaron

9.4 Particle-Field Interaction Model with a Divergent
Perturbation Theory

The polaron problem is an unique physical model in quantum field theory due to
the fact that all PT diagrams, including energetic ones, result in convergent integrals
and therefore the PT series is not requiring additional mass re-normalization [19].
However, in real models used in quantum field theory, the diagrams of standard PT
tend to infinite values. The integrals diverge both in the region of large momenta
of intermediate states (ultraviolet divergence) and in the region of small momenta
(infrared divergence) [31, 32]. Here we discuss the results of the application of
operator method to localized states in the model of interaction of particle with
quantum field, which is more general than polaron. The Hamiltonian describing
the interaction of non-relativistic particle with scalar quantum field is used for this
purpose [17]:

OH D �1
2
C

X

k

!ka
C
k ak C

C gp
˝

X

k

1p
2!k

�

eikrak C e�ikraC
k

�

; !k D k D jkj; (9.89)

where g is a coupling constant for the particle and the field. An analogous operator
describes the interaction of electron with the field of acoustic phonons in the
framework of continuous crystal model [30].

The self-energy diagram corresponding to the second-order PT (9.43), being
integrated over three-dimensional space of vectors k tends to infinity because of the
absent multiplier 1=k in the interaction operator. As a result, there is no presence
of delocalized state of particle equivalent to (9.74). However, the localized state
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similar to (9.81) is possible, if the OM approach is used instead of PT. We use here
the following ansatz for the vector of localized state:

j�.r;R/i D �.r � R/ exp

 
X

k




u�
ke

�ikRaC
k � 1

2
u2k
�
!

j0i: (9.90)

In accordance with OM procedure, the parameters of the classic component of
field uk and the wave function of electron have to be found from the extremum of
the average of total Hamiltonian (9.89) over the state vector, i.e. nullification of the
following variational derivatives:

ı

ıuk

Œh�.r;R/j OH j�.r;R/i� D ı

ı�.r � R/
Œh�.r;R/j OH j�.r;R/i� D 0: (9.91)

From this expression, the classic component of the field equals:

uk D � g
q

2˝!3k

Z

dr�2.r/e�ikr ; (9.92)

and wave function �.r/ satisfies to non-linear equation analogous to (9.79), which
corresponds to optical polaron. The total energy of the state is found from (9.91)
and (9.92):

E0 D
Z

dr�.r/
�

�1
2


	

�.r/�
X

k

!ku2k; (9.93)

and does not undergo an ultraviolet divergence due to particle form-factor condi-
tioned by the wave function of localized state. The value (9.93) is always finite at
arbitrary value of the coupling constant g. At the same time, the infrared divergence
remains, which causes the state vector (9.90) to contain an infinite expression
	 P

k u2k, which defines the average number of the excited quanta of field and
implements the integral diverging at k ! 0. The situation changes drastically if
the translational symmetry is restored in the state vector (9.92) in a way similar to
formula (9.81):

j�.L/
P .r/ >D 1

NP

p
˝

Z

dR�.r � R/ exp.iPR C
X

k

.uke
�ikR � 1

2
u2k//j0 > : (9.94)



References 357

Fig. 9.5 The intrinsic energy EL of “dressed” particle for the model with Hamiltonian (9.89); E0
is the energy (9.93) of the state without translational symmetry

The normalizing integral has a following form (we assume here P D 0):

N2
0 D

Z

dR
Z

dr�.r/�.r C R/ exp

 
X

k

u2k.e
�ikR � 1/

!

; (9.95)

and contains the convergent integrals only. Figure 9.5 shows the coupling energy of
“dressed” particle:

EL.g/ D
Z

dr < �.L/

0 .r/j OH j�.L/

0 .r/ > :

The figure demonstrates that the intrinsic energy of “dressed” in phonon field
particle is well-defined in OM and remains finite in the entire range of the
coupling constant. The physical characteristics of “dressed” particle are determined
by localized in a space wave function and therefore cannot be computed using
standard perturbation theory, which implements the plane wave basis for zeroth
approximation. A similar problem appears in the case of moving quantum particle
in potential field, if the coupled localized states are found by canonic PT.
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